MOLECULAR SYSTEMATICS OF THE NEOTROPICAL TUBEROUS LEGUME ‘PACHYRHIZUS' RICH. EX DC, THE YAM BEAN

Jaime Eduardo Estrella Engelmann
A Thesis Submitted for the Degree of PhD at the University of St Andrews

1998

Full metadata for this item is available in St Andrews Research Repository at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/14132

This item is protected by original copyright

UNIVERSITY OF ST. ANDREWS

SCHOOL OF ENVIRONMENTAL AND EVOLUTIONARY BIOLOGY

Molecular Systematics of the Neotropical Tuberous Legume Pachyrhizus Rich. ex DC, the Yam Bean

by

Jaime Eduardo Estrella Engelmann

> A thesis submitted to the
> University of St. Andrews for the degree of Doctor of Philosophy

Supervisor: Dr. Richard J. Abbott

ProQuest Number: 10170669

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10170669
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

$$
\text { in } 1206
$$

This thesis is dedicated to my wife María Fernanda, for unwavering support.
"She gave me eyes, she gave me ears;
And humble cares, and delicate fears; A heart, the fountain of sweet tears;
And love, and thought, and joy."
William Wordsworth (1770-1850)

To those who mean the very most, my parents Jaime and Hanne, my brothers Federico and Pablo, and my aunt Janine.

Abstract

The Neotropical genus Pachyrhizus Rich. ex DC. (the yam beans) is one of the few legume genera with edible tuberous roots. Two of its five species (P. ahipa and P. tuberosus) are cultivated by rural communities in the Andean and Amazonian regions, while a third species (P. erosus) is grown on a large scale in Central America for the domestic and international market. Current breeding work in Costa Rica, Ecuador, Denmark, Portugal and Tonga is aimed at increasing the potential use of the genus as a crop. The objective of this research was to construct a phylogeny for the genus based on molecular variation, and to establish relationships and levels of genetic diversity among Pachyrhizus species.

A phylogeny based on chloroplast (cp) DNA variation separated the genus into two evolutionary branches, i.e. a Mesoamerican and a South American branch, reflecting a consistent phylogeographic pattern of species distribution and dispersal. The wild species P. ferrugineus (resolved as the most primitive within the genus) together with wild and cultivated P. erosus represented the Mesoamerican branch. Materials of Andean and Amazonian distribution, namely P. panamensis, the P. tuberosus complex and the highly derived species P. ahipa made up the South American evolutionary branch of the genus. P. panamensis was the most primitive taxon in this group.

A phylogeny constructed from sequence variation of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA complemented the cpDNA phylogeny to a broad extent, separating Pachyrhizus species into similar clades and reflecting a congruent phylogeographical distribution. The ITS phylogeny also indicated that P. panamensis and wild taxa of P. tuberosus and P. erosus probably originated after rapid radiation from a continuously distributed early ancestor (i.e. ecotypes of P. ferrugineus). Subsequently, speciation may have accompanied divergent adaptation to dissimilar ecological niches in two directions: to areas with conspicuous annual dry seasons and deciduous forests in Mesoamerica, which in turn resulted in the origin and specialisation of P. erosus and its several primitive landraces and cultivars; and, to the tropical and subtropical rainforests and Andean valleys, giving rise to the different
aided by domestication and man-made selection. Phenograms produced from RAPD variation were congruent to a broad extent with the phylogenies obtained from cpDNA and ITS variation, confirming the affinity between P. ahipa and P. tuberosus, and revealing the existence of three gene pools in Mesoamerica and Mexico.
P. tuberosus appears to have played a significant role in the evolution of the genus. Multiple lines of molecular evidence suggest that this species might also be ancestral to P. erosus, as a separate lineage. Moreover, an early, wild ancestor of P. tuberosus was also closely related to other wild species (i.e. P. panamensis and P. ferrugineus); and, some of the cultigen types of the P. tuberosus complex encompass the early ancestry of the highly advanced species P. ahipa.

Finally, a broad range of potentially exploitable genetic diversity was identified in this study, enabling both the implementation (or continuation) of in situlex situ conservation strategies, and a more efficient progress towards genetic breeding of yam beans.

DECLARATION

I, Jaime Eduardo Estrella Engelmann, hereby certify that this thesis, which is approximately 62000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree.

October, 1998.
Jaime E. Estrella E.

STATEMENT

I was admitted as a research student to the School of Biological and Medical Sciences, University of St. Andrews, in September, 1995; and, as a candidate for the degree of Ph.D. in the School of Environmental and Evolutionary Biology in September, 1996.

October, 1998.
Jaime E. Estrella E.

CERTIFICATE

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Ph.D. in the University of St. Andrews and that the candidate is qualified to submit this thesis in application for that degree.

October, 1998.
Dr. Richard J. Abbott

COPYRIGHT

In submitting this thesis to the University of St. Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby. I also understand that the title and abstract will be published, and that a copy of the work may be made and supplied to any bona fide library or research worker.

October, 1998.
Jaime E. Estrella E.

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my supervisor, Dr. Richard J. Abbott, for his valuable advice and enthusiasm, and for patiently going through earlier drafts of this thesis; very special thanks are also due to him for laboratory facilities over the past three years. I also wish to thank Dr. Marten Sørensen (Royal Veterinary and Agricultural University, Copenhagen) for his continued support in providing plant material, valuable literature and suggestions, but - most importantly - encouragement and fruitful discussion during germplasm collections in the quest for jíquimas and ashipas. I am grateful for a Sir Harold Mitchell Scholarship awarded by the University of St. Andrews, and also for an ORS/CVCP award, which allowed me to spend three years at St. Andrews conducting the research reported in this thesis.

I would like to thank INIAP (Instituto Nacional Autónomo de Investigaciones Agropecuarias) and DENAREF (Departamento Nacional de Recursos Fitogenéticos y Biotecnología) in Ecuador, for collaborative support. I am grateful to the germplasm banks and farmers of Central and South America for their generous gifts of seed. In addition, I am indebted to Dr. Amanda Gillies, Dr. Kirsten Wolff and Mr. David Forbes for their valuable expertise and thoughtful assistance during this project. I would like to thank all my friends and colleagues in the laboratory for assisting me with the molecular techniques and for providing an enjoyable working environment. Thanks are also due to Dr. Martin Ryan and Mr. Alex Houston for assistance with DNA sequencing analysis. The support of the Roger and Sarah Bancroft Clark Charitable Trust during the final stage of my Ph.D. studies is also appreciated.

Finally, I offer my sincere gratitude to Maria Fernanda, my wife, and to my family in Ecuador for valiant support, patience and understanding.

Contents

Section Page
Dedication ii
Abstract iii
Declaration v
Statement vi
Certificate vii
Copyright viii
Acknowledgements ix
Chapter 1. General introduction 1
1.1. Introduction
1.2. Features of the genus Pachyrhizus
1.3. Description of species and cultigen groups
1.4. Evolutionary history and biogeography of the genus
1.5. Taxonomy and previous systematic studies
1.6. Uses of yam bean
1.7. Aims and objectives of this study
Chapter 2. Materials and methods 322.1. Origin of plant material
2.2. Cultivation of plant material
2.3. DNA extraction and purification
2.4. Estimation of DNA concentration
2.5. RFLP variation of total cpDNA genome
2.6. Restriction site variation within a PCR-amplified cpDNA region
2.7. Sequencing of the ITS region of nuclear rDNA
2.8. RAPD analysis
2.9. A preliminary examination of chromosome numbers
Chapter 3. Phylogenetic relationships within Pachyrhizus species 57
based on chloroplast DNA variation
3.1. Introduction
3.2. Materials and methods
3.3. Results: RFLP variation across the total cpDNA genome
3.4. Results: Restriction site variation within a PCR-amplifiedcpDNA region
3.5. Results: an approach of combined restriction site data analysis
3.6. Discussion
Chapter 4. Variation within the ITS region of nuclear rDNA 140 to infer evolutionary pathways in Pachyrhizus
4.1. Introduction
4.2. Materials and methods
4.3. Results
4.4. Discussion
Chapter 5. Use of RAPDs in a phenetic analysis of Pachyrhizus taxa 183
5.1. Introduction
5.2. Materials and methods
5.3. Results
5.4. Discussion
Chapter 6. General discussion 221
6.1. Molecular markers and DNA sequences in Pachyrhizus
6.2. Evolutionary relationships within the genus Pachyrhizus
6.3. Concluding remarks and future research
References 238
Appendix 262

CHAPTER 1

GENERAL INTRODUCTION

"... Además de las papas, que son lo principal, son ocas, yanaocas, camotes, jíquimas, yucas, cochucho, cavi, totora, mani y otros cien géneros que no me acuerdo... De aquellas raices que dije algunas son comida ordinaria; otras sirven para refrescar, como la jíquima, que es muy fria y húmeda; y en verano, en tiempo de estío refresca y apaga la sed; para sustancia y mantenimiento, las papas y ocas hacen ventaja..."
(Padre José Acosta, a Spanish chronicler describing the diversity found in the New World and the use of yam beans by the Amerindians in 1590; cited in Yacovleff, 1933).

1.1. Introduction

Many traditional agroecosystems found in South America are major in situ repositories of crop genetic diversity; this native germplasm is crucial to both developing and industrialised countries. Due to encroaching agricultural modernisation and environmental degradation, crop genetic diversity is decreasing worldwide in these ecosystems (IPGRI, 1995). Agricultural research has traditionally focused on a few staple crops (e.g. potato, maize, rice and wheat), while relatively little attention has been placed on minor or neglected crops. Therefore, these minor crops have failed to attract significant financial support and, consequently, limited information is available on many of their basic aspects, hindering their development and sustainable conservation. Research is urgently needed to document levels of genetic variation and causes of genetic erosion in underutilised species.

This study will draw attention to a genus of growing interest and attractiveness, that is attributed with the highest production of leguminous tubers on a world basis (Sørensen, 1990), i.e. the genus Pachyrhizus Richard ex DC - the yam beans. It is intended that the investigations described in this thesis will contribute to: (1) identifying possible untapped genetic diversity for breeding programmes; (2) promoting an understanding of the evolution and biosystematics of the genus; and, (3) detecting gaps in existing germplasm collections and conservation approaches.

1.2. Features of the genus Pachyrhizus

Yam bean, a Neotropical legume with edible tuberous roots, is an important food crop with a long history of cultivation. The genus is extensively cultivated in the Americas, both as a garden crop and, in the case of P. erosus (L.) Urban, for export to North America (Sørensen, 1996). It has been successfully introduced to different pantropical regions, with wide acceptance in south-east Asia and western Africa. The genus currently comprises five species (Sørensen, 1988 \& 1996); of these, three are cultivated: P. ahipa (Weddell) Parodi, P. erosus (L.) Urban and P. tuberosus (Lam.)

Sprengel. The other two species, P. ferrugineus (Piper) Sørensen and P. panamensis Clausen are only found in the wild.

Both cultivated and wild species of Pachyrhizus, as well as wild forms of cultivated species are high yielding and exhibit a wide tolerance towards differences in soil fertility, altitude and variations in precipitation rate (Grum et al., 1991 \& 1996; Heredia, 1994). In Mexico, for example, the average yields of P. erosus obtained in the state of Guanajuato are 60-80 t/ha (flood irrigated fields), and similar yields are produced in the lowland area of the state of Nayarit. Fresh tuber yields produced on dry land range from 35-60 t/ha. Field trials in Mexico (flood irrigated), Costa Rica (dry land) and Tonga (dry land) exhibited yields of 100-145 t/ha (Heredia G., 1994; Heredia Z. and Heredia G., 1994; Morera, 1994; Nielsen, 1995). Furthermore, the performance of 13 landraces observed in Tonga during two consecutive years gave consistent results in the range of 33.1-72.0 t/ha (fresh tubers) with a production of 2.72-7.46 tha dry matter. Similarly, yield sizes of two wild accessions were 24.8 51.5 t /ha (fresh tubers) and 3.47-5.73 tha dry matter.

Phenotypic variation within Pachyrhizus is considerable. The genus comprises perennial plants ranging from robust vines with trifoliate leaves to small erect bushes; the growth cycle ranges from less than five months to more than a year (Sørensen, 1996). Landraces can be found with multiple laterally produced tuberous roots, while relatively advanced cultivars possess a single vertically-produced tuberous root (Sørensen, 1996; Sørensen et al., 1997). Tuberous root quality can range from freshly consumed forms with low dry matter content ($<10 \%$, as is the case for most of the ashipa cultivar group; see section 1.3.3) to forms consumed exclusively when cooked due to a high dry matter content ($25-30 \%$, i.e. the chuin cultivar group; section 1.3.3).

In addition, Sørensen (1996) and Sørensen et al. (1997) have recently identified several morphologically distinct landrace/primitive cultivar groups in the genus; their existence is probably the result of geographically isolated domestication processes and man-made selection, as in the case of the various groups of P. tuberosus found in the

Amazonian basin, or the red-seeded, white flowered landraces of P. erosus with varying degrees of lobed leaflets in the Yucatán peninsula.

1.3. Description of species and cultigen groups

The five species within the genus are morphologically delimited by a series of common characteristics (Sørensen, 1988 \& 1996). Among these, the most conspicuous are: vines or semi-erect herbaceous to somewhat lignified perennial plants with one or more tuberous roots; trifoliate leaves with stipules and pinnately arranged leaflets with caducous stipels. The inflorescence is a simple to complex raceme, depending on the species, including flowers with a papilionaceous corolla. The straight legume is septate between seeds, which can be squared, relatively flattened, or rounded kidney-shaped. Seed colour ranges from olive green and deep maroon to black, or from black and white to mottled cream.

1.3.1. The cultivated species: Pachyrhizus erosus (L.) Urban

> Vernacular names: jícama (Spanish), Mexican yam bean (English), mexikanische Knollenbohne (German), sinkama (Philippines), man kaeo (Thai).
P. erosus is a herbaceous vine with great variation in the outline of its leaflets, from dentate to palmate. The species is defined by its glabrous petals, the number of flowers (4-11) per lateral inflorescence axis and an inflorescence length of 8-45 cm. Morphological characters specific to the legume of P. erosus are size (6-13 cm x 8 17 mm), reduction of the strigose hairs at maturity and change in colour (from pale brown to olive-green / brown). Furthermore, a number of seed characters are also specific to P. erosus, including colour (from olive-green to brown or reddish-brown) and shape (flat and square to rounded, but never reniform). Tuberous roots produce one or more turnip-shaped to elongated tubers (up to 30 cm diameter and 25 cm long; Figure 1.1), with light to dark brown surface, white, whitish yellow to reddish internally (Sørensen, 1988).

Figure 1.1. Neotropical distribution of phenotypic variation and morphotypes of the five species within the genus Pachyrhizus (after Sørensen, 1988 \& 1996; see next page for details).

The greatest morphological variation among landraces/cultivars is found in Mexico and Guatemala, where both entire and deeply lobed leaflets are recorded, and tuber shape varies from smooth to lobed or cleft surfaces, with watery-translucent or milkycloudy juice, a bland or sweet flavour and both thin and thick skin. Flower colour varies from light-dark violet to white. In addition, large differences in earliness exist, so that material with red or maroon-coloured seeds and white flowers, which is often found in the Yucatán peninsula and southern Guatemala, tends to flower later than other genotypes (Sørensen, 1996).

Taxonomic differences between wild and cultivated genotypes of P. erosus are difficult to make, due to the vast number of ephemeral populations in Mexico and Central America originating from previous cultivation. Nevertheless, wild material exhibits generally smaller leaf size; increased hairiness of leaves and legumes; smaller, often elongated and irregular shape of the tuberous root; and, a dark brown colour of the tuber surface. Both wild and cultivated genotypes have dehiscent legumes, due to the fact that the crop has never been selected for grain legume characteristics (Sørensen, 1996).

Figure 1.1. Continued. Variation in the outline of leaflets and tuberous roots:

Pachyrhizus erosus: (1.A) Jutiapa, Guatemala; (1.B) Guanacaste, Costa Rica; (1.C) Guanacaste, Costa Rica; (1.D) Cartago, Costa Rica; (1.E to 1.G) Oaxaca, Mexico; (1.H) Yucatán, Mexico; (1.I) Nayarit, Mexico; (1.J) average tuber shape of cultivated accessions (both mono- and multituberous landraces exist); (1.K) tuber from wild population.
P. ferrugineus: (2.A) Belize, Belize; (2.B) Cayo, Belize; (2.C) M. Pine Ridge, Belize; (2.D) Cayo, Belize; (2.E) Stann Creek, Belize; (2.F) Ch. Pine Ridge, Belize; (2.G) Zelaya, Nicaragua; (2.H) Cayo, Belize; (2.I) Alta Verapaz, Guatemala; (2.J) El Paraíso, Honduras; (2.K) tuberised root shape.
P. panamensis: (3.A) tuberised root shape; (3.B) Madden Dam, Panama.
P. tuberosus: Wild populations: (4.A) Los Rios, Ecuador; (4.B) tuber shape (monotuberous type only). Jiquima cultivar group: (4.C) Manabi, Ecuador; (4.D) tuber shape (generally monotuberous). Ashipa cultivar group: (4.E) Limoncocha, Ecuador; (4.F) Cusco, Peru; (4.G) San Martin, Peru; (4.H) tuber shape (both mono- and multituberous types exist). Chuin cultivar group: (4.1) Loreto, Peru; (4.J) San Antonio, Perú; (4.K) tuberous root (invariably monotuberous).
P. ahipa: (5.A) tuber shape (monotuberous type, multituberous root is rarely found); (5.B) Tarija, Bolivia).

Habitat and present distribution

P. erosus can be found in areas with annual dry seasons in Mexico and Central America, along deciduous forest edges and in scrub vegetation (Figure 1.1). It grows on soil types ranging from deep clay to sandy loam from 0-1750 m a.s.1., in areas with mean annual precipitation rates from $250-500 \mathrm{~mm}$ to over 1500 mm .

The species is widely cultivated in the central and southern states of Mexico (e.g. Nayarit, Guanajuato, Morelos and Veracruz) as well as in Yucatán and Quintana Roo, where presumably pre-Columbian landraces of P. erosus have been introduced. Plants are also found as escapes from cultivation in these areas. The same applies to El Salvador and north-western Honduras, where cultivation of the crop is widely practised (M. Grum, pers. comm. in Sørensen, 1996). In Guatemala, limited cultivation is practised today, mainly in the southern states of the country. The plant is often found either as a relic from earlier cultivation or as wild material. This general situation probably also applies in Honduras and Nicaragua, where little or no cultivation is currently practised. Wild materials have been reported in the central and southern states of Mexico, central and western Guatemala, El Salvador, western Honduras, western Nicaragua and north-western Costa Rica (Sørensen, 1988). In general, in the states where a wild distribution is recorded, different cultivars are often found as escapes.

1.3.2. The cultivated species: Pachyrhizus ahipa (Wedd.) Parodi

Vernacular names: ajipa, ahipa (Spanish); Andean yam bean (English); andine Knollenbohne (German).

The Andean yam bean is distinguished morphologically from the other species by being a herbaceous, erect to semi-erect plant with entire leaflets, very short inflorescences ($5-9 \mathrm{~cm}$) and racemes, and with a general absence of lateral axes (i.e. simple racemes; the number of flowers per lateral raceme, if present, is as low as 2 6). The legume is $13-17 \mathrm{~cm}$ long x $11-16 \mathrm{~mm}$ wide, and almost circular in cross-
section when immature; its seeds are black, lilac, maroon or black and white/cream mottled, rounded and kidney-shaped. Seeds are never olive-green or red, nor flattened and square (Sørensen et al., 1997). This species is also unique due to the fact that both twining/trailing, semi-erect (indeterminate) to short bushy erect growth habits (determinate genotypes) exist. The tuberous root is turnip-shaped ($6-8 \mathrm{~cm}$ diameter and $10-15 \mathrm{~cm}$ long) with a greyish-brown colour externally and white internally (Figure 1.1). Both multituberous and monotuberous plants have been identified, though the monotuberous form appears to be dominant (Ørting, 1996; Sørensen, 1997).

Habitat and present distribution

The species is found in sporadic cultivation in Bolivia and the northernmost Argentinean provinces of Jujuy and Salta along the eastern side of the subtropical Andean valleys between 1000 and 3000 m a.s.l. with an annual rainfall ranging from $500-1500 \mathrm{~mm}$ (Sørensen, 1996). The cultivation of P. ahipa in Peru is either not practised or possibly restricted to a few valleys around Tarapoto according to Dr. C. Arbizu (Centro Internacional de la Papa, Peru) (Sørensen, 1997). There are no records of plants that are known to be wild; a wild progenitor of P. ahipa has yet to be identified and its geographical origin is still unclear. However, Ing. Agr. J. Rea (Centro de Comunicación y Desarrollo Andino, Bolivia) has recently claimed to have found wild germplasm of P. ahipa near Sorata, Bolivia. In addition, Dr. D. Debouck (Centro Internacional de Agricultura Tropical, Colombia) mentions other possible locations where a wild progenitor may be found, mainly the Peruvian valleys of Apurimac, Ene and Mantaro, due to favourable climatic and edaphic conditions in those areas. Until true wild material becomes available for morphological and molecular analyses - if such material exists - the phylogeny of the species would be difficult to determine (Sørensen, 1996; Ørting, 1996). Recent studies have also revealed that growth habit follows a geographic distribution from north to south latitudes with the strongest vine-like genotypes occurring in the north (near La Paz , Bolivia) and the smallest, bushy landraces to the south in the Bolivian departments of Chuquisaca and Tarija and the Argentinean provinces of Jujuy and Salta.

1.3.3. The cultivated species: Pachyrhizus tuberosus (Lam.) Sprengel

Vernacular names: ashipa/namoe/capamu/iwa, chuin, jíquima (Spanish; names applied to the three different cultivars groups found in Ecuador, Peru and Bolivia); potato bean or Amazonian yam bean (English); amazonische Knollenbohne (German); mbacucú (Guaraní). NB: Sørensen et al. (1997) provide a comprehensive list of names used by numerous South American ethnic groups.

This species has probably the broadest intraspecific morphological variation and exhibits the greatest plant size within the genus. Stems of more than 10 m and terminal leaflets of $280 \times 260 \mathrm{~mm}$ have been recorded. The legumes are also larger than those of the other species ($255 \times 23 \mathrm{~mm}$) and are conspicuously compressed between seeds. The seeds ($12 \times 14 \mathrm{~mm}$) are black, black and white mottled or orangered in colour, kidney-shaped. Both multi- and monotuberous genotypes exist with roots up to 30 cm in diameter and 20 cm or more long (Sørensen, 1988 \& 1996).

Recent discoveries of additional cultivar forms (Sørensen et al., 1997) have demonstrated the existence of three different groups of this species, prompting the occurrence of a P. tuberosus complex, as follows: (1) the typical cultivar form consisting of a herbaceous, strong, climbing vine; (2) a newly discovered group of cultivars endemic to areas along Río Ucayali in Peru, represented by herbaceous, basally semi-woody climbing vines reaching less length than the typical cultivar form; and (3) the bushy, non-climbing cultivar form currently exclusive to the province of Manabí (western Ecuador), characterised by its determinate growth and deeply lobed lateral leaflets. From this point on, these cultigens will be referred to as ashipa, chuin and jíquima, respectively (Figure 1.1).

The ashipa cultivar group

The prototype plant belonging to this group present in the Amazonian basin and Caribbean Islands is a vine or liana, normally climbing other crops grown in association. It comprises cultivars with long internodes, entire leaflets, long racemes (up to 360 mm), and rounded-reniform seeds.

According to local growers (Sørensen,1996), the ashipa cultivar group can be further subdivided into two types: (1) the multituberous, comprising two subgroups ('ashipa 1' and 'ashipa 2') and (2) a monotuberous type (containing one subgroup only, 'ashipa 3 '). Both 'ashipa 1' and 'ashipa 2' produce several large oblong tubers per plant, with the tubers spreading out laterally, the difference between these two types being colour and sweetness of the tuber flesh: 'ashipa 1' (locally known as ashipa negro) has brown peel, white flesh and reduced sweetness, whereas 'ashipa 2' (ashipa marrón) has light brown-yellow peel, yellow-coloured flesh with a much sweeter taste. 'Ashipa 3' produces a single large turnip-shaped vertical tuber with whitish flesh and little sweetness. All forms have kidney-shaped seeds of an orange-red or brown-red to dull black colour. In addition, both white and violet flowered forms exist (Sørensen et al., 1997).

The chuin cultivar group

Chuin (as it is named locally) is a basally semi-woody climbing vine, $2-7 \mathrm{~m}$ in length, only known from a small area along the Río Ucayali, both upstream and downstream from the town of Requena, Peru. The lateral leaflets are entire acuminated with shallow lobes; the terminal leaflet is rhomboid, occasionally shortly lobed, features never observed in the other P. tuberosus groups. This cultigen type differs from the majority of the ashipas by: (1) it is invariably monotuberous; (2) its vertically produced tuber, which resembles a radish or a relatively thickened carrot; (3) its particular high dry matter content (which is comparable to that of manioc roots); (4) its leaf morphology - the occasionally slightly dentate lateral leaflets have a completely different length:width ratio from those of both the ashipa and jiquima groups; and, (5) the morphology of the legume and seeds (Sørensen et al., 1997).

Similarly to the ashipa group, the chuins may be further subdivided according to the colour of both the skin and flesh of the tuberous root, as follows: 'chuin 1' has white skin and flesh (locally known as chuin blanco); 'chuin 2' has yellow skin and flesh (chuin amarillo); and 'chuin 3 ' has dark purple to violet skin and white flesh (chuin morado).

The jiquima cultivar groud

Unlike the two previous groups, the jiquima (pronounced hee-ki-ma) is a smaller, nonclimbing, determinate, bushy and fast-maturing plant. It comprises cultivars with short internodes, deeply lobed leaflets and racemes interrupted by leaflets with abruptly alternating left- and right-turning growth (Sørensen, 1990). Jiquima is grown exclusively in the seasonally dry coastal province of Manabi, western Ecuador, but also very rarely in the province of Los Rios in the same country.

This cultivar group has been exhaustively collected and evaluated (Grum et al., 1991; INIAP, 1995; Sørensen, 1996) confirming the high level of uniformity in the germplasm from different Ecuadorian localities. The only variability so far recorded is a slight difference in leaf outline and flower colour: the Manabita material has white flowers, while the Los Rios material has white- and violet-flowered forms. Their growth habit and tuber shape/quality do not vary. The thick turnip-shaped, fleshy tuberous root of the jiquima can weigh up to $3-4 \mathrm{~kg}$ with an average weight of $2-3$ kg ; it is generally monotuberous, but occasionally multituberous with two or three tubers per plant. Their white-cream coloured pulp is very succulent, crisp and tasty. Seeds have always a dull black colour.

The origin of this distinct group within P. tuberosus remains uncertain, since there are no other genotypes (wild or cultivated) with a similar growth habit in the surroundings. The nearest materials are the wild populations of P. tuberosus in the Ecuadorian protected areas/ genetic reserves Río Palenque (Los Ríos) and La Perla (border between Pichincha and Los Rios) (pers. obs.), and the wild materials of P. panamensis in the province of Guayas. These two are robust vines with inflorescences and legumes of different morphology (Sørensen, 1996).

Wild germplasm of Pachyrhizus tuberosus

All wild accessions of this species collected to date originate on the western slopes of the Andes, and no cultivated material has been identified in the immediate vicinities
(INIAP, 1995; Sørensen, 1996). Wild material has a close morphological resemblance to some of the genotypes seen within the ashipa cultivar group, i.e. a climbing vine, and to the wild species P. ferrugineus. Individuals have evergreen foliage, are all of the monotuberous type, with a very elongated tuber shape and high dry matter content (40-50\%).

In general, wild genotypes are large climbing vines up to 20 m long growing in areas with secondary vegetation (near streams or rivers, often among windfalls or cut down trees). These plants have a long primary, somewhat tuberous root ($\pm 2 \mathrm{~m}$) which continues into thin stringy roots, like a rosary (Figure 1.1). The lower regions of the stems are usually defoliated and tend to become lignified. In contrast to various landraces with non-dehiscent pods, plants from wild populations which reach the upper level of the canopy have dehiscent pods, possibly as an adaptation for enhancing seed dispersal (pers. obs.; Sørensen et al., 1997). The darkish brown coloured pods are prominently pubescent, P. ferrugineus-like; seeds are rounded reniform, plane surfaced, with a light-brown colour and 8-10 mm long x 9-11 mm wide.

Whether these wild populations are in fact true remnants of a west Andean P. tuberosus provenance, or whether they represent escaped/introduced material or regressive forms, may be determined only by molecular analyses (see further sections).

Habitat and present distribution (including cultivar groups)

P. tuberosus is widely found in the Amazonian region of South America (Figure 1.1) and appears to be native to the western area of this region (Sørensen, 1988). In general, plants grow in tropical to subtropical evergreen rainforests with an annual rainfall of up to 4100 mm , at altitudes ranging from $0-1900 \mathrm{~m}$ a.s.1; they form occasionally dense tangles.

There are some difficulties in determining the extent of the natural distribution of P. tuberosus because of its very long history of cultivation in South America. However,
it may be deduced that in isolated areas where little or no variation has been recorded, e.g. pockets of the Amazonian basin, such morphological cultivar uniformity may be the result of a single introduction from neighbouring communities. The present distribution towards the east is not clear, due to encroaching agriculture practised in the Brazilian states of Mato Grosso and Minas Gerais. However, there is little doubt that the species was originally found in the lower reaches of the Amazon, the departments of La Paz and Beni in Bolivia and the north-eastern lowlands of Paraguay along the Río Paraná (L. Ramella, pers. comm., in Sørensen, 1996). To the west, along the Pacific in the semi-arid Ecuadorian province of Manabí, the jíquimas are found in cultivation, unfortunately undergoing rapid genetic erosion.

The cultivation of the ashipa group takes place in Venezuela, Colombia, Ecuador and Bolivia. It is also grown in Peru by the same ethnic group (i.e. the Cocamas) that grow the chuins, and further downstream, near Iquitos. As mentioned before, the chuins are distributed along the Río Ucayali, near Iquitos, an area which by far exhibits the greatest diversity among the landraces and cultivars of the P. tuberosus complex. Chuin is cultivated in a permanently humid climate on flood plains inundated by nutrient-rich rivers.

Finally, wild material has so far been collected only in five localities in the western slopes of the Ecuadorian Andes, growing in disturbed areas, i.e. secondary evergreen rainforest; some of these places are now transformed into pastures or oilpalm (Elaeis guineensis), banana (Musa acuminata and M. x paradisiaca) or sugarcane (Saccharum officinarum) plantations (Sørensen et al., 1997). It is quite likely, however, that this sample concentration may have been exaggerated by the frequent prospections carried out by INIAP - Ecuador, and RVAU - Denmark during the Yam Bean Project. Hence, further surveys on both slopes of the Ecuadorian Andes and the Amazonian region may yet reveal areas where closely related wild populations are located (Sørensen, 1997).

1.3.4. The wild species Pachyrhizus ferrugineus (Piper) Sørensen

This wild species is the only one in the genus which is evergreen (except for the wild accessions of P. tuberosus) and perennial above ground (NB: all species have perennial tuberous roots). P. ferrugineus comprises semi-woody to woody vines with both tuberous root(s) and stem(s) more lignified than in the other species (Sørensen, $1990 \& 1997$). The root is less tuberous, although greenhouse-produced plants exhibit tubers of reasonable size ($\pm 0.5 \mathrm{~kg}$); the surface of the root has a dark brown colour, but is whitish brown inside. The morphological variation in leaflet outline is considerable, even within populations, and is greater than in P. erosus. The leaflets are subcoriaceous, occasionally relatively pubescent, with reddish-brown strigose hairs. The morphology of the inflorescence differs from the other species in the large number of flowers per lateral raceme ($8-21$) and the length of the main raceme axis (\leq 860 mm). The length:width ratio of the legumes is markedly different ($80-130 \mathrm{~mm} x$ 12-23 mm). The prominent reddish-brown strigose hairs and the lack of constriction between seeds are also distinguishing pod characters. Seeds are rounded (13×13 mm), never reniform, brownish-red and laterally compressed, and are therefore quite distinct from the seed shapes of the remaining species, except for those of wild populations of P. tuberosus (Sørensen, $1988 \& 1997$).

An additional interesting feature of this species is its very slow multiplication rate. Seed production is low, generally less than 100 seeds per plant. Also, the period from germination to maturity of the seeds is the longest within the genus, and in many cases exceeds 10 months (Sørensen, 1996). Most likely, these features are a natural adaptation process to unfavourable habitat conditions.

Habitat and present distribution

The species is ecologically associated with evergreen to deciduous rainforests with soil types ranging from deep clay to coarse sand-clay-loam. It has been recorded from $0-1600 \mathrm{~m}$ a.s.l. in areas with over 1500 mm rainfall, often in the vicinity of rivers. Its pods appear to possess high resistance to humidity, a useful character when
considering P. tuberosus under Amazonian conditions (Sørensen, 1997). P. ferrugineus is distributed along the Atlantic coast of Central America from the Mexican state of Veracruz to Panama. From this latter point it spreads to the Colombian department of Chocó on the Pacific coast, as shown in Figure 1.1.

1.3.5. The wild species Pachyrhizus panamensis Clausen

The second species only found in the wild, P. panamensisis, is also a herbaceous vine distinguished by all parts of the plant being covered by white to light brown pilose hairs, including wing and petals, and a low number of flowers per lateral raceme (47). The legume is hirsute to sericeous with white hairs, retaining its pubescence at maturity. Seeds are the smallest produced in the genus ($6-7 \mathrm{~mm}$), rounded to slightly reniform in shape and olive-green in colour. The species has a somewhat elongated root with brown epidermis and greenish white cortex (Sørensen, 1988).

Habitat and present distribution

On the basis of existing records and the very few available accessions, this wild species exhibits a particular disjunct distribution which is typical for most Central American dry forest species, e.g. Bombacopsis trinitensis, according to Gentry (1982) and Sørensen (1988). Plants thrive at the edges of deciduous forests, in low shrubbery and open grassy slopes, comprising areas with at least one dry season per year lasting 2-3 months. It has been recorded at localities from $0-800 \mathrm{~m}$ a.s.1. with $250-1500$ mm rainfall.
P. panamensis exhibits a scattered distribution which extends from central and Pacific Panama into the coastal deciduous forest of Santa Marta, Colombia. It has not been recorded in central Colombia, but is present in the provinces of El Oro and Guayas in the western part of central Ecuador (Figure 1.1). Recent expeditions have confirmed the presence of P. panamensis in this latter Ecuadorian province and in the southern area of the state of Bolivar, Venezuela (INIAP, 1996; Sørensen, 1996). Therefore, this species may originally have been distributed relatively uniformly from its
northernmost present localities in Panama to the relatively dry coastal plains in western Ecuador.

1.4. Evolutionary history and biogeography of the genus

The legume family (Fabaceae) is an ancient group in North America dating back at least to the Palaeocene, i.e. 60 Ma , even though fossils to suggest so are scarce, and, when available, are difficult to interpret (Sousa \& Delgado, 1993). The group was well diversified by the Eocene; most of the genera are elements that are found today in hot dry seasonal climates, forming part of the lower to medium-sized tropical deciduous forest, although are also found in more humid and warm to cold habitats (Ramamoorthy et al., 1993).

It is possible that the genus Pachyrhizus had its origins in the Mexico-Central America area and spread to South America during the Pliocene - Pleistocene (Sousa \& Delgado, 1993), implying that Pachyrhizus or an ancestor of it may have reached the Mesoamerican area by way of Laurasia. Hence, this hypothesis is contrary to that proposed for genera such a Dioclea, Calopogonium and their close relatives (Ramamoorthy et al., 1993), which come from the south.

There is good evidence that root and tuber crops were domesticated independently in three regions: (1) Southeast Asia and its geographic continuation - the Sunda Islands, Papua New Guinea, Oceania; (2) Africa - Madagascar; and, (3) Tropical America (León, 1977). Planting of such crops as an agricultural practice was probably first developed in tropical zones. Hawkes (1986) and Harris D. (1973) pointed out that the food-reserve systems of the wild ancestors of such plants must have developed in response to well-marked dry seasons of $5-71 / 2$ months, otherwise there would have been no reason for such food-reserve systems to have evolved. Seed cultures, according to these authors, would be better suited to areas with more extended dry seasons.

For that reason, the origins of tropical root and tuber crops have to be sought not in the rainforests, where continual humidity allows year-round vegetative growth (and where natural selection would not favour the development of underground storage organs), but in the summer-green rainforests and woodlands with a well-marked dry season (e.g. deciduous regions), where the development of underground starchy food reserves would help a plant survive the dry season and regenerate quickly when rain returns (Sauer cited by Hawkes, 1986).

Such crops, once domesticated, would have been taken into the tropical rainforests at a later stage after the agricultural practices associated with them had become well understood. This implies that agriculture may have come later to the Amazonian basin than to the summer-green rainforests and thorn-scrub areas, where at least some of the lowland root and tuber crops were originally domesticated (Hawkes, 1986).

The history of the yam beans as a plant crop has been recorded from quite an early date, enriched mainly from: (1) archaeological data (pottery, plant residues, mummy bundles, embroideries, etc.); (2) detailed ethnobotanical references and chronicles during the Spanish Conquest and onwards (including pre- and post-conquest practices and linguistic evidence); and, (3) extensive herbarium material. Detailed information of these issues, which goes beyond the scope of this study, can be found in: Montenegro (1740); Urbina (1906); Anonymous (1904); Yacovleff (1933); Yacovleff \& Muelle (1933); Yacovleff \& Herrera (1934); Herrera (1942); O'Neale \& Whitaker (1947); León (1969 \& 1977); and, Ugent et al. (1986), among others.

1.4.1. Pachyrhizus erosus

According to pre- and early post-Columbian references to the cultivation of this species, the 'xicama' (Aztec), 'maen-chicam' (Maya) or 'guyati' (Zapotec) was cultivated by all major civilisations including the Toltec, Olmec, Aztec and Mayan (Martínez, 1979; Yacovleff, 1933). It is known to have been cultivated by the Aztecs in Central Mexico and by the Mayans in the Yucatán Peninsula.

Sørensen (1996) found high uniformity among the cultivars collected in geographically/ climatically/ edaphically isolated areas outside the presumed original distribution of the species (such as the Yucatán peninsula and Central Mexico), suggestive that those cultivars are remnants of ancient ones introduced from southern Mexico, Guatemala and/or from regions further south in Central America, where wild populations exist. The origin of the present landraces and cultivars in Mexico, El Salvador and Guatemala is still unclear, although preliminary molecular analysis (Philips, 1994; Estrella et al., 1998) has indicated different origins of the Mexican and Mesoamerican landraces.

Reports from the $19^{\text {th }}$ century cited by Sørensen (1996) suggest that P. erosus only occurred outside the Neotropics after Columbian contacts. The first area of introduction and extensive cultivation was probably the Far East, namely southeast Asia and southern China. The route of introduction is relatively unclear, but there is little doubt that it must have been via old Spanish colonies: from the Philippines to the coastal regions of China, Vietnam, the former French Indochina and Thailand, then India and finally along the west coast of Africa.

Finally, a well documented fact is the return of P. erosus to its original distribution area after 300-350 years by the French scientist Perrottet, who collected seed material from the Far East for a later 'introduction' to the French Guyana. Thus, it may be possible that some cultivars known from the French Caribbean may have 'travelled' around the world, whereas others may 'only' have crossed over from Mesoamerica.

1.4.2. Pachyrhizus ahipa

The recorded history of the Andean yam bean in cultivation indicates that, in contrast to the other two cultivated species, it has never been associated with shifting cultivation. The earliest indications of its use as a crop are remains of tuberous roots found in the 'mummy bundles' of the Paracas Necrópolis (southern Peru), belonging to the Nasca culture (Yacovleff, 1933; Ugent et al., 1986). Embroideries and pottery from the Mochica and Nasca cultures provide further evidence for its cultivation
dating from a pre-Incaic period ($200 \mathrm{BC}-600 \mathrm{AD}$). However, at low altitudes, such representations may have belonged to the jíquima cultivar group, due to its similar growth habit (Herrera, 1942; O'Neale \& Whitaker, 1947; Sørensen, 1996).

Information contained in the manuscripts and chronicles of Oviedo and Valdéz, at around 1535 , confirm pre-Columbian cultivation of the crop. Furthermore, some authors have erroneously identified archaeological records as P. tuberosus; nevertheless, the typical growth habit, inflorescence morphology and pods allow a positive identification as P. ahipa (Ugent et al., 1986). Sauer (1950) mentions also the crop as one of the common elements of the Andean terraced agriculture in Peru. The crop he was referring to had to be P. ahipa, since none of the three cultivar groups within the P. tuberosus complex is cultivated at altitudes above 1800 m a.s.l. (Sørensen, 1996 \& 1997).

Therefore, substantial evidence exists to confirm that P. ahipa was known and cultivated by more than one Amerindian group of the pre-Columbian culture, with a distribution limited to Andean valleys. There are no definite records of the presence of the crop in northern Peru, but due to the proximity of the present Bolivian landraces it may be assumed that such Peruvian material existed/exists.

The Argentinean genotypes collected recently (Ørting et al., 1996) probably originated from seeds introduced from southern Bolivia. Bolivian farm labourers working in Argentina recall importing seed material from Bolivia when visiting relatives (Sørensen, 1990; Ørting et al., 1996); those genotypes belong to the erect bushy type found in Tarija, southern Bolivia.

Germplasm of Bolivian origin exhibits a broad genetic diversity. Almost all landraces/primitive cultivars from the northern departments of La Paz and Cochabamba possess a conspicuous degree of genetic and morphological variation in earliness, growth rate of vegetative and reproductive shoots, and internodal length (Ørting, 1996). In contrast, the single Argentinean landrace/cultivar is very short, has erect bushy growth, reduced seed set and good tuber growth. Germplasm of known
origin most strongly resembling this Argentinean material has been recorded in Tarija and Chuquisaca, southern Bolivia. A comprehensive prospection in southern Bolivia and northern Argentina (Ørting et al., 1996; Ørting, 1996) revealed that all germplasm in this area has determinate growth habit, which distinguishes it from P. ahipa landraces with indeterminate growth habit found only in northern areas of Bolivia.

1.4.3. Pachyrhizus tuberosus

The plant was already known in Peru for its edible tuberous root in the pre-agricultural period (12200-8500 BC), according to a description of León (1987). Probably the first domestication processes took place along the eastern slopes of the Peruvian Andes, at the upper reaches of the Amazonian rivers (Flores Paitán, pers. comm. in Sørensen, 1996). Alternative centres of origin may become evident once additional historic, geographic and molecular information on the remaining distribution areas is available.

The earliest description of P. tuberosus and its uses is by Padre José de Anchieta in his Chartas Inéditas at the island of Sâo Vicente, Brazil, in 1556 (Arruda \& Peckolt cited by Sørensen et al., 1997). Anchieta recorded that the indigenous people cultivated P. tuberosus because of the starchy and nourishing tuberous roots, and that the seeds were poisonous. Later descriptions confirm that the plant was quite commonly cultivated in large areas of the humid tropics in South America (Burmann \& Pinto cited by Sørensen et al., 1997).

In contrast to P. ahipa, P. tuberosus has been recorded from the far south-east (the Guaraní communities along the Río Paraná, Paraguay), the northern departments of La Paz and Beni (the Guaraní indians in Bolivia) and as far north as the Andean mountains in Venezuela and the tropics in French Guyana (Sørensen, 1996; Sørensen et al, 1997). During colonial times, P. tuberosus was well known in Brazil, mainly in the states of Rio de Janeiro, Minas Gerais, Sâo Paulo and Espíritu Santo, where it was used as food for slaves, equivalent to the use of yam (Dioscorea spp.).
P. tuberosus is believed to be the only species of the genus introduced to areas outside the continent in pre-Columbian times. Very likely, the Arawak ethnic group in Venezuela, Guyana, Surinam and French Guyana introduced it into the Carribean islands together with other tuberous crops of South American origin (Sørensen, 1996). Introductions have been recorded to the islands of Trinidad, Española (Hispañola), Puerto Rico, Jamaica and Cuba.

There are no definite records of introduction into Central America or tropical areas outside the Neotropics, except the recent ones carried out by the partners of the Yam Bean Project and described elsewhere (Sørensen 1990a, 1991, 1994 \& 1995). Finally, seeds of P. tuberosus from Trinidad were apparently distributed to the botanic gardens of Calcutta, Ceylon, Brisbane, Melbourne, Sydney and Adelaide (Kew Bulletin 1889 cited by Sørensen, 1996). However, it has not been possible to confirm this information, as no herbarium specimens of this species have been found outside the Neotropics. An explanation could be the misidentification of the material distributed, with the seeds being in fact P. erosus and not P. tuberosus, as the taxonomic confusion between these two species has a long history (Yacovleff \& Herrera, 1935; Sørensen, 1988 \& 1996; Sørensen et al., 1997).

No substantiated records exist for the particular cases of the chuins and jiquimas. Chuin is nowadays known only to be grown by people of the Cocama ethnic group, or their descendants, and by the Shipibo Amerindian communities in Amazonian Peru. On the other hand, farmers that grow jíquima in Manabí lost their original preColumbian identity much earlier. In several cases, tubers are harvested and consumed during special celebrations (e.g. Corpus Cristi festivals), showing an interesting combination of Spanish culture and traditional Amazonian/Andean agricultural practices.

Of the three cultivated species, P. erosus and P. ahipa must be regarded as cultivars principally selected for cultivation at higher or at least drier areas with different complex cropping systems involving at least maize and common bean, due mainly to the uniform appearance of their tubers and the non-twinning habit of P. ahipa.

Furthermore, the two species have the longest recorded history of cultivation. The lack of historical records for P. tuberosus could also be attributed to the physical conditions in the Amazon and the cultural traditions (Sørensen et al., 1997). This species, in contrast to the previous two, was selected for a different agricultural system where a monotuberous plant does not have any major advantage. The conditions in the Amazon include shade, high humidity and aggressive weed growth (Salick, 1989), and the vast majority of materials of the P. tuberosus complex are perfectly suited to these conditions (the exception to this being the uniformly monotuberous jíquima, selected for the dry lowlands in Ecuador, and possibly Peru).

When the first plants of P. tuberosus were collected for domestication, the selection criteria that resulted in the development of the early original cultivars probably included taste, yield, ease of cultivation, and probably number and shape of tubers per plant in a wide but abrupt geographical area (Salick, 1989; Sørensen et al., 1997). Thus, it is very likely that P. tuberosus, like other root and tuber crops, has been domesticated on several occasions at different locations and by various ethnic groups during pre-Columbian times (León, 1977). Such a 'multilocational' domestication is also supported by linguistic evidence, i.e. some 12 different language groups each using independent or non-related vernacular names for the crop (Sørensen et al., 1997).

1.4.4. Pachyrhizus ferrugineus

Information regarding the history and biogeography of this species is scarce due to its wild taxonomic status and the low economic and ethnobotanic use. The species is ecologically associated with rainforest lacking a notorious seasonal dry period. In contrast to P. erosus and P. panamensis, where the stems wilt to ground level during dry seasons, P. ferrugineus has no need for this adaptation. This is most likely the reason why the roots are the least tuberous within the genus (Sørensen, 1988 \& 1996). Furthermore, its high disease and pest resistance, as well as its strong ecological association with soil types low in available phosphorus, are clear signs of a species of wild taxonomic status.
P. ferrugineus is known from Mexico, Central America and further south in Panama and Colombia. It has been introduced to Cuba, Martinique and Trinidad, where it would appear to have escaped from the botanical gardens to which it was distributed. No records are available of incipient selection nor domestication of this species. The only usage is the one reported by local farmers in Guatemala in which seeds are occasionally used as a vermifuge, probably because of their rotenone content (Sørensen, 1996).

1.4.5. Pachyrhizus panamensis

The species may have originally been distributed all the way from its northernmost present distribution area in Panama to the relatively dry coastal plains of Guayas and El Oro, Ecuador. No records are available of incipient selection, domestication or uses of this species.

1.5. Taxonomy and previous systematic studies

The genus Pachyrhizus (from the Greek, pachys = thick and rhiza $=$ root) is placed taxonomically in the legume family (Fabaceae), subfamily Faboideae, tribe Phaseoleae, subtribe Diocleinae and comprises five species, according to Lackey (1977) and Sørensen (1988).

1.5.1. Pre- and post-Linnaean references to the genus

The genus originated in the Neotropics, but there was floristic and taxonomic confusion for a long period due to the early introduction of P. erosus to regions in the Palaeotropics, for instance, the Far East (Sørensen, 1988). One of the first botanical references to the species was made by Plukenet in 1696, who described a plant from Mexico as 'Phaseolus nevisensis', nowadays designated as P. erosus. This reference was the basis for the species 'Dolichus erosus' described by Linnaeus in his Species Plantarum in 1753, stating that this plant originated in the New World, i.e. the

Neotropics. The origin of the species was changed to India with the publication of Linnaeus' Species Plantarum second edition in 1763, this time under the name 'Dolichus bulbosus'. Du Petit-Thouars published a comprehensive description of six plants listed by Rumphius and included 'Cacara bulbosa' Rumphius as a synonym of 'Dolichus bulbosus' in 1806 (Sørensen, 1988).

The generic name that is now the accepted one was originally used by L.C.M. Richard for a herbarium specimen of 'Pachyrhizus angulatus', an illegitimate species name. De Candolle used the same spelling, with a single ' r ', in his first publication of the name in 1825. Sprengel, in 1826, was the first to introduce the incorrect spelling of Pachyrrhizus. Later, when the generic name Pachyrhizus was favoured over the 'barbaric' name 'Cacara', the erroneous spelling 'Pachyrrhizus' was retained. According to the present botanical code, however, the spelling used by L.C.M. Richard is correct, since it is the original one. Further details regarding pre- and postLinnaean references to the genus and the origin of the species names can be found in Sørensen (1988, $1990 \& 1996$).

1.5.2. The genus

Although the genus has been subjected to previous taxonomic revisions, its taxonomy remained relatively confused, especially in regard to the South American species. For instance, this situation applies to Clausen's revision (1945) due to the shortage of herbarium material caused by the Second World War. In addition, the narrow species concept held by this author contributed to the considerable complexity of this work, e.g. made obvious by the vast number of infraspecific taxa included. Sørensen (1988) conducted a new revision of the genus justified by the availability of new material, mainly from European herbaria, and germplasm collected over the past 50 years.

The generic delimitation and taxonomic position accepted in Sørensen's revision (1988) is in agreement with the views by Verdcourt (1970) and Lackey (1981). The genus has a unique structure of the stigma and style, as the short hairs on the adaxial side of the ovary extend almost to the stigma, forming a 'beard' along the incurved
style, and the stigma has a median to subterminal globular process on the adaxial side (Sørensen, 1988). These two characters, together with the tuberous roots, define the genus as of homogeneous identity.

Systematic examinations of the phylogeny and interrelationships of Pachyrhizus at the generic and subtribal level have so far been limited to the studies of : (1) canavanine and chromosome number by Lackey (1977 \& 1980), who placed Pachyrhizus in the subtribe Diocleinae; and (2) isoflavonoid phytoalexins by Ingham (1979 \& 1990), who suggested a close affinity between Pachyrhizus and the Palaeotropical genus Neurautanenia. According to Ingham (1979 \& 1990) this relationship could justify the transfer of Pachyrhizus to the subtribe Glycininae, suggesting also that the two genera Pachyrhizus and Calopogonium (both Diocleinae) may bridge the gap between the genera Neurautanenia (Phaseolinae) and Pueraria (Glycininae).

A molecular analysis carried out by Bruneau et al. (1990) studied the implications of a chloroplast DNA inversion as a subtribal character in the Phaseoleae. In this study, they used three cpDNA probes (ranging from 635. bp to 1.2 kb) and found a 78 kb DNA inversion encompassing most of the large single copy region of the chloroplast genome, which defined a monophyletic group that comprised most genera in this tribe. Six genera (Calopogonium Desv., Canavalia DC., Cleobulia Mart. ex Benth., Dioclea Kunth, Galactia P. Browne and Pachyrhizus) examined within the subtribe Diocleinae lacked the inversion. These results were consistent with morphological data supporting the subtribal classification proposed by Lackey (1981).

Finally, a palynological study of the genus conducted by Sørensen (1989) revealed that the interspecific variation was sufficient to allow doubtless identification to species level. Not surprisingly, the greatest infraspecific variation was detected in the pollen grains from the cultivated species.

1.6. Uses of yam bean

Yam bean is a leguminous plant, but - unlike its distant relatives such as pea, common bean, soybean and peanut - it is mainly grown for its underground parts (National Research Council, 1989). The succulent, flavoursome and crisp tuberous roots of the cultivated species are used as a vegetable, raw or cooked. P. erosus and P. tuberosus tubers can also be dried and ground to obtain a high quality flour. Immature pods of P. erosus can be boiled and used as a vegetable, which is not possible in P. tuberosus due to the presence of irritant hairs in the pods (Sørensen, 1996).

1.6.1. An important past use

Archaeological material of yam bean is rare because of ways of consumption and production and also because plant material is prone to rotting in tropical conditions. Interestingly, the Mayan name for yam bean is chicam, which according to Patiño (1964) may refer to the act of chewing the root. Other archaeologists have mentioned the consumption of the dried root by pre-Columbian Mexican Indians. In western South America, where conditions for preserving archaeological plant material are better, P. tuberosus - or probably P. ahipa - have been found in at least four Preceramic sites (Yacovleff, 1933). Clearly, all these records need to be re-checked as to species, but it seems that one or perhaps two of the cultivated species (P. tuberosus and P. erosus) may have been brought into cultivation during the pre-Inca and Inca kingdoms as long ago as 10000 BC .

This important past use contrasts with the presence of toxic compounds (rotenones, pachyrrhizin, pachyrrhizone, among others) in almost all parts of the plant except for the tubers (National Research Council, 1989; Sørensen, 1990; Krishnamurti and Seshadri, 1966). Domestication of yam bean, in contrast with that of many other crops (e.g. potatoes and pulses) would thus have induced little changes from the wild ancestors in that nutritional perspective, suggesting either detoxification practices (in order to use pods and seeds) or skilful knowledge about harmless parts of the plant, i.e. the roots, or at certain periods, e.g. unripe pods (Debouck, 1994).

1.6.2. Properties of the genus

Biological nitrogen fixation

Like other members of the legume family, Pachyrhizus has an efficient symbiosis with nitrogen-fixing Rhizobium and Bradyrhizobium bacteria, providing plants with a source of natural fertiliser (Halafihi et al., 1994). In contrast with many grain legumes, a considerable amount of the fixed nitrogen is returned to the soil if the vegetative above-ground parts are left in the field. Thus, the crop forms an integral part of a sustainable land-use system, from both ecological and socioeconomic standpoints (Halafihi et al., 1994; Sørensen, 1996). Tests to quantify the actual amount of nitrogen fixed by symbiosis have been conducted by Castellanos et al. (1996) using accessions of P. ahipa and P. erosus, giving surprising yields in the range of $58-215 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$. Approximately 50% of the N harvested was accumulated in the tuberous roots; in addition, the amount of nitrogen recorded in the residue (hay) ranged from $60-150 \mathrm{~kg} / \mathrm{ha}$. These values equal or outyield the quantities in practically all grain legumes.

Nutritional aspects

Yam bean has a nutritional composition superior to that found in most nonleguminous root crops. P. erosus cultivars can yield a mean crude protein content of 8.3% of the dry weight; similar values have been even recorded for wild accessions (8.0%) and a value of 5.1% has been obtained in P. ahipa tubers (Grum et al., 1991). The major carbohydrate present in the mature tuber is starch. Photomicrographs of P. erosus starch show it to consist of spherical granules with a mixture of small and comparatively larger granules. The average size of a granule is $3.82 \mu \mathrm{~m}$ in P. erosus with a high digestibility score including more than 80% of starch being digested by glycoamylase in 24 hours (Tadera et al., 1984).
P. erosus is a good source of vitamin C $(17.7 \mathrm{mg} / 100 \mathrm{~g}$ fresh weight), thiamine (0.06), riboflavin (0.02) and niacin (0.2). The following average composition of P. erosus
fresh tubers has been reported: Water ($87.0 \mathrm{~g} / 100 \mathrm{~g}$ fresh weight), nitrogenous compounds (1.3 g), lipids (0.2 g), non-nitrogenous compounds (7.6 g), fibres (0.7 g), minerals (0.28 g), other components (2.92 g). Similar analyses report the following findings in tubers from field experiments: 9.8% soluble sugars, 28.9% dry matter and 9.5% protein on DM basis in accessions belonging to the chuin cultivar group (Sørensen, 1996).

Industrial and other aspects

Provided that an optimal method of preserving the crisp texture of the processed tubers can be developed, yam bean tubers may well be marketed as an attractive product to be used in various dishes, and also as a snack. The latter is in fact one of the common ways of use in Mexico, by which tubers are sliced into sticks and sprinkled with lime juice and chilli, although it can also be used as a vegetable either as fresh tubers (added directly to salad dishes or preserved in vinegar), cooked or stirfried (Sørensen, 1996; Heredia Z. \& Heredia G., 1994).

The presence of adenine, choline, rotenone, erosone, pachyrhizid, isoflavonoid phytoalexins and saponin has also been reported (Sørensen, 1995). The figures for the total amount of extractable rotenone in mature seeds vary considerably: a recent analysis of P. erosus recorded a range of $0.03-0.11 \%$ (Lackhan, 1994), although some Chinese landraces may contain as much as $0.5-1.0 \%$. Rotenone can be used as a biological pesticide (Halafihi, 1994); however, at present the world market for this use is limited mainly to the production of flea powders, and further studies are needed to identify alternative applications, e.g. as a plant protective agent and in the cleaning of eutrophied lakes (Sørensen, 1996).

Agronomy and potential for crop improvement

Cultivated materials are easily propagated by seed and, except for good manuring of the soil before planting, they require little attention. Plants can also be propagated using small tubers, which greatly reduces the growing time. In Mexico and South

America, floral buds and flowers are pruned to encourage large and sweet roots (National Research Council, 1989; Sørensen, 1996). Furthermore, the tubers are handled, stored and marketed in general terms like potatoes. Apparently, one additional advantage for the farmers is that Pachyrhizus functions like cassava (Manihot esculenta Crantz) in the tropical lowlands: a food that can be 'stored' in the ground, harvested when needed, and one that is almost unaffected by poor management and environmental conditions.

Almost 10 years ago, a report of an ad hoc panel of the National Research Council in USA (1989) stated that yam bean remained a primitive crop with no concerted effort to collect or use germplasm, despite its potential in the tropics. During the last years, the main focus on Pachyrhizus has been the development of new attractive cultivars based on interspecific hybrid combinations (Heredia G., 1994; Morera, 1994; Sørensen, 1994). The advantageous agricultural traits present in P. tuberosus (e.g. determinate growth in the jiquima cultivar group, vigorous growth of the ashipa landraces and high dry matter content of the chuin cultivars) may all be transferred or combined with traits available in P. erosus and P. ahipa, in order to create improved varieties with high adaptational qualities to tropical and subtropical areas. More recently, breeding programmes in INIFAP-Mexico have produced high yielding and uniformly shaped tuber varieties such as 'San Miguelito', 'Cristalina', 'Agua Dulce', 'San Juan' and 'Vega de San Juan'. Similar efforts are being made in Costa Rica, Tonga, Denmark and Ecuador. Three options are clearly open for the continued improvement of the crop: (1) further exploration and collection of wild and geographically localised landraces, for enrichment of the available genetic basis; (2) additional studies on interspecific hybridisation (to date four of the five species, excluding P. ferrugineus, have been successfully hybridised); and, (3) modern biotechnological methods.

Ethnobotanical and economic data

Several ethnobotanical and anecdotal uses have been described for yam beans as discussed in detail elsewhere (Sørensen, 1990, 1996, 1997; Sørensen et al., 1997). For
example, seeds have been reported to be used for the treatment of human skin diseases; the cure of fevers, pruritis and mange; the control of cattle louse, and several crop pests and diseases (Yang \& Tang, 1988; Adjahossou \& Sogbenon, 1994; Halafihi, 1994). In interviews with Bolivian farmers (Ørting et al., 1996), it was repeatedly stated that the consumption of P. ahipa tubers has a cleansing effect upon the body, is beneficial to the lungs, and cures infections of the air passages. Likewise, shaman Bolívar Santi in Pastaza, Ecuador, mentioned the beneficial effects of ashipa tuber consumption, such as improved lactation in breastfeeding mothers and a curative effect on digestive ailments in children (INIAP, 1992 unpublished).

Economic data for yam bean exist for various production areas and markets. Gross incomes ranging from US\$ 700-2400/ha have been reported in Thailand; in Mexico, the gross income from irrigated fields is US\$ 5250 with a marketable yield of $40 \mathrm{t} / \mathrm{ha}$ and a net profit of US\$ 2500 (A. Heredia, pers. comm. in Sørensen, 1996). In Ecuador, in contrast, there is a decreasing agronomic interest in the crop and tubers are marketed rarely, and used mainly for home consumption or as an occasional present for neighbours. The average price of tubers is US\$ $0.20-0.30 / \mathrm{kg}$ (Sørensen et al., 1997).

1.7. Aims and objectives of this study

The main aim of the research reported in this thesis was to construct a molecular phylogeny of the genus Pachyrhizus so as to gain a better understanding of its systematics and past evolution. This was initially achieved by means of a restriction fragment length analysis of chloroplast (cp) DNA variation within and between a wide biogeographic range of Pachyrhizus taxa. CpDNA variation was examined both by conventional Southern blotting/probing and by restriction site analysis of cpDNA fragments. The results of these analyses have been compared with those obtained from nuclear variation, namely sequencing of the ITS region. In addition, a survey of RAPD (randomly amplified polymorphic DNA) variation was conducted to aid resolution of the phylogeny within Pachyrhizus species, especially within the P. tuberosus complex. As a final objective of the current work, it was hoped that the
outcome of these analyses would assist in the interpretation of possible past hybridisation events, the description of unknown cpDNA haplotypes, as well as taxonspecific molecular markers that could be used in the future for reliable identification of problematic taxa and in marker-assisted breeding programmes.

CHAPTER 2

MATERIALS AND METHODS

"Agriculturalists taking part in a fertility ceremony". One of the 26 men figures represented on an unku (a sleeveless shirt or tunic) dating from the Early Nasca Period (200 $\mathrm{BC}-600 \mathrm{AD}$).

Reader's left hand: maize (Zea mays); reader's right hand: yam bean (Pachyrhizus tuberosus).

The frequent occurrence of root crops on this garment probably indicates that the inhabitants were heavily dependent upon them for their chief source of carbohydrates (O'Neale \& Whitaker, 1947).

2.1. Origin of plant material

Pachyrhizus germplasm used in this study has been generated in the context of the Yam Bean Project (STD Programme, European Union), a multidisciplinary research initiative started in 1982, at the time when the genus Pachyrhizus was being taxonomically reviewed for a second occasion (Sørensen, 1988). Since then, several collecting trips to Central and South America have been carried out by the several partners of the Yam Bean Project, the national programmes of plant genetic resources and international centres (CGIAR). To these collections, numerous accessions have been donated by institutions, genebanks, local communities and farmers, so that the total number of accessions of Pachyrhizus currently available approximates to 250 . This germplasm collection includes both wild and cultivated material of the five species, and is representative of the variability formed within different geographic, ecologic and climatic areas in the Americas.

Leaf material for analysis was made available from 88 accessions of the five Pachyrhizus species, and also from single accessions of Calopogonium caerulum (Benth.) Sauv., C. mucunoides Desv. and Canavalia ensiformis (L.) DC. The three latter species were included as outgroups in the phylogenetic analyses, in that they represent taxa that are systematically close, yet distantly enough related to Pachyrhizus for rooting phylogenetic trees (Ferguson, 1981; Goldblatt, 1981; Goldblatt, 1981a; Lackey, 1981; Sørensen, 1988). Descriptions and passport data of the accessions examined in this research are presented in Table 2.1.

2.2. Cultivation of plant material

Seeds of most accessions listed in Table 2.1 were sown in a $1: 1$ compost/vermiculite mixture (Levington Medium Structure Compost; Graded Horticultural Vermiperl) contained in 8 cm diameter pots. Pots were placed in a glasshouse with temperature maintained at $21 \pm 3^{\circ} \mathrm{C}$ and a 16 h photoperiod supplied by metal halide lamps (Thorn ${ }^{\mathrm{TM}} ; 400 \mathrm{~W}$). Pots were watered regularly and after germination plants grew
well. Alternatively, leaf samples were supplied by germplasm banks, breeding programmes and universities. Prior to shipment, leaves of each accession were harvested from 5-10 healthy plantlets, pooled together, and dried with silicagel at an approximate $1: 10$ rate, i.e. 1 g of leaf material : 10 g silicagel (Chase \& Hills, 1991).

Table 2.1. Accessions of Pachyrhizus used in the molecular analyses.
P. ahipa:

Accession number \dagger		Passport data
AC102	Bolivia, Tarija, Tarija	Molec. Analysis \ddagger
AC201	Bolivia, La Paz, Luribay, Anquioma (2450 masl)	4
AC202	Bolivia, La Paz, Luribay, Anquioma (2450 masl)	$1,2,3,4$
AC203	Bolivia, La Paz, Luribay, Asambo (2500 masl)	4
AC204	Bolivia, La Paz, Luribay, Anquioma (2450 masl)	4
AC205	Bolivia, Cochabamba, Machaca, Sanchu Pampa (2250 masl)	4
AC207L	Bolivia, Cochabamba, Machaca, S. Pampa (2200 masl; lilac/violet seeds)	4
AC207S	Bolivia, Cochabamba, Machaca, S. Pampa (2200 masl; black seeds)	4
AC208	Bolivia, Cochabamba, Machaca, Muro Capilla (2800 masl)	4
AC209	Bolivia, La Paz, Tirata, Rio Esquina (2200 masl)	$1,3,4$
AC209BR	Bolivia, La Paz, Tirata, Río Esquina (2200 masl; black \& white seeds)	4
AC209GS	Bolivia, La Paz, Tirata, Rio Esquina (2200 masl; lilac/mixed-colour seeds)	4
AC213	Bolivia, La Paz, Irupana, Cikilini (1750 masl)	4
AC214	Bolivia, La Paz, Arce, Rio Chinchico (2900 masl)	4
AC215	Bolivia, La Paz, Arce, Lioja (2450 masl)	4
AC216	Bolivia, La Paz, Arce, Lioja (2450 masl)	$1,3,4$
AC220	Argentina, Jujuy, La Posta, Perico (900 masl)	4
AC222	Bolivia, Tarija, San Lorenzo (2000 masl)	$1,2,3,4$
AC223	Bolivia, Chuquisaca, Caraparí de Pilaya (1200 masl)	$1,3,4$
AC225	Bolivia, Chuquisaca, C. de Pilaya (1200 masl)	4
AC226	Bolivia, Chuquisaca, C. de Pilaya (1200 masl)	4
AC227	Bolivia, Chuquisaca, C. de Pilaya (1200 masl)	$1,3,4$
AC228	Bolivia, Chuquisaca, C. de Pilaya (1200 masl)	4
AC230	Bolivia, Chuquisaca, Hornillos (1100 masl)	4
AC231	Bolivia, Chuquisaca, Hornillos (1100 masl)	4
AC525	Bolivia, Ayopaya (1900 masl)	$1,2,3,4$
AC526	Argentina, Salta, Santa Victoria, El Condado (1450 masl)	4

\dagger : Accessions follow the number codes of the Yam Bean Project, i.e. $\mathrm{A}=P$. ahipa, $\mathrm{E}=P$. erosus, F $=P$. ferrugineus, $\mathrm{P}=P$. panamensis, $\mathrm{T}=P$. tuberosus; $\mathrm{C}=$ cultivated material, and $\mathrm{W}=$ wild status.
\ddagger : Molecular approach used ($1=$ RFLP variation of total cpDNA; $2=$ restriction site variation within a PCR-amplified cpDNA region; $3=$ ITS sequencing; $4=$ RAPD survey).

Table 2.1. Accessions of Pachyrhizus. Continued.
P. erosus:

Accession number \dagger		Passport data
EC006	Mexico, Oaxaca (market)	Molec. Analysis \ddagger
EC032	Mexico, Yucatán, Kantunil (100 masl)	4
EC033G	Mexico, Yucatán, Unión Libre (100 masl; light-dark olive green seeds)	$1,2,3,4$
EC109	Malaysia, Kuala Lumpur (market)	4
EC120	Guatemala, Jutiapa (900 masl)	4
EC201	Mexico, Guanajuato, Celaya (CAEB), San Miguelito cultivar (1750 masl)	4
EC205	Mexico, Guanajuato, S. Miguel Ocotopán, Agua Dulce cultivar (1740 masl)	4
EC214	Guatemala, Petén, San Andrés (100 masl)	4
EC236	Mexico, Morelos, Jojutla (seed store)	4
EC250	Guatemala, Petén, San Andrés (300 masl)	4
EC502	México, Guanajuato, Celaya (CAEB), Cristalina cultivar (1750 masl)	4
EC506	Mexico, Yucatán, Dzan (100 masl)	$1,3,4$
EC509	Costa Rica, Cartago, San Juan (800 masl)	4
EC510	Mexico, Campeche, Los Pueblos (0 - 200 masl)	$1,2,3,4$
EC511	Mexico, Chiapas, Tapachula (approx. 1000 masl)	4
EC531	Mexico, Oaxaca, Oaxaca	4
EC534	Mexico, Nayarit (from CAEB) (1750 masl)	$1,3,4$
EC558	México, Nayarit, Tuxpán, Coamiles, Nayarit type (approx. 15 masl)	4
EC559	Mexico, Nayarit, Santiago Ixcuintla, Nayarit type (approx. 14 masl)	$1,2,3$
EC560	México, Nayarit, Ahuacatlán, Agua Dulce type (?) (approx. 1000 masl)	4
EC565	Philippines, University of Philippines, Los Baños, College of Agriculture	4
EW051	Costa Rica, Guanacaste, Finca Pacífica (80 masl)	$1,3,4$
EW203	Mexico, Veracruz, between Coatepec - Xalapa, Chavarillo (760 masl)	$1,3,4$
EW223	Costa Rica, Guanacaste, Playa de Cocos (100 masl)	$1,2,3,4$
EW354	Costa Rica, Guanacaste, Liberia - Bahía Culebra (100 masl)	4
EWHue	Guatemala, Huehuetenango, Nentón - La Democracia (Dr. M. Sørensen)	4
EWPro	Guatemala, El Progreso, Ciudad de Guatemala - Salama (Dr. M. Sørensen)	4

P. ferrugineus:

Accession number \dagger	Passport data	Molec. Analysis \ddagger
FW237	Martinique, Saint Pierre, Botanical Garden, wild (escaped)	$1,2,3,4$
FWLoc1	Guatemala, Quirigua Ruins	4
FWLoc2	Guatemala, Petén, Cerro Ruso	4
FWLoc7	Guatemala (Pozo del Santo, carretera San Luis - Las Casas)	$1,2,3,4$
FWGU4	Costa Rica (FWMGCU4, Dr. M. Grum)	4

P. panamensis:

Accession number \dagger	Passport data	Molec. Analysis \ddagger
PW055	Panama, Panama, Maddem Dam	$1,2,3,4$
PWTM58	Ecuador, Guayas, Guayaquil, Chongón (300 masl)	$1,2,3,4$
PWTM59	Ecuador, Guayas, Guayaquil, Chongón (300 masl)	4

\dagger : Accessions follow the number codes of the Yam Bean Project, i.e. $\mathrm{A}=$ P. ahipa, $\mathrm{E}=$ P. erosus, F $=P$. ferrugineus, $\mathrm{P}=P$. panamensis, $\mathrm{T}=P$. tuberosus; $\mathrm{C}=$ cultivated material, and $\mathrm{W}=$ wild status.
\ddagger : Molecular approach used ($1=$ RFLP variation of total $\mathrm{cpDNA} ; 2=$ restriction site variation within a PCR-amplified cpDNA region; $3=$ ITS sequencing; $4=$ RAPD survey).

Table 2.1. Accessions of Pachyrhizus. Continued.
P. tuberosus:

Accession number \dagger	Passport data	Molec. Analysis \ddagger
TC118	Haiti, Nord Este, Citadelle (ashipa, orange red seeds)	4
TC309	Ecuador, Morona Santiago, San Carlos (900 masl) (ashipa, red-brown seeds)	4
TC350	Peru, Loreto, Jenaro Herrera (chuin morado)	1,2,3,4
TC353	Perú, Loreto, Conta Manillo (chuin amarillo, yellow-orange-brown seeds)	4
TC354	Peru, Loreto, Conta Manillo (chuin blanco, yellow-orange-brown seeds)	1,2, 3, 4
TC355	Peru, Loreto, Puerto Peru, (chuin morado)	4
TC531	Peru, San Martín (from UNICAMP, Brasil) (ashipa, orange-red seeds)	4
TC532	Bolivia, Beni, Yacuma (218 masl) (ashipa)	4
TC533	Bolivia, La Paz, Iturralde (630 masl) (ashipa, brown seeds)	4
TC536	Brasil, Minas Gerais (from INPA, Manaus) (ashipa, dull black seeds)	1, 2, 3, 4
TC538	Peru, Cusco, Kosnipata (650 masl) (ashipa, dull orange seeds)	4
TC550	Ecuador, Manabi, Sozote (200 masl) (jíquima, dull black seeds)	1,2, 3, 4
TC552	Ecuador, Manabí, Rocafuerte (48 masl) (jíquima)	4
TC553	Ecuador, Manabi, Santa Ana (50 masl) (jiquima)	1,2, 3, 4
TC554	Ecuador, Manabí, Rocafuerte (50 masl) (jíquima)	4
TC556	Ecuador, Pastaza, Puyo (960 masl) (ashipa, red-brown seeds)	1,2, 3, 4
TC557	Ecuador, Pastaza, Diez de Agosto (1100 masl) (ashipa, red-brown seeds)	4
TCNA06	Ecuador, Napo, Archidona, S. P. de Ushpayacu (550 masl)	4
TCNA07	Ecuador, M. Santiago, Macas, playa río Copueno (850 masl)	4
TCNA09	Ecuador, M. Santiago, Gualaquiza, Mercedes Molina (750 masi)	4
TCNA10	Ecuador, Z. Chinchipe, Zumbi (750 masl)	1, 3, 4
TW558	Ecuador, Los Ríos, Buena Fe, Rio Palenque (300 masl) (greenish red seeds)	1, 2, 3
TWTM48	Ecuador, Cañar, General Morales, Tomebamba (900 masl)	1,2, 3, 4
TWNanI	Ecuador, Nanegalito - Nanegal (population I)	4
TWNanII	Ecuador, Nanegalito - Nanegal (population II)	1, 2, 3, 4
TWToal	Ecuador, Pichincha, Rio Toachi (population I)	4

Outgroups:

Accession number \dagger	Passport data	Molec. Analysis \ddagger
OUTcc	Panama (coll. M. Sørensen), no vernacular name (Calopogonium caeruleum)	$1,2,3$
OUTce	University of Copenhagen, Botanical Garden, vernacular name: jack bean OUTcm	(Canavalia ensiformis) Belgium, Meise, Botanical Garden, vernacular name: calopo (Calopogonium mucunoides)

\dagger : Accessions follow the number codes of the Yam Bean Project, i.e. $\mathrm{A}=P$, ahipa, $\mathrm{E}=P$. erosus, F $=P$. ferrugineus, $\mathrm{P}=P$. panamensis, $\mathrm{T}=P$. tuberosus; $\mathrm{C}=$ cultivated material, and $\mathrm{W}=$ wild status.
$\ddagger:$ Molecular approach used ($1=$ RFLP variation of total cpDNA; $2=$ restriction site variation within a PCR-amplified cpDNA region; $3=$ ITS sequencing; $4=$ RAPD survey).

In some particular cases, seeds were grown in vermiculite substrate (Vermiperl) contained in $35 \times 55 \mathrm{~cm}$ plastic trays (Optipot, Karri-Tray ${ }^{\circledR}$) which were placed in a Conviron growth cabinet. Environmental conditions were programmed as follows:
$27^{\circ} \mathrm{C}$ constant, $58 \% \mathrm{RH}$ and a 7000 lux $/ 16 \mathrm{~h}$ photoperiod. This applied especially for wild and cultivated materials where seed availability was reduced (e.g. wild accessions of P. tuberosus) or when plant growth under glasshouse conditions was poor (i.e. for some cultivars within the P. tuberosus complex). In all instances, and whenever possible, leaflets were harvested from 6-10 week-old plantlets, dried with silicagel in a vacuum dessicator for one week and stored at $-20^{\circ} \mathrm{C}$ prior to DNA extraction.

2.3. DNA extraction and purification

2.3.1. DNA extraction

Numerous problems were encountered during extraction of total genomic DNA from Pachyrhizus, including: (1) partial or total DNA degradation due to endonucleases, that were present mainly in adult and senescent leaf tissues; (2) co-isolation of polysaccharides, sugar and other carbohydrates, which blurred DNA washes with NH_{4} acetate and consequently decreased final yields; (3) co-isolation of polyphenols, which caused damage to DNA or inhibited the activity of restriction enzymes and polymerase used in this study; and, (4) DNA extracts were frequently brown coloured, probably due to the presence of quinonic compounds, i.e. oxidising agents harmful to DNA structure.

To optimise a DNA extraction procedure for Pachyrhizus attention was focused on: (1) the concentration of mercaptoethanol used as a reducing agent to inhibit oxidation processes; (2) speed of centrifugation, as a crucial factor to obtain sufficiently pure DNA preparations; (3) use of a method applicable to a broad range of ecotypes and genotypes that differed in biochemical composition of leaf tissues; and, (4) cost, speed, ease of use and low hands-on requirements.

Total genomic DNA was extracted using a 2% CTAB method that was scaled to fit within a 2.0 ml Eppendorf tube. The protocol follows the isolation procedure described by Wolff et al. (1994) with several modifications and optimised empirically. For each accession, dried leaf material from 5-10 individuals was pooled and
approximately $60-80 \mathrm{mg}$ of the mixture was flash frozen in liquid nitrogen, ground to a fine powder with a disposable plastic pestle and thoroughly mixed with 1.32 ml of extraction buffer (2% hexa-decyltrimethylammonium bromide, i.e. CTAB; 20 mM EDTA; 1.4 M NaCl; 0.1 M Tris-HCl, pH 8.0; 1\% PVP-40T; 0.1\% mercaptoethanol) preheated to $60^{\circ} \mathrm{C}$. A small amount of sterile alumina was added to aid grinding. Eppendorf tubes containing the homogenate were incubated at $60^{\circ} \mathrm{C}$ for 30 min and allowed to cool for 5 min .

Half the volume of CTAB, i.e. 0.67 ml of chloroform : iso-amyl alcohol (CI, 24:1) was added to the mixture, vortexed shortly and spun at 8000 rpm for 10 min in a microfuge (Heraeus Instrum.). These steps were repeated once using the uppermost aqueous layer and adding a small amount of TLC-silicagel 60 H (Merck). The supernatant was brought into a clean Eppendorf tube and $5 \mu \mathrm{l}$ RNAse ($10 \mathrm{mg} / \mathrm{ml}$, preboiled) were added, allowing a 30 min incubation with shaking at room temperature. 1 ml of ice-cold 96% ethanol was added to each sample and then mixed by inverting the tube to a single phase solution to precipitate DNA; samples were left for $1-2 \mathrm{~h}$ at $-20^{\circ} \mathrm{C}$ before the pellet was spun down at 13000 rpm for 2 min .

DNA was further precipitated and washed by the addition of, first, 76% ethanol/ 0.2 M Na acetate for 50 min , and, second, 76% ethanol / $10 \mathrm{mM} \mathrm{NH}_{4}$ acetate for 5-10 min. Pellets were spun again at 13000 for 3 min , the supernatant discarded, and left to dry at room temperature for 20 min before dissolving in $500 \mu \mathrm{TE}(10 \mathrm{mM}$ Tris- $\mathrm{HCl}, \mathrm{pH}$ $7.6 ; 1 \mathrm{mM}$ EDTA) at $4^{\circ} \mathrm{C}$ overnight.

2.3.2. DNA purification

Following extraction, DNA was purified using a $7.5 \mathrm{M} \mathrm{NH}_{4}$ acetate treatment as described by Weising et al. (1994). The purified DNA was finally pelleted using icecold 96% and 70% ethanol (as detailed above), drained and re-suspended in a final volume of $200 \mu \mathrm{ITE}$ buffer. DNA was kept at $4^{\circ} \mathrm{C}$ until further use.

This procedure provided satisfactory yields of high molecular weight DNA (i.e. 150 $250 \mu \mathrm{~g}$ DNA/g dry leaf tissue) for all Pachyrhizus genotypes examined.

2.4. Estimation of DNA concentration

The method used for estimating DNA quantity and quality was based on UV-induced fluorescence emitted by DNA-ethidium bromide complexes (Sambrook et al., 1989; Weising et al., 1994). Known volumes of DNA samples were electrophoresed in 0.5 X TBE buffer (45 mM Tris-borate; 1 mM EDTA; 27.5 g boric acid to adjust pH to 8.0) using 0.8% agarose gels stained with ethidium bromide; the resulting DNA band was compared to a standard (calf thymus DNA, $125 \mathrm{ng} / \mu \mathrm{l}$, SIGMA). Intact and high molecular weight genomic DNA was always resolved into one bright band, while DNA seen below this band had suffered degradation. Very low molecular weight material might be RNA, which usually resulted as a smear within the lower part of the gel, and was removed by digestion with RNAse, as described in section 2.3.1.

Gels were photographed under UV light using Polaroid 667 film and/or photodocumented with a Herolab gel image analysis system (Scotlab EASY Store software, 1997); values for DNA concentration in the samples were obtained in ng/ul. This procedure allowed DNA quantification and at the same time an estimation of the extent of degradation (quality) and contamination (co-isolated proteins, RNA, etc.) of the extracts.

2.5. RFLP variation of total cpDNA genome

2.5.1. Restriction digestion, running of agarose gels and Southern blotting

Once concentrations had been calculated, DNA of 29 representative Pachyrhizus accessions and three outgroups (see Table 2.1) was digested in turn with 22 restriction enzymes (RE). Of these, 15 REs comprising 4- and 6-base recognition sequences cut reliably the DNA of all material studied. Details of the 15 endonucleases successfully employed in the phylogenetic analyses are listed in Table 2.2.

The restriction procedure was as follows: a 500 ng aliquot from each sample was digested with 6 units of RE according to the manufacturer's instructions using acetylated BSA (bovine serum albumin, $10 \mathrm{mg} / \mathrm{ml}$) to enhance RE's activity. Sterile distilled water was also added to a final volume of $30 \mu \mathrm{l}$. Digestion of DNA took place in 96 -well plates (Corning ${ }^{\circledR}$) overnight at the recommended temperature (Table 2.2) and the reaction was terminated by the addition of $1 / 5$ volume of loading buffer (0.25% bromophenol blue; 60 mM EDTA; 30% glycerol). Plates were stored at $4^{\circ} \mathrm{C}$ prior to electrophoresis.

Table 2.2. Details of restriction enzymes used in the RFLP analysis of total cpDNA variation.

Restriction enzyme	Recognition sequence \dagger	Incubation temperature (${ }^{\circ} \mathrm{C}$)	Heat inactivation \ddagger
Alu I	$\mathrm{AG}^{+} \mathrm{CT}$	37	+
Bam HI	$\mathrm{G}^{\downarrow} \mathrm{GATCC}$	37	+
Bgl II	$A^{\downarrow} \mathrm{GATCT}$	37	-
Cfo I	GCG ${ }^{\downarrow} \mathrm{C}$	37	partial
Cla I	$A^{\prime}{ }^{\text {d CGAT }}$	37	+
Dde I	$C^{\text {d }}$ TNAG	37	partial
Dra I	TTT ${ }^{\downarrow}$ AAA	37	$+$
Ecor I	G^{\downarrow} AATTC	37	+
EcoR V	$\mathrm{GAT}^{\downarrow}$ ATC	37	+
Hae III	$\mathrm{GG}^{\dagger} \mathrm{CC}$	37	-
Hinf 1	$\mathrm{G}^{\text {d ANTC }}$	37	-
Hpa II	$\mathrm{C}^{\downarrow} \mathrm{CGG}$	37	-
Sau3AI	${ }^{\downarrow}$ GATC	37	+
Tru9 I	$\mathrm{T}^{\downarrow} \mathrm{TAA}$	65	-
$X b a \mathrm{I}$	$T^{\downarrow} \mathrm{CTAGA}$	37	-

$f:$ the location of cleavage sites is described in a $5^{\prime} \ldots 3^{\prime}$ orientation $(\mathrm{N}=\mathrm{A}$ or C or G or T$)$.
$\ddagger:$ heat inactivation test $\left(+=95 \%\right.$ inactivation by incubation at $65^{\circ} \mathrm{C}$ for $15 \mathrm{~min} ;$
$-=$ no inactivation).

The DNA fragments produced were separated using 1\% (for 6-base enzymes) or 1.4\% agarose gels (for 4-base cutters) electrophoresed overnight in 0.5X TBE buffer. Ethidium bromide was added to a final concentration of 0.3% and a standard (Hind III digests of λ DNA, $10 \mathrm{ng} / \mu \mathrm{l}$; NBL Ltd.) was used to enable calculation of DNA fragment sizes using Templeton's logarithm (software Lengit, 1988). The separated fragments were transferred from agarose gels on to nylon membranes by Southern blotting (Southern, 1975). The gels were trimmed (i.e. empty lanes and the region
above the wells), photodocumented (as in section 2.4) and immersed in denaturation buffer ($1.5 \mathrm{M} \mathrm{NaCl} ; 0.5 \mathrm{NaOH}$) for 30 min to produce ssDNA fragments. Following denaturation, gels were rinsed twice with distilled water and immersed in neutralisation buffer (1.5 M NaCl; 0.5 M Tris- $\mathrm{HCl}, \mathrm{pH} 7.2 ; 1 \mathrm{mM}$ EDTA) for another 30 min . Gels were then placed on a blotting apparatus (as illustrated in Nicholl, 1994), and were left overnight to allow DNA transfer onto the nylon membrane using 20X SSC ($3 \mathrm{M} \mathrm{NaCl} ; 0.3 \mathrm{M}$ Tri- Na citrate) as the transfer buffer.

The next day, nylon filters were rinsed in 2X SSC, left to air-dry for 5-10 min, UV cross-linked for 30 s and baked for 2 h at $80^{\circ} \mathrm{C}$ in an oven. Membranes were stored between sheets of filter paper at room temperature under dry conditions prior to DNADNA hybridisation.

2.5.2. Use of chemiluminescent labelled cpDNA probe

Probe labelling and purification

Chemiluminescent labelled Vigna radiata cpDNA probes were produced following a combination of the immunochemical protocols described by the manufacturer (Boehringer Mannheim) and by Hoisington et al. (1994). This non-radioactive system uses digoxigenin (DIG), a steroid hapten, coupled to dUTP, UTP or ddUTP to label DNA for hybridisation and subsequent luminescent detection. Thus, a library of heterologous mung bean (MB) probes (described in Table 2.3) were labelled in turn using this procedure in conjunction with anti-DIG/Fab fragments and CSPD, a chemiluminescent substrate which leads to the emission of 477 nm wavelength light after enzymatic dephosphorylation by alkaline phosphatase.

Approximately 120 ng (for the first membrane, adding 60 ng for each additional membrane used) of probe DNA was made up with sterile distilled water to a final volume of $13.5 \mu \mathrm{l}$ and boiled for 10 min . DNA probe was immediately quenched on ice to prevent it from reannealing before adding the following solutions: $2 \mu \mathrm{l}$ of Klenow 10X buffer (100 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.5 ; 100 \mathrm{mM} \mathrm{MgCl}$), $2 \mu 1$ hexanucleotide

10X mix (OL; 1 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5 ; 1 \mathrm{mM}$ EDTA; 90 OD units $/ \mathrm{ml}$), $2 \mu \mathrm{l}$ DIG labelling mix (1 mM dATP; 1 mM dCTP; 1 mM dGTP; 0.65 mM dTTP; 0.35 mM DIG-dUTP; alkali-labile, pH 7.5) and $0.5 \mu \mathrm{l}$ (= 2.5 u) Klenow (fragment of Escherichia coli, DNA polymerase I).

Table 2.3. Description of the Vigna radiata (mung bean) cpDNA probes used.

Probe \dagger	Size (kb)
MB1	16.2
MB2	18.8
MB5	7.5
MB6	1.2
MB7	11.1
MB8	7.0
MB9	5.6
MB10	7.8

[^0]Labelled cpDNA probe was purified before use by first precipitating it with $2.5 \mu \mathrm{l}$ of 4 M LiCl and $75 \mu \mathrm{l}$ of cold 96% ethanol left at $-20^{\circ} \mathrm{C}$ for 2 h before spinning down at 13000 rpm for 15 min and discarding the supernatant. It was then washed with $50 \mu 1$ of cold 70% ethanol, before spinning down again and discarding the supernatant. Finally, the probe was dissolved in $50 \mu \mathrm{lE}$, incubated for 30 min at $37^{\circ} \mathrm{C}$ and stored at -20° until required.

Pre-hybridisation and hybridisation treatment

Up to six nylon filters, with a separating mesh in between, were placed in a hybridisation cylinder (Techne $U K$) adding 20 ml for the first membrane and extra aliquots of 2 ml for additional membranes of pre-hybridisation buffer (5X SSC; 0.1\% Na-Sarkosyl; 0.02\% SDS; 0.5\% blocking reagent, Boehringer Mannheim). Prehybridisation was carried out for 2 h in a Techne hybridiser at $65^{\circ} \mathrm{C}$.

Purified probe was then boiled for 5 min and rapidly placed on ice before adding it to pre-warmed $\left(65^{\circ} \mathrm{C}\right)$ hybridisation buffer, made up with the same ingredients as the pre-hybridisation buffer. The pre-hybridisation buffer was poured out of the cylinder and replaced with a mixture of hybridisation buffer (10 ml for the first membrane and an extra 1 ml for each additional membrane) and labelled probe. The filters were left to hybridise overnight at $65^{\circ} \mathrm{C}$.

Post-hybridisation washes and detection

After hybridisation, membranes were removed from the cylinder and washed first in low stringency washing solution (2 X SSC; $0.1 \% \mathrm{SDS}$) for 5 min twice. A second wash involved a medium stringency solution (1X SSC; 0.1% SDS) carried out twice for 15 min at $65^{\circ} \mathrm{C}$ each wash and under constant agitation. Membranes were rinsed in a mixture of buffer $1(0.1 \mathrm{M}$ maleic acid; $0.15 \mathrm{M} \mathrm{NaCl}, \mathrm{pH} 7.5)$ and 0.3% Tween 20 before adding $25 \mathrm{ml} /$ membrane buffer 2 (a 1:20 dilution of blocking reagent in buffer 1) and left on an orbital shaker (80 rpm) at room temperature for 30 min . For each membrane, $1.7 \mu 1$ anti-DIG were added to 25 ml of fresh buffer 2 and left for 30 min at room temperature.

Membranes were washed twice in a mixture of buffer 1 and 0.3% Tween $20(200 \mathrm{ml} /$ membrane) for 15 min each wash. Another wash was carried out in buffer $3(20 \mathrm{ml} /$ membrane; 0.1 M Tris- $\mathrm{HCl}, \mathrm{pH} 9.5 ; 0.1 \mathrm{M} \mathrm{NaCl} ; 50 \mathrm{mM} \mathrm{MgCl}_{2}$) for 5 min . Finally, membranes were incubated for 5 min in 25 ml CSPD solution at room temperature and air-dried briefly.

Luminography and filter stripping

Membranes were prepared for luminography by wrapping them separately in plastic hybridisation bags (to prevent drying out) and further incubation at $37^{\circ} \mathrm{C}$ for 15 min (to enhance the luminescent reaction). Bags were placed in autoradiograph cassettes with X-ray films placed on top and exposed from four up to 24 h at room temperature
before the films were developed. The resulting luminographs were stored in a cool dry place until needed for the evaluation banding patterns.

After luminographs were successfully developed, the probe was stripped off the membranes by washing twice for 15 min at $37^{\circ} \mathrm{C}$ in a mixture of 0.2 M NaOH and 0.1% SDS. Membranes were finally rinsed in 2X SSC under constant agitation and stored in a sealed plastic bag at $-20^{\circ} \mathrm{C}$, until required for the next sequential probing.

2.6. Restriction site variation within a PCR amplified cpDNA region

Twenty Pachyrhizus accessions and one outgroup were used in this study; plant material subjected to analysis was a subgroup of that examined for total cpDNA variation, with emphasis on accessions of the P. tuberosus complex. Details of the taxa assayed are given in Table 2.1.

2.6.1. PCR amplification

Since the introduction of thermostable DNA polymerases in 1988, the use of PCR in research and clinical laboratories has increased tremendously. The method is based on the enzymatic in vitro amplification of DNA (Cherfas, 1990) using a very low amount of template DNA (in the ng range). PCR is characterised by its high speed, selectivity and sensitivity (Bachmann, 1994; Newton and Graham, 1994). In order to amplify a particular DNA sequence, two single-stranded oligonucleotide primers are designed, which are complementary to motifs on the template DNA. The primer sequences are chosen so as to allow base-specific binding to the template in reverse orientation. Addition of a thermostable DNA polymerase in a suitable buffer system and cyclic programming of template denaturation, primer annealing and polymerisation steps produces an exponential amplification of the desired sequence between the priming sites (Weising et al., 1994; Hillis et al., 1996).

PCR was used to amplify non-coding regions that separate coding sequences in the cpDNA molecule using a set of universal primers (Taberlet et al., 1991; Demesure et
al., 1995). Primers were anchored within the highly conserved tRNA genes and in the large single copy region of cpDNA , which is characterised by a higher substitution rate than the inverted repeat region (Wolfe et al., 1987). The universal primers used are described in Table 2.4.

Table 2.4. Universal primers used for amplifying non-coding sequences of cpDNA (Source: Demesure et al., 1995).

Lab. code	Primer 1	Primer 2	Length (bp)	Anneal. temp. $\left({ }^{\circ} \mathrm{C}\right)$
HK	trnH [TrNA-His (GUC)]	trnK [tRNA-Lys (UUU) exon 1]	1690	62.0
	5'-ACGGGAATTGAACCCGCGCA-3'	5^{\prime}-CCGACTAGTTCCGGGTTCGA-3'		
KK	$t r n K$ [tRNA-Lys (UUU) exon1]	$t r n \mathrm{~K}$ [tRNA-Lys (UUU) exon2]	2580	53.5
	5'-GGGTTGCCCGGGACTCGAAC-3'	5-CAACGGTAGAGTACTCGGCTTTTA3^{\prime}		
CD	trnC [tRNA-Cys (GCA)]	$t r n \mathrm{D}$ [TrnA-Asp (GUC)]	3000	58.0
	5'-CCAGTTCAAATCTGGGTGTC-3'	5'-GGGATTGTAGTTCAATTGGT-3'		
CS	psbC [psII 44 kd protein]	$t r n \mathrm{~S}$ [tRNA-Ser (UGA)]	1680	57.0
	5'-GGTCGTGACCAAGAAACCAC-3'	5'-GGTTCGAATCCCTCTCTCTC-3'		
ML	$t r n \mathrm{M}$ [tRNA-Met (CAU)]	$r b c \mathrm{~L}$ [RuBisCO large subunit]	2900	59.0
	5'-TGCTTTCATACGGCGGGAGT-3'	5'-GCTTTAGTCTCTGTTTGTGG-3'		

An aliquot (50-150 ng) of purified DNA was used as template for PCR amplification. The PCR reaction mixture also contained $0.4 \mu \mathrm{l}(2 \mathrm{mM}) \mathrm{MgCl}_{2}, 2.5 \mu \mathrm{l}(100 \mu \mathrm{M})$ of each of the four dNTPs (HT Biotechnology Ltd), $0.4 \mu \mathrm{l}$ ($1 \mathrm{pmol} / \mu \mathrm{l}$) of each primer, $5.0 \mu \mathrm{l}$ (1X) Dynazyme polymerase 10X buffer, $0.7 \mu \mathrm{l}$ ($=1.4 \mathrm{u}$) of Dynazyme (Flowgen) and sterile distilled water made up to a final volume of $50 \mu 1$. The PCR reaction mixture was overlaid with two drops of mineral oil to prevent evaporation. Amplification was achieved in a MJ Research thermocycler programmed as follows: one cycle of 4 min at $94^{\circ} \mathrm{C} ; 35$ cycles of 45 s at $92^{\circ} \mathrm{C}, 45 \mathrm{~s}$ at $53.5-62^{\circ} \mathrm{C}$ (depending of the primers used) and $2-4 \mathrm{~min}$ at $72^{\circ} \mathrm{C}$ (depending of the fragment length). A final cycle of 10 min at $72^{\circ} \mathrm{C}$ was used to complete extension of any remaining products before storing samples at $4^{\circ} \mathrm{C}$. A known volume of the PCR product was electrophoresed through a 0.8% TBE agarose gel, stained with ethidium bromide, visualised by UV illumination and compared to a standard (calf thymus DNA, 125 $n g / \mu \mathrm{l}$, SIGMA).

2.6.2. Restriction digestion and visualisation of fragments

After estimating DNA concentration, PCR products were digested with a battery of restriction enzymes (Table 2.5). Aliquots of $5-7 \mu \mathrm{l}(=500 \mathrm{ng})$ of PCR product were subjected in turn to restriction digestion with $0.3 \mu \mathrm{l}(=6 \mathrm{u})$ of $\mathrm{RE}, 3 \mu \mathrm{l} 10 \mathrm{X}$ restriction enzyme buffer, $0.3 \mu \mathrm{l} \mathrm{BSA}(10 \mathrm{mg} / \mathrm{ml})$ and sufficient sterile distilled water to make up a total volume of $30 \mu \mathrm{l}$; the mixture was left from 1 h to overnight at $37^{\circ} \mathrm{C}$ to complete digestion. The reaction was terminated by the addition of $7 \mu \mathrm{l}$ buffer $(0.25 \%$ bromophenol blue; 60 mM EDTA; 30% glycerol) and samples were stored at $4^{\circ} \mathrm{C}$ prior to electrophoresis.

The resulting fragments, together with a standard DNA size marker (1 kb DNA ladder, Gibco BRL), were electrophoresed at 60 V for 1 h and 110 V for $7 \mathrm{~h} u \operatorname{sing} 2 \%$ TBE agarose gels, stained with ethidium bromide. Restriction site variation among taxa was photodocumented (Scotlab EASY Store software), fragment length was evaluated, and presence/absence of a restriction site was interpreted as the character state for phylogenetic analysis.

Table 2.5. Restriction enzymes used to analyse variation within a PCR amplified cpDNA region.

Name	Recognition sequence \dagger	Heat inactivation \ddagger
Cfo I	$\mathrm{GCG}^{\downarrow} \mathrm{C}$	partial
Hae III	$\mathrm{GG}^{\downarrow} \mathrm{CC}$	-
Hind III	$\mathrm{A}^{\downarrow} \mathrm{AGCTT}$	+
Hpa II	$\mathrm{C}^{\downarrow} \mathrm{CGG}$	-
Hsp92 II	$\mathrm{CATG}^{\downarrow}$	+
Rsa I	$\mathrm{GT}^{\downarrow} \mathrm{AC}$	+

\dagger : The location of cleavage sites is described in a $5^{\prime} \ldots 3^{\prime}$ orientation. All enzymes used have functional activity at $37^{\circ} \mathrm{C}$.
$\ddagger:$ Heat inactivation test $\left({ }^{\prime}+{ }^{\prime}=95 \%\right.$ inactivation by incubation at $65^{\circ} \mathrm{C}$ for 15 min ; '-' = no inactivation).

2.7. Sequencing of the ITS region of nuclear rDNA

2.7.1. Principles of sequencing methods

Although protein sequencing became routine (albeit costly and labour-intensive) for the study of protein molecular evolution by the late 1950s, nucleic acid sequencing did not become commonplace in studies of molecular systematics until the 1980s. In fact, until the mid-1970s, DNA stretches of only $15-20 \mathrm{bp}$ in length had been sequenced. Breakthroughs in nucleic acid sequencing were published almost simultaneously by Maxam and Gilbert (1977) and Sanger et al. (1977). DNA sequencing is now widely used in studies of plant systematics and evolution. The main principle behind the sequencing technique is that two ssDNA molecules that differ in length by just a single nucleotide can be separated into distinct bands by electrophoresis in polyacrylamide gels (Brown, 1994).

The sequence of a deoxyribonucleic acid molecule can be elucidated using either chemical or enzymatic techniques, also known as Maxam-Gilbert and Sanger dideoxy sequencing methods, respectively. In this research, the second method was used and is explained briefly as follows.

The enzymatic method of sequencing is based on the ability of a DNA polymerase to extend a primer, hybridised to the template that is to be sequenced, until a chainterminating nucleotide is incorporated. Each sequence determination is carried out as a set of four separate reactions, each of which contains all four deoxyribonucleotide triphosphates (dNTPs) supplemented with a limiting amount of a different dideoxyribonucleotide triphosphate (ddNTP). Because ddNTPs lack the 3'-OH group necessary for chain elongation, the growing oligonucleotide is terminated selectively at $\mathrm{G}, \mathrm{A}, \mathrm{T}$ or C , depending on the respective dideoxy analogue in the reaction. The relative concentrations of each of the dNTPs and ddNTPs can be adjusted to give a nested set of terminated chains over several hundred to a few thousand bases in length. The resulting fragments, each with a common origin but ending on a different
nucleotide, are separated according to size by high resolution denaturing polyacrylamide gel electrophoresis.

2.7.2. PCR amplification

For comparative purposes, PCR amplification and further sequencing was carried out using DNA templates of the same 29 Pachyrhizus accessions studied when analysing total cpDNA variation (section 2.5). Three outgroups were also included in order to determine the direction of change of character-state transformations, and to root the phylogeny. Plant material used in this experiment is listed in Table 2.1.

PCR involved amplification of the internal transcribed region (ITS) of the $18 \mathrm{~S}-26 \mathrm{~S}$ nuclear ribosomal DNA gene (Figure 2.1). This region has proven to be a useful tool for phylogeny reconstruction in plants by DNA sequencing (Suh et al., 1992; Wojciechowski et al., 1993; Baldwin et al., 1995; Bayer et al., 1996).

The PCR reaction consisted of $10 \mu \mathrm{l}$ of 10 X reaction buffer, $2 \mu \mathrm{l}(2 \mathrm{mM}) \mathrm{MgCl}_{2}, 10 \mu \mathrm{l}$ of a 2 mM dNTP mixture in equimolar ratio, $2 \mu \mathrm{l}(1 \mathrm{pmol} / \mu \mathrm{l})$ of each primer, $150-200$ ng of DNA template, $2 \mu \mathrm{l}(=4 \mathrm{u})$ of Dynazyme polymerase and sterile distilled water, all in a total volume of $100 \mu \mathrm{l}$. The reaction mixture was sealed with a drop of mineral oil (SIGMA) to prevent evaporation during thermal cycling. Amplicons were produced using a MJ Research thermocycler via 46 cycles of denaturation $\left(97^{\circ} \mathrm{C}\right.$ for 1 min), primer annealing ($48^{\circ} \mathrm{C}$ for 1 min) and extension ($72^{\circ} \mathrm{C}$ for 3 min). A 7 -min final extension at $72^{\circ} \mathrm{C}$ followed cycle 46. Primers used in this PCR reaction were ITS4 and ITS5 (Cruachem, UK) as described in White et al. (1990) and Baldwin (1992). Primer description is presented in Figure 2.1.

2.7.3. Cleaning the amplified product

PCR products were cleaned using a Wizard ${ }^{\text {TM }}$ PCR Preps DNA Purification System (Promega) before cycle sequencing, to remove contaminants such as primer-dimers
and amplification primers. Cleaning was carried out according to the manufacturer's instructions.

Figure 2.1. Structure of nuclear ribosomal DNA. Positions of the internal transcribed spacer (ITS) regions relative to the $18 \mathrm{~S}, 5.8 \mathrm{~S}$ and 26 S rDNA genes and the intergenic spacer (IGS) are presented. Relative positions of primers ITS4 and ITS5 used in PCR and sequencing are indicated, along with their sequences (after White et al., 1990 \& Baldwin, 1992).

The product of each successful PCR reaction, excluding the mineral oil, was transferred to a clean 1.5 ml Eppendorf tube. $100 \mu \mathrm{l}$ of purification buffer were added to the tube and the components were mixed by vortexing. 1 ml of resin was then added and mixed by vortexing three times over a 1 min period.

A Wizard minicolumn was set up for each PCR product with a 2 ml syringe barrel attached on top and a lidless 1.5 ml Eppendorf tube placed at the bottom. The mixture was pipetted into the syringe barrel and was gently pushed through the minicolumn using a plunger; the syringe was then detached from the minicolumn and the plunger removed. Later, the syringe barrel was reattached to the column and $2 \mathrm{ml} 80 \%$ isopropanol were pipetted into the syringe and slowly pushed through the column.

Once again, the barrel was removed and a 1.5 ml Eppendorf tube was attached to the bottom of the minicolumn, which were together spun down at 11000 rpm for 20 s to dry the column.

The minicolumn was transferred to a new 1.5 Eppendorf tube and $50 \mu \mathrm{l}$ of sterile distilled water were added to elute the DNA. The column was left at room temperature for at least 1 min before being centrifuged at 11000 rpm for 20 s , in order to elute the bound DNA fragment. A subsample of purified DNA ($5 \mu \mathrm{l}$) was electrophoresed on 0.8% TBE agarose gels to estimate its concentration; the remaining DNA was stored at $-20^{\circ} \mathrm{C}$ prior to automated sequencing.

2.7.4. Cycle sequencing and automated sequencing

The sequencing technique used in this research is known as cycle sequencing (Figure 2.2). This technique is based on the dideoxynucleotide chain-termination method of Sanger et al. (1977) but utilises a linear polymerase reaction to amplify labelled DNA that is complementary to the target DNA (Murray, 1989; Craxton, 1991). Moreover, sequencing of a double stranded DNA molecule is possible avoiding the need to obtain single stranded DNA as a sequencing template, with the additional advantage that it allows sequencing of a fragment produced directly by PCR (Brown, 1994).

There are a number of types of automated sequencing; the one used in this research was based on Sanger sequencing with flourescent (rather than radioactively) labelled DNA fragments. These fragments were detected during electrophoresis with the use of a tuneable laser. The laser is stationery with respect to the electrophoresis apparatus, and fragments are recorded as they pass a single point. The process is 'automatic' in that no autoradiographs have to be inspected visually nor results recorded manually; instead, the sequence is recorded directly into a computer file in the form of a chromatograph, which may be interpreted (usually by a combination of software programmes) into a DNA sequence for further edition (e.g. inspection of gaps and noise) and alignment.

Figure 2.2. Cycle sequencing: A PCR product (DNA template) is mixed with a single primer, dNTPs, fluorescent dye-labelled ddNTPs and a thermostable DNA polymerase. Linear amplification is performed on a thermocycler via 25 cycles of denaturation, annealing and extension, as in standard PCR. Once these cycles are completed, the cycle sequencing product is purified and electrophoresed through polyacrylamide gels; nucleotide sequence is detected with an automated sequencer with input on a computer file (after Hillis et al., 1996; see text for further details).

2.7.5. Automated sequencing chemistry and protocol used

Automated sequencing was conducted using an ABI PRISM ${ }^{\text {TM }} 377$ DNA sequencer which collects data at rates of up to $7.2 \mathrm{~kb} / \mathrm{h}$ and uses a different fluorescent dye for each extension reaction (i.e. A, C, G and T) so that all four reactions are run in a single lane. Two types of fluorescent sequencing chemistries are currently available: dye primer, where the primer is fluorescently labelled; and, dye terminator, where the dideoxy terminators are labelled. In this research ABI dRhodamine 'Big Dye' terminators were used with AmpliTaq FS (a mutant form of Taq DNA polymerase) as cycle sequencing enzyme (Figure 2.2).

50 ng of purified PCR product (section 2.7.3) and 5 pmol of primer together in a final volume of $12 \mu \mathrm{l}$ of sterile distilled water were used for each sequencing reaction. To this, a Big Dye ${ }^{T M}$ Terminator Ready Reaction Mix consisting of buffer, enzyme,
dNTPs and labelled dideoxies was added. The reaction was carried out in one tube as each of the four dideoxies is labelled with a different colour fluorescent Taq; the mixture went through 25 cycles of denaturation (10 s at $96^{\circ} \mathrm{C}$), annealing (5 s at $50^{\circ} \mathrm{C}$) and extension (4 min at $60^{\circ} \mathrm{C}$) in a thermocycler. The completed PCR reaction was ethanol precipitated using 3 M Na acetate (pH 4.6) and 95% ethanol, and left to stand at room temperature for no longer than 10 min .

DNA was spun down at 13000 rpm for 10 min and the supernatant was totally removed. The same procedure was repeated using 70% ethanol and the DNA was finally dried in a vacuum centrifuge for 5 min . Samples were mixed with $3 \mu \mathrm{l}$ of loading buffer (deionised formamide; blue dextran; 25 mM EDTA, pH 8.0) and loaded on to a 4% polyacrylamide gel (Long Ranger ${ }^{T M}$, FMC).

Successful runs rendered two data files per accession (TXT and ABI formats), containing the nucleotide sequence. For each accession, two separate sequencing reactions were produced, one with each primer, i.e. a forward ($5^{\prime} \ldots 3^{\prime}$) and a reverse ($3^{\prime} . . .5^{\prime}$) sequence, enabling sequencing both complementary DNA strands.

2.8. RAPD analysis

Random Amplified Polymorphic DNAs (RAPDs) are generated by PCR using single, usually decamer, primers that amplify arbitrary fragments of DNA from priming sites throughout the entire genome (Williams et al., 1990). The speed and technical ease with which large numbers of samples can be analysed, and the fact that there is no need for prior knowledge of any sequence information, have made this technique particularly attractive for examining genetic relationships, characterising species and cultivars, and identifying duplicates within germplasm collections. In addition, the RAPD procedure requires only small amounts of DNA and is less costly and labour intensive than other DNA marker methodologies (Rafalsky and Tingey, 1993).

2.8.1. Plant material and RAPD protocol

A total of 85 accessions (Table 2.1) were examined with the RAPD assay for the purposes of identification and assessment of genetic structure and relationships within and between taxa in the genus Pachyrhizus. Moreover, a set of 16 primers with G+C contents between 50-70\% was employed; these included 10-mer arbitrary sequences from kits OPA, OPB and OPH (Operon Technologies, Inc.). Primers are described in Table 2.6. A much fuller description of the RAPD analysis conducted in this study is given in chapter 5 .

Table 2.6. Oligonucleotides sequence of the random genomic primers used in the RAPD examinations (supplied by Operon Technologies, Inc.).

Primer name	Sequence (5' $-\mathbf{3}^{\prime}$)	G+C content (\%)
OPA02	TGCCGAGCTG	70
OPA07	GAAACGGGTG	60
OPA10	GTGATCGCAG	60
OPA13	CAGCACCCAC	70
OPB01	GTTTCGCTCC	60
OPB04	GGACTGGAGT	60
OPB07	GGTGACGCAG	70
OPB08	GTCCACACGG	70
OPH01	GGTCGGAGAA	60
OPH02	TCGGACGTGA	50
OPH03	AGACGTCCAC	60
OPH04	GGAAGTCGCC	70
OPH05	AGTCGTCCCC	70
OPH08	GAAACACCCC	60
OPH09	TGTAGCTGGG	60
OPH14	ACCAGGTTGG	60

The RAPD procedure used in this research follows a combination of methodologies described by Weising et al. (1994) and Wolff et al. (1997), with several modifications and optimised empirically. Amplification conditions of RAPD fragments are as follows:

The $25 \mu \mathrm{l}$ RAPD reaction mix contained $2.5 \mu \mathrm{l}(12.5 \mathrm{ng})$ template DNA; $17.8 \mu \mathrm{l}$ sterile distilled water; $0.2 \mu 1(0.2 \mathrm{pmol} / \mu \mathrm{l})$ of a single decanucleotide; $1.25 \mu \mathrm{l}(100$ $\mu \mathrm{M}) \mathrm{dNTPs} ; 0.5 \mu \mathrm{l}(2 \mathrm{mM}) \mathrm{MgCl}_{2} ; 0.25 \mu \mathrm{l}(=0.5 \mathrm{U})$ Dynazyme polymerase and $2.5 \mu \mathrm{l}$ reaction 10X buffer provided by the manufacturer. The mixture was overlaid by $40 \mu \mathrm{l}$
of mineral oil to prevent evaporation. RAPD reactions were accommodated in disposable 96 -well plates placed on a MJ Research thermocycler programmed as follows: one initial cycle of 3 min denaturation at $94^{\circ} \mathrm{C}$; 45 cycles of 15 s denaturation at $94^{\circ} \mathrm{C}, 45 \mathrm{~s}$ of annealing at $36^{\circ} \mathrm{C}$ (RAMP $36^{\circ} \mathrm{C}$ with $0.4^{\circ} \mathrm{C} / \mathrm{sec}$) and 1.5 min extension at $72^{\circ} \mathrm{C}$. A final cycle of 4 min at $72^{\circ} \mathrm{C}$ was used to complete extension of any remaining products, and samples were stored at $4^{\circ} \mathrm{C}$ before electrophoresing the final products.

Amplification products were separated in 1.4% agarose gels in 0.5 X TBE buffer (60 V for 30 min and 100 V for 3.5 h) and detected by staining with ethidium bromide; a 1 kb ladder (Gibco BRL) was used as a marker. Gels were photographed under UV light with Polaroid film 667 and/or photodocumented with a gel image analysis system (EASY STore software).

2.8.2. Homology test among comigrating RAPD fragments

The use of RAPDs for comparative purposes relies on the assumption that similarity of fragment size is a dependable indicator of homology (Rieseberg, 1996). To test the validity of this assumption, pairwise comparisons among 212 comigrating fragments produced by the RAPD assays (see chapter 5) were performed as follows:

Selected fragments (see chapter 5 for their complete description) were isolated from the agarose gel in which they were resolved by first removing sections of gel of 0.5 x 0.5 cm containing the putative homologous DNA band. This was done under UV light using a sterilised razor. A small piece of Whatman paper (grade 17) was then folded as a funnel, pre-soaked in TE buffer and placed on top of a bottomless 0.5 ml Eppendorf tube. This funnel-like artifact was placed on top of a 1.5 ml tube and DNA was separated from the solid phase in which it was contained (i.e. agarose, salts) by centrifugation at 8000 rpm for 15 s .

Following separation from the gel matrix, DNA was re-amplified using the same thermocycler programme described above and its respective primer. The resulting
product was divided into three aliquots and digested with two restriction endonucleases that have 4 bp recognition sequences: Hae III ($\mathrm{GG}^{\downarrow} \mathrm{CC}$) and Hinf I (G^{\downarrow} ANTC). After separation of the digested DNA by electrophoresis, fragments with congruent restriction profiles for both enzymes were considered homologous (Fritsch \& Rieseberg, 1992). Where congruent profiles were observed for only one of the two enzymes, the DNAs were tested with a third 4-cutter, Dde I ($\mathrm{C}^{\downarrow} \mathrm{TNAG}$). Identical profiles for two of the three enzymes was considered evidence for homology. Although this approach was successful for most of the fragments tested, several small fragments contained few or no restriction sites and, thus, results were considered ambiguous.

2.9. A preliminary examination of chromosome numbers

Karyotype evolution depends on chromosome mutations, that is, the occasional spontaneous errors of chromosome replication and separation which lead to numerical or structural changes in them. A wide range of mutation types occur, but most are inherently unstable or deleterious at least under the conditions prevailing at the time (Dyer, 1979). Those which survive are of particular evolutionary significance and are widely studied and described.

Much of the phylogenetically useful variation in chromosome number and morphology may be attributable to 'Robertsonian translocations' (fusions and fissions of chromosomes at their centromeres) and two different kinds of inversions (i.e. pericentric inversions, which involve the centromere; and, paracentric inversions, which occur outside the centromeric region; Sessions \& Kezer, 1987). Details of these phenomena go beyond the scope of this section and can be found elsewhere (Dyer, 1979; Goldblatt, 1981; White, 1973).

All Papilionoideae so far examined cytologically have most likely had a polyploid ancestry (Goldblatt, 1981). This initial phase of polyploidy is probably very ancient and may have taken place in the late Cretaceous, when major groups of the Fabaceae began differentiating and were probably evolving rapidly into new habitats.

Additionally, an early cycle of polyploidy is evident in many primitive groups of angiosperms (Stebbins, 1970). These events may be correlated with the creation of new habitats following climatic changes that accompanied the opening of the Indian Ocean 150 million years ago, and the separation of Africa and South America which began 130-125 million years ago. The subsequent cytological history seems to involve some descending aneuploidy in every evolutionary line, but it is most pronounced in Papilionoideae, in which predominantly herbaceous genera (e.g. Pachyrhizus) have achieved relatively low base numbers.

With some exceptions, the subtribe Diocleinae (to which Pachyrhizus belongs) comprises a fairly uniform cytological assemblage, with $\mathrm{n}=11$ predominant in all genera (Goldblatt, 1981). This basic chromosome number has been confirmed for Pachyrhizus in different studies (Lackey, 1980; Goldblatt, 1981; Sørensen, 1988). Similar chromosomal counts have also been reported previously, in which P. erosus, P. ahipa and P. tuberosus also showed $\mathrm{n}=11$ (Roy, 1933; Clausen, 1945; and, Brücher, 1977, respectively).

In the present study, a methodology for chromosome counting was optimised empirically. Emphasis was placed on the three recently discovered cultigen groups of the P. tuberosus complex (Sørensen et al., 1997), since no chromosome counts for these have been reported previously. The technique (see protocol in Appendix 1) yielded reliable squash preparations (i.e. visible chromosomes during microscope observations) in approximately 12 hours; unfortunately, lack of high magnification in the optical systems to hand and the typical small chromosome size in the genus hindered accurate count of stained preparations. It was hoped to achieve a more complete description of the genus by confirming chromosome numbers in these new groups; however, results were considered ambiguous and, thus, are not included in this study.

CHAPTER 3

PHYLOGENETIC RELATIONSHIPS WITHIN PACHYRHIZUS SPECIES BASED ON CHLOROPLAST DNA VARIATION

A page from Darwin's Notebook of 1837 showing his tree-diagram of evolution.
"...organised beings represent a tree, irregularly branched." (Darwin, cited by D. Young, 1992).

3.1. Introduction

The past decade has seen a blossoming of molecular biological approaches to the study of angiosperm phylogeny. The two primary sources of molecular variation tapped for phylogenetic purposes have been the chloroplast genome and the nuclear ribosomal DNA repeat region (Clegg \& Zurawski, 1992; Baldwin, 1992; Olmstead \& Palmer, 1994). The mitochondrial genome in plants has been little used for phylogenetic studies in contrast to animal systematics, where it has played a central role (Avise, 1994).

Zuckerkandl and Pauling (1965) were the first to propose that various proteins and DNA sequences might evolve at constant rates over time, and thereby provide internal biological timepieces for dating past evolutionary events, i.e. the molecular clock concept. Since then, molecular phylogenetics has rapidly developed from the study of protein sequences (e.g. the rubisco enzyme; Chan \& Wildman, 1972) to the analysis of genomic DNA and individual genes, such as the $r b c \mathrm{~L}$ gene in the chloroplast (Herdenberger et al., 1988). The genetic information generated from these macromolecules has been in turn used to address numerous aspects of the behaviour, life history and evolutionary relationships of organisms.

In this introduction, a description of the structure and function of chloroplast (cp) DNA will be given, and the features that make it a valuable tool for phylogenetic analysis will be summarised. Moreover, a brief review of methods for data analysis and their applications will be presented, emphasising areas where cpDNA has been demonstrated to be useful in phylogeny reconstruction.

3.1.1. \quad Structure of cpDNA

The chloroplast genome varies little in size, structure and gene content among angiosperms (Olmstead and Palmer, 1994). Typically, the chloroplast genome occurs as a closed circular molecule ranging in size from 135 to 160 kilobase pairs (kb) and is characterised by a large, ca. 25 kb , inverted repeat, which divides the remainder of the
genome into one large (LSC) and one small (SSC) single copy region which are approximately 87 kb and 18 kb long, respectively (Figure 3.1; Palmer, 1985; Crawford, 1990; Olmstead \& Palmer, 1994). Substantially smaller cpDNA genomes have been documented in which one copy of the inverted repeat is missing (e.g. a group within the Fabaceae and all conifers), and in Epifagus (Orobanchaceae) a nonphotosynthetic, parasitic plant whose chloroplast genome has suffered massive deletions, including the loss of numerous genes (de Pamphilis \& Palmer, 1990). A larger chloroplast genome (217 kb) has been documented in Pelargonium (Geraniaceae), but the size increase is due primarily to a greatly expanded inverted repeat without representing an increase in genome complexity (Palmer et al., 1987).

Figure 3.1. Generalised diagram of the chloroplast DNA molecule in higher plants. Shaded areas denote the inverted repeat containing, among others, the genes for rRNA (open areas). LSC: large single-copy region; SSC: small single-copy region; IR: inverted repeat (see text for further details).

The chloroplast, and therefore the DNA contained in this organelle, is suggested to be of symbiotic origin (Palmer et al., 1988). This became apparent due to the clustering of genes of similar function (e.g. the ribosomal RNA genes; Figure 3.1) into polycistronic operons, a distinctive property of prokaryotic genomes. The number of genes present in a typical chloroplast molecule has been estimated at 139 (Shinozaki et al., 1986), 120 (Palmer et al., 1988) and 113 (Olmstead \& Palmer, 1994). The genes present include four rRNA genes, 30-31 tRNA genes and 79-100 putative protein-coding genes mostly of unknown or poorly understood function. These
proteins are mainly involved in photosynthesis and the transcription/translation mechanism within the chloroplast; the large subunit of the enzyme ribulose-1,5biphosphate carboxylase ($r b c \mathrm{~L}$ for short) is also coded by cpDNA genes.

Changes in gene order and content in the chloroplast genome are rare and typically arise through inversion of a portion of the genome or through the loss of a gene (Olmstead \& Palmer, 1994). For example, the differences in gene order and content between Marchantia, a nonvascular land plant, and Nicotiana, a flowering plant, consist of one 30 kb inversion and the absence in one or the other genome of five protein genes and one tRNA gene (Ohyama et al., 1986; Wolfe \& Sharp, 1988). Similarly, the differences between Oryza, a monocot, and Nicotiana, a dicot, consist of three inversions, the absence of three protein genes, and some gene duplications and rearrangements associated with movement of the ends of the inverted repeat (Sugiura, 1989), representing derived changes in the rice lineage.

3.1.2. Advantages of the use of cpDNA in phylogeny

CpDNA is assumed to be predominantly maternally inherited (in most angiosperms), although biparental (ca. 20\% of angiosperm species) and paternal (conifers) inheritance also occurs. However, transmission is essentially clonal as recombination has not been observed in land plants, even in the case of biparental inheritance (Hillis et al., 1996). This means that the molecule is inherited clonally, without crossing over during meiosis and, consequently, cpDNA contains high levels of historical information making it an excellent marker for evolutionary studies (Palmer, 1987).

CpDNA has a very conservative mode of evolution, which would suggest that little intraspecific variation might be expected (Palmer, 1987). This slow rate of change in its sequence and structure is reflected in the low levels of within- and amongpopulation variation apparent from most of the early studies (Wagner et al., 1987; Neale et al., 1988). In addition, the evolution of cpDNA is on average 5 -fold slower than that of plant nuclear genes. For instance, the substitution rate for cpDNA protein coding genes varies from $0.2-1.0 \times 10^{-9} /$ site / year. Thus, there is a high degree of
conservation in size, structure and gene content of the cpDNA molecule and a change in any of these characters might be expected to have significant phylogenetic implications (Clegg \& Zurawski, 1992; Palmer, 1987).

Several studies suggest that the silent substitution rate for plant mitochondrial DNA is only one third of the rate for cpDNA, while the rate for cpDNA is about half that of nuclear DNA (Wolfe et al.,1987). The relatively slow rate of nucleotide substitution in cpDNA reduces the problem of parallel and convergent evolution when comparing genomes of congeneric species (Crawford, 1990; Hillis et al., 1996). However, this slow rate may also be a problem causing variation to be inadequate for resolving relationships among closely related species. On the other hand, it is often possible to make valid comparisons among distantly related genera within a large and diverse family (e.g. Asteraceae, Fabaceae), due to the highly conserved nature of cpDNA. Different parts of the cpDNA molecule evolve at different rates, making it feasible to compare taxa at various hierarchical levels by using different regions of the molecule (Crawford, 1990).

The chloroplast molecule is present in many copies per cell (as many as 20-200 copies in each mature chloroplast), making it easy to isolate in sufficient quantities from very small amounts of plant material (Palmer, 1987). As few as 10 g fresh weight is adequate for obtaining partially purified cpDNA. Methods employing total DNA require less than 1 g fresh weight (Doyle and Doyle, 1987; Doyle and Dickson, 1987). The cpDNA within individuals appears to represent a homogeneous assemblage, that is, there is normally no evidence of heterogeneity in size or structure of the molecule within a plant (Crawford, 1990).

The small size of the cpDNA molecule makes it possible to visualise on a single gel all the fragments produced by digestion with many of the common four- and six-base restriction enzymes (Palmer, 1987). This is ideal because it often allows a systematist to make at least preliminary comparisons of differences between species and to gain valuable data with minimal time, effort and material. Visualisation of fragments in gels with UV light after staining with ethidium bromide is feasible, however, only if
the cpDNA has been purified. The common approach is the use of Southern blots and filter hybridisations which allow more efficient comparisons (e.g. Palmer et al., 1983; Jansen \& Palmer, 1988; Doebley \& Wendel, 1989; Van Dijk \& Bakx-Schotman, 1997, among others).

The lack of frequent structural changes (inversions, transpositions, deletions and insertions) in the chloroplast genome makes it relatively easy to work in comparative studies. This is true because restriction pattern differences between species usually result from mutations at restriction sites rather than from structural changes. If the latter were frequent it would be difficult and time-consuming to do comparative studies involving a number of taxa (Crawford, 1990).

With regard to studies at higher taxonomic levels (interfamilial and higher), cpDNA data have to be interpreted with care because of accumulated length changes and/or convergent site gains or losses (Crawford, 1990). Such statement, however, has to be determined for each group of plants. Then, an alternative method for studying these higher order relationships can be sequencing of particular parts of the chloroplast genome (Olmstead and Palmer, 1994). Structural changes in the chloroplast genome (especially inversions) have been detected in several large families and tribes of flowering plants. Some of the most completely studied cases are an inversion in the Asteraceae (Jansen and Palmer, 1987) and in the subtribe Phaseolinae of the legume tribe Phaseoleae (Bruneau et al., 1990).

3.1.3. Restriction site mapping of cpDNA: applications and limitations

The analysis of restriction fragment variation has been the main method for the study of cpDNA in phylogeny. The methods have evolved from the direct comparison of gels containing restriction fragments of purified DNA (e.g. Palmer \& Zamir, 1982, in their studies of Lycopersicon) to the more explicit comparative mapping of restriction sites using Southern blot hybridisation and cloned probes, spanning much or all of a previously mapped genome (e.g. Liu \& Furnier, 1993, in Populus; Llaca et al., 1994, in Phaseolus). A more recent alternative method is based on PCR-amplifying a 2 to

4- kb segment of size conserved, but rapidly evolving (in sequence) cpDNA, digestion with various restriction enzymes and the direct comparison of the resulting fragments on gels. This approach is particularly attractive for groups where the amount of DNA is limiting or where many rearrangements make mapping difficult (e.g. Demesure et al., 1996, in Fagus); moreover, the technique is fast, no blotting is required, and it avoids the use of radioisotopes or chemiluminescent labelled probes (Olmstead \& Palmer, 1994).

Olmstead and Palmer (1994) present several advantages of restriction site comparison which recommend its use in phylogenetic studies:

- The procedure is technologically simple relative to many methods in molecular biology, enabling the researcher to compare many taxa simultaneously.
- The chloroplast genome is large enough that many sites can be sampled per enzyme; enzymes that cut 100 times per genome can be mapped readily.
- Cleavage sites represent a nearly random sample of the cpDNA, thereby contributing to fulfil an important (yet often unappreciated) assumption of independence of characters. However, Doyle (1992) mentions that the entire chloroplast genome is inherited as a single linkage group, and, therefore, the pattern of its divergence may not reflect species divergence if hybridisation and introgression have resulted in the transfer of cpDNA from one lineage to another.
- Most of the phylogenetically informative variation occurs at restriction sites present in noncoding regions. The value of nonfunctional characters for interpreting phylogeny has long been appreciated.
- Data sets derived from restriction site variation studies of congeneric species or among closely related genera exhibit a remarkably low level of homoplasy (Palmer et al., 1988 and references therein).
- There is sufficient variation in substitution rate in different parts of the genome for applications at a moderate, but limited, range of taxonomic levels. In this sense, recent studies have demonstrated that the inverted repeat region of cpDNA , which accounts for approximately 20% of the total genome complexity of most angiosperms, can be mapped reliably for entire orders and even subclasses. This is mainly due to the significantly lower synonymous substitution rate observed in the inverted repeat, as shown in the previous section.
- Restriction site analysis is relatively free from artefacts due to sample contamination compared with PCR sequencing studies, where so-called "PCR nightmares" (Olmstead \& Palmer, 1994) can occur, i.e. inexplicable results during tree construction become obvious, probably from inadvertent amplification of a sequence from the wrong, contaminating DNA.

The analysis of restriction fragment variation of cpDNA has been widely employed in elucidating taxon relationships in phylogenetic studies both at high and low taxonomic levels. At the higher level for example, Schwarzbach and Kadereit (1995) used this approach to investigate relationships between the North American desert genera of the Papaveraceae, subfamilies Platystemonoideae and Papaveroideae. In agreement with earlier results, they found that the first subfamily was nested within the second one and that most taxa under study were characterised by a large number of generic autapomorphies but only a few informative synapomorphies. Furthermore, this was interpreted as strong evidence for a rapid radiation event caused by major climatic changes in the past and accelerated morphological evolution under arid climatic conditions.

At the lower taxonomic level, many studies have examined cpDNA variation to elucidate the phylogeny of species within particular plant genera, e.g. Leucaena (Harris et al., 1994), Erythrina (Bruneau, 1996) and Stylosanthes (Gillies \& Abbott, 1996). Liston (1992) examined the $r p o \mathrm{C} 1$ and $r p o \mathrm{C} 2$ genes to determine cpDNA divergence and phylogenetic relationships in Astragalus; he found low levels of cpDNA divergence among the Californian annual species, being consistent with the
low levels of allozyme divergence detected in his comparative studies. Phylogenetic analysis suggested that the annual growth habit was possibly the ancestral character state in the North American aneuploid legume Astragalus.

The origin and evolution of a hybrid species complex in the genus Brassica was explored through restriction site analysis of the chloroplast genome (Palmer et al., 1983). In this study, a detailed cpDNA phylogeny enabled identification of the maternal parent for most of the amphidiploids examined and permitted a quantitative resolution of the relative time of hybridisation as well as the relative divergence of the diploid parents. Contradictory chloroplast and nuclear phylogenies obtained for the two amphidiploid accessions of B. napus among the 22 accessions used in this study, lead to the hypothesis that introgressive hybridisation had also figured in their recent evolution.

Similarly, cpDNA studies have been of value in determining the origin of polyploid species. For example, Soltis et al. (1989) surveyed populations of diploid and autotetraploid plants of Heuchera micrantha for variation at cpDNA restriction sites. Fourteen restriction site mutations and three deletions were detected. Four of the mutations were found in single populations while the other 10 occurred in two to six populations. The results showed quite clearly that autotetraploids of this species have arisen several times independently with diploid and tetraploid populations sharing different restriction site mutations. It was argued convincingly that such distribution of cpDNAs was not caused by hybridisation between diploid and tetraploid plants.

CpDNA restriction site variation has also been useful in clarifying colonisation events and the evolution of plant species. For example, Francesco-Ortega et al. (1996) demonstrated that the Macaronesian endemic species Argyranthemum (Asteraceae) is a monophyletic group that has speciated very recently. One of the two major cpDNA lineages detected is restricted to the northern part of the Macaronesian archipelago (Madeira, Desertas and Selvagens), while the other includes taxa endemic to the southern area of the archipelago (the Canary islands). Two major radiations were recognised within the latter lineage: one of these was restricted to ecosystems
influenced by the north-eastern trade winds, while the other occurred at sites unaffected by these winds.

In summary, cpDNA restriction site analysis can be used in diverse ways with applications that span from answering phylogenetic questions in both wild and cultivated taxa, at extreme taxonomic levels, to the determination of the parentage of hybrids and the study of the evolution of polyploids, introgression and gene flow. However, there are some factors that constrain the usefulness of restriction site analysis in phylogenetic studies, as pointed out by Olmstead and Palmer (1994):

- The conservative nature of cpDNA evolution places a practical lower limit to phylogenetic analysis. Closely related species in many studies are identical for the restriction enzymes used.
- At greater molecular distance an upper limit is also reached, where restriction site homology can no longer be determined with confidence. Molecular divergence may be too great to permit comparative mapping of the whole genome in families that are either old or that have accelerated rates of cpDNA evolution. For example, comparative mapping within and between orders in the subclass Asteridae has generally proven unreliable, at least for single copy regions of the genome (Jansen cited by Olmstead and Palmer, 1994).
- Groups of plants with greatly rearranged cpDNAs (e.g. in the Fabaceae, Geraniaceae and Orobanchaceae) are poor candidates for whole genome mapping studies, although the rearrangements themselves can sometimes be exploited for phylogenetic purposes. Similarly, the absence of one copy of the inverted repeat in several plant groups prohibits their inclusion in comparative mapping studies that are based solely on the inverted repeat, because the rate of evolution for that portion of the genome may be dramatically greater in those taxa. Of course, the problem can be circumvented by restriction site analysis of PCR-amplified, unarranged portions of the genome, as described before.
- A substantial amount of DNA ($10-100 \mu \mathrm{~g}$) is needed for digestion of genomic DNA required for whole-genome mapping studies. The tissue required to extract enough DNA may be limiting as in the case of extinct, rare or hard-to-find species, or even poorly preserved. Again, PCR approaches may offer a possible technical solution.
- Scoring and handling of data are still largely manual and cumbersome tasks. Adding new data to an existing data set requires comparing anew all maps, if not the original autorads, from all data sets to include sites that were uninformative in the initial data set. This difficulty has led some researchers simply to assay new accessions for previously identified informative variation, unfortunately eliminating the possibility of identifying formerly undetected relationships based on previously uninformative restriction site variation. This major shortcoming of cpDNA mapping is largely superseded by sequencing studies, in which new sequences can be added easily to an existing data set.

3.1.4. Phylogenetic inference

Several procedures are used in phylogenetic inference of cpDNA as summarised below. Data obtained from the analysis of restriction fragments can be classified as either (1) character data and (2) distance data. The most frequently used methods for analysing these data are parsimony and distance methods (Swofford \& Olsen, 1990). Procedures for testing the reliability of phylogenetic trees include statistical approaches such as bootstrapping and jack-knife methods (Felsenstein, 1988; Swofford et al., 1996).

Types of data

- Character data: these are characters that have distinct states, for example a particular band (= the character) on a luminograph (or autorad) produced after hybridisation with a cpDNA probe is either present or absent ($=$ the character state). Character data are assumed to be independently variable and homologous, i.e. all
states of a particular character that are observed in a series of taxa are assumed to have been derived from an equivalent state in an ancestral taxon (Swofford \& Olsen, 1990). Character data are usually scored as a series of ' 1 's (presence) and '0's (absence) in a binary data matrix (as shown in the results section, this chapter).
- Distance data: these specify relationships between pairs of taxa with identical taxa being separated by zero distance. They reflect a measure of the degree of dissimilarity between two taxa or genes which are said to be identical to each other if they are separated by zero dissimilarity (or conversely, 100% similarity).

For tree construction, distance data can be divided into two types, additive distance data and ultrameric distance data. A tree formed from additive distance data is a tree where the evolutionary distance between any pair of taxa would be equal to the sum of the length of the branches connecting them, as shown in Figure 3.2A (Swofford \& Olsen, 1990). However, the true topology of an additive tree can only be obtained if no character changes its state more than once (Fitch, 1981), i.e. additivity can only be obtained when there is no homoplasy. If or when the data contain some homoplasy, new calculations will give a different set of values for branch lengths. Conflicting evidence will increase branch lengths and eventually may change branching order. One of the widely used methods to construct phylogenetic trees from additive distance data is the neighbour-joining (NJ) method (Saitou and Nei, 1987). Details of this procedure are described elsewhere.

In contrast, a tree generated from ultrameric data is a tree in which the distance between any two taxa is equal to the sum of the branches joining them (additive distance) and this tree can be rooted so that all taxa are equidistant from the root (Figure 3.2B); thus it is assumed that a molecular clock is operating at the same rate in all lineages. Based on this principle, a tree is constructed by connecting the least distant pair of taxa and then adding successively more distant taxa until all taxa have been joined into the tree. A common method used to construct trees from ultrameric data is the Unweighted Pair Group Mean Analysis (UPGMA; Sneath \& Sokal, 1973).
(A)

Additive properties:

$$
\begin{aligned}
& \mathrm{dAB}=\mathrm{v}_{1}+\mathrm{v}_{2} \\
& \mathrm{dAC}=\mathrm{v}_{1}+\mathrm{v}_{3}+\mathrm{v}_{4} \\
& \mathrm{dAD}=\mathrm{v}_{1}+\mathrm{v}_{3}+\mathrm{v}_{5} \\
& \mathrm{dBC}=\mathrm{v}_{2}+\mathrm{v}_{3}+\mathrm{v}_{4} \\
& \mathrm{dBD}=\mathrm{v}_{2}+\mathrm{v}_{3}+\mathrm{v}_{5} \\
& \mathrm{dCD}=\mathrm{v}_{4}+\mathrm{v}_{5}
\end{aligned}
$$

(B)

Additive properties:

$$
\begin{aligned}
& \mathrm{dAB}=v_{1}+v_{2}+v_{3} \\
& \mathrm{dAC}=v_{1}+v_{2}+v_{4} \\
& \mathrm{dBC}=\mathrm{v}_{3}+v_{4}
\end{aligned}
$$

Ultrameric properties:

$$
\begin{aligned}
& v_{3}=v_{4} \\
& v_{1}=v_{2}+v_{3}=v_{2}+v_{4}
\end{aligned}
$$

Figure 3.2. Types of tree construction. (A) An additive tree showing the relationships among taxa A, B, C and D. Under this scheme of additive distances no assumption about rooting is made, thus the tree is unrooted. dAB equals the distance between taxa A and B. (B) An ultrameric tree showing the relationships among taxa A, B and C . In addition to having additive distance properties where all taxon to taxon distances are the total of branch lengths joining them, every common ancestor is the same distance from all of its descendants. For instance, the most recent common ancestor of A and B is v_{1} from A and $v_{2}+v_{3}$ from B, therefore $v_{1}=v_{2}+v_{3}$; and, the most recent ancestor of B and C is v_{3} from B and v_{4} from C, therefore $\mathrm{v}_{3}=\mathrm{v}_{4}$ (Source: Avise, 1994).

On the other hand, restriction data from bands on auto- or luminographs can be analysed with any of the following methods:

For character analysis (Bremer, 1991):

- Fragment direct analysis (FDA): filters are hybridised with a total cpDNA probe to pick out all the chloroplast bands. Presence and absence of the bands are then scored, with no reference to their homology.
- Fragment occurrence analysis (FOA): cpDNA probes from specific regions of the genome are used separately in an attempt to reduce the amount of homoplasy. Presence and absence of fragments from each region are scored and the data kept separate.
- Site occurrence analysis (SOA): the locations of site mutations in the cpDNA are mapped from the fragment data and used as characters. Their presence and absence are scored within each taxon.
- Site mutation analysis (SMA): loss or gain of restriction sites at particular places in the cpDNA sequence are employed as character states.

For distance analysis, both fragment data and site data can be used to calculate genetic distances between pairs of taxa and used to construct phylogenetic trees (Swofford \& Olsen, 1990; Avise, 1994).

Phenetic and cladistic approaches to phylogeny reconstruction

Two schools of thought exist as to the approaches for taxonomic classification which differ both in the assumptions they make and the conclusions that can be drawn from the results they produce. These two approaches are phenetics and cladistics and have been described in detail elsewhere, going beyond the scope of this section. Therefore, they are discussed only briefly below.

Phenetic or numerical taxonomy can be traced back to Adanson, a contemporary of Linnaeus. However, it was not until the publication of several papers in the late 1950s that phenetics became established as a school of taxonomy, based on the assumption that overall similarity was the key to an accurate classification (Stace, 1989). The aim of phenetics was to overcome intuitive methods which considered that certain characters should be treated as more important in a classification and consequently given more weight than others. Phenetic classification aims to be objective, explicit and repeatable both in the evaluation of taxa and taxon recognition. This is achieved by producing consistent data matrices, examining large character sets and weighting all characters equally (Siebert, 1992).

A phenetic classification requires calculation of a measure of the affinity between taxa and the results are usually presented as a phenogram, i.e. a bifurcating dendrogram. All taxa, known as operational taxonomic units (OTUs) are terminal nodes, i.e. none appear at an interior node, and are clustered together at different hierarchical levels determined by overall percentage of similarity or dissimilarity. Evolutionary relationships between taxa, however, are not examined as no attempt is made to distinguish between homologous and homoplasious characters. If a taxon has accumulated many autapomorphies (uniquely derived evolutionary characters), then it might be clustered further apart from other taxa, simply because of these autapomorphies. Moreover, similarities possibly due to parallel and convergent evolution are ignored (Panchen, 1992). Cain and Harrison (1960) defined phenetic relationships as "an arrangement by overall similarity, based on all available characters without any weighting".

Cladistic or phylogenetic systematics was first formulated by Willi Hennig in 1950 based on the idea that in sexually reproducing organisms, diversification in evolution is due to speciation, and speciation either happens or does not. He also considered that most speciation was dichotomous and that sister species shared unique characters (Panchen, 1992). Unlike phenetics, a cladistic approach to classification has no need to look at measurement of genetic distance and a cladogram is representative of the
pattern of speciation events culminating in the species to be classified, i.e. their evolutionary relationships.

The principle works if each past speciation event is detectable in the present complement of characters of each taxon under consideration. A species must have autapomorphies to be taxonomically valid, but it will also have characters that it shares uniquely with the species from which it most recently diverged. These are the synapomorphies (shared, derived characters) that unite sister groups in the cladogram.

Cladistic analysis differs from phenetic analysis in the way that homologous and synapomorphic characters are detected and treated. In phenetics, no consideration is made of synapomorphies, symplesiomorphies (shared, ancestral characters) and whether characters are truly homologous (as a similarity due to common ancestry). Phenetic groupings are defined by all the character states held in common, while cladistic groupings are defined by those characters that are unique to them. Phenetics uses homoplasic characters without even recognising them as such, whereas in a cladistic analysis homoplasy is recognised and, if possible, removed (Panchen, 1992).

In summary, phenetic analysis classifies taxa based on their overall similarity without any attempt to assume evolutionary relationships. In contrast, cladistic analysis provides a description of taxa based on their inferred evolutionary relationships (Stace, 1989). When deciding which approach to use in the analysis of molecular data, it is necessary to understand the nature of the data themselves. For example, the phenetic approach is a reasonable instrument when either the rules of evolutionary change in a character set are not well understood or if the proportion of homoplasic and homologous characters cannot be determined (e.g. a RAPD analysis). On the other extreme, a cladistic approach is reasonable for cpDNA data analysis, as it is possible to determine the mode of cpDNA inheritance in a taxon (Harris \& Ingram, 1992; Soltis et al., 1990) and non-homologous characters can be identified and removed (Bremer, 1991).

3.1.5. Objectives and aims of the cpDNA analysis in Pachyrhizus

The primary goal of the survey of cpDNA restriction site variation reported here was to produce a phylogenetic tree for Pachyrhizus taxa. It was intended that trees would be constructed using both restriction fragment and site data based on an organelle genome for comparison with phylogenetic trees derived from nuclear gene variation (nrDNA and RAPDs), which are described in the next chapters.

A further objective was to compare and contrast the levels of variation resolved by: (1) restriction site variation of total cpDNA genome based on hybridisation and probing procedures; and, (2) restriction site analysis of PCR-amplified cpDNA regions. The identification of species-specific markers from the restriction fragment patterns was also given priority, since they could be used to identify difficult taxa or to explain evolutionary events.

No extensive research has been previously carried out on Pachyrhizus using molecular techniques, such as RFLP analysis of cpDNA. This chapter aims, therefore, to improve our current understanding of the evolution and relationships within Pachyrhizus based on an analysis of cpDNA variation.

3.2. Materials and methods

3.2.1. Plant material

For restriction site analysis employing Southern blotting, 29 accessions of the five species within Pachyrhizus together with three outgroup taxa were used, whereas for analysis within PCR-amplified regions of the cpDNA genome, a subgroup of these accessions (21 Pachyrhizus taxa and outgroup OUTcc) was employed. A complete list of these accessions and their origins are given in Table 2.1. Details of plant growth and care are described in Chapter 2 (sections 2.1 and 2.2).

Plant material used in the analyses comprises a representative range of ecogeographical diversity and variation within the germplasm collection of the Yam Bean Project (Sørensen, 1994). Accessions were chosen based on criteria of previous taxonomic, agronomic and physiological studies (Sørensen, 1990, 1991 \& 1996; Grum et al., 1991; Márquez \& Morera, 1992). Herbarium specimens for most taxa examined are available at the Royal Veterinary and Agricultural University (RVAU, Botanical Section, KVL - Denmark).

3.2.2. Experimental methods

All experimental methods for the analysis of cpDNA variation were carried out as described in Chapter 2. DNA extraction, purification and quantification from leaf samples were performed as outlined in sections 2.3 and 2.4. Further, experimental conditions for restriction digestion, Southern blotting, hybridisation, probing and production of luminographs were carried out as described in section 2.5. Methods used for PCR-RFLP analysis of cpDNA regions are summarised in section 2.6.

3.2.3. Phylogeny reconstruction using the parsimony approach

Parsimony is probably one of the most popular methods used in cladistic analysis. It can best be described as a criterion for estimating a parameter from observed data
based on the principle of minimising the number of events needed to explain the data (Avise, 1994; Hillis et al., 1996). In phylogenetic analysis, the optimal tree under the parsimony criterion is the one that requires the smallest number of evolutionary (character-state) changes to explain the observed differences among OTUs.

The method is based on the hypothesis that simple character changes are more likely to have occurred than more complicated ones during the evolution of a group of taxa (Swofford, 1993). Furthermore, when there is no reason to think otherwise, two characters that appear to be the same should be treated as homologous. However, if the character is clearly not homologous, i.e. it supports conflicting groups, the explanation that is the simplest should be chosen, which in turn is the one that requires the smallest number of homoplasious characters and character loss (Swofford et al., 1996).

There are five different forms of parsimony which operate by selecting the tree(s) that has the shortest branch length for a particular data set, but differ in their assumptions about character changes:

- Wagner parsimony: this method and Fitch parsimony are the simplest methodologies. The Wagner method, formalised by Kluge and Farris (1969), assumes that characters are measured on an interval scale; thus it is appropriate for binary, ordered multistate and continuous characters. Change from one character state (A) to another (D) involves changes through intervening character states (B and C) in the transformation series.
- Fitch parsimony: in this approach, transformation from one character state to another can proceed in an unordered fashion, therefore not involving changes through intervening character states (A can become D immediately without going through B and C). Fitch (1966) generalised the method to allow analysis of unordered multistate characters, e.g. nucleotide and protein sequences. Both Fitch and Wagner approaches permit free reversibility; that is, change of character states
in either direction is assumed to be equally probable, and character states may transform freely from one state to another and back again.
- Dollo parsimony: in this procedure, each shared derived character state (synapomorphy) is uniquely derived and appears only once in the tree. Character state reversal is allowed, but once a state is reversed it cannot reappear (i.e. parallel or convergent gains of the derived condition are not allowed). DeBry and Slade (1985) and others (Swofford et al., 1996 and references therein) have suggested this parsimony model as more appropriate for restriction site data. The Dollo criterion can be applied to binary or linearly ordered multistate characters for which an ancestral condition (polarity) can reasonably be hypothesised. However, it can also be applied to unrooted trees as well (i.e. an unrooted Dollo approach), which is particularly convenient for restriction-site characters since it does not require the construction of a hypothetical ancestor, only the inclusion of one or more outgroup taxa (for further details see Swofford et al., 1996).

The assumptions made by both Wagner and Fitch methods are probably unreasonable for restriction site characters, since the loss of an existing restriction site is more probable than a parallel gain of the same site at any particular location, making thus the Dollo criterion more suitable for restriction site analysis. However, if derived states are polyphyletic, even occasionally, Dollo parsimony can render inaccurate phylogenies (Swofford \& Olsen, 1990).

- Camin-Sokal parsimony (1965): this was the first discrete-character parsimony approach to be described. It makes the strongest assumption of any of the methods discussed so far: evolution is irreversible. It is very unlikely to justify such an assumption for any type of molecular data and, therefore, this procedure is rarely used.
- Transversion parsimony: the method is primarily used for nucleotide sequences, assigning greater weight to transversions than transitions, without going so far as to give transitions zero weight (Swofford et al., 1996).

3.2.4. Tree construction from parsimony analysis

Details of tree construction from parsimony analysis have been broadly described and thoroughly reviewed elsewhere (Avise, 1994; Felsenstein, 1988; Hillis et al., 1996; Swofford, 1991; Swofford et al., 1996; Soltis et al., 1990). Thus, these approaches are discussed very briefly below, based on the aforementioned references.

Exhaustive search

In this approach, an initial tree for the first n taxa is constructed and a next $(n+l)$ taxon is added and evaluated in every topology. Then each additional taxon is added and every single tree topology is evaluated as subsequent taxa are added. The main difficulty with this type of search is that the number of trees increases rapidly with the addition of further taxa. Exhaustive methods are not generally useful for more than 10 or 11 taxa, since they generate over two and 34 million trees for 10 and 11 taxa, respectively (Swofford, 1991 \& 1993).

Branch-and-bound search

This is another exact algorithm for the identification of all optimal trees and closely resembles the exhaustive search. It differs in that the length of each tree is not calculated at the time of its construction, thus considerably reducing computing time. In addition, this approach employs a search procedure which has a provision for discarding trees without evaluating them in detail.

Several factors influence the running time of the branch-and-bound algorithm, with quality of the data being perhaps the most important one. Large data sets with little homoplasy will run quickly because most paths of the search tree are terminated early. The speed with which the length of each tree can be evaluated, a function of the character types, is also important. For example, ordered (Wagner) characters are much faster than unordered characters. Finally, for obvious reasons, the speed of the available computer is also critical to the running time (Swofford, 1993).

Heuristic methods

When a data set is too large to permit the use of exact methods, a heuristic approach is recommended which operates by sacrificing the guarantee of optimality in favour of reduced computing time. The search begins by surveying only a small sample of all possible tree topologies and the optimal tree is the shortest of these. A tree is then constructed and rearranged so as to bring it closer to the optimum; once no further alterations can improve the tree, the analysis is terminated. Heuristic methods have proven to be very effective by using this principle. Moreover, two basic strategies can be used:

- Stepwise addition: this is the common method for obtaining a starting point for further rearrangement of additional taxa to a growing tree. Three taxa are chosen for the initial tree, then one of the unplaced taxa is selected for next addition. The trees resulting from the addition of a fourth taxon are evaluated and the one with the optimal score is saved for the next 'round'. Next, a fifth taxon is placed along one of the five possible branches on the tree saved from the previous round. The evaluation procedure is repeated with the best tree saved for the next round, and this process is concluded when all taxa have been joined to the growing tree.
- Branch swapping: in this strategy, the initial estimate provided by stepwise addition is subjected to a series of predefined rearrangements until the shortest tree is found. These rearrangements are performed until the tree cannot be improved any further, which in turn is assumed to be the optimum.

Figure 3.3 illustrates the stages completed in a heuristic approach and the three branch swapping algorithms as implemented in the software programme PAUP (Phylogenetic Analysis Using Parsimony; Swofford, 1993): the nearest neighbour interchanges (NNT); subtree pruning and regrafting (SPR); and, tree bisection and reconnection (TBR). A brief description of these algorithms is also shown in the same figure.

(A) Nearest neighbour interchanges (NNI). Each interior branch of the tree defines a local region of four subtrees connected by the interior branch. Interchanging a subtree on one side of the branch with one from the other constitutes an NNI. Two such rearrangements are possible for each interior branch.

(B) Sub-tree pruning and regrafting (SPR). A subtree is pruned from the tree (e.g. the subtree containing terminal nodes A and B as indicated). The subtree is then regrafted to a different location on the tree. All possible subtree removals and reattachment points are evaluated.

(C) Tree bisection and reconnection (TBR). The tree is bisected along a branch, yielding two disjoined subtrees. The subtrees are then reconnected by joining a pair of branches, one from each subtree. All possible bisections and pairwise reconnections are evaluated.

Figure 3.3. Schematic representation of the heuristic parsimony searches. The three different approaches to branch swapping are described (after Swofford et al., 1996).

Outgroup comparison

An important concept among the optimality criteria in parsimony methods is the use of an outgroup. An outgroup is any taxon used in phylogenetic analysis that is assumed to be outside the group of taxa under study (Swofford et al., 1996). Incorporation of an outgroup is useful for assigning the direction of change to character-state transformations and for determining the root of a phylogenetic tree.

An outgroup is often chosen as a sister group bearing in mind that it is genealogically most closely related to the remaining taxa (i.e. the ingroup), but must not be the ancestor of the ingroup. Swofford et al. (1996) emphasise, however, that the assignment of taxa to the outgroup constitutes an automatic assumption that the remaining taxa are monophyletic, an assumption that should be justified by evidence extrinsic to the phylogenetic data at hand. If this assumption is wrong, the tree will be rooted incorrectly.

Consensus trees

A consensus tree is a hierarchical summary of all relationships described by the equally parsimonious trees produced after use of an algorithm, as the ones previously described. However, a consensus tree does not necessarily give the best estimate of phylogenetic relationships among groups; it only summarises them and thus must be interpreted with caution. A large number of polytomies (i.e. unresolved regions in the phylogenetic tree) may become evident in the consensus tree when there is much disagreement among the rival trees it is summarising (Baum, 1992; Swofford et al., 1996). In general, a consensus tree is longer than the minimal trees it describes, since the consensus is less resolved than any of the minimal trees.

There are different types of consensus trees (Figure 3.4), with the strict consensus, semi-strict consensus and 50% majority rule trees as the most widely used (Swofford, 1993). A strict consensus tree describes species groupings (clades) that are present in all rival trees. Therefore, it is the most conservative consensus and the easiest to
interpret, but unfortunately it may be too strict and result in a completely unresolved consensus for trees that only differ by the placement of one taxon.

The semi-strict consensus tree can be best explained by the example given in Figure 3.4. Trees having an $A B C$ trichotomy or an $(A B) C$ dichotomy, with A and B always together, will result in a semi-strict consensus where $A B$ will be retained. In this circumstance, a semi-strict consensus will conserve the $A B$ relationship while a strict consensus will not.

In contrast, the majority rule consensus defines groups that appear in a predefined percentage of the rival trees it describes (50% in this case). In turn, this means that a clade may be retained even if some of the trees do not resolve it (Swofford, 1993; Figure 3.4).

(A)

(B)

(C)

(D)

Figure 3.4. Types of consensus trees. (A) Rival trees to be summarised by each consensus tree; (B) strict consensus tree; (C) semi-strict consensus tree; and, (D) 50% majority rule consensus tree.

Robustness of an inferred tree: goodness-of-fit statistics

Several statistics can be calculated to determine the goodness of fit of phylogenetic trees with the data sets they are describing (Swofford, 1993). The most widely used measure of robustness is the consistency index (Cl), which provides an indication of how well a particular tree topology explains the data. In simple terms, a transformation series with little or no homoplasy will yield a high CI value (1 being the maximum), while those with high homoplasy have a lower value (0 as a minimum). CIs are calculated on the basis of synapomorphies only, expressed as the minimum number of changes or steps necessary if all data agreed (m) divided by the actual number of steps (s) in the tree (i.e. $\mathrm{CI}=m / s$; Kluge and Farris, 1969).

Another useful goodness-of-fit statistic is the retention index (RI), which indicates how well characters fit the tree that describes them. Farris (1989) described the RI to express the amount of synapomorphy in a data set by examining the actual amount of homoplasy as a function of the maximum possible homoplasy, or in other words, the rate of similarities in a tree due to synapomorphies. In addition, there is also the homoplasy index, which provides an indication as to the amount of homoplasy in a tree (Swofford, $1991 \& 1993$). All of these statistics can be determined for individual characters in addition to entire data sets.

On the other hand, the robustness of a specific clade within a tree can also be determined by: (1) an observation of the number of synapomorphies that support each branch in the tree; and, (2) by obtaining a decay index. The latter one is a useful index of support for a monophyletic group obtained by calculating the difference in tree lengths between the shortest trees that contain a group versus those that lack the group (Bremer, 1988). Further details of these and additional indices (e.g. the topologydependent permutation tail probability, T-PTP test) can be found in Armstrong et al. (1994) and Hillis et al. (1996).

Reliability of inferred trees

The question of certainty of the historical relationships represented in a particular tree has been addressed by assigning confidence limits to its branches. To this purpose, two procedures have been widely used: the bootstrap and the jack-knife methods.

The bootstrap method (Felsenstein, 1985) is a non-parametric resampling method (Hillis et al., 1996) which operates by estimating the variance of the sampling distribution by repeatedly resampling data from the original data set. This method is based on the mathematical principle of constructing a series of fictional matrices; data from the original matrix may be present once, more than once, or not at all in the new matrix. Each bootstrap data set is then analysed using a heuristic or branch-and-bound search to produce a tree or a set of trees (in the present study, heuristic searches were used). This procedure is repeated a predetermined number of times (normally 100) on the random samples, and the percentage of occurrence of a particular group or component that appears in the consensus of the bootstrapped trees is regarded as an index of support for monophyly in that group.

This method, although used widely in phylogenetical studies, cannot be considered as a true confidence limit in a statistical sense. Moreover, it has created controversy (Van Dongen, 1995; Felsenstein \& Kishino, 1993; Hillis \& Bull, 1993), as a necessary condition for the bootstrap to be valid is that configurations in the characters are independently and identically distributed. This is not true in all evolutionary processes or in the case of multistate characters recoded into binary data.

The jack-knife procedure (Mueller \& Ayala, 1982) operates in a similar way to the bootstrap, but is based on gene frequency data. This method resamples the original data set by eliminating k data points at a time and recomputing the estimate from the remaining $n-k$ observations. New trees are constructed from the resulting reduced matrix and a cluster from the original tree is confirmed as robust if it appears in the new tree.

3.2.5. Data analysis and phylogeny reconstruction based on cpDNA variation in Pachyrhizus

RFLP variation across the total cpDNA genome

Data were recorded from the banding patterns obtained on luminographs. The number of base pairs sampled was calculated with Palmer's equation (1985) using an estimated size of 150 kb for the cpDNA molecule:

Two types of analysis were performed on the data for tree construction. The first methodology used restriction fragments as characters, i.e. an FOA approach as described in section 3.1.4; the second analysis required the interpretation of the series of bands in terms of site and length mutations, i.e. an SOA method. Fragment size was calculated using Templeton's logarithm (software LENGTH, 1988).

Each taxon was characterised in terms of data produced by 90 probe-enzyme combinations (PECs), i.e. a result of sequential hybridisations involving 15 restriction enzymes (Table 2.2) and six probing sessions with MB1, MB2, MB5+6, MB7, MB8 and MB9+10. Fragments and sites were scored as present (1) or absent (0), and organised on a worksheet fashion as a raw data matrix. For FOA examination, all autapomorphies and monomorphic bands were removed prior to phylogenetic analysis, i.e. only synapomorphies were considered so as to achieve the principles of a cladistic approach (see section 3.1.4). For the SOA analysis, synapomorphic fragments were represented as characters based on the interpretation of the observed site mutations.

The resulting data matrices were processed by the software programme PAUP ver. 3.1.1 on an Apple Macintosh Power PC 7200/75 using Dollo parsimony (see earlier in this chapter). Due to the large number of taxa to be analysed a heuristic search was conducted followed by branch swapping and the TBR algorithm. A strict consensus
tree was calculated to summarise the results from all equally parsimonious trees constructed with either fragment or site data. In addition, PAUP was used to calculate three goodness-of-fit statistics: the consistency, retention and homoplasy indices. These measures were useful not only in comparing characters on a single tree, but on multiple trees as well. They also provided a reliable way to estimate which characters support which hypotheses of topology (Swofford, 1993) when different assumptions were made.

Finally, an indication of the robustness of the clades in each tree was obtained by determining the number of synapomorphies that supported each branch; moreover, the bootstrap procedure (simple taxon addition, TBR branch-swapping \& Dollo parsimony) was also implemented to assign statistical confidence to hypotheses of relationship in the cladograms. To evaluate further the relative robustness of clades found in the equally parsimonious trees, strict consensus were constructed of all trees up to one step longer than the shorter trees, then of all trees two steps longer, and so forth, until the consensus eventually collapsed to an unresolved bush. This procedure yielded a decay index (Bremer, 1988), indicating the number of steps that must be added before each clade present in the minimum length trees is no longer unequivocally supported.

Restriction site variation within a PCR-amplified cpDNA region

The methodology described in this section is based on PCR amplification of DNA regions within the chloroplast genome, subsequent restriction with a battery of endonucleases and the visualisation of the resulting fragments. The efficiency of this approach has already been demonstrated in phylogenetic and population genetic studies (e.g. Arnold et al., 1991; Petit et al., 1993; Demesure et al., 1996).

Data were recorded from hard copies of gels obtained after photodocumentation with a Herolab image analysis system. Fragment size was estimated by comparison with a 1 kb DNA ladder and the analysis was conducted in the same way as reported above for total cpDNA variation, i.e. both FOA and SOA approaches were used. Phylogeny
reconstruction based on parsimony methods followed the same procedures and parameters (consensus trees, CI, RI, HI, the bootstrap, etc.) used for total cpDNA genome, as described in the previous section.

3.3. Results: RFLP variation across the total cpDNA genome

Pachyrhizus DNA was completely digested by most restriction enzymes used in this study. However, the enzymes BamHI, DraI and $X b a \mathrm{I}$ did not always cut reliably and only produced fully digested fragments for some PECs (probe x enzyme combinations). Nonetheless, these enzymes were included in the analysis, as they generated additional information for the reconstruction of phylogenetic relationships. Moreover, BamHI and XbaI produced taxon-specific cpDNA fragments (see section 3.3.2).

The eight MB cpDNA probes used in this study successfully hybridised with Pachyrhizus DNA on the nylon membranes to reveal RFLP variation such as that illustrated in Plates 3.1 to 3.5 . A total of 678 restriction fragments were detected by the analysis. Of these, 20 (3\%) were uniform across all accessions sampled (i.e. monomorphic), as shown for example in Plate 3.1 ; 529 (78\%) fragments were shared between accessions (i.e. synapomorphic) and thus cladistically informative (e.g. Plate 3.2); and, 129 (19%) were unique to a particular accession, mainly those of P. ferrugineus and the three outgroups included in the study.

The high number of synapomorphic fragments obtained in this study is due to the utilisation of eight four-base cutters (out of a total of 15 enzymes) and the inclusion of three outgroups. After an SOA analysis of the data (Bremer, 1991), these 529 fragments were interpreted as being representative of 30 site mutations and 13 length mutations, as shown in Plates 3.2 to 3.5. No major structural rearrangements, such as large insertions, deletions or inversions were observed in the 90 PECs examined in this section.

The 15 restriction enzymes used in this RFLP variation survey sampled 3060 bp of Pachyrhizus DNA (Table 3.1), which represent approximately 2.038% of the cpDNA genome, assuming an average size of 150 kb (Palmer et al., 1988). The highest number of base pairs was sampled by enzyme DdeI (a 4-base cutter), with 444 bp
(0.295%), while the lowest number was obtained by XbaI (a 6-base cutter) where only 42 bp (0.028\%) were sampled.

Plate 3.1. Pachyrhizus cpDNA digested with $C f o \mathrm{I}$ and probed with MB2. No detectable variation was observed among the fragments at positions $4648 \mathrm{bp}, 3433 \mathrm{bp}$ and 2241 bp .

From left to right: 1, $\mathrm{AC} 215 ; \mathbf{2}, \mathrm{AC} 220 ; \mathbf{3}, \mathrm{AC} 226 ; 4, \mathrm{AC} 231 ; 5$, EC032; 6, EC502; 7, EC509; 8, EC531; 9, EC558; 10, EC565; 11, EW203; 12, EW051; 13, FW237; 14, FWLoc7; 15, PW055; 16, PWTM58; 17, TC556; 18, TC536; 19, TC350; 20, TC354; 21, TC553; 22, TC550; 23, TCNA10; 24, TWNanII; 25, TW558; 26, TWTM48; M, molecular size standard (HindIII digests of λ DNA; NBL Ltd.).

Plate 3.2. Pachyrhizus cpDNA digested with DdeI and probed with MB5+6. Several site mutations were detected, one of which is depicted here. An extra site in the 1805 bp fragment replaced it with a 1630 bp fragment and $\mathrm{a} \sim 175 \mathrm{bp}$ fragment (not detected). The 1630 bp fragment was present in all P. ahipa accessions (lanes $1-4$), TC553 (a jíquima, lane 21), TWNanII (lane 24) and TWTM48 (lane 26). See Table 3.3 for further details.

From left to right: 1, AC215; 2, $\mathrm{AC} 220 ; \mathbf{3}, \mathrm{AC} 226 ; 4, \mathrm{AC} 231 ; 5$, EC032; 6, EC502; 7, EC509; 8, EC531; 9, EC558; 10, EC565; 11, EW203; 12, EW051; 13, FW237; 14, FWLoc7; 15, PW055; 16, PWTM58; 17, TC556; 18, TC536; 19, TC350; 20, TC354; 21, TC553; 22, TC550; 23, TCNA10; 24, TWNanII; 25, TW558; 26, TWTM48.

Plate 3.3. Pachyrhizus cpDNA digested with HaeIII and probed with MB9+10. Two site mutations were detected, one of which is depicted here. An extra restriction site in the 1992 bp fragment gave rise to a 1516 bp fragment (lanes $7-12,14-16,19 \& 20$) and the expected 476 bp fragment was not detected (see Table 3.3 for further details). Blank lanes are the result of a low hybridisation with accessions having poorquality DNA and, therefore, these were repeated in a subsequent probing session.

From left to right: 1, EC509; 2, EC531; 3, EC558; 4, EC565; 5, EW203; 6, EW051; 7, FW237; 8, FWLoc7; 9, PW055; 10, PWTM58; 11, TC556; 12, TC536; 13, TC350; 14, TC354; 15, TC553; 16, TC550; 17, TCNA10; 18, TWNanII; 19, TW558; 20, TWTM48.

Plate 3.4. Pachyrhizus cpDNA digested with HpaII and probed with MB7. One site mutation specific to P. ferrugineus, FWLoc7 (lane 14), is illustrated. An extra restriction site in the 1740 bp fragment gave rise to a 1471 bp fragment and a small, $\sim 269 \mathrm{bp}$ band (not detected).

From left to right: 1, AC215; 2, AC220; 3, AC226; 4, AC231; 5, EC032; 6, EC502; 7, EC509; 8, EC531; 9, EC558; 10, EC565; 11, EW203; 12, EW051; 13, FW237; 14, FWLoc7; 15, PW055; 16, PWTM58; 17, TC556; 18, TC536; 19, TC350; 20, TC354; 21, TC553; 22, TC550; 23, TCNA10; 24, TWNanII; 25, TW558; 26, TWTM48.

Plate 3.5. Pachyrhizus cpDNA digested with Sau3AI and probed with MB9+10. One site mutation specific to P. ferrugineus, FW237 (lane 3), was detected. An extra restriction site in the 1717 bp band gave rise to a 1640 bp fragment; the small $\sim 77 \mathrm{bp}$ fragment was not detected. Blank lanes are the result of a low hybridisation with accessions having poorquality DNA and, therefore, these were repeated in a subsequent probing session.

From left to right: 1, EW203; 2, EW051; 3, FW237; 4, FWLoc7; 5, PW055; 6, PWTM58; 7, TC556; 8, TC536; 9, TC350; 10, TC354; 11, TC553; 12, TC550; 13, TCNA10; 14, TWNanII; 15, TW558; 16, TWTM48.

Table 3.1. Number of base pairs sampled by the 15 restriction enzymes used in the total cpDNA RFLP variation survey in Pachyrhizus.

Restriction enzyme	Total number of bands detected	Number of base pairs sampled	Proportion of total cpDNA genome (\%)
Alu I	33	132	0.088
Bam HI	43	258	0.172
Bgl II	12	72	0.048
Cfo I	51	204	0.136
Cla I	12	72	0.048
Dde I	111	444	0.295
Dra I	20	120	0.080
EcoR I	62	372	0.248
EcoR V	18	108	0.072
Hae III	78	312	0.208
Hinf I	42	168	0.112
Hpa II	103	412	0.274
Sau3A I	69	276	0.184
Tru9 I	17	68	0.045
Xba I	7	42	0.028
Total	$\mathbf{6 7 8}$	$\mathbf{3 0 6 0}$	$\mathbf{2 . 0 3 8}$

Figure 3.5 summarises the distribution of variation detected in this survey within the Pachyrhizus cpDNA genome. As it can be seen, the most variable region of the genome was found to be that detected by probes MB9+10 (in the LSC region), where 1.045 mutations $/ \mathrm{kb}$ were detected. The least variable region was that scanned by probe MB8 (LSC region) with 0.286 mutations/kb.

3.3.1. Phylogenetic analysis

Phylogenetic analysis was conducted on both FOA and SOA data sets. Only the results of the SOA are presented since phylogenetic trees showed similar topology for both data sets, with the main difference occurring in regard to the clustering of two accessions of P. panamensis, which were more basal in the SOA analysis. Presence or absence of restriction sites are listed in Table 3.2 for the 29 accessions of Pachyrhizus and the three outgroups (Calopogonium caeruleum, C. mucunoides and Canavalia ensiformis) analysed. Details of each character included in the matrix (from Table 3.2) are provided in Table 3.3. Presence/absence of the initial 529 synapomorphic restriction fragments (FOA method), as well as their description, are shown in Appendices 2 and 3.

Figure 3.5. Distribution of the number of mutations per kilobase detected by cpDNA probes in Pachyrhizus. A linearised PstI restriction map of the Vigna genome and probes used is also shown (the two heavy lines beneath the map represent the inverted repeat: IR; LSC: large singlecopy region; SSC: small single-copy region). MB probes $3,4,11$ and 12 were not available and, thus, are not illustrated.

A further attempt at phylogenetic analysis which included the 13 length mutations (described in Table 3.3) as additional characters resulted in a cladogram which was insufficiently resolved and, therefore, uninformative. Thus, it was decided not to include length mutations in the SOA approach.

Phylogenetic analysis of the 30 restriction site characters resulted in the production of four equally parsimonious trees that were 90 steps in length. One of these trees is shown in Figure 3.6. These cladograms had CI, HI and RI values of $0.333,0.667$ and 0.902 , respectively; thus, there is a substantial amount of phylogenetic signal in the cpDNA data. A strict consensus tree (Figure 3.7) was calculated and resulted in a well resolved cladogram, although some polytomies were observed at terminal nodes.

Table 3.2. Restriction site data from analysis across total cpDNA genome used in the construction of Pachyrhizus phylogenetic trees.

Taxa †	Character number
	11111111112222222223
123456789012345678901234567890	
\#	1111111111222222233333333444
	890123456789012478901345678012
AC201	000110011100101010100000000011
AC208	000110011100101010100000000011
AC215	00011001110010101010000 ?000011
AC220	000110011100101010100000000011
AC222	000110001100101010100000000011
AC226	000110011100?01010100000000011
AC231	000110001100?01010100000000011
EC032	000000000011000101100000001010
EC502	000000000011000001100000001010
EC509	000000000011000001100000001010
EC531	000000000011000001100000001010
EC558	000000000011000001100000001010
EC565	000000000011000001100000001010
EW051	000000000011000001100001001010
EW203	000000001011000001000000001001
FW237	111101001011011010110000000101
FWLoc7	001101101011011010101110110001
PW055	$011100001 ? ? ? 001010100000000011$
PWTM58	001100?01???011010100000000011
TC350ch	$00100000000000100110000000001 ?$
TC354ch	00010000000000101010000?000011
TC536as	001100000000001010100000000011
TC550ji	000100000000001010100000000011
TC553ji	000110001100101010100000000011
TC556as	001100000000001010100000000011
TCNA10	00010000000000100110000 ? 000011
TW558	00110000000000101010000?000011
TWNanII	$00111000110010100110000 ? 000011$
TWTM48	001100001101001010100000000011
OUTcc	1010111111111110000111101101?1
OUTce	01100110001001010000?0111111?1
OUTcm	1010111011111010001011001101?1

\dagger : Key to accessions is listed in Table 2.1. Coding of accessions of the P. tuberosus cultigen types: as $=$ ashipa; ch $=$ chuin; $\mathrm{ji}=$ jíquima.
\#: Numbers in this header refer to the description of characters in Table 3.3; note that length mutations have not been included. The binary data represent presence (1) or absence (0) of a particular site mutation; missing data are indicated by '?'.

Figure 3.6. One of the four equally parsimonious trees generated from RFLP variation across total cpDNA genome in Pachyrhizus (Length $=90$ steps; $\mathrm{CI}=0.333 ; \mathrm{HI}=0.677 ; \mathrm{RI}=0.902$). Numbers above branches indicate the number of synapomorphies supporting each of them (see text for further details).

Figure 3.7. Strict consensus of four equally parsimonious trees generated from Pachyrhizus total cpDNA restriction site data (Length $=91$ steps; $\mathrm{CI}=$ $0.323 ; \mathrm{HI}=0.677 ; \mathrm{RI}=0.897$). Numbers above branches indicate synapomorphies; numbers below branches are bootstrap percentages (in boldface) and decay values. Clades and subclades are also indicated (see text for details).

Table 3.3. Description of the 43 restriction site and length mutations obtained in the study of total cpDNA RFLP variation.

Charac.	Probe	Enx.	Mutation \dagger (bp)	Charac.	Probe	Enz.	Mutation \dagger (bp)
1	MB1	\ddagger	L: $1681 \rightarrow 1619$	23	MB1	\ddagger	L: $1712 \rightarrow 1697$
2	MB2	\ddagger	L: $1659 \rightarrow 1631$	24	MB5+6	AluI	S: $2499 \approx 1833+$?
3	MB7	\ddagger	L: $1587 \rightarrow 1576$	25	MBl	\ddagger	L: $1556 \rightarrow 1513$
4	MBI	\ddagger	L: $1770 \rightarrow 1638$	26	MB9+10	\ddagger	L: $2265 \rightarrow 2079$
5	MB2	\ddagger	L: $1846 \rightarrow 1836$	27	MB9+10	HaelII	S: $1992 \approx 1516+$?
6	MB2	\ddagger	L: $1807 \rightarrow 1789$	28	MB9+10	HaelII	S: $1685 \approx 1387+$?
7	MB9+10	\ddagger	L: ? $\rightarrow 2499$	29	MB9+10	Hinfl	S: $1601 \approx 1537+$?
8	MB7	DraI	S: $1925 \approx 1626+$?	30	MB5+6	Hpall	S: $1915 \approx 1842+$?
9	MB2	Cfor	S: $1851 \approx 1828+$?	31	MB5+6	Hpall	S: $1723 \approx 1478+$?
10	MB7	Cfor	S: $3020 \approx 2931+$?	32	MB7	\ddagger	L: $2081 \rightarrow 2070$
11	MB7	Cfol	S: $1943 \approx 1922+$?	33	MB7	Hpall	S: $1740 \approx 1471+$?
12	MB7	Cfol	S: $1565 \approx 1544+$?	34	MB8	Hpall	S: $1730 \approx$?
13	MB9+10	Cfol	S: $2960 \approx 1584+1524$	35	MB9+10	Hpall	S: $1626 \approx 1333+$?
14	MB1	DdeI	S: $1730 \approx 1669+$?	36	MB9+10	Hpall	S: $1473 \approx$?
15	MB2	DdeI	S: $1944 \approx 1851+$?	37	MB9+10	Hpall	S: $1442 \approx$?
16	MB2	Ddel	S: $1822 \approx 1818+$?	38	MB5+6	Sau3Al	S: $1397 \approx 1332+$?
17	MB5+6	DdeI	S: $1805 \approx 1630+$?	39	MB8	\ddagger	L: $1593 \rightarrow 1579$
18	MB5+6	DdeI	S: $1711 \approx 1706+$?	40	MB9+10	Sau3AI	S: $1717 \approx 1640+$?
19	MB5+6	DdeI	S: $1699 \approx 1574+$?	41	MB9+10	Tru9I	S: 1319 \sim ?
20	MB5+6	DdeI	S: $1553 \approx 1527+$?	42	MB9+10	Tru91	S: $1223 \approx 1089+$?
21	MB7	DdeI	S: $1666 \approx 1524+$?	43	MB9+10	\ddagger	L: $1453 \rightarrow 1446$
22	MB9+10	DdeI	S: $1794 \approx 1482+$?				

\dagger : The letter ' S ' denotes a site mutation, whereas ' L ' represents a length mutation. A question mark indicates that a particular fragment(s) was missing or not detected.
\ddagger : Length mutations were detected as a similar size change of the restriction fragments in question produced by the restriction enzymes when using the same MB probe.

A retention index (RI) of 0.897 was obtained for the strict consensus tree, which is a good representation of similarity of taxa in a particular clade due to synapomorphies. However, homoplasy (HI) and consistency (CI) indices of 0.677 and 0.323, respectively, were obtained and results have to be interpreted with care. Therefore, the bootstrap method (100 replicates) and the decay index were implemented to obtain estimates of reliability for monophyletic groups produced after phylogenetic analysis (Figure 3.7).

The SOA method for analysis of restriction fragment data resolved Pachyrhizus as a monophyletic genus, i.e. derived from a single ancestral group, with P. ferrugineus as the most basal species. The strict consensus tree divided taxa into two clades and was rooted by the addition of three outgroups (Figure 3.7). These two clades were: (1) a group containing taxa of South American distribution (namely P. ahipa, P. tuberosus
and P. panamensis) and one accession of P. ferrugineus; and, (2) a clade containing all P. erosus taxa, outgroup OUTce and one accession of P. ferrugineus.

Each clade is described in turn below using the number codes of the Yam Bean Project for the different accessions, i.e. $\mathrm{A}=$ Pachyrhizus ahipa, $\mathrm{E}=P$. erosus, $\mathrm{F}=P$. ferrugineus, $\mathrm{P}=P$. panamensis, $\mathrm{T}=P$. tuberosus; $\mathrm{C}=$ cultivated material, and $\mathrm{W}=$ wild status.

Clade 1

This group of 20 accessions was clearly separated from the rest of the genus by six synapomorphies. Within this clade, four subclades were identified. The first subclade contained all accessions of P. ahipa clustering together (40% bootstrap value); of these, two accessions clustered with TC553, a jíquima belonging to the P. tuberosus complex. The node that supported this relationship was present in 59% of the bootstrap samples, supporting a moderate relationship among these accessions (Figure 3.7).

A second subclade contained only accessions of the P. tuberosus complex that clustered tightly together. This subclade was separated from the remaining ones by one synapomorphy and supported by a bootstrap value of 66% (Figure 3.7), which depicts a reliable representation of relationships. However, within the subclade, two accessions of the ashipa cultivar group (TC536 and TC556) together with TW558 resolved as a polytomy, with only 33 out of 100 bootstraps supporting this group of accessions.

A third subclade contained both accessions of P. panamensis examined in this study (PW055 and PWTM58) and the remaining wild accession of P. tuberosus (TWTM48). A moderate bootstrap value (40 out of 100 sets) identified this subclade as monophyletic and, therefore, genetic relationships should be treated with caution. A final subclade contained one accession only (FW237), positioned as the most basal taxon within clade 1 (Figure 3.7).

Clade 2

This clade, clearly supported by six synapomorphies and a bootstrap value of 70%, contained 10 accessions, i.e. all accessions of P. erosus, one of the outgroups and one accession of P. ferrugineus. With the exception of accession EC032, all EC taxa had identical cpDNA and were resolved as one subclade (with 58 bootstrap replicates present out of 100). Both accessions of wild P. erosus were placed outside this subclade with EW203 as the most basal taxon within this species. Relationships among P. erosus accessions were supported by a high bootstrap value of 99% (Figure 3.7). Outgroup OUTce represents one of the most basal accessions in this second clade, supported by a relatively high bootstrap value of 70\% (see 'Discussion' in this chapter). Finally, P. ferrugineus (accession FWLoc7) was the most ancestral species within clade 2.

Analysis of the decay index of the two plastome clades within the phylogeny of Pachyrhizus indicated that some of the structure of the minimal tree (93 steps) was lost when the consensus of trees ≤ 94 (one step longer than the minimal tree) was examined. Internal structure of the major clades was lost as trees further away from the minimal tree were considered; this happened mainly at terminal nodes. For instance, six accessions of P. tuberosus and two of P. panamensis in clade 1 were no longer resolved into dichotomies after 94 steps (Figure 3.7), and the subclade containing the P. tuberosus complex was no longer resolved after 95 steps. However, the two major clades were not lost until the consensus of trees ≤ 96 steps, i.e. three steps longer than the minimal tree, was examined (Figures 3.7 and 3.8). That is, the phylogenetic tree which has been recovered in this study had a moderate internal stability. Furthermore, the P. erosus plastome clade was strongly supported even in the consensus of trees ≤ 148 steps (55 steps longer than the minimal tree), after which the distinction among Pachyrhizus accessions (i.e. the ingroup) had been totally lost.

In general terms, the use of outgroups allows rooting such that the ingroup is monophyletic. However, rooting such that the ingroup, i.e. Pachyrhizus, was monophyletic with the three outgroups resolving as a sister group was possible in only
two of the taxa used for this purpose. The third outgroup was resolved within clade 2 (see 'Discussion' in this chapter).

3.3.2. Species/complex specific fragments

Thirty four fragments were identified as specific to particular taxa (Table 3.4). Restriction fragments were detected as specific to: (1) an accession within a species (e.g. the 1828 bp fragment in FW237 produced by PEC MB2 x CfoI); (2) a species (e.g. a 1794 bp fragment produced by PEC MB9 $+10 \times D d e \mathrm{I}$ that was specific to P. erosus); or, (3) a species group or complex (e.g. a 1711 bp fragment generated by PEC MB5+6 x DdeI, that was exclusive to accessions of the P. tuberosus complex and P. ahipa).

Figure 3.8. Tree showing the order of 'decay' of clades. This tree is the strict consensus of trees whose length is 96 . At 97 steps the clade containing all AC accessions and TC553 was no longer resolved, but the P. erosus clade was still present. The tree became an unresolved 'bush' at 56 steps away from the minimal tree, i.e a total length of 149 (see text for further details).

Table 3.4. Species/complex specific restriction fragments identified in a survey of total cpDNA variation in Pachyrhizus.

Probe	Enzyme	Fragment size (bp)	Details of specificity
MB1	BamHI	1638	EW203 \& TC350
MB9+10	BamHI	2499	P. ferrugineus accessions (FW237 \& FWLoc7)
MB2	CfoI	1828	FW237
MB7	CfoI	1943	P. erosus accessions \& TC350
MB7	CfoI	1544	P. ahipa accessions, TC553 (jiquima) \& TWNanII
MB9+10	CfoI	1790	FWLoc7
MB1	DdeI	2259	FWLoc7
MB1	DdeI	1669	FWLoc7
MB1	DdeI	1805	Chuins: TC350 \& TC354
MB2	DdeI	1822	AC226
MB5+6	DdeI	1711	P. ahipa accessions \& P. tuberosus complex
MB5+6	DdeI	1669	P. ahipa accessions \& P. tuberosus complex
MB5+6	DdeI	1630	P. ahipa accessions, TC553 (jiquima) \& TWNanII
MB5+6	DdeI	1527	TC553 (jiquima) \& TWNanII
MB7	DdeI	1764	EW203
MB9+10	DdeI	1794	P. erosus accessions
MB5+6	AluI	1833	EC032
MB1	BglII	1513	AC201 \& TC354 (chuin)
MB9+10	ClaI	2079	FWLoc7
MB2	HaeIII	$1644 \dagger$	P.panamensis accessions \& FW237
MB9+10	HaeIII	1992	P. erosus accessions \& TC350 (chuin)
MB9+10	HinfI	1601	EW203
MB2	HpaII	1603	TC550 (jiquima)
MB2	HpaII	1549	FW237
MB5+6	HpaII	$1723 \dagger$	FWLoc7
MB7	HpaII	1991	FW237
MB7	HpaII	1471	FWLoc7
MB8	HpaII	$1730 \dagger$	FWLoc7
MB9+10	HpaII	$1473 \dagger$	FWLoc7
MB9+10	HpaII	$1442 \dagger$	FWLoc7
MB9+10	Sau3AI	$1717 \dagger$	FW237
MB9+10	Sau3AI	1559	P. panamensis accessions
MB9+10	Tru9I	1319	P. ferrugineus accessions \& EW203
MB9+10	XbaI	1446	AC201, AC220, TC556 (ashipa) \& TC553 (jiquima)

\dagger : Absent fragments representing site mutations, with loss of the expected smaller bands.

3.4. Results: Restriction site variation within a PCR-amplified cpDNA region

At the outset of this study it was intended to amplify Pachyrhizus DNA using both a larger number of universal primers (Demesure et al., 1995) and accessions. Amplification conditions and concentrations had to be optimised empirically, and PCR amplification was only successful for five of the nine sets of primers tested. The same 32 accessions used for analysis of total cpDNA variation (see previous section) were subjected to PCR amplification; of these, 21 accessions (including one outgroup; see Table 2.1) yielded a PCR product which was subsequently used for the PCRRFLP assay described in this section. The remaining primer sets and accessions either failed, or yielded a very faint PCR product or a multiple-band PCR amplicon.

The six restriction enzymes used in this study successfully digested Pachyrhizus DNA to reveal RFLP variation such as that illustrated in Plates 3.6 to 3.10. A total of 142 restriction fragments were detected by the analysis. Of these, 64 (45\%) were monomorphic, as shown for example in Plate 3.6; 50 fragments (35\%) were synapomorphic and thus cladistically informative (e.g. Plate 3.7); and, 28 fragments (20%) were unique to a particular accession, mainly those of P. ferrugineus and the operational outgroup included in the study.

The six restriction enzymes used in this PCR-RFLP variation survey sampled 568 bp of Pachyrhizus DNA (Table 3.5), which represent approximately 0.38% of the cpDNA genome, assuming a 150 kb average size. The highest number of base pairs was sampled by enzyme Hsp92II, with $112 \mathrm{bp}(0.075 \%)$, while the lowest number was obtained by HindIII where only $72 \mathrm{bp}(0.048 \%)$ were sampled.

Figure 3.9 summarises the distribution of variation detected in this survey within the Pachyrhizus cpDNA genome. The most variable PCR-amplified region of the genome was found to be that amplified by primer pair KK, where 0.00465 mutations/bp were detected. The least variable region was that amplified by primer pair HK, with 0.00059 mutations/bp.

Plate 3.6. Restriction digests of a cpDNA amplified fragment using primer pair ML and enzyme CfoI. Note the five monomorphic bands in positions $737 \mathrm{bp}, 577 \mathrm{bp}, 474 \mathrm{bp}, 448 \mathrm{bp}$ and 375 bp .

From left to right: 1, AC201; 2, AC220; 3, AC231; 4, EC032; 5, EC509; 6, EC558; 7, EW203; 8, FW237; 9, FWLoc7; 10, PW055; 11, PWTM58; 12, TC556; 13, TC536; 14, TC350; 15, TC354; 16, TC553; 17, TC550; 18, TWNanII; 19, TW558; 20, TWTM48; and, 21, OUTcc. M, molecular size standard (1 kb ladder, Gibco).

Plate 3.7. Restriction site variation within the cpDNA fragment amplified with primer pair KK and digested with RsaI. A 701 bp fragment is present in all accessions of P. ahipa (lanes $1-3$), P. panamensis (lanes $10 \&$ $11)$ and the P. tuberosus complex (except for accession TC350; lanes 12-13 \& 15-20). Note also the 572 bp and 540 bp bands in all P. erosus taxa (lanes 4-7) and accessions FWLoc7 (lane 9) and TC350 (lane 14). See text and Table 3.7 for further details.

From left to right: 1, AC201; 2, AC220; 3, AC231; 4, EC032; 5, EC509; 6, EC558; 7, EW203; 8, FW237; 9, FWLoc7; 10, PW055; 11, PWTM58; 12, TC556; 13, TC536; 14, TC350; 15, TC354; 16, TC553; 17, TC550; 18, TWNanII; 19, TW558; 20, TWTM48; and, 21, OUTcc. M, molecular size standard (1 kb ladder, Gibco).

Plate 3.8. Restriction digests of the 2580-bp PCR-amplified cpDNA fragment in Pachyrhizus; primer pair KK and restriction enzyme Hsp92II were used. An extra site in the 998 bp fragment (PWTM58, lane 11) replaced it with a 685 bp band (lanes $1-10 \& 12-21$) and a small fragment (missing). Bands observed near the 517 bp area were partial digests. See text and Table 3.7 for further details.

From left to right: 1, AC201; 2, AC220; 3, AC231; 4, EC032; 5, EC509; 6, EC558; 7, EW203; 8, FW237; 9, FWLoc7; 10, PW055; 11, PWTM58; 12, TC556; 13, TC536; 14, TC350; 15, TC354; 16, TC553; 17, TC550; 18, TWNanII; 19, TW558; 20, TWTM48; and, 21, OUTcc. M, molecular size standard (1 kb ladder, Gibco).

Plate 3.9. Restriction digests of the 3000-bp PCR-amplified cpDNA fragment in Pachyrhizus; primer pair CD and restriction enzyme Rsal were used. Two autapomorphies are evident: (1) a 1994 bp fragment in lane 9 (FWLoc7); and, (2) a 935 bp band in lane 21 (outgroup OUTcc). See text and Table 3.7 for further details.

From left to right: 1, AC201; 2, AC220; 3, AC231; 4, EC032; 5, EC509; 6, EC558; 7, EW203; 8, FW237; 9, FWLoc7; 10, PW055; 11, PWTM58; 12, TC556; 13, TC536; 14, TC350; 15, TC354; 16, TC553; 17, TC550; 18, TWNanII; 19, TW558; 20, TWTM48; and, 21, OUTcc. M, molecular size standard (1 kb ladder, Gibco).

Plate 3.10. Restriction site variation within the cpDNA fragment amplified using primer pair KK and digested with HaeIII. Autapomorphic site absence for accession FWLoc7 (lane 9; position 2174 bp) and presence for the remaining Pachyrhizus taxa (position 1686 bp). Small bands were the result of partial restriction enzyme digestion. See text and Table 3.7 for further details.

From left to right: 1, AC201; 2, AC220; 3, AC231; 4, EC032; 5, EC509; 6, EC558; 7, EW203; 8, FW237; 9, FWLoc7; 10, PW055; 11, PWTM58; 12, TC556; 13, TC536; 14, TC350; 15, TC354; 16, TC553; 17, TC550; 18, TWNanII; 19, TW558; 20, TWTM48; and, 21, OUTcc. M, molecular size standard (1 kb ladder, Gibco).

Table 3.5. Number of base pairs sampled by six restriction enzymes used in the PCR-RFLP variation survey in Pachyrhizus.

Restriction enzyme	Total number of bands detected	Number of base pairs sampled	Proportion of total cpDNA genome (\%)
Cfo I	20	80	0.053
Hae III	25	100	0.067
Hind III	18	72	0.048
Hpa II	25	100	0.067
Hsp92II	28	112	0.075
Rsa I	26	104	0.070
Total	$\mathbf{1 4 2}$	$\mathbf{5 6 8}$	$\mathbf{0 . 3 8 0}$

Figure 3.9. Distribution of the number of mutations per base pair detected by six restriction enzymes in five PCR-amplified cpDNA regions (description of primer pairs is shown in Table 2.4).

3.4.1. Phylogenetic analysis

Phylogenetic analysis was conducted on both FOA and SOA data sets. In this section, however, only the results of the SOA approach are presented since phylogenetic trees produced from this method showed better resolution with taxa arranged into dichotomies. In contrast, phylogenetic trees generated from an FOA analysis resolved most taxa of P. ferrugineus, P. tuberosus and P. panamensis into polytomies, and were largely uninformative.

After an SOA analysis of the data, the 50 synapomorphic fragments were interpreted as being representative of 19 site mutations (e.g. Plates 3.9 and 3.10); length mutations were not detected in the five cpDNA regions examined. No major structural rearrangements, such as large insertions, deletions or inversions were observed in the 30 primer/enzyme combinations studied in this section.

Presence or absence of restriction sites are listed in Table 3.6 for the 20 accessions of Pachyrhizus and one outgroup (Calopogonium caeruleum). Details of the 19 characters included in the matrix (from Table 3.6) are provided in Table 3.7. Presence/absence of the 50 initial characters and their description, i.e. the synapomorphic restriction fragments for the FOA approach, are shown in Appendices 4 and 5.

Phylogenetic analysis of the 19 restriction site characters resulted in the production of 33 equally parsimonious trees that were 27 steps in length. One of these trees is shown in Figure 3.10. These trees had CI, HI and RI values of $0.704,0.296$ and 0.934 , respectively, which reflect a low degree of homoplasy and a substantial amount of phylogenetic signal in the cpDNA data. The strict consensus tree showed a well resolved topology (Figure 3.11); however, a polytomy occurred among several accessions of the P. tuberosus complex, due possibly to the low number of synapomorphic characters detected in the accessions of this species.

SOA of PCR-amplified chloroplast regions resolved Pachyrhizus as a monophyletic genus with P. ferrugineus as the most basal taxon. The strict consensus tree divided accessions into two clades and was rooted by the addition of outgroup OUTcc (Figure 3.11). These two clades were: (1) a group of taxa of South American distribution (P. ahipa, P. tuberosus and P. panamensis) and one accession of P. ferrugineus; and, (2) a clade containing all accessions of P. erosus, and one accession of P. tuberosus and P. ferrugineus each (TC350 and FW237, respectively). In general terms, these clades were highly congruent with those obtained after SOA of total genomic cpDNA with the main difference occurring in regard to the positioning of P. ahipa and P. tuberosus accessions (see below).

Clade 1

Clade 2

Figure 3.10. One of the 33 equally parsimonious trees derived from restriction site analysis of PCR-amplified cpDNA regions in Pachyrhizus (Length $=27$ steps; $\mathrm{CI}=0.704 ; \mathrm{HI}=0.296 ; \mathrm{RI}=0.934$). Numbers above branches indicate the number of synapomorphies supporting them (see text for further details).

Figure 3.11. Strict consensus of 33 equally parsimonious trees generated from restriction site analysis of PCR-amplified cpDNA regions in Pachyrhizus (Length $=27$ steps; $\mathrm{CI}=0.704 ; \mathrm{HI}=0.296 ; \mathrm{RI}=0.934$). Numbers above branches indicate synapomorphies; numbers below branches are bootstrap percentages (in boldface) and decay values. Clades and subclades are also indicated (see text for details).

Table 3.6. Restriction site data obtained from PCR-amplified regions of Pachyrhizus cpDNA.

Taxa \dagger	Character \ddagger
	1234567890123456789
AC201	$0 ? 11 ? 10000011000100$
AC220	$0 ? 11 ? 10000011000100$
AC231	$0 ? 11 ? 10000011001100$
EC032	$0 ? 11 ? 01001111000100$
EC509	$0 ? 11 ? 01001111000100$
EC558	$0 ? 11 ? 01001111001100$
EW203	$0 ? 11 ? 01011111001100$
FW237	$1 ? 11000011111001100$
EWLoc7	$0 ? 01000010110001110$
PW055	0010000010011001100
PWTM58	$0010100110 ? 11001100$
TC556as	0010100010011000100
TC536as	$001010001001100 ? 100$
TC350ch	$011100001111100 ? 100$
TC354ch	$001000001001100 ? 100$
TC553ji	0010100010011000100
TC550ji	0010100010011000100
TWNanII	0010100010011000101
TW558	0010100010011000101
TWTM48	0010100010011000101
OUTCC	$001010001110 ? 110010$

\dagger : Key to accessions is listed in Table 2.1. Coding of accessions of the P. tuberosus cultigen types: as = ashipa; ch = chuin; $\mathrm{ji}=$ jíquima.
\ddagger : Numbers in this header refer to description of characters shown in Table 3.7. The binary data represent presence (1) or absence (0) of a particular site mutation; missing data are indicated by '?'.

Clade 1

This group of 14 accessions was separated from the rest of the genus by one synapomorphy; the node that clustered taxa in this clade was present in 51% of the bootstrap samples, supporting a moderate relationship among these accessions (Figure 3.11). Within this first clade, three subclades were distinguished. A first subclade contained all P. ahipa accessions (AC) clustering tightly together (100\% bootstrap value), being more basal than taxa of P. tuberosus and P. panamensis that were resolved in other subclades. The node that separated this subclade from the remaining
of clade 1 was strongly supported with 79% of the bootstrap samples being present and two synapomorphies.

Table 3.7. Description of the 19 restriction site mutations obtained in the study of PCR-amplified cpDNA regions of Pachyrhizus.

Character	Primer pair \dagger	Restriction enzyme	Mutation (bp) \ddagger
$\mathbf{1}$	HK	Hsp92II	$150 \approx 100+50$
$\mathbf{2}$	KK	CfoI	$460 \approx 260+150$
$\mathbf{3}$	KK	HaeIII	$2174 \approx 1686+676$
$\mathbf{4}$	KK	HaeIII	$267 \approx 150+?$
$\mathbf{5}$	KK	HindIII	$435 \approx 398+?$
$\mathbf{6}$	KK	HpaII	$442 \approx 300+?$
$\mathbf{7}$	KK	HpaII	$442 \approx 200+?$
$\mathbf{8}$	KK	Hsp92II	$998 \approx 685+490$
$\mathbf{9}$	KK	Hsp92II	$298 \approx ?$
$\mathbf{1 0}$	KK	RsaI	$701 \approx 572+?$
$\mathbf{1 1}$	KK	RsaI	$556 \approx 540+?$
$\mathbf{1 2}$	CD	HaeIII	$2529 \approx(462+450)+?$
$\mathbf{1 3}$	CD	RsaI	$1994 \approx 1244+791$
$\mathbf{1 4}$	CS	HpaII	$442 \approx 395+?$
$\mathbf{1 5}$	CS	RsaI	$1287 \approx 1215+?$
$\mathbf{1 6}$	ML	CfoI	$251 \approx ?$
$\mathbf{1 7}$	ML	HaeIII	$1927 \approx 951+882$
$\mathbf{1 8}$	ML	HpaII	$1268 \approx 636+587$
$\mathbf{1 9}$	ML	Hsp 92 II	$724 \approx 621+?$

\dagger : Key and description of the primer pairs used in this survey are shown in Table 2.4.
\ddagger : A question mark indicates that a particular fragment(s) was missing or not detected.

A second subclade contained all accessions of the P. tuberosus complex and the two PW accessions examined in this study (Figure 3.11). This subclade was separated from the other subclades by one synapomorphy and was strongly supported by a bootstrap value of 79 out of 100 random replicates. Both PW accessions were resolved as the most basal taxa within this subclade. However, one of these PW accessions (namely PW055) clustered together with TC354 (a chuin) and had identical cpDNA. Finally, seven accessions of P. tuberosus were poorly resolved at terminal levels of this subclade; six of them exhibited identical cpDNA and were resolved into a polytomy (42% bootstrap value). TC536 (an ashipa) was basal to this group and the node supporting this relationship had a low bootstrap value of 48%.

The last subclade contained one accession only (FWLoc7), as the most basal taxon within clade 1. However, the inclusion of FWLoc7 within clade 1 was not well supported as it was no longer resolved in this clade when the consensus of trees that were 28 steps in length was examined (i.e. one step away from the minimal length; Figure 3.11).

Clade 2

This second clade contained a total of six accessions and the node that clustered them was strongly supported by a bootstrap value of 72% (Figure 3.11). In this clade, all P. erosus accessions were resolved together as a subclade and the node that clustered taxa of this species showed a bootstrap value of 76%. In addition, one accession of P. tuberosus (TC350, a chuin) resolved as a sister taxon to the P. erosus subclade; this sister-group relationship was supported by a moderate bootstrap value of 50%. Finally, one accession of P. ferrugineus (FW237), as in clade 1, was the most basal taxon within this second group (72% bootstrap value).

Analysis of the decay index of the two plastome clades within the phylogeny indicated that most of the structure of the minimal tree (27 steps) was lost when the consensus of trees ≤ 29 (only two steps longer than the minimal tree) was examined. At this stage all taxa were no longer resolved except for the P. erosus and P. ahipa subclades (Figure 3.12). The subclade containing P. panamensis taxa and the P.tuberosus complex was no longer resolved after 28 steps, i.e. just one step longer than the minimal tree (Figures 3.11 and 3.12). After calculating a strict consensus of trees ≤ 30 steps (three steps longer than the minimal tree), the cladogram became an unresolved bush; subsequently, the distinction among Pachyrhizus accessions (i.e. the ingroup) had been totally lost. Therefore, decay values indicated that the internal structure of the phylogenetic tree recovered in this study was not particularly stable.

Figure 3.12. Tree showing the order of 'decay' of clades. The tree illustrated here is the strict consensus of trees whose length is 29 . Almost all taxa were no longer resolved, except for the P. erosus and P. ahipa subclades (note that TC350 is no longer resolved in clade 2). The tree became an unresolved 'bush' at three steps away from the minimal tree length (see text for further details).

Finally, and in addition to the two clades described, the cladogram was rooted by the use of outgroup OUTcc which imparted direction upon the tree and allowed polarity determination (Figures 3.10 to 3.12).

3.4.2. Species/complex specific fragments

Eleven fragments were identified as specific to particular taxa (Table 3.8); some examples are shown in Plates 3.11 and 3.12. Restriction fragments were detected to be specific to: (1) an accession within a species (e.g. the 1994 bp fragment in PW055 produced by primer/enzyme combination CD x $R s a I$); (2) a species (e.g. a 621 bp fragment produced by primer pair ML after digestion with $H s p 92 \mathrm{II}$, and specific to TW accessions); or, (3) a species group or complex (e.g. a 490 bp fragment generated by the combination KK x Hsp92II, that was present in accessions of the P. tuberosus complex and P. panamensis).

Table 3.8. Species/complex specific restriction fragments identified in a survey of PCR-amplified cpDNA regions in Pachyrhizus.

Primer pair	Enzyme	Fragment size $(\mathbf{(b p})$	Details of specificity
HK	Hsp92II	$150 \dagger$	FW237
KK	CfoI	750	TW accessions
KK	CfoI	460	P. panamensis accessions \& P. tuberosus complex
KK	HaeIII	$1686 \dagger$	FWLoc7
KK	HindIII	435	FW accessions, PW055 \& chuins (TC350, TC354)
KK	Hsp92II	998	PWTM58
KK	Hsp92II	490	P. panamensis accessions \& P. tuberosus complex
KK	RsaI	572	P. erosus accessions, FWLoc7 \& TC350 (chuin)
CD	RsaI	1994	PW055
ML	HpaII	$1268 \dagger$	FWLoc7
ML	Hsp92II	621	TW accessions

\dagger : Absent fragments representing site mutations, with loss of the expected smaller bands.

3.5. Results: an approach of combined restriction site data analysis

A further analysis involved the combination of restriction site characters obtained from both studies of the cpDNA genome, i.e. merging the 30 SOA site mutations obtained from the study of RFLP variation across the total cpDNA genome (section 3.3.1) with the 19 SOA site mutations yielded by the PCR-RFLP approach (section 3.4.1). The resulting data set was subjected to phylogenetic analysis using PAUP to investigate if the resolution of species relationships might be improved.

The Dollo algorithm produced eight equally parsimonious trees each of 102 steps (CI $=0.471 ; \mathrm{HI}=0.529 ; \mathrm{RI}=0.887$); one of these is presented in Figure 3.13. The strict consensus of these trees is illustrated in Figure 3.14 and includes bootstrap percentages and decay values mapped along certain branches (viz., those that define clades critical to interspecific relationships). CI, HI and RI values of $0.466,0.534$ and 0.884 , respectively, represent a moderate robustness of this consensus tree conferring reliability to the phylogenetic relationships it described.

In general terms, and as expected, phylogenetic relationships suggested by this analysis were similar to those revealed in the separate analyses of cpDNA variation, with the main difference occurring in the positioning of accessions of P. panamensis and accessions belonging to the P. tuberosus complex (see below for details). Phylogenetic analysis of a combined 49-character data matrix resolved Pachyrhizus as a monophyletic genus, with P. ferrugineus as the most ancestral species. The strict consensus tree was rooted by the use of the operational outgroup OUTcc (Figure 3.14) and reveals four clades, as follows:

Clade 1

This first clade contained all accessions of South American distribution, except for accession TC350 that was present in clade 2. This group of 13 accessions was separated from the rest of the genus by two synapomorphies; furthermore, the node that clustered taxa in this clade was present in 41% of the bootstrap samples,
supporting moderate relationships among these accessions (Figure 3.14). Within this first clade, three subclades were distinguished. The first subclade contained all AC accessions clustering tightly together (93% bootstrap value) and one accession of P. tuberosus (TC553, a jíquima) as a sister taxon to these P. ahipa accessions (53\% bootstrap value). The node that separated this subclade from the remaining accessions in clade 1 was supported by a bootstrap value of 43% and three synapomorphies.

A second subclade contained accessions of the P. tuberosus complex. This subclade was separated from the other subclades by four synapomorphies and was supported by a bootstrap value of 43 out of 100 random replicates. Within this subclade, all TC accessions were resolved into a polytomy at terminal branches (bootstrap, 25\%), whereas TW accessions clustered more internally in the cladogram as sister taxa to these TC materials.

The last subclade contained both PW accessions as the most basal group within clade 1 (40% bootstrap value); the node that separated this group from the remaining subclades was supported by a bootstrap value of 41% and two synapomorphies (Figure 3.14).

Clade 2

Clade 2 showed the highest bootstrap percentages in the cladogram and contained a total of five accessions; the node that united them was strongly supported by eight synapomorphies and a bootstrap value of 100% (Figure 3.14). In this clade, all P. erosus accessions were resolved together as a subclade and the node that clustered taxa of this species showed a bootstrap value of 100%. In addition, one accession of P. tuberosus (TC350, a chuin) is strongly allied with this P. erosus subclade supported by a bootstrap value of 100%.

Figure 3.13. One of the eight equally parsimonious trees produced by SOA using a combined data matrix including a total of 49 restriction site characters (Length $=102$ steps; $\mathrm{CI}=0.471 ; \mathrm{HI}=0.529 ; \mathrm{RI}=0.887$). Numbers above branches indicate the number of synapomorphies supporting them (see text for further details).

Figure 3.14. Strict consensus of eight equally parsimonious trees produced by SOA using a combined data matrix with a total of 49 cpDNA restriction site characters (Length $=102$ steps; $\mathrm{CI}=0.466 ; \mathrm{HI}=0.534 ; \mathrm{RI}=0.884$). Numbers above branches indicate synapomorphies; bootstrap values ($\%$, in boldface) and decay indices are mapped below each branch. Clades and subclades are also indicated (see text for details).

Clades 3 and 4

Both accessions of P. ferrugineus are the most basal taxa in the cladogram, with FW237 and FWLoc7 defining clades 3 and 4, respectively (Figure 3.14).

As in the two previous phylogenetic analyses, decay indices indicated that some of the internal structure of the major clades was lost as trees further away from the minimal tree were considered. When the consensus of trees ≤ 104 step was examined, i.e. two steps longer than the minimal tree, most of the four clades were no longer resolved (for example, branches containing all AC and PW taxa collapsed into polytomies). At this same level, the subclade containing the P. tuberosus complex was still recovered as a polytomy comprising five accessions (Figure 3.15.A), but was no longer resolved after 105 steps. Clade 3 (FW237) was rapidly lost when the consensus of trees ≤ 103 steps was examined, i.e. just one step longer than the minimal tree (Figures 3.14 and 3.15.A). The P. erosus clade and accession FWLoc7 (clade 4) were strongly supported in the consensus of trees ≤ 108 steps (six steps longer than the minimal tree), after which the distinction among accessions of the ingroup (Pachyrhizus) was totally lost (Figure 3.15.B). Therefore, the tree recovered after phylogenetic analysis of the combined 49-character data matrix had a moderate internal stability.
(A)

Clade 1

Clade 2
(B)

Figure 3.15. Trees showing the order of 'decay' of clades. (A) This tree is the strict consensus of trees whose length is 104; note that most of the four clades has been lost. At 104 steps the clade containing all AC accessions and TC553 was no longer recuperated, but the P. erosus clade and part of the P. tuberosus complex were still present. (B) The tree became an unresolved 'bush' at seven steps away from the minimal tree, i.e. a length of 109 (see text for further details).

3.6. Discussion

3.6.1. RFLP variation across the total epDNA genome

Nature of cpDNA variation in Pachyrhizus

A maximum of nine site mutations was obtained with any one of the 15 restriction enzymes used in this study (Table 3.3), which made scoring of restriction fragment variation straightforward. Bremer (1991) expressed concern at the different ways of scoring data in cpDNA-based studies and analysed this problem in detail. Four possible data scoring methods have been described: two RFLP methods, namely FDA and FOA; and, two site occurrence methods which include SOA and SMA (see also section 3.1.4). Restriction fragments (i.e. RFLP methods) tend not to be used for parsimony analysis very often, due to the problem of introducing high levels of homoplasy in the data. In addition, restriction fragments may not evolve independently (i.e. three restriction fragments representing one site mutation), therefore introducing bias into the results (Swofford \& Olsen, 1990). Palmer (1987) has reviewed the advantages of site occurrence over RFLP methods of analysis; such advantages have lead most workers in cpDNA systematics to use site occurrence approaches, particularly the SOA method.

In the present study of RFLP variation in Pachyrhizus cpDNA, it was possible to use successfully both fragment occurrence (FOA) and site occurrence (SOA) approaches in phylogeny reconstruction. A comparative examination of the use of the FOA and SOA methods yielded similar topologies, with consensus trees showing a much clearer resolution after SOA. In this latter approach, comparison of restriction sites allowed for interpretation of fragment pattern differences as individual mutations that affected the presence/absence and position of restriction sites. The great majority of mutations identified were restriction site changes assumed to be due to single nucleotide substitutions within the 4 - or 6 -bp site surveyed. Several length mutations were also resolved, but were omitted from phylogenetic analysis. Given the increased confidence in homology involved when using site data, the extra effort over

Pachyrhizus fragment data is well worth the investment. However, the dangers of including non-homologous characters in parsimony analyses seem to be overestimated, and choice of the analysis method should be dependent on a trade-off between accuracy and resources.

Phylogenetic relationships

The present study has demonstrated that cladistic analysis of RFLP variation across the total cpDNA genome can contribute to the reconstruction of evolutionary relationships in Pachyrhizus. The strict consensus tree (Figure 3.7) provides valid phylogenetic hypotheses for relationships among the five species. Polytomies observed in the terminal nodes of clades 1 and 2 represent regions where clustering differences occurred; however, most taxon relationships were well resolved. The two clades identified in this study are discussed below.

Clade 1: A South American evolutionary branch

This first clade comprised a total of 20 taxa, most of them of South American distribution, except for FW237 and PW055 that were originally collected in Central America. The clade was clearly separated from the rest of the genus and appears to have split away early in the evolutionary history of Pachyrhizus.

Clade 1 contained accessions of P. ahipa, P. tuberosus and P. panamensis plus one additional accession of P. ferrugineus (FW237) that represents the basal-most species within this group. Despite the lack of support for its internal structure, as revealed by moderate bootstrap values ranging from 33% to a maximum of 74%, the clade remains distinct from the rest of the genus and contains four subclades (Figure 3.7).

One subclade within clade 1 contained all accessions of P. ahipa and one accession of the P. tuberosus complex, supported by a bootstrap value of 40%. The clustering of TC553, a jíquima, with two Bolivian accessions of P. ahipa (AC222 and AC231) was supported by a bootstrap value of 59% and a decay index of ≤ 95. There are no
records of P. ahipa plants that are known to be undoubtedly wild; moreover, a wild progenitor of this species has yet to be identified and its geographical origin remains obscure (Sørensen, 1996). The phylogeny produced from SOA across the cpDNA genome would suggest that P. ahipa is possibly derived from P. tuberosus, since the latter one resolved closely within it.

Relationships between P. ahipa and P. tuberosus have been considered previously (Døygaard \& Sørensen,1998; Ørting et al., 1996; Sørensen et al., 1997) without formulation of a clear hypothesis as to their phylogeny. Furthermore, palynological similarities have indicated a closer relation of P. ahipa with P. panamensis than with P. tuberosus (Sørensen, 1989). Brücher (1989) suggested that P. ahipa was probably selected from its wild material growing in cejas de montaña (\approx cloudforests). It is, therefore, of interest that P. ahipa and P. tuberosus taxa have clustered together within a subclade of the strict consensus tree (Figure 3.7); this affinity suggests that P. ahipa is possibly derived from materials of the P. tuberosus complex, providing new information concerning the evolution of the genus.

A second subclade within clade 1 comprised eight accessions of the P. tuberosus complex - namely ashipas, chuins, one jíquima and two TW accessions, identifying them as a monophyletic entity (Figure 3.7). This subclade was supported by one synapomorphy and was recovered in 66% of bootstrap replicates (decay index ≤ 95). All accessions in this subclade occur sympatrically in the Amazonian basin, except for TC550 (a jíquima) and both TW accessions collected in western Ecuador. The different cultigen types did not cluster together in this subclade; for example, the two chuins examined in this study clustered either with a jíquima (TC550) or with an escape (TCNA10) collected in Zamora Chinchipe, Ecuador, which resembles an ashipa type.

All accessions representing wild material of P. tuberosus occur on the western slopes of the Andes, without any record of cultivated material having been identified in their immediate surrounding areas. Morphologically, the wild material of this species is very similar to the ashipa genotypes and its foliage is evergreen (i.e. P. ferrugineus-
like). Present cpDNA data did not distinguish TW558, an accession of wild provenance (western Ecuador), from TC536 and TC556, both ashipas from the multituberous type present in the Amazonian basin. However, a bootstrap value of 33% and decay index ≤ 94 indicate that this close relationship between these wild and cultivated forms of P. tuberosus should to be interpreted with caution. These findings, therefore, provide some basis to a very close relationship between the ashipas and certain wild P. tuberosus taxa.

In addition, the positioning of TW accessions in separate regions of clade 1 (clustering either with accessions of P. tuberosus or P. panamensis) would suggest that these wild populations are in fact true remnants of Andean origin (and not man-mediated introductions or escaped forms), which in turn gave rise to the diversity within the P. tuberosus complex and possibly P. ahipa. It should be noted that RFLP variation across the cpDNA genome appears to suggest the presence of two different lineages of TW taxa placed in widely separated regions of clade 1. A first TW lineage was resolved together with P. panamensis, while a second lineage was present in the P. tuberosus complex (Figure 3.7).

A third subcluster in clade 1 contained accessions of wild status only, i.e. of P. panamensis (PW) and P. tuberosus (TW) taxa (Figure 3.7). This subclade, although present in only 40% of the bootstrap replicates (decay index ≤ 94), occurred in all equally parsimonious trees at basal nodes. Hence, it is possible that both species originated from the same early ancestor (i.e. P. ferrugineus) and have later diverged parapatrically as a response to environmental changes (deciduous vs. evergreen rainforest) and, in the case of P. tuberosus, subsequent cultivation and man-made selection.

The similarity of PW and TW taxa identified by cpDNA data in this third subcluster could possible be suggestive of a phenomenon of vicariance, with two vicariants (i.e. similar taxa occupying current separate geographical/ecological areas) represented by P. panamensis and wild P. tuberosus. Stace (1989) explains that vicariants may arise in various ways; however, in the light of the current data two hypotheses apply: (1) a
formerly and continuously distributed taxon (i.e. ecotypes of P. ferrugineus) becoming separated into different geographic areas and there undergoing divergent evolution; or, (2) parallel evolution of two species (i.e. PW and TW taxa) from a common ancestor (P. ferrugineus) in two separate areas (deciduous and evergreen rainforests in southern regions of Mesoamerica and northern areas of South America, respectively).

A final subclade, comprised only of accession FW237, occurred as the most basal (i.e. primitive) taxon within clade 1. Surprisingly, both FW accessions examined in this study did not cluster together, suggestive of intraspecific cpDNA diversity (see later), but were resolved always at basal, rather than terminal, nodes of the cladogram.

Clade 2: A Mesoamerican evolutionary branch

All Pachyrhizus taxa located in the second, strongly supported clade of the strict consensus tree have a Central American distribution, i.e. occur from Costa Rica to Mexico, except for EC565, an accession introduced to the Philippines. Outgroup OUTce was also resolved within clade 2. The anomalous positioning of this outgroup might be a consequence of an artefact of the scoring method used (rather than a phylogenetic event per se). Genomic DNA of the three outgroups only became available later in the analysis and, consequently, data of their respective luminographs (which included the same size marker and additional Pachyrhizus taxa to enable correct band size evaluation) were incorporated in a subsequent stage. Care was taken to ensure that fragments of the same size and detected with adjacent probes were scored only once. Despite all efforts, non-independent fragments might apparently have been scored resulting in an artificial increase in homology. Therefore, OUTce will be ignored for the purposes of this discussion.

Within clade 2, a subclade comprising five EC accessions with identical cpDNAs was evident, although only a moderate bootstrap value of 58% and a decay index ≤ 94 supported this grouping. These five accessions did not differ in their cpDNA, despite their different geographical origin/provenance and the fact that they represent different landraces. Therefore EC502 ($=$ var. Cristalina) and EC558 ($=$ Nayarit type) were both
placed within this subclade. This low degree of differentiation may reflect one of the potential limitations in using cpDNA at the generic level, i.e. the lack of sufficient variation (Crawford, 1990). Thus, while the conservative nature of cpDNA removed convergent site gains and losses as a problem, this same conservatism prevented a complete resolution of relationships among all taxa studied.

Interestingly, accession EC032 was not resolved within the EC subclade described above. In contrast, this accession collected in the Yucatán peninsula, Mexico, was positioned at a more basal level, strongly supported by 80% of the bootstrap replicates and a decay index of ≤ 96. Therefore, two separate 'lineages' of cultivated P. erosus were evident within the consensus tree: firstly a group of cultivars from southern Mexico and regions further south in Central America, and second, a cultivar(s) from the Yucatán peninsula. This finding concurs with field observations in Central Mexico and Yucatán by Sørensen (1996), where a high uniformity of cultivars from these latter areas was evident, in contrast to the considerable diversity observed in southern localities. The same author suggested that such uniformity within the Central Mexico and Yucatán regions might be the result of earlier introductions from southern localities, as also observed recently in a RAPD analysis (Estrella et al., 1998). However, the current cpDNA data, though supporting the presence of these two groups of cultivated P. erosus, did not explain satisfactorily the hypothesis of an early origin of P. erosus in strictly southern localities, since a wild accession from Mexican origin/provenance (i.e. EW203, from a northern locality) was resolved as a more basal branch (clade 2; Figure 3.7).

Finally, clade 2 also contained the two EW accessions analysed in this study although they did not cluster together; moreover, both taxa were separated by nodes containing cultivated P. erosus accessions (as described above), suggestive of different centres of origin and domestication for this Mesoamerican species, or - alternatively - an instance of reticulate evolution (see later). This range of cpDNA diversity observed between wild and cultivated P. erosus taxa has also been detected frequently in other wild ancestor-cultivated descendant combinations in many agronomically important crop species (Doebley, 1992; Llaca et al., 1994).

One accession of P. ferrugineus (FWLoc7, collected in Guatemala) was resolved as the most basal taxon within Pachyrhizus. P. ferrugineus is known to be a highly divergent species comprising several ecotypes (Sørensen, 1990 \& 1996). Similarly, a significant level of intraspecific cpDNA variation was also detected, as evidenced by accessions of this species occurring in widely separated regions of the cladogram (Figure 3.7).

The occurrence of such intraspecific variation may be due to the wide geographic distribution of this wild species during an early evolutionary stage, leading to the production of distinct intraspecific cpDNA races as populations diverged. Current cpDNA data would preliminary suggest the presence of (at least) two separate lineages within P. ferrugineus. In parallel to this molecular evidence, morphological studies (Sørensen, 1988; Døygaard \& Sørensen, 1998) could support similar 'lineages' by traits such as the significant variation in leaflet outline (even within populations) and the wide distribution of the species in ecosystems with ample soil and habitat variability ranging from evergreen to deciduous rainforests. Further surveys of cpDNA variation encompassing a greater number of FW ecotypes might help determine whether the proposed evolutionary pathways are correct.

Intraspecifc cpDNA variation

Some intraspecific cpDNA variation was detected during this study, and resulted in accessions of the same species occurring in separated regions of the strict consensus tree (e.g. FW and TW taxa in Figure 3.7). Such cpDNA variation may reflect the wide geographic distribution of accessions within the species concerned, having originated during periods when populations within taxa were isolated from each other, thus allowing molecular differences to become more evident (Gillies \& Abbott, 1996; Soltis et al., 1992). On the other hand, it is also possible that the cpDNA diversity found in these species is the result of interspecific cytoplasmic gene flow, leading to the replacement of a species cytoplasm in certain populations with that of another species. Chloroplast, and therefore cpDNA, capture via hybridisation and
introgression is now recognised as a widespread phenomenon in plants (Avise, 1994 and references therein), and has been shown to be the cause of intraspecific cpDNA variation in a broad range of taxa.

Species/complex specific fragments

FOA analysis revealed a total of 34 restriction fragments (Table 3.4) that uniquely identified a species or a group of species. For instance, 14 fragments were specific to P. ferrugineus; six were specific to members of both P. ahipa and the P. tuberosus complex; and, one fragment was exclusive to accessions of P. panamensis. Taxa were identified either by: (1) the presence of unique bands; or, (2) the absence of bands that were present in all other taxa. In this latter case, absent bands were an indication of a unique restriction site mutation in a particular accession, with the resulting bands present in regions further down the relevant luminograph or, occasionally, not detected.

The use of an increased number of restriction enzymes could evidently aid identification of further molecular markers within the Pachyrhizus species examined. Such molecular markers could be employed for accurate cultivar identification, efficient selection of parents for the development of new varieties, and IPR (intellectual property rights) protection of new cultivars. These markers might also be important in the field of conservation biology by revealing phylogenetic relationships within and among rare or endangered Pachyrhizus populations. Such phylogenetic assessments can range from parentage evaluations in captive breeding programmes to the identification of major sources of regional phylogeographic diversity around which management guidelines and natural reserves might be established.

3.6.2. Restriction site variation within a PCR-amplified cpDNA region

Nature of cpDNA variation in Pachyrhizus

This analysis was conducted on a subset of the accessions included in the survey of RFLP variation across the cpDNA genome. A total of 20 Pachyrhizus accessions and one outgroup (OUTcc) yielded a satisfactory PCR product for subsequent restriction digestion; the remaining accessions either failed or yielded a very faint PCR product.

A maximum of four site mutations was obtained with any one of the six restriction enzymes used in this survey (Table 3.7), which made scoring of fragment variation straightforward, therefore limiting homoplasy levels. It was possible to use both FOA and SOA approaches on data obtained from the PCR-RFLP analysis to reconstruct evolutionary trees, despite the low level of synapomorphic characters and the reduced number of base pairs sampled (35% and 568 , respectively). However, all accessions of wild provenance (i.e. FW, PW and TW) showed better resolution after analysis of restriction site mutations and, therefore, the phylogenetic tree based on the SOA approach is discussed in this section.

Phylogenetic relationships

The strict consensus tree produced from the SOA data set (Figure 3.11) was not fully resolved, but nonetheless enough variation was found in the five cpDNA regions amplified to resolve two major clades.

Clade 1: A South American evolutionary branch

Clade 1 comprised a total of 14 accessions, most of them of South American distribution, except for FWLoc7 and PW055 originally collected in Mesoamerica. The clade was clearly separated from the rest of the genus and appears to have split away early in the evolutionary history of Pachyrhizus. It contained all accessions of
P. ahipa, the P. tuberosus complex and P. panamensis, as well as one accession of P. ferrugineus (FWLoc7) that represented the basal-most species within this clade.

Clade 1 in this study comprised the same species/accessions as its counterpart obtained after analysis across total genomic cpDNA (Figure 3.7). However, there were some striking contrasts in arrangement, as follows:

- All P. ahipa accessions clustered together, but were resolved as a more basal subclade to the remaining taxa (a high bootstrap value of 100% and a decay index \leq 29 supported this hypothesis of monophyly; Figure 3.11). P. tuberosus was not resolved as a sister taxon, as suggested by the analysis across the total cpDNA genome.
- The two PW accessions did not cluster together, although their placement was still at basal-most nodes within the main subclade of clade 1. Surprisingly, accession PW055 clustered together with a chuin, TC354 (69\% bootstrap value; decay index ≤ 28), and both had identical cpDNAs. Again, this phylogenetic relationship could be a reflection of intraspecific cpDNA variation or, alternatively, interspecific cytoplasmic gene flow, as discussed previously.
- The P. tuberosus complex was poorly resolved, as evidenced by low bootstrap values; furthermore, the subclade containing it collapsed after only one step away from the minimal tree (Figure 3.12). In general, placement of P. tuberosus accessions examined within the complex was anomalous, impaired by polytomies present at terminal nodes. It is clear that more restriction site characters are needed to aid resolution among the cultigen types of this species. However, it is noteworthy to mention that all TW accessions were grouped together (although poorly supported by 42% bootstrap value) and showed identical cpDNAs. This clustering contrasts markedly when compared with the dispersed placement of TW taxa within the strict consensus tree produced from the RFLP analysis across the total cpDNA genome (Figure 3.7).
- A final subcluster comprised one accession of P. ferrugineus, as the most basal (i.e. primitive) taxon within the clade. Surprisingly, the strict consensus tree showed accession FWLoc7 in this node instead of FW237 (Figure 3.11), as suggested previously by the analysis across the cpDNA genome. However, both FW accessions were resolved always at basal, rather than terminal, nodes of the cladogram.

Clade 2: A Mesoamerican evolutionary branch

All Pachyrhizus taxa located in a second clade of the phylogenetic tree produced from PCR-RFLP data have a Central American distribution, i.e. from Costa Rica to Mexico, except for accession TC350, a chuin collected in the Peruvian rainforest. All P. erosus accessions clustered tightly together as a monophyletic group (76% bootstrap value); in addition, the node supporting monophyly between TC350 and the P. erosus accessions was moderately supported by a bootstrap value of 50% and a decay index \leq 28.

Within clade 2, a small subclade comprising all accessions of P. erosus was evident, with EW203, from Mexico, resolving as the most basal taxon in this subclade. On the basis of these cpDNA data, no difference existed between EC032 (from the Yucatán peninsula) and EC509 (Costa Rica), despite their different geographical provenance and the fact that they represent different landraces. This situation contrasts with the phylogenetic relationship proposed by the previous analysis across total genomic cpDNA, where accession EC032 was resolved as a separate phylogenetic entity to most P. erosus taxa, suggestive of two groups of cultivated P. erosus.

Finally, one accession of P. ferrugineus was the most basal taxon within the Mesoamerican evolutionary branch, namely FW237 (Figure 3.11).

Intraspecifc cpDNA variation

As in the analysis of RFLP variation across the cpDNA genome, a degree of intraspecific cpDNA variation was also detected by the PCR-RFLP analysis, and resulted in accessions of the same species occurring in separated regions of the strict consensus tree (e.g. P. panamensis accessions; Figure 3.11). Such cpDNA variation may reflect the wide geographic distribution of ancestral species, having originated during periods when populations within taxa were isolated from each other, which allowed molecular differences to become more conspicuous. On the other hand, cpDNA capture via hybridisation and introgression cannot be ruled out.

In the case of P. ferrugineus, for example, both accessions examined in this study did not cluster together, suggestive again of intraspecific cpDNA diversity or an instance of reticulate evolution (see later); however, both were resolved always at basal, rather than terminal, nodes of the cladogram. Alternatively, cpDNA data appear to suggest the presence of separate ancestral lineages of P. ferrugineus within the evolution of the genus.

Species/complex specific fragments

FOA analysis revealed a total of 11 restriction fragments (Table 3.8) that uniquely identified a species or a group of species. For instance, three fragments were specific to P.ferrugineus; two were specific to members of both P. panamensis and the P. tuberosus complex; and, two fragments were exclusive to wild accessions of P. tuberosus. Again, taxa were identified either by: (1) the presence of unique bands; or, (2) the absence of bands that were present in all other taxa. These absent bands were an indication of a unique restriction site mutation in a particular accession, with loss of the resulting bands due to their small size.

3.6.3. An approach of combined restriction site data analysis

An obvious consideration to expand the level of phylogenetic resolution and to aid identification of further molecular markers is the use of an increased number of restriction enzymes. Although low levels of divergence in some cases precluded formulation of robust hypotheses of interspecific relationships, chloroplast genomes were grouped into two well resolved clades by means of site occurrence analysis of RFLP variation across total genomic cpDNA and of PCR-RFLP analysis, respectively (Figures 3.7 and 3.11). So far, the two resulting cpDNA genealogies have identified two major evolutionary branches that were largely congruent, and both are also compatible with species groupings based on crossing relationships and morphologic variation (Døygaard \& Sørensen, 1998; Márquez \& Morera, 1992; Sørensen, 1988).

An analysis combining the cpDNA data matrices of the two previous phylogenetic treatments (sections 3.3 and 3.4) was justified because the higher-order structure of the trees produced by each independent analysis was similar, the ultimate aim being to investigate if the resolution of species relationships might be improved.

Phylogenetic relationships

Cladistic analysis of the combined cpDNA data matrix produced a highly resolved strict consensus tree (Figure 3.14), that contained four major plastome clades. Most polytomies observed in either of the two previous phylogenetic analyses were no longer present after combining the two data sets. Bootstrap values and decay indices indicated that the internal structure of the tree was stable, demonstrating - therefore that the combination of characters improved resolution of evolutionary relationships in the genus.

Clade 1: A South American evolutionary branch

The South American evolutionary branch of the genus was contained within clade 1 and comprised a total of 13 accessions. This clade, which appears to have split away
early in the genealogy of the genus, contained all accessions of P. ahipa, of the P. tuberosus complex and of P. panamensis. This latter species represented the most basal taxon within the clade. Clade 1 comprised three subclades with the same species/accessions groupings obtained previously in the two independent cpDNA analyses. Within this clade it was evident that:

- All P. ahipa taxa clustered strongly together (93% bootstrap; decay index ≤ 104) and were resolved with one accession of P. tuberosus (TC553, a jíquima) as sister taxon; this grouping was resolved as a more basal subclade to the P. tuberosus complex. The affinity between P. ahipa and P. tuberosus depicted by the consensus tree of combined data is interesting from the evolutionary standpoint, since, of all cultivated yam bean species, P. ahipa is so far the only one known for its absence of wild ancestral material; moreover, within this latter species both determinate and indeterminate genotypes exist, resembling some of the cultivars of the P. tuberosus complex. This could support the hypothesis that P. ahipa is a species derived from P. tuberosus, where probably the primary selection criterion during subsequent domestication was its use in the cropping systems of the high Andean terraced fields (none of the cultivar groups of the P. tuberosus complex are cultivated at altitudes above 1800 m a.s.l.; the jíquima is a lowland cultivar, whereas the present main cultivation of P. ahipa takes place above 2000 m a.s.l.).
- The P. tuberosus complex showed better resolution, with all cultivar forms placed at terminal nodes (Figure 3.14), while wild P. tuberosus taxa resolved more basally. However, the three cultivar types were resolved still into a polytomy (bootstrap value of 25%) with no clear distinction among them.
- Both PW accessions clustered together (40% bootstrap; decay index ≤ 104) and their placement was still basal-most relative to clade 1 , which concurs with the pathways proposed by the analysis across the total cpDNA genome (Figure 3.7). P. panamensis in the strict consensus tree was resolved as an independent clade, basal to the remaining species within the South American evolutionary branch (Figure 3.14).

Clade 2: A Mesoamerican evolutionary branch

This Central American evolutionary branch was strongly supported in the cladogram (bootstrap values ranging from 91 to 100%) and was identical to the one produced by the PCR-RFLP based phylogeny reported previously. Again, accession TC350, a chuin collected in the Peruvian rainforest, was resolved as the most basal taxon within this clade. Interestingly, the node supporting the placement of this accession was present in 100% of the bootstrap replicates, with a decay index ≤ 108 (Figure 3.14). P. tuberosus might, therefore, be a possible progenitor of two groups: (1) P. ahipa (see clade 1); and, (2) P. erosus, which during its evolution underwent dispersal towards the central/northern parts of Mesoamerica and, then, to Mexico.

Clades 3 and 4

The two accessions of P. ferrugineus examined, FW237 and FWLoc7, represented clades 3 and 4, respectively. In contrast to the previous independent phylogenetic treatments, the combined analysis of cpDNA data placed these two accessions consecutively at the most basal nodes in the phylogeny, supported by high bootstrap percentages (Figure 3.14).

Intraspecifc cpDNA variation in the combined analysis

As expected, a degree of intraspecific cpDNA variation was also detected in this study, evident by accessions of the same species placed in separated regions of the strict consensus tree; this situation applied to taxa of P. ferrugineus and P. tuberosus (Figure 3.14). Owing to a strong propensity for hybridisation in many plant taxa, the possibility of widespread reticulate evolution (Grant, 1981; Avise, 1994) cannot be discarded. In this phenomenon, phylogenies might be characterised as anastomotic (i.e. netlike), rather than strictly dichotomous and branching, with a disruption of the expected hierarchical patterns normally established by taxonomy, systematics, etc.

In the three sections of this chapter, the cpDNA molecule could be revealing such cases of reticulation because its clonal transmission allows particular ancestral sources to be identified without the complication of recombination that can lead to a mosaic ancestry for the nuclear genome. In addition, there might have been several biological factors that facilitated cytoplasmic (relative to nuclear) exchange across Pachyrhizus species. Several authors (e.g. Doyle, 1992; Carlson \& Chelm, 1986; Rieseberg \& Soltis, 1991) have reviewed the literature on instances of intra- and interspecific cpDNA capture attributable to introgressive hybridisation and concluded that reticulate evolution is indeed a widespread phenomenon in plants.

A major concern that arises is whether the gene trees presented here reflect the organismal phylogeny (the issue of gene tree versus species tree). Assuming that the genes compared are truly homologous, gene trees and organismal phylogenies can differ because of retention of ancestral polymorphisms, or reticulation among populations (i.e. gene flow) or species (i.e. hybridisation). Therefore, conclusions drawn from non-recombining genetic systems, such as the cpDNA genome, should be treated with caution, because the effects of reticulation are potentially retained through subsequent generations. In addition, variation among loci might also be expected because of stochastic variation (Ball et al., 1990) and differences in effective population size (e.g. organellar genomes versus nuclear genes). Thus, differences in gene trees among populations or closely related species can also arise because of lineage sorting effects (e.g. Slade et al., 1994).

Both theory and practice suggest that these effects can be (partially) overcome by combining data across a larger number of loci (Pamilo and Nei, 1988; Slade et al, 1994). In this study, the PCR-RFLP based analysis brought forward high congruencies as well as some ambiguities with the evolutionary pathways proposed by the survey of RFLP variation across the total chloroplast genome. This added a compelling rationale for combining data from different sources to achieve a more accurate phylogenetic reconstruction in Pachyrhizus.

Despite the phenomena described above, it is important to note that, in the light of the current cpDNA evidence, P. tuberosus, as a phylogenetic entity, appears to play an important role in the relationships so far described. The consensus trees are clearly suggesting that P. tuberosus might not only be present in the South American evolutionary branch: an additional lineage of this species was probably involved in the early parentage of P. erosus, in which case the separation of these two lineages must have occurred a long time ago, given the number of cpDNA mutations which now separate them.

In summarising this section, it is now clear that phylogenetic phenomena in Pachyrhizus will be best analysed and confirmed through multiple lines of evidence involving different sources of molecular (and other) markers. Barriers to reproduction between closely related taxa seldom are absolute (Avise, 1994) and often appear differentially 'semipermeable' to cytoplasmic and various nuclear alleles. Thus, a varied fabric of gene genealogies (rarely evident from morphological assessment alone) will help clarify and confirm the evolutionary pathways and instances of reticulation discussed before. The following chapters are focused in that direction.

CHAPTER 4

VARIATION WITHIN THE ITS REGION OF NUCLEAR rDNA TO INFER EVOLUTIONARY PATHWAYS IN PACHYRHIZUS

The ITS Region - graffiti.
J. Estrella

-

Abstract

\square

4.1. Introduction

All organisms have DNA sequences within their genomes that code for ribosomal RNAs (rRNAs), which are essential components for cellular protein synthesis. In plants, ribosomal DNA (rDNA) is found within the nuclear, mitochondrial and chloroplast genomes. The ubiquity of rRNA in organisms and the development of techniques for determining the primary nucleotide sequence of the DNA that encodes rRNA molecules have prompted the use of rRNA as a tool for inferring evolutionary pathways of plants. However, not all regions of DNA evolve at the same rate, and consequently some regions are useful for comparisons at or below the genus level, while other regions are only useful at the family level or above (Hamby \& Zimmer, 1992).

Two rRNA gene families occur within the nuclear genome as tandemly repeating arrays. The first encodes the ribosomal rRNA 18S-5.8S-26S subunits, while the second encodes the 5 S subunit. It is thought that both arrays were originally clustered into one transcription unit but have separated during evolution, with the 5 S gene family breaking from this initial structural arrangement by unequal crossing over (Gerbi, 1986). In the work reported in this chapter, attention was focused on the internal transcribed spacer (ITS) within the 18S-5.8S-26S gene family.

4.1.1. Structure, function and organisation of nrDNA

In higher plants, nrDNA that encodes the $18 \mathrm{~S}-5.8 \mathrm{~S}-26 \mathrm{~S}$ subunits is a mid to highly repetitive DNA sequence arranged in tandem repeats at loci on one or more chromosomes. Only among closely related species are chromosomal locations similar. Each repeat unit contains a transcribed region which is separated from adjacent repeat units by a long, non-transcribed intergenic spacer (IGS) region (Hamby \& Zimmer, 1992). There are three highly conserved ribosomal RNA regions and two non-coding spacer regions within the transcribed region of nrDNA. These three highly conserved regions that comprise the ribosomal RNA gene are arranged in a ${ }^{\prime}$ '- $18 \mathrm{~S}-5.8 \mathrm{~S}-26 \mathrm{~S}-3^{\prime}$ order with the spacers (designated as ITS1 and ITS2) flanking the 5.8S region (see

Figure 2.1 in chapter 2). In addition, an external transcribed spacer region (ETS) is located at the beginning of the 5^{\prime} end of the transcribed unit. The whole region is transcribed as a single large precursor, and is subsequently processed into the 18 S , 5.8S and 26S functional rRNA forms (Rogers and Bendich, 1987). The intergenic spacer (IGS) is, for convenience, divided into three subregions, i.e. a series of tandem subrepeats, which are flanked by a 3^{\prime} end on one side and a 5^{\prime} end at the other side (Appels and Dvorak, 1982). This repeated sequence varies interspecifically in length generally from 100 to 200 bp , while within species its length normally varies slightly (Hamby \& Zimmer, 1992; Jorgensen \& Cluster, 1988). The variation in length within the IGS is due to alteration in the number and length of the subrepeats it contains.

The main function of rRNAs is in protein synthesis. It was previously thought that rRNAs served primarily as a scaffolding for ribosomal proteins, but more recent evidence suggests that rRNA molecules are the basic functional element of the ribosome and that the proteins serve to mediate interactions between mRNA, tRNA and rRNA (Gerbi, 1985; Hamby \& Zimmer, 1992). The ITS region is part of the transcriptional unit of nrDNA, but the spacer segments of the transcript are not incorporated into mature ribosomes. Instead, ITS1 and ITS2 regions of the nrDNA transcript appear to function, at least in part, in the maturation of nrRNAs (Baldwin et al., 1995).

In vivo mutational analyses in yeast (Saccharomyces cerevisiae) indicate that deletions of certain regions within ITS1 can inhibit the production of mature small and large subunit rRNAs (Baldwin et al., 1995 and references therein), whereas certain deletions or point mutations in ITS2 prevent or reduce processing of large-subunit rRNAs. In addition to their role as self-splicing group I introns, it seems probable that ITS1 and ITS2 are under some evolutionary constraint in structure and sequence, as suggested by size and G+C content comparisons among angiosperms (Baldwin et al., 1995).

Tandem repeats of nrDNA are usually arranged in a 'head-to-tail' configuration with the total length of a repeat array ranging from 6.0 to 18.5 kb (Avise, 1994; Appels \& Honeycutt, 1986). One percent or more of the nuclear genome may be rDNA and
from 1000 to 10000 copies of the sequence can exist in a plant cell. In fact, it can comprise as much as 10% of the total plant DNA (Hemleben et al., 1988; Jorgensen \& Cluster, 1988). The rDNA copy number in plants can be as much as 20 -fold greater than that within animal genomes, and may also vary up to four-fold within a species. The reason for this high level of variation is unknown, but it has been suggested that it may be a response to environmental stress (Rogers and Bendich, 1987).

4.1.2. Evolution of nrDNA

A remarkable feature of rDNA is the overall sequence homogeneity among members of the gene family. If all parts of the genome were evolving independently, comparisons of nucleotide sequence between members of the same gene family within a species should show a similar level of divergence as would comparisons of the same gene between two closely related species, assuming that the duplication events creating the gene family preceded the divergence of the two species. However, studies consistently show that this is not the case for rDNA (Arnheim cited by Hamby and Zimmer, 1992).

In a study of Xenopus laevis, Brown et al. (1972) first demonstrated by hybridisation tests that the several hundred rDNA repeats were essentially identical at both the coding and the intergenic regions, but that when the rDNAs were hybridised to those of X. borealis a much lower level of overall similarity was found. Whereas the coding regions were still highly conserved, the IGS regions were sharply divergent, although within each species the IGS was conserved. This same motif of conserved coding regions and non-conserved intergenic spacers with species-specific mutations has been identified in the rDNA of all species studied (Dover \& Flavell, 1984). The process by which this pattern of intraspecific homogeneity and interspecific heterogeneity is maintained was earlier known as horizontal evolution (Brown et al., 1972) or coincidental evolution (Hood et al., 1975), and nowadays is called concerted evolution (Zimmer et al., 1980).

The mechanisms of concerted evolution, i.e. tandem repeat units in each rDNA array evolving at the same rate, are primarily unequal crossing over or unequal exchange (Figure 4.1), and gene conversion (Figure 4.2). To achieve overall homogeneity, one or both of these processes (and possibly others) must take place within each individual locus, between rDNA loci on homologous chromosomes, and between rDNA loci on non-homologous chromosomes (Dover, 1982; Arnheim, 1983). Several studies have shown that the processes of unequal exchange and gene conversion alone or combined can eventually lead to the fixation of a mutant gene within a population, even with only one or a few original copies of the mutant (Smith, 1974; Hamby \& Zimmer, 1992 and references therein).

Theoretically, gene conversion can proceed in either direction when a heteroduplex is recognised, that is, the mutant may be converted to wild type or vice versa. However, if there is even a small bias in one direction or the other, the rate of concerted evolution can be increased significantly. In this sense, the term molecular drive (Dover, 1982) has been coined to describe the process of gene family homogenisation and fixation due to unequal crossing over and biased gene conversion. Transposition may also play an important role in molecular drive, but it has not yet been demonstrated as a mechanism in the concerted evolution of rDNA families.

4.1.3. ITS sequence comparisons and evolutionary rates

In all flowering plants reported to date, ITS1 and ITS2 sizes fall within a similar range (Baldwin et al., 1995), with lengths of less than 300 bp for both spacers (ITS1 ranging from 187 to 298 bp , and ITS2 from 187 to 252 bp), in contrast to much longer spacers reported in other eukaryotes, e.g. some vertebrates (Stewart et al., 1983, in a study of Xenopus; Goldman et al., 1983, in mice). Given the fact that the 5.8 S subunit has been reported invariant in length (mostly 163 or 164 bp), the entire ITS region appears to be normally under 700 bp in angiosperms.

Figure 4.1. Concerted evolution by unequal crossing over (after Li \& Graur, 1991). A hypothetical model within a multigene family composed of five variants (\mathbf{A} to \mathbf{E}) is shown. Shaded repeat units will form recombinant repeat units in daughter chromosomes; repeated cycles of unequal crossing over events cause the duplicated genes on each chromosome to become progressively more homogenised. For example, after an initial unequal change, a duplication of the \mathbf{C} type unit (A-B-C-C-D-E) occurs in one daughter chromosome while the other chromosome loses the \mathbf{C} type (not shown). As this process is repeated, the daughter chromosome will become more homogenised and finally only one type of the multigene family (C type) will spread to fixation throughout the gene family.

Figure 4.2. Concerted evolution by gene conversion, a non-reciprocal recombination process in which two sequences interact in such a way that one is converted by the other (after Li \& Graur, 1991). A hypothetical nonallelic model is shown where two wild type repeats are converted into a mutant type. As a result, the first daughter gene family becomes more homogeneous than the parental gene family while there is no change in the second daughter gene family. In this example, the B repeat type of the first chromatid was converted into the A type; as a result, one daughter chromatid has all the A repeat type while the other chromatid maintained the parental repeat type. Thus, gene conversion changes the frequencies of the two types of repeats in only one of the daughter chromosomes, but does not alter the total number of repeats in either chromosomes.

Relative sizes of the two spacers vary between and, in at least some cases, within families, with little indication of a broad-scale phylogenetic pattern (Baldwin et al., 1995; Hamby \& Zimmer, 1992). Indeed, ITS1 is consistently longer than ITS2 (or rarely equal in length) in all available sequences of, for example, Asteraceae, Brassicaceae, Malvaceae, Onagraceae, Ranunculaceae, Salicaceae, Saxifragaceae and Winteraceae. Conversely, ITS2 is larger than ITS1 in all sequences of Betulaceae, Cucurbitaceae, Scrophulariaceae and Viscaceae reported to date. On the other hand, the two spacers are nearly equal in length in the reported sequences from the

Solanaceae, whereas in the large families Fabaceae, Poaceae and Rosaceae ITS1 may be longer or shorter than ITS2.

In most investigated groups of angiosperms, ITS1 pairwise divergence values are similar on average to those of ITS2, with the greatest disparity in divergence comparisons of ITS1 and ITS2 occurring in the Asteraceae (Baldwin et al., 1995). Distances between ITS1 sequences of taxa in the Hawaiian silversword alliance (Madiinae) are generally similar to ITS2 distances from the same species comparisons. In contrast, ITS1 pairwise divergence values in Krigia (Lactucaceae) are twice those of ITS2 (Kim \& Jansen, 1994). Other reported Asteraceae fall largely between these extremes. Average pairwise distances between ITS 1 sequences exceed those between ITS2 sequences by 1.3 to 1 in Calycadenia (Baldwin, 1993) and 1.5 to 1 in a broader study of Madiinae (Baldwin, 1992). Outside Asteraceae, Epilobium (Onagraceae) and Gossypium (Malvaceae) show much higher pairwise divergence between ITS1 sequences than between sequences of the ITS2 (Baum et al., 1994; Wendel cited by Baldwin et al., 1995).

However, Baldwin et al. (1995) do not consider these comparisons of average pairwise distance values to be an adequate measure of relative evolutionary rates. Moreover, relative rate tests (e.g. Muse \& Weir, 1992) are better suited for this purpose. Average distances are based on a set of non-independent comparisons because they do not take phylogenetic relationships into account; this nonindependence imparts some doubt on the statistical significance of differences in distance values. Furthermore, average distances mask variance in relative distances, which is considerable in these studies.

ITS sequences appear to have evolved more slowly in some ancient woody groups than in herbaceous, primarily annual taxa of comparatively recent origin (Baldwin et al., 1995; Hamby \& Zimmer, 1992). Similar levels of ITS sequence divergence were found between taxa in lineages that diverged in the early Tertiary or Cretaceous, e.g. genera of the Winteraceae (Suh et al., 1993) and subgroups within Notofagus (Manos, 1993), and between taxa in herbaceous lineages that presumably diverged in the

Pliocene or Pleistocene (e.g. genera of the Madiinae; Baldwin, 1992). Such correlations between plant life-form and apparent rates of molecular evolution have been noted from cpDNA data as well (e.g. Brunsfeld et al., 1994; Clegg \& Zurawski, 1992), although the basis for this pattern is unclear. A generation-time explanation for differences in molecular evolutionary rates (with longer generation times resulting in slower molecular evolution), although somewhat consistent with patterns observed in animals, is problematical in plants, wherein open development might allow fixation of mutations in vegetative meristems as readily as in reproductive cells that arise from such meristems (Klekowski, 1988; Baldwin et al., 1995). Additional attention by molecular evolutionists is needed to achieve a more detailed description of these complex patterns of evolutionary rates.

4.1.4. Favourable properties of the ITS region as a tool for evolutionary studies

Several general properties of the ITS region encourage its use for phylogenetic studies in angiosperms. First, along with the other members of the nrDNA multigene family, the ITS region is highly repeated in the plant nuclear genome. This abundance in copy number promotes detection, amplification, cloning and sequencing of nrDNA (Baldwin et al., 1995). Second, and very significant for phylogeny reconstruction, this gene family undergoes rapid concerted evolution, promoting intragenomic uniformity of repeat units and, therefore, accurate reconstruction of species relationships from these sequences (Hamby \& Zimmer, 1992). As a result, direct sequencing of pooled nrDNA PCR products can be used to extract phylogenetic information in many species (Baldwin et al., 1995). Moreover, concerted evolution and sexual recombination may promote nrDNA uniformity within interbreeding populations and thereby minimise the importance of intrapopulational sampling in phylogenetic studies.

Third, the small size of the ITS region ($<700 \mathrm{bp}$) and the presence of highly conserved sequences flanking each of the two spacers make this region easy to amplify, even from herbarium material, using universal eukaryotic primers (White et al., 1990; Figure 2.1). In many instances, these primers have been used to generate single stranded DNA for sequencing directly from genomic DNA, bypassing a
separate double stranded DNA amplification procedure (Wojciechowski et al., 1993; Baldwin et al., 1995). This same approach can be used even in more stream-lined double stranded sequencing methods, e.g. cycle sequencing, generating high quality ITS sequences, normally without evidence of divergent repeat-types within individuals (Baldwin et al., 1995). However, such homogeneity within individuals does not always occur and might result occasionally in sequence variants within DNA accessions, as reported, for example, in Gentiana (Yuan et al., 1996) and in Saintpaulia (Möller \& Cronk, 1997).

4.1.5. Use of rDNA ITS sequence variation in plant evolution and systematics

In general, nuclear rDNA, particularly the ITS region, has proved to be valuable in phylogeny reconstruction and in the study of reticulate evolution and the origin of polyploids. Some examples of its use in investigating these different aspects of plant evolution are discussed below.

Phylogenetic reconstruction

Available data indicate that ITS sequences are phylogenetically useful at various intrafamilial levels in angiosperms (depending on the lineage), but are unlikely to retain sufficient evolutionary signal or alignability for the examination of relationships among species in different plant families (Baldwin et al., 1995). However, this generalisation is valid only to the extent that family rank implies an ancient origin, which is not true in all cases. Furthermore, low levels of ITS variation in some ancient plant groups raise the possibility that the ITS region may prove useful for the appraisal of relationships between old families that have experienced exceptionally low rates of spacer evolution. The arbitrariness of taxonomic rank is a major limitation to any general statement about taxonomic limits on the phylogenetic utility of ITS sequences (Baldwin et al., 1995; Hamby \& Zimmer, 1992).

Baldwin et al. (1995) have cited several plant families (e.g. Asteraceae, Fabaceae, Rosaceae, Saxifragaceae, Viscaceae and Polemoniaceae) where ITS sequences were
utilised effectively for examining relationships within genera and among closely related genera. Also, within species, ITS sequences have been used successfully for investigating relationships among allopatric or disjunct populations. For example, up to 4.3% ITS sequence divergence was found between individuals from conspecific, allopatric populations in Calycadenia (Baldwin, 1993). Moreover, it became evident that in this genus the ITS region had evolved primarily by point mutations, based on the moderately high levels of sequence divergence between and within species, and even among subspecies.

The small number of nucleotide positions available for phylogenetic analysis in both ITS spacers is often compensated for by the high levels of variation found in ITS1 and ITS2. In several studies, ITS sequences are reported to be much more variable than the total cpDNA from the same set of DNA accessions (Baldwin et al., 1995), an instance that has been found, for example, in the families Astragalus (Wojciechowski et al., 1993), Madiinae (Baldwin, 1992), Rudbeckckiinae (Urbatsch \& Baldwin, 1993) and Viburnum (Donoghue \& Systma, 1993), among others.

Reticulate evolution and the origin of polyploids

Since nrDNA is inherited biparentally, it is useful for studying hybridisation, introgression and reticulate evolution in plants. Unlike cpDNA, nrDNA data can provide direct evidence of reticulate evolution if concerted evolution fails to act across repeat units contributed by different parental species (Baldwin et al., 1995; Chase et al., 1993). For instance, such lack of sequence homogenisation may occur if: (1) the hybridisation event was recent; (2) nrDNA repeats are at different loci in the parental taxa, and interlocus gene conversion is inoperative in their hybrid; or, (3) the hybrid is asexual. The parentage of suspected early generation hybrids may be resolved simply by screening for presence or absence of restriction sites diagnostic for ITS sequences of each of the putative parental species. In such cases, additivity for the parental restriction patterns provides excellent evidence of hybridity. However, resolution of ancient hybridisation is likely to require more detailed analysis of ITS variation, e.g. by sequencing of ITS clones (Baldwin et al., 1995).

If concerted evolution fails to homogenise ITS paralogues (i.e. those at different chromosomal loci) through a series of speciation events, the possibility of unknowingly sampling sequences with different evolutionary histories is a real danger to phylogenetic analysis (Sanderson \& Doyle, 1992). On the other hand, if such paralogues are retained in most or all members of a species lineage, thorough sampling of these sequences can offer independent estimates of organismal phylogeny, and even a means of rooting a portion of the tree in the absence of outgroup data (Iwabe et al., 1989; Baldwin et al., 1995). In other words, nonhomogenised paralogues represent positive phylogenetic opportunities along with some potential danger.

One example of the use of ITS in a study of genetic diversity and reticulate evolution comes from the work of Soltis et al. (1991) in the genus Heuchera (Saxifragaceae). Here, cpDNA restriction site variation had suggested that both northern and southern populations of Tellima grandiflora in the USA were distantly related. In contrast, ITS data strongly indicated that both groups of populations were conspecific, as was also indicated by their morphology and allozyme data (Soltis \& Kuzoff, 1995). Consequently, it was postulated that introgressive hybridisation between T. grandiflora and a species of Mitella had led to chloroplast capture of the Mitella plastome by some populations of T. grandiflora, thus causing the high level of cpDNA divergence found within this species (Soltis et al., 1991).

Ribosomal genes have been used in several investigations dealing with the origins of polyploid taxa, particularly in cereals (Appels et al., 1980; Saghai-Maroof et al., 1984). One study examined spacer length variation within populations and among species of Triticum (Appels \& Dvorak, 1982). These authors analysed a 130 bp repeat unit found within the spacer region; two out of 11 of the 130 bp variants were sequenced, and the lowered thermal stabilities of heterologous versus homologous hybrids were employed for estimating sequence differences among the other 130 bp variants. Subsequently, different cultivars of hexaploid T. aestivum and tetraploid T. dicoccoides were assayed for sequence differences in the spacer region, and it was estimated that differences from the 'standard' cultivar Chinese Spring ranged from 0.6
to 2.2% at the nucleotide sequence level. These findings, along with cytological evidence, suggested that factors other than simple hybridisation have been involved in the origin of hexaploid wheat. It was suggested that structural changes and deletion of some nrDNA genes in the diploid and tetraploid genomes must have occurred prior to domestication of the polyploid wheats, that is, over 10000 years ago.

To summarise, ITS characters have aided the understanding of plant evolution by providing: (1) corroboration of unexpected findings and the resolution of conflict between data sets (e.g. morphological, cpDNA-based vs. ITS sequences); (2) improved resolution of species relationships (e.g. aiding clarification of taxonomic, biogeographic and cytological data); (3) direct resolution of reticulate evolution; and, (4) evidence of the parentage of polyploids. For a more detailed discussion of these various aspects, the reader is referred to Baldwin et al. (1995) and references therein. In a more broader context, nuclear ribosomal RNA genes have provided much of the molecular data for phylogenetic reconstructions among several branches in the Tree of Life (Hillis \& Dixon, 1991; Mindell \& Honeycutt, 1990; Maddison \& Maddison, 1996).

The increasing number of nrDNA-based studies (e.g. the reviews by Hamby \& Zimmer, 1992; Avise, 1994; and, Baldwin et al., 1995) attests to their value and potential, combined with the relative simplicity of automated sequencing methods. Therefore, there seems to be little question that sequencing of the highly conserved regions encoding nrDNA is a powerful tool in many fields of biological study.

4.1.6. Objectives and aims of sequencing the ITS region of Pachyrhizus species

The primary goal of sequencing the nrDNA of Pachyrhizus species was three-fold. First, to describe the features of the ITS region and the nature of its molecular evolution; second, to reconstruct a phylogeny of the genus and establish relationships between the five species using taxa from different Neotropical localities; and, third, to compare the inferred phylogeny with those generated from the cpDNA analyses (chapter 3).

4.2. Materials and methods

4.2.1. \quad Plant material

Twenty nine accessions of Pachyrhizus were subjected to analysis, comprising ecotypes and cultivars representing the different geographic, ecological and climatic Neotropical areas where the genus is distributed. In addition, a total of three taxa of the genera Calopogonium and Canavalia were used as outgroups. A complete list of plant material included in the survey is given in Table 2.1. All accessions employed had previously been examined by means of a restriction analysis of cpDNA variation. Details of plant cultivation and preparation of leaf samples are as described in chapter 2 (section 2.2).

4.2.2. DNA extraction, ITS amplification and sequencing

All experimental procedures were carried out as described in Chapter 2. Extraction, purification and estimation of DNA concentration were performed as described in sections 2.3 and 2.4. DNA was isolated from individual plants (as suggested in Campbell et al., 1995; Wendel et al., 1995; Möller \& Cronk, 1997; and Wojciechowski et al., 1993) to minimise amplification of multiple nrDNA repeat types or even ITS length or major sequence variants within a DNA accession. Amplification of the ITS region, cleaning of the amplified products, as well as automated cycle sequencing were performed as outlined in section 2.7.

4.2.3. Sequence analysis and alignment

For each accession a consensus sequence was produced using its respective forward and reverse sequencing reaction. The sequences from both reactions were aligned using the options Compare Two Sequences, Create Shadow and Compute CONSENSUS SEQUENCE in the multiple alignment programme Sequence Navigator ${ }^{T M}$ version 1.0.1. (Perkin Elmer, Applied Biosystems Division, CA, USA) with minor manual adjustments.

DNA sequences were aligned manually by sequential pairwise comparisons using the following options of the multiple sequence alignment editor and shading utility GeneDoce version 2.4 (Nicholas \& Nicholas, 1997): Arrange Sequences, Auto Shading Modes (set to Chemical Property Mode) and Residue Display Mode (set to Normal and Differences Modes). Subunit and spacer boundaries of the DNA sequences were determined by comparison to the corresponding boundaries in Vicia faba (Yokota et al., 1989) and Vigna radiata (Schiebel \& Hemleben, 1989) obtained from sequences available at GenBank Sequence Database (WWW site; accession numbers X17535 and X14337, respectively).

Finally, the CLUSTAL W computer software package was used to complete alignment of both the ingroup (i.e. Pachyrhizus) and outgroup taxa. This alignment required incorporation of minor gaps over the ITS1, 5.8S, and ITS2 regions. The G+C content of the three regions was determined by inspection, and nucleotide sequence divergence among taxa was calculated using the Distance Matrix option in PAUP, based on unambiguously alignable regions.

4.2.4. Data analysis and phylogeny reconstruction based on ITS sequence variation

Alignment required interpretation of minor gaps which appeared in the sequences of different taxa through the ITS region. Wojciechowski et al. (1993) described two ways in which indels (insertions and deletions of nucleotides) can be incorporated in the phylogenetic analysis of a group of taxa. Each gap position can be treated as a missing data item, or alternatively as a new character, i.e. the fifth base. Treating gaps as missing data allows information to be retained on base substitutions occurring in those taxa within the indel region. However, it will exclude information regarding the evolutionary events or transformation involved in the insertion or deletion of bases. On the other hand, scoring indels as separate characters will increase the risk of overweighting them in the analysis, if adjacent gaps are non-independent due to erroneous decisions made during alignment (Baum et al., 1994). In this study indels were scored as missing data.

Regions in which alignment was ambiguous were eliminated from analysis. Phylogenetic trees were generated from unordered character states (Fitch parsimony) using PAUP run on an Apple Macintosh Power PC 7200/75. The ACCTRAN option was chosen as a method for optimising unordered characters. Invariant sites and strictly autapomorphous base changes were also ignored in the phylogenetic reconstruction (IGNore Uninformative Characters option), following the recommendation of Bayer et al. (1996). Character state changes were weighted equally. Owing to the relatively large number of taxa, heuristic searches were conducted using the options Branch Swapping, TBR and MULPARS.

Sets of equally parsimonious trees were summarised using strict consensus. Descriptive statistics reflecting the amount of phylogenetic signal in the parsimony analyses were given by the consistency (CI), homoplasy (HI) and retention (RI) indices. Bootstrapping, taken as an index of support for individual clades (Felsenstein, 1985), was implemented in PAUP using 100 replicates of heuristic searches with TBR swapping and MULPARS. The decay index for individual clades, i.e. the number of additional evolutionary steps required before at least one of the possible trees fails to resolve a particular sister group relationship, was calculated by examining the strict consensus of all equally parsimonious trees one or more steps longer.

4.3. Results

4.3.1. DNA sequence analysis and repeat-unit variation

After alignment of forward and reverse sequences, it was only possible to obtain unambiguous consensus sequences for 14 accessions out of the total of 32 examined (Table 4.1). The remaining accessions exhibited sequences with high percentages of alignment ambiguities ($>50 \%$ of unresolved nucleotide sites), rendering them uninformative for phylogenetic analysis. This was an unexpected and surprising result, since PCR products obtained after amplification and purification procedures were resolved in every case as a single, sharp, double-stranded DNA band.

It is likely that these unresolved bases represent genuine polymorphisms within an individual, since they occur in both forward and reverse sequencing reactions, as was also found following ITS sequencing in Gentiana (Yuan et al., 1996) and Saintpaulia (Möller \& Cronk, 1997). In addition, individual DNA sequences probably exhibited some level of potential polymorphism at nucleotide sites, i.e. two bands resolving at a single position of the gel that could indicate multiple arDNA repeat types including either ITS length variants or major sequence variants, as suggested by Baldwin (1992 \& 1993).

Despite every effort to include all 32 ITS consensus sequences in preliminary alignments and phylogenetic analyses, this only led to confusion. For example, in several instances accessions of P. ferrugineus and P. panamensis (i.e. the most ancestral species as suggested by cpDNA-based phylogenies; chapter 3) were resolved at terminal nodes clustering together with P. ahipa and P. tuberosus taxa. Thus, it was decided to restrict alignment and phylogenetic reconstruction to only the unambiguous ITS sequences obtained for 13 representatives of Pachyrhizus and one outgroup (Table 4.1).

4.3.2. ITS structure, size and composition

Within the species of Pachyrhizus examined, the ITS1 sequence was found to be consistently shorter than that of ITS2; the same was also true for the outgroup Calopogonium mucunoides. Among Pachyrhizus DNAs, ITS1 varied in length from 203 bp in P. ahipa to 205 bp in P. erosus, P. tuberosus and P. panamensis (Table 4.1). ITS2 varied from 219 bp in P. ahipa to 221 bp in P. tuberosus (accession TC536). As regards the 5.8 S subunit, most species surveyed contained a sequence of 164 bp , which is consistent in length with most angiosperms; however, some variation was detected with values ranging from 162 bp in accession FW237 to 165 bp in accessions AC208 and FWLoc7 (Table 4.1). Outgroup OUTcm exhibited the shortest ITS1 sequence (202 bp) while both 5.8 S and ITS2 sequences slightly exceeded the length ranges of Pachyrhizus species (167 bp and 224 bp , respectively).

Table 4.1. Size, structure and composition of the ITS region of mrDNA in 13 Pachyrhizus accessions and one outgroup (Calopogonium mucunoides) successfully sequenced.

Accession number	Length (bp)				G+C (ontent (\%)
	ITS1	$\mathbf{5 . 8 S}$	ITS2	Total	53.5
AC201	204	164	219	587	53.5
AC208	203	165	219	587	51.3
EC558	205	164	220	589	49.6
EC565	205	164	220	589	53.9
EW203	205	164	220	589	50.5
FW237	204	162	220	586	53.1
FWLoc7	204	165	220	589	52.3
PW055	205	164	220	589	54.5
PWTM58	205	164	220	589	50.8
TC350 (chuin)	205	164	220	589	52.5
TC536 (ashipa)	205	164	$\mathbf{2 2 1}$	590	53.1
TC553 (jíquima)	205	164	$\mathbf{2 2 0}$	589	53.8
TWTM48	205	164	$\mathbf{2 2 0}$	589	$\mathbf{5 8 5}$
Total ingroup	$\mathbf{2 6 6 0}$	$\mathbf{2 1 3 2}$	$\mathbf{2 8 5 9}$	$\mathbf{7 6 5 1}$	$\mathbf{6 8 2 . 4}$
Average ingroup	$\mathbf{2 0 4 . 6}$	$\mathbf{1 6 4 . 0}$	$\mathbf{2 1 9 . 9}$	$\mathbf{5 8 8 . 5}$	$\mathbf{5 2 . 2}$
OUTcm	202	167	$\mathbf{2 2 4}$	593	50.9

The percentage of G+C content in Pachyrhizus ranged from 49.6\% (accession EC565) to 54.5% (in PWTM58), whereas G+C content for the outgroup was 50.9% (Table
4.1). The aligned sequences of the entire ITS1-5.8S-ITS2 region are presented in Table 4.2. Alignment of the ITS1 sequences of Pachyrhizus created one gap at two positions (sites 2 and 170) equivalent to 0.98% of nucleotide sites. The gap at position 170 was autapomorphic (Table 4.2). Similarly, the aligned 5.8 S subunit sequences created additional gaps at positions 213 and 248 , representing 1.22% of sites, with the gap at position 213 autapomorphic. Finally, the aligned ITS2 sequences required inclusion of one gap at positions 510 and 597 (0.91% of sites), neither of which were strictly autapomorphic.

Inclusion of outgroup OUTcm among the aligned Pachyrhizus sequences created eight additional gaps at the following positions: 4 and 133 in the ITS1 spacer; 282, 318 and 319 in the 5.8 S subunit; and, positions $388,469,571$ and 572 in the ITS2 spacer. All gaps were autapomorphic and represented 1.36% of nucleotide sites.

Table 4.2. Aligned nucleotide sequences of the ITS region in the 18-26S nuclear ribosomal DNA from 13 representatives of Pachyrhizus and one outgroup species. Columns are nucleotide sites and rows are individual DNA sequences; sites 1 to 600 are numbered in 5^{\prime} to 3^{\prime} order from the 18S subunit / ITS1 border to the ITS2 / 26S subunit border.

Table 4.2. Aligned DNA sequences. Continued.

Table 4.2. Aligned DNA sequences. Continued.

Taxa \dagger			Nucleotide sites \ddagger			
			5.8S			
			\rightarrow			
	1	2	2	2	2	2
	9	0	1	2	3	4
	0	0	0	0	0	0
	-	-	*		.	-

AC201 ACCCGGATCTTCGTGTGCCAAGrAATCAAAACATGTTTGTGAAGGGCAATTCTCGTGGGC AC208 CCCCGGATCTTCGTGTGCCAAGGAATCAAAACATGTTTGTNAAGGGCAATTCNCGTGGGC EC558 CCCCGGsGGTTCGTGTGCCAAGGAATCsAAACATGTTTGTGAAGTGCAATTCyyGTGGGC EC565 CCCCGGsssTTCGTGTGCCAAGrAATCAAAACATGTTTGTGAAGTGCAATTCTCGTGGGC EW203 ACCCGGCGCTTCGTGTGCCAAGGAATCAAAACATGTTTGTGAAGTGCAATTCTCGTGGGC FW237 FWLoc 7 TC350ch TC536as TC553ji TWTM4 8 PW055 PWTM58 OU'T'cm CCCCGGCGCTTCTGTGCCCAAGGAATCAAAAN-TGTTGNTGAAGTGCAATNCTCNTGGGC CCCCGGCGCTTCTGTGCCCAAGGAATGAAAACATGTTGGTGAAGTGCAATTCTCGTGGGC CCCCGGsGCTTCkTGTGCCAAGGAATCNAAACATGTTTGTGAAGTGCAATTCTCGTGGGC CmCCGGCGCTTCGTGTGCCAArGAATCAAAACATGTTTGTGAAGTGCAATTCTCGTGGGC CCCCGGCGCTTCGTGTGCCAAGGAATCAAAACATGTTTGTGAAGTGCAATTCTCGTGGGC CCCCGGCssTTCGTGTGCCAAGGAATCAAAACATGkTTGTGAAGTGCAATTCTCGTGGGC CCCCGGCGCTTNGTGTGCCAAGGAATTAAAACATGTTTNTGAAGTrCNATTCTCGNGGGC CCCCGGCGCTTCGTGTGCCAAGGAATCAAAACATGTTTGTGAAGTGCAATTCTCGTGGGC CCCCGGCGCTTCGTGTGCCAAGGAATCAAAACATGTTTGTGAAGGwCAATTCCCGTGGGC

Taxa \dagger	Nucleotide sites \ddagger					
	2	2		2	2	3
	5	6	7	8	9	0
	0	0	0	0	0	0

AC201 TCGGAGA-CGATGTCCCCACGAGCGGTCGTTCTTCACGATA-CAATTGTATACTTCCAAA AC208 CGGGAGACCGATGTCCCACCNAGCGGTCGTTCTTCACGATA-CAATTGTATACTTCCAAA EC558 TCGGAGA-CGATGTCCCCACGArCGGTCGTTCTTCACGATA-CAATTGkATwCATCCAAA EC565 TCGGAGA-CrATGTCCCNACrAGCGGTCGTTCTTCACrATA-CAATTGTATACATCCAAA EW203 TCGGAGA~CGATGTCCCCACGAGCGGTCGTTCTTCAAGATA-CAATTGTATACATCCAAA FW237 FWLoc7 TGGGAGA-CGTTGTCCCACNGAGNGGTNGTNCTTCNNGATA-CAATTGTATACATCCAAA TC350ch TC536as TC553ji TCGGAGA-CrwTGTCCCCACGAGCGGTCGTTCTTCAmGATA-CAATTGTATwCTTCCAAA TWTM4 8 PW055 PWTM58 TCGGAGA-CrwTGTCCCCACrAGCGGTCGTTCTTCACrATA-CAATTGTATACTTCCAAA TCGGAGA-CrATGTCCCCACrAGCGGTCGTTCTTCACrATA-CAATTGTATACTTCCAAA TCGGAGA-CGATGTCCCACCGAGCGGTCGTTCTTCACGATA-CTATTGTATACATCCAAA OUTcm TCGGAGA-CGATGTCCCCACGAGCGGTCGTTCTTCACGATA-CAATTGTAGACATCCAAA CGGGAGAC-GATGTCCCACCGNGCTGTCGTTCTTCACGATAGCAATTGTCTACTTCCAAA

Table 4.2. Aligned DNA sequences. Continued.

Table 4.2. Aligned DNA sequences. Continued.

Taxa \dagger	Nucleotide sites \ddagger					
	4	5	5	5	5	5
	9	0	1	2		4
	0	0	0	0	0	0
	.			.	.	
AC201	CGCNACACCACTGTGCAGGAGGAGGGTTG-TGCTGGCTTCCCGCGAGGCCCGACTCGCGG					
AC208	CGCAAAACCAC	NAG	G-T	TCC	ACC	GG
EC558	CGCACACACAC	GAG	TAT	TCC	ACC	CGG
EC565	srCACACACAC	GAG	TAT	TCC	GCC	CGG
EW203	CGCACACACAC	GNG	TAT	TCC	ACC	CGG
FW237	CGCACCCCCAC	GAG	NAT	TCC	CCC	CGT
FWLoc7	CGCACACACAC	GAG	TAT	TCC	ACC	CGG
TC350ch	sGCACACACAC	GAG	TAT	TCC	ACC	CGG
TC536as	CGCACACACAC	GAG	TAT	TCC	ACC	CGG
TC553ji	Cscacacaca	GAG	TAT	TCC	ACC	CGG
TWTM48	CGCACACACAC	NAG	TAT	TCC	ACC	CGG
PW055	sGCACCCCCAC	GAG	TAT	TC	CCC	CGG
PWTM58	CGCACACACAC	GAG	TAT	TCC	ACC	CGG
OUTcm	CGCAAACCCAT	GAG		TCC	CCC	CGG

Table 4.2. Aligned DNA sequences. Continued.

Taxa \dagger	Nucleotide sites \ddagger						
	5	5	5	5	5		6
	5	6	7	8	9		0
	0	0	0	0	0		0
	.		.				
AC201	TTGGTTAAAAATCGAGTTCGCAACCNTTTT--CGTNGTGAAAAATTGGTGGATGGT-AAC						
AC208	TTGGTTAAAAA	CGC	TT	GAI	TGGA	GT	$A A C$
EC558	TTGGTTAAAAA	CGC	TT	GAT	TGGkT	GT	AC
EC565	TTkGTTAAAAA	CGC	TT	GA	TGGA	GT	
EW203	TTGGTTAAAAA	CG	TT	GAA	TGGA	GT-	AAC
EW237	TTGGTTAAAAA	CGC	NT	GAA	TGGA	GT	AAC
EWLoc 7	TTGGTkAAAAA	CGC		GAA	TGGAT	rm-	AAC
TC350ch	TTGGTTCCAAA	CGC	TT	GAA	TGGA	GT	AAC
TC536as	TTGGkTAAAAA	CGC	TT	GAA	TGGAT	GT	AAC
TC553ji	TTkGTTCCAAA	CGC		GAA	TGGAT		
TWTM48	TTGGTTAAAAA	CGC	TT	GAT	'GGA	GT	AAC
PW055	TTGGTTAAAAA	CG	TT	GAA	TGGAT	GT	
PWTM58	TTGGTTAAAAA	CGC	TT	GAT	TGGAT	GT-	
OUTcm	TTGGTTAAAAA	-	TT	GAA	kGwkT	GTT	AC

\dagger : Key to accessions is listed in Table 2.1. Coding of accessions of the P. tuberosus cultigen types: as $=$ ashipa; $\mathrm{ch}=$ chuin; $\mathrm{ji}=$ jíquima.
\ddagger : Nucleotide sequence displayed from 5^{\prime} to 3^{\prime}. The beginning of the ITS1 region (sites $1-207$), the 5.8 S subunit (208-375) and ITS2 region (positions 376-600) are indicated by arrows. Sequence symbols: $A=d A T P ; C=d C T P ; G=d G T P$ and $T=d T T P$. Coding of ambiguous sites follows IUPAC nomenclature: hyphens = gaps; $k=G$ or $T ; m=A$ or $C ; r=A$ or $G ; s=C$ or $G ; w=A$ or $\mathrm{T} ; \mathrm{y}=\mathrm{C}$ or $\mathrm{T} ; \mathrm{N}=$ aNy base/nucleotides of unknown identity.
*: Nucleotide positions (35 sites) excluded from phylogenetic analyses due to alignment ambiguities.

4.3.3. ITS nucleotide site variation and sequence divergence

Following alignment of the ITS sequences, a character matrix of 600 sites was required to align Pachyrhizus and outgroup DNAs. However, it was necessary to exclude 35 positions (marked ' ${ }^{*}$ '; see Table 4.2) prior to phylogenetic analysis because of alignment ambiguities. Of the remaining 565 unambiguous aligned positions, 245 or 43.4% were variable, i.e. possessed at least one nucleotide difference in at least one DNA. Approximately 40% of these sites were contained within ITS1, 20.8% in the 5.8 S subunit and 39.2% in ITS2.

Of these variable characters, 108 (44.1%) were phylogenetically informative, i.e. possessed nucleotide states shared by at least two DNAs. Among these variable positions, ITS2 accounted for most of this variation (40.8\%) compared to 19.4% in the 5.8 S subunit and 39.8% in ITS1.

Rates of ITS sequence divergence were determined using the Distance Matrix option in PAUP excluding unalignable and undetermined sites. In addition, sites with fixed nucleotide character states in all sequences were compared, i.e. those sites without gaps or polymorphisms in any of the aligned sequences. Divergence rates of ITS1, ITS2 and of combined ITS1-5.8S-ITS2 sequences for Pachyrhizus species and the outgroup are shown in Table 4.3.A-C. Within the ingroup, sequence divergence between pairs of species ranged from 1.9% (TC350ch vs. TC536as; TWTM48 vs. PWTM58) to 38.9% (FWLoc7 vs. TC536as; FWLoc7 vs. TC553) for ITS1 (Table 4.3.B). For ITS2, higher values were obtained ranging from 3.7% (TWTM48 vs. PWTM58) to 50.0% (AC201 vs. PWTM58), as shown in Table 4.3.C.

Finally, for combined ITS1-5.8S-ITS2 sequences divergence values spanned from 2.9\% (TWTM48 vs. PWTM58) and 4.4% (EW203 vs. TWTM48) to 33.1% (AC201 vs. FWLoc7). Among ingroup and outgroup accessions, sequence divergence varied from 26.9% (PW055 vs. OUTcm) to 37.3% (TC536as vs. OUTcm), as illustrated in Table 4.3.A.

4.3.5. Phylogenetic analysis

Fitch parsimony and TBR branch swapping analysis of phylogenetically informative ITS region sites generated five equally parsimonious trees (Figure 4.3). These trees each required 162 evolutionary steps. The consistency index of each tree was 0.66 , excluding uninformative sites and combining sequences identical at potentially informative positions; the retention and homoplasy indices were 0.678 and 0.34 , respectively.

Table 4.3. Pairwise divergence between ITS region sequences from 13
Pachyrhizus and one outgroup DNAs.

4.3.A. Combined ITS1-5.8S-ITS2 matrix. \dagger

\#	AC201	AC208	EC558	EC565	EW203	FW237	FWLOC7
1 AC201	-	0.074	0.287	0.294	0.272	0.287	0.331
2 AC208	10	-	0.296	0.304	0.274	0.274	0.274
3 EC558	39	40	-	0.066	0.176	0.309	0.309
4 EC565	40	41	9	-	0.176	0.279	0.272
5 EW203	37	37	24	24	-	0.221	0.235
6 FW237	39	37	42	38	30	-	0.074
7 FWLOC7	45	37	42	37	32	10	-
8 TC350ch	32	33	24	19	28	40	42
9 TC536as	18	21	25	25	29	42	43
10 TC553ji	29	30	26	25	23	41	41
11 TWTM48	34	34	18	18	6	29	28
12 PW055	37	37	30	28	16	26	29
13 PWTM58	37	37	19	18	10	31	31
14 OUTCm	46	38	47	45	40	43	49

\ddagger		TC350ch	TC536as	TC553ji	TWITM48	PW055	PWTM58	OUTCm
1	AC201	0.235	0.132	0.213	0.250	0.272	0.272	0.343
2	AC208	0.244	0.156	0.222	0.252	0.274	0.274	0.286
3	EC558	0.176	0.184	0.191	0.132	0.221	0.140	0.351
4	EC565	0.140	0.184	0.184	0.132	0.206	0.132	0.336
5	EW203	0.206	0.213	0.169	0.044	0.118	0.074	0.299
6	FW237	0.294	0.309	0.301	0.213	0.191	0.228	0.321
7	EWLoc7	0.309	0.316	0.301	0.206	0.213	0.228	0.366
8	TC350ch	-	0.103	0.074	0.191	0.250	0.206	0.343
9	tc536as	14	-	0.110	0.184	0.257	0.206	$0.373 *$
10	TC553ji	10	15	-	0.162	0.228	0.176	0.328
	TWTM48	26	25	22	-	0.088	0.029	0.291
	PW055	34	35	31	12	-	0.110	0.269*
	PWTM58	28	28	24	4	15	-	0.291
14	OUTcm	46	50	44	39	36	39	-

\dagger : Values in the upper right half of the matrix indicate proportions of divergent sites to a total of 600 sites in each comparison (mean distances, adjusted by PAUP for missing data). The actual numbers of unambiguous divergent sites from pairwise sequence comparisons (absolute distances) appear in the lower left half of the matrix. Highlighted numbers indicate extreme values of the divergence range within Pachyrhizus. * = extreme values of ingroup vs. outgroup pairwise comparisons.
\ddagger : Key to accessions is listed in Table 2.1. Coding of accessions of the P. tuberosus cultigen types: as = ashipa; ch = chuin; ji = jíquima.

Table 4.3. Sequence pairwise divergences. Continued.

4.3.B. ITS1 matrix. \dagger

\ddagger		TC350ch	TC536as	TC553ji	TWTM48	PW055	PWIM5	OUTCm
1	AC201	0.167	0.148	0.148	0.130	0.185	0.148	0.250
2	AC208	0.170	0.151	0.151	0.151	0.208	0.170	0.275
3	EC558	0.111	0.111	0.111	0.056	0.130	0.093	0.231
4	EC565	0.093	0.093	0.148	0.093	0.167	0.111	0.212
5	EW203	0.148	0.130	0.130	0.037	0.111	0.056	0.212
6	EW237	0.296	0.315	0.315	0.204	0.259	0.222	0.308
7	EWLoc7	0.370	0.389	0.889	0.259	0.259	0.296	0.404 *
8	TC350ch	-	0.019	0.056	0.111	0.185	0.130	0.231
9	TC536as	1	-	0.037	0.111	0.185	0.130	0.269
	TC553ji	3	2	-	0.111	0.185	0.130	0.231
	TWTM48	6	6	6	-	0.056	0.019	0.192 *
	PW055	10	10	10	3	-	0.056	0.250
	PWTM58	7	7	7	1	3	-	0.212
14	OUTCm	12	14	12	10	13	11	-

\dagger : Values in the upper right half of the matrix indicate proportions of divergent sites to a total of 207 sites in each comparison (mean distances, adjusted by PAUP for missing data). The actual numbers of unambiguous divergent sites from pairwise sequence comparisons (absolute distances) appear in the lower left half of the matrix. Highlighted numbers indicate extreme values of the divergence range within Pachyrhizus. * = extreme values of ingroup vs. outgroup pairwise comparisons.
\ddagger : Key to accessions is listed in Table 2.1. Coding of accessions of the P. tuberosus cultigen types: as $=$ ashipa; $\mathrm{ch}=$ chuin; $\mathrm{ji}=$ jíquima.

Table 4.3. Sequence pairwise divergences. Continued.

4.3.C. ITS2 matrix. \dagger

\ddagger	AC201	AC208	EC558	EC565	EW203	FW237	FWLoc7
1 AC201	-	0.074	0.426	0.444	0.481	0.296	0.333
2 AC208	4	-	0.370	0.407	0.389	0.315	0.296
3 EC558	23	20	-	0.074	0.278	0.296	0.222
4 EC565	24	22	4	-	0.278	0.278	0.222
5 EW203	26	21	15	15	-	0.204	0.130
6 FW237	16	17	16	15	11	-	0.074
7 FWLoc7	18	16	12	12	7	4	-
8 TC350ch	19	16	13	11	16	15	11
9 TC536as	8	7	15	17	18	17	13
10 TC553ji	19	16	15	15	12	15	11
11 TWTM48	24	19	12	12	3	10	6
12 PW055	22	21	18	17	7	6	9
13 PWTM5	27	22	10	10	5	12	8
14 OUTCm	26	23	23	24	18	17	20

\#		TC350ch	TC536as	TC553ji	TWTM48	PW055	PWTM 58	OUTCm
1	AC201	0.352	0.148	0.352	0.444	0.407	0.6月0	0.481
2	AC208	0.296	0.130	0.296	0.352	0.389	0.407	0.426
3	EC558	0.241	0.278	0.278	0.222	0.333	0.185	0.426
4	EC565	0.204	0.315	0.278	0.222	0.315	0.185	0.444
5	EW203	0.296	0.333	0.222	0.056	0.130	0.093	0.333
6	FW237	0.278	0.315	0.278	0.185	0.111	0.222	0.315
7	FWLoc7	0.204	0.241	0.204	0.111	0.167	0.148	0.370
8	TC350ch	-	0.204	0.074	0.278	0.315	0.315	0.426
9	TC536as	11	-	0.204	0.296	0.370	0.352	0.500*
10	TC553ji	4	11	-	0.241	0.296	0.278	0.426
11	TWTM4 8	15	16	13	-	0.130	0.037	0.352
12	PW055	17	20	16	7	-	0.167	0.296 *
13	PWTM58	17	19	15	2	9	-	0.352
14	OUTcm	23	27	23	19	16	19	-

\dagger : Values in the upper right half of the matrix indicate proportions of divergent sites to a total of 225 sites in each comparison (mean distances, adjusted by PAUP for missing data). The actual numbers of unambiguous divergent sites from pairwise sequence comparisons (absolute distances) appear in the lower left half of the matrix. Highlighted numbers indicate extreme values of the divergence range within Pachyrhizus. * $=$ extreme values of ingroup vs. outgroup pairwise comparisons.
\ddagger : Key to accessions is listed in Table 2.1. Coding of accessions of the P. tuberosus cultigen types: as = ashipa; ch = chuin; ji = jiquima.

Figure 4.3. The five equally parsimonious trees generated from analysis of ITSregion nucleotide sites among Pachyrhizus species and outgroup OUTcm. Numbers above branches indicate branch length, i.e. the number of mutations excluding uninformative changes (Tree length $=$ 162 steps; $\mathrm{CI}=0.660 ; \mathrm{HI}=0.340 ; \mathrm{RI}=0.678$). These trees differ in the positioning of EW, PW and TW taxa, as illustrated (see text for further details).

The five ITS trees differed topologically in their resolution of three accessions: EW203, PWTM58 and TWTM48. In three out of the five equally parsimonious trees, PWTM58 and TWTM48 clustered tightly together, while in the remaining trees these two accessions were resolved either into polytomies or as separate taxa at more basal nodes. Similarly, positioning of accession EW203 in the ITS trees was variable with a resolution either at basal nodes or nested among EC, TW and PW taxa (Figure 4.3).

The strict consensus of the five ITS trees is presented in Figure 4.4. The collapse of phylogeny branches to calculate this consensus tree $(\mathrm{CI}=0.656 ; \mathrm{HI}=0.344$ and $\mathrm{RI}=$ 0.673) required one additional step, i.e. a total length of 163 evolutionary steps.

Based on the taxa analysed for ITS sequence variation, the strict consensus tree indicates that Pachyrhizus is monophyletic, a result supported by 30 base-pair changes, i.e. the number of mutations excluding uninformative changes (Figure 4.4). Parsimony analysis showed also that ITS sequences within the genus were divided into two major clades: (1) a group containing all P. ferrugineus accessions, being the most ancestral in the phylogeny; and, (2) a clade composed of the four remaining Pachyrhizus species. Bootstrap values for these consensus clades ranged from 52% to 100%. Each clade is discussed in turn below.

Clade 1

This group of 11 accessions was clearly separated from the rest of the genus by five synapomorphies and supported by a bootstrap value of 52% (Figure 4.4). Within clade 1 , six subclades were distinguished. A first subclade contained all cultivated accessions of P. ahipa and P. tuberosus clustering strongly together (83% bootstrap value) and unambiguously separated from the remaining subclades by 10 synapomorphies. Moreover, in this ITS subclade P. tuberosus, namely accession TC536 (an ashipa), is sister to P. ahipa, a phylogenetic relationship strongly supported by 82% of the bootstrap replicates. In this same subclade, TC350 and TC553 clustered together (chuin and jíquima, respectively; 80% bootstrap value) and were sister taxa to the aforementioned accessions.

Figure 4.4. Strict consensus of the five equally parsimonious Fitch ITS trees shown in Figure 4.3. Numbers above branches indicate bootstrap percentages (in boldface) and decay values; numbers below branches are synapomorphies (Tree length $=163$ steps; $\mathrm{CI}=0.656 ; \mathrm{HI}=0.344 ; \mathrm{RI}=$ 0.673). The two ITS clades are represented by heavy lines; the six subclades observed in clade 1 are also indicated (see text for further details).

A second subclade contained both cultivated accessions of P. erosus. This subclade was separated from the previous subclade discussed by seven unambiguous base-pair changes (i.e. synapomorphies) and supported by a bootstrap value of 96%. This EC subclade was more basal to the first subclade described above, and was sister group to AC and TC accessions (Figure 4.4). Moreover, all cultivated taxa examined in this study (AC, EC and TC) clustered at a strongly supported node (nine base-pair changes) with a bootstrap value of 80%.

The third and fourth subclades contained one accession of wild origin each, i.e. EW203 and TWTM48. Both taxa were ambiguously positioned among the five equally parsimonious ITS trees possibly because of a reduced number of synapomorphic changes and low sequence divergence $(=4.4 \%$, Table 4.3.A). Therefore, these accessions were resolved as polytomies in the strict consensus (Figure 4.4).

The last two subclades each contained an accession of P. panamensis which resolved as the most basal taxon within clade 1 ; of these, the subclade comprising PW055 was distinct from the remaining subclades by seven mutations and rooted clade 1 (Figure 4.4).

Clade 2: P. ferrugineus

Clade 2 exhibited the highest bootstrap percentage in the cladogram with a value of 100%. This second clade contained the two accessions of P. ferrugineus examined, which resolved as the most ancestral taxon within the genus. A total of 15 mutations, excluding uninformative changes, defined this species as a separate phylogenetic entity. On the other hand, the node that separated P. ferrugineus from the rest of the genus had the lowest bootstrap confidence level (52\%) in the cladogram (Figure 4.4).

An analysis of decay indices indicated that some of the internal structure of the two ITS clades was lost as trees further away from the minimal consensus tree were considered. When the consensus of trees ≤ 164 steps was examined (just one step
longer than the minimal tree), accessions TC350 and TC553 were rapidly lost from clade 1. At this level, the subclade containing P. ahipa accessions and TC536 was still recovered (Figure 4.4). At a consensus length ≤ 165 steps most of the internal structure was lost with accessions of P. erosus, P. panamensis and P. tuberosus no longer resolving in clade 1 . The P. ahipa subclade was strongly supported and collapse of its phylogeny branches required 10 additional evolutionary steps, i.e. a consensus length of trees ≤ 173 (Figure 4.5.A). P. ferrugineus accessions in clade 2 exhibited markedly the strongest support (decay value ≤ 182; Figure 4.5.B), and after 20 steps the distinction among accessions of the ingroup had been totally lost. It is evident that the tree recovered after phylogenetic analysis of ITS nrDNA sequences has, in general, a good and reliable internal stability.
(A)

(B)

Clade 2

Figure 4.5. ITS trees showing the order of 'decay' of clades. (A) This tree is the strict consensus of trees whose length is equal to 172 steps; note that all but P. ahipa accessions of clade 1 have been lost. At 173 steps clade 2, containing all P. ferrugineus accessions, was still present. (B) Strict consensus of trees whose length is 182 steps; P. ferrugineus accessions are still clustering together. The tree became an unresolved 'bush' at 21 steps away from the minimal tree, i.e. a length of 183 (see text for further details).

4.4. Discussion

4.4.1. General characteristics of ITS in Pachyrhizus

The sizes of the ITS regions in Pachyrhizus fell within the range of those reported for other legume genera. For the taxa examined, ITS1 ranges from 203 to 205 bp in length in Pachyrhizus, compared to lengths of 221 to 231 bp in Astragalus (Wojciechowski et al., 1993), 205 bp in Vigna (Schiebel \& Hemleben, 1989) and 235 bp in Vicia (Yokota et al., 1989). Similarly, ITS2 ranges from 219 to 221 bp in Pachyrhizus, compared to 207-217 in Astragalus, 220 bp in Vigna and 208 in Vicia. The size of the Pachyrhizus 5.8 S subunit (164 bp) is the same as the length of this highly conserved region reported for other flowering plants and legumes, e.g. in Madiinae (Baldwin, 1992) and Vicia (Yokota et al., 1989).

The level of divergence of ITS sequences among Pachyrhizus species (2.9% to 33.1%; Table 4.3.A) is comparable to sequence divergence values reported in Saintpaulia and Streptocarpus (0\% to 27.2\%; Möller \& Cronk, 1997), in Gentiana (1.1\% to 48.9\%; Yuan et al., 1996) and in Antennaria (0% to 14\%; Bayer et al., 1996). Moreover, in the case of Pachyrhizus, ITS2 was more variable than ITS1 (Tables 4.3.B and 4.3.C), although both regions were sufficiently variable to make the ITS region a useful tool for phylogenetic reconstruction at the species level.

4.4.2. G+C content and secondary structure formation vs. sequence alignment

Overall G+C content values for ITS sequences of Pachyrhizus species presented here (49.6% to 54.4%; Table 4.1) are comparable to similar values reported in other angiosperms, particularly legume genera (50\% to 59\%) (Wojciechowski et al., 1993; Schiebel \& Hemleben, 1989; and, Yokota et al., 1989). These Pachyrhizus values are towards the middle of the spectrum for plants which has been reported to range approximately from 36% to 75% by Baldwin et al. (1995).

According to Baldwin et al. (1995), a practical concern about taxa with G+C rich ITS regions is the difficulty of obtaining interpretable DNA sequences because of the propensity for strong intrastrand Watson-Crick base pairing during sequencing reactions and electrophoresis. Indeed, sequencing of the ITS region can be complicated by within-strand Watson-Crick base pairing, because of alteration of the polymerase activity or of the electrophoretic mobility of DNA fragments in sequencing gels. Spacer segments with G+C richness may form secondary structures (i.e. subunit boundaries brought into close proximity within a processing domain; González et al., 1990) under some reaction conditions, e.g. low-temperature sequencing reactions or lack of use of dGTP analogues. However, in some instances such intramolecular pairing is expected based on the probable functional behaviour of transcripts of these nrDNA sequences (Baldwin et al., 1995; Thweatt \& Lee, 1990).

To summarise, G+C richness in ITS sequences can lead to ambiguous consensus sequences and further alignment complications because of non-independent and/or overlapping DNA segments. The possibility of this having occurred in some Pachyrhizus accessions cannot be ruled out, e.g. the 16 accessions not included in this survey due to alignment ambiguities. Alternatively, within-individual variation observed in some accessions may be explained by multiple rDNA loci, extensive interlocus gene conversion (Sytsma \& Schaal, 1990) or, perhaps, extreme PCR amplification bias favouring one repeat-type unit (Baldwin, 1992). Therefore, ITS sequences have to be examined with care, although the relative ease with which such sequence information can now be obtained has demonstrated that it is a powerful nuclear DNA resource for comparison with, for example, cpDNA phylogenetic data. The importance of such comparisons for resolving chloroplast capture via introgression, hybrid speciation, lineage sorting and evolutionary parallelism has become increasingly evident (Rieseberg and Soltis, 1991).

4.4.3. Molecular evolution of ITS in Pachyrhizus

The ITS region in Pachyrhizus has evolved primarily by point mutations, judging from the moderately high levels of ITS sequence divergence between and even within
species (Table 4.3), the reduced proportion of sites that required gaps (from 0.91% to 1.22%; section 4.3.2), and the absence of evident ITS length variants within the DNA accessions examined. Length variation of ITS sequences among Pachyrhizus taxa surveyed here ranged from 1 bp to 4 bp (Table 4.1). This variation was due primarily to short, scattered indels of 1 bp to 2 bp . No case of long length variation was observed, such as that in Lisianthius, in which a length variation of 100 bp in ITS1 was reported (Systma \& Schaal, 1990).

Nucleotide substitution was the main source of sequence divergence in the ITS. It has been shown that ITS1 is generally more variable than ITS2 both in length and substitution, e.g. in Asteraceae (Baldwin, 1992 \& 1993) and in Winteraceae (Suh et al., 1993). This was, however, not the case in Pachyrhizus where the numbers of variable characters in both spacers were relatively similar (39.8\% and 40.8\% for ITS1 and ITS2, respectively) and where ITS1 displayed slightly lower divergence values than ITS2 among pairwise sequence comparisons (Tables 4.3.B and 4.3.C).

In addition, a low fixation of ITS length mutations since divergence of a particular species under examination was evident from the small proportion of nucleotide sites wherein insertion of gaps was necessary to align Pachyrhizus sequences. Such sequence conservation among ITS sequences of closely related species is not surprising, given that evidence from experimental and computer-simulation studies (Thweatt \& Lee, 1990; González et al., 1990) suggests that ITS sequences are under some evolutionary constraint because of an important role in processing mature rRNAs from primary transcripts. Secondary, 'crucifix' or 'tRNA-like core' structures (Venkateswarlu \& Nazar, 1991) assumed by both ITS units in the primary rRNA transcripts may be critical to rRNA maturation by bringing the ends of the 18S, 5.8 S and 26 S rRNA regions into close proximity for processing.

These levels of structural stability and conservatism in the ITS region were convenient for the proposed phylogenetic study, wherein assessment of positional homologies (= alignment) among Pachyrhizus DNA sequences was considered absolutely critical.

Although the internal transcribed spacers are thought to be important in posttranscriptional processing and thus conserved to some extent (Baldwin et al., 1995; Möller and Cronk, 1997), the levels of sequence variation between Pachyrhizus taxa were considerable and somewhat similar to intergeneric levels found in other angiosperms. For example, in the subfamily Apioideae (Apiaceae) sequence differences among genera ranged from 0% to 33.2% (Downie and Katz-Downie, 1996); and, in Brassicaceae sequence differences between Sinapis alba L. and Arabidopsis thaliana (L.) Heynh. were 24.3% for ITS1 and 18.9% for ITS2 (Rathgeber \& Capesius, 1989). The high sequence divergence found for Pachyrhizus might indicate that either: (1) the genus is comparatively old, suggestive also of a relatively continuous distribution of the early ancestors in the Neotropical centre(s) of origin; or, (2) that ITS sequences have evolved particularly rapidly in the genus. However, within wild Pachyrhizus species sequence divergence was low (e.g. 2.9\% for TWTM48 vs. PWTM58; or, 4.4\% for EW203 vs. TWTM48; Table 4.3.A), which may indicate simultaneous and rapid radiations from a common ancestor of the wild species (see next section).

4.4.4. ITS phylogenetic relationships and phylogeography within Pachyrhizus

The present study reveals that ITS sequences have been useful in reconstructing a molecular phylogeny for Pachyrhizus taxa. Cladistic analysis of ITS sequences in the genus provided a well resolved strict consensus tree (Figure 4.4), which illustrates a hierarchical summary of relationships shown by the five equally parsimonious ITS trees. Polytomies observed in the basal nodes of clade 1 represent regions where clustering differences occurred, possibly attributable to low sequence divergence values in certain DNA accessions; however, most taxon relationships within the strict consensus were well resolved. Several conclusions can be drawn about the biogeographic history of the genus from the consensus cladogram. ITS1-5.8S-ITS2 variation resolved two major clades comprised of species from different geographical regions, as discussed below.

Clade 1

This first ITS clade comprised a total of 11 taxa of South and Central American distribution; all Pachyrhizus species but P. ferrugineus were included in this group clearly separated from the rest of the genus which appears to have split away early in its evolutionary history. Clade 1 has a strongly supported internal structure, as revealed by high bootstrap values ranging from 52% to 98%, and contains six subgroups in the strict consensus (Figure 4.4).

A first subclade contained cultivated accessions of South American distribution only including the cultigen types of the P. tuberosus complex and a single, highly derived P. ahipa group. TC536, an ashipa, resolved as sister group to P. ahipa (AC201 and AC208), supported by a high bootstrap value of 82% (yet, after two steps away the branch containing TC536 in the consensus tree collapsed, i.e. a decay index ≤ 165). The current ITS evidence presented here would suggest that P. ahipa is possibly derived from P. tuberosus, in view of their close resolution as sister taxa. Placement of these two species together is congruent with their close association in the phylogeny obtained after analysis of total genomic cpDNA (chapter 3); however, the plastome phylogeny proposed a jíquima (western Ecuador) as the sister taxon of P. ahipa, whereas the ITS phylogenetic signal points to an ashipa (Amazonian lowlands). It remains to be determined whether this conflict between ITS and cpDNA trees is attributable to homoplasy, interspecific hybridisation, chloroplast capture or lineage sorting.

A second subclade, which comprised cultivated materials of P. erosus, was also clearly defined within the strict consensus tree (Figure 4.4) and identified these accessions as a monophyletic entity. This Mesoamerican group, paraphyletic to the first subclade described above, was supported by seven synapomorphies and was recovered in 96% of the bootstrap replicates (decay index ≤ 165). Again, this P. erosus subclade has high consonance with a similar grouping observed in the previous cpDNA-based phylogenies. In addition, it is not surprising that the ITS sequences of P. erosus differ from those of the subclade P. ahipa/P. tuberosus since they reflect the
differences in morphology and geographical distribution that are also evident between the two groups.

The resolution of relationships among the remaining subclades within clade 1 is not completely satisfactory, and a polytomy for wild species is present in the strict consensus tree (Figure 4.4). Nevertheless, several interesting findings are evident. One intriguing finding is the 'anomalous' placement of EW, PW and TW taxa, observed in the five equally parsimonious trees and in their consensus (Figures 4.3 and 4.4). This suggests that after the ancestor of these wild species split from the most primitive phylogenetic entity within the genus, i.e. P. ferrugineus, it became isolated to radiate rapidly in different Mesoamerican ecosystems in close proximity to the centre(s) of origin. Moreover, insufficient time has passed for the accumulation of enough mutations within the ITS region of the rDNA gene to satisfactorily differentiate these wild species. Besides, the ancestral groups that diverged early in the Neotropics may have remained diminished, while those splitting off later radiated rapidly and generated the bulk of diversity now evident further away from the putative areas of origin. It would certainly be of interest to seek a more accurate picture of such rapid radiations using faster evolving DNA sequences, and to compare rates of molecular evolution in cultivated relative to wild materials of Pachyrhizus.

Another interesting finding concerns the positioning of the wild accession of P. tuberosus included in the ITS survey. Indeed, the association of TWTM48 with other wild taxa at basal levels of clade 1 was surprising as it was considered to be more closely related to the cultigen types of the P. tuberosus complex, placed at terminal levels of the same clade. This could stem for concerted evolution having occurred within wild populations of P. tuberosus such that their ITS homogenised towards their ancestor (viz. P. panamensis or P. ferrugineus; Figure 4.4). Further analysis, involving a larger number of representative samples of wild P. tuberosus is required to investigate this possibility in greater detail.

An interesting feature of the strict consensus tree was the basal-most positioning of PW and TW accessions. PW055 is always basal to clade 1 which could possibly
indicate that the other wild taxa are derived from an early ancestor of P. panamensis, after splitting from P.ferrugineus. With the exception of this latter species, P. panamensis and wild P. tuberosus were the most primitive in the genus, which is congruent with the phylogenetic treatments described previously. In addition, this supports the phytogeographic hypothesis postulated from cpDNA data, i.e. that both species (P. panamensis and P. tuberosus) originated from a continuously distributed early ancestor (i.e. ecotypes of P. ferrugineus) after rapid radiation, and diverged later parapatrically as a response to environmental changes (deciduous vs. evergreen rainforest) into two evolutionary branches in the following fashion: FW, EW and EC taxa in Mesoamerica; and, PW, TW, TC and AC taxa in South America. Domestication and subsequent man-made selection aided later the specialisation of primitive landraces and cultivars that are now evident.

Clade 2: P. ferrugineus

The two accessions of P. ferrugineus (FWLoc7, collected in Guatemala and FW237 from Martinique) were resolved together as the most basal taxa within Pachyrhizus (Figure 4.4). P. ferrugineus is known to be a highly divergent species comprising several ecotypes (Sørensen, 1990 \& 1996), which exhibit considerable morphological variation (e.g. the significant variation in leaflet outline, even within populations, across its wide range of geographic distribution). In contrast, intraspecific ITS sequence divergence values for P. ferrugineus are low (7.4\%; Table 4.3.A-C). This is not surprising since highly repetitive genes such as rDNA may maintain homogeneity by concerted evolution, in the manner of unequal crossing-over or gene conversion (Arnheim, 1983). Multigene family members evolving in the concerted mode should show a greater degree of interspecific variation than intraspecific variation. Since the ITS regions are functionally less constrained than the coding regions, then it is very likely that homogenisation through the aforementioned mechanisms occurred in the accessions of clade 2.

The considerable divergence between P.ferrugineus and the other Pachyrhizus species based on ITS sequence comparisons tends also to be reflected in comparisons
of interspecific compatibility and morphology. For example, all species of Pachyrhizus with the exception of P. ferrugineus are cross-compatible (Sørensen, 1996), resulting in fertile interspecific hybrids (however, no naturally occurring hybrids have been recorded in areas where two species co-occur). In addition, P. ferrugineus is the only species in the genus which is evergreen and where the parts of the plant above ground are perennial. Clearly, the ability to interbreed and the herbaceous botanical nature of the remaining four species is a long-retained, apomorphic character state, a distinction also supported by ITS sequence data.

ITS data have provided additional insights into the evolutionary history of yam beans. The strict consensus tree depicts at least three major independent radiations from a common ancestor (P. ferrugineus) that took place in Central and South America. Under this hypothesis, the first radiation led to a simultaneously-generated mosaic of species (PW, TW and EW); a second adaptive radiation involved differentiation of a Mesoamerican evolutionary branch (i.e. P. erosus and its dispersal to northern habitats) and a South American evolutionary branch. A third radiation led to the specialisation of the South American group along the Andean mountain ranges and Amazonian basin; this recent, most specialised clade successfully spread into very different niches creating the bulk of diversity evident within the cultivated P. tuberosus complex and P. ahipa. Moreover, these adaptive radiations appear to have been associated with key changes in vegetative and floral morphology, probably driven by ecological factors (e.g. extreme change of habitat conditions), and, in a subsequent stage, domestication and selection.

Finally, it is important to consider the potential impact of hybridisation on phylogenetic estimation. Hybridisation, especially if it is ancient, can be difficult to detect from ITS sequence data because concerted evolution rapidly homogenises nrDNA repeats (Hillis \& Dixon, 1991). Multiple hybridisations between the same taxa, followed by concerted evolution and lineage sorting of the ITS region (Neigel \& Avise, 1986) could lead to discordance between phylogenies based on ITS and morphology. Hybrid derivatives could eventually be of two types, one with the nrDNA repeat of one parent and the other with the nrDNA repeat of the other parent.

Wendel, Schnabel and Seelanan (1995) demonstrated that interlocus concerted evolution can occur bidirectionally subsequent to hybridisation. In their study, fixation of Old World and New World nrDNA repeats in different cotton (Gossypium) allopolyploids was observed with consequent discordance between organismal and gene phylogenies. In the light of the current ITS data, it would certainly be of interest to determine the occurrence of such instances in Pachyrhizus.

Additional data are required to bring into better focus overall evolutionary relationships within Pachyrhizus. Combined analysis of diverse data and inclusion of additional accessions will hopefully amplify phylogenetic signal, dampen random noise and confirm or refute the proposed phylogenetic hypotheses.

CHAPTER 5

USE OF RAPDS IN A PHENETIC ANALYSIS OF PACHYRHIZUS TAXA

> RAPD priming sites
> J. Estrella

5.1. Introduction

Molecular markers have been developed into powerful tools to analyse genetic relationships and genetic diversity within and between species. In addition to several other approaches using polymorphic DNA markers, the technique of Random Amplified Polymorphic DNA (RAPD; Williams et al., 1990) is used in genetics, evolution and systematics to determine taxonomic identity, assess kinship relationships, analyse mixed genome samples, create specific probes and test phylogenetic hypotheses (Bachmann, 1994; Hadrys et al., 1992).

5.1.1. Principles and advantages of the RAPD technique

PCR with single, short (usually 10 -mer) arbitrary primers relies on the statistical chance that the complementary primer sites occur somewhere in the genome as inverted repeats enclosing a relatively short stretch of DNA (up to a few thousand base pairs), such that the DNA fragment can be amplified allowing comparison with similar fragments obtained from other individuals, populations, DNA accessions, etc. (Hillis et al., 1996; Bachmann, 1994). Primer sites are thought to be randomly distributed and polymorphism between RAPD profiles can be attributed to a range of processes, including nucleotide substitution (which create or destroy primer sites), and insertion, deletion or inversion of either priming sites or segments between priming sites (Williams et al., 1993; Weising et al., 1994). In addition to polymorphisms due to presence/absence of a DNA product and their size distribution, polymorphisms with respect to product intensity can also be expected within a RAPD profile (CaetanoAnollés et al., 1991; Williams et al., 1990). This variation in product intensity might be the result of low copy numbers of products, competition between RAPD sites, heterozygosity or partial mismatching of primer sites (Adams \& Demeke, 1993; Bachmann, 1994; Hadrys et al., 1992; Williams et al., 1993).

RAPD analysis is a simple procedure. Nanogram amounts of total genomic DNA are subjected to PCR using one synthetic oligonucleotide. No prior knowledge of the genome subjected to analysis is required; and, the profile of amplification products
depends on the template-primer combination which is reproducible for any given combination. Amplification products, once resolved on agarose gels, serve as dominant genetic markers which are inherited in a Mendelian fashion (Williams et al., 1990); presence of a particular band is dominant, while absence is recessive (Tingey \& del Tufo, 1993). Amplification of non-nuclear RAPD markers is negligible due to the relatively small size of non-nuclear genomes (Hadrys et al., 1992).

The resolution of RAPDs offers several advantages over other molecular techniques detecting DNA variation in plants. The main advantages include the suitability for work on anonymous genomes and its application to problems where only small quantities of DNA are available. This is an attractive option especially when working with limited material such as herbarium specimens, rare or endangered plants (where destructive sampling is not desirable), or individuals with relatively few leaves (Weising et al., 1994; Hillis et al., 1996). The method is quick and efficient in that it can be completed within hours, and is fully automated such that a large number of samples can be handled simultaneously. Further, the analysis of RAPDs involves a nonradioactive assay which requires a simple experimental set-up with ease of use in a modestly equipped laboratory.

The RAPD technique is an attractive complement to conventional fingerprinting aimed at major progress in two directions: (1) increase in analytical power per unit effort; and, (2) simplification of technology and, ultimately, reduction in expense (Weatherhead \& Montgomerie, 1991; Hadrys et al., 1992). Many reports maintain that the RAPD technique is considerably cheaper than other molecular approaches (Hadrys et al., 1992; Rafalski \& Tingey, 1993; Williams et al., 1990 \& 1993); however, this is not always the case. For example, Ragot and Hoisington (1993) compared radioactive and nonradioactive RFLPs vs. RAPDs in terms of cost and time efficiency, based on maize (Zea mays L.) genotyping experiments. They found that the increase in total cost with increasing numbers of samples was higher for RAPDs than for RFLPs. RAPDs were generally more cost and time efficient for studies involving small sample sizes (~ 25 to 50 individuals), while RFLPs had the advantage for larger sample sizes. However, the number of times Southern blots were reused and
the cost of DNA polymerase per reaction, etc., affected the relative merits of using RFLPs and RAPDs, and neither protocol held absolute advantage over the other. It was considered that the efficiency of the technique depended on factors such as labour cost, automation, re-use of reagents, etc. (Ragot and Hoisington, 1993).

5.1.2. Assumptions and limitations of RAPDs

As with other molecular assays, the basic assumptions of RAPD fragment analyses are that the characters in question are heritable, repeatable and independent. Violation of these assumptions impacts significantly on phylogeny reconstruction and population genetic studies (Dowling et al., 1996; Bachmann, 1994).

The assumption of heritability has two components: fidelity of transmission and mode of inheritance. The first of these is most likely to be violated when using rapidly evolving characters such as VNTR loci, because of their high mutation rates (Jeffreys et al., 1988). Knowledge of the mode of inheritance is critical for RAPDs, which are often dominantly expressed (Hadrys et al., 1992). Without this information, it may be impossible to distinguish alleles of a single codominant locus from independent products of non-homologous loci (Riedy et al., 1992), unless progeny testing is conducted.

Repeatability is a problem that has raised concern in the use of RAPDs. The technique is sensitive to reaction conditions and often generates spurious and unrepeatable products if experimental parameters are not carefully standardised (Dowling et al., 1996; Bachmann, 1994; Hadrys et al., 1992). These unclear and nonreproducible fragments, which may derive from non-specific priming or from heteroduplex formation between related amplification products (or other secondary structure artefacts, which can prevent normal amplification patterns) are not useful as genetic markers. Moreover, several authors (e.g. Innis et al., 1990) have reported the presence of 'ghost' bands, i.e. the production of DNA fragments in the total absence of template in a RAPD reaction. Standardising experimental conditions, concentrating on unequivocal and consistent polymorphisms, and treating these as individual
qualitative markers is probably the simplest and safest approach for most investigations (Weising et al., 1994; Bachmann, 1994).

The assumption of independence of characters has both technical and biological (e.g. linkage) dimensions. This assumption is potentially violated at the technical level for characters generated by several molecular approaches, especially those using bandsharing data (Dowling et al., 1996; Danforth \& Freeman-Gallant, 1996). In RAPDs, where the genetic basis of specific fragments is unknown, it is impossible to assign fragments of specific mobility to a particular locus without progeny testing. In addition, RAPD products might not be independent especially when amplified fragments are associated with repetitive sequences in the genome, or when allelic relationships are unknown, or if there is heteroduplex formation (Ayliffe et al., 1994).

Non-independence of characters can cause significant errors in phylogeny reconstruction, and careful selection of appropriate statistical methods for data analysis is therefore crucial. The discussion of methods for correcting nonindependence, such as estimates of covariance, parametric t-tests, permutation tests, confidence limits, etc., go beyond the scope of this section and are treated elsewhere (e.g. Danforth \& Freeman-Gallant, 1996; Felsenstein, 1983; Hillis et al., 1996 and references therein).

Primer size also represents a potential difficulty of the RAPD technique. It may be expected that primers of short length will amplify an unreasonable large number of sequences and that larger primers will amplify too few sequences to be routinely informative. Beyond a certain primer size ($\sim 15-\mathrm{mer}$) increasing primer length may also increase non-specific primer annealing, consequently increasing the probability of random non-reproducible amplification patterns (Bachmann, 1994). Most studies using standard RAPD conditions have found 10 -mer primers to be an appropriate size (Weising et al., 1994; Hillis et al., 1996). In addition, a G+C content of the primer similar to the G+C content of the analysed genome, maximises the frequency of binding sites and hence amplification products.

Finally, template impurities require consideration. Since primers amplify DNA from virtually all sources, amplification may also include foreign co-isolates, infections and parasites. Fortunately, this may not create problems when clean plants have been raised under controlled conditions or when DNA has been carefully extracted and purified. However, it should always be kept in mind when conclusions are based on anonymous bands (Weising et al., 1994; Bachmann, 1994).

5.1.3. Homology of RAPD fragments

Homology of RAPD fragments is a crucial assumption and, consequently, is treated separately. The RAPD approach assumes that amplified fragments are unique, i.e. that the procedure does not amplify two distinct fragments which comigrate on gels because of similar size (Hadrys et al., 1992). If two individuals exhibit fragments with identical mobilities, it is assumed that these fragments identify homologous stretches of DNA, a consideration that may not hold for anonymous or rapidly mutating segments of DNA. Under some circumstances, the fragments compared may be paralogous (homology via gene duplication) rather than orthologous (homology via speciation); this is a problem since non-homologous products may be amplified by a single primer, leading to misinterpretation of banding patterns and gross errors in subsequent analyses (Rieseberg, 1996; Dowling et al., 1996).

Orthology of putative DNA amplimers should be tested rather than assumed, particularly in comparisons between species (Black, 1993). Southern analysis using the specific RAPD product in question as a hybridisation probe, or alternatively, cleaving gel-isolated products with restriction enzymes and observing congruent band profiles have been suggested as useful tools to test this assumption (Dowling et al., 1996; Fritsh \& Rieseberg, 1992; Rieseberg, 1996).

5.1.4. Applications of RAPD studies to plant diversity and evolution

Due to its advantages and technical simplicity, the procedure that resolves RAPDs has been applied widely in various studies of plant diversity; for example, in studies of
plant population genetics, taxonomic identity, construction of gene linkage maps, fingerprinting plant genomes for cultivar identification, and the determination of hybrids. The method has also been employed in the definition of core collections, the study of hybrid origin of species, and in phylogeny reconstruction. Examples of some of these applications are presented below, followed by a brief description of recent RAPD studies in Pachyrhizus.

Population genetics

RAPDs have contributed considerably in studies of plant population genetics. For example, Wolff et al. (1997) used RAPDs to study subpopulation genetic structure in one population of the short-lived perennial Alkana orientalis (L.) Boiss. from the Sinai Desert, Egypt. Results from previous studies suggested that bee pollinator behaviour was likely to cause limited gene dispersal and that subpopulations might have diverged from each other genetically (Willmer et al., 1994). Seven RAPD primers were used and differences between subpopulations were found for several of the 45 polymorphic fragments scored. Population subdivision became evident from cluster analysis, and genetic distances revealed that there was significant genetic differentiation between all subpopulations; however, it was also found that more extensive gene flow appeared to have taken place within the population than was expected. Finally, the study indicated that the pattern of both pollen and seed flow were probably influential in moulding the genetic subdivision of the population of A. orientalis (Wolff et al., 1997).

Similarly, RAPDs were used to study the population genetic structure of the forest tree Eucalyptus globulus (Nesbitt et al., 1995), a species that has been divided taxonomically into four subspecies. In many localities where it occurs, it appears to be intermediate in morphology between subspecies globulus and the remaining three subspecies. However, RAPD analysis did not reveal an intermediate phenotype for specimens from these localities. Moreover, within E. globulus, the majority of RAPD variation was greater within rather than between populations. In contrast, in American cranberry (Vaccinium macrocarpon), a vegetatively spreading clonal plant that
reproduces sexually by selfing, RAPD profiling revealed many polymorphisms within and among populations (Stewart \& Excoffier, 1996). Quantification of population genetic homogeneity in both of these studies had important repercussions in their conservation biology and ecology, since genetically homogeneous populations are considered to be less stable and flexible than heterogeneous ones (Millar \& Libby, 1991).

Fingerprinting plant genomes and estimation of genetic relatedness

Unequivocal identification of plant cultivars is important for practical breeding purposes as well as for related areas like plant proprietary rights protection. Further, assessment of genetic diversity among cultivars and their wild relatives has recently attracted attention in efforts to cope with the commonly encountered reduction of diversity resulting from sampling and breeding processes (IPGRI, 1995; Weising et al., 1994). Cultivar identification and estimation of genetic relatedness has been efficiently achieved with RAPD profiling in a large number of crops, e.g. in Malus (Koller et al., 1993), Rubus (Parent et al., 1993), Musa (Kaemmer et al., 1992), Phaseolus (Gepts et al., 1993) and Carica (Sharon et al., 1992), among many others. Only two representative examples are given here; for additional information the reader is addressed elsewhere (e.g. Weising et al., 1994).

As in many other perennial crops, proper cultivar identification in cocoa (Theobroma cacao) traditionally relies on morphological characters that cannot be assessed until tree maturity. Using RAPD analysis with 10 primers, a set of 13 genotypes were successfully distinguished at the seedling stage (Wilde et al., 1992). Wild cocoa species proved to be relatively dissimilar to the cultivated genotypes, whereas the latter exhibited various levels of relatedness. Bandsharing values among the investigated plants ranged from 51% to 86%.

Commercial cultivation of cocoa is based on a very restricted genepool. To assess the amount and distribution of genetic variation in the species, a total of 25 accessions from three populations collected in Ecuador and Peru was analysed with 25 RAPD
primers (Russell et al., 1993). PCO analysis clearly discriminated between the geographical origins of the germplasm under study. Further, Shannon's index of phenotypic diversity was used to quantify the level of polymorphism detected and to partition it into between- and within-population components. On average, diversity was higher within rather than between populations.

The definition of core collections

Major collections of important crop plants are held in genebanks around the world. They are repositories of biodiversity and a valuable source of genes for plant breeders and farmers. Workers at many of these institutions face problems in the efficient conservation and use of germplasm because of the large numbers of accessions in a collection (IPGRI, 1995). Two complementary solutions have been proposed to enhance the efficiency with which such collections can be handled: (1) the identification and removal of duplicates; and, (2) the definition of core collections. In the latter case, a subset of germplasm, comprising approximately 10% of the total collection, would be selected to represent, with minimal redundancy, as much as possible of the diversity within the whole collection (Virk et al., 1995).

Accessions within a core collection would be the first to be supplied in response to requests by breeders for material from the collection. Due to its smaller size, the core collection could also be the target of back-up conservation, as it could be transferred and stored at other institutions (Vaughan \& Jackson, 1994). Moreover, the proposal of a core collection does not involve a reduction in the actual size of the whole collection, but optimises the efficiency of its conservation, evaluation and use by prioritising representative subsets of accessions for special attention (Frankel, 1984; Virk et al., 1995). In this regard, molecular markers (e.g. RAPDs) have proved useful for the identification of duplicates and the definition of core collections.

An example of the production of a core collection aided by molecular markers is presented in Virk et al. (1995). They applied the RAPD technology to accessions of rice (Oryza spp.) obtained from the major world collection held at IRRI, the

International Rice Research Institute. A total of 24 primers were used which yielded 83 reproducible marker bands. Cluster analysis using the UPGMA and TWINSPAN methods was employed to generate dendrograms, which readily separated accessions into two major groups. Whereas this RAPD classification did not always correlate exactly with classifications based on morphology, they agreed well with those based on isozymes and crossing data. These findings resulted in an immediate practical application by rice breeders who used the RAPD technique to provide a fast and reliable method for classifying relatively uncharacterised accessions of O. japonica or O. indica. In a wider context, RAPD variation provided data for establishing guidelines and strategies for effective germplasm management.

Construction of plant phylogenies

The use of RAPDs in the study of phylogeny and species relationships has become increasingly widespread. For example, Graham and Nichol (1995) carried out cluster analysis in species of raspberry (Rubus) using RAPD markers. The 13 species used represented three subgenera (Idaeobats, Eubats and Anoplobats) of a total of 12 recognised in Rubus. Ten primers were used in their experiment, which generated 372 polymorphic markers; the resulting dendrograms separated the species into the three subgenera with the exception of R. macrae, a rare tropical species traditionally placed within the subgenus Idaeobats. Further, RAPD data indicated that R. macrae had only 26% similarity to other species of the subgenus Idaeobats, which was equivalent to its level of similarity to species of Eubats.

RAPD markers can be used successfully in studies aimed at elucidating the origin of hybrid species. For example, Wang et al. (1994) used RAPDs to investigate the hybrid origin of Paulownia taiwaniana, a fast-growing timber species restricted to East Asia (Chen, 1986). Genomic DNA of this species and its two putative parental taxa was amplified using 23 primers. A total of 351 fragments were produced and of these 265 (75.5\%) were polymorphic. Almost all PCR-amplified products of P. taiwaniana were shared by either P. fortunei or P. kawakamii, or both; and, the number of polymorphic fragments shared by P. taiwaniana and P. fortunei was about
equivalent to those shared by P. taiwaniana and P. kawakamii. These findings, together with the results of a cpDNA variation survey, provided conclusive evidence pointing to a hybrid origin of P. taiwaniana, with P. fortunei and P. kawakamii as parental taxa (Wang et al., 1994).

RAPD analysis has also been used by Halward et al. (1992) to examine systematic relationships in Arachis hypogaea and related wild species. The study was conducted on two peanut cultivars, 25 divergent lines of A. hypogaea and 29 diploid species of wild Arachis. No evident RAPD variation was revealed between the cultivars, nor the 25 divergent lines of A. hypogaea; nevertheless, the wild materials were uniquely identified with most primers. In addition, cladistic and phenetic analyses of the RAPD data set gave nearly identical results which agreed with previous classifications based on morphology, isozymes and RFLP markers.

Despite the increasing popularity of RAPDs as a tool for phylogeny reconstruction, the assumptions made about the data that are generated (see previous sections) need to be treated with caution. Firstly, the presence of non-homologous comigrating fragments might provide information on convergence rather than close relationships between taxa; therefore, homology has to be tested (Dowling et al., 1996; Rieseberg, 1996). Secondly, RAPDs should not strictly be used in a cladistic analysis, although this has been done in several studies (e.g. in autumn buttercup, Ranunculus spp.; Van Buren et al., 1994). This is because RAPDs are generated from anonymous regions of the genome and homoplasic characters will therefore be present in unknown proportions. In contrast, phenetic analysis (section 3.1.4) can be performed with RAPD markers, i.e. clustering taxa on the basis of their overall similarities (Stace, 1989). In some studies, cladistic and phenetic analyses have given similar results (e.g. in Mexican Pinus, Furman et al., 1997; in Stylosanthes, Gillies \& Abbott, 1998), so although phenograms should not necessarily represent a common ancestry, they sometimes do.

RAPD studies in the genus Pachyrhizus

So far, three RAPD studies have been carried out on Pachyrhizus, aimed either at elucidating species relationships or at morphological and agronomical characterisation of representative groups of accessions. These surveys, performed under the aegis of the European Union- funded Yam Bean Project (Sørensen, 1996), have provided further insight into the genetic relationships and evolutionary history of the genus. Some of these findings are presented below.

Phillips (1994) carried out a preliminary RAPD analysis using 79 accessions and 13 primers (Operon Technologies Inc.). Four of these primers yielded consistent and repeatable results and a total of 79 fragments were produced, of which, 45 (57\%) were unique to a species or group of species. Phenograms were generated using both UPGMA and Neighbour-Joining methods. RAPD screening discriminated groups of similar accessions, both between and within species. Moreover, accessions of P. erosus and P. tuberosus were classified into distinct species-specific groups and a discrete Mexican grouping of cultivated P. erosus was revealed. Further studies were recommended to include variation within accessions and to assess the level of confidence with which intra-specific groupings might be accepted.

A subsequent investigation carried out by Estrella et al. (1998) screened four of the five species within Pachyrhizus using 65 accessions and six 10-mer oligonucleotides. Neighbour-Joining and PCO analyses were used as agglomerative methods to cluster accessions; the bootstrap method was employed to estimate confidence limits of internal branches of the consensus tree. Again, polymorphisms produced in this study discriminated between accessions of P. erosus and P. tuberosus. Within P. erosus, a discrete grouping of Mexican cultivars was revealed, which agreed with the proposal that P. erosus in central Mexico and the Yucatan peninsula is derived from a highly limited introduction of germplasm. In addition, RAPD markers were useful for discriminating between accessions belonging to the jíquima and ashipa cultigen types of the P. tuberosus complex.

Finally, the research project 'Systematic Characterisation of Genetic Diversity of Pachyrhizus erosus and P. tuberosus' has been conducted during these two last years at CATIE (Centro Agronómico Tropical para la Investigación y la Enseñanza, Costa Rica). A RAPD analysis conducted by Ing. M.Sc. César Tapia (pers. comm.) used 10 primers from kits OPA, OPH and UBC (Operon Technologies Inc. \& University of British Columbia) over a group of 31 accessions representing cultivated materials of the P. tuberosus complex. A total of 33 polymorphic fragments were generated and UPGMA divided accessions into four well-resolved clusters. RAPD polymorphisms discriminated the three cultigen types within P. tuberosus, with accessions TC118 and TC525 (both ashipas) resolving as the basal-most taxa in the dendrogram. Additional molecular and morphological analyses (the latter one based on 70 descriptors) are currently on its way.

5.1.5. Objectives and aims of the survey of RAPD variation in Pachyrhizus

The objectives and aims of the work reported in this chapter were three-fold:

First, to use RAPDs to generate phenograms describing overall similarities between selected Pachyrhizus accessions. Taxa were chosen following two criteria: (1) selection of accessions that were included in well-resolved clades of the previous cpDNA and ITS-based phylogenies, thus providing a comparative estimate of the reliability of RAPD analysis for the resolution of evolutionary relationships; and, (2) the inclusion of accessions from poorly-resolved regions of the previous phylogenetic treatments, aiming to obtain a clearer description of inter- and intraspecific relationships within the genus.

Second, several experiments were carried out to assess homology among RAPD bands produced by the same primer but in different accessions. Detailed testing of the putative homology of comigrating bands was considered necessary before such an assumption could be accepted.

Finally, the potential of RAPDs as a fast and cost-efficient source of molecular markers for the identification of Pachyrhizus taxa was examined. It was hoped that the present RAPD study would provide a source of taxon specific fragments for future investigations on genetic relationships and aid molecular plant breeding.

5.2. Materials and methods

5.2.1. Plant material

A total of 85 accessions of Pachyrhizus, comprising ecotypes, landraces and cultivars from a broad range of geographic, ecological and climatically different Neotropical areas were subjected to analysis. A complete list of plant material surveyed is presented in Table 2.1. Some accessions examined had previously been analysed for cpDNA restriction site and ITS sequence variation. Details of plant cultivation and preparation of leaf samples were as described in chapter 2 (section 2.2).

5.2.2. Experimental details

All experimental procedures were carried out as described in chapter 2. Extraction, purification and estimation of DNA concentration were performed as described in sections 2.3 and 2.4. RAPD amplification proceeded as described in section 2.8.1. A total of 16 primers were initially screened for polymorphisms in a pilot survey (Table 2.6); of these, eight revealed consistent RAPD profiles and were selected for final study (Table 5.2). Primers were chosen on the basis of the regularity with which they amplified their target sequences; only primers that gave clear and reproducible banding patterns were used. A total of 50% of the primer-accession combinations, chosen at random, was repeated once to ensure reproducibility of results.

5.2.3. Homology assessment among comigrating RAPD fragments

To confirm that RAPD bands scored among Pachyrhizus accessions were homologous, restriction digests were performed on purified RAPD fragments following the protocol described in section 2.8.2. Identical profiles produced by different restriction enzymes were considered evidence for homology. The percentage of comigrating bands that were homologous (H) was estimated using the following equation:

$$
H=\left(N_{c} / N_{h}\right) \times 100
$$

In this equation, N_{h} represents the total number of bands tested for homology and N_{c} is the number of these bands that gave congruent restriction patterns within a particular pairwise comparison of comigrating fragments. A second approach to test homology, i.e. transfer of comigrating fragments onto nylon membranes by Southern blotting and subsequent hybridisation, was not particularly successful and thus was not used further.

5.2.4. Data analysis and phylogeny reconstruction

Presence/absence of each scorable fragment was recorded in a binary data matrix and the frequency of each band was determined by inspection. Pairwise genetic similarities were calculated from the data matrix using Jaccard's coefficient, $F=M_{x y} /$ ($M_{t}-M_{x y} 0$), where $M_{x y}$ represents the number of fragments shared between two accessions, M_{t} the total number of bands in the data matrix and $M_{x y 0}$ the number of bands in the data matrix that were not evident in either of these accessions (Virk et al., 1995). The basis for the presence of RAPD bands is not clearly understood, but it is considered that the absence of a shared band may not necessarily imply shared ancestry. Therefore, Jaccard's coefficient was considered the best algorithm to use for data analysis, as it calculates pairwise genetic distances based only on the shared presence of bands (Armstrong et al., 1994; Gillies et al., 1997).

The matrix of genetic distances was obtained using options M1-14 and M2-21 of the software package RAPDISTANCE, version 1.04 (Armstrong et al., 1994); only polymorphic DNA fragments were considered. A measure of genetic distance was calculated as $1-F$. Cluster analysis was performed on the matrix of pairwise distances with both the Neighbour-Joining (Saitou \& Nei, 1987) and UPGMA (Unweighted pair group method with arithmetic averages; Sneath \& Sokal, 1973) methods. Further, options Seqboot, Neighbour and Consense from PHYLIP for Windows, version 3.5 (Felsenstein, 1993), were used to build a consensus tree, summarising the relationships of 100 bootstrap replicates. Only the Neighbour-

Joining (NJ) generated phenogram was subjected to the bootstrap procedure due to a computer-time constraint. Phenograms were visualised and printed with the software programme TreeView, version 1.2a (Page, 1996).

The permutation tail probability (PTP) test was carried out using option M3-32 of RAPDISTANCE, version 1.04, to test the internal structure in the data set. This test determines if the data set is meaningful for phylogenetic analysis by testing if a tree calculated from a set of genetic distances reflects a tree-like signal in the data, or is merely an artefact of the algorithm used for phylogeny reconstruction. The procedure consists of comparing the minimum length tree derived from the RAPD data set to that derived from the same data after character state assignments have been randomly permuted within each character (Armstrong et al., 1994; Swofford et al., 1996). The PTP test can be applied to trees because a tree calculated from random distances will have a larger total branch length than a tree with an appropriate, hierarchical structure. The random permutations are repeated many times to obtain an estimate of the mean total branch length of trees representing the randomised data, and also the standard deviation of that mean. Thus, the 'tree-likeness' of the original tree (unrandomised; calculated by pairwise distances) is assessed as a Z-value, namely the difference between the total branch length of the original tree and the mean of the random trees, expressed as the number of standard deviations of the randomised trees (Armstrong et al., 1994; Furman et al., 1997).

5.3. Results

5.3.1. PCR amplification of genomic DNA

Sixteen random decamer primers were initially used in a pilot study (data not shown). Eight of these, with G+C contents ranging from 50% to 70%, showed consistent amplification. Consistency of the fragment patterns was checked in all primeraccession combinations that were repeated at random and was found to be 100% in all RAPD profiles, ensuring reproducibility of results. Details of presence/absence of the DNA fragments in the accessions surveyed are presented in Appendix 6. PCR amplification yielded 148 RAPD bands (excluding 23 monomorphic bands), ranging in size from 506 to 6300 bp .

The total numbers of RAPD fragments amplified from Pachyrhizus species in this survey are shown in Table 5.1. More DNA bands were amplified with genomic DNA of cultivated P. tuberosus and P. ahipa (50 and 51 bands, respectively) than with genomic DNA from the other species. The lowest numbers of RAPD fragments were scored for accessions of P. ferrugineus and P. panamensis (38 bands in both species). The number of shared fragments ranged from 37 (for FW accessions) to 50 (TC accessions). In addition, the average of amplified fragments/primer ranged from 2.9 (for PW accessions) to 14.1 (for TC accessions). The average number of bands per species was 8.3 for the whole RAPD survey.

Table 5.1. Number of RAPD fragments amplified from Pachyrhizus with eight 10-mer primers.

Description										Total number of RAPD fragments							
	AC	EC	EW	FW	PW	TC	TW	Average									
Scored fragments	51	49	42	38	38	50	41	44.1									
Shared fragments	46	49	42	37	38	50	41	$\mathbf{4 3 . 3}$									
Average fragments/primer	12.6	10.8	7.1	4.5	2.9	14.1	6.0	$\mathbf{8 . 3}$									
Unique fragments/species	5	0	0	1	0	0	0	0.8									
Accession-specific fragments*	10	9	23	15	11	16	25	$\mathbf{1 5 . 5}$									

*: Fragments that are present in one accession only but not another within a species, but might be present in another species.

With respect to unique DNA fragments that were amplified in only one species, five and one such bands were scored for AC and FW accessions, respectively (Table 5.1). No unique DNA fragments were observed for EC, EW, PW, TC and TW accessions in this study. Accession-specific products were observed for all species surveyed; the number of accession-specific fragments ranged from 9 to 25 , with an average of 15.5 (Table 5.1).

The number of polymorphic RAPD fragments produced per primer over the 85 accessions examined is shown in Table 5.2. Primer OPB08 produced most polymorphic fragments (24), whereas OPH14 produced the least (14). With respect to polymorphic DNA fragments that were amplified per species, cultivated material (i.e. AC, EC and TC accessions) produced consistently more of such fragments than wild taxa (i.e. EW, FW, PW and TW). Further, PW accessions showed the lowest number of bands (23), whereas TC accessions had the highest value (113 fragments; Table 5.2). However, it should be noted that these differences might have been affected by the fact that only 17 accessions of wild status (out of a total of 85) were included in the survey.

Table 5.2. Number of polymorphic DNA fragments produced over material surveyed.

Primer	Number of polymorphic DNA fragments								
	AC	EC	EW	FW	PW	TC	TW	Total ${ }^{*}$	Average
OPA02	18	12	7	7	1	15	9	$\mathbf{2 1}$	$\mathbf{9 . 9}$
OPA13	10	11	8	2	3	15	5	$\mathbf{1 7}$	$\mathbf{7 . 7}$
OPB07	13	13	9	6	5	18	9	$\mathbf{2 1}$	$\mathbf{1 0 . 4}$
OPB08	15	11	8	7	4	17	8	$\mathbf{2 4}$	$\mathbf{1 0 . 0}$
OPH02	15	11	7	5	3	13	5	$\mathbf{1 9}$	$\mathbf{8 . 4}$
OPH03	9	10	8	5	3	13	5	$\mathbf{1 6}$	$\mathbf{7 . 6}$
OPH05	13	10	7	2	2	13	4	$\mathbf{1 6}$	$\mathbf{7 . 3}$
OPH14	8	8	3	2	2	9	3	$\mathbf{1 4}$	$\mathbf{5 . 0}$
Total	$\mathbf{1 0 1}$	$\mathbf{8 6}$	$\mathbf{5 7}$	$\mathbf{3 6}$	$\mathbf{2 3}$	$\mathbf{1 1 3}$	$\mathbf{4 8}$	$\mathbf{1 4 8}$	$\mathbf{6 6 . 3}$

[^1]
5.3.2. Homology assessment among comigrating RAPD fragments

Homology was interpreted as sequence similarity assessed by consistency of restriction digest fragments obtained from bands sampled from different taxa. A total of 212 RAPD fragments were isolated and purified to test their homology among the group of 85 Pachyrhizus accessions. Details of the 212 fragments, arranged in 106 pairwise comparisons, are given in Table 5.3. RAPD reactions of the purified DNA confirmed that bands were of the same size as the original samples. Restriction digests that were successful and congruent for two of the three enzymes used (see section 2.8.2) were considered as evidence for homology. Examples of congruent and incongruent restriction patterns obtained in this study are shown in Plate 5.1.

Restriction digests produced identical restriction patterns for 82 of the 106 pairwise comparisons (marked as ' \checkmark ', Table 5.3). In two instances (i.e. comparisons 9 and 10) the small, 1018 bp - fragments contained no restriction sites; thus, results were considered ambiguous and were scored as incongruent. Overall, these results gave an estimated value of 77.36% homology for comigrating marker bands, as follows:

$$
H=(164 / 212) \times 100=77.36 \%
$$

It is assumed that the remaining 22.64% will introduce noise into the RAPD data set and thereby hinder the probability of generating accurate estimates of genetic relationships. Within species, 74.2% of comigrating bands from different accessions were found to be homologous (i.e. 49 of the 66 intraspecific pairwise comparisons), whereas homology was slightly increased to 77.5% for comigrating bands sampled from different species (i.e. 31 of the 40 interspecific comparisons). It should be noted that this slight increase in homology is unfortunately due to the fact that more intraspecific than interspecific comparisons were sampled during experimental set-up. Additionally, of the 82 pairwise comparisons with congruent restriction profiles, 50 (60.9%) were sampled from accessions of the same species, whereas 32 pairwise comparisons (39.1\%) corresponded to homologous bands sampled from different species. Overall, comigrating RAPDs are more likely to be homologous when they
originate from accessions within Pachyrhizus species than from between species. In view of this, phylogenetic relationships have to be interpreted with caution and confidence estimates for tree structure and reliability (e.g. the bootstrap procedure and the PTP test) should be calculated.

Plate 5.1. Homology test for RAPD fragments.
(A) Congruent restriction fragment profiles. From left: Pairwise comparison 62 [lane 1 (AC207L-3800-H14) vs. lane 2 (AC207S-3800H14)]; pairwise comparison 63 [lane 3 (AC208-3800-H14) vs. lane 4 (AC220A-3800-H14). Lane 5 (blank); M, molecular size standard (1 kb DNA marker, Gibco).
(B) Incongruent restriction fragment profiles. From left: Pairwise comparison 32 [lane 6 (AC222-3500-B8) vs. lane 7 (EC560-3500-B8)]; pairwise comparison 106 [lane 8 (FWLoc7-4850-B8) vs. lane 9 (PWTM58-4850-B8)]. Lane 10 (blank); M, molecular size standard (1 kb DNA marker, Gibco).

Table 5.3. Homology test among comigrating RAPD fragments.

Pairwisecomparison		Restriction profiles \dagger			H \ddagger
No.	Description	HaeIIII	Hinfl	DdeI	
1	EC560 4300 H 3 vs. EW223 4300 H 3	I	I		
2	PWTM58 4072 H3 vs. TC354 4072 H3	C	C		\checkmark
3	EC560 3750 H 3 vs. EW203 3750 H 3	C	C		\checkmark
4	PWTM58 $3650 \mathrm{H3}$ vs. TC354 3650 H 3	C	C		\checkmark
5	PWTM58 4300 H5 vs. TC350 4300 HS	C	C		\checkmark
6	TCNA09 4150 H 5 vs. TWToal 4150 H 5	I	I		
7	PWTM58 $3400 \mathrm{H5}$ vs. TC350 3400 H 5	C	C		\checkmark
8	TCNA09 3400 H5 vs. TWToal 3400 H5	I	I		
9	EC560 1018 H3 vs. EW203 1018 H3	A	A		
10	PWTM58 1018 H3 vs. TC354 1018 H3	A	A		
11	PWTM58 2700 H5 vs. PWTM59 2700 H5	C	C		\checkmark
12	EC033G 4600 H 2 vs . EC565 4600 H 2	C	C		\checkmark
13	AC222 4800 H 2 vs. EC559 4800 H 2	C	I	I	
14	TCNA06 4800 H 2 vs. TC550 4800 H 2	C	I	I	
15	TC557 4800 H 2 vs. EC236 4800 H 2	I	C	I	
16	PWTM58 3200 H 3 vs. TCNA06 3200 H 3	C	C		\checkmark
17	TC550 3200 H 3 vs. TC5S7 3200 H 3	C	C		\checkmark
18	AC222 3400 H5 vs. PW055 3400 H 5	C	C		\checkmark
19	TCNA06 3400 H5 vs. TC550 3400 H5	C	C		\checkmark
20	TC557 3400 H5 vs. EW354 3400 H5	C	C		\checkmark
21	PW055 3800 H 14 vs. AC222 3800 H 14	C	C		\checkmark
22	TC550 3800 H 14 vs. TCNA06 3800 H 14	C	C		\checkmark
23	AC222 3300 A2 vs. PW055 3300 A2	C	C		\checkmark
24	TCNA06 3300 A2 vs. TC550 3300 A2	C	C		\checkmark
25	TC557 3300 A2 vs. EW203 3300 A2	C	C		\checkmark
26	AC222 3300 Al3 vs. PW055 3300 A13	C	C		\checkmark
27	TCNA06 3300 A13 vs. TC550 3300 A13	I	C	I	
28	TC557 3300 A13 vs. EC531 3300 A13	I	C	C	\checkmark
29	AC222 1800 B7 vs. PW055 1800 B7	I	C	I	
30	TCNA061800 B7 vs. TC550 $1800 \mathrm{B7}$	I	C	I	
31	TC557 1800 B7 vs. EW051 1800 B7	C	C		\checkmark
32	AC222 3500 B8 vs. EC560 3500 B8	I	I		
33	TC1183500 B8 vs. TCNA09 3500 B8	I	C	I	
34	EW051 $3100 \mathrm{B8}$ vs. TC309 $3100 \mathrm{B8}$	C	C		\checkmark
35	EC201 4800 H 2 vs. EC534 4800 H 2	C	C		\checkmark
36	EC565 3500 H 2 vs. FWLoc7 3500 H 2	C	C		\checkmark
37	TC531 4800 H 2 vs . TC553 $4800 \mathrm{H2}$	C	C		\checkmark
38	EC201 3450 H3 vs. EW203 3450 H3	C	C		\checkmark
39	EW354 3450 H 3 vs. FW237 3450 H 3	I	C	I	
40	PWTM58 3450 H3 vs. PWTM59 3450 H3	C	I	C	\checkmark
41	EC534 4150 H 5 vs. EC510 $4150 \mathrm{H5}$	C	C		\checkmark
42	EW223 $4150 \mathrm{H5}$ vs. FW2374150 H5	C	C		\checkmark
43	FW237 3400 H5 vs. FWLoc 73400 H 5	C	C		\checkmark
44	EC534 4300 H 14 vs. EC510 $4300 \mathrm{H14}$	C	C		\checkmark
45	EW223 4300 H 14 vs. FW2374300 H14	C	C		\checkmark
46	FW237 $3800 \mathrm{Hl4}$ vs. PWTM58 3800 H 14	C	C		\checkmark
47	EC201 5400 A2 vs. EW203 5400 A2	C	C		\checkmark
48	EC109 5400 A2 vs. FW237 5400 A2	C	C		\checkmark
49	PWTM59 5400 A2 vs. TC355 5400 A2	C	C		\checkmark
50	EC201 6300 A13 vs. EW223 6300 A13	C	C		\checkmark
51	EC109 6300 A13 vs. FW2376300 A13	C	C		\checkmark
52	TC353 $6300 \mathrm{Al3}$ vs. TC354 $6300 \mathrm{Al3}$	C	C		\checkmark
53	EC201 1800 B7 vs. EW203 1800 B7	C	C		\checkmark

[^2]Table 5.3. Homology test among comigrating RAPD fragments. Continued.

Pairwise comparison*		Restriction profiles \dagger			$\mathbf{H} \ddagger$
No.	Description	HaeliII	Hinf	DdeI	
54	EC109 1800 B7 vs. EC205 1800 B7	C	C		\checkmark
55	FW237 3700 B7 vs. PW055 3700 B7	C	C		\checkmark
56	EC201 2300 B8 vs. EW203 2300 B8	C	C		\checkmark
57	EC109 2300 B8 vs. FW237 2300 B8	C	C		\checkmark
58	PW055 2300 B8 vs. PWTM58 2300 B8	I	C	I	
59	AC214 3150 H 2 vs. AC 2153150 H 2	C	C		\checkmark
60	AC216 3150 H 2 vs. AC 2223150 H 2	C	C		\checkmark
61	AC228 3150 H 2 vs. AC 2303150 H 2	C	C		\checkmark
62	AC207L 3800 H 14 vs. AC207S $3800 \mathrm{H14}$	C	C		\checkmark
63	AC208 3800 H 14 vs. AC220A 3800 H 14	C	C		\checkmark
64	AC225 3800 H 14 vs. AC226 3800 H 14	C	C		\checkmark
65	AC220A 3450 H 3 vs. AC526A 3450 H 3	C	C		\checkmark
66	AC201 4300 H 3 vs. AC208 4300 H 3	C	C		\checkmark
67	AC222 3450 H 3 vs. AC223 3450 H 3	C	C		\checkmark
68	AC220A 4072 HS vs. AC223 $4072 \mathrm{H5}$	C	C		\checkmark
69	AC215 4072 H5 vs. AC208 4072 H5	C	C		\checkmark
70	AC222 4072 H5 vs. AC228 4072 H5	C	C		\checkmark
71	AC220A 3300 A2 vs. AC226 3300 A2	C	I	I	
72	AC231 3300 A2 vs. AC213 3300 A2	C	1	1	
73	AC208 3300 A2 vs. AC209 3300 A2	C	C		\checkmark
74	AC216 4750 A13 vs. AC227 4750 A13	I	C	1	
75	AC208 4750 A13 vs. AC207L 4750 A13	C	C		\checkmark
76	AC202 4750 A13 vs. AC203 4750 A13	C	C		\checkmark
77	AC220A 1800 B7 vs. AC2261800 B7	C	C		\checkmark
78	AC216 1800 B7 vs. AC202 1800 B7	C	C		\checkmark
79	AC102 1800 B 7 vs. AC204 1800 B7	C	C		\checkmark
80	AC220A 3600 B8 vs. AC226 3600 B8	C	C		\checkmark
81	AC215 3600 B 8 vs. AC213 3600 B 8	C	1	I	
82	AC208 4850 B8 vs. AC207S 4850 B8	C	I	r	
83	EC559 3150 H2 vs. EWPro 3150 H 2	C	C		\checkmark
84	PW055 3100 H 2 vs. TC1 183100 H 2	C	C		\checkmark
85	TC532 3100 H 2 vs. TWNanII 3100 H 2	C	C		\checkmark
86	AC526A 4300 H 3 vs. EC006 4300 H 3	C	C		\checkmark
87	EC511 4300 H 3 vs. TC309 4300 H 3	C	C		\checkmark
88	TCNA07 4300 H 3 vs. TCNA09 4300 H 3	C	C		\checkmark
89	AC102 1636 H5 vs. AC209BR 1636 H5	C	C		\checkmark
90	TC354 1636 H5 vs. TC553 1636 H5	I	C	I	
91	TCNA09 1636 H5 vs. TWToal 1636 H5	C	C		\checkmark
92	EC006 $3600 \mathrm{Hl4}$ vs. EC033G 3600 H 14	C	C		\checkmark
93	EC560 $3600 \mathrm{H14}$ vs. EW051 3600 H 14	C	C		\checkmark
94	FWLoc7 $3300 \mathrm{H14}$ vs. PW055 3300 H 14	C	C		\checkmark
95	AC231 4072 A2 vs. EC006 4072 A2	C	C		\checkmark
96	EC565 4072 A2 vs. EW203 4072 A2	C	C		\checkmark
97	FWLocl 4072 A2 vs. TC350 4072 A2	C	C		\checkmark
98	EC560 4800 Al3 vs. EW0S1 4800 A13	C	C		\checkmark
99	FWLoc1 4800 A13 vs. PW055 4800 Al3	C	C		\checkmark
100	PWTM59 4800 A13 vs. TC1 184800 A13	C	C		\checkmark
101	EC565 5090 B7 vs. TC554 5090 B7	C	I	I	
102	EC565 4850 B7 vs. EWHue 4850 B7	C	I	I	
103	TC531 4850 B7 vs. TC550 4850 B7	C	C		\checkmark
104	AC526A 4850 B8 vs. EC006 4850 B8	C	C		\checkmark
105	EC565 4850 B8 vs. EW051 4850 B8	C	C		\checkmark
106	FWLoc7 4850 B8 vs. PWTM58 4850 B8	I	I		

[^3]$\ddagger: H=$ Homology; $\checkmark=$ congruent restriction profiles for at least two of the three restriction enzymes used.

5.3.3. Taxon-specific RAPD marker production in Pachyrhizus

Some of the brightest fragments of the RAPD profiles obtained in this survey were found to be taxon-specific, and could be used as molecular markers for taxon identification or even in future molecular breeding. For example, RAPD fragments (Appendix 6) were detected to be specific to: (1) an accession within a species (e.g. the 4000 bp fragment in AC230 produced by primer OPA02); (2) a species (e.g. the 2700 bp fragment produced by primer OPB08 that was specific to P. ferrugineus); or, (3) a species group or complex (e.g. the 3100 bp fragment amplified by primer OPA13, that was exclusive to accessions of the P. tuberosus complex and P. ahipa).

5.3.4. Species relationships

A first step in the phylogenetic analysis was to test whether or not the data set to be analysed had a hierarchical structure (Armstrong et al. 1994; Swofford et al., 1996; Furman et al., 1997). The PTP analysis was carried out on the RAPD data set to test for departures from randomness. The length of the original tree was 18.3 , with a mean length of the random trees of 29.4 (PTP value $=118.48$). A minimum tree length as small as that observed for the original RAPD data set was not observed among the randomly permuted data sets and trees created by RAPDISTANCE, which allowed rejection of the null hypothesis (i.e. the tree is merely an artefact of the algorithm) and was strong evidence that the data set had a hierarchical structure.

Phenograms were constructed using Neighbour-Joining (NJ) and UPGMA cluster analysis for all 85 accessions included in the survey. The matrix of genetic distances of pairwise comparisons between accessions, based on the proportion of shared fragments, is presented in Appendix 7. The resulting phenograms are described in turn below.

NJ phenogram

Intra- and interspecific relationships resolved by Neighbour-Joining cluster analysis are summarised in Figure 5.1. Phenetic analysis of RAPD data generated a consensus tree that separated Pachyrhizus accessions into seven main clusters. Five of these (clusters 3 to 7) were resolved at basal nodes and were composed exclusively of accessions of wild status (with the exception of TC556, TCNA09 and TCNA10 in cluster 3). The remaining two clusters contained all cultivated materials of P. tuberosus and P. ahipa plus accession TWTM48 (cluster 1); and, materials of wild and cultivated P. erosus plus accession TC350 (cluster 2). Within these two latter clusters accessions were split into subspecific groups, as analysed below.

Within cluster 1, accessions of P. ahipa were clearly separated into three subspecific groups (denoted as ' A '; Figure 5.1). Of these, a first subspecific group of 14 accessions (A1) was resolved as an independent subcluster; a second group of four P. ahipa accessions (A2) resolved as a sister entity to six P. tuberosus accessions (mainly ashipas and jíquimas); and, a third subspecific group of nine P. ahipa accessions (A3) was rooted by accession TC309 (an ashipa). In general, bootstrap values in these groups were relatively high, which depicted a reliable and robust representation of the relationships described by the tree; however, the node that separated TC309 from the P. ahipa accessions of the third subspecific group was present in only 22% of the bootstrap subreplicates and, therefore, relationships and genetic similarities between these accessions should be treated with caution.

Similarly, accessions of P. tuberosus showed also an evident split into four subspecific groups (denoted as ' T; Figure 5.1) in cluster 1 with bootstrap values ranging from 10 to 97%. Relationships indicated by the NJ tree must be treated with caution when taking into account the bootstrap confidence intervals in this cluster.

Figure 5.1. Unrooted NJ consensus tree constructed using Jaccard's algorithm showing relationships of the five specics of Pachyrhizus. Numbers in nodes denote bootstrap values. Seven clusters and their subgroups are indicated: $A 1$ to $A 3=P$. ahipa; $E I$ to $E 4=P$. erosus; $T l$ to $T t=P$. tuberosus (Coding of accessions as for Table 2.1; P. tuberosus cultigen types: as = ashipa: ch = chuin: $\mathrm{ji}=$ jiquima $)$.

For example, the nodes that cluster accessions of two of the four P. tuberosus subspecific groups (i.e. T4 and T1) are present in only 10 and 30 of the 100 bootstraps, respectively. These data suggest that the most basal of the nodes in the P. tuberosus groupings are not very reliable (a situation that also applies to cluster 1 as a whole); however, most of the terminal clusters are very robust, e.g. the two subclusters containing accessions TC550 and TC553 (both jíquimas); and, TC536 and TC538 (both ashipas), which occurred in 94% and 88% of the total bootstraps, respectively (see groups $T 4$ and $T 1$ in cluster 1).

With the sole exception of TC350, accessions of P. ahipa and P. tuberosus (in cluster 1) were clearly separated from P. erosus taxa which made up cluster 2 . The node that separated these two clusters was present in only 21% of the bootstrap subreplicates and, therefore, genetic relationships should be treated with care; moreover, the node that separated TC350 from the remaining P. erosus accessions was not robust either (i.e. it was present in only 13 out of 100 subreplicates). P. erosus taxa in cluster 2 were clearly divided into a dichotomy, although only supported by a moderate bootstrap value of 34%. These two groups and their subgroups (marked as ' E ', Figure 5.1) are described in turn below.

The first group of P. erosus accessions was subdivided into two subgroups. The first of these subgroups (E1) comprised nine cultivated and two wild accessions of P. erosus; moderate to high bootstrap values ranging from 20% to 99% supported reasonably strong relationships among these accessions (cluster 2, Figure 5.1). A second, more basal, subgroup (E2) was composed mainly of EW accessions (from Costa Rica) with the exception of EC250 (Guatemala). The node that separated these two subgroups was present 20 times out of 100 sets.

The second P. erosus group in cluster 2 also contained two subgroups. The first subgroup (E3) comprised seven cultivated accessions of P. erosus and no wild materials. Again, moderate to high bootstrap values ranging from 30% to 84% supported reasonably strong relationships among these accessions (cluster 2, Figure
5.1). A second, basal subgroup (E4) was composed mainly of EC accessions, with the exception of EW203. Interestingly, all accessions in this second subgroup were of Mexican provenance. The node that separated these two subgroups of P. erosus in cluster 2 was present in 45% of the bootstrap samples, supporting a reasonably strong relationship between these accessions.

Cluster 3 comprised exclusively P. tuberosus taxa basally positioned to accessions in clusters 1 and 2. It contained three wild accessions (TWNanI, TWNanII and TWToal), two of undetermined status (i.e. escaped/wild, namely TCNA09 and TCNA10) and one ashipa (TC556), supported by bootstrap values spanning from 23 to 100%. The node that separated this cluster from clusters 1 and 2 occurred in 48% of the total bootstraps, which reasonably supports the split of accessions in cluster 3 as a separate phylogenetic entity.

Cluster 4 included the three accessions of P. panamensis examined in this study, clustering tightly as a monophyletic entity. PWTM58 and PWTM59 (both from Ecuador) were strongly resolved together with a bootstrap value of 100%, whereas PW055 (Panama) was basal to this close affinity between the Ecuadorian accessions (62\% bootstrap value). Finally, four P. ferrugineus accessions placed in clusters 5, 6 and 7 were resolved as the most primitive taxa within the genus. The node that separated these accessions from the remaining species was present in 68% of the bootstrap subsamples, providing strong support for these genetic relationships.

UPGMA phenogram

The phenogram generated by UPGMA cluster analysis of 85 Pachyrhizus accessions showed them to be grouped into six main clusters (Figure 5.2). Cluster 1 comprised a group of 39 accessions representing all Pachyrhizus species except P. panamensis. Within this cluster, a total of 24 accessions of cultivated P. tuberosus and P. ahipa were resolved as sister groups in one subcluster, whereas 11 P . erosus accessions were positioned in a second, more basal, subcluster. Two accessions of FW and EW each were also included in this first cluster and were resolved as its basal-most taxa. As in
the NJ generated phenogram, there is an evident split of P. ahipa and P. tuberosus accessions into subspecific groups within cluster 1.

Cluster 2 comprised a total of 35 accessions, most of them of cultivated status (namely AC, EC and TC taxa), although three accessions of wild status (EW203, EW223 and TWTM48) were also included. Again, 19 accessions of P. ahipa and P. tuberosus were resolved as sister taxa with P. erosus as a separate subcluster. Additionally, one accession of P. tuberosus (TC350) was also included in this P. erosus subcluster and was placed at a basal position. Two ashipas (TC118 and TC532) were resolved as the most basal taxa in this second cluster.

Cluster 3 comprised a total of six accessions of P. tuberosus (Figure 5.2); of these, three accessions were of wild status, one (TC556) was an ashipa and the remaining two are regarded as of undetermined status (i.e. wild origin or escapes).

Cluster 4 was made up of all three accessions of P. panamensis examined in this study, with PW055 most basal. Finally, clusters 5 and 6 comprised the remaining two accessions of P. ferrugineus examined and were resolved as the most primitive taxa in the genus (Figure 5.2).

Cluster 1

Cluster 2

Cluster 3

Cluster 4
Cluster 5
Cluster 6

Figure 5.2. UPGMA cluster analysis of $1-F$ values (based on Jaccard's coefficient) computed from pairwise comparisons of RAPD polymorphisms between 85 accessions of Pachyrhizus. Six clusters and their subgroups are indicated (coding of accessions as for Table 2.1; P. uberosus cultigen types: as = ashipa: $\mathrm{ch}=$ chuin; $\mathrm{ji}=$ jiquima) .

5.4. Discussion

5.4.1. RAPDs and molecular markers

This study has demonstrated that RAPDs are extremely useful markers for reliable identification of Pachyrhizus taxa. Interestingly, more RAPD bands were amplified with genomic DNA of cultivated materials (i.e. AC, EC and TC) than with DNA of wild taxa (i.e. EW, FW, PW and TW). In addition to resolving several accessionspecific fragments among the five species of the genus, the study showed that unique fragments/species could be produced for P. ahipa and P. ferrugineus accessions when using particular primers (Tables 5.1 and 5.2). Overall, these differences in RAPD amplification might be a direct consequence of factors such as the genomic complexity of the plant species, the composition and size of the primers used, the number of accessions screened per species, and the experimental resolution and reproducibility. Reproducibility was most critical in ultimate inclusion for analysis.

Additional intraspecific sampling would be desirable to confirm the specificity of banding patterns, since considerable RAPD variation may be found within and between taxa (Chalmers et al., 1992). Several studies have shown that strains and cultivars of particular species can be individually typed according to their RAPD profile (Demeke et al., 1992; Virk et al., 1995), and so it is likely that the same will be found true within Pachyrhizus species when larger numbers of accessions and/or primers are employed in future analyses. This would greatly aid taxon identification (even among relatively uncharacterised accessions), and would be of considerable importance in the management of germplasm for the breeding of Pachyrhizus.

5.4.2 Homology assessment

Most investigators assume comigrating bands as evidence of homology without actually testing for it. Moreover, only few published studies have tested this assumption in detail before constructing phenograms (e.g. Furman et al., 1997). However, tests of homology should be routinely conducted in any RAPD study to
confirm the assumption and validate the derived genetic relationships between taxa (Smith et al., 1996). In the present study, isolation of comigrating bands and their subsequent digestion with restriction enzymes proved to be a successful method for testing homology. RAPD fragments representing all species within the genus were chosen at random and, of these, 100% produced visible patterns after digestion with at least two of the three restriction enzymes used.

The level of homology between comigrating fragments examined within the 85 Pachyrhizus accessions was calculated to be 77.36%, validating the affinities resolved between them; however, the remaining 22.64% proved to correspond to nonhomologous DNA fragments (i.e. of different sequence and origin) and, therefore, incorporated a certain degree of homoplasy in the data set. Intra- and interspecific pairwise comparisons showed homology levels of 74.2% and 77.5% among comigrating bands, respectively. Not surprisingly, the level of homology was higher when intraspecific comparisons were considered (60.9% of the homologous pairwise comparisons), in contrast to its low level when interspecific pairwise comparisons (39.1\%) were examined. Overall, this suggested that the results should be treated with some caution, despite the fact that the phylogeny inferred from RAPDs was in general congruent with those produced in previous phylogenetic treatments (see earlier chapters).

5.4.3. Species relationships

This study showed that considerable RAPD variation was present within and between the Pachyrhizus taxa studied allowing an examination of genetic diversity and reconstruction of phylogenetic relationships. NJ and UPGMA analyses of a similarity matrix constructed from presence/absence of RAPD fragments produced phenograms that separated Pachyrhizus accessions into seven and six well resolved clusters, respectively. Overall, both phenograms were similar in structure and contained similar clusters of taxa; however, some important differences were evident between the NJ and UPGMA phenograms in the detailed topology of clusters and groups within (see further).

Several workers using RAPDs for phylogeny inference score presence/absence of bands, calculate pairwise genetic distances between taxa and use UPGMA for phenogram reconstruction (e.g. Graham \& McNicol, 1995). However, the UPGMA method will only yield an accurate phylogeny when rates of evolutionary divergence are homogeneous (Swofford \& Olsen, 1990); violation of this assumption may introduce errors. Given the arbitrary nature of RAPD fragments and the differing rates of evolutionary change in different regions of the genome (Soltis et al., 1992; and references therein), some workers consider a rate-independent method of cluster analysis, such as Neighbour Joining, Distance Wagner or Fitch-Margoliash to be more appropriate (Avise, 1994). This study used both NJ and UPGMA approaches to examine intra- and interspecific relationships which appear, to a degree, to have generated similar findings in this regard. However, the main difference between them, i.e. UPGMA resolved accessions of all species into subclusters similar to those produced by NJ analysis, but placed in widely separated regions of the phenogram (except for P. panamensis, which remained basal in both methods), suggested that the NJ approach was more suitable in this instance. Therefore, in this discussion, species relationships will be examined with reference to the NJ generated tree.

The NJ consensus tree clearly showed that P.ferrugineus and P. panamensis are the most primitive species in the evolutionary history of yam beans, with P. ferrugineus (clusters 5-7; Figure 5.1) being ancestral to P. panamensis (cluster 4). Next, three lineages of P. tuberosus were evident. A first, basal, lineage of P. tuberosus comprised Ecuadorian accessions only from tropical and subtropical localities (cluster 3); it would appear that this lineage is the result of an early radiation. Two additional lineages were observed, one of which appears basal within the P. erosus cluster (TC350, a chuin; cluster 2), while the last lineage gave rise to the P. tuberosus complex and P. ahipa (cluster 1). Thus, RAPD data appear to indicate that P. tuberosus gave rise to different taxa and subgroups of taxa in different parts of its range; and, in the case of the cultigen types (i.e. ashipa, chuin and jíquima) and the highly derived species P. ahipa, this may have been aided by man through domestication.

Within P. erosus, there was an evident split of accessions into groups and subgroups (E1 to E4 in cluster 2; Figure 5.1), which were correlated with the geographic distribution of the accessions examined in this survey and the likely route of dispersal of this species after an evolutionary split from an early ancestor. For example, a first group (E2) is comprised of wild and cultivated P. erosus accessions from Central American origin only; two additional groups ($E 1$ and $E 3$) were composed of P. erosus accessions (wild and cultivated status) from Central America and Mexico; and, a fourth group (E4) was composed exclusively of accessions of Mexican provenance. Thus, RAPD polymorphisms would suggest a split of P. erosus into: (1) a Mesoamerican pool (viz. a result of a first, early radiation); (2) a composite pool (viz. dispersal of populations to northern areas of Central America and southern Mexico); and, (3), a Mexican pool (with further specialisation of primitive landraces and cultivars, including domestication, cultivation and man-made selection). This last pool reflects the close association within the cultivars/landraces from central Mexico and the Yucatan peninsula (also observed in a previous RAPD study; Estrella et al., 1998), which might confirm the hypothesis of Sørensen (1996), in that they are derived from a restricted ancestral stock due probably to a limited germplasm introduction from southern Mexico, Guatemala and regions further south in Central America.

The history of the introduction of P. erosus to the countries of Southeast Asia and southern China is somewhat unclear, but there is little doubt that it must have been first introduced from the Philippines to the coastal regions of China and Vietnam; from Vietnam the crop was subsequently introduced to neighbouring countries (Sørensen, 1988 \& 1996). In this study, Far Eastern cultivars of P. erosus (accessions EC109 and EC565) resolved together with Mexican materials at terminal nodes of cluster 2, supported by relatively high bootstrap values (Figures 5.1 and 5.2). This close linkage would indicate that these Asiatic cultivars are probably derived from introductions from the Mexican region, via old Spanish colonies.

An intriguing feature of the RAPD analysis concerns the resolution of accessions of the P. tuberosus complex. Polymorphisms produced in this study proved to be useful markers to resolve accessions of the same cultigen type in strongly supported terminal clusters, with bootstrap values ranging from 64% to 97% (see cluster 1, Figure 5.1). Nevertheless, at the most basal nodes the relationships they describe were ambiguous and were supported by relatively low bootstrap values; rather surprisingly, accessions belonging to the ashipa, chuin and jíquima cultigen types were distributed over four subgroups (T1-T4) positioned in different regions of cluster 1 . This seems to suggest that after the ancestors of these cultigen types split from a more primitive phylogenetic entity within P. tuberosus, they were isolated by geographical barriers (and subsequently by cultivation and man-made selection), underwent rapid radiation in different tropical and subtropical regions of South America, and became progressively more specialised (e.g. changes in stem and leaf morphology, tolerance to different rainfall rates, humidity, competence with rapid weed growth). However, insufficient time has passed to accumulate enough mutations at RAPD loci to satisfactorily differentiate these cultivars.

Another interesting finding concerned the positioning of the wild accession of P. tuberosus TWTM48 from Ecuador (see T4; Figure 5.1). This accession was resolved basally to five cultivars of the ashipa and chuin types, supported by a moderate bootstrap value of 55%. Indeed, the close association of TWTM48 with the three cultigen types at basal levels of cluster 1 (instead of its placement with other TW taxa in cluster 3) would confirm the existence of different RAPD lineages within P. tuberosus. A reasonable hypothesis to explain this affinity between TWTM48 and the cultigen types is the present 'underdeveloped' status of P. tuberosus in cultivation. This species has traditionally been grown in shifting cultivation with minimal agricultural practices by indigenous people of the Amazonian region (Sørensen et al., 1997). The present 'underdeveloped' agronomic status of the many local cultivars in the Amazon and the few introductions to areas outside its original distribution area (Sørensen, 1988 \& 1990), would indicate that materials of P. tuberosus were selected according to elementary selection criteria, e.g. shade, variable soil features, high humidity, etc., to which the majority of the P. tuberosus complex (namely the ashipa
and chuin groups) are perfectly well suited. Additionally, Sørensen et al. (1997) have also pinpointed that, when the first plants were collected for domestication, the primary selection criteria that led to the development of the early original cultivars presumably included taste, yield, ease of cultivation and probably also tuber shape and their number per plant. Therefore, many cultivars resulted almost indistinguishable from known wild forms of this species.

In view of this and the current RAPD evidence, clustering of accession TWTM48 together with accessions belonging to the ashipa and chuin types (Figures 5.1 and 5.2) would be well-grounded. Furthermore, this wild accession would represent a relict between the more advanced, highly enhanced P. tuberosus cultivars (in cluster 1) with the more basal and primitive materials (in cluster 3), the latter ones representing an early ancestor which after rapid radiation generated the bulk of diversity now evident within the P. tuberosus complex. For comparative purposes, it should be noted that the ITS phylogeny did not resolve clearly the positioning of TWTM48, but placed this accession as a related entity to other wild species (Figures 4.3 and 4.4; chapter 4), whereas the cpDNA phylogeny placed it closely within the P. tuberosus complex (e.g. Figures $3.11,3.13$ and 3.14 ; chapter 3). Thus, the RAPD phylogenetic signal appears to have clarified relationships among these taxa and proved to be useful in providing additional information on the affinity between closely related species.

Placement of accession TC350 (a chuin) at the basal most node of cluster 2, which contained all P. erosus taxa, was also a surprising finding (Figure 5.1). The NJ consensus tree appears to suggest that P. tuberosus was not only present in the South American evolutionary branch, but was probably involved in the early parentage of P. erosus. If this is correct, then the separation of these two species must have occurred a long time ago, given the number of new mutations at RAPD loci which now separate them. Thus, RAPD evidence is showing a congruent pattern to that obtained in the phylogeny based on PCR-amplified cpDNA and the combined cpDNA data set (chapter 3), but also an inconsistency with total cpDNA and nuclear ITS sequence variation (chapter 4). This raises some concern on the usefulness of RAPD generated patterns for inferring species relationships.

In this regard, a potential problem in using the presence/absence of RAPD fragments as a basis for examining species relationships arises due to the occurrence of competition among RAPD primer sites. Primer annealing sites are scattered throughout the nuclear and cytoplasmic genomes in all classes of DNA from singlecopy to multiple-copy DNA, and in coding and non-coding regions (Caetano-Anollés, 1993; Williams et al., 1993). Sometimes the absence of a band may simply be due to the fact that there is competition between a number of the same priming sites for a given primer. Consequently, amplification does not occur though the appropriate DNA sequence for primer annealment is present, which in turn might have significant effects on the final phenetic analysis and its interpretation.

Phenetic analysis of RAPD data in Pachyrhizus demonstrated a close association between P. ahipa and P. tuberosus (cluster 1, Figure 5.1). Thus, the relationships derived using this approach were, in general, congruent with those from the cladistic analyses of cpDNA and ITS variation reported in previous chapters, and also with earlier studies indicating affinities between these two species (Døygaard \& Sørensen, 1998; Ørting et al., 1996; Sørensen et al., 1997). A considerable amount of intraspecific RAPD variation was evident throughout cluster 1 and resulted in the grouping of accessions of P. ahipa and P. tuberosus into distinct subspecific groups, which tended to correlate with geographic distribution and morphology (e.g. cultigen types). For example, P. ahipa accessions were grouped into three distinct subclusters (A1-A3) and P. tuberosus accessions into four (T1 - T4), suggestive of different lineages in the evolutionary pathways of these two species.

Although of high value in this respect, the exact affinity between P. ahipa and P. tuberosus suggested by the RAPD trees is somewhat difficult to explain. For example, the phylogenetic signal explaining the origin of P. ahipa is not conclusive in cluster 1 since the three subgroups were resolved either as a highly derived, independent lineage (i.e. $A 1$), as a sister taxon to the P. tuberosus complex (i.e. A2) or as a phylogenetic entity closely within P. tuberosus (i.e. A3; Figure 5.1). Conversely, taking cluster 1 as a whole, current RAPD evidence would suggest that P. ahipa is
possibly derived from P. tuberosus with the former species resolving closely within the latter one; nevertheless this affinity should be treated with some caution, since bootstrap values supporting species relationships at basal nodes of cluster 1 were low.

CHAPTER 6

GENERAL DISCUSSION

Rapid radiations
J. Estrella

General Discussion

The research reported in this thesis demonstrates how molecular approaches can be used to elucidate species relationships and to detect differing levels of genetic diversity within Pachyrhizus, a tuberous legume of great potential and attractiveness for tropical and subtropical agriculture. No extensive research has been carried out previously on this crop using molecular techniques. This study therefore aimed to improve our understanding of the evolutionary history, systematics and genetic variation of the genus Pachyrhizus in three major ways: (1) by constructing a molecular phylogeny of the genus based on several assay methods that explore different components of the chloroplast and nuclear DNA genomes; (2) by determining levels of genetic diversity within Pachyrhizus species; and, (3) by identifying taxon-specific molecular markers and the nature of their evolution for use in germplasm identification and in marker-assisted breeding programmes. These objectives have been accomplished to a large extent as reported in chapters 3 to 5 of this thesis.

The analysis of both cpDNA and ITS variation (chapters 3 and 4) resulted in two independent data sets with 49 and 600 molecular characters, respectively, which complemented each other in establishing evolutionary relationships within Pachyrhizus. A third data set obtained from an analysis of 148 RAPD fragments provided additional information in regard to past evolutionary events and genomic affinity of the five species, and - most importantly - contributed substantially to an understanding of genetic relationships within the cultivated species (i.e. P. ahipa, P. erosus and the P. tuberosus complex) and their morphologically/geographically distinct landraces and primitive cultivar groups.

6.1. Molecular markers and DNA sequences in Pachyrhizus

The research identified a number of molecular markers and DNA sequences that were specific to particular Pachyrhizus taxa. These markers may be of use in future studies of germplasm characterisation, plant systematics, and in breeding activities, but
further intraspecific sampling would be desirable to confirm their specificity. Restriction fragment analysis of the total cpDNA genome and of PCR-amplified cpDNA regions (chapter 3) yielded a total of 45 markers that were specific to an accession within a species, a particular species, or even a species group or complex. A total of 820 restriction fragments were generated by both cpDNA surveys after FOA (fragment occurrence analysis). Of these, 84 (10\%) were uniform across all taxa examined, 579 (71%) were synapomorphic, and 157 (19\%) were unique to a particular accession (mainly those of P. ferrugineus and the operational outgroups). Overall, these genetic markers enabled formulation of explicit hypotheses concerning the evolution of Pachyrhizus species.

With respect to ITS variation, the sizes and divergence levels of the ITS regions in Pachyrhizus (chapter 4) were similar to those reported for other angiosperms (Baldwin et al., 1995; Hamby \& Zimmer, 1992). Nucleotide substitution was probably the main source of sequence divergence in the ITS, which might have evolved primarily by point mutations. This conclusion is reached from the reduced proportion of gaps that were required for alignment, the absence of evident length variants within the DNA accessions examined, and the moderately high levels of sequence divergence between and even within species. These indications of ITS length conservation, but nucleotide sequence variability, allowed DNA sequences of both spacers and the 5.8 S subunit to be readily aligned across Pachyrhizus taxa for a comparison of nrDNA variation to be used in genealogical reconstruction at the species level.

In regard to RAPD analysis, more fragments were amplified with genomic DNA from cultivated accessions than with genomic DNA from wild accessions (chapter 5). In addition, unique fragments per species were only detected for P. ferrugineus and P. ahipa, i.e. both evolutionary 'extremes' observed in the phylogeny of the genus, which might be a direct effect of their genomic composition. However, RAPD analysis generated numerous polymorphisms that were useful in revealing the genetic structure, affinities and phylogeography within the five species and the subspecific groups detected.

In summary, molecular markers identified in this study have been useful in examining characteristic phylogenetic signatures within the genomes of Pachyrhizus species, and for estimating genetic similarities and differences within and between species which might have gone unnoticed in non-molecular appraisals.

6.2. Evolutionary relationships within the genus Pachyrhizus

The phylogeny based on cpDNA variation (chapter 3) revealed a consistent phylogeographical pattern of species relationships within Pachyrhizus and subdivided it into two evolutionary branches, i.e. a Mesoamerican and a South American branch. A first cladistic analysis of RFLP variation across the total cpDNA genome (Figure 3.7) indicated that Pachyrhizus is a monophyletic genus, i.e. derived from a single ancestral taxon, and was split into two distinct clades. P. ferrugineus was resolved in one of the clades as the most primitive species within the genus (although an additional lineage of this species was present in a different, more terminal clade), whereas accessions of wild and cultivated P. erosus made up the remaining of this clade. These two groups represent the Mesoamerican branch in the evolutionary history of the crop. With the exception of accessions FW237 and PW055, a second clade comprised materials of Andean and Amazonian distribution, namely P. panamensis, the P. tuberosus complex and the highly derived species P. ahipa, representing the South American evolutionary branch of the genus. Among these three species, P. panamensis was the most primitive taxon in the group.

A second cladistic analysis based on RFLP variation of PCR-amplified cpDNA regions (Figure 3.11) produced a phylogenetic tree which depicted an overall topology for the five species that was similar to that based on total cpDNA. However, three main contrasts were evident: (1) a lower level of resolution among accessions of the P. tuberosus complex was apparent, due to the presence of fewer synapomorphic characters; (2) P. ahipa was placed as an independent genealogical entity (instead of being resolved as a sister group to P. tuberosus); and, (3) an additional lineage of P. tuberosus (namely accession TC350) was present, basal to the P. erosus clade, and moderately supported by bootstrap values.

The combination and subsequent cladistic analysis of the Southern-RFLP and PCRRFLP data matrices resulted in a highly resolved strict consensus tree (Figure 3.14; chapter 3). Again, two evolutionary branches were evident, with P. ferrugineus as the most ancestral species. Wild and cultivated P. erosus made up the Mesoamerican branch (but see further), while P. panamensis, P. tuberosus and P. ahipa defined the South American branch. Furthermore, several intriguing findings became evident: (1) both accessions of P. ferrugineus resolved at the basal-most level, although still appeared as separate lineages; (2) P. tuberosus (TC350, a chuin) was included in the Mesoamerican evolutionary group and was basal to all P. erosus accessions; and, (3) P. ahipa was resolved as a separate clade with P. tuberosus (namely TC553, a jíquima) as a sister taxon.

In the light of this cpDNA evidence, P. tuberosus, as a phylogenetic entity, appears to have played a significant role in the evolution of the genus. The consensus trees clearly suggest that: (1) P. tuberosus, although mainly present in the South American evolutionary branch, might also be ancestral to P. erosus as a separate lineage. If this is so, these two lineages of P. tuberosus must have diverged from each other long ago, given the number of cpDNA mutations that now separates them (Figures 3.11 and 3.14); (2) an early, wild ancestor of P. tuberosus was also closely related to other wild species, i.e. P. panamensis and P. ferrugineus (Figure 3.7); and, (3) some of the cultigen types of the P. tuberosus complex encompass the early ancestry of the highly derived species P. ahipa (e.g. accession TC553, a jíquima; Figures 3.7 and 3.14).

The phylogenetic consensus tree generated from ITS sequence variation (chapter 4) was not as well resolved as those constructed from cpDNA restriction site characters. Polytomies observed in the basal nodes of one of the two ITS clades (Figure 4.4) represented regions where clustering differences took place, due probably to low sequence divergence values among DNA accessions. The two evolutionary branches (sensu cpDNA) were not as clearly evident; nonetheless, the ITS phylogeny complemented the cpDNA phylogeny to a broad extent, especially in separating Pachyrhizus species into clades reflecting a congruent phylogeographical distribution.

The ITS trees (Figures 4.3 and 4.4) showed an interesting positioning of P. panamensis relative to wild taxa of P. erosus and P. tuberosus. A likely phylogenetic hypothesis might suggest that after an early ancestor of these wild taxa split from the most primitive phylogenetic entity within the genus (i.e. P. ferrugineus), it became isolated and radiated into neighbouring Mesoamerican ecosystems adjacent to the centre(s) of origin. In addition, these ancestral groups diverging early in the Neotropics may have remained diminished, while those splitting off later radiated rapidly and generated much of the diversity that is evident today. Speciation may have accompanied divergent adaptation to dissimilar ecological niches in two directions: to areas with conspicuous annual dry seasons and deciduous forests in central and northern areas of Mesoamerica (which in turn resulted in the origin of P. erosus and the specialisation of its several primitive landraces and cultivars, suggestive of a secondary centre of origin); and, to the tropical and subtropical rainforests and Andean valleys (giving rise to the different forms within P. tuberosus and subsequently to P. ahipa). In contrast to cpDNA data, the current ITS evidence points to an ashipa type within P. tuberosus (instead of a jíquima) as the sister taxon of the highly advanced species P. ahipa.

The close association observed in both cpDNA and ITS surveys of the wild accession TWTM48 of P. tuberosus with other wild taxa (i.e. PW and EW) at basal levels of a particular clade, was unexpected as it was considered to be more closely related to the P. tuberosus complex, placed at more terminal levels of the phylogeny of the genus (Figures 3.7 and 4.4). This apparent 'discordance' could stem from an alternative hypothesis of horizontal gene transfer (Smith et al., 1992; Avise, 1994) within these wild taxa. It is feasible that TW, PW and EW taxa acquired genetic similarity during a recent phylogenetic stage via horizontal genetic transfer. Several reports of such lateral transfer of genetic elements across taxonomic boundaries have appeared in the literature in recent years (e.g. Calvi et al., 1991; Flavell, 1992), indicating that it may be a frequent phenomenon in some genera. It should be emphasised, however, that several factors other than horizontal transfer might also lead to these apparent discordances. These include the shared retention of ancestral states by the taxa in
question, extreme molecular rate heterogeneities across lineages, convergent evolution to a shared molecular condition, and a mistaken assumption of orthology when the loci in question might truly be paralogous (Avise, 1994; and references therein). In the present study, the possibility of the horizontal transfer of particular genes added another important rationale to the inclusion of multiple lines of evidence in the phylogenetic reconstruction of Pachyrhizus. Further analysis, involving a larger number of wild taxa, would be worthwhile to investigate these instances in greater detail.

The phylogeny of Pachyrhizus inferred from a phenetic analysis of RAPD variation (chapter 5) was congruent to an extent with those obtained from analyses of cpDNA and ITS variation. NJ analysis of the RAPD data set partitioned Pachyrhizus taxa into seven well resolved clusters (Figure 5.1) and appears to confirm several aspects of the history of the genus indicated by the cpDNA and ITS trees. In the RAPD tree, P. ferrugineus was resolved as the most primitive species within the genus, with different accessions occurring in separated, but always basal nodes of the tree. Such variation between accessions of this species might reflect the wide geographic distribution of an early ancestor which originated during periods when populations were relatively isolated from each other allowing molecular differences to accumulate more easily. Two main evolutionary branches were also present in the NJ tree, although not in the strict sense as depicted by cpDNA or ITS data. The main differences concerned the resolution of P. panamensis as an independent cluster of early origin (a radiation after P ferrugineus) and the presence of three P. tuberosus lineages in widely separated regions of the phylogeny (see further). Finally, the RAPD tree confirmed the affinity between P. ahipa and P. tuberosus, with the former species resolving closely within the latter one; however, several subspecific groups with intertwined topology were evident in each of this species and, thus, relationships should be treated with some caution.

In summary, the RAPD NJ tree clearly shows that P. ferrugineus and P. panamensis taxa are most primitive, with P. ferrugineus being ancestral to P. panamensis; in turn, this latter species is ancestral to a first lineage of P. tuberosus taxa (i.e. cluster 3;

Figure 5.1). Next, P. tuberosus contains two additional lineages, one of which appears basal within the P. erosus cluster (TC350, a chuin; cluster 2), while the remaining lineage is basal to the P. tuberosus complex and P. ahipa (cluster 1). Thus, RAPD data appear to indicate that P. tuberosus gave rise to different taxa and subgroups of taxa in different parts of its range, and, in the case of P. ahipa, this may have been aided by man through domestication.

RAPDs were also useful in partitioning P. erosus taxa into three genetic pools (the Mesoamerican, 'composite' and Mexican groups), which correlated with a likely direction of dispersal of the species to northernmost geographical localities, assuming a 'single' origin in strictly southern regions of Mesoamerica. However, considering the considerable range of geographical, morphological and genetic variation in wild and cultivated P. erosus that is evident at the present time, the proposal of multiple origins and domestication processes in this species attracts special attention. For example, wild populations are associated with climatically different areas, i.e. wet forests in Veracruz (Mexico), deciduous forests in Baja Verapaz (Guatemala), and dry savannahs in Huehuetenango (Guatemala) and Guanacaste (Costa Rica). In this regard, the three different lineages of wild P. erosus supported by RAPD evidence (i.e. EW accessions in subgroups E1, E2 and E4; Figure 5.1), together with their considerable ecological, geographical and morphological variation, strongly support a hypothesis of multiple origins and domestication processes. Further analysis including a greater amount of wild germplasm of P. erosus would be of value (e.g. glabrous and strigose populations from Guatemala and Costa Rica vs. the northernmost populations from Veracruz, Mexico with a different morphological appearance; Sørensen, pers. comm.).

A combined analysis of molecular variation in Pachyrhizus

As a means of obtaining what might be the best estimate of a phylogeny of Pachyrhizus from the available information, the cpDNA, ITS and RAPD data were combined in different ways and subjected to phylogenetic analysis to determine whether the resolution of species relationships might be confirmed and/or improved.

Combined analysis of data sets was justified because the higher-order structure of the trees produced by each independent phylogenetic treatment was similar. In a first cladistic analysis of combined data, characters of restriction site variation across total cpDNA and ITS sequence variation were merged (i.e. a 630 -character data matrix), while in a second cladistic analysis RAPD characters were also incorporated into this combined data set (i.e. a 778-character data matrix). Unfortunately, addition of cpDNA characters generated by the PCR-RFLP approach was not feasible since it hindered the incorporation of representative accessions of P. erosus and an operational outgroup.

Phylogenetic trees were generated from unordered character states (Fitch parsimony) using PAUP; the ACCTRAN option was chosen as a method for optimising unordered characters. Invariant sites and autapomorphous characters were ignored in the phylogenetic reconstruction (IGNore Uninformative Characters option), following the recommendation of Francisco-Ortega et al. (1997). Character state changes were weighted equally and gaps were treated as missing data. Heuristic searches were conducted using the options Branch Swapping, TBR and MULPARS; construction of strict consensus trees, bootstrap estimates and calculation of decay indices follow the same procedures from previous cladistic analyses.

CpDNA restriction site and ITS sequence variation data when combined were available for 13 Pachyrhizus taxa and one outgroup. Phylogenetic analysis of this first combined data set generated a single equally parsimonious tree of 269 steps (Figure 6.1) with CI and RI values of 0.677 and 0.62 , respectively. Overall, bootstrap values for most nodes were high, with an average of 68%. Additionally, the high decay indices ≤ 283 and ≤ 294 for P. ahipa and P. ferrugineus, respectively, indicated that both 'extremes' in the phylogeny of the genus (i.e. the most primitive and the most derived phylogenetic entities) were strongly supported (Figures 6.1 and 6.2).

Figure 6.1. \quad Single equally parsimonious Fitch tree derived from a combined analysis of cpDNA restriction site and ITS sequence variation in 13 Pachyrhizus taxa and one outgroup. Numbers above branches indicate bootstrap percentages (in boldface) and decay values; numbers below branches are synapomorphies (Tree length $=269$ steps; $\mathrm{CI}=0.677 ; \mathrm{HI}=0.323 ; \mathrm{RI}=$ 0.620 ; see text for further details). Key for accessions as for Table 2.1; as $=$ ashipa; ch $=$ chuin; $j i=$ jíquima cultigen type.
(A)

(B)

Figure 6.2. Trees showing the order of 'decay' of clades obtained after a combined analysis of cpDNA restriction site and ITS variation. (A) This tree is the strict consensus of trees whose length is 294 steps; note that all branches of clade 1 have collapsed. Clade 2 , containing the two P. ferrugineus accessions examined, was still present at 294 steps. (B) Strict consensus of trees whose length is equal to 295 steps and over; the tree became an unresolved 'bush' at 26 steps away from the minimal tree (see text for further details).

The cpDNA-ITS combined tree is highly congruent with the ITS phylogeny, showing a very similar evolutionary history for the genus Pachyrhizus, but resolving satisfactorily the polytomy observed in the ITS tree for EW, PW and TW taxa (Figure 4.4; chapter 4). This polytomy was resolved such that a lineage of P. panamensis (PW055 collected in Panama) is basal to a second lineage of the same species (PWTM58 from Ecuador) and to a wild P. tuberosus accession (TWTM48, Ecuador), hence revealing a consistent pattern of dispersal from Central American to southern localities. EW203 was resolved as a separate, more terminal subclade. Further, P. ahipa was resolved within P. tuberosus (TC536, an ashipa), although this relationship was moderately supported by 63% bootstrap and a decay index ≤ 270, i.e. only one step longer than the original consensus tree.

For the second phylogenetic analysis that combined information from cpDNA, ITS and RAPD variation, data were available only for 12 Pachyrhizus taxa and, therefore, P ferrugineus was selected as outgroup. A single equally parsimonious tree of 444 steps was generated (Figure 6.3) with CI and RI values of 0.581 and 0.554 , respectively (lower than those obtained after cpDNA-ITS combined analysis alone). Bootstrap values for most nodes were high, with an average of 85%; additionally, high decay indices (e.g. ≤ 477 for P. ahipa) indicated a strong internal structure of the cladogram (Figure 6.4).

The cpDNA-ITS-RAPD combined tree clearly showed that P. ferrugineus and P. panamensis taxa are most basal, with P. ferrugineus ancestral to P. panamensis, and this latter species ancestral to a lineage of wild P. tuberosus (TWTM48). Next, two independent subclades were evident which gave rise to P. erosus (wild and cultivated taxa) and to the cultigen types of the P. tuberosus complex. Moreover, P. ahipa was resolved within P. tuberosus (TC553, a jíquima) and strongly supported by a bootstrap value of 94% and a decay index ≤ 451.

Figure 6.3. Single equally parsimonious Fitch tree derived from a combined analysis of characters obtained from cpDNA restriction site, ITS sequence and RAPD variation in 12 Pachyrhizus taxa. Numbers above branches indicate bootstrap percentages (in boldface) and decay values; numbers below branches are synapomorphies (Tree length $=444$ steps; $\mathrm{Cl}=$ $0.581 ; \mathrm{HI}=0.419 ; \mathrm{RI}=0.554$). Key for accessions as for Table 2.1; as $=$ ashipa; $\mathrm{ch}=$ chuin; $\mathrm{ji}=$ jíquima cultigen type.
(A)

(B)

Figure 6.4. Trees showing the order of 'decay' of clades obtained after a combined analysis of cpDNA, ITS and RAPD variation. (A) Strict consensus of trees whose length is equal to 451 steps. All P. ahipa accessions examined were still resolving together with TC553 (a jíquima), whereas the remaining accessions of the P. tuberosus complex were no longer recovered in clade 1. (B) Strict consensus of trees whose length is equal to 452 steps; the branch containing TC553 (\checkmark) collapsed and was no longer resolved together with P. ahipa accessions. The clade containing both P. ahipa accessions examined was still present up until 477 steps. The tree became an unresolved 'bush' at 34 steps away from the minimal tree, i.e. a length of 478 (see text for further details).

6.3. Concluding remarks and future research

This study has provided a substantial understanding of the evolutionary history of the yam beans from an array of molecular variation within the chloroplast and nuclear genomes. However, there are still gaps in our knowledge of relationships between particular taxa (e.g. the P. erosus and P. tuberosus complexes) and these will require further effort to achieve an in-depth understanding of the evolution of Pachyrhizus.

One particular taxon that requires additional analysis is P. erosus and its evident subspecific groups. It would be of interest to compare the molecular evidence presented in previous sections with the old taxonomic distinction between P. erosus of Mexican provenance and " P. palmatilobus" (now considered conspecific with P. erosus) of Central American distribution. The latter "species" was mainly distinguished from P. erosus on account of its deeply lobed leaflets (P. erosus sensu stricto having dentate leaflets; Sørensen, 1996). Nonetheless, this trait has also been found within Mexican material, particularly among the uniform landraces from the Yucatan peninsula, and, therefore, morphological evidence alone is not enough for the separation of these groups. In addition, the conspicuous linkage of the white flowered, red (or maroon)-seeded landraces from the Yucatán peninsula with an increased tolerance to high temperatures, but also with a longer production period, could be examined in the light of the molecular evidence presented here.

Additional investigation is also required into the P. tuberosus complex and its relationship to P. ahipa. It would certainly be of value to integrate the findings of the molecular analysis with information from fields such as botany, ecology, agronomy, archaeology, etc., in extending our knowledge of the evolution of this subset of material. For example, the fact that both species were known in Peru for their edible tuberous roots in the pre-agricultural period ($12200-8500 \mathrm{BC}$), their present-day numerous non-related vernacular names and the several individually stable (mono- or multituberous) local landraces, strongly supports independent domestication processes at different locations by various Amerindian groups during the pre-Columbian period.

Future sampling should include detailed prospections of selected populations of Pachyrhizus, so that thorough research into population structure, outcrossing rates and intraspecific variation can be conducted, especially in regard to those species and subgroups considered to be endangered. This is of utmost importance as pressures on natural vegetation by encroaching agriculture, overgrazing, urban and industrial expansion, are causing a rapid decline in levels of genetic diversity within wild and cultivated Pachyrhizus. From this standpoint, the molecular techniques used throughout this study have proved to be valuable tools to investigate patterns of intraand interspecific variation allowing the implementation (or continuation) of in situ and ex situ conservation strategies in Central and South America.

Despite the many unresolved questions, our current understanding of the evolutionary history of yam beans, which has been improved by the work reported in this thesis, has important implications for both germplasm management and enhancement. First, a wider genetic base can now be foreseen with considerable genetic diversity for future improvement residing in the wild forms. Once the implications of geographic origin and cytoplasmic interactions are fully understood, there is a real possibility of exploiting hybrid vigour more efficiently - with appropriate combinations of cytoplasm and nucleoplasm - thus enhancing genetic breeding in yam beans. Second, wild ancestral forms have provided evolutionary clues to a better understanding of genetic diversity patterns in the cultigens in locating the likely geographical origins of landrace groups. The next step will be to develop a deeper insight into the chronologies of domestication events (testing a molecular clock), and there again wild ancestral forms will play an important role.

Third, it is very likely that for some groups of landraces coevolution between the crop and its biotic (and abiotic) environment took place in the Neotropics for many thousand years. As a consequence, race formation can be expected to have occurred with respect to associated biota (e.g. Rhizobium). Therefore, more efficient selection for pest and disease resistance may be possible in the near future for Pachyrhizus accessions stored in germplasm banks. When trying to reduce expensive inputs such as nitrogen fertilisers for sustainable production, a better co-adaptation with associated
biota is worth establishing. Thus, the use of the wide range of potentially exploitable genetic resources identified in this study, may enable exciting advances to be made in the future development of yam beans.

REFERENCES

REFERENCES

Adams, R. and Demeke, T. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571.

Adjahossou, D.F. and Sogbenon, H. 1994. Effet insecticide des graines de Pachyrhizus erosus (L.) Urban sur quelques insectes parasites de Vigna unguiculata (L.) Walp. ssp. unguiculata. - In: Proceedings of the First International Symposium on Tuberous Legumes; Guadeloupe, FWI., 21-24 April 1992. Sørensen, M. (ed.) Jordbrugsforlaget, København. Pp. 199-214.

Appels, R. and Honeycutt, R. 1986. rDNA: evolution over a billion years. In: DNA Systematics - Vol. II: Plants. Palmer, J. (ed.). Pp. 81-135.

Appels, R. and Dvorak, J. 1982. The wheat ribosomal DNA spacer region: its structure and variation in populations and among species. Theor. Appl. Genets. 63: 337-348.

Appels, R.; Gerlach, W.; Denis, E.; Swift, H. and Peacock, W. 1980. Molecular and chromosomal organization of DNA sequences coding for the ribosomal rRNAs in cereals. Chromosoma 78: 293-311.

Anonymous. 1904. The yam bean. Agricultural News - a fortnightly review of the Imperial Department of Agriculture for the West Indies. 3: 109 (Issued under the authority of the Comissioner of Agriculture of Barbados).

Armstrong, J.; Gibbs, A.; Peakall, R. and Weiller, G. 1994. The RAPDistance package. Software obtainable via anonymous FTP. Programmes and manual distributed by the authors or via www.ftp:/life.anu.edu/au/pub/RAPDistance.

Arnold, M.; Buckner, C. and Robinson, J. 1991. Pollen mediated introgression and hybrid speciation in Louisiana irises. Proc. Natl. Acad. Sci. USA 88: 1398-1402.

Arnheim, N. 1983. Concerted evolution in multigene families. Pp. 38-61. In: Evolution of Genes and Proteins. M. Nei and R. Koehn (eds.). Sinauer Associates, Sunderland, MA.

Avise, J. C. 1994. Molecular markers, natural history and evolution. Chapman and Hall. London, UK. 511 p.

Ayliffe, M.; Lawrence, G.; Ellis, J and Pryor, A. 1994. Heteroduplex molecules formed between allelic sequences cause non-parental RAPD bands. Nucl. Acids Res. 22: 1632-1636.

Bachmann, K. 1994. Molecular markers in plant ecology. New Phytol. 126: 403-418.
Baldwin, B. G. 1992. Phylogenetic utility of the internal transcribed spacer of nuclear ribosomal DNA in plants: an example from the Compositae. Molecular Phylogenetics and Evolution 1(1), March: 3-16.

Baldwin, B. G. 1993. Molecular phylogenetics of Calycadenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: Chromosomal and morphological evolution reexamined. Am. J. Bot. 80 (2): 222-238.

Baldwin, B.; Sanderson, M.; Porter, J.; Wojciechowski, M.; Campbell, C. and Donoghue, M. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82: 247-277.

Ball, R.; Neigel, J. and Avise, J. 1990. Gene genealogies within the organismal pedigree of random-mating populations. Evolution 44: 360-370.

Banks, J. and Bieky, C. 1985. Chloroplast DNA diversity is low in a wild plant Lupinus texensis. Proc. Natl. Acad. Sci. USA 82: 6950-6954.

Barile, T. V. and Esguerra, E. B. 1984. Low temperature storage of yam beans. Postharvest Research Notes 1, 2: 23-25. Department of Horticulture, University of the Philippines, Los Baños.

Basudev, R. 1933. Studies in the development of the female gametophyte in some leguminous crop plants of India. - Indian Journal of Agricultural Science 3 (6): 1098 - 1107.

Baum, B. 1992. Combining trees as a way of combining data sets for phylogenetic inference and the desirability of combining gene trees. Taxon 41:3-10.

Baum, D.; Sytsma, K. and Hoch, P. 1994. A phylogenetic analysis of Epilobium (Onagraceae) based on nuclear ribosomal DNA sequences. Syst. Bot. 19: 363-388.

Bayer, R.; Soltis, D. and Soltis, P. 1996. Phylogenetic inferences in Antennaria (Asteraceae: Gnaphalieae: Cassiniinae) based on the sequences from nuclear ribosomal DNA internal transcribed spacers (ITS). Am. J. Bot. 83: 516-527.

Bentham, G. 1865. Phaseoleae. In: Bentham, G. and Hooker, J. Genera plantarum. Vol. I, London, UK. Pp. 451-454.

Bertoni, M. S. 1910. Siembra del macucú (Pachyrhizus tuberosus). Revista Agron., Boletín Est. Agr. Pto. Bertoni. Paraguay. 4, 9-10: 47.

Black, I. 1993. PCR with arbitrary primers: approach with care. Insect Mol. Biol. 2: 1-6.
Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evol. 42: 795-803.

Bremer, B. 1991. Restriction data from chloroplast DNA for phylogenetic reconstruction: is there only one accurate way of scoring? P1. Syst. Evol. 175: 39-54.

Brown, J. 1994. Probabilities of evolutionary trees. Syst. Biol. 43: 78-91.
Brown, D.; Wensink, P. and Jordan, E. 1972. Comparison on the ribosomal DNAs of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. J. Mol. Biol. 63: 57-73.

Brunsfeld, S.; Soltis, P.; Soltis, D.; Gadek, P.; Quinn, C.; Strenge, D. and Ranker, T. 1994. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: evidence from $r b c \mathrm{~L}$ sequences. Syst. Bot. 19: 253: 262.

Bruneau, A.; Doyle, J. J. and Palmer, J. D. 1990. A chloroplast DNA inversion as a subtribal character in the Phaseoleae (Leguminosae). Syst. Bot. 15, 3: 378-386.

Bruneau, A. 1996. Phylogenetic and biogeographical patterns in Erythrina (Leguminosae: Phaseoleae) as inferred from morphological and chloroplast DNA characters. Syst. Bot. 21: 587-605.

Brücher, H. 1977. Tropische Nutzpflanzen: Ursprung, Evolution und Domestikation. Springer Verlag, Berlin, Germany. Pp. 1-24.

Brücher, H. 1989. Useful plants of Neotropical origin and their wild relatives. Springer Verlag, Leiden. Pp. 15-21.

Burkart, A. 1952. Las leguminosas argentinas silvestres y cultivadas. Acme Agency, Buenos Aires, Argentina. Segunda edición. Pp. 10.

Burkill, I. 1935. A dictionary of the economic products of the Malay Peninsula. Vol. 2. Crown Agents for the Colonies, London, UK. Pp. 15.

Caetano-Anollés, G. 1993. Amplifying DNA with arbitrary oligonucleotide primers. PCR Methods and Applications 3: 85-94.

Caetano-Anollés, G.; Bassam, G.; Gresshoff, P. 1991. DNA amplification fingerprinting: a strategy for genome analysis. Plant Mol. Biol. Rep. 9: 294-307.

Calvi, B.R. (et al., snt). 1991. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66: 465 471.

Camin, J. and Sokal, R. 1965. A method for deducing branching sequences in phylogeny. Evol. 19: 311-326.

Campbell, C.; Donoghue, M.; Baldwin, B. and Wojciechowski, M. 1995. Phylogenetic relationships in Maloideae (Rosaceae) - evidence from sequences of the internal transcribed spacers of nuclear ribosomal DNA and its congruence with morphology. Am.. J. Bot. 82: 903-918.

Cain, A. and Harrison, G. 1960. Phyletic weighting. Proc. Zool. Soc. Lond. 135: 1-31.
Carlson, T. \& Chelm, B. 1986. Apparent eukaryotic origin of glutamine synthetase II from the bacterium Bradyrhizobium japonicum. Nature 322: 568-570.

Castellanos, J.; Zapata, F.; Peña-Cabriales, J.; Jensen, E. and Heredia. E. 1996. Symbiotic nitrogen fixation and yield of Pachyrhizus erosus (L.) Urban cultivars and Pachyrhizus ahipa (Wedd.) Parodi landraces as affected by flower pruning. Soil Biology and Biochemistry (in press). 19 p .

Castillo, R. 1995. Plant genetic resources in the Andes: impact, conservation and management. Crop Science 35 (2): 355-360.

Chalmers, K.; Waugh, R.; Sprent, J.; Simons, A. and Powell, W. 1992. Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers. Heredity 69: 465-472.

Chan, P. and Wildman, S. 1972. Chloroplast DNA codes for the primary structure of the large subunit of fraction I protein. Biochem. Biophys. Acta 277: 677-680.

Chase, M. and Hills, H. 1991. Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40: 215-220.

Chase, M.; Soltis, D.; Omlstead, R.; Morgan, D.; Les, D.; Mishler, D.; Duvall, M.; Price, R.; Hillis, H.; Kiu, Y.; Kron, K.; Rettig, J.; Conti, E.; Palmer, J.; Manhart, J.; Systma, J.; Michaels, H.; Kress, W.; Karol, K.; Clark, W.; Edren, M.; Gaut, B.; Jansen, R.; Kim, K.; Wimpee, C.; Smith, J.; Furnier, G.; Strauss, S.; Xiang, Q.; Plunkett, G.; Soltis, P.; Swensen, S.; Williams, S.; Gadek, P.; Quinn, C.; Eguiarte, L.; Golenberg, E.; Learn, G.; Graham, S. J..; Barrett, S.; Dayanandan, S. and Albert, V. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528-580.

Chen, Z. 1986. Suggestion on the classification of the genus Paulownia. J. Huazhong Agric. University 5: 261-265.

Cherfas, J. 1990. Genes unlimited. New Scientist 4: 29-33.
CIP. 1995. International Potato Center Programme Report 1993-1994. International Potato Center. Lima, Peru. 192 p.

Clausen, R. 1945. A botanical study of the yam beans (Pachyrrhizus). Mem. Cornell Univ. Agric. Exp. Stat. 264: 1-38.

Clegg, M. and Zurawski, G. 1992. Chloroplast DNA and the study of plant phylogeny: present status and future prospects. In: Molecular Systematics of Plants. Soltis, P.; Soltis, D. and Doyle, J. (eds.). Chapman \& Hall. Pp. 1-13.

Cotter, D. J. and Gómez, R. E. 1979. Daylength effect on root development of jícama (Pachyrrhizus erosus Urban). HortScience 14 (6): 733-734.

Crawford, D. J. 1990. Plant molecular systematics: macromolecular approaches. John Wiley \& Sons. New York, USA. 388 p.

Craxton, M. 1991. Linear amplification sequencing: a powerful method for sequencing DNA. Methods 3: 20-24.

Danforth, B. and Freeman-Gallant, C. 1996. DNA fingerprinting data and the problem of non-independence among pairwise comparisons. Molecular Ecology 5: 221-227.

Debouck, D. G. 1994. Introduction to the conservation of genetic resources of American tuber legumes (Pachyrhizus). In: Proceedings of the First International Symposium
on Tuberous Legumes; Guadeloupe, FWI, $21-24$ April, 1992. Sørensen, M. (ed.) Jordbrugsforlaget, København. Pp. 5-7.

DeBry, R. and Slade, N. 1985. Cladistic analysis of restriction endonuclease cleavage maps within a maximum likelihood framework. Syst. Zool. 34: 21-34.

Demeke, T.; Adams, R. and Chibbar, R. 1992. Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case to study in Brassica. Theor. Appl. Genets. 84: 990-994.

Demesure, B.; Sodzi, N. and Petit, R. 1995. A set of universal primers for amplification of polymorphic non-coding regions of mitochondria and chloroplast DNA in plants. Molecular Ecology 4: 129-131.

Demesure, B.; Comps, B. and Petit, R. 1996. Chloroplast DNA phylogeography on the common beech (Fagus silvatica L.) in Europe. Evolution 50(6): 2515-2520.
dePamphilis, C. and Palmer, J. 1990. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337-339.

Doebley, J. and Wendel, 1989. Applications of RFLP to plant systematics. In: Development and application of molecular markers to problems in plant genetics. Helentjarus, T. and Barr, B. (eds.). Cold Spring Harbour Laboratories, New York, USA. Pp. 57 67.

Doebley, J. 1992. Molecular systematics and crop evolution. In: Molecular Systematics of Plants. Soltis, P.; Soltis, D. and Doyle, J. (eds.). Chapman Hall. New York. Pp. 202 222.

Donoghue, M. and Sanderson, M. 1992. The suitability of molecular and morphological evidence in reconstructing plant phylogeny. In: Molecular Systematics of Plants. Soltis, P.; Soltis, D. and Doyle, J. (eds.). Chapman Hall. New York. Pp. 340-368.

Donoghue, M. and Systma, K. 1993. Phylogenetic analysis of Viburnum based on chloroplast DNA restriction site data. Am. J. Bot. 80 (supplement, abstract): 146.

Dover, G. 1982. Molecular drive: a cohesive mode of species evolution. Nature 299.
Dover, G. and Flavell, R. 1984. Molecular coevolution: DNA divergence and the maintenance of function. Cell 38: 622-623.

Dowling, T.; DeMarais, B.; Minckley, W.; Douglas, M. and Marsh, P. 1992. Use of genetic characters in conservation biology. Conserv. Biol. 6:7-8.

Dowling, T.; Moritz, C.; Palmer, J. and Rieseberg, L. 1996. Nucleic acids III. Analysis of fragments and restriction sites. In: Molecular systematics. Hillis, D.; Moritz, C. and Mable, B. (eds.) 1996. Second edition. Sinauer Associates, Inc., Sunderland, USA. Pp. 249-320.

Downie, S. and Katz-Downie, D. 1996. A molecular phylogeny of Apiaceae subfamily Apioideae: evidence from nuclear ribosomal DNA internal spacer sequences. Am. J. Bot. 83: 234-251.

Doyle, J. 1992. Gene trees and species trees: molecular systematics as one-character taxonomy. Syst. Bot. 17: 144-163.

Doyle, J. and Dickson, E. 1987. Preservation of plant samples for DNA restriction endonuclease analyses. Taxon 36: 715-722.

Doyle, J. and Doyle, J. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem. Bull. 19: 11-15.

Døygaard, S. and Sørensen, M. 1998. Principal component analysis of morphological characters in the genus Pachyrhizus DC. In: Proceedings of the Second International Symposium on Tuberous Legumes. Sørensen, M.; Estrella, J.; Hamann, O. and Ríos Ruíz, S.A. (eds.). Celaya, Gto. - Mexico, 5-8 August, 1996. MacKeenzie, Copenhagen, Denmark. Pp. 33-42.

Dyer, A. 1979. Investigating chromosomes. Edward Arnold Publishers Ltd. London, UK. 138 p.

Engel, F. 1984. Geografía humana prehistórica y agricultura precolombina de la quebrada de Chilca. Universidad Agraria, Lima, Perú. Pp. 110.

Estrella, J.; Phillips, S.; Abbott, R. J.; Gillies, A. C. \& Sørensen, M. 1998. Genetic variation and relationships in agronomically important species of yam bean (Pachyrhizus) based on RAPD markers. In: Proceedings of the Second International Symposium on Tuberous Legumes. Sørensen, M.; Estrella, J.; Hamann, O. and Ríos Ruíz, S.A. (eds.). Celaya, Gto. - Mexico, 5-8 August, 1996. MacKeenzie, Copenhagen, Denmark. Pp. 43-59.

Evans, I. M., Boulter, D., Eaglesham, A. R. J. and Dart, P. J. 1977. Protein content and protein quality of tuberous roots of some legumes determined by chemical methods. Qual. Plant. Pl. Foods. Hum. Nutr. 27, 3-4: 275-285.

Ferguson, I. K. and Skvarla, J. J. 1981. The pollen morphology of the subfamily Papilionoideae (Leguminosae). In: Advances in Legume Systematics, part 2. Polhill, R. M. and Raven, P. H. (eds.). H. M. P. O., London, UK. Pp. 859-896.

Farris, J. 1989. The retention index and rescaled consistency index. Cladistics 5: 417-419.
Fiedler, P. L. and Jain, S. K. 1992. Conservation biology: the theory and practice of nature conservation, preservation and management. Chapman \& Hall. London, UK. 514 p.

Flavell, A. 1992. Ty1-copia group retrotransposons and the evolution of retroelements in the eukaryotes. Genetica 86: 203-214.

Francisco-Ortega, J.; Jansen, R. and Santos-Guerra, A. 1996. Chloroplast DNA evidence of colonisation, adaptive radiation and hybridisation in the evolution of the Macaronesian flora. Proc. Natl. Acad. Sci. USA 93: 4085-4090.

Francisco-Ortega, J.; Santos-Guerra, A.; Hines, A. and Jansen, R. 1997. Molecular evidence for a Mediterranean origin of the Macaronesian endemic genus Argyranthemum (Asteraceae). Am. J. Bot. 84(11): 1595-1613.

Frankel, O. H. and Soulé, M. E. 1981. Conservation and evolution. Cambridge University Press. Cambridge, UK. 327 p.

Frankel, O. 1984. Genetic perspectives of plant germplasm conservation. In: Genetic Manipulation: Impact on Man and Society. Arber, W.; Llimensee, K.; Peacock, W. and Starlinger, P. (eds.). Cambridge University Press, Cambridge, UK. Pp. 161 170.

Fritsch, P. and Rieseberg, L. 1992. High outcrossing rates maintain male hermafrodite individuals in populations of the flowering plant Datisca glomerata. Nature 359: 633-636.

Felsenstein, J. 1983. Statistical inference of phylogenies. J. Roy. Statist. Soc. A. 146: 246 272.

Felsenstein, J. 1985. Confidence limit of phylogenies: an approach using bootstrap. Evol. 39: 783-791.

Felsenstein, J. 1988. Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics 22: 521-565.

Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5C. Software and manual distributed by the author. Department of Genetics, University of Washington, Seattle, USA.

Felsenstein, J. and Kishino, H. 1993. Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull. Syst. Biol. 42: 193-200.

Fitch, W. 1966. An improved method of testing for evolutionary homology. J. Mol. Biol. 16: 916.

Fitch, W. 1981. A non-sequential method for constructing trees and hierarchical classifications. J. Mol. Evol. 18: 30-37.

Fritsch, P. and Rieseberg, L. 1992. High outcrossing rates maintain male and hermaphrodite individuals in populations of the flowering plant Datisca glomerata. Nature 359: 633-636.

Furman, B.; Grattapaglia, D.; Dvorak, W. and O'Malley, D. 1997. Analysis of genetic relationships of Central American and Mexican pines using RAPD markers that distinguish species. Molecular Ecology 6: 321-331.

Gerbi, S. 1985. Evolution of ribosomal RNA. In: Molecular Evolutionary Genetics. MacIntyre Eds., Plenum Press, New York, USA. Pp. 419-518.

Gerbi, S. 1986. Evolution of ribosomal DNA. In: Molecular Evolutionary Genetics. MacIntyre Eds., Plenum Press. Pp. 419-517.

Gentry, A. 1982. Phytogeographic patterns as evidence for a Choco refuge. In: Biological diversification in the Tropics. Prance, G. (ed.) 1982. Columbia University Press, New York, USA. Pp. 112-136.

Gepts, P.; Stockton, T. and Sonnante, G. 1993. Use of hypervariable markers in genetic diversity studies. In: Application of RAPD Technology to Plant Breeding. Neff, M. (ed.), ASHS Publishers, St. Paul. Pp. 41-45.

Gillies, A. and Abbott, R. 1996. Phylogenetic relationships in the genus Stylosanthes (Leguminosae) based upon chloroplast DNA variation. Pl. Syst. Evol 200: 193 211.

Gillies, A. and Abbott, R. 1998. Evaluation of random amplified polymorphic DNA for species identification and phylogenetic analysis in Stylosanthes (Fabaceae). Pl. Syst. Evol. 211: 201-216.

Gillies, A.; Cornelius, J.; Newton, A.; Navarro, C.; Hernández, M. and Wilson, J. 1997. Genetic variation in Costa Rican populations of the tropical timber species Cedrela odorata L. assessed using RAPDs. Molecular Ecology 6: 1133-1145.

Girsel, L. 1994. Embryology of Pachyrhizus ahipa (Wedd.) Parodi (Diocleinae, Fabaceae): The ovary at the time of early ovule development. In: Proceedings of the First International Symposium on Tuberous Legumes; Guadeloupe, FWI, 21-24 April, 1992. Sørensen, M. (ed.). Jordbrugsforlaget, København. Pp. 145-150.

Goldblatt, P. 1981. Chromosome numbers in Legumes II. Ann. Missouri Bot. Gard. 68 (4): 551-557.
_1981. Cytology and the phylogeny of Leguminosae. In: Advances in Legume Systematics. Part 2. Polhill, R. M. and Raven, P. H. (eds.). 1981. H. M. P. O., London, UK. Pp. 427-464.

Goldmann, W.; Goldberg, G.; Bowman, L.; Steinmetz, D. and Schlessinger, D. 1983. Mouse rDNA: sequences and evolutionary analysis of spacer and mature RNA regions. Mol. Cell Biol. 3: 1488-1500.

González, I.; Chambers, C.; Gorski, J.; Stambolian, D.; Schmickel, R. and Sylvester, J. 1990. Sequence and structure correlation of human ribosomal spacers. J. Mol. Biol. 212: 27 -35.

Graham, J. and Nichol, R. 1995. An examination of the ability of RAPD markers to determine the relationships within and between Rubus species. Theor. Appl. Genet. 90: 1128-1132.

Grant, V. 1981. Plant speciation. Second edition. Columbia University Press, New York, USA.

Grum, M.; Stölen, O. and Sørensen, M. 1991. Yam bean (Pachyrhizus Rich. ex DC.) variety trials in Tonga, South Pacific: Fresh tuber yields, dry matter and nitrogen contents. In: Proceedings of the 26th annual meeting of the Caribbean Food Crops Society, July 29 to August 4, 1990. Mayagüez, Puerto Rico. 1991. Vol 26. - Published by the Caribbean Food Crops Society with the cooperation of the USDA-ARS-TARS, Mayagüez, Puerto Rico. Pp. 407-418.

Hadrys, H.; Balick, M. and Schierwater, B. 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology 1: 55-63.

Halafihi, M. 1994. Effect of yam bean seed's (Pachyrhizus Rich. ex DC.) extract for controlling diamondback moth (Plutella xylostella) in head cabbage (Brassica oleracea var. KK-cross). In: Proceedings of the First International Symposium on Tuberous Legumes; Guadeloupe, FWI, 21 - 24 April 1992. Sørensen, M. (ed.). Jordbrugsforlaget, København. Pp. 191-198.

Halafihi, M.; Grum, M.; Stőlen, O. and Sørensen, M. 1994. Biological nitrogen fixation in Pachyrhizus. In: Proceedings of the First International Symposium on Tuberous Legumes; Guadeloupe, FWI, 21-24 April 1992. Sørensen, M. (ed.). Jordbrugsforlaget, København. Pp. 215-225.

Halward, T.; Stalker, H.; LaRue, E. and Kochert, G. 1992. Use of a single primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant. Mol. Biol. 18: 315-325.

Hamby, R. and Zimmer, E. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. In: Molecular Systematics of Plants. Soltis, P. S., Soltis, D. E. and Doyle, J. J. (eds.). 1992. Chapman and Hall. London, UK. Pp. 50-91.

Hames, B. D. and Higgins, S. J. 1985. Nucleic acid hybridization: A practical approach. IRL Press: Oxford. 245 p .

Harris, D. 1973. The prehistory of tropical agriculture: an ethnoecological model. In: The Explanation of Culture Change: Models in Prehistory. Renfrew, C. (ed.). Duckworth, London, UK. Pp. 391-417.

Harris, S. A. Systematics and randomly amplified polymorphic DNA in the genus Leucaena Benth. (Mimosoideae; Leguminosae). Plant Syst. Evol. 197: 195-208.

Harris, S.; Hughes, C.; Ingram, R. and Abbott, R. 1994. A phylogenetic analysis of Leucaena (Leguminosae; Mimosoideae). Plant Syst. Evol. 191: 1-26.

Harris, S. and Ingram, R. 1992. Molecular systematics of the genus Senecio L. I: Hybridisation in a British polyploid complex. Heredity 69: 1-10.

Hawkes, J. G. 1986. The domestication of South American roots and tubers. In: Foraging and Farming. Harris, D. R. and Hillman, G. C. (eds.). Unwin Hyman, London, UK. Pp. 481-503.

Hemleben, V.; Ganal, M.; Gerstner, J.; Schiebel, K. and Torres, R. 1988. Organization and length heterogeneity of plant ribosomal RNA genes. In: Architecture of Eukaryotic genes. G. Kahl (ed.). VCH, Weimheim, Fed. Rep. Germany. Pp. 371-383.

Heredia G., E. 1994. Observación de materiales segregantes y evaluación de germoplasma de jícama (Pachyrhizus Rich. ex DC.) en México. In: Proceedings of the First International Symposium on Tuberous Legumes; Guadeloupe, FWI, 21-24 April 1992. Sørensen, M. (ed.). Jordbrugsforlaget, København. Pp. 273-282.

Heredia, Z. and Heredia, G. 1994. San Miguelito, San Juan y Vega de San Juan: nuevas variedades de jícama (Pachyrhizus erosus (L.) Urban) para el Bajío, Guanajuato, Mexico. In: Proceedings of the First International Symposium on Tuberous

Legumes; Guadeloupe, FWI, 21-24 April 1992. Sørensen, M. (ed.). Jordbrugsforlaget, København. Pp. 257-272.

Herdenberger, F.; Weil, J. and Steinmetz, A. 1988. Organisation and nucleotide sequence of the broad bean chloroplast genes $t r n L-U A G, n d h \mathrm{~F}$ and two unidentified open reading frames. Curr. Genet. 14: 609-615.

Herrera, F. L. 1942. Etnobotánica: Plantas endémicas domesticadas por los antiguos peruanos. Revista Mus. Nac. Lima. 11 (1): 25-30.

Hewitt, G.; Johnston, A.; and Young, J. 1991. Molecular techniques in taxonomy. Springer Verlag, NATO ASI Series. 407 p.

Hillis, D. and Davis, S. 1988. Ribosomal DNA: intraspecific polymorphisms, concerted evolution, and phylogeny reconstruction. Syst. Zool. 37: 63-66.

Hillis, D. and Bull, J. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42: 182-192.

Hillis, D.; Moritz, C. and Mable, B. (eds.) 1996. Molecular systematics. Second edition. Sinauer Associates, Inc., Sunderland, USA. 655 p.

Hillis, D. and Dixon, M. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quart. Rev. Biol. 66: 411-453.

Hoelzel, A. 1992. Molecular genetic analysis of populations: a practical approach. IRL Press, Oxford, England.

Hoisington, D.A.; CIMMYT Laboratories. 1994. Laboratory protocols. CIMMYT Applied Molecular Genetics Laboratory, Mexico, DF., CIMMYT.

Hood, L.; Campbell, J. and Elgin, S. 1975. The organization, expression and evolution of antibody genes and other multigene families. Ann. Rev. Genet. 9: 305-353.

Jorgensen, R. and Cluster, P. 1988. Modes and tempos in the evolution of nuclear ribosomal DNA: new characters for evolutionary studies and new markers for genetic and population studies. Ann. Missouri Bot. Gard. 75: 1238-1247.

Ingham, J. L. 1979. Isoflavonoid phytoalexins of yam bean (Pachyrrhizus erosus). Z. Naturforsch. 34c: 683-688.
\qquad . 1990. Systematic aspects of phytoalexin formation within the tribe Phaseoleae of the Leguminosae (Subfamily Papilionoideae). Biochemical Systematics and Ecology 18 (5): 329-343.

INIAP. 1992. Informe Anual 1991 del Departamento Nacional de Recursos Fitogenéticos, DENAREF. INIAP, Quito Ecuador. Pp. 1-50.

INIAP. 1995. Informe Anual 1994 del Departamento Nacional de Recursos Fitogenéticos, DENAREF. INIAP, Quito Ecuador. 98 p.

INIAP. 1996. Informe Anual 1995 del Departamento Nacional de Recursos Fítogenéticos, DENAREF. INIAP, Quito Ecuador. Pp. 3-60.

Innis, M.; Gelfand, D.; Sninsky, J. and White, T. 1990. PCR protocols. Academic Press, New York, USA.

IPGRI. 1995. Annual Report 1994. International Plant Genetic Resources Institute. Rome, Italy. 129 p .

Iwabe, N.; Kuma, K.; Hasegawa, M.; Osawa, S. and Miyata, T. 1989. Evolutionary relationship of archaebacteria, eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl. Acad. Sci. USA 86: 9355-9359.

Jansen, R. and Palmer, J. 1987. A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc. Natl. Sci. USA 84: 5818-5822.

Jansen, R. and Palmer, J. 1988. Phylogenetic implication of chloroplast DNA restriction site variation in the Mutisieae (Asteraceae). Am. J. Bot. 75: 753-766.

Jeffreys, A.; Royle, N.; Wilson, V. and Wong, Z. 1988. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 278-281.

Jorgensen, R. and Cluster, P. 1988. Modes and tempos in the evolution of nuclear ribosomal DNA: new characters for evolutionary studies and new markers for genetic and population studies. Ann. Missouri Bot. Gard. 75: 1238-1247.

Kaemmer, D.; Ramser, J.; Schön, M.; Weigand, F.; Saxena, M.; Driesel, A.; Kahl, G. and Weising, K. 1992. DNA fingerprinting of fungal genomes: a case study with Ascochyta rabiei in DNA polymorphisms in eukaryotic genomes. Hüthig Verlag, Heidelberg, Germany. Pp. 255-270.

Kavanagh, T. A. and Ferguson, I. K., 1981. Pollen morphology and taxonomy of the subtribe Diocleinae (Leguminosae: Papilionoideae: Phaseoleae). Rev. Palaeobot. Palynol. 32: 317-367.

Kim, K. and Jansen, R. 1994. Comparisons of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Pl. Syst. Evol. 190: 157 185.

Kimura, M. 1983. The neutral theory of evolution. Cambridge Univ. Press, Cambridge, UK. Pp. 10.

Klekowski, E. 1988. Mutation, developmental selection, and plant evolution. Columbia, University Press, New York, USA.

Kluge, A. and Farris, J. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32.

Koller, B.; Lehmann, A.; McDermott, J. and Gessler, C. 1993. Identification of apple cultivars using RAPD markers. Theor. Appl. Genet. 85: 901-904.

Kreitman, M. 1991. Nucleotide polymorphism at the Adh locus of Drosophila melanogaster. Nature 304: 412-417.

Krishnamurti, M. and Seshadri, T. R. 1966. Chemical components of yam beans: their evolution and interrelationship. Curr. Sci. 35 (7): 167-169.

Lackey, J. A. 1977. A revised classification of the tribe Phaseoleae (Leguminosae: Papilionoideae) and its relation to canavanine distribution. J. Linn. Soc. Bot. 74: 163-178.
\qquad . 1980. Chromosome numbers in the Phaseoleae (Fabaceae: Faboideae) and their relation to taxonomy. Am. J. Bot. 67, 4: 595-602.
\qquad . 1981. Phaseoleae. In: Advances in Legume Systematics. Part 1. Polhill, R. M. and Raven, P. H. (eds.). H. M. P. O., London, UK. Pp. 301-327.

Lackhan, N. 1994. Investigations on in vitro production of rotenone using Pachyrhizus erosus (L.) Urban. MPh Thesis, Dept. Plant Science, Fac. Nat. Sci., University of St. Augustin, Trinidad. 115 p.

León, J. 1969. Andean tuber and root crops: origin and variability. In: Proceedings of the International Symposium on Tropical Root Crops. 2 - 8 April 1967, St. Augustine (Trinidad). Vol. 1: 118-130.
\qquad . 1977. Origin, evolution and early dispersal of root and tuber crops. Proceedings of the Fourth Symposium of the International Society for Tropical Root Crops. Cali, Colombia. 1-7 August, 1976. Ottawa, Canada. Pp. 20-36.
\qquad . 1987. Botánica de los cultivos tropicales. Segunda edición. Servicio Editorial IICA, San José, Costa Rica. Pp. 1-210.

Li, W. and Graur, D. 1991. Fundamentals of molecular evolution. Sinnauer, Sunderland, MA, USA.

Lieckfeldt, E.; Meyer, W.; and Börner, T. 1993. Rapid identification and differentiation of yeasts by DNA and PCR fingerprinting. J. Basic Microbiol. 33: 413-426.

Liston, A. 1992. Variation in the chloroplast genes rpoC1 and rpoC2 of the genus Astragalus (Fabaceae): evidence from restriction site mapping of a PCR-amplified fragment. Am. J. Bot. 79: 953-961.

Linneus, C. von, 1753. Species plantarum. Vol. 2. Impensis Laurentii Salvii, Stockholm (reproduction).

Liu, Z. and Furnier, G. 1993. Comparison of allozyme, RFLP, and RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen. Theor. Appl. Genets. 87: 97-105.

Llaca, V.; Delgado, A. and Gepts, P. 1994. Chloroplast DNA as an evolutionary marker in the Phaseolus vulgaris complex. Theor. Appl. Genets. 88: 646-652.

Lundell, C. 1939. Plants probably utilized by the old empire Maya of Peten and adjacent lowlands. Pap. Mich. Acad. Sci. Arts \& Lett, 24, 1:37-56.

Maddison, D. and Maddison, W. 1996. The Tree of Life: a distributed Internet project containing information about phylogeny and biodiversity. Internet address: http://phylogeny.arizona.edu/tree/phylogeny.html

Manos, P. 1993. Cladistic analysis of sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA of Notofagus. Am. J. Bot. 80 (supplement abstract): 163.

Márquez H. and Morera J. 1992. Caracterización sistemática, parámetros genéticos e índices de selección de la colección de jícama (Pachyrhizus erosus (L.) Urban) del CATIE. M. Sc. thesis, Centro Agronómico Tropical para la Investigación y Enseñanza, Programa de Enseñanza/Area de Posgrado. Turrialba, Costa Rica. Pp. 1-103.

Martínez, M. 1979. Catálogo de nombres vulgares y científicos de plantas mexicanas. Fondo de Cultura Económica, Mexico.

Maxam, A. and Gilbert, W. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74: 560-564.

Meyer, W.; Koch, A.; Niemann, C.; Beyermann, B.; Epplen, J.; and Börner, T. 1991. Differentiation of species and strains among filamentous fungi by DNA fingerprinting. Curr. Genet. 19: 239-242.

Millar, C. and Libby, W. 1991. Strategies for conserving clinal, ecotypic, and disjunct population diversity in wide spread species. In: Genetics and conservation of rare plants. Falk, D. and Holsinger, K. (eds.). Oxford University Press, New York. Pp. 149-170.

Mindell, D. and Honeycutt, R. 1990. Ribosomal RNA in vertebrates: evolution and phylogenetic implications. Ann. Rev. Ecol. Syst. 21: 541-566.

Möller, M. and Cronk, Q. 1997. Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Am. J. Bot. 84(7): 956-965.

Montenegro, P. de. 1740. Bacucú. In: Materia Médica Misionera. de Montenegro, P. 379 380, Buenos Aires, Argentina (1945, 2nd ed. P. panamensis. 422-423).

Morera, J.A. 1994. Rejuvenecimiento, caraterización, evaluación de jícama (Pachyrhizus Rich. ex DC.) en CATIE, Costa Rica. In: Proceedings of the First International Symposium on Tuberous Legumes; Guadeloupe, FWI, 21-24 April 1992. Sørensen, M. (ed.). Jordbrugsforlaget, København. Pp. 287-304.

Mueller, L. and Ayala, F. 1982. Estimation and interpretation of genetic distance in empirical studies. Genet. Res. 40: 127-137.

Muñoz, S. 1945. Nupe, un cultivo promisorio para Venezuela. Tercera Conferencia Interamericana de Agricultura. Caracas, Venezuela. 38: 5-34.

Murray, V. 1989. Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucl. Acids Res. 17: 8889.

Muse, S. and Weir, B. 1992. Testing for equality of evolutionary rates. Genetics 132: 269 276.

Nair, S. G. 1989. Improvement of tuber yield in yam bean by mutation induction. Mutation Breeding Newsletter 34: 20.

National Research Council. 1989. Lost crops of the Incas: little-known plants of the Andes with promise for world-wide cultivation. Washington DC, USA. National Academy Press. Pp. 1-45.

Neale, B.; Saghai-Maroof, M.; Allard, R.; Zhang, Q. and Jorgensen, R. 1988. Chloroplast DNA diversity in populations of wild and cultivated barley. Genetics 1105-1110.

Neigel, J. and Avise, J. 1986. Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. Evolutionary Processes and Theory. E. Nevo and S. Karlin (eds.). Academic Press, New York, USA. Pp. 515-534.

Neilsen, P.E. 1995. Summary of progress report from Tonga, October 1993-September 1994. Pp. 153-184. In: Second Annual Progress Report, STD3 Contract No. ERBTS3-CT920115. M. Sørensen (ed.).

Nesbitt, K.; Potts, B.; Vaillancourt, R.; West, A. and Reid, J. 1995. Partitioning and distribution of RAPD variation in a forest tree species, Eucalyptus globulus (Myrtaceae). Heredity 74: 628-637.

Newton, C. and Graham, A. 1994. PCR. BIOS Scientific Publishers Limited, Oxford, UK. 161 p.

Nicholas, K. and Nicholas, H. 1997. Genedoc: a tool for editing and annotating multiple sequence alignments. Software and shading utility distributed by the authors. Version 2.4, available via FTP or Internet.

O'Neale, L. M. and T. W. Whitaker. 1947. .Embroideries of the early Nasca period and the crop plants depicted on them. Southw. J. Anthropol. 3: 294-321.

Olmstead, R. G. and Palmer, J. D. 1994. Chloroplast DNA systematics: a review of methods and data analysis. Am. J. Bot. 81(9): 1205-1224.

Ørting, B. 1996. Pachyrhizus ahipa (Wedd.) Parodi: a biometric test under greenhouse conditions. MSc thesis. Department of Botany, Royal Veterinary and Agricultural University, Copenhagen, Denmark. 41 p.

Ørting, B. 1996a. Collecting Pachyrhizus ahipa (Wedd.) Parodi in Argentina and Bolivia, May 5 - June 12, 1996. Field report, Department of Botany, Dendrology and Forest Genetics, RVAU, Copenhagen, Denmark. 33 p.

Ørting, B.; Grüneberg, W. and Sørensen, M. 1996. Ahipa (Pachyrhizus ahipa (Wedd.) Parodi) in Bolivia. Genet. Resour. Crop Evolution 43: 435-446.

Ohyama, K.; Fukuzawa, H.; Kohchi, T.; Shirai, H.; Sano, T.; Sano, S.; Umesomo, K.; Shiki, Y.; Takeuchi, M.; Chang, Z.; Aota, S.; Inokuchi, H. and Ozeki, H. 1986. Chloroplast gene organisation deducted from complete sequence of liverworth (Marchantia polymorpha) chloroplast DNA. Nature 322: 572-574.

Page, R. 1996. TreeView version 1.2a. Software and manual distributed by the author. Available via FTP or Internet. Glasgow University, UK.

Panchen, A. 1992. Methods of classification: phenetics and cladistics. In: Classification, Evolution and the Nature of Biology. Panchen, A.L. Cambridge University Press. Pp. 132-168.

Palmer, J. 1985. Chloroplast DNA and molecular phylogeny. Bioassays 2: 263-267.
Palmer, J. 1985. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 19: 325-354.

Palmer, J. 1987. Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Am. Naturalist 130: 56-529.

Palmer, J.; Jansen, R.; Michaels, H.; Chase, M. and Manhart, J. 1988. Chloroplast DNA variation and plant phylogeny. Ann. Missouri Bot. Gard. 75: 1180-1206.

Palmer, J.; Osorio, B.; Aldrich, J. and Thompson, W. 1987. Chloroplast DNA evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr. Genet. 11: 275-286.

Palmer, J.; Shields, C.; Cohen, D. and Orton, T. 1983. Chloroplast DNA and the origin of amphidiploid Brassica species. Theor. Appl. Genets. 65: 181-189.

Palmer, J. and Zamir, D. 1982. Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc. Natl. Acad. Sci. USA 79: 5006-5010.

Pamilo, P. and Nei, M. 1988. Relationships between gene trees and species trees. Mol. Biol. Evol. 5: 568-583.

Parent, J.; Fortin, M. and Pagé, D. 1993. Identification de cultivars de framboisier par l'analyse d'ADN polymorphe amplifié au hazard (RAPD). Can. J. Hortic. Sci. 73: 1115-1122.

Patiño, B. 1964. Plantas cultivadas y animales domésticos en América Equinoccial. Tomo 2. Plantas alimenticias. Impresa Departamental, Cali, Colombia. Pp. 364.

Pearsall, D. M. 1992. The origins of plant cultivation in South America. In: The origins of agriculture: an international perspective. Wesley, C. \& Watson, P. (eds.). Smithsonian Institution Press. Washington, DC, USA. Pp. 65-83.

Petit, R.; Kremer, A. and Wagner, D. 1993. Finite island model for organelle and nuclear genes in plants. Heredity 71: 630-641.

Philips, S. 1994. Molecular marker variation and species relationships in the genus Pachyrhizus. BSc thesis. School of Biological and Medical Sciences, University of St. Andrews, Scotland. 63 p .

Quicke, D. 1993. Principles and techniques of contemporary taxonomy. Chapman \& Hall. London, UK. 311 p.

Rafalski, A. and Tingey, S. 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends in Genetics 9 (8).

Ragot, M. and Hoisington, D. 1993. Molecular markers for plant breeding: comparisons of RFLP and RAPD genotyping costs. Theor. Appl. Genets 86: 975-984.

Ramamoorthy, T.; Bye, R.; Lot, A. and Fa, J. (eds.) 1993. Biological diversity of Mexico: origins and distribution. Oxford University Press, New York, USA. Pp. 459-511.

Riedy, M.; Hamilton, W. and Aquadro, C. 1992. Excess of non-parental bands in offspring from known primate pedigrees assayed using RAPD PCR. Nucl. Acids. Res. 20: 918.

Rieseberg, L. 1996. Homology among RAPD fragments in interspecific comparisons. Molecular Ecology 5: 99-105.

Rieseberg, L. and Soltis, D. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends P1. 5: 65-84.

Rogers, S. and Bendich, A. 1987. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9: 509-520.

Roy, B. 1933. Studies in the development of the female gametophyte in some leguminous crop plants of India. Indian J. Agric. Sci. 3: 1098-1107.

Russell, J.; Hosein, F.; Johnson, E.; Waugh, R. and Powell, W. 1993. Genetic differentiation of cocoa (Theobroma cacao L.) populations revealed by RAPD analysis. Mol. Evol. 2: 89-97.

Sagai-Maroof, M.; Soliman, K.; Jorgensen, R. and Allard, R. 1984. Ribosomal DNA spacerlength in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. USA 81: 8014-8018.

Saitou, N. and Nei, M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

Sales, A. M., Baldini, V. L. S., Cunha, M. F. and Henriques, E. A. 1990. Perfil eletroforético e composicao de aminoácidos de sementes de jacatupé (Pachyrrhizus tuberosus Spreng). Ciencia e Tecnología de Alimentos 10 (1): 87-108.

Salick, J. 1989. Ecological basis of Amuesha agriculture, Peruvian Upper Amazon. In: Posey, D. A. and Balée, W. (eds.) Resource management in Amazonia: Indigenous and folk strategies. Advances in Economic Botany 7: 189-212.

Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. CSHL Press. New York, USA.

Sanderson, M. and Doyle, J. 1992. Reconstruction of organismal and gene phylogenies from data on multigene families: concerted evolution, homoplasy, and confidence. Syst. Biol. 41: 4-17.

Sanger, F.; Nicklen, S. and Coulson, A. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.

Sauer, C. 1950. Cultivated plants of South and Central America. In: Handbook of South American Indians. J.H. Steward (ed.). Smithsonian Institution, Bureau of American Ethnology. Bull. 143. P.p. 487-543.

Schaal, B. and Learn, G. 1988. Ribosomal DNA variation within and among plant populations. Ann. Missouri Bot. Gard. 75: 1202-1216.

Schiebel, K. and Hemleben, V. 1989. Nucleotide sequence of the 18S-25S spacer region from rDNA of mung bean. Nucl. Acids Res. 17: 2852.

Schwarzbach, A. and Kadereit, J. 1995. Rapid radiation of Northern American desert genera of the Papaveraceae: evidence from restriction site mapping of PCR-amplified chloroplast DNA fragments. Plant Systematics and Evolution [supplement] 9: 159 170.

Scotlab. 1997. EASY Store software for Win32. Image capturing, gel image analysis and quantitative densitometry. Package distributed by Scotlab- Herolab. GMBH, Germany.

Sessions, S. and Kezer, J. 1987. Cytogenetic evolution in the plethodontid salamander genus Aneides. Chromosoma 95: 17-30.

Sharon, D.; Hillel, J.; Vainstein, A. and Lavi, U. 1992. Application of DNA fingerprints for identification and genetic analysis of Carica papaya and other Carica species. Euphytica 62: 119-126.

Shinozaki, K.; Ohme, M.; Tanake, M.; Wakusugi, T.; Hayashida, N.; Matsubayashi, T.; Aita, N.; Chunwongse, J.; Obokata, J.; Yamaguchi-Shinozaki, K.; Ohton, C.; Torazawa, K.; Meng, B.; Sugita, M.; Deno, H.; Kamogashira, T.; Yamada, K.; Kusuda, J.; Takaiwa, F.; Kato, A.; Tohdoh, N.; Shimada, H. and Suguira, M. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5: 2043-2049.

Siebert, D. 1992. Tree statistics, trees and confidence, consensus trees, alternatives to parsimony, character weighting, character conflict and its resolution. In: Cladistic: a Practical Course in Systematics (P.L. Forey, C.J. Humphries, I.L. Kitching, R.W. Scotland, D.J. Siebert and D.M. Williams, eds.). Oxford Science Publications, London, UK. Pp. 72-88.

Sinha, R. P., Prakash, R. and Haque, M. F. 1977. Genetic variability in yam bean (Pachyrhizus erosus Urban). Trop. Grain Leg. Bull. 7: 21-23.

Slade, R.; Moritz, C. and Heidemann, A. 1994. Multiple nuclear-gene phylogenies: application to pinnipeds and comparison with a mitochondrial DNA gene phylogeny. Mol. Biol. Evol. 11: 341-356.

Smith, G. 1974. Unequal cross over and the evolution of multigene families. Cold Spring Harbour. Symp. Quant. Biol. 38: 507-513.

Smith, J.; Burke, C. and Wagner, W. 1996. Interspecific hybridization in natural populations of the Cyrtandra (Gesneriaceae) on the Hawaiian islands: evidence from RAPD markers. Pl. Syst. Evol. 200: 61-77.

Smith, M.; Feng, D. and Doolittle, R. 1992. Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem. Sci. 17: 489-493.

Sneath, P. and Sokal, R. 1973. Numerical taxonomy. W.H. Freeman and Co., San Francisco, USA.

Solbrig, O. 1970. Principles and methods of plant biosystematics. Macmillan, London, UK. Pp. 26-41.

Soltis, D. and Kuzoff, R. 1995. Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evol. 49: 727-742.

Soltis, D.; Soltis, P. and Ness, B. 1989. High levels of chloroplast variation and multiple origins of autopolyploidy in Heuchera micrantha (Saxifragaceae). Evolution 43: 650 - 656.

Soltis, D.; Soltis, P. and Bothel, K. 1990. Chloroplast DNA evidence for the origins of the monotypic Bensoniella and Conimitella (Saxifragaceae). Systematic Botany 15: 349 - 362.

Soltis, D.; Collier, T. and Edgerton, M. 1991. Chloroplast DNA variation within and among genera of the Heuchera group (Saxifragaceae): evidence from chloroplast transfer and paraphyly. Am. J. Bot. 78: 1091-1112.

Soltis, P. S., Soltis, D. E. and Doyle, J. J. (eds.). 1992. Molecular systematics of plants. Chapman and Hall. London, UK. 434 p.

Sørensen, M. 1988. A taxonomic revision of the genus Pachyrhizus Rich. ex DC. nom. cons. Nord. J. Bot. 8, 2: 167-192.
\qquad . (ed.) 1994. Proceedings of the First International Symposium on Tuberous Legumes; Guadeloupe, FWI, 21-24 April 1992. Jordbrugsforlaget, København. 328 p.
\qquad . 1989. Pollen morphology of species and interspecific hybrids in Pachyrhizus Rich. ex DC. (Fabaceae: Phaseoleae). Rev. Palaeobot. Palynol. 61: 319-339.
\qquad . 1990. Observations on distribution, ecology and cultivation of the tuber-bearing legume genus Pachyrhizus Rich. ex DC. (Fabaceae: Phaseoleae). Wageningen Papers 90-3: 1-38.
. (ed.) 1990. Second Annual Progress Report, STD2 Contract No. TS2-A-73-DK. 163 p .
. (ed.) 1991. Second Annual Progress Report, STD2 Contract No. TS2-A-73-DK. 364 p.
\qquad 1991. Cross breeding experiments: Compatibility, pollen fertility and germination percentages of interspecific hybrids, $\mathrm{F}_{1}, \mathrm{~F}_{2} \& \mathrm{~F}_{3}$ in the genus Pachyrhizus Rich. ex DC. (Fabaceae: Phaseoleae). In: Proceedings of the Caribbean Food Crops Society, Twenty fifth Annual Meeting, Guadeloupe. 1- 6 July 1989. Vol. 25. Degras, L. (ed.) 1991. Publication INRA Antilles-Guyane, Pointe-à-Pitre, Guadeloupe. Pp. 597 624.
. (ed.) 1993. The Yam Bean Project: Final scientific report. STD2 Contract No. TS2-A-73-DK. 414 p.
. 1994. Review of the yam bean project 1982-92. In: Proceedings of the First International Symposium on Tuberous Legumes; Guadeloupe, FWI, 21-24 April 1992. Sørensen, M. (ed.) 1994. Jordbrugsforlaget, København. Pp. 47-54.
\qquad . (ed.) 1995. First annual (second biannual) progress report. STD3 Contract No. ERBTS3-CT920115. 143 p.
\qquad . 1996. Yam bean (Pachyrhizus DC). Promoting the conservation and use of underutilized and neglected crops. 2. Institute of Plant Genetics and Crop Plant Research, Gatersleben / International Plant Genetic Resources Institute, Rome. 141 p.
\qquad ; Grüneberg, W. and Ørting, B. 1997. Ahipa (Pachyrhizus ahipa (Wedd.) Parodi). Pp. 13-74. In: Andean roots and tubers: ahipa, arracacha, maca and yacón. Hermann, M. and Heller, J. (eds.). Promoting the conservation and use of underutilized and neglected crops. 21. Institute of Plant Genetics and Crop Plant Research, Gatersleben/ International Plant Genetic Resources Institute, Rome. 141 p.
; Grum, M., Paull, R. E., Vaillant, V., Venthou-Dumaine, A. and Zinsou, C. 1993.
Yam bean (Pachyrhizus species). In: Underutilized Crops: Pulses and Vegetables. Williams, J. T. (ed.). Chapman \& Hall, London, New York. Pp. 59-102.
\qquad ; M., Døygaard, S., Estrella, J., Kvist, L. P. and Nielsen, P. E. 1997. Status of the South American tuberous legumes species: Pachyrhizus tuberosus (Lam.) Spreng. Biodiversity and Conservation 6: 1581-1625.

Sousa, S. and Delgado S. 1993. Mexican Leguminosae: Phytogeography, endemism and origins. In; Biological Diversity of Mexico: Origins and Distribution. Ramamoorthy, T., Bye, R., Lot, A. and Fa, J. (eds.). Oxford University Press, New York, Oxford. Pp. 459-511.

Southern, E. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Molec. Biol. 98: 503-517.

Stace, C. 1989. Plant taxonomy and biosystematics. Edward Arnold Inc. London, UK. 264 p.

Stebbins, G. 1970. Adaptive radiation in angiosperms. I. Pollination mechanisms. Annu. Rev. Ecol. Syst. 1: 307-326.

Stewart, C. and Excoffier, L. 1996. Assessing population genetic structure and variability with RAPD data: application to Vaccinium macrocarpon (American cranberry). J. Evol. Biol. 9: 153-171.

Stewart, M.; Hall, L. and Maden, B. 1983. Multiple heterogeneities in the transcribed spacers of ribosomal DNA from Xenopus laevis. Nucl. Acids Res. 10: 2851-2864.

Sugiura, M. 1989. The chloroplast chromosomes in land plants. Annual Review of Cell Biology 5: 51-70.

Suh, Y.; Thien, L. and Zimmer, E. 1992. Nucleotide sequences of the internal transcribed spacers and 5.8 S rRNA gene in Canella winterana (Magnoliales: Canellaceae). Nucl. Acids Res. 20: 6101-6102.

Suh, Y,; Thien, L.; Reeve, H. and Zimmer, E. 1993. Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. Amer. J. Bot. 80: 1042-1055.

Swofford, 1991. PAUP: Phylogenetic Analysis Using Parsimony, version 3.1. Computer programme distributed by the Illinois Natural History Survey, Champaign, Inl., USA.

Swofford, D. 1993. PAUP: Phylogenetic Analysis Using Parsimony, version 3.1.1 User manual and computer programme. Illinois Natural History Survey, Champaign, Ill., USA.

Swofford, D. and Olsen, G. 1990. Phylogenetic reconstruction. Pp. 411 - 501. In: Molecular Systematics. Hillis, D.; Moritz, C. and Mable, B. (eds.). Sinauer Associates, Inc., Sunderland, USA.

Swofford, D.; Olsen, G.; Waddell, P. and Hillis, D. 1996. Phylogenetic inference. Pp. 407 514. In: Molecular Systematics. Hillis, D.; Moritz, C. and Mable, B. (eds.) 1996. Second edition. Sinauer Associates, Inc., Sunderland, USA.

Sytsma, K. and Schaal, B. 1990. Ribosomal DNA variation within and among individuals of Lisianthius (Gentianaceae) populations. Pl. Syst. Evol. 170: 97-106.

Taberlet, P.; Gielly, L.; Pautou, G. and Bouvet, J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105 - 1109 .

Tadera, K., Tanguchi, T., Teremoto, M., Arima, M., Yagi, F., Kabayashi, A., Nagahama, T. and Ishihata, K. 1984. Protein and starch in tubers of winged bean, Psophocarpus tetragonolobus (L.) DC, and yam bean, Pachyrhizus erosus (L.) Urban. Mem. Fac. Agric., Kagashima University 20: 73-81.

Templeton, A. and Lawrence, J. 1988. Frag-LeNgTH III: algorithm for the calculation of molecular weights. Software distributed by the authors.

Thweatt, R. and Lee, J. 1990. Yeast precursor ribosomal RNA: molecular cloning and probing the higher-order structure of the internal transcribed spacer I by kethoxal and dimethylsulphate modification. J. Mol. Biol. 212: 305-320.

Tingey, S. and del Tufo, J. 1993. Genetic analysis with random amplified polymorphic DNA markers. Plant Physiology 101: 349-352.

Ugent, D., Pozorski, S. and Pozorski, T. 1986. Archaeological manioc (Manihot) from coastal Peru. Econ. Bot. 40 (1): 78-102.
\qquad . and Peterson, L. W. 1988. Archaeological Remains of Potato and Sweet Potato in Peru. CIP Circular 16,3: 1-10.

Urbatsch, L. and Baldwin, B. 1993. ITS DNA sequence data and chloroplast restriction site data in the phylogenetics of coneflowers (Asteraceae). Am. J. Bot. 80(2): 186.

Urbina, M. 1906. Raíces comestibles entre los antiguos mexicanos. Anales Mus. Nac. México 3 (Ser. 2): 117-190. (Xicama, P. panamensis, pp. 123-125).

Van Buren, R.; Harper, K; Andersen, W.; Stanton, D.; Seyoum, S. and England, J. 1994. Evaluating the relationships of autumn buttercup (Ranunculus acriformis var. aestivalis) to some close congeners using random amplified polymorphic DNA. Am. J. Bot. 81: 514-519.

Van Dijk, P. and Bakx-Schotman, T. 1997. Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media. Molecular Ecology 6: 345-352.

Van Dongen, S. 1995. How should we bootstrap allozyme data? Heredity 74: 445-447.
Vaughn, A. and Jackson, M. 1994. The core as a guide to the whole collection. In: Proceedings of the International Workshop on Core Collections. Hodkin, I. and Brown, A. (eds.). IBPGR/CGN/CENARGEN. Workshop on Core Collections, Brasilia, Brasil. Pp. 23-28.

Venkateswarlu, K. and Nazar, R. 1991. A conserved core structure in the 18S-25S rRNA intergenic region from tobacco Nicotiana rustica. Pl. Molec. Biol. 17: 189~194.

Verdcourt, B. 1970. Studies in the Leguminosae-Papilionoideae for the Flora of Tropical East Africa. Vols. III and IV. Kew Bull. 24: 379-447 and 507-569.

Vidal, B. de C. and Pimentel, E. R. 1985. Caracteriçao bioquímica, topoquímica e estrutural dos corpos proteicos do feijao macuco ou jacatupé (Pachyrhizus tuberosus (Lam.) Spreng.). Revista Brasil. Bot. 8: 223-229.

Virk, P.; Ford-Lloyd, B.; Jackson, M. and Newbury, H. 1995. Use of RAPD for the study of diversity within plant germplasm collections. Heredity 74: 170-179.

Wagner, D.; Furnier, G.; Saghai-Maroof, M.; Williams, S.; Dancik, B. and Allard, R. 1987. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc. Natl. Acad. Sci. USA 84: 2097-2100.

Wang, W.; Pai, R.; Lai, C. and Lin, T. 1994. Molecular evidence for the hybrid origin of Paulownia taiwaniana based on RAPD markers and RFLP of chloroplast DNA. Theor. Appl. Genets. 89: 271-275.

Weatherhead, P. and Montgomerie, R. 1991. Good news and bad news about DNA fingerprinting. Trends in Ecology and Evolution 6: 173-174.

Weber, J. and May, P. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388-396.

Weising, K., Nybom, H., Wolff, K. and Meyer, W. 1994. DNA fingerprinting in plants and fungi. CRC Press. London, UK. 322 p.

Welsh, J. and McClelland, M. 1990. Fingerprinting genes using PCR with arbitrary primers. Nucl. Acids Res. 18: 7213-7218.

Wendel, J.; Schnabel, A. and Seelanan, T. 1995. Bi-directional interlocus concerted evolution following allopolyploid speciation in cotton (Gossipium). Proc. Nat. Acad. Sci. USA 92: 280-284.

White, M. 1973. Animal cytology and evolution. Cambridge University Press. Third edition. Cambridge, UK.

White, T.; Bruns, T.; Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A guide to methods and applications (M. Innis, D. Gerald, J. Snisky and T. White, eds.). Academic Press, San Diego, California. Pp. 315-322.

Williams, S.; DeBry, R.; and Feder, J. 1988. A commentary on the use of ribosomal DNA in systematic studies. Syst. Zool. 37: 60-62.

Williams, J.; Kubelik, A.; Livak, K.; Rafalski, A. and Tingey, S. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, Vol. 18 (No. 22).

Williams, J.; Hanafey, M.; Rafalski, A. and Tingey, S. 1993. Genetic analysis using random amplified polymorphic DNA markers. Methods in Enzymology 218: 704-740.

Wilde, J.; Waugh, R. and Powell, W. 1992. Genetic fingerprinting of Theobroma clones using random amplified polymorphic DNA markers. Theor. Appl. Genet. 83: 871 877.

Wilmer, P.; Gilbert, F.; Ghazoul, J.; Zalat, S. and Semida, F. 1994. A novel form of territoriality: daily paternal investment in an anthophorid bee. Animal Behaviour 48: 535-549.

Wojciechowski, M.; Sanderson, M.; Baldwin, B. and Donoghue, M. 1993. Monophyly of aneuploid Astragalus (Fabaceae): evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am. J. of Bot. 80(6): 711-722.

Wolfe, K.; Li, W.; and Sharp, P. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc. Nat. Acad. Sci. USA 84: 9054-9058.

Wolfe, K. and Sharp, P. 1988. Identification of functional open reading frames in chloroplast genomes. Gene 66: 215-222.

Wolff, K.; Peters-Van Rijn, J. and Hofstra, H. 1994. RFLP analysis in chrysanthemum. I. probe and primer development. Theor. Appl. Genets. 88: 472-478.

Wolff, K.; El-Akkad, S. and Abbott, R. 1997. Population substructure in Alkana orientalis (Boraginaceae) in the Sinai desert, in relation to its pollinator behaviour. Molecular Ecology 6: 365-372.

Yacovleff, E. 1933. La jíquima, raíz comestible extinguida en el Perú. Revista Mus. Nac. Lima, Peru 2 (1): 51-66.
and Herrera, F. L. 1934. El mundo vegetal de los antiguos peruanos. Botánica Etnológica. Revista Mus. Nac. Lima, Peru 3 (3): 241-322.
and Muelle, J. C. 1933. Un fardo funerario de Paracas. Revista Mus. Nac. Lima, Peru 3 (3): 243-153.

Yang, R.Z. and Tang, C.S. 1988. Plants used for pest control in China: a literature review. Econ. Bot. 42 (3): 376-406.

Yokota, Y.; Kawata, T.; Iida, Y.; Kato, A. and Tanifuji, S. 1989. Nucleotide sequences of the 5.8 S rRNA gene and internal transcribed spacer regions in carrot and broad bean ribosomal DNA. J. Mol. Evol. 29: 294-301.

Yuan, Y.; Kupfer, P. and Doyle, J. 1996. Infrageneric phylogeny of the genus Gentiana (Gentianaceae) inferred from nucleotide sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA. Am. J. Bot. 83: 641-652.

Zietkiewicz, E.; Rafalski, A.; and Labuda, D. 1994. Genome fingerprinting by simple sequence repeats (SSR)-anchored PCR amplification. Genomics 20: 176-183.

Zimmer, E.; Martin, S.; Beverly, S.; Kan, Y. and Wilson, A. 1980. Rapid duplication and loss of genes coding for the alpha chains of haemoglobin. Proc. Natl. Acad. Sci. USA 77: 2158-2162.

Zuckerkandl, E. and Pauling, L. 1965. Evolutionary divergence and convergence in proteins. Pp. 97-166. In: Horizons in Biochemistry. M. Kasha and B. Pullman (eds.). Academic Press, New York, USA.

APPENDIX

Appendix 1. An optimised methodology for chromosome counting in Pachyrhizus.

The preparation of spreads of mitotic metaphase chromosomes involved four main steps: (1) selection of tissues with a high mitotic activity (and stimulation of such activity); (2) in vitro treatment with a mitotic arresting agent, (3) hypotonic treatment and fixing of tissues; and, (4) chromosome preparation and counting.

- Choose brittle, translucent roots with cream to white tips (for best results: place young Pachyrhizus plantlets in the dark for at least 10 h and expose them to 2000-lux light for 1 h to stimulate cell division).
- Immerse 1 cm root tips in freshly prepared prefixative solution (use either hydroxyquinoline 0.002 M , or colchicine 0.05%). Incubate at room temperature $\left(18^{\circ} \mathrm{C}\right)$ for 2-5h.
- Fix roots in freshly prepared solution of absolute alcohol : acetic acid (3:1) for $1-2 \mathrm{~h}$. Store at $4^{\circ} \mathrm{C}$ (fridge). If necessary, roots can be stored in fixative for several months, provided that the solution does not dry out (alternatively, roots can be stored in 70% ethanol).
- Hydrolyse roots in 1 N hydrochloric acid at $60^{\circ} \mathrm{C}$ for 10 min (tougher material may require up to 15 min) and rinse twice with distilled water.
- Staining: place roots in Feulgen solution (Schiff's reagent; S5133, SIGMA) in the dark for 30 min (material can be left overnight during this stage).
- Remove the root from the Feulgen solution, rinse in distilled water and place onto a clean slide. Cut off the stained part of the root (the root tip) and place on another clean slide.
- Add one drop of 2% aceto-orcein stain (or, alternatively, lacto-propionic orcein). Cut the stained portion into small pieces and cover with a clean coverslip (ensure that any glass chips or grit have been removed beforehand).
- Working under a low power microscope tap on the coverslip with a glass rod and/or spread with a cutting needle until the cells are distributed in a uniform monolayer. There should be enough stain to produce a thick suspension, but not enough to allow the material to escape from under the descending rod.
- Place filter paper over the coverslip and press down firmly with one thumb taking care not to move the coverslip. For best results: keep (parallel) preparations at $4^{\circ} \mathrm{C}$ while working on other root tips.
- The cells should be well separated into a monolayer and the chromosomes flat without the cell wall being broken. Identify the slide; seal the edges of the coverslip to the slide with nail polish (!). Examine under phase contrast microscopy; record data and file slides (short-term storage only).

Appendix 2. Restriction fragment data obtained by an FOA analysis of total cpDNA RFLP variation. Numbers in the header of each column refer to characters described in Appendix 3. The binary data represent presence (1) or absence (0) of a particular restriction fragment, while missing data are indicated by '?'.

Characters

11111111112222222223333333333444444444555555555566666666667 1234567890123456789012345678901234567890123456789012345678901234567890

AC201 AC208 AC215 AC220 AC222 AC226 AC231 EC032 EC502 EC509 EC531 EC558 EC565 EW051 EW203 EW237 FWLOC 7 PW055 PWTM58 TC350ch TC354ch TC536as TC550ji TC553ji TC556as TCNA 10 TW558 TWNanII TWTM48 outce ouTce OUTCM

1111110101111111000011011111100110000001101110000011010110000110001100 $111111010 ? 1 ? ? 111000011011111100110000001101110000011010110000110001100$ $111111010 ? 111111000011011111100110000001101110000011010110000110001100$ 111111010? 11111110000110111111100110000001101110000011010110000110001100 111?11010? ??????000011011111100110000001101110000011010110000110001100 111111010???????000011011111100110000001101110000011010110000110001100 111?11010? ?? ? 111000011011111100110000001101110000011010110000110001100 1111110111111111000011011111100110001111101110000011010110000110001100 1111110101111111000011011111100110001111101110000011010110000110001100 1111110111111111000011011111100110001111101110000011010110000110001100 111111010? ? ? 1???000011011111100110001011101110000011011110000110001100 1111110101111111000011011111100110001011101110000011010110000110001100 1111110101111111000011011111100110001011101110000011010110000110001100 ??11110?01111111000001011?11100110001011101110000011010110000110001100 ??11110?11111111000001011?11100110001011101110000011011110000110001100 $0111110101100111000011011 ? 10010110000101101110000011010110000110001100$ 111111010? $100111000011011 ? 11010110000101101110000011010110000110001100$ 1111110101111111000011011111010110000001101110000011010110000110001100 ????110?0??1????000011011111010110000001101110000011011110000110001100 0? ? ? 110101111? ? ? 000011011111100110000001101110000011011110000110001100 0?11110101111???000011011111100110001001101110000011010110000110001100 $0 ? 11110111111111000011011111100110001111101110000011011110000110001100$ 0?1?1101011?????000011011111?00110000001101110000011011110000110001100 $111111010 ? 111111000011011111010110000001101110000011010110000110001100$ 1111110101111111000011011111100110000001101110000011011110000110001100 0111110101111111000011011111100110001111101110000011010110000110001100 1110110101111111000011011111100110000001101110000011010110000110001100 01??11010??11???000011011111100110000001101110000011010110000110001100 1110110111111111000011011011010000100001100001000011010001000000000000 1001011010000000111110201001101001010000010000 ?11100110101111001110011 0001100010000010000000000001000001000000000011000000101100111001100000 $1001011000000000111110 ? 01101101001 ? 10000110000$?11100110101111101110011

Characters
111 7777777778888888888999999999900000000001111111111222222222233333333334 1234567890123456789012345678901234567890123456789012345678901234567890 0010110000001110000010010101100011111111010101111100011110001101010111 0010110000001110000010010101100011111111010101111100011110001101010111 0010110000001110000010010101100011111111010101111100011110001101010111 0110110000001110000010010101100011111111010101111100011110001101010111 0010110000001110000010000101100011111111010101111100011101001101010111 0010110000001110000010010101100011111111010101111100011110001101010111 0010110000001110000010010101100011111111010101111100011110001101010111 0010110000001110000010010101100011111111010110110100011110010101010111 0110110000001110000010010101100011111111010110110100011110001101010111 0010110000001110000010010101100011111111010110110100011110001101010111 0110110000001110000010010111100011111111010110110100011110001011010111 0010110000001110000010010111100011111111010110110100011110001101010111 0010110000001110000010010111100011111111010110110100011110001101010111 0110110000001110000010010111100011111111010110110100011110001101010111 0110110000001110000000010111100011111111010110110100011110001101010111 1010110000000110011110000011100010111110110101110100001110010011010111 1010110000001110000000010101100011111110110101110100011110001100111111 0110110000001110000010010101100010111110110101110100011110001101010111 01101100000011100000100101011000111111110110101110100011110001?0?0?0111 $011011000000111000001001 ? 101100011111110110110110100011110101001010111$ $011011000000111000001001 ? 101100011111111010101110100011110101101010111$ 0110110000001110000010010101100011111110110101110100011110001101010111 $011011000000111000001001 ? 101100011111111010101110100011110001101010111$ $011011000000111000001001 ? 101100011111111010101111100011110001101010111$ 0110110000001110000010010101100011111110110101110100011110001101010111 $011011000000111000001001 ? 101100011111111010101110100011110001101010111$ 1110110000001110000010010101100011111111111101110100011110001101010111 0110110000001110000010010101100011111111111101111100011110001101010111 0110110000001110000010010101100011111111111101110100011110001101010111 $0 ? 01001111010101100001110000111111000000000000011111101110000000101100$ 0001000010101000101100000000001000000000000000000000000001001010010011 $010100111 ? 1101010100011100001 ? 1111000000000000011111101110000000101100$

Appendix 2. Restriction fragment data obtained by FOA. Continued.

Characters

1112222222222 4444444445555555555666666666677777777778888888888999999999900000000001 1234567890123456789012345678901234567890123456789012345678901234567890

AC201
AC208
AC215
AC220
AC222
AC226
AC231
EC032
EC502
EC509
EC531
EC55
EC565
EW051
EW203
FW237
FWLOc 7
PW055
PWTM58
TC350ch
TC354ch TC536as
TC550ji
TC553ji TC556as
TCNA10 TW558 TWNanII TWTM48 ouTcc ouTce OUTcm 0000011101111111111100000011011111111000001111100110110001101111101100 0000011 ?011111111111100000011011111111100000111111001101100011011111101100 0000011101111111111100000011011111111000001111100110110001101111101100 0000011101111111111100000011011111111000001111100110110001101111101100 0000011001111111111100000011011111111000001111100110110001101111101100 $00000111011111111111000000110111111 ? 1000001111100110110001101111101100$ $00000110011111111111000000110111111 ? 1000001111100110110001101111101100$ 0000011010111111111100000110101011101000001111100111110001111111101100 0000011010111111111100000110101011101000001111100111110001111111101100 0000011010111111111100000110101011101000001111100111110001111111101100 0000011010111111111100000110101011101000001111100111110001111111101100 0000011010111111111100000110101011101000001111100111110001111111101100 0000011010111111111100000110101011101000001111100111110001111111101100 0000011010111111111100000110101011101000001111100111110001111111101100 0000011001111111111100000110101011101000001101100111110001111111101100 $0000011001111111111100000100100111101000001111 ? 00110110001101111101100$ 0000011001111111111100000110101011101000001111000110110001101111101100 0000011001111111111100000 ? 1 ? 0 ? 1011101000001111100110110001101111101100 00000??001111111111100000???0??011101000001111?00110110001101111101100 0000011010111111111100000111011011101000001111100110110001101111101100 0000011010111111111100000111011011101000001111100110110001101111101100 0000011010111111111100000111011011101100001111100110110001101111101100 0000011010111111111100000111011011101000001111100110110001101111101100 0000011001111111111100000011011111111100001111100110110001101111101100 0000011010111111111100000111011011101100001111100110110001101111101100 $00000110101111111111000001 ? 1011011101000001111100110110001101111101100$ $000001101011 ? 111111100000111011011101000001111100110110001101111101100$ 0000011001111111111100000011011111111000001111100110110001101111101100 0000011001110011111100000011001011101000001111100110110001101111101100 111111110100000000011111 ?010001010010111111100011001001110101000111011 $1000000000010000001011000100010100100011 ? 01000100000100000010101010100$ $11111110010000000001111 ? 1010001010011111110100011100001110101000111011$

Taxa
Characters
222 1111111112222222223333333333444444444455555555566666666677777777778 1234567890123456789012345678901234567890123456789012345678901234567890

AC201
$000011101100000111101101010011111111000111111000011 ? 01100011100110 ? 011$
AC208
AC215
AC220
AC222
AC226
AC231
EC032
EC502
EC509
EC531
EC558
EC565
EW051
EW203
EW237
EWLoc7 PW055 PWTM58 TC350ch TC354ch TC536as TC550ji TC553ji Tc556as TCNA10 TW558 TWNanII
TWTM48 OUTCC outce OUTcm

0000111011000001111011010100111111110001111110000110011000111001100011 $00001110110000011110110101001111111100 ? 1111110000110011000111001100011$ $00001110110000011110110101001111111100 ? 111111000011001100011100110 ? 011$ 0000111011000001111011010100111111110001111110000110011000111001100011 $00001110110000011110110101001111111100 ? 1111110000110011000111001100011$ $000011101100000111101101010011111111000111111000011001100011100110 ? 011$ 0000111011000010011111010100111111110001111110000110011000111001100011 00001110110000101110110101001111111100 ?1111110000110011000111001100011 $00001110110000101110110101001111111100 ? 111111000011001100011100110 ? 011$ $00001110110000101110110101001111111100 ? 1111110000110011000111001100011$ 00001110110000101110110101001111111100 ?1111110000110011000111001100011 0000111011000010111011010100111111110001111110000110011000111001100011 0000111011000010111011010100111111110001111110000110011000111001010011 0000111011000001111011010100111111110001111110000110011000111001100011 0000111011000001111011010100111111110001111110000110011000111001100111 $00001111 ? 1000001111011010100111111110001111110000110011001111 ? 01010011$ $00001110110000011110110101001111111100 ? 1111110000110011000111001100011$ $00001110110000011110111001001111111100 ? 1111110000110011000111001100011$ 0000111011000010111011010100111111110001111110000110011000111001100011 0000111011000001111011010100111111110001111110000111011000111001100011 0000111011000001111011010100111111110001111110000110011000111001100011 0000111011000001111011010100111111110001111110000110011000111001100011 00001110110000011110110101001111111100 ? 1111110000110011000111001100011 00001110110000011110110101001111111100 ?1111110000110011000111001100011 0000111011000001111011010100111111110001111110000110011000111001100011 0000111011000001111011010100111111110001111110000110011000111001100011 $00001110110000011110110101001111111100 ? 1111110000110011000111001100011$ $00001110110000011110110101001111111100 ? 1111110000110011000111001101011$??111001001111000110111100111011?1011?111111??111101?01110001011100000 0001010001000000000101001100000000001000000000010001010101000001100100 ??111001001111000110101010111011?1011?1111111?111101?01110001?10100011

Appendix 2. Restriction fragment data obtained by FOA. Continued.

Taxa

Characters

2222222222222222333 8888888889999999999000000000011111111112222222222333333333344444444445 1234567890123456789012345678901234567890123456789012345678901234567890

AC201
AC208
AC215
AC220
AC222
AC226
AC231
EC032
EC502
EC509
EC531
EC558
EC565
EW051
EW203
FW237
EWLOC7
PW055
PWTM58 TC350ch TC354ch TC536as TC550ji TC553ji TC556as TCNA10 TW558 TWNanII TWTM48 OUTcc ouTce OUTCm
$10111100101010110101101101011001011011011011111 ? 1010111001111110111111$ 1011110010101011010110110101100101100101101111111010111001111110111111 1011110010101011010110110101100101100101101111111010111001111110111111 1011110010101011010110110101100101100101101111111010111001111110111111 1011110010101011010110110101100101100101101111111010111001111110111111 1011110010101011010110110101100101100101101111111010111001111110111111 1011110010101011010110110101100101100101101111111010111001111110111111 1011110010101011010110110101101010100101111100111010111001111110111111 1011110010101011010110110101101010100101111100121010111001111110111111 1011110010101011010110110101101010100101111100111010111001111110111111 $10111100101010110101101101011010101001011111001 ? 1010111001111110111111$ $10111100101010110101101101011010101001011111001 ? 1010111001111110111111$ $10111100101010110101101101011010101001011111001 ? 1010111001111110111111$ 1011110010101011010110110100100110100101111100111010111001111110111111 1011110010101011010110110101101001100101111100111010111001111110111111 $10111100101101110101101101001100011001011 ? 1111111011111001111110111111$ 10111100100010111001101101011100011001011 ?1111111011111001111110111111 $1011110010101011010110110101100 ? 011001011011111 ? 1010111001111110111111$ $1011110010101011010110110101100 ? 011001011011111 ? 1010111001111110111111$ 1011110010101011010110110101101110100101111100111010111001111110111111 $10111100101010110101101101011010011001011011111 ? 1010111001111110111011$ 1011110010101011010110110101101001100101101111111010111001111110111011 1011110010101011010110110101101001100101101111111010111001111110111011 1011110010101011010110110101100101101101101111111010111001111110111111 1011110010101011010110110101101001101101101111111010111001111110111011 101111001010101101011011010110?00?1001011011??1?1010111001111110111?11 $10111100101010110101101101011010011001011011111 ? 1010111001111110111011$ 101111001010101101011011010110?0011001011011??1?1010111001111110111?11 1011110010101011010110110101100101101101101111111010111001111110111111 $111110110 ? 010110101011101011000000110110011110101 ? 10001111001111010011$ $01000000000100 ? 0010001000000000000000000000010000000000000010000100000$ $011110110 ? 010110101011101011100000110110011110101 ? 10001111001111010011$

AC201

AC208
AC215
AC220
AC222
AC226
AC231
EC032
EC502
EC509
EC531
EC558
EC565
EWO51
EW203
FW237
FWLoc 7
PW055 PWTM58 TC350ch TC354ch TC536as TC550ji TC553ji TC556as TCNA10 TW558 TWNanII TWTM48 OUTCC OUTce OUTCm

Characters
33344444444444444444444 5555555556666666666777777777788888888889999999999000000000011111111112 1234567890123456789012345678901234567890123456789012345678901234567890
$011100111111000100100001011111 ? 0 ? 0101101100111011001100110011110101100$ 0111001111110001001000010111110000101101100111011001100110011110101100 0111001111110001001000010111110000101101100111011001100110011110101100 $011100111111000100100001011111 ? 0 ? 01011011001110110011001100111101 ? 1100$ 0111001111110001001000010111110000101101100111011001100110011110101100 0111001111110001001000010111110000101101100111011001100110011110101100 0111001111110001001000010111110000101101100111011001100110011110101100 0111001111110001001000010111110000101101100111011001100110101110101100 0111001111110001001000010111110000101101100111011001100110101110101100 0111001111110001001000010111110000101101100111011001100110101110101100 0111001111110001001000010111110000101101100111011001100110101110101100 0111001111110001001000010111110000101101100111011001100110101110101100 0111001111110001001000010111110000101101100111011001100110101110101100 0111001111110001001000010111110000101101100111011001107110101110101100 0111001011110001001000010111110000101101100111011001100110101110101100 $011100111111000100101001011111000010011110011101010110 ? 110101110101100$ $011100111111000100100001011111000010110100011101100110 ? 111101110100100$ 0111001111110001001000010111110000101101100111011001100110101110101100 0111001111110001001000010111110000101101100111011001100110101110101100 0111001111110001001000010111110000101101100111011001100110101110101100 0111001111110001001000010111110000101101100111011001100110101110101100 $011100111111000100100001011111 ? ? ? 0101101100111011001100110101110101100$ 0111001111110001001100010111110000101101100111011001100110101110101101 $011100111111000100100001011111 ? ? ? 010110110011101100110011010111010110 ?$ $011100111111000100100001011111 ? ? ? 0101101100111011001100110101110101100$ $011100111111000100 ? 00001011111000010110 ? ? 00111011001100110101110101100$ 0111001111110001000000010111110000101101100111011001101110101110101100 $011100111111000100000001011111000010110 ? 300111011001100110101110101100$ 0111001111110001100000010111110000101100110111011001101110101110101100 $1100110 ? 0011 ? 210010111101111110001011010011000110010111111000001010010$ $0000000000000010 ? 00000010000000000100000 ? 20000000100000000000000000001$ $11001101 ? 011 ? ? 100100111011111 ? 0001011001001000110010111101000001011010$

Appendix 2. Restriction fragment data obtained by FOA. Continued.

Characters

 222222223333333333444444444455555555556666666666777777777788888888889 1234567890123456789012345678901234567890123456789012345678901234567890

AC201
AC208
AC2 15
AC220
AC222
AC226
AC231
EC032
EC502
EC509
EC531
EC558
EC565
EW051
EW203
EW237
FWLOC7
PW055
PWTM58
TC350ch
TC354ch
TC536as
TC550ji
TC553ji

TC556as

TCNA10
TW55日 TWNanII TWTM48 OUTCC OUTce outcm
$1001111001010101111111 ? 11101111111111111111111110101011111111110110111$ $1001111001010101111111 ? 11101101111111111111111110101011111111110110111$ 100111100101010?111111?11101101111111111111111110101011111111110110111 $1001111001010101111111 ? 1110110111111111111111110101011111111110110111$ $1001111001010101111111 ? 11101101111111111111111110101011111111110110111$ $1001111001010101111111 ? 11101101111111111111111110101011111111110110111$ $1001111001010101111111 ? 11101101111111111111111110101011111111110110111$ $1001111001010101111111 ? 11101101111111111111101110101011111111110110111$ $1001111001010101111111 ? 11101101111111111111101110101011111111110110111$ 1001111001010101111111711101101111111111111101110101011111111110110111 $1001111001010101111111 ? 11101101111111111111101110101011111111110110111$ $1001111001010101111111 ? 11101101111111111111101110101011111111110110111$ 1001111001010101111111 ?11101101111111111111101110101011111111110110111 $1001111001010100111111 ? 11101101111111111111101110101011111111110110111$ $1001111001010101111111 ? 111011 ? 1111111111111101110101111111111110110111$ $1001111001010101111111 ? 11101101111111111111111110101011111111110110111$ $1001111001010101111100 ? 11101101111111111111111110101011111111111110111$ $1001111001010101111111 ? 11101101111111111111111110101011111111110110111$ $1001111001010101111111 ? 11101101111111111111111110101011111111110110111$ $1101111001010101111111 ? 11101111111111111111111110101011111111110110111$ 110111100101010 ?111111?11101111111111111111111110101011111111110110111 $1101111001010101111111 ? 1110111111111111111111111010101111111111011 ? 111$ 1101111001010101111111 ?11101111111111111111111110101011111111110110111 1101111001010101111111311101111111111111111111110101011111111110110111 1101111001010101111111?1110111111111111111111111010101111111111011?111 100111100101010?111111?111011?11111111111111111110101011111111110110111 100111100101010?111111?111011011111111111111111110101011111111110110111 100111100101010?111111?11101101111111111111111110101011111111110110111 1001111001010101111111?111011011111111111111111101010111111111110110111 $00 ? 11001101010111010000000 ? 1001111100001111110001111101110000101101000$ 10000000001000000000000000000100 0011100110001011101000000010001111100001111110001011101110000101101000

Characters
444444444555555555555555555555555555555 999999999000000000011111111112222222222 123456789012345678901234567890123456789

AC201 AC208 AC215 AC220
AC222
AC226
AC231
EC032
EC502
EC509
EC531
EC558 EC565 EW051 EW203 FW237 FWLOC7 PW055 PWTM58 TC350ch TC354ch TC536as TC550ji TC553ji TC556as TCNAIO TW55日 TWNanII TWTM48 OUTCC OUTce ouTcm

111000110110111111000000011011111000111 111000110110111111000000011011111000110 111000110110111111000000011011111000111 111000110110111111000000011011111000111 111000110110111111000000011011111000110 111000110110111111000000011011111000110 111000110110111111000000011011111000110 111000110110111111000000011111111000110 111000110110111111000000011111111000110 111000110110111111000000011111111000110 111000110110111111000000011111111000110 111000110110111111000000011111111000110 111000110110111111000000011111111000110 111000110110111111000000011111111000110 111000110110111111000000111011111000110 111000100110111111000000111011111000110 111000110110111111000000111011111000110 111000111110111111000000011011111000110 111000111110111111000000011011111000110 111000110110111111000000011711111000110 111000110110111111000000011011111000110 111000110110111111000000011011111000110 111000110110111111000000011011111000110 111000110110111111000000011011111000111 111000110110111111000000011011111000111 111000110110111111000000011011111000110 $11100011011011111100000001101111100011 ?$ 111000110110111111000000011011111000110 111000110110111111000000011011111000110 0001?110111111??001111??000000000111000 000000000000000000000000000000000000000 0001?100111111??001111??000000000111000

Appendix 3. Details of the 529 synapomorphic fragments produced by total cpDNA RFLP variation in Pachyrhizus taxa. These fragments have been scored as either present (1) or absent (0) in Appendix 2.

Enzyme: EcoRI

Character	Probe	Size (bp)	Character	Probe	Size (bp)
1	MB1	4778	25	MB2	2090
2	MB1	4254	26	MB2	1972
3	MiB1	2129	27	MB2	1830
4	MB1	2096	28	MB2	1731
5	MB1	1920	29	MB2	1659
6	MB1	1876	30	MB2	1631
7	MB1	1820	31	M132	1594
8	MB1	1681	32	MB2	1571
9	MB1	1619	33	MB2	1547
10	MB1	1555	34	MB2	1477
11	MB1	1540	35	MB2	1445
12	MB1	1482	36	MB7	3718
13	MB1	1466	37	MB7	1777
14	MB1	1446	38	MB7	1726
15	MB1	1425	39	MB7	1707
16	MB1	1400	40	MB7	1678
17	MB1	1389	41	MB7	1638
18	MB1	1359	42	MB7	1608
19	MB1	1326	43	MB7	1587
20	MB1	1295	44	MB7	1565
21	MB2	2462	45	MB7	1426
22	MB2	2389	46	MB7	1411
23	MB2	2301	47	MB7	1360
24	MB2	2252			

Enzyme: BamHI

Character	Probe	Size (bp)	Character	Probe	Size (bp)
48	MB1	6256	63	MB2	1807
49	MB1	4339	64	MB2	1714
50	MB1	3119	65	MB2	1660
51	MB1	1812	66	MB2	1613
52	MB1	1770	67	MB2	1488
53	MB1	1709	68	MB2	1466
54	MB1	1657	69	MB2	1371
55	MB1	1638	70	$\mathrm{MB9}+10$	2606
56	MB1	1523	71	$\mathrm{MB9}+10$	2499
57	MB1	1475	72	MB9+10	2418
58	MBI	1469	73	MB9 +10	2274
59	MBI	1397	74	MB9+10	2189
60	MB1	1350	75	MB9+10	1807
61	MB2	3485	76	MB9 +10	1785
62	MB2	1846	77	$\mathrm{MB9}+10$	1684

Enzyme: DraI

Character	Probe	Size (bp)	Character	Probe	Size (bp)
78	MB7	3433	85	MB7	1847
79	MB7	2986	86	MB7	1790
80	MB7	2653	87	MB7	1760
81	MB7	2561	88	MB7	1668
82	MB7	2129	89	MB7	1626
83	MB7	1925	90	MB7	1554
84	MB7	91	MB7	1536	

Appendix 3. Details of the $\mathbf{5 2 9}$ synapomorphic fragments. Continued.

Enzyme: Cfol

Character	Probe	Size (lop)	Character	Probe	Sixa (bp)
92	MB1	3243	110	MB7	3020
93	MB1	3007	111	MB7	2931
94	MB1	2507	112	MB7	2662
95	MB1	2186	113	MB7	2543
96	MB1	2143	114	MiB7	2112
97	MB1	2102	115	MB7	1943
98	MB1	1547	116	MB7	1922
99	MB1	1464	117	MB7	1876
100	MB1	1333	118	MB7	1555
101	MB2	4648	119	MB7	1544
102	MB2	3433	120	MB7	1445
103	MB2	2241	121	MB7	1409
104	MB2	1851	122	MB7	1354
105	MB2	1599	123	MB9+10	3243
106	MB2	1558	124	MB9+10	2960
107	MB2	1484	125	MB9+10	1817
108	MB2	1441	126	MB9+10	1452
109	MB2	1400			

Enzyme: DdeI

Clauracter	Probe	Size (bp)	Character	Probe	Size (bp)
127	MB1	2389	170	MB5+6	1699
128	MB1	2312	171	MB5+6	1645
129	MB1	1805	172	MB5+6	1630
130	MB1	1796	173	MB5+6	1574
131	MBI	1788	174	MB5+6	1553
132	MB1	1759	175	MB5+6	1538
133	MBI	1741	176	MB5+6	1527
134	MB1	1730	177	MB5+6	1499
135	MB1	1703	178	MB5+6	1482
136	MB1	1690	179	MB5 +6	1450
137	MB1	1669	180	MB5+6	1401
138	MB1	1627	181	MB5 +6	1348
139	MB1	1585	182	MB7	2561
140	MB1	1505	183	MB7	2172
141	MB1	1423	184	MB7	2104
142	MB1	1411	185	MB7	1748
143	MB1	1389	186	MB7	1690
144	MB2	4648	187	MB7	1669
145	MB2	2814	188	MB7	1608
146	MB2	2610	189	MB7	1594
147	MB2	2337	190	MB7	1553
148	MB2	1944	191	MB7	1540
149	MB2	1822	192	MB7	1524
150	MB2	1818	193	M137	1512
151	MB2	1733	194	MB7	1494
152	MB2	1711	195	MB7	1411
153	MB2	1646	196	MB7	1391
154	MB2	1620	197	MB9 +10	3335
155	MB2	1567	198	MB9+10	3060
156	MB2	1549	199	MB9+10	1856
157	MB2	1533	200	MB9+10	1794
158	MB2	1519	201	MB9+10	1756
159	MB2	1501	202	MB9+10	1699
160	MB2	1487	203	MB9+10	1651
161	MB2	1457	204	MB9 +10	1627
162	MB2	1433	205	MB9+10	1614
163	MB2	1409	206	MB9+10	1568
164	MB5+6	3007	207	MB9+10	1538
165	MB5+6	2089	208	MB9 +10	1482
166	MB5+6	1805	209	MB9+10	1452
167	MB5 +6	1753	210	MB9+10	1391
168	MB5+6	1711	211	MB9+10	1376
169	MB5+6	1706	212	MB9+10	1353

Appendix 3. Details of the 529 synapomorphic fragments. Continued.

Enzyme: EcoRV

Character	Probe	Size (lp)	Character	Probe	Size $($ bod
213	3119	220	MB1	1679	
214	MB1	2653	221	MB1	1665
215	MB1	2481	222	MB1	1347
216	MB1	MB1	1724	223	MB7
217	MB1	1712	224	4764	
218	MB1	1697	226	MB7	2006
219	MB1		MB7	1925	

Enzyme: AluI

Character	Probe	Sizc (bp)	Character	Probe	Size (by)
227	MB5+6	2499	242	MB5+6	1360
228	MB5+6	2143	243	MB5+6	1341
229	MBS+6	1898	244	MB8	1829
230	MB3+6	1833	245	MB8	1703
231	MB5+6	1743	246	MB8	1668
232	MB5+6	1685	247	MB8	1619
233	MB5+6	1640	248	MB8	1590
234	MB5+6	1625	249	MB8	1545
235	MB5+6	1572	250	MB8	1494
236	MBS+6	1468	251	MB8	1451
237	MB5+6	1450	252	MB8	1420
238	MB5+6	1436	253	MB8	1403
239	MB5+6	1432	254	MB8	1373
240	MB5+6	1407	255	MB8	1352
241	MB5+6	1388	256	MB8	1316

Enzyme: BgIII

Character	Probe	Size (bp)	Character	Probe	Size (bp)
257	MBI	3483	262	MB1	1513
258	2965	263	MB1	1498	
259	MB1	1737	264	1454	
260	MBI	MBI	1613	265	MB1
261	MBI	1581			1382

Enzyme: ClaI

Claracter	Probe	Size (bp)	Character	Probe	Size (bp)
266	MB9 +10	3580	270	MB9+10	1707
267	MB9+10	2135	271	MB9+10	1598
268	MB9+10	2079	272	MB9+10	1537
269	MB9+10	2021	273	MB9 $9+10$	1461

Enzyme: HaeIII

Character	Prohe	Size (lup)	Character	Probe	Size (bp)
274	MB1	4218	302	MB2	1437
275	MB1	2458	303	MB2	1395
276	MB1	2454	304	MB2	1379
277	MB1	2311	305	MB7	3684
278	MB1	1817	306	MB7	2685
279	MB1	1723	307	MB7	2296
280	MB1	1675	308	MB7	1940
281	MB1	1650	309	MB7	1670
282	MB1	1625	310	MB7	1618
283	MB1	1449	311	MB7	1611
284	MB1	1420	312	MB7	1607
285	MBI	1384	313	MB7	1594
286	MB1	1354	314	MB7	1581
287	MB2	6292	315	MB7	1525
288	MB2	2365	316	MB7	1506
289	MB2	2264	317	MB7	1452
290	MB2	1976	318	MB7	1427
291	MB2	1728	319	MB9+10	2833
292	MB2	1699	320	MB9+10	2584
293	MB2	1687	321	MB9+10	2180
294	MB2	1664	322	MB9+10	1992

Appendix 3. Details of the $\mathbf{5 2 9}$ synapomorphic fragments. Continued.

Enzyme: HaeIII. Continued.

295	MB2	1644	323	MB9+10	1859
296	MB2	1556	324	MB9+10	1743
297	MB2	1534	325	MB9+10	1685
298	MB2	1531	326	MB9	MB9
299	MB2	1515	MB9	1510	1468
300	MB2	1468		1387	
301	MB2				

Enzyme: HinfI

Character	Probe	Size (bp)	Character	Probe	Size (hp)
329	MB2	1987	347	MB7	1500
330	MB2	1919	348	MB7	1471
331	MB2	1812	349	MB7	1456
332	MB2	1646	350	MB7	1432
333	MB2	1619	351	MB7	1406
334	MB2	1583	352	MB7	1393
335	MB2	1565	353	MB9+10	1962
336	MB2	1542	354	MB9+10	1643
337	MB2	1534	355	MB9+10	1612
338	MB2	1517	356	MB9+10	1571
339	MB2	1500	357	MB9+10	1557
340	MB2	1478	358	MB9+10	1537
341	MB2	1468	359	MB9+10	1507
342	MB2	1422	360	MB9+10	1479
343	MB2	1401	361	MB9+10	1455
344	MB2	1390	362	M $139+10$	1440
345	MB7	1591	363	MB9+10	1404
346	MB7	1539	364	MB9+10	1395

Enzyme: Hpall

Character	Probe	Size (hip)	Character	Probe	Size (bp)
365	MB2	2022	406	MB7	1572
366	MB2	1982	407	MB7	1519
367	MB2	1899	408	MB7	1471
368	M132	1720	409	MB7	1442
369	MB2	1712	410	MB7	1420
370	MB2	1603	411	MB7	1399
371	MB2	1549	412	MB7	1360
372	MB2	1542	413	MB7	1336
373	MB2	1520	414	MB8	1867
374	MB2	1508	415	MB8	1810
375	MB2	1491	416	MB8	1764
376	MB2	1465	417	MB8	1730
377	MB2	1442	418	MB8	1659
378	MB2	1426	419	MB8	1591
379	MB2	1403	420	MB8	1581
380	MB2	1392	421	MB8	1533
381	MB2	1373	422	MB8	1481
382	MB2	1345	423	MB8	1465
383	MB2	1324	424	MB8	1437
384	MB5+6	2199	425	MB8	1407
385	MB5+6	2149	426	M 18	1373
386	MB5+6	1976	427	MB8	1346
387	MBS+6	1915	428	MB9+10	3270
388	MB5+6	1860	429	MB9+10	2545
389	MB5 6 6	1842	430	MB9+10	2329
390	MB5+6	1785	431	MB9+10	2170
391	MB5+6	1723	432	MB9+10	2001
392	MB5+6	1549	433	MB9+10	1769
393	MBS+6	1506	434	MB9+10	1705
394	MB5 46	1484	435	MB9+10	1653
395	MB5+6	1434	436	MB9+10	1626
396	MB5+6	1392	437	M $39+10$	1611
397	MB7	2731	438	MB9+10	1575
398	MB7	2283	439	MB9+10	1543

Appendix 3. Details of the 529 synapomorphic fragments. Continued.

Enzyme: HpaII. Continued.

399	MB7	2070	440	MB9 +10	1514
400	MB7	1991	441	MB9+10	1473
401	MB7	1861	442	MB9 +10	1442
402	MB7	1835	MB9+10	1420	
403	MB7	1740	MB9+10	1376	
404	MB7	1645	MB9+10	1355	
405	MB7	1618	MB9+10	1333	

Enzyme: Sau3AI

Chamacter	Probe	Size (bp)	Character	Probe	Size (bp)
447	MB1	1932	478	MB7	1367
448	MB1	1601	479	MB7	1347
449	MB1	1569	480	MB7	1328
450	MB1	1541	481	MB8	1766
451	MB1	1517	482	MB8	1631
452	MB1	1470	483	MB8	1593
453	MB1	1448	484	MB8	1579
454	MB1	1414	485	MB8	1491
455	MB1	1391	486	M138	1470
456	MB1	1367	487	MB8	1466
457	MB1	1350	488	MB8	1424
458	MB1	1330	489	MB8	1405
459	MB1	1320	490	MB8	1391
460	MB5+6	1569	491	MB8	1369
461	MB5 +6	1501	492	MB8	1334
462	MB5+6	1478	493	MB8	1313
463	MB5+6	1444	494	MB9+10	2170
464	MB5+6	1420	495	MB9+10	1912
465	MBS +6	1397	496	MB9 +10	1855
466	MB5+6	1373	497	MB9+10	1772
467	MB5+6	1354	498	MB9+10	1717
468	MB5+6	1332	499	MB9+10	1559
469	MB7	1758	500	MB9 +10	1526
470	MB7	1723	501	MB9+10	1481
471	MB7	1639	502	MB9+10	1472
472	MB7	1584	503	MB9+10	1453
473	MB7	1486	504	MB9 +10	1440
474	MB7	1471	505	$\mathrm{MB9}+10$	1401
475	MB7	1440	506	MB9+10	1380
476	MB7	1409	507	MB9+10	1364
477	MB7	1391	508	$\mathrm{MB} 9+10$	1335

Enzyme: Tru9I

Character	Probe	Size (lop)	Character	Probe	Size (bp)
509	MB9+10	1534	517	MB9+10	1243
510	MB9+10	1504	518	MB9+10	1223
511	MB9+10	1468	519	MB9+10	1196
512	MB9 +10	1450	520	MB9+10	1181
513	MB9+10	1434	521	MB9+10	1155
514	MB9+10	1395	522	MB9 +10	1131
515	MB9+10	1319	523	MB9+10	1098/89
516	MB9+10	1254			

Enzyme: XbaI

Character	Probe	Size (bp)	Character	Probe	Size $($ bp)
524	MB9 +10	4125	527	MB9 +10	1942
525	MB9 +10	2135	528	MB9	
526	MB9 $9+10$	2053	529	MB9 +10	1899

Appendix 4. Restriction fragment data obtained by an FOA analysis of PCRamplified cpDNA regions of Pachyrhizus. Numbers in the header of each column refer to characters described in Appendix 5. The binary data represent presence (1) or absence (0) of a particular restriction fragment, while missing data are indicated by '?'.

Taxa

 AC 220 10001100?000000?0001001111010111011001011111010000 $\begin{array}{ll}\text { AC231 } & 10001100 ? 000000 ? 000100111101011101100101 ? 111010000 \\ \mathrm{ECO} 32 & 10001100 ? 0000000 ? 00100111010111101100101 ? 111010000\end{array}$ $\begin{array}{ll}\text { AC231 } & 10001100 ? 000000 ? 000100111101011101100101 ? 111010000 \\ \operatorname{ECO} 32 & 10001100 ? 0000000 ? 00100111010111101100101 ? 111010000\end{array}$ EC509 10001100?0000000?00100111010111101100101?111010000 EC558 10001100?0000000?001011110101111011001010111010000 EW203 10001100?0000000?001001?10101111011001010111010000 FW237 00001100?10001100111101?10001111011001010111010000 EWLoc $7 \quad 10000000 ? 10111100111101 ? 11101111000001010111001100$ PW055 10101101011011100111011?11010111111??1010111010000 PWTM58 10101101001000100000010011100111111001010111010000 TC556as $10101101001000100001011 ? 11010111011001011111010000$ TC536as 10101101001000100001011?1101011101100101?111010000 $\begin{array}{ll}\text { TC350ch } & 10011100 ? 1 ? 001100001101 ? 1010111101100101 ? 111010000 \\ \text { TC354ch } & 10101111011001100001011 ? 1101011101100101 ? 111010000\end{array}$ $\begin{array}{ll}\text { TC350ch } & 10011100 ? 1 ? 001100001101 ? 1010111101100101 ? 111010000 \\ \text { TC354ch } & 10101111011001100001011 ? 1101011101100101 ? 111010000\end{array}$ TC553ji TC550ji TWNanII TW558 TWTM48 OUTcc
Characters

11111111112222222222333333333344444444445 12345678901234567890123456789012345678901234567890

AC201 10001100?000000?0001001111010111011001011111010000 FW237 00001100210001100111101210001111011001010111010000 $10101101001000100001011 ? 11010111011001011111010000$ $10101101001000100001011 ? 11010111011001011111010000$ 11101101001000100001011?1101011101100101111111001? $11101111011001100111011 ? 11010111111001 ? 11111110011$ $11101101001000100001011 ? 11010111111 ? ? 1 ? 11111110011$ $10111100001100000001011 ? 00001000110000001000001100$

Appendix 5. Details of the 50 synapomorphic fragments produced by PCRamplified cpDNA RFLP variation in Pachyrhizus taxa. These fragments have been scored as either present (1) or absent (0) in Appendix 4.

Character	$\begin{gathered} \hline \text { Primer } \\ \text { pair } \\ \hline \end{gathered}$	Restrictio n enzyme	Size (bp)	Character	Primer pair	Restriction enzyme	Size (bp)
1	HK	Hsp92II	150	26	KK	RsaI	701
2	KK	Cfol	750	27	KK	RsaI	572
3	KK	Cfol	460	28	KK	RsaI	556
4	KK	CfoI	200	29	KK	RsaI	540
5	KK	HaelII	1686	30	KK	RsaI	362
6	KK	Haelll	676	31	KK	RsaI	339
7	KK	HaeIII	364	32	CD	HaeIII	2058
8	KK	HaelII	267	33	CD	HindIII	507
9	KK	HaeIII	150	34	CD	RsaI	1244
10	KK	HindIII	435	35	CD	Rsal	791
11	KK.	HindIII	398	36	CS	Cfor	422
12	KK	HindIII	370	37	CS	HindIII	416
13	KK	HpalI	727	38	CS	HpalI	442
14	KK	Hpall	544	39	CS	Hsp92II	347
15	KK	HpalI	442	40	CS	RsaI	1287
16	KK	Hpali	300	41	ML	Cfol	251
17	KK	HpalI	200	42	ML	Haelil	951
18	KK	Hsp92II	851	43	ML	Haelli	882
19	KK	Hsp92II	775	44	ML	HaeIII	860
20	KK	Hsp92II	685	45	ML	HindIII	708
21	KK	Hsp92II	505	46	ML	Hpall	1268
22	KK	Hsp92II	490	47	ML	HpaII	636
23	KK	Hsp92II	346	48	ML	HpalI	587
24	KK	Hsp92II	298	49	ML	Hsp92II	621
25	KK	RsaI	742	50	ML	RsaI	517

Appendix 6. Binary data matrix showing presence (1) and absence (0) of the RAPD fragments identified in this study.
Primers and band size of each RAPD are indicated.

A2 (bp)		3090	48000\%	463才	485	3才,		7x\%	4020	Moma	3800								2700		31000	Tay		
AC102	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	- 0	1	0	0	1	1	1	1
AC201	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1
AC202	0	1	0	1	0	0	1	0	1	0	0	1	1	0	0	1	0	1	0	0	0	1	0	1
AC203	0	0	0	0	0	0	1	0	1.	0	0	1	0	0	0	1	0	1	0	0	0	1	0	
AC204	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	1	1	0	1	0	1
AC205	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0.	1	0	1	0	0	1	1	1	1
AC207L	0	0	0.	0	0	0	0	0	0	0	1	0	1	0	0	1	1.	1	0	0	1	1	0	1
AC207S	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	1	0	0	1.	1	0	
AC208	0	0	0.	1	1	0	1	0	1	0	0	1	1	0	0	1	0	1	0	0	0	1	0	1
AC209	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	1.	1	1.	1
AC209BR	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1
AC209GS	0	1	0	1.	0	0	1	0	1	0	0	1	1	0	0	1	0	1	0	0	0	1	0	1
AC213	0	0	0	0	0.	0	0	0	1	0	0	0	1.	0	0	1	0	-1	0	0	1.	1	1	1
$\mathrm{AC214}^{4}$	0.	0	1	0.	0	0.	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1
AC215	0	1	0	1.	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0.	1
AC216	0	1	0	1	1	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1
AC220A	0	0	0	0	0	0	0	0.	0	0	0	0	1	0	0	1	0	1	0.	0	1	1	0	1
AC222	0	0	1	0	0	1	-	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1
AC223	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	1	1	1	1
AC225	0.	0	0	0	0	0	0	0.	0	0.	0	0	0	0	0	1	0	1	0	0	1	1	0	1
AC226	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	1	1	0	1
AC227	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1
AC228	0.	0	1	0	0	0	0	0	1	0	0	1	0.	0	0	1	0.	1	0	0	0	1	0	1
AC230	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	1.	0.	. 1	0	0	0	. 1	0	1
AC231	0	0	0	0	0	0	0	0	1	0	0	1	1	1	0	1	0	1	0	0	1	1	0	
ACS25	0.	0	0	0	0	0.	0	0	0.	0	0	0	0	0	1	1	0	1	0	0	0	1	0	1
AC526A	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	1.	0	1	0	0	0	1	0	1
EC006	0	01	0	0	0	0	0	0	1	0	0	0	0.	1	0	1.	1	1	0	0	1	1	1	0
EC032	1	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	1	0	0	0	1	0	0
EC033G	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	0	0
EC109	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0
EC120	1	0	0	0	0	0	0	0	0	0	0	1	0.	0	0	1.	0	1	0	0	0	1	0	0
EC201	1	0	0	0	0	0	0	0	1	0	1	1	0.	0	0	1	0	1	0	0	0	1	0	0
EC205	1	0	0	0	0	0	0	0	0	0	0	0	1.	0	0	1	0	1	0	1	0	1	0	0
EC214	1	0	0	0	0	0	0	0	1	0	0	0	1	1	0	1	1	1	0	0	1	1	1	0
EC236	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0
EC250	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0
EC502	1	0	0	0	1	0	0	$0 \cdot$	1.	0	1	0	1	0	0	1	0	1	0	0	1	1	0	0
EC506	1	0	0	0	0	0.	0.	0	0	0	0	0	1.	1	0	1	1	1	0	0	1	1	1	0
EC509	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0
ECS10	1	0	0	0	1	0	0	0	1.	0	1	1	1	0	0	1	0	1	0	0	1.	1	0	0
EC511	1	0	0	0	1	0	0	0.	1	0	1	0	1	0	0	1.	0	1	0	0	1	1	0	0
EC531	1	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	1	1	1	0
EC534	1	0	0	0	0	0	0	0	0	0	0	0	1.	0	0	1	1	1	,	1	0	1	0	0
EC559	1	0	0	0	0	0	0	0	1.	0	0	1	0	,	0	1.	0	1	0	0	0	1	0	0
EC560	1	0	0	0	1	0	0	0	1.	0	0	1	0	0	0	1	0	1	0	0	1	1	0	0
EC565	1	0	0	0	0	0	0	0	1.	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0
EW051	0	0	0	0	0	0	0	0	1.	0	0	1	1	1	0	1	0	-1	0	0	1	1	0	0
EW203	1	0	0	0	0	0	0.	0)	1	0	0	0	1	0	0	1	0	1	0	0	1	1	0	0
EW223	1	0	0	0	0	0	1.	0	0.	0	0	1.	,	0	0	1	0	1	0	0	1	1	0	0
EW354	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0
EWHue	1	0	0	0	0	0	0.	0	1	0	0	1	-	-	0	1	0	1	0	0	0	1	0	0
EWPro	1	0	0	0.	0	0	0.	0	1	0	0	1.	0	0	0	1	0	1	0	0	0	1	0	0
FW237	1	0	0	0	1	0	0.	0	0	0	0	0	-	0	0	1	0	1	0	-	,	1	0	0
FWGU4	0	0	0	0	0	0	0	0	1.	0	0	0	0	1	0	1	0	1	0	0	0	1	1	0
FWLocl	0	0	0	0	0	0	0	0	1.	0	0	0.	1	0	0	1	0	1	0	0	0	1	1	0
FWLoc7	1	0	0	0	1	0	0	0	0	0	0	0.	,	0	0	1	0	1	0	0	1	1	0	0
PW055	1	0	0	0	,	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	0	0
PWTM58	1	0	0	0.	0	0	,	0	0	0	0	0	0	0	0.	1	0	1	0	0	1	1	0	0
PWTMS9	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	1	0	1	0.	0	1	1	0	0
TCas 118	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	0	1
TCas309	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	1	1	0	1
TCas531	1	0	1	0	0	0	0	0	1	0	0	1	0	0	0	1.	0	1	0	0	0	1	0	
TCas532	1	0	0	0	0	0	0	0	0	0	0	1	1	1.	0	1	1	1	0	0	1	1	0	
TCas533	0	0	0	0	0	0	0	0	1	0	0	1.	0	0	0	1	0	,	0	0	1	1.	0	1
TCas536	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	1	0	
TCas538	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	1	1	0	
TCas556	0	0	0	0	1	0	1	0	1	0.	0	0.	1	0	0	1	-	,	0.	0	1	1	0	0
TCas5s7	1.	0	0	0	0	0	0	0	1.	0	0	1	0	0	0	1	0	1	0.	0	0	1	0	
TCch350	0	0	0.	0	0	0	0	0	1	0	0	0	1	1	0	1	1	1	0	0	1.	,	1	0
TCch353	0	0	0.	0	1	0	1	0	1	0	0	0	1.	0	0	1	1	,	0	0	1	1	0	0
TCch354	0	0	0	0	0	0	0	0	0.	0	0	1.	0	1	0	1.	1.	1	0	0	1.	1	0	0
TCch355	1	0	0	0	1	0	0	0	0	0	1	1	0	1.	0	1.	1	1	0	0	1	1	1	
TCjis50	1	0	1	0	0	1	0	1	1	0	1	1	0.	0	0	1	0	1	0	0	0	1	0	1
TC]is52	1	0	1	0	1	1	0	0	0	,	1	0	1	1.	0	1.	0	1	0	0	1	1	0	
TCJis53	0	0	1.	0.	0	1	0	0	1	0	1	1	0	0	0.	1	,	1	0	0.	0	1	0	
TCji5s 4	1	0	1	0	1	1	0	0	,	0	1	0.	1	0	0	1	0	,	0	0	0	1	0	0
TCNA06	1	0	1	0.	0	0	0	,	1	0.	0.	1.	0	0	0	1	0	1	0.	0	0	1	0	
TCNA07	1	0	1	0	0	0	0	0	1	0	0	0.	1	0	0	1	0	1	0	0	0	1	0	
TCNA09	0	0	0	0	1	0	1.	0	0	0	0	0	1	0	0	,	0	1	0	0	0	1	0	0
TCNAIO	0	0	0	0	1	0	1	0	0	0	0	0	0	,	0	,	0	1	-	0	0	1	0	
TWNanI	0	0.	0	0	0	0	0	0	0	0	0	0	1	1	0.	1	0	1.	0	0	0	1	1	
TWNanll	0	0	0	0	1	0	0	0	0	0	0	0	1	,	0	1	0	1	0	0	0	1	1	
TWTM48	1	0	0	0	1	0	0	0	0.	0	0	1	0	0	0	1	0	1	0	0	1	1	0	
TWToal	0	0	0	0		0	1	0	0	0		0			0		0	1	0	0	0			

A13（bp）	\％ 300	6E08．	\％${ }^{3}$		${ }^{4} 80$	\％${ }^{4}$		3130		\％（0）		－${ }^{\text {m }}$ S0	\％	椎然紋	\％ 700			3700	4 3 \％		\％0936
AC102	01	1	0	0	1	0	1	0	01	1	0	0	－ 1	0	01	1	11	1	11	0	0
AC201	0	1	0	1	0	0	1	1	0	1	0	0	1	1	0	1	0	1	1	0	0
AC202	0	1	0	1	0	0	1	1	0	1	0	0	1	1	0	1	0	1	1	0	0
${ }^{\text {AC203 }}$	0	1	0	1	0	0	1	1	0	1	0	0	1	1	0	1	0	1	1	0	0
AC204	0	1	0	0	0	0	1.	0	0	1.	0	0	1	1	0	1	0	1	1	0	1
AC205	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	1	1	0	0	0
AC207L	0	1	0	1	0	0	1	1	0	1	0	0	1	1	0	1	0	1	1	0	0
AC207S	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	1	1	0	0	0
AC208	0	1	0	1	0	0	1	1	0	1	0	0	1	1	0	1	0	1	1	0	0
AC209	0	1	0	0	1	0	1	0	0	－1	0	0	1	0	0	1	1	1	1	0	0
AC209BR	0	1	0	1	0	0	1	0	0	1.	0	0	1	1	0	1	0	1	0	0	0
AC209GS	0	1	0	1	0	0	1	0	0	1	0	0	1	1	0	1	0	1	0	，	0
AC213	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	1.	1	1	．	0
AC214	0	1	0	0	0	0	1	， 0	0	1	0	0	1	0	0	1	0	1	1	0	1
AC215	0	－1	0	1.	0	0	$1)$	1	0	1	0	0	1	1	0	1	0	1	0	0	0
AC216	0	1	0	1.	0	0	1	1	0	1	0	0	－1	1	0	1	0	1	0	0	0
AC220A	0	1	0	0	1	0	1.	0	0.	1	0	0	－1	0	0.	1	1	－1	0	，	0
AC222	0	－	0	0	0	0	1	0	0	1	0	1	1	0	1	1	0	1	1	1	1
AC223	0	1	0	0.	0	0	1.	0	0	1	0	0	1	0	0	1	1	1	1	0	0
AC225	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	0
AC226	0	1	0	0	0	0	$1)$	0	0	1	0	0	1	0	0	1	1	1	1.	0	0
AC227	0	1	0	1.	0	0	1	1	0	1	0	0	1	1	0	1	0	1	0	0.	0
AC228	0	1	0	1	0	0	1	0	0	1	0	1	1.	0	1	1	0	1	1	1	1
AC230	0		0	0.	0	0	1	0	0	1	0	0	1	0	0	1	0	1	1	1	1
AC231	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	1	1	1	0	0
AC525	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0.	0
AC526A	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	0
EC006	0	1	，	0	1	0	1	1	1	1	0	0	1	0	0	1	0	1	1	0	0
2C032	1.	1	1	1	1	0	1	1	0	1	0	0	0	0	0	1	0	1	1	0	0
EC033G	1.	1	1	1	0	0	1	1	0	1	0	0	0	0	0	－ 1	0	1.	0	0	0
EC109	1	1	1	1	0	0	1	1	0	1	0	0	0	0	0	1	0	1.	0	0.	0
EC120	0	1	1	0	0	0.	－ 1	1	0	1	0	0	0	0	0	1	0	$1)$	1	0	0
EC201	1.	1	1	1	0	0	． 1	1	0.	1	0	0	0	0	0	1	0	1	0	0	0
EC205	0	1	1	0	0	0	1	1	0	1	0	1	0	0	0	1	0	1	0	0	0
EC214	1	1	1	1	1	0	1	1	0	1	0	0	$\underline{1}$	0	0	1	0	1.	1.	0	0
EC236	1.	1	1	1	0	0	1	1	0	1	0	0	0	0	0	1	0	1.	0	0	0
EC250	1	0	0	1	1	0	1	，	0	1	0	0	0	0	0	1	0	1	0	0	0
EC502	1	1	1	0	1	0.	1	1	1	1	0	0	0	0	0	1	0	1	0	0	0
EC506	1	1	1	1.	1	0	1	1	0	1	0.	0	0	0	0	1	0	1	1	0	0
EC509	1	1	1	1	1	0	1	，	1	1.	0.	0	0	0	0	1	0	1.	1	0	0
ECS10	1	1	1	0	1	0	1	1	1	1	0	0	0	0	0	1	0	1	0	0	0
ECS11	1	1	1	0.	1	0	1	1	1	1	0	0	0	0	0	1	0	1	0	0	0
EC531	1	1	1	1	1	0	1	．	1	1	1.	0	0	0	0	1	0	1	1	0	0
ECS34	1	1	1	1	0	0	1	1	0	1	0	1	0	1	0.	1	0	1	0	0	0
EC559	1	1	1	1	0	0	1	1	0	1	0	0	0	1	0	1	0	1	0	0	0
EC560	1	1	1	1	1	0	1	1	0	1	0	0	0	0	0	1	0	1	1	0	0
ECS65	1	1	1	1.	0	0	1	1	0	1	0	0	0	0	0	1	0	1	0	0	0
EW051	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	1	0	1.	0	0	0
EW203	0	1	，	0	1	0	1	1	1	1	0	0	0	0	0	1	0	1	0	0	0
EW223	1	0	0	1	1	0	1	1	0	1	1	0	0	0	0	1.	0	1	0	0	0
EW354	0	0	0	0	0	0.	1	1	0	1	0	0	0	0	0	1	0	1	0	0	0
EWHue	1	0	1	1	0	0	1	1	0	1	0	0	0	1	0	1	0	1	0	0	0
EWPro	1	0	0	1	0	0	1	1	0	1	0	0	0	0	0	$1)$	0	1	0	0.	0
FW237	1	0	0	1	0	0.	1	1	0	1	0	0	0	0	0	1	0	1	0	0	0
FWGU4	0	0	0	0	0	0.	1	1	0	1	0	0	0	0	0	1	0	，	0	0	0
FWLoc1	0	0	0	0	0	0.	1	1	0	1	0	0	0	0	0	1	0	1	0	0	0
FWLoc 7	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	1	0	1	0	0	0
PW055	0	0	0	0	0	0.	1	1	0	1	0	0	1	0	0	1	0	1	1	0	0
PWTM58	0	0	0	0	1	0	1.	1	0	，	0	0.	1	，	0	1	1	1	，	0	0
PWTM59	0	0	0	1	1	0	1.	1	0	1	0	0.	1	0	0	1	1	1	1	0	0
TCas118	0	1	0	0	0	1	1	0	0	1	0	0	0	0	0	1	1	1	，	1	0
TCas309	0	1	0	0	0	1	1	0	0	1	0	0	0	0.	0	1	0	1	1	1	0
TCas531	0	1	0	1	0	1	1	0	0	1	0	0	0	1	0	1	0	1	0	1	1
TCas532	0	1	0	0	1	1	1	0	0	1	1	0.	0	0	0	1	1	1	1	1	0
TCas533	1		0	1.	1	1	1	0	0	1	0	0	1	0	0	1	1	1	1	1	0
TCas536	1	1	0	1	1	1	1	0	0	1	0	0	1	0	0	1	1	1.	1.	1	0
TCas538	1		0	1	1	1	1	0	0	1	0	0	，	0	0	1	1	1	1	1	0
TCas556	0	0	0	0	0	1	1	0	0	1.	0	0	1	0	0	1	1	1.	1	0	0
TCas557	0	1	0	1	0	1	1	0	0	1	0.	0	，	1	0	1	0	1	1	1.	1
TCeh350	0.		0	0	1	0	1	0	1	1	0	0	1	0	0	1	1	1.	1	0	0
TCeh353	1.		0	1	1	0	1	0	0	1	0	0	1	0	0	1	0	1.	0.	0	0
TCeh354	1	1	0	1	1	0	1	0	0	1	0	0	1	0	0	1	1	1.	1.	0	0
TCch355	1	1	0	1	1	0	1	0.	0	，	0	0	．	0	0	1	1	1.	1.	0	0
TCJ1550	1	1	0	1	0	0	1	0	0	1	0	，	1	1	1	1	0	1.	1.	1.	0
TCj1652			0	0	1	0	1	0	0	1	0	1	－1	1	0	1	1	1.	0	0	0
TCjis53			0	1.	0	0	1.	0	0	1	0	1	1	1	0	1	0	1	1	1	
TCJi554	1	1	0	1.	1	0	1	0	0	1	0	1	1	1	0	1	1	1	0	0	0
TCNA06	0		0	0	0	1	1	0	0	1	0	，	0	1	0	1	0	1	1	1	1
TCNA07	0	1	0	0	0	1	1	0	0	，	0	1	0	0	0	1	0	1.	1	1.	
TCNA09	0		0	0	0	1	1	0.	0	1	0	0	1	0	0	1	0	1	1	0	0
TCNA10	0		0	0	1	1	1	0	0	1	0	0	1	0	0	1	1	1	1	0	0
TWNanI	0	0	0	0	0	1	1	0	0	1	0	0	1	0	0.	，	1	1	，	0	
TWNanII	0	0	0	0	0	1	1.	0	0.	1	0	0	1	0	0	1	1	1	1	0	0
TWTM48	1	1	0	1	1.	1	1	0.	0	1	0	0	1	0	0	1	，	，	1.	1	0
TWToal	0	1	0	0.	$1]$	1	1	01	0	1.	0	0	1	0	0	1		1	1		0

Appendix 6．Binary data matrix showing presence（1）and absence（0）of the RAPD fragments identified in this study．
Primers and band size of each RAPD are indicated．

B7（bp）		5490	4900	4830	4306			笑的洨		S900	3850	18\％ 0_{0}	\％680			38000	8700		3760	3054	2500				506
AC102	0	0	0	$0]$	0	0	0	0	0	0	0	1	0	1	0	1	1	1	0	1	0	0	1	0	0
AC201	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1	1	0	1	0	0
AC202	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1.	1	0	1	0	0
AC203	0	0	0.	0	0	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1	1	0	1	0	0
AC204	0	0	0	0	0	0	0	0	0	0	0	1.	0	0	0	0	0	1	0	1	0	0	1	0	0
AC205	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0
AC207L	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	1	0	1	0	0
AC207S	0	0	0	0	0	1	0	0	1	0	1	1	0	0	0	1	0	1	0	1	0	0	1	0.	0
AC208	0	0	0	0	0	1	0	1	0		0	1	0	0	0	0	0	1	0	1	1	0	1	0.	0
AC209	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	1	1	1.	0	0	1	1.	
AC209BR	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1.	1	0	1	0	1	0	0	1	0.	0
AC209GS	0.	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	1	1	0	1	0	0
AC213	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	1	1	1	0	0	1	1	0
AC214	0	0	0	0	0	1	0	0	0	－	0	1	0	1	0	0	1.	1	1	1	0	0	1	0	0
AC215	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1	1	0	1	0	0
AC216	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1	1	0	1	0	0
AC220A	0	0	0	0	0	1	0	0	1	0	1	1	0	0	0	1	0	1	0	1	0	0	1	0	0
$\mathrm{AC222}^{\text {a }}$	0	0	0	0	0	1	0	0	0	0	0	1	0.	1	0	0	1.	1.	1	1	0	0	1	0	0
AC223	0	0	0	0	0	1	0	0	1	0	1	1	0	0	0		0	1	0	1	0	1	1	0	0
AC225	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	－ 1	1	1	0	0	1	1	0
AC226	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	1	1	1	0	1	1	0	0
AC227	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	1	，	0	1	1	0
AC228	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	1	1	1	0	0	1	0	0
AC230	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0.	0	1	1	1	1	0	0	1	0	0
AC231	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1.	0	0	1.	0	1	0	1	1	1	0
AC525	0	0	－	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	1	1	0	0	1	0	0
AC526A	0	0	0	0	0	0	0	0	0	0	0	1.	0	0	0.	0	0	1	1	1.	0	0	1	0	0
EC006	0	0	0	0	1	1	0	0	1	0	0	1	0.	0	1	1	1	1	1	1	0	0	1	0	0
EC032	0	1	0	0	1	1	0	0	0	0	0	1	0	0	1	0	1	1.	1	1	0	0.	1	0	0
EC033G	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	1.	0	1	，	0	1	0	0
EC109	0	1	1	1	0	1	0	0	0	0	0	1	0	0	0	1	0	1	0	1	，	0	1	0	0
EC120	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0
EC201	0	1	1	，	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0
EC205	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0
EC214	0	1	0	0	1	1	0	0	1	0	0	1	0	0	1	1	1	1	1	1	0	0	1	0	0
EC236	0	1	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	－	0	1	0	0
EC250	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	1	1	1	1	1	0	0	1	0	1
EC502	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	1	1.	0	1	0	0	1	0	0
EC506	0	1	0	0	1	1	0	0	1	0	1	1	0	0	0	1	1	1.	1	1	0	0	1	0	0
EC509	0	1	0	0	1	1	0	0	0	0	0	1	0	0	1	1	1	$1)$	1	1	0	0	1	0	0
ECS10	0	1	0	0.	1	0	0	0	1	0	0	1	0.	0	0	1	1	1.	0	1	0	0	1	0	0
EC511	0	1	0	0	1	0	0	0	1	，	1	1	0.	0	0	1	1	1.	0	1	0	0	1	0	0
EC531	0	0	0	0	1	1	0	0	0	0	0	1	0	0	1	0	1	1.	1	1	0	0	1	0	0
EC534	0	0	0	0	1	0	0	0	0	0	0	1.	0	0	0	0	0	1.	0	1	0	0	1	0	0
EC559	0	1	1	1	0	1	0	0	0	0	0	1	0	0	0	0	0	1.	0	1	0	0	1	0	0
EC560	0	0	0	0	1	1	0	0	0	0	0	1	0	0	1	1	1	1.	1	1	，	0	1	0	0
ECS65	0	1	1	1	0	1.	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0.	0	1	0	0
EW051	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1.	0	1	0	0	1	0	1
EW203	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	1	0.	0	1	0	0
EW223	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	1	0	1	，	0	1.	0	1
EW354	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	1
EWHue	0	0	1	1	0	1.	，	0	0	，	0	1	0	0	0	0	0	1	0	1	0	0	1	0	1
EWPro	0	0	1	1	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	1	0.	1
FW237	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	1	0	1	0	1	01	1	1	0	1
FWGU4	0	0	0	0	0	0	，	0	0	0	0	1	0	0	0	0	1.	1	0	1	－	1	1	0	1
FWLoc1	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0.	1	0	1	1	0	1
FWLoc7	0	0	0	0	0	1	1	0	1	0	1	1	0	0	0.	1	1	1	I	，	0	1	1	0	1
PW055	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0.	0	0	1.	0	1	0	1	1	0	1
PWTM58	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	，	1.	1	1	0	0	1	0	1
PWTMS9	0	0	0	0	0	1.	1	0	0	0	0	1	0	0	0	0	1	1	1.	1	0	1	1	0	1
TCas118	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0
TCas309	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0.	1	1	1	0	，	1	0	0
TCas531	0	－	0	1	0	1	0	0	0	0	0	1	0	1.	0	0	1	1	1	1	0	1	1	0.	0
TCas532	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	1	0.	0	1	0	0
TCas533	0	0	0	0	1.	0	0	0	0	0	0	1	0	0	1	1	1	1	，	1	0	，	1	0	0
TCas536	0	0	0	0	0	1	0	0	0	0	1	1	0	1	1.	1	1	1	1.	1.	0	1	1	0	0
TCas538	0	，	0	0	0	0	0.	0	0	0	1	1	0		1	1	1	1	1	1.	0	0	1	1	0
TCas556	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	1.	0	0	1	0	1
TCas557	1	\bigcirc	0	1	0	1	0	0	1	0	0	1	1	1	0.	0	1	1	1	1	．	1	1	0	0
TCeh350	0	，	0	0	1	1	0	0	1	0	0	1	0	0	0	1	1	1	1.	1	0	0	1	1	0
TCeh353	0		0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	1	0	1	－	．	1	0	0
TCch354	0	0	0.	0	1	0	0	0	1	0	0	1	0	0	0	1	1	1	1	1	．	1	1	0	0
TCch355	0	0	0	0	1	0	0	0	0	0	1	1	0	1	，	1	1	1	1.	1	0	1	1	0	0
TCj1550	0	0	0	1	0	1	0	0	1	，	0	1	0	1	0	0	1	1	，	1	－	0	1	1	0
TCJ1552	0	，	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1.	，	0	1	．	0	1	1	0
TCjlis53	0	0	0	，	0	1	0	0	0	0	0	1	0	1	0	0	1.	1	1.	1	0	0	1	0	0
TCJ1554	0	1	0	0	1	1	0	0	1	0	0	1	0	1	0	1	0	1	0	1	0	0	1	0	0
TCNA06	0	－	0.	1	0	1	0	0	0	0	0	1	0	1	0	0	1	1	1.	1	0	1	1	0.	0
TCNA07	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	1	1	1	0	1	1	0	0
TCNA09	0	0	0	0	1	0	0	0	0	0	0	1.	0	0	0	1	1	1	1	1	0	1	1	1	0
TCNA10	0	．	0	0	0	0	1	0	0	0	1	1	0	0	0	0	1	1	1	1	0	1	，	1	
TWNanI	0	0	0	0	0	－	1	0	0	0	0	1	0	0	，	0	0	1.	0	1	0	，	1	1	1
TWNanII	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	1.	0	1	0	1	1	1	
TWTM48	0	0	0	0	0.	0	0	0	0	0	0	1		0	0	0	1	1	1	1	0	1	1	0	0
TWTon］	0	0	0	0	1	0	0	0	0.	0	0	1	0.	0.	1	1	1.	1	1	1	0	1	1	0	

B8（bp）	3 3900	4883	栓谷	7\％00\％	8 ${ }^{\text {\％}}$／0\％	\％稀校			3kik		3800		\＄300\％						83909	2850	\％s00	\％					546
AC102	0	1	1	－ 0	］0］	0	0	01	01	0	1	0	1）	0	0	0	0	1	0	0	1	0	0	0	0	0	0
AC201	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	1.	0	0	0	0	1	0	1	0	0	0	0
AC202	0	1	0	0	1	0	0	1.	0	0	1	0	0	1	0	1.	0	0	0	0	1	0	1	0	0	0	0
AC203	0	1	0	0	0	0	0	1	0	0	1	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0
AC204	0	1	0	0	0	0	1	0	0	0	1	0	1	1	0	1	0	0	0.	0	1	0	0	0	0	1	0
AC205	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0.	0	0	0	0
AC207L	0	1	0	1	，	0	1.	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
AC207S	0	1	1	0	0	0	0	0	0	0	1	0	0.	0	0	0	0	1	0	0	1	1	0	0	0	0	1
AC208	0	1	0.	1	1	0	1	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	1.	0	0	0	0
AC209	0	1	0	0	0	0	0	0	0	0	1	0	，	0	0	0	0	1	0	0	1	0	0	0	0	0	0
AC209BR	0	1	0	1	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	1	0	1	0	0	0	0
AC209GS	0.	1	0	1	0	0	0	0	0	0.	1	0	1	1	0	0	0	0	0	0	1	0	1	0	0	0	0
AC213	0	1	1.	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
AC214	0	1	1	0	0.	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	1	－ 1	0	0	0	0	0
AC215	0	1	0	0	1	0.	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	0	0	0
AC216	0	1	0	0	1.	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
AC220A	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	1	0	，	0	0	0
AC222	0	1.	1	1	1	0	0	0	0	0	1	0	1	1	0	1	0	1	0	0	1	1	1	0	0	1	0
AC223	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	1.	0	0	0	1	0
AC225	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
AC226	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0
AC227	0	1	0	1	1	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0
AC228	0	1.	1	0	0	0	0	0	1	0	1	0	0	1	0	1	0	1.	0	0	1	1	0	－ 0	0	0	0
AC230	0	1.	0	0	1	0	0	0	0	0	1	0	0	1	0	1.	0	1	0	0	1	1	0	0	0	0	0
AC231	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0	1.	0	1	0	0	1	1	0	0	0	0	0
AC525	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
AC526A	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0
EC006	0	1	0	0	0	0	0	0	0	1	1	0	1	0	1	1	0	1	0	0	1	0	0	0	0	0	0
EC032	0	1	0	0	0	0	0	0	0	0	1	0	1	0	1	1	0	1	0	1	1	1	0	0	0	0.	0
EC033G	0	1	0	0	0	0	0	I	0	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0	0	0.	0
EC109	0	1	1	10	0	0	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	0
EC120	0	1	0	0	0	0.	0	0	0	0	1	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0
EC201	0	1	0	0	0	0	0	0	0	0	1	0	0	1	1.	1	0	0	0	0	1	0	0	0	0	0	0
EC205	0	1	0	0	0	0	0	1	0	0	1	0	0	1	1.	1	0	0	0	0	1	0	0	0	0	0	0
EC214	0	1	0	0	0	1	，	0	0	0	1.	0	1	0	1.	1	0	1	0	0	1	0	0	0	0	0	0
EC236	0	1	1	0	0	0	1	，	0	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0
EC250	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0
EC502	0	1.	1	0	0	0	0	0	0	1	1	0	，	0	1	1.	0	0	0	0	1.	1	0	0	0	0	0
EC506	0	1	0	0	0	0	0	0	0	1	1	0	1	0	1.	1	0	1	0	0	1	0	0	0	－0	0	0
EC509	0	1	0	0.	0	0	0	0	0	0	1.	0	1	0	1	1	0	1	0	0	1	0	0	0	0	0	0
ECS10	0	1	1	0	0	0	0	0	0	1	，	0	1	0	1	1	0	0	0	0	1	1	0	0	0	0	0
EC511	0	1.	1	0	0	0	0	0	0	1	1	0	1	0	1	1	0	0	0	0	1	1	0	0	0	0	0
EC531	0	1	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	1	0	0	1	0	0	0	0	0	0
EC534	0	1	0	0	0	0	0	，	0	0	，	0	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0
EC559	0.	1.	0	0	0	0	0	0	0	0	1		0	1	1	1	0	0	0	0	1.	1	0	0	0	0.	0
EC560	0	1	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	0	0	1.	0	0	0	0	0	0
EC565	0	1	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	1	0	－ 0	0	0	0
EW0S 1	0	1	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0
EW203	0	1	$1)$	0	0	0	0	0	0	0	1.	0	0	0	1	1.	0	1	0	1	1	1	0	0	0	0	0
EW223	0	1	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0.	0
EW354	0	1	10	0	0	0	0	0	0	0	1	0	0	0	1	1	0	1	0	0	1	0	0	0	0	0.	0
EWHue	0	1	0	0	0.	0	0	，	0	0	1	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0
EWPro	0	1.	0	0	0	0	0	0	0	0	1	0	0	0	1	1.	0	0	0	0	1	1	0	0	0	0	0
FW237	0.	1.	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	0	1	0	0	1	0	0	0
FWGU4	0.	1.	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0
FWLoc1	0.	1	0	0	0	1	1	0	0	0	1	0	0	，	0	0	0	0	1	1	1	0	0	1	0	0	0
FWLoc 7	0	1	0	0	0	1	1	0	0	0.	1	1	0	1	0	0	0	1	1	0	1	0	0	1	0	0	0
PW055	0	1	0	0	0	1	1	0	0	1	1	1	0	1	0	0	1	1	0	0	1	0	0	0	1	0	0
PWTM58	0	1	0	0	0.	0	0	0	0	1	1	1	0	0	0	0	1.	1	0	0	1	1	0	0	1	0	0
PWTM59	0	1	0	0	0	0	0	0	0	1.	1	1	0	0	0	0	1.	1	0	0	1	1	0	0	1	0	0
TCas118	0	1	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	
TCas309	0	1	0	0	0	0	0	0	0	0.	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0
TCas531	0	1	$1)$	1.	0	1	0	1	1	0.	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	0	
TCas532	0	1	1	0	0	0	0	0	0	1.	1	0	1	0	0	0	0	1	0	－	1	，	0	0	0.	0	
TCas533	0	1	1	0	0	1	1	0	0	0.	1	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0
TCas536	0	1	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	1	1	1	0	0	0	0	
TCas538	0	1	1	0.	0	1	0	0	0	0.	1	0	1	0	0	0	0	1	0	1	1	1	0	0	0	0	
TCas556	0	1	0	0.	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	1	，	0	0	0	0	0
TCas557	0	1	1	0	0	0	0	0	0	0	1	0	0	1	0.	1	0	1	0	0	1	1	0	0	0	0	
TCch350	0	1	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	1	0	，	1	0	0	0	0	0	
TCch353	0	1	1	0	0	0	0	0	，	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0	，	0	
TCch354	0	1	1.	0	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	1	1	1	0	－	0	0	
TCeh355	0	1	1.	0	0	0	1	0	0	1	1	0	1	0	0	0	0	1	0	0	1	1	0	0	0	0	
TCj1550	0.	1	0	1	0	0	0	1	1	0	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	0	
TCj1552	0	，	1.	0	0	0	0	0	1	1	1	1	0	0.	0	0	0	1	0	0	1	1	0	0	0	0	
TCj1553	0	1	0	1	1	0	0	1	1	0.	1	0	0	0	0	1	0	1	0	0	，	1	0	0	0	0	
TCJ1554	0	1	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0.	1	0	0	1	1	0	－	0	0	
TCNA06	1	1	1	0	0	0	0	1	1	0	1.	0	0	0	0	1	0	1	0	0	，	1	－	－	0	0	
TCNA07	0	1	0	0	0	0	0	1	1	0	1	0	0	1	0	0	0	1	，	0	1	1	0	0	0	0	
TCNA09	0	1	0	0	0	0	1	0	0	0.	1	1.	1	0	0	0	0	1	0	0	，	0	0	0	－ 0	0	
TCNA10	0	，	1	0	0	1	0	0	0	0		1	0	1	0	0	0	0	，	0	1	－	0	0	0	1	
TWNanI	0	1	0	0	0	0	1	1	0	1		1	0	1	0	0	1	0	－	0	1	0	0	1	0	0	
TWNanC	0	1	0.	－ 0	0	0	1	1	0	1	1	1	0	1	0	0	1	1	0	0	1	0	0	，	0	0	
TWTM48	0	1	0	0	0.	0	0	0	0	0		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
TWToal	0	11	10	0	0	0.	1	0	0				0	0	0	0	0.	0	0	0	1	0	0	0.	0		

H2（bp）	3\％${ }^{\text {a }}$		उ ${ }^{\text {a }}$ N				\％ 0^{4}			3\％\％	उK．	43909	3\％	318	4 ${ }^{1}$		亲称䇨			\％918
${ }^{\text {ACl02 }}$	1	0	0	0	0	0	0	0	0	$1)$	$1)$	0	0	0	1	0	0	0	0	
AC201	0	0	1	1	0	0	0	0	1	0	1.	0	0	1	0	0	0	0	0	1
AC202	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	0.	0	0	0	
AC203	0	0	1	，	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	
AC204	0	0	0	0	0	0	0	0	0	0	1.	0	0	1	0	0	0	0	0	1
AC205	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	
AC207L	0	0	1	1.	0	1	1	0	1	0	1	1	0	1	0	0	0	0	1	
AC207S	1	1	0	0.	0	0	0	0.	0	1	1	0	0	0	1	0	0	0	0	1
AC208	0	0	1	1.	0	1	1	0	1	0	1	0	0	1	0	0.	0	0	0	1
AC209	1	1	0	0	0	0	0	0	0	1	1	0	1	0		0	0	0	0	1
AC209BR	0	0	1	0	0	1	1	0	1	0	1	0	0	0	0	1	0	0	0	1
AC209GS	0	0	1	0	0	1	1	0	1	0	1.	0	0	0	0	1	0	0	0	1
$\mathrm{AC213}^{\text {a }}$	1	1	0	0	0	1	0	0	0	1	1	0	1	0	0	0	1	0	0	1
AC214	0	0	1	1	0	0	0	0	1	0	1.	0	0	1	0	0	0	0	0	1
AC215	0	0	1.	1	0	0	0	0	1	0	1.	0	0	1	0	0.	0	0	0	1
AC216	0	0	1	1	0	1	1	0	1	0	1	1	0	1	0	0	0	0	0	1
AC220A	0	0	0	0	0	0	0	0.	0	0	1	0	0	0	0	0	0	0	0	1
AC222	0	0	1	1	0	0	0	0	1	0	1.	0	0	1	0	0	0	0	0	1
${ }^{\text {AC223 }}$	1.	1	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1
AC225	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	
AC226	1.	1	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	
AC227	0	0	1	1	0	0	0	0	1	0	1	1	0.	0.	0	0	0	0	0	
AC228	0	0	1	1	0	0	0	0	1	0	1	0	0.	1	0	0	0	0	0.	1
AC230	0	0.	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	
AC231	1.	1	0	0	0	0	0	0	0	1	1	0	1.	0	0	0	0	0	0	1
ACS25	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1	1
AC526A	0	0	0	0	0.	0	0	0	0	0	－1	0	0	1	0	0	0	0	0.	1
EC006	1	1	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
EC032	1.	1	0	0	0	0	0	0	0	1	1	0	1	0	0	0	1	0	0	0
EC033G	0	0	1	1.	0.	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0
EC109	0	0	1	1	1.	0	0	0	1	0	1	0	0	1	0	． 0	0	0	0	0
EC120	0	0	1	1	1	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0
EC201	0	0	1	1	0	0	0		1	0	，	0.	0	1	0	0	0	0	0	0
EC205	0	0	1	1	0	0	0	0	1	0	1	0	0.	0	0	0	－ 0	0	0	0
EC214	1	1	0	0	0.	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
EC236	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0
EC250	1	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	1	0	0	0
EC502	1	1	0	0	0	0	0	0	0	1	1	0	0.	0	0	0	0	0	0	0
EC506	1	1	0	0	0	0	0	0	0	1	，	0	0	0	0	0	0	0	0	0
EC509	1	1.	0	0	0	0	0	0	0	1	1	0	1	0	0	0	1	0	0	0
ECS10	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
EC511	1	1	0	0	0	0	0	0	0	1	，	0	0.	0	0	0	0	0	0	0
EC531	1	1	0	0	0	0	0	0	0	1	1.	0	1	0	0	0	0	0	0	0
EC534	0	0	1	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
EC559	0	0	1	1	0	0	0	0	1	0	1	0	0.	1	，	0	0	0	0	0
EC560	1	1	0	0	0	0	0	0	0	1	1	0	1	0	0	0	1	0	0	0
EC565	0	0	1	1	0	0	0	0	1	0	1	0	0.	1	0	0	0	0	0	0
EW051	1	0	0	0	0.	0	0.	0	0	1	1	，	0	0	0	0	0	0	0	0
EW203	0	1	0	0	0.	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
EW223	1.	0	0	0	0	0	0	，	0	1	，	0	1	0	0	0	0	0	0	0
EW354	0	0	0	0	0	0.	0	0	0	1	1	－	0	0	0	0	0	0	0	
EWHue	0	0	0	0	1.	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
EWPro	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
FW237	1	0	0	0	0	0	0	0	0	1	1	0	1	0	，	0	0	．	0	
FWGU4	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0
FWLoc1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	，	0	1	0	0	0
FWLoc7	0	0	0	0	0	0	0	0	0	1	1	0	1.	0	0	，	0	0	0	0
PW055	0	0	0	0	0	0	0.	0	0	1	1	0	1	0	1	0	0	1	0	
PWTM58	1	0	0	0	0	1	0	0	0	1	1	0	1	0		0	0	1	0	
PWTM 59	1	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	－	1	0	
TCas118	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	
TCas309	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	
TCas31	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	0	0	－ 0	0	
TCas532	0	0	0	0	0	0.	0	0	0	0	1	0	0	0	，	0	0	0	0	
TCas533	1	1	0	0	0	0	0	0	0	1	1	．	1.	0	0	，	0	0	0.	
TCas536	，	1	0	0	0	0	0	0.	0	1	1	0	1	0	0	0.	0	0	0	
TCas538	1	0	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	0	0	
TCas556		0	0	0	0	0	0	0	0	1	1	0	1	0	，	0	0	1	0	
TCas557	0	0	1	1	0	0	0	0	1	0	1	0	0	－1	0	0	0	0	0	
TCch350	1	1	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	
TCeh353	1.	1	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	
TCch354	1	1	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	
TCeh355	1	1	0	0	0	0	0	0	0	1	1	0	，	0	0	0	0	0	0	
TCJIS50	0	0	1.	1	1	0	0	0	1	0	，	0	1	1	1	－	0	0	0	
TC 11552		0	1	1	0	0	0	0	0	，	1	0	0	1	1	0	0	0	0	
TCJI553	0	0		1	1	0.	0	0	1	0	1	0	0	1	1	0	0	0	0	
TCl1554	1.	0	1	，	0	0	0	0	0	1	1	0	0	1	1	－ 0	0	0	0	
TCNA06	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	
TCNA07	0	0	1.	1	0	0	0	0	1	0	1	0	1	0	1	0	，	1	0	
TCNA09	1	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	
TCNA10	0	0.	0	0	0	0	0	1.	0	1	1	0	0	0	1	0	0	1	0.	
TWNanI	0	0	0	0	0	0	0	0	0	0	1	0	－	0	1	0	0	1	0.	
TWNanL		0.	0	0	0	0	0		0	0	1.	0	0	0	1	0	0	1	0	
TWTM48	1	0		0	0	0	0	0	0	0	1.	0	0	0	，	0	0	0	0	
TWTon	1	0	0.	0	0	0.	0	0	0	1	1	0	1	0	1	0	0	0.	0	

Appendix 6．Binary data matrix showing presence（1）and absence（ 0 ）of the RAPD fragments identified in this study． Primers and band size of each RAPD are indicated．

H3（bp）	\％\％	永0．0．	4600：					360	Sas0	3200	3／3s）				8\％86	7804，	8636		答箁
AC102	0	0	1	I	1	1）	10	0	1	1	0	0	0	1	0	0	1	0	1
AC201	0	0	1	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	1
AC202	0	0	1	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	1
AC203	0	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	1
AC204	0	0	0	1	1	0	0	0	－ 1	1	0	0	0	0	0	0	0	0	1
AC205	0	0	0	1	1	0	0	0	．	1	0	0	0	0	0	0	1	0	1
AC207L	0	0	1	1	，	1	0	1	1	1	0	0	0	0	0	0	0	0	1
AC207S	0	0	0	1	1	1	0	0	1	1	0	0	0	0	0	0	1	0	1
AC208	0	0	1	1	，	1	0	1	1	1	0	0	0	0	0	0	0	0	1
AC209	0	0	0	1	1	1	0	1	1	1	0	1	0	1	0	0	0	0	1
AC209BR	0	0	1	1	1	1	0	1	1	1.	0	0	0	0	0	0.	0.	1	1
AC209GS	0	0	1	1.	．	$1)$	0	1	1	1.	0	1	0	0	0	0	0	0	1
AC213	0	0	0	1	1	0	0	0	－1	1.	0	1	0	1	0	0	0	0	1
AC214	0	0	1	1.	．		0	0		1	1	0	0	0	0	0	1	0	1
AC215	0	0	1.	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	1
AC216	0	0	1	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	1
AC220A	0	0.	0	1	1	1	0	0	1	1	0	0	0	1	0	0	$1)$	0	1
AC222	0	0 ）	1	1	1	1	0	0	1	1	1	0	1	0	0	0	1	0	1
AC223	0	0.	0	1	1	1	0	0	1	1	0	0	0	1	0	0	1	0	1
AC225	0.	0	0	1	1	1	0	0	1	1	0	0	0	0	0	0	1	0	1
AC226	0	0	0	1		1	0	0	1	1	0	0	0	0	0	0	1	0	1
AC227	0	0	1	1	1.1	I．	0	1	1	1	0	0	0	0	0	0	0	1	1
AC228	0	0	1	1	1	1	0.	0	1	1	1	0	0	0	0	0	1	0	1
AC230	0	0	0	1		1	0	0		1	1	0	0	0	0	0	1	0	1
AC231	0	0	0	1	1		0	1	1	1	0	1	0	1	0	0	1	0	1
AC525	0	0	0	1	11	0	0	0.	1.	1	0	0	0	0	0	0	1	0	1
AC526A	0	0	0	1	1	1	0	0	2 1	1	0	0	0	0	0	0	1.	0	1
EC006	0	1	0	1	1	1	1	1	1.1	0	0	1	0	1	0	0	1	0	1
EC032	0	1	0	1		0	1	1	1.	0	0	1	0	1	0	0	1	0	1
EC033G	0	1	0	1	1		1	0	，	1	0	0	－	0	0	1	0	0	1
EC109	0	1	0	1	11	1	1	0	0 1	1	0	1	0	0	0	0	0	0	1
EC120	0	1	0	1	1	1	1	0	1	1	0	0	1	0	0	，	1	0	1
EC201	0	1	0	1	1	1	1	0	，	1	0	0	0.	0	0	0	0	0	1
EC205	0	1	0	1	1.1	0	1	0	1	1	0	0	$1)$	0	0	0	0	0	1
EC214	0	1	0	1	1	1	1	1	1	0	0	1	0	1	0	0	1	0	1
EC236	0	1	0	1	1	0	1	0		1	0	1	0	0	0	0	0	0	1
EC250	0	－ 1	0	0	1		0	1	11	0	0	1.	0	0	0	1	0	0	1
EC502	0	1	0	1	1.1	，	1	1		0	0	0	0	0	0	0	1	0	1
EC506	0	1	0	1	1.1	1	1	1	1	0	0	1	0	0	0	0	1.	0	1
EC509	0	1	0	1	1.1	1	1	1		0	0	0	0	0	0	0	1	0	1
EC510	0	1	0	1	1	1	1	1	11	0	0	0	0	0	0	0	1	0	1
ECS11	0	1.	0	1	1	1	1	1	11	0	0	0	0	0	0	0	1	0	1
EC531	0	1	0	1	1	1	1	1	1	0	0	0	0	1	0	0	1	0	1
EC534	0	1.	0	0	，	10	1	0	1	1	0	0	1	0	0	0	0	0	1
EC559	0	1	0	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0	1
EC560	0	1	0	1	1	1	1	1	，	0	0	1	0	－1	0	0	1	0	1
EC565	0	1	0	0	1	1.1	1	0	－1	1	0	1	0	0	0	0	1	0	1
EW051	0	1	0	1	1	10	0	0	1	0	0	0	0	0	0	1.	1	0	1
EW203	0	1	0	1	－	11	1	1	，	0	0	0	0	0	0	0	1	0	
EW223	0	1	0	1	1	1.0	0	1	1	0	0	0	0	0	0	1	1	0	1
EW354	0	1	0	0		10	0	0.	1.	0	0	，	0	0	0	1	1	0	1
EWHue	0	1	0	0		$1{ }^{1}$	0	0	1.	1	0	1	0	0	0	1	0	0	1
EWPro	0	1	0	0	，	10	0	0	1.	1	0	，	0	0	0	1	1	0	1
FW237	0	1	0	0		10	0	0	1	0	0	0	0	0	0	0	1	0	1
FWGU4	0	1.	0	0	，	10	0	0	1	0	0	0	0	1	0	0	1	0	1
FWLoc1	0	1	0	1	1	1.0	0	0	1	1	0	0	0	1	0	0	0	0	1
FWLoc7	0	1	0	0	｜	10	0	1	1	1	0	0	0	1	0	0	0	0	1
PW055	0	0	0	1.	1	10	0	，	1	0	0	0	0	0	0	0	0	0	1
PWTM58	0	0	0	11	I	10	0	，	1	1	0	0	0	1	，	，	1	0	1
PWTM59	0	0	0	1	1	10	0	1	1	1	0	0	0	1	0	，	1	0	
TCas118	0	0	0	0.	．	1 0）	0	1.	1	0	0	0.	0	0	0	0	0	0	
TCas309	0	0	0	1	1.	1	0	0	1	0	0	，	0	1	0	0	1	0	1
TCas531	1	0	1	1.	．	11	0	0	1	1.	0	1	1	0	1	0	0	0	1
TCas532	0	0	0	1	1	11	0	1	1	0	0	0	0	1	0	0	1	0	1
TCas533	0	0	1	1	，	1	0	1	1	1	0	1	0	1	0	0.	1	0.	1
TCas536	0	0	1	0	，	1	0	．	1	0	0	1	0	1	0	0.	1	0	1
TCas538	0	0	1	1	1	1 1）	0	1	1 1	0	0	1	0	1	0	0	1	0	1
TCas556	0	0	1.	1	1	1.1	0	1	1	1	0	0	0	1	0	0	0	0	1
TCas557	1	0	，	1	1	1.1	0	0	2 1	1	0	0	0	0	0	0	0	0	1
TCch350	0	0	1	0		10	1	1	1	0	0	1	0	1	0	0	0	0	
TCeh353	0.	0	1	0	01	11	0	0		0	0.	0	0	0	0	0	1	0	
TCeh354	0	0	1	0	0	1.1	0	1	1	0	0	1	0	1	0	0	1	0	1.
TCeh355	0	0	1	，	0 － 1	11	0	1		0	0.	1	0	1	0	0	，	0	1
TCjis50	1	0	1	1	1	1.1	0	0	，	1	0.	0	0	0	0	0	1.	0	
TCJ1552	0	0	0.	0		10	0	0		1	0.	0	0	0	0.	0	1	0	1
TCj1553	1	0	1.	1	11	1.1	0	0		1	1	0	0	0	，	0	1.	0	1
TCJ1554	0	0	0	－1．	1.1	1.1	0	0	－ 1	1	0	0	0	0	0	0	1	0.	1
TCNA06	0	0	0	1	$1{ }^{1} 1$	11	0	0	01	1	0	1	0	0	0	0	0	0	
TCNA07	0	0	0	1	1.1	1.1	0	0	－ 1	1	0	0	0	0	1.	0	0	0	1
TCNA09	0	0	0	1	1	1.1	0	0	0	1	0	0	0	0	0	0	0	0	1
TCNA10	0	0	0	1	1	1 1	0	1	11	0	0	0	0	0	0	0	0	0	1
TWNanI	0	0	0	－ 0		1.0	0	0	0 1	0	0	0	0	0	0	0	0	0	1
TWNanI	0	0	0	0	0 1	1.0	｜ 0		0）	0	0	0	0	0	0	0	0	0	
TWTM48	0	0	1	1	1	1	0	，	1	1	0	0	0	0	0	0	0	0	
TWToal	0	0	0.	0	0） 1	10	0	0	01	0	0	0	0	0	0.	0	0	0	

Appendix 6. Binary data matrix showing presence (1) and absence (0) of the RAPD fragments identified in this study.
Primers and band size of each RAPD are indicated.

H5 (bp)	6300\%	S700	7590\%	**)	\% \% 000	*		3	3		3 3 W0.	4380,	3, 30	3100\%		2700.			
AC102	1	1	0	01	0	1	1	0	0	0	$1)$	$0]$	0	1	1	0	0	1	0
AC201	1	1	1	1	0	1	1	1.	0	0	1.	1	0	0	0	0	0	1	0
AC202	1	,	1	1	0	1	1	1	1	0	1	1.	0	0	0	0	0	1	0
AC203	1	1	0	0	0	1	1	0	1	0	1.	1	0	0	0	0	0	1	0
AC204	1	,	0	0	0	1	1	0	0	0	1.	1	0	0	0	0	0	1	0
AC20S	1	1	0	0	0	1.	1	0	0	0	1	0	0	0	1	0.	0	1	0
AC207L	1	1	1	0	0.	1	1	1	0	0	1	1	0	0	0	0	-	1	0
AC207S	1	,	1	0	1	1	1	0	0	0	-1	0	0	1	1	0	0	1	0
AC208	1	1	1	1	0	1	1	1	1	0	1	,	0	0	0	0.	0	1	0
AC209	1	1	0	0	1.	1	1	0	0	0	1	0	0	1	1	0	0	1.	0
AC209BR	1	1	1	1	0	1.	1	1	1	0	1	1	0	0	0	0	0	1	0
AC209GS	-1	1	1	1	0	1	1	1	0	0	1	0	0	1	0	0	0	0.	0
AC213	1	1	0	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	0
AC214	1	1	0	1	0	1	1	1	1.	1	1	1	1.	0	1	0.	1	1	0
AC215	1	1	1	1	0	1.	1	1	0	0	1	1	0	0	0	0	0	1	0
AC216	1	1	1	1	0	1	1	1	0	0	,	,	0	0	0	0	0	1	0
AC220A	1	1	1	0	1.	1	1	0	0	0	1	0	0	1	1	0	0	1	0
AC222	1	1	0	1	0	1	-1	1	1	1	1.	1	1	0	0	1	1	1.	0
AC223	1	1	1	0	1	1	1	0	0	0	1	0	0	1	1.	0	0	1.	0
AC225	1	1	0	0	0	1	1	0	0	0	1.	0	0	0	0	0	0	11	0
AC226	1	1	0	0	1	1	1	0.	0	0	1	0	0	1	1	0	0	1	0
${ }^{\text {AC227 }}$	1	1	1	1	0	1	1	1.	1.	0	1	1	0	0	0	0	0	1	0
AC228	1	1.	0	0	0	1	1	1.	1	1.	1	1	1	0	1	0	1	1.	0
AC230	1	1	0	0	0	1	1	0	1	1.	1	1	0	0	0	1	,	1	0
AC231	1	1	0	0	1	1.	1	0.	0	0	1	0	0	1	1)	0	0	1	0
AC525	1	1	0.	0	0	1	1	1	0	0	1	1	0	1	0	0	0	1.	0
ACS26A	1	1	0	0	0	1.	1	0	1	1	1	0	0	1	0	1	1	1	0
EC006	0	0	0	0	1	1	1	0	0	0	1		0	1	0	0	0	0.	0
EC032	0.	0	0	0	1	1	1	0	0	0	,		0	1	0	0	0	0.	0
EC033G	0	0	0	1	0	1.	1	0	0	0	1	1	1	0	0	0	1	0.	0
EC109	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0.	0	1	0	0
EC120	0	0	0	0	0	1	1	0	0	0	1	1	1	0	0.	0	1	0.	0
EC201	0	0	0	1	0	1	1	1	0	0	1	1	1	0	0.	0	1	0	0
EC205	0	0	0	1	0	1	1	1.	0	0	1	1	1	0	0.	0	1	0	0
EC214	0	0	0	0	1	1.	1	0	0	0	1	0	0	1	0.	0	0	0	0
EC236	0	0	0	1	0	1	1	1.	1	0	1	1	1	1	0	,	1.	0	0
EC250	0	0	0	0	1	1	1	0	0	0	1	-	0	1	1	-	0	0	0
EC502	0	0	0	0	1	1	1	0	0	0	1	0	0	1	1	0	0	0	0
EC506	0	0	1	0	1	1	1	0.	0	0	1	-	0	1	0	,	0	0	0
EC509	0	0	0	0	1	1	1	0.	0	0	1	0	0	1	1	-	0	0	0
EC510	0	0	0	0	1	1	1	0.	0	0	1.	0	0	1	1	0	0	0	0
EC511	0	0	0	0	1	1	1	0.	0	0	1		0	1	1	0.	0	0	0
EC531	0	0	0	0	1	I	1	0	0	0	1	0	0	1	1	0	0	0	0
EC534	0	0	0	1	0	1.	1	0	0	0	1	1	1	0	0	0	1	0	0
EC559	0	0	0	1	0	1	1	1	1.	0	1	,	1	1	0	0	1	0	0
EC560	0	0	0	0	1	1	1	0	0.	0	1	0	0	1	1.	0	0	0	0
EC565	0	0	0	1	0	,	1	1	1	0	1	1	1	1	0	,	1	0	0
EW051	0	0	0	0	0	1.	1	0	0	0	1.	0	0	1	1	0	0	0	0
EW203	0	0	0	0	1	1	1	0	0	0	1	0	0	1	1	0	0	0	0
EW223	0	0	0	0	0	1	1	0	0	0	1		0	0	0	0	0	0	0
EW354	0	0	0	0	0	1	1	0	0	0	1	0	0	1	1.	0	0	0	0
EWHue	0.	0	0	1	0	1	$1)$	0	1	0	,	1	1	0	0	0	0	0	0
EWPro	0.	0	0	0	0	1	$1)$	0	1	0	1	1	1	1	0	,	0	0	0
FW237	0.	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	0	0	1
FWGU4	0	0	0	0	0	1	1)	0	0	0	1	0	0	0	0	0	0	0	1
FWLoc1	0	0	0	0	1	1	1	0	0	0	,	0	0	0	,	0	0	0	1
FWLoc7	0	0	0	0	0	1	1.	0	0	0	1	0	0	1	0	0	0	0	1
PW05S	0	0	0	0	0	1	1	0	0	0	1	,	0	1	0	,	0	0.	1
PWTM58	0	0	0	0	1	1	1	0	0	0	1	0	0	1	0	1	0	1.	1
PWTM59	0	0	0	0	0	1	1	0	0	0	,	0	0	1	0	1	0	0	1
TCas 118	0	0	0	0	0	,	1	0	0	0	1	0	0.	1	1	0	0.	0	0
TCas309	0	0	0	0.	0	1	1	0	0	0	1	0	0	1.	1	0	0	0	0
TCas331	0	0	0	0	1	1	1	1	0	1	1	1.	1	0	0	1	,	.	0
TCas532	0	0	0	0	0	1	1	0	0	0	,	0	0	1	1	0	0	0	0
TC) 533	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	0	0	0	0
TCas536	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	0	0	0	0
TCas538	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	0	0	0	0
TCas556	0	0	0	0	0	,	1	0	0	0	,	0	0	1	1.	0	0	1	0
TCas557	0	0	0	1	0	1	1	1	0	1	1	1	1	1	0	0	1	0	0
TCeh350	0	0	0	0	1	1	1	0	0	0	1	0	0	1	0	0	0	0	0
TCch353	0	0	0	0	0	1	1	0	0	0	1.	0	0	1	1	0	0	0	0
TCeh354	0	0) 1	0	1	1	1	0	0	0	1	0	0	1	0	0	0	1	0
TCch355	0	0	11	0	0	1.	1	0	0	0	1	0	0	1	0	0	0	-	0
TCJIS50	0	0	01	1	0	1	1	1	1	1	1	1	1	1	0	,	,	-	0
TCJi552	0	0	0	0	0	1	1	0	0	0	1	0	0	1	1	0	0	0	0
TCj\|553	0	0	0	1	0	1	1	1	0	1	1	1	1	1	0	0	1	1	0
TCJ1554	0	0	0.	0	1	1	1	0	0	0	1	0	0	1	1	0	0	0	0
TCNA06	0	0	0	0	1	1	1	1	0	1	1	1.	1	1	0	0	1	.	0
TCNA07	0	0	0	0	0	1	1	0	0	1	1	,	1	1	0	0	1	,	0
TCNA09	0	0	0	0	0	1	1	0	0.	0	1	0	0	1	1	0	0	1	0
TCNA10	0	0	0	0	0	1	1.	0	0	0	1	0	0	1	1.	0	0	1	0
TWNanI	0	0	0	0	0.	1	1	0	0	0	1	0	0	1	1	0	0	0	
TWNanII	0	0	0	0	0	1	1	0	0	0	1	0	0	1	1	0	0	0	
TWTM48	0	0.	1	0	1	1	1	0	0	0	1	0	0.	1	0	0	0	0	
TWTosI	0	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	0		0

H14 (bp)			413檢		40\%2	389	32900	1689	3960	359	3×00		3354,	1100		
AC102	0	1	0	0	0	1	0	0	0	0	1	1	0	0	0	0
AC201	1	1	0	0	1	1	0	0.	0	0	0	1	0	0	0	0
AC202	1	1	0	0	1	1	0	0	0	0	0	1	0	0	0	0
AC203	1	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0
AC204	0	1.	-	0	0	1	0	0	0	0	0	0	0	0	0	0
AC205	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
AC207L	1	1	0	0	1	1	0	0	0	0	0	1	0	0	0	0
AC207S	1	1	0	0	0	1	1	0	0	0	1	1	0	0	0	0
AC208	1	1	0	0	1	1	0	0	0	0	0	1	0	0	0	0
AC209	0	1	0	0	0	1	0	0	0.	0	1	0	0	0	0	0
AC209BR	1	1	0	0	1	1	0	0	0	0	1	1	0	0	0	0
AC209GS	1	1	0	0	1	1	0	0	0	0	1	1	0	0	0	0
AC213	0	1	-	0	0	1	0	0	0	0	1	0	0	0	0	0
AC214	1	1	0	0	1	1	1	0	0	0	1	0	0	0	0	0
AC215	1	1	0	0.	1	1	0	0	0	0	0	1	0	0	0	0
AC216	1	1	0	0	1	1	0	0	0	0	0	1	0	0	0	0
AC220A	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
AC222	1	1	0	0	1.	- 1	0	1	0	1	1	0	0	0	0.	0
AC223	1.	1	0	-	0	1	1	0	0	0	1	1	0	0	0	0
AC225	0	1	0	0	0	1	0	0	0	0	$1)$	0	0	0	0	0
AC226	1	1	0	0	0	1	1,	0	0	0	1	1	0	0	0	0
AC229	1	1	0	0	1	1	0	0	0	0	1	1	0	0	0	0
AC228	1	1	0	0	1	1	1	0	0	0	1	0	0	0	0	0
AC230	0	1	0	0	0	1	0	0	0	1	1	0	0	0	0	0
AC231	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
ACS25	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0
AC526A	0	1	0	0	0	1	0	0	0	0	0	0	0	0.	0	1
EC006	0	1	1	0	0	1	1	0	1	0	1.	1	1	0	0	0
EC032	0	1	0	0.	0	1	1	0	1	0	1	0	0	0	0	0
EC033G	0	1	0	0	0	1	1	0	1	0	1	0	0	0	1	1
EC109	0	1	0	0	0	1	1	0	1	0	1.	0	0	0	0	0
EC120	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	1
EC201	0	1	0	0	0	1	1	0	1	0	1	0	0	0	1	0
EC205	0	1	1	0.	1	1	1	0	1	0	1	0	0	0	1	0
EC214	0	1	1	$0)$	0	1	1	0	1	0	1	0	1	0	0	0
EC236	0	1	0	0	0	1	1	0	1	1	1	1	0	0	1	0
EC250	0	1	,	0.	0	1	1	0	1	0	1	1	0	0	0	0
EC502	0	1	0	0	1	1	1	0	1	0	1	0	0	0	1	0
EC506	0	1	0	0.	0	1	0	0	1	0	1	0	1	0	0	0
EC509	0	1	0	0	0	1	1	0	1	0	1.	1	1	0	0	0
ECS10	0	1	0	0	1	1	1	0	1	0	1.	0	0	0	1.	0
ECS11	0	1	0	0	1	1	1	0	1	0	1	0	-1	0	1	0
EC531	0	1	1	0.	0	1	1	0	1	0	1	1	1	0	,	0
EC534	0	1	,	0.	1	1	1	0	1	0	1	0	0	0	1	0
EC559	0	1	0	0.	0	1	1	0	1	0	1	0	0	0	1	0
ECS60	0	1	1	0	0	1	1	0	1	0	1	0	0	0	1	0
EC565	,	1	0	$0 \cdot$	0	1	,	0	1	0	1	0	0	0	0	0
EW051	0	1	0	0	0	1	0	0	1	0	1	1	0	0	1.	0
EW203	0.	-1	0	1	0	1	1	0	1	0	1	1	0	0.	0	0
EW223	0	-1	0	0	0	1	0	0	1	0	1	1	0	0	1	0
EW354	0	1	0	0	0	1	0	0	1	0	1	1	0	0	0	0
EWHue	0	1	0	0	0	1	1	0	1	0	1	1	0	0	1	0
EWPro	0	1	0	0	0	1	0	0	1	0	1	1	0	0	0	0
FW237	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	
FWGU4	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	1
FWLocl	0	1	,	0	0	1	0	0	0	0	0	0	0	0	0	1
FWLoc7	0	1	0	0	0	1	0	0	0	0	0	1	1	0	0	1
PW055	1	1	0	0	0	1	0	0	0	0	1	1	0	0.	0	1
PWTM58	1	1	0	0	0	1.	1.	0	0	0.	1	-1	0	0.	0	1
PWTM59	1	1	0	1	0	1	1	0	0	0	1	1	0	0	0	
TCas 118	0	1	0	0	0	1	0	0	0	0	-1	0	0	0	1	0
TCas309	1	1	0	0	0	1	1	0	0	0	1	,	0	0	0	0
TCas531	0	,	0	0	0	1	1	0	0	1	1	0	0	0	0	0
TCas532	0	1	0	0	0	1	0	0	0	0	0	,	0	0	0	0
TCas533	1.	1	1	0	0	1	0	0	0	0	1	1.	0	0	0	0
TCas536	1.	1	0	0	0	,	1	0	0	0	1	0	0	0	0	0
TCass38	1	1	0	0	0	1	1	0	0	0	1	1	,	0	0	0
TCas556	0	1	0	0	0	1	1	0	0	0	,	-1	0	0	1	0
TCas557	1	1	0	0	0	1	1	0	0	1.	1	0	0	0	0	0
TCch350	0	1	1	0	1	1	1	0	0	0	1	1	0.	0	1	0
TCch353	1	1	0	0	0	1	0	0	0	0	0	,	0.	,	0	0
TCch 354	1	1	0	0	0	1	1	0	0	0	1	1.	0	0	0	0
TCch355	1	1	0	0	0	1	0	0	0	0	1	1.	0	0	0	0
TCJis50	1	1	0	0		1.	,	0	0	0	1	,	0	0	0	0
TCJis52	1	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0
TCj1553	1	1	0	0	1	1	1	0	0	1	1	0	0	0	0	0
TCJI554	1	1	1	0	0	1	0	0	0	0	0	1	0	0	0	0
TCNA06	1	1	0	0	0	1	,	0	0	1	1	0	0	0	0	0
TCNA07	0	1	0	0	0	1	1.	0	0	1	1	0	0	1	1	0
TCNA09	.	1	0	0	0	1	0	0	0	0	,	0	0	0	0	0
TCNA10	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0
TWNanI	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0
TWNanII	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0
TWTM48	1	1	0	0	0	1	. 0	0	0	0	1	1	0	0	0	0
TWTosI	0	1	0	0	0.	1	$1)$	10	0	0	1	1	0	0	0	

Appendix 7. Pairwise genetic diatances for 85 Pachyrhizus tam.

	A	B	c	D	E	F	G	H	1	J	K	L	m	N	0
1	AC102	0													
2	AC201	0.775862	0												
3	AC202	0.786885	0.071429	0											
4	AC203	0.76	0.357143	0.325581	0										
5	AC204	0.744186	0.673913	0.666667	0.555556										
6	AC205	0.40625	0.816326	0.826923	0.775	0.71875									
7	AC207L	0.762712	0.431373	339	0.55102	0.714286	0.8								
8	AC2078	0.466667	0.774194	0.765625	0.781818	0.82	0.5263	0.677966							
9	AC208	0.796875	0.212766	0.148936	0.369565	0.686275	0.836364	0.346154	0.776119	0					
10	AC209	0.414634	0.779661	0.770492	0.764706	0.75	0.514286	0.745763	0.510638	0.78125					
11	AC209BR	0.727273	0.428571	0.431373	0.583333	0.72340	0.8125	0.537037	0.75	0.403846	0.775862				
12	AC209GS	0.732143	0.44	0.411765	0.591837	0.755102	0.84	0.545455	0.733333	0.384615	0.736842	0.25			
13	AC213	0.488372	0.8	0.790323	0.764706	0.75	0.514286	10.745763	0.571429	0.761905	0.263158	0.816667	. 758621	O	
14	AC214	0.660714	0.561	0.559322	0.6226	0.72549	0.734694	0.666657	0.688525	0.603175	0.711864	0.65	0.698413	0.711864	
15	AC215	0.79661	0.142857	0.159091	0.395349	0.644444	0.816326	0.431373	0.754098	0.25	0.8	0.46	0.44	0.8	. 561404
16	AC216	0.8	0.244444	0.255319	0.444444	0.708333	0.82	0.346939	0.77778	0191489	0.80327	0.44	0.42	0.783	. 616667
17	AC220A	0.487179	0.777778	0.767	0.787234	0.775	0.466667	0.740741	0.315789	0.779661	0.5	0.773585	0.754717	0.571429	. 703704
18	AC222	0.716418	0.569231	0.567164	0.645161	0.711864	0.803279	0.680556	0.77027	0.885714	0.757143	0.626866	0.671429	0.774648	0.298246
18	AC223	0.409091	0.758065	0.75	0.763636	0.77551	0.538462	0.725806	0.214286	0.761194	0.456522	0.754098	0.737705	0.520833	0.672131
20	$\mathrm{AC}_{2} 2$	0.611111	0.76087	0.77551	0.736842	0.666667	0.576923	0.717391	0.658537	0788462	0.542857	0.755556	0.787234	0.583333	0.702128
21	AC226	0.439024	0.775862	0.766667	0.76	0.744186	0.542857	0.741379	10.317073	0.777778	0.452381	0.75	0.732143	0.555556	0.684211
22	AC227	0.775862	0.340426	0.3125	0.5	0.702128	0.816326	0.461538	10.774194	0.352941	0.779661	0.326087	0.44	0.819672	0.61017
23	AC228	0.7	0.559322	0.557377	0.592593	0.716981	0.75	0.661538	0.703125	0.6	0.746032	0.645161	0.692308	0.746032	0.145833
24	AC230	0.692308	0.636364	0.631579	0.625	0.65116	0.75	0.73705	0.741379	0.672131	0.698113	0.745763	0.790323	0.72222	0.387755
25	AC231	0.541667	0.694915	0.688525	0.740741	0.75	0.575	0.746032	0.529412	0.723077	0.348837	0.774194	0.737705	0.456522	0.693548
28	ACS	0.67	0.666667	0.686275	0.625	0.694444	0.6666	0.653061	0.708333	0.703704	0711111	0.6875	72	73913	3333
27	AC526A	0.714286	0.755102	10.745098	0.7	0.705	0.677419	0.764706	0.717391	0.759259	0.72093	0.75	0.78	0.75	0.645833
28	EC006	0.642857	0.847222	0.853	0.861	0.9	0.811321	0.851351	0.672131	0.873418	0.6	0.861111	0.83098	0.694915	0.808219
29	EC032	0.779661	0.835072	0.861111	0.852459	0.912281	0865385	0.875	0.758065	0.881579	0.648148	0.885714	0.855072	0.696429	0.797101
30	EC033G	0.916667	0.714286	0.728814	0.74	0.854167	0.938776	0.786885	0.870968	0.761905	0.9	0.816667	0.83871	0.918033	0.733333
31	EC109	0.873016	0.7	0.693548	0.7222	0.890909	0.925926	0787879	0.830769	0.727273	0.87	$0.777 / 8$	0.761905	0.857143	0.633333
32	EC120	0.872727	0.745	0.758621	0.723404	0.8441	0.911111	0.79661	0.864407	0.770492	0.875	0.827586	0.85	0.894737	0.696429
33	EC20	0.919	0.678571	0.694915	0.72549	0.86	0.941176	0.754098	0.87	0.730159	0.903226	0.783333	0.786885	0.903226	0.6779
34	EC205	0.933333	0.754386	0.745763	0.807692	0.851064	0.9375	0.822581	0.904762	0.777778	0.916667	0.813559	0.816667	0.916667	0.75
35	EC	0.677966	0.851351	0.842105	0.865672	0.903226	0.818182	0.824324	0.68254	0.8625	0.589286	0.864865	0.819444	0.683333	0.813333
38	EC236	0.888	0.694915	0.688525	0.692308	0.846154	0.924528	0.765625	0.863636	0.703125	0.890625	0.774194	0.77778	0854839	0.693548
37	EC250	0.833333	0.888889	0.893939	0.910714	0.980769	0.9130	0.925373	0.807018	0.914286	0.745098	0.921875	0.870968	0.745098	0.878788
38	ECS02	0.736842	0.887324	0.876712	0.923077	0.931035	0.82	0.859153	0.649123	0.881579	0.719298	0.885714	0.838235	0.762712	0.814286
39	EC	0.701	0.859155	0.849315	08923	0.915254	0.826923	0.814286	0.661017	0.87013	0.611111	0.873239	0.826087	0.728814	0.851351
40	ECSO	0.741379	0.84058	0.847222	0836066	0.913793	0.84615	0.876712	0.741935	0.853333	0.678571	0.855072	0.84058	0.724138	0.8
41	ECS10	0.754386	0.869565	0.859155	0.904762	0929825	0.84	0.857143	0.689655	0.864865	0.788621	0867647	0.818182	0.8	0794118
42	EC	0.745	0.890411	088	0.925	0.933333	0.826923	0.863014	0.637931	0.884615	0.728814	89	0842857	0.770492	0.819444
43	ECS31	0.694915	0.849315	0.84	0.828125	0.919355	0.814815	0.868421	0.738461	0.831169	0.607143	0.863014	0833333	0.7	0.810811
44	EC534	0.951613	0.758621	0.75	0.788462	0.854167	0.96	0.806452	0.90625	10.78125	0.935484	0.816667	0.819672	0.935484	. 793651
45	ECS	0.90	0.666667	0.661017	10.686275	0.8	0.9	0.761905	0.8	0.698413	0.888889	0.75	0.7	0.888889	0.644068
48	ECS	0.701	0.85915s	0.864865	0.857143	0.9333	0.826923	0.878378	0.725806	0.855263	0.584906	0.857143	0.826087	0.660714	0.802817
47	EC565	0.883333	0.745763	0.737705	0.75	0.924528	0.92	0.793651	0.83871	0.75	0.885246	0.803279	0.786885	0.866667	0.631579
48	EW051	0.75	0.912281	0898305	0.895833	0.977273	0.8	0.915254	0.77551	0.903226	0.808511	0929825	0.872727	0.808511	0.881396
48.	EV	0.72	0.8	0.8	0.912281	0.941	0.785714	0.876923	0.6	0884058	0.72549	0.888889	0836066	0.773585	0.809524
50	EW223	0.81132	0.888889	0.876923	0.87037	0.960784	0.837209	0.892308	0.785714	0.882353	0.792453	0.904762	0.8888	0.836364	0.878788
51	EW354	0.825	0.941176	0.9444	0.953488	0.972222	0.866667	0.962963	0.844444	0.965517	0.857143	0.960784	0.92	0.883721	. 90566
52	EWH	0.949153	0.810	0.8	0.7	0.93	0.979167	0.890625	0.901639	0.809524	0.932203	0.8	0.8	0.913793	0.822581
53	EWPro	0.888889	10.824561	0.813559	10.791667	0.913	0.955556	0.887097	0.859649	0.84127	0.910714	0.86206	0.844828	0.890909	0.79661
54	FW237	0.836735	0.95082	0.953125	0.942308	1	0.871795	0.935484	0.830189	0.939394	0.884615	0.95	0.933333	0.90566	0.969697
55	FWC	0.860	0.943396	0.9	18	1	0.9	0.9642	0.961538	0.9491	0.93617	0.981481	2963	0.913043	7368
56	FWLac1	0.897959	0.929825	0.915254	0.916667	0.926829	0.891892	0.913793	0.886792	0.901639	0.854167	0.965517	0.929825	0.804348	0.951613
57	FWLec7	0.836364	0.907692	0.895522	0.912281	0.941176	0.914894	0.876923	0.810345	0.867647	0.773585	0.92307	0.890625	0.796296	0.928571
58	PW055	0.792453	0.854839	08615	0.851852	0.875	0.866667	0.84127	0.789474	0.833333	0.796296	0.870968	0.854839	0.818	0.897059
59	PWTMS8	0.66037	0.838821	0.842857	0.830508	0.890909	0.73913	0.80597	0.642857	0.833333	0.588235	0.850746	0.852941	0.641509	0.776119
60	PWTM59	0.685185	0.8358	0.842857	0.830508	0.910714	0.765957	0.823529	0.689655	0.849315	0.641509	0.867647	0.852941	0.690909	0.794118
61	TC118as	0.702703	0.9	0.90566	0.878049	0.848485	0.793103	0.882353	0.795455	0.910714	0.710526	0.875	0.854167	0.71	0.886792
62	TC309as	0.627907	0.862069	0.85	0.86	0.860465	0.722222	0.8275	0.577778	0.857143	0.571429	0.859649	0.8	0.636364	0.77193
63	TCS31a	0.808824	0.686567	0.7	10.725806	0816667	0.866667	0.75	0.805556	0.712329	0.794118	0.757143	0.760563	0.811594	0.466667
64	TC532m:	0.512195	0.847458	0.836066	0.843137	0866667	0.702703	0.813559	0.653061	0.84375	0.622222	0.844828	0.807018	0.708333	0.8
65	TCS33ar	0.54902	0.753846	0.764706	0.8	0.857143	0.702128	0.761194	0.589286	0.757143	0.557692	0.730159	0.693548	0.557692	0.712121
86	TCS36ar	0.618182	0.797101	0.805556	0.825397	0.9	0.78846	0.819444	0.627119	0797297	0.574074	0.776119	0.742424	0.649123	0.720588
67	TC538ar	0.509804	0.797101	0.805556	0.825397	0.881356	0.74	0.802817	0.578947	0.813333	0.574074	0738461	0.723077	0.649123	0.720588
89	TC556a	0.586957	0.819672	0.790323	0.833333	0.854167	0.761905	0806452	0.679245	0.78125	0.595745	0.836066	0.779661	0.625	0.793651
69	TCS57ar	0.78125	0.629032	0.646154	0.689655	0.785714	0.87931	0.73913	0.79412	0.681159	0.80303	0.727273	0.712121	0.80303	0.438596
70	TC350 ${ }^{\text {a }}$	0.615385	0.85507	0.84507	0.870968	0.912281	0799918	0.826087	0.649123	0.851351	0.510204	0.852941	0.784615	0.596154	0.814286
71	TC353ch	0.590909	0.85	0.819672	0.823529	0893617	0.710526	0.816667	0.574468	0.809524	0.6875	0.847458	0.767857	0.714286	0.783333
72	TC354ct	0.54902	0.808824	0816901	0.83871	0.877193	0.755102	0.79412	0.537037	0.808219	0.557692	0769231	0.753846	0.636364	0.75
73	rC355ch	0.54717	0.833333	0.84	0.863636	0.901639	0769231	0.788732	0.61017	0.815789	0.607143	0.779412	0.764706	0.655172	0.777778
74	TC55011	0.780822	0.647887	0.643836	0.701493	0.838235	0.882353	0710526	0.763158	0.657895	0.783784	0.716216	0.72	0.8	0.4375
75	TC552]	0.647059	0.830769	0.820896	0803571	0.886792	0.697674	0.78125	0.62963	0.811594	0.727273	0.880597	0.830769	0.727273	0.75
78	TC553]	0.768116	0.606061	0.623188	0.703125	0.809524	0.875	0.676056	0.767123	0.638889	0.805556	0.71831	0.722222	0.821918	0.372881
77	TC554]	0.654545	0.772727	0.764706	0.758621	0.857143	0.729167	0.723077	0.537037	0.73913	0.728814	0.823529	0.772727	0.728814	0.712121
78	TCNA06	0.8	0.692308	0.705882	0.711864	0.807018	0.87931	0774648	0.779412	0.736111	0.765625	0.8	0.785714	0.784615	0.438596
78	TCNA07	0.806452	0.772727	0.764706	0.758621	0.836364	0.890909	0.814286	0.784615	0.774648	0.770492	0.84058	0.826087	0.770492	0.583333
80	TCNA09	0.595238	0.862069	0.830508	0.8125	0.74359	0.722222	0.827586	0.693878	0.8	0.571429	0.839286	0.8	0.636364	0.793103
81	TCNAIO	0.666667	0.854839	0.84375	0.851852	0.820087	0.785714	0.876923	0.745455	0833333	0.7	0.870968	0.854839	0.72549	0.846154
82	TWNanI	0.782609	0.894737	0881356	0.875	0.878049	0.868421	0.898305	0.849057	0.868852	0.8125	0.931035	0.894737	0.787234	0.936508
83	TWNanll	0.723404	0.901639	0.888889	0.884615	0.8888889	0.825	0.904762	0.818182	0.859375	0.78	0.935484	0.901639	0.78	0.907692
84	TWTM48	0.622222	0.722222	0.736842	0.77551	0.844444	0.74359	0.732143	0.66	0.728814	0.6	0.716981	0.698113	0.6875	0.762712
05	TWToal	0.613636	0.903226	0.873016	0.865385	0.840909	0.769231	0870968	0.705882	0.84375	0.652174	0.864407	0.847458	0.622222	0857143
88		2.36***			\%.	6	4		IN.	3.		15:4020	[120.4.	13.	14

Appendix 7．Palmise genetic distances for 85 Pachyrkizus tma．

	P	a	R	s	T	U	V	W	X	Y	z	AA	AB	$\overline{\text { AC }}$	AD
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															
12.															
13.															
14															
15.	0														
18	0.162791	0													
17	0.754717	0.781818	0												
10.	0.590909	0.657143	0.772727	0											
19	0.788065	0.78125	0.333333	0.739726	0										
20	0.787234	0.791667	0.636364	0.758621	0.666667	0									
21	0.79661	0.8	0.487179	0.753623	0.205128	0.571429	0								
22	0.340426	0.387755	0.8	0.590909	0.777778	0.733333	0.778862	0							
23	0.559322	0.634921	0.719298	10.275862	0.6875	0.72	0.7	0.606537	0						
24	0.636364	0.711864	0.714286	0.363636	0.724138	0.65	0.716981	0.684211	0.392157	0					
25	0.694915	0.761905	0.488372	0.722222	0.48	0.634146	0.510638	0.716667	0.6875	0.62963	0				
28.	0.666667	0.673469	0.666667	0.661017	0.714286	0.612903	0.674419	0.666667	0.58	0.613636	0.764706	0			
27	0.729167	0.76	0.638889	0.689655	0.723404	0.571429	0.682927	0.755102	0.64	0.55	0.723404	0.575758	0		
29	0.863014	0.88	0.754386	0.833933	0.655738	0.830189	0.689655	0.863014	0.831169	0.80597	0.633333	0.85	0.881356	0	
29	0.855072	0．888889	0.824561	0.825	0.761905	0.862745	0.779661	0.871429	0．805556	0.793651	0.631579	0.859649	0.872727	0.444444	
30	0.736842	0.783333	0.909091	0.774648	0.890625	0.891304	0.898305	0.758621	0.725806	0.789474	0.890625	0.791667	0.829787	0.77778	0.741379
31	0.7	0.746032	0.842105	0.708333	0.833333	0.903846	0.873016	0.741935	0.650794	0.75	0.833333	0.769231	0.803922	0.742424	0.637931
32.	0.745455	0.793103	0.86	0.707692	0.847458	0.829268	0.872727	0.789474	0.689655	0.705882	0.827586	0.77777	0.790698	0.786885	0.727273
33	0.678571	0.728814	0.912281	0.728571	0.893939	0.895833	0.901639	0.724138	0.672131	0.754386	0.859375	0.77551	0.86	0.765625	0.636364
34	0.778862	0.819672	0.927273	0.753623	0.90625	0.913043	0.896552	0.754386	0.741935	0.847458	0.90625	0.8125	0.92	0.793651	0.779661
35	0.866667	0.883117	0.741379	0.837209	0.666667	0.836364	0.7	0.866667	0.820513	0.811594	0.622951	0.836066	0.866667	0.2	0.346154
38	0.694915	0.741935	0.898305	0.722222	0.865672	0.923077	0.888889	0.716667	0.6875	0.766667	0.865672	0.764706	0.846154	0.757576	0.655172
37	0.888889	0.907692	0.884615	0.924051	0.830508	0.934783	0.811321	0.90625	0884058	0.901639	0.789474	0.923077	0.94	0.584906	0.456522
38	0.871429	0.888889	0.735849	0.853659	0.7	0.884615	0.736842	0.887324	0.837838	0.865672	0.721311	0.898305	0.892857	0.472727	0.461538
39	0.875	0.891892	0.722222	0.857143	0.666667	0.846154	0.701754	0.875	0.857143	0.835821	0.688525	0.844828	0.877193	0.313725	0.423077
40	0.857143	0.859155	0.827586	0.841463	0.746032	0.865385	0.719298	0.857143	0.808219	0.815385	0.683333	0.862069	0894737	0.396226	0.23913
41	0.852941	0.871429	0.730769	0.8375	0.737705	0.882353	0.758862	0.869565	0.819444	0.846154	0.737705	0.896552	0.890909	0.517857	0.480769
42	0.875	0.891892	0.722222	0.857143	0.688525	0.888889	0.724138	0.890411	0.842105	0.869565	0.730159	0.901639	0.896552	0.464286	0.481481
43	0.849315	0.835616	0.8	0.848837	0.703125	0.833333	0.716667	0.849315	0.818182	0.826087	0.66129	0.870968	0.883333	0.320755	0.365385
44	0.779661	0.822581	0．947368	0.791667	0.924242	0.9375	0.916667	0.758621	0.765625	0.868852	0.924242	0．84	0.921569	0.796875	0.762712
45	0.642857	0.716667	0.877193	0.7	0.863636	0.9	0.887097	0.689655	0.639344	0.719298	0.828125	0.76	0.795918	0.73727	0.649123
46	0.875	0.861111	10.767857	0.843373	0.709677	0.823529	0.701754	0.875	0.810811	0.818182	0.62069	0.864407	0.877193	0.377358	0.255319
47	0.724138	0.75	0.851852	0.710145	0.84127	0.895833	0．883333	0.766667	0.65	10.754386	0.84127	0.75	0.787234	0.765625	0.636364
48	0.912281	0.913793	0.837209	0.915493	0.78	0.891892	0.75	0.912281	0.887097	0.886792	0.755102	0.883721	0.928571	0.686275	0.74
49	0.854839	0.892308	0.688889	0.868421	0.653846	0.863636	0.666667	0.873016	0.818182	0.847458	0.679245	10.882353	0.875	0.509804	0.530612
50	0.852459	0.873016	0.84	0.896104	0.810345	0886364	0.833333	0.870968	0.884058	0.864407	0.789474	0.901961	0.918367	0.660714	0.58
51	0.941176	0.962264	10.894737	0.938462	0.847826	0.935484	0.825	0.92	0.910714	0.914894	0.847826	0.888889	0.942857	0.744681	0.75
52	0.810345	0.833333	0.944444	0.864865	0.903226	0.956522	0.931035	0.830508	0.830769	0.862069	0.903226	0.921969	0.916667	0.825397	0.727273
53	0.803571	0.847458	0.877551	0.828571	0.862069	0.930233	0．888889	0.844828	10.786885	0.792453	0．842105	0.847826	0.837209	0.779661	0.692308
54	0.95082	0.934426	0.869565	0.974026	0.811321	0.925	0.787234	0.95082	10.955882	0.968102	0．854545	0.913043	0.906977	0.810345	0.796296
55	0.943396	0.944444	0.952381	0.955882	0.9	0970588	0.934783	0.962963	10.967213	0.94	0.9	0.97561	0.945946	0.803922	0.882353
58.	0.910714	0.912281	0.860465	0.958904	0.823529	0.947368	0.875	0.948276	0.953846	0.945455	0.846154	0.931818	0.926829	0.842105	0.830189
57.	0.890625	0.892308	0.795918	0.925	0.77193	0.913043	0．792453	0.924242	0.931507	0.903226	0.793103	0.903846	0.92	0.754098	0.8
58	0.854839	0.857143	0.865385	0.883117	0.75	0.837209	0.72	0.854839	0.885714	0.865667	0.793103	0.882353	0.851064	0.8125	0．83871
59.	0.835821	0.838235	0.705888	0.807692	0.625	0.76087	0.634615	0．85294］	0.802817	0.770492	0.649123	0.814815	0.755102	0.66129	0.661017
80	0．835821	0.855072	0.754717	0.822785	0.649123	0.787234	0.660377	0．852941	0.802817	0.790323	0.672414	0.814815	0.755102	0.68254	0.661017
61	0.921569	0.923077	0.805556	0.888889	0.773727	0.785714	0.736842	0.9	10.872727	0.809565	0.8	0.861111	0.882353	0.867925	0.88
02	0.881356	0.883333	0.682927	0.808824	0.452381	0.714286	0.361111	0.862069	0.762712	0.788462	0.617021	0.790698	0.804878	0.685185	0.735849
63	0.686567	0.728571	0.8125	0.485294	0.791667	0.844828	0.808824	0.724638	0.467742	0.559322	0.774648	0.701754	10.754386	0.8375	0.780822
84	0.866667	0.868852	0.634146	0.814286	0.66	0.794872	0.673913	0.866667	0.809524	0.796296	0.632653	0.851064	0.840909	0.696429	0.767857
65	0.734375	0.757576	0.647059	0.736842	0.571429	0.723404	0.603774	0.753846	0.705882	0.721311	0.545453	0.781818	0.769231	0.590164	0.586207
68	0.797101	0.8	0.685185	0.74359	0.586207	0.784314	0.618182	0.814286	0.714286	0.730159	0.561404	0.810345	0.821429	0.625	0.526316
67	0.797101	0.816901	10.660377	0.74359	0.561404	0.34694	0.592993	10.761194	0.714286	0.75	0.61017	0.789474	0.8	0.646154	0.576271
68	0.819672	0.803279	0.75	0.855263	0.634615	0.756098	0.617021	0.819672	0.820896	0.830508	0.660377	0.862745	0.854167	0.737705	0803279
69	0.629032	0.69697	0.803279	0.484848	0.746269	0.836364	0.78125	0.692308	0.440678	0.535714	0.764706	0.660377	0.763636	0.815789	0.711429
70	0.871429	0.873239	0.738849	0.839506	0.631579	0.84	0.666667	0.871429	0.837838	0.848485	0.631579	0.859649	0.912281	0.352941	0.644068
71	0.810345	0.813559	0.704545	0.816901	0.612245	0.857143	0.622222	0.85	0.793651	0.842105	0.666667	0.854167	0.818182	0.701754	0.727273
72	0.791045	0.811594	0.647059	0.78481	0.518519	0.77551	0576923	0.808824	10.760563	0.8	0.571429	0.803571	0.814815	0542373	0.561404
73	0.816901	0.819444	10.714286	0.792683	0.59322	0.811321	0.649123	0.816901	0.786667	0.808824	0.616667	0.833333	0.844828	0564516	0.583333
74	0.668667	0.706667	0.816901	0.43662	0.766234	0.790323	0.780822	0.666667	0．415385	0.590909	0.766234	0.677419	0.728806	0.811765	0.74026
75	0.8125	0.815385	0.72	0.786667	0684211	0854167	0.698113	0.830769	0.761194	0.84127	0.706897	0.807692	0.843137	0.808824	0.815385
78	0.626866	0.671429	0.823529	0.378788	0.77027	0.816667	0768116	0666667	10.377049	0.516667	0.77027	0.677966	0.75	0.817073	0.76
77	0.734375	0.738461	0.62	0.736842	0.596491	0.867925	0.654545	0.826087	10.686567	0.78125	0.688525	0.735849	0.792453	0.735294	0.71875
78	0.712121	0.753623	0.803279	0.507463	0.746269	0.836364	0761905	0768116	0.440678	0.561404	0.746269	0.709091	0.785714	08	0.753623
79	0.791045	0.828571	0.810345	10.608696	0.75	0.8	0.745763	0.826087	0.533333	0607143	0.75	0.735849	0.792453	0.853333	0.794118
80	0.842105	0.824561	0.714286	0.826087	0.645833	0.714286	0.560976	0.842105	10.822581	0.788462	0.673469	0.790698	0.775	0.754386	0.803571
81	0.854839	0.857143	0.770833	0.853333	0.703704	0.809524	0.666667	0836066	10.852941	0.847458	0.703704	0.882353	0.851064	0.793651	0.875
82	0.913793	0.933333	0.866667	0.945946	0.784314	0.894737	0.782609	0.913793	0.923077	0.928571	0．784314	0.934783	0.930233	0.885246	0.967742
83	0.919355	0.920635	［0．854167	0.921053	0.754717	0.904762	0.75	0.919355	0.895522	0.896552	0.754717	0.895833	0.93617	0.857143	0.9375
4	0.745455	0.727273	0.704545	0.782609	0.64	0.702703	0.590909	0.722222	0.754098	0.754717	0.666667	0.77778	0.761905	0.745763	0.727273
85	0.885246	0.868852	0.808511	0.893333	0.66	0.794872	0.613636	0.866667	0.880597	0.859649	0.711538	0.851064	0866667	0．696429	0.767857
86	15	鰊	齐	，2\％	13	87	21	效	13.	2	15	36	2）	23	22

Appendir 7．Pairwise genetic distances for 85 Pachyrhizus taxa．

	AE	AF	AG	AH	A	AJ	AK	AL	${ }^{\text {AM }}$	AN	AO	AP	AQ	AR	AS
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															
12															
13															
14															
15															
16															
17															
18															
19															
20															
21															
22															
23															
24															
25															
26															
27															
28															
29															
30	0														
31	0.4	0													
32	0.384615	0.5	0												
33	0.3	0.27907	0.452381	0											
34	0.452381	0.520833	0.52381	0.404762	0										
35	0.725806	0.671875	0.774194	0.693548	0.761905	0									
36	0.386364	0.288889	0.521739	0.302326	0.444444	0.707692	0								
37	0.769231	0.727273	0.849057	0.754717	0.811321	0.54717	0.722222	0							
38	0.741379	0.661017	0.75	0.660714	0.714286	0.436364	0.7	0.607843	0						
39	0.728814	0.693548	0.758621	0.716667	0.786885	0.204082	0.709677	0.596154	0.423077	0					
40	0.745763	0.666667	0.754386	0.666667	0.783333	0.358491	0.661017	0.434783	0.411769	0.403846	0				
41	0.736842	0.631579	0.722222	0.62963	0.709091	0.482143	0.672414	0.627451	0.073171	0.471698	0.431373	0			
42	0.75	0.672131	0.758621	0.672414	0.724138	0.428571	0.709677	0.622642	0.047619	0.384615	0.403846	0.116279	0		
43	0.761905	0.727273	0.75	0.709677	0.798875	0.345455	0.723077	0.538462	0.454545	0.418182	0.244898	0.472727	0.446429	0	
4	0.390244	0.56	0.568182	0.454545	0.194444	0.728806	0.456522	0.769231	0.719298	0.75	0.766667	0.714286	0.728814	0.78125	0
45	0.333333	0.190476	0.44186	0.153846	0.466667	0.703125	0.295455	0.763636	0.672414	0.725806	0.67996	0.642857	0.683333	0.71875	0.478261
46	0.728814	0.672131	0.714286	0.672414	0.766667	0.307692	0.688525	0.446809	0.423077	0.415094	0.234043	0.442308	0.444444	0.22449	0.75
47	0.454545	0.15	0.488372	0.292683	10.574468	0.693548	0.340909	0.754717	0.684211	0.716667	0.689655	0.654545	0.694915	0.709677	0.583333
48.	0.833333	0.830189	0.767442	0.816326	0.829787	0.698113	0.803922	0.682927	0.659575	0.72549	0.666667	0.652174	0.673469	0666667	0.857143
48.	0.75	0.660377	0.734694	0.735849	10.745098	0.528302	0.727273	0.6	0.363636	0.54902	0.479167	0.386364	0.391304	0.519231	0.773585
50	0.769231	0.793103	0.729167	0.754717	0.833333	0.672414	0.745455	0.55814	0.634615	0.596154	0.588235	0.627451	0.622642	0.509804	0.814815
51	0.829268	0.826087	0.815789	0.863636	0.853659	0.78	0.795455	0.606061	0777778	0.76087	0.727273	0.772727	0.787234	0.77551	0.857143
52	0.534884	0.466667	0.636364	0.555556	0.680851	0.793651	0.553191	0.673913	0.793103	0.819672	0.754386	0.767857	0.8	0.770492	0.630435
53	0.613636	0.477273	0.651163	0.6	0.77591	0.745763	0.595745	0.595238	0.763636	0.75	0.698113	0.738849	0.77193	0.762712	0.755102
54	0.884615	0.877193	0.9	0.909091	0.944444	0．79661	0.875	0.727273	0.773585	0.735849	0.730769	0.792453	0.759259	0.727273	0.90566
55	0.93617	0.943396	0.906977	0.938776	0.957447	0854545	0.942308	10.857143	0.903846	0.886792	0.884615	0.901961	0.907407	0851852	0.958333
56	0.9	0.910714	0.893617	0.903846	10.897959	0.807018	0.909091	0.822222	0.851852	0.857143	0.875	0.849057	0.857143	0.864407	0.921569
57	0.87931	0.890625	0.872727	0.901639	10.896552	0721311	0.852459	0.74	0.8	0.724138	0.741379	0.79661	0.766667	0.737705	0.898305
58	0.898305	0.924242	0.872727	0.919355	0.915254	0.818182	0.870968	0.833333	0.83871	0.806452	0.803279	0.836066	0.825397	0.777778	0.934426
59	0.875	0.869565	0.830508	0.895522	0.907692	0.692308	0.867647	0.703704	0.746032	0.714286	0.688525	0.761905	0.753846	0.645161	0.925373
80	0.857143	0.852941	0.830508	0.878788	0.907692	0.692308	0.850746	10.703704	0.765625	0.714286	0.688525	0.78125	0.772727	0.645161	0.909091
61	0.934783	0.942308	0.904762	0.9375	0.933333	0.872727	0.92	0.906977	0.833333	0.862745	0.86	0.829787	0.84	0.849057	0.934783
82	0．909091	0.881356	0.882353	0.912281	0.907407	0.696429	0.87931	0.816326	0.759259	0.698113	0.740741	0.8	0.745455	0.690909	0.928571
63	0.698413	0.603175	0.723806	0.666667	0.753846	0.797468	0.661538	0.84058	0.844156	0.833333	0.815789	0.826667	0848101	0.825	0.757576
84	0.912281	0.885246	0.865385	0.915254	0.929825	0.706897	0.883333	0.867925	0.722222	0.685185	0.75	0.692308	0.732143	0.654545	0.931035
65	0.897059	0.791045	0.857143	0.850746	0.911765	0.557377	0.80597	0.696429	0.698413	0.645101	0.616667	0.714286	0.707692	0.573771	0.897059
86	0.884058	0.797101	0.861538	0.855072	0.944444	0.548387	0.861111	0.684211	0.6875	0.612903	0.583333	0.703125	0.676923	0.564516	0.915493
67	0.884058	0.797101	0.861538	0.871429	0.929577	0.59375	0.828571	0.706897	0.707692	0.634921	0.629032	0.703125	0.69697	0.609375	0.915493
88	0.9	0.892308	0.894737	0.885246	0.898305	0.765625	0.890625	0.769231	0.719298	0.809524	0.766667	0．73684？	0.728814	0.677966	0.918033
69	0.661017	0.583333	0.689695	0.603448	0.741935	0.789474	0.622951	0.850746	0.821918	0.810811	0.791667	0.802817	0.826667	0.802632	0.746032
70	0.893939	0.871429	0.90625	0.880597	0.857143	0.464286	0.852941	0.685185	0.596491	0.535714	0.627119	0.637931	0.61017	0.559322	0.84127
71	0.913793	0．868852	0.928571	0.898305	0.949153	0.666667	0.885246	0.78	0.627451	0.690909	0.685185	0.673077	0641509	0.636364	0.894737
72	0.897059	0.826087	0.892308	0.884058	0.942857	0533333	0.823529	0.672727	0.655738	0.551724	0.616667	0.677131	0.666667	0.596774	0897059
73	0.901408	0.833333	0.880597	0.873239	0.945205	0.555556	0.830986	0.733333	0.650794	0.525424	0.612903	0.666667	0.640625	0.548387	0.901408
74	0.695652	0.588235	0.720588	0.647059	0.746479	0.77381	0.680556	0.842105	0.802469	0.807229	0.775	0.78481	0.807229	0785714	0.732394
75	0.888889	0.848485	0.864407	0.875	0.887097	0.797101	0.846154	0.847458	0.716667	0.784615	0.8	0.733333	0.725806	0.776119	0.852459
78	0.69697	0.606061	0.723077	0.646154	0.75	0.792683	0681159	0864865	0.822785	0.82716	0.794872	0.805195	0.82716	0.804878	0.735294
77	0.828125	0.734375	0.819672	0.758065	0.84375	0.666667	0.75	0.741379	0.633333	0.707692	0.68254	0.65	0.645161	0.701493	0.809524
78	0.704918	0.583333	0.711864	0.672131	0.741935	0.789474	0.645161	0.833333	0.821918	0.810811	0.791667	0.802817	0.826667	0.802632	0.765625
79	0.706897	0.714286	0.690909	0.716667	0.701754	0.826667	0.709677	0.859375	0.84507	0．849315	0.814286	0.842857	0.849315	0824324	0.728814
80	0.928571	0.9	0.903846	0.912281	0.907407	0.741379	0.898305	0.84	0.759259	0.745455	0.740741	0.77778	0.767857	0.736842	0.928571
81	0.951613	0.940298	0.931035	0.953125	0.967742	0.818182	0.923077	0.833333	0.83871	0.825397	0.822581	0．836066	0.825397	0.796875	0．984375
12	0.963636	0.967213	0.961538	0.982759	0.943396	0.90625	0.912281	0.921569	0.933333	0.9	0.934126	0.932203	0.935484	0.904762	0.944444
83	0.966102	0.969231	0.964286	0．983871	10.947368	0.878788	0.918033	0.907407	0.903226	0.870968	0.887097	0.919355	0.90625	0.859375	0.948276
84	0.854545	0.830508	0.846154	0.839286	0.912281	0.711864	0.827886	0.755102	0.75	0.690909	0685185	0.745455	0.758621	0.660714	0.894737
85	0.949153	0.920635	0．946429	0.933333	0.910714	0.706897	0.883333	0.75	0.789474	0.754386	0.703704	0.807018	0.79661	0.701754	0.912281
88	30	3，${ }^{3}$	亲呚		\％	36\％＊＊＊		3才＊＊＊＊	＊20＊＊＊	3＊＊＊	3	31	4	\％	48

	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	日E	BF	BG	BH
1															
2															
3															
4															
5.															
6															
7															
0															
9															
10															
11															
12															
13															
14															
15															
18															
17															
18															
19															
20															
21															
22															
23.															
24															
25															
28															
27															
28															
29															
30															
31															
32															
33															
34															
35															
36															
37															
38															
39															
40															
41															
42															
43															
44															
45	0														
48	0.683333	-													
47	0.2	0.672414	,												
48	0.8	0.673469	0.816326	0											
49	0.698113	0.52	0.686275	0.589744	0										
50	0.763636	0.568627	0.777778	0.578947	0.6875	0									
51	0.844444	0.76087	0.809524	0.48	0.657143	0.685714	0								
52	0.477273	0.736842	0.488372	0.738095	0.784314	0.673913	0.75	0							
53	0.522727	0.727273	0.463415	0.692308	0.723404	0.659091	0.612903	0.342857	0						
54	0.892857	0.735849	0.867925	0.736842	0.787234	0.634146	0.75	0.854167	0.767442	0					
55	0.941176	0.886792	0.916867	0.787879	0.886364	0.829268	0.814815	0.880952	0.846154	0.645161	0				
58	0.907407	0.857143	0.924528	0.783784	0.826087	0.895833	0.878788	0.893617	0.888889	0.72973	0.555556	0			
57	0.887097	0.745763	0.901639	0.77778	0.792453	0.74	0.825	0.872727	0.823529	0.459459	0.675676	0.578947	0		
58	0.904762	0.806452	0.936508	0.77778	0.814815	0.74	0.825	0.912281	0.888889	0.575	0.833333	0.772727	0.545455	0	
59	0.865672	0.672131	0.861538	0.784314	0.732143	0.653846	0.826087	0.85	0.824561	0.666667	0.808511	0.803922	0.634615	0.456522	0
80	0.848485	0.672131	0.84375	0.784314	0.732143	10.627451	0.826087	0.830508	0.803571	0.608696	0.782609	0.803922	0.607843	0.422222	0.142857
81	0.918367	0.816326	0.9375	0.852941	0.857143	0.906977	0.892857	0.954545	0.952381	0.921053	1	1	0.909091	0.8	0.829787
62	0.896552	0.673077	0.872727	0.717949	0.688889	0.816326	0.764706	0.924528	0.9	0.790698	0.9	0.886364	0.795918	0.744681	0.705882
63	0.634921	0.802632	0.645161	0.909091	0.826087	0.873239	0.933333	0.765625	0.777778	0.942857	0.952381	0.907692	0.890411	0.890411	0.810811
84	0.9	0.709091	0.877193	0.761905	0.702128	0.75	0.871795	0.946429	0.903846	0.851064	0.878049	0.9375	0.826923	0.78	0.716981
85	0.838235	0.526316	0.796875	0.773585	0.701754	0.696429	0.86	0.857143	0.793103	0.803571	0.907407	0.877193	0.766667	0.745763	0.627119
66.	0.826087	0.491228	0.784615	0.824561	0.711864	0.706897	0.886792	0.84375	0.8	0.745455	0.910714	0.9	0.733333	0.733333	0.639344
67	0.842857	0.566667	0.80303	0.803571	0.689655	0.684211	0.865385	0.861538	10.819672	0.767857	0.929825	0.918033	0.774194	0.711864	0.616667
68	0.870968	0.706897	0.903226	0.727273	0.773585	0.745098	0.857143	0.875	10.890909	0.765957	0.863636	0.829787	0.72549	0.617021	0.530612
69	0.54386	0.794521	0.603448	0.904762	0.818182	0.867647	0.929825	0.74194	0.766667	0.924242	0.95	0.920635	0.852941	0.852941	0.802817
70	0.884058	0.561404	0.880597	0.764706	0.690909	0.754386	0.877551	0.888889	0.885246	0.859649	10.86	0.872727	0.79661	0.819672	0.661017
71	0.883333	0.666667	0.839286	0.767442	0.680851	0.729167	0.846154	0.909091	0.862745	0.75	0.880952	0.916667	0.830189	0.784314	0.767857
72	0.871429	0.551724	0.815385	0.818182	0.678571	0.719298	086	0.875	0.833333	0.781818	0.886792	0.877193	0.766667	0.766667	0.603448
73	0.876712	0.55	0.823529	0.827586	0.737705	0.666667	0.867925	0880597	0.822981	0.703704	0.872727	0.919335	0.737705	0.694915	0645161
74	0.597015	0.777778	0.626866	0.90411	0.844156	0.842105	0.925373	0.73913	0.75	0.906667	0.957747	0.946667	08875	0.844156	0.769231
75.	0.84375	0.80303	0.819672	0.8	0.767857	0.785714	0.869565	0.901639	0.859649	0.76	0.92	0.946429	0.810345	0.767857	0689655
76	0615385	0.797468	0.646154	0898551	0.851351	0.864865	0.920635	0.761194	0.77727	0.931507	0.955224	0.958333	0.924051	0.881579	0789474
77	0.746032	0.6875	0.737705	0.818182	0.701754	0783333	0.882353	0.857143	0.793103	0.803571	0.946429	0.857143	0.806452	0.806452	0.734375
78	0.616667	0.777778	0.627119	0.904762	08	0.884058	0.910714	0.774194	0.766667	0.940298	0.95	0.920635	0.885714	0.869565	0768116
78	0.683333	0.782609	0.737705	0.87931	0.825397	0.876923	0.944444	0.819672	0.852459	0.919355	0.964912	10.896552	0.84375	0.806452	0.77727
80	0.915254	0.722222	0.931035	0.837209	0.82	0862745	0.894737	0.982143	0.942308	0.818182	0.952381	0.860465	0.744681	0.744681	0.754717
01	0.938462	0.825397	0.953125	0.829787	0.836364	0811321	0.880952	0.966667	0.947368	0.8125	0.833333	0.875	0.72	0.608696	0.685185
82	0.966102	0.952381	0.982759	0853659	0.923077	0.942308	0.885714	0.941176	0.938776	0.804878	0.794118	0.820513	0.782609	0.634146	0764706
83	0.968254	0.90625	0.983871	0.813954	0.909091	0.907407	0.868421	0.945455	0.943396	0.738095	0.815789	0.837209	0.75	0.604651	0.735849
Q4	0.824561	0.666667	0.839286	0.847826	0.784314	0755102	0.928571	0.867925	0.84	0.804348	0931818	0.916667	0.807692	0.734694	0.647059
65	0.935484	0.732143	0.933333	0.84444	0.826923	0.823529	0.9	0.946429	0.924528	0.8	0.878049	0.891304	0.755102	0.729167	0.692308
06	45	46	, 7	$4 \times$	42	S60	3	5	33	3	\$3	8	37	${ }_{3}$	59

	BI	E	EK	BL	BM	BN	Bo	BP	BQ	BR	BS	BT	BU	BV	BW
1															
2															
3															
4															
5															
8															
7															
θ															
\bigcirc															
10															
11															
12															
13															
14															
45															
18															
17															
18															
19															
20															
21.															
22															
23															
24															
25															
28															
27															
28															
29.															
30															
31															
32															
33															
34															
35															
38															
37															
38															
39															
40															
41															
42															
43															
4															
45															
48															
47															
48															
48															
50															
51															
52															
53															
54															
55															
58															
57															
58															
59															
B0	0														
61	0.829787	0													
62	0.68	0.69697	0												
63	0.810811	0.898305	0.793651	,											
64	0.716981	0.59375	0.6	0.818182	0										
85	0.603448	0.765957	0.5625	0.71831	0.607843	0									
68	0.59322	0.75	0.55102	0.690141	0.648148	0.313725	0								
67	0.59322	0.723404	0.55102	0.708333	0.54	0.28	0.204082	0							
68	0.56	0.675676	0.666667	0.84507	0.652174	0.636364	0.672414	0.649123	,						
69	0.768116	0.851852	0.741379	0.333333	0.770492	0.686567	0.656716	0.676471	0.820896	0					
70	0.683333	0.782609	0.686275	0.844156	0.673077	0.586207	0.6	0.622951	0.648148	0.821918	0				
71	0.722222	0.820513	0.642857	0.838235	0.627907	0.56	0.576923	0.603774	0.659575	0.793651	0.653846				
72	0.603448	0.816326	0.62	0.77027	0.634615	0.352941	0.37738	0.377358	0.684211	0.742857	0.481481	0.5	0		
73	0.6	0.826923	0.641509	0.794872	0.603774	0.358491	0.320755	0.351852	0.7	0.753425	0.534483	0.5	0.26	0	
74	0.753247	0.876923	0.8	0.441176	0.805556	0.697368	0.671053	0.653333	0.815789	0.415385	0.802469	0.791667	0.746839	0.740741	0
75	0.689653	0.822222	0.769231	0.805556	0.653061	0.704918	0.734375	0.672131	0.703704	0.797101	0.737705	0.574468	0.704918	0.633333	0.676056
78	0.789474	0887097	0.80597	0.40625	0.828571	0.716216	0.706667	0.706667	0.805556	0.403226	0.822785	0.779412	0.75	0.759494	0.225806
77	0.734375	0.884615	0.767857	0.736111	0.732143	0.6	0.676923	0.65625	0.75	0.705882	0.71875	0.56	0.645161	0.619048	0.625
78	0.785714	0.872727	0.741379	0.272727	0.790323	0.724638	0.695652	0.714286	0.820896	0.327273	0.821918	0.830769	0.742857	0.77027	0.439394
79	0.772727	0.816326	0.745455	0.483333	0.79661	0.782609	0.735294	0.753623	0.728814	0.508475	0.828571	0.83871	0.816901	0.824324	0.565217
80	0.754717	0.735294	0.65	0.830769	0.697674	0.673077	0.709091	0.685185	0.571429	0.803279	0.711538	0.575	0.673077	0.690909	0.816901
81	0.685185	0.769231	0.717391	0.859155	0.673913	0.724138	0.733333	0.666667	0.522727	0.838821	0.758621	0.708333	0.724138	0.716667	0.873418
82	0.74	0.75	0.813954	0.942029	0.738095	0.862069	0.885246	0.847458	0.642857	0.90625	0.792453	0.826087	0.842105	0.810345	10.905405
83	0.711538	0.777778	0.77778	10.915493	0.733333	0.833333	0.819672	0.8	0.613636	0.878788	0.763636	0.765957	0.813559	0.741379	0.881579
04	0.62	0.685714	0.609756	0.725806	0.595238	0.434783	0.458333	0.458333	0.630435	0.666667	0.703704	0.636364	0.530612	0.529412	0.720588
85	0.692308	0.75	0.697674	0.869565	0.73913	0.634615	0.648148	0.648148	0.55814	0.846154	0.62	0.659091	0.58	0.576923	0.853333
86	23,	61	㜢	63	$4{ }^{4}$	S	66	6	A	65	$2{ }^{2}$	2	27	23	7

	BX	BY	B2	CA	CB	CC	CD	CE	CF	CG	CH
1											
2											
3											
4											
5											
8											
7											
8											
8											
10											
11											
12											
13											
14											
15											
18											
17											
18											
18											
20											
21											
22											
23											
24											
25											
28											
27											
28											
29											
30											
31											
32											
33											
34.											
35											
38											
37											
38											
39											
40											
41											
42											
43											
4.											
45											
46											
47											
48											
49											
50											
51											
52											
53											
54											
55											
56.											
57											
58											
59											
80											
61											
62											
63											
84											
85											
66											
87											
68											
89											
70											
71											
72											
73											
74											
75	0						-				
78	0.695652	0									
77	0.42	0.642857	0								
78.	0.742424	0.377049	0.686567	0							
79	0.784615	0.515625	0.727273	0.4	0						
80	0.693878	0.80597	0.673077	0.783333	0.745455	0					
81	0.722222	0.866667	0.786885	0.835821	0.806452	0.560976	0				
82	0.755102	0.915493	0.842105	0.90625	0.821429	0.692308	0.564103	0			
83	0.7	0.890411	0.77193	10.878788	0.793103	0.625	0.571429	0.142857	0		
84	0.711538	0.742424	0.690909	0.711864	0.779661	0.674419	0.680851	0.826087	0.791667	,	
85	0.705882	0.84507	0.732143	0.828125	0.775862	0.444444	0.581395	0.641026	0.609756	0.659091	10
88	75	\%	\% \%****		79	06	8i*	紋	83.	\% ${ }^{2}$	H3.

[^0]: \dagger : The vector of all MB probes listed is the plasmid pBR322, which carries genes for tetracycline and ampicilin resistance, and is 4363 bp in length. Pst I digests of this plasmid are tetracycline resistant; the bacterial host is probably DH5 α, a strain of Escherichia coli.

 NB: Probes MB3, MB4, MB11 and MB12 were not available at the time of the cpDNA survey.

[^1]: * Number of independent bands scored over all taxa.

[^2]: *: Band identification in each pairwise comparison is presented in an 'accession - fragment size - primer' fashion.
 t : Codes for restriction profiles: $A=$ ambiguous results due to small size of the RAPD fragment tested for homology; $C=$ congruent restriction site profiles for a particular pairwise combination; $I=$ incongruent restriction site profiles for a particular pairwise combination.
 $\ddagger: H=$ Homology; $\checkmark=$ congruent restriction profiles for at least two of the three restriction enzymes used.

[^3]: *: Band identification in each pairwise comparison is presented in an 'accession - fragment size - primer' fashion.
 t: Codes for restriction profiles: $\mathrm{A}=$ ambiguous results due to small size of the RAPD fragment tested for homology; $\mathrm{C}=$ congruent restriction site profiles for a particular pairwise combination; $\mathrm{I}=$ incongruent restriction site profiles for a particular pairwise combination.

