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ABSTRACT

A high re s o lu t io n  study of m a g n e t ic - f i e ld - in d u c e d  second harmonic 

generat ion in sodium vapour was performed using a s in g le - f re q ue n cy  

continuous-wave dye la s e r .  Resonant enhancement was obtained by tuning  

the la se r  to the frequency of  the 3S -  40 two-photon t r a n s i t i o n  of  the 

sodium atoms. Coherent paramet r ic  emission of the second harmonic 

r a d i a t i o n  ocurred in the presence of  a symmetry-breaking magnetic f i e l d  

by means of  a coherent e l e c t r i c - q u a d r u p o l e  emission at twice the laser  

f requency.

A t h e o r e t i c a l  model of  the second harmonic generat ion (SH6) was 

developed,  and includes the ro les  played by atomic se le c t io n  r u l e s ,  

Zeeman s p l i t t i n g  and e ig en fu n c t io n  mixing in a magnetic f i e l d ,  and the 

e f f e c t s  of  homogeneous and inhomogeneous broadening.

The use of a s in g le - f req u e n cy  Laser and an atomic nonl inear  medium 

allowed an experimental  i n v e s t i g a t i o n  of a SHG process in unprecedented 

d e t a i l .  This provided a s t r i n g e n t  te s t  of the t h e o r e t i c a l  model 

developed to p re d ic t  the p r o p e r t ie s  of the nonl inear i n t e r a c t i o n  in 

terms of  fundamental atomic parameters. The e x c e l le n t  agreement 

obta ined between t h e o r e t i c a l  and experimental  re s u l ts  v in d ic a te d  the 

t h e o r e t i c a l  methods used in the model l ing.

Line p r o f i l e s  of  the SHG at d i f f e r e n t  magnetic f i e l d  strengths and laser  

p o la r i s a t i o n s  were measured, and, fo r  the f i r s t  t im e ,  were not l i m i t e d  

by the laser  l i n e w id t h .  Although the two-photon absorpt ion l i n e  p r o f i l e  

was due to  Am̂  = 0 ,  ± 1 ,  ±  2 t r a n s i t i o n s ,  the quadrupole moments which



generated the second harmonic p o la r is e d  perpendicu la r  and p a r a l l e l  to  

the magnetic f i e l d  were associated with only the Am  ̂ = ± 2 and ± 1 

t r a n s i t i o n s  r e s p e c t i v e ly .  This was the f i r s t  d i r e c t  observat ion of the 

d i f f e r e n c e s  in s e le c t io n  rules  between such processes.  The modelled 

l i n e  p r o f i l e s  were in good agreement with exper iment ,  and su ccess fu l l y  

p red ic ted  the squared dependence of the second harmonic (SH) power on 

magnetic f i e l d  st rength at  f i e l d s  less than 0.05 T,  and the s a tu r a t io n  

of t h i s  dependence at higher f i e l d s .  The l a t t e r  e f f e c t  was due to 

s a t u r a t io n  of  the s ta te  mixing and to  Zeeman s h i f t i n g  moving t r a n s i t i o n s  

in to  and out of  resonance. When both moments were dr iven  the SH 

experienced m ag n et ic - f ie ld -d ep en d en t  r o t a t i o n  of p o l a r i s a t i o n  and 

d e v ia t io n  from l i n e a r  p o l a r i s a t i o n ;  t h i s  is the f i r s t  study to repor t  

the considerable v a r i a t i o n  of  the magnitudes of these e f f e c t s  across the 

l i n e  p r o f i l e .  These observat ions were in e x c e l le n t  agreement with  the 

t h e o r e t i c a l  model, which exp la ined  the p o l a r i s a t i o n  changes in terms of  

v a r i a t i o n s  in the r e l a t i v e  phases and magnitudes of the two moments.

The SH power was p r o p o r t io n a l  to  the square of  the sodium den s i ty  at  

atomic d e n s i t i e s  below 2 x 10^^ atoms m and o s c i l l a t o r y  t h e r e a f t e r ,  

due to  phase v e l o c i t y  mismatching. In creas ing  the argon b u f f e r  gas 

pressure caused a sharp drop in the SH power when the homogeneous 

l in ew id th  exceeded the Doppler w id th .  F i n a l l y ,  m a g n e t ic - f i e ld - in d u c e d  

SHG was used fo r  the f i r s t  t ime as a p a r t i c l e  d ens it y  probe,  measuring 

the sodium dens i ty  d i s t r i b u t i o n  in the oven.
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CHAPTER ONE 

INTRODUCTION

1.1 INTRODUCTION TO NONLINEAR OPTICS

Before the advent of  the Laser,  o p t i c a l  e l e c t r i c  f i e l d s  had always been 

s u f f i c i e n t l y  weak t h a t  the p o l a r i s a t i o n  induced in  a medium by such f i e l d s  

was w e l l  described as being p ro p o r t io n a l  to  the e l e c t r i c  f i e l d  s t re n g th .  

Lasers ,  however, can produce very in tense o p t i c a l  f i e l d s  due to  the high 

peak powers a v a i l a b l e ,  and the a b i l i t y  to  focus the coherent  la ser  

r a d i a t io n  to  a spot a few wavelengths across.  In  such arrangements,  the  

o p t i c a l  e l e c t r i c  f i e l d  s t rength s  may approach those of  the in t r a - a t o m ic  

e l e c t r i c  f i e l d s ,  and so the p o l a r i s a t i o n  of  the atoms in  a medium is l i k e l y  

to be markedly non l in ear  in i t s  dependence on o p t i c a l  e l e c t r i c  f i e l d  

s t ren g th .

The f i r s t  no n l in ear  e f f e c t  at  o p t i c a l  f requencies was reported  by Franken 

et  a l  in  1961 [ 1 ] ;  they generated the second harmonic frequency of  l i g h t  

from a ruby l a s e r ,  which operated a t  694.2 nm, using quar tz  as the  

n onl inear  medium. A phenomenological d e s c r ip t io n  of  t h i s ,  and many other  

nonl inear  e f f e c t s ,  may be given by expressing the p o l a r i s a t i o n  P induced in  

the medium as a power s e r ie s  in the in c id en t  o p t i c a l  e l e c t r i c  f i e l d ,  E

The f i r s t  term represents the wel l-known l i n e a r  response of  a m a t e r ia l  with

(1 )f i r s t  order s u s c e p t i b i l i t y  ,  where is the vacuum p e r m i t t i v i t y .  The 

induced p o l a r i s a t i o n  acts as a r a d i a t i o n  source. The i n t e r a c t i o n  between 

the fundamental wave and the wave re r a d ia t e d  at  the fundamental f requency
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gives r i s e  to  the r e f r a c t i v e  index of  the m a t e r i a l .  I f  the  in c id e n t

e l e c t r i c  f i e l d  is  of  the form E ^ =  E ^ q  c o s  wt,  i t  i s  r e a d i l y  seen t h a t  the

term gives r i s e  to  the p o l a r i s a t i o n  E^q (1 + cos 2 w t ) / 2 ,  which

contains a component at  the second harmonic frequency. This o s c i l l a t i n g  

p o l a r i s a t i o n  w i l l  then lead to  a ra d ia te d  wave a t  2w, the second harmonic

r a d i a t i o n  f i r s t  reported  by Franken et  a l .

Processes r e l y in g  on the second order  s u s c e p t i b i l i t y  are known as t h r e e -  

wave mixing processes: two waves i n t e r a c t  to  produce a t h i r d  one. This  

class of  e f f e c t s  in c lu d e s ,  amongst o t h e r s ,  second harmonic g e n e ra t io n ,  sum 

and d i f f e r e n c e  frequency m ix in g ,  o p t i c a l  r e c t i f i c a t i o n  and parametr ic  

o s c i I l a t i o n .

In the quar te r  century  since the f i r s t  gen erat ion  o f  an o p t i c a l  harmonic,  

the f i e l d  of  no n l in ear  o p t ic s  has grown r a p i d l y .  Nonl inear  e f f e c t s  at  

o p t i c a l  or n e a r - o p t i c a l  f requenc ies  are now important  as both usefu l  and 

l i m i t i n g  processes. For example, s t im u la te d  Raman s c a t t e r in g  in o p t i c a l  

f i b r e s  may be used to  generate coherent  l i g h t  at  a number of wavelengths in 

the 1-06  pm -  1 . 6  pm region [ 2 ] ,  but w i l l  a lso  act  as a loss mechanism 

l i m i t i n g  the peak powers t h a t  may be t ra n s m i t te d  in a f i b r e  o p t ic  commun­

i c a t i o n  system [33 .  Many o ther  experiments have in v e s t ig a t e d  no n l in ear  

e f f e c t s ,  and some are reviewed in references 4 ,  5 ,  and 6 .  Using these  

e f f e c t s ,  r a d i a t io n  may be generated in regions of  the spectrum where no 

coherent source is  d i r e c t l y  a v a i l a b l e .  Although many types of  n o n l in ea r  

e f f e c t s  have been demonstrated,  the rest  o f  t h i s  discussion w i l l  be l i m i t e d  

to  second harmonic genera t io n  (SHG) and the c lo se ly  r e l a t e d  phenomena of  

sum frequency mixing (SFM) and d i f f e r e n c e  frequency mixing (DFM).

O p t ica l  second harmonic gen era t io n  has found p a r t i c u l a r l y  wide appeal as i t  

al lows the r e l a t i v e l y  convenient and e f f i c i e n t  gen era t ion  of  l i g h t  at
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otherwise u n a t t a in a b le  frequencies  [ 7 3 .  Of p a r t i c u l a r  i n t e r e s t  l o c a l l y  

has been the use o f  n o n l in e a r  c r y s t a l s  to  produce the second harmonic of  

dye la s e r  r a d i a t i o n ,  thus pro v id in g  a tunab le  source of  u l t r a v i o l e t  la s e r  

l i g h t  C8, 93-

1 .2  SECOND HARMONIC GENERATION IN CRYSTALS AND VAPOURS

I f  only d ip o le  r a d i a t i o n  processes are considered,  the genera t ion  of  even 

harmonics is  not poss ib le  in  media which possess a centre of  symmetry,  

which is  why an is o t ro p ic  c r y s t a l l i n e  m a t e r ia ls  have been the most important  

n on l inear  media f o r  second-harmonic g en era t io n .

Consider a medium possessing a centre of  in v e r s io n .  The p o t e n t i a l  energy,  

V, of  an e le c t r o n  must r e f l e c t  the symmetry of  the medium, and thus in  a 

one-dimensional  model

V(x)  = m Wq X^ + m a x^ ( 1 . 2 . 1 )

where Wg and A are constants and m is  the e le c t r o n i c  mass. The constant  A 

is u s u a l ly  very  much less than Wg. The re s to r in g  force  on the e lec t ro n s  

may be c a lc u la te d  from the form of  t h i s  p o t e n t i a l  and included in the 

equat ion of  motion o f  the e le c t r o n s .  This may be solved to  give  the  

dependence of  the p o l a r i s a t i o n  on an ap p l ie d  f i e l d  E as

pcc a E + b E^ + . . .  ( 1 . 2 . 2 )

where a and b are constants .  Thus the symmetry of  the medium r e s t r i c t s  

the p o l a r i s a t i o n  to  depend on only odd powers of  the e l e c t r i c  f i e l d ,  and so
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the system r e - r a d i a t e s  at  only the fundamental and odd harmonic 

f req u en c ies .  (This t rea tm ent  has assumed a d ipo le  na ture  to  the r a d i a t i n g  

process;  i f  e l e c t r i c  quadrupole r a d i a t i o n  is  considered,  the gra d ien t  of  

the e l e c t r i c  f i e l d  i s  in vo lv e d .  However, i f  the medium is  i s o t r o p i c ,  the  

symmetry is  such t h a t  the c o n t r ib u t io n s  o f  e l e c t r i c  quadrupole processes 

to the SHG are also  zero C103.) S e le c t io n  ru le  arguments aga in st  

c o l l i n e a r  SHG in quant ised  i s o t r o p i c  media are given in  sec t io n  2 . 1 .

By c o n t r a s t ,  in  an a n is o t ro p ic  medium such as an asymmetric c r y s t a l ,  the  

cond it io n  V(x)  = V ( - x )  need no longer apply and so the p o t e n t i a l  of the  

e le c t r o n  may contain  odd powers of  x. This is  e q u iva len t  to  saying t h a t  a 

displacement of  the e l e c t r o n  in one d i r e c t i o n  may r e s u l t  in  a l a rg er  

r e s to r in g  fo rce  than the same displacement in the opposite d i r e c t i o n .  In  

t h i s  case,  the p o l a r i s a t i o n  of  the medium takes the form

p oc a E + b + c . . .  ( 1 . 2 . 3 )

and thus second harmonic gen era t io n  and other  second order  processes are  

p o s s ib le .  This is  discussed f u r t h e r  by Franken and Ward C113 and Yar iv  

[ 12] .

Figure 1 . 2 . 1 (a ,b )  shows poss ib le  r e l a t i o n s  between the a p p l ied  e l e c t r i c  

f i e l d  and the induced p o l a r i s a t i o n  f o r  a l i n e a r  medium and fo r  a medium 

lacking  a cent re  of  in v e r s i o n .  These dependences g ive  r i s e  to  the p o l a r ­

i s a t i o n  waves shown in p a r ts  (c)  and (d)  of  the same f i g u r e .  The p o l a r ­

i s a t i o n  wave induced in  the n o n l in e ar  medium may be Fo urier  analysed to  

give the components shown in  f i g u r e  1 . 2 . 2 .  This shows c l e a r l y  the o r i g i n  

of the p o l a r i s a t i o n  at  the second harmonic frequency.  The p o l a r i s a t i o n  

wave in  t h i s  medium w i l l  then r a d i a t e  at the fundamental and second 

harmonic f requenc ie s .
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la)

le)

Figure 1 . 2 . 1 .  Schematic diagrams of  (a) Linear and (b)  n on l inear  
dependences of  the p o l a r i s a t i o n ,  P, on the e l e c t r i c  f i e l d  s t r e n g t h ,  E. I f  
an o s c i l l a t i n g  e l e c t r i c  f i e l d  of  f requency w propagates through the media 
the induced p o l a r i s a t i o n  waves w i l l  be as shown in  (c) and (d) fo r  l i n e a r  
and no n l in ear  media r e s p e c t i v e l y .

'2w

Figure 1 . 2 . 2 .  Fourier  a n a ly s is  o f  the p o l a r i s a t i o n  wave in pa r t  (d) of the  
previous f i g u r e .
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In  c r y s t a ls  which do not have a centre  of in v e rs io n ,  such as quar tz  or  

ammonium dihydrogen a rs e n a te ,  second harmonic generat ion  is  t h e r e f o r e  

p o s s ib le .  In  a d d i t i o n ,  the b i r e f r i n g e n c e  of  non l inear  c r y s t a l s  may be used 

to match the phase v e l o c i t i e s  of  the fundamental and second harmonic by 

compensating f o r  the n a t u r a l  d is p ers io n  o f  the m a t e r i a l .  Thus most of  the 

work in  second harmonic generat io n  has been performed using such 

c r y s t a l l i n e  m a t e r i a l s .  At high o p t i c a l  f i e l d  i n t e n s i t i e s  the SHG 

e f f i c i e n c y  may be l a r g e .  For example,  one commercial ly a v a i l a b l e  Nd:YAG 

laser  produces 30 MW peak power of  l i g h t  at  1 .06 pm, and a deuterated  

potassium di-hydrogen phosphate c r y s t a l  converts t h i s  to  the second 

harmonic at  532 nm with 30% e f f i c i e n c y  C13D.

Considerable e f f o r t s  have gone in t o  developing c r y s t a l s  with  a la rge second 

order s u s c e p t i b i l i t y ,  good o p t i c a l  q u a l i t y  over severa l  m i l l i m e t r e s ,  good 

t ransparency to  both fundamental  and second harmonic,  and s u f f i c i e n t  

b i r e f r i n g e n c e  to  s a t i s f y  phase matching. The c r y s t a l l i n e  m a t e r ia l  must 

also be able to  w iths tand the high r a d ia t i o n  f i e l d  i n t e n s i t i e s  needed to  

produce s i g n i f i c a n t  q u a n t i t i e s  of  the harmonic r a d i a t i o n  C143.

These are s t r in g e n t  l i m i t a t i o n s ,  and whi le  good c r y s t a l l i n e  m a t e r ia ls  have 

been developed,  they s t i l l  have c e r t a i n  l i m i t a t i o n s  in  transparency range 

and power handl ing c a p a b i l i t i e s .  This has led to  an increased i n t e r e s t  in  

using gases or vapours as n o n l in e ar  media. These have the disadvantages of  

a low p a r t i c l e  d e n s i t y ,  and an is o t ro p y  which leads to  a zero second order  

s u s c e p t i b i l i t y  unless some form of  symmetry-breaking arrangement is  used.  

However, they do have the advantages th a t  they are reasonably easy to  

prepare in la rg e  volumes with  good o p t i c a l  q u a l i t y ,  and do not s u f f e r  

i r r e v e r s i b l e  damage at  high o p t i c a l  f i e l d  i n t e n s i t i e s .  Vapours can be used 

which have good t ransparency deep in to  the u l t r a v i o l e t ;  most no n l in ear  

c r y s t a l s  have an absorpt ion  edge around 200 nm. As the second order
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s u s c e p t i b i l i t y  is  z e r o ,  the most s tud ied  e f f e c t s  have been due to  the  

(3)X  term in equat ion 1 . 1 . 1 ,  and much work has been published on t h i r d  

harmonic g en era t io n .  To o b ta in  conversion e f f i c i e n c i e s  comparable with  

those of  doubl ing in c r y s t a l s ,  very la rge  o p t i c a l  f i e l d  s trengths have been 

used, and frequencies  have been chosen to  give la rge  resonant enhancement 

to the t h i r d  order s u s c e p t i b i l i t y  [1 43 .

Re cen t ly ,  a number of  experiments have been reported concerning the mixing  

of two o p t i c a l  f i e l d s  in a vapour to  produce a t h i r d  f i e l d  at  the sum, 

d i f f e r e n c e  or second harmonic f requency ,  desp ite the r e s t r i c t i o n s  mentioned 

above. Some means of  breaking the iso t ropy  of the vapour was required  in  

each case.  This has been achieved by the a p p l i c a t io n  o f  a s t a t i c  e l e c t r i c  

or magnetic f i e l d ,  by q u a s i s t a t i c  e l e c t r i c  f i e l d s  produced by the i n t e r ­

ac t io n  o f  the laser  pulse and the medium, or by imposing an asymmetry on 

the system by using a n o n - c o l l i n e a r  beam geometry. The papers descr ib in g  

a l l  such processes are discussed in  chapter  two in  some depth ,  because no 

review of  t h i s  f i e l d  has been publ ished .

The work on m a g n e t ic - f i e ld - in d u c e d  second harmonic generat ion  repor ted in  

t h is  th e s is  i s  b e l ieved  to  be a s i g n i f i c a n t  c o n t r ib u t io n  to  the study of  

such processes,  and to  fundamental non l in ear  o p t i c s .  The use of  a s i n g l e ­

frequency la se r  and an atomic no n l in ear  medium has al lowed f o r  the  f i r s t  

t ime the examinat ion of  the p r o p e r t ie s  of  a SHG process in  such d e t a i l  as 

to provide so s t r i n g e n t  a t e s t  o f  a t h e o r e t i c a l  model developed to  p re d ic t  

the basic p r o p e r t ie s  of  the n o n l in e ar  i n t e r a c t i o n  in terms of  fundamental  

atomic parameters.
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1 .3  INTRODUCTION TO MAGNETIC-FIELD-INDUCED SECOND HARMONIC GENERATION 

IN SODIUM VAPOUR

As an in t r o d u c t io n  t o  the reviews of  chapter  two, and as an overview of  the  

d e t a i l e d  t h e o r e t i c a l  t rea tm ent  given in  chapter t h r e e ,  t h i s  sect ion  f i r s t  

gives a q u a l i t a t i v e  d e s c r i p t io n  o f  the process of  m a g n e t ic - f i e ld - in d u c e d  

second harmonic genera t ion  in  sodium vapour.  The scheme described is  the  

one used in  the bulk of  the work in t h i s  t h e s i s .

The p a r t i c u l a r  i n t e r e s t  in sodium vapour f o r  m a g n e t ic - f i e ld - in d u c e d  second 

harmonic generat ion  is  due to  the r e l a t i v e l y  simple nature  of  such a 

n on l inear  medium, which consists of  i s o l a t e d  atoms with w e l l - d e f i n e d  

s e le c t io n  r u l e s .  The i n t e r a c t i o n  o f  the laser  beam with the atoms of  the

vapour is  amenable to  accura te mathematical  model l ing in terms of

fundamental atomic parameters .

Second harmonic generat io n  in  the vapour occurs by the simultaneous  

absorpt ion  of  two photons from the fundamental beam and the emission of  one 

photon of  tw ice the energy-  There need be no s t a t i c  popula t ion  of  the  

e x c i te d  s ta te s  of  the atoms in  such a conversion process,  but near  

coincidences of  the fundamental or  second harmonic frequenc ies  with  the  

f requencies of  atomic t r a n s i t i o n s  may enhance the SHG by many orders of  

magnitude.  Atomic s e l e c t i o n  r u l e s ,  however, r e s t r i c t  which t r a n s i t i o n s  may 

be used. The energy l e v e l s  of  the sodium atom are shown in  f i g u r e  1 . 3 . 1 .  

Resonant enhancement of  the SHG is obta ined by tuning the fundamental  

r a d ia t i o n  to  h a l f  the wavelength of  the 38 -  4D two-photon t r a n s i t i o n  in

sodium, corresponding to  a la s e r  wavelength of  578.7 nm. Although there

are no e l e c t r i c - d i p o l e - a l l o w e d  t r a n s i t i o n s  between the 4D and 3S s t a t e s ,  

two-photon t r a n s i t i o n s  are a l lo w ed ,  as are sing le -p hoton e l e c t r i c -  

quadrupole t r a n s i t i o n s .
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Quadrupole

Figure 1 .3 .1  Energy le v e ls  scheme f o r  second harmonic 
generat ion in  atomic sodium vapour. The dotted  l i n e  
in d ica tes  the i o n i s a t i o n  p o t e n t i a l  of  the atom. The 3S 
ground s t a t e  l i e s  5 .14  eV below t h i s  l e v e l .  There are  
many o ther s ta te s  between the io n i s a t io n  p o t e n t i a l  and 
the highest  energy le v e ls  shown in the diagram.
Key: -  TPA = two-photon absorpt ion  

SH = second harmonic

In studying r a d i a t i v e  t r a n s i t i o n s  in atoms, i t  i s  o f ten  a very good 

approximation to  consider  only s ing le -photon  e l e c t r i c - d i p o l e - a l l o w e d  

t r a n s i t i o n s .  However, when t h i s  type of  t r a n s i t i o n  is  fo rb idden  by 

s e le c t io n  r u l e s ,  other  types of  (weaker)  t r a n s i t i o n  may become importan t .  

Two-photon t r a n s i t i o n s  were f i r s t  considered by Goppert-Mayer C153. In  

such t r a n s i t i o n s ,  two photons are absorbed simultaneously;  the t r a n s i t i o n  

ra te  is  p ro p o r t io n a l  to  the square of  the i n t e n s i t y  of  the r a d i a t i o n  [ 1 6 ] ,  

and the s e le c t io n  ru le s  assoc ia ted  wi th  the t r a n s i t i o n  are s i m i l a r  to  those 

tha t  would be obtained by applying sing le -photon  e l e c t r i c - d i p o l e - t r a n s i t i o n  

s e le c t io n  ru les  tw ice C17].  E le c t r ic -q u a d ru p o le  t r a n s i t i o n s  are due to  

o s c i l l a t i n g  quadrupole charge d i s t r i b u t i o n s  in the atom, and are u su a l ly  

very much weaker than d ip o le - a l lo w e d  t r a n s i t i o n s .  Some o f  the physics of  

t h i s  type of  t r a n s i t i o n  is  t r e a t e d  in sect io n  2 . 4 ;  in p a r t i c u l a r ,  i t  is  

exp la ined  th e re  why the s e le c t i o n  ru les  f o r  quadrupole t r a n s i t i o n s  are
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d i f f e r e n t  from those of  the much b e t t e r  known e L e c t r ic -d ip o le -a lL o w e d  

t r a n s i t i o n s .

The two-photon absorpt ion in  the sodium atoms creates quadrupole moments 

which o s c i l l a t e  at the second harmonic frequency,  but in the absence of  an 

e x te r n a l  magnetic f i e l d  these do not r a d ia t e  in to  the forward d i r e c t i o n .

An an a lys is  o f  the magnetic sublevel  populat ions in d ic a t e s  th a t  the  

quadrupole emission lobes are perpend ic u la r  to the fundamental beam, so no 

coherent second harmonic may be generated .  However, when a t ransverse  

magnetic f i e l d  is  app l ie d  to  the vapour,  the isot ropy  of  the system is  

broken,  and the quadrupole emission lobes ro t a t e  about the f i e l d  due to  

s ta te  mixing and Zeeman s h i f t i n g .  This al lows coherent  genera t io n  of  the  

second harmonic in the forward d i r e c t i o n .

SECOND
HARMONIC

FUNDAMENTAL
7Y

Figure 1 . 3 . 2 .  Geometry used to  descr ibe the second 
harmonic genera t ion  process.  Q and Q are the  
quadrupole moments which act  as^^ 'e f fec t i^e d ip o les"  
fo r  second harmonic g e n era t io n .

The geometry used to  descr ib e  the second harmonic gen era t ion  process is  

shown in  f i g u r e  1 . 3 . 2 .  The two quadrupole moments which may c o n t r ib u t e  to  

the second harmonic r a d i a t i o n  are and These may be considered to

be " e f f e c t i v e  d ipo le s"  p a r a l l e l  to  the x and z axes r e s p e c t i v e l y .  The aim 

of the t h e o r e t i c a l  model l ing  of  chapter  th ree  is  to  determine the ampl i tude
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and phase of  these e f f e c t i v e  d ipo le s  as funct ions  of  the la se r  f requency  

and p o l a r i s a t i o n ,  the magnetic f i e l d  s t r e n g t h ,  and the l in ew id th s  of  the  

homogeneous and inhomogeneous broadening.  D i f f e r e n t  magnetic sub leve ls  are 

involved  in the resonant enhancement of  the two e f f e c t i v e  d ip o le s .  Thus as 

the fundamental f requency is  tuned across the enhancing two-photon l i n e  

p r o f i l e  the r e l a t i v e  magnitudes o f  the two e f f e c t i v e  d ipo les  w i l l  change as 

the a p p ro p r ia te  magnetic subleve ls  are moved in and out of  resonance.

Once the p ro p e r t ie s  o f  the e f f e c t i v e  dipo les  are determined ,  the  

observables of  the second harmonic r a d i a t i o n  are r e a d i l y  c a l c u la t e d .  For 

example, i f  the e f f e c t i v e  d ip o les  are of  the same magnitude,  and i f  the 

phase d i f f e r e n c e  between them is  zero or n in e ty  degrees,  the second 

harmonic r a d i a t i o n  w i l l  be l i n e a r l y  or c i r c u l a r l y  p o la r is e d  r e s p e c t i v e l y .

The t h e o r e t i c a l  p r e d ic t io n s  were t e s te d  e xp er im en ta l ly  using the s i n g l e ­

frequency dye laser  system, which is  described in chapter  fo u r .  The 

e f f e c t s  on the SHG of  the v a r i a t i o n  of  the t ransvers e  magnetic f i e l d ,  

sodium atom d e n s i t y ,  laser  f requency and p o l a r i s a t i o n ,  b u f f e r  gas pressure  

and Doppler width were cons idered ,  and theory  and experiment were found to  

be in remarkably good agreement, as shown in chapter  f i v e .  The bulk e f f e c t  

of phase (mis)matching was also  found to  be im portan t .

Second harmonic generat io n  may occur only in the region where the laser  

beam and the magnetic f i e l d  o v e r la p .  At low p a r t i c l e  d e n s i t i e s  the second 

harmonic i n t e n s i t y  is  p ro p o r t io n a l  to  the square of  the sodium atom den s i ty  

in the overlap  reg ion .  Thus by moving the p o s i t io n s  of  the lase r  beam and 

the magnetic f i e l d  a th ree -d im en s io n a l  p r o f i l e  of  the atomic den s i ty  may be 

obta ined .  This was proposed by Dunn C18] ,  and i t s  f i r s t  exper imenta l  use 

is reported  in  sect io n  5 . 9 .

A disadvantage of atomic vapours f o r  harmonic generat ion is  the l i m i t e d
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range o f  tunab iL ty  of the process.  S i g n i f i c a n t  resonant enhancement is  

obtained over only a few g ig a h e r t z  around the frequenc ies of  each of a few 

s u i t a b l e  two-photon t r a n s i t i o n s .  Molecu lar  vapours o f f e r  the p o s s i b i l i t y  

of many more al lowed two-photon t r a n s i t i o n s  and p r e l im in a r y  experiments 

were performed to  asses the s u i t a b i l i t y  o f  the sodium dimer in vapour form 

as a non l in ear  medium. These s tu d ies  are o u t l in e d  in appendix E.

The research reported in t h i s  th e s is  concentrates  on the basic physics of  

the second harmonic gen e ra t io n  process.  The conversion e f f i c i e n c y ,  though 

sm a l l ,  was s u f f i c i e n t l y  high to  enable such experiments to be undertaken.  

In  order f o r  the technique to  f i n d  many a p p l i c a t i o n s ,  the e f f i c i e n c y  and 

t u n a b i l i t y  would probably need to  be increased;  techniques fo r  doing t h i s  

are o u t l in e d  in  the f i n a l  cha p te r .
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CHAPTER TWO 

REVIEW OF SECOND HARMONIC GENERATION 

AND RELATED PROCESSES IN VAPOURS

This chapter begins with  a simple t h e o r e t i c a l  t rea tment  of  second harmonic 

generat ion in  a quant ised medium. Second harmonic generat ion  (SHG) does 

not occur in an i s o t r o p i c  medium unless the symmetry is  somehow broken;  

four ways of  doing t h i s  are then d e scr ib e d ,  and the p u b l ic a t io n s  in these  

f i e l d s  are reviewed, SI u n i ts  w i l l  be used throughout t h i s  work.

2.1 THEORETICAL OVERVIEW OF SECOND HARMONIC GENERATION IN 

QUANTISED MEDIA

Consider the i d e a l i s e d  t h r e e - l e v e l  system shown in  f i g u r e  2 . 1 . 1 .  Second 

harmonic generat ion  occurs in  such a system by the simultaneous absorpt ion  

of two photons of  the fundamental r a d i a t i o n  and the emission of  one photon 

of tw ice  the energy.

2w

Figure 2 . 1 .1  Energy le v e l  scheme fo r  second harmonic 
generat ion in sodium vapour.
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There need be no s t a t i c  p opu la t ion  o f  the ex c i te d  s ta tes  in t h i s  parametr ic  

process,  but near coincidences of  the la s e r  f requency,  w, with the al lowed  

sing le -photon  t r a n s i t i o n  at  Wg^, or of  2w with the al lowed two-photon  

t r a n s i t i o n  at  w i l l  s t r o n g ly  enhance the generat ion process.

The wavefunct ion of  the atom may be w r i t t e n  as

Y = a. ( t )  u. + a^Ct) u^ e  ̂ + a^ u^ e  ̂ + c . c .  ( 2 . 1 . 1 )

where a^ is the ampl i tude of  u^,  which is  the e ig en fu n c t io n  of  l ev e l  n.  

These amplitudes are considered to  be slowly vary ing  fu nc t ions  of  t ime to  

a l low f o r  t r a n s i t i o n s  in the medium, c . c .  denotes the complex conjugate .  

The e l e c t r i c  f i e l d  o f  the fundamental beam may be described as

E = 1 E „ e + c . c .  ( 2 . 1 . 2 )“w “ wO

To c a l c u la t e  a^ and a^ ,  Y is  in s e r te d  in t o  the per turbed t ime-dependent  

Schroedinger equat ion

(Hq + V)Y = -f i  6Y ( 2 . 1 . 3 )

i èt

where the p e r t u r b a t i o n ,  V, in  the d ip o le  approximation ,  is  given by

V = - e r . E  ( 2 . 1 . 4 )
-  “ W

and is  caused by the e l e c t r i c  f i e l d  of the fundamental beam. I f  the  

resonances are as shown in  f i g u r e  2 . 1 . 1 ,  and i f  the e x c i t a t i o n  is  weak, the 

time-dependence of  a^ and a^ may r e a d i l y  be c a lc u la te d  t o  be
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âg = 1 1 < 2 | e r | l >  w)t ( 2 . 1 . 5 )

2 f,

âg = 1 1 < 3 | e r | 2 >  a^ ( 2 . 1 . 6 )

2 H

where < i | e r | j >  is the d ip o le  mat r ix  element def ined  as u ^ ( e r ) u .  dT, where
J  1 “  j

the i n t e g r a t i o n  is  over a l l  space, and an e l e c t r i c  d ip o le  i n t e r a c t i o n  is  

assumed. In the approximation of  a r e l a t i v e l y  weak input wave, a  ̂ = a^^ = 

constant ,  and the above two equat ions may be i n te g r a te d  to  give expressions  

fo r  a^ and a^. These are then in s e r te d  in t o  equat ion 2 .1 .1  to give an 

expression f o r  the wavefunct ion o f  the medium.

The expecta t ion  value of  the p o l a r i s a t i o n  of  the atoms is  given by

<P> Y * e r Y  dT ( 2 . 1 . 7 )

where the p o l a r i s a t i o n  is  assumed to  have a d ip o le  n a tu re .  The c a lc u la te d  

expression f o r  Y is  in s e r te d  in t o  t h i s  e qu a t io n ,  and the component 

o s c i l l a t i n g  at  2w is  e x t r a c t e d ,  g iv in g  the second harmonic p o l a r i s a t i o n  as

Pgw = < l | e r | 3 > < 3 [ e r | 2 X 2 | e r | 1 >  E^^e'^^wt ( 2 . 1 . 8 )

4 ti^ (Wg  ̂ -  w) (ŵ ,  ̂ -  2w)

The second order s u s c e p t i b i l i t y  is def ined  by
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so % f \ - 2 w ; w , w )  = N < 1 | e r | 3 > < 3 | e r | 2 > < 2 | e r 11> ( 2 . 1 . 1 0 )

2
fi 6q (Wg  ̂ -  w) (w^-j -  2w)

To include  damping in  equat ions 2 . 1 . 8  and 2 . 1 . 1 0  the f a c t o r  ± i# ^ j  must 

be in s e r te d  in t o  each denominator with  the resonant f requency w^j ,  with  

the signs chosen c o r r e c t l y  CIO, 193.  This is  not important  f o r  the present  

d iscuss io n ,  though i t  i s  re qu ired  in the more d e t a i l e d  a n a ly s is  in  chapter  

t h r e e .

Equations 2 . 1 . 8  to 2 . 1 . 1 0  descr ibe the SHG process.  For media with  

d e f i n i t e  p a r i t y ,  such as atomic vapours in  the absence o f  app l ied  f i e l d s ,  

w i l l  vanish in the d ip o le  approximat ion.  To see t h i s ,  consider  again  

the th ree  le v e l  atom: i f  u  ̂ has even p a r i t y ,  then fo r  < 2 | e r j l >  to be non­

zero Ug must have odd p a r i t y ;  s i m i l a r l y  u^ must have even p a r i t y ,  but now 

< l l e £ | 3 >  is zero as both u  ̂and u^ are even. This is  r e a d i l y  seen in

the fo l lo w in g  example. Let  s ta te s  1 ,  2 and 3 be the 3 8 ,  3P and 4D s ta tes

of the sodium atom. The Al = ± 1 s e le c t io n  ru le  f o r  d ip o le  r a d i a t io n  is

wel l  known, and so w h i le  38 -  3P and 3P -  4D t r a n s i t i o n s  are a l lo w ed ,  4D -

38 is not .

I f  e l e c t r i c  quadrupole or o th er  h igher order  r a d i a t i o n  processes are  

( 2)considered,  X  may no longer be p a r i t y - f o r b i d d e n .  The e l e c t r i c  

quadrupole mat r ix  element i s  of  the form < i | e r r | j > ,  so a chain of  two 

dipo le  t r a n s i t i o n s  and one quadrupole t r a n s i t i o n  would seem to  be a l lowed.  

In  the example given above, t r a n s i t i o n s  from 4D to 38 are al lowed by 

quadrupole r a d i a t i o n  processes. However, a more d e t a i l e d  study shows th a t  

c o l l i n e a r  three-wave mixing in  an i s o t r o p ic  vapour is  s t i l l  fo rb idden.  In  

order to  see t h i s ,  consider  th re e  waves of  frequency and wave vec tor  

(w^, k ^ ) ,  (Wg, k.2  ̂ and (w^, k^) where w  ̂ > ŵ  > w^, and assume th a t  

these th ree  waves are propagat ing col l i n e a r l y  through the vapour.  As the
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Sta te  of  an atom is  unchanged in a parametr ic  process,  the waves must 

s a t i s f y  c e r t a i n  conservat ion laws.  Photon energy and momentum conservat ion  

demand th a t  w  ̂ = ŵ  + w.̂  and = kg + r e s p e c t i v e ly .  Angular  

momentum must also be conserved among the three waves. I t  i s  perm iss ib le  

to choose the ax is  of  q u a n t is a t io n  along the d i r e c t i o n  of  c o l l i n e a r  

p ro ro g a t io n ,  z ,  (or  any o ther  a x i s ,  as the medium is i s o t r o p i c ) .  Thus 

m̂  = m2  + m^, where m̂  is the z component of  angular momentum of  the nth  

photon. As the e lec t ro magnet ic  wave is  t ra n s v e rs e ,  each photon must carry  

± 1 u n i ts  of  angular  momentum along z ,  regard less  of  the type of  r a d i a t io n  

from which i t  arose.  There is  no way in  which th ree  photons can obey such 

a conservat ion  law, and so c o l l i n e a r  three-wave mixing in an i s o t ro p ic  

medium is  not p o ss ib le .  This is  a general  r e s u l t ,  independent of  the type  

of m at r ix  elements in v o lve d .

Despite these r e s t r i c t i o n s ,  methods have s t i l l  been found to  mix three  

o p t i c a l  f i e l d s  in  a vap o u r : -

i )  A s t a t i c  e l e c t r i c  f i e l d  may be app l ied  to  p er tu rb  the e ig enfunct ions  of  

the medium, mixing toge ther  s ta tes  of  opposite p a r i t y .  This is  o f te n  

described in terms o f  a t h i r d  order n o n l i n e a r i t y ,  where two photons of  the 

fundamental f i e l d  are mixed with  one of  the zero frequency e l e c t r i c  f i e l d  

to produce the second harmonic photon.

i i )  The transvers e  i n t e n s i t y  g rad ien t  of  h i g h - i n t e n s i t y  la s e r  pulses at  the  

fundamental f requency may produce q u a s i s t a t i c  e l e c t r i c  f i e l d s  which then  

act to  break the vapour 's  symmetry in a mannner analagous to  ( i ) .

i i i )  Two i n t e r s e c t i n g ,  o r t h o g o n a l l y - p o l a r i s e d ,  focussed beams can produce 

a quadrupole r a d i a t i o n  f i e l d  at  the sum or d i f f e r e n c e  frequency ,  using the 

second order n o n l i n e a r i t y .
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1 v) A s t a t i c  t ransvers e  magnetic f i e l d  may be a p p l ied  to  the fo ca l  region  

of a s in g le  beam, causing the quadrupole r a d ia t i o n  at the second harmonic 

f requency to r a d ia t e  coherent ly  in the forward d i r e c t i o n .

The study of  t h i s  l a s t  type of  symmetry-breaking process forms the bulk of 

t h is  t h e s i s ;  a l l  four  types are described in more d e t a i l  in  the fo l lo w in g  

sec t io n s .
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2 .2  ELECTRIC-FIELD-INDUCED MIXING PROCESSES

The second harmonic p o l a r i s a t i o n  produced in a quant ised medium of  atomic

- ^ 0density  N by an o p t i c a l  e l e c t r i c  f i e l d  E = ( 1 / 2 )  E „ e^^^ + c . c .  is

P(2w) = N < l | e r | 3 > < 3 | e r | 2 > < 2 | e r | l >  E^q e''^'^^. ( 2 . 2 . 1 )

4 ti^ (Wg  ̂ -  2w) (Wg  ̂ -  w)

For media with d e f i n i t e  p a r i t y ,  such as atomic vapours,  at  l ea s t  one of  the 

< i | e r | j >  d ipo le  matr ix  elements in equat ion 2 .2 .1  must be zero .  However,  

the a p p l i c a t i o n  of  an e x t e r n a l  s t a t i c  e l e c t r i c  f i e l d  can mix le v e ls  of  

opposite p a r i t y ,  thus a l lo w in g  a l l  th ree  d ip o le  mat r ix  elements to  be 

non-zero .  The s t a t i c  f i e l d  imposes a p r e fe r re d  d i r e c t i o n  on the vapour,  

and i t  is  no longer p e rm iss ib le  to  quant ise the angular  momentum of  the  

atom along the propagat ion d i r e c t i o n ;  the momentum must be quant ised along  

the d i r e c t i o n  of  the s t a t i c  e l e c t r i c  f i e l d .  Conservat ion of  angular  

momentum among the th re e  waves is  possible in t h i s  d i r e c t i o n ,  so second 

harmonic generat ion becomes al lowed by both p a r i t y  and angular  momentum 

arguments.

For atoms and symmetrical  molecules th ere  is  u s ua l ly  no l i n e a r  s h i f t  in  

energy le v e ls  with an e l e c t r i c  f i e l d  E^ ( l i n e a r  Stark e f f e c t ) ,  as they do 

not possess permanent d ip o le  moments which would i n t e r a c t  with the f i e l d .  

However, an e l e c t r i c  f i e l d  can induce such a d ip o le  moment in the atom,  

p r o p o r t io n a l  to  E^, and thus g ive  r i s e  to  energy le v e l  s h i f t s  p ro p o r t io n a l  

to Eg. This is  c a l l e d  the quadra t ic  Stark e f f e c t .  I f  the s ta tes  of  

opposite p a r i t y  are w e l l  separated  in energy ,  second order p e r t u r b a t io n  

theory may be used to  determine the e f f e c t  of  a weak e l e c t r i c  f i e l d  on the  

atom [203:
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W(o(JM) = WgOxj) + | E g | ^ < f  |« * 'J 'M |e r |K J M > |Z  ( 2 . 2 . 2 )

^  W(«J) -  W ( a 'J ' )

V(o^JM) = Y(«JM) -  |Eg| <^Y((X 'J 'M) <w'J'M|erk%JM> ( 2 . 2 . 3 )

W(cKJ) -  W (K 'J ' )

where W is the energy Level of  the s t a t e .  Eg is the s t a t i c  e l e c t r i c  f i e l d ,  

and y  and Y are the per turbed  and unperturbed eigenfu nct ions  r e s p e c t i v e l y .

These re l a t i o n s h i p s  break down at f i e l d s  which are s u f f i c i e n t l y  strong th a t  

the Stark s p l i t t i n g s  are comparable to  the energy d i f f e r e n c e s  between 

s ta tes  of  opposite p a r i t y .  The same is  t r u e  when the basis s ta te s  are 

almost degenerate,  as in the hydrogen atom, or in high le v e l  Rydberg 

s t a t e s ,  which have hydrogenic e ig e n fu n c t io n s .  In  these cases the Stark  

e f f e c t  can be shown to  produce energy le v e l  s h i f t s  p ro p o r t io n a l  to the  

e l e c t r i c  f i e l d  st rength  [ 2 0 , 2 1 3 .

As a s p e c i f i c  example of  an e l e c t r i c - f i e l d - i n d u c e d  mixing process in which 

only the quadrat ic  Stark e f f e c t  is  in v o lv e d ,  consider  the scheme reported  

by Bethune e t  a l  [223 where sodium vapour was used as the no n l in ear  medium. 

The angular  f requenc ies and w  ̂ of  the o p t i c a l  e l e c t r i c  f i e l d s  were 

chosen to  be close to  the 3S -  3P and 3P -  4D resonances. With no s t a t i c  

e l e c t r i c  f i e l d  a p p l i e d ,  the d ip o le  matr ix  elements involved  were 

<3s t er  14d><4d 1 er 13pX3p I er  13s>, the f i r s t  of  which is  ze ro .  When a s t a t i c  

e l e c t r i c  f i e l d  was ap p l ied  to  the vapour,  e igenfunct ions  of  opposite p a r i t y  

were mixed as described by eq.  2 . 2 . 3 .  Equation 2 . 2 . 1 ,  modif ied  f o r  mixing  

ra th e r  than second harmonic g e n e r a t io n ,  then becomes
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P(2w) = N / - < 3 s  1 er 1 n p X np l  er 14d> + <np 1 er 14 d X 3 s  | e£| np>\ . Eg

+ "2 -  "np)

X < 4 d |e r |3 p > < 3 p |e r |3 s >  E^Eg ( 2 . 2 . 4 )

("4d -  "1 -  "2 -  '^^ ("3p  ■" Wf)

Thus the sum frequency p o l a r i s a t i o n  is  p ro p o r t io n a l  to  the s t a t i c  e l e c t r i c  

f i e l d  Eg, and to  the two o p t i c a l  e l e c t r i c  f i e l d s .  This dependence on th ree
(3)

e l e c t r i c  f i e l d s  has led most authors to  describe  such processes using X

( 2 )n o n l i n e a r i t i e s ,  even though the express ion was der ived  from a X  type  

of d e s c r ip t io n .  Although the  formalism described above is  r e s t r i c t e d  to  

c e r t a i n  cases, s i m i l a r  arguments apply to  non-resonant  processes,  and to  

other atoms and molecules in which the quadra t ic  Stark e f f e c t  is  the  

dominant p e r t u r b a t io n .

Two ways of  v i s u a l i s i n g  the symmetry-breaking p ro p e r t ie s  of the s t a t i c  

e l e c t r i c  f i e l d  have been proposed. The f i r s t  fo l lo w s  the e ig en fu n c t io n  

mixing argument as above; the second considers the mixing process in ways 

s i m i l a r  to  convent ional  X^^^ processes such as t h i r d  harmonic g en e ra t io n .  

The l a t t e r  model t r e a t s  the s t a t i c  e l e c t r i c  f i e l d  in  the same manner as 

the o p t i c a l  f i e l d s ,  and the sum frequency output  is considered as the 

mixing of  two f i e l d s  of  f requency w and one of  f requency zero .  Four-wave 

mixing is  a l lowed by d ip o le  s e l e c t i o n  r u l e s ;  the zero - f requency  t r a n s i t i o n  

in t h i s  model is  e s s e n t i a l l y  the same as the e f f e c t s  of  s t a t e  mixing  

considered in  the f i r s t  d e s c r i p t i o n .

S i t u a t io n s  where the quadra t ic  Stark e f f e c t  is  not a p p l ic a b le  have been 

reported ;  they are described s ep a ra te ly  in  the fo l lo w in g  l i t e r a t u r e  review,  

The number of papers d iscussing e l e c t r i c - f i e l d - i n d u c e d  SHG is much g r e a te r  

than t h a t  of  any o ther  type of  symmetry-breaking process.
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Terhune and co-workers [23 ]  were the f i r s t  to  report  e L e c t r i c ~ f i e l d - in d u c e d  

second-harmonic generat ion  (ESH6) in a medium with a centre of  symmetry.

They focussed a one jo u le  pulse from a ruby laser  through a c a l c i t e  c r y s t a l ,  

which was in an e l e c t r i c  f i e l d ,  and used the b i r e f r in g e n c e  of  the c r y s t a l  

to phase-match the process.  The i n t e n s i t y  of the ESHG was measured to  be 

p r o p o r t io n a l  to  the square o f  the dc e l e c t r i c  f i e l d  s t r e n g th .

A small amount o f  second harmonic was generated when no f i e l d  was ap p l ie d ;  

t h i s  was exp lained  as a second order  process in vo lv in g  a quadrupole 

t r a n s i t i o n .  The quadrupolar route was poss ib le  as c a l c i t e  is  not 

i s o t r o p i c ,  as exp la ined  in more d e t a i l  by Pershan [243.  (Bulk quadrupolar  

SHG is c u r r e n t l y  of  i n t e r e s t  in centrosymmetr ic semiconductors;  see, f o r  

example, re ference 2 5 . )

The f i r s t  repor ts  of  ESHG in vapours,  which are i s o t r o p i c ,  were by Mayer 

and co-workers [ 2 6 ,  2 73 ,  and by Finn and Ward [283 .  Pure ly  t h e o r e t i c a l  

t reatments  were given by K i e l i c h  [ 2 9 ,  303.  These p ioneering studies  are  

summarised in  t a b le  2 . 2 . 1 .  Finn and Ward v e r i f i e d  t h a t  the second harmonic 

power was given by

( 2 . 2 . 5 )

where IP̂  is the fundamental power. Eg is the dc e l e c t r i c  f i e l d  s t r e n g t h ,

Akg = (2k^ -  k^) is the mismatch between the fundamental and second 

harmonic wave v e c to r s ,  and is the a p p ro p r ia te  element of  the

e f f e c t i v e  t h i r d  order p o l a r i s a b i l i t y  tensor  (as discussed b e lo w ) .  The 

constants of  p r o p o r t i o n a l i t y  ap p ro p r ia te  to  the exper imenta l  arrangement  

were d e r iv e d ,  and good agreement was obtained between theory  and 

experiment.  The number of  photons generated per pulse from t h e i r  1 MW ruby 

laser  ranged from 600 fo r  xenon t o  4000 fo r  hel ium.
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Paper Type Medium Laser Findings

23] 1962 ESHG c a lc ite ruby F in ite  SH power (Pg^) a t zero f i e l d ,  but

Terhune

Maker

694 nm 

1 J

(Pgy -  Pg^) «  Eq * Conversion 

e f f ic ie n c y  5 x 10 ^ th a t o f KOP.

Savage

26 ] 1968 ESHG vario us  gaseous ruby Second harmonic power p ro p o rtio n a l to  square

Mayer m olecules 694 nm of fundam ental power, except near breakdown

( In  French) 7 MW 

25 ns

f ie ld s  in  CgH^I and C^H^Br. Phase m atch ing , 

and the d if fe re n c e  between p o la r  and nonpolar 

m olecular n o n lin e a r  media noted .

10 conversion e f f ic ie n c y .

29] 1968 ESHG Theory. Nonpolar m olecules c o n tr ib u te  on ly

K ie lic h THEORY to th e  p u re ly  e le c tro n ic  t h ir d  order hyper­

p o la r is a t io n . D ip o la r  m olecules a lso  

c o n tr ib u te  a tem perature-dependent second 

order term due to  o r ie n ta t io n  o f the d ip o le s  

in  the  e le c t r ic  f i e l d .

30 ] 1969 ESHG Extension o f C 29], to  in c lu d e  " e le c t r ic

K ie lic h THEORY s a tu ra tio n "  e f fe c t s .

28] 1971 ESHG in e r t  gases ruby In  H elium , Pg^^x: (p" (E q)" ', n=2.00 + 0 .0 6 ,

Finn 694 nm m = 2 .0 6  + 0 .0 6  fo r  co n d itio n s  used. Also

Ward 0 .8  MW phase (m is )m atch ing , dependence on e le c tro d e  

p o s it io n  and confocal pa ram eter, measurement 

of h y p e r p o la r is a b i l i t ie s  o f in e r t  gases.

10 ^^ conversion e f f ic ie n c y .

27] 1971 ESHG vario u s  gaseous ruby As [ 2 6 ] .  A lso s tu d ied  Raman e f fe c t s ,  and

Hauchecorne m olecules 694 nm found h y p e r p o la r is a b i l i t ie s .  P^^ 9 tim es

Kerherve stro nger w ith  than w ith  E^ JT Êg.

Mayer Propose mechanism fo r  increased ESHG near

( In  French) breakdown f ie ld s  in  e th y l bromide and 

e th y l io d id e .

Table 2 .2 .1 .  Pioneer ing experiments in e l e c t r i c - f i e l d - i n d u c e d  second 

harmonic genera t ion .  None of  these processes used resonant enhancement. 

Pgw 3nd Eg are the second harmonic power and the symmetry-breaking s t a t i c  

e l e c t r i c  f i e l d  r e s p e c t i v e ly .
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Many papers have since been publ ished on e l e c t r i c - f i e l d - i n d u c e d  mixing  

processes, and these are summarised in the tab le s  in t h i s  sec t io n .  The 

reports  have been arranged in  groups according to the aim of  the papers.

The la r g e s t  group contains those papers concerned with measuring the 

h y p e r p o l a r i s a b i l i t i e s  of  atoms and molecu les,  which are def ined  in an 

analogous way to  l i n e a r  p o l a r i s a b i l i t i e s .  The d ip o le  moment p induced in a 

system by an e l e c t r i c  f i e l d  E is

Pi - 2l^ijk^j^k ^^ijkl^j^k^lj (2 . 2 . 6 )

where 0( is the p o l a r i s a b i l i t y  and ̂  and Y are the f i r s t  and second hypei—

p o l a r i s a b i l i t i e s  re s p e c t i v e ly  [313.  p  and X are sometimes also r e f e r r e d  to

as the second and t h i r d  order  ( in  e l e c t r i c  f i e l d )  p o l a r i s a b i L i t i e s .  A 

review of  the p ro p e r t ie s  of  molecular  h y p e r p o l a r i s a b i l i t i e s  is  given by 

Buckingham and Orr C313, though i t  was w r i t t e n  before most of  the papers  

l i s t e d  here were pu bl ished.  The major cause of  i n t e r e s t  in  h y p e r p o l a r i s ­

a b i l i t i e s  a t  t h a t  t ime was the importance of  |3 and X in the Pockels and 

Kerr e f f e c t s  r e s p e c t i v e l y .  In  the P ocke l ' s  e f f e c t  the b i r e f r in g e n c e  o f  a 

m a te r ia l  va r ie s  l i n e a r l y  w ith  the e l e c t r i c  f i e l d  s t r e n g t h ,  and cannot occur

in a centrosymmetric medium. The Kerr e f f e c t  may occur in such a medium,

and depends on the square o f  the e l e c t r i c  f i e l d  s t r e n g th .  Most of  the  

papers summarised in  t a b l e  2 . 2 . 2  use a s l i g h t l y  d i f f e r e n t  n o ta t io n  f o r  the 

h y p e r p o l a r i s a b i l i t i e s ,  where 1 / 6  is w r i t t e n  as 3 /2  Xpg|^|^.

Consider a gaseous sample of  molecules in a dc e l e c t r i c  f i e l d  and with  

l i g h t  of  f requency w passing through i t .  These molecules develop induced 

dipo le  moments at  the second harmonic frequency C323; the average moment,
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Paper Type Medium Laser Findings

27] 1971 

Hauchecorne 

Kerherve  

Mayer

( In  French)

ESHG vario u s

m olecules

ruby 

694 nm

Measurement o f and using ESHG and 

Raman e f fe c t s .  R = ~  ̂ using  

e th y l brom ide.

28] 1971

Finn

Ward

ESHG in e r t  gases ruby 

1 MW 

694 nm

of in e r t  gases.

34] 1974

B ig io

Ward

ESHG in e r t  gases ruby 

1 MW 

694 nm

R =x[|^^/X^^ of in e r t  gases a l l  equal to  th re e  

to  w ith in  exp erim en ta l e r r o r .

35] 1974

Finn

Ward

ESHG halogenated

methanes

ruby 

1 MW 

694 nm

xj|^^ o f CH  ̂ and CF^ d i r e c t ly  from SH

in te n s i ty ,  X^i^^ o f CHgFg, CHF^, CF^, CCIF^,

CBrF, from SH in te n s ity  minus th e o r e t ic a l  
(3 )

es tim ate  o f Xq -

32] 1975

Ward

B ig io

ESHG halogenated

methanes

ruby 

1 MW 

694 nm

Temperature dependence o f SH in te n s ity

measured to  g ive  X ^ ^ ,  and x i^ ^

fo r  CH., CH,F, CH_F_, C H F ,,C F ,, C CIF, and
C5) (? ) 

CBrFg. BAA good fo r  X  but poor fo r  X

36] 1977

M i l le r

Ward

ESHG halogenated

methanes

ruby 

1 MW 

694 nm

As [ 3 2 ] ,  extended to  a l l  CX^Y^_^ w ith  

X,Y = F, C l ,  H.

37 ] 1978

Ward

E l l io t

ESHG eth y len e  

1 , 3 , bu tad iene  

1 ,3 ,5 ,h e x a tr ie n e  

benzene

ruby 

1 MW

694 nm

Temperature dependence o f SH in te n s ity  

measured to  g ive  X^|P and X ^ ^  fo r  these  

m olecules.

38 ] 1979

Ward

M il le r

ESHG "sm all

m olecules"

ruby 

1 MW 

694 nm

As [ 3 2 ] ,  fo r  Hg, Ng, 0 ^ , CO, COg, HgO, HgS, 

NHg, SF^, ( ( ^ 2) 20 ,  CH3OH.

Table 2 .2 .2 ,  continued o v e r le a f.
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Paper Type Medium Laser F indings

39 ] 1982

S helton

Buckingham

PPM

ESHG

va rio u s

m olecules

A r*

c w l  W 

458 -  

514 nm

Frequency dependence o f fo r  He

and CH., v ib r a t io n a l resonance seen in  CH..
‘ ( 2) Temperature dependence o f SHG g ives X |t and

fo r  He, Ng, Hg, Ng, COg, CH^, CH^F,

CHFg, CF^, SF^ at 514.5  nm.

40 ] 1984

Hameka

Svendsen

ESHG

THEORY

Expressions fo r  th ird -o rd e r  freq uen cy- 

dependent h y p e r p o la r is a b i l i t ie s  o f m olecu les . 

Also review  o f p rev iou s th e o r e t ic a l work.

41 ] 1984

E l l io t

Ward

ESHG va rio u s

m olecules

D ev ia tio n s  from Kleinman symmetry.

42 ] 1985

Dudley

Ward

ESHG HF, HCl ruby 

1 MW 

690 nm

Temperature dependence o f SHG measured to  

g ive  X^^^ and x[|^^ fo r  HF and H Cl. Values  

fo r  HF do not agree w e ll w ith  th e o ry .

33 ] 1985

M izrah i

S helton

PPM

ESHG

vario us A r * ,  dye 

c w l  W 

48 8 , 515 

590 nm

Frequency dependence o f R % 

s ig n i f ic a n t ly  d i f f e r e n t  from 3 , fo r  He, A r, 

K r, Xe, CH^, CF^, SF^, Hg, Dg, Ng, Og, COg

CgHb, CHFj, CgH^^

43 ] 1985

M izrah i

Shelton

PPM

ESHG

A r, Ng, Og A r * ,  dye 

c w l  W 

458 -  

700 nm

Frequency dependence o f xjj^^ (gas)/X |j^^ (He) 

measured, n o n lin e a r d isp e rs io n  > lin e a r  

d is p e rs io n .

44 ] 1985

M izrah i

Shelton

PPM

ESHG

Hg, Og A r* , dye 

cw 1 W 

458 -  

700 nm

Frequency dependence o f X()^^ ( H g ) ( H e )  and 

X(|^^ (H g )/x jp ^  (Dg) measured. E x tra p o la te d  to  

zero frequency to  te s t  ab i n i t io  c a lc u la tio n s  

which are  too  h ig h . V ib ra t io n a l resonances 

s ig n i f ic a n t .

Table 2 .2 .2  (con tinued). Papers rep o r t in g  measurements of  h y p e r p o la r is ­

a b i l i t i e s  using e l e c t r i c - f i e l d - i n d u c e d  second harmonic generat ion (ESHG). 

None of  these reports  used resonant  enhancement of  the process. Xjj and 

are Xyyyy and X^y^^ r e s p e c t i v e l y ,  the two independent non-zero  

components of the h y p e r p o l a r i s a b i I i t y  tensor C32D. BAA is the bond 

a d d i t i v i t y  approximation;  th e  c a lc u la t e d  c o n t r ib u t io n s  f o r  each bond are  

added together to give an est im ate  f o r  the t o t a l  e f f e c t  [313 .  PPM is  

p e r io d ic  phase matching C393. A l l  o f  the quoted power conversion  

e f f i c i e n c i e s  were around 10 ; the low power of the continuous wave laser

was compensated fo r  by using p e r io d ic  phase matching to increase the  

generat ion length .
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p,  per molecule is

Pp = ( 3 / 2 )  X®g„„(-2w;0 ,w ,w) e“ Ê  ̂ ( 2 . 2 . 7 )

where Xpgj^n^(-2w;0,w,w) is an e f f e c t i v e  molecular  h yp erp o la r isab i  l i  t y ,  the  

"E"s are e l e c t r i c  f i e l d  ampl i tudes at f requencies in d ic a te d  by the 

s u p e r s c r ip t s ,  and F, G, H, M stand f o r  X, Y, or Z in the labora tory  

coordinate  frame.  The f a c t o r  3 / 2  is  included in accordance with the  

convent ion t h a t  XC-w^;w.| ,W2 /W^) should tend to  X ( 0 ; 0 , Q , 0 )  as a l l  

the frequency terms tend to  zero C283.

In non-po lar  molecules the only c o n t r i b u t io n  to  X® comes from the t h i r d
rb n m

order p o l a r i s a b i l i t y .  However, molecules with a permanent d ip o le  moment p 

w i l l  undergo a temperature-dependent p a r t i a l  al ignment in  a dc f i e l d ,  and 

the second order p o l a r i s a b i l i t y  is  then non-zero due to  the induced 

anisot ropy C323. The two c o n t r ib u t io n s  may be w r i t t e n  e x p l i c i t l y  as

Xpgp||v,(“2w;0,w,w) = Xpgp^j^^(-2w;0,w,w)

+ (jj/9kgT)'x!^^p^p^(-2w;w,w) ( 2 . 2 . 8 )

These lab o ra to ry - f ram e-averag ed  h y p e r p o l a r i s a b i l i t i e s  are r e l a t e d  to  the  

molecular h y p e r p o l a r i s a b i l i t i e s  by r e l a t i o n s  given in re fe rence  32.  The 

l abora tory  frame c o e f f i c i e n t s  are subject  to symmetry r e s t r i c t i o n s  due to 

the macroscopic iso t ropy  of  the gas. This impl ies th a t  th e re  are only two 

independent non-zero s p a t i a l  components f o r  each h y p e r p o l a r i s a b i l i t y .

These are c on v en t io n a l ly  chosen as the YYYY component, which is  measured 

with the o p t i c a l  and dc e l e c t r i c  f i e l d s  p a r a l l e l  ( I I ) ,  and the YYXX 

component, which is  measured with the o p t i c a l  and dc e l e c t r i c  f i e l d s  

perpendicu lar  to  each o ther  ( 1 ) .
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One approximate-symmetry pro p er ty  of  the h y p e r p o l a r i s a b i l i t i e s  is  t h a t  they  

are i n v a r i a n t  under any permutat ion of  t h e i r  s p a t i a l  in d ic e s ;  t h i s  is  

c a l le d  Kleinman symmetry [ 3 1 ,  333.  This symmetry is  exact  at zero  

f requency and r e s u l t s  in R = ( w = 0 ) ( w = 0 )  = 3. This r e l a t i o n s h i p  is

expected to  hold at  f requencies  f a r  below the f i r s t  e l e c t r o n i c  resonance.  

Tests of  t h i s  r e l a t i o n s h i p  are l i s t e d  in ta b l e  2 . 2 . 2 .

The temperature dependence of  the second order p o l a r i s a b i l i t y  a l lows  

independent de te rm in a t io n  o f  X^^^ and X,^^^ by measuring the v a r i a t i o n  

of SH power wi th  vapour tem p era tu re ,  as noted in  the same t a b l e .

Most of  the ESHG experiments used high peak power pulsed Lasers in order  to

obta in  a measurable number of  second harmonic photons. There was no

resonant enhancement of  the ESHG and the e f f i c i e n c y  was also  l i m i t e d  by

phase mismatching. A s i g n i f i c a n t  advance was made by Shelton and

Buckingham [393 who used p e r io d ic  phase matching. An a r ra y  of  e lec t rodes

was used which was designed to  reverse  the p o l a r i t y  of  the e l e c t r i c  f i e l d

every coherence length I =TT /(2k  -  k_ ) ,  where k is the wavevector atc "w ~2w “w

frequency w in the gas. The r e s u l t i n g  p er io d ic  phase s h i f t  in the  

generated second harmonic served to  cancel the accumulated phase s h i f t  due 

to d is p e rs io n  in the medium, thus a l lo w in g  cont inued growth of  the SH 

signal  over the whole length o f  the sample. This al lowed Shelton and 

co-workers to  perform var ious  measurements using r e l a t i v e l y  low power 

continuous-wave l a s e r s .

Table 2 . 2 . 3  summarises the r e s u l t s  of  some ESHG experiments in l i q u i d s .

The theory of  the process is  s i m i l a r  to  t h a t  of  non-resonant  ESHG in gases.  

The data obta ined were i n t e r p r e t e d  to  determine var ious parameters of the  

molecules in v o lv e d ,  such as the p ro p e r t ie s  of  hydrogen bonding.  Levine and 

Bethea [473 reviewed some of  these p o s s i b i l i t i e s .
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Paper Type Medium Laser Findings

45 ] 1974

Levine

Bethea

ESHG

LIQ

n itro b e n zen e

nitrom ethane

iodomethane

Nd:YAG 

1 .06  pm

Measurement o f h y p e r p o la r is a b i l i t ie s ;  

conjugated bonds make s tro ngest c o n tr ib u tio n .

463 1974

Levine

Bethea

ESHG

LIQ

n itro b en zen e D ete rm in a tio n  o f s ig n  o f h y p e r p o la r is a b il i ty  

by in te r fe re n c e  o f ESHG and o th er types o f  

SHG- See a ls o  C603.

47 ] 1976

Levine

Bethea

ESHG

LIQ

n itro b e n ze n e -  

benzene m ixtu res  

water-methanoL  

m ixtures

'

ESHG gave in fo rm a tio n  on d ip o la r  fo rc e s ,  

hydrogen bonding, charge tra n s fe r  

in te ra c t io n s  and o th e r so lu te -so L u te  and 

s o lu te -s o lv e n t e f fe c t s .  A lso rev ie w .

48] 1976

Levine

Bethea

ESHG

LIQ

p y r id in e - Ig Nd:YAG 

1 .3 2  pm 

100 kW 

70 ns

X  of th is  charge tr a n s fe r  complex 

d isso lved  in  benzene measured to  be 30 tim es  

th a t o f p y r id in e , th e o r e t ic a l agreem ent.

49 ] 1984

Song

Cho

Lee

Chang

( In  Korean)

ESHG

LIQ

m onosubstituted

benzenes

ESHG measured and compared w ith  theory

Table 2 .2 .3 . Papers rep o r t in g  e l e c t r i c - f i e l d - i n d u c e d  second harmonic

genera t ion  in l i q u i d s  (ESHG L IQ ) .  A l l  these processes were non-resonant
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Of more d i r e c t  relevance  to  the subject  o f  t h i s  th es is  are the reports of

resonant ESHG l i s t e d  in t a b l e  2 . 2 . 4 .  The use of resonant enhancement

permits extremely  high values of  the n on l inear  s u s c e p t i b i l i t y  to  be

obtained;  Boyd and co-workers [54 -  573 have stud ied e l e c t r i c - f i e l d - i n d u c e d

sum frequency mixing using Rydberg le v e ls  of  the sodium atom f o r  resonant

enhancement and have measured the s u s c e p t i b i l i t y  f o r  second harmonic

generat ion to  be ten  times t h a t  of  the w e l l  known harmonic generat ion

c r y s t a l ,  potassium dihydrogen phosphate (KDP). The process was not phase

matched, however, so the power conversion e f f i c i e n c y  was low. The Rydberg

leve ls  are hydrogenic and are thus a f f e c t e d  predominant ly  by the l i n e a r

Stark e f f e c t .  The w ave- fu nct ion  mixing in t h i s  case is  not p ro p o r t io n a l  to

the s t a t i c  e l e c t r i c  f i e l d  s t r e n g t h ,  but is  almost independent of  i t  in  the

range where the l i n e a r  Stark e f f e c t  is  g r e a te r  than both the f i n e  s t r u c t u r e

s p l i t t i n g  and the quadra t ic  Stark s p l i t t i n g .  Boyd and Xiang t h e r e f o r e  

( 2)class t h i s  as a X  process.

E a r l i e r ,  Abrams et  a l  [ 5 1 ,  523 had used resonances of  the NH^D molecule

to enhance d i f f e r e n c e - f r e q u e n c y  mixing of a carbon d iox ide  laser  beam and a

microwave s i g n a l ,  generat ing a s in g le  sideband of  the CÔ  laser  r a d i a t i o n

in a microwave Stark c e l l .  The quadra t ic  Stark e f f e c t  does not describe

the energy s p l i t t i n g  w e l l ,  as the Stark s p l i t t i n g s  are g re a te r  than the

separa t ion  o f  s ta tes  of  opposi te  p a r i t y .  The chain of  d ip o le  matr ix

elements was c a lc u la t e d  to  be zero at  high and zero f i e l d  s t re n g th s ,  but

f i n i t e  at in te rm e d ia te  f i e l d  s t re n g th s .  The e l e c t r i c  f i e l d  s t rength  was

chosen to  s h i f t  the energy le v e ls  of  the molecule i n t o  the p o s i t io n  of

maximum resonant enhancement. The complicated dependence on e l e c t r i c  f i e l d

( 2)strength  led the researchers to  c l a s s i f y  t h i s  as a X  process,  induced 

by an e l e c t r i c  f i e l d .
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Paper

50] 1974

Krochik

Khronopulo

51 , 52 ] 1977

Abrams

Y a riv

Yeh

Asawa

P lan t

Pop a

Type Medium

ESHG

Laser

EDFM NHgD

10^ T d f m

4GHz
-Ac

Alt
04

EÿO-* 3570 Vcm-i

cw s in g le  

mode COg 

10.6  >Jm; 

microwave 

TWT 4 W 

4 GHz

22, 53 ] 1977 ESFM Sodium dye

Bethune and AD 592 nm S

Smith NCSFM 566 S F M  289 
3 P

566 nm

Shen 592 \ ' 3 5
10 W and

100 W

54] 1982 ESFM Near resonant

Boyd

Xiang

THEORY Rvdberq level

422 S F M  245 
_ 3 P

569 \ ' . 3 5

55] 1983 ESFM Sodium dye

G auth ier Rydberq level 422 nm &

K ras in sk i 422 S F M  245 
3 P

589 nm

Boyd 589 \ '  . 3 S
"few ns"

56 , 57 ] 1984 ESFM

Boyd

G auth ier

K rasinski

M a lcu it

Sodium
Rydbergjevel

422
589

SFM245
- 3 P
l _ 3 5

dye

422 nm S 

589 nm 

125 kW 

4ns

A'i‘ 5 GHz

Findings

T h e o re tic a l trea tm ent o f resonant ESHG; non­

p o la r and p o la r  m olecules considered .

S in g le  sideband IR g e n e ra tio n . D iffe re n c e  

frequency power p ro p o rtio n a l to  microwave 

power. Maximum g e n era tio n  e f f ic ie n c y  when 

Levels S ta r k -s h if te d  in to  exact resonance.

DFM lin e w id th  130 MHz. 2 x 1 0 ^  conversion  

o f microwave power to  d if fe re n c e  frequency  

wave.

Measurement ofX^Q ^/X ^^^ by in te r fe re n c e  

between ESFG and non-co l l in e a r  SFG, which was 

d rive n  by a quadrupole moment; gives va lue  

fo r  3S -  4D quadrupole m a tr ix  elem ent.

T h e o re t ic a l trea tm e n t fo r  SFM using Rydberg 

s ta te s  fo r  resonant enhancement; la s e r  should 

be tuned between S ta r k -s h if te d  le v e ls .  

P re d ic ts  SHG s u s c e p t ib i l i ty  > 100 times th a t  

of KDP.

E xperim ental v e r i f ic a t io n  o f [ 5 4 ] .  ESHG 

s u s c e p t ib i l i ty  ten  tim es th a t o f KDP. Not 

phase matched, so power conversion e f f ic ie n c y  

only 10 Suggestions fo r  im proving  

s u s c e p t ib i l i ty  and e f f ic ie n c y .

Same s u s c e p t ib i l i ty  as [ 5 5 ] .  Blue la s e r  

scanned and resonant enhancement seen fo r  

each S ta r k -s h if te d  le v e l .  E ffe c ts  o f tu n in g  

ye llo w  la s e r  shown. Max e f f ic ie n c y  3 x 10 

Also some SHG at zero  e le c t r ic  f i e l d .

Table 2 .2 .4 .  Papers re p o r t in g  resonant ly-enhanced e l e c t r i c - f i e l d -  

induced mixing processes. Wavelengths in the diagrams are given in nm 

unless otherwise s ta te d .  The energy le v e l  s h i f t s  with f i e l d  in the  

schemes used in [22 ]  and [53 ]  are described wel l  by the quadrat ic  Stark  

e f f e c t .  Papers [54 -  57]  deal with hydrogenic atoms, and thus the l i n e a r  

Stark e f f e c t  is dominant. In  [513 and [523 the e l e c t r i c  f i e l d  is a very  

la rge p e r t u r b a t i o n ,  and there  is  no simple dependence of  DFM e f f i c i e n c y  on 

e l e c t r i c  f i e l d  s t re ng th .
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E l e c t r i c - f i e l d - i n d u c e d  sum frequency mixing was demonstrated using the 

sodium atom f o r  resonant enhancement by Bethune e t  a l  [ 2 2 ,  5311. They used 

a crossed-beam geometry so t h a t  a quadrupoLe-dr iven SFM process could also  

occur.  The in t e r f e r e n c e  between the two types of  mixing process al lowed a 

dete rm in at ion  of  the magnitude and sign o f  the < 3 s | r  |4d> quadrupole 

matr ix  element.

The remainder of  the e l e c t r i c - f i e l d - i n d u c e d  mixing experiments are Lis ted

in t a b l e  2 . 2 . 5 .  The f i r s t  two descr ib e  the use of  ESHG as a s e n s i t i v e  probe

of  the foca l  region of  a l ase r  beam. This probe is  more s e n s i t i v e  than

-14convent ional  methods f o r  determin ing mode d i s t o r t i o n s ,  and with a 10 

conversion e f f i c i e n c y  i t  is  very lo ose ly  coupled. The report  by Bethea 

[603 of  ESHG in glass is  important  due to  the use of  glass c e l l  wa l ls  in  

conta in in g  gases and l i q u i d s  under i n v e s t i g a t i o n .
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Paper

58] 1975 

B ig io  

Finn  

Ward

59] 1976 

Guha

60 ] 1975 

Bethea

61 ] 1981

Dudley

Ward

Type Medium

ESHG a i r

ESHG a i r

ESHG g lass

ESHG chlorom ethane

62 ] 1982 

Lam

Thi runamach- 

andran

633 1986

S helton

M izrah i

ESHG

THEORY

PPM He, A r, Hg,

ESHG D - ,  N - ,  0 -

Laser

ruby 

694 nm 

1 MW 

20 ns

ruby 

694 nm 

50 MW 

20 ns

Nd:YA6 

1 .0 6  pm 

250 kW 

20 ns

ruby 

694 nm 

0 .2 5  MW 

40 ns

A r+ , dye 

458 -

700 nm 

1 W

Findings

ESHG as a probe o f th e  fo c a l region o f the  

la s e r  beam; theory and experim ent. ESHG 

s e n s it iv e  to  sm all d e v ia tio n s  from TEM,

mode. 10 conversion e f f ic ie n c y .
00

ESHG as beam probe. Extension o f th eo ry  in  

[5 8 ] to  h igher o rder beam modes. Good 

agreement between th eory  and experim ent.

ESHG c o e f f ic ie n ts  d eterm ined . G eneration  

e f f ic ie n c y  10 ^ th a t o f q u a rtz .

ESHG in  crossed beam geom etry, but no 

quadrupole d r iv e n  SHG. ESHG c o ll in e a r  w ith  

each beam and along the b is e c to r .  

Dependences on p a r t ic le  d e n s ity  and 

e le c tro d e  geometry determ ined.

T h e o re t ic a l trea tm e n t o f ESHG in c h ira l  

m olecules, in c lu d in g  e le c t r ic  quadrupole and 

magnetic d ip o le  t r a n s it io n s .

Measurements of the r e f r a c t iv e  in d ice s  o f 

these gases as fu n c tio n s  o f frequency.

10 ^^ conversion e f f ic ie n c y .

Table 2 . 2 . 5 .  Other reports  of  e l e c t r i c - f i e l d - i n d u c e d  mixing processes  

None of  these was resonant ly  enhanced.

2 . 2 1



2 .3  THREE-WAVE-MIXING PROCESSES WITH NO EXTERNAL SYMMETRY-BREAKING

The arguments agains t  the p o s s i b i l i t y  of  c o l l i n e a r  second-harmonic 

genera t ion  in the absence o f  an a p p l ie d  f i e l d  are s t r i c t l y  v a l i d  only fo r  

the h yp o th e t ic a l  i n f i n i t e  plane wave. In  a convent ional  mixing experiment  

a focussed Gaussian beam of  l i m i t e d  diameter  is  used, t y p i c a l l y  300 >im. In  

t h i s  type of  arrangement,  some asymmetry can be imposed upon the medium by 

the beam i t s e l f ;  the transvers e  i n t e n s i t y  g rad ie n t  of  the beam imposes an 

anisot ropy along the r a d i a l  d i r e c t i o n .  Although no SHG has been observed 

using low power lasers  [ 6 4 3 ,  th e re  have been numerous reports  of  SHG in 

otherwise i s o t r o p ic  vapours when high power pulsed lasers were used to  

provide the  fundamental r a d i a t i o n ;  these papers are summarised in  t a b l e  

2 . 3 . 1 .  Several  d i f f e r e n t  mechanisms have been proposed [65 -  67 ,  6 9 ,  7 1 ,  

763 ,  and i t  seems l i k e l y  t h a t  d i f f e r e n t  mechanisms may predominate in  

d i f f e r e n t  s i t u a t i o n s .  However, most reports  suggest t h a t  a q u a s is t a t i c  

e l e c t r i c  f i e l d  is  set  up in the d i r e c t i o n  of the i n t e n s i t y  g rad ien t  o f  the  

beam, and thus e l e c t r i c - f i e l d - i n d u c e d  second harmonic generat ion  of  the  

type reviewed in the previous sect ion  may occur; the o r i g i n  of  these  

q u a s is t a t i c  e l e c t r i c  f i e l d s  is  the subject  of  some contro versy .  In  a 

m in o r i ty  of  r e p o r t s ,  t o t a l l y  d i f f e r e n t  mechanisms have been proposed,  

in c lu d ing  o p t i c a l  pumping of  Zeeman s u b le v e ls ,  c o l l i s i o n a l  s t a t e  m ix in g ,  

and quadrupolar  processes depending on the o p t i c a l  e l e c t r i c  f i e l d  g r a d ie n t .

The f i r s t  observat ion  of  SHG induced by a high power beam (PSHG) in the

absence of  e x te rn a l  symmetry break ing was by Mossberg et  a l  [6 53 .  A

nit rogen- laser -pumped dye lase r  w ith  5 kW peak power was tuned to  the  

2 2
6 P-]/2 “  ̂ ^1/2 two-photon t r a n s i t i o n  in th a l l i u m  vapour,  and a small

amount o f  SHG was observed in  the absence of  any e x te rn a l  f i e l d s .  Second 

harmonic r a d i a t i o n  was d e tected  only under condit ions s u i t a b l e  f o r
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Paper Type Medium Laser Findings

653 1978 PSHG Th a lliu m dye

10 e f f ic ie n c y ,  

SH unpoLarised ,

Mossberg

Flusberg
a 'P i / z  -  ' S /2  

6 P, / 2  -  » S /2

568 nm 

5 kW

Hartmann 7 ns SHG dependent on two photon a b s o rp tio n ,  

independent o f m agnetic f i e l d .

Proposed mechanism: M u ltip hoton  io n is a t io n  

fo llow ed  by r a d ia l  charge s e p a ra tio n , to  

produce ESHG.

663 1979 PSHG Non resonant NdzYAG Pg^oC n>4, s a tu ra tio n  at high P^,

M iyazaki Sodium 1 .0 6  ;jm SH r a d ia l ly  p o la r is e d , zero SH a t c e n tre .

Sato 1 .8  6W ProDosed mechanism: Spontaneous f i e ld  due to

Kashiwagi 28 ps ra d ia t io n  p re s s u re , to  produce ESHG,

673 1980 

H ein ric h  

Behmenburg

PSHG Barium
? 1 1 

65*^ ' S n - 6 s 8 s  ' S -  
2 1 1 

63*  ̂ ‘ S g - 5 d 7 s ' D g

dye

582 nm 

20 kW

Proposed mechanisms: P o ss ib ly  o p tic a l  

pumping of Zeeman s u b le v e ls , quadrupolar

4 ns

ÛD=10 GHz

t r a n s it io n s .

683 1981 PSHG Non resonant Nd:YA6 Pg^cC N  ̂ P yf  n > 4 ,s a tu ra tio n  a t high P ^ ,

M iyazaki Sodium 1 .0 6  ym SH r a d ia l ly  p o la r is e d , zero a t c e n tre .

Sato 1 .8  GW Proposed mechanism: Spontaneous f i e l d  due to

Kashiwagi 28 PS r a d ia t io n  p re s s u re , to  produce ESHG.

693 1981 

Okada

PSHG L ith iu m dye

735 nm

Pg^oc N  ̂ IP̂ ,̂ n = 2 t i l l  phase m ism atching, 

10 ® e f f ic ie n c y ,  SH p o la r is e d  along

Fukuda 1 MW in te n s ity  g ra d ie n t o f fundam ental.

Matsuoka 30 ps 

iS!=60 GHz

Degree o f io n is a t io n  measured, q u a s is ta t ic  

e le c t r ic  f i e l d  s tren g th s  measured by SHG and 

by r a t io  o f S H G /th ird  harmonic g e n e ra tio n .  

Proposed mechanism: M u ltip hoton  io n is a t io n  

fo llow ed  by fre e  expansion o f p h o to e le c tro n s , 

to  produce ESHG.

(Am bipolar d i f fu s io n  and ra d ia t io n  pressure  

e ffe c ts  considered to  be n e g l ig ib le ) .

Table 2 .3 .1 ,  continued o v e r le a f.
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Type Medium

PSHG Mercury

6ŝ  Ŝg-GsGd

Paper

703 1981

Bokor

Freeman

Panock

White

71 , 723 1981 PSHG Sodium 

Bethune THEORY Resonant and

non resonant

Laser Findings

doubled O bservation o f resonant enhancement,

»2 dye 

280 nm 

4 MW 

4 ns

6T=9 GHz 

Theory

7 3 , 743 1981 PSHG Calcium

A rkh ip k in  4s^ ^S^-Ss^

Makarov

Popov

Timofeev

Epstein

75 , 763 1981 PSHG Sodium

Freeman i )  3S -  4D

Bjorkholm  i i )  3S -  5P

Panock 

Cooke

10  ̂ e f f ic ie n y

No SHG on 6s^ - 6s6d^Dg

dye

600 nm 

10 kW 

10 ns 

AY=60 GHz

dye

579 nm 

571 nm 

10̂  Wcm~2 
AV=9 GHz

T h e o re t ic a l Review.

Proposed mechanisms a l l  depend on tran svere  

n o nu n ifo rm ity  o f pump in te n s ity .  Claims [683  

in c o r re c t. Gives magnitudes under d i f fe r e n t  

co n d itio n s  fo r  ESHG using f i e ld  due to ;  

fre e  e le c tro n s  d r iv e n  by ra d ia t io n  fo rc e ;  

fre e  expansion o f p h o to e le c tro n s; 

nonuniform p o la r is a t io n  o f n e u tra l atoms 

v ia  

and a ls o :

d ire c t  SHG from nonuni form fre e  e le c tro n  

d is t r ib u t io n ;

D ire c t SHG due to  X  o f n e u tra l atoms.

.-410 e f f ic ie n c y ,

SH r a d ia l ly  p o la r is e d .

Pg^oc n>2, 2 , 1 w ith  in c re as in g  IPw,

10  ̂ e f f ic ie n c y ,

SH modes and p o la r is a t io n :

i )  bimodal and same l in e a r  p o la r is a t io n  as w

i i )  donut and same l in e a r  p o la r is a t io n  as w 

In  both cases mode w idth o f SH > fundamental 

Resonant enhancement d is to r te d ,  im ply ing  

bulk e f fe c ts  im p o rta n t.

Proposed mechanism: None o f above

mechanisms f i t  (see t e x t ) .  Working on 

quadrupolar m odel.

Table 2 .3 .1 ,  continued o v erle a f,
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Paper Type Medium Laser Findings

773 1982 

jamroz 

Larocque 

S to ic h e ff

PSHG Zinc

i )  4 s ^ V 4 %

i i )  4s 'S Q -4 'D g

dye

320 nm 

358 nm 

10 kW 

12 ns 

AY =15 GHz

i )  ID 'S  e f f ic ie n c y ;  i i )  10' *  e f f ic ie n c y .  

In te n s ity  S H G /th ird  harmonic g en era tio n  

measured to  f in d  q u a s is ta t ic  f i e ld  s tren g th s  

i )  5 .2  kVcm '1, i i )  4 kVcm""', 2% atoms 

io n is e d . G en eratio n  bandwidths. 

i )  qn GH" tn  any.  Proposed mechanism: 

m ultiphoton  io n is a t io n  fo llo w e d  by fre e  

expansion o f p h o to e le c tro n s  to  produce ESHG.

783 1983

Dinev

de G arcia

Meystre

Salomaa

W alther

PSHG Potassium  

3S -  nS,P,D

dye

572 nm -  

615 nm 

600 kW 

5 ns

SHG when tuned to  any nS , nP or nD (7D -  34P) 

Peak e f f ic ie n c y  at n = 11 .  ̂

and D, n '̂  fo r  P. SH un p o larised  fo r  S , as 

pump fo r  0 , f  pump fo r  P. Doubts on r a d ia l  

f ie ld s  o r quadrupole t r a n s it io n s .  Proposed

mechanism; m ixing o f I  va lues by c o l l is io n s .

573 1984 

Boyd

K ras in sk i

M a lc u it

PSFM Sodium Rydberg 

s ta te s

dye

420 nm &

Peaks when sum frequency equal to  frequency  

of S or D Rydberg s ta te s . C onsistent w ith

590 nm 

100 kW 

4 ns

m ultiphoton io n is a t io n  fo llo w ed  by fre e  

expansion o f ph o to e lec tro n s  to  produce ESHG.

79,803 1985 PSHG 

Kiyashko 4thHG 

Popov

Magnesium dye

460 nm 

20kW 7ns;

lOT^ e f f ic ie n c y  fo r  SHG,
e f f ic ie n c y  fo r  4th harmonic g e n e ra tio n . 

Phase mismatch behaviour seen.

Timofeev 920 nm

Makarov 1.2MW 30ns

E pstein

643 1986 PSHG Not two photon cw dye Low power fu nd am enta l, s e n s it iv e  d e te c tio n .

M izrah i PPM resonant 589.3  nm No SHG observed.

S helton Sodium 500 mW

Table 2 .3 .1 ,  continued. Reports of  second-harmonic~generat ion types of 

mixing processes in vapours with  no ex te rn a l  symmetry breaking used. ALL 

used resonant enhancement unless otherwise noted. PPM is p e r io d ic  phase 

matching (see sect ion 2 . 2 ) .
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two-photon ab so rp t io n ,  and the SH power increased when another Laser was 

tuned to  a non-resonant  f requency to  increase the m u L t i -p h o to n - io n is a t  ion 

tha t  was occu r r in g .  The SH i n t e n s i t y  was independent of  an ex te rn a l  

magnetic f i e l d ,  and was u n p o la r is e d .  Mossberg et a l  proposed a mechanism 

which was l a t e r  conf irmed by the experiments of  Okada e t  a l  using l i t h iu m  

vapour as a n on l inear  medium. The l a t t e r  authors in v e s t ig a t e d  the  

p o l a r i s a t i o n  of  the second harmonic more thoroughly and found t h a t  i t  was 

always in  the d i r e c t i o n  of  the transvers e  i n t e n s i t y  g rad ie n t  of  the  

fundamental beam, and t h a t  the SH power was zero at  the centre of  the beam. 

The dominant c o n t r ib u t io n  to  the SHG was c a lc u la te d  to  be e l e c t r i c - f i e l d -  

induced second harmonic g e n e r a t io n ,  where the e l e c t r i c  f i e l d  was produced 

by the f r e e  expansion of  photoe lectrons produced by mult iphoton i o n i s a t i o n .

In the Okada arrangement [ 6 9 ] ,  four-photon io n is a t io n  of  the l i t h i u m  vapour

produced 1.35 eV photoe lect ro ns  which would have had an i n i t i a l  v e l o c i t y  of  

5 -1about 7 X 10 ms . These e le c t r o n s  were fa s t  enough to  t r a v e l  a

s i g n i f i c a n t  f r a c t i o n  o f  the beam diameter  during the Laser pulse and so a

r a d i a l  e l e c t r i c  f i e l d ,  due to  the macroscopic charge s e p a r a t io n ,  was

superimposed on the loca l  random e l e c t r i c  f i e l d  due to  the io n i s a t i o n .

Such an e l e c t r i c  f i e l d  would be zero at  the centre  o f  the Gaussian beam,

and would l i e  along the r a d i a l  d i r e c t i o n  of  the beam. This e f f e c t  was

modelled t h e o r e t i c a l l y  by Okada e t  a l ;  t h e i r  re s u l ts  are reproduced as

f i g u r e  2 . 3 . 1 .  These authors also  est imated  the quasi s t a t i c  e l e c t r i c  f i e l d

st rength  e xp er im e nta l ly  from measurements of  the second harmonic power and

from the r a t i o  o f  the i n t e n s i t i e s  of  the second and t h i r d  harmonic

r a d ia t io n  t h a t  were produced c o n c u r re n t ly .  The two methods gave r e s u l t s  of  

-1 -17 kVcm and 60 kVcm r e s p e c t i v e l y ,  in  f a i r  agreement with  each 

other  and the t h e o r e t i c a l  c a l c u l a t i o n s .
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Figure 2 . 3 . 1 .  D i s t r i b u t i o n  of  the r a d i a l  e l e c t r i c  f i e l d  
a g a i n s t . the^ r a d i a l  d is tance  r f o r  a photoelec tron  d ens ity  
n = 10 m The i n i t i a l  d i s t r i b u t i o n  of  the photoelec trons  
f ( r , 0 )  is a lso  shown. From [693 .

Other mechanisms f o r  the genera t ion  of  the q u a s is t a t i c  e l e c t r i c  f i e l d s  have 

been proposed; Bethune [71 ,723  p re d ic ts  the r e l a t i v e  magnitudes of  these  

processes in  his comprehensive review of  the su b je c t .  He shows th a t  the  

photoelect rons may also  be dr iv en  r a d i a l l y  by r a d i a t i o n  pressure ,  but not 

in the manner t h a t  was proposed by Miyazaki  et  a l  [ 6 6 ,  683;  Bethune [713 

and Okada e t  a l  [693 agree t h a t  the spontaneous generat io n  of  a f i e l d  due 

to r a d i a t i o n  pressure ,  proposed by Miyazaki  and coworkers,  did not give  a 

correct  d e s c r ip t io n  o f  the physics o f  the process.

The r e s u l t s  in  most subsequently pub l ished  papers have been cons is tent  with  

the f r e e  expansion of  photoe lect rons  producing s u i t a b l e  e l e c t r i c  f i e l d s  fo r  

ESHG. Several of  the two-photon t r a n s i t i o n s  t h a t  were used f o r  resonant  

enhancement by var ious authors had upper and lower s ta te s  as S s t a t e s .  In  

these cases the e l e c t r i c  f i e l d  mixed these s ta tes  with the P s ta te s  of  

opposite p a r i t y  to e x p la in  the gen era t ion  process as in  sect ion  2 . 2 .  In  

the absence of  an e l e c t r i c  f i e l d  t h e r e  is  no p o s s i b i l i t y  of  even a 

quadrupolar  or o th er  higher order r a d i a t i o n  process being used f o r  the  

re tu rn  route as t h i s  is  not a l lowed by s e l e c t i o n  r u le s .
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However, quadrupoLar-dr iven processes may become important  in  other  

arrangements,  though Bethune C713 c a lc u la te s  them to  be weak. H e in r ich  and 

Behmenburg [673 proposed t h a t  in t h e i r  SHG experiment the symmetry of  the  

barium vapour may have been broken by o p t i c a l  pumping of the Zeeman 

sublevels or by quadrupolar  processes r e ly i n g  on the e l e c t r i c  f i e l d  

g r a d i e n t .

More r e c e n t l y .  Freeman e t  a l  [ 7 5 ,  763 have generated the second harmonic of  

a pulsed dye la ser  in sodium vapour,  using the 38 -  3P and 38 -  4D 

t r a n s i t i o n s  f o r  resonant enhancement. The r e s u l ts  obta ined were not 

consisten t  with  any of  the proposed models. The second harmonic power did  

not increase  with  increased p h o t o io n is a t io n  caused by another l a s e r ,  so the 

process did not seem to  r e l y  upon mul t iphoton i o n i s a t i o n  in the same way as 

others described above. The p o l a r i s a t i o n  of  the second harmonic was not  

along the i n t e n s i t y  g rad ien t  o f  the fundamental ,  r u l in g  out the E8HG 

t h e o r i e s .  Bethune [ 8 1 ,  and s ec t io n  2 .4  of t h i s  thesis3  has proposed 

quadrupolar  routes fo r  8HG which may be important  in the case of  focussed 

beams with  mixed transvers e  modes; scrambling the t ransverse  modes in  

Freeman's experiment had no e f f e c t .  In  a d d i t i o n ,  the maxima of  the second 

harmonic modes were we l l  outs ide  those of  the fundamental .  The authors 

c a lc u la te d  the magnitude o f  the quadrupoLe moment produced by the focussed  

beam due to  the f i e l d  g r a d i e n t ,  but found t h i s  to  be 10 ^ of the  

moment ca lc u la te d  from the observed 8H power. They reported t h a t  they were 

"working on a mechanism . . .  t h a t  r e l i e s  upon i o n i s a t io n  and quadrupole 

coupl ing".  Rather than the i o n i s a t i o n  being important due to  the s t a t i c  

e l e c t r i c  f i e l d s  produced,  i t  was being considered to  be important  in  the  

s p a t i a l  v a r i a t i o n  of  the atomic ground s t a t e  d e n s i ty .  Freeman et  a l  c la im  

tha t  when t h i s  is  coupled wi th  the s p a t i a l  v a r i a t i o n  of  the i n t e n s i t y  of  

the fundamental ,  q u a l i t a t i v e  agreement is  obta ined with observa t ions .
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Dinev et  a I [78 ]  propose yet  another poss ib le  mechanism. They observed 

w e l l - c o l l i m a t e d  DFM when t h e i r  Laser was tuned in t o  two-photon resonance 

with any nS, nP or mD (n = 9 -  34 ,  m = 7 -  34) leve l  of potassium. T he i r  

re s u l ts  were not cons is ten t  with q u a s i s t a t i c - e l e c t r i c - f i e l d  induced SHG, or  

quadrupole SHG. In s t e a d ,  they suggested t h a t ,  a t  the r e l a t i v e l y  high 

d e n s i t i e s  of  potassium atoms used,  the high c o l l i s i o n a l  cross sect ions of  

the Rydberg s ta tes  led to  c o l l i s i o n a l  e f f e c t s  being of importance.  The S 

and D sta tes  may be c o l l i s i o n a l l y  mixed with the P s t a t e s ,  and the authors  

proposed th a t  the r a d i a t i o n  from the c o l l i s i o n a l l y  induced d ip o le  moments 

may add c o h e re n t ly ,  g iv in g  r i s e  to  SHG.

I t  would seem t h a t  in con t ra s t  to  the w e l l  understood area of  convent ional  

ESHG, a cons iderab le amount of  work has ye t  to be done to  ob ta in  a f u l l  

explanat io n  of  second harmonic genera t io n  caused by high i n t e n s i t y  Gaussian 

beams in  otherwise  i s o t r o p i c  media.
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2 .4  QUADRUPOLE RADIATION

As discussed in sect io n  2 . 1 ,  three-wave mixing in atomic vapours is  not  

forb idden by p a r i t y  arguments i f  e l e c t r i c  quadrupole t r a n s i t i o n s  are taken  

in to  co n s id era t io n .  E l e c t r i c  quadrupole r a d ia t io n  has been t r e a t e d  by 

several  au thors ,  fo r  example [ 2 1 ,  82 -  843; a b r i e f  in t r o d u c t io n  to  the  

d i f f e re n c e s  between e l e c t r i c  d ip o le  and e l e c t r i c  quadrupole processes is  

given here.  Examples o f  c l a s s i c a l  s t a t i c  e l e c t r i c  d ipo les  and quadrupoles 

are shown in f i g u r e  2 . 4 . 1 .

+q O
1 -q #---0+q

! j

- q é
• 1 

+q O —#-q
(al (b)

Figure 2 . 4 , 1 .  a) C la ss ica l  e l e c t r i c  d ip o le
b) One type of  c la s s ic a l  e l e c t r i c  

quadrupole.

I t  is  we l l  known t h a t  an o s c i l l a t i n g  e l e c t r i c  d ip o le  ra d ia te s  an e l e c t r o ­

magnetic wave. The e l e c t r i c  quadrupole in  f ig u r e  2 .4 .1  has no net d ip o le  

moment, but i f  the d ip o les  w i t h in  t h i s  quadrupole were to  o s c i l l a t e ,  each 

dipo le  would r a d i a t e .  However, i f  t h e i r  phase r e l a t i o n s h i p  remains f i x e d  

as shown in the diagram, and i f  the dimensions of  the quadrupole are very 

much less than the wavelength of  the r a d i a t i o n ,  the r a d i a t i o n  f i e l d s  from 

the two d ipo les  w i l l  i n t e r f e r e  d e s t r u c t i v e l y ,  and no r a d i a t i o n  w i l l  be 

observed. The assumption t h a t  the s i z e  o f  an o s c i l l a t i n g  charge 

d i s t r i b u t i o n  is  very much less than the wavelength of  the r a d i a t i o n  i t  

produces gives r is e  to  the "d ip o le  appro x im at io n" ,  in  which i t  i s  assumed 

tha t  o s c i l l a t i n g  d ip o les  are the only s i g n i f i c a n t  source of  r a d i a t i o n .  

However, the d e s t r u c t i v e  in t e r f e r e n c e  in  the above example w i l l  not be 

complete i f  the source is  of  a f i n i t e  s i z e .  The small amount of  re s id u a l
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r a d ia t io n  is  what is  known as quadrupole r a d i a t i o n .

The d ip o le  approximation is  o f te n  very good; f o r  example,  the s iz e  of  an 

atom is  of  the order of  10 m, and v i s i b l e  l i g h t  has a wavelength of  the  

order of  5 x 10 ^ m. I t  would be unwise to  consider the r a d i a t io n  

processes of  the atom pu re ly  in  t h i s  c l a s i c a l  manner, but i t  is  found th a t  

c la s s i c a l  [82 ]  and quantum mechanical  [833 treatments provide s i m i l a r  

r e s u l t s ,  and d ip o le  t r a n s i t i o n s  are the dominant r a d i a t i v e  processes in  

atomic physics.

In the sem ic la ss ic a l  [213 a t o m - f i e l d  theory  the f u l l  matr ix  elements f o r  a 

t r a n s i t i o n  between energy s ta te s  o f  an atom take the form < j j i > ,  

where e is  a u n i t  vec tor  in the d i r e c t i o n  of  p o l a r i s a t i o n  of  the r a d i a t i o n ,  

k is  the wavevector of  the r a d i a t i o n ,  i and j denote the quantum numbers of  

the two atomic s t a t e s ,  and p = qr is  the d ipo le  moment o f  the e l e c t r o n i c  

charge d i s t r i b u t i o n ,  q is  the e l e c t r o n i c  charge,  and r i s  i t s  p o s i t io n  

v e c t o r .  The exponent ia l  term is  inc luded to  a l low f o r  phase r e t a r d a t i o n  of  

the wave produced by the e le c t r o n  at  d i f f e r e n t  pos i t io n s  £ .  For small  k . r  

the exponent ia l  may be expanded to  give

e = 1 + i k . r  + ___  ( 2 . 4 . 1 )

In the d ipo le  approx imat io n ,  in  which phase r e t a r d a t i o n  is  n eg le c ted ,  the  

exponential  is  approximated t o  u n i t y .  The term in v o lv in g  k . r  gives r i s e  to  

higher order m u l t ip o le  r a d i a t i o n ,  s p e c i f i c a l l y  magnetic d ip o le  r a d i a t i o n  

and e l e c t r i c  quadrupole r a d i a t i o n .  In  many s i t u a t i o n s  in  atomic physics  

the d ip o le  approximation is  q u i t e  adequate,  as k . r  is  o f te n  very sm al l .  

Simple arguments show t h a t  the  r a t i o  of  e l e c t r i c  d ip o le  to  e l e c t r i c
2

quadrupole t r a n s i t i o n  ra te s  ( i f  a l lo wed)  is of  the order of  (Z /1 30 )  

where Z is  the atomic number of  the atom [ 2 1 ,  853.
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The m atr ix  elements o f  e l e c t r i c  d ip o le  and quadrupole t r a n s i t i o n s  are 

s i g n i f i c a n t l y  d i f f e r e n t .  D ipole m at r ix  elements take  the form < j | e . q r | i > ,  

while the quadrupole element is  < ]1 | . q r r 1i > .  This r e s u l t s  in the s e le c t io n  

rules  f o r  the (weaker) e l e c t r i c  quadrupole t r a n s i t i o n s  being s i g n i f i c a n t l y  

d i f f e r e n t  from those of  the b e t t e r  known d ip o le  t r a n s i t i o n s .  In  

p a r t i c u l a r ,  the e l e c t r i c  quadrupole opera tor  has even p a r i t y .  Thus, i f  an 

e l e c t r i c  d ip o le  t r a n s i t i o n  is  forb idden  by s e le c t io n  r u l e s ,  a higher order  

m u l t ip o le  t r a n s i t i o n  may be o bservab le ,  i f  ra th e r  weak. The s e l e c t i o n  

rules  f o r  the th re e  types o f  r a d i a t i o n  mentioned above are summarised in  

t a b le  2 . 4 . 1 .

E l e c t r i c  d i p o l e M a g n e t i c  d i p o l e E l e c t r i c  q u a d r u p o l e

( 1 )  j y  =  0 ,  ±  I 4 /  =  0 .  ±  1 4 /  -  0 .  ±  1 .  : b  2

( 0 < + * 0 ) ( 0  * + +  0 ,  Yg,0 •*-*-* Î)
( 2 )  J M  =  0 .  ±  I 4 A f  =  0 ,  d b  1 AM  =  0 ,  ±  1 ,  dr 2

( 3 )  P a r i t y  c h a n g e N o  p a r i t y  c h a n g e N o  p a r i t y  c h a n g e

( 4 )  O n e  e l e c t r o n  j u m p N o  e l e c t r o n  j u m p O n e  o r  n o  e l e c t r o n  j u m p

J /  —  ±  1 4 /  =  0 4 /  0 ,  ±  2

4 m  =  0

( 5 )  à S ^ O 4 i S  =  0 4 3  =  0

( 6 )  4 L  -  0 ,  ±  1 4 L  =  0 4 L  =  0 ,  ±  1 ,  ±  2

( 0 - w - * - 0 ) { 0 * ^ 0 ,  1 )

Table 2 . 4 . 1 .  S e le c t io n  ru le s  f o r  d i f f e r e n t  types of  
t r a n s i t i o n .  From Garstang C863
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2 .5  NON-COLLINEAR QUADRUPOLE SUM FREQUENCY MIXING

Even when quadrupole m at r ix  elements are taken in to  account,  c o l l i n e a r  

three-wave mixing in an i s o t r o p i c  vapour is  s t i l l  forbidden  due to  the  

angular  momentum conserva t ion laws discussed in sect ion  2 . 1 .  However, i f  

two non-col  l i n e a r  beams with  wavevectors k_̂  and k^ are used,  and the  

q u a n t is a t io n  d i r e c t i o n  is  taken as k  ̂ + there  is  a non-zero p r o b a b i l i t y  

amplitude f o r  one of  the photons to  have Am = 0 ,  thus a l lo w in g  SFM. A lso ,  

the n a t u r a l  d is pers ion  of  the medium may be used to  s a t i s f y  the energy and 

momentum conservat ion laws a t  a p a r t i c u l a r  angular separa t ion  of  the beams. 

Papers re p o r t in g  non-col l i n e a r  sum frequency mixing (NCSFM) are l i s t e d  in  

t a b le  2 . 5 . 1 .  Bethune e t  a l  [ 8 7 ]  were the f i r s t  to  report  such quadrupole  

wave m ix in g ,  and used the 3S -  3P and 3S -  4D t r a n s i t i o n s  of  the sodium 

atom f o r  s in g le  and two photon resonant  enhancement r e s p e c t i v e l y .  The 4D -  

3S quadrupole t r a n s i t i o n  was used to  complete the chain o f  mat r ix  e lements.  

These authors produced a t h e o r y ,  on which they l a t e r  expanded [ 1 0 ] ,  which 

was in  good agreement wi th  exper iment.  The sp h er ica l  symmetry of  the atoms 

r e s t r i c t s  the elements o f  the quadrupole tensor which may c o n t r ib u t e  to  

SFM. I t  can be shown [533 t h a t  the e f f e c t i v e  d ipo le  of the

quadrupole r a d i a t i o n  with wavevector k^ = n^w^/c e^ is

- e f f  “ "T -3 'Q

= - i X ^ ' [ ( k ^ . E ^ ) E g  + -  ( 2 / 3 ) ( E ^ . E 2 ) k 3 3 .  ( 2 . 5 . 1 )

The s c a la r  products show t h a t  a non-col  l i n e a r  geometry is  r e q u i r e d ,  and 

tha t  the SFM is a maximum f o r  o r th o g o n a l ly  p o la r is e d  beams. The output  

power is  a maximum when the wave-vector  mismatch Ak = (k^ -  k  ̂ -  kg) 

is z e r o ,  in  which case the generated wave stays in  phase with  the  

fundamental beams throughout the i n t e r a c t i o n  le ngth .  The phase matching 

condit io n  was s a t i s f i e d  by tun ing  one la se r  c lose to  the 3S -  3P t r a n s i t i o n
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Paper Type Medium Laser Find ings

873 (1976) NCSFM Sodium dye Theory g iv e n . Resonant enhancement a t 3S -4D ,

Bethune

Smith

Shen

3S -  4D 590 nro & 

568 nm 

100 W 

pulsed  

69-9 GHz

Linew id th l im ite d  by la s e rs . Phase m atching  

angle ( ~ 2 .3 ' )  agrees w ith  th e o ry .

10~® conversion e f f ic ie n c y .

223 (1977) 

Bethune 

Smith 

Shen

NCSFM Sodium 

3S -  4D

as above In te r fe re n c e  o f quadrupole SFM and ESFM to  f in d  

and hence 3S-4D quadrupole m a trix

elem ent.

883 (1977) NCSFM Sodium dye In te r fe re n c e  o f quadrupole SHG and magnetic

FLusberg

Mossberg

Hartmann

3S -  4D 590 nm & 

568 nm 

170 kW 

6 ns

i-î‘21 GHz

f ie ld  induced SHG fo r  va rio u s  m agnetic f i e l d
_9

and la s e r  p o la r is a t io n  d ire c t io n s . 10 

conversion e f f ic ie n c y .

103 (1978) NCSFM Sodium dye T h e o re t ic a l trea tm e n t o f quadrupole SFM,

Bethune

Smith

Shen

3S ~ 40 590 nm & 

568 nm 

100 W 

600 ns 

A9*4 GHz

in c lu d in g  s p in -o r b it  and Zeeman e f fe c t s ,  

Doppler e f fe c t  and la s e r  lin e w id th .  

Otherw ise expansion o f [8 7 3 , in c lu d in g  

l im it in g  processes (see t e x t ) .

533 (1978) 

Bethune 

Smith 

Shen

NCSFM Sodium 

3S -  40

as above Less form al v e rs io n  o f C1Q3 and C873.

893 (1978) 

flu s b e rg  

Mossberg 

Hartman

NCSFM Sodium 

3S -  40

Review o f non-co l l in e a r  and m a g n e t ic - f ie ld -  

induced sum frequency m ix in g .

813 (1981) 

Bethune

NCSHG Theory Theory T h e o re t ic a l tre a tm e n t o f quadrupole SHG fo r  

focussed beams o f a r b i t r a r y  tran sverse  mode 

s tru c tu re  and p o la r is a t io n .  Beam w ith  mix o f 

TEMqq and TEM^  ̂ modes g ives 10^^ in crease in  

SHG over two TEMqq modes.

Table 2 .5 .1 .  Papers r e p o r t in g  non-col l i n e a r  quadrupolar  th ree  wave 

mixing.  A l l  used resonant enhancement.
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and choosing an i n t e r s e c t i o n  angle to  cre a te  Aj£ = 0.  Bethune et  aL 

v e r i f i e d  the above p r o p e r t ie s  e x p e r im e n t a l l y ,  and showed t h a t  t h i s  second-  

o r d e r  d ip o le - fo r b id d e n  process was as strong as a t h i r d - o r d e r ,  d i p o l e -  

allowed process such as t h i r d  harmonic gen era t io n .

They also  considered processes which would l i m i t  the generat ion  e f f i c i e n c y  

C103. The squared dependence on atomic d e n s i t y ,  N, observed fo r  

N < 10^^ m"^, sa tura ted  at  h igher  d e n s i t i e s  due to  l i n e a r  absorpt ion  

of the pump beam, thus l i m i t i n g  the vapour d ens ity  which may be used. The

sum frequency power IP  ̂ is expected to  vary l i n e a r l y  with both and IPg,

but t h i s  sa tura ted  at  high input  i n t e n s i t i e s  due to  s a t u r a t io n  of the two-  

photon absorp t ion .  The most ser ious l i m i t i n g  process was found to  be 

induced r e f r a c t i v e  index changes through s a t u r a t io n  of  the d ispers io n  C903, 

two-photon resonance C913 and popula t ion  r e d i s t r i b u t i o n .  This led to  s e l f -  

defocussing which re s u l te d  in sm al ler  i n t e n s i t i e s  at  the focus.  Rather  

more important  was the break ing of  phase matching produced by these changes 

of r e f r a c t i v e  index.  Three-photon i o n is a t i o n  may also  l i m i t  the maximum 

powers used, by causing changes in  the r e f r a c t i v e  index ,  but the amount of  

io n i s a t i o n  measured was less than expected.

Bethune et  a l  CIO] also considered t h e o r e t i c a l l y  the e f f e c t  of  a magnetic 

f i e l d  on t h i s  process,  and determined t h a t  m a g n e t ic - f i e ld - in d u c e d  SFM 

should be comparable wi th  the n o n c o l l in e a r  process at  a f i e l d  st rength  of

only 1 mT (10 gauss) .  Flusberg et  a l  C883 had looked at  t h i s

e x p e r im e n t a l l y ,  using the same atomic t r a n s i t i o n s .  They found the two 

processes to  be of  comparable e f f i c i e n c y  at 2 .5  mT (25 G ) . Depending on 

the r e l a t i v e  d i r e c t io n s  of  the p o l a r i s a t i o n s  of  the two fundamental beams 

and the magnetic f i e l d ,  the SFM was enhanced or degraded by the a p p l i c a t i o n  

of the e x te r n a l  f i e l d .  T h e i r  r e s u l t s  were in good agreement with t h e i r  

c l e a r l y  presented th e o ry .
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The in t e r f e r e n c e  between no n -co L l in ear  SFM and e l e c t r i c - f i e l d - i n d u c e d  SFM 

was used by Bethune et  a l  [ 2 2 ]  to determine the 3S -  4D quadrupole m atr ix  

element o f  sodium. The power of  the generated wave is  given by

P jC X  I C - i k j . X g ^  + ( 2 . 5 . 2 )

(3)where is the ap p l ied  dc f i e l d ,  and \  is the t h i r d - o r d e r  n o n l in ear

s u s c e p t i b i l i t y .  The two processes were o f  the same e f f i c i e n c y  when a f i e l d  

-1of  20 kVm was a p p l i e d .  The i n t e r f e r e n c e  between the two generat ion  

processes as Eg was v a r i e d  al lowed a value f o r  to be measured.

Knowing t h i s  q u a n t i t y ,  and the d ip o le  m at r ix  elements in v o lv e d ,  the  

quadrupole m atr ix  element was c a l c u l a t e d .  This was found to  be 50% la rge r  

than t h a t  c a lc u la t e d  t h e o r e t i c a l l y  by T u l l  et  a l  [923 .

F i n a l l y ,  Bethune [813 considered t h e o r e t i c a l l y  the e f f e c t s  of  mixed 

t ransverse modes in a s in g le  la s e r  beam. He found t h a t  quadrupole SFM may 

be r e l a t i v e l y  strong i f  two d i f f e r e n t  s p a t i a l  modes with orthogonal  

p o la r i s a t i o n s  are present  i n  the beam.
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2 .6  MAGNETIC-FIELD-INDUCED THREE-WAVE MIXING

The use of  a magnetic f i e l d  to  break the symmetry of  a vapour was f i r s t  

proposed by Hansch and Toschek C933. However, in  t h e i r  scheme, the f i e l d  

did not break the symmetry in the d i r e c t  manner of the processes described  

in the previous s ec t io n s .  They suggested t h a t  a net p o l a r i s a t i o n  may be 

int roduced in  the medium by o p t i c a l  pumping of atoms between Zeeman le v e ls  

of the ground s t a t e .  This e f f e c t  has not yet  been unambiguously observed.

M a g n e t ic - f i e ld - in d u c e d  three -wave mixing is  now w el l  known, and comes about 

from the mixing of the wavefunct ions of  the Zeeman subleve ls  by the  

magnetic f i e l d ,  in  much the same way t h a t  an appl ied  e l e c t r i c  f i e l d  mixes 

sta tes  o f  d i f f e r e n t  angular  momentum quantum number. Consider the  

conservat ion laws l i s t e d  e a r l i e r .  At low atomic d e n s i t i e s  the d ispers io n  

of the medium is  o f t e n  n e g l i g i b l e  a t  the wavelengths of  i n t e r e s t ,  so 

k  ̂ + kg = k^. Energy i s  conserved,  as + Wg = w^. The two-photon 

absorpt ion creates  a coherence between the wavefunct ions of  the upper and 

lower l e v e l s ,  with Al  = 0 ,  ±2 ,  and Am = 0 ,  ±2,  where the q u a n t isa t io n  axis  

is taken along the common d i r e c t i o n  of  propagat ion of  the beams. The use 

of a quadrupole or magnetic d ip o le  t r a n s i t i o n  from the upper to  lower  

l e v e ls  al lows the Al = ± 2 t r a n s i t i o n ,  and, i n c i d e n t a l l y ,  the Al = 0 

t r a n s i t i o n  i f  the angular  momentum quantum number of  the lower state i s  not 

zero .  However, only a Am = ±  1 t r a n s i t i o n  may r a d ia t e  along the  

q u a n t isa t io n  a x i s ,  regardless of  the type of  t r a n s i t i o n  in volved  C843, and 

so three-wave mixing is  fo rb id d en .  This is  eq u iva le n t  to  saying th a t  the  

m̂  + mg = m̂  conservat ion r u le  is  impossible to s a t i s f y .  When a t ransverse  

magnetic f i e l d  is  a p p l i e d ,  the wavefunct ions of  the magnetic sub leve ls  are  

p er tu rb e d ,  and rece ive  a r o t a t i o n  t ran s fo rm a t io n .  This br ings  about new 

components o f  the quadrupole moment with Am = ±  1 ,  which may r a d ia t e  along  

the forward d i r e c t i o n ,  thus gen era t in g  the second harmonic.  A q u a l i t a t i v e
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d e s c r ip t io n  of  m a g n e t ic - f i e ld - in d u c e d  second harmonic genera t ion  (BSHG) was 

given in  sect ion  1 . 3 ,  and a d e t a i l e d  t h e o r e t i c a l  ana lys is  is  given in  

chapter  3.

Flusberg et a l  C943 were the f i r s t  to  re por t  m a g n e t ic - f i e ld - in d u c e d  t h r e e -

wave mixing in a vapour; t h i s  was d i f f e r e n c e  frequency mixing in atomic

th a l l iu m  vapour.  Resonant enhancement was used to  produce the d i f f e r e n c e

frequency of  two n i t ro g en  la s e r  pumped dye lasers opera t ing  at 378 and

535 nm; the d i f f e r e n c e  frequency wave was dr iven  by a magnetic d ip o le

2 2t r a n s i t i o n  between the 6 P^yg and 6 P^yg l e v e l s .  The energy le v e l  scheme

is shown in t a b le  2 . 6 . 1 ,  a long with  other  reports of  m a g n e t ic - f i e ld - in d u c e d

three wave mixing.  Flusberg et a l  considered the symmetry-breaking

mechanism proposed by HSnsch and Toschek, but c a lc u la te d  th a t  the e f f e c t  of

wavefunct ion mixing was about 10^ times stronger than the e f f e c t s  of  the

induced t ran sverse p o l a r i s a t i o n  o f  the ground s t a t e  Zeeman l e v e l s .  They

used symmetry cons id era t ions  to  f i n d  a formula f o r  the induced magnetic

dipo le  moment, and conf irmed ex p e r im e n ta l l y  tha t  the d i f f e r e n c e  frequency

wave power va r ie d  as N^P.^IPgB^, where B is the magnetic f i e l d  s t rength

perpendicu la r  to  the propagat ion d i r e c t i o n ,  N is the p a r t i c l e  d e n s i t y ,  and

and Pg are the las e r  powers. No DFM was observed in a lo n g i t u d in a l

-1magnetic f i e l d  up to 0 .0 3  T ,  nor w ith  an e l e c t r i c  f i e l d  up to 50 kVm . At 

s u f f i c i e n t l y  high vapour d e n s i t i e s  the 378 nm las er  beam produced 

st im ula ted  Raman s c a t t e r i n g  at around 235 nm, which was then used f o r  the  

same scheme of  DFM.

These researchers considered the mixing of the hyper f ine  le v e ls  to  be the  

dominant means of  symmetry break in g;  Matsuoka et  a l  C953 disputed t h i s ,  

determining th a t  the mixing of  the hy p er f ine  le ve ls  was o f  secondary
j

importance to  the mixing of the i n i t i a l l y  degenerate magnetic s u b le v e ls .  

This group was also the f i r s t  to  repor t  m a g n e t ic - f i e ld - in d u c e d  second
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Paper

94] 1977 

Flusberg  

Mossberg 

Hartmann

88]  1977 

Flusberg  

Mossberg 

Hartmann

95 ] 1977

Matsuoka

Nakatsuka

U ch ik i

Mitsunaga

89 ] 1977 

Mossberg 

Flusberg  

Hartmann

10] 1978 

Bethune 

Smith 

Shen

65 ] 1978 

Mossberg 

Flusberg  

Hartmann

Type Medium

BDFM Th a lliu m

BSFM

378
535

-7^Vx

30FM128O
6'Pvi

BSFM Sodium

568

590

_AD 
SFM 289 
-3 P  
L.3S

BSHG Sodium

685

685

-3 D  
- 3 P  
SHG 343
-3 S

BSFM Sodium

BSHG Th a lliu m

568]
I

568

-7>P3^ 
SHG 264

Laser

dye

378 nm & 

535 nm 

2 kW, 5 ns 

1-10  GHz

dye 

3 kW 

590 nm 

568 nm 

170 W, 6 ns 

12 & 21 GHz

&

dye

685 nm 

3 kW 500 ns 

32 GHz

theory

dye

568 nm 

5 kW, 7 ns 

1-10  GHz

Findings

Theory g iv e n . Magnetic d ip o le  moment 

stro n g er than e le c t r ic  quadrupole moment. 

Transverse m agn etisa tio n  sm all and 

u n im portan t. Claim  m ixing of h y p erfin e  

le v e ls  is  im p o rta n t. N B P^P^,though

s tim u la te d  Raman s c a tte r in g  seen a t la rg e  P̂  . 

10 ^ conversion e f f ic ie n c y .

Quadrupole d r iv e n . In te r fe re n c e  between 

m a g n e tic -f ie ld - in d u c e d  SFM and non-co l I in ear  

SFM. 10 ® e f f ic ie n c y .

Theory g iv e n , but h y p e rfin e  s p l i t t in g  

ne g le c ted - N^8^;)^sin^0. F ie ld

transform s i n i t i a l l y  degenerate m agnetic sub- 

le v e ls .  A lso used Calcium vapour w ith  

s im ila r  r e s u lts .  7 x 10 ^ e f f ic ie n c y .

Review o f m a g n e tic -f ie ld - in d u c e d  SFM and non­

col l in e a r  SFM.

M ostly n o n -c o llin e a r  SFM, but some th eory  on 

m a g n e tic -f ie ld - in d u c e d  SFM.

IPgyOC N B ,  and d e v ia t io n  from phase 

matched b e h av io u r. A lso in c lud es se c tio n  on 

sp o n tan eo u s-fie ld -in d u ce d  SHG.

Table 2 .6 .1 ,  continued o v e r le a f.
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Paper

96 ] 1979 

U chiki 

Nakatsuka 

Matsuoka

18] 1983 

Dunn

97 ] 1983 

U chik i 

Nakatsuka 

Matsuoka

98 ] 1985 

Yiqun

( In  Chinese)

S in c la ir

Dunn

Type Medium

BSHG Sodium

685

685

-3 D  
_3P  
,SH6 343 
-  35

BSHG

BSHG

Sodium
40

579 SHG 289

579
o r

Sodium
in

685 3P
685 \ SHG 343 

' 3S

BSHG

Laser

dye

685 nm

2 kW 2 .5  ns 

64 GHz

cw dye 

579 nm 

/N. 1 W cw 

< 5 MHz

dye

685 nm

3 kW, 500 ns 

1 kW, 2 .5  ns 

32 & 64 GHz

Sodium
. 40

dye

579 nm 

1 MW, 30579 SHG 289

579 \
o r  

'  IS , 8 GHz.

Sodium
40

cw dye 

579 nm 

0 .5  W cw579 SHG 289

579
3P 

' 3S 0 .5  MHz

find ings

D e ta ile d  th e o ry , but h y p e rfin e  s p l i t t in g  

ig nored . SH in te n s ity  s a tu ra te s  a t 100 mT, 

and p o la r is a t io n  o f SH is  ro ta te d .

5 X 10 ^ e f f ic ie n c y .

, and d e v ia t io n  from phase 

matched b e h av io u r. SH g en era tio n  lin e w id th  

2 .8  GHz at 15 mT measured w ith  s in g le  

frequency la s e r .  8 x 10 e f f ic ie n c y .

D e ta ile d  th eo ry  in c lu d in g  f in e ,  h y p e rfin e  and 

Zeeman s p l i t t in g .  At 8 mT N^B^sin^G.

and c o l l is io n a l  decay ra te  o f 3D -  3S 

t r a n s it io n  measured. S ta r t  of s a tu ra t io n  of 

*^2w f i e l d  a t 50 mT, and ro ta t io n  o f

p o la r is a t io n  o f SH. 10 ^ e f f ic ie n c y .

dependence below 30 mT, s a tu ra tio n  a t 

90 mT. Pulse len g th  o f SH was 26 ns.

As rep o rted  in  th is  th e s is .  Theory o f [9 7 ]  

extended. D e v ia tio n  from phase matched 

b eh av io u r. L in e  p r o f i le s  o f SHG at d i f fe r e n t  

f ie ld s  and p o la r is a t io n s ,  and comparison w ith  

l in e  p r o f i le s  o f 3S -  4D ab so rp tio n . Power 

and p o la r is a t io n  p ro p e r tie s  as fu n c tio n s  of 

f i e l d  and freq u en cy . 6 x 10 ^ e f f ic ie n c y .

Table 2 .6 .1 ,  continued- Papers r e p o r t in g  m a g n e t ic - f i e ld - in d u c e d  th ree  

wave mixing in vapours.  A l l  except  [ 9 4 ]  r e l y  s o l e l y  on a quadrupole  

moment to d r iv e  the generated wave. A l l  use resonant enhancement. The 

laser  c h a r a c t e r i s t i c s  given are the wavelength of  the laser  l i g h t  in  

nanometres, the peak pulsed power in w a t t s ,  the pulse length in seconds,  

and the la s e r  l i n ew id th  in  h e r t z .
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harmonie generat ion in  a vapour. The second harmonic o f  t h e i r  685 nm 

pulsed dye la s e r  was generated in sodium vapour, using the 3S -  3D 

t r a n s i t i o n  f o r  two-photon resonant enhancement. They determined  

exp er im en ta l ly  th a t  the t ran sverse  magnet isat ion produced through o p t i c a l  

pumping in the magnetic f i e l d  was unimportant:  i f  the magnet isat ion were 

responsible f o r  the BSHG, the SH power would not vary simply as the square 

of the fundamental power, and the SH power should fo l lo w  the slowly  

precessing magnet isat ion (about 50 n s / r a d i a n ) ;  a squared dependence on 

fundamental power was observed,  and there  was no delay in  the growth of  the 

SH output .

Matsuoka and coworkers have produced two more papers on SHG in sodium 

[ 9 6 ,  9 7 ] ,  r e f i n i n g  t h e i r  t h e o r e t i c a l  t rea tment with each p u b l i c a t i o n .  T he i r  

l a t e s t  paper on the subject  C97] modelled the sodium atomic system ta k in g  

in to  account f i n e ,  hyper f ine  and Zeeman s p l i t t i n g  terms.  The exp ec ta t ion  

values of  the quadrupole moments induced by the two photon absorpt ion were 

c a l c u la t e d ,  tak in g  in to  account the r o t a t i o n  of these moments about the  

magnetic f i e l d .  This d e r i v a t i o n  i s  fo l lowed  in chapter  t h r e e ,  but there  

the homogeneous and inhomogeneous broadening processes are t r e a t e d  

s e p a r a t e ly .  Using a mult imode,  pulsed dye laser  Matsuoka and coworkers 

ca lc u la te d  the i n t e n s i t y  and p o l a r i s a t i o n  of  the second harmonic r a d i a t i o n .  

They found t h e o r e t i c a l l y  and ex p e r im e n ta l l y  th a t  at  magnetic f i e l d s  less  

than 0 .0 5  T ( 0 . 5  kG) the second harmonic power v a r ie d  as N^^^B^sin^G, 

where t h e ta  is  the angle between the magnetic f i e l d  and the p o l a r i s a t i o n  of  

the fundamental r a d i a t i o n .  When the Zeeman s p l i t t i n g  was o f  the order of  

the Doppler width the squared dependence of  the SH power on magnetic f i e l d  

s a t u r a t e d ,  and the p o l a r i s a t i o n  of  the second harmonic was s i g n i f i c a n t l y  

r o ta ted  ( ~ 1 0 * ) .  The a d d i t i o n  o f  a b u f f e r  gas to  the vapour decreased the  

SH power by in creas in g  the damping constant used to  descr ib e  the coherence 

between the 3D and 3S l e v e l s .  This e f f e c t  was used to  determine the
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c o l l i s i o n a l  decay r a te  of  the d i p o l e - f o r b i d d e n  3D -  3S t r a n s i t i o n  to  be 

14 MHz/mbar, but no independent measurement of  t h i s  q u a n t i t y  had been made 

to conf irm t h i s  r e s u l t .

2 1 1Thei r  SHG experiment using the 4s Sq -  4s3d Dg two-photon t r a n s i t i o n

in calcium [95]  was important  in  showing th a t  i t  is  the mixing of the

i n i t i a l l y  degenerate magnetic sub leve ls  by the magnetic f i e l d  t h a t  is

important  to  the gen era t ion  process,  ra th e r  than the mixing of h yp er f in e

le ve ls  [ 9 4 ] .  The ground le v e l  of  calcium has no net s p in ,  and the e x c i t e d

leve l  has no hyper f ine  s p l i t t i n g ,  so the t ran s fo rm at io n  of  the quadrupole

moment was possib le only through the t rans form at io ns  in the magnetic 
1

subleve ls of  the Dg s t a t e .

D ev ia t io n  from a squared dependence of  SH power on p a r t i c l e  den s i ty  was 

f i r s t  noted by Mossberg et a l  [ 6 5 ] .  At s u f f i c i e n t l y  high p a r t i c l e  

d e n s i t i e s ,  the d i f f e r e n c e  in  r e f r a c t i v e  index of the vapour between 

fundamental and second harmonic r a d i a t i o n  is  s u f f i c i e n t  to  cause the  

wavevector o f  the second harmonic to  be s i g n i f i c a n t l y  d i f f e r e n t  from tw ice  

tha t  of  the fundamental .  In  t h i s  case,  the SH generated in one region of 

the vapour w i l l  be out o f  phase with  t h a t  generated at  another reg io n ,  and 

the waves w i l l  i n t e r f e r e  d e s t r u c t i v e l y .  The need to  match the phase 

v e l o c i t i e s  of  fundamental and second harmonic is  we l l  known in  SHG in 

c r y s t a l s ,  and is  t r e a t e d  by Y ar iv  [ 1 2 ] ,  amongst o th e rs .  The phase v e l o c i t y  

mismatch leads to  an o s c i l l a t o r y  dependence of  SH power on p a r t i c l e  den s i ty  

at high p a r t i c l e  d e n s i t i e s .  This subject  is  t r e a t e d  in more d e t a i l  in  

sect ion  5 .2 .  Mossberg and coworkers also repor ted i n t e r f e r e n c e  between 

m a g n e t ic - f i e ld - in d u c e d  and non-col  l i n e a r  sum frequency mixing [ 8 8 ,  8 9 ] .

Dunn [18 ]  is the only author to have used a continuous wave la se r  as the  

fundamental l i g h t  source.  A l l  o ther  in v e s t i g a t o r s  have used pulsed l a s e r s .
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with puLse durat ions Less than 500 ns and Linewidths in  excess of  1 GHz. 

Dunn used the 35 -  4D t r a n s i t i o n  in  sodium fo r  resonant enhancement of  

BSHG; i n t r a c a v i t y  and e x t r a c a v i t y  arrangements were used. In the L a t t e r  

case the laser  l in e w id th  was less than 5 MHz. This al lowed him to  

determine the SHG l i n e  p r o f i l e  to  be 2 .8  ±  0.1 GHz (FWHM) when a 0.015  T 

(150 G) t ransverse  magnetic f i e l d  was a p p l ied  to  the vapour,  which was at a 

temperature o f  400 ®C. This l in e w id t h  was in  good agreement with  the  

est imated width tak in g  in t o  account f i n e ,  hyper f in e  and Zeeman s p l i t t i n g  of 

the atomic s ta te s  broadened by the Doppler e f f e c t -  Dunn also observed an 

o s c i l l a t o r y  dependence o f  SH power on atomic d ens ity  at high d e n s i t i e s ,  and 

proposed t h a t  the process may be phase matched using a s u i t a b l e  b u f f e r  gas 

to o f f s e t  the d ispers ion  of  the sodium vapour. He also suggested the use 

of the sodium dimer as a n o n l in e a r  medium to  give increased t u n a b i l i t y ,  and 

the use of BSHG to determine s p a t i a l  d i s t r i b u t i o n s  of vapour tem peratures .  

These top ics  w i l l  be discussed f u r t h e r  in  appendix E and sect ion  5 .9  

re s p e c t i v e l y .

There have been a few o ther  repor ts  of  cont inuous-wave three-wave  mixing in 

vapours,  but a l l  using an e l e c t r i c  f i e l d  f o r  symmetry brea k in g .  Only 

Abrams et  a l  used a s in g le  frequency source.  In  a l l  o ther  cases any 

l i n ew id th  measurements have been assoc ia ted  with the l i n ew id th  of  the 

fundamental r a d i a t i o n ,  ra th e r  than the no n l ine ar  medium.

The la s e r  used in the work reported  in t h i s  th e s is  had a l in e w id th  of less  

than 0 .5  MHz. This al lowed a d e t a i l e d  study of p ro p e r t ie s  of  the SHG 

process t h a t  changed across the l i n e  p r o f i l e  of  the resonant ly  enhancing 

two-photon t r a n s i t i o n  [ 9 9 ,  1003.  This is  reported in  f u l l  in  the f o l lo w in g  

chapters .
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CHAPTER THREE 

THEORETICAL MODELLING OF MAGNETIC-FIELD-INDUCED 

SECOND HARMONIC GENERATION

3.1 DESCRIPTION OF THE ATOMIC EIGENSTATES AND EIGENENERGIES

The le v e ls  of the sodium atom t h a t  are d i r e c t l y  concerned in the second

2 2 harmonic generat ion  are the 3 S^yg ground s t a t e s ,  the 3 <1 / 2

2s ta tes  and the 4 D^y^ ^yg s t a t e s .  The 3S -  4D two-photon t r a n s i t i o n  is  

used f o r  resonant enhancement of  the SHG; the s ing le -p hoton allowed 3S -  3P 

t r a n s i t i o n  also  c o n t r ib u te s  some resonant  enhancement, being some 300 

wavenumbers from resonance with the la ser  l i g h t  f requency.  In  order to  

p r e d ic t  p ro p e r t ie s  of  the SHG which change across the l i n e  p r o f i l e  of  the  

3S -  4D two-photon t r a n s i t i o n ,  the d e s c r ip t io n  of  the atomic e igensta tes  

must include  f i n e ,  hyper f in e  and Zeeman s p l i t t i n g  terms.  Some re le vant  

energy le v e ls  of  the sodium atom are depicted  in f i g u r e  3 . 1 . 1 .

103 GHz

cn
ID F=2

177 GHz

Figure 3 . 1 . 1 .  Energy le v e ls  of  the sodium atom.
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3 . 1 . 1  The 3S states

With no e x te r n a l  magnetic f i e l d  a p p l ie d ,  the ground s ta te s  of the sodium 

atom are s p l i t  in to  two sets of  s ta tes  by the hyper f ine  i n t e r a c t i o n .  This  

e f f e c t  is  reviewed by Arimondo et a l  [ 1 0 1 ] .  The nucleus of  the atom 

possesses a magnetic moment, = - g ^ j j^ I ,  where g^ is the nuclear  g f a c t o r ,  

Pg is  the Bohr magneton and I  is  the nuclear  spin quantum number. The 

nuclear  magnetic moment i n t e r a c t s  with the magnetic f i e l d  at the nucleus 

produced by the o r b i t i n g  e le c t ro n s .  This in t e r a c t i o n  gives r is e  to  energy 

s h i f t s  AE(F) given by

AE(F)  = a CFCF+1) -  1(1+1) -J C J + 1 ) ] .  ( 3 . 1 . 1 )
2

Here F is  the t o t a l  atomic angular  momentum, F = I  + J ,  and J is the 

e l e c t r o n i c  angular momentum. In sodium I  = 3 / 2 ,  and in the 3S s ta te  the  

only c o n t r ib u t io n  to  the e l e c t r o n ic  angular  momentum is  from the e l e c t r o n i c  

sp in ,  and thus J = S = 1 / 2 .  The separa t ion  of  the s ta te s  with d i f f e r e n t  F 

values may be measured very p r e c is e ly  using atomic beam magnetic resonance 

techniques.  In  the sodium atom t h i s  separat ion is  1771.6261288(10)  MHz 

[ 1 0 2 ,  103 ] ;  the hyperf ine  constant ,  a/h, is  h a l f  t h i s  va lu e .

The a p p l i c a t i o n  of  an ex te rn a l  magnetic f i e l d  l i f t s  the degeneracy of  the  

energy s t a t e s .  At low f i e l d s ,  when the Zeeman energy s h i f t s  are s m a l l ,  the 

l e v e ls  are given by

AE(F,mp) -  a[F (F+1)  -  1(1+1)  — J ( J + 1 ) ]  
 ̂ 2

-  T p j E K I + D  + F(F+1) -  J (J + 1 ) ] / I

+ p , [ J ( J + 1 )  + F(F+1) -  I ( I + 1 ) ] / J }  m̂ B ( 3 . 1 . 2 )
2F(F +1)

where is  the atomic magnetic moment, and B is the magnetic f i e l d
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s t r e n g th .  In  t h i s  regime, the energy s h i f t s  due to the magnetic f i e l d  are 

small and so the energy le v e ls  are c a lc u la te d  by t r e a t i n g  the Zeeman 

i n t e r a c t i o n  as a small  p e r t u r b a t io n  to the e ig e n s ta te s .  F and m̂  are good 

quantum numbers and the energy le v e l  s h i f t s  are p ro p o r t io n a l  to  mp.

In  very high magnetic f i e l d s ,  the I  -  J coupling is broken down and the  

hyper f in e  i n t e r a c t i o n  can be considered as a small  p e r tu rb a t io n  to  the  

Zeeman e f f e c t .  In  t h i s  case,  the energy le ve ls  are given by

A E ( I , J , m j , m j )  = am̂ mij -  pjBWj -  p^Bm^ ( 3 . 1 . 3 )

where m̂  and m̂  are the quantum numbers fo r  the p r o j e c t i o n  of  I  and J on B. 

As I p j l  «  I p j l ,  the dominant m a g ne t ic - f ie ld -dependent  term in the above

equat ion is  the one in vo lv ing  p ^ . In t h i s  range of  magnetic f i e l d  st rengths

the energy le v e l  s h i f t  is  p r o p o r t io n a l  to m^. In the case of S s ta tes  

mj = m^. Figure 3 . 1 . 2  shows t h a t  t h i s  gives r i s e  in high f i e l d s  to two

groups of  Levels corresponding to  m̂  = ± 1 /2 .

To determine the e ig enfu nct ions  at  in te rm ed ia te  f i e l d  s t r e n g th s ,  a secular  

equat ion must be so lved ,  as n e i t h e r  the Zeeman s p l i t t i n g  nor the hyperf ine  

i n t e r a c t i o n  may be regarded as a smal l p e r t u r b a t io n  on the o th er .  An 

(m j ,m j)  rep re sen ta t io n  may be chosen, g iv in g  matr ix  elements of  the form 

<mj,mj jH!îT>j,mj>. As J = S = 1 /2  in the case under c o n s id e ra t io n ,  the 

problem is not unduly complicated.  The s o lu t io n  fo r  the eigenenergies was 

f i r s t  presented by B r e i t  and Rabi [ 1 0 4 ] ,  and the d e r i v a t io n  is given by 

Ramsey [1053 .  The method w i l l  be o u t l in e d  here due to i t s  importance in  

the model l ing of the SHG, and the d i f f i c u l t y  in f in d in g  a trea tment  which 

gives a l l  the q u a n t i t i e s  requ ired  in  the SHG model.
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Figure 3 . 1 . 2  (a)  Energy Levels and (b and c) e igenfunct io n  components of

the 3S s ta tes  p l o t t e d  as funct ions  of  magnetic f i e l d  s t ren g th .  The box by 

(a)  shows the F, quantum numbers of  each l e v e l ,  the other  two boxes 

i d e n t i f y  each ^ curve with i t s  quantum numbers. The curves with the  

short  dashes are drawn f o r  S^, the longer dashes fo r  Sg.
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The wavefunct ions of  the 3S s ta tes  may be described in the  

11 s I  m̂  m^> scheme by

+ Sg(F,mp,H>

0 1 3  0 1 nip-li)2 2 2

)0 1 3  0 - 1  mr+1\ ( 3 . 1 . 4 )
- = F2 2

abbrev ia ted  to ^ + Sg'fg. The two wavefunct ions which are chosen as

and Yg are the wavefunct ions of the 3S Levels in a high magnetic 

f i e l d ,  in which the h yper f ine  coupl ing is  broken.  and form a very

good approximation to  a complete orthonormal set under the f i e l d s  in 

quest io n ,  as the energy d i f f e r e n c e s  between these s ta tes  and other  s ta tes  

of the atom are la rge  compared with the Zeeman s p l i t t i n g .  The or tho­

norm al i t y  impl ies  th a t  = 1.

When mp = I  + 1 / 2 ,  only the s t a t e  (m̂ .  ̂ I ,  m̂  = 1 /2 )  can give  the necessary  

mp, so and Sg are 1 and 0 r e s p e c t i v e l y ,  at a l l  magnetic f i e l d  

st ren g th s .  A s i m i l a r  argument holds fo r  mp = I  -  1 / 2 .  Thus in f i g u r e

3 . 1 . 2  the F=2, Wp = ± 2 le v e ls  are the ones which have a l i n e a r  dependence

of energy on magnetic f i e l d  st rength  at  a l l  f i e l d s ,  and have and S 

constan t .

2

The eigenenerg ies  and e igenfu nct io ns  of the other  s ta tes  are found by using

the Rayleigh R i t z  method. The d e r i v a t i v e s  of  the s ta te  energy with respect

to S. and S_ are set  to  zero to  f i n d  the minimum energy of  the s t a t e .  The 
A B

energy of  the s t a t e  |S^*> is  given by

E = |(^*H  ̂ d t  . ( 3 . 1 . 5 )

dr

and the s t a t e  energy is  minimised when
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+ ®B^AB = 0,
and ^A^BA + -  E) = 0 ,

( 3 . 1 . 6 )

( 3 . 1 . 7 )

where = j  d? ( 3 . 1 . 8 )

This may be w r i t t e n  as the secular  equat ion

ÂA ~  ̂ ^AB

KBA ^BB ” ^

= 0 . ( 3 . 1 . 9 )

As the i n t e g r a l s  in the secu la r  equat ion are known, expressions fo r  E may 

be found, and and Sg determined from equations 3 . 1 . 6  and 3 . 1 . 7 .

The energy s h i f t s  due to  the hyper f ine  i n t e r a c t i o n  and the ex te rn a l  

magnetic f i e l d  are given by

a l . J  -  -  >JjBJ ( 3 . 1 . 1 0 )

and, knowing the commutation and exp ecta t io n  value r e la t io n s  fo r  the  

angular momenta in vo lve d ,  expressions fo r  j may be found [ 1 0 5 ] .  

This gives the B r e i t  Rabi formula:

AE(F,mp) = “ 6.W -  jj^Bm^ + AW

2(21 + 1) I

(1 + 4mpX + x ) 

21+1

( 3 . 1 . 1 1 )

where x = ( - p j / J  + p^/DB/AW ( 3 . 1 . 1 2 )

and AW is the separa t ion  of  the F = I  + 1 /2  and F = I  -  1 /2  l e v e ls  at zero  

magnetic f i e l d -  The upper sign is  taken fo r  s ta te s  belonging to
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F = I  + 1 /2  at zero f i e l d ,  and the Lower sign fo r  the other  s t a t e s .  Uchiki  

et  a l  [97 ]  use the n o ta t io n

ECSp'") = b + cy(a  ̂ + ( 3 . 1 . 1 3 )

where a = CnipA + (g^ -  g j ) | jg B ] /2  ( 3 . 1 . 1 4 )

b = -A /4  + Mpg^PgB ( 3 . 1 . 1 5 )

c = AC(2 -  m_)(2 + m _ ) ] 1 /Z /2  ( 3 . 1 . 1 6 )F F

a = f  1 f o r  F = I  + 1 /2  ( 3 . 1 . 1 7 )

-1 f o r  F = I  -  1 /2

The gyromagnetic r a t i o s  g  ̂ and g^ are 2.002 and -0 . 0 0 0 8  r e s p e c t iv e ly  

[ 1 0 1 ] ,  and A/h = &W/2h = 885.813064 MHz, where h is  P lanck 's  constant .

I n s e r t i o n  of  the energy values to  equat ion 3 . 1 . 6  gives expressions fo r  the  

two wavefunct ion components as

= [a + arJCâ  + c ^ ) ] / t  ( 3 . 1 . 1 8 )

Sg = c / t  ( 3 . 1 . 1 9 )

where t  = [ ( a  + aV(a^ + c ^ ) )^  + c^]^^^.  ( 3 . 1 . 2 0 )

The values of  and Sg are p l o t t e d  as funct ions  of  magnetic f i e l d

strength  in f ig u r e  3 . 1 . 2 .  For m̂  = 2 ,  i t  is  seen tha t  = 1 and Sg = 0;

the reverse is  t ru e  fo r  = - 2 .  In  these cases only one combination of

(mj ,m j)  can co n t r ib u te  to the e ig e n fu n c t io n .  For a l l  o th er  values of

mp, both and Sg are f i e l d  dependent.  At zero f i e l d  the mp = 0

wavefunct ions are composed of  equal amounts of  the two basis f u n c t io n s ,

whereas the m_ = 1 ( - 1 )  s t a t e  contains more ( l e s s )  of the m = 1 /2  basis  F s

s t a t e .  As the f i e l d  is  increased the admixtures change. At the highest  

f i e l d s  shown, there  is  l i t t l e  v a r i a t i o n  of  the values of and Sg
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from 0 or 1.  This is  because the r ep res en ta t io n  is now the one

which best  describes the atomic wavefunct ions;  the coupl ing between the  

nuclear  and e le c t r o n i c  angular  momenta has been broken down, and F is  

t h e r e f o r e  no longer a good quantum number.

3 . 1 . 2  The 3P s ta tes  

2 2
The 3 -  3 P^yg 1 / 2  t r a n s i t i o n s  at 589.0 and 589.6 nm give r i s e  to

the w e l l  known sodium D l i n e s .  These sing le -photon  t r a n s i t i o n s  con t r ib u te
- I

some resonant enhancement to  the SHG, but as the3P s ta te s  are some 300 cm 

o f f  resonance with the fundamental r a d ia t io n  thesP s ta tes  are not 

populated .  The change in  energy le v e ls  of  the3P s ta tes  with magnetic 

f i e l d s  or pressure is  n e g l i g i b l e  compared to the detuning of the 

fundamental from sing le -photon resonance,  so these p er tu rb a t io n s  may be 

neglected .  The e ig ensta tes  may be expressed using 3 - j  no ta t io n  [20 ]  as

m,L)"5 m, m - m , 
I s  J

X IL s mĵ  m^> | l  m^>. ( 3 . 1 . 2 1 )

3 . 1 . 3  The 4D states

The i n t e r a c t i o n  between the  o r b i t a l  and spin angular  momenta of  the  

e le c t ro n  in  the 40 s t a t e  gives r i s e  to f i n e  ( s p i n - o r b i t )  s p l i t t i n g .  The 

angular  momentum quantum number J can take values 3 /2  and 5 /2 ;  simple  

atomic theory suggests t h a t  the J = 3 /2  s ta te  should have the lower energy,  

However, the nO (n = 3 to  16) le ve ls  of  the sodium atom are found to  be
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i n v e r t e d ,  th a t  i s ,  the s ta te s  with the higher J value have the lower 

energy [1 0 6 ,  107H. This was f i r s t  noted by Meissner and Luf t  [ 1 0 8 ] ,  who 

also  measured the 4D f i n e  s p l i t t i n g  to be 1038 ±  50 MHz. Beck and Odabasi 

[109]  have gone some way to  e x p la in in g  the invers io n  in terms of  

co rrec t io n s  due to  r e l a t i v i s t i c  and c o r r e l a t i o n  e f f e c t s .

The f i n e  s p l i t t i n g  of  the 4D s ta tes  was measured with high p rec is io n  in the 

mid-1970s,  when the dye la s e r  had been developed to the point  where i t  was 

a use fu l  spectroscopic t o o l ,  and var ious  groups used i t  to  perform two-  

photon spectroscopy of  the 3S -  4D t r a n s i t i o n .  Using an atomic beam to  

minimise Doppler broadening,  P r i t c h a r d  et  a l  [110]  determined the s p l i t t i n g  

to be 1025 ± 6 MHz, wh i le  Hansch et  a l  [111]  performed the f i r s t  repor ted  

D o p p le r - f ree  two-photon spectroscopy experiment o b ta in in g  a value of  

1035 ± 10 MHz. The most p rec is e  measurement to  date was repor ted  by 

Fredrickson [112 ]  who used le v e l - c r o s s in g  spectroscopy to  obta in  a value of

1028.3  ± 0 . 6  MHz.

As the wavefunct ions of  the 4D s ta te s  do not p en et ra te  the nucleus

s i g n i f i c a n t l y ,  the hyper f in e  s p l i t t i n g  of  these s ta tes  is  expected to  be

much less than th a t  o f  the 3S s t a t e s .  Indeed,  the hyper f in e  s p l i t t i n g  of

the 4D s ta tes  has been shown to be sm al le r  than the n a t u ra l  l in ew id th  of

these l e v e l s ;  Schenck and P i l l o f f  [113]  used a quantum-beat method to
2

o bta in  a value fo r  the h yp er f in e  s p l i t t i n g  constant  f o r  the 4 D^yg 

l e ve ls  of 0 .507  ± 0 .068  MHz. This is  very much smal ler  than the 35 MHz 

pressure-broadened l inew id ths  determined in the course of  t h i s  work, and 

so the e f f e c t  of  the hyper f ine  i n t e r a c t i o n  on the 4D le v e ls  may be s a f e l y  

n eg lected .

The e f f e c t  of  an app l ied  magnetic f i e l d  on the 4D energy le v e ls  is s i m i l a r  

to t h a t  described f o r  the 3S l e v e l s .  At low f i e l d s  the s p l i t t i n g  is
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p ro p o r t io n a l  to  ,  but in the high f i e l d  l i m i t  the s p l i t t i n g  is

p ro p o r t io n a l  to  m + g^^^, where m a n d  m̂  are the o r b i t a l  and spin 

magnetic quantum numbers, and g^ is the g value f o r  the e l e c t r o n ,  which 

is approximately equal  to  two. The case of  in te rm ed ia te  f i e l d s  is t r e a t e d  

by Condon and Shor t le y  [843 in an analogous way to th a t  described f o r  the  

3S s t a t e s .  The e igenfunct ions  are described in the | l  s m̂  m^> scheme as

\ 0 j >  = D^ ( J , mj , B)  \ 2  1 / 2  m^ - l / B  1 / 2 >

+ Dg(J,mj ,B)  (2 1 /2  mj+1/2 ~1/2> ( 3 . 1 . 2 2 )

The eigenenerg ies  are [97 ]

E(D^yg) = (1 ± 3y)X ( 3 . 1 . 2 3 )

E(Dg^.)  = ( - 1 / 4  + m^y + J + Sm^y + 2 5 * /4 )  (m̂  #+5 /2 )  ( 3 . 1 . 2 4 )

E(D^y2^ -  ( - 1 / 4  + m^y -  + Sm^y + 25 / 4 )  ( 3 . 1 . 2 5 )

where y = p^B/y ,  and y/h = - 4 1 1 . 3  ± 0 . 2  MHz is  the spin p e r t u r b a t i o n ,  equal  

to  2 /5  of  the separat ion  of  the le v e ls  at  zero magnetic f i e l d .  The 

wavefunction components are

D ^ ( 5 /2 ,  5 / 2 ,  B) = 1 ,  D g (5 /2 ,  5 / 2 ,  B) = 0 ,

D ^ (5 /2 ,  - 5 / 2 ,  B) = 0 ,  D g (5 /2 ,  - 5 / 2 ,  B) = 1 ,
( 3 . 1 . 2 6 )

and f o r  m̂  # ± 5 / 2 ,

D^(J,  mj ,  B) = (mj + y + IjJ y^ + 2m^y + 2 5 / 4 ) / d ,  ( 3 . 1 . 2 7 )

Dg(J,  mj ,  B) = 7 ( 5 / 2  + m j ) ( 5 / 2  -  m j )7d ,  ( 3 . 1 . 2 8 )

r? ' ?  ̂/?
where d = [ ( 5 / 2  + m j ) ( 5 / 2  -  m^) + (Wj+y+^/y +2mjy+25/4)  ] , ( 3 . 1 . 2 9 )

and \  -  1 fo r  J = 5 /2

%= -1 fo r  J = 3 /2
( 3 . 1 . 3 0 )
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The energy le ve ls  and wavefunct ions are p l o t t e d  as funct ions  of  magnetic 

f i e l d  in f i g u r e  3 . 1 . 3 .  S i m i la r  r e s u l t s  hold as in the 38 s t a t e ,  but in the  

4D s ta tes  the spin o r b i t  coupl ing is  being p ro g ress ive ly  broken down by the  

magnetic f i e l d ,  ra th e r  than the hyper f in e  i n t e r a c t i o n  in the case of  the  

ground s t a t e s .

5 /2  5 /2

3 /2  3 /2

5 /2  3 /2
3 /2  1 /2

3 /2  - 1 /2
5 /2  1 /2

3 /2  - 3 /2
5 /2  - 1 /2y j  - 5

Da.
Db

ol.
D |

5 /2  - 3 /2

5 /2  - 5 /2

02 03

1;*
1/2

3 /2
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x T

0 01 02 

MAGNETIC FIELD IT )

0 3

Figure 3 . 1 . 3  (a)  Energy le v e ls  and ( b , c )  e ig e n fu n c t io n  components f o r  the  
4D s ta tes  p lo t t e d  as funct ions  of  magnetic f i e l d  strength-.  The box by par t  
(a)  shows the J ,  m̂  quantum numbers of  each Level;  the other  two boxes 
i d e n t i f y  each curve with i t s  magnetic quantum numbers. The curves with  
short  ( long)  dashes are drawn f o r  (D^) .
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3 .2  DETAILED THEORY OF MAGNETIC-FIELD-INDUCED 

SECOND HARMONIC GENERATION

The ana lys is  of  second harmonic genera t ion  in sodium vapour presented here 

fo l lows t h a t  of  Uchiki  et  a l  [ 9 7 ] ,  but t h e i r  t h e o r e t i c a l  t reatment is  

extended by d i s t in g u is h in g  between homogeneous and inhomogeneous broadening  

processes, and by cons id era t ion  o f  the spec ia l  case of  s ing le  frequency  

fundamental r a d i a t i o n .  The use of  a s in g le  frequency fundamental beam 

permits examination of  many i n t e r e s t i n g  e f f e c t s  which would have been 

"smudged out"  by a large l in e w id th  l a s e r .

The absorpt ion of  two-photons from the fundamental beam by an atom can 

induce a coherence between i t s  4D and 3S s t a t e s .  Under c e r t a i n  cond it ions  

t h i s  can cause second harmonic generat io n  in the forward d i r e c t i o n ,  by 

means of  an e l e c t r i c  quadrupoLe t r a n s i t i o n .  The aim of  the t h e o r e t i c a l  

model l ing described here is  to  c a lc u la t e  the value of  the 3S -  4D 

quadrupole moments under the condi t ions  of i n t e r e s t .  Expressions are thus 

obtained fo r  the power and p o l a r i s a t i o n  of  the second harmonic beam as 

funct ions of  the laser  f requency ,  the magnetic f i e l d  s t rength  and the power 

and p o l a r i s a t i o n  angle of the fundamental l i g h t .

The atomic system is  considered to consist  of  the th ree  groups of s ta tes  

l i s t e d  in the previous s e c t io n ,  t h a t  i s ,  the 3S ground s t a t e s ,  the 3P 

in te rm ed ia te  s ta tes  and the resonant ly  enhancing 4D s ta te s  of  the sodium 

atom. These are la b e l l e d  s ,  p and d r e s p e c t i v e l y .  The Hami l ton ian ,  Hg,  

of the atomic system includes f i n e ,  hyper f in e  and Zeeman s p l i t t i n g  terms as 

described above. The homogeneous l in e w id th  en ters the an a ly s is  as a 

damping constant in the two-photon- induced coherence between the upper and
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lower s t a t e s .  The inhomogeneous (Doppler)  l inew id th  is  taken in t o  account 

by i n t e g r a t i n g  the equat ions f o r  the induced quadrupole moments across the 

Maxwel l ian v e l o c i t y  d i s t r i b u t i o n  of  the sodium atoms, wi th  a p p ro p r ia t e ly  

s h i f t e d  atomic resonant f re qu e n c ie s .

The expecta t io n  values of  the  quadrupole moment o s c i l l a t i n g  at  the second 

harmonic frequency can be der iv ed  by cons id era t io n  of the time e v o lu t io n  of 

the dens i ty  mat r ix  opera tor  p [ 1 2 ] .  The quantum mechanical  system is  

considered to be in a s t a t e

( j ) ( r , t )  = ^  c ^ ( t )  ' f ^ ( r ) ,  ( 3 . 2 . 1 )
n

where c ^ ( t )  = i | ) ( r , t )  d t ,  and Y ^ ( r )  form a complete orthonormal

set of  e ig e n fu n c t io n s .  The average value of an expecta t io n  value of  an

operator  A is

Amn'
nrti

where A_ = [  Y * ( r )  A Y  ( r )  d r .  ( 3 . 2 . 3 )mn J m n

Density matr ix  elements are def in ed  as the ensemble average

Pnm = <3 . 2 . 4 )

and the m atr ix  form of  these elements is known as the dens it y  matr ix  [ 1 2 ] .  

The t ime e v o lu t io n  of  t h i s  mat r ix  may be determined from the t ime-dependent  

Schroedinger equat ion

K  <i>(r,t) = ib ^ ( r , t ) ,  ( 3 . 2 . 5 )
ôt
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as each system in the ensemble must s a t i s f y  t h i s  equat io n .  This leads to  

the L i o u v i l l e  equat ion f o r  the t ime e v o lu t io n  of  the den s i ty  matr ix

= 1 [ p , K ] ,  ( 3 . 2 . 6 )
ô t  fi

The e f f e c t  o f  c o l l i s i o n s  may be int roduced by modifying t h i s  eqyat ion to

= - 1  % p ]  . j  -  %i j (p -  p ) . j  ( 3 . 2 . 7 )

where K = Kq + ( 3 . 2 . 8 )

= - p .E  = V e x p [ - i w t ]  + C . C . ,  ( 3 . 2 . 9 )

and p - expC-Kg/kgTlI ( 3 . 2 . 1 0 )

t r T e x p C - H g / k g T ] )

is the thermal e q u i l ib r iu m  value of  the dens i ty  mat r ix  [ 1 2 ] .  Here is

def ined  to  be the r e l a x a t i o n  r a te  f o r  the populat ion in  leve l  i ,  which

depends on spontaneous emission as we l l  as c o l l i s i o n  processes,  and

j ( i j )  is  the r a te  at  which p_.j re laxes  to zero.  This q u a n t i t y

describes the phase coherence between le v e ls  i and j ,  which w i l l  decay due

to c o l l i s i o n a l  dephasing. H/j is  the p e r t u rb a t io n  caused by the e l e c t r i c

d ip o le  i n t e r a c t i o n  energy between the fundamental Laser f i e l d

E^= 8 e x p [ - i w t ]  + c . c .  and the atomic system, where e and w are the

ampli tude and angular  f requency of  the fundamental f i e l d  r e s p e c t i v e l y .  A

r ep rese n ta t io n  is chosen in which ( K n ) ■• = E . 6 . . ,  and w. .  is  de f ined  asTJ 1 ] 1 1] 1J

w_.j = (E^ -  E j ) / b .  The thermal  e q u i l ib r iu m  values of  the d ens ity  matr ix  

elements then take the form

j = 0  fo r  i ^ j ( 3 . 2 . 1 1 )

p . .  = e x p [ - E . / k  T ] / (  £  exp[-E /kp.T]j ( 3 . 2 . 1 2 )11 1 D J
states
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The subscrip ts  i and j correspond to  the s,  p and d sta tes  of  the sodium 

atom. The equat ions of motion of  the dens ity  matr ix  are then

Ôp. .  =  - i w . j P . j  -  ^ C V , p ] . j  -  %%j(p -  p > i j  ( 3 . 2 . 1 3 )

where [V ,p ]  = 2 ( p . ^ y ^ .  -  jj .^p^. ) E ( t ) ,  ( 3 . 2 . 1 4 )

and ju_.j is the i j  element of  the d ip o le  moment opera tor .  An i n t e g r a l  

p e r t u rb ic  s o lu t io n  may be found f o r  p [12 ]  as

( t )  = ( - i / b )  J  e xp[ i ( wUj - i %%j ) ( t ' - t ) ]

X [ V ( t ' ) , p ( " " 1 ) ( t ' ) ] . j  d f  ( 3 . 2 . 1 5 )

(0)   ̂ (1)  ^ (2)   ̂
where pUj = p^j P ij + + . . . .  Co.2 .1 6 )

and p^9^ = p . .  6 . . .  ( 3 . 2 . 1 7 )r  i j  r  1] 1]

Equation 3 . 2 . 1 7  describes the popula t ions of the s ta te s  when no e l e c t r o ­

magnetic f i e l d  is  p resent .  In  the magnetic f i e l d s  used in t h i s  study th e '  

maximum s p l i t t i n g  of  the 3S s ta te s  is  less than 0.1% of  k^T, so 

the e q u i l ib r iu m  popula t ions of  these s ta tes  are e s s e n t i a l l y  equal .  The 

energy of  the 3S -  3P t r a n s i t i o n  is  about t h i r t y  times g rea te r  than  

kgT, so the populat ions of  the 3P and 4D s ta tes  are e s s e n t i a l l y  zero  

in  thermal e q u i l ib r iu m .  The zero value  fo r  o f f - d i a g o n a l  mat r ix  elements 

p.jj ( i  ^ j )  is  due to the lack of  coherence betweeen s ta tes  when no 

elec tromagnet ic  f i e l d  is  p resent ;  any coherenece th a t  had been generated by 

an e lect romagnet ic  f i e l d  p rev io u s ly  is  assumed to have been lo st  due to  

damping processes.

Equat ion 3 . 2 .1 5  may now be eva lu ated  to  give the higher order terms in 

equat ion 3 . 2 . 1 6 .  The o p t i c a l  e l e c t r i c  f i e l d  ampl itudes of the fundamental
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r a d i a t io n  are taken as constant  f o r  the cw e x c i t a t i o n  under considerat ion ,  

The " r o t a t i n g  wave approximation" is  used, in which only near resonant  

terms are kept;  in t h i s  case

p p P  = -  Vpg e x p C - iw t ] .  ( 3 . 2 . 1 8 )

f i ( W p s  -  «  -  i X p s )

(1 ) (1 ) The e x c i t a t i o n  is  assumed to  be weak, so a l l  o ther  p̂ .̂ ,  inc lu d ing  p^g ,

are zero to  f i r s t  order in the p e r t u r b a t i o n .  The matr ix  element which

dr ives  the second harmonic is  I t  may be c a lc u la t e d  from the above

equat ions as

_ ( 2) 
Pds -  Pds

p e x p [ - 2 i w t ]I ss _________

ib^(w-w +i  ̂ )p ps ps

X l^ e x p [ i ( 2 w - w .  + i y ,  ) ( t - t ' ) ]  V ,  d f .  ( 3 . 2 . 1 9 )j  ds ds dp ps /

Pjg = y  Pss Vps e x p [ - 2 i w t ]  ( 3 , 2 . 2 0 )

p (w-Wps+iXps)

i f  V are not t ime dependent. As w -  w is of the order of 300 nm ps

wavenumbers, the small  d i f f e r e n c e s  in  (w -  w^^ + 1%^^) between d i f f e r e n t  

3S -  3P s ta te  combinat ions,  and between small la se r  detunings ,  w i l l  not 

a f f e c t  the resonant denominator s i g n i f i c a n t l y ,  and so t h i s  q u a n t i ty  may be 

replaced by i t s  mean value and moved outs ide the summation over P s t a t e s .

Following Shore and Menzel [203 and Uchiki  et  a l  [ 9 7 ] ,  the quadrupole  

moment opera to r  is  def in ed  as

% v  ( r ^ r^  -  r^S^^/3)  (u ,v  = x , y , z ) ;  ( 3 . 2 . 2 1 )
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t h i s  is  d i f f e r e n t  by a f a c t o r  of  th ree  from the expression given by some 

other authors [ 2 5 ,  1 1 4 ] .  The exp ec ta t io n  value of t h i s  operator  is thus

<Q > = TrCpQ ) = ^  p . CQ ) . + c .c .  ( 3 . 2 . 2 2 )uv “ uv z_,rds uv ds
ds

where the summation is  taken over a l l  the 3S and 4D s t a t e s .  The slowly  

vary ing ampli tude of  <Q^^> is  then given by

X J  e x p [ i ( 2 w -  ) ]  2  V p s ' ^ u v ' d s ' ^ * ' -
- O O  P

C a lc u la t io n  of . V (Q ) , is  most r e a d i l y  achieved using sp h er ica l  Y  dp ps uv ds

tensor formal ism [ 2 0 ] .  In  t h i s  case,  the quadrupole mat r ix  elements may be 

expressed by the s p h er ic a l  tensor elements def ined  as

Q_ = - / 3 7 2 ‘ Q ( 3 . 2 . 2 4 )
0 * zz

®±1 = -  <®xz -  <Qyz) ( 3 . 2 . 2 5 )

Q _ = — (Q — Q + 2iQ ) / 2  ( 3 . 2 . 2 6 )
±2 XX yy xy

and thus <Qq> = , 3 3

*' -.w -  Xps psj g  ifi <w -  w__ + i%__>

X j exp [ i (2 w  -  w , + i u ) ( t  -  t ' ) ]  T dt ' ( 3 . 2 . 2 7 )

where |  V V ^ V d s  ( 3 . 2 . 2 8 )

= < e ^  < D " d | E . r |p " t > < p " P |g . r | s " f > < s " f  |gqZ)|D"%> ( 3 . 2 . 2 9 )
2-»  ~ “  Jp Jp -  “  r  r  T.
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The s e l e c t i o n  ru les  of  the SHG are embodied in the two d ip o le  matr ix  

elements and the quadrupole mat r ix  e lement.  Evalua t ion of  T^ is  made 

ea s ie r  by the Am̂  = 0 s e le c t io n  r u le  f o r  both d ip o le  and quadrupole 

t r a n s i t i o n s .  This al lows each wavefunct ion to  be described in terms of  i t s  

m̂  = ± 1 /2  components, which may then be t r e a t e d  s e p a ra te ly .  The geometry 

of the system l i e s  in the m̂  ̂ values of  the s t a t e s .  This geometr ical  

dependence may then be determined with the aid  of  the Wigner Eckart theorem 

[ 2 0 ] ,  which may be used to s p l i t  the m atr ix  elements in t o  two p ar ts :

<<x J m | T ^ ^ ^  |<x’ J *m'> = ( J ' m ' ;  k,q|J,m) <«( J  | T ^ * ^ ^ | | cx. ' j  •> .  ( 3 . 2 . 3 0 )

J2j + r

(J^m';  k#|^^)  is a Clebsch Gordon c o e f f i c i e n t  which contains the geometry 

of the system, whi le  is  a reduced mat r ix  e lement,  which is

independent of  the geometry. The p ro p e r t ie s  of  the Clebsch Gordon 

c o e f f i c i e n t s  are described by Shore and Menzel [ 2 0 ] ,  whose no ta t io n  is  used 

in t h i s  work. The reduced mat r ix  element corresponds to  the square of  the 

t r a n s i t i o n  p r o b a b i l i t y  summed over a l l  magnetic quantum numbers m. 

o(symbol ises a l l  the other  quantum numbers of  each of  the two s t a t e s .

As the hyperf ine  s p l i t t i n g  of  the 4D s ta te s  is so sm a l l ,  the s e le c t io n  

ru les associated  with the hyper f ine  i n t e r a c t i o n  may be neg lected .  By 

expansion of  the wavefunct ions in the way described in  the previous  

sec t io n ,  the  quadrupole mat r ix  element may be w r i t t e n  as

<S  ̂ =r f

^^A^s,1/2 ^B^s ,-1 /2 *®  ^ **^A^d,1/2 ^ B ^ d , -1 /2 ^ ‘ <3 .2 .31 )
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Then, by use of  the Wigner Eckart  theorem and the Am̂  = 0 s e le c t io n  ru le

r ^

+  S  D  ( - 1 ) 2 - ' ’  6 f m j + 1 + q 1  < 4 ^ 3 , - 1 / 2 / 2 ^

J 5 \  2

The sca la r  product 6 . r in sp h er ica l  coordinates [2 0 ]  is

Ê - r  r_ t ( 3 . 2 . 3 3 )

so Tq may be w r i t t e n  as

T = ^  ^  e^ g(')

X <Dl"'‘ | r ‘'̂  i P r ^ X P ^ n  | sJ1'"><3fM g{ ’̂| dT;‘> .  ( 3 . 2 . 3 4 )
-q,, Jp Jp - q 2  q

The quadrupole mat r ix  element may be replaced using equat ion 3 . 2 . 3 2 ,  and 

then the wavefunct ions fo r  the  S, P and D s ta tes  given in equat ions 3 . 1 . 4 ,  

3 .1 .21  and 3 . 1 . 2 2  may be in s e r te d  i n t o  the d ip o le  mat r ix  elements in a 

s i m i l a r  manner to th a t  used in equat ion 3 . 2 . 3 1 .  Use of  the Am̂  = 0 

s e le c t io n  ru le  and the Wigner Eckart  theorem on the r e s u l t a n t  d ip o le  m atr ix  

elements give
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Qt

X  {  S % D %  / 1 1 /2  à V  ( 1 , m p - 1 / 2 ; 1 , - q ^ | 2 , m j - 1 / 2 )

\m - 1 / 2  1 /2  -mJ
P P

X ( 0 , 0 ; 1 , - q 2 l l , m p - 1 / 2 )  ô ( m ^  -  1 /2  + q)

" <^d,1 / 21  V  / 2 > % 1  /Z  ' r» / £ %  /21® ' “ %  /2 >

2

( 2 )

1 /2  Jp \"  (1 ,m p +1 /2 ;1 , -q ^ |2 ,m ^+ 1 /2 )

m +1 /2  - 1 /2  -m 
\ P p/

X ( 0 , 0 ; 1 , - q 2 l 1 ,mp+1 / 2 ) ô(m^ + 1 /2  + q)

 ̂ < V l /Z “ V l  /Z > % -1  /2 "'Il V l /^<Vl /Z ' V l  '
( 3 . 2 . 3 5 )

(2)

where the are the magnetic quantum numbers of the t o t a l  angular momentum 

fo r  the 3P s t a t e s .  The second Clebsch Gordon c o e f f i c i e n t  in each p a i r  is  

equal to  m^+l/2 may be replaced by and s i m i l a r l y

the &(m^ + 1 /2  + q) terms, which arose from the quadrupole mat r ix  

element,  a l low m̂  + 1 /2  to be replaced by - q .  Then, s ince q  ̂ + q2  

must equal q to give a non-zero va lue f o r  the remaining Clebsch Gordon 

c o e f f i c i e n t s ,  and c a l c u l a t i n g  the values of  the 3 - j  symbols using the  

r e l a t io n s h i p s  in [20 ]  and [ 8 4 ] ,  in  p a r t i c u l a r

fJ+1/2 J 1 /2  \ =  ( - 1 )

M -M - 1 /2  1 / 2 /

J -M -1 /2 J -  M + 1 /2

(2J+2)  (2J+1)

1 /2 ( 3 . 2 . 3 6 )

T may be eva luated  to  beq

\  ( f S ) ,   ̂ e r ^ p ' ' p 3 a ^ /5 y 3 . ( 3 . 2 . 3 7 )

where = D^(J^,m^,B) S^(F,mp,B)  6(m^ -  1 /2  + q)

+ D2(Jy,m^,8)  S^(F,mj,,B) 6(m^ + 1 /2  + q ) . ( 3 . 2 . 3 8 )

3 .2 0



and B is  the magnetic f i e l d  s t re n g th .  ( £ £ ) -  is  a second rankc /  q

spher ic a l  tensor def in ed  by

(EE)^ q = C 1 ,q ^ ; ' l ,q 2 |2 ,q )  ,  ( 3 . 2 . 3 9 )

Ql.qg

where g and g are the f i r t  rank spher ic a l  tensor elements of  equation  

3 . 2 . 3 3 .  The q u a n t i ty  r^pr^^Q^y is  the product of  the reduced matr ix  

elements of  the th re e  o r i g i n a l  matr ix  elements.

The sph er ic a l  tensor mat r ix  elements of  the quadrupole moment may t h e r e f o r e  

be w r i t t e n  as

P s s  -  “ d s  +

i 5/3' f i^<w -  w + iX >ps ps

X %  ( E E ) z , q  ' • d p ' p s « s d  ( 3 . 2 . 4 0 )

As the quantum numbers of  the P s ta te s  do not appear in t h i s  equat ion ,  the 

4D s t a t e  quantum numbers w i l l  now be w r i t t e n  as J ,  m̂  f o r  the t o t a l  angular  

momentum and the magnetic quantum number of  the angular  momentum 

r e s p e c t i v e ly .

The geometry of the system is  de f in ed  in f ig u r e  1 . 3 . 2 ;  the fundamental  

laser  beam propagates along the y a x i s ,  and thus the second harmonic wave 

is dr iven  by the e f f e c t i v e  d ip o le

(P x 'P ; )  = (Q^y,Q^y) /2  ( 3 . 2 . 4 1 )

where k^ is the wavevector of  the second harmonic r a d i a t i o n ,  and

Q and Q are two of  the quadrupole matr ix  elements def ined  in  xy zy
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equat ion 3 . 2 . 2 1 .  To f in d  the values of  these elements i t  is  necessary to  

convert from the sph er ica l  tensor formal ism, which was appropr ia te  f o r  the 

c a l c u l a t io n  of  T^,  to  Car tes ian tensor formal ism, using the r e la t i o n s

2 Q = i (Q_ -  Q _) ( 3 . 2 . 4 2 )
xy 2 “ 2

and 2 Q = - i  (Q. + Q , ) .  ( 3 . 2 . 4 3 )zy 1 -1

Then 2 Q = fp_„ expCi(2w -  w . + iï( ) ( t - f ) 3  e^ r , r
xy ” Z .  K s s  "ds ' " d s ' ' "  ' " 'dp ps^sd

- L  5V?fi^<w -  w + i%^ >ps ps

X CB- (EE) .  .  -  B _ ( € £ ) -  _ ]  d f  ( 3 . 2 . 4 4 )2 2^2 “*“2 2 /  2

and 2 = <  fp s s  expCi(2« -  ) ]  ^dp^'ps^d

d,s -  Wp  ̂ +

X [B^ (65 )2 1 + (&E)2 d f  ( 3 . 2 . 4 5 )

The (CE).  terms are evaluated  using equat ion 3 . 2 . 3 9  to give  
c,q

®xy expCi(2w -  w

d,s
psps

9 2f  e r , r Q .p ^x dp ps sdFss ( 3 . 2 . 4 6 )

and
■ £  
d,S t

exp[ i (2w  -  Wjg + i X j g ) ( t  -  f ) 3  2(B^ -  B_^)

20 J? + i%ps>

" '■dp''ps®sdPss ( 3 - 2 - 4 7 )

The geometry of  the system is now included only in  the B^ terms and the  

laser  p o l a r i s a t i o n .  The la se r  used in the work covered in t h i s  thes is  was 

a s in g le  mode, l i n e a r l y  p o la r is e d  continuous wave l a s e r ,  the f i e l d  of which
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may be described as

= E e x p [ - i w t ]  ( s in 0 ,c o s 0 )  + c . c .  ( 3 , 2 . 4 8 )

where 0 is  the angle between the plane of  p o l a r i s a t i o n  of  the laser  and the  

z a x is .  In  t h i s  case the i n t e g r a l s  in equations 3 . 2 . 4 6  and 3 . 2 . 4 7  are  

r e a d i l y  c a lc u la te d  to  give

Q = - iK&2 ^  B. -  B .  ( 3 . 2 . 4 9 )
xy_________ X____________  \  2 -2_________

<w -  w -  i% > (w,  -  2w -  iJT , )ps ps F,mp, ds ds
J, mj

Q = - i K e  e 2(B,  -  B , )  ( 3 . 2 . 5 0 )zy X_z___________  N  1 -1________

<W -  W -  iX s> F,mr. ("ds ’
J.mj

where K = ( 3 . 2 . 5 1 )

20 jy ^

The thermal  motion of  the atoms is  taken in to  account by in c lud in g  the  

e f f e c t  of  the Doppler s h i f t  in  these equat ions CIO, 123.  The angular  

t r a n s i t i o n  frequency of an atom moving with v e l o c i t y  v along the  

d i r e c t i o n  connect ing the observer and the atom is

“ ds = “dsO + ^ 2 w \ '  ( 3 . 2 . 5 2 )

where is  the resonant angular  f requency of an atom at  rest  r e l a t i v e

to the observer  and k^^ is the wavevector of the second harmonic. The 

Maxwel l ian v e l o c i t y  d i s t r i b u t i o n  fu n c t io n  fo r  a gas with atomic mass M at • 

an absolute  temperature T is

f ( v  ) =7(M/2ïïkgT) exp[-Mvy/2kgT3 ( 3 . 2 . 5 3 )
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where kg is Boltzmann's constant .  Equations 3 . 2 . 4 9  and 3 . 2 . 5 0  are  

t h e r e f o r e  modif ied to  the form

Q = - iKg2y(M/2rrk.T)  xy X B

<“ p s -“- iXps>
DO ,

( 3 . 2 . 5 4 )X ^  (B g -B ^ ^ ^ ^  e x p [ - M v y / 2 k g T ] d V y

- «  ("ds + kv -  2w -

Q = - i K f Z  < ( B ^ - B  - )  Z[ (2w -  w.^ + i y ,  ) / a 3  ( 3 . 2 . 5 5 )' ' xy_________ X_____________ 2 - 2  ds ds

< " p s - " - i * p s > A

and Q = - iK g  £ < 2 ( B , - B  , )  Z[(2w -  w . + i X ,  )//23 ( 3 . 2 . 5 6 )zy X z________ ^ 1 - 1  ds ds

where XI = 2wV(2kgT/Mc^) ( 3 . 2 . 5 7 )

is the Doppler width ( h a l f  width 1 /e  maximum) of  the second harmonic 

r a d i a t i o n ,  and Z(a + ib)  is the plasma d ispers ion  fu n c t io n

Z(a + ib )  = 1

VF

OO 2
expC-t ]  dt . ( 3 . 2 . 5 8 )

(a + ib )

The p r o p e r t ie s  of t h i s  fu n c t io n  are described by Fr ied  and Conte C1153.

I t s  value must be found f o r  each of  the 80 pa i rs  of  energy le v e ls  

(F,mp) ->  ( J , m j ) ,  f o r  every laser  f requency,  and fo r  any homogeneous 

and inhomogeneous l ine w id th  of  i n t e r e s t .  The plasma d ispers io n  funct io n  

and the numerical rout ines used f o r  c a l c u l a t i n g  i t s  value are described in  

appendices A and B r e s p e c t i v e l y .  j
1

I
The above t h e o r e t i c a l  t rea tment al lows c a l c u l a t i o n  of the quadrupole |

moments of  each atom. In some s i t u a t i o n s  bulk e f f e c t s  in the medium modify |

the o v e r a l l  r e s u l t ,  but t h i s  trea tment  was found to be an e x c e l le n t  basis j
I

on which to  work. *
Î
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The two quadrupole moments and may be regarded as e f f e c t i v e  

dipo les  generat ing  second harmomic r a d i a t i o n  p a r a l l e l  to  the x and z axes 

r e s p e c t i v e ly .  As expected from the quadrupole s e le c t io n  rules  [ 8 3 ] ,  the  

moment is  d r iven  by Am̂  = ± 1 t r a n s i t i o n s ,  and the moment is  d r iven  

by Amj  ̂ = + 2 t r a n s i t i o n s .  These s e le c t i o n  rules  en te r  the t h e o r e t i c a l  

t rea tment as the terms o f  equat ion 3 . 2 . 3 7  and 3 . 2 . 3 8 .  The 

i n t e n s i t y  and p o l a r i s a t i o n  p r o p e r t ie s  of  the second harmonic may be der ived  

from the magnitudes and r e l a t i v e  phases of  the two quadrupole moments.

The i n t e n s i t y  of  the second harmonic r a d i a t i o n  is  given by

'SH K y  + #z  '®x V  + ( 3 . 2 . 5 8 )

= ® x y ® x y " ~ < y V  (3 -2 -60>

The second harmonic l i g h t  i s ,  in g e n e r a l ,  e l l i p t i c a l l y  p o la r is e d .  I t s  

p o l a r i s a t i o n  s t a te  is  s p e c i f i e d  by the  o r i e n t a t i o n  of  the e l l i p s e  axes,  and 

t h e i r  lengths a and b.  The l a t t e r  in fo rm at ion  may be given in terms of  the  

second harmonic power, and the e c c e n t r i c i t y  [1163 of  the e l l i p s e ,

^  = (a -  b ) / a .  ( 3 . 2 . 6 1 )

I f  the r a d i a t i o n  is  examined through an analyser  which has i t s  t ransmission  

axis at 0^ to the z a x is ,  the i n t e n s i t y  of  the detec ted signal  is  given by

The value of  0^ which gives the maximum value of  lgg(0^)  is

% a x  = 0 -3  ta " '^ C (3 x y S :y  + " < y V ' ^'~®zy' ^ "  l®xy'^)3  ( 3 - 2 - « )
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This corresponds to  the angle between the z ax is  and the major ax is of  the 

e l l i p s e  descr ib in g  the l i g h t .  The e c c e n t r i c i t y  of  the p o l a r i s a t i o n  e l l i p s e  

of the l i g h t  can then be obtained from

   _  , , 1 / 2
SH Amax SH Amax

The r e s u l t s  of t h i s  t reatment w i l l  be presented alongside the experimental  

re s u l ts  in chapter  f i v e ,  but some general  comments are given here.  I f  no 

magnetic f i e l d  is  p resent ,  ^m^, F,mp,0) = B_2 ( J , - m j , F , - m p , 0 ) and 

Wyg(J,mj ,F,mp,0)  = w ^ ^ C J , -m j ,F , -m p ,0 ) ; t h i s  leads to a zero r e s u l t  fo r  

the sum in equat ion 3 , 2 , 5 5  which gives and so no e f f e c t i v e  d ip o le  f o r

SHG e x is t s  in the x d i r e c t i o n .  A s i m i l a r  argument holds fo r  the e f f e c t i v e  

dipo le  in the z d i r e c t i o n .  When a t ransvers e  magnetic f i e l d  is  app l ied  to  

the vapour,  Zeeman s p l i t t i n g  breaks these e q u a l i t i e s  and so SHG is then  

poss ib le .

The B̂  terms are dependent on the magnetic f i e l d  s t rength  but not the laser
±q

frequency.  They descr ibe the mixing of  the magnetic quantum le v e l  e igen­

funct ions  by the magnetic f i e l d  as the f i e l d  is  increased from zero ,  

through the l o w - f i e l d  Zeeman e f f e c t ,  and in to  the Paschen-Back and Back-  

Goudshmidt reg ions.  A l l  the B^^ terms are n on -negat iv e ,  and i f  B^ is

f i n i t e  fo r  a p a r t i c u l a r  t r a n s i t i o n  B w i l l  be zero (and v i c e - v e r s a ) ,  as-q
the q in d ic a te s  the change in the value of  m̂  between the i n i t i a l  and f i n a l

s t a t e s .  The B term enters  equat ion 3 . 2 . 5 5  as -B ; B and -B are  
- q  -q q -q

p lo t t e d  as funct ions  of magnetic f i e l d  in f i g u r e  3 . 2 . 1 .  As noted in the

previous paragraph,  at  zero f i e l d  B (J,m ,F,m ,0 )  = B_ (J , -m ,F , -m  , 0 )
t C| j  r  C| J r

fo r  a l l  such p a irs  of  t r a n s i t i o n s ,  t h i s  is  indeed seen in the diagrams. As 

the magnetic f i e l d  is  increased from zero the B^^ values change. Examination
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of these graphs shows at  any f i e l d  which t r a n s i t i o n s  are involved in the  

SHG. There is  l i t t l e  change in the values of  above 0.15  T ,  as the 

hyper f in e  and s p in - o r b i t  i n t e r a c t i o n s  have l a r g e ly  been broken down by the 

Zeeman e f f e c t ,  causing and m̂  to  be good quantum numbers.

The resonant denominators,  however, are dependent on both the magnetic 

f i e l d  s t rength and the la s e r  f requency.  The c o n t r ib u t io n  to the resonant  

enhancement of  the SHG made by any t r a n s i t i o n  depends on i t s  detuning from 

the SH frequency,  and hence on the magnetic f i e l d  through Zeeman s p l i t t i n g .

Consider t h i s  in more d e t a i l  fo r  the case of  the laser  p o l a r i s a t i o n  at 90° 

degrees to  the magnetic f i e l d .  In  t h i s  arrangement only the moment may 

be non-zero ,  due t o £ ^  being zero in  equat ion 3 . 2 . 5 6 .  I t  is  seen in  

equations 3 . 2 . 3 8  and 3 . 2 .5 J  th a t  only /imj  ̂ = ± 2 t r a n s i t i o n s  may co n t r ib u te  

to the moment. The c o n t r ib u t io n  of  each t r a n s i t i o n  to  the ampl itude  

of t h i s  quadrupole moment is

Q (J,m . ,F ,m-,B)  = - i K '  Z [ (2w -w .  ) /ii + i 2 f , //i3 (B. -B  xy d F ds ds 2 -2

= - i K '  Z [ (2w -w ,  ) / H  + i  ̂ . / / I ]  X ds ds

■CD^S^S(mj+3/2) + D?s2&(mj+5/2)

-  D^S^S(mj-5/2)  -  D 2 s | £ ( m j - 3 /2 ) >  ( 3 . 2 . 6 5 )

where K* is  a constant  whose rea l  par t  is very much g r e a te r  than i t s  

imaginary p a r t .  At most one of  the terms with the Kronecker d e l t a  

funct ions  may be f i n i t e  f o r  any one t r a n s i t i o n .

I t  is  perhaps more i l l u m i n a t i n g  to  look at the co n t r ib u t io n s  of p a i rs  of  

t r a n s i t i o n s  with magnetic quantum numbers (+mj,+mp) and ( - m j , - m ^ ) ,  

where the signs of  m̂  and m̂  are chosen such t h a t  the f i r s t  p a i r  r e s u l t  in
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a zero value fo r  and the second p a i r  a zero value f o r  t h i s  case

G^y(J,+mj,F,+mp,B) + ( J , - m j , F,-mp,B) =

iK' B^gCJf+mjfFf+mpfB) ZC(2w-w^^(J^,+m^,F,+iïip,B)/iî + ilT^ /̂/i3 

-  iK' B_2 ( J , - m  ,F ,-mp,B)  ZC(2w-w ^^(J^ , -m ^ ,F , -m p,B) /il + iÜ^g/A]

( 3 . 2 . 6 6 )

At zero f i e l d  the B^g srid B^g terms are equa l ,  as are the two Z terms,

and so no net co n t r ib u t io n  is  made to  the SHG by t h i s  p a i r  of  t r a n s i t i o n s

(or  any other  such p a i r ) .  As a magnetic f i e l d  is  app l ied  the B^g terms

change as described above, and the rea l  arguments of Z change due to Zeeman

s h i f t i n g .  B^2 (J ,+mj,F ,+mp,B) -  B_2 ( J , - m j ,F , - m p ,B )  is  p ro p o r t ion a l  the  

magnetic f i e l d  st rength at  low f i e l d s ,  so as long as the changes in Z are 

s m a l l ,  the net r e s u l t  is t h a t  the magnitude of  (J^,+m^,F,+mp,B) + 

^xy^^d '"^d '^ '~ ^F '^ ^  is approximate ly p ro p o r t io n a l  to  the magnetic f i e l d  

s t ren g th .  The s ize  of  the change in  Z depends on the o r i g i n a l  detuning of 

the t r a n s i t i o n  from exact resonance with the l a s e r ,  but when t h i s  argument 

is  extended to cover a l l  such pa i rs  of  t r a n s i t i o n s  i t  is  found that  the 

proviso f o r  the quadrupole moment being p ro p o r t io n a l  to  the magnetic f i e l d  

st rength is  th a t  the Zeeman s p l i t t i n g  should be somewhat less than the  

Doppler w idth.  Thus at  low magnetic f i e l d  strengths the second harmonic 

power, which is  p r op o r t io n a l  to the square of  is p ro p o r t io n a l  to the

square of  the magnetic f i e l d  s t re n g th .  At higher f i e l d s ,  the B^g components 

may be in resonance whi le  the B_ 2  are f a r  from i t  (or  v ice  v e r s a ) ,  and | z |  

is much la r g e r  in the former case than the l a t t e r .  C le a r ly  the low f i e l d  

r e la t io n s  break down, and the second harmonic power dependence on the 

magnetic f i e l d  strength  s a t u r a t e s .

The i n t e r f e r e n c e  in the SHG amongst the var ious routes is  ca lc u la te d  in the 

computer model using the above equat ions .  The c o n t r ib u t io n s  to  the SHG of
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the var ious t r a n s i t i o n s  are shown in  f i g u r e  3 . 2 . 2  at a s e le c t io n  of  

magnetic f i e l d  s t rengths .  A vapour temperature of  300*C and a homogeneous 

l in ew id th  of  35 MHz (HWHM) were used in the c a l c u l a t i o n s ,  and the laser  

f requency was chosen to  l i e  approximate ly 3 GHz from the centre of the two-  

photon absorp t ion .  The upper graph at  each f i e l d  st rength  shows the 

amplitudes of  the c o n t r ib u t io n s  which are in phase with

and the lower graph shows those which are in quad ra ture .  These correspond 

to the rea l  and imaginary par ts  of  equat ion  3 .2 . 5 5  r e s p e c t i v e ly .  The t h ic k  

l i n e  alongside  each graph shows the sum of  these c o n t r ib u t io n s .  At zero  

f i e l d  these sums are zero ,  but as the f i e l d  is  increased the and 

terms change due to  s t a t e  m ix ing ,  and Zeeman s p l i t t i n g  changes the resonant  

f requenc ies .  The d i f f e r e n t  t r a n s i t i o n s  then no longer i n t e r f e r e  t o t a l l y  

d e s t r u c t i v e l y ,  and a net quadrupole moment r e s u l t s ,  as o u t l in e d  above. The 

amplitude and phase of  these moments are represented by the length and 

d i r e c t i o n  of  the l i n e  in the  centre of  the c i r c l e s  at  the top of  the  

diagrams. At the frequency which is  i l l u s t r a t e d  th ere are cons iderab le  

changes in the phase of  the SH as the f i e l d  is  v a r ie d .

The homogeneous and inhomogeneous l in ew id ths  en te r  t h i s  d e s c r ip t io n  in the  

dependence of  Z on the detuning of  the la se r  from the resonant f requency of  

each t r a n s i t i o n .  Although the t r a n s i t i o n s  are p lo t t e d  in f i g u r e  3 . 2 . 2  at  

t h e i r  centre f req u en c ie s ,  the freq uencies  of  the t r a n s i t i o n s  measured in  

the lab o ra to ry  frame w i l l  vary due to  the Doppler e f f e c t .  However, the  

g r e a te r  the detuning between the la s e r  and the centre frequency of  a 

t r a n s i t i o n ,  the fewer atoms w i l l  be Doppler s h i f t e d  i n t o  resonance with  the 

l a s e r ;  the width of  t h i s  resonance depends on the n a tu r a l  l in e w id th .  The 

combination of  these e f f e c t s  r e s u l t s  in the shapes of  the curves descr ib in g  

the plasma d ispers io n  f u n c t io n .  The e va lu a t io n  of  Z is  discussed in appen­

dix A, where f i g u r e  A.1 shows the dependence on detuning of  the rea l  and 

imaginary p a r ts  of  Z. The d i f f e r e n t  shapes of  these curves r e s u l t  in  the
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imaginary p a r t  o f  the e f f e c t i v e  d ip o le  being very much more sharply peaked 

about the resonant f requencies  than the rea l  p a r t .  The re s u l t  of  t h i s  is  

seen in f i g u r e  3 . 2 . 2  as the SH being in  phase with  the fundamental except  

when the la se r  is tuned to  be very close to  the resonant f requ encies .

As ReCZCa + ib )  = -ReCZ(-a  + ib )  the sign of  the c o n t r ib u t io n  to  the rea l  

p ar t  of  the e f f e c t i v e  d ip o le  of  any t r a n s i t i o n  changes as that  t r a n s i t i o n  

is  Zeeman s h i f t e d  through exact  resonance ( frequency detuning = a = 0 ) .

This is  seen in f i g u r e  3 . 2 . 2  around 0 .2  T fo r  the high frequency group of  

t r a n s i t i o n s .  The f i g u r e  also  shows the e f f e c t s  of  Zeeman s p l i t t i n g  moving 

the enhancing t r a n s i t i o n s  in and out of  the Doppler broadened resonance,  

these t r a n s i t i o n s  then c o n t r ib u te  more and less to  the SHG.

At Low f i e l d s ,  in  which the Zeeman s p l i t t i n g  is  very much less than the  

Doppler w id th ,  and are both p ro p o r t io n a l  to  the magnetic f i e l d  

st reng th ;  t h i s  causes the second harmonic i n t e n s i t y  to  be p ro p or t io n a l  to  

the square of  the magnetic f i e l d  s t r e n g t h ,  and the second harmonic to  have 

the same l i n e a r  p o l a r i s a t i o n  as the fundamental .  At higher f i e l d s  

d i f f e r e n c e s  in Zeeman s p l i t t i n g  between the sets of  sublevels enhancing the 

two quadrupole moments become comparable to  the Doppler width.  In  t h i s  

case the  amount of  resonant enhancement of the two e f f e c t i v e  dipo les  is  

d i f f e r e n t ,  and the two quadrupole moments of i n t e r e s t  grow at  d i f f e r e n t  

r a t e s ,  causing a r o t a t io n  of  the p o l a r i s a t i o n  of  the second harmonic. The 

r ea l  and imaginary par ts  of  each moment also  have d i f f e r e n t  dependencies on 

the magnetic f i e l d  s t re n g t h ,  which r e s u l t s  in a phase d i f f e r e n c e  between 

the two e f f e c t i v e  d ip o le s ,  and hence a d e v ia t io n  from l i n e a r  p o l a r i s a t i o n  

of the second harmonic l i g h t .

A l l  of  these points w i l l  be discussed f u r t h e r  in  connect ion with  the 

exper imental  re s u l ts  reported in  chapter  f i v e .
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CHAPTER FOUR 

EXPERIMENTAL APPARATUS AND TECHNIQUES

4.1 INTRODUCTION

A schematic diagram of  the system used to  in v e s t ig a t e  the second harmonic 

gen erat ion  is  shown in  f i g u r e  4 . 1 . 1 .  The components of  t h i s  system are  

described in more d e t a i l  in  the f o l lo w in g  s ec t io n s .

Ring dye laser 
system

P1 ——Q — Sodium oven —  P2 — PMT

L1 0 M

Figure 4 . 1 . 1 .  Experimental  apparatus used to  study BSHG in 
sodium vapour. K ey : -  PI and P2 -  p o l a r i s in g  o p t i c s ,  L1 -  
20 cm fo c a l  Length le n s ,  B -  v a r i a b l e  DC magnetic f i e l d ,
M -  d ichro ic  m i r r o r ,  t r a n s m i t t i n g  at 289 nm, r e f l e c t i n g  at  
579 nm, PMT -  f i l t e r e d  s o l a r  b l in d  p h o t o m u l t ip l i e r  tube.

4 .2  DYE LASER SYSTEM

4 . 2 .1  The dye laser

A Spectra Physics 380D a c t i v e l y  s t a b i l i s e d  r ing dye laser  was used as the  

source of  the fundamental r a d i a t i o n .  The narrow Linewidth r a d ia t i o n  

produced by t h i s  device (about 150 kHz C9]) al lowed i n v e s t i g a t i o n  of  the  

p ro p e r t ie s  o f  BSHG in such d e t a i l  as described in  t h i s  t h e s i s .  The 

p r i n c i p l e s  o f  dye Laser o p era t io n  have been reviewed by Schafer [ 1 1 7 ] ,  and 

t h i s  p a r t i c u l a r  model of  l a s e r  is  descr ibed  by the manufacturer 's  

L i t e r a t u r e  [ 1 1 8 ] ,  and by Kane [ 9 ] .
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Pump Loser

Dye Jet M2

Scanning
Rhombs

' M3 M4UDD Scanning Biréfringent
Etalon Filter

Figure 4 . 2 . 1 .  Schematic diagram of  the r in g  dye Laser.
Key ; -  Ml to M4 -  laser  m i r r o r s ,  UDD -  u n i - d i r e c t io n a L  dev ice .

The a c t i v e  medium of  the dye Laser was a f r e e - f l o w i n g  j e t  of  a 2 x 10 

molar so lu t io n  of  Rhodamine 6G dye d isso lved  in ethylene  g l y c o l .  A 

Spectra Physics 171/07 argon ion l a s e r ,  which produced 4 W of l i g h t  at  

514.5 nm, was used to  pump the dye l a s e r .  The dye laser  c a v i t y  was in the

form o f  a r i n g ,  as shown in f i g u r e  4 . 2 . 1 .  The b i r é f r i n g e n t  f i l t e r  and the

a i r -spaced  Fabry Perot  é t a lo n  acted as coarse and f i n e  tuning  elements 

r e s p e c t i v e ly .  The u n i d i r e c t i o n a l  device const rained  the la s e r  r a d i a t i o n  

f i e l d  to  t r a v e l  in  one d i r e c t i o n .  The use of  a t r a v e l l i n g  wave ra th er  than

a standing wave made i t  much e a s ie r  to  ob ta in  s in g le  mode o pera t ion  o f  the

l a s e r ,  as there  was then no s p a t i a l  nonuniformity of  the gain d e p le t io n  

tha t  would occur due to  "hole  burning" by a standing wave. The laser  

wavelength was scanned by t i l t i n g  the two Brewster -ang led quar tz  rhombs; 

t h i s  a l t e r e d  the o p t i c a l  path length of  the c a v i t y ,  and thus the las ing  

wavelength.  In  t h i s  c o n f i g u r a t i o n ,  the la se r  would operate  r e l i a b l y  on a 

s in g le  lo n g i t u d in a l  c a v i t y  mode a t  output  powers of  up to 700 mW, though 

400 mW was t y p i c a l .  The l a s e r  was tunab le  in the 570 -  620 nm range.
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Although the la ser  operated on a s in g le  c a v i t y  mode, the frequency of  t h i s  

mode was not s t a b l e ,  as the c a v i t y  Length was s u scep t ib le  to  dis turbances  

due to  temperature changes, dye j e t  f l u c t u a t i o n s ,  and acoust ic  d i s t u r b ­

ances. To counteract  these problems,  the laser  was a c t i v e l y  s t a b i l i s e d .

To do t h i s ,  a smal l amount o f  l i g h t  was s p l i t  o f f  from the dye laser  output  

and passed through two e x t e r n a l  confocal  Fabry Perot in te r fe r o m e te rs  

(Spect ra Physics model 488 S ta b i lo k  system ),  the longer of  which was temp­

e r a tu r e  s t a b i l i s e d .  As the la se r  f requency d r i f t e d ,  the transmission of  

the in te r fe r o m e te rs  would change; photodiodes de tected  such changes, and 

s u i t a b l e  c o r re c t io n  s ig n a ls  were generated by the e le c t r o n ic s  of  the 

system. These s ig n a ls  moved the Brewstei— angled rhombs and the p ie zo ­

e l e c t r i c  mount o f  m i r r o r  M2 to keep the o p t i c a l  path length of  the c a v i t y  

constant .  The manufacturer  c la ims t h a t  the e f f e c t i v e  l in e w id th  of  the  

l a s e r ,  which is  due to  r e s id u a l  f requency j i t t e r ,  is  less than 1 MHz RMS; 

Kane measured the Linewidth of  t h i s  p a r t i c u l a r  la s e r  to  be 150 kHz C9J.

4 . 2 . 2  Monitor ing devices

A block diagram of  the  la s e r  system assembled f o r  the work described in  

t h i s  th e s is  is  shown in f i g u r e  4 . 2 . 2 .  Beam s p l i t t e r s  take  small  amounts of  

the la s e r  beam to  var ious m onitor ing  inst ruments .

The wavelength of  the dye la s e r  was measured convenient ly  to  a p r e c is io n  of  

1 part  in 10^ by a K o w a ls k i -s ty le  t r a v e l l i n g  wavemeter [ 1 1 9 ,  1200.  This  

was e s s e n t i a l l y  a double Michelson in t e r f e r o m e t e r  in which the length of  

one arm was scanned. The wavelengths of  a p o l a r i s a t i o n - s t a b i l i s e d  he l ium -  

neon la s e r  and the dye la s e r  were compared by f r i n g e - c o u n t i n g  techniques;  

the wavelength o f  the second harmonic of  the dye la ser  r a d i a t i o n  was 

displayed  d i r e c t l y  by the counting e le c t r o n i c s .  This u se fu l  piece  of  

apparatus has been descr ibed  in  f u l l  by Kane C93.
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Argon Ion Laser |->| Ring Dye Laser
 ............

Iodine Cell

Laser Stabilisation ^

Scanning CFPE

Marker CFPE

Wavemeter

Figure 4 . 2 . 2 .  Schematic diagram of  the Laser system, 
CFPE -  confocal  Fabry-Perot  in t e r f e r o m e t e r .

Key

The mode s t ru c tu r e  of  the la se r  was analysed by a scanning confocal Fabry 

Perot i n t e r f e r o m e t e r ,  which conf irmed t h a t  the laser  was operat ing  on a 

sing le  mode. Laser s t a b i l i s a t i o n  is  the reference  s t a t i o n ,  co ns is t in g  of 

two i n t e r f e r o m e t e r s ,  which was described in  sect ion 4 . 2 . 1 .

The marker i n te r fe r o m e te r  was a confocal Fabry Perot i n t e r f e r o m e t e r  with a 

30 cm m ir ro r  separa t io n ;  t h i s  instrument th e r e fo re  had a f r e e  sp e c t ra l  

range of  250 MHz. The in t e r f e r o m e t e r  was thermal ly  s t a b i l i s e d  to  b e t t e r  

than ± 0.1 C. As the laser  was scanned, the laser  l i g h t  t ra n s m i t te d  by the  

in te r fe ro m e te r  was monitored by a photodiode.  The 250 MHz f r i n g e s  so 

measured acted as a frequency c a l i b r a t i o n  f o r  the experiment.

The r e f l e c t i v i t y  of dye la s e r  m i r ro r  M3 was not 100%; the few m i l l i w a t t s  of  

laser  l i g h t  t h a t  passed through t h i s  m i r ro r  was sent through a glass c e l l  

conta in ing iod ine vapour. The f luorescence  of the e x c i te d  iod in e  molecules 

was detected  at  r i g h t  angles to  the laser  beam by a p h o t o m u l t ip l i e r  (RCA 

931B).  The absorpt ion spectrum of  iodine has been c a r e f u l l y  studied  using
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Fourie r  Transform Spectroscopy;  Gerstenkorn and Luk C1213 have publ ished an 

a t l a s  showing the absorp t ion  spectrum of  from 14800 to 20000 wavenumbers. 

Comparison of  port ions o f  the a t l a s  with  the iod ine spectrum obta ined when 

the la s e r  was scanned al lowed a d e te rm in a t io n  of  the laser  f requency to  an
g

accuracy of  one part  in  10 . The wavemeter was s t i l l  r e q u i r e d ,  however,  

to determine in  which p ar t  o f  the a t l a s  to  look fo r  matching.

4 , 1 . 3  Data c o l l e c t i o n

Second harmonic generat io n  l i n e  p r o f i l e s  may be recorded by scanning the  

laser  across the 3S -  4D t r a n s i t i o n  wh i le  recording simul taneously on a 

chart  recorder the s ig na l  from the SH d e te c to r  and the t ransmission  o f  the  

marker i n t e r f e r o m e t e r .  This procedure was foLlwed in  the e a r l i e r  stages of  

t h is  p r o j e c t ,  and by Kane [ 9 3 .  However, the dye laser  scan was not 

s t r i c t l y  l i n e a r  with t im e .  To compensate f o r  changes in  the la s e r  scan 

speed when the r e s u l t s  are on char t  recorder  paper is  r a t h e r  d i f f i c u l t .  

In s t e a d ,  a computerised data c o l l e c t i o n  system was designed â nd con­

s t r u c t e d .  This is  descr ibed  in  more d e t a i l  in  appendix C. Signals  from 

the fo l lo w in g  devices were recorded by a BBC model B microcomputer: the SH 

d e te c to r  (or  any o th er  d e t e c t o r ) ;  the photodiode monitor ing the t r a n s ­

mission of  th e  marker i n t e r f e r o m e t e r ;  and the p h o t o m u l t i p l i e r  measuring the 

iod ine  f luorescence .  These s ig n a ls  were a l l  d isp layed  on the VDU screen in  

real  t i m e ,  which proved to  be very convenient .  The r e s u l t s  were l a t e r  

t r a n s f e r r e d  to  the U n i v e r s i t y ' s  VAX 11/785 mainframe computer. This  

machine used a simple a lg o r i th m  to  l i n e a r i s e  the data by ensuring th a t  the 

in te r fe ro m e te r  f r i n g e s  were e q u a l ly  spaced; one such Fort ran program is  

l i s t e d  in  Appendix D, Apart  from the l i n e a r i s a t i o n ,  t h i s  system was also  

very u se fu l  in  a id in g  the comparison of  data from d i f f e r e n t  runs: graphs 

could be drawn to  s p e c i f i e d  s c a l i n g s ,  and the absolu te frequency of  the  

Laser, measured using the io d in e  c e l l ,  was also  a v a i l a b l e .
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The fundamental la se r  beam was u su a l ly  chopped at  about 360 Hz, and the "j

s ignal  from the SH d e te c to r  was passed through a ph as e -se ns i t iv e  d e tec tor  

(PSD) tuned to  the ap p ro p r ia te  phase and frequency.  This system proved 

e f f i c i e n t  at improving the s ig na l  to  noise r a t i o .  The t ime constant on the  

PSD was set  between 0.1 and 3 seconds depending on the condit ions  in  the  

experiment.  '3

4 .3  OTHER APPARATUS

4 . 3 . 1 .  Product ion o f  the metal vapour

Sodium was chosen as the n on l inear  medium fo r  a number of  reasons: i t  is

r e l a t i v e l y  easy to  produce sodium vapour; the atomic energy le v e ls  of  the  

sodium atom are we l l  known; the sodium atom has a strong two-photon 

resonance at a wavelength r e a d i l y  accessib le  by Rhodamine 6G dye lase rs ;  

and SHG in sodium has been reported by other  workers CIS, 6 6 ,  68 ,  71 ,  7 2 ,  

75 ,  76 ,  95-973

Sodium melts at  97 .8  ”C [1223 and can be made to evaporate or  b o i l  to  

produce a moderately dense vapour at  reasonable temperatures .  This vapour 

consists mainly of  sodium atoms, Na, but a small percentage of  these  

combine to  form sodium dimers,  Na^. The p a r t i c l e  d ens ity  o f  a sa tura ted  

sodium vapour is  shown in f i g u r e  4 . 3 . 1 .  The c i r c l e s  represent  experimental  

determinat ions of  the sodium vapour pressure as compiled by Nesmayanov 

[1233 .  The s o l id  l i n e  is  from a formula quoted by Mi les  and H a r r is  [124 3 ,  

who r e l a t e  the atomic d e n s i t y ,  N, to  the absolute tem pera ture ,  T ,  by the  

approximate formula

I
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N = 9.66084 X 10^^ expC-12423 .3  + 17 .391 4]  atoms ( 4 . 3 . 1 )

The Line showing the dimer concentra t ion  is  deduced from data given by Lapp

and H a r r is  C125] on the percentage of  dimers present in the vapour at  any

-25
temperature.  The vapour pressure is  given by P(mbar) = NT x 1.38  x 10 ,

at  3 0 0 *C i t  is  0 .02 mbar.

Nazg -

TÎ Na

100 300 500
Temperature PC)

700

Figure 4 . 3 . 1 .  P a r t i c l e  d en s i ty  of  sa tura ted  sodium vapour 
p lo t t e d  as a f u n c t io n  of  temperature.  See t e x t  f o r  d e t a i l s

Two methods of  producing volumes of  sodium vapour with  uniform den s i ty  have 

been widely reported :  heat pipe ovens and g e h le n i t e  glass c e l l s .  To 

produce a dens it y  of  10^^ atoms m  ̂ the sodium must be heated to  344*C.  

Sodium is very r e a c t i v e  at  these tem pera tu res ,  so care must be taken in  the  

choice of  containment m a t e r i a l s ;  i t  is  a lso  e s s e n t i a l  to  prevent the sodium 

from condensing on the  o p t i c a l  windows used in any dev ic e .
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The g eh le n i te  glass c e l l  has the advantage of r e l a t i v e  s i m p l i c i t y ,  but the  

windows must be kept at  a higher temperature than the rest  of  the c e l l  to  

minimise fogging problems due to  condensat ion of  the sodium vapour.

Woerdman C126II describes a s u i t a b l e  c e l l ,  which he used to  produce sodium 

vapour with temperatures g r e a t e r  than 500 "C. The g e h le n i te  glass c e l l  was 

placed in a quartz  tube covered wi th  a t ransparent  semiconducting m a t e r ia l  

which served as an oven. The transmission of  the system was poor: 70% at 

600 nm and 30% at 330 nm.

The heatp ipe oven was f i r s t  proposed by V id a l  and Cooper C127].  I t  i s  shown

schematica l ly  in f i g u r e  4 . 3 . 2 .  The main body of  the oven cons ists of  a 

m a te r ia l  with which the vapour does not r e a d i l y  r e a c t ,  s t a i n l e s s  s tee l  f o r  

example. In s id e  the tube is  a wick of a few turns of  f i n e  s t a in le s s  s t e e l  

mesh. The centre of  the pipe is  heated and the ends are water  cooled.  As

the ends do not get ho t ,  the windows may be f i x e d  to the ends with

convent ional 0 - r i n g  s e a ls .

wick

buffer gas inlet

p . ........

window heater

■ mm i

water
cooling

Figure 4 . 3 . 2 .  Schematic diagram of  a heat pipe oven.

The i n i t i a l  charge of  metal is  placed in the centre  of  the oven and an 

i n e r t  b u f fe r  gas is  int roduced i n t o  the pipe.  As the metal  is  heated i t  

melts and wets the wick;  the metal  b o i ls  when i t s  vapour pressure reaches 

the pressure of  the b u f fe r  gas.  The vapour moves out towards the ends of
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the tube where i t  h i t s  the cooled b u f f e r  gas and there  i t  condenses on to

the wick to  be re turned to  the cen tre of  the oven by c a p i l l a r y  a c t io n .  In

an id e a l  heat pipe the temperature at which the metal b o i l s  is  determined  

by the pressure of  the b u f f e r  gas,  and a zone of  high u n i f o r m i t y  of  metal  

vapour d ens ity  is  formed.  Extra heat ing  should not a f f e c t  the temperature

of the vapour s i g n i f i c a n t l y ,  but should extend the vapour zone to nearer

the cool ing c o i I s .

Heat pipe ovens were chosen f o r  t h i s  s tu d y ,  as the technology f o r  con­

s t r u c t i n g  these devices was r e a d i l y  a v a i l a b l e .  In  most cases the ovens 

were not operated in the t r u e  "heat  pipe" mode. This was because the pipes  

were t y p i c a l l y  operated a t  sodium vapour pressures o f  0 .0 2  mbar; i f  the  

argon were at  the same pressure the mean f r e e  path of  the atoms would be of  

the order of  20 cm, which would r e s u l t  in  condensation of  the sodium on the  

end windows; thus the b u f f e r  gas pressure was u s ua l ly  at  le as t  1 mbar. 

However, these devices d id  produce a s u f f i c i e n t l y  uniform vapour zone f o r  

the purposes o f  t h i s  work.

Several d i f f e r e n t  ovens were used; they are shown in f i g u r e  4 . 3 . 3 .  A 

d e t a i l e d  cross sect io n  of  one of  them is shown in f i g u r e  4 . 3 . 4 .  A l l  the  

ovens were f a b r i c a t e d  from s t a i n l e s s  s t e e l .  The main body of  each was 

l ined  with severa l  turns of  s t a i n l e s s  s t e e l  mesh (32 wires/cm,  39 SWG 

w i r e ) .  The end windows were o p t i c a l l y  pol ished  quar tz  discs (Jencons 

S c i e n t i f i c  L t d . ) ,  which were e i t h e r  mounted d i r e c t l y  on to  the end f langes  

using v i t o n  0 - r i n g s ,  or cemented on to  the ends of  "Pyrex" glass tubes 

which had been sealed to  s t a i n l e s s  s t e e l  f langes (Vacuum G en era to rs ) .  The 

ends of  the ovens were water  co o led ,  and the c e n t r a l  sect ions were heated  

using res is tan ce  heat in g  cords (E le c t ro th erm a l  -  HC503, 400 W, 800*C 

maximum tem pera ture ,  or HC104, 480 W, 450°C maximum te m p e ra tu re ) .  These 

heat ing cords were wound n o n - i n d u c t i v e ly  to  minimise any s t ra y  magnetic
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Figure 4 . 3 . 3 .  Heatpipes used in  t h i s  work. The main body of  each pipe is  
shown, the c e n t ra l  region o f  each was covered with  the heat ing element and 
i n s u la t i o n .  The pipes in par ts  (a) and (d) were te rmin ated  wi th  quar tz  
windows cemented on to  pyrex tubes ,  the others had the quar tz  windows f i x e d  
to the end f langes  by "0" r ing  s e a ls .  The s ing le  c i r c l e s  in the end 
f langes  represent  the connect ion to  the gas handl ing system; the pa ir s  of  
c i r c l e s  in d i c a t e  the pipes f o r  water  co o l ing .
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f i e l d s  due to  the heate r  c u r r e n t ,  which was up to two amps. The heaters  

were lagged with mineral  wool i n s u l a t i o n .  The temperature of  the ce n t ra l  

body of  the oven was measured using a thermocouple (Comark E le c t ro n ics  

m in e r a l - in s u la t e d  s t a i n l e s s - s t e e l - s h e a t h e d  N iC r /N iA l  type K thermocouple 

KM30/L2PS, or  a s i m i l a r  probe marketed by E le c t ro p la n ,  TC4 probe) .

For many of  the experiments the oven temperature was v a r ie d  simply by

a l t e r i n g  the power input  by using a "V ar ia c"  v a r i a b l e  t ran s fo rm er .  A f t e r  

some th r e e - q u a r t e r s  of  an hour the oven would s t a b i l i s e  at  a temperature  

determined by the heat input  and the ra te  of  cool ing of the oven. As the

ovens were not o pera t in g  in the t r u e  h e a t -p ip e  mode, v a r i a t io n s  in the

h e a t - i n p u t / h e a t - lo s s  balance d id  a f f e c t  the sodium tem perature,  and 

numerous small  adjustment to  the "V ar iac"  were needed to  keep the 

temperature w i t h in  2'*0 of the  des ired  l e v e l .  In  the l a t e r  stages of  the  

p r o je c t  a th ree - te rm  temperature c o n t r o l l e r  was used (FGH Controls  L t d ,

Type S900-K-2 -0 -240 V i g i l a n t  temperature c o n t r o l l e r ) .  This drove a t r i a c  

power c o n t r o l l e r  (FGH Controls Ltd type TRZ-10-240 with zero crossover  

c o n t r o l ) ;  the combination had a two second cycle t im e ,  which was 

considerably less than the thermal  t ime constant  of  the oven. This system 

proved to  be very co nven ien t ,  as the warm-up time was much reduced, and the  

temperature measured by the thermocouple was s ta b le  to  b e t t e r  than 1*C.

When s t a b i l i s e d ,  the f l u c t u a t i o n s  in second harmonic output  power were less

than i  3%, which corresponds to  a temperature s t a b i l i t y  of  ± 0 .2  C. The

use o f  SHG as a p a r t i c l e  dens i ty  or  temperature probe is  considered f u r t h e r  

in sec t io n  5 . 9 .

The temperature measured by the thermocouple at  the outside wa l l  of  the  

oven was not the same as the temperature o f  the sodium vapour,  as th e re  

were temperature g rad ien ts  w i t h in  the c e l l  w a l l s .  To al low f o r  t h is

e f f e c t ,  a thermocouple and f la n g e  were in se r ted  i n t o  the oven in place of
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one o f  the end windows; t h i s  thermocouple was embedded in  the molten sodium 

while the oven was operated under i t s  usual  co n d it io ns .  The temperature  

measured on both thermocouples was noted as the oven temperature was 

increased;  these r e s u l t s  were then used to  est imate the sodium temperature  

from the temperature measured by the  e x te r n a l  thermocouple.  A cool ing  

curve was also  taken using the i n t e r n a l  thermocouple;  a p la teau  was 

observed in the tem pera ture / t im e  r e l a t i o n s h i p  at w i th in  1.5*C of  the 

accepted value o f  the me l t in g  p o in t  of  sodium.

The p re l im in a ry  experiments were performed using the heat pipe shown in  

f ig u r e  4 . 3 . 3 ( a ) .  The pipe t h a t  was used f o r  most of  the experiments 

reported in  sect ions 5.2  to 5 .5  had w a l ls  of  uniform t h ic k n e s s ,  and is  

shown in f ig u r e  4 . 3 . 3 ( b ) ;  the smal l s ide windows were not used in these  

experiments.  Most o f  the o ther  experiments in chapter f i v e  were performed 

using the heatpipe  shown in  f i g u r e  4 . 3 . 3 ( c )  and f i g u r e  4 . 3 . 4 .  This pipe  

had a th ickened c e n t ra l  region to  increase the thermal  t ime constant  of  the  

oven and to  al lo w the thermocouple to  be mounted between the hea ter  and the 

sodium. For the study of  the sodium d im er ,  which is  repor ted in appendix 

E, a "T" heat pipe was c o n s t ru c ted ,  as shown in f i g u r e  4 . 3 . 3 ( d ) .  This had 

a side arm of  1 2  mm i n t e r n a l  d iam ete r ,  f i x e d  to the cent re  of  the oven.

The arm had a wick and hea te r  s i m i l a r  to those in  the main body, and was 

terminated  by a quartz  window, which al lowed observat ion of  the spontaneous 

f luorescence from the e x c i t e d  s ta te s  of  the sodium atom and dimer at  r i g h t  

angles to  the e x c i t i n g  beams. Figure 4 . 3 . 3 ( e )  shows the longer heat pipe  

which was constructed f o r  the experiments of  sect ion 5 . 9 .

The ovens were cleaned using the reagent aqua r e g i a ,  and then r insed in  

running water .  A f t e r  assembly and t e s t i n g  of a p ip e ,  about 4 cm  ̂ of 

sodium metal was loaded i n t o  i t s  c e n t r e .  The sodium was suppl ied  as metal  

blocks under p a r a f f i n  (Hopkin and W i l l i a m s ,  labora tory  reagent :  sodium.
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metal lump). These blocks were r insed in petroleum s p i r i t  to  remove the

p a r a f f i n ,  then immersed in ethanol  to  remove the surface layers  of  ox id is ed

sodium in the r ea c t io n  between the ethanol  and the sodium and i t s  ox id e .

The sodium was again r insed  in  petroleum s p i r i t  before being t r a n s f e r r e d  to

the heat p ip e ,  which was being purged with dry n i t ro g e n .  The oven was then

“ 3
evacuated to a pressure of  less than 10 mbar. During use the oven 

was f i l l e d  with argon b u f f e r  gas (BOC Research Grade) at pressures from 

0 .7  mbar to  severa l  hundred mbar, but t y p i c a l l y  1 mbar.

Before being used in the experiments the oven was cycled through i t s  f u l l  

temperature range severa l  t im e s ,  being evacuated between cy c le s .  This  

allowed the sodium to  d i s t r i b u t e  i t s e l f  through the w ick ,  and some of  the  

im p u r i t i e s  were removed by the evacuat ions .  I t  was noted,  in  p a r t i c u l a r ,  

tha t  when the sodium was melted f o r  the f i r s t  t ime there  was a small r i s e  

in pressure on the mechanical pressure gauge, but a very much la rg er  

increase in  the reading of the P i ran i  gauge. I t  i s  w e l l  known t h a t  the  

P iran i  gauge head is  more s e n s i t i v e  to  some gases than o th e rs .  The argon 

pressures were th e r e f o r e  normal ly  measured using the mechanical absolute  

pressure gauge, which was c a l i b r a t e d  agains t  o i l  and mercury manometers.

In the experiments using argon pressures g re a te r  than 50 mbar, a mercury 

manometer was a ttached  to  the gas handl ing system through a l i q u i d  n i t ro g en  

cold t r a p .

4 . 3 . 2  Product ion of  the magnetic f i e l d

Various arrangements were used to produce the t ransverse  magnetic f i e l d  

which was needed to  break the symmetry of  the vapour.  The simplest  

arrangement used polymer-based cobalt -samarium permanent magnets (Magnet ic 

Polymers, Hera magnets) mounted on mild s t e e l  pole pieces which ran down 

each side o f  the p ipe.  The magnetic f i e l d s  were measured using a Hal l
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probe ( S c i e n t i f i c a  and Cook). The magnets produced a f i e l d  of  0 .0 2  T 

(200 G) ,  which was uniform to  a few percent  f o r  50 mm along the beam.

A small electromagnet  (Newport Instruments type C) was used to  provide a 

v a r i a b l e  magnetic f i e l d .  This was used with coned polepieces to  provide a 

f i e l d  of  up to 0 .1 4  T ( 1 . 4  kG),  which dropped to  h a l f  t h a t  value 32 mm from 

the centre o f  the po lep ieces .  This magnet was used mostly f o r  the 

spectroscopy c a r r i e d  out using the "T" oven. In t h i s  case the u n i f o r m i t y  

of the  f i e l d  was not im p o r ta n t ,  as only a small  reg io n ,  about 1 0  mm, of  the  

beam could be observed.

For most of  the second harmonic genera t ion  s tudy,  a la rg e  electromagnet  

(Newport Instruments type A) was used.  The 100 mm diameter  plane  

poLe-pieces were separated by 80 mm. This arrangement produced f i e l d s  of  

up to 0 . 3  T (3  kG). The f i e l d  dropped to  h a l f  t h i s  va lue  74 mm from the  

centre of  the p o le -p ie c e s .

4 . 3 . 3  Detect ion of  the second harmonic

The second harmonic r a d i a t i o n  produced in these experiments had a wave­

length of  289.3 nm. Hence, normal g l a s s ,  which is  opaque at  t 'his wave­

length ( the transmission of  b o r o s i l i c a t e  glass drops sharply  from 95% at 

360 nm to  8 % at 310 nm [ 1 2 2 ] ) ,  was u n s u i ta b le  as a window m a t e r i a l .  The 

windows of  the heat pipe were made of  fused s i l i c a  ( " q u a r t z " ) , which 

t ransmits  r a d i a t i o n  of  wavelengths down to  200 nm. In  most cases a 

d ic h ro ic  m i r ro r  was in s e r t e d  in  the SH beam to  d i s c r im in a t e  ag a in st  the  

fundamental r a d i a t i o n .  This m i r ro r  was h ig h ly  r e f l e c t i n g  in the v i s i b l e ,  

but h ig h ly  t r a n s m i t t i n g  in the u l t r a v i o l e t .  The substra te  of  t h i s  m i r r o r  

was made of  q u a r t z ,  as were the lens and n e u t ra l  dens i ty  f i l t e r s  which were 

sometimes placed in  the SH beam.
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The SH r a d ia t i o n  was normal ly  detected  by a f i l t e r e d  s o l a r - b l i n d  photo­

m u l t i p l i e r  tube (Hamamatsu R166UH tube wi th  two Corning 9863 f i l t e r s ) .  The 

p h o t o m u l t ip l i e r  tube was l a r g e l y  surrounded by a permal loy c y l in d e r  of  high 

p e r m e a b i l i t y ,  which sh ie ld ed  the tube from the e f f e c t s  of  magnetic f i e l d s .  

The tube was operated a t  1 kV; the s p e c t r a l  re sp o n s iv i ty  of  the system is  

shown in f i g u r e  4 . 3 . 5 .

1 -

UJ 01

SH 330

001
220 240 260 280 300 320 340 

WAVELENGTH (nm)

Figure 4 . 3 . 5 . S pect ra l  re s p o n s iv i ty  of  the f i l t e r e d  solar-  
b l i n d  p h o t o m u l t i p l i e r  tube C1 2 2 ,  1 2 8 ] .

The arrangement was chosen to  provide high s e n s i t i v i t y  at  the SH wave­

le n g th ,  but to  be i n s e n s i t i v e  at the wavelengths of  the other  dominant 

r a d ia t io n s :  the fundamental beam at  578.7 nm, and the spontaneous 

f luorescence at  330 nm, 568 nm and 589 nm from the cascade decay of  the 4D

s t a t e s .  The 33(3 nm r a d i a t i o n  was the most d i f f i c u l t  to  d is c r im in a te  

a g a in s t ,  bu t ,  as shown in  f i g u r e  4 . 3 . 5  the resp o n s iv i ty  of  the system is  a

fa c t o r  of 40 down at  t h i s  wavelength compared with  t h a t  o f  the second

harmonic. Moving the p h o t o m u l t ip l i e r  some d is tance  from the c e l l ,  or
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p u t t in g  an i r i s  diaphragm of  p h y s ic a l ly  small  apertu re  around the  

fundamental beam helped the d i s c r i m i n a t i o n ;  the SH fol lowed the path o f  the  

fundamental,  whereas the 330 nm was em it ted  in to  4 f T s t e r a d ians.

The p h o t o m u l t ip l i e r  tube was a side  window type with a c i r c u l a r  cage 

e le c t ro n  m u l t i p l i e r ;  such tubes have poor s p a t i a l  u n i f o rm i t y  of  gain C128I1. 

This caused problems in  one exper imenta l  scheme where the SH beam p o s i t io n  

on the p h o t o m u l t ip l i e r  tube changed. In  t h a t  case,  a n u l l  measuring method 

was d ev ised ,  as descr ibed  in  sect io n  5 . 4 .

The 330 nm r a d i a t i o n  was measured using another f i l t e r e d  p h o t o m u l t i p l i e r  

tube,  a Hamamatsu R212 with two Corning 9863 f i l t e r s .  This combinat ion had 

a re s p o n s iv i ty  of  18 V/nW at 330 nm and 13 V/nW at  289 nm. The re sp o n s iv i ty  

at the fundamental wavelength was more than f i v e  orders o f  magnitude le ss .

4 .4  SPECTROSCOPIC TECHNIQUES

At var ious stages in  t h i s  work i t  was necessary to use no n l in ear  laser  

spectroscopy to measure fe a tu r e s  t h a t  would otherwise  have been obscured by 

Doppler broadening.  An example is  the measurement of  the pressure -  

broadened Linewidth of  the sodium 3S -  4D t r a n s i t i o n ;  t h i s  is  around 

70 MHz f u l l  width at  h a l f  maximum (FWHM) at the atomic freq uency ,  whi le  the  

Doppler width of  the t r a n s i t i o n  is  3 .7  GHz at  400*C.  These techniques are  

reviewed in re ferences [ 1 0 7 ,  117,  1 2 9 ] ,  amongst o th e r s .  Two basic types of  

D op p ler - f ree  spectroscopy were used,  these are described in t h i s  s e c t io n .  

Satura ted absorpt ion spectroscopy probes t r a n s i t i o n s  of  the same energy as 

the las e r  photons, whi le  two-photon spectroscopy probes t r a n s i t i o n s  of  

twice t h i s  energy.  For some o f  the experiments on the sodium d im er,  a 

combination of  both techniques was used.
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4 .4 .1  Saturated absorpt ion spectroscopy

Consider the two-Level  atoms as in d ic a t e d  in f ig u r e  4 . 4 . 1 ( a ) .  These atoms 

w i l l  be moving, and thus t h e i r  resonant  f requencies  measured in  the  

l abora tory  frame w i l l  be s h i f t e d  due to  the Doppler e f f e c t .  A s ing le  

f requency la s e r  beam passing through the atomic vapour w i l l  i n t e r a c t  with  

only one v e l o c i t y  pac ke t ,  producing the popula t ion changes shown in  par t  

(b) of the f i g u r e .  As the la se r  is  tuned across the t r a n s i t i o n  the "hole"  

w i l l  move across t h i s  curve.  A satura ted  absorpt ion spectroscopy  

experiment is  set up as in  par t  ( c ) .  A strong "pump" beam acts in the  

manner described above, d e p le t in g  the populat ion  of  the lower s t a t e  at  one 

p a r t i c u l a r  f requency.  A low power "probe" beam o f  the same frequency as 

the pump beam is  passed through the vapour in the opposite d i r e c t i o n .  The 

popula t ion  of  the lower l e v e l  w i l l  then be as shown in par t  ( d ) . As the  

two las e r  beams are propagat ing in d i f f e r e n t  d i r e c t i o n s ,  they w i l l  i n t e r a c t  

with d i f f e r e n t  v e l o c i t y  packets of  atoms. However, when the las e r  beams 

are tuned to  the centre  of  the t r a n s i t i o n ,  both beams w i l l  i n t e r a c t  wi th  

the zero v e l o c i t y  packet of  atoms. In t h i s  case the probe beam is absorbed 

much less than i t  would be in the absence of the pump beam. The probe 

f i e l d  absorpt ion is  p l o t t e d  in  part  ( e ) .  The dip in the centre o f  the  

curve has the l i n e w id th  associated with  homogeneous broadening in the 

sample, and is  thus " D o p p le r - f r e e " .  The pump beam is  u s u a l ly  chopped at a 

known f requency ,  and the s ig n a l  from the probe beam d e te c to r  is  passed 

through a p h a se -sen s i t iv e  d e te c to r  tuned to  t h i s  frequency.  The r e s u l t a n t  

s i g n a l ,  which is  sketched in part  ( f ) ,  shows the D o p p le r - f ree  l i n e  p r o f i l e  

of the t r a n s i t i o n .  This technique e s s e n t i a l l y  se le c ts  out those atoms with  

zero v e l o c i t y  along the la s e r  beam d i r e c t i o n  to  c o n t r ib u te  to  the s i g n a l .
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Figure 4 . 4 . 1 ,  Diagrams f o r  the exp lana t io n  of  sa tura ted  
absorpt ion spectroscopy,  see the t e x t  fo r  f u l l  d e t a i l s .
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4 . 4 . 2  Two-photon spectroscopy

This form of  spectroscopy makes use of  two-photon t r a n s i t i o n s ,  and is  thus 

fundamental ly  d i f f e r e n t  from the type  of  spectroscopy described in  the 

previous s e c t io n .  Again,  consider  a t w o - le v e l  atom with resonant f requency  

w^2 * Atoms o f  v e l o c i t y  v in the d i r e c t i o n  of  the Laser beam w i l l  be 

exc it ed  by two photons from a u n i d i r e c t i o n a l  laser  beam when the laser  

f requency w s a t i s f i e s  the r e l a t i o n s h i p  w^^ = 2 (w -  ky) where k is the  

wavevector o f  the laser  r a d i a t i o n .  This is  obviously a D o p p le r - l im i t e d  

cond i t io n .  However, the atoms may absorb one photon from each of  two 

counter -propagat ing la se r  beams when w^^ = (w + k.v) + (w-  k.y) = 2w. Thus 

when the laser  is  tuned to  the atomic resonant f requency ,  a l l  the atoms may 

absorb one photon from each beam to  be e x c i t e d ,  regard less  o f  t h e i r  

v e l o c i t y ;  t h i s  gives r is e  to  a la rge  increase in absorpt ion at  t h i s  f r e q ­

uency, and the D o p p le r - f ree  s i g n a l .  These e f f e c t s  are shown schem at ic a l ly  

in f i g u r e  4 . 4 . 2 .

The experimental  arrangement used in  t h i s  work f o r  two-photon spectroscopy  

of the sodium dimer is  shown in f i g u r e  4 . 4 . 3 .  The laser  l i g h t  was focussed  

in to  the sodium heat pipe by a 2 0  cm fo ca l  length len s ,  and was r e f l e c t e d  

back along the same path by a concave m i r r o r .  The absorpt ion of  the la s e r  

beam was very smal l ;  instead the two-photon spectroscopy r e l i e d  on 

monitor ing the popula t ion of  the 4D sta tes  by measuring the u l t r a v i o l e t  

r a d ia t i o n  produced in  t h e i r  cascade decay back to the ground s t a t e s .

The i s o l a t o r  was necessary to  prevent  feedback of l i g h t  i n t o  the laser  

c a v i t y ,  which made the laser  u n s ta b le .  A S o le i l - B a b i n e t  compensator was 

used as a c i r c u l a r  p o l a r i s e r .  The r e t r o r e f l e c t e d  beam had i t s  d i r e c t i o n  of  

c i r c u l a r  p o l a r i s a t i o n  reversed on r e f l e c t i o n ,  and so the beam passing back 

through the quarter-wave  p l a t e  had i t s  l i n e a r  p o l a r i s a t i o n  at  90 degrees to
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the i n i t i a l  Laser beam. This re tu rn  beam was then r e a d i l y  blocked by using  

a l i n e a r  p o l a r i s e r .

w+ky
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Figure 4 . 4 . 2 .  Two-photon resonance in a standing wave.
a) C an ce l la t io n  of  the Doppler s h i f t  by absorbing one 
photon from each o f  the two counterpropagat ing beams.
b) No c a n c e l la t io n  of  the Doppler s h i f t  by absorbing both 
photons from the same beam, c) The shape of  the absorpt ion  
(or f luorescence)  s igna l  produced in a D o p p le r - f ree  
two-phOton spectroscopy experiment.
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Figure 4 . 4 . 3 .  Experimental  arrangement f o r  two-photon  
spectroscopy of  the  sodium dimer.  Symbols are as in f i g u r e
4 . 1 . 1 ,  but here L2 is a 12 .7  cm fo ca l  length quar tz  lens.

Four peaks were recorded in  the two photon spectroscopy of  the Na 38 -  4D 

t r a n s i t i o n ,  as presented in  f ig u r e s  5 . 1 . 4  and C .2 ,  and by other  authors  

[173 .  The second peak,  corresponding to the 38 (F=2) -  4D (J = 5 /2 )  

t r a n s i t i o n  was o f ten  used as a frequency re fe rence  in  the SHG experiments 

This frequency is  de f in ed  here as f ^ .
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CHAPTER FIVE

MEASUREMENT OF THE PROPERTIES OF MAGNETIC FIELD 

INDUCED SECOND HARMONIC GENERATION IN SODIUM VAPOUR

5.1 INITIAL CONSIDERATIONS

5-1 .1  Basic p ro p e r t ie s  of  the second harmonic generat ion

The Laser system was set up as described in sect ion 4 . 1 .  A 20 cm fo ca l  

Length Lens focussed the dye Laser beam through the sodium heat pipe shown 

in f i g u r e  4 . 3 . 3 ( c ) .  The divergence of  the beam beyond the heatpipe was 

measured, from which the radius of  the beam waist  was c a lc u la te d  to  be 

90 ;jm ± 20%. The power o f  the Laser beam at the oven was t y p i c a l l y  200 mW, 

from which the power den s i ty  at  the focus was i n f e r r e d  to  be of  the order  

of 1 0 ^ Wm"^.

The oven was f i l l e d  with  argon b u f f e r  gas at  a pressure of  0 .9  mbar and

heated to 285 “C. A magnetic f i e l d  of  0 .018  T was app l ied  perpendicu la r  to

the la ser  beam and to  the la se r  p o l a r i s a t i o n .  When the laser  was tuned to

a wavelength of 578 .7 nm, the second harmonic was generated.  With the aid

of  the iodine c e l l  the la se r  f requency at  which the second harmonic

-1 -1generat ion was a maximum was measured to  be 17274.368 cm ± 0 .002  cm ; 

t h i s  f i g u r e  is  very close to  the ta b u la t e d  value fo r  the separa t ion  o f  the 

sodium 3S and 4D l e v e l s ,  2 x 17274.5 cm  ̂ [1303.  A d d i t i o n a l l y ,  i t  is  

shown in the fo l low ing  s ec t io n  t h a t  the SHG l in e  p r o f i l e s  are i n t i m a t e l y  

connected with the l i n e  p r o f i l e  of  the 3S -  4D two-photon absorp t ion .

The wavelength of  the second harmonic r a d i a t io n  was measured using a i m
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monochromator (Monospek 1000) to  be 289.48 nm + 0 .1 2  nm. This was, as 

expected,  h a l f  the wavelength of  the fundamental r a d i a t i o n .

The la se r  f requency ,  atomic den s i ty  and magnetic f i e l d  st rength  were

-1 20 -3  
adjusted to  be at  the  optimum fo r  SHG, 17274,37 cm , 3 . 4  x 10 atoms m

and 0.1 T r e s p e c t i v e ly .  When a fundamental  power of  120 mW was measured

immediately before the heat p ip e ,  the second harmonic power was measured to

-8be 7 nW. This corresponds to an e f f i c i e n c y  of  6  x 10 . The computer

model of  the SHG described in chapter  th ree  and appendix B evaluates  th a t

| £  (B._ -  B__) Z\/Jl = 1 . 0  X 10"^ ( 5 . 1 . 1 )

under these con d i t io n s .  Using the matr ix  elements ta b u la te d  by Mi les and 

H a rr is  C1243 and T u l l  e t  a l  [ 92 ]  the expected SH power was c a lc u la te d  to  be

2.1 nW.

In t h i s  chapter  the f o l lo w in g  ab b rev ia t io n s  w i l l  be used in the f ig u r e  

c a p t io n s : -  f^ = laser  f requency;  T = sodium vapour temperature;

B = magnetic f i e l d  s t r e n g th ;  P = approximate argon pressure;  heatpipes a to  

e = the heatpipes sketched in f ig u r e s  4 . 3 . 3  (a) to ( e ) .

Equations 3 . 2 . 5 5  and 3 . 2 . 6 0  p re d ic t  a squared dependence of  the second 

harmonic power on the fundamental laser  power. To t e s t  t h i s ,  var ious  

n e u t ra l  d ens ity  f i l t e r s  were in s e r te d  in the fundamental beam whi le  

monitor ing the SH power. A b e a m s p l i t te r  and photodiode were used to  

measure the fundamental power immediately before the hea tp ip e .  This  

produced the r e s u l ts  shown in f i g u r e  5 . 1 . 1 .  The two sets of  r e s u l ts  were 

taken at the centre of  the SHG l i n e  p r o f i l e ,  at magnetic f i e l d  st rengths  of  

0,018 T and 0 .297  T. The g rad ien ts  of  these graphs are 1 .97  + 0 .0 2  and 

2 .08  + 0 .02  r e s p e c t i v e ly .  When o ther  sources of  e r r o r  are taken in to
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Figure 5 . 1 . 1 .  Dependence of  second harmonic power on 
fundamental power, f. = f T  = 2 8 5 *C, B = 0 .018  T 
and 0.297  T,  P = 1 mbar, heatpipe c.

account, there  is  no s i g n i f i c a n t  d e v i a t io n  from a square Law dependence of

SH power on fundamental power. The lack of s a tu r a t io n  with fundamental

power is  not s u r p r i s i n g ,  as the o p t i c a l  power d e n s i t i e s  at  the beam focus

were modest. The SHG e f f i c i e n c y  is  expected to  be l im i t e d  at high power

d e n s i t i e s  by competing processes such as mult iphoton io n is a t i o n  and

s a tu r a t io n  o f  the two photon absorpt ion  [ 1 0 ,  1 2 4 ] .  In  t h e i r  non-col l i n e a r

SFM experiments in  sodium vapour Bethune et  a l  CIO] measured the f r a c t i o n a l

i o n i s a t io n  to  be 1 % when one laser  was tuned to be ten wavenumbers from the

3S -  3P t r a n s i t i o n  and the other  was tuned such t h a t  the sum frequency was

in resonance with the 3S -  4D t r a n s i t i o n ;  the i n t e n s i t y  of  each beam was 

9 -25 X 10 Wm . The same authors s tud ied  the e f f e c t s  of s a t u r a t io n  of  the
- 1

two photon resonance; with a 41 .2  cm detuning from s in g le  photon r e s -
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onance they found a d e v i a t i o n  from the sum frequency power being p ro p o r t ­

ional  to  the product of  the i n t e n s i t i e s  of  the two laser  beams at 3 x 

10^^ Ŵ m In  the experiments described in t h is  th e s is  the detuning from
- I

s in g le  photon resonance was about 300 cm ,  which would lead to a much lower 

mult iphoton i o n is a t i o n  r a te  and an even higher i n t e n s i t y  being required to  

s a tu ra te  the two photon absorpt ion  than in  the case described by Bethune et  

a l .  Even i f  t h i s  were not the case,  the power d e n s i t i e s  achieved with the  

cw laser  were less than those t h a t  Bethune et a l  requi red to  observe the  

l i m i t i n g  e f f e c t s .

The s p a t i a l  i n t e n s i t y  p r o f i l e s  of  the  second harmonic and fundamental beams 

were examined. The former was measured by f i x i n g  a 1.1 mm diameter  p inhole  

in f r o n t  of  the SH d e t e c t o r ,  mounting the combination on a t r a v e l l i n g  

microscope s tage ,  and moving the p inhole  across the beam. A s i m i l a r  

arrangement was used to  measure the fundamental beam p r o f i l e ,  but a photo­

diode was used instead of  the p h o t o m u l t i p l i e r  tube .  In  both cases the  

beams were expanded using a 5 cm fo c a l  length quar tz  lens .  The fundamental

beam was approximately Gaussian, as i t  had an i n t e n s i t y  d i s t r i b u t i o n  close

2to I J r )  = IJO) expC-«r ] ,  where r is the d is tance  from the centre of  the

beam. As the second harmonic i n t e n s i t y  was p ro p or t io n a l  to  the square of

the fundamental power, the beam p r o f i l e  o f  the second harmonic was expected

2 2to  have an i n t e n s i t y  dependence of  the form l 2 y ( r )  = 1 ^ ( 0 ) e x p [ - 2 %r ] .

Figure 5 . 1 . 2  shows the d i s t r i b u t i o n  of  the i n t e n s i t y  of  the SH beam and the  

square of  the i n t e n s i t y  of  the fundamental  beam. The two curves are seen 

to be s i m i l a r ,  support ing the above arguments.
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Figure 5 . 1 . 2 .  S p a t i a l  d i s t r i b u t i o n  of  the i n t e n s i t y  of  the  
SH beam and the square of,, the i n t e n s i t y  of  the fundamental  
beam. A gaussian curve has been drawn with a s i m i l a r  width 
as th a t  of  the experimenta l  r e s u l t s .  f. = f ^ ,  T = 2 5 0 'C,
8  = 0 .0 6  T, P = 1 mbar, heatp ipe  e.

5 . 1 . 2  Measurement of  the homogeneous and inhomogeneous l inew id ths  of  the  

3S -  4D t r a n s i t i o n

In model l ing the SHG, two important  v a r i a b l e  parameters are the Doppler  

width and the pressure-broadened Linewidth of  the 3S -  4D two-photon 

t r a n s i t i o n .  The Doppler width may be c a lc u la te d  from the temperature of  

the vapour; the h a l f  width a t  1 / e  m a x i m u m , / ! ,  f o r  a t r a n s i t i o n  at  

f requency is

n  = A T k g  T , 

/  M c 2

( 5 . 1 . 2 )
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where kg is Boltzmann's co n stan t ,  T is the absolute temperature of  the  

vapour, M is the mass of  the sodium atom, and c is  the speed of  l i g h t .  The 

Doppler width was measured e x p er im en ta l ly  by tuning the la se r  through the  

t r a n s i t i o n  and observing the u l t r a v i o l e t  r a d i a t io n  emit ted  in the  

spontaneous decay of  the 4D s t a t e s .  Knowing the f i n e  and hyperf in e  

s p l i t t i n g s  o f  the l e v e l s ,  the Doppler width could be est imated  i f  the 

homogeneous l in e w id th  was assumed to be smal l .

The homogeneous l in ew id th  (FWHM) is  given by + jBP, where is

the n a tu ra l  l in e w id th  of  the t r a n s i t i o n ,  P is the pressure of  the p e r tu r b ­

ing gas,  and |0 is the pressure broadening constant .  This constant is  n o t ,  

in g e n e r a l ,  the same f o r  a l l  t r a n s i t i o n s  of  an atom.

The pressure-broadened l in e w id th  of  the sodium 3S -  4D t r a n s i t i o n  has been 

measured at  pressures up to  a few tens of  mbar by Dopplei— fre e  two-photon  

absorpt ion [ 1 3 1 ] ,  f r e e  induct ion  decay of  a coherent ly  exc i te d  4D s t a te  

[ 1 3 2 ] ,  and by t r i - l e v e l  echoes [ 1 3 3 ] .  The l inewid ths  of  the same t r a n s ­

i t i o n  have been measured a t  pressures of  several  atmospheres by Doppler -  

l i m i t e d  two-photon absorpt ion  [ 1 3 4 ] .  The pressure broadening constant  ,  

measured in MHz/mbar, depends on the temperature of  the vapour as

Ti (Tj

where is the Ar-Na c o l l i s i o n a l  cross sect io n  at  an absolu te temperature  

T^ [ 1 3 3 ] .  I f  the are approximated to  be independent of  tem perature ,  i t  

is  possible to  convert  the publ ished values of  to one temperature,

chosen here to  be the temperature at  which most of  the SHG experiments were 

c a r r i e d  ou t .  These values are shown in t a b l e  5 . 1 . 1 .  In  a d d i t io n  to the  

broadening of  the sp e c t ra l  l i n e  by the p e r turb in g  gas,  the energy le v e ls  of
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the sodium atom are also  s h i f t e d  due to  the in t e r a c t i o n  of  the p o t e n t i a l s  

of the sodium and argon atoms.

Reference e
^558 MHz/mbar, FWHM

131 39 + 4
132 39 ± 3
133 39 ± 6

134 36 + 6

This work. 529 K 3 8 .7  ± 1

This work. 558 K 3 9 .8  + 1

Table 5 . 1 . 1 .  Pressure broadening constant  of  the 3S -  40 
two-photon t r a n s i t i o n  in sodium perturbed by argon b u f f e r  
gas at  558 K.

Ring dye laser 
system V/. — Q—  Sodium oven -Q— |j— 

L1 L2 M

P M T

Figure 5 . 1 . 3 .  Experimental  setup fo r  two-photon spectroscopy.  
Key:-  P -  l i n e a r  p o l a r i s e r ,  X/4 -  quar te r  wave p l a t e ,  LI -  
20 cm focal  length lens ,  L2 -  12 .7  cm fo c a l  length qu ar tz  l e n s ,  
M -  d ic h ro ic  m i r r o r ,  PMT -  f i l t e r e d  p h o t o m u l t i p l i e r  tube.

The homogeneous l inew id ths  under the experimental  condi t ions  used in t h i s  

work were measured by D o p p le r - f re e  two-photon spectroscopy. The expei— 

imental  arrangement used is  shown in f i g u r e  5 . 1 . 3 .  A d ic h ro ic  m i r ro r  and a 

12.7  cm foca l  length quar tz  lens were used to r e t r o r e f l e c t  the la se r  l i g h t  

and to  focus the spontaneous u l t r a v i o l e t  f lu orescence ,  which monitored the 

populat ion of  the 4D s t a t e s ,  on to  a f i l t e r e d  p h o t o m u l t i p l i e r  tube.  This  

observat ion of  the f luorescence  along the d i r e c t i o n  of  the la se r  beam is  

d i f f e r e n t  from the convent ional  two-photon spectroscopy arrangement shown 

in  f i g u r e  4 . 4 . 3 .  The experimenta l  geometry had the disadvantage th a t  care
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had to  be taken to  d is c r im in a t e  aga inst  the fundamental laser  beam.

However, i t  had the advantages t h a t  the whole region of  two-photon absorp­

t i o n  was, to  some e x t e n t ,  observab le ,  and the c e n t r a l  region of  the oven 

was not subjected to  any heat  losses due to  a side arm. The pressure of  

the argon gas was measured using a Bourdon gauge which had been c a l i b r a t e d  

against  an o i l  manometer.

Both pressure-broadening and p r e s s u r e - s h i f t  may be seen in f i g u r e  5 . 1 . 4 ,  

which shows some of  the r e s u l t s  of  two-photon absorpt ion  spectroscopy exp­

eriments c a r r ie d  out using the hea tp ipe o f  f i g u r e  4 . 3 . 3 ( c ) ,  at  a temp­

e ra tu re  of  256 “C. Eleven traces  were recorded at  argon pressures from 0 .8  

to 13 mbar. The measured pressure broadening constant  from these traces  

was P5 2 9  ” 39 .8  + 1  MHz/mbar, which gave a value of  - 38 .7  + 1 MHz/mbar

I
u.
>
3

210
LASER DETUNING (GHz)

Figure 5 . 1 . 4 .  Two photon e x c i t a t i o n  spectra of  the sodium 
3S -  4D t r a n s i t i o n ,  at  var ious b u f f e r  gas p ress u re s : -  
a) P = 0 .8  mbar, b) P = 2 mbar, c) P = 5 .4  mbar, 
d) P = 12 .6  mbar. The same frequency scale is  used fo r  each 
t r a c e ,  but the f luorescence  maxima have been normal ised .
T = 256 "C, B = 0 ,  heatp ipe  ( c ) .
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A s i m i l a r  study was c a r r i e d  out at  2 8 5 *C, but with six  scans. This gave a 

value d i r e c t l y  as 39 .8  + 1 MHz/mbar. These measurements were thus 

consistent  with each o t h e r ,  and with  the other  values in t a b le  5 . 1 . 1 .

The value of  used in  the t h e o r e t i c a l  c a lc u l a t io n s  is  the HWHM of  

the pressure broadened l in e w id th  at  the atomic frequency.  This was 

c a lc u la te d  from the e x p e r im e n ta l l y  der ived  equat ion (MHz) = HWHM =

19 .4  P(mbar) + 12.  The agreement of  the publ ished values at  low and high 

pressures of  argon gas j u s t i f i e d  using t h i s  equation throughout the 

pressure range i n v e s t ig a t e d  in  the SHG experiments,  0 . 8  to  230 mbar. The 

s h i f t  in the resonant f requency with  pressure was not included in the SHG 

model, as i t  was small  compared to  the la s e r  f requency ,  and was equal f o r  

a l l  components of  the 3S -  4D t r a n s i t i o n .

The e f f e c t s  on the SHG of changing the b u f f e r  gas pressure are stud ied in

sect ion  5 . 8 .  For most of  the o ther  experiments the b u f f e r  gas pressure was

set at  1 mbar. The homogeneous l in e w id th  under these cond it ions  at  3 0 0 *C 

was measured to be 35 MHz (HWHM at  the atomic f req u e nc y ) ,  and t h e r e f o r e  

35 MHz was the value of  used in the t h e o r e t i c a l  model l ing of these 

experiments.  The e f f e c t s  of  changing the homogeneous l in ew id th  are stud ied  

t h e o r e t i c a l l y  and e x p e r im e n ta l ly  in  sect io n  5 . 8 .  V a r ia t io n s  in are

not expected to  in f lu en c e  the SHG much around the 35 MHz value measured and

used in  the c a l c u l a t i o n s .  An increase  in is expected to  cause a

decrease in the SH power, as is  e s s e n t i a l l y  a damping te rm , though i t s  

e f f e c t  w i l l  not be la rg e  u n t i l  i t  is  o f  the order of  the Doppler w id th .

Two-photon spectroscopy was also used to  provide an abso lute  frequency  

c a l i b r a t i o n  of  the laser  wi th  respect  to  the atomic t r a n s i t i o n .  The centre  

of the SHG l i n e  p r o f i l e  was close to  the peak corresponding to 3S (F=2) ->  

4D (J =3 /2 )  t r a n s i t i o n ,  the second peak in f i g u r e  5 . 1 . 4 .  This frequency was
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def ined  as f ^ .  For c e r t a i n  experiments the Laser was tuned to  fg by 

measuring the two-photon- induced D o p p le r - f re e  f luorescence .  The laser  

could then be tuned by a known amount by monitor ing the transmiss ion of  the  

250 MHz f re e  spec t ra l  range marker in t e r f e r o m e t e r .

5 .2  SECOND HARMONIC POWER DEPENDENCE ON SODIUM ATOM DENSITY

The macroscopic SH p o l a r i s a t i o n  in the medium [1 4 ]  is

( 5 . 2 . 1 )

where N is  the number d en s i ty  of  the sodium atoms and p-  is the- 2 w

e f f e c t i v e  d ip o le  f o r  SHG de f in ed  by equat ion 3 , 2 . 4 1 ,  As the ampl itude of  

the generated second harmonic wave is  p r o p o r t io n a l  to  the macroscopic SH 

p o l a r i s a t i o n ,  the power of  the SH generated in any region of  the vapour is  

pro p o r t io n a l  to  N^. However, in  c a l c u l a t i n g  the t o t a l  SH power generated  

in  the vapour,  the r e l a t i v e  phases of  the SH generated in d i f f e r e n t  regions  

of the vapour must be cons idered.  The formal ism developed here is  s i m i l a r  

to t h a t  of  Yar iv  C12] ,  and t r e a t s  the fundamental and SH beams as i n f i n i t e  

plane waves.

The e l e c t r i c  f i e l d  of  the generated second harmonic is  p ro p o r t io n a l  to  ^p^^, 

and, from equat ion 3 . 2 . 5 5 ,  i t  is  seen t h a t  _p^  ̂ is p ro p o r t io n a l  to  the  

square of  the e l e c t r i c  f i e l d  of  the fundamental r a d i a t i o n ,  though i t  is  

s h i f t e d  in phase by an amount d e f in ed  here as Fol lowing Yar iv  [ 1 2 ] ,  the  

slowly vary ing ampli tude of  the e l e c t r i c  f i e l d  of  the second harmonic,

” 2 w' waves t r a v e l l i n g  in the p o s i t i v e  y d i r e c t i o n  is

dEgy = ( fNE^/2 )  expCiCk^y -  2 k^^y] e x p [ i^ ]  dy,  ( 5 . 2 . 2 )
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where k and k-, are the wavevectors of  the fundamental and second harmonic “ w “ 2 w

r a d i a t i o n  r e s p e c t i v e l y ,  and f  is  a r ea l  number dependent on the magnetic 

f i e l d  s t ren g th .  In  the case o f  a uniform magnetic f i e l d  st rength  in the  

i n t e r a c t i o n  reg ion ,  ^ and f  are not funct io ns  of  p o s i t io n .  I f  the  

i n t e n s i t y  of  the fundamental beam changes n e g l i g i b l y  through the medium, 

may be regarded as a constant .  D e f in ing  the wave vector  mismatch 

Ak. = kg^ - 2 k ^ ,  and i n t e g r a t i n g  over a vapour length L gives

L  (L) = f  N 1^ (0 )  exp Ci^]  expCidkL] -  1 ( 5 . 2 . 3 )

iAk

The t o t a l  SH power is p ro p o r t io n a l  to  which r e s u l t s  in

E^(0) s i r f ( 6 k L / 2 )  ( 5 . 2 . 4 )

(AkL/2)Z

For maximum generat ion e f f i c i e n c y  Ak should be zero.  The wave vector  

mismatch a r ise s  from the change of  r e f r a c t i v e  index between the fundamental  

and second harmonic f requencies:

Ak = k„ - 2 k  = 2w (n^ -  n ) / c  ( 5 . 2 . 5 )“ 2 w “W 2 w w

where n and n_ are the r e f r a c t i v e  ind ices  of  the medium at the  w 2 w

fundamental and second harmonic fr equencies  r e s p e c t i v e ly .

The r e f r a c t i v e  index of  a vapour at  a wavelength A may be determined from 

the Se l lm e ie r  equat ion [143

n(A) -  1 = N r^ cc. f . . ( 5 . 2 . 6 )
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where N is the number den s i ty  of  the atoms, r^ is the c l a s s ic a l  e le c t ro n

“ 1 5radius equal to  2 . 8  x 1 0  m, f^^ is the o s c i l l a t o r  strength  of  the 

t r a n s i t i o n  of  wavelength j from le v e l  i to l ev e l  j ,  and is  the

f r a c t i o n a l  popula t ion  of  l e v e l  i . The wavelength dependence of  the 

r e f r a c t i v e  index of  sodium vapour is  shown in f i g u r e  5 . 2 . 1 ,  which was 

ca lc u la te d  using the o s c i l l a t o r  s t rengths  tab u la ted  in  C1303. I t  was 

assumed th a t  a l l  the atoms were in  the ground s t a t e ,  which is  j u s t i f i e d  in  

the condit ions  of  the experiments.

The dominant resonances are those of  the sodium D l ines  at  588.9 nm and 

589.5 nm. These two t r a n s i t i o n s  account f o r  98% of the o s c i l l a t o r  st rength  

of the ground s t a t e s .  The fundamental wavelength l i e s  in  the wings of  the  

D l in e s ;  the r e f r a c t i v e  index of  the vapour at the second harmonic wave­

length is  much less s t ro n g ly  per turbed  from 1 . 0 .  The wavevector  mismatch 

was c a lc u la te d  to  be Ak = 8 .9 7  x 10 N m where N is the atomic 

den si ty in  atoms m

%

4

2

0

2

4
289-3 578-7

WAVELENGTH (nm)

Figure 5 . 2 . 1 .  R e f r a c t i v e  index ,  n,  of  atomic sodium vapour  
as a fu nc t io n  of  w ave length - -  The ord in a te  sca le was was

,cU  -  4ca lcu la ted  f o r  N = 2 . 3  x 10 (T = 300 0 .
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This c a lc u la t i o n  of  the wavevector mismatch has neglected the e f f e c t s  of

the sodium dimer populat ion on the r e f r a c t i v e  index.  These dimers have

many al lowed t r a n s i t i o n s  across the v i s i b l e  spectrum, but any one

t r a n s i t i o n  has a low o s c i l l a t o r  s t r e n g t h .  The percentage of  sodium dimers

in the vapour at  4 0 0 ‘’C was less than 5%, and less than 1% of these dimers

would be in any one v ib ro n ic  l e v e l ,  r e s u l t i n g  in the popula t ion  of any

- 4dimer s t a t e  being less than 5 x 10 t h a t  of  the atomic d e n s i t y .  However,  

the dimer populat ion increases  r a p i d l y  with  temperature ,  and w i l l  become 

more s i g n i f i c a n t  at higher temperatures .

The dependence of  the SH power on p a r t i c l e  dens ity  may be ca lc u la te d  f o r  

the experimental  condi t ions  d escr ib ed ,  using equation 5 . 2 . 4 .  As Ak is  

pro p o r t io n a l  to  N, is p ro p o r t io n a l  to  sin^AkN; For a vapour zone 

length of  1 0  cm, and a fundamental beam power P^,

DC IP s in ^ ( 4 . 4 8  x 10"^^ N ) . ( 5 . 2 . 7 )
Zw w

A r e l a t i v e l y  low f i e l d  of  0 .0 6  T was app l ied  across the oven of  f ig u r e  

4 . 3 . 3 ( b )  and the laser  was tuned to  the peak of the SHG p r o f i l e ;  the p o l a r ­

i s a t io n  of  the la se r  was pe rpend ic u la r  to  the magnetic f i e l d .  The temp­

e ra tu re  of  the oven was s lowly  in creased ,  and the sodium d ens it y  was

i n f e r r e d  from the oven temperature as described in sect io n  4 , 3 , 1 .  At low

2p a r t i c l e  d e n s i t i e s ,  the wavevector mismatch was n e g l i g i b l e ,  and an N 

behaviour was obtained as expected.  These r e s u l t s  are shown in f i g u r e
2

5 . 2 . 2 ,  which is  p lo t t e d  on a lo g - lo g  sca le to a l low an easy t e s t  of  the N 

behaviour at  low p a r t i c l e  d e n s i t i e s .  This behaviour is  im por tan t ,  as 

although the power of  the p a r a m e t r i c a l l y  generated wave depends on the  

square of  the p a r t i c l e  d e n s i t y ,  non-parametr ic  processes such as two-photon  

absorpt ion fol lowed by spontaneous f luorescence  would be expected to  show a 

l i n e a r  dependence on the p a r t i c l e  d e n s i t y .
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At higher p a r t i c l e  d e n s i t i e s ,  an o s c i l l a t o r y  behaviour was observed, as 

pre d ic te d  by equat ion 5 . 2 . 7 .  This equat ion also p re d ic ts  th a t  the f i r s t  

peak in second harmonic power should occur at  a p a r t i c l e  d ens ity  of

3 .4  X 10^^ m  ̂ which is  c lose to  the measured value of  3 .5  x 10^^ m 

The small  discrepancy is  w e l l  w i t h i n  the e r r o r  caused from es t im at in g  the 

vapour zone length and approximating the focussed beam to  a plane wave.

Figure 5 . 2 . 3  shows the r e s u l t s  of  a s i m i l a r  experiment p l o t t e d  using l i n e a r

sca les .  In  t h i s  case the heatpipe shown in f ig u r e  4 . 3 . 3 ( a )  was used. The

temperature of  the sodium in  the pipe was not as a cc u ra te ly  known as in the
2

previous experiment.  N ev er th e les s ,  the sin  (AkN) behaviour is  

obvious,  though i t  is  damped due to  absorpt ion of  the fundamental l i g h t  by 

the sodium dimers,  the popula t ion o f  which becomes s i g n i f i c a n t  at  higher  

temperatures.  The increase  in Doppler broadening and homogeneous l in ew id th  

with increas ing  p a r t i c l e  d ens i ty  w i l l  a lso  have co n t r ib u ted  to  the decrease  

in the ampl itude of  these o s c i l l a t i o n s .
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5 .3  LINE PROFILES

The v a r i a t i o n  in  the second harmonic power as the Laser was tuned through 

the resonant ly-enhancing two-photon t r a n s i t i o n  was examined e xp e r im enta l ly  

using the same laser  system, and the heatpipe of  f i g u r e  4 . 3 . 3 ( b ) .  The 

p o l a r i s a t i o n  of  the fundamental  was arranged to  be at  90" to the magnetic 

f i e l d ,  and the SH was de tected  using the f i l t e r e d  so la r  b l in d  photo­

m u l t i p l i e r  tube.  To reduce problems caused by wave vector  mismatching, a l l  

these experiments were c a r r i e d  out at  3 0 0 “C, corresponding to a p a r t i c l e  

densi ty  of  2 . 3  x 10^^ atoms m the b u f f e r  gas pressure was 1 mbar.

Sets of  SHG l i n e  p r o f i l e s  such as those shown in f i g u r e  5 . 3 . 1 ( a )  were 

produced; each curve in t h i s  f i g u r e  corresponds to  a d i f f e r e n t  magnetic 

f i e l d  s t r e n g t h ,  and the same scale was used f o r  each one. A set of  

t h e o r e t i c a l l y  c a lc u la te d  curves ,  based on a temperature of  300 “C and a 

of 35 MHz is  shown in p a r t  (b) of t h i s  f i g u r e .  The peak SH power 

v a r ie s  as the square of  the magnetic f i e l d  st rength  at  low magnetic f i e l d s ,  

but when the Zeeman s p l i t t i n g  is  comparable with the Doppler width th e re  is  

no f u r t h e r  increase in peak SH power with magnetic f i e l d .  The s a t i s f a c t o r y  

agreement between the t h e o r e t i c a l l y  c a lc u la te d  and e xp e r im en ta l ly  observed  

l i n e  p r o f i l e s  is  a c le a r  i n d i c a t i o n  of  the successful  r o le  of  s e l e c t io n  

rules  in model l ing t h i s  no n l in ear  process. These w i l l  be considered  

f u r t h e r  once the l i n e  p r o f i l e s  of  two-photon absorpt ion have been 

presented ,  so t h a t  the s e l e c t io n  ru le s  f o r  the SHG and the two-photon  

absorpt ion may be compared and c o n t ras te d .

The l i n e  p r o f i l e  of  the SHG was compared exp e r im en ta l ly  with t h a t  of  the  

two-photon absorp t ion .  In  these cases the SH and the spontaneous 

f luorescence a t  330 nm were focussed on to  the input  s l i t  of  a 1 m mono-
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Figure 5 . 3 . 1 .  (a)  Exper im enta l ly  and (b) t h e o r e t i c a l l y  obtained v a r i a t i o n
of second harmonic power with  la se r  f requency ,  at  d i f f e r e n t  magnetic f i e l d  
s t r e n g t h s : -  B = 0 .016 T ( the  curve with the lowest maximum), 0 .028  T,
0.052  T,  0 .074  T, 0 .096  T,  0.121 T,  0 .1 47  T,  0 .167  T,  0 .2 1 0  T, 0 .2 50  T ,  and 
0 .2 90  T ( the widest  cu r v e ) .  The magnetic f i e l d  was perp endicu lar  to  the  
laser  p o l a r i s a t i o n .  Zero detuning corresponds approximate ly to f,
T= 3 0 0 'C, P = 1 mbar, heatpipe b. 0 "

5 .18



chromator (Monospek 1 0 0 0 ) ,  and detected  by a f i l t e r e d  p h o t o m u l t ip l i e r  tube.  

The en t ry  and e x i t  s l i t s  of  the monochromator were wide open, which al lowed  

the monochromator to  act as a s p e c t r a l  f i l t e r  of  2 nm FWHM. The mono­

chromator was set to 330 nm or 289 nm to separate the SHG and 330 nm 

r a d i a t i o n .  The shapes of the l i n e  p r o f i l e s  obtained at 0 .02  T and 0.275  T 

are shown in f i g u r e  5 . 3 . 2 .  At the lower f i e l d  the SH l i n e  p r o f i l e  is  seen 

to be s i m i l a r  t o ,  but s l i g h t l y  narrower than ,  the l i n e  p r o f i l e  of  the 

enhancing two-photon t r a n s i t i o n .  The t h e o r e t i c a l l y  c a lc u la te d  SHG l in e  

p r o f i l e  is  shown by a broken l i n e ;  agreement between theory and experiment  

is very good.

At the higher magnetic f i e l d ,  when the Zeeman s p l i t t i n g  exceeded the 

Doppler w id th ,  the r e l a t i v e  co n t r ib u t io n s  of  the d i f f e r e n t  magnetic 

subleve ls changed s i g n i f i c a n t l y  across the l i n e  p r o f i l e ,  and t h i s  re s u l te d  

in the s t r u c t u r e  seen on both the f luorescence  and SHG p r o f i l e s  in f i g u r e  

5 . 3 . 2 ( b ) .  The marked d i f f e r e n c e  between the two p r o f i l e s  is  due to  the  

d i f f e r e n t  s e le c t io n  ru les  involved in the two cases.

The e f f e c t s  of  the magnetic quantum number s e le c t io n  ru les  are most r e a d i l y

explained at  high magnetic f i e l d  s t r e n g t h s ,  as the f i n e  and hyper f in e

couplings have been broken down, and m̂  ̂ and m̂  approximate we l l  to good

quantum numbers, t h a t  is  S^, Sg, D^, and Dg are each close to  e i t h e r  zero

or one. Figure 5 . 3 . 3  shows the energy le v e ls  of  the 3S and 4D s ta te s  with

the appropr ia te  high f i e l d  (m^,m^) des ignat ion  fo r  each one. Two-photon

absorpt ion of  c i r c u l a r l y  p o la r is e d  l i g h t  occurs wi th  Am^ = 0  and

Am̂  = 0 ,  ± 1 ,  + 2 . This may be expected to give r i s e  to  ten groups of  two-

photon absorpt ion peaks,  f i v e  f o r  each of  m̂  = + 1 / 2 .  However, at high

magnetic f i e l d s  the energy d i f f e r e n c e  between the m = 1 / 2  and m = - 1 / 2s s

ground s ta te s  is  approximately the same as th a t  betweeen the 4D s ta te s  

which d i f f e r  in m̂  ̂ by two,  so only f i v e  sets of  absorpt ion peaks should
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Figure 5 . 3 . 2  Line p r o f i l e s  as the laser  was tuned across the 3S -  4D 
resonance (a) at 0 .02  T and (b) at 0 .275 T,  with the l a s e r  p o l a r i s a t i o n  
at 90" to the magnetic f i e l d .  The dashed l i n e  is  the t h e o r e t i c a l l y  
ca lc u la te d  curve f o r  the SHG, the narrow s o l id  l i n e  is  the ex p e r im e n ta l ly  
determined SHG l in e  p r o f i l e ,  and the  t h i c k e r  s o l id  l i n e  is  the l i n e  p r o f i l e  
of the 330 nm r a d i a t i o n  emit ted  in the cascade decay of  the 4D p o p u la t io n .
I  = 300 "C, P = 1 mbar, heatpipe b.
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be expected.  These peaks are most r e a d i l y  i d e n t i f i e d  using D o p p le r - f re e  

two-photon spectroscopy,  and the r e s u l t  of  such a study is  shown in f i g u r e

5 . 3 . 4  f o r  a f i e l d  s t rength  of  0 .2865  T. Five groups of  peaks are indeed 

observed, corresponding (from l e f t  to  r i g h t )  to Am̂  ̂ = - 2 ,  - 1 , 0 ,  1 , and 2 . 

P lo t te d  under the exper imenta l  t r a c e  are the t h e o r e t i c a l l y  determined  

f requencies of  the t r a n s i t i o n s  which are al lowed in a high magnetic f i e l d .  

Each group of  peaks is  due to  two groups o f  t r a n s i t i o n s ,  one wi th  m̂  = -  1 /2  

and one m̂  = + 1 / 2 .  A non-standard n o ta t io n  fo r  the energy Levels is  

def ined in  f i g u r e  5 . 3 . 3  and used to  descr ibe the o r i g i n  of  each peak in  

f i g u r e  5 . 3 . 4 .  This n o ta t io n  was chosen to  emphasise the regula r  p a t t e r n  of  

the t r a n s i t i o n s .  The Zeeman s p l i t t i n g  formulae described in  sect io n  3.1 

obviously work w el l  in  des cr ib in g  the energy le v e ls  at  t h i s  magnetic f i e l d  

strength  at  l e a s t .

When the laser  r a d ia t io n  was l i n e a r l y  p o la r is e d  perpendicu la r  to  the  

magnetic f i e l d  two-photon absorpt ion  could occur with only Am̂  ̂ = 0 , ± 2  and 

Am̂  = 0 ,  which would correspond to  the centre and two ou ter  groups of  peaks 

in f i g u r e  5 . 3 . 4 .  These are seen in  f i g u r e  5 . 3 . 2 ( b )  as the th ree  Doppler  

broadened peaks l a b e l l e d  "330 nm".

The SHG is known to  be enhanced by al lowed two-photon t r a n s i t i o n s ,  so one

may at  f i r s t  expect to  see th ree  peaks in a SHG l i n e  p r o f i l e  recorded under

the same condit ions as the two-photon absorpt ion spectrum of  f i g u r e

5 . 3 . 2 ( b ) .  However, as shown in equat ion 3 . 2 . 2 9 ,  SHG depends on the product

of th ree  matr ix  elements <D | r .  6  i P X P  j r . £  | S XS  | D>; only the f i r s t  two 

are involved  with  the two-photon t r a n s i t i o n .  The t h i r d  mat r ix  element is  

the quadrupole mat r ix  e lement,  and f o r  t h i s  laser  p o l a r i s a t i o n  i t  r e s t r i c t s  

the t r a n s i t i o n s  to  Am̂  ̂ = ± 2 ,  wi th Am̂  = 0 , as was determined in the  

d e r i v a t i o n  of  the terms of  equat ion  3 . 2 . 3 8 .  Thus the Am̂  ̂ = 0 

t r a n s i t i o n s ,  which gave r i s e  to  the c e n t r a l  peak in the two-photon
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absorpt ion spectra o f  f i g u r e  5 . 3 . 2 ( b ) ,  do not co n t r ib u te  to the SHG, and 

only the two outer  peaks are seen in the SHG l i n e  p r o f i l e .  I t  i s  b e l ieved  

that  t h i s  is  the f i r s t  rep o r t  of  the d i r e c t  observat ion of  d i f f e r e n c e s  in  

magnetic quantum number s e le c t i o n  ru les  f o r  two-photon absorpt ion and 

second harmonic gene ra t io n .

The t h e o r e t i c a l l y  c a lc u la t e d  c o n t r ib u t io n s  to the SHG of  the d i f f e r e n t  

two-photon t r a n s i t i o n s  may be seen in f i g u r e  5 . 3 . 5  where the magnetic f i e l d  

is the same as t h a t  f o r  the highest  f i e l d  p lo t t e d  in f i g u r e  5 . 3 . 1 ,  t h a t  is  

0 .2 9  I .  The diagrams are p lo t t e d  in  a s i m i l a r  form to  f i g u r e  3 . 2 . 2 ;  the 

c i r c l e s  contain vectors which represent  the magnitude and phase of  the  

e f f e c t i v e  d ip o le  d r i v i n g  the SH, and the upper and lower axes show the  

c o n tr ib u t ion s  to  the r ea l  and imaginary p a r ts  of  the e f f e c t i v e  d ip o le  

r e s p e c t i v e ly .

There are only two groups of  t r a n s i t i o n s  which c o n t r ib u te  to  the SHG, 

corresponding to the Am̂  ̂ = ± 2 t r a n s i t i o n s  discussed above. When the laser  

is tuned f a r  below the 3S -  4D resonance the co n t r ib u t io n s  of  the two 

groups to the rea l  par t  of  the e f f e c t i v e  d ip o le  are opposite in s ig n ,  

approximately equal in  magnitude, and sm al l .  The reversa l  in sign is  a 

r e s u l t  of  the low frequency group being described by the term and the  

high frequency group by the terms,  t h a t  is  the q = - 2  and + 2  elements 

of the quadrupole m atr ix  r e s p e c t i v e l y .  The co n t r ib u t io n s  w i t h in  each group 

are o f  the same sign as a l l  have the same value of  q. The imaginary par t  

of Z drops o f f  more r a p i d ly  with detuning than does the re a l  p a r t ,  and so 

the imaginary c o n t r ib u t io n s  to  the e f f e c t i v e  d ip o le  are very sm al l .

As the laser  is  tuned f u r t h e r  in to  the wings of the Doppler-broadened  

t r a n s i t i o n  the magnitudes of  the c o n t r ib u t io n s  to  the r e a l  par t  of  the  

e f f e c t i v e  d ip o le  made by the low frequency group of t r a n s i t i o n s  in c re a s e .
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as is  shown in  the - 6  GHz diagrams.  The co n t r ib u t io n s  of  the high 

f requency t r a n s i t i o n s  are not much changed, as the Laser frequency is  not 

yet s i g n i f i c a n t l y  in t o  the wings o f  those Lines.  This r e s u l t s  in a net  

p o s i t i v e  value f o r  the re a l  par t  o f  the e f f e c t i v e  d i p o l e ,  shown at the side  

of the diagram. There are some smal l c o n t r ib u t io n s  to  the imaginary p ar t  

of the e f f e c t i v e  d i p o l e ,  which cause the s l i g h t  phase d i f f e r e n c e  between 

the second harmonic and the square of  the fundamental ;  t h i s  is  shown by 

the d e v ia t io n  from h o r i z o n t a l  of  the SH vector  at  t h i s  l a s e r  f requency .

The -4  GHz diagrams show the la s e r  f requency approx imate ly in the centre  of

the low frequency group.  In  t h i s  case,  as a r e s u l t  of  the shape of  R e (Z ) ,

there  are both negat ive  and p o s i t i v e  c o n t r ib u t io n s  from t r a n s i t i o n s  in t h i s

group to the r ea l  par t  o f  the e f f e c t i v e  d ip o l e .  The in t e r f e r e n c e  between

these t r a n s i t i o n s  re s u l t s  in  th e re  being only a smal l net  in-phase

component. The sharp peak of  Im(Z)  is centred on the same group,  and so

the imaginary p ar t  of  the e f f e c t i v e  d ip o le  is  l a r g e ,  r e s u l t i n g  in a phase

d i f f e r e n c e  of  99 degrees between the e f f e c t i v e  d ip o le  and E^.w

The o ther  diagrams show the co n t r ib u t io n s  of  the var ious t r a n s i t i o n s  as the  

l aser  is  tuned f u r t h e r  across the l i n e  p r o f i l e ,  and how the phase and 

magnitude of  the e f f e c t i v e  d ip o le  are changed as a r e s u l t  of  the laser  

detunings from the var ious  t r a n s i t i o n s .

At lower magnetic f i e l d  st rengths  the ro les  of  the d i f f e r e n t  t r a n s i t i o n s  

are not so r e a d i l y  e x p la in e d ,  as m̂  and m̂  are not good quantum numbers, 

and the Zeeman s p l i t t i n g  p a t t e r n  is  much less e a s i l y  i n t e r p r e t e d .  However,  

as shown in f ig u r e  5 . 3 . 6 ,  the c a lc u la t e d  f requencies of  the t r a n s i t i o n s  

agree w e l l  with the exper imenta l  t r a c e  o f  D o p p le r - f ree  two-photon  

absorp t ion .  The Am̂  = 0 and Am̂  ̂ = ± 2 s e le c t io n  ru les  f o r  t h i s  geometry 

of SHG s t i l l  ho ld ,  which is  why in  sect io n  3.1 the wavefunctions of  each 

atomic energy le v e l  were expressed as superposit ions  o f  the m̂  = + 1 / 2
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S ta te s .  The c o n t r ib u t io n  o f  any t r a n s i t i o n  to the SHG depends on the

amount of  the m = 1 / 2  (or  m = - 1 / 2 ) e ig enfunct io n  in the two wave-  s s

funct ions  invo lv ed .  This r e s u l t s  in the terms of  equat ion 3 . 2 .5 5  

which were p lo t t e d  as fu n ct io n s  of  f i e l d  in f ig u r e  3 . 2 . 1 .  An a d d i t io n a l  

f a c t o r  to  be considered in  the low f i e l d  case is  t h a t  the (JyM ^ ,F ,m p )  and 

(Jdz-md/Fz-mp) t r a n s i t i o n s  l i e  w i t h in  a Doppler width of  each o t h e r ,  and 

w i l l  i n t e r f e r e  in  the manner t h a t  was described in sect ion  3 . 2 .  This  

causes the peak SH power to  be p red ic ted  to  be p ro p o r t ion a l  to the square 

of the magnetic f i e l d  s t re n g th  at  low magnetic f i e l d s ,  as is  seen to  be the  

case e x p e r im e n ta l l y .  The width of  the SH l in e  p r o f i l e  a lso  increases with  

magnetic f i e l d  as the Zeeman s p l i t t i n g  broadens the range of  two-photon  

absorpt ion frequenc ie s .

A magnetic f i e l d  st rength  o f  0 .016  T ( the  same f i e l d  as t h a t  which was 

present fo r  the curve with the lowest maximum in f ig u r e  5 . 3 . 1 )  was chosen 

fo r  f i g u r e  5 . 3 . 7 ,  which shows the t h e o r e t i c a l l y  c a lc u la t e d  c o n t r ib u t io n s  of  

the var ious  t r a n s i t i o n s  to  the e f f e c t i v e  d ip o le  f o r  SHG as the laser  is  

tuned across the l i n e  p r o f i l e .  In  the high magnetic f i e l d  case dep ic ted in  

f i g u r e  5 . 3 . 5  the and B_g t r a n s i t i o n s  were s p l i t  in to  two 

widely separated groups,  but in the low f i e l d  case t h i s  has not yet  

happened. The t r a n s i t i o n s  are grouped w i t h in  a much smal ler  f requency  

range,  and the signs of  the c o n t r ib u t io n s  of  the le v e ls  do not seem to  

fo l lo w  any reg u la r  p a t t e r n ,  though in fa c t  the signs are r e a d i l y  exp la in e d .  

When the laser  is  tuned to  be below a l l  the t r a n s i t i o n  f req u e n c ie s ,  as in  

the - 3  GHz diagram, a l l  the p o s i t i v e  co n t r ib u t io n s  to  the e f f e c t i v e  d ip o le  

come from the t r a n s i t i o n s  with  m̂  = - 2 ,  and a l l  those with  negat ive  

c o n t r ib u t io n s  are due t o  m̂  = +2 t r a n s i t i o n s .  The sign of  the 

c o n t r ib u t io n  to  the rea l  p a r t  of  the e f f e c t i v e  d ip o le  made by any 

t r a n s i t i o n  is  expected to change sign as the laser  is  tuned through the  

t r a n s i t i o n ’ s centre  freq uency ,  due to the shape of  the rea l  p a r t  of the
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plasma d ispers io n  f u n c t io n .  This i s  indeed seen in f i g u r e  5 . 3 . 7 .  The 

phase and magnitude o f  the e f f e c t i v e  d ip o le  change across the l i n e  p r o f i l e  

due to  the changes in  the net  c o n t r ib u t io n s  to the rea l  and imaginary par ts  

of the e f f e c t i v e  d i p o l e ,  as shown in the diagrams. Although these diagrams 

are more d i f f i c u l t  to  i n t e r p r e t  than those of f ig u r e  5 . 3 . 5 ,  because of  the  

small Zeeman s h i f t i n g  and m̂  and m̂  not being good quantum 

numbers, the same general p r i n c i p l e s  s t i l l  app ly.  The complexi ty of  the  

f ig u r e s  gives some idea of  the amount o f  computation required  to  c a l c u l a t e  

each l i n e  p r o f i l e .  This i s ,  however, w e l l  worth i t  when such good 

agreement is  obtained between theory and experiment.

The asymmetry in the exper imental  curves of  f ig u r e  5 .3 .1  is not expected to  

such a degree from the t h e o r e t i c a l  model developed in chapter  t h r e e .  The 

o r i g i n  of  t h i s  asymmetry is  discussed f u r t h e r  in sect ion  5 . 6 ;  i t  was due to 

the phase mismatching e f f e c t s  in  the medium which were frequency dependent 

due to  the n o n -u n i fo rm i ty  of  the magnetic f i e l d .

Model l ing the homogeneous and inhomogeneous l inewidths  s e p a r a te ly  involved  

a s u b s ta n t ia l  increase in  computing t ime.  I t  was t h e r e f o r e  g r a t i f y i n g  to 

observe th a t  t h i s  model agreed considerab ly  b e t t e r  with the experiment than  

did the theory which used only  a s in g le  damping constant  r e l a t e d  to  the  

Doppler width C97D. This can be seen in f i g u r e  5 . 3 . 8 ,  in  which the  

experimental  l i n e  p r o f i l e s  and the p re d ic t io n s  of  the two t h e o r e t i c a l  

models are compared.

The side-window heat pipe o f  f i g u r e  4 . 3 . 3 ( d )  was set  up f o r  SHG in a manner 

s i m i l a r  to  t h a t  shown in f i g u r e  4 . 1 . 1 ,  with the a d d i t io n  o f  a photo­

m u l t i p l i e r  tube to  monitor  the 330 nm f luorescence  through the side-window,  

and the use of  a 23 cm rad ius of  curva ture d ich ro ic  m i r ro r  to  r e f l e c t  the  

fundamental beam back along i t s  own path .  Angular movement of  the r e t r o -
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Figure 5 . 3 . 8 .  Second harmonic Line p r o f i l e s  at  d i f f e r e n t  magnetic f i e l d  
s t ren g th s ,  condit ions as in f i g u r e  5 . 3 . 1 .  Part (a)  shows the experimental  
l in e  p r o f i l e s ,  part  (b) shows the l i n e  p r o f i l e s  c a lc u la t e d  using the model 
developed in chapter  t h r e e ,  and p a r t  (c)  shows the l i n e  p r o f i l e s  c a lc u la t e d  
using a t h e o r e t i c a l  model which d id  not consider  homogeneous and inhomo-  
geneous broadening s e p a r a t e l y ,  but ju s t  used a s in g le  damping term in the  
c a l c u la t io n s .
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r e f l e c t i n g  m ir ro r  caused the arrangement to  change from a standing wave to  

a running wave setup.  No d i f f e r e n c e  in  the shape of  the SHG l i n e  p r o f i l e  

was seen between the two cases,  though the condit ions f o r  D o p p le r - f ree  

two-photon absorpt ion in the former case were c o r r e c t ,  as evidenced by the 

observat ion of  D o p p le r - f ree  two-photon absorpt ion  peaks through the side  

window. Unl ike  two-photon ab s o rp t io n ,  SHG cannot be a Dopplei— fre e  

process,  as a second harmonic photon can be generated on ly  by the  

absorpt ion of  two photons from one beam. This a r ise s  from the conservat ion  

of photon momentum discussed e a r l i e r ;  in a parametr ic  process i t  is not  

possible fo r  the atom to  be made to  r e c o i l  to  conserve t o t a l  momentum.

L in e a r ly  po la r ise d  fundamental r a d i a t i o n  was once more focussed in to  the

heatp ip e ,  but an o u t - o f - p l a n e  t h r e e - m i r r o r  arrangement was used to  a l i g n

the plane of  p o l a r i s a t i o n  o f  the la se r  l i g h t  at  45® to the magnetic f i e l d .

This al lowed both the Q and Q e f f e c t i v e  dipoles to  be d r i v e n ,  asxy zy

described by equat ions 3 . 2 . 5 5 ,  3 . 2 . 5 6  and 3 . 2 . 5 9 .  The 45° angle caused the  

e f f e c t i v e  dipo les  to have the same geometr ica l  weight ing f a c t o r .  The l in e  

p r o f i l e s  of  the r a d ia t i o n  emanating from the two e f f e c t i v e  d ipo les  were 

measured separa te ly  by i n s e r t i n g  an a p p r o p r ia t e ly  o r i e n t a t e d  l i n e a r  

p o l a r i s e r  in  the second harmonic beam.

At low f i e l d  s t r e n g th s ,  the l i n e  p r o f i l e s  were s i m i l a r ,  as shown in f i g u r e

5 . 3 . 9 ( a ) .  At a higher f i e l d  of  0 .2 94  T the l i n e  p r o f i l e s  of  the two e f f e c ­

t i v e  d ipo les were s i g n i f i c a n t l y  d i f f e r e n t ,  as shown in f i g u r e  5 . 3 . 9 ( b ) .  

Equation 3 . 2 . 3 8  shows t h a t  d i f f e r e n t  two-photon t r a n s i t i o n s  resonant ly  

enhance the two e f f e c t i v e  d ip o le s .  The moment is  associa ted with  

= ± 2  t r a n s i t i o n s ,  wh i le  the moment is  associa ted with  Am  ̂ = ± 1  

t r a n s i t i o n s .  The d i f f e r e n c e s  in frequency dependence of  the magnitudes of  

the and moments are t h e r e f o r e  most evident  at high f i e l d s ,  when 

the Zeeman s p l i t t i n g  is  la rge  and m̂  approximates to  a good quantum number.

5.32



7
6

5

4

3

2
Q

in 1

0

LASER DETUNING (GHz)

-4 -2 0 2 4

LASER DETUNING (GHz)

Figure 5 . 3 . 9 .  Line p r o f i l e s  of  the second harmonic r a d i a t i o n  emanating 
from the two e f f e c t i v e  d ipo les  (a)  at 0 . 0 2 2  T and (b) at 0 .294  T ,  with the  
laser  p o l a r i s a t i o n  at  4 5 ” to  the magnetic f i e l d .  The s o l i d  l in e s  are  
e xp er im en ta l l y  determined,  the dashed l in e s  are t h e o r e t i c a l l y  c a lc u l a t e d .  
The curves with the g r e a te r  maximum in  each case were produced by the z 
e f f e c t i v e  d i p o l e ,  the other  by the x e f f e c t i v e  d ip o le .  T = 290*C,
P = 1 mbar, heatpipe b.
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The four peaks at  high magnetic f i e l d s  may be i d e n t i f i e d  with the  

resonant enhancement of  the outermost fo ur  peaks of  the two-photon 

absorpt ion t r a c e  of  f i g u r e  5 . 3 . 4 .  At high f i e l d s ,  the p r o f i l e  

shows about tw ice  the s p l i t t i n g  of the p r o f i l e  due to  these  

d i f fe re n c e s  in s e le c t io n  r u le s .  The maximum i n t e n s i t i e s  of  the r a d ia t io n  

emitted by the two e f f e c t i v e  d ip o le s  are d i f f e r e n t ,  which is  a lso due to  

the g rea te r  r e l a t i v e  Zeeman s p l i t t i n g  of l e v e ls  c o n t r ib u t in g  to 

than to  the g r e a te r  s p l i t t i n g  of the l i n e  p r o f i l e  leads

to a lower f i e l d  being re qu ired  to  s p l i t  the peaks beyond the Doppler 

w id th ,  at  about which value of  f i e l d  the maximum SH i n t e n s i t y  no longer  

increases with magnetic f i e l d  s t re n g t h .

At low f i e l d s ,  as in f i g u r e  5 . 3 . 9 ( a ) ,  the Zeeman s p l i t t i n g  is s m a l l ,  and so 

there is  l i t t l e  d i f f e r e n c e  in the resonant enhancement of  the two e f f e c t i v e  

d ip o le s ,  and thus the two l i n e  p r o f i l e s  are s i m i l a r .  In  a l l  the cases 

shown in f i g u r e  5 . 3 . 9 ,  the agreement between theory (dashed l i n e )  and 

experiment ( s o l i d  l i n e )  is good. Some of  the small  de v ia t io n s  between the  

experimental  t races  and the t h e o r e t i c a l  ones may have been due to  the  

v a r i a t i o n  of the s e n s i t i v i t y  of  the  p h o t o m u l t i p l i e r  tube with p o s i t io n  and 

p o l a r i s a t i o n  of  the beam C1283.

When the p o l a r i s e r  was removed from the SH beam, both e f f e c t i v e  d ipo les  

contr ib u ted  to  the second harmonic gen era t io n .  The SHG l in e  p r o f i l e s  under 

these condi t ions  are shown in f i g u r e  5 . 3 . 1 0 ;  they are considerab ly  d i f f e r e n t  

from those of  f i g u r e  5 .3 .1  as the moment was now also  c o n t r ib u t in g  to

SHG. I t  is  easy to  see how the l i n e  p r o f i l e s  of  the two e f f e c t i v e  d ip o les  

shown in f i g u r e  5 . 3 . 9  would add up to give the ap p ro p r ia te  curves in f i g u r e  

5 . 3 . 1 0 .  As the p o l a r i s a t i o n  of  the r a d i a t i o n  em it ted  from the two e f f e c t i v e  

dipo les is  (by d e f i n i t i o n )  p e r p e n d ic u la r ,  i t  is p erm is s ib le  to  add 

i n t e n s i t i e s ,  as shown in  equat ion 3 . 2 . 6 0 ,  The two r a d i a t i o n  f i e l d s  cannot
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i n t e r f e r e ,  but the p o l a r i s a t i o n  p ro p e r t ie s  of  the SH beam w i l l  depend on 

the r e l a t i v e  magnitudes and phases o f  the two e f f e c t i v e  d ip o le s .  This is  

explained  f u r t h e r  in the fo l lo w in g  sec t io n .
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Figure 5 . 3 . 1 0 .  Line p r o f i l e s  of  the second harmonic generat ion with the  
fundamental r a d ia t i o n  at 45" to the magnetic f i e l d .  The curves in (a)  are  
exper im enta l l y  determined,  those in (b) are t h e o r e t i c a l l y  c a l c u l a t e d .  The 
curves are at  d i f f e r e n t  magnetic f i e l d  s t r e n g t h s : -  B = 0 .016  T ( th e  curve  
with the lowest maximum), 0 .028  T,  0 .052  T,  0 .074 T,  0 .100  T ,  0 .1 20  T,  
0*1^7 T,  0 .168  T ,  0 .212  T,  0 .25 0  T, and 0 .290 T ( the widest  cu rve ) .
T = 284*C,  P = Imbar,  heatp ipe b.
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5.4  VARIATION OF THE POWER AND POLARISATION PROPERTIES OF THE

SECOND HARMONIC WITH MAGNETIC FIELD

The Laser p o l a r i s a t i o n  was set  at  45 ‘’ to the magnetic f i e l d  so t h a t  both 

e f f e c t i v e  d ipo les  were e x c i t e d .  The power and p o l a r i s a t i o n  p ro p e r t ie s  of  

the SH were examined as the magnetic f i e l d  st rength  was v a r i e d ,  at a 

constant  laser  f requency.  The SH power was measured using the f i l t e r e d  

so la r  b l in d  p h o t o m u l t ip l i e r  tube.  The p o l a r i s a t i o n  p r o p e r t ie s  of  the SH 

l i g h t  were measured in  two d i s t i n c t  ways. In  the f i r s t ,  a l i n e a r  p o l a r i s e r  

was in s e r te d  between the oven and the d e t e c t o r .  The p o l a r i s e r  was r o ta te d  

to the p o s i t io n s  of  minimum and maximum SH s ig n a l ;  the angle of  the  

p o l a r i s e r  gave the p o l a r i s a t i o n  angle o f  the SH, and the square root  of  the  

r a t i o  of  the s ig na l  s trengths  a t  the two po s i t io n s  gave the r a t i o  of  the  

lengths of  the e l l i p s e  axes. A second, " n u l l " ,  method was devised to

measure a / b ,  in  order to  avoid problems due to the non-uniform response of

the p h o t o m u l t i p l i e r  tube [ 1 2 8 ] .  A S o l e i l  Babinet  compensator was set up as 

a quartei—wave p l a t e  at 289 .3  nm and was in ser te d  in the SH beam with  a 

l i n e a r  p o l a r i s e r  between i t  and the d e t e c t o r .  Zero SH s igna l  was obtained  

only i f  the axes of  the q u a r te r  wave p l a t e  were along the axes of  the  

p o l a r i s a t i o n  e l l i p s e ,  and i f  the transm ission  ax is  of the p o l a r i s e r  was at  

90*  ̂ to the l i n e a r l y  p o la r is e d  l i g h t  c rea ted  by the quarte r-wave p l a t e .  The 

o r i e n t a t i o n  of  the e l l i p s e  was then given d i r e c t l y  by the angular  p o s i t io n  

of the quarter-wave p l a t e ,  and the r a t i o  of the lengths of  the e l l i p s e  axes 

was given by the tangent  of  the angle between the q u ar te r  wave p la t e  and 

the l i n e a r  p o l a r i s e r .

The power and p o l a r i s a t i o n  p r o p e r t i e s  of the SH were in v e s t ig a t e d  at  th ree  

laser  f requenc ies:  f g ,  fg  + 1 .5  GHz, and fg  + 3 GHz. The s t r i k i n g l y  

d i f f e r e n t  r e s u l t s  obtained a t  these th ree  frequencies  are shown in f ig u r e s
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5 . 4 . 1 ,  5 . 4 . 2 ,  and 5 . 4 . 3 .  In  a l l  cases the re  is  good agreement between the  

t h e o r e t i c a l l y  p red ic ted  behav io ur ,  which is  shown by s o l id  l i n e s ,  and the  

experimental  readings marked as po in ts  on the graphs. The p o l a r i s a t i o n  

s ta te  of  the SH r a d ia t i o n  at  se le c ted  magnetic f i e l d s  is  in d ic a te d  by the  

p o l a r i s a t i o n  e l l i p s e s  at  the top of the f i g u r e s .

At f g ,  which is  approximate ly at  the centre  of  the Doppler-broadened two-  

photon absorpt ion peak, the SH power is  seen ( f i g u r e  5 . 4 . 1 ( c ) )  to r i s e  to a 

peak at  0 .1 6  T,  as can also be deduced from f i g u r e  5 . 3 . 1 0 .  The e c c e n t r i c i t y  

of the  SH is very close to  one ( i . e . ,  the p o l a r i s a t i o n  of  the SH is almost  

l i n e a r )  at a l l  f i e l d s  as seen in  f i g u r e  5 . 4 . 1 ( b ) .  This is  due to  the two 

e f f e c t i v e  d ip o les  being almost e x a c t l y  in phase with  each other  at a l l  

f i e l d  s t rengths ;  the maximum expected phase d i f f e r e n c e  between them is  

c a lc u la ted  to  be 1 . 3 * .  Because o f  the d i f f e r e n t  growth rates  of  the two 

e f f e c t i v e  d ip o le s ,  the p o l a r i s a t i o n  of  the SH ro ta tes  as the f i e l d  is  

in creased,  as shown in f i g u r e  5 . 4 . 1 ( a ) .  At low f i e l d s  the two e f f e c t i v e  

dipoles have approximately the same magnitude, and so the second harmonic 

is p o la r ised  at  the same 45* angle to  the magnetic f i e l d  as the fundamental  

beam. At t h i s  laser  f requency a t  higher magnetic f i e l d s  the z e f f e c t i v e  

dip o le  is  la r g e r  than the x one, as shown in f i g u r e  5 . 3 . 9 ,  and so the  

p o l a r i s a t i o n  d i r e c t i o n  moves towards the z ax is .

The power and p o l a r i s a t i o n  p ro p e r t ie s  of  the SH at fg + 3 GHz may be 

explained with re fe rence  to  f i g u r e  5 . 4 . 4 ,  which shows the t h e o r e t i c a l l y  

ca lc u la te d  s iz e  and r e l a t i v e  phase of  the two e f f e c t i v e  d ipo les when the  

laser  is  tuned to  t h i s  frequency;  a damping constant  of  35 MHz and a vapour 

temperature of  300"C were used in the c a l c u l a t i o n .  At t h i s  laser  

f requency the peak in the magnitude of  the x e f f e c t i v e  d ip o le  occurs at  

0 .23  T,  as is  seen ex p e r im e n ta l ly  in  f i g u r e  5 . 3 . 1 .  This is  due to  the  

t r a n s i t i o n s  which c o n t r ib u t e  to  being Zeeman-shifted to  cause maximum
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Figure 5 . 4 . 1 .  Power and p o l a r i s a t i o n  p ro p e r t ies  of  the second harmonic 
r a d i a t io n  as funct ions of  the magnetic f i e l d  s t ren g th .  The f i e l d  was at  45' 
to the p o l a r i s a t i o n  of  the fundamental ,  and the la se r  was tuned to  f g .
The exper imental  po in ts in  par ts  (a) and (b) were taken in the two ways 
described in  the t e x t : -  + using the l i n e a r  p o l a r i s e r  a lon e ,  x using the  
n u l l  technique.  The curves are t h e o r e t i c a l l y  c a l c u l a t e d ;  the curve in part  
(c) was normal ised to  have the same maximum as the exper imenta l  readings .  
The e l l i p s e s  at  the top of the diagram are drawn to  in d i c a t e  the  
p o l a r i s a t i o n  s t a t e  o f  the l i g h t  at  var ious magnetic f i e l d  s t rengths ;  in 
these diagrams the x ax is  i s  v e r t i c a l  and the z ax is  h o r i z o n t a l .
T = 294 "C, O' P = 1 mbar, heatpipe b.
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Figure 5 . 4 . 2 . Power and p o l a r i s a t i o n  pro p er t ies  of  the SH as funct ions  of  
magnetic f i e l d  s t r e n g t h ,  a t  a la s e r  f requency of  fg  + 1 .5  GHz. Other  
condit ions were the same as those l i s t e d  with f i g u r e  5 . 4 . 1 .
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Magnetic Field (Tesla)

Figure 5 . 4 . 3 .  Power and p o l a r i s a t i o n  p ro p e r t ie s  of  the SH as fu nct io ns  of  
the magnetic f i e l d  s t r e n g t h ,  at  a la ser  f requency of  f_  + 3 GHz. Other  
condit ions were the same as those l i s t e d  with f i g u r e  5 . 4 . 1 ,  but the c i r c l e s  
mark another set o f  exper imental  r e s u l t s  taken using the n u l l  method.
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Magnetic Field (Tesla)

Figure 5 . 4 . 4 .  Calcu la ted  magnitudes o f ,  and phase d i f f e r e n c e  between, the  
two e f f e c t i v e  d ip o les  d r i v i n g  the SHG. These are p l o t t e d  as funct ions  of  
magnetic f i e l d  s t r e n g t h ,  at  a la se r  f requency of  fg + 3 GHz. A vapour 
temperature of  300 *0 and a damping constant of 35 MHz were assumed.
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resonant enhancement, as was shown t h e o r e t i c a l l y  in  f i g u r e  3 . 2 . 2 .  Because

the t r a n s i t i o n s  which d r i v e  are subject  to  less r e l a t i v e  Zeeman

s p l i t t i n g  than those d r i v i n g  the s i z e  of  the former moment is  seen

s t i l l  to  be increas ing  at  0 . 3  T, as the Zeeman e f f e c t  moves the ap p ro p r ia te

leve l  d i f f e re n c e s  c loser  in t o  resonance with  the SH frequency.  The sum of

the SH powers due to  the Q and Q moments gives the t o t a l  SH power shownxy zy

in f i g u r e  5 . 4 . 3 ( c ) .  F igures 5 . 4 . 1 ( c )  and 5 . 4 . 2 ( c )  show peaks in  the SH 

power; as these r e s u l t s  were taken c lo ser to l i n e  centre than those of  

f i g u r e  5 . 4 . 3 ,  a smal ler  f i e l d  was requ ired  to  s h i f t  the app ro p r ia te  l e v e ls  

in to  pos i t io ns  of  maximum resonant enhancement, and the s izes  of  both the x 

and z e f f e c t i v e  d ipo les  have passed t h e i r  maxima by 0 .3  T.

The c a lc u la te d  phase d i f f e r e n c e  between the two e f f e c t i v e  d ip o les  at the  

l aser  f requency fg  + 3 GHz is  shown in f i g u r e  5 . 4 . 4 ( c )  as a fu n c t io n  of  

magnetic f i e l d .  The maximum phase d i f f e r e n c e  at t h i s  la se r  f requency is  

much g r e a te r  than at  fg. The r e l a t i v e  phase of  the two moments a f f e c t s  

the p o l a r i s a t i o n  s t a t e  of  the SH r a d i a t i o n .  This is  seen in f i g u r e  

5 . 4 . 3 ( b )  as a reduct ion in the e c c e n t r i c i t y  of  the SH, though c i r c u l a r l y  

p o la r is e d  l i g h t  was not produced, as the two moments had d i f f e r e n t  

magnitudes. However, a phase d i f f e r e n c e  of  g re a te r  than 90° would have 

resu lt ed  in the p o l a r i s a t i o n  angle passing in to  the next quadrant;  f ig u r e s  

5 . 4 . 3 ( a )  and 5 . 4 . 4 ( a )  show t h i s  happening at 0 .26  T.

The change in  the p o l a r i s a t i o n  p ro p e r t ie s  of the SH with magnetic f i e l d  

st rength  may thus be exp la ined  in terms o f  the changes in  the r e l a t i v e  

phases and magnitudes of  the two e f f e c t i v e  d ip o le s .  These changes are 

brought about by d i f f e r e n c e s  between the resonant denominators app lying to 

the t r a n s i t i o n s  which enhance the two e f f e c t i v e  d ip o le s .  Near l i n e  centre  

the phase d i f f e r e n c e s  between the fundamental  and the e f f e c t i v e  d ipo les are  

always s m a l l ,  and so the e c c e n t r i c i t y  of  the SH is close to  1 .0  ( the
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reasons fo r  the smal l phase d i f f e r e n c e  in the case of  the  x e f f e c t i v e  

dipole  were shown sch e m a t ic a l ly  in  f ig u r e s  5 . 3 . 5  and 5 . 3 , 7 ) .  Further  from 

l in e  c e n t re ,  as was shown in f i g u r e  3 . 3 . 2  fo r  the x e f f e c t i v e  d i p o l e ,  the  

imaginary p a r t  of  the e f f e c t i v e  d ipo les  may become s i g n i f i c a n t ,  and the  

phase d i f f e r e n c e  between the two e f f e c t i v e  dipoles causes s i g n i f i c a n t  

d ev ia t io ns  from l i n e a r  p o l a r i s a t i o n  of  the SH. S i m i l a r l y ,  the amount of  

p o l a r i s a t i o n  r o t a t i o n  depends on the r e l a t i v e  sizes  of  the e f f e c t i v e  

d ip o le s ,  the r o t a t i o n  being much g r e a t e r  at  fg + 3 GHz than at l i n e  

cent re .

5 .5  SECOND HARMONIC POWER DEPENDENCE ON THE FUNDAMENTAL 

POLARISATION

In order to measure the dependence of  the second harmonic power on the  

fundamental p o l a r i s a t i o n  an g le ,  a ha l f -w ave  p l a t e  was in s e r te d  before  the  

oven to  vary the angle between the plane of  p o l a r i s a t i o n  of  the fundamental  

and the magnetic f i e l d .  The SH power was measured d i r e c t l y  by the f i l t e r e d  

so la r  b l in d  p h o t o m u l t i p l i e r  tube .

At low f i e l d s ,  in  which the two e f f e c t i v e  dipoles grow a t  the same r a te  

when the fundamental p o l a r i s a t i o n  is  at  45*' to the magnetic f i e l d ,  the SH 

power is  expected to  show a s i n ^ 0  dependence on the p o l a r i s a t i o n  angle

®îy®xy + K y \y  = represents
2

Q /8 and 5 represents Q /£  e in equat ions 3 .2 .5 5  and 3 . 2 . 5 6 .  The xy X zy zy X y
p 2  2  2

( .  are approx imate ly equal  at  low f i e l d s ,  so Icu*^ (c ) + (£ £ ) = s in  0 .^ly SH X X z

This was observed, and is  shown in  f i g u r e  5 . 5 . 1 .  The d i f f e r e n c e  in the  

growth ra te  of  the two e f f e c t i v e  d ipo les  in higher magnetic f i e l d s  was 

described in the previous s e c t io n .  This leads to  a more complicated than  

in the low f i e l d  case. At a fundamental p o l a r i s a t i o n  angle of  90*
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Figure 5 . 5 . 1 .  V a r i a t i o n  of  the SH power with the fundamental p o l a r i s a t i o n  
angle .  Each t h e o r e t i c a l l y  c a lc u la t e d  curve was normal ised to  have the same 
peak power as i t s  associated set  o f  experimental  r e s u l t s -  Columns 1 to 3 
show the re s u l ts  f o r  the la se r  tuned to  f g ,  fg + 1 .5  GHz, and fg  + 3 GHz 
r e s p e c t i v e l y .  The d i f f e r e n t  rows show the re s u l ts  f o r  d i f f e r e n t  magnetic 
f i e l d  s t ren g th s .  I  = 2 8 5 °C, P = 1 mbar, heatpipe b.

only the x e f f e c t i v e  d ip o le  is  d r i v e n ,  and the SH power a p p ro pr ia te  to  t h a t

d ip o le  alone is  ob ta in ed .  At o ther  angles the z e f f e c t i v e  d ip o le  is  a lso

d r i v e n ,  and i t  adds to  the t o t a l  SH power. This e f f e c t i v e  d ip o le  is

strongest  at angles o f  45*̂  and 135* .  Figure 5 .5 .1  shows t h a t  the theory

2and experiment agree t h a t  the maximum d e v ia t io n  from the sin 0  

behaviour occurs at  the highest  magnetic f i e l d s ,  in which cases the  

d i f fe r e n c e s  in  the magnitudes o f  the two e f f e c t i v e  d ipo les are g e n e ra l ly

the g r e a t e s t .  The dependence o f  the shapes of  the curves with respect  to

laser  f requency may be understood with  re ference  to f i g u r e  5 . 3 . 9 ;  the
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f requencies in f i g u r e  5 . 3 . 9 ( b )  at which the re  is  the grea tes t  d i f f e r e n c e  in

magnitudes of  the two e f f e c t i v e  d ipo les  are the f requencies at which there
2

is g re a te s t  d e v ia t io n  from the sin  0  behaviour in the graphs in the 

lowest row of  f i g u r e  5 . 5 . 1 .

5 .6  INVESTIGATION OF THE ASYMMETRY OF THE SECOND HARMONIC LINE 

PROFILES IN HIGH FIELDS

For a l l  the studies reported  so f a r  in t h i s  t h e s i s ,  apar t  from those in  

sect ion 5 . 2 ,  the p ro p e r t ie s  of  the SH have been c a lc u la t e d  from the  

i n t e r a c t i o n  of  a s in g le  atom with the f i e l d ,  with al lowance made only fo r  

the Doppler e f f e c t  causing d i f f e r e n c e s  between atoms. This has given good 

agreement f o r  most SH p r o p e r t i e s ,  but has f a i l e d  to  e x p la in  the d i f f e r e n c e  

in the heights of  the two peaks in the  SH l in e  p r o f i l e  in high f i e l d s ,  such 

as shown in f i g u r e  5 . 3 . 1 .  In  t h i s  sect ion  bulk e f f e c t s  in  the medium 

w i l l  be included in the model. Three mechanisms f o r  f requency-dependent  

phase-mismatching e f f e c t s  w i l l  be considered as possib le reasons fo r  the  

asymmetry of  the h i g h - f i e l d  l i n e  p r o f i l e s :  disp ers io n  due to  quadrupole or

two-photon resonances on the 3S -  AD t r a n s i t i o n ,  and the e f f e c t s  of  a 

non-uniform magnetic f i e l d .

As has a lready been noted ,  the major c o n t r ib u t io n  to  the d i f f e r e n c e  in the  

phase v e l o c i t y  of  the fundamental  and the second harmonic is  from the 3S -  

3P t r a n s i t i o n s .  These are some 300 cm  ̂ o f f  resonance with  the laser  

l i g h t ,  so the v a r i a t i o n  in r e f r a c t i v e  index due to  these t r a n s i t i o n s  w i l l  

be n e g l i g i b l e  across the 3S -  AD l in e  p r o f i l e .  This is  not so, however,  

fo r  the c o n t r ib u t io n  to  the d is p ers io n  from the 3S -  AD t r a n s i t i o n s .  

Although these e l e c t r i c  quadrupole and two-photon t r a n s i t i o n s  are very
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weak, they would be e x a c t ly  in resonance, and so may become s i g n i f i c a n t .  

This is  considered in  the fo l lo w in g  paragraphs.-

For resonant t r a n s i t i o n s  the Se l lm e ie r  equat ion must be modif ied to  inc lude  

a damping term; in t h i s  case,  using the same no ta t io n  as in  equat ion 5 . 2 . 9 ,

nCA) -  1 = Nr ^  <X . f .. ( 5 . 6 . 1 )
e S  1 1]______ _______________ ____

2TT ^  1 /A * .  -  1/A* + X ^ / ( -1  + A^/A^..)
1 ] 1 1 ]

where is  the damping constant f o r  l e v e l  i ,  which is  equal  to  the FWHM

of the absorpt ion l i n e .  T u l l  et  a l  [923 ca lcu la ted  g^f^^ fo r  the 3S -  4D

t r a n s i t i o n  to  be 9 .9 7  x 10 ^ ,  where ĝ  ̂ is  the s t a t i s t i c a l  weight o f  the 4D

l e v e l .  An es t im ate  o f  the c o n t r ib u t io n  o f  t h i s  quadrupole resonance to  the

r e f r a c t i v e  index was made by c a l c u la t in g  n(A) -  1 fo r  one of  the 3S -  4D

t r a n s i t i o n s ,  ig nor ing  the Doppler e f f e c t ,  and tak in g  to  be 70 MHz. The

maximum values of  jn(A) -  1 j occur from the resonant f requency ,  and

-29were ca lc u la te d  to  be 2 .8  x 10 x N. This f ig u r e  is  two orders of  

magnitude sm al ler  than the value of  the same q u a n t i ty  caused by the sodium 

D l i n e s .  A d d i t i o n a l l y ,  the d isp ers ive  e f f e c t s  of  t h i s  quadrupole resonance 

w i l l  be lessened by Doppler broadening and the presence of  the other  3S -  

4D t r a n s i t i o n s .  Thus i t  seems u n l i k e l y  t h a t  the asymmetries in  the l i n e  

p r o f i l e s  were due to  frequency-dependent phase-mismatching e f f e c t s  due to  

the d ispers io n  caused by the quadrupole resonance.

As the two-photon absorpt ion  st rength  is  dependent on the laser  i n t e n s i t y ,  

so is  the change in  r e f r a c t i v e  index caused by the two-photon absorpt ion .  

The r e l a t i v e  s t rengths  o f  the r e f r a c t i v e  index changes due to  the  

quadrupole and two-photon t r a n s i t i o n s  may be considered by c a l c u la t io n  of  

the r e l a t i v e  absorpt ion  r a tes  of  the two t r a n s i t i o n s .  The 3S -  4D two-  

photon absorpt ion  r a t e  per atom is given by Hanna e t  a l  C143 as
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TPA
£

^dp '*^ps

ps
“ w

( 5 . 6 . 2 )

where is the laser  i n t e n s i t y ,  is the damping constant f o r  the 4D 

s t a t e s ,  and the other  symbols are as def ined  in chapter  t h r e e .  The s i n g l e ­

photon quadrupole t r a n s i t i o n  ra te  C12, 92 ,  1303 is

\  -- 6 -67  X 10 9s ^sd

4 TT 2  n f) -  2  Wj )̂

( 5 . 6 . 3 )

Mi les and H a r r is  [1243 ta b u la te  the d ip o le  matr ix  elements in equat ion  

5 . 6 . 2  to be <3S|er |3P> = 2.13  x 10”^^ Cm and <3P|er |4D> = 7.31 x 10"^° Cm; 

the value used fo r  the o s c i l l a t o r  st rength  f o r  the quadrupole t r a n s i t i o n  

was the one mentioned above. In  t h i s  case the r a t i o  of the absorpt ion  

rates  is  Wg(2Wj^)/W-j-p^(W|^)=:1.5x 10^/1 For a 100 pm diameter la ser  beam waist  

and a la se r  power of  0 .5  W, t h i s  r a t i o  equals 2 .  Therefore  under the 

condit ions o f  these experiments the e f f e c t  of  the quadrupole t r a n s i t i o n  on 

the d ispers io n  is  expected to  be g rea te r  than t h a t  of  the  

two-photon ab sorp t ion .  When the beam was not focussed,  the e f f e c t s  of  

two-photon absorpt ion on the d is pers ion  would have been even less .

The phase of  the generated second harmonic depends on the st rength  of  the  

magnetic f i e l d  and the laser  f requency ,  as was i l l u s t r a t e d  in f ig u re s

3 . 2 . 2 ,  5 . 3 . 5  and 5 . 3 . 7 .  Thus, in  an inhomogeneous magnetic f i e l d ,  

f requency dependent e f f e c t s  may a r i s e  from magnetic f i e l d  g rad ie n ts  causing  

a v a r i a t i o n  in the phase of  the second harmonic which may tend to  

counteract  or r e in f o r c e  the phase mismatching processes described in  

sect ion  5 . 2 .  This e f f e c t  may be s i g n i f i c a n t  at  p a r t i c l e  d e n s i t i e s  near or 

above the f i r s t  phase-match peak of  f i g u r e  5 . 2 . 2  i f  the change in magnetic
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f i e l d  is  not symmetrical about the centre  of  the vapour zone and beam 

focus.

Experiments were c a r r i e d  out to  determine which of  these e f f e c t s  dominated 

the product ion of  the asymmetry of  the l i n e  p r o f i l e s .  The laser  p o l a r ­

i s a t i o n  was perpendicu lar  t o  the magnetic f i e l d  throughout.  The asymmetry 

of the peak heights at  0 . 3  T was found not to be dependent on the la ser  

power, conf irming t h a t  the d is p ers io n  due to two-photon absorpt ion  was not 

importan t .  The lens t h a t  focussed the lase r  beam in to  the c e l l  was moved 

along the beam a x i s ,  and SH l i n e  p r o f i l e s  were recorded at  0 .284  T. The 

r a t i o s  of  the heights o f  the two peaks are p l o t t e d  against  the p o s i t io n  of  

the lens in f i g u r e  5 . 6 . 1 .  Here i t  i s  seen tha t  the r a t i o  may be g re a te r  or

1 0

LENS POSITION (cm)

Figure 5 . 6 . 1 .  R a t io  of  the SH powers at  the low and high 
f requency peaks o f  SHG in a 0 .284  T f i e l d ,  as a fu n c t ion  of  
the p o s i t io n  of  the 20 cm fo ca l  length lens i  The lens was 
26 .4  cm from the centre  o f  the oven at  the zero o f  the lens 
p o s i t io n  a x i s .  T = 2 8 5 *C, B = 0 .284  T,  P = 1 mbar, heatpipe c
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Less than one, depending on the p o s i t io n  of  the Lens. The separa t ion  of  

the maximum and minimum in  t h i s  curve is  approximately the same as the 

vapour zone length .  When no lens was used the peak height  r a t i o  was 1 .0 ;  

in t h i s  s i t u a t i o n  the laser  beam was only very s l i g h t l y  d ivergent  during  

i t s  passage through the vapour.  I t  i s  u n l i k e l y  t h a t  the d ispers io n  due to  

the quadrupole resonance would produce t h i s  shape of curve ,  so f u r t h e r  work 

was done to  i n v e s t i g a t e  the e f f e c t  o f  the non-uniform magnetic f i e l d .

The theory  o f  harmonic genera t ion  using a focussed beam has been given by 

Ward and New C1353; the presence o f  a beam focus introduces  phase s h i f t s ,  

and the gaussian beam i n t e n s i t y  and phase d i s t r i b u t i o n  must be taken in to  

account.  To s i m p l i f y  comparison of  experiment with t h e o r y ,  f u r t h e r  

experiments were conducted wi thout  using the focussing le n s ,  so th a t  the  

2  mm diameter laser  beam may be t r e a t e d  approx imate ly as an i n f i n i t e  plane  

wave. I t  was shown in  sec t io n  5 .2  t h a t  f o r  such a plane wave

dE, = f N ( E * / 2 )  expCiCk^ -  2k ) y ]  expCi^] dy. ( 5 . 6 . 4 )
2 w ~w 2 w w r ^

The q u a n t i ty  f . e x p C i^ ]  depends on the magnetic f i e l d  s t r e n g t h ,  and is  

p rop o r t io n a l  to  when the magnetic f i e l d  and laser  p o l a r i s a t i o n  are , 

perpen dicu lar  to each o t h e r .  P u t t in g  + iQ^ (where and

are r e a l ) ,  Ak = k^^ -  2  k^,  and assuming a non-depleted input  wave gives

d§2 w = Nk' CQpCOs(yAk) -  QjS in(yAk)  +

i (QjCos(yAk)  + QpSin(yAk) ) ]  dy ( 5 . 6 . 5 )

where k ' is a constant .  This equat ion  was in te g ra te d  f o r  the condit ions of  

i n t e r e s t ,  v iz
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rco n s tan t  f o r  0  < y < 0 . 1 2  m 
N = |  y ( 5 . 6 . 6 )

l 0  f o r  0 . 1 2  m < y < 0

k = 8 .97  X 10"^° N m " \

In a uniform magnetic f i e l d  the r e s u l t  is  the same as from equat ion 5 . 2 . 7 ,  

and in a s i t u a t i o n  where the magnetic f i e l d  is  symmetrical about the centre  

of the vapour zone the heights  of  the two SH peaks are s t i l l  approximately  

equal .  However, i f  the beam experiences more p o s i t i v e  magnetic f i e l d  

grad ient  than negat ive  magnetic f i e l d  g r a d i e n t ,  t h i s  is  no longer the case.  

At p a r t i c l e  d e n s i t i e s  below the f i r s t  phase match peak, and in a p o s i t i v e  

magnetic f i e l d  g r a d i e n t ,  the  change in expCi^]  with p o s i t io n  reduces the  

phase v e l o c i t y  mismatch f o r  the low frequency peak in SHG, but increases  

the phase v e l o c i t y  mismatch f o r  the high frequency peak.

To t e s t  t h i s  e x p er im e n ta l ly  the electromagnet  was moved 3 .5  cm out from the 

p o s i t io n  th a t  was symmetrical  about the vapour reg ion .  SHG l i n e  p r o f i l e s  

were recorded with a peak f i e l d  o f  0 .288  T over a range of  p a r t i c l e  

d e n s i t i e s ,  and then analysed to  give  p lo ts  of  SH power agains t  p a r t i c l e  

d ensity  at a number of  f req uenc ies  across the l i n e  p r o f i l e .  Two such 

curves are shown in f i g u r e  5 . 6 . 2  f o r  f requencies t h a t  correspond to  the two 

peaks in  SHG at low p a r t i c l e  d e n s i t i e s .  The experimental  arrangement was 

such t h a t  there  was more p o s i t i v e  magnetic f i e l d  g rad ien t  than neg a t ive ;  

the f i g u r e  shows the b e n e f i c i a l  e f f e c t  of  t h i s  arrangement on the low 

f requency peak and the d e t r im e n ta l  e f f e c t  on the high frequency peak,  as 

expected from the arguments o u t l in e d  above.

The t h e o r e t i c a l l y  c a lc u la t e d  curves are shown in par t  (b) of  the same 

f i g u r e .  The agreement is  f a i r l y  good; the main fea tu re s  of  theory  and 

experiment c o r r e l a t e  w e l l .  I t  was found th a t  the depths of  the minima in  

the t h e o r e t i c a l l y  c a lc u la t e d  curves were ra th er  s e n s i t i v e  to  the magnet 

p o s i t i o n .  The small  displacement o f  the peaks between theory and
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Figure 5 . 6 . 2 .  (a) Experimental  and (b) t h e o r e t i c a l  v a r i a t i o n  of  SH power
with sodium atom d ens ity  in the nonuniform magnetic f i e l d  described in  the 
t e x t ,  the peak s t rength  of  which was 0.288 T. The la se r  f requencies  were 
chosen to  be close to  the two frequencies  of  peak SHG in t h i s  magnetic f i e l d  
s t re n g th .  The l in e s  drawn in pa r t  (a)  are to  guide the eye.  P = 1 mbar,

4.1 GHz ( l o w ) ,  heatpipe c.fg + 3 .9  GHz ( h i g h ) . = '0
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experiment may w el l  have been due to  n o n u n if orm it ie s  in  the vapour d e n s i t y ,  

or an inc o r rec t  es t im ate  of  the vapour temperature .  However, these r e s u l t s  

v e r i f y  th a t  the asymmetry in  the l i n e  p r o f i l e s  was indeed due to  the  

e f f e c t s  o f  the nonuniform f i e l d .  S im i la r  considerat ions w i l l  hold f o r  the  

case of  a focussed beam, but the lo c a t io n  of  the beam focus in the 

inhomogeneous f i e l d  must a lso  be considered .  D e ta i le d  c a l c u la t io n s  were 

not c a r r i e d  out f o r  such cases, due to  the complicat ions mentioned above. 

This study has,  however, unambiguously determined t h a t  changes in the phase 

of the generated second harmonic due to  changes in the magnetic f i e l d  

strength can produce asymmetries in the SHG l i n e  p r o f i l e s  such as those 

tha t  were observed.

At p a r t i c l e  d e n s i t i e s  much less than the f i r s t  phase match peak the phase 

changes have l i t t l e  e f f e c t  in  th e o ry ;  in p r a c t ic e  the peaks in the l i n e  

p r o f i l e s  are seen to  have approximately equal peak h e ig h ts .  At p a r t i c l e  

d e n s i t i e s  less th an ,  but n e a r ,  t h a t  of  the f i r s t  phase match peak,  the low 

f requency peak in  the l i n e  p r o f i l e  is  g r e a te r  than the high frequency peak 

under the condit ions described above. At higher p a r t i c l e  d e n s i t i e s ,  

c e r t a i n  frequencies may correspond to  a minimum on the phase match curve ,  

and others to  a maximum; t h i s  would g ive  r i s e  to a much d i s t o r t e d  l i n e  

p r o f i l e .  Such a t r a c e  is  shown as the t h i c k e r  l i n e  in f i g u r e  5 . 6 . 3 ;  the 

th in ner  l i n e  is  a l i n e  p r o f i l e  a t  a p a r t i c l e  d ens i ty  below the f i r s t  phase 

match peak.
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LASER DETUNING (GHz)

Figure 5 . 6 . 3 .  SHG Line p r o f i l e s  we l l  below and f a r  above the  
f i r s t  phase match peak. The t h i n  l i n e  is the e xp er im en ta l l y  
recordedgl ine p r o f i l e  at  an atomic den si ty  of  2 .7 9  x 10 
atoms m ; the t h i c k - . l i n e  is  the same, but at an atomic 
d ensity  of  1 .08  x 10 atoms m . B = 0.289  T,  P = 1 mbar, 
heatpipe c.

5 . 7  EFFECTS OF TEMPERATURE CHANGE

Changes in the temperature of  the sodium vapour cause changes in the  

p a r t i c l e  d e n s i t y ,  the r e s u l t s  of  which have been described in sect ions 5.2  

and 5 . 6 .  A much less s i g n i f i c a n t  e f f e c t  of  a change in vapour temperature  

is the r e s u l t i n g  change of  Doppler w id th .  A change in vapour temperature  

from 2 3 8 *C to 3 1 9 *C re s u l te d  in a 1 5 0 - f o ld  increase in SH power, but an 

increase in Doppler width to  a width of only 1.08 times th a t  at the o r i ­

g in a l  temperature is  expected from equation 5 . 1 . 2 .  The f r a c t i o n a l  increase  

in the SHG l inew id th  is  even le s s ,  as f i n e ,  hyperf in e  and Zeeman s p l i t t i n g  

are s i g n i f i c a n t ,  and independent of  the Doppler wid th .  The temperature at  

which the SHG was a maximum was 319*C,  and 238*C was the lowest temperature  

at which l i n e  p r o f i l e s  could be r e a d i l y  recorded with  a reasonable s ignal
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to  noise r a t i o .  For completeness, sets of Line p r o f i l e s  at these temper­

atures  are shown in f ig u r e  5 . 7 . 1 ,  but th e re  is l i t t l e  to  be seen in t h i s  

f i g u r e  th a t  has not a lready been mentioned in the previous sect io ns .
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Figure 5 . 7 . 1 .  Exper imenta l ly  obta ined l i n e  p r o f i l e s  at  ( a ) *2 38  C and 
(b) 319*C. The magnetic f i e l d  s trengths  used fo r  both sets of  l i n e  
p r o f i l e s  w e re : -  0 .015  T ( th e  curves with the lowest maximum), 0 .028  I ,  
0 .052  T,  0 .074  T, 0 .096  I ,  0.121 I ,  0 .147  T,  0 .1 6 7  I ,  0 .21 0  I ,  and 0 .2 9 0  T 
( th e  widest  curves ) .  P = 1 mbar, heatp ipe b.
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5.8  EFFECTS OF CHANGES IN THE BUFFER GAS PRESSURE

The pressure of the b u f f e r  gas a f f e c t s  the SHG process through changes in  

^ds' damping constant  in the equat ions fo r  the magnitude of  the  

e f f e c t i v e  d ip o le s .  C o l l i s io n s  of  the sodium atoms cause the phase of  the  

atomic wavefunct ions to be changed, and thus the coherence between the 3S 

and 40 wavefunctions is  l o s t .  An increase  in such c o l l i s i o n s  decreases the 

second harmonic generat ion e f f i c i e n c y ,  and broadens the l inewid th  of  the  

resonant ly-enhancing  two-photon t r a n s i t i o n .  C o l l i s i o n  broadening and 

pressure e f f e c t s  on s pe c t ra l  l in es  have been reviewed by Hindmarsh and Farr  

[ 1 3 6 ] ,  Ch'en and Takeo [ 1 3 7 ] ,  and Margenau and Watson [ 1 3 8 ] .  The 

experimenta l  determinat ion of  the e f f e c t s  of  b u f f e r  gas pressure on the  

two-photon l inew id th  was described in sect ion 5 . 1 . 2 .

SHG l i n e  p r o f i l e s  were measured in  the manner described in sect ion 5 . 3 ,  but 

using the oven shown in f i g u r e  4 . 3 . 3 ( c ) .  Figure 5 .8 .1  shows SHG l in e  

p r o f i l e s  taken at 1 mbar and 234 mbar, in  both cases at  285*C and with a 

0.275  T magnetic f i e l d  which was perpend icu la r  to  the la s e r  p o l a r i s a t i o n .
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Figure 5 . 8 . 1 .  Exper im enta l ly  obtained SHG l i n e  p r o f i l e s  with a 
0.275 T magnetic f i e l d  perpend icu la r  to  the la se r  p o l a r i s a t i o n ,  
at b u f f e r  gas pressures of  1 mbar and 234 mbar. T = 285*C,  
heatpipe c.
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The pressure broadening and s h i f t  between the two p r o f i l e s  is r e a d i l y  seen, 

The peak SH power was also reduced by a fa c t o r  of  240 by the increase of  

the b u f f e r  gas pressure.

A number of  such l i n e  p r o f i l e s  were recorded as the b u f f e r  gas was 

increased;  the dependences on of  the peak SH power at  0 .02 T and 

0.275 T are shown in f ig u r e  5 . 8 . 2 .
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Figure 5 . 8 , 2 .  Dependence of  SH power on damping constant  The
c i r c l e s  show the SH power at  the peak of  the SHG l i n e  p r o f i t e  at 0 .02  T,  
the crosses show the SH power at  the Low frequency peak of  the SHG l in e  
p r o f i l e  at  0 .275 T. The c a lc u la t e d  dependence is  shown by the s o l id  l i n e s ,  
the maximum i n t e n s i t y  of the 0 .0 2  T curve was normalised to f i t  the 
experimental  data .  T = 285 "C, heatpipe c.

5 .56



Theory and experiment agree th a t  the re  is  l i t t l e  change in peak SH power 

with Xyg u n t i l  becomes a s i g n i f i c a n t  f r a c t i o n  of the Doppler width.

In c o n t r a s t ,  at  high pressures ,  the Doppler broadening is  n e g l i g i b l e  

compared with the pressure broadening.  In  t h i s  case, equation 3 . 2 . 5 5  may be 

s i m p l i f i e d  to  give the expected value of  the e f f e c t i v e  d ipo le  as

xy

J.rtij

which leads to  the SH power being expected to  f a l l  o f f  as the four th  power

of  y , when y ?  »  ( w , -  2w)^.  As the leve ls  are s p l i t  more in a high ds ds ds

magnetic f i e l d  than in a low one, the above cond it io n  is  s a t i s f i e d  f o r  a l l  

le ve ls  at a higher value of  in a higher magnetic f i e l d .  Thus the 

- 4  power dependence of  the peak SH power on is  expected to  occur at  

higher fo r  higher f i e l d s ,  as is  seen in f i g u r e  5 . 8 . 2 .

Although there  is  a f a i r  q u a l i t a t i v e  agreement between theory and 

experiment at  these higher pressures ,  th e re  are s u b s ta n t ia l  dev ia t ions  

between the experimental  r e s u l t s  and the t h e o r e t i c a l  p r e d i c t i o n s ,  

e s p e c ia l l y  at  the higher magnetic f i e l d  s t ren g ths .  Some of t h i s  may be 

in s t ru m en ta l .  At Low pressures the SH power sometimes rose s l i g h t l y  with  

increas in g  b u f f e r  gas pressure ,  though the amount v a r ie d  between runs and 

between ovens. I t  is suggested t h a t  t h i s  may have been caused by the  

b u f f e r  gas a f f e c t i n g  the evap ora t ion  ra te  of  the sodium; s i m i l a r ,  but 

det r im e n ta l  e f f e c t s  may have been occurr in g  at higher gas pressures.

Figure 5 . 8 . 3  shows the r e s u l t s  of  the same experiment ,  but using the 

heatpipe of  f i g u r e  4 . 3 . 3 ( a ) ,  and using permanent magnets to  produce the  

0.02  T magnetic f i e l d .  In  t h i s  case the t h e o r e t i c a l  p r e d ic t io n  of  the peak 

SH power at  any b u f f e r  gas pressure is  in reasonable agreement with the 

ex p er im e nta l ly  obtained values from the three  d i f f e r e n t  runs. The former
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heatpipe was operated to  keep the temperature measured by the thermocouple 

constant ,  the L a t te r  heatpipe was operated under condit ions of  constant  

heat in p u t .  Changing the b u f f e r  gas pressure may have changed the 

temperature d i s t r i b u t i o n  and ra te  of  heat f low in the p ip es ,  r e s u l t i n g  in a 

change of  p a r t i c l e  dens ity  or vapour zone length.  Further  experiments need 

to be done to in v e s t ig a t e  whether or not such e f f e c t s  occur.

Argon pressure (mbar) 
10 100

100

Û.
X
to

10000100

Figure 5 . 8 . 3 .  Dependence of  the SH power on damping 
constant . The d i f f e r e n t  markers show the  
exper imental  r e s u l t s  from d i f f e r e n t  runs using heatpipe  
a ,  the s o l i d  l i n e  shows the t h e o r e t i c a l l y  c a lc u la ted  
dependence, normalised to  the exper imental  r e s u l t s .
T = 330*C,  heatpipe a.

Another possib le  exp lan a t ion  fo r  the d i f f e re n c e s  between observed and 

p red ic ted  behaviour is  t h a t  the model l ing of the e f f e c t s  of the b u f f e r  gas 

pressure in  terms of  is not r e a l i s t i c ;  the p e r tu rb in g  atoms may wel l

have more e f f e c t s  than j u s t  c o l l i s i o n a l  dephasing.  For example, the 

c o l l i s i o n s  may induce popula t ion  r e d i s t r i b u t i o n  amongst the magnetic 

su b leve ls .
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Line p r o f i l e s  at  var ious b u f f e r  gas pressures at 0 .02  T and 0.275 T are  

shown in f ig u re s  5 . 8 . 4  and 5 . 8 . 5 .  As described above, the measured drop 

in SH power with b u f f e r  gas pressure is  g rea te r  than expected,  but  

otherwise f a i r  agreement is  obta ined between theory  and experiment.

Figure 5 . 8 . 6 ( a )  shows a f a m i ly  of  l i n e  p r o f i l e s  taken at  a b u f f e r  gas 

pressure of  109 mbar. These agree w el l  with  the t h e o r e t i c a l l y  modelled 

curves in f ig u r e  5 . 8 . 6 ( b ) ,  and contr as t  with the l i n e  p r o f i l e s  in p a r t  (c)  

of the same f i g u r e ,  which were p l o t t e d  f o r  1 mbar b u f f e r  gas pressure.  A 

higher magnetic f i e l d  was requ ired  to  s a tu ra te  the SH dependence on 

magnetic f i e l d  st rength  in the higher b u f f e r  gas pressure ,  as in the high 

pressure case a higher f i e l d  was requ ired  to  s p l i t  the l i n e  p r o f i l e  beyond 

the higher pressure and Doppler-broadened l in e w id t h .  The same was t r u e  of  

the l i n e  p r o f i l e s  taken with  the f i e l d  at  45 degrees to  the laser  

p o la r i  s a t io n .

The dependence on magnetic f i e l d  st rength  of the power and p o l a r i s a t i o n  

p ro p e r t ie s  of  the second harmonic were determined at  109 mbar in a s i m i l a r  

manner to th a t  described in  sect io n  5 . 4 .  The r e s u l t s  of  t h i s  study at a 

laser  frequency f^ + 3 GHz are shown in f i g u r e  5 . 8 . 7 .  Although there  

are s i g n i f i c a n t  d i f f e r e n c e s  between the t h e o r e t i c a l  and experimental  values  

fo r  the e c c e n t r i c i t y ,  good agreement was obtained f o r  the p o l a r i s a t i o n  

angle and the SH power curves.  This f i g u r e  should be cont rasted  with the  

low pressure r e s u l ts  of  f i g u r e  5 . 4 . 3 .  The p o l a r i s a t i o n  r o t a t i o n  and 

d ev ia t io n  of  e c c e n t r i c i t y  from 1 . 0  are much less in the high pressure case 

than in the low pressure one.
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Figure 5 . 8 . 4 .  (a) ExperimentalLy and (b) t h e o r e t i c a l l y  c a lc u la te d
v a r i a t i o n  of  second harmonic power with  laser  f requency at d i f f e r e n t  b u f f e r  
gas p r e s s u re s : -  5 .3  mbar ( th e  curve with the grea te s t  maximum), 14 mbar,
32 mbar, 61 mbar, 106 mbar ( the  curve with  the lowest maximum). These 
values correspond to  values of  of  120 MHz, 300 MHz, 670 MHz, 1277 MHz,
and 2200 MHz. Each experimental  curve has been p l o t t e d  with zero laser  
detuning at i t s  c en t re ;  in r e a l i t y ,  the ce n t ra l  f requency of each curve was 
d i f f e r e n t  due to pressure s h i f t i n g  of  the energy l e v e l s .  T = 285*C,
B = 0 .0 2  T,  heatpipe c.
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Figure 5 . 8 . 5 .  (a) Experimenta l ly  and (b) t h e o r e t i c a l l y  c a lcu la te d
v a r i a t i o n  of second harmonic power with  laser  f requency at d i f f e r e n t  values  
of b u f f e r  gas pressure as l i s t e d  in f i g u r e  5 . 8 . 4 ,  but w ith  a 0 .275 T 
magnetic f i e l d .  T = 285 "C, heatpipe c.
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Figure 5 . 8 . 6 .  (a)  Exper imen tal ly  and (b) t h e o r e t i c a l l y  obtained v a r i a t i o n
of the SH power with  laser  f requency,  with 109 mbar argon b u f f e r  gas,  and 
at magnetic f i e l d s  of  0 .018  T ( the  curve with the lowest maximum), 0 .068  T,  
0.123 T,  0 .1 7  T,  0 .218  T , and 0.268  T ( the  curve with the greatest  
maximum). T = 285*C,  heatpipe c. Part (c)  show the t h e o r e t i c a l l y  
c a lc u la te d  l i n e  p r o f i l e s  with  1  mbar of  b u f fe r  gas,  but otherwise the same 
cond i t io ns .
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Figure 5 . 8 . 7 .  Power and p o l a r i s a t i o n  p ro p e r t ie s  of  the second harmonie 
r a d i a t i o n  as funct ions of  the magnetic f i e l d  s t r e n g t h ,  at  a b u f f e r  gas 
pressure of  109 mbar (V .  = 2130 MHz).
the

The magnetic f i e l d  was at 45 to
3 GHz. The curves

are t h e o r e t i c a l l y  c a l c u la t e d ,  the curve in par t  (a)  was normal ised to have 
the same maximum as the exper imenta l  r e s u l t s .  T = 285*C, heatpipe c.

laser  p o la r is a t io n ,^ a n d  the la s e r  was tuned to  f«  +
was

5.63



5 .9  USE AS A PARTICLE DENSITY PROBE

In the SHG experiments described in the previous sect ions the second 

harmonic is  generated only in  the volume in which the laser  beam and 

magnetic f i e l d  cross.  At r e l a t i v l e y  low p a r t i c l e  d e n s i t i e s  ( t h a t  is  

d en s i t i e s  w e l l  below the f i r s t  peak in the r e l a t i o n s h i p  between SH power 

and p a r t i c l e  d ens i ty )  the amount of SH generated in such a volume is  

p ro p o r t io n a l  to  the square of  the atomic d e n s i ty .  Thus measurement of the  

SH power as the laser  beam and a l o c a l i s e d  magnetic f i e l d  are moved around 

would al low a three dimensional mapping of  the atomic densi ty to  be 

performed [ 1 8 ] .

For such a technique to  be use fu l  the magnetic f i e l d  must be r e s t r i c t e d  to  

a r e l a t i v e l y  small f r a c t i o n  of  the length of  the region occupied by the  

vapour.  This was achieved using the permanent magnets described in sect ion

4 . 3 . 2 ,  but mounting them in stacks t ip ped by conica l  polep ieces .  At the  

r e l a t i v e l y  low magnetic f i e l d  produced at the centre  of  the polepieces  

( 0 .02  T ) ,  the SHG e f f i c i e n c y  was p r o p o r t io n a l  to  the square of  the magnetic 

f i e l d  s t ren g th ;  the s p a t i a l  d i s t r i b u t i o n  of  the SHG e f f i c i e n c y  was thus 

c a lc u la te d  to be as shown in f i g u r e  5 . 9 . 1 .

This magnet assembly was set  up across the r e l a t i v e l y  long heatpipe shown 

in f ig u r e  4 . 4 . 3 ( e ) .  The la se r  beam was focussed in to  the pipe with a 

0.53  m foca l  length le ns ,  and the SH was detected as described p re v io u s ly .  

The peak SHG e f f i c i e n c y  ocurred when the thermocouple on the outs ide  

surface of  the heatpipe read 330*C; the experiments were performed at  

2 7 3 *C. The oven was moved r e l a t i v e  to  the apparatus ,  thus removing 

problems such as the s p a t i a l l y  non-uniform response of  the p h o t o m u l t ip l i e r  

tube which would have had to  have been considered i f  the laser  beam had 

been moved.
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Figure 5 . 9 . 1 .  SHG e f f i c i e n c y  as a fu nc t io n  of  p o s i t io n  along 
the hea tp ipe.  Po s i t io n  0 . 0  corresponds to  a p o s i t io n  in  the  
centre  of  the magnet's po le p ie ces .

Even with the e f f o r t s  made to  minimise the s p a t i a l  ex tent  of the magnetic 

f i e l d ,  the SHG e f f i c i e n c y  was g re a te r  than h a l f  maximum over 34 mm, so the  

sample length examined by t h i s  technique was la r g e .  The re s u l ts  fo r  a scan 

along the ax is  of the pipe a t  a b u f f e r  gas pressure of  0 . 0 2  mbar are shown 

in f i g u r e  5 . 9 . 2 .  The r e s t r i c t i o n  of  the sodium vapour to  the c en t ra l  

region of  the pipe is  e v id e n t ,  but i t  is  not possible to  determine a 

d e t a i l e d  p a r t i c l e  dens ity  d i s t r i b u t i o n  due to the long sample length.  

However, i t  can be seen t h a t  the pipe is  not opera t in g  in a t r u e  heatpipe  

mode, as two peaks are seen in the SH power, corresponding to peaks in the  

sodium atom d en s i ty .

The pipe was then moved so t h a t  the magnet was in the centre of  the vapour 

zone. H o r izo n ta l  and v e r t i c a l  movement of  the pipe produced the re s u l ts  

shown in f i g u r e  5 . 9 . 3 .  Although the SH is  generated in a r e l a t i v e l y  large  

length along the beam, the SHG occurs only across the width of  the beam.
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Figure 5 . 9 . 2 .  SH power measured as a fu nc t io n  of  the p o s i t io n  of the 
in t e r s e c t i o n  region of  the Laser beam and magnetic f i e l d  in the oven; the  
oven was being moved in the d i r e c t i o n  of  the Laser beam.
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Figure 5 . 9 . 3 .  SH power measured as funct ions  of  the p o s i t io n  of the  
i n t e r s e c t i o n  region of  the Laser beam and the magnetic f i e l d  in the oven;  
the oven was moved in the d i r e c t i o n s  in d ic a te d .
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which is  Less than 1 mm. The scans in f ig u r e  5 , 9 . 3  t h e r e f o r e  show in some 

d e t a i l  t ransverse v a r i a t i o n s  in atomic d e n s i ty .  The atomic d i s t r i b u t i o n  

seems to  be constant  in the v e r t i c a l  plane through the centre  of  the p ip e ,  

but there  are s i g n i f i c a n t  v a r i a t i o n s  in the atomic dens i ty  in the  

h o r iz o n ta l  plane through the cent re  of  the p ip e .  Obviously a ser ies  of  

such measurements would al lo w a d e t a i l e d  mapping of  the atomic densi ty  

d i s t r i b u t i o n  in the oven.

S im i la r  ideas were used in t e s t i n g  the s t a b i l i t y  of  the FGH temperature  

contro l  apparatus.  The oven of f i g u r e  4 . 3 . 3 ( c )  was again run at  a 

temperature wel l  below the f i r s t  phase match peak, but with a magnetic 

f i e l d  along the f u l l  length of the oven. The oven was brought up by the  

c o n t r o l l e r  to a temperature of  2 9 0 *C (read by the thermocouple embedded in  

the oven w a l l ) ,  then the temperature s e t - p o i n t  of  the c o n t r o l l e r  was 

increased to  3 0 0 *C. Figure 5 . 9 . 4  shows the s l i g h t  overshoot in oven 

temperature as the c o n t r o l l e r  ra ised  the oven temperature to the new 

s e t - p o i n t .  The s t a b i l i t y  of  the oven temperature at  t h i s  s e t - p o in t  was 

determined from the v a r i a t i o n  in the SH power measured f o r  t ime g rea te r  

than ten minutes.  From equat ion 4 . 3 . 1  and the f a c t  t h a t  the second 

harmonic power is  p ro p o r t io n a l  to  the square of  the sodium atom d e n s i t y ,  i t  

can be shown tha t  the f r a c t i o n a l  change in SH power ^2w^^2w

dP., = - 2  (1 -  12 4 2 3 .3 /T )  dT ( 5 . 9 . 1 )
2 w __

"2w T

where T is  the absolute temperature of  the vapour.  Thus as the v a r i a t i o n  

in was measured to  bef3%, the v a r i a t i o n  in temperature was 0.07%,  

or 0 . 4  C.
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Figure 5 . 9 . 4 .  SH power as a fu n c t io n  of  t im e ,  when the FGH temperature  
c o n t r o l l e r  was reset  at  t ime zero from 2 9 0 ’’C to  300 “C.
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CHAPTER SIX 

SUMMARY AND FINAL DISCUSSION

6.1 SUMMARY

The r o le  of  the 3S -  4D two-photon t r a n s i t i o n  in enhancing m a g n e t i c - f i e l d -  

induced second harmonic genera t ion  in  sodium vapour has been stud ied  in  

d e t a i l ,  using a s in g le - f re q u en c y  l a s e r .  A t h e o r e t i c a l  model has been 

developed which includes the e f f e c t s  of  atomic s e le c t io n  r u l e s ,  Zeeman 

s p l i t t i n g ,  the mixing of  atomic e igenfunct ions  in a magnetic f i e l d ,  and 

homogeneous and inhomgeneous broadening mechanisms.

Experimental  measurements o f  the usual basic p ro p e r t ie s  of  second harmonic 

generat ion (SHG) were as expected;  the second harmonic (SH) power v a r ie d  as 

the square of  the fundamental power over the range of  power d e n s i t i e s  used 

(~10^ to 10^ Wm ^) and the width of  the SH gaussian beam was 1 / / Z  t h a t  of  

the fundamental .

The SH power was measured to  be p r o p o r t io n a l  to  the square of  the sodium 

atom d ens ity  at  low p a r t i c l e  d e n s i t i e s ,  but t h i s  r e l a t i o n s h i p  broke down 

above 1 0 ^^ atoms m  ̂ as the d i f f e r e n c e  in  r e f r a c t i v e  index of the vapour at  

the wavelengths of  the fundamental and the SH lead to a mismatching of  the  

phase v e l o c i t i e s  of the two waves. This led to an o s c i l l a t o r y  dependence 

of the SH power on the atomic d e n s i ty .

The t h e o r e t i c a l  model,  which was developed in chapter  t h r e e ,  was found to 

be in e x c e l l e n t  agreement wi th  exper imental  r e s u l t s  as long as the homo­

geneous l in e w id th  was less than the Doppler w id th .  The p ro p e r t ie s  of  the

6.1



SH were f i r s t  measured at  approximately 300 t  and with 1 mbar of argon 

b u f f e r  gas.

No SHG was expected,  or observed,  when the magnetic f i e l d  was z e ro ,  or was 

o r ie n t a t e d  p a r a l l e l  to  the l i n e a r  p o l a r i s a t i o n  of  the fundamental beam. An 

app l ied  magnetic f i e l d  induced Zeeman s p l i t t i n g  in the atomic energy 

l e v e l s ,  and caused a change in the r e l a t i v e  amounts of  the m̂  = ± 1 / 2  

components in  the atomic wavefunct ions.  I t  was shown how t h is  could lead  

to SHG, and t h a t ,  as long as the Zeeman s p l i t t i n g  was small  compared to  the  

Doppler w id th ,  the SH power depended on the square of  the magnetic f i e l d .

I t  was also  shown how two perpend ic u la r  quadrupole moments could act  as 

" e f f e c t i v e  d ip o le s"  fo r  the SHG, one enhanced by Am̂  = ± 2 two-photon 

t r a n s i t i o n s ,  the o ther  by Amj  ̂ = ± 1 two-photon t r a n s i t i o n s .  The 

experimental  l i n e  p r o f i l e s  of  SHG and two-photon absorpt ion were compared 

and contrasted;  SHG occurred only w i t h i n  the l i n e  p r o f i l e  of  the resonant ly  

enhancing two-photon abso rp t io n ,  but was not enhanced by the Am̂  = 0  

t r a n s i t i o n s .  The l i n e  p r o f i l e s  due to  the two e f f e c t i v e  dipoles  were 

s i m i l a r  at  low magnetic f i e l d s  (~0 .02  T ) , However, in  higher f i e l d s ,  in  

which Zeeman s p l i t t i n g  was comparable to  the Doppler w id th ,  these l in e  

p r o f i l e s  were s i g n i f i c a n t l y  d i f f e r e n t ,  due to  large d i f fe r e n c e s  in the  

amount of  resonant enhancement a f fo rd ed  to  the two e f f e c t i v e  d ip o le s .  The 

d i f f e r e n t  dependences of  the magnitudes and phases of the two e f f e c t i v e  

dipoles  on magnetic f i e l d  s t re n g th  also  led to  other  e f f e c t s .  For example,  

when both e f f e c t i v e  d ipo les were d r i v e n ,  p o l a r i s a t i o n  r o t a t i o n  and dev­

i a t i o n  from l i n e a r  p o l a r i s a t i o n  o f  the SH re s u l te d ;  the amount of  each was 

dependent on the magnetic f i e l d  s t rength  and the laser  f requency.  A lso,  at  

magnetic f i e l d s  below 0.05 T the SH power was dependent on the square of  

the sine of  the angle between the d i r e c t i o n  of l i n e a r  p o l a r i s a t i o n  of  the  

fundamental and the magnetic f i e l d ,  but a more complicated dependence was 

p red ic ted  and observed at  h igher  magnetic f i e l d  s t rengths .
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The e f f e c t s  of a l t e r i n g  the vapour temperature were s tu d ie d ,  but few 

changes were observed apar t  from those due to the associated change in  

sodium atomic d e n s i ty .  Raising the pressure of  the argon b u f f e r  gas,  

however, produced s i g n i f i c a n t  changes in the SHG, due to  the r e s u l t in g  

decrease in the l i f e t i m e  of  the coherence between the 3S and 4D wave­

fu n c t io n s .  The peak SH power was expected to  decrease as the four th  power 

of the homogeneous l in e w id th  when the homogeneous l inewid th  was much 

g r e a te r  than the Doppler w id th .  E xp er im en ta l ly ,  however, the SH power was 

seen to  drop somewhat more r a p i d l y .  This disagreement c e r t a i n l y  requ ires  

f u r t h e r  in v e s t i g a t i o n .  Rais ing  the b u f f e r  gas pressure also caused an 

increase in the width of the SHG l i n e  p r o f i l e s ;  good agreement between 

theory and experiment was obtained f o r  a fa m i ly  of  l i n e  p r o f i l e s  taken at a 

b u f f e r  gas pressure of  109 mbar. When both e f f e c t i v e  dipoles were d r i v e n ,  

m a g n e t i c - f i e l d — dependent r o t a t i o n  o f  the SH p o l a r i s a t i o n  and d e v ia t io n  

from l i n e a r  p o l a r i s a t i o n  o f  the SH were observed, though, as expected,  the  

magnitudes of  these e f f e c t s  were less than in the low pressure case.

The phase d i f f e r e n c e  between the second harmonic and the fundamental 

r a d ia t io n  was expected to  be dependent on the magnetic f i e l d  s t rength  and 

the laser  f requency. This phase d i f f e r e n c e  was involved  in the asymmetry 

of the SH l i n e  p r o f i l e s  in  high magnetic f i e l d s .  The magnetic f i e l d  t h a t  

was used was inhomogeneous, which, although i t  was a de fec t  in the  

experimental  arrangement,  gave r i s e  to  the asymmetries of  the l i n e  

p r o f i l e s ,  the i n v e s t i g a t i o n  of  which led to  in t e r e s t i n g  in s ig h ts  in to  the  

SHG process.  In  a magnetic f i e l d  g rad ie n t  the phase of  the generated SH 

changes with p o s i t i o n ,  and t h i s  phase change may act  to  enhance or  

reduce the e f f e c t s  of  the phase v e l o c i t y  mismatch of the fundamental and SH 

beams. In  high magnetic f i e l d s  the phase of  the SH is  an odd fu n c t io n  of  

laser  detuning from the centre  of  the two photon t r a n s i t i o n ;  thus ,  in a
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magnetic f i e l d  g r a d ie n t ,  the low frequency components of  the SHG could be 

enhanced whi le  the high frequency components were reduced, leading to  the  

observed asymmetries in  the l i n e  p r o f i l e s .  These ideas led to  the 

suggest ion of  t a i l o r i n g  the magnetic f i e l d  to produce s p e c i f i c  e f f e c t s .

For example, since a revers a l  of the magnetic f i e l d  changes the SH 

p o l a r i s a t i o n  by 180®, a s p a t i a l l y  a l t e r n a t i n g  magnetic f i e l d  could be used 

to produce pseudo-phase-matching s i m i l a r  to th a t  used f o r  e l e c t r i c - f i e l d -  

induced SHG by Shelton and Buckingham [ 3 9 ] .

The f i n a l  sect ion of  chapter f i v e  showed one possib le  a p p l i c a t i o n  fo r  

m ag n et ic - f i e ld - in d u c e d  second harmonic g e n e ra t io n ,  the product ion of  a 

th ree  dimensional  map of  the p a r t i c l e  d ens ity  in a vapour.  SHG occurs only  

in the volume of  over lap  of  the magnetic f i e l d  and the laser  beam, and the  

magnetic f i e l d  in any such region is  p ro p o r t io n a l  to the square of  the  

sodium d en s i ty .

Throughout the study ,  much b e t t e r  agreement was obtained between experiment  

and theory when the homogeneous and inhomogeneous l in ewid ths  were modelled  

separa te ly  instead  of  ju s t  using a damping constant  r e l a t e d  to the Doppler  

width [ 9 7 ] .  The use of  a s in g le  frequency la se r  and an atomic n on l inear  

medium al lowed an experimental  i n v e s t i g a t i o n  of  a second harmonic 

generat ion process in great  d e t a i l ,  prov id in g  a s t r in g e n t  t e s t  of  the model 

tha t  was developed to  p re d ic t  the p ro p e r t ie s  of  the non l inear  e f f e c t  in  

terms of  fundamental atomic parameters.  Apart from some discrepancies at  

high b u f f e r  gas pressures ,  the model agreed remarkably w e l l  with the  

experimental  r e s u l t s .
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6 .2  RELEVANT FUTURE WORK

The experimental  work reported  in t h i s  t h es is  has concentrated on the  

basic physics of  m a g n e t ic - f i e ld - in d u c e d  second harmonic generat ion in  

sodium vapour. The a p p l i c a b i l i t y  o f  the model has been conf irmed over  

almost a l l  the experimental  co nd i t io ns  used. The conversion e f f i c i e n c y ,  

though s m a l l ,  was q u i t e  s u f f i c i e n t  to  a l low such a study to  be undertaken.  

However, in t h is  wavelength region  and at  the power d e n s i t i e s  used,  the use 

of a non l inear  c r y s t a l  such as potassium-dihydrogen-phosphate would a l low  

much more e f f i c i e n t  generat io n  of  second harmonic. Possible uses f o r  

m a g n e t ic - f i e ld - in d u c e d  SHG in vapours are more l i k e l y  to  occur at  

wavelengths at  which c r y s t a l s  are not t r a n s p a r e n t ,  so any extension of  t h i s  

work should look at the p o s s i b i l i t y  of  using other  vapours or gases to  

generate coherent r a d i a t i o n  below 2 0 0  nm.

Increases in t u n a b i l i t y  and conversion e f f i c i e n c y  are also  d e s i r a b le .  The 

f i r s t  may come from using a molecular  medium, in which there  are many 

c lo s e ly  spaced al lowed two-photon t r a n s i t i o n s  which may be able  to  enhance 

the SHG, though care must be taken to  se le c t  l e ve ls  t h a t  are m a g n e t ic a l ly  

a c t i v e ,  and which do not have high pressure broadening constants.  Though 

such a medium is  u n l i k e l y  to  be o b ta in a b le  fo r  cont inuously tunable SHG, 

l in e  t u n a b l i t y  should be p o s s ib le .  The most obvious means to increase  the  

e f f i c i e n c y  of  the SHG is to  increase  the power d ens ity  of  the fundamental  

beam (as the e f f i c i e n c y  is  p ro p o r t io n a l  to the power dens i ty  of  the  

fundamental laser  beam), though to  ensure good e f f i c i e n c y  the l in e w id th  of  

the laser  should not be much g r e a t e r  than th a t  of  the SHG l i n e  p r o f i l e .

The maximum usefu l  power d e n s i ty  would be l i m i t e d  by processes such as 

mult i -photon  io n i s a t io n  CIO].  Higher power d e n s i t i e s  may be, achieved in  

any of  the fo l lo w in g  ways:-  i )  by using a higher power, possibly pu lsed ,  

l a s e r ,  i i )  by lo c a t in g  the doubl ing medium ins ide  the laser  c a v i t y  C83
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where the c i r c u l a t i n g  r a d i a t i o n  f i e l d  is  u su a l ly  s u b s t a n t i a l l y  la r g e r  than 

the f i e l d  t h a t  is  t r a n s m i t t e d  through the output  coupler ,  and i i i )  by 

lo c a t in g  the vapour in an e x t e r n a l ,  resonant ,  c a v i t y  which is  locked to  the  

l aser  f requency [ 1 3 9 ] ,  which would again produce a high c i r c u l a t i n g  

fundamental r a d ia t io n  f i e l d .

The SH power is  dependent on the square of  the sodium atom d e n s i t y ,  N, as

long as the phase v e l o c i t y  mismatch of  the SH and fundamental beams is

s u f f i c i e n t l y  small t h a t  the SH generated at  d i f f e r e n t  points in the vapour

contr ibu tes  to  the second harmonic wave in phase. In the experiments

reported in  t h i s  th e s is  i t  was found t h a t  t h i s  r e l a t i o n s h i p  broke down at

20 -3
r e l a t i v e l y  low p a r t i c l e  d e n s i t i e s  (3 x 10 atoms m ) .  I f  some means of  

compensating fo r  the d ispers io n  caused by the sodium D l in es  was a v a i l a b l e ,  

the dependence could be extended to  higher atom d e n s i t i e s ,  and thus much 

more e f f i c i e n t  SHG could be achieved.  Phase matching of  t h i r d  harmonic 

generat ion in metal vapours has been reported [ 1 4 ,  124,  140] ;  by choosing 

the correct  r a t i o  of  concentra t ions  of  the non l inear  medium and another gas 

or vapour with the opposite change in r e f r a c t i v e  index between the two 

wavelengths of  i n t e r e s t ,  a mixture  could be produced which al lowed phase 

matched t h i r d  harmonic g e n era t io n .  A search was made fo r  poss ib le  media to  

use to  phase match SHG in sodium; i t  was ca lc u la te d  th a t  a 10:1 r a t i o  of  

calcium:sodium or 70:1 aluminium:sodium should produce phase matched SHG. 

Although i t  would be d i f f i c u l t  to const ruct  and operate a system in which 

the vapour pressures of the  two atomic species could be va r ie d  indep­

en d en t ly ,  the heat pipe oven v a r i a n t  described by Bloom et  a l  [140]  should  

have the des i red  p r o p e r t i e s .  The o ther  p o s s i b i l i t y  would be to  use a 

s p a t i a l l y  o s c i l l a t i n g  magnetic f i e l d  to  achieve pseudo-phase-matching as 

mentioned e a r l i e r  in  t h i s  chapter .
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APPENDIX A 

The Plasma D ispersion Function

The plasma d ispers io n  fu n c t io n  occurs f r e q u e n t ly  in modell ing damped 

systems which contain a Maxwel l ian v e l o c i t y  d i s t r i b u t i o n .  The i n t e g r a l

Z =

ÛÔ ?

' expC-mv^/ 2 kpT] dv 
------------y------ Ë------------^  (A.1)

- * “ ds +

must be evaluated  to  solve equat ions such as 3 . 2 . 5 5 ,  where w^  ̂ is  the 

frequency of  the 3S -  4D t r a n s i t i o n  when the sodium atom is at r e s t ,  w is  

the laser  f requency,  is the HWHM due to  n a tu r a l  and pressure broadening,

and Vy is the atomic v e l o c i t y  in  the y d i r e c t i o n .  Equat ion A.1 may be 

rearranged to  be p ro p o r t io n a l  to  the standard form of  the plasma d is pers io n  

funct io n

z ( K )  =

OO p
expC-t  ] dt

t  -  K
( A . 2)

where K and Z are complex, and t  is  r e a l .  K = x + i y ,  where 

X = (2w -  w^^)/Jl, and y = is the Doppler width of  the

t r a n s i t i o n ,  as def ined  in  equat ion 3 . 2 . 5 7 .  The methods of  Fr ied  and Conte 

[115]  were used to  solve t h i s  i n t e g r a l .

For y < 1,  numerical  i n t e g r a t i o n  of  the d i f f e r e n t i a l  equation d e f i n i n g  the 

plasma d ispers io n  fu nc t io n  was a p p r o p r ia te .  The fu n c t io n  may be charac­

t e r i s e d  by the d i f f e r e n t i a l  equat ion and boundary condi t ion

Z' = -2 (1  + KZ) fo r  a l l  K, K complex, ( A . 3)

Z(0)  = iTT^^.  ( A . 4)

The U n i v e r s i t y ' s  VAX 11/785 mainframe computers have var ious numerical
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rout ines  in the "NAG" L ib rary  s u i t a b l e  fo r  so lv ing rea l  d i f f e r e n t i a l  

equat ions.  Thus equat ion A .3 was s p l i t  in to  i t s  rea l  and imaginary p a r t s .  

D ef in in g  Z = + iZ ^ ,  A .3 becomes

Z' = - 2 ( [ 1  +xZQ -  y Z j ]  + iCyZ^ + x Z ^ ] ) ;  ( A . 5)

and by d e f i n i t i o n

Z' = dZ = dZ  “ à i  ^  ( A . 6 )
dK d (x + iy )  ôx bK by bK

But bK/bx = 1 and ôK/ 6 y = i ,  so

Z' = bZ/bx -  ib Z /by  ( A . 7)

= bZp/bx + b Z j /b y  + iCbZ^/bx -  b Z ^ /b y ) .  ( A . 8 )

The rea l  and imaginary parts  are separated to  obta in

bZ^/bx + b Z j /b y  = -2 ( 1  + xZj  ̂ -  y Z^) ,  ( A . 9)

bZ j /bx  -  bZ^/by = -2 (y Z ^  + xZ ^) .  ( A . 10)

The NAG rout ines can cope wi th  these two coupled rea l  equat ions .  To f i n d  

Z(x + i y )  a numerical i n t e g r a t i o n  was performed from (0 + iO) to  (0 + iy )

with X = 0 ,  then from (0 + i y )  to (x + i y )  with y constant  to get the f i n a l

s o lu t io n  fo r  Z in terms of  i t s  re a l  and imaginary p a r t s .  The NAG ro u t in e  

DG2BAF was se lec ted  as being the most s u i t a b l e .  I t s  use is  shown in  

Appendix B. To f in d  the value of  Z f o r  negat ive  x ,  the re la t io n s h ip s

Z^(x + i y )  = - Z ^ ( - x  + i y ) ,  ( A . 11)

and Z j ( x  + iy )  = Z^ ( -x  + i y )  ( A . 12)

were used.

The above method of  e v a lu a t io n  of  the plasma d ispers ion  fu nc t io n  is  not 

s u i t a b l e  fo r  large values of  y due to  the accumulat ion of  t ru n c a t io n  and 

round-o f f  e r r o r s .  Ins tead  a method based on continued f r a c t i o n s  was used 

when y > 1. The a p p ro p r ia te  continued f r a c t i o n ,  which may be der ived  from
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the asymptot ic form of the plasma d isp e rs io n  func t ion  C115],  is

ZCK) = K ( A . 13)

-K^ + 1 / 2  + ( - 1 ) ( 1 / 2 )

-K^ + 5 /2  + ( - 2 ) ( 3 / 2 )

^n+1  ̂ ^n+2

where a  ̂ = K, ( A . 14)

a = -n ( 2 n  -  1 ) / 2  f o r  n = 1 , 2 , . . . . ,  ( A . 15)
n+ 1

and = -K^ +1 /2  + 2n f o r  n = 0 , 1 , -------  ( A . 16)

The continued f r a c t i o n  may be eva luated  [1413 by the recursion r e l a t i o n s

*n +1  = b n + iA n  + ^ n f l ^ n - l  

and 8 ^ + 1  = (A .18)

where A , = 1 ,  A = 0 ,  )
" ) ( A . 19)

=  0 ,  B q  =  1 ,  )

and Z(K) = l im A y > 0 ( A . 20)
n -> 6 £) —

The Fortran subrout ine "CONTFRAC" was incorpoated in the computer program 

shown in appendix B to  e va lu a te  Z using these recursion r e l a t i o n s .

Negat ive values of  x were d e a l t  with  in the same way as in  the method f o r  

y < 1 .

The r e s u l t s  of  the computer code were compared with se lected  values  

quoted by Fr ied  and Conte [ 1 1 5 ] ,  and with  each other in the region where both 

methods were v a l i d ,  ie  at  y = 1. The values obta ined agreed to  at  l e a s t  

f i v e  decimal places in a l l  the cases t e s t e d .
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The values of  the rea l  and imaginary par ts  of  Z(a + ib )  are shown in 

f i g u r e  A.1 as funct ions  of  a ,  at  two values of  b. The values of  b have 

been chosen to correspond to  the experimental  s i t u a t i o n s :  a vapour temp­

e ra tu re  of  300 "C ( jO=  2 .2  GHz) in both cases, with (a) = 35 MHz

and (b)  ^  = 2180 MHz.

b = 0-98b =0-016

Re(Z)Re(Z)

- 1 -

Im(Z)ImlZ)

Figure A . I .  The re a l  and imaginary par ts  of  the plasma 

dispers ion  fu n c t io n  p l o t t e d  as funct io ns  of  a ( the  r ea l  argument 

of the f u n c t i o n ) ,  a t  two values of  b ( th e  imaginary argument of  

the f u n c t i o n ) .
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APPENDIX B 

PROGRAMS FOR NUMERICAL MODELLING OF THE SECOND HARMONIC GENERATION

This appendix contains an example of  one of  the computer programs used to  

c a lc u la t e  the p ro p e r t ie s  of  the SH6  using the t h e o r e t i c a l  model l ing  

described in chapter  t h r e e .  The f i r s t  program t h a t  is  l i s t e d  here was used 

to generate data f i l e s  which contained the values of  the quadrupole moments 

at  a number of  d i f f e r e n t  f requencies  across the l i n e  p r o f i l e ,  at  a magnetic 

f i e l d ,  vapour temperature,  and s p e c i f i e d  by the user .  The second 

program was used to  c a l c u l a t e  the l i n e  p r o f i l e s  of  the SHG from the data in  

the f i l e  produced by the f i r s t  program.

FORTRAN PROGRAM USED TO CALCULATE LINE PROFILES

This program requi res  rout ines  from the "NAG" l i b r a r y  of  numerical  

r o u t in e s ,  so the compiled vers io n  o f  the program must be " l in k e d "  with the 

NAG l i b r a r y .

C BDS 3 0 . 7 .8 6  LPGEN.FOR
C PRODUCES VALUES OF QUADRUPOLE MOMENTS AT SPECIFIED FIELD
C OVER A RANGE OF LASER FREQUENCIES
C Contains plasma d is pers io n  f u n c t io n  ev a lu a t io n  by
C numerical  i n t e g r a t i o n  of  d i f f e r e n t i a l  equat ion fo r  small
C homogeneous l i n e w i d t h ,  and by method based on continued f r a c t io n s  
C fo r  l a rg e r  homogeneous l i n e w id t h .
C To run,  f i r s t  compile and then LINK LPGEN,NAG/LIB

C F,MF Quantum numbers of  lower s ta te
C JS,MJS S u b s t i tu te  quantum numbers of  4d s t a t e :
C
C JS=J+0.5 MJS=MJ+0.5 
C
C So J 1.5 2 .5
C MJ - 1 . 5  - 0 . 5  0 . 5  1 .5  - 2 . 5  - 1 . 5  - 0 . 5  0 .5  1 .5  2.5
C
C become
C
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JS
MJS -1 

MJS=1-JS to JS

2
0  1

3
-1 0 1

IMPLICIT NONE
d ec lare subrout ines involved in  plasma d ispers ion  funct io n  
EXTERNAL PLASMAX,PLASMAY,CONTFRAC 
dec lare  other  v a r i a b l e s ,  i n c l u d i n g : -

H
W108
ES(F, mF, H) 
SAS(F, mF, H) 
SBSCF, mF, H) 
ED(JS, MJS, H) 
DAPHCJS, MJS, H) 
DBPHCJS, MJS, H) 
QRX(H)
QIX(H)
QRZ(H)
QIZ(H)

-  magnetic f i e l d  st rength
-  la ser  f requency in 100 MHz un i ts
-  energy of  S states
-  spin +1 /2  component of  S s ta tes
-  spin - 1 / 2  component of  S s ta tes
-  energy of  D s ta tes
-  spin +1 /2  component of  D s ta tes
-  spin - 1 / 2  component of  D s ta tes
-  re a l  p ar t  of  xy quadrupole moment
-  imaginary p a r t  of  xy quadrupole moment
-  re a l  p a r t  of  zy quadrupole moment
-  imaginary p a r t  of zy quadrupole moment

REAL E S ( 1 : 2 , - 2 : 2 , 0 : 3 1 0 0 )
REAL SAS(1:2 , - 2 : 2 , 0 : 3 1 0 0 )
REAL SBS(1:2 , - 2 : 2 , 0 : 3 1 0 0 )
REAL DAPH(2:3,- 2 : 3 , 0 : 3 1 0 0 )
REAL DBPH(2:3,- 2 : 3 , 0 : 3 1 0 0 )
REAL E D (2 :3 , - 2 : 2 , 0 : 3 1 0 0 )
REAL ISH(2000),GRAPHX(200),GRAPHY(200)
REAL SH(0:500)
REAL Q R X (0 :31 00 ) ,Q R Z (0 :3 1 00 ) ,Q IX (0 :31 00 ) ,Q IZ (0 :3 100 )  
REAL QRXMAX,QRZMAX,QIXMAX,QIZMAX 
REAL B1,B2
REAL Y,DA,DB,J,MJ,ROO,N,K 
REAL SUM,SA,SB 
REAL ISHMAX 
REAL A,B,C,CAPA,E,SIG 
REAL HP, HR
REAL GAMDS,GAMDS2,W,W2
REAL DENOM,DELTA,SUMRX,SUMRZ
REAL SUMIX,SUMIZ
REAL SINTH,COSTH, THETA
REAL TC,T,OMEGA,XEND4,YEND4,IMAG,ZR,ZI
REAL DELTAO
REAL* 8  YEND
COMMON YEND
REAL* 8  ZMID(2)
INTEGER GAMDSI,VI 
INTEGER W108,BDH 
INTEGER I ,H,F,MF,MJS,JS  
INTEGER FILESTART,FILEEND,FILEINT 
INTEGER COUNT,NOPOINTS 
CHARACTER+15 NME

Constants

C Hyperf ine S p l i t t i n g  Constant
CAPA=885.813E6 

C Fine S p l i t t i n g  Constant
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K=-4.112E8

C Ground s ta te  energy Levels ES and components of  wave-
C funct ions SA and SB.

DO 52 F=1,2 
DO 50 MF=-F,F 
DO 40 H=0,3100,5  
A=( CAPA*MF+2.0 0 2 8 * 1 . 399E6*H)/2  
B=-CAPA/4-MF*0.0 0 0 8 * 1 . 399E6*H 
C=CAPA*((2~MF)*(2+MF))* *0.5/2  
IF (F .EQ.1)  SIG = -1 
IF (F .EQ.2)  SIG = 1 
IF (MF.EQ.-2 .AND. A .G T .0 .0 )  SIG = -1 
E =B +SIG *(A**2+C**2 ) **0 .5  
ES(F,MF,H) = E 
SUM=SIG* (A**2+C**2) **0 .5  
DEN0M=((A+SUM)**2+C**2)**0.5  
IF (DENOM.NE.0)  GOTO 30 
SA=0 
SB=1 
GOTO 35 

30 SA=(A+SUM)/DENOM 
SB=C/DENOM 

35 SAS(F,MF,H) =SA
SBS(F,MF,H) =SB 

40 CONTINUE
50 CONTINUE
52 CONTINUE

C 4D wavefunct ion components DAPH and DBPH

DO 59 H=0,3100,  5
DAPH(3,3,H)=1
DAPH(3, -2,H)=0
DBPH(3,3,H)=0
DBPH(3, -2,H)=1

59 CONTINUE
DO 70 JS=2,3
IF (JS.EQ.2)  N= -1
IF (JS.EQ.3) N= 1
DO 65 MJS = - 1 , 2
MJ=MJS-0.5
DO 60 H=0,3100,  5
Y=-3.41E-3*H
ROO=MJ+Y+N*(Y**2+2*MJ*Y+6.25)**0.5
DENOM=((2.5+MJ)*(2.5-MJ)+(ROO**2))
IF (DENOM.EQ.O) DENOM = 1 .0 E -20  
DAPH(JS,MJS,H)=R00/(DEN0M**0.5)  
DBPH(JS ,MJS,H)=((2 .5+MJ)* (2 .5 -MJ) /DEN0M )**0.5

60 CONTINUE
65 CONTINUE
70 CONTINUE

C 4D s t a t e  energy le v e ls  ED

DO 98 H=0, 3100 ,  5
Y=-3.41E-3*H
ED (3 ,3 ,H )= (1+3*Y ) *K
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E D ( 3 , - 2 ,H ) = ( 1 - 3 * Y ) * K  
DO 90 MJS=-1,2 
MJ=MJS-0.5
R00=(4*Y**2+8*MJ*Y+25)* *0 .5  
ED(3,MJS,H)=(-0.25+MJ*Y+0.25*ROO)*K  
ED(2,MJS ,H)= ( -0.25+MJ*Y-0.25*R00)*K  

90 CONTINUE
98 CONTINUE

PR IN T * , ' Energy Level c a lc u la t i o n s  f i n is h e d '
C START OF B BIT
C W108 in teg er  frequency in 100 MHz un it s
C W rea l  f requency in  MHz
C W2 2 *  W
C SUMRX rea l  par t  of  e f f e c t i v e  d ip o le  summation in x
C SUMIX imaginary "
C GAMDS DS damping term
C QXR(W108) Real part  of  e f f e c t i v e  d ip o le  in x at W108
C PLASMAX/Y Numerical Rout ines to  eva lu a te  Plasma Dispersion
C Function when imaginary p a r t  of  argument < 1
C CONTFRAC used to e va lu a te  plamsa d ispers io n  fu nct ion  when
C imaginary pa r t  of  argument g r e a t e r  than or equal to  1
C
C COLLECTED CONSTANTS
C Natura l  l inew id th  HWHM

GAMDS=35.0E6
PRINT*,'NATURAL DAMPING, 35MHZ?'
READ*, GAMDS 

C Temperature of vapour in  Celsius
TC=360.0
PRINT*,'TEMPERATURE OF VAPOUR IN CELSIUS, 360?'
READ*,TC

C Temperature of  vapour in K e lv in
T=TC+273.0

C Hence Doppler h a l f  width at 1 /e  po in t
0MEGA=9.27E7*SQRT(T)

C Imaginary pa r t  of  plasma d isp ers io n  fu nct ion  argument
C =doppler  width/homogeneous width

IMAG=GAMDS/OMEGA
C YEND is "common" throughout subrout ines etc ca r ry in g  double
C prec is io n  value of imaginary p ar t  of plasma disp ers io n  fu nc t io n
C argument

YEND=DBLE(IMAG)
0MEGA=0MEGA*1.0 
PRINT*, 'F IELD?'
READ*, H
PRINT*, 'FILENAME IN QUOTES?'
READ*, NME

N0P0INTS=0
IF CIMAG.LT.1.0 )  CALL PLASMAY(ZMID)

C values of quadrupole moments are f i l e d  as r e s u l t  o f  program
C in f i l e  s p e c i f i e d  by program user .  Range of  la ser  f requencies
C fo r  which moments are c a lc u la t e d  is  def ined  by f i l e s t a r t , e n d ,
C i n t ,  where u n i ts  are in 0.1 GHz.
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FILESTART=20
FILEEND=180
FILEINT=3
DO 495 W108=FILESTART,FILEEND,FILEINT
W=W108*1.0E8
W2=2*W
SUMRX =0 .0
SUMRZ =0 .0
SUMIX =0 .0
SUMIZ =0.0

DO 490 F=1,2 
DO 480 MF=-F,F 
DO 470 JS=2,3 
DO 460 MJS=1-JS,JS 
MJ=MJS-0.5

IF (MJS.EQ.-2) THEN
B2=(DBPH(JS,-2 ,H)*SBS(F,MF,H)) **2  
B1= 0

ELSE IF (MJS.EQ.-1)  THEN
B2=(DAPH(JS, -1 ,H)*SAS(F,MF,H)) **2  
B1=(DBPH(JS, -1 ,H)*SBS(F,MF,H)) **2  

ELSE IF (MJS.EQ.O) THEN 
B2=0
B1=(DAPH(JS,0,H)*SAS(F,MF,H))**2  

ELSE IF (MJS.EQ.1) THEN 
B2=0
B1=-(DBPH(JS,1,H)*SBS(F,MF,H)) **2  

ELSE IF (MJS.EQ.2) THEN
B2=-(DBPH(JS,2 ,H)*SBS(F,MF,H)) **2  
B1=-(DAPH(JS,2 ,H)*SAS(F,MF,H)) **2  

ELSE IF (MJS.EQ.3) THEN
B2=-(DAPH(JS,3,H)*SAS(F,MF,H)) **2
B1=0
ENDIF

C Real par t  of  plasma d is p ers io n  fu nct ion  argument is
C c a lc u la ted  as XEND4

XEND4=(W2-ED(JS,MJS,H)+ES(F,MF,H)-2.0E10)/OMEGA 
IF ( IMAG.LT.1.0)  THEN

CALL PLASMAX(ZMID,XEND4,ZR,ZI)
ELSE

CALL C0NTFRAC(IMAG,XEND4,ZR,ZI)
ENDIF

SUMRX=SUMRX+ZR*B2
SUMIX=SUMIX+ZI*B2
SUMRZ=SUMRZ+ZR*B1
SUMIZ=SUMIZ+ZI*B1

400 CONTINUE 
460 CONTINUE 
470 CONTINUE 
480 CONTINUE 
490 CONTINUE
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QRX(W108)=1.0E10*SUMRX/OMEGA 
QRZ(W108)=2.0E10*SUMRZ/0MEGA 
QIX(W108)=1.0E10*SUMIX/0MEGA 
QIZ(W108)=2.0E10*SUMIZ/0MEGA

IF (QRX(W108).GT.QRXMAX) QRXMAX=QRX(W108) 
IF (QRZCW108).GT.QRZMAX) QRZMAX=QRZ(W108) 
IF (QIX(W108).GT.QIXMAX) QIXMAX=QIX(W108) 
IF (QIZ(W108).GT.QIZMAX), QIZMAX=QIZ(W108) 
N0P0INTS=N0P0INTS+1 
GRAPHX(W108)=W 

495 CONTINUE

C F i l i n g  values o f  curve produced
0PEN(UNIT=1,FILE=NME,STATUS='NEW')
WRITE (UNIT=1,FMT=601) GAMDS 
WRITE (UNIT=1,FMT=601) OMEGA 
WRITE (UNIT=1,FMT=600) H 
WRITE (UNIT=1,FMT=600) NOPOINTS
WRITE (UNIT=1,FMT=601) QRXMAX,QRZMAX,QIXMAX,QIZMAX 
WRITE (UNIT=1,FMT=604) FILESTART,FILEEND,FILEINT 
DO 499 I=FILESTART,FILEEND,FILEINT
WRITE (UNIT=1,FMT=602) G R A P H X ( I ) , Q R X ( I ) , Q R Z ( I ) , Q IX ( I ) , Q IZ ( I )  

499 CONTINUE
600 FORMAT(15)
601 F0RMAT(4E12.5)
602 FORMAT(5E12.5)
604 F0RMAT(3I6)

CLOSE (UNIT=1)
STOP
END

C Numerical I n t e g r a t i o n  Routines f o r  Plasma Dispersion
C Function

SUBROUTINE PLASMAX(ZMID,XEND4,ZR,ZI)
C To i n t e g r a t e  d i f f e r e n t i a l  equat ion d e f i n i t i o n  of Z
C from (0,YEND) to  (XEND,YEND) when YEND=IMAG < 1 .0
C ZMID holds r e a l ( l )  and im ag in ary (2) values of  Z(0,YEND)
C Z holds r e a l d )  and im ag in ary (2)  values of  Z(XEND,YEND)
C Z R e a l ( - X , Y ) = - Z R e a l ( X , Y ) ,  hence ZEROCH
C Equations are o f  form QXY=iZ, so x+iy ->  i x - y
C

IMPLICIT NONE
REAL ZR,ZI,XEND4
REAL* 8  X,XEND,TOL,Y,ZEROCH
INTEGER IFAIL ,N
REAL* 8  W ( 2 , 7 ) , Z ( 2 ) , z m i d ( 2 )
EXTERNAL FCN1 
ZER0CH=1.0
IF (XEND4.l t . 0 . 0 )  THEN
XEND4=-1.0*XEND4
ZER0CH=-1.0
ENDIF
N=2
T0L=0.000005
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X=0.0
XEND=DBLE(XEND4)
Z(1)=ZMID(1)
Z(2)=ZMID(2)
IFAIL=0
CALL D02BAF(X,XEND,N,Z,T0L,FCN1,W,IFAIL)
Z(1)=Z(1)*ZER0CH
ZR=-SNGL(Z(2))
Z I=SNGL(Z(D)
RETURN
END

SUBROUTINE PLASMAY(ZMID)
C Numerical I n t e g r a t i o n  of  D i f f e r e n t i a l  Equation f o r  Z
C from ( 0 , 0 )  to (0,YEND)
C Pa ired with  plasmax
C

IMPLICIT NONE 
REAL* 8  Y,YEND,TOL 
INTEGER IFAIL ,N  
REAL* 8  W ( 2 ,7 ) ,Z ( 2 ) ,Z M I D ( 2 )
EXTERNAL FCN 
COMMON YEND 
N=2
TOL=0.000000001
Y=0.0
Z ( 1 ) = 0 .0
Z(2)=SQRT(3.1415927)
IFAIL=0
CALL D02BAF(Y,YEND,N,Z,TOL,FCN,W,IFAIL)
ZMID(1)=Z(1)
ZMID(2)=Z(2)
RETURN
END

SUBROUTINE FCN(T,Z,F)
C Equations fo r  i n t e g r a t i o n  along imaginary ax is
C

REAL* 8  T 
REAL* 8  F ( 2 ) , Z ( 2 )
F ( 1 ) = + 2 * ( T * Z ( 1 ) )
F ( 2 ) = - 2 * ( 1 - T * Z ( 2 ) )
RETURN
END

SUBROUTINE FCN1(T,Z,F)
C Equations fo r  i n t e g r a t i o n  along y=yend to (xend,yend)
C

REAL* 8  T,YEND 
REAL* 8  F ( 2 ) , Z ( 2 )
COMMON YEND
F ( 1 ) = -2 * (1 + T * Z (1 ) -Y E N D * Z (2 ) )
F (2 )= -2 * (Y E N D *Z (1 )+ T *Z (2 ) )
RETURN
END

SUBROUTINE CONTFRAC(IMAG,XEND4,ZR,ZI)
C To c a lc u la t e  Z by the cont inued f r a c t io n s  method
C when YEND(=IMAG) > 1 . 0 .
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c ZRC and ZIC hold rea l  and imaginary par ts of
C Z(XEND4,IMAG). F in a l  eqns are of  form
C QXY=iZ so x+iy - >  i x - y

IMPLICIT NONE
REAL ZR ,Z I ,Z R C ,Z I C , IMAG,XEND4,ZEROCH 
INTEGER n , I  
COMPLEX w
COMPLEX A C C - 1 : 4 0 ) , B C ( - 1 : 4 0 ) , a ( - 1 : 4 0 ) , b ( - 1 : 4 0 ) , Z C ( - 1 : 4 0 )  
A C ( - 1 ) = ( 1 . 0 , 0 . 0 )
A C ( 0 ) = ( 0 .0 , 0 . 0 )
B C ( - 1 ) = ( 0 . 0 , 0 . 0 )
B C ( 0 ) = ( 1 .0 , 0 . 0 )
ZC(0)=0.0
n= 0

ZEROCH=1.0
IF (XEND4.l t . 0 . 0 )  THEN 

XEND4=-1.0*XEND4 
ZER0CH=-1.0 
ENDIF
w=CMPLX(XEND4,IMAG)

9930 IF ( n .G T . 4 . A N D . A B S ( ( Z C ( n ) - Z C ( n - 1 ) ) / ( Z C ( n ) + Z C ( n - 1 ) ) ) . l t .  
z 0.000001)  GOTO 9939 

IF ( (n + 1 ) .E Q .1 )  THEN 
a(n+ 1 )=w 

ELSE
a(n+ 1 ) = - 1 . 0 * n * ( 2 * n - 1 ) / 2  

ENDIF
b (n+1)=-w**2+0 .5+2*n  
AC(n+1)=b(n+1)*A C(n)+a(n +1)*AC(n-1 ) 
BC(n+1)=b(n+1)*BC(n)+a(n+1)*BC(n-1 )  
ZC(n+1)=AC(n+1)/BC(n+1)  
n=n+ 1  

GOTO 9930 
9939 CONTINUE

ZRC=REAL(ZC(n))
ZIC=AIMAG(ZC(n))
ZRC=ZRC*ZEROCH
ZR=-ZIC
ZI=ZRC
RETURN
END
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FORTRAN PROGRAM TO PLOT OUT LINE PROFILES

This program requ ires rou t ines  from the "GHOST" graphics package, and so 
the compiled vers ion of  t h i s  program must be l inked  with the ap p ro p r ia te  
GHOST l i b r a r i e s .

C BDS 6 . 8 6  PTGEN.FOR
C Reads data from f i l e s  generated by LPGEN to produce
C l i n e  p r o f i l e s  of  SHG process. In  t h i s  case the l i n e  p r o f i l e s
C of the Z and X e f f e c t i v e  d ipo le s  are p l o t t e d  f o r  the case of
C the fundamental p o l a r i s a t i o n  at 45 degrees to  the magnetic f i e l d ,
C The other curve is  the l i n e  p r o f i l e  expected i f  a l i n e a r
C p o l a r i s e r  were placed in the SH beam at  45 degrees to  the
C magnetic f i e l d .
C To run,  compile then LINK PTGEN,GHOST/LIB,GRID/LIB
C graphica l  output w i l l  appear in  DEFAULT.6 RD. To examine
C graph ica l  output  type T4010 a t  VAX command leve l  and fo l lo w
C quest ion and answer sequence,

IMPLICIT NONE
REAL QRXMAX,QIXMAX,QRZMAX,QIZMAX 
INTEGER FILESTART,FILEEND,FILEINT 
REAL GRAPHAMAX,GRAPHBMAX,GRAPHCMAX 
REAL GAMDS,OMEGA,ISHMAX
REAL GRAPHXC200),GRAPHA(200),GRAPHB(200),GRAPHC(200)
REAL Q R X(200) ,Q IX (20 0) ,Q RZ(2 00) ,Q IZ (200)
INTEGER H,J,I ,NOPOINTS 
INTEGER REP 
CHARACTER*15 NME

C Obtain f i lename

100 PRIN T*, 'F ILE? '
READ 2 ,  NME 

2 F0RMATCA15)

C Set up Ghost graphics package

CALL PAPER(1)
CALL AXNOTA (1)
CALL PSPACE(0.0 8 , 0 . 9 4 8 , 0 . 2 , 0 . 6 7 2 )
CALL BORDER

C Read f i l e  contents in t o  a p p ro p r ia te  arrays

OPEN (UNIT=1,FILE=NME,STATUS='OLD')
READ (UNIT=1,FMT=601) GAMDS 
READ (UNIT=1,FMT=601) OMEGA 
READ (UNIT=1,FMT=600) H 
READ (UNIT=1,FMT=600) NOPOINTS
READ (UNIT=1,FMT=601) QRXMAX,QRZMAX,QIXMAX,QIZMAX 
READ (UNIT=1,FMT=604) FILESTART,FILEEND,FILEINT 
1=0
DO 499 J=FILESTART,FILEEND,FILEINT 
1= 1+1
READ (UNIT=1,FMT=602) G R A P H X ( I ) ,Q R X ( I ) ,Q R Z ( I ) ,Q IX ( I ) ,Q IZ ( I )

499 CONTINUE
CLOSE(UNIT=1)

600 FORMAT(15)
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601 F0RMATC4E12.5)
602 FORMAT(5E12.5)
604 FORMAT(316)
9898 CONTINUE

C Plo t  out the th ree  Line p r o f i l e s  on the same s c a le ,
C with the scale chosen to  p lace the grea tes t  maximum
C at 0 . 9  of  the way up the v e r t i c a l  a x is .

GRAPHAMAX=0.0 
DO 328 1=1 ,NOPOINTS 
GRAPHA(I )=QRX( I ) **2+QIX ( I ) * *2  
IF (GRAPHA(I).GT.GRAPHAMAX) GRAPHAMAX=GRAPHA(I)

328 CONTINUE 
GRAPHBMAX=0.0
DO 329 1=1 ,NOPOINTS 
GRA PH B ( I ) =Q R Z( I ) * *2+Q IZ ( I ) * *2
IF  (G RAPHB(I).G T.GRAPHBM AX) GRAPHBMAX=GRAPHB(I)

329 CONTINUE 
GRAPHCMAX=0.0
IF (GRAPHAMAX.LT.GRAPHBMAX) GRAPHAMAX=GRAPHBMAX 
IF (GRAPHAMAX.LT.GRAPHCMAX) GRAPHAMAX=GRAPHCMAX 
CALL MAP(0.25E10,1.75E10,0.0,GRAPHAMAX*1.1)
CALL SCALES

CALL BROKEN ( 1 0 , 1 0 , 1 0 , 1 0 )
CALL CURVE0(GRAPHX,GRAPHA,1, NOPOINTS) 
CALL CURVEO(GRAPHX,GRAPHS,1 , NOPOINTS) 
CALL CURVE0(GRAPHX,GRAPHC,1, NOPOINTS) 
CALL FRAME 
CALL GREND

STOP
END
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APPENDIX C 

COMPUTERISED SYSTEM FOR DATA COLLECTION AND ANALYSIS

ALL the Line p r o f i l e s  shown in  t h i s  t h e s is  were recorded using the comput­

er ised  data c o l l e c t i o n  system described in sect ion 4 . 2 . 3 .  This system was 

developed in co-operat ion  with Mr A l i s t a i r  Poust ie;  he describes an e a r ly  

vers ion of  the setup in re ference  142.  A block diagram of  the data 

c o l l e c t io n  apparatus is shown here as f ig u r e  C.1.

SH Detector via PSD

Marker interferometer Photodiode

Iodine Cell Photomultiplier

Ring Dye Laser Electronics

Interface BBC Model B 
Microcomputer

Disc Drive

6502 Second 
Processor

Figure C.1.  Block diagram of  the computerised data 
c o l l e c t i o n  system.

The data c o l l e c t i o n  program, which was w r i t t e n  in BBC Basic and is l i s t e d  

in appendix D, f i r s t  ran through a quest ion and answer sequence to set  up 

parameters such as the laser  scan t im e.  The computer then checked t h a t  the  

laser  was locked to  the re ference  in te r fe ro m e te rs  and waited fo r  the  

operator  to  s t a r t  the laser  scanning.  The 'scan on' s ignal  s t a r t e d  the  

data c o l l e c t i o n  part  of  the program, which read the values of the exp­

er imenta l  parameters via  the computer's analogue to  d i g i t a l  co n ver te r .

These values were d isp layed  g r a p h i c a l l y  on the screen and stored in th ree
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arrays in RAM, 3600 points f o r  the SH s i g n a l ,  and 1200 points f o r  each of  

the other  two parameters.  At the end of  the scan another quest ion and 

answer sequence al lowed the operator  to  store  some or a l l  of  these values  

on the f lo ppy  d is c .

At the end of an exper imenta l  session the f i l e s  of  l i n e  p r o f i l e s  stored on 

the discs were t r a n s f e r r e d  to  the U n i v e r s i t y ' s  VAX 11/785 mainframe 

computer. The Fort ran  program which was used to  analyse t h i s  data is  a lso  

l i s t e d  in appendix D. I t s  main fu n c t io n  was to  l i n e a r i s e  the laser  scan.  

This was done by expanding and c o n t r a c t in g  par ts  of the scan data to ensure 

tha t  the in t e r f e r o m e t e r  t ransmission per iod remained the same throughout the  

scan. Graphs could then be drawn to  s p e c i f i e d  sca l ings  on the computer 

screen or graphics p l o t t e r .  As the absolute  frequency of the laser  was 

recorded in the form of par ts  of  the iod ine spectrum, l i n e  p r o f i l e s  taken  

under d i f f e r e n t  condi t ions  could be p l o t t e d  out and combined on one graph 

fo r  comparison. This would have been n ear ly  impossible without  the 

computerised system.

The l i n e a r i s a t i o n  was tes te d  by Dopplei— f r e e  two-photon spectroscopy of  the  

sodium 3S -  4D t r a n s i t i o n .  The SH de te c to r  was replaced by a photo­

m u l t i p l i e r  tube which monitored the 330 nm r a d i a t io n  as described in 

sect ion 4 . 4 . 2 .  Figure C.2 shows the output  from the p l o t t e r ;  the top t race  

is the two photon absorpt ion  spectrum, the middle t race  is  the s ig na l  from 

the photodiode of  the marker i n t e r f e r o m e t e r ,  and the bottom t ra c e  is the  

iod ine absorpt ion spectrum. The graph is  annotated in u n i ts  of the f r e e  

sp ec t ra l  range of the marker i n t e r f e r o m e t e r .  This is 250 MHz at  the la se r  

f requency ,  corresponding to  500 MHz at  the atomic frequency.  The 

separat ions of  the peaks were measured, and are shown in ta b le  C.1.

Agreement was good to  0.5%, so the l i n e a r i s a t i o n  obviously worked w e l l .
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Figure C.2.  Doppler f r e e  t ra c e  of  the sodium 3S -  4D t r a n s i t i o n
as recorded and d isp layed  by the system described in t h i s
appendix,  see t e x t  f o r  f u l l  ex p la n a t io n .  The t r a n s i t i o n s  a r e : -  
a) 3S (F=2) ->  4D ( J = 5 / 2 ) ,  b) 3S (F=2) ->  4D ( J = 3 / 2 ) ,
c) 3S (F=1) ->  40 ( J = 5 / 2 ) ,  d) 3S (F=1) ->  4D ( J = 3 / 2 ) .

Peaks 1 Peak Separat ion  
1 ______________ ______

(GHz)
1

1 Experimental Accepted

a-c 1.775
1.772

b-d 1.777

a-b 1.032
1.028

c-d 1.034

Table C.1.  Measured and accepted values f o r  the hyper f in e  
s p l i t t i n g  of  the sodium 3S s t a t e  and the f i n e  s p l i t t i n g  of  
the 40 s t a t e .
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APPENDIX D 

DATA COLLECTION AND ANALYSIS PROGRAMS

Data C o llec tio n  Program

To be run on a BBC model B microcomputer with a 6502 second processor and a

s in g le  d ens ity  f loppy  disc d r i v e .  The h i -b a s ic  chip must be in  use; in our

case the command *FX142,1 enabled t h i s  ch ip .  The data recorded in RAM is  

subsequently stored on the disc in  ASCII format by use of  the *SPOOL

command. This is  the data format in  which the mainframe computer would

most r e a d i l y  accept the da ta .

10 REM DATA RECORD PROGRAM FOR SODIUM SPECTROSCOPY EXPERIMENT 
20 REM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
30*FX 16 ,3
40 MODE 11 COLOUR 2:CL8 
50 V » 0 » C B M $ - *B L A N K H tX -^ fW r t * l
60 DIM P S D *(3 6 9 3J , IO O y .(1 2 3 3 ) ,P H X < I2 3 3 ) ,L K 0 F F % < 5 0 ) ,P S Z (1 5 ) ,P 0 IT X (2 0 )
70 P R I N T " * * * * * * * * * * * * * * * * * * * * * * * * # * # * * * * * * * * * * * * * " ! P R I N T " * " j T A B ( 3 9 ) I " * " i P R I N T " * " ( T A B 1 3 9 ) f “ * “ : 

P R I N T " * " ;T A B ( 5 I ; " S o d iu m  S p m c t ro fc o p y  E > f p e r lm e n t " jT A B ( 3 9 ) | “ » “
GO PRINT " * " j T A B ( 5 ) j T A B ( 39) ; " * "
90 PRINT " * " ; T A B ( 3 9 ) ; " * " : P R I N T  " * » ; T A B ( 3 9 ) ; " * " : P R I N T  " * “ jT A B ( 1 7 ) j " B y “ |T A B ( 3 9 ) j " * “ ! PRINT " * “ (T 

A B ( 3 9 ) } “ * " iP R IN T  “ * " > T A B ( 3 9 ) | " » " i P R I N T  " * " ; T A B ( 1 0 I ; " A P  and B S " fT A B ( 3 9 ) » * * "
100 P R lN T " * " ; T A B ( 3 9 ) ; " * " lP R I N T  " * " iT A B ( 1 6 ) i " 1 9 8 5 " |T A B ( 3 9 ) | " * • iPRINT " * " ; T A B ( 3 9 ) , " * " , P R I N T " * * * *  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * "

110 T"TIME+2:REPEAT:UNTIL  TIME>T 
120 R«0
130 MODE l iVOU 26»V»0 i REPEATi PR1NT!V«V+1 i UNTIL V»10 i PRINT TAB( 3 ) ; "MAIN MENU : - " : P R l N T  T A B ( 3 ) ; "

I PRINT I PRINT
140 PRINT T A B ( 6 ) ; " 1 .  Data  R * c o r d ln g " :P R IN T :P R IN T  TAB(6 ) ; " 2 .  Rese t  PSD Range" :PRINT :PR IN T TAB 

(6 ) ; " 3 .  S p a re "
130 PRINTiPRINT T A B ( 6 ) ; " 4 .  R eco rd  r e s u l t s  on d is c " :P R IN T :P R IN T  T A B ( 6 ) ; " 5 .  G r a p h ic *  N o te p a d " ;  

PRINTiPRINT TAB(6 ) ; " 6 . E x i t  p rog ra m *
160 PRIN TiPR INT iP R IN T iPR IN T
170 PRINT '  SELECTION? " i  SEL*«GET*: SEL% =VAL(SEL*) : IF  8ELX76 OR 6EL%<1 THEN GOTO 170 
180 ON SEL% GOTO 2 0 0 , 1 8 5 ,1 3 0 , 6 3 0 ,9 7 0 , 1 1 3 0  
185 PR0Cr«ngeiBDX»0] GOTO 130 
190
200 REM * * * * * * * * * * * *  DATA RECORDING * * * * * * * * * * * * * * * *
210 IF  BD%»1 THEN PRQCrangetBDX»0 
220 MODE OlCLGtCLS 
230 PfiOCaxes
240 VDU 2 4 , 0 | 5 0 ; 128 0 ;1 0 2 4 ;
250 VDU 2 8 , 0 , 3 1 , 6 5 , 3 0
260 P R IN T : IN P U T "E n te r  t h e  l a s e r  scan t i m e  ( s e c s ) : -  " ,L S T  
270 IF  LST<-72 THEN N O X - l : DPLUS»0:GOTO 380 
280 D " ( ( L S T * 1 0 0 ) - 7 2 0 0 ) / (1 2 2 8 *3 )
290 IF  D<2 THEN N0X"1:DPLUS»D:80T0 310 
300 NOX»INT(D):DPLU8»D-N0X
310 ON NOX GOTO 3 8 0 , 3 8 0 , 3 8 0 , 3 2 0 , 3 2 0 , 3 3 0 , 3 3 0 , 3 4 0 , 3 4 0 , 3 3 0 , 3 5 0 , 3 6 0 , 3 6 0 , 3 7 0
320 NOX"NOX+1:GOTO 380
330 NOX"NOK+2:GOTO 380
340 NOX"NOX+3:GOTO 380
350 N0%«N0X+4:Q0T0 380
360 N0X"N0X+5)G0T0 380
370 NOX-NOX+6
380 L0CKX«ADVAL(0) AND 3 : IF  L0CKX»2 OR LOCKX-0 THEN 410 
390 P R IN T:PR IN T"Lock  t h e  l a s e r . . . . . *
400 L0CKX»ADVAL(0) AND 3 : IF  L0CKX=2 OR L0CKX=0 THEN 410 ELSE 400 
410 P R l N T * C o n f i r n a t i o n : -  S t a b l l o c k  On"
420 T -T IM £*60 :REPEAT lUNT IL  TIME>T
430 P R IN T :P R IN T " S ta r t  l a s e r  scan t o  b e g i n . . . . "
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440 SCANX«ADVAL(0) AND 3 i I F  SCANX-0 THEN 450 ELSE 440
450 PRINT
460 6D%"1
470 PLTX-0
480 PLTX-PLTZ+1
490 H X - l iP R O C pid
300 PLOT 69,PLT%+50,TXDIV 10+575
510 I0X«ADVAL<2) DIV 1 6 i lO D Z (P L T X ) - lO X iP L O T  6 9 ,PLTX+50,IQXDIV21+325 
520 H X-2 t tPR QC pid
530 PX"ADVAL(3I DIV 16tPHX(PLTX)-PX iPLOT 6 9 ,P LTZ + 50 ,P X D IV 2 i+ 75  
540 HX«3iPR0Cp«d
550 IF  P L TX - I2 3 0  THEN GOTO 580 ELSE 480 
570 GOTO 130
580 P R lN T"M *rk  s e c t i o n  o f  g rap h  (Y /N )  " ;A N 8 * " G E T $ i IF  ANS$""N" THEN LX»liGOTO 600 
590 LX»0:PR0C#xp
600 PRINT i PRINT T A B ( 1 0 ) | " 1 .  Main  Menu 2 . Notepad i -  S e l e c t i o n  A » -G E T * iA X -V A L (A I ) lO N  AX 

GOTO 130 ,1220  
610 GOTO 1130 
620
630 REM * * * * * * * * * * * * * *  WRITE RESULTS TO DISC * * * * * * * * * * * * * * * * * *
640 CLOSECO
650 MODE l iP R lN T iP R IN T iP R I N T iP R I N T * W r i t i n g  r e s u l t s  t o  d i s c  PRIN T"-------------------------------   “

660 PRIN T:PRIN TiPRIN T T A B ( 3 1 ; " 1 .  P .S . D .  and P h o to d io d e  d a t a  p o in t s " iP R I N T : P R IN T  T A B ( 3 ) ; " 2 .  P.S 
.D .  , P h o to d io d e  and I o d in e " :P R IN T :P R IN T  TAB(6 ) ; " d a t a  p o in t s " :P R I N T iP R IN T  T A B (3> > "3 .  R e tu r n  t o  M 
aim Menu"

6 7 0 - P R IM T i fM N T i  INPUT*8# U c t i o n  " ; A X : I F  AX<1 OR A%>3 -THEN 670 
680 ON AX GOTO 6 9 0 ,8 2 0 ,1 3 0
690 R "R + 1 : IF  R-4 THEN P R IN T "D is c  F u l l -  I n s e r t  new D is c *  ELSE 720 
700 P R IN T iP R IN T : IN P U T "C o n t in u e  (Y /N I  " , C * : I F  C * - " N "  THEN 130 
710 GOTO 120
720 ON R GOTO 7 3 0 , 7 5 0 ,7 7 0
730*SP00L PSRUNl
740 GOTO 780
7S0»SP0QL PSRUN2
760 GOTO 780
770*SP0QL PSRUN3
780 PRINT COM*
790 U X - l iP R O C d is c
800*SP0OL
810 GOTO 650
820 R " R + l i I F  R-3 THEN P R IN T "D is c  F u l l -  I n s e r t  new D is c "  ELSE 850 
830 P R IN T :P R IN T : IN P U T "C o n t in u e  (Y /N I  " , C * i I F  C * - " N *  THEN 130 
840 GOTO 120
850 ON R GOTO 8 6 0 ,8 8 0 ,9 0 0
860*SP00L ALRUNl
870 GOTO 910
880*SP00L ALRUN2
890 GOTO 910
910 PRINT COM*
920 UX«OiPROCdisc 
930*8P00L 
940 GOTO 650 
960
970 REM * * * * * * * * * * * * *  GRAPHICS NOTEPAD * * * * * * * * * * * * * *
980 PROCrange 
990 PROCaxes 

1000 PRINT "A TO ABORT"
1010 PLTX-0 
1020 REPEAT
1030 K E Y $«1N KEY$(0 ) : IF  K EY$""A"  THEN 1100 ELSE 1040 
1040 T X 'A D V A L I l )  DIV I 6 1 PLQT 69,PLTX+50,TXD IV  10+575 
1050 I0 X«A0VAL(2 )  DIV I 6 1 PLOT 6 9 ,P LTX + 50 , lO X D IV 21+ 325  
1060 PX"ADVAL(3) DIV I 6 1 PLOT 69,PLTX+50,PXDIV21+75  
1070 PLTX-PLTX+1
1080 IF  PLTX-1230 THEN PLTX-0:PROCaxes 
1090 UNTIL KEY$""A"
1100 PRINT*Run A g a in  (Y /N )  " iV * "G E T $
1110 IF  V $ ""N "  THEN 130 
1120 GOTO 970 
1130 VDU 4 
1140 VDU 26 
1150 MODE OiEND 

. 1160 DEF PRQCeark 
1170 MOVE P LT X +50 ,75:PL0T  2 1 ,PLTX+50 ,1100  
1180 IF  SDX-SO THEN 1200 
1190 LK0FFX(SDX)"PLTX:SDX"SDX+1 
1200 ENDPROC 
1210
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1220 REM * * * * * * * * *  NOTEPAD * * * * * * * * * * *
1230 VDU 26i CL6jCLSi PRINTi PRINTi PRINT«PRINT TAB(30) ;"NOTEPAD":PRINT TAB<30);
1240 VDU 2 4 , 0 : 0 : 1 2 8 0 : 1 0 0 0 ;
1250 MOVE OjOiDRAW 1279,0:DRAW 1 2 7 9 , lOOOiDRAW 0 , 1 0 0 0 : DRAW 0,0 :M 0VE 1 5 , 1 5 : DRAW 1264,15:DRAW 1264 

,9B7:DRAN 15,987:DRAW 15 ,1 5  
1260 VDU 5
1270 MOVE lOO ,BOO:PRINT"En t« r  comments h e re  and th e n  p r e s s  ( r e t u r n ) "
1280 VDU 4 : VDU 2 8 , 1 0 , 2 5 , 7 0 , 1 0  
1290 INPUT COMfiVDU 5
1300 MOVE 400 ,7S iP R IN T  " P r e s s  S p a c e -B a r  t o  c o n t i n u e "
1310 AX*OET:!P  A X 0 3 2  THEN 1310 
1320 V0U4IVDU26 
1330 GOTO 130 
1340
1350 DEF PROCpsd 
1360 IX«0 
1370 REPEAT 
1380 IX - lX + 1
1390 PSX(1X)"ADVAL(1)  DIV 16
M O D  CHECKX*ADVAbf«-) A N D O N  (CHEeKTt+ll GBTU 1440, 1 4 1 0 , 1 4 2 0 ,14ÜD
1410 VDU 7:PR0Cmark:6OTO 1440
1420 VDU 7 iP R IN T "S can  o f f : " : 6 0 T 0  580
1430 VDU 7 iP R lN T *S ca n  and S t a b l l o c k  o f f " ;Q O T O  580
1440 UNTIL IX-NOX
1450 SUM%"0:XX"0:REPEATiX%"X%+l:SUM%"SUM%+PS%<X%);:UNTILX%"NO%:T%*GUM%DIVX%
1460 PSDX(3*PLTX+HX)"TX
1470 DEEXX»INT(DPLUS*85) iF0R FX"1 TO DEEXXiNEXT
1480 ENDPROC
1490
1500 DEF PROCexp 
1510 LOCAL 
1520*FX4,1  
1530 DX"0 :BX"1
1540 P R IN T :X X * 6 0 : IN C X " l iS P X " l :N X * 0 : F X " 2 2  
1550 PROCln 
1560 REPEAT 
1570 8X-8ET
1580 IF  SX-136 THEN 1590 ELSE 1600
1590 P R O C ln :XX -X X-(INC X*9P% ): PROCln
1600 IF  BX-137 THEN 1610 ELBE 1620
1610 PROCln:XX»XX+<INCX*8PX):PROCln
1620 NX"NX+1:IF  N X ("20  THEN SPX-1 ELSE SPX-10
1630 IF IN K E Y ( - 1 2 2 ) 0 - 1  AND INKEY( - 2 6 ) < > - 1  THEN NX-0
1640 UNTIL S X "8 8 iD % "D X + l :P 0 IT X (D X ) "X X -5 0 :F X -2 1 :P R 0 C In
1650 IF  DX-2 THEN 1670
1660 GOTO 1540
1670*FX4,0
1680 ENDPROC
1690
1700 DEF PROCln
1710 IF  XX>»1279 THEN XX«1279iQ0T0 1730
1720 IF  XX<«51 THEN X Z -5 I
1730 MOVE XX ,75 iP L0T  F X , X X ,1024
1740 ENDPROC
1750
1760 DEF PROCaxes 
1770 MODE 0
1780 MOVE 50,75:DRAW SO,275:MOVE 50,32SiDRAW 5 0 , 5 2 5 : MOVE 50,7SiORAW 1280,7S:M0VE 50,325:DRAW 12 

8 0 ,3 2 5  
1790 VDU 5
1800 MOVE 4 4 ,5 2 5 :P R IN T " * " :M 0 V E  4 4 ,2 7 3 :P R IN T " * " :M 0 V E  l l 3 0 , 3 1 5 : P R I N T " I o d i n e " i M 0 V E  1 1 0 0 , 6 5 : PRINT'P  

h o t o d i o d e "
1810 IF  MARK-1 THEN 1820 ELSE 1850
1820 MOVE 50,S75:DRAW 5 0 , 1 0 2 4 : MOVE 5 0 ,5 8 0 :P R IN T  STRING#( 7 7 , " - " ) :MOVE 4 4 , 1 02 0 iP R IN T "* " iM 0 V E  1150 

, 5 6 0 :P R IN T « P .S .D . "
1830 VDU 4 
1840 GOTO 1870
1850 MOVE 50,575iORAW 50,1024iMOVE 5 0 ,7 8 5 :P R IN T  S T R IN G # (7 7 ," - " ) iM O V E  4 4 , l0 2 0 :P R IN T " * " iM 0 V E  1150 

, 7 7 5 :P R IN T " P .8 .D . "
1860 VDU 4 
1870 ENDPROC 
1880
1890 DEF PROCrange 
1900 MODE 1:CLG
1910 V«OlR£P E A T lP R IN T:V «V + l :U N T lL  V-10
1920 PRINT "P hase  S e n s i t i v e  D e t e c t o r  ra n g e s  : - "
1^30 PRINT
1940 PRIN T:PRINT:PRINT:PRINT TAB( 1 0 ) ; “ PSD:-  1. 0 TO *1 PRINT:PRINT TAB( 1 0 ) ; '  2. -1  TO

♦ I "
1950 PRIN T:PRIN T:PRINT
I9 6 0  PRINT " S e l e c t i o n ?  " :  S # -G E T # :6 X « V A L (9 # ) : IF  3X<1 OR SX>2 THEN GOTO 1960 
1970 IF  SX-1 THEN MARK-1 ELSE MARK-0 
1980 ENDPROC 
1990
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2000 DEF PftOCdlkC
2010 IF  LX«1 THEN EN%"1230(STX"1 :60T0  2030 
2020 TX— 1 
2030 TX-TX+2
2040 S T X " P 0 1 T X ( T X ) iE N X " P 0 IT X ( T X + l l i IF  ENX<3TX THEN ENX-POITX(TX): STX-POITX<TX+1)
2050 IX« l iO SiPRINT
2060 PRINT STX,ENX,S0Z-1
2070 PRINT
2080 FOR IX -1  TO S D X - l iP R lN T  L K O F F X ( IX ) : NEXT IX
2090 PRINT
2100 FX « (3 « 8 T X ) -2
2110 FOR IX -8TX  TO ENX
2120 IF  UX-0 THEN 2130 ELSE 2140
2130 PRINT P 8 D X ( F X ) ,P H X ( IX ) , I 0 D X ( IX ) t6 0 T Q  2150
2140 PRINT PSDX(FX),PHX(IX1
2150 FX-FX+1
2160 NEXT IX
2170 FOR IX-FX TO (3 *E N X ) -2  STEP 5
2180 PRINT P S D X ( IX ) ,P S D X ( IX + l ) ,P B D X ( IX + 2 ) ,P S D X ( IX + 3 I ,P S D X ( I% + 4 )
2190 NEXT IX
2200 FOR BX-IX+1 TO (3 *E N X ) -2  
2210 PRINT PBDX(GX)
2220 NEXT GX
2230 IF  LX-1 THEN 2240
2240 8X-&10
2250 ENDPROC
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Data Analysis Program

To run on the VAX computer system. The program must f i r s t  be complied,  

then l inked  with g h o s t / l i b , g r i d t 4 0 1 0 / l i b .  I t  is  designed to work on a 

t e rm in a l  compatible with the T ek t ron ix  T4010 standard.

C BD2.F0R REVISED 9 . 5 . 8 6
C Prog to  analyse and p lo t  BBC data
C
C Developed by A l i s t a i r  Poust ie  and Bruce S i n c l a i r
C August 1985. To run,  compile the program and
C LINK BD2,GHOST/LIB,GRIDT4010/LIB
C The data from the BBC c o l l e c t i o n  must be in
C a s u i t a b l y  format ted f i l e  wi th  a .DAT
C f i l e  s p e c i f i c a t i o n .  Var ious operat ions  can be
C performed on the data ;  i f  s p e c i f i e d ,  the f i n a l
C graphs and annota t ions  are f i l e d  in a g r i d f i l e
C c a l le d  BD.GRD.

C * * *  DECLARATIONS

IMPLICIT NONE 
INTEGER BDI
INTEGER I,R,M,C,IPEAK(100),PSDPK1,PSDPK2,C0DE 
INTEGER ST,PHMAX,S,DUM,EN,ICHAR,IPK,F,PSDST,PSDEN 
INTEGER REPEAT,PDIO
INTEGER PHMX,PMAX,PHMIN,PMX(1000),PHMN,PMN(1000),PMIN 
INTEGER ITR, ITR0(1000) ,STT,ENN,M ID (100 ) ,M0(100)  
INTEGER START,PSDFIN,AP,PSDF,STAR,MIDD,STA,FIN 
REAL PHPOSX,PHPOSY,IOPOSX,IOPOSY,PSDPOSX,PSDPOSY 
REAL BDPSDMAX, BDPSDMIN 
REAL TOP,BOTTOM,HALF,LEFT,RIGHT 
REAL C0NT,MK(2) ,0FF(20)
INTEGER EX,TR,A,D,SD,LK0FF(20) ,Q,K
REAL PSDN0(3900), PSD( 3 9 0 0 ) ,PHN0(1300 ) ,PH(1 300) ,

Z I0D(1300),V,DIFF,COUNT  
REAL OFFSET
REAL PS,P,IO,PSDDIFF,MAG,X,PSDSCL,PHSCL,PHSC,IOSCL
REAL XMIN,XMAX, Y
REAL XMARK,YMARK
INTEGER FM
INTEGER BDREPEAT
CHARACTER*30 NME,NME1
CHARACTER*100 COM
CHARACTER*1 ANS

C * * *  main  MENU, DATA INPUT 
C

PRINT*, '  '
PRINT* , '  '
PRINT*, '  '
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P R IN T* , ' Ghost P l o t t i n g  of  BBC Data'
P R IN T * , '=========================='
PRINT*, '  '
PRINT*, '  1. P .S .D .  & Photodiode Data'
PRINT*, '  '
PRINT*, '  2. P . S . D . ,  Photodiode & Iod ine Data'
PRINT* , '  '
PRINT*, '  3 .  E x i t  Program'
PRINT* , '  '
P R IN T * , 'S e le c t io n  ?'

1 READ*,S
IF (S.EQ.1)  GOTO 10
IF (S.EQ.2)  GOTO 19
IF (S.EQ.3)  GOTO 210
IF (S .L T .1 .0 R .S .G T .3 )  GOTO 1

C
C PSD & Photodiode points
C
10 PRINT*, '  •

PRINT*, '  •
P R IN T * , 'P .S .D .  & Photodiode'
P R IN T * , ' ------------------------------------- '
GOTO 29

C PSD,Photodiode and Io d ine  po in ts
C
19 PRINT*,

PSD,Photodiode & Io d in e '
 _______      I

I

Enter the Data F i l e  name:'

PRINT*,
PRINT*,
PRINT*,

29 PRINT*,
PRINT*,
READ 2 , NME

2 FORMAT(A30)
C

C * * *  READ IN FROM DATA FILE 

C
OPEN (UNIT=1, FILE=NME,STATUS='OLD' )  
READ(UNIT=1,FMT=3) COM

3 FORMAT(AIOO)
READ(UNIT=1,FMT=4) DUM,DUM 
READ(UNIT=1,FMT=4) ST,EN,SD

4 FORMAT(I5 , I5 , I5)
READ(UNIT=1,FMT=4) DUM,DUM 
IF (SD.EQ.O) SD=1
DO 9 1 = 1 ,SD
READ(UNIT=1,FMT=11) LKOFF(I)

9 CONTINUE
PRINT*,'NUMBER OF LOCKOFF POINTS I S ' ,  SD-1 

11 F0RMAT(I5)
PSDST=C3*ST)~2
PSDEN=(3*EN)-2
F=PSDST
READ(UNIT=1,FMT=4) DUM,DUM 
DO 7 I=ST,EN
READ(UNIT=1,FMT=5) PS,P, IO
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5 FORMAT(F5.0,F5.0,F5.0)
PSDNO(F)=F
PSD(F)=PS
PHNO(I )=I
PH(I )=P
IO D ( I )= IO
F=F+1

7 CONTINUE
DO 20 I=F,PSDEN,5
READ(UNIT=1,FMT=8) P S D ( I ) ,P S D ( I + 1 ) , P S D ( I + 2 ) , P S D ( I + 3 ) , 

Z PSDCl+4)
8  F O R M A T (F 5 .0 ,F 5 .0 ,F 5 .0 ,F 5 .0 ,F5 .0 )

PSDNO(I)=I
PSDN0(I+1)=I+1
PSDN0(I+2)=I+2
PSDN0(I+3)=I+3
PSDN0(I+4)=I+4

20 CONTINUE
DO 22 R=I+1,PSDEN 
READ(UNIT=1,FMT=21) PSD(R)
PSDNO(R)=R

22 CONTINUE
21 F0RMATCF5.0)

CL0SE(UNIT=1)
PR IN T*, 'F ILE READ'
BDPSDMIN=4095.0
BDPSDMAX=0.0
DO 23 BDI=PSDST,PSDEN
IF (PSD(BDI).GT.BDPSDMAX) BDPSDMAX=PSD(BDI)
IF (PSD(BDI).LT.BDPSDMIN) BDPSDMIN=PSD(BDI)

23 CONTINUE 
PDI0=0

C * * *  DETERMINATION OF MAX AND MIN VALUES OF PHOTODIODE TRACE 
C

PHMAX=PH(ST)
PHMIN=PH(ST)
DO 30 I=ST,EN 
DO 25 Q=1,SD
IF (LKOFF(Q),EQ.I )  PH( I ) = P H (1 - 1 )

25 CONTINUE
IF (PH(I) .GT.PHMAX) PHMAX=PH(I)
IF ( P H ( I ) .L T .P H M IN .A N D .P H ( I ) .G T .0 .0 )  PHMIN=PH(I)

30 CONTINUE
MIDD=((PHMAX-PHMlN)/2)+PHMIN
PRINT*,'MEAN POINT FOUND, STARTING ON PEAKS'

C
C * * *  FINDING POSITIONS OF MAXIMA OF PHOTODIODE TRACE 
C

C=1
PHMX=PHMAX-((PHMAX-PHMIN)/3)
PMAX=PHMX 
DO 35 I=ST,EN 
IF (PH(I) .GE.PMAX) THEN 
PMAX=PH(I)
IPK=I
ENDIF
IF (PH(I).LT.MIDD.AND.PMAX.GT.PHMX) GOTO 33 
GOTO 35
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33 PMX(C)=PMAX 
IPEAK(C)=IPK 
C=C+1 
PMAX=PHMX

35 CONTINUE
C
C Troughs and p o s i t io n s  of  t roughs

PRINT*,'STARTING ON TROUGHS'
C

C=1
PHMN=PHMIN+((PHMAX-PHMIN)/3)
PMIN=PHMN 
DO 34 I=ST,EN 
IF (P H ( I ) .L T .P M IN )  THEN 
PMIN=PH(I)
ITR=I
ENDIF
IF ( P H ( I ) . G T . MIDD.AND.PMIN.l t , PHMN) GOTO 60 
GOTO 34 

60 PMN(C)=PMIN 
ITRO(C)=ITR 
PMIN=PHMN 
C=C+1

34 CONTINUE 
C
C Set TR=1 i f  t rough be fore  peak

TR=0
C

IF ( IP E A K ( I ) . G T . IT R O ( D )  TR=1 
IF (TR.EQ.1)  C=C-1

C
PRINT*,'STARTING TO F I N D ' , C - 1 , '  MIDPOINTS'

C Mid po in ts
C

M=1
DO 70 1 = 1 ,C-1
M ID (M )=( (PM X( I ) -PM N( I ) ) /2 )+PM NCI)
IF (TR.EQ.1)  THEN 
STT=ITRO(I)
ENN=IPEAK(I)
ELSE
STT=IPEAK(I)
ENN=ITRO(I)
ENDIF 
EX=0 
MD(M)=0 

41 DO 40 R=STT,ENN
IF (PH(R).EQ.(MID(M)+EX).OR.PH(R).EQ. (MID(M)-EX))  MD(M)=R 

40 CONTINUE
IF (MD(M).EQ.O) THEN 
EX=EX+1 
GOTO 41 
ENDIF 
M=M+1 

70 CONTINUE
C
C Distance between mid-po in ts

PRINT*,'STARTING TO FIND DISTANCES BETWEEN MID POINTS’
C

COUNT=0

D.8



81

82

80
C
C
C

K=1
DO 80 1=2 ,M-1
P S D D I F F = ( ( 3 * M D ( I ) ) - 2 ) - ( ( 3 * M D ( I - 1 ) ) - 2 )
D IF F=MD( I ) -MD(I -1 )
D = ( 3 * M D ( I - 1 ) ) - 2
V=0
DO 81 R=M D( I -1 ) ,M D( I )  
PHN0(R)=C0UNT+(V*(1/DIFF))  
PSDN0(D)=C0UNT+(V*(1/PSDDIFF))
V=V+1
D=D+1
CONTINUE
DO 82 A = D , ( 3 *M D ( I ) ) - 2  
PSDN0(A)=C0UNT+(V*(1/PSDDIFF))
V=V+1
CONTINUE
C0UNT=C0UNT+1
CONTINUE

Plot  these po in ts  on Ghost

XMIN=0
XMAX=COUNT
PSDPOSX=PSDNO(MD(D)
PSDP0SY=PSD(MDC1))
START=(3*MD(1))-2
PSDFIN=(3*MD(M-1)) -2
PHPOSX=PHNO(MD(D)
PHPOSY=PHCMD(D)
STA=MD(1)
FIN=MD(M-1)
IOPOSX=PHNO(MD(D)
IOPOSY=IOD(MD(D)
CALL PAPER(I)
PRINT* , '  M to  mark 

E 
F 
Q 
L 
R 
W 
T 
B

PRINT*, '
PRINT*, '
PRINT*, '
PRINT*, '
PRINT*, '
PRINT*, '
PRINT*, '
PRINT*, '
PRINT*, '
PR INT* , '
PRINT*, '

the boundaries of  expasion'  
to  expand but not f i l e  anything '  
to  f i l e  a l l  t h a t  is  on screen'  

q u i t '
mark l e f t  hand p o in t '  

r i g h t  hand p o in t '  
at  cursor L-R separat ion*  
top  of  peak'
bottom of  peak and p l o t '

to  
to  
to  
to  
to  
to
a h a l f  height  marker '
to  p lo t  at  cursor T-B sep ara t io n '
to mark x coord in  MHz'

mark
p lo t
mark
mark

C MAIN EXECUTION LOOP
BDREPEAT=0

85 PRINT*, '  '
CALL ERASE

C SET EXPANSION PARAMETERS FOR NEXT SCREENLOAD

145 CALL ERASE
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,

EXPANSION PARAMETERS'
I

0 To e x i t  from the program'

1 For the frequency ax is  l i m i t s '
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PRINT*, ' as marked on graph,  or unchanged*
PRINT*, ' ' C
PRINT*,  ’ 2 To i n s e r t  numerical values f o r '
PRINT*, ' ax is  l i m i t s '
PRINT*, '  '
PRINT*, ' In p u t  choice'
READ*, FM
IF (FM.EQ.1) GOTO 150 
IF (FM.EQ.O) GOTO 200 
PRINT*,  ' '
PRINT*,  ' In p u t  minimum frequency'
READ*, MK(1)
PRINT*,  'and now the maximum frequency'
READ*, MKC2)

150 IF (BDREPEAT.EQ.O.AND.FM.EQ.1) THEN 
MK(1)=XMIN 
MK(2)=XMAX 

ENDIF
IF (MK(2) .GT.MK(D) THEN 

XMAX=MK(2)
XMIN=MK(1)
ELSE
XMIN=MK(2) :
XMAX=MK(1)
ENDIF

PRINT*, 'Type 1 fo r  PSD on ly '
READ*,PDIO

8 6  P R I N T * , ' F i l e  header comment is  ' ,  COM 

PRINT*, '  '
PRINT*, ' In p u t  in te g e r  code number fo r  graph'  i
READ*, CODE 
CALL ERASE
PR IN T * , ' Input  the zero o f f s e t '
READ*,OFFSET
PR IN T * , ' Input  0 to the next quest ion t o '
PR IN T* , 'ge t  bdsstandard s c a l in g '
PRINT* , 'For  standard psd mag u s e ' ,  4095/

Z (1.1*(BDPSDMAX)-0FFSET)
PR IN T * , ' Input  the PSD m ag n i f ica t io n  '
READ*,MAG
IF (MAG.EQ.O) THEN 
MAG=4095/(1.1*(BDPSDMAX-BDPSDMIN))
DO 4010 BDI=1,PSDEN 
PSD(BDI)=PSD(BDI)-BDPSDMIN 

4010 CONTINUE 
ENDIF
CALL ERASE
IF (S.EQ.1)  THEN
PSDSCL=0.2
PHSCL=0.16
PHSC=0.08
ELSE
PSDSCL=0.3
PHSCL=0.26
PHSC=0.18
IOSCL=0.16
ENDIF
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CALL PSPACECO.0 8 , 1 . 0 , 0 . 7 2 , 0 . 7 5 )
CALL MAP(0.0 , 1 . 0 , 0 . 0 , 1 . 0 )

CALL CTRMA6  (20)

CALLPLOTNI( 0 . 4 5 , 0 . 1 , CODE)
C P lo t  PSD points

IF (PDI0 .NE.1)  THEN
CALL PSPACE( 0 . 0 8 , 0 . 9 4 8 , PSDSCL,0 .772)
ELSE
CALL P S P A C E (0 .0 8 ,1 .0 ,0 .0 8 ,0 .7 )
ENDIF
CALL MAP(XMIN,XMAX,0 . 0 , 4095.0/MAG)
CALL SCALES 
CALL BORDER
CALL POSITN(PSDNO(START),PSD(START))
DO 90 I=START,PSDFIN
CALL JOIN(PSDNOd) ,PSD(D-OFFSET)

90 CONTINUE

C Plo t  Photodiode Points
IF (PDI0.EQ.1)  GOTO 101 
AP=1
CALL PSPACE(0.0 8 , 0 . 9 4 8 , PHSC,PHSCL)
CALL MAP(XMIN,XMAX,0.0 , 4 0 9 5 .0 )
CALL BORDER
CALL POSITN(PHPOSX,PHPOSY)
DO 94 I=STA,FIN 
DO 99 Q=1,SD 
IF (LKOFF(Q).EQ.I )  THEN 
CALL CTRMAG(15)
CALL PL0TNC(PHN0(I ) ,0 .0 ,1 92 )
CALL P 0 S I T N ( P H N 0 ( I - 1 ) , P H ( I - D )
CALL CTRMAG(IO)
OFF(AP)=PHNO(I)
AP=AP+1 
ENDIF 

99 CONTINUE
CALL JO IN (P H N O ( I ) ,P H (D )

94 CONTINUE

C Plo t  Iod ine Points
IF (S.EQ.1)  GOTO 101
CALL PSPACE(0.0 8 , 0 . 9 4 8 , 0 . 0 8 , lOSCL)
CALL MAP(XMIN,XMAX,0 . 0 , 4 0 9 5 . 0 )
CALL BORDER
CALL POSITN(IOPOSX,IOPOSY)
DO 93 I=STA,FIN
CALL JOIN(PHNOd) , I O D ( D )

93 CONTINUE

C SETTING UP AND USING CURSOR TO ANNOTATE ETC

BDREPEAT=1 
101 IF (PDI0 .NE.1)  THEN

CALL PSPACE(0.0 8 , 1 . 0 , PSDSCL,0 .7 )
ELSE
CALL PSPACE(0.0 8 , 1 . 0 , 0 . 0 8 , 0 . 7 )
ENDIF
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98
96

CALL MAP(XMIN,XMAX,0 . 0 , 4095.0/MAG)
CALL CTRMAG (25)
MK(1)=XMIN
MK(2)=XMAX

=0
= 1+1

CALL CURSOR(X,Y,ICHAR)
(ICHAR.EQ. 8 8 ) CALL PL0TNF(X,Y,X*250,1)

GOTO 104
CALL PLOTNF(X,Y,(TOP-BOTTOM),1)
GOTO 105 

(ICHAR.EQ.82) GOTO 106
(ICHAR.EQ.87) CALL PL0TNF(X,Y,(RIGHT-LEFT)*250,1)  

GOTO 97 
GOTO 103 
GOTO 200 
GOTO 140

(ICHAR.EQ.84)
(ICHAR.EQ.72)
(ICHAR.EQ.76)

(ICHAR.EQ.77)  
( ICHAR.EQ. 6 6 ) 
(ICHAR.EGl.81) 
( ICHAR.EQ.70)  
(ICHAR.EQ.69) GOTO 145 

GOTO 96

C BOTTOM AND HALF HEIGHT

103 BOTTOM=Y
CALL PLOTNC (X ,Y ,176 )
HALF=(T0P+B0TT0M)/2 
CALL POSITN(XMIN,HALF)
CALL JOIN(XMIN+ (XMAX-XMIN)/50,HALF)
GOTO 96

104 TOP = Y
CALL PLOTNC (X ,Y ,1 76 )
GOTO 96

105 LEFT=X
CALL PLOTNC (X ,Y ,1 24 )
GOTO 96

106 RIGHT=X
CALL PL0TNC(X,Y,124)
GOTO 96 

C MARKERS FOR EXPANSION

97 CALL BR0KEN(10,10,10,10)
CALL P0SITN(X ,0 .0 )
CALL JOIN(X,4095.0/MAG)
CALL FULL 
IF ( I . G T . 2 )  1=2 
MK(I)=X 
GOTO 98

C SAVE INTO GRIDFILE

140 CALL FRAME
CALL PICSAVCUSER2: CPHRBSDBD.GRD' ,A , 1 9 , 0 )

200
210

GOTO 85 
CALL GREND 
STOP 
END
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APPENDIX E 

STUDIES INVOLVING THE SODIUM DIMER

Rather than t r e a t  the sodium dimer popula t ion as an undes irab le  but un­

avoidable  loss mechanism f o r  second harmonic generat ion in  sodium atoms, i t  

was decided to  in v e s t ig a t e  the p o s s i b i l i t y  of  using t r a n s i t i o n s  in the  

dimer f o r  resonant enhancement o f  m a g n e t ic - f i e ld - in d u c e d  second harmonic 

generat ion .  The many degrees of  freedom of  the molecule r e s u l t  in  a la rge  

number o f  poss ib le  t r a n s i t i o n s ;  i t  was hoped t h a t  some of  these would be 

s u i t a b l e  fo r  enhancing the SHG process,  thus g iv in g  many more frequencies  

at which the second harmonic could be generated.  A disadvantage of  a 

molecular  medium is  th a t  many molecular  s ta tes  are not s i g n i f i c a n t l y  p e r ­

turbed by a magnetic f i e l d ,  which r e s t r i c t s  t h e i r  use in  a m a g n e t i c - f i e l d -  

induced process.  Another problem is  t h a t  the spectroscopy of  the h ig h ly  

ex c i te d  s ta te s  of  the sodium dimer is  not we l l  understood,  though strong  

two-photon absorpt ion has been reported C1433.

The theory of  the s t r u c t u r e  and spect ra  of  diatomic molecules is  given by 

Herzberg C1443, and his  n o t a t io n  w i l l  be used throughout t h i s  appendix.

The angular  momenta involved  in descr ib in g  the s ta tes  of  the sodium dimer  

are shown in  f ig u r e  E .1 .  The angular  momentum of  the e l e c t r o n s ,  L,  

precesses around the i n t e r - n u c l e a r  a x is ;  the component of  t h i s  momentum 

about t h i s  ax is  is  A  = |m^|.  Any angular  momentum due to  e le c t ro n  

spin w i l l  a lso  process about the i n t e r - n u c l e a r  a x i s ,  with a component 2  

along t h i s  a x i s .  The t o t a l  angular  momentum along t h i s  axis is  then 

Cl~ A + £  . The e l e c t r o n ic  angular  momentum and the t o t a l  angular momentum, 

J ,  are quant ised ,  the nuclear  angular  momentum, N, is  not .  The angular  

momenta are coupled according to  Hund's ru le  ( a ) .  Sta tes  with = 0 ,  1 ,  2 

are c l a s s i f i e d  as TT^a r e s p e c t i v e l y .  A l l  s ta tes  withX^^ 0 are doubly
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degenerate,  as can have the two values ± A . In  diatomic molecules 

any plane passing through the in t e r n u c l e a r  axis is  a plane of  symmetry.

The e le c t r o n i c  e igenfunct io ns  e i t h e r  remain the same ( p o s i t i v e  s t a t e s ) ,  or 

change sign (negat iv e  s t a t e s )  when r e f l e c t e d  in such a plane.  I f ,  as in  

the sodium dimer,  the n u c l e i i  have the same charge,  the e l e c t r i c  f i e l d  

experienced by the e lec t ro n s  remains the same on r e f l e c t i o n  of  the n u c l e i i  

in the centre  of  symmetry. As a consequence, the e le c t r o n ic  e igen fu n c t io n  

remains the same (even,  gerade s t a t e )  or changes sign (odd,  ungerade 

s t a t e ) ,  when i t  undergoes such a t r a n s fo rm a t io n .  The symmetry of  the  

r o t a t i o n a l  le v e ls  with respect  to  an exchange of  n u c le i i  leads to  p o s i t i v e  

r o t a t i o n  le v e ls  being symmetric and the negat ive le v e ls  ant isymmetr ic  fo r  

even e l e c t r o n i c  s ta te s  ( f o r  exam ple ,£ ^ ) ,  and v ice  versa fo r  odd 

e l e c t r o n ic  s ta tes  ( f o r  example 2 ^ ) .

n

Figure E .1 .  Coupling of  angular  momenta in a diatomic  
molecule in Hund's case ( a ) ,  see t e x t  fo r  d e t a i l s .
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Considerat ion of  the symmetry p r o p e r t ie s  of  the molecular wavefunct ions and 

t h e i r  i n t e r a c t i o n  with r a d i a t i o n  [ 8 6 ,  144]  gives the s e le c t io n  ru les  fo r  

e l e c t r i c  d ip o le  r a d i a t io n  shown in t a b le  E .1 .  Two photon s e le c t io n  ru les  

are found by a repeated a p p l i c a t i o n  of  the s e le c t io n  ru le s  fo r  s ing le  

photon t r a n s i t i o n s .  The quadrupole s e le c t io n  ru les  are given in  t a b le  E .2 .

g < > u g <—/  —> g u > u
s < > s a <-> a a <- •/ ■- » s
+  <""■ > — + 4—/ —> +  —..K.... / —> —

£■( > 2 '  £'-6 » £ '

AJ = 0 ,  + 1 ,  but J=0 <" ■/—» J = 0
AS = 0
az=  0 
a A. = 0, + 1

Table E .1 .  S e le c t io n  ru le s  f o r  e l e c t r i c  d ip o le  t r a n s i t i o n s  
in homonuclear dimers, g and u denote gerade and ungerade 
s t a t e s ,  s and a are symmetric and ant isymmetr ic wavefunct ions,  
and + and -  denote even and odd p a r i t y  wavefunct ions.

g <-----> g u <--- > u g < / —> u
s < > s a---- <--- > a a < /  > s
+ K + — K   '

 > Z "  £ '< ------ > £■

AJ = 0 ,  + 1 ,  ± 2
but J=0 < /  > J=0,  J=1 /2  J = 1 /2 ,  J=1 < - / --> J=0

AS = 0 
A Z =  0
A A =  0 ,  + 1 ^ + 2

Table E .2 .  Quadrupole t r a n s i t i o n  s e le c t io n  ru le s  f o r  Na^.

The ^  s t a t e s ,  of  which the ground s t a t e  of  the sodium dimer is one, have 

very small Zeeman s p l i t t i n g s  AW

AW = g B M (E .1 )

where g is  the g f a c t o r ,  is  the nuclear  magneton, and M is  the
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magnetic quantum number. For other  e le c t r o n ic  sta tes  belonging to Hund's 

case (a)  the Zeeman s h i f t s  are

AW = (A + 22) (X  + i  ) jUgB M

J (J + 1)

(E .2 )

where jJgis the Bohr magneton. Thus the s p l i t t i n g  is very much g r e a te r  than

for  the £  s t a t e s .  However, the r o t a t i o n a l  averaging re s u l ts  in the

J(J + 1) term in the denominator , and thus the Zeeman s p l i t t i n g  decreases
1

ra p id ly  with increasing  J. This is  i l l u s t r a t e d  in f i g u r e  E.2 fo r  a Tf̂  

s t a t e .

J: 1 2 3 4 5 .

^rr
' • 11 ^

Figure E .2 .  Energy leve l  s p l i t t i n g  in a magnetic f i e l d  f o r  a 
tT or a T̂T s t a t e .  The magnitude of the normal Zeeman 

s p l i t t i n g  is given by the broken l in e  arrow. From [1443.

A poss ible scheme fo r  m a g n e t ic - f i e ld - in d u c e d  SHG must include m agnet ica l ly

a c t iv e  s t a t e s ;  one such scheme is  shown in f i g u r e  E.3 .  Tfg sta tes  were

found by Morgan [143 ,  145] in his study of high ly ing  gerade Rydberg s ta tes

of the sodium dimer. He used Doppler f r e e  two-photon absorpt ion to
1

populate such s t a t e s ,  and c l a s s i f i e d  four of  them as iTg (3s + 4d) 

s t a t e s ,  as shown in t a b l e  E .3 .
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^sX-Q.

+a+a +a-s

+s +s +s

Figure E .3 .  Poss ib le scheme f o r  BSHG in sodium. Single  l in es  
represent  enhancing s in g le  photon t r a n s i t i o n s ,  the double l in e s  
represent  the quadrupole re tu rn  ro u te .  S im i la r  schemes are  
possible f o r  other  J va lu es .

Laser frequency Ground S ta te  Enhancing State Upper State  
(cm"' )  X '£■" A IT, (3s + 4d)

( v " ? J " )  ( v ' , % ' ) (v?J)

16948.120
16960.285
17049.480
17086.985

(3 ,3 0 )
( 4 ,3 5 )
(2 , 1) 
(1 ,6 0 )

(2 6 ,31 )  
( 28 ,34 )  
( 2 5 ,  2)  
(2 6 ,59 )

(6 ,30 )  
( 8 ,3 4 )  
(6, 2) 
( 7 ,6 0 )

1 + 1Table E .3 .  Two photon t r a n s i t i o n s  from X ^  to  TT (3s + 4d)  
assigned by Morgan et  a l  C143I1.  ̂ ^

Doppler f r e e  two-photon spectroscopy of  the type decribed in sect io n  4 . 4 . 2  

was c a r r i e d  out with the aim of  f in d in g  magnet ica l ly  a c t i v e  upper l e v e l s ,  

such as would be expected from the above c l a s s i f i c a t i o n s .  The heatpipe o f .  

f i g u r e  4 . 3 . 3 ( d )  was used at  a temperature of  approximate ly 400*^0. The dye 

la s e r  was tuned to  the t r a n s i t i o n s  l i s t e d  by Morgan; these t r a n s i t i o n s ,  and 

others t h a t  were found nearby,  were examined. Por t ions  of  the spectrum 

from 584 nm to  602 nm were examined. The l inewid ths  of the two photon 

absorpt ion peaks were measured in zero and 0 .13  T f i e l d s .  The detuning of  

some of  the in te rm ed ia te  s ta te s  were determined using s a tu ra t io n  

spectroscopy.  These r e s u l t s  are summarised in t a b l e  E .4 .

%
•J
j

This study l e f t  us in  some confusion;  some t r a n s i t i o n s  th a t  had been

c l a s s i f i e d  by Morgan as ,  which were not expected to  be
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magneticalLy a c t i v e ,  were found to  be so, and one of the ^ - >  2 - >  " 

t r a n s i t i o n s  showed no broadening whatsoever.  Other recent  work by an 

Anglo-French [146]  group using Four ier-Transform spectroscopy disputes some 

of Morgan's c l a s s i f i c a t i o n s ,  but some of  the t r a n s i t i o n s  th a t  they classed  

as t.-> ^ - > £  s t i l l  showed some broadening in a magnetic f i e l d  in our 

experiments.  Schawlow C147] comments th a t  very few of  the l in es  l i s t e d  in 

reference 143 had been given the c a r e f u l  t e s ts  described in t h a t  re fe ren c e .  

His group is cont inuing  to i n v e s t ig a t e  the energy leve l  s t ru c t u r e  of  t h i s  

molecule C148].  Part  of  the problem may w el l  have been due to  le ve ls  of  

d i f f e r e n t  terms being close to  each other in energy,  and t h e i r  wave­

funct ions mixing s l i g h t l y  [ 1 4 9 ] ,  thus g iv ing  each le v e l  some characte r  of  

the o th er .

In the l i g h t  of  the u n c e r ta in ty  regarding the assignments of  the Na^

Rydberg l e v e l s ,  the study of  the sodium dimer as a n on l inear  medium was 

discont inued .  Obviously much work has yet  to  be done to  determine the  

le v e l  s t ru c tu res  unambiguously. I t  was, however, considered worthwhi le  to  

t a b u la t e  the re s u l ts  th a t  had been o bta ined ,  in the hope th a t  they may be

usefu l  at  some l a t e r  date.  C er ta in  t r a n s i t i o n s  looked very in t e r e s t i n g ;

“ 1a t r a n s i t i o n  near 16799.40 cm ,  f o r  example, grew g r e a t l y  in i n t e n s i t y  

when the magnetic f i e l d  was a p p l ie d .  This may have been due to  the  

resonant ly enhancing in te rm edia te  s t a t e  being Zeeman s h i f t e d  c lo ser  in to  

resonance, or an increase in  the wavefunct ion mixing mentioned above.

Table E.4- shows the wavenumbers of  the t r a n s i t i o n s  th a t  were found,  and 

l i s t s  the magnitudes of  the peak two-photon absorpt ion signals from the  

p h o t o m u l t ip l i e r  tube at  0 . 0  and 0 .1 3  T magnetic f i e l d s .  The widths of  the  

résonances (FWHM at  the laser  f requency,  HWHM at the atomic frequency)  are  

also l i s t e d  at  the same f i e l d s .  The c e l l s  were heated to  4O0’C, and were 

f i l l e d  with 1 mbar o f  argon b u f f e r  gas.  These experiments were c a r r ie d  out
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over severa l  weeks; al though there  were s i g n i f i c a n t  d i f f e r e n c e s  between 

peak heights between d i f f e r e n t  runs (up to a f a c t o r  of  tw o ) ,  the values  

Lis ted should give some idea of  the  r e l a t i v e  strengths  of  the t r a n s i t i o n s .  

The assignments of  Morgan e t  a l  [145]  and Cooper et a l  [146]  have been 

given alongside the experimental  data when the measured t r a n s i t i o n  

frequency was Less than 0.1 wavenumber from t h a t  l i s t e d  by these authors .
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Wavenumber Strength Width Comments

17103. 2 2 SO 38 WO 75
SB 29 WB 72

17088.,369 SO 0 .72 WO 80
SB 0 .63 WB 1 0 0

17088.,209 SO 0 .7 6 WO 67
SB 0 .67 WB 83

17088..174 SO 0 .7 7 WO 134
SB 0.7 7 WB 128

17087..271 SO 0.1 7 WO 27
SB 0.1 7 WB 27

17087..269 SO 0.31 WO 34
SB 0.31 WB 34

17087,.259 SO 0 . 3 WO 266
SB WB f  la l

17086..985

17049..735 SO 3 WO 52
SB 3 WB 45

17049,.480 SO 32 WO 114
SB 2 0 WB 160

17006,.292 SO 8 6 WO 95
SB 27&60 WO — >

Rat io  of  strengths with l i n e a r  and c i r c u l a r  
p o l a r i s a t i o n  0 .8 2 .
Morgan X'^j (0 ,30)  -4" (3s+5s)  (26 ,2 8 )
Cooper X%%(1,61) - ^ X ? , 6 3 )

On side  of  next  peak.

Cooper c l a s s i f i c a t i o n  includes c o l l i s i o n a l  
energy t r a n s f e r  in in te rm ed ia te  s t a t e :  
Cooper x :^ : ; (2 ,34 )  -  a X ' ( 26 ,3 5 )  then 

A!£:(26,35)  -  A%^(26,37) jump 
and A '^ ( 2 6 , 3 7 )  -  (? ,38 )

Peak f l a t t e n s  at 0.01 T,

Morgan X^- '7^

Rat io  of  peak strengths in l i n e a r  and 
c i r c u l a r  p o l a r i s a t i o n  2 . 8 .  Linewidth  
increases at  0 . 6  GHz/T.
Morgan X ' ^ ( 2 ,  1) -  TT3  (3s + 4d) ( 6 , 2 )
Cooper X ' ^ ( 0 , 6 3 )  -  ' ^ ( ? , 6 3 )

S p l i t s  in to  two peaks,  at a r a te  of  
1.08  GHz/T. Peak heightfcP^'^, but 
satu ra tes  at 100 mW. S a tu ra t io n  behaviour  
of the two peaks d i f f e r e n t :  peak height  
r a t i o  at  low pressure and la s e r  power 
de n s i ty  was 12,  "usua l ly"  was 2 . 7 .  Pressure 
broadening 40 MHz/mbar (FWHM at atomic 
f requency) .  Peak signa l  r ises  by f a c t o r  of  
three  from 1 to  5 mbar argon, then decreases  
by 6 % by 15 mbar. Satura ted absorpt ion and 
in termodulated f luourescence spectroscopy  
show no change in in te rm edia te  "enhancing"  
l e v e ls  with magnetic f i e l d .  Nearest  one 
photon resonance at 17006.294 cm 
Morgan X '^X0,54 )  - '^(3s + 5 s ) (2 5 ,5 4 )
Cooper X%^X1,61) - : g ( ? , 6 1 )

Table E.4, continued overleaf
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Wavenumber Strength Width Comments

17005.490 SO 9 .3 WO 34
SB 9 . 0 WB 26

17005.122 SO 9 . 0 WO 59
SB 8 .7 WB 63

17004.49 SO 0.63 WO 30
SB 0.45 WB 53

17004.4 SO 0.51 WO 36
SB 0.46 WB 39

17002.49 SO 2 2 . 0 WO 41
SB 18.0 WB 28

16960.369 SO 23 .7 WO 43
SB 26.1 WB 92

16960.285

16960.143 SO 26.1 WO 49
SB 27 .2 WB 49

16959.721 SO 0.4 WO 29
SB 0 .4 WB 30

16959.689 SO 0 . 8 WO 192
SB 0 .9 WB 191

16948.804 SO 0 .3 WO 33
SB 0 .3 WB 33

16948.692 SO 0 .4 WO 25
SB 0 .4 WB 25

16948.120

16933.949 SO 0.94 WO 42
SB 0.75 WB 33

16933.632 SO 24 WO 83
SB 2 1 WB 8 8

16933.148 SO 1 . 1 WO 42
SB 0 .9 WB 39

16933.027 SO 0.17 WO 65
SB 0 . 1 1 WB 90

16932.994 SO 0 .4 WO 62
SB 0 .4 WB 63

Broadening 0 .36  GHz/T. 

Morgan X 'T%

Morgan X'£j-'<îJC3s + 4d) 

Large pedestal

Morgan x ÿ -  'iTf.

Table E.4, continued overleaf
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Wavenumber Strength Width Comments

16927.014 SO 0.48 WO 32
SB 0.46 WB 29

16926.285 SO 0.33 WO 60
SB 0.32 WB 72

16925.507 SO 0.6 9 WO 39
SB 0 . 6 WB 37

16925.267 SO 0.51 WO 27
SB 0.42 WB 23

16923.970 SO 0.2 7 WO 70
SB 0.1 8 WB 70

16923.653 SO 33 WO 61
SB 30 WB 60

16922.688 SO 0 . 1 WO 24
SB WB 24

16922.710 SO 1 . 0 WO 35
SB 0 . 8 WB 36

16922.453 SO 3 .7 WO 35 Morgan X ' ^ -  ^ ( 3 s  + 5s)
SB 2 . 8 WB 41

16914.988 SO 27 WO 58
SB 27 WB 58

16914.952 SO 0 .7 WO 6 8 Morgan X',£j“ '.^(3s + 5s)
SB 0 .7 WB 6 8

16898.435 SO 1 . 0 WO 53
SB 1 . 0 WB 56

16890.408 SO 0.1 8 WO 150 Peak f l a t t e n s  out in f i e l d .
Morgan X ' ^ -  ',^(3s + 5s)

16883.27 SO 4 . 3 Act ive  group of  t r a n s i t i o n s ;
at zero magnetic f i e l d ,  and in an in creas ing  
magnetic f i e l d  s p l i t s  in to  a lone peak,  
which remains at  the same frequency ,  and two 
group of  peaks, one of  which moves to  higher  
f requencies at 1 GHz/T, wh i le  the oth er  
moves to  lower frequencies^.  Sing le  photon 
t r a n s i t i o n  at 16883.286 cm

16883.00 SO 4 .3 Two main peaks s p l i t  from 200 MHz separa t ion  
in zero f i e l d  to  800 MHz separa t ion  at  
0 .1 3  T. Single photon t r a n s i t i o n  at  
16883.0  cm" .

Table E.4, continued overleaf
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Wavenumber Strength Width

16850.574 SO 1 0 0 WO 93
SB 94 WB 79

16846.367 SO 0 . 9 WO 30
SB 0 . 9 WB 30

16845.749 SO 6 .3 WO 27
SB 6 .3 WB 29

16845.570 SO 35 WO 36
SB 33 WB 34

16844.677 SO 1 2 WO 50
SB 7 WB 113

16817.349 SO 2 .9 WO 164
SB 1.4 WB 250

16816.321 SO 3.8 WO 26
SB 3 . 6 WB 28

16815.89 SO 4 ,3 WO 30
SB 4 .2 WB 32

16812.430 SO 1 . 1 WO 250
SB 0 . 3 WB 512

16806.212 SO 14 WO 55
SB 14 WB 51

16806.066 SO 5.6 WO 42
SB 5.4 WB 38

16805.981 SO 0 . 6 WO 52
SB 0 . 2 WB 144

16799.399 SO 1 .9  WO 360

16794.648 SO 13.5 WO 25
SB 13.5 WB 26

16794.18 SO 2 2 WO 33
SB 2 2 WB 34

Comments

Morgan X'/ -̂ '/J(3s + 5s)

Morgan X^-'fj(3s + 5s)

Act iv e  doub le t .  Low frequency peak remains 
approx.  cons tant ,  high frequency peak 
broadens. Morgan X ' ^ - ' ^ ( 3 s  + 4d)

A ct ive  double t .  Main peak broadens and 
moves up in frequency 1 .4  GHz/T; 
s u bs id ia ry  peak moves down in frequency at  
7 . 4  GHz/T.

Measurements taken at  1 /10 usual fundamental  
power, Doppler f re e  peak in dip at  top of  
Doppler broadened peak.

S t ruc tured  peak at zero f i e l d ,  values l i s t e d  
here f o r  0 .0 3  T f i e l d .  Broadening 10 GHz/T.

St ruc tured  Doppler f r e e  peak broadens and 
moves to higher frequency with  increas in g  
f i e l d ,  and another peak grows from zero at  
5 GHz lower frequency.  Doppler broadened 
UV peak grows by f a c t o r  of  11. Small  
changes in f luorescence at  v i s i b l e  
f requencies .

Table E.4, continued overleaf
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Wavenumber Strength Width Comments

16793.971 SO 8 . 6 WO 29
SB 8 . 7 WB 26

16789.676 SO 6 8 WO 47
SB 65 WB 44

16785.423 SO 1 . 1 WO 2 2 1

SB 1 . 0 WB 235

16785.087 SO 0 .9 WO 28
SB 1 . 0 WB 28

16781.785 SO 1 .9 WO 81
SB 1 . 8 WB 98

16779.668 SO 1 . 0

SB 2 . 0

16738.501 SO 8 .4 WO 32
SB 8 .4 WB 34

16738.304 SO 1.5 WO 35
SB 1.5 WB 30

16738.173 SO 1.9 WO 32
SB 1 . 8 WB 32

16736.626 SO 1 . 0 WO 27
SB 1 . 0 WB 27

16724.974 SO 0.5 WO 240
SB 0.5 WB 240

16720.373 SO 74 WO 61
SB 73 WB 54

16705.34 SO 2 . 1 WO 52
SB 2 . 1 WB 48

16704.2 SO 0 .5 WO 30
SB 0 . 6 WB 37

16704.028 SO 50 WO 45
SB 50 WB 50

16698.451 SO 3 .4 WO 29
SB 3 .4 WB 29

16694.223 SO 4.5 WO 261
SB 1 . 8 WB 490

Morgan X'<^-'^C3s + 5s) 

Morgan x ! ^ - ' ^ ( 3 s  + 5s)

Morgan X' .^-' ,^(3s + 5s)

A ct ive  group of t r a n s i t i o n s .  S t ructured  
peak s p l i t s  i n t o  two main components. No 
n o t ic e a b le  change in v i s i b l e  f luorescence ,

Morgan X ^ - ' . ^ ( 3 s  + 5s)

Morgan X'^ -'^^(3s + 5s)

This and next l i n e  in l i s t  are m ag n et ica l ly  
a c t i v e ,  decreasing t h e i r  separa t ion  by 
5 .8  GHz/T. Morgan ' ^ 3 s  + 5s)

Table E.4, continued overleaf
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Wavenumber Strength Width

16694.172 SO 4.5 WO 178
SB 2 .9 WB 2 2 0

16691.831 SO 0 . 8 WO 28
SB 0 . 8 WB 26

16691.636 SO 1 . 2 WO 29
SB 1.3 WB 28

16691.376 SO 2 . 8 WO 32
SB 2 .7 WB 32

16690.646 SO 1 . 8 WO 26
SB 1 . 8 WB 27

16689.952 SO 4 .6 WO 32
SB 4 .5 WB 38

16672.623 SO 8 . 8 WO 56
SB 8 . 1 WB 47

16668.783 SO 1 2 WO 65
SB 1 1 WB 58

16635.5 SO 2 0 WO 57
SB 19 WB 57

16614.4 SO 36 WO 55
SB 35 WB 50

16612.2 SO 1.3 WO 2 1

SB 1 . 2 WB 23

16611.9 SO 0 . 6 WO 144
SB 0 . 6 WB 156

16610.7 SO 0 .4 WO 180
SB 0 .4 WB 190

16609.41 SO 1 . 0 WO 380
SB 0 .4 WB2900

16601.8 SO 30 WO 61
SB 29 WB 63

16583.6 SO 28 WO 41
SB 28 WB 42

Comments

Morgan X ^ - '<^(38 + 5s)

Morgan X'^ -̂*< *̂ (̂3s + 5s)

Morgan X'-^ -̂ ^ ( 3 s  + 5s)

Morgan X ' ^ ^ ^ ( 3 s  + 5s)

Morgan X!^- ' {^(3s + 4d)

St ru c tu red  peak. To ta l  p a t te r n  width  
increases at 20 GHz/T.

Line stud ied in d e t a i l  by Woerdman [150]  
Morgan X l ^ - ' ^ ( 3 s  + 5s)

Morgan x!^- l^* (3s  + 5s)

Table E.4 ( c o n t in u e d ) .  Observed D o p p le r - f re e  two-photon t r a n s i t i o n s  
in the sodium vapour.  SO and SB are the peak heights of the two-  
photon absorpt ion t race  at  0 and 0 .13  T magnetic f i e l d s  r e s p e c t i v e ly .  
WO and WB are the l inew id ths  (FWHM at  the laser  f requency) o f  the  
t r a n s i t i o n s  uner the same c o n d i t io n s ,  measured in MHz. See te x t  
fo r  f u r t h e r  comments.
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