Aluminate Red Phosphor in Light-Emitting Diodes: Theoretical calculations, Charge Varieties and High-pressure Luminescence Analysis

Niumiao Zhang†,‡, Yi-Ting Tsai†, Mu-Huai Fang†, Chong-Geng Ma*,†, Agata Lazarewska§, Sebastian Mahlik§, Marek Grinberg§, Chang-Yang Chiang#, Wuzong Zhou#, Jauyn Grace Lin§, Jyh-Fu Lee§, Jiming Zheng‡, Chongfeng Guo‡,‡, Ru-Shi Liu†,‡,§

† Department of Chemistry, National Taiwan University, Taipei 106 (Taiwan)
‡ Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China)
⊥ College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)
§ Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 57, 80-308 Gdansk (Poland)
# EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, KY169ST (United Kingdom)
§ Center for Condensed Matter Sciences, National Taiwan University, Taipei 106 (Taiwan)
& National Synchrotron Radiation Research Center, Hsinchu 300 (Taiwan)
δ Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106 (Taiwan)

KEYWORDS: Theoretical calculations, Charge varieties, High-pressure luminescence, Sr$_2$Al$_n$O$_{25}$, Red phosphor, LEDs

ABSTRACT: Searching for a non-rare earth-based oxide red-emitting phosphor is crucial for phosphor-converted light-emitting diodes (LEDs). In this study, we optimized a blue and UV-light excited Sr$_2$Al$_n$O$_{25}$:Mn phosphor exhibiting red emission peaked at ~653 nm, which was successfully synthesized by solid-state reaction. The crystal structure, micromorphology, and luminescent properties of Sr$_2$Al$_n$O$_{25}$:Mn phosphors were characterized by X-ray Rietveld refinement, high-resolution transmission electron microscopy, and photoluminescence spectra. The band gap and electronic structure of Sr$_2$Al$_n$O$_{25}$ were analyzed by density functional theory calculation using the hybrid exchange-correlation functional. The crystal field environment effect of Al sites from introducing activator Mn ions was investigated with the aid of Raman $^{25}$Al nuclear magnetic resonance spectra and electron spin resonance. The pressure dependent on the luminescent properties and decay time of this compound were presented. The tri-color display spectrum by combining blue InGaN chips, commercial β-Sialon:Eu$^{3+}$ green phosphor, and Sr$_6$Al$_5$O$_{25}$:Mn red phosphor were evaluated for commercial applications: using the present Sr$_2$Al$_n$O$_{25}$:Mn red phosphor converted LED as backlighting source.

INTRODUCTION

Since the emergence of energy shortage, relevant financial investments have been made to find new, persistent, clean energy sources or technologies for saving energy or developing new energy source. Comparing with the traditional incandescent and fluorescent lightings, white light-emitting diodes (LEDs) with good performance, long lifetime, high efficiency, and environmental benefits have attracted considerable attention. The key approach to generate commercial white LEDs (WLEDs) was combining a near ultraviolet (n-UV) chip with one or more phosphors, and most commercial WLEDs products were fabricated through coupling InGaN LED chip and yellow phosphor YAG:Ce$^{3+}$. However, this design offers low colour rendering index (CRI, ≤ 80) and high correlated color temperature (CCT, ≥4500 K) caused by the deficient of red emission in YAG:Ce$^{3+}$ phosphor. Now, nitride and sulfide based red phosphors are popular. The former, such as MA$	ext{Si}_3$N$_x$: Eu$^{2+}$ and M$_3$Si$_3$N$_5$: Eu$^{2+}$ (M = Ca, Sr, Ba), has been widely used in WLEDs because of their excellent performance in luminescent efficiency and thermal stability. The latter sulfide -based red phos-
phors, such as CaS:Eu\(^{2+}\) and (Y, La)\(_2\)O\(_3\):Eu\(^{3+}\), are chemically unstable in humid environments.\(^{12,13}\) Moreover, the reaction between the electrodes of a LED chip and sulfur can generate Ag\(_2\)S, thus limiting their applications. Thus, developing a novel red phosphor is necessary to improve the performance of the device. Compound Sr\(_2\)Al\(_4\)O\(_{25}\):Mn\(^{4+}\) is one of the most promising candidates due to its convenient preparation through one step solid-state reaction at 1300 °C in air atmosphere. Recently, Peng et al.\(^{14}\) have reported that the site occupancy preference of Mn\(^{4+}\) replace the Al\(^{3+}\) sites. Chen et al.\(^{15}\) have researched the enhanced red luminescence by coupling SrAl\(_2\)O\(_4\) phase with the Sr\(_2\)Al\(_4\)O\(_{25}\):Mn\(^{4+}\) system. But the electronic structure of host, crystal field environment effect of Al sites by introducing activator Mn ions, and the high-pressure luminescent properties of Mn-activated Sr\(_2\)Al\(_4\)O\(_{25}\) have not been researched.\(^{16,17}\) Moreover, it can be also noted here that the applications of the external hydrostatic pressure allow us to straightforwardly manipulate the bonding lengths between the Mn\(^{4+}\) and nearest-neighbor O\(^{2-}\) ions and the related hybridization effect between the Mn-3d(\(t_{2g}\)) and O-2p states, and thus further give a full play to tuning the Mn\(^{4+}\) red emission energy position,\(^{18}\) which opens the feasibility to the optical performance optimization of such a red phosphor reported. In addition, it is desirable to quantitatively describe the correlation between the local structural and spectroscopic properties of Mn\(^{4+}\) ions in solids from the experimental point of view in order to get a mutual and consistent corroboration with those theoretical studies.\(^{19,20}\) The objectives of this study are to first figure out the electronic structure of the Sr\(_2\)Al\(_4\)O\(_{25}\) host by calculation and investigate the crystal field environment effect in the process of substituting Al\(^{3+}\) by Mn\(^{4+}\). The high-pressure luminescence properties of the phosphor were also characterized to obtain the Mn\(^{4+}\) red emission dependence on the pressure. The objectives were achieved through the hybrid density functional theory (DFT) calculation, in addition to multiple methods, such as Total Pattern Analysis Solutions (TOPAS) software, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and high-pressure photoluminescence (PL). Finally, a phosphor-converted LED device as backlighting source was researched through excising \(\beta\) -SiAlON:Eu\(^{2+}\) green and present red phosphor.

\section*{EXPERIMENTAL SECTION}

\subsection*{Materials and sample preparation.}

The samples of Mn-doped phosphors Sr\(_2\)Al\(_4\)O\(_{25}\) were successfully synthesized from raw materials including analytical reagent SrCO\(_3\), Al(OH)\(_3\), MnCO\(_3\), and MgO, and H\(_2\)BO\(_3\) was adopted as flux. The raw materials were thoroughly ground in a mortar. The mixing reactants were placed into the alumina boat crucible and heated with the rate of 5 °C min\(^{-1}\); and then calcined at 1300 °C for 5 h in air. After calcining and cooling down to room temperature, the samples were transferred and obtained for further test.

\subsection*{Characterization.}

The structure patterns and information of the samples were obtained by synchrotron X-ray diffraction analysis (\(\lambda = 0.774907 \) Å) using the BLoC32 beamline at the National Synchrotron Radiation Research Center (NSRRC), Taiwan. TOPAS software was used to the structural analysis by the X-ray Rietveld refinement. The high-resolution transmission electron microscopic (HRTEM) images were recorded on a Jeol JEM-2011 electron microscope operated at 200 kV at the University of St Andrews (St Andrews, KY16 9ST, United Kingdom). The photoluminescence (PL) and photoluminescence excitation (PLE) spectra were obtained on a FluoroMax-3 spectrophotometer (HORIBA, Japan) equipped with a 150 W Xe lamp and Hamamatsu R928 photomultiplier tube as the excitation source. Rahman\(^{21}\) Al MAS nuclear magnetic resonance (NMR) spectra were acquired on a wide-bore 14.1-Tesla Bruker Avance III NMR spectrometer, equipped with a 3.2 mm double-resonance magic-angle-spinning probe head. The Larmor frequency for \(^{27}\)Al was 156.40 MHz. The samples were spun at 20 kHz. A selective \(\pi/6\) pulse of 0.5 μs was used for central transition excitation. The recycle delay was 1 s. The chemical shift was referenced to 1 M Al(NO\(_3\))\(_3\) aqueous solution. The room temperature ESR measurement was carried out using a Bruker EMX spectrometer with the microwave frequency fixed at 9.8 GHz. The emission signal was analyzed by a Hamamatsu streak camera model C4334-01 and a Bruker Optics 2501S spectrograph. The luminescence decay timescale is allowed from 1 ns to 10 ms for this apparatus. High hydrostatic pressure was used in a Merrill Bassett-type diamond anvil cell (DAC). Polydimethylsiloxane oil was used as the pressure-transmitting medium, and pressure was measured by the shift of the R, luminescence line of ruby (Al\(_2\)O\(_3\):Cr\(^{3+}\)).

\section*{Computational details.}

The DFT calculations for Sr\(_2\)Al\(_4\)O\(_{25}\) host were performed in the closed-shell form by using the periodic \(ab\) initio CRYSTAL14 code based on the linear combination of atomic orbitals method.\(^{22}\) The hybrid exchange-correlation functional WcPBE consisting of a PBE correlation part and a Wu-Cohen exchange part with a fractional mixing (66%) of the nonlocal Hartree-Fock exchange was employed in order to yield better agreement between the calculated and experimental electronic properties in this work.\(^{23}\) The all-electron local Gaussian-type basis sets (BS’s) in the form of 86-21dG and 8-41dG were used for Al and O atoms,\(^{24,25}\) respectively. For Sr atom, the scalar-relativistic small-core pseudo-potential of the Stuttgart/Cologne group was adopted,\(^{23}\) and the corresponding valence BS was modified to provide a much better description to the host’s electronic properties, as follows: the primitive functions with exponents less than 0.1 Bohr\(^2\) was removed and in addition one diffuse s and p function with exponent 0.12 were added, so that a [3sp2d] form was obtained. The Monkhorst–Pack scheme for 8x8x8 k-point mesh in the Brillouin zone was applied. The truncation criteria for bielectronic integrals (Coulomb and HF exchange series) were correspondingly set to 8, 8, 8, 8, and 16. A default DFT integration grid was adopted together with much higher DFT density and grid
weight tolerances (values 8 and 16). The tolerance of the energy convergence on the self-consistent field iterations was set to $10^{-6}$ Hartree, and the convergence speed was facilitated by mixing 40% of the Hamiltonian matrix in the last cycle into the current cycle. In the geometry optimization calculation, the convergence criteria on the root-mean-square of the gradient and the nuclear displacement were set to 0.00006 Hartree/Bohr and 0.00012 Bohr, respectively. The calculated crystal structural parameters were given in Table S1 (as shown in Supporting Information) and there is a good agreement between them and the data in Table 1 obtained by the XRD Rietveld refinement. The electronic band structures and density of state (DOS) diagrams were calculated based on the fully optimized geometry structures.

**RESULTS AND DISCUSSION**

**Figure 1a** presents the XRD patterns of Sr$_4$Al$_5$O$_{25}$:Mn and the corresponding Rietveld refinement carried out by TOPAS software with $R_p = 10.73\%$, $R_w = 7.14\%$, GOF = 2.06, indicating that the phase of the sample is pure. The compound Sr$_4$Al$_5$O$_{25}$ exhibits an orthorhombic structure belonging to the Pnma space group, possessing the host lattice parameters of $a = 24.7803(8)$ Å, $b = 8.4797(3)$ Å, $c = 4.8873(2)$ Å, which are identical with those in previous reports.\(^{16, 22}\) The obtained unit cell volume of Sr$_4$Al$_5$O$_{25}$:Mn is 1026.9659 Å$^3$, which is larger than that of Sr$_4$Al$_5$O$_{25}$ (1025.7 Å$^3$). The reason is probably caused by the substitution of Al$^{3+}$ with smaller ionic radii (R = 5.30 Å) in octahedral structure by larger Mn$^{4+}$ (R = 5.35 Å).\(^{28}\)

**Figure 1b** displays the unit cell crystal structure of Sr$_4$Al$_5$O$_{25}$, the coordinates of atoms in the unit cell were listed in Table 1. As shown, the structure of Sr$_4$Al$_5$O$_{25}$ consists of six different crystallographic Al$^{3+}$ sites: three AlO$_4$ tetrahedral (Al1, Al2, Al3) and three AlO$_6$ octahedral (Al4, Al5, Al6) sites. The AlO$_4$ tetrahedron are connected through sharing the corner atom (2×2 are the Al2 sites, or 3×3 are the Al1 and Al3 sites), which is similar to the structures of tri-coordinated oxygen atoms and tetrahedral triclusters in SrAl$_2$O$_7$ and mullite.\(^{20}\) The AlO$_6$ octahedral chains connect each other by sharing one edge and are separated by the double-layer AlO$_4$ tetrahedral chains,\(^{26, 27}\) which will be discussed later.

To further investigate the Sr$_4$Al$_5$O$_{25}$:Mn crystals, transmission electron microscopy was performed to reveal microstructural information of the crystals. Many small fragments were observed from the crushed powder sample deposited on a copper grid with holey carbon film (**Figure 2a**). These fragments are the broken pieces from the original crystals. The selected area electron diffraction patterns indicate that each fragment can be regarded as a single crystal, and can be indexed to the Sr$_4$Al$_5$O$_{25}$ phase, as shown in **Figure 2b**. The EDS result recorded from these fragments further confirms that the elemental ratio is rather similar to Sr$_4$Al$_5$O$_{25}$ (**Figure S1** and **Table S2**).

Domain structures were observed from the HRTEM images of most particles. **Figure 2c** is an image with anti-phase defects, whereas **Figure 2d** is an image showing a grain boundary of two domains. Although the crystallographic orientations of the two domains are the same, the (001) fringes shift about half unit cell across the boundary. This type of shift, giving an impression of anti-phase defects, can also be observed in between the domains in **Figure 2d**. However, the grain boundaries are not sharp enough to make an unambiguous conclusion of anti-phase defects. These defects may also be caused by distortion of crystal structure when manganese cations replace aluminum cations in tetrahedral or octahedral sites. Given that the manganese cations have different valence states (Mn$^{4+}$ and Mn$^{2+}$) corresponding to different sites, change of the charge order in different areas may form these domains. **Figure S2** is another HRTEM image from a fragment, in which an obvious dark contrast line appears. Although no break of lattice fringes is seen in this area, the dark contrast can be an evidence of a defective area (or grain boundary). In our previous work,\(^{21}\) by changing the view direction, a dark contrasted line in a "perfect" crystalline particle could actually be a boundary of twin plane. This kind of defect sometimes cannot be observed directly if the viewing direction is not parallel to the defect plane. Although the particles in the sample Sr$_4$Al$_5$O$_{25}$:Mn seem to be single crystals, some defects can be commonly observed.

Table 1. Structure parameter of red phosphors Sr$_4$Al$_5$O$_{25}$:Mn obtained by Rietveld refinement of the XRD data.

<table>
<thead>
<tr>
<th>At. Symmetry</th>
<th>Wyc</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Oc.</th>
<th>U(Å$^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr1</td>
<td>4</td>
<td>j</td>
<td>0.1376(1)</td>
<td>0.0005(1)</td>
<td>0.030(1)</td>
<td>1.0</td>
</tr>
<tr>
<td>Sr2</td>
<td>4</td>
<td>i</td>
<td>0.1208(1)</td>
<td>0.0000(0)</td>
<td>0.1130(1)</td>
<td>1.0</td>
</tr>
<tr>
<td>Al1</td>
<td>8</td>
<td>l</td>
<td>0.1850(3)</td>
<td>0.1980(1)</td>
<td>0.6330(1)</td>
<td>1.0</td>
</tr>
<tr>
<td>Al2</td>
<td>8</td>
<td>l</td>
<td>0.0664(3)</td>
<td>0.3260(1)</td>
<td>0.5100(2)</td>
<td>1.0</td>
</tr>
<tr>
<td>Al3</td>
<td>4</td>
<td>k</td>
<td>0.2500(0)</td>
<td>0.2990(1)</td>
<td>0.1270(1)</td>
<td>1.0</td>
</tr>
<tr>
<td>Al4</td>
<td>4</td>
<td>g</td>
<td>0.0000(0)</td>
<td>0.1760(1)</td>
<td>0.0000(0)</td>
<td>1.0</td>
</tr>
<tr>
<td>Al5</td>
<td>2</td>
<td>c</td>
<td>0.0000(0)</td>
<td>0.0000(0)</td>
<td>0.0005(1)</td>
<td>1.0</td>
</tr>
<tr>
<td>Al6</td>
<td>2</td>
<td>b</td>
<td>0.0000(0)</td>
<td>0.5000(0)</td>
<td>0.0000(0)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

![Figure 1](image-url)
Figure 2. (a) A SrAl₄O₉·Mn fragment; (b) SAED pattern recorded from the fragment; (c) HRTEM image with antiphase domain (indicated by the marked parallel lines shifting in adjacent domain); (d) HRTEM image with some domain structures (pointed out by white arrows). Figure 3 demonstrates the characteristic PLE and PL spectra of SrAl₄O₉·Mn⁴⁺. The PLE spectra monitored at 653 nm include a few broad absorption bands in the blue and ultraviolet (UV) region ranging from 260 to 500 nm. The lower energy band centered at 442 nm is attributed to the ⁴A₂g → ⁴T₂g transition of Mn⁴⁺, and the higher energy band peaked at 352 nm is attributed to the ⁴A₂g → ⁴T₂g transition. The band structure with the maximum at 325 nm can be related to the O²⁻-Mn⁴⁺ charge transfer transition, as the host absorption band is confirmed to be far away from the range by our first-principles calculations. By contrast, the PL spectra consist of double peaks at 653 and 666 nm from the ⁴E_g → ⁴A₂g transitions. First band at 653 nm is zero phonon line (ZPL) called R-line. In fact, it is the superposition of a number of ZPL lines (from different sites and low symmetry splitting the ⁴E_g and ⁴A₂g levels) which we observe as one broadened line. Additionally, their phonon repetition sideband is observed at 666 nm, which is based on the Tanabe-Sugano diagram of the 3d electronic configuration in the [MnO₆]¹⁶⁻octahedral complex. Results suggest that SrAl₄O₉·Mn⁴⁺ is a promising red phosphor for LED with excitation of blue and ultraviolet (UV) chips.

<table>
<thead>
<tr>
<th></th>
<th>O1</th>
<th>O2</th>
<th>O3</th>
<th>O4</th>
<th>O5</th>
<th>O6</th>
<th>O7</th>
<th>O8</th>
<th>O9</th>
<th>wp</th>
<th>ae</th>
<th>GOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.0422(6)</td>
<td>0.1357(2)</td>
<td>0.3280(4)</td>
<td>1.0</td>
<td>0.0008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.1368(6)</td>
<td>0.3290(2)</td>
<td>0.5020(4)</td>
<td>1.0</td>
<td>0.0032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.1908(6)</td>
<td>0.2290(2)</td>
<td>0.0180(3)</td>
<td>1.0</td>
<td>0.0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0750(0)</td>
<td>0.3360(3)</td>
<td>0.4730(5)</td>
<td>1.0</td>
<td>0.0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0391(9)</td>
<td>0.0000(0)</td>
<td>0.2830(5)</td>
<td>1.0</td>
<td>0.0008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0507(9)</td>
<td>0.5000(0)</td>
<td>0.3230(5)</td>
<td>1.0</td>
<td>0.0022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1651(9)</td>
<td>0.0000(0)</td>
<td>0.5740(5)</td>
<td>1.0</td>
<td>0.0108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0444(6)</td>
<td>0.3440(2)</td>
<td>0.8420(4)</td>
<td>1.0</td>
<td>0.0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.2500(0)</td>
<td>0.5000(0)</td>
<td>0.0970(8)</td>
<td>1.0</td>
<td>0.0032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Space group: Pmma (51), a = b = γ = 90°, a = 24.7703(84) Å, b = 35.6703(31) Å, c = 4.8833(17) Å, Z = 2, V = 1025.7193(62) Å³, Rp = 10.73 %, Rp = 7.14 %, GOF = 2.06.

Figure 3. PLE (λ_em = 653 nm) (blue line) and PL (λ_ex = 325 nm) (red line) spectra of SrAl₄O₉·Mn⁴⁺ sample. In order to provide the knowledge of the electronic structure of SrAl₄O₉·Mn⁴⁺, with the reasonable estimation level, the calculated energy band structure of SrAl₄O₉·Mn⁴⁺ host was obtained by using the hybrid HF-DFT method. Figure 4 reveals that the top of valence band maximum (VBM) is located at the Y point of Brillouin zone, and the bottom of the conduction band minimum (CBM) is located at the G point, indicating that the host SrAl₄O₉·Mn⁴⁺ is an indirect band-gap compound with a band gap of approximately 6.11 eV. The predicted host’s band gap is very close to the experimental value of 6.5 eV for SrAl₄O₉ sample, and thus can be expected to be reliable if compared with experiment. As a reference, the DFT calculation with the generalized gradient approximation (GGA) form was also implemented and the band gap underestimation can be seen as shown by the calculated band gap value with 4.48 eV. It can be noted that those highest states of the valence band are nearly flat, whereas the conduction band is very dispersive, which means the electron mobility is higher than hole’s in the compound. Such a phenomena is not unusual and has been reported in SrAl₂O₄.⁴¹ ⁴²

Figure 4. Calculated energy band structure of SrAl₄O₉·Mn⁴⁺. The letters G, Z, T, Y, S, X, U, and R represent the chosen high-symmetry k points: (0, 0, 0), (0, 0, 1/2), (0, 1/2, 1/2),...
(0, 1/2, o), (1/2, 1/2, o), (1/2, o, o), (1/2, o, 1/2), and (1/2, 1/2, 1/2), respectively.

Figure 5. Total density and partial density of states of Sr₄Al₂O₁₅.

The total and partial density of states (DOS) of Sr₄Al₂O₁₅ are displayed in Figure 5, which can offer detailed information to further understand the composition of the energy bands calculated in Figure 4. The two inner core bands at about -18 and -15 eV are mainly derived from the O-2s and Sr-4p states, respectively. Their narrow band character reveals a high degree of localization of those electronic states. The valence band dominated by the O-2p states stretches from -6.77 to 0 eV. The further state composition analysis on the valence band indicates the O-2p states are slightly hybridized with the Al-3s, 3p states. The conduction band from 6.11 to about 15 eV is basically composed of Sr-4d states with the mixture of the Al-3p states.

Figure 6. (a) Electron paramagnetic resonance (EPR) spectra of Sr₄Al₂O₁₅:Mn at room temperature. (b) k-edge XANES spectrum of Sr₄Al₂O₁₅:Mn.

Figure 6a shows the EPR spectra of Sr₄Al₂O₁₅:Mn at room temperature. The mechanism of EPR spectra of Mn ions is due to the relative magnitude between microwave frequency and crystal field splitting strength. A strong crystal field possessing the ability to make the free ion level split into five doubly degeneracy energy levels, and the remaining degeneracy is removed by the Zeeman field. In EPR spectra, additional lines of g > 2.0 and g = 2.0 are observed, which are attributed to the transitions of the unpaired electrons among the above five split levels. If the Zeeman microwave frequency is of the same order as the crystal field strength, then the zero-field resonance line appears. One good means to determine the EPR spectra of Mn ions depends on the relation between Zeeman interaction and the crystal field strength. If the value of microwave frequency is smaller than that of crystal field splitting, then the EPR signals appear only between Kramers-conjugate states, and the resonance signals can be observed at g > 2.0. On the contrary, if the value of the microwave frequency is larger than that of the crystal field splitting, then the EPR signals can be observed close to g = 2.0. The EPR signals obtained in this work and the value of the g factor can be calculated by the following equation:

\[ hv = g \beta H \]  

Where \( h \) is the Planck constant \((6.6266\times10^{-34}\text{ erg/s})\), \( \nu \) is the microwave frequency, \( \beta \) is the Bohr magneton \((9.27410\times10^{-24}\text{ erg/G})\), and \( g \) is the nondimensional spectral splitting factor (g value). When the value of microwave frequency is 9.8 GHz, according to Eq. (1), the calculated experimental value of \( g \) is \( g = 2.12 \) and \( g = 1.87 \) for the H = 3295 G and H = 3707 G, respectively. The results indicate that the crystal field split energy is of similar magnitude or larger than the 9.8 GHz quantum.

To determine the charge varieties of Mn, the XANES spectrum of Sr₄Al₂O₁₅:Mn were displayed in Figure 6b. The materials MnO, Mn₂O₃, and MnO₂ were used as references for the Mn valence states: Mn²⁺, Mn³⁺, and Mn⁴⁺, respectively. The Mn k-edge XANES spectra of Sr₄Al₂O₁₅:Mn presented two peaks at 6539 cm⁻¹ and 6547 cm⁻¹ for Mn²⁺, one peak at 6561 cm⁻¹ for Mn⁴⁺ and 6570 cm⁻¹ for Mn³⁺. The results indicate that Mn²⁺, Mn³⁺, and Mn⁴⁺ coexist in Sr₄Al₂O₁₅:Mn.

Figure 7. ²⁷Al solid-state NMR result of Sr₄Al₂O₁₅:Mn. The AlO₆ octahedral with green, yellow, and cyan colors are Al₁, Al₂, and Al₆ sites, respectively.

The effect of crystal field environment between the activator and host can be researched by the solid-state NMR. The ²⁷Al MAS NMR spectra of Sr₄Al₂O₁₅:Mn at the 14.1 T
(20 kHz spinning rate) magnetic field is displayed in Figure 7. The NMR spectra shows a series of resonance peaks from -10 to 90 ppm, including one strong overlapping resonance of Al$^{3+}$ in the frequency range from 90 to 60 ppm as well as one narrow and two broader resonances ranging from 20 to -10 ppm. In the unit cell of Sr$_2$Al$_4$O$_{12}$, six types of Al$^{3+}$ site and nine types of O$^{2-}$ site exist, and the structure of Sr$_2$Al$_4$O$_{12}$ consists of one layer of AlO$_6$ octahedra and double layers of tetrahedral AlO$_4$ (Figure 1b). Before the discussion of the relationship between the solid-state NMR chemical shift ($^{27}$Al) and local chemical environments in AlO$_4$ and AlO$_6$ as well as the distribution of the resonance peaks in different Al$^{3+}$ sites, the coordination of Al$^{3+}$ and the bond length of Al-O data are listed in Table 2. The data are copest to the relation, which is used to calculate the active bond valence of each Al$^{3+}$ site based on bond valence theory and can be described as follows:\[^{43-44}\]

$$S_i = \exp\left(\frac{d_{ij} - d_i}{C}\right)$$

(2)

The effective valence can be evaluated obeying the following formula:

$$V_i = \sum_j V_{ij}$$

(3)

Where $d_{ij}$ is the length of the bond between atoms of $i$ and $j$, $C$ is a universal constant, $d_i$ is the parameter of Al-O bonds, and $j$ is the coordination number (or bond number). For Al-O bond, $d_i = 1.651$, $C = 0.37$ Å.\[^{43-44}\] Thus, according to Eqs. (2) and (3), the values of bond valence are shown in Table 2. The active valences of Al$^{3+}$ ions (Al1, Al2, and Al3) are close to +3, indicating that the AlO$_4$ tetrahedra possess strong covalence. By contrast, the active valences of Al$^{3+}$ ions in the AlO$_6$ octahedron deviate from the ideal +3, which are 0.33452 lower, 0.26277 higher, and 0.13309 lower than +3 for Al4, for Al5, and for Al6, respectively, and these results are similar to those of the previous report.\[^{45}\] The AlO$_6$ octahedron is polarized, and the polarization of Al4 site is the strongest, followed by Al5 site and then Al6 site. This order is relevant to the distribution of the resonance peaks of the NMR spectra in Figure 7.

**Figure 8.** Schematic of the shielding effect of AlO$_6$ and AlO$_4$ in Sr$_2$Al$_4$O$_{12}$.

The resonance peaks obtained in the NMR spectra are influenced by the molecular environment and applied magnetic field.\[^{46}\] The nuclear of Al$^{3+}$ in both AlO$_4$ and AlO$_6$ structures spin at a determined magnetic field $B_0$, generating an induced electromagnetic field which is in opposite direction with $B_0$, resulting in a weakness of the applied magnetic field (Figure 8), which is defined as shielding effect. The strength of induced electromagnetic field increases as the electronegativity weakens, and vice versa. The relation between applied magnetic field (magnetic field effect) and induced electromagnetic field (shielding effect) can be described in the following formula:\[^{46}\]

$$B_{\sigma} = B_0(1 - \sigma)$$

(4)

Where $B_{\sigma}$ is the true magnetic field act on the nuclear, $B_0$ is the applied magnetic field, and $\sigma$ is the shielding factor. Compared with the AlO$_6$ octahedra, the AlO$_4$ tetrahedron show stronger covalence and electronegativity than those of the AlO$_6$ octahedra. According to Eq. (4), the AlO$_4$ tetrahedron show weaker shielding effect, stronger magnetic field effect, and bigger nuclear spin state separation energy than those of the AlO$_6$ octahedra. The resonance peak in low shielding, high frequency, and downfield ranging from 60 to 90 ppm is attributed to the AlO$_4$ tetrahedron. By contrast, the three resonance peaks in relative high shielding, low frequency, and upfield ranging from 20 to -10 ppm are assigned to the AlO$_6$ octahedra, which corresponds to the previous report.\[^{46}\] Considering the strength of the polarization of the AlO$_6$ octahedra in Al4, Al5, and Al6 site, the weaker the AlO$_6$ octahedra is polarized, the weaker the electronegativity, then the stronger shielding effect, weaker magnetic field effect, and smaller nuclear spin state separation energy. Thus, the resonance peaks ranging from 20 to 5 ppm, 5 to 0 ppm, and 0 to -10 ppm are attributed to the AlO$_6$ octahedral resonances in Al4, Al5, and Al6 site, respectively, which are shown in Figure 9, corresponding to the results previously reported.\[^{45}\] In addition, the two overlapping resonances appear within the range from -40 to -55 ppm, which may be caused by the substitution of Mn ions for Al ions in octahedral sites. When Mn ions replaced Al ions, the Al5 site of the AlO$_6$ octahedra was compressed, whereas the Al6 site of the AlO$_6$ octahedra was elongated,\[^{46}\] leading to change and deformation of plane (a b), and thus resulting in the appearance of the two overlapping resonances.

![Figure 9](image-url)
dominant luminescence peak of Sr$_4$Al$_4$O$_{13}$Mn$^{4+}$ versus pressure.

PL spectra under different pressures are demonstrated in Figure 9a. Both features, the R-line and the phonon repetition sideband, shift with pressure toward the lower energies. In Figure 9b, the energy of the R-line luminescence versus pressure is presented. The energy decreases linearly by increasing the pressure with the rate equal to -2.13 cm$^{-1}$/kbar. The red shift of the R-lines is related to the nephelauxetic effect, associated to the change of the d-electrons because of the increased covalency of the Mn$^{4+}$-O$^-$ bonds with the increased pressure. Such pressure behavior of the luminescence related to $^4E_g \rightarrow ^4A_{2g}$ transition is well known and has been reported many times for Mn$^{4+}$.\textsuperscript{49-52} In the framework of the crystal-field theory,\textsuperscript{50} the nephelauxetic effect in the spectroscopy of the Mn$^{4+}$ ion can be understood with the help of the newly proposed parameter $\beta = \sqrt{(B / B_o) + (C / C_o)}$ by Brik et al., where $B$, $C$ ($B_o$, $C_o$) are the Racah parameters of the Mn$^{4+}$ ions in a crystal (free state), respectively. And the $^4E_g$ emission energy can be expressed as a linear dependence on the nephelauxetic ratio $\beta$, as follows: $E(^4E_g) = 16261.92\beta + 880.49$ cm$^{-1}$. It can be easily derived that the nephelauxetic ratio $\beta$, also linearly decreases with the increasing pressure and its dimensionless variation slope is 1.3098$\times 10^{-4}$. The fact suggests the hybridization effect between the Mn-3d($t_{2g}$) and O-2p states is not dramatically changed in the studied pressure range as confirmed by the smaller energy variation with about 600 cm$^{-1}$ of the $^4E_g$ level position. In addition, for pressure above 100 kbar, the R-line and their sideband also become broader and strongly overlap. This effect can be explained by the inhomogeneous broadening of the emission lines related to uniaxial and tension stresses, which can accompany the high hydrostatic pressure experiments.

Table 2. Coordination of Al$^{3+}$, bond length, and bond valence of Al-O of Sr$_4$Al$_4$O$_{13}$:Mn determined by Rietveld refinement of XRD data.

<table>
<thead>
<tr>
<th>Ion</th>
<th>Coordination</th>
<th>Bond length</th>
<th>Bond valence</th>
<th>Active valence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 1</td>
<td>O3</td>
<td>1.73046 (8)</td>
<td>0.80037</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O2</td>
<td>1.75194(5)</td>
<td>0.76124</td>
<td>2.92168</td>
</tr>
<tr>
<td></td>
<td>O7</td>
<td>1.77360(8)</td>
<td>0.71795</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O4</td>
<td>1.81859(7)</td>
<td>0.63575</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O8</td>
<td>1.71726(8)</td>
<td>0.83604</td>
<td></td>
</tr>
<tr>
<td>Al 2</td>
<td>O2</td>
<td>1.74465(8)</td>
<td>0.77638</td>
<td>3.00826</td>
</tr>
<tr>
<td></td>
<td>O6</td>
<td>1.77840(6)</td>
<td>0.70870</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O1</td>
<td>1.78983(6)</td>
<td>0.68714</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O9</td>
<td>1.71090(8)</td>
<td>0.85053</td>
<td></td>
</tr>
<tr>
<td>Al 3</td>
<td>O3</td>
<td>1.73339(6)</td>
<td>0.80037</td>
<td>3.17209</td>
</tr>
<tr>
<td></td>
<td>O3</td>
<td>1.73339(6)</td>
<td>0.80037</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O4</td>
<td>1.77213(8)</td>
<td>0.72081</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O1</td>
<td>1.91952(7)</td>
<td>0.48397</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O1</td>
<td>1.91952(7)</td>
<td>0.48397</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10. (a) Experimental decay curves and fitted decay curves of Sr$_4$Al$_4$O$_{13}$:Mn$^{4+}$ under different pressures observed at maximum of the $^4E_g \rightarrow ^4A_{2g}$ Mn luminescence excited at 325 nm. (b) Luminescence decay times under different pressures. Time-resolved spectroscopy showed both two features, the R-line and sideband, decay exponentially with the same lifetime. The luminescence decay time becomes slower as pressure increases. This effect is clearly seen in Figure 10a, where the luminescence decay profiles for different pressures are presented. In Figure 10b, the luminescence lifetime versus pressure is presented. Luminescence lifetime increases with pressure from 1.35 ms for ambient pressure to 2.7 ms for 260 kbar.
Field almost constant and weakly depends on the lowest doublet crystal field strength $10D_q$.

The $10D_q$ is equal to the $^{4}T_{2g}$ state energy of the Sr ions in octahedral coordination manifold. The $e$ manifold is attributed to the $^{4}T_{2g}$ state is the higher $e_g$ state is split into two bands associated with spin-allowed $^{4}A_{2g} \rightarrow ^{4}T_{2g}$ and $^{4}A_{2g} \rightarrow ^{4}T_{ig}$ transitions. The energetic structure of the Mn$^{4+}$ in SrAl$_6$O$_{19}$ is presented by configurational coordinate diagram in Figure 11a, where these transitions are displayed by solid black arrows.

The values of the electronic-state energies of Mn$^{4+}$ ions center are based on the values of Racah parameters $B$ and $C$, which describes the Coulomb repulsion interaction between the 3d electrons and the crystal field strength $10D_q$. The $10D_q$ describes the interaction between the 3d electrons and their ligands (the nearest oxygen ions) which form an approximately ideal octahedron with the Mn$^{4+}$ ion as the center. The value of $10D_q$ is equal to the $e_g\rightarrow t_{2g}$ splitting and is proportional to the Mn$^{4+-}O$' interferic distance $R$ as $R^3$ ($t$ depends on host and is usually greater than 5). The results show that the energy of the $^{4}T_{2g}$ state with regard to the ground state is equal to the crystal field strength $10D_q$. On the contrary, the energy of the lowest doublet $^{2}E_g$ with regard to the ground state is almost constant and weakly depends on the crystal field, but correlated to the 3d Coulomb interaction. Dependence of the energetic structure of the Mn$^{4+}$ on the value of $D_q$ can be presented by the Tanabe–Sugano diagram (Figure 11b).

The $^{2}E_g \rightarrow ^{4}A_{2g}$ transition is spin forbidden; therefore, the R luminescence lifetime $\tau_R$ is in ms range and depends on the spin-orbit coupling that mixes the $^{2}E_g$ and $^{4}T_{2g}$ states, described by Hamiltonian $H_{so}$. Several sophisticated models allow the calculation of the dependence of the R-line luminescence lifetime on the $^{4}T_{2g}$ and $^{2}E_g$ separation energy $\Delta$, spin-orbit coupling, and radiative lifetime of the $^{4}T_{2g}$ state $\tau_T$. However, for the interpretation of the data presented in Figures 10a and b, we use the simplified relation, which is given as follows:

$$\frac{1}{\tau_R} = \frac{1}{\tau_T} \frac{H^2_{so}}{\Delta^2}$$

Pressure compresses the lattice and diminishes the Mn$^{4+}$-ligand distance $R$. As a result, the energy of the $^{4}T_{2g}$ state and energy $\Delta$ increases with pressure. Seeing that pressure does not change or slightly changes the spin-orbit coupling and $^{4}T_{2g}$ state lifetime $\tau_T$, it yields the increase of the R-line ($^{2}E_g \rightarrow ^{4}A_{2g}$ transition) luminescence lifetime.

---

**Figure 11.** (a) Configurational coordinate diagram representing the SrAl$_6$O$_{19}$Mn$^{4+}$ energetic structure. The back solid arrows represent the absorption transitions responsible for the excitation bands in Figure 3. The red arrow represents the luminescence transition. The dashed arrows represent non-radiative excitation processes. (b) Tanabe-Sugano diagram of SrAl$_6$O$_{19}$Mn$^{4+}$.

---

**Figure 12.** A typical triangle color gamut for backlighting application of tri-color display device. The inserted diagram shows tri-color display spectrum using InGaN blue chip, $\beta$-SiAlON:Eu$^{2+}$ green phosphor, and SrAl$_6$O$_{19}$Mn.

The tri-color display spectrum by combining blue InGaN chips, commercial $\beta$-SiAlON:Eu$^{2+}$ green phosphor, and SrAl$_6$O$_{19}$Mn red phosphor were evaluated for commercial applications. The full spectrum and high color purity with narrow band green and red phosphors are shown in the inset of Figure 12. The color gamut of display lighting is determined by coordinates in Commission Internationale de l’Eclairage diagram. The figure illustrates the possibility of color gamut in the triangle region. It is accessible for fabricating devices by making the WLED with the present red phosphor as phosphor-converted LED backlighting source.

---

**CONCLUSIONS**
The Mn-doped Sr₄Al₄O₁₉₃ phosphors show bright red emission under n–UV excitation. DFT calculations were used to analyze the electronic structure of the Sr₄Al₄O₁₉₃ host, indicating that Sr₄Al₄O₁₉₃ is an indirect semiconductor with a band gap of approximately 6.11 eV. And thus all the bands in the PLE spectrum should be due to the introduction of the dopant Mn⁺⁺ ions. In addition, the crystal field split energy of Mn ions is of similar magnitude to or larger than the 9.8 GHz quantum. The effect of crystal field environment between the activator Mn and Sr₄Al₄O₁₉₃ host was researched. PL spectra at different pressures indicate that the R-line and the sideband shift linearly with pressure toward the lower energies because of the nephelauxetic effect. The luminescence lifetime increases from 1.35 ms for ambient pressure to 2.7 ms for 260 kbar, which is attributed to diminish the effect of the lowest quartet state *T₂₈ to the first excited state *E₈ as pressure increases. A phosphor-converted LED device as backlighting source was developed by adding Sr₅Si₃O₁₂:Mn⁺⁺ red phosphor into the system blue InGaN chips and commercial β-SiAlON:Eu⁺⁺ green phosphor. We aimed at improving the performance of the color gamut and luminous efficiency of the Sr₄Al₄O₁₉₃:Mn-based WLED in the future by optimizing the morphology and revising the composition.

### ASSOCIATED CONTENT

#### Supporting Information

EDS result recorded from a piece of fragment (Figure S1); HRTEM image of the Sr₅Si₃O₁₂:Mn⁺⁺ (Figure S2); calculated and experimental structural data for neat Sr₅Al₄O₁₉₃ (Table S1); experimental data of Sr₄Al₄O₁₉₃:Mn⁺⁺ determined by EDS (Table S2). This material is available free of charge via the Internet at http://pubs.acs.org.

### AUTHOR INFORMATION

#### Corresponding Authors

* E-mail: cgma.ustc@gmail.com (C. G. Ma) Tel: +86 136 4765 9358
* E-mail: guocf@nwu.edu.cn (C. F. Guo) Tel: +86 29 8830 2661
* E-mail: rsliu@ntu.edu.tw (R. S. Liu) Tel: +886 2 3366 1169

#### Author Contributions

All authors have given approval to the final version of the manuscript.

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Technology of Taiwan (Contract Nos. MOST 104-2113-M-002-012-MY3 and MOST 104-2923-M-002-007-MY3). This research was also supported by National Centre for Research and Development, Poland (Grant No. PL-TW2/8/2015).

#### ABBREVIATIONS

SEM, scanning electron microscopy; XRD, X-ray diffraction; TPAS, Total Pattern Analysis Solutions; PL, photoluminescence; EDS, electron dispersive X-ray spectroscopy; TPA, two-photon absorption; HRTEM, high-resolution transmission electron microscope; NMR, nuclear magnetic resonance; ESR, electron spin resonance.

#### REFERENCES


