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Abstract

In this thesis, several problems relating to thermal instabilities in the solar corona are examined. Chapter
1 gives a brief description of the Sun and corresponding events with particular attention focused on
prominences, their formation and eruption. Various problems concerning thermal instabilities are then
tackled in the later Chapters.

In Chapter 2, the basic MHD equations are introduced and a physical description of the thermal insta-
bility mechanism given. The MHD equations are linearised in a uniform, infinite medium and the basic
instability criteria obtained.

Chapter 3 investigates the normal mode spectrum for the linearised MHD equations for a cylindrical
equilibrium. This spectrum is examined for zero perpendicular thermal conduction, with both zero and
non-zero scalar resistivity. Particular attention is paid to the continuous branches of this spectrum, or
continuous spectra. For zero resistivity there are three types of continuous spectra present, namely the
Alfvén, slow and thermal continua. It is shown that when dissipation due to resistivity is included,
the slow and Alfvén continua are removed and the thermal continuum is shifted to a different position
(where the shift is independent of the exact value of resistivity). The ‘old’ location of the thermal
continuum is covered by a dense set of nearly singular discrete modes called a quasi-continuum, for
equilibria with the thermal time scale much smaller than the Alfvén time scale. This quasi-continuum
is investigated numerically and the eigenfunctions are shown to have rapid spatial oscillating behaviour.
These oscillations are confined to the most unstable part of the equilibrium based on the Field criterion
and may be the cause of fine structure in prominences.

In Chapter 4, the normal mode spectrum for the linearised MHD equations is examined for a plasma
in a cylindrical equilibrium. The equations describing these normal modes are solved numerically using
a finite element code. In the ideal case the Hain-Liist equation is expanded and a WXB solution
obtained for large axial wave numbers. This is compared to the numerical solutions. In the non-ideal
case, the ballooning equations describing localised modes are manipulated in an arcade geometry and a
dispersion relation derived. It is illustrated that as the axial wave number % is increased, the fundamental
thermal and Alfvén modes can coalesce to form overstable magnetothermal modes. The ratio between
the magnetic and thermal terms is varied and the existence of the magnetothermal modes examined.
The corresponding growth rates are predicted by a WKB solution to the ballooning equations. The
interaction of thermal and magnetic instabilities and the existence of these magnetothermal modes may
be significant in the eruption of prominences into solar flares.

Chapter 5 extends the work presented in Chapter 4 to include the effects of line-tying in a coronal arcade.
The ballooning equations which were introduced in Chapter 4 arc manipulated to give a dispersion
relation. This relation is a quadratic in the square of the azimuthal wave number m if parallel thermal
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conduction is neglected and a cubic in m? if parallel conduction is included. Rigid wall boundary
conditions are applied to this dispersion relation. This dispersion relation is then solved numerically
subject to these boundary conditions and the solutions plotted. Unfortunately the expression for the
thermal continuum in line-tied arcades is required since the thermal continuum must play an important
role in the proceedings. This calculation is left for future work.

From the results obtained, it can be seen that the thermal instability can play a major part in prominence
formation and destruction. The thermal instability may help create the prominence. Resistivity and
perpendicular thermal conduction can cause of the observed fine scale structure. Finally, a neighbouring
thermal instability may trigger a magnetic instability that causes the prominence to erupt.
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Chapter 1

A Brief Description of the Sun

...and the silly American said to me, just as we were coming up to this
roundabout, ‘Do these things undersieer or oversteer?’ and I said, ‘Well
I’ll show you on this roundabout. You can make it understeer like
this, (and we went round the first roundabout), or you can make il
oversteer like this.” And he was completely silent after that!

-Tim Fry, demonstrating Hillman Imp handling to the Americans.

1.1 Introduction

In this Chapter, a brief description of the Sun and corresponding events is presented with particular
attention focused on prominences and their formation. Various problems relating to prominences are
then tackled in the later Chapters. Throughout the history of astrophysics, the Sun has been widely
regarded as an uninteresting object, particularly in comparison with beauty of the many galaxies and
constellations visible in the night sky. In 350 BC Theophrastus, a pupil of Aristotle, observed a sunspot
with the naked eye but, it was not until 1843, that Schwabe proposed the existence of an eleven year
cycle for the frequency of sunspot occurrence. It is fair to say that before the 18" century, little was
known about the Sun.

Since then, the Sun has been of great interest to many astronomers and astrophysicists. In particular,
during the last 50 years numerous discoveries have been made. Many satellites have been launched (for
example Skylab) for the purpose of observing the Sun and more are being planned (SOHO, for example).

The Sun is studied for several reasons. Firstly, the Sun is the nearest star to Earth, at an average
distance of 1,50 x 101'm or 93 million miles, and knowledge gained from it can be applied to other more
distant stars. The Sun’s vast amount of energy is produced by many nuclear fusion reactions within its
core and investigating these reactions may lead to fusion machines on Earth, producing almost limitless
amounts of clean, cheap energy. The interaction of the solar wind and the Earth’s magnetic field is
important, not only in the formation of the beautiful aurora in the northern and southern hemispheres,
but also in predicting geomagnetic sub-storms that can play havoc with electricity networks and the
navigation systems in ships and aircraft.

1.2 Observations

Recent photographs (see, for example, Priest, 1982} have shown many fascinating and varied events
occurring on and near the Sun. These pictures should convince both astronomers and astrophysicists
alike that the Sun is not the boring object that many people once thought. Indeed, it is an object of
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great beauty and mystery certainly worthy of study. The next few paragraphs describe the Sun in more
detail including some of the more spectacular events.

The Sun is about 4.5 x 10° years old, has a mass of 1.99 x 103%g, a radius of 6.96 x 10%m and consists
of a massive ball of plasma held and compressed by self gravity. This plasma is composed of about 90%
hydrogen, 10% helium, and 0.1% of other elements such as carbon, nitrogen and oxygen.

Two sections may be distinguished in the Sun: the interior (the main body) and an external atmo-
sphere; both are described below.

1.2.1 The Interior Structure

The overall interior structure of the Sun comprises of a central core, a radiative zone and a convection
zone. The core is thought to have a temperature of 1.6 x 107K and a density of 1.6 x 10°kg m—2, high
enough to sustain the thermonuclear reactions which generate 99% of the Sun’s energy. Most of this
energy is in the form of heat and light that is eventually radiated into space. The energy produced
by the core is transported through the radiative and convection zones where the plasma’s temperature
drops to 6,600K and its density to 4 x 10~%kg m~3.

1.2.2 The Outer Atmosphere

The Sun’s outer atmosphere is divided up into three different regions; the photosphere, chromosphere
and the corona. The lowest layer is the photosphere, it is from here that most of the Sun’s visible
light escapes. The photosphere is 5 x 10°m thick, has an average number density of 10**m~3 and a
temperature that decreases from 6,000K at the bottom to 4,300K where it meets the chromosphere.
When observed at high resolution it appears to be covered with irregular cobble stone type shapes,
called granular cells, that are in continual motion. Granular cells have a diameter ranging between
700km and 1,500km and lifetimes of between 7 and 10 minutes. Supergranular cells are also found on
the photosphere. These are very irregular in shape, and are much larger than granular cells typically
having diameters ranging from 2.0 x 10*km to 5.4 x 10*km, (Leighton et al., 1962). Therefore, at any
given time there are approximately 5,000 of these cells visible on the solar surface. Supergranular cells
have a lifetime of about 20 hours, (Simon and Leighton, 1964). At the boundaries of these cells the
magnetic field exceeds 30G. At the junction of three cells the magnetic field strength can be as high as
1-2kG. More details on solar granulation may be found in Bray and Loughhead (1967).

Above the photosphere is the chromosphere. The chromosphere is 2.5 x 10°m thick. It has a
temperature of 4,300K which increases monotonically with height to 106K. Many fine scale structures
can be found within the chromosphere, for example spicules and fibrils, which will be described in more
detail later.

Above the chromosphere is the corona, which cannot under normal circumstances be seen through
the visible light emitted from the photosphere. It can, however be seen by the naked eye during solar
eclipses. The corona stretches from the top of the chromosphere to Earth and beyond. The quiet corona,

3 and

corresponding to solar minimums, has an average electron number density of several times 10'*m~
a temperature of about 10°K, falling off with distance from the Sun. (The temperature in the solar wind

actually increases further, but in a sense temperature here loses its meaning).

1.3 Features of the Sun

In this Section, various interesting properties of the Sun will be discussed. Within the solar atmo-
sphere several areas may be found where there is a larger amount of magnetic flux present than in the
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surroundings. These areas are called active regions and play an important part in many solar phenom-
cna. Perhaps the most well known features found on the Sun are sunspots. These are observed in the
photosphere, within a mature active region.

There are two areas associated with sunspots, a central area, the umbra and an outer region, the
penumbra. Sunspots are much cooler than the surrounding plasma. The umbra generally has a temper-
ature of about 4,100K and the penumbra 5,500K, (Wormell, 1936). Sunspots have very high magnetic
fields associated with them. Most have a field strength ranging between 1-2kG, but they can occasionally
exceed 4kG. The magnetic field strength increases with the area of the spot and the darker the spot, the
stronger the field. Sunspots are generally found in pairs which gradually drift apart from one another,
up to a distance of about 1.5 x 10°%km. For more details of sunspots, see Bray and Loughhead (1964).

Fibrils.

.4
FE o+ F
#h \/
Thread. / Opposite potarity
Nearest appositc regions.
polarity region,

The difference between fibrils and threads. Notice that threads link the
nearest opposite polarity regions directly, whereas fibrils span regions of opposite polarity

Figure 1.1:

before re-joining the photosphere.

Fibrils can sometimes be seen in Ha on the disk, within the chromosphere. These are long, thin, dark
threads and are usually found near and at the edges of the active regions. An average fibril has a length of
15,000km, a width of 2,000km and is suspended at a height of 2,000km above the photosphere. Threads
can also be seen in the chromosphere. They differ from fibrils in that threads link the nearest oppositely
charged polarity regions directly, whereas fibrils span an enhanced network of like polarity before re-
joining the photosphere, (Foukal, 1971a,b). This difference between fibrils and threads is illustrated in
Figure 1.1.

Quantity Spicules Fibrils Threads
Length 10,000km 15,000km | 3,000-100,000km
Width 1,000km 2,000km 2,000km
Height 4,000km 2,000-4,000km

Lifetimes 8-15min 1-20min- >bmin

Electron density | 5 x 10102 x 101 1m=2 | > 10¥'m~2
Temperature 16,000K > 25 x 103K

Internal motion 25km s~! 20-30km s~* 20-30km s~1
Internal field 25-50G >100G >100G

Table 1.1: Typical values for spicules, fibrils and threads (from Foukal, 1971b).

Spicules also constitute a major part of the fine structure found in the chromosphere. Spicules are small
plasma jets that can be seen in He within the chromosphere. They are usually cylindrical or cone-
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shaped objects that rise to a height of about 1,000km, with an ascending speed ranging from 20km s™!
(Schmidt, 1974) to about 25km s~!, (Michard, 1974). A typical spicule will have a diameter of about
900km, a temperature of 15,000K and an electron density of 10°m~2. Spicules are therefore much cooler
and denser in comparison to the plasma surrounding them. Generally about 80 spicules are found per
supergranular cell. The average sizes of fibrils, threads and spicules, according to Foukal (1971b), are
shown in Table 1.1.

Occasionally, solar flares may be observed. These must surely rate as the most violent and beautiful
events occurring within the solar system. Simply put, a flare is a rapid brightening seen in Ho. Flares
usually form in the low chromosphere (invariably within active regions) and consist of a flash phase and
a main phase. In the flash phase, the intensity of the emission increases rapidly over a period of about
5 minutes, whereas in the main phase, the intensity slowly decreases and takes from about an hour or
so up to a day. The energy given off by a flare is approximately 1022J for a small flare to 3 x 1025] for
a large flare. This energy is thought to come from the stressed magnetic field.

But perhaps the most amazing and spectacular observation has to be that of the prominence, de-
scribed in the next Section.

1.4 Prominence Observations

The prominence is a remarkable solar feature. It may very loosely be defined as an object in either the
chromosphere or corona that is denser and cooler than its surroundings. The prominences considered
here will usually be found in the corona. Typically, prominences have a temperature about a hundred
times lower and a density about a hundred to a thousand times higher than the corresponding coronal
values.

Place of origin

Relation to sunspots In the corona Below the corona

Associated with sunspots Rain Surges
Funnels Puffs
Loops

Not associated with sunspots Coronal rain Spicules
Tree trunks
Hedgerows

Suspended clouds

Mounds

Table 1.2: The Menzel and Evans classification of prominences.

Several attempts have been made to classifly prominences. In the past they have been categorised as
moving and non-moving prominences (de Jager, 1959). Menzel and Evans (1953) grouped them according
to whether they were associated with sunspots or not and to whether they appeared to originate in or
below the corona (see Table 1.2). As can be seen in Table 1.2, prominences occur in many different shapes
and sizes which makes classification difficult. The classification most recently used, divides prominences
into two distinct groups, namely active region prominences and quiescent prominences.
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1.4.1 Active Region Prominences

Active region prominences occur within active regions and are normally associated with flares. They are
dynamic structures, usually moving with violent motions. This type of prominence is very unstable and
tends to last from about a few minutes to a maximum of a few hours. Typical active region prominences
are surges, sprays and loop prominences. The magnetic field strength in an active region prominence
ranges from 20-100G and an average active region prominence will have an electron density of about
101 %m~3,

1.4.2 Quiescent Prominences

Quiescent prominences are stable and can last from a few days to many months. A typical quiescent
prominence will have a temperature of about 7,000K, an electron density of 10'"m~2 and a magnetic
field strength of 5G. They are about 2 x 10°%km long, 5 x 10*km high and have a width of 6,000km.
These values are, however, only averages based upon observed prominences. More general ranges are
given in Table 1.3. It should also be noted that the values for the temperature, density and magnetic
field strength are not uniform and will vary within the prominence. When quiescent prominences are
viewed end on, an area less bright than the average inner corona is seen. This darker area presumably
consists of less dense plasma and is called a coronal cavity. Often a helmet streamer is also found above
the prominence. The mass of a quiescent prominence is not accurately known, but it is thought to be
about one tenth the total mass of the corona (Schmieder, 1990). Within and around the prominence
many motions are observed. Within the prominence, Doppler shift has shown that the plasma moves
with a downward velocity in the vertical threads ranging from 15-35kms™?!, although nearer the top of
the prominence coarser knots move more slowly with speeds of about 0.5kms™!.

Quantity Range
Electron density 1016-10"m—3
Central temperature 5,000-8,000K
Length 60,000-600,000km
Height 15,000-100,000km
Width 4,000-15,000km
Magnetic field strength 3-30G

Table 1.3: Typical ranges for quiescent prominence values.

However, Doppler images reveal that the plasma velocities are, in general, steadily upward with speeds

between 1-3km s~! 1

, except at the feet of a hedgerow prominence where speeds may reach 10km s~
either up or down (Zirker, 1989). Schmieder et al. (1988) reported downward velocities having a speed
of <2.5km s~!, a time scale of 5 minutes and suggested that the motions may be due to either plasma
moving along twisted magnetic field lines or an instability triggering off waves along the filament. In one
study of a quiescent prominence, Simon et al. (1986) suggested that the vertical motions were quicker
than the horizontal ones. They deduced that the horizontal speeds were about a third of the vertical
ones. Around a prominence, plasma is also observed to be in motion. Using Doppler images, Engvold et
al. (1985) noticed that plasma rises up one leg of the arcade supporting the prominence and falls down
the other at speeds of 5-15kms~?.

Generally, the length scales for active region prominences tend to be smaller than those for quiescent
prominences by a factor of about 3-4. The magnetic field strength tends to be greater by a factor of
about ten. The density is similar to that found in quiescent prominences. Many quiescent prominences
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reach down to the chromosphere and beyond in a series of regularly spaced feet (about 30Mm apart)
which are located at supergranular boundaries.

1.4.3 Magnetic fields associated with Quiescent Prominences

Since quiescent prominences are denser than the corresponding corona and are suspended above the
photosphere, there has to be a support mechanism associated with them. Generally it is thought that
the magnetic field surrounding the prominence can supply the necessary upward force that prevents the
prominence from dropping down to the solar surface. A detailed description of this will be given later. In
this Section, the observed magnetic field is discussed. The magnetic field has so far been measured using
two different methods based on the Zeeman and Hanle effects respectively. These are not discussed here,
but, details may be obtained in Tandberg-Hanssen (1974) and Kim (1990), respectively. Prominences
are formed above the polarity inversion line which separates the two oppositely charged areas of a bipolar
region (Babcock and Babcock, 1955) and is shown in Figure 1.2. This polarity inversion line will also be
found between the edge of the two main polarity regions of an active region or at the edge of an active
region where it meets a neighbouring region of opposite charge.

Observations have shown that the magnetic field cuts the main axis of the prominence at an angle
ranging from 15° (Tandberg-Hanssen and Anzer, 1970) to 25° (Leroy et al., 1983). The magnetic field
strength is usually found to increase with height (Rust, 1967), although Kim (1990) found that for
prominences lying north-south along a line of longitude, the magnetic field strength decreases with
height. For the case in which the magnetic field strength increases with height, the gradient ranges
from 0.6 x 10~%G km~? for younger prominences to about 1.6 x 10~%G km~? for long lived prominences
(Leroy, 1977). Rust (1967) found that in most quiescent prominences, the average positive gradient was
1.0 x 107G km~! and Leroy et al. (1983) found a gradient of 0.5 X 10~4G km™!. The magnetic field
strength associated with a prominence increases slightly during the prominence’s lifetime. However, this
field is generally found to be stable from day to day (Leroy, 1977).

Polarity 1 i
® @ eosgtaltite,
e 9
@ o @® 5
@D @ © (&)
Bipolar @ o
region & o &
© e

Figure 1.2; The polarity inversion line that separates the two oppositely directed mag-
netic regions found in a bipolar region.

Two types of magnetic field configurations are associated with quiescent prominences, namely normal
polarity and inverse polarity. Both of these configurations feature a closed arcade of magnetic field lines
overlying the prominence which connects the two regions of opposite polarity magnetic fields either side of
the prominence. The difference between the two is that in an inverse polarity prominence, the magnetic
field lines pass through the prominence in the opposite direction to the overlying arcade, whereas in a
normal polarity prominence the magnetic field lines pass through the prominence in the same direction
as the overlying magnetic field line arcade. Examples of the magnetic field line configurations for a
normal polarity prominence and an inverse polarity prominence are illustrated in Figures 1.3(a) and




A Brief Description of the Sun 14

1.3(b), respectively. Notice that in a normal polarity prominence, there is a dip in the magnetic field.
Without this dip, the plasma would drain away down the magnetic field lines. The curvature and
magnetic pressure in both these magnetic structures provides the necessary upward force to support the
prominence against gravity.

In a study involving 256 low to medium latitude prominences by Leroy et al. (1984), it was observed
that prominences with a maximum height lower than 30,000km had a magnetic field that was of the
normal polarity type. The magnetic field was inclined at 20° to the main axis of the prominence and
had an average strength of 20G. For prominences that had a maximum height larger than 30,000km the
magnetic field configuration was that of inverse polarity. For these prominences, the magnetic field was
found to be inclined at 25° to the prominence main axis and had a field strength ranging from 5-10G.
It was also observed that out of 120 prominences found in the polar crown none were of the normal
polarity type.

Figure 1.3(a): The field line structure found in normal polarity prominences.

Figure 1.3(b): The field line structure found in inverse polarity prominences.

An interesting point to note here is that in inverse polarity prominences the magnetic field completely
surrounds the prominence, keeping it cool relative to the hot corona. This is due to the anisotropic
nature of thermal conduction.

1.5 Fine Structure within a Prominence

All observed quiescent prominences have a fine structure associated with them. This fine structure
appears to consist of thin bright threads and knots. These threads have a typical length of 5,000km,
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with the first indication of the thickness given by Dunn (1960). He estimated that the thickness of
these threads was 300km or less. Since then, various authors have also estimated the thickness of these
threads, for example, Engvold (1976) suggested that the widths ranged between 400-1,500km. Some of
the estimates are given in Table 1.4, T'rom the values of thread width given in Table 1.4, it can be seen
that the size of the threads appears to range from a few hundred km to about 1,500km. Leroy e? al.
(1983) suggested that many quiescent prominences have a filling ratio of about 0.10. It was observed
by Engvold (1976) that the sizes of some threads and smaller prominence fine scale structures increase
with height, this means that the threads are not necegsarily of constant width down the prominence.

ngvold (1976) observed diffuse bright knots within a quiescenf prominence with a size of around
1,500-5,000km. These were usually stationary for 2-10 minutes before descending with speeds of about
15-35km s™*. However, in a bright quiescent prominence with lots of fine structure, he found that these
bright knots were very difficult to observe. He also noticed that when using exceptionally high resolution
frames, bright knots would occasionally form long strings. Using different frames, he noticed that the
same features appeared as uniform bright threads. This suggests that the possible distinctive feature
between threads and knots was due to the spatial resolution of the observations and that bright knots
were the basic unit of fine structure within a quiescent prominence. However, the dimensions of the fine
scale structure are not accurately known. Indeed it is quite possible, that more fine scale structures will
be revealed within a quiescent prorninence as the resolution of the observations is further increased.

Orrall and Zirker (1961) found that there was no change in the shape and brightness of the fine
scale structure associated with a quiescent prominence over a time scale of around 10%s and that fine
structure may last for 10%s or longer. Engvold (1976) noticed that some threads could be seen for one
hour or longer and that bright knots could be observed for about 8 minutes. It was also recorded that
the process of condensation and subsequent destruction of the prominence’s fine scale structure appeared
to take place over a very short time scale compared to the lifetime of the regions where a prominence
may exist.

Thickness of thread (in km) Author Year
< 300 Dunn 1960

400-1,500 Engvold 1976

1,000 Leroy et al. 1983

< 200 Zirker and Koutchmy | 1990

Table 1.4: Some observed values for the thickness of fine structure within quiescent
prominences.

Material is often seen slowly streaming down these threads at speeds of around 1kms™! and Malville
(1976) recorded speeds of less than 10km s™!. It is interesting to note that these speeds are less than
the free-fall speed. The mass lost due to this flow and also the flow through the prominence’s feet is
relatively large. This mass must somehow be replaced, or the prominence would drain away very quickly.

Towards the end of their lifetime, many quiescent prominences erupt into solar flares. Just before this
occurs, the prominence is seen to oscillate. This could be a consequence of magnetothermal instabilities,
where magnetic and thermal instabilities interact (see Chapter 4).

1.6 Prominence Formation

From the observations of prominences described earlier, it may be apparent that six conditions are
associated with the formation of quiescent prominences (Martin, 1990). These conditions are: opposite
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polarity magnetic fields either side of the prominence, an overlying magnetic field line arcade, transverse
fields, fibrils aligned with the magnetic field in the chromosphere and parallel to the long axis of the
prominence, converging fields and cancelling fields. It should be noted that these conditions are not
independent and that none of these conditions by themselves are sufficient for a quiescent prominence
to form.

Often, after a quiescent prominence has erupted, another prominence is observed in the same location,
indicating that many of the above conditions are still present long after the original quiescent prominence
has been destroyed.

As remarked earlier, quiescent prominences are denser and cooler than the surrounding plasma and
have a mass of about one tenth of the total corona. One question arises as to how this amount of
plasma can be concentrated in a relatively small region of the corona. Three distinct mechanisms have
been proposed, namely ballistic injection, siphon and thermal instability. In the first, ballistic injection,
plasma is propelled upwards from the chromosphere. However, it is unlikely to happen in practise due
to the frequency of prominences observed and the conditions needed for prominence formation. In the
siphon mechanism, the plasma pressure at the top of the loop decreases. This sucks up the plasma
from the chromosphere to the top of the loop. The disadvantage of these two mechanisms is, that for a
perfectly conducting plasma, the magnetic field lines move with the plasma (by the frozen in theorem)
destroying the magnetic field structure associated with the prominence, unless the siphon or injection
is along the field lines. The thermal instability mechanism is the most likely candidate for prominence
formation. This happens when a condensation is driven by the plasma’s optically thin radiation. A
detailed description of the thermal instability mechanism is given in Chapter 2. It accounts not only
for prominence formation, but also for the coronal cavity seen above the prominence. It is also possible
that the thermal instability may induce the siphon. Thus, these two mechanisms can combine.

1.7 Thesis Aims

The aim of this thesis is to investigate thermal instabilities in the solar corona, since it may play an
important part in the formation of prominences and the associated fine scale structure. Many quiescent
prominences erupt into solar flares and a possible mechanism is proposed and discussed. This thesis
is concerned about linear theory only, in a cylindrical equilibrium. The equilibrium is taken to be the
Gold-Hoyle equilibrium profile because of its simplicity and the corresponding results are well known.
This equilibrium is perturbed and the equations describing normal modes obtained.

In Chapter 2 the MHD equations are introduced and described in detail. The thermal instability
mechanism is discussed physically and the conditions for isobaric, isochoric and isentropic instability
derived for an infinite, uniform plasma.

Chapter 3 considers the thermal instability in a cylindrical geometry. The equations for normal
modes in an infinite, one-dimensional cylinder are derived and the normal mode spectrum investigated.
The normal mode spectrum consists of both discrete modes and continuous bands. These continuous
spectra are examined with various dissipative effects included. Neglecting dissipative effects there are
three types of continuous spectra namely Alfvén, slow and thermal continua. However, when finite, scalar
resistivity is included it is shown that the continuous spectra consist of only the thermal continuum. For
a cool form of the Gold-Hoyle equilibrium profile the most unstable quasi-continuum mode is examined
as resistivity is varied. It is found that the length scales generated scale as the coefficient of resistivity
to the power one quarter similar to the length scales generated by perpendicular thermal conduction.
Dissipation due to resistivity and perpendicular thermal conduction could therefore be the cause of the
observed fine scale structure seen within prominences.

Chapter 4 investigates the interaction of magnetic and thermal instabilities using the same geometry
as in Chapter 3. For certain values of the ratio of the thermal to Alfvén time scales it is found that these




A Brief Description of the Sun 17

instabilities can combine to form overstable wave or magnetothermal modes. The ballooning equations,
for an arcade with zero resistivity and zero perpendicular thermal conduction, were manipulated to
form a dispersion relation. A WKB analysis was performed to predict the growth rate of the magnetic
instability for large values of the axial wave number. The oscillations observed just before a flare occurs
may be due to magnetothermal modes. Thus, it may be possible that a neighbouring thermal instability
might trigger a magnetic instability and be the cause of prominences erupting into solar flares.

The magnetic field lines considered in Chapters 3 and 4 have been of infinite length. This is not
very a realistic situation, so Chapter 5 examines the effects of line-tying on the thermal instability. This
is when the magnetic field lines are of finite length and anchored in the photosphere. The method of
solution is outlined, however the effect of line-tying on the thermal continuum is not known, so the study
is incomplete. This is left for future work.




Chapter 2

The Thermal Instability Mechanism

I did everything that I could think of to the brink of disaster and I did
not lose conirol of the I'mp for even a heart-stopping fraction of a second.
It took tmpossible corners at ridiculous speeds, it stopped on skating-rink
surfaces where no car could have stopped. Il might have been running on railway
lines for all the notice it took of a lifetime of murderous driving that I
inflicted. ..

-Daily Mail review on the Imp.

2.1 Introduction

In this Chapter, the basic MHD equations are presented and the thermal instability mechanism discussed.
The MHD equations are linearised and the basic instability criteria for a uniform, infinite medium
obtained.

For any plasma, an energy loss-gain function per unit mass may be defined which describes how the
plasma, is heated and how it cools. Let the cooling of the plasma be denoted by C and the heating of
the plasma be denoted by H. Then the energy loss-gain function per unit mass may be defined as

e = Ol (2.1)

where the heat gain is defined as a negative loss. For most plasmas, £ will depend on the usual
thermodynamic quantities, such as temperature; it may also depend upon the chemical composition of
the plasma, its surroundings and also upon the magnetic field. The basic thermal instability mechanism
can therefore be stated as follows. Assume that as the temperature drops the loss-gain function £ is
positive. Consider a small decrease in temperature. This corresponds to an energy loss since £ > 0 and
so the plasma cools, thus causing a further reduction in the temperature. Hence, an initial perturbation
in the plasma’s temperature will grow in time. Since, without any additional heating, the plasma
cannot return to its initial state, an instability will result. The first approximation of the solar corona
is to model it as a hot hydrogen plasma. Parker (1953) stressed that the radiation of ionised metallic
impurity elements had to be included in the energy loss-gain function. Since the solar corona has a
high temperature and a low density, this radiation is assumed to be optically thin. Several authors have
calculated the energy radiated away from the plasma due to this optically thin radiation (McWhirter
et al., 1975 and Raymond and Smith, 1977). An analytical fit to the radiation calculated by Raymond
and Smith (1977) was made by Rosner et al. (1978) and is described by

¢ = W% = 5T = s, (2.2)
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where x and « are piecewise constant functions of temperature and n is the ion number density. The
values of x and « are given in Table 2.1,

log,o T' o log;o x
< 3.89063 | 11.7 | -82.9
3.89063 - 4.30195 | 6.15 | -61.307

4.30195 - 4.575 0 -34.85
4.575- 4.9 2 -44.0
4.9-54 0 -34.2

5.4 -5.77 -2 -23.4
5.77 - 6.315 0 -34.94

6.315 - 7.60457 | -2/3 | -30.73
> 7.60457 | 0.5 | -39.602

Table 2.1: The piecewise constant values of & and x in the optically thin radiation term
in the energy equation. (After Rosner et al., 1978).

As can be seen in the form of the plasma cooling given by Equation (2.2), whenever o < 0, a temperature
drop will result in an increase in cooling and hence a thermal instability. Notice also the effect of the
plasma’s density on the thermal instability. This can drive the thermal instability, since whenever the
plasma’s density increases, so too will the cooling. The most common type of thermal instability found
in the solar corona is the isobaric instability criteria. This is when the instability evolves at constant
pressure, since the plasma has time to set up flows to balance out the change in pressure. This may also
induce siphons, see Chapter 1. The thermal instability mechanism continues until the plasma reaches
a temperature of around 7,000K where o = 6.15. The plasma’s radiation becomes optically thick and
thermal stability is achieved. It is therefore easy to understand how the thermal instability mechanism
is a likely candidate for the formation of prominences in the solar corona.

2.2 The Basic MHD Equations

The basic equations used throughout this thesis are the standard equations of resistive magnetohydrody-
namics (or MHD) in which gravity, viscosity and rotational effects are neglected. The dynamic evolution
of the plasma is governed by the continuity equation, the momentum equation and the induction equation

gt—p+pV-v+v-Vp = 0 (2.3)
v 1

p[_+(v.v)v] = —Vp+ —(VxB)xB, (2.4)
ot p

%B = Vx(vxB)-V x4V xB), (2.5)

where v, ¢ and B, represent the plasma’s velocity, magnetic permeability (= 47 x 10~7 henry m~*) and
magnetic induction (usually referred to as the magnetic field), respectively. The magnetic diffusivity 7
is temperature-dependent and is given by (Priest, 1982)

n = 9 = — = 5.2 x 107log A T~3/?m? s~ (2.6)
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where o is the electrical conductivity and log A is the Coulomb logarithm. The plasma pressure p,
density p and temperature 7" are related by the ideal gas law

R
p = —=pT, 2.7
5 (2.7)

where R is the gas constant (= 8.3 x 10%) and /i is the mean molecular weight (which has been taken to
be unity for simplicity). The energetics are governed by an energy equation, of the form

2
7”_ : {% (;”;) +(v-V) (,%)] = V. (kVT)—pL(p,T) +Z- |V x B, (2.8)
where 7 is the adiabatic index (= 5/3), & the thermal conduction tensor and £ the generalised energy
loss function per unit mass with energy gains defined as negative losses. In the energy loss function,
an optically thin radiative loss term and an unspecified coronal heating function H are included. The
anisotropic thermal conduction term is rewritten in terms of the coefficients of heat conduction parallel
() and perpendicular () to the magnetic field

V- (kVT) = B:.V ﬁ:"B'VT +V. RLB—X(—V—D—?—Z 3 (2.9)
B B?
where for sufficiently strong fields (Braginskii, 1965)
g = &) ~» 1.8x107°(logA)™' THWm™'K?, (2-10)
and
k1 = k1(p,T,B) ~ 82x107%(logA)’n?B 2T 3, (2.11)

where n the number density. In these formulae n is measured in m~3, temperature in Kelvin and the
miagnetic field in Tesla. Typically in the solar corona log A & 22 and 1 a2 10~'%k). Parallel thermal
conduction is mainly due to the plasma’s electrons, whilst perpendicular thermal conduction is the result
of the plasma’s ions. The magnetic field must further satisfy the condition

vV.-B = 0. (2.12)

The electric current density j has been eliminated from Equations (2.4), (2.5) and (2.8). It may be
calculated using Ampére’s law

i = ivX B. (2.13)

The electric field E can then be evaluated using the simplified Ohm’s law providing the plasma’s magnetic
field and velocity have been found

E = —vxB+j/o. (2.14)

In summary, the continuity, momentum, induction and energy equations together with the ideal gas law
determine v, B, p, pand T subject to the condition that the magnetic field is divergence free.
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2.3 A Physical Description of the Thermal Instability Mech-

anism

In this Section a physical description of the thermal instability mechanism is given. The behaviour of
the thermal instability will depend upon several characteristic time scales of the plasma. Usually in
the solar corona, the sound time scale is much shorter than the radiative (or thermal instability) time
scale. This means that the plasma can respond and set up flows to equalise any pressure drop that
results from a decrease in temperature. Hence, as the thermal instability occurs, the plasma can smooth
out pressure gradients and the instability evolves isobarically. However, around temperatures of 10°K,
the radiative time scale can be much less than the sound time scale. The plasma does not have time
to set up any flows to equalise the pressure decrease and consequently the thermal instability evolves
isochorically. These two cases can be readily seen in the analysis in Section 2.4.

The next question that arises is concerned with why the solar corona exists at all especially since
the above argument suggests that it is always thermally unstable. This can be answered by the fact
that the effects of thermal conduction have so far been neglected. There are two time scales associated
with thermal conduction when a magnetic field is included. These correspond to thermal conduction
perpendicular and parallel to the equilibrium magnetic field, see Equations (2.10) and (2.11). The time
scale corresponding to perpendicular thermal conduction is much greater than that for parallel thermal
conduction which is very eflective at equalising out any temperature variations along magnetic field
lines. The parallel thermal conduction time scale is proportional to the square of the length of the
field line and thus is very efficient at stabilising the thermal mode over short distances. Thus, for a
thermal instability to form in the solar corona, it is necessary to have either long field lines so that the
conduction time scale is much larger than the radiative time scale, or an initial disturbance that gives
a zero perturbation in the parallel conduction term.

So far, linear theory has been discussed along with temperature decreases. Equally possible are
situations where the plasma temperature increases. However, in the non-linear case, only a temperature
drop is likely to occur in practice since, in Equation (2.10) any increase in temperature results in a
greater value for parallel thermal conduction thus smoothing out the temperature increase.

2.4 Thermal Instability in a Uniform Infinite Medium

In this Section, the thermal instability in a uniform, infinite plasma is considered and the instability
criteria derived. The procedure used is identical to that first used by Field (1965). The standard MHD
equations (2.3), (2.4), (2.5), (2.7) and (2.8) with the magnetic diffusivity  set equal to zero, are linearised
(p = po + p1, etc.) about an infinite, uniform (po = constant, etc.), static (vp = 0) equilibrium to give

aﬂ + pov vy o= 0, (215)
ot
0 1
po-a"_tl = —Vpi + ;(v x B1) x By, (2.16)
—-6B1 — V X (V1 X Bg), (217)
ot
Po Po

”m 6 £i Th 1 ( )

and
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1 dp1 _ o Op1 (3_4) i (QE) 7
-1 o (o =Dpo ot P\ )~ \oT )"
il KL
+ Bop:-V [—2-B0 . VT]] + V. I:—Q-Bo x (VTy x Bo)] 2 (219)
B(] BO

For a uniform plasma, the equilibrium energy equation becomes
L(po,To) = 0. (2.20)
This defines the heating function as a constant given by
H = ph = Xp3ls. (2.21)

Because the plasma is infinite in all directions, normal mode solutions may be obtained by letting all
the perturbed quantities behave like

pr = pexpi(k-r)e’, (2.22)

where p' is a constant, k is the wave vector and s is the growth rate. As can be seen, whenever
Re(s) > 0, exp (st) becomes large and the perturbations grow in time. Hence an instability will form
whenever Re (s) > 0. Therefore, the method used to find the instability criteria will be to derive the
dispersion relation and locate the positive roots. The linearised equations (2.15)-(2.19) become

sB' +iBo (k - v') — iBokyv' = 0, (2.24)

11:_;_5_;_% -0 (2.25)

sp' +ipok v = 0, (2.26)
and

spov’ + ikp' + /—i(Bo Bk — %BokuB’ = 0, (2.27)

where %y and k. are wave numbers parallel and perpendicular to the equilibrium magnetic field defined
by

Bo -k Bo -k YV
by = ;30 , and k% = kz-( 2?0 ) ; (2.28)

Taking the scalar product of Equations (2.24) and (2.27) with Bg and k yields

sB' -Bo +iB3 (k- v') —iBokyBo - v/ = 0, (2.29)

k-B = 0, (2.30)




The Thermal Instability Mechanism 23

spoBg ¢ v+ 't(k . Bo) p’ =t 0 (231)
and
spok - v’ + ik2p' + i(Bo B k2 - iBok" (k-B) = 0. (2.32)

Substituting Equation (2.30) into Equation (2.32) and eliminating v’ - By in Equation (2.29) using
Equation (2.31) produces the following two equations

spok - v' + ik%p’ + ﬁ(Bo <BEE = 0, (2.33)
and
,0032BI -Bo + ipong (k , VI) = ngﬁp’ = 0. (234)

Taking the vector cross product of Equation (2.24) with By and then taking the scalar product with k

gives
sB' xk-Bo = iBokyv’' xk-Bo. (2.35)
Taking the cross product of Equation (2.27) with k and then taking the scalar product with Bg gives
s2pgv' xk By = %Bok"sB’ x k - Bg. (2.36)
Eliminating B’ x k - Bp from Equation (2.35) using Equation (2.36) gives
[32 + w] vi-kxBg = 0. (2.37)
Ko

Equation (2.37) shows that the k x By component of the perturbed velocity decouples from the other
perturbed velocities and has the frequency of a pure Alfvén wave.

Equations (2.23), (2.25), (2.26), (2.33) and (2.34) are five equations in the five unknowns B’ - By, k-
v/, p’, T' and p'. Hence, for a non-trivial solution the determinant of the coefficients must vanish,
yielding the dispersion relation

55+Cupo [m"kﬁ +r1 k3 + po (-g—f:)p ] s+ k2 (2 +02)4°
+ﬂ;~%§v—@ [n“kﬁ + kLkZ + po (g—f,)p - m{% (%%)T] s% + csz(k—l'lzﬁz—s
where ¢, is the sound speed, c; is the isothermal sound speed and v, is the Alfvén speed defined by
i = %, g = %2’ vl = %g;, (2.39)

and where C), is the specific heat at constant volume given by
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R
C = e e oy 2440
% Ety=1) (@40)
Since the Alfvén modes have decoupled, it follows that Equation (2.38) represents the two fast modes,
two slow modes and the thermal mode. It should be noted that in other geometries the Alfvén modes
would not generally decouple and the dispersion relation would be a polynomial of degree 7 in s.

Neglecting all the non-adiabatic terms in Equation (2.38) yields

2
s (54 + k% (2 +v3) 8 + k%?M) = s (2.41)
Hpo

From Equation (2.41) it can be seen that the thermal mode has collapsed into the origin and that the
usual dispersion relation for ideal fast and slow magnetoacoustic waves is obtained.

To investigate thermal instabilities, the roots of the dispersion equation (2.38) are examined. A
thermal instability will occur whenever a root satisfies Re(s) > 0. Equation (2.38) is a fifth order
polynomial and, providing that k - Bg # 0, will have at least one positive real root whenever

z oL 2 [0L
K,”kﬁ - K:_]_k'i + po (a—T)p - ’% (a_/))T < 0 (for k- Bp # 0). (2.42)

If k- Bg = 0, the last two terms in Equation (2.38) vanish and k) = 0. Thus Equation (2.38) simplifies
and has at least one positive real solution whenever

oL c?pd oL
2 i FO g -
KLk + po (—aT)p = Ty (c? vz) (6 ) < 0 (fork Bg 0). (2.43)

Equations (2.42) and (2.43) are the isobaric instability criteria first derived by Field (1965). Notice that
there are different instability criteria depending on whether k- Bg = 0 or k- By # 0 or k = 0. The
surface on which k - Bg = 0 is called the mode rational surface. Field (1965) also showed that the fast
and slow magnetoacoustic waves can become overstable. To derive this criterion, the dispersion relation
given by Equation (2.38) is rearranged to give

k - By)® 1 AL
(6‘4 + k? (cf -+ ?}i) 52 + kzcg( /‘Lpoo) ) (s-[— Cvpo [K:"kﬁ 4 K?_Lki -+ po (?ﬁ)ﬁ])

?k? oL p2 (0L (k - By)?
-t —1) |k + ko k3 (——)] -ﬂ(—) 2p——] = 0. 2.44
Coro (” i emitem (57) |+ 2 (5),) 7+ S i

Following Field (1965), the growth rate is expanded as

§ = S9g+S14..., (2.45)

where s satisfies the dispersion relation for the fast and slow magnetoacoustic waves given by

2
sg+ k% (c? +v3) sk + kchw— = 0 (2.46)
HPo
and where
= : 2 . (QE 2.47
8§ -~ (0] (C,,poc, [K.”k'u +IC_|_]€J_ + po (6T : y C’vTOCs ap - . ( - )

Substituting the growth rate expansion given by Equation (2.45) into the dispersion relation given by
Equation (2.44) and using Equation (2.46) gives the first order correction s; as
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¢l _ 2 2 QL_" ﬂg_ (a_ﬁ) 2 (k‘BO)2
Cupo (('r 1) [Ku k” + KLkl +po (aT)p] -+ To \ 95 /g sg+ i
8 = - ) . (248)

22 (k-Bg)?
27 (c2 +v%) | o2+ 2
TEH S TR e

Notice that if k - Bg = 0, Equation (2.48) reduces to

2

oL p% (0L
s e s o .2 o oL ps (0L
s1 = 2C,poy (c2 + v3) ((7 1) [fﬂllkil + w1kl + po <3T),,] T (6,0 )T> - (2.49)

the growth rate for the fast modes which (for k - Bg = 0) have a frequency w given by

w? = B (2 +d). (2.50)

It can be seen that the growth rate s; is positive (so that the wave modes are overstable) whenever

ac p2 (L
(y=1) [n"kf{ +r1k? + po (b?l] + F?, (6_p>T < 0, (2.51)

This is called the isentropic instability criterion. Finally, setting k equal to zero (which corresponds to
p' = 0) in Equation (2.38), gives the isochoric instability criterion

(-g%)p < 0. (2.52)

The wave numbers & and k. are both real hence the terms n"kﬁ and & _Lki are both positive. Consid-
ering these terms in the instability equations (2.42), (2.43) and (2.51), it can be seen that the thermal
conducting terms are stabilising. In summary, Equations (2.42) and (2.43) represent the isobaric insta-
bility criteria and Equations (2.51) and (2.52) represent the isentropic and isochoric instability criteria
respectively.




Chapter 3

The Thermal Continuum in

Coronal Loops

As must by now be apparent, we think that the Imp admirably fulfils

this family fun-car role, though it has never enjoyed the success it

deserves. Although conceived more than ten years ago, it still surpasses

many more recent models in the smoothness of ils four cylinder engine, the

slickness of its gear change and in the precision of ils steering and handling.
-Review of the Imp in Motor Magazine.

3.1 Overview

In this Chapter, the normal mode spectrum for the linearised MHD equations is investigated for a
cylindrical equilibrium. This spectrum is examined for zero perpendicular thermal conduction, with
both zero and non-zero scalar resistivity. Particular attention is paid to the continuous branches of
this spectrum, or as they are more commonly called, the continuous spectra. For zero resistivity there
are three types of continuous spectra present, namely the Alfvén, slow and thermal continua. It is
shown that when dissipation due to resistivity is included, the slow and Alfvén continua are removed
and the thermal continuum is shifted to a different position (where the shift is independent of the exact
value of resistivity). The ‘old’ location of the thermal continuum is covered by a dense set of nearly
singular discrete modes called a quasi-continunm. The quasi-continuum is investigated numerically and
the eigenfunctions are shown to have rapid spatial oscillating behaviour. These oscillations are confined
to the most unstable part of the equilibrium based on the Field criterion described in Chapter 2 and
may be the cause of fine structure in prominences.

3.2 Introduction

The effect of finite, temperature-dependent, scalar resistivity on the thermal continuum is studied in
this Chapter. Following the approach used by Van der Linden and Goossens (1991), the normal mode
spectrum of the linearised MHD equations is investigated for both zero and non-zero resistivity.

This spectrum can consist of both discrete sub-spectra and continuous sub-spectra. In ideal MHD
there are essentially three distinct modes, namely the fast and slow magnetoacoustic modes and the
Alfvén modes. When the initial equilibrium state is uniform, these modes describe the oscillations of
the plasma. However, the properties of these oscillations are quite different. For example, the fast mode
can propagate almost isotropically but Alfvén modes can only transport energy along the direction of
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the equilibrium magnetic field. In the limit of large perpendicular wave number, propagation of the slow
mode across the field is similarly restricted. In this case, these two modes are unable to communicate
information with the plasma on either side of the oscillating field line. For example, a slow mode can
propagate along the field to equalise any pressure variations resulting from some initial disturbance, but
it cannot equalise pressure variations across the field in an easy manner.

When the initial state is no longer uniform, both the slow mode frequency (or the ‘cusp’ frequency)
in the infinite &k limit and the Alfvén frequency may vary from field line to field line. Because there
is no interaction with neighbouring field lines, each field line can oscillate at its own characteristic
frequency. This non-uniformity yields a continuous variation of the local values of these frequencies
and hence, gives rise to two continuous spectra. In addition to these continuous spectra, there may
be discrete sub-spectra corresponding to global Alfvén and slow modes. Investigation of the linearised
ideal MHD equations demonstrates that there is a mobile regular singularity at the position where the
frequency of the disturbance matches either the local Alfvén or cusp frequency (Goedbloed, 1983). The
eigenfunctions are consequently singular at this position. This has led to the conjecture that, when the
normal mode decomposition of an arbitrary external disturbance contains ‘normal modes’ lying within
a continuum then the amplitude of the disturbance will become extremely large at the singularities as
energy is pumped in from the disturbance to the singularity. Including any dissipation mechanism results
in damping of the steep gradients created at this point and the energy is dissipated. Thus, energy can be
propagated into the system in the form of wave disturbances and deposited at the resonant layer, where
the ideal modes become singular. Resonant absorption of MHD waves due to resonance in either Alfvén
or slow mode continuous spectra has been suggested by several authors (for example, Ionson, 1978;
Hollweg, 1987a,b; Poedts, Goossens and Kerner, 1989) as a mechanism for heating the solar corona.
The existence of such a heating mechanism is due to the anisotropic nature of ideal Alfvén and slow
MHD waves.

Recently, Van der Linden, Goossens and Goedbloed (1991) proved the existence of another contin-
uous spectrum which results from the anisotropic nature of heat transport in an optically thin, highly
magnetised plasma. Thermal conduction is orders of magnitude more efficient at conducting heat along
magnetic field lines than across the field. In addition, optically thin plasma radiation does not transport
energy to neighbouring plasma and consequently is incapable of smoothing out cross field variations.
The characteristics of the Alfvén and slow mode continuous spectra are therefore present when the non-
ideal thermal terms are also included. Van der Linden and Goossens (1991) and Van der Linden (1991)
investigated the properties of this ‘thermal’ continuum in more detail in both planar and cylindrical
geometries. In particular, they showed that due to the existence of the thermal continuum, the isobaric
thermal instability criterion, derived by Field (1965) for a uniform medium, can be extended to general
equilibria.

It is interesting to note that the resonant absorption produced by the Alfvén and slow-mode continua
is dependent upon a continual driving of the system by an external source. Normally, it is assumed that
disturbances are generated in the convection zone and propagate into the corona. However, a different
scenario is possible with thermal effects included. It is now possible that the initial disturbance can
trigger an instability in the corona and generate singular behaviour and hence short length scales in
the corona, without the need to continually drive the system from outside. Waves impinging on such a
small-scale structure will be damped more easily than in the absence of such structure.

The singular nature of the eigenfunctions is normally removed when some dissipation rnechanism
is included. When resistivity is included as the dissipation mechanism, both the Alfvén continuum
and slow continuum are strongly affected (Goedbloed, 1983; Kerner et al., 1985; Poedts, Goossens and
Kerner, 1990). The continuous spectrum is replaced by a set of discrete normal modes with complex
eigenvalues (including the so-called ‘quasi-modes’, which are defined in Section 3.4), with a resultant
damping of the modes. It has been shown that the resonant absorption mechanism is most efficient
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when the frequency of the incoming waves matches the frequency of these global modes. Driving at the
quasi-mode frequencies yields very efficient heating (Poedts, Goossens and Kerner, 1990).

Hermans ef al. (1988) investigated how the slow mode continuum is modified by isotropic thermal
conduction. Instead of removing the continuum, isotropic thermal conduction leads to a shift of the slow
mode continuum to lower values, the so-called ‘isothermal’ slow mode continuum.

Van der Linden and Goossens (1991) showed that realistic values of perpendicular thermal conduction
have only a small effect on the growth rates predicted by the expression for the thermal continuum, but,
that the continuous spectrum is replaced by a dense set of discrete (‘quasi-continuum’) modes. These
quasi-continuum modes exhibit a strong localisation about the previous singular surfaces., They are
‘nearly singular’ in the sense that the amplitude is large but finite there. For realistic (classical) values
of perpendicular thermal conduction the singular mode characteristics and polarisations are still clearly
recognisable. Since perpendicular thermal conduction has no significant influence on the growth rates of
the most unstable thermal instability, it does not affect the validity of the generalised isobaric instability
criterion. It was also noted by Van der Linden and Goossens (1991), that the quasi-continuum branch
is continued as an infinite branch of discrete modes below the continuum range, accumulating at —oo
on the real s axis.

The aim of this Chapter is to investigate how the thermal continuum is modified by dissipation due
to temperature-dependent, scalar resistivity. Section 3.3 derives the equations describing normal modes
and Section 3.4 investigates the basic continuous spectra. The modifications to these continuous spectra
due to resistivity and perpendicular thermal conduction are presented in Section 3.5 and applied to a
simple cylindrical equilibrium. Section 3.6 presents the numerical results for non-zero resistivity and
Section 3.7 summarises the results.

3.3 Basic equations for normal modes

The basic equations used in this Chapter are the standard equations of magnetohydrodynamics in which
gravity, viscosity and rotational effects are neglected,

g—:+pV~v+v-Vp = 0, (3.1)
p[%+(v-V)v] = —Vp+%(VxB)xB, (3.2)
%—? V x(vxB)-Vx (Vv xB), (3.3)
e %,,T, O (34)
22 (2)+e 9 (%)] = vevn-men+LivxBl (65

where all the symbols are defined in Chapter 2.

3.83.1 The general equilibrium equations

The equilibrium configuration used is a static, one-dimensional, infinite, cylindrical plasma, having a
magnetic field with axial and azimuthal components depending upon r such that V- B = 0 is identically
satisfied. Hence,

Bo = (0,Bs0(r),B:0(r)). (3.6)
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All the equilibrium quantities are assumed to be dependent upon the radial distance » only. The
momentum equation (3.2) and the energy equation (3.5) consequently become

d B3l _ B2,

d’l‘ [pU + ﬂ Lo “—;r—) (3.7)
1d dTo]  n[[/dB.,Y 1 (d 2
rdr [’"“ dr]*ﬁ[( ar )*rz(a; ("B”))] = poLpo, Th). (3.8)

The magnetic field diffusion in the equilibrium is neglected because this evolves more slowly than the
thermal instability. This implies that the analysis must be restricted to phenomena with time scales that
are significantly shorter than the diffusion time scale. Bearing this in mind, the chmic heating term in
Equation (3.8) is likely to be negligible. Once a form for the equilibriumn magnetic field has been chosen,
Equation (3.7) can be used to find the pressure profile. Then, in theory, Equation (3.8) determines the
equilibrium temperature profile Ty (and hence, using the ideal gas law Equation (3.4), the density profile
po) providing £ is known. Unfortunately no satisfactory form for the coronal heating function h has so
far been given. The solution is therefore work the other way round. A realistic temperature profile is
chosen and it is assumed that the heating function is such that Equation (3.8) is satisfied. It is also
assumed that perturbations of the heating term do not contribute in the linearised equations.

3.3.2 The Gold-Hoyle equilibrium profile

The Gold-Hoyle profile (Gold and Hoyle, 1960) has been used by many authors. In this Chapter, it is
force free, isothermal and thus also has a constant density:

cr

B = B Po = pe,
1 2
By = ch"”l'—z’ ro = BBZ/p. (3.9)

where p., B. and J. represent the values of density, magnetic field strength and plasma beta at the
centre of the cylinder axis respectively, while r is the dimensionless radial co-ordinate ranging from 0 to
1, scaled to the radius R of the outer plasma boundary and c a variable parameter which determines
the distance at which the external boundary is located. In this work ¢ is taken to be 20, equivalent to
placing the boundary of the cylinder at a distance of twenty times the typical loop radius. Three specific
types of Gold-Hoyle equilibria are used, each having the same plasma beta (8, = 0.002) and density
(pe = 1.6726 x 10~1%kg m~3), but having different temperatures (and hence magnetic field strengths),
and different outer plasma boundaries. In the cold profile, B, = 10G with R = 108m, while in the cool
profile, B, = 22.5G with R = 10%m and in the hot profile, B. = 67G with R = 10°m. The corresponding
temperatures are then evaluated using the formula T, = B2/ (Rup.), which gives Ty ~ 5.7 x 10*K,
2.9 x 105K and 2.6 x 10°K, respectively. In all three equilibrium profiles, the coronal heating function
h is constant per unit mass.

3.3.3 Linear perturbations

The standard MHD equations (3.1)-(3.5) are linearised about this equilibrium (p = po + p1, etc.) and
the perturbed magnetic field is replaced by a vector potential

B; = VXA], (310)
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thus satisfying V - B = 0 identically. This is substituted into the linearised induction equation which is

then integrated to give

0A,

a1 = V1XBo—r)(To)VX(VXAl)—(VXBo)'——Tl

(3.11)

A gauge function could in principle be added to Equation (3.11). However, the extra degree of freedom
it introduces is of no use here. It is therefore set equal to zero. Normal mode solutions are obtained by

letting all the perturbed quantities behave like

p1 = p'(r)exp[i(mb + kz)]e*.

(3.12)

Introducing velocity components v/, perpendicular to the flux surface and v/, and vl'l in the flux surface

but perpendicular and parallel to the equilibrium magnetic field respectively given by

i
v = g, (Baove+Baovt),
v, = By (Baovg — Beov),

(3.13)

(3.14)

and dropping the ‘0’ subscripts for ease of writing, it is found that the linearised equations for temperature

dependent scalar resistivity become

1d i f ing
W= Ly B
d [p P ig By dA, B, d
/ i a2 ""’TI i A ___AI e Z
0% dr [T e pp Wt g dy T ur dr r4s)
_ 2By, kf, | 2Bedl mf
ur u pr o dr pr
o pgT . | PYT J mB®d , . kB*dA, B ('m2 ) .
= ——(rA —_—— — | =+k
sprBiv’| T T 4 = p -+ = dr( o) + I i + 1A,
1 (BB, dBy dB, i ;
+ p( 5 + B, = )(IcA —-mA)),
s Jrp frp J—k dp ,, dp
spBiry) —FT + — p — kr o Ay +m d'A,
s B imn d AL) m_2+k2 AT g :
5, = Y =) d’l'(r o)1 r2 p — K1)
d AL kma dy dB,
/ o S Kol O SRR K ¢ Rt PR
sA, = Bv+nd[ (A)] zmnd( )+ = A kng+der

: ] 2
sty = Bt — B a4 L0 (+5e) T g, L L (BT

r dr dr dr 72 rdT dr

TI

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(8.21)
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spC, T = —«pC,,%;v; 2 ( ,)-—EB-f- %v’l

de  dT" Ky d ( dT' e su f? -
+ e +T$(T”E;' - (7‘2+k KJ_+E§(I€“—I€J_) T

oL oL - ar )
- (ﬁ +p (5-’;)71) p’ (5T) T+ # (lc" - nl_) E; (TkA'o - mAz)

+ i;; [(,.%jipip'w%’; ~2 ngg; df +2B, g’;;: (rAp) — 2i ggZ;A ) 55;’—]
e 2 ()t ()
+ 32” < (rBo) [zk— [ty — ( dﬁ) + T;A; - mkA;]
B 3 o)
¥ o= Er+l e (3.23)
where
f = mf" +kB,, g = mfz — kB, C, = ﬁ (3.24)

3.4 Basic Continuous Spectra

The normal mode spectrum of the linearised MHD equations can consist of both discrete sub-spectra
and continuous sub-spectra which are investigated here for a one-dimensional cylindrical plasma.
3.4.1 Continuous spectra in the ideal case

To obtain the continuous spectra for a perfectly conducting cylindrical plasma, the non-ideal terms in
Equations (3.15)-(3.23) are neglected. The resulting equations are then transformed to give

d [rN d j Iy 9 f_"i d Ba 4283 ;0.5 2
p [rder rv,‘)] + [ 2 (s p+ 7 e l""2 +_u2r3D (B s p+7pf)

d B2 2
LA D)D) -0 o
where
N = <s p+ ‘[2) [32p (710—!— B—z) + M—i] ! (3.26)
A H
and

2 2
D = s'p? 4+ (k2 + T’z’) [ (7p+ e ) + 12} ] (3.27)
r 1 u
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Equation (3.25) is the Hain-Liist equation first derived by Hain and Liist (1958). The Hain-Liist equation
(3.25) yields important information about the layout of the ideal normal mode spectrum. The mobile
regular singular points in the Hain-Liist equation correspond to continuous spectra, see Goedbloed
(1983). These singularities are given by N = 0. Hence, cither

2
32 + — o 0’ 3.28
Zaiee (3.28)
or
BZ 2
s%p (7p+ 7) = 1‘%— = 0. (3.29)

Equation (3.28) represents the Alfvén continuum and Equation (3.29) represents the slow mode contin-
uum. The zeros given by D = 0 are also important in ideal MHD. These are given by

z__i(zl’f B _4wf? ([, M\ B
g% o 5 k+7_2 7p+“ 144/1 = k+r2 7p+# . (3.30)

The growth rate s is imaginary in Equations (3.28)-(3.30). These imaginary growth rates (s? = —w?)

are equivalent to four frequencies w4, w,, wy and wy, where w; and wy correspond to the plus and minus
signs of the square root in Equation (3.30) respectively.

Originally, it was first thought by Grad (1973) that the two solutions (or frequencies) given by
Equation (3.30) defined two more continua. He concluded that for a perfectly conducting, cylindrical
plasma, the spectrum of the MHD equations contained four distinct continua. However, Appert, Gruber
and Vaclavik (1974) rewrote the Hain-Liist equation (3.25) as a system of two first-order ordinary
differential equations which had singularities given only by N = 0. They therefore concluded that
the zeros corresponding to DD = 0 were apparent singularities and did not correspond to continuous
spectra. Goedbloed and Sakanaka (1974) went a stage further and showed that the two frequencies w;
and wy represented regions of non-monotonicity. (These frequencies separate the regions of Sturmian
and anti-Sturmian behaviour of the discrete sub-spectra, see later.)

So far, the discrete sub-spectra has yet to be addressed. It has been shown (see Goedbloed, 1984 and
references therein) that the three MHD waves (Alfvén and the fast and slow magnetoacoustic waves) can
be split into five sets of discrete sub-spectra. It has also been shown (see, for example, Goedbloed, 1983,
1984) that discrete Alfvén and slow modes accumulate at the tips of the Alfvén the slow mode continua
respectively, while the fast modes accumulate at infinity. The discrete Alfvén modes found below the
Alfvén continuum exhibit Sturmian behaviour (the frequency of the modes monotonically increases with
wave number) while the discrete Alfvén modes found above the Alfvén continuum are anti-Sturmian
(the frequency of the modes monotonically decreases with wave number). A similar result also holds
for the discrete slow modes found above and below the slow mode continuum, while the fast modes are
Sturmian (for details, see Goedbloed, 1984).

The complete layout of the ideal MHD spectrum can now be assessed for a general equilibrium with
weak inhomogeneities. This yields distinct frequencies for wy, wg, wg and ws. The Alfvén and slow
mode continua therefore do not overlap. The complete spectrum is shown in Figure 3.1. It is important
to note that the exact layout of the normal mode specrum depends on the equilibrium considered. It is
possible to generate a complete axis of continua and have no discrete sub-spectra, see later. It is also
possible that for some equilibria, one or more branches of the discrete sub-spectra may be absent. Under
some circumstances, unstable Alfvén modes may be present, see Chapter 4.
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There is still one more situation that has to be addressed. This usually occurs at the plasma interface, but
can also happen whenever the equilibium density tends to zero. The frequency of the Alfvén continuum
is given by
2
g (3.31)
Hp
and so as p — 0, wg — oo. Hence, the Alfvén continuum contains the fast discrete sub-spectra as
quasi-modes.

w} wi wh wj
—— e et o N, e
S M 53— N X3 O XN % X3 w?
0 o
3 - ) N % b A - 5
slow Alfvén fast

TFigure 3.1: The typical layout of the ideal MHD normal mode spectrum for a general
equilibrium with weak inhomogeneities. The frequencies wy and wy are the imaginary
parts of the growth rates (w? = —s?) defined by Equation (3.30) and w, and w4 are the
Alfvén the slow mode continua frequencies, respectively. (After Goedbloed et al., 1973).

Notice that the slow mode continuum contains both the Alfvén and fast sub-spectra as p — 0 or if
vp + B?/p — 0. In addition, if there is a point in the equilibrium where f =k - Bg = 0, then both the
Alfvén and the slow mode continua both have minima at w} = w? = 0. In this case, the whole of the w
axis is covered by continua. In this situation, both the Alfvén and the slow mode continua overlap and
a complicated problem arises.

Finally, it should also noticed that there is no continuous spectrum along the real s axis in ideal
MHD.

3.4.2 Continuous spectra for zero perpendicular thermal conduction and
zero resistivity
It has been demonstrated by Van der Linden and Goossens (1991) that for zero perpendicular thermal

conduction and zero resistivity, Equations (3.15)-(3.23) can be transformed into the following second-
order ordinary differential equation

2o sen]+emen = o (3:32)
where
F(r) = (s p+];) rg‘, (3.33)
00 = (o D) £(B)+ ELE [ (5F) ]

4k: B? Z 2k d (gC.B
2 (pf + ps”B%) [spC +p(g§,) + K}';; ] - (g—é—”) (3.34)
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with
£ 2 (p2 m? C 22,4 oL ’“Ilf2
= = [ B+ — |G —rp%s spCy + p ) TR | (3.35)
P
and
B? ‘rw”] 2\ p’p (0L
= Cv 2 s B S 2 LS, Ll 0 elicn
Ca E [SP(YM u>+ 1 (s ak u) T <0P)T
mf2 (9L 1] By, o
+ [B2 +”(m' | lre Sl e s (3-36)

Equation (3.36) is a third-order polynomial in s and can be written as

B? B? aL o 3p (L
- 2 L 3 b~ ot It _ PP oL 2
o = [pa(w+ )|+ o (o4 ) (o (a7), + 37) - F ()]’

+ [l (2 () + BF) - S22 (50).) 480

It should be noted that Equation (3.32) is formally identical to the Hain-Liist equation (3.25) when the
non-ideal terms are neglected. This modified Hain-Liist equation has singularities (and hence continuous

spectra) given by

12
<s2p + F) G = 0. (3.38)
To satisfy Equation (3.38) either
f2
sp+— = 0, (3.39)
#
or
C: = 0. (3.40)

Equation (3.39) again defines the Alfvén continuum. Since Equation (3.40) is a cubic in s there are
three solutions for a fixed radial co-ordinate ». Neglecting the non-ideal terms in Equation (3.36) gives

B2 2
Crisear = 5pCh [32,; (vp + —) + Zp—f—} ; (3.41)
p I

and so either

s = 0, (3.42)

G 4
© T N eGap+ B s

The real root, s = 0, corresponds to the ideal remnant of the thermal continuum. The two purely

or

imaginary solutions given by Equation (3.43) correspond fo the ideal slow continuum. Since the non-
adiabatic terms are assumed to be small, in general their inclusion will add a small correction to the
ideal slow continuum. In most cases Equation (3.40) therefore has two complex roots corresponding to
the modified slow continuum and one real root corresponding to the thermal continuum.
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3.5 Continuous Spectra with Dissipation
3.5.1 Continuous spectrum for non-zero perpendicular thermal conduction
and zero resistivity

It has also been shown (Van der Linden and Goossens, 1991) that for non-zero perpendicular thermal
conduction and zero resistivity, the continuous spectra are given by

2 B2 f2
o +f~] [32 ( +~—)+E~—] = 0. 3.44
[ e B L r (3.44)
Therefore, either
fz
s’p+— = 0, (3.45)
73
or
B2 pf2
§? (+—)+— = 0. 3.46
plRt— i (3.46)

Equation (3.45) again defines the Alfvén continuum. Equation (3.46) defines the isothermal continuum,
which is the modified slow continuum (see also Hermans et al. (1988) who demonstrated that the above
two continua exist when dissipation due to anisotropic thermal conduction is included).

3.5.2 Continuous spectra for zero perpendicular thermal conduction but
non-zero resistivity

In ideal MHD it is well known that mobile regular singular points in the linear differential equations
correspond to bands of singular wave solutions, or continuous spectra (see, for example, Goedbloed,
1983). Hence to derive the continuous spectrum for a one-dimensional cylindrical equilibrium, with
resistivity included, singularities are looked for in the equations obtained by transforming Equations
(3.15)-(3.23) into a set of six first-order ordinary differential equations. Introducing the total perturbed
pressure P’ given by

1
P = p+ ;(BaBHBzB;), (3.47)

setting perpendicular thermal conduction to zero, letting resistivity be constant in Equations (3.20)-
(3.22) and after performing some fairly straightforward but lengthy algebra, the following system of
differential equations is obtained

sprp [3 +7 (%2— + k2>] C’o% = C1Bj + Cov,. + Cap + Ca{ + Cs B, + Ce P, (3.48)
[s +7 (*T‘:?z + kz)] %.1; = Cqv, + CsBy + Cotp + C10€, (3.49)
spn [s +7 (%ﬁ + kz)] Co%% = CnP'+ Cr2Bj + C13B; + Ciav; + C159 + CheC, (3.50)
spn [s +7 (an:_ + kz)] Co(;—f = Cy17P' + C138Bj + Crov}. + Cao B, + Cap + Coa(, (3.51)
B -y, (3:52)




The Thermal Continuum in Coronal Loops 36

dB!

= = ¢ (3.53)

where the coefficients Cy — Cag are given in Appendix A and

2
= i NPT AT 2e
Co = spyCy + 52 +p<<9T =T L+p 8 )] (3.54)

When resistivity is set equal to zero, it can be shown after more algebra that Equations (3.48)-(3.53)
reduce to the modified Hain-Liist equation (3.32). It can now be seen that the differential equations
(3.48)-(3.53) have singularities (and hence continuous spectra) given by

2
s+q(%+k2) = 0, (3.55)

and

ey (LN _p Z N .
) IS

The former is diffusion which is neglected as before, whereas the latter is the thermal continuum for
non-zero, constant resistivity and zero perpendicular thermal conduction. Furthermore, it can be shown
that for temperature-dependent resistivity, given by Equation (2.6), the thermal continuum becomes

firy ac p acr ldp[(dB,Y 1 (d ; 5 _
spyCy + B2 +p a—T)p—T [;C-I-P(a—p)T]-l-;ﬁ; (dr )—Fﬁ(-CF(JBa))] = 0. (3.57)

....
o

0.0 0.25 0.5 0.75 1.0

Figure 3.2(a): The thermal continua growth rates for the cold Gold-Hoyle profile with
¢ = 20 in Equation (3.9) and wave numbers k = m = 1. Notice that the wavenumber
% has been non-dimensionalised, see Appendix C. The solid line represents the thermal
continuum for non-zero resistivity whilst the dashed line represents the thermal contin-
uum for zero resistivity. The growth rate has been scaled in terms of the Allvén time
scale and the radius in terms of the outer boundary.
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The singularities corresponding to Equations (3.56) and (3.57) can also be obtained using the infinite
gradient method, discussed in more detail in Appendix B and Goossens, Poedts and Hermans (1985).

In Equation (3.57), as in Section 3.3, the ohmic heating term and £ are neglected.

Growth Rate
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0.0 0.25 0.5 0.75

Figure 3.2(b): As in Figure 3.2(a) but for the cool Gold-Hoyle profile with B, = 22.5G in
the equilibrium equations and R = 10®m. The corresponding temperature is 2.9 x 10°K.,
The dense dotted lines show the positions of the two singularities which correspond to
a growth rate of 0.997 as used in Figure 3.6, while the less dense dotted lines show the
expected position of the singularity corresponding to a growth rate of 0.89996 as used in

Figure 3.4.
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Figure 3.2(c): As in Figure 3.1(a) but for the hot Gold-Hoyle profile with B, = 67G in
the equilibrium equations and R = 10°m. The corresponding temperature is 2.6 x 10°K.

In Equation (3.58), there are no terms involving resistivity. Thercfore the exact value of resistivity does
not influence the thermal continuum. Comparing Equations (3.37) and (3.56), it can be seen that if terms
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of order s? and above are neglected in Equation (3.37) it reduces to Equation (3.56). This is surprising
when considering that Equation (3.56) is the singularity of the sixth-order differential equation obtained
by re-writing Equations (3.48)-(3.53), whereas Equation (3.37) is the singularity of the second-order
differential equation derived by Van der Linden and Goossens (1991) for zero perpendicular thermal
conduction and zero resistivity. The thermal continua for both zero resistivity and non-zero constant
resistivity are compared in Figure 3.1. In each of the three cases, the thermal continua are plotted for the
three types of Gold-Hoyle equilibrium profiles described earlier, with ¢ = 20 in Equations (3.9) and wave
numbers m = k = 1. The dashed line is the thermal continuum for zero resistivity and the solid line the
thermal continuum for non-zero constant resistivity. The curves show the local continuum eigenvalue
(scaled to the Alfvén transit time given by 74 = R,/fipc/B.) as a function of the cylinder radius . In
Figures 3.2(a) and 3.2(b) it can be seen that the two thermal continua plotted have considerably different
growth rates. In these equilibria the thermal continuum for zero perpendicular thermal conduction and
zero resistivity is removed by resistivity and is replaced by a dense set of discrete modes, called a quasi-
continnum. However, in Figure 3.2(c) it can be seen that the two curves are almost identical. Closer
inspection reveals the fact that the growth rates are much smaller in magnitude compared to that found
in Figures 3.2(a) and 3.2(b). In this equilibrium, the thermal time scale is much smaller than the
Alfvén time scale and so in the expression for the thermal continuum with zero perpendicular thermal
conduction and zero resistivity given by Equation (3.40), terms of order s? can be neglected, giving an
expression very similar to that for the thermal continuum for non-zero resistivity given by Equation
(3.57). Hence, for the hot Gold-Hoyle equilibrium profile there is no quasi-continuum present. For a
general equilibrium profile it would therefore be expected that resistivity would replace the thermal
continuum for zero perpendicular thermal conduction and zero resistivity by a quasi-continuum, except
. when the thermal time scale is much smaller than the Alfvén time scale.

3.5.83 Saufficient Conditions for Thermal Instability

It is mathematically very easy to obtain continuum solutions for certain values of 7 since they are just
solutions to either the cubic equation (3.40) for zero resistivity or the linear equation (3.57) for non-zero
resistivity. Knowledge of the thermal continuum can be used to formulate sufficient conditions for the
onset of thermal instability. Since continuum solutions are also solutions to the full eigenvalue problem,
it can be deduced that a given equilibrium is thermally unstable if the thermal continuum is partially
or completely contained in the positive real s-axis.

For zero resistivity and zero perpendicular thermal conduction, the slow and thermal continua cor-
respond to the solutions of the cubic equation (3.40). This can be rearranged to give

? + 05 3 oL i oL
ot SR () - (5),)

Cup B2 oT 2 c + %) %

D S i ['ﬁuf2 (05) ’ (3£) ]

— et — | === = 5
+ “pc,s+ Hon | +p a7 T 8oy 0 (3.58)

where ¢, is the sound speed, ¢; is the isothermal sound speed and v4 is the Alfvén speed defined by
B2
2 = 12 2 = 2 o= = 3.59
s p i p A 1p ( )

To investigate when an equilibrium will be thermally unstable, the roots of the Equation (3.58) are
examined. or f = k- B # 0, Equation (3.58) will have at least one positive real root whenever

| £2 2
. +,,(g_§) “%"(%)T <0 (fork-B#0). (3.60)
P
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If k- B = 0, the last two terms in Equation (3.58) vanish. Thus Equation (3.58) simplifies and has at
least one positive real solution whenever

ac cZpt oL _
p (g*f)p - ‘fm (5‘;){? < 0 (fork -B = 0). (3.61)

Equations (3.60) and (3.61) are the isobaric instability criteria for a uniform infinite medium (see Chapter
2 and Field, 1965). It can also be shown that the slow continuum can become overstable whenever

(y-1) [m]";j +p (g—;)ﬂ] + BTZ— (%E)T < 0. (3.62)

This is reconised as the isentropic instability criterion for a uniform infinite plasma (see Chapter 2).

A similar, less complicated, analysis can be performed for non-zero resistivity and zero perpendicular
thermal conduction. Setting £ equal to zero and neglecting the ohmic heating term in the expression
for the thermal continuum for non-zero resistivity given by Equation (3.57), it can be seen that the
condition for an equilibrium to be thermally unstable at any r and any allowable wave numbers & and

B (a2) 7 ()
wte\w) T\5), < ° (3.63)

As before, this is recognised as the isobaric instability criterion for an infinite uniform medium. Exam-

m is

ining Figure 3.2 it is found that the cold Gold-Hoyle profile is thermally stable whereas, the hot and
cool profiles are both thermally unstable for the wave numbers k =m = 1.

The question arises as to whether these sufficient conditions for thermal instability are also necessary
conditions as well. The answer is generally no because the thermal sub-spectrum may contain discrete
modes in addition to the thermal continuum.

3.6 Numerical Results for Finite Resistivity

It can be readily seen from the previous Sections that the inclusion of finite resistivity removes the Alfvén
continuum given by Equation (3.45) and replaces the cubic equation (3.40) (which represents the thermal
continuum for zero resistivity and zero perpendicular thermal conduction, and the slow continuum), by
the linear equation (3.57) (which represents the thermal continuum for non-zero resistivity). In doing so
the slow continuum is also removed and the thermal continuum for zero resistivity and zero perpendicular
thermal conduction is usually replaced by a dense set of discrete modes, called a quasi-continuum. This
quasi-continuum is investigated numerically using the finite element code LEDA (Large-scale Eigenvalue
solver for the Dissipative Alfvén spectrum). A detailed description of LEDA can be found in Appendix
C. The general eigenvalue problem given by Equations (3.15)-(3.23) is then solved by two different
algorithms. The first, the QR method (Kerner, 1989) gives the eigenvalues. Once these are known,
they can be used in the Inverse Vector Iteration algorithm, (Kerner, 1989), to calculate and plot the
eigenfunctions. In this Section, attention is restricted to the cool Gold-Hoyle equilibrium profile with
wave numbers £ = m = 1. In any study of the normal mode spectrum for a given equilibrium, it is
essential to get a good idea of the global picture before restricting attention to specific areas. Hence,
two QR plots are given in this Section to illustrate the ideas in the previous Sections.
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Both are calculated using 50 gridpoints. In Figure 3.3(a), the situation where resistivity is zero is
considered and in Figure 3.3(b) the unrealistically low value of R,, = 1. Notice that in both diagrams,
the thermal continuum is located in approximately the same position.
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Figure 3.3(a): The QR plot with 50 gridpoints for the cool Gold-Hoyle profile with zero
resistivity. Notice that the thermal continuum is clearly visible along the real s axis.
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Figure 3.3(b): The QR plot with 50 gridpoints for the cool Gold-Hoyle profile with
R,, = 1. Even for this unrealistically low value of R,,, the thermal continuum can still
seen along the real s axis.

In Figure 3.3(b), it can be seen that the thermal continuum has shifted a small distance along the real
s axis. Notice also the effect resistivity has on the slow and Alfvén modes. Now that the QR plots have
been worked out, attention may be diverted to the thermal sub-spectrum.
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Two sets of six graphs are provided here, each calculated using 1,000 gridpoints. These Figures show
how the real part of the v, eigenfunction (scaled to the Alfvén time scale r4 = R./jtpc/B. which is
typically taken to be 5 seconds in the solar corona) evolves with various values of resistivity. The v
eigenfunction was chosen because it best illustrates these changes. It should be noted that the same
effects are seen in all the eigenfunctions. In each case the only parameter that is varied is the magnetic
Reynolds number R,,. In Figure 3.4 the singular behaviour of the thermal continuum for non-zero
resistivity is shown. Here R, = 1 and the singular behaviour occurs at » = 0.0886, just as predicted by
the less dense dotted line in Figure 3.2(b). In Figure 3.5 the most unstable mode (largest growth rate) of
the thermal ‘quasi-continuum’ is followed as the value of resistivity is increased. For zero resistivity, the
singularity is clearly seen at » = 0.26. Comparison with Figure 3.2(b) confirms this position. Increasing
resistivity removes the singularity and ‘spreads out’ the eigenfunction.
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Figure 3.4: The thermal continuum singularity for R,, = 1 and calculated using 1,000
gridpoints. The growth rate is s = 0.89996. Notice that for this value of s, the position
of the singularity is predicted by Figure 3.2(b).

For R,, = 108 (which is already well below the typical coronal value), the position of the original
singularity is still clear and the growth rate has only been reduced by a relative amount of 10~°. Thus
the analysis of the thermal continnum for zero resistivity, which only involves the investigation of the
cubic equation (3.40), gives important information about the results for non-zero resistivity. Increasing
resistivity eventually removes the quasi-singular behaviour of the eigenfunction and smoothes out the
gingularity. This is clearly illustrated in Figure 3.5(f) for R, = 10°. However, while resistivity influences
the shape of the eigenfunctions, it has very little effect on the eigenvalue. The growth rate smoothly
asymptotes to the maximum continuum value as R,, — 0o. The growth rate reduces from 0.99945 for
zero resistivity to 0.99903 for Ry, = 10® (which is already an unrealistically low value for the magnetic
Reynolds number). For classical values of the resistivity the eigenfunctions still resemble to a high degree
the singular behaviour as shown in Figure 3.5(a). Thus, many of the properties of the most unstable
mode can be predicted by considering the thermal continuum described by Equation (3.40). However,
the question of what happens to the higher harmonics has not yet been addressed.
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Figure 3.6 shows the behaviour of the higher harmonics as resistivity is again increased. In this Figure the
eigenfunction closest to the specified growth rate of 0.997 is located for various values of the magnetic
Reynolds number and the eigenfunctions obtained. Figure 3.2(b) shows that, corresponding to this
growth rate, the eigenfunctions for zero resistivity should be singular at » &~ 0.18 and r ~ 0.38. For
large, but finite R, the eigenfunctions should retain a quasi-singular behaviour at these points. In
addition, a simple WKB analysis suggests that the eigenfunctions will be essentially oscillatory between
these singular radii and evanescent elsewhere. This is clearly seen in Figure 3.6(b).

(a) (o) o

Palr) Rt L%

Patin (5 Fadn
i 53 1 s 1 ] s as (1] 19 " 023 5 (3 "
(@ (®) 0
Aalv) et LU
2
10'10']
153 5107
7503
350
w10
500" E2)
151013 o £
4
'
0 /\ 1
T T | Rl 590 T T T ) Rss Radon
@ s [t] s 10 0 028 s s 1w o0 025 05 s 1n

Figure 3.5: The most unstable quasi-continuum mode for various values of the magnetic
Reynolds number for the cool Gold-Hoyle equilibrium profile, with wave numbers &£ =
m = 1. Going from (a) to (f), the values of R,, are oo, 108, 107, 106, 10° and 10®. The
corresponding growth rates are 0.99945, 0.99944, 0.99942, 0.99935, 0.99913 and 0.99903.

For R,, = 10%, the two singular radii are located at the predicted positions and the eigenfunction is
indeed highly oscillatory between these positions. As resistivity is increased the number of oscillations
is reduced. This is a consequence of locating the eigenfunction nearest to a particular growth rate. One
way to interpret these figures is to think of them showing how resistivity modifies the growth rates of
the various normal mode harmonics. If a harmonic is identified by the number of zeros between the
radii corresponding to the original singularities, then, as resistivity reduces the growth rate of each
harmeonic, Figure 3.6 gives the value of resistivity at which the growth rate of a particulax harmonic is
approximately equal to 0.997.
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In summary, Figure 3.5 follows one particular normal mode as the value of resistivity is increased whereas
Figure 3.6 represents different modes. To investigate how resistivity influences the spatial structure of
normal modes it is important to follow the same normal mode. From Figure 3.5 it is clear that resistivity
has smoothed out the singularity and the thickness of the internal boundary layer é, as a function of
resistivity, is shown in Figure 3.7. An indicator of the boundary-layer thickness used is the distance
between the maximum and minimum near the original singular radius.
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Figure 3.6: Individual quasi-continuum modes for various values of the magnetic
Reynolds number. Going from (a) to (f), the values of Ry, are oo, 108, 2 x 10%, 1.25 x
10%, 2 x 10* and 10%. The corresponding growth rates are 0.99681, 0.99705, 0.99703,
0.99687, 0.99675 and 0.99674. Notice that for a growth rate of s = 0.997, Figure 3.2(b)
gives the location of the two singularities seen in graph (a).

It is apparent that the thickness scales with resistivity to the power 1/4. This is not too surprising:
this scaling of the thickness of the resistive layer is in agreement with the analysis presented in Sakurai,
Goossens and Hollweg (1990). Their analysis also yields 6 ~ R4
continuum. Based on this scaling, the thickness of the fine structure is comparable to the thickness
predicted by the inclusion of perpendicular thermal conduction (Van der Linden and Goossens, 1991).
These estimates are in agreement with the observed widths. If R,, lies between 108-10'2, then R4

will lie between 10~3-10~2.

close to an extremal value of the
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Therefore the length scales for the prominence fine structure are 10%-10°m. This is comparable to length
scales obtained with perpendicular thermal conduction obtained by Van der Linden and Goossens (1991).
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Figure 3.7: Plot of logn against logé. The gradient of the line is evaluated and found to
be 1/4. Thus, the thickness of the resistive layer scales with resistivity to the power 1/4.

3.7 Chapter Summary

This Chapter has investigated the effect of finite, scalar resistivity and perpendicular thermal conduction
on the thermal instability. In the absence of these two dissipative terms there are three continuous spectra
associated with the linearised MHD equations, namely the Alfvén, slow and thermal continua. These
dissipative terms are now included and their effect on the continuous spectra is summarised.

Neglecting resistivity but including perpendicular thermal conduction, it is found that the thermal
continuum is removed but the Alfvén and a modified slow continua remain. The removal of the thermal
continuum is not surprising since temperature disturbances can be smoothed out across the magnetic
flux surfaces and a global normal mode is possible. However, the eigenfunctions of this quasi-continuum
vary rapidly over a length scale that is proportional to (k1. /ry)'/* (Van der Linden and Goossens, 1991).

Now consider the situation in which resistivity is included but perpendicular thermal conduction
is neglected. In this case the Alfvén and slow mode continua are removed and the only continuous
spectrum left is the thermal continnum. However, this continuum arises from the singularity associated
with a sixth-order (in the perpendicular direction) differential equation rather than the singularity of
the second-order equation in the absence of resistivity. The singularities are therefore quite different.
Nevertheless, it appears that the two continua are similar when the Alfvén to radiative time scale ratio
is small. In the other cases the thermal continuum is strongly influenced by resistivity in a discontinuous
manner. This illustrates the singular nature of resistive MHD and shows that there is a difference between
zero resistivity and ‘small’ resistivity. For the equilibrium investigated, the new thermal continuum lies
below the zero resistivity continuum. In addition, the zero resistivity continuum is replaced by a quasi-
continuum, which consists of a dense set of discrete and continuous (in the spatial direction) normal
modes.

Finally, the inclusion of both resistivity and perpendicular thermal conduction removes all the con-
tinuous spectra. However, the thermal quasi-continuum will remain.
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The main numerical work in this Chapter has concentrated on the effect of resistivity on the structure
of the global normal modes. It is found that resistivity does not substantially reduce the growth rate
associated with the maximum of the original thermal continuum, but does remove the singular nature of
the eigenfunctions. Furthermore, since the quasi-continuum contains many normal modes with similar
growth rates, the higher harmonics were also investigated. Considering the normal mode that is closest
to a given growth rate, about 99% of the fundamental growth rate, the structure of the highly oscillatory
eigenfunctions was investigated for different values of the magnetic Reynolds number. It was found that
the length scales associated with the oscillatory nature of the eigenfunctions scaled with /4, the same
fractional power as perpendicular thermal conduction. Thus, fine scale structure can be generated by
resistivity as well as perpendicular thermal conduction (see Van der Linden, 1993 for more details of the
fine scale structure associated with perpendicular thermal conduction).

From the results obtained here and in Van der Linden and Goossens (1991), the importance of the
thermal continuum can now be assessed. In the absence of the two dissipative effects considered, there is
a thermal continuum that can be described by the solution of a simple cubic equation. The growth rate
can be calculated as a function of the radial distance and this defines a range of possible growth rates.
Thus, for a given radius there is an associated growth rate. At this stage, there exists a normal mode
solution that has the above mentioned growth rate and possesses a singularity at the specified radius.
If the thermal continuum curve has a local maximum, smax at the radius, say, rmax, then the inclusion
of resistivity removes the singularity and the most unstable quasi-continuum mode has a growth rate
that is given by smax and is strongly localised about rnax. Hence, the information about a physical,
normal mode can be obtained by analysing the cubic equation that defines the thermal continuum. Now
consider a growth rate that lies below the maximum of the continuum curve. There are now two different
radii corresponding to this value of s. The inclusion of resistivity again removes the singularities and it
is observed that the eigenfunctions are highly oscillatory between these two radii. Therefore, analysing
the thermal continuum curve can also predict the radii between which fine scale structure can form.

It is clear that resistivity can produce fine scale structure as the plasma cools. This is similar to the
effect of perpendicular thermal conduction and in both cases the length scales of the fine structure scale
with the diffusion coeflicient to the power one quarter. Hence, classical values of these two diffusion
coefficients will give rise to the typical length scales observed within quiescent prominences.




Chapter 4

Magnetothermal Instabilities in

Coronal Arcades

...mechanically quiet and smooth...all the major controls are light and
precise and the gear change is perhaps the best we have ever tried.... It should
on its presenl merils rise right to the first rank amongst small cars of
the world.
-Review of the Imp in Motor Magazine.

We put it into production and they staried failing all over the place...
The prototype worked, the pre-production worked and the production didn’t.
-Jim Pollard, Quality Manager.

4.1 Overview

In this Chapter, the normal mode spectrum for the linearised MHD equations is investigated for a plasma
in a cylindrical equilibrium. The equations describing these normal modes are solved numerically using
a finite element code. In the ideal case, the Hain-List equation is expanded and a WKB solution
obtained. This is compared to the numerical solutions. In the non-ideal case, the ballooning equations
that describe localised modes are manipulated and a dispersion relation derived. It is shown that as
the axial wave number k is increased, the fundamental thermal and Alfvén modes can coalesce to form
overstable magnetothermal modes. The ratio between the magnetic and thermal terms is varied and
the existence of the magnetothermal modes examined. The corresponding growth rates are predicted
by a WKB solution to the ballooning equations. The existence of these magnetothermal modes may be
significant in the eruption of prominences into solar flares.

4.2 Introduction

As remarked in Chapter 1, there are many interesting features present both on and around the Sun.
High above the photosphere in the solar corona, prominences are often observed. These are cooler and
denser than the surrounding corona and, although not accurately known, have a mass of about one tenth
of the total corona. One of the most intriguing questions is concerned with how these prominences form.

46
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Many suggestions have been made, one mechanism being due to a condensation driven by the plasma’s
optically thin radiation. Once this thermal instability is triggered, the plasma continues to cool until it
becomes optically thick, typically at a temperature of about 7,000K, the temperature usually observed
within the prominence (see Chapter 2 for details).

While the above scenario is happening, the equilibrium magnetic field must be stable or the promi-
nence cannot form. This is a consequence of the radiation fime scale being very much greater than the
magnetic field time scale. It is interesting to note that, if the corona ig treated as an isolated plasma
totally unconnected to the photosphere, magnetic stability is very difficult to achieve. The question then
arises as to why there are so many prominences observed when this stability condifion apparently rules
themn out. The answer is that the corona is not an isolated plasma, but is connected by magnetic field
lines that emerge from the photosphere. This connection thus stabilises the magnetic field in the corona
and hence enables the prominences to form. This condifion, known as line-tying, is not considered here,
but will be addressed in Chapter 5.

Once formed, the prominence remains supported in the corona in a stable configuration for many
days, or even months, until it erupts. The destruction of the prominence is thought to occur because
the equilibrium magnetic field has become unstable to an ideal MHD instability. Often this magnetic
instability will trigger off a flare which is observed as a rapid brightening in Ho. Solar flares give off
an immense amount of energy, in the region of 1025]. The source of this energy is the stressed coronal
magnetic field that becomes unstable and releases the stored magnetic energy.

From the above discussion about possible prominence and flare formation, it is apparent that there
are two distinct mechanisms at work; a thermal instability and a magnetic instability. However, there
is no reason why these instabilities cannot be coupled together, instead of only occurring individually.
In this Chapter, the two basic instabilities are studied and their interactions considered and examined
for a simple cylindrical equilibrium. Before progressing to a more realistic situation, the basic physical
properties of these magnetothermal modes must be fully understood. The first rigorous treatment of
the thermal instability mechanism was by Field (1965). He considered an infinite, uniform plasma and
derived various conditions for triggering a thermal instability (details are given in Chapter 2). This work
has been extended by many authors (see, for example, Heyvaerts, 1974; Van der Linden and Goossens,
1991). In particular, Van der Linden and Goossens (1991) showed that the instability criteria derived by
Parker (1953) and Field (1965) for a uniform, infinite plasma can be generalised into sufficient conditions
for the onset of thermal instability in a non-uniform plasma (see Chapter 3).

Defining wave numbers parallel (k) and perpendicular (k) to the equilibriurn magnetic field and
writing the anisotropic thermal conduction in terms of the coefficients of heat conduction parallel («)
and perpendicular (k1) to the magnetic field, it can be shown (Tield, 1965 and Chapter 2) that the
thermal instability criteria are given by

oL
_— for &y = = 4.1
(aT)p < 0 (for ky = k1 = 0), (4.1)
ac g (8L .
K."kﬁ + k1 k% + po (g,f)p = ;pfz‘ (3_;0)T < 0 (for ky # 0), (4.2)
and
oL cip? oL
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kiki + po (OT)p To (¢ +v2) (ap)T < 0 (for ky =0, k1 #0), (4.3)

where ¢; is the isothermal sound speed, defined by ¢ = po/po, va = Bo/\/pipo is the Alfvén speed, £ is
the generalised energy loss function per unit mass with energy gains defined as negative losses
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and (0£/0T) , is the partial derivative of £ with respect to T" keeping p fixed. In the energy loss function
an optically thin radiative loss term and an unspecified coronal heating function h are included

pL = FpPT® — ph, (4.4)

where ¥ and « are piecewise constant functions of 7' (Rosner, Tucker and Vaiana, 1978).

It is easy to appreciate the importance of the magnetic field on the thermal instability due to these
two conditions for ‘isobaric’ thermal instability for k - Bg = 0 and k - By # 0, given by Equations
(4.2) and (4.3) first obtained by Field (1965). From this, it can be seen that it is quite possible for the
magnetic field to influence the thermal instability.

In what follows, the normal mode spectrum for the linearised MHD equations is investigated for
a cylindrical equilibrium with attention restricted to the unstable subspectrum. The normal mode
spectrum usually consists of both discrete and continuous subspectra. There are normally three types
of continuous spectra corresponding to the anisotropic nature of the Alfvén, slow and thermal modes.
However, the nature of the spectrum depends upon which dissipative effects are included and upon the
equilibrium considered. For example, when resistivity is included, the Alfvén and slow mode continua
are removed and only the thermal continuum remains. When perpendicular thermal conduction alone
is included, the continuous spectra are found to consist of the Alfvén continuum and the modified
‘isothermal’ slow continuum. More details about continuous spectra can be found in Goedbloed (1983),
Van der Linden and Goossens (1991), Ireland et al. (1992) and Chapter 3.

In previous work by Van der Linden et al. (1992), a first study of the coalescence of magnetic and
thermal modes was presented. In particular, the effect on the Alfvén, thermal and coalesced magne-
tothermal modes were studied when the axial wave number k¥ was varied while the azimuthal wave
number m was set equal to zero. As the axial wave number was varied, the fundamental thermal and
magnetic modes were found to coalesce (or join together) and form a complex conjugate pair of overstable
wave modes. These overstable wave modes or magnetothermal instabilities were first found via the use
of the ballooning method applied to the normal mode spectrum and showed that thermal instabilities
and magnetic instabilities do indeed interact with one another and should be studied together and not
individually. This interaction depends upon the ratio of the ideal growth time to the radiative time
scale. Normally the ratio is small for the corona except when the equilibrium is near ideal marginal
stability.

The aim of this Chapter is to investigate the basic properties of these magnetothermal modes for a
non-zero azimuthal wave number and in the absence of photospheric boundary conditions. In Section 4.3
the basic equations are introduced and the equations for normal modes are obtained. These are solved
numerically using a finite element code. Section 4.4 describes the behaviour of the fundamental Alfvén
mode in the ideal case for large values of the axial wave number k& with the azimuthal wave number
m = 1. Section 4.5 examines the fundamental Alfvén, thermal and magnetothermal modes as k is varied
in the non-ideal case. The ballooning equations are manipulated and a WKB solution is compared with
the numerical results. The final Section then summarises the results found in this Chapter.

4.3 The Basic MHD Equations

The basic equations used in this Chapter are the standard equations of magnetohydrodynamies in which
gravity, resistivity, viscosity and rotational effects are neglected,
9p

a+pV-v+v-Vp = 0 (4.5)
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p[%‘tiﬂv-V)v] e —Vp+l—];-(VxB)xB, (4.6)
& - vx(vxB), (4.7)
- %pr_,w, (4.8)
7p—jl [% (p%) +(v-V) (;”7—)] = V.(kVT)=-pL(p,T), (4.9)

where all the symbols are defiued in Chapter 2. In this Chapter, perpendicular thermal conduction is
neglected as it is of no relevance for the mode coalescence. Hence, the anisotropic thermal conduction
term is rewritten only in terms of the coefficient of heat conduction parallel («)) to the magnetic field

V. (kVT) = B-V (Ic" EESZZ—Z:) - (4.10)

The magnetic field must also satisfy the condition

V.-B = 0. (4.11)

4.3.1 The Equilibrium Equations

The equilibrium configuration is a static, one-dimensional, infinite, cylindrical plasma, having a magnetic
field with axial and azimuthal components depending on the radial co-ordinate » such that Equation
(4.11) is identically satisfied. Hence,

By = (0,Bs0(r),B.o(r)). (4.12)

The aim of this work is to study coalescence of the thermal and magnetic modes. The Gold-Hoyle profile
(Gold and Hoyle, 1960) is used because it is a simple equilibrium and the ideal MHD properties are well
known. The specific form of the equilibrium equations used in this Chapter represent a dimensionless,
isothermal, constant shear magnetic field

r A
Bgo = a+r)’ By = ETSY
122
- : 413
ﬂPo 2(1 +7‘2)2 ( )

where the plasma beta 3 has been defined as 8 = up./B? with p. and B, representing the values of the
plasma’s pressure and magnetic field strength at the centre of the cylinder axis respectively, while r is a
dimensionless co-ordinate ranging from 0 to 1, scaled to the radius of the outer plasma boundary. In these
equilibrium equations X is a variable parameter. When A = 0, the equilibrium magnetic field is shearless
and when A = 1 a pressureless, force free field is obtained. In this equilibrium, the values of density and
magnetic field strength at the centre of the cylinder axis are taken to be p, = 3.6886 x 10~*'kg m~2 and
B. = 10G, respectively. The thermal equilibrium is given by £ = 0. In this equilibrium, the coronal
heating is considered to be constant per unit mass.
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4.3.2 Linear Perturbations

50

The normal mode solutions that are to be solved numerically are obtained by linearising Equations

(4.5)-(4.9), introducing a magnetic vector potential so that Equation (4.11) is automatically satisfied

and letting all the perturbed quantities behave like

o = p(r)expli(mb + kz)]e*.

(4.14)

Introducing velocity components v]. perpendicular to the flux surface and v, and 'vil in the Aux surface but

perpendicular and parallel to the equilibrium magnetic field respectively and dropping the ‘0° subscripts

for ease of writing it is found that the linearised equations become

o = gt~ Bl - P
spv, = —Ed; [ET'-I- 2,0' = %A: & %d;:; G B s : ( Aa)]
_ f?.zchg k‘f ?ﬂdfl'z = ﬂ
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b (Bl g, B 5T (ke - ),
spBiry = %27"+ﬁp—p’—kr%Ag+mj—fA',
34, = B,
sAy = =B,
sd, = .Bel,
spC T = _pc”‘;_fv;_zdi( :)__Bf_ll %gvlﬁf;':u:,ﬂ,
(o)) () B enn
po= %T“F%ﬂ,

where A’ = (A’, A}, A!) is the perturbed magnetic vector potential and
73428 z &

f=LB"+sz’ gszz £ = R

Bly=-1)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4:22)

(4.23)

(4.24)
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4.4 Results for the Ideal Case

In any study of the normal mode spectrum for a given equilibrium, it is essential to get a good idea
of what is happening globally, before restricting attention to specific regions, see Van der Linden and
Goossens (1991). It is therefore very important to discover the nature of the spectrum and the associated
bands of continuous spectra before proceeding with any local analysis. After neglecting the non-ideal
terms in Equations (4.15)-(4.23) and performing some algebra, the Hain-Liist equation is obtained (see
Goedbloed (1983) and Chapter 3):

d [rN dy 1,4 2 d (B
dr rder] & [r(SPI-f) dr \ r?

4k* B} o d {2kBag , .
Sp (B8Pt pS) - 3;( S (P (7P+BZ)+7pf2))]x = 0, (4.25)
where
N = (p+1?) (%0 (yp+ B?) +0f?), (4.26)
and
4.2 2, M 2 2 5
& = ey +(’° +;2—)(sp(7p+3)+7pf). (4.27)

where x = rvl. As in Chapter 3, it can be seen that the continuous spectra present are given by
the singularities in Equation (4.25). These singularities correspond to the positions where N = 0 and
consist of the Alfvén continuum and the slow mode continuum. It is important to note that the zeros
of D are only apparent singularities and do not correspond to continuous spectra. Notice that there
is no continuous spectrum along the real s axis in ideal MHD. Considering the equilibrium given by
Equations (4.13) with A = 0 and § = 1, it can be seen that the Alfvén continuum collapses to a single
point. Numerically, the fundamental Alfvén mode is found on the real positive axis (unstable) for an
azimuthal wave number m = 1 and a fixed value of the axial wave number k. For m = 1, the value
of k is varied and as k tends to infinity, the instability growth rate asymptotes to a fixed value. The
eigenfunctions become increasingly more localised near » = 0 in the sense that the fundamental Alfvén
mode becomes peaked about a particular radius as k increases.

The eigenfunctions were calculated using the finite element code LEDA (see Appendix C). The
equations for normal modes given by Equations (4.15)-(4.23), with the non-ideal terms neglected, form
an eigenvalue problem which is solved using up to 4,000 gridpoints (yielding very high spatial resolution).
The eigenvalues obtained are expressed in the asymptotic form for large & as

81 S92
8= s°+?+k_~2—+"" (4.28)
Hence, for any three different values of & (and corresponding growth rates), three equations in sg, s; and
sy can be found and thus solved. For the values of k given by 1,000, 2,000 and 3,000, so = 1.414213565
and s; = —1.673325.
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Analytically, the Hain-Liist equation (4.25) may be expanded for a small radius r and large axial wave
number k, since the numerical solutions indicate localisation near 7 = 0. By matching up the two
solutions for small » but large kr, it is found that sy = V2 = 1.414213562 and s, = —/14/5 =
—1.673320053 (see Appendix D for details). Comparing the analytical results with the numerical results,
very good agreement, is found for large k. This gives confidence that both the numerical and analytical
methods are accurate.

4.5 Ballooning Modes in the Non-Ideal Case

In this Section, a similar study to that previously carried out in Section 4.4 is performed with non-
ideal effects included. The ballooning equations are manipulated to obtain a dispersion relation which
is solved numerically. The ballooning approximation that describes localised modes is then compared
to the exact solutions to Equations (4.15)-(4.23) generated by LEDA. The ballooning approximation
was first introduced by Connor, Hastie and Taylor (1979) to investigate ideal instabilities in a toroidal
plasma. Later Dewar and Glasser (1983) gave a detailed mathematical treatment for an ideal plasma
in a general toroidal system. Hood (1986a,b) studied ballooning modes in the ideal case, for a coronal
plasma. These applications were limited to linear, ideal MHD. The method has also been used with
non-ideal effects included. For example, Velli and Hood (1986, 1987) studied resistive instabilities in
a solar coronal loop while Van der Linden, Goossens and Hood (1988) studied the combined effects of
resistivity and viscosity. To derive the ballooning equations, the perturbed quantities are assumed to
have the form

I = f(r,0)expliS(r)/6+st], (4.29)

where B - VS = 0 and § <« 1. This form of the perturbation represents a rapid variation across the
magnetic field lines (given by the exponential part) and a slow variation along the field lines given by
the amplitude factor, present in front of the exponential. The constraint B - V.S = 0 for a coronal arcade
is satisfied by setting

S = F()+z—q(r), (4.30)
with

rB,;
q(r) = B, (4.31)

where in principle F/(r) will be determined from the solutions to the eigenvalue problem and where ¢ (7)
is known as the safely factor in magnetic fusion research. When the ballooning approximation given
by Equation (4.29) is substituted into the linearised MHD equations, to lowest order in 4 the following
(ballooning) equations are obtained

sB?
B-Vé = ~roemAl (4.32)
s | VS|? 2uB
B.v4y = -t 1|32 Cyt o, (4.33)
up + B? d s 2B '
B:-Vu = - £-[EBZ—) (Sﬂpl + *g;a% ) + TTl = ;rﬂf;?", (4.34)
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B? dp
. = — 2 G ———r
B Vp; spBu 4+ [VSE By drA"’ (4.35)
®-v) (0E\ _ v sw]p _ _|,_(o _Lldp
["" B? or) ~G-DT i = e . P B an® (4.56)

where ¢ is the electrostatic potential, A is the parallel component of the vector potential, u is the
parallel component of the perturbed velocity and L has been defined to be £ = pL. The electrostatic
potential ¢ is related, to leading order, to the perpendicular component of the perturbed velocity v/, in
the By x V.S direction by

v ~ %(130 x VS) ¢. (4.37)

These ballooning equations, derived first by Hood, Van der Linden and Goossens (1989), represent the
Alfvén, slow and thermal modes. The fast modes have been eliminated by setting

ppr+B By = 0, (4.38)

and have therefore been excluded in the derivation of the ballooning equations, see Hood, Van der Linden
and Goossens (1989). These ballooning equations can casily be obtained from Hood et al. (1989), by
replacing their variables by ¢/¢ — ¢, —ip; — p1, —ivy — uB, ajfe — AyB/ |VS|* and —iTy — T.
Introducing the time scales in Table 4.1 and setting B — BB, By — BoB1, p — pop, p1 — pop1, T —
ToT, Ty — ToTy, p— pop, V= V[, v — Ir, s = s/Ta, A — Ay, ¢ — Bold/74 and u — lu/74 By, it
is found that the dimensionless equations, for the isothermal equilibrium 7'=1, are

sB?
B-Vé = - ogmAl (4.39)
vS|? 2B
B.v4y = -F& IBZ Dyt r;f”" (4.40)
B.Vu = _M o +_£}_£l£¢ + sT; _?_B_"qg (4.41)
= BpB? PLY By dr 1= " '
spB? B? dp
_ s 5 ol 4.42
B -Vp B u + [VSP B, dTA"’ ( )
5B-v)" (oL Y = s (2E) ], _ <3
[R 5~ \ar —(7_1)csp = €s ap ¥ ” B, dr¢’ (4.43)
P

where

€= Trad/TA: R = Trad/'rcond and ﬂ = 7',?4/”'52- (444)
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Equation (4.44) defines some parameters in terms of time scales. Typical values of these time scales for
the solar corona and prominences are given in Table 4.1.

Time scales Symbol Definition Coronal Value | Prom. Value
Alfvén A 1(pp)'"* /B 5 100
Sound (isothermal) Ts I/ (TR/ /"1)1/ . 200 300
Radiation Trad 1/pxT*? 3,000 1
Conduction Teand pl?/ & T 600 107
Free-fall Ty v/g 40 40

Table 4.1: Typical time scales, in seconds, for the physical processes that occur in the
solar corona and prominences. The values taken in this Chapter, to model a coronal
arcade, are B = 10G, p = 3.7 x 10~ kg m~3 and T = 2.6 x 10°K.

Since the amplitude function f does not depend on z, B -V — imBy/r and the ballooning equations

become
imBy . sB?
b =~ fogpl (4.45)
imBy _ps [VSP 2Baﬂ
= = ¢+ ——=5PL, (4.46)
imBy _ (Bp+B?) T L B dp 9P\ 4o 23"¢ (4.47)
T BpB? P17 By dr YR '
im By . spB2 B? dp
r T Ut VP By dr (445}
Rm?B? L ¥ x oL ¢ dp
[——W* (55_,—)’) o l)esp]Tl = —|es— % i p1— B o’ (4.49)

It is important to appreciate how to obtain global normal modes from the ballooning (or localised)
modes. Dewar and Glasser (1983) showed that the most unstable mode in ideal MHD could be found
by setting dF/dr = 0 and solving the ballooning equations on each flux surface. The growth rate of
the most unstable, physical mode then corresponds to the maximum of the ballooning growth rate as
a function of », the radial flux surface co-ordinate. Unfortunately, there is no proof that this method
holds for non-ideal MHD. Thus, following Van der Linden et al. (1992), the ballooning equations are
solved simultaneously on each flux surface and the maximum ballooning growth rate compared with the
actual normal mode solutions obtained by LEDA.
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4.5.1 Dispersion Relation

The variables in Equations (4.45)-(4.49) are ¢, Ay, p1, « and T}. For non-trivial solution, the determinant
of the coefficients of these variables must vanish giving

s2pB? | ¢ dp r L m? B} 9
p [B_a%‘“wm (“" (“55),_,) (55t + o) 1081

Rm?B? oL yesp | [=m?B, { 1 m2B2 2 1dp
o [W+ aT p+('y-1) [ r {-2? +sp) Al +E‘_E;}

+ B? 14d *B3 2B
7 G g (e rost)+ 2] =0 oo

Rearranging Equation (4.50) gives

ep? (7ﬁp+ Bz) |VS|285 +p2 |VS|2 [_E; (35) MO’R] st

BI(y-1) ), G-1B]
— s e o o) + % (83 19517 420822 |2
+ 7% [(ff”l)cm (m2 IVS|?+4 + —(ﬁ’;:B?z) (mZBg |VS’|2+2rﬁ%§)> —m*B? (%ﬁ:)T |VS|2] s?
% (ij‘%% (szg |v3|2+2rﬁ%’r-’) (es~om) = 0 (4.51)
where:ex s the iscbaric growih rate given by
or = (77; ) [(a:r) + %—?ﬁ]. (4.52)

4.5.2 Ballooning modes for A =0

In this Section, parallel thermal conduction is set equal to zero for simplicity and because its inclusion
will only reduce the growth rates slightly. Consider first the case in which there is no z component of
the equilibrium magnetic field. For this shearless equilibrium magnetic field, A = 0 in Equations (4.13).
Setting A = 0 and dF/dr = 0 gives | VS|?= 1. Equation (4.51) then becomes

ep® (vBp+ B?) oL (Bp+ B*) v
T |- (5), ~ e

2
2 ——“'cp_ ) [‘fﬂp (m? +4) + _(7;31)3__-}2- 2 (sz2 +2rB g—g)] 83

4y
_Bp 2 (Bp + B?) 22 dp)) 212 Qé ] 2
+ r"’ (7 ) (m +4+__ﬂp32 (mB +2r,B-J; —-m*B ap 1 8
= (’-:ijzg-p;-‘z(m282+2rﬁ%§) (es—or) = 0, (4.53)

where the isobaric growth rate og is now given by

SRR ot | (Qé) (4.54)
ORrp = . .
P or A
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Equation (4.53) is the dispersion relation which is a fifth order polynomial in 5. As in the ideal case, the
first stage must be to appreciate the layout of the complete ballooning mode spectrum for the equilibrium
considered. For zero perpendicular thermal conduction and zero resistivity it has been shown by Van der
Linden and Goossens (1991) that the continuous spectrum consists of an Alfvén continuum, a slow mode
continuum and a thermal continuum (see also Chapter 3). The thermal continuum lies on the real s
axis, so the next stage is to find out where it is located. After doing so, the dispersion relationship given
by Equation (4.53) is solved numerically using a NAG routine (NAG Ltd., 1988). The five solutions are
then plotted together with the thermal continuum (given by Equation (E.3) in Appendix E) with m = 1
for various values of ¢ in Figure 4.1.
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Figure 4.1: The solutions to the dispersion relation for various values of ¢. Going from
(a) to (c), the real part of the solutions are shown for ¢ = 16.9, 1.2 and 0.17. In (d)
the imaginary part of the solution corresponding to the real solution (c) is shown. The
dashed line represents the thermal continuum.

Large values of ¢ can be thought of as modelling equilibria far from marginal stability whereas small
values of ¢ correspond to equilibria close to marginal stability. In each of the four graphs, the radius
ranges from 0 to 1, scaled to the radius of the cylinder and the growth rate s is scaled in terms of the
Alfvén time scale. Because the fast modes have been eliminated in deriving the ballooning equations, it
follows that the five solutions to the dispersion relation will represent the two Alfvén modes, the two slow
modes and the thermal mode. It should be noted that these curves at this stage do not represent actual
normal modes. These curves are investigated for various values of ¢ in Figure 4.1. For the large value of
¢, taken in Figure 4.1(a), the Alfvén mode curves can easily be seen and are distinct, but the thermal
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and slow mode curves together with the thermal continuum curve are very close to each other and have
a small growth rate. When e = 1.2, Figure 4.1(b) shows that each curve can easily be seen. Going from
top to bottom of the graph, the curves represent the Alfvén, thermal, slow and Alfvén modes. Here, as
in the previous case, the thermal continuum lies almost on top of the thermal mode curve.

Re(s)
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Figure 4.2: The location of the thermal continuum for various values of €. The top curve
is the maximum of the continuum and the lower curve is the minimum. The horizontal
dotted line represents a growth rate of v/2 and the vertical dotted lines represent the
upper and lower values of ¢ for which s = 1/2 is the end points of the thermal continuum.
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TFigure 4.3: The fundamental Alfvén and magnetothermal modes with ¢ = 1.2 for m =1
and various values of the axial wave number k ranging from k = 1.423 to & = 1.62. The
thermal continuum is represented by the solid fat line.

For a small value of ¢ (¢ = 0.17), it can be seen in Figure 4.1(c) that the lowest Alfvén and slow modes
are distinct. However, the Alfvén and thermal modes coalesce at about r &~ 0.28 and form a pair of
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overstable wave solutions. To confirm this, the imaginary part of the growth rate is plotted in Figure
4.1(d) and as before it can be seen that at r ~ 0.28 the modes coalesce. The thermal continuum is
shown in Figure 4.1(c) as the dashed line lying above the two curves that coalesce.

Next the equations for normal modes (4.15)-(4.23) are solved using LEDA and the results presented.
Before individual solutions are obtained, the location of the thermal continuum must be found for a
fixed value of ¢. The maximum and minimum values of the thermal continuum are shown in Figure 4.2.
Notice that as ¢ gets larger, the maximum and minimum curves for the thermal continuum get closer
together. As € — oo, the previous ideal case should be retrieved with the thermal continuum collapsing
to a single point at the origin. By enlarging the ¢ axis to include larger values, the two curves converge
to zero as expected.
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Tigure 4.4: The eigenfunctions for various fundamental modes with ¢ = 1.1944, m = 1
and various values of the axial wave number k. The fundamental Alfvén mode is shown in
(a), (b), (e) and (f) and the fundamental magnetothermal mode is shown in (¢) and (d).
Going from (a) to (f), the values of k are 1.423, 1.4282, 1.4430, 1.5, 1.5795 and 10. The
corresponding growth rates are 0.0248, 0.0777, 0.1565+0.0137¢, 0.2554 -+ 0.03184, 0.3398
and 1.2604. In each case 500 gridpoints were used to calculate these eigenfunctions.

Now that the location of the thermal continuum and shape of the localised ballooning curves are known
for any value of ¢, the thermal subspectrum can be investigated for various, fixed values of ¢ by solving
the full Equations (4.15)-(4.23) using the finite element code LEDA. The fundamental unstable Alfvén
mode is located on the real, positive s axis for small £ and m = 1, below the thermal continuum.
The wave number % is varied slowly since the interaction of this mode and the thermal continuum is
important. Fixing ¢ = 1.2 and for a value of & = 1.4282, with a corresponding growth rate of s = 0.0777,
the fundamental Alfvén mode is very close to the lower end of the continuum which starts at s = 0.0838
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at r = 1 and finishes at s = 0.3349 at » = 0. When k& is varied, the growth rate of the fundamental Alfvén
mode increases until it just touches the lower end of the thermal continuum, where upon it splits up into
two magnetothermal modes that enter the complex s plane. As k is increased, these two modes travel
around the continuum before rejoining the real axis above the maximum of the thermal continuum.
On rejoining the real s axis, one mode, the thermal mode, travels down towards the maximum of the
continuum, while the other mode, the Alfvén mode, travels up the real axis as k increases before it
asymptotes towards a fixed value, see Figure 4.3. The Re(rv.) eigenfunctions of the fundamental Alfvén
mode as it coalesces with the fundamental thermal mode to form a pair of overstable magnetothermal
wave modes as the growth rate moves around the thermal continuum are shown in Figure 4.4. In the
first two graphs (a) and (b), the fundamental Alfvén mode is below the thermal continuum. In the
graphs {c) and (d), the fundamental magnetothermal mode lies above the thermal continuum in the
complex plane. Finally in the last two graphs (e) and (f), the fundamental Alfvén mode is located above
the thermal continuum on the real s axis.
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Figure 4.5: The fundamental Alfvén mode with ¢ = 1/4/2 for m = 1 and various values
of the axial wave number k. Going from (a) to (f), the values of k are 500, 1,000, 1,500,
2,000, 2,500 and 3,000. The corresponding growth rates are 1.4102, 1.4122, 1.4129,
1.4132, 1.4134 and 1.4135. In each case 4,000 gridpoints were used to calculate these
eigenfunctions. Note the expanded scale for r.

Tt is easy to see that the eigenfunctions change very little as the magnetothermal modes move around
the continuum, but as k increases, the eigenfunctions get more and more localised. As in the ideal case,
it is found that as k gets large the growth rate tends to a fixed, positive, real number. This is calculated
by LEDA using 2,000 radial gridpoints. For three different values of & the growth rate is expanded as in
Equation (4.28), and solved to give the values of sg, 51 and s3. For values of k equal to 1,000, 1,500 and
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2,000, it is found that sp = 1.41421344 and s; = —1.83238. To understand the qualitative differences
in coupling of magnetic and thermal instabilities for equilibria far from or close to marginal stability,
¢ is varied in the following. Setting ¢ = 1/+/2, a similar study is carried out, with particular attention
focused on the large k& behaviour. When & = 1,000, 2,000 and 3,000 and using 4,000 gridpoints in LEDA,
it is found that sy = /2 and s; = —1.99996. The eigenfunctions for this value of ¢ and for various, large
values of k& are shown in Figure 4.5. Notice that the eigenfunctions get more localised about » = 0 as &
increases.

Re(s)

Figure 4.6: The fundamental Alfvén and magnetothermal modes with ¢ = 0.17 for m = 1
and various values of the axial wave number £. The thermal continuum is represented
by the solid fat line.

log[im(s)]
~25

Figure 4.7: Plot of log Im(s) against log k for the magnetothermal modes shown in Figure
4.6. The points lie on a straight line with a gradient of -1.

Now consider the case for a large value of ¢. For € = 16.9, the thermal continunm lies between s = 0.0237
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at » = 0 to s = 0.0059 at » = 1. For k = 1.424, the fundamental Alfvén mode is found above the
maximum of the continuum, with a corresponding growth rate of s = 0.0379. Using large values of %
equal to 1,000, 1,500 and 2,000, with corresponding growth rates of 1.4125, 1.4131 and 1.4134, with
2,000 gridpoints Equation (4.28) yields so = 1.41421349 and s; = —1.68232. Comparing these values
with the ones obtained in the ideal case it can be seen that the modification to s is due to the eflect
of the non-ideal terms which are small because of the large value of ¢. Consider next a small value
of ¢, ¢ = 0.17. The thermal continuum lies between s = 2.3680 at » = 0 to s = 0.5719 at r = 1.
The fundamental Alfvén mode for & = 1.423 is found below the minimum of the continuum, with a
corresponding growth rate of s = 0.0247. The value of % is gradually increased until £ = 1.76 which has
a growth rate of s = 0.5695. This is just below the minimum value of the thermal continuum. When % in
increased further, the fundamental Alfvén mode enters the complex plane and becomes the fundamental
magnetothermal mode. As k increases further, the fundamental magnetothermal mode follows the curve
shown in Figure 4.6. For this value of ¢, the fundamental magnetothermal mode tends towards a fixed
value inside the thermal continuum rather than splitting up into the fundamental thermal and Alfvén
modes as in the previous cases when rejoining the real s axis.
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Figure 4.8: Plot of the correction term sy in Equation (4.55) against e.

For any finite & the mode remains complex (overstable); only in the limit for £ — oo is a purely real
(unstable) mode recovered. To confirm this, the values of log Im(s) are plotted against logk in Figure
4.7. As can be seen, the values plotted lie on a straight line, with gradient -1. Hence Im(s) ~ k™%, so
that as k tends to infinity, Im(s) tends to zero and the fundamental magnetothermal mode enters the
thermal continuum at s & 1.4142 as predicted by the cigenvalues corresponding to k& equal to 50, 100
and 140 substituted into Equation (4.28).

Finally, an even smaller value of ¢, € = 0.01 is considered. In this case, the thermal continuum lies
between s = 9.1 at r = 1 to s = 40.0 at » = 0. The fundamental Alfvén mode is located below the
thermal continuum. As k is increased, it is found that the value of the growth rate this mode asymptotes
to is below the thermal continuum. For the values of k equal to 500, 600 and 700 with 750 gridpoints,
it is found that sg = 1.41421348 and s; = —0.96644. Notice that in all the cases for ¢ dealt with so
far, the value of so has always been equal to v/2. The large k behaviour for these values of ¢ can be
predicted analytically. The ballooning equations are manipulated and a WKB analysis carried out. A
detailed description of this is included in Appendix E. It is found that for A = 0, the expansion for the
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growth rate is given by

(1;5 c:\/\{;) i (4.55)

where n is the mode number. Equation (4.55) yields a fair amount of information about large k& be-
haviour. For any value of ¢, Equation (4.55) gives so = v/2, so that as k — o0, s — /2 for all ¢. This
is in agreement with the numerical results obtained. Care, however, must be used in applying the 1/&

e 2(n+1)

s = 3

correction term in Equation (4.55). This was derived taking no account of the singularity corresponding
to the thermal continuum. Therefore, whenever s = /2 lies within the thermal continuum, the correc-
tion term in Equation (4.55) will not give the correct value for s;. Referring to Figure 4.2, it can be
shown that s = +/2 is at the maximum of the thermal continuum for ¢ = \/5/ 5 and s = /2 is at the
minimum of the thermal continuum for ¢ = 0.0663. Hence, the correction term in Equation (4.55) is
valid for all ¢ except whenever 0.0663 < ¢ < /2/5. Equation (4.55) predicts the large k& behaviour of
all the Alfvén modes (or harmonics). In this work, attention is restricted to the fundamental Alfvén
mode and so n = 0 in Equation (4.55). For large ¢, the non-ideal terms are small and the results should
behave as in the ideal case considered earlier. This is indeed so as can be seen in Equation (4.55), since
as € — 00, § — V2 — %\/g—"‘, the value previously predicted by Appendix D for the ideal case. To get
an idea of how s; varies with the allowed values of ¢, s; is plotted against € in Figure 4.8. Substituting
in the values of ¢ taken in the numerical work into Equation (4.55), the predictions for so and s; can
be made. These are summarised in Table 4.2. These results are in excellent agreement with the growth
rates obtained by LEDA and again give confidence that the numerical results are accurate. The error in
sp is O (1/k2) and sy, O (1/k). For the results in which k=1,000, the error in sq is therefore 107° and
in sy is 1073,

Value of ¢ Values of k& Value of s | Value of s; | Prediction of s
16.9 1,000, 1,500, 2,000 | 1.41421349 [ -1.68232 -1.68245
1.2 1,000, 1,500, 2,000 | 1.41421344 | -1.83238 -1.83262

1/v/2 1,000, 2,000, 3,000 | 1.41421355 | -1.99996 -2
0.17 50, 100, 140 1.414207 +1.2946: +1.2931:
0.01 500, 600, 700 1.41421348 | -0.96644 -0.96645

Table 4.2: Summary of the values of so and s; found numerically, for a fixed value of ¢
and large k. The predictions for the correction term s; given by Equation (4.55) can be
compared to the numerical values. Agreement is found correct to 3 decimal places for
large values of k.

As in the previous ideal case, these results could be made more accurate by increasing the values of &
and hence the number of gridpoints used to calculate the eigenvalues. Also, with a higher order WKB
approximation, it should be possible to predict the value of s,

4.5.3 Ballooning modes for non-zero A

In this Section, a non-zero component along the z direction is included in the equilibrium magnetic field.
To model this a slightly different dispersion relation is obtained by setting | V.S|?= B%/B2 in Equation
(4.51) to give
_ A+ B) B B (L) | (fp+B?) 703} “
Bi (y-1) B} By ép ), (v-1)B?
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2.2 2

r2(y—1 B2
o[ Bp m2B? (ﬂp+32)( 2 52 dp B? ,.2(0L\ 1.,

+ layen(Tar 4 g (5w ) - gy a_pT]s
m*yBp (5 dp

= m(mB +2r,63;> (es—or) = 0. (4.56)

To be able to compare the WKB analysis with numerical results, a parameter n is introduced throughout
the work in this Section. The wave numbers £ and m both depend on this integer parameter n, where

m=n+M and k = —n/). As before, the value of M = 1.
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Tigure 4.9: The solutions to the dispersion relation for various values of A. In (a) and
(b), the real part of the solutions are shown for €=0.17 with A = 0.25 and 0.75. In (c)
and (d), ¢ =16.9 and A = 0.25 and 0.75.

This guarantees that the mode has the same variation along the magnetic field as in the previous section.
The dispersion relation given by Equation (4.56) is solved as in the previous case for A = 0 and m = 1.
The five solutions for two values of € and various values of A are shown in Figure 4.9 together with
the thermal continuum represented by the dotted line which was calculated with n=1,000 and M = 1.
Notice that in Figures 4.9(a) and (b), the thermal continuum and the thermal mode curves coincide at
r = 0. In Figures 4.9(c) and (d), the thermal continuum cannot be distinguished from the corresponding
thermal mode ballooning curves.
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Taking ¢ = 16.97 and A = 0.25, the thermal continuum lies between s = 0.0222 at r = 0 to s = 0.0055
at » = 1. For a value of n = 1, the fundamental Alfvén mode was located above the maximum of the
thermal continuum with a growth rate of s = 0.6862. For large values of n, information can be gained
from the dispersion relation given by Equation (4.56). In Figure 4.9(c) it can be seen that the Alfvén
modes have a maximum growth rate associated with them. This growth rate was calculated analytically
and found to be s = 1.015565685 = smax Which occurred at a radius of » = 0.4567 = rpnax. Therefore, for
large values of n, the fundamental Alfvén mode should asymptote to a growth rate of syax and should
be extremely localised at a radius of rya.x. Notice that this is one point that differs from the work for

A=90.
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Figure 4.10: The fundamental Alfvén mode with € = 16.9 and A = 0.25 for various values
of the parameter n. Going from (a) to (f), the values of n are 5, 10, 50, 200, 400 and 800.
The corresponding growth rates are 0.9611, 0.9875, 1.0098, 1.0141, 1.0148 and 1.0152.
In each case 4,000 gridpoints were used to calculate these eigenfunctions.

In that Section, for this value of ¢, the fundamental Alfvén mode was localised around the origin, but
here, the fundamental Alfvén mode is localised at a point 7 = rpax. This means that the previous
analysis carried out for A = 0 for which » was assumed to be small cannot be easily adapted to model
this case. Again, LEDA was used to calculate the fundamental Alfvén mode as n was varied. Figure
4.10 shows how the fundamental Alfvén mode behaves as n increases. As n gets larger, it can easily be
seen that the fundamental Alfvén mode becomes increasingly more localised. The values of the radius
corresponding to the maximum of the mode are given in Table 4.3. Trom Table 4.3, it can be seen
that as n gets large, the values for the radius of the maximum approach the value of » predicted by the
ballooning equations. As in the previous cases, the corresponding eigenvalues for the curves shown in
Figure 4.10 are expressed in the asymptotic form for large n as
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& A2 ,
€ B = <R (4.57)

For all values of n chosen, the value of sg predicted by the ballooning equations is correct to 4 decimal
places, however for the values of n = 200,400 and 800, agreement is particularly good, with sq =
1.015565843 and s; = —0.290752. For this value of ¢, the effect of varying A is examined.

Values of n | Values of » | Values of s
5 0.5256 0.9611
10 0.4911 0.9875
50 0.4636 1.0098
200 0.4584 1.0141
400 0.4576 1.0148
800 0.4571 1.0152

Table 4.3: The values of radius that correspond to the maximum value of the eigenfunc-
tion for the solutions shown in Figure 4.10 and corresponding values of n shown. Here
¢=16.9.

The maximum of the ballooning curves (corresponding to the value sp) are evaluated for various values
of A and are plotted in Figure 4.11. Notice that as X increases, the value of sy decreases quite rapidly,
until A & 0.6, where the growth rate becomes very small.
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Figure 4.11: The values of the growth rate sg, predicted by finding the maximum of the
ballooning curve, plotted against A for € = 16.9.

This is a consequence of the ideal modes becoming stable and the thermal mode being picked up. Thus
for this particular value of ¢, increasing the magnetic field in the z direction decreases the growth rate
that the fundamental Alfvén mode asymptotes to as n — oo. The case for small € is investigated next.
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For A = 0.25 and ¢ = 0.17, the thermal continuum is located between s = 0.5366 at » = 1 to 5 = 2.2006
at r = 0. For n = 1, the fundamental magnetothermal modes are located in the complex plane with
growth rates of s = 0.8120 + 0.16454.
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Figure 4.12: The fundamental magnetothermal modes with e = 0.17 for M =1, A = 0.25
and various values of the parameter n. The thermal continuum is represented by the
solid line.

As n is increased up to n = 53 the fundamental magnetothermal mode remains in the complex plane
as can be seen in Figure 4.12. Unfortunately, magnetothermal modes corresponding to values of n > 53
could not be calculated numerically due to poor convergence in LEDA. However, it can easily be seen
that magnetothermal modes do exist for these values of n, € and A. It may be expected that as n — oo
the magnetothermal modes join the thermal continuum at s = /2.

4.6 Chapter Summary

This Chapter has investigated joint magnetic and thermal instabilities (magnetothermal instabilities)
in a simple cylindrical equilibrium. In the ideal case, for a shearless equilibrium magnetic field, the
fundamental Alfvén mode was located on the real s axis for a small value of the axial wave number
k, and a fixed value of the azimuthal wave number m. As the value of & was increased, it was found
that the fundamental Alfvén mode became more localised around » = 0, whilst the growth rate headed
towards a fixed, larger value. This growth rate was predicted by expanding the Hain-Liist equation for
small » and large kr. A WKB analysis was performed and agreement with the numerical results was
obtained.

A similar study was also performed in the non-ideal case for a shearless equilibrium magnetic field
configuration when perpendicular and parallel thermal conduction were neglected. The dispersion rela-
tion was derived via the use of the ballooning approximation and the five roots plotted. The thermal
continuum was located on the real s axis and plotted also. The normal mode solutions were then
obtained for various values of ¢, the ratio of the coronal radiation time scale to the Alfvén time scale.

The fundamental unstable Alfvén mode was found on the real s axis below the thermal continuum for
a small value of k. For € = 1.2, as k was increased, the fundamental Alfvén mode just touched the lower
end of the thermal continuum. It then entered the complex plane as the fundamental magnetothermal
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modes before moving around to the top end of the continuum. It was found that when the fundamental
magnetothermal modes rejoined the real s axis, they split up into two modes, the fundamental thermal
mode which moved down towards the top end of the thermal continuum and the fundamental Alfvén
mode which headed towards a fixed, larger growth rate which occurred as the wave number k& was
increased. The values of € were then varied, to investigate the qualitative differences in the coupling of
magnetic and thermal instabilities for equilibria far from or close to marginal stability.

Tor a large value of ¢, the fundamental Alfvén mode was located on the real s axis above the thermal
continuum and was found to asymptote towards a fixed growth rate as the wave number %k increased.

For a small value of ¢, ¢ = 0.17 corresponding to the case when the plasma is close to ideal marginal
stability when the growth time is larger than the radiation time, the fundamental Alfvén mode was
located below the thermal continuum. As k was increased, the fundamental Alfvén mode just touched
the lower end of the thermal continuum, before entering the complex plane. As the value of k was further
increased, the fundamental magnetothermal modes headed back down towards the real s axis, close to
the middle of the thermal continuum. Only in the limit £ — oo is a purely real, unstable continuum
mode retrieved, with a corresponding growth rate s = /2.

For an even smaller value of ¢, ¢ = 0.01, the fundamental Alfvén mode was found on the real s
axis below the thermal continuum, for a small value of k. As the value of £ was increased, this mode
asymptotes to a growth rate of s = v/2, well below the minimum of the thermal continuum.

In all the above cases, it was found that as k — oo, s — /2. Analytically, the growth rate was
expanded in terms of 1/k and the values of s and the first order correction term s; were predicted
by manipulating the ballooning equations into a second order differential equation containing a large
parameter k in it. This was solved by another WKB analysis. The resulting equation predicted so = v/2
for all values of e. For € < 0.0663, so = v/2 was below the minimum of the thermal continuum and so
magnetothermal modes were shown not exist. For 0.0663 < ¢ < +/2/5, the fundamental magnetothermal
modes approached v/2 inside the thermal confinuum as k — co. For € > \/i/ 5, so = V2 is above the
thermal continuum and hence mode coalescence will occur. For the values of € studied where s = v/2 was
outside the thermal continuum, excellent agreement was obtained between the numerical and analytical
results.

For a non-zero component of the equilibrium magnetic field in the 2z direction, the ballooning equa-
tions were manipulated to give a slightly different dispersion relation which was again solved numerically.

For a small value of ¢, the fundamental magnetothermal mode was located in the complex plane with
n = 1. As n was increased this mode was found to stay in the complex plane. The maximum value for
n taken was n = 53. Above this value, the eigenfunction was found to be very difficult to calculate.

For a large value of ¢ and value of n = 1, the fundamental Alfvén mode was located on the real s
axis and above the maximum of the thermal continuum. This mode travelled along the real s axis as n
increased, before approaching a fixed, real, positive growth rate, smax. This mode was also found to be
extremely localised about the point r = rnax for large values of n. These values were again calculated
analytically and excellent agreement was found using the ballooning approximation.

This Chapter has therefore demonstrated that thermal and magnetic instabilities can interact to
form magnetothermal instabilities. It is well known that the thermal instability may be important in
prominence formation and that it is the magnetic instability which results in a prominence erupting into
a flare. It is possible that a neighbouring thermal instability may trigger the magnetic instability, thus
initiating the pre-flare phase. The oscillations observed just before a flare occurs may be explained in
terms of overstable wave modes or magnetothermal modes. Magnetothermal modes could therefore play
an important part in the eruption of prominences at the onset of solar flares.




Chapter 5

Line-tying in Coronal Arcades

...1f you don’t happen to have any new nuis, changing the lefi
and right hand nuls over side to side will often bring an unused
part of their collars in line with the slot.

-Tim Millington, renewing an output-shaft oil seal.

Instead of getting bigger and better bangs in the combustion
chambers, one could achieve unwelcome and ezpensive noises
lower down.

-Tim Millington, on how to tune an imp engine.

5.1 Overview

In this Chapter the effect of line-tying is considered in a coronal arcade. The ballooning equations
which were introduced in Chapter 4 are manipulated to give a dispersion relation that is a quadratic
in the square of the azimuthal wave number m if parallel thermal conduction is neglected, or a cubic
in m? if parallel conduction is included. Rigid wall boundary conditions are applied to this dispersion
relation. The dispersion relation is then solved numerically and the solutions plotted. Unfortunately,
the expression for the thermal continuum in line-tied arcades is required since, the thermal continuum
must play an important role in the proceedings. This calculation is long and by no means trivial and is
left for future work.

5.2 Introduction

In Chapter 4, the combination of magnetic and thermal instabilities in a coronal arcade were examined
in the absence of the effects of line-tying. It was demonstrated that for certain values of the ratio
of the radiative time scale to the Alfvén time scale, the fundamental, unstable Alfvén mode could
coalesce with the fundamental thermal mode to produce overstable magnetothermal modes. This is not
a realistic situation since, in the solar corona the magnetic field lines are essentially of finite length and
anchored to the photosphere. In the study of prominences, two types of magnetic field line structure
have been examined. These correspond to normal and inverse polarity prominences (see Chapter 1 for
more details). In both these types of prominence, the magnetic field lines emerge from the photosphere
and forms an overlying arcade structure. Therefore, a more realistic prominence model will be one in
which the magnetic field lines are anchoied to the photosphere. This effect, known as line-tying, is
included in this Chapter.

68
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Line-tying is important in the formation of prominences in the solar corona since, without line-
tying, the prominence could not form. In the solar corona, the Alfvén time scale is much shorter
than the radiative (or thermal instability) time scale. Hence, any equilibrium would be destroyed
by a magnetic instability long before the thermal instability could generate the cool condensation.
It is therefore necessary for prominence formation to have a magnetically stable equilibrium before
the thermal instability can generate the prominence. If is not difficult to conceive that anchoring
the magnetic field lines in the photosphere (and thus restricting field line movement) will significantly
influence the stability of the global magnetic field.

As the density of the photosphere is much larger than the density of the solar corona, perturbations
occuring in the corona will not substantially move the endpoints of the photosphere-anchored magnetic
field lines. Consequently, line-tying will be strongly stablising, as realised by Raadu (1972). Since line-
tying has a substantial effect on the magnetic instability, it is important to study the effect of line-tying
on the mode coalescence described in Chapter 4. In particular, it has to be established whether mode
coalescence occurs. If so, the effect on the magnetothermal modes has to be investigated.

Hence, the model presented in Chapter 4 is extended to include line-tying and the method of solution
examined. For comparison, exactly the same equilibrium profile is used, together with the ballooning
equations. The layout of this Chapter is as follows: Section 5.3 recaps the ballooning and equilibrium
equations considered and Section 5.4 discusses the boundary conditions which may be used. The method
of solution is given in Section 5.5 and Section 5.6 summarises the results and discusses options for
completing this work.

5.3 The basic equations

The equilibrium equations used are the Gold-Hoyle equilibrium equations which were described earlier
in Chapter 4 and are produced here for convenience:

r A
Bgo = m, B,y = m,
123
= ——— 5.1
Bpo 2 (1 3 1'2)2 ( )

A full description of this equilibrium magnetic field profile and its various properties is described in
Chapter 4. The ballooning equations introduced in Chapter 4 for an isothermal equilibrium are

B-Vé = - roemd (5.2)

B.v4 = -2 |VS|2¢ - zlgfm, (5.3)

B-Vu = — M (sﬂm + E-Qq‘:) + sTy — ﬁqﬁ, (5.4)
BpB? By dr rB2

BYE = - spB?u + %i‘ Ay, (5.5)

R A | T

with
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£= Trad ks R= Trad]Teond and B =13 /72, (5.7)

where ¢ is the electrostatic potential, which is, to leading order, related to the perpendicular component
of the perturbed velocity, A) is the parallel component of the vector potential, u is the parallel component
of the perturbed velocity, 7} is the perturbed temperature and p; is the perturbed plasma pressure. The
time scales given by 74, Trads Teona and 75 are defined in Table 4.1 and S is given by

e r(q)—’g:

0+ 2. (5.8)

As in Chapter 4, for non-trivial solution, the determinant of the coefficients of these variables vanishes
giving

B2 |VS|?
(B -

2 2 2
o [LISS (o (O8] Voot (2222 oSt o ) )

s%p 2rp o dp]  252pBBrog dp
- (y=1)r2 g =) [47,Bp+ B (v8p + B%) dr] i rB2 dr

ep? (vBp + B?) |VS|1 . 5 [ B? (o (Bp + B?) v ] 7
ST (| [ bl 8 i L 0, 5.9
BI(v-1) T %S ), " a-nB ()
where
_ =1 oL x mzﬁBg] 510
o Yp ar s ri% )

is the isobaric growth rate. Notice that Equation (5.9) can also be obtained by rearranging Equation
(4.51) in Chapter 4. One major difference between this work and the previous work presented in Chapter
4 is that previously, the azimuthal wave number m was an integer whereas here m is restricted by the
boundary conditions and need not be an integer. Notice that Equation (5.9) is a quadratic in m?
when parallel thermal conduction is set equal to zero and a cubic equation in m? when parallel thermal
conduction is included, provided v # 1. Substituting the isothermal Gold-Hoyle equilibrium equations
(5.1) with 8L/8p = po, 8L/OT = (a—1)p?, =1, R =0 and @ = —1 into Equation (5.9), the

following equation is obtained

Z;%{Wsp 267 = 1) (1= 22) = 27¢8 (1 +12)"| m®
¢ gl 04 3

+ P lr— 1) (7 + A7) (L r?) [VSP (28 (147)7 - (1 - ;\2))] m?
+ Q—-———)Ll [882 (r + )\2) (253 2—-17) (1 + rz) -2(1- A% (y - 1))

4(1 417

+ lvsﬁ54(1+r2)2(2(1-A2)(7~1)—es(1+r2) (27+4r2+2A2(2"’Y)))]} = 8 &0
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where

dF\? A2
M2 = e =,
|VS|? = (dr)+r2+1. (5.12)

5.4 Boundary Conditions

Throughout the work in this Chapter, the effect of line-tying is implemented by letting the magnetic field
lines be anchored to the photosphere at = +7/2. Since Equation (5.9) is a fourth-order polynomial in
m, when parallel thermal conduction is neglected, four boundary conditions (or line-tying conditions) are
required. In the corona, the Alfvén time scale is around 5 seconds while in the photosphere it is about
100 seconds. Thus, the photosphere cannot respond to Alfvénic disturbances in the corona and coronal
perturbations do not effect the photosphere. It is also difficult to conceive how a small perturbation of a
plasma, with the density of the corona, can effect the much denser photospheric plasma. Hence, two of
the boundary conditions used for a coronal arcade require that the component of the perturbed velocity
perpendicular to the equilibrium magnetic field vanish at the photospheric interface

ol =0 & @ = % (5.13)

e
7
Another two boundary conditions are needed. These concern the parallel component of the perturbed
velocity. They have been a great source of controversy over the past decade. Two possible sets have
been considered recently. One set of conditions was proposed by Einaudi and Van Hoven (1981, 1983),
who argued that the best boundary conditions to use were where the plasma’s energy was conserved,
but, the parallel component of the perturbed velocity was non-zero

vl o=—xs2 = Yjlo=n/2, (5.14)
and
o) o B
dn f=—m/2 2 on 8=w/2’ l

where n is a field aligned co-ordinate. The conditions given by Equations (5.14) and (5.15) are known
as flow through conditions. The second set of boundary conditions have been used by many authors, for
example, Hood (1986a), Cargill and Hood (1989) and Hardie, Hood and Allen (1991). They argue that
the best conditions to use are where the parallel perturbed velocity vanishes at the photosphere

Wo=0 at 0 = 3&%. (5.16)
The conditions given by Equations (5.16) are known as rigid wall conditions. Hood (1986a) compared
these two sets of boundary conditions and concluded that rigid wall conditions were best for ideal MHD
modes with relatively high frequencies and that flow through conditions were best for slower thermal
or resistive instabilities. Since the aim of this Chapter is to investigate mode coalescence in a line-tied
arcade, the boundary conditions used will be the rigid wall conditions.

Notice that if parallel thermal conduction is included in the analysis, the dispersion relation given
by Equation (5.9) is a cubic in m? and hence, a further set of boundary conditions is required. These
are usually applied to the perturbed temperature and are another controversial matter. There are two
favoured sets of thermal boundary conditions which could be used. The first set of boundary conditions
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treat the photosphere as a perfectly, thermally conducting plasma of fixed temperature so that
=0 at ¢ = %= (5.17)

The second possibility is to treat the photosphere as a perfect insulator (no heat flux into the photo-
gphere) with the result that

oT’

a—ﬂ:OatG::{:

T
—. B

. (5.18)
The thermal boundary conditions given by Equation (5.17) are probably the most realistic to use in
practice, since it is difficult to conceive how the diffuse corona could significantly increase the temperature
of the photosphere. However, if time and resources permit, the best idea would be to consider both these
conditions in turn and compare the results.

5.5 Method of Solution

TFor simplicity, the solutions are split up into even and odd terms. The boundary conditions given by
Equations (5.13) and (5.16) are applied to the dispersion relation using the following procedure. The
electrostatic potential ¢ in the ballooning equations is related to the perpendicular component of the
perturbed velocity v/ by the simplified version of Ohm’s law (see Equation (4.37) in Chapter 4) and u
is the parallel component of the perturbed velocity. Hence, the boundary conditions will be satisfied if

¢ =0 at 0 = :L-%, (5.19)

and
T

u=0 a 0= (5.20)
The even solutions are given by

¢ = acosmil+ bcosmal, (5.21)
and

u = Asinm 8+ Bsinmgf, (5.22)

where a, b, A and B are functions of radius and growth rate and m? and m3 are the solutions to the
dispersion relation given by Equation (5.11). Substituting Equation (5.21) into the ballooning equations
(5.2)-(5.4) gives

2(1+72)* [|VSPEmd | s|VS| 2
s = 23
=y [23(1—,\2) i s(1+1»2)]“m1’ (h:29)
and
21+ [|VSEmE s |VS|? 2
— — 3 5.24
B = Trae) el =vn 4 s(1+r2)]bm2 (dn)

Applying the boundary conditions given by Equations (5.19) and (5.20) to Equations (5.21) and (5.22)
gives

acos (m217r) + bcos (T;—”) = 0, (5.25)
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and

Asin (-n%)+Bsin(m2zw) =

Using Equations (5.23) and (5.24), Equations (5.25) and (5.26), can be combined to give

[am% + ﬁ] my tan (—@211) = [amg + B8] my tan (ngr') )

where
a = 2(14+2) |VSP,
and
B = (1-2?)(1+¢%)s* | VS -8(1-2%).

Similarly for the odd modes given by

¢ = asinmi8+ bsinmsf,
and
u = Acosmi0+ Bcosmal,
the boundary conditions become
el ] sk (mzm)' = [am} + B] ma cot (?—%—E) :

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

Following Chapter 4, dF/dr is sel equal to zero in Equation (5.12). The ballooning equations, subject

to the line-tied boundary conditions, are solved on each magnetic flux surface. The maximum of the

ballooning growth rate, as a function of the flux co-ordinate » may then be obtained. This maximum

growth, rate should correspond to the most unstable physical mode. It should be noted that proof of

this statement has yet to be obtained for non-ideal MHD. Unfortunately, at present, it is not possible

to verify this result. However, a numerical code which is capable of solving the equations describing

normal modes in line-tied arcades could possibly be obtained by adapting POLLUX, the finite clement

code used by Van der Linden (1991) to obtain normal modes solutions subject to line-tying boundary

conditions in a coronal loop.
To check Equations (5.11) and (5.27) set 4y = 1, A = 0 and | VS|?= 1. This yields

gl + (1427 s m? + :—23‘2—7.-2—+£(1+2r2) = 0
AT (1+2) " 4 -
and
E; —miG miw\ [ Ei—mjG Mo
( o )t.a.n( 2) = ( i tan(2),
where
1 —47’2 32 2
E; = 3 (m+-§-(l+2r )) 5

and

(5.33)

(5.34)

(5.35)
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G = % (1+2r%). (5.36)
These are the same Equations obtained by Hardie, Hood and Allen (1991) by allowing v = 1, k? = 1,
po = 1/2 and n = 0. The boundary conditions obtained give a relationship between m; and mo.

The next step is therefore to solve the dispersion relation given by Equation (5.11) subject to the
boundary conditions given by Equation (5.27) numerically and plot the obtained growth rate s against
the cylinder radius r. As a check for the equations and numerical code, the case studied by Hardie, Hood
and Allen (1991) is considered first. In Figure 5.1, the solutions to the dispersion relation subject to
the boundary conditions for €¢=1,000 and y = 1 are plotted. The dotted curve corresponds io po = 1/2,
the value taken by Hardie, Hood and Allen (1991) and the solid curve corresponds to pg = pp for the
equilibrium plasma pressure po defined in Equation (5.1).

0,25

0.0 Radius

Figure 5.1: The solutions to the dispersion relation given by Equation (5.9) subject to
the boundary condition given by Equation (5.27) when €=1,000 and ¥ = 1. The dotted
curve corresponds to pg = 1/2, the value taken by Hardie ef al. (1991) and the solid
curve corresponds to pg = pg for the equilibrium plasma pressure pg defined in Equation
(5.1).

The dotted line can also be obtained from the solid curve by dividing the growth rates by /2. The
curves cut the radius axis at » = 0.90. The maximum growth rate occurs at 7 = 0.53 and has a value of
s =0.33 for po = 1/2 and s = 0.46 for pg = pg. These curves correspond to the Alfvén modes. Thus, it
may be expected that for large values of the axial wave number &, the most unstable, physical, magnetic
instability would have a growth rate of s = 0.33 for the equilibrium profile where py = py or s = 0.46
for the equilibrium considered by Hardie et al. (1991).

In Figure 5.2, the effect of having ¥ = 5/3 is examined. The top curve is the isobaric growth rate,
given by Equation (5.10) for A = 0 and R=0. Going from top to bottom, the other curves correspond
to A = 0.3, 0.2, 0.1, 0.05 and 0. Notice that there is a distinct difference in behaviour between A zero
and non-zero close to r = 0. This is because of the A?/r? term in the |VS|? terms of the dispersion
relation. In all the cases investigated for A # 0, the corresponding isobaric growth rate curves have met
the solution curves at 7 = 0 and have a similar shape to the curve shown for A = 0. The solution curves
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in this case correspond to the thermal modes, since the Alfvén modes have been shown by Cargill, Hood
and Migliuolos (1986) to be stable for ¥ > 4/3. Since the magnetic modes are stable, it would appear
that for this value of ¢, mode coalescence (yielding overstable magnetothermal modes) does not occur.
To obtain magnetothermal modes, it is necessary to have both a magnetic instability and a thermal
instability. This requires a value of v < 4/3, so that a magnetic instability can form and a value of
v # 1, so that the thermal instability can be present. Thus, a value of 4 should be taken such that both
these instabilities may occur if magnetothermal modes are to be studied.
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Figure 5.2: The solutions to the dispersion relation when ¢=1,000, v = 5/3 and various
values of A. The top curve is the isobaric growth rate given by Equation (5.10) when
A =0 and R = 0. Going from top to bottom, the other curves correspond to A = 0.3,
0.2, 0.1, 0.05 and 0.

So far, the thermal continuum has been neglected in this analysis. As seen in the previous Chapters,
this had an important bearing on the stability of this equilibrium and hence the results obtained.
Therefore, the results obtained are incomplete as an in-depth study of the thermal continuum in line-
tied geometries is required. Unfortunately, the expression for the thermal continuum in line-tied arcades
requires a long and difficult calculation. This is left for future work. Only when the location of the
thermal continuum is known, can progress be made.

Once this expression is obtained, the influence of the thermal continuum on the thermal instability
and mode coalescence can be assessed. Then, when the basic mechanism has been fully understood for
a fixed value of ¢, the next stage would be to vary € to investigate mode coupling in equilibra close to
or far from marginal stability.

5.6 Chapter Summary

This Chapter has introduced the effects of line-tying in a coronal arcade. The ballooning equations were
manipulated to yield a dispersion relation. The various forms of the line-tying boundary conditions
were discussed and rigid wall conditions chosen. These boundary conditions stated that the perturbed
velocity of the plasma must vanish at the photospheric interface. The dispersion relation was then solved
numerically subject to these rigid wall conditions and the solutions plotted.

The previous equations and the numerical results of Hardie et al. (1991) were obtained for v = 1
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and pg = 1/2 for a perfectly conducting (ideal) plasma. It was shown by Cargill et al. (1986) that for
v = 5/3, the ideal (magnetic) modes were stabilised. This was demonstrated for e=1,000 and various
values of A in Figure 5.2. Figure 5.2 also showed that the thermal modes are unstable for certain values
of A

However, these results were obtained without the knowledge of the thermal continuum in line-tied
arcades. The expression for the thermal continuum in line-tied geometries is however necessary if further
progress is to be made. This is left as a suggestion for future work.



Chapter 6

Summary and Future Work

...Bul, even on cross-plies I can’t gel the back to hang oul
and the car does understeer first but not as much es that nasty
little man from Top Gear seems to think,

-Matthew Holingsworth, Imp club magazine, April 94.

...I now use the words ‘Tony Mason’ as the worst possible form
of expletive.
-Richard Llewellyn, Imp club magazine, June 94.

6.1 Thesis Summary

This thesis has examined several problems related to thermal instabilities in the solar corona. The work
is important in facilitating the understanding of the formation and crupiion of solar prominences.

Chapter 1 has described various solar phenomena both on and close to the solar surface. In particular,
a detailed description of quiescent prominences and the associated fine scale structure is given. Several
possible mechanisms for prominence formation are discussed. The thermal instability is the most likely
candidate because it accounts not only for the prominence’s formation but, also for the coronal cavity
observed above the prominence.

Chapter 2 has described the thermal instability both physically and mathematically. For an infinite,
uniform medium, first studied by Field (1965), the instability criteria are derived. From the description
given in Chapter 2 it can be seen how a thermal instability may cause a prominence to form and why
the prominence is cooler and denser than the surrounding corona.

The effect of finite, scalar resistivity and perpendicular thermal conduction on the thermal instability
was examined in Chapter 3. In the absence of these two dissipative terms there are three continuous
spectra associated with the linearised MHD equations, namely the Alfvén, slow and thermal continua.
Neglecting resistivity but, including perpendicular thermal conduction, it was shown by Van der Linden
and Goossens (1991) that the thermal continuum was removed but, the Alfvén and a modified slow
continua remain. When the thermal continuum was removed, it was replaced by a quasi-continuum, the
eigenfunctions of which varied rapidly over a length scale which was proportional to (r1 /) )*/*. When
resistivity was included but perpendicular thermal conduction neglected, it was shown that the Alfvén
and slow mode continua were removed and the only continuous spectrum remaining was the thermal
continuum. The singularities corresponding to the thermal continuum for the cases with zero and non-
zero vesistivity were quite different. Nevertheless, it appeared that the two continua were similar when
the Alfvén to radiative time scale ratio was small.
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In the other cases the thermal continuum is strongly influenced by resistivity in a discontinuous
manner, illustrating the singular nature of resistive MHD. For the equilibrium investigated, the new
thermal continuum lies below the zero resistivity continuum. In addition, the zero resistivity continuum
is replaced by a quasi-continuum, which consists of a dense set of discrete and continuous (in the spatial
direction) normal modes. Finally, the inclusion of both resistivity and perpendicular thermal conduction
removes all the continuous spectra, however, the thermal quasi-continuum remains.

The main numerical work in Chapter 3 concentrated on the effect of resistivity on the structure
of the global normal modes. It is found that resistivity does not substantially reduce the growth rate
associated with the maximum of the original thermal continuum, but, does remove the singular nature
of the eigenfunctions.

The most unstable quasi-continuum mode was investigated for different values of the magnetic
Reynolds number. It was found that the length scales associated with the oscillatory nature of the
eigenfunctions scaled with 5'/%, the same fractional power as perpendicular thermal conduction. Thus,
it is clear that resistivity can produce fine scale structure as the plasma cools. This is similar to the
effect of perpendicular thermal conduction and in both cases the length scales of the fine structure scale
with the diffusion coefficient to the power one quarter. Hence, classical values of these two diffusion
coefficients will give rise to the typical length scales observed within quiescent prominences.

Chapter 4 has investigated joint magnetic and thermal instabilities (magnetothermal instabilities)
using a simple cylindrical equilibrium. For a shearless equilibrium magnetic field configuration with
perpendicular and parallel thermal conduction neglected, a dispersion relation was dervived. This was
achieved via the use of the ballooning approximation and the five roots plotted. The thermal continuum
was located on the real s axis and was also plotted. The normal mode solutions were then obtained
numerically for various values of €, the ratio of the coronal radiation time scale to the Alfvén time scale.

The fundamental unstable Alfvén mode for a small value of k£ was found on the real s axis below
the thermal continuum. For ¢ = 1.2, as & was increased, the fundamental Alfvén mode just touched
the lower end of the thermal continuum. It then entered the complex plane as a pair of fundamental
magnetothermal modes before moving around to the top end of the continuum. It was found that when
the fundamental magnetothermal modes rejoined the real s axis, they split up into two modes, the
fundamental thermal mode which moved down towards the top end of the thermal continuum and the
fundamental Alfvén mode which headed towards a fixed, larger growth rate which occurred as the wave
number k& was increased. This value was predicted analytically using a WKB analysis. The values of
¢ were then varied in order to investigate the qualitative differences in the coupling of magnetic and
thermal instabilities for equilibria far from or close to marginal stability.

For a non-zero component of the equilibrium magnetic field in the z direction, the ballooning equa-
tions were manipulated to give a slightly different dispersion relation which was again solved numerically.
For a large value of ¢ and value of n = 1, the fundamental Alfvén mode was located on the real s axis
and above the maximum of the thermal continuum. This mode travelled along the real s axis as n
increased, before approaching a fixed, real, positive growth rate, smax. This mode was also found to be
extremely localised about the point 7 = rpax for large values of n. These values were again calculated
using the ballooning approximation and excellent agreement was obtained.

Chapter 4 has demonstrated that thermal and magnetic instabilities can interact to form magne-
tothermal instabilities. It is well known that the thermal instability may be important in prominence
formation and that it is the magnetic instability which results in a prominence erupting into a flare.
It is possible that a thermal instability close to the prominence may trigger the magnetic instability,
thus initiating the pre-flare phase. The oscillations observed prior to flares may be explained in terms
of overstable wave modes or magnetothermal modes. Magnetothermal modes could therefore play an
important part in the eruption of prominences at the onset of solar flares.

Finally, Chapter 5 examined the effects of line-tying in a coronal arcade. The ballooning equations
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were manipulated to yield a dispersion relation which was solved numerically subject to rigid wall
boundary conditions. The previous equations and numerical results of Hardie, Hood and Allen {1991)
were obtained for ¥ = 1, pp = 1/2 in the ideal case. It was shown that for v = 5/3, the ideal modes were
stabilised and that only the thermal modes were unstable. However, this result was obtained without
knowledge of the thermal continuum in line-tied arcades. Rigorous treatment requires the expression
for the thermal continuum in line-tied geometries for progress to be made.

From these results, the following mechanism for a prominence’s lifetime may be proposed. A thermal
instability in the corona together with a dip in an arcade type magnetic field structure allows the promi-
nence to form. A siphon mechanism may also aid this formation. As a consequence of resistivity and
perpendicular thermal conduction, the observed fine scale structure can form. Finally, a neighbouring
thermal instability may trigger off a magnetic instability causing the prominence to erupt into a solar
flare.

6.2 Future Work

There are numerous possibilities for extending this work and these are discussed next.

Chapter 3 was concerned about how the inclusion of finite, scalar, temperature-dependent resistivity
effected the normal mode spectrum of the linearised MHD equations. T'hese equations were manipulated
into a set of first-order ordinary differential equations. The singularities of these differential equations
corresponded to continuous spectra. An alternative method of locating these singularities is to use the
infinite gradient method described in more detail in Appendix B. The advantage of this method is that
it is very quick to use, however the draw back is that it is not rigorous since it relies on all the variables
being continuous across the singularity.

Although Chapter 3 has examined the effect of temperature-dependent resistivity on the continuous
spectra, the normal mode solutions obtained have delt only with constant resistivity. Therefore, one
extension to Chapter 3 would be to include the classic form of the temperature-dependent resistivity
given by Equation (2.6) in Chapter 2.

Another extension to Chapter 3 would be to include dissipation due to viscosity. This may be achieved
by adding the extra viscous terms to the momentum and energy equations. Unfortunately this is a very
messy and complicated procedure because full treatment requires the inclusion of all the coefficients of
viscosity (see Braginskii, 1965). Once these terms have been added, a similar method to that presented
in Chapter 3 can be followed to ascertain the singularities (if any) of the corresponding system of first-
order ordinary differential equations. Additional matrix elements may be calculated (using the method
described in Appendix C) and programmed into LEDA together with possible additional surface terms
and an appropriate set of boundary conditions. Then, as in Chapter 3, various parts of the normal mode
spectrum can be studied. Thus, the effect of viscosity on the thermal instability can be discovered. If
the thermal continuum is removed and replaced by a quasi-continuum (as is the case with resistivity or
perpendicular thermal conduction) it may be possible to derive a scaling law for prominence fine scale
structure. When including viscosity (for example) it may be easier to first work in a Cartesian geometry.
Then, when the results are known, progress to a more realistic cylindrical geometry may be made.

In Chapter 3, the simplified version of Ohm’s law (given by Equation (2.14) in Chapter 2) was used.
The more lengthy and complicated generalised Ohm’s law could be considered and corresponding results
compared.

Different equilibria could be considered. For example, to model a laboratory plasma, a Tokamak-like
current profile might be used.
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This is more complicated than the Gold-Hoyle equilibrium profile and is well known in nuclear fusion
research. It has been applied to solar physics by several authors, for example, An (19886)

o ho 9\ v+1
B = B [1- (-, (6.1)
B, = B (6.2)
7 2
e EBZ- / B—fdr'-mo], (6.3)
D r

where v, ¢o and hg are constants with B, and p,, the values of the magnetic field and the plasma pressure
along the r = 0 axis of the cylinder respectively. There ig still a free choice for either the density or
temperature profiles. The following temperature profile might, for example, be chosen

T = hi(eo— 1’2)‘10 ; (6.4)

where dp and ey are constants, with eg > 1 such that the temperature is non-zero throughtout the
equilibrium and at the boundary » = 1. More realistic prominence equilibria could be created and used.
It should be noted however, that the existence of the thermal continnum is a robust feature of the normal
mode spectrum. The existence of the thermal continuum will therefore be independent of the choice of
equilibria. The location of the thermal continuum and the eigenvalues and eigenfunctions obtained will,
of course, vary from equilibrium to equilibrium.

So far Chapter 3 has only been concerned with continuous spectra in a one-dimensional cylinder. A
more realistic situation would be to consider two-dimensional cylindrical equilibria, p = p(r, 2), etc. The
method to obtain the continua should be very similar to that presented in Chapter 3. The linearised
equations may be rearranged to give the two-dimensional Hain-Liist equation. The singularities of this
equation would then correspond to continuous spectra. The work corresponding to two-dimensional
continua (gap continua) is currently being studied by Van der Linden and co-workers. Finally, the
non-linear equations could be examined to investigate how non-linearity links up with the normal mode
spectrum. In particular the effects on the thermal sub-spectrum could be ascertained.

In Chapter 4 another study of the normal mode spectrum was undertaken. The existence of magne-
tothermal modes was investigated. The fundamental thermal and Alfvén modes were found to coalesce
for certain ratios of the radiative to Alfvén time scales to form overstable wave (or magnetothermal)
modes. The work could be extended by investigating the coalescence of the higher harmonics. For the
shearless Gold-Hoyle equilibrium profile with zero thermal conduction and no dissipation, the large &
behaviour with m = 1 should be given by Equation (4.55), where k¥ and m are the axial and azimuthal
wave numbers respectively.

The WKB method used to predict the growth rate and first-order correction terms for large values
of & could be extended to include the second-order correction term. The results presented in Chapter 4
could be obtained to any degree of accuracy required by increasing the values of k. This would require
a larger number of gridpoints.

More dissipation could be included such as resistivity, perpendicular thermal conduction and vis-
cosity. The first stage would involve knowledge of the continuous spectra. In the case of viscosity, the
continuous spectra are unknown so they would first need to be calculated using the method described in
the above paragraphs. The ballooning equations have already been derived with all these terms included
by Hood, Van der Linden and Goossens (1989). These can be manipulated to form a dispersion relation
which could be solved numerically following the method presented in Chapter 4. The large £ behaviour
may be studied and possibly predicted using a WKB analysis. This analysis may need to be extended
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to accommodate complex growth rates. Thus, the use of Stokes and anti-Stokes lines may be required.
More details may be obtained in Heading (1962).
In Chapter 4, the constraint B - V.S = 0 has been satisfied for a coronal arcade by setting

S = F+z-aue, (65)
with
w) = 2 (6.)

Another study could be performed for a coronal loop by letting this constraint be satisfied by

S = F(r)+0—q2(r)z, (6.7)
with
g2(r) = rl;i : (6.8)

The effect of these two constraints on the thermal instability may then be compared. The Gold-Hoyle
profile used in Chapter 4, although being simple and well known, is not a very realistic equilibrium
profile in practise and could be replaced. The coalescence of the thermal and Alfvén modes could be
studied in two and three dimensions. Finally, non-linear effects could play an important role in not only
the ballooning modes but also on the thermal continuum and the coalescence of thermal and magnetic
instabilities. Non-linear solutions could also coalesce with magnetic and thermal instabilities and may
provide an insight into the mechanism associated with the eruption of prominences into solar flares.

In Chapter 5, the cffect of line-tying is investigated for a coronal arcade. A discussion on the
different types of boundary conditions which may be used is presented and the method of solution
outlined. Unfortunately, it is necessary to calculate the continuous spectra (in particular the thermal
continuum) and understand fully its’ importance in line-tied geometries. Once the location of the thermal
continuum is known, the solutions to the ballooning equations (with the boundary conditions satisfied)
can be fully understood and applied to actual normal mode solutions. This will give a guide as to how
line-tying effects the thermal instability. To calculate the thermal continuum in line-tied geometries,
the methods previously discussed may be used. However, the effects of line-tying make the analysis of
a one-dimensional equilibrium strictly two-dimensional. s

Once the effect of line-tying on the thermal instability is known, dissipation effects such as parallel
and perpendicular thermal conduction and resistivity could be included. Notice that if perpendicular
thermal conduction is included, the thermal continuum is removed and replaced by a quasi-continuum.
This may simplify the analysis.

As before, further extensions could consist of more realistic equilibrium profiles and the inclusion of
non-linear terms.

The analytical fit to the optically thin radiation used throughout this thesis is that calculated by
Rosner et al. (1978). Different analytical fits could be used, for example, Cook et al. (1989) and the
results compared.

A currently unresolved matter in solar physics is the coronal heating function. Throughout this
thesis, it is taken to be constant per unit mass, despite the fact that this is clearly unrealistic. Further
advances in this work could be made once the specific form of the coronal heating function is known.

The resolution of the obsevations of prominences and the associated fine scale structure needs to be
increased and this may then reveal other interesting (and maybe suprising) phenomena.

As technology and computing power increases, it makes these future options more accessible, hope-
fully enabling all the properties of the thermal instablity and solar prominences to be eventually fully
understood.




Appendix A

A.1 The coefficients of Equations (3.48)-(3.53)

The coefficients of Equations (3.48)-(3.53) in Chapter 3 are
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Appendix B

B.1 Infinite gradient method for obtaining singularities

In this Appendix, the infinite gradient method for locating singularities is presented. In ideal MHD
it is well known that mobile regular singular points in the linear differential equations correspond to
bands of singular wave solutions, or continuous spectra (see, for example, Goedbloed, 1983). Hence to
derive the continuous spectrum for a cylindrical equilibrium with resistivity included, singularities are
looked for in the equations obtained by transforming Equations (3.15)-(3.23) into a set of six first-order
ordinary differential equations. At these singularities, the radial derivatives become infinite. Hence, in
the equations for normal modes (3.15)-(3.23), consider the limit as d/dr — oco. In this limit, it can be
assumed that () can be neglected in comparision to d@/dr for any perturbed quantity @ that is differ-
entiated with respect to r. Hence, for non-zero resistivity and zero perpendicular thermal conduction
the variables dA} /dr, dA /dr, A}, A}, Al v, and p’ may be neglected in Equations (3.15)-(3.23) to give

dv.
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Eliminating all the variables except 1” and dp’/dr in Equations (B.1)-(B.6), yields two equations in two
unknowns
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Hence for a non-trivial solution

ey L\ p oL 1dg[(dB,Y 1 (d 1.
sorCy + L5 +p(6T)p—-T e+o(55) |+ 22| () + 5 (F080) | = o @9

This is the thermal continuum for non-zero resistivity and zero perpendicular thermal conduction. It

should be noted that this method is presented here only as a check that the singularities obtained in
Chapter 3 are correct. It is not mathematically rigorous because of the assumption that all of the
variables are continuous across the singularity. This is not always the case with, for example, the
perturbed total pressure. However, the advantage of this method is that the singularities are obtained
relatively quickly and easily compared to the rigorous method described in Chapter 3.




Appendix C

C.1 Description of LEDA

In this Appendix a brief description of LEDA is given. LEDA is the finite element code used in the
numerical work in Chapters 3 and 4. One advantage finite elements have over other numerical codes is
that they are easy to use once implemented. Any degree of accuracy may be obtained by increasing the
number of gridpoints used (combined with accumulation of gridpoints if required).

C.1.1 The Non-dimensional Equations

The eight variables are re-defined as follows

B 7 = Bg
"N = 1'1):., v = —B_z 'l)f]_, vz = E (Zi)ﬁ + B—zv'l> f (Cl)
p = rp, T = rT, a, = iAl, ay = rAh, ag = AL, (C.2)

In addition to re-defining the variables, the following dimensionless quantities are introduced p = Rp.p*,
r= Rr*, T = RT.T*, k = R7'F*, v1 = Rvacv}, va = vact}, va = Svacvd, T = T.T%, ¢; = RB.a},
as = R%B.a}, a3 = RBca}, p = pep”, B. = B.B}, By = B.B}, s = vp.R™'s", m=m*, g = Ee¢*,
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are reference values (together with p, and B.) usually associated with values on the cylinder axis. The
Equations (3.15)-(3.22) for normal modes in cylindrical geometry then become (asterisks omitted for
ease of writing)
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where all coefficients are now real.
C.1.2 The Matrix Elements
The state vector given by
o = (pvr,05,08,7,01,02,03), (C.13)

is introduced and every variable is expanded as a finite linear combination of known expansion functions
h; (1) (1 £ j < 00), for example

n

Z 15k (), (C.14)

where the unknown coefficients (xi; )J oo ': are to be found from the differential equations. These
expansions are substituted into unanons (C.5)-(C.12) which are then projected onto the basis functions

using

(hi(r),ha(r)) = /0 hy (v) ko (7) dr. (C.15)
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This projection yields a set of 8n linear equations for the 8z coeflicients (xi; ){;1”" and forms a general

matrix eigenvalue problem of the form

sB.X = A-X, (C.16)
where X is the vector containing the coefficients (x;; ){:11;‘ and A and B are 8n x 8n matrices with
n being the number of expansion functions used. Finite elements are used as the expansion functions.
These have the property that, for any function f (r),

/ FO Rl D de = 0 Vliod|>2 (C.17)

Therefore only the sub-blocks which form the main diagonal and it’s nearest neighbours contain non-zero
elements. Hence the matrices A and B possess a tri-diagonal block structure with the matrix B being
symmetrical. The sub-blocks of A and B are determined by
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Aji(2,8)

A (3,1)

Aji (3,5)

Aji(3,6)

A1 (3,7)

Aj1(3,8)

Aji(4,1)

Aj1(4,5)

Aj1(4,6)

Aji (4,7)

Ajl(4,8)

A (5,1)

A1(5,2)

A1 (5,3)

Aj1(5,4)

dh? .
Jrages [|-S2 i
I\ pant / B, dh? dh]
/[r]"j’hdr+ %) il
fm| 2.8 / 2By , o dh} / a2 dnS
/[ S Rj—Ldr+ [ [-Be] =L —Ldr,
e
| (] pntar,
O . o
= 'I'_2+k hjhldf‘,

F 2
I (BOBZ TPy )]hf.h?dr+/[m8 ]hadh dr,
7 r dr r2 d
[ m [ BeB; dBy . dB\] uss 2 3 dhf
/__7-( e ,d)]hh,dr+ [£B?] b} —dr,
/ k”] hihldr,
7o
/ "”] hih$dr,
™+ 12)| hinga
Be *734' Ghidr,
/ [k dB, h4h7d + _mBg hqdh'd,
| dr 7 dr
f mdB“]h“hsd +/[ eB) 12 gy,
r d
]. 6HL dT 1 3[: 11l / 16%_}_ dT dh] 1
/[r2 8p dr r (£+p<6p)7.>] Pphgoeg r Op dr dv'h o

/[—Eﬁz] Shzdr+/[ (7__1)10] hsdh,d
/ [(=v=1) %"1] hShddr,

o= wgniar,
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(C.31)

(C.32)

(C.33)

(C.34)

(C.35)

(C.36)

(C.37)

(C.38)

(C.39)

(C.40)

(C.41)

(C.42)

(C.43)

(C.44)

(C.45)

(C.46)

(C47)
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+ /[ (r=1) 55 {(43z>+i(%(r30))2 }]h?h?dr

+ [ 5] | %L +/[ - 1o ) by /['M]dhsdh’d (C.48)
R

+ [0 (g om0+ Pk 080 - 2L o)) | b

4 / 2 ZTZZL2+2T (y—1 qdﬁ‘ —1)1);;(7'33)] -c%:’s'—h?dr, (C.49)
Aj(5,7) = /‘rBZ (g = ﬂ)}r——( v—1)n dB”]h%{d

% / - S -1y (rBo)] hShTd

£ f [Bet=tte (Z'Zdﬁ )| B

o PR oy
A1 (5,8) = / %(”u“ml)% 277177( _1)( de+n’;: (139))] hEhidr

v [[Ea-0 (r e+ Pt om0 o) - eI O] iy,

+ [ [ I B 1) & )] S (©51)
Az (8,8) = / [rB;) hihidr, (C.52)
Aj1(6,6) = / [—rn (~+k2>]h§h$dr, (C.53)
Aj(6,7) = f[n:,n] hfd‘z'd (C.54)
4;:(6,8) = / [a-kn]hg%dr, (C.55)

A1 (7,2) = / [-%—] h]hidr, (C.56)
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1dndB

Aj(7,5) = /[;# d:]h}h?dr, (C.57)

A(18) = f [’:‘ | hhgdr + / [m”] ’h“dr (C.58)

1d dh? gnt

A (1,7 = /[ ] hidr +/ |:—~——'12} 7‘+/[—; d:' dd’; ——d?, (C.59)
k

A48 = / [2] hIhSdr, (C.60)

Aji(8,2) = / [Bs] hShidr, (C.61)
1ldp d

Ajl (8, 5) — / —-;%a (1'39)] h?h?d?’, (0-62)
PRI dh3 , o

Aj1(8,6) = / kr=2 | h3hPdr + / [krn] —Lhfdr, (C.63)

- [mkn] s, 7 ]

Ajz(s,() = P hjhld‘l’, (664)
i 2 dhs 8

4j1(8,8) = / —T;—"] h;?h?dr+/[ Sdh'd +f[ ;]—& r, (C.65)

where all unmentioned matrix elements are zero. Integration by parts has been used in the radial
component of the momentum equation, the energy equation and in the angular and axial components
of the induction equation. This yields the following surface terms

B st “’““‘] D)y (C.66)

[~—£" i’f’-kgal - —=—=+B
r dr

ld_TanJ_,. ld_TaK_J_,*,_ dT Ok} 2m(’y—1)nde +2B,,d_TanJ_£l£e_‘{
rdr ap rdr 0T ar o324 r ar r dr B2 dr
4 (1Y, 200=1ndB; day  2krn d
+m‘dr(r>+ r dr de T pr? dr (Bo) e
dT 8k 2(7 1)1) d da3 -
(B" v 8B2 T 7 (7Bs) (T )b, (C.67)
1day may -
n [;W = T] 3 (a3)s (C.68)
d
7 [rﬂ - kral] (a3)y - (C.69)
dr b

The boundary conditions are then applied to these surface terms which are then added to the matrix
elements (‘natural conditions’). If the boundary conditions require some variable to be zero at the
boundary, this needs to be explicitly imposed (‘essential conditions’). For more details, see Van der
Linden (1991). Also, the projection functions need to be evaluated at the boundaries.
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C.1.3 Boundary Conditions

The differential equations (3.15)-(3.23) in Chapter 3 must be supplemented by a set of boundary con-
ditions. In the numerical work the effect of resistivity on the thermal continuum is investigated and
hence perpendicular thermal conduction is neglected. This reduces the order of the system of differential
equations from eight to six and so six boundary conditions are required. At the centre of the cylinder,
the following three regularity conditions are used

limry, = 0, limrds = 0, A lr=0 = 0. (C.70)
These ensure that there are no singularities along the axis r = 0 of the cylinder. For the external
boundary conditions, the plasma is considered to be terminated by a perfectly conducting rigid wall at
r = R. At first this may be seen to be a bit unrealistic but it has been argued by Goedbloed (1990) that
neighbouring coronal loops may act in a similar manner. In any case one may eliminate the influence of
this condition by making R sufficiently large. Thus the external boundary conditions used are

’I"U;, |"=R = 0: TA'O |v'=R = O’ Alz |r:R = (071)

For these rigid wall boundary conditions, the surface terms given by Equations (C.66), (C.68) and (C.69)
vanish and the conditions are explicitly implemented by setting the appropriate expansion coefficients

equal to zero.

C.1.4 The Finite Elements

An appropriate choice of finite elements now has to be made for each component of u (r). To avoid poor
discretisation (Kerner, 1985), cubic Hermite Spline functions are chosen for vq, a9 and a3 and quadratic

finite elements for p, vs ,vs, 1" and a;. The quadratic elements are defined as

4(’"(— Tj—1) (”:;2— r) r € [rj_1,7j]
; TP — T
hfa(r) = 4 s (C.72)
[ 0 +& Irpargl
( 2r—v; —rj_1)(r—rj-1
: J(r Jr )()2 =) r € [rj-1,75]
i = Ti-1
Borey 2r—riay—7m)(r =7, .
hi o (r) ¢ £ .1(:1 J?,()Z r+1) r € [ri, 7541 (C.73)
41— 1§
k 0 r & [rj—1, 7],
while the cubic elements are defined by
r—r \2 P NP
A =0T e ~ 1, P
’ ("j = 7',-_1> ("’j ~ Tj1 HE -
R (r) = g (ritni—=r " o[ Titr=r 2 ¢ &g, ] (C.74)
S\ - T+l — 7§ gt
0 ré[rj-y, il
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3

(r=15) (“—) r € Iyt my]

T’j o Tj_l
hl_c r = P—_p; 2 C.75
7.2 () (r— 7)) (r_i“> r € [rj, 1yl ( )
i+l =T
! 0 P& [rjo1,mipa]-

Since two finite elements are use for each gridpoint, the size of the matrices A and B increases to
16n x 16n. The general eigenvalue problem (C.16) is then solved by two different algorithms. The first,
the QR method (Xerner, 1989) gives all the eigenvalues of the matrix considered and hence an indication
of what the spectrum looks like. Once a global view of the spectrum is known, the separate branches
and individual modes can then be studied using the Inverse Vector Iteration algorithm (Kerner, 1989)
which calculates and plots specific eigenfunctions.



Appendix D

D.1 WKB analysis in the ideal case

In this Appendix, a detailed description of the WKB analysis carried out in Chapter 4 for the ideal case
is given. The Gold-Hoyle equilibrium equations (4.13) with A = 0 are substituted into the Hain-Liist
equation (4.25) which is then expanded for » < 1, but kr 3> 1, to give

d dx ar
T [F(r, s) E;—] +G(r,8)x = 0, (D.1)
where

(3 + )
(14 72)% (2 + k2r2)’

(D.2)

and

i 1 1, 2 P Am2k2p2 8m2p2
= ’"(1‘“’2)2{ (23 e ) T (m? + k2r2)* & (m? + k2r2)

4242 5 292 m2 )] }
5 1- y D.3
(m? + k2r2) (%32 + mz) [m + v ( (%32 + m?) (D.3)

Setting x = F~%y, the differential equation (D.1) becomes

&y [G 1 (dF\* 1 &®F
'c‘l‘;g“l‘[g;‘l'[“’_,z(‘%) *ﬁd?]y = B (D4)

After some algebra, it can be shown that

G, L1 (dF _Aier | (R 4r?
F ' 4F? \ dr o2F dr? 2 (%52 + m2)

4k2r? {m2 % s’r? (1 _ m? ) }
(m? + k2r2) (352 + m?)° Y (35% + m?)

4m2k2p? 8m2r?

9

i (m2 + k2r2)? (3s2+m?)  (m? + k%r?) (387 +m?)

1 k%% (2m? - k%r%)
e = Q. D.5
T 4r2 + 72 (m? + k2p2)? @ (D-5)
Expanding s as
§1 , 82

s = SO+_];+-k—2+“.’ (D.G)

and setting so = v/2 and m = 1, Equation (D.5) becomes
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2,2 (9 _ h2,2 2,22
Q = L+kr(2 kr2)+(1+kr) o 1_\/581
42 r2 (1 + k2r2) r2 2k

+ w7 02 ) (-3 -5

. 2k%p? . (1 _ \/581) & 4r? (1 s \/551)]_ (D.7)

(1 + k2r2) 2k (14 k2r2) 2k
To leading order in 72 and sy, Equation (D.7) becomes
L[=2 38 ke gkir! a0 of A3 72
Q = 2 (1 k2r7)? + k*r (m o s )] (D.8)
Hence the differential equation (D.4) can be written as
d’y 2 ;
7 t[Fara)+p®)]y = 0, (D.9)
where
vE. T
qQ = ._.--,-‘:‘—31 ——5‘7’2, (D‘lo)
and
8y 5p2.2  1paa
TR T 8 L L (D.11)

72 (14 kz,.z)z
In Equation (D.10), it can be seen that g predicts a one turning point problem. However, in Equation
(D.11), p is singular at » = 0, but is negligible elsewhere. This gives a second turning point. Hence
this problem is a two turning point problem. The next stage in this calculation is to work out two
solutions to the differential equation (D.9), one corresponding to the situation when k¥r < 1 and one
when kr >> 1. These two solutions are then asymptotically matched to yield a value for sq.

D.1.1 The solution for kir <1

The transformation given by z = ¢ (r) and v = 9 (») y () is then applied to the differential equation
(D.9), (see Nayfeh, 1973) yielding

dzv 2dy dé

(d¢/d) [dr?"@ﬁ% (de) [ g+p +;ﬁ(ﬂ) %%]v = 0. (D.12)

Setting ¥? = d¢/dr to eliminate the first derivative term dv/dz, and

(%Zg) LR e o fo'\/:mdf. (D.13)

Putting (d¢/dr)’ = ¢ into Equation (D.12) gives

d2
dz';) [2_412 v = W(2)v, (D.14)
where
B 1 2 (dy\® 1d%
VV(Z) = —22—2 (d(f)/d?’) [ + — (‘(‘i‘;) —Em-] (D.IS)




96

Equation (D.14) has the correct form of the singularity at » = 0 since W is non singular (see, for
example, Heading, 1962; Nayfeh, 1973). This can be seen by letting » — 0

W d /1 dy
W — oy <¢2 i L (D.16)
Therefore for small 7, W is negligible. Hence for r < 1 Equation (D.14) becomes
d?v s 3

Letting v = z%a (2), it is found that the differential equation (D.17) becomes

d’a do
22 = ki) 2,2 e
z 2 +z = + (k z 1) o 0. (D.18)

Equation (.18) is Bessel’s equation and has a solution

o =bJy (kz) = v o= blzél]l (kz), (Dlg)

where by is an arbitrary constant. Hence, for r < l/k%, the non singular solution to the differential
equation (D.4) is

n = q% (/or\/mah')%h (k for\/de). (D.20)

D.1.2 The solution for kr > 1

The solution for large kr is obtained next. For kr 3> 1 the differential equation (D.9) becomes

d?y ;
m+k"qy =10, (D.21)
2 1 5 oLy
7 @2 (agary wa-vg (F@)] = o et
where 2= ¢ (r), v=1(r)y(r) and ¥? = d¢/dr. Letting
k2q
I | .23
@y = T R
and neglecting the term
d (1d
pd (Ldv
dr \ %2 dr
from Equation (D.22) yields
d? :
a—fz{—zv = 0. (D.24)

The differential equation (D.24) is Airy’s equation and has a solution given by v = a;Ai(2) where a; is
an arbitrary constant. Since



g = —4 (j—f)z = (d(;”)z,
= b = V52,
> k[ Vatar = o},

oo [oe] - -

where vy satisfies ¢(r1) = 0. Hence for &y > 1 the solution is given by

1 2
v zal | N e 3., 2
Yo = i ay [—kTq] Ai(z), where z = — [ik /rl\/ﬁdz] :

or

) ] m (e ]}

D.1.3 The asymptotic matching of y; and y,

y 1
2
_\/—kq 1

The arguements of the two solutions y; and y; are asymptotically expanded to give

Yo~ \/ilbl sin k/\/q('r)drv—:l£
. Jo i

]g’liqﬂ'ﬂ'%

and

o -
Yo o~ __a'l_Lsin k/\/q('r)d'r+% :
L ™ o

k%q'}ra

Setting a; = /2b; (~1)" and matching, yields

k/:l\/mdq- = (n+%) T,

where 7 is the zero of ¢ given by Equation (D.10). Hence, it can be seen that

r —_ ._%
Tk 81,

where s; is negative for 71 to be real. Using Equation (D.30) it can be shown that

L _4e+d) fT
e )
V2 5
so that for the fundamental mode n =0,
8 — — lé
1 T

Thus
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(D.25)

(D.26)

(D.27)

(D.28)

(D.29)

(D.30)

(D.31)

(D.32)

(D.33)

(D.34)



Appendix E

E.1 'WKB analysis in the non-ideal case

In this Appendix, the zeroth-order and first-order correction terms to the growth rate found numerically
for large k in Chapter 4 for the non-ideal case are obtained analytically. Equation (4.50) can be written

as
26p Gp[ dp | 2ypB}
O = 2P 1 P fipa o8 .. %90Dg| o
Vi r(v~1)CAct{ g (B ) g = s
oryep [2Bf 1 -2y 4P o | 7pm*B} dp
Ll +p(ﬁp+13)dr s+ g (or—es) o0, (E.1)
where
232 !
Cu = s+ ,.—29’ (E.2)
and

_ s [, B\ | yom®Bi| [, , m’Bj oL
G = 7_1[sp('yp+ﬂ>+ 2 el p !

oL Rm?B? 2 g2 B2
[(ﬁ) + Tt [ 42 (o4 ). )
P

Equation (E.2) represents the Alfvén continuum, while Equation (I£.3) represents the slow and thermal

-+

continua. After some algebra

ot o (e G ()
] ALt 3 (v —1)B; By op - (v-1)B
e (;P_ 5 [7!31» (B;?Z % 4) L ] BE ) <m2B2 & 2rﬂ§§)] 3
+ Bl e B (o s)) - s (i) ]
= (B4)

Notice that the expression in the curly brackets is the same as the dispersion relation given by Equation
(4.56). Setting
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B? i 2
the following differential equation is obtained
d2

A WKB analysis is now performed on Equation (E.6). For further details of WKB theory, see Bender
and Orszag (1978). This problem can be reduced to a two turning point problem, as in Appendix D.
Hence the Bohr-Sommerfield condition for a two turning point problem is used

"1 1 1
k/ q3idr = [n + —] T, (E.7)
0 2

where n is an integer and 7y is the zero of g. Substituting the Gold-Hoyle equilibrium equations (4.13)
with Bf/ap = po, OL/OT = (a — Bpdi B =1 R =0and o = —1, into Equation (E.4) and then setting
m = 1,y = 5/3, the following equation for ¢ is obtained

B

17 PO+ (-1 )8 (E.8)
where
B = —(1=22) (2427 (1+r2)° (54 6r% 4+ 2?) es°

+ 2(1=22)% (r24+22) (1 +12) 54

~ 2¢(1+72)2[5(1 =A%) (1472) (52 + A%) + (54 6r2 4+ 2%) (A2 + (=3 +522) r? + r1)] 8°

+ 4(1=2Y)[(1=2%) (L+r?) (5r* + A%)

+ (142242 (A2 4 (=34 502) 2 4 r%) — (2 4+ A2)° (1+#7)] 5

— 2001+ (A2 + (=3+522) r? 4+ 1%) s+ 8 (1= A2) (A% + (=3 +522) r2 4 19) (E.9)
and

B = e(1+r)’ (B+6r2+22)s®—2(1 =22 (1+7%) 52 +10e (1+72) s —4(1—22). (E.10)

E.1.1 WKB analysis for A =0
Setting A = 0 in Equation (E.8) yields

(431

q (1+1’2)(82+2)02) (E].l)
where
ar = —(5+6r%) (1+ 7’2)3635 +2 (14 rz)z s*—4e(1+ 1'2)2 (5+ 672+ 3r%) §°
+ 4(2- r? 4 1'4) §2—20(1+ 1'2)2 (r?—3)es+8 (1‘2 -3), (I.12)
and
ar = e(1+72) (5+6r2) s —2(1+7?) s +10e(1+7%) "5 —4. (E.13)

Expanding r about r = 0 and s about so (s = sg + 51 +...) yields
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o1 = (—5eso+2) (s5+6) (s3 —2) +xr® + ¢s1 + O (s},7%), (E.14)
where
X = —2lesg+4s5 — 64esd — 4s2 + 100esg + 8, (E.15)
and
$h = —2Besg + 855 — 60es3 + 1659 + 60¢. (E.16)

The first expression in Equation (E.14) is zero if s = /2. Substituting in Equation (E.11) it is found
that ¢ becomes

e 7v/2¢€) r? + (2¢/2 — 10¢) 51 .

T (B.17)

It can be seen that ¢ has a zero rg at

2= (32w (€19

Substituting Equations (E.17) and (E.18) into the Bohr-Sommerfield condition given by Equation (E.6)
and performing the integration gives

L (146_‘/5). (E.19)

k

56—\/5

Hence the expansion for s is given by

_ \/5__2(n+%)

7 (E.20)
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