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THERMAL _AND RESISTIVE INSTABILITIES IN THE SOLAR ATMOSPHERE

ABSTRACT

L3

The magnetic field greatly infiﬁences the plasma in the solar
atmosphere and .in this thesis we consider the effect of the field on the
stability of the plasma.

" The many observations that have been made suggest that two types of
field structure play a major role. Firstly a current sheet - this has
field lines which change direction in a thin, current forming region, but are
fairly uniform outside. We consider the case where the Tield strength is
zero along the neutral line so that a gas pressure gradient is required
across the sheet to balance the magnetic pressure gradient. Secondly a
fo;cé~free field - here the magnetic forée is zero, which requires the
magnetic pressure ﬁo be much larger than the gas pressure. In the neutral
current sheet we examine the thermal instebility and the tearing-mode
instability. While in the force-free magnetic arch system we louk for a
thermal instability which can occur when the foot points of the arch are
sheared.

When we investigated the thermalstability of the current sheeé we .
found that as its length increases it vasses through a séries of stable
equilibria until & value, Lmax’ is reached when the sheet cools down to a

r

new stable equilibrium. For coronal conditions, values for L and

" cooling time are in fair agreement with the observed values for guiescent

prominences. _ .



We calculate the growth rate of the tearing-mode instsbility in a neutral
current sheet with no energy sources or sinks and find that the maximam
growth rate can be significently larger in the current sheet than in the
sheared field of constént megnitude considered by others. Also the growth
rate decreases when the ratio of gas to magnetic pressure is reduced, We
£ind that the growtﬁ rate is significantly inhibited if the current sheet has
a transverse magnetic field which is largé enough.

Lastly we examine the thermal balance in & sheared, force-free magnetic
field and show that thermal instability can occur if the field is sheared
enough. We assume thermal equilibrium between radiative loss and thermal
conduction and we take gravity balanced by a pressure gradient, If, for
example, the dernsity at the base of the field is ten times larger than the
normal coronal value, as it may be in coronal condensations, then there is
instability if the shear angle is greater than 63°. The presence of a

large enough mechanical heating is found to prevent the instability occurring.
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CHAPTER 1.,: INTRODUCTION,

The ohject of this thesis is to study two instabilities
that wmay be of importance in a wide variety of phen§mena
in the solar atmosphere, but are of particular relevance
for the formation of solar prominences. We begin this
rather extensive introduction by describing the basic
equations we shall employ and the assumptions involved in
their derivation. In particular, the possible terms that
maf appear in the energy balance equation are described at
some length; . .

Next (Section 1.2) a comprehensive summary of previous
work on the type of thermal instabllity in which we are
interested is presented, This acts as background for

the work'of Chapters 2 and 4, in which the possible
occurrence of the instability in current sheets or sheared
magnetic structures is investigated with relevance to
prominence formation.

In(Section 1.3)a summary of resistive instabilities in
sheared fields, especially the tearing mode, is given
including an outline of the numerical technique of Cross
and Van Hoven for findlng the growth rate. Their
technique is extended in Chapter 3 to current sheets both
with and without a transverse field component.

Then (Section 1,4) a description of solar prominences is
presented. This is followed by an accounty of the
suggestion that prominences may form in current sheets,
which acts as a basis for Chapter 2.

Finally, (Section 1.5) the main objects of the research of
this thesis.

Cu MR, T s v D X LR AT LR T TR TR UL A 7 A N O e




1.,1: THE BASIC EQUATIONS

The study of the motion of individual particles in an
ionized gas or plasma has advanced greatly over the past
few decades. However, to make the problems tractable

it is necessary to approximate by using the macroscopic
equations of motion, For rigorous results in situation
with small scale lengths, the study of each particle

cannot be avoided but we shall find that in the plasma

of the solar atmosphere the macroscopic equations are for
many purposes adequate.

The macroscopic quantities, electric¢ current density, d ,
and mean velocity, ¥ , are related by the macroscopie
equations of motion. It is possible to derive these
equations from the Boltzmann equation (see for example
Spitzer (1962) which is a source for much of this Section),
The equation, in electromagnetic units, for ions of mass m;
and charge £ efc (e denotes the electron charge in

electrostatic units) is

&/

b L hEe
By, € Ss N MR =

CE*maBie By

i

g L mt-—‘?ﬁ + E:’.e

g a0,

where n; is the particle density, # is the gravitational

potential and V4, the mean velocity of the particles in an
element of volume AV, is

R e ;
Vi = n, AV ZW—‘-

end Wy the velocity of each jon, The quantity %; is the
stress tensor defined by

- m.
Al el LT T R SO T

the suwmmation extending over the volume element.




1,1: THE BASIC EQUATIONS (Contd.)

Pie is the total momentum transferred to the ions

per unit volume and time by collisions with the electrons
where we assume that only electreons end one type of ion
are present, The electrons have a similar equation of
motion with e and 1 interchanged and & = ~l.

Alﬁhough equation (1.1) is exact, it is not very useful
unless the stress tensor is simple. If the distribution
of random velocities (Hi - Xi) is isotropic then we have

the simple case

Nk =~ X R ) (1;2)

where p ig the scalar gas pressure, The velocity
disé?ibution becomes isotropic if these collisions are
frequent enough, so this is valid when the mean-free
path for collisions between partgicles is short compared
to the distance over whicb the macroscopic quantities
vary, In?%, only the main diagonal terms of the stress
tensor have‘been retained, the off-diagénal terms giving
rise to the‘viscgus stress which we shall neglect.

—=From equation (1.1} and the correspondine equation for the

electrons we get an equation relating the macroscopic

\
Vo= o (nimiNg + he Me ¥e)

—

e
$ o Lk oy = e M)
where the mass density f is

>

f = ni. W’L + ne me

DRI, G S




1.1: THE BASIC EQUATIONS (Contd.)

From the equations of motion (1.1) we get with (1.2) §
P W) S E+IAB-vb-gug, (l-3)§
where the c.\—\u.rge, J\enst‘ty s

= n Ze
o Moie =ty &

The interaction terms P_, and Py have cancelled out by

Newton's third lew of.motion.

Also from equation (1.1) and the corresponding one for «

the electrons we deduce

M, e 33 - o

= = A vV — =~ R

z¢e dt - X~ B R
C.

g \miThe -2 me¥p -(m-2me) InB),

where we have neglected terms of order 9_2.‘ Also we have
assumed electrical neutrality ( f_=0) and let,following

Spitzer,

P 5 = l?—e Re &

Jel c . .

When'%;“/g B , ¥p, ond ¥p. all vanish, the.equation t
© )'— ) = Ve =T 4 ST ;‘

reduces to Ohm's law, with l’l ecval to the electrical
resistivity which Spitzer gives as ;
12 :

Q=6'53xl0 ?____wn.A e.m.w. Cien)

‘ T

where the Coulomb logarithm en.l\ is tabulated by him.

i,
Sty



1.1.: THE BASIC EQUATICNS (Contd.

These equations are supplemented by the equation of

continuity of matter,
>f
€2 4+ g.(gyv) =0 L1-5
2L Y )

and Maxwell's equations, namely,

V.D= wr §

v.D : (1.6)
V.8 =0 . (1.7)
B - %5 , (1.8)
Vard=owd « -2—'% : (2.9)

Another useful equation which describes charge

conservation is, from (1.6) and (1.9)

d P
v.J ~ é't‘; O |
The constitutive equations are for a linear, plasma
medium b
D= g E+uwlk |
E=H ~Wri

Where the velocity of light C =3xlo“2ﬂ\§ﬂ P 1s the

polarization and M the magnetization vector.

The boundary conditions at medium interfaces are
E_\f\r!. = E.z,f\h

—

10
1=
!

¥ Qz.ﬂ"'l\"h‘r gs,

8,.n =8




l.1l: THE BASIC EQUATIONS {Contd.)

The unit normal vector N points from medium 2 into

medium 1. i is the current sheet density at the

interface and j; is the charge layer density there.

We have been discussing the equations so far from a

laboratory frame of reference relative to which the

plasma is moving with a velocity VY. However, they

may be re-written in the rest frame of the fluid by

using the Lorentsz

velocities l{vi|*ee
/

{m

1o

-

I®
u

-~

T

1

T =
f,_

<
These are exact for
frames of reference
acceleration is not
quantities refer to

respectively,

transformations. For non-relativistic

c")_- the transformations are

g*y-"§>
D + MaH
D e
B - YaE
B =T )
N R B
lpgc.v—-)
g - ¥.3
C L]
C-‘L

transformation between unaccelerated
and are good approximations if the.
too large. Primed and unprimed

the rest frame and laboratory frame

THE M.H.D, APPROXIMATION

In addition to the non-relativistic approximation

certain additional simplifications can be made for flow

which is steady or has low frequency time variations and in

which the imposed electric field is of the same order of

magnitude as the induced field VAB .

b Ghds i o

o 1

|
o
:
£
X
7
¥
¥
3
Py
]
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1,1: THE BASIC EQUATIONS {Contd,)

This type of flow is usually referred to as magneto
hydro dynamic (MHD) flow,
The following assumptions are made in the M.H.D.
approximation
Lo l!lz Ak £ (The non-relativistic approximation)
2, The electric fields are of order VAB. This implies
that the magnetic field is the same in all frames of
reference:

B a8
since the Doppler shift ‘l,\lﬁ/cz u o (wi* B/c2 )4 B
by 1. Hewever, the fulljorentz transformed eleciric
field must be retained since all the terms are t:;f’ the
same magnitude. Certain results can ve deducad from
L and 2.:
a) Phenomena involving high fr'equenciesA are not
considered in the M;H.D; approximation, so that the
displacement current OL2 /dt is neglected comparsd to

J , the conduction current, and equation (1.9} becomes

Y.hB = um ..3:
B , 2. E VB
This follows because 4 = 7§ and  FE T ae T dx

> oD /3t Vl/c"
so that the displsacement current is much less than ¢

2

X

=]

¥

conduction current by 1.




1.1: THE BASIC EQUATIONS (Contd.)

b) The electric energy is negligible compared to the
2
2

magnetic energy. Comparing gz to H” to order VZ/C2 L

0

with E‘. w O (Y_AE})WG get

~2 2 B
- VAR ” V 2
?“OKMZF)WQ?HW

which is neéligible compared to H2. Since the
displacement current and the electric field energy are
neglected, the main interaction is between the magnetic
field and the flm'd;

¢) The force density is repmsented by

'F=ft_§ + I A8 )

—

however by 1 we are able to neglect f. E.

-

e B P e E™ vie" e A
The ratio of T 5B =~ 38 2&633__ ey e
is very much less than one and so the f E term

can be ignored compared with J AB.

Under the MHD approximations Maxwell's equations become

TrAE = - %% : (1-10)
gxp & awd Co-1t)
v.8 = o o, (112)
v.3 =-2%k (1-13)

R AT TR (O . R Ly I AT At T B Lo L s T Sl

@l
y

B Gkt L T Yoy AN S BERNS N o7 48 b ik R 0l gl
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1.1.: THE BASIC EQUATICNS (Contd.)

A useful equation is the induction equation,
which is a result of Ohm's law and Maxwell's

equations. From the curl of Ohm's law,we have

Talh3)= ZA(E~+yva8) . ST

Then from equations (1.10), (1.11) and (1l.14) we get

Lo
[

|

=N kY B = y—"(%ﬁ' \Z'\'Q‘)

o/
it

(1.15)

If the first term on the righﬁ hand side dominates
then the magnetic flux through any loop moving with
the local fluid velocity is constant in time, We say
that the lines of force are frozen into the fluld and
are carried along with it. If the second term
dominates then the magnetic field will decay in the

diffusion time,
2

I ‘*“';Le

where € 1is the length scale of the magnetic field

b

variations.
In summary, the basic equations we shall use are (1.15)

together with the equation of motion from (1.3) and (1.11)

dy ot ~—
f(Z;'E*w\Z\)y‘)_ b a Wt LQ /\%)A.B_ (1.16)




1.1 : THE BASIC EQUATIONS (Contd.)

The equation of continuity,

of .
at.‘.y“(fy‘)—o (1.5)
and the equation of state for a perfect gas,
P=RS§T (1.17)

where R is the universal constant.

Equations (1.15), (1.16), (1.5) and (1,17) determine
/
)

e }

B, £ and b and are supplemented by an energy
equation for T, which we derive below.

The Energy Equation.

This is a statement of the first law of thermodynamics

in a volume of the plasma, The increase of heat per

43

it

unit time of a unit volume as it moves in space, S T dt !
is equated to the heat influx,“ﬁ., due to various

sources and sinks in the plasma:
45 ' |
P etk G 5 (1.18)

where 5, the entropy per unit mass of the plasma,

is given by
dS de d (:J_)
5= s &% 2 (1.19
Te = f PR\ )
in terms of the temperature T, the internal energy, €,

per anit mass and the density f . The internzl energy

of an ideal gas is dependent only on the temperature T.




1.1,: THE BASIC EQUATICNS (Contd.)

When, as is usually the case, the energy is assumed

)Y
e
Rs
:
X
3
i
)
£
£
%
21
£

to be proportional to T, the gas is called polytropic

and we have
e= C, T ) (1.20)

where Cv is the specific heat at constant volume,

Using equations (1.18), (1.19), (1.20) and the perfect

gas law (1,17) we have
db _ ¥Pb 4y

et

dt § 4t

Zai v M on s Ten 1

PRA S

- s £ (5,1

or alternatively,at constant pressure,

C é‘-j::: H_.;_L.— §
P 4t ¢
where Cp is the specific heat at constant pressure. ﬁ

Normally the energy supplied by conduction is taken

out of the f, term which is then written as

X L AT SRR T, o SR P

Plpm=L-2.(g.¥T) (121)
where K is the tensor coefficient of thermal condictivity. ?

For heat conducted parallel to the magnetic field, the

relevant coefficient of thermal conductivity is, from

Spitzer (1962),

5
K. ™ 8 2"‘\0_5 :I....(D_ & apd™ den™ e (\.Q_z)
1 T tn %, %5 e 3 om




C where whe operator Y4, = (Y + (v.1))

1.1.: THE BASIC EQUATIONS (Contd.)

where é% = 0.225 for a hydrogen plasma. While, for

" heat conducted perpendicular to the magnetic field, the

= |- -25 t’\ en)\ -1 - .
K.L -5 %10 '/,_ o erys sec des Lm (1 23)

which is valid only for
3/a
(% o \'|x\05 BT o 5% 14
. en./\ ng
where w is the ion cyclotron frequency and T is the

J

ion collision time., Spitzer (1962) has tabulated

values of the Coulomb logarithm which we reproduce here,

Values of in. A

_n__cm 100 109  10'?
T

104163 128 94
10° | 197 163 128
10° | 228 193 159
107 | 251 216 184

“"For most of the thesis we usefn.A= 20. Also for many

applications K, >> Kl_, which has important effects
that we shall consider later,

The energy equation then becomes

dT

[

p dt (.YT) ’

T
—

—

(1.24)




1.1, : THE BASIC EQUATIONS (Contd.)

"This is the form used throughout the thesis.
Various alternative forms of thé energy equation can
be derived by combining the energy eguation with the
equation of motion. Now the total energy per unit
volume is

u=‘\9:fV7'+§’e 3
ignoring gravity and magnetic field effects. Then,
after differentiating this equation with respect to time

and using equations (1.5), (1.16), (1.18), (1.19) and

(1.21), we find

é-%ﬂ_?.(f\_/(ﬁx_xhd-myﬂz-\,, (1.25)

; b A
where L = € e is the enthalpy per unit mass.
Using equations (1.17) and (1.20) the enthalpy can also

be written as

. & R 5
where m is the average mass of the particles and h. is

Boltzmann!s constant.
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THE, BASIC EQUATIONS (Contd.)

The Energy sources and sinks in the Corona and

Chromosphere,

In the last section we stated the energy equation (1.24)
in terms of a general énergy loss function Lo , whniich
we will now discuss in more detail.
The amount of energy radiated out of a plasma has
been calculated for an optically thin medium, as
a function of temperature, by many authors {e.g. Cox
and Tucker , 1969), A simplified version of this
function has been used by Nakagawa (197C) 2nd Fildrer
(1971), who represent the temperature variation by a
piecewise linear function, so that the radiative loss
per unit volume and time takes the form

2 o
l_‘m=y$’”l' p

in each of three temperature regions. The value of the

constants, X and & , taken from Hildner (1971) are
N (exrgs sec”em® g 'T"b“) X

3 :
\-_23%\03‘: ]9 ™ % 25 % 10 °K;

S
L m AR o Exio% o T & 2:-5%10

92 % 1o® 437 T < 510" K

This simplified radiative loss function is plotted in
Figure (1) page 1k, along with those radiative loss
functions calculated by several authors from which Hildner

derived this approximate version.,

aSTER

et o o honiibe Sk

&'
3




!

l l+ @ ‘-‘;::

-(-8
3b
. O
l_c)g]“o L;ﬁ]! 1-2.98 »

o
@é o Cox & Tucker (1969)
12 - e Raju (1968)
& Doherty & Menzel (1965) |

»=~Orrall & Zirker (1961)
= Average

S,
—

3 L D 6 7
Log, T (°K)

Figure (1). The radiative loss function per uhit volume

L X ot
and time, {—RADE e eqy e " used in this

thesis. It is the one devised by Hildner (1971), and is an

approximation to the radiative loss , in an optically thin

plasma calculated by several authors as a function of the
temperature T. The various symbols represent the functions

derived by each of the people shown,
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1.1.: THE BASIC EQUATIONS (Contd.)

Hildner (1974) has also used a radiative loss function
similar to this one but divided into five temperature
regions. In this case "% and. & are given by

¥ (erms sectem® g7 %) oA

s
T > 8= 10 °K

ek % 10™Y -0
g 3-55 »10%° S Asre” £ ERw10°
X "}" 7:20 % 10" o 3 xio* &T & 3%10° (1'27)
| 1-O0% = o -9 FS» oY & T &8 »i0'
q:wax\o“3 T4 T b |5 RAGT DK

We have, however, decided to use his original function
drawn in Figure (i) page 14. The function is unreliable
for temperatures much below 105‘1<, where radiative
transfer effects become important.
The pfoblem of how the corona is heated is not fully
resolved, but the generally accepted mechanism (see, for
example, Radu 1968) is that waves propagate up from the
convective zone into the cgorona and steepen into shock
waves which then dissipate and release their energy.
The energy iA a wave is transferred locally into kinetic
energy of the particles that are subjected to the‘ordered
forces of the wave. When a wave is dissipated the wave
energy is thermalised by collisions into the kinetie energy

of random motion.

o
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+ THE BASIC EQUATIONS (Contd.)

Thus dissipation is faster the more particles there

are present. So the heat input by wave dissipation

is generally assumed to be proportioned to density, as
suggested by Weymann (1960). Thus an approximation to

the heat input is

b §

)

where b is a constant that will in some of our
models be determined by the eguilibrium conditions in
the corona and ,f represents the density.

Tt is assumed that D has the same value throughout
the magnetic configurations we consider, but it could
be that the heating mechanism is affected by a magnetic
field. However, this effect, and also any temperature
variation will, since they are not sufficiently well
understood, be ignored.

In a recent paper by Pneuman & Kopp (1977), it has been
suggested that material that has been carried up into
the corona by spicules returns to the surface of the

sun after being heated to coronal temperatures, and

~deposits this extra energy in the transition regilon.

16. 4

i S g A R e A
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1,1.: THE BASIC EQUATIONS (Contd.)

There have been several observations of a steady downflow
of material at a few kilometers per second in the
transition region overlying the chromosphere network.
Pneuman & Kopp calculate that about 4 x 1015 particles
cnﬁ'l 5354 are falling and note that this is about
the same as the upward particle flux in spicules
(Beckers , 1972) so they suggest that the downflow
is simply matter returning after being carried into
the corona by spicules.
The importance of the downflow is shown by comparing
the energy that it releases with other energy sources

and sinks in the transition region. The energy

equation is, from equations (1.25) and (1.26)
=, e . L, - = - -
Ny (Emvrse T RTY -xgT)= - L(fT)

or, for one-dimensional (h) variations

Adh£1( RT + % mv?) A\(T%‘l‘l Loty

where the effects of gravity and the magnetic fields

are neglected. The only energy sources are the enthalpy

R
per unit mass, L =

S
R g ', and thermal conduction and the

only energy sink that Pneuman & Kopp consider is radiation,
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1.1.: THE BASIC EQUATIONS {(Contd.)

The downward particle flux, taken as positive, is )
9 =NVA
where N is the number density, V the velocity, and A the .§

fractional area of the solar surface occupied by the
emission network. They comment that, since the flow
is subsonic, the dominant energy source associated with
the flow is the enthalpy flux. »

The ratio R of the enthalpy flux to the conductive flux

5
is 2 : k9T
Ak, 7t 4T

Pneuman & Kopp calculate R for the transition region

by noting that the observed emission measure E =

A N TLATANT =hEane™ sat? (Gq{)r[e‘)iq*lb) :
Then with V =-10 hw sec™ , T « 10° °K
and 9 = 0" t 10" dwm™t ger™ ' 5
they get R= 1o T 100 ,

Thus the enthalpy flux is larger than the conductive

-flux and so should certainly be included in any study of

the transition region energetics. We have, however, not

included it in the calculations of this thesis because ﬁ
the importance of this energy source has only recently
been noted.

As far as the corona is concerned, the much cooler spicule

matter extracts heat and so acts as a sink, but its

importance relative to the other energy terms in the corona

is not clear.
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We can, however, see that spicules can inject matter
~into the corona. We estimate the maximum height
that particles will reach if they are projected
vertically with the spicular velocity, U , under the
influence of gravity, 9 :

k=\fﬂg

If W is the observed spicular velocity,
30 hm sec™ (Z.'lr"in,l‘i (—:6)) then h= |'b» \Og_crm,
which in our model atmosphere Figure (2) page 20

is at the base of the transition region, but if W
8

is only slightly larger, 5O bm sec then h=146%10" um
which takes us into the corona,

Another possible energy source for prominences is
gravitational energy released by vertical motions,
Quiescent prominencés are observed to have material
flowing down at about 10 hm sec™ (Rompolt, 1967) ,
which is very much less than the free fall veloclty

of 100 km sec' , so some of the potential energy is
presumably converted into heat rather.than kinetic
energy of downward motion. Order of magnitude
estimates by Raszdu & Kuperus (1973) indicate that the
‘rélease of this gravitational energy is as important as
the radiative loss term for quiescent prominences,

They point out that the gravitational energy would be

released at the rate

-\
oy £209.90% % 16 eqs t:‘u,xi'ic\es sec”’
6

\

for a vertical velocity V of 10~ em Ssec’
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T (°K) ' N {cm™3)

q

10 L N 110

10° 10° 5x10"  Height (cm)

Figure (2)., The Billings & Alvarez (1975) model for a quiet
region of the chromosphere and corona. The temperature, T,
and number density, N, are plotted as a function of height above

the photosphere using values given in Table I,
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This is comparable to the radiative loss in prominence
material

-l 3 -1
& Iw\0 K 'e/rss \>m'\:\c,\e. sec )

LRAD
T -3 2
where we have taken n = 10 cm and T = 8 » 10 K

and also comparable to the radiative loss in the
uncondensed coronal material (Cox & Tucker ,1.969)

14

Lapo & b= Yol ems ):o,r't{c,\e"' sec”!

b
with n = loq em™ 2 and T = S %10 ° |

Thus this energy source should be important in
neutral sheets in the corona and in prominences,
However, it will, for simplicity, not be included in
the energy equation.,

The heating of the plasma by the current density

is f’( 5 evys éva~? See™

where the electrical resistivity, \z , 1Is given by

(1.4 ) as

ot _ 2 Qn A |
h.- L-53 % 10 3 e m.u,

This heating term will be neglected for prominences
but we shall leave the justification until Chapter 2,

Finally, in summary, the energy equation that we shall

use in the rest of the thesis is

" 2 .ot .
Pl e ™ ME= T + 1, 0r 9 7) (1-28)
where Y and o are given by Figure 1 page 14, K is given

—
—

by(1.22) and (1.23) and C, is the specific heat at -

constant pressure,
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1.2.: THERMAL INSTABILITY

ORDER OF MAGNITUDE DESCRIPTION

It was Parker (1953) who first pointed out that,

if thermal conduction were ineffective, thermal
instabilities would occur in the corona and upper
chromosphere, because of the form of the radiative

loss term in the energy equation. To illustrate
tﬁisleffect, suppose that the plasma is initially

in ‘equilibrium under a balance between a constant
mechanical heating, h , and an energy loss by radiation.
The energy lost by radiation per unit mass and time may
for simplicity, be assumed to be proportional to density

2
with a constant of proportionality a = 6:-3 % 10°*

eras e’ 3"1 sec™  ( Orrall & Zirker,\d61)

so that the equilibrium equation is

o=h-0~fo.

In kis znalysis, Parker assumed a temperature perturbation

at constant density. However, as pointed out by

Field (1965), such a perturbation is inconsistent with

the equations of motion and continuity, since a temperature j

decrease leads to a pressure decrease, which produces an
inflow of matter and so a density increase, So Field

suggested that a constant pressure perturbation would be
the relevant one. The perturbed density and temperature

then satisfy the energy equation

¢, 2= = h-ayp

. TR . L1 29)

4
.:;J

16 radLa 15y Ak aidnet

e




: THERMAL INSTABILITY (Contd.)

where, from the equilibrium equation,

h=af,

and the perfect gas law at constant pressure F@ gives

t)oz R?T

A reduction in temperature from equilibrium therefore
causes an increase in density, which in turn makes 51743*=
negative according to (1.%) and so drives the instability.
Similarly, an increase in temperature causes the plasma
to heat up. The time scale for this thermal instability,
driven by radiative loss, is found by equating the orders
of magnitude on both sides of (129) to be

o EeE

R a §

However, in general the coronal plasma is not unstable,
The conduction of heat prevents the thermal instébility
from developing, since the heat is, in many situations,
transported more rapidly by conduction than by radiation.,
In a flux tube or a current sheet of length L , the time
scale for heat to be conducted along the‘distance L is

oo TR L

K" &

where K, , the coefficient of thermal conductivity along

the field lines is, from (1,22), for coronal conditions

(T‘=lo'°°1<, n= IOSCMA-S, B= 1 Gauss)
WKy & Lw e 1 /2 eroys (L&cs"' sec™ c«m",

and AT is the temperature difference between the interior

of the flux tube orsheetandits ends.

Sds e
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This time scale, te , may be compared with the radiative
time scale o . The plasma is stabilized by thermal
conduction L. ¢ Tg "

However, if the length of the flux tube or sheet is so

1érge that T, >1 e, then the destabilizing effect of

the radiative loss term dowminates and the plasma is cooled

or heated. The critical length above which the flux tube

or sheet becomes unstable is given by equating T. and tgq

as
L= AR

If T = IOQ’°1< and fa 2% 1o e q c~m‘3, characteristic

of the lower corona, then with AT = T/10 we find
L_C,maxlo"’ om

It may be noted that this value of |.. is the same

in order of magnitude as the height of a large quiescent

prominence or the length of a large X-ray loop.

The value of L. is important because it gives an order of

magnitude estimate of the length at which a current sheet

or flux loop becomes thermally unstable. A better

estimate, which we call L .r+ , for such a critical

length can be found by using the less crude approximation

for the radiative loss term, namely
3 %
Lugp® %57 G/rss sec” 3‘ )
where Y and o are given on Figure (1) page 1k,
If AT =T, the corresponding critical length is found
to be given by

& T "
Lc.r"ut e T | & L\.:),o)

b

3¢ 4
e, Dbnae

B Vil ks

yo aE

A

2
ks
ki
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it is plotted in Figure (3) page 26 as a function of
height for the model chromosphere and corona drawn in
Figure (2) page 20. The model atmosphere on which

this is based,Billings & Alvarez (1975), measures height
from the centre of the transition region (T = 10° ° K )
and so, in order to give the variation of L ..i¢

with height above the photosphere, it has been assumed
that this point in the transition region is 24 % (0% o
_ above the photosphere (Vernazza, Avrett and Loeser 1973),.
There are two main sources of error in using lcnit

to estimate the length at which a current sheet or flux
loop becomes thermally unstable. It approximates AT by
the temperature T outside the tube or sheet and the value
of the density inside by its value outside., . A more
accurate value of the length at which instability first

occurs. for a current sheet is given in Chapter 2,




26 ™

LB L

8 9 10
Log, Height

Figure (3). The cfitical value L crit (cm) from equation (1.,30)
as a function of height (ecm) for the atmosphere model given

in Figure (2), page 20. L crit is the order of magnitude
estimate for the length of a current sheet or magnetic flux tube

above which a thermal instability occurs.
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Parker (1953) suggested that, if the thermal equilibrium

27.

of the medium is a balance between temperature-independent

energy gains and temperature-dependent radiative losses,

instability results if, near equilibrium the losses increase

with decreasing temperature. Then the cooler-than-average

region cools more effectively that its surroundings, and

its temperature rapidly drops below the initial equilibrium

value,

Other authors, notably Zanstra (1955 a,b) pointed out that

the strong tendency towards pressure equilibrium in the

medium would naturally result in compression of the cool

regions and expansion of the hot ones and in this way one

could understand the formation of cool condensations in a

medium of high temperature.
Field (1965) in a thorough analysis of this problem
points out however that Weymann (1960) was the first to

give the correct instability criterion for the formation

of a condensation due to thermal instability, Field
analysed the different possible instability criteria
in an infinite, initially stationary uniform medium in
the absence of magnetic fields, using the linearized
equations, For the equilibrium energy equation, he
takes A
Ll & e = o, (131)
where L is a genealised heat loss function, defined as

energy losses minus energy gains per volume per second.

Because the equilibrium iemperature is uniform L does

not include thermal conduction.

sediagi e sdeg
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It can be written as a function of the local values

of S’ and T if the gas is optically thin, because then
the heat loss function is not complicated by radiative
transfer effects. We now perturb the equilibrium in
density and temperature while keeping some thermodynamic
variable A (e.g. pressure) constant. In the energy
equation the entropy S is perturbed to Soﬁ-S1 and the
heat loss function to Lo+ Ll , both S, and L, being
calculated at constant A, Then the energy equation

becomes
- %(—_—St = ey B k%};)AS. 3
s0 that there is instabllity if
(%%), < ©
In an isobaric perturbation A is pressure and T dS= CgdT

s0 that the instability criterion becomes
a_g) _ (9% € | 3L
0T /g &BTS’ ™ ”b‘t“:) L@, ( 1:32)

the perfect gas law being assumed applicable.

This condition, as Field pointed out, is consistent

with the equation of motion because the lack of pressure
variations ensures that no forces will destroy the density
structure, Hunter (1970) has genealised this stability
crlterion to include an arbitrary flow in the equilibrium
structure and’thermal conduction in the heat loss

function L,
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He shows that there is thermal instability if
au) QL
Pl = S + Lag 70
5 w\3T %
o g Tl& gu
where the subscript U refers to variables in an
unperturbed flow, This reduces to Field's criterion
in a uniform medium in the absence of effects of

thermal conduction, since Lo » O in that case.

The isochoric perturbation, for which A is density,

has the instability criterion,
DL)
(3—;‘91"0)
and is the one given by Parker (1953).

If entropy S is kept constant during the perturbations

the isentropic instability criterion is

31- JL. | 90 oL (
il O 2 LD » K133
LSl e 205, )
For instance the near-isentropic oscillations in a sound
wave are subject to a slight heating during the

compression phase, which tends to increase the amplitude

of the wave. Hunter (1966) applied this instability to
small amplitude disturbances in the chromosphere and
suggested that the optical flare event could result from
the formation of shock waves when these chromospheric
waves became thermally overstable. However,we shall be
concerned here only with the condensation mode thermal
instability, which is governed by the isobaric criterion

equation (1.32).




30.

1.2.: PREVIOUS WORK ON THERMAL INSTABILITY (Contd.)

" The thermal instability was applied by Kleczek (1958)
and Lust & Zirin (1960) to the theory of active
prominences, These loop prominences or 'coronal-rain'
prominences seem to condense out of the corcna, above
active regions, in a few minutes. Kleczek (1958)

considered an equilibrium energy eguation of the form

L b LRAD = CTCOMP )

The coronal matter was first compressed by some

undefined process, and then allowed to cool by radiation.
Kleczek did not include the effect of thermal conduction
and found the time for condensation to be quite long:

lO5 - 107 seconds.,

Lust & Zirin (1960) pointed out that the temperature in
the initial compression would become very high so that
conduction becomes an important ensrgy sink. In their
work they considered coronal plasma with density h,,
temperature TO in a magnetic field H. An element of

this plasma in some tube of force, is subjected to a

radial bompression,resulting in a density incrcase

If this compression is adiabatic then

¥
T/r, = (l+t)

where ¥ = C'?/C_v - 5/3

The energy acquired in a unit time by each particle of
the plasma due to compression is

i e s %=\
CTCOMP:"SEhéﬁ._T%_\’L\oo(?SU-a-okt) ;
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The energy losses in the compressed tube are due to 5
radiation and thermal conduction. Owing to the
magnetic thermal insulation, there is a heat flux only

through the end surfaces of the tube, of magnitude

& Q o, &AX 4z b

__=<T L. 2mn v

At o ar
where I is the radius of the tube. Hence the heat
loss from thermal conduction for each particle in the
plasma per unit time is

L a S2EBet A— 2
therm h Q" ! ) ]

where dft{ir = % Aj?% and € is the length of the tube.
Lust & Zirin estimated the energy loss to the plasna é

by radiation per particle to be

Y. T -10
-27 \-26 % \O~ d. R :
Loaas = 143210 Kt T - ~”L"l“ K- * RS -X

Hence the energy balance can be written as
4T . .
k dw (‘COMP L\'\:\erm & LRAQ .

The solution to this equation, T (t), was found for a

series of values of A owd To . Lust & Zirln found

P

that the temperature first increases to a maximun, T,
at a time, ©mox , due to the initial compression, ard
then decrcases as the increased internal energy is
radiated and conducted away, They defined a cooling
time, T ., , as the time taken to cool the plasma to a
temperature of 2 x 10g"K. The higher the compression

rate «, the faster the initial temperature increases, but

the subsequent cooling 1s also faster.
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b 9 \O <%
With To in the range |- 2% 10 ® & omd N=10 -10 om?’r

values of 1072 - 10°% sec™ %n— oK

make Cyax of the order of % hour or less and T go(

an hour or less, which seems reasonable for the formation

of active prominences. However, the means by which

-compression is achleved is unclear,

Raju (1968) considered an infinitely long cylindrical
magnetic flux tube containing an optically thin plasma,

He assumed that the plasma is heated by the dissipation of
waves propagating up from the chromosphere. Such l;
mechanical heating per unit mass is assumed to have ;

the constant value,

Gmec\r\zq 3 (“3"‘\')

where Q is determined by the thermal equilibrium
conditions in the corona. Raju considered the plasma

to be cooled by radiation

Lo = § 9CT) (1-35)

the cooling function Q(T) being more realistic than

the one used by Lust & Zirin, Raju used two cooling
functions, one by Doherty & Menzel (1965) and the other
by Raju (1968). |

To produce instability in this case he perﬁurbed the
density while holding pressure constant, as in (1.32).
An assumption that the total pressure remains constant
gives

b+ KBi/gTr) ’ bo-“ (BZ/%T-‘) ) (1:36)

where Po and Bo are the equilibrium values. 1
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The energy equation is
db _ P de wf Ci-71)
e T Cx-npl G-L)
with \6‘—% > and |
bs RET . (1:38)

Another equation is still required in order to solve
for the four unknowns P,f,T,B inside the flux tube.
Raju assumed that the plasma and magnetic field would
remain uniform inside and outside the cylinder, so

any variation in the parameters is one-~dimensional

and the particle density in the cylinder at any time
is inversely proportional to the square of the radius.

Thus, from conservation of magnetic flux,

B« Be X
; 5 (1-29)

Raju solved (1.34) to (1.,39)

to give,.in barticulary g/ﬁ:as a function of time
and found that after an initial perturbation the
condensation rate is very slow until some threshold
time whgn the density increases very raﬁidly. For
larger initigl perturbations the threshold time was

“a-Tittle smaller. - His results depend strongly on

Bz 37w P, far .

For /3$>lthe magnetic field inhibits the thermal

conduction but plays no ot:er role; the density drops

by a factor of 60 while temperature drops from 1.5 x 106

t6 2.5 % 10ZP in about 106 seconds.

trne Rl agron i, ERS s e e f s
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For /3 >| , compression of the cylinder quickly
raises the magnetic pressure until the gas pressure b
is unimportant in the isobaric condition (1.36).
When/3==50 the density increases only by a factor of 6.7
while the temperature drops from 1.5 x 106 to 3 x 10h
in about 1.6 x 106 seconds.

' When /3 ¢4 | the cylinder behaves as if it were
filled with an incompressible fluid. In this case a

f small percentage increase in wagnetic field strength
yields a magnetic pressure which can balance even
an extreme decrease in interior gas pressure
produced by cooling, so that, from (1.39), the density
remains almost constant. With a small density
perturbation, the density remains almost constant, while
the temperature falls from 1.5 x 10° to 3 x 10* in about
3 x 100 seconds.
Raju showed that prominence conditions are reached
in about 106 seconds, which is a little long compared
with the observed formation time of about 105 seconds,
But he also pointed out that intensification of the
magnetié field produced by condensation effectively
prevents the density from increasing to prominence values
if the final prominence value for the magnetic field is
greater than approximately 0.1 Gauss, which is much less
than the observed value of 10 Gauss, It should, however
be noted that, in this model, Raju has neglected motions
along the flux tube, and we would expect, in the strong
ma%netic field case, that prominence densities could be

reached if these motions are included.
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Hildner (1974) solved the non-linear time-dependent

MHD equations in an attempt to model the formation of
- solar quiescent prominences by condensation out of the

corona. The effects of gravity were included and so

the equations were

28 Ly (sy)=o

f% :—gk-rﬁ(!/s_%\r\‘i *5)3_ >
Q__&__,‘_ ZA(y.A%_B =0

ot

He wrote his energy equation, for computational reasons,

in the form

Q.&_PE.S.\.L-:O 3

dt

where the total energy density U, is

b \ 2
K e T HY S

aw

. 592

and Z isAthe vertical co-ordinate, parallel to gravity

The energy flow, S, the faogwﬁqﬁvector, is

S:g,\_g“...(% +Jifv‘)y_ ;

—

Thermal conduction is not included in the energy equation.
In equilibrium the heat loss function L vanishes, where L
is a balance between the radiative loss

; Ly
LQ‘\D = ')’" f L b]
defined earlier, and a mechanical heating

Gmen = 9.0+ ¢,

~
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The constants l& and on are determined by
equilibrium conditions in the corona, at temperature

T e S % \os.° K , and in the final prominence with

7
temperature T = (SOO°Kand with a constant pressure
assumption. Initially, he also assumes that there is
a uniform magnetic field in the X direction where the

¥ - Z plane is perpendicular to the long axis of
the prominence and Z is parallel to gravity.
He considers a two-dimensional geometry in the X -2
plane, which is reasonable since the prominence is very
much longer than it is high or wide so that Y
variations are much less important than the other spatial
variations.
At the boundary of a rectangdiar domain in the X-Z
plang the variables T, f and 15 are held constant at their
equilibrium values, while B remains horizontal there.
The equilibrium withlL« (O and V. = O is then disturbed
by an isobaric 5% density increase in a small region
near the centre of the domain of calculation and the
resulting cooling is followed by solving the equation
numerically.

"Hildner considers four particular cases:

(1) Bo=9=0

in this case the sound speed is very much greater than
the Alfvén speed, so that the condensation proceeds
isobarically and also, because there are no fields to
.direct the motion, isotropilcally.
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The inflow is gentle at first but rapidly increases
as cooling drives on the instability. The maximum
density of condensation,at T = 3-5 = 10%sec ,
is approximately 18 times the initial equilibrium value,
The condensation does not reach the final equilibrium

because the conditions at the boundary begin to be

affected by the condensation.

(2) Bo=o 3J#0

/ In this case denser matter forms at the centre and falls
under gravity, generating vortices as 1t does so.
Again the condensation is isobaric but large condensations
are not achieved because the plasma falls more rapidly
ihan it condenses. This indicates that some support
for the condensation is required if prominence densities

are to be achieved.

(3) Bo¥0 9=o0

In this case the condensation proceeds at a similar rate
to case (1) but the matter is compelled to flow along
the field lines even for fields as small as 0.1 Gauss.
The horizontal flow speeds are larger tﬁan in Case (1)

to compensate for the reduced vertical flow,

() Be#0 9d#o0

A1l the effects of cases (1) and (3) are combined
in this example. The strength of the field is
important 1n determining the reaction of fluid to

the instability.
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(L) B,#o Q#0 (contd.)

If the field is so weak that Cg/tA>h the denser

region falls, accompanied by & vortical flow pattern

and the field is deformed by the fluid flow only in

the vicinity of the falling condensation. In a strong
field (Cs/c, ¢!) the vortical motion is suppressed and
a slight increase in density cauvses the fluld to flow
down everywhere, so that it reacts as a rigid body.

It would have been of interest to take account, if

possible, of line-tying at the boundaries,

In all thése cases prominence conditions were not

achieved, because the disturbance reached the edge of

the domain before that was possible., However, the

general trend of the thermal instability in the

non~linear limit is clearly established. It seeuws

that non—linéar dynamical effects, which are included

in this numerical study of the problem, make the
'.instability grow more rapidly than in studies where

the dynamics of the problem are neglected as, for

example; in Raju (1968).

Heyvaerts (1974) considered a uniform, perfect, fully

jonized gas with a uniform magnetic field, B, , in o

the % direction. He also assumed there was a |

current §$ flowing parallel to B, in this

equilibrium state. In order to do this he considered

wave numbers h such that

_ B
Le L, B q.-r:Jo ) (1 40)

i
R
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where zero subscripts refer to the equilibrium state.

The equations he considered are

Yo = nwd i
-V-AE = W é:‘%_ y
P-) E

vV.B = O , x
3= é~£§ﬂ'i«§J ) (VU&
dF
T e Z-L?.\_/.)"’o p)

PUSE+ (L.®)Y) = -Th +3AB,
(3% « oy p) - 35 (& v eoip) =

) ol

(o0 (5 - L) »x e,

In the energy equation,he has included joule heating,

thermal condition and an energy loss term defined by
i)
L(SJJT) =- He + §° QM ,  Crg2)

the amount of energy lost per unit time and unit volume

due to radiative loss and mechanical heating. : |

The radiative loss term is that used by Raju (1968). |

The equilibrium state is given by §
Yo=0 , [_3_0-_:(0,0)30),

3e/6s * MG = S0 (T =0

This state is then perturbed by a small amount, where 2

the perturbed cuantities have the form

45 - B
ve‘(r,-t) oL e e ‘""ﬂ.
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Equations (1-41) are linearized by ignoring terms of
L
order { and then all the variables are eliminated

except velocity. This gives a dispersion relation

det. Djlw, k) =0

which is approximated by means of an expansion in terms

of order L k Loyl »L & b3 (1 wo) .

Heyvaerts finds four solutions:

w = LW,

: (1.43)
(for which V:3 + O or Vye # O andVy # O)
D + N =20 (1014'14)

2

4O.

L
C . %
W% (w=-L1w,) - bk (_—-*‘g‘ (L-tw)+ C_SLm-Lcozﬂ

2 %
"'b:'ht Ca G
1>

(for which we only have Vs # O and V, # 0 ) and

k> ¢ = wrilpral= o 7 (1.46)

(for which \/\3 + O ).

The various constants are defined to be

'3
- k, ?o = C 9
Wy = _j:};-_ ) h“ h Cos
°
w, =-trle Ry =k S ®
s
("")3 60 P )

(w-tw)=0, (1.45)
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R 4
(4)5 B 4. So ’
We = Q‘}_ ‘é_._t’:_)—ro ’
Po
o d Lo Se
W, = Cx-Nl-wy- 22320 o _w)
P \05 Te

(-L),,"‘-"S“%';‘D"(h)? "UO-\- = 3\0360

. B3
b+ LG yTwe,
which measures the importance of diffusion, and

D =

k24 Ugad) Efﬁﬁﬁi) W3 Rl

OloqTo/ W-Lw, Wuwo,

which measures the importance of the Joule effects. M
When <, = 6o and no thermal effects are included j
(so that (0,=w),=0),equations (1.43) to (1.46)
give the usual MHD modes. In this limit (1.45)
becomes . .

b3 b
(QS— LQ?[C?;-PC;] + bf“Cos‘e CA CSQ)=O,
which has roots

% %2 % E
(‘J“hck)

2
w- = kR ¢,

w = O

where C, and C, are the fast and slow phase speeds.

453

or.& 4 . T o a7t v . A
G- B L AL R e TR O 4 ) eI B
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“Also,when the magnetic and joule effects are

neglected (so that Ws= Cp = O ),equation (1.45)

gives Field's modes,
7 .
w"(co-i.w,) = )llcs (w'bwz)

When .= o  (s0 that D =lamd 6 =0,

equation (1.46) gives Alfvén waves,

W = h\\ CA

However, in the diffusion region, an expansion to zero
order in the small parameter «uﬂug reduces equation

(1.45) to

DrA=O

This is just equation (1,44) in the diffusion region,

and will be considered later.

After pointing out these simple cases, Heyvaerts discusses

the solutions to equations (1.43) to (1.46) in general,
W+tW, is the purely thermal mode, and its physical

nature is determined by whether thermal conductivity

is important or not. When thermal conduction dominates

(i.e. over short wavelengths) ‘ ‘
e ~Llp-y B.B.E o
S T e o
Pe

and so the plasma is stable, If thermal conduction

is not important (i.e. over long wavelengths), then

w = v ¥-) (- &i‘.j: = bLMi\d" j: )
Po d \051'0 &s bo

h2

A il Vi A SR BT s o By B R

T R TS R 0

O TPt RS e




1.2,: PREVIOUS WORK ON THERMAL INSTABILITY (Contd.)

‘and s0 we get instability ( 3M.LUJ\ » 0 ) if,
using L as defined by (1.42),

9., J. 1 dleade
4T, o f: p (5 BK_OS Vo

The joule term has a stabilizing effect, bécause So
is proportional to T:EG‘, so, if the temperature goes
up, the joule heating goes down, thereby restoring the
previous thermal balance.

The second set of modes satisfy equation (1.44),

which may be written

: . RY : oy 4 K Sia' ®
CO(U.)-LOQJ + L & (w—'\_m,\-\-l(‘é-\)_ﬂ-—g ws-ﬁ"":\:ﬂ'—" =0
4T &g ) L°3To LT &g
When J, = 0, this splits into the thermal mode, W= ¢ W,

and the mode

4 >
= =\

which describes field diffusing through the plasma.
When J, does not vanish, the two effects are mixed.
Two regimes are of interest:

(1) The Frogzen-inregime ( W >7 W) In this case with

““joule effects dominating and ©=~T/y |
k* Sm* 8 - (oot ®

4T Sp Lox* ®

In mainly perpendicular propagation ( Sm* e »> Ces® ® )

W = L

we have an 'anti-diffusion mode!,
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PREVIOUS WORK ON THERMAL INSTABILITY {(Contd.)

~aligned to the field,consisting of hot conductive tubes

The physics of this mode is that inequalities in

the joule heating produce more condudive regions,
where the temperature is higher, This causes the
currents to flow preferentially in these regions,
hence increasing the joule heating. The net effect
is to concentrate the currents into thin threads, Jjust
like the tearing mode,as if there were an 'anti-

diffusion' of the field.

(2)The Diffusion regime ( W ¢« ¢ Wy )

An expansion in wW/w, gives

. Poz. o &\o 5 j:- d 6o (.
we - ulg-1) ( bcj cU:SQT‘,‘. ."’:\_4_;:3 T ”?:E?\\%i(s"“le‘we))

When thermal conductivity dominates, the mode is

stable (LW & O ), but when thermal conduction is

neglectéd and W) ¢¢ lwy)  the mode has cooling
properties, So we get a thermal mode driven mainly

by joule effects and called by Heyvaerts the "Joule Mode".
It is unstable when Sim®* ® > Con® © ard the
thermal conduction is negligible, which occurs in

practice only for perpendicular propagétion. The effect

of the instability is again to form fine structures,

in which most of the current flows,with cold tubes in
between. These structures can exist side by side because '
we are assuming that thermal conductivity is small.
Also because the motions are not frozen-in, the
instability is not upset at a later stage by non-linear

developments.,
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However, although thermal conductivity perpendicular

to the field is small, and has been neglected in this
linear analysis, it could become important in the
non-linear development, and impede the instability.
Heyvaerts points out, however, that these anti-diffusion
and joule modes are not important in the normal
conditions of the solar atmosphere, because the plasma
is very conductive. However, if the resistivity is
increased by turbulence, then the growth rate of the
instability will also increase, If the resistivity

is enhanced by a factor X say, the growth rate would

be of thé order of
(L)S ¥ o

which could be short. _

The effect of the anti-diffusion mode in making the
fields and currents coalesce instead of diffusing

would favour the development o the joule mode, He
suggests that these modes may be important in some actilve
phenomena, such as transitory absorbing features

(Axisa et al. ,1973), in which observations suggest
there are hot emission regions very close to cool
absorbing regions, So the hot and cool regions set

up by the joule and anti-diffusion modes could be

relevant.

4




1.2,: PRSVIOCUS WORK ON THERMAL INSTABILITY (Contd.

Lastly we discuss the solutions to equation (1.45),
ok

only under frozen-in conditions ( R* W &5 <& | Js

so that D=1, but in two frequency regimes:

(1) W>> W, , W, , Four of the high frequency

solutions to (1.45) are then

p ER s,
. S @ = '
w = 7. hc’k E: LQ(OI_L\)Z\ 2 C-;{ __\C"L J
a T
. T,
W= ¥R, s ble,-yd St
CQ"’C‘_

which are the fast ( W =R Cq) and slow ( wW=RC,)
MHD modes, corrected by a thermal effect. At short
wavelengths, conduction dominates and so the waves

are damped. At larger wavelengths, we have instability,

if L=l >0 , L€,

i

¥~ dL
W~ W g bd*> >0
s

Cs \°F

which is the constant entropy condition that Field
found (1.33).

A fifth high frequency solution (1.45) is

W= L w, ,

which represents thermal conduction at short
wavelengiths and non-adiabatic effects at larger

wavelengths,
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Tt is unstable ( W, 7?0 ) when P
! : oL
Ly To — L-g ?o T ( T /p o B

which is Field's constant pressure instability

condition (1.32).

i) Wee W, , W, In the limit of small frequencies

equation (1.45) becomes
w k(G )RR GE Feo C1-47)

which is the usual dispersion equation for MHD modes,

but with C§ replaced by Cg (0, /w,). When Wa/fes, >0,
(whén for example, thermal conduction dominates) then the
modes are stable,.but when th/L)‘Lc)they are unstable,
In the latter case the solutions of (1.47) may be written

kS
in terms of Cg w’-/&). ® - (‘_'Sz as

7 Vi y ’ 2%
‘ZJi (((C:;. s Cs‘L).L"' "*C-,c.\ CSZQI;. )"« C?; -Cy ) )

which is a modified fast mode and is always wave-like, and

-—h‘ L LG8t Wt i Al S B o

which is the slow mode and is a purely growing unstable

mode. ' &




1.3.: RESISTIVE INSTABILITIES,

.The initlal comprehensive study of resistive MHD
instabilities in a sheet pinch was carried out by
Furth, Killeen & Rosenbluth (1963). They assumed
that the hydromagnetic approximation is valid and the
ion pressure and inertial terms areé negligible in
Ohm's law. The resistivity ‘z is assumed isotropic,

80 that the small effect due to the magnetic field is

neglected. The fluid is supposed imcompressible, V.V =0

which they justify by saying that the growth rate of the
instability is very much 1ess.than the hydromagnetic
growth rate. To see how this follows, consider the
one~-dimensional equation of motion, when there is no

magnetic field;

ERY dv _ _dv
Fae ¥ &Y dx ~ dx !

so that pvdv ~ -§p { t2h.%)

If we also take F> proportional to density § , then

Sp = Jﬂ § = €3 S$P,  (1ya)

where (¢ is the sound speed, so that from (1.48) and
(1.49),

where M is the Msch number of the flow.

48, %

2
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L9. .

Then, if M ¢<|, the variations in density, i.e.
the compressibility effect, due to velocity of the
flow, is negligibly small and the plasma may be

considered incompressible, Now, when there is a

maghetic pressure present as well as a gas pressure, 3

we could expect the incompressible conditions to be,

N .
s Ce S | < i A R t1.50)

2
where CA is the Alfvén speed. Now ﬁ = (CS/Q A)
= o * to 1.0 in the prominence ( he = gxlo‘c’c,wc's,

T =10% e R=10Ganss) to the coronal conditions
)

(ne= losw‘3, T=10%°k , B=l Qow).

Then,

Ny nios M
Ce ‘/ZCA

so that conditions (1.50) are satisfied for /3 o |

and the flow is incompressible provided

Vo JB Cy
We know from Furth et al{l1963) that the maximum
frequency of-‘ the tearing mode instability, 6, is
1/ C ¢ Va. Ta) s Where §= ’CR//&A the ratio of the
resistive to the Alfvénic timescales, so that the
maximum velocity associated with the resistive

instability VW‘OJ)(_ = C—A /\)"é‘~ .
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Thus for iﬁcompressibility we require

S »» e

A -
Now S is based on the length scale of magnetic field
variations, which for the current sheet we take as the
width, such that if the width is small then S can be
small, of order 10 say, and then this incompressibility
condition could break down if/e is small enough, perhaps
by having large magnetic field strength.

The relevant equations for resistive instabilities are,

the induction equation,

>8
5t = YAluaB) -ZAL R/ 248, (1s)

and the curl of the equation of motion,
1%
Uals3E)=valds Conrdan+ 837, (o)

Perturbations in plasma resistivity and ¢ §_ are

assumed to result from convection, so that

e

MRSk (1.52)

" and
Ad(§9)
dt

The equilibrium magnetic field is

(1.53)

2 Lrwylag)y=o.

B = & Bx(ﬁ) e %‘_ %EQ\A) ’

-0

which is sheared in the fj direction.

D s S ACSOb e
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1,3.: RESISTIVE INSTABILITIES (Contd.)

The equilibrium velocity,

Vo =0

so that from the induction equation (1.15),

Ynln rB)=0 | (1.54)

which they assume holds exactly. The equilibrium
pressure can be found from the zero order equation
of motion, '

Zh, = < (TaB) A B,

I J

except when B, is force-free, which, since B, has

a general form, except for the restriction (1.54), is
possible.

The equations are then linearized by perturbing the
variables b? small amounts which are denoted by subscript 1.
Using V. B, 8 ¥.¥; =0 5 we find from
(1:15) ; (2.51) to L1.53),

';;%! = (?}o.y_).‘i\' (}_/\ Y) Bot -L.}ﬁT(-\'(oVLE).\*' h.vlis_.o)
4+ §‘/\Ebo+0wr\ B,ol\_\lb‘ . (\‘55)
QM.\'LYO%'%X: W'\L%“L(Q*’A -@-o)'\gl*(w\‘.ébhgo-&*' (gg]l—i > ("S("}
b,
e s

%t(.gg)‘_‘_QL/‘.g)(?ﬁ)o: O ) (\'58)
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All the perturbed quantities are assumed to vary as

‘F.(.X, g)i)t) = -?-(3') @JC\) LL(\QX)(+ \z%{) + (.o't-x ‘

The linearized equations (1.55) to (1.58) can then
be reduced to

dal
‘%=w+v.;%)+%t%+%§>> .
e & et 1_______(_:.‘: \
w:——: cw|f -2 rgk %%)”“S(E P)]> L

where dashes denoted differentiation with respect

to  ME Y /o ) o. is the scale length of the
equilibrium magnetic field, and the normalized variables
and parameters are

B,

g = —éi : S=Te/y,
[s)

W = "LV\\:S\Z/‘:P. ) P = T ‘

F = k.8, ; E'= ho/Ln7)
s
A = h& ) f=9°/Lg>)
: v,

" Also U, emd Ty are the characteristic resistive

time and the hydromagnetic time, .
2
L o el o= aluw £87)

t’fl.— (117 J H Bo

where <7 , &£§7

are average measures of
resistivity and density.

G represents the driving
force due to gravity and is defined to be

CT: “tzl; (%/fc) ag’o/at5

52,




1.3.: RESISTIVE INSTABILITIES (Contd.)

- In dimensionless variables the equilibrium condition

(1.54) becomes

~o !
1 F = comstam®., (1.61)

The magnetic field in (1.59) and (1.60) always
appears as R. B and, since B, possesses shear

we can always, for each.k, find a value of M for which

F=R.B,/pg, =0

At this point diffusion is very important as can be

seen from the induction equation (1.15),

2814

= LR B) Wiy + e g

LT '3

Near the singular surface F = . R = o , the field
and plasma are decoupled. Far away from this surface

we search for solutions to the eguations with kz v« O .
Equations (1.59) and (1.60) may be re-written as,

7

R e ) L L S PR

- XS F F
P ae. wb o TG _"1.= " _p (d_+£ﬂ) (1-63)
x,SIF[ng)m w(?i )l =Py * F /)
In the 1imit S > w (h> o) | (1.62) and
(1.63) give
P = = Fw,
omd. et - 7‘—(.0@'*'5,?)‘\"\]—?:‘:0 >

o ! = o Lot ¥ “ji') =0




1.3.: RESISTIVE INSTABILITIES (Contd.)

which is satisfied everywhere except near F =0 .
Furth et al. find from (l.éh) asymptotic solutions

to (1.62) and (1.63) which break down at F = 0 .
Then they make a power series expansion of (1.62)

and (1.63) around the point F = O .  Matching these

two sets of solutions at the boundary, where they are

both valid, gives the complete solution.
The formal solution does not give much insight into

the physical processes at work in the instability.

An intuitive derivation for the value of € Q. of

the diffusion region width is as follows:
Assume in Ohm's law ( £ + VA B = }z 3 ) tkat the
plasma is moving but the magnetic flux lines are

not, so that £ = © Thus:

J = L!AEA/\?

and there is a Lorentz force which tries to prevent

motion across the field,

By

= 3J,8= Blyveg)-vE
R

This restoring force is arbitrarily weak near Bzo
where, for the purposes of the description, B refers

to the component B, B . When instability occurs
a driving force, Fy, is set up in opposition to F

and of the same order as it. Thus the rate at which
work is done on the plasma in the diffusion region

(near R . R=0) is

V.Ey -V By Ve (8) Ceal/y  (16S)
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1.3.: RESISTIVE INSTABILITILS (Contd.) %
where B has the value R’'e€o near the diffusion %
region, whose width we suppose to be & & %
The driving force gives rise to motions in the ¥ and R ?
directions, where, from ¥.VYV =0 |
Vy/ea = -k Vi,

But in general 2;0~>7 k., so that the kinetic energy -%
in the E.direction,W\V; , dominates. Equating the %
rate of change of this energy to the driving power, we %
get | g
g vEe @ S’OV;Z 2 V; (B ea) . x
(fea) R 4

&

. S0 the width of the diffusion region must be ;

. futly Ve
i (T‘B*) NP

We shall now estimate the growth rates of the three

>
&

resistive instabilities which are possible in a sheet pinchqg

(1) Gravitational Mode, which is shown in Figure (4a) page 56

has a driving force of the form

Fa=Foa=- Yokl 1

e ¢

Thus, equating F, . ¥ with equation (1.65) gives 2
2 :

(r) (eoo"/,z w B8 s 3
and,using (1.66), we find 4
' ! 2 §

LA ZIR L :

or, in dimensionless variables, i
2 4

p= (S®? . d

: A

%

5
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(2) Rippling Mode In the rippling mode the circulatory

motion of the fluid creates a ridge of lower-resistivity
fluid into which the local current is channeled. If we
were using an energy equation instead of (1.52), the
effect of Joule heating would be included and we would
also have the 'anti-diffusion' and joule mode thermal
instabilities (Heyvaerts), described in section 1.2.

To consider the rippling mode descriptively, we must
take account of resistivity variations, so that Ohm's

law becomes

where h‘ is given by the convective law

bn i % bo //ug .

The additional ¥]‘ gives rise to the driving force

_Fd = 3-1!\‘?’_: *\—/“g‘\?g -S-"‘§

which changes sign as B passes from one side of the
null point to the other, Hence ¥4 is stabilizing on
the side of higher resistivity and destabilizing on that

of lower resistivity. [Equating V.. Fga with (1.65) we

have
Ve o (B tedd Vo (B') LeaY )
g b2 \]o B no -
oy Eo = ho

O
- L] - -.h‘-
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Equating this with (1.66) gives

B, kX B”"l Vs

B L~(wm0“ £ By

-

The rippling mode thus requires a gradient in resistivity

which in turn depends on temperature. The perturbed
field and velocities for the rippling mode is shown in
Figure (L4Lb) page 59.

(3) Tearing Mode This mode is of particular interest

in the formation of quiescent prominences in neutral
current sheets (Chapter 2). In this application, the
main effect of the instability is to reconnect field
lines across the neutral sheet and hence help support
the condensing matter. Also, it reduces the magnetic
field strength in the diffusion region and so prevents
the build~up of magnetic pressure which'would inhibit
condensation,

The teaping mode is typically a long wavelength rather
than a short wavelength mode relative to.the dimensions
of the current sheet, |

The perturbed current is,

~ OB '
T 3, “5-:‘5" By
so that from ¥.8&= R B + \3;’= © ) we get
I
-S_L\ = B‘o ‘
Wi R,

if o}zc.a | , then the more detailed analysis gives

e B‘a
(e ha) o*

WAy ¥
g 2 Mg et N P et . p s
B A N 63 b ST VO T e e L Tt ST T

g
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The plasma is not perfectly decoupled even n@ar the
diffusion region and the component

o o Mg B

R = T

must be included in Ohm's law
\70 2.\ = E] * .!.l A _B,.
The quantity €& O is chosen so that E, dominates

VMV, AR in the diffusion region. Hence, equating

l’l Y, and &, , we have
’ o

o By b o @By
(eka) o™ e R R
ar
co = -—--—-—-h"
uw RBool W

Then from (1.66)

3 g2 Ys
R
Cem* £ k™ol ?
or, in dimensionless variables,

2/g

r = (.244) -

The flow pattern and the perturbed magnetic field are

shown in Figure (4c) page 59 .




59.

" e oo (a) Gravitational Mode.

__—__/i‘_\-_@—_//
-—-—’—‘_-———_______ L i————z
R (b) Rippling Mode.

-\/l’\ A
thx 0
P*~“‘ﬂ,,/"*ﬁ~_~;jzl~‘h‘h_____,,af _ﬁ.

Figure (4). Schematic representation of the rerturted imsgrebic
field and velocities (shown as arrows). In eadh case €EQ is the
width of the diffusion region. In 4(a) is sketched the gravitationsa
mode, with g the direction of gravity. In 4 (b) is the rippling
MOde, with ¥ h the required resistivity pradient, such that the
plasma is stable in the upper half plane. In 4 (c¢) is the

tearing mode,
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Tearing Mode with Uniform Resistivity

Barston (1969) studied the tearing mode instability
in the same equilibrium that Furth et al. chose

namely;
B, = & B, (y)+ & Byly)

which can, as in the case of Furth et al, either be
force-free or can balance a pressure gradient.
Also he supposes Eio satisfied the

induction equation exactly, so that

y"\ (‘qo LE,\_&O)) =0,

or, in dimensionless units,

'ﬁ o= Comstoml .

Now Barston considered the fl = constant case

so that

1

F'=o0. Ll 67)

it

fj\_k ik et

Ars, ST
2o agen AV 26, RAT

T T
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5 e
T
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He then was able to show, using equations (1.59) and (1.60)
with the boundary conditions Y =w'=o0 ok ph= L 00,
that the plasma was stable,

Van Hoven & Cross (1971) then considered the same problem

but used instead the boundary conditions

!

W'=0 amd % & ok = E DO,

They were able to show that the plasma was unstable
to the tearing mode for small values of X

/and found the growth rate,
%
p = (x$)72 , L o pooet?)

which is in agrreement with the small K case of

Furth et al. (1963, Appendix D).

Cross & Von Hoven (1971) then chose to study the tearing
‘'mode in a sheared equilibrium magnetic field that was

periodic in space and constant in magnitude,

E}.o: BOQXSWT'\-K& —‘:i-__Co:T-Eo—%) K\B%)
This sinusoidal variation was chosen to ease the analysis,
In this case, unlike the general case of Furth et al, the
equilibrium field is force-free, i.e.

J. x B, 20 C1-69)
This time, again unlike Furth et al, the field does not
identically satisfy the diffusion equation, so that the
field slowly decays at the diffusion rate | ‘%;;.E .75%%2; .

Thus they must assume that the growth rate of the

instability, W , satisfies the condition,

: G 5 -;§~ ; L\-170)
R
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- Their equilibrium magnetic field (1.68) satisfies

in dimensionless form,
F/=-ar F . ()

Cross (1972) has shown that the tearing mode instability
can occur with F satisfying (1.71) if O & ok &%
while, if F satisfies (1.67), then the tearing
mode will occur only if

g bl B 4
For Cross & Van Hoven's work, the equilibrium
temperature | o and density fo are taken uniform
in space since no variation is required to satisfy (1.69)
also they assumed that the equilibrium velocity is of
the order of the resistive diffusion velocity, so that
it can be ignored by (1.70).

The MHD equations are linearized and perturbations of

the form
. e
Buy Lryt) = & L By Coo T2 Simbin e
and
: g
Vg Cryt) = 5§ Vi Sin 52 Calex 5 (172

are considered, where the sums run over even W

for Bu3 and odd n for V‘5 . Incompressibility

is assumed so that, since §_ is uniform, we have
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. Also, no energy sources or sinks are considered

so that, since ] o is uniform and the plasma is

incompressible,

h~ o
1

Then)from the g component of equation (1.55), we have

By ™

w ho S S )
B, RV, Sw. - EQB.S k 3.33 (1-713)

?

and, from the % component of (1.56), we find

~wf, Lk viye vi) = Be SWE‘U - k)R ‘3»,3‘3} (1.74)

We now obtain the coefficients of the Fourier series

by multiplying (1.73) by C;ygdgib and (1 74} by S -—5

and then integrating from Y4 =-Q to Y =+Q

to get
w By, 7 (kf' zml) BSn
b
& _;.- Bo LV‘ﬁ\r\-\ - V:‘S\M\] ) (14 75)
oW fo T \* Bo 2
L‘.T Kkl + (D}:') ) \/5“ = T ithi*‘% '\KV\"Z}] Bsﬂ‘l q

..Lb}-ﬁ- l;—:—:: V\KV\-\'ZIJ] BSY\*‘% ) k\‘"“a)

bt e VO g N AR e ae o
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where we have used YV ,V, = O to remove the V, term.

‘The only unknown in (1.77) is the growth rate P, so that

Equations (1.75) and (1.76) then give

b
[ ;Lf‘“sl (P T + F, + F“"l Viyn

- FV\-\- V‘:)n—\—?. + Fie an\_«)_ = O ) (1‘7‘7)
A%
— +tn(nt
where Fue & W3 (nen]
- P o g
SRR =IRACED

Equetion (1.77) gives a recurrence relation between

the Fourier coefficients of the V“A series, Starting

with n= |\ we first get, since \/3_‘ = - VB; %t,m (l~72.) )

V‘i ) (%gh’c'*v‘)* Fla *1F!‘)/F%*

We can then calculate the ratio of succhessively highker

coefficients to Vt_,hby using higher values of N in (1.77).

the technique is to put a trial growth rate, Pt, say, in
{(1.77) and then calculate the ratio of the coefficients

for higher and higher values of n =
v‘ﬁrwl /v‘ﬁ\ . & N 3
In general the series of terms diverge but for one critical

growth rate, Pc, say, they converge.
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Since we require the Fourier series to converge, Pc is the

value of the instability growth rate. Following Cross &

Van Hoven, we plot in Figure (5), page 66, the values of the
series for several trial growth rates Pt when &= O-1 W
omdh S==los, From this we see that when Pt is too high
or too low the series diverge but they tend to converge as
Pt approach Pe, which in the Figure is 1996.

In Figure (6), page 66, is plotted the growth rate Pc as a

function of wave number oK, for several values of §
which show that there is instability only when O & oK &'
and that P o= (& 88 f_.
where their assumption of small.M-(P>7Mf)in Furth et al.(19655
is similar to the assumption of P >> TT* which is :
the dimensionless form of (1.70). The growth rate of the é

fastest growing mode approximately obeys 7

the relation

0571
"-‘3"-*-5‘ P w\/\em 87\03.

P

™Mo,

In their small . oX'limit, Furth et al (1963) find
P, 2 %" 8o bhat this result is in good agreement

with theirs.

In Chapter 3 we compare these results for a ponstant -

field strength, sheared field with those for an

equilibrium magnetic field that models a neutral sheet.
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Figure (5). The nthcoefficients,Vyn‘of the Fourier series of

the tearing mode instability in a sheared field as a function of N

for several trial values of the growth rate pt. For this case
the ratio of the resistivity to hydromagnetic timescales S=105’the

dimensionless wave number o{(=0-\7 and pC= 1996. (From Cross &
Van Hoven,_1971). .
7
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Figure 6. The growth rate Pc¢ for the tearing mode instability

in a sheared field as a function of the dimensionless wave

number O{ . Each curve is drawn for a different value of the

ratio of resistivity to hydromsgnetic time scales, S . Theﬁé

fastest growing mode,F?nqx , is marked by O . (from Cross & Van

Hoven, 1971).
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PROMINZNCE OBSERVATIONS

Prominences are cool dense objects situated in the hotter
corona. They are called filaments when seen in
absorption against the disc but, when seen in emission

at the limb of the sun, they are usually called prominences.’
Many classifications of the observed features of the solar
prominences have been made. One of the earliest, by
Secchi (1875), divided them into 'quiescent' and 'active!
prominences., The long-lived, slowly changing quiescent
prominences are normally seen away from active regions,
while the short-lived, rapidly changing active prominence
is seen in énd around active centres, These active
prominences can be further sub-divided, for instance

in ée Jager's (1959) classification, into many types.

One of these, the "active region filament" or M"active
sunspot prominence" may have some features of its
formation in common with the quiescent prominence.

We shall describe both of these types in this section,
while ignoring other ones with which they have little

in commen,

Basic Data

The quiescent prominence is typically 200,000 km long,
50,000 km high, but only 5,000 km to 10,000 km thick
(Tandberg-Hanssen, 1974), so, when seen on the disc

it looks like a long, black, meandering ribbon.
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PROMINENCE OBSERVATIONS {Contd.)

The temperature in the central region of these prominences
is about 6,000° X to 7,000° K, determined from the

optically thin Balmer lines, while at the edge and top,

the temperature is about 12,000° K (Bruzek & Kuperus, 1971);
The electron density,obtained from Stark broadening
of the high Balmer lines, is in the range of 10IO
0 5 x 10'° cwm~3 (Hirayama,1971). Observed end

on, parallel to the long axis, one generally finds that

the inner corona surrounding the filament has a region '%
of reduced brightness (Wesley,1927). 4
It has been shown that this region of reduced
brightness, called the coronal cavity must be due to |
a réduced electron density (Waldmeier 1970). i
The active region filament looks somewhat like a !
guiescent prominence but is a factor of three or four

smaller, Also it is only seen inside active regions

.and has one or both ends attached to a sunspot.

The temperature is much the same as in the quiescent
prominence but it has a large electron number density,

Nne 2 10 B el (Hirayama ,1971) .
The lifetimes of solar prominences have a large variation, A
but averages can be calculated,from the studies made by E
the d'Azambujas (1948), for both large filaments in active |
regiohs and quiescent prominences. For three-quarters
of the active region filaments that they studied, it
can be deduced (S. Martin 1973), that the average lifetime
is approximately 26 days.
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l.h.: PROMINENCE OBSERVATIONS (Contd.)

Also the d'Azambujas found that for quilescent
prominenceé the lifetime varied somewhat with latitude;
for low latitude prominences the lifetime is about

3 rotationsk(Sl days) while for those at high latitudes
the average duration is 5.1 rotations (138 days).

The d'Azambujas found that filaments drift towards

the poles at a rate of about . per rotation, when
situated between 0° and 10° latitude,down to 0.8° per 1
rotation, when between 51° and 60° latitude. E
The decrease in drift rate with increasing latitude

along with the increased lifetime of the high latitude

quiescent prominences explains why there is frequently
a band of long lived filaments appearing to encircle
each polar cap. The effect of the differential
rotation is to ofientate them in an East-West direction,
making it possible for some of the filaments to join

end to end, an effect which the d'Azambujas called

the "polar crown", This drifting of prominences

during their lifetime is in the opposite direction

to the trend of sunspot appearances during the solar 1
cycle. Along with sunspots, prominences are formed

at high latitudes in the early stages of the cycle, ;
but then form at progressively lower latitudes as the

solar cycle continues (Kippenheur 1953).

Observations of the Magnetic Field in Prominences 3

In his review of the observational data on the magnetic

field of prominences, Tandberg-Hanssen (1974) says that

the line of sight component of the field, observed at the I
limb of the sun, B, , for quiescent prominences can range !

from no observable fieid to 30 or 4LO Gauss .
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1.L,: PROMINENCE OBSERVATIONS (Contd.)

" From a study of 135 quiescent prominences, he finds
that the average value of this field, < B,?
is approximately 7.3 Gauss, with about half the
observations in the range 3G & B, & 8 G. »
Rust (1966) found < B,” =5 G for data from
1965 and Harvey (1969) found < By? = L6 §
for date from 1967. It is also found by Rust (1967)
that the magnetic field strength, B,, s increases
by roughly a factor of 1} over the height of a quiescent

prominence, (Active region prominences, by contrast,

have larger values of B, , Tendberg-Hanssen (1974)
gives a range of 20G to 70G .)

Information about the orientation of the magnetic

field with respect to t%e axis of the prominence was
given by Tandberg-Hanssen & Anzer (1970), who calculated _
that the average value of X, the angle between the 3
direction of the field and the long axis of the
prominence, was about 157, In this work it was

assumed tha£ the value of the field strength did not
affect K, However, observations by ioshpa(thg)
indicate that, while the vector of the field seems to

be aligned witﬁ the filament in the active regions,

"the field in the higher, more massive quiescent
prominences runs mainly across the filament. From

. Ioshpa's results, Rust (1972) concludes that there is
evidence of a relationship between the strength of the
magnetic field and its direction in quiescent prominences
= q0° ( B!ﬂ%ﬁilgi) , :g

mam

of the form,
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1.4.: PROMINEINCE OBSERVATICNS (Contd.)

where BMM o RO mesg . This, says Rust, is
not founded on a detailed study of the data but only | ;
on é review of the observation results. ;
On the disc of the sun, observations of the line-of-sight :
component of the magnetic field indicate that, for both §
guiescent prominences (Babcock & Babcock , 1955) and

active prominences (Smith & Ramsey 1967), the filament

forms between areas of north and areas of south magnetic
field,

Given the normal magnetic field component on the surface
of the sun, it is possible to calculate the unique
potentialAfield in the atmosphere above, Using this %
method, Harvey (1969) compared the predicted structure f
of active region filaments with the observed structure é
and found that these filaments, unlike some other active ~
filaments, cannot have a potential field. It has been :
suggested by Raadu & Nakagawa (1971) that a force-free ‘
field configuration could represent the magnetic field é

in these prominences, however, if, as observations suggest,

- the gas preésure inside the prominence is not negligible,
we require a magnetic pressure to balance it, so that the

field can not be force-free.

Prominences and their Link with Active Regions.

The strong connection between the evolution of
prominences, not only active region filaments but also

quiescent prominences, and active regions has been

B - SIS BRI S s ket gt by anE e

reviewed by S. Martin (1973).
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1.4,: PROMINENCE OBSERVATIONS (Contd.)

She discusses three characteristic locations for the

Db 2 M IP LT o Bt £ AN Prnte S AR

formation of prominences: within active regions, between
active regions, and in the remnants of old active regions,
It was shown by Smith & Ramsey (1967), that all filaments,

observed within active regions, formed at the boundary

R A

between the areas of positive and negative magnetic :
field shown on magnetograms, which only displays the
line-of-sight component of the field. Smith (1968)

DIK 3 AT b

/ has shown that a second condition for the formation of

at least some filaments, both in centres of activity and

also between adjacent active regions, is that the Hg
fibrils (in the chromosphere) align themselves end to
end along a path,called a "filament channel" which
eventually becomes the filament. The alignment of the
chromosphere fibrils within the filament axis supports
the observations of Ioshpa (1968) and Harvey (1969) that

the magnetic field vector points approximately along

T oo Mie AR e

the axis.

WS 13

e

The prbcess of filament formation between active centres

seems to be the same as that within an active centre,

except that in the latter case the filament does not form

until the boundaries of the two separate magnetic field

regions have come into contact. No filament forms as
long as there is a zone between the two active centres
in which the Fh( fibrils have a random orientation,

The formation of filaments in the weak fields of remnant
active centres is, in many ways, similar to the formation %

between centres of activity, but there are some differences,
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PROMINENCE OBSERVATIONS (Contd.)

The timescale for formation of these filaments, as
noted by the d'Azambujas (1948), can take several days
while, in active centres, the filaments form much more
rapidly, the timescale ranging from a few hours to a
few days. Also the direction of the H, fibrils
in the adjacent chromosphere is not necessarily along
the path which forms the filament. These differences
perhaps indicate that the formation is taking place at
a greater height above the chromosphere than for
filaments within active regions.

In addition to stressing the above three main areas

for prominence formation, S. Martin (1973) points out

that there are many filaments that form near the boundaries

of active regions and display the formation characteristics

of each of these areas,

Motions within Prominences.

According to the d'Azambujas (1948), the most common
form of quiescent pfominences takes the form of a
bridge, with one or more supporting arch connecting the
prominence with the chromosphere, This, Nakagawa &
Malville (1969) interpret as the manifestation of an
instabiliﬁy at the interface between the prominence and
the plasma beneath it. It is suggested by the -
dtAzambujas that all prominences would eveolve into this

form if they lived long enocugh.

The most common pattern of flow in a quiescent prominence

is back and forth horizontally along the axis, with an
additional continuous flow down the arches into the

chromosphere.
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l.4.: PROMINENCE OBSERVATIONS (Contd.)

The velocities range from O to 100 km sec™  (Dodson,1948)
However., measurements by Dunn (1960) for quiet quiescent

prominences have shown that the vertical velocity is

o AR VY s 8%

significantly less than the random motions of 5 to 10 m sec™!
of threads of plasma in the prominence, But, if the

quiescent prominence interacts with a sunspot in such a

» s g A
R R e e

way that matter is streaming out of the prominence into
the spot, then the vertical velocities are much higher.
Also, within quiet quiescent prominences, there is hardly
any mass motion along the axis of the filam:=nt and, indeed,
this is one of the main differences between the quiescent
and the active region filaments. When, hpwevef, the
quiescent filament interacts with a sunspot, the motions é
along the axis are greatly increased.

Active region filaments interact more with sunspots than
quiescent prominences and so there is mucﬁ greater activity
within them, Most of the motion seehs to be cut of the

prominence into a sunspot, but there is an example of a

T AR

rarer type in which matter flows out of one spot at about
28 km sec™ , and flows into the other at about 39 km sec™

(Ellison 1937).

I TR A

The Dissolution of Prominences

Only three types of prominence dissolution have been
recognised (Kiepenheuer, 1953): the slow dissolution,
the guasi~eruption and the "eruption" or "disparition ?
brusque', 3
The slow dissolution of a filament occurs when the rate

)

of mass loss, due to material flowing into the chromosphere 5
is greater than the accumulation of matter into the "

prominence.



1,.k.: PROMINENCE OBSERVATIONS (Contd.)

- This often occurs for filaments associated with active
regions. |
In the quasi-eruptive dissolution, the prominence
ascends, breaks into fragments, and then its mass flows
into the chromosphere at several places called "centres
of attraction" by McMath & Petit (1938). This type
is often, but not always, associated with a flare,
The disparition brusque occurs when the whole prominence
ascends and disappears, most of the matter rising higher
in the corona and the rest flowing-back into the disc.
The disappearance is permament for about one-third of
all cases while, for the rest, the prominence reforms
after a period of time ranging from a day to a few weeks,
with nearly the same shape as before. This dissolution
was considered by d'Azambijas (1948), who observed it
in about one half of all low latitude filaments, to be

2 natural phase in the evolution of the prominence.
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1,5,: PROMINENCE FORMATION IN A CURRENT SHEET

et Al

In this section we give a background to the work £
described in Chapter 2.

As already mentioned in section 1.4, the observation
of quiescent prominences indicate that they form, T
sometinmes, in regions between active centres which

may well be current sheets. Also of interest is the
paper by Saito& Tandberg Hanssen (1973), in which many

observations are listed of quiescent prominences present

Yrr e Hhoaf A O igne 3 sy

at the base of coronal streamers, Such streamers 3
outline the shape of the magnetic field and indicate low
lying closed field lines surﬁounted by an open structure.
In this section we shall consider a model which suggests

how a condensation can occur in’ i R BoRERRELEE 3

is influenced by, and how the final condensed prominence
is supported by the magnetic {ield of coronal streamer 5
type structure,
Kupsrus and Tandberg-Hanssen (1967) proposed a model 3
for the condensation of plasma in a coronal streamer,
They assumed that,above an active region, the magnetic -
field has initially a closed dipole type structure
(Figure (7a), page 7T s The corona above the centre of
activity is more intensely heated than the surrounding
corona (Kuperus,1965), so that the gas pressure in
region A.becomes higher than at the same level outside
the active region. The active coronal region is heated
until at some height B the gas pressure exceeds the

magnetlic pressure. )
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Figure (7). The possible magnetic field confilguration over an %
active region. In 7(a) the plasma in region A is heated E
more strongly than at the same level outside until at some %
height B the gas pressure exceeds the magnetic pressure and the ;
field lines open to give 7 (b). After this active phase the é
field lines come together again as in 7 (c). Avnroximating ?
for this final magnetic field structure by the parallel straight é

lines in'7 (d), Kuperus & Tandberg~Hanssen (1967) investigste the

thermal instability.
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PROMINENCE FORMATION IN A CURRENT SHLET (Contd.,)

And so the field lines are opened and the matter blown

out (Figure (7b),page 77). This is the safety-valve

‘mechanism suggested by Parker (1963).

In region B the field structure is determined by the
outward flow, while region A possesses a more or

less potential field. After this active phase
(Figure (7¢)), the outward flow of matter ceases and the
field lines are no longer kept open. The region
near the plane of symmetry has a very weak field, so
that the matter is easlly compressed there to
maintain lateral pressure equilibrium. The matter
near the neutral line has a higher density than the
surrounding corona- and so loses more energy by
radiation, If we assume that the only heat source
is mechanical heating, the same both inside and
outside the neutral currént sheet, then the greater
energy loss by radiation in the denser neutral sheet
cannot be balanced and so the gas cools down,

The neutral sheet formed in Figure (7c) is
approximated by the uniform anti-parallel field lines

drawn in Figure (7d).
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1.5,: PROMINENCE FORMATION IN A CURRSNT SHEET (Contd.)

The coronal conditions,Te, f. , P. , B are supposed
uniform as are the conditions inside the sheet where
we have no magnetic field. Initially the temperature
inside the sheet is taken equal to T. . During the
instability it is assumed that the inflow velocity is
very much less than the Alfyén speed, so that, from
the equation of motion, there must be lateral pressure

balance,

P 7 ‘Dc i Bz/g.-n—

and it is supposed that this pressure remains constant
throughout the condensation.
Kupereus & Tandberg-Hanssen took as their energy equation,

e P df
CL'tP XF'J:E“—LX"\)\_.,

which with the perfect gas law,

P=RpT L 1=78)

b

and the fact that the variables have no spatial

variation gives,

s 577 & " =% |
P 3t P (1.79)
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P L

In, L, the hoat less per unit time and volump, ‘they 3

A L st

“include (fmecl.  the mechanical heating teram and L.,,,
the energy lost by radiation. Thermal conduction is not
includedfor simplicity, but as noted in section 1.2, this
is an important effect, which we take account of in )
Chapter 2. For radiative loss they use the Orrall& Zirker:f
(1961) expression,

ot e ™ b3 e JOON fl ergs em™ > sec p
which is a little low in value at T = 10" ° |C .

For (%wmdkthey take the usual expression,

G‘M@C‘v\ =af

where the constant, a, is determined f{rom the coronal

equilibrium condition, 3

i 2 & o i
L= Lpas ™ C"imecL: e L, TR TE, 4
Thus the energy equation (1.79) becomes
5 -
C‘P atﬁ‘o.%*\o (Yc_f\) )

which from (1.78) may be re-written

%’E’ b?n\o (b 7_:_) (120
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Figure (8). The occurrence of the tearing mode instability g

in the current sheet of the Kuperus & Tandberg- Hanssen (1967) model%

The main effect is to reconnect magnetic field along the neutral ;
line (x=0) reducing the magnetic field strength in that region 1

and forming maenetic loops as shown. 7
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PROMINENCE FORMATION IN A CURRENT SHEET (Contd.)

‘Equation (1.80), in which we assume that pressure remains
constant ,determines T as a function of time. The result
is that the temperature of the neutral sheet drops by a
factor of 10 and the density increases by the same factor
in about 105 seconds from an initial coronal temperature ﬁ
of 106 ®K . This condensation time gives good
agreement with the observed time for prominences to form
(d*Azambuja 1948). It is faster than Raju's time
because the build~up of magnetic pressure is, in this case, ;
not considered, so that the condensation is not impeded by
magnetic forces. However, because the timescale for i
the instability is greater than the resistive diffusion timeé

we would expect magnetic pressure to build up as the 7

condensation increased. However, the neutral sheet
configuration is susceptible to resistive instabilities .
such as the tearing mode, which forms a series of magnetic §
loops along the neutral line (Figure(8),page g1) . At the
same time, the magnetic pressﬁfe is reduced, allowing the
condeﬁsation to continue, Also the magnetic field is
re-connected across the neutral sheet, so allowing support
for the condensing matter. This is essential, as &

Hildner has shown in his B, = o© q # O case, where

2
he is uvnable to get reasonable condensation of the plasma
when the denser matter is not supported.

The question of support for the condensing matter in a A%
neutral sheet has been discussed by Kuperus & Raadu ﬂ

(1974) . They point out that the separate currents :

(Figure(8),page 81) , which form in the later stages of the

condensation process, due to the tearing mode instability i

ks

will coalesce and form a structure shown in Figure (9)page &4
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This may be regarded as the sum of a vertical field, %

supplying no vertieal supporting force and a field

s

structure, shown in Figure (10), page 85, which will supply

the upward Lorentz force necessary for support, This fieldé
structure can be thought of as being caused by two ‘
currents, one + J at a height h above the photosphere

and the other - J,at a height ~h below the photosphere.

The force between these two currents is. @
W, T i

f= % meme T R Crg1) ;

h 4T h ) :

where Bt?is the azimuthal field at the boundary of the

condensed region which we suppose to have a radius R. Thus

to support the mass condensed into the filaments, we require;
% ;
B i I U ‘:
st S L T i 3
th

o | ;
which, for f§ * 10 » 9 C/W\;S, 3=2-’H+Ho"’cm scc"‘) h= 10q o

gives Bt(): b C‘(mkss in good agreerent »ith observations

(Rust, 1972).

SAET. dedned v AR e

In the calculation we take the initial background field to
be vertical. However, as suggested by Figure (8), page 81, |
there may be components of the field curved downwards near
the photosphere and these will tend to pull the plasmrs down
in opposition to the force F in (1.81). The plasma will

then fall if this downward force is large enough, but then
the plasma could be supported as in Kippenhahn & Schluter 8
model (Figure(l3), page 94). %
During the condensation process the plasma will bring in theé

. .
magnetic field lines because they are frozen-in.




Figure (9). A sketch of the expected coalescence

of the currents formed during the tearing mode instability
in the current sheet of Figure (8). The magnetic field lines
drawn here provide the necessary support, as shown by

Kuperus & Raadu (1974), for the condensing matter,
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Figure 10, The azimuthal component,EaD , of the magnetic field
shown in Figure (9), page 84, which supplies the upward Lorentz
force necessary to support the condensed matter, inside the shaded

region of radius R, at a height h above the photosphere,
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1.5,: PROMINENCE FORMATION IN A CURRENT SHEET (Contd.)

However, these field lines are attached to the photosphere
'and any magnetohydrodynamic perturbation that travels down
the field line is slowed down since the Alfvén speed is
proportional to bﬂﬁ;. Also the photosphere has a higher
inertia than the coronal plasma. Thus the foot-points

of the field lines are hardly affected by the condensation
process and the field lines will be bent so that Lorentsz
forces are set up opposing the process. Thus it may

seem that this 'line~-tying'! effect could prevent the
condensation from occuring but, as Raadu & Kuperus (1973)
show, this 1is not the case. They consider the field
structure.drawn in Figure (11), page 87, where it is

assumed that the frozen-in plasma pulls in the field

lines during the condensation with horizontal velocities.
Now, since the field lines are tied to the photosphere
there will be no condensation there, but there will be
progressively more condensation the higher one goes as

the effect of line-tving is reduced. For this reason

they expected the condensation to form in a wedge (Figure (12)

page 87), so that the variables of the problem depend only
on © . :

We expect the condensation to occur more slowly than the
Alfven timescale and so the field and plasma will remain

in horizontal force balance,

0 -
- G 3Pk 32 ByF O, C1-32)

I~ 206
where . \ DR
3T Frms S

and, because the plasma is frozen into the field,

?/Fo = Bﬁ/go }

where a zero subscript denotes the initial values.
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o4 ¢

i . X% g
Figure 11. Half of the magnetic field structure in a 5

neutral current sheet with a neutral line at X=0 . .

The field lines are attached to the photosphere at y::O
and are hardly affected as the condensation process occurs
at larger Y where the matter flows horizontally, in the . -

direction of the arrow, dragging the field lines with it.

X

Figure 12, A model for the line-tying effect of Fig. (11)

page 87. According to Raadu & Kuperus (1973) thev expect thtc
condensation to occur in a wedge formed between the line '
)( = O , and the line at an angle 9 s, but that for

angles greater than @ » no condensation occurs.

[
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The energy equstion is, 3
4P P 4°¢
S e W e s Cx-1 5
Tt ¢ X L. Cw=1) |
Woaseg L = Lgap ™ & med. ;
= e -3 -t w
Leap = & 9.(M egs o Y sec,
and Gmech = § Po 4 (7o) ergs om®sec”,
Thus A b b d? 4
/ —— - ¥ — &= = (- )~ §9t),
/ e £ e Lx-1) f[_go‘l o) % 1 \
(\-83)
The equilibrium given by (1.82) and by
Lo
is perturbed by putting
st §!
Pz (1vre(ed)e” ),
&t :
b= Po+ bilo) € .
When substituted into (1.82) and (1. 83) these give E
C% 1%} CLP Bo oké. *

omd Eh -xpses-%h Qper b, , (189
where ‘
S =—‘—-(S).£:) Tl . P 1
i ol le_)z,_fﬂow
are the growth rates at constant pressure and density |
respectively. g

Elimination of P, from (1.84) and (1.85) gives

Ly¥p, (s- S0 Coo v B (-0 M) S5 50

Cy 26)
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i A S e

€ o*

Thus is constant except possibly at

)
where the term in the bracket vanishes, so that
¥ b b
R
¥ Pp 4T
Bs

Sy Ceot Y

—
-

5Eg *

| 4=

o Crg7)

Cen® g

At the photosphere (© =T/, ) there is no compression

so the solution is

W
‘{Ec 3 B8,
e—;
(o]

R %, I 2 B NOBER L Gt e oL e e KR

, ® >t

It is possible to show that the maximum growth rate 'é
% - i

occurs when © = © , provided 8o > Sbe | 4

or,for ¥ = 5/3 , provided é
T dq 3 ?
— == -2 (1-28) e
9 47T e g i

o
For the radiative loss function 9, (T)=%T

(Figure(l), page 14),(1.88) becomes

.

& 2%

In the corona,equation (1.27) gives oK = - -0

so that this'condition holds.
e*

-

rate occurs for o

)

Thus the maximum growth

i.e. for the thinnest wedges,
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1.5.: PROMINENCE FORMATION IN A CURRLNT SHuET (Contd.)

From these sections we see that a neutral current
" sheet is a good place in which a thermal instability
can occur and cause the condensation of a prominence.

In other field configurations, as the plasma condenses,

Lty R ot 3O VA TS 5 N M e o ISR

it drags the'"frozen-in" magnetic field with it, so the
magnetic pressure bullds up and inhibits the condensation.
Inside a current sheet, on the other hand, magnetic flux
can be annihilated by the tearing mode instability, so :
that the magnetic pressure does not build up so much. i
Also the tearing mode creates magnetic field -loops, which
may thermally insulate blobs of plasma and also support,
as suggested by Kuperus & Raadu (1974), the condensing

plasma. It may have seemed that line-tying would have

prevented the instability occuring in a neutral sheet

but Raadu & Kuperus(1973) demonstrate that the plasma

is still thermally unstable when this effect is
considered and that the formation of a thin condensation

region is favoured,

R At Rt AT
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1,5,:PROMINENCE FORMATICN IN A CURRENT SHEET (Contd.,)

THEORIES OF PROMINENCE SUPPORT

In section 1.2 on the discussion of thermal

instability we saw that the magnetic field plays

two roles. One is to prevent heat conduction into

the plasma (so inhibiting the occurrence of the thermal
instability) and the other is to support the condensing
matter and then allow the condensation td continue,

In the last sub-section we saw how prominence material %
may be supported in a current sheet, Here we shall look |
at another magnetic field structure which may support

the prominence material,

Jt is commonly suggested that prominence material is
supported against gravity by the Iarentz force. If the
magnetic field lines are in a plane perpendicular to the

long axis (y direction) of a prominence and a current flows ;
along that axis, the Lorentsz force has a vertical

( 2 direction) component opposing gravity.

The plasma is taken to be in mechanical equilibrium under

a balance between gravity, pressure gradients and the

Lorentz force, so that

0=-VYb+ 89+ s (TABIAE . (1.89)




: PROMIKENCE FORMATICN IN A CURRANT SHAET (Contd.)

Any magnetic field component along the prominence is
neglected ( Bb==o ), as are variations of the variables
in that direction (%@5==0). Also the atmosphere is

supposed isothermal so that the perfect gas law gives

b=nkT = ¢qH, , (1.90)

where the scale height He ™= \73"/‘,\,\2,3 is constant.

Finally, we have

Y. & =8 (1.91)

Kippenhahn & Schluter (1957) combined equations (1.89),
(1.90) and (1.91) to give

y ! - 2 B, 38;_3& .
B, V'8, - BV B 0\ 3% =2Y=0 . (1.42)

Once the magnetic field h:s been determined, the density

distribution follows from the X — component of (1.89)

28 _ - wm By 1By JER,

—

X wir RT d x dz

1-93)
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1.5,: PROMINENCE FORMATION IN A CURRENT SHEET (Contd.)

L T e

They argued that Ry varies slowly with X in a thin

prominence, and so took R« independent of x .
They also neglect variations of RBix witt height so that
B)‘ = C—CIV\S.tQIV\JC .

Then by (1.91), R, is independent of % and (1.92)

becomes

-
a &% “+ & ag?‘- v B ) {(1.94) ’

d x* Ho Bx 2%

The boundary conditions %% (nze) = © and 7

B (x> 10y = Ra (vaY give the following solution to (1.94):
2 (x~ :

By = Belo) toh [ Bape X7

B 2 Hs (1.95)

LE
]
B
2
R
4
a
i
g
‘;5
%%
o3

i
o
i
Wy
f
=R

= |
L3
A
%

The resulting field lines are sketched in Figure(13)
page 94,

Equation (1.93) for the density reduces to _

2 3

.a_g— = - ___Y_\_’\___ 3 B —é

4
o x LrRT D x
with the solution

2,009 ale2) |
px - T e (B2 X Y] ()

ol m. 0%
R A

subject to the boundary condition §=0 as %X -5 ve .

13
]
%
&
33
kol
7
'3
s
]
i
i
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Figure 13. The magnetic field structure which Kippenhahn &
Schluter (1957) developed to support the condensed material

in a quiescent prominence., 3

The field structure is given by equation (1.95)..
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1.5.3 PROMINENCE FORMATLCN IN A CURRENT SHEET (Contd.)

The density distribution has a fairly sharp maximum at
the prominence centre, ( X = © ), and falls to half its
value at x = * [-g H, LR, / Baloo) |\ .

If this value of X is interpreted as the width of a
prominence we see that the model predicts a width of

approximately H, , the scale height,

RN q
e =g =~ fp
o mtﬂ G b
-\ -\
where Boltzmann's constant R = 1:38%10 g AQS )
. ) - "Lt\’
the ton  wase mi. = l+67*%10 Q
gravitational acceleration 3 = 2+ T %16 cwm gec ™

and temperature T = 10(’ S Ve
This agrees with the observed values of the width of

3 |

from S¥10 " gwn o 107 Gon o

LN
The maximum value of the demsity §,., = M By (o0) /gTr BT,

which for a prominence with T = § x 10 o K , g 4

p - it 2
Balo) = 2 Gauss , ques = Sxio ‘"’Sc,m-% or Ne ¥ 10 ow®

2

which also agrees with observations.
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PROMINENCE FORMATION IN A CURRENT SHEET (Contd.)

STABILITY OF THE KIPPENHAHN & SCHLUT=R MODEL

At first sight one may suspect that the Kippenhahn

& Schluter model is unstable to the interchange instability,é

since the supporting field lines are concave to the plasma,

Anzer (1969), however discussed the stability of thsz
model against arbitrary perturbations and found the model
to be stable under certain conditions. He uses an
energy principle due to Bernstein et al. (1958) ,

modified to include configurations where the normal
component of the magnetic field does not vanish at the
discontinuity surface between a plasma and a vacuum.

A perturbation, g , of the plasma everywhere produces

a change in the potential energy of amount

S m 2o [_‘S:.[Y(X PU.€+ £.0b)+ l«w\(g,\&)%

=B n el cud (€,08)49.08¢) .7 9] AV

(1.97)

the plasma being unstable if there is a particular

displacement j; for which SW < 0 |,

b
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Figure 14, The model of a prominence with width, d ’
supported by the magnetic field, which Kippenhahn & Schluter
(1957) calculated and which was tested for stability to

general perturbations by Anzer (1969).
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1.5,.: PROMINENCE FORMATION IN A CURRENT SHEET (Contd.)

Anzer considered a thin vertical sheet of width 4,

as shown in Figure(l4) page 97, containing a current
“3‘3&7 = 2B, (1= (RBy) & 1\3%3_95_
2. 3

In the limit d = 0, with B, (x=o) = By

equation (1.97) becomes

s ks A on Y 2
/ Iw = 'ng :3 FEy g '&‘fgzd“s‘)‘%
+ positive term,

from which we find the following sufficient conditions

for stability (dw>o):

AN T3 d\f;o > o Crag)
daR
hnd , Bes 2" &0 , Liad)

If the mass is supported by thelorentz force, so that

fdfsz._. gxojnz on DBE
Thus

Bes Agz 20

and (1.99) becomes

)

A By %%(AB?‘) ='—ii %z. Qa@ﬁlt _I‘Z—c%%(jb)l!: P Lt-teo)

[

98.
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1.5.: PROMINENCE FCRMATION IN A CURRENT SHSET (Contd.)

so that for stability the current density decreases
with height. While measurements indicate that (1.98)
is correct in quiescent prominences; direct observational

proof of (1.99) is not yet available,

Observations by Rust (1966) and Harvey (1969) that
magnetic fields in prominences apparently have no
preferred orientation with respect to the prominence

axis léd Nakagawa to consider the possibility that the
/shear between the prominence magnetic field and the

field below might provide support. Nekagawa & Malville
(1969) considered an upper half plane of plasma with a
uniform magnetic field st supported against
gravity by a magnetic field ( RS, Jlgtb ,0)

in the vacuum below,

They linearized the MHD equations, neglected radiation
and thermal conduction, and investigated the stability of
the interface z = 0O as a function of the angle
between the magnetic fields in the two regions.

The fastest growing unstable mode is obtained from the
resulting dispersion relation and predicts a break-up

of the prominence plasma into regular spaced sections
with a certain wavelength. Nakagawa & Malville suggest
that the regular arch structure of many quiescent
prominences is produced by such an instability.

The angle of shear between the lower and upper field affects
the wavelength at which the instability occurs, and by
comparing this wavelength with the observed spacing, they

predict this angle to be between 60° and 90°.
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PROMINENCE FORMATION IN A CURRENT SHEET (Contd.)

THE AIMS OF THE THESIS

We consider two instabilities which can occur in the
solar atmosphere, the thermal instability and the

tearing mode instability. Both of these instabilities
are applied to neutral current sheets in an attempt

to understand the processes involved in the formation

of prominences within such structures. Also we

examine the thermal instability in a magnetic arch

. structure to see if it could be the cause of condensation
" in the solar atmosphere.

In chapter 2 ,we extend the work of Kuperus& Tandberg—Hanssen{
(1967) on the formation of quiescent prominences in a j
neutral current sheet. We first set up the equilibrium forc
current sheet plasma under a balance between radiative
loss, constant mechanical heating and thermal conduction,
and then investigate its stability. The object is to
verify the order of magnitude prediction of section 1.2
that instability occurs when the current sheet length
exceeds a certain value and to obtain more accurate values
for both this length and the time it takes the plasma to
cool to prominence temperatures.

In their paper on the formation of prominences,

Kuperus& Tandberg-Hanssen (1967) suggested that the
fearing mode instability occurs along with the thermal
instability, and so we have examined,; in chapter 3, this

resistive instability in the neutral current sheet,
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1.5,: PROMINENCE FORMATION IN A CURRENT SHEET (Contd.)

As described in section 1,3, Cross & Van Hoven (1971) i
\have developed a numerical technique to calculate the

growth rate of the linear stability problem for a sheared
fileld, They search for the unigue value of this growth

rate which brings about convergeace of the Fourier

B O T L s PR TN R

series that describe the perturbations of a spatially
periodic equilibrium configuration. We use this me thed
to calculate the growth rate of the tearing-mode instability ;
in a neutral current sheet. In addition,we investigate

the influence of a component of the equilibrium magnetic ;

field across the neutral sheet on this growth rate.

In particular we want to find how big such a component ¢
needs to be to inhibit the teariné?mode, since this is ;
of relevance to a possible trigger mechanism for solar %
flares. é
We expect some types of prominence to form in neﬁtral %

current sheets, but others may form in closed magnetic
field configurations. In chapter 4 we consider a force-free]

magnetic structure and examine the effects on the thermal

DR A e

instability of moving the feet of the arches and so

e

shearing the field. We expect that, as the shearing

B Sene s g

increases, so the flux tubes become longer, until thermal

conduction is no longer able to prevent the occurrence

L ey

of a thermal instability. The object is then to verify
this intuitive idea and find how much shearing is necessary
to initiate a condensation, Presumably at the onset of the

instability plasma is sucked up along field lines until

., > [ A 7 %
ot s A g SR 14

enough material is present to allow a new equilibrium in

o

the form of a prominence, H




CHAPTER 2.
THERMAL INSTABILITY IN A CURRENT SHEET

In this chapter we present a model for the thermal

equilibrium and stability of a current sheet in the corona

or upper chromosphere, The energy balance of the neutral
sheet is between thermal conduction, radiative loss and a
constant mechanical heating. When the length of the sheet

is small enough, the plasma in the sheet is kept stable by

the dominance of thermal conduction in equalising any
potentially unstable temperature differences, but as the
length of the sheet increases the effect of thermal conduction
is decreased considerably. If the length exceeds a certain
maximum value no equilibrium is possible and the plasma cools
down. ¥e calculate in this chapter, the values of this
maximum length and also the time taken for the unstable plasma
to cool down,

We also outline a method origirally devised by Cross & Van Hoven
(1971) in their study of resistive instabilities, (see Section
1.3) for calculating the linear growth rate of the thermal
instability. This may prove to be useful in establishing

how the thermal instability interacts with other instabilities,

in particular the tearing-mode instability.
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2.1,: THS TQUILIBRIUM ENBRGY BALANCE IN A CURRENT SHEET

In this section a simple model is set up for the

energy balance in the neutral currént sheet whose
interior field vanishes. The sheet has width e

and length L. and is bounded by anti-parallel magnetic
field lines of uniform field strength B. Equilibrium
conditions inside the sheet are characterised by gas
pressure P 20, density f’20, temperature T 20 and a
vanishing magnetic field, while the corresponding

values outside are P, , £, , T, and B ,aé indicated

in Figure(l5) page 104, All these values are assumed
uniform so that our simple model takes no account of the
spatial structure of the sheet, Plasma motions in the
equilibrium state are also neglected, although a more
comprehensive treatment would be expected to include them,
as well as the vertical pressure gradients produced by
gravity.

The neutral sheet is assumed to be in a state of
magnetostatic equilibrium under a balance between plasma

and magnetic pressure, which gives

Pao = P, + Bz/g-t—, T (2.1)

The perfect gas law gives the internal gas pressure as

PZO = R glo—rlo 4 | LZ'Z)

R bt
’
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Figure (15)., The simple model for a neutral current i

sheet of width { and length L in equilibrium energy
balance. The values of pressure P20 , density fao,

and temperature T 20 inside the sheet, where B:0, are
calculated for both coronal and chromosphere values of the

corresponding conditions outside the sheet. i
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2.1.: THE EQUILIBRIUY ZNERGY BALANCE IN A CURRLNT SHEET (Contd.)

Finally the equilibrium energy balance equation for a §

unit volume of plasma is

—L(f)'ﬂ « V. k\:_g_y_'r) = 0, (2.3)

where L is the heat loss function, which is defined
(section 1.1) as the difference between the heat lost
and heat gained by.a unit volume of plasma per unit time
due to all sinks and sources in the atmosphere except
thermal conduction, and ¥ . (\é LuT) is the amount
of energy conducted into the volume per unit time.

We need to detail the terms which must appear in the -é
energy equation for a plasma in the corona and upper *
chromosphere. As already mentioned in Chapter 1l
(section l.l),the main heat sources and sinks in the
neutral current sheet that we shall consider are the

loss of energy by electromagnetic radiation, heat

conducted into or out of the sheet, the constant
mechanical heating and the joule heating.
In our analysis we shall approximate the conduction of

heat into a unit volume per unit time by

K (T"~TQ~°)/L} 5 K_L ('T\"'Tzo)/e" ) (l"—r)

where L is the length of the sheet in the y direction
. and € 1s the width in the X direction, The conduction

of heat is affected by the magnetic field, B, such that

o (IO L SO,
A PP RN HS 3 U S IS

the coefficlent of thermal conduction parallel to the field,K]
is much larger than the coefficient perpendicular to the ]

field, ¥;, where from equations (1.22 ) and (1.23)
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THE EQUILIBRIUM ENLRGCY BALANCE IN A CURRENT SHEET (Contd.)

" 5/a
[y = 2% 10 e K s eras se&‘dqg‘CNW“ {2.5)

and

T
Ky s Awo s sec” deq' e (2.6)
—S Earey 4

In the sheared magnetic field of a neutral sheet there

is an electric current which heats the plasma at a
2 w B
rate 3 /& , where the current density J = ? oo

d&&ONWF eeitand the conductivity & = 7-7x\6“s

Wl -ste gA LB Rl L E

3
T,_C/;‘ €. M.\,

from equation (1.4). Thus the joule heating is of

s Wb
ey 4

o ST,

order w magn tude

375 = 3wt B.L/( Cew f)? Tz.:/") (2.7)
-3

e%gs sec”' e

Both joule heating and thermal conduction depend on

the dimensions of the current sheet while the other
main energy term, radiative loss, does not. Thus, to
see which terms are important in the quiescent
prominence model, we shall compare joule heating and
thermal conduction with radiative 1oss; In fact we
shall calculate first the ratio, R, , of the radiative
loss given by % f:o 7—:2 to the joule heating ‘
given by (2.7), and then the ratio, R, , of the %
radiative loss to the thermal conduction parallel t¢o
the field which is given by equations (2.4) and (2.5),
and lastly the ratio,flg , of the radiative loss to i

the thermal conduction perpendiculzr to the field,

B> g‘f’i’z‘ A =

which is given by equations (2.4) and (2.6).

et
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2.l.: THE EQUILIBRIUM ENERGY BALANCE IN A CURRENT SHEET (Contd.)

‘Thus,

3/
o Thy Lunf) st
- >
K\ l-3xlo"*‘ BZ
L oA
R = ¥ ?'LO TZ.O L"L
- )

Kn (-T( —T?.O)

b L SV ETREY Y & R
d RS - % S’Lo ! 20 Q
an *
ik, Ty =Tao)

We have tabulated R1l, R2 and R3 in Table 2 using as

the dimension of the quiescent prominence,

L-=§>‘\oq0vv\ ; Q: s"logm

b

and with coronal values of temperature and density 4

Tyum 100 . e = Zaip® g
(corresponding to a height of 3.7 x 10% cms in the
Billings & Alvarez model of the corona, Table 1).

It can be seen fromlTable 2 that,in the coronal current
sheet we are considering, the joule heating is very small
compared with the radiative loss and so can be neglected,
However, in the chromosphere, joule heating can be

important, H'r'\e,r'e, Taoo =T, /to =~ § x \O3 L TR

£, = e g em> | B = 10" Gouss
and, if the width of the current sheet is less than or
equal to 5 x 109 cms, then joule heating is as important
as the radiative loss ﬁerm. For this reason joule heating
has been included in an energy equation by Heyvaerts &
Priest (1976) for their study of a current sheet which
forms as new magnetic flux emerges from below the

photosphere., _ , o
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The Billings and Alvarez (1975) model for a quiet region of the

solar atmosphere, Numbers in parenthesis give the power of ten

TABLE 1.

by which the value has to be multiplied.

HEIGHT (cm.)

2.3804
2,3891
2.3964
2 . 4000
2.4037
2.4074
2.4115
2.4212

2.4349
2.4566
2.4950
2.5724
TN
3.2014
k5649
9.3620
“1:6320
3.7199

(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(9)
(9)

2.0440(10)

In their model atmosphere, Billings & Alvarez measure height from
the centre of the transition region (T = 10°°K) and so, in order t§
give the height relative to the photosphcre, it has been

that this point in the transition region is 2.4 x 108 cin,

LOG T(K)

.70
4.80
4,90
4.955
5.01
5.06
5.11
5.20
5.30
5.40
5.50
5.60
5.70
5.80
5.90
6.00
6.05
6.10
6.135

L0G N{em™>)

9.98
9.88
9.78
.73
9.67
9.62
9.57
947
9.37
9.27
9.17
9.07
8.97
8.86
8.7k
8.60
8.50
8.31
7.46

the photosphere (Vernazza, Avrett & Loeser, 1973),

assumed

above

1C8,
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ABLE 2.

The size of the various heating terms relative to the radiative

loss term in a structure with the dimensions , L= §%10" cwm omd

=6x \ogc,m)of a prominence and surrounded by corcnal plasma

i

at a temperature of T, = 10° ®1¢ and a density of Ng = LHID" Gk
Rl KQ__ (L3
Magnetic ([The ratio of the |The ratio of the| The ratio of the
Field rad. loss over rad. loss over rad. loss over the
Strength Jthe joule heating.|the conduction conduction of heat
(Gauss) of heat parallel | perpendicular :
: to B, to B,
The temp. inside The temp. inside | The temp. inside B
the sheet, the sheet. the sheet. #
. G 1| L., . S - ar i -
Tao= T Tao®io i 1oe| Tao™T, Tao®1o s 1ol Teo™Ti Tac® ie. V20% Toa
) 3 L
0.1 Tixn10® 31%10% 107 | exig? 1% 10" gx10% [ Shre”  23x107 19x10 p
8 1 s o 6gx10' 2.8m10" Q'O“\OS‘E-.
1.0 pxtod  Bix1ot 24r0f 1FIwieT ino” 2hxio E
8 g ¥ simio” Q-z*\os‘?{
o 2 cowed] 2 x10% TR0 rixio’} 2anio o 4
10.0 : ZA
o
S, 2 0 3 w10 l-u\ow' qgnio'
100 ATt 2romio' 5wl | Foxton Llxiom Al e
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2.1,: THE EQUILIBRIUN ZMNERGY BALARCE IN A CURRENT SHEET (Contd.)

It can also be seen from Table 2 that the heat conducted
across the sheet is small compared to the radiative loss
in a structure with the dimensions of a prominence, where

for the case T,, ™ T, we have put S o

- ) =T
in both R2 and R3. In what follows, therefore, thermal
con@uction across the sheet will not be included in the
energy equation. From the values of R3 we see that the
heat conducted along the field lines is important

when T,, =T, and R & o C‘msg, so we include it in
the energy equation,

For neutral current sheets in the corona and upper
chromosphere, the terms which we are including in the
energy equation (2,3 ) are the radiative loss, thermal

conduction along the field, and a constant mechanical

heating, so that (2.3) reduces to

W KT‘*“ 5
bS’1°~’>¢S’:o Tzzl g T2o) .

If the mechanical heating rate per unit mass inside the

o (2.8)

sheet is the same as that outside, where it balances a
radiative loss alon¢, b is determined to be b=, § TS "

so using (2.5) for ¥, , (2.8) becomes

s/

e 04 — A -l o A e

Yo §‘ N 'ﬁ'x,fzo I'l.o + ARIO sz L‘\"‘Lo) - O (2,9)
fro L

The three equations (2.1), (2.2) and (2.9) are solved

for the three unknowns fzo, Paos and Tao with L and B

as parameters.,
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2.1,: THE EQUILIBRIUM ENSRGY BALANCE IN A CURRENT SHEET (Contd.)

In particular the results for L as a function of T 20 for
various values of B areshown in Figures (16),page LLe
and (17), page 113. Figure(l6)is plotted for coronal
conditions ( T, = 10°%K n, = (O en3). It shows that
as the lengﬁh L of the sheet increases, so the
equilibrium solution moves along a curve from the
bottom right-hand corner; the temperature T20 inside
the sheet decreases slightly from the coronal value

[ ( 10°®1 ). Eventually, where the length exceeds the
maximum value L max (which, when B = 1 Gauss, is
approximately the height of a quiescent prominence

(5 x 107 cms)), there is no longer any neighbouring
equilibrium, It can also be seen that for values of

L between this maximum and a certain minimum, there are

in fact three possible values of T20, Figure (17), page 113?

is plotted for the upper chromosphere case (T, = HDS°1<)
Ne = N)qGM;B) where we have included the high temperature
solution (T, > iosﬁﬂg). This solution also exists in
the coronal case but the values of L are too large to be
relevant to the formation of guiescent prominences. .This
can be seen in Figure (18), page 114, where we have plotted
the minimum value of length , ., for these high
temperature solutions as a function of héight, using the
Billings & Alvarez model aﬁmosphere (Table 1l.). The values

012

of L cms, in the

rin 311 this model are greater than 1

corona but drop to more reasonable values in the upper

chromosphere.,
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in the corona (with ambient temperature T 'IOBOK ) a8 g

St

function of the temperature, T 20, inside the sheet for several

values of the external magnetic field B (Gauss). The solid

e

parts of the curves represent stable equilibria, while the dashed L

B

parts indicate unstable equilibria. If the length of the neutrail

sheet is increased beyond L .. . (shown here for the particular

case B«) Gauss) then the plasma becowes unsts®le and cools down
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THE EQUILIBRIUM mNERGY BALANCE IN A CURRENT SHEET (Contd.)

In Figures (16) and (17) pages 112 and 113, the

; and P. 8'TT . .'¥

discontinuities in slope at 2.5 x 10°°K and 5 x 10%°K
are due to corresponding jumps in the values of ¥ and &
which are present in the approximation to the radiative
loss term.

The slope and turning points of the curves in Figures
(16) and (17), for the equilibrium temperature, T20,

are determined by the silze and sign of the temperature
gradients of thermal conduction and radiative loss.

To see this we will consider the heat gain function,

which is defined as,

— A e - & e __.S/Q_ .
H= %, 0T, '-%5.7T, + 2x10° T, (T, -T) . L2e) :
£, 1k

In an equilibrium neutral sheet we have T, =7T,, 4

and $.= §,.o, » where from (2.1) and (2.2)

fa_o fll (\""—lf:)

o

o

The equilibrium value of M, M say, can thus be written

in terms of L and T20 only as

A
—— = s Lo DL-I 2 - ¥
HolLTo0) = ¥, S);'Tnu R o (\"'_AL%') e 200 T (T M) .2 H),,'."
£ (l*j%) po =
It is the equilibrium condition, fh,(L,WQe) 20,

SN

U oy vy Gt
e o SN RS LR
SRS NSRS

that gives the curves L - L (T20) that are plotted in
Figures (16) and (17). Thus
dHe _ Mo | dHe db

+ ———r Ao Y

O = —
o8 Voo a"'rlo DL e
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o
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2.1.: THE EQUILIBRIUM ENERGY BALANCE IN A CURRENT SHEET (Contd.)

Now from (2.11) o
a Bl Yy O w"\en T‘ A Tzo . :

oL Lo whew T »Tao (2.13)

A

§o that an increase in L leads to a decrease in the heat
conducted out of the plasma when T, &1, and an increase
when T, - A TR Tﬁus (2.12) gives a direct relationship
between the slope and turning points of the equilibrium
curves and the value of dHo/dTyo , which from (2,11)
is determined by the size and sign of the temperature
gradients of thermal conduction and radiative loss.

(2.l2) is used in the next section to help determine the

stability of each part of the equilibrium curves in
Figures (16) and (17) pages 112 and 113,
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THE STABILITY OF THE CURRENT SHEET

We now set up the equations which govern the condensation

and cooling in the current sheet as the temperature falls .
along the dotted line in Figure (16) page 112, (when .
B=1 Gauss). First of all the transverse component of '

the equation of motion is

S’OLV"’ - g;(\’*r R*/gw)

But the X - component of the plasma velocity may be

ignored, because the representative velocity V = Qﬁt

~ 10%om sec'( T - cooling time'—*:\osscc_ H ¢ . width of the

sheet 210" cm ) is very much less than the Alfyén- speed
JUB /pwg) 2 107 emosec (B= | GQausy,

P =107 g cu3)

Thus the equation of motion reduces to

Pz 4 P' + B /3w ) (._2.1L»)

since the magnetic field vanishes inside the sheet, %

The rate of flow of energy in a unit volume is

1 4P X B4l

sl . SR ) OT: .
(-1 At (x-1) ?1 r}. bf b ?1 T "' (\(H'S“,j' ) (1-!‘5)
where ¥ = C'P/’Cv is the ratio of the specific heats.

Using the perfect gas law Pz = R ga-rz and approximating’g
the right-hand side of (2.15) as in the previous section,

the rate of energy flow into a unit mass becomes

CP -5_.-;: i y‘f\—rld“ = 'Y' f’z-rg_ = Z“lob / (\|~\1\
I’z.

(2410)
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2.2.: THE STABILITY OF THE CURRENT SHEET (Contd.)

where the total derivative d4/dt is approximated by the
partial derivative o /3% since we are not taking
account of the structure of the sheet in our simple model.
Equation (2.16) may be written using the heat gain function

from (2.10),iﬁ the form

Ce Sl He, Y . (2.27)

/ Since the value of the sheet temperature T, which
satisfies the equilibrium energy equation (2.9) is

denoted by T,, , the equilibrium condition may be written

HO(L,T’.O) = o
Now suppose that the equilibrium temperature is perturbed

in time to a value

-t
Ty = "rio + F\QF

)
where A is constant. The stability of the equilibrium

is governed by the value of & ; a positive & implies

instability and a negative 4 implies stability. By

SIA G M

I A T T e

é S z NS T ST 2 1)
R T D T A e I A R S e

T S

ik ey

expanding equation (2.17) in a Taylor'!s series about T=T20

we find that

& % SHaf Sa (2.18)
or using (2,12)
& == dHe dL (2.19)
b dT,,
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THE STABILITY OF THE CURRENT SHEET (Contd.)

- sign of the temperature gradients of both the rate of heat

R N T Py R Lt )

where the sign of OHe /3L is determined by (2.13). _
Thus the stability of the equilibrium to linear é
perturbations in temperature is directly related to the :
slope of the L- TR0 curves as indicated in Figures {(16) 3
and (17) pages 112 and 113, where the unstable parts of
the curves are shown dashed and the stable parts solid.

We have shown that the slope of the L-T20 curve, and

il A i

hence the stability of the sheet, depends on the size and 7

loss per unit mass by radiation and the rate of heat gain
by conduction per unit mass (equations (2.,18) and (2.11).
These energy terms do not both have the same éffect on

the stability of the sheet for all values of T 20 for 3

éHc : k-2 A ‘
g = T - (=% f,T, T Cleg3)
dTao xa o

gt i 3

& 1,,_‘0(9 \10"- (‘7{1‘ "’S,):'T,‘o) ‘

The b(cu\/b"rzo term is negative, and hence stabilizing ,

when T, ¥ l%-”T‘ P 1 positive, and hence i
destabilizing when T, <.:%-“r, i The sign of the %

temperature gradient of the radiative loss depends only

on &KX . When T 2 §xio% ey , thean & & ©

i :
so that [~ a(i~ag03/3730] is positive and hence destabilizing.’

But, when T 4 § = 0% 2\ y BAm AT

e "'\'\c\'t [_ g (Lp‘;\my / DTQO]

is negative and hence stabilizing. A

R R S L P
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2.2.: THE STABILITY OF TH& CURRLNT SHikT (Contd.)

Thus we see that in the temperature range S * lo* oK &
"TotE T both [~ Mg /oTae] eand (/3 To

are positive and hence destabilizing.

When, however, Tao & §=10* we find [~9(tras)/dTo) & ©
while (€. /3Tho > © , so that it is the radiative
loss which gives. stability at these low temperatures.

But when T,o 2 ‘;LT. the opposite is true; 5((...)/3‘]‘20 L0
omd. [-BKLMQ/@T&A >0 so that, when T 20 is near the
temperature of the surrounding plasma, the thermal
conduction is stabilizing and the radiative loss is
destabilizing the plasma.

The equilibrium is neutrally stable { 6 = O ) at

OHo [3To™ O which occurs, according to (2.12), at

dL/d T, = ©. In other words, the maximum and minimum
points of the curves are neutrally stable, If these
points are given a second order temperature perturbation

the energy equation (2.17) gives

oT,
CP =5 o —]5_' CT‘Z." zo\z az Ho/aT:; S (2.20)

where from (2.11) o ot
O* Hs (% 8o Tao = % 6T = -
-S:PZ Y T T ~Tae) (.. Ti \mole By =

*Tzo((a('i)%:“%)] g (2.21)

where we have used H = AH, P i
Now we are only interested in Q> H_ / a—r‘zz at the

turning points of the curves,which can occur only when
Tea & :Zc.‘- =t from the stability

considerations given earlier,

= /
By o 3 o Bites
R B b st S

)

el R

e gy
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2.2.: THE STABILITY OF THE CURRENT SHELT (Contd.)

Thus, in equation (2.21) the term in the square bracket ¥
is negative, The term outside the square bracket is

5 because from the stability

positive when T, ? 7{:( e

arguments given earlier Ol Llpa.)/d Tio is negative

in this temperature range. Thus, since the radiative

loss inside the sheet, % ?zo“T{i , equals the radiative

loss outside the sheet, %, ¢, T, , when T, = T, ,

our constant pressure assumption implies that % ?207}§ >
30,?,‘rf“ when T, 271,, and vice versa. Thus we

can see that bI!AO/QWf; is negative at both of the

turning points. If the temperature is increased above

T 20, it will return to its equilibrium value, but if the
temperature is decreased below T 20 it will continue to
fall since a_rz,/a*: becomes negative from equation
(2.20). Hence the turning points are unstable to é
q:adratic perturbations in temperature and the gas cools :
down at these points.

For the formation of quiescent prominences in the corona,
the neuvtral sheets are expected to develop along the
equilibrium curves T 20 (Figure(lé]pége 112). Begin

- at the bottom right~hand corner of Figure (16) with

T 20 £&°T, and a small sheet length L. As the sheet

lengthens, K one moves &long the curve through a series of
equilibria characterised by slightly lower temperatures :
inside the sheet, since less heat is conducted into the

sheet for larger values of L. : x
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2.2,3 THE STABILITY OF THL CURRENT SHEET {(Contd.)

If L remains less than Lmax, the gas keeps in stable
equilibrium. Since it is found from the equilibrium
curves (Figures (16) and (17), pages 112 and 113), Lmox
is a more accurate measure than L ..i. (given by {1.30))
of the longest stable sheet. The variation of
Klimax/ Lerie ) with /3 1s shown in Figure (19)page 123,
where the two curves reprcsent different ambient
temperature ranges. It can be seen that L yayw is always
less than Lepie o For instance, when /6 & ]
L mox = Leprit /10, The extent to which L¢,it
overestimates the maximum length of a stable sheet becomes
greater as‘/S decreases, the reason being that the
approximation £ = f,, becomes more inaccurate. From
Figures ( 3 ) and (19) the value of L maycan be found
at any height in the Billings & Alvarez model atmosphere
for 107% ¢ 2 & 10° ’
If the length of the sheet increases beyond Lmax ,
the plasma becomes unstable. It cools down,under the
influence of the radiative loss term in the energy
equation,along the line which is shown dotted for one
illustrative magnetic field value in each of Figures (16)
and (17) until it reaches a new stable equilibrium
temperature value. In the coronal case, when B=l Gauss
and b' = 2.8x (0" > d‘sneg o~ % , this new temperature is
approximately g % 10° © i 3 inside the current sheet

on , which we assume remains constant throughout the
condensation process, is by equation (2.1) approxim-itely

7 n{o"n'dfweg e~ > , so that the final number density

1s* 3 % 10" ¢m~® from the perfect gas law.




| 1

|
1 2 3
Log /3
Figur‘e (19). The maximum length for a stable sheet, L max ;

(see Figure (17) page 113), divided by the approxim=te value
Lerit (from equation (1-30)), as a function of B, the

coronal pressure, P = B« Eurer dnes cnn >, divided by the
magnetic pressure. The upper and lower curves apply to the
ambient temperature ranges T| > 2.5 = los-" K and § = v 4

s
T‘ L2-Sx10 K respectively,

/
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THE STABILITY OF THE CURRENT SHLET (Contd,)

Observed values of these quantities are T"EG%OOO°K.T6-BOOOOK';
and Nez 10%w? to S210'% em?, 4o thek P‘rl-Tx!O"?'chnes w"'i
to q31xuizdwwscm:1(Bruzek & Kuperus, 1972). Thus the
estimated values are in good agreement with the observed
values, considering the approximate nature of the
calculation, for example the inaccurate form of the f
radiative loss function at the lower end of the tempcrature %
range., 2

The fact that the equilibrium position at L is

max
unstable has already been mentioned, but,if one assumes
that the sheet has a gradually increasing length, the
actual development of the instability deperds on the
lengﬁh Lvnax( | + € ) which the sheet has attained before
the instability gets under way. The resulting
approximate dependence of the temperature on time is thus
found by integrating equation (2.17), while keeping L

constant at L, .( | + & ); this gives

= Y 3

£= Cp j dTa , (2.22) /
ML, T

Twax

where T is tte value of T, at Lpygex, H is given by ?

Wt Stae

(2.11) and we find §3 from (2.1) and (2.2) to be

f, = % Lia=g)
The temperature as a function of time is drawn in Figure (20) :
page 125, for R=].0 (B =08 Gauss, P, = 2:8x106% cl\Sf\QS
owtz)and several values of & ., It gives a decay time o
{the time taken for the temperature to fall to the lower
stable equilibrium temperature) of between lCh sec and 105 seg

depending on the size of € ,

ALY
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Figure (20). The time development of the temperature T,

inside a neutral sheet which has been made unstable by increasing
its length from lw;ax 5O b oee  AE®EY. T is the ambient
coronal temperature (I06ﬂ<) and.[g , the ratio of gas to mzgnetic

pressure,; is unity. The calculation is stopped wken T,

reaches the new equilibrium temperature value T ,rom

(see Fipure (16), psge 117).
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THE_STABILITY OF THE CURRENT SHEET (Contd.)

In these temperature decay curves the temperature stays
almost constant until the time is close to T and then
suddenly falls. This feature is noticeable in other
temperature decay curves associated with thermal
instabilities (e.g. Raju,1968 and Hildner,1971) and is
more pronounced the smaller the value of & .

The "solution of equation (2.22), shown in Figure (20), page

125 was calculated numerically; however, it is possible to gel

an approximate, analytic solution with which to compare
these results. Since the length of the sheet is kept
constant at L. (1 + €), the heat gain function H is a

function of T2 only so that we may expand it in a

Taylor's series about T = Tyeyx o

HLmalts 0, T2) = 2 @0 (- Taad s fla (2.23)
+ k—\“;\. 'me\ Q.S ’

where '::.—')L,S"T, + YT TMM K\*‘“\")

Q, = (&ﬂ)'}’-f\'ﬂ ™Mo (\*AA) :

oy L Cot=1) Cotn2) % €, T.“"w'if’ (1 +7g)

Wi 15 o BB
Ry U o AT == mmx)]
b)
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. THE STABILITY OF THE CURRENT SHEET (Contd.)

Now substitute the approximate form (2.23) for H, in

equation (2.22) to give

—_—

TMQ)‘" \1 =0
't = C.. p S - » CLT__,_
0, T* - o, 2F + o, {e)

o
where

-:;:. - TMQ)«. ~T?. .

Performing the integration,we have

-2 Cy [to,,\:‘ 2.0\.3?"0\7_%(&'3) b 0\7_‘%(@3)‘\ ) (ZZ,L}}

9 (&) 4Ce) N

where 1
2
(&)= /(4 azonfeer-of §ea) .
When T, as a function of T , as determined by (2.24); %8
plotted on Figure (20) page 125, the result is
indistinguishable from the numerical solutions.
We shall now calculate an approximate value for the

decay time, T , the time taken in equation (2.24) for

IR n | g

T to go to zero, that is T =2 lyax
Ty

We consider € << | and also 2 Q4 G

> 10 3
which, we shall show later, is true. Also, we only use
ot = o, , 80 that from equation (2.24)

= 2Cp [Tr A ok ]
A S —— — 7 ———e
- e o K 3(&\)

since "
\ 10\3—‘—1.7\0.3&\ > 10 ')L,?,T\ ey ng(e))

or, approximating further

o 0 Cyp
T* — (2.25)

J(-8a,a,€)

since

€ «4

RN e ok o, B B

o

3
By

AL Bt N g avt
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THE STABILITY OF THE CURRENT SHEET (Contd.)

.Equation (2.25) shows how T depends on € , now if

)

we let T w -1, , we can see how C depends

Mo

on 3 . With these approximations we find that, for

large /3

A, = % §|T|°L| KO'B““ ¥ ‘.3%_}3) )
Ay = e 8T (2 Gadg))

; Y
oy = ¥ BT (-20-547)

{&(@:-2@. )

so we see that, as we assumed earlier,
lngTgM\>\o>7al%QQ_
Then
= Cp (2,26)

<
2

% BT/ (CSe s 31 e 57950 €)

In Figure (20) page 125, we see that for T ¢ T

the temperature T is approximately equal to T,nwa

but when * o T the gradient of the curve is very
large. We will now show this effect by calculating
an approximation to the gradients using equation (2.2L)
and comparing these values with the gradients of the

full solution. Equation (2.24) may be written

T
L= - %{M“(A‘-A13+TM'LA1\} , (2.27)

where

Qe . s
AI.:' Q‘O"S—T ~ - Lwo + IOgﬂ) --S'T:_

ke J((s6 3015+ s"m—‘/;ne) i

1

a, foo . sLie) €

~
-

. q(e) \/(Ls:oar'se.‘l—/‘—j ¥ qu-ﬁ‘-ﬂe)

ic

o




2.2.: THE STABILITY OF TH& CURRENT SHEET (Contd.)

To calculate the approximate value of the gradient
when T & TUimax we use the fact that A, «\

and A, &| to get

i3 { s dy g

e 2B =
B 1S w P E LE T A
so that the gradient 4
& - - .:i_: = —‘T \[‘g
} k< o ©
(This 1s compared with the gradients, G, calculated ' %
using (2.24)
> 3 i3 T T G QI
-3 % ©:283 [1-3%10% | 1-L1%10° —t-uuo’g ~58x 15
1O c . .
©-2 | 0852 [119%10% [2:6%16° |-Q0x16%|-3.8x10°8 i
4
|o"‘ 2 0:86S5 | S8~ \OQ- I-Gxios -2 % {0'7 Sl o ! A
O‘2. 0'835 7'67“03 1.5}“0“. -Q,'S?‘(o-.b —La.-OuﬁD-(’ S

where T is the temperature at a time t on the temperature
decay curve and G is the measured gradient, while G1 is the ;

approxinated gradient. We see that G and G, are in

reasonable agreement and their values are typical of this

slowly varying initial phase of the decay.




2,2.: THE STABILITY OF THE CURRENT SHEET (Contd.)

13C.

To calculate the gradient at the final phase of the

decay, when T ¥

T

, we assume that T

is

sufficiently large and € sufficiently small that

LA L >

Then in (2.27)

=

T

A

% - LB

=

onnd. '€L0;t

T

(I
2

Ay«

. The approximate value of the gradient G2 is

e

Je

and is compared with the gradients, G, calculated

from (2.24),

& /3 W © T G Gy
.- "
X 06 Lbc*nf l@?*\ob ~Qixl0 [=27T%10 g
1073
02 06 |256%105[2-54%10° |- 23710 |- 1 7x 107
5 2 0-b |16ax10%|16x10° |-s6m0-2:8x10F
o~!
02 06 |2:29ax6%]a.sx10% 26210 H-1-br 0%

where the gradients G are measured from T =

t to T=0 at time

g

0.6

at time

We can see that the gradients

are much larger when € is close to T

followed closely by the approximate value of the

gradient 62 .

and this

is

I

RS O AT SLRES P 1 B0 S A S O s )




2.2.: THE STABILITY OF THE CURRENT SHZET (Contd.)

From the numerical solutions, the dependence of the
temperature decay time T ew €& is given in Figure(2l), 3
page 133, for several values of A | e B 1o*
to lO“L¥ Ul B=008 to B: %?aermass where

poe 2.gu 10" % alﬂnes cm=2 ),
A decrease in/e reduces the decay time for the following
reéson. From (2.14) and the perfect gas law, for given

values of P‘ and T, , a decrease in 8 leads to a

higher value of]i , which in turn increases the radiative
loss term and decreases the conductive term in (2.16). 4
Thus -3Ta /3t increases and the decay becomes
more rapid; The fact that a decrease in/3 reduces the
decay time can be seen in (2,26). Another feature of the
curve is that an increase in € above about 10 hardly 4
affects the decay timc, since the conduction term in (2,16)
becomes negligible. Furthermore, as € decreases, so the
decay time increases. In fact, in the limit as €& /
approaches zero, T becomes infinite. This effect of €
on the decay time can be seen in the approximate solution
(2.25}). So the decay time increases like '/}ﬁ; as €
approaches gzero, which agrees with the variation found

in Figure (21).

The decay time T depends crucially on the value of €,

so the problem arises as to which value of € .to .chaose,
In the above analysis we supposed that the sheet length

jumps instantaneously from L 50 Loae (1 + & ).
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RO A TR IS LIS

PP oo

G



125,

THE STABILITY OF THE CURRENT SHEET (Contd.)

It may be assumed instead that the length increases

at a uniform rate above L,,, , 50 that Lel,  (1+ (o\e/dt)t\,
where de /g4 = constant. In view of the time

profiles in Figure (20) page 125, we then expect the

sheet temperature tb remain approximately constant

until t = o, gy (snd e = Ldelde) * )

at which time the telﬁperature falls sharply. The
relevant decay time ¥ in this case can therefore be

estimated from the intersection of an € - T curve

in Figure (21) page 133, with the straight line e=(defdt) T

for each value of /3 and clc-./&t . The result is
given in Figure (22) page 134, for several values of 4 .

(/.% = 10T to 167" .e. R=0.08%8 o B =183 CTmss

where ‘D‘ = 2.8 10" % dﬂnes cm” % ) i

Quiescent prominences are formed over a period of about

105 seconds, which from the graph, requires a very small

- value for the rate de/d+ at which the sheet length is

- - S
increasing, namely 10 T for /»; = | 4o Ol ,

A TR TR 15 Ot s

s e 3B st e e hand R
oty e R SvEn s A § 0l
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Figpure (21). The decav time T for an unstable cororal neutral

"sheet whose length hss been increased to L ..\, (L + €

as a function of € for several values of /3 , the ratio of

gas to magnetic pressure.
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Figure (22, The variation of the decav time *
with d(-:/di. , for a neutral sheet with a uniformly
increasing length LS 17 + (deldt)’[ ), for several

values of the ratio ﬁ of gas to magnetic pressure,
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ATTEMPT AT A MORE DuTAILED ARALYSIS OF TH& THERMAL

INSTABILLITY IN A CURRoNT SHLLT,

In this section we describe a method we employed to

try to calculate the linear growth rate of the thermal
instability in a neutral current sheet. The method
was developed by Cross & Van Hoven (1971) and used to
study the tearing mode instability in a sheared
magnetic field, as described in Chapter 1, section 1.3,
We had already successfully applied their method to

the study of the tearing mode instability in a neutral
current sheet, (see Chapter 3). We had hoped to study
the thermal instability first by itself, when, by
suitable choice of parameters, it was the fastest
instability in the neutral sheet, and then coupled with
the tearing mode instability, when, by changing the
parameters, both these instabilities were important.
However, as outlined in this section, we were unable

to calculate the growth rate for the thermal instability
itself,

The Initial Equilibrium

We model the neutral sheet by taking the following

equilibrium magnetic field

|r>

B, = B Sim 2 (2.28)

where the zero subscript denotes an equilibrium variable.
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ATTEMPT AT A MORE DETAILZD ANALYSIS OF THE THERMAL

INSTABILITY IN A CUwitshT SHabT. (Contd,)

" From the induction equation, with the equilibrium velocity

Vo, = O, Weget

Yl €u .8 3] =0

which is only valid,with the equilibrium field given
in equation (2,28), when the time scale of the thermal
instability is very much less than the diffusion time
of the equilibrium magnetic field.

From the eguation of motion, we get

P s in WWaBIaTEs (2.29)

Equation (2.29) with the equation of state for a

perfect gas Po 2 R §,Ts 4 gives

_ P
fo i R,T“: K |1 ~ R T—-‘_-EE}— (?;30)

The energy equilibrium is established by a balance
between the constant mechanical heating and radiative

loss,

. E n — oL
s BERE ~l BT (2.31)

where the constant, b , is found by assuming an
equilibrium balance in the corona. In order to satisfy
equation (2.30) the density f, must vary with Y4 and then

equation (2.31) implies that Ty varies with Y .
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: ATTEMPT AT A MORZ DETATL.LD ANALYSIS OF THi THERMAL

INSTABILITY TN A CURaLNT SHaEl (Contd.)

However, in (2.31), T, is raised to a non integer

power K and the method developed by Cross & Van Hoven
involving the Fourier transform of such functions, is
unable to deal with this awkward variation and so we
are forced to take 1o uniform., With this condition
we can satisfy (2.31) only if f, is uniform, which
implies, in (2.30) that

/3 >%: |
When the equilibrium is perturbed by a small amount,

the linearized equations become

of,
2 vl P, §. ¥, 5 © N (2-32)
B, _ ‘
55 T T AWABY Al N (0B P o lTar ], (2:33)
oV, _
foSt = “Ib, * T LLABIARB*(TaBIAB], (238
CNYOL%%'+LK—0T}£2.¥J}=5€“~f:nyTﬁxﬂjﬂ
=2 £ 'Y‘T::“ Ly ) (2:35)
; Yl\ ='3i ‘Zo_r‘ Tar ¥ (2:36)
P\ 2 Q(?oTl * Ty ) ) (2-37)

where spatial variations in the equilibrium are
negligible when /3 221

If, in the linearized energy equation (2.35), we choose
the equilibrium variables such that the radiative loss
terms are negligible, then we find that T, =0,

if the flow is incompressible, These conditions will
glve us the tearing mode instability, which is dealt with

in greater detail later.
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2:3.: ATTEMPT AT A MORm DETAILED ANALYSIS OF THE THERMAL

128,
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INSTABLILITY IN A CURRILNT SHuLT (Contd.)

However, if the radiative loss term is important in

5 ARSI f 3 S

the energy equation, the thermal instability will occur

more quickly. From order of magnitude considerations

it aft 2 3b e it

we have shown in Chapter 1, section 1,2, that the thermal
Cp

Y- fo To“-‘ o

which is also the time scale we get from (2.35)apart from f

Cv
the factor «Cp, when the radiative loss term is included

instability time scale is Tr =

in (2.35)., If the growth rate of the instability W

>>7é;_then we get the tearing mode instability, while

if w 2:'7é:_ we expect the thermal instability.

Follqwing the method of Cross & Van Hoven we take
perturbations with the form -

B (x,4,00= e®T Co kx ZBX,\ Sim T n ois
By 8,007 e Swhxz_%n S| Aven.
A - :

Vxﬁx)ls,t):- e.“’t Sim kx Z Ven Cod o:j

= 4

fix,4,00= e Coalex 2 Sa C“"ja“"’ w4

wt 2; eSS nu p

T x,4,0: e Coahx > Th Con R

Equations for the Fourier coef;;cients are found by taking ;

the appropriate Fourier transform of the linearized

equations (2.32) to (2.37). This gives us, as will be
seen Chapter 3, where the solution for the tearing mode

instability is calculated in detail, six equations for t'e

six cocfficients an) Bsn ) VK“ ) V‘bn ) fn 3 TY\

in terms of coefficients with index less than n 1

. 24
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ATTEMPT AT A MORE DuLTATILED ANALYSIS OF THE THERMAL
INSTABILITY IN A CURKRNT SHLLT (Contd.)

However, a problem arises, as it does in the tearing

mode case, with the coefficients with n at its smallest

value, N=3 , Here the equations relate the coefficients

Bxas Byy Yy Vy 4,y 8nd Tz to the corresponding
coefficients with 3 replaced by 1 but,since N cannot
be made smaller, there are no more equations from which
we can calculate the first terms of the Fourier series,

Brrs By, y Viu, Vi, ¢ and T, and so we must make @an-

assumption about these terms in order to find them,

Ve assume that - a

PR

Yo ™ ek "o

where the constant d is zero when these coefficients
obey the incompressible equation, as we assume in the
tearing mode case, but will not be zero in the thermal
instability case. It can be shown that this assumption
is sufficient to solve for all the coefficients of the
Fourier series by using the Fourier transformed ,
linearized equations (2.32) to (2.37).

We then calculate these coefficients for several trial
values of the unknown growth rate, W¢ , to find that value
for which the coefficients converge as 0 is increased.
The unique value of w will then be the growth rate of
the thermal instability. However, we were unable, for
several values of d , to find a value of W for which

the Fourier series converged.
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ATTEMPT AT A MORE DETAILED ANALYSIS OF THE THLRMAL

TNSTABLLAITY IN A CUANLNT SHesT (Contd.)

The typical behaviour of the coefficients is shown

in Table 3 where the values of Vu,/Vy, , are shown for

several values of N and W' (where wW'= W 10°
CLOm
Ta 2'/3 i
and W= (ak Eﬁ?) , the value that Furth Killeen &

Rosenbluth (1963) found for the growth rate of the
tearing mode instability), also d is chosen such that

the first coefficient of the ?,, sequence, f, = [.0.

L4u

(when @>71 the continuity equation for the first terms

is
- (%
Vx" N Qh V:&\ 7 h.A Y\ b)
(2.8
so that we are taking d = - 2EA )
B Q.h '

TABLE 3

Values ox- \/%y}/\/%l .

el I p B RA B e ndiatadan o v B s

; _4
W - -2 2
' o3 10 | S-be S'6 e} 1O
n
| (-0 l-o 1:0 |-0 -6 P e
3 0-3 4x10 | (x10°| A x10° ~L‘.xlo% T [
& S
g ~axicd] Qe | 2sie"] 2%10" | 410 ] - 2nio® SRl
a q 17 2.2 2.2 2} )9 1
i 4 L*O | Gx10] 2710 | 2%10 |=§%107| =3 <10 |~ %10
o) o 23 | 5 . (0" 2% 23 26
;| ~Ax10 | - 2x10 10 ~brle |-§x10 }O
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ATTEMPT AT A MORE DLTAILED ANALYSIS OF THE THERMAL

INSTABILITY IN A CUiriNT SHaET (Contd.)

We see in Table 3 that, for large or small uJ’, the
terms of the sequence change sign alternately, but for
the range in between we find, as did Cross & Van Hoven
(1971). that for values of () on one side of some
critical value, W% (here w'. =~ 55 ) the sequence
has positive terms, and that they are negative on the
other side. However, unlike Cross & Van Hoven we find
that, as we get closer to bJé, the sequences diverge

and so we are unable to find a value of UJ for which

the terms of the Fourier series converge.
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SUMMARY .

In this Chapter we have presented a simple model

for the thermal equilibrium and stability of a neutral
current sheet in the corona and upper chromosphere.

We have shown that in a current sheet, with approximately
the size of a quiescent prowminence (L= keua\ft & Gx100 em
0= widtl, ~ Sx\ochn),the main terms in the energy
equilibrium are mechanical heating, radiative loss, and
thermal conduction.

It is found that as the length of the sheet increases

it passes through a series of stable equilibria until

a certain value, Lwnax , 1s reached, when the sheet

cools down to a new egquilibrium, We also find, for
temperatures in the sheet that are approximately equal

to the temperature of the surrounding plasma, that the
stable sheet is kept stable under the influence of the
thermal conduction, but that ths radiative loss is a
destabilizing influence, while at the lower equilibrium
the plasma is kept stable by the radiative loss term

and this time the conduction is destabilizing.

For an unstable sheet with length L. (1 +€), we

max
calculate numerically the value of temperature as a
function of time and also find an approximate analytic
solution which agrees closely with the computed solution.
For coronal conditions, the values of L. ..y and the

cooling time(for small € ) are in fair agreement with the

observed values for prominence formation,
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SUMMARY (Contd.,)

Using both the numerical and the analytical solution
we calculate the decay time for the unstable plasma

to cool down to the lower equilibrium. This shows
that the decay time depends on both € and /3

the ratio of gas to magnetic pressure, in such a way
that a decrease in € or an increase in @ will increase
the decay time,

After considering the neutral sheet with a static
length we look at the effect of allowing the length

to vary with time, and show that the constant rate of
change of the length must be very small for reasonable

decay times,

In the last section of this Chapter we have outlined
a method for calculating the linear growth rate of the

thermal instability, which may prove to be useful in

establishing how the thermal instability interacts with

other instabilities and, in particular, the tearing

Mode instability.
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TEARING MODE INSTABILITY (T.#.I.) IN A CURRENT SHELT

In section 3.1 we calculate the growth rate of the tearing

mode instability (T.M.I.) in a neutral current sheet using

a technique that Cross & Van Hoven (1971) devised to study
the T.M,I, in a sheared magnetic field with constant magnetic
field strength. We find that their force~free equilibrium
configuration gives somewhat different results to our case

where, in the equilibrium, the gas pressure is required to

AR S N LRI LR T e bl g s bed v

balance the magnetic pressure. Comments on an alternative
equilibrium structure and the possibility of an ideal instability ?
are presented in section 3.2 and 3.3. Next, in section 3.4 :
the effect on the T.M.I. of adding a transverse magnetic field
component; Bt:; is studied numerically; in particular we find

how the strength of Bﬁ, affects ths growth rate. An analytic

treatment is given in section 3.5 for cowmparison.
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145,
THi LINEAR GRCATH RATE OF THE T.h.I.

In this section the growth rate of the T.,M.I, is

calculated for a plasma inside a neutral current sheet,

using the method devised by M.A., Cross & G. Van Hoven (1971).

We first set up the equilibrium configurstion, a typical

variable being ., say. (A zero subscript is used to
denote an equilibrium value). The stability is then
tested by perturbing the variables to ﬁb “+ g] and
assuming .E Lt..go , 80 that squares and products of
small quantities can be neglected and the equations
linearized.

The M,H.D. eguations, in electromagnetic units, governing

the tearing mode instability sre the continuity ecuation,

%Ei- g.8¢v)=0 ,

the induction equation’ DR

s = IAla®) - ualh el

and the momentum equation, Sy
f 24

In this section, we neglect energy sources or sinks,

under the assumption that the time scale for the T.M.I.

is much less than the time scale for conduction, radiation
and mechahical heating in the corona. Joule heating is
assumsd to be unimportant in the energy balance. So the
energy equation is,

at

— 4 (VZ)YT 4+ (- T (e.y) = 0,
ot
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3,1, : THE LINZAR GROUATH RATE OF THi T.M.,I. (Contd.) :

. For a perfect gas, the pressure is given by

p=RgT,

and for a fully-ionized gas the Coulomb resistivity
is given by '
tz:@,-s'gx\ol?‘ Q/__"_‘J}_— e. M. W.

-T'S/’l. )

where ¥ = Cv/hv , the ratio of the specific heats,

X3 0

R is the universal gas constant,

w

and A, A is the Coulomb logarithm { page 11}, 2

The Equilibrium Configuration

We expect the T.M.I. to occur in a neutral current
sheet, which we represent by the equilibrium magnetic
field 3

TN

Bo= By Sim = 2 , (iy1c2) ()

where Q is the width of the sheet. The equilibrium

RO PRSIy it s b

field is drawn in Figure (23), page 148, where we ¥
have noted that coronal conditions are assumed E

B L T

at (5:'3'.%-: so that bo = ‘Da > ‘?oz Et\

omd [Rol= Ra there .

The zero order equilibrium eguations are

o8 PO A & A N TP SO S

Mo 22 > %2
Yaln, (Za B0 =0, (3-3) .
%, == LEaBo) a B, (3-4)
Ty = constant ; (2-S) ?
Po = RS To | (3:6)
amd B, = 653x10T A &)

3,
Fo




3.1, : THE LINSAR GRONTH RATE OF THE T.M.I. (Contd.)

From (3.4) and (3.1) we have

- 2 .oy
O:'}Zbo‘ég“ d\\ﬁ(B"\Sw‘ o b
with components d b, s
3x i ’
d R;
and Do e ¥R =
% &
Be v Ba
so that 4 e S tile o W e
R> %ﬁ-‘m [o% bq vy

Note that (3.3) is not in fact satisfied by the assumed
equilibrium magnetic field (3.1), which must therefore
be varyihg slowly with time. However, this time
variation can be ignored provided'that the growth time
, Trm, of the tearing mode instability is very much
less than the resistive diffusion time scale ’T;Q_/Trl)

for the zero order magnetic field,

where Tpo = awa/p, .
Thus, the zero order equilibrium, which we take, is

characterised by

To = congtant,

%‘L ) %7..
O e T o
Po 3T 3 To. Pa w '
Ps = Pol/@T) , (3-9)

1

B, = Ba Sim T2 R,

©
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Figure (23). The equilibrium magretic field _BO:'..BG Sii‘]TI_x_ SZ
a wocran

which is perturbed to calculate the growth rate of the
tearing mode instability. Coronal conditions are assumed
at yzi-g- where we suppose D =P P :/j)
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3.1.: THE LINEAR GROWTH fATk CF THo T.M.I. (Contd.,) é

The Linearized lEquations for the perturbed Variables, E

We now write f-" S’o'*f. i D = e ® Ny ) p= I>c,"'P\, J
Yo=Y, _@:@o*gl) \?: \70*\?\

with departures from equilibrium values indicated by a sub- ?

script of unity. After neglecting squares and products E
of small quantities, the basic equations reduce to ;
dP,
— 2 i 7
s Tl ® Lt =8 (3.10) i
B, t |
7 E AL B YLl (8 B
; {3.22) ;

Mo k228N 1 5

go a‘t ® "YP. % Q_'WLLY.'\§l)J\ ‘}.o+ (.\1’\3}_0)/\‘}.\1 ) (3.12)
S, _
Nk B gl T, &}Z-y_n) = S (3.13) p

- ¥y T L :

Pl R \:‘ ?o \ Y 01 ) (3.05)

\'z - - ..3.. j—_—“_- " ,{

\ A =y (3.5
Following the standard method for the solution of 2
linear stability problems, we next assume the %
perturbations take the form é
i

L wt+ Lkx o

Mk = plad B ; (3.16)
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3.1.: THE LINEAK GROATH RATE OF THE T.M.I. (Contd.)

where the physical perturbation is the real part of
%l(,g 5)*). We are assuming that there is no

variation with % .

The object of the analysis is to solve (3.10) to (3.15)

forw, the linear growth rate of the instability, as a functior

of k, the wave number of the perturbation.

It is possible to assume -?l is proportioned to (?.th

and so remove the x-variation because the variable X

e

does not appear explicitly wm (3-10) to (2-15).

3V

At i

The boundary conditions on the variables § T, ¥ awmd B,

odm

that they remain finite as X <> * o0 , imply that R is real.
It is assumed the W is real, so that we are looking for
purely growing unstable modes and not overstable modes.

The next stage in the solution is to expand @(5)

in a Fourier series,
-f S nit Y w
% 111 . n
.f-(s)a—‘f—\-z-?nCoo“z{* 7 w\_—o%}s
n=1

where gﬂg) is defined, at this stage only, over the i

range ~a & W & o .

Now it is possible from previous work (e.g. Furth et al,1963) b

to say whether the variables '?L%Q are symmetric or

anti-symmetric about the neutral line of the current sheet
Y =0 , so that it is necessary to define -F(;a) only

over the half-range O& o & O, and specify it as an even

or odd function in the other half-range. In this way

the variables '§LTQ can be approximated by 2 sine or

cosine series only, as follows
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3.1.: THE LINEAR GRUWNTH OF THe T.M.I. (Contd.)

o2

[33‘_(\:9 = VZ' an va\ “:g\_kﬁ

V\;’ i}
thn) R l VX(\ COQ n—'ag) b)
f\b-o B
Vi Ly = Z_ VS"‘ Sim =2

f Ly = ' s B 50 5

The % components of B,and V, are decoupled from (3.10)
to (3.15), because we assume that there are no
variations with 2 , so they need not be considered.
The range of 4 of interest to us is only O¢& Y & %j

a
i Thus we are

since the current sheet has half-width =
free to define g(s) , over the range © & Y4 & o,

as either symmetric or anti—symmetric'about Yy = °‘/z ;

If we assume that §( 3) and T (4) are anti-symmetric over
this range then we see from (3.17) that only odd values
of N appear in their F‘ourief series, which is equivalent
to choosing boundary conditions §,=T, =0 at Y= s ?

"the edge of the current sheet, so that the equilibrium

the Fourier transformed equations, it can be shown that
only even values of n appear for B,(y) and Ba( y ) while

there are only odd values for V,(y) and\ VS( y).

te gnla o

& K

L Ty S AT AL sk

PN T




2 P

THE LINEAR GROWTH OF THLE T.M.I. (Contd,)

We have so far used only 6 boundary conditions on the
variables as functions of X , namely that each of

Yy Ty Vi | \/3 , Bx amd By
be finite as X ->vw. However, in (3.10) to (3.13), the
sum of the orders of the differential equations with
respect to X is 8 and so we need to choose two more
‘boundary conditions. The ones we take are that

B%QO,\Q)&)" Vixlo,y,x) =0 ot %x=0

from the expected nature of the tearing mode instability.

)

/Then, bearing in mind the form in (3.16) we see that the
real variables B‘ngx) 3)t) and V\ﬂkx)‘i’-t)

need to be proportional to S(, kx

The Fourier transformed equations then imply that

6]7;.(7() 'ﬁ,t) > V\té(-x,\j,'t), flt"‘-a‘jat)

and __.
\\(.X) ‘5) t) owe eo.c.L\ t‘Jl‘o)om;t\cpna\ o Co bJC .

So the final form for the perturbations is,

o0
T .oNTTY .
B"‘ (X)\A,'U = e'w kax Z:'z an Sim T n s
. & ATTY evem,
Bu& (.K) ‘A)t) = Q(JL Stz Z_ 63"\ Con o
- n=o
& nIrY
Vix (x,4,%) = e®" Simkx 2 Vxn Coo

n=1t

V(S Lx,kA)t)z ewt Conlax z‘,v'ﬁ"‘ gw@éﬁ nois
e ok,

wt i? C nir Y

£, (x,4,0) = €77 Colx Z fule '
0o

& WIT Y

T A, 48 = e® Cohx Z T Ko —
=1

L gty Eafhec o
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3.1.: THE LINEAR GRO&TH OF THE T.M.I. (Contd.) é
The approximate form of the magnetic field, once the %
equilibrium field is perturbed, is shown in Figure (24) %

page 154. The perturbations in this form, and the 1%
equilibrium magnetic field, density and temperature 4

structure are then substituted into equations (3.10)
to (3.13), whose Fourier transforms give the following
set of equations for the coefficients of the Fourier

series,

+ V‘s\vw').\’\ ) KS.‘X)

B"tna—n = L Vstn-n) ~ ”\7\3 “—X (nxt) B

Len )

=

Eg s % R B 0
nen Chaasit X (ney ) -

o = Vi, Ag *+ vam_nxuv,““m} Be ek ¥,
x A-] :Er\ e A%L:-‘:Y\&-Q—‘- -TV\-‘L—X

I Aq(_ Bx(n-ﬂ) & Bx(n-\) ) (3‘2‘)

n n-—i )

= v‘(\n Rg * [‘V‘:S(n~z) N Vbtvw’z.)-&AQ ¥ N g"‘

+nNAo Ty +n A (_-vaz 7 .—T.V\-"L]

A

- _ B 12 (3&i
+ l-~-A‘"~r\ * n+n] B*er) LA‘1“+ ﬁl Breinmn ) :

- —

A e TY\*'L - h Vx Ch+2) ¥ (“‘{ 23-“_ VBL\'\'\‘l} . (—S‘ 23)
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Figure (24). The approximate form of the magrnetic field

once the equilibrium field, given by (3.1) is perturbed.
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THE LINZAR GROWTH OF THE T.M.I. (Contd,)

(3,20) is a result of N .R =0 and has been used to

eliminate Bar,from the other equations. (3.14) and (3.15)

have been employed to eliminate P, and 1, .

The variables in (3.18) to (3.23) are dimensionless,

defined by

= B = _ R P 08
Bt g, 0 ST 0 T RGee

where ?o(3=5)15 the value of the equilibrium density

?o) O:t lé'—'—O,

J
o . R 5 Vg =—_ T ors = o e

and E‘-‘-'o,‘l ¢
The coefficients appearing (3.18) to (3.23) are

. -k . \
Aq = ——C:/S Ao T (1 z(w/z)) )

Py
R
S35
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3.1l.; THE LINEAR GROATH OF THE T.M.I. (Contd.)

AT - NI
A, = wliep) ! Ay Crt/3)

2 s
Ay = *-T—:-z(;,;;&, AW G
B, ® ——‘—}S o B 3 B
D + R 4 (nW" * S
Jhe dimenmsionless  porometers owe
p= b, 8n/n ,
and S= Tr/ta , (324

where Tp= 6w ol/f, amd Ta= a/va= 0T £a)?/RBa

ore the resistive o\lﬁuston oamd Al vén tme scales.

We can solve (3.18) to (3.23) for the six unknowns

Vx n+2) D V‘ﬁ(ﬂ-\-‘n ) gx(n-ﬂ) ) B%Ln-&l) ) TL\'\-\-Q) omd ?n

once we know the values of the Fourier coefficients
with indices less than these. Any negative values are
determined by -?—“ =-{_ .. for the Fourier coefficients
of the sine series and -f- = .?—_ for the cosine series.
n n
In order to begin the recurrence relations at Nn=\ it is
necessary to specify the 2 starting values Vi, amd V‘:kl .
(We already know that on = 0O from the assumption
that gx(x,g,'ﬂ is antisymmetric in 4y about Y = o.)
Cross (1972) also had to devise extra conditions to
determine starting values when he looked at the effect

of heating on the T.M.I,

LD

o BB G s et e i TR




3.1.: THE LINZSAR GROATH QF TH& T.M.I.(Contd.)

Following him, we note firstly that the perturbations 3
ﬁ\(x)ﬂ)fg satisfy linear equations so we are free to

choose one of the coefficients arbitrarily, say
= (3:28)
Vy, = |

Furthermore, from previous work (Furth et. al., 1963) %

we know that the time scale of the T.M.I. is very much

greater than both the Alfvénic time scale and, (if A
| is not too small) the sound speed time scale, so that §

the fluid behaves incompressibly (see section 1.3).

e AR S gt BV e T e e AT

PRt By

Until now we have not assumed incompressibility, but we

st

now do so for the first terms of the Fourier series. K
From vY.v,=0 we get
4ot o DAL

This assumption is justified, in part, by the 7

- o E : ¥ ol = -~ NI g
computations which show that Vi, ok Van for a ]
converging seri-s of coefficients. A result of this b
assumption is that with n=-\ , (3,23) gives ;
5 9

o= (3.27) ;

3

We find from the computations that Ty 1is very much §
less thanVy, and V4, , for a converging serics of i

coefficients. With the two extra equations, (3.26) and
(3.27), as starting values, we can find all the coefficients

of the Fourier serics from (3.12) to (3.23). i
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THE LINEAR GROATH OF THE T,.M.l. (Contd.)

The aim is to find the value of W) for which the
coefficients of the Fourier series converge as "N

is increased. Since the perturbation functions must
have convergent Fourier series, we conclude that the
value of the frequency found in this way is the frequency
of the T.M.I. For general valuss of W the series
will not converge but as W gets closer to the actual
value of the frequency then the convergence of the

series improves and so it is possible to find the growth

rate of the T,M.I. to any desired accuracy.

In Table 4 we show how the sequence of coefficients

V‘,‘Sv\/Vlﬁ\ s with S= 10> and R=T/i6 , converges

as we get closer to a value GO = 1842,4120726,

TABLE 4

Values of Vy,/Vu,

nco 1 L2 - LO. | 1342 412072611802 41201261 18q1~qJ
| V-0 -0 | 10! "f o I
3 v-3 03 03 02

8 o 2 o2 o2 o 5 2

b 0-1 o-\ o\ o-
9 o2 0-049 eir ' 0-09
i1 - S0 o -01 (O XN 6] o2
e RO 00§ 0-0% - D
15 | - 2x10° -2.0 S-6 2w 10%
11 3x10° R x\0" - 2% 10° ~ 10
19 - 10 =% wio® q %10~ st D

T ]




3,1,: THE LINEAR GROWTH OF THE T.M.L. (Contd,)

TABLE 4 (Contd.)

When (o is far from C(3_then the sequence diverges and
oscillates such that, for values of to on one side of CSC)
the coefficients oscillate with N in one sense, but
on the other side of W, they oscillate in the opposite
sense, As we get closer to GO, more terms of the *
sequence converge and in this way we calculate —LSC
to any desired accuracy. We find that in order to get
convergence for the first seven terms of the sequence *
we require (O, to fourteen figures, which is on the
limit of the accuracy of the computations and so we »
are unable to find more than the first seven coefficients
of the Fourier series. In their case Cross & Van Hoven

found it much easier to obtain convergence.

Results:
The general shape of the dispersion relation, & ;

—

against k., is shown in Figure (25) page 160, for the
values s lo'o) 108 and log and/_1.= !Oe; Since we have
-followed the method of Cross & Van Hoven in calculating
&> it is interesting to compare the similarities and 3
differences between the two sets of results.
Qualitatively, the shape of the -‘:’/Tz graph is similar,
witho=0 at R =o and Tz Z W and with one maximum value
of @ in between. For small values of'-li we find that the
value of W is close to (TL S\)')"/'s in agreement with their v
results ( Crogs & Van Hoven, 1971) and the oripinal 3

analytic ones of Furth et.al. (1963, Appendix D).

o P2



5=108

s S=10°
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160,

1 3 <) 7 S 1 13 1
20 K /-

Figure (25). The variation of (0, the growth rate of the

tearing mode instability, with k y the wave number of the
perturbation, for several values offS , the ratio of the

resistive time scale to the Alfvénic time scale.
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3,.1.: THE LINEBAR GROWTH OF THi T.M.I. (Contd.)

ASE increases, & becomes less than (—\13)/3 ’

again in agreement with Cross & Van Hoven. But our
maximum value for O is somewhat larger than their value
and it occurs at a value of TZ,-EWham say, which depends

&6

on /3 but is independent. of S (when /3= 10" for instance,

[

wisx =T /Ls  Yw Cross & Van Hoven find instead that

decreases as § increases. The dependence of hwnm«

—

hmo,x
on 3 is drawn on Figure (26), page 162.

For given valuess of S and /3 there is a maximum value 5

of W » U3 ey Say, which has been plotted in Figure (27)
& =

page 163, for 3= 107, (o, ol

We find that

gy £ -?r,v-ﬁ‘: 16° o
e y v g el P 2= 10
et ke =0T

gl

o

So that, as A3 is reduced, ZSnM”xfalls equally for all

values of S considered, {

Cross & Van Hoven find that
o 6.1
O oy = B S ($>10°)

o-5

.and Furth et,.al.(1963) found that W p4, & S 5

which is in rcasonable agreement. The frequency that

is likely to occur naﬁurally is the fastest growing one
so that, although there is close agreement between our
results and those of Cross & Von Hoven for small values
of Wi , we would find in practice that the frequency at

which the T.M.I. occurred would, in our case, be faster

than theirs for a given value of S by up to an order of

magnitude,




12

10

Figure (26). The dependence ofiz the value of K

max’
at the maximum of an 0o /]2 curve for a given 45 .

(Figure (25)), as a function of 8 , the ratio of the gas to the

magnetic pressure,
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Log S :

")

Figure (27)., The variation of Gmw’ the maximum value of TJ
for a given value of S, on the 'G)"(E) curve, Figure (25) page 160,
with § , the ration of the resistive diffusion time scale to the
Alfvénic time scale, for severall values of/;’ , the ratio of the

gas to meghetitc pressures
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Figure {(28). The dependence of 'ﬁmm,‘ the maximum value of TJ “

for a given value of S , on the ib'(r()curve, Figure(25), pace 160
on,@ the ratio of the gas to magnetic pressure, {or two values
of S , the ratio of the resistive diffusion time scale to the

Alfvénic time scale. #
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THE LINGSAR GROWTH OF THE T.M.I. (Contd.)

The way in which the value of /3 affects CO pag,

g
is shown in Figure (28) page 164, for S = 1o®and 10 3
3

then condition (3.8) is no longer valid, i.e. G}’;_\T:‘.

we stopped the calculation when GO because

A possible reason why U3,,,1s an increasing function of A3 ¢

for constant S, is as follows. In the works of

Furth et. al. and Cross & Van Hoven, W is found in

terms of { S , an average valve of Q calculated

from (3.24) using average values of density and
resistivity. But in our case when B3 &1 | S,

defined at the edge of the sheet, is not an average value,
From the definition in (3.24) we see that S &« ('3'5;)\/2
where f, is the density at the edge of the sheet and

is related to the value f’o (3:0) at the centre by

Sl g = A/

Thus f, , and hence S , is only an average value when
73 > , while withﬁcclthe average value 4SO

is much less than S . The effect of reducing /3

is therefore to reduce the averzge value < S7?

and so we would expect from Furth et. al. and Cross

& Van Hoven, that @ would be reduced also. That
this effect is occurring in our case is confirmed, in
part, by the fact that it is only when B<<) that W moax
is reduced substantially from its large/g results, as

shown in Figure (28), page 164.

IS s o R dn e

A S TIOR Sh

w e fns

_;,-'(‘,’;‘\.‘s.

AR T T

£ 0w A

6 R S B

SR

Rl SR

i w3

&t A i

e

VA AR s

WM 30

et

o det gy

R

R T N




166. 3

3,1.: THZ LINEAR GROATH OF THE T.M.I. (Contd.) é
To summerize, we find that our T.M.I. results are ‘i
qualitatively similar to those of pfevious authors, but 1
that we find significantly higher maximum values of %
W . The differences are due to the different §
equilibrium magnetic field taken in each case. In our %
work the equilibrium field structure is that of a current ;
sheet, whereas the others were considering a sheared %
magnetic field of constant magnitude. ‘%
4
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AN ALTERNATIVE EQUILIBRIUM STRUCTURZ WHEN,A? > |

We have so far considered a simple equilibrium current
sheet structure, which we refer to as model A and which
has a constant temperature T, throughout the sheet. In
reality, however, the temperature may well vary greatly
across the sheet, its form being determined by an energy
equatiocn, whose most important terms may vary
considerably from one situation to another. The method
we are employing demands that the equilibrium variables
have fairly simple forms, but an alternative structure,
which we can treat and which we refer to as model B,
possesses a constant density f; , 80 that its
temperature varies with Y in order to preserve constancy
of total pressure, Furthermore, we are able to
demonstrate below that model B gives a growth rate that
is independent of B and is identical with that already
found for B%>) with model A. In the model we have
considered, in section 3.1, for the T,M.I. the zero

order equilibrium variables are

g comgtant |
i
BQ 2y Bz
ey QTN o
Po*' e S o= % Pa i

S
.= Blfar,

Ny = 6:53%10" Bu A
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3.2.: AN ALTEREATIVE EQUILIBRIUM STRUCTURIS

NHEN /3 27 )

{contd.)

these equations reduce’
o A
to

~ MODEL A

—
o
i
g
N
w
%
oa-
~
7

ie]
Q
1l
»®
o
v
]
!ﬁ
=
%>

Consider now the model
T 2 T5L0)
P(): Po(l:_\\ )
fo

1!

Constant i

MODEL B
N, = constamt ,
5 P (Y
BO—B“SW‘EL—.%“
We can show that for any positive/g , model B gives the ?
same growth rate for the T.M.I, that model A gives %

when 35>\ .  For model A, the linearized equations (3.1.0)

to (3.15), with the perturbed variables proportional

to Efd » reduce to the following .set, in the limit AZ»7 1|,
£ =0 | (3-28)

T = © 5 (3-24)

P, = 0, (2:30) g

=@, (3-31)

w8 =¥ (Y a B~ %_’;__\zkw_“gg o (3.32)

Wi ¥, = TL?TL‘ZABOMB.‘ *(ZaBIAB, |, (3.33)
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AN ALTERNATIVE EQUILIBRIUM STRUSTURL #HEN /3 >>1 (contd.)

so that (3,32) and (3,33) determine B, and V..

An alternative way to derive (3.28) to (3.33) is to
make the incompressibility assumption, M .MV, = O
based on previous work. The Z component of the curl

of (3.33) then becomes

- fo (?51_:!‘.3_ }_y_\at.):_‘_ g.{y,\“_(gng}_g)f\g’.l

Yy a1y
+ (gl\ E_S_\) r\.g’c;]j ) (331.-)
hrese N ee 5 a9

and (3.32), (3.34) and (3.35) can be solved for

Bi, Vix and Viy,.

For model B on the other hand, the linearized equations

wt
with the perturbed variables proportional to €
becomnme
fp=0 {330
b % AT S . (2:37)
P, = RET - (3-38)
\2| =0 ? (3'3‘”
wB‘:SZ:\(L,\BOB-%.V_«LV_AB\\ (3:40)
" —
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AN ALTLRNATIVE EOUILIBRIUM STRUCTURE WHEN AZ> 1 (Contd.)

so that (3.37), (3.38), (3.40) and (3.41). determine Ti,pa,Bil

and yi. However, the equations for V, and [,
can be decoupled from the rest by taking the Z component

of curl (3.41) and using ¥.V.,= 0 ., This gives

Vi A
(a Y 35\/“‘ = E Y.:\\‘_(Z'\Liﬂr\_féo

(2B AR, (2u2)

where (RSeS|, (3-43)

/ so that we can solve (3.40), (3.42) and (3.43) for

8
for Ty and P, . The equations for B, , Vix and \/“3

1

Vix ond Viy  and then solve (3.37) and (3.38)

in the two models A and B are identical, so the values
of B Vi ormd V“é and the resulting frequency will
be the same. It is only the r sulting perturbed
pressure and density which differ.

The advantages of lModel A over Model B are that one
does not need to impose the condition Y.V, 6 = o

and a more realistic value of the resistivity is assumed.

Model B however holds for all values of /3 "

%

3

%I
4




TEE POSSIBIITITY CF AN IDwAL INSTABILITY

In the results of the T.M.l, we found that, as /3

is reduced from 106, the frequerncy falls in value,

The question arises as to whether this reduced frequency
still corresponds to the T.M.T. It certainly cannot be
one of the other two resistive instabilities, the
rippling mode and the gravitational mode; because the
former requires a gradient in the equilibrium resistivity,
.and the latter requires a gravitational force, both of
which are not included on the model. However, it is

necessary to demonstrate that an infinite conductivity

b

instability is not playing a part. To do this Qe show .
that, when ho==o , the plasma is stable to the perturbations£
we pfescribe. :
We first solved, numerically, equations (3.18) to (3.23)
with- bo = O  but found no convergence for the
coefficients of the Fourier series taking several values |
of § and 0« w & §S . This suggests that the
configuration is stable to perturbations of the form (3.17). '
For confirmation of this numerical result we next calculated
@ analytically when h;=C> . Equation (3.,11) and
curl (3.12) become, when the effects of resistivity are

-
ignored by neglecting terms of order S;
L ._[?.;-II
b\) B‘s * Vb %xo = i -i-%

'—-"é";'; W =0 , (3'11..!‘_)

= T " et i
- By = By (R s Bre )20 | (3:45)
Buo

~where a dash represents differentiation with respect to

Tz Y/,




3a3q:

et
-1
R

THE POSSIBILITY OF AN IDEAL INSTABILITY (Contd.)

Then, using (3.1) for B, , we find
BE%*‘ vtg S‘MT%*“’L B‘Azo ) (3'“"03

Bh ~ B, LB -) = o, (3-67)

In this section we are following the description of
section 3.1 as closely as possible to see if there is
instability when resistivity is ignored. In that
section we assume that Bgiﬁ;Symmetric about e, So
the boundary condition 1s
dBy
8—:5 =0 oL Yy=0
The solution to (3.47) for -, & W & ‘/y with this

boundary condition is
g - Vo
Blﬁ = A CO&\A ( \'2,1 -'—\—\n') 'ﬁ 3 (.3"4:-83

where A is constant. Now in (3.46) at 'LZ'-“‘ o

we have

(B +Tw) B =0 ,
so that e —{-'T"" -
or BS:O % T:S:.O_

if we take By=0 at Q=0 as the solution, then
(3.48) implies A=0 , so that —@‘ﬁto for all W\
in the rarg> -~ '/,_ £y e ‘/1.

If we choose the solution 'Y%‘ﬁ= © then (3.46) implies

'V%==c> in that range and so we get the simple

uninformative solution to (3.44) and (3.45). Thus
more generally o = =TT . However, this valuc

Fyaadd, o o0 B Malet

Dok SO %

s E e

el T e A T G § T e e
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THE POSSIBILITY OF AN IDEBAL INSTABILITY (Contd.)

of W does not satisfy (3.8), and so there are no
instabilities in this model which have time scales
much less than the ¢iffusion time scale and are unstable

tothe particular perturbations taken,

Although there is no instability in this case, it has

been shown that a T.M.I. does exist when Fl= (o)

if we use the complete Ohm's law, Furth et.al. suggested
and Cross (1972) has shown, that the inertial terms in
/the generalized Ohm's law support the electric field
driving the current, and thus, give rise to a T.M.I,

Our analysis, and the computations, indicate that there
is no T.M,I. when resistivity is zero, that is susceptible
to the perturbations taken here,; so that we are left with
the conclusion that the frequencies calculated in the
previous section are those of the T.M.I..reduced when 73
is reduced. It is possible for instability to occur
if other perturbations are chosen, in particular if the
neutral sheet is perturbed by a wave form in the %
direction it is unstable to the interchange mode (Uchida

and Sakurai, 1977).
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T.M, L. IK A CUaHeNT SHuET &ITH A TRANSV.RSE MAGNETIC FIulD

In this section we investigate the stability of the
equilibrium magnetic field (3.l) with a constant

component Bt superimposed transverse to the sheet, namely
. i ~ ~
By = By Sim 22 % B, § (3.49)

We also suppose that

Te = constantT ,

\'10= B 1o G X
-row'a.

b

(3-50)

omd Po=p‘§o—r0-
Trhe equilibrium force balance between the pressure

gradient and Lorentz force,has components

2
'agisk\)o*' Se GATR) o4

W o-

, L3551

omd. 53;(% = ﬁ_‘v B g‘)“:s\tsas'w@f) . (%52
Equations (3.52) and (3.50) imply a density gradient

in the X direction. In order to be able to solve the
equations using the Fourier series technique of Cross
and Van Hoven, no suéh gradients of the equilibrium
variables in the X direction are allowed, However, this

density gradient is ignorable if in the continuity equation

fo AV, 2 Y AL

S 5T (3-53)
X
Bmt";;‘%f-‘-’z"é"%—‘?":‘?’“ aw Be T8 o L B 2w
o % o aOX 8’\?\')& o % A /3 Bo &

bﬁ (3.52) , oo (3:53) wmblies
b S B AX

O iy SOPIT DT e &
et Aad b B by el o




3 ho,t T.M,I, IN A CURRCNT SHEET &ITH A TRANSVERSE MAGNETIC FI-LILD §

{Contd.,) :
oF Be . , ak
5, /> T

In other words, we are restricted to transverse fields
so small that the scale for pressure variations along the

sheet exceeds the wavelength of the instability.

The pressure balance in the Y direction, (3.51), then

gives |
Po= Pl v g G TE) , (3e50)

£, = PolrT, , (3-55)

where 2 %_E_.t.)“ ‘
B

Also, as before, we require the time scale of the
instability to be much shorter than the diffusion time

scale of the equilibrium magnetic field (3.49) so

Vrad
Lr
e

TMi ) !
The linearized equations for the perturbed variables |

are, as given in the first section, (3.10) to (3.15).

Following the method used in that section we write each i
of the perturbations in the form §
L wt + Lhox i

Filx,y,t) = Re {e FW% i (3:456)
where FTL\S) is a Fourier sine or cosine series. E




176.

Yoo T.M.I, IN A CURRENT SHEET WITH A TRANSCERSE MAGNLTIC FIELD
{Contd.)
Either - -
» il
nN=0
< Y
nin
o Fly= 2 FGe T, (357)
n=o

Y —

depending whether the particular variable is assumed
to be symmetrical or anti-symmetrical. The Fourier
transform of (3.10) to (3.15), together with the
equilibrium conditions (3.50) and (3.54), gives a set

of equations for the Fourier coefficients Ky .

By contrast with the case Bt==0 , it is necessary to

allow ¥, to be complex so that (3.57) and (3.56) imply
wt
Fu 9,07 €5 [Cokn Rl + Simbx Fly]

The need for both Coslix amd  Sim kx  variations
when @B_+# O can be seen as follows. Previously,

with B, =0, we had Bﬁ( 0,94 ,t)=0 which implied
that Bb(x)&\’t‘) is proportional to Sw hox and that

all the other variables are proportional to either

Con b or gw\hx 2 However, when B,(#O, 8‘3(0-“3;&?6%

and so an extra Cmhx variation is needed for

B‘ﬁ (x J tﬁ ) t) .

The case .Bt==0 can be obtained from the present case by
imposing the extra boundary condition B‘A Lo, . =0,

which eliminates either Fé o F’Lo

oS
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T.M.I. IN A CURRENT SHEET NITH A TRANSVEDRSE MAGNLTIC FIELD

(Contd.)

The form of the perturbations taken is thus,

nNITY

le(x)‘:\)t\: e %C-fokx z B Y

+ Swmbyx E_ Bxbn S\Mm‘%g )

i

ew‘c % kax Z- BS Fos n'n‘g,

v
e Bodss J B%L“Cmn%‘sg :
nN=0

"5.3 Cx, Y,t)

Vi (x,4,0)

O

& & -
™ Lohe 7 Vs Con TE
n=o

wo
% ke ) Vis Cio —-;%7] ,

n=o

< ; T
VusKX) ‘SJ't) = e.w SLCm\lx i v‘ﬁﬂn S mir

NnN=o

+  Simbix i V. S;IV\.“T%E )

Ry
AR A
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Yoy ToMoI., IN A CURRENT SHEST WITH A TRANSVORSE MAGRETIC FIGLD s

(Contd.) 7
The equations for the Fourier coefficilents are
fk\f\ = A\ voc.'t.h * A'.I. Y—VJLL(.VN'J.\ ® VDC\(V\-"J.)-\ :e
+V‘A3V‘3Rn* “Au-tvgr{(mn * Vvﬁauw'n-\ 3 L?"SB) ?
f’i.,\/l B =y Vican ~ Az L vxp.kvnl) * Voca gn-ﬂ_l :
+n Ay Vg + n Ay, Y—Vﬁlu\n.) = V‘;;’..&n-:\.)—x 2 e (3-59)
B = v -
can = L A nw) V‘i\fl (W"ﬂ}“ Bin +[Tf\(n+|) +Tnm-o}l'\3m+ Vicann B3n 2 (3-60)
BD(.L“ Lv‘s"\"“‘) VS\L’\ |)]n8|n [ LV\&\) + I‘_(.“__n.]\'\gln V)LLnn B&n b} .(3. 4) ‘) 2 —
O = : . T
Asvxun *’ AbLVxL n+2) ® V:L'.. (.n-?_)] % hfan 2 AqTﬂn * ng Y.:Trkcn-t';,)
4T . + A Bxamﬂ) Bxau\-n) Bt 3
RLwt 1\] % L n«i n=i ' T By “'ﬁ (nr-ﬁ;"-"}') Bocl,n g Kz’b?‘) 1
Q= AS Vcan + Ab,[ Vacauwn * an(ﬂ_ﬂ] -k f(n = A-\TLr\ = Ag [_Tht.nfm) f
+ T (ol = B_’U'('\*“ Bux: (n-ﬂ] .&t,_.—-?-'—-«- nir -1»:-_. a3 (363)~x
Ln 1)} AC\ A -—-:..\-:T—- b Hﬁ)( : ) scan ) ;
O = As VY)R“ G AGL\/&R(“*Q) + VSQU’\-I)-}*“T; fkn +Tknn Al() *tn QH [-.TR n+2)
A ‘
+Tagn- 'JJ] + B;(Q(vw\\ (-A\'Ln i~ n?‘] ~ Bxa(n-n Enxzn i %{é"] 7 (3 "Ll.)
© = AgVyin+ Ae[\"gumn * Vshm-z‘;] nT s Tianhe + n A, {_Tumn
+ ‘L(“"’s}] + Bx;(n;ﬁ[ Al').ﬂ Ek: f\ﬁll Bx“(n |)[- Al').ﬂ -6—‘.-}- ? L3‘ QS)
Am Tatn«-m = R Vol tnvz) + (n+2) T VB"'(“"M ’ (3 66) 4
Ay, lem.z) = =R Vocgtnen) + (ne2) T Vﬁ"- (n+2) ? (3-67) :
whetwe coe {F’Lc‘xemts A, to A 1y omd Bin &tk Ban ose 3‘”‘"’\“ Z
. on \)ouse. (55’ M\OL :
. - S B¢ /B, 4
Bar ¥ = = 2, ' E
W o+ h* 4 (nm)
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ot T I, IN A CURRENT SHCUET WITH A TRANSVERSE MAGNETIC FISLD
(Contd.)

e R AX Bornge = s h

The Fourier series representations (3.57) are periodic 5
over a width Z2a, but we are interested only in the region
0Lt Yy & c,\/2 . Conditions of symmetry or

anti-symmetry about O‘/Q_ can be imposed, as in the

By FUl N RS o0 552 OF A
5% e b A D RN s d e

B¢ = © case, where the effect was to restrict 0 to

either odd or even values, For consistency with the

D

R.=0 case, we assume that Vyxi, , Van o fnn
and Ty, take only odd values and R,,, only even values
of n .

We now assume that this even or odd nature is retained

in these terms when Pot?ﬁ 0 % For simplicity we

assume Biain , Vinn ;Y%ins Sun @0d T Bake only

odd values of wn .,

These conditions split the equations (3.58) to (3.67) 0

into two independent sets, one of which can be solved for
\Y iy

Vi 5 we ) fe , To, By ond B’
while the other can be solved for Yam 3 Yt g fL,

tde b el e L

T, Bypomd Byy o e shall now solve for the first

group only and, indeed, it can be shown that the

¥ g e gty B

solution for the othér group gives V g0*Vaia* §i."Tin=0 ,
while R, . remains complex, so that it is through B, é
that B, affects the T.M.I. When these conditions are 3

applied to (3.58) to (3.67) we find

ar = A Vx'u\ * Ay {.thu\-,n 5 Vx'«.m«n] *’“A} V‘3R'\

1 b} (3' bg)

s A‘*Lv‘ﬁﬂkmn * Vg tessd

el Ho

A gis,

BXR.(nM) = L V‘Snl.n*a,) i V\gﬂnl (nwy) B\m—n)

it S

% L~r&Lm+ﬂ +-rﬂn] (ne)) Bacnedy (3:64)

|
.
s
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T.M,I. IN A CURRENT SHLET AITH A TRANSVERSE MAGNETIC FIULD

(Contd.)
Brin & Vaia © %3\'\ ) (2+70)

O = Ag Vxin + A r_ Vxl,u\n.) * in,(,w-v.{l * \1 YR“

+ A‘) TR“ +* A% Y"TKQV\-\"L) % Tﬂ.(.h-'l.\_l

TAgL R« Bty Be 2 (e Y R, L1

n< " =1 %o. ‘.l,ﬁ

0 = Ae Vgmn * Al ¥y, e Vaaco) * 7 fan

i - A\o ban ¥ N A“ [T&Ln*n*—rﬂm-mﬂ ¥ B)&QU\H\LP‘\'L!‘\

n-t

A 3
+ \3 A
”“n;\‘] 2 Bxgkn_.\ L At‘)_n S y . ('S"] 'l)

A Trumn Tk Vi (hegy (27T Vt&(z.u\w.\ . (2-73)

Equations (3.68) to (3.73) can be solved for

in&mn ) V)‘(lu\ﬂ.\ > TRtesn ?Rn ) BKR&V\-\-\\ ) %X.&"\

once the starting values have been specified. (We

already know that Bya, = O because B 0,9 1)

is antisymmetric in Yy about 4 =0 ). . 4s in the By =0

case we may put ' - )
Vypr =1, (278)

since the amplitude of

the perturbations is arbitrary. Also the incompressible

condition gives

V . = "j—‘—:— - - _—E‘:—- y
X ak >V‘3m ak (3:75)

kL%"'?ﬁ them wablies Ty, =0 )

%
N

J
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5
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(Contd.)

Equations (3.68) to (3.73) are then solved for the
coefficients of the Fourier series for several values
of N . As before we search for the value of @O

at which the series converge, this being the value at

which the instability occurs.

Results
[
In this problem we consider only the case /3 = [0
but, as shown in section 3.2, it gives the same growth

rate as model B in which § and Q are both constant, and 3
takes any value.

The variation of G0 with R is the same as in the Bg=O
case (Figure 25) page 160, except that increasing Ry
moves the whole curve down without changing it in any
other way. The curves thus have a maximum frequency

—

- which we draw in Figure (29) page 182, as a
function of B-L-./Bq for 10% &« S ¢ 10'°. We see that
for a given S , when Be/%hxis small enough (much less

- 8.5 _
than S éﬁ W15 constant, W, say, and we find that
e () = 2:1 5 (2703

the same variation that was found when Bﬁ‘=c))

in section 3.1 .

An order of magnitude calculation indicates that the tearing’

mode instability is unaffected if Btis small enough. The
effect of B, is to allow the transport of energy across

the sheet by Alfven waves, so if the growth rate of the

tearing mode instability is very much greater than the growtﬁ

rgte of the transport of enerpgy across the sheet then B,

~will not affect the tearing mode instability.,

<o

G L0 s Y O o 4

LEE Gt

RS

< 3enrx

a0, AW L o 38 A0 P N e v N ey e ), A 3 oD
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Log, [Bt/By)

Figure (29). The variation of 00,

mo.x ohe maximum groath rate

of the tearing mode instability in a neutral current sheet

with a component of magnetic field,[Bt, transverse to the neutral
line, as a function of Bt/BQ’ where the constant, BCl s+ 1s the
value of the magnetic field strength at the edge of the neutral
current sheet,

The curves are drawn for several values of 9 , the ratio of

the diffusion time scale to the Alfvénic time scale.
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T.M, T, IN A CURRERT SHaET WITH A TRANSVERSE MAGHLTIC FI..LD

B AR S

(Contd.,)

The time scale for energy transport by Alfvén waves across

v

Vi and the time scale for the tearing
T

the sheet isT;:=

‘mode instability with B,= o , is, from Furth et al (1963)

Va.
T (X, %, ) where Ty is the diffusion time scale and Ty,

the Alfvén time scale when By=0O ., The effect of B,
is ignorable if
5 Va V. \Va
Cami ¢¢ Tag & £ e (==
VAO VAO
Bt =Y,
oo

This order of magnitude calculation is confirmed in
Figure (29), page 182, where the tearing mode instability
is unaffected when Bt/@m ce g Yo, .

We did not calculate the variation of o, with Bt/ga
forSiio“’, because then Wmey < 10° so that W,
is not very much greater than T and the diffusion of the
equilibrium magnetic fiecld becomes important.

As Be/p, is increased we find that & falls in value

until ESwméx TT% where the method breaks down because the
T.M.I. time scale is approximately equal to the diffusion
ﬁime scale of the equilibrium magnetic field. When
Bt/Ba is large enough, 23}nm¢ decreases linearly

with Bt/‘ga on the log~log plot. Further, the linear

curve that is approached is inaependent of S ; 1t has the

equation 3
- (Be/R,)
- R ot 2 o W
e%towmw £ eogw ) (’57?
( B*r./ Ba\) "-z‘,
where 2 ) :
=5 = ("i:'\) ot = | {
Ba Bal

and (8y/@.) = 16079"'® = o©-.74 from the intersection
of the curve in Figure (29), parge 182 with the logI,ES %
v MOy }

xS .

ol 888, 47
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(Contd.)

As Bt./(50~ is increased, so izhﬁfalls in value and the question;é

arises as to what value of By , B say, inhibits

tervk
the tearing mode. The answer depends on whether we want the
value of By/g, which reduces T to a certain fixed value O, £
say, or the value which reduces @ _to a certain fraction of Uo(S) :
say WoelS)/n -

In the first case, suppose W, is less than 103, then the graph
in Figure (29) is linear, independent of S, and so from (3.77)
the minimum value of B, which inhibits the tearing mode is given
by (’og‘oﬁBtm/gQ:—o-\g ~J£Qc,3m&3, g KBTI

Or, in the limit as ©J, approaches I,

o o7 SO IR O U SR

B‘to‘_& /3“ = 074 .
In the second case, we require the value of {3t/{3a
— 6
which makes W, equal to ”ﬁg , or from (3.76),
6 67 ;

e 2 S _
W n (3.79)

Now provided n » 3 we can use (3.77) to estimate G3,,,

so (3.79) reduces to

— 026~ L KO'%”)( Btgt:t) = 60‘5‘% * 067 QOSS >

. _ | .80

plte P e o2 save il o

Again, when B exceeds B¢ iy, the tearing mode can be said to be

AN ded e

significantly inhibited by the presence of the transverse field.

23
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ANALYTIC TiHuATVANT OF THin TEARING MODE INSTABILITY &ITH

A ThahoVedSs MAGNLTIC FlLoLD CUMPUNLMNE PRESENT ,

The method used in this section is based on the
analysis of the T.M.I. by Priest (1969) in which the
growth rate is calculated for an equilibrium magnetic
field that has no transverse field component.

We approximate the equilibrium current sheet magnetic

field by

U -~
g-a“)i+35°?‘$_ 3 \3\4.0\

,[éo: ngo(tﬁ\-‘_gB5°: %g * &ﬁ"%— ) Yo (38‘)
'B.’.\’S il B‘\_r)og_. p) ‘3""0‘

where B and Bﬂ are constants. This magnetic field

o

satisfies the equilibrium condition that

22 LB Bl S0
in a piecewise manner, The equilibrium velocity Yo
is assumad to be zero.

The linearized equations, from (3.11) and curl (3.12),

for small perturbations Y., and B, , are
o B,
"a'-.é :Y.A(!\A§o\* -Z—%-‘_Vlf_f)_'\ 1 (3:32)
9 (v Ly i
?o ot —-"!l) “\' (\7'\8 \/\@\"’(.V B )AB'X K_'S%S)

2. Bi= .Yz (2-34)

If we next assume ¥, and B, to be proportional to

Wt % b R

e. 5 the Ycomponent of (3.82) gives

o Vy ¢
wB 830 +onthV3*:;( \1\3 * 51”); (3-85)

A TAFY St L T TR AR e s L

A X DLt )

- o
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3,.5.: ANALYTIC TREATMENT OF THE TLARING MODE INSTABILITY &LTH
A TRANSVERSE MAGNRETIC FILLD COMPORENT PRiSENT.(Contd.)

while the # component of (3.83) reduces (after using
(3.85) and (3.84)) to

B, VL SIECR TR
i m?’n) =R ‘w?)+ sy
\ &v.$ 2 Byo Buo) B B
"‘"“L w?) vy\TH “E;)
LBy ( d* &KO.\.“E_‘_{,“_&W)]
q-uwf' i1} (3.86)

In terms of the dimensionless variables

s—

—

B=D8/p , Vy=-VyikTe , k=ak, ©=wTe

. v, o g o ey
4=Yf , S=Te/r,, Tp~ MTO./}Z . e nlamdl e

2’

the two equations (3.85) and (3.86) for \!l~S and (.’35

becone ‘,. _\7 !
= It - 5 —— z) _‘_MV" -{); ;
By = By (o~ y %o w. [530 , (2.87)
o 22 i _ g
\!\Aﬂ(‘.‘. iﬂéﬂ& = ZV%(I-a—S.___%xo)_th BSO
BBy £ (B B Blo)
2

o s = =

<% b LVE:L_XU'EW_?Bﬂ + —\75 Q .S. B£ B.Z‘_‘.’..)] N (3.88)
where a dash denotes differentiation with respect to Eg .
Equations (3.87) and (3.88) can be solved for iib
euﬂﬁvﬁ for given values of ED,E; and S . Solutions :
are obtained in two regions, an outer region (—5 >e-o,faa5 )
and an inner region { o« T;S 4 €4, ) and then matched
at the boundary ( § =€&,). In the outer region the
resistive terms are neglected so that the magnetic field
is "frozen into" the plasma, while on the inner region

diffusion is important.
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ANALYTIC TREATMENT OF THE TEARING MODE INSTABILITY wITH

A TrAhSVadsh MAGNoTIC FloLb CURPONoNT ProoiNT (Lontd )

It is because of diffusion that the magnetic field can
reconnect across the neutral sheet and allow the T.M.I.
to occur, so that it is in the inner region that the
small transverse field component,13%o , will have most
influence on the instability. In order to simplify
the'analysis, while still retaining the essential
elements, we shall assume that By, is so small that
it does not influence the dynamics in the outer region

but still remains important in the inner region.

Quter Region: (Q » &5)

In this region where diffusion is unimportant we

neglect terms of order l/5 in (3.87) and (3,88), which become:

Coror | 4 gt

-— Sy eciad s Lo
By = By(@m+hR*)+ 7V, B, + __Y__@_ Buo , (3-89)
Vll 'EL & l’
Y9 -.—' h V|$ on = bb* B\‘ﬁo ‘55 ES (5 %xo on)
w

[ (1‘%%‘*) + V. (‘5:3 rssoﬂ (3-90)

In general B‘:5 and V‘;\ are complex, 8‘6 ‘:SR 4 "B‘QL say,

so rewriting (3.89) and (3.90) in their real and imaginary
parts, assuming @ and R are real (i.e. we are looking for
a purely growing insfability which is susceptible to a

perturbation-with an oscillatory X variation), we find

Byq = By LW+ B) + Vi Byo+ Vi, Bae | (3.01)

Bl = By (@) ViR, -V, By, , (3.92)

By i
118
~ L o TeoR 3 sy e i ol ¥ & — 1
VS& BEO V‘AR \z'"—z,‘%xo + B‘;L R Bﬁo * B‘:&a j}: (%5 Bo = Bxo)
(V%)

w
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ANALYTIC TREATMENT GF THa TOARING EODEL INSTABILITY ~ITH
A TinnoVoitol vaGhollo Fi-ll) CO&PGRENT PraSERT (Contd.)

s e s
Vg, By = Ty W Bro_ i TR+ By (2B B
‘T = Z&o%y_- E;:Ey]
L o wT + (3.94)
To ignore the effect of-égw in (3.91) to (3.94)
we require
TB‘AO Er keoﬁxo p (3.95)

provided the real and imaginary parts of each

component are the same in order of magnitude. But from

(3.81) the minimum value of B,, in the outer region is €, ,

so (3.95) becomes

By % kel

With this assumption (3.91) and (3.93) become

B,o o s ESR (_b—.) '\-_b.z\ + VBQ Exo ) - (3.96)
o "-h?- —gxzo Py _k;:L o e
O = VSR = e %\:)QE (B on_ %xo) : (3097)

7

where B, =o except at 4 =% . They are then
decoupled from (3.92) and (3.94) which have the same
forms.

Elimination of_\;sR between (3.96) and (3.97) gives

—— ff

Be. ™ Ty (k2 + E,, /EXO) (3.98)

The solution of (3.98) which becomss zero as Y - o

is
B, .
A Cexp (-RE) g Bl
where the constants of integration, &, and /3lare found

in terms of o by the following two conditions at

sl
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+ ANALYTIC TRUATH:NT CF THE TR ARING MODE TINSTABILITY &1ITH

Bt)c
A TrANoVeLOl SAGNLTIC iwly COmPURoNT PaavoiT (Contd.)
(1) B, is continuous ,
1+
(ii) 7 do == 1
/5, ©9
! 3
Condition (ii) is a result of (3.,98) and the definition
of N@Ko ,(3.81), together with the fact that Byo is
roughly constant when '6 is close enough to unity,
These two conditions give
-k i
o(ltoé[_e C-cral\\l-l‘k .
i [cX
‘ 3

Assuming symmetry about the neutral line so that

B\‘m(%) = 35&(—3) we can evaluate the quantity
—E' w2 f -‘—-?)I PO
QE(-—':S“(}”) "'k%ﬁﬂ) -:.2(.:%) :Q_()(‘}Z_
By fo Bynlo- Burlos /3

In other words, substituting for oQand /%,

A= sh Li<h-% Hosal ) , (3.99)
b o= (R s b

2

or, in the limit T\, e\ A= = (3.100)

Inner Region: { W & €, )

Define new variables 4= %/e , :\75‘-“-'\7.{)(1&- e/o) 5

where €% = @ /(4 k> SY). (3-101)

Equations (3.89) and (3,90 then become, with B _= Qe

= =..... e?._.._':. +”ﬁ_§n€bo‘::.§—ﬁ_
B‘Q %\3 ((AJ *'h-) 'ﬁ % ...‘.(.‘..:k_: #V\s\i - b\)) (3.102)

e DR
PR D At S T
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ANALYTI(‘ TREATMENT OF THE TuARING MODE INSTABILITY SITH
A TRANGVELOE MAGNGTIIC Flell COMPONENT PRoSENT (Contd.)

= Rao = [(Thd, R B i
SO, tte A) - =
v‘ﬁ(\* @Tz‘e‘*) V‘ﬁ(hck%—) ",;:"e__ * 9 By
s
Lhz (wg 3*V§3 ) (3.103)

where a dot denotes differentiation with respect to fi.

(3.102) and (3,103) determine E‘:\ and V‘S in the inner
region, whereas in the outer region the revelant equations
are (3.89) and (3.90), which reduce, when '§5occ1iei)

to (3.96) and (3.97), together with the corrésponding

/ .
" equations for the imaginary parts. In terms of the inner

region variables, the latter become

—g%:: %‘3 h"- 6:") (3.104)
T & Wi, o (3.105)
by b By

At i§'= Eq,/é , the boundary between the inner and outer
regions, equations (3.102), (3,103), (3.104) and (3.105)
all apply. From them we can deduce a lower limit

for €o/¢ as follows,

(3-{03} amd (3:-108) ot :i: :C:ég , o8 o-)o!gro-n((moi\'ellj

= & .5 TES] LR LR v B &
Vyer T Vule & E&S_% ‘B‘ﬁ{ o e (3.108)
i v
o w0 Sp
Since (3.106) and {3.107) apply simultaneously we need
(_&_2)" s Ll (3.108)
& o e

and 4
()

5 T ‘

Ay

e R S AT IR Y 0

gt“ 5 o

s 4 Ay A

i, oo 3

3. 5T

>
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3.5.: AKALYTIC TREATMENT OF THe TEARING MODE INSTABILITY ALTH
A TRANSVERSE MACNGTLIC Fl.LD CCMPON&NT PHuSmNT_ (Contd.)

o

i €o
" If, for instance, we choose g = |0
Byo

which gives an upper bound on the value of ﬂpfor which

, then (3.108) gives

2
sE.un e

our method works.

Now let |p= Ejéﬁg
R et
(3.103) become

, 80 that the equations (3.102) and

B, = By € (B W) «y‘*’f b Vs LB, (3200
'Vsk\“kWL)z.vﬁ R e /) B% ‘
% By = —;_:(\/ A ), (3.110)
which give, after eliminating ig ;%
1\:\5 S T (e D
Vg(\‘b/u ‘s( ’—b—'(t" ) - Mgk g
___L;b,',w_“‘:e bx,%)+v5(,‘%,.%“us &b+ %kh‘;z.
B _eN.® TaY i o
+~:-~‘:))+BSQ\—EG(C»+\11)+%) (3.111)

We note that,even although Tiﬁo can be ignored in the
outer region, its presence is required in the inner
region, since at some point there %3 becomes less than b ,
Equation (3.111) is solved for Tfﬂ , following the
method of Furth et al. (1963), by assuming @.3: constant

across the inner region. The boundary condition for

{(3,111) are

———

(a) Vy is antisymmetric so that Vi s & dl Q=

{b) \Jﬁ is continuous at the inner-~outer region boundavy,

S0 \/3(-@&2-')= ‘S(EZ ) - & B‘ﬁ from (3.1(15).5

O
{c) ”é.% is symmetric, so~th§1; vfg‘b:o at ;"-S:'O

or by (a) and (3,110) ?iﬁ =0 ok i&“ Q. '5
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ANALYTIC TREATMENT OF ThE TuaRIRG MODE TINSTABILITY AITH

A TRANOVEHOE JuaGNllC Floly CUMPONLNT PrisSshT (Contd. )

The solution to (3.111) is found as a series

= = n
Vo= L SNy

n= o i - &
under the assumptions (i) F_’;‘s': constant = B‘ﬁ ( "cf)

(11)  |b\Tee v,
(111) 15 e bHleel |
(iv) Til Lk LD 4

the latter two of which are justified later.

The result is
_ 3w bl S T L8 S '
Vo= B LR - TR Em )R + 503 ——
3G -geen),
= 5 21 b S o Ta Qo S ;
Vg Bm[‘rs"-;(-z%*“5,we‘))‘é"%(%*‘%@i"%“’e‘”l- gl

Now the inner and outer regions are matched by requiring
that the quantity A, estimated in (3.100)for the outer
region, has the same value here. The real part of

—

(3.109) gives, using h*¢¢ G,

5 oE wsow T Beb = [ol
(35R (ESRLU & L Vﬁ; i A Vﬁﬁ.‘ﬁ v )

so that, from (3.112) and (3.113), we find

‘:ZQ_A__) 5 | B )_ |
BualGre, €N By IR Cole

= 21mediz LVq+ibloen v eh)]

3 Nz[ 'Bw’(onnqwe )1

(3.114)

8 e B s

b3
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A _TRANSVE Sl aGNis1 LC Flold) COMPUNNT PHuoihT (Contd.)

i |

The coihdition that 83 be continuous at the boundary
between the inner and outer regions means that we must
equate the values of A given by (3.100) and (3.114),

which in the limit Rz¢l gives the dispersion relation 3

e | | ,
Sk L‘/"l + th‘l {o-'zg,n— —"3‘})} (3.115) 3
et e

i where E¥=i3 /(q.-\'i‘ £ from (3.101). e note

that provided W& % | , the effect of increasing -E\y,
in (3.115) is to make & decrease. The maximum value

of W at-fgs;-O, is T-Efw'= (i S/'\ZJ’L/S (3.116)

which compares with Furth et al. (1963) who get W ‘
7 ¢
proportional to (S/% ) /s

.

—

The solution (3.115) is no longer valid when k. is too small'f;
In deriving the growth rate we assumed that T?;S is constant |
in the inner region, which is true if the length scale

—

over wnich B'-:\ varies is greater than the width of the

inner region. In other words

-~ ¢
-

B'ﬁ

But according to (3.100), when b ce . ‘E"Q/EA\ o \/TZ

S (3.117)

so the condition (3.117) becomes

\
may | al & 7 ¢ _lc;‘ )
Thus > 2e
s - \/(ﬂ :"?
o R (Q-US/S?') X (BL1XE}
(3.118) and (3.116) imply that

Loangagt

ES*:,\W ¢ g (3-114)

Lic b
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3,5,: ANALYTIC TREATMENT OF THa THARING NMODE INSTABILITY AITH

A TRANSVoitSE MAGNSTIC Flild COMPONENT PresStuNT (Contd.)

1w =3, 2/3
Thus by (3.101), ® e*= Z=" <« (f'{.) &1

158,

and so we see that assumption (iii) is justified

provided (ii) is wvalid.

From (3.116), (3.118) and (3.119) we have

2 — Y.
S/S L wmm Va S'L P
Since S>>\ this implies that

so that the instability frequency lies between the
resistive diffusion and Alfvén wave frequencies.
This implies, from section 1.3, that the plasma is

incompressible provided

Thus we find that the dispersion relation for the tearing

mode instability in a neutral current sheet with a

K, Y et £ R i

—
\ L“L* (A)MMLL S )

= 2
< 4L f3,

transverse component of magnetic field is

T
=

where

The assumptions made to derive this relationship are

(1)

\

= -
/5 [.5[-—:—+ 3‘50 (o 1(,,‘\..L\>€- )] r (31250
e

Tgsz:constant f7§%(§g) in the inner region.

| 5

Ji &

e¥ = B/ (R S)

which gives the maximum val g2
Ego z 1 & alue o ;
h e} for which the solution is valid]
R* el

| b2l = _@;;o/taz.ew) LA T

[

(6) h >2€ = (L‘,w/sx)/b ]
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L TRANSV Aok mAGNLTIC Plolu CUMPURNGNT PRusoil (Contd.) w
We can see the approximate behaviour of w
with B% if we assume w is almost equal to wﬁmwﬁ) Jr’i
given in (3.116), and then substitute W with w%v:nu,g é
in the right hand side of (3.115). This gives ‘
RN L

| 3 [ JR +@$°13“’SO%J{7/.0 Byo (6s)? k pkinty 3

a 165 C g Rl ]

We differentiate this equation with respect to _E
to see if there are any turning points 1
s g (s ts

be w hc'- [\/—E Bao S/SO lb“h"{;o g: s L18S) s ] )é
-8 R Ao

so that there are no turning points and Olw/c\"\;z ') *
implying that the maximum value of @, w L S8Y, oceurs
at the smallest value of R . This is, from (3.118) é

(vm /)™

or v [ '
. = \ ?./ /g R

Substituting this value of R into (3.120) gives .
i

s S i, ! #

T = — 32 %
(wmm) 0-295 + B, S 65 (.44 S - 2.75)

so we see that Emwgradually falls as B‘Aa increases,
but that W,,,, does not reach zero for  finite valuses
- i
of B%a , unlike the more accurate numerical solution {i
|

found in section 3.4. 5
!

W
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SUMMARY

In this chapter we examine the T.M.I. in a current sheet
and compare the results with those derived by Cross &
Van Hoven (1971) for the T.M,I. in a sheared magnetic
fiéld of constant magnitude. We find that the growth
rate can be much larger in our case. We also examine
the effect of a transverse component, B{:, of the magnetic
field on the T.M.I. in a current sheet and show that, if
Ri is large enough, the instabllity is significantly
inhibited.
In section 3.1, we calculated the growth of the T.M.I.
in a neutral current sheet using a method devised by
Cross & Van Hoven (1971). In the equilibrium current
sheet we assume a pressure balance across the sheet
with temperature constant, so that the density will vary
to keep the total pressure constant. We assume that
tiere is no equilibrium velocity, and that there are no

energy sources or sinks, so that the temperature remains

constant during the instability. The equilibrium megneticé

fielddecays by diffusion and so we require the instability
time scale to be much less than the diffusion time scale.
The equilibrium is then perturbed by a small quantity so

that, by ignoring products of the small perturbations, the

equzations are linearized. The perturbations take the formf

_‘2‘ v e_w‘t.+i.\lx .[;(}3\ .)

AT
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3,6,: SUMMARY (Contd.)

where {’-(«j\ is reprecsented by the sum of a cosine or sine

FPourier series, e.g.
i Ty
nit
-F-C«s)- Z -?,\ Con g4
n=o

The Fourier transformed, linearized eguations can then

be solved to give a recurrence relationship for the é
Fourier coefficients, ﬁ; . After choosing the initial g
terms,-€|, for the sequence of Fourier coefficients, we

calculate values for larger N and show that in general 4
they-diverge but that for a particular value of frequency ;

they converge, This value must then be the growth rate %
of the instability since we require the Fourier series
to converge. We then calculate the dependence of this

—

growth rate, G3 , on the wave number, R , of the

perturbation, and show that it is similar to that found

by Cross & Van Hoven (1971) in their study of a sheared

magnetic field, and in particular that it has a maximum

growth rate ts&mwx « Our value of EB}“@ﬁ is somewhat

larger than theirs and it occurs at a value of iz) hq“w%)

which dependé on/e but not on S ‘ Cross & Van Hoven i

find that hww” decreases as S increcases. We calculate

the dependence of W on S for several values of'/S and
Mo

find that

- °:67
W g & S

for the range of‘/g considered. f
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3.6,: SUMMARY (Contd..)

o 057
This is to be compared with W, < S found by

Cross & Van Hoven, showing that our results can be up to
an order of magnitude larger than theirs since S can be
&5 1apEe aB 1010.  The effect of g on U max 8 shown for
two values of § and in both cases we find that, as B is
reduced, wmwis constant until B<¢| when U, falls

linearly, on the log-log scale, as/@ is reduced further.

In section 3.1 we considered a model for the neutral
current sheet in which the temperature,-T; s Was constant,
in section 3.2 we compare this with a model in which 1o
is varying. In order to keep the equilibrium fairly
simple we keep the density constant so that Vo varies
across the sheet to preserve a constant total pressure.
We are able to show that the second model gives the same
growth rate independert of /8, as the model used in 3.1
does for./3>>\. This is done by showing that the
perturbed variables, Ei\, V,,, and \/“5 satisfy the

same equations in both models.

The fact that'ai“mxfalls as /3 falls may have been due to
another, infinite conductivity, instability. But we
show in section 3.3 that this is not the case. Vie try
to find the growth rate of an instability using the techniquaé
of 3.1 with Q:zo , but are unable to find a valus of W :

for which the sequence of Fourier coefficients converge.




3.6.

Wty

SUMMARY (Contd.)

Then we calculated the growth rate analytically, of any
instability which may occur when ?1:0 but again we
foundkthat, for the types of perturbation considered
(i.e. those used in 3.,1) there were no instabilities
with time scales much less than the diffusion time scale.
Thus we show that the T,M.I, in 3.1 is not influenced

by any infinite conductivity instability; this& does not
mean, however, that the current sheet is stable in the
limit of infinite conductivity and, indeed, Uchida &
Sakurai (1977) have shown that such instabilities do

occur if the neutral sheet is perturbed in the 2%
direction,

In section 3.L. we investigate the T.M.I. in the neutral
curreht sheet with a transverse component, I3t , of the
magnetic field, by using similar techniques to those used
in 3.1. We calculate the growth rate, & , but only for
/3:;106 , and show that the variation of® with R , the
wave number, is the same as in 3.1 but that, as B :
increases, the whole curve is reduced. When BJC/E:O.LL S A
wrere B, is the field strength at the edge of the current
sheet in section 3.1, we find that By does not affect the
problem and we get the results found in 3.1. However,
when Btis large enough, E3Mmm’ the maximum value of wo

— ¥ Y
in the(u/a_curve, is proportional to (B&/B ).
e

R R

Nz hr e
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SUMVARY (Contd.)

As [&tis increased then @ falls in value and the question

arises as to what value of By B - say, inhibits

the T.M.I. The value of B _which reduces @ to 1 is
ch.rft: o 3 1 Bm " The value of Btwhich reduces the

value of W when Bt=o , We say, to some fraction of this

value e.g. 2%2 , is given by

teak 2.8 50‘3‘*

In both cases, when B _exceeds B¢ .5, the T.M.I. can be
said to be significantly inhibited by the presence of the
transverse field,

Finally, we consider an analytic treatment of the T.M.I,
in a current sheet with a transverse component of the

magnetic field. The equilibrium magnetic field is

A A
RE R+ 8ol | lulca

20 - 3%"‘ B\Ao"é 4 \570\
"BQ “* Bvao%_ ) '\SL-Q

where B and lgboare constants, As in section 3.4 we
ignore energy sources and sinks, assume that the
equilibrium temperature is constant and the equilibrium
velocity is zero. Also we assume that the fluid is
incompressible during the instability, which we later

show is allowable if /3 -3 E/S .

s aidas
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: SUMMARY (Contd,)

The equilibrium is then perturbed by a small amount and,
by ignoring prodlicts of these small terms, we derive the
linearized equations for these perturbations.

The solution is found in two regions; an outer region
where the field is "frozen-into! the plasma so that
resistivity is neglected and an inner region where the

field diffuses through the plasma. Then the solutions are

matched at the boundary to establish the dispersion relation

between ® and k with S and BBO as parameters, In order
to establish the solution we must make several assumptions
and in particular that Bﬁsﬁ very small so that it is
ignored in the outer region but retained in the inner
region,

We find that W falls as Bsois increased, as we found in
e

sectlon 3.4, so that the maximum value, W ...
R — < \M's
occurs at BSO~O, where W, = & CS/TR) -

as found by Furth et al. (1963). Also, as h. is increased

we find that W falls, so that the maximum value, GJ pq.,

-

occurs at the smallest R allowed by the method, W{hx =
™

)
(w&/ 3)/ b,.We find that
(P TN
W pagux [C Qe Bgo b
where a and b are constant for a given value of S; so that

Uomwxfalls as B%o incrcases but does not reach zero for
finite values of B%D , unlike the more accurate numerical

o

solutions of section 3.4 where B'i\": Bb/go\ .
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_sheared field. As the field becomes more sheared, so L increases:
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PROMIKEINCE FORMATICN TN A SHuARGD MAGNLLTIC FILLD

In this section a simple inodel is presented for the way that

prominences may form by a thermal instability in a sheared field. =

L Tal

The instability occurs for a similar reason to that for théwheutrai
current sheet instability, described in chapter 1, It takes

place when,

Jerd bR S b S 18 A2y

*:n > ‘tCool > (4‘1)
2
where tu=L C‘PT)/( By Y is the time taken to 3
conduct heat into a region, and ..o = CQT'/(O.gl) is the =

time tsken to radiate heat out of the region, where the
24

€rys v o e (Orrall & Zirker,l9615

constant a =« 6.3 x 10

In this case L is the length measured along a field line in a

possibly to such an extent the*- (4.1) is satisfied and the

plasma becomes thermally unstable. 3
In the first section we discuss, in detail, the force~free é

3
magnetic field structure that we will use in this chapter, 44

Such a force-free configuration is valid in the corona only if
the magnetic field strengtih is large enough that the gas 4

pressure is dominated by the magnetic pressure,

L I T

In our model we are including the effects of gravity, which,

in particular, implies that the densitv decrcases with height.

This reduces the effectiveness witl whick the radiative loss

can trvy to destabilize the plasma, since the higher a field

kR RPEr LR

line r<aches the larger will be the value of T fm Chali

cool
However, for field lines that reach greater heights, the length
L increases so that €, also increases, tending to make the plasmai

unstable, Thus we see that for ficld lines reaching higher and

i

cool”

higher into the atmosphicre both €, and ¢ increase,




PROMINLECLE FCAMATION IN A SHEA®RSD MAGNLTIC FIRLD (Contd.)

In section 4.2 we shall, in an order of magnitude calculation,
investigate the manner in which this ratio changes with height.
The object is to see if there is a maximum value of f:u/1;C°o\
in excess of unity, which, by (4.1) would imply that the plasma

is thermally unstablie for some height range.

In section 4.3 we investigate in more detail the ideas developed
in the order of maghitude calculations of section 4.2. The
force-free magnetic ficld structure discussed in 4.) and the
plasma are assumed to be in mechanical equilibrium under a
balance between gravity and a vertical pressure gradient, and

in thermal equilibrium under a balance between thermal conduction
and radiative loss. We assume the order of magnitude form of
this thermal balance that we used when investigating the thermal
instability in a current sheet in chapter 2, For the mechanical
balance we assume that the temperatur¢ variations are not
important, éo that the pressure gradient implies that the density
is reduced with heilght, thus the density effect discussed in
section 4.2 is present. The other effect, the increasing

length scale for thermal conduction is supplied by increasing

the shear angle which, as we show in section h}l, increases the
length of the field linss. we talte an aoproximate form for

the dependence of ﬁhe length of the field line on the sheer angle
and solve the equations of mechanical and thermal balance with
the equation of state, for the temperaturc at the top of a flux
tubeas a function of h, the height to which that flux tube

reaches. %e show how this variation decvends on the shear angle

in terms of the values of the density and temperature at the base

of the magnetic field region and on the scale length of that

3oy S o4

5
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PROMININCE FORMATICN IN A SHuAKRED MAGNLTIC FIZLD (Contd.) |

We then look at the same problem in section 4.4, but with é
mechanical heating added to the thermal balance. Again we :
calculate the temperature at the top of the field line as a

function of the height to which that field line reaches and show

how this variation depends on the shear angle.

In section 4.5 we examine the problem discussed in section 4.3:
the thermal eguilibrium balance between radiative loss and x
thermal conduction in the force~free field and the mechanical b
equilibrium balance between gravity and a vertical gradient

in tgat magnetic field, but, this time, we solve the full
equations numerically. We are able to find the temperature
variation along each field line and establish how this
variation depends on the height to which the field line reaches.

As in section 4.3, we examine the effect of changing the

shear angle and another parawmeter of the problem)i{.

In this fashion we are able to confirm, in a more and more

oot iSes s Tna 5 o

rigorous fashion, the idea that is develoved in section 4.2.
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hol.: THE MAGNETIC FILLD OTLUCTURE

If, in the magnetostatic equation Y p = 3 A B
we have

B at § - {k.2)
where /3 = gTih//gz , then it reduces to

JaB=o (4.3)
This implies that Yuh =& B (4.4)
where LQ.Y\):A =0 (£ is constant along a magnetic

I field line). One method that has been used for simplicity
is to suppose (A e constant everywhere, so that curl (L.4)
gives

{ 0%+ *) R =o0

2
)

from the per'fe'ct gas law P= ReT , §= b wio e 9 2
and T =10°°K s thus (4.2) becomes R > o1 Gauss

In the corona P = 2.8 » g 0\-3"‘35 v

which holds in active regions and may also be true near
guiescent prominences.,

Solutions of (4.3), subject to specified shearing motions
is very difficult in general. We circumvent this
problem by looking for simple solutions; which have the
form of a sheared field in which prominences may form.

Suppose that B=B(x,z),then (4.3) may be written

yite) = LR,
which has components

2 (48)= (8,5 8.5) 6,

P S S 5 (4.5)
.é’% (-15: B) a (Bxﬁl B BQ‘DQ—_) B-& ’

B)
. o = (.d ey

W
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THE MAGNTIC FIBLD STRUCTURE (Contd,)

Now, in particular; search for solutions in which

B, n s ™ By

" (4.6)
By = By Simhx e 0,

2 R L
where f‘ \"}‘ K" , S0 that Bx vanishes at X = = k.

and Bz vanishes at X =0 as indicated in Figure({30a), page 207-'%

Also field lines in the X-Z plane are straight lines as

. shown in Figure (30b) page 207 Thus the field will rise
P

" if the foot-points in the photosphere have a shearing

motion parallel to the y-axis in such a way that the shear

in velocity is linearly proportional to the distance

from the y~axis. Note, however, that we have no guarantece

that field witl. such a linkage of foot-points and the
normal component, By, at the photosphere, is unique.

Substituting (4.6) into (4.5) gives

fy= =0 Be

' 2
and % 4
In other words, the fisld that we take is
g s
Be= = B Lo hx &~ s

By = B, L1~ Qz/p}) Con b e._h,

By ™ Bs Sin ki e~€% ) (4<7)

It was first considered by Nakagawa & Tanaka (1974).

%
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Figure 30. a constant & force-frce magnetic field structurc given i

by equation (4.7) where &X=[K SINY . Figure(30 a)shows that ?

the m=gnetic field lines in a vertical plane have an arch ~
structure with vertical field lines at the edge of the region,
Wil me 2!’( A field line that starts a distance )(0 from é
¥X=(0 ©on the x-axis reaches to a height h. Figure(30 b)shows u

that the projection of the magnetic field on the x-y plane gives
a set of straight lines inclined at an angle,x , the shear angle,

to the x-axis.
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THE MAGNuTIC FIBLD STRUCTURL (Contd.)

We note .from :}:“— curl —*-%«— , that
Ay

RV,
Iy = -k (- Q/bl')lax )
3'3 % e 1G4~ Qx/kﬁ/z By

T l/:L
5. = - kG- %) e,

so that the field is a constant-0( force-frae field with
‘&
o(z'-‘- R - 4 . The field lines in the x-y plane are

inclined at an angle,to the x-axis,of

. \
g o (B) =t (L)

LS
80 k-c-co\&
and L= RS Y.

Thus, as K increases in value from zero, where the field
is potential, to R , so the shear angle, ¥ , goes from
zero to /9 .

The equation of the field line in the W~ 2 plane through

(Y\‘.,J 0 ) is given by the solution of CLX'/BX = O\Z/Bl )

U)\l
2= oy (E05)

Thus the maximum height of the field line through (XO,O )

namely

is
W=~ by, (€ o) 28

or

A oS E g e N s T A e s A B A et B




bolo: THE MAGR:TIC FIZLL STRUCTURL (Contd.) 3

We plot from this eqguation, the graph of the dimensionless

variable, (hk/w), where, from Figure (30 a),page 207,'ﬂ7ﬁ

is the width, in the X-% plane, of the magnetic field E
region, as a function of Xog% s for several values of %
the shear angle ¥ , in Figurc(3la), page 210. This shows 2
how the top of a field line, height h, reaches higher and i
higﬁer as the footpoint of the line, at X,, gets close to z
the edge of the magnetic field region, at X,= W/p . %
The effect of changing the shear angle, % , shown in é

Figure{(3la), is shown more clearly in Figure{31lb), where :
we plot the variation of the maximum height of a field 1ine,§
h , as a function of the shear angle ¥ , for several valuss
of ¥y the footpoint of the field line. The field line
rises into the atmosphere as the shear angle is increased

Q 2
and the rise is particularly rapid near ¥ = 40 . K

<4 Mg Y e SR

B

<ot giny
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Figure 3la. The maximum height h of a magnetic field line as a
function of Xofor several values of the shear angle S
X,1is the point on the x axis shown in Figure(30a) pape 207
at which the field line crosses the Z=( line. The variables
h and X, are written in terms of the width of the magnetic
; 95 5
field region, k -
2l | oq hk k=049
10
TT kxz0drr 7§

1} - //kmﬂﬁw §
i kx=0 2
R0 |

o %
1 *ﬂ’,,/////«kX504Tr

DL

~Figure 31b. The maximum height h of a magnetic field line as

a function of the shear angle & for several values of X

*

The variables h and )(o are written in terms of the width of the

magnetic field region,—_'—-lg-—-, shown in Figure(30a).
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GRULR OF MAGHNTITUDE ESTIMATL

We are interested in the conduction of heat a distance L.

along a field line in a magnetic structure such as that
considered above, As one goes %o higher and higher
locations in the structure, so the length L of the field
lines increases which tends to increase th|/1:c°oi .

But, at the same time, the density f decreases which tends
to decrease the value of t“‘/tcoa\ . It is the
competition, between the destabilizing effect of increasing
a flux tube's length and the stabilizing effect of
decreasing the density therein, which determines whether
or not the thermal instability sets in. Let us consider
this competition roughly, before proceeding with a
discussion of the numerical solution.

In order to balance the force of gravity, the density at
the top,Z=h , of a field line will decrcase with height h,

such that approximately

AR

where the scale height A= 2 \KBT/(m.Lcs) . Then we
have from (4.1} that

1 .
t“___ = .2:..?.:-- L_?' eﬂ-—l\r\/,\
tcoo‘ Wu &7 !

which, once L and AT are specified as function of h,

determines the variation of the ratio 'C;,/tco& with height.f

For simplicity let us suppose AT is constant and

L «enh, say. Then

2
t\\ = (&N ?o Y\'L »\7. e"7‘\‘/ﬁ

T ool § 08T




L.2.: ORD.AR OF MaGNITULE GSTIMATE (Contd.)

so that as h increases, t“/tcod first increases from

zero, passes through a maximum value, at h=}\)of

o et 2

(tm\j * o&r W (4.9)
Mo n

and then decreases to zero as h approaches infinity.

In order of magnitude, if this ratio exceeds unity we
expect thermal instability to occur and, furthermore,

the instability will be first manifested at a height of
h=N.

For the sake of illustration, let us adopt the following
values, characteristic of a coronal condensation from which
some prominences form: density f°’=l-7>&\o'\s o owfl, ‘?
temperature T = \0 ©o i<, AT &2 85» \og ®K | the coefficient 4
of thermal conduction along a field line ¥, = 2 %10 ° T‘%& ;
from eq.uation (1.22), the constant O = (-3 % \oah’

erys e Q;QSEC'(Orrall & Zirker, 1961) and the scale height

/\:‘1\13'1‘/(“1%2 b \oqw , Where Boltzmann's constant
; -2y
R Ibxio™'e ey cke%—‘ , the mass of a proton M= ['7x 10" ]

4 and the pravitational acceleration 3 = 2-7¢x|o“'ow‘sega'

at the solar surface. Then (4.9) becomes

— 2‘ ;f
(t“/’tc'.oo\) o PR B 4

Mo
Note that away from coronal condensations, where the density

is a factor of 10 lower, this ratio is smaller by a factor
of 1G0 so the thermal instability is far less likely to take °
place.  Ahen the field is not sheared, so that N\, we see

that (<, /t ) & and the plasma is therwally stable,

Coel Mouy




L.2.: CRDER OF MAGNITULE wSTINATE (Contd.)

But, as the field becomes sheared, so the length of the
field lines tend to increase. For a given height, h,
the field lines therefore have greater lengths than
unsheared field lines and so N exceeds unity. If the
shearing ( and consequently the value of nh ) is large
'enough we see that ( t, /tcoo\ Jwoy May exceed unity,

80 giving thermal instability. It is the purpose of the

following sections to work these ideas out more precisely.
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TH. THER&AL AND HYDROSTATIC EqU, LIBRIUM OF THo PLASMA

LK THe ocHodded waGhoTlo CUARIGUIRATICN,

Within the force-free magnetic structure given by (4.7)
we shall suppose the equilibrium values of density and

temperature to be given by the equations

j‘%(ﬁgﬂ: il 1k A (4.10)
LLE LF)s B T, (4.11)

Equation (4.10) ex-resses hydrostatic equilibrium along
field lines, while the thermal eguilibrium is assumed

to be governed by a balance between thermal conduction
and radiation, as expressed in (4.11). This may arise
if heat is dumped at some location, say the top or bottom
of the field lines, and then conducted into the rest of the
structure., The more general case, of significant
mechanical heating throughout the configuration, will be
considered in L.4. We are considering conduction only
along the field lines because, as shown earlier, the heat
conducted across the -field is very much less in structures

the size of quiescent prominences. In addition we assume

that the acceleration due to gravity, 9 , is constant and

that it equals the value on the solar surface, 3C>’ for all
'. - M - . % q’- & o 3

heights. ( $,= @ O/R‘o 2:7 (0" ) . Over the height of

a prowirence ( €${cf‘own )3 9 is reduced by a factor of

only 0.9 so that the effect of height variations on 9

is small enoug. to be neglected.
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L,3.: THE THoRMAL AND HYDROSTALTIC TJUILIBRIUM GF THE PLASMA 4
Tl THi oHonsnol maGRoT1C CONFIGURATION. (Contd.) 4
In this section the field structure of Figure (30) page 207 }
is approximated by straight lines, Figure (32) page 216, ¢
such that in the X-% plane along a field line BK/B g h/L f
= constant. Then (4.10) and (4.11) reduce to ;

d .

= T = =89, (412)

W d (4T . }

- Zf%(““ et b 2 (113)

B

where Ki® Ko 1 /a : (4.34) 3

In order to solve (4.12), we further assume that T is i

constant along the field line, i.e. T=T., , the valve ]

of temperature at the top of a loop. This gives }
-2/A

) 5

where the scale height A==2.kgT'/(YWL q) , 50 that theff

value of density at the top of the 1oop is

o™l &

X,
No To




-

Foa\de

Figure (32). The straight line representation of the magnetic

field structure drawn in Figure (30a) page 207,

With this representation we apvproximate in section 4.3 the
amount of heat conducted along a field line, of length L, from
the surrounding plasma, it density fz and temperature.To y B0
the top of the loop, a height, h, above the base of the
magnetic field region, where the density is f; and

temperature-FT B




fig gl

207 :

THL THeRwaAL alND HEYusooTATIC }':QU[}’_Tj RIUK CF ks PLASMA

ll\' .’.uu kl‘l ..Jhu..l_vl) Ls-\(.ll\ JLI\J L/JHI'].G\JJ.{MJ..].\;I\, ((/Ol’ltd )

where /\o: Z\RBTO/(mtg) % Next, to solve (4.13),
we approximate the thermal conduction term, as in
chapter 1, so that {(4.13) becomes

h* 5/a
o B (8 T (l"-‘- o)_ & i
g > = ? ¥

or, substituting for § from (4.15),

— K T o, T 20Ty _
. <% f T e,»\{ T | . (8e16)

To make (4.16) dimensionless, put

PSR T | X sy |
T 2Ty Ty \r\-:\ni_ , L:L{: )

i o 2 L ~ Lo i '
giving TTL?- d‘(\_"\*_"') & % "ETT (”/x‘)(,-lh %‘T1)>("“f‘3-7)

and - . _ O
o

We trerefore need to solve (4.17) for'T:: as a function

of W, withl' =Ll (W) given below. :

According to (4.8), the footpoint of a field line (Figure(BBi

page 218),whose maximum height is h, is located a distance

i .
Xo = T Coo” (encl (- h ki Con ¥)) (4.18)
from the y-axis, “e anproximzte the length of such a

field line by the length of the dashed straight line con
Figure (33), nately




Ay

o

Figurc(33). A curved field line of the magnetic structurs
drawn in Figures (30a) and (30b) page 207.

S e 3 ST

In section 4.3 we :pproximate the length of the field line =

Yednedian i in

from the foot point at ( X,, VY ,Z,) to the top of the arch
at (0, 0,h), by the straight line of length L shown dashed
in the figure. The angle, & , also shown in the Fipure (3Cb)

gives the amount hy which the field is sheared.
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TR ST ok ] TNRLs St T T

or, using (4.18) for Xs,

i

R

T

z_ Sec ¥ 4~k Gy 2.
= - K_C \ e + »\
In dimensionless form this is

)

i 2 ‘
. Sl [cs e_-‘““cwx] ¥ [ £ (4.19)
17

{
which gives L as a function of h! for a given shear
angle ¥ . So, from (4.17) and (4.19) we have

2
E" 4 S x - -\f\ C ]
LA “)(y ) L e \lsie mx) 2] (L.20)

% &-x]a(-l\'\'g"'l"-rf) h' 2

Equation (4.20) determines the temperature at the top of
the 1oop,"ﬁé , as a function of the height of the loop,}V 4
with parameters ¥ (the shear angle),’g(tMe ratio of
radiation to thermal conduction) and sl(the ratio of the
width of the structure to the scale height). In

Figure (34)page 220,(calculated numerically from (4.20)),

have plotted "r’ ( W) for coronal valuss of ¥ and 3'

(¥ = YT x \o“‘" %': O L where we have used J\{ = S x \oq em

tire approximate height of a guiescent prominence, fo =
["‘lx\c; 3(‘/m3 and Teo = 2 \O e \¢ ) and several
valuzs of the shcar angle ¥. These graphs imply the

occurrence of a thermal instability when ¥ is large eno gh,

& S

g o W
fuGat AR S L N

]
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Logmh

' s
Firure (3L). The equilibrium curves of the temperature‘r_

4
at the top of a magnetic field arch, as a function of h , the
height of the top of the arch above the base of the magnetic
field region, These are drawn for several values of the shear
angle, , and in particular for the critical value of the shear
/

angle ESc, . For ¥ > KC there is a region of N in which the only

e e sl
equilibrium temperatures are very low (T}. <10™ ) so trat the
plasma initially at coronal equilibrium temperatures hzs bccome

unstable.,
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e I
Ahen ¥ is small there are three equilibrium values of %

t
for all valuss of h . One of the equilibrium solutions
[N

¢ L !
occurs at 1. & 10 s0 that the curve of Ty as a

function of W is, in this scale of graph, coincident

with the h'~axis. However, when ¥ is greater than some
{
critical value,}&;say, there is a region of h in which the

' =
equilibrium values have T4 & |0 , S0 that the plasma

with the higher eguilibrium temperatures become unstable

j as Xcis exceeded., This region of W' increases from h'ccl
when ¢ 2 . until there are no equilibrium values of h'
at all when ¥ =1/, . We expect that the initially

hot plasma, in this non-equilibrium range of heights,

cools doan rather than heats up, because the thermal

v

LR

conduction has become negligible in the energy balance

4
as the shear ¥ and length scale L. have incrcased. Thus

the energetics of the plasma are dominated by the radiative -+
loss., As in the case of thermal instability in a neuvtral
current sheet (chapter 2), we expect that the plasma will
cool down locally in about a day, to the third equilibrium
soluticn and in the process new plasma is drawn up into
the region along the field lines. The temperature of this :

_.--I - L. »
third equilibrium is very low { T4+ & 1O % ) and is

unrealistic in practice since the radiative loss used in

this thesis (Figure 1) is not accurate for temperatures

1Y A
below about 10 2K because of the radiative transfer efflects:

that have been ignored in its derivation. ;
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IN THi oHedAieD #aGNeTIC CUNFIGURATIUN (Contd.) 3

Also, the equations we have used are no longer valid 7

for the final equilibrium in which/B may no longer be é
small.

Solutions at Low Heights. ;

In the corona this thermal instability occurs when h is é

small, so that we can confirm the numerical solutions, E

and perhaps understand the onset of instability better, %

by looking more closely at equation (4,20) with h' sma11. ?

] Sec.‘l(  RRPIR, s s y

When h'ee = and h 3"7 ¢«| , equation (4.20) becomes, j

to lowest order E

....._/(—'g,:-oL\( __../)__ L‘.SGC:LX "\‘Z .21 Z

IT it S 5 T . A §

Its solution is given from the intersections of the 3

two curves shown in Figurc (35),page 223, where we define i

(S 3

L ns o ot KEEE )

Flr) =T % 7 G-y (4.22)

RN g

< . A /
F vanishes at T = | and approachtes infinity as T+

approaches zero, It possesses a maximum of 0,08 at

5
s T
|T="-:3>——-- = 0-¢ (with K== from Figure (1)) .
5 K
In Ficure (34) we found only the low temperature solution ]
— _
for T at small k' wken ¥ excecds the critical vslue ¥ . |
This effect can bz seen in Figurc (35),page 223, #here, for g

e ;
small values of ¥ there are tiree goluticns, one near lp 20,4

/ s .
one near T}_: | ; and the otrner in between,
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Figure 35. The two curves F(TT) (defincd in (4.22)) and

A(SOC 8)2 Y/Trl , whose intersections represent the

4
equilibrium solutions T.,_ , the tempcrature at the top of the

magnetic field line shown in Figure (32) page 216. 8 is the
shear angle , shosn in Figure (30b) page 207, and the parameteré
w— :\_‘

¥ is the ratic of radiative loss to thermal conduction at the

base of the magnstic field.
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As ¥ increases, the 4—55¥%¥§ X line increases until, f
at '75'-"75,_, it just touches the maximum of the F (T.\.' ) v
curve, where TT' =T,.= 08 .
It ¥ $‘xc then the curves only intersect at tpe lower ;

temperature so that there is no  higher temperature solution.

The critical value XL is determined by putting T.r' = 0%
in (4.21), so that

| yl
See e s\ O‘O%) ) (4.23)

For coronal values ( fo

l-?xlo"'bs evwi® s Te= 2"\0"0K
and TT/k = Sxtoq cm ) Y':'S-'Ih.xlo‘t" and

" g S e b

v ) ‘
}SQ: ‘/2‘06 - 37 . _ +
Figure (36), page 225, gives the variation of the critical 3

— 4

shear angle with ¥ ; the other parameter of the problem, 9
has no effect on ¥, . A restriction on the walidity of :
S

Figure (36) is that Tg > {0 °K , since we have used the valus;

ok =-1'8 in the radiative loss function. dhen T, < (os°;4)

however, we expect no thermal instability to occur because
of the shape of the more accurate radiaztive loss function ;
as given for example by Cox & Tucker (1969).
The parameter ¥ is defined by

L - hi s (_T_\_)z

K= Ko —1—07/9. ¥ 1

Thus we see that the effect of increasing the scale ('ﬂ”/b\)

(4.2L4)

of the structure or of increasing the density, fo s is to
raise the value of ¥ and so from Figure (36)  page 225, to

destabilize the plasma at smaller shesr angles KC_ .
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Figure 36, lhe variation of the critical shearing angle 2§C

S o st

as a function of the parameter § , which, given by (4.24), is

the ratio of the radiative loss to thermal conduction at the base .7

of the magnetic field. If the shear angle, ¥ , shown on Figure
. (30b) pape 207, is greater than XC, then there is a region of

/
height, h , in which thire are no hot eguilibrium scolutions, as

shown in Figure {(34) page 220,

:

b
t;
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b3
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Kl
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- reasonable changes in the density, scale lenrgth or

If, for example, the density were a factor of 10 higher,
as it may be in coronal condensations, so that fc’: 127 » ‘O-\S
& OmXS then ¥ = 3-Tx \o"> and the corresponding value b

of ¥ is 63° from Figure (36) page 225. If, in addition

to the above increase in density we doubled the scale

Auh gt Gt Fad v Taw

1ength (“ﬁ;) to 1010 CILS . then'% z 0.15 and the corresponding

value of ¥ . is 2.9° . The value of ¥ is also sensitive
s 6, 3
to temperature; if, for example, we reduce lo to 10 °K i

—

then ¥ = 'S *\o~* and the value of Y is 73°,

Thus we see that much smaller values of ¥, can be found by

e CA T )

R

temperature,

It can also be seen from Figure (36) page 225, that if X
is greater than %Mwm 0.19, then ¥ .=0 , so that the

plasma has no het equilibrium values for all shear angles.

This value, th&« , corresponds, for a temperature 1o =
3.6 % 10”2 \/a, -3

(/n)™ ) R |

If the plasma density is greater than ﬁMWxthen the plasma ¢

b .
0 a densit =
; »w\0 , ¥ sity fmam (

is unstable even when there is no shear, ¥ =0 .

If, for instance, (T/R) = Sxi0 cvm , the anproximate ;
height of a 'quiescent prominence, then fm&%= 3-%K\O°WQSCN;§
giving a number density A% \0q W .

We have found in Figure (34), page 220, that for ¥ > ¥,
there is a height range over which only a low temperature

’ 3
solution for T, exists and that the range increases

with }S o
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This effect can be shown analytically, from (4.20), as
follows. The derivative of (4.20) is
OUZ T' - « } ’ ¢
— O.L.—.—T'_\:g 8Sec_ 31" S?.E.ga.\ * O(h)
ATy &
(4.25)
where, from (4.22) ,
S
A F ¢
s (9} Ox T_rl = TC = 2
i v 7
5 g« ol
and 2 % o) W G g
. lo?
Thus if & Ty S_g__c,.)ﬁ_ Sy ( .%W €= Ldwi'® 2

G em

zx\o""!( omd. = SH D o STT/Tr=O

S0 thaL we require Sec¥ >10 i.e. ¥ >Ry’

since;in this particular case,we are only interested in ¥
©

37

near %= ), we see from (4.25) that

= e e
ﬂ' > 0 l-g ¥ P le ,
Gy L
o AL
1
- . ‘ —

so that the graph of T =T (h')

in Figure (Z7) page 228. The critical height,

which no equilibrium exists is given by putting T4 = T,
i $ba20)+ when L\; L %-?_—_%ﬁx , (L.20) becomes, retaining
\
terms of order h; s
v Cxec. kY 4
Te) = § 25 L \r\ "‘"’“”’" = & e )
@(X % 2 (lt.?._(/')-}

g el

sl B

which is satis Plea’

must have the form shown

\'\cl_ s, below

R et
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Fieure 37. The approximate shape of the equilibrium curve Tir

et

/
the temperature at the top of a field line; as a function of h
the height of the top of the field line above the base of the

magnetic ficld region. The critical height,f} is such that

7/
c?

. K g BT i
there are no eguilibrium solutions for k) L}\C,' and Tl: is the

o/
value of 1—r when P{:tﬁ; .

S
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THE THodwAL anD HYDACOLTATIC EuULLIBRIUNM CF THEL TLASMA

IN Tlie ohwanoD #aGNLTLIC ColFIGURATIVN (Contd.)

from which we see that if ¥ = ¥. , equation (4.23),

then \n; = O , and that, as ¥ increases above ¥ , SO \’\:_
increases so that an unstable region develops extending
from h':cp up to h'= h; . The thermal instability thus
sets in at h'= 0 in the present approximation and the

unstable region spreads to larger heights as ¥ increases,

Solution at Large Heirbkts.

The numsrical solutions to equaticn (4.20), which we
have presented in Figure (34), page 220, show the thermal
instability starts at low heights; but with different
vaiues for the parameters 2 and 3' , 1t is possible that
stability may first break down at greater heights. To
test this possibility we consider here the solution at

large heights such that

h">> QS@C)S\/RT* :

Equation (4.20) thken reduces to

vty = glx),

—_— v —*’(%"’q —_
where X = |4 h , ﬁ )= V¢ (\-——\T)
and  q(x) = x* ¥ exp(~29'%).
The three possible types of solution are sketched in
Figure (38) page 230, wiere thc zraphs of -FCT¥) and SQx)

il

are plotted o1 the left hand side and the solution e

¢
as a function of P\ is rlotted on the right hand side.
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T =T T T
gix)=x>ge2%9
X:HT;

h

N . . i3 . /
Figure 38. The equilibrium equation {(4.20) for large h ¢ bhe

height at the top of a field arch, can be represented by

f(T:);g;(x) ; these curves are shown on the left hand side of

; - y g 7
this figure and the corresponding solutlon,]ir

, the temperature

/ . y
at the top of a field line, as a function ofij is drawn in the

riesht hand side. If the maximum of Q(X) is creater than the

. 4
maximum of f(j}) then a region devalons in which there are no

. L . , . . I / , I
equilibrium solution ; this first occurs Nren'Tr:"Fr andfﬁ::f)x
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As the maximum of 3(5() is increased above the maximum of
] . ¢ ¢ s
.F(T.,.X, there occurs a region of h in which there is no

equilibrium solution. The maximum of -\Q(T‘T’\

U =k
(namely {(T-r' } o= (T-"- ) /7' &"'_r-r’) = 005) ':
!
— L S =K o g .
occurs at T = £ - 0,86 (-FM“ oKL 1.8), and

the maximum of 3()(.\ (namely "g‘e,'z/%'l = 29w |16% )

S R e B N

‘

at x:-—é'; B Rl Tius the helght W’L and temperature Tl

at which instability first occurs are given by

! - {. S -k
'T‘l— S'S "OQ (4027) ;
' \ E
and W= o) (L.28)
1 8 iy i

At W= \n’l the maxima of the two curves are egual, so that

~ - 2
";é:,. €= L L)

U —
which on substituting for TI gives a critical value of ¥ ,

)

say 'i‘;"*, above which instability takes place:

—— Iy

¥ 2
—_— 2 .08 & (4.29) ]

e

A AR

By compari-son,we found in (4.9) that instability occurs

when (in dimensionless variables)
% -9 2
ik * e

so that {(4.29) may be regarded as a more accurate version

)

of criterion (4.9). Xe further note that the parameter

o

75/%'1 does not depend on the shear angle ¥ or the leng“l;hscalei

’ﬂ‘/[i .

RS




Log, K

Figure 39. The numerical solution to the equilibrium
equation (4.20) for‘T;-, the tempzarature at the top of the
magnetic field line as a function oflﬂl, the height of the top
of the field line above the base of the magnetic region.

This is drawn for several values of the parameter g/, which

is the ratio of the width of the magnetic field region to the
scale height . The shear angle is ¥=()and the parameter §
the ratio of the radiative loss to the thermal conduction at
the base of the magnetic region, is”i‘{":‘i()”‘l" s, dKA eriticsl
value gé saticfies (4.29) and is sucl that if g/z_.g; a region

develops in which there are no hot equilibrium solutions.
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L,3,: THE THERNAL AND HYDROSTATIC EQUILIBRIUM OF THE PLASMA ;
LN THL oHbArLD waGhkeTIC CUaiFIGURATIUN. (Contd, )
It is, in dimensionless variables E
- T~ 4 :
_§—. o R S’o lo 2 ;
q'* K To " 2
so that whether the magnetic structure (4.7) has an
unstable region, or not, at large h', depends only on the i
6 ]
values of ﬁ,and T,. Normal coronal values of To= |0 °W |
and Ng = 108 OW:B make 5
¥ -3
—-—;—2 B W2 w0 2

8o that the plasma is stable at large heights, For

_— -1 -
lo= \ob"\( one needs fo > 2:3x%10 ) e ( Ne 7 1o (‘/w;’s)

in order for the unstable region to occur.

g Bl P R ek I AE Rty BERE -

To show that the unstable region, that we are predicting
for large he:thts, can occur we solved the full equation

’ 4
(4.20) numerically and plotted T as a function of h' 4

in Figure (39),page 232 for the case where ‘x=:0,'§ = (o” Y
3

and 3’ = .58 » \o-‘, \-S%x\o"l and § %10 7,

it

where 3' 1'S8x10"%* is the value of S'Which satisfies
(L.29). Note, however, that this instability is occurrinz

at very large heights, b ﬁr\ow:%i so that it will not

2 PREAYY or

be relevant with these particular parameters. But tris
indicates the nossibility of instability occurring at a

realistic beight for other values of ¥ and 3'. From (h.2&§

and (4.27) we see that the height at which instability

occurs is é
W 2=t = Tk ;

X 03 G 086 Ag 4

)

B
S

where = 2 j"/ 4 b qu is the scale heightw
/\o \'(3 ] (ML%S £ L

LS
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¥l /
Thus, by choosing suitably large values of 94 , \"I

n ; v 10
can be more reasonable, For instance, "/I’L = 1L x10 own

[
makes "3 = 0‘b so the height at which instability
{
occurs 1is "‘1 = 2 . However, it should be noted

that smaller values of h' invalidate the approximation

h' >7 (SGC_X\ /Tr .




Lobos THE ADDITION OF A MECHANICAL HEATING TERM.

The corona is heated by presumably the dissipation

of waves that propagate up from below, but the details
of the mechanism are not yet worked out. In order to
investigate the cffect on the cquilibrium solutions o©

a continuous heating throughout the sheared field, we
assume that the heating is proportional to density
and.is unaffected by the magnetic field. The equations

for the temperature and density are then

d :
% FRIT) =Y. (4.30)

% d.*r)

L. 12 (K_ BLY % Y ] (4.31)

The constant, & ; can be specified by assuming, for
instance, that the heating balances the radiative loss

at the base .of the magnetic field, so

PR roT‘;&

By approximating for the conductive heating term and
the magnetic field, as in section 4.3, equations (4.30) and

(4.31) give us a modified version of (4.20), namely

! i n N 4
Tr(z gt e AT

_ B

¥ LY eWeO T T 2 {4, 38)

where L = L'(W) is given by (4.19) The solution to (4.32)

for'T; as a function of h' for several valucs of the shear

angle, ¥ , is plotted in Figure (40) page 237, for ¥ =3-Thx1§

and g’ = 0.4 (which correspond to coronal values P, =

4 ~1b - - s
17 % 10 3%3) Ty = 2% 10° o8 amd IT . 55 16 b |
, = .

gﬁ"ﬂ'"ﬁ@;\:} 5
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L.b.: THE ADDITION OF A MECHANICAL HEATING TERM. (Contd.)

/
It can be seen that the temperature T; increases as the
shear angle ¥ increases, and that there are equilibrium

solutions for all values of h'. It seems that heating

W i R A erpenat LR N U S I AT

of such a size prevents the thermal instability occurring.
This is to be expected since, if the thermal conduction
is made negligible in the energy equation (4.31) by
increasing L’, through an increcase in ¥ , then the
mechanical heating will now be able to balance the
jradiative loss. We note that this time the temperature ‘
.in the upper solution rises as ¥ is increased unlike the casez
when mechanical heating was neglected, where the temperature :

fell,

S SR L NS SR A Sy, £

Sttt Dl et R L L

5 e

T R Mk e IR e e S s
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Figure (4Oa) Tre solution of (4.32) for-tr s the
/
temperature at the top of a field line, as a function of h
the height of the top of the field line above the base of the

magnetic field region.
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L.5,: THE NUMERICAL SOLUTICON FOR THE TEMPLRATURE STRUCTURE
OF PLAS#A 1N A SHaARBD MAGNETIC FILLD.

The equations which give the equilibrium values of ﬁ
temperature and density in the magnetic field are, from
(4.10) and (4.11), (without mechanical heating,as in
section 4.3)

A o G- b
RN il - (4.33) /

_Ku 4B 4T ) =y
B dS dS | s (Ku e v § T, (4.34)

/o,

where Ky = Ko T

and S measures the distance along a magnetic field 1line.
We will not consider mechanical heating here, because we
wish to show that the thermal instability found in the
order of magnitude calculation of section 4.3 islsupported
by a full solution to equatioms (4.33) and (4.34).

We can write (4.33) and (4.34) in terms of x only, by

calculating Z(x), along a field line, namely

z=‘%“eoge wi - (i 35)
C—Cm"{xo '

and by using dx - By _ _ L. (4.36)
ds R thx S

Therefore equations (4.33) and (4.34) become

S . L9 '
SLRETYE Py Yo (4.37) }3

Ly N T
“ M b h ( “3") R tam kx 'I%,(

A BX
Y d.x

% By &TY\ _ T 3
(KOT = »&x) = WP (4.38)
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Lo5.: THE NUMzRICAL SOLUTION FOR THE TEMPERATURE STRUCTURI §
OF PLASMA IN A SHARED MAGNETIC FILLD (Contd.)

Eauations (4.37) and (4.38) are next made dimensionless

by putting P
S ! 2o o
T=5T , xaTxr', 20 & Q"ﬂg»

a= &__%_r‘\_.o 3') Be= 18 B; . where %ow\ C436) B;':‘Co—.s‘éc.m('ﬁ'x,?j

Then (4.37) and (4.38) can be re~written for computational

purposes as the following three first order equations

for T, §= dT/4x and

o\T’ / :
e (4.39) -
' 3
- ‘2 / -2
2 < RedwSetlme) g 29
Adxl
p/z , ’
= z-sil_ w2 am (XY E (0
(Lrt ?I g! IS 5%
- e o e ec -'r- —
- 3 seed MWulTY) 4 )
< % fo T RS 4
where b e M (ivf) :
%
Equations (4.39), (4.40) and (h.Ll) are solved numerically °
( / Z
for & (X'),T,(Y-") and f (x') subject to the 4
boundary conditions that at the base of a field line at i
x'= % X; ,“r’=u and §l=\ and at the top of a field ;
line at x'= o AT =@ .
; i
Ax'
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L.5,: THE NUMERICAL SOLUTLON FOR THE TEMPERATUR: STRUCTURE
OF PLASHMA IN A OHEARSD MAGNeTLIC FIbLD (Contd.)

From equation (4.35) we see that at x'z0 the field
line is at its highest point,*f say, and that as %'
approaches Xo the height of the field line above the
X-axis, Z , approaches zero. The parameter Xoor h'
definesa single field line, where from (4 .35)
K Qoo&e ( Con LT %0))
T Con ¥
! which is drawn in Figure (3la) page 210, for several

values of ¥  the shear angle.
The temperature along a field line, T 18 plotted
in Figure (41) page 243, for several different field
lines, i.,e. different values of X‘,', and for a shear angle
¥ = %4: q® . Also we have taken ¥ = 374 %10 % and :
{g':o.q, (which correspond to the values §, =17 w oY o c«vvs"s,";;
Ton 5x10° PR amd IE = 6 =10 em ). This shows us that,
when )(o' is small, then Ty a1l along the field line,
.but that, as X; is increased, the temperature at the top
(i.e. X'=0) of the field line, T. , falls and then
starts to rise again up to T‘c’ o~ | ., In Figure (42)
page 24, we have superimposed on the diagram of the
magnetic field, Figure (30a), dashed lines of constant
temperature T', the solution to the full equilibrium
equations (4.33) and (4.34) which are shown in detail in
Figure (41}, This shows us the overall temperature
structure in the magnetic field region and in particular

that a region of low temperature develops.
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092
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+ Fipure (41). The numerical solution, to the full equilibrium

equations (4.33) and (4.34) for the temperature’r/as a function
of horizontal position,)(,, along a field line. The solutions ‘
are shown for several different field lines which have foot points ;
at Xf: X: . This is drawn for a shear angle 25:8909 and V\l‘Lﬂ}
—823'7%‘0”4 and 9’20.4 (corresponding to ff,=17><10:]% CfﬂmB *
T,22x100°K  and IC=5x10%m ). ’
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Figure (42). Solid lines indicate the magnetic field of

Figure(30a). Dashed lines are contours of constant temperature T 7

the solution to the full equilibrium equations (4.33) and (4.34).

“This is drawn for a shear angle ¥ = 89 Q and N:L‘Lh-g 3- 7)(’]0[‘” g"-’

0- [, corresponding to f =7 /><10169 CIT)B T= 2>\106°}

and ”ﬁ_" 5x109 cms ).
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bob.:THE NUMERICAL SOLUTION FOR THE TEMPERATURYS STRUCTURL ;
OF PLASMA IN A SHiAnsD MAGNLTIC FlilD (Contd.,) 3

The value of the temperature'T;, at the top of a field

line shown in Figure (41) page 243, is plotted in

e S A e =00

/
Figure (43) page 246, as a functlon of X,, the valus of X

ey

at which the field line crosses the x-axis, for several
values of ¥ , and for ¥ =374 %10 " and 3'7- Ot b
As ¥ increases, we see that T, is reduced at every value
of X,. Also when Y= 29799 the value of Tcl falls very

rapidly near )(L'z lo_2"7 and there is no solution for

ol L kit

~ie | j
X; greater than this value, but less than [0 , so that 4
we expect the plasma in this region to become unstable.
: e}
(It may be that there are no solutions for ¥ =8%-4% when

X; ~ 10"“‘ but this corresponds to heights h's OO

s gttty o8 e e

whichAis too large to be important to quiescent prominence ;
formation). Thus Figure (43) shows that when X% is
increased above a certain critical value, 8., the plasma e
in the sheared magnetic field becomes unstable.

The field line which first becomes unstable hns its foot ;
points at X: = X;_ , Which corresponds to the value of X; 3

at the minimum of the“ﬁ;(.xg) curve which has ¥ = ¥, .

The value of W corresponding to X, is called W, and  for 4
ordinary coronal values ( ?o:l-Tx\o—\b o Qwr3’ T B é

b -t il 1% I 4
2x10° 9K and T/, =6x10" cwm 50 that ¥ =3-7k % 107% and .

3'“:-0-({—), we find Y, = 24°qy  and V\Iczl-(o . Lastly,

et

we plot,in Figure (44) page 247, the critical value of the

B o)

shear angle ¥ _as a function of the parameter ¥ , which,

e 3d Vi ey

given by (4.24) is the ratio of the radiative loss to the

thermal conduction at the base of the magnetic field region.
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Figure (43). The temperatur'eTc at the top (i.e. X =0 ) of a “
field line (from the numerical solution to the full equilibrium ]
equations (4.33) and (4.34)), as a function of X;, the value “
of Xlat which the field line crosses the x-axis. _This is ;

drawn for several values of the shear angle ¥ and with 16 3
“8“‘-:3'7:»(]‘0_4 and QI:O'[} (corresconding to [’o::']'?x'lo.. g CFT; ﬁ

T =2:10°°K and-—%-:fix']ogcm H
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Figure (44). The critical shearing anglezﬂ:as a function of the
parameter‘$?} which, given by (4.24) is the ratio of the
radiative loss to tkermal conduction at the base of the magnetic
field, The critical shear angle, B%) is such that if the shear
angle ¥ , is greater than Kk.then there is a region of Xé

in which the field lines with footpoints at )(; have no
equilibrium, as shown in Figure (43) page 246. Part of the

curve shown dashed, h:s not yet been calculated. The critical

value of-§f iquT

ey Such that, if1§'>iggqx, there are no

equilibrium solutions for all values of shear angle.
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ho5, 3 THE NUMERICAL SOLUTTON FOR THH TEMPERATURIF STRUCTURLE
OF PLASMA IN A SHREARED mAGN2TIC IFIzLb. (Contd.)

We have not, however, because of the lengthy time
invelved in calculating each point, been able to

draw the complete curve, but we have been able to
establish its approximate shape. We see in Figure (44),
page 247, that as'% is increased from zero, the value

of ¥. falls, as it does in the corresponding case,
Figure (36) page 225, in the order of magnitude
calculation, but it falls more slowly. Then we see
that)when'% is increased further, XC falls more rapidly.
The curve then goes through a region in which we are:
uncertain about its value. [Finally it crosses the ¥
axis at "\ZMM , which is defined such that if X >~'{<".,,\o\)c
then the magnetic field structure is unstable for all
values of shear angle. The value of’E“Wm is 0.05 which
compares with the order of masgnitude value of 0.19.

The value of the maximum density,,fm&x s above which

the magnetic field region will be unstable for all shear

angles is then
Gy -9 VQ_
K Bonn S ARAD 5
= : (V2]
fmam (TF/"{)Z S d

If (W/h )= & >'~|oq cw 3, the approximate height of a

quiescent prominence, then fmaxzz\-q x\O—lS < oS

»
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L.6.: SUMMARY

In this chapter a model is presented for the formation of
quiescent prominences in a sheared magnetic field. We
demonstrate, by methods progressing from a rough order

of magritude calculated to a numerical scolution to the
full equations, that, in a magnetic arch system in thermal
equilibrium between radiative loss and thermal conduction
and in mechanical equilibrium under a balance between
gravity and a density gradient, thermal instability can

~occur if the magnetic field is sheared enough. We expect

/ 3
- that such an instability will cool matter down since, when the

thermal conductivity is reduced, by increasing the length

of the field lines through shearing, then the radiative loss

dominates the energetics which has a cooling effect.

This cooling down will then draw in matter, probably along
the field lines, since condensation across the magnetic
field is gréatly hindered. Such a condensation may well
develop into a prominence.

We firstly discussed force~free fields in general and
pointed out that they can only occur if the magnetic
pressure is very much greater than the gas pressure, which
is true in active regions. Then we discussed the
properties of a particular force~free field, first
considered by Nakagawa & Tanaka (1974), which has the

property that the height,h s of the top of an arch rises

into the atmosphere as the footpoints are sheared uniforwly.

The variation the height, h , as a function of the shear

angle ¥ is plotted.
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SUMMARY (Contd.)

In our model we have included gravity so that for field

lines reaching higher and higher into the atmosphere,
the density, at the top of the field arch, will fall,

This reduction in density implies that T the

cool ?
timescale for heat to be radiated out of a volume,
increases. However, the length scale for thermal
conduction also increases with higher field lines, so
that £, , the timescale for heat to be conducted into
a volume, increases. The instability criterion
(/. > | ) is thus satisfied only if, with
tcool
increasing height, the length scale is increased more
than the density is decreased. We know that 't"/t
¢cool
has a maximum value at h ™A (the scale height of the
atmosphere) of (€, /. . )wa &~ 6.1 n* , where the
length of a field line is L 2 wW . Thus, if h is
increased enough through shearing,'t“/tcod will be
greater than unity so that the plaswma becomes unstable.
This instability is next investigated in more detail,
We assume an order of magnitude form for the thermal
balance. For the mechanical balance we assume that
temperature variations are not important so that the

pressure gradient gives a reduction of density with

helght. We take an approximate form for the dependence

of the length of a field line on the shear angle and solve

the equations of thermal and mechanical balance for the

temperature at the top of a flux tube as a function of the

height to which that flux tube reaches,

%
E
A
;




L.6,: SUMMARY (Contd.)

We show how these equilibrium solutions depend on the
shear angle ¥ , on the parameter ”}2 , the ratio of
radiative loss to thermal conduction at the base of the
magnetic field region, and on a parameter 3’, the ratio
of the width of the magnetic fisld region to the scale
height. For ordinary coronal valuss of ¥ and 3' we find
that, as ¥ is increased above a critical value ¥_, a

range of height develops in which there is no hot
equilibrium solution, This occurs first, as we show
analytically, at h'=0, and then spreads to greater heights
as ¥ increases. The value of ¥, for ordinary coronal
conditions is approximately 87° e suggest that,when

the shear angle exceeds BC, the plasma becomes unstable
and cools under the influence of the radiative loss.

This critical angle for instability at low heights is
found analytically to depend on ¥ ; as 18 increases, the
value of Bcfhlls and, in particular, we find that if the
coronal density is a factor of 10 larger than the ordinary
corona so that fo & 127 % g B 9 oo ® then ¥ is
increased by a factor of 100 and Xcis reduced to 630.

We also find that if ¥ is increased beyond'gnwmﬂthe plasma
has no equilibrium solution for any shear angles. The
value of'gk“wﬂis 0.19, and the corresponding value of

density, f i 3% wig™ 4 o> § £0P.TL= 2516 oKk

WA Qs 4
[

and the width of the magnetic field region == §x 107 om ).
Thus if the density at the bass of the magnetic arch system
is greater than me«’ the plasma is unstable even when X=:O.;
We then investigate the equilibrium of this system at
greater heights using similar approximations.

N 4 e

QTR




L.6.: SUMMARY (Contd.)

The plasma has a region gf h in which there is no
equilibrium solution if 3%%1 ? O-4 ,This ratio does not
depend on the shear angle or the width of the flux region
and is purely a function of fz and T, , the density and
temperature at the base of the field lines. We find that

the height at which this occurs is h == b/{o.%b 9’ )

With TE/K s 5><loq em 5, We get h= ld+Aowhich is too
large to be important to guiescent prominences; however,
b 3 "\T/h-: 7 % loq cwn 3 8ay, then h = N, , and this a
permanently unstable fegion could be important. ‘
We then extended the above analysis to include continuous ?
mechanical heating in the energy balance. In this

case, no unstable regions develop as the shear angle

increases and the temperature rises instead of falling,

as the shear is increased. This maintainence of
equilibrium is to be expected since now the radiative loss
can be balanced by mechanical heating when thermal conduction 1
is reduced by shearing. ]
Finally, we solved the full equilibrium mechanical and :
thermal balance numerically. This time we ignored :
mechanical heating and concentrated on the thermal instabilityf
which the order cof magnitude calculation had predicted. :
We were able to calculate the temperature along each field
line and demonstrated that a region of low temperature é
develops. Furthermore, if the shear angle is large enough /
(¥ > ¥ ),witkin the low temperaturc region there develops
a region in which there are no hot equilibrium solutions,

as we found in the order of maghitude case,
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SUMMARY (Contd.)

- Again the dependence of the critical shear angle ¥ . on

the parameters ¥ and 3' is found. Forr ordinary coronal
— [~} oo
values of ¥ and 3' > B> 84:9 , but as ¥ is

increased, ¥, falls (as in the order of magnitude case)

Again there exists a value XWW%, above which the magnetic

arch system is unstable for all shear angles ¥ . This
yields a maximum value for ﬁmmx, the density at the base
of the magnetic field.

Laclh of the progressively more accurate methods show the
same feature: that a region, in which no hot eguilibrium
solution can exist, develops if the shear angle is greater
than some critical value,’&c. Tre order of magnitude
calculation indicates that there are two possible sites,
one at low and the other at large values of height.

In the numerical solution to the full equations we
concentrate on the low height range and demonstrate how
the parameter-g greatly influences the problem. In

agreement with the order of magnitude case we see that

¥, becomes progressively lower as ¥ increases.

R L




CHAPTLER 5

CONCLUSIONS AND SUGGESTIONS FOR FURTHZR WORK

We have here investigated the thermal and tearing mode
instabilities in the corona and upper chromosphere. The

effect of these two instabilities has been examined in a neutral

current sheet, one application being,as suggested by Kuperus

and Tandberg-Hanssen (1967), in the formation of quiescent
prominences. Ve have also considered the thermal balance &
in an arch magnetic field system, showing that such a structure

can become thermally unstable if the foot points are sheared

enough, a result which could be relevant to the formation of

prominences in magnetic arches.

In chapter 2 we study a neutral current sheet in thermal ‘é

equilibrium (between mechanical heating, radiative loss, and
thermal conduction) and in mechanical equilibrium (between the
Lorentz force across the sheet and a gas pressure gradient).
With an approximate representation of the thermal conduction
we investigate the equilibrium and stability of the sheet.

As the length of the sheet increases we find that it passes
through a series of stable equilibria until a certain value,t_m&xﬂ
is reached, when the sheet cools down to a new stable equilibriumé
For coronal conditions (temperature T, = toeo1<.and number ;

b % 10 cm) and the ;
4

density n = logc~;3), values for L‘mwy(
cooling time (€ = 1ogsec when the magnetic field B «1 Gauss)
are in faiy agreement with the observed values {(height == 5><\oqc~g

!

; s E) ; 3
and formation time = |0 sec ) for quiescent prominences.




Chapter B
CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK (Contd.,)

Apart from the main application of the theory, namely to

current sheet models for prominences, the analysis may also
be relevant to smaller sheets which form in the chromosphere,
provided they are not so thin that ohmic heating and heat
conduction across the magnetic field become important.

This work could be extended in several ways. Other energy
terms such as the release of gravitational potential energy
or the effect of the particle motions caused by spicules,
could be considered in the thermal balance in the corona and

upper chromosphere. One could also examine the effect of

b Y SRS et I SRR T VR o . (SIS M 20 3 C - O PO g o R It P K T e

changing the mechanical heating law since the actual amount

of energy transported by this means is unclear.

The theory of thermal instability in a neutral sheet could be
advanced by using the technique of Cross & Van Hoven (1971),

or by using some other means, to find the growth rate-of the
instability when the structure within tﬁe current sheet is taken
into account. One could then see how the thermal instability
is influenced by the other instabilities such as the tearing

mode o

In chapter 3 we calculate the growth rate of the tearing mode
instability in a neutral current sheet with no energy sources
or sinks, using the method devised by Cross & Van Hoven (1971)

to study the instability in a sheared magnetic field of constant

magnitude. We find that the maximum growth rate can be
significantly larger in the current sheet than that found in the

sheared field by Cross & Van Hoven.
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Chapter 5

CONCLUSIUNS AND SUGGLSTICNS FOR _FURTHER WORK (Contd.)

Also we find, in our case, that when 4, the ratio of gas to
magnetitC. pregsure, is reduced so that the density in the sheet
increases, the growth rate decrzases in value. In addition,
we investigate the effect,on the tearing mode instability in b
a current sheet of including a transverse component of the §
magnetic field. We find that the growth rate, w , of the
instability is significantly inhibited if the value of the
transverse field is large enough. In particular, w , is
reduced to the diffusion rate, T , 1f the transverse field
component Bt is approximately equal to %i Bo » Where Bs is

the field strength at the edge of the current sheet. Also the

v B 5

dimensionless growth rate, W,T_ , is reaucsa to WoTy /n

D ?
when By is increased from zero to By = Bo v /('5-8 gy
where S is the ratio of the diffusion time scale to ths Alfven

time scale.

Possible extensions to the above analysis include the effects ;
of reducing the value of B ard of compressibility on this §

instability. It was noted that when /3 >> Vé the plasma

behaves incompressibly, but, with thin enough current sheets
and high enough values of magnetic field, one has S 2,/3~' g

‘ i
so that compressibility would be important. Another instability#

which could occur in a neutral sheet is the infinite

- conductivity interchange instability, so it would be 3

interesting to consider its influence, either by the numerical &
techniques of Cross & Van Hoven, or, since the equations are

greatly simplified when there is no resistivity, by analytic

means .




Chapter 5

CONCLUSIONS AND SUGGESTIONS FOR FURTHER #ORK (Contd.)

In chapter 4 a model is presented for the formation of
quiescent prominences in a sheared, force-free magnetic field.
We demonstrate by methods progressing from a rough,order of
magnitude calculation to a numerical solution to the full
equations, that in such a magnetic structure thermal
instability can occur if the magnetic field is sheared enough.
We assume thermal equilibriﬁm between radiative loss and thermal
conduction and mechanical equilibrium along field lines with
a balance between gravity and a pressure gradient. We find,
for example, that if the density at the base of the field is

a factor.of ten larger than the normal coronal value, as it

may be in coronal condensations, ( 22 \-Tx10"'° 3

Q o
then there is a range of heights with no equilibrium if the
shear angle is greater than 637, We expect the resulting
instability to cool the plasma and draw matter along the field
to create a prominence., The presence of a large enough
mechanical heating is found to prevent the instability
ocecurring.

This work could be extended by investigating the stabilizing
effect of the meqhanical heating in more detail using the
numerical solution to the full equations. One could also
extend the range of parameters examined in the numerical work
and, in particular, establish in greater det#il the variation
of the critical angle ¥  above which instability occurs, with ¥
the ratio of radiative loss to thermal conduction at the base

of the wagnetic field region.
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Chanter 5

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK (Contd.)

Also the effect of varying 3,, the ratio of the scale length
of the magnetic region to the scale height of the atmosphere
would be of interest. With an order of magnitude calculation
we could examine the effect on the equilibrium of having
the temperature at the top of the magnetic arch, larger than
the temperature at the base, Such an analysis would fit in
with observations which imply‘that the temperature at the top
;

of these arch structures is somewhat larger than the external

coronal value.
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