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A bstract

In this thesis, several problems relating to therm al instabilities in the solar corona are examined. Chapter 
1 gives a brief description of the Sun and corresponding events with particular attention  focused on 
prominences, their form ation and eruption. Various problems concerning therm al instabilities are then 
tackled in the later Chapters.

In C hapter 2, the basic MHD equations are introduced and a physical description of the therm al insta
bility mechanism given. The MHD equations are linearised in a uniform, infinite m edium and the basic 
instability  criteria obtained.

C hapter 3 investigates the norm al mode spectrum  for the linearised MHD equations for a cylindrical 
equilibrium . This spectrum  is examined for zero perpendicular therm al conduction, with both  zero and 
non-zero scalar resistivity. Particular attention  is paid to the continuous branches of this spectrum , or 
continuous spectra. For zero resistivity there are three types of continuous spectra present, namely the 
Alfven, slow and therm al continua. It is shown th a t when dissipation due to  resistivity is included, 
the slow and Alfven continua are removed and the therm al continuum is shifted to a different position 
(where the shift is independent of the exact value of resistivity). The ‘o ld’ location of the therm al 
continuum  is covered by a dense set of nearly singular discrete modes called a quasi-continuum , for 
equilibria w ith the therm al tim e scale much smaller than  the Alfven tim e scale. This quasi-continuum  
is investigated numerically and the eigenfunctions are shown to have rapid spatial oscillating behaviour. 
These oscillations are confined to  the m ost unstable part of the equilibrium based on the Field criterion 
and m ay be the cause of fine structure in prominences.

In C hapter 4, the norm al mode spectrum  for the linearised MHD equations is examined for a  plasm a 
in a  cylindrical equilibrium. The equations describing these norm al modes are solved numerically using 
a finite element code. In the ideal case the Hain-Liist equation is expanded and a  W KB solution 
obtained for large axial wave numbers. This is compared to the numerical solutions. In the non-ideal 
case, the ballooning equations describing localised modes are m anipulated in an arcade geometry and a 
dispersion relation derived. It is illustrated th a t as the axial wave number k is increased, the fundam ental 
therm al and Alfven modes can coalesce to form overstable m agnetotherm al modes. The ra tio  between 
the m agnetic and therm al term s is varied and the existence of the m agnetotherm al modes examined. 
The corresponding growth rates are predicted by a WKB solution to the ballooning equations. The 
interaction of therm al and m agnetic instabilities and the existence of these m agnetotherm al modes may 
be significant in the eruption of prominences into solar flares.

C hapter 5 extends the work presented in C hapter 4 to include the effects of line-tying in a coronal arcade. 
The ballooning equations which were introduced in C hapter 4 are m anipulated to give a dispersion 
relation. This relation is a quadratic in the square of the azim uthal wave num ber m  if parallel therm al



Ill

conduction is neglected and a cubic in if parallel conduction is included. Rigid wall boundary 
conditions are applied to this dispersion relation. This dispersion relation is then solved numerically 
subject to these boundary conditions and the solutions plotted. Unfortunately the expression for the 
therm al continuum  in line-tied arcades is required since the therm al continuum  m ust play an im portan t 
role in the proceedings. This calculation is left for future work.

Fi'om the results obtained, it can be seen th a t the therm al instability can play a m ajor part in prominence 
form ation and destruction. The therm al instability may help create the prominence. Resistivity and 
perpendicular therm al conduction can cause of the observed fine scale structure. Finally, a  neighbouring 
therm al instability may trigger a m agnetic instability th a t causes the prominence to  erupt.
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C h a p te r  1

A  B rief D escrip tion  o f th e  Sun

.. .and the silly American said to me, just as we were coming up to this 
roundabout, ‘Do these things understeer or oversteer?’ and I  said, ‘Well 
I ’ll show you on this roundabout. You can make it understeer like 
this, (and we went round the first roundabout), or you can make it 
oversteer like this. ’ A nd  he was completely silent after that!

-T im  Pry, dem onstrating Hillman Imp handling to the Americans.

1.1 In trod u ction

In this C hapter, a brief description of the Sun and corresponding events is presented w ith particular 
a tten tion  focused on prominences and their form ation. Various problems relating to  prominences are 
then  tackled in the later Chapters. Throughout the history of astrophysics, the Sun has been widely 
regarded as an uninteresting object, particularly in comparison with beauty of the many galaxies and 
constellations visible in the night sky. In 350 EC Theophrastus, a  pupil of A ristotle, observed a sunspot 
with the naked eye but, it was not until 1843, th a t Schwabe proposed the existence of an eleven year 
cycle for the frequency of sunspot occurrence. I t is fair to  say th a t before the 18^^ century, little  was 
known about the Sun.

Since then, the Sun has been of great interest to many astronomers and astrophysicists. In particular, 
during the last 50 years numerous discoveries have been made. Many satellites have been launched (for 
example Sky lab) for the purpose of observing the Sun and more are being planned (SOHO, for example).

The Sun is studied for several reasons. Firstly, the Sun is the nearest star to  E arth , a t an average 
distance of 1.50 x lO^^m or 93 million miles, and knowledge gained from it can be applied to  other more 
d istan t stars. The Sun's vast am ount of energy is produced by many nuclear fusion reactions w ithin its 
core and investigating these reactions m ay lead to fusion machines on E arth , producing alm ost limitless 
am ounts of clean, cheap energy. The interaction of the solar wind and the E a rth ’s m agnetic field is 
im portan t, not only in the form ation of the beautiful aurora in the northern and southern hemispheres, 
bu t also in predicting geomagnetic sub-storm s th a t can play havoc with electricity networks and the 
navigation systems in ships and aircraft.

1.2 O b servations

Recent photographs (see, for example, Priest, 1982) have shown m any fascinating and varied events 
occurring on and near the Sun. These pictures should convince both astronom ers and astrophysicists 
alike th a t the Sun is not the boring object th a t m any people once thought. Indeed, it is an object of



A Brief Description of the Sun

great beauty and m ystery certainly worthy of study. The next few paragraphs describe the Sun in more 
detail including some of the more spectacular events.

The Sun is about 4.5 x 10^ years old, has a mass of 1.99 X 10^°kg, a radius of 6.96 X lO^m and consists 
of a massive ball of plasm a held and compressed by self gravity. This plasm a is composed of about 90% 
hydrogen, 10% helium, and 0.1% of other elements such as carbon, nitrogen and oxygen.

Two sections may be distinguished in the Sun: the interior (the m ain body) and an external atm o
sphere; both  are described below.

1.2.1 T he Interior Structure

The overall interior structure of the Sun comprises of a central core, a radiative zone and a convection 
zone. The core is thought to  have a tem perature of 1.6 x lO^K and a density of 1.6 x 10®kg m “ ^, high 
enough to  sustain the therm onuclear reactions which generate 99% of the Sun’s energy. Most of this 
energy is in the form of heat and light th a t is eventually radiated into space. The energy produced 
by the core is transported  through the radiative and convection zones where the p lasm a’s tem perature 
drops to 6,600K and its density to  4 x 10“ Rcg m “ .̂

1.2.2 T he O uter A tm osphere

The Sun’s outer atm osphere is divided up into three different regions; the photosphere, chromosphere 
and the corona. The lowest layer is the photosphere, it is from here th a t m ost of the Sun’s visible 
light escapes. The photosphere is 5 x lO^m thick, has an average num ber density of 10^®m”  ̂ and a 
tem perature th a t decreases from 6,000K a t the bottom  to 4,300K where it meets the chromosphere. 
W hen observed at high resolution it appears to  be covered with irregular cobble stone type shapes, 
called granular cells, th a t are in continual m otion. G ranular cells have a diam eter ranging between 
700km and 1,500km and lifetimes of between 7 and 10 minutes. Supergranular cells are also found on 
the photosphere. These are very irregular in shape, and are much larger than  granular cells typically 
having diam eters ranging from 2.0 x lO'^km to 5.4 x lO'^km, (Leighton et a l,  1962). Therefore, a t any 
given tim e there are approxim ately 5,000 of these cells visible on the solar surface. Supergranular cells 
have a lifetime of about 20 hours, (Simon and Leighton, 1964). At the boundaries of these cells the 
m agnetic field exceeds 30G. At the junction of three cells the magnetic field strength  can be as high as 
l-2kG. More details on solar granulation m ay be found in Bray and Loughhead (1967).

Above the photosphere is the chromosphere. The chromosphere is 2.5 x 10*^m thick. It has a 
tem perature of 4,300K which increases monotonically with height to 10®K. Many fine scale structures 
can be found w ithin the chromosphere, for example spicules and fibrils, which will be described in more 
detail later.

Above the chromosphere is the corona, which cannot under norm al circumstances be seen through 
the visible light em itted from the photosphere. I t can, however be seen by the naked eye during solar 
eclipses. The corona stretches from the top of the chromosphere to E arth  and beyond. The quiet corona, 
corresponding to solar minimums, has an average electron number density of several times lO^'^m"® and 
a tem perature of about 10®K, falling off w ith distance from the Sun. (The tem perature in the solar wind 
actually increases further, bu t in a sense tem perature here loses its meaning).

1.3 F eatures o f  th e  Sun

In this Section, various interesting properties of the Sun will be discussed. W ithin the solar atm o
sphere several areas m ay be found where there is a larger am ount of m agnetic flux present than  in the
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surroundings. These areas are called active regions and play an im portan t part in m any solar phenom
ena. Perhaps the m ost well known features found on the Sun are sunspots. These are observed in the 
photosphere, w ithin a m ature active region.

There are two areas associated with sunspots, a  central area, the um bra and an outer region, the 
penum bra. Sunspots are much cooler than  the surrounding plasma. The um bra generally has a tem per
ature of about 4,100K and the penum bra 5,500K, (Wormell, 1936). Sunspots have very high m agnetic 
fields associated w ith them . Most have afield  strength ranging between l-2kG , bu t they can occasionally 
exceed 4kG. The m agnetic field strength increases w ith the area of the spot and the darker the spot, the 
stronger the field. Sunspots are generally found in pairs which gradually drift apart from one another, 
up to  a distance of about 1.5 x 10®km. For more details of sunspots, see Bray and Loughhead (1964).

Fibrils.

Thread. Opposite polarity 
regions.Nearest opposite 

polarity region.

Figure 1.1: The difference between fibrils and threads. Notice th a t threads link the 
nearest opposite polarity regions directly, whereas fibrils span regions of opposite polarity 
before re-joining the photosphere.

Fibrils can sometimes be seen in H a on the disk, within the chromosphere. These are long, thin, dark 
threads and are usually found near and a t the edges of the active regions. An average fibril has a length of 
15,000km, a  w idth of 2,000km and is suspended at a height of 2,000km above the photosphere. Threads 
can also be seen in the chromosphere. They differ from fibrils in th a t threads link the nearest oppositely 
charged polarity regions directly, whereas fibrils span an enhanced network of like polarity before re
joining the photosphere, (Foukal, 1971a,b). This difference between fibrils and threads is illustrated  in 
Figure 1.1.

Q uantity Spicules Fibrils Threads
Length 10,000km 15,000km 3,000-100,000km
W idth 1,000km 2,000km 2,000km
Height 4,000km 2,000-4,000km

Lifetimes 8-15min l-20m in >5m in
Electron density 5 X 10^°-2 X 10“ m -3 > lO^^m"®

Tem perature 16,000K >  25 X lO^K
Internal m otion 25km s " ^ 20-30km s “ ^ 20-30km s “ ^

Internal field 25-50G >100G >100G

Table 1.1: Typical values for spicules, fibrils and threads (from Foukal, 1971b).

Spicules also constitute a m ajor part of the fine structure found in the chromosphere. Spicules are sm all 
p lasm a je ts  th a t can be seen in H a within the chromosphere. They are usually cylindrical or cone-
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shaped objects th a t rise to a height of about 1,000km, with an ascending speed ranging from  20km s“  ̂
(Schmidt, 1974) to about 25km s " \  (M ichard, 1974). A typical spicule will have a diam eter of about 
900km, a tem perature of 15,000K and an electron density of lO^m"^. Spicules are therefore much cooler 
and denser in comparison to  the plasm a surrounding them . Generally about 80 spicules are found per 
supergranular cell. The average sizes of fibrils, threads and spicules, according to Foukal (1971b), are 
shown in Table 1.1.

Occasionally, solar flares may be observed. These m ust surely rate as the m ost violent and beautiful 
events occurring w ithin the solar system. Simply pu t, a flare is a rapid brightening seen in Her. Flares 
usually form  in the low chromosphere (invariably w ithin active regions) and consist of a flash phase and 
a  m ain phase. In the flash phase, the intensity of the emission increases rapidly over a  period of about 
5 m inutes, whereas in the m ain phase, the intensity slowly decreases and takes from about an hour or 
so up to a day. The energy given off by a flare is approxim ately lO^^J for a sm all flare to  3 x lO^^J for 
a large flare. This energy is thought to  come from the stressed m agnetic field.

B ut perhaps the m ost amazing and spectacular observation has to be th a t of the prominence, de
scribed in the next Section.

1.4 P ro m in en ce  O bservations

The prominence is a  rem arkable solar feature. It may very loosely be defined as an object in either the 
chromosphere or corona th a t is denser and cooler than  its surroundings. The prominences considered 
here will usually be found in the corona. Typically, prominences have a tem perature about a hundred 
tim es lower and a density about a  hundred to a thousand times higher than  the corresponding coronal 
values.

Relation to sunspots
Place of origin

In the corona Below the corona
Associated w ith sunspots 

Not associated with sunspots

Rain
Funnels
Loops

Coronal rain 
Tree trunks 
Hedgerows 

Suspended clouds 
Mounds

Surges
Puffs

Spicules

Table 1.2: The Menzel and Evans classification of prominences.

Several a ttem pts have been m ade to  classify prominences. In the past they have been categorised as 
moving and non-moving prominences (de Jager, 1959). Menzel and Evans (1953) grouped them  according 
to  w hether they were associated w ith sunspots or not and to whether they appeared to originate in or 
below the corona (see Table 1.2). As can be seen in Table 1.2, prominences occur in m any different shapes 
and sizes which makes classification difficult. The classification most recently used, divides prominences 
into two distinct groups, nam ely active region prominences and quiescent prominences.
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1.4.1 A ctive R egion Prom inences

Active region prominences occur w ithin active regions and are norm ally associated w ith flares. They are 
dynam ic structures, usually moving with violent motions. This type of prominence is very unstable and 
tends to  last from about a few minutes to  a m axim um  of a  few hours. Typical active region prominences 
are surges, sprays and loop prominences. The m agnetic field strength in an active region prominence 
ranges from  20-100G and an average active region prominence will have an electron density of about 
lO^'^m"®.

1.4.2 Q uiescent Prom inences

Quiescent prominences are stable and can last from a few days to m any m onths. A typical quiescent 
prominence will have a tem perature of about 7,000K, an electron density of 10^^m“ ® and a m agnetic 
field strength of 5G. They are about 2 x lO^km long, 5 x lO^km high and have a w idth of 6,000km. 
These values are, however, only averages based upon observed prominences. More general ranges are 
given in Table 1.3. It should also be noted th a t the values for the tem perature, density and m agnetic 
field strength are not uniform and will vary within the prominence. W hen quiescent prominences are 
viewed end on, an area less bright than  the average inner corona is seen. This darker area presum ably 
consists of less dense plasm a and is called a coronal cavity. Often a helmet stream er is also found above 
the prominence. The mass of a  quiescent prominence is not accurately known, bu t it is thought to  be 
about one ten th  the to ta l mass of the corona (Schmieder, 1990). W ithin and around the prominence 
m any m otions are observed. W ithin the prominence, Doppler shift has shown th a t the p lasm a moves 
w ith a downward velocity in the vertical threads ranging from 15~35kms"^, although nearer the top of 
the prominence coarser knots move more slowly with speeds of about 0.5km s"^.

Q uantity Range
Electron density 

Central tem perature 
Length 
Height 
W idth 

Magnetic field strength

10^®-10^^m-3
5,000-8,000K

60.000-600,000km
15.000-100,000km 
4,000-15,000km

3-30G

Table 1.3: Typical ranges for quiescent prominence values.

However, Doppler images reveal th a t the plasm a velocities are, in general, steadily upward w ith speeds 
between l-3km  s“ ^, except a t the feet of a  hedgerow prominence where speeds may reach 10km s”  ̂
either up or down (Zirker, 1989). Schmieder et al. (1988) reported downward velocities having a speed 
of < 2 .5km s“ ^, a  tim e scale of 5 minutes and suggested th a t the m otions may be due to either plasm a 
moving along twisted m agnetic field lines or an instability triggering off waves along the filament. In one 
study of a quiescent prominence, Simon et al  (1986) suggested th a t the vertical m otions were quicker 
than  the horizontal ones. They deduced th a t the horizontal speeds were about a th ird  of the vertical 
ones. Around a prominence, plasm a is also observed to  be in motion. Using Doppler images, Engvold et 
al  (1985) noticed th a t plasm a rises up one leg of the arcade supporting the prominence and falls down 
the other a t speeds of 5-15km s"^.

Generally, the length scales for active region prominences tend to be smaller than  those for quiescent 
prominences by a factor of about 3-4. The m agnetic field strength tends to  be greater by a factor of 
about ten. The density is sim ilar to  th a t found in quiescent prominences. Many quiescent prominences
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reach down to the chromosphere and beyond in a  series of regularly spaced feet (about 30Mm apart) 
which are located at supergranular boundaries.

1.4.3 M agnetic fields associated  w ith  Q uiescent Prom inences

Since quiescent prominences are denser than  the corresponding corona and are suspended above the 
photosphere, there has to be a support mechanism associated with them . Generally it is thought th a t 
the m agnetic field surrounding the prominence can supply the necessary upward force th a t prevents the 
prominence from dropping down to the solar surface. A detailed description of th is will be given later. In 
this Section, the observed m agnetic field is discussed. The m agnetic field has so far been m easured using 
two different m ethods based on the Zeeman and Hanle effects respectively. These are not discussed here, 
bu t, details may be obtained in Tandberg-Hanssen (1974) and Kim (1990), respectively. Prominences 
are formed above the polarity inversion line which separates the two oppositely charged areas of a bipolar 
region (Babcock and Babcock, 1955) and is shown in Figure 1.2. This polarity inversion line will also be 
found between the edge of the two m ain polarity  regions of an active region or a t the edge of an active 
region where it meets a neighbouring region of opposite charge.

Observations have shown th a t the m agnetic field cuts the m ain axis of the prominence at an angle 
ranging from  15® (Tandberg-Hanssen and Anzer, 1970) to 25® (Leroy et al., 1983). The m agnetic field 
strength is usually found to  increase w ith height (Rust, 1967), although Kim (1990) found th a t for 
prominences lying north-south along a line of longitude, the m agnetic field strength  decreases with 
height. For the case in which the m agnetic field strength increases with height, the gradient ranges 
from  0.6 x  10” ^G km “  ̂ for younger prominences to about 1.6 x  10~^G km “  ̂ for long lived prominences 
(Leroy, 1977). Rust (1967) found th a t in m ost quiescent prominences, the average positive gradient was 
1.0 X 10“ ^G km “  ̂ and Leroy et al. (1983) found a gradient of 0.5 x  10“ ^G km “ .̂ The m agnetic field 
strength  associated with a prominence increases slightly during the prom inence’s lifetime. However, this 
field is generally found to be stable from day to day (Leroy, 1977).

Polarity inversion 
or neutral line.

Bipolar
region

Figure 1.2; The polarity inversion line th a t separates the two oppositely directed m ag
netic regions found in a bipolar region.

Two types of m agnetic field configurations are associated with quiescent prominences, namely norm al 
polarity  and inverse polarity. Both of these configurations feature a closed arcade of m agnetic field lines 
overlying the prominence which connects the two regions of opposite polarity magnetic fields either side of 
the prominence. The difference between the two is th a t in an inverse polarity  prominence, the m agnetic 
field lines pass through the prominence in the opposite direction to the overlying arcade, whereas in a 
norm al polarity prominence the m agnetic field lines pass through the prominence in the same direction 
as the overlying m agnetic field line arcade. Examples of the m agnetic field line configurations for a 
norm al polarity  prominence and an inverse polarity prominence are illustrated in Figures 1.3(a) and
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1.3(b), respectively. Notice th a t in a norm al polarity prominence, there is a dip in the m agnetic field. 
W ithout this dip, the plasm a would drain away down the m agnetic field lines. The curvature and 
magnetic pressure in both  these m agnetic structures provides the necessary upward force to  support the 
prominence against gravity.

In a study involving 256 low to  m edium  latitude prominences by Leroy et al. (1984), it was observed 
th a t prominences w ith a m axim um  height lower than  30,000km had a m agnetic field th a t was of the 
norm al polarity type. The m agnetic field was inclined a t 20° to the m ain axis of the prominence and 
had an average strength of 20G. For prominences th a t had a m axim um  height larger than  30,000km the 
m agnetic field configuration was th a t of inverse polarity. For these prominences, the m agnetic field was 
found to  be inclined at 25° to the prominence m ain axis and had a field strength ranging from 5-lOG. 
I t was also observed th a t out of 120 prominences found in the polar crown none were of the norm al 
polarity  type.

Figure 1.3(a); The field line structure found in normal polarity prominences.

Figure 1.3(b): The field line structure found in inverse polarity prominences.

An interesting point to note here is th a t in inverse polarity prominences the m agnetic field completely 
surrounds the prominence, keeping it cool relative to the hot corona. This is due to the anisotropic 
nature  of therm al conduction.

1.5 F in e S tru ctu re w ith in  a P rom in en ce

All observed quiescent prominences have a fine structure associated w ith them . This fine structure 
appears to  consist of thin bright threads and knots. These threads have a typical length of 5,000km,
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w ith the first indication of the thickness given by Dunn (1960). He estim ated th a t the thickness of 
these threads was 300km or less. Since then, various authors have also estim ated the thickness of these 
threads, for example, Engvold (1976) suggested th a t the widths ranged between 400-1,500km. Some of 
the estim ates are given in Table 1.4. From the values of thread width given in Table 1.4, it can be seen 
th a t the size of the threads appears to range from a few hundred km to about 1,500km. Leroy et al. 
(1983) suggested th a t m any quiescent prominences have a  filling ratio of about 0.10. It was observed 
by Engvold (1976) th a t the sizes of some threads and smaller prominence fine scale structures increase 
w ith height, this means th a t the threads are not necessarily of constant w idth down the prominence.

Engvold (1976) observed diffuse bright knots w ithin a quiescent prominence w ith a size of around 
1,500-5,000km. These were usually stationary  for 2-10 minutes before descending w ith speeds of about 
15-35km s“ .̂ However, in a bright quiescent prominence with lots of fine structure, he found th a t these 
bright knots were very difficult to  observe. He also noticed th a t when using exceptionally high resolution 
frames, bright knots would occasionally form long strings. Using different frames, he noticed th a t the 
sam e features appeared as uniform bright threads. This suggests th a t the possible distinctive feature 
between threads and knots was due to the spatial resolution of the observations and th a t bright knots 
were the basic unit of fine structure w ithin a  quiescent prominence. However, the dimensions of the fine 
scale structure are not accurately known. Indeed it is quite possible, th a t more fine scale structures will 
be revealed within a quiescent prominence as the resolution of the observations is further increased.

Orrall and Zirker (1961) found th a t there was no change in the shape and brightness of the fine 
scale structure associated w ith a quiescent prominence over a time scale of around lO^s and th a t fine 
structure m ay last for 10®s or longer. Engvold (1976) noticed th a t some threads could be seen for one 
hour or longer and th a t bright knots could be observed for about 8 minutes. It was also recorded th a t 
the process of condensation and subsequent destruction of the prominence’s fine scale structure appeared 
to  take place over a very short tim e scale compared to the lifetime of the regions where a prominence 
may exist.

Thickness of thread (in km) Author Year
<  300 Dunn 1960

400-1,500 Engvold 1976
1,000 Leroy et al. 1983
< 200 Zirker and Koutchmy 1990

Table 1.4: Some observed values for the thickness of fine structure w ithin quiescent 
prominences.

M aterial is often seen slowly stream ing down these threads at speeds of around 1km s"^ and Malville 
(1976) recorded speeds of less than  10km s“ .̂ It is interesting to note th a t these speeds are less than  
the free-fall speed. The mass lost due to this flow and also the flow through the prom inence’s feet is 
relatively large. This mass m ust somehow be replaced, or the prominence would drain away very quickly.

Towards the end of their lifetime, m any quiescent prominences erupt into solar flares. Just before this 
occurs, the prominence is seen to oscillate. This could be a consequence of m agnetotherm al instabilities, 
where m agnetic and therm al instabilities interact (see Chapter 4).

1.6 P ro m in en ce  Form ation

From the observations of prominences described earlier, it may be apparent th a t six conditions are 
associated w ith the form ation of quiescent prominences (M artin, 1990). These conditions are: opposite
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polarity  m agnetic fields either side of the prominence, an overlying magnetic field line arcade, transverse 
fields, fibrils aligned with the m agnetic field in the chromosphere and parallel to the long axis of the 
prominence, converging fields and cancelling fields. It should be noted th a t these conditions are not 
independent and th a t none of these conditions by themselves are sufficient for a  quiescent prominence 
to  form.

Often, after a quiescent prominence has erupted, another prominence is observed in the same location, 
indicating th a t m any of the above conditions are still present long after the original quiescent prominence 
has been destroyed.

As rem arked earlier, quiescent prominences are denser and cooler than  the surrounding plasm a and 
have a m ass of about one tenth  of the to ta l corona. One question arises as to how this am ount of 
plasm a can be concentrated in a relatively small region of the corona. Three distinct mechanisms hâve 
been proposed, namely ballistic injection, siphon and therm al instability. In the first, ballistic injection, 
plasm a is propelled upwards from the chromosphere. However, it is unlikely to  happen in practise due 
to  the frequency of prominences observed and the conditions needed for prominence form ation. In the 
siphon mechanism, the plasm a pressure a t the top of the loop decreases. This sucks up the plasm a 
from the chromosphere to the top of the loop. The disadvantage of these two mechanisms is, th a t for a 
perfectly conducting plasm a, the magnetic field lines move with the plasm a (by the frozen in theorem ) 
destroying the m agnetic field structure associated w ith the prominence, unless the siphon or injection 
is along the field lines. The therm al instability mechanism is the m ost likely candidate for prominence 
form ation. This happens when a condensation is driven by the p lasm a’s optically th in  radiation. A 
detailed description of the therm al instability mechanism is given in C hapter 2. It accounts not only 
for prominence form ation, bu t also for the coronal cavity seen above the prominence. It is also possible 
th a t the therm al instability  m ay induce the siphon. Thus, these two mechanisms can combine.

1.7 T h esis  A im s

The aim  of this thesis is to investigate therm al instabilities in the solar corona, since it may play an 
im portan t part in the form ation of prominences and the associated fine scale structure. Many quiescent 
prominences erupt into solar flares and a possible mechanism is proposed and discussed. This thesis 
is concerned about linear theory only, in a cylindrical equilibrium. The equilibrium  is taken to be the 
Gold-Hoyle equilibrium  profile because of its simplicity and the corresponding results are well known. 
This equilibrium  is perturbed and the equations describing norm al modes obtained.

In C hapter 2 the MHD equations are introduced and described in detail. The therm al instability 
mechanism is discussed physically and the conditions for isobaric, isochoric and isentropic instability  
derived for an infinite, uniform plasma.

C hapter 3 considers the therm al instability in a cylindrical geometry. The equations for norm al 
modes in an infinite, one-dimensional cylinder are derived and the norm al mode spectrum  investigated. 
The norm al mode spectrum  consists of both discrete modes and continuous bands. These continuous 
spectra are examined with various dissipative effects included. Neglecting dissipative effects there are 
three types of continuous spectra namely Alfven, slow and therm al continua. However, when finite, scalar 
resistivity is included it is shown th a t the continuous spectra consist of only the therm al continuum . For 
a cool form of the Gold-Hoyle equilibrium  profile the m ost unstable quasi-continuum  mode is examined 
as resistivity is varied. It is found th a t the length scales generated scale as the coefiicient of resistivity 
to  the power one quarter sim ilar to the length scales generated by perpendicular therm al conduction. 
D issipation due to  resistivity and perpendicular therm al conduction could therefore be the cause of the 
observed fine scale structure seen w ithin prominences.

C hapter 4 investigates the interaction of m agnetic and therm al instabilities using the same geometry 
as in C hapter 3. For certain values of the ratio  of the therm al to Alfven tim e scales it is found th a t these
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instabilities can combine to form overstable wave or m agnetotherm al modes. The ballooning equations, 
for an arcade w ith zero resistivity and zero perpendicular therm al conduction, were m anipulated  to 
form  a dispersion relation. A W KB analysis was performed to predict the growth rate  of the m agnetic 
instability  for large values of the axial wave number. The oscillations observed ju s t before a flare occurs 
m ay be due to  m agnetotherm al modes. Thus, it may be possible th a t a neighbouring therm al instability  
m ight trigger a  magnetic instability and be the cause of prominences erupting into solar flares.

The m agnetic field lines considered in Chapters 3 and 4 have been of infinite length. This is not 
very a realistic situation, so Chapter 5 examines the effects of line-tying on the therm al instability. This 
is when the m agnetic field lines are of finite length and anchored in the photosphere. The m ethod of 
solution is outlined, however the effect of line-tying on the therm al continuum is not known, so the study 
is incomplete. This is left for future work.



C h a p te r  2

T h e T herm al Instab ility  M echanism

I  did everything that I  could think o f to the brink of disaster and I  did 
not lose control of the Imp for  even a heart-stopping fraction o f a second.
It took impossible corners at ridiculous speeds, it stopped on skating-rink 
surfaces where no car could have stopped. It might have been running on railway 
lines for  all the notice it took of a lifetime o f murderous driving that I  
inflicted...

-Daily Mail review on the Im p.

2.1 In trod u ction

In this C hapter, the basic MHD equations are presented and the therm al instability  mechanism discussed. 
The MHD equations are linearised and the basic instability criteria for a uniform, infinite m edium 
obtained.

For any plasm a, an energy loss-gain function per unit mass may be defined which describes how the 
plasm a is heated and how it cools. Let the cooling of the plasm a be denoted by C  and the heating of 
the plasm a be denoted by H.  Then the energy loss-gain function per unit mass may be defined as

p/: =  c - f f ,  (2.1)

where the heat gain is defined as a negative loss. For most plasmas, C will depend on the usual 
therm odynam ic quantities, such as tem perature; it m ay also depend upon the chemical composition of 
the plasm a, its surroundings and also upon the magnetic field. The basic therm al instability mechanism 
can therefore be stated  as follows. Assume th a t as the tem perature drops the loss-gain function C is 
positive. Consider a small decrease in tem perature. This corresponds to  an energy loss since £  >  0 and 
so the plasm a cools, thus causing a further reduction in the tem perature. Hence, an initial perturbation  
in the p lasm a’s tem perature will grow in time. Since, w ithout any additional heating, the plasm a 
cannot return  to  its initial state, an instability will result. The first approxim ation of the solar corona 
is to  model it as a hot hydrogen plasm a. Parker (1953) stressed th a t the radiation of ionised m etallic 
im purity  elements had to be included in the energy loss-gain function. Since the solar corona has a 
high tem perature and a low density, this radiation is assumed to be optically thin. Several authors have 
calculated the energy radiated away from the plasm a due to this optically th in  radiation (M cW hirter 
et a i,  1975 and Raymond and Sm ith, 1977). An analytical fit to the radiation calculated by Raym ond 
and Sm ith (1977) was m ade by Rosner et al. (1978) and is described by

C  =  x n ^ T «  =  x / T "  =  (2.2)

18



The Therm al Instability Mechanism 19

where % and at are piecewise constant functions of tem perature and n is the ion num ber density. The 
values of % and a  are given in Table 2.1,

logio T Of logio X
< 3.89063 11.7 -82.9

3.89063 - 4.30195 6.15 -61.307
4.30195 - 4.575 0 -34.85

4.575 - 4.9 2 -44.0
4.9 - 5.4 0 -34.2
5.4 - 5.77 -2 -23.4

5 .77 -6 .315 0 -34.94
6.315 - 7.60457 -2/3 -30.73

> 7.60457 0.5 -39.602

Table 2.1: The piecewise constant values of a  and % in the optically th in  radiation term  
in the energy equation. (After Rosner t i  a!., 1978).

As can be seen in the form of the plasm a cooling given by Equation (2.2), whenever a  <  0, a tem perature 
drop will result in an increase in cooling and hence a therm al instability. Notice also the effect of the 
p lasm a’s density on the therm al instability. This can drive the therm al instability, since whenever the 
p lasm a’s density increases, so too will the cooling. The m ost common type of therm al instability  found 
in the solar corona is the isobaric instability criteria. This is when the instability  evolves a t constant 
pressure, since the plasm a has tim e to set up flows to  balance out the change in pressure. This may also 
induce siphons, see C hapter 1. The therm al instability mechanism continues until the plasm a reaches 
a tem perature of around 7,000K where a  =  6.15. The plasm a’s radiation becomes optically thick and 
therm al stability  is achieved. It is therefore easy to understand how the therm al instability mechanism 
is a  likely candidate for the form ation of prominences in the solar corona.

2.2 T h e B asic  M H D  E quations

The basic equations used throughout this thesis are the standard equations of resistive m agnetohydrody- 
nam ics (or MHD) in which gravity, viscosity and ro tational effects are neglected. The dynamic evolution 
of the plasm a is governed by the continuity equation, the mom entum  equation and the induction equation

dt
+  pV • v  +  V • Vp =  0,

| ^  +  ( v .V ) v
1

- V p +  - ( V  X B ) X B,

^B
dt

=  V X (v X B ) -  V X (f^V X B)

(2.3)

(2.4)

(2.5)

where v , p  and B , represent the plasm a’s velocity, m agnetic permeability (=  47T x 10~^ henry m “ ^) and 
m agnetic induction (usually referred to  as the m agnetic field), respectively. The m agnetic diffusivity rj 
is tem perature-dependent and is given by (Priest, 1982)

rj = n{T )  =  —  =  5.2 X lO ^ lo g A T - ^ /V  s ' ^ (2 .6)
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where u  is the electrical conductivity and log A is the Coulomb logarithm . The plasm a pressure p, 
density p and tem perature T  are related by the ideal gas law

V — ÿrpT, (2.7)
r

where TZ is the gas constant (=  8.3 x 10^) and p  is the mean molecular weight (which has been taken to 
be unity  for simplicity). The energetics are governed by an energy equation, of the form

7 -  1
K ^ ) + ( v  V)  ( i / =  V  ■{kV T ) ~ pC { p ,T )  + ^ \ V  x B \ ^ ,  (2.8)

where j  is the adiabatic index (=  5 /3), k the therm al conduction tensor and C the generalised energy 
loss function per unit mass with energy gains defined as negative losses. In the energy loss function, 
an optically th in  radiative loss term  and an unspecified coronal heating function H  are included. The 
anisotropic therm al conduction term  is rew ritten in term s of the coefficients of heat conduction parallel 
(k ||) and perpendicular (k j.) to the m agnetic field

V .( .V T )  =  B . v ( « „ E ^ ) + V . ( . / \ ( % T > ' « ) ) ,  (2.9)

where for sufficiently strong fields (Braginskii, 1965)

K|| =  K|| (T) py 1.8 X 1 0 - ^ ° ( l o g A ) " ^ r 2  ® W m -^K -S (2.10)

and

=  / c x ( p , T , S)  % 8.2 X 1 0 - ^ = ( lo g A ) ^ n ^ g - ^ T - \ |,  (2.11)

where n  the num ber density. In these formulae n  is measured in m “ ®, tem perature in Kelvin and the 
rriagnetic field in Tesla. Typically in the solar corona log A % 22 and fcjL % 10~^^/C||. Parallel therm al 
conduction is m ainly due to the p lasm a’s electrons, whilst perpendicular therm al conduction is the result 
of the p lasm a’s ions. The m agnetic field m ust further satisfy the condition

V B =  0. (2.12)

The electric current density j  has been elim inated from Equations (2.4), (2.5) and (2.8). It may be 
calculated using A m pere’s law

j  =  - V x B .  (2.13)

The electric field E  can then be evaluated using the simplified O hm ’s law providing the p lasm a’s m agnetic 
field and velocity have been found

E  =  - v x B + j / o - .  (2.14)

In sum m ary, the continuity, m om entum , induction and energy equations together w ith the ideal gas law 
determ ine v, B , p, p and T  subject to the condition th a t the m agnetic field is divergence free.
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2.3 A  P h y sica l D escr ip tio n  o f th e  T h erm al In sta b ility  M ech 
an ism

In this Section a physical description of the therm al instability mechanism is given. The behaviour of 
the therm al instability  will depend upon several characteristic tim e scales of the plasma. Usually in 
the solar corona, the sound tim e scale is much shorter than  the radiative (or therm al instability) tim e 
scale. This means th a t the plasm a can respond and set up flows to equalise any pressure drop th a t
results from a decrease in tem perature. Hence, as the therm al instability occurs, the plasm a can sm ooth
out pressure gradients and the instability  evolves isobarically. However, around tem peratures of lO^K, 
the radiative tim e scale can be much less than  the sound tim e scale. The plasm a does not have tim e 
to  set up any flows to equalise the pressure decrease and consequently the therm al instability  evolves 
isochorically. These two cases can be readily seen in the analysis in Section 2.4.

The next question th a t arises is concerned with why the solar corona exists a t all especially since 
the above argum ent suggests th a t it is always therm ally unstable. This can be answered by the fact 
th a t the effects of therm al conduction have so far been neglected. There are two tim e scales associated 
w ith therm al conduction when a m agnetic field is included. These correspond to therm al conduction 
perpendicular and parallel to the equilibrium m agnetic field, see Equations (2.10) and (2.11). The tim e 
scale corresponding to perpendicular therm al conduction is much greater than  th a t for parallel therm al 
conduction which is very effective a t equalising out any tem perature variations along m agnetic field 
lines. The parallel therm al conduction tim e scale is proportional to the square of the length of the 
field line and thus is very efficient at stabilising the therm al mode over short distances. Thus, for a 
therm al instability  to form in the solar corona, it is necessary to have either long field lines so th a t the 
conduction tim e scale is much larger than  the radiative tim e scale, or an in itial disturbance th a t gives 
a zero perturbation  in the parallel conduction term .

So far, linear theory has been discussed along w ith tem perature decreases. Equally possible are 
situations where the plasm a tem perature increases. However, in the non-linear case, only a tem perature 
drop is likely to occur in practice since, in Equation (2.10) any increase in tem perature results in a 
greater value for parallel therm al conduction thus sm oothing out the tem perature increase.

2 .4  T h erm al In sta b ility  in a U niform  In fin ite  M ed iu m

In this Section, the therm al instability  in a uniform, infinite plasm a is considered and the instability  
criteria derived. The procedure used is identical to th a t first used by Field (1965). The standard  MHD 
equations (2.3), (2.4), (2.5), (2.7) and (2.8) w ith the m agnetic diffusivity rj set equal to zero, are linearised 
{p = po + pi, etc.) about an infinite, uniform (po =  constant, etc.), sta tic  (vq =  0) equilibrium  to  give

“̂ ■  +  /^oV'Vi =  0, (2.15)

i9vi ^  1
Po =  ~ V p i - k - ( V  X Bi )  X Bo, (2.16)

P

=  V X ( v i  X Bo) , (2.17)

dt p

d B i
d t

Pi =  ~ p i  +  (2.18)
Po -to

and
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1 dpi
( t  - 1 )  dt

ypo dpi f  d C \  f  d C \

4- Bo ■ V I -^ B o  ■ VTi
K±
^ B o  X (V Ti X Bo)

For a uniform plasm a, the equilibrium  energy equation becomes

C{po,To)  =  0.

This defines the heating function as a constant given by

H  = poh = -

(2.19)

(2 .20)

(2 .21)

Because the plasm a is infinite in all directions, norm al mode solutions may be obtained by letting  all 
the perturbed quantities behave like

Pi = p ' e x p z ( k  - r) (2 .22)

where p' is a constant, k is the wave vector and s is the growth rate. As can be seen, whenever 
R e(s) >  0, exp(sf) becomes large and the perturbations grow in time. Hence an instability  will form 
whenever R e(s) >  0. Therefore, the m ethod used to find the instability criteria will be to derive the 
dispersion relation and locate the positive roots. The linearised equations (2.15)-(2.19) become

+  r  +  / , „ ( |^ )  /  +  4 K ||r  +  Al«xT' = 0, (2.23)

s B ' + iBo (k ■ v ')  -  iBok^\y' =  0, (2.24)

and

iL
Po

L
PO

r
To

=  0 ,

sp' 4- ipok • v ' =  0,

spov'+  ikp '+  — (B q • B') k — —Bofej|B' =  0, 
P P

(2.25)

(2.26)

(2.27)

where Àjy and kx  are wave numbers parallel and perpendicular to the equilibrium  m agnetic field defined 
by

k\\ —
Bo k

and k^
Bn k

Bo ’ ■“ V Bo

Taking the scalar product of Equations (2.24) and (2.27) with Bo and k yields

s B ' - B o  + i B i i k ' - v ' ) - i B o k i i B o - v '  = 0,

(2.28)

(2.29)

k - B '  =  0, (2.30)
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and

spoBo • v ' +  i ( k  • B o)p ' =  0,

spok-v '  + i P p ' + ~ { B o - B ' ) P - - B o k \ i ( k - B ' )  =  0. 
P P

(2.31)

(2.32)

Substitu ting Equation (2 .30 ) into Equation (2 .32 ) and elim inating v'  ■ Bq in Equation (2 .2 9 ) using 
Equation (2 .31 ) produces the following two equations

and

spok • v ' +  ik^p' + — (Bo • B') k^ = 0, 
P

pos^B' • Bo +  iposBo (k • v )̂ -  B^k^^p* — 0.

(2.33)

(2.34)

Taking the vector cross product of Equation (2 .24) with Bq and then taking the scalar product w ith k 
gives

sB' X k Bo =  iBok\\\-' x  k • B q. (2 .35)

Taking the cross product of Equation (2 .27) with k and then taking the scalar product w ith B q gives

s^pov'X k • Bo =  —Bo^ijsB'X k • B q. (2 .36 )
P

Elim inating B' x  k • Bo from Equation (2 .35) using Equation (2 .36) gives

,2 , (k Bo)"l+
ppo

v ' - k X Bo 0 . (2.37)

Equation (2.37) shows th a t the k x Bo component of the perturbed velocity decouples from the other 
perturbed  velocities and has the frequency of a  pure Alfven wave.

Equations (2.23), (2.25), (2.26), (2.33) and (2.34) are five equations in the five unknowns B' • Bo, k • 
v ',  p% T ' and p'. Hence, for a non-trivial solution the determ inant of the coefficients m ust vanish, 
yielding the dispersion relation

CvpQ
+  Po +  k^ (c^ +  v \ )  s

p -J

+ k^ (cf +  Va ) -2 , , 2  , l ' d C \  c^Po { d c \

+

CvPo 

c f p  (k • Bo)^

«11^1+ + PO (
ppo

CvPo ppo
-  0 , (2.38),#+«l&l + fo(^)^-^(^)J

where Cg is the sound speed, c* is the isotherm al sound speed and va is the Alfven speed defined by

(2.39)7Po
Po

Po
po

and where is the specific heat a t constant volume given by
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Cv =
n

(2.40)

Since the Alfvén modes have decoupled, it follows th a t Equation (2.38) represents the two fast modes, 
two slow modes and the therm al mode. It should be noted th a t in other geometries the Alfvén modes 
would not generally decouple and the dispersion relation would be a polynom ial of degree 7 in s. 
Neglecting all the non-adiabatic term s in Equation (2.38) yields

6 (c: +  «1) =
\  l^Po J

0 . (2.41)

From Equation (2.41) it can be seen th a t the therm al mode has collapsed into the origin and th a t the 
usual dispersion relation for ideal fast and slow magnetoacoustic waves is obtained.

To investigate therm al instabilities, the roots of the dispersion equation (2.38) are examined. A 
therm al instability will occur whenever a root satisfies R e(s) >  0. Equation (2.38) is a fifth order 
polynom ial and, providing th a t k  • B q 0, will have at least one positive real root whenever

If k  • Bo =  0, the last two term s in Equation (2.38) vanish and k\\ 
and has at least one positive real solution whenever

( f o r k - B o  7  ̂ 0). (2.42)

= 0. Thus Equation (2.38) simplifies

< 0 (for k  • Bo =  0). (2.43)

Equations (2.42) and (2.43) are the isobaric instability criteria first derived by Field (1965). Notice th a t 
there are different instability criteria depending on whether k  • Bo =  0 or k  • Bo ÿé 0 or k  =  0. The 
surface on which k  • Bo =  0 is called the mode rational surface. Field (1965) also showed th a t the fast 
and slow m agnetoacoustic waves can become overstable. To derive this criterion, the dispersion relation 
given by Equation (2.38) is rearranged to give

c f p
CvPQ ( 7 - 1 )

PPQ
s +

1

CvPO

a/:
To

, 2  I (k  Bo) 
PPo

Following Field (1965), the growth rate is expanded as

(2.44)

(2.45)

where sq satisfies the dispersion relation for the fast and slow magnetoacoustic waves given by

So +  (cg +  4 )  So +     =  0, (2.46)
PPo

and where

Si O
CvPoCg

+K±kj_  + Po ( ^
p -J

po (2.47)

Substitu ting  the growth rate  expansion given by Equation (2.45) into the dispersion relation given by 
Equation (2.44) and using Equation (2.46) gives the first order correction si as
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CvPo
S i

(7 - 1)

(2.48)

Notice th a t if k  • B q =  0, Equation (2.48) reduces to

Si ( 7  -  1 )
<9jC

(2.49)
2C vpo7(c^-\-v \)

the growth rate  for the fast modes which (for k  ■ Bq =  0 ) have a frequency w given by

+  (2 .6 ^  

It can be seen th a t the growth rate si is positive (so th a t the wave modes are o verst able) whenever

(2.51)

T his is called the isentropic instability criterion. Finally, setting k  equal to  zero (which corresponds to 
p ' =  0) in Equation (2.38), gives the isochoric instability criterion

<  0 . (2.52)

The wave num bers fc|| and k±  are both real hence the term s and K_i_k\ are both  positive. Consid
ering these term s in the instability equations (2.42), (2.43) and (2.51), it can be seen th a t the therm al 
conducting term s are stabilising. In summary. Equations (2.42) and (2.43) represent the isobaric insta
bility criteria and Equations (2.51) and (2.52) represent the isentropic and isochoric instability  criteria 
respectively.



C h a p te r  3

T h e T herm al C ontinuum  in 
C oronal Loops

A s  must by now be apparent, we think that the Imp admirably fulfils
this family fun-car role, though it has never enjoyed the success it
deserves. Although conceived more than ten years ago, it still surpasses 
many more recent models in the smoothness of its four cylinder engine, the 
slickness o f its gear change and in the precision of its steering and handling.

-Review of the Imp in Motor Magazine.

3.1 O verv iew

In this C hapter, the norm al mode spectrum  for the linearised MHD equations is investigated for a 
cylindrical equilibrium. This spectrum  is examined for zero perpendicular therm al conduction, with
both  zero and non-zero scalar resistivity. Particular attention is paid to the continuous branches of
this spectrum , or as they are more commonly called, the continuous spectra. For zero resistivity there 
are three types of continuous spectra present, namely the Alfvén, slow and therm al continua. I t is 
shown th a t when dissipation due to  resistivity is included, the slow and Alfvén continua are removed 
and the therm al continuum  is shifted to  a different position (where the shift is independent of the exact 
value of resistivity). The ‘o ld’ location of the therm al continuum is covered by a dense set of nearly 
singular discrete modes called a quasi-continuum . The quasi-continuum is investigated numerically and 
the eigenfunctions are shown to  have rapid spatial oscillating behaviour. These oscillations are confined 
to the m ost unstable part of the equilibrium based on the Field criterion described in C hapter 2 and 
may be the cause of fine structure in prominences.

3.2  In trod u ction

The effect of finite, tem perature-dependent, scalar resistivity on the therm al continuum  is studied in 
this Chapter. Following the approach used by Van der Linden and Goossens (1991), the norm al mode 
spectrum  of the linearised MHD equations is investigated for both zero and non-zero resistivity.

This spectrum  can consist of both  discrete sub-spectra and continuous sub-spectra. In ideal MHD 
there are essentially three distinct modes, namely the fast and slow m agnetoacoustic modes and the 
Alfvén modes. W hen the initial equilibrium  sta te  is uniform, these modes describe the oscillations of 
the plasm a. However, the properties of these oscillations are quite different. For example, the fast mode 
can propagate alm ost isotropically bu t Alfvén modes can only transport energy along the direction of

26
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the equilibrium  m agnetic field. In the lim it of large perpendicular wave num ber, propagation of the slow 
mode across the field is similarly restricted. In this case, these two modes are unable to communicate 
inform ation w ith the plasm a on either side of the oscillating field line. For example, a slow m ode can 
propagate along the field to equalise any pressure variations resulting from some initial disturbance, bu t 
it cannot equalise pressure variations across the field in an easy m anner.

W hen the initial sta te  is no longer uniform, both  the slow mode frequency (or the ‘cusp’ frequency) 
in the infinite k± lim it and the Alfvén frequency may vary from field line to field line. Because there 
is no interaction with neighbouring field lines, each field line can oscillate a t its own characteristic 
frequency. This non-uniformity yields a continuous variation of the local values of these frequencies 
and hence, gives rise to two continuous spectra. In addition to these continuous spectra, there may 
be discrete sub-spectra corresponding to  global Alfvén and slow modes. Investigation of the linearised 
ideal MHD equations dem onstrates th a t there is a mobile regular singularity a t the position where the 
frequency of the disturbance matches either the local Alfvén or cusp frequency (Goedbloed, 1983). The 
eigenfunctions are consequently singular a t this position. This has led to the conjecture tha t, when the 
norm al m ode decomposition of an arbitrary  external disturbance contains ‘norm al m odes’ lying within 
a continuum  then the am plitude of the disturbance will become extremely large at the singularities as 
energy is pum ped in from the disturbance to the singularity. Including any dissipation mechanism results 
in dam ping of the steep gradients created at this point and the energy is dissipated. Thus, energy can be 
propagated into the system in the form of wave disturbances and deposited a t the resonant layer, where 
the ideal modes become singular. Resonant absorption of MHD waves due to  resonance in either Alfvén 
or slow mode continuous spectra has been suggested by several authors (for example, lonson, 1978; 
Hollweg, 1987a,b; Poedts, Goossens and Kerner, 1989) as a mechanism for heating the solar corona. 
The existence of such a heating mechanism is due to the anisotropic nature of ideal Alfvén and slow 
MHD waves.

Recently, Van der Linden, Goossens and Goedbloed (1991) proved the existence of another contin
uous spectrum  which results from the anisotropic nature of heat transport in an optically th in , highly 
m agnetised plasm a. Therm al conduction is orders of m agnitude more efficient at conducting heat along 
m agnetic field lines than  across the field. In addition, optically thin plasm a radiation does not transport 
energy to  neighbouring plasm a and consequently is incapable of sm oothing out cross field variations. 
The characteristics of the Alfvén and slow mode continuous spectra are therefore present when the non
ideal therm al term s are also included. Van der Linden and Goossens (1991) and Van der Linden (1991) 
investigated the properties of this ‘therm al’ continuum in more detail in both  planar and cylindrical 
geometries. In particular, they showed th a t due to  the existence of the therm al continuum , the isobaric 
therm al instability  criterion, derived by Field (1965) for a  uniform medium , can be extended to general 
equilibria.

It is interesting to  note th a t the resonant absorption produced by the Alfvén and slow-mode continua 
is dependent upon a continual driving of the system by an external source. Normally, it is assumed th a t 
disturbances are generated in the convection zone and propagate into the corona. However, a  different 
scenario is possible w ith therm al effects included. It is now possible th a t the initial disturbance can 
trigger an instability in the corona and generate singular behaviour and hence short length scales in 
the corona, w ithout the need to  continually drive the system from outside. Waves impinging on such a 
small-scale structure will be dam ped more easily than  in the absence of such structure.

The singular nature of the eigenfunctions is norm ally removed when some dissipation mechanism 
is included. W hen resistivity is included as the dissipation mechanism, bo th  the Alfvén continuum  
and slow continuum  are strongly affected (Goedbloed, 1983; Kerner et ai, 1985; Poedts, Goossens and 
Kerner, 1990). The continuous spectrum  is replaced by a  set of discrete norm al modes w ith complex 
eigenvalues (including the so-called ‘quasi-modes’, which are defined in Section 3.4), w ith a resultant 
dam ping of the modes. It has been shown th a t the resonant absorption mechanism is m ost efficient
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when the frequency of the incoming waves matches the frequency of these global modes. Driving a t the 
quasi-mode frequencies yields very efficient heating (Poedts, Goossens and Kerner, 1990).

Herm ans et al. (1988) investigated how the slow mode continuum is modified by isotropic therm al 
conduction. Instead of removing the continuum, isotropic therm al conduction leads to a shift of the slow 
m ode continuum  to lower values, the so-called ‘isotherm al’ slow mode continuum .

Van der Linden and Goossens (1991) showed th a t realistic values of perpendicular therm al conduction 
have only a small effect on the growth rates predicted by the expression for the therm al continuum , but, 
th a t the continuous spectrum  is replaced by a dense set of discrete (‘quasi-continuum ’) modes. These 
quasi-continuum  modes exhibit a strong localisation about the previous singular surfaces. They are 
‘nearly singular’ in the sense th a t the am plitude is large bu t finite there. For realistic (classical) values 
of perpendicular therm al conduction the singular mode characteristics and polarisations are still clearly 
recognisable. Since perpendicular therm al conduction has no significant influence on the growth rates of 
the m ost unstable therm al instability, it does not affect the validity of the generalised isobaric instability 
criterion. I t was also noted by Van der Linden and Goossens (1991), th a t the quasi-continuum  branch 
is continued as an infinite branch of discrete modes below the continuum  range, accum ulating a t —oo 
on the real s axis.

The aim  of this C hapter is to investigate how the therm al continuum is modified by dissipation due 
to tem perature-dependent, scalar resistivity. Section 3.3 derives the equations describing norm al modes 
and Section 3.4 investigates the basic continuous spectra. The modifications to  these continuous spectra 
due to resistivity and perpendicular therm al conduction are presented in Section 3.5 and applied to a  
simple cylindrical equilibrium. Section 3.6 presents the numerical results for non-zero resistivity and 
Section 3.7 summarises the results.

3.3 B asic  eq u ation s for norm al m odes

The basic equations used in this C hapter are the standard  equations of m agnetohydrodynam ics in which 
gravity, viscosity and rotational effects are neglected,

^  +  +  =  0, (3.1)

d v  . .
^  +  ( v V ) v =  - V p + - ( V x B ) x B ,  (3.2)P

^  =  V X (v X B ) -  V X (î/V X B ) , (3.3)

P =  (3.4)
P

7 - 1

where all the symbols are defined in Chapter 2.

=  V -( /c V T )-p Z :(p ,T )  +  -^ I V x B l A  (3.5)
P

3.3.1 T he general equilibrium  equations

The equilibrium  configuration used is a static, one-dimensional, infinite, cylindrical plasm a, having a 
m agnetic field w ith axial and azim uthal components depending upon r  such th a t V  • B  =  0 is identically 
satisfied. Hence,

Bo =  (O, (?’) ,  ( r ) ) . (3.6)
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All the equilibrium  quantities are assumed to  be dependent upon the radial distance r  only. The 
m om entum  equation (3.2) and the energy equation (3.5) consequently become

dr
Bio

l_d 
r dr

dTl)
rK j.— - 

dr

pr

2 . /  , \ 2 1

(3.7)

=  PoCipo.Ta)- (3.8)

The m agnetic field diffusion in the equilibrium  is neglected because this evolves more slowly than  the 
therm al instability. This implies th a t the analysis m ust be restricted to  phenom ena with tim e scales th a t 
are significantly shorter than  the diffusion tim e scale. Bearing this in m ind, the ohmic heating term  in 
Equation (3.8) is likely to be negligible. Once a form for the equilibrium m agnetic field has been chosen, 
Equation (3.7) can be used to  find the pressure profile. Then, in theory, Equation (3.8) determines the 
equilibrium  tem perature profile To (and hence, using the ideal gas law Equation (3.4), the density profile 
po) providing C is known. Unfortunately no satisfactory form for the coronal heating function h has so 
far been given. The solution is therefore work the other way round. A realistic tem perature profile is 
chosen and it is assumed th a t the heating function is such th a t Equation (3.8) is satisfied. I t is also 
assumed th a t perturbations of the heating term  do not contribute in the linearised equations.

3.3 .2  T he G old-H oyle equilibrium  profile

The Gold-Hoyle profile (Gold and Hoyle, 1960) has been used by m any authors. In this C hapter, it is 
force free, isotherm al and thus also has a constant density:

cr
— c 1 , 0 9 ) Po — Pct1 -{ - ’

B zq -  Po =  f icB l fp .  (3.9)
1  -b

where pc> Be and j3c represent the values of density, m agnetic field strength and plasm a b e ta  a t the 
centre of the cylinder axis respectively, while r  is the dimensionless radial co-ordinate ranging from 0  to 
1, scaled to the radius R  of the outer plasm a boundary and c a variable param eter which determines 
the distance a t which the external boundary is located. In this work c is taken to  be 20, equivalent to 
placing the boundary of the cylinder a t a distance of twenty times the typical loop radius. Three specific 
types of Gold-Hoyle equilibria are used, each having the same plasm a beta  {/3c =  0.002) and density 
(pc =  1.6726 X 10“ ^^kg m “ ^), bu t having different tem peratures (and hence m agnetic field strengths), 
and different outer plasm a boundaries. In the cold profile. Be = lOG with R  — 10®m, while in the cool 
profile. Be =  22.5G with R  = 10®m and in the hot profile. Be — 67G with R  = lO^m. The corresponding 
tem peratures are then evaluated using the form ula Te — p B ^ /  (TZppe), which gives To «  5.7 x  lO'^K, 
2.9 X lO^K and 2.6 x  10®K, respectively. In all three equilibrium profiles, the coronal heating function 
h is constant per unit mass.

3.3 .3  Linear perturbations

The standard  MHD equations (3.1)-(3.5) are linearised about this equilibrium  (p =  po +  p i, etc.) and 
the perturbed m agnetic field is replaced by a vector potential

B i =  V x A i ,  (3.10)
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thus satisfying V • B  =  0 identically. This is substitu ted  into the linearised induction equation which is 
then integrated to give

^  =  v i x B „ - i , ( r o ) V x ( V x A i ) - ( V x B o ) ^ T , , (3.11)

A gauge function could in principle be added to Equation (3.11). However, the extra degree of freedom 
it introduces is of no use here. I t  is therefore set equal to  zero. Normal m ode solutions are obtained by 
letting all the perturbed quantities behave like

pi = p' (r) exp [i {md -f kz)] e' (3.12)

Introducing velocity components perpendicular to the flux surface and v'^ and in the flux surface 
bu t perpendicular and parallel to the equilibrium m agnetic field respectively given by

(3.13)

A Bo
(BzoVg -  Beov'z; ) , (3.14)

and dropping the ‘0 ’ subscripts for ease of writing, it is found th a t the linearised equations for tem perature- 
dependent scalar resistivity become

1 d
sp ip f  , ipg ,

B
(3.15)

2ikBg 2Bg dA'^ m f  ,
A,, -) Ag i  1  A^

p r  fj. fjtr dr p r
(3.16)

+
P

m B ’̂ d 

P

dBg

k B ^ r d A {  B ^r  fm ?  i i  \ - m

P V

dBz

spBirv'^^

dr

sA'g — —B zvl  4- r}—

r dr dr r d T  dr

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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- p C „  ( r K )  -  ^ 4  -

+
d K ^ d T '  k_l d f  d T ' \  

_l — I r —r— 1
dr dr r dr \  dr J

g c \  \  , ra c -x  _  , /

^  Kx +  ^  («11 -  Kx) T '

+

+
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r  dr

2t] dBz 
p dr d v K r d ,
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+
1  dr] 
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r ,

where

C„
K

p ( 7 -  1 )

(3 .22)

(3.23)

(3.24)

3.4  B asic  C ontin uou s S p ectra

The norm al mode spectrum  of the linearised MHD equations can consist of both  discrete sub-spectra 
and continuous sub-spectra which are investigated here for a one-dimensional cylindrical plasma.

3.4.1 Continuous spectra  in the ideal case

To obtain  the continuous spectra for a perfectly conducting cylindrical plasm a, the non-ideal term s in 
Equations (3.15)-(3.23) are neglected. The resulting equations are then transform ed to give

4A;2B2
A .
dr

r N  d
r'^D dr

(rr^) +
d f B ,

dr \p .r^ J fi^r^D

where

and

(rt; ')  =  0 ,

D

N  =  1 s^p +  —

+

(3.25)

(3.26)

(3.27)
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Equation (3.25) is the Hain-Liist equation first derived by Hain and Lfist (1958). The Hain-Liist equation 
(3.25) yields im portan t inform ation about the layout of the ideal norm al mode spectrum . The mobile 
regular singular points in the Hain-Liist equation correspond to continuous spectra, see Goedbloed 
(1983). These singularities are given by iV =  0. Hence, either

0 ,

or

7P + + 7 P f
=  0 .

(3.28)

(3.29)

E quation (3.28) represents the Alfvén continuum and Equation (3.29) represents the slow mode contin
uum . The zeros given by B  =  0 are also im portant in ideal MHD. These are given by

2p
+ 7P +

B '
1 ± 4 7 p f +

- 1

7P +
B ' - 2

(3.30)

The growth rate  s is im aginary in Equations (3.28)-(3.30). These im aginary growth rates (s^ ~  —w^) 
are equivalent to four frequencies u>a , oj», and wg, where Wi and W2 correspond to the plus and minus 
signs of the square root in Equation (3.30) respectively.

Originally, it was first thought by Grad (1973) th a t the two solutions (or frequencies) given by 
Equation (3.30) defined two more continua. He concluded th a t for a  perfectly conducting, cylindrical 
plasm a, the spectrum  of the MHD equations contained four distinct continua. However, A ppert, G ruber 
and Vaclavik (1974) rewrote the Hain-Liist equation (3.25) as a system of two first-order ordinary 
differential equations which had singularities given only by iV =  0. They therefore concluded th a t 
the zeros corresponding to B  =  0  were apparent singularities and did not correspond to continuous 
spectra. Goedbloed and Sakanaka (1974) went a  stage further and showed th a t  the two frequencies wi 
and wg represented regions of non-monotonicity. (These frequencies separate the regions of S turm ian 
and anti-S turm ian behaviour of the discrete sub-spectra, see later.)

So far, the discrete sub-spectra has yet to be addressed. I t has been shown (see Goedbloed, 1984 and 
references therein) th a t the three MHD waves (Alfvén and the fast and slow m agnetoacoustic waves) can 
be split into five sets of discrete sub-spectra. It has also been shown (see, for example, Goedbloed, 1983, 
1984) th a t discrete Alfvén and slow modes accumulate a t the tips of the Alfvén the slow mode continua 
respectively, while the fast modes accumulate a t infinity. The discrete Alfvén modes found below the 
Alfvén continuum  exhibit S turm ian behaviour (the frequency of the modes m onotonically increases with 
wave num ber) while the discrete Alfvén modes found above the Alfvén continuum  are anti-S turm ian 
(the frequency of the modes m onotonically decreases with wave number). A sim ilar result also holds 
for the discrete slow modes found above and below the slow mode continuum, while the fast modes are 
S turm ian (for details, see Goedbloed, 1984).

T he complete layout of the ideal MHD spectrum  can now be assessed for a general equilibrium  with 
weak inhomogeneities. This yields distinct frequencies for wi, wg, uja and Wg. The Alfvén and slow 
m ode continua therefore do not overlap. The complete spectrum  is shown in Figure 3.1. It is im portan t 
to note th a t the exact layout of the norm al mode specrum depends on the equilibrium  considered. It is 
possible to generate a complete axis of continua and have no discrete sub-spectra, see later. I t  is also 
possible th a t for some equilibria, one or more branches of the discrete sub-spectra may be absent. Under 
some circumstances, unstable Alfvén modes may be present, see Chapter 4.
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There is still one more situation  th a t has to  be addressed. This usually occurs a t the plasm a interface, bu t 
can also happen whenever the equilibium density tends to zero. The frequency of the Alfvén continuum  
is given by

U>A (3.31)

and so as p - 
quasi-modes.

0, Wyi - 4 - oo. Hence, the Alfvén continuum contains the fast discrete sub-spectra as

oo

Alfvén fastslow

Figure 3.1; The typical layout of the ideal MHD normal mode spectrum  for a general 
equilibrium  with weak inhomogeneities. The frequencies and wg are the im aginary 
parts of the growth rates defined by Equation (3.30) and w, and are the
Alfvén the slow mode continua frequencies, respectively. (After Goedbloed et al,  1973).

Notice th a t the slow mode continuum  contains both  the Alfvén and fast sub-spectra as /? —» 0 or if 
7 P + ^  0. In addition, if there is a point in the equilibrium where /  =  k • Bo =  0, then both  the
Alfvén and the slow mode continua both  have m inim a at =  0. In this case, the whole of the uj
axis is covered by continua. In this situation, both the Alfvén and the slow mode continua overlap and 
a  com plicated problem arises.

Finally, it should also noticed th a t there is no continuous spectrum  along the real s axis in ideal 
MHD.

3.4 .2  C ontinuous spectra  for zero perpendicular therm al conduction  and  
zero resistiv ity

I t has been dem onstrated by Van der Linden and Goossens (1991) th a t for zero perpendicular therm al 
conduction and zero resistivity, Equations (3.15)-(3.23) can be transform ed into the following second- 
order ordinary differential equation

where

A
dr

F  (r) ^  ( rv l ) + G{r){rv!,.) = 0,

F { r )  =

G( r )  =  i  (s ^ p  + j )  + ^  ( j ^ )  + s p - p

(3.32)

(3.33)

d c \
dp  / y j
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w ith

and

Ct — spCv

C, -

, 7 ( ^ P + ^ ) + 2 E £  
P J  P

SPC. +  /J | (3.35)

p J  T  \ d p  Jj.

+ , V ( p + ^ ) + £ £ 1

(J- J A« .
(3.36)

Equation (3.36) is a  third-order polynomial in s and can be w ritten as

Ci P^Cv ( j p  +  J M p + y )  ( p ( § )
P^P ( d C \

+
p C v lP f2 1

P
S  - f

p f  /  / g / : \  / 2 ^ 2^ / a / : \
(3.37)

' P  -  /  T J

I t should be noted th a t Equation (3.32) is form ally identical to the Hain-Liist equation (3.25) when the 
non-ideal term s are neglected. This modified Hain-Liist equation has singularities (and hence continuous 
spectra) given by

To satisfy Equation (3.38) either

p + —  ) Ct

f2
s^pA  =  0 ,

0 . (3.38)

(3.39)

or

a  =  0. (3.40)

Equation (3.39) again defines the Alfvén continuum. Since Equation (3.40) is a  cubic in s there are 
three solutions for a fixed radial co-ordinate r . Neglecting the non-ideal term s in Equation (3.36) gives

^tideal — SpCi)

and so either

(3.41)

s =  0 , (3.42)

I P P
p(p7p-t- J32)‘ (3.43)

T he real root, 5  =  0, corresponds to the ideal rem nant of the therm al continuum . The two purely 
im aginary solutions given by Equation (3.43) correspond to the ideal slow continuum . Since the non- 
adiabatic term s are assumed to  be small, in general their inclusion will add a small correction to the 
ideal slow continuum . In m ost cases Equation (3.40) therefore has two complex roots corresponding to 
the modified slow continuum  and one real root corresponding to the therm al continuum .
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3.5 C ontinuou s S p ectra  w ith  D issip a tion

3.5.1 C ontinuous spectrum  for non-zero perpendicular therm al conduction  
and zero resistiv ity

It has also been shown (Van der Linden and Coossens, 1991) th a t for non-zero perpendicular therm al 
conduction and zero resistivity, the continuous spectra are given by

Therefore, either

P J

s^p 4 ---------=  0 ,

0 . (3.44)

(3.45)

(3.46)

Equation (3.45) again defines the Alfvén continuum. Equation (3.46) defines the isotherm al continuum , 
which is the modified slow continuum  (see also Hermans et al. (1988) who dem onstrated th a t the above 
two continua exist when dissipation due to anisotropic therm al conduction is included).

3.5.2 Continuous spectra  for zero perpendicular therm al conduction but 
non-zero resistiv ity

In ideal MHD it is well known th a t mobile regular singular points in the linear differential equations 
correspond to bands of singular wave solutions, or continuous spectra (see, for example, Coedbloed, 
1983). Hence to  derive the continuous spectrum  for a  one-dimensional cylindrical equilibrium , with 
resistivity included, singularities are looked for in the equations obtained by transform ing Equations 
(3.15)-(3.23) into a set of six first-order ordinary differential equations. Introducing the to ta l perturbed 
pressure P '  given by

(3.47)

setting perpendicular therm al conduction to zero, letting resistivity be constant in Equations (3.20)- 
(3 .2 2 ) and after performing some fairly straightforward but lengthy algebra, the following system of 
differential equations is obtained

sprp Co
dv'j.
dr

C\Bg  4 - C2Vr 4- Cat/» 4- C4 <(̂ 4- C^B'^ 4- C qP ' ,

s + r]
m

+ k-
dP '
dr

spr)
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s + ri
m

=  Cjv^. 4- CgBg 4" C q'4> 4- CioC,
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s + r ) { ~  + t

-  •0,
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Cq- ^  = C itP ^ 4 -C is5^ 4 -Ci9u(. 4 -C2oi5^ 4 -C ai0  4 -C 2 2 C1 
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(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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dr = c,
where the coefficients Ci  — C22 are given in Appendix A and

/^«il /  dC
Co =  spjCv  + + P d T

t
T

C + p
dp / y j

(3.53)

(3.54)

W hen resistivity is set equal to  zero, it can be shown after more algebra th a t Equations (3.48)-(3.53) 
reduce to  the modified Hain-Liist equation (3.32). I t can now be seen th a t the  differential equations 
(3.48)-(3.53) have singularities (and hence continuous spectra) given by

S  +  T] =  0 ,

and

spyCv + f a
5 2

+ p
p_
T

C + p la p  A =  0.

(3.55)

(3.56)

The former is diffusion which is neglected as before, whereas the la tter is the therm al continuum  for 
non-zero, constant resistivity and zero perpendicular therm al conduction. Furtherm ore, it can be shown 
th a t for tem perature-dependent resistivity, given by Equation (2.6), the therm al continuum  becomes

1 drj 
p d T

2 -I

0. (3.57)
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Figure 3.2(a); The therm al continua growth rates for the cold Gold-Hoyle profile w ith 
c =  20 in Equation (3.9) and wave numbers k = m  = 1. Notice th a t the wavenumber 
k has been non-dimensionalised, see Appendix C. The solid line represents the therm al 
continuum  for non-zero resistivity whilst the dashed line represents the therm al contin
uum  for zero resistivity. The growth rate has been scaled in term s of the Alfvén tim e 
scale and the radius in term s of the outer boundary.
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The singularities corresponding to Equations (3.56) and (3.57) can also be obtained using the infinite 
gradient m ethod, discussed in more detail in Appendix B and Goossens, Poedts and Hermans (1985). 
In Equation (3.57), as in Section 3.3, the ohmic heating term  and C are neglected.
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Figure 3.2(b): As in Figure 3.2(a) bu t for the cool Gold-Hoyle profile w ith Be =  22.5G in 
the equilibrium  equations and R  =  10®m. The corresponding tem perature is 2.9 x lO^K. 
The dense dotted lines show the positions of the two singularities which correspond to 
a growth rate  of 0.997 as used in Figure 3.6, while the less dense dotted  lines show the 
expected position of the singularity corresponding to a growth rate of 0.89996 as used in 
Figure 3.4.
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Figure 3.2(c): As in Figure 3.1(a) but for the hot Gold-Hoyle profile w ith Be = 67G in 
the equilibrium  equations and R  =  10®m. The corresponding tem perature is 2.6 x lO^K.

In Equation (3.56), there are no term s involving resistivity. Therefore the exact value of resistivity does 
not influence the therm al continuum. Com paring Equations (3.37) and (3.56), it can be seen th a t if term s
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of order and above are neglected in Equation (3.37) it reduces to Equation (3.56). This is surprising 
when considering th a t Equation (3.56) is the singularity of the sixth-order differential equation obtained 
by re-writing Equations (3.48)-(3.53), whereas Equation (3.37) is the singularity of the second-order 
differential equation derived by Van der Linden and Goossens (1991) for zero perpendicular therm al 
conduction and zero resistivity. The therm al continua for both zero resistivity and non-zero constant 
resistivity are compared in Figure 3.1. In each of the three cases, the therm al continua are p lotted  for the 
three types of Gold-Hoyle equilibrium  profiles described earlier, with c =  20 in Equations (3.9) and wave 
num bers m  = k = \ .  The dashed line is the therm al continuum for zero resistivity and the solid line the 
therm al continuum  for non-zero constant resistivity. The curves show the local continuum  eigenvalue 
(scaled to the Alfvén transit tim e given by ta =  R ^ f ip c /B e )  as a function of the cylinder radius r. In 
Figures 3.2(a) and 3.2(b) it can be seen th a t the two therm al continua plotted have considerably different 
growth rates. In these equilibria the therm al continuum  for zero perpendicular therm al conduction and 
zero resistivity is removed by resistivity and is replaced by a dense set of discrete modes, called a quasi
continuum . However, in Figure 3.2(c) it can be seen th a t the two curves are alm ost identical. Closer 
inspection reveals the fact th a t the growth rates are much smaller in m agnitude compared to th a t found 
in Figures 3.2(a) and 3.2(b). In this equilibrium, the therm al tim e scale is much sm aller than  the 
Alfvén tim e scale and so in the expression for the therm al continuum w ith zero perpendicular therm al 
conduction and zero resistivity given by Equation (3.40), terms of order can be neglected, giving an 
expression very sim ilar to  th a t for the therm al continuum  for non-zero resistivity given by Equation 
(3.57). Hence, for the hot Gold-Hoyle equilibrium profile there is no quasi-continuum present. For a 
general equilibrium  profile it would therefore be expected th a t resistivity would replace the therm al 
continuum  for zero perpendicular therm al conduction and zero resistivity by a quasi-continuum , except 

, when the therm al tim e scale is much smaller than  the Alfvén tim e scale.

3 .5 .3  Sufficient C onditions for Therm al Instability

It is m athem atically  very easy to obtain continuum  solutions for certain values of r  since they are ju st 
solutions to either the cubic equation (3.40) for zero resistivity or the linear equation (3.57) for non-zero 
resistivity. Knowledge of the therm al continuum  can be used to  form ulate sufficient conditions for the 
onset of therm al instability. Since continuum  solutions are also solutions to the full eigenvalue problem, 
it can be deduced th a t a given equilibrium  is therm ally unstable if the therm al continuum  is partially  
or completely contained in the positive real s-axis.

For zero resistivity and zero perpendicular therm al conduction, the slow and therm al continua cor
respond to the solutions of the cubic equation (3.40). This can be rearranged to  give

T (c ?  +  v i )

f  , c? fT   CgS 4 -
HP C v P P P T \ d p J A

= 0. (3.58)

where Cg is the sound speed, c* is the isotherm al sound speed and va is the Alfvén speed defined by

c? =  f .  cf =  2  4  =  (3.59)

To investigate when an equilibrium  will be therm ally unstable, the roots of the Equation (3.58) are
exam ined. For /  =  k • B 0, Equation (3.58) will have a t least one positive real root whenever

^  °  (f“ ' k - B ^ O ) .  (3.60)
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If k  • B  =  0, the last two term s in Equation (3.58) vanish. Thus Equation (3.58) simplifies and has a t 
least one positive real solution whenever

^ ~ T { 4  +  vD  °  ( fo r k .B  =  0). (3.61)

Equations (3.60) and (3.61) are the isobaric instability criteria for a  uniform infinite m edium  (see C hapter 
2 and Field, 1965). It can also be shown th a t the slow continuum can become overstable whenever

This is reconised as the isentropic instability criterion for a uniform infinite plasm a (see C hapter 2).
A sim ilar, less complicated, analysis can be performed for non-zero resistivity and zero perpendicular 

therm al conduction. Setting C equal to zero and neglecting the ohmic heating term  in the expression 
for the therm al continuum  for non-zero resistivity given by Equation (3.57), it can be seen th a t the 
condition for an equilibrium  to be therm ally unstable a t any r  and any allowable wave num bers k  and

As before, this is recognised as the isobaric instability criterion for an infinite uniform  m edium . Exam 
ining Figure 3.2 it is found th a t the cold Gold-Hoyle profile is therm ally stable whereas, the hot and 
cool profiles are both  therm ally unstable for the wave numbers k = m  = 1.

The question arises as to  whether these sufficient conditions for therm al instability are also necessary 
conditions as well. The answer is generally no because the therm al sub-spectrum  may contain discrete 
modes in addition to  the therm al continuum.

3.6  N u m erica l R esu lts  for F in ite  R esis tiv ity

It can be readily seen from the previous Sections th a t the inclusion of finite resistivity removes the Alfvén 
continuum  given by Equation (3.45) and replaces the cubic equation (3.40) (which represents the therm al 
continuum  for zero resistivity and zero perpendicular therm al conduction, and the slow continuum ), by 
the linear equation (3.57) (which represents the therm al continuum for non-zero resistivity). In doing so 
the slow continuum  is also removed and the therm al continuum for zero resistivity and zero perpendicular 
therm al conduction is usually replaced by a dense set of discrete modes, called a quasi-continuum . This 
quasi-continuum  is investigated numerically using the finite element code LEDA (Large-scale Eigenvalue 
solver for the Dissipative Alfvén spectrum ). A detailed description of LEDA can be found in Appendix 
C. The general eigenvalue problem given by Equations (3.15)-(3.23) is then solved by two different 
algorithm s. The first, the QR m ethod (Kerner, 1989) gives the eigenvalues. Once these are known, 
they can be used in the Inverse Vector Iteration algorithm , (Kerner, 1989), to  calculate and plot the 
eigenfunctions. In this Section, atten tion  is restricted to  the cool Gold-Hoyle equilibrium  profile with 
wave num bers k = m  = 1. In any study of the norm al mode spectrum  for a given equilibrium , it is 
essential to  get a good idea of the global picture before restricting atten tion  to  specific areas. Hence, 
two Q R plots are given in this Section to  illustrate the ideas in the previous Sections.
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Both are calculated using 50 gridpoints. In Figure 3.3(a), the situation where resistivity is zero is 
considered and in Figure 3.3(b) the unrealistically low value of R,n = 1. Notice th a t in both diagrams, 
the therm al continuum  is located in approxim ately the same position.
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Figure 3.3(a): The QR plot with 50 gridpoints for the cool Gold-Hoyle profile with zero 
resistivity. Notice th a t the therm al continuum is clearly visible along the real s axis.
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Figure 3.3(b): The QR plot with 50 gridpoints for the cool Gold-Hoyle profile with 
Rm ~  1. Even for this unrealistically low value of the therm al continuum  can still 
seen along the real s axis.

In Figure 3.3(b), it can be seen th a t the therm al continuum has shifted a sm all distance along the real 
s axis. Notice also the effect resistivity has on the slow and Alfvén modes. Now th a t the QR plots have 
been worked out, attention may be diverted to the therm al sub-spectrum.
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Two sets of six graphs are provided here, each calculated using 1,000 gridpoints. These Figures show 
how the real part of the vj_ eigenfunction (scaled to the Alfvén tim e scale ta =  R y / jJ ^ /B c  which is 
typically taken to  be 5 seconds in the solar corona) evolves with various values of resistivity. The v±_ 
eigenfunction was chosen because it best illustrates these changes. It should be noted th a t the same 
effects are seen in all the eigenfunctions. In each case the only param eter th a t is varied is the m agnetic 
Reynolds num ber Rm.. In Figure 3.4 the singular behaviour of the therm al continuum  for non-zero 
resistivity is shown. Here Rm ~  1 and the singular behaviour occurs at r  =  0.0886, ju st as predicted by 
the less dense dotted line in Figure 3.2(b). In Figure 3.5 the m ost unstable mode (largest growth rate) of 
the therm al ‘quasi-continuum ’ is followed as the value of resistivity is increased. For zero resistivity, the 
singularity is clearly seen a t r  =  0.26. Comparison with Figure 3.2(b) confirms this position. Increasing 
resistivity removes the singularity and ‘spreads o u t’ the eigenfunction.
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Figure 3.4: The therm al continuum singularity for Rm = 1 and calculated using 1,000 
gridpoints. The growth rate is s =  0.89996. Notice th a t for this value of s, the position 
of the singularity is predicted by Figure 3.2(b).

For Rm — 10® (which is already well below the typical coronal value), the position of the original 
singularity is still clear and the growth rate has only been reduced by a relative am ount of 10~®. Thus 
the analysis of the therm al continuum for zero resistivity, which only involves the investigation of the 
cubic equation (3.40), gives im portan t inform ation about the results for non-zero resistivity. Increasing 
resistivity eventually removes the quasi-singular behaviour of the eigenfunction and smoothes out the 
singularity. This is clearly illustrated in Figure 3.5(f) for Rm = 10®. However, while resistivity influences 
the shape of the eigenfunctions, it  has very little  effect on the eigenvalue. The growth rate sm oothly 
asym ptotes to the m axim um  continuum  value as Rm —* oo. The growth rate  reduces from 0.99945 for 
zero resistivity to 0.99903 for Rm =  10® (which is already an unrealistically low value for the m agnetic 
Reynolds num ber). For classical values of the resistivity the eigenfunctions still resemble to a high degree 
the singular behaviour as shown in Figure 3.5(a). Thus, many of the properties of the m ost unstable 
mode can be predicted by considering the therm al continuum described by Equation (3.40). However, 
the question of w hat happens to  the higher harmonics has not yet been addressed.
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Figure 3.6 shows the behaviour of the higher harm onics as resistivity is again increased. In this Figure the 
eigenfunction closest to the specified growth rate of 0.997 is located for various values of the m agnetic 
Reynolds num ber and the eigenfunctions obtained. Figure 3.2(b) shows th a t, corresponding to  this 
growth rate, the eigenfunctions for zero resistivity should be singular a t r  % 0,18 and r «  0.38. For 
large, bu t finite Rm, the eigenfunctions should retain a quasi-singular behaviour a t these points. In 
addition, a simple WKB analysis suggests th a t the eigenfunctions will be essentially oscillatory between 
these singular radii and evanescent elsewhere. This is clearly seen in Figure 3.6(b).

ptHt|nnnnm r»rptt»ntu iu»{m»nMiuin Aadw

Figure 3.5; The m ost unstable quasi-continuum mode for various values of the magnetic 
Reynolds number for the cool Gold-Hoyle equilibrium profile, w ith wave numbers k = 
m  =  1. Going from  (a) to  (f), the values of Rm  are oo, 10®, 10^, 10®, 10® and 10®. The 
corresponding growth rates are 0.99945, 0.99944, 0.99942, 0.99935, 0.99913 and 0.99903.

For Rm — 10®, the two singular radii are located at the predicted positions and the eigenfunction is 
indeed highly oscillatory between these positions. As resistivity is increased the num ber of oscillations 
is reduced. This is a consequence of locating the eigenfunction nearest to a  particular growth rate. One 
way to interpret these figures is to think of them  showing how resistivity modifies the growth rates of 
the various norm al mode harmonics. If a harm onic is identified by the num ber of zeros between the 
radii corresponding to the original singularities, then, as resistivity reduces the growth ra te  of each 
harm onic. Figure 3.6 gives the value of resistivity at which the growth ra te  of a  particular harm onic is 
approxim ately equal to 0.997.
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In sum m ary, Figure 3.5 follows one particular norm al mode as the value of resistivity is increased whereas 
Figure 3.6 represents diiferent modes. To investigate how resistivity influences the spatial structure of 
norm al modes it is im portan t to follow the same norm al mode. From Figure 3.5 it is clear th a t resistivity 
has sm oothed out the singularity and the thickness of the internal boundary layer 6 , as a  function of 
resistivity, is shown in Figure 3.7. An indicator of the boundary-layer thickness used is the distance 
between the m axim um  and m inim um  near the original singular radius.

Figure 3.6: Individual quasi-continuum modes for various values of the m agnetic
Reynolds num ber. Going from (a) to  (f), the values of Rm  are oo, 10®, 2 x 10®, 1.25 x 
10®, 2 X lO'* and 10^. The corresponding growth rates are 0.99681, 0.99705, 0.99703, 
0.99687, 0.99675 and 0.99674. Notice th a t for a  growth rate of s =  0.997, Figure 3.2(b) 
gives the location of the two singularities seen in graph (a).

It is apparent th a t the thickness scales w ith resistivity to the power 1/4. This is not too surprising: 
this scaling of the thickness of the resistive layer is in agreement with the analysis presented in Sakurai, 
Goossens and Hollweg (1990). Their analysis also yields 5 ~  close to  an extrem al value of the
continuum . Based on this scaling, the thickness of the fine structure is com parable to  the thickness 
predicted by the inclusion of perpendicular therm al conduction (Van der Linden and Goossens, 1991). 
These estim ates are in agreement with the observed widths. If Rm  lies between 10^-10^^, then R m ^ ^  
will lie between 1 0 ” ®-1 0 ~^.
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Therefore the length scales for the prominence fine structure are 10®-10®m. This is com parable to  length 
scales obtained w ith perpendicular therm al conduction obtained by Van der Linden and Goossens (1991).
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Figure 3.7: P lot of log 77 against log 6 . The gradient of the line is evaluated and found to 
be 1/4. Thus, the thickness of the resistive layer scales w ith resistivity to  the power 1/4.

3.7  C h ap ter Sum m ary

This C hapter has investigated the effect of finite, scalar resistivity and perpendicular therm al conduction 
on the therm al instability. In the absence of these two dissipative term s there are three continuous spectra 
associated w ith the linearised MHD equations, namely the Alfvén, slow and therm al continua. These 
dissipative term s are now included and their effect on the continuous spectra is summarised.

Neglecting resistivity bu t including perpendicular therm al conduction, it  is found th a t the therm al 
continuum  is removed bu t the Alfvén and a modified slow continua rem ain. The removal of the therm al 
continuum  is not surprising since tem perature disturbances can be sm oothed out across the m agnetic 
flux surfaces and a global norm al mode is possible. However, the eigenfunctions of this quasi-continuum 
vary rapidly over a  length scale th a t is proportional to (/Ci./re|j)^^'* (Van der Linden and Goossens, 1991).

Now consider the situation in which resistivity is included bu t perpendicular therm al conduction 
is neglected. In this case the Alfvén and slow mode continua are removed and the only continuous 
spectrum  left is the therm al continuum . However, this continuum arises from the singularity associated 
w ith a sixth-order (in the perpendicular direction) differential equation ra ther than  the singularity of 
the second-order equation in the absence of resistivity. The singularities are therefore quite different. 
Nevertheless, it appears th a t the two continua are sim ilar when the Alfvén to radiative tim e scale ratio  
is small. In the other cases the therm al continuum is strongly influenced by resistivity in a discontinuous 
m anner. This illustrates the singular nature of resistive MHD and shows th a t there is a  difference between 
zero resistivity and ‘sm all’ resistivity. For the equilibrium investigated, the new therm al continuum  lies 
below the zero resistivity continuum. In addition, the zero resistivity continuum  is replaced by a quasi
continuum , which consists of a dense set of discrete and continuous (in the spatial direction) norm al 
modes.

Finally, the inclusion of bo th  resistivity and perpendicular therm al conduction removes all the con
tinuous spectra. However, the therm al quasi-continuum will remain.
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The m ain numerical work in this Chapter has concentrated on the effect of resistivity on the structure 
of the global norm al modes. It is found th a t resistivity does not substantially reduce the growth rate 
associated w ith the m axim um  of the original therm al continuum, but does remove the singular nature of 
the eigenfunctions. Furtherm ore, since the quasi-continuum contains m any norm al modes w ith similar 
growth rates, the higher harmonics were also investigated. Considering the norm al mode th a t is closest 
to  a  given growth rate, about 99% of the fundam ental growth rate, the structure of the highly oscillatory 
eigenfunctions was investigated for different values of the m agnetic Reynolds num ber. It was found th a t 
the length scales associated w ith the oscillatory nature of the eigenfunctions scaled w ith the same 
fractional power as perpendicular therm al conduction. Thus, fine scale structure can be generated by 
resistivity as well as perpendicular therm al conduction (see Van der Linden, 1993 for more details of the 
fine scale structure associated w ith perpendicular therm al conduction).

From the results obtained here and in Van der Linden and Goossens (1991), the im portance of the 
therm al continuum  can now be assessed. In the absence of the two dissipative effects considered, there is 
a therm al continuum  th a t can be described by the solution of a simple cubic equation. The growth rate 
can be calculated as a function of the radial distance and this defines a range of possible growth rates. 
Thus, for a given radius there is an associated growth rate. At this stage, there exists a norm al mode 
solution th a t has the above mentioned growth rate  and possesses a singularity a t the specified radius. 
If the therm al continuum  curve has a local maxim um , Smax a t the radius, say, r^ax, then the inclusion 
of resistivity removes the singularity and the m ost unstable quasi-continuum mode has a growth rate 
th a t is given by s^ax and is strongly localised about 7’max- Hence, the inform ation about a physical, 
norm al mode can be obtained by analysing the cubic equation th a t defines the therm al continuum . Now 
consider a growth rate th a t lies below the m axim um  of the continuum curve. There are now two different 
radii corresponding to this value of s. The inclusion of resistivity again removes the singularities and it 
is observed th a t the eigenfunctions are highly oscillatory between these two radii. Therefore, analysing 
the therm al continuum curve can also predict the radii between which fine scale structure can form.

It is clear th a t resistivity can produce fine scale structure as the plasm a cools. This is sim ilar to  the 
effect of perpendicular therm al conduction and in both cases the length scales of the fine structure scale 
w ith the diffusion coefficient to the power one quarter. Hence, classical values of these two diffusion 
coefficients will give rise to the typical length scales observed within quiescent prominences.



C h a p te r  4

M agnet other m al Instab ilities in  
C oronal A rcades

...mechanically quid and smooth...all the major controls are light and 
precise and the gear change is perhaps the best we have ever tried.... It should 
on its present merits rise right to the first rank amongst small cars of  
the world.

-Review of the Im p in M otor Magazine.

We put it into production and they started failing all over the place...
The prototype worked, the pre-production worked and the production didn’t.

-Jim  Pollard, Quality Manager.

4.1 O verview

In th is C hapter, the norm al m ode spectrum  for the linearised MHD equations is investigated for a plasm a 
in a cylindrical equilibrium. The equations describing these norm al modes are solved numerically using 
a finite element code. In the ideal case, the Hain-Liist equation is expanded and a W KB solution 
obtained. This is compared to the numerical solutions. In the non-ideal case, the  ballooning equations 
th a t describe localised modes are m anipulated and a dispersion relation derived. I t is shown th a t as 
the axial wave num ber k is increased, the fundam ental therm al and Alfvén modes can coalesce to  form 
overstable m agnetotherm al modes. The ratio  between the m agnetic and therm al term s is varied and 
the existence of the m agnetotherm al modes examined. The corresponding growth rates are predicted 
by a W KB solution to  the ballooning equations. The existence of these m agnetotherm al modes may be 
significant in the eruption of prominences into solar flares.

4.2  In trod u ction

As rem arked in Chapter 1, there are many interesting features present both on and around the Sun. 
High above the photosphere in the solar corona, prominences are often observed. These are cooler and 
denser th an  the surrounding corona and, although not accurately known, have a mass of about one tenth  
of the to ta l corona. One of the m ost intriguing questions is concerned with how these prominences form.

46
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Many suggestions have been made, one mechanism being due to a condensation driven by the p lasm a’s 
optically th in  radiation. Once this therm al instability is triggered, the plasm a continues to  cool until it 
becomes optically thick, typically at a tem perature of about 7,000K, the tem perature usually observed 
w ithin the prominence (see Chapter 2 for details).

W hile the above scenario is happening, the equilibrium m agnetic field m ust be stable or the prom i
nence cannot form. This is a  consequence of the radiation tim e scale being very much greater than  the 
m agnetic field tim e scale. It is interesting to note tha t, if the corona is treated  as an isolated plasm a 
to ta lly  unconnected to  the photosphere, magnetic stability  is very difficult to achieve. The question then 
arises as to  why there are so m any prominences observed when this stability  condition apparently rules 
them  out. The answer is th a t the corona is not an isolated plasma, but is connected by m agnetic field 
lines th a t emerge from the photosphere. This connection thus stabilises the magnetic field in the corona 
and hence enables the prominences to form. This condition, known as line-tying, is not considered here, 
bu t will be addressed in C hapter 5.

Once formed, the prominence remains supported in the corona in a stable configuration for m any 
days, or even m onths, until it erupts. The destruction of the prominence is thought to  occur because 
the equilibrium  m agnetic field has become unstable to an ideal MHD instability. Often this m agnetic 
instability  will trigger off a flare which is observed as a  rapid brightening in H a. Solar flares give off 
an immense am ount of energy, in the region of lO^^J. The source of this energy is the stressed coronal 
magnetic field th a t becomes unstable and releases the stored magnetic energy.

From the above discussion about possible prominence and flare form ation, it is apparent th a t there 
are two distinct mechanisms a t work; a  therm al instability and a m agnetic instability. However, there 
is no reason why these instabilities cannot be coupled together, instead of only occurring individually. 
In this Chapter, the two basic instabilities are studied and their interactions considered and examined 
for a simple cylindrical equilibrium. Before progressing to a more realistic situation, the basic physical 
properties of these m agnetotherm al modes m ust be fully understood. The first rigorous trea tm en t of 
the therm al instability mechanism was by Field (1965). He considered an infinite, uniform plasm a and 
derived various conditions for triggering a therm al instability (details are given in Chapter 2). This work 
has been extended by m any authors (see, for example, Heyvaerts, 1974; Van der Linden and Goossens, 
1991). In particular. Van der Linden and Goossens (1991) showed th a t the instability  criteria derived by 
Parker (1953) and Field (1965) for a uniform, infinite plasm a can be generalised into sufficient conditions 
for the  onset of therm al instability in a non-uniform plasm a (see C hapter 3).

Defining wave numbers parallel {k\\) and perpendicular (k±)  to the equilibrium  m agnetic field and 
writing the anisotropic therm al conduction in term s of the coefficients of heat conduction parallel (K||) 
and perpendicular (/cj.) to the m agnetic field, it can be shown (Field, 1965 and C hapter 2) th a t the 
therm al instability  criteria are given by

\ d T

K»kf ,  +  K ± k l  4-po f -  ^  <  0 ( fo i' 1̂1 #  0), (4-2)

< 0 (for fe|| =  =  0), (4.1)

and

+  PO ( § ) ^  -  ( I f  ( 5 ) ^  <  0 (tor ill =  0. 5̂  0). (4.3)

where Cj is the isotherm al sound speed, defined by c? = pq/ pq, va = Bo/^/flpô  is the Alfvén speed, £  is 
the generalised energy loss function per un it mass with energy gains defined as negative losses
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and {dC/dT)p  is the partia l derivative of C w ith respect to T  keeping p fixed. In the energy loss function 
an optically th in  radiative loss term  and an unspecified coronal heating function h are included

pC =  x p ^ T ^ ' - p h ,  (4.4)

where % and a  are piecewise constant functions of T  (Rosner, Tucker and Vaiana, 1978).
It is easy to appreciate the im portance of the m agnetic field on the therm al instability due to  these 

two conditions for ‘isobaric’ therm al instability  for k  • B q  =  0 and k  • B q  0, given by Equations 
(4.2) and (4.3) first obtained by Field (1965). From this, it can be seen th a t it is quite possible for the 
m agnetic field to influence the therm al instability.

In w hat follows, the norm al mode spectrum  for the linearised MHD equations is investigated for 
a  cylindrical equilibrium  with attention restricted to the unstable subspectrum . The norm al mode 
spectrum  usually consists of both  discrete and continuous subspectra. There are norm ally three types 
of continuous spectra corresponding to the anisotropic nature of the Alfvén, slow and therm al modes. 
However, the nature of the spectrum  depends upon which dissipative effects are included and upon the 
equilibrium  considered. For example, when resistivity is included, the Alfvén and slow m ode continua 
are removed and only the therm al continuum  remains. W hen perpendicular therm al conduction alone 
is included, the continuous spectra are found to consist of the Alfvén continuum  and the modified 
‘iso therm al’ slow continuum. More details about continuous spectra can be found in Goedbloed (1983), 
Van der Linden and Goossens (1991), Ireland ei al (1992) and C hapter 3.

In previous work by Van der Linden et al  (1992), a first study of the coalescence of m agnetic and 
therm al modes was presented. In particular, the effect on the Alfvén, therm al and coalesced m agne
to therm al modes were studied when the axial wave number k was varied while the azim uthal wave 
num ber m  was set equal to zero. As the axial wave number was varied, the fundam ental therm al and 
m agnetic modes were found to coalesce (or jo in  together) and form a complex conjugate pair of overstable 
wave modes. These overstable wave modes or m agnetotherm al instabilities were first found via the  use 
of the ballooning m ethod applied to the norm al mode spectrum  and showed th a t therm al instabilities 
and m agnetic instabilities do indeed interact with one another and should be studied together and not 
individually. This interaction depends upon the ratio  of the ideal growth tim e to the radiative tim e 
scale. Normally the ratio  is small for the corona except when the equilibrium  is near ideal m arginal 
stability.

The aim  of this C hapter is to investigate the basic properties of these m agnetotherm al modes for a 
non-zero azim uthal wave num ber and in the absence of photospheric boundary conditions. In Section 4.3 
the basic equations are introduced and the equations for norm al modes are obtained. These are solved 
numerically using a finite element code. Section 4.4 describes the behaviour of the fundam ental Alfvén 
m ode in the ideal case for large values of the axial wave number k  with the azim uthal wave num ber 
m  = I. Section 4.5 examines the fundam ental Alfvén, therm al and m agnetotherm al modes as k is varied 
in the non-ideal case. The ballooning equations are m anipulated and a W KB solution is compared with 
the num erical results. The final Section then summarises the results found in this Chapter.

4*3 T h e  B asic  M H D  E q u ation s

T he basic equations used in this C hapter are the standard  equations of m agnetohydrodynam ics in which 
gravity, resistivity, viscosity and rotational effects are neglected,

T  pV ' V V =  0, (4.5)
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dv
P

dt

dt
+  ( v  • V ) V =  —VpH—  (V X B ) X B,

P

=  V X ( v  X B ) ,

I -
d f  p

7 -  1
=  V - { kV T ) - pC{ p ,T)

(4.6)

(4.7)

(4.8)

(4.9)

where all the symbols are defined in Chapter 2. In this Chapter, perpendicular therm al conduction is 
neglected as it is of no relevance for the mode coalescence. Hence, the anisotropic therm al conduction 
term  is rew ritten only in term s of the coefficient of heat conduction parallel («||) to  the m agnetic field

V - { kVT)  =  B . v ( ^ K | | 5 ^ ) .

The m agnetic field m ust also satisfy the condition

V B =  0.

(4.10)

(4.11)

4.3.1 T he Equilibrium  Equations

The equilibrium  configuration is a  static, one-dimensional, infinite, cylindrical plasm a, having a magnetic 
field w ith axial and azim uthal components depending on the radial co-ordinate r  such th a t Equation 
(4.11) is identically satisfied. Hence,

Bo =  (O, B 0O ( r ) , B^o ( r ) ) . (4.12)

The aim  of this work is to study coalescence of the therm al and magnetic modes. The Gold-Hoyle profile 
(Gold and Hoyle, 1960) is used because it is a simple equilibrium and the ideal MHD properties are well 
known. The specific form of the equilibrium equations used in this Chapter represent a dimensionless, 
isotherm al, constant shear m agnetic field

( 1  +  r 2 )

Ppo =

Bzo =
( 1  +  r%)

1 - A'
(4.13)

2 ( l - ) - r 2 ) " '

where the plasm a beta  (3 has been defined as /? =  fj ,pc/B^ with Pc and Be  representing the values of the 
p lasm a’s pressure and m agnetic field strength a t the centre of the cylinder axis respectively, while r  is a 
dimensionless co-ordinate ranging from 0 to 1, scaled to the radius of the outer plasm a boundary. In these 
equilibrium  equations A is a  variable param eter. W hen A =  0, the equilibrium m agnetic field is shearless 
and when A =  1 a pressureless, force free field is obtained. In this equilibrium, the values of density and 
m agnetic field strength a t the centre of the cylinder axis are taken to be pc =  3.6886 x 10~^^kg m “  ̂ and 
Be =  lOG, respectively. The therm al equilibrium is given by £  =  0. In th is equilibrium, the coronal 
heating is considered to be constant per unit mass.
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4.3.2 Linear Perturbations

The norm al mode solutions th a t are to be solved numerically are obtained by linearising Equations 
(4.5)-(4.9), introducing a m agnetic vector potential so th a t Equation (4.11) is autom atically satisfied 
and letting  all the perturbed quantities behave like

Pi =  p '{ r )e x p [ i{m 6  + kz)]e^^. (4.14)

Introducing velocity components t;' perpendicular to the fiux surface and and Vy in the flux surface but 
perpendicular and parallel to the equilibrium m agnetic field respectively and dropping the 'O’ subscripts 
for ease of writing it is found th a t the linearised equations become

p r   ̂ p  p r  dr p r   ̂  ̂ ^

sp rB iv ' ,  =  P Æ r  + S ^ p '  + ^ ^ { r A ' , ) + ^ - ^ ^ f - ? ^ ( 4  + k A i A ‘
T  p p r  dr  ̂ p  dr p  \  r^ /

1  ̂ /B g B z . _ (iBg _  %
P

+  +  (4.17)

spBirv\^ =  i ^ T ' + P ^ p ' - k r ^ A ’, + m ^ A ' , ,  (4.18)

sA'j. — (4 .19)

sA'q — (4 .20)

sA'̂  =  B e v [ ,  (4 .21 )

s p c ^ r  =  - f C .  ("-<) -  I

-  '  ( % 1)  '  ( 5 /  +  !

p’ =  ^ T '  +  V ,  (4.28) I
P 1

where A '  = {A'j,, A'q , A'^) is the perturbed m agnetic vector potential and 1

f  -  g =  -  AïjBg, Cv  =  zTT^—TT. (4 .24 ) -
r r p [ j  — L) \
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4 A  R esu lts  for th e  Id eal C ase

In any study of the norm al mode spectrum  for a given equilibrium, it is essential to get a good idea 
of w hat is happening globally, before restricting atten tion  to specific regions, see Van der Linden and 
Coossens (1991). It is therefore very im portan t to  discover the nature of the spectrum  and the associated 
bands of continuous spectra before proceeding with any local analysis. After neglecting the non-ideal 
term s in Equations (4.15)-(4.23) and performing some algebra, the Hain-Liist equation is obtained (see 
Coedbloed (1983) and Chapter 3):

A
dr

r N  dx
r^D  dr

where

+

+

B i
^2

% = 0, (4.25)

N  =  {s^p + f )  {s^p ( tp  +  + j p f )  , (4.26)

and

D  =  + ( k ^  +
m

- )  { jp  + B ‘‘ ) + J P p ) (4.27)

where % =  rv' .̂. As in C hapter 3, it can be seen th a t the continuous spectra present are given by 
the singularities in Equation (4.25). These singularities correspond to the positions where A  =  0 and 
consist of the Alfven continuum and the slow mode continuum. It is im portan t to  note th a t the zeros 
of D  are only apparent singularities and do not correspond to continuous spectra. Notice th a t there 
is no continuous spectrum  along the real s axis in ideal MHD. Considering the equilibrium  given by 
Equations (4.13) with A =  0 and /? =  1, it can be seen th a t the Alfven continuum  collapses to  a single 
point. Numerically, the fundam ental Alfven mode is found on the real positive axis (unstable) for an 
azim uthal wave number m  = 1 and a fixed value of the axial wave num ber k. For m =  1, the value 
of k is varied and as k tends to  infinity, the instability growth rate asym ptotes to a fixed value. The 
eigenfunctions become increasingly more localised near r  =  0 in the sense th a t the fundam ental Alfven 
mode becomes peaked about a particular radius as k increases.

The eigenfunctions were calculated using the finite element code LEDA (see Appendix C). The 
equations for norm al modes given by Equations (4.15)-(4.23), with the non-ideal term s neglected, form 
an eigenvalue problem which is solved using up to 4,000 gridpoints (yielding very high spatial resolution). 
The eigenvalues obtained are expressed in the asym ptotic form for large k as

Si S2 (4.28)

Hence, for any three different values of k (and corresponding growth rates), three equations in sq, s \ and 
sg can be found and thus solved. For the values of k given by 1,000, 2,000 and 3,000, sq =  1.414213565 
and Si =  —1.673325.
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Analytically, the Hain-Liist equation (4.25) may be expanded for a small radius r and large axial wave 
num ber k, since the numerical solutions indicate localisation near r  =  0. By m atching up the two 
solutions for sm all r  bu t large k i \  it is found th a t sq =  =  1.414213562 and s\ — —> /l4 /5  =
—1.673320053 (see Appendix D for details). Com paring the analytical results w ith the num erical results, 
very good agreement is found for large k. This gives confidence th a t both  the numerical and analytical 
m ethods are accurate.

4.5 B a llo o n in g  M od es in  th e  N on -Id ea l C ase

In th is Section, a sim ilar study to th a t previously carried out in Section 4.4 is performed w ith non
ideal effects included. The ballooning equations are m anipulated to obtain a dispersion relation which 
is solved numerically. The ballooning approxim ation th a t describes localised modes is then compared 
to the  exact solutions to Equations (4.15)-(4.23) generated by LEDA. The ballooning approxim ation 
was first introduced by Connor, Hastie and Taylor (1979) to investigate ideal instabilities in a toroidal 
plasm a. Later Dewar and Classer (1983) gave a detailed m athem atical treatm en t for an ideal plasm a 
in a general toroidal system. Hood (1986a,b) studied ballooning modes in the ideal case, for a  coronal 
plasm a. These applications were lim ited to linear, ideal MHD. The m ethod has also been used w ith 
non-ideal effects included. For example, Velli and Hood (1986, 1987) studied resistive instabilities in 
a solar coronal loop while Van der Linden, Coossens and Hood (1988) studied the combined effects of 
resistivity and viscosity. To derive the ballooning equations, the perturbed quantities are assumed to 
have the form

/ ( r )  =  f { r ,0 ) e x p [ iS { r ) /6 - \ - s t ] ,  (4.29)

where B • V 5  =  0 and 5 <C 1. This form of the perturbation  represents a rapid variation across the
m agnetic field lines (given by the exponential part) and a slow variation along the field lines given by
the am plitude factor, present in front of the exponential. The constraint B  • V S  = 0 for a coronal arcade 
is satisfied by setting

S  =  F {r )  + z - q { r ) 9 ,  (4.30)

w ith

?(?’) = (4.31)

where in principle F{r)  will be determ ined from the solutions to the eigenvalue problem  and where q ( r)
is known as the safety factor in magnetic fusion research. When the ballooning approxim ation given
by Equation (4.29) is substitu ted  into the linearised MHD equations, to  lowest order in 6 the following 
(ballooning) equations are obtained

<;R2

B - V ( p  = -  | y ^ | 2 "̂ ll> (4-32)

B - V A „  =  +  (4.33)

®  ̂ A '  +
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B ■ Vpi = — s p B ' ^ u  4-

/C,|
(B  . V )'

52

5 2  dp 
IV S P  B e l ^

7  sp

A,

( 7 - 1 )  TJ
T i =  -

dp
t J

Pi - i t * '

(4.35)

(4.36)

where (j) is the electrostatic potential, Ay is the parallel component of the vector potential, u is the 
parallel component of the perturbed velocity and C has been defined to  be £  =  p£ . The electrostatic 
po ten tial <f> is related, to leading order, to  the perpendicular component of the perturbed velocity in 
the Bo X V 5  direction by

(Bq X ViS) 0 . (4.37)

These ballooning equations, derived first by Hood, Van der Linden and Coossens (1989), represent the 
Alfven, slow and therm al modes. The fast modes have been elim inated by setting

ppi +  B • Bi 0 , (4.38)

and have therefore been excluded in the derivation of the ballooning equations, see Hood, Van der Linden 
and Coossens (1989). These ballooning equations can easily be obtained from Hood et al. (1989), by 
replacing their variables by ^ / e  —*■ <f), —ipi P i, —wy —̂ « 5 , ay/e Ay5 /  | V S 'p  and — iT\ —+ Ti. 
Introducing the tim e scales in Table 4.1 and setting B —s-HqB, B i —̂ B qB i , p —> poP, Pi PoPi, T  
TqT,  Ti - 4- ToTi, p pop, V —̂ V //, r I r ,  s s/ t a , Ay ->• Ay, -+ B qI ^ / ta and u Iu/ t a B q, it 
is found th a t the dimensionless equations, for the isotherm al equilibrium T = l ,  are

B • V(j)

B • VAii =

B - V u  = -

I|V 5 |2  

pa |V 5 |^
■  - 5 2 -

{/3p +  5 ^ ) 
/)p52

_  _  ap52
B • Vpi = -------— u  +

+  7 ^ p i '

s/?pi +

5 2

P dp 
Be d r '

dp

R ( B - V ) '
5 2 d T

|V 5 |2  Be dr 

7

A„

(7 -  1 )
esp Ti =

dp
€ dp

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

where

€ —  ' r̂ad/'^A) R  —  ' r̂adf' ĉond a n d  / ?  — (4.44)
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Equation (4.44) defines some param eters in term s of tim e scales. Typical values of these tim e scales for 
the solar corona and prominences are given in Table 4,1.

Tim e scales Symbol Definition Coronal Value Prom . Value
Alfven ta 5 1 0 0

Sound (isothermal) Ts 1/ 2 0 0 300
Radiation Trad l /p x T “ - 2 3,000 1

Conduction Tcond p P h \ \ T 600 1 0 "
Free-fall Tg v /g 40 40

Table 4.1: Typical tim e scales, in seconds, for the physical processes th a t occur in the 
solar corona and prominences. The values taken in this Chapter, to  model a coronal 
arcade, are B  = IOC, p =  3.7 x 10“ ^^kg m “  ̂ and T  =  2.6 x 10®K.

Since the am plitude function /  does not depend on z, B  V im B e /r  and the ballooning equations 
become

imBe sB^
■^11 !

imBe All

|V 5 |2

y +  r5 2 Pi,

imBe spB"^ B^ dp
— Pi = ------ ;y - u +  „  3 -A ||,|V 5 |2  Be dr

€ S p Ti =  - €S —
d p

Pi
€ dp 

Be dr
<j).

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

I t is im portan t to appreciate how to obtain global norm al modes from the ballooning (or localised) 
modes. Dewar and Classer (1983) showed th a t the m ost unstable mode in ideal MHD could be found 
by setting d F /d r  — 0 and solving the ballooning equations on each flux surface. The growth ra te  of 
the m ost unstable, physical mode then corresponds to the maxim um  of the ballooning growth rate as 
a function of r , the radial flux surface co-ordinate. Unfortunately, there is no proof th a t this m ethod 
holds for non-ideal MHD. Thus, following Van der Linden e t  al.  (1992), the ballooning equations are 
solved sim ultaneously on each flux surface and the m axim um  ballooning growth ra te  compared w ith the 
actual norm al mode solutions obtained by LEDA.
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4.5.1 D ispersion  R elation

The variables in Equations (4.45)-(4.49) are 0, Ay, p i, u and T \ . For non-trivial solution, the determ inant 
of the coefficients of these variables m ust vanish giving

~ T
e dp r 

+Bg dr 2/3Bg dp +  V  |V S |-

+ m^Bg f  1 f  in^Bg
2/3 \  sr^

=  0 . (4.50)

Rearranging Equation (4.50) gives 

(P^(7l3p + B^) |V S p

S P l - l )
S " /  d E \  , ( f i p + B ^ ) y  1

e p

+

__ 1 )

p

7,0P (m̂  I V5|^+4) +

I V 5 P + 4 +  ( m 'B i  |V S P + 2 . / ^ |
2 n 2  /

m ^B
dp

I V 5 I

m?'yl3p
(7 -  1) R

( m t B l \ V S f + 2 r l 3 ^ ] { e s - a n )  =  0,

where ctr is the isobaric growth rate given by

-  ^ ( 1 - 1 )<TR
IP d T  I  ^ 2 5 2/  p

(4.51)

(4.52)

4.5 .2  B allooning m odes for A =  0

In this Section, parallel therm al conduction is set equal to zero for simplicity and because its inclusion 
will only reduce the growth rates slightly. Consider first the case in which there is no z component of 
the equilibrium  m agnetic field. For this shearless equilibrium magnetic field, A =  0 in Equations (4.13). 
Setting A =  0 and d F /d r  — 0 gives j V 5 p =  1. Equation (4.51) then becomes

e/>"(7/jp +  Æ ^)^e I ^3

B" ( t  -  1 )

d c \  , (/?p +  5 ^ ) 7 _

J’2 (7 -  1)

+ ,.2
7^p

. (7 “  1)
o-Ri m  +4-1-

5 2

(/)p +  52) 
)0p52

dr

+  2r(3

n F jP p^  +  2rj3^ ^  (es -  (tr) -  0,
(7 -  1) r

where the isobaric growth ra te  (t r  is now given by

( 7 - 1 )  M /:(TR = 7P \ d T

d £
dp T-'

(4.53)

(4.54)
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Equation (4.53) is the dispersion relation which is a fifth order polynomial in s. As in the ideal case, the 
first stage m ust be to  appreciate the layout of the complete ballooning mode spectrum  for the equilibrium  
considered. For zero perpendicular therm al conduction and zero resistivity it has been shown by Van der 
Linden and Coossens (1991) th a t the continuous spectrum  consists of an Alfven continuum , a slow mode 
continuum  and a therm al continuum  (see also Chapter 3). The therm al continuum  lies on the real s 
axis, so the next stage is to  find out where it is located. After doing so, the dispersion relationship given 
by Equation (4.53) is solved numerically using a NAG routine (NAG Ltd., 1988). The five solutions are 
then plotted  together with the therm al continuum (given by Equation (E.3) in Appendix E) w ith m =  1 
for various values of e in Figure 4.1.

Ro(a) Re{s)

q  Radius q Radius

Figure 4.1: The solutions to  the dispersion relation for various values of e. Going from 
(a) to (c), the real part of the solutions are shown for e =  16.9, 1.2 and 0.17. In (d) 
the im aginary part of the solution corresponding to the real solution (c) is shown. The 
dashed line represents the therm al continuum.

Large values of e can be thought of as modelling equilibria far from m arginal stability  whereas small 
values of e correspond to equilibria close to m arginal stability. In each of the four graphs, the radius 
ranges from  0  to  1 , scaled to the radius of the cylinder and the growth ra te  s is scaled in term s of the 
Alfven tim e scale. Because the fast modes have been eliminated in deriving the ballooning equations, it 
follows th a t the five solutions to  the dispersion relation will represent the two Alfven modes, the two slow 
m odes and the therm al mode. I t  should be noted th a t these curves at this stage do not represent actual 
norm al modes. These curves are investigated for various values of e in Figure 4.1. For the large value of 
6 , taken in Figure 4.1(a), the Alfven mode curves can easily be seen and are distinct, bu t the therm al
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and slow mode curves together w ith the therm al continuum curve are very close to each other and have 
a sm all growth rate. W hen e =  1.2, Figure 4.1(b) shows th a t each curve can easily be seen. Going from 
top to  bo ttom  of the graph, the curves represent the Alfven, therm al, slow and Alfven modes. Here, as 
in the previous case, the therm al continuum  lies almost on top of the therm al m ode curve.

Re{s)
2.0q

1.5

0.5

0.0-
0.0 0.25 0,5 0.75 1.0

Figure 4.2: The location of the therm al continuum for various values of e. The top curve 
is the m axim um  of the continuum  and the lower curve is the m inim um . The horizontal 
dotted  line represents a growth ra te  of -y/ 2  and the vertical dotted lines represent the 
upper and lower values of e for which s =  \ / 2  is the end points of the therm al continuum.

Im(s)

0.03t

0.024

0.014

0.04

— 0.01

- 0.02

-0 .0 3

-0 .0 4
0.3 0.40.0 0.1 0.2

Figure 4.3: The fundam ental Alfven and m agnetotherm al modes w ith e =  1.2 for m — 1 
and various values of the axial wave num ber k ranging from k — 1.423 to  k =  1.62. The 
therm al continuum  is represented by the solid fat line.

For a sm all value of e (e =  0.17), it can be seen in Figure 4.1(c) th a t the lowest Alfven and slow modes 
are distinct. However, the Alfven and therm al modes coalesce a t about r  % 0.28 and form a pair of
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overstable wave solutions. To confirm this, the im aginary part of the growth rate  is plo tted  in Figure 
4.1(d) and as before it can be seen th a t a t r  %: 0.28 the modes coalesce. The therm al continuum  is 
shown in Figure 4.1(c) as the dashed line lying above the two curves th a t coalesce.

Next the equations for norm al modes (4.15)-(4.23) are solved using LEDA and the results presented. 
Before individual solutions are obtained, the location of the therm al continuum  m ust be found for a 
fixed value of e. The m axim um  and m inim um  values of the therm al continuum  are shown in Figure 4.2. 
Notice th a t as e gets larger, the m axim um  and m inim um  curves for the therm al continuum  get closer 
together. As e oo, the previous ideal case should be retrieved with the therm al continuum  collapsing 
to  a single point at the origin. By enlarging the e axis to include larger values, the two curves converge 
to  zero as expected.

Figure 4.4: The eigenfunctions for various fundam ental modes w ith c =  1.1944, m  =  1 
and various values of the axial wave num ber k. The fundam ental Alfven mode is shown in
(a), (b), (e) and (f) and the fundam ental m agnetotherm al mode is shown in (c) and (d). 
Going from (a) to  (f), the values of k are 1.423, 1.4282, 1.4430, 1.5, 1.5795 and 10. The 
corresponding growth rates are 0.0248, 0.0777, 0.1565 +  0.0137%, 0.2554 +  0.0318%, 0.3398 
and 1.2604. In each case 500 gridpoints were used to calculate these eigenfunctions.

Now th a t the location of the therm al continuum  and shape of the localised ballooning curves are known 
for any value of e, the therm al subspectrum  can be investigated for various, fixed values of e by solving 
the full Equations (4.15)-(4.23) using the finite element code LEDA. The fundam ental unstable Alfven 
m ode is located on the real, positive s axis for small k and m =  1 , below the therm al continuum. 
The wave num ber k is varied slowly since the interaction of this m ode and the therm al continuum  is 
im portan t. Fixing c =  1.2 and for a value of =  1.4282, with a corresponding growth rate of s =  0.0777, 
the fundam ental Alfven mode is very close to  the lower end of the continuum  which sta rts  a t s =  0.0838
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a t r  =  1 and finishes a t s =  0.3349 at r  =  0. W hen k is varied, the growth ra te  of the fundam ental Alfven 
mode increases until it ju s t touches the lower end of the therm al continuum, where upon it splits up into 
two m agnetotherm al modes th a t enter the complex s plane. As k is increased, these two modes travel 
around the continuum before rejoining the real axis above the m axim um  of the therm al continuum. 
On rejoining the real s axis, one mode, the therm al mode, travels down towards the m axim um  of the 
continuum , while the other mode, the Alfven mode, travels up the real axis as k  increases before it 
asym ptotes towards a fixed value, see Figure 4.3. The Re(rt? ') eigenfunctions of the fundam ental Alfven 
mode as it  coalesces w ith the fundam ental therm al mode to form a pair of overstable m agnetotherm al 
wave modes as the growth rate moves around the therm al continuum are shown in Figure 4.4. In the 
first two graphs (a) and (b), the fundam ental Alfven mode is below the therm al continuum. In the 
graphs (c) and (d), the fundam ental m agnetotherm al mode lies above the therm al continuum  in the 
complex plane. Finally in the last two graphs (e) and (f), the fundam ental Alfven mode is located above 
the therm al continuum  on the real s axis.

BiW

Figure 4.5: The fundam ental Alfven mode with e = l / \ / 2  for m  =  1 and various values 
of the axial wave num ber k. Going from (a) to (f), the values of k are 500, 1,000, 1,500,
2,000, 2,500 and 3,000. The corresponding growth rates are 1.4102, 1.4122, 1.4129, 
1.4132, 1.4134 and 1.4135. In each case 4,000 gridpoints were used to  calculate these 
eigenfunctions. Note the expanded scale for r.

I t is easy to  see th a t the eigenfunctions change very little  as the m agnetotherm al modes move around 
the continuum , bu t as k increases, the eigenfunctions get more and more localised. As in the ideal case, 
it is found th a t as k  gets large the growth rate tends to a fixed, positive, real num ber. This is calculated 
by LEDA using 2,000 radial gridpoints. For three different values of k the growth rate is expanded as in 
E quation (4.28), and solved to give the values of sqi si and sg. For values of k equal to  1,000, 1,500 and
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2,000, it is found th a t sq =  1.41421344 and si =  —1.83238. To understand the qualitative differences 
in coupling of magnetic and therm al instabilities for equilibria far from or close to m arginal stability, 
€ is varied in the following. Setting e =  a sim ilar study is carried out, w ith particular attention
focused on the large k behaviour. W hen k =  1,000, 2,000 and 3,000 and using 4,000 gridpoints in LEDA, 
it  is found th a t sq — and si =  —1.99996. The eigenfunctions for this value of e and for various, large 
values of k are shown in Figure 4.5. Notice th a t the eigenfunctions get more localised about r  =  0 as ^ 
increases.
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Figure 4.6: The fundam ental Alfven and m agnetotherm al modes with e =  0.17 for m  = I 
and various values of the axial wave number k. The therm al continuum  is represented 
by the solid fat line.
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Figure 4.7: P lo t of log Im (s) against logk  for the m agnetotherm al modes shown in Figure 
4.6. The points lie on a straight line w ith a  gradient o f -1.

Now consider the case for a  large value of e. For e =  16.9, the therm al continuum  lies between s =  0.0237
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at r  =  0 to  s =  0.0059 a t =  1. For k =  1.424, the fundam ental Alfven m ode is found above the 
m axim um  of the continuum, w ith a corresponding growth rate of s =  0.0379. Using large values of k 
equal to 1,000, 1,500 and 2,000, with corresponding growth rates of 1.4125, 1.4131 and 1.4134, w ith 
2,000 gridpoints Equation (4.28) yields sq = 1.41421349 and si =  —1.68232. Com paring these values 
w ith the ones obtained in the ideal case it can be seen th a t the modification to  si  is due to  the effect 
of the non-ideal term s which are sm all because of the large value of e. Consider next a small value 
of e, e =  0.17. The therm al continuum lies between s =  2.3680 at r  =  0 to  s =  0.5719 a t r  =  1. 
The fundam ental Alfven mode for k — 1.423 is found below the m inim um  of the continuum , w ith a 
corresponding growth rate  of s =  0.0247. The value of k is gradually increased until k =  1.76 which has 
a growth rate  of s =  0.5695. This is ju s t below the m inim um  value of the therm al continuum. W hen k in 
increased further, the fundam ental Alfven mode enters the complex plane and becomes the fundam ental 
m agnetotherm al mode. As k increases further, the fundam ental m agnetotherm al mode follows the curve 
shown in Figure 4.6. For this value of e, the fundam ental m agnetotherm al m ode tends towards a fixed 
value inside the therm al continuum  rather than  splitting up into the fundam ental therm al and Alfven 
modes as in the previous cases when rejoining the real s axis.
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Figure 4.8: P lot of the correction term  si in Equation (4.55) against e.

For any finite k the mode rem ains complex (overstable); only in the lim it for —+ oo is a  purely real 
(unstable) m ode recovered. To confirm this, the values of log Im (s) are p lotted against log k in Figure 
4.7. As can be seen, the values plotted lie on a straight line, with gradient -1. Hence Im (s) ~  k~^, so 
th a t as k tends to  infinity, Im (s) tends to  zero and the fundam ental m agnetotherm al mode enters the 
therm al continuum  a t g % 1.4142 as predicted by the eigenvalues corresponding to k equal to  50, 100 
and 140 substitu ted  into Equation (4.28).

Finally, an even smaller value of e, e — 0.01 is considered. In this case, the therm al continuum  lies 
between a =  9.1 at r  =  1 to  s =  40.0 a t ?’ =  0. The fundam ental Alfven mode is located below the 
therm al continuum . As k is increased, it is found th a t the value of the growth rate this mode asym ptotes 
to is below the therm al continuum. For the values of k equal to 500, 600 and 700 w ith 750 gridpoints, 
it is found th a t sq =  1.41421348 and s i =  —0.96644. Notice th a t in all the cases for e dealt w ith so 
far, the value of sq has always been equal to \/2 . The large k behaviour for these values of e can be 
predicted analytically. The ballooning equations are m anipulated and a W KB analysis carried out. A 
detailed description of this is included in Appendix E. It is found th a t for A =  0, the expansion for the
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growth ra te  is given by

=  V 2 -
2  (n +  A)

A
14e-V 2
5 e - \ / 2

+ (4.55)

where n is the mode num ber. Equation (4.55) yields a fair am ount of inform ation about large k be
haviour. For any value of e, Equation (4.55) gives sq =  V2, so th a t as ^ + oo, s \ /2  for all e. This 
is in agreem ent with the numerical results obtained. Care, however, m ust be used in applying the 1/k  
correction term  in Equation (4.55). This was derived taking no account of the singularity corresponding 
to  the therm al continuum. Therefore, whenever s =  y/2 lies w ithin the therm al continuum , the correc
tion term  in Equation (4,55) will not give the correct value for s i. Referring to  Figure 4.2, it  can be 
shown th a t s =  \ / 2  is a t the m axim um  of the therm al continuum for e =  \ /2 /5  and s =  y / 2  is a t the 
m inim um  of the therm al continuum  for e ~  0.0663. Hence, the correction term  in Equation (4.55) is 
valid for all e except whenever 0.0663 <  e <  \ /2 /5 . Equation (4.55) predicts the large k behaviour of 
all the Alfven modes (or harmonics). In this work, attention is restricted to the fundam ental Alfven 
mode and so n =  0 in Equation (4.55). For large e, the non-ideal term s are sm all and the results should 
behave as in the ideal case considered earlier. This is indeed so as can be seen in Equation (4.55), since 

as 6 - 4- DO, s y / 2  — the value previously predicted by Appendix D for the ideal case. To get
an idea of how si varies w ith the allowed values of e, s i is plotted against e in Figure 4.8. Substituting 
in the values of e taken in the numerical work into Equation (4.55), the predictions for sq and s i can 
be made. These are sum m arised in Table 4.2. These results are in excellent agreement w ith the growth 
rates obtained by LEDA and again give confidence th a t the numerical results are accurate. The error in 
So is O  ( l /^ ^ )  and s i, 0 { l / k ) .  For the results in which A;=1,000, the error in sq is therefore 10“ ® and 
in Si is 1 0 “ ^.

Value of € Values of k Value of So Value of Si Prediction of si
16.9
1 . 2

1/v^
0.17
0 . 0 1

1.000, 1,500, 2,000
1.000, 1,500, 2,000
1.000, 2,000, 3,000 

50, 100, 140 
500, 600, 700

1.41421349
1.41421344
1.41421355

1.414207
1.41421348

-1.68232
-1.83238
-1.99996
±1.2946%
-0.96644

-1.68245
-1.83262

- 2

±1.2931%
-0.96645

Table 4.2: Sum m ary of the values of s q  and si found numerically, for a fixed value of e 
and large k. The predictions for the correction term  si given by Equation (4.55) can be 
compared to the numerical values. Agreement is found correct to  3 decimal places for 
large values of k.

As in the previous ideal case, these results could be made more accurate by increasing the values of k 
and hence the num ber of gridpoints used to  calculate the eigenvalues. Also, w ith a higher order W KB 
approxim ation, it should be possible to predict the value of sg.

4.5 .3  B allooning m odes for non-zero A

In this Section, a  non-zero component along the z direction is included in the equilibrium  m agnetic field. 
To model this a slightly different dispersion relation is obtained by setting j V S '|^=  in Equation
(4.51) to give

B i
I I ( / ? p + b " ) t  •

)  ( t  -  1 ) B 2
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ep
J.2

+

Be B I

-S”-  I
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( 7  -  1)
J3  ̂ H - ( es  — crû) =  0. (4.56)

To be able to  compare the W KB analysis with numerical results, a param eter n  is introduced throughout 
the work in this Section. The wave numbers k and m both depend on this integer param eter n, where 
m  = n + M  and k  =  —n/A. As before, the value of M  =  1.

Ro(s) Re(s)

Radius

r) Radius

' 10^ Ro(s)

Figure 4.9: The solutions to  the dispersion relation for various values of A. In (a) and
(b), the real part of the solutions are shown for €=0.17 with A =  0.25 and 0.75. In (c) 
and (d), e =16.9 and A =  0.25 and 0.75.

This guarantees th a t the mode has the same variation along the magnetic field as in the previous section. 
The dispersion relation given by Equation (4.56) is solved as in the previous case for A =  0 and m =  1. 
The five solutions for two values of e and various values of A are shown in Figure 4.9 together with 
the therm al continuum  represented by the dotted line which was calculated w ith n = l,0 0 0  and M  — 
Notice th a t in Figures 4.9(a) and (b), the therm al continuum and the therm al mode curves coincide a t 
r  =  0. In Figures 4.9(c) and (d), the therm al continuum  cannot be distinguished from the corresponding 
therm al mode ballooning curves.
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Taking e =  16.97 and A =  0.25, the therm al continuum lies between s =  0.0222 a t r  =  0 to  s =  0.0055 
a t r  =  1. For a value of n =  1, the fundam ental Alfven mode was located above the m axim um  of the 
therm al continuum  w ith a growth rate of s =  0.6862. For large values of n, inform ation can be gained 
from  the dispersion relation given by Equation (4.56). In Figure 4.9(c) it  can be seen th a t the Alfven 
modes have a m axim um  growth rate  associated with them . This growth rate was calculated analytically 
and found to be s =  1.01556585 =  Smax which occurred a t a radius of r  =  0.4567 =  ?'max- Therefore, for 
large values of n, the fundam ental Alfven mode should asym ptote to a growth ra te  of Smax and should 
be extremely localised a t a radius of rmax- Notice th a t this is one point th a t differs from the work for 
A =  0.

»pV t tTt(n iTtp n nTtT>trtrq Rjiu 0.0* »i |i i |i iM umiumin f i|ii\iu riu n n rin tim n n in » | Aadu;

Figure 4.10: The fundam ental Alfven mode with e =  16.9 and A =  0.25 for various values 
of the param eter n. Going from (a) to (f), the values of n are 5, 10, 50, 200, 400 and 800. 
The corresponding growth rates are 0.9611, 0.9875, 1.0098, 1.0141, 1.0148 and 1.0152. 
In each case 4,000 gridpoints were used to  calculate these eigenfunctions.

In th a t Section, for this value of e, the fundam ental Alfven mode was localised around the origin, bu t 
here, the fundam ental Alfven m ode is localised a t a point r ~  r^ax- This means th a t the previous 
analysis carried out for A =  0 for which r  was assumed to  be small cannot be easily adapted to model 
th is case. Again, LEDA was used to  calculate the fundam ental Alfven mode as n  was varied. Figure 
4.10 shows how the fundam ental Alfven mode behaves as n  increases. As n  gets larger, it can easily be 
seen th a t the fundam ental Alfven mode becomes increasingly more localised. The values of the  radius 
corresponding to  the m axim um  of the mode are given in Table 4.3. From Table 4.3, it can be seen 
th a t as n  gets large, the values for the radius of the m axim um  approach the value of r  predicted by the 
ballooning equations. As in the previous cases, the corresponding eigenvalues for the curves shown in 
Figure 4.10 are expressed in the asym ptotic form for large n  as
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n (4.57)

For all values of n chosen, the value of sq predicted by the ballooning equations is correct to  4 decimal 
places, however for the values of n =  200,400 and 800, agreement is particularly  good, w ith sq = 
1.015565843 and s i =  —0.290752. For this value of e, the elTect of varying A is examined.

Values of n Values of r Values of s
5 0.5256 0.9611

1 0 0.4911 0.9875
50 0.4636 1.0098
200 0.4584 1.0141
400 0.4576 1.0148
800 0.4571 1.0152

Table 4.3; The values of radius th a t correspond to the m axim um  value of the eigenfunc
tion for the solutions shown in Figure 4.10 and corresponding values of n  shown. Here 
e =  16.9.

The m axim um  of the ballooning curves (corresponding to the value sq) are evaluated for various values 
of A and are p lotted in Figure 4.11. Notice th a t as A increases, the value of sq decreases quite rapidly, 
until A % 0.6, where the growth rate becomes very small.
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Figure 4.11: The values of the growth ra te  sq, predicted by finding the m axim um  of the 
ballooning curve, p lotted against A for e =  16.9.

This is a  consequence of the ideal modes becoming stable and the therm al m ode being picked up. Thus 
for this particular value of e, increasing the m agnetic field in the z direction decreases the growth rate 
th a t the fundam ental Alfven mode asym ptotes to as n ^  oo. The case for sm all e is investigated next.
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For A =  0.25 and e =  0.17, the therm al continuum  is located between s — 0.5366 at r  =  1 to s =  2.2006 
at r  =  0. For n =  1, the fundam ental m agnetotherm al modes are located in the complex plane with 
growth rates of s =  0.8120 ±  0.1645%.
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Figure 4.12: The fundam ental m agnetotherm al modes with e =  0.17 for M  — 1, A =  0.25 
and various values of the param eter n. The therm al continuum is represented by the 
solid line.

As n  is increased up to n =  53 the fundam ental m agnetotherm al mode rem ains in the complex plane 
as can be seen in Figure 4.12. Unfortunately, m agnetotherm al modes corresponding to values of n  >  53 
could not be calculated numerically due to  poor convergence in LEDA. However, it can easily be seen 
th a t m agnetotherm al modes do exist for these values of n, e and A. It may be expected th a t as n —̂ oo 
the m agnetotherm al modes join the therm al continuum at s =  ^/2.

4.6  C h ap ter Sum m ary

This C hapter has investigated jo in t m agnetic and therm al instabilities (m agnetotherm al instabilities) 
in a simple cylindrical equilibrium. In the ideal case, for a shearless equilibrium  m agnetic field, the 
fundam ental Alfven mode was located on the real s axis for a small value of the axial wave num ber 
k, and a fixed value of the azim uthal wave number m. As the value of k was increased, it was found 
th a t the fundam ental Alfven mode became more localised around r  =  0, whilst the growth rate  headed 
towards a fixed, larger value. This growth rate  was predicted by expanding the Hain-Liist equation for 
small r  and large kr. A W KB analysis was performed and agreement with the numerical results was 
obtained.

A sim ilar study was also performed in the non-ideal case for a shearless equilibrium  m agnetic field 
configuration when perpendicular and parallel therm al conduction were neglected. The dispersion rela
tion was derived via the use of the ballooning approxim ation and the five roots plotted. The therm al 
continuum  was located on the real s axis and plotted also. The norm al mode solutions were then 
obtained for various values of e, the ratio  of the coronal radiation tim e scale to  the Alfven tim e scale.

The fundam ental unstable Alfven mode was found on the real s axis below the therm al continuum  for 
a sm all value of k. For e = 1.2, as A: was increased, the fundam ental Alfven mode ju st touched the lower 
end of the therm al continuum. It then entered the complex plane as the fundam ental m agnetotherm al
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modes before moving around to  the top end of the continuum. It was found th a t when the fundam ental 
m agnetotherm al modes rejoined the real s axis, they split up into two modes, the  fundam ental therm al 
mode which moved down towards the top end of the therm al continuum and the fundam ental Alfven 
mode which headed towards a fixed, larger growth rate which occurred as the wave num ber k was 
increased. The values of e were then varied, to  investigate the qualitative differences in the coupling of 
m agnetic and therm al instabilities for equilibria far from or close to m arginal stability.

For a large value of e, the fundam ental Alfven mode was located on the real s axis above the therm al 
continuum  and was found to asym ptote towards a  fixed growth rate as the wave num ber k increased.

For a sm all value of e, c =  0.17 corresponding to the case when the plasm a is close to  ideal m arginal 
stab ility  when the growth tim e is larger than  the radiation tim e, the fundam ental Alfven m ode was 
located below the therm al continuum. As k was increased, the fundam ental Alfven m ode ju s t touched 
the lower end of the therm al continuum , before entering the complex plane. As the value of k  was further 
increased, the fundam ental m agnetotherm al modes headed back down towards the real s axis, close to 
the m iddle of the therm al continuum. Only in the lim it k co is a purely real, unstable continuum  
m ode retrieved, with a corresponding growth rate s =  a / 2 .

For an even smaller value of e, e =  0.01, the fundam ental Alfven mode was found on the real s 
axis below the therm al continuum, for a small value of k. As the value of k was increased, this mode 
asym ptotes to a growth rate of s =  ^/2, well below the m inim um  of the therm al continuum.

In all the above cases, it was found th a t as Âr —>■ oo, s —>■ a/ 2 . Analytically, the growth ra te  was 
expanded in term s of 1 /Ar and the values of sq and the first order correction term  si  were predicted 
by m anipulating the ballooning equations into a second order differential equation containing a large 
param eter Ar in it. This was solved by another WKB analysis. The resulting equation predicted sq =  \/2  
for all values of e. For e <  0.0663, sq = \ /2  was below the minimum of the therm al continuum  and so 
m agnetotherm al modes were shown not exist. For 0.0663 <  e <  A/2/5, the fundam ental m agnetotherm al 
modes approached -\/2 inside the therm al continuum as fc —̂ oo. For e >  a / 2/ 5 , sq = \ /2  is above the 
therm al continuum  and hence mode coalescence will occur. For the values of e studied where s =  a/2 was 
outside the therm al continuum, excellent agreement was obtained between the numerical and analytical 
results.

For a non-zero component of the equilibrium magnetic field in the z direction, the ballooning equa
tions were m anipulated to give a slightly different dispersion relation which was again solved numerically.

For a sm all value of e, the fundam ental m agnetotherm al mode was located in the complex plane with 
n =  1. As n  was increased this mode was found to stay in the complex plane. The m axim um  value for 
n  taken was n =  53. Above this value, the eigenfunction was found to be very difficult to calculate.

For a large value of e and value of n =  1, the fundam ental Alfven mode was located on the real s 
axis and above the m axim um  of the therm al continuum. This mode travelled along the real s axis as n 
increased, before approaching a fixed, real, positive growth rate, Smax- This mode was also found to  be 
extremely localised about the point r  =  %’max for large values of n. These values were again calculated 
analytically and excellent agreement was found using the ballooning approxim ation.

This C hapter has therefore dem onstrated th a t therm al and m agnetic instabilities can interact to 
form m agnetotherm al instabilities. It is well known th a t the therm al instability  m ay be im portan t in 
prominence form ation and th a t it is the m agnetic instability which results in a  prominence erupting into 
a  flare. It is possible th a t a neighbouring therm al instability may trigger the m agnetic instability, thus 
in itiating  the pre-flare phase. The oscillations observed ju st before a flare occurs may be explained in 
term s of overstable wave modes or m agnetotherm al modes. M agnetotherm al modes could therefore play 
an im portan t part in the eruption of prominences at the onset of solar flares.



C h a p te r  5

L ine-tying in Coronal A rcades

. . . i f  you don’t happen to have any new nuts, changing the left 
and right hand nuts over side to side will often bring an unused 
part of their collars in line with the slot.

-Tim  M illington, renewing an output-shaft oil seal.

Instead of getting bigger and better bangs in the combustion 
chambers, one could achieve unwelcome and expensive noises 
lower down.

-T im  M illington, on how to tune an imp engine.

5.1 O verv iew

In this C hapter the effect of line-tying is considered in a coronal arcade. The ballooning equations 
which were introduced in C hapter 4 are m anipulated to give a dispersion relation th a t is a  quadratic 
in the square of the azim uthal wave num ber m  if parallel therm al conduction is neglected, or a cubic 
in if parallel conduction is included. Rigid wall boundary conditions are applied to  this dispersion 
relation. The dispersion relation is then solved numerically and the solutions plotted. Unfortunately, 
the expression for the therm al continuum  in line-tied arcades is required since, the therm al continuum  
m ust play an im portan t role in the proceedings. This calculation is long and by no means trivial and is 
left for future work.

5.2 In tro d u ctio n

In C hapter 4, the com bination of m agnetic and therm al instabilities in a coronal arcade were examined 
in the absence of the effects of line-tying. It was dem onstrated th a t for certain values of the ratio  
of the radiative tim e scale to  the Alfven tim e scale, the fundam ental, unstable Alfven mode could 
coalesce w ith the fundam ental therm al mode to produce overstable m agnetotherm al modes. This is not 
a realistic situation  since, in the solar corona the m agnetic field lines are essentially of finite length and 
anchored to  the photosphere. In the study of prominences, two types of m agnetic field line structure 
have been examined. These correspond to norm al and inverse polarity prominences (see C hapter 1 for 
more details). In bo th  these types of prominence, the m agnetic field lines emerge from the photosphere 
and forms an overlying arcade structure. Therefore, a more realistic prominence model will be one in 
which the m agnetic field lines are anchored to the photosphere. This effect, known as line-tying, is 
included in this Chapter.
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Line-tying is im portan t in the form ation of prominences in the solar corona since, w ithout line- 
tying, the prominence could not form. In the solar corona, the Alfven tim e scale is much shorter 
th an  the radiative (or therm al instability) tim e scale. Hence, any equilibrium  would be destroyed 
by a m agnetic instability  long before the therm al instability could generate the cool condensation. 
It is therefore necessary for prominence form ation to have a magnetically stable equilibrium  before 
the therm al instability  can generate the prominence. I t is not difficult to conceive th a t anchoring 
the m agnetic field lines in the photosphere (and thus restricting field line movement) will significantly 
influence the stability of the global m agnetic field.

As the density of the photosphere is much larger than  the density of the solar corona, perturbations 
occuring in the corona will not substantially  move the endpoints of the photosphere-anchored m agnetic 
field lines. Consequently, line-tying will be strongly stablising, as realised by R aadu (1972). Since line- 
tying has a substantial effect on the m agnetic instability, it is im portant to study the effect of line-tying 
on the mode coalescence described in C hapter 4. In particular, it has to  be established w hether mode 
coalescence occurs. If so, the effect on the m agnetotherm al modes has to  be investigated.

Hence, the model presented in C hapter 4 is extended to include line-tying and the m ethod of solution 
examined. For comparison, exactly the same equilibrium profile is used, together w ith the ballooning 
equations. The layout of this C hapter is as follows; Section 5.3 recaps the ballooning and equilibrium  
equations considered and Section 5.4 discusses the boundary conditions which m ay be used. The m ethod 
of solution is given in Section 5.5 and Section 5.6 summarises the results and discusses options for 
completing this work.

5.3 T h e basic eq u ation s

The equilibrium  equations used are the Gold-Hoyle equilibrium equations which were described earlier 
in C hapter 4 and are produced here for convenience:

B qq — , o\ ) B zQ
A

( l - b r 2 ) '  -  ( l  +  r 2 ) '

A full description of this equilibrium  m agnetic field profile and its various properties is described in 
C hapter 4. The ballooning equations introduced in C hapter 4 for an isotherm al equilibrium  are

B W  (5.2)

B -V A ii =  +  (5.3)

 ̂ +

T i =  -
a /:

TJ
P. -  i f  (5-6)

with
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€ —  Tradf'^Aj B, —  Trad/'^cond a n d  (3 —  Tĵ /t  ̂ , (5.7)

where (j) is the electrostatic potential, which is, to leading order, related to the perpendicular component 
of the perturbed velocity, A|| is the parallel component of the vector potential, u is the parallel component 
of the perturbed velocity, Ti is the perturbed tem perature and pi is the perturbed plasm a pressure. The 
tim e scales given by t a , Trad, Tcond and Ts are defined in Table 4.1 and S  is given by

S  = F { r ) -
rBz

+  z. (5.8)

As in C hapter 4, for non-trivial solution, the determ inant of the coefficients of these variables vanishes 
giving

|V 5 |2  I
dp4- +  ^ 2  +  (cTR -es)

( 7  -  1 )
+ 2s"^pPB^o'n. dp 

rBo dr

B Ï  \  ( 7 - l ) S i
(TR =  0 ,

where

IP d T  /
/  p

(5.9)

(5.10)

is the isobaric growth rate. Notice th a t Equation (5.9) can also be obtained by rearranging Equation 
(4.51) in C hapter 4. One m ajor difference between this work and the previous work presented in Chapter 
4 is th a t previously, the azim uthal wave number m  was an integer whereas here m  is restricted by the 
boundary conditions and need not be an integer. Notice th a t Equation (5.9) is a quadratic in Tm? 
when parallel therm al conduction is set equal to zero and a cubic equation in m? when parallel therm al 
conduction is included, provided 7 ^ 1 . Substituting the isotherm al Gold-Hoyle equilibrium  equations 
(5.1) w ith d C /dp  =  po, d C /d T  — [a — l)po , ^  =  1, R  =  0 and a; =  —1 into Equation (5.9), the 
following equation is obtained

4r^ ( 1  4 - r^) 

1
(1 4- r^)

„£ L . .,{ |V S p  [2(7 -  1) (1 -  V ) -  27e» (1 +  m*

( - 4  (1 -  Â ) 4- (1 4- r^)  ̂ | VS-p) (2 (7 -  1) (l -  Â ) -  2-fcs ( l 4-r^ )')

4 - ( 7  -  1 ) (r  ̂4 - A^) (1 4 - r^) | V 5 p  ^2 es (l 4 - r^)  ̂— (l -  A^)^

8ĝ  (r  ̂ -b Â ) (2eg (2 -  7) ( l  4- -  2 (l -  Â ) (7 -  1))
4 (1 4- r^)

4- |V 5'|^6X l +  r ^ )X 2 ( l-A ^ )(7 -l)-6 g ( l4 -r ^ )(2 7 4 -4 r :^  +  2A ::(2-7))) 1 =  0, (5.11)
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where

5.4 B ou n d ary  C on d ition s

T hroughout the work in this Chapter, the effect of line-tying is im plemented by letting the m agnetic field 
lines be anchored to the photosphere a t 0 =  ± 7t / 2 . Since Equation (5.9) is a  fourth-order polynom ial in 
m, when parallel therm al conduction is neglected, four boundary conditions (or line-tying conditions) are 
required. In the corona, the Alfven tim e scale is around 5 seconds while in the photosphere it is about 
100 seconds. Thus, the photosphere cannot respond to Alfvenic disturbances in the corona and coronal 
perturbations do not effect the photosphere. It is also difficult to conceive how a small perturbation  of a 
plasm a, w ith the density of the corona, can effect the much denser photospheric plasm a. Hence, two of 
the boundary conditions used for a coronal arcade require th a t the component of the perturbed velocity 
perpendicular to the equilibrium  m agnetic field vanish a t the photospheric interface

=  0 at 0 — ±  —. (5.13)

Another two boundary conditions are needed. These concern the parallel component of the perturbed
velocity. They have been a great source of controversy over the past decade. Two possible sets have
been considered recently. One set of conditions was proposed by Einaudi and Van Hoven (1981, 1983), 
who argued th a t the best boundary conditions to  use were where the p lasm a’s energy was conserved, 
bu t, the parallel component of the perturbed velocity was non-zero

v ' \ \ \ e ~ - i t i 2  -  1̂11 0=77/2, (5.14)

and

£ 4
dn dn

(5.15)
0 = 7t / 2- 7t / 2

where n is a  field aligned co-ordinate. The conditions given by Equations (5.14) and (5.15) are known 
as flow through conditions. The second set of boundary conditions have been used by m any authors, for 
example, Hood (1986a), Cargill and Hood (1989) and Hardie, Hood and Allen (1991). They argue th a t 
the best conditions to use are where the parallel perturbed velocity vanishes at the photosphere

f|l =  0 at 9 — ± ^ .  (5.16)

The conditions given by Equations (5.16) are known as rigid wall conditions. Hood (1986a) compared 
these two sets of boundary conditions and concluded th a t rigid wall conditions were best for ideal MHD 
modes w ith relatively high frequencies and th a t flow through conditions were best for slower therm al 
or resistive instabilities. Since the aim of this C hapter is to investigate mode coalescence in a line-tied 
arcade, the boundary conditions used will be the rigid wall conditions.

Notice th a t if parallel therm al conduction is included in the analysis, the dispersion relation given 
by Equation (5.9) is a cubic in m? and hence, a further set of boundary conditions is required. These 
are usually applied to the perturbed tem perature and are another controversial m atter. There are two 
favoured sets of therm al boundary conditions which could be used. The first set of boundary conditions
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trea t the photosphere as a perfectly, therm ally conducting plasm a of fixed tem perature so th a t

T ' =  0 at 9 = ± | .  (5.17)

The second possibility is to  trea t the photosphere as a perfect insulator (no heat flux into the photo
sphere) w ith the result th a t

= 0  at 9 = dr—. (5.18)

The therm al boundary conditions given by Equation (5.17) are probably the m ost realistic to  use in 
practice, since it is difficult to  conceive how the diffuse corona could significantly increase the tem perature 
of the photosphere. However, if tim e and resources perm it, the best idea would be to  consider both  these 
conditions in tu rn  and compare the results.

5.5 M eth o d  o f S o lu tion

For simplicity, the solutions are split up into even and odd terms. The boundary conditions given by 
Equations (5.13) and (5.16) are applied to  the dispersion relation using the following procedure. The 
electrostatic potential (j) in the ballooning equations is related to the perpendicular component of the 
perturbed velocity v'^ by the simplified version of O hm ’s law (see Equation (4.37) in Chapter 4) and u 
is the parallel component of the perturbed velocity. Hence, the boundary conditions will be satisfied if

— 0 at 9 = 4:—, (5.19)

and

The even solutions are given by

and

u = 0 a t 9 = 4b—. (5.20)

(/> =  a cos m i0 H- 6  cos m 2 ^, (5.21)

u =  A sin m i ̂  +  B sin mg (5 .2 2 )

where a, b, A  and B  are functions of radius and growth rate and m j  and are the solutions to  the 
dispersion relation given by Equation (5.11). Substituting Equation (5.21) into the ballooning equations 
(5.2)-(5.4) gives

and

A  =

B  =

2 ( l-b r^ )^  
s (r^  +  A^)

|V 5 p m f  ,
+2 s ( l  —A^) 4 g (1 -b r^)

2 ( l - b r ^ ) ^  | V 5 p  m j  g | 
g (r^ -fA ^ )

a m i,  (5.23)

bm2. (5.24)
2g (1 — A^) 4 g ( l  +  r2)

Applying the boundary conditions given by Equations (5.19) and (5.20) to  Equations (5.21) and (5.22) 
gives

„ , o s { ^ ) + b œ s { ^ )  =  0, (5.25)
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and

2 /  ' V 2

Using Equations (5.23) and (5.24), Equations (5.25) and (5.26), can be combined to give 

[am i +  /?] m i tan  =  [am^ + /3] mg tan  ( ~ ^ )  ,

where

and

/? =  ( 1 - A^) ( l  +  r 2 ) s 2 | v 5 p - 8 ( 1 - A^) . 

Sim ilarly for the odd modes given by

(j) =  a sin m i^  +  6 sin m 2 ^,

and

u =  A cos m i^ -}-S  cos m 2 ^,

the boundary conditions become

[am i  +  /5] rni cot ^ =  [amg -f /?] m 2 cot ^
m27T\

2  y

(6.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

Following Chapter 4, d F /d r  is set equal to zero in Equation (5.12). The ballooning equations, subject 
to  the line-tied boundary conditions, are solved on each m agnetic flux surface. The m axim um  of the 
ballooning growth rate, as a function of the flux co-ordinate r  may then be obtained. This m axim um  
growth, rate should correspond to the m ost unstable physical mode. It should be noted th a t proof of 
th is sta tem ent has yet to  be obtained for non-ideal MHD. Unfortunately, a t present, it is not possible 
to  verify this result. However, a numerical code which is capable of solving the equations describing 
norm al modes in line-tied arcades could possibly be obtained by adapting POLLUX, the finite element 
code used by Van der Linden (1991) to obtain norm al modes solutions subject to line-tying boundary 
conditions in a coronal loop.

To check Equations (5.11) and (5.27) set 7  =  1, A =  0 and | V 5 p =  1. This yields

m^ -f .( l4 - r 2 )
m^ 4-

-2 g^i

and

where

m i )-(T ) =

0 ,

m 2

Ei

(5.33)

(5.34)

(5.35)

and
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G =  g ( i + 2 a (5 .36)

1 ,These are the same Equations obtained by Hardie, Hood and Allen (1991) by allowing 7  =  1, 
po =  1/2 and r) = 0. The boundary conditions obtained give a relationship between m i and mg.

The next step is therefore to solve the dispersion relation given by Equation (5.11) subject to the 
boundary conditions given by Equation (5.27) numerically and plot the obtained growth rate  s against 
the cylinder radius r . As a check for the equations and numerical co d e , the case studied by Hardie, Hood 
and Allen (1991) is considered first. In Figure 5.1, the solutions to the dispersion relation subject to 
the boundary conditions for e—1,000 and 7  =  1 are plotted. The dotted curve corresponds to po =  1/2, 
the value taken by Hardie, Hood and Allen (1991) and the solid curve corresponds to po =  Po for the 
equilibrium  plasm a pressure po defined in Equation (5.1).

0.5-q

0.25

0 .0 -E Radius
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Figure 5.1: The solutions to the dispersion relation given by Equation (5.9) subject to 
the boundary condition given by Equation (5.27) when e= l,000 and 7 = 1 . The dotted 
curve corresponds to  po — 1/2, the value taken by Hardie et al. (1991) and the solid 
curve corresponds to  po = po for the equilibrium plasm a pressure po defined in Equation 
(5 .1).

The dotted  line can also be obtained from the solid curve by dividing the growth rates by a / 2 . The 
curves cut the radius axis a t r = 0.90. The m axim um  growth rate occurs a t r  =  0.53 and has a value of 
s =  0.33 for po =  1/2 and s — 0.46 for po =  po. These curves correspond to  the Alfven modes. Thus, it 
m ay be expected th a t for large values of the axial wave number k, the m ost unstable, physical, m agnetic 
instability  would have a growth rate of 5  =  0.33 for the equilibrium profile where po =  po or s — 0.46 
for the equilibrium  considered by Hardie et al  (1991).

In Figure 5.2, the effect of having 7  — 5 /3  is examined. The top curve is the isobaric growth rate, 
given by Equation (5.10) for A =  0 and 7̂  =  0. Going from top to bottom , the other curves correspond 
to  A =  0.3, 0.2, 0.1, 0.05 and 0. Notice th a t there is a  distinct difference in behaviour between A zero 
and non-zero close to  r  =  0. This is because of the A^/r^ term  in the |V 5 |^  term s of the dispersion 
relation. In all the cases investigated for A ^ O ,  the corresponding isobaric growth rate curves have m et 
the solution curves a t r  =  0 and have a sim ilar shape to the curve shown for A =  0. The solution curves
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in this case correspond to the therm al modes, since the Alfven modes have been shown by Cargill, Hood 
and Migliuolos (1986) to be stable for 7  >  4 /3 . Since the m agnetic modes are stable, it would appear 
th a t for th is value of e, mode coalescence (yielding over stable m agnetotherm al modes) does not occur. 
To obtain  m agnetotherm al modes, it is necessary to have both a m agnetic instability and a therm al 
instability. This requires a value of 7  <  4 /3 , so th a t a m agnetic instability  can form and a value of 
7  7  ̂ 1, so th a t the therm al instability  can be present. Thus, a value of 7  should be taken such th a t both  
these instabilities m ay occur if m agnetotherm al modes are to  be studied.
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Figure 5.2: The solutions to the dispersion relation when e=l,000, 7  =  5 /3  and various 
values of A. The top curve is the isobaric growth rate given by Equation (5.10) when 
A =  0 and R  =  0. Going from top to  bottom , the other curves correspond to A =  0.3,
0.2, 0.1, 0.05 and 0.

So far, the therm al continuum has been neglected in this analysis. As seen in the previous Chapters, 
this had an im portan t bearing on the stability  of this equilibrium and hence the results obtained. 
Therefore, the results obtained are incomplete as an in-depth study of the therm al continuum  in line- 
tied geometries is required. Unfortunately, the expression for the therm al continuum  in line-tied arcades 
requires a long and difficult calculation. This is left for future work. Only when the location of the 
therm al continuum  is known, can progress be made.

Once this expression is obtained, the influence of the therm al continuum  on the therm al instability  
and m ode coalescence can be assessed. Then, when the basic mechanism has been fully understood for 
a  fixed value of e, the next stage would be to  vary e to investigate mode coupling in équilibra close to 
or far from m arginal stability.

5,6 C h ap ter Sum m ary

This C hapter has introduced the effects of line-tying in a coronal arcade. The ballooning equations were 
m anipulated  to yield a dispersion relation. The various forms of the line-tying boundary conditions 
were discussed and rigid wall conditions chosen. These boundary conditions sta ted  th a t the perturbed 
velocity of the plasm a m ust vanish at the photospheric interface. The dispersion relation was then solved 
num erically subject to these rigid wall conditions and the solutions plotted.

The previous equations and the numerical results of Hardie et al. (1991) were obtained for 7 = 1
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and Po =  1/2 for a  perfectly conducting (ideal) plasm a. I t was shown by Cargill et al  (1986) th a t for 
7  =  5 /3 , the ideal (magnetic) modes were stabilised. This was dem onstrated for 6=1,000 and various 
values of A in Figure 5.2. Figure 5.2 also showed th a t the therm al modes are unstable for certain values 
of A.

However, these results were obtained w ithout the knowledge of the therm al continuum  in line-tied 
arcades. The expression for the therm al continuum  in line-tied geometries is however necessary if further 
progress is to  be made. This is left as a suggestion for future work.



C h a p te r  6

Sum m ary and Future W ork

...But, even on cross-plies I  canH get the back to hang out 
and the car does understeer first but not as much as that nasty 
little man from Top Gear seems to think.

-M atthew  Holingsworth, Im p club magazine, April 94.

. . . I  now use the words ‘Tony Mason’ as the worst possible form  
of expletive.

-Richard Llewellyn, Imp club magazine, June 94.

6.1 T h es is  S um m ary

This thesis has examined several problems related to  therm al instabilities in the solar corona. The work 
is im portan t in facilitating the understanding of the form ation and eruption of solar prominences.

C hapter 1 has described various solar phenom ena both  on and close to the solar surface. In particular, 
a detailed description of quiescent prominences and the associated fine scale structure is given. Several 
possible mechanisms for prominence form ation are discussed. The therm al instability  is the m ost likely 
candidate because it accounts not only for the prominence’s form ation but, also for the coronal cavity 
observed above the prominence.

C hapter 2 has described the therm al instability both physically and m athem atically. For an infinite, 
uniform  m edium , first studied by Field (1965), the instability criteria are derived. From the description 
given in C hapter 2 it can be seen how a therm al instability may cause a prominence to form and why 
the prominence is cooler and denser than  the surrounding corona.

The effect of finite, scalar resistivity and perpendicular therm al conduction on the therm al instability 
was examined in C hapter 3. In the absence of these two dissipative term s there are three continuous 
spectra associated with the linearised MUD equations, namely the Alfven, slow and therm al continua. ;
Neglecting resistivity bu t, including perpendicular therm al conduction, it was shown by Van der Linden |
and Goossens (1991) th a t the therm al continuum was removed but, the Alfven and a modified slow |
continua rem ain. W hen the therm al continuum was removed, it was replaced by a quasi-continuum , the |
eigenfunctions of which varied rapidly over a length scale which was proportional to  W hen
resistivity was included bu t perpendicular therm al conduction neglected, it was shown th a t the Alfven |
and slow m ode continua were removed and the only continuous spectrum  rem aining was the therm al j
continuum . The singularities corresponding to  the therm al continuum for the cases w ith zero and non- |
zero resistivity were quite different. Nevertheless, it appeared th a t the two continua were sim ilar when 1
the Alfven to  radiative tim e scale ratio  was small. |
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In the other cases the therm al continuum is strongly influenced by resistivity in a discontinuous 
m anner, illustrating the singular nature of resistive MHD. For the equilibrium  investigated, the new 
therm al continuum  lies below the zero resistivity continuum. In addition, the zero resistivity continuum  
is replaced by a quasi-continuum , which consists of a dense set of discrete and continuous (in the spatial 
direction) norm al modes. Finally, the inclusion of both resistivity and perpendicular therm al conduction 
removes all the continuous spectra, however, the therm al quasi-continuum remains.

The m ain  numerical work in Chapter 3 concentrated on the effect of resistivity on the structure 
of the global norm al modes. It is found th a t resistivity does not substantially reduce the growth rate 
associated w ith the m axim um  of the original therm al continuum, bu t, does remove the singular na tu re  
of the eigenfunctions.

The m ost unstable quasi-continuum mode was investigated for different values of the m agnetic 
Reynolds num ber. It was found th a t the length scales associated with the oscillatory nature of the 
eigenfunctions scaled with the same fractional power as perpendicular therm al conduction. Thus, 
it is clear th a t resistivity can produce fine scale structure as the plasm a cools. This is sim ilar to  the 
effect of perpendicular therm al conduction and in both cases the length scales of the fine structure scale 
w ith the diffusion coefficient to the power one quarter. Hence, classical values of these two diffusion 
coefficients will give rise to the typical length scales observed within quiescent prominences.

C hapter 4 has investigated jo in t m agnetic and therm al instabilities (m agnetotherm al instabilities) 
using a simple cylindrical equilibrium. For a shearless equilibrium m agnetic field configuration with 
perpendicular and parallel therm al conduction neglected, a dispersion relation was derived. This was 
achieved via the use of the ballooning approxim ation and the five roots plotted. The therm al continuum  
was located on the real s axis and was also plotted. The normal mode solutions were then obtained 
num erically for various values of c, the ratio  of the coronal radiation tim e scale to  the Alfven tim e scale.

The fundam ental unstable Alfven mode for a small value of k was found on the real s axis below 
the therm al continuum. For e =  1.2, as k was increased, the fundam ental Alfven mode ju s t touched 
the lower end of the therm al continuum. It then entered the complex plane as a pair of fundam ental 
m agnetotherm al modes before moving around to the top end of the continuum . It was found th a t when 
the fundam ental m agnetotherm al modes rejoined the real s axis, they split up into two modes, the 
fundam ental therm al mode which moved down towards the top end of the therm al continuum  and the 
fundam ental Alfven mode which headed towards a fixed, larger growth ra te  which occurred as the wave 
num ber k was increased. This value was predicted analytically using a W KB analysis. The values of 
e were then varied in order to investigate the qualitative differences in the coupling of m agnetic and 
therm al instabilities for equilibria far from or close to  m arginal stability.

For a non-zero component of the equilibrium  m agnetic field in the z direction, the ballooning equa
tions were m anipulated  to  give a slightly different dispersion relation which was again solved numerically. 
For a large value of e and value of n  =  1, the fundam ental Alfven mode was located on the real s axis 
and above the m axim um  of the therm al continuum. This mode travelled along the real s axis as n 
increased, before approaching a fixed, real, positive growth rate, Smax- This m ode was also found to  be 
extremely localised about the point r  =  r^ax for large values of n. These values were again calculated 
using the ballooning approxim ation and excellent agreement was obtained.

C hapter 4 has dem onstrated th a t therm al and magnetic instabilities can interact to form magne
to therm al instabilities. I t is well known th a t the therm al instability may be im portan t in prominence 
form ation and th a t it is the m agnetic instability which results in a prominence erupting into a flare. 
I t is possible th a t a  therm al instability close to  the prominence may trigger the m agnetic instability, 
thus in itiating  the pre-flare phase. The oscillations observed prior to flares m ay be explained in term s 
of overstable wave modes or m agnetotherm al modes. M agnetotherm al modes could therefore play an 
im portan t part in the eruption of prominences a t the onset of solar flares.

Finally, Chapter 5 examined the effects of line-tying in a coronal arcade. The ballooning equations
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were m anipulated  to yield a dispersion relation which was solved numerically subject to  rigid wall 
boundary conditions. The previous equations and numerical results of Hardie, Hood and Allen (1991) 
were obtained for 7  =  1, po =  1/2 in the ideal case. It was shown th a t for 7  =  5 /3 , the ideal modes were 
stabilised and th a t only the therm al modes were unstable. However, this result was obtained w ithout 
knowledge of the therm al continuum  in line-tied arcades. Rigorous treatm ent requires the expression 
for the therm al continuum in line-tied geometries for progress to  be made.

From  these results, the following mechanism for a prom inence’s lifetime m ay be proposed. A therm al 
instability  in the corona together w ith a dip in an arcade type m agnetic field structure allows the prom i
nence to  form. A siphon mechanism m ay also aid this form ation. As a consequence of resistivity and 
perpendicular therm al conduction, the observed fine scale structure can form. Finally, a  neighbouring 
therm al instability  may trigger off a  m agnetic instability causing the prominence to  erupt into a solar 
flare.

6.2 Future W ork

There are numerous possibilities for extending this work and these are discussed next.
C hapter 3 was concerned about how the inclusion of finite, scalar, tem perature-dependent resistivity 

effected the norm al mode spectrum  of the  linearised MHD equations. These equations were m anipulated 
into a set of first-order ordinary differential equations. The singularities of these differential equations 
corresponded to continuous spectra. An alternative m ethod of locating these singularities is to  use the 
infinite gradient m ethod described in more detail in Appendix B. The advantage of this m ethod is th a t 
it  is very quick to  use, however the draw back is th a t it is not rigorous since it relies on all the variables 
being continuous across the singularity.

Although C hapter 3 has examined the effect of tem perature-dependent resistivity on the continuous 
spectra, the norm al mode solutions obtained have delt only with constant resistivity. Therefore, one 
extension to  C hapter 3 would be to  include the classic form of the tem perature-dependent resistivity 
given by Equation (2.6) in C hapter 2.

A nother extension to C hapter 3 would be to include dissipation due to viscosity. This may be achieved 
by adding the extra viscous term s to the m om entum  and energy equations. Unfortunately this is a  very 
messy and complicated procedure because full treatm ent requires the inclusion of all the coefficients of 
viscosity (see Braginskii, 1965). Once these term s have been added, a sim ilar m ethod to  th a t presented 
in C hapter 3 can be followed to ascertain the singularities (if any) of the corresponding system of first- 
order ordinary differential equations. A dditional m atrix  elements may be calculated (using the m ethod 
described in Appendix C) and program m ed into LEDA together with possible additional surface term s 
and an appropriate set of boundary conditions. Then, as in Chapter 3, various parts of the norm al mode 
spectrum  can be studied. Thus, the effect of viscosity on the therm al instability  can be discovered. If 
the therm al continuum  is removed and replaced by a quasi-continuum (as is the case with resistivity or 
perpendicular therm al conduction) it m ay be possible to derive a scaling law for prominence fine scale 
structure. W hen including viscosity (for example) it may be easier to  first work in a Cartesian geometry. 
Then, when the results are known, progress to a more realistic cylindrical geometry may be made.

In C hapter 3, the simplified version of O hm ’s law (given by Equation (2.14) in C hapter 2) was used. 
The more lengthy and complicated generalised O hm ’s law could be considered and corresponding results 
compared.

Different equilibria could be considered. For example, to  model a  laboratory plasm a, a Tokamak-like 
current profile m ight be used.
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This is more complicated than  the Gold-Hoyle equilibrium profile and is well known in nuclear fusion 
research. It has been applied to solar physics by several authors, for example. An (1986)

hr
2 r ( z /+  1)

Bg ~  Be, (6 .2 )

P = Pc 2 Jo r'
(6.3)

where ly, cq and ho are constants with Be and pe, the values of the m agnetic field and the plasm a pressure 
along the r  =  0 axis of the cylinder respectively. There is still a  free choice for either the density or 
tem perature profiles. The following tem perature profile might, for example, be chosen

T  == h l { e o - r ^ Y ° ,  (6.4)

where do and cq are constants, with eo >  1 such th a t the tem perature is non-zero throughtout the 
equilibrium  and a t the boundary r  =  1. More realistic prominence equilibria could be created and used. 
I t  should be noted however, th a t the existence of the therm al continuum is a  robust feature of the norm al 
mode spectrum . The existence of the therm al continuum will therefore be independent of the choice of 
equilibria. The location of the therm al continuum  and the eigenvalues and eigenfunctions obtained will, 
of course, vary from equilibrium to equilibrium.

So far C hapter 3 has only been concerned with continuous spectra in a one-dimensional cylinder. A 
more realistic situation would be to consider two-dimensional cylindrical equilibria, p = p { r ,z ) ,  etc. The 
m ethod to  obtain the continua should be very sim ilar to th a t presented in C hapter 3. The linearised 
equations may be rearranged to give the two-dimensional Hain-Liist equation. The singularities of this 
equation would then correspond to continuous spectra. The work corresponding to two-dimensional 
continua (gap continua) is currently being studied by Van der Linden and co-workers. Finally, the 
non-linear equations could be examined to investigate how non-linearity links up with the norm al mode 
spectrum . In particular the effects on the therm al sub-spectrum  could be ascertained.

In C hapter 4 another study of the norm al mode spectrum  was undertaken. The existence of m agne
to therm al modes was investigated. The fundam ental therm al and Alfven modes were found to coalesce 
for certain ratios of the radiative to Alfven tim e scales to form overstable wave (or m agnetotherm al) 
modes. The work could be extended by investigating the coalescence of the higher harmonics. For the 
shearless Gold-Hoyle equilibrium  profile w ith zero therm al conduction and no dissipation, the  large k 
behaviour w ith m  =  1 should be given by Equation (4.55), where k and m are the axial and azim uthal 
wave num bers respectively.

T he W KB m ethod used to predict the growth rate and first-order correction term s for large values 
of k  could be extended to include the second-order correction term . The results presented in C hapter 4 
could be obtained to any degree of accuracy required by increasing the values of k. This would require 
a larger num ber of gridpoints.

More dissipation could be included such as resistivity, perpendicular therm al conduction and vis
cosity. The first stage would involve knowledge of the continuous spectra. In the case of viscosity, the 
continuous spectra are unknown so they would first need to be calculated using the m ethod described in 
the above paragraphs. The ballooning equations have already been derived w ith all these term s included 
by Hood, Van der Linden and Goossens (1989). These can be m anipulated to  form a dispersion relation 
which could be solved numerically following the m ethod presented in C hapter 4. The large k behaviour 
m ay be studied and possibly predicted using a  WKB analysis. This analysis m ay need to be extended
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to  accom m odate complex growth rates. Thus, the use of Stokes and anti-Stokes lines may be required. 
More details may be obtained in Heading (1962).

In C hapter 4, the constraint B  • V 5  =  0 has been satisfied for a  coronal arcade by setting

S  = F  (r) + z ~  q i{r)9 ,  (6.5)

with

T* .B
91 (r) =  (6 .6 )

Another study could be performed for a coronal loop by letting this constraint be satisfied by

S  =  F  {r) + 6 -  q2 {r) z, (6.7)

with

92 (r) =  (6 .8 )

The effect of these two constraints on the therm al instability may then be compared. The Gold-Hoyle
profile used in C hapter 4, although being simple and well known, is not a  very realistic equilibrium
profile in practise and could be replaced. The coalescence of the therm al and Alfven modes could be 
studied in two and three dimensions. Finally, non-linear effects could play an im portan t role in not only 
the ballooning modes bu t also on the therm al continuum and the coalescence of therm al and m agnetic 
instabilities. Non-linear solutions could also coalesce with magnetic and therm al instabilities and may 
provide an insight into the mechanism associated w ith the eruption of prominences into solar flares.

In  C hapter 5, the effect of line-tying is investigated for a  coronal arcade. A discussion on the
different types of boundary conditions which may be used is presented and the m ethod of solution
outlined. Unfortunately, it is necessary to calculate the continuous spectra (in particular the therm al 
continuum ) and understand fully its ’ im portance in line-tied geometries. Once the location of the therm al 
continuum  is known, the solutions to the ballooning equations (with the boundary conditions satisfied) 
can be fully understood and applied to actual norm al mode solutions. This will give a guide as to  how 
line-tying effects the therm al instability. To calculate the therm al continuum  in line-tied geometries, 
the m ethods previously discussed may be used. However, the effects of line-tying make the analysis of 
a one-dimensional equilibrium  strictly  two-dimensional.

Once the effect of line-tying on the therm al instability is known, dissipation effects such as parallel 
and perpendicular therm al conduction and resistivity could be included. Notice th a t if perpendicular 
therm al conduction is included, the therm al continuum is removed and replaced by a quasi-continuum . 
This m ay simplify the analysis.

As before, further extensions could consist of more realistic equilibrium profiles and the inclusion of 
non-linear term s.

The analytical fit to the optically th in  radiation used throughout this thesis is th a t calculated by 
Rosner et al. (1978). Different analytical fits could be used, for example. Cook et al. (1989) and the 
results compared.

A currently unresolved m atter in solar physics is the coronal heating function. T hroughout this 
thesis, it is taken to  be constant per unit mass, despite the fact th a t this is clearly unrealistic. Further 
advances in this work could be m ade once the specific form of the coronal heating function is known.

The resolution of the obsevations of prominences and the associated fine scale structure needs to  be 
increased and this m ay then reveal other interesting (and maybe suprising) phenomena.

As technology and com puting power increases, it makes these future options more accessible, hope
fully enabling all the properties of the therm al instablity and solar prominences to  be eventually fully 
understood.
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A ,1  T h e  coeffic ients o f  E quations (3 .48 )-(3 .53)

The coefficients of Equations (3.48)-(3.53) in C hapter 3 are

r  (̂  [ \  J.

m pfC o  + s ^ p (r B e  ( spCv +  +  p Ê£.
dT

771' sr
+ ks + p

m
+ ks + p

m +  k-
pT

pBz (spCy +  +  p
m

s + p

S^p(spCv +  p
771f  771̂  ■

—r

± f a ^ f i ^ 2 B J s + J 4 + ^p7' [ Î’ \  \

TTlfp
pr

kfpCio

Cu
rp

dB-
— C i +  —
rp rp

(A .l)

(A.2)

(A.3)

(A.4)

(A.5)

(A .6 )

(A J )

(A .8 )

(A.9)

(A.IO)

(A .l l)

(A.12)



83

C'is — — Cz +  rp Co,

(714 — (7 2 + 1rp r gp I g +  ?7

B ,
Ci5 =  — (7g +rp

771̂7] f  B z  d
pr^

—  — ( r B e )  — B $  " ar
dBz
dr

Cie =  - C i - ’̂rp r sp { s + p { k

Co,

Co,

7’P

Ci8 —  - C l  +rp

+  -3

C l7  —  C q — fc(jf ( s  +  77 ( —— +  k  ) j C q,
771

t / g . <7o

(7x9 rp

+  M
fJ-

-C2 +

p \ r d r  dr

dBe 2mfprj

Co,

dr (7o

(7o,

B q k f B $
C 2Q =  ~ C q  ^ ( & +  ^ ( ~;5" +  ] ] Cq,rp

VPC21 —  — Cs7'p r (t^77 (1 +  spkp) +  2s) +  5  +  77 ^ “  +  t '

rp

C22 — — C4 — kp7'p
^ J P ^  + ï ( ë ± ^ ^ r B e ) - B / - pr^ p \  r dr dr Co,

where

C2S
s^P/k|| dT 1 f  m d 
~ T W " d r  ^

(7o

(A.13) 

Co, (A.14) 

(A.15) 

(A.16) 

(A.17)

(A. 18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)



A p p en d ix  B

B . l  Infin ite  gradient m eth o d  for obta in ing  s in gu larities

In this Appendix, the infinite gradient m ethod for locating singularities is presented. In ideal MHD 
it is well known th a t mobile regular singular points in the linear differential equations correspond to  
bands of singular wave solutions, or continuous spectra (see, for example, Goedbloed, 1983). Hence to 
derive the continuous spectrum  for a  cylindrical equilibrium with resistivity included, singularities are 
looked for in the equations obtained by transform ing Equations (3.15)-(3.23) into a set of six first-order 
ordinary differential equations. At these singularities, the radial derivatives become infinite. Hence, in 
the equations for norm al modes (3.15)-(3.23), consider the lim it as d /d r  —> oo. In this lim it, it can be 
assumed th a t Q can be neglected in comparision to  dQ /d r  for any perturbed quantity  Q th a t is differ
entiated  w ith respect to r. Hence, for non-zero resistivity and zero perpendicular therm al conduction 
the variables dAg/dr, dA'^/dr, Ag, A^, A ', u' and p' may be neglected in Equations (3.15)-(3.23) to  give

sp
dv'j. 
dr ’

dr p  dr — ï f r  +  — ^  =  O'p dr^ p  dr^

dp dBz rp! *7u77 dA[, d^A'ÿ
d T  dr dr =  0 ,

(B .l)

(B.2)

(B.3)

(B.4)

(B.5)

s p c ^ r  = jC + p

ik

TJ

dAi d^AC
dr dr^ + 1  dp

p ~ ^

d?A'a im  dAL
d?’  ̂ r dr

2 T
T '. (B.6 )

E lim inating all the variables except T ' and dp '/dr  in Equations (B.1)-(B.6), yields two equations in two 
unknowns

+
1  dp 
p d T

dp' 1  dp
1 ^ ' ^ p ' ^

dB 1  f  d
T '  =  0.

T '  =  0, (B.7) 

(B .8 )
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Hence for a non-trivial solution

spjCv  + f a
g 2

C A P +  1 A
p d T

dBz
dr + dr (rB e)

2 1
=  0. (B.9)

This is the therm al continuum for non-zero resistivity and zero perpendicular therm al conduction. It 
should be noted th a t this m ethod is presented here only as a check th a t the singularities obtained in 
C hapter 3 are correct. It is not m athem atically rigorous because of the assum ption th a t all of the 
variables are continuous across the singularity. This is not always the case w ith, for example, the 
perturbed  to ta l pressure. However, the advantage of this m ethod is th a t the singularities are obtained 
relatively quickly and easily compared to  the rigorous m ethod described in Chapter 3.
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C . l  D escr ip t io n  o f  L E D A

In this Appendix a brief description of LEDA is given. LEDA is the finite element code used in the 
num erical work in Chapters 3 and 4. One advantage finite elements have over other numerical codes is 
th a t they are easy to  use once implemented. Any degree of accuracy may be obtained by increasing the 
num ber of gridpoints used (combined with accum ulation of gridpoints if required).

C .1.1 T he N on-d im ensional Equations

The eight variables are re-defined as follows

B  ,
=  r v , . ,  V2 =  V3 =  — (̂ ZVjl +  > (G 1 )

p — 1'p', T  =  rT ',  oi =  iA'., « 2  =  rAg, ug =  A '. (C.2)

where

In addition to  re-defining the variables, the following dimensionless quantities are introduced p = Rpcp*, 
r ~  R r* , T  =  RTcT* , k =  R~^k*, vi =  R vac^i,  V2 =  V3 =  -^ v a c v I ,  T  ~  TcT*, ai — R B ca l,
« 2  =  R^B cü2, as — RBcttl, p = pcP*^ Bz =  B c B l ,  Be =  BcBg, s = vacB~^s*, m  — m*, g =  ^ g * ,  

f =  P = PcP\

"Ü " w J c  "  n / , R v l

"  A '

are reference values (together with pc and Be) usually associated with values on the cylinder axis. The 
Equations (3.15)-(3.22) for norm al modes in cylindrical geometry then become (asterisks om itted  for 
ease of writing)
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where all coefficients are now real.
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(C.8)

(C.9)

(C.IO)

(C .ll)

(C.12)

C .1.2 The M atrix E lem ents

The s ta te  vector given by

=  (^ p ,r i,r 2 ,-ys,T. a i , a 2 ,a s j  , (C.13)

is introduced and every variable is expanded as a  finite linear combination of known expansion functions 
hj (r) ( 1  <  j  < 0 0 ), for example

W , (C.14)
j= i

where the unknown coefficients ( x y ) / ^ ’ ’s ^.re to  be found from the differential equations. These 
expansions are substitu ted  into Equations (C.5)-(C.12) which are then projected onto the basis functions 
using

pR
(/ii ( r ) , /i2 ( 7 ’ ) )  =  /  h \ { r ) h 2 {r)dr.  (C.15)

do



Th is projection yields a set of 8 n linear equations for the 8n  coefficients (%y '" 'g and forms a general
m a trix  eigenvalue problem of the form

sB  X  =  A • X , (C.16)

where X  is the vector containing the coefficients (%y '' ĝ  and A  and B are 8 n x Sn m atrices w ith
n  being the num ber of expansion functions used. Fin ite elements are used as the expansion functions. 
These have the property th a t, for any function f { r ) ,

J  f  (r) hi (r) hj {r )d r  = 0 V | 7 -  j  | >  2 . (C.17)

Therefore only the sub-blocks which form the m ain diagonal and i t ’s nearest neighbours contain non-zero 
elements. Hence the m atrices A  and B  possess a tri-diagonal block structu re w ith the m a trix  B  being 
sym m etrical. The sub-blocks of A  and B are determ ined by
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where all unm en tioned m a trix  elements are zero. In tegration by parts has been used in the radial 
com ponen t of the m om en tum  equation, the energy equation and in the angu lar and axial components 
of the induction equation . This yields the following surface term s

(C.66)
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The boundary conditions are then applied to these surface term s which are then added to the m a trix  
elements (‘na tu ra l conditions’). If the boundary conditions require some variable to  be zero a t the 
boundary, th is needs to  be explicitly imposed (‘essential conditions’). For more details, see Van der 
L inden (1991). Also, the projection functions need to be evaluated a t the boundaries.
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C .1.3 B oundary C onditions

The differential equations (3.15)-(3.23) in C hap ter 3 m ust be supplemented by a set of boundary con
ditions. In the numerical work the effect of resistivity on the therm al continuum  is investigated and 
hence perpendicu lar therm al conduction is neglected. Th is reduces the order of the system of differential 
equations from eight to six and so six boundary conditions are required. At the centre of the cylinder, 
the following three regu larity conditions are used

lim rvL =  0 ,r-vO lim rA'g — 0,r - + 0  " A'  L=o =  0. (C.70)

These ensure th a t  there are no singu larities along the axis r  =  0 of the cylinder. For the ex ternal 
boundary conditions, the plasm a is considered to be term ina ted by a perfectly conducting rigid wall a t 
r ~  R.  A t first th is may be seen to  be a bit unrealistic but it has been argued by Goedbloed (1990) th a t  
neighbouring coronal loops m ay act in a  sim ilar m anner. In any case one m ay elim inate the influence of 
th is condition by m aking R  sufficiently large. Thus the external boundary conditions used are

e |r=A 0 , (C.71)

For these rigid wall boundary conditions, the surface term s given by Equations (C .6 6 ), (C .6 8 ) and (C.69) 
vanish and the conditions are explicitly implemented by setting the appropria te expansion coefficients 
equal to  zero.

C .1.4  T he F in ite  E lem ents

An approp ria te choice of finite elements now has to be made for each component of u  (r) . To avoid poor 
discretisation (Kerner, 1985), cubic Herm ite Spline functions are chosen for ug and as and quad ra tic 
finite elements for p, V2 , T  and ai. The quadra tic elements are defined as

4 ( r  — ?*j_i) (rj — r)
{rj - V j - i f  

0

' (2 r  — Tj — r j _ i )  (r  — r j - i )  

(rj -  r ;_ i)^

{2r -  rj+i -  r j)  {r ~  rr+i)

0

while the cubic elements are defined by

- 2 r  -  r ;_ i
rj - ? 7 _i

r e  [ r j - i ,r j]

r i  ,

Î’ € [ r j- i , r j]

r e  h , r j + i ]

r e  [v j- i ,  rj]

r  e  [rj,rj+i] 

r  0

(C.72)

(C.73)

(C.74)
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A},2 (r)

( r - r , )
r - r j _ i

rj -  ÏJ - 1

0

r  e  [ r j - i , r j ]

r  e  [rj, rj+i]
(C.76)

Since two finite elements are use for each gridpoin t, the size of the m atrices A  and B  increases to 
16u X 16n. The general eigenvalue problem (C.16) is then solved by two different algorithm s. The first, 
the Q R m e thod (Kerner, 1989) gives all the eigenvalues of the m a trix  considered and hence an indication 
of w ha t the spectrum  looks like. Once a global view of the spectrum  is known, the separa te branches 
and individual modes can then be studied using the Inverse Vector Itera tion algorithm  (Kerner, 1989) 
which calculates and plots specific eigenfunctions.



A p p en d ix  D

D . l  W K B  analysis in th e  ideal case

In th is Appendix, a detailed description of the WKB analysis carried out in C hap ter 4 for the ideal case
is given. The Gold-Hoyle equilibrium  equations (4.13) with A =  0 are substitu ted in to the Hain-L iist
equation (4.25) which is then expanded for r  <C 1, but Ar >■ 1, to give

A .
dr

F (r ,g )
dr +  G { r , s ) x  =  0,

where

and

r  + rrF)

( 1 - f r^ )  (m^ +  A^r^)

(D .l)

(D .2)

+

1
r  ( 1  H- r^y

-  ( 4r^ -b
4m^A^r^ 8rrPi

(m 2 +  k^r^) +  A^r^)

4A 2„2

(m2 -f A2?’2) (|s2  _j_ ,^2)
2„,2

m -f 1 -
m

T \  +  m 2 ) )]}■
Setting X  — F  2 y, the differential equation (D .l)  becomes

d^y
dr^ + G  J _

f  4F2 I  dr
1

After some algebra, it can be shown th a t

G  1 ( d F 1 d?F (m^ +  A^r^)
2F  dr2

2F  dr2

■1 -

y =  0.

4r"

(D .3)

(D.4)

( ^ « 2  _{. n%2 )

+

+

+

.2 „ 24A^r^ f ^ 2  m
(m 2 -|-A2 r 2 ) ( l g 2 + m 2 ) ^ l " '  7 \  (§g 2 _|_yM2 ) )}

Arri^k^r'^
+

8 m 2 r 2

(m 2 -b A2 y2 )^ ( | s 2  ^ 2 ) (m 2 -b A2 r 2 ) ( | s 2 _p n%2 )

1 k^r^ (2rrF — k ^ r^  _
4r2 j-2  ^ ^ 2  _j_ ^ 2 j,2 ^ 2  ^

Expanding s as

Si &2 
S -  SO +  J  +  P  +

(D.5)

(D .6 )

and se tting so =  \/2  and m =  1, Equa tion (D .5) becomes

94



96

Q
1 ( 2  — ( l +  A^r^)

+

+

4?’2 ^ 2  _|_ ^ 2 j,2 ^ 2

^ 2 ^ 2

+

(1 +  A2
\ / 2 si

2A

1 _  4r^ /  V 2 si
2A (1 +  A2r2) V( 1  +  A2 j’2 )

To leading order in and s i, Equa tion (D .7) becomes

2A

A( 1  +  A2 r 2 y
1 . 2

Hence the differential equation (D .4) can be w ritten as

[A ^g(r,s) +  p (r)]  y =  0 ,

where

and

V Ï

I  +

(D .7)

(D .8 )

(D.9)

(D.IO)

(D . l l )
( 1  +  k ^ r ^ y

In Equa tion (D .IO), it can be seen th a t q predicts a one turn ing poin t problem . However, in Equa tion 
(D . l l ) ,  p  is singular a t r  =  0, bu t is negligible elsewhere. This gives a second tu rn ing poin t. Hence 
th is problem  is a two tu rn ing poin t problem . The next stage in th is calcu lation is to work out two 
so lutions to the differential equation (D .9), one corresponding to the situa tion when A^r <C 1 and one 
when Ar 1. These two solutions are then asym p totically matched to yield a value for s i.

D . l . l  T he solution  for 1

The transfo rm a tion given by z =  ^ (r) and v = ip (r) y (r) is then applied to the differential equation 
(D .9), (see Nayfeh, 1973) yielding

d?v
+

1
dr^ {d(p/drf

d?<p 2  dip d(p
d r 2  Ip dr dr

dv
4-

dz ( d ^ /d r y
A g + p-l- -7^ ■

2 / dipA^  1 d'^ip
ip"̂  \  dr J  Ip dr^

Setting ip  ̂ =  d<p/dr to elim inate the first derivative term  dvfdz ,  and

dr = g =>

P u ttin g  {d(p/drŸ  =  g into Equa tion (D .12) gives

d?v
dz^ + 4z2

=  /  \/g (T )
Jo

V = W  {z) V,

dr.

where

W { z )  =
 ̂ 1 d?ip

dr J Ip d r 2  _

Ü =  0. (D.12)

(D.13)

(0 ,14 )

(0 .15)
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Equa tion (D .14) has the correct form of the singu larity a t r  =  0 since W  is non singular (see, for 
example, Heading, 1962; Nayfeh, 1973). This can be seen by le tting r  0

Ip d (  1 dip
qo dr \ ip^  dr J

Therefore for small r, W  is negligible. Hence for r  C  1 Equation (D .14) becomes

d"^v + 4^2

Le tting r  =  cr (z), it is found th a t  the differential equation (D .17) becomes

4 - (A^z^ -  l)  a  =  0 . 
dz2 dz  ̂ ’

Equa tion (D .18) is Bessel’s equation and has a solution

a  == 6 i J i  (Az) =>• V ~  J i  (A z),

(D.16)

(D.17)

(D.18)

(D.19)

where bi is an arbitrary  constant. Hence, for r  <C 1/A 2 , the non singular solution to  the differential 
equa tion (D .4) is

Pi =  T  ( /  \ / g ( r )  d r ^  . (D.20)

D .1 .2  T he solution  for k r  ^  1

The so lution for large kr  is obta ined nex t. For Ar 1 the differential equation (D .9) becomes

, ,.2
d r 2

A-k^qy -  0 .

d^v 1
^  4- A^g — ip-

d f  1 dip
dr \ip^ drdz^ {^d(p/drp

where z =  0 ( r ) , v = xp(^r) y  (r) and ip"̂  — d<p/dr. Letting

k^q
[d(p/dry

and neglecting the term

from Equation (D .22) yields

j Al  (  
dr \ i />2 dr J

d^v
— zv  =  0 .

w =  0,

(D.21)

(D.22)

(D.23)

(D.24)

The differential equation (D .24) is A iry’s equation and has a solution given by t; =  OiAi (z) where a\ is 
an arb itrary  constan t. Since
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d{~(j>)
dr

^  ky/q =

=b A /  V qJY )
Jri

dr =  z,^  <f) =  —

where r i  satisfies g (ri) =  0. Hence for Ar ^  1 the solution is given by

‘3Z

k^q
A i(z ) , where z =  — | ^A j n dz

or

P2 =
ai

y/kq i
f  ■s/qdi 

J  n
" f r s  r  ^  1

A i  - A  y  V ^ d z

D . l .3 T he asym p totic  m atching of y i  and y 2

The arguem en ts of the two solutions y\ and p2 are asym p totically expanded to give

'g-
and

P2

Se tting a\ — V ^b i  (—1)”' and m atch ing, yields

A y /q ( r )d r  = ^  tt,

where r i  is the zero of g given by Equa tion (D .IO). Hence, it can be seen th a t

n
5 \/2

' I k -8 1 ,

where si  is negative for r i  to  be real. Using Equation (D .30) it can be shown th a t

Si
_  4 ( n + | )  /7

V 2 V 5 ’

SO th a t  for the fundam en tal mode u =  0 ,

Thus

A

(D.26)

(D.26)

(D.27)

(D.28)

(D.29)

(D.30)

(D.31)

(D.32)

(D.33)

(D.34)



A p p en d ix  E

E . l  W K B  analysis  in th e  non-ideal case

In th is Appendix, the zeroth-order and first-order correction term s to the growth ra te found numerically 
for large k  in C hap ter 4 for the non-ideal case are obtained analytically. Equa tion (4.50) can be w ritten
as

where

|V B | 2 _

+

r ( 7 - l ) C ^ Q l

(TR7PP
0

_2 I IprrFBl (E .l)

Ca — s p +
2

(E .2)

and

C t
eps

7 — 1 PP

+ d T j + B 2 r 0
(E.3)

Equa tion (E .2) represents the Alfven continuum , while Equation (E.3) represents the slow and therm al 
continua. After some algebra

|V 5 p  -
Bg

4-

pBg r e p X 7 ,g p 4 -B 2 )B %  p ^ B ^ r +
jg C x Q l  B X 7 - 1 ) B ^  ( 7 - l ) B 2 ' " ^

sp
^2 ( 7  — 1 )

7/?p
B^m?

4-4 +
{■J0V + B-)

Bi

\ ~I0P _ ( 710B^ , ,  , ( 0 P + B ^ )  ^  ^
B§

d c
dp

m ^ j ^ p  
(7 -  1) H

2̂ ^ 2  _j_ (es — O'/i)I

=  g. (E.4)

Notice th a t  the expression in the curly brackets is the same as the dispersion relation given by Equa tion 
(4.56). Setting
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the following differential equation is obtained

6^99 == O' (2^ 6 )

A W KB analysis is now performed on Equa tion (E .6 ). For further details of W KB theory, see Bender
and O rszag (1978). Th is problem can be reduced to  a two turn ing poin t problem, as in A ppendix D.
Hence the Bohr-Sommerfield condition for a two tu rn ing point problem is used

1k q-^dr 
Jo

ÎT, (E .7)

where n  is an integer and rx is the zero of q. Substituting the Gold-Hoyle equilibrium  equations (4.13) 
w ith d C Idp  = po, d C fd T  = {a — l ) p l ,  f3 = 1, R  =  0 and a  =  —1, into Equa tion (E .4) and then se tting 
m =  l ,  7  =  5 /3 , the following equation for q is obtained

^ r 2 ( l  +  r 2 ) ( s 2 ( i _  A2 ) +  2 )/?2 ’

where

=  _ ( i _ A ^ ) ( r ^  +  A ^ ) ( H - r : ^ ) " ( 6  +  6 r:̂  +  A:»)e8 (̂

+  2 ( l - A :^ ) " ( r : ' +  A^) ( l  +  a \ ^

— 2e ( l  +  r ^ Ÿ  [5 ( l — A^) ( l  +  r^) (5r^ +  A^) +  (5 +  6 r^ +  A^) (A  ̂ +  ( - 3  +  5A^) +  r^)]

+  4 ( 1 -  A^) [(1 -  A^) (1 +  r^) (5 r% +  A^)

+  (1 +  +  X^) {X^ +  ( - 3  +  5A^) +  / )  -  (r^ +  X ^ f  0  +  r= )]» '

-  20 (1 +  (A  ̂ +  ( - 3  +  5A^) +  r") »  +  8  ( l  -  A^) (A  ̂+  ( - 3  +  BA^) +  r " ) , (E .9)

and

/ ? 2  — e ( l  + (5 +  6 r^ +  A^) — 2 ( l  -  A^) ( l  +  7’̂ ) +  lOe ( l  +  r^)^ s — 4 ( l  — A^) . (E.IO)

E .1.1  W K B  analysis for A = 0

Setting A =  0 in Equation (E .8 ) yields

'' "  ( l  +  r 2 ) ( s 2 +  2 ) a 2 ’

where

ax — — ( 5  +  6 r^) ( l  +  7’̂ )^ es^ +  2 ( l  +  r^)^ — 4c ( l  +  r^)^ (5 +  6 r^ +  3?’"̂ )

+  4 (2 — +  r^) — 20 ( l  +  r^)^ (r^ -  3) cs +  8  (r^ — 3) , (E .12 )

and

Û2 =  6 ( l  +  7’^)^ (5 +  6r^) s® — 2 ( l  +  7' )̂ +  lOe (1 +  r^)^ s — 4. (E .13 )

E xp an d in g  r  ab ou t r =  0 and s abou t sq {s =  sq +  sx +  . •.) yields
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a i  — (~ 5 c so  +  2) (sq +  6) (sq — 2) +  +  O  (s^, r^) , (E.14)

where

X — —21e5g T  4 sq — 64 csq — 4 sq T  IOOcsq +  8, (E .15)

and

■0 — —2 5 c s q  T  85g — 6 0 c s g  T  1 6 sq  T  6 0 c . (E.16)

The first expression in Equa tion (E .14) is zero if Sq =  \/2. Substituting in Equation ( E . l l )  it is found 
th a t  q becomes

(1 -  7V ^c) +  ( 2 V ^ - 1 0 c )  Si

I t can be seen th a t  q has a zero 7’o a t

=

(5v^c -  2 )

2 V 2 -  1 0 c 
l - 7 \ / 2 c

Si.

(E.17)

(E.18)

Substitu ting Equations (E.17) and (E.18) into the Bohr-Sommerfield condition given by Equa tion (E .6 ) 
and perform ing the in tegra tion gives

Si = 2  ( »  +  i ) 1 4 c - \ / 2 \  

5 c - /■

Hence the expansion for s is given by

k
(  14c — \/2  
( 5 e - V 2

(E .19)

(E.20)
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