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Abstract.

Using the Magnetohydrodynamic model, two problems in the 

behaviour of magnetic field structures are investigated. Firstly, the 

stability of tokamak equilibria to coupled tearing modes is 

calculated. Secondly, the equilibrium structure of a solar coronal 

loop is examined.

The flux co-ordinate method is used to construct toroidal 

equilibria of the type found in large aspect ratio tokamaks. In such a 

field configuration, the analysis of tearing modes is complicated by 

the coupling of different poloidal fourier modes. The effect of

coupling through elliptic shaping of plasma surfaces is calculated. 

For certain current profiles, this effect may cause instability.

The response of coronal loops to twisting at their photospheric 

footpoints is investigated. Long loops are shown to have an

essentially 1-D nature. This observation is used to develop a 1-D, 

line-tied model for such loops. This model is used to conduct an 

extensive survey of the non-linear twist regime, including the 

effects of enhanced fluid pressure. The possibility of 

non-equilibrium, which would provide energy for coronal heating and 

compact flares, is examined. When the physical variable of footpoint 

displacement is specified, no loss of equilibrium is found by

twisting. Loss of equilibrium is found for high pressures, which we

do not, however, expect to find in the corona.
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Ch.apl££j..Jniroduçtion,

1,1 . Plasmas.

A plasma is an ionised gas, the behaviour of which is dominated 

by the electromagnetic interactions between its constituent 

particles. Plasma is probably the dominant form of matter in the 

universe, since all stars and much interstellar material exist in that 

state. However, its occurrence on Earth is less common; being 

restricted to lightning, flames and various man-made plasmas.

The behaviour of plasma is complex and has attracted a great 

deal of experimental and theoretical investigation. Models which 

explain a great deal of the experimental observations have been 

developed. It is necessary to make certain simplifying assumptions 

when modelling a plasma. To determine the motion of every particle 

from the inter-particle forces is, of course, impractical. The next 

most accurate approach is a statistical description based on 

distribution functions which describe the density of particles in 

position and velocity space. Although this approach successfully 

explains much plasma behaviour, it is impractical to apply it to 

most problems. In particular, the complex geometries encountered in 

many applications render such an approach infeasible.

1.2 Magnetohvdrodvnamics.

The approach which we shall use exclusively in this work is the 

so-called magnetohydrodynamic model (universally referred to as 

MHD). As the name suggests, this is a combination of the basic laws 

of electromagnetism with those of fluid dynamics. In MHD, we 

assume that the plasma can be described in terms of macroscopic 

quantities such as temperature and density, defined as averages over 

fluid elements which are small in comparison to length scales of 

interest for the macroscopic behaviour of the plasma. These 

elements must, however, be large in comparison to the length scales 

of microscopic phenomena. Important examples of microscopic
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scales are the Debye length, which is the distance over which the 

electric field of an individual charged particle is screened out, and 

the ion gyro radius, which is the radius of the orbit which an ion 

makes around any magnetic field in the plasma. Clearly then, all 

length scales of interest must be very much larger than these 

microscopic scales. In order to apply the normal laws of 

thermodynamics, the plasma should be highly collisional. For many 

applications, this last constraint is not satisfied. However, the 

restriction of particle movement across field lines has the effect of 

enlarging the range of applicability of the MHD approach.

1.3 The MHD equations.

The behaviour of electric and magnetic fields are described by 

Maxwell's equations:
V.B = 0 (1.1)

= + ( 1.2)

V x E = - | ^  (1.3)

V.E = ^  (1.4)

E and B are the electric and magnetic fields respectively (B is, 

strictly speaking, the magnetic induction; however, we shall adopt 

the normal practice of referring to it as the field), p. and e are the 

permeability and permittivity, usually assumed to be constant and 

equal to their free space values, and J and are the current and

charge densities. The relativistic term (pe)"^3E/9t in (1.2) can be 

neglected when particle velocities are much less than the speed of 

light, which is true for most applications (including all those which 

we shall discuss).

Ohm's Law,
J = o ( E  + v x B )  (1.5)



= V x ( v x B )  - Vx( i i  V x B )  (1.6)

gives us the current density driven by the electric and magnetic 

fields in a plasma of conductivity a moving with velocity v. More 

general forms of this law are available, but these shall not be 

required in our analysis. We may eliminate E and J from equations 

(1.2) (neglecting the relativistic term), (1.3) and (1.5) to obtain the 

induction equation,

at

which describes the evolution of the magnetic field without explicit 

reference to current or electric field. the magnetic diffusivity, is 

defined by

11 = ]W U-7)

If q is constant, we may re-arrange (1.6) into its more familiar 

form
= V X (V  X B) + T, f  B (1.8)

In most plasma of interest, the second term on the RHS of (1.8) 

is very much smaller than the first term. Consequently, the 

behaviour of the plasma is dominated by the first term, which 

dictates that the field is convected by the fluid. Alternatively, we 

may state that the plasma is confined by the field. The tendency of 

the field to diffuse slowly through the plasma (or vice-versa) is 

represented by the second term. Neglect of this term gives the model 

known as ideal MHD. In ideal MHD, field lines may not reconnect and 

energy is not dissipated. Hence, a great deal of physics resides in 

the smaller ’resistive' term. More will be said of this in Chapter 2.

To complete our description of the plasma, we require some 

elementary fluid equations. The equation of mass conservation is

^  + p V . v = 0  (1.9)

where p is the (mass) density of the plasma and D/Dt is the 

convective derivative defined by

i  -  I f  .  , V  (1.10)



p s s J x B “ V p + F ^  ( 1.12)

For changes which progress more slowly than the time it takes 

sound to cross the plasma, we may assume that motion is 

incompressible, I.e.
V.V = 0 ( 1.11)

Most importantly, the equation of motion of the plasma is (assuming 

inviscid flow)

Dt

where p is the plasma pressure and F^ represents external forces 

such as gravity.

The fluid pressure is determined by an equation of state, which 

we shall take to be that of an ideal gas, i.e.
P = P ^ T  (1.13)

where m is the mean particle mass, k is Boltzmann’s constant and T 

is the temperature.

When a flow is compressible, an energy equation is required to 

relate the pressure and the density of the fluid. In the case of an

ideal gas, this may be expressed as
' ) 1

5= “ L (1.14)T 1 Dt VP

where the energy loss function L represents the energy lost by the 

fluid, y is the ratio of specific heats, which is 5/3 for an ideal 

monatomic gas. Where there is no exchange of heat, the flow is 

described as adiabatic and the RHS of (1.14) is zero. Hence, the 

energy equation for an adiabatic process is

Dt , P \
0 (1.15)

Another special case is an isothermal process (one in which there

are no changes in temperature). In this case, (1.13) tells us that
“  ss a constant (1.16)

1.4 Maqnetohvdrostatics.

If the external forces in (1.12) are just a gravitational field pg 

and there are no flows, we have a state of magnetohydrostatic

4
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1
equilibrium governed by 1

J X B - Vp + pg « 0 (1.17)
f

Let us compare the magnitude of the terms in this equation. Consider

first the hydrostatic balance (no magnetic forces) between the

pressure and a gravitational force pg acting in the negative

z-direction of a cartesian system. From (1.17) and (1.12), we obtain

^ = - p g = - ^ p  (1.18)

which has solution (T constant)

_ k T

Hence, the pressure falls off by a factor e over a vertical distance

(’ mgz 1
p(z) = p(0 ) exp —rpf— (1.19)

equal to the scale height H, defined by

H -  -g -  ( 1.20)
%

Comparing the orders of magnitude of the pressure and gravity
1

terms in (1.17), we find

where L is the length scale of our structure and p  ̂and p  ̂ are the

average pressure and density. Hence, we may neglect gravity where L

«  H. In this case, (1.17) becomes
J X B = Vp (1.22)

The ratio of fluid pressure to magnetic pressure is equal to the

plasma beta p, defined by

(1.23)
B

Where p «  1, we may neglect the pressure term in (1.22) and

consider a force-free field, satisfying
J x B  = 0 (1.24)

B must satisfy (1.1) and J is given by (1.2) as
J .  (1.25)

where we have, as discussed above, neglected the relativistic term. 

Since p is constant in this work, we shall normally omit it from our 

equations.
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LS_Goronal Loops,

A very important example of a plasma is the sun, which is

simply a huge (radius *  6.96 x 10®m; mass = 1.99 x 10®°kg) ball of

plasma, held together by its own gravity. The surface and

atmosphere of the sun display many fascinating and complex 

structures, in which the role of magnetic fields is central. The 

atmosphere, known as the corona, has a high temperature (1.6x10®K 

in the 'quiet corona') and a low density (lO'^^m*® at one solar radius 

above the surface and falling off rapidly with height). The

mechanism by which this temperature is obtained is a long-standing 

problem in solar physics. X-ray and EUV observations of the corona 

have revealed the presence of coronal holes - areas of open magnetic 

field, which have especially low density. Elsewhere, these 

observations indicate that the corona consists largely of loop 

structures, which are presumed to outline the magnetic field. These 

loops are categorised into five main types, the properties of which 

are given in the following table:

ly p fi Length (Mm). I^ m peratyre (K j Density fm ®!

Actlve-Region 10 -1 0 0  104-2.5x10® (0.5-5)x10i®

Interconnecting 2 0 -7 0 0  (2-3)x10® 7x10^4

Post-Flare 10 -1 0 0  104-4x10® 10^̂

Quiet-Region 2 0 -7 0 0  1.8x10® (0.2-1 0)x10i®

Sim ple-Flare 5 -5 0  ^ 4x10^ 10 ®̂

To understand this classification, It is necessary to consider 

the sun's visible surface, which is known as the photosphere. The 

regions of the photosphere where most magnetic activity takes 

place are termed 'active', the opposite of this term being 'quiet'. The 

characteristic features of an active region are intense magnetic 

fields, sunspots, complex overlying magnetic field structures and 

the occurrence of flares. Sunspots are cooler (hence, darker) regions 

of the photosphere, with very strong magnetic fields (2-3000G).



Solar flares are violent magnetic storms, visible as a rapid 

localised brightening in the photosphere. This is often accompanied 

by effects in the rest of the spectrum and the emission of particles 

or blobs of plasma. The brightening is thought to be a response to 

events happening in the overlying coronal field. Flares are divided 

into two types. The compact flare is a simple brightening and fading 

in one or more loops. Such loops are referred to as simple-flare 

loops. The two-ribbon flare is larger in extent and more energetic. 

The name comes from the two ribbons of (photospheric) emission

which are seen in this type of flare. These ribbons are often seen to 

be connected by a ’post-flare loop’.

An 'interconnecting loop' is one which connects two distinct 

active regions; the terms 'active region loop' and 'quiet region loop' 

should be self-explanatory.

In this work we shall examine the structure of the coronal loop, 

considered as a tube of magnetic flux with its ends rooted in the 

dense plasma of the photosphere. Since the bulk of the loop is in the 

corona, its structure is dominated by the magnetic field. The loop 

evolves through a series of equilibria in response to the movement 

of its photospheric footpoints. In chapters 4 and 5, we shall examine 

this evolution when the motion of the footpoints is twisting and 

when pressure fluctuations occur at the base of the loop. In Chapter 

4, the linear behaviour will be studied, whereas Chapter 5 will 

investigate the non-linear regime and the possibility of loss of 

equilibrium. A more detailed introduction to solar MHD can be found 

in the book by Priest (1982).

.16 Controlled Nuçioar , Fusion.
The sun's gravity compresses and heats the plasma at its centre 

to such an extent that nuclear fusion takes place, converting 

hydrogen into helium and releasing energy. It is this process which 

is primarily responsible for the sun's energy output. Reproduction of



this process on Earth would constitute an extremely important 

energy source. Unfortunately, in order to confine the plasma, some 

alternative to the sun's gravity must be found. The most promising 

approach so far devised has been magnetic confinement, based on the 

fact that plasma only diffuses slowly across a magnetic field.

The tokamak, pioneered in the USSR, is the most favoured type 

of magnetic confinement device. In the tokamak, a large toroidal 

magnetic field with a small poloidal component is used to confine 

plasma within a toroidal vessel. The equilibrium of such a plasma is 

studied in detail In Chapter 2.

The quest for fusion power has led to the discovery of a plethora 

of plasma instabilities, many of which can be explained by MHD. :| 

Particularly important are the resistive instabilities known as the 

tearing modes. Tearing modes are described in Chapter 2 and their 

behaviour in tokamaks is investigated in Chapter 3.

A detailed introduction to the role of plasma physics in the 

controlled fusion programme can be found in the book edited by Gill 

(1981). I

.1,7 Motivation and Outline of Thesis.
In Chapter 2 , we shall introduce the ideas necessary to our 

study of tokamak stability. First, we construct a toroidal 

co-ordinate system, based on the flux surfaces of an axisymmetric 

equilibrium field. We shall expand the equilibrium equation in 

different orders of the inverse aspect ratio, with the ordering of 

field components appropriate to a tokamak. Our field is cylindrical 

to leading order, with toroidal curvature appearing as a small effect. 

Thus, we confirm the results of previous workers and establish the 

notation to be used in Chapter 3. The second part of Chapter 2 

provides an introduction to the tearing mode and reviews previous 

work on the mode in slab and cylindrical geometries.

In Chapter 3, we construct the marginally stable ideal MHD

8
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equation in the co-ordinate system developed in Chapter 2 , We then 

specialise this equation to the case when three tearing modes are 

coupled in a non-circular cylinder. Finally, we solve the resulting 

system of equations for the case when only two modes have singular 

surfaces in the plasma.

The remaining chapters deal with the coronal loop. In Chapter 4, 

we study the linear effect of twisting on an initially untwisted 

coronal loop. We observe the characteristic features of twisted 

cylindrical equilibria and develop a 1-D model appropriate to long 

loops, which are nevertheless line-tied at the photosphere.. Since

coronal loops generally have a high aspect ratio (about 10), we 

believe this to be a useful approach. Elementary observations are 

made about the effects of toroldicity, comparing our coronal loop to 

the tokamak equilibria considered in previous chapters.

Using the 1-D model of Chapter 4, Chapter 5 investigates the 

non-linear regime in a search for loss of equilibrium, which might

explain the heating of the corona or the occurrence of compact

flares. Different approaches to the specification of twist and

pressure enhancements are examined and compared. Extensive 

comparisons with 2-0 work are made.



Chapter 2. Toroidal Equilibria and Tearing Modes 

2..1 -Tokamaks,

The tokamak is a toroidal plasma confinement device which has 

a large toroidal magnetic field and a smaller poloidal magnetic

field Bp. The ratio of the major radius of the torus to its minor

radius is known as the aspect ratio.

An Important quantity in tokamak stability theory is the safety 

factor q, which is the ratio of the pitch of a magnetic field line to

the major radius of the torus. Hence, a field line will make q

toroidal transits of its flux surface in one poloidal transit. In a 

tokamak, q normally rises monotonically from a minimum value qQ at

the magnetic axis to a maximum q^ at the plasma surface. The

plasma beta which measures the

ratio of fluid pressure to magnetic pressure is given by

p - 2p^p/B2 (2 .1)

The plasma beta in a tokamak is rather small, though the poloidal 

beta (obtained by replacing B by Bp in equation (2.1)) is usually of 

order 1.

2L2 JflfQldal Co-ordinate Systems,
In order to facilitate the study of toroidal pinch devices, such 

as the tokamak and the reverse field pinch, various authors (Hamada 

(1962), Greene et al (1971), Bussac et al (1975)) have developed 

co-ordinate systems based on the magnetic flux surfaces of 

toroidally axisymmetric equilibria. These co-ordinate systems have 

the added advantage of making field lines appear straight. As a 

consequence of toroldicity, the flux surfaces are not concentric 

circles, but their centres are displaced outwards from the magnetic 

axis by an amount A, known as the Shafranov shift. Here we follow 

Connor and Hastie (1985) in constructing a system based on flux

10



surfaces which display both the Shafranov shift and the non-circular 

distortion of flux surfaces which may be created by external current 

windings or an appropriately shaped conducting shell. Such 

co-ordinate systems may also be useful in modelling magnetic 

structures in the solar corona. For instance, the coronal loop is a 

semi-toroidal structure with a large aspect ratio (typically 10). 

Furthermore, reversals in their toroidal field are not observed, 

suggesting that the poloidal field is small in comparison to the 

toroidal component. Hence, a tokamak expansion should be an 

appropriate description of such a loop.

First, we transform from the cylindrical co-ordinate system 

(R,<{),Z) centred on the axis of toroidal symmetry to a system ( p,co,(|)) 

in which p labels flux surfaces and co is an angle-like variable in the 

poloidal direction, p and co are not orthogonal. The co-ordinate 

systems are shown in Figure 2 .1.

Fig 2.1 Toroidal co-ordinates.

We shall define a transformation

R = R(p,co) ; Z = Z(p,co) (2 .2 )

and the metric tensor g such that the element of length dl is given 

by

(dl)® = gpp(dp)® + 2gp„dpdto + go)M(dm)2 + R2(d<l))2 (2.3)

11



The elements of the metric tensor and the Jacobian of the

co-ordinate system J are given by

9pp = (3R/ap)2 + {az/3p)2 ; = (BR/9o))2 + (3Z/aco)2

9pco " 3R/3p 9R/9o) + 3Z/3p 3Z/3co ;

J = R (3R/3o) 3Z/3p - 3R/3p 3Z/3©) (2.4)

Our stability calculations will require explicit expressions for 

the scale factors of the system |Vp| , |Vco| and Vp.Vco which are 

related to the elements of the metric tensor by

|Vp|2 = gPP ; |Vco|2 = gO)(0 ; Vp.Vco = . (2.5)

The pressure p is a function of p alone and the magnetic field takes 

the form

B = RqBo (f(p) V<1) X Vp + g(p) V4)) (2.6)

where Rq is the major radius of the torus and Bq is a constant

magnetic field (essentially the toroidal field), f and g are 

dimensionless functions describing the poloidal and toroidal

magnetic field components respectively. The equilibrium equation

now becomes (Appendix A)

0 (2.7)jL
J _^p

fg (06) _3_
3co

P6)tg

where primes denote derivatives with respect to p .

We shall now expand our equilibrium quantities in increasing 

powers of the inverse aspect ratio e ( = a/Rg where a is the minor

radius ) of the torus. The leading order of our expansion will be 

equivalent to the straight cylinder, which we use as a first 

approximation to our tokamak. Corrections to this will appear as 

higher order terms. In a large aspect ratio tokamak, the poloidal 

field is of order e in comparison to the toroidal field, which is given 

in leading order by the constant field Bq and the plasma beta is order

12



£2. Inserting this ordering into equation (2.7) implies that g' is of 

order e2 . Summarising.

P/Bq2 .  eZpg + , f -  e f̂  + ..., g -  1 + e2g  ̂+ ... . (2 .8 )

We choose the following form for our co-ordinate  

transformation:

R « Rq(1 - epcosco - e2A(p) + e2Sp [S^(p)cos(n-1)co] + e®P(p)cosco +

...) :

Z » Ro(epsinco + e2Ep[S^(p)sin(n-1)co] - e®P(p)sinco + ... ) , (2.9)

Note that p has been non-dimensionalised and that S and P are 

dimensionless. Thus our magnetic surfaces are non-concentric due to 

the shift A(p) and have non-circular shaping terms given by the S" (02 

= ellipticity, 8 ® = triangularity, etc.). P merely re-labels the flux 

surfaces for reasons of mathematical convenience. We will later 

select a form for P which facilitates a further co-ordinate 

transformation.

Non-dimenslonalising with respect to R^ and B  ̂ and expanding 

equation (2.7) In powers of e (Appendix B) yields in highest order:

P2* + g2* + fi(pfi)Vp « 0  . (2 .10)

which is the cylindrical equilibrium equation. Here and subsequently 

R q and Bq have been suppressed. The cosco term in the second order 

equation describes the shift of surfaces:

A” + ( 2 (p fi)V (p fi)  - 1/p )A ‘ - 2(pfi)Vf^ - 1 . 2pggVfi2 .  0

(2 .11)

and the higher harmonics describe the surface shaping:

S"" + [2(pf,)V(pf^) - 1/p]S"' - (n2-l)S"/p2 = 0 (2.12)

We observe that, unless a non-zero value of S"(a) is imposed, the 

solution of this equation is simply S" « 0. In the next order of e, we 

obtain:

13
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^2 (p y ' 1 ^

V ;

p ;+ 9 :+ 9 2 9 2 + 4 (p ^ *i*3 ) '+ § -p %  + 2Ag;

(p f.r
2pf 3p® - 4pA' + 3(A')^ + % (n -1)' 2—  3 (S'")

\
m,2

y J

S"'+ (n-1) | - =  0 (2.13)

where (2.12) has been used to eliminate terms in S"".

For convenience in our stability analysis, we shall make a 

further transformation to the co-ordinates (r,0) given by
(Ù
f  J_

P 2 *  J ^
r̂  = i  Jdp j  -^do) ; 6 = 27[ "

dco

0 0
2%

I
(2.14)

dû)

and we may make r equal to p by setting

(2.15)

thus removing the higher order terms in the integrals. 0 is given by

0 « Û) + £ (A'+ r)sin(o - - (n-1 ) -y— sin(nco) +... (2.16)

The scale factors of the (r,0) system are (neglecting second 

order harmonic terms which we shall not require)

|Vr| = 1 - £ 2A' COS0 - 2 ^  S"*cos(n0)

14



|V0|  ̂= Ê
-2

{ 1 + £ 2(A' + r) COS0 - 2 ^  S^'cos(ne)

r  y  (rA" + 2A' + r){rA" + r) + | -  (A' + r f  + A + Ç +  +

2n

n -̂1 (S 
2n'

2n'

2 . /^n,2

Vr.V9= (A" + - ^ + 1 ) s i n e - ^  i { S " " + - ^  + - Î^ ^ S '’ ) sin(ne)
n r

R? -  1 - e [2r cose ] - [2A + rA' + ^  ] + ... (2.17)

This co-ordinate system has the advantage that the field lines 

are straight lines in the 0-(|> plane. In addition, the safety factor q

takes the particularly simple form
2*

gr (2.18)

and the Jacobian is simply

J = rR2 (2.19)

Of particular importance in tokamaks is the instability known

as the tearing mode. This is believed to be involved (see, e.g. Wesson 

(1981)) in the disruptive instability which results in rapid plasma

cooling and current collapse, as well as small magnetic (Mirnov)

oscillations and millisecond oscillations in soft x-ray emission

(sawtooth oscillations). A general description of the tearing mode 

follows.

2L3, Tearing Modes.
Consider the induction equation for a plasma of uniform
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resistivity t| :

I y *  V X (V  X B) +T1V2B (2,20)

The ratio of the terms on the right-hand side is given,in order of 

magnitude, by the magnetic Reynolds number R,  ̂ = Iv/q where v is a 

typical flow speed and I a typical length scale for variations in the 

plasma. For plasmas of Interest in solar and laboratory physics, R|  ̂

is normally very large, so that field lines are frozen into the plasma 

and diffusive effects due to the term are negligible in the bulk

of the plasma. Whereas ideal instabilities grow on the Alfven 

timescale t^ = l/v^, resistive diffusion occurs on the much slower

diffusive timescale t^ = P /t i. The ratio of these times S («tp/t;^) is

called the Lundquist number and is often used in preference to Rj .̂

However, if sufficiently small lengthscales can be created, the field 

may diffuse through the plasma locally. In any situation where 

reconnection occurring in a small region of the plasma can lower the 

energy of the plasma as a whole, there is the possibility of a 

non-ideal instability. Hence, resistive instabilities may occur in 

plasma which is ideally stable, since the constraint that field lines 

may not reconnect has been removed. In fact, any dissipative 

mechanism (e.g. viscosity, electron inertia) will permit such 

instabilities. Such instabilities grow on a hybrid timescale t^ «

0 < a  < 1.

Of primary interest among such modes is the tearing mode. In 

this Instability, current gradients provide free energy, which may 

only be released if the topology of the field is allowed to change. 

The perturbed field reconnects at singular layers where the 

perturbation causes no local line-bending, forming magnetic islands 

which grow on a hybrid timescale.

First, we will examine tearing in a slab geometry. We shall
16



derive an estimate of the width of the resistive layer and y the

growth rate of the instability by simple order of magnitude

estimates ( following Bateman (1978)). Consider a field
Bo -  B,y(x) 9 (2 .21)

which reverses sign at x=0 ; the plane x=0 is referred to as a neutral

sheet or singular layer. Since the magnetic field is weak in the

vicinity of this layer, the stabilising effect of magnetic tension will

be reduced there. In our derivation, we shall make the simplifying

assumption that the perturbed field and velocity have no component

in the z-direction and that all quantities are constant in that

direction. We apply a velocity perturbation
V, cos(ky) k + v,y(x) sin(ky) V ] (2 .22)

where k is the wavenumber of the perturbation in the direction 

parallel to the field. Hence, fluid moves into the neutral sheet from 

both sides, then the streams collide and move parallel to the sheet, 

before recoiling and streaming away. This type of flow is 

characteristic of tearing behaviour. The initial field and the velocity 

perturbation are shown in Figure 2.2. The parallel flows close to the 

sheet are not shown.

y L.
X

Fig. 2.2 Initial field and tearing flow 

Correspondingly, we have a magnetic field perturbation

B B„(x) sin(ky) k + B,^(x) cos(ky) ÿ je^  (2.23)

17



The development of the instability will be determined by the

perturbed form of Maxwell's equations
V x B ,  (2.24)

3B,
V x E ,  (2.25)

V.B, -  0 (2.26)

Ohm's Law
E « - V  X B + T|J (2.27)

and the equation of motion with one driving term due to the 

perturbed current
9v

p - g r =  - x B ,  (2.28)

We shall neglect less important driving terms due to Vp., and x

Since motions are much slower than the sound velocity, density

inhomogeneities will be smoothed out, so the motion may be 

assumed incompressible., i.e.
V.v  ̂ = 0 (2.29)

From (2.23), (2.24) and (2.26) we may deduce the perturbed current

(2-30)
and (2.27) gives us the electric field

“ "'̂ lx®oy + *̂̂ 12 (2.31)

I ^Bi x
From (2.25) we obtain

E i z - F - a f  (232)

and combining these two equations for Gives us the appropriate

form of the induction equation
^B- f 2 \
- g f  = kv ,,B .y-nkJ,, -  -n  [b ;, -k b , ,  J (2 .33)

Since q is small in hot fusion plasmas, the second term on the RHS

will be negligible in most of the plasma; the exception being in a

thin boundary layer close to B̂ y -  0. Here the value of will

be very large. Consequently, the ideal solution for which is

18



appropriate outside the boundary (resistive) layer, will require a 

discontinuity in its first derivative across the layer. This 

discontinuity, when normalised by dividing by 81%, gives the 

important quantity

not to be confused with the derivative of the Shafranov shift. Since 

the A' is obtained purely from the ideal solution in the outer region, 

it is independent of the model chosen for the resistive layer. Hence, 

the same ideal solution may be used with layer models of varying 

sophistication, including additional physical effects. For any given 

model, we may derive the appropriate inner solution, which gives A’ 

as a function of the growth rate . Thus, the growth rate may be 

obtained from the matching condition

It should be noted that, for simple resistive MHD, the outer solution 

is sufficient to determine stability, since A' ;̂nner)(0) = 0. Modes with 

A' > 0 are unstable, those with A' < 0 are stable. This is due to the 

fact that A* has the same sign as the energy released by the field In 

the outer region. We shall proceed to derive our simple estimates of 

Y and Cp assuming A’ to be a given quantity obtained from the outer 

solution. It follows from the above that the typical size of 9^8 

in the boundary layer is given by

B,; -  - g p  (2.36)

Hence, (2.30) gives us

The resistive layer is the region where the current and flow terms 

in the induction equation (2.33) are of comparable importance. It 

follows that
(2.38)
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Equating the first and last terms in (2.38) and using (2.37) to 

eliminate we have

Y " -ê^ (2.39)

which does work

p % = (2.40)

(2.41)

on the fluid, where we have made use of (2.37). The rate of change of 

kinetic energy is

J K ) .  ]Pfv? +v? 
d  2 lx + 4 y  (2.42)

We assume that the wavelength k'  ̂ along the field is very large in 

comparison to the resistive layer width. Hence, in order to maintain 

incompressibility, we must have

(2.« )

it follows that
.  - J L _ v 2

** 2(ke,)*
(2.44)

which, together with (2.39) gives us y and Ej as
1

f2 (k B ;)% V  ^ (2.47)

20

To estimate the growth rate, we balance the rate of increase of the 

kinetic energy in the boundary layer against the rate at which work 

is done on the fluid by the driving force. The driving force is given by |  

equation (2.28) as

“■
■ÿ-

Since B̂  goes through zero at x=0, we shall estimate its typical 

magnitude in the layer by
(2.45)

Equating (2.41) to (2.44) and using (2.45) to eliminate B ,̂ we obtain

- ̂  <-) :



and
1

(  2

e, -
pA'îl

(2.48)

Note, in particular, that y scales as so that the growth of the 

instability is 3/5 resistive and 215 Alfvenic. Also, the width of the 

layer is very small in comparison to the scale of the plasma as a 

whole, due to the factor in (2.48). Furth et al. (1963) solved the 

full eigenvalue problem for A' in a slab and gave a more exact 

analysis of the inner region than that given above. Assuming

be approximately constant in the inner region (the 'constant-Y

approximation'), they deduced the scaling
.1 .1

Y - t / t /  (2.49)

which agrees with our order of magnitude calculation. (2.49) is valid 

provided that k is neither so small that cannot be considered 

constant, nor so large that tension forces stabilise the mode. They 

also considered the case for which k is very small, finding that the 

growth rate of the fastest mode scaled as (t^tj'^^^. The instability

grows fastest with long, narrow islands, which minimise tension 

stabilisation.

We have described the A'-matching/boundary layer method, which 

has been used extensively in the study of tearing modes. An 

alternative method is to solve the full resistive equations in the 

entire volume of the plasma (e.g. Wesson (1966)), without making 

any assumptions about the boundary layer.

The reconnected magnetic field resulting from the instability is 

shown in fig. 2.3. Note the formation of magnetic islands and the 

fact that Bpj has the same sign moving perpendicularly across the 

field structure.
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Fig. 2.3 Reconnected Magnetic Field.

Consider now the situation in a tokamak. The tearing modes have 

a spatial variation given by f(r) exp(i(m0-n<|))), so that each mode 

is characterised by poloidal and toroidal fourier mode numbers m 

and n respectively. Tearing modes of number (m,n) occur when their 

resonant surfaces (at radius rg where q(rg) = m/n, also known as the

mode rational surface) lie Inside the plasma. It is at these surfaces 

that the helical plasma distortions follow the shape of the field 

lines. In the cylindrical limit, the problem may be solved by a 

straightforward extension of the slab method, as in Furth et al. 

(1973). The outer solution is obtained by solving the ideal MHD 

equation for the perturbed radial field, subject to boundary 

conditions at the centre and surface of the plasma column. This

yields a A* at the mode-rational surface, corresponding to that at the 

neutral sheet in the slab case. For modes with m 2: 2, the inner 

solution behaves like the siab case. However, the fastest-growing 

mode, having m«1, requires special treatment (e.g. the constant-^ 

approximation is not usually valid.). This mode is more closely 

related to its Ideal counterpart, the m=1 ideal internal kink; the 

ideal mode is often unstable, which can give rise to an infinite A*. 

The complete dispersion relationship for the m=1 mode, 

incorporating its ideal and resistive limits, was derived by Coppi et 

al. (1976). The mode has a much faster growth rate than the m ^ 2
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tearing modes and is usually unstable if there is a q«1 surface in the 

plasma.

Another interesting variant of the tearing mode is the double 

tearing mode, studied by Stix (1976) and Rechester and Stix (1976), 

where a single mode has two resonant surfaces close to each other 

in the plasma. This requires a non-monotonic q-profile, caused by 

skin currents, which sometimes occur in the early phase of tokamak 

discharges. If the surfaces are close enough together, the magnetic 

islands can drive each other's growth, resulting in an enhanced 

growth rate. In such a case, there are large plasma motions 

everywhere between the islands.

When toroidicity is taken into account, the tearing problem is 

considerably complicated by the coupling of modes of different m, 

due to the 0-dependence of the equilibrium fields. We shall address 

this problem In the next chapter.

The m ^ 2 tearing mode grows exponentially at the rate given 

above until the island width becomes comparable to the resistive 

layer width. At this stage, the non-linear effects create additional 

forces, which act against the original plasma perturbation. The 

islands then continue to grow at a linear rate, until they reach a 

saturation width of a few-tenths of the plasma radius. White et al. 

(1977) have shown that the non-linear growth of the island width W 

is given by
^  -  1.661, (a '(W) - oW ) (2.50)

where A'(W) Is taken across the island width Instead of the layer 

width. Thus, the island width grows linearly until aW  becomes 

comparable to A'(W). a  must be obtained from the ideal outer 

solution. The presence of such saturated islands enhances transport 

processes in the plasma. In the case of the m=1 mode, the island may 

continue to grow until it has occupied the entire centre of the 

plasma column. Another non-linear possibility is the coupling of
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modes of different m and n at large island sizes. Waddell et al. 

(1978,1979) have found this effect in numerical simulations, 

resulting in island growth beyond the saturation value given by 

(2.50)

The tokamak phenomena mentioned earlier are all believed to be 

associated with the non-linear results of tearing mode activity. The 

sawtooth oscillations are thought to be due to the formation and 

collapse of m*1 islands close to the magnetic axis. The Mirnov 

oscillations correspond to the movement around the torus of an 

island formed by a saturated mode with m > 2. Disruptions develop 

from m=2 activity, probably involving non-linear coupling to other 

modes.
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Chapters. Coupled Tearing Modes In Tokamaks 

3J. Introduction and Mathematical Development.

In a planar or cylindrical field configuration, the tearing mode 

stability problem has been treated successfully by the asymptotic 

matching (A') procedure and also by solution of the full resistive 

MHD equations. However, in a toroidal geometry, the problem is 

complicated by the coupling of modes of different poloidal mode 

number m. A mode m will generate sidebands characterised by m±1. 

Further, if the magnetic surfaces have non-circular cross-sections, 

coupling to still other modes can occur. In such more complicated

situations, the equivalent of the is a relation between the 

various A’̂  at their resonant surfaces (Connor et al. (1988)). We

believe this approach to have two advantages over solving the full 

equations. Firstly, it is difficult for resistive codes to operate at 

high values of S. Secondly, such codes have limited ability to include 

more sophisticated layer models than simple resistive MHD.

The first step in our procedure Is to construct the marginally 

stable ideal MHD equations in the (r,8,(t>) co-ordinate system 

developed in the previous chapter.

The linearised marginal ideal MHD equations for an

Incompressible plasma displacement Ç are:
V(6p) » ÔJ X B + J X ÔB (3.1)

W = Vx8B

6p » - ^.Vp

(3.2)

(3.3)

V.8B = 0

where p, J and B are the equilibrium pressure.current and magnetic 

field respectively and 8p, 5J and 88 are the corresponding perturbed 

quantities. Assuming the perturbed quantities are proportional to

(3.4)
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e we may eliminate 6B̂  and ÔB̂  from (3.1)-(3.4), obtaining

a
(Appendix C) the two coupled equations

77 de + Sz -

and
(A .  
ae - inq az

ar ae - inq

ae T ae - inq y + Uy (3.5)

& ae - inq

+ W ae -inq y + Xy (3.6)

where the dependent variables are y = f̂ '' and z = Q, S, T, U, V, 

W and X are the equilibrium quantities (T* is the complex conjugate 

of T):

Q: 1

inr|Vrl‘
; S = inr ; T 1V r .V e ______

|Vr|^ inr|Vr|^ ^

9' .;U
|Vr|' f '

V =
r|Vrf LR

; W = 2 g' p' fP

' f '  |Vr|"
dr

g;
I f

X ss inr A
r

a_
ae

d_
dr

ff 1r _

In a circular cylinder, modes depending on e''̂ ® are eigenmodes 

and it is, therefore, straightforward to solve (3.5) and (3.6) in this 

limit. However, in the more general equilibrium developed in the 

previous chapter, modes of different m are coupled by the 

8-dependence of the scale factors. If we Fourier analyse (3.5) and 

(3.6) in the poloidal direction, we obtain the infinite set of coupled 

equations:

Jr. l(m-nq)yJ = %  y. + b|„ z.

P.7)

(3.8)

az
f - £ c :

J=-
m 7]

In the large aspect ratio expansion developed in the previous

chapter, coupling to modes j?*m is of order e. Hence, we expect a
26
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principal mode m to generate sidebands of order e. These sidebands 

will then couple back to the principal mode with an effect of 0 (6 )̂.

We may, thus, examine the effect of toroidicity on a mode m up to 

O(e^), by including 0(e) terms in Al^, etc. (ĵ ^̂ m) and O(e^) corrections 

to A %  ,etc. If we refrain from imposing shaping terms, then the 

only coupling to this order is that to modes m±1. (The effect on the 

central mode of modes m±2 coupling to m±1 is negligible.) Previous 

authors (Carreras et al. (1981), Izzo et al. (1985), Connor et al. 

(1988)) have examined the effect of this coupling between a mode m 

and its adjacent modes m±1, due to the Shafranov Shift A and the 

toroidal curvature. We shall, instead, concentrate on the effect of 

non-circularity, assuming our equilibrium to have just one shaping 

term S(̂ >. In effect, we are neglecting the toroidal curvature of our 

tokamak (treating it as a straight cylinder) in order to isolate the 

effect of its non-circular cross-section. The parameter e now 

represents the degree of ellipticity, triangularity , etc. of our 

tokamak. In this case, a mode m is coupled to modes m±k. The scale 

factors of our chosen equilibrium are

ivri*.  1 + e [2S cos(ke) ] + e‘

ivef

2r̂ .
2

^ / i + e [ - 2 S ' c o s ( k 0 ) ]  + e r - ^ ( S " )  +
r  I  L 2k

c  ̂ / 2k r̂  k ■* Jk

vr.ve

2k

S" + y - + I ^ S
V r

k

sin(k0)

1

where the superscript k has been dropped for legibility. Equations 

(3.5) and (3.6) become the set of six coupled equations consisting of
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dr nr- Z m  - e ^ S ' [ ( m - k )z ^ ^ + ( m + k ) z ^ ^ J  +

9' , , p'777 (m-nq) - AmYm
m-nq

(m-k-nq) + S'-^
m-k-nq

(m+k -nq) + S’ —
mYm+k
m+k -nq (3.11)

and
dzm
dr

Pi _ J L
f2 nr f (m- nq) Amzm

m- nq

(m -nq) - S' 
f

m-k 
m-nq “m-k

f lL g .  b '  
, n r f S -  2 (m-nq) - ^ 8 ’ 

f
m+k
m-nq m+k

[Ü JL 
r ’ nr

A(m -nq)% | 2 , If j (m- nq)

nrp' L ±  
f dr ] Ym

(m- nq)

+ 8

nrp' Plo,S' -B - 28

J  > ,

. 9' p’

(m-nq) - 2 ^ ^ S "  
’ f

\

(m-k-nq) +

Y m-k
(m-k-nq) (m-nq)
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+ e

[
nip'

(r

PL

y
(m-nq) - 2 S' 

 ̂ f
(m+k-nq) +

S’ -B + 2S ]
Y m+k

(m+k-nq) (m-nq)
(3.12)

and the four equations obtained by replacing m in the above by m±k 

and dropping terms in since their effect on the central

mode is negligible. Y^ = (m-nq)y^ is the perturbed poloidal flux

function and we have defined for brevity:

A *  1 + £ 3 ( s f . 4 Ù J l S  
2 '  2 ; B = 1 (3.13)

I

Î

I
■I;

(3.11) and (3,12) simplify considerably when we neglect pressure, 

becoming

Zm- E ^ [ (m -k )  z^ ,+ (m +k)m2
dr nr Y  

nrf

and
dz g'mA

mY m+k

m (m-k) z,m-k

T ^ S ' - f  (m+k)z^^,+
r

LV
n  JL
r ’ nr J  y dr

9'
J  / m-nq

(3.14)

Ym

/

+ £ (3.15)

3.2 Tearing at Two Singular Surfaces.

When there is more than one mode with a singular surface in the 

plasma, the equivalent of the A’ is a relationship between the 

various A'^ , where A'^ is the jump in the logarithmic derivative of 

Y ^  at the m singular surface. The simplest case is an equilibrium

containing only two singular surfaces, corresponding to modes m and
29



m+k, when the relationship represents a hyperbola in the 

plane, given by

(A’m - « ](A'm+k ■ P ] = X (3.16)

Clearly, the asymptotes of the hyperbola are the lines A'^ = a and 

'̂m+k* P» while X is a measure of the curvature of the hyperbola. The 

three quantities a,p and X, derived from the ideal MHD solutions, are 

the equivalent of the single quantity A' in the slab or circular 

cylinder cases.

The growth rate is given by the intersection of this curve with 

another derived from a resistive layer model
= (317)

Since y is the same for all components of a coupled mode, it 

parametrises a curve in A’̂ -A’̂ ^  space. It is an advantage of this

method of solution, that, having obtained a, p and X, we may study 

different physical effects in the resistive layer by matching to 

corresponding functions F̂ , Fg. In particular, note that the effect of 

toroidal curvature on the resistive layer physics is generally 

stabilising (Glasser et al.(1975)).

However, it should be noted that the stability condition in simple

resistive MHD is that the hyperbola does not enter the first quadrant.

This condition is satisfied if and only if all of the following hold:
a < 0, p < 0, ap -  X > 0 (3.18)

3.3_M@thod Qi..SfllutioiL

In order to solve equations (3.14) and (3.15), the package RDILP 

(Resistive Diffuse Linear Pinch), originally written by P.Kirby of 

Culham Laboratory, was modified. RDILP uses the NAG routine 

D02RAF, which solves ODE's by the adaptive finite difference 

method of Lentini and Pereyra (1977). This method solves boundary 

value problems by finite differences, using a mesh which may be 

modified during solution. Extra mesh points are chosen to distribute
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the local truncation error approximately equally over the mesh. This 

has the effect of making the mesh finer in regions of difficulty.

Hence, for our problem, we would expect more points to be added 

near to the singular surfaces. The equations were solved in 3 

separate regions, separated by the two singular surfaces. Since the 

equations are singular at r=0, a false origin 5 was used. A value of 

5=10-3 wag used, since this value was found to give negligibly 

different results from 6=1 O'®. The solutions were converged to a 

distance from the singular surfaces. Hence, the 3 regions of 

solution were:
1 :8 S r< r„ -8 ^ :  2: r^+8, < r < r^^^-8, ; 3: r^̂ +̂5̂  < r < 1 (3.19)

Each of these regions was mapped onto [0,1] and the NAG routine was 

given a 19th order system to solve on this interval. The Y, were 

taken to be continuous across the singular surfaces, but and 

were allowed to be discontinuous at their respective singular 

surfaces. The ratio was set and the calculated as an

eigenvalue, generating a point on the hyperbola on each run. The 

remaining boundary conditions imposed were that each of the Y; 

should be zero at r»0 and r=1 (i.e. conducting wall limited plasma) 

and the normalisation z^ = -1 at r=1. The equilibrium was specified

by an analytic form of the function q(r), from which the various 

quantities gVf etc. were derived. For the shaping terms, the surface 

value of S was set equal to unity and equation (2.12) was solved 

using the boundary value method to obtain a numerical grid of S 

values.

3.:.4 Results.

Initially, we examined the the 2-parameter class of q-profiles

q- (» i+ 1 )q o ( l  - ( l  -  f 2  )  J  (3.20)

where p and q  ̂are the parameters. Initial results (using 5^=10'^ and
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typically 200 points in each region) showed that a and p were close 

to the uncoupled values of and while X increased roughly as

As an example, consider the case qo=2.1 and p=2.5, for which the

radial profiles of q and the derivative of the axial current are shown 

in fig. 3.1. The singular surfaces for the modes (4,1) and (6,1) are

r4*0.703 and rg=0.902. The uncoupled A's are A'4= -6.5 and A'g= -16.3. 

The corresponding uncoupled eigenfunctions are shown in figures 3.2 

and 3.3. When these modes were coupled by elliptic (k=2) shaping, 

the following results were obtained:

Values of A'g. e = &1 0 2 0 2

A'4/A'g

0.1 -16.3 -72.9 -79.8

0.5 -16.1 -37.6 -42.2

0.75 -17.4 -20.2 -23.8

1.0 -16.8 -18.3 -21.1

2.0 -16.7 -17.9 -20.4

5.0 -16.6 -17.8 -20.1

10.0 -16.6 -17.7 -20.0

The eigenfunctions for various values of e and A\/A'q are shown

in Figs. 3.4-3.8. Note that all modes shown are stable, as indicated

by the upward pointing 'corners’ on and Yg at their respective

singular surfaces. The corresponding information for the hyperbolae 

is:

£ Sk G I ffP~^

0.1 -6.7 -16.6 1.7 109.5

0.2 -7.2 -17.7 7.3 120.1

0.3 -7.7 -19.9 16.6 136.6

The hyperbolae are shown in Figs. 3.9-3.11, where crosses are 

points used to determine the hyperbola and circles have been used
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as check points. Some points do not appear in the plotted regions. It 

is evident that ellipticity is stabilising in this case, since a and (3 

decrease with increasing e, while increases. The destabilising 

effect of increasing X is not significant in this case. Hence, we were 

led to seek an equilibrium for which the uncoupled A’s were both 

small and negative, in order that increasing e would be likely to 

create an instability by making ap - X negative. Due to the 

stabilising effect of magnetic tension, modes with high m and n are 

very stable, hence we chose to concentrate on the mode (m,n) ~ (2 ,1) 

, which is coupled to the modes (0,1) and (4,1) by elliptic (k=2) 

shaping. In addition, profiles with a very high q(a) are not likely to 

occur in a real tokamak (except in the current rise phase, when 

higher m tearing modes are possible), but a profile containing q-2  

and q=4 is not unreasonable. Note that, for the special case m-k=0, 

is identically zero and drops out of our analysis.

3^5 Modified Current Profile.

Consider again the q-profile (3.20), which corresponds to a 

current profile

j(r)

In order to obtain an appropriate equilibrium, we shall add 

exponentially localised bumps near the singular surfaces, giving the 

following class of profiles
 ̂ / .2 ^ f ,2

(r-r^)

< J
+ Ag exp

(r-rg)
exp -

4I J

(3.21)

(3.22)

For these later runs, 6  ̂ was converged to 10’®, requiring 

typically 390 points in each interval. Take, for instance, the profile 

specified by q  ̂«1.1 ^i«4, shown in Fig. 3.12. The uncoupled A's for 

our chosen modes are A g *  8.9 and A4 = -11.1 at the singular 

surfaces rg = 0.552 and r4 = 0.852. If we make the profile drop less
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steeply through the m»2 singular surface and more steeply through 

the m=4, we may stabilise m-2 and destabilise m=4. Taking the

values *  1.265, Ag » 6.6, r., *  0.57, rg = 0.832, = 0.03 and Og =

0.02 gives the desired result A’g = -1.20 and A \ = -1.05. The new 

profile is shown in diagram 3.13; note that the j-profile is 

non-monotonic (the derivative shown changes sign) in a narrow 

region near r̂ , but the q-profile is almost unchanged. The new

singular radii are rg = 0.553 and r̂  = 0.864. The results of our code 

for this equilibrium are shown below

£ & f i I

0.0 -1.20 -1.05 0.0 1.26

0.1 -1.20 -0.74 0.63 0.26

0.15 -1.15 -0.37 1.47 -0.41

0.2 -1.08 0.09 2.76 -2.86

The hyperbolae are shown in Figs. 3.14-3.16 and the unstable

eigenfunctions for e *  0.15, AgVÂ  = 0.2,1.0 and 5.0 are shown in 

Fig.s. 3.17-3.19. It can be seen that, at a value of e between 0.1 and 

0.15 (e«0.12), the upper branch of the hyperbola enters the first 

quadrant and instability becomes possible. These are typical values 

of ellipticity for real tokamaks. 

a.,6-DlS0USSiQJL

We have shown that coupling to an m=4 mode, due to elliptic 

distortion of the plasma surfaces, may drive an m=2 mode unstable. 

The class of equilibria involved was somewhat contrived, but not 

unreasonable and the instability occurred at realistic values of the 

ellipticity. We expect that the inclusion of finite equilibrium 

pressure gradients would allow more instabilities, since they 

represent a new source of energy to drive such instabilities. The

pressure gradient terms in (3.11) and (3.12) cause singularities at
34
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both surfaces in all 6 equations. Hence, all 3 modes may have 

discontinuous derivatives at the two singular surfaces.

Unfortunately, the method of solution was rather costly in 

terms of computational resources. The inclusion of more poloidal 

modes and/or singular surfaces in the plasma, though a 

straightforward extension, would be impractical. The code was 

approximately forty times slower than comparable shooting codes, 

developed for the case of toroidal coupling (Martin). However, the 

finite difference code need only be run once to obtain a solution. 

Shooting codes should be converged by several runs at different 

step-lengths to ensure an accurate solution. The method used also 

has the advantage of giving global error estimates, which indicate 

the overall quality of the solution.
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Chapter 4. Twisted Flux Tubes.

4.1 introduction and Review of Previous Work.

The magnetic field of the solar corona is thought to consist of flux

which has emerged from the denser photosphere. Consequently, the 

evolution of coronal magnetic fields is determined by the motions of 

photospheric footpoints in response to fluid motion generated, for 

example, by convection. Since the bulk of the corona is effectively 

perfectly conducting, the topology of the magnetic field will only 

change if current sheets are formed. In addition, the low coronal 

plasma beta means that any static magnetic field must be

force-free to a large extent.

Observations of coronal loops indicate that they are essentially 

toroidal in shape and have a constant cross-section along their 

length. Furthermore, the length is typically ten times the width and 

so the aspect ratio is usually large. The commonly used 

simplification is to restrict attention to straight cylindrical loops 

with the main justification for this approach being that an 

expansion of the toroidal force-free equation, in powers of the

inverse aspect ratio, generates the straight cylinder as the leading 

approximation.

Parker (1979) has Investigated the twisted flux tube confined

by an external pressure. Consider an axisymmetric flux tube which Is

also uniform along its length. In this case, we can deduce from
V.B=0 (4.1)

that the field has no radial component. The appropriate form of the

equilibrium equation is
/

P + = 0 (4.2)
V 2 y

and we may specify the equilibrium by a generating function F(r), 

equal to the total pressure. The field components are
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f -  - F(r)+|-Æ.p(r) ; (4.3)

and F satisfies F > 0, dF/dr ^ 0 and d(r^F)/dr > 0.

For a force-free flux tube of radius R, confined by a constant 

external pressure P ,̂ we may show that

<B̂ > -  F(R) = P, (4.4)

where <A> denotes the value of A, averaged over the volume of the 

tube. The introduction of twist to the field will cause the initially 

uniform to decline from a maximum on the axis. However, since

< B 2^> is constant, this must result in a decrease in <B^>. Since 

longitudinal flux is conserved, the flux tube as a whole must expand 

when twisted. However, B^(0) increases with increasing twist,

indicating a compression of the field near the axis of the flux tube. 

Parker also considered a flux tube confined by a pressure varying 

along its length. The tube expands where the pressure is lower and 

contracts where it is higher. Modelling a flux tube with uniform 

pressure in z < -h and a different uniform pressure in z > h, it is 

possible to obtain information from the conservation of longitudinal 

flux and the constancy of rBg along a field line. Where the tube

undergoes extreme expansion, the twist becomes very large and I
I

where it undergoes extreme compression, the twist becomes very ]

small. Browning and Priest (1983) examined the 2-D slender flux !
'I

tube, including a radial field B . They were able to extend Parker's |

results to this case, noting that the expansion caused by a small |
'Itwist was a second order quantity. j
j

Zweibel and Boozer (1985) considered a 2-D cylindrical flux
Itube, line-tied at its photospheric footpoints. Using flux |

co-ordinates, they established a general formulation for the |
,1

response of such a flux tube to slow photospheric motions. The |

resulting non-linear partial differential equation was, however, J
‘I

rather difficult to solve. They, instead, examined the simpler |
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problem of a linear twisting generated at the footpoints. As an

example, they solved the case of a Gaussian twist profile, extending

to infinity, with a decay length of 0.07 times the loop length. ( In our

analysis, we prefer profiles where the twist is limited to a finite

radius, believing these to be more physically relevant.) They found

an inward movement of field lines at small radii, but little

movement of field lines beyond the decay radius of the Gaussian. We

shall solve the Grad-Shafranov equation, an approach which is

simpler than that of Zweibel and Boozer, but which is equivalent in

the linear regime.

4.2 Mathematical Development.

We wish to investigate the response of an Initially uniform

cylindrical field to twisting of its endpoints. The gradual twisting

of the magnetic footpoints results in the field evolving through a

series of equilibrium configurations, satisfying
( V x B ) x B  = ^Vp (4.5)

with force-free fields being obtained when the right-hand side of

(4.5) is negligible. Any axisymmetric field (i.e., independent of the

azimuthal co-ordinate, 0) may be expressed in terms of a flux

function A, such that
B^ - -  ; B , - | k (A) : : p = P(A) (4.6)

where K and P are arbitrary functions of A. The function K is 

determined by the footpoint displacement and, in the linear case, it 

is straightforward to derive its form. This field automatically 

satisfies (4.1) and the three components of (4.6) reduce to the single 

Grad- Shafranov equation:

= 0  (4.7)

A is a useful quantity, since the projections of the field lines on the 

r-z plane are given by contours of constant A. The above equation for 

A is, in general, non-linear. We shall solve the linearised form of 

(4.7) with P(A) = 0. However, we may include P(A) by a simple
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extension of the methods used and, where appropriate, the necessary 

alterations are indicated.

An initially uniform axial field of length L corresponds to

A. = B0 2 (4.8)

Now, by twisting the endpoints of the field (i.e., by having a non-zero

azimuthal displacement, @̂, at the footpoints) a small azimuthal

component can be added. Define the azimuthal field at the endpoints 

by
= (4.9)

where e is a small parameter, which describes the amount of twist. 

For small twist B@ is directly proportional to the footpoint

displacement, by

(4.10)

where, from the linearised equations of motion, it can be shown that

the azimuthal displacement is
^  = Ef(r)z

(4.6) requires that

B,

(4.11)

(4.12)

Thus, in this case, the function f(r) determines the form of K.

Expressing A as A , + e^A,, the linearised form of (4.7) becomes

A
3r*

A
r 3r

A
3z^

L d K  1 
^dA

A=Aq

subject to the boundary conditions

rz*o

With the additional boundary condition
‘ 1 >r=a

(4.13)

(4.14)

(4.15)

for some radius a, we may solve (4.13) by a Fourier-Bessel series. 

The outer radius a is taken as finite but large for computational 

reasons. Varying the outer radius does not alter the results once a is 

larger than the radius of the tube. The complementary function for
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(4.13) is
A, -  rJ,(%r) [C, cosh(Xz) + sinh(Xz) ] (4. I 6)

where is the Bessel function of the first kind (Abramowitz and 

S teg un (1972)). In order to satisfy the boundary condition (4.15) the 

values of X are restricted and the ratio C^/Cg is determined by

(4.14). Hence, the following series for Â  automatically satisfies 

the boundary conditions

A, = J,(Nr)
ĉosh N (z-U 2) ^

cosh(NL /2 ) . (4.47)
n=1 '  ̂ ^

where N = a„/a and a„ is the nth zero of J .̂ Substituting (4.17) into

(4.13) and using the orthogonality property of gives

-2 J  f(r) d [ ^ j  (Nr)dr (4.18)
JoK )«n 0

In a similar way, the effects of a small change in the base pressure 

can be simulated. If

Plz=o “ Plz=L (4.19)

then the function P(A) is easily determined and the only change to

the above analysis is that f(r) d(rf(r))/dr is replaced by fp dp/dr in

(4.18).

Having calculated a solution for A ,̂ we may determine the flux

surfaces by calculating the movement of the initially straight field 

lines from
A(ro+5r) = A„(rg) + 8r A,; ( g  (4.20)

Since the flux function is constant along a field line, the change in

radius is simply given by

5r = Y "  (4.21)

The linearisation is invalidated if the field lines cross anywhere, so 

we require
r ,̂+dr + 6r ( r̂ +d r) > r̂  + ôr (r̂ ) (4.22)

Hence, e must never be so large as to violate the condition
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-1 (4.23)

4.3 Example Twist Profiles and Results.

As a first example, consider the following form of f(r);
f ( r )= f  r(1-r^), r  ̂ 1,

{ 0, r >1 .  (4.24)

This represents a twist ( *  f(r)/r) within a finite radius, decreasing 

monotonically from r = 0 out to r = 1. In this case, (4.18) may be 

evaluated analytically to yield the result

... Jg(N)(192N-12N^) + J,(N)(-384+72N^-N^)

_2
, .  - 8N. j  (N) (4.25)

Jo(“n)«n'

using the Bessel function addition formula. In general, a numerical 

integration scheme is required to evaluate the a„. Taking the outer

radius as 5 is found computationally convenient and agrees well

with results for higher values of a. Truncation of the series at fifty

terms is ample for convergence at this value. Typical field line plots 

are shown in Figure 4.1. The rather large value e = 2.8 has been taken 

in order to make the effects easily visible. The field lines move 

inwards within the radius of the twist, but are virtually unaffected 

outside it, except for a very small expansion near the ends of the 

loop, just outside the twisted region. The compression is a maximum 

at the middle of each flux surface, with the largest effect at a 

radius of 0.378. The radial variation of the maximum compression is 

shown in Figure 4.2. As one would expect, shortening the tube

reduces the amount of compression and increasing its length has the 

opposite effect. The most striking feature of the solutions is that 

variations in radius are restricted to narrow boundary layers near 

the ends of the tube, while the majority of the tube has almost 

constant cross-section.

Our results are qualitatively similar to those of Zweibel and
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Boozer. As a check on our method, we apply It to their Gaussian 

twist profile, which corresponds to
f(r) exp{-r^/2) (4.26)

where the length of the tube was L=20. The resulting flux surface 

plot (Figure 4.3) is identical to their results. The maximum 

compression occurs at r=0.7 and there is very little effect outside 

the decay radius of the Gaussian (r = V2). The presence of boundary 

layers in the z-direction is again clearly evident. A more general 

Gaussian twist profile with its maximum displaced from r=0 is 

given by

f(r) = r exp(-(r -p f  12] (4.26)

This profile produces results which are qualitatively similar to the 

undisplaced Gaussian. However as p is made larger, the compression 

increases, due to the larger azimuthal fields corresponding to the 

same value of twist. In addition the position of maximum 

compression moves outwards. For example, when p=1, the maximum 

compression occurs at r=1.13.

4.4 Comparison, with Eariy...VYorL
It is interesting to compare these results with Parker's 1-D 

model. The compression of the inner part of the field is obvious, but 

the expected expansion of the outer part of the tube is not apparent. 

This is, however, consistent with the Browning and Priest result 

that this is a small quantity for a weakly-twisted, slender flux tube. 

The modification to Bg caused by the compression can be obtained 

from the relation
K(A) -  K(AJ + A, ^  (4.28)

Hence, the twist per unit length of the new configuration is given by
3<I) W 

roBo
1 + ê r 3r r (4.29)

which represents an increase in the twist, with most twist at the 

middle of each flux surface. The effect is most pronounced where
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3(Ôr)/9r is positive. This behaviour contrasts with Parker's result 

that twist accumulates on the thicker part of the tube, in order to 

balance tension forces. However, Parker's result occurs in the 

asymptotic limit of a large difference in radius, whereas the linear 

analysis necessarily presupposes a small variation in radius. In 

addition, the force balance for a continuous variation of radius is 

more complex than a simple balance of tension. Hence, there is no 

contradiction.

4.5 B.Q.u.n.dary-Layer and 1-D Approach.
The Fourier-Bessel approach is particularly helpful in explaining 

the boundary layer structure of the solutions. From (4.17), it can be 

seen that, for large values of NL/2, the z dependence decays 

exponentially away from the boundary. An estimate of the 

boundary-layer thickness is easily obtained. The coefficients a„

initially increase in magnitude as n increases, until a maximum is 

reached at say, n = m. For larger values of n, the coefficients rapidly 

decrease in magnitude. Taking N corresponding to the largest 

coefficient and, hence, the dominant term in the solution, the 

structure of the boundary layer is represented by

^ o s h ^ ^ f  ’ ■ 2) sinh(Nz) (4.30)

Since tanh(NL/2) « 1, for large L, ôr reaches 90% of its maximum 

value after a distance z « 2/N. Thus, for L »  1, the boundary layer 

thickness is Independent of the loop-length.

The above comments are best illustrated by a simple example. 

Assume that f(r) is selected in such a way that all a  ̂ = 0 except for

a  ̂ (The required function is, in fact
1

r ? f
f ( r )= J o h ' (4.31)

which is of no particular physical significance.). (4.17) reduces to
cosh N(z-172)
, cosh{NL/2)Â  =a^rJ^(Nr) 
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where N is simply a /a .  The z-dependence of is shown in Figure

4.4 for length to width ratios between L = 1 and L = 10. It is seen, 

for example, that with L = 4, approximately 27% of the loop's length 

is constant in radius (Â  within 1% of maximum value), whereas for 

L = 10, over 70% is straight. In general, the dominant coefficient in 

the series is not the first but occurs for a higher value of n. Since

N^a^/a, it becomes larger for larger n and the boundary layer will be 

correspondingly narrower than in the above example. Hence, it is 

clear that a large fraction of a long loop is independent of the axial 

co-ordinate, z. The reason the boundary layer exists is that the 

variations that occur on the boundary on the scale of the loop radius 

can only 'propagate' the same distance into the loop. Hence, if the 

loop is much longer than its radius, the main variations will occur at 

the boundaries and the central part of the loop will remain straight. 

This is in agreement with a prediction made by Parker (1972).

The existence of the boundary layer allows us to model the main 

part of the loop as a 1-D flux tube, which has a flux function 

determined by the solution of (4.13) with the z-derivative set to 

zero. In other words, Â  is given by the particular integral

A , - J r J ^ d s d r  (4.33)

where G(s) = -f d(sf)/ds for a twisted loop or -sp dp/ds for the case 

of increased base pressure. The change in radius from the line-tied 

edges to the central part of the tube is given by (4.21).

This model may be checked against the 2-D results obtained 

earlier. For f(r) given by (4.24), the solution satisfying continuity of 

and its derivative at r = 1 is

Ai =

5  3

f  J2
I  0, r> 1. (4.34)

The maximum compression can be shown to occur at = 1/7. This 

result agrees with Figure 4.2 and the fashion in which the 2-D
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Figure 4.4. The axial dependence of the perturbed flux function for 

various loop lengths, namely, A: L=10, B: L=4, C: L=1. The boundary layer 

structure is clearly seen as L increases.



solution approaches this result as L becomes larger is shown in 

Figure 4.5. Zweibel and Boozer's result is also well-matched by the

1-D method, the result for being
.2 p

Â  -a —  exp( -r ) (4.35)

Using this method, we may make analytic progress on a variety of 

other profiles. Firstly, consider the profile defined by

1 - [r-fmaJ I. r i 1 + r .
f(r) = max

r> 1 + rmax (4.36)

This reduces to (4.24) when r =0. The change in radius of the field

line over most of the loop is given by
(  -2

h(r) -h (1 + r^ Jmax/ 2
( ̂ ■*'̂ max)

r< 1 + rmax (4.37)

where

K D -  ^  (1 J *  (3 c -

(4.38)

This profile is similar to the displaced Gaussian twist and the 

variation of ôr with r is shown in Figure 4.6. Again, the position and

amount of maximum compression increase as rmax increases.

Typically, we note that as r^ax increases from 0 to 1.0, the position 

of maximum compression increase from r*0.378 to r=0.9 and 6r

increases by a factor of 18. Secondly, consider

0, r^1.
f(r) =

{'« (4.39)

which confines the twist to remain within a radius of one, but 

allows the position of maximum twist to vary as n changes. The 

radius of maximum twist is r^ax = V[n/(n+2)]. The change in radius 

of the tube is

ôr =
4r ̂  /1- r \m ax\ ' ' m ax/

(4.40)
n+1 ~ n+2 ■ n+3

out to r=1 and is zero beyond. Figure 4.7 shows the effect of
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Figure 4.6. The change in radius of the flux surfaces as a function of r for 

the twist profile given by Equation (4.36) for various values of the

parameter namely, A: 0.0, B: 0.3, C: 0.7, D: 1.0, E: 1.3, F: 1.7.
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the twist profile given by Equation (4.39) for various values of the 

parameter n, namely A: 0, B: 1, 0:2, D: 3 , E: 4.



{
r, 0 < r < 0.75,

f(r)= J  3 (1 -r) 0.75^ r<1,
0, r > 1. (4.41)

when the twisting is slight. Although the loop length is only twice 

the radius of the tube, their results indicate that a substantial part 

of the tube has a constant cross-sectional area. The untied 

cylindrically-symmetric solution is given by

- - ^ - | - (  log-|-)r^, 0 < r < 0.75,

3f2 .  .4 .2
0.75 < r ^ 1 ,

0, r>1.  (4.42)

The position of maximum compression is at r *= 0.476 and this form 

of Â  agrees well with Steinolfson and Tajima's results for the 

linear phase.

4.6 Toroidal Effects.

The above results show that the twisted loop is to a large
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1
increasing n on this profile. In this case, as n increases the position 

of maximum compression increases, but its magnitude firstly 

increases slightly then decreases. This is because, at high n, the 

twist is highly localised at which is close to the edge of the

loop.

Steinolfson and Tajima (1987) have studied the 2-D non-linear 

development when there is a continuous twisting motion on the 

photospheric boundary. There is qualitative agreement with Zweibel 

and Boozer and this work in the early stages. However, at later 

times the twisting becomes so pronounced that a rapid change 

occurs in the magnetic field configuration, with the field completing 

several rotations along the length of the loop. Such a high degree of 

twisting would suggest that a 3-D kink mode instability is excited, 

as discussed by Hood and Priest (1979). Steinolfson and Tajima 

chose a twisting photospheric velocity that gives rise to an 

azimuthal field profile described by
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degree well modelled by a cylindrically-symmetric field. We shall

use this property to examine some simple consequences of the

toroidal shape of the actual loop. The simplest way to proceed is to

express the magnetic field in terms of flux co-ordinates, as in

Chapter 2. Firstly, however, let us show that the boundary-layer

features of the straight loop carry over to toroidal loops. Bending

the cylindrical potential field described earlier into a semi-circle

gives the new potential field as
B=(0 ,B ,FyR,0 )  (4.43)

where cylindrical co-ordinates (R,<j),Z) have been used and the

photosphere Is located at 4» = ±tc/2. The effect of twisting in the

neighbourhood of the radius R = is best described in terms of

Euler Potentials. The magnetic field may be written as
B - B ^ V a x V p  (4.44)

where a and p are given by
a = log(R/Ro) + : P= -Z+Rp^(R,*,Z) (4.45)

and a., and p̂  are understood to be small changes to the initial field 

(4.43). The equilibrium equation becomes, to first order,

Pf 9(î>
iJL
R3R 3Ry un J

and
2̂

l a

3(tî  3Z^

3 a /  
R ’

V
(4.47)3Z ,

The effect of twisting at the photospheric base can be modelled by 

prescribing the values of a., and p̂  there. However, it is now 

convenient to transform these equations into a local toroidal system 

that assumes that the twisting motion is localised about the radius 

R q. If the twisting only extends to a distance a about the centre of

the loop, we may define the inverse aspect ratio e = a/R^ as in 

Chapter 2. Our new (orthogonal) co-ordinate system is given by
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r =

j

2 2

(4.48)
eRo 

and
. f  Z 1

(4.49)9 = tan' ^ f%-R

Using this change of variable, every R and Z derivative introduces a 

factor e ' \  Hence, multiplying the final equations by shows that 

terms involving $ derivatives are of the form Thus,

assuming that the length of the loop is much larger than its radius, 

we may expect to find boundary layers as in the cylindrical case. 

Since the main part of the toroidal loop is invariant in the <j) 

direction, we now concentrate on loops which have constant 

cross-section. The flux co-ordinate formulation of Chapter 2 is 

appropriate. However, we shall only require 0 (e ) terms in our 

analysis and the (r,e,<j>) system described by (4.48) and (4.49) is 

clearly the (r,6,((>) system of Chapter 2 truncated to that order. The 

tokamak expansion should be appropriate for our weakly twisted

field, which has the form
B.R,B, ( * ( r )V*xVr  + g(r)V*) (4.50)

where
f /g » 0(e) (4.51)

To understand the nature of the external plasma, consider such a 

field confined by an external fluid pressure p  ̂ at r=a. The matching

condition at the loop surface is
r \

pg(a) *  - ~ [ l  + 2ea cose +0(e^) j (4.52)

Hence, due to the cos0 dependence of the order e term, a constant

external pressure cannot confine the magnetic field. On the other

hand, if f(r) falls to zero at a, the field may be constrained by a

simple potential field in the outer region, given by
B = g(a)V*, r>a.  (4.52)
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Thus, the important conclusions reached are that toroidal coronal 

loops must be confined by an external magnetic field, perhaps 

potential in nature, and cannot be surrounded by a field-free region 

if the loop is to remain in equilibrium. These considerations 

motivate investigation of force-free loops, with twisting motions 

confined to a finite radius, such as that corresponding to the field 

profile given by (4.24).

In the following chapter, we shall examine the strongly twisted 

loop, bearing in mind the results of the present chapter.
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Chaorn S. Loss of Equilibrium in Coronal Loops.

5.1 Introduction.

As described in Chapter 4, coronal magnetic fields evolve in 

response to the motion of their photospheric footpoints. This 

process stores energy in the coronal magnetic field. If the field 

structure becomes unstable or a non-equilibrium situation develops, 

this energy may be released in the form of heat and motion. A 

gradual release of energy would contribute to the heating of the 

corona, whereas violent release corresponds to a flare. The 

two-ribbon flare occurs in arcade-type structures, while the less 

energetic compact flare is associated with coronal loops. In this 

chapter, we shall investigate whether the quasi-static evolution of 

a coronal loop leads to loss of equilibrium. In order to do this, we 

shall consider the non-linear phase of the twisting which we 

examined in Chapter 4.

We have shown that a long, weakly-twisted flux tube has a 

constant cross-section along most of its length. There is 

considerable evidence that this is also true of strongly-twisted 

tubes. In Steinolfson and Tajima's dynamical simulation, despite the 

shortness of their loop, the flux surfaces were straight over much of 

their length, even in the non-linear regime. At large times, the field 

showed highly dynamic behaviour, along with a dramatic increase in 

both magnetic and kinetic energies. This may indicate the 

development of an instability (either real or numerical) or a loss of 

equilibrium.

Browning and Hood (1989) solved the non-linear Grad-Shafranov 

equation and also obtained equilibria with almost constant radius 

over most of their length, at moderate aspect ratios. They observed 

that loops which carry finite current have flux surfaces which bow 

inwards everywhere. Such loops are not very relevant for our study,
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since they imply footpoint movements extending to infinite radii. In 

contrast, loops which carry no net current have compressed flux in 

their centres and expanded outer flux surfaces. Hence, a region of 

depleted axial field develops as such a loop is progressively twisted.

Consider again the Grad-Shafranov equation (4.7), in the absence 

of pressure

= 0 (5.1)

If we choose the form
K(A) = XA , A< 1 (5.2)

then (5.1) becomes

^ - f ^ + ^ + X ^ A = 0  (5.3)

which is linear, but describes the non-linear evolution of the loop.

The axially-invariant solution is simply given by
J A X r )

(5.4)

whereas the solution satisfying the boundary conditions 

*lz.O " *lz.L " ^

,5.5,

where a„ is again the nth zero of and = a„2 _ %he

coefficients a„ are now given by
J^(Xr)I f  ,2 '

W . ' V
J,(o„r)dr (5.7)

■oW 0 V 1 - - 7

The boundary layer feature is again seen In (5.6). For long loops, K^L

»  1, the axially-dependent part of the solution decays exponentially 

away from the edges, leaving the form (5.4) over most of the loop. 

Notice that the boundary condition at r =1 is not crucial to the 

conclusion. This boundary layer is clearly seen in the work of 

Steinolfson and Tajima (1987) and Browning and Hood (1989). As an
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illustration of this, figure 5.1 has been taken from the latter paper. 

These show the flux surfaces obtained from a non-linear analysis of 

the twisted flux tube. In both sections of the figure, the boundary 

layers and the 1-D part of the loop are clearly visible. In 5.1(a), the 

loop, which has an inverse aspect ratio of 0.18, is behaving in the 

fashion predicted by the linear analysis. Note that, whereas the 

inner part of the field is compressed, the field at the loop edge 

(marked by a cross) is almost unmoved. For the shorter (inverse 

aspect ratio of 0.48), more twisted loop in 5.1(b), the edge of the 

loop has expanded and the region of depleted is obvious.

Since we expect the behaviour of the main part of our loop to be 

essentially 1-D, we can use the 1-D Grad-Shafranov equation

(5.8)

as in the previous chapter.

5.2 Twisting field with form of K specified.

To investigate the non-linear regime, we shall specify 

K(A)=Xk(A), where X is a (positive real) parameter and k(A) is some 

specified function of A. We wish to know if there is a value of X for

which we cannot solve the equilibrium equation. The 1-D equation is

I : »

Note that the LHS of (5.9) is equal to r(Bg)'. Consider a k-profile 

which simply rises from zero on the magnetic axis to a maximum 

and then falls to zero again at r=1. In this case, the minimum B̂  will 

be given by

Bz(rm) = B o + ^ ' j r k # d r  (5.10)

where B  ̂ is the value of the untwisted uniform field, r^ is the radius

of minimum B̂  and r̂  is the radius of the loop edge. Since k dk/dA is 

negative everywhere in the region of integration, a sufficiently
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large X should drive negative, causing a loss of equilibrium. If 

such a loss of equilibrium occurs at a radius small in comparison to 

the length of the tube, then we would not expect inclusion of the 

tension term (due to the radial field component) to restore 

equilibrium.

Consider the situation where the function K(A) is zero outside 

the radius r-1. If we normalise the untwisted initial field value at 

B q=2, then A will be equal to unity at the edge of the twisted field 

region, which we shall refer to as the edge of the loop. When the loop 

has been twisted, the edge will have moved to a radius r^r^, which 

may be identified as the radius at which A=1. Outside this radius, 

the field will maintain its initial value B^, so the solution for A in 

r>re is
A = 1 + r * - r ^  (5.11)

In order to have magnetic pressure balance at the edge of the loop,

we require the inner solution to satisfy

^ (r ,)  + B^(r.) -  = 4 (5.12)

In those cases where K(A) goes continuously to zero at A«1, this 

condition reduces to
W  -  2 (5.13)

It is the ability to satisfy (5.12) which determines whether or not a 

solution exists. The method of solution chosen was to select a value 

of Bjj(O) and Integrate out to A=1, using a Runge-Kutta-Merson

method, thus obtaining a value for B^{r^). Bg(0) was then adjusted

until B^(r^) satisfied (5.12) or it became clear that no choice of 8^(0)

would achieve this. In order to compare with 2-D codes, the boundary 

condition
A(R) = R* (5.14)

for some fixed radius R was applied on some runs. It was found that, 

provided R was large in comparison to r ,̂ there was little difference
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between the two boundary conditions.

As an example, the profile
k(A) = A-A^ 0 <A < 1

-  0 , A >1 (5.15)

was investigated. and the change in radius 6r of the flux surfaces

from their untwisted positions for X = 9.5 are shown as functions of 

radius in figures 5.2 and 5.3 respectively. Note, from figure 5.2, that 

the value of 82(0) has risen by a factor of 7, due to the pinching 

effect of the current. The corresponding inward displacement of the 

inner part of the field can be seen in figure 5.3, along with the 

expansion of the outer part. These movements combine to create a 

region of highly depleted axial field, which is visible in figure 5 .2 .

No solution was found for X > 9.7. For this value of X, the minimum 

of 82 had fallen to less than 10% of B .̂ The outer flux surface of the

loop had only expanded to a radius of 1.35. Hence, this approach

would seem to show that twisting a loop results in non-equilibrium.

5.3 Twist on field line specified.

However, specification of K(A) is not very physical, since a

finite K(A) may correspond to infinite footpoint motions. We would 

prefer to specify the total amount of twist on each field line, which 

is given by
L

4KA) -J
L g

- ^ d z  (5.16)
0

where L is the loop length and the integration is taken along a single

flux surface. However, if the loop is largely straight and. In

addition, excessive amounts of twist are not absorbed by the

boundary layers, this is approximately given by
LB,

(5.17)

where r is the radius of the central part of the tube. We may

re-arrange (5.17), using (4.6), to obtain
K(A) = r B , - r 2 B , Ç - r ^ Ç  (5.18)
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Following Browning and Hood, we substitute for K(A) in (5.8), to 

arrive at the 1-D equilibrium equation for a specified twist per unit 

length;

1 + ( f  A 
dr^ r d r L 2L

dA
dr (5.19)

The 2-D nature is reflected in the dependence of O on the flux 

function.

Consider a field with a constant twist per unit length up to the 

radius A=1, i.e.
X A<1,

= 0 A>1.  (5.20)

Such a loop carries a non-zero current, unless there is a sheet of 

reverse current at the loop surface. The solution of (5.19) with the 

twist (5.20) is

\og[l+X^r^ ]
A =

og u x ^ l

1 +

r < r „

r>r. (5.21)

where r̂  is the radius of the loop, which must be determined by 

matching field strengths at the loop edge. With no current sheet, the 

matching condition at r«r^ is simply continuity of B̂ , and we may 

show that there is always a solution and that the entire loop 

contracts as X is increased. This is due to the pinch effect of the 

loop current. However, this corresponds to an azimuthal field which 

extends to infinity, which gives a twist falling off as rather than 

going directly to zero. Where there is a current sheet, there is no 

external B  ̂ and the external must balance the combined internal

fields. We may show that there is a solution and that, although the 

inner part of the field compresses, the outer part of the loop 

expands (except at very small X, when there is a slight contraction 

of the outer field line).
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We now wish to examine a twist which falls continuously to

zero, in which case the loop carries no net current. The equivalent of

the k-profile given by (5.15) is
^ = X ( 1 - A )  (5.22)

For comparison with figures 5.2 and 5.3, figures 5.4 and 5.5 are their 

equivalents with $  (A) specified. The figures are qualitatively 

similar, but there are some clear quantitative differences. In figure 

5.4, the value of on the axis is even higher than in 5.2.

Nevertheless, the maximum and minimum values of ôr are both lower 

for the present case and the edge of the loop has expanded less than 

in the case where K(A) was specified.

Solution of (5.19) for profile (5.22) showed no loss of 

equilibrium, even at very large values of X. We conclude, therefore, 

that twist alone cannot cause non-equilibrium of a coronal loop. 

Solutions of (5.19) can be checked for correspondence to 2-D 

solutions by generating numerical values of K(A) and inserting them 

in equation (5.1), as outlined by Browning and Hood.

The twist of Steinolfson and Tajima corresponds to

r  - ^

.  3X(A’ ^ '^ -1 )  < A< 1  (5.23)

This twist profile also showed no loss of equilibrium, suggesting 

that dynamic behaviour observed in their work was not due to loss of 

static equilibrium.

5.4 Effect oLEnlianced Pressure.
Now consider the effect of creating an enhanced pressure P(A)

within our loop. (5.19) becomes

,V'- '
1 + 2

/ \
h i

i V
L2L^ /

f  = -r^ f  (5.24)
L

For the untwisted loop, it is obvious that no equilibrium is possible 

if the pressure maximum exceeds the external magnetic pressure.
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This is illustrated below.

We shall consider pressure profiles given by

Xpp(A), A <  1,

0, A> 1. (5.25)

for some specified p(A). We may obtain analytic solutions for some 

forms of p(A). Consider

P(A) = {
p(A) = 1-A

for which the critical value of is clearly 2. (5.24) becomes

dr̂

which has solution

(5.26)

(5.27)

(5.28)

r̂  is the radius of the edge of the tube, which is given by

(5.29)

The solution exists until = 2, at which point r̂  -  V2. Hence, the 

tube loses equilibrium when only slightly expanded and we do not 

expect tension to restore equilibrium.

We now compare the predictions of the 1-D model with a

numerical solution to the 2-D equation:

3r
[1 8 A  '
U  3r J Ù l

dz^
0 ^  

dA (5.30)

Since a numerical solution is required, boundary conditions on A are 

applied at a finite radius, say Then the effect of varying b

can be studied. The boundary conditions chosen were
A(r,0) = A(r,L) = r̂  ; A(0,z) = 0 ; A(b,z) = b' (5.31)

The linear operator on the LHS of (5.30) was replaced by the 

corresponding difference operator (which we shall denote M) on a 

grid of A values. It was then possible to solve (5.30) using the 

simple iterative scheme ^

- ^  + m a ‘M ÔA = -e
dA'
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with the iteration stopping when the norm of the RHS and the norm 

of ÔA are both sufficiently small (typically 10*^ and 10 ^

respectively). Here the norm is taken as
II5AII .  % % | S A  I (5.33)

1 I

e was chosen to ensure convergence.

The conclusions about loss of equilibrium depend on the value of the 

outer radius b. For the pressure profile given by (5.25) and (5.26), no 

loss of equilibrium was found for b=2 (i.e. twice the radius of the

tube). Results for Xp=2 are shown in figures 5.6-5.10. In this

example, the aspect ratio of the loop was chosen to be 8. Even at 

%p=2, the value of on the axis has only fallen to 1, half its original 

value. In contrast to the infinite radius results obtained above, the 

total pressure increases, since the field is no longer free to expand 

and does not drop as rapidly as the gas pressure increases. This

result, as shown below, does not depend on the length of the loop. 

Figure 5.6 shows the field lines, which exhibit an expansion

everywhere. However, the indication is that the 1-D model is still 

appropriate for this loop.

The typical boundary layer behaviour is clearly seen from the 

contours of B̂  in figure 5.7. B̂  is reduced at r=0, but remains 

approximately 2 outside the loop. A section through z=L/2 (figure 

5.8) shows B  ̂ as a function of radius for comparison with the 1-D

model. For b=2, with A=b^ at r*b, the 1-D solution becomes 

b -̂1 \  ^

A =
Te y

r'*, 0< r<r . .8

b ^ + - ^ 4 r ( r ^ - b ^ ) . L < r ^ b .  (5.34)
b'-r=

where r̂  satisfies

58



-Ni

r

Figure 5.6. Field lines for loop with enhanced pressure:

Xp ss 2 , b  «  2 .
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Figure 5.7, Contours of B,for loop with enhanced pressure:

Jkp -  2. b -  2.
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Figure 5.8. B (r,L/2) for loop with enhanced pressure:

Xp “  2, b = 2.
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Figure 5.9. Contours of Ôr for loop with enhanced pressure:

Xp *  2, b = 2.
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Figure 5.10. 5r(r,L/2) for loop with enhanced pressure:

Xp -  2, b = 2.



T ' '  -  (5.35)
b -fe

Solving (5.35) with Xp=2 gives rg2=1.28 and B^(0)=0.93 in good 

agreement with the 2-D results of figure 5.8.

Figure 5,9 shows the contours of ôr, the change in radius, with 

the section through z=L/2 shown in figure 5.10. The existence of a 

non-equilibrium point can be deduced from (5.35). At such a point 

dXp/dr^^O. Hence,

2r^- (3 + b V | + 2b̂  = 0 (5.36)

Thus,
2

3 ^  ± 1  Vs - 10b*+ b̂  (5.37)

There are real solutions, and hence a point of non-equilibrium, if

b>3. To illustrate this, the 2-D code was run with b=4 and L=8 and 65 

points in each direction. The critical value of Xp is approximately 2.3

and rg2=2.19. The results for Xp -2 .5  are shown in figures 5.11.-5.15. 

Notice how much more the field lines are bent in figure 5.11 and that 

has dropped almost to zero in figures 5.12 and 5.13. No solutions j

were found for Xp*3. The fact that the critical value is larger than }

that predicted from the 1-D theory is not too surprising, since 

tension effects will help to contain the higher pressure.

Thus, we have illustrated how important the position of the 

boundary is for determining whether non-equilibrium occurs or not. 

The wrong conclusion is reached if the outer radial boundary is too 

close to the edge of the loop. Once far enough away, this outer 

condition does not strongly influence the conclusions and the 

difference between the possible boundary conditions becomes small.

The pressure
p(A)=1-A^ (5.38)

falls off more slowly than the previous example, (5.24) becomes
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Figure 5.11. Field lines for loop with enhanced pressure:

Xp *= 2.5, b = 4.
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Figure 5.12. Contours of B_for loop with enhanced pressure:

X.p = 2.5, b = 4.
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Figure 5.13. B^(r,L/2) for loop with enhanced pressure:

Xp = 2.5, b ~ 4,
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Figure 5.14. Contours of ôr for loop with enhanced pressure:

Xp = 2.5, b = 4.
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Figure 5.15. 6r(r,L/2) for loop with enhanced pressure:

Xp = 2.5, b as 4.



A .
dr^ f f  - V a = o (5.39)

with solution

A =
sinh V(Xp/2) '

sinh '> / (V 2 ) r ^
(5.40)

where

P /
tanh v '

v2 y
(5.41)

Again, equilibrium is only lost when the pressure maximum becomes 

equal to the ambient magnetic pressure. Since r̂  becomes infinite as

Xp tends to 2, the loss of equilibrium is less conclusive in this case.

However, r̂  remains small quite close to Xp=2, e.g. r̂  = 1.83 at

Xp=1.99. The profile

p(A) = A-A® (5.42)

has a maximum off-axis, which we consider unphysical; 

nevertheless, it is Interesting to solve the problem. (5.24) becomes

(5.43)d^A
dr'

 ̂ ^  + X / ( 1 - 2 A ) -  0r dr

which has solution

A . l 1 - cosh [ ^ (V

+ ^ [ V(Xp/2) ■

2sinh[V(Xp/2) r^ j
(5.44)

i
I

.c
$

r  ̂ is the solution of

1 + cosh [ V(^p/2) i  ^
= V(2/X.) (5.45)

2 sinh[’/ ( y 2) r |

and tends to infinity as Xp tends to 8. This case behaves similarly to 

the previous case. We observe that, in all cases, equilibrium is 

obtained if the pressure maximum is less than the ambient magnetic
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pressure. Hence, at least in the untwisted case, we do not expect 

pressure to drive coronal loops (which have a low p) out of 

equilibrium. We shall now consider the twisted loop with pressure. 

5.5 The Twisted Loop with Pressure.

To the twist given by (5.22), a pressure given by (5.26) was added. 

It was found that small amounts of extra pressure could be 

contained by highly twisted loops. Figures 5.16 and 5.17 show 8r and 

for the case X=2.2, Xp-2.5. The large value of pressure has 

resulted in being reduced at all radii. However, the field is still

most depleted In a region away from both the axis and the edge. At 

smaller values of pressure, the pinch effect dominates and causes an 

increased value of B^fO).

Again we conclude that for coronal loops, small pressure 

fluctuations will not cause loss of equilibrium. It is interesting for 

other applications, to examine the loss of equilibrium at high 

pressures. Figure 5.18 shows the regions of equilibrium and 

non-equilibrium in the X-Xp plane. A second solution, which we do

not consider physically relevant, appears when the pressure is 

nearly large enough to cause non-equilibrium. To illustrate how 

equilibrium is lost and the second solution appears, consider the 

method of solving (5.24). We begin with an estimated value for

and integrate out to A=1 (the edge of the loop). We then adjust Bz(0) 

until Bg(A*1 ) is 2. Figure 5.19 shows B^(A=1) as a function of B^{0) 

for several values of Xp and a fixed value (X=5) of the twist. In the 

zero pressure case, B2(A=1) simply rises monotonically from zero to 

2 and beyond as Bg(0) is increased. For finite pressure (Xp=1,2), Bg,(0) 

begins from a non-zero value, drops slightly, then rises to 2 and 

beyond. When the value of Bg(A=1) corresponding to B2(0)=0 rises

beyond 2 (e.g. Xp=3), a second solution appears with a much lower
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Figure 5.16. 6r for the twisted loop with pressure:

X =2.2, Xp=2.5.
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Figure 5.17. B_ for the twisted loop with pressure:

X =2.2, Xp=2.5.
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value of 82(0). This solution represents a much more expanded tube 

than the first solution. At still higher values (Xp=4) of the pressure, 

the curve is entirely above B2(A*1)=2 and so there is no solution and, 

hence, no equilibrium.

5.6_ Adiabatic Processes.

Instead of specifying the pressure as a function of A, we may 

require the entropy to be conserved. If plasma motions are adiabatic, 

then entropy is conserved in ideal MHD. This is appropriate when 

plasma motions are sufficiently fast to make heat transfer 

negligible. Although we have previously stipulated that motions 

shall be quasi-statically slow, it is nevertheless important to 

examine the adiabatic limit. Following Finn and Chen (1989), we 

shall consider the quantity PV^, which is constant for an adiabatic 

process. V is the volume of the plasma and y is the ratio of specific 

heats, which we shall take to be 5/3, the value for an ideal 

monatomic gas. For a volume of plasma contained between two 

neighbouring flux surfaces enclosing flux A and A+dA, we have
y f dV

PV̂  = P(A) J (5.46)

Where V(A) is the volume enclosed by the flux surface of value A and 

the photosphere. Since plasma cannot cross the flux surfaces, dA is 

constant and

P(A) *  a constant (5.47)

for an adiabatic process.

V(A) has the form
L r(A) l a  a  L

V(A) =2% j  J rdrdz =2ir j  j dAdz = 2it j  J ^ d A  (5.48) 
0 0  0 0  0 0 ^

where the z-integral is taken at constant A. Hence, it is clear that

2 - 1 1  (5.49)
0 ^

Note the numerical factor 27t, which Finn and Chen do not obtain; this
62



factor arises from the difference between arcade and cylindrical 

geometries.

We shall refer to the quantity S(A) given by

S(A) = P(A)
L

J dz
Bz (5.50)

which we have demonstrated to be conserved in adiabatic processes,

as the pseudo-entropy. In the 1-D case, (5.50) reduces to

S(A) = P(A) (5.51)

The equivalent of (5.24) may easily be found as

ys id A
dr

Id A  
r dr

ds l i  
dA J

d^A
dr^

jL 4. do
r +  ,2 dr

dA
dr

(5.52)

We can see that, even where the initial equilibrium has no pressure 

gradients, the result of twisting is modified by the terms in S(A). 

Hence, a uniform non-zero coronal beta has an effect on adiabatic

motions. If we re-arrange (5.52) to obtain the expression

20^B , + B! + # r  %

dr
dA dA

1 + + tSL B
(5.53)

we can see that this effect is likely to lessen any movement caused 

by twist. This is consistent with the fact that any expansion creates 

pressure gradients which act against the expanding forces. To see 

this effect, we compare the results for the twist profile (5.22) with 

zero beta and a constant pseudo-entropy corresponding to an initial 

beta of 0.079. We see, from figures 5.20 and 5.21, that both the 

value of Bg on the magnetic axis and the expansion of the tube are 

reduced by the effect of finite beta.

We also wish to examine the response of a tube to an enhanced 

base pressure, but keeping the pseudo-entropy fixed as a function of
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Figure 5,20. 62(0) as a function of X for p = 0 (x)

and p = 0.079 (o).
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A, rather than the pressure. We chose the following form for S(A);

^  .  2 ' \ , ( 1 - A ) ,  A < 1 ,

- 0 ,  A ^ l .  (5.54)

The reason for the factor 2"Y was to make the parameter Xg equal to

the equivalent parameter Xp in (5.25), since the form of the 

pseudo-entropy corresponds to the initial pressure distribution 

(5.26). At very low values of Xg, the results were similar to those

with pressure specified. However, at higher values of Xg, the effects

were reduced. In particular, there was no loss of equilibrium at Xg =

2. In fact, no loss of equilibrium was found below Xg =10. The 

addition of twist as well as a specified pseudo-entropy resulted in 

similar effects to the case of twist and specified pressure, but with 

the loss of equilibrium at higher parameter values.

This form of the 1-D model allows us to make a comparison 

with the work of Mikic et al. (1990), in which the 3-D dynamical 

evolution of a twisted flux tube was studied. They confirmed that a 

twisted tube evolves through a series of equilibria and found that 

the tube eventually becomes unstable to an ideal kink mode. They 

studied a tube of aspect ratio 4, with a fixed radial boundary at 4 

times the radius of the tube. In our 1-D analysis, we found negligible 

difference between this boundary condition and (5.13).

The applied photospheric velocity generated a twist given by
^  -X (1 -A )*  , A < 1  (5.55)

and a uniform initial beta of 0.1 was assumed. Mikic et al. showed 

results for an equilibrium where the twist on the magnetic axis was 

5tï, just above the kink instability threshhold of 4 .87c. Inserting this 

twist in (5.52), we obtained the plot of shown in figure 5.22. This 

is almost identical to the plot given by Mikic et al. of at the

mid-plane of the loop. The 1-D model slightly underestimates the
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value of BjjtO) (2.17Bq as opposed to 2.21 B )̂ and gives the minimum 

B̂  as 0.84Bq as opposed to 0.838^. This is remarkably good agreement 

for such a simple model.

5J  Mon-uniform initial flux distribution.
The final case which we examined was a non-uniform initial 

flux distribution. Consider the flux function

= j ( r ^ +  1) ^ < r < ^ ,

-r^  r> 1 . (5.56)

which represents a field concentrated near the axis. In our 1-D 

model, the effect of the non-uniformity will be to modify the 

appearance of the twist function as seen by the coronal field. For 

example, a twist

L

applied at the photosphere, which would give (5.22) for an initially

*  X(1 -tl) (5.57)

uniform flux distribution, gives

A < f .

» 2X (1 -A) ~ <  A < 1,

0 A > 1  (5.58)

for (5.56). We examined the effect of applying such a twist on the 

coronal solution and found qualitatively similar behaviour to the 

results for an initially uniform flux distribution. Figures 5.23 and

5.24 show Bj, and 5r for X*9.5. A more extreme case is when there is

a region of the photosphere which is the source of no photospheric 

field. Then a twist applied at the photosphere will cause a 

photospheric current sheet. However, even this case gave rise to no 

loss of equilibrium.

5.8 Discussion.

Since a long loop is computationally expensive, most 2-0 and

3-D loop analyses have been at short or moderate loop lengths,
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Figure 5.23. for twisted loop with initially 
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rather than a length of about ten times the radius, which would 

correspond to observations. Nevertheless, there is remarkably good 

agreement between such work and the predictions of the 1-D long 

loop model. The 1-D model can be computed in seconds on a small 

computer, whereas realistic dynamical simulations require hours on 

very large computers.

It is particularly difficult to make comparisons for the case of 

a non-uniform initial flux distribution. Robertson et al. have carried 

out a 2-D time-dependent simulation for such a case. They obtained 

the initial untwisted equilibrium by relaxing an initially straight 

field. However, due to the shortness of their loop, the resulting field 

at the mid-plane of their loop was far from uniform (ranging from 

1.83Bq to 0.82Bq). Obviously, no comparison can be made between the

effect of twisting such a field and the 1-D model.

Using our 1-D model, we have examined a number of different 

approaches to the non-equilibrium problem. Whereas non-equilibrium 

occurs for a tube with fixed K(A), the more physical approach of 

specifying the twist on each field line gives no loss of equilibrium. 

Sufficiently high pressure can drive a loop out of equilibrium, but 

this requires p>1. If we consider the loop to expand adiabatically, 

the requirement becomes p » 1 .  Even a non-uniform initial flux 

distribution appears to give no loss of equilibrium when twisted. We 

conclude that a low-beta, twisted coronal loop is unlikely to lose 

equilibrium.
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Çhgpter 6, Conclusions,
We have derived the equations governing the behaviour of 

coupled tearing modes in tokamaks and solved them in the case of 

three modes coupled by elliptic shaping, when two of the modes have 

singular surfaces in the plasma. Current profiles exist for which the 

two singular modes are both stable in the limit of a circular 

cylinder, but for which the coupled mode becomes unstable at a 

degree of ellipticity typical of real tokamaks. So far only

non-monotonic current profiles have shown this property. Since such 

profiles are somewhat unphysical, it would be desirable to find a 

montonic current profile for which this effect occurs. The addition 

of finite pressure gradients would be a useful extension of this 

work, as would the inclusion of more singular surfaces in the

plasma.

We have studied the linear response of a line-tied coronal loop 

to twisting applied at its photospheric footpoints. The inner part of 

such a loop contracts, while its outer surface remains virtually

unmoved. A long loop is straight over most of its length, with 

changes in radius occurring in narrow boundary layers at each end. A

1-D line-tied model is sufficient to describe most of the 

equilibrium properties of such a loop. It would be desirable to

include realistic toroidal effects and we have indicated how this 

may be approached.

Using the 1-D line-tied model, we have gone on to look at the 

non-linear effects of twisting. In addition to the continued 

contraction of the loop's core, its outer layers expand. This results 

in a region of depleted axial field developing. Apparent 

non-equilibrium was found for a sufficiently twisted loop, when the 

azimuthal field at the footpoints was specified. However, no such 

loss of equilibrium was found when, more physically, the twist on 

each field line was specified. Addition of suficient pressure was

found to cause loss of equilibrium, but only when p was order 1. A
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2-D investigation of this showed that slightly higher pressures 

could be contained by tension effects. Since the coronal p is low, we 

do not expect this loss of equilibrium to be relevant to coronal 

loops. In an adiabatic process, non-equilibrium is not found until 

p » 1 .  Twisting an initially non-uniform field does not result in 

non-equilibrium. The 1-D line-tied loop model was compared with

2-D and 3-D dynamical simulations and found to agree well with 

their results. The fact that some properties of a loop are well 

described by such a simple, computationally cheap model is 

remarkable. The logical continuation of this work would be a study 

of the MHD stability of coronal loop equilibria.
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App^ndix-A

Consider a co-ordinate system in which an infinitesimal

element of length dl is given by

(dl)^ = g.. dx'dx  ̂ (A.1)

where (g^) is the metric tensor and repeated indices indicate

summation. In such a system a vector A may be represented by

contravariant components A' given by
a ' = A.Vx' (A.2)

or by covariant components Aj given by

A. = g.. A (A.3)

The inverse of the metric tensor is its contravariant form (g'l)

which is related to the scale factors of the system by
g'* = Vx'.Vx' (A.4)

The Jacobian J of such a system is related to the determinant of the 

metric tensor and the scale factors by
- 1

J = J d e t  (g..j = [vx'. (vx‘ x V x 4  ] (A.5)

The following covariant and contravariant quantities are required for 

our analysis
I 1 ijk

(V x A ) . 1 8  (A.6)
ax'

(A x B), -  J a 'b " (A.8)

V.A (A 9)
3x‘

A.B = A B |-A |B  (A. 10)

where A and B are vector fields, V Is a scalar field and Is the 

permutation tensor.
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Using (A.2). the contravariant components of the magnetic field 

(2.6) are obtained as

“ - ' * “ (A.11)

Using (A.3), (A.5) and (A.11), the contravariant components of the 

current are

/  = 0 ;J“ = - R A t
00(0

L3p
<9, _a_

8(0
pû>fg,

(A. 12)

The p covariant component of the Lorentz force (J x B) is

[J X B]p = R̂ B̂
/  /

9 9 ^ 1
r2 j î ap

*9GXÙ

J J
_a_
8(0

pco

\  ” y
(A.13)

and the other components, as expected, vanish identically. Equating 

this to (Vp)p gives the equilibrium equation (2.7).
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Acm ndk B

We wish to approximate our large aspect ratio tokamak to a 

cylinder, adding corrections as higher order terms in the inverse 

aspect ratio of the tokamak. In order to do this we shall 

non-dimensionalise our lengths against the major radius of the

magnetic axis. The co-ordinate p will be non-dimensionalised against 

the minor radius a, giving rise to factors of e. Conversely, the 

non-dimensionalisation of p-derivatives gives rise to a factor The 

factors p in equation (2.9) have already been non-dimensionalised in 

this way. We shall now expand equation (2.7) in powers of e, while 

non-dimensionalising.

The expansions of ĝ ĝ̂  and g^  ̂ may be obtained from (2.4) and (2.9) as

+ 8 I  -2pP +u  = r  + e ' (2p X  S"(n-1) cos(nco) j  + ^

^^ S "(n -1 ) cos(n-1)0  ̂ |^Xs"(n-1) sin(n- 1)co ^  1  (B

9p„-Ro (pS"' + (n-1)S") sin(n<a) - pA' sinco

A' Y  S"(n-1) sin(n-1)<o + V  (n-1)S"s"”cos(n-1)to sin(m-1)(o [ I
n n,m J I

(B.2)

while the Jacobian J is given by

J = Ro I  Gp + 8' ^  ((n-1)S" -pS"*) cos(nco) + pA' cos©

/ -{pP’) + A ' 2  S"(n-1) cos(n-1)o) - %  (n-1)S"s"" cos{n-m)o>\ j
\  n n,m J  I

(B.3)

Where ' denotes the derivative with respect to the
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non-dimensionalised p and S" *  d(S")/dp.

Hence, the terms in equation (2.7) have the following orders :

i 0)0) = 0(£) ;
d(o

= 0 (e ) ; P' = 0 {£ ^
b:*0 0

It is now obvious that g must expand as
2

g = 1 + 6 gg + ...

(B.4)

(B.5)

-PP R gg  =  - oxa . gtoo Fpg, R'g,po (B.6)
J J J

We may now calculate the scale factors of the new system by using 

the standard rules for contravariant tensor transformations, bearing 

in mind that 9r/8p « 1 and 8r/9© -  0. Hence,

|Vr|̂  -  g" -  g’’’’ : |vef = g®* = g

Vr.V0 = g'® = g ' ^ | i  + g'>“ g

PP ''ae 1
2

ae f
+ g .a ® . + 2gpû) ^  ^  .

9p 8(0 ’ 

(B.7)

in order that the final term on the LHS of (2.7) is not unbalanced. The 

straightforward, but laborious, substitution of (2.8), (2.9) and 

(B.1)-(B.3) into (2.7) now yields equations (2.10)-(2.12) from its 

various orders. Note that the field and current components and the 

equilibrium equation in this co-ordinate system may be obtained 

simply by replacing p and ©, by r and 0 respectively, everywhere in 

equations (A.11)-(A.13). In order to obtain the scale factors of the new 

system, we must first derive their counterparts in the old system. 

This we may do by a trivial matrix inversion on the metric tensor, 

giving us its contravariant components:

Ipp

The explicit forms (2.17) may be obtained after some algebraic 

manipulation.
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Appendix C

Marginaliy Stable Ideal MHD in Toroidal Co-ordinates.

We wish to express equations (3.1)-(3.4) in the co-ordinate system of

Chapter 2. The equations are:
V(8p) = 5J x B + J X 5B

6J = V X 8B

8p = - ^.Vp

V.5B = 0

Since p is a function of r alone, (3.3) becomes
8p = - Ç̂ p'

(3.1)

(3.2)

(3.3)

(3.4) 

(0 .1)

Suppressing R, and Bj, and replacing p.w by r,e in (A.11)-(A.13) gives us 

the contravariant equilibrium field components

B ' . o  ; B® = - L  ; B % -%  
rR R

(0 .2)

and current components 

J = 0 i J =
rR'

; J = 1 3 fOee 1 3 p S r e l

rR' 3r W  J ■ 30 Ir R ' J

The covariant components of (3.1) are (using (A.7))

rR^ {8J®B* - 8J*B® + J®5B* - J*8B®} + ^  (^'P' ] = 0

r R ' { j W - 8 j ' B * }  .  0

rR ^ { 8 jV -8 B 'j® }  + ^ (^ 'P ' ) = 0

(0.3)

(0.4)

(0.5)

(0 .6)

Now, we take (C.5)B® + (C.6)B* and employ the equilibrium equation to 

obtain
a '

8B'= ^
r f f

Using (A.9), (3.4) has the form

30 3(1, J (14')

■|jr (rR W )  + ^  (rR^SB*) + ^  ( r R W )  = 0

(0.7)

(0 .8)

Using (A.3) and the fact that (Qy) is the inverse of (g'O, we may obtain
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the covariant components of 8B as

5B, = r^R'lVei'sB' - i^R 'vr.Ve 5B® ;

SB. -  r^R'|Vr|^5B® - r^R'|Vr.V0| SB' ; 8B  ̂ = R'sB* (C.9)

Hence, from (3.2) and (A.6), the contravariant components of 8J are

5 /
rR

8
80

8J%  \  
rR

_8_

ÔJ
4»

d({> /R ^ r l^ ô B  V R ^ V r.V e  5B'

A .
d rr^R^|V0|^ôB"- r^R^Vr,V0 ÔB®  ̂ ^

rR

JL
80̂[r^R^|V0|^6B' - r^R^Vr.VO 5B® ] j (C.10)

Substituting from (C.2), (C.3) and (C.10), (C.4) and (C.6) become 

^ [r^ R '|V 0 |'s B ' - r^R'vr.V0 SB® ] -^ ^ R 's B ' )  ̂ ^ g' 5B'
R

_8_
8r

f

rfR'|Vrn + ^(rfR'vr.V0

rR‘ [ 8r

80
,2 .„  .2 _ ^ e

SB + 3r (4'P’

r^R'lVrl'^SB®- r^R'vr.V0 SB'

r®R'|V0|'sB' - r^R'vr.V0 SB® ]130 (C.11)

and

80 R'SB* ] - ^(r^F^IVrl^SB® - r^R'vr.V0 SB' ]
rR'

+ g' SB + ^ (4 'P ' ]_3
8<}> (C.12)

We now define new variables y « fV and z = R^8B*, using (C.7) to 

eliminate 8BL Assuming that all perturbed quantities vary as

exp(-in<})), we may express (C.8),(C.10) and (C.11) as
r -\ ^

_8_
8r â r -  ̂ ^  (rR'sB®) - inr z = 0 (C.13)
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(
.2 f a .  1-in r|V0| y - r^R'vr.veSB* d z

d r J R
91
R̂

A
dr frR'|Vrn + ^(frR'vr.Ve

rR' [
A
ae

I j: r^R ÎVrl^ôB® - rVr.ve

p'

A
ae inq

r|Vef f i -
ae inq y - i^R^Vr.V6 8B® 1 - 0 (C.14)

d z
de in r^R ^lV rlW  - rVr.Ve

rR'

g'
rR'

A
de inq y - in y  y = 0 (C.15)

We now substitute for SB® from {C.15) in (C.13) to obtain (3.5) and in 

(C.14) to obtain (3.6), after using (3.5) to eliminate undifferentiated z 

terms. We observe that, we could include compressibility by changing 

the definition of y. For example, if the motion is polytropic, (i.e. p 

-k p “ , where p is the density), then equations (3.5) and (3.6) hold with y 

= f(^’’ + ap(V.Ç)/p'). Also, note that the perturbed field is linked to the

displacement by the perturbed ideal induction equation
ô B . V x ( Ç x B )  (C.16)

which was not required in the above analysis. Note, however, that the 

first component of (C.16) is identical to (C.7). This loss of an 

independent equation is a result of the imposition of the additional 

constraint of incompressibility, since (C.7) appears here as a result of 

(3.3).
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