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ABSTRACT

In the course of this work a novel strategy has been developed for linking the adjuvant 

Escherichia coli heat-labhe enterotoxin subunit B (LTB) to Simian Immunodeficiency Virus 

(SrV) proteins via an antibody bridge and the systemic and mucosal immunogenicity of 

such SIV-MAb-LTB complexes have been investigated.

A short peptide tag, termed Pk, was joined to the 3’-end of the gene coding for LTB 

and expression studies revealed that the gene product, LTB-Pk, could be efficiently 

synthesised and secreted from non-pathogenic Vibrio sp.60. Analysis of the functional 

properties of LTB-Pk demonstrated that LTB-Pk , like native LTB, was a heat-labile 

oligomer, that could bind to the glycolipid GMl-ganglioside and was immunogenic in vivo. 

In attempts to purify LTB-Pk for immunisation studies, both hydrophobic and ion-exchange 

chromatogi'aphy schedules were analysed, the latter procedure being more efficient. 

Strategies were developed for joining LTB-Pk to one arm of an anti-Pk MAb, (MAb SV5-P- 

k) and Pk-linked SIV proteins to the other arm, and such SIV-MAb-LTB complexes bound 

to GMl-ganglioside in vitro. Systemic immunisation studies suggested that SIV-MAb-LTB 

complexes, using recombinant pl7 as the target antigen, promoted both humoral and cell- 

mediated immunity to the recombinant pl7. In addition, it was later shown that conjugation 

of LTB-Pk to recombinant SIV proteins via an antibody bridge, msWtedIn a mere effieent 

presentation of the recombinant SIV protein to the immune system, than co-administration 

of LTB-Pk with the recombinant SIV protein. However, intranasal administration of pl7- 

MAb-LTB complexes did not induce immunity to recombinant pl7. Subsequently it was 

shown that the recombinant p i7 was highly susceptible to mucosal degradation, suggesting 

the poor mucosal immunogenicity of pl7-MAb-LTB complexes may be related to the 

instability of recombinant pl7 in the mucosal environment. Further investigations into the 

stability of other recombinant SIV proteins in the mucosa, revealed that recombinant p27 

was more resilient to mucosal degradation. p27-MAb-LTB complexes were constructed and 

initial intranasal immunisation studies revealed that both systemic and cell-mediated 

immunity to recombinant p27, could be induced following intranasal administration.



Furthermore, mucosal immunity to recombinant p27 was evident in the lungs of vaccinated 

mice, with anti-recombinant p27 IgG-secreting cells predominating.



ABBREVIATIONS

NUCLEIC ACIDS

1

DNA 2' deoxyribonucleic acid
RNA ribonucleic acid
A adenine (base in DNA/RNA)
G guanine (base in DNA/RNA)
C cytosine (base in DNA/RNA)
T thymine (base in DNA)
U uracil (base in RNA)
ATP adenosine 5' triphosphate
GTP guanosine 5' triphosphate
cAMP cyclic 3’, 5' adenosine monophosphate
mRNA messenger RNA

AMINO ACIDS
A Ala alanine M Met methionine
C Cys cysteine N Asn asparagine
D Asp aspartate P Pro proline
E Glu glutamate Q Gin glutamine
F Phe phenylalanine R Arg arginine
G Gly glycine S Ser serine
H His histidine T Thr threonine
I He isoleucine V Val valine
K Lys lysine W Trp tryptophan
L Leu leucine Y Tyr tyrosine

PHYSICAL UNITS
“C temperature in degrees Celsius
g gram mass or centrifugal force
mg milli gram (10"3 g)

Hg micro gram (lQ-6 g)
ng nano gram (10-9 g)
1 litre volume
ml milli litre

micro litre



Ci Curie (measure of radioactivity = 3.7x 10̂ ^̂  
disintegrations/second)

\iCi micro Curie
M molar concentration
lïiM milli molar
fxM micro molar
kD kilodalton
kb kilobase (pairs)
PH -logio[H+]
V volts
mA milli amperes
U units of enzyme activity
in^ inches squared
Ib pounds
cpm counts per minute
Â angstrom (lO-̂ ®)

CHEMICALS AND REAGENTS
FCS Foetal Calf Serum
EDTA ethylenediaminetera-acetic acid
EGTA ethylene glycol-bis (p-aminoethyl ether) N, 

acid
NP-40 nonidet P-40
SOS sodium dodecyl sulphate
TEMED N, N, N', N'-tetramethylethylenediamine
DATD N, N-diallyltartardiamide
Frrc fluoroscein isothiocyanate
PBS phosphate buffered saline
Tris-HCl tris-hydroxymethyl-aminomethane, pH adju
TE tris EDTA
MOPS 3“(N-morpholino) propane sulphonic acid
1251 radioisotope iodine-125
3R radioisotope hydrogen-3
BCIP 5-bromo-4-chloro-3-indoyl phosphate
AMP 2-amino-2-methyl-1-propanol
IPTG isopropyl-P-D-thiogalactopyranoside
TBE Tris-borate-EDTA buffer



Triton t-Octyphenyloxpolyethoxyethanol

VIRUSES
SV5
RSV
LCMV
HIV#
FMDV
SIV
HSV-2

simian virus type 5 
respiratory symcytial virus 
lymphocytic choriomeningits virus 
human immunodeficiency virus 
foot and mouth disease virus 
simian immunodeficiency virus 
herpes simplex virus-2

MISCELLANEOUS
ADCC
APC
AIDS
ASC
Ab

antibody -dependent cell-mediated cytotoxicity
antigen presenting cell
acquired immunodeficiency virus
antibody secreting cell
antibody

B cells
BSA
BCG

B lymphocytes
bovine serum albumin
bovine bacillus Calmette-Guerin

CD#
CFTR
CTL
CMI
C-terminus
CT
CTB

cluster designation
cysitic fibrosis transmembrane receptor
cytotoxic T cell
cell-mediated immunity
carboxyl terminus
cholera toxin
cholera toxin subunit B

DH diversity gene of immunoglobulin heavy chains

ELISA
ELISPOT
env
ER
e.g.
E.coli

enzyme-linked immunosorbent assay 
enzyme-linked immunospot assay 
envelope
endoplasmic reticulum 
for example 
Escherichia coli



ECL enhanced chemiluminscence

Fab
Fig.
FPLC
Fc
FcR
FCA
FDC

antigen-binding fragment of antibody 
figure
fast protein liquid chromatography 
crystalisable fragment of antibodies 
receptor for the Fc region of antibodies 
Freund's complete adjuvant 
follicular dendritic cell

gag
GMl
gP
GST

group-specific antigen 
GMl -monosialoganglioside 
glycoprotein 
glutathione-S-transferase

H-2
H
HRP
HBcAg
HBsAg

designation for the murine MHC locus; chromosome 17
heavy chain of antibodies
horseradish-peroxidase
Hepatitis B virus core antigen
Hepatitis B virus surface antigen

Ig#
IL-#
IFN-Y

immunoglobulin 
interleukin 
gamma interferon

'H joining gene of immunoglobulin heavy chains

L-broth
L-agar
L
ISCOMS
LT
LTB

Luria broth 
Luria agar
light chain of antibodies 
immunostimulatory complexes 
E.coli heat-labile enterotoxin 
E.coli heat-labile enterotoxin subunit B

MAb
MHC
MDP
MAPS

monoclonal antibody 
major histocompatibility complex 
A-acetylmuramyl-L-analanyl-D-isoglutamine 
multiple antigen peptide system



O.D.

NTA

optical density 

nitrilotriacetic acid

PAGE
Pr.A
PHA

polyacrylamide gel electrophoresis
protein A component of Staphylococcus aureus
phytohaemagglutinin

rIL-2 recombinant interleukin-2

SMAA 
St. aureus

solid matrix-antibody-antigen complex 
Staphylococcus aureus

T cells
TcR
TyrVLP
TH#
TNF#
t-MDP

T lymphocytes 
T cell receptor 
Ty: virus-like particle 
T helper cell 
tumour necrosis factor 
threonyl-MDP

U.V.
Vl
Vh
v/v

WB
w/v

ultra violet
variable region of antibody light chains 
variable regions of antibody heavy chains 
volume per total volume ratio

western blotting
weight per total volume ratio

<
>
%

less than 
greater than 
percent
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INTRODUCTION,

Vaccination remains one of the most effective strategies for protecting man against 

viral infections. Vaccination specifically primes the cells of the adaptive immune system, the 

B and T cells, which enable them to respond quicker and with greater magnitude upon 

subsequent infection, and thereby, decreasing the severity of the disease.

Vaccination technology has advanced remarkably over the years, principally due to 

the developments in DNA technology which have now made it possible to construct subunit 

vaccines that contain only the epitopes important in the priming of B and T cells. This 

project, has adopted the subunit approach, with the aim of developing subunit vaccines that 

prime the immune system to the Simian Immunodeficiency Virus (SIV), and potentially 

Human Immunodeficiency Virus (HIV).

One of the fundamental aspects in the design of any vaccine, is to have a clear 

understanding of the adaptive immune responses, the role they play in the control of virus 

infections and the molecular events that lead to their activation.

The objective of the first two sections of this introduction is to present a generalised 

review of the adaptive immune system, its role in the control of viral infections, and how 

our understanding of this system is influencing vaccine design. In later sections of the 

introduction, a brief review of SIV is presented and some of the current vaccination 

strategies under investigation in the control of the virus infection are discussed. Finally, in 

the last section of the introduction, the major aims of this project are presented.



A. Adaptive Immune Responses To Acute Viral 
Infections.

A .i. Humoral Immunity to Viral Infections,
Immunoglobulins (Igs or antibodies) secreted from activated B cells are the effector 

molecules of humoral immunity. Immunoglobulins can exist in two microenvironments: as 

soluble products in the extracellular fluid (e.g. blood, tissue fluid or mucosal secretions) or 

expressed on the membranes of B cells where they function as antigen-specific receptors. In 

either environment, the immunoglobulin shares the same basic four chain structure and 

antigenic specificity. All immunoglobulin molecules are multifunctional, in that they can 

bind to specific antigenic epitopes through their variable N-terminus and interact with 

effector molecules through their more conserved Fc regions [Hilschman and Craig, 1965].

Antibodies are secreted fiom plasma cells, which are the principal effector cells of 

humoral immunity. Antibodies can control viral infections in different ways. For example, 

they can bind to specific components on the surface of the virus particle preventing 

infectivity (virus neutralisation), they activate the complement system which can lead to viral 

cytolysis and uptake by macrophages. Antibodies may target virus infected cells for lysis by 

either the complement pathway or through antibody-dependent-cellular cytotoxicity 

(ADCC). Thus, antibodies have a principal role in preventing viral infection of the cells.

The extent to which humoral immunity contributes to the overall protection against 

infection, is dependant on the actual infecting viruses. For example, both primary and 

secondary infections with vesicular stomatitis virus are controlled by neutralising antibodies 

[Gobet et a l, 1988] and the spread of enteric viruses from the portal of entry is more severe 

in B cell deficient patients [Rager-Zisman and Allison, 1973]. In contrast, humoral 

immunity seems to play only a minor role in the control of lymphocytic choriomeningitis 

virus (LCMV) [Zinkemagel e ta l, 1976; Byrne e ta l, 1984].



A.1.1. Classification of antibodies.
The basic unit of an immunoglobulin molecule is a four chain structure composed 

of two identical light (L) chains and two identical heavy (H) chains. The difference in 

structure of the amino and carboxy termini is reflected in the functions of the two regions. 

There is high sequence variability at the amino termini of both the heavy (Vh) and light (V^) 

chains and dûs allows immunoglobulins to recognise and bind to a vast variety of structures. 

The conserved C-terminal (Fc region) interacts with effector cells (e.g. macrophages) and 

molecules (e.g. complement).

Nine classes of antibodies have been described in man (IgM, IgGi, IgG2a, IgG2b> 

IgGg, IgG4, IgE, IgD, IgAi and IgA2 ) eight classes in murine systems (the same classes as 

in man but there is only one IgA class), the classes being distinguishable from the different 

structures of their conserved C-terminal regions. In addition each class of antibody can exist 

in two forms, as free antibody secreted from plasma cells or as bound antibody that acts an 

antigen-specific receptor on the B cell surface. Both secreted and bound antibodies from a 

given cell are identical in their specificity fca* a particular antigen, only varying in their 

C-terminal region. Membrane bound immunoglobulins contain an additional transmembrane 

and cytoplasmic anchoring domain, (for a review of antibody structure and function, see 

Male et al., 1987).

A. 1.2. Activation of the B ceil.
Naive B cells that have not previously been exposed to antigen, circulate through 

the body as small resting lymphocytes that are in the Go phase of the cell cycle and bear 

membrane IgM and IgD molecules. Upon antigenic stimulation, resting B cells undergo a 

round of proliferation, termed clonal expansion creating many progeny B cells with 

antibodies having identical antigeiuc specificity. B cell progeny then differentiate into either 

memoiy cells or effector (plasma) cells. B cell proliferation and differentiation occur in 

organised lymphoid structures called lymph nodes, and is tightly regulated (reviewed by 

Clarke and Ledbetter, 1994). Antigenic stimulation is usually not enough on its own to 

induce B cells to proliferate, stimulation of the receptor facilitates the B cell to be more



receptive to signals secreted from activated T helper cells that are required for proliferation.

During B cell proliferation, progeny B cells undergo a process called class 

switching, whereby the class of antibody produced changes (for review of immunoglobulin 

class switching, see Snapper and Mond, 1993). Different classes of antibody have different 

effectCMT roles. For example, the pentameric stmcture of IgM makes it veiy suitable to 

activate the complement system by the classical pathway, IgG can target viruses for lysis 

onto FcR bearing macrophages, IgA antibodies are principal effectors in the mucosal 

associated lymphoid tissue and I ^  antibodies play a major role in allergic reactions. The 

class of antibody that is most effective in viral infections is unknown. However, studies by 

Coutelier et aL, [1987] have shown that infection of mice with various DNA and RNA 

viruses induces a striking dominance in the IgGg  ̂isotype. IgG2a antibodies could be 

advantageous for clearing viruses as, because in contrast to IgGj and IgG ,̂ they can activate 

both the alternative and classical pathways of complement [Klaus et ai, 1979]. 

Macrophages also have distinct receptors for IgG2a [Unkeless et al., 1981] and IgG2a 

antibodies are reported to be better mediators of ADCC than IgG^ and IgG2y antibodies 

[Steplewski et al., 1985]. Whether such findings are relevant to man is unknown, as few 

studies have been conducted.

A.1.3. Generation of diversity of the B cell receptor.
One point that is paramount in considaing the design of vaccines is to understand 

how B cells recognise antigens. The binding of foreign antigens to variable domains on 

antibodies present on the surface of the B cells represents the initial step in the sequence of 

events leading to activation of B cells and the secretion of effector immunoglobulins. The 

diversity in the number of antigenic structures capable of being recognised by 

immunoglobulin receptors on B cells, is a result of two processes unique to B cells- somatic 

recombination and hypermutation. Immunoglobulin polypeptide chains are encoded in 

multiple gene segments scattered along the chromosome of the germ-Hne genome [Hozumi 

and Tonegawa, 1976; Tonegawa et al., 1977], the actual number of gene segments varying 

between species. For example, in murine systems, the H chain germ-line DNA contains a 

cluster of 100-200 variable (Vh) region segments [Givol et al., 1981], a cluster of 12

4



diversity (Dh) segments [Schilling et al., 1980] and a cluster of 4 functional joining (Jh) 

segments [Gough and Bernard, 1981]. In B cells, one each of the Vh segments, Dh 

segments and Jh segments are recombined to form a complete Vh region-coding DNA 

segment [Sakano et al., 1979; Early et al., 1980]. Because the Vh region is encoded by three 

gene segments and the joinings can occur in various combinations, the potential diversity 

generated by this rearrangement is enormous. A similar process occurs in the generation of 

the variable region of light chains, (for review on antibody somatic rearrangment see 

Tonegawa, 1983). This somatic recombination greatly diversifies the genetic information 

carried in the germ-line genome, and ultimately, the structure of the antigen-binding site on 

the immunoglobulin molecule. However, although such diversification in the structure of the 

antigen-binding site increases the number of antigens capable of being recognised, 

adversely, it tends to create receptors with low affinity [Fearon, 1993]. To overcome these 

problems, following piimary stimulation and during clonal expansion of the B cells, 

mutations are introduced somatically into the immunoglobulin gene at an exceedingly high 

rate [Brack et al., 1978; Bernard et al., 1978]. B cells bearing high affinity receptors are 

then selected when antigen becomes limiting and differentiate into either memory B cells or 

antibody secreting plasma cells.

A.1.4. Determinants recognised by the B cell receptor.
There have been several attempts to distinguish the minimum epitope that can be 

recognised by immunoglobulins, in the hope of designing subunit vaccines. Many of the 

approaches have employed the use of short synthetic peptides that compete with native 

protein to bind specific antibody. Protein antigenic determinants that are recognised by 

immunoglobulin receptors have been classified as either sequential or conformational 

[Barlow et al, 1986]. Sequential determinants, sometimes referred to as linear or continuous 

epitopes, consist of amino acid residues that occur locally in the polypeptide chain. In 

contrast, conformational determinants are discontinuous, consisting of residues that occur 

far apart in the polypeptide chain, but are juxtaposed upon folding of the protein molecule. 

Most protein epitopes recognised by immunoglobulm receptors are thought to belong to this



latter category [Barlow et al., 198Q, since epitope accessibility is crucial for 

immunoglobulin interaction and most accessible epitopes are positioned at ’comers' of the 

folded polypeptide chain [Novotny et al., 1986], In support of this proposal. X-ray 

crystallographic images of a complex between lysozyme and a monoclonal antibody specific 

fc«* the protein [Amit et al., 1986] revealed that the epitope recognised by the specific 

monoclonal antibody was composed of two stretches of amino acid residues, namely 

residues 18-27 and 116-129, that came together upon folding of the pmtein molecule. In 

addition the size of the antigen binding site on immunoglobulin molecules is large, 

approximately 700 Â [Amit et al., 1986] and few continuous epitopes of this size have ever 

been found [Barlow et al.„ 1986].

Sevei*al algorithms have been proposed to determine where B cell epitopes exist on 

proteins [Novotny et al., 1987; Blundell et al., 1987; van Regenmortel, 1989(a), 1989 (b)]. 

These include identification of regions that are buried within the protein i.e. hydrophobic 

regions and those regions which are hydrophilic and therefore are likely to be on the surface 

of the protein and thus, potentially antigenic. Although such programs are good at 

identifying some potentially important sites, they also fail to predict others and only result in 

a 50-55% efficiency in identifying the epitopes on the primary sequences [Pellequer et al., 

1991; van Regenmortel et al., 1989(a)]. A classic example was demonstrated by Daniel and 

colleagues [1994] who showed that the combination of nine epitope prediction algorithms 

failed to identify critical epitopes necessary for protection against neurotropic murine 

coronavirus.

A.I.5. Evasion of the humoral response.
The specificity of the interaction between antibodies and their specific antigenic 

determinants can have serious implications in vaccine design. For example, vaccine 

formulations that denature the proteins of interest may not induce the appropriate immune 

response. Viruses themselves can thwart attempts to produce efficient vaccines by having 

many antigenic serotypes. Thus to produce a successful vaccine to many viruses, it may be
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necessary to inccaporate multiple epitopes into the vaccine to deal with virus antigenic 

variation.

A second problem in the design of vaccines, is that not all antibodies are actually 

protective and indeed, some may be harmful. It has been noted that for several viruses, e.g. 

Feline leukaemia viruses [Nick et aL, 1990], flaviviruses [Fagbami et al., 1988] and dengue 

virus [Halstead et al., 1988], that both neutralising and enhancing antibodies exist For these 

viruses, subneutralising concentrations of antibodies can cause an enhancement of infection, 

via binding of antibody-virus complexes to cellular Fc receptors and thus facilitating the 

attachment of virus particles to target cells. Some antibodies against murine retroviruses 

have also been shown to enhance viral replication in vitro [Legrain et al., 1986].

A.2. Cell-Mediated Immune Control o f Viral Infections.
The replication of a vims is dependent on its ability to infect host cells and utilise 

the host’s protein synthesising machinery. Thus, for part of its life cycle, a vims is located 

intracellularly and as a consequence, is hidden from humoral immune system. To overcome 

this problem, the immune system has evolved a second-line of defence that is concerned 

with recognising foreign intracellular antigens; cell-mediated immunity.

Cell-mediated immunity is characterised by T lymphocytes (T cells), which are 

quite distinct from their B lymphocyte counterparts in both their effector mechanisms and 

antigen recognition requirements. Rather than recognising free antigen, T cells have 

receptors (TcRs) that recognise and interact with peptide fragments of degraded proteins, 

presented on the surface of antigen presenting cells (APCs), in association with host cell 

molecules, termed major histocompatibility complex (MHC) proteins [Townsend et al., 

1989].

Different classes of T cells exist, and can be phenotypically distinguished by the 

type of cluster differentiation marker (CD) they cany on their cell surface [Knapp et al., 

1989]. Whereas CD4 CD8+ T cells interact with peptides presented in association with 

MHC class I molecules [Norment et a i, 1988], CD4+CD8' T cells recognise peptides



bound to MHC class II molecules [Gay et al,. 1987] (see fig. 1). This classification of T 

cells into CD8+ and CD4+ cells, in part, reflects the different effector functions of the two T 

cell subsets. For example, CD8+ T cells are normally referred to as having cytolytic activity 

(cytotoxic T lymphocytes; CTL), in that they actively destroy target cells. CD4+ T cells, 

upon activation, secrete soluble substances called lymphokines [Stevens et al., 1988; 

Balkwül et al., 1989] that modulate the immune response, e.g. they provide the appropriate 

signals that allow precursor cytototoxic T cells to differentiate into effector cells [Jennings et 

al., 1991; Horvat et al., 1991], and provide help for B cells to proliferate and differentiate 

into antibody secreting plasma cells [Stevens et al., 1988; Snapper and Paul, 1987]. 

However, these functions are not mutually exclusive. In this respect, certain CD8+ T cells 

secrete lymphokines [Fong and Mossman, 1990]. Similarly, some subtypes of CD4+ T cells 

exhibit cytolytic activity [Del Prete et ai, 1991(a); (b)].

T cells have a critical role to play in the resolution of viral infections and the ability 

to design vaccines that actively prime T cells to a particular virus have the potential to be 

very successful. This means that detailed information on the intracellular routes of antigen 

processing and the relative importance of CD8+ as opposed to CD4+ T cells in the resolution 

of viral infections is important in the design of vaccines. In the following sections, the cells, 

molecules and molecular mechanisms leading to the activation of T cells is presented.

A.2.1. Antigen Presenting Cells (APCs).
One of the major requirements in T cell activation, is that viral proteins must be 

processed and degraded into short peptide fragments that can associate with MHC class I or 

n  molecules. Such events are performed in antigen presenting cells (APCs). Virtually all 

nucleated cells bear MHC class I molecules and therefore have the potential, following viral 

infection, to act as APC for CD8+ T cells. In contrast to the ubiquitous expression of class I 

MHC molecules, MHC class II molecules have a more restricted distribution, being 

principally expressed on the surface of specialised cells of the haemapoietic lineage 

[Cresswell et a i, 1987] i.e. B cells, macrophage and dendritic cells. Considering the central



role CD4+ T cells play in the immune system, this restricted distribution of MHC class II 

molecules may serve as a regulatory mechanism in the immune system.

There have been several attempts to establish whether one ceU-type predominates as 

an APC fw activation of naive T cells, in the hope of designing vaccines that can be targeted 

directly at the appropriate APC. Although such research has greatly facilitated understanding 

of the minimum requirements for a cell to function as an APC, which include the ability of 

the cell to internalise antigen [Stockinger et al., 1992; Gasselin et al., 1992], the processing 

capabilities of the cell [Vidard et al., 1992], the level of expression of adhesion molecules 

[Sanders et al., 1988], the surface charge of the cell [Boog et al., 1989] and the provision of 

additional co-stimulatory signals efficient for T cell activation [Mueller et al., 1989; Lui and 

Janeway, 1992], there is no conclusive evidence that one cell type is more efficient than 

another for activating naive T cells. For example, although studies on B-cell deficient mice, 

which contain fully functional macrophage and dendritic cells, suggest that antigen-specific 

B cells aiTe the predominant activators of unprimed T cells [Kurt-Jones et al., 1988], 

Macatonia and colleagues [1989] suggest that dendritic cells are the most efficient APC. 

Indeed, the general opinion is that dendritic cells are the most efficient APC for activating 

unprimed T cells [reviewed by Knight and Stagg , 1993].

A.2.2. The Major Histocompatibility Complex (MHC).
The major histocompatibility complex molecules have a prominant role to play in T 

cell activation, since peptides must be presented to T cells in association with these 

molecules. Sequencing studies have shown that both MHC class I and II molecules are 

highly polymorphic [Coligan etal., 1981; Brown et al., 1988], there being numerous 

haplotypes. In 1987 (a), Bjorkman and colleagues, resolved the X-ray crystallographic 

image of an MHC class I molecule, HLA-A2 and, such studies revealed that class I MHC 

molecules have a deep groove running between the a l  and o2 domains, whose sides are 

composed of a-helical structures, and the floor consists of eight anti-parallel p-pleated 

sheets. Most of the polymorphism seen in class I MHC molecules is located within the 

groove [Bjorkman et al., 1987(b)] and it was proposed that this groove contained the



peptide binding site. Since these initial studies, the X-ray images of several other MHC class 

I and class U molecules have become available [Garret et ai, 1989; Brown et al., 1993] and 

have supported the observation that peptides are located in the grooves of MHC molecules. 

There have been several attempts at sequencing the amino acids lining the peptide binding 

grooves of various MHC molecules and such studies have shown that the binding grooves 

contain six subsites or 'pockets*. Comparative studies have demonstrated that within 

haplotypically similar MHC molecules these subsites are present in similar locations and 

contain almost identical amino acids. Yet, in MHC molecules of different haplotypes, the 

size, shape and location of the pockets are dissimilar. These observations have led to the 

suggestion that the peptide sequences that bind to certain MHC molecules are restricted, in 

that, only peptides that are capable of interacting with the amino acids located at particular 

regions in the groove of the MHC, will be selected for presentation to T cells. Such an 

observation would imply that similar peptide motifs would bind to haplotyically similar 

MHC molecules, a suggestion that has won support from the work of Falk and colleagues, 

1991. In a series of experiments, naturally occurring peptides were eluted from murine 

MHC class IH-2K^ and H-2K^, then sequenced. It was found that peptides eluted from H- 

2K*̂  molecules had similar peptide sequences that were distinct from those eluted from H- 

2K*» molecules. It is now generally accepted that peptide-binding motifs exist and thus it 

may eventually be possible to engineer peptide vaccines that bind to particular MHC 

haplotypes.

Ao2.3. The T cell receptor (TcR).
T cells recognise peptide-MHC complexes through their surface T cell receptor 

[TcR (see Fig.l)]. Most peripheral T cells bear TcR composed of a  p polypeptide chains 

and such receptors are extremely polymorphic. The polymorphism of the T cell receptor 

occurs from somatic rearrangement of gene segments in an analogous fashion to that which 

occurs with antibodies [Chothia et al., 1988; Claverie et al., 1989, reviewed by Davis, 

1990].
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Figure 1. Molecular interactions fh antigen-specific T cell recognition of antigen- 
presenting cells.
The left-hand side of the figure depicts the interactions during the recognition of 
peptides associated with MHC cl#s I molecules by TCR on a CDS"  ̂T cell (usually 
a cytotoxic T lymphocyte). The nght-hand side of the figure illustrates the recognition 
of MHC class Il-peptide complejies by a CD4+ T cell (a helper or possibly a cytotoxic 
T cell). Die key determinant of /f  cell specificity is the T cell receptor (TCR). The 
TCR is closely associated with#he CD3 complex and either a CD8 or CD4 molecule. 
The CD3 complex is involvedgn signal transduction across the plasma membrane 
following TCR engagement apd so are most likely the CD8/CD4 molecules. (Taken 
from Hanke and Randall, 1994).
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Despite the fact that ap  TcR bearing T cells are extremely sensitive to low 

antigen concentrations (only 30-100 peptide-MHC complexes on APC are required for T cell 

triggering [Demotz et aL, 1990; Harding et al., 1990], the affinity of TcRs for such 

complexes are very low [Matsui et al., 1991; Weber et al., 1992]. Such observations 

suggest that TcR-ligand interactions are not the driving force for conjugate formation 

between T cells and target cells [Singer et al., 1992] and it has been proposed that multiple 

adhesion molecules expressed on both the APC and the T cell, many of which show 

extremely high affinities for their ligands, must mediate the event [Springer et al., 1990].

For example, it is known that the binding of CD4 to MHC class II [Doyle, et al., 1987] and 

CD8 to MHC class I [Norment et al., 1988] allows the recognition process to progress more 

efficiently and with less antigen [Gabert et al., 1987].

A.2.4. Pathways of Processing and Presentation of Antigens.
Proteins have to be processed into peptide fragments that are capable of interacting 

with both the T cell receptor and the appropriate MHC molecule. Two pathways for 

processing proteins have been suggested depending on whether the resulting peptide 

associates with MHC class I or class II molecules; the endogenous and exogenous pathways 

respectively [Figs. 2 & 3 repectively, Germain, 1986]. In the endogenous pathway, newly 

synthesised proteins are degraded in the cytosol and then transported to the endoplasmic 

reticulum (ER) where they complex with newly synthesised MHC class I molecules (Fig.2). 

The lole that the ER plays in this endogenous pathway is highlighted by the ability to arrest 

MHC class I presentation by use of pharmaceutical products like Brefeldin A, that 

specifically prevent egress of molecules from this cellular compartment [Nuchtem et al., 

1989]. In contrast to the endogenous pathway, the exogenous pathway is concerned with 

the degradation of proteins into peptide fragments that subsequently associate with MHC 

class n  molecules. Such presentation can be inhibited by lysomotropic agents (e.g. 

chloroquinine), but not Brefeldin A, that specifically act by increasing the pH of endosomes, 

suggesting that these cellular compartments play a critical role in the degradation of the 

proteins (Fig.3). The exact compartment where complexing between peptides and MHC
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Figure 2. MHC class 1 presentation pathway.
The diagram schematically illustrates the life cycle of a virus (in tliis case influenza virus) and 
how the virus proteins can enter the endogenous (MHC class I) antigen processing pathway in 
an antigen-presenting cell. Following partial proteolytic degradation, certain virus-derived 
peptides associate with MHC class I molecules. The MHC-peptide complexes are then 
transported to the cell surface where they are specifically recognised by T cells bearing T cell 
receptors.
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Figure. 3. MHC class H presentation pathway.
The diagram schematically illustrates the life cycle of a virus (in this case influenza virus) and 
how the virus proteins can enter the exogenous (MHC class II) antigen processing pathway in 
an antigen-presenting cell. Following partial proteolytic degradation, certain virus-derived 
peptides associate with MHC class II molecules. The MHC-peptide complexes are then 
transported to the cell surface where they are specifically recognised by T cells bearing T cell 
receptors.
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class n  complexes occurs is unknown, but it has been noted that the endosomes cross the 

pathway leading to the expression of MHC class II molecules on the surface of the cell.

Thus it has been suggested that complexing with MHC class II molecules occur in 

endosomes themselves [for a review on antigen processing and presentation, see Hanke and 

Randall, 1994].

Recent evidence suggests that the processing of antigens to class II or class I 

presentation may not be so straightforward. For example, exogenous (non-replicating) 

antigens that gain direct entry into the cytosol can be presented in association with MHC 

class I molecules [Moore et a/., 1988]. It has also been suggested that there may be 

specialized APC in vivo capable of capturing exogenous antigen and processing it for MHC 

class I presentation. It has also been demonstrated that certain endogenously synthesised 

proteins can be presented in conjunction with MHC class II molecules [Jarquemada et aZ., 

1990; Michalek et ai, 1992]. Although this latter route of presentation has been attributed to 

the secretion of endogenously synthesised antigen, followed by its subsequent re capture by 

antigen-specific receptors and thus internalisation into the endosomal/lysosomal pathway 

[Yurin et aZ., 1989; Bikoff et al., 1989; Jin et al., 1988; Polydefids et al., 1990; Eager et al.,

1989]], there is evidence to suggest that there are two unique pathways in the processing of 

endogenous antigen to MHC class I- and H-restiicted T cells. For example, Jarquemada et 

al. [1990] have demonstrated that infection of a human B cell-line expressing MHC class I 

HLA-A2 molecules and MHC class H MHC HLA-DRl molecules with recombinant 

vaccinia virus containing influenza A virus matrix protein (Ml), resulted in both MHC class 

n  and class I-restricted T cell lysis of the cell-line. Such MHC class U-restricted lysis could 

be inhibited by chloroquinine, whereas class I-restricted lysis could not The converse was 

true when Brefeldin A was added to the assay, suggesting that endogenous antigens can 

gain access to endosomal/lysosomal compartments via an intracellular route, leading to the 

processing and presentation in a class Il-restricted manner.
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A«2.5. Immune regulation; influence of the immune response 
genes.

Soon after the discovery of MHC restriction it became apparent that many viruses 

and cellular antigens were recognised in association with some but not other MHC 

molecules [Blanden et aL, 1975; Simpson and Gordon, 1977; Mullbacker and Blanden,

1978]. Furthermore, some peptide-MHC complexes were immunogenic in one strain of 

mice but not another. For example, for three different viruses, (vaccinia virus, sendai virus 

and cross-reactive influenza A virus) mice of the haplotype respond to virus 

determinants in association with H-2D% whereas mice of the haplotype did not 

respond to virus antigens in association with [Zinkemagel, 1978; Doherty eta l, 1978]. 

However, using lymphocytes in vitro, it was shown that was capable of 

presenting the CTL epitope to De restricted CTL, thus excluding the notion that the non­

responders fail to present antigen in association with D .̂ Data presented by Hill et al [1993] 

is also compatible with the concept of ‘immunodominance* where the responding T-cell 

population appeared to focus the immune response on a limited number of MHC-peptide 

complexes. Thus, in the presence of certain more strongly immunogenic antigens, responses 

to other ^patently more weakly immunogenic antigens was not seen.

The means by which some antigens are favoured over others is unclear, but could 

include (a) affinity of T cell clones for antigen; (b) T-cell precursor frequency and (c) the 

concentration of the relevant epitope on antigen presenting cells. In any case, the 

phenomenon applies that there is competition between T cell clones, either for binding 

antigen presenting cells, for helper factors or other nutrients. Thus, response to weaker 

antigens is only observed if the dominant antigen is limited. The existence of immune 

response hierarchies, however, is of more than passing academic interest Recombinant 

DNA technology now makes it possible to manufacture vaccines expressing limited 

antigenic determinants of the virus of interest The mere identification of a determinant as 

immunogenic in the presence of a particular MHC molecule (e.g. in vitro) does not 

guarantee a response in vivo whenever that particular MHC-peptide combination is 

presented. Potential vaccine vectors, such as recombinant vaccinia virus carry their own
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strong antigenic determinants for all class of immune response. Whether an engineered 

determinant is able to induce an immune response may be dependent on its place in the 

immune response hierarchy, generated by the vector carrying it and the MHC genes of the 

responding animals.

A.2.6. Viral escape of cell-mediated responses.
The importance of cytotoxic CD8+ T cells in the control of viral infections can be 

highlighted by the strategies some viruses use to prevent recognition by CD8+ T cells. For, 

example, certain viinses can interfer with MHC class I surface expression. One of the best 

documented examples of inhibition of MHC class I presentation by viral infection is that of 

adenovirus E19 protein on MHC class I transport [Andersson et al., 1985]. E19 interacts 

with MHC class I molecules within the ER and prevents transport of these molecules to the 

cell surface, thereby preventing presentation of the viral T-cell epitopes on the cell surface of 

the infected cells. Similarly, human cytomegalovirus (HCMV) exerts a strong inhibitory 

effect on the cell surface expression of class I MHC [Browne et al., 1990]. However, 

although downregulation of class I would seem an obvious mechanism to evade CTL, this 

has been shown to improve recognition of viral infected cells by natural killer (NK) cells 

[Karre et al., 1986; Harel-Bellan et al., 1986]. Other ways in which viruses may avoid 

recognition by class I-restricted CTLs is to infect cells (e.g. neuronal cells) which do not 

express class I MHC; a mechanism that is thought to correlate with persistent infection by 

LMCV. Some viruses may also be capable of subverting CTL memory by the selection of 

CTL escape mutants. For example, a longitudinal study of HTV seropositive patients 

revealed there were fluctuations in the specificity of the cytotoxic T cells. This was matched 

by variability in proviral gag DNA epitope sequences and some of the viral variants were not 

recognised by CTL [reviewed by Levy, 1993].
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A.2.7. Cellular immune responses to viruses and implications for 
vaccine design.
As indicated above, cell-mediated immune responses to viruses are complex. For 

example, some CTL responses are class I restricted, whereas others are class II restricted. 

The importance of these two classes in the resolution of virus infection can be different for 

different viruses. For example, following influenza infection, the majority of CTLs are class 

I restricted [Bourgault et al., 1989], yet after measles infections class Il-restricted CTLs 

appear to predominate [Jacobson et al., 1984; 1989]. This difference may, in part, be related 

to the mechanism of viral entry [Long and Jacobson, 1989]. As a consequence, vaccine 

technology may have to be engineered to provoke the appropriate class of CTL.

A.5. Deleterious versus Protective responses.
It is evident from the preceding sections that B and T cells have important roles in 

the control of viral infections. However, knowledge of the relative importance of B and T 

cells in the resolution of a viral infection is critical in the design of vaccines to that virus. 

Although for some viruses it may be possible to induce immunity to some viral diseases by 

inducing high levels of neutralising antibody to a restricted number of antigenic 

determinants, (as is the case for foot and mouth disease; Francis et a l, 1988), for many 

diseases it may be necessary to induce both antibody and cell-mediated immunity. It is clear 

from studies on immunodeficient patients that the relative importance and balance of humoral 

and cell-mediated immune responses may vary from one virus infection to another. For 

example, measles infection normally proves lethal in children with defects in cell-mediated 

immunity, yet, children with agammaglobulinaemia can contract and survive measles in a 

relatively normal fashion [Bumet, 1968; Ewan and Lachmann, 1982]. While is some cases 

it is well established that CTLs play an important role in the protection against infection, for 

some viruses inappropriate CTLs may contribute to the viral pathology. For example, 

transfer of CTLs specific for respiratory syncytial virus (RSV) into immunodeficient mice 

can increase the pathology following subsequent infection [Cannon et al, 1988].
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In other cases, B cell responses may be harmful. For example, enhancement of 

viral infectivity due to antibodies directed at particularly determinants has been reported in 

several cases, including human immunodeficiency virus [Bolognesi, 1989]. It has also been 

reported that antibody-induced antigenic modulation may be an important factor in the 

establishment of persistent infections in vivo [for review of persistent infection see Randall 

and Russell, 1990]. A fine balance may thus exist between the induction of protective 

immunity and the induction of immunity that will lead to detrimental responses upon 

subsequent infection with virulent virus. Consequently, vaccines may have to be designed 

that induce not only the appropriate type of immunity, i.e. humoral versus cell-mediated, but 

immunity is directed at epitopes that are protective and not epitopes that are deleterious.

A.4. Long lived immunity.
One of the primary goals of vaccination is to create long term memory cells capable 

of responding to their specific antigen, upon subsequent encounters, swifter and with 

greater magnitude. However, little is known about the generation of immunological 

memory. Several concepts have been proposed to account for immunological memory 

including long-lived memory cells [Strober and Dilley, 1973], different thresholds of 

stimulation of naive and lymphocyte memcay cells (which may not be long lived) due to 

altered surface expression of adhesion molecules [Sanders et al., 1988] periodic stimulation 

with cross-reactive antigens [Beverley, 1990], re-stimulation by recurrent infections [Mims, 

1987] or antigen persistence in specialised reservoirs [Tew et al., 1980; Tew and Mandel,

1979] causing continual stimulation of memory clones. These latter concepts have been 

proposed because recent evidence suggesting that non-replicating pathogens need to persist 

if long term memory is to be maintained for both B cells [Gray and Skarvall, 1988] and T 

cells [Gray and Matzinger, 1991]. This leads to the question of how a non-replicating 

antigen persists. At present the only known repositories for antigen are on the surface of 

follicular dendritic cells (FDCs) found in the B lymphocyte follicles of lymph-nodes, which 

can maintain native antigen as immune-complexes for months or years [Tew et al.., 1990] 

and specifically present antigen to B cells. If FDCs are subsequently found to be the only
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cell-type that can store antigen for long periods of time, then an inescapable conclusion of 

such a finding is that the survival of T lymphocyte memoiy must be dependant on the 

production of antibody and on the presence of memory B cells [Gray et al., 1991].

However, for CD8+ T cells, evidence suggests that the clonal burst is more important than 

antigen persistence in the maintenance of CD8+ memory [reviewed by Doherty et ai, 1994]

A.5. Mucosal Immunity to Viruses.
The mucosal surfaces in the body, represented by the respiratory, 

gastrointestinal and urinogenital tracts, are readily infected by a wide variety of RNA and 

DNA viruses. However, parental immunisation schedules that evoke efficient systemic 

immunity, rarely induce protection at the mucosal surfaces. Such evidence has led to the 

proposal that the mucosal immune system is distinct from the systemic immune system and 

highlighted the need for the development of vaccines that induce protective immunity at 

mucosal surfaces. However, the development of effective mucosal vaccines has been 

hindered because, for many years, understanding the immune mechanisms operative at 

mucosal surfaces has proved an enigma. In part, this difficulty in analysing the mucosal 

system has been due to the inherent difficulties in the isolation and characterisation of 

lymphoid cells in the various mucosal-associated tissues. However, since the major route 

for the entry of Human Immunodeficiency Virus (HIV) is through the urino-genital tract and 

rectum, vaccines tliat are likely to induce protective immunity to HTV will have to prime both 

the mucosal and systemic systems. This has re-focused attention once more on deciphering 

the intricacies of the mucosal immune system. In this section, a brief review on the current 

understanding of the immune cells and effector mechanisms operative at the mucosal 

surfaces is presented.

A.5.1. Evidence of a common mucosal immune system.
Inteiest in designing vaccines that stimulate mucosal immunity stems from 

observations that immunisation of one muœsal site often leads to detectable immune 

responses at distant mucosal sites [Mestecky et al., 1987] (and potentially systemic
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immunity too). This seeding of distal mucosal sites is likely to be the result of trafficking of 

locally stimulated mucosal B cells to distinct sites, where they reside as IgA plasma cells 

actively producing antibodies. Such trafficking of antiviral IgA producing cells can occur in 

the gastrointestinal tract mucosa to the respiratory mucosa and perhaps vice versa [Waldman 

et al., 1986; Chen et al., 1987; Hirabayashi et al., 1990]. Although this common mucosal 

system exists, it appears to be relatively inefficient at protecting sites not directly stimulated 

with antigen [Nedrud et al., 1987].

A.5.2. Antigen uptake at the mucosal surfaces.
Accumulating data over the last few years, has indicated that the mucosal immune 

system is anatomically and functionally divided into separated regions, one where antigens 

are encountered, processed and initial B- and T-cell triggering occurs (called inductive sites) 

and areas where immune cells actually function (called effector sites) [McGhee et a i, 1992]. 

In man, the major inductive sites are putated to be the Beyer's patches of the gastrointestinal 

tract [McGhee et al., 1992; Mestecky and McGhee, 1987] and the tonsils in the upper 

respiratory tract [Bernstein et al, 1994], with the lamina propria and salivary/mammary 

glands constituting the effector sites in the gastrointestinal and repiratory tracts, respectively. 

Most studies on the uptake of antigens at the mucosal surfaces have therefore been 

concerned with events occurring at these putative mucosal inductive sites. Such regions are 

equipped with specialised antigen uptake cells, termed follicular-associated epithelium (FAE) 

or M cells [Owens and Jones, 1974]. M cells efficiently pinocytose/endocytose soluble and 

insoluble antigens [Bockman and Cooper, 1973; Pappo and Ermak, 1989], as well as 

micro-organisms [Owen et al, 1986] and sometimes serve as specific sites of viral entry 

e.g. reovirus types 1 and 3 [Wolf et al, 1981] infect mucosal surfaces by binding to specific 

receptOTS on the M cell surface. Upon uptake, antigens are rapidly transported, intact, in a 

'central hollow* or 'pocket region* to the underlying antigen presenting cells which 

subsequently process the antigen for presentation to T cells [Owen et a l, 1977; 1986]. 

Antigens that are capable of adhering to M cells are more efficiently transported tlian their 

non-adherent counterparts [Neutra et a l, 1987]. Such evidence has led to investigations into
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novel antigenic delivery systems that promote antigen uptake by M cells. Several of these 

novel strategies are discussed in later sections.

Tlie epithelial cells of the effector regions can also act as portals of antigen entry 

[reviewed by McGhee and Kiyono, 1993]. In particular, soluble vaccines are particularly 

adept at reaching the underlying lymphocytes following endocytosis by the overlying 

epithelium. Alternatively, vaccines may transverse tight junctions between epithelial cells 

and intact antigen could trigger B- and T-cell responses. However, the actual role epithelial 

cells play in the induction of mucosal immunity is something that remains to be ascertained.

A.5.3. Humoral immunity at the mucosal surfaces.
The protection of the mucosal surfaces from viral infection is generally assumed to 

be conferred by virus-specific secretory antibodies of the IgA isotype. A prelhninary site for 

IgA-committed B cells seems to be the Peyer's patches [Craig and Cebra, 1971]. Following 

activation, the B-cells migrate from Peyer's patch through the thoracic duct and back to the 

effector sites of the lamina propria where they differentiate into IgA secreting plasma cells 

(reviewed by McGhee and Kiyono, 1994].

The majority of IgA produced enters mucosal secretions via epithelial transcytosis 

mediated by the polymeric Ig receptor (also known as the transmembrane secretory 

component) [Solan et al., 1985]. The mucosal response to primary viral infection is rapid 

and can occur within three days of infection [Rubin et al., 1983]. However, this response is 

not sustained [Bishop et al., 1990; Coulson etal., 1990], which may in part explain why 

mucosal surfaces, as opposed to peripheral system, are more readily re-infected with 

mucosal viruses.

The predominant role that IgA antibodies are thought to have in response to viral 

infection is to neutralise the virus, though it has been noted that unlike IgG antibodies, IgA 

are poor activators of complement and ADCC [Ffaffenbach et al., 1982]. Although the exact 

mechanisms of how IgA neutralisation of viruses occurs is unknown, it has been proposed 

that IgA antibodies may decrease infectivity by aggregating viruses [Outlaw and Dimmock,

1990] or by blocking attachment of viruses to cell receptors [Outlaw and Dimmock, 1991]
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or preventing penetration of attached viruses into the cells [Nguyen et al., 1986]. Receptors 

for the Fc region of IgA have also been found on epithelial cells and thus, IgA may 

potentiate the clearance of viruses by boosting their uptake by epithelial cells and transport to 

the underlying lymphoid cells [Weltzin et al., 1989]. IgA may also neutralise virus inside 

infected epithelial cells by inhibiting virus replication [Outlaw and Dimmock, 1990]. For 

example, experiments on Sendai virus have shown that virus in infected cells could be 

reduced by the addition of virus-specific IgA, presumably through the uptake of IgA into the 

cell by the polymeric receptor [Mazanec et al., 1992].

In vivo responses support in vitro virus neutralisation studies. Mice passively 

immunised intranasaUy with IgA antibodies were protected from intranasal challenge with 

sendai virus [Mazanac et al., 1992]. In a separate study of influenza virus, IgA polymeric 

monoclonal antibody to haemagglutinin administered systeraically, was able to restrict virus 

replication in the upper respiratory tract of the mouse [Renegar and Small, 1991]

Despite the prominent role that the IgA response plays in the protection of the 

mucosal surfaces against viral infection, IgG antibodies have also been suggested as 

contributing to tlie overall reduction of infectivity at this site. In IgA-deficient patients 

mucosal production and secretion of IgG antiviral antibodies can compensate for the 

deficiency in the production and secretion of IgA [Ogra et al., 1974]. Further, serum IgG 

antibodies, produced in response to respiratCMy virus infection, have been shown to restrict 

virus replication in the lung more effectively than in the trachea or nose [Ramphal et al., 

1979; Prince et al., 1985]. Passively transferred IgG can also restrict replication of 

poliovirus to a greater extent in the throat than in the lower intestine [Bodian and Nathanson, 

I960]. Much of the IgG response detectable at mucosal surfaces originates from the 

transudation of semm IgG into the mucosal site [Wagner et al., 1987; Murphy et al., 1982], 

though virus-specific IgG antibodies produced by the mucosa also contribute to the total 

antiviral activity in mucosal secretions [Ogra et al, 1974; McBride and Ward, 1987]. The 

mechanism of antiviral activity of IgG antibodies in the mucosa is related to direct 

neutralisation as opposed to complement-mediated lysis or ADCC, a finding supported by 

the observations that RSV replication is restricted in the lungs of passively immunised
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rodents depleted of complement and that F(ab)2 fragments of IgG, can restrict pulmonary 

virus replication as effectively as whole IgG molecules [Reviewed by Murphy, 1994].

A.5.4. Epitopes recognised by B cells at mucosal surfaces.
Several studies have shown that the epitopes recognised by IgA antibodies and IgG 

antibodies are similar. For example, polyclonal IgA antibodies, like polyclonal IgG 

antibodies recognised the haemagglutinin of influenza virus [Clements eta l, 1986]; the 

gp70 (fusion) and gp90 (attachment) glycoproteins of respiratory syncytial virus [Murphy 

et (Ü., 1986]. However, the antigens of viruses may be modified by mucosal enzymes to 

expose new epitopes on the surface proteins of such vimses. Thus the immunogenicity of 

viruses that replicate at mucosal surfaces may differ from a parentally administered 

inactivated vaccine. For example, poliovirus VP3 protein is cleaved by intestinal enzymes 

following oral administration of live virus, thereby exposing unique epitopes on the protein 

that are recognised by IgA antibodies [Zhaori et al., 1989].

A.5.6. Cell-mediated immunity at the mucosal surfaces.
Although most studies on protective immunity at the mucosal surfaces has centred 

on the role of the secretory antibody response, MHC class I-restricted CD8+ cytotoxic T 

cells can both function as antiviral effector cells against viruses that infect the mucosal 

surfaces. For example, passive transfer of (D8+ cytotoxic T cell clones to animals results in 

the restriction of influenza virus replication in mucosal epithelial cells [McDermott et al.,

1987]. MHC class Il-restricted CD4+ T cells have also been shown to have direct anti-viral 

activity [McDermott et al., 1987; Taylca* et al., 1990] and are proposed to play a role in the 

generation of the secretory IgA antibody response, e.g. IL-5 and IL-6 secreted from 

activated CD4+ Tcells are reported to be important in the switching of B cells to secrete IgA 

[Beagley cfa/., 1988].
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A.5.7. Intraepithélial lymphocytes.
As well as in the Peyer's patches and lymphoid structures of the gut, T- 

lymphocytes are found all along the murine intestinal mucosae. The most striking of these 

cells are the ones located between the epitheHa- the intraepithélial lymphocytes (lEL). In the 

murine system, it has been suggested that T cells carrying the ̂ ÔT cell receptor predominate 

here [Koning et al., 1987; Kuziel etal., 1987] (though recent evidence would dispute this 

[reviewed by Guy-grand, 1993]) and as such may be important in the immune surveillance 

of the epithelia. Indeed, the exclusive expression of the )0TcR by intraepithélial T 

lymphocytes and the fact that peripheral T-lymphocytes very rarely express this receptor, 

suggests that the T-lymphocytes in the yôTcR-expressing T lymphocytes specifically home 

to epithelial surfaces in the mucosal system and thus, they must have some critical role here 

[Janeway et al., 1988].

Studies by Bonneville and colleagues, on the murine intestine, have demonstrated 

that such cells also carry the CD8+ molecule [Bonneville et al., 1988] and are thought to be 

cytotoxic in nature [Ernst et al., 1985; Klein et al., 1986]. Also the presence of granules 

containing serine esterases in these intraepithélial cells is compatible with their proposed 

cytotoxic role [Guy-Grand et al., 1991]. It has also been noted that intraepithélial cells are 

capable of secreting certain lymphokines, e.g. interleukin-2 (JL-2), -3 (BL-3), gamma 

interferon (EFN-y), tumour necrosis factor-a (TNF-a) and TNF-p [Viney and McDonald, 

1992; Barret et ah, 1992; Taguchi et ah, 1991].

However, the importance of these unique cells in the murine system does not 

seem to correlate with present findings in humans where the majority of gut intraepithélial T 

lymphocytes, like their peripheral T lymphocyte counterparts, bear the ap  T cell receptor, 

although they are also preferentially CD8+ [Brandtzaeg et al., 1989]. As yet unproved, two 

important functions have been ascribed to the gut intraepithelium T cells, namely MHC- 

restricted or non-restricted cytotoxicity [Ernst et al., 1985] and suppression of mucosal 

hypersensitivity [Brandtzaeg et al., 1988; Doherty etal., 1992]. Nevertheless, the actual role 

these cells play in the surveillance of the mucosal surfaces and the ligands that they
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recognise are still unknown. The importance of immunisation to prime intraepithélial cells is 

something that remains to be investigated.

B. Vaccination,
Multiple factors can influence the efficacy of vaccines namely: the types, number 

and association of antigens used, their shape and conformation, the timing of their 

administration, the addition or absence of adjuvants, and the immune status of the vaccinee. 

It is also important to stress that the route and dose of immunising antigen is important in the 

induction of T and B lymphocyte responses. Small amounts of antigen can fail to induce a 

response but too large a quantity can lead to immune tolerance to the antigen. In light of 

these principals, some of the advantages and disadvantages of various immunisation 

procedure that have been used to make vaccines, or are being proposed as methods of 

making novel vaccines, will now be briefly considered.

B .l. Live, attenuated viral vaccines.
Live, attenuated mutants of wild -type viruses, i.e. viruses that are capable of infecting 

host cells but do not induce the disease characteristic of native virus, offer one of the most 

attractive strategies for producing protective immunity against viral infections. Since 

attenuated viruses are capable of replicating in vivo, any viral protein has the potential to 

be presented to the immune system, thus, evoking a wide spectrum of humoral and cell- 

mediated immunity to both structural and non-stnictural viral proteins. In addition, 

attenuated viruses presumably infect the same types of cells as the wild-type virus, and 

thus could potentially give rise to T cell responses with individuals selecting the 

appropriate T cell epitopes depending on their MHC status. Also, some live attenuated 

viruses may be capable of persisting and restimulating the immune system at regular 

intervals which may obviate the need for booster inoculations.

However, despite the potential advantages of live, attenuated viruses as vaccines, there are 

a number of concerns about the safety of such vaccines. For example, the attenuation
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process is normally achieved by culturing the native virus through a non-natural host 

[Sabin and Bougler, 1973]. This results in the virus accumulating many mutations, the 

mutant viruses that are shown to have the least virulence, in either experimental animals or 

in humans, being selected as potential vaccines. However, such a process makes it 

difficult to decipher what the mutations are and there is a danger that an attenuated virus 

may revert to its virulent form through subsequent mutations during the replication of the 

vaccine virus in the host cells [Almond et al., 1985]. In addition, for certain live 

attenuated viruses, the persistence of the virus can be detrimental to the host. For example, 

the persistence of rubella virus in lymphocytes after vaccination has been linked with the 

onset of arthritis [Chantier, 1981]. Nevertheless, despite these problems, the efficacy of 

such live attenuated viruses as vaccines has been highlighted in a dramatic way by the 

global eradication of smallpox and control of yellow fever as well as the success of such 

vaccines in inducing protection against poliomyelitis, measles and rubella [Hilleman,

1985].

B.2. Whole, killed virus vaccines.
Live viruses can be inactivated by heat treatment and exposure to protein modifying 

agents. Tliese so-called, killed virus vaccines, represent the second most traditional 

approach to immunisation. Killed viruses are incapable of replicating in vivo, thus 

presenting an initial advantage over their attenuated counterparts in that there is no danger 

of disease due to viral reversion. In addition, killed virus vaccines tend to be more stable, 

and tlierefore easier to store than attenuated vaccines. Despite these advantages, there are 

several disadvantages in the use of killed viruses as vaccines. For example, it is paramount 

that all infectious virus particles in the vaccine preparation must be inactivated- a point that 

is highlighted by incidents of paralytic disease in vaccinees given inactivated polio vaccine 

which was found to contain trace amounts of live polio virus [Nathanson, 1963; Peterson 

et al., 1955]. There have also been reports of vaccinees given formalin-inactivated 

respiratory synctia virus (RSV) vaccine exhibiting serious lower respiratory tract 

complications upon subsequent natural infection with native RSV [Kapikian, 1969]. In
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this case, and others [Ranh and Schmidt, 1965; Kim et cU., 1969; Fulginiti et al, 1967; 

Orvell and Norrby, 1977], the process of inactivating the virus seems to be responsible for 

the adverse reactions. For example, studies in cotton rats revealed that formaldehyde 

treatment of RSV led to the cross-linkage and subsequent destruction of virus neutralising 

epitopes on the fusion and attachment glycoproteins of the virus [Prince et a l, 1986]. 

Subsequently, upon infection with native virulent virus, an unusually large antibody 

response was directed at non-protective epitopes on the viral glycoproteins, resulting in 

immune-complex deposition in the lungs and increased lower respiratory tract pathology. 

Thus great care must be taken during the inactivation process to ensure epitopes that are 

critical for protection against infection, are not damaged. Even if critical epitopes are 

preserved, it is possible that the viral proteins in killed virus vaccines will be preferentially 

presented to MHC class Il-restricted T cells due to the lack of endogenous synthesis of the 

viral proteins. In this instance, it is unlikely that killed virus vaccine will be effective 

against viruses that are normally cleared by MHC class I-restricted cytotoxic T cells.

In addition to the problems mentioned above, the inability of killed virus vaccines 

to replicate, also means that larger doses of virus may have to be administered at regular 

intervals for the induction of long term protective immunity. Unfortunately, vaccines that 

have to be given in multiple inoculations are not only unattractive to the general public, but 

also increase the risk of hypersensitivity reactions.

Bc3. Subunit vaccines; a reductive approach to vaccination.
Subunit vaccines, which are characterised by synthetic peptides and purified viral 

proteins, are an attractive and relatively new approach to vaccination. Obvious advantages 

in the use of subunit vaccines, are that they are non-infectious and that they contain only 

the proteins or epitopes important for inducing protective immunity. However, these 

advantages are offset by the disadvantage that such vaccines are generally non- 

inununogenic when administered on their own. This paradox has led to the search for 

suitable adjuvant formulations (e.g. alum, muramyl-dipeptide, Quil. A) or carrier vehicles 

(e.g. ISCOMS, miciospheres, SMAA complexes; below) that can potentiate the
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immunogenicity of the subunit vaccines by maximising presentation of the target viral 

antigens to the immune system. In the following sections, a general review on the more 

recent advances in vaccine technology is presented, but for the moment, the use of 

peptides and purified proteins, themselves, as immunogens is discussed,

B.3.1. Peptides.
Immunisation with short, synthetic peptides corresponding to the appropriate protective 

epitopes of a virus is an attractive vaccination strategy, since potentially, vaccines could be 

designed that stimulated whichever effector function was particularly beneficial in the 

pmtection against virus infection. Naturally, the first step in this approach necessitates the 

availability of an efficient detection system for identifying critical antigenic epitopes 

present on the native virus particle. Although rapid advances have been made in this area 

of immunology, such research has highlighted the problems in using synthetic peptides as 

human vaccines. For example, since most B cell epitopes tend to be discontinuous i.e. 

composites of amino acids from different regions within the same protein [Barlow et al,„

1986], then peptides will have to be constructed that adopt an identical conformation to 

that of native vii-al proteins if they are to be effective [Satterthwaite et ai, 1989]. There 

have been attempts to overcome this problem by adding secondary structures to B cell 

epitopes. For example, the placement of cysteine residues at each end of a peptide 

sequence has been shown to facilitate the formation of disulphide bonds [Schulze-Gahmen 

et ah, 1985; Leonard etaU, 1990] and increased the immunogenicity of the B cell 

epitopes. Another novel strategy that has been shown to enhance the immunogenicity of B 

cell epitopes is the development of Multiple Antigen Peptide Systems (MAPS) [Tam,

1988]. This approach uses a small peptidyl core matrix bearing radially branching 

synthetic peptides as dendritic arms, to which the desired B cell epitopes can be linked.

However, other problems exist in the design of peptide vaccines for the 

stimulation of B cell responses; the necessity for T cell help for efficient B cell activation 

and antibody secretion, means that T cell epitopes may have to be coupled to the B cell 

epitopes, unless of course, the B cell epitopes themselves, contains sequences stimulatory
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for T cells. In addition, the ability of certain viruses to antigenically vary important B cell 

epitopes, suggests that efficient vaccines will have to include multiple B cell epitopes. The 

development of peptide vaccines that stimulate T cells has its own set of problems. For 

example, the consequence of peptide selection by polymorphicaUy distinct MHC in any 

peculation, means that peptide sequences that are immunogenic in one individual may not 

be in another. Consequently, peptide vaccines may need to contain multiple T cell epitopes 

[Rothbard, 1987].

B.3.2. Purified, recombinant viral proteins.
There are a number of potential advantages in using purified viral proteins as 

vaccines. For example, their non-infectious nature means they are unlikely to cause 

disease, and since the proteins contain multiple antigenic determinants, it is possible both 

B cell and T cell responses can be induced. Two practical requirements for purified 

proteins to be incorporated into vaccines are that they can be produced on an industrial 

scale (i.e. there is a need for suitable expression systems that can produce large quantities 

of recombinant protein that resembles natural protein) and that the purification scheme 

conserves sensitive conformational viral epitopes. The importance of a rigorous 

purification scheme is of particular importance for viral proteins expressed in continuous 

cell-lines, where the possibility of contaminating oncogenic DNA in the vaccine 

preparation, may lead to tumours upon vaccination. Prokaryotes, yeasts, baculoviruses 

and mammalian cells have all received attention as potential expiossion systems for viral 

proteins [Luckow et al., 1988, Hanke et aL, 1994; Randall etal., 1993], where the 

expression of viral proteins can be controlled by inserting viral genes downstream from 

strong ccHistitutive or inducible promoters [Kleid et ai, 1981]. Yeasts have been 

particularly successful for the production of recombinant Hepatitis B virus surface 

antigens that have subsequently been used in wide spread vaccination programmes.

Novel protein purification strategies are also currently being investigated. For 

example, through recombinant DNA technology it is possible to delete viral domains that 

normally anchor viral proteins in the cell membrane of the expressing cell, thereby
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facilitating secretion of the protein and therefore making purification simpler [Lasky et ai, 

1986; Whang et ai, 1987]. An alternative strategy, described by Hanke and colleagues 

(below), is to attach small, affinity tags to viral proteins which subsequently can be used 

to purify the recombinant viral protein on anti-tag affinity columns.

However, apart from a few general exceptions [Valenzula et aL, 1982; McAleer et al,

1984], as with peptide-based vaccines, purified proteins on their own, tend to be poorly 

immunogenic in vivo, often having to be administered in conjunction with powerful 

adjuvants or coupled to caniCT systems.

B.4. Novel strategies for potentiating the immune response to 
subunit vaccines.

The rapid advancement in the production of peptide and purified proteins as 

potential subunit vaccines, has been paralleled by developments in novel strategies to 

increase their immunogenicity. Current interest in this field of immunology, has centred on 

the development of improved adjuvant formulations or the manipulation of recombinant 

viruses and bacteria to express and present foreign viral proteins to the immune system. 

Naturally, such research has yielded a vast array of novel vehicles for potentiating the 

immunogenicity of subunit vaccines, and although each has its own particular merits, it is 

outwith the scope of this introduction to be able to describe them all in detail. Thus, the 

rest of this section is concerned with describing adjuvants and carrier systems, currently 

receiving the most attention.

B.4.1. Adjuvants.

Adjuvants, classically defined, are any substance that can augment the immune 

response to a particular antigen when it is administered at the same time as the antigen. 

There is a vast array of chemical, bacterial and immunological products that have been 

ascribed adjuvant properties [Penny et al., 1993; Bernstein et al., 1993; Good et aL, 1988] 

and have recently been reviewed by Gupta and colleagues [1993]. However, most 

adjuvants are highly toxic, inducing several unpleasant side-effects, that make their use in
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man unlikely. As such, there has been a large amount of research into new adjuvants that 

retain the adjuvanticity of existing formulations, but exhibit greatly restricted adverse 

reactions. A few of the more recent advances in human adjuvant research that show 

particular promise, are described below.

(al Mineral compounds.

The use of alum (aluminium hydroxide and aluminium phosphate) as an adjuvant was 

described more than 60 years ago [Glenny, 1926) and even today, it is the only adjuvant 

licensed for use in man. Alum-based products can be prepared either by the precipitation 

or adsorption of the desired protein onto the mineral compound [Randall et a i, 1994], the 

latter strategy being more efficient at producing a uniform vaccine formulation. Although 

alum is generally considered a safe adjuvant, there are variable reports on its efficacy. For 

example, alum-adsorbed inactivated poliomyelitis virus was Mghly immunogenic in vivo 

[Butler, 1962] but adsorption of influenza A virus haemaglutinin onto alum had no 

enhancing effect in clinical trials [Davenport et al., 1968]. Since the mode of action of 

alum is thought to be due to a depot formation [Leeling et al., 1979] which delays 

resorption of the protein from the site of injection (thereby prolonging the period of 

antigenic stimulation), it is generally assumed that the efficacy of alum as an adjuvant for a 

particular protein will be dependant on how well that protein can adsorb to alum [Skea et 

al., 1993 (a); (b)]. This may help explain the discrepancy in the clinical trials described 

previously (i.e. influenza haemagglutinin binds poorly to alum). There have also been 

reports that alum-based vaccines are weak inducers of cell-mediated immunity [Bomford,

1980], and as such, they may be inefficient against viruses whose replication is normally 

controlled by this aim of the immune system. There are other potential problems in the use 

of alum as an adjuvant. For example, it has been shown that following administration, 

alum can induce granulomatous formation at the site of injection [Walls et al., 1977], as 

well as enhancing IgE production [Cogne et al., 1986], and therefore it may have a 

possible role in increasing allergic disease [Bohler-Sommeregger etal., 1986]. Also, the 

recent evidence that suggests aluminium compounds may be neurotoxic, leading to
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neurological disorders like Alzheimer's disease [McLachlan et al., 1989], has caused 

concern over the utility of alum in vaccine formulations.

Two alternatives to alum have recently been suggested; calcium phosphate 

[Goto et al., 1993] and an octadecyl ester of tyrosine, octadecyl tyrosine hydrochloride 

(stearyl tyrosine) [Penny et al., 1993]. Both have been shown to be stable, efficiently 

entrap proteins, can stimulate high levels of IgG (but little IgE), do not induce 

granulomatous formation and since they are composites of natural constituents of the 

body, are readily adsorbed [Relyveld et al., 1986; Penny et al., 1993; Nixon-George et 

al., 1990].

Probably the most famous adjuvant is Freund's complete adjuvant (FCA). This oil-in- 

water emulsion contains mycobacteria in the oil phase, and has been shown to be a potent 

inducer of both humoral and cell-mediated immunity, including cytotoxic T cell responses 

in experimental animals. However, FCA is highly toxic inducing fever, cramps and 

necrosis at the site of injection, which makes it unsuitable for use in man. The active 

component of FCA has been linked to the presence of the mycobacteria, in particular the 

muramyl dipeptide (N-acetylmuramyl-L-analanyl-D-isoglutamine, (MDP)) component of 

the bacterial cell wall [Chedid et al., 1976]. MDP itself is highly immunogenic but, like 

FCA, it is extremely toxic. This has led to several studies to determine if the 

imraunopathological effects of MDP can be separated from the adjuvant properties. Such 

research has shown that a synthetic analogue of MDP, threonyl-MDP (t-MDP) exhibits 

adjuvant activity in experimental animals without inducing severe side-effects [Allison and 

Byars, 1986]. The potential of such adjuvants in man is currently under investigation.

(c) Cytokines.

Cytokines are also being exploited as potential adjuvants, in particular recombinant 

interleukin-2 (rIL-2) [Good et al., 1988], For example, injection of rIL-2 with the hepatitis 

B vaccine, induced humoral immunity to the viral surface protein in individuals who were 

noimally non-responders to hepatitis vaccination [Meuer et al., 1989; Kawamura et al.,

1985]. In contrast to these findings, immunisation of guinea-pigs with IL-2 and herpes
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simplex virus-2 (HS V-2) induced an efficient cell-mediated response to HSV-2 

glycoprotein D but had little effect on antibody production [Weinberg and Merigan, 1988].

However, despite the initial success of cytokines as adjuvants, it does not yet 

establish them as alternatives to conventional adjuvants like alum, and it is important to 

point out that cytokines can induce serious side-effects, even when administered in minor 

amounts. It may be, that in time, after further research into their effectiveness and 

toxicities, cytokines may have a specialist application in vaccine design, e.g. in 

overcoming hyporesponsiveness, or selectively inducing cell-mediated immunity.

B.4.2. Novel carrier systems.
In recent years there has been a major development in the construction of various 

polymeric presentation systems, that optimise the delivery of peptides and purified 

proteins to the immune system. There are two types of, so-called, carrier systems:- 

expression based and non-expression based. Live, recombinant viral and bacterial vectors 

are examples of the former category, whereas non-expression based carriers are 

characterised by immunostimulatory complexes (ISCOMS), liposomes, solid matrix- 

antibody-antigen (SMAA) complexes and Ty-paiticles to name but a few. Carriers may 

serve several functions, they may allow presentation of multiple epitopes of the target 

antigen and/or provide the necessary T cell epitopes for the provision of B cell help. One 

concern with carriers is the effect of carrier induced suppression, where pre-existing 

immunity to the carrier can downregulate the immunogenicity of the target antigen 

[Schutze et a l, 1985]. Thus, several areas of reseaixih into carrier systems for peptides or 

purified proteins, have relied on the development of novel synthetic carriers where no pre­

existing immunity to the carrier exists. In the following sections, a general review of some 

of the current earner systems that are under investigation as potential human vaccines are 

presented.
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B.4.2.1. Live, recombinant viral vectors.
Several different viruses have been proposed as potential live carrier systems for 

viral proteins including vaccinia virus [Andrew et al, 1991], avipox virus [Radaelli et al, 

1994; Radaelli and De Giuli Morghen, 1994], herpesvirus [Roizman and Jenkins, 1985], 

adenovirus [Johnson et aL, 1988], rotavirus [Redmond et al., 1991], and poliovirus 

[Burke et al., 1988; Evans et al., 1989; Dedieu et al., 1992]. Some viral vectors e.g. 

attenuated vaccinia and adenovirus lepUcate in vivo, whereas others e.g. poliovirus 

minireplicons and avipox, are engineered to liave a restricted or abortive replication, but 

they all retain tlie ability to infect. Thus, upon infection, foreign proteins are expressed 

during the normal replication of the virus, thereby potentially inducing both humoral and 

cell-mediated immunity. However, certain problems exist in the use of live, recombinant 

viruses as carriers for viral proteins. For example, the size of the genome can restrict the 

amount of foreign genetic information that can be inserted into the vector. Viruses like, 

vaccinia, that contain a large 231 kilo base-pair genome, can accommodate high amounts 

of foreign DNA [Smith and Moss, 1983] either by inserting the desired sequence 

downstream of a defined vaccinia promoter sequence [Mackett et al., 1982] or by insertion 

into a nonessential loci [Panicali and Paoletti, 1982; Perkus et al., 1985; 1986]. In 

contrast, poliovirus, with its characteristic 7.7 kilo-base RNA genome, can only 

accommodate relatively small inserts [Burke et al., 1988].

Live replicating viruses present the additional problem of finding suitably 

attenuated strains that can act as carriers. As examples, the gene product El A of 

adenovirus can transform cells in culture, causing concern as to whether it may be 

oncogenic in man, and attenuated vaccinia virus strains currently available may induce 

neurological complications e g. encephalopathy in immunosuppressed individuals, as well 

as leading to the exacerbation of dermatological conditions. Although new strategies for 

attenuating vaccinia virus have recently been described, e.g. animal studies have shown 

the inseition of foreign DNA into the thymidine kinase locus is accompanied by the 

attenuation of the recombinant virus, this does not necessarily mean that the virus will be 

attenuated in man [Bidler et al., 1985; Rodriguez et al., 1989; Hu et al., 1986]. Insertion
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of cytcddne genes into the genome of vaccinia virus, in particular IL-2, has also been 

reported as a novel strategy for attenuating the virus. This latter strategy having the 

additional benefit in that the expression of IL-2 in conjunction with the foreign viral 

protein, can over-ride non-responsiveness.

B.4.2.2. Live, recombinant bacterial vectors.
Mycobacterium bovis bacillus Calmette-Guerin (BCG), the human 

tuberculosis vaccine and attenuated strains of Salmonella have both been used as carriers 

for foreign proteins, the latter being used as a carrier for mucosal immunisation (see later). 

BCG has features that make it a particularly attractive live recombinant, bacterial vaccine 

vehicle; BCG, as with other mycobacteria, are excellent adjuvants, with a long-lived safety 

record in man. In addition, BCG engenders a long-lived immune response with a single 

dose, is heat stable, inexpensive to produce and one of the few vaccines that can be given 

at birth. Recent developments in genetic engineering have shown that it is possible to 

insert foreign genes into BCG [Jacobs e ta l, 1987; Snapper et al., 1988] and following 

vaccination, such expression of the resulting foreign proteins can induce both humoral and 

cell-mediated responses [Aldovini and Young, 1991], including MHC class I-restricted 

CD8+ CTL. Strover and colleagues, [1991] showed that foreign genes inserted under the 

control of the heat shock promoter, could lead to high level expression of the foreign 

proteins, and as such only low doses of BCG were needed for immunisation purposes.

However, one problem with the use of BCG or any bacteria for that matter, is the 

inability to express glycosylated viral proteins in native conformation. Since viral 

glycosylated proteins normally contain the antibody neutralising domains, it is 

questionable whether any bacteria expressing the genes for such viral proteins will be 

capable of inducing immunity to these protective epitopes.

B.4.2.3. Super-molecular assemblies.
Several new approaches in the design of carrier systems for peptides and purified 

proteins have been concerned with the development of large molecular assemblies that
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contain multiple copies of one or more foreign epitopes. The repeating units of the 

assembled carrier protein stimulate T lymphocytes efficiently and the use of an efficacious 

adjuvant can further increase both cell-mediated and humoral responses. A brief review of 

some of the most promising carrier systems is presented below.

B.4.2.3.1. Liposomes and ISCOMS.
Liposomes and immunostimulatory complexes (ISCOMS) are examples of lipid- 

based carrier systems. Liposomes are membrane vesicles, formed by the dispersion of 

phospholipids in aqueous media that possess several interesting properties required for in 

vivo carriers. For example, they are relatively non-toxic, exhibit low immunogenicity and 

are biodegradable [Snyder and Vannier, 1984]. ISCOMS on the other hand, aie cage-like 

particles of 30-40nm in size that are composed of the saponin Quil A, cholesterol and 

amphipathic antigen in a molar ratio of 1:1:1 [reviewed by Morein, 1988]. Both liposomes 

and ISCOMS can stimulate a wide spectrum of immune responses. For example, 

liposomes have been reported to protect against influenza [Friede et al., 1994] and can 

induce MHC class I-restricted CD8+ CTL responses [Reddy et al., 1992]. In part this 

adjuvanticity of liposomes is related to the number of layers [Shek etal., 1983], their 

charge [Allison and Gregoriadis, 1974], and their composition [Heath eta l, 1976].

Likewise, ISCOMS have been shown to generate immunity to a wide variety of 

viral proteins, including influenza [Lovgren, 1988], measles [DeVries e ta l, 1988], rabies 

[Osterhaus et a l, 1986], glycoprotein 340 from Epstein Barr Virus [Morgan et a l, 1988] 

and the glycoprotein 120 from HIV [Pyle et al, 1989]. In slight contrast to the safety of 

liposomes, ISCOMS are still restricted to veterinary use. A problem with ISCOMS, that 

prevent their use in man, is the presence of the toxic adjuvant Quil A. Nevertheless, 

several attempts are being made to design non-toxic versions of Quil A that retain the 

adjuvant properties of the parent molecule.
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B.4.2.3.2. Ty; Virus-Like Particles (Ty:VLP).
Certain yeast proteins that spontaneously associate into virus-like particles (VLP) 

[Mellor et al., 1985] are also under consideration as carriers of viral proteins [Griffiths et 

al., 1991]. Such an approach is typified by the TyrVLP system wherein a foreign DNA 

sequence is fused to the TYA gene and can then be expressed in yeasts [Adams et al.,

1991]. For example, fusion of the principal antibody neutralising domain, V3, of Human 

Immunodeficiency Virus-1 (HIV-1) to TytVLP resulted in an effective MHC class I- 

restricted CD8+ CTL response to the viral antigen [Layton et al., 1993]. Ty:VLP particles 

are also showing promise as mucosal vaccines [Lehner et al., 1992].

B.4.2.3.3. Self-aggregating viral proteins.
The hepatitis B virus core antigen (HBcAg) and surface antigen (HBsAg) are 

examples of self aggregating viral proteins that have been suggested to have potential 

carrier activity for foreign antigens [Francis et al., 1990]. For example, HBcAg 

spontaneously self aggregates into characteristic 27nm particles [Almeida et al., 1971], 

and chimeric core particles can be created by tlie insertion of peptide sequences onto the N- 

and C-termini of HBcAg [Clarke et aL, 1987; Stahl et al., 1989]. The HBcAg particle 

itself is highly immunogenic [Hoofnagle et al., 1973], presumably due to the virus 

proteins' polymeric nature as well as the presence of a number of well-defined helper T 

cell epitopes [Milich et al., 1987] and this may contribute to the adjuvant properties of 

HBcAg for fused foreign antigens.

An example of HBcAg as a carrier system is presented by the study of Francis 

and colleagues [1990]. Fusion of the VP2 proteins from human rhinovirus type 2 to 

HBcAg, resulted in both humoral and cell-mediated immunity to VP2 following parental 

administration. Low levels of semm antibody was also detected following intranasal or 

oral vaccination, so such HBcAg-fusions may have potential as mucosal vaccines. 

Similarly, fusion of the V3 domain from HTV-1 to either the N- or C-teiininal of HBcAg 

resulted in the induction of neutralising antibodies to the HTV [Von Brunn et al., 1993]. 

MHC class I-restricted CD8+ CTL can also be induced by immunisation with the target
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epitopes fused to hepatitis virus antigens, e.g. HBsAg [Schlienger et al., 1992], 

suggesting that these novel self aggregating viral proteins have the potential to induce all 

arms of the immune response.

B.4.2.3.4. Solid matrix-antibody antigen (SMAA) complexes.
A novel strategy to vaccine design has been the development of solid matrix- 

antibody-antigen complexes [reviewed by Randall, 1989]. The basis of this scheme is to use 

monoclonal antibodies, linked to a solid matrix (e.g. hodX-)dllçàStaphylococcus aureus, an 

organism that can bind to the Fc region of IgG2a antibodies via the Protein A determinant of 

the bacteria wall, thereby leaving the antigen binding arms of the antibody free to complex 

with its specific antigen, or the adjuvant alum), to first purify the antigen and then to use the 

SMAA complexes as immunogens (see Figure 4). SMAA complexes themselves are 

particulate and can induce both vigorous antibody responses as well as class I-restricted 

CTL [Randall and Young, 1988; Randall et al., 1988]. The potential advantages and 

disadvantages of such a method of antigen presentation have been discussed elsewhere 

[Randall, 1989]. Piincipally the major advantage of such a system is that tlie complexes are 

extremely easy to produce and it is relatively simple to incorporate multiple virus antigens, 

including structural and non-structural proteins into the SMAA complex. Also antigens can 

be derived from virtually any source, be it expression vectors or virus infected tissue culture 

cells, and can simply be incorporated into the SMAA complexes. As alternative to 

conventional adjuvants it has also been suggested that it may be possible to induce an 

immune response to antigens by tar geting the binding of antigens directly to particular host 

cells [Randall, 1989]. This could be achieved by coupling the antigens to monoclonal 

antibodies that recognise cell surface determinants, such as immunoglobulins [Kawamura 

and Berzofsky, 1986] or MHC class I and class II antigens [Snider and Segal, 1987; 1989; 

Carayanniotis and Barber, 1987].

More recently it has been demonstrated that a single monoclonal antibody (MAb) 

specific for a short oligopeptide tag can be used to assemble multiple tag-linked antigens into 

SMAA complexes [Hanke et al., 1992; 1994]. For example, a variety of viral proteins from
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Figure 4. Solid matrix-antibody-antigen (SMAA) complexes.
Schematic illustration of the construction of solid matrix-antibody-antigen (SMAA) complexes as 
muitivalent immunogens, (a) Different monoclonal antibodies (MAbs) are attached to independent solid 
matrices prior to the binding of antigen. The resulting SMAA complexes are mixed together before being 
used as immunogens, (b) Different MAbs are attached to the same solid matrix prior to the formation of 
SMAA complexes, (c) A single MAb that recognises a tag antigen, which may be aatached to different 
microbial antigens, is used in the construction of SMAA complexes, (d) and (e) are the same as (c) only 
Fab or single chain Fv fragments of antibodies respectively are used in the construction of modified 
SMAA complexes, (f) is the same as (b) except that the additional MAbs (e.g. to host cell surface 
antigens) and proteins (e.g. cholera toxin) are also attached to the solid matrix specifically to enhance 
particular types of immune responses (e.g. mucosal immunity)
(Taken from Randall, 1993)
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Simian Immunodeficiency Vims (SIV) have been cloned and expressed, from a modified 

vector pQE9-Pk, in E.coli such that the recombinant proteins have a small histidine (His) tag 

at their N-termini and a small oligopeptide tag, termed Pk, at their C-termini. The Pk tag is 

recognised by monoclonal antibody SY5-P-k [Southern et al., 1991]. These recombinant 

proteins can thus be purified on nickel columns, via the histidine tag, and then on immune- 

affinity columns by the SV5-P-k MAb. The combination of the two affinity purification 

steps significantly improves the purity and selects for full-size proteins. Moreover, using the 

MAb SV5-P-k in the second purification step, Pk-linked antigens can be assembled directly 

into SMAA complexes for use as vaccines [Randall et al., 1993; Hanke et al., 1994].

B.5. Genetic Immunisation.

Probably one of the most novel vaccination strategies to emerge in recent years, is 

the direct inoculation of the foreign gene(s) into living animals [Nabel et al., 1990; Wolff et 

al., 1990]. Such a process is referred to as naked DNA, or genetic, immunisation and 

potentially offers an extremely powerful approach for combating disease caused by vimses. 

One advantage is that the foreign protein is synthesised within the host cells and is thus 

capable of inducing CD8+ CTL. For example, vaccination of experimental animals with 

DNA encoding the conserved internal nucleoprotein of influenza virus A, resulted in CTL- 

induced cross-protection from sublethal challenge with an antigenically distinct isolate of the 

virus [Ulmer et al., 1993]. Another advantage is that the expressed protein will undertake 

the native conformation, an extremely impoitant point when considering the induction of 

neutralising antibodies.

Naturally, as with all vaccines there are drawbacks to genetic immunisation. One 

of these drawbacks is the need for an efficient system that permits maximal uptake of DNA 

into the target cells. So far, the most common method for transfecting DNA into cells in vivo 

is direct immunisation of the genetic material into muscle cells, which are surprisingly 

permissive in their uptake of DNA after treatment with bupivacaine. However, other 

strategies are emerging. For example, inhalation of DNA incorporated into cationic 

liposomes, has been shown to result in the expression of the target protein in both the
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airways of the epithelium and the alveolar cells lining the lungs [Stribling et al., 1992]. 

DNA-coated gold particles can be directly inoculated into tissues of a living animal by use of 

a gene gun [Fynan et al., 1993]. There are also several safety considerations in the use of 

DNA immunisation. For example, it wül be important to determine if inoculated DNA 

integrates into the host chromosome, and whether the genetic material can induce anti-DNA 

antibodies that cioss-react with host DNA.

B.6. Mucosal Immunisation.
The increasing evidence that priming of the mucosal system to a particular antigen 

can sometimes lead to immunity at other mucosal sites as well as systemic immunity, has 

increased research into vaccine strategies that promote immunity at mucosal surfaces. 

However, many strategies employed for systemic immunisations have been tried by the 

mucosal route with limited success. Furthermore, in general it has been extremely difficult to 

induce optimal antigen specific IgA responses following oral immunisation with soluble 

protein antigens. In part, this is due to the problem of degradation of the antigens in the 

acidic environment of the gut and has necessitated large amounts of antigen needing to be 

administered to overcome this problem. However, prolonged feeding of large doses of oral 

protein antigen can also lead to tolerance [Challacombe and Tomasi, 1987].

Several of the vaccine strategies described in the preceding sections have been 

adapted as mucosal vaccines, and are briefly outlined below. Other novel strategies that are 

showing particular promise as mucosal based vaccines are described in greater detail.

B.6.1. Biodegradable polymer microspheres (microcapsules).
Microspheres are biodegradable polymer matrices that can be used to 

encapsulate target antigens and protect the antigen from acidic and enzymatic degradation 

in the gastrointestinal tract. The most studied polymers are those made from lactic and 

glycic acids, e.g. poly lactide-co-glycolide, which are normal constituents in mammalian 

energy metabolism. Such spheres can vary in size depending on the constituents of the 

polymer matrix, and the biodégradation of the polymer is usually the rate controlling step
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in the release of the antigens [Cohen et aL, 1991]. The release of antigen is controlled 

through its diffusion in the matrix pores and the speed of degradation of the matrix. Large 

polymers can release antigen slowly and thus have the potential to restimulate the immune 

system over a long period of time. It has been shown that formalin inactivated whole 

influenza virus A retained its immunogenicity when encapsulated in lactide co-glycolipid 

microspheres [Moldoveneau et a i, 1989] and that such microspheres induced antibody 

responses on the levels similar to parental immunisation with the killed vaccine. In 

addition, it was later found that such vaccination protected experimental animals against 

lethal virus challenge [Moldoveneanu e ta l, 1993]. Miciospheres have been shown to be 

efficiently uptaken by M cells in the Peyers patch, the hydrophobicity of the microsphere 

having important implications on the efficiency of this uptake. Microspheres, therefore 

may be used for both parental and mucosal immunisation.

However, one problem with microspheres is that during their production they 

are exposed to harsh, organic solvents e.g. methylene chloride, and trace amounts of this 

toxic compound have been found inside microspheres [Benoit etal., 1986]. The presence 

of such substances wiU naturally prevent approval of microcapsules for human use. 

Furthermore, such harsh conditions may denature the antigen of interest, destroying 

important epitopes, particularly virus glycoproteins. Consequently, different, more gentle 

strategies are currently being developed for creating the capsules. It will be important to 

characterise the shelf-life of the microspheres and the ideal conditions for their storage. 

The possibility that the polymer will spontaneously hydrolyse and/or the encapsulated 

proteins aggregate in the presence of ambient moisture, remains an additional concern 

[Domb etal., 1987].

B.6.2. Live recombinant bacterial vectors.
Live recombinant bacterial vectors e.g. attenuated Salmonella typhimurium are 

showing promise as novel carriers for delivery of foreign proteins to the mucosal immune 

system [Aggarwal et al., 1990]. Many of the new strains of Salmonella that are currently 

being investigated as potential carriers are auxotrophs [Hoiseth and Stocker, 1981]. As
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such they can only replicate in the body to a limited extent, and are potentially safe for use 

in immunocompromised individuals [Stocker et al., 1983]. Several studies have been 

conducted on the efficacy of attenuated Salmonella strains as carriers for foreign viral 

genes. For example, incorporation of Hepatitis B virus surface protein [Wu et al., 1989] 

and an influenza A virus haemagglutinin epitope [McEwen et al., 1992] into Salmonella 

leads to the induction of humoral immunity to the respective viruses. One problem with 

Samonella as a carrier is that the insertion of foreign genes using antibiotic resistant 

plasmids is undesirable [Schodel etal., 1994].

Recombinant BCG has also been shown to be an efficient oral vaccine delivery 

system [Lagranderie etal., 1993].

B.6.3 Cholera toxin (CT) and Escherichia coli enterotoxin (LT) 
as mucosal adjuvants.

The gastrointestinal toxins, cholera toxin (CT) secreted from Vibrio cholerae and 

the related E.coli heat-labile enterotoxin (LT), which cause severe diarrhoeic disease in 

infected individuals, are proving promising as mucosal adjuvants for unrelated antigens co­

administered at the same time as the toxins [Lycke and Holmgren, 1986; Clements, 1990]. 

Both CT and LT have the same basic structure, composed of two subunits; the A subunit of 

approximately 28kD carriers the enzymatic activity of the toxins (see below) and the B 

subunits, made up of 5 identical polypeptide chains (11.6kD each) arranged as a pentamer, 

functions to bind the toxins onto the surface of target cells via its affinity for the glycolipid, 

GMl-ganglioside, a normal constituent of cell membranes [Clements and Finklestein, 1979; 

Gill et al., 1981]. In addition to GMl-ganglioside, LT (unlike CT) can also bind to certain 

sugars [Holmgren, 1973; 1985]. The A subunit is located in the central core of the B subunit 

pentamer [Sixma et al., 1991; 1993], and upon binding of the toxin to the target cells, enters 

the cell and ADP-ribosylates the a subunit of the Gs regulatory protein [Dominguez et al., 

1987], wliich results in the Gs protein remaining in an activated state. As a consequence of 

this, intracellular cyclic AMP levels rise, resulting in the activation of protein kinase A, 

which is capable of phosphorylating the cystic fibrosis transmembrane receptor (CFTR), a
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regulated chloride ion channel [reviewed by Roidan, 1993]. Phosphorylation of the CFTR 

causes the ion gate to open, resulting in an efflux of chloride ions (and water) into the lumen 

of the gut, causing characteristic symptoms of the disease. CT and LT are extremely potent 

mucosal immunogens, eliciting high levels of IgA antibodies to themselves following 

intragastric administration [Pierce and Gowans, 1975]. Of more significance for vaccine 

technology, both CT and LT have been shown to promote mucosal immunity to unrelated 

antigens administered at the same time as the toxins [Lycke and Holmgren, 1986; Elson and 

Ealding, 1984] .The exact mechanism(s) responsible for the adjuvanticity of the toxins is 

unknown, but several in vitro and in vivo assays have demonstrated that they are capable of 

modulating a variety of immune functions, including enhancement of antigen presentation by 

macrophage [Bromander et al., 1991], as well as promoting the switching of IgM secreting 

B cells, to secrete IgA [Lycke and Strober, 1989]. In addition, CT has been shown to exert 

both enhancing and inhibitory effects on the proliferation of B and T cells in vitro [Woogen 

et al., 1987] and possibly, in vivo. In part, the potentiation of mucosal immunity to 

unrelated antigens is thought to be under control of the immune response genes [Elson and 

Ealding, 1987].

Naturally, the highly toxic nature of the toxins, prevents their use in man, and there 

have been several attempts to determine if the adjuvanticity of the toxins can be separated 

from the toxicity properties i.e.whether the B subunits themselves, which do not contain any 

ADP-ribosylating activity, contain the adjuvant function of the toxins. This has led to several 

research programmes analysing the ability of CTB (or LTB) to promote immunity to either 

co-administered antigens or antigens fused to the subunits by chemical or genetic means 

[Clements, 1990; Sanchez etal., 1988, Klipstein, etal., 1982; Schodel etal., 1991]. The 

results frtxn such work has been largely inconclusive in identifying the adjuvant properties 

of CT and LT. In some instances, the B subunits were shown to enhance the immune 

response [Schodel and Will, 1989; Dertzbaugh et a l ., 1990], but in others, the presence of 

the A subunit was necessary to promote immunity to the target antigen [Lycke and 

Holmgren, 1986; Lycke et al., 1992]. This discrepancy in the results has been attributed to

45



contamination of the B subunit preparations, (which are prepared from purified whole toxin) 

with minor amounts of the A subunit [Vajdy and Lycke, 1993].

More recently, the genes of the B subunits of CT and LT have been cloned and this 

has facilitated the construction of a number of plasmid vectors, that permit the addition of 

foreign sequences onto the 3' and 5'-ends of the subunits [Sandkvist et a l, 1987; 

Dertzbaugh et al., 1990]. Although genetic linkage of antigens to LTB (and CTB) has 

obvious advantages over chemical linkage, in that the recombinant proteins are structurally 

defined, there are several problems to be overcome. For example, the ability of LTB and 

CTB to form pentamers is thought to be cmcial for their immunogenicity (and hence 

adjuvanticity), since several studies have suggested that efficient binding of the toxins to 

GMl-ganglioside requires more than one B subunit [Sixma et al., 1992; lida et al., 1989]. 

Certain amino acid additions at the C-terminus of LTB have been shown to prevent 

pentamerisation and subsequently association with GMl-ganglioside [Sandkvist et al., 

1987], although the exact amino acid restraints that lead to this are, at present, unknown. A 

second consideration in the use of CTB or LTB-fusion proteins is the availability of a 

suitable expression vector and purification protocols that can be used to purify the fusion 

proteins without damaging important epitopes on either the toxin subunits or the fused 

antigen. E.coli has, in the past, been employed as an expression system for LTB-fusions, 

but more recently. Vibrio cholerae species have been shown to be amenable to the 

expression of LTB-fusions [Schodel et al., 1991]. One such vector receiving current 

attention is Vibrio sp. 60, a non-pathogenic strain of Vibrio [Leece and Hirst, 1992; Amin 

and Hirst, 1994]. The use of Vibrio species as vectors for LTB- and CTB-fusions, is 

particularly attractive, since this organism, unlike E.coli, can secrete oligomeric toxins (CT 

and LT) [Hirst et al., 1984; Neill et al., 1983] or their B subunits [Sandkvist et al., 1987; 

Schodel et al., 1991], across the outer membrane and into the external culture medium, 

where the fusion protein can be readily harvested from the culture medium. Other bacterial 

vectors have also been shown to be capable of expressing LTB-fusion proteins, e.g. 

salmonella, [Clements and Cardenas, 1993; Sanchez et al., 1988] and this presents the 

opportunity the LTB-fusions may be delivered in situ, by the intestinal colonising bacteria.
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c .  Simian Immunodeficiency Virus (SIV).

One of the major challenges for virological and immunological research is to 

develop successful and practical vaccines to Human Immunodeficiency Virus (HTV). 

However, from work to date, it is not clear what arc the parameters of protective immunity 

to HTV [reviewed by Levy, 1993]. Furthermore, HIV does not cause disease in any animal 

model system. Consequently, to try and develop vaccines against HTV, other animal model 

systems have been developed. The best characterised of these being infection of macaques 

and rhesus monkeys with Simian Immunodeficiency Virus (SIV).

SIV, like HTV, is a member of the lentivirus subfamily of retroviruses. All 

lentiviruses have a unique virion morphology/ morphogenesis that distinguishes them 

from other retrovmises. Furthermore, lentiviruses are not oncogenic but instead induce 

chronic, debilitating diseases following long term persistent infections. SIV has several 

properties that make it a useful model for HTV infection. For example, it shares biological 

and genetic characteristics with HTV and there is considerable sequence homology in the 

major structural and regulatory proteins of SIV and HIV-2 [Dersoriers et al., 1988; Letvin 

e ta l,  1985].

One of the key features of SIV and HTV is their ability to persist in spite of an 

apparently strong host response to the viras. Infected individuals may remain well for 

years, whde maintaining easily detectable humoral and cellular immune responses, only to 

succumb eventually to the virus. This ability to persist and cause a slow progressing 

disease, seems to be unique to the lentivirus subgroup of retroviruses. Like HTV, SIV has 

a tropism for the CD4 molecule, thus principally infects CD4+ T cells and monocytes, 

resulting in debilitation in their numbers leading to a chronic immunodeficiency. Some 

strains of SIV are capable of inducing fatal immunodeficiency disease, similar to AIDS in 

man, within a time scale that makes it suitable for laboratory investigations. For example, 

one of the most common clinical signs in macaques infected with SIV is diarrhoea, often 

associated with pathogenic bacteria or protozoa. The diarrhoea is often associated with a 

wasting disease similar to HTV in humans.
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SrV infected macaques also develop immunological abnormalities including a 

decrease in CD4+ lymphocyte numbers [Letvin et a l, 1985], decreased responsiveness of 

peripheral blood lymphocytes to mitogenic stimulation, and thymic atrophy.

Immunological abnormalities result in a range of opportunistic infections, many of which 

are seen in humans infected with HIV-1.

Interest in simian immunodeficiency viruses (SIVs) originates primarily from 

three sources. First, a common or related origin of SIV and HIV has been suggested 

because the viruses are similar, both biologically and at the molecular level [Coffin, 1986; 

Daniel et al., 1985; Letvin et al., 1985]. Secondly, the similarities between HTV and SIV 

go beyond structural features. STVmac can be isolated from infected cells using identical 

methods used for isolating HIV, moreover the ability of SIV to infect human and monkey 

lymphocytes depends on the presence of the CD4 molecule on their surface [Kannagi et 

al., 1985]. Thirdly, when SIV was first isolated, not only was its moiphology and culture 

characteristics similar to HIV but also its antigenic properties indicated that it was related to 

HIV-1 [Kanki et al., 1985]. Also, radioimmuneprecipitation analysis revealed SIV- 

proteins of 160,120, 55 and 24 kilodaltons (k), all similar in size to the major gag 

proteins and external envelope glycoprotein of HTV.

The genomes of SIV and HIV-2 have about 75% nucleotide homology but both 

have only 40% of their sequences in common with HTV-1 [Charabrati et al., 1987; Franchini 

et al., 1987]. The overall organisation of their genomes are remarkably similar. The 

sequence of gag and pol genes are highly conserved between primate lentiviruses. The gag 

gene codes for a precursor polypeptide of about 55kD which, in analogy to other 

lentiviruses, is cleaved into polypeptides of about 17,25 and 12 kD. There are only two 

amino acid differences between p27 of STV (strain STVmac) and HIV-2, but 13 differences 

between HTV-1 [Benveniste et al., 1986]. The cleavage site for pol precursor protein that 

yields the protease and the polymerase is œnserved in HTV-1, HIV-2 and STVmac [DiMarzo 

etal., 1986].
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c . / .  S/V, Protective Immunity and Vaccination.
There have been a number of studies on the induction of protective immunity to 

SrV [see review by Stott, 1994], and a general out-line is presented below;

(a) vaccination with attenuated viruses can protect against infection with the wild- 

type viruses. The basis of this protection is unknown, but recent results using SIV/HIV 

chimeric viruses suggest that cell-mediated immune resptmses, rather than neutralising 

antibody, are responsible for the protection seen.

(b) immunisation with whole killed cell virus vaccine can protect, but here the 

protection appeal's to be mediated via anti-host cell responses, rather than via anti-virus 

responses. This may be because lentiviruses incorporate host cell proteins into their 

envelope, e.g. class I and class II MHC molecules. Indeed, protection can be mediated by 

generating an anti-class II MHC response.

(c) no recombinant vaccine, either purified protein in a variety of adjuvants or 

expression vectors such as vaccinia virus, has been able to induce protective immunity to 

SIV. This is despite the finding that many recombinant vaccines that incorporate the 

envelope glycoprotein of SIV induce good neutralising antibodies to the virus. However, 

such vaccines, while failing to protect against infection, may reduce the initial virus load in 

infected cells.

The positive message for these results is that protective immunity can be induced 

by vaccination. Unfortunately, for safety considerations it may not be acceptable to use an 

attenuated HIV vaccine. Consequently, the challenge is to develop a novel and acceptable 

method of vaccination which can induce protective immunity against lentiviruses.

One thing also to bear in mind when considering the design of anti-STV/HIV 

vaccine is that the natural route of infection by the virus is through mucosal surfaces. To 

date, the vaccine challenge studies with STV have rarely used this method of infection and it 

may be necessary to induce mucosal immune responses to protect against natural infection 

with HTV.
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D. Project Objectives.
Solid matrix-antibody-antigen complexes, as described in Section B.4.2.3.4, are 

showing promise as potential muitivalent immunogens. Yet several problems exist in the 

wide-spread use of SMAA complexes as human vaccines. For example, a suitable 

biodegradable solid matrix that is readily acceptable for use in man, needs to be developed. 

At present, alum is being employed as the solid matrix [Randall et al., 1993; 1994], but 

several problems with the use of alum have been described previously. However, the 

advancement in SMAA complex technology has opened the door for new strategies that 

could over-ride the need for the solid matrix. For example, it might be possible to generate 

highly immunogenic complexes by joining a tag-linked adjuvant to one arm of an anti-tag 

antibody, and tag-Hnked antigen to the other arm. This project has been concerned with such 

a strategy. LTB has been used as the adjuvant and antigen-antibody-LTB complexes have 

been constructed. The use of LTB as the adjuvant in the project, gave the added bonus that it 

increased the chances of such complexes acting as mucosal immunogens.

In this project, a small epitope tag (termed Pk) was attached to LTB and SIV 

antigens, that were also tagged with the Pk epitope, were linked to LTB via an antibody 

(anti-Pk) bridge. The systemic and mucosal responses to such complexes were evaluated.
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MATERIALS AND METHODS.

1. Recombinant DNA techniques.
1.1. Plasmids, bacterial strains and culture conditions.

The bacterial strains employed in this project were E.coli strain HB101 (Bolivar et 

al., 1977) and Vibrio sp.60 (Ichige et al., 1988). Liquid cultures of E.coli were grown in 

either in Luiia broth (L-broth) [lOg/1 bactotiyptone (Difco), 5 g/1 yeast extract (Difco), lOmM 

NaCl, pH 7.5] or 2X TYE broth (16g/l bacto-tryptone, lOg/1 yeast extract, 20mM NaCl, pH

7.5) supplemented with 100p.g/ml ampicillin (Sigma). Vibrio sp. 60 is a non-patliogenic 

marine Vibrio, recently described by Ichige et a l, [1988]. Liquid cultures of Vibrio sp. 60 

were grown in L-broth supplemented with an additional 2% NaCl and 100[tg/ml ampicillin.

The vector pMMB66, a derivative of the broad host range plasmid, RSFlOlO, was 

used to clone the gene encoding the B subunit of E.coli heat-labile enterotoxin subunit B, 

which has a 21 amino acid signal sequence followed by 103 amino acid mature sequence 

[Sandkvist et a l, 1987]. Upstream of the B subunit gene is a tac promotor. The 3'-end of the 

gene was modified as described in Sandkvist e ta l, [1987], to give plasmid pMMB138, 

which resulted in a B subunit with a short carboxyl-terminal extension and a HindlQ site near 

the end of the gene. Into this site an oligonucleotide (see fig. 5) was inserted, to give plasmid 

pTRHlOlR. Plasmid pTRHlOlR was a kind gift from Dr. T.R. Hirst, University of Kent.

1.2. Synthesis of synthetic oligonucleotides.

Synthetic oligonucleotides were made using an Applied Biosystems 381A DNA 

synthesiser (kindly performed by I. Arraitt). The oligonuucleotides were resuspended in 

2(X^ of sterile water and precipitated with 1/lOth volume of 3M sodium acetate, l/lOOth 

volume IM magnesium acetate and 3 volumes absolute ethanol. The precipitate was pelleted 

by high speed centrifugation at 4°C for 15 minutes in a bench top microfuge and then
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pTRHlOlR
102 103

..glu lys Le(u Leu Glu Asp Pro Leu Val Pro Ala Leu ArgThr G)ln Leu 

.GAA AAG crrr CTA GAG GAT CCA CTA GTG CCG GCC CTG CGG ACC C)AG c i t .

Hindin______ Bam HI    Nael
Xbal Spel

Figure 5. Plasmid pTHRlOlR.
The oligonucleotide (bracketed) was inserted into the Hindin site of pMMB138. The residue 
numbers 102,103 104 etc, refer to those found in the protein EtxB138 expressed from 
pMMB138 [Sandkvist et al., 1987]. The underlined areas represent the sequences recognised 
by the named endonuclease restriction enzymes.

positive stranded oligonucleotide:

5’ AGCTGGGAAAGCCGATCCCAAACCCTTTGCTGGGATTGGACTCCACCTAGA 3' 

negative stranded oligonucleotide:

5’ CTAGTCTAGGTGGAGTCCAATCCCAGCAAAGGGTTTGGGATCGGCnTCC 3'

Figure 6. Sequence of the positive and negative oligonucleotides.

The figure shows the oligonucleotide linkers that were inserted between the 

HindHI and Spel endonuclease restriction sites of plasmid pTRHlOlR.
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resuspended in 200|il of sterile water. The DNA concentration of the oligonucleotides was 

determined by measuring the UV absorbance at 260nm (an absorbance of 1.0 at 260nm is 

taken to be the equivalent to 40pg/ml).

The sequences of the positive and negative oligonucleotides are given Fig. 6. The 

oligonucleotides were annealed by mixing 50jJ,l of the positive stranded olignucleotide with 

50jil of the negative stranded oligonucleotide, boiling for 2 minutes at 100°C, then leaving the 

oligonucleotides to anneal at room temperature for 30 minutes. Once annealed, the 

oligonucleotides were 5-phosphorylated using T4 polynucleotide kinase (New England 

BioLabs) by mixing lOOjil of the annealed oligonucleotides with l lp io f  lOX ligation buffer 

(bacteriophage T4 ligation buffer) and 2jil T4 polynucleotide kinase. The reaction was 

performed at 37°C for 30 minutes. The 5'-phosphorylated double-stranded oligonucleotides 

were then ethanol precipitated and resuspended in 50pl of distilled water.

1,3, Construction o f recombinant plasmid pTRH-Pk,

The basic cloning procedures involved in the construction of plasmid pTRH-Pk are 

modifications of standard protocols from Maniatis et al, 1982.

1,3.1. Preparation of plasmid DNA.

A lOjil sample of E.coli containing plasmid pTRHlOlR was used to inoculate a 10 

ml volume of 2 x TYE broth supplemented with lOOjig/ml ampicillin (TYE/AMP) and the 

culture was incubated for 18 hours at 37°C, on an orbital shaker. 1(X) ml of TYE/AMP was 

inoculated with a 1 ml sample of the overnight culture and following incubation at 37°C for 16 

hours, the bacteria were harvested by centrifugation at 12,000g, at room temperature for 10 

nrtinutes. The desired plasmid was then isolated using a modification of the alkali lysis 

protocol described by Bimboim and Doly [1979]. The bacterial pellets were washed once by 

resuspending the pellets in 10 ml of solution I (25mM Tris-HCl, pH 8.0, 50mM Glucose, 

lOmM EDTA) then centrifugating the suspension at 12,(X)0g for 10 minutes at room 

temperature. The supernatant was discarded and the bacterial pellets resuspended in 4 ml of 

solution I supplemented with lOmg/ml lysozyme and 30pl of DNase-free RNase (Boehringer
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Mannhein), and during a 30 minute incubation at room temperature, the suspension was 

vortexed vigorously every five minutes. To the suspension, 8 ml of freshly prepared solution 

n  [0.2M NaCl, 1% (w/v) SDS] was added, and after a ten minute incubation at room 

temperature, a further 6 ml of solution K (5M potassium acetate, 11.5% (v/v) glacial acetic 

acid, pH 5.5) was added and the suspension incubated fœ a further 5 minutes at room 

temperature. The suspension was centrifuged at 12,000g for 10 minutes at room temperature. 

The resulting supernatant was carefully removed and filtered through two layers of cheese­

cloth into a clean beaker. The plasmid DNA was precipitated by measuring the volume of the 

filtrate then adding 0.6 volumes of isopropanol, vortexing vigorously, followed by 

centrifugation at 4°C for 10 minutes at 12,000g. The supernatant was discarded and the 

pelleted plasmid DNA dried in vacuo. The dried pellet was resuspended in 5 ml of TE buffer 

(lOmM Tris-HCl, ImM EDTA, pH 8.0), following which, lOpl of DNase-free RNase was 

added, and the suspension incubated at 37°C for 30 minutes. The plasmid DNA was then 

purified by phenol/chloroform extraction. The DNA solution was mixed with an equal volume 

of phendi, vortexed vigorously, and centrifuged at 12,000g for 10 minutes at room 

temperature. The aqueous solution, containing plasmid DNA, was gently removed, placed in a 

fresh tube and the volume measured. To this aqueous solution, an equal volume of 1:1 ratio of 

phenolrchloroform was added, the solution vortexed vigorously and centrifuged as before.

The aqueous solution was again retained, measured and the contaminating phenol renxrved by 

adding 1 volume of chloroform, vortexing vigorously, then centrifugating at 12,000g for 10 

minutes at room temperature. After removal of the aqueous layer to a fresh tube, the plasmid 

DNA was ethanol precipitated. The volume of the aqueous layer was measured and 2.5 

volumes of ethanol added, followed by a 1/lOth volume 3M sodium acetate. The plasmid 

DNA was then pelleted by centrifugation at 12,000g for 10 minutes at 4°C. The precipitated 

plasmid DNA was gently washed with 70% ethanol, excess alcohol removed by inverting the 

tube over a tissue, and then dried in vacuo. Once dried, the plasmid DNA was resuspended in 

200)11 of sterile water, a 20pl sample removed to determine the concentration and purity of the 

plasmid DNA preparation (see below), and the remaining volume stored at -20PC until needed.
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1.3.2. Estimation of the concentration and purity of DNA in the plasmid 

preparation.

The concentration of the DNA in the plasmid preparation was determined by 

measuring the absorbance at 260nm of a 20pl sample plasmid DNA (diluted 1:100 in TE 

buffer) using a spectrometer. By using the formula that 1 unit of absorbance is equivalent to 

50pg/ml double stranded DNA, the concentration of the plasmid could be estimated.

Purity of the plasmid DNA preparation was estimated by measuring the absorbance at 

260 nm and 280 nm, and determining the mtio between the two readings. Values of 1.8 

(260nm:280nm) were taken to represent highly purified DNA.

1.3.3. Cleavage of plasmid DNA

Restriction endonucleases Hind III and Spe I (both from New England BioLabs) 

used in the cleavage of the plasmid DNA were supplied with their appropriate lOX buffer. The 

concentrations of enzymes employed in the digestion were chosen following manufacturer's 

recommendations.

A 20jol sample (approximately 2pg) of purified DNA was mixed with lOpl (12 

Units) Spe 1,5p.l (20 Units) Hind IB, 2(^110 X buffer, 2pl acetylated-bovine serum albumin 

(BSA), the volume made up to 200jil with distilled water and the digestion was allowed to 

proceed for 18 hours at 37°C. Following examination of the enzyme digested plasmid by 

horizontal agarose gel electrophoresis (below) to establish that the cleavage had been 

successful, the ends of the cleaved plasmid were dephosphorylated by the addition of 0.5pl 

(12U) of alkaline phosphatase (Boehringer Mannheim) to the DNA solution, followed by a 

one hour incubation at 37°C. The alkaline phosphatase was inactivated by adding EGTA to a 

final concentration of 20mM and incubating the solution at 65°C for 10 minutes.

1.3.4, Horizontal agarose gel electrophoresis.

The digested plasmid DNA was exantined by agarose-gel electrophoresis, in an 

agarose horizontal minigel apparatus (Pharmacia), to determine whether the cleavage had been 

successful. A 2pl sample of digested DNA was separated on a 10 x 10 x 0.5cm agarose gel
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containing 1% agarose (Sigma) reconstituted in TBE buffer (90mM Tris-borate, 2mM EDTA 

pH 8.0). The cleaved plasmid was mixed 1:5 (v/v) with 6X loading buffer [0.25% (w/v) 

bromophenol blue, 30% (v/v) glycerol], added to the gel and horizontally electrophoresed at 

100 volts until the dye front migrated three-quarters of the way through the gel. As a size 

marker, i^age lambda DNA, cleaved with restriction enzyme Hind EH (Boehringer 

Mannheim), was similarly electrophoresed. The gel was then stained with Ipg/ml ethidium 

bromide in TBE buffer and the DNA bands visualized on an ultra violet transilluminator.

1.3.5. Purification of cleaved plasmid by electroelution.

After ascertaining that the plasmid had been successfully cleaved, the cut plasmid 

was electroeluted by the following procedure. Plasmid DNA was cut as before and the DNA 

bands were separated by electrophoresis through a 1% horizontal agarose-gel. Once the dye 

front migrated three-quarters of the way through the gel, the gel was removed from the rig and 

placed on a UV transilluminator to visualize the location of the cut plasmid. A 1mm wide 

trough was carefully excised just in front of the migrating DNA band and the gel returned to 

the rig. TBE buffer was gently poured into the electrode tanks making sure it did not overflow 

the surface of the gel, and using a micropipette, the excised trough was filled with TBE 

buffer. The gel was electrophoresed for 30 seconds at 1(X) volts, after which, the power was 

disconnected. The fluid in the excised trough was extracted with a micropipette and placed in a 

clean eppendorf vial, the trough was then re-filled with fresh TBE buffer. This electroelution 

process was repeated 7-9 times, the progress of which was monitored on the UV illuminator, 

to determine no DNA remained within the gel. The DNA-containing buffer ahquots were 

pooled, the DNA ethanol precipitated and dried, as described above. For vector fragments, the 

DNA was incubated with alkaline phosphatase (Boehringer Mannheim) for 1 hour at 37°C 

prior to phenol/chloroform extraction in cffder to prevent recirculization during subsequent 

ligation reactions. Dried DNA was resuspended in 20|il of water and a 2|xl sample used to 

estimate the level of DNA recovery by 1% horizontal agarose-gel electrophoresis.
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1.3.6. DNA ligation.

Approximately 400ng of vector DNA and 40-400ng of the double stranded 

oligonucleotide insert were combined in a total of 20pl of ligation buffer (50mM Tris-HCl pH 

7.8, lOmM MgCl2, lOmM dithiothreitol, ImM ATP, 25mg/ml BSA) containing 200U T4 

DNA ligase (New England BioLabs) and incubated at 16°C for 1 hour. The ligation mixture 

was used directly for the transformation of competent E.coli.

1.4, Preparation and transformation o f competent bacteria.

E. coli strain JMlOl was made competent using the modified rubidium chloride 

(RbCl) method of Kushner (1978). Briefly, a 60 ml volume of 2 x TYE broth was inoculated 

with E.coli strain JMlOl and the bacteria incubated at 37°C until the OD^oo reached 

approximately 0.5. The bacteria were then cooled by incubating the culture flask on ice for 10 

minutes, and then harvested by centrifugation at 12,000g for 10 minutes at 4°C. The bacterial 

pellet was resuspended in a 20 ml volume of ice-cold MOPS I solution (IM MOPS pH 7.0, 

KXknM rubidium chloride), centrifuged as above, and then resuspended in a 20 ml volume of 

ice-cold MOPS II solution (IM MOPS pH 6.5,700mM CaCl2> lOOmM rubidium chloride). 

After centrifugation at 12,000g for 10 minutes at 4°C, the pelleted bacteria were resuspended 

in a 2 ml volume of MOPS II solution. Competent bacteria were either used directly for DNA 

transformation or stored at 4°C for one week.

Transformation of the bacteria was achieved by combining one-half of the 20pl 

ligation reaction with 100-200|il of competent bacteria and incubating on ice for 30 minutes, 

with occasional end-over-end shaking. The bacteria were then heat-shocked at 42°C for 2.5 

minutes to promote DNA uptake, returned to ice for 5 minutes, and then transferred into a 

1ml volume of 2 x TYE broth. The bacteria were incubated for one hour at 37°C without 

antibiotics, under constant agitation, following which ampicillin-resistant recombinants were 

selected after growth on Luria-agar (L-agar) plates (below) supplemented with 100 fig/ml 

ampicillin, for 24 hours at 37°C.
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1.5. Preparation o f  L-agar plates.

100ml of L-agar (lOg/1 Tryptone, 5g/l yeast extract, lOg/1 NaCl, NaOH, pH 7.5, 2% 

agar) was placed in a water bath at 100°C. When all the agar had melted, the solution was left 

to cool to approximately 50°C and then supplemented with lOOjig/ml ampicillin. The agar 

solution was immediately poured into petri-dishes (Sterilin) and allowed to set. Once set, the 

plates were dried at 42°C and sterilized by ultraviolet radiation. The prepared plates were then 

stored at 4°C in sealed polyethylene bags, until use.

1.6. Screening fo r  pTRH-Pk recombinants.

Single colonies growing on antibiotic supplemented L-agar plates were selected and 

used to inoculate separate 10 ml cultures of Luria-broth containing 100 pg/ml ampicillin. The 

bacteria were then cultured for 18 hours at 37°C on an orbital shaker. A lOOpl sample of the 

overnight culture was used to inoculate a 2 ml volume of antibiotic-supplemented L-broth 

solution and the bacteria grown at 37°C until the ODgoo reached 0.4. At this point, EPTG was 

added to each culture to give a final concentration of 0.5mM and the incubation allowed to 

continue for 4 hours at 37°C. The bacteria were harvested and a 1 ml sample removed, 

centrifuged at high speed in a bench-top microfuge and the bacterial pellets resuspended in a 

1ml volume of ice-cold 0.25M sucrose, O.IM sodium phosphate buffer, pH 7.6, to which 

was added 20|Xg/ml lysozyme and 5mM EDTA. The solution was incubated on ice for 10 

minutes, sonicated at full power for 4 seconds using a Soniprep 150 sonicator, then 

centrifuged at high speed in a bench top centrifuge for 5 minutes at room temperature and the 

supernatant retained.

Bacterial clones producing LTB-Pk were determined by dot-blot assay. A lOpl 

sample from each of the cell lysates was added, in duplicate, to the wells of a terasaki plate 

(Sterilin) and the plates were then electrophoreseed with a 5 cm x 7.5 cm nitrocellulose filter 

(Gelman Sciences). A second terasaki plate was placed on top of the nitrocellulose filter, 

making sure the wells of each plate were aligned, and after clipping the plates tightly together, 

the plates were inverted to bring the lysates into close contact with the nitrocellulose filter. The 

plates were incubated at room temperature for one hour, following which the nitrocellulose
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filter was removed, and rinsed three times in phosphate buffered saline (PBS) containing 1% 

semi-skimmed milk. The nitrocellulose was then incubated for one hour in 20 ml of PBS 

supplemented with 20% semi-skimmed mdk, following which the nitrocellulose filter was 

rinsed three times in successive 20 ml volumes of PBS containing 1% semi-skimmed milk. 

The blots were probed for the presence of the Pk determinant by incubating the nitrocellulose 

filters with a 20 ml volume of PBS supplemented with 1% semi-skimmed milk and 1: 20 

dilution of anti-Pk MAb SV5-P-k (see below). After a one hour incubation at room 

temperature, the nitrocellulose filter was rinsed as before, then incubated with a 20 ml volume 

of PBS containing 1% semi-skimmed milk and a 1: 1000 dilution of ̂ ^Iodine-labelled Protein 

A (Amersham), for a further hour at room temperature. Excess radio-label was discarded and 

the nitrocellulose filter washed extensively in PBS, blotted dry and then exposed to Fuji X-ray 

film for 18 hours at -20°C. Positive-LTB-Pk expressing clones were visualized following 

development of the film in a Kodak developer.

Alternatively, colonies expressing LTB-Pk following EPTG induction were screened 

by analysing the cellular lysates for LTB-Pk by Western blot assay.

i.7 . Storage o f  colonies.

Bacterial colonies that were shown to express LTB-Pk were used to inoculate 

separate 10ml cultures of ampicillin-supplemented L-broth. The bacteria were cultured 

overnight at 37°C on an orbital shaker, and the following day, 0.85ml of bacterial culture was 

transferred to a sterile vial containing 0.15ml of sterile glycerol. The bacteria were then stored 

at -70°C.

2. ANTIBODIES.

Monoclonal antibody SV5-P-k (MAb SV5-P-k) recognizes an epitope on the simian 

virus 5 (SV5) phospho (P) and V proteins [Randall et al., 1987] and it's specificity was 

determined in our laboratory [Southern et al., 1991]. MAb SV5-P-k was purified either from 

tissue culture medium, or ascitic fluid stocks by affinity chromatography techniques (see 

below). Horseradish peroxidase (HRP)-conjugated anti-mouse immunoglobulin (Ig) was
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obtained from the Scottish Antibody Production Unit (SABU). HRP-conjugated Protein A 

which specifically interacts with the Fc region of murine IgG2a, IgG2y, and IgGg but not IgGj 

antibodies, was obtained from Amersham International. Goat anti-mouse IgG, IgM and IgA 

antibodies and alkaline-phophatase-conjugated anti-goat antibody were obtained from Sigma. 

FluOTescein isothiocyanate (FITC)-labelled anti-murine CD4, CD8 and Ig antibodies were 

supplied by Sera-Lab.

2.1, Purification o f MAb SV5-P-k by affinity chromatography techniques.

MAb SV5-P-k was purified from ascitic fluid or tissue culture medium by affinity 

chromatography techniques using a Protein A (Pr.A)-sepharose support (Sigma). A 1ml 

sample of Pr.A-sepharose beads were loaded into a column and washed with 20ml of 

phosphate buffered saline (PBS). The resin was incubated with MAb SV5-P-k-containing 

fluid for one hour at room temperature, then material that failed to bind to the column was 

removed by washing the column in 100 column volumes of PBS. Bound MAb SV5-P-k was 

eluted by the addition of a buffer composed of 0.2M glycine, O.IM NaCl, pH 2.8. 1ml 

fractions were collected throughout the elution process, and fractions contained purified MAb 

SV5-P-k were pooled and dialysed against 4 litres of PBS for 18 hours, changing the buffer 

once. The purified antibody was filter sterilized through a 0.22pm nylon filter (Gelman 

Sciences) and stored in 1 ml aliquots at 4°C until use.

3. SDS-PAGE and Western blotting.

3.1, Preparation o f polyacrylamide gels.

All the polyacrylamide gels employed in this project, contained 15% acrylamide. A 

15% SDS-polyacrylamide separation gel was constructed by mixing together 2.675 ml of 

solution A (28% Acrylamide/ 0.735% DATD), 0.625 ml of solution B (3M Tris-HCl, pH

8.5), 1.25 ml of freshly prepared solution C (0.14% ammonium persulphate), 0.425 ml 

distilled H2O, 25pl 20% SDS and 2.5pl N,N,N’,N’-tetra-methylethylenediamine (TEMED; 

Bio-Rad). Immediately after the addition of the TEMED, the gel solution was poured between 

the glass gel cassettes of a Bio-rad Mini Protein System gel rig, leaving a 2 cm gap at the top
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of the cassette. The separation gel was carefully overlaid with 200pl of distilled water, to 

create an even interface, and the gel was left to polymerise at room temperature for 30 

minutes. A stacking gel was prepared by mixing together 1.6 ml of solution C, 400pl of 

solution A, 300pl of solution D (IM Tris-HCl, pH 7.0, SDS) and Ipl TEMED. The H2O was 

gently removed by inverting the gel cassette over a paper tissue, the stacking gel poured on top 

of the separation gel and a comb inserted to create wells. The gel was then left to polymerise at 

room temperature for one-two hours.

3.2 Preparation o f samples for SDS-PAGE and electrophoresis.

15pl samples of protein (unless otherwise stated in the Results) were mixed with 5pl 

of 4x disruption buffer (25% P-mercaptoethanol, 10% SDS, 25% solution B, 12.5% 

glycerol) and boiled for 5 minutes at 100°C (unless otherwise stated). The disrupted protein 

samples were then loaded into the wells of the prepared SDS-polyacrylamide gel using a 

micropipette and electrophoresed in electrode buffer (0.19M Glycine, 0.025M Tris-HCl,

0.1% SDS, pH 8.0) at a constant voltage of 150 volts. When the dye front migrated to a 

position 0.5cm from the bottom of the gel, the current was disconnected and the gel removed 

from the gel rig. Thereafter, the denatured polypeptide chains were either stained with 

Coomassie blue stain or electroblotted onto nitrocellulose filters and analysed by Western 

blotting.

3.3. Coomassie blue staining.

Individual polypeptide chains were visualized by incubating the SDS-polyacrylamide 

gel for 20 minutes in approximately 30 ml of Coomassie blue stain solution (0.2% Coomassie 

brilliant blue R250 (BDH), 20% methanol and 10% acetic acid). On completion of the 

incubation period, the excess stain was poured off and the gel destained with repeated 

washing in destaining solution (10% acetic acid, 10% methanol). During both the staining and 

destaining steps, the gel was gently agitated on a rotatest shaker, to permit uniform 

staining/destaining. The gel was then either dried onto 3MM Whatman filter paper using a 

Bio-rad 583 vacuum gel drier for 2 hours at 80°C, or stored in sealed plastic bags.
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3.4. Western blotting and autoradiography.

Polypqjtide chains separated on 15% polyacrylamide gels were electroblotted onto 

nitrocellulose using a LKB semi dry electroblotter. Both the bottom (anode) and top (cathode) 

graphite plates were washed in distilled H2O prior to electroblotting.

Four sheets of 3MM Whatman filter paper, cut to the same size as the gel, were soaked in 

Western Blotting (WB) buffer (20% methanol, 20mM Tris) and placed on the bottom graphite 

plate. A sheet of nitrocellulose, similar in size to the gel, that had been moistened in WB 

buffer, was placed on top of the filter papers and electrophoreseed with the polyacrylamide 

gel. Four mœe sheets of filter paper were soaked in WB buffer and layered over the gel to 

corr^lete the sandwich. The top graphite plate was put in place and the electrodes attached. 

The gel was blotted for one hour using a current of 1mA per cm^ of the sandwich, after 

which, the current was switched off and the nitrocellulose sheet removed. The nitrocellulose 

sheet was placed in a petri-dish (Sterilin) containing 20 ml of blocking buffer (5% semi­

skimmed milk, 20mM Tris-HCl, pH 7.6, 140mM NaCl, 0.1% Tween 20) and blocked for 15 

minutes at room temperature on a rotatest shaker. The nitrocellulose sheet was then rinsed 

three times in successive 30ml volumes of PBS, followed by a further 10 minute incubation in 

blocking buffer at room temperature. After rinsing in PBS as before, the nitrocellulose sheet 

was incubated in 20ml of blocking buffer containing a 1:1000 dilution of MAb SV5-P-k, for 

30 minutes at room temperature. The nitrocellulose sheet was then rinsed in PBS and after 

washing twice with blocking buffer, incubated for 30 minutes in 20ml of blocking buffer 

containing a 1:2000 dilution of horseradish peroxidase (HRP)-conjugated Protein A 

(Amersham), at room temperature. On completion of the incubation period, the nitrocellulose 

sheet was rinsed in PBS, then twice in the blocking buffer. After a final rinse in PBS to 

remove excess blocking solution, the nitrocellulose sheet was dried briefly between two 3MM 

Whatman filters, and transferred into a fresh petri dish containing 5 ml of enhanced 

chemhuminescence (ECL) Western blotting reagents (Amersham) that had been mixed 

according to the manufacturers recommendations. The nitrocellulose sheet was incubated in 

ECL reagents for 1-2 minutes, placed inside a plastic bag, then exposed to Fuji X-ray film
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adjacent to an intensifying screen fœ 0.5-3 minutes. The film was then developed using an 

automatic developer (Kodak).

4. GMl-enzyme-linked immunoasorbent (GMl-ELISA) assay.

The assay out lined below is an adaption of the procedure described by Svennerholm 

and Holmgren [1978]. Flat bottomed, 96-well microtitre plates (Coming) were coated with 

lOOpl per well of 1.5pg/ml monosialioganglioside-GMl (GMl; Sigma) dissolved in PBS, 

fcr 18 hours at 4°C. The plates were washed twice in PBS and the remaining protein-binding 

sites blocked in 200pl of PBS containing 1% (wA') BSA (Sigma) at 37°C for one hour. After 

blocking, the plates were washed three times in PBS. Test samples were serially diluted in 

PBS supplemented with 0.1% (w/v) BSA (PBS/BSA) and added to the wells in a volume of 

lOOjil and the plates were incubated at rocxn temperature for one hour. The plates were then 

washed three times in PBS, and a lOOpl sample of anti-Pk MAb SV5-P-k (tissue culture fluid) 

diluted 1:20 in PBS/BSA, was added to each well. After incubation for one hour at room 

temperature, the plates were washed three times in PBS containing 0.05% Tween 20 

(PBS/Tween), and then lOOp.1 of horse-radish peroxidase (HRP)-conjugated Protein A, 

diluted 1:1000 in PBS/BSA, was added to each well for one hour at room temperature. The 

plates were washed three times in PBS/Fween. A lOOpl volume of a-phenylene-di-amine 

(1 mg/ml) (Sigma) in 0. IM citrate buffer pH 4.5 (2. Ig citric acid, 2.84g Na2HP04  made up to 

400ml with distilled water), (activated by the addition of 0.4pJ/ml 30% (v/v) hydrogen 

peroxide) was added to each well to detect bound conjugated antibody . The plates were then 

incubated at room temperature for 15-30 minutes following which the adsorbance at 450nm 

was measured using a Dynatech MR5000 microtitre plate reader.

5. Immune-precipitation assays.

A 30pl sample of a heat-killed suspension of Staphylococcus aureus (St. aureus) 

Cowan A strain (10% w/v) was placed in a 500)11 eppendtxf and centrifuged at high speed in a 

microfuge for 5 minutes at room temperature. The supernatant was gently aspirated using a 

pipette tip attached to a vacuum, and the pellet resuspended in 30jil of ice-cold immune
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precipitation buffer (0.65M NaCl, 20mM Tris-HCl pH 7.8, ImM EDTA, 0.5% (v/v) NP-40, 

and 0.1% (w/v) azide). After centrifugation as before, the supernatant was again removed by 

aspiration and the St. aureus pellet resuspended in 30|il of PBS containing approximately 

2mg/ml purified anti-Pk MAb SV5-P-k. The suspension was incubated on ice for 30 minutes 

to allow maximum adsorption of the MAb to the bacterium, then centrifuged at low speed in a 

microfuge, for 3 minutes at room temperature. The supernatant containing unbound antibody 

was gently removed by aspiration, taking care not to disturb the St. aureus-MAb pellet To be 

sure no firee MAb remained, the pellet was resuspended in 30iU of ice-cold immune- 

precipitation buffer, centrifuged as before and the supernatant gently removed. This washing 

step was repeated three times. The pellet was resuspended in a 15|il volume (unless otherwise 

stated in the Results) of the test solution and the suspension incubated on ice for one hour. 

After low speed centrifugation in a microfuge, the supernatant containing unprecipitated 

proteins was gently transferred to a fresh eppendorf vial using a micropipette, a 5|il volume of 

4X disruption buffer added and the sample stored at -20°C until analysed. The precipitate was 

then resuspended in 30|xl of ice-cold immune-precipitation buffer, centrifuged as before, and 

the supernatant discarded. This washing step was repeated four times to ascertain no 

unprecipitated proteins remained. Finally, the pellet was resuspended in 30|il of IX disruption 

buffer and stored at -20°C until analysed.

6. Concentration of LTB-Pk

6.1. Concentration of LTB-Pk by ammonium sulphate precipitation.

Small scale ammonium sulphate precipitations were performed at room temperature. 

A one litre culture of Vibrio sp.60 harbouring the plasmid pTRH-Pk was maximally induced 

with 0.05mM IPTG for 6 hours at 30°C, and the culture supernatant separated from the 

bacteria by centrifugation at 12,000g for 20 minutes at 20°C. To a 200ml volume of the 

supernatant (containing approximately 6mg/l of crude LTB-Pk), 62.6g of solid ammonium 

sulphate was added very slowly with constant stirring, to give a final salt saturation level of 

50%. Protein precipitation was allowed to continue for one hour, after which the solution was 

centrifuged at 2,500g at 4°C. The supernatant was discarded and the pellet containing
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precipitated protein, was resuspended in 20ml of sterile PBS. The suspension was centrifuged 

at 2,500g for 20 minutes at 4°C, to pellet insoluble material. The supernatant was gently 

removed using a pasteur pipette and transferred to a dialysis membrane. Excess salt was 

removed by extensively dialysing the solution over a four day period, against 4 litres of PBS, 

changing the buffer twice daily. On completion of the dialysis period, the protein solution was 

centrifuged at 2,500g for 20 minutes at 4®C to pellet any insoluble material. The supernatant 

was recovered, sterilized by filtration through a 0.22pm sterile filter and stored at 4°C in 1ml 

aliquots until use.

6.2. Concentration o f LTB-Pk by uUrafiUration and in situ dialysis.

Large volumes of culture medium 4 litres) containing crude LTB-Pk were

concentrated by ultrafiltration using a GF 15 kidney dialysis membrane (Gambro®) with a 

porosity of lOK. Prior to use, the membrane was washed extensively in 1 litre of distilled 

water to remove the ethanol preservative. A 4 litre volume of culture medium containing 

approximately 6mg/l of LTB-Pk, was passed through two 3MM Whatman filters, and then 

applied to the membrane. The solution was constantly recycled through the membrane and 

concentrated by applying a pressure of 5-10 lbs/in^ [see Fig. 7(a)]. This strategy helped to 

remove small molecules and water from the recirculating material. The solution was 

concentrated to 150-200ml, then dialysed in situ against either 20mM Tris-HCl, lOmM 

EDTA, pH 7.5 or 25mM Na^PO^, lOmM EDTA, pH 7.0 (depending on whether LTB-Pk 

was to be purified by hydrophobic or ion-exchange chromatography techniques, respectively), 

by recirculating the dialysis buffer counter-cunent to LTB-Pk containing solution [see Fig. 

7(b)]. On completion of the dialysis period, the LTB-Pk-containing solution was recovered 

from the membrane and either applied directly to the appropriate chromatography column or 

stored at 4°C, in the presence of 0.01% sodium azide, until use.

65



Figure 7. Concentration of LTB-Pk from Vibrio sp. 60 
cultures by ultrafiltration.
The figure shows the GF15 kidney dialysis membrane used for the 
concentration and in situ dialysis of LTB-Pk.

Panel (a): the Vibrio sp.60 culture supernatant containing LTB-Pk is 
pumped through the dailysis unit under a pressure of 5-lOlbs/in^.
The arrows indicate the direction of the flow of the medium through 
the membrane. This stage helped concentrate the culture medium.

Panel (b): the concentrated material was then passed through the 
membrane system counter-current to the appropriate dialysis buffer 
(see arrows for the movement of the culture medium versus the dialysis 
buffer). This latter step, resulted in in situ dialysis of the culture medium.

(pictures courtesy of Dr. C. Botting)
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7. Purification of LTB-Pk
7 J , Purification o f LTB-Pk by Hydrophobic interaction chromatography 

using a phenyl superose matrix on an Fast Protein Liquid Chromatography 

(FPLC) System,

The procedure outlined below is a modification of the procedure described by Amin 

and Hirst [1994]. A 20 ml volume of culture medium containing LTB-Pk that had been 

concentrated by ultrafiltration and dialysed against 20mM Tris-HCl, lOmM EDTA, pH 7.5 

(Section 7.2) was mixed with ammonium sulphate to a final salt saturation of 30%. The 

solution was slowly stirred for 1 hour at room temperature, then clarified by centrifugation at 

17,400g for 20 minutes at room temperature. The resulting supernatant was retained, 5ml of 

winch was filtered through a 0.22pm nylon filter (Gelman Sciences) and the filtrate was 

loaded directly onto a 1 ml FPLC Phenyl superose HR5/5 column (Pharmacia), that had been 

equilibrated with 20mM Tris-HCl, lOmM EDTA containing IM (NH4)2S04 , pH 7.5. Once 

the sample was loaded onto the column, a decreasing salt gradient of IM ammonium sulphate 

in 20mM Tris-HCl, lOmM EDTA, pH 7.5 was applied. 1ml fractions were collected 

throughout the purification, and the adsorbance measured at 280nm. The fractions 

representing the column void were pooled and dialysed overnight against 4 litres of PBS 

containing lOmM EDTA at 4®C. Similarly, the fractions representative of eluted protein, were 

pooled and dialysed. Both samples were filter sterilized by passage through a 0.22pm sterile 

nylon filter and stored at 4°C until use.

7.2. Purification o f LTB-Pk by hydrophobic chromatography using a Bio-rex 

Macroprep® t-butyl support.

The protocol for the purification of proteins by the Macroprep.® t-butyl column 

(Bio-rad) was based on the manufacturer's recommendations. A 5ml hydrophobic t-butyl 

matrix was placed in a 10ml disposable column and washed in 500ml of 20mM Tris-HCl, pH

7.5, lOmM EDTA, IM (NH4)2S04. A 40ml sample of LTB-Pk prepared as described in 

Section 7.1, by mixing the sample with ammonium sulphate to a saturation level of 30%, then 

clarifying the solution by centrifugation. The prepared sample was then filtered as above and
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applied directly to the equilibrated column. When all the sample had been applied, the column 

was washed in 20 column volumes of 20mM Tris-HCl, pH 7.5, lOmM EDTA, IM 

ammonium sulphate to remove material that failed to bind to the hydrophobic matrix. Once the 

column had been washed the following decreasing salt solutions were applied to the column: 

Volume (ml) Salt Molaritv.

200 0.75M ammonium sulphate

200 0.50M ammonium sulphate

200 0.25M ammonium sulphate

5ml fractions were collected throughout tlie purification, and Ipl of each fraction 

spotted onto nitrocellulose paper. Proteinaceous material was then detected by incubating the 

nitrocellulose in approximately 10ml of Naphthlene black stain (0.2% Naphthlene black, 20% 

methanol, 10% acetic acid) for 15 seconds, followed by destaining in a buffer composed of 

10% acetic acid, 10% methanol until the background was sufficiently destained. Fractions 

containing maximal levels of protein (as deteraiined by the amount of stain adsorbed by the 

protein spots) from the column void, were pooled and dialysed against PBS, lOmM EDTA for 

18 hours at 4°C. The fractions containing eluted protein wei^ similarly treated. After dialysis, 

the solutions were filter sterilzed and stored at 4°C until use.

7.3. Purification o f LTB-Pk by ion-exchange chromatography using a Bio-rad 

70 support.

A 25ml Bio-rex® 70 cation-exchange column was prepared by equilibrating the 

column with 25mM Na2P04 , lOmM EDTA, pH 7.0, at room temperature. A 150 ml sample 

of LTB-Pk (at a concentration of approximately 6mg/l) that had been concentrated by 

ultrafiltration and dialysed against 25mM Na2P04 , lOmM EDTA, pH 7.0, was applied to the 

prepai*ed column, and when all the sample had been loaded, the column was washed in 10 

column volumes of 25mM Na2P04 , lOmM EDTA, pH 7.0, to remove any unbound material. 

Bound protein was eluted by applying a buffer composed of 25mM Na2P04 , lOmM EDTA, 

0.5M NaCl, pH 7.5. Throughout the purification 5ml fractions were collected, l|il samples of 

each fraction spotted onto nitrocellulose and proteinaceous material vizualized as described in
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Section 7.2. The fractions containing the highest levels of protein in the column void, were 

pooled and dialysed against PBS, lOmM EDTA. Likewise, the fractions containing eluted 

protein were pooled and dialysed. Both samples were filter sterilized and stored at 4°C until 

use.

So Expression And Purification Of Recombinant SIV Proteins.
SA. Plasmids.

The properties of the plasmids pQE917Pk and pQ927Pk are described in detail 

elsewhere [Hanke et al., 1994]. The recombinant SIV pl7 and p27 proteins encoded by these 

plasmids, respectively, have a short histidine tag at the N-termini and the Pk tag at the C- 

termini. The expression of the recombinant proteins is under control of the lac promotor.

8.2. Expression o f  His-SIV-Pk proteins in E.coli.

Antibiotic supplemented L-agar plates were prepared as described in Section 1.5. 

E.coli transfected with either plasmid pQE917Pk or pQ927Pk were plated out onto the L-agar 

plates and incubated at 37®C for 24 hours. Single colonies were selected and used to inoculate 

a 10 ml volume of supplemented L-broth. The cultures were incubated at 37°C for 18 hours on 

a rotary shaker, following which, a 1ml sample of the overnight culture was used to inœulate 

a 1 litre volume of supplemented L-broth. The bacterial cultures were incubated as before until 

the O.D.600 reached 0.4-0.6, synthesis of the recombinant SIV proteins were induced by the 

addition of 0.05mM IPTG (final concentration) to the bacterial cultures and the induction 

allowed to proceed at 26°C for 2-3 hours (in the case of His-pl7-Pk) or 3 hours (in the case of 

His-p27-Pk). On completion of the induction period, the bacteria were harvested by 

centrifugation at 12,000g for 25 minutes at 4°C. The resulting supernatant was discarded and 

the bacterial pellets resuspended in 30ml of ice-cold TN buffer (20mM Tris-HCl pH 8.0,

0.3M NaCl). lOmg/ml of fresh lysozyme was added to the suspension, and following 

vigorous vortexing, the mixture was incubated on ice for 10 minutes. A 300jiil volume of 

Triton X-100 was added to the lysozyme solution, and the mixture sonicated for two 15 

second bursts using a Branson Sonifer B-12 at full power. The bacterial lysates were
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centrifuged at 3000g for 15 minutes at 4®C, the supernatant retained and either applied directly 

to a Nickel 2+ -nitrilotriacetic acid (Ni2+-NTA) resin or stored at -20®C.

8 J . Purification o f recombinant SIV  proteins by Np-^-NTA affinity  

chromatography.

The protocol for the purification of His-STV-Pk proteins is an adaptation of the 

protocol of Smith et al., 1988. A 1 ml sample of N12+-NTA resin was ti'ansferred into a 50ml 

universal tube and 30ml of 20mM Tris-HCl, pH 8.5,0.3M NaCl added. The mixture was 

centrifuged at 460g for 10 minutes at 4°C in a centrifuge and the supernatant removed. The 

pelleted resin was resuspended in 30ml of 20mM Tris-HCl, pH 8.5,0.3M NaCl and the 

washing step repeated. After the removal of the supernatant, the resin was resuspended in a 

30ml volume of the prepared bacterial lysate (Section 8.2) and incubated at 4°C for one hour 

on an orbital shaker. The mixture was transferred into a 5ml column and the flow through 

collected. Proteins that failed to bind the nickel resin were then removed by washing the resin 

in 50 column volumes of 20mM Tris-HCl, pH 8.5,0.3M NaCl. Purified His-SIV-Pk 

proteins were eluted by the addition of a 30ml volume of 250mM imidazole, 20mM Tris-HCl, 

0.3M NaCl, pH 7.4 to the column. 1 ml fractions were collected throughout the elution step, 

and the fractions containing the highest level of protein [determined by Naphthlene black 

staining (Section 7.2)] were pooled and then dialysed overnight against 4 litres of PBS, 

changing the buffer once. The dialysed proteins were sterilized by filtration through a 0.22pm 

nylon filter, and stored at 4°C until use.

8.4. Expression o f GST-Pk.

Plasmid pGEXcPk codes for the Pk tag attached to the C-temiinus of glutathione S- 

transferase (GST-Pk) [Hanke et al., 1992]. Expression of GST-Pk was achieved using the 

criteria described for the expression of the SIV recombinant proteins. GST-Pk was harvested 

fiom the bacterial lysates of lysozyme treated cells (see above) and stored at -70°C until use.
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9« Immunogeiîtcity studies.
9.1, Mice and immunizations.

Balb/c (H-2K‘̂ ) mice, were used for all immunogenicity studies.

For parental immunization, mice were aged 6-8 weeks and were injected intraperitoneally with 

the vaccine formulations in a final volume of 200pl PBS,

For vaccines that were administered in association with alum, the alum precipitate 

was formed and the antigens allowed to absorb. Typically, 900pl of PBS was mixed with 

30pl of IM NaHCOs and 60pl of 10% (w/v) Al2(S04 ).K2S04 .2H20  added to the solution 

dropwise, gently agitating the mixture during the application of the Al2(S0 4 >.K2S04.2H2 0 . 

The precipitate was then centrifuged at 2,500g for 5 minutes, and then resuspended in 900pl 

of PBS containing the appropriate concentration of antigen. The antigen was allowed to 

adsorb to the alum for one hour at 4°C, then the solution was used directly for immunisation, 

using 200pl per mouse.

Balb/c mice aged 10-12 weeks were used for intranasal vaccination. All vaccine 

formulations were prepared in a final volume of 50pl PBS (unless otherwise stated). The mice 

were gently anaesthetised by exposure to diethyl ether, and the vaccines slowly administered, 

dropwise, using a micropipette, to the outer mandrils of the nasal cavity.

9.2. Measurement o f immune sera by the enhanced chemilumescence (ECL)- 

based immune assay.

This assay is an adaptation of the protocol originally described by Randall and 

colleagues [1994]. 7 x 5  cm^ sheets of nitrocellulose (Gelman Sciences) were placed in petri 

dishes and a 10 ml solution of carbonate buffer pH 9.6 (1.59g/l Na2C03 ,2.93g/l NaHCOg) 

containing the purified target antigens at the concentrations shown below. Following a two 

hour incubation at 37®C, on a orbital shaker, the carbonate buffer was removed and the filters 

washed extensively in PBS. The remaining protein binding sites on the nitrocellulose sheets 

were blocked by incubating the sheets in a 20 ml volume of blocking solution (5% semi­

skimmed milk, 20mM Tris-HCl, pH 7.6 ,140mM NaCl, 0.1% Tween-20) for 15 minutes at 

room temperature on an orbital shalcer. The filters were washed in PBS, then blocked for a
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further 10 minutes at room temperature in blocking buffer. The excess blocking solution was 

removed and the filters washed in PBS, as before. The test sera was serially diluted in 

blocking buffer (see Results for dilutions) and added to the wells of terasaki plates (Sterilin) in 

12jil volumes. The terasaki plates were overlaid with the antigen-coated sheets and a 3MM 

Whatman filter, cut to the same size as the nitrocellulose sheets, was moistened in PBS and 

then placed on top of the nitrocellulose. A second terasaki plate was carefully placed over the 

sandwich, making sure the wells of both plates were in alignment The plates were tightly 

clipped together and then inverted to bring the sesa into contact with the antigen-coated 

nitrocellulose sheets. Following one hour incubations at room temperature on an orbital 

shaker, the nitrocellulose sheets were removed fiom the plates and placed in a petri dish 

containing 20ml of blocking buffer. The sheets were then washed twice in blocking buffer for 

15 and 10 minute intervals, followed by a single wash in PBS, before being incubated with a 

10 ml volume of blocking buffer containing a 1:2000 dilution of an horseradish peroxidase 

(HRP)-conjugate (either anti-mouse Ig or Protein A), for 30 minutes at room temperature on 

an orbital shaker. On completion of the incubation, the nitrocellulose sheets were washed in 

blocking buffer and PBS as befbiie. The nitrocellulose sheets were transferred into a fresh 

petri dish and incubated for two minutes at room temperture in a 5 ml volume of enhanced 

chemiluminscence (EC!L) reagents (Amersham) that had been mixed according to the 

manufacturer's recommendations. The nitrocellulose sheets were briefly dried, placed in a 

plastic bag and then exposed to X-ray film (Fuji) adjacent to an intensifying screen. After 

various incubation times, the X-ray film was developed in an automatic developer (Kodak).

Target Antigen Concentration

His-p27-Pk 4pg/ml

His-pl7-Pk 4jig/ml

GST-Pk 20jil of cell lysate

ovalbumin Img/ml

'^LTB-Pk 5pg/ml
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* For sheets coated with LTB-Pk, all nitrocellulose filters were first of all incubated in 10ml of 

carbonate buffer containing L5p.g/ml GMl-monosialoganglioside for one hour at 37°C, prior 

to the addition of LTB-Pk. This helped to potentiate the binding of LTB-Pk to the 

nitrocellulose.

9.3. M msurement o f the secretory immune response by ECL4mmune assays.

Mice were injected intraperitoneally with 2% (v/v) pilocarpine, diluted 1:3 in PBS, in 

a final volume of 2(K)pl PBS, to stimulate salivai flow. Approximately lOOpl of saliva was 

collected in a 1.5ml vial, and following high-speed centrifugation in a bench-top centrifuge, 

stCHed at -20°C until required.

Assessment of antigen-specific secretory antibody was performed using an adaption of the 

ECL-based immune assay above. Briefly, the saliva was serially diluted in blocking buffer 

and incubated with antigen-coated nitrocellulose sheets. Antigen-specific secretory antibodies 

were detœted by incubating the nitrocellulose sheets with goat anti-mouse IgA, followed by 

an HRP-conjugated donkey anti-goat antibody and autoradiography.

9.4. Lymphocyte proliferation assays.

9.4.1. Preparation of splenocytes.

The spleens were placed on a sterile nylon mesh in a petri dish (Steiilin) 

containing 10ml of PBS. The splenocytes were liberated by mashing the tissue through the 

nylon mesh using a flat-bottomed plunger from a 10ml sterile syringe (Sterilin) and the cells 

placed in 30ml universal tubes. The universal tubes were allowed to stand for 3 minutes to 

allow cell debris and fatty tissue to pellet, then the supernatant was gently transfeired to fresh 

30ml universal tubes using a pasture pipette. The cells were centrifuged at 4(X)g for 10 mins at 

20°C, and then resuspended in 10ml of 0.85% ammonium chloride solution to lyse the red 

blood cells. AftŒ a 5 minute incubation at room temperature, the ammonium chloride/cell 

suspension was under-layed with 10ml of foetal calf serum (FCS) and centrifuged at 400g, 

20°C for 10 minutes. The supernatant was discarded and the cells were resuspended in 20ml 

of PBS and centrifuged as before. This last step was repeated four times. The splenocytes
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were then resuspended in 10ml of PBS and the suspension vigorously pipetted, to break up 

any clumps of cells. A 20pl sample of the cell suspension was mixed with 20pl of Trypan 

blue (0.2% Trypan blue: 4.25% NaCl, 4:1), the mixture placed on a haemocytometer and live 

cells (cells that did not stain blue) enumerated. The cells were diluted in T cell medium to a 

final concentration W  cell/ml and used directly in stimulatory assays.

9.4,2. Lymphocyte stimulation and measurement of DNA synthesis.

Purified His-pl7-Pk or His-p27-Pk were diluted to a concentration of 4jjig/ml in T- 

cell medium [RPMI-1640 (Gibco) supplemented with 2mM L-glutamine, 100 U penicillin, 

lOOjXg streptomycin, 5 x lO-^M P-mercpatoethanol] and 2(X)pl added to the top row of an 

appropriately labelled round-bottomed, 96-well microtitre plate, then serial diluted 1:2 in Tcell 

medium to give a final volume of lOOpl in each well. Purified LTB-Pk was diluted in T cell 

medium to a concentration of Ipg/ml, then diluted in the wells of a round bottomed 96-well 

microtitre plate as described for the His-SIV-Pk antigens.

lOOpl of the cell suspension prepared in Section 9.4.1, was added, in triplicate, to 

each well of the antigen containing microtitre plates. The plates were incubated for 5 days in a 

humidified incubator at 37°C, 5% CO2 and during the last 18 hours of the stimulation, 0.5pCi 

[3H]-thymidine was added to each well. The cells were harvested onto glass microfibre filters 

using an Bacon cell harvester and the amount of pH]-thymidine incorporated into the DNA of 

the proliferating cells was determined by scintillation counting.

9.5. Cytokine-ELISA Assays,

9.5.1. Preparation of culture supernatants.

1Q2 cells, prepared from murine spleens were resuspended in 500pl of T cell medium 

(Section 9.4.1) and added to the wells of 24-well microtitre plates (Sterilin). The cells were 

stimulated with the antigens (see Results) for 5 days at 37°C/5%C02 in a humidified 

incubator. l(X)|Lil samples of the culture supernatant were removed on day five of the 

stimulation and stored at -20°C until assayed for cytokines.
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9.5.2. Detection of ÏL-2, IL-5 and IFN-y.

Cytokine production was quantified using sandwich ELISA techniques. Enhanced 

protein binding 96-well ELISA plates (Dynalab Immulon 4) were coated overnight at 4°C with 

50pl of monoclonal anti-cytokine antibody (Pharmingen) at pre determined optimal 

concentrations (see below) in O.IM carbonate buffer, pH 9.6. The plates were then washed 

twice with PBS containing 0.05% Tween 20 (PBS/Tween), after which non-specific protein 

binding sites were blocked by incubation with 2(X)pl of PBS containing 10% FCS for 1 hour 

at 3TC, Following blocking, the plates were washed thiee times in PBS/Tween and samples 

and standards (recombinant murine cytokines), diluted in T-cell medium, were added to 

individual wells in a volume of 50pl and incubated at 37°C for 3 hours. The plates were 

washed 4 times in PBS/Tween and 50pl/well of biotinylated anti-murine cytokine antibody, 

diluted in PBS/10% FCS was added at the concentrations shown in Table. After incubation at 

room temperature for one hour, the plates were washed four times in PBS/Tween and 

lOOpl/well exiravidin-peroxidase in PBS/10% FCS was added to each well at 2jig/ml. 

Following a final incubation for one hour at room temperature, the plates were washed six 

times in PBS/Tween, before lOOji.1 of TMB peroxidase substrate was added to each well. The 

adsorbance was measured at 630nm using an Dynatech MR5(XX) automatic microplate reader 

and cytokine concentrations in test supernatants were determined with reference to a standard 

curve constructed using serial dilutions of the standard cytokines.

Cytokine specific antibody Capture concentration Detection concentration

anti-IL-2 2pg/ml l(Xg/ml

anti-IL-5 4|ig/ml 4jiig/ml

anti-IFN-y 2pg/ml lp.g/ml

9,6. FAC scan analysis.

Mixed lymphocyte populations, prior to, or after a five day stimulation with the 

appropriate antigen (see Results) were placed in 30ml universal tubes and centrifuged at 400g 

for 10 minutes at 20°C. The pelleted cells were resuspended in 10ml of PBS and the number
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of cells present enumerated as described in Section 9,4.1. Aliquots of 10  ̂cells were removed 

and placed in 1.5ml eppendorf vials, centrifuged at high speed in a microfuge and then 

resuspended in lOOpl of PBS containing a 1:100 dilution of the appropriate FTTC-labelled 

antibody (anti-mouse CD4, anti-mouse CD8 or anti-mouse Ig; see Results). The suspensions 

were incubated on ice for one hour, then centrifuged at 400g for 5 minutes in a microfuge. 

The pelleted cells were resuspended in 500pJ of PBS and centrifuged as before. This washing 

step was repeated three times to ensure no uncomplexed FTTC-labelled antibody remained. 

After the final wash, the cells were resuspended in 500pl of PBS and transfered into Becton 

Dickson FACSscan tubes (Falcon 2500). 10,(X)0 events were collected using the Becton 

Dickson Consort 30 program and the percentage of fluorescent cells in 10,000 events 

(collected using the Consort 30 program) was measured using the LYSYS program.

9.7. Enzyme-linked Immunospot (ELISPOT) assay fo r  the detection o f  

antibody secreting cells.

The ELISPOT assay was developed for the detection of antibody secreting cells is an 

adaptation of the protocol described by Czerkinsky et al., 1983.

9.7.1. Preparation of lung cells

Mice were killed by anaesthesia and their lungs removed under aseptic conditions 

and placed in a 30ml universal (Sterilin) containing 10ml of sterile PBS. All other procedures 

were performed in a sterile cabinet The lungs were placed into a 25mm2 petri dish containing 

10ml of PBS and the lungs were gently washed to remove excess blood. The tissue was then 

removed to another 25mm2 petri dish containing 10ml PBS and cut into small 2mm sections 

using a scalpel and forceps. The outer epithelial layer of the lungs were removed by placing 

the dissected lung pieces into a 10ml universal tube (Sterilin) and adding a solution of PBS 

containing lOmM MgClg, 0.5U/ml collagenase A (Boehringer Mannhein) and 0.025% 

DNasel (Boeliringer Mannhein) (1ml of solution per lung). After a 45 minute incubation at 

37°C under gentle agitation, the digested tissue was then placed on a nylon mesh in a 25mm2 

petri dish containing 10ml of PBS and the cells released by mashing the tissue through the 

mesh using a plunger from a 10ml syringe. The cells were placed into 30ml universal tubes,
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the cell debris pelleted by standing the universal tubes upright for 3 minutes and the 

supernatant was gently removed to fresh 10ml universal tubes. The cells present in the 

supernatant were centrifuged at 2G°C for 10 mins at 470g and then resuspended in red cell 

lysis buffer (0.15M NH4CI, O.OIM KHCO3,0.lmM EDTA, pH 7.4), using 2ml of buffer 

per lung. After 10 minute incubations at room temperature, the cells were centrifuged at 470g 

for 10 mins and the supernatant discarded. The cells were resuspended in 10ml of PBS and 

centrifuged as before. This step was repeated twice more. The cells were then resuspended in 

1ml of PBS per lung and the number of live cells enumerated following trypan blue staining 

(Section 9.4.1).

9.7.2.Preparal;ion of spleen cells.

Spleen cells were prepared as described in Section 9.4.1.

9.7,3 Detection of an ti body “Specific spo t form ing cells (S.F.C.)

Purified His-p27-Pk was diluted to a concentration of 4pg/ml in carbonate buffer and 

added to the wells of a 96-well, flat-bottomed microtitre plate in lOOpl volumes. After a 2 hour 

incubation at 37°C, the plates were washed three times in PBS. Excess liquid was removed by 

shaking the plates and the remaining binding sites blocked by adding 200pl volumes of 1%

BS A in PBS to each well. Following a three hour incubation at 37°C, the blocking solution 

was decanted and the plates were washed three times in PBS.

The cells were diluted to an appropriate density (10  ̂to 10  ̂cells/ml) in Iscove's medium 

(Gibco), supplemented with lOOU/ml penicillin, lOOpg/ml streptomycin and added to tlie 

plates in lOOpf volumes. The plates were incubated overnight at 37°C, 5% CO2 in a 

humidified incubator, following which the cells were discarded and any remaining bound cells 

lysed by incubation in PBS containing 0.5% Tween-20. A 1:1(X)0 dilution of anti-mouse IgM, 

IgG or IgA antibody [diluted in PBS containing 0.1% BSA (PBS/BSA)] was added to each 

well in lOOp.1 volumes and the plates were incubated at room temperature for 3 hours. The 

plates were washed three times in PBS containing 0.05% Tween-20, then a 1:1000 dilution 

(in PBS/BSA) of an alkaline-phosphatase conjugated antibody was added to each well in
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lOOpl volumes. The plates were incubated at 37°C for three hours, and after washing the 

plates three times in PBS/Tween followed by twice in distilled water, antibody-antigen 

complexes were visualized by the addition of 100[il of alkaline phosphatase-substrate [lOOmg 

BCIP (5-brorao-4-chloro-3-indoyl phosphate) dissolved in 100ml AMP buffer (9.58ml 2- 

amino-2-methyl-l-propanol (Sigma), 15mg MgCl2,0.lmg sodium azide, made up to 100ml 

in distilled water)]. The plates were incubated at 37°C until blue spots became visible, and 

when the spots were fully developed, the plates were gently washed in distilled water and the 

number of spot forming cells enumerated by examining the plates under a dissection 

microscope.
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R E SU L T S

SECTION A. Expression and Characterisation of LTB-Pk.

A .L  Introduction

Section A of the results describes the addition of a 14 amino acid tag, termed Pk, to 

the carboxy terminus of the B subunit of the heat-labile enterotoxin (LTB) from 

Escherichia coll (E,coli ) and the expression of tlie novel fusion protein, LTB-Pk, in both 

E.coli and the non-pathogenic marine Vibrio, Vibrio sp.60. The influence that the Pk 

epitope exeits on the physical properties attributed to authentic LTB are investigated.

Ao2, Construction o f expression vector pTRH-Pk

The plasmid pTRHlOlR is a controlled expression vector, into which the coding 

sequence for the LTB gene, containing a short oligonucleotide sequence addition at its 3'- 

end, was cloned downstream from the isopropyl-p,D-thiogalactopyranoside (IPTG)- 

inducible tac promoter. This extended sequence contained five unique endonuclease 

restriction sites for cloning additional sequences onto the 3'-end of the gene. Cleavage of 

pTRHlOlR at the HindlH and Spel restriction sites facilitated the insertion of a double­

stranded oligonucleotide sequence encoding a 14-amino acid tag, termed Pk. (The amino 

acid sequence of the Pk tag is shown in Fig. 8) The resulting novel plasmid pTRH-Pk, 

encoding recombinant LTB-Pk, was transfected into either E.coli or Vibrio spÆ  (this 

latter transfection was kindly performed by Dr. T.R. Hirst, University of Kent, 

Canterbury).

A 3 . Comparison o f the expression and cellular localisation o f LTB-Pk in 

E.coli and Vibrio sp.60

E.coli and Vibrio sp. 60 have both been shown to be capable of expressing native 

LTB molecules, the latter host having the additional advantage that the LTB molecules are 

secreted into the external milieu [Leece et al., 1988]. To determine whether the
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recombinant protein LTB-Pk could be similarly expressed, E.coli and Vibrio jp.60 

harbouring plasmid pTRH-Pk, were cultured in ampicillin supplemented L-broth at 37°C 

and 30°C (respectively) and when the O-D^oo reached 0.4, LTB-Pk was induced by the 

addition of 0.5mM IPTG (final concentration) to the bacterial cultures.

Aftor a 4 hour induction, 1ml samples from each culture were removed, the bacteria 

separated from the culture media by centrifugation and the culture media retained. The 

bacterial pellets were then resuspended in 1ml of 20mM Tris, 0.3M NaCl, pH 8.0 and the 

intracellular proteins released by lysozyme treatment. As a control, bacteria containing 

plasmid pTRH-Pk, but not exposed to IPTG, were similarly treated. Equivalent volumes 

from the protein containing medium and cell lysate for each culture, were electrophoresed 

through a 15% (w/v) SDS-polyacrylamide gel and the resulting polypeptide chains 

electroblotted onto a nitrocellulose filter. The presence of LTB-Pk was visualised by 

probing the blots with the anti-Pk monoclonal antibody (MAb), MAb S V5-P-k and 

detecting bound antibody by enhanced chemiluminiscence (ECL) Western blotting assay, 

utilising horseradish peroxidase (HRP)-conjugated Protein A and autoradiography 

(Fig.9).

A signal was present on the autoradiograph, representing the interaction of MAb 

S V5-P-k with the Pk epitope of the recombinant protein in both E.coli and Vibrio sp. 60 

after exposure to IPTG, demonstrating that LTB-Pk can be expressed in both organisms. 

However, following a four hour induction with IPTG, the cellular location of LTB-Pk 

differed for the respective bacteria. In the case of E.coli, LTB-Pk was detected in the 

cellular lysate (lane 3) but not in the culture medium (lane 2), suggesting that LTB-Pk 

remained cell associated in this organism. In contrast to E.coli, only a small proportion of 

LTB-Pk was present in the cell lysate from Vibrio sp. 60 cultures (lane 6), as shown by 

the weak band on the autoradiograph, the vast majority of the fusion protein being 

secreted into the culture medium (lane 5).

When the cell lysate from E.coli control cultures (lane 1) and the culture medium 

from Vibrio sp. 60 control cultures (lane 4) were similarly analysed, no LTB-Pk was 

detectable, demonstrating that LTB-Pk expression is under control of the tac promoter.
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leu giy lys pro ilfi p m asn pm leu
CTG GGA AAG CCG ATC CCA AAC CCT TTG

C COT TTC GGC TAG GGT TTG GGA AAC

leu gly leu a sp ser thr AMB

CTG GGA TTG GAC TTC ACC TAG A
GAG COT AAC CTG AAG TGG ATC TGA TC

Figure 8. DNA linker coding for the Pk tag
The figure shows the sequences of the positive and negative strand oligonucleotides, 
which were designed to give after annealing Hindlll-compatible and Spel cohesive 
ends. The Pk tag linker codes for amino acids 95-108 derived from SV5 P and V 
proteins (shown in bold letters). Underlined region corresponds to the sequences 
recognized by MAb SV5-P-k.

E.coli Vibrio sp. 60

1

Figure 9 . Expression and cellular localization of LTB-Pk.
Plasmid pTRH-Pk was transferred into E.coli and Vibrio sp. 60, and 
the bacteria were cultured in the absence (lanes 1&4) or presence 
(lanes 2-3& 5-6) of 0.5mM IPTG for 4 hours. The bacteria were then 
harvested by centrifugation and the intracellular proteins released by 
lysozyme treatment. The expression of LTB-Pk in the culture 
medium (lanes 2&5) and the cellular lysate (lanes 3&6) for the 
respective bacteria, was detected with MAb SV5-P-k in an 
ECL-Western blotting assay utilizing HRP-conjugated Protein A and 
autoradiography.
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A.4. Oligomerisation o f altered B subunits.

At room temperature, native LTB exists as stable pentamers in the ionic detergent 

sodium dodecyl sulphate (SDS), but dissociates into its constitutive monomers upon 

boiling [Hardy et ai, 1988]. To determine whether LTB-Pk also existed as a heat-labile 

oligomer, the mobility of heat-treated and untreated LTB-Pk was investigated.

Equal samples of culture media from IPTG induced Vibrio sp. 60 cultures, were 

mixed with an appropriate volume of 4X dismption solution and then either heated at 

lOÔ C for five minutes or left at room temperature. The prepared samples were added to 

duplicate gels, one of which was stained with Coomassie blue [Fig. 10 (a)], the other. 

Western blotted onto nitrocellulose and the presence of LTB-Pk detected with the anti-Pk 

MAb in an ECL-Westem blotting assay [Fig. 10 (b)].

Two major protein species were detectable by Coomassie blue stain in the sample 

from Vibrio 5p,60 culture medium that had been boiled prior to the addition to the gel 

[Fig. 10(a), lane 2]. Of the two proteins seen, the protein with faster mobility, migrated 

with an apparent molecular weight of approximately 14kD (lane 1) and was recognised by 

MAb SV5-P-k in the corresponding autoradiograph [Fig. 10(b), lane 1]. However, in 

samples that had not been exposed to heat treatment prior to SDS-PAGE, a single protein 

migrated with an apparent molecular weight of approximately 45kD, was detectable in 

both the Coomassie stained-gel [Fig. 10 (a), lane 2] and the Western blot [Fig. 10(b), lane 

2,]. Similar Western blot analysis of LTB-Pk expressed in E.coli, presented identical 

results to tliat of Vibrio sp.60 expressed LTB-Pk (data not shown).

These findings clearly show that LTB-Pk is a heat-labile oligomer, thereby 

demonstrating that the presence of the Pk epitope at the C-terminus of LTB does not 

prevent subunit-subunit association of the LTB-Pk monomers. In addition, Coomassie 

staining of the proteins detectable m the culture supernatant of IPTG-induced Vibrio 

sp.60, suggests that LTB-Pk and a second protein of unknown function, predominate.



A.5, Binding of LTB-Pk to the glycolipid, GMl-ganglioslde.

Native LTB has been shown to bind to gangliosides and certain sugars, 

presumably through the affinity of the enterotoxin subunit for galactose residues 

[Finkelstein and Clements, 1979]. It is this property that is thought to target LTB onto 

cells bearing these molecules, promoting the uptake and potentially the immunogenicity, 

of LTB-fused epitopes. To further characterise LTB-Pk, the ganglioside-binding 

properties of the recombinant protein were analysed in a GMl-ganglioside-based ELISA 

(GMl-ELISA) assay.

A 96-well microtitre plate was coated with either GMl-ganglioside or a control 

antigen, ovalbumin, and then incubated with LTB-Pk-containing medium. The binding of 

the fusion protein to either antigen was detected by incubation with MAb SV5-P-k 

followed by HRP-conjugated Protein A and HRP substrate and measuring the adsorbance 

at 450nm. As secondary controls, the antigens were incubated MAb SV5-P-k or PBS 

alone, prior to the addition of HRP-conjugated Protein A, to ascertain the degree of non­

specific binding of the MAb and HRP-conjugate, respectively, to either the GMl 

ganglioside or ovalbumin.

As shown in Fig. 11, only low levels of adsorbance were detectable at 450nm in the 

control wells of GMl alone (lane 1) or GMl incubated with MAb S V5-P-k (lane 2) 

demonstrating that neither the HRP-conjugated Protein A nor the anti-tag MAb alone, 

were capable of binding to GMl ganglioside. However, a prior incubation between GMl 

and LTB-Pk-containing medium, before the addition of the antibody and Piotein A, 

resulted in a sharp increase in adsorbance (lane 3) demonstrating that LTB-Pk bound to 

the glycolipid. Confirmation of the specificity of the interaction between the glycolipid and 

LTB-Pk was provided when LTB-Pk was assayed against a control antigen, ovalbumin 

(lane 6), where the level of adsorbance was below background levels (lanes 4 & 5).

Thus, the addition of the Pk-epitope to LTB does not prevent interaction of the 

enterotoxin subunit with its glycolipid substrate.
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(a)
1 2

(b)
1 2

66.2
45.0 oligomeric

LTB-Pk

31.0

14.4 monomeric
LTB-Pk

Figure 10. Oligomerization of LTB-Pk.
A sample of the culture medium from Vibrio jp.60 induced cultures containing 
plasmid pTRH-Pk was mixed with an appropriate volume of 4X disruption buffer, 
then either boiled for 5 mins (lanes 1) or left at room temperature (lanes 2) prior to 
15% (w/v) SDS-PAGE. The presence of LTB-Pk was visualized by Coomassie 
blue staining (Panel (a)) or Western blotting (Panel (b)>. Molecular marker 
weights are shown on the right-hand-side of Panel (a).

O.D. at 
450nm

0.8 -

0.6-

0.4-

0.2 -

1 2 3 4 5 6

Figure 11. Affinity of LTB-Pk for GMl-ganglioside.
96-well microtitre plates were coated with either 1.5|ig/ml GMl ganglioside (lanes 1-3) 
or 1 mg/ml ovalbumin (lanes 4-6) then incubated with PBS alone (lanes 1&4), MAb 
SV5-Pk (lanes 2&5) or LTB-Pk-containing culture medium (lanes 3&6). On completion 
of the incubation, MAb SV5-P-k was addù to all wells, followed by an HRP-conjugated 
Protein A antibody and the adsorbance at 450nm was measured after the addition of 
substrate. The results are presented as the mean ± standard deviation for duplicate 
cultures.
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A .6. Optimising the expression o f  LTB-Pk.

One of the considerations in developing an expression system is to establish the 

ideal comiitions that lead to optimum production of the desired protein, this being 

particularly important if the protein is to be used in substantial amounts. To determine the 

ideal conditions for the expression of LTB-Pk in E.coli and Vibrio 5/7.60, the influence of 

the (a) temperature and (b) IPTG concentration on the synthesis of LTB-Pk in the 

respective bacteria, was investigated.

Identical 200ml cultures of E.coli and Vibrio sp. 60, were cultured until the O.D,6oo 

reached approximately 0.4 and then the fusion piotein was induced for 4 hours at either 

37“C or 30"C, with a final concentration of IPTG ranging from lmM-0.05mM. On 

completion of the induction period, a 1ml sample was removed from each culture and the 

level of LTB-Pk expression was determined by Western blotting.

Comparison of the signal intensities on the autoradiograph after probing the blots 

with the anti-Pk MAb, suggested that a reduction in temperature favoured increased yields 

of LTB-Pk for both bacterial species, the overall expression of LTB-Pk seeminged higher 

in Vibrio sp. 60 than in E.coli (Fig. 12). Interestingly, two bands were detectable on the 

autoradiograph in E.coli cultures induced at 30°C, the band with a slightly higher 

molecular weight possibly representing precursca* molecules of LTB-Pk, where the N- 

terminal signal sequence, which targets precursor LTB molecules to the cytoplasmic 

membrane prior to secretion [Palva et al., 1981], was not efficiently cleaved from LTB- 

Pk. In contrast to E.coli, in Vibrio sp. 60, LTB-Pk was consistently detectable as a 

single band on autoradiography at either 30°C or 37°C.

The influence of the IPTG concentration on the synthesis of LTB-Pk in the bacteria 

was particularly noticeable at 30°C. In Vibrio sp. 60, there is an apparently uniform level 

of LTB-Pk productivity throughout the IPTG range added to the cultures, but, in E.coli, 

maximum yields of LTB-Pk were obtained only at higher IPTG concentrations of 1- 

0,5mM. However, this was not the case when LTB-Pk was induced at 37°C in E.coli 

where there seemed to be little difference in the level of LTB-Pk synthesis following
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Vibrio sp.60 E.coli

1 0.5 0.1 0.05 1 0.5 0.1 0.05 (mM IPTG)

30®C

Vibrio sp.60 E.coli

1 0.5 0.1 0.05 1 0.5 0.1 0.05 (mM IPTG)

37®C

Figure 12. Effect of IPTG concentration and temperature on 
the expression of LTB-Pk in Vibrio sp.60 and E.coli.
Cultures oWibrio sp.60 or E.coli harbouring the plasmid pTRH-Pk were 
induced for 4 hours at either 30°C or 37°C, with a final concentration of 
IPTG ranging from 0.05mM-1.0mM. On completion of the incubation 
period, the bacteria were harvested by centrifugation and 15|xl samples 
were removed. The samples were boiled for 5 minutes, then 
electrophoresed through a 15% (w/v) SDS-polyacrylamide gel. The level of 
expression of LTB-Pk in the culture medium (fœ Vibrio sp.60) or the cell 
lysate (for E.coli) was determined by Western blotting, using MAb 
SV5-P-k as the detection antibody.
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addition of ImM IPTG or 0.05mM IPTG. Similarly, differing IPTG concentrations had 

little effect on the overall expression of LTB-Pk in Vibrio sp.60 at 37®C. These results 

suggest that Vibrio sp.60 is a more suitable expression vector than E.coli for the 

expression of LTB-Pk.

On the basis of these findings, the expression of LTB-Pk in Vibrio sp. 60 was 

further analysed to determine at what time after induction maximum accumulation of the 

fusion protein occurred in the culture medium. A 100ml culture of Vibrio sp.60 was 

grown until the O.D.600 reached 0.4, then the fusion protein was induced at 30°C by the 

addition of O.OSmM IPTG to the bacterial culture. At the times indicated in Fig. 13, a 1ml 

sample of the culture was removed, the bacteria pelleted by centrifugation, and the culture 

medium retained. 15fil samples of the culture medium were electrophoresed tlirough a 

SDS-polyacrylamide gel, the polypeptides transferred onto nitrocellulose and the level of 

LTB-Pk expression in relation to the induction time was determined by Western blotting. 

(Fig.l3).

It was evident from the resulting autoradiograph, that LTB-Pk was detectable in 

the culture medium as rapidly as 30mins after the addition of IPTG to the culture, and the 

amount of LTB-Pk accumulating in the culture medium rose rapidly over tlie next two 

hours. Thereafter, although the slight increasing intensity in the autoradiograph signals 

implied that LTB-Pk was stiU being synthesised and secreted into the culture medium over 

an 18 hour induction period, the actual rate of LTB-Pk synthesis was more constrained. 

Significantly, LTB-Pk was detectable at all times with MAb SV5-P-k as a single protein 

band on the autoradiograph, suggesting that the fusion protein was not degraded, even 

after a prolonged 18 hour induction.

The amount of LTB-Pk present in the culture supernatant at various times after 

induction with IPTG, was quantitated in a GMl-ELISA assay, using purified LTB-Pk as 

the standard in the assay.

As shown in Table 1, the concentration of LTB-Pk detectable in the culture 

medium increased in correlation with the length of the induction period, the maximum
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Length of 
Incubation

0.5 1 2 3 4 5 6 18 (Hrs)

Figure 13. Influence of induction times on the expression of LTB-Pk
harbouring plasmid pTRH-Pk was induced with O.OSmM IPTG at

„ II . j  u indented above, a 1ml sample was removed, the bacteria
pelleted by centngugation and the supernatant retained. Equal volumes from 
%1 Z  was subjected to SDS-PAGE through a 15% SDS-polyacrylamide 
gel, the polypeptides electroblotted onto nitrocellulose paper and the blot 
g - o ^  with MAb SV5-P-k. Bound antibody was detected with 
HRP-conjugated Protein A, ECL and autoradiography.

Time after 
Induction

2 hours
3 hours
4 hours
5 hours
6 hours

18 hours

Concentration of 
LTB Pk 

1.1 mg/1
1.3 mg/1 
3.1 mg/1
4.9 mg/1

8 mg/1
12 mg/1

Table Î. Concentration of LTB-Pk In relation to time.
The concentration of LTB-Pk secreted from induced Vibrio sp. 60 was 
quantitated by GMl-ELISA assays.
Doubling dilutions (starting at a concentration of 1:10) of the LTB-Pk containing 
culture s u p ^ a t^ t  was performed along GMl-coated wells, and bound protein 
was detect^ \wth MAb SV5-P-k, followed by HRP-conjugated Protein A. 
Puntied LTB-Pk (3mg/ml) was employed as the standard in the quantitation.
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level of recombinant protein obtained following an 18 hour induction with IPTG was 

approximately 12mg/litre.

A.7. Stability o f  LTB-Pk following expression in Vibrio sp.60.

The Western blot and GMl-ELISA assays (Section A.6) provided evidence that 

LTB-Pk can be expressed in Vibrio sp.60 to high levels. However, these assays relied on 

the interaction of the Pk determinant of LTB-Pk with the anti-Pk MAb SV5-P-k and thus, 

are insufficient at determining whether the culture medium contained a mixture of LTB-Pk 

and LTB (degraded LTB-Pk ) molecules.

To investigate the stability LTB-Pk following expression in Vibrio sp.60, 

immune precipitation reactions were performed. Staphylococcus aureus (St.aureus) was 

saturated with MAb SV5-P-k, then 21p.l volumes of the culture supernatant obtained after 

the 6 and 18 hour inductions were mixed with the St. aureus-MAh complex. The proteins 

that precipitated onto the bacteria in the presence of MAb SV5-P-k and the proteins present 

in the unprecipitated supernatant were analysed by Coomassie blue staining, following 

SDS-PAGE (Fig. 14). As a control, St. aureus was mixed with a 21 pi sample of the 

culture supernatant obtained after an 18 hour induction with IPTG, to establish whether 

LTB-Pk was capable of binding to the bacteria in the absence of MAb SV5-P-k.

Analysis of the precipitate from the reaction between St. aureus and LTB-Pk, 

revealed that the fusion protein was unable to bind to the bacteria in the absence of MAb 

S V5-P-k (lane 5) and therefore, LTB-Pk remained in the non-precipitated fraction (lane 

6). However when LTB-Pk, present in the samples removed after 6 and 18 

hour inductions, was incubated with MAb SV5-P-k-saturated St. aureus, LTB-Pk was 

detectable in the precipitate (lanes 3 & 1, respectively). Further, examination of the non­

precipitated fraction yielded no evidence of degraded LTB-Pk products (lanes 4 & 2, 

respectively).

Hence, in terms of protein stability, these results provide evidence that LTB-Pk 

can be expressed in Vibrio sp.60 for prolonged periods (up to 18 hours), without any 

obvious concomitant degradation.
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IgH

IgL

LTB-Pk

Figure 14. Stability of LTB-Pk following expression in Vibrio sp.60.
Vibrio sp.60 harbouring plasmid pTRH-Pk was cultured at 30°C and 
synthesis of LTB-Pk induced by the addition of O.OSmM IPTG to the 
bacterial culture. 21 pi samples of the culture medium were removed after 6 
(lanes 3 &4) and 18 (lanes 1,2 & 5,6) hour inductions, and mixed with MAb 
SVS-P-k-saturated St aureus (lanes 1 & 3)or St. aureus alone (lane 5). Both 
the immune-precipitated complexes and non-precipitated supernatants were 
electrophorised through a 15% (w/v) SDS-polyacrylamide gel, and the 
protein bands stained with Coomassie blue.
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SECTION B. Concentration and Purification of LTB-Pk.

B A . Introduction

In Part A of the results, it was demonstrated that a 14 amino acid tag, termed Pk, 

could be attached to the C-terminus of LTB, and the novel LTB-Pk fusion protein could 

be subsequently expressed and secreted in Vibrio sp. 60. In addition, LTB-Pk displayed 

physiological propeilies akin to native LTB molecules. In Part B, the results concentrate 

on the purification strategies that have been employed to generate either a partially or 

highly purified sample of LTB-Pk and the stability of the fusion protein LTB-Pk after 

such manipulations.

B.2. Concentration o f LTB-Pk,

Although the secretion of LTB-Pk from Vibrio ap.60 bypasses the need for cellular 

lysis as an initial step in purification procedures, it does present the problem that LTB-Pk 

has to be purified from volumes of culture media greater than 1 litre, depending on the 

amount of protein desired. Such large volumes are difficult to work with, and highlight 

the need for a procedure that will concentrate LTB-Pk into a volume that is easier to handle 

in subsequent purification protocols. One of the oldest protein concentration methods 

known for recovering and purifying proteins, is precipitation by neutral salts e.g. 

ammonium sulphate [see 'Protein Purification Applications' 1990], and the early 

concentration protocol, described in the next section, was based on the precipitation of 

LTB-Pk from Vibrio sp. 60 cultui'e medium using ammonium sulphate at 50% saturation.

However it soon became apparent that, although ammonium sulphate ((NH4)2S04] 

precipitation was obviously quite successful in concentrating LTB-Pk from culture 

supernatants, to employ such a technique for large scale preparations of 1 litre or more, 

would be both extremely time-consuming and involve vast quantities of (NH4)2S04 . It 

had been demonstrated in our laboratory that monoclonal antibodies could be concentrated 

from bulk tissue culture preparations by ultrafiltration, using a GFE 15 fibre dialysing
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membrane with a pore size of lOK (Dr. R.E. Randall, pemonal communication), and this 

presented the interesting option of employing the memtsane for concentrating LTB-Pk.

In the following sections, both the ammonium sulphate precipitation and 

ultrafiltration protocols and the efficacy of each procedure at concentrating LTB-Pk from 

Vibrio sp.60 culture supernatants, is described.

B.2.I. Concentration and partial purification of LTB-Pk by ammonium 

sulphate precipitation

To detamine whether ammonium sulphate precipitation could be employed for 

concenti'ating LTB-Pk, a 200ml culture of Vibrio sp.60 was grown at 30*̂ 0 until the 

O.D.600 reached 0.4 and then LTB-Pk synthesis was induced by the addition of O.OSmM 

IPTG to the bacterial culture. After a 6 hour induction, the bacteria were pelleted by 

centrifugation and the 200ml culture supernatant retained. A 20 ml sample of the 

supernatant was mixed with (NH4)2S04 (to a saturation level of 50%), and the 

precipitated proteins were collected by centrifugation. Following resuspension in 5ml of 

PBS, excess salt was removed by dialysing the precipitated proteins extensively against 

the saline buffer.

15pl volumes from both the original crude preparation of LTB-Pk and the 

precipitated protein were electrophoresed through a SDS-polyaciylamide gel, and the 

protein bands stained with Coomassie blue, the result of which is shown in Fig. 15.

Examination of the Coomassie stained gel revealed very few protein contaminants 

were detectable in the culture medium prior to precipitation, the two major proteins being 

LTB-Pk and a second protein of unknown function, which was present in higher 

quantities than LTB-Pk (lane 1). When the proteins present in the sample from the 

(NH4)2S04 precipitated fraction was examined, although both LTB-Pk and this second 

protein could be precipitated, the efficiency of their pi’ecipitation using a salt saturation 

level of 50%, varied remarkably. Whereas LTB-Pk could be readily precipitated and 

concentrated approximately 3-fold, it was apparent that the second protein precipitated 

weakly and thus, was not efficiently concentrated (lane 2). In addition, there was little
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Figure 15. Ammonium sulphate precipitation of LTB-Pk from Vibrio 
sp.60 cultures.
Coomassie blue stained gel comparing the concentration and purity of LTB-Pk from IPTG 
induced Vibrio sp. 60 culture supernatant before (lane 1) and after (lane 2) precipitation 
with ammonium sulphate at a final saturation level of 50%. The precipitated protein was 
resuspended in, and dialysed against PBS, to remove excess salt, prior to analysis. The 
final volume of concentrated material was less than the starting medium.

1 2

Figure 16. Cleavage of the Pk-tag from LTB-Pk following ammonium 
sulphate precipitation.
An equal sample of unprecipitated (lane 1) and precipitated (lane 2) LTB-Pk was 
electroblotted onto nitrocellulose paper and the presence of the Pk-tag determined in 
Western blot assays, by probing the blot with MAb SV5-P-k. Bound antibody was 
detected with HRP-conjugated Protein A, ECL and autoradiography.
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evidence that any other proteins were precipitated/concentrated under the conditions 

described These findings suggest that not only can (NH4)2S04 precipitation efficiently 

concentrate LTB-Pk, the procedure can also help to partially purify the fusion protein from 

the major protein contaminants in Vibrio sp.60 cultures.

However, closer examination of the Coomassie blue stained gel, revealed that 

pi^pitated LTB-Pk migrated to a position slightly lower than that of unprecipitated LTB- 

Pk, suggesting that the Pk epitope may have been cleaved from the enterotoxin subunit 

following precipitation. To determine if this was the case, 15[iJ samples of unprecipitated 

and precipitated LTB-Pk were analysed for the presence of the Pk-epitope by Western 

blotting utilising MAb SV5-P-k as the detection antibody (Fig. 16).

Examination of the resulting autoradiograph, revealed that LTB-Pk was detectable as a 

single band in tlie unprecipitated fraction (lane 1), but was hardly detectable in the sample 

from the precipitated fraction (lane 2). This finding confirms that the Pk epitope was 

cleaved fixim LTB following exposure of the culture medium to (NH4)2S04.

B.2.2. EOT A snacfivatioii of protease activity; protection of the 

Pk-fuslon

Sensitive LTB-fusions can be degraded by metallo-like proteases secreted from 

Vibrio sp.60 (Dr. T.R. Hirst, personal communication). If such protease activity was 

responsible for the cleavage of the Pk epitope, then the addition of ethylenediaminetetra- 

acetic acid di-sodium salt (EDTA), a well-known inactivator of metallo-like proteases, 

might preserve the fusion. To determine whether EDTA could prevent cleavage of the Pk 

tag from LTB-Pk, the precipitation reaction described above was repeated, and after 

resuspending the precipitate in PBS, tlie solution was divided into two equal aliquots. The 

first aliquot was dialysed against PBS over a 2-72 hour period, the second, against PBS 

supplemented with lOmM EDTA and the stability of the LTB-Pk fusion at each time 

interval, was verified by the Western blotting (Fig. 17). As a control, LTB-Pk from 

unprecipitated cultures was included in the assay.
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LTB-Pk was readily detectable in the control sample from the unprecipitated 

cultmos (lanel). However, althought LTB-Pk was present in precipitated cultures that had 

been dialysed against PBS for 2 hours (lane 2), by 24 hours of dialysis, very little intact 

protein was detectable (lane 3), confirming that the Pk-epitope is cleaved from LTB-Pk 

following exposure of the culture medium to (1̂ 4)2804. In contrast to this finding, 

when the precipitated protein was dialysed in the presence of lOmM EDTA, the intact 

fusion protein was clearly detectable by MAb SV5-P-k at all times over the 72 hour 

dialysis period (lanes 6-9).

To confirm the efficacy of EDTA in preventing the cleavage of the Pk-epitope 

from LTB, a 15|Jd sample of precipitated LTB-Pk that had been dialysed in the presence of 

EDTA, was incubated with either St.aureus-sBtamt&d with MAb-S V5-P-k, or St.aureus 

alone. The proteins present in both the precipitated and non-precipitated fractions were 

subsequently electtophoresed tlirough a SDS-polyacrylamide gel.

Coomassie blue staining of the SDS-polyacrylamide gel (Fig. 18) revealed the 

(NH4)2S04 concentrated sample of LTB-Pk, that had been dialysed in the presence of 

EDTA, efficiently precipitated onto St. aureus when the bacteria were saturated with MAb 

SV5-P-k (lane 1), there being no detectable LTB-Pk degradation products in the 

unprecipitated supernatant (lane 2). Confirmation that this iramune-precipitation of LTB- 

Pk was through the affinity of the intact fusion protein for the Pk-specific MAb, was 

provided when it was demonstrated that LTB-Pk did not precipitate onto the bacteria in the 

absence of the MAb SV5-P-k (lane 3) and thus, was detectable in the unprecipitated 

fraction (lane 4).

These results clearly demonstrate that EDTA is highly efficient at stabilising the 

LTB-Pk fusion after (NH4)2S04 precipitation, possibly through its ability to inactivate a 

metallo-activated protease secreted from Vibrio sp. 60.
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LTB-Pk was piwipitated from IPTG-induced Vibrio sp.60 culture medium with

determined by Western blot assay.
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Figure 18. Immune-precipitation of LTB-Pk.
LTB-Pk that had been dialysed in the presence of 

incubated with MAb SV5-P-k-saturated St. aureus (lanes 
1&2) or St.aureus alone (lanes 3&4) and the polypeptides present in both the 
immune-pi^ipitated complex (lanes 1 &3) and the unprecipitated retenate 
(lanes 2&4) were separated by electrophoresis through a 15% 
SDS-polyacrylamide gel, which was stained with Coomassie blue.
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3.2.3. CoiîceiîSratîoïî of LTB-Pk fey iiltraiHtration.

The procedure for concentrating LTB-Pk by ultrafiltration using the GFE 15 fibre 

dialysing membrane was adapted from the protocol used to concentrate monoclonal 

antibodies from bulk tissue culture solutions.

A four litre culture of Vibrio 5/7.60 was induced with 0.05mM IPTG for 6 hours 

at 30“C, and the bacteria were separated from the culture medium by centrifugation. The 

resulting 4 litre supernatant was then applied to the GF15 dialysis membrane and the 

solution constantly recirculated through the dialysis unit under a pressure of 5-10 lbs/in^ 

[Fig. 7(a)]. Such a strategy helped remove molecules that were smaller than the lOK pores 

of the membrane, as well as water molecules, resulting in a 150ml retentate which was 

dialysed in situ [Fig. 7(b)] against an appropriate buffer, Wfore being recovered from the 

dialysis unit.

Figure 20 [Panels (a-c) lanes 1] show examples of the proteins that are 

concentrated following ultrafiltration and gives the clearest evidence yet that few protein 

contaminants are present in culture medium from which LTB-Pk has to be purified. In 

addition, estimation of the concentration of LTB-Pk in the ultrafiltrate in comparison to the 

original culture medium, suggested that approximately 85-90% of LTB-Pk was recovered 

from the membrane. Furthermore, since no extraneous salt agent was added at any time 

during the ultrafiltration process, it seemed unlikely that the Pk epitope would be cleaved 

from LTB and this was vindicated when it was demonstrated that LTB-Pk, concentrated 

by ultrafiltration, could be efficiently precipitated on St. aureus through the interaction of 

the anti-Pk MAb and the Pk epitope (data not shown).

These results provide evidence that, not only is ultrafiltration using a GFE 15 

fibre dialysis membrane an excellent strategy for concentrating LTB-Pk proteins from 

large bulk Vibrio sp. 60 cultures, but also, in terms of stability of the LTB-Pk fusion, it is 

better than ammonium sulphate precipitation.
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B J , Purification o f  LTB-Pk

Initial attempts to purify concentrated LTB-Pk by affinity chromatography 

using sepharose-based beads was unsuccessful. This was primarily due to the high 

affinity that the LTB has for sugar-based matrices [Finkelstein and Clements, 1979], such 

as sephadex, which required strong dénaturation conditions to elute bound LTB-Pk,

While the search for an alternative column support was underway, a report was published 

[Amin and Hirst, 1994], that demonstrated LTB could be purified from Vibrio sp.60 

culture supernatants by hydrophobic interaction chromatography, using a phenyl superose 

support operated on a Fast Protein Liquid Chromatography (FPLC) system. This 

presented the possibility tliat hydrophobic interaction chromatography could be adapted 

for purifying LTB-Pk. Two hydrophobic supports were investigated; the phenyl superose 

matrix originally employed by Amin and Hirst to purify LTB, and a Macro-prep® t-butyl 

matrix (acrylamide-based beads), which offered a cheaper alternative to phenyl superose, 

and did not necessitate the need for specialised equipment The use of ion-exchange 

chromatography, using acrylamide-based beads, was also examined.

B.3.1. Purification of LTB-Pk using a phenyl superose support and 

FPLC .

The procedure outlined below is a modification of the method described by Amin 

and Hirst [1994].

A 4 litre volume of Vibrio 5/7.60 that had been induced with IPTG for 6 hours 

was centrifuged to pellet the bacteria, and the supernatant concentrated by the ulti afiltration 

method described above. The protein-rich filtrate was dialysed in situ against 20 volumes 

of 20mM Tris-HCl, lOmM EDTA, pH 7.5 and the resulting 150 ml dialysate recovered 

from the membrane. A 20ml volume of the retentate was mixed with solid ammonium 

sulphate to a concentration of 30% saturation, then clarified by centrifugation at 17,400g. 

The supernatant was retained, 5ml of which was filtered through a 0.22pm filter and 

applied to a 1ml phenyl superose column, that had previously been equilibrated with 

20mM Tris-HCl pH 7.5, lOmM EDTA containing IM (NH4)2S04 , on an FPLC system.
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Once the sample was loaded the column was washed in the above buffer to remove 

unbound proteins, and purified material was eluted by a decreasing salt gradient. 

Throughout the purification procedure, 1ml fi-actions were collected and the presence of 

proteinaceous material monitored by measuring the adsorbance at 280nm. An example of 

the phenyl superose purification profile is shown in Fig. 19.

At two stages during the purification process, high levels of materials that 

adsorbed strongly at 280 nm were detectable; 1) during early washing steps, representing 

protein that failed to bind the column (fractions 1-15) and 2) during the elution step, at an 

ammonium sulphate molarity of approximately 0.65M (fractions 25-28). To furtlier 

investigate the proteins present in these fractions, fractions 1-15 were pooled, as were 

fractions 25-28, and 15|ii samples were removed, electrophoresed through a SDS- 

polyacrylamide gel and the proteins visualised by Coomassie blue staining [Fig.20, Panel 

(a)].
Coomassie blue staining of the polypeptide chains, revealed that of the original 

proteins present in the unpurified material (lane 1), the vast majority of the contaminating 

proteins failed to bind to the column and were removed duiing the washing steps, (lane

2). In contrast to this finding, it was evident that the LTB-Pk efficiently bound to the 

phenyl superose, and was eluted at a salt molarity of approximately 0.65 (lane 3). 

Estimation of the concentration of LTB-Pk applied to the phenyl superose, in comparison 

to the quantity of LTB-Pk eluted from the column, suggested a recovery rate of 

approximately 67%. However it was noteable that, traces of the major contaminating 

protein could still be detected in LTB-Pk that had been purified in this manner.

B 3.3. Purification off LTB-Pk by hydrophobic chromatography using a 

M acro-prep.® t-butyl support.

The second hydrophobic column to be investigated was a Macro-prep.® t-butyl 

support. The criteria for purifying LTB-Pk on this mildly hydrophobic matrix, was an 

adaptation of the procedure for the purification of LTB-Pk on phenyl superose.
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A 40 ml sample of the protein-rich dialysate containing concentrated LTB-Pk was 

applied under high salt conditions, to a 5ml t-butyl column that had been equilibrated with 

20mM Tris-HCl, pH 7.5, lOmM EDTA containing IM (1SIH4)2S04 at room temperature. 

Once all the protein solution had been added, the column was washed in 10 column 

volumes of 20mM Tris-HCl, pH 7.5, lOmM EDTA containing IM (NH4)2S04 to remove 

unbound proteins. A decreasing ammonium sulphate concentration step gradient was 

generated by washing the column in 200ml of 20mM Tris-HCl, pH 7.5, lOmM EDTA 

containing IM, 0.75M, 0.5M, and 0.25M (NH4)2S04 sequentially. Throughout the 

purification process 5ml fractions were collected and a Ipl sample from each fraction was 

allowed to adsorb onto niuocellulose paper. The presence of protein in each fraction was 

visualised by staining the nitrocellulose with 0.2M Naphthalene black (data not shown). 

By examining the amount of stain adsorbed by the protein spots, it was evident that 

proteins that failed to bind to the t-butyl matrix were detectable in fractions collected 

during the early stages of the purification procedure (data not shown). In subsequently 

collected fractions, the protein levels detectable fell, until the buffer containing 0.75M 

ammonium sulphate was applied to the column (data not shown). Thereafter, the level of 

protein eluting from the column fell in correlation with a decrease in the ammonium 

sulphate concentration.

Fractions collected early in the purification, that contained the highest levels of 

protein, were pooled, as were the fractions that were assumed to contain high levels of 

eluted protein. 15jil volumes from both samples were subjected to SDS-PAGE and the 

resulting polypeptide chains stained with Coomassie blue.

The results presented in Fig.20, Panel (b), demonstrate that purification of LTB- 

Pk using the t-butyl hydrophobic support gave a similar result to that of the phenyl 

superose column, where the majority of contaminating proteins present in the unpurified 

sample (lane 1) were removed during the washing steps (lane 2). Furthemiore, LTB-Pk 

efficiently bound to the t-butyl support (lane 2) but was eluted following the application of 

a decreasing salt gradient to the column (lane 3). Estimation of the recovery rate of LTB-
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Figure 20. Purification of LTB-Pk.
An example of the efficacy of Phenyl superose (Panel (a)), Macroprep® t- 
butyl (Panel (b)) or Bio-rex-70 (Panel (c)) affinity columns in purifying 
LTB-Pk from Vibrio sp.60 culture medium. IPTG-induced Vibrio sp. 60 
culture medium was concentrated by ultrafiltration, and a sample of the 
concentrated solution applied to the appropriate column. The proteins 
present in 15|il samples from the concentrated starting material (lane 1), 
were compared to the proteins present in a similar volume from the column 
wash (lane 2) and the column eluate (lane 3) by 15% (w/v) SDS-PAGE and 
Coomassie blue staining.
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Pk from the column revealed that, of the starting material that was applied to the column, 

62% of LTB-Pk eluted.

However, once again, it was evident that LTB-Pk was not completely purified, 

since there was evidence of minor traces of contaminating proteins in the eluted material 

(lane 3)

3,3.3. Purification of LTB-Pk by ion-ezchange chromatography

using a Bio-Rex® cation-exchange support.

The third method used for purifying LTB-Pk utilised a sulphur-based cation- 

exchange column based on acrylamide-bead support. Preliminary experiments established 

that in a buffer composed of 0.25mM Na2PO^, pH 7.0, purified LTB molecules (a kind 

gift from Dr. T.R. Hirst) were sufficiently ionised to enable the protein to bind to the 

negatively charged support, but could be eluted following the addition of 25mM Na2pO^, 

0.5M NaCl, pH 7.5 to the column. It was decided to assess the ion-exchange protocol for 

its ability to purify LTB-Pk fr om Vibrio sp. 60 culture medium.

A 4 litre culture of Vibrio sp. 60 was grown at 30°C and when the O.D.6qo 

reached 0,4, LTB-Pk was induced for 6 hours by the addition of 0.05mM IPTG to the 

bacterial culture. The bacteria were pelleted by centrifugation, and the 4 litre supernatant 

was concentrated by ultrafiltration, as previously described. When the supernatant was 

concentrated to a 150ml volume, the solution was dialysed in situ against 25mM Na2P04, 

lOmM EDTA, pH 7.0, clarified by centrifugation at 17,4O0g and the supernatant applied 

directly to a 25ml Bio-rex® 70 cation-exchange column that had been equilibrated with 

25mM Na2P04, lOmM EDTA, pH 7.0. The column was washed with 10 volumes of 

25mM Na2P04, lOmM EDTA, pH 7.0 to remove any unbound proteins and bound 

protein was then eluted by the application of a buffer composed of 25mM Na2P04, lOmM 

EDTA, 0.5M NaCl, pH 7.5 to the column. Samples were taken throughout the 

purification process and assayed for the presence of protein material using the 

Naphthalene black-based procedure described above. The fractions containing protein that 

failed to bind the column, were pooled, as were the fractions that contained piotein that
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eluted from the column and 15 pi samples were removed for analysis by SDS-PAGE and 

Coomassie blue staining [Fig. 20, Panel (c)].

It was evident that of the major proteins present in the original concentrated 

material (lane 1) LTB-Pk bound to the ion-exchange column at pH 7.0, [whereas the 

major protein contaminants did not (lane 2)], but was eluted after the addition of 25mM 

Na2P04 , lOmM EDTA, 0.5M NaCl, pH 7.5 buffer to the column (lane 3). Of more 

significance, LTB-Pk was the only protein detectable in the eluted material, all the other 

contaminating proteins being removed during the washing steps of the purification process 

(lane 2). Thus, in terms of protein purity, ion-exchange chromatography is more efficient 

at purifying LTB-Pk from concentrated culture medium, than hydrophobic 

chromatography. Furthermore, estimation of the yield of purified LTB-Pk from the cation- 

exchange matrix, suggested approximately 84% of LTB-Pk eluted.

B.4. Functional properties o f LTB<>Pk purified by ion-exchange 

chromatography and the stability o f the Pk-epitope.

Examination of the proteins eluted from the three columns investigated in the 

previous sections, demonstrated that, ion-exchange chromatography was the best and 

most convenient method for purifying LTB-Pk, To confirm that purified LTB-Pk retained 

the physiological properties of unpurified LTB-Pk, the ability of purified LTB-Pk to 

oligomerize and bind to GMl-ganglioside were investigated in vitro.

Firstly, the oligomerization properties of purified LTB-Pk were determined by 

analysing the migration pattern of heat-treated and untreated samples of the fusion protein, 

following SDS-PAGE. As a comparison, purified LTB molecules were also included in 

the assay. C(x>massie blue staining of the resulting polypeptide bands revealed that, in 

boiled samples purified LTB and LTB-Pk migrated as monomers (Fig.21, lanes 1 & 2, 

respectively), LTB-Pk migrating to a position slightly higher than LTB. When purified 

LTB and LTB-Pk were applied to the SDS-polyacrylamide gel without prior heat- 

treatment, both proteins migrated as stable oligomers (Fig. lanes 3 & 4, respectively). 

Secondly, the affinity of purified LTB-Pk for GMl-ganglioside was
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21. Oligomerization of LTB-FTc following purification by 
ion-exchange chromatography
S ^ p le s  of purified LTB (lanes 1 & 3) and purified LTB-Pk (lanes 2 & 4) were mixed 
^  ^  volume of 4X disruption buffer and either boiled for 5 minutes

^  r  temperature (lanes 3 & 4) prior to SDS-PAGE on an 15%
^ /v )  SDS-polyacryl^dc gel. The resulting polypeptide chains were visualized by 
Coomassie blue staining. ^

3 4 5 6 7 8

LTB-Pk
LTB

Figure 23. Immune-precipitation of purified LTB-Pk.
The stability of the LTB-Pk fusion after purification of LTB-Pk by 
ion-exchange chromatography was examined in immune-precipitation assays. 
Samples of purified LTB or LTB-Pk were were incubated with either St. aureus 
^one (l^e s  1-4) or MAb SV5-P-k-saturated St. aureus (lanes 5 & 8) and both 
the piwipitates (lanes 1,3,5 & 7) and the unprecipiated supernatants (lanes 
2 4,6 & 8) were analysed by 18% SDS-PAGE and Coomassie blu staining for 
the presence of purified LTB (lanes 1,2,5 & 6) and LTB-Pk (lane 3, 4, 7 & 8)
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Figure 22. Binding of purified LTB-Pk to GMl-ganglioside.
The figure shows the retention of the CM 1-binding property of LTB-Pk after 
purification by ion-exchange chromatography. 96-wcll microtitre plates were coated 
with either (1.5p,g/ml) CM 1 (lanes 1-3) or (1 mg/ml) ovalbumin (lanes 4-6) and then 
incubated with PBS alone (lanes 1&4), MAb SV5-P-k (lanes 2&5) or purified 
LTB-Pk (lanes 3&6). The anti-Pk MAb was added to all wells and bound protein was 
detected with HRP-conjugated Protein A. Following addition of the HRP-substrate, 
the adsorbance at 450nm was measured.
The results are presented as the mean ± standard deviation for duplicate cultures.
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vindicated in a GMl-ELISA assay (Fig.22) where it was evident that LTB-Pk bound to 

the ganglioside in a highly specific manner (column 3). Thus, the purification of LTB-Pk 

by ion-exchange chromatography does not destroy the physiological properties of LTB- 

Pk.

In addition to the analysis of the physiological properties of purified LTB-Pk, the 

stability of the Pk-fusion following purification was determined in immune-precipitation 

reactions, where both purified LTB and LTB-Pk were assessed for tlieir ability to bind to 

MAb-S V5-P-k-saturated St. aureus, or to St. aureus alone.

As shown in Fig. 23, puiified LTB was unable to bind to either St.aureu^ alone 

(lane 1) or anti-Pk MAb-saturated St.aureus (lane 5) and was therefore, detectable in the 

unprecipitated fractions (lanes 2 and 6). Likewise, purified LTB-Pk did not bind to St. 

aureus alone (lane 3) and was also detectable in the unprecipitated fraction (lane 4). In 

contrast to this finding, when purified LTB-Pk was mixed with MAb S V5-P-k-saturated 

St.aureus, all the purified protein was present in the precipitate (lane 7), with no evidence 

of degraded LTB-Pk pioducts in the unprecipitated fraction (lane 8). Thus, purification of 

LTB-Pk by ion-exchange chromatography does not result in the destruction of the Pk- 

epitope.

SECTION Co Expression and Purification of HIS“SIV“Fk 

Proteins and Construction of SIV-MAb-LTB 
complexes.

C .i. Imtroduction.

In section C of the results, the recombinant SIV proteins used in the 

immunisations procedures, are introduced and their unique tag-linked purification by 

nickel affinity chromatography is described. In the later stages of the section, the 

construction of the novel SIV-MAb-LTB immunogen, and the targeting of such 

complexes onto GMl-ganglioside, is presented in detail.
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C.2. Construction and expression o f recombinant His-SIV-Fk proteins.

The addition of the 14 amino acid Pk tag to the C-teraiini of a variety of Simian 

Immunodeficiency Vims proteins has been described in detail by Hanke and colleagues 

[Hanke et a/.,1994], Such SIY-Pk proteins were expressed as fusion proteins with a 12 

amino add long peptide containing six histidines (His) at the N-terminal of the 

recombinant proteins, in the E.coli pQE-9-derived vector [Randall et al,, 1993]. In this 

expression system, the novel His-SIV-Pk gene is under control of the lac promoter, tiius, 

the recombinant proteins can be induced by IPTG. The choice of recombinant SIV gag 

gene products, His-pl7-Pk and His-p27-Pk, for the vacdnation strategies described later, 

was motivated by the moderate to high level of expression of these recombinant proteins 

in E.coli (lOmg/litre and 200-7()0|i.g/litre, respectively), and that both antigens have been 

shown to be immunogenic when incorporated into solid matrix antibody-antigen 

complexes [Randall et al, 1994].

C.2. Purification o f His-SIV-Pk proteins by Nickel Affinity  

Chromatography.

The protocol developed for the purification of His-SIV-Pk antigens was based on 

the observation that histidine residues have a high affinity for metal cations, and can, 

therefore, be purified by chelating immobilised metal ions such as nickel [Smith et al., 

1988].

1 litre cultures of E.coli containing plasmids pQE917Pk, encoding His-pl7-Pk, 

or p()927Pk, encoding His-p27-Pk, were induced at 26°C with O.OSmM IPTG when the 

O.D.600 reached approximately 0.4-0.6. After 2-3 hour inductions, the bacteria were 

harvested by centrifugation, resuspended in 30ml of 20mM Tris-HCl, 0.3M NaCl, pH 

8.0 and the intracellular proteins released by lysozyrae treatment, followed by vigorous 

sonication. The protein rich lysate was centiifuged, and the resulting supernatant 

incubated with a 1ml sample of Ni^+-NTA resin for 1 hour at 4°C. The beads were loaded 

into a column and unbound proteins were removed by washing the column in 20mM Tris- 

HCl, 0.3M NaCl, pH 8.0. Bound His-SIV-Pk proteins were eluted by the application of
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His-p27-Pk
His-pl7-Pk

Figure 24. Purification of the His-SIV-Pk antigens.
E.coli containing plasmids that encode the recombinant His-pl7-Pk (Panel (a)) and 
His-p27-Pk (Panel (b)) proteins were induced for 3 hours with O.OSmM IPTG at 26°C. 
The His-SrV-Pk antigens were purified by Nickel affinity chromatograpy and the purity 
of the eluted protein was examined by 15 % (w/v/) SDS-PAGE and Coomassie blue 
staining.
Lanes l;total cell lysate, lanes 2; insoluble cell fractions, lanes 3; soluble cell fractions, 
lanes 4; protein that did not bind to the nickel columns and lanes 5; protein that was 
eluted from the nickel columns with imidazole (see text).

250mM Imidazole, 20mM Tris-HCl, 0.3M NaCl, pH 7.4 to the column and the purity of 

the eluted His-pl7-Pk and His-p27-Hc, were examined by SDS-polyacrylamide gel 

analysis [Fig. 24, Panels (a) & (b), respectively].

Coomassie blue staining of the polyacrylamide gels revealed that the His-SIV-Pk proteins 

are present in the soluble fraction upon lysis (lanes 3) and are not restricted to insoluble 

inclusion bodies (lanes 2) in E.coli., a finding that supports the observations of Dr. T. 

Hanke [research thesis, 1993]. The vast majority of the contaminating material was 

removed during the washing stages (lanes 4) yielding a highly purified His-SIV-Pk 

protein upon elution (lanes 5).
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C,3. Construction o f the Simian Immunodeficiency Virus-Antibody-LTB  

(SIV-M Ab-LTB) Complex,

The method that was developed to produce SIV-MAb-LTB complexes can be 

divided into three major steps; 1) incubation of purified His-SIV-Pk with a five-fold 

excess of purified MAb SV5-P-k, such that, on average a single antibody molecule will 

only have one molecule of antigen attached 2) purification of SIV-MAb complexes from 

uncomplexed antibody, by nickel affinity chromatography, and 3) linkage of the SIV- 

MAb complexes to LTB-Pk via the free antigen binding site on the antibody molecule. A 

diagrammatic representation of the procedure is shown in Fig. 25.

(1) Construction of SIV-MAb complexes

The formation of immune-complexes that contained an His-SIV-Pk antigen 

occupying only one of the antigen-binding sites of MAb SV5-P-k, tliereby leaving the 

second site free for complexing with LTB-Pk, was the most critical step in the 

construction of SIV-MAb-LTB complexes. It is generally accepted that in a solution in 

which the concentration of an antibody molecule is in excess to its specific antigen, the 

vast majority of antibody molecules will have only one of their antigen-binding sites 

occupied by the antigen. On this basis, it was thought that mixing His-SIV-Pk proteins 

and MAb SV5-P-k at a molar ratio of 1:5 (SIViMAb) would result in sub-saturation of the 

anti-Pk MAb. Thus, as a first step in the construction of SIV-MAb-LTB complexes, the 

concentration of purified His-SIV-Pk in relation to the concentration of purified MAb 

SV5-P-k was estimated by SDS-PAGE and Coomassie blue staining (data not shown).

(2) Purification of SIV-:MAb_comDlexes,

The second step in the construction of SIV-MAb-LTB complexes involved the removal of 

uncomplexed antibody. After incubating His-SIV-Pk and MAb SV5-P-k at a molar ratio 

of 1:5 for 50 minutes at 4°C, the solution was mixed with a 1ml volume of Ni^+-NTA 

resin for 45 minutes at 4°C. After loading the resin into a column, uncomplexed MAb 

SV5-P-k that did not bind to the NF+-NTA resin, was removed by washing the column in 

20 volumes of 20mM Tris-HCl, 0.3M NaCl, pH 8.0. Purified SIV-MAb complexes were 

then eluted by the addition of 0.25M Imidazole, 20mM Tris-HCl, 0.3M NaCl, pH 7.4 to
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Step One.
Pk linked SIV proteins containing 
a six histidine tag at the N-terminus 
is mixed with Pk specific MAb SV5-P-k, 
at a SlV;MAb ratio of 1 ;5.
This ensure incomplete sarurabon of the 
MAb.

Step Two
The affinity of the histidine tag  for 
chelating ions enables SIV-MAb 
complexes to  be purified by nickel 
affinity chromatography, and faciliates 
the removal of excess MAb.

Step Three
Quantitation of the amount of SIV 
antigen irKorporated into the 
immune-complex by SDS-PAGE, 
determines of the corxzentration of 
LTB-Pk that w8l suffice to  fill the  
remaining antigen-binding site  on the 
MAb.

e  SIV Ag

•  H isüdine tag 
^  PV tag

MAbSV5-P-k

LTB

Figure 25. Construction of SIV-MAb-LTB complexes.
A diagrammatic representation of the three step procedure involved in the 
construction of SIV-MAb-LTB complexes.
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the column. To estimate if these eluted SIV-MAb complexes had an His-SIV-Pk protein 

occupying only one antigen-binding site of MAb S V5-P-k, the concentration of the His- 

SIV-Pk protein in relation to the concentration of the light chain of MAb SV5-P-k, was 

analysed by SDS-PAGE and Coomassie blue staining. An example of such an analysis is 

shown in Figure 26. It is evident from the Coomassie stained gel, that the concentration of 

His-p27-Pk is approximately half the concentration of the light chain of the anti-Pk MAb, 

suggesting that the antigen-binding sites of MAb SV5-P-k are incompletely saturated.

(3) Linkage of LTB-Pk to purified SIV-MAb complexes.

The last step in the construction of SIV-MAb-LTB complexes involved the 

linkage of purified SIV-MAb complexes to LTB-Pk. Since only one antigen-binding site 

of MAb SV5-P-k was presumed to be unoccupied, it was thought that mixing SIV-MAb 

complexes with LTB-Pk at a molar ratio of 1:1, would suffice to saturate the remaining 

antigen-binding site of MAb SV5-P-k. These resulting SIV-MAb-LTB complexes would 

thereby contain an identical amount of His-SIV-Pk and LTB-Pk proteins. Thus, the 

concentration of LTB-Pk in relation to the concentration of His-SIV-Pk in SIV-MAb 

complexes was estimated by SDS-PAGE and Coomassie blue staining. By comparing the 

strengths of the Coomassie stained bands, the amount of LTB-Pk that gave a signal 

identical to that of the His-SIV-Pk protein, determined the amount of LTB-Pk that was to 

be mixed with the immune complex.

To establish whether mixing SIV-MAb complexes with LTB-Pk at a molar ratio 

of 1:1 resulted in all the available LTB-Pk being incor|x>rated into the complex, an 

immune precipitation assay was performed. SIV-MAb-LTB complexes were mixed with 

St. aureus md after a 30min incubation, the precipitates were pelleted by centrifugation. 

Both the precipitated pellet, and the unprecipitated supernatant were analysed by SDS- 

PAGE and Coomassie staining. Such analysis demonstrated that LTB-Pk efficiently 

bound to the SIV-MAb complex and was present in the precipitated fraction, there being 

no detectable free LTB-Pk molecules present in the unprecipitated supernatant (data not 

shown).
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IgH

H«-p27-Pk
IgL

Figure 26. Sub-saturation of MAb SVS-P-k.
The figure shows an example of SIV-MAb complexes that have been 
constructed by incubating recombinant p27 and MAb S V5-P-k at a ratio 
of 1:5, and then purified nickel affinity chromatography. A 15|il sample 
of the purified complexes was subjected to SDS-PAGE and the protein 
bands stained with Coomassie blue.

O.D.
450nm

0.81

0.6 “

0 .4-

0.2 -

Figure 27. Binding of SIV-MAb-LTB complexes to GMl.
The figure shows the targeting to GMl-binding by SIV-MAb-LTB complexes.
96-well microtitre plates were coated with either (1.5pg/ml) GMl (lanes 1-3) or 
(1 mg/ml) ovalbumin (lanes 4-6) and then incubated with SIV-MAb complexes (lanes 
1&4), MAb-LTB complexes (lanes 2&5) or SIV-MAb-LTB complexes (lanes 3&6). 
Bound complexes were detected with HRP-conjugated Protein A. Following addition 
of the HRP-substrate, the adsorbance at 450nm was measured.
The results are presented as the mean ± standard deviation for duplicate cultures.
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Thus, mixing SIV-MAb complexes with LTB-Pk at a molar ratio of 1:1, results in all 

the available LTB-Pk molecules being incorporated into the immune-complexes.

C,4. Binding o f  the SIV-MAb-LTB complex to GM l- 

ganglioside.

To further analyse SIV-MAb-LTB complexes, the ability of such complexes to 

bind to GMl-ganglioside was investigated in a GMl-ELISA assay.

A 96-well microtitre plate was coated with 1.5fig/ml GMl-ganglioside or 

ovalbumin and tlien a 1:10 dilution of SIV-MAb-LTB complexes was added to the wells. 

As positive and negative controls, MAb-LTB and SIV-MAb complexes (respectively) 

were included in the assay. After a 1 hour incubation, bound complexes were detected 

with HRP-conjugated Protein A, substrate added and the adsorbance at 450nm measured 

(Fig. 27).

T h ^  was no evidence that SIV-MAb complexes were capable of binding to GMl 

(lane 1) as shown by the weak adsorbance at 450nm. In contrast, both MAb-LTB (lane 2) 

and SIV-MAb-LTB (lane 3) bound to GMl with high affinity, demonstrating that the 

incorporation of LTB-Pk into the MAb-SIV complex can bind the immune complex onto 

GMl-ganglioside in vitro.

SECTION D. Systemic Immunogenicity of LTB-Pk.
D ,l. Introduction,

The mechanism(s) responsible for the adjuvant nature of LTB is, at present, 

unloiown. However, the physiological properties of LTB i.e. its existence as a pentamer 

and affinity for GMl-ganglioside are thought to play a critical role. In addition, it is 

theorised that the high immunogenicity of LTB itself, may contribute to its adjuvancity 

[Dertzbaugh et ai, 1990]. In Section D, the immunogenicity of LTB-Pk following 

parental administration and the attempts to classify the antibody response to the 

recombinant enterotoxin subunit, are desciibed.
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It is important to note, that, at the time of these preliminary immunogenicity 

studies, an efficient purification protocol for LTB-Pk was unavailable. Thus, the vaccines 

contained LTB-Pk that had been precipitated from IPTG induced Vibrio sp.60 culture 

supernatants with ammonium sulphate, and then dialysed against PBS containing lOmM 

EDTA.

D,2, Systemic Immunogenicity o f  LTB-Pk,

Peptide epitopes have been linlced to LTB in attempts to raise an immune 

response to the peptide [e.g. Schodel et al., 1991]. It was of interest to monitor the 

immunogenicity of LTB-Pk, both in teims of the antibody response to LTB and to the Pk 

epitope. In addition, the immunogenicity of MAb-LTB complexes were also investigated, 

since it was of interest to establish whether the linkage of MAb SV5-P-k to LTB-Pk 

influenced the immunogenicity of the fusion protein, a factor that could have implications 

on the use of SIV-MAb-LTB complexes as immunogens.

Groups of four 6-8 week old Balb/c mice were immunised with the equivalent of l[ig 

LTB-Pk alone (Group A) or after adsorption of the fusion protein onto the adjuvant, alum 

(Group B). LTB-Pk was mixed with MAb SV5-P-k at a molar ratio of 1:1 and the 

equivalent of l[ig LTB-Pk in MAb-LTB complexes were injected intraperitoneally either 

alone (Group C), or after adsorption onto alum (Group D). Prior to immunisation, a 15fXl 

sample of each vaccine was analysed by SDS-PAGE and Coomassie blue staining, to 

ascertain that each vaccine contained an equivalent amount of LTB-Pk (Fig.28).

All mice were immunised three times with their respective vaccines, two weeks 

separating the first and second vaccination, and three weeks the second and third. Ten 

days after the final immunisation, the sera from each mouse was assayed for antibodies 

specific for LTB-Pk, or a control antigen (ovalbumin) using an ECL-based immune assay.

Briefly, the sera from each mouse within a vaccination group was diluted 1:2(X) 

and from this starting dilution, the sera was further serially diluted 1:2 in the wells of 

terasaki plates. MAb SV5-Pk and sera from non-immunised mice were similarly treated 

and used as positive and negative regulatory controls (respectively) m the assay. The
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^  IgH

^  IgL

LTB-Pk

Figure 28. Comparative analysis of the LTB-Pk-based vaccines.
Analysis of the vaccines used for immunization against LTB-Pk. Each vaccine was 
resuspended to a final volume of 200pl in PBS and 30|il removed, electrophorised 
through a 15% SDS-polyacrylamide gel and the polypeptide chains stained with 
Coomassie blue. Lanel: soluble LTB-Pk; lane 2: LTB-Pk adsorbed onto alum; lane 3: 
LTB-Pk conjugated to MAb SV5-P-k (MAb-LTB); lane 4: MAb-LTB adsorbed onto 
alum.
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terasaki plates were overlaid with individual nitrocellulose sheets that had been coated with 

either LTB-Pk or a control antigen (ovalbumin), and the plates were incubated for one 

hour at room temperature. Total antibody levels m the sera of vaccinated and control mice, 

to the respective antigens, were detected by incubating the nitrocellulose sheets with HRP- 

conjugated anti-mouse immunoglobulin (Ig), followed by exposure to ECL buffers and 

autoradiography. An example of the ECL-immune assay is shown in Fig.29 and the 

antibody titres to LTB-Pk for each vaccination group presented in Table 2. column 1.

Sera from non-immunised mice failed to bind to either of the target antigens, 

highlighting the specificity of the immune assay. Following three intraperitoneal 

vaccinations with LTB-Pk alone, all mice in Group A exhibited a high degree of immunity 

to LTB-Pk, with the average titre within the gioup being approximately 25,600. 

Interestingly, tliis immune response to LTB-Pk was not, on average, enhanced by 

administering LTB-Pk in association with alum (Group B). Although immunisation with 

MAb-LTB (Group C) resulted in a slight decrease in the immune response to LTB-Pk, 

this could be overcome by adsorbing the immune complex onto alum, prior to vaccination 

(Group D). These findings suggest that LTB-Pk itself, is a potent systemic immunogen, 

that does not apparently require the presence of additional adjuvants to potentiate the 

response to fusion protein. However, linkage of MAb SV5-P-k to LTB-Pk may slightly 

decrease the potency of LTB-Pk.

Wlien the immune sera was re-assayed for antibodies capable of recognising the 

control antigen, ovalbumin, there was no evidence that any vaccinated mouse contained 

immunity to ovalbumin [Fig.29 Panel (b)].

To further analyse the immune response to LTB-Pk, the serum from each 

vaccinated mouse was assayed for antibodies specific for the Pk-epitope to investigate 

whether the antibodies, detectable to LTB-Pk, were interacting with the Pk-tag. The sera 

was diluted as before, then incubated with nitrocellulose sheets that had been previously 

coated with GlutatIiione-5-transferase-linked Pk (GST-Pk). Bound antibody was once 

again detected in ECL-immune assays that utilised an HRP-conjugated anti-mouse 

immunoglobulin. The antibody titres are shown in Table 2, column 2.
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(a) LTB-Pk (b) control antigen

Group 
_A__

Group B__

Group
B

Group
C__

Group
_D__

MAb SyS-P-K

LTB 5 
ads. alum g

MAb SV5-P-K
LTB 7 
ads. alum g

MAb-LTB
11 
12

MAb SV5-P-K

13
MAb-LTB 14 
ads. alum i s

16
control sera

Figure 29. Immunogenicity of LTB-Pk
An example of the ECL-based immune assay used in the detection of antigen-specific 
antibodies in the sera of immune mice.
Groups of four Balb/c mice were immunized three times with the vaccines shown in 
Fig.28. Ten days after the last immunization, the sera was assayed for antibodies to 
LTB-Pk or a control antigen, ovalbumin. The sera was diluted 1:200 and from this 
starting dilution, serial diluted 1:2 in the wells of a terasaki plate, then incubated with 
nitrocellulose filters that had been pre-coated with either LTB-Pk or ovalbumin. As a 
control, sera from non-immunised mice were similarly treated. Bound antibody was 
detected with an HRP-conjugated anti-mouse immunoglobulin (Ig) antibody, ECL and 
autoradiography.
Group A: mice immunized with soluble LTB-Pk (LTB); Group B: mice immunized 
with LTB-Pk adsorobed onto alum (LTB ads. alum); Group C: mice immunized with 
LTB-Pk linked to MAb SV5-P-k (MAb-LTB) and Group D: mice immunized with 
MAb-LTB adsorbed onto alum (MAb-LTB ads. alum).
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Except for the mice that were immunised with MAb-LTB alone, all mice 

exhibited some immunity to the Pk-tag. However, the actual antibody titres were 

consistently small, irrespective of the immunising agent, with an average titre of only 400- 

800.

Thus, the Pk-tag is a poor systemic immunogen, a finding that supports the 

observations of Randall and colleagues [1994], and therefore, suggests that the majority 

of the immune response generated to LTB-Pk is directed at LTB.

SECTION E. Systemic Immunogenicity of Partially Purified 
pl7°MAl5“LTB complexes.

E .l. lutroducUoiu

In this section of the results, the prcliminaiy findings on whether the conjugation 

of recombinant SIV antigens to LTB-Pk via MAb SV5-P-k was a successful strategy for 

promoting humoral and cell-mediated immunity to the recombinant SIV antigen, following 

parental administration, are presented.

The Pk-linked SIV antigen chosen for use in the initial immunisation studies was 

the recombinant gag gene product His-pl7-Pk. This recombinant protein had several 

important attributes that increased its attractiveness as a SIV target antigen. For example, it 

could be over-expressed in E.coli to high levels [Hanke et al.., 1994] and was easily 

purified from the cell lysates by nickel affinity chromatography. Also, incorporation of 

His-pl7-Pk into solid matrix-antibody-antigen complexes had previously been shown to 

induce recombinant pi 7-specific humoral and cell-mediated immune responses following 

intraperitoneal immunisation [Hanke eta i, 1994].

E.2» LTB ’̂ Pk enhances the immune response to recombinant S IV  antigens

To investigate whether conjugation of Pk-linked SIV proteins to LTB-Pk via 

MAb SV5-P-k, led to an enhancement of the immune response to the recombinant SIV
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protein, SIV-MAb-LTB immune complexes were constructed and their immunogenicity 

were examined in vivo. pl7-MAb complexes were constructed as described in Section

C.3 and the purified pl7-MAb complexes divided into two equal aliquots. One of the 

aliquots was then mixed with the appropriate concentration of ammonium sulphate 

purified LTB-Pk, to create pl7-MAb-LTB complexes with a molar ratio of pl7- 

MAb:LTB-Pk of 1:1. The second aliquot of pl7-MAb was retained and used in a separate 

group of immunisations (below).

Groups of four Balb/c mice aged 6-8 weeks were immunised intraperitoneally 

with the equivalent of Ipg His-pl7-Pk alone (Group A) or after adsorption onto alum 

(Group B), pl7-MAb alone (Group C) or with alum (Group D), pl7-MAb-LTB alone 

(Gmup E) or with alum (Group F) in a final volume of 200pl. Prior to immunisation,

30pl of each vaccine was subjected to 15% (w/v) SDS-PAGE and the protein bands 

visualised by staining the gel with Coomassie blue to confirm that each vaccine 

preparation had an identical concentration of tlie His-pl7-Pk and, in the case of the 

vaccines composed of pl7-MAb-LTB, LTB-Pk (Fig.30).

All mice were immunised three times intraperitoneally, on days 0, 14 and 37.

Ten days after the second and third immunisations, the mice were bled and the sera 

examined for antibodies specific for His-pl7-Pk, and a control antigen, ovalbumin. 

Antigen-specific antibodies were again detected by the ECL-immune assay, described 

previously. An example of the assay is shown in Fig.31, the antibody titres to His-pl7-Pk 

after two and three immunisations with the appropriate vaccines, presented in Table 3, 

columns I & 2, respectively.

With the exception of soluble His-pl7-Pk all the vaccines investigated were 

capable of eliciting anti-His-pl7-Pk specific antibodies, the level of immunity increasing 

with each consecutive immunisation (Table 3, compare columns 1 and 2). None of the 

mice in Group A responded to His-pl7-Pk, demonstrating that, on its own, the purified 

recombinant protein is not immunogenic. However, when His-pl7-Pk was administered 

in the presence of alum (Group B), the adjuvant enhanced the immune response to the 

recombinant protein, though the antigen-specific antibody titres obtained varied
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Hk.pl7.Pk 

LTB.Pk

Figure 30. Comparative analysis of His-pl7-Pk-based vaccine 
formulations.
All vaccine formulations were made up to a final volume of 200pl with PBS 
and BOpl removed for analysis. The samples were electrophorised through a 
15% (w/v) SDS-polyacrylamide gel and the protein concentrations estimated 
by staining the gel with Coomassie blue.
Lane 1: soluble His-pl7-Pk; lane 2: His-pl7-Ht adsorbed onto alum; lane 3: 
His-pl7-Pk conjugated to MAb SV5-P-k (pl7-MAb); lane 4: pl7-MAb 
adsorbed onto alum; lane 5: pl7-MAb linked to LTB-Pk (pi7-MAb-LTB); 
lane 6: pl7-MAb-LTB adsorbed onto alum.
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remarkaWy within the vaccination group. Similariy, the immunogenicity of His-pl7-Pk 

could be enhanced by presenting the recombinant protein to the immune system as part of 

an immune ccmiplex either alone (Group C) or after adsorption onto alum (Group D). 

Having said this, it was evident that pl7-MAb complexes were far less immunogenic on 

their own, than when administered with alum, with one mouse in Group C having no 

detectable serum immunity specific for His-pl7-Pk even after three immunisations with 

pl7-MAb.

Examination of the sera fiom mice vaccinated with pl7-MAb-LTB complexes 

(Group E) for antibodies reactive with His-pl7-Pk, revealed immunisation with pl7- 

MAb-LTB complexes alone resulted in an approximately 4-8 fold enhancement in the 

immune response to His-pl7-Pk, in comparison to the immunity induced following 

vaccination with soluble pl7-MAb. Furthermore, the level of immunity detectable was 

relatively consistent throughout the mice of Group E. Adsorption of pl7-MAb-LTB 

complexes (Group F) onto alum resulted in minor enhancement (2-fold) in the 

immunogenicity of pl7-MAb-LTB complexes.

When the immune sera from each mouse was re-assayed for antibodies 

specific for LTB-Pk (using the ECL-based immune assay and purified LTB-Pk as the 

solid-phase target antigen), only the mice in Groups E and F, demonstrated an antibody- 

specific response to the recombinant enterotoxin subunit On average, the level of 

immunity directed at LTB-Pk was 6-8 fold higher than the response to the His-pl7-Pk 

component of the vaccine, this being particularly noticeable when pl7-MAb-LTB 

complexes were administered along with alum (data not shown). This bias of the immune 

system in favouring the induction of immunity to the LTB moiety of LTB-conjugates, has 

been demonstrated by others [Schodel et al., 1990]. Examination of the immune sera for 

andbodies specific for the Pk-epitope, also demonstrated that very little of the immune 

response was directed at this determinant (data not shown) which supports the previous 

findings that the Pk-epitope is a poor systemic immunogen.
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SV5-P-k

pl7

pl7 ads. alum

pl7-MAb 10
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pl7-MAb 14
ads. alum 15
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pi 7-MAb-LTB 18
19
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pl7-MAb-LTB 7,2
ads. alum 23

24

(a) His-pl7-Pk (b) Control antigen

»
a ê e  # 
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control antibody

Figure 31. Induction of systemic immunity to His-pI7-Pk
Groups of four Balb/c mice were immunized three times with soluble His-pl7-k 
(pl7), His-pl7-Pk adsorbed onto alum (pl7 ads. alum)3üs-p 17-Pk conjugated to 
MAb SV5-P-k (pl7-MAb), pl7-MAb adsorbed onto alum(pl7-MAb ads. alum), 
pl7-MAb linked to LTB-Pk (p 17-MAb-LTB) or pl7-MAl>LTB adsorbed onto alum 
(pi7-MAb-LTB ads. alum). All mice were immunized with the equivalent of l|ig of 
His-pl7-Pk for each vaccine formulation. Antibodies specific for His-pl7-Pk or a 
control antigen, ovalbumin, were measured using an ECL-based immune assay.
The sera were diluted 1:100 and from this starting dilution, serial diluted 1:2 in the 
wells of a terasaki plate. The dilutions were then incubated with nitrocellulose filters 
that had been pre-coated with either purified His-pl7-Pk or ovalbumin. Bound antibody 
was detected with an HRP-conjugated anti-mouse Ig antibody, ECL and autoradiography.
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Tlius, linkage of His-pl7"Pk to LTB-Pk by way of a Pk-specific antilxidy bridge, 

can help potentiate the immune response to the recombinant SIV protein. Furthermore, the 

potency of pi 7-MAb-LTB complexes in the absence of alum, indicate that the presence of 

LTB-Pk in pl7-MAb-LTB complexes may bypass the need for additional ^juvants.

E,3, Chmrmterisation o f the antibody response to His-piy^Pk and 

L T B -P k .

Different isotypes of antibcxlies exist, each having its own particular 

immunological role in host defence. The murine IgG^  ̂isotype is an antibody that is 

thought to play a crucial role in the protection against viral infection [Coutlier et al.. 1987]. 

It was of interest to investigate whether conjugation of His-pl7-Pk to LTB-Pk helped 

modulate the antibody response to the recombinant SIV protein.

Sera from each mouse in a vaccination group were incubated with His-pl7-Pk- 

coated nitrocellulose sheets and bound antilx>dies were classified into Protein A-binding 

[Protein A (Pr.A) preferentially interacts with murine antibodies of the IgG^a, IgG^y and 

IgGg subclasses] and non-Pr. A binding antibcxiies (usually antibodies of the IgGj 

subclass) by detecting bound antibody with HRP-conjugated Pr. A.

None of the mice from vaccination Groups A-D had anti-His-pl7-Pk specific 

antibodies of an isotype that was recognised by HRP-conjugated Pr. A (Table 3, column

3). Thus, in these experiments, and in contrast to the results of Randall et al.. 1994, 

immunisation with His-pl7-Pk or pl7-MAb complexes in the presence or absence of 

alum, did not induce detectable levels of anti-recombinant SIV antibodies of the IgG^a, 

IgG2b or IgGa subclasses. In contrast to this finding, immunisation with pl7-MAb-LTB 

did induce anti-His-pl7-Pk and LTB-Pk-specific antilxdies of an isotype detectable with 

the Pr. A conjugate. Similarly, when the sera from vaccinated mice were assayed for Pr.A 

binding and non-binding antibodies specific for LTB-Pk, the sera from mice vaccinated 

with pi 7-MAb-LTB complexes alone or in the presence of alum, contained very high 

levels of Pr-A binding antibcdies (data not shown).
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These results suggest that conjugation of His-pl7-Pk to LTB-Pk via MAb SV5- 

P-k can enhance the immune response to the recombinant SIV protein, but also, that LTB- 

Pk helps modulate the isotype of the antibody response to His-pl7-Pk.

E A, p l7 ’>MAb'’LTB complexes prime the immune system to SIV.

The previous assays relied on tlie recognition of the recombinant SIV protein, 

His-pl7-Pk, by antigen-specific sera as an assessment of each vaccines potential to induce 

immunity to SIV.

To determine whether vaccination with either His-pl7-Pk, pl7-MAb or pl7- 

MAb-LTB alone or after adsoiption onto alum led to serum antibodies that could recognise 

pl7 from an SIV infected cell, the sera within each vaccination group was pooled and 

reacted in Western blots with viral proteins from SIV-infected cells. Briefly, proteins 

present in the lysate of an SIV infected cell were separated on a 15% (wÂ ) SDS- 

polyaoylamide gel and the denatured proteins electroblotted onto nitrocellulose. The 

nitrocellulose was cut into 0.5cm x 7cm strips, and individual strips were incubated with a 

1:800 dilution of pooled sera from each vaccination group or with control sera from non­

immunised mice. Bound antibodies were detected by autoradiography after incubating of 

the strips with an HRP-conjugated anti-mouse Ig, followed by ECL buffers and 

autoradiography (Fig. 32).

Using this method, no antibodies could be detected in the sera of control mice 

(lane 1) or mice immunised with His-pl7-Pk (lane 2), or pl7-MAb (lane 4), the last 

finding being rather surprising since immunisation with pl7-MAb stimulated an antibody 

response specific for His-pl7-Pk. The sera from mice immunised with His-pl7-Pk in the 

presence of alum (lane 3), reacted only weakly with pl7. In contrast, sera from mice 

immunised either with pl7-MAb complexes adsorbed onto alum (lane 5) or pl7-MAb- 

LTB complexes alone (lane 6) or with alum (lane 7), specifically interacted with both pl7 

and its precusor molecule, p57. It was particularly interesting to note that the immune sera 

from mice vaccinated with pl7-MAb-LTB complexes gave a stronger response to the SIV 

proteins than immunisation with pl7-MAb complexes in the presence or absence of alum,
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pl7

Figure 32. Induction of immunity to pl7 from SIV-infected cell lysates.
Viral proteins from a SIV-infected cell lysate were separated through a 15% 
(w/v) SDS-polyacrylamide gel, then electroblotted onto a nitrocellulose filter 
and the filter cut into strips. The sera within each vaccination group (see 
below) was pooled and diluted 1:800, then incubated with the protein-coated 
nitrocellulose strips. As a control, sera from non-immunized mice was 
similarly treated. Bound antibodies were detected with an HRP-conjugated 
anti-mouse Ig antibody, ECL and autoradiography.
Lane 1 represents control sera, lanes 2-7 represent sera from mice 
immunized three times with pl7 (lane 2), p i7 ads. alum (lane 3), pl7-MAb 
(lane 4), pl7-MAb ads. alum (lane 5), pl7-MAb-LTB (lane 6), or 
pl7-MAb-LTB ads. alum (lane 7).
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thereby supporting the previous observation that conjugation of pl7-MAb complexes to 

LTB-Pk may bypass the need for additional adjuvants to efficiently prime the immune 

system.

E.S. Induction celUmediated immunity to His-pI7-Pk by immunisation 

with p I7 ’>MAb‘-LTB complexes.

Lymphokines secreted from CD4+ T cells, are known to control in vivo 

immunoglobulin isotype selection [Finkelman et al.y 1990]. Since all naive B cells 

normally secrete IgM during primary antigenic stimulation, the presence of IgG antibodies 

to His-pl7-Pk and LTB-Pk following immunisation with pl7-MAb-LTB complexes, is an 

indication of the involvement of cell-mediated immunity in the generation of the antigen- 

specific B cell response to His-pl7-Pk and LTB-Pk.

To investigate whether immunisation with pl7-MAb-LTB complexes led to 

efficient priming of the cell-mediated immune system and tlie generation of His-pl7-Pk 

and LTB-Pk-specific T cells, the lymphocytes from mice immunised three times 

intraperitoneally, as described above, were examined in lymphocyte proliferation assays 

for their ability to respond to specific stimulation with His-pl7-Pk or LTB-Pk six months 

after the final immunisation. For comparison, the lymphocytes from mice that had been 

immunised with His-pl7-Pk or pl7-MAb, in the presence or absence of alum, were 

similarly analysed. The spleens from two mice in each vaccination group, or from non­

immunised control mice, were removed and single-cell suspensions prepared. lOOpl 

samples of the unfractionated splenocyte suspension at a concentration of approximately 

10  ̂cells/ml, were then added to the wells of a 96-well plate, and stimulated in vitro for 5 

days at 3TCI5% CO2 with purified His-pl7-Pk or ammonium sulphate-purified LTB-Pk 

at the concentrations shown in the legends of Figs. 33(a) & (b). As positive and negative 

controls, the cells were also cultured with medium alone or 2pg/ml phytohaemagglutinin 

(PHA, a well-known T cell mitogen), respectively. During the final 18 hours of the 

stimulation, O.SfxCi pH]-thymidine was added to each well in the assay and after 

harvesting the cells onto glass fibre filters, the proportion of pH]-thymidine incorporated
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into the DNA of proliferating cells was determined in a (^-scintillation counting [Fig. 

33(a)]. The assay was performed in triplicate and the data is presented as counts per 

minute (cpm) ±  standard error of mean (SEM).

The immune ceUs from each vaccination group and naive cells showed an 

enhanced response following mitogenic stimulation with PHA (see legend of Fig.33). 

Furthermore, there was no evidence the lymphocytes from immunised or control mice 

proliferated non-specifically when cultured in medium alone (see legend of Fig.33). Upon 

stimulation with His-pl7-Pk, the greatest proliferative response occurred with immune 

cells recovered from mice immunisW intr^eritoneally with either pl7-MAb-LTB or p i7- 

MAb-LTB adsorbed onto alum, there Wing little difference in the antigen-specific 

response between the two vaccination groups.

In contrast to this finding, the immune cells from mice vaccinated with purified 

His-pl7-Pk or pl7-MAb complexes showed an enhanced immune response to the 

recombinant SIV protein, if the purified protein or immune complexes had been adsorbed 

onto alum prior to administration, though the actual response was evidently lower than the 

proliferative response demonstrated by the primed lymphocytes from mice vaccinated with 

pl7-MAb-LTB complexes. In all cases, the response to His-pl7-Pk was highly specific, 

since lymphocytes from naive, non-immunised mice failed to proliferate upon stimulation 

with the recombinant SIV protein.

Enhanced proliferative responses were also evident when primed cells from pl7- 

MAb-LTB immunised mice were challenged in vitro with LTB-Pk [Fig.33 (b)]. Once 

again, adsorption of the complex onto alum only had minor effects on the proliferative 

response to LTB-Pk. None of the mice immunised with purified His-pl7~Pk or pl7-MAb 

with or without alum, nor naive mice, proliferated in response to stimulation with LTB- 

Pk. Thus the proliferative response seen for primed cells from pl7-MAb-LTB vaccinated 

mice was highly specific and not due to the ammonium sulphate precipitated LTB-Pk non- 

specifically stimulating the lymphocytes.

These results suggest that immunisation with pl7-MAb-LTB complexes may 

efficiently prime the cell-mediated immune system to His-pl7-Pk and LTB-Pk. In
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addition, since the assay was performed six months after the final immunisation, the 

evidence presented here implies that parental administration of pl7-MAb-LTB complexes 

may lead to the induction of long-term memory cells specific for both His-pl7-Pk and 

LTB-PL

E,4. FACscan and cytokine analysis o f the proliferating cell type.

Mixed lymphocyte proliferation assays, are normally a reflection on the response of 

T cells (usually €04*^ T cells) to antigen-specific stimulation. In an attempt to establish 

whether the lymphocyte population fiom the unfractionated splenic cultures that responded 

to stimulation with His-pl7-Pk was indeed CD4+ T cells and not B cells, the proliferation 

assay was repeated and the ratio of cells bearing membrane immunoglobulin or murine 

CD4 molecules, before and after stimulation, was examined in immunofluorescence 

assays.

Single-cell suspensions were prepared fiom the spleens of vaccinated mice, then 

added to the wells of a 24-well cultuie plate in 1ml volumes, at a concentration of 

apprexiimtely 10̂  cells/ml. The cells were then stimulated in vitro for five days with an 

4{ig/ml purified His-pl7-Pk at 3>TCJ5% CO2. The remaining cells not used in the 

proliferation assay, were retained to examine tlie ratio of B cells to CD4+ T cells in the 

spleens of vaccinated mice prior to antigen-specific stimulation. After a five day culture 

period, the cells were gently harvested for phenotypic analysis. The ratio of B cells to 

CD4+ T cells prior to, and after, antigen-specific stimulation was determined by directly 

staining the unfractionated lymphocyte populations with fluorescein isothiocyanate 

(H rC)-labeUed antibodies specific for murine Igs or CD4 molecules, respectively, and 

calculating the percentage of fluorescent cells in 10,000 events using the LYS YS program 

of a Becton Dickson FACscan. An example of the FACscan result is shown in Fig 34. 

Panels (a) and (b).

In unstimulated spleens, the ratio of B cells to (D4+ T cells in the mixed 

lymphocyte culture, was approximately 45:40, irrespective of the vaccination group 

studied, which is consistent with the normal ratio of lymphocytes populating the spleen
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[see * Practical hnmunology'] [Fig. 34, Panel (a)]. However, after stimulation with His- 

pl7-Pk, the proportion of cells detected with FTTC-labelled anti-mouse Ig antibody to the 

proportion detectable with FTTC-labelled anti-murine CD4 antibody, was approximately 

4:70 [Fig. 34, Panel (b)]. These results suggest that following a five day stimulation with 

His-pl7-Pk, CD4+ T cells predominate.

In a further attempt to characterise the responding cell population in the 

proliferation assay, the culture supernatant at the end of the stimulation period was 

analysed for tlie presence of T cell secreted lymphokines using cytokine-ELISA assays.

Immune cells derived from the spleens of mice vaccinated with pl7-MAb 

complexes in the presence of alum or p 17-MAb-LTB complexes alone or after adsorption 

of the complexes onto alum, were stimulated in vitro for five days with medium alone, 

2pg/ml PHA or 4p.g/ml of His-pl7-Pk (as described above), and at the end of the culture 

period, the supernatant from each culture was examined for IL-2, IL-5 and IFN-y, using 

cytokine-ELIS A assays (kindly provided by Dr. A. Mowat, Glasgow University). The 

reason for only examining the cells from these tliree vaccination groups was due to the fact 

that the anti-cytoîdne antibodies used in the assays were both extremely expensive and in 

limited quantities, tlius it was felt that it would be more pmdent to only analysis the three 

vaccination gioups that had exhibited the highest proliferative response to His-pl7-Pk.

High protein-binding 96-well microtitre plates were pre-coated with anti-IL-2, 

IL-5 and XFN-yantilxKlies for 18 hours at 4®C. 50pl of the culture supernatants recovered 

after a five day stimulation period in vitro, was added to the first wells in a row and then 

double-diluted along the row. To measure cytokine levels in unstimulated and mitogen 

stimulated cultures, the supernatant from lymphocytes stimulated with medium alone or 

PHA were also included in the assay. After a three-hour incubation at 37®C, the presence 

of EL-2, IL-5 and EFN-y was detected with a biotin-conjugated anti-IL-2, EL-5 and BFN-y 

antibcdies, followed by extravidin-peroxidase then TMB substrate, and the adsorbance at 

630nm measured. The cytokine concentrations in the test supernatants were quantitated by 

reference to a standard curve constructed using serial dilutions of the standard cytokines.

The level of EL-2 detected in the culture supernatant after a five day specific
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Lymphocytes stained with

Anti-Ig Anti-CD4

(a)

10®

(b)

10®

Figure 34. FACscan analysis of HiS“pl7-Pk stimulated cells.
The figure shows an example of the phenotypic analysis of the immune cells from 
p 17-MAb-LTB vaccinated mice, prior to [Panel (a)] and after [Panel (b)] a five day 
stimulation in vitro with His-pl7-Pk. The proportion of B cells and CD4+ T cells in 
an unfractionated population of immune spleen cells was determined by staining the 
cells with FTTC-labelled anti-murine Ig or CD4 antibodies. Positive fluoresence is 
shown on the right hand side of each graph.

stimulation period was negligible for each vaccination group studied (Table 4) and was 
well below background levels of DL-2 from unstimulated cultures. Similarly, when the 
amount of IL-5 was quantitated for each culture, although immune cells from all 
vaccinated mice were shown to secrete the cytokine, the actual values obtained were small,
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even in PHA stimulated cultures. This minimal detection of BL-5 in the late stages of 

specific stimulation has t ^ n  observed by others [Wilson etaL, 1991]. Examination of the 

cultures for IFN-y proved illuminating. Although antigen-specific stimulation of immune 

cells fiom mice vaccinated with pl7-MAb complexes in association with alum resulted in 

detectable IFN-y levels in the culture supernatant, the actual cytokine level was less than 

non-specific prWuction of IFN-yfrom unstimulated cultures. In contrast, stimulation of 

lymphocytes fiom mice vaccinated with p 17-MAb-LTB complexes, demonstrated high 

levels of IFN-ypioduction, particularly if the complexes were administered in the 

presence of alum.

These results suggest that the presence of LTB-Pk in the vaccine formulation may lead to 

the priming of cells that are capable of secreting IFN-y.

SECTION Fo Mucosal lîîimunogeîîlcity of Partially Purified 
pl7«MAb»LTB complexes.

F .l. Imtroduciion^

The success of soluble p 17-MAb-LTB complexes in inducing systemic immunity to 

His-pl7-Pk and viral proteins from SIV infected cells, led to the investigation as to whether 

such complexes were also capable of stimulating mucosal and/or systemic immunity to the 

recombinant SIV antigen, following intranasal immunisation. In Section F of the results, the 

findings of these preliminary mucosal immunisation studies are presented.

F.2. LTB-Pk does not potentiate the immune response to His-pl7->Pk 

follomng intranasal immunisation.

To determine whether p 17-MAb-LTB complexes were immunogenic by the mucosal 

route, a series of intranasal immunisation studies were conducted, p 17-MAb-LTB complexes 

were constructed as before, and their efficacy compared with purified His-pl7-Pk, pl7-MAb 

and His-pl7-Pk co administered with (but not coupled to) LTB-Pk (pl7/LTB). This latter
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vaccine was included in the studies to determine the relevant importance of the p 17-MAb-LTB 

linkage, as a means of potentiating the response to His-pl7-Pk.

Groups of four Balb/c mice, aged 10-12 weeks, were gently anaesthetised and the 

vaccines, containing the equivalent of Ipg of His-pl7-Pk (and where appropriate, Ipg LTB- 

Pk), were administered intranasally in a final volume of 50p,l. All mice were vaccinated three 

times at two week intervals and the immunogenicity of each vaccine was determined by 

analysing the sera ten days after the third immunisation for antibodies to His-pl7-Pk, LTB-Pk 

or a contix)! antigen, ovalbumin, using an ECL-based immune assay (Fig.35). The antibody 

titres to the His-pl7-Pk and LTB-Pk are shown in Table 5.

Examination of the sera from non-immune control mice, revealed no detectable serum 

antibodies specific for any of the test antigens. When the sera from mice immunised with His- 

pl7-Pk (Group A), pl7/LTB (Group B), pl7-MAb (Group C) or pl7-MAb-LTB (Group D) 

were assayed for antibodies to His-pl7-Pk, no serum immunity to His-pl7-Pk was 

detectable. Examination of the sera from each vaccinated mouse for immunity to LTB-Pk, 

demonstrated that only the mice in Groups B and D contained serum antibcxlies specific for 

LTB-Pk, there being little difference in the LTB-Pk-specific antibody titres between the two 

groups. In addition, none of the mice exhibited detectable antibody responses to the control 

antigen (data not shown).

To investigate whether the vaccines induced mucosal immunity to His-pl7-Pk and/or 

LTB-Pk, the saliva from each vaccinated mouse was examined for His-pl7-Pk- and LTB-Pk- 

specific IgA antibodies, fourteen days after the third immunisation. As a control, saliva from 

non-immunised mice were also assayed. Analogous to the findings of the serum analysis, no 

antibodies specific for His-pl7-Pk were detectable in the saliva of vaccinated mice (Fig. 36, 

Table 6). However, when the saliva was assayed for immunity to LTB-Pk, the mice that were 

immunised with eitha* pl7/LTB or p 17-MAb-LTB were shown to contain IgA antibodies- 

specific for LTB-Pk.
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Figure 35 and Table 5. Serum antibody responses to His-pl7-Pk and LTB-Pk 
following intranasal immunization.
Groups of four Balb/c mice were immunized intranasally with His-pl7-Pk alone; 
co-administered with LTB-Pk (P17/LTB); His-pl7-Pk conjugated to MAb SV5-P-k 
(pl7-MAb); or pl7-MAb linked to LTB-Pk (pl7-MAb-LTB), three times. Ten days after the 
third immunization the sera was assayed for total antibody levels to His-pl7-Pk or LTB-Pk, 
using an ECL-based immune assay. The sera were diluted 1:50 and from this starting 
dilution, serially diluted 1:2. Bound antibody was detected with an HRP-conjugated 
anti-mouse immunoglobulin.
N.B. only two mice remained after the third immunization with p 17-MAb-LTB, the other 
two mice died due to an adverse reaction to the anaesthetic.
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Figure 35.

(a) His-pl7-Pk (b) LTB-Pk

SVS-P.k i

pl7
alone

pl7/LTB

pl7-Ab 10 
11

 U
pl7-Ab-LTB 13

14

control Ab

pl7/LTB

SVS-P-k

pl7-Ab

control Ab

pl7-Ab-LTB

# # # #

# #  #

Table 5.

Vaccine Mouse
number

Antibodies to 

His.pl7-Pk LTB.Pk

Group A His.pl7.Pk
1
2
3
4

^ 0
^ 0
^ 0
^ 0

^ 0
^ 0
^ 0
^ 0

5 ^ 0 25600
Group B pl7/LTB 6 ^ 0 25600

7 ^ 0 12800
g ^ 0 25600

9 ^ 0 ^ 0
Group C pl7.MAb 10 ^ 0 ^ 0

11 ^ 0 ^ 0
12 ^ 0 ^ 0

Group D pI7-MAbLTB 13
14

^ 0
^ 0

12800
25600
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Figure 36 and Table 6. Antibodies to His-pl7-Pk and LTB-Pk in the 
saliva of intranasally vaccinated mice.
Groups of four mice were immunised intranasally three times with the vaccines 
shown, and fourteen days after the third immunisation the saliva from immunised 
mice or non-immunised control mice, were collected and assayed for antibodies to 
His-pl7-Pk, LTB-Pk or a control antigen, ovalbumin, using ECL-based immune 
assays. The saliva was diluted 1:50 and from this starting dilution, serially diluted 
1:2 in the wells of a tersaki plate. The dilutions were then incubated with 
nitrocellulose filters pre-coated with the appropriate antigen. Bound antibody was 
detected with a goat anti-mouse IgA antibody, followed by an HRP-conjugated 
anti-goat Ig, ECL and autoradiography. The antibody titres are tabulated in Table 6. 
N.B. Only two mice remained following three immunisations with p 17-MAb-LTB, 
since two died due to an adverse reaction to the anaesthetic.
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Figure 36.
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Table 6.

V accm e Mouse
number

Antibodies to 

His-pl7-Pk LTB-Pk

Group A HiS“pl7»Pk
1
2
3
4

^ 0  ^ 0  
^ 0  ^ 0  
^ 0  ^ 0  
^ 0  ^ 0

Group B pl7/LTB
5
6 
1 
8
9

10
11
12

13
14

^ 0  400 
^ 0  400 
^ 0  400 
^ 0  400

Group C pl7»MAb
^ 0  ^ 0  
^ 0  ^ 0  
^ 0  <50 
^ 0  ^ 0

Group D p 17-MAb-LTB ^ 0  1600 
^ 0  1600
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F.3. JnstabiUty o f  His-pl7-Pk in saliva.

One possibility for the failure of the vaccines described in Section F.2 to induce 

immunity to His-pl7-Pk following inti’anasal immunisation, was that His-pl7-Pk may 

undergo mpid degradation upon exposure to the protease-rich mucosal environment. This 

hypotliesis was tested by analysing the stability of His-pl7-Pk in saliva, an example of a 

protease-rich mucosal secretion.

Purified His-pl7-Pk at a concentration of 2 or 4pg was mixed with saliva (12% v/v) 

and the solution was incubated at 37°C. At the times indicated in the legend of Figure, a ISpl 

sample was removed and mixed with an appropriate volume of 4X disruption buffer. As a 

control, 2 or 4pg purified His-pl7-Pk was incubated with PBS (12% v/v) at 37°C for the full 

40 minute incubation period. All samples were electrophoresed through a 15% (w/v) SDS- 

polyacrylamide gel, and the stability of His-pl7-Pk determined by staining the gel with 

Coomassie blue and comparing the quantity of His-pl7-Pk present in control cultures, with 

the amount remaining after a 10,20, and 40 minute exposure to saliva (Fig. 37).

A strong band representing His-pl7-Pk was detectable in the control cultures that had 

been incubated for 40 minutes at 37°C with PBS alone (lanes 2 & 6). Thus, at this 

temperature, His-pl7-Pk was not susceptible to breakdown in the absence of protease activity. 

However, upon exposure to salivai proteases, His-pl7-Pk was rapidly degraded (lanes 3-5 & 

7-9), this being more evident at lower His-pl7-Pk concentrations. Therefore it is a strong 

possibility that the failure of the His-pl7-Pk containing vaccines to prime the mucosal and 

systemic immune systems after intranasal immunisation, was due to rapid degradation by 

mucosal proteases of the His-pl7-Pk component in the experimental vaccines.
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^  ^ ------- Hls.pl7.Pk

Figure 37. Instability of His-pl7-Pk in saliva.
2pg or 4pg of purified His-pl7-Pk in 15pl of PBS (lanes 2-5 and 6-9 
respectively), were incubated with either 2pl of saliva (lanes 3-5 and 7-9) or 
2pl of PBS Qanes 2 & 6) at 37®C for 10 minutes (lanes 3 & 7), 20 minutes 
(lanes 4 & 8) or 40 minutes (lanes 2, 5,6 & 9). The polypeptides present in 
these samples were separated by electrophoresis through a 15% 
SDS-polyacrylamide gel, then stained with Coomassie blue.
Lane 1 shows an example of the proteins detectable in a 2pl sample of saliva.
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SECTION G. Mucosal Immunogenicity of Partially Purified 
p27-MAb-LTB complexes.

G .i. Imtmduciion,

Section G of the results, describes tlie finding that His-p27-Pk is more 

resistant to degradation in saliva, and that p27-MAb-LTB complexes induce systemic and 

mucosal immunity to His-p27-Pk.

G.2, Resistance o f HiS’-p27-Fk to saliva! degradation.

The susceptibility of His-pl7-Pk to degradation by salivai proteases led to the 

search for a suitable recombinant SIV antigen that was more resilient to mucosal degradation. 

His-p27-Pk, like His-pl7-Pk, is a recombinant gag gene product that is expressed in 

moderately high quantities in Exoli (approximately 700pg/litie) and can be purified from cell 

lysates by nickel affinity chromatography. Thus, it was of interest to establish whether His- 

p27-Pk could resist rapid destruction by mucosal proteases and therefore, increase the 

potential of using bivalent immune complexes containing His-p27-Pk on one arm of MAb 

SY5-P-k and LTB-Pk on the other arm, as mucosal immunogens.

l.Spg of purified His-p27-Pk was mixed with saliva (12% v/v) and incubated at 

37°C. 15pl samples of the protein/salival solution were removed after 10,20,40,60 and 120 

minutes incubation and mixed with an appropriate volume of 4X disruption buffer. As a 

control, l.Spg of His-p27-Pk was mixed with PBS (12% v/v) and incubated for 2 hours at 

37°C. Each of the prepared samples were subjected to SDS-PAGE and the polypeptide chains 

electroblotted onto nitrocellulose. The proportion of His-p27-Pk remaining after each time 

interval was estimated by an ECL-Westem blotting assay, using MAb S V5-P-k as the 

detection antibody (Fig. 38). The decision to monitor the stability of His-p27-Pk by Western 

blotting, as opposed to Coomassie blue staining, was due to the fact that the Western blotting 

assay would also deteimine if the Pk-epitope was proteolytically cleaved from His-p27-Pk in 

saliva. Such an outcome would obviously have serious implications on the feasibility of using 

complexes that rely on the linkage of recombinant Pk-bearing proteins to MAb
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SV5“P“k, as mucosal immunogens.

In the absence of salivai proteases (lane 1), His-p27-Pk was detected as a single 

band in the control sample that had been incubated at 37°C In contrast to this finding, 

following incubation of His-p27-Pk with saliva, both intact His-p27-Pk and a second protein, 

presumed to be a degi*aded product of the recombinant protein, were detectable by MAb SVS- 

P-k (lanes 3-6). However, it was evident by comparing the strengths of the His-p27-Pk bands 

after incubation with PBS and saliva, that even after a prolonged two hour incubation with 

saliva, the majority of His-p27-Pk remained undegraded. These findings suggest that His- 

p27-Pk may be relatively resistant to mucosal proteolysis.

To determine whether salivai proteases would impair the structural integrity of 

p27-MAb-LTB complexes, the stability of p27-MAb-LTB complexes (prepared in a similar 

fashion to that described for p 17-MAb-LTB complexes) following incubation with saliva, was 

investigated in immune precipitation assays. The equivalent of 1.5pg of p27-MAb-LTB 

complexes was incubated with saliva (12% v/v) at 37°C for two hours. As a control, 1.5(ig of 

p27-MAb-LTB complexes were mixed with PBS (12% v/v) and similarly incubated. The 

stability of the p27-MAb-LTB complexes following incubation with PBS or saliva, was 

determined by precipitating the complexes onto St. aureus and examining the precipitates for 

the presence of both His-p27-Pk and LTB-Pk, by Western blotting. As controls, His-p27-Pk 

and LTB-Pk were incubated with St.aureus alone, to determine whether the recombinant 

proteins could precipitate onto St.aureus in the absence of MAb SV5-P-k.

As shown in figure 39, neither His-p27-Pk nor LTB-Pk bound to St. aureus in the 

absence of MAb SV5-P-k (lanes 1&2, respectively). However, two bands representing 

the recombinant proteins were present in the precipitate from the control culture, 

demonstrating that p27-MAb-LTB complexes were not degraded following a two hour 

incubation in PBS at 37°C (lane 3). When the stability of p27-MAb-LTB complexes that had 

been incubated witli saliva were examined by Western blotting, it was evident that the whole 

complex remained intact and could be captured by St.aureus (lane 4).

Hence, p27-MAb-LTB complexes were resistant to degiadation by salivai 

proteases under the conditions described.
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1 2 3 6 7

 His-p27-Pk

Figure 38. Stability of His-p27-Pk in saliva
The stability of His-p27-Pk after exposure to salivai proteases was investigated in a 
Western blot assay. 1.5pg of His-p27-Pk in 15pl of PBS was incubated with either 2pl 
of PBS (lane 1) or 2pl of saliva (lanes 2-6) at 37®C for 10 minutes (lane 2), 20 minutes 
Gane 3), 40 minutes (lane 4), 60 minutes (lane 5) or 120 minutes (lanes 1 & 6). Samples 
were removed after the appropriate times and the proteins electroblotted onto 
nitrocellulose. The presence of His-p27-Pk was detected by probing the blot with MAb 
SV5-P-k followed by HRP-conjugated Protein A, ECL and autoradiography.
Lane 7 represents a control sample of 2pl saliva that had been incubated at 37®C for 120 
minutes.

1 2 3

His-p27-Pk

 LTB-Pk

Figure 39. Stability of p27-MAb-LTB complexes after exposure to salivai proteases. 
The stability of p27-MAb-LTB complexes was investigated in immune-precipitation 
assays. 1.5|ig of p27-MAb-LTB complexes in 15pl of PBS were incubated with either 
2|il of PBS (lane 3) or 2pl of saliva (lane 4) for 2 hours at 37°C. The complexes were 
then mixed with St. aureus and the resulting precipitates analysed by Western blot assay 
for the presence of His-p27-Pk and LTB-Pk. As a control, His-p27-Pk (lane 1) and 
LTB-Pk (lane 2) were incubated with St.aureus , to determine whether the recombinant 
antigens were bound by St. aureus in the absence of the anti-Pk MAb.
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G.3, p27‘̂ MÂb'’LTB complexes can induce mucosal and systemic immunity 

to the recombinant SIV  protein, follovnng intrmiasal inoculation.

On the basis of the evidence outlined in Section G.2., it was decided to 

investigate whether p27-MAb-LTB complexes were immunogenic following intranasal 

inoculation.

Eight Balb/c mice, aged 10-12 weeks, were gently anaesthetised with di-ethyl 

ether and the equivalent of 1.5pg of His-p27-Pk in p27-MAb-LTB complexes was 

administered into the nasal cavity, in a final volume of 75pl. All mice received two further 

immunisations of Ifig of p27-MAb-LTB in a final volume of 50pl at two week intervals. 

Ten days after the third immunization, the serum was analysed by ECL-based immune 

assays for immunity to His-p27-Pk-, LTB-Pk, GST-Pk or a control antigen, ovalbumin 

(Fig.40). The antibody titres to the respective antigens are shown in Table 7.

All mice i^eceiving intranasal doses of p27-MAb-LTB complexes contained 

circulating antibodies reactive with His-p27-Pk, although the actual antibody titres varied 

between immunised mice [Fig.40, Panel (a) & Table 7, column 1], High levels of serum 

antibodies specific for LTB-Pk were also detectable throughout the vaccination group, but 

in contrast to the variable immunity to His-p27-Pk, the antibody titres to LTB-Pk were 

relatively consistent [Fig. 40 Panel (b) & Table 7, column 2]. Very little of the immunity 

generated to His-p27-Pk and LTB-Pk was directed at the Pk-epitope [Fig. 40 Panel (c) & 

Table 7, column 3], and none of the mice contained antibodies to the control antigen [Fig. 

40 Panel (d)]. The sera from immunised mice were also tested for their ability to react with 

viral proteins in SIV-infected cell lysates, as described in the legend of Fig. 41. As a 

control, sera finom non-immunised mice was also included in the assay.

Examination of the resulting autoradiograph revealed that immune sera (lane 1), 

but not control sera (lane 2), reacted strongly with both p27 and its percursor molecule, 

p57.
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Antibodies in the sera

Mouse
Dumber ms.p27.Pk

to
LTB-Pk GST-Pk

1 14580 ^3542940 60
2 540 ^3542940 60
3 1620 ^3542940 <20
4 1620 >3542940 <20
5 393660 >3542940 <20
6 4860 >3542940 <20
7 540 >3542940 <20
8 43740 >3542940 <20

Table 7, Antibody titres in the sera of mice intranasally immunized with 
p27-MAb-LTB complexes.
Table shows the total Mtibody titres to His-p27-Pk, LTB-Pk and GST-Pk in the 
sera of mice Balb/c mice following three intranasal inoculations with the 
equivalent of l|ig of His-p27-Pk in p27-MAb-LTB complexes. The sera was 
assayed 10 days after the third immunization (see Rgure 40).

p57 
p27

Figure 41. Induction of systemic immunity to SIV following intranasal 
immunization with p27-MAb-LTB complexes.
The pooled sera from l»th mice immunized with p27-MAb-LTB complexes (lane 1) 
and non-immunized mice (lane 2) were incubated with nitrocellulose strips that had 
been pre-coated with viral proteins from an SIV-infected cell lysate. Bound antibodies 
were detected with an HRP-conjugated anti-mouse Ig, ECL and autoradiography.
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G,4, Analysis o f the mucosal response to HiS'^p27-Pk and LTB-Pk in 

vaccinated mice.

The presence of serum antibodies to p27 and LTB-Pk following intranasal 

administration of p27-MAb-LTB complexes suggests that the immune complexes were 

processed at the local mucosal level in the upper respiratory tract To establish whether the 

mucosal system was also primed to His-p27-Pk and LTB-Pk following intranasal 

vaccination with p27-MAb-LTB complexes, both the upper and lower respiratory tract 

were examined for evidence of an immune response to tlie i^ecombinant antigens.

(1) Measurement of secretory antibody.

To measure the level of specific-humoral immunity to His-p27-Pk and LTB-Pk 

in the upper respiratory tract, saliva was collected from pilocarpine treated mice, 11 days 

after the third intranasal immunisation. Saliva was serially diluted 1:2 from a starting 

dilution of 1:5 in the wells of a terasaM plate and then incubated with either His-p27-Pk 

LTB-Pk, or GST-Pk coated nitrocellulose sheets. As a control, saliva from non­

immunised mice were similarly treated. Antigen-specific antibodies were visualised upon 

autoradiography after incubating the sheets with goat anti-mouse IgA followed by an 

HRP-conjugated anti-goat Ig, exposure to ECL buffers and autoradiography (Fig. 42). 

The antibody titres to His-p27-Pk and LTB-Pk are shown in Table 8.

Following three intranasal immunisations with p27-MAb-LTB, all vaccinated 

mice contained anti-LTB-Pk antibodies in the saliva 11 days after immunisation (Column 

1), the actual titres varying from 20-320. In contrast to this finding, only minor levels of 

His-p27-Pk-specifrc antibcxiies were detectable in die saliva of two of the vaccinated mice 

(column 2). When the saliva was assayed for antibodies specific for the Pk-epitope, or a 

control antigen, no antigen-specific antibodies were detectable (data not shown).

(2) ELISPOT Analysis.

To further analyse the efficacy of intranasal administration of p27-MAb-LTB 

complexes to induce mucosal immunity to His-p27-Pk, the lungs from vaccinated mice 

were investigated for immunity to the recombinant antigens using an enzyme-linked 

immunospot (ELISPOT) assay. Such assays are particularly suitable for investigating
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Figure 42 and Table & Antibodies in the saliva of p27-MAb-LTB intranasally 
vaccinated mice specific for His-p27-Pk or LTB-Pk.
Eight Balbl/c mice were immunised intranasally at two week intervals with the 
equivalent of l^ig of His-p27-Pk in p27-MAb-LTB complexes. Eleven days after the 
third immunisation, the saliva was collected and assessed for His-p27-Pk and 
LTB-Pk-specific IgA antibodies as described in the legend of Fig. 40. The antibody 
titres are ^ven in Table 8.
Please note that in this instance, the saliva was diluted 1:5 and from this starting 
dilution, serially diluted 1:2.
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Figure 42.

(a) His-p27-Pk (b) LTB-Pk

1
2
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Table 8.

Antibodies in Saliva 
to

His-p27-Pk LTB-Pk
Mouse
number

1 <5 160
2 <5 80
3 <5 160
4 20 80
5 <5 320
6 20 160
7 <5 80
8 <5 20
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humoral immunity in tissues that are normally difficult to analyse e.g. Peyer's patches of 

tlie gut [Czeridnsky et al., 1983], and since they measuie specific antibody secretion at 

tlie single cell level, they are ultimately more sensitive than conventional ELISA's that 

measure specific antibodies in external secretions. Furthermore, with selective use of 

isotypically different detection antibodies in the assays, it is possible to monitor the 

isotype pattern of the antigen-specific antibody secreting cells.

Fourteen days after the third immunisation two mice were killed and their lungs 

extract^ To measure the difference in the level of anti-recombinant p27 antibodies 

secreting cells between peripheial and mucosal tissues following intranasal immunisation 

with p27 -MAb-LTB complexes, tlie spleens were also removed for analysis. For the 

lungs, tlie outer epithelial layer was removed by treatment with collagenase A and DNase 

I, and the cells liberated by straining the digested tissue through nylon mesh. Spleen cells 

were prepared as described in Methods. As controls, the lungs and spleens from non­

immunised, agW-matched Balb/c mice were similarly treated.

The cells were resuspended in ISCOVE's medium containing 10% FCS to give 

a concentration of approximately 10̂  cells/ml. KXlpl of the cell suspension was added to 

the top wells of His-p27-Pk-coated 96-well microplates and four serial 1:4 dilutions in 

ISCOVE's medium were performed. The plates were incubated at 37°C, 5% CO2 in a 

humidified incubator for 18 hours to allow antibody secretion to occur. After the removal 

of cells, a 1:1(X)0 dilution of sheep anti-mouse IgM, IgG or IgA antibodies were added to 

the appropriate wells of replicate plates, followed by a 1:1000 dilution of an alkaline 

phosphatase goat anti-sheep streptavidin-conjugated antibody. Secreted and bound 

antibody was visualised as discrete spots, by the addition of alkaline phosphatase 

substrate to each well, and when the spots were fully developed, tlie wells were washed 

gently in distilled water to remove excess substrate. The number of antibody secreting 

cells (ASCs) of the particular isotype were determined by enumerating the number of 

spots present under a dissecting microscope (Table. 9).

His-p27-Pk-specific antibodies of all the major isotypes could be detected in the 

lungs of mice vaccinated three times intranasally with p27-MAb-LTB. Intriguingly, the
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predominant anti-His-p27-Pk antibody response was of the IgG isotype, tliough IgA 

antibodies specific for the recombinant SIV protein were also present in high numbers. In 

comparison, although the spleen of vaccinated mice also contained B cells actively 

secreting antibodies to His-p27-Pk, very few cells secreted antibodies of the IgA isotype, 

instead IgG secreting cells predominated.

Thus, intranasal administration of p27-MAb-LTB complexes can induce 

immunity to His-p27-Pk in the lungs of vaccinated mice.

G.5. Cell-mediated immune response.

Recent reports have suggested tliat, in contrast to popular belief, the mucosal 

immune system does exhibit memory [Vajdy and Lycke et al,, 1993]. To further 

investigate the efficacy of p27-MAb-LTB complexes as immunogens, the ability of the 

complexes to induce memory to His-p27-Pk and LTB-Pk was investigated.

Firstly, the spleens from intranasally vaccinated mice were recovered three 

months after the third intranasal vaccination and analysed for their ability to respond to 

specific antigenic challenge with purified His-p27-Pk and LTB-Pk in lymphocyte 

proliferation assays. As a control, tlie cells from non-immunised, aged-matched mice were 

similarly analysed. 10̂  cells/ml were either added to the wells of a 96-well microtitre plate 

(lOOpJ per well), or to the wells of a 24-well micintitre plate (1ml per well). All cells were 

then stimulated in vitro witli medium alone, 2|Xg/ml PHA, purified His-p27-Pk or purified 

LTB-Pk (see Fig. legend for the concentrations of the recombinant antigens). The plates 

were incubated at 37°C, 5%C02 for five days in a humidified incubator and O.SpCi of 

[3H]-thymidine was added to each well of the 96-well microtitre plate for the last 18 hours 

of the stimulation. The cells in the 96-well plate were then harvested and the amount of 

-thymidine incorporated into the DNA of proliferating cells quantitated by a 

scintillation counting (Fig. 43). The cells in the 24-well culture plate, were gently 

haivested after a five day stimulation period with 2pg/ml PHA, 4pg/ml purified His-p27- 

Pk or O.Spg/ml LTB-Pk and retained for phenotypic analysis, as described in previously.
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Although all cells responded to mitogenic stimulation with PHA (see legend of 

Fig.43), neither immune cells or control cells responded with non-specific proliferation 

when cultured in medium alone (see legend of Fig.43). There was also no evidence that 

naive cells from non-immunised mice responded to stimulation with either His-p27-Pk or 

LTB-Pk- In contrast, a significant enhancement in the proliferative responses to the 

recombinant proteins was seen when immune cells from mice vaccinated intranasally three 

months previously with p27-MAb-LTB complexes, with maximum proliferation occurring 

after stimulation with 4pg/ml purified His-p27-Pk and 0.5pg/ml LTB-Pk,

To determine whether that the cells responding to His-p27-Pk and LTB-Pk 

were antigen-specific memory T cells, the immune cells in the 24-well plate that had been 

stimulated with 4pg/ml His-p27-Pk or 0.5{0.g/ml LTB-Pk were harvested and divided into 

three equal aliquots of 10  ̂cells. One of the aliquots was then incubated with a 1:100 

dilution of FTTC-labelled anti-mouse Ig, the second aliquot with FTTC-labeUed anti­

murine CD4 and the third aliquot with FTTC-labelled anti-murine CD8. As a comparison, 

the cells that had been stimulated with PHA were similar labelled.

For immune lymphocytes stimulated with the PHA, only the CD8+ T cells and 

CD4+T cells were identified as responding to the T cell mitogen (Fig.44). Following a 

five day stimulation with 4}xg/ml of purified His-p27-Pk, both CD4+T cells and CD8+ T 

cells were detectable in the stimulated cultures. In contrast, only CD4+ T cells were 

detectable after stimulation with LTB-Pk, suggesting that intranasal administration of 

LTB-Pk specifically primes the CD4+ T cell subset For none of the antigen or mitogen 

stimulated cultures were B cells detectable in the assay after a five day stimulation period.

Secondly, two mice were given a fourth intranasal boost with 1.5pg of His- 

p27-Pk in p27-MAb-LTB complexes, three months after the third immunisation, and the 

sera was assayed for immunity to His-p27-Pk, LTB-Pk, GST-Pk or a control antigen. In 

botli instances, the mice were seen to respond with antiWdy titres to His-p27-Pk and 

LTB-Pk similar in magnitude to that seen following three intranasal immunisations (data 

not shown). This response was highly specific since no antibodies were detectable to 

either the Pk-epitope or the control antigen.
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ANTI Ig

L Y M PH O C Y TE S ST A IN E D  W ITH  

ANTI CD4

-iV—Tf-

A NTI CDS

T p  I E

PHA
stimulated

His-p27-Pk
stimulated

LTB-Pk
stimulated

Figure 44. FACscan analysis of recombinant PHA, p27 and LTB-Pk stimulated 
Immune cells.
Immune cells from mice that had been intranasally immunised three times with p27- 
MAb-LTB complexes were stimulated in vitro with either PHA, His-p27-Pk or LTB- 
Pk for 5 days. The cells were recovered and the proportion of B cells, C D 4 ^  cells 
and CD8+ T cells present after stimulation with the respective antigens, was measured 
by FACscan using FTTC-labelled anti-murine Ig, CD4 or CD8 antilxxlies as the 
detection antibodies.
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Thus, these results suggest that intranasal administration of p27-MAb-LTB complexes can 

lead to anti-recombinant p27 and LTB-Pk memory B and T cells.

SECTION H, Systemic Immunogesilcity of Highly Purified p27- 
MAb»LTB Complexes.

H .Î. Introduction.

The development of an efficient purification protocol for LTB-Pk meant, towards 

the end of this work, that immunogenicity studies using highly purified SIV-MAb-LTB 

complexes could be performed. In this last section of the results, the initial findings on 

the ability of such purified complexes to induce humoral immunity to His-p27-Pk 

following parental immunisation are presented.

H.2. Purified p27‘>MAb-’LTB can prime the systemic immune system to 

S IV .

To determine the efficacy of purified SIV-MAb-LTB complexes as systemic 

immunogens, p27-MAb-LTB complexes were constructed as described previously but 

incorporating LTB-Pk that had been purified by ion-exchange chromatography. Groups of 

four Balb/c mice were immunised intraperitoneally with the equivalent of Ipg purified 

His-p27-Pk (Group A), purified His-p27-Pk co administered with Ipg purified LTB-Pk 

(Group B), p27-MAb (Group C) or p27-MAb-LTB (Group D). Each mouse was 

immunised three times on days 0,14 and 37 and 10 days after the second and third 

immunisations the sera was analysed for the total level of antilxxlies to His-p27-Pk, LTB- 

Pk, GST-Pk or a control antigen, ovalbumin, using the ECL-based immune assay. As 

before, prior to immunisation, a 30pl sample of each vaccine was removed and after 

electrophoresis through a 15% SDS-polyacrylamide gel, similiar concentrations of His- 

p27-Pk in each vaccine were verified by staining the gel with Coomassie blue (data not 

shown). Figure 45 shows the ECL-based result of antibody levels to His-p27-Pk and the
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control antigen after two and three immunisations, respectively. The full antibody titres to 

His-p27-Pk, LTB-Pk, and GST-Pk are presented in Table 10.

Examination of the sera for anti-His-p27-Pk antibodies revealed a significant 

difference in the immune response to the recombinant SIV protein between the different 

groups of mice. In contrast to the findings with puiified His-pl7-Pk in Section E.2, 

purified His-p27-Pk was immunogenic when administered alone, with maximum levels of 

immunity obtainable after three inoculations, though there was some evidence that 

complexing the recombinant protein to MAb S V5-P-k resulted in a decrease in the 

immunogenicity of His-p27-Pk (Table 10, columns 1 &2).

Intriguingly, immunisation with p27-MAb-LTB complexes resulted in an 

average 8-10-fold enhancement in the immune response to the recombinant SIV protein, 

compared to vaccination with puiified His-p27-Pk co administered with LTB-Pk. 

However, after three immunisations there was no significant difference in the antibody 

titres obtained fi*om immunising with p27/LTB, and p27-MAb-LTB. These results 

indicate that, although the overall level of humoral immunity to His-p27-Pk is similar in 

mice immunised with His-p27-Pk co administered with LTB-Pk and mice immunised 

with p27-MAb-LTB complexes, p27-MAb-LTB complexes are more efficient at priming 

the immune system since fewer vaccinations are needed for the complex to induce 

appreciable antibody titres to the recombinant SIV protein. Sera from immunised mice 

also reacted with p27 (and its precursor p57) present in the total lysate of SIV infected 

cells, the strength of the signals obtained suggesting that p27-MAb-LTB complexes were 

more efficient at stimulating anti-p27 immunity (Fig. 46).

Examination of the sera response to LTB-Pk revealed only the LTB-Pk vaccine 

constructs induced antibodies to the recombinant enterotoxin subunit (data not shown), 

and there was little difference in the antibody titres obtained following immunisation with 

p27/LTB and p27-MAb-LTB. When the sera was re-assayed against GST-Pk to determine 

the proportion of antibodies that were interacting with the Pk epitope, only vaccination 

with p27/LTB seemed to induce a response to the tag antigen (Table 10, column 4).
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Figures 45 (a) and (b). Antibody response to His-p27-Pk after 
Immunisation with purified p27-MAb-LTB complexes.
Groups of four mice were immunised with the Ipg of punfied His-p27-Pk 
alone (p27), co-administered with Ipg purified LTB-Pk (p27/LTB), His-p27-Pk 
conjugated to MAb S V5-P-k (p27-MAb) or p27-MAb linked to LTB-Pk 
(p27-MAb-LTB). All mice were immunised three times and the sera assayed 
ten days after the second [Fig.45 (a)] and third (Fig.45 (b)] immunisations.
For sera taken after the second immunisation, the sera was diluted 1:20 and 
from this starting dilution, serially diluted 1:2. For sera assayed after the third 
immunisation, the starting dilution was 1:100, then the sera was once again 
serially diluted 1:2. All sera were assayed against His-p27-Pk and a control 
antigen, ovalbumin using the ECL-based immune assay. Bound antibody 
was detected with an HRP-conjugated anti mouse Ig, ECL and autoradiography.
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Figure 45 (a)
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Figure 45 (b)
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Figure 46. Detection of antibodies to SIV p27 and p57
The sera within each vaccination group (see below) or control sera from 
non-immunized mice, were pooled, diluted 1:400 and then reacted with 
nitrocellulose strips that had benn pre-coated with viral proteins from an 
SIY-infected cell lysate. Bound antibodies were detected with an 
HRP-conjugated anti-mouse Ig antibody, ECL and autoradiography.
Lane 1 represents control sera, lanes 2-5 represent sera from mice imunized 
three times with purified: p27 (lane 2); p27/LTB (lane 3); p27-MAb (lane 4) 
or p27-MAb-LTB (lane 5).

168



DISCU SSIO N

1, Expression o f LTB-Pk,

A number of plasmid vectoi-s have been constructed that permit the insertion of 

DNA sequences at the C-terminus of the LTB gene [Sandkvist et al.  ̂ 1987]. One such vector 

is pTRHlOlR, which encodes full length LTB with a short amino acid extension, containing 

five unique lestiiction sites, at the carboxyl terminus. A double stranded oligonucleotide 

sequence, encoding a 14-amino acid tag (Pk) was successfully inserted between the Hind HI 

and Spe I mstiiction sites, and the novel plasmid pTRH-Pk encoding LTB-Pk, was mobilised 

into botli Escherichia coll, and Vibrio 5p.60. Studies on the expression of LTB-Pk in either 

organism demonstrated that the recombinant enterotoxin subunit was under control of the 

inducible tac promoter, a hybrid trp~lac promoter [Bagadassarian et a/., 1983] and as such, 

LTB-Pk could only be expressed following induction with IPTG. One striking observation 

resulting from these expression studies was that LTB-Pk resided in two different cellular 

locations, depending on the host bacterium. In E.colU LTB-Pk was detectable by Western 

blot assays in the cellular lysates but not the extracellular fluid, suggesting LTB-Pk remained 

cell-associated in this organism. However, in Vibrio jp.60, although minor levels of LTB-Pk 

were present in the cellular fraction, the vast majority of LTB-Pk was secreted into the 

external milieu. Previous studies on the cellular location of LTB following expression in 

E.coli and Vibrio species has demonsti*ated a similar pathway of secretion to that of LTB-Pk, 

suggesting that the addition of the Pk-tag does not interfere with the normal translocation of 

LTB subunits. Further, since LTB-Pk was detected in Western blotting assays using anti-Pk 

MAb SV5-P-k as the detection antibody, this implies that; (1) the Pk-epitope is not removed 

prior to, or during export of LTB-Pk and, (2) the Pk-sequence is not structurally modified 

following expression in E.coli or Vibrio sp.&) since the epitope retains its antigenicity when 

coupled to the C-terminus of LTB.

Studies into the efficacy of E.coli and Vibrio sp.60 as expression systems for 

LTB-Pk, investigated the ideal conditions that promote maximal yields of LTB-Pk . In 

E.coli, maximal levels of LTB-Pk production occurred when the culture conditions were
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changed from 37°C to 30®C. However, the high level expression of LTB-Pk at this reduced 

temperature only occurred following induction with IPTG concentrations of l-0.5mM and 

there was an indication that LTB-Pk was inefficiently processed under these conditions; the 

detection of a second protein in the assay that had a slightly higher molecular weight than the 

LTB-Pk monomers, suggested that the N-lerminal signal sequence present on precursor 

molecules of LTB (and thus LTB-Pk) [Dallas and Falkow, 1980], was not efficiently cleaved 

to yield the mature protein. Enhanced expression of LTB-Pk in Vibrio sp. 60 could also he 

achieved by decreasing the temperature during induction, yet in contrast to E.coli, the level of 

LTB-Pk synthesis was consistent throughout an IPTG dose range of l-0.05mM. In addition, 

there was no evidence that LTB-Pk was susceptible to degradation following expression in 

Vibrio sp.60. These findings clearly demonstrate that Vibrio sp.60 is a more efficient 

expression system for LTB-Pk than E.coli, both in terms of stability of LTB-Pk and 

economy-wise, since reduced amounts of IPTG are necessary for maximal synthesis. Further 

support for the suitability of Vibrio sp.60 as an expression system for LTB-Pk, was provided 

by tlie evidence demonstrating that LTB-Pk was expressed at high levels in the Vibrio sp.60. 

Quantitative GMl-ELISA assays estimated that the amount of LTB-Pk detectable in the 

culture medium from IPTG-induced Vibrio sp.60 reached levels of 6 mg/litre after a 6 hour 

induction, increasing to 12 mg/Utre if the induction period was permitted to continue 

overnight. Vibrio species have previously fc^n investigated as expression systems for LTB- 

fusions [Amin and Hirst, 1994; Schodel etal., 1991]. However in those studies, there was a 

limitation to the length of time the induction could be performed, due to on-going proteolysis 

of the fused epitope. Such a finding was not demonstrable for LTB-Pk. This was first 

suggested when the level of LTB-Pk with anti-Pk reactivity in the extracellular medium was 

shown to markedly increase in correlation with increasing induction times and subsequently 

confinned in immune-precipitation assays, where all inducible protein was found to bind to 

Staphylococcus aureus in the presence, but not absence, of MAb S V5-P-k.

These results suggest that not only is Vibrio sp.60 a convenient expression 

system for LTB-Pk, but also the high level of expression and remarkable stability of LTB-Pk
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increases the recombinant enterotoxin subunit’s attractiveness as a component of novel 

vaccines.

2. ChamcÈerisution o f LTB-Pk.

Characterisation studies on LTB-Pk demonstrated that if LTB-Pk molecules were 

not exposed to heat-treatment prior to SDS-PAGE, LTB-Pk migrated with an apparent 

molecular weight of 45kD. However, when LTB-Pk was boiled prior to SDS-PAGE, the 

recombinant enterotoxin had a greater electrophoretic mobility, migrating with an apparent 

molecular weight of approximately 13.5 kD. These differential migration patterns showed that 

LTB-Pk is an heat-labile oligomer, similar to native LTB [Hardy et aL, 1988] and 

demonstrate that the presence of tlie Pk-addition does not interfere with subunit-subunit 

association. This observation was confirmed when heat-treated and untreated LTB-Pk were 

analysed by Western blot, where it was shown that MAb SV5-P-k could detect monomeric 

and oligomeric structures, respectively.

Fuither characterisation studies examined whetlier the presence of the Pk epitope 

influenced the ganglioside binding properties of LTB-Pk, the natural substrate for native LTB 

[Finkelstein and Clements, 1979]. Such studies demonstrated that LTB-Pk could efficiently 

bind to the glycolipid, GMl-ganglioside. These findings not only show that the Pk tag did 

not prevent binding of LTB to its glycolipid substrate, but also indicated that following 

binding, the interaction of the Pk-specific antiserum with the Pk-epitope of LTB-Pk was not 

inhibited. Thus the orientation of LTB-Pk once bound to GMl-ganglioside is such that the 

Pk-epitope is readily available for subsequent association with MAb S V5-P-k, and increases 

the chances that MAb SV5-P-k containing immune-complexes can be targeted to GMl- 

ganglioside through the affinity of LTB-Pk for the glycolipid. This was subsequently shown 

in GMl-ELISA assays, where SIV-MAb-LTB complexes could bind to the glycolipid, but 

SrV-MAb complexes could not.

It is interesting that these characterisation studies have demonstrated that a 14- 

amino acid sequence addition does not apparently interfere with the physiological properties 

of native LTB. Sandkvist and colleagues [1987] have shown that alterations to the carboxy

171



terminus of LTB can severely inhibit both the pentamerisation and glycolipid-binding 

properties of LTB. The exact sequence requirements involved in this inhibition are unknown.

3. Concentration o f LTB-Pk,

Purification of recombinant antigens for subsequent use in vaccine formulations is 

highly ircqjorlant since, contaminating material may increase the toxicity of the vaccine as weU 

as induce adverse immunological reactions, e.g. hypersensitivity responses. The secretion of 

LTB-Pk from Vibrio sp.6Q is clearly an attractive attribute, since it means that there are fewer 

contaminants from which LTB-Pk has to be purified. This latter point is supported by SDS- 

PAGE analysis of Vibrio sp.60 culture supernatants, where LTB-Pk and another protein, of 

unknown function, are the major protein species detectable. However, the secretion of LTB- 

Pk entails that the protein has to be purified from large volumes of medium, thus necessitating 

that a preliminary concentration step be employed prior to the purification procedures. Early 

attempts to concentrate LTB-Pk from culture supernatants employed the traditional approach 

of ammonium sulphate precipitation. The minimum concentration of ammonium sulphate 

necessary to efficiently precipitate LTB-Pk was determined empirically, by observing the 

proportion of LTB-Pk precipitated from culture supernatants following the addition of 

ammonium sulphate to a saturation level of 80%, 60%, 50% or 40% (data not shown). From 

such observations, 50% salt saturation levels were selected and subsequently employed to 

concentrate LTB-Pk from small scale volumes (<200 ml) of culture medium. Although this 

strategy was quite successful at concentrating LTB-Pk, the exposure of the culture medium to 

ammonium sulphate resulted in cleavage of the Pk epitope. This was first suggested when 

unprecipitated and precipitated samples of LTB-Pk were analysed by SDS-PAGE, where it 

was shown that precipitated LTB-Pk had a greater electrophoretic motility than unprecipitated 

LTB-Pk. Confirmation that this difference in the migi ation of LTB-Pk was due to cleavage of 

the Pk-epitope was demonstrated by the failure of MAb SV5-P-k to detect precipitated LTB- 

Pk in Western blot assays. Preliminary attempts to preserve the LTB-Pk fusion by the 

addition of the metal-ion chelator, EDTA, were based on the observation that Vibrio sp.60 

secretes a metallo-like protease [Dr. T.R. Hirst, personal communication], and thus the
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presence of EDTA could potentially inhibit the protease activity. The fidelity of this strategy 

was vindicated when samples of precipitated LTB-Pk tliat had been dialysed against PBS- 

EDTA buffers, were assessed for the presence of full-length LTB-Pk in both Western blot 

and immune-precipitation assays. The earlier observations that LTB-Pk could be expressed, 

intact, in Vibrio sp.60 suggested that the Pk sequence did not contain a binding site for any 

Vibrio sp.60 secreted protease. Tims, the susceptibility of LTB-Pk to protease activity 

following exposure of the culture medium to ammonium sulphate was interesting. It is 

possible that the protease responsible for the cleavage of the Pk-epitope is a zymogen and 

becomes activated in the presence of ammonium sulphate. Alternatively, it is possible that 

ammonium sulphate caused a conformational change or partial unfolding of the LTB-Pk, to 

reveal the protease binding site, resulting in subsequent cleavage. In either case, the cleavage 

of the Pk-epitope highlights the problems of using ammonium sulphate to concentrate LTB- 

Pk, since it involves the inclusion of an additional chemical substance that may influence the 

efficacy of the final product. In addition, ammonium sulphate precipitation is not a feasible 

strategy for concentrating LTB-Pk fiom large volumes (over 1 litre) of culture medium, since 

it requires extensive quantities of the salt, and is extremely time consuming.

An alternative and more attractive procedure for concentrating LTB-Pk from culture 

medium was ultrafiltration using a GF15 dialysis membrane with a selective porosity of lOK. 

The principal advantages over ammonium sulphate precipitation being (1) there was no need 

to add an extraneous substance that subsequently had to be removed (2) the absence of 

ammonium sulphate could potentially preserve the LTB-Pk fusion bypassing the need for 

EDTA and (3) there was little limitation in the volume of culture medium that could be 

concentrated. Such procedures could be used to extensively concentrate LTB-Pk from culture 

volumes in excess of 4 litres, the removal of water and small molecules (<10K) was 

facilitated by recirculating the culture medium through the membrane under pressures of 5-10 

IbsAn .̂ One interesting observation resulting from the SDS-PAGE analysis of ultrafiltrated 

LTB-Pk, was that, apart from LTB-Pk, there was only one other protein that could be 

concentrated to appreciable levels at the same time as LTB-Pk. This suggests that few 

proteins are constituitively secreted from Vibrio sp.60 and thus, supports the notion that
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selective secretion of LTB-Pk from Vibrio sp.60 could permit easier purification of LTB-Pk, 

since less protein contaminants have to be removed. Concentration of LTB by ultrafiltration 

using a cross-flow system and employing polyethersulphone membranes has previously been 

described [Amin and Hirst, 1994], the yield of LTB recovered from the membranes 

approaching 73%. In the ultrafiltration procedure described here, it was estimated that 85- 

90% of LTB-Pk was recovered from tlie membrane.

As well as concentiating LTB-Pk from culture supernatants, the GF15 dialysis 

membrane could be utilised to dialyse LTB-Pk in situ against the buffer of choice. Such 

versatility in the use of the GF15 dialysis membranes highlights tlieir attractiveness for 

incorporation into purification regimes in which the proteins have to be concentrated from 

large culture volumes prior to purification. In addition to the above advantages, GF15 

membranes are extremely economical since they are readily re-usable [personal observations].

4. Purification o f LTB-Pk,

LTB has been reported to be purified to homogeneity by direct application of 

clarified E.coli lysates to gel filtration columns containing galactose as a constituent of the gel 

matrix [Clements and Finkelstein, 1979; Clements et ah, 1990]. The purified protein can be 

subsequently eluted by application of 0.2M galactose to the gel filtration column. This 

association of LTB with the gel matrix is probably a reflection on the ganglioside binding 

properties of LTB, since LTB binds to gangliosides (and for that matter certain other sugars) 

through the lactose derivative, galactose [Sixma et ah, 1992]. Initial attempts to purify LTB- 

Pk using a sephadex G-25 column, the column described in the original assay, were 

unsuccessful. Although LTB-Pk was seen to bind to the column, the protein failed to elute 

following application of galactose (data not shown). Interestingly the authors who described 

the original protocol have also experienced problems in eluting LTB-fusion proteins from 

such columns [Clements, 1990], tlie reason for this was unclear. Purification of cholera toxin 

and LTB from culture supernatants of Vibrio species, has also been successfully achieved 

using GMl-ganglioside affinity columns [Tayot et ah, 1980 ]. Thus, other attempts to purify 

LTB-Pk were based on the affinity chromatography approach. In the absence of available
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GMl-ganglioside an anti-Pk MAb SV5-P-k-linked to sepharose 4B was used instead as the 

immunoaffinity resin. However, although LTB-Pk clearly interacted with the resin support, 

protein elution was only achievable after the application of extensively denaturating buffers 

containing urea, that resulted in both the dénaturation of LTB-Pk and the MAb S V5-P-k (data 

not shown). Such conditions not only necessitated that LTB-Pk had to be re-natured in vitro, 

but could also, potentially lead to the dénaturation of the Pk-fusion epitope or other epitopes 

on LTB-Pk that could be important for the enterotoxin's adjuvanticity. In addition, the 

degradation of MAb S V5-P-k during the elution step would mean that for each subsequent 

purifications, new immunoaffinity columns would have to be constructed, which would 

increase both the time and cost of the purification procedure. Elution of LTB from GMl- 

ganglioside immunoaffinity columns normally relies on extensive denaturing conditions and 

in pail, this is thought to be a reflection on the pentameric nature of LTB. It is possible that 

the five Pk-epitopes present on one pentamer of LTB-Pk, resulted in multiple interactions 

with the anti-Pk antibody, and thus making elution of LTB-Pk more difficult. In addition, 

LTB-Pk was observed to irreversibly associate with a variety of sepharose-based resins, even 

in the absence of MAb SV5-P-k, a finding that was not too surprising considering the high 

affinity LTB-Pk had for the G25-sephadex column, since both columns contain the galactose- 

derivative, agarose.

From the above findings it was thought that alternative, more conventional 

purification strategies that did not employ agarose-based resins, may be more successful at 

purifying LTB-Pk. One such alternative was hydrophobic interaction chromatography, a 

process that sepaiates biomolecules by their degree of hydrophobicity. The first hydrophobic 

column investigated was phenyl superose, which had previously been reported to 

successfully purify LTB to homogeneity from Vibrio sp.60 culture medium [Amin and Hirst, 

1994]. The elution of LTB from a resin that contains a strongly hydrophilic matrix like 

agarose, was surprising in light of the previous difficulties with such supports. It is possible 

that the attachment of the phenyl group to the carbohydrate hindered the interaction of the 

putative agarose-binding domain of LTB with the agarose-based support. If this was the case, 

it follows that only hydrophobic interactions would facilitate interaction of LTB-Pk with
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phenyl superose, and as such, elution of LTB-Pk from the column could potentially be 

achieved by conventional means. Ultrafiltrated preparations of LTB-Pk were shown to bind 

to tlie phenyl superose under high salt conditions, with the vast majority of the contaminating 

material, that failed to form sufficient hydrophobic interactions with the phenyl superose, 

being removed in the early stages of the purification. Application of a decreasing salt 

concentration resulted in LTB-Pk being eluted at salt levels of approximately 0.65M which is 

slightly higlier than the reported salt concentration for eluting LTB [Amin and Hirst, 1994]. 

However, unlike the losults of Amin and Hirst, LTB-Pk was not eluted as a homogeneous 

preparation. This was first demonstrated by the evidence of a slight 'bur' in the hydrophobic 

interaction chromatography profile and confirmed when eluted samples of LTB-Pk were 

examinW by SDS-PAGE. Having said this, the actual level of contamination was small. 

Apart from tire failure to completely purify LTB-Pk, there are additional drawbacks to the use 

of phenyl superose. For example, the columns are expensive and are normally only employed 

for the purification of small amounts of protein.

The results shown here suggested that an inexpensive alternative to phenyl superose, 

is the Macro-prep.® t-butyl hydrophobic support t-butyl is principally successful at 

purifying proteins tirat have intermediate to weakly hydrophobicity, and is chemically stable. 

Purification of LTB-Pk on this latter hydrophobic matrix, resulted in the same efficiency of 

purification as that of the phenyl superose-based purification. However, in both instances, 

hydrophobic interaction chromatography could not purify LTB-Pk completely from Vibrio 

sp.60 protein contaminants.

In contrast to these findings, application of LTB-Pk to the sulphur-based cation 

exchange matrix and its subsequent elution, resulted in a highly purified preparation of LTB- 

Pk, with no apparent contaminating material, as determined by SDS-PAGE. Thus in terms of 

purity, ion-exchange chromatography is superior to hydrophobic chromatography for 

purifying LTB-Pk from crude culture medium. There are several other advantages to the ion- 

exchange teclinique. For example, unlike hydrophobic chromatography where protein 

samples are applied under high salt conditions, there is no need to introduce and subsequently 

remove, an extraneous substance (e.g. ammonium sulphate) to tlie material to be purified.
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Further, not only did the absence of ammonium sulphate during the ion-exchange procedure 

help preserve the Pk fusion, the retention of the oligomerisation and GMl-binding properties 

of LTB-Pk, suggests that the gentle conditions under which the purification was conducted, 

did not damage any epitopes that are important for the physiological properties of LTB-Pk. 

Combining these observations, with the fact that the Bio-rex 70 column is cheap, easy to 

store, easy to regenemte, readily available, does not need expensive equipment to operate, 

and is re-usable, highlights its potential to purify LTB-Pk on the industrial level.

5. Systemic Immunogenicity o f LTB-Pk,

LTB is a potent systemic (and mucosal) immunogen, and it is thought that this 

property may contribute to the adjuvanticity of the molecule. Initial studies on the 

immunogenicity of ammonium sulphate purified LTB-Pk were conducted in the murine 

Balb/c strain (H-2K‘*) which are reported to be high responders to LTB [source of personal 

communication]. It was suggested from these studies that LTB-Pk alone was a potent 

systemic immunogen, inducing high levels of serum immunity to itself following 

intraperitoneal administration. Although, the immunogenicity of LTB-Pk was slightly 

abrogated by complexing LTB-Pk to the Pk-specific MAb, SV5-P-k, the reduction in tlie 

response was slight There were two interesting observations firom these initial studies. The 

first being tliat the presence of additional adjuvant like alum, was not apparently necessary to 

potentiate tlie immune response to LTB-Pk. Secondly, the immunity generated to LTB-Pk 

was predominately directed at LTB and not the Pk-epitope. There have been previous reports 

on the poor serum immunity to the Pk-tag when the epitope was incorporated into 

immunogenic solid matrix-antibody-antigen (SMAA) complexes [Randall etaL, 1993; 1994]. 

This was thought to W beneficial, since it implied that the immune response was not directed 

at the irrelevant epitope.

One factor that had to be taken into consideration in these initial studies, was that the 

LTB-Pk preparation was not completely pure. Thus it was possible that contaminants in the 

LTB-Pk preparations may be responsible, or contribute, to the potency of LTB-Pk, e.g. by 

polyclonally activating B cells. However, there was evidence to suggest this was not the
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case. Firstly, analysis of the sera from vaccinated mice, demonstrated that the immune 

response was highly specific for LTB-Pk. Secondly, when later immunisation studies using 

highly purified LTB-Pk were conducted, very high levels of serum immunity specific for 

LTB-Pk were detectable (data not shown). This evidence suggests that LTB-Pk, like LTB, is 

a potent sys^mic immunogen.

6, Systemic immunogenicity o f  SIV^MAb-^LTE complexes^

Preliminary immunogenicity studies on the efficacy of LTB-Pk to promote immunity 

to conjugated SIV proteins, were concerned with analysing the immune response to the 

simian immunodeficiency virus (SIV) recombinant gag gene product, p 17 or to denatured 

SrV proteins from SIV-infect cell lysates. Such studies suggested that the conjugation of 

recombinant pl7 to LTB-Pk via MAb SV5-P-k could potentiate the immune response to 

recombinant pl7 4-8 fold more than immunisation with pl7-MAb complexes alone. Further, 

following immunisation with pl7-MAb-LTB complexes the resulting anti-pl7 titres, were 

similar in all immunised mice and also were almost equivalent to the response generated 

following immunisation with pl7-MAb complexes in the picsence of alum. The potency of 

pl7-MAb-LTB complexes could be slightly enhanced by the inclusion of a second adjuvant, 

alum. This difference in response to His-pl7-Pk, was not due to variability in doses of 

administered antigen in the different vaccines, since comparative SDS-PAGE analysis of the 

various vaccines prior to vaccination, demonstrated that all vaccines contained equivalent 

amounts of His-pl7-Pk and where appropriate LTB-Pk.

In an attempt to characterise the antibody response to His-pl7-Pk, the sera was 

re-assayed for antibodies of the IgG class and divided into Protein A-binding (IgG subclasses 

of IgG2a» IgCÎ2b IgGg) versus non Protein A binding (IgG subclass IgG^) antibodies. 

Although all immunogenic vaccines resulted in a demonstrable IgG response (data not 

shown), only LTB-containing vaccines induced antibodies that could interact with Protein A, 

suggesting that LTB-Pk can modulate the immune response to His-pl7-Pk.

Serum immunity to LTB-Pk was also demonstrable following immunisation with 

pl7-MAb-LTB complexes (either alone or with alum) and this antibody response was readily
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detectable with HRP-conjugated Protein A (data not ahown). The presence of IgG antibodies 

is indicarivc of the involvement of cell -mediated immunity, since the switch from IgM 

p ro d u c ts  to IgG production is govenied by (he presence of lymphokines [reviewed by 

Rnkelmiin et ai,, 1990]. Support for the induction of cell-mediated immune responses, was 

suggested when the spl^ocytes from immune mice were investigated in vitro for their ability 

to respond to His-pI7-Pk and LTB-Pk. Mixed lymphocyte proliferation assays demonstrated 

that mice immunised with pl7-MAb-LTB complexes in the presence or absence of alum, 

responded to stimulation with His-pl7-Pk with a more enhanced proliferation than mice 

immunised with pl7-MAb complexes adsorbed onto alum. In an attempt to identify 

proliferating cell type, the phenotype of the proliferating cells were determined by FACscan 

analysis. Such studies revealed that after a five day stimulation period, the vast proportion of 

cells detectable by FACscan analysis expressed the CD4 molecule on their cell surface (i.e. 

the cells were CD4+ T cells), there being little evidence of the presence of B cells. The lack of 

detectable B cells after a five day stimulation in vitro was not due to the absence of B cells in 

the initial lymphocyte samples since FACscan analysis of the original preparation revealed 

that an approximately equal number of B cells and CD4+ T cells were present. However, 

although the evidence would suggest that CD4+ T cells are responding in the assay, it is 

possible that the B cells died during the culture period, and thus the high level of CD4+T cell 

detection, was simply due to the CD4+T cells' ability to survive during the culture period. 

Thus, in a second attempt to determine whether T cells are responding to specific antigenic 

stimulation, the supernatants from stimulated cultures were assayed for the presence of 

cytokines.

Based on their production of cytokines murine (D4+ T cell clones have been 

divided into two groups; T^l cells that predominantly produce IL-2, IL-3, lymphotoxin, and 

IFN-y or Tfj2, producing IL-3, BL-4, IL-5 and BL-6 [Mosmann et ah, 1986]. Stimulation of 

immune cells from p 17-MAb/alum, p 17-MAb-LTB or p 17-MAb-LTB/alum immunised mice 

with His-pl7-Pk, resulted in very little IL-2 being detectable in the culture supernatants. This 

was not due to insensitivity of the cytokine-ELISA assay to detect IL-2, since high levels of 

IL-2 were loadily detectable in the cultures that had been mitogenically stimulated with PHA.
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The lack of detection of IL-2 in antigen-stimulated cultures has been observed by others [A. 

Mowat, personal communications], the explanation for which, is unknown. In contrast to 

these findings, high levels of IFN-y were secreted by His-p 17-Pk-specific immune cells firom 

mice vaccinated with pl7-MAb-LTB complexes (with or without alum), but IFN-y 

production detectable from lymphocytes from mice primed with pl7-MAb in association with 

alum was below background levels. Very minor levels of IL-5 could be detected from each 

culture, and was highest in tlie mice vaccinated with pl7-MAb-LTB complexes in association 

with alum. Tliis poor response to IL-5 from spleen cultures was also evident from PHA 

stimulated cultures, and has been reported by others [Wilson et al,, 1991], the reason for 

which is unknown. This evidence suggests that the presence of LTB-Pk in the vaccine 

formulations leads to the stimulation of T cells capable of secreting IFN-y, possibly CD4+ 

T|^l cells. Whether, CD4+ T^2 cells aie also stimulated can not be presumed since there is 

insufficient evidence that a T^2 profile was present Similar studies with cholera toxin [Vajdy 

and Lycke, 1993; Jackson et aL, 1993] have shown that intraperitoneal administration of the 

enterotoxin and unrelated antigen can lead to a characteristic T^l response to the unrelated 

antigen in the spleen, which would support the evidence presented here. However, it is 

important to point out that, the proliferation assay relied on unfractionated splenic 

populations. A major disadvantage of such an approach is that the relationship to the cell type 

producing the cytokine can only be made by indirect argument. In the present study, the 

FACscan assayed for the presence of the CD4-f T cell subset after antigenic stimulation, and 

not the CD8+ T cell subset. CD8+ T ceil, normally characterised as cytolytic T cells, have now 

been shown to be capable of secreting a cytokine pattern similar to that of T^l cells i.e. they 

can produce cytokines similar to that of T^l cells, like IFN-y and IL-2 [Fong and Mosmann, 

1990]. Thus in can not be ruled out that CD8+ T cells or some other IFN-y producing cell, 

were responsible for the high level of IFN-y production. For future work, the use of purified 

(ZD4+ T cells would ensure that the antigen effects noted were due to direct stimulation of 

CD4+ T cells and not due to stimulation of other cell types that could influence the cytokine 

pattern observed. In addition, in situ hybridisation assays that specifically probe for a certain
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cytokine RNA levels in cells that respond to antigen-specific stimulation, will also help to 

characterise the responding cells further.

These initial immunogenicity studies gave a strong indication on the efficacy of 

conjugating pl7-MAb complexes to LTB-Pk. Unfortunately, they failed to establish whether 

co-administration of His-p 17-Pk with LTB-Pk would similarly potentiate the response to His- 

pl7-Pk. Subsequent experiments that compared the efficacy of co-administration of LTB-Pk 

with His-p 17-Pk as opposed to pl7-MAb-LTB complexes to promote immunity to His-p 17- 

Pk, revealed that foUowng three intraperitoneal immunisations, co-administration of His- 

p 17-Pk with LTB-Pk was as efficient as pi 7-MAb-LTB complexes at potentiating the 

response to His-pl7-Pk (data not shown). This would suggest tliat the complexing of the 

recombinant pl7 to LTB-Pk via tlie monoclonal antibody bridge (and therefore the targeting 

of the complex onto GMl-ganglioside) is not a vital requirement for the LTB-Pk to adjuvant 

the response to His-p 17-Pk. However, a later series of systemic immunogenicity studies 

using recombinant His-p27-Pk as a target antigen, revealed that although three immunisations 

with His-p27-Pk co-adrainistered with LTB-Pk enhanced the immune response to His-p27- 

Pk in a similar manner to that seen following immunisation with p27-MAb-LTB complexes, 

the p27-MAb-LTB complexes were more potent. This was suggested by the evidence that 

two administrations of p27-MAb-LTB complexes induced a 8-10 fold enhancement in the 

response to His-p27-Pk, in compaiison to the response generated following co-administration 

of His-p27-Pk and LTB-Pk. Thus it would seem that, conjugation of His-p27-Pk to LTB-Pk 

via MAb SV5-P-k leads to a more efficient presentation of recombinant p27 to the immune 

system. Furthermore, these later studies employed highly purified preparations of LTB-Pk in 

the vaccine formulations, thus the adjuvant effects mediated by LTB-Pk were not due to 

impurities in tiie vaccine preparations.

These results highlight the efficacy of SIV-MAb-LTB complexes as systemic 

immunogens and suggest that targeting of recombinant SIV antigens onto GMl-ganglioside 

via LTB-Pk, is important at promoting a more efficient response to the recombinant SIV 

antigen.
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7. Mucosal immunogenicity o f  SFV-MAh-LTB complexes.

Intranasal administration of Ipg of His-p 17-Pk either alone, as part of an 

immime-complex (pl7-MAb), co administered with LTB-Pk or conjugated to LTB-Pk (pl7- 

MAb-LTB) did not induce any detectable anti-His-p 17-Pk specific humoral immunity in the 

serum or saliva of vaccinated mice. In contrast, both co-administration of His-p 17-Pk with 

LTB-Pk and vaccination with pl7-MAb-LTB complexes induced a significant serum antibody 

response to LTB-Pk demonstrating that LTB-Pk itself to be immunogenic in the nasal 

mucosae, a finding which was later supported by the identification of anti-LTB-Pk secretory 

antibody in the saliva of vaccinated mice. LTB, like CTB is thought to increase adsorption of 

protein antigens over the mucosal epithelium when co-administered with the protein, though 

this may not always be the case. For LTB-conjugates uptake of LTB by the mucosae 

epithelium should, in theory result in concomitant uptake of conjugated protein, and thus 

increase the chance of stimulating mucosal immunity. Thus, it was surprising and 

disappointing that pi 7-MAb-LTB complexes did not prime the mucosal system against His- 

pl7-Pk.

Several possibilities exist as to why LTB-Pk failed to potentiate the immune 

response to His-p 17-Pk. Firstly, protease activity in the intranasal cavity may result in the 

cleavage of the Pk epitope from both LTB-Pk and His-p 17-Pk, which would effectively 

destroy the linkage between the two recombinant antigens, or that His-p 17-Pk itself was 

rapidly degraded. Secondly, the antibcxly molecule itself, could have been subject to 

proteolytic attack, once again destroying the linkage of His-pl7-Pk and LTB-Pk. Thirdly, the 

affinity of LTB-Pk for GMl was reduced due to the linkage of antibody and antigen, and thus 

complexes did not form a strong interaction with the epithelial cells promoting their uptake.

In an attempt to understand which theory was the most likely explanation, the 

stabilities of LTB-Pk, MAb SV5-P-k and His-p 17-Pk upon exposure to mucosal proteases 

were investigated in vitro. Neither MAb SV5-P-k nor LTB-Pk were shown to be susceptible 

to proteolytic attack. In contrast, His-p 17-Pk was extremely vulnerable to proteolytic attack 

and could be rapidly degraded upon exposure to mucosal proteases. Although such a result
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dcies m î  fcmally prove ihal breakdown of His-pl7-Pk is responsible for tlie poor 

îmmun&smmîy exhibited by the His-pl74% vaccine formulations, the idea is attractive.

ÎI was therefore decided that only reccHnbinant SIV proteins that were more 

resilient %> proteolytic atmck should be used for the investigation into the m ucosal 

im m unogenicity of SIV-M Ab-LTB com plexes. One such recombinant SIV protein was His- 

p27-Pk, wliich like His-pl7-Pk is a recombinant gag gene product. Proteolysis experiments 

with His-p27-Pk demonstrated that even at minor concentrations, although some degradation 

was detectable in Western blot assays, the protein seemed to be fairly resistant to proteolytic 

degiadation. Further, when p27 -MAb-LTB complexes were incubated with mucosal 

pioteases, then mixed with Staphylococcus aureus, the whole complex was efficiently 

precipitated, providing additional support that such p27-MAb-LTB complexes are relatively 

stable and have the potential to be used as mucosal immunogens.

This theory was tested in immunisation studies using Balb/c mice given p27- 

MAb-LTB intranasally tliree times. Specific immunity to His-p27-Pk and LTB-Pk was 

readily detectable by ECL immune assays, in the sera of all vaccinated mice 10 days after the 

final immunisation. Little of the immune response was directed at the Pk epitope and when 

the sera was re-assayed for reactivity with Western-blotted viral proteins from SlV-infected 

cells, antibodies specific for both p27 and its precursor, p57, were identified. Such specific 

immunity in the sera, suggests that p27-MAb-LTB can be taken up by the nasal mucosae for 

presentation to mucosal B cells and (presumably) T cells.

His-p27-Pk specific immunity was evident in the lungs of intranasally vaccinated 

mice (as measured by ELISPOT assays) immunised with p27-MAb-LTB complexes, but no 

antibodies to His-p27-Pk could detected in the saliva. One of the interesting observations with 

regards the His-p27-Pk-specific antibody isotype distribution was that the IgG isotype was 

the dominant isotype in both the lungs and the spleen. High levels of IgA antibodies specific 

for His-p27-Pk were also readily detectable in the lungs but not in the spleen. Such high 

levels of IgA specific antibodies in the mucosa and minor levels in the periphery is consistent 

with mucosal priming of the immune response [Murphy et al. 1994]. In viral infections there 

is normally a correlation between serum IgG and protection against pulmonary virus growth
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[Hall et al., 1991; Walsh et a i, 1987] and this has been attributed to serum IgG transudating 

the !«ng epiihellum as exposed to the presence of IgG-secreting cells in the lungs. The data 

presented here, suggests that IgG-secreling B cells themselves can reside in the lung, though 

whether the presence of the IgG-secreting cells is a reflection of the trafficking of peripheral 

IgG -secreting cells into the lung or, whether the IgG-secreting cells are from a mucosal 

origin, is unknown. Studies by Jones and Ada, 1986 have quantitated the proportion of IgM, 

IgG and IgA secieting cells in the lungs of mice following virus infection and have noted that 

the IgG-screting B cells predominate. Whereas, similar studies on the isotype distribution in 

tlie small intestine have revealed that, following virus infection, IgA-secreting B cells 

predominate in the Peyers patches. Such evidence suggests that IgG-secreting cells may have 

a prominent role in the immune surveillance of the lung against viral infections or that factors 

in the lung microenvironment favours the generation of IgG-secreting B cells. Thus, the 

presence of His-p27-Pk-specific IgG-secreting cells in the lungs of p27-MAb-LTB vaccinated 

mice, may be a reflection on the presence of the viral antigen in the vaccine. Alternatively, the 

existence of IgG-secreting cells in the lungs, may be the result of an inflammatory response 

following p27-MAb-LTB administration. This needs further investigation.

Recent evidence by McGhee and colleagues (1993), suggests that in mucosal 

tissues, T^2 cells predominate and produce IL-5 which promotes the generation of IgA- 

secreting cells. Others support this observation [Beagley et al., 1988]. Thus, the presence of 

IgA-secreting B cells in the lungs of vaccinated mice, may indicate that intranasal 

administration of p27-MAb-LTB complexes can selectively prime T^2 cells in the mucosae.

The relevance of secretory IgA in the upper respiratory tract for preventing virus 

replication has also been recently advocated [Renegar and Small, 1991]. However, there was 

no evidence that intranasal administration of p27-MAb-LTB complexes induced His-p27-Pk 

specific IgA in the saliva, and only minor levels of anti-LTB-Pk IgA antibodies were 

detected Although this poor response may be a reflection on the time course of the 

experiment e.g. saliva was collected fairly soon after immunisation (11 days), even at later 

times (35 days post immunisation) only anti-LTB-Pk antibodies were detected (data not 

shown). Alternatively, the inability to detect IgA antibodies to His-p27-Pk and the detection
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of only low levels of anti-LTB-Pk IgA antibodies may be due to the insensitivity of the ECL- 

assay performed.

The induction of long teim memory, is obviously desirable in the design of 

vaccines. It has generally been assumed that tlie mucosal immune system does not display 

memory. However, this is now disputed [Lycke etaU, 1987; Lycke and Holmgren, 1986; 

1987; Vajdy and Lycke, 1993]. The ability of intranasal administration of p27-MAb-LTB 

complexes to induce memory to His-p27-Pk and LTB-Pk was examined in lymphocyte 

proliferation assays. Immune cells from mice that had been intranasally vaccinated three times 

with p27-MAb-LTB complexes, were stimulated in vitro witli His-p27-Pk and LTB-Pk, three 

months after the last immunisation. Both His-p27-Pk and LTB-P specific immune cells were 

shown to respond to antigenic challenge. Phenotypic analysis of the lymphocytes following a 

five day stimulation revealed that, CD4+ T cells predominated in LTB-Pk stimulated cultures. 

In His-p27-Pk stimulated cultures, although CD4+ T cells tended to predominate, there was 

also evidence that CD8+ T cells may be responding to antigenic stimulation as well. There 

was also evidence that B cell memory occurred following intranasal immunisation with p27- 

MAb-LTB complexes, since serum immunity to the recombinant antigens was detectable 

following a fourth intranasal boost, three months after the third immunisation (data not 

shown). Thus, both B-cell and T-cell memory may be generated by intranasal immunisation 

with p27-MAb-LTB complexes.

One question this study does not determine is whether intranasal co-administration 

of LTB-Pk and His-p27-Pk would promote similar levels of immunity to the recombinant 

antigens that were seen following immunisation with p27-MAb-LTB complexes. Preliminary 

studies have shown that two intranasal immunisations with His-p27-Pk co administered with 

LTB-Pk or administration of p27-MAb-LTB complexes, followed by one intraperitoneal 

immunisation with the respective vaccines, resulted in serum immunity to His-p27-Pk in mice 

vaccinated with p27-MAb-LTB complexes but not in mice given His-p27-Pk co-administered 

with LTB-Pk (data not shown). Such findings suggest that the linkage of His-p27-Pk to 

LTB-Pk is important for the recombinant SIV protein to be immunogenic by the mucosal 

route i.e. the ability to target His-p27-Pk onto GMl-ganglioside via the binding of LTB-Pk to

185



the glycolipid, is crucial to promote immunity to the recombinant SIV protein in the mucosal 

system. In support of this observation, Dertzbaugh et al., 1990, have shown that CTB- 

peptide fusions that inhibit GMl-ganglioside binding, are not immunogenic by the mucosal 

route. Nevertheless, it still has to be confirmed that p27-MAb-LTB complexes are more 

immunogenic by the mucosal route than co-administration of His-p 17-Pk and LTB-Pk.

8. Areas o f Future Investigation.

One area of friture investigation is continuation of the studies into the efficacy of 

SrV-MAb-LTB complexes as immunogens, particularly their immunogenicity in the mucosal 

immune system. The mucosal immunogenicity results presented above, have concentrated on 

p27-MAb-LTB complexes containing ammonium sulphate purified LTB-Pk. It will need to be 

verified that liighly purified preparations of p27-MAb-LTB complexes have similar efficacies 

in the mucosal system.

Although these studies have centred on the administration of SIV-MAb-LTB 

complexes by the intranasal route, there have been problems with the administration of the 

complexes. In some instances the use of diethyl ether as the anaesthetic has lead to fatalities. 

An approach that is currently under evaluation is the administration of vaccines by 

nébulisation. In this instance, soluble vaccine formulations are vaporised under high 

pressure, the vapour is then readily inhaled by the mice. This procedure ensures that the 

vaccine reaches the lungs and since no anaesthetic is necessary, it is harmless to the 

experimental animals. Preliminary work with the nébulisation system has concentrated on 

analysing the ability of highly purified LTB-Pk to induce semm immunity to itself, following 

inti'anasal nébulisation. So far, the results have been promising, with mice exhibiting high 

levels of serum immunity to LTB-Pk following four nébulisations. However, it has still to be 

establish^ what is the ideal dose of antigen needed for efficient stimulation of the immune 

system following nébulisation. At present, high doses of antigen are being employed 

(approximately 50(ig of antigen per mouse) since the efficiency rate of antigen uptake by the 

mice following nébulisation is thought to be as low as 1/10th of the administered dose. 

Whether nébulisation will be a successful procedure for the administration of SIV-MAb-LTB
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complexes remains to be verified. Recent experiments have suggested that administration of 

the complexes in such a manner, did not lead to serum immunity to the recombinant SIV 

protein and only low levels of immunity to LTB-Pk. Whether, this poor response to the 

recombinant antigens was due to damage of the vaccine following vapourisation, or due to 

too low a dosage, remains to be investigated.

It has recently been established that immunisation with CTB and formalin 

inactivated influenza A virus can lead to virus specific CD8+ CTL.The level of immunity is 

similar to natural infection with live replicating virus [Mbawuike and Wyde, 1993]. 

Considering the important role cytotoxic CD8+ T cells have in the control of virus infections, 

it would be of interest to establish whether administi'ation of SIV-MAb-LTB complexes can 

lead to priming of this arm of the immune system.
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