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Crossover from lattice to plasmonic polarons of a
spin-polarised electron gas in ferromagnetic EuO
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G. van der Laan 2, T. Hesjedal 5, M. Hoesch 2,7, F. Giustino3,8 & P.D.C. King 1

Strong many-body interactions in solids yield a host of fascinating and potentially useful

physical properties. Here, from angle-resolved photoemission experiments and ab initio

many-body calculations, we demonstrate how a strong coupling of conduction electrons with

collective plasmon excitations of their own Fermi sea leads to the formation of plasmonic

polarons in the doped ferromagnetic semiconductor EuO. We observe how these exhibit a

significant tunability with charge carrier doping, leading to a polaronic liquid that is qualita-

tively distinct from its more conventional lattice-dominated analogue. Our study thus sug-

gests powerful opportunities for tailoring quantum many-body interactions in solids via dilute

charge carrier doping.
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A pronounced electron−phonon coupling in solids is
known to mediate the formation of polarons—composite
quasiparticles of an electron dressed with a phonon cloud1.

Polarons exhibit significantly enhanced quasiparticle masses that
modify charge carrier transport and are proposed to play a key
role in unconventional superconducting and colossal magnetor-
esistive states in compounds including high-Tc cuprates2,3,
SrTiO3-based electron gases4–8, manganites9,10 and super-
conducting monolayer FeSe11. Developing control over polaronic
states in solids therefore holds exciting potential for manipulating
the collective states of quantum materials. Phonons, however, are
typically only weakly modified for experimentally accessible tun-
ing parameters. In contrast, we demonstrate in this work that
polarons which are formed via a coupling to collective plasmon
excitations of an electron gas provide a highly tuneable system.

We investigate this in the doped ferromagnet EuO. Stoichio-
metric EuO is insulating, with a Curie temperature of Tc= 69 K.
In an ionic picture, Eu2+ has seven electrons half-filling the Eu 4f
shell. These unpaired electrons align according to Hund’s rule,
producing a large energetic splitting between occupied and
unoccupied Eu 4f states via strong onsite Coulomb interactions, U
(Fig. 1a). The temperature-dependent magnetisation follows an
almost perfect Brillouin function12, reaching a saturation mag-
netisation of 7 μB/Eu. EuO is thus often described as an almost
ideal manifestation of a Heisenberg ferromagnet13. Oxygen
reduction or atomic substitution of trivalent ions, for example
Gd3+, for divalent Eu2+ dopes electrons into an Eu-derived 5d
conduction band. This has a dramatic effect on its physical
properties, increasing Tc14, stabilising a giant temperature-
dependent metal−insulator transition with up to 13 orders of
magnitude change in conductivity15, inducing giant magnetore-
sistance16, and realising a half-metallic phase, enabling almost
100% spin injection into Si and GaN17.

We synthesise epitaxial films of Eu1−xGdxO via oxide molecular-
beam epitaxy (MBE), allowing fine control over its charge carrier
concentration, and transfer these in situ to a synchrotron-based
angle-resolved photoemission spectroscopy (ARPES) system (see
Methods). This provides a powerful opportunity to probe the
electronic structure of this three-dimensional and air-sensitive
compound. Our corresponding ARPES measurements, together

with ab initio many-body calculations18,19, reveal how charge car-
rier doping fundamentally changes the nature of the underlying
electronic liquid in EuO. In particular, we directly image the
emergence of well-defined satellites in the spectral function whose
energy separation, unusually, grows as

ffiffiffi
n

p
, where n is the free

carrier density. This points to an intriguing polaronic state, arising
due to the coupling of the induced charge carriers to the
conduction-electron plasmon excitations.

Results
Electronic structure of lightly doped EuO. Figure 1 summarises
the electronic structure of our Gd-doped EuO films. After
incorporating an onsite Coulomb repulsion, density-functional
theory calculations (DFT, see Methods) reproduce the generic
features of the electronic structure described above, including its
ferromagnetic nature. A majority-spin Eu 4f level is fully occu-
pied, sitting above an O 2p-derived valence band that inherits a
much weaker exchange splitting. Our ARPES measurements of
the valence band dispersions from a lightly doped sample (x=
0.023, Fig. 1c) are in good general agreement with these DFT
calculations, as well as with prior ARPES studies of the valence
band electronic structure of EuO20,21. For a weakly interacting
semiconductor, charge carrier doping would simply induce a rigid
shift of the Fermi level into the majority-spin Eu 5d conduction
band, whose minimum is located at the X-point of the Brillouin
zone (see also Supplementary Fig. 1). Consistent with previous
experiment21, we indeed find that conduction-band states become
populated at X with electron doping (Fig. 1d). Our measured
spectra (evident in Fig. 1d and shown magnified in Fig. 2a),
however, are not consistent with a simple rigid-band filling.

Instead, we observe a series of replica bands offset in energy
from the main quasiparticle band which intersects the Fermi
level. This is a characteristic spectroscopic signature of Fröhlich
polaron formation22,23, whereby strong electron−phonon inter-
actions give rise to shake-off excitations involving small q
scattering processes. These yield satellite features in the spectral
function, shifted to successively higher binding energy and evenly
spaced by the corresponding phonon mode frequency. From our
measured energy-distribution curves (EDCs, Fig. 2c), we observe
three such distinct replica bands which, from fitted peak
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Fig. 1 Electronic structure of the ferromagnetic semiconductor EuO. a Schematic energy level diagram of EuO, with a half-filled Eu 4f band split by strong
Coulomb interactions yielding a band gap between Eu 4f (5d) valence (conduction) bands. b DFT calculations of the electronic structure reproduce these
general features and indicate the conduction band minimum (CBM) is located at the Brillouin zone face, X, point. c ARPES measurements (hν = 48 eV)
from a lightly Gd-doped sample (Eu1−xGdxO, x= 0.023) qualitatively match the DFT valence band dispersions. d The charge carrier doping additionally
populates the spin-majority Eu 5d conduction-band state at the X-point (region shown by black box in (c))
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positions, are separated by a constant value of
ΔE � ð56 ± 3ÞmeV. This agrees well with the longitudinal
optical phonon mode frequency measured from EuO single
crystals24 as well as with the optical phonon branch obtained
from our ab initio calculations (Supplementary Fig. 2). We thus
attribute these observed spectral features in very lightly
doped EuO as polaronic satellites arising from a strong
electron−phonon coupling.

To confirm that this is an intrinsic property of the spectral
function, we perform many-body ab initio calculations within the
cumulant expansion method25,26, thereby including the effects of
electron−phonon coupling from first principles (see Methods).
Apart from a small overall energetic shift, our calculations,
performed for the same carrier doping as in our experiments, yield
a spectral function in excellent agreement with the one measured
by ARPES (Fig. 2c, d), including the spacing and approximate
spectral weights of the replica features. Indeed, this level of
agreement is remarkable given that the calculations are performed
fully ab initio and there are no tuning parameters employed.
They reveal a pronounced quasiparticle mass renormalisation, m*/
m0= 2.1, where m0 is the bare band mass, pointing to a strong
electron−phonon coupling, and supporting that dilutely doped
EuO is in the polaronic limit. We note that similar spectral
features and electron−phonon coupling strengths have been
observed recently in other lightly doped oxides including TiO2, Sr2
−xLaxTiO4, as well as ZnO- and SrTiO3-based two-dimensional
electron gases4–6,8,27–29. Their observation here, within the
markedly different system of the bulk-doped three-dimensional
and spin-polarised electron pocket of EuO, suggests that polaron
formation is likely universal to lightly doped polar oxides.

Doping-dependent spectral function. We show in Fig. 3 how the
spectral function evolves with increasing carrier doping. By
increasing the density of the Gd3+ dopants, the band filling can
be controllably increased, as evidenced by the increased quasi-
particle bandwidth as well as the larger Fermi surface volume,
shown inset in Fig. 3a–d. With even a small increase in carrier
density, however, the pronounced multi-peak satellite structure
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Fig. 2 Spectroscopic observation of lattice polarons in dilutely doped EuO. a
Measured and b calculated occupied part of the single-particle spectral
function of dilutely doped Eu1−xGdxO (x= 0.023, n= 9.3×1017 cm−3, see
Methods). Replica satellite bands below the main quasiparticle band that
crosses the Fermi level are evident. c These are visible up to third order in
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body calculations which explicitly treat electron−phonon coupling from
first principles
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Fig. 3 Doping-dependent plasmonic polarons. a–d Evolution of the measured spectral function of Eu1−xGdxO with increasing charge carrier doping, showing
not only a strong increase in band filling of the quasiparticle band, but also a substantial evolution of the satellite peak structure. The insets show Fermi
surface contours (hν= 137 eV), indicating the increasing doping. While replica bands can still be observed to high doping, as clearly evident as peak-dip-
hump structures in measured EDCs (e), these show a strong broadening and blue-shift relative to the quasiparticle peak with increasing doping. f–i Our ab
initio calculations reproduce this general trend when both electron−phonon and electron−plasmon interactions are considered, identifying the hump
feature in the higher-density samples as arising from plasmonic polarons
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observed in the lowest-doped sample is no longer apparent. This
points to a rapid reduction in the electron−phonon coupling
strength, a phenomenon which we return to below. Nonetheless,
a broadened satellite peak is still observed below the quasiparticle
band (Fig. 3b, c), evident as a hump in EDCs (Fig. 3e) which
persists over at least two orders of magnitude increase in carrier
density. To demonstrate this more clearly, we show in Fig. 4a the
residual of the measured EDC intensity after subtraction of a
background function accounting for the quasiparticle peak
intensity (see also Supplementary Fig. 3).

The satellite peak broadens with increasing charge carrier
doping, but remains clearly resolved up to a carrier density
n ≈ 1020 cm−3. At the same time, the satellite exhibits a
pronounced shift to higher binding energy with increasing doping.
The shift is much faster than the increase in filling of the
conduction band. Indeed, from fits to the measured data, we find
that the separation of this hump feature from the band bottom of
the quasiparticle band grows with a

ffiffiffi
n

p
dependence, where n is the

three-dimensional electron density (Fig. 4b). This indicates
electron−boson coupling to a mode which hardens with increasing
carrier density. This is in striking contrast to the expectations for a
phonon mode, which should be nearly carrier density independent.
Instead, it agrees well with the functional form of the mode energy
expected for a plasmon (red line in Fig. 4b).

The satellite features we observe here for our higher-density
samples therefore point to the formation of plasmonic polarons,
where the conduction electrons become dressed by charge-density

fluctuations of their own electron gas30. This interpretation is
confirmed by our ab initio calculations, where we are able to treat
electron−phonon and electron−plasmon coupling on an equal
footing. Our obtained spectral functions (Fig. 3f–i) reproduce the
general trends observed experimentally, also yielding plasmonic
polaron satellites shifted below the quasiparticle band by the
conduction electron plasmon energy. Given that EuO is a
half-metal for the levels of doping investigated here, these
plasmon−polarons must necessarily also be spin-polarised.
Indeed, the spin-polarised conduction band of EuO has led to
significant interest in using this material for spin-injection in
spintronics applications17. The polaronic nature of the spin-
polarised charge carriers in EuO, and consequent limited intrinsic
carrier mobilities that would be expected, should be carefully
considered for such applications. More generally, the excellent
agreement that we find between our experimental and ab initio
spectral functions for a real, complex, multi-orbital and magnetic
system such as EuO suggests opportunities to exploit such
advanced calculation schemes for not only understanding, but
increasingly predicting, the interacting electronic states and
properties of functional materials.

Tuneable plasmon polarons. We focus below on the origin, and
unique properties, of the plasmon−polarons discovered here. For
a three-dimensional electron gas, the plasmon dispersion, ω(q),
remains gapped in the long-wavelength limit (ω(|q|→0)= ωp,
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Fig. 4 Tuning and disentangling the interplay of electron−phonon and electron−plasmon coupling. a Normalised residual intensity plot of EDCs at the
centre of the electron pocket (see Supplementary Fig. 3), revealing a clear satellite structure that shifts to higher binding energy with increasing charge
carrier doping. b Fits to the measured raw EDCs reveal that the separation of this satellite from the quasiparticle band follows the functional form of a
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where ωp is the plasma frequency), while the electron−plasmon
coupling strength goes as 1/|q|. Our direct observation of satellite
structures spaced by the plasma energy here indicates that this is
sufficient to generate well-defined replica bands, similar to those
generated by the Fröhlich electron−phonon interaction. We note
that this is different to the occurrence of sharp plasmon-mediated
features in the spectral function of graphene, which rely upon
pseudospin conservation and phase-space restrictions from
matching the group velocity of plasmon and band dispersions31

which would not be expected in the current system. Instead, the
plasmon–polarons observed here can be expected as a generic
feature in the low- to medium-doping limit of a doped three-
dimensional semiconductor. Moreover, we note that the polarons
observed here have markedly different characteristics to plas-
monic polaron band structures that have been predicted to occur
via excitation of high-energy valence plasmons30,32,33, with
experimental signatures recently observed in silicon33 and gra-
phite34. In such systems, the plasmon energy scales are ~3 orders
of magnitude larger than the other excitations in the system. In
contrast, the plasmons considered here have comparable energy
to the Fermi energy, and so can be expected to have a much more
dramatic influence on the low-energy properties of the system,
such as enhancing the quasiparticle mass and limiting charge
carrier mobilities.

Moreover, the conduction-electron plasmons here are highly
tuneable via charge carrier doping, with a characteristic mode
energy that can be driven into resonance with, for example,
phonon modes of the system as shown in Fig. 4. When close in
energy, the two bosonic modes will in general couple to each
other, leading to hybrid phonon−plasmon polaritons. Such a
mode coupling is not explicitly considered in our calculations,
although would be consistent with our experimentally determined
satellite structure (Supplementary Fig. 4). Our study thus
motivates the development of theoretical approaches and targeted
experiments to investigate the polaronic signatures that might be
expected in this intriguing regime.

Even without considering such mode hybridisation, our ab
initio calculations shown in Fig. 4c already reveal a rich doping-
dependent interplay of the coupling strength of charge carriers to
different bosonic modes in the system. For the lowest carrier
density investigated, a large electron−phonon coupling of
λe−ph > 1 is obtained, which is the dominant coupling in the
system. Given this, and that the plasma frequency is very small
for this level of charge carrier doping, the multi-peak satellite
structure observed experimentally thus predominantly arises due
to electron−phonon interactions (cf. Figs. 2b and 3f). In this
regime (plasma energy much smaller than the phonon mode
energy), the system hosts Fröhlich polarons35.

With increasing carrier density, the plasma frequency
becomes larger than the phonon frequency (Fig. 4b). The
electron−phonon interaction therefore becomes efficiently
screened23, and so the electron−phonon coupling strength shows
a rapid drop-off with increasing charge carrier doping. None-
theless, a satellite peak remains visible in both our calculations
(Fig. 3g) and in fits to our measured experimental data (Fig. 4b)
until the Fermi energy becomes comparable to the phonon mode
frequency (approximately at the dashed line in Fig. 4b). Beyond
this point, the system moves into a Fermi liquid regime23, and the
electron−phonon interaction instead leads to a more conven-
tional kink in the band dispersion near to the Fermi level. Weak
signatures of this are visible in our experimental data (Fig. 3c, d),
although they are somewhat obscured by broadening due to a
poor kz resolution resulting from the inherent surface sensitivity
of photoemission.

Despite these qualitative changes in the nature of the
electron−phonon interactions, the electron−plasmon coupling

strength evolves more smoothly with increasing charge carrier
density (Fig. 4c). It thus plays a more dominant role at somewhat
higher carrier densities, where the electron−phonon interaction is
more efficiently screened. It still, however, displays a pronounced
dependence on charge carrier doping in the system. To investigate
this over a wider carrier density range, we show in Fig. 5a the
effective electron−plasmon coupling constant, α, and the plasmonic
polaron radius derived from the self-energy for a homogeneous
electron gas with the same effective mass and dielectric permittivity
as EuO (see Methods). The increase of α with decreasing carrier
density suggests that a strong coupling regime between electrons
and plasmons may be approached at low doping concentrations. In
practice, the critical doping density which marks the onset of a Mott
metal−insulator transition, poses a strict limit to the highest
coupling that will be achievable in practice, since below this value
the system becomes insulating and plasmons cannot be excited. The
critical density in EuO, for example, is ~1017 cm−3 and it is marked
by the vertical dashed line in Fig. 5a. At this doping, we find α≃ 2.9
and a polaron radius of 53Å. These values and their dependence on
carrier concentrations are compatible with the results obtained from
our first-principles calculations at the experimental doping densities
(marked by dotted lines in Fig. 5a) reported in Supplementary
Table 1.

Interestingly, we show in Fig. 5a that the polaron radius
decreases with increasing carrier density. In fact, over the doping
range considered in our experiments, the plasmonic polaron
radius approximately doubles, as illustrated in Fig. 5b, c. This is in
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striking contrast to the expected behaviour known from
phononic polarons, where the polaron radius decreases with
increasing coupling strength (i.e., increases with increasing carrier
density)36. This unconventional behaviour results from the strong
dependence of the plasmon energy on carrier concentration, and
may lead to unconventional trends in doping-dependent
mobilities. Moreover, this further points to the highly tuneable
nature of plasmonic polaron states, whereby a broad spectrum of
electron−boson coupling regimes can be explored by tuning the
carrier concentrations.

Discussion
We stress that our findings should not be specific to EuO, but
rather a general feature of band insulators where conductivity can
be induced by dilute charge carrier doping. They suggest sub-
stantial opportunity to engineer the relative importance of dif-
ferent bosonic modes, and may allow triggering or controlling
instabilities of the collective system via electron−plasmon as well
as electron−phonon interactions. Indeed, superconductivity in
SrTiO3/LaAlO3 interface 2D electron gases has recently been
argued to emerge from a phonon polaron liquid, with its super-
conducting dome linked to a doping-dependent strength of
electron−phonon coupling5. A similar superconducting
instability could generically be expected to occur for the plasmon
−polarons introduced here.

As shown above, the coupling strength for both phonon and
plasmon polarons decreases with increasing doping. In the pho-
nonic case, the mode energy is fixed, and so this decrease in
coupling strength must lead to a decrease in superconducting
transition temperature as the doping is increased. In contrast, for
the plasmonic case, while the coupling strength still decreases
with increasing carrier doping, the influence on Tc should be
partially offset by a hardening of the relevant mode energy. This
could even lead to a doping-dependent crossover from phonon-
to plasmon-mediated superconductivity with increasing charge
carrier doping. While such considerations would not be relevant
for EuO as studied here, due to its ferromagnetic nature, our
results point to the intriguing possibility to stabilise unusual
doping-dependent superconducting instabilities in, for example,
lightly doped oxide semiconductors. Furthermore, they highlight
the complexity of charge-carrier doping in oxides even in the
absence of strong electronic correlations, opening routes to the
targeted design of their materials properties.

Methods
Molecular-beam epitaxy. The EuO thin films were grown by MBE utilising a
Createc miniMBE system37 installed on the I05 beamline at Diamond Light Source,
UK. The films were grown on YAlO3 substrates in an absorption-controlled, or
distillation38, growth mode at a temperature of 425 °C, using an Eu partial
pressure of pEu≈ 2.3 × 10−7 mbar and a molecular oxygen partial pressure of
pO2

� 2:0 ´ 10�8 mbar, as measured by a beam flux monitor. Gd dopants were
introduced by exposing the films to a Gd partial pressure of pGd ≈ 6.3 × 10−9mbar
during growth, and shuttering the Gd source (for four equal length periods within each
monolayer of EuO growth) to further reduce the incorporated Gd concentration. The
films were monitored in situ using reflection high energy electron diffraction (see
Supplementary Fig. 5), from which the inverse growth rate was determined to be ≈120
s per monolayer. The total thickness of the grown films is ≈20 nm, thick enough to
ensure that their electronic structure is bulk-like39. Following growth, the films were
transferred under ultra-high vacuum to the HR-ARPES end-station (see below). After
the ARPES measurements, they were further characterised by low-energy electron
diffraction (see Supplementary Fig. 5) and x-ray photoelectron spectroscopy (Supple-
mentary Fig. 6), which indicated their high crystalline and chemical quality. We note
that our undoped samples are highly insulating, pointing to negligible oxygen vacancy
concentrations, while our x-ray photoelectron spectroscopy (XPS) measurements
indicate an Eu2+ charge state, indicative of the growth of stoichiometric EuO. The
samples were then capped with 5–15 nm of amorphous silicon (pSi ≈ 2.5×10−8mbar),
allowing these air-sensitive samples to be removed from the ultra-high vacuum
environment. A subset of the films were then further probed by superconducting
quantum interference device magnetometry to probe their magnetic properties
and x-ray absorption spectroscopy to assess the Gd doping (Supplementary Fig. 7).

These measurements confirmed material and magnetic properties of our grown EuO
films that are in good agreement with previous studies of this compound. We also
show in Supplementary Fig. 8 temperature-dependent ARPES measurements of a
moderate carrier density sample. The majority band (occupied at low temperature) can
be seen moving up through the Fermi level upon increasing through the Curie
temperature, driving a temperature-dependent metal−insulator transition as a result of
the loss of exchange splitting. This is fully consistent with the expected presence of
spin-polarised exchange-split bands at low temperature, entirely in line with our spin-
polarised DFT calculations (Fig. 1b).

Angle-resolved photoemission. In situ ARPES was performed using the High-
Resolution ARPES instrument (HR-ARPES) of Diamond Light Source, UK.
Measurements were performed at temperatures of ≈20 K or below using p-
polarised synchrotron light. A Scienta R4000 hemispherical electron analyser was
used, with a vertical entrance slit and the light incident in the horizontal plane.
Photon energies of 48 and 137 eV was used. For an inner potential of 15 eV, these
correspond to measured dispersions which cut centrally through the conduction
band Fermi surface of EuO along kz, with an in-plane dispersion along the short
axis of the elliptical Fermi pocket as shown in Supplementary Fig. 1. To determine
the carrier density of the doped films, we extracted the Luttinger volume of their
measured Fermi surfaces. This is complicated by the three-dimensional nature of
these Fermi pockets, and the inherently poor kz resolution in ARPES arising from
its surface sensitivity. We therefore simulated the measured Fermi surface
including the effects of kz broadening, and compared this to our experimental data
to determine the correct carrier density (Supplementary Fig. 9). This carrier density
enters into the fit for the plasma frequency of a three-dimensional electron gas,
ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne2=ε0ε1m�p

; where ε0 is the dielectric permittivity of free space, and ε∞ is
the dielectric constant of EuO (4.5 24). m* is the effective mass, which is treated as a
fit parameter in our analysis (Fig. 4b), from which we find a value of m*= 0.2 ± 0.1
me within the range of previous estimates of the effective mass of EuO40–42.

First-principles calculations. Density-functional theory calculations including
Hubbard corrections (DFT+U)43 for the low-temperature ferromagnetic phase of
EuO were performed using Quantum ESPRESSO44. We employed the Perdew,
Burke and Ernzerhof (PBE)45 exchange-correlation functional, an effective onsite
Coulomb parameter Uf= 6 eV for the Eu 4f states, and Up= 3 eV for the O 2p
states. We used norm-conserving pseudopotentials, a plane wave kinetic energy
cutoff of 150 Ry, and a 8 × 8 × 8 uniform k-point mesh to sample the Brillouin
zone. Maximally localised Wannier functions were constructed starting from a 4 ×
4 × 4 uniform k grid. The effect of electron doping was included in the rigid-band
approximation. The lattice vibrational properties were calculated using the pro-
jector augmented wave (PAW) method46, and effective Coulomb parameters Uf=
8.3 eV and Up= 4.6 eV which yield the same band gap calculated with norm-
conserving pseudopotentials. Convergence was ensured by using a kinetic energy
cutoff of 70 Ry. The phonon dispersions were obtained by finite differences in a 6 ×
6 × 6 supercell, using atomic displacements of 0.01 Å. The longitudinal optical-
transverse optical (LO-TO) splitting was accounted for as in ref. 47, using the
calculated Born effective charges from Ref. 48.

The first-principles spectral functions were obtained from the cumulant
expansion method23,49,50 using the electron−phonon and electron−plasmon self-
energy as implemented in the EPW code51–53 as a seed:

ΣnkðωÞ ¼
X
mv

Z
dq
ΩBZ

gmnνðk; qÞj j2

´
nqν þ fmkþq

�hω� εmkþq þ �hωqν � iη
þ nqν þ 1� fmkþq

�hω� εmkþq � �hωqν � iη

" #
:

ð1Þ

Here, η is a positive infinitesimal, fmk + q and nqν are Fermi−Dirac and Bose
−Einstein occupations, respectively, εmk + q is the electron energy, and �hωqν is the
energy of a plasmon/phonon with wavevector q. The coupling matrix elements due
to electron−plasmon and electron−phonon coupling were computed as in ref. 52

and ref. 54, respectively. For the electron−phonon coupling, dynamical screening
arising from the added carriers in the conduction band was taken into account by
using nonadiabatic matrix elements23: gNAmnv k;qð Þ ¼ gmnv k; qð Þ=ε q;ωqv þ i=τnk

� �
.

Here ε(q,ω) is the Lindhard dielectric function for a spin-polarised homogeneous
electron gas with effective mass m* and dielectric permittivity ε∞ of EuO, and
�h=τnk is the electron lifetime near the band edge, taken to be 50 meV. Finite
resolution effects were accounted for by applying two Gaussian masks of widths 20
meV and 0.015 Å−1, and by integrating the spectral function along the out-of-plane
direction kz. The temperature broadening at the Fermi level was included
via a Fermi–Dirac distribution at T= 20 K. The electron−plasmon and
electron−phonon coupling strengths λ were extracted from the self-energy via
λ ¼ ��h�1∂ReΣðkF;ωÞ=∂ωjεF 19. The effective electron−plasmon coupling
constants α were obtained from the mass renormalisation 1+ λe−pl

22,
whereas the plasmonic polaron radius was estimated following ref. 55:
rp ’ 3=0:44αð Þ12ð2mωpl=�hÞ�

1
2 . The polaron wavefunction was calculated as the

product of the lattice-periodic component of the Kohn−Sham eigenstate at the
conduction-band bottom and a Gaussian with isotropic width σ corresponding to
the polaron radius.
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Code availability. The calculations were performed using the open-source software
projects Quantum ESPRESSO, EPW, and Wannier90, which can be downloaded
free of charge from www.quantum-espresso.org, epw.org.uk, and www.wannier.org,
respectively. Input files and calculation workflows can be downloaded from the
GitHub repository https://github.com/mmdg-oxford/papers.

Data availability. The data that underpins the findings of this study are available at
https://doi.org/10.17630/4e82a731-57c6-4cf5-b8c2-841486b8dbde.
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