
 

 

 
MODELLING COMMUTERS' MODE CHOICE IN 

SCOTLAND 
 

Arne Risa Hole 
 

A Thesis Submitted for the Degree of PhD 
at the 

University of St Andrews 
 
 

  

2005 

Full metadata for this item is available in                                                                           
St Andrews Research Repository 

at: 
http://research-repository.st-andrews.ac.uk/ 

 
 
 

Please use this identifier to cite or link to this item: 
http://hdl.handle.net/10023/14115     

 
 

 
 

This item is protected by original copyright 

 

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/14115


MODELLING COMMUTERS’ 

MODE CHOICE IN SCOTLAND

Ame Risa Hole

Thesis submitted for the degree of

Ph.D.

In Economics and Geography at the 

University of St. Andrews

July 2004

(Revised December 2004)

: - -

V



ProQuest N um ber: 10170959

All rights reserved

INFORMATION TO ALL USERS 
The qua lity  of this reproduction  is d e p e n d e n t upon the qua lity  of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te  m anuscrip t 
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te  will ind ica te  the de le tion .

uest
ProQuest 10170959

Published by ProQuest LLO (2017). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform  Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 4 81 06 - 1346



r L .
Æ 7 9 9



Abstract

This thesis contributes to the literature on the choice of transport mode for commuting |
5

• • '"iitrips, with special focus on the difforence between urban and rural commuting in $

Scotland. The thesis begins by giving an overview of discrete choice theory and some 

empirical models consistent with this theoiy, before reviewing the literature on 

empirical applications of mode choice models for commuting trips. In the following, 

multinomial, nested and mixed logit models using data from a survey of commuters in 

the University of St Andrews are developed. The models are used to estimate 

aggregate mode-choice elasticities that can assist the development of efficient car 

reduction policies in St Andrews and other small towns in rural areas. The direct 

elasticities of the car mode are found to be comparable to estimates reported in studies 

of urban commuting, while the demand for public transport is found to be 

considerably more elastic. The value of in-vehicle travel time is found to be lower 

than in most studies of urban commuting, reflecting that the roads in the St Andrews 

area are relatively uncongested. Subsequently, current car drivers’ willingness to use a 

Park and Ride service prior to the implementation of such a service are examined. The 

results show that the modal shift away from parking on-site will be small unless the 

new seivice is accompanied by measures aimed at making parking on-site less 

attractive such as introducing parking charges. Finally, the effect of the ‘compact city’ 

on modal split and congestion are examined. As well as making urban transport more 

sustainable as a result of an increase in the use of public transport, making cities more 

compact is found to contribute to lower levels of congestion in urban areas through a 

reduction in complex trip chains.
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Chapter 1

Introduction

Increasing levels of congestion in urban areas as well as a growing recognition of the 

adverse environmental impacts of increased growth in traffic led to a rethinking of 

UK transport policy in the 1990s (Goodwin, 1999). As it became increasingly 

apparent that new road programmes could not keep up with the forecasted increase in 

the demand for travel by car, supply management (or ‘predict and provide’) was 

replaced by demand management as the dominant policy position in the UK. This 

position was manifested by the 1998 White Paper on transport (DETR, 1998), which 

emphasised the importance of encouraging the use of more environmentally friendly 

modes of transport (public transport, walking and cycling), as well as discouraging the 

use of the private car. The then Secretary of State for Transport, John Prescott, 

famously proclaimed that:



I will have failed if in five years’ time there are not many more people using 

public transport and far fewer journeys by car. It’s a tall order but I urge you to 

hold me to it.

Although there has been some progress in achieving an increase in the use of 

public transport (figure 1.1), few policies aimed at discouraging the use of the private 

car have been implemented, with the notable exception of the London congestion- 

charging scheme. Indeed, one change in policy has done exactly the opposite: the fiiel 

tax escalator (the annual 6% increase in the tax on fuel above inflation which was 

introduced by the government at the advise of the Royal Commission on 

Environmental Pollution) was abandoned in 2000, and later in the same year the 

government actually lowered the fuel tax as a result of growing unrest among 

motorists, contrary to the advice of transport specialists (Begg, 2001). Although the 

price of petrol has been increasmg over the past decade, the total cost of motoring* 

has declined, while the cost of travelling by public transport has increased 

substantially (figure 1.2). As a consequence of the lack of measures aimed at reducing 

driving, car use has continued to increase (figure 1.3). In terras of modal split for 

work trips, the lack of policies in place to discourage car use has led to an increase in 

the share of work trips undertaken by cai" over the past decade (figure 1.4).

The total cost of motoring includes purchase, maintenance, petrol and oil, and tax and insurance costs.
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Figure 1.1 Passenger travel by public transport in billions of passenger 

kilometres (source: DfT, 2004)

^

Bus and coach 
Rail

. f '
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(source: DfT, 2004)

200.0

175.0

150.0

125.0

100.0

 Disposable Income

■ -  Rail fares

•Bus and coach 
fares
Petrol/oil 

•All motoring



Figure 1.3 Passenger travel by car, van and taxi in billions of passenger 

kilometres (source: DfT, 2004)

Figure 1.3 Main mode of travel to work -  percentage of trips 

(source: DfT, 2004)
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This thesis contributes to the literature on the choice of transport mode for work trips, 

with special focus on the difference between urban and rural commuting in Scotland? 

Rural commuting differs from urban commuting in several important respects: there is 

little or no road congestion, a parking space is usually provided free by the employer 

and the supply of convenient public transport is often limited. As a result a high share 

of rur al commuters will depend on the private cai’ to get to their workplace. An 

important consequence of these differences is that car reduction policies designed for 

large cities witli ample public transport may be unsuitable for smaller towns. 

Relatively little research has been done on commuting in rural areas, however, and the 

present thesis contributes to filling this gap in the literature. The data used for the 

analysis include original data collected by the author on staff commuting in the 

University of St Andr ews, as well as data from the Scottish Household Survey Travel 

Diary. To the author’s knowledge the latter dataset has not been used previously to 

explore the difference between rural and urban commuting. It should be noted the 

analysis focuses on the demand for transport, and that in line with the majority of the 

literature on commuters’ mode choice supply-side characteristics ar e assumed to be 

exogenously given. Further, the thesis does not form the whole of an analysis that 

aims to evaluate changes in consumer welfare arising from the various

“ In spite of the fact that the recently established Scottish Parliament has legislative control over most 
aspects of transport in Scotland, the development of transport policy in Scotland has been similar to 
that in the rest of the UK (Smyth, 2003). As Westminster is still responsible for UK fiscal policy, 
however, the flexibility of introducing ‘Scotland specific’ transport policies is somewhat limited.



policies discussed, as this analysis would also have to take the costs of implementing 

the policies into account.

The structure of the thesis is as follows:

The thesis starts by giving an overview of microeconomic choice theoiy, with focus 

on the random utility model and the theory of time allocation that underpins the 

empirical models of discrete choice analysis (chapter 2). Chapter 2 also presents some 

of the criticisms raised by behavioural scientists against the microeconomic model.

Chapter 3 presents the empirical methodology used for modelling discrete 

choices, with emphasis on the multinomial logit, nested logit and mixed logit models. 

Some basic hypothesis tests and specification criteria as well as standard procedures 

for deriving aggregate predictions from disaggregate models are also discussed.

Chapter 4 describes the benefits and drawbacks of stated and revealed 

preference data, which are the two data types most commonly used for travel demand 

analysis. I describe tests for two phenomena that may arise when using stated 

preference data (fatigue/ learning effects and the repeated measurements problem) as 

well as some ways to combine revealed and stated preference data to obtain more 

robust estimates of the model coefficients.

Chapter 5 provides a comprehensive literature review of studies modelling 

commuters’ mode choice. The chapter starts by reviewing McFadden’s (1974, 1978) 

seminal work on commuting in the San Francisco Bay Area and goes on to discuss 

more recent contributions to the literature.

As mentioned above, car reduction policies designed for large cities with 

ample public transport may be unsuitable for smaller towns. In particular, pricing



policies designed to encourage public transport use may be less effective, as 

commuters with no convenient substitute to driving will be unable to switch. Chapter 

6 develops multinomial, nested and mixed logit models using data from a survey of 

commuters in the University of St Andrews. The models are used to estimate 

aggregate mode-choice elasticities that can assist the development of car reduction 

policies in St Andrews and other small towns in rural areas. The direct elasticities of 

the car mode are found to be comparable to the estimates reported in studies of urban 

commuting, while the demand for public transport is found to be considerably more 

elastic. Although this is partially a result of the fact that bus has a substantially lower 

market share in St Andrews compared to larger towns and cities, the finding 

nevertheless indicates that there is scope for increased use of public transport for 

commuting in St Andrews and other small towns in rural locations. The value of in- 

vehicle travel time is found to be lower than in most studies of urban commuting, 

reflecting that the roads in the St Andrews area are relatively uncongested. The value 

of walking time is found to be about 7-8 times higher than the value of in-vehicle 

time, while the value of cycling time is about 60-80% of the value of walking time.

Travel plans are an important tool in making transport more sustainable at 

workplaces in the UK. One of the measures that can be taken by employers in order to 

reduce the need for employees to take their cars to the workplace is setting up a Park 

and Ride service. Chapter 8 examines current car drivers’ willingness to switch to 

Park and Ride prior to the implementation of such a service. Since there will be no 

revealed preference (RP) data available in this case, data derived from a stated 

preference (SP) experiment are used to calibrate the models. The models are 

subsequently used to forecast the demand for Park and Ride. Since it is well known 

that SP data contain sources of variation not present in RP data, special attention is



paid to the scaling of the SP model. The results show that the modal shift away from 

parking on-site will be small unless the new service is accompanied by measures 

aimed at making parking on-site less attractive such as introducing parking charges.

One of the often-cited benefits of the ‘compact city’ is that it offers the 

potential for developing an efficient public transport system, which in turn encourages 

commuters to travel by public transport. In chapter 9 I argue that a potential second 

benefit of making cities more compact is a reduction in peak hour congestion on 

urban roads. Since urban dwellers are expected to be less likely to link non-work 

activities to the commute than those who live outside the city and commute to the city 

to work as the gain fiom trip chaining is lower for those living close to facilities, 

urban residents contribute relatively less to peak hour congestion. This is confirmed 

by the modelling results: as well as making urban transport more sustainable as a 

result of the increased use of public transport, making cities more compact is found to 

contribute to lower levels of congestion in urban ar eas, since the reduction in complex 

trip chains implies that fewer trips will be undertaken during peak hours.

Finally, Chapter 10 offers some concluding remarks.



Chapter 2

Choice Theory

In this chapter the theoretical foundations of disaggregate travel demand models are 

discussed. Although the focus of this section will be on mode choice, the theories 

outlined in section 2.1 and 2.2 can be applied to all types of travel-related choices 

such as the choice of whether or not to make a trip, departure time and travel route. 

Section 2.1 provides an overview of economic choice theory, section 2.2 outlines the 

structure of the random utility model that underlies the specification of the empirical 

models described in chapter 3, while section 2.3 discusses the relationship between 

conventional microeconomic consumer theory and random utility models. Section 4 

gives an overview of some of the criticism raised by behavioural scientists against the 

standard model outlined in the first three sections.



2.1 An outline of economic choice theory

The theoretical foundation of disaggregate travel demand models has its roots in 

Lancaster’s (1966) microeconomic theory of consumer demand and the Random 

Utility Theory developed by Thurstone (1927), Marschak (1960) and McFadden 

(1973). In his theoiy, Lancaster postulated that the demand for goods depends on the 

characteristics or attributes of the goods rather than the goods per se. The basic 

structure of a random utility model is outlined in section 2.2.

Figure 2.1 illustrates the choice process. The individual receives information 

about the alternatives in a choice context (for instance the modes available for the 

work-trip) and processes the information to form perceptions of the attributes of the 

alternatives. The individual is assumed to have perfect information about the 

attributes and attribute levels that are relevant for each alternative available. Given her 

perceptions of the attributes the individual is assumed to behave as if she translates 

tins information into a utility index based on her preferences and chooses the 

alternative with the highest utility given financial and time constraints. Since a 

satisfactoiy level of one attribute can compensate an unsatisfactory level of another 

attribute this type of behaviour is called “compensatory”. Not all alternatives will be 

available to all individuals since each individual faces time and income constraints 

(such that a particularly slow or costly mode may not a feasible option) as well as 

socio-demogiaphic constraints (for instance the individual’s car ownership level can 

restrict her from using the private car).

The individuals’ preferences are assumed to be stable and iimate, but the way 

preferences are expressed in a choice situation can change with experience. An

10



important consequence of this assumption is the “consumer sovereignty” propeity 

which states that preferences do not depend on the alternatives available in a given 

choice situation. In other words “desirability precedes availability” (McFadden, 

2001). The individual’s perceptions and beliefs about the alternative attributes are 

modified tlnough experience. The influence of experience on choice behaviour, 

however, is not usually incorporated in applied models of discrete choice due to 

demanding data requirements. In order to investigate how experience influences 

choice behaviour several obseiwations per individual at different points in time are 

required. Experience is not likely to play a role in a stated preference experiment (see 

chapter 4) where repeated choices are made because of the short time span between 

the choice tasks performed (note that experience is not the same as the learning effect 

discussed in chapter 4, since this is related to learning in the experimental setting and 

thus not relevant to actual choice behaviour).

Both the strength and the weakness of the standard economic model lie in its 

simplicity. The strength of the model is that it is straightforward to make operational 

and thus it is veiy useful as a practical tool in travel demand analysis. It is also 

successful in explaining and predicting many types of market behaviour. On the other 

hand there is much behavioural evidence suggesting that people in many situations do 

not behave m a way which is consistent with the model. This seems to particularly be 

the case in hypothetical choice situations, but also under some market conditions 

(McFadden, 1999). As a result of this evidence many behavioural economists and 

psychologists claim that the assumptions made in the standard economic model are 

umealistic. We will discuss some of the criticisms raised against the standard 

economic model in section 2.4.

11



Figure 2.1. The choice process

Information
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Source; McFadden (2001)

2.2 Random utility theory

The random utility theoiy developed by Thurstone (1927), Marschak (1960) and 

McFadden (1973) is the theoretical cornerstone of disaggregate travel demand 

models. The difference between random utility theory and conventional 

microeconomic consumer theoiy is that the researcher is assumed to have incomplete 

information about the factors that influence the individuals’ choices. As a result the 

choice outcome is probabilistic, or random, rather than deterministic as in the 

conventional theory of consumer behaviour. The basic structure of the random utility 

model is outlined below. For a more complete overview of the random utility model 

see Ben-Akiva and Lerman (1985) or Train (2003).

12



Let U„i be the utility individual n derives from choosing tiansport mode i} 

The individual is assumed to choose the mode that maximises her utility from a set of 

J  alternatives. Fuithermore it is assumed that the utility C/„,. can be partitioned into a

systematic component or “representative utility”, F„f, and a random component, 

Hence, utility is given by:

(2.1)

The representative utility F,„, is a function of the attributes of mode i and the 

individual’s obsei-vable socio-demographic characteristics, while e„, represents 

characteristics and attributes unknown to the researcher, measurement error and/or 

heterogeneity of tastes in the sample. Since the unknown variable, is treated as 

random by the researcher, this class of utility models is called random utility models. 

Note that the individual does not maximise utility in a random manner, the 

randonmess occurs because the researcher cannot accurately observe all the variables 

that influence the individual’s choice.

From the researcher’s point of view, however, the maximization process is 

random and therefore probabilistic rather than deterministic. Specifically, the 

probability that individual n chooses mode i rather than mode j  is the probability that 

the utility of choosing i is higher than the utility of choosingy:

F,, >C/^)

= P{s„j -  g,, < F„, -  V„j ) (2.2)

U„i is the indirect utility function, rather than the direct utility function (see section 2,3),

13



Denoting the joint densitiy function of the random terms by/(£ ’„), the 

probability that alternative i is chosen is given by:

-e„, < V„,-V„j)f(s„)ds„ (2.3)

where /(*) equals 1 when the expression in parenthesis is true and 0 otherwise. Hence 

the probability of choosing alternative i depends on the distribution of the random 

terms, and different choice models arise from different assumptions regarding this 

distribution.

In chapter 3 some of the econometric models consistent with the random 

utility theory are presented. The following section takes a closer look at the 

microeconomic theory underlying the specification of the representative utility 

function in discrete choice models.

2.3 Time allocation and the value of time

Since ti avel is essentially a time consuming activity the choice of transport mode can 

be incorporated into the more general microeconomic theory of time allocation. The 

inclusion of time in the consumers’ maximisation problem was originally motivated 

by the need to understand the supply side of the labour market, which can be viewed 

as the individuals’ choice between working and spending time on leisure. Becker 

(1965) was the first to introduce time as a central component in a model of consumer 

behaviour with later important contributions by DeSerpa (1972) and Evans (1972). In 

the transport field the goods/ leisure framework introduced by Becker has been used 

to develop operational models to give a sound theoretical foundation to empirical

14



discrete choice models (Train and McFadden, 1978; Troung and Hensher, 1985; 

Bates, 1987; Jara-Diaz and Faiah, 1987; Jara-Diaz and Videla, 1989 and Jara-Diaz 

and Guevara, 2003).

We will pay particular attention to the contributions by Train and McFadden 

(1978), and Jara-Diaz and Farah (1987) since they have become the standard 

departure for the specification of representative utility in applied mode choice 

modelling. In Train and McFadden (1978) the individuals are assumed to maximise 

their utility by choosing an optimal level of goods consumption and time spent on 

leisure subject to time and budget constraints. Since income depends on the time spent 

working, the individual must trade off time spent on leisure with consumption 

according to her preferences. Formally, this maximisation problem can be written as: 

Max U{G,L) (2.4)

subject to

G = V + wW -  Cf (2.5)

L ^ T - W - t ^  (2.6)

where G is the value of the goods consumed (assuming that the price index is constant 

and noimalised to 1), X is the time spent on leisure, V is non-labour income, w is the 

wage rate, W is the time spent working, T the total time budget and c, and U the cost 

and time spent commuting by mode i respectively. Since both G and L can be 

expressed as a function of W, utility can be restated as a function of the variables that 

are assumed to be under the individuals control: the amount of time spent working 

and the choice of tiansport mode (the individual is assumed to have no influence over 

non-labour income, the wage rate and the total time budget, so V, w and T  are 

exogenous). This maximisation problem can then be solved in two steps: first the

15



individual decides on the optimal level of W conditional on the mode of transport, and 

subsequently the mode of tiansport that maximises utility given the conditional 

demand for working time. The maximisation problem can then be restated as follows: 

M ax{M ^ U[G{W, c, ), L{W, t, )]} (2.7)

Maximising U with respect to W yields the demand for working time conditional 

on mode choice, lT*(C/,t,). By substituting W*{Ci,td back into (2.7), the conditional 

indirect utility function is obtained:

G, =[/{G[(fF*(c„X),cJ,X[Pr*(c,/,) ,/,]}  (2.8)

Denoting the set of available modes by J, the mode j  e J  which maximises Uj is 

chosen by the individual. Train and McFadden present three functional forms of the 

utility, showing in each case how they lead to different forms of the indirect utility 

function. Here only the more general functional form, the Cobb-Douglas function, 

will be presented. In this case utility is given hy U -  KG^~^L^ where K is a constant. 

Solving the utility maximising problem conditional on mode choice yields:

+ (2.9)

which is the conditional indirect utility function, corresponding to (2.7) in the general 

case. Since only the variables associated with the alternatives (cost and time) will 

influence mode choice, this function can be rewritten by omitting the terms that aie 

constant across modes:

Ü  = (2.10)

which is what Jara-Diaz (1998) calls the truncated conditional indirect utility 

Junction. It can easily seen from (2.10) that if 0<y^<l ,  the teim in the square

brackets is -  , when ,0 = 0 it is — c, — w/,, and when p  — \ it is
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— — These functional forms can then be adopted when specifying the 
w

representative utility function, Vi, in order to be consistent with utility maximising 

behaviour. Train and McFadden point out the choice of yfi? is an empirical issue, and 

hence recommend testing the various specifications consistent with different values of 

p. Most applied work, however, has settled for the cost over wage specification of the 

representative utility function (Jara-Dlaz, 1998).^

Jara-Diaz and Farali (1987) argue that a drawback of Train and McFadden’s 

model is that the time spent working, W, cannot necessarily be realistically assumed to 

be an endogenous variable, as many individuals have fixed working schedules with 

little or no possibility of working longer hours. They therefore rephrase the 

maximisation problem (2.4) -  (2.6) as follows:

Max U{G,L) (2.11)

subject to

G = I~Ci  (2.12)

L = T ~ W ~ t .  (2.13)

where I  is the income earned by working a fixed number of hours (W) (non-laboui* 

income V has been dropped for simplicity). Since working time is fixed in this case, 

the conditional representative utility function can be obtained directly by substituting 

the constiaints into the utility function:

U,=K{I-c,y->’( T - W - t y  (2.14)

" Since data on wages is usually not available it is customary to specify the variable as cost over 
income, where income is a proxy for the wage rate.
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Since (2.14) is non-linear in cost and time, however, it is not very helpful for model 

specification. If utility is approximated to a first order Taylor expansion around (I,T- 

W), replacement of G and L yields (Jara-Diaz and Ortuzar, 1989):

(2.15)
/

In this case the tmncated conditional indirect utility function can be written:

â , = - g ( l - A— (2.16)
g

where, g  is an expenditure rate l t { T -W )  and 9 is Kg^~^. This implies a 

specification of the representative utility function which is similar to the cost over 

wage specification derived by Train and McFadden, only that the wage rate in the 

latter is replaced by the expenditure rate, g. Jara-Diaz and Ortuzar (1989) compares 

the wage rate and expenditure rate specifications using data on commuters in 

Santiago, Chile, and finds that the expenditure rate specification results in the superior 

model fit.

Equations (2.15) and (2.16) are only valid representations of (2.14) if the 

conditional representative utility function can be sufficiently closely approximated by 

a first-order Taylor expansion. As pointed out by Jara-Diaz (1998), it may be that a 

second order expansion results in a better approximation. In this case the truncated 

conditional representative utility function is given by (Jaia-Diaz, 1998):

u, + le i3( \ - P ) { S , .- s ,y p — t,) (2.17)
g 2 g

c ^where Sj and St is the share of income | - j and fiee time f —- —  I spent on

commuting respectively. This expression has a number of interesting implications.
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Firstly, if either Sj or St are significantly different from zero, a second-order 

approximation to (2.14) is appropriate (it can easily be seen that 2.17 reduces to 2.16 

when S.J. ~ S j =0),  Secondly, it can be seen that if Sj and/or St are significantly 

different from zero, second order terms in travel time, travel cost or both should be 

included in the specifiation of the representative utility function (Jara-Diaz, 1998). 

Jara-Diaz and Videla (1989) point out that the second order term in cost represents an 

income effect, or that the marginal utility of income is a decreasing function of 

transport costs. Intuitively, this effect reflects that when travel costs increase, income 

falls and, given that travel costs represent a non-trivial proportion of overall income, 

an additional unit of income becomes more valuable to the individual.

It should be clear from the preceding discussion that theoretical analysis alone 

cannot determine wliich foim of the representative utility function is the most 

appropriate, and that it is necessary to test various functional forms before 

determining which specification of model is preferred, based on various model 

specification criteria such as data fit (see chapter 3) and whether the sign of the 

coefficient estimates are logical. To the extent that the data allows it, the results of this 

discussion will be taken into account when specifying the models in the empirical 

sections of the thesis.

Apart from model specification, the theoretical literature on travel demand 

analysis has focused extensively on the derivation of the subjective value of time 

{SVOT), which is given by the rate of substitution between the time and cost of 

travelling by mode / (Jara-Diaz and Ortuzar, 1989):

dc,
dt: (2 .18)
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Using equation (2.18) it is easy to see that the value of time in Train and 

McFadden (1978) is given by:

In other words the subjective value of time equals the wage rate. This result is rarely 

supported by empirical evidence, and Train and McFadden show how to generalize 

their model to include time and cost specific coefficients, such that SVOT equals the 

ratio of the coefficients times the wage rate:

where y, and are the coefficients for time and cost, respectively. In this case it is

yeasy to see that —  represents SVOT as a percentage of income {SVOT/ w). This
To

result has been widely used in empirical analysis.

In Jara-Diaz and Farah (1987), the value of time is given by:

An interesting implication of equation (2.21) is that the value of time is a decreasing 

function of travel costs, and an increasing function of travel time. Operationally, this 

effect can be captured by entering second order terms in the representative utility 

function as implied by equation (2.17). As pointed out by Jara-Diaz and Videla (1989) 

the negative relationship between SVOT and transport costs reflects that the marginal 

utility of income decreases with transport costs. The positive relationship between 

SVOT and time, on the other hand, reflects that as travel times increase, the time spent 

on leisure falls and hence leisure time becomes more valuable. It should be pointed 

out that it is possible from a behavioural point of view that an increase in travel times
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from, say, 5 to 10 minutes, is perceived to be more costly, than an increase from 30 to 

35 minutes. This result is not consistent with the utility maximising model, however. 

The issue of model specification and value of time estimation will be discussed 

further in the empirical applications in chapters 6  and 7.

2.4 Behavioural criticism of the standard model.^

As mentioned in section 2.1 the standard model has been met by much criticism, 

particularly from behavioural psychologists who have shown that several of the 

assumptions of the model are not supported by experimental evidence. One of the 

criticisms raised is that the assumption that individuals have perfect information is not 

likely to hold in many cfrcumstances. Simon (1955) was the first to argue that if 

collection of information is costly individuals are likely to collect information on 

alternatives only up until the point where the added benefit of collecting more 

information (the possibility of finding a better alternative) outweighs the cost of 

collecting the infoimation. Thus the information collection stops when a satisfactoiy 

alternative is found. There are several claims in the literature that individuals use such 

simplified decision rules, or “heuristics”, when making their choices. In the 

“elimination by aspects” theory (Tversky, 1972) individuals are assumed to focus on 

the attribute that they find most important (such as the time of the mode) and choose 

the alternative that is best in terms of this attribute. If two or more alternatives are 

equal in respect to this attribute the individual compares those alternatives with regard 

to the second most important attribute. This process goes on until a preferred
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alternative is found. This choice procedui'e is “non-compensatory” as opposed to the 

standard economic model since only the level of the most important attribute decides 

the choice outcome.

In addition to the claim that individuals are likely to use simplified decision 

rules when making choices there may be circumstances where individuals do not 

make a deliberate choice at all due to factors such as habit and inertia (Peter and 

Olson, 1994; Verplanken et al, 1997). The argument is that an individual will only 

make a conscious choice when there is a major change in the travel conditions (such 

as moving house or changing jobs) and then stick to that alternative without 

considering all available alternatives each time she travels. This is a potentially 

important point to bear in mind in terms of policy analysis, as a policy change might 

not be effective unless it’s marketed in such a way that the targeted individuals are 

made awar e that there is a change in the travel conditions and hence feel the need to 

reconsider their travel choices. These factors can be investigated in a stated preference 

model where individuals provide several responses (see chapter 4) or a revealed 

preference model estimated using panel data. Since panel data is very costly to obtain 

the first approach will be the more practical solution in most circumstances.

A fiirther criticism of the standard choice model is that preferences may not be 

stable over time. Tversky and Kahneman (1974, 1981) argue this assumption is 

umealistic due to what they call “framing effects”. In short the “framing” of the 

choice situation, or how the choice situation is presented to and perceived by the 

individual, influences her behaviour. According to Tversky and Kahneman 

individuals seem to be more concerned about reducing risk than making an optimal

 ̂The literature on this subject is so extensive that it would require a separate PliD thesis to do it justice. 
Here I will tiy to summarize some of the main ideas in the literature, particularly those relevant for 
improving the specification of the standard model.
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choice. Because of this attitude towards risk they demonstrate in an experimental 

setting that in the choice between two alternatives individuals choose the alternative 

they perceive to be less “risky” even though the objective conditions remain the same.

Behavioural psychologists use the term “attitude” to describe the individuals’ 

overall evaluation of an alternative (see Peter and Olson, 1994). The overall 

evaluation consists of the perception and beliefs about alternative attributes as well 

the emotional appeal of the alternative. Peter and Olson argue that when individuals 

ai e more involved in the decision making process, when the decision is of importance 

to the individual, the cognitive process (evaluation of alternative attributes) plays a 

larger role. Emotions seem to play a larger role in the choice of some products such as 

ice cream or sports cars (Nerhagen, 2001). In the mode choice context there is 

evidence that commuters have an emotional attachment to the car mode (Stradling et 

a l, 1999).

The important question that these studies implicitly raise for a practitioner is 

how to take this evidence into account when developing travel demand models, 

McFadden (1999) summarizes the task in the following quote:

The challenge is to evolve [the standard model] in the direction of [the 

psychological views of decision making], adopting those featuies needed to 

correct [the standard model’s] most glaring deficiencies as a behavioural 

model, and modifying economic analysis so that it applies to this hybrid.

McFadden argues that there is scope for modifying the standard model in such a way 

that it takes some of the criticisms raised by behavioural scientists into account, for 

instance by incoiporating the idea of bounded rationality into the decision framework.
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Nerhagen (2001) suggest that more effort should be made when estimating discrete 

choice models in 1) the formation of the individuals’ choice set and 2 ) the 

specification of the functional forai of the utility function. She argues that choice set 

formation in discrete choice models is under-researched in the literature given its 

behavioural importance, although there are exceptions (Swait, 2001; Swait and Ben- 

Akiva, 1987, Ben-Akiva and Boccara, 1996). Furthermore the traditional discrete 

choice model incorporating the time and cost of the modes only may be biased as they 

omit other important factors influencing choice behaviour such as comfort and 

reliability. There are, however, some examples of work taking such attributes into 

account (DePalma and Rochat, 2000; Noland and Kunreuther, 1995)."̂  The problem of 

including “softer” attributes in the individuals’ utility function, however, is that they 

are difficult to quantify. One solution is to ask individuals about their perception of 

these attiibutes, although since the link between perceptions and objective values is 

unclear this may be of limited usefulness if one wishes to investigate how changes in 

these variables influence choice (Small, 1992).

 ̂See chapter 5.
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Chapter 3

Empirical Methodology

This chapter gives an account of three econometric models that are consistent with the 

random utility framework outlined in chapter 2. Section 3.1 describes the simplest and 

by far the most popular model of discrete choice, the multinomial logit model, before 

going on to describe the more flexible nested logit and mixed logit models in sections 

3.2 and 3.3 respectively. Section 3.4 presents some standard goodness of fit measures 

and hypothesis tests, section 3.5 describes how to produce forecasts of aggregate 

behaviour, section 3.6 is devoted to heteroscedasticity and section 3.7 describes the 

various issues concerning the derivation of value of time estimates from discrete 

choice models.

25



3.1 The multinomial logit model

3.1.1 Multinomial logit choice probabilities

McFadden (1973) shows that if the unobservable components* in the random utility 

function, , are distributed independently, identically (IID) extreme value, the

probability that individual n chooses alternative i from a set of J  alternatives is given 

by:

P ----- .—  where 7  = 1,...,J  and « = l,...,iV (3.1)

J

where — is a positive scale parameter and V ■ is the representative utility function 
M

described in chapter 2. McFadden called this model the conditional logit model, since 

it has the form of a conditional probability and the error difference follows the logistic 

distribution in the two alternative case. It is now more commonly referred to as the 

multinomial logit (MNL) model. The representative utility function is normally 

specified to be linear in parameters, V„j -aj'c„+j3'x„j. In this case the model takes

the form:

P„,=— ,-------- —  (3.2)

' In econometric terminology the unobserved components are often referred to as errors. I will use both 
terms throughout the thesis.
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where aj and /? are vectors of coefficients, x„j is a vector of obseiwed attributes 

relating to alternative j  and individual n and c„ is a vector of observed characteristics 

of person n?

The scale parameter, —, can be shown to be inversely proportional to the 

eiTor variance, cr] (see Ben-Akiva and Lerman, 1985):

(3.3)

Since the overall scale of utility cannot be identified in estimation it is customary to 

impose the normalization —= 1 , which is equivalent to assuming that the error

variance equals — . The consequence of this normalisation is that the true scale 
6

parameter will be confounded with the a . and p  parameters. In other words —  and

— will be estimated, not a , and p . This causes some problems when using stated

preference models for forecasting which will be discussed in chapter 4.

The parameters in the MNL model are normally estimated using the method of 

maximum likelihood. The log-likelihood fimction is given by:

= (34)
» }

~ Note that p  is assumed to be constant over individuals and alternatives while aj are constant over 
individuals but not alternatives. This is necessary since there is no variation in c„ over alternatives and 
implies that characteristics of the individual affect the utility of alternatives differently (see Griffiths et 
al., 1993). Furthermore, since the level of utility cannot be identified in estimation, one of the oCj 
coefficients needs to be normalised to zero for identification purposes.
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where y„j = 1 if individual n is observed to choose alternative j  and 0 otherwise. The

values of a  ̂ and (3 which maximises this function gives the maximum likelihood

estimates (MLE) of «y and p .

The relationship between the probability of individual n choosing alternative i 

and the representative utility is illustrated in figure 3.1  below.

Figure 3.1

0
V(ni)

It can be seen from the diagram that a change in representative utility will have the 

greatest impact on the probability of choosing an alternative when the probability is 

initially around 0.5 (where the curve is steepest). From a policy perspective this 

means that a quality improvement, price reduction etc. will be most effective when 

there is an initial 50-50 chance of the alternative being chosen. If the representative 

utility of an alternative is initially very high or very low compared to other 

alternatives, however, a small change in utility will not have a great impact on the 

probability of its being chosen.

The multinomial logit model has many advantages: it ensures that the 

probability of choosing an alternative always lies between 0  and 1 and that the 

probabilities of all available alternatives always sum to 1 (as opposed to the linear
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probability model, see Greene, 2003a). Furthermore, when the model takes the form 

of (3.2) its log-likelihood function is globally concave in the coefficients aj and 

which simplifies numerical optimisation.

However, because the unobserved component of utility is assumed to be IID 

over individuals, alternatives and time, the logit probabilities also exhibit some fairly 

restrictive properties. The most prominent is the independence from irrelevant 

alternatives property (HA) first described by Luce (1959), which states that the 

probability ratio of two alternatives is independent of the other alternatives available 

to the individual. It follows from the HA property that if an attribute of some 

alternative improves, the cross elasticity with respect to this attribute is the same for 

all other alternatives. For example, if the price of alternative i decreases this is 

expected to increase the probability of an individual choosing i and decrease the 

probability of him choosing a different alternative, y. When the HA property holds the 

probability of choosing either of the other alternatives decreases by the same percent 

for all . This implies a substitution pattern that might not always be realistic. 

Consider for example a situation where the government wishes to introduce a policy 

to reduce the reliance on petrol for cais and there are three kinds of vehicles: large 

petrol cars, small petrol cars and electric cars.  ̂ Under current conditions the 

probabilities that a household will choose each of these vehicles are 0 .6 6 , 0 .3 3  and 

0.01 respectively. Suppose a subsidy on electric cars raises the probability for the 

electric car. The logit model would predict the probability for the petrol cars to drop 

by the same percent, so diat the increase in electric cars comes twice as much from 

large petrol cars as from small petrol cars. This pattern of substitution is clearly 

umealistic, since one would expect an increase in (small) electric cars to draw more
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from small petrol cars than large petrol cars. The logit model will thus over-predict 

the petrol savings resulting from the subsidy.

The IIA property is a consequence of the assumption that the errors are IID 

(uncorrelated) over alternatives. As mentioned above the multinomial logit model 

specification assumes that the unobserved part of utility is also IID over time periods. 

If each individual is observed making several choices over a period of time or the data 

is the result of a stated preference (SP) experiment where repeated choices are made 

(see chapter 4 for a discussion), some of the unobservable variables that enter the 

individuals utility function may be coiTelated over time (choices). In these cases the 

errors are not HD and hence the multinomial logit model is an inappropriate 

specification.

Because of the restrictive properties of the multinomial logit model, alternative 

econometric models that are consistent with random utility maximisation have been 

developed. We will present two of them in sections 3.2 and 3.3: the nested logit model 

and the mixed logit^ model. In the following sub-sections it is described how the 

MNL model can be used to evaluate the change in demand for a mode following a 

change in one or more explanatory variables, and how the commuters’ welfare is 

affected by such a change.

 ̂This example is due to Train (2003)
Also called error components logit, random parameters logit and random coefficients logit
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3.1.2 Marginal effects and elasticities in the multinomial logit model

It is useful from a policy perspective to know how changes in the levels of attributes 

influence the probability of an alternative being chosen. In a choice model which is 

linear in the alternative attributes the estimated coefficients are the marginal utilities 

d V .of an attribute, where is the attiibute of alternative i as faced by

individual n. The marginal utility measures how individual «’s utility of choosing 

alternative i changes in response to a unit increase in attribute z„,. This is not the same 

as the marginal probability, or the change in the probability of an alternative being 

chosen following a unit increase in the attribute. In the multinomial logit model, the 

change in the probability of individual n choosing alternative / following a unit 

increase in z„, is given by: 

dP dV

It can be seen horn (3.5) that the magnitude of the marginal probability depends on 

which is deteimined by the estimated coefficients and the initial attribute levels. 

dP . .
Specifically, is highest when = 0.5 and becomes smaller as approaches

zero or one. This is directly related to figure 3.1 above: the effect of a change in the 

level of an attribute is highest when there is an initial 50 percent chance of the 

alternative being chosen. It should be noted that the marginal effect is negative given

that the marginal utility of the attribute is negative < 0 ).
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The size of the marginal probabilities depends on the units in which the 

attribute is measured. An alternative “unit free” statistic is the elasticity, which 

measures the percentage change in the probability of individual n choosing alternative 

i following a 1 percent increase in z„,. The elasticity is given by:

-  PJ (3-6)Sz„, dz„,

It may also be of interest to know how the probability of individual n choosing 

alternative i changes in response to a change in the level of an attribute relating to 

another alternative (/). The cross elasticity, which measures the change in the 

probability of individual n choosing alternative i following a percentage increase in 

z„j, is given by:

ni nj

The cross elasticity is positive given that the marginal utility of the attribute is 

negative It can be seen from (3.7) that in the MNL model the cross

elasticity is equal for all i ^  j . This is a manifestation of the independence from 

in elevant alternatives property described earher.

3.1.3 Welfare analysis and the multinomial logit model

It is often of interest to the researcher to determine how the welfare of one or more 

individuals is affected by a change in commuting conditions. McFadden (1981) shows 

that the expected utility of making a choice between a set of alternatives is given by 

the log of the denominator in (3.1):

32



E{MaxU,^) = H Y ,e ’"''<) (3.8)
J

Ben-Akiva and Leiman (1979) point out that in the mode choice context (3.8) can also 

be interpreted as a measure of the individual’s accessibility to the work location.

Williams (1977) shows that since the MNL model can be viewed as a demand 

function for a given alternative, the difference in consumer surplus following a change 

in commuting conditions can be calculated as the difference in expected utility 

evaluated at (the initial representative utility) and (the representative utility after 

the change) such that:

= (3.9)
J J

A  problem with William’s measure of consumer surplus is that it cannot be used to 

compare changes in welfare across model specifications. An alternative measure of 

consumer welfare is compensating variation, or the amount of money an individual 

needs to receive (or give up) following a change in her utility in order to be equally 

well off as before the change (see Varian, 1992). Since the welfare change in this case 

is measured in real units (money), the measure can be used to compare changes in 

welfare across model specifications. Small and Rosen (1981) shows that the 

compensating variation can be derived from an MNL model by multiplying (3.9) by 

the inverse of the mai ginal utility of income such that:

1
(3.10)

where ^  is the marginal utility of income. In practise the marginal utility of income 

can be calculated as the absolute value of the cost coefficient in the model.
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3.2 The nested logit model

3.2.1 Nested logit choice probabilities

As discussed in section 3.1 one of the main drawbacks of the multinomial logit model 

is the independence from irrelevant alternatives property. The nested logit (NL) model 

relaxes the IIA property by dividing the choice alternatives into different subsets or 

nests, allowing the IIA property to hold within each nest but not across nests. In other 

words, the ratio of the probabilities of two alternatives in different nests may depend 

on the attributes of the other alternatives in these two nests. The ratio of the 

probabilities of two alternatives in the same nest, however, will not depend on the 

attributes of the other alternatives.

Figure 3.2. An example of a nested logit decision tree

Public transport

Car TrainBus

Figure 3.2 above is an example of a Nested Logit decision “tree”. The alternatives that 

are likely to be close substitutes (bus and train) are specified to belong to the same 

nest. By relaxing the IIA property, the cross elasticities with respect to bus frequency 

are allowed to differ between the car and train modes. Hence the nested structure in
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figure 3.2 accounts for the a priori belief that an increase in the probability of n 

choosing bus comes more from ti ain than car.

In order to give a more formal description of the nested logit model it is 

conceptually helpful to divide the representative utility function into two parts: one 

which varies between nests but not between alternatives within a nest, W„ky and one 

which varies between alternatives within the nest, Y„j. The utility individual n derives 

from choosing alternative j  belonging to nest Bi is thus given by:

^nj = ^«/ + Yy + (3.11)

If the income of an individual is thought to influence her choice between private or 

public transport but not the choice between bus and train, for example, the income 

variable would enter W„i rather than Y„j. The cost of the bus and train modes on the 

other hand would enter Y,y since it is relevant for the choice between the modes. It 

should be noted that it is not uncommon to have all explanatory variables enter T„y, 

since they may all be thought to influence the choice between alternatives within 

nests. Since Y,̂ j = -  W„, for any Wni, however, (3.11) is a fully general specification

(Train, 2003). The decomposition of representative utility is paiiicularly useful when 

modelling multidimensional choices such as in a joint car ownership and mode choice 

model (see the next section and chapter 5). In this case the variables relating to the car 

ownership decision would be specified to enter W„i while the variables influencing 

mode choice enter Y„j.

McFadden (1978a) shows that if the unobserved components of the random 

utility function, are assumed to be distributed according to a particular generalised 

extreme value (GEV) distribution, the probability that individual n chooses alternative 

/ belonging to nest Bk is given by:
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P>ù -  (3.12)

where.

1(4,.,.,r,,

e ^ ’’“
K,\j>, =  r ; r  (3.14)

4-<ye%

and,

4 = ln E ,.« /^  (3.15)

In words the probability of choosing alternative / in nest equals the marginal

probability of choosing nest B  ̂ multiplied by the conditional probability of choosing

alternative i given that B̂  is chosen. The forms of the marginal and the conditional

probabilities are both multinomial logit, and the nested logit model is therefore the 

product of two multinomial logit models. ^

The key feature of the nested logit model is that the scale of the multinomial 

logit models in equations (3.13 - 3.14) are allowed to differ. If the scale factors of the

conditional model, —, and the marginal models, — , all equal 1 the nested logit
fj. Xf

reduces to the multinomial logit model (hence the multinomial logit model is “nested” 

within the NL model). Equation (3.15), which is the log of the denominator in (3.14), 

is often called the “inclusive value” or “log-sum term” (Ben-Akiva, 1972). The

 ̂It should be pointed out that the nested logit can have more than two levels. It is straightforward to 
describe a model with three or more levels using the framework outlined above. For the present 
purposes, however, the nested logit with two levels will suffice.
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product of the scale factor, and the inclusive value can be interpreted as the
4

expected utility the individual recieves from choosing nest Bk analogous to the 

discussion of welfare analysis above.

In the context of the nested-logit model the inverse of the scale factor, , is 

often called the dissimilarity parameter^ since it measures the (dis)similarity between 

the unobserved portions of utility for alternatives within the same nest. Ben-Akiva and

Lerman (1985) show that 1 is a measure of the degree of correlation among

the unobserved poitions of utility for alternatives in nest Bi. Thus, when the 

dissimilaiity parameter equals 1 the degree of correlation between the alternatives in a 

nest is zero (and if this is the case in all K  nests the nested logit model reduces to the 

multinomial logit model as discussed above).

As in the multinomial logit model one of the scale parameters must be 

normalized to 1 for identification purposes. It is common to impose the normalisation 

on the scale parameter of the upper (marginal) model such that // = 1 , and this 

normalisation will be used in the following discussion.^ Daly and Zachary (1978) and 

McFadden (1978b) show that the nested logit model is globally consistent with utility 

maximisation if:

0<A, <1 fbrall ZeÆ (3.16)

Borch-Supan (1990) argues that this condition is unnecessarily sti’ong given that the 

NL model should be viewed as a local approximation. Based on the work of Borch- 

Supan, Herriges and Kling (1996) and Gil-Molto and Hole (2004) derive necessary

 ̂Koppelmann and Wen (1997), Hunt (2000) and Hensher and Greene (2002) give an overview of 
alternative normalisations of the nested logit model, including the so-called non-normalised nested 
logit model (Daly, 1987).
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conditions for local consistency with utility maximization for two-level and three- 

level NL models respectively.

3.2.2 Elasticities in the nested logit model

In the nested logit model the direct elasticity, or the change in the probability of 

individual n choosing alternative i e following a percentage increase in z„u is 

given by:

1 (3.17)

The expression reduces to the MNL direct elasticity if = 1, illustrating that the NL

model reduces to the MNL model when the dissimilarity parameters equal 1.

The nested logit cross elasticities are of special interest since they illustrate the 

flexibility of the nested logit model to incorporate a wide rage of substitution patterns. 

It is important to distinguish between the cross elasticity of an alternative belonging to 

the same nest as the alternative which attribute is increasing and the cross elasticity of 

an alternative belonging to a different nest. The change in the probability of individual 

n choosing alternative i g following a percentage increase in z„j, y G , is given 

by:

(3.18)

which, as with the direct elasticity, reduces to the MNL cross elasticity if = 1.

Is interesting to note that both the direction and magnitude of the cross 

elasticity depends on the conelation between the random utility of alternatives within
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nest Bk, wliich can be derived from the dissimilarity parameter. Given that

dv„
— — z . > 0 , an increase in an attribute belonging to alternative j  will lead to a

decrease in the probability of alternative i being chosen as long as the dissimilarity 

parameter of a nest is low relative to the marginal probability of choosing nest Bk such 

that:

Intuitively the effect of the change in z„j is two-fold: it will influence both the 

marginal probability of choosing nest Bk and the probability of choosing alternative i 

given that nest Bk is chosen. Consider for example an increase in the fare of the bus 

service in figure 3.2. This is likely to decrease the probability of an individual 

choosing public transport since the expected utility of travelling by public transport 

has fallen. On the other hand the probability that train is chosen given the choice of 

travelling by public transport is likely to increase. Thus the total effect is determined 

by the relative strengths of these two effects. The relative strength is determined by 

the degree of correlation between the utility of the alternatives in the nest since the 

higher the correlation the stronger the latter effect will be.

The change in the probability of individual n choosing alternative i 0  B^

following a percentage increase in z„j, y E B*, is given by:

which is the same as the cross elasticity in the MNL model. It is easy to see that the 

cross elasticity differs when / and y belong to different nests. In this case there is only 

one effect: the change in the probability of choosing the nest the alternative belongs
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to. The probability of choosing the alternative given that its nest is chosen remains 

unchanged. In the previous example, an increase in the bus fare would lead to a 

decrease in the probability of going by public transport and thus an increase the 

probability of going by cai*. Furtheimore, it can be shown that, in the case of a nested 

logit model which satisfies the condition for global consistency with utility 

maximisation (3.16), the cross elasticity of an alternative that belongs to the same nest 

as alternative j  will always be greater than or equal to the cross elasticity of an 

alternative that belongs to an alternative in a different nest (see appendix 3.1 for a 

proof). In other words an increase in the bus fare will lead to a greater (relative) 

increase in the shai e of people going by train than people going by car. The fact that 

the cross elasticity differs between alternatives belonging to different nests illustrates 

that the IIA property does not hold in the NL model.

It can be shown (McFadden, 1981) that a discrete choice model is consistent 

with utility maximisation i f  and only i f  all cross elasticities are non-positive (this is a 

necessaiy but not sufficient condition for consistency with utility maximisation).^ In 

the case of the nested logit model this condition is always satisfied when equation 

(3,16) holds, as can be seen by substituting = 0 into equation (3.19). For values

of P„B̂ higher than zero, however, the cross elasticity is also negative for values of A*

higher than 1. How much higher can be without violating the utility maximising

condition is deteimined by as well as the number of alternatives in nest (see

Borch-Supan, 1990; Heiriges and Kling, 1996; Gil-Molto and Hole, 2004).

Given that —--------- > 0.
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3.2.3 Multidimensional choices and the nested logit model

The nested logit model is well suited to model choices that have two or more 

dimensions. The joint car ownership/ mode choice models in Ben-Akiva and Atherton 

(1977), Train (1980) and Thobani (1984) and the trip chaining/ mode choice model in 

Hensher and Reyes (2000) (see chapter 5) are examples of models where choices that 

are inteirelated are modelled together using a nested structure. Another application of 

the nested logit to model multidimensional choices is the joint household location/ 

mode-choice model in Anas and Chu (1984).

The rationale behind the multidimensional models is that choices that are 

made simultaneously should be modelled simultaneously. For example, as Train 

(1980) argues, a mode choice model in which car ownership is included as an 

exogenous variable may be misspecified since households are likely to take 

commuting into account when deciding how many cars to own (which makes car 

ownership endogenous to the mode choice decision). As a result of this 

misspecification the parameters of the model may be biased and hence the forecasts 

produced by the model will be incorrect.

The theoretical framework of the multidimensional models is fundamentally 

the same as in the one-dimensional nested logit model outlined in section 3.3. A 

further complication in the multidimensional models is that decisions made at the 

household level (household location, cai* ownership) are mixed with those usually 

assumed to be made by the individual (mode choice). In practice this is dealt with by 

including variables relating to the household (income, household size) in the utility 

functions of alternatives in choices assumed to be made on the household level, and
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variables relating to the individual (age, gender) in the utility functions of alternatives 

in choices assumed to be made by the individual.

3.3 The mixed logit model

3.3.1 Mixed logit choice probabilities

As described in the previous section, the nested logit model relaxes the restrictive 

independence from irrelevant alternatives property by allowing for correlation 

between alternatives within a nest. The mixed logit (ML) model extends the flexibility 

to model a non-IIA substitution patterns even further by allowing all alternatives 

available to the individual to be correlated. Furthermore, the mixed logit model 

relaxes the restriction that all the individuals in the sample have the same tastes by 

allowing the coefficients to vary randomly in the population.

Following Brownstone and Train (1999) and using the same notation as above, 

the utility fiinction is denoted C/„, = where is a random term

with zero mean whose distribution over alternatives and people depends on 

underlying parameters and observed data relating to individual n and alternative As 

in the multinomial logit model is assumed to be IID extreme value, with variance

noimalised to to set the scale of utility, while rĵ .̂ is distributed with density

where 0 are the fixed parameters of the distribution (such as the mean and

To simplify the notation socio-demographic variables are omitted from the utility function.
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variance of rj„j ). It can be seen that when 77,̂  is zero for all individuals/ alternatives,

the mixed logit model reduces to the multinomial logit model.

The probability of person n choosing alternative i conditional on knowing 77,̂  

is given by:

J

which is the standaid logit fomiula. However, the researcher does not know t]„j, and

the unconditional probability of person n choosing alternative i is given by integrating 

the logit formula over all values of 77̂  ̂:

PniiP) = (3.21)

The mixed logit probability is thus a weighted average of the logit formula evaluated 

at different values of 77,,, , with the weights given by density / .  This expression 

cannot be solved analytically, and is therefore approximated using simulation 

methods. The algorithm used to obtain the maximum simulated likelihood (MSL) 

estimates can be described as follows:

1) Set starting values for the parameters of the distribution of 77,̂  (in case of a

noimally distiibuted coefficient the mean and the variance).

2) Draw values of 77,  ̂ fi’om this distribution for each person/ alternative and use

these values to calculate the log-likelihood fiinction.

3) Repeat step 2) r times, obtaining r values for the likelihood function, LL.
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4) Compute the average likelihood function, —-----, which is the simulated
r

value for the likelihood.

5) Change the coefficients and the parameters of the distribution of rj„j and

repeat steps 2) -  5) until a maximum is found. The parameter values that 

maximises the log-likeliliood fimction are the MSL estimates of the true 

parameters of the distribution.

Lee (1992) and Hajivassiliou and Ruud (1994) derive the asymptotic distribution of 

the MSL estimator and show that under regularity conditions the estimator is efficient 

and asymptotically normal.

3.3.2 Taste Variation

The specification of 77,̂  depends on whether the use of the mixed logit model is

motivated by allowing for a flexible (non IIA) substitution pattern or by the flexibility 

to model random taste variation. If the model is motivated by the flexibility to model 

random taste variation in the population, utility is given by U„j -  ,

where //„ is a vector of coefficients for person n which represents to what extent her

tastes deviates from the average tastes in the sample. It can be seen that this utility 

specification is consistent with the more general utility specification above given that
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In most applications of the mixed logit model / { r j j f )  has been specified to

be noimal or lognormal (Revelt and Train, 1998; Walker et a l, 2003) but other 

distributions (triangular, uniform) have also been used (Hensher and Greene, 2001). 

The lognormal distribution is useful when a coefficient is restricted to have a specific 

sign for all decision-makers, such as a negative price coefficient (see the discussion in 

chapter 5).

3.3.3 Error components

If the mixed logit model specification is motivated by the flexibility to specify a more 

complex error structure rather than modelling taste variation in the population, the 

utility function is given by The error component,

is correlated over alternatives if is non-zero. Again this utility

specification is consistent with the more general specification of utility given that 

~ ,̂y • It should be pointed out that the two specifications of the utility fiinction

are formally equal and differ only in interpretation (in the case of = x„j they are the 

same).

It can be shown (Brownstone and Train, 1999) that the error covariance of the 

mixed logit model is given by 00X77̂ .77̂ ) = + g^)(///z^  +g^) = z '̂PKz^

where W is the covariance of //„. Different specifications of /  and lead to

different patterns of conelation and hence different substitution patterns. Entering 

dummy variables for two or more alternatives, for instance, generates correlation 

between those alternatives, analogous to the nested logit model (a mixed logit
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analogue to the nested logit example in the previous section could be specified by 

entering a dummy variable that equals one in the utility function for the bus and train 

modes and zero in the utility function for the cai' mode).^ Importantly, it has been 

shown that any random utility model can be approximated to any degree of accuracy 

by the mixed logit model through appropriate specification of the distribution of the 

random parameters and the explanatoiy variables (McFadden & Train, 2000), a 

testimony to its virtually limitless flexibility.

3,3.4 Panel Data

The framework described above can be extended to panel data, which can either be 

revealed preference (RP) data where each individual is observed making several 

choices over a period of time or stated preference (SP) data where repeated choices 

are made (see chapters 4 and 7). In this case utility is given by U„j, =

where t denotes the time period (choice situation). Since e„j, is IID over time periods,

the probability that an individual chooses a particulai* sequence of alternatives is given 

by the weighted average of the product of the logit probabilities evaluated at different 

values of rĵ ĵ (Train, 1998):

P„{0) = (3.24)

where,

(7«; ) = n ,  iVni ) (3.25)

and.

 ̂An overview of a variety of possible error structures, along with conditions for identification of the 
models, is given in Walker (2001) and Walker et al. (2003).
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(^»/) (3.26)

j

Here S„ is the probability of individual n making her observed sequence of choices

and the probability of individual n making her actual choice in period t. Since

(3.24) cannot be solved analytically, it is solved using simulation methods as 

described earlier.

Since 77,̂  is constant over time for each person/ alternative, this specification

generates correlation over choices made by the same individual in different time 

periods. The coixelation is not perfect, however, since the error term also includes

which is IID over individuals, alternatives and time periods. For applications of the 

mixed logit to model panel data see Train (1998), Revelt and Train (1998) or Algers 

e ta l (1998).

3.3.5 Identification of the Mixed Logit model

While the conditions for identification of the multinomial and nested logit models are 

well-known, identification of the mixed logit model is still an unresolved issue in the 

literature, with the exception of the special case of a ML model with normally 

distributed eiTor components. Based on the identifying conditions for the multinomial 

probit model given in Bunch (1991), Walker (2002) and Walker et al. (2003) show 

that the identifying conditions in this case are given by:
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1) The order condition. The upper limit on the number of estimable 

parameters in the variance-covariance matrix is given by —^  ^̂  - l ,

where J  is the number of alternatives in the model. This is a necessaiy but 

not sufficient condition for identification.

2) The rank condition. The upper limit on the number of estimable 

parameters in the variance-covariance matiix is given by the rank of the 

Jacobian of the variance-covariance matrix for the error differences minus 

one (Train, 2003, describes a stiaightforward procedure for calculating the 

variance-covariance matrix for the eiTor differences). If this condition is 

satisfied - the number of parameters in the specified variance-covariance 

matrix is lower than or equal to the rank of the Jacobian of the variance- 

covariance matrix for the error differences minus one - no further 

restiictions are needed.

3) The equality condition. Given that the rank condition implies that one or 

more of the paiameters in the variance-covariance matrix must be 

restricted, the equality condition must also be satisfied. In short, this 

condition states that the probabilities of the normalised model must equal 

the probabilities of the unrestricted model (see Walker et al, 2003 for 

details).

The question remains, however, of which parameter(s) in the variance-covariance to 

restrict in order to ensure consistency with the equality condition when a restriction is
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necessary (beyond the customaiy normalisation of the scale parameter) and to which 

value the parameter(s) should be restricted. Walker et al argue that the parameters 

should be restricted to equal zero, since this ensures that the MNL model is a special 

case of the ML model, which facilitates the use of nested hypothesis tests (such as the 

LR test). When it comes to the choice of parameter to restrict, Walker et al show that 

this is not necessaiily arbitraiy, and suggests ways of identifying the parameter(s) that 

should be restricted to ensure that the equality condition holds. Since this issue must 

be evaluated on a case for case basis depending on the model structure, it will be 

addressed in the sections of the thesis where it becomes relevant.

3.4 Goodness of fit measures and hypothesis testing

3.4.1 Goodness of fit measures

The likelihood ratio index, p i , where LL{^) is the value of the log
jLhyj)

likelihood function at the estimated parameters and LL{0) is its value when all the 

parameters ai e set equal to zero, is a common summary measure of the goodness of fit 

of a discrete choice model. The value of the likelihood ratio index will always be 

between 0 and 1, where a value higher than zero indicates that the estimated model 

fits the data better than the model where all the parameters equal zero. It is important 

to note that although p i  will lie between 0 and 1, in contrast to the statistic a 

perfect fit would give a value of about 0.7 while a value higher than 0.2 can be
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considered a good fit (see Hensher, 1979). An alternative, but very similar goodness

of fit measure is given by p] - where LL{c) is the value of the log
LL{c)

likelihood function with alternative specific constants only.̂ * It should be noted that 

while the statistic used in regiession analysis is a measure of the explained 

variation in the dependent variable, the log likelihood has no such intuitive 

inteipretation. It is simply a measure of the percentage increase in the log likelihood 

function above the value taken at zero parameters (or with alternative specific 

constants only). As a consequence, the likelihood ratio index cannot be used to 

compare the fit of models estimated using different samples. It is, however, a usefiil 

statistic in comparing the fit of different models estimated on the same sample.

LL{P)The rho-bar squared statistic, p  = \ - K , is an analogue to the

R statistic used in regression analysis. K  =  , where J„ is the number of
^ J „ - N - k

alternatives in individual «’s choice set, N  is the sample size and k is the number of 

coefficients in the model. Analogous to the R^ statistic, the statistic penalises the 

fall in degrees of freedom when adding explanatory variables to the model. Hence, if 

a variable is added that does not increase the model’s explanatory power 'p  ̂ falls.

This measure is also called the rho-squared statistic 
‘ ’ In the case of the multinomial logit model, when alternative specific constants are included in the 
model specification the average probability that an alternative is chosen equals the observed share of 
that alternative in the sample. If there are no coefficients in the utility functions the probability that an 
alternative is chosen equals 1 divided by the number of alternatives available.
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3.4.2 Hypothesis testing

The likelihood ratio (LR) test is often used to test restrictions on the coefficients in a 

model. The LR test statistic is given by ~L L ^\ where LLF and LL^ are the

values of the log likelihood functions of the unrestricted and restricted models 

respectively. The LR test statistic can be shown to be asymptotically chi-squared 

distiibuted with r degiees of freedom, where r is the number of restrictions imposed. 

The null hypothesis of “accepting” the restrictions imposed is rejected if the LR 

statistic exceeds the critical value from the chi-squai ed distribution with r degrees of 

freedom at a selected level of significance.

3.5 Forecasting and aggregation

The models described in the previous sections estimate the probability that an 

individual (or a particular group of individuals sharing the same characteristics) will 

choose a pailicular alternative from his or her choice set. Predicting the behaviour of a 

specific individual, however, is usually of little use in helping make investment or 

planning decisions. The interest of the researcher is normally (the present thesis 

included) to predict changes in aggregate demand following a change in one or more 

policy valuables (for instance how an increase in the frequency of buses on a given 

route influences bus ridership) or to predict the demand for a new mode (such as a 

park and ride semce). In this section the most common aggiegation method is
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described; the method of sample enumeration. For a more complete review of 

aggregation methods for discrete choice models see Ben-Akiva and Lernian (1985).

The market share, or the share of the population choosing a given alternative, is 

given by averaging the sum of the individual probabilities such that:

(3.26)
-tV  n=\

where is the estimated market shaie of mode i. It is a well-known result (see Ben-

Akiva and Lerman, 1985 for a proof) that the MNL model will reproduce the market 

shares in the estimation sample such that:

where equals 1 if individual n is observed to choose alternative i and 0 otherwise.

The method of sample enumeration can also be applied to calculate aggregate 

elasticities. Greene (2003b) argues, however, that this may lead to implausibly high 

elasticity estimates if there for some reason exists one or more observation in the 

sample with an extreme configuration of attributes. An alternative to sample 

enumeration is to weight the elasticity by the probability of the alternative being 

chosen such that:

(3.27)

where is the probability weighted aggregate elasticity. The weighting scheme will

offset the extreme effect given that the implausibly high elasticity estimate has a low 

probability. Greene (2003b) argues that this aggregation method produces reasonable 

elasticity estimates in almost all cases.
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3.6 Heteroscedasticity

Following Munizaga et al. (2000), the issue of heteroscedasticity in discrete choice 

models can be divided into two categories:

1) Heteroscedasticity between alternatives

2) Heteroscedasticity between observations

Heteroscedasticity between alternatives arises when variations in the representative 

utility function explain the variations in utility of some alternatives better than others. 

In this case the utility of the latter alternatives will have a larger degree of 

‘randomness’, which is represented by a higher error variance in the utility function of 

those alternatives. This may be the case, for instance, when individuals have less 

infonnation about some alternatives than others. Heteroscedasticity between 

observations may arise when multiple data sources are used to calibrate the model, 

where both data sources contain the same options but the error variance of one data 

source is higher. It will also arise if the representative utility functions explain better 

the variations in utility for some socio-economic groups (for example, blue-collar 

workers may be more responsive to changes in the observable alternative attributes 

than white-collar workers, while white-collar workers may be more concerned with 

immeasurable attributes like status). This section will only deal with the issue of 

heteroscedasticity between alternatives. The special case of heteroscedasticity arising 

when combining Revealed and Stated Preference data is discussed in chapter 4.
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Among the models presented so far in this chapter only the Mixed Logit model 

can represent heteroscedasticity, since both the MNL model and NL models aie 

homoscedastic models by definition (the eiTor variances are assumed to be the same 

for all alternatives and observations). In the ML model, however, heteroscedasticity 

between alternatives can be represented in various ways, either by making the 

coefficients for alternative specific attributes random or by entering dummy variables 

for the alternatives as error components in the model. Perhaps the more 

straightforward way to specify a heteroscedastic ML model is to enter a dummy 

variable for each alternative as an error component as suggested by Walker et al. 

(2003). The authors point out, however, that this model is not identified unless the 

coefficient for one of the error components is constrained to equal zero^ .̂ 

Furthennore, in the case of the heteroscedastic ML model it is not arbitrary which 

coefficient is noimalised to zero, as different noimalisations result in different 

estimation results. Walker et a l, (2003) show that the correct normalisation can be 

identified by either estimating the fiill (unidentified) model in order to identify the 

smallest element of tlie variance covariance matrix and subsequently re-estimating the 

model constraining this element to zero or by estimating J  models (where J  is the 

number of alternatives), setting the coefficient for each alternative to zero in turn and 

choose the model with the highest log-likelihood. If the first approach is feasible it is 

obviously the least time consuming method. It is possible, however, that problems of 

convergence can arise when estimating the umestricted model, in which case the 

second approach is the only feasible alternative.

It should be pointed out that there are other discrete choice models than the 

Mixed Logit model that can represent heteroscedasticity, of which the Heteroscedastic

In principle it can be restricted to equal any constant, but normalising to zero ensures that the MNL
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Extreme Value model (Bhat, 1995) and the Multinoial Probit model (Daganzo, 1979) 

are the most prominent. Since the Mixed Logit model can essentially reproduce the 

eiTor pattern of these models, however, (the heteroscedastic ML model described 

above is conceptually equal to the Heteroscedastic Extreme Value model for instance) 

these models will not be discussed further here.

3.7 Value of time estimation

As described in chapter 2 the value of time subjective value of time {SVOT) is given 

by the rate of substitution between the time and cost of travelling by a given mode. It 

is straightfoiward to show that in the case in which the representative utility is 

specified to be linear in the attributes, the subjective value of time is given by the ratio 

of the time and cost coefficients in the model:

SVOT = ^  (3.28)
PC

Aimstrong et ah (2001) point out that since Pf and Pq are estimators of the true time 

and cost coefficients, the computed SVOT is also an estimator with a certain 

probability distribution, which is different from the distribution of Pj- and Pq . Also,

since p j  and pç. can be shown to be distributed asymptotically normal (Ben-Akiva

and Lerman, 1985), the ratio of the two coefficients follow a probability distribution 

which is unknown a priori. It can be shown that in the case where the correlation 

between the two coefficients equals zero the value of time is Cauchy distributed, but

model is nested within the ML model (see also section 3.3.4).
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this distribution is unstable since it has an indefinite variance and its mean does not 

have an analytical expression. If the correlation is non-zero the distribution is also 

unstable and even more complex. Therefore Armstrong et a l (2001) argue that a 

procedure for making statistical inference on the ratio of the time and cost coefficients 

should not resort to direct use of the PDF of the ratio of the coefficients, but rather the 

probability distribution of the coefficients themselves.

Based on the findings in Garrido and Oituzar (1993), Aimstiong et al (2001) 

show that when the indirect utility function is linear in the time and cost variables the 

upper and lower bounds of the confidence inteiwal for SVOT cm  be calculated as:

Vsj '  "  '  P, tc (3 29)ÊlL
\Pc 4 y

& L ÎÇ .

A  V

where tc and 6 are the /-statistics for the time and cost coefficients respectively, / is the 

critical value given the required confidence limit and p  is the correlation between the 

time and cost coefficients. Equation (3.29) has some interesting properties: firstly it 

should be noted that the confidence interval is not symmetrical with respect to the 

point estimate of SVOT. Secondly, it can be seen that the higher the correlation 

between the coefficients, p, the tighter the confidence interval. In addition it can be 

seen that the more significant the coefficients are (as represented by higher values of 

tc and /f) the tighter the confidence interval is. Armstrong et al (2001) also point out 

that when N  and tctt approach infinity, the confidence inteiwal approaches the point 

estimate of SVOT, indicating that a larger sample size leads to a narrower confidence 

interval.
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Aimstrong et al (2001) present a number of other ways of calculating the 

confidence interval for the subjective value of time, some of which are also applicable 

when the indirect utility function is non-linear. Here only one of those will be 

presented; the approach Armstrong et al call the method of ‘simulation of 

multivariate noimal variâtes’ (MVNS). This method involves taking a large number 

of draws (1000, say) of the time and cost coefficients given their joint distribution 

(which is asymptotically normal witli the variance and co-vaiiance given by the 

estimated variance-covariance matrix), and then calculating the value of time for each 

of these draws. The generated sample can then be used to calculate various statistics 

such as the mean and variance of the value of time. The upper and lower bounds of a 

95% confidence inteiwal can be obtained by calculating the 2.5 and 97.5 percentile 

points respectively. This approach is essentially the same as the one suggested by 

Krinsky and Robb (1986) for calculating confidence intervals for elasticities in non­

linear models. Hensher and Greene (2003) present a practical way of making draws 

from any multivariate normal distribution based on draws from the standard normal 

distribution produced by a random number generator.
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Appendix 3.1 Proof of the theorem in section 3.2.2

dP 2Proof of the theorem that the cross elasticity E ~ — -—— is higher when alternative i

and j  belong to the same nest (E^) than when i and j  belong to different nests (£^), 

given that the global condition for utility maximisation holds.

Theorem:

Ê  > E^ for all 0 < X < 1

where.

^*14 — *)+■?« dz„j
-------1 + jPiiBt

Q ^>rnj ^

Proof:

For Ê  > E^ it is needed that 1 + P̂ĵ  ̂ > P̂ ĝ

This can be written as -i- -1  > 0, which holds for all Æ < 1
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Chapter 4

Data and Estimation Procedures

This chapter outlines the differences between the two main types of data used in 

discrete choice modelling and presents of some of the issues that arise when using 

data derived from choice experiments, usually called stated preference data, to 

calibrate a model. Section 4.1 describes the differences between revealed preference 

(RP) and stated preference (SP) data, section 4.2 outlines the design of a choice 

experiment, while sections 4.3 -  4.6 give an account of several important issues 

relating to SP modelling: the “scale” problem, data fusion, testing for fatigue and 

learning effects and the “repeated measurements” problem.
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4.1 Revealed and stated preference data

The data used in discrete choice models can be divided into two main categories: 

revealed preference (RP) and stated preference (SP) data. Revealed preference data 

are observations of alternatives actually chosen in the market, and the attributes of the 

alternatives available to each individual. Stated preference data, on the other hand, are 

results from a hypothetical choice experiment where each individual chooses between 

alternatives with attributes specified by the researcher.

Although the earlier models of disaggregate travel demand were estimated 

using revealed preference data, stated preference methods have become increasingly 

popular in transportation research over the past two decades (see Hensher, 1994 or 

Ortuzar, 1999 for good introductions to the SP methodology). This is mainly due to 

the flexibility of the SP experiment to introduce new alternatives and attributes and to 

incorporate a wider range of attribute levels than what is observed in the market. It 

can also overcome problems often encountered with RP data such as little variance 

and/ or multicollinearity in the independent variables and me^urement eiTors. The 

use of SP data has, however, also been met with much scepticism because of the 

hypothetical nature of the data. The question is simply how reliable data elicited from 

a hypothetical choice situation are. It is argued by several practitioners that SP data 

seem to be reliable given that the experiment is well designed and clearly explained to 

the respondents (see Louviere et al., 2000). There is also a glowing body of evidence 

of successful use of SP models in forecasting (Beaton et ah, 1998; Fowkes and 

Tweddle, 1999). We give a more detailed account of the sti engths and weaknesses of 

the two data types below.
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4.1.1 Revealed preference data

Revealed preference data reflect the choices actually made in the market and therefore 

have the obvious strength of depicting the current market equilibrium. They will also 

embody the technological, personal and market constraints that each individual faces. 

Because of these features RP data are generally regarded as a reliable source of 

information. Apart from these benefits, however, there are several potential problems 

with RP data:

1) The obseived attributes of the alternatives may have little variance, which 

makes estimation of their coefficients difficult or impossible.

2) The attributes may be highly collinear, such that it is difficult to estimate then- 

separate effects on the choice variable. This is likely to be the case between 

modal attributes such as time and cost, since expensive alternatives are likely 

to be faster than less expensive alternatives (consider the choice between 

going by car and cycling, for instance). As a result, the estimators of the 

coefficients may be insignificant (have low t-statistics) even though their total 

effect might indicate their importance (high rho-bar squared).

3) RP data may suffer from measurement error, especially if the researcher does 

not directly observe the individuals’ choices and alternative attributes (i.e. the 

data is based on the individuals’ self-report).
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4) Defining the individuals’ choice sets is a difficult task. It has been shown 

(Williams and Ortuzar, 1982) that a discrete choice model that ignores the 

problem of choice set generation by assuming that all alternatives are available 

to every individual in the sample may be seriously misspecified. The common 

practise in the discrete choice literature is to assume that the individuals’ 

choice sets can be defined deterministically. This approach does not take into 

account, however, that people will differ in their perceptions of which 

alternatives are available to them. It is likely, for instance, that some people 

will be willing to walk further than others. Some papers have explored how 

such heterogeneities in perception can be accounted for (Swait, 2001; Ben- 

Akiva and Boccara, 1995 and Swait and Ben-Akiva, 1987), but choice set 

generation is still a largely um esolved issue in the literature.

5) Because RP data depicts the world as it is, it is not well suited to measure the 

response to new products and attributes.

4.1.2 Stated preference data

Since Stated preference data is the result of a controlled experiment it can overcome 

most of the difficulties related to RP data. In particular:

1) The ranges of the alternative attributes can be extended to values not obseiwed 

in the market.
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2) Since the experimental design is controlled by the researcher multicollinearity 

can be avoided. This will improve the precision of the parameter estimates.

3) There is no measurement error in the data as the attributes are specified by the 

researcher (there may however be differences in perception of the attribute 

values).

4) The choice-set is pre-specified by the researcher.

5) The experiment can include attributes and alternatives that do not exist in the 

market at the present.

SP data also have some benefits that are not directly related to the problems with RP 

data outlined above. An advantage of the SP methodology is that it is both feasible 

and common to present several choice tasks to the respondents in the SP survey. As a 

result each sampled individual provides more information about his or her preferences 

compared to RP data, which typically consist of one observation per respondent (with 

the exception of costly travel diaries that follow respondents over a period of time). 

Thus collecting SP data is in general more efficient than collecting RP data.*

A further difference between RP and SP methods is that in the SP 

methodology there aie several ways of eliciting the respondents’ preferences. The 

method that most closely resembles the choice process observed in the market is to 

instruct the respondent to choose her preferred alternative. This approach is referred
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to as the stated choice (SC) method in the stated preference literature. Alternative 

approaches are the rank and rate methods in which the respondents rank the available 

alternatives or rate the alternatives following a given semantic scale (a typical 

question would be “On a scale from 1 to 10 how do you rank alternative A?”). The 

rank and rate methods collect more information about the individuals’ preferences 

compared to the SC method. There are, however, also some drawbacks to the rank 

and rate approaches (see Willumsen and Ortuzar, 2001 for a discussion). In the SP 

application in chapter 7 the individuals were asked to choose their preferred option 

and the following discussion will therefore concentrate on this approach.

As previously mentioned the main concern when it comes to the use of SP 

data in modelling choice behaviour is that the choices observed are hypothetical. As a 

consequence, SP data does not in general depict the market equilibrium and cannot 

easily reflect changes in personal constraints (e.g. work location, income and 

information availability). Some critics have gone as far as claiming that SP data have 

no value, since “hypothetical questions result in hypothetical answers”. This is clearly 

an exaggeration given that a growing number of studies focusing on the external 

validation of SP models (see chapter 5 for a review) suggest that a well-designed SP 

design can elicit preferences similar to those observed in the market. On the other 

hand the fact that SP data are a result of a hypothetical choice situation should not be 

ignored, and the SP questionnaire should be carefully designed in order to reduce the 

likelihood of bias in the responses. Much effort has been devoted to identify the 

sources of bias in the choice variable that may be present as a result of the

' It should be pointed out, however, that some recent studies have collected RP data using new data 
collection techniques such as GPS, which makes it possible to collect several observations per 
respondent given access to GPS technology.
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hypothetical choice situation (see, for example, Fowkes and Preston, 1991). The 

sources of bias include:

1) Policy bias. Respondents may be inclined to answer strategically in order to 

achieve tlieir desired policy response. The goal of the researcher is to make the 

experiment sufficiently complex to make it difficult for the respondents to bias 

their answers in order to influence the results of the study (and hence the 

policy recommendations derived fi-om the study) in a straightforward manner.

2) Justification bias. Respondents may choose a particular alternative in order to 

justify their current behaviour. Justification bias is difficult to identify, 

especially since it resembles choice inertia, which is congruent with actual 

choice behaviour.

3) Self selectivity bias. It is possible that the characteristics of survey 

respondents differ from those of the overall sample. This is especially likely to 

be a problem if the response rate of the survey is low. It should be noted that 

this type of bias may be present in surveys of all types, not just SP surveys. In 

the case of an SP experiment designed to forecast the demand for a new 

seiwice there is clearly more incentive for likely users of the service to 

respond.
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4) Non-commitment bias. The respondents to the survey are not committed to 

behave in the way that they have responded. This is related to the policy and 

justification bias discussed above.

In addition the SP experiment might suffer fi*om factors such as learning (learning 

effects) and boredom (fatigue effects) (McFadden, 1986). In the presence of such 

effects preferences are unstable over the sequences of choices performed by the 

individual, which may lead to biased parameter estimates. It has been shown that the 

likelihood of learning and fatigue effects increases with the complexity of the 

experiment (Sælensminde, 2001). Consequently there is a trade-off between reducing 

the likelihood of response bias by making the experiment sufficiently complex, and 

reducing the potential for learning and fatigue effects by making the design relatively 

easy to complete. It should be noted that the potential bias due to learning and fatigue 

effects can be reduced by presenting the choice scenarios to respondents in a 

randomised order.

In spite of these difficulties the use of stated preference data should not be 

readily dismissed given its strength in forecasting changes in behaviour by 

incorporating a wider range of attribute levels as well as having the flexibility to 

introduce new alternatives and attributes. Since it is evident that both RP and SP data 

have their advantages there has been a growing interest in combining the different 

types of data to provide more robust parameters for the choice model. We will 

describe two methods for combining the two data types in section 4.4.
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Table 4,1. Comparison of RP and SP data

RP data SP data
Preference Choice behaviour in actual 

market. Cognitively congruent 
with actual behaviour

Preference statement for 
hypothetical scenarios. May be 
cognitively incongruent with 
actual behaviour

Alternative
s

Actual alternatives. Response to 
non-existing alternatives are not 
observable

Generated alternatives. Can elicit 
preference for new (non-existing) 
alternatives

Attributes May include measurement eirors
Correlated attributes
Ranges of attributes are limited

No measurement errors 
Multicollinearity can be avoided 
by design
Ranges of attributes can be 
extended

Choice set Ambiguous in many cases Pre-specified
Number of 
responses

Difficult to obtain multiple 
responses from an individual

Repetitive questioning is easily 
implemented

Response
format

Preference information available 
is “choice”

Various response formats (e.g., 
choose one, ranking, rating) aie 
possible

Source: Morikawa, 1994

4.2 The design of a choice experiment

As seen in the previous section, stated preference data is the outcome of a 

hypothetical choice experiment. In the experiment the researcher defines the attributes 

and attribute levels of the alternatives and the respondents are asked to choose the 

alternative they prefer. The observed choices, together with the attributes/ levels in
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the design are then used to elicit the marginal utilities of the attributes using the 

discrete choice methodology described in chapters 2 and 3.

In general, if in a choice situation there are A alternative attributes that vary 

over L levels, the full factorial design, which is a matrix of all possible combinations 

of attribute levels, is given by . The full factorial design grows exponentially with 

the number of attributes and levels, and in many cases it is not practical for one 

individual to choose between all possible combinations. In order to reduce the number 

of alternatives available to the individual the researcher can create a fractional 

factorial design, which consists of a subset of the alternatives in the full factorial. The 

aim of the researcher is to create a fractional design that satisfies some statistical 

properties while allowing for estimation of the effects of interest.

Ideally, the fractional design matrix should be orthogonal, or in other words 

the design should not exhibit any degree of collinearity.^ In addition the design should 

be balanced, meaning that the levels of each attribute appear with equal frequency in 

the matrix. In practice it is difficult to satisfy both these principles exactly, and the 

researcher chooses the design that most tends toward orthogonality and balance. This 

is called the optimal design or the most efficient design.

The size of the fi actional factorial design depends on the number of effects the 

researcher wishes to estimate. The simplest fractional design allows for the recovery 

of all main effects, or the effect on the dependent variable following a marginal 

change in a single attribute holding all other variables constant. A more complex 

design also allows for the recovery of interaction effects, or the effect on the 

dependent variable following a marginal change in a single attribute given different
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values of another attribute. The more effects the researcher wishes to estimate the 

larger the fractional factorial design must be. For linear models it has been shown that 

the main effects typically account for 70 to 90 percent of explained variance, two-way 

interactions account for 5 to 15 percent while higher order interactions (including 

more than two variables) account for the remaining explained variance (Dawes and 

Corrigan, 1974). Thus, a “rule of thumb” when creating a fractional design is to allow 

for estimation of main effects and two-way interactions since they account for 

virtually all of the explained variance (Louviere et a i, 2000).

In a fractional factorial designed to estimate a subset of the effects of the full 

factorial, the included effects will be aliased with one or more omitted effects 

(Louviere et a l, 2000). For instance, if the full design has three attributes with two 

levels and the fractional factorial is designed to estimate the main effects only, the 

main effect of attribute A will be aliased with the BC interaction. Aliasing implies 

that it is impossible to disentangle the two effects, and the main effect of A is 

estimated if and only if the BC interaction is insignificant. Otherwise the estimate is a 

combination of the main effect of A and the BC interaction. In order to reduce the 

problem of aliasing as mmiy effects as considered practically feasible should be 

incorporated in the fractional factorial.

" A matrix X is orthogonal X ' X  ~ I , where /  is the identity matrix with ones along the main
diagonal and zeros elsewhere. In an orthogonal matrix all column vectors are orthogonal (their scalar 
product is 0) (See e.g. Sydsaeter and Hammond, 1995).
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4.3 Forecasting using stated preference models. The ^̂ scale” 

problem.

Recall from chapter 3 that in the multinomial logit model the probability that 

individual n chooses alternative i from a set of/alternatives is given by:

”  Ï (4.1)

j

where — is a positive scale parameter and Vj is the representative utility function

described in chapter 2. As mentioned in chapter 3 it is customary to normalize the 

scale parameter to unity since it cannot be identified in estimation. As a consequence 

of this normalisation the true scale par ameter will be confounded with the a, and (3

parameters in the representative utility function. This leads to the so-called “scale” 

problem (Bates, 1988) that needs to be taken into account when using stated 

preference models for forecasting. We will describe the “scale” problem below.

It is a well-known result (see Ben-Akiva and Lerman, 1985) that the 

multinomial logit model will reproduce the market shares in the estimation sample 

such that:

(4.2)

where equals 1 if individual n is observed to choose alternative i and 0 otherwise. 

Because of this there are no serious implications of confounding the scale parameter
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with the coefficients in the representative utility function when using RP data for 

estimation, since the RP model nevertheless reproduces the market equilibrium 

embodied in the sample. SP data, however, do not in general embody information 

about the market equilibrium, and SP models will not reproduce the market 

equilibrium in simulation unless the error variance in the SP model equals the error 

variance in the RP model. This is easy to demonstrate if it is recalled from chapter 3 

that the scale parameter is inversely related to the error variance. Even if the true 

coefficients of the representative utility function are the same in the two models, 

= a f^  and , the forecasts from the two models will be different

unless which will only be the case if cr^p ~ crJc- Furthermore it can be

shown that if < (Tsc the SP model will overpredict the minor mode or the mode

with the lower share (see appendix 4.1 for a numerical example).

This begs the question of whether or not the ennr variances fi'om the RP and 

SP models are likely to be equal. The answer is unfortunately that they are not 

because the sources of the random teims in the two models will be different. The main 

sources of enor in the RP model will be measurement en*or in the explanatory 

variables, taste differences (assuming is equal for all n when in fact it is not), and 

model specification error such as wrong fimctional form and missing variables (see 

Train, 2003). While the latter two will clearly apply also in the SP model, 

measurement error is not likely to be a problem since the values of the attributes are 

given in the experiment. However, there is another important source of en*or in the SP 

model, namely that individuals might behave differently when making choices in an

Note that it is also possible, of course, that #  af^ and ^ . Wardman (1988) examines
the equality of coefficients of several SP and RP models and concludes that there is evidence of
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experimental setting compared to making choices in the market (see section 4.1.2). As 

a consequence of the differences in the source of error in the different types of data 

Bates (1988) concludes that “it seems unlikely that a utility function as derived from 

SP analysis will be correctly scaled relative to the random effects which we 

hypothesise to be active in real choices”. There is thus a need for rescaling the 

estimated coefficients in the SP model. We will describe two of the most common 

methods below.

4.4 Solutions to the ‘‘scale” problem: simple rescaling and 

data fusion.

Since it is likely that the RP and SP scales will differ it is necessary to use additional 

RP data to rescale the coefficients in the SP model. One straightforward way to do 

this is to rescale the coefficients to reproduce one or more coefficients from an RP 

model. This is the method which will be employed in chapter 7. An approach that has 

become increasingly common the literature is to combine RP and SP data in a process 

called data fusion. The rationale behind data fusion is that combining RP and SP data 

has the potential to yield more robust parameter estimates given the relative benefits 

of the two types of data. Furthermore, the scale differences between RP and SP 

alternatives can be estimated simultaneously with the parameters of the model. The 

joint estimation approach would be feasible in chapter 7 if the SP experiment included 

users of other existing modes such as bus. Since it was chosen to focus on the

equality given that heterogeneities in the sample are accounted for.
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switching behaviour of car drivers, however, this approach cannot be adopted here. In 

the following the technical aspects of the data fusion process will be described 

nevertheless, as it looks to become the standard approach for combining RP and SP 

data in the future.

The data fusion process, which was originally proposed by Morikawa (1989), 

assumes that there is at least one common variable in the RP and SP data and that the 

coefficients for all common variables are equal. Also, because of the different sources 

of eiTor between the RP and SP alternatives, the scale of the RP and SP alternatives 

are allowed to differ. Ben-Akiva and Morikawa (1990) describes a simultaneous 

estimation approach for the multinomial logit model, in which the RP scale parameter

is normalised to unity for noimalisation purposes, - i -  = l, while the SP scale

parameter, —̂ , is freely estimated along with the parameters of the model (all SP
Msp

alternatives are restricted to have the same scale, however)."* This model cannot be 

estimated in standard econometrics packages but is relatively straightforward to 

implement in a package like GAUSS.^

Although the majority of the applications of the data fusion methodology to 

date have used the multinomial logit model (Morikawa, 1989; Ben-Akiva and 

Morikawa, 1990; Hensher and Bradley, 1993; Swait et ai, 1994) more recent work 

has employed more flexible models, such as the heteroscedastic extreme value model

Since — and------- =  "r, .. (see chapter 3), it follows that —~  ^  where
ŜP

 — —̂ .=7.'— and =  ■■ (see chapter 3), it tollows that —r— =  —;
M s p  v 6 ( t | p  M r p  f 6 c r l p  M s p

( T and G"̂ p are the error variances in the RP and SP models. This ratio gives the error variance of 
the SP data as a percentage of the variance of the RP data,
 ̂Hensher and Bradley (1993) and Bradley and Daley (1997) describes how this model can be 

estimated using a nested logit stincture.
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(Hensher, 1997; Hensher et a l, 1999), the nested logit model (Cherchi and Ortuzar, 

2002) and the mixed logit model (Brownstone et al, 2000; Bhat and Castellai*, 2002). 

The mixed logit model offers the most general modelling framework as the benefits of 

the other models (heteroscedasticity and correlation between alternatives) can be 

incorporated along with taste heterogeneity and correlation between choices made by 

the same respondent (see section 4.6).

The views of the authors using the data fusion methodology differ somewhat 

when it comes to the origin of the data. Louviere et a l (2000) argue that the RP data 

and SP data may come from different sources while Morikawa (1994) emphasises that 

the RP and SP data should come from the same individuals. Since both preferences 

and sources of error may differ between individuals in different locations it is likely 

that combining data fi'om different sources will not always be possible (see Atherton 

and Ben-Akiva, 1976 for a discussion of model transferability).

A formal test of preference homogeneity in the RP and SP data is given in 

Swait and Louviere (1993). The test statistic for the hypothesis that the common 

utility parameters are equal is given by ~2[(L^ 4-L‘̂ ^)-L'^], where and

L' are the log-likelihoods of the models estimated on the RP data, SP data and the 

joint RP/SP data respectively. The statistic can be shown to be asymptotically chi- 

squared distiibuted with \ ^ ~ l  degrees of freedom, where \0[ is the number of

parameters common to the RP and SP models. Although this test is designed to test 

the null hypothesis of preference homogeneity in the RP and SP data there are several 

reasons other than preference heterogeneity that can lead to rejection of the null. The 

design, layout, framing, context etc. of the SP experiment aie all crucial elements to 

combining the data successfully. If the task is to forecast the real market accurately,
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the SP experiment should closely reflect the choices made in the market with regards 

to the process of defining the task, the attributes, attribute levels etc. In addition, ill- 

conditioned RP data may affect the outcome of the test, as may omitted variables such 

as interaction effects (see Louviere et al, 2000 for a discussion).

Note that it is up to the researcher to specify the number of parameters the two 

models have in common. If full data enrichment (all common parameters except 

alternative specific constants are equal) is rejected, it is possible to re-specify the joint 

model to allow for more parameters to be “data specific” in order to test the 

hypothesis of partial data enrichment. Partial data enrichment, however, leaves the 

researcher with the question of which parameters should be used for prediction. This 

question is not yet fully resolved in the literature, but it’s been suggested (Louviere et 

a l, 2000; Morikawa, 1994) that the prediction model should contain the RP 

alternative specific constants and all the parameters that were jointly estimated.

4.5 Testing for fatigue/ learning effects in stated preference 

models

The joint estimation procedure outlined above can also be used to test for fatigue and 

learning effects in the SP experiment (see section 4.1.2) using the approach outlined 

in Bradly and Daly (1994). The testing procedure utilizes the method of estimating 

separate scale factors for different alternatives (which in the previous section are the 

“RP alternatives” and “SP alternatives”) to estimate separate scale factors for each 

choice task in the SP choice sequence within a single SP model The scale parameter
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for one of the choice tasks in the sequence is normalized to unity, typically the scale 

parameter for the first or last choice perfoimed. If the scale parameter is found to be 

increasing (the variance decreasing) in the number of choices performed, this can be 

inteipreted as evidence of a learning effect since the decrease in the error variance 

indicates that the respondents behave more consistently towards the end of the 

experiment. If the opposite is observed this is evidence of a fatigue effect. The 

likelihood ratio test described in chapter 3 can be used to test whether the explanatory 

power of the unrestricted model (with “free” scale parameters) is significantly better 

than the restricted model (with a conunon scale parameter for all choice tasks). If the 

null hypothesis of the restrictions being valid is rejected this is evidence of a learning 

or fatigue effect.

4,6 The “repeated measurements” problem

One of the advantages of SP data is that each respondent typically perfoims several 

choice tasks, thus providing more information about his or her preferences than in an 

RP survey. Many authors have argued, however, that these responses are not likely to 

be independent since there may be unobserved individual characteristics influencing 

the choices made in all choice tasks (Ouwersloot and Rietveld, 1996; Abdel-Aty et 

al, 1997).  ̂ Since this implies that the random components are not independently 

distributed, the IID assumption underlying the multinomial logit model is violated. 

This is often referred to as the problem of “repeated measurements” (Bates and

Consider for instance an individual who has a particular dislike for travelling with others.
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Terzis, 1999). The problem arises since the additional information provided by having 

the same individual perfoim more than one choice task is not as great as if the choice 

tasks were perfoimed by different individuals. It has been shown that the correlation 

in the random teims leads to an upwai'd bias of the /-statistics in the model (Cirillo et 

al, 2000). The coefficient estimates of the model, however, are biased only if the 

random terms are correlated with the explanatoiy variables (Morikawa, 1994). This 

may be the case if 1) the respondents’ actual (RP) choice is included as an 

explanatoiy variable in the model (to investigate whether there is evidence for choice 

inertia) or 2) the design attributes are based around the attributes of the actual choice. 

A solution to the repeated measurements problem is to use the mixed logit model with 

an error structure that takes the correlation between choices into account (see chapters 

3 and 7).
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Appendix 4.1 Numerical example of a forecast derived from a wrongly scaled SC

model.

Let us assume that the representative utility of mode 1 and 2 are given by:

= -0.2 X r/M£„i-Orix COST„t

V„2 = -0.2 X TIME ̂ 2 -Orix COST, 2̂

The travel times and cost of the two modes for a hypothetical individual are given in 

the table below. It is easy to see that in this case the SC model will over-predict the 

demand for the minor mode by 78% given that the SC scale is half the size of the RP 

scale I ~  0.5 ).

Table AI. Travel time and cost of two alternatives.

Alternative Time Cost

1 5 ÏÔ

2 15 5

Table A2. Comparison of the forecasts derived from the RP and SC models 

assuming the SC scale is half the size of the RP scale.

yR P  yS C  p R P  p S C

^  1  0l82 Ô68

-3.5 -1.75 0.18 0.32
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Chapter 5

Discrete Choice Modelling of Work Trip 

Mode Choice

There have been numerous applications of the discrete choice methodology in studies 

of commuters’ mode choice since McFadden’s groundbreaking work on commuting 

in the San Francisco Bay Aiea (McFadden, 1974; 1978). Because of the number of 

contiibutions it would be a near impossible task to offer a complete review of the 

literature on the subject. The present chapter summarizes the main findings of some 

studies that show the breadth of topics investigated in the literature (the value of travel 

time savings, forecasting the demand for a new mode, forecasting the response to 

policy measures such as road pricing etc.) as well as highlighting the methodological 

developments outlined in chapters 3 and 4.
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5.1 Early disaggregate mode choice studies

An early example of using a random utility framework to model travel demand is 

given in McFadden (1978). McFadden estimates a multinomial logit model of work- 

trip mode choice, using data on a sample of commuters in the San Fransisco Bay Area 

before the inauguration of BART (Bay Area Rapid Transit), a new light rail service.* 

The model is subsequently used to predict the share of users of the new service, and 

the predictions compared to the sample modal-split after the implementation of 

BART. The estimated model is described in table 5.1 below.

Both the coefficient on cost divided by post-tax wage and the coefficients on 

travel time have negative signs and are statistically different from zero (the marginal 

utilities of cost divided by post-tax wage and travel time are negative). Travel cost is 

divided by post-tax wage to reflect that a highly paid individual is less concerned 

about the cost of travel than one with a lower income. This also facilitates calculating 

the subjective value of time (SVOT) as a percentage of the wage. The time spent while 

travelling is decomposed into in-vehicle time, walk time and wait time, and the 

coefficient on in-vehicle time is allowed to vary between auto and transit modes. This 

decomposition allows for analysis of policies trading off these components, an 

example being a policy that places more buses on fewer bus lines and thereby 

decreasing wait time and increasing walk time.^ It also allows the estimation of SFOT 

for the different time components. The headway of the first bus is the number of 

minutes between bus airivals at the first bus stop (initial wait time is often calculated 

as half of the headway).

' The four transport modes available before BART were car alone, bus with walk access (Bus W), bus 
with car access (Bus C) and carpool.
-See Train (1980)
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Table 5.1 Multinomial logit mode choice model in McFadden (1978)

V ariable Alternative Coeff. t-stat.
C onstan t C a r alone -5 .260 5.93
C onstan t Bus C -6 .490 5.33
C onstan t Carpool -3 .840 6.36

Family incom e (thousands of $ p e r  year)
Effect up  to  $7.5K C a r alone -0 .005 0.05
Effect betw een  $7.6K and  $10.5K C a r alone -0 .057 0.43
Effect above $10.5K C a r alone -0.054 0.91

N um ber of drivers in household C a r alone -0 .102 4.81
N um ber of drivers in household Bus C -0-990 3.29
N um ber of drivers in household Carpool -0.872 4.25

Dummy if com m uter is h ead  of household C a r alone -0 .627 3.37

Em ploym ent density  a t work location C a r alone -0.002 2.27

H om e location in (2) or n ea r  (1) CBD C ar alone -0 .502 4 .18

N um ber of ca rs  pe r  driver C ar alone 5.000 9.65
N um ber of ca rs pe r  driver B u sC 2,330 2.74
N um ber of cars pe r  driver Carpool 2 .380 5.28

C ost/post-tax w age (cen ts/cen ts p e r  min.) All -0.028 4.31

Auto in-vehicle tim e (min.) C ar alone, Bus C, Carpool -0 .064 5.65

Transit in-vehicie time (min) Bus W, B us C -0 .026 2.94

Walk tim e (min) Bus W, Bus C -0.069 5.28

T ransfe r wait time (min) B us W, Bus C -0.054 2.3

N um ber of transfers B us W, Bus C -0 .105 0.78

H eadw ay of first bus (min) Bus W, Bus C -0.032 3.18

Log-llkelihood a t zero  L(0) -1069.0
Log-likelihood; final value L(P) -595.8
R ho -squa red  (with L(0>) 0.443

The coefficients on family income are allowed to vary for different income 

groups to facilitate a non-linear relationship between income and representative 

utility. However, the coefficients are small and insignificant. McFadden finds this 

unsurprising given that the number of autos per driver enters as a separate (and highly 

significant) variable in the model and travel cost is divided by wage. Thus, the 

channels through which income is likely to influence mode choice are controlled for 

independently of the income variable.
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The alternative specific dummies ensure that the mean of the unobserved 

component of utility is zero, and can be inteipreted as the average effect of the 

unobservable components on the utility of choosing an alternative. Since only 

differences in utility matter and not the overall scale, one of the constants (Bus with 

walk access) is normalised to zero. This is also the case for the socio-demographic 

variables, and is necessary to facilitate the estimation of the parameters (see chapter 

3).

The value of travel time as a percentage of post-tax wage can be calculated as 

the ratio of the time and cost coefficients times 100 (see chapter 2). The value of auto 

in vehicle time is found to be substantially higher than the value of transit in vehicle 

time, indicating that the time spent in the car is regarded as more onerous than the 

time spent on the bus or train. This does not include the other aspects of travelling by 

transit such as walk and wait times, and McFadden suggests it might be a result of the 

positive aspects of transit ti avel such as being able to read and work while travelling.

The estimated model is used to predict the share of BART users in the sample. 

This is done simply by including BART with auto access and BART with walk access 

as alternatives in the logit formula. However, since there are no alternative specific 

constants relating to BART in the model, the alternative specific constant for bus with 

car access was used as an approximation. McFadden acknowledges this as a weakness 

of the forecasting process, which could have been overcome by incorporating stated 

preference data in the model (see chapter 4 and section 5.6). Nevertheless, the model 

was found to predict the shaie of BART users exceptionally well, with a forecasted 

share of 6.4% compared to the actual share of 6.2% (table 5.2). McFadden reports, 

however, that the accuracy of prediction is better than one would expect given the size 

of the standaid errors of the forecasts. The model undeipredicts the share of the auto
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alone mode and overpredicts the shares of the bus modes. This is likely to be a result 

of the IIA property: the users of the new transit mode come proportionally more from 

users of the existing transit modes than those commuting alone by car and this is not 

taken account of in the MNL model. This could have been overcome by estimating 

either a nested or a mixed multinomial logit model that allowed for this pattern of 

substitution (chapter 3).

5.2 Modal split after the introduction of BART. Predicted vs. actual shares.

B us with walk Bus with ca r  BART with BART with 
C a r alone Carpool

a c c e s s  a c c e ss  bus a c c e ss  ca r  a c c e ss
-  —  —  -

55.8%  12.5%  2.4%  1.1% 5.3%  22.9%
sh a re

Actual sh a re  59.9%  10.8%  1.4% 0.95%  5.2%  21.7%

A somewhat later application of the multinomial logit to model commuters’ mode- 

choice is given in Dunne (1984), who uses data from Livingston, Scotland to calibrate 

his model. Livingston is one of the so-called “New Towns” in Scotland, designated in 

1962. Its planners paid special attention to the mobility of the town’s residents with 

regard to minimising traffic flow delays, providing an extensive segregated footpath 

system and low walk times to bus stops from dwellings. Dunne finds, as the only 

study in this review, that the time and cost of the modes are insignificant determinants 

of mode choice. On the other hand car-ownership, relative to household size and 

number of workers, seems to be an important determinant of cai* use, along with 

gender and status within the household. This is in line with the findings in McFadden 

(1978) and other studies in the review.
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5.2 Joint car ownership/ mode choice models

Some authors have argued that since the commuters’ choice of mode and the 

households’ level of car ownership level is likely to be made simultaneously, a mode- 

choice model should not treat car ownership as being exogenous to the mode-choice 

decision. This is important since the parameters in the model may be biased if car 

ownership is indeed an endogenous variable. There are some early examples of joint 

car-ownership and mode choice models in the literature (Ben-Akiva and Atherton, 

1977; Train 1980; Thobani, 1984), but this section will focus on a more recent 

application given in de Palma and Rochat (2000).

The model in de Palma and Rochat (2000) is a nested logit model of joint cai- 

ownership and mode choice estimated using a sample of commuters in Geneva, 

Switzerland. Since the level of car ownership in this region is very high (98% of the 

households in the sample own at least one car) the car-ownership choice set is defined 

as the choice between owning one or two or more cars. In this application of the 

nested logit model the inclusive value term described in chapter 3 can be interpreted 

as the expected utility the commuter derives from a specific car ownership level. As 

always the dissimilarity parameter must lie in the 0 to 1 interval to ensure that the 

model is globally consistent with utility maximisation (see chapter 3). If the parameter 

is equal to one the nested logit collapses to the multinomial logit model and 

simultaneity is rejected. De Palma and Rochat find that the parameter in their model 

lies in the 0 to 1 inteiwal and is significantly different from one, and therefore 

conclude that there is evidence for simultaneity of the cai-ownership/ mode-choice 

decision. This is consistent with the findings in previous studies. Train (1980)
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compares the nested logit model to the simpler multinomial logit where car ownership 

is treated as exogenous and finds that there is little bias in the parameter estimates in 

the MNL model. This is reassuring since it suggests that the simpler (MNL) model 

may be adequate for modelling short-term travel decisions where the level of car- 

ownership is assumed to be constant.

An innovative feature of de Palma and Rochat’s model is the inclusion of 

comfort and availability as alternative specific attributes. While it is recognised in the 

literature that attiibutes other than time and cost influence individuals’ choice of mode 

(Nerhagen, 2001), these attributes are rarely included in practical applications since 

they are difficult to quantify. De Palma and Rochat get around this problem by asking 

individuals to rank the availability and comfort of their chosen mode. The average 

ranking for each mode enters as the level of the attributes of the alternatives in the 

individual’s choice set. The authors argue that this ranking procedure, as opposed to 

having all individuals rank the alternatives available to them, reduces the likelihood of 

justification bias (ranking the chosen mode higher/ alternative modes lower). The 

authors find that availability is an important deteiminant of mode choice while the 

parameter on comfort has the expected sign but insignificant.

De Palma and Rochat include other innovative variables in their model. In 

particular network experience (number of years on principal route) and congestion 

seem to be important detenninants of mode choice. The estimated attribute elasticities 

are similar in magnitude to other models of urban commuting, the time and cost 

elasticities are -0.27 and -0.29 for the car mode and -0.61 and -0.43 for the public 

transport modes respectively. The authors argue that the relatively low cost elasticities 

suggests that monetaiy incentives may not be effective in reducing car use while
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policies directed to improve the efficiency of the public transport network may be 

more successful.

The cai' ownership model primarily includes household variables as the 

decision on how many cars to purchase is assumed to be made on the level of the 

household rather than the individual. Unsurprisingly (household) income seems to be 

a significant deteiminant of the households’ car ownership level, confirming the result 

fi'om other studies (Train, 1980; Thobani, 1984; Hensher e /«/., 1989; Pendyalae/«/., 

1995). In addition the size of the household and the occupation of the sampled 

individual seem to be important. The authors explain the significance of the 

“occupation” variable by noting that white-collar workers are often provided with a 

car fiom their company.

5.3 The bicycle as an alternative to the private car

Noland and Kum euther (1995) is the only paper in the review focusing specifically on 

how to increase the shaie of commuters travelling by bicycle. This reflects the fact 

that the focus in the literature has until quite recently been on public transport as the 

main alternative to the private car. As a parallel to the increasing focus on cycling 

among policymakers in the UK and elsewhere (DoT, 1996), however, some recent 

studies have focused on the bicycle as an alternative to car use, especially for 

commuters who live relatively close to their workplace (Cleary and McClintock, 

2000; Kingham et al, 2001).

Noland and Kum euther hypothesise that safety concerns are the main barrier 

to bicycle use. In order to investigate this hypothesis the suiwey respondents were

86



asked to rank the probability of having an accident and, given that an accident had 

taken place, the expected severity of the accident. This information was used to create 

an individual risk coefficient for each mode (car, transit, walk and bicycle), which 

enters as an explanatory variable in the model. As expected it was found on average 

that bicycle was perceived as being the riskier mode (also by bicycle users), while 

transit was perceived as being the safest mode. In addition to the generic risk 

coefficient the respondents were asked to rank how they felt the risk of riding a 

bicycle relates to weather conditions (rain, snow, ice etc.) as well as road conditions 

(potholes on surface, no hard shoulder etc.). The authors find that the coefficent on the 

generic risk coefficent had the right sign but was of low significance, while the 

coefficent on road conditions was strongly significant in the expected direction. The 

coefficent on weather conditions was also insignificant, which is perhaps reassuring 

since policymakers have no influence over weather conditions.

In addition to the risk variables the individuals were asked to rank the 

perceived comfort and convenience of each mode. Both the coefficient on comfort 

and convenience were found to be highly significant and of the expected sign. The 

coefficient on the time variable was found to be insignificant when the convenience 

variable was included in the model. This is, the authors argue, explained by the 

positive correlation between these two variables and therefore suggests that one of the 

variables should be dropped from the equation. The model including convenience is 

found to be superior to the one including time, suggesting that there are elements 

other than time influencing the convenience of the modes which are relevant in the 

mode choice decision. Whether there is bicycle parking available at the workplace is 

also found to be a significant determinant of mode choice along with cost, gender 

(males are found to be more likely to cycle and use transit) and car ownership. In
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conclusion the authors argue that a policy designed to increase the share of commuters 

travelling by bicycle should focus on providing convenient bicycle lanes and bicycle 

parking at the workplace, possibly combined with policies aimed at making the car 

less attractive such as restricting parking by turning car parks into bicycle parks and 

timing traffic lights such that they reflect the average speed of bicycles rather than 

automobiles.

The ranking procedui e in Noland and Kunreuther differs from the one in de 

Palma and Rochat (2000) since each individual ranks all the alternatives in her choice 

set. This may increase the likelihood of justification bias (ranking the chosen mode 

higher/ alternative modes lower), which will lead to upward bias in the coefficient 

estimates. Another problem related to the inclusion of perceived attributes in the 

model is that the link between perceptions and objective values is ambiguous. 

Although, fi'om a behavioural perspective, it is the perceived level of the attributes 

that matters for the individual’s decision making process, a model estimated using the 

perceptions of the attributes has little predictive power unless one knows the link 

between perceptions and objective values (Small, 1992). Noland and Kunreuther 

recognise this argument and suggest that this is an important area for fixture research.

5.4 Parking and mode choice

There is a branch in the literatuie on commuters’ mode choice focusing explicitly on 

the link between parking conditions at the workplace and mode choice (see Feeney, 

1989 for a review). Apart from discrete choice models the most common 

methodology is “before and after” studies that investigate to what extent the modal



split changes following a parking policy change at the workplace, usually the 

introduction of a parking charge (e.g. Shoup and Willson, 1990). In studies using the 

discrete choice methodology the models are usually estimated on a cross section of 

commuters with different parking conditions at the workplace, in order to investigate 

how the differences in conditions influence the choice of mode.

Willson (1992) investigates how employer-paid parking influences mode- 

choice for the work trip using a sample of commuters in the Los Angeles area. The 

sample consists of two groups: one consisting of individuals who are provided with 

fi ee parking at or near the worksite and one of individuals who have to pay the market 

price to park. Following Gillen’s (1977) argument that individuals may respond 

differently to changes in parking costs from changes in automobile running costs 

(usually defined as fuel and maintenance costs), Willson specifies separate 

coefficients for running costs and parking costs in his model (a similar argument is 

made by many authors in the literature on congestion charging, see section 4.7). He 

finds that the coefficients for both cost components are significant in the expected 

direction, and that the coefficient for rumiing cost is larger (in absolute value) than the 

coefficient for parking costs. Hensher (2001a) hypothesizes (and finds evidence for) 

that the cost component which is greatest in magnitude will have the smaller 

coefficent (see section 4.7). Since the parking charge is likely to be higher than 

mnning costs for most of the commuters in the sample, Willson’s finding supports 

Hensher’s hypothesis.

In addition to specifying a separate coefficient on parking costs, Feeney 

(1989) argues that parking models should include separate coefficients for walking 

time (from parking to work-site) and the time spent searching for a free parking space. 

This is not a feature of Willson’s model, and the author recognises this as a
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shortcoming of the study. However, since Willson’s aim is to predict changes in the 

modal-split following the introduction of parking charges he argues that the inclusion 

of these variables in a generic “door-to-door” travel time variable is acceptable.

Willson estimates that between 25 and 34 percent fewer cars would be driven 

to work following the introduction of a ($4.15) parking fee. As a consequence he 

ar gues that the inhoduction of parking charges has significant potential for reducing 

the number of cars driven to work, while the current practice of subsidizing car- 

parking seriously undermines policies designed to encourage the use of alternative 

modes such as car sharing and public transport.

5.5 Estimation of the value of travel time^

A great number of studies in the literature ar e concerned with the estimation of the 

subjective value of time {SVOT). Commuters’ value of time is of importance both for- 

forecasting and in assessing the benefits of improving the infrastructure and in many 

countries the authorities have commissioned studies estimating SVOT both for- 

commuting and other types of trips (the UK, the Netherlands and the Scandinavian 

countries among others).

While SVOT can be derived fiorn any mode choice model as the ratio of the 

travel time and cost coefficients in the model (see chapter 2), some authors have 

argued that mode choice models ar e not the most suitable approach for valuing travel 

time savings since they are likely to confound SVOT with other factors related to the 

difference between the modes. In particular, since the time coefficient in a mode

Tills section has benefited substantially by comments made by Prof Otto Anker Nielsen. !
I
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choice model is usually specified to be generic, this coefficient will typically capture 

the relative comfort, convenience, privacy etc. of the different modes unless these 

attributes are controlled for in the model. While it is possible to specify separate time 

coefficients for the different modes in the model, car and bus say, it is still assumed 

that car and bus users have the same car time coefficient. As a consequence, Calfee 

and Winston (1998) argue that the car time coefficient is likely to be inflated “if bus 

users do not choose auto because they attach a higher disutility in driving in 

congestion than auto users”. Hence, if the goal is to estimate the value of travel time 

savings for the car mode for individuals who currently travel by car, a mode choice 

model may be inappropriate.

Calfee and Winston (1998) estimate the benefits of a congestion charge (the 

value of the reduction in commuting time following the implementation of the charge) 

for commuters who currently travel by car and face some congestion. They argue that 

given the drawbacks of the mode choice model when it comes to estimating SVOT for 

a particular group of commuters, a better approach is to use a stated preference 

experiment where the respondents rank several scenarios involving different times 

and (toll) costs but where none of the scenarios involve switching to an alternative 

mode. They separate the time spent travelling into congested travel time and 

uncongested travel time based on the hypothesis that the disutility of congested travel 

time is lower than that of uncongested travel time. The reason for this is intuitive; 

uncongested travel time is perceived as less onerous than congested travel time as it 

enables commuters to “decompress” after work. This hypothesis is confiimed by the 

estimation results, as the coefficient for congested travel time is found to be roughly 

thr ee times higher than that of uncongested travel time.
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Calfee and Winston’s main finding is that the value of congested travel time 

(or, alternatively, the willingness to pay to reduce the time spent travelling in 

congested traffic conditions) is estimated to be between 14 to 26 percent of the gross 

hourly wage, which is considerably lower than the SVOT derived from mode-choice 

studies (Small, 1992a, finds in a review of mode choice models that a reasonable 

average is 50% of the gross wage). Furthermore, the value of time is found to be 

insensitive to alternative uses of the revenues arising from the toll. This finding is in 

contrast to Small (1983), (1992b) and Mohring and Anderson (1994), who suggest 

that the key to political acceptance of a congestion charge lies in how the revenues 

from the toll are spent. Calfee and Winston conclude that their findings help explain 

why there has been little public support for tolls in the US and elsewhere, since it is 

doubtful that the net benefits from a toll are high. In spite of this, however, the authors 

support the widely held claim that other measures directed towards reducing 

congestion (expanding public transportation, implementing intelligent vehicle road 

systems that guide motorists onto the least congested routes) may be even less 

desirable in the long run since “commuters who have previously avoided congested 

roads by, for example, driving during off-peak hours, will be lured back onto the 

roads by the promise of uncongested travel”.'̂

Hensher (2001a) investigates how different model specifications (multinomial 

versus mixed logit) influence the estimate of the mean value of travel time savings. 

He uses a stated choice approach to investigate how car drivers value the time spent 

travelling under different conditions. The experiment is similar to that of Calfee and 

Winston in that none of the scenaiios involves switching to an alternative mode. The 

tiavel time is divided into thiee components: free flow time, slowed down time and

This phenomenon is known as Downs’ (1962) law.
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start/ stop time. In addition there is an uncertainty allowance included in the 

experiment, which is defined as the extra time the commuter needs to allow herself to 

ensure that she amves at work on time. Hensher hypothesises that the magnitude of 

the time coefficients will be increasing (the disutility of slowed down time is higher 

than that of free flow time and the disutility of start/ stop time is higher than that of 

slowed down time), which is confirmed by the empirical evidence.

Hensher also specifies different coefficients for running costs mid toll costs in 

his model, since commuters may respond differently to toll costs from running costs. 

He hypothesizes that the cost attiibute that is the greatest in magnitude, which in this 

case is the toll, will have the smaller coefficient (in absolute value). This hypothesis is 

confirmed by the empirical evidence for all model specifications. Hensher argues that 

the decomposition of travel time and travel costs would be difficult using revealed 

preference data, since there is normally too much confoundment in RP data to obtain 

precise parameter estimates at this level of disaggregation. In addition some attributes 

(such as toll costs) do not exist or are of limited variability wliich makes it impossible 

to establish their influence on mode choice.

A crucial question that faces the analyst when applying the mixed logit model 

is deciding which pmameters should be allowed to vary, and which distribution to use 

for the random parameters. This question seems to be guided by practical issues and 

experience with which specifications yield behaviourally plausible values of SVOT 

rather than theory. Ruud (1996) has pointed out that a mixed logit model where all 

paiameters aie allowed to vaiy has a tendency to be unstable. Brownstone (2000), on 

the other hand, points out that if both the time and cost parameters are specified to be 

noimally distributed (and uncorrelated) the distribution of the ratio of the coefficients 

{SVOT) will have a Cauchy distribution, which has no finite moments (see also
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section 3.7). This will also be the case if the cost coefficient is normally distributed 

and the time coefficient fixed, since the reason that the value of time has no finite 

moments is that the distribution for the cost coefficient crosses zero. It follows that 

any distribution for the cost coefficient which is strictly positive yields a distribution 

of value of time with finite moments, given that the time coefficient follows a 

distribution which has itself finite moments. The distribution of the value of time may 

also have finite moments when the distribution for the cost coefficient limit zero, but 

this is not the case for all distributions with this characteristic (it holds for the 

lognoimal distribution, but not for the exponential distribution for example). Given 

these findings, in addition to the observation that the coefficient for cost should 

logically be negative, the majority of the applications of the ML model in the 

literature have specified the cost coefficient to be either fixed (Revelt and Train, 1998; 

Train, 1999; Hensher, 2001b; Carlsson, 2003; Alpizar and Carlsson, 2003) or 

lognormally distributed (Train, 1997; Brownstone and Train, 1999). Specifying the 

cost coefficient to be fixed is convenient since this implies that the value of time 

follows the distribution of the time coefficient (Revelt and Train, 1998; Carlsson, 

2003). The lognormal distribution, on the other hand, is convenient when the time 

coefficient is specified to be lognormally distributed, since in this case the value of 

time will also be lognormally distributed.^ In the majority of the applications the time 

parameter is specified to be normally or log-normally distributed, while in Hensher 

(2001a) the time parameters are specified to follow a triangulai' (tent shaped) 

distribution. It should be pointed out that the noimal and triangular distributions may 

not be appropriate if the estimates imply that a substantial share of the population

 ̂Train (1999) and Hensher (2001a) argue that because of the thick tails of the lognormal distribution a 
iog-nonnally distributed cost parameter may result in SVOT estimates that are behaviourally 
implausible as parameter estimates very close to zero give veiy high estimates of SVOT. This claim is 
not supported by all authors in the literature, however.
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have positive time parameters. Since this cannot be determined a priori this issue 

should be evaluated on a case for case basis and will be addressed in the empirical 

section of the thesis.

Hensher (2001a) finds that the value of time derived fi-om the multinomial 

logit model is lower than the SVOT derived from the less restrictive mixed logit 

models which allow for more flexible (non IIA) substitution patterns. This is 

consistent with similar findings using more flexible choice models such as the 

heteroscedastic extreme value model, the covariance heterogeneity model and mixed 

logit to model the choice of mode for long distance travel (Bhat, 1995; Hensher 1997; 

2001b; c) but not with the findings in Brownstone and Small (2003), Nielsen and 

Jovicic (2003) and Nielsen and Sorensen (2004).

5.6 External validation of Stated Preference models

As discussed in chapter 4 the main concern regarding the use of stated preference 

travel demand models is whether choices made in a hypothetical setting are congruent 

with actual choice behaviour. This question cannot be answered in the abstract, and a 

growing number of empirical applications have focused on comparing stated 

preference models to market data (external validation).^

Following Beaton et al. (1998) there are essentially two types of external 

validity tests available. The first type is based on the hypothesis that, given preference 

equality, there should be no significant difference between the parameter estimates of

 ̂As opposed to internal validation, or tests for the consistency of SP responses (for example whether 
the responses satisfy the reflexivity axiom).
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an SP model and those of an RP model estimated on a common sample of decision 

makers. Because of differences in scale, however, these estimates cannot be directly 

compared (see chapter 4). The ratio of two coefficients, on the other hand, can be 

compared since in this case the scale factors cancel out. Wardman (1988) examines 

the equality of the coefficient ratios of several SP and RP models and concludes that 

there is evidence of equality given that heterogeneities in the sample (due to 

differences in socio -  demographic characteristics) are accounted for. The likelihood 

ratio test described in chapter 4 provides a formal way of testing for parameter 

equality in SP and RP models.

Beaton et al. (1998) point out that the tests for parameter equality do not test 

the predictive validity of the SP model, as the explanatory power of the model can be 

high (the model is well suited to explain current choices) while its ability to forecast 

switching behaviour may be low. The second type of external validity test focuses on 

prediction rather than explaining current behaviour. Forecasts derived from an SP 

model predicting the demand for a new mode or the response to a change in one or 

more policy variables is compared to the actual modal split (the truth set) after the 

new mode is made available or the changes have been implemented. As in the first 

type of test the sample from which the model was estimated should be the same 

sample for which forecasts and truth sets are derived. It should be noted tliat this type 

of test is also relevant for RP models (see, for example, section 5.1 in this review).

In Beaton et al (1998) a multinomial logit model estimated on a sample of 

SOV (single occupancy vehicle) commuters is used to forecast the demand for a new 

shuttle bus seiwice at the respondents’ worksite. Each respondent was asked to 

complete a stated choice experiment with the alternative of going by car as before or
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switching to public transport. The public transport option is combined with a shuttle 

bus service taking the commuters from the nearest transit stop to the worksite (the 

respondents had the choice between the new shuttle bus service and an already 

existing shuttle bus driving a different route). The design variables include parking 

costs, parking availability at worksite, the starting time of the new shuttle bus, 

whether the shuttle bus has room to stand and the headway of the shuttle bus. In 

addition several other (non-design) attributes are included in the model such as 

whether the respondent has a designated parking space, car mnning costs, public 

transport fare and walking time to the nearest public transport stop. All the design 

attiibutes, as well as most of the non-design attributes are found to be significant in 

the expected dnection. The coefficient for parking costs is found to be higher in 

magnitude than the coefficient for car running costs, indicating that the marginal 

disutility of an increase in parking costs is higher than that of an increase in running 

costs,^

The probabilistic and deterministic forecasts derived from the model are 

compared to the actual switching to public transport. The probabilistic forcast is given 

by averaging the estimated probabilities for the sample individuals. This forecasting 

method is consistent with random utility theory and will reproduce the market shares 

when the model is estimated using market data. For the reasons discussed in chapter 

4, this is unlikely to hold for an SP model since the SP scale is likely to differ from 

the RP scale. The deteiministic forecast is given by assuming that the mode with the 

higher representative utility is the chosen mode for all individuals in the sample. This 

approach is not consistent with random utility theory as the random component of the

’ This is in contrast to the finding in Willson (1992). The explanation may be that the parking costs in 
Beaton et al. are lower than the running costs of the car mode, as indicated by Hensher’s (2001a) 
hypothesis.
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model is ignored. Fowkes and Preston (1991) hypothesise that the probabilistic and 

deteiministic forecasts are likely to bound the true share, as the probabilistic forecast 

is likely to overpredict the demand for a minor mode while the deterministic forecast 

is likely to underpredict the demand (see chapters 4 and 7).

Beaton et al present the forecasts for the total switching to shuttle bus (both 

the new and old service) and switching to the new shuttle bus only. Compared to the 

modal split two years after the initial survey the probabilistic method overpredicts the 

switching to shuttle bus by 15% while the deterministic method underpredicts by 

60%. The probabilistic method underpredicts the switching to the new shuttle bus by 

23% percent, while the deterministic method underpredicts by 100%. In the first case 

the Fowkes and Preston hypothesis is confirmed. Due to employee turnover the 

employees’ preferences might have changed over the years, and thus the quality of the 

aggregate modal split as a truth set degrades. In spite of this, Beaton et a/.’s results 

suggest that a caiefully specified SP model can predict the demand for a new mode 

reasonably accurately. This conclusion is supported by Fowkes and Tweddle (1999) 

in the context of anglo-continental freight.

Ben-Akiva and Morikawa (1990) use the data fusion method described in 

Chapter 4 to model the choice between access modes for train commuters in 

Yokohama, Japan. The purpose of the study is to forecast the switching to a new 

subway line from the previously existing access modes (walk, bicycle, bus and car). 

The respondents were asked if they intended to use the new service, and if so he or 

she was considered to have chosen the subway mode over the currently used mode. 

This particular type of stated preference data is called stated intentions (SI) data. The 

modal attributes in the RP, SP and joint RP/SP models include in-vehicle time for the

98



mode, walk time and the number of transfers required for the public transport modes 

(a cost variable was dropped from the model as it was found to be insignificant. Ben- 

Akiva and Morikawa suggest that the reason may be that the cost of commuting is 

usually provided by the employer in Japan). The coefficients for all the attributes 

were found to be significant in the expected direction. The successful pooling of the 

two data sources suggests that the underlying preferences are similar given that 

differences in scale are accounted for.

In the joint RP-SP model the SP scale was estimated to be 0.559 (with the RP 

scale noimalized to one), suggesting that the SP data contain more noise (have a 

higher error variance) than the RP data. This is similar to the findings in many studies 

utilizing the data fusion method (see for example Hensher and Bradley, 1993 and 

Ortuzar and Willumsen, 2001) although there are exceptions where the RP eiTor 

variance is found to be higher than the SP variance (Morikawa, 1989; Chapter 7). 

Morikawa’s (1994) finds that the RP and SP eiTor variances are more similar when 

serial correlation and choice inertia are explicitly taken into account in the SP model.

A sample of train commuters taken after the survey was opened was used to 

estimate an “after” model with the same attributes as the “before” model. The 

parameter estimates of the after model are similar to the before model with the 

exception of the subway constant which is insignificant in the after model, while 

positive and significant in the before model. The authors suggest that this is evidence 

that the subway constant in the before model captures the policy bias in the SI data.

The predictions fiom the before model were compared to the actual switching 

to the new subway service. A difficult question when using joint RP/SP models for 

prediction is which alternative-specific constants to include in the model. Hensher and
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Bradley (1993) argue that the theoretically consistent approach is to include the RP 

alternative-specific constants as well as the SP alternative-specific constants which 

have no RP counterpart (such as the subway constant in Ben-Akiva and Morikawa, 

1990). An alternative approach suggested by Hensher and Bradley (1993) is to include 

all the alternative specific constants in the model. Ben-Akiva and Morikawa compare 

the forecasts derived from the RP model, the SP model (with and without the subway 

constant) and the joint RP/SP model (with and without the subway constant). They 

find that the SP model and the joint RP/SP model without the subway constants are 

the best performing models, overpredicting the switching to the new service by about 

9% (the actual share was 59.35%). The models without the “bias adjustment” (those 

which include the subway constant) overpredict the switching to the new service by 

20%. The authors suggest that the overprediction may result from the models’ 

inability to take into account that some commuters are captive to the mode used prior 

to the construction of the subway. Captive travellers may not use the subway for 

reasons such as disliking subways, unfamiliarity with the service and habitual usage 

of alternative modes. Despite this shortcoming Ben-Akiva and Morikawa conclude on 

the basis of their findings that SP models that can be corrected for potential bias can 

have good predictive validity.

5.7 Conclusions

As pointed out in the beginning of the chapter the aim of this review is to provide an 

overview of many of the issues that are relevant in applied discrete choice modelling 

of commuters’ mode choice, rather than providing an exhaustive review of the
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literature. The findings documented here along with the topics presented the previous 

chapters form a background to the analysis in the remaining chapters of the thesis, 

which present the empirical work conducted by the author. It should be noted that not 

all the issues covered are relevant for all the chapters: the issues regarding value of 

time estimation, for instance, are particularly relevant for chapter 6, while the issues 

surrounding the external validity of SP models are an important part of the discussion 

of the results in chapter 7. Some issues such as model specification and prediction, on 

the other hand, will be discussed in the applications in all three remaining chapters.
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Chapter 6

Commuters’ Mode Choice in Small Towns 

in Rural Areas: The Case of St Andrews

There have been many studies of commuting in urban areas in the UK, but relatively 

little research has been done on commuting in small towns in rural areas. Rural 

commuting differs from urban commuting in several important respects: there is little 

or no road congestion, a parking space is usually provided free by the employer and 

the supply of convenient public transport is often limited (Nutley, 1998). As a result a 

high share of rural commuters will depend on the private car to get to their workplace. 

Another consequence of these differences is that car reduction policies designed for 

large cities with ample public transport may be unsuitable for smaller towns. In 

particular pricing policies (such as congestion charges) may be less effective in 

reducing the share of drivers and encouraging public transport use in rural areas, as
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commuters with no convenient substitute to driving are unable to change mode. Since 

pricing policies will only be effective once a substitute is in place, improving public 

transport service quality is likely to be the most important policy tool to reduce 

driving in rural areas. It follows that in order to design effective policies to encourage 

use of public transport, policies must be based on evidence from studies focusing 

explicitly on rural commuters as one cannot a priori expect important policy 

parameters such as elasticities to be equal across geographical locations where 

commuting conditions differ markedly (Acutt and Dodgson, 1995).

St Andrews is a small town of about 18000 inhabitants^ located in the rural 

North-Eastern part of Fife, Scotland (see figure 1). It is a typical Scottish small town 

in that it has rather limited public transport links, but somewhat untypical in being the 

location of Scotland’s oldest University. The main mode of commuting is the private 

car followed by walking and cycling. Public transport has a relatively low market 

share, although some people commute by bus. Train is hardly used at all for 

commuting, as the nearest train station (Leuchars station) is about 5 miles away from 

the town with a relatively poor bus connection.

The current chapter develops multinomial, nested and mixed logit models of 

work-trip mode choice estimated using data from a survey of employees of the 

University of St Andrews, the town’s main employer. The models are subsequently 

used to estimate aggregate direct and cross mode-choice elasticities and the value of 

travel time. The outline of the chapter is as follows: section 6.1 describes the data as 

well as providing some descriptive results from the survey, section 6.2 presents the 

modelling results and section 6.3 offers some policy recommendations and concluding 

remarks.

' Including students.
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F ig u r e  6 .1  M a p  o f  F ife .

6.1 Data and descriptive statistics

6.1.1 Data characterization

As part of the development of a travel plan for the University of St Andrews a survey 

of employees’ commuting behaviour was undertaken with questionnaires distributed 

to all members of St Andrews University staff. The survey collected information on 

the current mode used for commuting, socio-demographic variables such as
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occupation and car ownership as well as public transport availability at home and near 

the workplace (see appendix 6.1). Of the 1661 questionnaires that were distributed 

642 were returned, giving a response rate of 38.7%. The sample is broadly 

representative of the staff population in the University, although there is an 

overrepresentation of females and individuals aged 40 or over in the sample (see table

6.1 below). Of the 642 questionnaires that were returned, 585 responses with 

complete information about the work trip and socio-demographic characteristics were 

used for model estimation. A list of the variables with some descriptive statistics is 

given in table 6 .2  below.

Table 6.1 Characteristics of respondents compared to the population average

____________________________ Sample share Population share
Female 54% 48%
Academic 39% 36%
Age

Less than 30 12% 26%
3 0 -4 0  26% 23%
4 0 - 5 0  26% 22%
Over 50 34% 29%

It can be seen from the table that the majority of commuters travel by car to 

work followed by walking and cycling, while only a small share of the commuters 

travel by bus. The relatively high shares of commuters who walk and cycle relative to 

the national average (see figure 6.2) reflects that a large proportion of the University 

staff live in the St Andrews area and that walking and cycling conditions are relatively 

favourable. The low share of commuters who travel by public transport is a result of 

the fairly poor bus service in the area. It can be seen from table 6.2 that 62% of the 

commuters in the sample do not have access to an hourly bus service going to and
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from their home to their workplace and that bus fares are relatively high with an 

average fare of £1.96 for a one-way ticket.

Table 6.2 Description of variables and data characteristics.

Mode____________________________________________ Sample Share
Walk 19.7%
Cycle 9.4%
Bus 3.4%
Car 67.5%

Choice set
Walk available 25%
Cycle available 52%
Bus available 88%
Car available 91%

Alternative attributes Mean/ Share
Door-to-door commuting time In minutes

Walk 13.5
Cycle 12.1
Bus 36.83
Car 18.1

Walking time In minutes
Walk 13.5
Cycle 1.2
Bus 14.0
Car 2.8

Travel cost In pence
Bus 195.8
Car 122.7

Frequency of bus service to and from work
At least one bus less frequent than 2 per hour 88%
At least one bus less frequent than 1 per hour 62%

Socio-economic variables Sample share
High income 44%
Number of cars In household (mean) 1.4

106



Figure 6.2 Comparison to the modal split for commuting trips in the 2001 

Scottish Household Survey Travel Diary.

Walk Cycle Bus Car

BSHS Travel Diary 2001 
■  St Andrevys Survey

Other

It is well documented in the literature that there are differences between men and 

women’s commuting behaviour, in particular in terms of bicycle use. In a recent 

British study, Dickinson et al. (2003) find that females are significantly less likely 

than males to cycle to work and equally car dependent in spite of having shorter 

commutes. The explanation may be that women have more complex trip 

characteristics than men due to tasks such as transporting children and shopping and/ 

or are more concerned with safety issues. In the models gender enters as a dummy 

explanatory variable (1= female, 0= male), which allows us to examine whether there 

is a similar difference between male and female commuting behaviour in the St 

Andrews area.

it is expected that the more cars a household owns, the more likely the 

individuals living in the household are to travel by car to work. Car ownership may be 

considered endogenous to the mode-choice decision as argued by Train (1980), who
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suggests a joint car-ownership/ mode-choice model using a nested logit structure (see 

chapter 5). Given that the data set contains few variables that are relevant to the 

households’ car ownership decision, however, this approach cannot be followed here. 

Since the models estimate mode choice conditional on car ownership, they represent a 

short-run response to a change in the policy variables.

In addition to the socio-economic characteristics of the commuters, it is 

expected that the attributes of the modes are important determinants of mode choice. 

In particular the travel time and cost of the modes have been found to be significant 

explanatory variables in virtually all studies of commuting behaviour (see chapter 5). 

In addition, it is expected that the more frequent the bus service, the more likely the 

individual is to travel by public transport.^ The frequency of the bus service enters the 

models as two dummy variables, indicating whether the individual has access to an 

hourly/ less frequent bus service (with a frequency of more than one bus per hour 

being the reference category). The reason that the bus frequency variable is specified 

in this way, rather than as a continuous variable, is that the majority of commuters 

have access to an hourly or bihourly bus service or a very infrequent service, e.g. a 

school bus which runs two times a day. The respondents self-reported the in-vehicle/ 

cycling time and walking times for their chosen mode. The travel time components 

for the alternative modes were calculated by regressing travel time on distance for 

each mode, using the estimated regression equations to calculate travel times for the 

non-chosen modes for all individuals in the sample.^ It is hypothesized that an

 ̂In a previous survey of staff commuting in the University of St Andrews (University of St Andrews, 
2002) improving key elements of service quality such as die frequency and reliability of buses was 
found to be most important both to current public transport users and other commuters when asked 
what would encourage them to use public transport more often.
 ̂Separate OLS regression equations was estimated for bus and car in-vehicle time, cycling time and 

walking time (see appendix 6.2 for modelling results). Walking time for the bus mode is calculated as 
the estimated walking time to the nearest bus stop, while walking times for the cycle and car modes are 
calculated as the average walking time for these modes.
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increase in the travel time of an alternative will lower the probability of the alternative 

being chosen. Furthermore, a marginal increase in walking and cycling times is 

expected to lead to a higher decrease in the probability compared to a marginal 

increase in the time spent travelling in a motor vehicle.

It is expected that an increase in the cost of a mode will decrease the 

probability of the mode being chosen. The respondents self-reported the pecuniary 

cost of travelling by bus to work, while the cost of going by car was calculated as 15 

pence per mile.^ Car costs include variable costs such as petrol and servicing costs 

but not fixed costs such as road tax and insurance, and also neglecting depreciation.^ 

Walking and cycling is assumed to be costless.

6.1.2 Choice set formation

When estimating a discrete choice model the available alternatives for each individual 

must be pre-determined by the researcher (see chapter 4). For each individual in the 

sample the available choice set is considered to be walk, cycle, bus and car with some 

exceptions. Going by car is considered unavailable to individuals without a driver’s 

licence and to those living in a household without a car. Going by bus is considered 

unavailable to individuals who reported to have no bus service available, as well as to 

those living too close to work for bus to be a practical alternative.^ Walking to work is

In order to calculate the cost of the bus mode for those respondents who did not report it themselves 
bus fare was regressed on distance, using the estimated regression equation to calculate the fare (see 
appendix 6.2).
 ̂The variable cost was calculated using a fiiel price of 79p per litre, assuming a fuel consumption of 36 

miles per gallon. The average costs of tyres, servicing and repairs per mile is calculated using figures 
given by the Automobile Association.
* Bus is not considered to be a practical alternative if the combined distance to and from bus stops 
exceeds the distance from the commuter’s home to her workplace.
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considered feasible for individuals commuting one mile or less, while going by 

bicycle is considered feasible for all respondents commuting three miles or less/

It can be seen from table 6.3 that the majority of individuals who currently 

walk and cycle to work live within a one and three mile radius of the University 

respectively. It is also interesting to note that the majority of the respondents who live 

within a one mile radius of their workplace walk to work (72%) while only about 16% 

of the individuals who live within a three mile radius cycle. This finding implies that 

there is considerable scope for increasing the share of individuals cycling to work.

Table 6.3 Cross-tabulation of commuting distance and mode choice

 Dist<=1 miles________DIst <=3 miles________ Dist >3 miles
Walk 72% 45% 0%
Cycle 11% 16% 4.5%
Bus 0% 2% 4.5%
Car 17% 37% 91%
Total 119 254 331

It should be pointed out that there are 29 individuals in the sample that walk 

longer than one mile and 15 individuals that cycle longer than 3 miles to get to work. 

It could therefore be argued that the definition of the choice set should be extended, 

since it does not include the choices made by all the sample respondents. This would 

imply increasing the cut-off points in the definition of the choice set to 2,5 miles for 

walking and 16 miles for cycling, since these are the longest distances travelled by the 

two modes. The obvious counter argument to this approach is that assuming that every 

commuter considers walking longer than 1 mile and cycling longer than 3 miles to get 

to work is unrealistic since only about a quarter of the respondents who actually walk

’ The British Medical Association (1992) suggests that 3 miles is within cycling distance for most 
people.
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and cycle to work travel farther than that, and that the definition of the choice set 

should somehow reflect what an average commuter is willing to do. Since the 

definition of the choice set is admittedly somewhat arbitrary, however, (which, it has 

to be stressed, is a weakness of virtually all applied travel demand analysis using RP 

data) it is interesting to ask to what extent changing the definition of the choice set 

influences the modelling results. This issue will be considered in section 6.2.1.

6.2 Estimation results

The estimation results for the multinomial, nested and mixed logit mode choice 

models are summarized in tables 6.4 -  6.7 below. In all the models gender, car 

ownership and the time and cost of the alternatives enter as explanatory variables. In 

the multinomial logit model presented in table 6.4 (model 1) the attributes of the 

alternatives (door-to-door travel time and cost) are entered in levels, implying that the 

marginal utility of a change in an alternative attribute is constant. The coefficients for 

the cycle, bus and car constants are negative and significant, while the walk constant 

is normalised to zero for identification purposes. The alternative specific constants 

represent the mean impact of all variables that are not included in the model that 

influence the choice of a mode.

The coefficient for car ownership is positive and significant as expected, 

indicating that the utility of going by car increases significantly with the number of 

cars the household owns. Note that since the car mode is only considered available for 

commuters living in a household with at least one car, the car ownership variable 

represents the increase in the utility of going by car following an increase in car
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ownership from one car to two cars or more. The coefficient for gender is negative 

and significant for the bus mode, which implies that females have a significantly 

higher disutility of going by bicycle to work. This confirms the finding in Dickinson 

e ta l (2003).

Table 6.4 Multinomial logit mode choice model

Model 1 (MNL -  linear)

V ariable Alternative Coeff. t-stat.

C onstan t
C onstan t
C onstan t

Cycle
Bus
Car

-2.051
-2.579
-2.359

-7 .25
-5.14
-5.62

Fem ale Cycle -1.720 -4.54

Bus frequency .^  1 or m o re p e r  hour (reO 
Bus frequency -  le ss  than  1 pe r  hour Bus -1.913 -2.52

Num ber of ca rs  In household C ar 0.603 2.55

Travel tim e (door-to-door, m inutes) All -0.048 -2.90

C ost (pence) All -0.010 -2.44

O bserva tions
Log-likellhood: constan t only L(c) 
Log-llkellhood: final value L(P) 
R ho -squa red (with L(c)) 
R ho -squa red adjusted  (with L(c))

585
-241.543
-212.462

0.120
0.113

As expected an increase in the bus fi-equency leads to an increase in the 

probability of choosing bus. Although the difference between having an hourly 

service or a more frequent service was not found to be significant (and hence this 

variable was dropped fi-om the model), there is a significant difference between 

having and not having an hourly service. This implies that the provision of an hourly 

bus service is an important incentive in order to encourage more commuters to travel 

by public transport. The coefficients for (door-to-door) travel time and cost are 

negative and significant at the 5% and 10% level respectively.
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The income* and age of the commuters were not found to be significant 

determinants of mode choice and therefore these variables are not included in the final 

model specifications reported in table 6.4. Some of the influence of income on mode 

choice will nevertheless be incorporated through the car ownership variable, as 

income is found to have a strong influence on households’ car ownership level (see 

chapter 5).

As discussed in chapter 2 the marginal disutility of an increase in travel time/ 

cost may not be constant, but a function of travel times/ costs. Several studies have 

found that allowing for non-linearities in the utility specification improves the fit of 

the model (Gaudry and Wills, 1978; Gaudry et ah, 1989; Jara-Diaz and Videla, 1989). 

As outlined in chapter 2 , the second order approximation to the expenditure rate 

model suggests including second order terms in the specification of the indirect utility 

function, to represent that the disutility of travel time/ cost increases as travel times/ 

costs increase. Re-specifying model 1 by subdividing door-to-door travel time into in- 

vehicle/ cycling time and walking time and including quadratic time-variables leads to 

a substantial improvement in model fit, but the signs of the coefficients for the 

quadratic terms are not consistent with the theoretical model, since in that case the 

coefficients should be negative to reflect the increasing marginal disutility of an 

increase in travel time (see table 6.5). The coefficients are all positive (and highly

® The survey data do not include direct information about income, partially due to concerns that 
including an income question in the survey would cause some individuals not to respond. The data 
includes information on occupation, however, and a proxy for income was derived by dividing 
respondents into high and low income groups on the basis of their occupational rank in the University. 
Because of the lack of income data it was decided to include income as a dummy variable in the model, 
rather than using the wage rate or expenditure rate specifications described in chapter 2. Another 
approach would be to segment the coefficients for the alternative attributes based on the income 
dummy, but this was decided against since the coefficient estimates in this case should be expected to 
be imprecise as a result of the relatively low sample size (since only 8 high-income individuals chose 
bus, for example, the coefficient for the ‘high-income bus frequency* variable would be estimated on 
the basis of those 8 observations only),
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significant), however, which implies that the marginal disutility of an increase in 

travel time is decreasing with travel time.

Table 6.5 Multinomial logit mode choice model with quadratic terms

Model 2 (MNL • 
quadratic)

Variable Alternative Coeff. t-stat.
C onstant
C onstant
C onstant

Cycle
Bus
C a r

0.398
-5.520
-6.249

0.40
-6.76
-8.19

Fem ale Cycle -1.623 -3.70

Bus frequency - 1  o r m o re per hour (ref) 
Bus frequency -  less than  1 p e r  hour Bus -1.539 -1.74

N um ber of ca rs  in household C ar 0 .560 1.86

W alking tim e (minutes) All -0.608 -7.62

Cycling time (minutes) Cycle -1.249 -6.52

In-vehicle tim e (minutes) Bus, Car -0.068 -1.35

W alking time squa red  (minutes) All 0.0140 6.29

Cycling tim e squa red  (m inutes) Cycle 0.0430 5.94

In-vehlcle tim e squa red  (minutes) Bus, Car 0 .0024 2.42

C ost (pence) All -0.0065 -1.35

O bserva tions
Log-llkellhood; constan t only L(c) 
Log-llkellhood: final value L(P) 
R ho -squared (with L(c)) 
R ho -squa red ad justed  (with L(c))

-148.908
-241.543

0.384
0.375
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Table 6.6 Multinomial logit mode choice models -  square-root and log

specifications

Model 3  (MNL- Model 4  (MNL -  log)

Variable Alternative Coeff. t-stat. Coeff. t-stat.
C onstan t Cycle -3.062 -3.38 -2.243 -2.39
C onstant Bus -3.522 -4.40 -2.942 -3.61
C onstant C a r -4.945 -6.54 -4.405 -5.47

Fem ale Cycle -1.679 -4.67 -2.150 -5.06

Bus frequency - 1  or m o re pe r  hou r (ref)
B us frequency -  less than  1 per hou r Bus -1.567 -2.01 -1.482 -1.90

N um ber of ca rs  in household C ar 0.640 2.39 0.533 1.94

S quare-root of walking tim e (minutes) All -1.408 -7.48

S quare-root o f cycling tim e (minutes) Cycle -0.867 -3.11

S quare-root of in-vehicle tim e (minutes) Bus, C a r -0.179 -0.88

Log of walking time (minutes) All -1 .794 -7.89

Log of cycling time (minutes) Cycle -1.837 -4.39

Log of In-vehicle time (minutes) Bus, C ar -0.615 -1.90

C ost (pence) All -0.013 -2.81 -0.012 -2.81

O bserva tions 585
Log-likellhood; constan t only L(c) -241.54 -241.543
Log-llkellhood: final value L(P) -177.72 -167,532
R ho -squa red  (with L(c)) 0.264 0.306
R ho -squa red  adjusted  (with L(c)) 0.256 0.299

Although incompatible with the utility maximising model, this result is acceptable 

from a behavioural point of view (and in line with some of the results in Gaudry et al, 

1989). It should be noted, however, that a problem with this quadratic specification is 

that as travel times increase utility will eventually be increasing with travel time 

because of the positive quadratic term, which is illogical. It is therefore necessary to 

re-specify the model by ensuring that an increase in travel time always leads to a 

decrease in the utility of a mode, while allowing for a decreasing marginal utility of 

travel time. There are various functional forms with this property, including the log,
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square-root and Box-Cox transformations^. The square-root and log specifications 

were estimated, and it was found that the specification with the time variables in logs 

yielded the superior data fit (see table 6 .6 ).’*̂ In addition, all tihe travel time 

components in the log specification have the expected sign and are significant at the 

5 % level, except the coefficient for in-vehicle time, which is significant at the 10% 

level. It can be seen that this specification leads to a considerable increase in the rho- 

bar squared compared to model 1 .

A number of nested logit models were fitted based on the log specification of 

the MNL model to allow for a more flexible substitution pattern between the modes. 

On the basis of the score on goodness-of -fit measures (rho-squared, rho-bar squared) 

as well as compliance with the utility maximising condition (see chapter 3), the 

superior nesting structure was found to be car and walk in a common nest and cycle 

and bus in separate nests. This model structure implies that car and walk are closer 

substitutes than car and bicycle/ public transport. The results are presented in table 

6.7, columns 7 and 8 (model 5).

It can be seen that the inclusive value (IV) parameter is lower than one, which 

implies that the model is consistent with utility maximising behaviour. The inclusive 

value parameter is significantly different fi-om unity, indicating that the walk and car 

alternatives are correlated and that as a result the IIA property is rejected. Furthermore 

there is a marked increase in the rho-bar squared compared to model 4, indicating that 

the data fit of the nested logit model is superior to the MNL model. Apart firom the 

coefficient for car ownership, which is now insignificant, the sign and significance of

 ̂The Box-Cox ttansformation leads to a decreasing marginal disutility of travel time given that X<1, 
where the Box-Cox transformation of the time variable T is given hyT^^ = InT when X=0 and 

= (T* -1)/ X, otiierwise (see also chapter 7).
It was also attempted to estimate the Box-Cox model, but this did not converge.

‘ ' The estimation results for some alternative nesting structures are reported in appendix 6.3.
This holds only, of course, when walking is an available alternative to driving.
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the remaining coefficients are not substantially different to those in models 1-4, 

indicating that the findings are robust.

Table 6.7 Nested and mixed logit mode choice models

Model 5 (NL -  log) Model 6 (ML - log)
V ariable Alternative Coeff. t-stat. Coeff. t-stat.
C onstan t
C onstan t
C onstan t

Cycle
Bus
C ar

M ean
M ean
M ean

-2.379
-2.408
-3.482

-2.54
-2.84
-4.07

-3.474
-2.254
-5.797

-3.51
-2 .04
-5 .90

F em ale Cycle M ean -1.976 -5.20 -2.979 -4.36

Bus frequency  - 1  or m o re p e r  h ou r (ref) 
B us frequency -  less than  1 pe r  hour Bus M ean -1.572 -1.96 -1.301 -1.48

N um ber of ca rs in household M ean 0.369 1.24 0.717 2.11

Log of walking time (minutes) All M ean -1 .638 -6 .75 -2.550 -6.12

Log of cycling time (minutes) Cycle M ean 
Std. Dev.

-1.509 -4.30 -3.150
1.161

-4.16
3.88

Log of in-vehicle time (minutes) Bus, Car M ean -0.550 -1 .83 -0.966 -2 .04

C o st (pence) All Mean -0.013 -3 .18 -0.013 -2.04

IV param e te r  (t-stat w.r.t. 1) Walk, C a r 0 .533 -2.03

O bserva tions
Log-likellhood: constan t only L(c) 
Log-likelihood: final value L(p) 
R ho -squa red  (with L(c)) 
R ho -squa red  adjusted (with L(c))

585
-241.543
-165.286

0.316
0.307

585
-241.543
-162.05

0.329
0.321

As mentioned in chapter 4 a crucial question that faces the analyst when applying the 

mixed logit model is which parameters that should be allowed to vary and which 

distribution to use for the random parameters. As in Hensher (2001b), Carlsson (2003) 

and Alpizar and Carlsson (2003) the cost variable is specified to be fixed, while the 

time parameters are specified to follow a normal distribution in the model.^  ̂ Fixing 

the cost coefficient is convenient for several reasons: it ensures that the value of time 

has finite moments''^ and that the sign of the cost variable is negative for all respon

It was also attempted to specify the time coefficients to follow a triangular distribution as in Hensher 
(2001a), but this resulted in a model with a lower rho-bar squared.

When the time coefficient is random and the cost coefficient fixed the distribution of the value of 
time is distributed in the same way as the time coefficient (Revelt and Train, 1999; Carlsson, 2003).
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dents. The standard deviations of the coefficients of the walking and in-vehicle time 

variables were found to be insignificant, however, and constraining the standard 

deviations of those coefficients to equal zero did not lead to a decrease in the rho-bar 

squared. Table 6.7 reports the estimation results of the more parsimonious model 

(model 6 ) with fixed walking and in-vehicle time coefficients and normally 

distributed cycling time coefficient (the full model is reported in appendix 6.4).^  ̂This 

model structure implies that the error variance of the cycle mode is higher than that of 

the other alternatives. The alternatives remain uncorrelated, however, since the 

cycling time variable only enters the utility function of the cycle mode.

Some other model specifications based on the ML model were also attempted: 

1) A mixed nested logit model, which can be seen as a combination of models 5 and 

6 . This specification does not lead to an increase in the rho-bar squared compared to 

model 6 , however, and the inclusive value parameter is insignificant (see appendix

6.4). 2) An ML model with a normally distributed cycling time coefficient and 

heteroscedastic error components. As shown by Walker et al. (2003) one of the error 

components need to be constrained to equal zero for this model to identified. 

Furthermore, the choice of normalisation is not arbitrary, since different 

normalisations may lead to different modelling results/ goodness of fit. Hence 4 

versions of this model were attempted, normalising each error component to zero in 

turn. The only model specification that converged, however, was the model with the 

error component for the car mode normalised to zero. It can be seen that this model

Alternatively, to ensure that its sign is positive the coefficient for the cost variable could be specified 
to be log-normally distributed. Various models with log-normally distributed coefficients were 
attempted, but these models did not converge.

Both models were estimated using Kenneth Train’s GAUSS code with 500 Halton draws which can 
be freely downloaded at http;//elsa.berkelev.edu/~train/soflware.html. The models were run in 
OxGauss which can be fi-eely downloaded at www.doomik.com.
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leads to a slight increase in the rho-bar squared compared to model 6 , but the 

coefficients for the error components were all found to be insignificant (see appendix

6.5). As a result the more parsimonious model 6  was decided to be the preferred 

specification.

The sign and significance of the coefficients in model 6  are similar to those in 

models 1-5. All the time coefficients are significant at the 5% level and have the 

expected sign along with the coefficients for cost, gender and car ownership. The 

coefficient for bus frequency, however, has the expected sign but is insignificant. This 

is likely to be a result of the relatively small number of individuals in the sample 

choosing bus, which makes it harder to obtain precise estimates of the bus-specific 

coefficients.

6.2.1 Elasticities

Aggregate elasticities provide a summary measure of the likely response to a change 

in an alternative attribute and are therefore valuable tools that can assist in developing 

efficient car-reduction policies. The aggregate elasticities derived using models 4 - 6  

are reported in table 6 .10 -6 .12  below. The elasticities are calculated by simulating 

the change in the modal shares following a 1% increase in a given alternative attribute 

using the method of sample enumeration (Ben-Akiva and Lerman, 1985). Since the 

models do not allow for traffic generation, these elasticities should be interpreted as 

mode-choice elasticities.

When comparing the elasticity estimates derived firom the three models some 

patterns emerge. The cross elasticities of the walk mode with respect to the attributes 

of the car mode derived from the nested logit model are higher than those derived
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from the other models. This is a result of the correlation between these two modes 

facilitated by the chosen nesting structure. Also, the direct elasticities of the cycle 

mode derived from the mixed logit model are lower than the multinomial and nested 

logit elasticities. This can be explained by the higher error variance of the cycling 

mode relative to the other modes in the mixed logit model, resulting in less weight 

being placed on the deterministic elements of the utility function. Furthermore, it can 

be seen that the mixed logit direct cost elasticities for the bus and car modes are 

substantially lower than those derived from the other models.

It can be seen from the tables that contrary to expectations the highest 

elasticity (in absolute value) is the bus fare elasticity (1.156 -  1.496). Indeed this is 

higher than what is found in most studies of urban commuting. Dargay and Hanly 

(2002), find that the short-run bus fare elasticity for England as a whole is around -0.4 

and that elasticities at the county level vary widely (between 0  and - 1.6 ), although the 

authors suggest that the county specific elasticities should be interpreted with caution 

due to the small number of observations. In a comprehensive review, Dargay and 

Hanly (1999) find that the average short-run bus fare elasticity is -0.3.^  ̂ The high 

elasticity estimate in the present study is likely to be related to the fact that bus fares 

in the St Andrews area have doubled over the last decade, as there is evidence that the 

demand for public transport is more price sensitive at higher fare levels (Dargay and 

Hanly, 2002). Since the elasticity measures the percentage change in the modal share 

from the base share, however, the increase in the share of bus users is not as 

substantial as the elasticity estimate might imply. Nevertheless, the estimate suggests 

that subsidising bus fares would be an important factor to incentivise more commuters

It should be noted that the elasticity estimates reported in Dargay and Hanley are regular elasticities 
as they also take traffic generation into account. Oum et ah (1992) argue that mode-choice elasticities 
may serve as lower bounds for regular elasticities in terms of absolute values.
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to use public transport. The walking time elasticity for the bus mode is also higher 

than what is found in most studies, indicating that decreasing walking times by 

increasing the number of bus stops will substantially increase the share of commuters 

travelling by bus. The bus in-vehicle time elasticity is markedly lower than the 

walking time elasticity, which implies that commuters are less sensitive to changes in 

the time spent travelling by bus than to changes in access and egress times.

Table 6.10 Aggregate elasticities. MNL model.

Percentage change in the probability of choosing 
Due to a 1 % increase in Walk Cycle Bus_______ Car

Cycling time 
In-vehicle time (Bus) 
In-vehicle time (Car)

Walking time (Walk) 
Walking time (Cycle) 
Walking time (Bus) 
Walking time (Car)

Bus costs 
Car costs

0.142
0.000
0.051

0.084
0.016

0.146
0.011

0.292

0.000
0.117

0.043
0.071
0.044

0.287

0.043
0.574 0.877

0.065
1.053

0.132
0.005
0.148

0.000
0.015

0.032
0.191
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T a b le  6 .1 1  A g g r e g a te  e la s t ic it ie s .  N L  m o d e l.

Percentage change in the probability of choosing 
Due to a 1 % increase in VNtalk Cycle Bus_______ Car

Cycling time 
In-vehicle time (Bus) 
In-vehicle time (Car)

Walking time (Walk) 
Walking time (Cycle) 
Walking time (Bus) 
Walking time (Car)

Bus costs 
Car costs

0.130
0.005
0.065

0.135
0.005
0.183

0.005
0.022

0.022
0.186

0.284

0.044
0.218

0.117

0.264

0.029
0.117

0.071
0.015

0.049
0.068
0.0410.055

0.579 0.821

0.068
1.144

Table 6.12 Aggregate elasticities. ML model.

Percentage change in the probability of choosing 
Due to a 1% increase in Walk Cycle______ Bus_______ Car

Cycling time 
In-vehicle time (Bus) 
In-vehicle time (Car)

Walking time (Walk) 
Walking time (Cycle) 
Walking time (Bus) 
Walking time (Car)

Bus costs 
Car costs

0.140
0.001
0.060

0.140
0.002
0.158

0.001
0.013

0.022
0.105

0.064
0.019

0.151
0.016
0.175 0.385

0.046
0.054
0.049

0.326 0.013
0.114

0.043
0.465 1.044

0.052
0.875

The direct car cost elasticity is found to lie in the range 0.060 -  0.091, which is 

comparable in size but somewhat lower than the car cost elasticity reported in most 

studies of urban commuting (Oum et a/., 1992, provide a review of car cost elasticities 

derived from discrete choice models). This confirms the prior expectation that 

increasing the cost of driving is not likely to be an effective deterrent to car use unless 

a convenient alternative mode of transport is provided. The walking time and in-
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vehicle time elasticities for the car mode are also found to be relatively low, indicating 

that an increase in travel time will not lead to a substantial decrease in car use. Bus is 

found to be the closest substitute to car, as the cross elasticities with respect to a 

change in a car attribute is higher for bus than for the other modes. Given that walking 

and cycling are only considered available for relatively short commutes this result is 

expected. The direct walking and cycling time elasticities are found to lie in the region 

0.290 -  0.320 and 0.802 -  0.947 for the walk and cycle modes respectively. Given 

that the time spent walking and cycling is closely related to commuting distance, these 

elasticity estimates reflect how the probability of walking and cycling to work 

changes as a result of increasing/ decreasing the distance from the home to the 

workplace.

Since bus frequency is represented as a dummy variable in the model it 

is not possible to calculate the elasticity with respect to an increase in bus frequency. 

Instead the method of sample enumeration is used to simulate the effect of increasing 

the bus frequency such that all the commuters in the sample have access to an hourly 

service. The results from the simulation exercise are presented in table 6.13 below.

Table 6.13 Change in modal shares following an increase in bus frequency

______________________ Walk___________ Cycle___________Bus_____________ Car______
MNL -0.31 -1.27 23.67 -1.32
NL -0.48 -1.47 25.79 -1.42
ML -0.15 -0,76 18.36 -0.95

It can be seen that increasing the bus frequency is predicted to lead to a substantial 

increase in the share of commuters who travel by bus, although the predicted share 

derived from the mixed logit model is markedly lower than that of the multinomial
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and nested logit models. Nevertheless, this finding together with the estimated 

elasticities suggests that a policy directed towards increasing the use of public 

transport for commuting should focus on subsidising bus fares as well as providing an 

hourly bus service for as many commuters as considered possible given the dispersed 

nature of the St Andrews area. This policy is likely to be particularly effective if 

combined with parking charges and/ or increases in the petrol tax in order to deter 

driving.

6.2.2 Weighted Elasticities

The elasticities in section 6.2.2 are caluculated using the sample data and will only be 

valid for the population of commuters in the University of St Andrews if the sample is 

representative of the population. In order to investigate whether this is in fact the case, 

the elasticities are re-estimated using the population shares of gender, occupation type 

(academic vs. non-academic) and age as weights (see table 6.1). It can be seen firom 

tables 6.14 -6 .16 that the elasticity estimates derived using the re-weighted data are 

similar to the elasticities derived using the un-weighted sample data and that no clear 

relationship between the two can be detected (e.g. the estimates are not consistently 

smaller or larger, for instance).
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T a b le  6 .1 4  A g g r e g a te  e la s t ic it ie s  -  r e sc a le d  d a ta . M N L  m o d e l.

Percentage change in the probability of choosing 
Due to a 1 % Increase in Walk Cycle______ Bus_______ Car

Cycling time 
In-vehicle time (Bus) 
In-vehicle time (Car)

Walking time (Walk) 
Walking time (Cycle) 
Walking time (Bus) 
Walking time (Car)

Bus costs 
Car costs

0.138
0.000
0.046

0.133
0.005
0.143

0.005
0.015

0.054
0.194

0.083
0.023

0.156
0.032
0.194 0.313

0.044
0.071
0.065

0.291 0.045
0.134

0.075
0.571 0.960

1.206

Table 6.15 Aggregate elasticities -  rescaled data. NL model.

Percentage change in the probability of choosing 
Due to a 1% increase in Walk Cycle______ Bus_______ Car

Cycling time 
In-vehicle time (Bus) 
In-vehicle time (Car)

Walking time (Walk) 
Walking time (Cycle) 
Walking time (Bus) 
Walking time (Car)

Bus costs 
Car costs

0.125
0.005
0.060

0.136
0.011
0.179

0.011
0.022

0.067 
0.222 1.328

0.071
0.021

0.131
0.033
0.188 0.283

0.044 0.050
0.066
0.060

0.277

0.078
0.565 0.892

0.109

125



T a b le  6 .1 6  A g g r e g a te  e la s t ic it ie s  -  r e sc a le d  d a ta . M L  m o d e l.

Percentage change in the probability of choosing 
Due to a 1 % increase in Walk Cycle_______ Bus_______ Car

Cycling time 
In-vehicle time (Bus) 
In-vehicle time (Car)

Walking time (Walk) 
Walking time (Cycle) 
Walking time (Bus) 
Walking time (Car)

Bus costs 
Car costs

0.139 %
0.000 
0.062

0.165
0.005
0.160

0.000
0.015

0.021
0.106

0.065
0.019

0.153
0.021
0.170 0.398

0.046
0.059
0.050

0.031
0.122

0.329

0.043
0.468 1.040

0.053
0.887

6.2.3 The value of travel time

Prior to undertaking investments in transport infrastructure it is important to assess the 

benefits of the investment. It is generally held in the literature that a significant 

proportion of the benefits of infrastructure improvements is due to road users’ travel 

time savings. In a recent study, Mackie et al. (2001) suggest that the value of travel 

time savings accounts for 80% of the monetised benefits within the cost benefit 

analysis of major road schemes in the UK. It follows that in order to make well- 

informed investment decisions it is crucial to obtain as precise estimates of the 

subjective value of time {SVOT) as possible, and in many countries the authorities 

have commissioned studies estimating SVOT both for commuting and other types of 

trips (the UK, the Netherlands and the Scandinavian countries among others). Since 

the multinomial, nested and mixed logit models are rooted in microeconomic theory, 

the value of time can be shown to be given by the ratio of the travel time and cost
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coefficients when the alternative attributes enter in levels in the model (see chapter 2 ), 

When travel time enters in the log form (as in models 4 -  6 ), SVOT is a decreasing 

function of travel time:

SVOT = & ^— (6.1)
PcT

where /3j and Pq are the time and cost coefficients for a given mode and T is the

travel time for that mode. The estimated values of time evaluated at the average time 

for each travel time component, using models 4 - 6 ,  are given in table 6.17 below.

Table 6.17 Values of time (in pence per minute)

Walking time Cycling time In-vehicle time
 (Bus. Car)
MNL 20.28 13.99 2.69
NL 17.09 10.60 2.22
M L-M ean 26.61 22.14 3.90
M L -S td. Dev. 8.16

It can be seen that the conmiuters are on average willing to pay more for a decrease in 

the time spent walking compared to a decrease in cycling time, which indicates that 

walking is considered more onerous than cycling. Furthermore, a marginal decrease in 

cycling time is valued higher than a marginal decrease in in-vehicle time, indicating 

that cycling is considered more onerous than travelling in a motor vehicle. The 

significant standard deviation of the cycling time coefficient in the mixed logit model 

implies that some commuters have a comparatively low value of cycling time^ ,̂ while 

others have comparatively high values of cycling time (29% of the commuters in the

0.33% of the commuters in the sample are found to have a positive cycling time coefficient. It is not 
unlikely tliat for some cycling enthusiasts the time spent cycling is a good rather tiian a bad.
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sample find cycling more onerous than walking). It is interesting to note that the value 

of time estimates derived from the ML model are substantially higher than those 

derived from the MNL and NL models, which is consistent with the finding in 

Hensher (2001a), but not the findings in Brownstone and Small (2003), Nielsen and 

Jovicic (2003) and Nielsen and Sorensen (2004).

In a review of British studies reporting the value of in-vehicle travel time, 

Wardman (1998) finds an average value of 5.64 pence per minute which is 

considerably higher than the average value of in-vehicle time found in the present 

study’ It is likely that the low SVOT estimate reflects the fact that roads in the St 

Andrews area are relatively uncongested. As mentioned in Chapter 5 Calfee and 

Winston (1998) and Hensher (2001a) find, using data from the USA and New Zealand 

respectively, that the value of time spent travelling under congested conditions is 

substantially higher than time spent travelling in free-flow traffic.̂ ® Since the UK 

average value of in-vehicle time is calculated using data from urban as well as rural 

areas and therefore partially reflects substantially more congested commuting 

conditions than those in the St Andrews area, the national average SVOT should be 

expected to be higher than that in the present study.

The average value of walking time is found to be about 7-8 times higher than 

the estimated value of in-vehicle time, and about 3-5 times higher than the UK 

average in-vehicle SVOT. This is comparable to the findings of studies of commuting 

in urban areas. The average value of cycling time is about 5-6 times higher than the 

estimated value of in-vehicle time and about 2-4 times higher than the national

Given that most of the studies in the review are likely to have used the MNL model to derive the 
estimate of SVOT, the most representative estimate for comparison with the review is perhaps that 
derived from the MNL model.

In Calfee and Winston (1998) the value of congested travel time is found to be 3 times higher than 
that of uncongested/ free-flow travel time. A similar result is obtained by Hensher (2001).
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average in-vehicle SVOT. The author knows of no other studies reporting the value of 

cycling time for commuting trips in the UK. Given the relatively favourable cycling 

conditions in St Andrews, the value of cycling time found in the present study is 

likely to be lower than that in urban areas where cycling by many is perceived to be 

dangerous due to heavy traffic, particularly in the absence of segregated cycle lanes 

which are more common in continental cities.^  ̂As there are few studies reporting the 

value of cycling time to date, more research is needed to investigate how the value of 

cycling time varies between geographical locations and according to the facilities 

provided. Given that the value of cycling time is also shown to vary with unobserved 

personal characteristics, incorporating random taste variation in the modelling 

framework will help disentangling the effects of changes in cycling conditions to 

individual specific preferences towards cycling.

It was also attempted to simulate the mean, standard deviation and median of 

the value of time using the method of simulation of multivariate normal variâtes 

(MVNS) described in section 3.7. It was found, however, that the mean estimate of 

SVOT was extremely sensitive to a relatively small number of draws of the cost 

coefficient which were very close to zero, resulting in a very high value of time (this 

was reflected in a very high standard deviation, many times the size of the mean 

SVOT). This problem did not go away by increasing the number of draws in the 

simulation. It was found that removing the 1% of the sample with the highest value of 

time led to more stable results, but since this approach is rather ad hoc the results are 

not reported here. Interestingly, however, the median estimates of SVOT are very 

similar to the point estimates, confirming the finding in Hensher and Greene (2003). 

The median estimates calculated using 10000 draws of the coefficients are presented

Noland and Kunreuther (1995) and Ortüzar et al (2000) investigate how changes in travel conditions 
influence individuals’ choice of travelling by bicycle.
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in table 6.18 below. It should be pointed out that the estimates varied very little with 

the number of draws when the number was above 1 0 0 0 .

Table 6.18 Median values of time in pence per minute calculated using MVNS
(10000 draws)

Walking time Cycling time In-vehicle time
  (Bus. Car)
MNL 19.57 13.68 3.15
NL 16.95 10.51 2.19
M L-M ean 26.99 22.48 3.93
ML -  Std. Dev. 8.28

It is also possible to use the modelling results to calculate the sample 

respondents’ average willingness to pay (WTP) to have access to an hourly bus 

service. This is given by:

P c

where P f r e q  is the coefficient for the dummy indicating that the respondent does not 

have access to an hourly bus service. The estimated WTP for access to an hourly bus 

service derived using models 4 -  6  is given in table 6.19 below.

Table 6.19 Willingness to pay for an hourly bus service

____________________________________ MNL_______ NL MNL
Coefficient for bus frequency -1.482 -1.572 -1.301
Coefficient for cost -0.012 -0,013 -0.013
Willingness to pay (in pence) 124 121 100

It can be seen from the table that the commuters’ are on average willing to pay 100 - 

124 pence per trip to have access to an hourly bus service, which can be compared to
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the average bus fare of 196 pence. This estimate can be used as input to a cost-benefit 

analysis evaluating the desirability of improving the supply of public transport in 

those areas around St Andrews which do not have an hourly bus connection with the 

town centre. From a methodological point of view it is interesting to point out that in 

this case the higher WTP estimates are given by the MNL and NL models, supporting 

the statement by Train (1997) that the relative size of WTP estimates in MNL and ML 

models cannot be generalized, but must be evaluated on a case for case basis.

6.2.4 Sensitivity analysis

As described in section 6.1.2 walking to work is considered feasible only for 

individuals commuting one mile or less in all the models, which means that 

individuals with longer commutes are assumed not to consider walking to work as an 

alternative to travelling by car, bus or bicycle. As mentioned previously, however, 29 

individuals in the sample walk a longer distance to get to work and it is therefore 

interesting to ask what impact increasing the upper limit on the walking distance has 

on the modelling results. Tables 6.20 and 6.21 presents the results from re-specifying 

models 1, 4, 5 and 6 by expanding the choice set to include walk for those 45 

individuals who live between 1 and 1.5 miles away from work. The choice set 

definition now includes 93% (107 out of 115) of all the individuals who walk to work.

It can be seen from the tables that the walking time coefficients in the new 

models (4 - 6) are consistently higher in proportion to the coefficients for the other 

time components, indicating that the average marginal disutility of an increase in
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walking time relative to cycling and in-vehicle time increases when the choice set is 

expanded. Further, since the cost coefficient remains the same in all the models, this 

also implies that the value of walking time increases relative to the value of cycling 

and in-vehicle time. In absolute terms, however, the findings are mixed. The walking 

time coefficient increases in model 4 but decreases slightly in model 5 - 6 ,  while the 

coefficients for in-vehicle and cycling time decreases in all the models.

It is clear from the previous discussion that the definition of the choice set has 

an impact on the estimates of the coefficients in the models, which in turn affect 

policy parameters such as elasticity and value of time estimates. It seems difficult 

from the findings documented here, however, to determine a priori in which direction 

this effect will work (whether demand will be more or less responsive to changes in 

alternative attributes, and whether the value of the various components of travel time 

will increase or decrease). It will not be attempted to resolve the issue of choice set 

specification in the present thesis, other than concluding that since the definition of 

the choice set clearly has an impact on the coefficient estimates, and therefore also the 

policy parameters that can be derived from the model, more attention to this issue 

should be paid in future research.
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Table 6.20 Multinomial logit mode choice models -  extended choice set

Model 1 (MNL - linear) Model 4  (MNL - lo g )
V ariable Alternative Coeff. t-stat. Coeff. t-stat.
C onstan t
C onstan t
C onstan t

Cycle
Bus
C a r

-1.809
-1.828
-2.111

-6.66
-3.83
-5.20

-2.592
-2.593
-4.202

-2.89
-3.57
-5.86

F em ale Cycle -1.528 -4.19 -1.850 -4.62

B us frequency - 1  o r m ore p e r  hou r (ref) 
B us frequency -  less than  1 p e r  hou r Bus -1.963 -2.67 -1.451 -1.86

N um ber of ca rs  in household C a r 0.657 2.79 0.651 2.47

Travel tim e (door-to-door, m inutes) All -0.068 -4.05

Log of walking tim e (minutes) All -1.855 -8.35

Log of cycling time (minutes) Cycle -1.536 -3.91

Log of in-vehicle tim e (minutes) Bus, C a r -0 .500 -1.83

C ost (pence) All -0.011 -2.77 -0.012 -2.73

O bserva tions
Log-likeiihood: constan t only L(c) 
Log-likelihood: final value L(P) 
R ho -squa red  (with L(c)) 
R ho -squa red  adjusted  (with L(c))

585
-234.887
-268.616

0.126
0.118

585
-190.232
-268.616

0.292
0.284

Table 6.21 Nested and mixed logit mode choice models -  extended choice set

Model 5 (NL) Model 6  (ML)
Variable Alternative Coeff. t-stat. Coeff. t-stat.
C onstan t
C onstan t
C onstan t

Cycle
Bus
C a r

M ean
M ean
M ean

-2.626
-2.422
-3.517

-2.91
-3.33
-4.67

-2.580
-3.313
-5.691

-2.09
-3.51
-5.53

F em ale Cycle M ean -1.754 -4.86 -2.652 -3.49

Bus frequency - 1  o r m ore p e r  hou r (ref) 
B us frequency -  less than  1 p e r  hou r Bus M ean -1.548 -1.94 -1.207 -1.46

N um ber of ca rs  in household 0.503 2.02 0.897 2.45

Log of walking time (minutes) All M ean -1.615 -6.51 -2.534 -6.96

Log of cycling time (minutes) Cycle M ean 
Std. Dev.

-1.212 -3.72 -2.726
1.169

-4.00
3 .56

Log of in-vehicle time (minutes) Bus, Car M ean -0.336 -1.46 -0.650 -1.91

C ost (pence) All M ean -0.013 -3.08 -0.013 -2.45

IV param e te r  (t-stat w.r.t. 1) Walk, C a r 0.551 -1.81

O bserva tions
Log-likelihood: constan t only L(c) 
Log-likeiihood: final value L(P) 
R ho -squa red  (with L(c)) 
R ho -squa red adjusted  (wnth L(c))

585
•187.394
-268.616

0.302
0.294

585
-184.040
-268.616

0.315
0.307
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6.3 Concluding remarks

This chapter has developed multinomial, nested and mixed logit mode choice models 

using data on commuters in the University of St Andrews. As St Andrews is located 

in a rural area with limited public transport supply it was expected that key policy 

variables such as elasticities and values of time would differ from those reported in 

studies of commuting in larger urban areas. It was found that the direct elasticities of 

the car mode were comparable to the estimates of studies reported in studies of urban 

commuting, while the demand for public transport was found to be considerably more 

elastic. Although this is partially a result of the fact that bus has a substantially lower 

market share in St Andrews compared to larger towns and cities, the finding 

nevertheless indicates that there is scope for increased use of public transport for 

commuting in St Andrews and other small towns in rural locations. The values of in- 

vehicle travel time were found to be lower than in most studies of urban commuting, 

reflecting that the roads in the St Andrews area are relatively uncongested. The value 

of walking time is found to be about 7-8 times higher than the value of in-vehicle 

time, while the value of cycling time is, on average, about 60% - 80% of the value of 

walking time. More research is needed to investigate how the value of cycling time 

varies across geographical locations and according to the facilities provided.
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Appendix 6.1 Travel survey questionnaire - RP questions.

PART 1 Please be assured that all the Information in the survey Is strictly confidential

A About Today’s  Trip

1a What mode of transport did you use to 
get to work today? (if you used more than 
one mode tick the one that involved the 
longest distance)

Car (alone)
Car (with others)
Bus
Bicycle
Walk

□□□□□
Other (please specify):

1b What other modes of transport 
(if any) did you use to get to work?

2 How long did the trip take?
(door-to-door, one way)

minutes

3 How far did you travel?

miles

4 If you came by car, bus or cycle, how 
much time did you spend walking (from 
your parking place to your workplace / 
to and from bus stops)?

minutes

5 What time did you arrive at your 
workplace?

B About Public Transport

6 How far is the closest bus stop to your 
home? (if it is closer than a mile give your 
answer In parts of miles, for example 1/4)

miles

Don't know □

7 What is the peak time (7:00 - 8:30) 
frequency of buses going in the direction of 
your workplace at this bus stop?

A bus leaves every ___

Don't know □

8 How far is the closest bus stop to your 
workplace?

minutes

Don't know

miles

□
9 What is the peak time (16:00 -18:00) 
frequency of buses going in the direction of 
your home at this bus stop?

minutesA bus leaves every ___

Don't know □

10 Do you / would you need to change buses 
in order to travel by bus to work?

Yes
No
Don't know

□□□
If yes, how many times?



11 How much does a bus ticket to work cost? 19 Do you have a driver's licence?

Don't know

pence

□

12 When did you last use the bus 
to get to work?

T o d a y
1-6 days ago 
1-4 w eeks ago 
5+ w eeks ago 
Never

□□□□□
C About You And Your Household 

13 Are you?

M ale
F e m a le

□□

20 How many workers aged 16 or over (full tim< 
and part time) are there in your household?

PLEASE COMPLETE SECTION D IF YOU CAME 
CAR TO WORK TODAY. IF YOU DID NOT COME 
BY CAR, PLEASE GO STRAIGHT TO SECTION I

D About Parking

21 Where did you park today?

At one of the University ca r parks □
Free parking in nearby street /  ca r park □
Paid parking in nearby street /  ca r park □

14 What is your age group?

Under 30 
30 to 39 
40  to 49 
50 or over

□□□□
15 What is your home postcode?

16 What is your usual place of work? 
(name of University building)

22 If the University was charging 50 pence per 
day for parking at University car parks, how 
likely is it that you would choose an alternative 
mode of transport to go to work today?

Not likely 
Very likely 
Not sure

□□□
23 What if the charge was 1 pound per day?

Not likely 
Very likely 
Not sure

□□□

17 What is your occupation / job title?

18 How many cars does your household 
currently own?

E Additional Comments

24 If you have any additional comments 
about your travel to work, please use the 
space at the back of the last sheet of this 
questionnaire.



Appendix 6.2 Estimated OLS regression equations for calculating travel times/ 

cost for non chosen alternatives (t-statistics in brackets).

WALKT = 16.32*SQRT(DIST), = 0.70
(37.49)

CYCLET = 8.54*SQRT(DIST), R  ̂= 0.54 
(17.54)

INVTbus = 8.96*SQRT(DIST), R  ̂= 0.57
(12.82)

INVTcar= 1.58* DIST + 3.69*STAD, R  ̂= 0.76 
(63.39) (6.74)

BFARE= 87.95+ 13.91* DIST, R  ̂= 0.48 
(4.79) (8.49)

Note: The walking time for the (non-chosen) bus alternative is derived by inserting 

the sum of the distance to and from bus stops in the equation for walking time. 

Walking tunes for the (non-chosen) cycle and car alternatives were calculated at their 

average values (1.18 and 2.77 minutes respectively).

Variable definitions:

WALKT = Walking time in minutes

CYCLET = Cycling time in minutes

INVT — In-vehicle time in minutes

DIST = Door-to-door commuting distance in miles

STAD = Dummy variable equalling 1 when the individual lives in St Andrews and 0 
otherwise

BFARE = Bus fare in pence

137



Appendix 6.3 Alternative nesting structures for the nested logit model

Model 7 (NL)
Variable A lternative Coeff. t-stat.

Model 8 (NL)

Coeff. t-stat.
C onstan t
C onstan t
C onstan t

Cycle
Bus
Car

-1.931
-2.685
-4.192

-2.08
-2.62
-4.11

-2.371
-2.452
-3.530

-2.52
-2.74
-3.98

Fem ale Cycle -2.019 -5.28 -2.001 -4.65

B us frequency - 1  or m o re p e r  hour 
(ref)
Bus frequency  -  less than  1 p e r  hou r Bus -1.110 -1.36 -1.609 -1.95

N um ber of ca rs in household 0.535 1.67 0.375 1.25

Log of walking tim e (minutes) Ail -1.649 -6.81 -1.658 -6.51

Log of cycling time (minutes) Cycle -1.755 -4.95 -1.539 -4.21

Log of in-vehicle time (minutes) Bus, C ar -0.576 -1.59 -0.558 -1.84

C ost (pence) All -0.010 -2.17 -0.013 -3.16

IV p a ram e te r  (t-stat w.r.t. 1) 
IV p a ram e te r  (t-stat w.r.t. 1) 
IV param e te r  (t-stat w.r.t. 1) 
IV p aram e te r  (t-stat w.r.t. 1)

Walk, Cycle 
Bus, C ar 
Bus, Cycle 
Walk, C a r

0.898
0.787

-0.53
-0.62

1.095
0.542

0.24
-1.97

O bserva tions
Log-likelihood: constan t only L(c) 
Log-likelihood: final value L(P) 
R ho -squa red  (with L(c)) 
R ho -squa red  adjusted  (with L(c))

585
-241.543
-167.043

0.308
0.299

585
-241.543
-165.250

0.316
0.307

“Tree” diagrams for the nested logit models:

Model 5: Model 7: Model 8 :

Cycle Bus Walk Car Walk Cycle Bus Car Bus Cycle Walk Car
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Appendix 6.4 Mixed logit and mixed nested logit models with normally 

distributed time coefficients

Model 9 (ML)
Variable A lternative Coeff. t-stat.

Model 10 (M-NL)

Coeff, t-stat.
C onstan t
C onstan t
C onstant

Cycle
Bus
C a r

M ean
M ean
M ean

-1.932
-3.505
-6.300

-1.46
-3.00
-3.95

-2.271
-3.271
-5.423

-1.84
-2.73
-3.64

F em ale Cycle M ean -3.326 -4.07 -2.853 -3.48

Bus frequency - 1  or m o re p e r  h ou r (ref) 
Bus frequency -  less than  1 p e r  hou r Bus M ean -1.395 -1.44 -1.329 -1 .60

N um ber of c a rs  in household 0.910 1.70 0.651 1.54

Log of walking time (minutes) All M ean 
Std. Dev.

-2.788
0.006

-5.84
0.23

-2.450 -5.22

Log of cycling Mme (minutes) Cycle M ean 
Std. Dev.

-3.740
1.233

-3.37
4.06

-2.964
1.095

-3.46
3.05

Log of in-vehicle tim e (m inutes) Bus, C ar M ean 
S td . Dev.

-1.341
0.863

-2.09
0.93

-0.920 -1.98

C ost (pence) All M ean -0.012 -1.74 -0.013 -2.40

IV param e te r  (t-stat w.r.t. 1) Walk, C a r 0.876 0.41

O bserva tions
Log-likelihood: constan t only L(c) 
Log-likelihood: final value L(P) 
R ho -squa red  (vwth L(c)) 
R ho -squa red  adjusted  (with L(c))

585
-241.543
-161.619

0.331
0.321

585
-161.973
-241.543

0.329
0.320
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Appendix 6.5 Mixed logit model with normally distributed cycle time coefficient 

and heteroscedastic error components

V ariable A lternative

Model 11 (ML)

Coeff. t-stat
C onstan t
C onstan t
C onstan t

Cycle
Bus
C a r

Mean
M ean
Mean

-2.620
-4.840
-7.334

-1.68
-2.10
-2.48

Fem ale Cycle M ean -3.769 -2.08

B us frequency - 1  o r  m o re per tiour 
(ref)
B us frequency -  less  than  1 p e r  hour Bus M ean -1.983 -1.55

N um ber of ca rs  in household 0.876 1.26

Log of walking time (m inutes) Ail M ean -3.322 -2.68

Log of cycling time (m inutes) Cycle M ean 
Std. Dev.

-4.164
1.496

-2.49
2.55

Log of in-vehicle time (m inutes) Bus. C a r Mean -1.167 -1.67

C ost (pence) Ail Mean -0.018 -1.73

Error com ponents:
C onstant
C onstant
C onstant
C onstant

W alk
Cycle
Bus
Car

S td. Dev. 
S td. Dev. 
S td. Dev. 
S td. Dev.

0 .685
0.059
2.275

0

0.31
0.09
1.47

O bserva tions
Log-likelihood: constan t only L(c) 
Log-likeiihood: final value L(p) 
R ho -squared (with L(c)) 
R ho -squared adjusted  (with L(c))

585
-241.543
-160.728

0.335
0.324
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Chapter 7

Forecasting the Demand for an Employee 

Park and Ride Service

Encouraging employers to adopt travel plans is an important element of the UK 

Government’s integrated transport strategy (DETR, 1998). The objective of a travel 

plan is to reduce the number of employees commuting alone by car to work and to 

encourage the use of more environmentally friendly modes such as public transport, 

cycling and walking. In recent years travel plans have become widely adopted in the 

UK, and have been proven to make a contribution to modal shift at the site level (Rye, 

2002).

One of the measures that can be taken by the employer in order to reduce the 

number of commuters taking their car to the workplace is to introduce a Park and 

Ride service, i.e. a large off-site parking space with a shuttle-bus serving the
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workplace. This can be particularly effective in reducing car use if the workplace has 

poor public transport links and/ or limited parking space on-site. The University of St 

Andrews, which is the subject of the current paper, qualifies in having relatively poor 

public transport links for a majority of employees and partly in having insufficient 

parking space relative to car users on-site, particularly for those employees working in 

the centre of town. It was therefore decided by the University that the possibility of 

introducing a Park and Ride service should be investigated fiirther.

Since the Park and Ride service is yet to be implemented there does not exist 

any revealed preference (RP) data that can be used for model estimation. A feasible 

alternative approach is to carry out a stated choice experiment. As pointed out in 

chapter 4, stated preference methods have become increasingly popular in 

transportation research over the past two decades due to their flexibility to introduce 

new alternatives and attributes and to incorporate a wider range of attribute levels 

than what is observed in the market. SP data can also overcome problems often 

encountered with RP data such as little variance and/ or multicollinearity in the 

independent variables and measurement errors. The use of SP data has, however, also 

been met with much scepticism because of the hypothetical nature of the data. The 

question is simply how reliable data elicited from a hypothetical choice situation are. 

It is argued by several practitioners that SP data seem to be reliable given that the 

experiment is well designed and clearly explained to the respondents (e.g. Louviere et 

a l, 2000). There is also a growing body of evidence of successful use of SP models in 

forecasting (Beaton et a l, 1998; Fowkes and Tweddle, 1999).

This chapter aims to forecast the share of car drivers that would switch to 

using Park and Ride given that such a service was provided. The structure of the 

chapter is as follows: section 7.1 describes the stated choice experiment, section 7.2
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describes the data while section 7.3 and 7.4 presents the modelling and forecasting 

results respectively. Section 7.4 concludes.

7.1 The Stated Choice experiment

All members of University of St Andrews staff who drove a car to work on the day of 

the survey were asked to take part in the stated choice (SC) experiment. The 

commuters were asked whether they would choose to travel to work as usual or use 

Park and Ride if such a service was provided by the University (see appendix 7.1). 

The SC experiment contained two attributes: Park and Ride door-to-door travel time 

and cost, which both varied over three levels relative to the individuals’ current 

commute. The experiment was deliberately kept as simple as possible, i.e. with a low 

number of attributes and levels, since studies have shown that people give the most 

reliable answers when assessing changes in only two or three factors simultaneously 

(Bradley, 1988). More complex choice tasks may lead people to use so-called 

lexicographic choice rules, where only one attribute is considered at the time (Johnson 

and Meyer, 1984). Also, given that the survey was distributed by mail, a simple 

survey was considered more likely to achieve a high response rate.

To increase the realism of the experiment the attributes of the Park and Ride 

option were based around the individuals’ actual travel time and cost when going by 

car and parking on-site. As a consequence the design is not orthogonal, i.e there will 

be some collinearity in the independent variables (see chapter 4). It has been argued, 

however, that some (preferably low) degree of collinearity is acceptable if the realism 

of the experiment is enhanced (Fowkes and Wardman, 1988; Louviere, 1988). The

143



full factorial design with two attributes varying over three levels provides 9 possible 

combinations of attribute levels (3^ =9). Nine choice scenarios were considered to be 

a manageable task for the respondents who were all presented with the full set of 

choices (table 7.1).

Table 7.1: The full SC design. The attributes are those of Park and Ride relative 

to the individual’s current commute.

Question______________ Park & Ride_____________
Cost (in pence) Time (in minutes)

1 0 +5
2 0 + 1 0
3 0 +15
4 -50 +5
5 -50 + 1 0
6 -50 +15
7 -1 0 0 +5
8 -1 0 0 + 1 0
9 -1 0 0 +15

The respondents were given three options: 1) Choose park on-site, 2) Choose park and 

ride and 3) Don’t know (see appendix 7.1). The “Don’t know” responses were left out 

when estimating the model.
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7.2 Data and descriptive statistics

7.2.1 Data characterization

Questionnaires were distributed to all members of St Andrews University Staff via the 

internal mail. Of the 1661 questionnaires that were distributed 642 were returned, 

giving a response rate of 38.7%. All car drivers were asked to complete the stated 

choice experiment. This yielded 255 responses with complete information about the 

work trip and socio-demographic characteristics that were used for model estimation. 

Prior to the main survey a pilot survey was carried out with members of the 

department of Economics, where several flaws in the original questionnaire were 

detected and subsequently corrected.

Table 7.2 Description of variables and data characteristics.

Dummy Variables Sample Share
Academic ~ High income 24%
Academic -  Low income 14%
Non-Academic -  High income 22%
Non-Academic -  Low income 40%
Female 54%
Currently park in university parking 82%
Arrive at work later than 9am 15%
Work in a building with limited on-site parking 55%

Continous Variables Mean value

Door-to-door commuting time in minutes 20.5
Walking time in minutes 2.7
Travel cost in pence (calculated as 15 pence pr mile) 163
Number of cars owned by household 1.7
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The individuals in the sample were categorized as academics or non-academics and 

divided into high and low income groups on the basis of their occupation as described 

in Chapter 6 . It is hypothesized that the low-income groups will be more willing to 

use the park and ride service as their opportunity cost of an increase in travel time 

may be lower. Furthermore, academics may be more aware of environmental issues 

than non-academics and hence more willing to switch to the “greener” mode.

It is possible that females are more dependent on the car than males since they 

are often responsible for tasks such as picking up children from school. The number 

of cars in a household may be a proxy for attitudes towards driving, in the sense that 

an individual living in a household with many cars may be less inclined to use other 

modes of transport compared to an individual who lives in a household with fewer 

cars.

A person who works in a building with limited parking space nearby is likely 

to be more willing to switch to Park and Ride than a person who works in a building 

with ample parking space. If he/ she arrives late to work this effect is expected to be 

stronger since finding a parking space will be even more difficult. It is expected that 

an individual who parks in a University car park is less likely to switch to Park and 

Ride, assuming that this is the individual’s preferred parking option. Also, it is 

hypothesized that an increase in the travel time and cost of an alternative will lower 

the probability of this alternative being chosen. Finally, a marginal increase in 

walking time is likely to lead to a higher decrease in the probability compared to a 

marginal increase in the time spent travelling in the vehicle.
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7.2,2 Lexicographie responses

It is interesting to ask how many of the car drivers that completed the survey are 

prepared to switch to Park and Ride. Table 7.3 below shows the percentage of car 

drivers that chose car in all the scenarios (41.2%), along with those who chose Park 

and Ride in all the scenarios (6.7%).

Table 7.3 Lexicographic responses

Always choose car Always choose P&R

Number 105 17

Percentage share 41.2% 6.7%

It should be recalled that lexicographic responses imply that the respondent 

simplifies the completion of the survey by concentrating on one design attribute only, 

ignoring the other information presented in the experiment. In the present setting 

those respondents who always chose car could therefore be accused of using the 

lexicographic choice rule ‘choose the mode with the lowest travel time’. It is far from 

obvious, however, that this is the reason for why a substantial share of the respondents 

never chose Park and Ride as there are many other plausible explanations. It is likely 

that some drivers are captive to the car mode, for example those who need their car in 

their work and those who are responsible for picking children up at school and 

performing other tasks away from work during the working day. Others may simply 

have a strong dislike for public transportation. These individuals are not likely to 

choose Park and Ride given any reasonable combination of travel times and costs. 

Others may feel that the tradeoffs presented in the experiment are not sufficiently
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favourable for them to choose Park and Ride. It should be pointed out that the upper 

limit on the value of time Avhich can be identified from the survey is 2 0  pence per 

minute, since a respondent who did not choose to go by Park and Ride in the scenario 

where the time difference is 5 minutes and the cost difference is 100 pence must have 

a value of time of 20 pence per minute or higher. This is almost four times as high as 

the estimated average value of in-vehicle time in Britian (see the discussion in chapter 

6 ), however, and it is therefore not likely that this is a major reason for why the 

number of drivers who never chose Park and Ride is so high. Indeed, this 

demonstrates the reason why many authors (Calfee and Winston, 1998 and Hensher 

2 0 0 1 a) have advocated that experiments designed to estimate the value of time should 

focus on one mode only, since this avoids confounding unobserved mode-specific 

attributes (flexibility, privacy) with the trade-off of times and costs. The aim of the 

analysis in the present chapter, however, is not value of time estimation, but 

forecasting the demand for a new transport mode. In this case it is not a problem that a 

high share of the respondents chose a particular mode, as long as this accurately 

represents what they would do if the new mode was introduced. Therefore, if the 

answer to the high number of individuals choosing to park on site is that the 

respondents have used lexicographic choice rules this is a problem since this 

behaviour is related to the experimental setting. This is not regarded as very likely, 

however, since the experiment only involves trade-offs between two attributes and 

should therefore be relatively easy to complete. On the other hand it is likely that the 

main explanation is that several car drivers feel captive to the car mode for various 

reasons. In terms of modelling this is not a problem, since this behaviour is consistent 

with behaviour in the ‘real world’. In terms of transport policy, however, this is 

clearly an important impediment to making transport more sustainable.
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7.3 Estimation results

Tables 7.4a-d below summarize the estimation results of various binary logit models. 

The simplest model (model 1) is linear in the time and cost attributes, and income and 

gender enter as explanatory variables. The Park and Ride constant is positive and 

significant. This variable represents the mean impact of all variables that influence the 

choice of mode that are not included in the model. The coefficient for the female 

dummy is negative as expected but not significant at the 5% level. It is interesting to 

note that when the model was re-estimated omitting the respondents that chose the 

same mode in all scenarios the coefficient was significant in the opposite direction. 

This indicates that when the females and males who find that going by car is the only 

option for them are omitted from the sample the remaining females are more likely to 

switch to Park and Ride than males.

Low-income academics are found to be significantly more likely to switch to 

Park and Ride than individuals in the other income categories. There are no 

significant differences between high-income academics and non-academics (with high 

and low income). As expected the likelihood of switching to Park and Ride decreases 

significantly when the number of cars in the household increases. The coefficients for 

travel time and cost are also strongly significant in the expected direction.
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Table 7.4a Estimation results for the binary logit models.

Model 1 
(BL -linear)

Model 2 
(BL -linear)

Variable Coeff. t-stat. Coeff. t-stat.

C onstant for P ark  and  Ride 0.761 3.51 -0 .157 -0,59

F em ale -0 .193 -1.68 -0.231 -1.91

A cadem ic -  Higti incom e 0.136 0.93 0.203 1.34

A cadem ic -  Low Income 0.335 2.08 0.631 3.63

Non-Academ ic -  High incom e -0.032 -0.21 -0.036 -0.23

N um ber of c a rs  in household -0.187 -2.60 -0.144 -1.94

Limited on -site parking 0.658 5.29

Amive a t work la ter than  9am -0 .555 -1.94

interaction (late*iimited parking) 0.557 1.65

Park in University parking 0.626 4.12

C ost (pence) -0 .010 -7.17 -0.010 -7.24

Time (door-to-door, m inutes) -0 .208 -14.65 -0.215 -14.81

N um ber of resp o n d en ts  in sam ple 255 255

N um ber of re sp o n se s 2105 2105

Log-likelihood;

C onstan t only L(c) -1224.41 -1224.41

Final value L(p) -1065.08 -1036.46

R ho -squa red (with L(c)) 0.130 0.154

R ho -squa red ad justed  (vwth L(c)) 0 .127 0.149

In model 2 the variables that relate to the individuals’ current parking situation 

are also included. As expected the individuals who work in buildings with relatively 

poor on-site parking are significantly more likely to use Park and Ride than those who 

have good parking facilities nearby. The ones who arrive late at work and work in a 

building with poor on-site parking are even more likely to switch to park and ride as 

hypothesized. The ones who arrive late and work in a building with good on-site 

parking are the least likely to switch. Individuals who currently park in University 

parking are found to be significantly more likely to switch to Park and Ride. The 

explanation for this somewhat surprising result may be that University parking is not 

necessarily the employees’ preferred parking option. The signs and significance of the
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variables already included in model 1 do not change markedly, apart from the Park 

and Ride constant which is no longer significant. The rho-bar squared increases from 

0.127 in model 1 to 0.149 in model 2.

It is possible that people find travelling by car less onerous than travelling by 

shuttle bus. Using the Park and Ride will also entail some waiting time, which is 

usually regarded as more onerous than travelling in the vehicle. This is taken into 

account in model 3 by estimating a separate time coefficient for car and Park and 

Ride. Contrary to the prior expectations, however, the car mode has a slightly higher 

coefficient than that of Park and Ride. It is expected that people who currently have to 

park relatively far away from their workplace will be more likely to switch to Park 

and Ride. This is also accommodated in model 4 by separating the travel time for the 

car mode into walking time (from parking to workplace) and in-vehicle travel time. 

The coefficient for walking time is significant in the expected direction. The 

magnitude of the coefficient is slightly lower than the coefficient for in-vehicle time, 

however, which is again contrary to the prior expectations. The rho-bar squared 

increases very slightly from 0.149 in model 3 to 0.150 in model 4.
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Table 7.4b Estimation results for the binary logit models.

Model 3 
(BL - linear)

Model 4 
(BL -  quadratic)

Variable Coeff. t-stat. Coeff. t-stat.

C onstant for Park  and  Ride -0.231 -0.82 -1.625 -3.46

Fem ale -0.227 -1.87 -0.201 -1.62

A cadem ic -  High Income 0.171 1.12 0.242 1.55

A cadem ic -  Low incom e 0.625 3.59 0.670 3.75

Non-Academ ic -  High incom e -0.056 -0.35 -0.073 -0.45

N um ber of ca rs  in household -0.078 -2.06 -0.086 -2.25

Limited on -site parking 0.677 5.33 0.479 3.54

Arrive a t work la ter th an  9am -0.586 -2.05 -0.441 -1.49

Interaction (late*llmited parking) 0.631 1.86 0.554 1.59

Park in University parking 0.626 4.09 0.647 4.08

C ost (pence) -0.010 -7.25 -0.010 -7.29

Time (car) (minutes) -0.223 -14.58 -0.320 -9.69

Time (P&R) (minutes) -0.215 -14.82 -0.197 -4.80

Walking time (m inutes) -0.192 -7.49 -0.367 -5.68

Time (car) squa red  (m inutes) 0.0016 2.38

Time (P&R) squa red  (m inutes) -0.0004 -0.63

Walking tim e squa red  (m inutes) 0.0134 2.33

N um ber of respon d en ts  in sam ple 255 255

N um ber of re sp o n ses 2105 2105

Log-likellhood:

C onstan t only L(c) -1224.41 -1224.41

Final value L(P) -1033.89 -1000.86

R ho -squared (with L(c)) 0.156 0.183

R ho -squa red adjusted  (with L(c)) 0.150 0.176

Models 1 - 3 are linear in the alternative attributes, and therefore implicitly assume 

that the marginal disutility of an increase in travel time/ cost is constant. As discussed 

in chapters 2  and 6  it is possible that the marginal disutility of an increase in travel 

time/ cost is not constant, but a function of travel time/ cost. As shown in chapter 6  

this hypothesis can be tested by entering quadratic terms in the representative utility 

function. Model 4 re-estimates model 3 including quadratic terms for the time 

attributes, which leads to a substantial increase in rho-bar squared from 0.150 to
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0.176. It can be seen from table 7.4b that the coefficients for the quadratic terms are 

positive and significant, with the exception of Park and Ride time which has a 

negative but insignificant coefficient. This implies that the marginal disutility of an 

increase in car in-vehicle time and walking time is decreasing with travel time, which 

is not consistent with the utility maximising framework presented in chapter 2 , but in 

line with the findings in chapter 6 . As pointed out in that chapter, however, the 

quadratic specification with positive quadratic terms may lead to illogical results since 

the change in utility following an increase in travel time will eventually become 

positive as travel times increase. It is therefore necessary to re-specify the model by 

ensuring that an increase in travel time always leads to a decrease in the utility of a 

mode, while allowing for a decreasing marginal disutility of travel time. As in chapter 

6  the square root and log transformations are adopted for this purpose. The estimation 

results for the square root and log models are presented in table 7.4c below. ̂

‘ For the sake of consistency it was chosen to enter the Park and Ride time variable in the log/ square- |
root form along with walking time and in-vehicle time for the car mode, although the models in which |
Park and Ride time entered linearly resulted in a slightly better fit. j

1
I
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Table 7.4c Estimation results for the binary logit models.

Model!
(log)

Model 6 
(square-root)

Variable Coeff. t-stat. Coeff. t-stat.

C onstan t for P ark  and  Ride 5.208 8,17 1.267 3.27

F em ale -0.167 -1.39 -0.188 -1.54

A cadem ic -  Higti incom e 0.217 1.42 0.206 1.33

A cadem ic -  Low incom e 0.637 3.67 0.596 3.38

Non-Academ ic -  High incom e -0.053 -0.34 -0.075 -0.47

Num ber of ca rs  in household -0.083 -2.20 -0.091 -2.36

Limited on -site parking 0.513 3.90 0.515 3.86

Arrive a t work la ter th an  9am -0.456 -1.58 -0.558 -1.93

Interaction (late*limited parking) 0.626 1.85 0.709 2.07

Park  in University parking 0.657 4.30 0.692 4 .44

C ost (pence) -0.010 -7.18 -0.010 -7.27

Log of time (car) (m inutes) -2.908 -12.57

Log of time (P&R) (m inutes) -4.661 -13.41

Log of walking tim e (m inutes) -0.475 -5.95

Square-root of tim e (car) (m inutes) -1.931 -14.79

Square-root of tim e (P&R) (minutes) -2 .317 -15.34

S q ua re  root of walking tim e (minutes) -0.837 -7.91

N um ber of re sp o n d en ts  In sam ple 255 255

N um ber of re sp o n se s 2105 2105

Log-likellhood:

C onstan t only L(c) -1224.410 -1224.41

Final value L(P) -1043.110 -1013.12

R ho -squared (with L(c)) 0.148 0.173

R ho -squa red adjusted  (v4th L(c)) 0.142 0.167

It can be seen that in this case the square root transformation (model 6 ) yields 

the superior data fit, in contrast to the finding in chapter 6 . Model 6  also has some 

other nice properties. Firstly, the time coefficient for P&R is higher than that of car, 

which is consistent with the expectation that people find travelling by shuttle bus 

more onerous than travelling by car. Secondly, while the coefficient for walking time 

is still lower than the coefficient for car in-vehicle time, the marginal disutility of an 

increase in walking time may still be higher since walking times are in general much
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lower than the time spent travelling in the vehicle and the marginal disutility of an 

increase in travel time is decreasing with travel time.

As pointed out in chapter 6  the Box-Cox transformation can also represent a 

decreasing marginal disutility of travel time given that %<1, where the Box-Cox 

transformation of the time variable T is given by = InT when X=0 and 2̂  ̂= -

1)/ À otherwise (see e.g. Gaudry and Wills,1978 and Gaudry et ah, 1989). The benefit 

of the Box-Cox transformation is that X is estimated along with the other parameters 

of the model, rather than assuming a particular transformation prior to model 

estimation. It can be seen, for instance, that when X=0.5 the Box-Cox transformation 

is similar to the square root transformation, while when X,=0 it is equal to the log 

transformation. The drawback of the Box-Cox transformation, however, is that the 

standard error of the estimate of X can only be obtained when T is strictly positive (see 

e.g. Greene, 2003b). In the present setting this means that some observations have to 

be eliminated because the walking time is reported to be zero. This results in a sample 

of 2003 observations which can be used for model estimation. The results for the 

binomial Box-Cox logit model estimated on this sample are reported in table 7.4d 

below (model 7). The model with square root transformations estimated on the same 

sample is included for the sake of comparison (model 8).
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Table 7.4d Estimation results for the binary logit models (reduced sample).

M odel 7 

(Box-Cox)

M odel 8 

(sq u a re - ro o t)

V ariab le Coeff. t-stat. Coeff. t-stat.

C onstant for Park and  Ride 1.404 2.89 1.493 3.76

F em ale -0.213 -1.72 -0.213 -1.72

A cadem ic -  High incom e 0.238 1.51 0.245 1.55

A cadem ic -  Low incom e 0.599 3.38 0.605 3.41

Non-Academic -  High incom e -0.023 -0.14 -0.026 -0.16

N um ber of ca rs In household -0.207 -2.62 -0.207 -2.62

Limited on-site parking 0.498 3.69 0.479 3.56

Arrive a t work la ter than  9am -0.610 -2.10 -0.590 -2.03

interaction (iate*iimlted parking) 0.573 1.65 0.581 1.68

Park  in University parking 0.638 4 .05 0.639 4 .06

C ost (pence) -0.010 -7.13 -0.010 -7.13

Time (car) (minutes) -0.697 -4.11

Time (P&R) (minutes) -0 .804 -3.57

W alking time (minutes) -0.380 -6.33

Square-root of tim e (car) (m inutes) -1.890 -14.18

S quare-root of tim e (P&R) (m inutes) -2.302 -14.99

S qua re  root of walking tim e (m inutes) -0.839 -7.35

Lam bda (t-statistic w.r.t. 1) 0,614 -4.54

N um ber of re sp o n ses 2003 2003

Log-likelihood:

C onstant only L(c) -1183.09 -1183.09

Final value L(P) -989.36 -990.27

R ho -squared (vwth L(c)) 0.164 0.163

R ho -squared adjusted (with L(c)) 0.157 0.157

It can be seen from the table that X is significantly different from 1, indicating that a 

non-linear specification is appropriate. The point estimate of X is 0.6, which is similar 

to the square-root transformation and there is hardly any difference in the goodness of 

fit between the Box-Cox model and the model with square-root transformation. On 

the basis of this finding it was therefore concluded that the square-root transformation 

seems to be an accurate description of the non-linearities present in the representative 

utility function, and that therefore model 6  (which has the added benefit of being 

estimated on the full sample) will be used for forecasting purposes.
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Model 6  is also used to test for learning and fatigue effects using the scaling 

method outlined in chapter 4. The null hypothesis of equal scale parameters cannot be 

rejected at the 5% significance level using the LR test (see appendix 7.2 for the 

estimation and test results). There is also no substantial difference in the coefficient 

estimates of the two models. This supports previous findings in the literature (Bradly 

and Daly, 1994; Sœlensminde, 2001), which conclude that strong fatigue effects are 

unlikely when offering no more than 10  choice comparisons within a single 

experiment.

As described in chapter 4, a drawback of the multinomial logit model is that 

the choices performed by the same individual are assumed to be independent. This is 

likely to lead to inflated /-statistics, and more seriously, biased parameter estimates if 

the random term is correlated with the explanatory variables. As described in chapter 

3, the mixed logit model allows for correlation over choice tasks by adding an error 

term to the alternative utility functions that is constant over the choice tasks 

performed. The mixed logit estimation results are presented in tables 7.5a-c below.

Three mixed logit models were specified; one which can be interpreted as a 

heteroscedastic ML model, in which the coefficient for the P&R constant is normally 

ditributed (model 9), another in which the travel time coefficients are normally 

distributed (model 10) and another in which the travel time coefficients are log- 

normally distributed (model 11) to ensure that the coefficients for the travel time 

components are always negative. It should be pointed out, however, that the 

coefficient estimates in model 10 imply that all the individuals in the sample prefer 

lower in-vehicle travel times. The estimates imply that about 10% of the sample 

derive a positive utility from the time spent walking, but since there are arguments for 

why walking can be a good rather than a bad (exercise, fresh air etc.), this result does
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not seem completely implausible. It is important to note that the estimated coefficients 

in model 11 represent the mean (b) and variance (s) of the log of the coefficients, 

(ln/9). The median, mean and standard deviation of p  is given by exp(b), exp(b+(s^/2)) 

and exp(b+(s^/2))xV [exp(s^)-l] respectively (see e.g. Train, 1997). Table 7.5c reports 

the median, mean and standard deviation of p  derived from the estimates of b and s.

It can be seen from tables 7.5a-b that the standard deviations of the time 

coefficients in models 10  and 11 are highly significant, indicating that there are 

significant differences in the valuation of the different components of travel time in 

the sample. Since there is only a small difference in the rho-bar square between 

models 9-11,  however, it seems that the substantial gain in goodness of fit compared 

to the binomial logit models is mainly a result of allowing for correlation across 

choice tasks performed by the same individual, rather than accommodating 

heterogeneity in tastes (the heteroscedastic model actually has a slightly higher rho- 

bar squared than the model with log-normally distributed time coefficients and the 

same rho-bar squared as the model with normally distributed time coefficients).

As expected the /-statistics in models 9-11 are substantially lower than those in 

model 6 , with the exception of the coefficient for cost. The alternative attributes are 

still highly significant, while the socio-demographic characteristics were found to be 

insignificant with the exception of the coefficient for limited on-site parking and 

parking in University car parks. The remaining socio-demographic variables were 

therefore dropped from the models (the estimation results for model 10  including all 

socio-demographic characteristics are reported in appendix 7.3). The means of the 

coefficients in models 9-11 are substantially higher than those in model 6 , which is 

consistent with the findings in Revelt and Train (1998) and Carlsson (2003). This 

result reflects that the error component of the mixed logit model is decomposed into
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two components, one which is specified by the researcher and one which is IID 

extreme value, and normalises the parameters on the basis of the second component 

(Revelt and Train, 1998).

Table 7.5a Estimation results for the Mixed Logit Models.

M odel 9 M odel 10
V ariab le Coeff. t-stat. Coeff. t-stat.

Constant for Park and Ride Mean 2.855 1.20 4.311 2.25

Std. dev. 7.199 9.31

Limited on-site parking Mean 2.567 2.39 2.979 3.79

Park in University parking Mean 2.019 1.40 2.014 1.71

Cost (pence) Mean -0.038 -13.32 -0.039 -13.24

Square-root of time (car) (minutes) Mean -6.873 -9.08 -7.525 -9.35

Std. dev. 0.301 4.00

Square-root of time (P&R) (minutes) Mean -8.281 -10.38 -9.307 -10.30

Std. dev. 1.337 9.04

Square root of walking time (minutes) Mean -2.898 -3.59 -3.142 -5.96

Std. dev. 2.439 7.89

Number of respondents in sample 255 255

Number of responses 2105 2105

Log-likelihood:
Constant only L(c) -1224.41 -1224.41

Final value L(P) -528.35 -527.81

Rho-squared (with L(c)) 0.569 0.569

Rho-squared adjusted (with L(c)) 0.567 0.567
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Table 7.5b Estimation results for the Mixed Logit Models.

Model 11
V ariab le Coeff. t'Stat.

C onstan t for Park  and  Ride M ean 4.662 2.36

Limited on -site  parking M ean 2.782 2.10

Park in University parking Mean 1.968 1.92

C ost (pence) M ean -0.039 -13.26

Square-root of time (car) (m inutes) M ean of In(coefficient) 1.965 18.88

Std. dev. of ln(coeffiolent) 0 .122 6.73

Square-root of tim e (P&R) (m inutes) M ean of In(coefficient) 2.216 23.48

Std. dev. o f in(coefficient) 0.154 9.50

S q u a re  root of walking time (m inutes) M ean of fn(coefficient) 1.181 5.68

Std. dev. of ln(coefficient) 0.553 -7.39

Num ber of responden ts In sam ple 255

N um ber of re sp o n ses 2105

Log-likelihood:

C onstan t only L(c) -1224.41

Final value L(p) -530.29

R ho -squa red  (with L(c)) 0 .567

R ho -squa red  adjusted  (with L(c)) 0.565

Table 7.5c Median, mean and standard deviation of the random coefficients

in model 11.

Median Mean St. Dev.
Square-root of time (car) (minutes) 7.134 7.188 0.883
Square-root of time (P&R) (minutes) 9.171 9.281 1.439
Square-root of walking time (minutes) 3.258 3.797 2.271
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7.4 Forecasting results

For the reasons discussed in chapter 4 it may be necessary to rescale the estimated 

coefficients in the SC models before proceeding to forecast the modal split. An 

alternative forecasting method proposed by Fowkes and Preston (1991) is to average 

the probabilistic and the deterministic forecasts. The deterministic forecast is given by 

assuming that the mode with the higher representative utility is the chosen mode for 

all individuals in the sample. The random component of the model is thus ignored. 

The logic behind the Fowkes and Preston method is that the probabilistic forecast is 

likely to overpredict the minor mode while the deterministic forecast is likely to 

overpredict the major mode (Fowkes and Preston, 1991) (this holds when the error 

variance of the SC model is higher than that of the RP model). The correct forecast is 

therefore likely to be bounded by these forecasts. This hypothesis is supported 

empirically by Beaton et al. (1998), in the following the forecasts derived from the 

Fowkes and Preston method will be compared with the forecasts derived by the 

method of rescaling using a known RP coefficient.

As mentioned in chapter 4 the method of rescaling requires an RP estimate of 

one or more of the coefficients in the representative utility function.^ A somewhat 

simplified version of the MNL and ML models in chapter 6  (without socio­

demographic variables and time coefficients in square-root form to be consistent with 

the SP model) was chosen to compare the SP and RP estimates. The RP estimation 

results are given in table 7.6. All the alternative attributes are significant at the 5% 

level and have the expected sign, except the coefficient for in-vehicle time which has

 ̂The joint RP/SP estimation approach outlined in chapter 4 would be feasible in the present study if 
the SP experiment included users of other existing modes such as bus. Since it was chosen to focus on 
the switching behaviour of car drivers, however, this approach cannot be adopted here.
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the expected sign but is insignificant. In the ML model the coefficients for cycling 

time and walking time are specified to be normally distributed and have significant 

standard errors.^

Table 7.6 Estimation results for the RP Models.

Model 12 Model 13
Variable Coeff. t-stat. Coeff. t-stat.

C onstan t for walk M ean 4.006 6.67 5.406 5.66

C onstan t for cycle M ean 0.317 0.36 2.078 1.21

C onstan t for b u s M ean 0.204 0.43 0.704 1.06

C ost (pence) M ean -0.014 -3.48 -0.015 -2.81

S quare-root of In-vehicle tim e (minutes) M ean -0.187 -1.00 -0.359 -1.36

S qua re -roo t of walking tim e (m inutes) M ean -1.415 -7.69 -1.992 -5.44

S td. dev. 0.405 2.41

Square-root of cycling time (minutes) M ean -0.927 -3.45 -1.990 -2.93

Std. dev. 0.736 4.08

N um ber of responden ts In sam ple 585 585

N um ber of re sp o n ses 585 585

Log-llkellhood:

C on stan t only L(c) -241.54 -241.54

Final value L(P) -196.94 -190.43

R ho -squa red  (with L(c)) 0.185 0.212

R ho -squa red  adjusted  (with L(c)) 0.178 0.204

It can be seen from table 7.6 that it would be necessary to rescale the 

coefficients in model 6  by a factor of 1.4 to reproduce the cost coefficient in model 

12. As a consequence the forecasts derived from the SP MNL model without rescaling 

is likely to overpredict the share of Park and Ride users since rescaling by a factor 

higher than one implies that the error variance in the SP MNL model is higher than 

that of the RP MNL model (see chapter 4), Similarly, it can be seen that the

 ̂It was also attempted to estimate a model with random coefficients for all the time variables, but this 
model did not converge.
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coefficients in models 9 and 10 would have to be rescaled by a factor of 0.4 and 0.39 

respectively to reproduce the cost coefficient in model 13. This implies that the 

variance of the SP ML models are lower than that of the RP ML model and that 

forecasts derived from the SP ML models without rescaling are likely to underpredict 

the share of Park and Ride users. It follows that the Fowkes and Preston hypothesis 

holds for MNL model but not for the ML models.

In order to produce the forecasts of the share of car drivers switching to Park 

and Ride it was necessary to estimate the Park and Ride travel time for all individuals 

in the sample. The travel times were calculated assuming that the Park and Ride site 

would be located at David Russell hall, which is just outside of the centre of town on 

the road to Strathkinness. The estimated travel time for each respondent depends on 

which area of town she works and her travel route into town (see appendix 7.4 for 

details). Needless to say the precision of the forecasts will depend on the accuracy of 

the estimated Park and Ride travel times.

The forecasts derived from models 6 ,9  and 10 assuming that the cost of going 

by car and Park and Ride are the same are summarized in tables 7,7a-c below.

Table 7.7a Predictions of the modal shares derived from the MNL model 

assuming that travel costs are the same for the two modes.

Mode Probabilistic- Deterministic Probabilistic -  Fowkes & Preston
No scaling Rescaled

Car 81.5% 99.6% 87.9% 903%
Park & Ride 18.5% 0.4% 12.1% 9.5%
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Table 7.7b Predictions of the modal shares derived from the ML model with 

normally distributed P&R constant assuming that travel costs are the same for

the two modes.

Mode Probabilistic- Deterministic Probabilistic -  Fowkes & Preston
No scaling Rescaled

Câir 81.7% 100% 78.9% 90.8%
Park & Ride 18.3% 0% 21.1% 9.2%

Table 7.7c Predictions of the modal shares derived from the ML with normally 

distributed time coefficients assuming that travel costs are the same for the two

modes.

Mode Probabilistic- Deterministic Probabilistic- Fowkes & Preston
No scaling Rescaled

Car 83.0% 100% 80.2% 91.5%
Park & Ride 17.0% 0% 19.8% 8.5%

It can be seen from tables that the MNL model without rescaling predicts that 18.5% 

of the car drivers will switch to Park and Ride using the probabilistic method while 

the deterministic forecast is that 0.4% will switch. The mean of these forecasts give 

the Fowkes and Preston prediction (9.5%). The forecast derived from the rescaled 

MNL model predicts that 12.1% of the car drivers will switch to Park and Ride. The 

heteroscedastic ML model (model 9) without rescaling predicts that 18.3% will switch 

to Park and Ride using the probabilistic method while the ML model with normally 

distributed time coefficients (model 10) predicts that 17% of the car drivers will 

switch. The deterministic forecast derived from both ML models is that none of the
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drivers will switch. The means of the probabilistic and deterministic forecasts imply 

that 9.2% and 8.5% of the drivers will switch to Park and Ride, while the forecasts 

derived from the rescaled models is that 2 1 .1% and 19.8% of the drivers will switch 

using model 9 and 10 respectively. It should be noted that although the forecasts 

derived from the unsealed models are similar, the forecast from the rescaled ML 

models, which are perhaps the most reliable, are higher than that of the rescaled MNL 

model. This a consequence of the fact that the MNL model is rescaled by a factor 

higher than one, while the ML models are rescaled by a factor lower than one. It 

should also be noted that the forecasts derived from the ML models are consistently 

very similar.

Neither of the forecasts implies that a large percentage of car drivers will 

switch to Park and Ride, however. One of the measures that could be taken in order to 

encourage a larger take-up of the service is introducing on-site parking charges. In 

order for this strategy to be effective the charges would have to be coordinated with 

the local (Fife) Council so that car drivers do not merely switch from parking on-site 

to parking in the street."̂  The forecasts below are calculated assuming that the cost of 

parking on-site has increased by £1  following the introduction of parking charges.

Table 7.8a Predictions of the modal shares derived from the MNL model 

assuming that the cost of parking on-site is £1 higher than using Park and Ride.

Mode Probabilistic- Deterministic l^obabilistic -  Fowkes & Preston
No scaling Rescaled

Car 6 3 A %  86.1% 67.3% 74.7%
Park & Ride 36.6% 13.9% 32.7% 25.3%

 ̂The majority of parking in St Andrews has charges that are higher than the ones suggested here. 
There are, however, a small number of free parking spaces around town.
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Table 7.8b Predictions of the modal shares derived from the ML model with 

normally distributed P&R constant assuming that travel costs are the same for

the two modes.

Mode Probabilistic- Deterministic Probabilistic -  Fowkes & Preston
No scaling Rescaled

Car 66.3% 91.6% 64.6% 78.9%
Park & Ride 33.6% 8.4% 35.4% 21.1%

Table 7.8c Predictions of the modal shares derived from the ML with normally 

distributed time coefficients assuming that the cost of parking on-site is £1 

higher than using Park and Ride.

Mode Probabilistic- Deterministic Probabilistic- Fowkes & Preston
No scaling Rescaled

Car 68.4% 91.6% 66.5% 80.0%
Park & Ride 31.6% 8.4% 33.5% 20.0%

As expected the forecasts derived from all models using the various forecasting 

approaches suggest that the introduction of parking charges will increase the 

switching to Park and Ride. The MNL model without rescaling now predicts that 

36.6% of the car drivers will switch using the probabilistic method and that 13.9% 

will switch using the deterministic method. The forecast derived from the rescaled 

model predicts that 32.7% of the car drivers will switch to Park and Ride, which is 

somewhat higher than the Fowkes and Preston forecast (25.3%). The heteroscedastic 

ML model without rescaling predicts that 33.6% will switch using the probabilistic
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forecast while the ML model with normally distributed time coefficients predicts that 

31.6% will switch. Both models predict that that 8.4% will switch using the 

deterministic forecast. The rescaled models predict that 35.4% (model 9) and 33.5% 

(model 10) of the drivers will switch. The forecast from the MNL model without 

rescaling is somewhat higher than that of the ML models, suggesting that the MNL 

model overpredicts the impact of the parking charge on the demand for Park and 

Ride. The forecasts from the rescaled models are more similar, with the forecast from 

the rescaled ML models being slightly higher than their MNL counterpart. For the 

sake of completeness the forecasts derived from the ML model with log-normally 

distributed coefficients (model 11) are given in appendix 7.5a-b. These forecasts can 

be seen to be similar to those derived from the ML model with normally distributed 

time coefficients.

7.5 Conclusions

It can be seen from the previous analysis that the share of car drivers switching to 

Park and Ride will be relatively low unless supported by measures designed to make 

parking on-site less attractive such as introducing parking charges. This supports 

previous findings in the literature on travel plans (Rye, 2002) as well as the advice 

given in the UK government’s travel plan guide (DETR, 1999) that a travel plan is 

most effective in reducing car use when it contains a combination of “sticks” and 

“carrots”. In other words an effective travel plan should include measures aimed at 

discouraging car use as well as measures aimed at encouraging more environmentally 

friendly modes.
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Parking charges seem to be justified as a means to deter driving as the current 

situation of providing free parking at the worksite actually subsidizes car use (Porter, 

1999). Indeed Shoup (1997) finds that on average the cost of parking equals 75% of 

the variable cost of commuting by car. In this light the introduction of a parking 

charge is simply making the drivers pay a higher share of the variable cost of driving 

themselves.

An employee Park and Ride service seems to have the potential to be effective 

in reducing the demand for on-site parking when supported by measures to deter 

parking on-site. It is likely to be particularly effective at workplaces located in small 

towns (such as St Andrews) with poor public transport links and relatively limited 

parking facilities, although it could be considered at any workplace with little on-site 

parking or where the aim is to reduce the availability of on-site parking.
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Appendix 7.1 Travel survey questionnaire - Stated Choice experiment 

if you did not drive a car to work today you can skip this part.

PART 2

Park and Ride

Over the years a number of organisations have implemented Park and Ride 

facilities to reduce the need for their staff to bring their car to work. Please 

consider each of the nine hypothetical scenarios below and state whether you 

would use your current parking strategy or Park and Ride given that the 

University offered such a  facility. The attributes are those of Park and Ride 

relative to your current commute.

Notes and assumptions:

• The travel time to your workplace will, of course, depend on the location of 

the Park and Ride. The variations in travel times in the hypothetical 

scenarios reflect this.

• Parking will be free for users of the Park and Ride facility and a parking 
space will be virtually guaranteed.

• The Park and Ride bus will be provided free of charge
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SCENARIO 1

TIME OF TRIP (ONE WAY):

15 MINUTES LONGER THAN 
CURRENT COMMUTE

PRICE:

SAME AS CURRENT 
COMMUTE

GIVEN SCENARIO 1,
I WOULD USE:

CURRENT PARKING SITE □

PARK & RIDE □

DONT KNOW O

SCENARIO 2

TIME OF TRIP (ONE WAY):

10 MINUTES LONGER THAN 
CURRENT COMMUTE

PRICE:

SAME AS CURRENT 
COMMUTE

GIVEN SCENARIO 2,
I WOULD USE:

CURRENT PARKING SITE □

PARK & RIDE □

DON'T KNOWO

SCENARIO 3

TIME OF TRIP (ONE WAY):

5 MINUTES LONGER THAN 
CURRENT COMMUTE

PRICE:

SAME AS CURRENT 
COMMUTE

GIVEN SCENARIO 3,
I WOULD USE:

CURRENT PARKING SITE □

PARK & RIDE D

DON’T KNOW □

SCENARIO 4 SCENARIO 5 SCENARIO 6

TIME OF TRIP (ONE WAY): TIME OF TRIP (ONE WAY): TIME OF TRIP (ONE WAY):

15 MINUTES LONGER THAN 
CURRENT COMMUTE

10 MINUTES LONGER THAN 
CURRENT COMMUTE

5 MINUTES LONGER THAN 
CURRENT COMMUTE

PRICE: PRICE: PRICE:

50 PENCE CHEAPER THAN 
CURRENT COMMUTE

50 PENCE CHEAPER THAN 
CURRENT COMMUTE

50 PENCE CHEAPER THAN 
CURRENT COMMUTE

GIVEN SCENARIO 4, 
1 WOULD USE: i : GIVEN SCENARIO 5, 

1 WOULD USE:

g

GIVEN SCENARIO 6, 
1 WOULD USE:

CURRENT PARKING SITE O CURRENT PARKING SITE □ CURRENT PARKING SITE □

PARK & RIDE □ PARK & RIDE □ PARK & RIDE □

DON’T KNOW □ DON’T KNOW □ DON’T KNOW □
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SCENARIO 7

TIME OF TRIP (ONE WAY):

15 MINUTES LONGER THAN 
CURRENT COMMUTE

PRICE:

1 POUND CHEAPER THAN 
CURRENT COMMUTE

SCENARIO 8

TIME OF TRIP (ONE WAY):

10 MINUTES LONGER THAN 
CURRENT COMMUTE

PRICE:

1 POUND CHEAPER THAN 
CURRENT COMMUTE

SCENARIO 9

TIME OF TRIP (ONE WAY):

5 MINUTES LONGER THAN 
CURRENT COMMUTE

PRICE:

1 POUND CHEAPER THAN 
CURRENT COMMUTE

GIVEN SCENARIO 7,
I WOULD USE;

CURRENT PARKING SITE □

PARK & RIDE □

DON’T KNOWO

GIVEN SCENARIO 8,
I WOULD USE:

CURRENT PARKING SITE □

PARK & RIDE □

DON'T KNOWO

GIVEN SCENARIO 9,
I WOULD USE:

CURRENT PARKING SITE O

PARK & RIDE D

DON’T KNOWO
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Thank you for your cooperation! 

Please return the questionnaire to: 

Arne Hole
Department of Economics
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Appendix 7.2 Estimation results for model 6  allowing for different scale

parameters

Models Model 6*
V ariable Coeff. t-stat. Coeff. t-stat.

C onstant for P ark  and  Ride 1.267 3.27 1.399 2.45

Fem ale -0.188 -1.54 -0.288 -2.01

A cadem ic -  High incom e 0.206 1.33 0.176 1.04

A cadem ic -  Low incom e 0.596 3.38 0.719 3.50

Non-Academic -  High Incom e -0.075 -0.47 -0.144 -0.75

N um ber of c a rs  in household -0.091 -2.36 -0.230 -2.19

Limited on -site parking 0.515 3.86 0.528 3.13

Arrive a t work la ter th an  9am -6.558 -1.93 -0.704 -2.10

Interaction (late^llmited parking) 0 .709 2 .07 0.863 2.17

Park in University parking 0.692 4.44 0.760 3.96

C ost (pence) -0.010 -7.27 -0.011 -4.66

Square-root of tim e (car) (m inutes) -1.931 -14.79 -1.964 -7.62

Square-root of tim e (P&R) (m inutes) -2.317 -15.34 -2.362 -7.67

S qua re  root of walking tim e (m inutes) -0.837 -7.91 -0.848 -5.58

S cale  p aram e te rs

(t-statistics w.r.t. 1)

Choice 1 (base) 1.000

Choice 2 1.064 0.39

Choice 3 0.691 -1.55

Choice 4 1.013 0.08

Choice 5 1.219 1.07

Choice 6 0.743 -1.02

C hoice 7 0.955 -0.24

Choice 8 0.983 -0.07

Choice 9 0.678 -1.49

Number of re sp o n d en ts  in sam ple 255 255

Num ber of re sp o n se s 2105 2105

Log-likelihood;

Final value L(P) -1013.12 -1009.52

LR -  statistic 7.19 7.19

Probability value 0.52 0.52
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Appendix 7,3 Estimation results for model 10 with all socio-demographic 

characteristics included

Model 10*
Variable Coeff. t-stat.

C onstan t for Park and  Ride M ean 5.076 2.38

Fem ale M ean 0.725 0.78

A cadem ic ~  Higti incom e M ean 0.779 0.78

A cadem ic -  Low Income M ean 0.221 0,13

Non-Academ ic -  High incom e M ean -0.954 -0.94

Num ber of ca rs in household M ean -0.839 -1.76

Limited on -site parking M ean 2.625 3.02

Arrive a t  work la ter than  9am M ean -1.471 -0.81

Interaction (iate*limited parking) M ean 2.289 1.02

Park in University parking M ean 1.905 2.04

C ost (pence) M ean -0.040 -12.95

S quare-root of tim e (car) (m inutes) M ean 7.734 9.36

Std. dev. -0.306 -2.46

Square-root of tim e (P&R) (minutes) M ean 9.292 10.18

Std. dev. 1.340 8.25

S qua re  root of walking time (minutes) M ean 2.864 5.71

Std. dev. 3.172 6.93

N um ber of responden ts in sam ple 255

N um ber of resp o n ses 2105

Log-likelihood:

C onstant only L(c) -1224.41

Final value L(P) -526.40

R ho -squared (with L(c)) 0.570

R ho -squared adjusted (with L(c)) 0.567
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Appendix 7.4 Estimated Park and Ride travel times relative to parking on-site
(in minutes)

Zone

1 2 3 4 5 6

1 +4 +4 +0 +4 +4 +4

Route 2 +0 +0 +0 +0 +0 +0

3 +3 +4 +0 +4 +4 +4

4 +3 +5 +0 +8 +7 +5

Route and Zone definitions:

Route 1 -  A91 (Dundee)
Route 2 -  8939 (Strathkinness)
Route 3 -  A915 (Leven)
Route 4 -  A917 (Crail)

Zone 1 -  The North Haugh
Zone 2 -  St Salvator’s Quadrangle area (the Scores) 
Zone 3 -  David Russell Hall & Fife Park 
Zone 4 -  The Gatty Marine Lab area 
Zone 5 -  St Mary’s College (South Street)
Zone 6 — McIntosh & Hamilton Halls & Student’s Union

Map of zones:

i
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Appendix 7.5a Predictions of the modal shares derived from the ML model with 

log-normally distributed time coefficients assuming that travel costs are the same

for the two modes

Mode Probabilistic- 
No scaling

Deterministic Probabilistic
Rescaled

Fowkes & Preston

Car 
Park & Ride

81.5%
18.5%

100%

0%

79.1
20.9

90.7%
9.3%

Appendix 7.5b Predictions of the modal shares derived from the ML with log- 

normally distributed time coefficients assuming that the cost of parking on-site is

£1 higher than using Park and Ride

Mode Probabilistic- 
No scaling

Deterministic Probabilistic • 
Rescaled

Fowkes & Preston

Car 
Park & Ride

67.2%
32.8%

91.6%
8.4%

65.8%
34.2%

79.4%
20.6%
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Chapter 8

Can more compact cities contribute to 

reducing congestion on urban roads? Some 

evidence from Scotland

While chapters 6 and 7 focused on the analysis of the data from the survey of 

commuters in the University of St Andrews, this chapter will broaden the scope of the 

thesis somewhat by looking at mode choice among all Scottish commuters. In 

particular, the chapter investigates what impact making the cities in Scotland more 

densely populated would have on Scottish commuters’ mode choice. Since making 

the cities more compact is also expected to have an impact on the propensity to link 

other activities to the commute, this will also be taken into account in the analysis.
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8.1 Introduction

One of the often-cited benefits of the ‘compact city’ is that it offers the potential for 

developing an efficient public transport system (Burton, 2000)J  There is much 

evidence that the relatively high level of public transport service quality typically 

provided in densely populated areas makes public transport a popular alternative to 

the private car among urban dwellers, and thus contributes to making urban transport 

more sustainable (Dieleman et a l, 2002).

It is well known in the transportation literature that commuters often link non­

work activities to the work trip in order to reduce the time and cost spent travelling 

while fulfilling their travel needs. This role of the commuting trip was first 

emphasized by Oster (1977) and since his seminal contribution there have been many 

studies focusing on the determinants of individuals’ propensity to form complex trip 

chains, both for commuting and other types of trips (Golob, 2000, 1986; Shiftan, 

1998; Strathman et al, 1994). It is widely accepted in the literature that since 

commuting trips usually takes place during peak hours, the tendency to link other 

activities to the commute exacerbates peak hour congestion.

Since the propensity to undertake complex trip chains is found to be higher 

among those living in areas with low accessibility to facilities (Williams, 1989), the 

trip-chaining literature is of relevance to the compact city debate. In particular, urban 

dwellers are expected to be less likely to link non-work activities to the commute than 

those who live outside the city and commute to the city to work, since the gain from 

trip chaining is lower for those living close to shops and other amenities. If this

* Although there are a number of defînitions of the compact city, the focus of the current chapter 
(following Burton, 2000) is on population density, in the sense that cities with relatively high levels of 
population density are the more compact.
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hypothesis is confirmed, the gain from the compact city will be twofold: 1) the 

increased use of public transport will contribute to making urban transport more 

sustainable and 2) the reduction in trip chaining propensity will alleviate peak hour 

congestion. This second potential benefit of the compact city has, as far as the author 

knows, been overlooked in the literature to date.

Following Bhat (1997) and Hensher and Reyes (2000) this chapter argues that 

trip-chaining and mode choice are inter-related decisions and should therefore be 

modelled jointly. Failure to do so may result in biased parameter estimates, and 

consequently erroneous forecasts. As in Hensher and Reyes (2000) the joint decision 

of making a particular type of trip chain and travelling with a certain mode is 

modelled using the mixed logit model described in chapter 3. The model is estimated 

using data from the 2001 Scottish Household Survey travel diary, which contains a 

representative sample of Scottish households’ travel behaviour. The outline of the 

chapter is as follows: section 8.2 describes the data used for the analysis while section 

8.3 and 8.4 presents the modelling and forecasting results respectively. Section 8.5 

concludes.

8.2 Data and descriptive statistics

The Scottish Household Survey is a cross sectional survey commissioned by the 

Scottish Executive with the aim of providing representative information about the 

composition, characteristics and behaviour of Scottish households. A central part of 

the Survey is the Travel Diary, which is completed by a random adult (aged 16+) in 

each of the households surveyed. The 2001 Travel Diary contains 28519 trips made
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by 10163 individuals, of which 2954 reported to travel to work on the day of the 

survey. The estimation sample consists of 2472 work trip chains undertaken by 2368 

individuals with complete information about the work trip and socio-demographic 

characteristics.^ The observations are weighted to account for over-/ undersampling of 

certain socio-economic groups. The weights were employed at all stages of the 

analysis: deriving the descriptive statistics, estimating the models and calculating the 

commuters’ response to the forecasting scenario described below. See Scottish 

Executive (2003) for detailed information about how the weights are derived.

The propensity to link non-work activities to the commute is somewhat lower 

in Scotland than that found in previous studies (see table 8.1), with 15.3% undertaking 

other activities between leaving for work and returning home as opposed to 20.4% in 

Strathman et al (1994) and 21.5% in Golob (1986) who use data from Portland, USA 

and the Netherlands respectively. The most common trip chain type apart from the 

simple work -  home -  work chain is stopping at one or more non-work destinations 

on the way home from work (6.9%). This is followed by visiting a non-work 

destination in the middle of the day (3.7%) and stopping on the way to work (1.9%). 

A total of 2.8% made more complex trip chains, with combinations of stops going to 

and from work and/ or midday stops.

 ̂A trip chain is defined as a sequence of trips originating and ending at the individuals’ home. 
Therefore two work trips are recorded if the individual returned home in the course of the working day.
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T a b le  8 .1  F r e q u e n c y  o f  tr ip  c h a in s

Trip chain type_______________________________________ Share
Home -  other -  work -  other -  work -  other -  home 0.2%
Home -  work -  other -  work -  other -  home 0.7%
Home -  other -  work -  other -  home 1.8%
Home -  other -  work -  other -  work -  home 0.1 %
Home -  work -  other -  work -  home 3.7%
Home -  work -  other -  home 6.9%
Home -  other -  work -  home 1.9%
Home -  work -  home 84.7%

Total complex 15,3%
Total simple 84.7%

The three main modes for commuting in Scotland are the private car, public transport 

(bus, train and underground) and walking, with car being the major mode (see table 

8.2).  ̂ As expected the vast majority of the complex trip chains are made by car 

(81.3% of the complex trip chains are made by car as opposed to 72.2% of the simple 

trip chains), which reflects the greater flexibility of the car mode, both in terms of 

making stops and for carrying goods if the stop is made for shopping purposes. The 

share of public transport is roughly the same for simple and complex trip chains, 

while a relatively low share of the commuters who walk to work make a stop. This is 

likely to be related to the fact that those who walk live relatively close to the 

workplace, which reduces the potential benefit of linking non-work activities to the 

commute. We will investigate this hypothesis further in section 8.3.

 ̂We consider the chosen mode to be the mode used for the longest trip in a trip chain. A relatively low 
share of the commuters travelled by alternative modes (bicycle and motorbike etc.). These observations 
were excluded from the sample for the modelling purposes.
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T a b le  8 .2  M o d a l s p lit /  t r ip  c h a in in g  b y  m o d e

Share
Car 73.6%
Public transpoit 15.1%
Walk 11.3%

Simple trip chain
Car 72.2%
Public transport 15.1%
Walk 12.7%

Complex trip chain
Car 81.3%
Public transport 15.2%
Walk 3.5%

It can be seen from table 8.3 below that about 29% of the individuals in the 

(weighted) sample live in one of the four largest cities in Scotland (Glasgow, 

Edinburgh, Aberdeen and Dundee), while 38% work there. Of the 38% that work in 

one of the main cities about 13% live outside (in a different council area). As 

mentioned in the previous section it is well documented that urban form has an impact 

on the likelihood of commuting by public transport. Dieleman et al. (2002) find that 

commuters who live in one of the main Dutch cities are significantly more likely to 

travel by public transport to work, reflecting the comparatively high level of public 

transport service quality in the large urban areas. Similarly, Naess and Sandberg 

(1996) find that workplace location is a significant determinant of mode choice 

among individuals working in the Greater Oslo area, with commuters working in 

peripheral, low-density parts of the urban area being more car dependent that those 

working closer to the centre of town. In terms of linking non-work activities to the 

commute, Williams (1988) finds that accessibility to facilities is a key determinant in 

individuals’ propensity to form complex trip chains. We therefore expect to find that 

those who live and work in one of the four main Scottish cities are more likely to
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commute by public transport as well as being less likely to form complex trip chains 

than those living and working elsewhere. In addition it is expected that those living 

close to their workplace will be less likely to form complex trip chains, since their 

gain from chaining non-work activities to the commute is lower. These individuals are 

also expected to be more likely to walk to work.

Table 8.3 Descriptive statistics

Discrete variables Share
Female 52%

Single without children 11%
Single with children 4%
Couple without children 44%
Couple with children 41%

Wori< In an urban area -  live outside 13%
Live in an urban area -  work outside 4%
Live and work In an urban area 25%

Continuous variables Mean Std. Dev.
Cars/ number of workers In household 0.72 0.44
Number of workers/ number of adults In household 0.86 0.22
Household Income (In thousands) 23.42 11.64
Distance to work (in miles) 8.95 11.63
Work duration (hours) 7.53 2.87

Number of observations 2472

The average household car ownership per worker ratio is relatively high in the sample 

(0.72), indicating that well over two thirds of the workers have access to a car for 

commuting purposes. This figure interestingly corresponds well to the share of 

commuters that travel by car to work. It is expected that the higher the car ownership 

per worker ratio the more likely the commuter is to go by car.

It is expected that household income will positively influence the likelihood of 

commuting by car, as well as the propensity to undertake complex trip chains. In a
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theoretical model of trip chaining behaviour, Adler and Ben-Akiva (1979) derive that 

high-income households are more likely to link other activities to the work trip since 

their time opportunity cost is higher. This result is confirmed empirically by Oster 

(1977) and Strathman et al. (1994). Furthermore, household composition has been 

found to be an important determinant of trip chaining. Clarke et al. (1981) find that 

young adults without children are more likely to link other activities to the work trip 

to satisfy their travel activity needs. Also, the ratio of workers per adult member of the 

household is also likely to be related to the propensity to form complex trip chains, as 

the higher the worker per adult ratio the tighter the time budget of the household. This 

hypothesis is confirmed by the findings in Oster (1977) and Strathman etal. (1994).

Unfortunately the data do not include information about the service 

characteristics (such as the time and cost) of the alternative modes available to the 

commuters. While it would be possible to estimate these characteristics using a 

similar approach to that described in chapter 6 , the issue is further complicated here 

by the lack of data on public transport supply, which was included in the St Andrews 

survey. Given the size of the geographical area covered by the data it was considered 

too time consuming to obtain this data manually, using information on public 

transport service quality around the country. While the lack of level-of-service data is 

acknowledged as a weakness of the study, this approach is in line with other studies 

estimating mode choice models for large geographical areas (e.g. Dieleman et al., 

2002).
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8.3 Estimation results

The estimation results for the multinomial logit mode choice/ trip chaining model are 

summarized in columns 3 and 4 in table 8.4. The marginal effects calculated at the 

(weighted) sample average of the independent variables are reported in appendix 8 .1 . 

The marginal effect of a dummy variable is calculated as the difference in the 

probabilities evaluated at the dummy set to zero and one respectively, evaluated at the 

sample average of the remaining variables in the model. The standard errors of the 

marginal effects are calculated using the Delta method (see e.g. Greene, 2003a). The 

sign and significance of the marginal effects are not found to be qualitatively different 

from the coefficients of the model, however, and therefore the latter will be focused 

on when interpreting the modelling results.

As expected the households’ level of car ownership relative to the number of 

workers is found to be a significant determinant of the likelihood of going by car. 

Household income was not found to be significant determinant of the likelihood of 

going by car, which is somewhat unexpected but in line with the findings in chapter 6 . 

Since car ownership is correlated with income, however, some of the influence of 

income on mode choice will be incorporated through the car ownership variable.

The individuals who live and/ or work in one of the four main cities are more 

likely to commute by public transport to work, in line with the findings in Dieleman et 

a l (2002) and Næss and Sandberg (1996). The ones who both live and work in a city 

are the most likely to commute by public transport. As expected the distance to work 

is found to be a highly significant determinant of whether the commuters walk to 

work.
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In terms of trip chaining behaviour, there is not found to be a significant 

difference between men and women’s propensity to undertake complex work trips. 

This is a somewhat unexpected finding, as conventional wisdom would suggest that 

females are more likely to undertake complex trips as they tend to be more 

responsible for household tasks such as shopping and picking up children from 

school/ kindergarten. It should be emphasized, however, that the present analysis 

includes stops for all purposes, including socialising and recreation. A more detailed 

analysis is needed to investigate whether females and males tend to link different 

kinds of activities to the commute. In general, however, there is no significant 

difference between the genders in terms of their propensity to link non-work activities 

to the commute.

Similar to Clarke (1981), it is found that single individuals with and without 

children are more likely to undertake complex work trips than households with two or 

more adults. This is likely to be related to the fact that single households have a 

tighter time budget, since shopping tasks etc. cannot be divided between several 

household members. Following the same logic it was expected that the workers 

divided by number of adults in the household variable would have a positive 

coefficient, indicating that individuals living in a household with 2  (or more) working 

adults are more likely to undertake complex trip chains that those living in households 

where one (or more) of the other adults in the household do not work. Surprisingly, 

this coefficient is found to be significant in the opposite direction.
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Table 8.4 Multinomial and mixed logit mode choice models

Model 1 (MNL) Model 2 (ML)
Variable A lternative Coeff. t-stat. Coeff. t-stat.

C onstan t
C onstan t

Public transpo rt 
Walk

-0.809
0.948

-6.13
7.54

-0.810
0.946

-5.00
2.74

C ars/ num be r of w orkers C ar 2.751 18.27 2.750 14.30

W ork In u rban a re a  -  live outside 
Live in u rban a re a  -  work outside 
W ork and  iive in u rban a re a

Public transpo rt 
Public transpo rt 
Public transpo rt

1.548
1.206
1.800

8.72
4 .03
13.10

1.548
1.206
1.800

7.44
3.20
10.96

Com m uting d istance W alk -0.303 -10.11 -0.302 -2.16

C onstan t Com plex -0.062 -0.23 -0.073 -0.21

F em aie Com plex -0.140 -1.19 -0.139 -0.97

Singie without children Com plex 0.498 2.49 0.517 2.44

Single with children Com plex 0.534 1.96 0.546 1.97

W o rkers/ num ber of adults Com plex -0.758 -2.72 -0.783 -2.18

H ousehold incom e Com plex 0.026 5.26 0.026 3.92

Work duration Com plex -0.275 -14.05 -0.282 -10.96

Com m uting d istance Com plex 0.010 2.06 0.010 1.91

W ork in u rban a re a  -  iive outside 
Live in u rban  a re a  -  work outside 
W ork and  iive in u rban a rea

Com plex
Com plex
Com plex

0.416
1.034
0.235

2.34
3.83
1.70

0.423
1.060
0.237

2.00
3.04
1.40

E rror com ponent 
E rror com ponent 
E rror com ponent 
E rror com ponent 
E rror com ponent

C ar
Public T ranspo rt 
W alk 
Sim ple 
Com plex

0.011
0.008
0.022
0.000
0.416

0.71
0.41
1.06

1.07

O bserva tions
Log-iikelihood: constan t only L(c) 
Log-iikeiihood: final value L(P) 
R ho -squa red  (with L(c)) 
R ho -squa red  ad justed  (with L(c))

2472
-3197.28
-2568.65

0.197
0.195

2472
-2568.47
-3197.28

0.197
0.195

As in Strathman et al. (1994) it is found that individuals living in a high-income 

household are more likely to link non-work activities to the commute, reflecting the 

higher opportunity cost of time of these households. The most significant determinant 

of making a complex work trip is unsurprisingly found to be work duration; the longer 

the individual works the less likely she is to undertake a complex work trip. The
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coefficient for commuting distance is positive as expected and significant at the 5% 

level.

In terms of the location of the individuals’ home and workplace it is found that 

those who work in one of the main cities and live outside are the most likely to link 

other activities to the work trip, along with the small proportion who live in the city 

and work outside. There is no significant difference between those who live and work 

in a city and those who live and work outside in terms of the propensity to undertake 

complex work trips. This finding confirms the prior expectation that commuters who 

both live and work in the city contribute less to peak hour congestion than those who 

live outside and commute into the city, which supports the hypothesis that a policy 

directed towards increasing the population density in urban areas will help alleviate 

road congestion. Section 8.4 simulates the effect of increasing the share of the 

commuters living and working in a city on trip chaining and modal split in Scotland.

In the multinomial logit models the errors are uncorrelated and thus the 

simultaneity of the mode choice/ trip chaining decision ignored. Bhat (1998) points 

out that the mixed logit model is well suited for multidimensional choice modelling 

since it accommodates correlation over both choice dimensions as opposed to the 

nested logit model (chapter 3) which only facilitates correlation across one choice 

dimension. He proposes a model which allows for correlation between alternatives 

that belong to each category in the two choice dimensions: in the present setting this 

means allowing for correlation between all alternatives that involve simple/ complex 

trip chains and all alternatives that involve going by car, public transport and walking. 

The variance-covariance matrix is thus given by:
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Figure 8.1 Variance-covariance matrix for the Bhat -  type multidimensional

mixed logit model

Oi + 04 + g • • • • •

Oi 01 + 0 5 + g • • • •

04 0 0 2 + 0 4 + g • • •

0 05 02 02 + O5 + g ■ •

04 0 04 0 03 + 04 + g •

0 05 0 05 03 0 3 + 0 5 + g

where g is the normalised extreme value variance, — . By applying the criteria for
6

identification of the mixed logit model given in Walker (2002) and Walker et al 

(2003) it can be seen that the Bhat model is not identified in this case, i.e. there are 

multiple combinations of the parameters in the utility functions/ variance-covariance 

matrix that maximise the log-likelihood.'^ The reason for this is straightforward: since 

the Jacobian of the variance-covariance matrix for the error differences of the mixed 

logit model (figure 8.2) has a rank of 5, the rank condition implies that only four of 

the parameters can be estimated (see section 3.3.5). One of the elements of the 

variance-covariance matrix must therefore be normalised (this can be seen directly 

from figure 8 .2  by noting that 04 and 05 always appear together, which makes it 

impossible to determine their respective values). It was decided to impose the

It can be shown that the Bhat model is identified when there are 3 or more alternatives per choice 
dimension. Since in the present case there are only two alternatives in the trip chaining dimension 
(simple and complex) the model is not identified.
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restriction that 04 equals zero, although constraining 05 to equal zero is also a valid 

restriction in this case since both normalisations satisfy the equality condition because 

the estimated parameter is equal to ( 0 4  + 0 5 ) regardless of which parameter is set to 

zero.

Figure 8.2 Variance-covariance matrix for the error differences of the B h at-  

type multidimensional mixed logit model

CT4 + 0 5 + 2 g • • ■

g 0 i  +  0 2 + 2 g • • •

0 4 + 0 5  + g o l  +  0 2 + g 0 1  + 0 2  +  0 4  +  0 5  + 2 g • •

g O i  +  g O i + g O i  +  0 3  +  2 g •

O 4 +  O 5 +  g O i  +  g o l  +  0 4 + 0 5 + g O i  +  0 3 + g 0 1  +  0 3  +  0 4 +  0 5  +  2 g

The estimation results for this model structure are reported in tables 8.4 and 8.5, 

columns 5 and 6 .̂  It can be seen from the table that neither of the coefficients for the 

error components are found to be significant and that the 5% level, and that the rho- 

bar square of the MNL and ML models are identical. There is also very little 

difference between the models in terms of the sign and significance of the 

coefficients, although it can be seen that the t-statistics are in general lower in ML 

model. This indicates that the models will give similar predictions of changes in urban 

form on mode choice and trip chaining behaviour.

The model was estimated using Kenneth Train’s Gauss code with 125 Halton draws.
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8.4 To what extent will more compact cities lead to a change 

in urban commuting conditions?

Given the findings in the previous section it is interesting to ask what impact a policy 

aimed at making cities more compact will have on modal split and trip chaining 

behaviour. Tables 8.5 and 8 .6  below summarize the change in modal split and trip 

chaining propensity derived from the MNL and ML models respectively, given that a 

random 25% of the individuals who currently live outside and commute to the city to 

work moved into the city.^ It can be seen that there is very little difference in the 

forecasts derived from the two models, reflecting the fact that the inclusion of error 

components in ML model resulted in only a veiy small change in the coefficient 

estimates of the model. As expected the share of commuters going by public transport 

is predicted to increase following this hypothetical change in demographics. The share 

of individuals walking to work is also predicted to increase, reflecting the fact that 

individuals who live and work in a town on average have shorter commuting distances 

than those who live outside and commute to the city to work (see the discussion 

below). In addition, it is found that the share of complex trips would fall. A policy 

directed at making the city more compact therefore has the potential to make 

commuting more sustainable by increasing the share of commuters who travel by 

public transport and walk as well as alleviating congestion by decreasing the 

propensity to link non-work activities to the work-trip.
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Table 8.5 Predicted percentage change in modal split/ trip chaining behaviour
(MNL model)

________________________________Change

Car -0.340%
Public transport 0.679%
Walk 1.310%

Simple trip chain 0.163%
Complex trip chain -0.905%

Table 8.6 Predicted percentage change in modal split/ trip chaining behaviour
(ML model)

________________________________Change

Car -0.340%
Public transport 0.679%
Walk 1.310%

Simple trip chain 0.164%
Complex trip chain -0.909%

It should be pointed out that the models do not predict a large change in the modal 

split and trip chaining behaviour following the hypothetical demographic change, 

indicating that a policy aiming at making the cities more compact should be coupled 

with other policies (such as a congestion charge) to bring about more substantial 

changes in commuting conditions. Also, although it is likely that a reduction in the 

propensity to form complex trip chains will help to alleviate congestion by reducing 

the number of trips undertaken during peak hours, the effect on energy use is 

uncertain. Since it is likely that the individuals will pursue the activities that used to 

be part of the commute at other (off-peak) times, a reduction in complex trip chains 

may increase the total distance travelled. This is mitigated by the fact that urban 

residents live closer to many amenities than non-urban residents, which reduces the
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distance travelled. When cross tabulating the average daily travel distance by place of 

residence and work a significant difference is found between the demand for travel 

across the different categories (see table 8.7). Individuals who live and work in a city 

are found to travel less than those living and working elsewhere, which suggests that 

the total effect of making the cities more compact would be a reduction in energy 

use,^

Table 8.7 Average daily travel distance by place of residence/ work.

Household category Mean commrtj^ distance standard deviation

Live in a  city -  work in a city 12.9 22.3
Live outside -  work in a city 41.4 34.1
Live in a city -  work outside 36.7 27.2
Live outside -  work outside 19.7 25.8

8.5 Conclusions

Joint models of commuters’ mode choice and trip chaining behaviour have been 

estimated using a representative sample of Scottish commuters. It was found that 

urban residents are more likely to commute by public transport, as well as being less 

likely to form complex trip chains compared to those commuters who work in a city 

but live outside. Accordingly, a simulated change in demographics found that making 

the cities more compact would increase the share of commuters travelling by public 

transport and walking to work, as well as reducing the propensity to link non-work

’ This finding is confirmed by Dieleman et al. (2002), who find that individuals living in the three 
largest Dutch cities travel less than those living elsewhere.
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activities to the commute. As well as making urban transport more sustainable as a 

result of the increased use of public transport, this will contribute to lower levels of 

congestion in urban areas since the reduction in complex trip chains implies that fewer 

trips will be undertaken during peak hours.

Form a methodological point of view it is interesting to note that in the present 

case very little is gained from incorporating correlation between the different 

alternatives, as represented by the inclusion of error components in the mixed logit 

model. This finding cannot be generalised to other datasets, of course, but serves as a 

reminder that, due to its simplicity, the multinomial logit model is a natural starting 

point when estimating discrete choice models of travel demand, and in some cases 

provides an accurate representation of the substitution pattern observed from the data. 

This cannot be known a priori, however, and models that relax the IIA assumption 

(such as the nested or mixed logit models) should therefore be estimated and 

compared to the MNL model before a decision on the final model specification is 

made.
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Appendix 8.1 Marginal effects from the multinomial logit mode choice/ trip 

chain model (calculated at the average of the independent variables).

Variable A lternative Marginal effect t-stat.
C a rs / num ber of w orkers 
C ars/ num ber of w orkers 
C ars/ num ber of w orkers

C ar
Public transpo rt 
Walk

0.3080
-0 .2586
-0.0495

15.28
-14.66
-4.71

W ork in u rban a re a  -  live outside 
Work in urban a re a  -  live outside 
W ork in urban a rea  -  live outside

C ar
Public transpo rt 
W alk

-0 .1455
0.1490
-0.0034

-8.76
8.77
-4.09

Live in u rban a re a  -  work outside 
Live in u rban a re a  -  w ork outside 
Live in u rban a rea  -  work outside

C ar
Public transpo rt 
W alk

-0 .1134
0.1160
-0.0027

-3.91
3.90
-2.95

W ork and  live in u rban a rea  
W ork and  live in u rban a rea  
W ork and  live in u rban a re a

C ar
Public transpo rt 
W alk

-0 .1692
0.1732
-0.0040

-13.18
13.18
-4.33

Com m uting d istance 
Com m uting d istance 
Com m uting d istance

C ar
Public transpo rt 
W alk

0.0055
0.0007
-0.0061

8,42
6.89
-8.37

C onstant Com plex 0.0069 -0.219

Fem ale Com plex -0.0154 -1.133

Single without children Complex 0.0635 2.091

Single wflth children Com plex 0.0704 1.608

W orkers/ num ber of adults Complex -0 .0836 -2.607

H ousehold incom e Complex 0.0028 5.077

W ork duration Com plex -0 .0303 -14.256

Com m uting d istance Complex 0.0011 1.976

W ork in urban area  -  live outside 
Live in uriaan a re a  -  work outside 
W ork and  live in u rban a re a

Com plex
Complex
Complex

0.0514
0.1591
0.0271

2.02
2.858
1.559
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Chapter 9

Concluding remarks

This thesis contributes to the literature on the choice of transport mode for commuting 

trips, with special focus on the difference between urban and rural commuting in 

Scotland. Using data on mode choice for commuting trips from a survey of employees 

in the University of St Andrews it is found that the direct elasticities of the car mode 

are comparable to the estimates reported in studies of urban commuting, while the 

demand for public transport is found to be considerably more elastic. The values of in- 

vehicle tiavel time are lower than in most studies of urban commuting, reflecting that 

the roads in the St Andrews area are relatively uncongested. Further, introducing a 

park and ride service as an alternative to parking on-site is found to have a modest 

impact on the share of commuters parking on-site, unless the new service is 

accompanied by measures aimed at making parking on-site less attractive such as 

introducing parking charges.
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The thesis also examines the impact of making cities more ‘compact’ on 

modal split and tiip chaining behaviour. As well as making urban transport more 

sustainable as a result of an increase in the use of public transport, making cities more 

compact is found to contribute to lower levels of congestion in urban areas through a 

reduction in complex trip chains. The models do not predict a large change in the 

modal split and trip chaining behaviour following the hypothetical demographic 

change, however, which indicates that a policy aiming at making the cities more 

compact should be coupled with other policies to bring about more substantial 

changes in commuting conditions.

From a methodological point of view it is interesting to note that the simple 

multinomial logit (MNL) model with its restrictive independence from irrelevant 

alternatives property is found to perform surprisingly well in all the empirical 

applications presented in the thesis. The largest gain from using a model with a more 

complex error structure is found in chapter 7, where the mixed logit (ML) model leads 

to a substantial increase in data fit by overcoming the inability of the MNL model to 

account for the fact that the observations in the dataset are not independent. In the 

other chapters, however, the fit of the multinomial logit model is comparable to the 

more complex nested logit (NL) and ML models. More importantly it is found 

throughout the thesis that the models lead to similar predictions of changes in the 

modal split following the introduction of various car reduction policies. The value of 

time estimates are found to vary somewhat between the different models, however, 

with the ML model producing higher estimates than the MNL and NL models. 

Another interesting finding is that the marginal disutility of increasing the time spent 

tr avelling is found to be decreasing with travel time, implying that the value of time is 

a decreasing fimction of travel time. While this finding is also documented in other
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empirical studies it is not consistent with the standard utility maximising framework 

which is noimally used as a basis for specifying mode choice models. Further, 

accounting for this particular functional form is found to substantially improve the fit 

of the models, highlighting that the specification of the functional form of the 

representative utility function is an important element of model specification along 

with accommodating flexible substitution patterns and controlling for unobserved 

heterogeneity through the introduction of more flexible error structures in the model.

To return to the policy implications that can be derived from the findings 

documented in the thesis it seems diat, on balance, reducing the share of commuters 

travelling by car is a challenging, but not infeasible, task. On one hand, the findings 

seem to imply that policies aimed at improving the desirability of alternatives to the 

car are not likely to be successfiil unless coupled with measures aimed at deterring car 

use, such as parking or congestion charges. On the other hand pricing measures will 

not be effective in deterring car use unless a convenient alternative to driving is in 

place. This must be taken into account when designing policies to reduce the share of 

commuters going by car in less densely populated areas, where for many commuters 

no convenient alternative to the car currently exists.

It seems therefore, that the ideal policy should balance the use of ‘sticks’ and 

‘carrots’ to bring about an increased use of ‘green’ modes for commuting trips. This 

finding supports the conclusions drawn in the UK Government’s 1998 White Paper on 

transport (DETR, 1998). Unfortunately, however, the UK government’s efforts have 

so far been focused on the carrots rather than the sticks. While increasing mobility, 

this policy is likely to have a negative impact on key policy parameters such as 

greenhouse gas emissions and congestion.
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