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SUMMARY

This work is concerned with the evaporation and condensation 

processes oecuring when liquid helium II is in equilibrium with its 

saturated vaoour* We define the condensation coefficient a as the 

fraction of atoms incident on the liquid vapour interface which cross 

it to form part of tie liquid* Experiments to measure a are described, 

and the results are discussed in terms of microsoopic condensation

processes*

The measurements are made by reflecting second sound pulses from 

the liquid vapour surface at normal incidence and measuring the reflection 

coefficient* An account is given of the phenomenological theories 

of Osborne (1962a) and Chernikova (1964), which describe the reflec­

tion of seoond sound from the surface and the associated effect, its

transformation into first sound in the gas* Neither of these agree
9

with the experimental results, and Osborne’s theory is modified by 

taking eocount of the conditions in the gas a small fraction of a 

mean free path above the surface (rather than many mean free paths 

above the surface, as in Osborne*s original theory)* Thus modified,



vi

the theory is show to be in agreement with the measurements of the

reflection coefficient.

Also described are measurements made on second sound pulses 

generated at the interface by first sound pulses, themselves generated 

at the interface by second sound, propagated up the tube, and reflected

from its closed end back to th® surface. Frora the time intervals between

these pulses the velocity of first sound in the vapour is deduced, and 

found to be in agreement with previous work. Measurements of pulse 

amplitude corroborate the reflection coefficient measurements, and 

taking th© two set3 of measurements together we have concluded that 

a is probably 1 and not less than 0.8 between 1.0°K and 2.14C‘K.

The microscopic processes by which condensation can take place 

are considered. Experiments due to Beenaker (unpublished, see Osborne, 

1962a) and Osborne (1962b) are described, which indicate that the 

vapour exchanges momentum with the normal fluid only. We have there­

fore supposed that processes in which a gas atom oondenses to form 

excitations must conserve energy end momentum.

Processes involving both bulk excitations and surface excitations 

are considered, but effects due to the finite lifetime of th© excit­

ations and the llnewidth of the excitation spectrum are neglected.

No attempt has been made to calculate the matrix elements for conden­

sation processes, but plausible estimates have been made of their
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relative magnitudes* In particular* only processes involving one 

gas atom and one or two excitations have been considered* Using the 

requirements of conservation of energy and momentum, it is shown that 

as the temperature decreases, a decreasing fraction of the incident 

atoms have enough energy to form two excitations, and condensation 

must take place by the collision of an atom with an existing excit­

ation, and the subsequent decay of the pair into a second excit­

ation. A rough estimate of the collision probability for such a 

process leads to the conclusion that at 1°K, a should be about 0.2* 

This disagreement with experiment has not been resolved*

finally, some remarks are made about the implications for 

other work on liquid helium II, and some suggestions for future

work*
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CHAPTER ONE

INTRODUCTION.

9•••••• art thou but

A dagger of the mind,

A false creation

Proceeding from the heat-oppressed brain?*

’ illiaxa Shakespeare

_  .



INTKODUCTIOfl

1.1 Liquid helium

The He4 atom is well known to be an extremely stable entity*

The nucleus contains two protons and two neutrons, and the two orbital 

electrons completely fill the first shell* The atom has no electric 

or magnetic dipole moment* and its electric polarizability is small*

As a result* the atom has a high ionization potential, it does not 

form chemical comp unds in the normal way, and the van der Waals forces 

betv een atoms are very weak*

Because of this last fact helium is the most difficult of the 

permanent gases to liquefy* The critical temperature is and the

boiling point is 4«2°K* and at these temperatures all the other permanent 

gases are solid* The liquid has a number of unusurl properties, not the 

least of which is that it almost certainly remains liquid at the absolute 

zero* The third law of thermodynamics requires that the melting press­

ure tend8 to a constant value at the absolute zero, and, at the lowest 

temperatures at whioh measurements have been made (~0*3°K) the melting 

pressure has in fact reached a constant value of about 25 atmospheres* 

Consequently, no triple point has been bserved* This behaviour is at 

least qu&l itatively explained by the fact that the helium atom has a 

large zero point energy (as a consequence of its small mass) and it
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indicates the importance of quantum effoots in determining the liquid’s 

properties* •

The liquid undergoes a second order phase chan e at about 2*2CK* 

above which it is known as Helium I* and below as Helium II* A large 

number of the liquid’s properties show anomolous behaviour near the 

transition temperature* which is known as the X point* Below the X 

point* the liquid is ’superfluid’ - that is it behaves in certain 

circumstances as though it had zero viscosity* In addition the thermal 

conductivity is very high* and there are oertain other unusual thermal

effects*

These effects are explained by supposing (Tisza* 1940* Landau*

1941) that the liquid is a mixture of two components* a normal com­

ponent, which carries all the entropy* and a superfluid component*

Eaoh of these components is characterised by a separate density* tor

the normal fluid and tor the superfluid* such that -r

as p * the total liquid density* In addition* many of the ther­

modynamic properties of the liquid can be explained by assuming that the 

normal fluid consists of a gas of excitations dissolved* as it were* 

in the superfluid background (Landau* 1941* 1947)* The excitations are 

to be thought of as collective modes of motion of many atoms, aafd are of 

two kinds* The long wavelength excitations are merely longitudinal
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phonons* and the short wavelength excitations* called rotons, are 

envisaged as kinds of microscopic vortex rings* The energy spectrum 

of these excitations finally proposed by Landau (1947) has been 

measured by neutron scattering experiments (e*g* Henshaw end Woods*

1961), and the results ere shown in figure 7*1* Striotly speaking 

this approach is only valid if the excitations can be regarded as non­

interacting* a situation which occurs in practice below about 1*5°K. 

However* the interactions can be allowed for to some extent by taking 

aooount of the temperature dependance of the parameters of the excitation 

spectrum* In this way Bendt* Cowan and Yarnell (1959) have derived 

values of the normal fluid density* the specific heat and the entropy 

from the experimentally determined energy spectrum which agree to within 

a few per cent with direct measurements for temperatures up to 1*8°K*

The property with which we shall be most concerned in this work is 

the ability of the liquid to sustain two kinds of wave motion* called 

first and second sound* First sound is the ordinary sound which can 

be propagated in other liquids i*e* it is a pressure wave a comp- 

anied by oscillations in the total density of the liquid* Second sound 

is a mode in w ich the two fluids oscillate in antiphase, so that there

f is no first order density oscillation (there i3 a second order one due

to the non-zero thermal expansion coefficient), but a first order entropy 

oscillation* since the normal fluid carries all the entropy* Seoond 

sound therefore appears as a temperature wave* and can be generated by
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the joule heating of an A.C. current in a resistor in thermal contact 

with the liquid.

Since second sound was first detected by Peshkov (1944), it has 

been extensively investigated. Its velocity u* is given by (Landau, 

1941)

’ tfUf*VTS’/c)

where T is the temperature, C the speoific heat and S the entropy 

of the liquid. u« varies little with temperature between about 1°K 

and 1.9°K» having a value of about 20 metres/sec (to be compared with 

a first sound velocity of about 240 metres/seo). Above 1.9°K ua falls 

rapidly to zero at the A point. Associated with the temoerature 

oscillation is a heat flow W, and it can be shown (Osborne, 1948) that 

W is related to the temperature amplitude 6, by

6 x w/ p Cua « 3W

where C is the specific heat of the liquid and Ua the velocity of 

seoond sound. 3 is called the characteristic impedance of the liquid 

for seoond sound, by analogy with electrical transmission line theory.

The attenuation is given by (Khalatnikov, 1952a)

•» ■ ♦ t-HVW “ f'M *x/<
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where w is the angulnr frequency, end X- the coefficients

of first viscosity end thermal conductivity, and ; and

are four ooeffioients of second viscosity. However, above 1°K 

dissipative effects at the walls of the propogation tube (whioh increase 

as the square root of the frequency) are more important.

1.2 The condensation coefficient

When a liquid is in equilibrium with its vapour, there is a 

continuous exchange of molecules between the two phases. The rate 

at whioh molecules from the vapour strike the liquid surface is known 

from kinetic theory, and this is clearly the maximum rate at whioh the 

vapour molecules can condense, and we define the condensation coeff­

icient a to be the fraction of vapour molecules incident on the liquid 

surface whioh oondense into the liquid. Similarly we can define the 

evaporation coefficient a'as the fraction of liquid molecules striking 

the surface whioh evaporate.

The oase of liquid Helium 11 in equilibrium with its vapour presents 

an unusual problem, because the liquid is now thou ht of as a gas of 

excitations dissolved in a superfluid background, and it is this system 

whioh is in equilibrium with the vapour, whioh is adequately described 

as an ideal classical gas. Some light is thrown on the problem by an
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jt
experiment due to Beenaker (unpublished, see Osborne 1962a). He 

caused the superfluid film to flow roross a flat plate, (figure 

l«la) and attempted to deteot the motion of the vapour just above 

it by a small vane and a quartz fibre suspension system* The vapour 

was found bo be stationary, or at least to have a velocity several 

orders of magnitude smaller than the superfluid velocity*

A similar type of experiment has been done by Osborne (1962b)*

A steady heat current was used to produce a oounterflow of superfluid 

and normal fluid in a channel, and a vane suspended by a quartz fibre 

measured the vapour velocity (figure 1.1b)* Above 1*3°K (his lowest 

temperature) the vapour velooity wrs in the same direction as the normal 

fluid velocity, and up to 1*7°K, they were proportional and at least 

approximately equal. Above 1*7°K, the experiment was more difficult 

to perform, and the results were not so clear cut, but the vapour was 

still moving with the normal fluid, and apparently faster tnan it*

These experiments suggest that there is no momentum exchange 

between the vapour and the superfluid, and that the evaporation 

process concerns only the vapour and the normal fluid* Pig* 7*1 

shows both the energy spectrum of the excitations which make up the 

normal fluid end the energy of a free gas atom as a function of momentum. 

Bach atom when it oondeases acquires an energy L/R (L is the latent 

heat of vaporisation and R the gas constant) and a corresponding amount 

of momentum, and since L/R * 8°K, we see that condensing atoms have



vertical section plan
(G) BEEN AKER'S EXPERIMENT.

Quartz Fibre

(b) OSBORNE'S EXPERIMENT

-> superfluid velocity. ---^normal fluid velocity.

FIG. 1.1 THE VAPOUR DRAG EXPERIMENTS.
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enough energy to form rotons, but not enough momentum* Also, they 

have too much momentum to form phonons* There aro a number of 

processes involving the gas atom and two excitations whioh conserve 

energy and momentum, e*g* the transformation of a gas atom into a 

phonon and a roton* These processes will be discussed in more 

detail in Chapter 7, but we note here that it may not always be 

possible for every gas atom to condense* If, for example, the above 

process were the only one possible, then only gas atoms with energies 

lying above the excitation spectrum could condense, end these become 

an increasingly large fraction of the total number of gas atoms as the 

temperature increases*

The problem is accentuated by the faot that if a as 1 then evap­

oration takes plaoe very rapidly* The nnber of gas atoms striking 

the surface per cm® per sec is nv/4, where n is their number density 

and v their mean speed* Prom this it follows that the mass condensing 

per cm® per see is p(n/2irHT)z, where p is the pressure, M the 

molecular weight, R the gas constant and T the temperature* In 

equilibrium, this is also the mass evaporating* If a a 1, then the 

mass evaporating per om® per sec is 0*014 gm at 1*O°K, 0*34 gm at 

1*5°K, and 2*5 gm at 2*1°K* That these rates are large may be gauged 

by the fact that a helium film 3 x lO^om thick will be completely
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evaporated and recondensed in a time of the order of microseconds*

In the light of these considerations, it is of interest to determine 

a experimentally* Atkins, Rosenbaum and Seki (1959) have measured a 

in the temperature range 1*1 to l*2t>°K by a direct distillation method 

(figure 1*2)* An inverted U-tube with one limb closed was placed with 

both ends beneath the liquid surface, in suoh a way that liquid wrs 

trapped in the closed limb up to a level above the outside bath level*

The liquid in the closed limb was evaporated by a heater, and the 

temperature difference AT between it end the bath measured by two ther­

mometers* The vapour above the liquid in the dosed limb was then at 

a pressure slightly below the vapour pressure, and a could be determined 

from the rate of fall of the liquid in the dosed limb* Corrections 

were applied for surface tension effects, film flow of the liquid and 

vigorous flow of gas* The values of a obtained ranged from 0*8 to 1*01, 

but depended on the U-tube diameter* Atkins et al suggested that the 

flow of gas in the U-tube was more complex than they had allowed for, and 

might have been aocompanxed by convection currents, for example*

In an attempt to overcome these difficulties, a second sound 

technique has been used in the present work* When a second sound wave 

strikes the liquid-vapour interface the temperature oscillation in the 

liquid causes evaporation to take place at the surfaoe and the puff of 

vapour produced appears as a first sound wave in the vapour* The
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Figure 1.2 The Distillation Experiment.

I
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amplitudes of the first sound wave in the vapour and the reflooted 

second sound wave in the liquid are clearly determined by the boundary 

conditions at the interface. In particular, they can be related to 

the condensation coefficient. If a is very small, we would expect 

very good reflection from the interface.

An experiment of this kind has already been done, by Lane and his 

co-workers (Lane, Fairbank, Schultz and Fairbank, 1946, Lane, Fairbank 

and Fairbank, 1947) • Using a resonance method they detected the first

sound waves in the vapour with a conventional microphone, and from 

the separation of the resonance peaks deduced the velooity of second 

sound. They have also done the converse experiment, generating second 

sound in the liquid from first sound in the vapour (Fairbank, Fairbank 

and Lane, 1947)* Pellam (1949) and Osborne (1962a) have observed 

first sound pulses in the vapour generated by second sound pulses in the 

liquid. None or these experiments were intended to measure a, but 

the fact that the amplitude of the first sound in the vapour was 

comparable to the second sound amplitude suggests intuitively that a 

cannot be very small. A detailed analysis (Osborne 1962a) confirms 

this impression and places a lower limit on a of about 0.1. However, 

the boundary conditions at the surface on whioh Osborne* s analysis is 

based are a matter of some dispute, and before discussing them in 

detail, we shall
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briefly review what is known about evaporation from classical liquids.

Evaporation from classical liquids.

The condensation coefficient has been measured for a large number 

of classical li .uid3, by a variety of methods* In one of the oarliest 

experiments, Knudsen (1915) measured the condensation coefficient of 

mercury by a direct distillation method, and found it to be one. He 

also found that If the surface was not kept scrupulously clean, a could 

become as low as 0.001. Later work has confirmed these conclusions, 

and it is now general3y accepted (e.g. Hirth and Pound, 1965) that for 

non-polar liquids a is one.

for polar liquids the situation is not so clear. Values of a ranging 

from 0.001 to 1 have been reported for water (see Hirth and Pound), 

using a wide variety of experimental techniques. For example Alty 

end Mackay (1955) measured the weight lost by a drop as it formed on 

a glass tip in a vessel maintained at a pressure below the saturated vapour 

pressure, and deduced a value for a of 0.056. More recently Jamieson 

(1964) has used a sdioactive tracer technique and found a > 0.55.

The disparity in the experimental results is sufficient evidence that 

the experiments are difficult to perform. In addition to the surface 

contamination noted by Knudsen, there is the additional problem that
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as the liquid evaporates the surface cools, and if this is not properly 

corrected for it leads to a low value for a*

Various theories have been proposed to account for values of a 

less than 1 in polar liquids (see Hirth and Pound)* These mostly rest 

on the fact thrt the liquid surface is slightly polarised and only 

molecules approaching the surface with the appropriate orientation 

can enter the liquid* (Experiments to test them must therefore seek 

not to disturb the surface dipole, whioh does not make the experiments 

any easier)* However, the latest work (a conference entitled Liquid 

Vapour Interfaoial Phenomena, Rochester, N.Y., 1966, private oom un­

ication by D*T* Jamieson) suggests that the true value of a for water 

is probably one, and that low results have been obtained as a result 

of inadequate experimental precautions*





CHAPTER 2

Phenomenological Theories of Evaporation

2*1 Introduction

Theories of the conversion of second sound to first sound at 

a liquid vapour interface have been published by Osborne (1962a), 

and by Dingle (1948), Pellam (1948) and Chemikova (1964)# The 

last three give essentially the same result, and of these only that 

of Chemikova, which is the most general treatment, will be discussed 

in detail* Another theory due to Onsager has not been published 

(see Lane et al* 1947, and Pellam, 1948)*

2*2 Osborne’s Theory

Osborne assumes that the amplitudes of first and second sound 

are small, that the vapour behaves like an ideal gas, that the liquid 

has zero coefficient of expansion and compressibility and that the 

vapour density is negligible in comparison with the liquid density*

He then considers a second sound wave approaching the surface normally 

from below, having a heat flow W per unit area towards the surface* If 

the reflected wave has a heat flow W-w per unit area away from the 

surfaoe, and the total temperature amplitude at the surfr-ce is 0, then

0 = p (2W - w)

where P « 1/ Cua is the characteristic impedance of liquid Hell 

for second sound, P is the liquid density, C its specific



heat end Um the velooity of second sound. We rewrite this equation

as

• « 2.1 

where • (2.«-w)/w « (l ♦ x^)/(l - end JL is the reflection

coefficient for se ond sound inoldent on the liquid vapour interface.

The second sound produces In the vapour an adiabatic sound rave 
of temperature amplitude f , pressure amplitude pt and velocity 

amplitude v,related by

pc « (Tut 2.2

and cP « Mu y-1 v 2.5
1 R Y

where 0" is the vapour density, u the velocity of sound in the vapour, 

X the molecular weight, R the gas constant and Y the ratio of the 

specific heats of the vapour.

Osborne gives an equation for conservation of mass

V w w/L

where I» i3 the latent heat. In or ©r to nake comparison with experi­

ment it is necessary to take account of the surface area A of the 

li uid meniscus in a props ation tube of finite radius r.

frr* « A w/L

or ▼ » Aow/L 2.4

Ao is calculated in appendix A
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Finally, Osborne relates the temperature difference at the 

surface to the not rate of evaporation* If the vapour is at a 

temperature T and the pressure p, then the mass condensing into the 

liquid is, from kinetic theory

G a ap (l^2rrRT)2 a aao (T)p

where a is the condensation coefficient* If the vapour is in equil

ibrium with the liquid this is also the mass evaporating* Osborne

assumes that the mass evaporating is always G a oac (y)p even if

equilibrium does not exist* In this case, the mass evaporating at

a temperature T ♦ 0 is

G(T+6) a oa p ♦ dConjp) e 
dT

a aaop ♦ aop d£L 6 ♦ ap J&© 0 + aao dp 6 2*5
dT dT

Osborne implicitly assumes that da/dT is negligible*

Then, using the Clausius-Clapeyron equation for dp/dT he gets

G(T+6) a aaop - £ apao 6/T «► aao (Ml/RT)p6/T

a aaop(l ♦ 0/T)

where a (Ml/RT) -i

Now the mass oondensing is

G(T + = oaQP - £aaoP + azxo • <f

• aaop (1 - <f/2S ♦ Po/p) 2.6

sinoe po is not necessarily the vapour pressure corresponding to a 

temperature T + f .



15.

Thus finally
w/L » ft(T+e) - tt(T+ f)

« aoop(^ 6/T - 5,/p + tf/zt) 2.7

Substituting in this equation from equations 2.1 to 2.4 (and using 

the ideal gas equation PM « <THT) gives

Xjq « (T/pLp £, )(l/oao ♦ Aou (y + l)/2y) 2.8

and hence

q, - (*L - iVCXj, + i)

This is the result we are principally interested in, but it is 

convenient to derive here two results required for Chapter 6.

Firstly, we note from 2.1 and 2.2 

P^e . ( o- utJ/CPwJ^) . (A.uJ/texp

and since 0 ■ 2SpX,/(l ♦ X^)

p/pW . 2(Aou/l£)/(l ♦ XL) 2.9

whioh gives the pressure amplitude in the vapour in terms of the 

temperature amplitude of the incident second sound wave. Secondly we 

extend Osborne’s treatment to the reverse case, i.e. a sound wave 

in the gas of velocity amplitude V inoident on the liquid vapour 

interface and being reflected with amplitude V-v.

We have po a CTu(2V-v) ® cf uv&y 2.10

0 « wp 2.11

, Po Y-l T 
p “V"

Cf V « Aow/L
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and w/L ■ aa0p(po/p - ^/2T - f O/T)

since the net mass flow is now in the opposite direction*

Solving for Xy gives

Xy a 2r(l/aac ♦ pI0 £ /T)/Aou(y+1) 2.12

and Ry « (Xy - l)/(Xy + 1) 2.13

where Ry is now the reflection coefficient for first sound in the 

gas incident on the liquid vapour interface*

Also, 2*10 and 2*11 give

6/pc a w|3/ <T uvXy • I£/uAQXy

and s±nce po a 2VcfuX^(l ♦ Xy)

eAoru a (2ip/Aou)/(l ♦ Xy)

If we now write 2*8 as X^ as (bi + ci) at

and 2*12 as Xy » (bt ♦ l/aajct « (axbt +l)/atCi

we see that (Xy ♦ l) » (X^ + l)/a<Ci,

Thus e/Fcr'u a 2(T(Y+l)/2Yp £, )/(l ♦ X^ 2.14

whioh gives the temperature amplitude in the liquid in terms of the 

incident pressure amplitude in the gas*

2*3 Chernikova*s Theory

Chernikova considers the reflection of any type of sound wave 

(second sound, first sound in the liquid or first sound in the vapour) 

from the liquid vapour interface, and the transformation into either
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of the other kinds* The treatment is for ehy angle of incidence, 

hut we shall discuss here only the case of normal incidence* She 

remarks that her solutions are valid only for frequencies so low 

that the first and second sound wave lengths are very large compared 

with the mean free paths of the vapour atoms and the liquid excit­

ations, respectively* At any given temperature thia condition 

is satisfied for all frequencies for which it has so far been 

possible to propagate second sound* She also states that, on the 

basis of soiae caIc letions w ioh she does not desoribe, in this 

frequency region the li uid is in e< uillbrium with its vapour*

She makes the same pssumptiona as Osborne about small amplitudes 

and likewise supposes >) & • she does not neglect the transform­

ation of second sound into first at the bcundrry, but shows that 

this is negligible, and in the discussion that follows it will be 

negleoted* Also, ideal gaa behaviour of the vapour is assumed 

here for purposes of comparison, though not in her original paper* 

Finally, she neglects the liquid entropy in comparison with that 

of the vapour, while here the entropy difference is written (exactly) 

as L/T.

Vith these assumptions and approximations, Chernikovs’s

equations can be written as follows 

*»,/««w
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which is just conservation of energy• It is the same as equation

2.4 whioh we have written

Po/u - Aow/L 2.15

Her second equation arises from her boundary condition that the 

temperature is continuous across the surfaoe

e - f +TC 2.16

where To is the temperature amplitude of the thermal conductivity 

wave in the vapour. However, no contribution to the energy flow due 

to thermal conduction is included in 2.15» finally, equating chemical 

potentials on both sides of the surface gives

po/ CT • I*6/T

whioh can be written as

po a (MI/BT) p6/T • (dp/dT)6 2.17

That is, Chemikova has taken pc to be the vapour pressure corres­

ponding to a temperature T ♦ 6.

These three equations 2.15 to 2.1Z, together with 2.1, which is 

merely a matter of definition, give

Xj, - AouT/pI£J£ 2.18

where 'H ■ ML/HT. Aa before

% - (VX>/(VX>
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Using 2*17 and 2*1 gives

P«/wp - 2p-^ Xj/Td+X^) = 2{koyx/l(i)/(Mj 2.19

For a first sound wave in the vapour incident on the liquid, Cher­

nikova gives

(TV « Aow/I*

6 » +TO

P</p «'pA

(We note in passing a printer’s error in Chernikova’s paper (present 

in the Russian and the translation), in that her set of equations

2.2 contains (the liquid entropy in her notation)in the last term 

of the last equation, which should be <^ , the entropy of the gas. 

Similarly, in her expression 2.3 for (our 6/VcTu) there

is a term l/pL which should he l/^ <TV )

Solving the above three equations for Xy gives

Xy = (pH3 \ )/(AouT) . 1/XL 2.20

Thus By - (Xy^l)/(XV+1) = -a^ 2.21

Also 6/Wu ’ ^Xy/-» p( 1+Xy) » (T/^ p)/(l+XL) 2.22

2.4 Comparison of the two Theories

If we write T/pI£ » ax, Aou(r+l)/2r « ci> T/pL0 «a»

and Aou a c«, then equations 2.8 and 2.13 become

X^ (Osborne) » at(l/aao+ci)

X_ (Chernikova) « aac8
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Chemikova* s theory applies only when the liquid and the vapour 

are in equilibrium, i*e* when their temperatures are the same 

(equation 2*16), and when the pressure in the gas is the vapour 

pressure for that temperature (equation 2*17)* Recognising that 

for a given po, is determined by equations 2*2 and 2* J, she is

obliged to introduce the thermal conductivity wave to get equality 

of temperatures* (Even if this procedure is correct in principle, it 

is not clear that the temperature amplitudes of the two waves can be 

added to gxve the total temperature excursion in the gas, as 2*16 

implies)*

Equations 2*16 and 2*17 together imply no net mass flow across 

the surface* This in turn implies that no energy is lost aoross the 

surface, i-e* the energy loss from the second sound wave is entirely 

taken up by the first sound and thermal conductivity waves in the 

vapour, though Chemikova neglects the latter contribution*



21.

Osborne*s theory, on the other hand, does not assume equili­

brium. p is not the vapour pressure corresponding to a temperature 

T+Q and there is o net mass flow G(T+6) - G-(T+ ) across the boundary*

This mass flow requires energy, and introduces a dissipative term 

l/aao in the final result. The situation is analogous to the 

transmission line system of figure 2.1(a) for whioh the reflection 

coefficient is

)/(Zs4*fSU)

Zi is to be identified with the impedance of the liquid. R is

then ax0/aao, the *evaporation resistance* of the surface. Za »

atCiP is then the effective impedance of the vapour for seoond sound

as seen from the liquid. Then the energy lost on reflection by 
a

an incident wave of amplitude IZx is X Zi-(l-i)&Zt, that oarried away 

by the transmitted wave is iaZa, and the difference is i“R, the energy 

lost in getting from one line to the other. Chemikova* s theory, 

however, puts R » 0 (no l/^o term), and so no energy is lost crossing 

the surface. For the analogy to be exact, R must be regarded as 

nonlinear, sinoe ao is a function of T. If dao/dT is neglected, 

then ax and Ox go over to as and Oa•
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Dingle (1943) obtains exactly the same result as Chernikova, 

for the same reasons. His boundary conditions are (l) po is the 

vapour pressure corresponding to a temperature T+0, and (2) there is 

no energy loss crossing the surface. Pellam (1943) is interested in

deriving resonance conditions for the Lane experiments (Lane et al

1946, 1947, Fairbank et al, 1947) and not in deriving heights and 

widths of resonances. He makes the same assumptions as Chernikova 

and Dingle, stating that they are sufficient for the former purpose, 

though probably not for the latter. However, in obtaining, for example, 

the total pressure at the surface due to a first sound wave incident 

on it from the vapour, he writes for the total pressure (his equation 35)

p( total) « tfuV - d'u(V-v)

where V is the velocity amplitude of the incident vave and V-v the 

velooity amplitude of the reflected wave.

In obtaining the net velocity amplitude he makes the converse error 

(his equation 37).

V(total) ® V+(V-v)

Consequently his final equation gives the reciprocal of the reflection 

coefficient and not the reflection coefficient as he implies. He

determines 6 from a relation

rd/T
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where is the density of the normal fluid and r is an empir­

ically determined constant* His corrected result is of the same 

form as Chemikova* s (equation 2*18) but differs from it by a factor 

C/rS (-1*1) where S is the entropy of the liquid*

It should be noted that l/aa© « 2ci and so Osborne* s value 

of is three times as large as Chemikova* s» and his value of

about 20"/© higher* Graphs of as a function of temperature 

for both theories are shorn in Chapter 5 (Figure 5*4), together with 

the experimental measurements*

££ Modification of Osborne*s Theory

As will be seen in Chapter 5, the experimental results agree

with neither of these theories, and it is necossaxy to re-examine 

them and decide how they should be modified*

Chemikova* s basic assumption, that the liquid and vapour 

are in thermodynamic equilibrium with each other, seems to the present 

author to be untenable* Her argument seems to bo that thermodynamic 

equilibrium will exist unless there are relaxation effects (Khalat- 

nikov, private communication), and the only relaxation times she has 

considered are the mean times between collisions of gas atoms or of
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excitations* It is possible that there is a relaxation time 

associated with the evaporation process, but it is hard to see 

what it might bo. Ho. over, the direct distillation experiment 

of Atkins et al (1959) is essentially a zero frequency experiment, 

in which no relaxation effects can be important, and it Is clear 

that even in this case the vapour and the liquid are not in thermo­

dynamic equilibrium.

Osborne’s theory assumes that the rate of condensation is

determined by the temperature (T + f ) and pressure (p+pc) of the

gas. But T+ and p+po relate to the conditions in the gas many

mean free paths away from the surface, and Osborne has subsequently

suggested (private communication) that it is more reasonable to

suppose that the condensation rate is determined by the conditions

in the gas very close to the surface, i.e. a small fraction of a

mean free path above the surface. In this region, he suggests

that the distribution function f for the z components of

velocity of the ges atoms has the form shown in figure 2.1(b),

since all the atoms moving up (positive v ) have come from the 
z

liquid, and all those moving down have come from the gas. (To 

simplify the treatment we take a = 1.) Further, these two
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distributions are characterised by different, temperatures* But at

distances many mean free paths from the surface, the function f hasz
the form shown in figure 2.1(c) - it is merely the normal Maxwell- 

Boltzmann distribution shirted by a velocity vo. On the basis 

of these considerations, we now proceed to a detailed calculation 

of the net evaporation rate.

Consider first the region close to the liquid surface. We 

asswae that both halves of the distribution are Maxwellian, i.e. 

that the distribution function for the atoms moving up has the

form

f = P axp(-mv “/2kTi)

and for those moving down

f ® 0 exp(-rav d/2kT ) z- a z ®
Then if there are ^n< atoms/co moving up and atoras/cc moving 

down, it is shown in Appendix B (equationB.4) that the mean energy 

of an atom is

( 5k/2)(ruTA+n9Ta)/(ni-*.n»)

and that the flux of z momentum across the x-y plane per cm* per 

second is (equation B.5)

^nikTt ♦ im»kTa
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We now consider a region of the gas a distance x from the liquid 

surface, such that x^£, the mean free path. If the theory is to 

be applicable to sine waves, it is necessary that x be chosen at a 

point where the phase of the wave is the same as at the surface (or 

differs from it by an integral multiple of 2rr). In practice it is

pi* ays possible to choose x such that 1. % x &9 where X is the 

first sound wavelength, (in the worst case, at 1°K, X « $ co and 

£ » 4xl0~4cm). Then we find that the mean • nergy of an atom is 

(equation B-9)

3kTa/2 + imvo®

and the momentum flux is (equation B.10) 

nekT» + namvou

vo is the particle velocity in the sound wave; it is proportional 

to f, the temperature amplitude of the sound wave (equation 2.J). 

But Te, the temperature of the gas, is merely T+ , and so terms 

in vc“ are second order and will be neglected.

We now assume that the mean energy of the atoms is the same 

in both regions, and that the momentum fluxes are also equal.

Then
(niTi + naTa )/(ni+n») a T& 2.23

and ^(nxkTt + n»kTs) « nykTc 2.24
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As already noted = T + f in our previous notation, and clearly 

also nakTa a p+po. By our assumption about evaporation under non 

equilibrium conditions Tt is to be identified as T+0, and nxkTi as 

p+pi, the vapour pressure corresponding to this temperature*

(Although the number density of the molecules moving up in the region 

close to the surface is £xu, in equilibrium those moving down also 

have a density in&, end it is thus the total density n& which 

determines p+pi)*

We write m ® n + diu, n» « n + dny and Ta = T + AT 

and since 0, > Po px are small quantities it is dear that

dn&, dna and AT are also small quantities* Equation 2* 23 can then

be written

(n+dnt)(T+0)+(n+dna)(T+AT) » (2n+dnx+dna)(T+ f ) 

whence, neglecting second order terms

6+M’ < 2 <f> 2.25

It is shown in appendix B (equation B.S) that the net mass transfer 

across the x-y plane close to the surface is

nikTi.(»^2irSl't)t/,‘- nBkT„(JV'2ir-TB)1 

This is clearly just the mass evaporating, w/h. Rewriting we get
w/L > o0 fnikTtCl-o/Zr) - nskTuCl-AT/^J
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Substituting from 2.24 for n»kTB gives

fw/L « 2ao | nikTt (l-b/4T -AT/4T)- nakT#(l-Al/2T)/

Substituting from 2.25 for aT and writing th© nkT’s in terms of 

pressures

w/L a 2aop|(l+nj O/T)(l- /2T)-(l+p</p)(l- f)/T-0/2T)J

where the Clausius-Clapeyron equation has been used for pi, 

and = Ml/HT. Finally we get

w/L a 2aop ( 6/T-po/p+ f/2T) 2.26

This is to be compared with equation 2.7* Since Osborne* s
K?p/c,t i a

other equations remain unaltered, X^ and are obtained by putting 

a 6/2 in equation 2.8.
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Osborne’s original theoiy rests on the assumption that 

if the liquid is maintained at a temperature T, evaporation takes 

place l'rom the surface es if the liquid were in equilibrium with its 

vapotr , whether it is or not* As modified here, it requires three 

additional assumptions*

The first is the supposition that both halves of the distri­

bution close to the surface are Maxwellian* Loeb (1961) shows that 

for a classical liquid in equilibrium with its vapour, the evaporating 

molecules have a Maxwellian distribution, if it is assumed that the 

cistribution of moleoular velocities in the liquid is also Maxwellian* 

Because the latent heat of liquid helium is 8°K per atom end only 

atoms with at leest this energy can escape, their velocity distri­

bution will be Maxwellian even if Bose-Einstein statistics ere more 

appropriate for the liquid es a whole* While this argument is not 

conclusive, a Maxwellian distribution is the only one that it seems 

reasonable to assume for the evaporating atoms*

We have also assumed that (a) the mean energy of cn atom is the 

same close to the surface as it is far from the surface, and (b) that 

the flux of z momentum across an x~y elane is the same in both regions*
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These two together (equations 2.2J and 2.24) imply that there is no 

first order density change between the two regions. In equilibrium, 

we have regarded the surface as well defined on a microscopic scalej 

the temperature and pressure of the gas are independent of the distance 

from the surface as a matter of definition, When the liquid and vapour 

are not in equilibrium with each other, our assumptions are equivalent 

to saying that the temperature and pressure amplitudes of the sound 

wave are independent of the distance from the surface. Also, if 

the momentum flux was not the same in both regions, momentum would 

be accumulating somewhere, and this seems rather unlikely. It is 

not so obvious that the energy distribution must be uniform, and the 

best justification for equating temperatures in the two regions is that 

the theory is in agreement with experiment •

One other point about microscopic theories of evaporation 

should be mentioned, and that is that the first sound wave is being 

propagated in a saturated vapour. We note, however, that the velocity 

has been measured at the saturated vapour pressure in helium gas 

by van Itterbeek and de Laet (1958) ,Grrimsrud and Werntz (196?) 

and Meyer, Meyer, Halliday and Kellers (19^3)» and also in the present 

work (see Chapter 6). Only van Itterbeek and de Laet and Grrimsrud 

and Wemtz were able to detect any deviation from u » (yRT/M) .
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These results extern ed from 2°K to 4»2°Kt end at the lowest tempers* 

ture the deviation was only about 1% • Above 1*8°& their extra­

polated values of u iiave been used in calculating theoretical reflec 

tion coefficients9 below this temperature the extrapolated values 

agree with the perfect gas curve* In thia tempera ture region 

we have also used van Itterbeek and de beet's experimental values 

of



CHAPTER THREE

APPARATUS

’The higher we fly on the wings of Science, the worse 

our feet seem to get entangled in the wires*

The Hew Yorker, February ,1931.
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Apparatus

3*1 General Methods

Two methods of measuring a were tried, a pulse method

and a resonance method*

In the pulse method, second sound was generated by applying 

electrical pulses to a heater resistance, placed across the bottom 

end of a vertical tube, arranged so that the liquid level is below 

the top. The second sound pulees wereiropagated up the tube, reflected 

from the free surface, and detected by a resistance thermometer 

situated somewhere below the surface. The thermometer was supplied 

with a constant current to convert resistance fluctuations to voltage 

fluctuations, which were them amplified, filtered, and displayed on 

an oscilloscope. The oscilloscope trace showed the initial pulee 

and echoes oaused by successive reflections, first from the open 

end, then from the closed end. The traces were photographed, rnd 

measurements of pulse heights from the photographs enabled the reflection 

coefficient at the open end to be calculated.

In the resonance experiments, the thermometer wes placed at 

the bottom of the tube. The heater was fed from an oscillator, and 

standing waves were set up when the length of the liquid column in 

the tube was an integral number of half wavelengths. As the helium 

boils off, a resonance is swept through, and the Q (which is related

to X, )was measured.
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3*2 The Heaters and Thermometers

The heater hea to be placed at the bottom of the tube to produce 

a second sound flow along the axis* and the question then is where to 

put the thermometer* For a resonance experiment* it must clearly be 

at a temperature antinode* and the most convenient antinode is the 

bottom of the tube* Two suoh arrangements were tried*

In the first* the heater consisted of a flat plate of glass 

whose top surface was electrically conducting* placed across the end 

of the tube* This conducting glass had a resistance of « >0 ohms/ 

square* which was virtually independent of temperature between 1°K 

and 300°K. It was obtained from J*A* Jobbling Ltd** Sunderland* 

Electrical contacts were made by soldering wires to thin copper strips 

just large enough to cover the ends of the plate* and * gluing’ these 

strips on with*silver dag9 (a commercially available suspension of 

silver in methylisobutyltoetone )• Th® heater used in all the experiments 

was 15 mm x 13 mm and had a resistance of 100 ohms at helium tempera­

tures* The thermometer in this arrangement consisted of an enamelled 

copper wire (36 S*W*O.) whioh was coated with aquadag* It was placed 

across a diameter of the propagation tube* and located by two recesses

cut in the bottom of tube* This thermometer was used for all the

resonance experiments*
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The second method tried was to paint both the heater and ther­

mometer on a glass plate, which was then placed across the end of the 

tube* The thermometer was a thin strip of aquadag painted across the 

centre, the heater a strip of aquadag or silver dag on either side. 

This arrangement was troublesome for four reasons. Firstly, it was 

necessary, in the pulse experiments, to be able to generate pulses 

of amplitude about 1 watt/cm14 for measurements near the X point.

The aquadag heater had such a high resistance, and the silver dag one 

such a low resistance, that it was not easy to meet this requirement. 

Secondly* the electrical pick up in the thermometer was so large that 

the thermometer amplifier was saturated for an inconveniently long 

time. This could be remedied by earthing the heater in a suitable 

way (see 3*8) but only at the expense of increased hum. Thirdly* the 

temperature variation of the heater resistance was so large and 

unprediotable that it was difficult to do meaningful tests of the 

system at room temperature. Finally, it was discovered that the 

thermometer was responding to the heat pulse generated by the heater 

and transmitted through the glass backing. This last produced a 

large and slow distortion of the base line whioh <ade the pulse 

photographs so obtained unusable.
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A third heater thermometer arrangement was used* in whioh the 

thermometer was placed on the tube wall sufficiently far from the

heater that thermal conduction effects did not occur* The heater

was again a conducting glass plate across the end of the tube* The 

construction of the thermometer is shown in figure 3*1 (a). A small 

patch of aquadag - 2 mm wide (i*e* along the tube) and - 4 mm long was 

painted on the inside wall of the tube* Two 8 B*A* holes were 

drilled and tapped in the wall* one above and one below the aquadag* 

Brass bolts with their ends filed flat were screwed into the holes 

until the ends were just flush with the inside surface* They were 

then locked in place with nuts* and contact made between the aquadag 

and the bolt ends with silver dag*

This thermometer had a rather poor response time* « 1*5 ms 

presumably caused by the good thermal contact with the backing*

This arrangement was used for all the results discussed in Chapters 

5 and 6*

3»3 Propagation tubes

The propagation tubes used were made from perspex of 1 cm 

internal diameter and from 7 to 14 cm long* Figure 3*l(b) shows 

the type of tube used in the final pulse experiments* The tube
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with the thermometer on the wall was mede in parts to avoid placing 

the thermometer too close to one end. Extension tubes of various

lengths were made which could be pushed on to either end. Those 

for the bottom were tapered at the lower end to leave i mm wide 

annulus in contact with the heater. This was to reduce any spurious 

effects caused by local heating at the part of the heater surface in 

contact with the tube wall. A small hole (O.jft. mm) was drilled 

in the tube wall opposite the thermometer to allow good thermal 

contact with the bath. A brass plate beneath the heater was bolted 

to a flrnge near the bottom of the main tube by 10 B.A. bolts tight­

ened against compression springs, whioh kept the tube flat on the 

heater when the perspex contracted at low temperatures.

The tubes used in resonance experiments were slightly different 

Extension tubes were not used* and the bottom end of the tube was not 

tapered off from the full wall thickness of 2 mm. The thermometer, 

looated by two recesses in the end, was insulated from the heater 

by a thin perspex ring placed between them.

The brass plate was part of a cage (not shown) used to suspend 

the tube from the top of the cryostat. In dummy experiments the top 

of the tube was closed by another conducting glass plate, held by 

a spring plaoed between it and the top of the cage. Also mounted on 

the oage were a plumb line and a pointer, roughly adjusted to be in
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line when the propagation tube was vertical* Pine adjustments 

were made with the 10 B*A* bolts holding the tube to the brass 

plate* The tube was positioned (approximately) on the axis of the 

cryostat, and a mirror mounted behind the plumb line and pointer at 

43° to the line of sight permitted the tube to be vertically aligned 

during a run using levelling screws on the cryostat top plate*

3*4 The cryostat and general cryogenic arrangements*

The brass cage containing the propagation tube was bolted 

on the end of a 1/8 inch diameter thin walled staixiess steel tube, 

whioh could slide vertically through a hat gland seal on the top 

plate* Current and potential leads to the thermometer were taken 

down inside this tube to a multiple plug, the socket being mounted 

on the brass cage* The stainless steel tube then provided some 

screening of the thermometer leads, and the whole cage assembly 

was arranged to be easily demountable* A small hole was drilled 

in the stainless steel tube about half way up, to prevent thermal 

oscillation in it, and a stop was mounted just above the hole to 

prevent the hole being pulled past the seal when the cryostat 

was underKccuum# The cryostat also contained a resistance thermometer



38.

for measuring the bath temperature, and a 2 kohm heater for

controlling the temperature at low temperatures. The dewars were 

made of glass, the helium ones of ifonax, whioh required repumping pbout 

every 20 runs.

Temperatures down to 1.25°K were reached using a high capacity 

rotary pump. Prom 1.25°K to 1°K an Edwards 9B4 vapour booster pump

was used.

Because it was used only in the latter stages when time was 

short, it was installed without much consideration for ptoaping speeds, 

and was connected to the cryostat by a rather long and narrow pipe.

This consisted, essentially, of three lengths of tube, the first 

(nearest the cryostat) 7.1 cm long end 1.8 cm diameter, the second

9.2 cm long and 4 cm diameter, the third 17*8 cm long and 4.25 cm 

diameter. Assuming laminar flow in the pipe, the mass flow/sec.,

G, is given by (e.g. Present, 1958)-

vhere a is the radius, I the length, and po and pi are the pressures 

at the input and output ends of one of the sections of pipe. G can 

be calculated from the helium boil off rate, which was - 1 cm/hr in 

a dewar of 6 cm internal diameter. This gives G - 1.4xl0~sgm./aec.

V) for Helium gas at 1°K is a 2pp, and po for the first section is
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taken as the vapour pressure at 1°K, i.e« 0*12 torr. Using these 

values, one finds that the pressure drop aoross three sections of pipe 

is quite negligible ( a 5*10~4 torr).

The conclusion is that the ultimate pressure is limited by the 

throughput. Using a three level polished copper radiation shield 

reduced the ultimate pressure from 0.2 ton? to 0.11 torr, which accord­

ing to the makers performance figures (for air) gives a reduction in 

throughput of - 8°/© • Rotating the nitrogen dewar so that stray light 

did not fall on the helium, or on the absorbent perspex tube, had no 

appreciable effect. The cryostat would have had to be redesigned to 

have a lower heat leak before lower temperatures would have been

obtained.

3.5 Temperature measurement and oontid

Above 1.3CK, temperatures were determined from the vapour pressure, 

measured on an oil manometer one side of which vas continuously pumped, 

the other side being connected to the cryostat. Conversions from 

vapour pressure to temperature wore made using the Ts g scale of van 

Dijk and Durieux (1953a).

Below 1.3°K, temperatures were determined from the resistance 

of a 1/8 v; 12 ohm no tinal Allen Bradley resistor. The resistor

i
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was calibrated between 1*3°K and 2*1°K, and the temperature at lower

temperatures determined from a linear extrapolation of a log-log

plot of vapour pressure against resistance (Gunsolo, Santini and

Vincenti-Missoni, 196>)* A potentiometer was used to measure both

the potential across the thermometer and the current through it (

by measuring the potential across a standard resistance in series)*

The measur ng cur rent used was 4 ^ia, corresponding to a maximum heat 
—9dissipation of 16 x 10 watts*

Above 1*25°K the temperature was controlled by valves on the

pumping line, while monitoring the temperature with the resistance 

thermometer* At the lowest temperatures a fine control on the nearly 

shut baffle valve of the booster pump gave adequate temperature 

stability (better than 1 mdeg*), while at temperatures between 1*1 

and 1*25°K the bath heater was used to control the throughput* It 

was fed from a 12v D.C* power supply, giving up to 70 mw heat input, 

but 30 mw was the largest heat input used*

3*6 Electronics (Pulse Method^

The block diagram is shown in figure 3*2* Two amplifier

systems wore used* The first consisted of a Brookderl L.E. amplifier



545 B OSCILLOSCOPE.

Figure 3*2 Block Diagram of the Pulse Experiment Electronics.
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followed by a Dawe variable filter and a CA type plug-in unit on a 

Tektronix j45B oscilloscope. The Brookdeal had a gain of 94 db, a 

bandwidth from 5c/s to 100 kc/s, and an input noise level of s lpv.

The Dawe filter was used in the low pass mode, set at 20kc/s. The 

thermometer was fed with a constant current of about 1 ma, supplied by 

a 120v. H.T. battery and a 100 kehm resistance, placed in an earthed 

metal box to reduce 50 cycle pick up problems. Higher currents than 

lma increased the noise level, and lower currents decreased the signal.

This system was not very satisfactory because, at the lowest 

sweep speeds (lOrns/om) the Brookdeal low frequency response caused 

the base line of the scope trace to become distorted. It was 

therefore replaced by a Fenlow type A102 D.C. amplifier with a gain 

of 26 db, and a type E differential amplifier plug in unit, used in 

the single ended node. The type £ plug in had a maximum sensitivity 

of 50pv/om compared with the 50 mv/om of the C A type. It he a 

bandwidth from 0.02 c/s to SOkc/s, and its own high and low pass 

filters, 3et at 0.02 o/s and lOko/s respectively.

With this system it was necessary to modify the thermometer 

current supply circuit to prevent saturation of the D.C. amplifier.
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The cirouit used is shown in Fi ure 3* 3* Essentially it was 

two constant current sources of opposite polarity feeding two 

parallel resistors Kt and Hg in such a way that the net current 

through Hi (the D.C* amplifier )input was zero, while that through 

Ha (the thermometer) was not. For this to be so, we require that 

Ii/Is * (l+r/Hi). Since Hi was temperature dependent,it was 

necessary to adjust r every time the temperature was changed.

Incorporated in the oscilloscope was a variable time delay 

which enabled the start of the sweep to be delayed by a Imown time 

after the arrival of the trigging pulse from the pulse unit. With 

the delay set to zero, the start of the sweep could be made to 

coincide with a graticule mark on the screen, and the delay times 

necessary to bring successive pulses into coincidence with the same 

mark could be used to measure the time intervals between pulses. This 

is the basis of the level measurements In Chapter 5 end the velocity 

measurements in Chapter 6.

50c/s pick up was very troublesome, and a considerable amount 

of time was devoted to earthing problems. It was necessary to adopt 

a systematic single point earthing system, and then introduce strat­

egically situated earth loops (across the Fenlow D.C. amplifier for



Figure 3-3 The Thermometer Supply Circuit.
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example)* It was also necessary to break the earth line to the 

oscilloscope9 and earth it separately to the common earth point 

(usually the ciyostat top plate)* It was possible in the high 

temperature runs to isolate the system from the mains earth, which 

meant electrical isolation from the pumping line* This was achieved 

by inserting a teflon washer between two of the flanges on the line9 

and bolting them together with bras3 bolts insulated by teflon 

bushes and washers* For the low temperature runs, it was sufficient 

to exploit the faot that the Fenlow amplifier was directionally 

sensitive to pick up* It was mounted on a clamp stand and could 

be rotated about any of three mutually perpendicular axes to give

minimum hum*

3*7 Electronics (assonance Method)

The signals were generated by the osoillator and deteoted

by the d*c* fed thermometer, amplified, filtered and applied to 

the Y plates of an osoilloscope. (see Figure 3*4)* The X plates 

were driven from the oscillator and so the signal appears as a 2:1 

Lissajou figure, since the second sound frequency is twice the



Figure 3*4 Block Diagram of the Resonance Experiment Electronics.

________________________



44*

oscillator frequency* The oscilloscope was used for detecting 

resonances* In order to measure them, the signal was fed to two phase 

sensitive detectors, one supplied with a reference direct from the 

oscillator, the other with a reference 45° out of phase with it*

The two outputs, 90° out of phase, were applied to a pen recorder via 

a multivibrator driven relay acting as a chopping device* As the helium 

level dropped, it was observed through a oathetometer, and the marking 

pen on the pen recorder used to register the time at which the level 

passed each division*

3*8 The Pulse Generator

This consisted of a free running multivibrator, VI (figure 3*5), 

controlling the repetition frequency, which drove a monostable multi­

vibrator, V2, controlling the pulse length, and an output stage*

One period of VI was fixed, at 45 as, and the other had 4 

values selected by a switch ( s $ ms, 55 ms, 155 ms and 455 ms with 

Ci » 0*1 pf)* The monostable circuit V2 was triggered by positive 

going pulses, and the intervals between these were then approximately 

50, 100, 200 and 500 ms* In the latex* stages of the experiment when 

photographs were being taken, Ci was increased to 0*2 pf, to give a



FIG: 3-5 THE PULSE GENERATOR.
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minimum repetition ret© of ebout 1 pulse/second*

The puleo length was determined by the time constant Jt3Cs •

In the early experiments & was 39 Kohm plus 2 iiohm variable and 

Ca was 12 kpf, giving a pulse length variable from 0.6 ms to 20 ms, 

though the longest pulses used were 2.5 ms. Later R was altered to 

47 Kohm plus 500 Kohm variable, and Ca to 3*3 kpf, to give a pulse 

length variable from 150 ps to 1*5 ms.

Near the X point pulses of * lwett/cm4 were required to 

generate useful second sound signals. The heater had a resistance 

of 100 ohms and an area of 1-95 sq.cms., vhich meant developing a 

14 volt, 140 ma pulse. At this high current, the H.T. voltage 

tended to fall off during the pulse, causing the output stage anode 

voltage to rise, end the pulse to lose its flat top. If the output 

stage w?!5 run off the srme pov.er supply as the rest of the circuit 

the voltage at the second anode of the monostable multivibrator also 

rose, causing a fall in voltage at the second anode, a fall in voltage 

at the output grids end a further rise at the output anodes. This 

effect is avoided by using two power supplies, and, by making the 

positive rail of one the negative rail of the other, a convenient 

large negative voltage is obtained to provide bias for the output



grids* This is suoh that the output valves are cut off, except 

when a pulso arrives. The pulse height is then controlled by varying

the bias conditions• In these cirou. stances it is convenient to

d*c* couple the output of the monostable multivibrator to the output 

grids*

Because of its low resistance, and the long pulses used, the 

heater was also d.c. coupled to the output* A 300 ohm pot with an 

earthed centre tap placed in parallel enabled the earth point of the 

heater to be varied to give minimum heater-1 :ermometer coupling.

In practice it was found that this was in any case small* and, if 

the heater eerth was not the same as the chassis earth, there was 

a rather large amount of Oc/s piok up on the signal*

Apart from the heater, the pulse circuit provides two other 

outputs* One, in parallel with the heater, is used to measure the 

input pulse heights on a second oscilloscope. The other, rom the 

output of the free running multivibrator, is used to trigger the main 

oscilloscope.
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CHAPTER POUR '

THE EXPERIMENTS

’But, Mousie, thou art no thy lane

Ih proving foresight may be vain

The best laid schemes o’ mice an* men 

Gang aft a-glqy,

An* lea*e us nought but grief an* pain, 

For promised joy.’

Robert Bums.



CHAPTER 4

_iii ro-.ftrke oo experlracntal procodure

The basio experiment Is to oersure either the Q of a resonator 

closed at one end by the free liquid surface, or to ae< sure the 

reflection coefficient from It. In practice such measurements by 

themselves are too low, because of imperfect reflection from the 

heater end and losses in the tube due to attenuation, in addition 

to the free surface experiments therefore, It i© nocessoxy to perform 

dummy experiments with the tub© closed at both ends and totally 

immersed in liquid to correct for these losses*

The free surface experiment will also give too low a result if 

the free surface Is not pcrpendioulrr to the axis of the tube i.e. if 

tii© tube is not vertical. Using the plumb line described in Chapter 

4 the tube could be aligned to within 0.5° of the vertical end this was 

done for all the resonance experiments and the early pulse experiments.
' j

How ver, the second sound frequencies used in resonance experiments 

were between 140 and 11 >0 c/s end the pu3.se lengths used were between 

400 us and 2.5 ms. This corresponds to a wavelength range from 1.75 

to 14 cm for the resonance experiments, and for the pulse experiments,
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the wavelength range of the principal Fourier components of the pulses 

was from 1.6 to 5 on. A misalignment of 0.5° is equivalent to a 

0.1 mm difference in the second sound path between opposite sides 

of a 1 cm d cmeter tube, and so this degree of misalignment is quite 

unimportant for the rmge of frequencies used. In view of this it 

was decided in the later pulse experiments (including those disoussed 

in Chapters 5 end 6) to dispense with the plumb line, and adjust the 

tube by eye. This could be done to within 5°, giving a length 

difference of 1 mm, v/hich is still muoh less than tne shortest wave­

length used. As a choc., the risetime of the first pulse reflected 

from the rree surface was measured, first with the tube aligned with 

the plumb line, then at an angle ~ 10° from the vertical, and no 

significant difference was observed.

A check was also made that the amplitudes of the observed 

pulses i ere reasonable. For instance, at 1.4^CK, with a 10v,l«3 ms 

input pulse and an amplifier gain of 80db the observed signal was 

2.4 volts* The heater area was 1.95 sq. cm. and its resistance 

100 ohms,end at this temperature 3, the characteristic impedance of 

second sound, is 5*98x10 3 deg oaf* watt x, and so the expected temper­

ature amplitude is 2.04mdeg. The thermometer sensitivity was
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200 ohms/deg, and the thermometer current was X ma, so the expected 

signal at the thermometer la 410pv, or 4.1 volts on the oscillosoope* 

This Is reasonable agreement, since there are a variety of reasons 

for expeoting a smaller signal than 4.1v* For example, not all the 

power is used to generate seoond sound * some is lost in the heater 

leads• The amplifier specification allows an error of +ldb in the

gain* And the thermometer does not respond fully to a 1.3 ms pulse 

( see 4«4) •

4*2 Resonance experiments*

We can regard the two outputs P,Q, of a resonance experiment as 

the real and imaginary parts of the signal, S. It can be shown that 

the Argand plot of S » P + IQ is, sufficiently near resonance, a 

olrcle passing through the origin (figure 4*l(a))» If we can deter­

mine the point on the circle corresponding to exact resonance, then the 

phase angle of any other point is the angle subtended by that point 

and the exact resonance point at the origin* If we also know the helium 

level readings corresponding to these two points, we can determine the 

phase angle in terms of X, and from these two relations determine Q.



Figure 4»1 Argpnd Plots of S and l/S*
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In praotice there are two modifications to this prooedure. (a) the 

phase angle for all points to which there corresponds a level reading 

is plotted against level reading, and the slope is measured. This 

gives Q without requiring the level reading at exaot resonance, (b)

It is much better to determine the phase angle from the Argand plot 

of l/*s, which is a straight line, dose to resonance.

The results obtained in free surfaoe runs gave Argand plots 

of l/s which were far from the expected straight lines (figure 4*l(b)). 

The theory predicts a straight line parallel to the Hl(l/sJ axis, and 

the observed rotation represents a phase shift occuring between the 

heater and the phase sensitive detector inputs, possibly due to the 

thermal capacity of the heater and/or thermometer.

The results obtained in dosed tube runs gave Argand plots of 

1/S wh ch were straight lines near resonance. Prom them values of 

the phase angle 6 were obtained corresponding to known level readings, 

I«, and Q was obtained from the slope of a plot of L versus tan 6.

This graph was not the expected straight line, but was such that Q was 

a monotonic function of 6. It was suspected that this was because the 

oscillator fre uency stability was not good enough.
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At this stage it was decided to abandon the resonance 

experiments end use the pulse method* The advantage is that the 

analysis is much simpler, rnd it is consequently much easier to detect 

the causes of unexpected results such as those described above* The 

disadvantage is that the quantity measured in a pulse experiment is

IL, rather resonance experiment, and IL is much less

sensitive than X- to changes in a, or, for that matter, to the theory

used to determine it*

JtsI The observed pulse ahapea

The first pulse experiments used the wire thermometer placed 

aoross the bottom end of the tube* A typical photograph from an open 

tube experiment is shown in figure 4* 2(a)* The pulse shape changed 

as the pulse progressed, and, at the same time, the base line was 

noticeably distorted* A similar effect was observed in closed tube 

experiments, e*g* figure 4*2 (b)*

It was at first thought that the change of pulse shape was 

oaused by the wire thermometer across the end of the tube* It was 

therefore replaced by the second heater thermometer arrangement 

described in Chapter 3, with both heater and thermometer on a glass
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plate across the end of the tube* The pulses still changed their 

shape as they progressed* but* in addition* the base line became 

enormously distorted* The latter effeot disappeared when the ther­

mometer current was switched off* and was ascribed to thermal con­

duction from the heater to the thermometer tirough the glass backing*

The third thermometer arrangement, where the thermometer is 

placed on the tube wall about 3 cm from the bottom end* was then 

tried with essentially the same results as the wire thermometer*

A detailed investigation showed that as the pulse progressed it 

developed the shape shown in figure 4*2 (c)* Successive reflections 

made the top part smaller and the bottom larger* until the top part 

disappeared completely and the pulse appeared to have turned upside 

dovsn« We can define the pulse number N at which the top and bottom 

parts have equal amplitude* and use N as a measure of how badly 

distorted the pulses are* The dependance of N on thermometer current* 

input pulse height* temperature, pulse length and height of liquid 

in the tube was investigated* N was found o be independent of 

thermometer current* N increased with pulse length, until for 1*9 ms 

pulses no change of pulse shape was detectable* N was also found to
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increase with the height of the liquid in the tube, and no change 

of shape was observed with the tube full. N varied with input pulse 

size and temperature in suoh a way as to suggest that N/6 was constant, 

where 0 is the second sound amplitude, proportional to

(seoond sound impedance)x(input pulse height)a* Finally, N seemed 

to be greater in dummy experiments than in closed tube experiments*

At this stage it was decided to work with long pulses (i.e* 

about 2 ms)* All the work so far described had been done with a 

7 cm propagation tube with the thermometer situated 3 cm 

from the bottom end* With this arrangement the time between the end 

of one pulse and the beginning of the next was only 1 ms for reflec­

tions from the bottom of the tube and 2 ms for those from the top and 

so extension tubes were made to fit on both ends* With this arrange­

ment it was found that even short pulses (i.e* 600ps) were propagated 

without change of shape in closed tube experiments (e*g. figure 4*2(d))* 

The explanation seems to be connected with the fact that although the 

wire thermometer had been removed from the original tube, the recesses 

used to locate it had not* It is therefore supposed that part of the 

second sound wave approaching the heater saw the two recesses, connected 

to the helium bath outside the tube, as an open end and was reflected
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with a phase change of w, i*e. upside down* The rest, of course, 

was reflected normally* When an extension was used, however, 

the recesses were isolated from the hath, and the effect disappeared* 

The effect reappeared in a later run wnen the top end of the tube 

jammed and came off as the tube was lowered, but disappeared as the 

tube was raised and the top reseated itself*

Cleaning up the tube geometry in this way did not affect the 

open tube experiments, where a progressive change of pulse shape was 

still observed* This was thought to be due to the first sound pulses 

in the vapour (which were generated when the second sound pulses were 

reflected from the surface) being reflected from the open end of the 

tube (with a pulse change of w), travelling back down, and generating 

second sound pulses in the liquid when they struck the surface*

A cotton wool plug placed in the top of the propagation tube completely 

removed the progressive ohange of shape observed without it (see 

figure 4* 2(e))* A careful examination of the photographs showed that 

pulses genera ed in this way were still present, though much smaller 

and the right way up now* Such pulses can be seen after the 4th and 

subsequent pulses in figure 4«2(e)* A fuller disoussion of the
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ooupling between first sound in the vapour and second sound in the 

liquid is given in Chapter 6.

The base line distortion mentioned in the last paragraph 

(figure 4.2(a)) increased with increasing pulse height and pulse 

length. It wrs very sensitive to the low frequency characteristics 

of the amplifier system and to give a straight base line the D.C. 

amplifier system was used.

4.4 The Thermometer Response Times

Figure 4.2 (f) shows the first reoeived pulse for a 2 ms 

input pulse, using the tube wall thermometer* The input pulse had 

a risetime of about 150ps> end the transit time of the larding edge 

across the thermometer was about lOOps. The long observed risetime 

may be due to poor thermal response of either the heater or the 

thermometer. Both the heater and thermometer were in good thermal 

contact with their backings, which were rather more substantial than 

have normally been used in previous second sound work. The tube wall 

was 2 mm thick and the conducting glass plate was 4 mm thick.

The risetime of pulses observed with the carbon wire thermometer

was about 800 psec, and it seems possible that most of this was due
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to the thermal capacity of the heater* Whether this is true or 

not* the thermal capaoity of the tube wall thermometer was clearly 

responsible for the much larger risetime observed with it*

The propagation tubes used were too short to resolve pulses 

which were sufficiently long for the thermometer to respond fully to 

them* figure 4.3(a) shows the effect produced* where pulses become 

piled on top of the tails of the preceding ones* It would have been 

possible* of oourse* to use a muoh longer tube* but this was not done 

for two reasons* firstly* as we shall see in Chapter 5* it is 

advantageous if the tube used in dummy runs is twice as long as that 

used for free surface runs. This would have meant a dummy tube 20 to 

30 cm long* and required considerable modification to the apparatus at 

a late stage in the project. Secondly* long pulses aggravated the 

base line distortion* and a longer tube* implying longer transit times 

and more low frequency bandwidth to detect a given number of pulses* 

might have made matters even worse* Short pulses (400fis) were there­

fore used for all the results discussed in Chapters 3 and 6* (ttie signal 

so obtained was* of oourse* only about haB’ the height of a fully 

developed pulse)* It is necessary to check that the observed pulse
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amplitudes are linearly dependant on the input heat flow, i.e. on 

(input pulse height)®. This was done at two temperatures, 1.3°K 

and 1.0°K. Further, the observed pulse was cut off on its leading 

edge at a point where it was still rising fairly fast, but had the 

exponential tail of the fully developed pulse. Consequently the 

pulses seemed to have faster risetimes than fall times, an effect 

clearly seen in figure 4.2(e).

Finally, it should be mentioned that the hum level varied 

widely from run to run for no very obvious reason. Figure 4.3(b), 

for example, was taken under essentially similar conditions to 4.3(c) 

but is dearly much less reliable, merely because of increased hum.

k



CHAPTER FIVE

THE REFLECTION COEFFICIENT MEASUREMENTS

There are three kinds of liesj lies, damned liesf and statistics

Mark Twain



CHAPTER 5

THE REFLECTION COEFFICIENT MEASUREMENTS

>.l AnaXyaia Of the Photographs

Figure 4.2(e) shows a typical photograph from an open tube

experiment using a 400 ps pulse. To analyse such a photograph it 

is necessary to consider the behaviour of a pulse when the reflec­

tion coefficients at either end are different. Let Hi be the 

height of the first pulse, i.e. the pulse as it passes the thermom 

eter going up for the first time. Then the height of the second 

pulse, Hg is given by

H» = Hi ft exp (-2od„) - aHi

where a is the attenuation coefficient, R is the reflection coeff­

icient from the free surface, and 4a is the distance between the 

thermometer and the free surface (see figure 5«1)« Then

Hg a Hg R<, exp (-2aZi) « aaiHi

where Ro is the reflection coefficient from the closed end.

H« - a’aiHi 

Rs » a*afH*
and Hn = H*(aa<)^n W/2 n £s odcl



Fig. SJ THE PROPOGATIQN TUBES. (schematic)
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« when n is even

Thus log » £n log aa< - £log aa* ♦ log Hi for n odd

• in log aai - log ai ♦ log Hi for n even 

So a plot of Hn against n should fall on two parallel straight lines 

of slope i log aai» figure 5.2 shows a typical graph. The inter­

cept of the line through the odd points (’the odd line*) is i log 

(V/aaa) and the intercept of the line through the even points 

('the even line’) is log(Hi/at). Then if «• express the slop, of 

the lines as a measured reflection ooeffioient we have

Hf « (SHo)^exp -a(4i«*^s)

The same analysis for a closed tube experiment gives for the measured

reflection coefficient H c

®c » Ho exp -a(l<+Iis) • Ro exp-aL ^*1.

whence

R » (Sy/R0)exp -2a(iL -dr£») 5*2

If L and di are suitably chosen, da oan be adjusted so that

£* a jl - di «

Alternatively Rf can be measured as a function of da> and Rf (^o) 

found by plotting a graph of log Rf versus €*• In either case
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equation 5*2 c® then be used to find R.

We note also that the ratio of the intercepts of the odd

ment and exp - a(l<-La) for a closed tube experiment.

V.'e can therefore measure a top reflection coefficient and

a bottom reflection coefficient given by 

R^ « R exp (-2od«)

S3

for an open tube experiment, and 

R^ « Ho exp («2cuLa)

Rg ■ H© exp (-2ol<) 

for a closed tube experiment.

5.2 Experimental procedure

In practice do was rather small, and pulses tended to pile 

up. R^ was therefore measured at each temperature for three values 

of d®, from about 1 cm to 3 om greater than do. The «^xact values 

of da were obtained by measuring the time intervals between pulses, 

using the calibrated time delay, and assuming the velocity of second 

sound* As a check, the total length L of the closed tube



was determined in this way, and found to be 1}.62_+ 0.15 oxa, compared 

with e length of 13.736 cm measured at room temperature with e travelling 

microscope.

At each temperature and level, a group of from 3 to 6 photo­

graphs were taken for each of three input powers. In a separate run, 

another group of photographs was taken for the same temperature and 

input powers, with the tube closed and totally immersed. The heights 

of successive pulses were then measured from the photographs under a 

magnifying glass, using a rule graduated in 0.02 inch divisions. The 

error in determining the pulse height (about half a division) is one 

of definition rather than of scale reading, so a higher magnification 

and a finer scale would not have improved the aocuracy.

Altogether about 600 photographs were taxon, though about 100 

were rejected as unusable. Some frames were double exposed, a very 

few were too under exposed, and some at the end of films were fogged 

or partially fogged. But the most frequent cause of rejection was low 

frequency noise, which caused the trace to run too high or too low

across the screen.

The two amplifiers used were tested to oheck that the output 

varied linearly with input over the input range used. The oscilloscope
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optics were checked by measuring the height of a vertical line at 

various positions across the screen. Finally, the camera was tested 

for distortion by measuring the osoilloscope graticule from the 

photographs.

5.3 Analysis of r«3ulta-

The pulse height measurements were fitted to a straight line 

of the form log » a - bn using a computer programme. Each point 

was assigned a weight proportional to the inverse square of the error

associated with it. Since the error in H is constant the error in 

log H is « 1/6 , and the weights are « H* • In practice the pro/q*amae 

did rather more than this. It fitted one line through all the points 

from a given photograph. It also fittod two separate lines through 

the odd end even points. It calculated the standard errors of the

slopes end intercepts so obtained and the corresponding reflection

coefficients end standard errors. It also calculated the ratio of

the intercepts of the odd end even lines, and the corresponding 

reflection coefficients and given by equations 5*3 and 5.4.

In addition, for each group of photographs, it calculated 

the weighted mean and two standard errors of (a) the slopes obtained 

by fitting one straight line through all the data, (b) the slopes



of the even lines and the slopes of the odd lines* and (c) the slopes 

corresponding to the S^/s, and (d) the slopes corresponding to the 

Rg*s» It then calculated the reflection ooeffioient corresponding 

to these mean slopes*

The two standard errors are

2 (bi * E)’/®j

(n-l) £ !/•’

and . (1/ 2 V«J) *

where the K are the slopes* £ their Bean* their standard

errors and n the number of them® If the b^*s are normally distributed

©bout 5 then Z « 0^0^ ® with standard error

AZ • 1/ £2(a-ljj 2 •

(see* e*g* Topping, 1962)* We note that

z - -
(\ - t)V»« 

(n-l)
5.5

and that if we have a large number of values of Z we would expect

them to be normally distributed about 1 with a standard deviation of

AZ* Throughout this chapter the standard error of a weighted Bean

is taken to be the larger of 0 and 0.* e x



No straight line was fitted to less than four points. This 

means that there must have been eight points per line before the 

computer fitted odd and even lines, and it either fitted both or it 

fitted neither. A fuller description of the programme is given in 

Appendix C.

5.4 Qp«a tube reaults

Tafcb 5.1 shows all the results discussed in this ohapter. The 

first column gives the temperature, the second gives the size of the 

input pulse, and the others give the reflection coefficients measured 

under these conditions. The third, fourth and fifth columns give the 

open tube reflection coefficients Rp measured at three values of da, 

approximately equal to do + 3 cm, do ♦ 2 cm and do + 1 cm, respectively 

(The exact values of d* are not displayed, since they seem to be of 

little significance). Saoh entry represents a weighted mean of 

results from between 2 and 6 photographs. Where values of Rf have 

been obtained at the same temperature in different runs, they have 

been displayed separately.

Column 6 is the weighted mean of all the individual measure­

ments of Rf at that temperature and input pulse size (which is not
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necessarily the same es the mean of the entries in columns 3 to 5)*

Column 7, R * is the closed tube reflection coefficient measured in c
a separate run at the same temperature and input pulse size* Where 

results have been obtained in separate runs at temperatures differing 

by more than 10m deg, the results have again been displayed separ­

ately; in these cases the entries under R at the temperature at
c

whioh the R^’s were measured have been obtained by graphical inter­

polation of figure 5»3« Column 8 is calculated from the corresponding 

entries in columns 6 and 7 (R ■ R“^/Rc)* finally column 9 gives the 

weighted mean of all the entries in column 8 for that temperature*

Although up to 15 echoes could be observed in open tube 

experiments, measurements of pulse height became increasingly 

unreliable for the later pulses as the error in measurement became 

an increasing fraction of the pulse height* This is the more important 

beoause the error in log H is « to l/H. Consequently the inclusion 

of all of the later pulses provides little extra information and a 

good deal more uncertainty* And as we have seen, the cotton wool 

did not completely suppress the first sound pulses from the vapour, 

and this would produce a systematic error in height measurements
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1.38 7 85.29 ± 0.44 85.56 ± 0.80 85.23 i 0.35 85.32 ± 0.26 91.78 ± 0.39 79.29 i O.65 77.90 ± 0.54
8 85.70 ± 0.68 84.79 1 0.39 84.85 ± O.44 84.9O ± 0.25 92.30 ± O.41 78.09 ± O.65

10 83.52 ± O.52 84.OO ± 0.22 84.47 ± 0.18 84.18 ± O.16 91.60 ± 0.20 77-36 ± 0.38

1.45 8 86.44 ± 0.35 85.25 ± 0.24 94.30 ± 0.5** 77.07 1 0.69 77-07 1 O.69
10 85.13 ± 0.32

1.50 7 91.39 1 0.64 92.49 ± 1.32 91.87 ± 0.62 94.61 ± 0.49 89.19 ± 1.33 87.50 ± O.94
8 89.78 ± O.93 89.63 ±1.24 89.72 ± 0.71 94.88 ± 0.51 84.84 ± 1.51

10 90.78 ± 0.64 91.08 ± 0.36 91.04 ± 0.25 94.59 ± 0.58 87.62 ± O.77

1.61 8 88.29 1 0.89 84.44 ± 0.71 86.69 ± 0.87 86.34 ± 0.57 96.05 ± 0.59 77.61 ± 1.28 77.38 ± 0.86
9 83.48 — 1.11 88.59 1 0.74 87.87 ± O.67 86.81 ± 0.71 95.14 ± 0.33 79.21 ± 1.46

10 83.08 ± O.55 86.10 ± 0.64 86.91 ± 0.81 85.O5 ± O.52 95.06 ± 0.35 76.17 ± 1.10

1.74 9 87.30 i O.53 87.78 ± O.54 87.51 ± 0.35 94.61 ± 0,92 8O.93 ±1.16 80.15 ± 1.17
10 85.49 ± O.59 86.41 ± 0.23 86.37 1 0.18 94.81 ± O.54 78.70 ± O.65
12 87.42 ± O.53 88.84 1 0.48 88.30 ± 0.40 94.63 ± 0.35 82.41 ± 0.87

1.74 9 87.28 ± 2.61 87.28 ± 2.61 94.61 ± O.92 80.52 ± 5.3 85.79 1 0.73
10 90.00 ± 0.68 90.00 ± 0.68 94.81 ± O.54 85.43 1 1.46
12 90.38 ± 0.61 90.38 ± 0.61 94.63 ± 0.35 86.34 1 1.27

1.80 9 85.86 ± 0.60 88.36 ± 0.52 87.85 ± 1.03 87.25 ± 0.44. 96.13 ± O.58 79.18 ± 1.05 81.1 ±0.96
10 88.68 ± O.55 88.95 1 1.31 90.57 ± 1.20 89.16 ± O.65 95.49 ± 0.60 •83.28 ± 1.43
12 88.25 1 0.19 87.O8 ± O.44 88.06 ± 0.97 88.02 ± 0.21 95.10 ± O.67 81.47 ± 0.79
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which might be significant, and which would be larger for the later 

pulses. So for the open tube experiments only the first 8 pulse 

measurements on each photograph have been used in working out the

results.

The values of and (equations 5*3) calculated by fitting 

two straight lines di fared significantly from each other, and this 

implies that the two lines had different intercepts and that the 

points did in fact fall on two separate lines. This interpretation 

is confirmed by comparing the standard errors of the values of 

obtained by fitting two lines to the data with the errors obtained 

by fitting only one. for any given photograph the former error 

was about the same or slightly smaller than the latter, while an 

increase by a factor of J? would have been expected (because the 

number of points per line had been halved) if the points had only 

been distributed about one line. The open tube results (Table *>.l) 

have therefore been calculated by fitting two straight lines to the 

first eight points.

An analysis has been made of the values of Z (equation 5»$) 

and the way in which they were distributed. This analysis is of 

limited value, because of the large sampling errors involved in fitting
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a line to only four points, and averaging the slopes of only three 

to six suoh lines • For example, the effeot of reduoing the number 

of points fitted to a line, either by reducing the total number of 

points, or by fittxng two lines instead of one, is almost always to 

increase the mean of the Z distribution* The only exoeption was 

when one line is fitted and the total number of points is reduced 

from 16 (Zal.O £ 0*1) to 3(5 » 0.7+ 0*1)• The latter result, 

implying that the standard errors were too large for the given 

scatter of slopes about the mean slope, is expected lor a one line 

fit The higher value of Z when 16 points were fitted is presum­

ably due to higher soatter resulting from the large errors in the 

extra points*

In these ciroumstances, it is not olear ehat weight should 

be attached to the fact that Z was signifioantly greater than 1 

for the two line distribution, being 1*7+ ^-2 when 16 points were 

fitted and 2*%£ 0*2 when 8 points were fitted* The distributions 

were approximately normal, but the standard deviations were raher 

large, (1*5 ± 0.1) AZ in both oases* It ought to be remarked that 

the final alues of P 'figure 5*4) are relatively insensitive to the
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number of points used and the number of lines fitted* The variation 

between extreme oases moves the points by about l°/o, end mostly but 

not always in the same direction* This is scarcely significant in view 

of the standard errors in the values of Rf, and we therefore suppose 

that the high values of Z are mostly caused by sampling fluctuations, 

and that any systematic errors present do not make the true error muoh 

larger than the standard errors of table 5+1 and figure 5*4+

Table 5+1 shows there is no dependance of on £a, except 

at 1°K where it has been corrected for* The mean slope for all photo­

graphs taken at a given temperature and input power has been calculated 

ab initio from the individual slopes in each of three groups, and 

this value (Average Rp in the table) has been taken to be R^(A>) +

But there does seem to be a slight dependance of Rf on input power, 

which disappears when is calculated*

Cloped .tube results

The reflection coefficients in closed tube experiments are muoh 

larger than in open tube runs, and consequently a larger number of

pulses can be measured to the same degree of accuracy* And, of course, 
there are no systematic errors due to coupling with the vapour* Also, 

the values of and obtained by fitting t o lines to the data



agree with H , indicating thnt the points fall on one line end not c
two. So the results have been calculated by fitting one straight 

line to the first 16 pulse height measurements from each photograph 

(see table 5*1 and figure 5*3)* The Z distribution is dose to the 

expected one * Z is 1.2+0.2 with a standard deviation of (1.20+0.15) AZ, 

end the distribution is approximately normal. Once again it is not 

clear whether this means that the closed tube results are relatively 

free from systematic error oompared with the open tube ones, or 

whether they are merely less liable to sampling errors.

If we suppose that R© « 100°/o» we can use equation 5.1 to 

get a maximum estimate of the attenuation, a. Between 1.5°K and 

1.9°K we get o « O»OO57 cm”1, and at 1.0wK a » 0.017 cm*1. Since 

la - L# » 1.7 cm, we would then expect R^ and R^ to differ from Rc 

by » 1.7 at 1°K. Both these figures are much smaller than the standard 

errors in R^ and R^, and the difference is consequently not detected. 

Similarly* open tube experiment, the variation in R^ with £a is

close to the limit of measurement. The expeoted difference between 

the largest and smallest values of R^(£a) at 1.5°K is *0.66, and at 

1.0°K is *1.7. At 1.5°K this value is comparable with the standard 

error, and accounts for the lack of any observed dependance of R^



Figure The Closed Tube Reflection Coefficient.
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on At 1.0 °K, the observed variation is smaller than expected,

though the errors in do not rule out the possibility that the 

true variation is muoh larger. And, of course, the expected

variation is a maximum one.

At the lowest temperatures, below 1«3°K, the attenuation 

becomes amplitude dependant, increasing with increasing input power,

W. (Above 1«3°K the points shown n figure S3 «**• the averages of 

all the results obtained at that temperature. Below 1«5°&» some 

points have been omitted for the sake of clarity* All the data 

are given in ta^le 5*1)• This effect has been observed before by 

Atkins and Hart (1954*), and Zinoveva (1936), and the present results 

are in qualitative agreement with theirs. Atkins and Hart found 

da/dW~ 1.5xl0’’3cm”1/(watts/cmw) at 1.18°K and 20 kc/s, Zinoveva 

found a value 10x10 8 at 1.27°K and 1 kc/s and the present results 

at 1.14°K give da/dV, - 1x10 a. The results of Atkins and Hart suggest 

that da/d©(s(l/p)da/dW) is not strongly temperature dependant and so 

da/dW is large only when p is large, i.e. at low temperatures. The 

range of input powers used in the present work is largest at low temper­

atures and these two points explain why the effect has only been observed 

below 1.3°K*
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The attenuation coefficients deduced above are much larger 

than those measured in the bulk liquid (e.g* Atkins and Hart, 1934) 

but in this temperature and frequency region surface losses are 

much more important (Zinoveva, 1956). According to Khalatnikov

(1952b), the surface attenuation a is given bys
% - ( f ™»)( ft w^/2)^ ♦ (p/r) [(!/«)+(?/£ C<Jw)* J "*

5.6

where p 9 srt the total, superfluid and normal densities of 

the liquid, r is the tube radius, w the angular fre uency, the 

liquid visoosity* 3 the characteristic impedance of seoond sound, 

and , Co and X the density, specific heat and thermal conductivity 

of the walls of the propagation tube* The first term represents 

attenuation due to the viscous drag of the liquid at the tube walls* 

The seoond term represents losses due to the thermal conductivity 

of the tube walls, and depends on K, the Kapitsa thermal boundary 

resistance between the tube walls and the helium. In our case, 

however, the second term is negligible compared with the viscous 

losses* (In the same paper Khalatnikov gives a theoretical expression 

for the reflection coefficient from the closed end

Ro » 1 -aroj
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where is the seoond term in equation 5*6, whioh gives a value of 

Ho less than 0*01°/o»)

The measured attenuation is still rather larger than the surface 

attenuation o&lculated from equation 5*6, and it seems likely that 

the amplitude dependant attenuation is also important* The present 

work gives values of da/dW from 1.0 °K to 1.14°K, and Atkins and Hart 

give values of da/dd at 1.18°K, 1*3°* and 1.50°K. Using these to 

calculate the power dependant attenuation and combining this with 

the surface attenuation gives a total attenuation within 20°/o of 

the measured value below 1«5°K* (Table 3*2 shows the contributions

attenuation a (viscous losses) end the power dependant attenuation

a , together with the measured attenuation a •) Sinoe the measuredw e
attenuation is greater than that calculated this is fairly reasonable 

agreement in view of the uncertainty in the power dependant atten­

uation, especially large at low temperatures* Above 1*5°K» however, 

the calculated attenuation (using Atkins and Hart’s value of da/dd at 

1*5°K) steadily diverges from the experimental value, being ten times 

smaller at 2.12°K. The amplitude dependant attenuation is probably



TABLE 5.2

T,“K S a8 •» *1 ae

1.0 2.4 10.7 1.6 14.7 12.4

1.2 0.2 4.5 1.7 6.2 6.4

1.4 0.0 2.1 1.9 4.0 4.6

1.6 0.0 1.2 0.9 2.1 J*®

1.8 0.0 0.7 0.6 1.3 5.6

2.0 0.0 0.4 0.6 1.0 5.e

2.1 0.0 0.4 0.6 1.0 6.9

2.15 0.1 0.2 3.3 5.6 7.3

Units of attenuation are cm 1 x 10 a.

A frequency of 1.25kc/s has been assumed in calculating and a^.
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a consequence of second order terms in the hydrodynamioal equations, 

but no detailed theory seems to hare been worked out, nor do there 

seem to be any measurements of da/d0 other than those already 

mentioned* The amplitude dependant attenuation is therefore unknown 

above 1*5°K, though were it large enough to completely explain the 

experimental attenuation a dependance of on input power should 

probably have been observed in this temperature range* In fact, the 

results at 2*12°K show a dependance on amplitude which is possibly 

not significant because of the rather large errors* But if this 

is regarded as a real effect, the amplitude attenuation so oaloulated 

gives a value for the theoretical attenuation about half the experi­

mental one, a discrepancy ifcioh is almost completely explained by the 

error in determining do/dO*

finally we note that there exist two further possible surface 

loss mechanises, namely the thermal conductivity and second viscosity 

of the liquid, which have not been treated theoretically, and for 

which no allowance has been made in the foregoing discussion*

The free aurface reflection coefficient

figure shows the free surfaoe reflection coefficient as 

a function of temperature, and Table 3*1 shows the data from whioh
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the graph has been constructed* Also shown are the theoretical 

predictions of Osborne (both theories) and Chernikova*

These results were obtained in three open tube runs and two 

closed tube runs* During the first of the open tube runs the 50 

cycle pick up level was much higher than in the other two, and the 

low pass filter was set at 3 kc/s, compared with 10 ke/s in the

later runs* The results obtained in these run* are marked with a

circle in figure 5*4, and it can be seen that they are systematically

higher* than dae-p-shei—tsuits* A comparison of the photographs 

(e*g* figures 4*3(b) and 4*3(c)) suggests that the results from 

the later runs should be much more reliable* The reason for the

discrepancy is probably connected v/ith the fact the measured reflec­

tion coefficients are rather sensitive to the base line used in 

making pulse height measurements. In photographs like 4*3(c) the 

base line hat been taken as the top of the noise level, rnd measure­

ments of pulse heights have been made between there end the top of 

the pulse* An attempt has been made to follow the same procedure for 

the earlier photographs (figure 4* 3(b)), but it is clearly much 

less satisfactory in these cases, where the base line is badly defined 

because of the lack of high frequency noise and distortion by nr ins
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piok up* apically, the measurements of the height of the first pulse 

were about 0*5 ins*, the error in determing the base line was about 

0*01 ins* for good photographs, and the base line thickness wrs about 

0*06 ins* A systematic error of 0*01 ins* in determining the base 

line gives an error of 0*7 in R^, and 1*4 in R* So an error of O.Q^ins* 

in tho base line would account for the observed difference between

the two sets of results*

A poorly defined base line might ? Iso he expected to give a 

larger scatter in the results but this effect was partially eliminated 

while doing experiments by taking more photographs in eaoh set in

th© first run*

An analysis of the Z distribution when the early results are 

included (they were not included in the results discussed in 5*4) 

confirms the impression that they should be largely discounted*

Neither 2 nor S, the standard deviation, is much altered, but the 

distribution is m ch too broad to be normal.

The remaining results are seen to agree best with Osborne’s 

modified, theory, (For values of • less than 1 Osborne’s theory 

predicts higher values of R)* They are perhaps systematically low 

because the scatter of results has obscured the dependance of
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on £a. Sinoe the range of 4g over whioh Hf was measured is about 

the same as the difference between go and the mid point of the range 

of 4®, the averaged values of R^ are low by an amount of the order of 

(or less than) the standard error in R^. Since R depends on R^*t 

this is usually the dominant source of error in R, and the results 

of figure 5*4 may be systematically low by an amount comparable with 

the error bars. This makes the agreement even better, and is about 

the same as would be obtained if the results were corrected using the 

values of the attenuation ooeffioient estimated in the last section.

In any case, no reasonable correction for attenuation will bring the 

results into agreement with Osborne’s original theory. It is also clear 

that Chernikova*s theory is incorrect, at least for 400 ps pulses.

Agreement with Osborne* s modified theory implies that a is 

close to 1. Since we have supposed a»l in the derivation, we cannot 

say what limits on a are implied by an error in R. However, it is 

reasonable to assume that R will be rather insensitive to variations 

in a, as in Osborne’s original theory, where as0.85 gives only a l°/o

increase in R.
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At first sight this seems to give good agreement with the 

results of Atkins at al (1959)• But to interpret their results they 

have used an equation which is essentially equation 2*7> equivalent 

to Osborne1 s original theory> rather than the modified form (2.26).

This reduces their values of a by a factor of 2* Hbwover, they have 

neglected dttc/dT, whioh increases a by 5 to 10°/o* But more important 

is the fact that their values of a are increasing with tube radius*

The reason for this is not known (it is perhaps that there is a pressure 

drop along the U tube due to viscous flow of the gas)> and until it is* 

there is no way of estimating what condensation coefficient would be 

measured in a very wide tube*

t



CHAPTER SIX

THE COUPLING BETYEEN FIRST SOUND IN THE VAPOUR 

AND SECOND SOUND IN THE LIQUID,.

’Great fleas hare little fleas upon their backs to bite ’em, 

And little fleas have lesser fleas• and so ad infinitum*

Augustus de Morgan.



CHAPTER 6

The coupling between first sound in the

vapour and seoond sound in the liquids

6.1 Introduction.

When a second sound pulse arrives at the surface it gener­

ates a first sound pulse in the vapour. This pulse travels up the 

tube, is reflected from the end, travels back down the tube, and 

when it reaches the surfaoe generates a second sound pulse in the 

liquid.

for a tube of radius r and a sine wave of wave vector k the 

reflection coefficient at the open end is -1 when 2kr « 1, and 0 

when 2kr » 1 (Kinsler and Prey, 1962) • The important Fourier com­

ponents of a 400 ps pulse are in the region of 1.25 kc/s, giving 

2kr a 1.3 at 1.0°K and 0.93 at 2.1°K. In this case only the low 

frequency components are reflected (with a phase change of <)• But 

the poor frequency response of the thermometer does not detect the 

higher frequencies in any case.

£•2 The closed tub, case

We consider first an experiment where the liquid level is 

between the thermometer and the top of the tube, whioh is closed with 

a flat plate. The pulse in the vapour is reflected without a phase
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change and the pulse it generates in the liquid is then the same way 

up as the original pulse in the liquid. The pattern of pulses that 

is observed is shown in figure 4«3(&)» and schematically in figure 

6.1(a). H(l) is the pulse generated by the heater (the main pulse) 

travelling up the tube, H(2) is the main pulse returning and H(2,l) 

is the pulse generated by the vapour pulse produoed by H(l) (or 

9vapour pulse9 for short). H(3) is the main pulse travelling up, 

and H(3,l) is the vapour pulse following it. H(4) is the main pulse 

travelling down, and H(4,l) is a vapour pulse with two components, one 

due to reflection at the surface of H(3>1) and one due to a separate 

vapour pulse generated by H(3)« H(3,l) also generates a vapour pulse,

H(4,2).

Each successive reflection generates another vapour pulse and 

at each reflection some of the energy lost by each pulse is transferred 

to the next member of the chain. Consequently each pulse increases 

in amplitude at every reflection until it becomes as large as 

the preceding pulse.

6.3 The velocity of first sound in the vapour

We can verify this interpretation by measuring the velooity of

sound in the vapour, u. Denoting by 4 the length of the liquid



(a) thermometer below the surface.

'H(I) H(2J HC2^) H(3,l) H(3,3)
H(l,l) H(2,1) H (3) H(3,2)

CbJ thermometer on the surface.

Figure 6.1 The Pattern Produced, by the Vapour Pulses.
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column between the thermometer and the surface, we have, In the 

notation of the last chapter (figure 5*1)

III ♦ & + (L, * l) « If ,

and (li8 - d) » ut©

whence u a (L - I< - 4)/to 6#1

where to is the time interval defined in figure 6#1# The results 

obtained in this way are shown in figure 6# 2, along with those of 

van Itterbeek and de Laet (1958), Grimsrud and Wernts (1967) and 

Meyer et al (1963) fox* comparison# The latter results extend up 

to 1#9°K, and above 1#2°K are in agreement with the velocity calcul-
j

ated from the ideal gas equation, vis u ■ (yRT/M)2. The present 

results have a precision of 2 or 3 psr cent, but there are a number 

of sources of systematic error remaining. These include nor line­

arity of the time base (small), temperature drift while measurements 

are being taken, which is only important near the X point, and 

finite amplitude effects# The second sound velocity is a function 

of amplitude (Dossier and Fairbank 1956) and this oauses la + 6 to 

depend on amplitude# to does not depend on amplitude (at any rate, 

in the same way) because it is associated with the first sound 

velooity in the gas, and L is crlculated from the tube length,
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determined at low amplitude by the method of paragraph 5.2.

Nevertheless, the results are in reasonable agreement with u «
±

(y KT/m)2 and with the other experimental results*

6.4 The cjaplituda of the vapour pulses.

The expected amplitude of the vapour pulses can be determined

from both the Osborne and Chemikova theories* If we define r as the 

ratio of the amplitude of the vapour pulse to the amplitude of the 

pulse whioh produced it, Osborne’s theory gives (equations 2*9 and

2.14)

r a (AflUT/pi^

if we identify po with V<Tu, i.e. neglecting attenuation in the gas 

and losses at the end of the tube* With the same assumption, Chern­

ikovs gives (equations 2*19 and 2*22)

r • 4XL/(l+XL)s

To compare these with the measured r, we have to remember that eaoh 

vapour pulse (apart from the first,) is made up of several components* 

We have, as a matter of definition
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H(2,l) - ril(l)

H(4,l) - RHj H(2,l) ♦ r«(3)

• RBg rH(l) + rH(3)

■ 2rH(3)

H(6,l) - RBg H(4,l) ♦ rH(5)

- 2^ H(3) * rH(5)

• 3»fl(5)

Thus JSifiill • nr true for n •▼«>» 6.2
H(n-l)

For the second vapour pulses we have

H(4,2) - rH(3>l) - rBj 8(2,1) . r’Bjj H(l) - (,-/B)H(3)(l+0) 

11(6,2) . rBj H(4,l) ♦R8> 8(4,2)

- 2rH(3) ♦ SBj, (r’/a)H(3)

■ (r’/H)H(5)(2*l)

H(8,2) . rl^ H(6,l) ♦ HKj, H(6,2) - (r"/fi)H(7) (3+3)

If we now write

gsxg. - (r’/a) 3(a)

we have

S(n) « in-1 ♦ S(n-2)

« in-l+i(n-2) -1 ♦ S(n-4)

m «i in - 2

a in-l +

IB « 1

n(£n-l)/4
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We oan derive similar expressions for H(n,3) etc*, but in practice 

H(n,3) and subsequent pulses are obscured by the H(n+l) series of 

pulses*

It is more convenient when doing these experiments to adjust 

the tube so that the thermometer is on the surface* (This halves the 

number of pulses visible, making it easier to distinguish between them* 

It also makes the pulses larger and easier to measure)* In this case 

equations 6*2 and 6*3 are modified* We have, in the notation of Figure 

6.1(b)

H (1,1) » H(l) r /(l+R)

H (2,1) « H(2) r/(l*H) ♦ ^(l+k) H(l,l) » rH(2) [i/(l+*) ♦ 1/h]

H (3,1) - rH(3)/(l+R) + RB(l+R).rH(2)/(l+H) + f H(2)/RrJ

• rH(3) jl/(l*R) ♦ 2/R]

and so » r [l/U+R) +(n-l)/ll] 6.4
<

For the second vapour pulse we have

H(2,2) • rP^ H(l,l) » rRj . rB(l)/(l+R) a raH(2)/R(l+R)

H(3,2) - Rg H(2,2) ♦ 2Rr r2H(2)

. (r“/R) . H(3) (l/R(l+R) ♦ 2)

Thus

H(n)^ “ (rVR) h(1+R) * (>n_1Xn+1)]
6.5



About 40 photographs were taken in an experiment of the kind 

described in 6* 2,and using equations 6*2 to 5.5, values of r were 

calculated fro© measurements of pulse heights* The results so 

obtained are shown in figure 6*3 along with all three theoretical 

ourves* R has been taken as 73C/O, and attenuation in the liquid 

has been neglected* This is not serious, since d was small (or 

zero) to give good time resolution of the pulses, and attenuation 

in the bottom part of the tube below the thermometer can be included

upon whioh r does not depend*

The precision of these results is better than l°/o in 15°/o> 

but a number of systematic errors remain* As already stated, the 

H(n,3) and the subsequent members of the U(n) series overlap with 

the H(n+l) series, and this will cause the measured heights of the 

H(n+1) series to be too large. For n less then 3 this problem 

does not arise, but for low n H(n,l) and H(n,2) are small and subject 

to a rather large (up to 33°/o) ercor of definition* Finally, to 

give good resolution when the thermometer is in the liquid H(2n-l) 

must be dose to H(2n) and these two scries are superimposed* A 

correction has been made for attenuation of the pulse in the gas, 

which was estimated by raising the tube till the thermometer was 

in the gas, and measuring the decey rate of the pulses observed*
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The reflection coefficient thus obtained (about 90°/c) is attri­

buted entirely to attenuation and looses at the dosed end* Clearly 

this neglects losses at the free surfree* vhich are probably the 

most important* But there are the further problems that (a) the 

attenuation measured in this way is for a longer length of vapour 

column than that used in the main experiment (b) the observed pulse 

train has a fine structure caused by second sound pulse transformations 

at the surface and (c) most important, the time resolution is only 

one third of that in the liquid (because of the higher velocity) and 

the pulses tend to pile up on one another. Nevertheless, the 

absolute error in r is unlikely to be greater than 5°/o in 15°/o*

Once again, the modified form of Osborne’s theory is in best agree­

ment with the results, although now the tendency is for disagree­

ment in an opposite direction from that of Chapter

6.5 The open tube case*

The observations of 4*3 on the observed pulse shape in open 

tube experiments are fairly readily explained in terms of secondary 

pulses produced by first sound in the vapour.

As has already been observed (6.1) the low frequency compon­

ents of a first sound pulse are reflected from the open end of the 

tube with a phase change of ir, that is, as negative pressure pulsas
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rather than positive ones# The second sound pulses they produce are 

likewise negative temperature ones, and so appear upside down oa the 

traoe. They appear behind the main pulse on its way down the tube, 

a time t© later, determined by equation 6.1. If a 7 cm tube is used,

5 om full of helium, to is about 7OOgs. If the main pulse is a 6OOps 

one, the vapour pulse following it therefore appears on its tail.

The main pulse is always spread over a longer time than the eleotrioal 

input pulse because of the thermal capacity effects, end with a 7 cm 

tube and 600ps (or longer) pulses, it is never possible to properly 

resolve the main pulse and the vapour pulse following it.

As the liquid level in the tube rises, to becomes smaller, and 

the two pulses destructively interfere, giving the appearance of a 

less marked change of shape. The same is true then longer pulses 

are used. In fact N, (the pulse number at which the observed pulse 

is half positive and half negative) is some monotonic function of 

Zf/to, where is the pulse length.

The dependance of N on temperature amplitude is not so readily

explained. However, we would not expect to observe any other depen*-
1 1

dance of N on temperature. Since u « T2 (a) to * T~2 and (b) the
I

first sound wavel ngths are <■ T2, and the reflection from the open end 

improves slightly at higher temperatures. But these two effects are
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small, and ere in opposite directions* Md from figure 6*5 v/e 

see that r is vexy insensitive to temperature.

It should be remembered that the closed tube experiments also 

showed a progressive change of pulse chape, not well understood, but 

supposed to be a result of the end of the tube not being properly 

closed* The observed open tube effects are therefore caused by both 

the poor end geometry and coupling with first sound in the vapour* 

This is presumably why N is larger for closed tubes than open ones* 

It is possible that the dependance of N on second sound amplitude 

is an effect associated with the imperfectly closed end, and cannot, 

therefore, be explained in terms of vapour pulses, although present 

in open tube experiments*

It also seems likely that the unexpected resonance plots 

described in 4*2 were caused by vapour-liquid coupling. Standing 

waves of first sound in the gas could hare been set up by the second 

sound evaporating liquid at the surface* Since there are large 

losses at both ends of the vapour column, the first sound resonance 

would be very broad, and for a large range of lengths of the vapour 

column the system would be 9 close* to resonance* This system would 

then be coupled back to the second sound resonant system, producing 

a coupled resonance system. Such an effect would give results at 

least qualitatively similar to figure 4«l(b)*



CMAPTKH ShVW

EVAPOItATION ON A MICROSCOPIC SCALE

Lord J since thou Icnov/est TTher© all these atoms are*****

oaaes Graham* Mrrquis of Montrose*



CHAPTER 7

Evaporation on a microaooplo Scale.

7*1 Introduction*

We now return to the problem raised in Chapter 1, of how 

condensing atoms can form part of the liquid, with its rather unusual 

structure. The interpretation of the experiments of Osborne and 

of Beenaker, that the oondensing atoms do not exchange momentum 

with the superfluid, strongly sugests that momentum must be conserved 

in whatever processes ooour when an atom condenses• In other words, 

the superfluid oannot be used as a source or sink of momentum.

Bach condensing atom when it approaches the surface, is pulled 

into the liquid by the van der Waal*s forces which hold the liquid 

together and are responsible for the surface tension. In this way 

each atom requires an energy L on oondensing, and a corresponding 

amount of momentum normal to the surface* (L is Just the latent 

heat per atom)*

figure 7*1 shows the energy spectrum of the excitations and 

that of the free gas atom (i*e* S a pM/2m» a being the mass of a 

helium atom)* An atom when it has condensed has an energy L in 

addition to its thermal ener y, and its momentum is determined by 

the oondition that it lie on the curve E « p“/2»« & is given

approximately by (van Dijk and Durieux, 1950b)
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L « Lo + 5M/2
••

where Lo is the latent heat/atom at the absolute zero* (Throu^xout 

thia chapter,! and !0 refer to atoraio quantities, rather than molar 

or specific ones)* The error is negligible at 0*8°K and about ♦ 4°/o 

at 1*8°K* Lo/k (»7*15°K) is also shown on figure 7*1

In what follows we shall suppose that the vapour behaves as 

an ideal classioal gas, and that the excitations which form the normal 

fluid behave as an ideal Bose Einstein gas* We shall neglect inter­

actions between the excitations except in so far as these can be 

taken into account by th temperature dependence of the excitation 

spectrum* This limits the discussion to temperatures less than about 

1.8°K (Bendt ot al, 1959).

There are two kinds of processes which are probably responsible 

for condensation. The first is one in whioh a gas atom decays into 

several excitations, and we will write this schematically as

g —♦ •♦••«•*en
where the g represents the gas atom end the the excitations*

The seoond is one where a gas atom collides with an excitation 

already in the liquid and the resulting object decays into several

excitations*

g + —> ©8 ♦
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The Energy Spectrum of Liquid Helium II.Figure 7»1
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Thor® is no reason why more then two entities should not bo 

involved on th® left hand side of such a process, except that the 

probability of n body collisions falls off rapidly for n greater than

2.

Other processes may be possible, which depend on the fact 

that the excitations have e finite lifetime, but these will not be 

considered here. Th® associated effect, th* t the spectrum has a 

finite line width, is also relevant, in thrt it relaxes slightly 

the conservation requirements* But the line width is small except 

near the X point, and in what follows it will be ignored*

Excitations in helium are normally thought of as two kinds - 

long wavelength phonons, near the origin of the excitation curve, and 

rotons, near the minimum* These are the only ones v/hich are apprec­

iably excited at temperatures where the quasi-particle concept is use­

ful, and they make the predominant contribution to the thermodynamic 

functions* However, as we shall see below, the whole spectrum is 

probably involved in evaporation and condensation. We therefore 

split the energy spectrum into four mo irntum intervals, as shown in 

figure 7*1. The subdivision is thrt of Bendt et al* (1959) who chose 

it so that in each interval the energy could be written as an analytic
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function of the momentum. We shall continue to call the excitations
7

in intervals 1 end 3 phonons and rotons, and shall denote them by 

p and r in process equations. The excitations in intervals 2 and 4 

will be called type 2 end type 4 excitations and will be denoted by 

he and h«. It will also be convenient to use the term heavy excit­

ation (h) to mean a roton or a type 2 or 4 excitation.

7.2 Surface excitations.

There is another kind of excitation which may be important in 

condensation processes, namely surface excitations or quantised surfaoe 

waves. 3&ese were first introduced by Atkins (1953) to explain the 

temperature dependance of the surface tension, and have since been 

invoked by Kuper (1956, 1958) ^nd Atkins (l957)to explain critical 

velocities in superfluid films, and by Brewer, Symonds and Thomson 

(1965) to explain the specific heat of partially filled superleaks.

for a combined gravitational end surfaoe tension wave on 

deep liquid, Super (1956) gives for the relation between angular 

frequency w and wave number k

w » (gk ♦ CTk*//3
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where g is the acceleration due to gravity, cr the surface tension 

and the liquid density. The energy is then given in terms of 

momentum by

K » (gir p + a- $*/ti )’ 7.1

The gravitational and surface tension terms are equal when p/lT •

20 cm*1, and E/k 8 10*7 °K. 30 for thermally excited surface modes

we can write 7*1 as

B » (cr/fc p p*/8 7.2

whioh is shown in figure 7*1

The number of modes per unit area of surface is then given by

Nfl » (2rr/h*)

oO
r

pdp/( exp( l/kT)*l) 
Jo

oO

« (kT/h)4//a(p/cT )*//a(l/3n') I x*/*ax(expx-l) 7*3 
Jo

and the integral is f(l/3) ^(4/3) 8 3.3

where is the Biemann seta function.

Atkins (1933) Has pointed out that 7*1 is probably not correct

for short wavelengths. He noted that the problem was similar to the 

Debeye theory of solids and that the spec turn of normal modes must be 

cut off at some wavelength of the order of the interatomic spacing.
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Since this is 3*2 X in helium the maximum wave number is 1.96X“1> 

and the maximum energy, according to equation 7*2 is about 32°K.

Atkins determined the cut off by setting the total number of surface 

modes equal to the number of atoms in a monomoleoular layer at the 

surface* and obtained a maximum wave number of 1.0 r*, for which 

equation 7.2 gives an energy of 12.1°K. He then suggested that the 

zero point energy be subtracted from this figure, to give a maximum 

energy • 7*2°K, for which equation 7*2 gives 7*1 for the maximum 

wave number.

In order to make some assessment of the role of surface

excitations in condensation processes, we will suppose that 7.2 is 

correct for short wavelengths, even though thi3 is probably not true. 

But we note that for thermally excited surface excitations, the nature 

of the short wavelength part of the spectrum is not very important.

7*3 Some numerical calculations relevant to condensation processes.

At this stage it is instructive to do some arithmetic. The 

numbers of phonons and rotons per unit volume are given by (e.g. 

Khalatnikov, 1965)

Np - MkT/hc)8 £ (3) 

for phonons, and

« (2<<r/hB)(2npkT)2 po exp (-d/kT)
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for rotons* Here po>P and A are the parameters of the energy 

spectrum J their values at 1*1°K are (Yarnell, Arnold, Bendt and 

Kerr, 1959* Henshaw end Woods, 1961)

nA - 8.65°K 

PoA « 1*91 F1 

p/m « 0*16

The number of gas atoms per unit volume is obtained from the gas

law*

NG - pAt

In table 7*1 we have calculated the ratios N^N^, ^d

The mean roton velocity is given by (e*g* Atkins, 1959a) 

vy « (2kT/rrp)2

and the mean gas atom velocity is well known to be
i

v& * (8kT/rrm)2

Now the flux of gas atoms striking the surface is NqVqA, and the 

roton flux is N^v^/4-J tbeir ratii is just (Nr/N&)(vy/v(,) • 

l*25(Nr/Ng,)• Phonons all have the same velocity c (the velocity of 

first sound) and so the corresponding ratio for phonons is3*3(Np/N^)T~^

Sinoe Nand Np/Ng. are always greater than 1, this means that the 

phonon and roton fluxes striking the surface are always greater than

the flux of gas atoms striking the surface*



Also given in the table is the number of surfaoe excitations per unit 

area (equation 7*3). Finally we calculate the energy Eo at whioh the 

excitation curve intersects the gas atom ourve* and the freotian of 

atoms which have an energy greater than this. The fraction of atoms 

with energy between E and B ♦ dE is just
(4A)^ (lA/(kT),/a) exp($/fcr)ai

and the fraction with energy between 0 and Eo* N(Eo) is then

Eo/kT

N(Eo) (Mr)1 (!0ff)*exp(E/kT)

70
Xo

(4//w) I x8 exp (-x®)dx, where xo® ■ EoAt

J0

» orf(x?) - (Mr)2 xo exp (-xo8)

The fraotion f with energy greater than Eo is then I-B(Eo). The 

fraction F of inoident gas atoms whioh have enough energy (2d) to 

form two rotons is also given in the table.

The relation given by Tamell et al (1959)
aA ■ 8,68 -0.0084J7

has been used to determine d as a function of temperature. Eo has been 

calculated from the expression for the exoitation energy in the second 

momentum interval given by Bendt et al

S/lt • a-11.5 (p/B - 1,113)“

where a Is a function of temperature, (a ■ 13»93°K at 1.0°X),



TABLE 7-1

T

°K

ti/ie.

°K

1/k

°K

BoA

°K Ca~8xl0*®

f

7

I
7.

0.8 8.65 9*15 12.7 6.9 78 1.4 2.9 0.01

l.o 8.65 9.«5 12.7 8.0 18 1.9 10 0.16

1*2 3.65 10.1 12.7 8.4 7.1 2.5 21 0.70

1.4 8.59 10.6 12.7 9.1 3.8 3.5 39 2.5

1.6 8.46 10.9 12.5 10.6 2.5 4.4 56 5.7

1.8 8.17 11.2 12.4 11.4 1.8 5.7 72 12

TABLE 7.2

T,°K a' a

1.0 0.0019 0.019

1.4 0.018 0.22

1.8 0.057 0.81
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l*!t Alley's Theory of evaporation

Tilley (1965) has attempted a calculation of the contribution 

to the evaporation coefficient a due to the process

8 •

a is defined as the fraction of quasi particles striking the 

surface which decay and enter the vapour as gas atoms. For this 

process it is related to a by

«* o'M^v^/4

where is the excitation number density end v* the average velocity 

of an excitation.

He assumes that energy (including the latent heat energy) and 

momentum parallel to the surfree are conserved, but not momentum normal 

to the surface. He therefore draws figure 7.1 with the origin of the 

free particle parabola at E » L, p » 0. The two curves now intersect 

only for temperatures less then about 1°K. The reason for doing this 

is thrt if a is less than one, those atoms which are reflected from the 

surfree must give up their momentum to the liquid as a whole, and 

Tilley supposes that this is also possible for those atoms which do

enter the liquid. But this seems to be at variance with the results
K

of the Osborne and Beenaker experiments.
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Tilley calculates a' by first determining the probability 

P that an excitation can cross the surface, expressed aa a trans­

mission coefficient* He considers the ware functions on either side

of the surface and using the boundary conditions that the ware function

and its first derivative are continuous at the surfaoe he obtains an 

expression for P* He supposes that the matrix element is unity, and 

obtains an expression for a.' by calculating the average

<"•> A

orer all excitation energies and momenta* The integration orer all 

energies takes account of the line width of the spectrum*

To get numerical results> Tilley neglects line width effects 

and puts P»1 for all excitation energies greater than L, and zero 

otherwise* The results of this calculation are given in the table

7*2.

The high values for a are a result of not conserving momentum 

normal to the surface* If the ideas proposed here are oorrect, where 

an atom gains momentum in orossing the surface, then the process g—> e 

can occur only where the free particle parabola intersects the excit­

ation curve, if energy and total momentum are to be conserved* The 

range of energies for which this is possible depends on the spectrum 

line width at that point, but it is always small in the temperature 

range where the concept of a gas of excitations is a useful one*
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Zs£ CondwiseUon processes Involving bulk «xcltattong

The probnbility that a gas atom forms for example, a phonon 

and a roton will depend amongst other things, on the matrix element 

for a gas atom —> phonon ♦ roton transition* No attempt will be made 

here to calculate these matrix elements, but some qualitative remarks

can be made about them*

Since a gas atom is a highly localised entity* might expect 

that it will interact strongly only with well localised excitations*

In other words we might expeot a matrix element to be an increasing 

function of the momentum of the excitation, and to be largest for 

rotons and type 4 excitations* It also seems reasonable that the more 

complicated the process, i*e* the more quasi particles involved the 

smaller will be the probability of it occurring*

The simplest process by which a gas atom can condense is one 

in which a gas atom forms a single excitation

S -> •

This case has been discussed in detail in the previous section; 

It is virtually excluded by conservation of energy and momentum* The 

next possibilities are those involving two excitations

7*4g ©1 4 Os

and g + ex — 7*5*
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The oases when et and e« are both phonons are again excluded by 

the conservation laws* If in the first process et and e8 are both 

heavy excitations* then the gas atom must have an energy at least 

2n* Table 7*1 shows that the fraction P of suoh atoms is negligible 

exoept at the highest temperatures* and these processes will therefore 

be ignored* Likewise the process

g —> P + b<

will be ignored* The remaining processes of the first kind involving 

bulk excitations are

g per 7*6

and g __=> p+ha 7.7

The only process of the second kind satisfying the conservation laws

is

g +P —> bs 7-8

In the special case where both the gas atom and the excitations 

produced are moving normal to the surface the transition can be simply 

shown on figure 7*1 • If a line of slope -c (representing a phonon 

moving in the negative direction) is drawn through the roton minimum* 

say* its point of intersection with the free particle parabola gives 

the energy and momentum of the gas atom which will condense to give a 

roton at the minimum (process 7*6) and the difference between the
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coordinates of these two points gives the energy and momentum of the 

phonon. 7.7 is similarly described? for 7*8 a line of slope + c i» 

drawn through some point on the free particle parabola to intersect 

the excitation curve in the region of the maximum.

The matrix element for 7*6 is perhaps not too small. The wave­

length of the phonon required to give a roton at the minimum is only 

about 10 times the atomic diameter. For 7*7 the matrix element will 

be rather smaller, the minimum phonon wavelength being about 20 times 

the atomic diameter. The process 7.8 depends on the gas atom colliding 

with a phonon already in the liquid. Table 7*1 shows that there are 

always enough phonons for this to be possible for each atom. But for 

a phonon momentum t> that will allow energy and momentum to be conserved 

the probability that the transition occurs is proportional to the 

product of the matrix element (small for £ small) and the probability 

that such a phonon is excited (snail for large). So this process 

is rather unlikely to occur.

Because of the large value of c processes 7*6 end 7.7 occur 

only if the gas atom lies above the excitrtion curve, i.e. only if its 

energy E is greater than Eo. Also 7*8 occurs only if E is less than 

Bo* Table 7.1 shows that the fraotion of gas atoms with energy greater 

than Eo falls off rapidly with temperature. If 7.6,7*7 and 7*8 were 

the only processes involved 7*6 end 7*7 would be the most important
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at 1.8°K, end 7«8 would dominate at 1.0°K. Since 7*8 seems rather 

unlikely, a might be expected to decrease below about 1*4°K* Since 

this has not been observed, it must be supposed that there are 

other processes responsible for condensation in this temperature region* 

further, we note that 7*8 is possible only for atoms with a certain 

minimum energy* Since the phonon is to be a thermally exoited one its 

energy is kT, and an atom must therefore have an emergy Bo -kT

before it can condense*

It has already been mentioned that the probability of processes 

involving more than one gas atom and two excitations is rather small, 

because of reduoed collision and transition probabilities* There is 

an additional reason for expecting low transition probabilities for 

such multiple processes. A gas atom (or a gas atom and excitation) 

with a total energy E, must distribute this energy among several 

excitations* The wore excitations there are, the less energy each 

gets, the less momentum each gets and the smaller the matrix element*

The exception is processes like

g + r ~^> h+h 7«9

Table 7*1 shows that this process will not be limited by the 

roton number density* s»d we may expect the transition probability 

to be not too low, since only short wavelength excitations are involved* 

But if the gas atom has an energy (after condensing) less than a 

certain amount, it cannot collide with rotons riilch have a reasonable
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probability of being thermally excited and still conserve energy 

end momentum. This threshold energy increases with decreasing 

temperature as the energy spread of the thermally excited rotons 

decreases. At 1°K it is about 10°K.

Proo«B8»a iHTOlTlng «urfao» «xcltatlon».

The discussion of these processes is complicated by the 

fact that surface excitations have no oomponent of momentum normal 

to the surfaoe* while most of the momentum whioh a condensing atom 

has to dispose of (that due to the attraction of the surface forces) 

is normal to the surface. This circumstance eliminates the processes 

7.4 and 7*5 when the two excitations are two surface exoitations* 

or one surfaoe exoitation and one phonon* since a single phonon cannot 

carry awey all th© momentum of an incoming atom. This leaves the

processes

g+s —> h 7*10

g+r —-> s 7.11

g —> s+h 7.12

A proper analysis of these processes is complicated by the fact that 

the energy of a surface exoitation is proportional to the three halves 

power of its momentum (equation 7.2)• The present treatment is there­

fore limited to low temperatures Cl°K,sey) where the bulk exoitation
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processes seem unable to explain the high observed values of a.

For the present, we consider only gas atoms normally incident on 

the surface* Figure 7*2 shows the momentum vector diagrams in 

this case for the three processes 7*10 to 7»12. In each case con­

servation of momentum gives

p%2mUp8a « pra

or pa/2m+L+p a/2m « p a/2m 7*13s r
where p, pgt Pr are respectively the momentum of the gas atom, the 

surface excitation and the heavy excitation. Conservation of energy 

for the process 7*10 gives

P8/2bh-L+Bs«

where K and K are the surface excitation and heavy excitation s r
energies.

Since the energy of the thermally excited surface excitations 

is ~1°K, this equation is satisfied only when the gas atom has an 

energy about 1°K less than an excitation. So process 7*10 is 

possible only for atoms with energy between about 11*7°K end 

EO(»12*7OK)» and at 1°K this is about a quarter of the etoms*

For process 7»12, conservation of energy gives

p*/2m+L » B el I* s

Subtracting this from 7*13 gives

7*14
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This is possible only for excitations with energies less than ges

atoms with the seme momentum* A more detailed study shows that the

minimum value of E +E satisfying 7*14 occurs when E ■ 0 and E «EOS s r s r
consequently only atoms with energies greater than Bo can condense 

in this way*

For process 7*11 conservation of energy gives

p#/2m+L+Br - Bg 7.15

Subtracting from 7*13 we get

B8+pg8/an - Er+pra/2m

The bulk excitation must be a thermally excited one, i*e* a roton

with energy - A+kT. At 1°K, the minimum value of Er+p^*/2m is then

about 27-5°K* The corresponding value of E is about 18°K, and so s
the minimum energy a gas atom must have to condense is just E - E « s r
8*4°K*

At temperatures above 0*5°K» all condensing atoms have at leest 

this much energy* 3ut as already noted, the dispersion relation for 

such high energy surf ce exoitations is probably not equrtion 7*2, 

even if these excitations exist* So 7«11 will not occur if high energy, 

short wavelength excitations do not exist, and even if they do, the gas 

atom threshold energy will be modified by the short wavelength form of 

the surface excitation spectrum* The estimate of the momentum cut off
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based on the interatomic spacing is almost certainly too high, since 

the interatomic spacing is greater near the surface* In fact it is 

hard to see how the cut off can be much larger than Atkins first 

estimate, obtained by limiting the number of modes* In this case 

7*11 is not possible#

7*7 The condensation coefficient at low temperatures*

From what has been said above, it is olear that at high temper­

atures there are probably enough processes to allow a very large 

fraction of the incident atoms to oondense* But as the temperature 

is lowered, the latent heat and the average energy per atom decrease, 

and the energy spectrum moves up slightly* Consequently an increasing 

fraction of the atoms have too little energy to form two or more excit< 

ations, until at 1°K, the only processes left oapable of giving 

significant contributions to a are the collision ones*

6 ♦ p —> ha 7*8

g ♦ r —> h+h 7*9

g + s —> ha 7*10

g ♦ r —-> 8 7*11

7*10 and 7*8 operate only above about 11*5°K (25°/c of the atoms), 

and are expected to have small matrix elements (e*g. the wavelength 

of a 1°K phonon is about 50 atomic diameters)* 7*9 operates above
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about 10°K (88°/o t*1* atoms)* but ones again the matrix element

is expected to be small because three excitations are involved* 7*11 

is probably possible for all energies if the appropriate surface excit­

ations exist* and the matrix element should be larger than in the other

cases*

But for these processes* we have also to consider the collision

probabilities* If an atom whioh strikes the surface is not to oondense*

it must be reflected before it has travelled very far into the liquid*

say within a distance of 10 interatomic spacings, or 30 A. At IK 
4.(5the number of rotons per co is • 10 * and so the number n in the

first 30 X of 1 square om* of the surface is 3x10**• The probability 

that an inoomin atom collides with one of them is just n o' * where cr' 

is the atom-roton cross section* or la related to the matrix element* 

but ve will supoose that for scattering purposes a roton behaves as a 

hard sphere of diameter equal to its wavelength* i*e* 3*3 Since 

the atomic diameter is 2*6 X, o'is <nr(2*6 + 3*3)“/4 X8. So the 

collision probabilityncT is about 0*08*

If we now make the optimistic assumptions that the collision 

probability is the same for 7*10 and 7*8 as it is for 7*9,that the 

transition probabilities are unity* thrt all atoms with an energy greater 

than Eo can oondense* and that none of the above processes are competing 

for atoms (but taking account of the fact that 7*9 end 7*11 are mutually
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exclusive) we get a value of a close to 1 at 1.2°K, about 0.22 at 

1°K, end 0.095 »t 0.9°K* (it is of little consequence for the present 

purpose whether 7*11 is possible or not, since it overlaps to a 

considerable extent with 7*9» end cannot occur if 7*9 occurs, 

and vice versa)*

It is not clear how good an estimate this is? but to give an 

a of 1 nt 1°K would require a collision probability about 7 times 

higher, and would, in addition, require all the assumptions of the 

last paragraph to be reasonably good ones.

The discussion in this chapter has neglected various points. 

Firstly, only atoms incident normally on the surface have been 

considered. This is unimportant for bulk excitations, since the decay 

processes are essentially isotropic. For processes involving surface 

excitations it does not affect our main conclusions, whioh have mainly 

been based on energy conservation. A more detailed analysis of the 

g+s —$>h process suggests tho energy range for which condensation is 

possible is not greater, and may be less, for arbitrary angles of 

incidence. Secondly we have regarded all the bulk excitation processes 

as taking place ’in-line* • Again, a d tailed analysis of the g—?>p+r 

process suggests that the extension does not alter the previous conclu­

sions. Finally, for reasons already stated, processes involving more
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than two exoitations (other than 7.9) have been ignored, as have 

the ex'fects of the excitation line width.

It seems possible that the ideas presented here could account 

for the observed values of a above 1.2°K. Below that temperature, 

the mechanism of condensation is not yet explained, and it is hard 

to see why the condensation coefficient should not become progress­

ively smaller at lower temperatures.



CHAPTER EIGHT

DISCUSSION

’’The tiae has oome,** the Walrus said,

9 ’To talk of many things# ,

Of shoes - and ships * and sealing wax, 

And cabbages and kings#

And why the sea is boiling hot,

And whether pigs have wings#9 9 9

Lewis Carrol#



CHAPTER 8

Discussion

8.1 Conclusions

The measurements of the free surface reflection coefficient R, 

and the vapour liquid coupling coefficient r together suggest that the 

modified form of Osborne’s theory is the correct one to use for inter­

preting the results* The fact that the two measurements tend to dev­

iate from the theory in opposite directions (R towards Chernikova’s 

theory and r towards Osborne’s original theory) is satisfactory in 

that it implies thrt the correct answer is somewhere in between* It 

i3 very unlikely that there are undetected systematic errors in both 

sets of results which would bring both into agreement with Osborne’s 

original theoryi and It is almost inconceivable that they could produce 

agreement with Chernikova’s theory. It should be rem.'rked that the 

agreement between theory and experiment suggests that the assumptions 

about mean energy and momentum transfer used in deriving Osborne’s 

modified theory are in fact justified, even if the real reason is

somewhat obscure.

While the accuracy of the measurements is sufficient to deter­

mine which theory to U3C, it i3 not sufficient to detect any deviation 

from it which would imply that a is di ferent from unity* But we have
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seen that R is rather insensitive to the value of a, and we have 

concluded therefore that a is probably 1 and not less than about 

0.8, between 1.0°K and 2.14°K.

The microscopic reasons for the high observed evaporation 

rates are not yet properly understood. The approach outlined in 

the last ohapter leads to values of a less than one below about 

1.4°K, and the value of about 0.2 at 1.0°K is defineately incompatible 

with the experiments. The calculation is oapable of considerable 

refinement, hut it seems unlikely that the increase to be expected by 

including lin 3 width effects and higher order processes would outweigh 

the decrease expected by calculating the matrix elements.

8.2 Johnston and King’s experiment

It is perhaps relevant at this stage to discuss recent work by 

Johnston and King (1966). They used a molecular beam technique to 

measure the velocity distribution of atoms evaporating from liquid 

helium. Between 0*59 and 0.7°K they found the distribution to be 

Maxwellian, but with a mean velocity corresponding to a temperature 

(l 0.1)°K hotter than the supposed temperature of the liquid. The 

helium II bath was in thermal oontect with a liquid Heu pot, and the 

temperature of the helium II bath was deduced from the Heb vapour
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pressure• A control experiment in which He4 gas was used as the 

molecular beam source gave a Maxwellian velocity distribution which 

corresponded to the gas temperature deduced in this way* Further, 

they calculated the beam intensities which should be observed if the 

vapour pressure of the helium II was thrt corresponding to the temper­

ature of the Heu bath, and found them to be in agreement with the 

observed beam intensities* The results were found to be independent 

of factors like vibration level end cryostat geometry*

Since the ideas presented in the last ohapter do not properly 

explain the present results at 1°K it is perhaps unwise to expeot them 

to be adequate at even lower temperatures* Nevertheless, they seem 

capable of giving at least a qualitative explanation of Johnston and 

King’s rather surprising results*

As we have seen it is possible for a gas atom to condense only 

if it ha8 an energy greater than some threshold energy Ki, which will 

be the threshold energy for the process with the lowest threshold 

energy* We might also expect that atoms dhich are evaporated will 

appear in the vapour with energies > B^-L, since evapor tion is 

presumably due to the same process proceeding backwards* On these 

grounds we might therefore expect that evaporating atoms would have a 

mean energy approximately Bk-L larger than that corresponding to the 

liquid temperature* The liquid is behaving rather as if it had a latent
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heat Ei rather than L, and for the reasons discussed in Chapter 2 a 

Maxwellian velocity distribution in the evaporating atoms might reason­

ably be expected*

If is the mean energy the evaporating atoms would have if they 

could all evaporate (l«e» JkT/2) and E^ the mean energy actually found, 

then

Ejj-Ej « Ex-L

Using Johnston and King's values for Eg this gives Ei » 10.1^°K at 

0*6°K and 10*3°K at 0*7°K* This is about the threshold energy for 

process If this is the correct explanation, then E& would be

expeoted to increase as the temperature is lowered, and not decrease 

as found above* But the error in determining Ei from Johnston and 

King’s results is about +0*15°K, so the difference is hardly significant*

However, at 0*6°K the roton density has decreased by a factor of 

5 from its value at 1°K, and so the collision probability for 7*9 is 

five times smeller* And since at 0*6°K only about 20c/o ot the gas 

atoms have enough energy to condense, only about 0*3°/o could do so*

This should mean that the beam intensities observed by Johnston and King 

should have been only 0*3&/o of those calculated from the vapour pressure 

data* This was not the case, and the above treatment is clearly not a 

complete explanation, though it seems possible that the true explanation 

will be along similar lines*
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8.2 The condensation ooeffioient in Helium films*

So far wo hare only b en oonoerned with the condensation 

coefficint of the hulk liquid* The theoretical discussion in 

Chapter 7 suggests that the condensation coefficient in films will he 

the same as in the hulk liquid* There are two qualifications to this 

statement* however* The first is that if surface excitations play a 

predominant role in the evaporation process, they will he of a diff­

erent kind in the film (Atkins, 1957, Super, 1958)* And as already 

noted, it is perhaps unwise to attach too much weight to the predic­

tions of ohapter 7 when the present results are unexplained at 1°K*

There is no direct experimental evid once on evaporation from 

films, hut some indirect evidence is provided hy third sound experiments* 

Atkins (l959h) derived an expression for the third sound velocity u« 

whioh can he written as

u,s = ft ♦ 8 “Wf T) ~ j(aao •ypf/p »T)(l/3T»l)
p C/ST - i (oa^ pl/f wAST") t

8.X

where is the superfluid density, f the force aoting on unit mass 

of the liquid at the film surface, d is the film thickness, w is the 

angular frequency, S and C are the entropy and specific heat of the 

liquid, and the other symbols have their previous meanings (see Chapter

2)* We can write this expression in the form
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ue° =» A(l-iawi/w )/(l-iawa/w)

Now at frequencies w« aws and w « aw*, the velocity is

Uo2 « Aw</w*

and there is no dispersion and no attenuation. As the frequency is 

increased, we would expect to find maximum dispersion and attenuation 

at frequencies • aw, and aw*. Everitt, Atkins and Denenstein (1962* 

1964) have measured the velocity at frequencies up to 1.3 kc/s at 

1.2°K* and found it to be frequency independent. Since at this temp­

erature wt/2ir • 135 kc/s and w*/2jt ■ 13 Mo/s* this suggests that a is 

not less than about 10~M. The observed attenuation* however, is muoh 

greeter than that implied by equation 8.1, but Pollack has suggested 

that this is because Atkins theory neglects the motion of the normal 

fluid. Xf the normal fluid is allowed to move* and a viscous drag 

term proportional to the normal fluid velocity is introduced into 

Atkins suctions, a much larger attenuation is predicted (Pollack 

1966a). A further consequence of this approach (Pollack 1966b) is 

that another wave mode is possible* coupled to the third sound* and 

presumably always exoited with it. The new mode is heavily damped* 

and the two effects together qualitatively explain the high observed 

attenuation • By what appears to be a numerical coincidence* the



115

▼a1u«s of «x and ws are unaltered at 1.2®K* whioh is the only temper­

ature at whion the velocity ha3 been measured as a function of frequency. 

So the more complete theory does not require a revision of our previous

estimate of a lower limit to a.

The condensation coefficient in the film is of particular

interest because of recent work on film flow rates* Allen and Matheson 

(1966) have measured the film flow rates out of a beaker which had been 

filled (a) by film flow and (b) by submersion in the bath. The outflow 

rates in the latter case were found to be significantly higher and they 

interpreted these results by supposing th; t submersing the beaker formed 

a thick film on the wall* which slowly drained away. Tilley and Kuper 

(1966) end Tilley (1965) have shown that such a mechanism does indeed 

explain the observed flow rates. However* it has been pointed out 

(Mate* unpublished* see Tilley* 19^5) that in a thick film the normal 

fluid will move only very slowly* because of its viscosity* and will 

hold up the excess superfluid by the fountain effeot. Consequently 

the top of the film will be hotter then the bottom by a small amount* 

and Mate calculates that it should evaporate (until it reaches the 

equilibrium thickness) in about 10"*1 to 10 “ seconds. His calculation 

assumes a » 1* and is to be compared with the time interval over whioh 

enhanced film flow rates were observed by Allen nd Matheson* i.e. 

about 10* seconds. So if a thick film is not to evaporate during
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-5the experiment, a must be ~ 10 • This contradicts the third

sound evidence end in any case seems unlikely in view of the present 

results for the bulk liquid* However Keller end Hammel (1966) have 

suggested thrt it may not be necessary to invoke the thick film hypo­

thesis to explain these results, but that changes in the profile of 

the chemical potential along the film path may be responsible for the

different flow rates observed*

Suggestions for future r.ork

The present measurements do not give very accurate values for 

a, and in particular do not preclude the possibility that a is different 

from, but close to, unity* Measurements of reflection coefficients 

would have to be about ten times as accurate to determine a to within 

1%. While this is no doubt possible, it is probably better to use 

a resonance method and measure Q*s* Measurements of Q to lw/o accuracy 

would determine a to within about 2°/o» compared with about 20°/o 

for 1% measurements of the reflection coefficient* Such measure­

ments would also show explicitly the existence of any relaxation 

effects present* Extension of the measurements to lower temperature 

beoomes increasingly difficult, since the reflection coefficient tends 

to 1. For instance at 3*7°K, all three theories are predicting reflection 

coefficients greater than 95°/oa and at 0*6°K the reflection coefficient
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is greater than 99°/© (essentially because the vapour pressure falls 

exponentially with temperature). In these circuit stances the advantages 

of the resonance method over the pulse method becomes even more 

pronounced. But in this region no second sound experiments will be 

easy to perform, since the attenuation is very high, and the energy 

loss at the surface, whioh is the quantity of interest, is small 

compared with the energy loss elsewhere. That is, all the measured 

Q’s or R*s will be small and not easy to measure. But measurements 

on Q would still give more information about a.

Measurements of Q rather than R would recpire some modification 

to the present experimental procedure. It would be necessary, for 

instance, to mount the thermometer at the bottom of the tube. Hie 

wire thermometer originally used in this work might be suitable if 

it were sealed through the tube wall. It might also be necessary to 

suppress the signal generated by first sound in the vapour rather 

better than has been done with cotton wool. Removing the cotton wool, 

and using a rider tube and higher frequencies would help, but an 

accoustic matching horn on the end of the tube would probably be 

necessary. A wider tube and higher frequencies would make vertical 

adjustment of the tube more critical, end higher frequencies would 

require a thermometer i ith a better response time. It is suspected
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that th© original wire thermometer was quite fact, and that the rice 

time? was limited by the heater. So it would be advisable to replace 

the conducting glass heater, e.g. by an aquadag on mioa one.

Th® discussion on Chapter 7 suggests that a ought to fall off 

rapidly with decrossing temperature (which, if true, would make 

measurement even more difficult at lower temperatures). But it also 

suggests that the effect should be significant at 1°K, contrary to 

the experimental evidence. Xt is also suspected that a more refined 

treatment of the theoietical ideas proposed here will make the disa­

greement with experiment worse rather than bettor. So further expert 

ments ought probably to await a satisfactory theoretical explanation 

of the results already obtained.
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APramix a

Th» Surface Arm of ^Liquid Meniscus.*

We wish to find Ao « AArr* where A is the area of the liquid 

surface pud r is th® radius of the tube. To do this we require the 

surface profile of the liquid, from viiich the area of revolution can 

be calculated. The surface profile has been investigated by Hayleigh 

(1916) and his relevant results are reproduced below.

Let the x-y plane be the free liquid surface pnd the z-exis the 

axis of the tube. Then Hayleigh gives the second order equation of 

the liquid surface as

']az • 
dx

daz 1 dz 
a?* xto

dz
dx

«/ 9

a

vrhere * l/pS> T is the surfree tension rnd p the liquid density.

To solve this, he supposes that the tube cm be split into two regions, 

a central part where dz/dx « 1, rnd an outer part near the rim where 

r - x «r. In this region, the curvature of the surface is ^r, and 

a two dimensional solution is adequate. This implies that the tube 

is wide, or more precisely r a. Since for liquid helium a is •

0.05 om, this condition is satisfied. We shall therefor© calculate 

A in two parts; Al will be the area out to a radius x© and Aa will 

be the area from x© to r. x© is to be chosen such that r - x© « r

and Zdz\
\dx ) x=xo

1. Now the area of a surface of revolution about the
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z axis is

I [l* (£?]3
2rrxds = 2rrx 1 + lx A.l

and we see that for the central part, where << 1,

XO
At =* 2rrx dx a *rrxoJ

0 J

In the outer annulus > where only on© curvature Is important, Hay 

leigh gives
l/H « ~ a ’ll sinO a z/z* 

where tanO == dz/dx 

This integrates to

z*/2aa a C*cos© « 1-cos© A.2

th© constant being determined by the condition that when 0 » 0, 

z3/2aa « 1

Thus z/a = 2sini6

da/a « dz/tan© afl/singb -2«ing0) d(tf/2)

x/a « log tan (©/4) +2oosi© + Ci

At th© wall, x a r, 0 a *rr/2 (zero angle of contact). Thus

(x - r)/a a log tan (0/4) +2cos^-0 - log ten (ir/8) - J2
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Wen 0 « 1 this reduces to

(x - r)/a » log© - log tan (ir/8) +2 - J? - 21og 2

or

© = 4 tsnOiT/8) exp (-r/a -2 + J2) exp(^/a)

« ©o ®xp(x/a) A. 3

Using these results of Rayleighs we can now calculate the integral

A.l. W© make the substitution 

t » z/2a

Then A. 2 becomes

2ta » 1 - cos© A.4

from which we get

1 + tanM© a l/oo^ a l/(l-2t*)a A. 5

whence

ten© a 2t(l-t*)2/(l-2ta) A.6

Also

dx a 2a dt/tan© A. 7

Substituting from A. 6 and integrating

x a 2a f

a a
r ± r >

-2 tat/Ci-t*)2
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Wow

A. 8

» 2rr \ x (l+tarTG)2 dx

xo

Substituting from A»5 to A.8 gives 

Aq = 2o*a*
C Jlog t - log [ i+(i-ta)aj +2(i-t*)^j at/t(i-t8)2

« 2nra* {l+(l-tii)2|Jat/t(l-ti*)^ + 2 fdt/t

To evaluate the first integral we write

?(t) - logt - log {l+ (l-t8)2} ana f(t) = l/t(l-t8)2

and note that

aj/at = f
Thus the integral is

Ffdt • iPdJP s P“/2
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and so

Aa - 2rra“ Tlogt8 + | {log t/(l+(l - t8)^ } 8]

Substituting from A. 4 and A*8 gives 

Au a 2rra* ^(a/a)a - (a/a) {2(l*eos©)}

x • r
1
2+1 * 0080 * log i(1-0080)

X a X©

Nov at x a r 0 » tt/2 and at x a xo 0 a 0oexp (x^/a) and 6 « 1 
Thus At » 2nre;i J^(rw - xoa)/2aa * (r/a) /2 -1+log 2 - 21og 0<Q 

Now Ao « (As * Ar)/rr*
- 1 + 2(a/r)8 [log 2 - 1 - (r/a) Jz -2 log 6OJ ’

Substituting for 0O, ©nd putting in numcricsl values, gives 

Ao a l+1.172(a/r) - 0.290(e/r)8

which is the required result* Values of surface tension from Atkins 

and Narahara (1965) were used, giving for a 1 cm dimeter tube 

Ao » 1.12 at 1.2°K decreasing to 1.11 at 2*1°K*

There is a second meniscus effect which should be considered

but which turns out to be self cancelling* Consider a liquid in 

equilibrium with its vapour. Then the pressure at the liquid surface 

is the same on both sides of the surface, namely p, the vapour pressure*
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If now the liquid is contained in t tub© of finite n dius, than the 

pressure p(x) at the surface is a function of the distance x from the 

centre of the tube. In fact

p(x) + p gz * p(0) A. 9

where z is the height of the meniscus measured from the liquid level 

in the centre of the tube (x»0). The mass evapor©ting/unit time from 

the whole liquid surface is

0

» Aaop(O) - ./a©Ap

and in equilibrium this must be equal to the mass cond<nsing, which is 

just AttoP* (There is a similar effect in the vapour, but it is neglig­

ible in that the vapour density is small compared with the liquid 

density)•

Therefore

p(0) a p + Ap A. 10
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Thus in the centre of the tube there la a net evaporation, since 

p(O)>p, whioh is balanced at the sides by a net condensation, when 

p(x)<p. To treat the non equilibrium case we must replace p in 

G(T+d) (equation 2*5) by the p(x) of equation A. 9. If 6 is indep­

endent of x the integration across the whole tube may be carried 

out as above. If we divide by A, to give the average evaporation rate/ 

sq.om., and use A.1O» we get the sane equation 2*5 as before.
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APPENDIX B

The Kinetic Theory Caloulrtions on Evaror-tion

B/L Tho distribution functions close to the surface

We a 8 sums that the number of atoms with components of velocities

between v uid v +dv Is
3 2 Z

f dv = exp( -mv V^kTx) dv 
z + z z z

for the atoms travelling upwards, and 

f dv ■ 3® ®*p( -niv//2kT»)av
P— Z Z Z

for the atoms travelling downwards* Normalising these distribution 

functions gives

Pi a. 2(o/2irldS)'2"
A

and 3a 38 2(o/2rrkTd)z

The numb.r of atoms travelling upwards with a speed between v and v+dv 

is then given by the speed distribution function Px(v),

Pt(v)dv » dv dv dv s+ x y zJ

where f^ is the usual Naxwell-Boltzmrnn connonont velocity distribution 

function
4

f a (m/2irkTx)2 ®xp( -civ / /2ki’i)
X
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and the integration is to be performed over all possible directions.

Ye transform to spherical polar coordinates in the usual way, but note 

that the integration over 6 is to be oarried out only from 0 to ir/2, 

since the atoms occupy only half of phase space. Thus

2rr 'Tr/2

Pt(v)dv a f(vx) f(vy) fz>(v2) v8dv d sinbdC
J
0

a 4w(m/2irkTt )°Z a exp(-mva/2kTt )vadv 

which is the usual Maxwell-Boltzmann distribution. Clearly a similar 

result holds for FM> the distribution function for th© atoms travelling 

downwards.

It remains to derive a distribution function for all the atoms 

in the region close to the surface. If the number donsity of these 

going up is 2&19 then gn* Fx dv of these going up have a speed between 

v and v + dv, a3 do 2naFadv of those going down, Ihus the normalised 

distribution function F for all the atoms is

F(v) - (ntPt ♦ naP3)/(n1+ na) B.l

B.2 Momentum and mass flux

We have to calculate the z mom n t urn crossing unit area of

the x-y plane per unit time. Consider an element of area dS on the
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x-y plane* Then the atoms with velocities close to v whioh cross

in a time at are ell contained in an oblique cylinder, of slant

height vdt and base area dS. The volume of this cylinder is v dtdS, 
s

the number of atoms in it is nv at dS, and of these atoms nv z z
dt as f f„ f dv dv dv have the specified velocity* The z momentumx y a * y . 8
they carry across the x-y plane per unit area per unit time is then

nmv ® ~ dv~ dv«. dv-z x y z x y z
where the f's are general component distribution functions which 

must, however, be mutually independent and normalised* Integrating 

this gives the total momentum flux M* Since the integral is indep­

endent of x and y

X a nm lv * f dv B*2J z z z

and the integral is over all possible values of v •8
By a similar argument, we find that the mass flow G is given 

by

r

G « nm

tun, mags and energy conditions close to the surfaoe.

The mean energy E of the atoms close to the surface is
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E • i mv3* « •Jm j v* f (▼) dr 

0

where P(v) Is given by equation B.l. Thus

OO
oO
r

n* \ f*(T)dv + n# 

0

r’f.CTjdT

■ (3k/2)(^iTt4a,Is)/(B*-«ia) B.4

which is the first of the results required on p. 25. The momentum 

flux due to the atoms moving up the tube is> from equation B. 2
o0
r

in*.

E »
2Cn*«»«)

J
0

o

Similarly the momentum flux due to the atoms moving down is |nakTa> 

and so the total momentum flux is

B.5

the seoond result required on p. 25.

From equation B»3 we get that the mass flow upwards is

in*» v f dv
Z 2+ 2

na^Tk (m/2rrkT<)‘
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and the mass flow downwards is 

na feTa (n/ ^wkTa )

Since n/fc » M/R, we oan write the net ma3s flow as fsee page 27) 

nikTtVarHSk)2 - nakTfi( B*6

BJ+ Momentum rnd energy condltxons far from tho surface.

In this region the z velocity component distribution function

is
f^ « (m/2rrk?c, )2 exp F-ni(v^ - vo)a/2kTsJ

and the x and y distribution functions are the usual on®s» e.g*
1

f a (n/2rrkTa)2 exp( -mv, a/2I«l’o ) 
y y

Then the mean energy of an atom is

1 t 1^mv = ym v f f f dv dv dvx y z x y z B.7

V/e integrate this by writing va * v^+v^+v Then equation 

B< 7 splits into the sum of three triple integrals each of vhich 

separates; the last, for example> is

+oo+o0
r

400
z*

-OO

f dv X X
J

-OO

f dv 
y y

— OO

E

v w f dv
Z Z 2
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Tho first two integrals are 1 sine* the f*s ere normalised, tho

third is evaluated by the substitution V = r -vo. It then becomess

(m/2rrkTe)^

+00
r

V* •xp(-mV°/2!£Te)dV+2r I Vexp(-tnV"/21cTa)av

-oo —oo

+00

+v/! \ exp(-aV*/2kTc)dY B.8

•oo

The first of these integrals contributes ikTw to E, as do each of 

the other two triple integrals in B.7» The second integral in B-8 

is zero, the third gives a contribution {nav 14 to E* Thus

E = ^/2 + ^ivc8 B.9

Ei’oa equation B.2 the uomentum flux is

oo

n_m f dv z z

-00

kT3 + n3mvoa B.10

Equat ons B*9 and B.10 are the two results used on page 26
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The Computer Programme

Th* program is written in FORTRAN, whioh is a problem orien­

tated language as opposed to a machine orientated language* That is 

to say it is a language whioh is basically similar to mathematics, 

but quite unintelligible to a computer until it has been translated 

into a more basic machine language* The translation is done by the 

computer using a machine language programme called a compiler* Each 

instruction in FORTRAN is called a FORTRAN statement, and is punched 

on one or more 30 column cards, 1 character per column* The first 

5 columns are used for labelling statements for programming purposes, 

e*g* to have a computation repeated with different data* The sixth 

column is used to indicate that a statement occupies more than one 

card,and the lest 8 columns are used for external labelling purposes, 

and are ignored by the compiler*

The basic FORTRAN statement is the arithmetic statement, e*g* 

A»B+C. This simply means that the value of the expression on the 

right hand side of the equality sign is to be assigned to the variable 

on the left hand side* Note that the symbol ■ does not have its math­

ematical meaning, since M=4i+1 is a meaningful FORTRAN statement but 

not a mathematical one* Apart from ordinary variables we can have 

subscripted variables, •*g*h^>/, which is written as H(l). (Only capital
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letters are allowed in FORTRAN statements)*

To do useful calculations it is neoessexy to be able to decide 

the next stage in the calculation on the basis of the results already 

calculated* The basic method for doing this is to use an IP state­

ment, e.g. IP(A) 1,2,3* This means that if A is negative the next 

statement to be carried out will be the one labelled 1 in columns 1 

to 5, if A is zero it will be statement 2, and if positive, statement 

3* If any of 1, 2, or 3 is the physically next statement, then the 

label may be omitted and replaced by 0* An extension of this facility 

is the DO loop, e.g.

DO 100 I » M, N,L

This causes all the statements after the DO statement up to and 

including the statement labelled 100 to be executed, first with I « M, 

then with I s M+L, then L = M+2L, and so on for all such values of 

I ff. If Lal it is usually omitted.

Using these statements and some others (mostly concerned with 

getting information into and out of the machine) it is possible to 

build up programmes of considerable complexity* However there are 

many advantages to be gained by splitting large programmes into sections 

called subroutines. Bach subroutine is given a name, and information is 

transferred between routines by listing after the name of each subroutine
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all the variables whose names and values it is desired to transfer.

We are now in a position to describe the programme used in 

this work for calculating the reflection coefficients* It consists of 

a main routine and four subroutines, called EXPLOT, GEMEAN, AVER end 

GHLESQ. Most of the calculation is done in the subroutines, end the 

main programme just controls the data input and output. As soon as 

the programme reads data in from cards it writes it out again on 

magnetic tape, and in this way it is possible to recalculate all the 

resubs using different numbers of points per line in only one programme

run.

The first act of the compiler programme is to list on the line 

printer all the cards it reads, and suoh a listing is shown in figure 

C.l. The numbers at the left hand side are the statement label numbers, 

those at the right are reference numbers whioh will be used for purposes 

of exposition.

The rirst statement (9) is merely a job number to distinguish 

this programme from all the others on the machine. Statements 15 and 

16 allocate storage space for the subscripted variables. 1/ and 18 

cause the parameter NK to be read in; NK is the number of times 

the calculation is to be repeated for different numbers of points per 

line. 20 is the DO statement which does this; the statement labelled



MASTER E01B
DIMENSION H(2O,. VA(10 I,EVA!10 ,,VB(10 , ,EVB(10,,V't10,,FvT!10

1 ), V!20,,EV<20 I »Sl90, ,DS<50 , ,K0D(4)
* 1 1'' T ■
READ!1.105 INK

105 FORMAl(12,
M»1
DO 102 JJ«1»NK 
LL«O
READ!1,20)K0DE,KPl.KP2.KP3.KP4 

20 FORMAT!12.411i
KOD!1)»KOOE 
READ!M,2,NFILMS 
IF!JJ-1 ,0.0.106 
WRIIE!O»2,NFILMS

106 CONTINUE
2 FORMAT(12 I 

READtM,103 ,NG 
IF!JJ-1 ,0.0.Iv7 
WRI IE t 0.103 )NG

107 CONTINUE
103 FORMAT(12 ,

KK*O
NGSbNG
KKS»O " >
DO 11 L«1,NFILMS
READ!M.1 , NRUN,NF1LM.NFS
IF!JJ-1 ,0.0.109
WRITE!0,1 , NRUN. NF 11. M, NFS

109 CONTINUE
1 FORMAT (12.11.12,

KOD!2,sNRUN
KOD!3)eNFILM
WR’I ! E t 2,3 , NRUN ,KOOE

3 FORMAT!12H1HELIUM RUN .I 2,2X.30HREFLECTI ON COEFFICIENT BY FuLSE ME 
1 THUD.6X.2SHMAX I MUM P0IN1S PER LINE *.13,
WRIIE!2.16 ,

16 F0RMAf(21H0 R(ALL ,»12X,6HR(ODD).12X.7HR<EVfcN,.11 *,7HD
1FLTA R.11X,9HR< BUT TOM,,9X.6MR!TOP , )

DO 4 K«1.NFS
READ!M.0,N»< H1 I , .1*1.N)
IF(JJ-1 ,0.0.110
WRIIE!0.0 )N,!H( I >. l»l»N ,

110 CONTINUE
6 FORMAT (12,20F3 .1 ,

IF(H(1 ,-l.OE-4 ,0.0.15 
IF(H(2 ,-l.OE-4 >4,4,0

15 CONTINUE 
N»2*(N/2,
IF(N-KODE ,201,0,0 
NbKODE

201 continue
CALL EXPLOT!1,N,1,M,K1,RA,ERA.AA.BA,PAA,DBA )
IF!Kt ,6.6.0 
NG»NG-1 
GO TO 101

6 CONTINUE 
KKwKK+i 
VAIKK )»QA 
EVA(KK ,aDBA
CALL EXPLOT!1,N,2,H,K1,RO.ERO,AO,BO,DAO,DBO ,
IF(K1 ,12.12.0 
NGS»NGS-1 
GO TO 104

uO-J 
01 5 
0 1 O

ol z 
01 > 
01 -» 
020 
o2 1 
02^ 
02 5
02“i
025
02o
02 /
02-1
029
03o
03’.
03^
030
03 ♦
035
03c
03/
03d
03-J
040
04 i
04*:
045
044
045
045
04 z
045
049
050
05,
05 2
065
054
055
05o
05 Z
053
05 4
06 J
06 1
06z
063
O64
065
06 o
06 z
O60
06 J
070
07 1

074
073
U7-»
075
07t>

Figure C.l The Computer Programme



12 CONTINUE 
KKSsKKS*1
Vi 2*KKS-1 )« BO 
EVi 2*KKS>-1 JbDBO
CALL EXPLQT(2»N,2»H,K1,RE,ERE,AE,BE,DAE,DBE )
IF(K1,7.7,0 
NGS«NGS-1 
KKS«»KKS-1 
GO 10 104

7 CONTINUE 
V< 2*KKS J*BE 
E V t 2 * < K S > ” D B L 
LL«LL*1 
SiLL ,«RE-RO
DS(LL)®SQR1(ERE*ERE+ERO*ERO,
RBORTsEXPi AO-AE ,
RB«RA*RBORT
RfcRA/RBORl
0R«SQRT((ERA/A,«*'2*DA0*DA0*DAE*DAE)
ERB«RB*OR 
EHlaRl*DR 
VB<KKS )«BA + AO-AE
EVBiKKS JbSQRT(OBA*OBA*DAO«DAO+DAE*DAE,
VT(KKS )«BA-AO*At 
EVT(KKS ,«EVB< KKS ,
WRITEl2,10,NRUN,NFILM.K,RA,ERA,RO.ERO/RE.ERE,S< LL),DS< LL >.R&,ERB.R 

1T.ERT
10 FORMA I(313»6<F11.3,F7.3 , ,

GO TO 101 *
104 CONTINUE

WRI 1E(2»13 INRUN,NF ILM,K,RA,ERA
13 FORMAT(313,F11.3.F7.3,

101 CONTINUE
IF(KK-NG ) 100,0.0 
K0Dt4,r,<
NGT«NGS*2
CALL GEMEAN(V A,EVA,NG , RAB , ERAB,7 A.07 ArNSA,<00,<P1 ,
CALL GEMEANIV.EV.NGl.ROB,fcROB,ZO,DZO,N50><00.<P2,
CALL GEMEAN(VB,EVB,NGS,RBB,ERBB,ZB.UZB.NSB,<00.<P3,
CALL GEMEAN(VI.EVI.NGS,RtB.ERlB/ZT»0Zl»NSI,K00,KP4>
V»R IT E ( 2 » 1 7 , R AB » ERAB , NG , ROB , ERQB , NG I , RBB , fcRBB . MGS , R TB ■ E> » 8 , NGS . 7 A , 0

1 7 A,NSA,ZO,DZO«NSO,ZB'OZB,NSB,ZT,D7T•NST
17 F0RMATI/9H AVERAGES,2<F0.2,F5.2,2H (,I2,?H , , ,33X,2<F8.2,F5.2,2H ( 

1,I2,2H ))/9X,2<6H Z« ,
2 F5.2,F6.2,13 ),30X,2(6H 7* , F5 - 2.F6.2,I 3,//) 

K<b0
KKSaO
REAOiM,103,NG 
IF<JJ-l ,0,0,108 
NHl fE(O,103,NG

105 CONTINUE 
NGS«NG

100 CONTINUE
4 CONTINUE

CALL AVER(S,DS,LL,R1,ER1,AA,B,A,Z,DZ ,
WRITE ( 2,5 )LL , R 1 , Eh 1 , 7., DZ

5 FORMAT ( 36H0RE 1GHTED MEAN AND ERROR OF THE L AS I , I 2,1 X , 8hRF. AO I NG$ , 2F
17.2,20X,3hZ »,2F7.3 ,
WRITE(2,9 ) AA , b , A

9 FORMAT(17
2 H 2IGMA X( I ,W( I, »,E13.5,5X, 12HZ1GMA W( I > «,F13.5,3X,24HZI
IGMAiX(1 ,-XBAR ,2w(I ) «.Ei3.5,
LL»O

11 CONTINUE •
M«0
REWINDO

102 CONTINUE 
STOP 
END

U7 / 
U7 - 
07-» 
08 ■> 
08 1 
082 
085 
004 
U8 3 
0»o 
08 t 
Ofla 
06 4 
09 J 
09i 
092 
09 3 
094 
093 
09o 
09 / 
09o 
099 
1 0<J 
10) 
10^ 
105 
10*
1 0 3
1 Oo 
10/ 
103 
109 
1 1 J 
1 1 i 
1 12 
1 1 5 
1 1 H 
1 1 3
I 1 o
II /
11 a 
119 
l2u 
1 2)
1 22 
123 
12** 
12> 
1 2o
12 / 
123 
1 2m 
l3o 
1 3 1
132
133 
l3*
133 
1 3t> 
1 3 / 
1 3o
134 
l4.j 
14 ) 
1 4/

145 
1 4 4 
.4>

Figure C.l The Computer Programme fcontd.)



SUBROUTINE AVER!VrEV.N.RB.ERB»AA»B»A»Z♦DZ> l^o
‘DIMENSION V(N).EV(Ni

AN«N 156
AoQ. 15/
B^O. 1 5o
DO 7 I«1.N 159
c»i./<ev<i>*ev<i>> i*j
A®A*V(I)*C 1*1
B”O+C 1*2

7 CONTINUE lt>>
RB«AZB 1*-*
AA«A 1*?
A»0. l*o
DO 5 1 ” 1 . N 1*/
C«1./(E V < 1 >*EV( 1 ) ) 1* 3
A«A«-( V < I )-RB ) * ( V < I )-RB ) *C 1*4

5 CONTINUE 17.0
ERB 1»SQRT(AZ( I AN-I . )*B) ) l7i
ERB2»SQRT(1,ZB ) 172
IF ( ERB 1-ERD2 )4 » £> i 6 173

4 ERBsERB2 . 174
• GO TO 1 " • 17=>
0 ERBcERBl 176
1 CONTINUE 17/

Z»ERD1ZERB2 175
DZ«1.ZSQRI(2.*(AN-1 . )) 174
RETURN 103
END 1*1

SUBROUTINE GE MG AN ( V , E V . N, VB, E VO t Z » DZ ’ NS. KOD .Kp) 162
DIMENSION V!N ) .EV1N).KOD(4) 103
CALL AVER!V»EV,N.RB»ERB»A»B»C»Z»DZ) 104
VB«EXR<RB)* TOO. 105
EVB®VB*£RB Iflo
IFIKPH , 1 ,0 18/
WRITE<3»2 )N,RBr£fiB» A,B.C,KP,(ROD(1 ),I«1,4 , 16b

2 FORMAT!12.5E13.5.12.213.12,13) 16^
1 CONTINUE 190

IF!Z-l. )3,0,0 191
NS« ALOG1Z ) ZALOG(1.+0Z)♦1. 192
GO TO 4 193

3 CONTINUE 194
NS»-< ALOG ( Z > Z ALUG i 1 .-D7. > + 1 . ) 19>

4 CONTINUE 196
RETURN 19/
END 196

Figure C»1 The Computer Programme 'contd.).



SUBROUTINE EXPLOT,K,N,L»H»K1•R»fcR»ArB»DA»DB)
DIMENSION HIM ^°J
DIMENSION Y(20 ) ,X(20>,EH(20) 20‘
jjsO 202
Kl*O • 203
DO 6 IbK,N,L 20h
IF<H(1)-l.OE-4 )6»6.1 2 20?

12 Il»ll*l 20b
Y( I I )sAL0G(H<1 ) ) ' 20*

200
EH(I 1 »ai./Hi I , 209

? I : t •» ...
6 CONTINUE 211

IF( 11-4 10,1,1 212
Kiel 213
GO TO 2 214

1 CONTINUE 215
CALL GHLESQlX»Y»EH«A»B»1»I 1,DA.DB) 21o
RoEXPlB )*100. 21/
ERcR*DD 2ld

2 CONTINUE 214
REIURN 22u
END 22i

SUBROUTINE GHLESOlX, Y.DY•A,B.NS,NF, DA. DB) 222
DIMENSION X(NF ) »Y(NF ) »DT(NF ) . 22a
DIMENSION W1100) 224
ANrNF-NS*1 23j
ZIGW bO. , 231
ZIGWX «0. ' * 232
ZIGWY bO. ' 23i
ZIGFTxY-0. ' 234
ZIGWX2«0. 235
ZIGDENbO. 23o
ZIGBRAnO. 23/
DO 2 IsNSrNF 23d

2 WIIIbI. /< 0Y <I> *0Y < 1)) 234
DO 3 IsNS.NF 24o
ZIGW nZIGW +W( I l 24 l
ZIGWX nZlGWX *W(I >*X< I ) 242
ZIGWY oZlGWY *W(I »*Y < l ) 24 3
Z IGWXY»ZIGWXY+Wi I )*Y< I 1*X { l ) 244

3 21GWX2«Z1GWX2*W1 I ) * X(I ) * X(I ) 24?
XBARbZIGWX/ZI GW 24o
YBAR=ZIGWY/Z1GW 24/
DO 4 IbNS.NF 24d
Z IGDEN*ZJ GDENt-W( I)*(X(Il-XBAR)*(X(!)-XBAR) 24 4

4 ZIGBRAaZiGBRA + Wl I ,*l X( I J-X8AR ,*(Y( I l-YBAB» 25u
Ao<YBAR*ZlGNX2-XBAR*ZiGrtXt )/ZIGDEN 25,
B»ZIGBRA/ZIGDEN 252
DO 6 IbNS#NF 253

6 DY<I )*ABS(Y<I )-A-8*X<I> ) 25<+
DYY«O. 25?
DO 7 I“NS»NF 25?

7 DYY«DYY+DT1 I ) »DY( 1 )*W< I ) 25/
DD«SQRT,DYY/(tAN-2.J *<ZIGW* 21GWX2-Z1GWX*Z1 GWx )) , 25d
DAaD0*5QRI(ZIGWX21 - 254
DBbDD-SQRI(ZIGW) 26?
REIURN 26l
END 262

Figure C.l The Computer Programme (contd.)
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102 is the last statement in the programme, and so the entire programme 

calculation Is done NR times* JJ is a dummy variable which does not 

appear again in the course of the programme* 22 and 23 read in the 

parameters RODE, KP1, KP2, RP3 and KP4* RODE is the maximum number 

of points whioh are to be fitted to a line* Some of the results are 

punched out (so that averages of the results in several groups can be 

recalculated) and the KP*s are control numbers to suppress the punching 

of unwanted cards* It is convenient in a later part of the programme 

to express RODE as an element of an array of reference numbers and this 

is the function of line 21* 25 to 29 read in NPILMS, and (on the

first run through) write lt out again on magnetio tape* (Line 19 is 

also concerned with the use of magnetic tape)* It is necessary to 

have an indexing system for the photographs; each photograph is 

labelled by three numbers - the helium run number (NHJN), the film 

number during that run (NPILM) and the frame number on that film*

NFILMS is the total number of films to be processed, .

Similarly 30 to 3^ read in NG, which is the number of frames 

whioh are to be grouped together for averaging* 38 is an Instruction 

to repeat the calculation for all the films* 39 to 43 then read in 

NHDN, NPILM and NFS, the total number of frames in that film* 44 and
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45 set NKUN end NPILM in array form, end 46 to 51 print out headings 

for the results* At statement 52, we rerch the inside loop, with an 

instruction to repeat the calculation for all frames, and start the 

calculation proper*

53 to 57 read in H(l), the pulse height measurements, and N, 

the number of them* Normally, K, the loop parameter (line 52) will 

be the same as the frame number, but occasionally (see Chapter 5) a 

photograph is omitted* If a card with the first two values of H(l) 

punched as zero is fed in instead, 58 to 60 cause K to be incremented 

by 1 without rsay other aotion being taken, thus keeping K in corres­

pondence with the frame numbers* (The CONTINUE statement means just 

what it says - go on to the next statement)*

One of the fORTRAN conventions is that variables whose names 

begin with the letters I,J,K,L,M,N are to be regarded as integers, 

while other variables are regarded as decimal numbers* Division of 

two integers gives an integer answer which has been truncated towards 

zero, rather than rounded off* 61 therefore ensures that the number 

of points used is oven so thrt odd rnd even lines have the same number 

of points, end one straight line fits are obtained from the same data 

as two line fits* 62 to 64 ensures that the maximum number of points 

fitted is KOBE* 65 calls the subroutine EXPLOT, whioh is listed 

separately, starting at line 199 • Prom the parameter list we see that
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N and H are already defined, pnd are the numbers we put into the 

subroutine. The other parameters are those whioh are to be calcul­

ated in the subroutine and then transferred back to the main routine. 

For example, R is a parameter calculated in the subroutine, but which 

is transferred back to the main routine, where it is called RA. 

Similarly K is a parameter transferred from the main routine, on 

this ocoasion with the value 1. We turn now to the calculations

performed in EXPLOT.

200 and 201 allocate array storage. The loop 204 to 211 sets 

up the values of X and Y whioh will be fitted to a straight line 

Y a A+BX by the general subroutine GHLE31. Sometimes low frequency 

noise causes the tops of some pulses (not necessarily the first) to 

be off scale, and these are punched as zero. 205 and 206 ensure that 

these points ere not included, and that the total number of points is 

correct. 202 ensures that II is initially zero, and that the final 

value of II is therefore correct. (This is a general procedure when 

using DO loops for calculating sums). 207 calculates logxo H(l).

EH(lI) is a number proportional to the error in Y(ll). 212 and 214 

ensure that no line is fitted to less than four points (GO TO 2 means 

that the statement labelled 2 is to be executed next) and the parameter 

K1 (20J and 213) indicates this fact to the ain programme. 216 now
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calls tha subroutine OHLESQ (listed from line 222) which fits the 

straight line.

228 and 229 of GilLESQ again allooate array storage. 250 sets 

AN equal to the total number of points. 251 to 257 ensure that all 

the sums to be oaloulated will be oorrect. 258 and 259 calculate 

the weighting factors Wp and 2W to 245 the sms £ w£,

2 2 xiyiwi an<i ^xi*wi raeans x). 246 and 247 calculate

x end ? * y.wi* and 250 oalculate

£(xt - x)°w^ and^x^ • x)(y^ » y)w^. 251 and 252 then calculate

the intercept A and the .slope B of the plotted straight line. 255 

and 2>4 give the deviation of the points from the fitted line, and 

256 to 260 use this information to oalculate the standard errors DA 

and DB of A and B. 261 returns control of the programme to the next 

statement after the CALL GHLESQ statement just executed in EXPLOT.

262 is an instruction to the compiler to stop oompiling the sub­

routine.

EXPLOT now (217 and 218) calculates the reflection coefficient 

R and standard error SR corresponding to the slope and error of the 

fitted line, and then returns control to the main routine at line 66.

66 now determines whether a straight line has or has not been

fitted. If not, the number of results in the group to be averaged
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is reduced by 1 (17). Since in the EXPLOT routine just completed K 

and L were set equal to 1, it was a straight line fit through all 

the points that was attempted* If there were too few points 68 

directs that no attempt be made to fit two lines*
<►

70 to 72 now accumulate the results of fitting one line to all 

the data in VA (the slopes) and EVA (the errors)* Sinoe KK has been 

previously set equal to zero outside the NPILM loop (35), the accum­

ulation is from 1 to NG*

73 fits the odd line and 74 tests to see that it has in fact 

been done* If it has not, then the number of frames contributing 

to the average of odd and even lines (NGS) is no longer equal to 

NG (line 3&) and must be reduced (73) • In this case the even line 

is not fitted (76 and 77). 37 with 78 to 80 accumulate the odd line 

results in V and EV* 31 to 88 repeat all this for the even lines, and

4 erases the previous odd line result if no line can be fitted to the 

even points. 21 with 39 to 91 accumulates in 3 and DS, the difference 

between the slope of the odd and even lines, and the error in that 

quantity* (S and DS have lost their significance since the programme 

was written)*

92 to 97 calculate the top and bottom reflection coefficients 

(equations 5*3 end 5*4) and their errors and 98 to 101 accumulate the



140

answers in VT, VB, EVT and EVB. 102 to 109 now print out the 

results, taking account of the fact that it may not have been possible 

to fit odd and even lines. 110 enquires if all the results in one 

group are yet complete. If so K, equivalent to the frame number of 

the last member is put into the reference number array (ill), the total 

number of odd and even lines NGT is evaluated (112), and all the 

averages calculated by the subroutine GEMEAN. 113 gives the average 

obtained by fitting one line to all the data, 114 the average of 

both odd and even lines and 115 end 116 the averages of the bottom 

end top reflection coefficients.

GEMEAN (starting on line 182) at once calls the subroutine 

AVER (146). 157 to 163 calculates £*viwi ^-vi* ^ives

v (denoted by RB) and 165 retains £ v^ for future reference. 166 

to 170 calculates 171 two standard errors

of Chapter 5* 175 to 177 determine which is the larger and 178 and

179 give Z and its standard error.

Control returns to &EMEAN, which calculates the reflection 

coefficient and its error corresponding to the mean slope given by 

AVER. 187 to 190 cause punched card output of the results (and the 

reference array KOD) to be produced if KP is 1, but suppress it

otherwise. 191 to 196 determine the deviation of Z from 1 in terras
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of the standard error in Control now returns to the nain

programme, at 117, where all the results are printed out (117 to 

121) • The results registers are cleared (122 end 123) the next 

Value of NG read in (124- to 127), and NGS set equal to it (128).

At 130 we reach the end of the K loop, i.e. tho end of the calculations 

on one frame. The programme returns to line 52 and repeats tho 

calculation until it has done so for all the frames on one film.

Hie average value of S is then calculated (l3l)> printed out (132 

to 138) along with some other information, and the S register cleared 

(l39)« At 140, we reach the end of the NflLlI loop, i.e. the programme 

returns to 38 and repeats the calculation for each film. Having 

done that it rewinds the magnetic t pe (142) and reaches the end of 

the NK loop. It therefore returns to 20 and repeats the entire 

calculation for a different number of points per line, finally, 

at 144, it stops.

The programme was run on an I.C.T. 1905 computer. It fitted 

3 lines to some 500 sets of data, each of from 8 to 16 points, and 

oaloulated 4 averages for eaoh of some 150 groups, for two values 

of KODE (8 and 16) the calculation took about 15 minutes. Since it 

oooupied about 3k words of core store it is a small to medium sized 

programme. It took about two months to write and debug in which time
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perhaps on© quarter of the basic information about reflection coeff­

icients end averages could have been calculated by hand. The probab­

ility that suoh a hand calculation would be free from numerical error 

is rather low, end no attempt could have been made at a proper calcul­

ation of the standard errors in that time.



143.

REPLACES

Allen, J.P. end C.C. Matheson. (1966).Proc. Boy. Soc., A290, 1.

Alty, T. and C.A. MacKay. (1935). Proc. Roy. Soc., A149.104.

Atkins, K.R. (1953). Canad. J. Phys., 31, H6p.

Atkins, K.R. (1937). Physioa, y. U43.

Atkins, K.R. (1939a). Liquid Helium^ 107. Cambridge University Press.

Atkins, K.R. (1939b). Phys. Rev., 113, 962

Atkins K.R. and K.H. Hart. (1934). Canad. J. Phys., 32, 81.

Atkins, K.R. end Y. Narahara. (1965). Phys Rev., 138, 437*

Atkins K.R., B. Rosenbaum, end H. Seki (1939). Phys. Rev., 113, 731* 

Bendt, P.J., R.D. Cowan and J.L. Yarnell (1939). Phys. Rev., 113,

1386.

Brewer, D.P., A.J. Symonds and A.L. Thomson (1965). Phys. Rev. Letters, 

y, 182.

Cheraikova, D.M. (1964). J. Exp. The or. Phys. USSR, 47, 337 

(translated in Soviet Physics -JETP, 20, 358, 1965).

Cunsolo, S., M. Santini, and M. Vincenti-Missoni. (1965).

Cryogenics i, 168

Dossier, A.J. and W.M. Fairbank. (1956). Phys Rev., 104, 6.

van Dijk, H. end M. Durieux. (1958a). Physica, 24, 920.



144.

▼an Dijk, H. and M. Durieux. (1958b). Physica, 24-. 1. 

Dingle, R.B. (1948). Proo. Phys. Soo. A, 61, 9.

Everitt, C.W.P., K.R. Atkins and A. Denenstein. (1962).

Phys. Rev. Letters, 8, 161.

Everitt, C.W.F., K.R. Atkins end A. Denenstein. (1964.)* 

Phys. Rev., 136, A1494.

Fairbank, W.M., H.A. Fairbank and C.T. Lane. (1947).

Phys. Rev., 72, 645*

Grimsrud, D.T. and J.H. Werntz. (1967). Phys. Rev., 157, 181. 

Henshaw, D.C. and A.D.B. Woods (1961). Phys. Rev., 121, 1266.

Hirth, J.P. and G.M. Pound (1963)* Condensation and Evaporation,

p 77 et.seq. London, Pergamon Press.

▼an Itterbeek, A. end W. de Laet. (1958)* Physica, 24-, 59.

Jamieson, D.T. (1964)* Mature, 202, 583.

Johnston, W.D. and J.G. King. (1966). Phys. Rev. Letters, 16, 1191. 

Keller, W.B. and E.P. Hammel. (1966). Phys. Rev. Letters, 17, 998. 

Khalatnikov, I.M. (1952a). J. Exp. Theor. Phys. USSR, 23, 821. 

Khalatnikov, I.M. (1952b). J. Exp. Theor. Phys. USSR, 22, 687. 

Khalatnikov, I.M. (1965). An Introduction to the. Theory of

PPs- 11-12. Mew York, W.A. Benjamin.

Kinsler, L.K. and A.R. Prey (1962). Fundamentals of Aooustics, 

p 199* New York, John Wiley and Sons.



145.

Knudsen, 11. (1915). Ann. Phys., 47, 697.

Kuper, C.G. (1956). Physloa, 22, 1291.

Kuper, C.G. (1958). Physica, 24, 1009.

Landau, L.D. (1941). J. Phys. USSR., £, 71.

Landau, L.D. (1947). J. Phys. USSR., 11, 91.

Lane, C.T., H.A. Fairbank and W.M. Fairbank. (1947). Phys. Rev., 

H, 600.

Lane, C.T., H.A. Fairbank, H. Schultz and W.M. Fairbank, (1946). 

Phys* Rev*, 70* 431*

Loeb, L*B* (1961)* The Kinetic Theory of Gesea* 3rd. ed., p* 106 

et*soq* New York; Dover*

Meyer, D*T*, H* Meyer, W. Halliday and C.P. Kellers* (1963)* 

Cryogenics, J, 150*

Osborne, D.V* (1948)* Nature, 162* 213*

Osborne, D*V. (1962a)* Proc* Phys* Soc., 80, 103*

Osborne, D*V* (1962b)* Proc* Phys. Soc., 80* 1343*

Pellam, J*ft* (1943)* Phys* Rev*, 73* 608*

Pellam, J.ft. (1949). Phya* Rev., 75* 1183*

Peshkov, V. (1944). J*Phys. USSR, 8, 381*

Pollack, C.L. (1966a)* Phys* Rev., 143* 103*

Pollack, G.L. (1966b). Phys. Rev., 149* 72.

Present, R*D* (1958)* Kinetic Theory of Oases* p 47* Mew York:

McGraw-Hill



146.

Rayleigh, Lord. (1916). Proc. Roy* Soc., A92, 184.

Tilley, J* (1965)* Ph.D. Thesis, University of St. Andrews. 

Tilley, J. end C.G. Kuper. (1966). Proc. Roy. Soc., A 290, 14* 

Tisza, L. (1940). J. Phys. Radium, i, I65, 350.

Topping, J. (1962). Errors of Observation end their Treatment, 

3rd. ed., p 91* London; Chapman and Hell.

Yarnell, J.L., C.P. Arnold, P.J. Bendt and E.C. Kerr (1959). 

Phys. Rev., 113, 1379.

Zinoveva, K.N. (1956). J. Exp. Thnor. Phys. USSR, 31, 31* 

(Translated in Soviet Physics -JETP, i, 36, 1957).



147,

ACKNOWLEDGEMENTS

I would like to thank the following people for their assis­

tance at various stages of this work.

Professor D.V. Osborne for suggesting the projeot, for his 

advice* encouragement and assistance while it was being carried out* 

and for reducing the number of wild goose chases up blind alleys by

a factor of at least 2*

Professor J*F. Allen* P.R.S., for offering me the facilities 

of the Physics department at St. Andrews* and for his local super­

vision during a year when Professor Osborne was in Norwich.

Mr* R*H. Mitchell for his invaluable advice and assistance on 

all cryogenic matters* md he and his staff at St* Andrews for 

providing liquid helium.

Mr. McNab and his staff at St. Andrews for teaching me most 

of what I know about workshop pr.' ctioe* and for making some of the 

apparatus*

Mr. Howard Cairns for lending chole s and transformers

unobtainable elsewhere.

Mr. V. Rose and his staff at East Anglia* for the considerable 

time and skill they devoted to building a cryostat virtually from 

soratchj and for installing a 16 inch booster pump in record time 

and overcoming their professional distaste of unpolished pipework

to do so



148.

Mr. E.J. Critohfield and his staff at East Anglia for 

cheerfully and efficiently obtaining equipment and supplies amid 

all the ohaos of a nevz department, and for processing more films

than I caro to count.

The programming staffs of the St. Salvators College Computing 

Laboratory, St. Andrews, the S.H.C. Atlas Computing Centre at 

and the University of Sussex computing centre, for their assistance 

with the programme, especially while it was being debugged.

Mrs. Audrey Ower for her rapid and efficient typing of this

thesis.

Mr. D.O. Meyer for drawing the diagrams, and Mr. J.H. Carter 

and his staff for preparing the photographs.

My wife Elspeth for her encouragement during the past four 

years, and especially for typing a first draft of this document from 

my illegible handwriting.

A large number of other people, too numerous to catalogue, 

who, at various times and places have provided stimulating conver­

sation or critical listening.

And last but not least, the Science Hesearch Council for the 

award of a Research Studentship, during the tenure Of which this

work was carried out


