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ABSTRACT

A high resolution study of magnetic-field-induced second harmonic
generation 1in sodium vapour was performed using a single~frequency
continuous-wave dye Laser. Resonant enhancement was obtained by tuning
the laser to the frequency of the 3S - 4D two-photon transition of the
sodium atoms. Coherent parametric emission of the second harmonic
radiation ocurred in the presence of a symmetry-breaking magnetic field
by means of a coherent electric—quadrupole emission at twice the laser

frequency.

A theoretical model of the second harmonic generation (SHG) was
developed, and includes the roles played by atomic selection rules,
Zeeman splitting and eigenfunction mixing in a magnetic field, and the

effects of homogeneous and inhomogeneous broadening.

The use of a single-frequency Laser and an atomic nonlinear medium
allowed an experimental investigation of a SHG process 1in unprecedented
detail. This provided a stringent test of the theoretical model
developed to predict the properties of the nonlinear interaction in
terms of fundamental atomic parameters. The excellent agreement
obtained between theoretical and experimental results vindicated the

theoretical methods used in the modelling.

Line profiles of the SHG at different magnetic field strengths and Laser
polarisations were measured, and, for the first time, were not limited
by the laser Linewidth. Although the two-photon absorption Line profile

was due to Amt =0, +1, + 2 transitions, the quadrupole moments which




generated the second harmonic polarised perpendicular and parallel to
the magnetic field were associated with only the AmL =+ 2 and + 1
transitions respectively. This was the first direct observation of the
differences in selection rules between such processes. The modelled
Line profiles were in good agreement with experiment, and successfully
predicted the squared dependence of the second harmonic (SH) power on
magnetic field strength at fields less than 0.05 T, and the saturation
of this dependence at higher fields. The Llatter effect was due to
saturation of the state mixing and to Zeeman shifting moving transitions
into and out of resonance. When both moments were driven the SH
experienced magnetic=-field-dependent rotation of polarisation and
deviation from Linear polarisation; this is the first study to report
the considerable variation of the magnitudes of these effects across the
line profile. These observations were 1in excellent agreement with the
theoretical model, which explained the polarisation changes in terms of

variations in the relative phases and magnitudes of the two moments.

The SH power was proportional to the square of the sodium density at
atomic densities below 2 x 1020 atoms m-s, and oscillatory thereafter,
due to phase velocity mismatching. Increasing the argon buffer gas
pressure caused a sharp drop 1in the SH power when the homogeneous
linewidth exceeded the Doppler width. Finally, magnetic-field-induced
SHG was used for the first time as a particle density probe, measuring

the sodium density distribution in the oven.
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CHAPTER ONE

INTRODUCTION
1.1 INTRODUCTION TO NONLINEAR OPTICS

Before the advent of the laser, optical electric fields had always been
suff%cientty weak that the polarisation induced in a medium by such fields
was well described as being proportional to the electric field strength.
Lasers, however, can produce very intense EpticaL fields due to the high
peak powers available, and the ability to focus the coherent laser
radiation to a spot a few wavelengths across. In such arrangements, the
optical electric field strengths may approach those of the intra-atomic
electric fields, and so the polarisation of the atoms in a medium is Llikely
to be markedly nonlinear in its dependence on optical electric field

strength.

The first nonlinear effect at optical frequencies was reported by Franken
et al in 1961 [{1]; they generated the second harmonic frequency of Light
from a ruby laser, which operated at 694.2 nm, using quartz as the
nonlinear medium. A phenomenological description of this, and many other
nontinear effects, may be given by expressing the polarisation P induced in’
the medium as a power series in the incident optical electric field, E

“ (2) .2 (5 3
W w

P = € X B EO X E W e e e (1.2%.3)

The first term represents the well~known linear response of a material with

first order susceptibiLity'X(1)

, where g is the vacuum permittivity. The
induced polarisation acts as a radiation source. The interaction between

“the fundamental wave and the wave reradiated at the fundamental frequency
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gives rise to the refractive index of the material. If the incident
electric field is of the form §w= ng cos wt, it is readily seen that the
X(Z) term gives rise to the polarisation edX(Z) EwO (1 + cos 2wt)/2, which
contains a component at the second harmonic frequency. This oscillating

polarisation will then lead to a radiated wave at 2w, the second harmonic

radiation first reported by Franken et al.

Processes relying on the second order susceptibility are known as three-
wave mixing processes: two waves interact to produce a third one. This
class of effects includes, amongst others, second harmonic generation, sum
and difference frequency mixing, optical rectification and parametric

oscillation.

In the quarter century since the first generation of an optical harmonic,
the field of nonlinear optics has grown rapidly. Nonlinear effects at
optical or near-optical frequencies are now important as both useful and
Limiting processes. For example, stimulated Raman scattering in optical
fibres may be used to generate coherent Light at a number of wavelengths in
the 1.06 pm - 1.6 um region [2], but will also act as a Loss mechanism
Limiting the peak powers that may be transmitted in a fibre optic commun-
ication system [3]. Many other experiments have investigated nonlinear
effects, and some are reviewed in references 4, 5, and 6. Using these
effects, radiation may be generated in regions of the spectrum where no
coherent source is directly available. Although many types of nonlinear
effects have been demonstrated, the rest of this discussion will be Limited
to second harmonic generation (SHG) and the closely related phenomena of

sum frequency mixing (SFM) and difference frequency mixing (DFM).

Optical second harmonic generation has found particularly wide appeal as it

allows the relatively convenient and efficient generation of Light at
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otherwise unattainable frequencies [7]1. Of particular interest lLocally
has been the use of nonlinear crystals to produce the second harmonic of
dye Laser radiation, thus providing a tunable source of ultraviolet laser

light [8, 9].

1.2 SECOND HARMONIC GENERATION 1IN CRYSTALS AND VAPOURS

If only dipole radiation processes are considered, the generation of even
harmonics is not possible in media which possess a centre of symmetry,
which is why anisotropic crystalline materials have been the most important

nontinear media for second-harmonic generation.

Consider a medium possessing a centre of inversion. The potential energy,
V, of an electron must reflect the symmetry of the medium, and thus in a

one~dimensional model

o X +mA x 1.2.1)

where WG and A are constants and m is the electronic mass. The constant A
is usually very much Less than WG The restoring force on the electrons
may be calculated from the form of this potential and included in the
equation of motion of the electrons. This may be solved to give the

dependence of the polarisation on an applied field E as

pec @a E+bE + ... (1.2.2)

where a and b are constants. Thus the symmetry of the medium restricts

the polarisation to depend on only odd powers of the electric field, and so
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the system re-radiates at only the fundamental and odd harmonic
frequencies. (This treatment has assumed a dipole nature to the radiating
process; if electric quadrupole radiation is considered, the gradient of
the electric field is involved. However, if the medium is isotropic, the
symmetry is such that the contributions of electric quadrupole processes
to the SHG are also zero [10l.) Selection rule arguments against

collinear SHG in quantised isotropic media are given in section 2.1.

By contrast, in an anisotropic medium such as an asymmetric crystal, the
condition V(x) = V(-x) need no longer apply and so the potential of the
etectron may contain odd powers of x. This is equivalent to saying that a
displacement of the electron in one direction may result in a larger
restoring force than the same displacement in the opposite direction. 1In

this case, the polarisation of the medium takes the form

peocia E+*DE #EE wee (1.2.3)

and thus second harmonic generation and other second order processes are
possible. This is discussed further by Franken and Ward L1111 and Yariv

£123.

Figure 1.2.1(a,b) shows possible relations between the applied electric
field and the induced polarisation for a linear medium and for a medium
Lacking a centre of inversion. These dependences give rise to the polar-
isation waves shown in parts (c) and (d) of the same figure. The polar-
isation wave induced in the nonlinear medium may be Fourier analysed to
give the components shown in figure 1.2.2. This shows clearly the origin
of the polarisation at the second harmonic frequency. The polarisation
wave in this medium will then radiate at the fundamental and second

harmonic frequencies.
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Figure 1.2.1. Schematic diagrams of (a) linear and (b) nonlinear

dependences of the polarisation, P, on the electric field strength, E. If
an oscillating electric field of frequency w propagates through the media
the induced polarisation waves will be as shown in (¢) and (d) for Llinear
and nonlinear media respectively.
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Figure 1.2.2. Fourier analysis of the polarisation wave in part (d) of the
previous figure.
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In crystals which do not have a centre of inversion, such as quartz or
ammonium dihydrogen arsenate, second harmonic generation is therefore
possible. In addition, the birefringence of nonlinear crystals may be used
to match the phase velocities of the fundamental and second harmonic by
compensating for the natural dispersion of the material. Thus most of the
work in second harmonic generation has been performed using such
crystalline materials. At high optical field intensities the SHG
efficiency may be lLarge. For example, one commercially available Nd:YAG
Laser produces 30 MW peak power of Light at 1.06 um, and a deuterated
potassium di-hydrogen phosphate crystal converts this to the second

harmonic at 532 nm with 30% efficiency [131].

Considerable efforts have gone into developing crystals with a Large second
order susceptibility, good optical quality over several millimetres, good
transparency to both fundamental and second harmonic, and sufficient
birefringence to satisfy phase matching. The crystalline material must
also be able to withstand the high radiation field intensities needed to

produce significant quantities of the harmonic radiation [14].

These are stringent Limitations, and while good crystalline materials have
been developed, they still have certain Limitations in transparency range
and power handling capabilities. This has led to an increased interest in
using gases or vapours as nonlinear media. These have the disadvantages of
a Llow particle density, and an isotropy which leads to a zero second order
susceptibility unless some form of symmetry-breaking arrangement is used.
However, they do have the advantages that they are reasonably easy to
prepare in Large volumes with good optical quality, and do not suffer
irreversible damage at high optical field intensities. Vapours can be used
which have good transparency deep into the ultraviolet; most nonlinear

crystals have an absorption edge around 200 nm. As the second order
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susceptibility is zero, the most studied effects have been due to the

X(S)

term in equation 1.1.1, and much work has been published on third
harmonic generation. To obtain conversion efficiencies comparable with
those of doubling in crystals, very large optical field strengths have been

used, and freguencies have been chosen to give large resonant enhancement

to the third order susceptibility [14].

Recently, a number of experiments have been reported concerning the mixing
of two optical fields in a vapour to produce a third field at the sum,
difference or second harmonic frequency, despite the restrictions mentioned
above. Some means of breaking the isotropy of the vapour was required in
each case. This has been achieved by the application of a static electric
or magnetic field, by quasistatic electric fields produced by the inter-
action of the laser pulse and the medium, or by imposing an asymmetry on
the system by using a non-collinear beam geometry. The papers describing
all such processes are discussed in chapter two in some depth, because no

review of this field has been published.

The work on magnetic-field-induced second harmonic generation reported in
this thesis is believed to be a significant contribution to the study of
such processes, and to fundamental nonlinear optics. The use of a single-
frequency lLaser and an atomic nonlinear medium has allowed for the first
time the examination of the properties of a SHG process in such detail as
to provide so stringent a test of a theoretical model developed to predict
the basic properties of the nonlinear interaction in terms of fundamental

atomic parameters.
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1.3 INTRODUCTION TO MAGNETIC-FIELD-INDUCED SECOND HARMONIC GENERATION

IN SODIUM VAPOUR

As an introduction to the reviews of chapter two, and as an overview of the
detailed theoretical treatment given in chapter three, this section first
gives a qualitative description of the process of magnetic-field-induced
second harmonic generation in sodium vapour. The scheme described is the

one used in the bulk of the work in this thesis.

The particular interest in sodium vapour for magnetic-field-induced second
harmonic generation is due to the relatively simple nature of such a
nonlinear medium, which consists of isolated atoms with well-defined
selection rules. The interaction of the Laser beam with the atoms of the
vapour 1is amenable to accurate mathematical modelling in terms of

fundamental atomic parameters.

Second harmonic generation in the vapour occurs by the simultaneous
absorption of two photons from the fundamental beam and the emission of one
photon of twice the energy. There need be no static population of the
excited states of the atoms in such a conversion process, but near
coincidences of the fundamental or second harmonic frequencies with the
frequencies of atomic transitions may enhance the SHG by many orders of
magnitude. Atomic selection rules, however, restrict which transitions may
be used. The energy levels of the sodium atom are shown in figure 1.3.1.
Resonant enhancement of the SHG is obtained by tuning the fundamental
radiation to half the wavelength of the 3S - 4D two-photon transition in
sodium, corresponding to a laser wavelength of 578.7 nm. Although there
are no electric-dipole-allowed transitions between the 4D and 3S states,
two-photon transitions are allowed, as are single-photon electric-

guadrupole transitions.
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289 nm SH
Quadrupole

3S

Figure 1.3.1 Energy levels scheme for second harmonic
generation in atomic sodium vapour. The dotted Line
indicates the ionisation potential of the atom. The 3S
ground state lies 5.14 eV below this Level. There are
many other states between the ionisation potential and
the highest energy levels shown in the diagram.

Key:= TPA = two-photon absorption

SH = second harmonic

In studying radiative transitions in atoms, it is often a very good
approximation to consider only single—-photon electric-dipole~allowed
transitions. However, when this type of transition is forbidden by
selection rules, other types of (weaker) transition may become important.
Two-photon transitions were first considered by Goppert-Mayer [15]1. 1In
such transitions, two photons are absorbed simultaneously; the transition
rate is proportional to the square of the intensity of the radiation [161],
and the selection rules associated with the transition are similar to those
that would be obtained by applying single-photon electric-dipole-transition
selection rules twice [17]. Electric-quadrupole transitions are due to
oscillating guadrupole charge distributions in the atom, and are usually
very much weaker than dipole-allowed transitions. Some of the physics of
this type of transition is treated in section 2.4; in particular, it is

explained there why the selection rules for quadrupole transitions are
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different from those of the much better known electric-dipole-al lowed

transitions.

The two-photon absorption in the sodium atoms creates quadrupole moments
which oscillate at the second harmonic frequency, but in the absence of an
external magnetic field these do not radiate into the forward direction.
An analysis of the magnetic sublevel populations indicates that the
quadrupole emission lLobes are perpendicular to the fundamental beam, so no
coherent second harmonic may be generated. However, when a transverse
magnetic field is applied to the vapour, the isotropy of the system is
broken, and the quadrupole emission lobes rotate about the field due to
state mixing and Zeeman shifting. This allows coherent generation of the

second harmonic in the forward direction.

SECOND

NTA
FUNDAMENTAL HARMONIC

Figure 1.3.2. Geometry used to describe the second

harmonic generation process. Qx and Qz are the

quadrupole moments which act as YeffectiVe dipoles"

for second harmonic generation.
The geometry used to describe the second harmonic generation process is
shown in figure 1.3.2. The two quadrupole moments which may contribute to
the second harmonic radiation are Qxy and sz. These may be considered to

be "effective dipoles' parallel to the x and z axes respectively. The aim

of the theoretical modelling of chapter three is to determine the amplitude
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and phase of these effective dipoles as functions of the laser frequency
and polarisation, the magnetic field strength, and the linewidths of the
homogeneous and inhomogeneous broadening. Different magnetic sublevels are
involved in the resonant enhancement of the two effective dipoles. Thus as
the fundamental frequency is tuned across the enhancing two-photon Lline
profile the relative magnitudes of the two effective dipoles will change as
the appropriate magnetic sublevels are moved in and out of resonance.

Once the properties of the effective dipoles are determined, the
observables of the second harmonic radiation are readily calculated. For
example, if the effective dipoles are of the same magnitude, and if the
phase difference between them is zero or ninety degrees, the second

harmonic radiation will be linearly or circularly polarised respectively.

The theoretical predictions were tested experimentally using the single-
frequency dye lLaser system, which is described in chapter four. The
effects on the SHG of the variation of the transverse magnetic field,
sodium atom density, laser frequency and polarisation, buffer gas pressure
and Doppler width were considered, and theory and experiment were found to
be in remarkably good agreement, as shown in chapter five. The bulk effect

of phase (mis)matching was also found to be important.

Second harmonic generation may occur only in the region where the laser
beam and the magnetic field overlap. At lLow particle densities the second
harmonic intensity is proportional to the square of the sodium atom density
in the overlap region. Thus by moving the positions of the lLaser beam and
the magnetic field a three-dimensional profile of the atomic density may be
obtained. This was proposed by Dunn [18], and its first experimental use

is reported in section 5.9.

A disadvantage of atomic vapours for harmonic generation is the limited




range of tunabilty of the process. Significant resonant enhancement is
obtained over only a few gigahertz around the frequencies of each of a few
suitable two=-photon transitions. Molecular vapours offer the possibility
of many more allowed two—-photon transitions and preliminary experiments
were performed to asses the suitability of the sodium dimer in vapour form

as a nonlinear medium. These studies are outlined in appendix E.

The research reported in this thesis concentrates on the basic physics of
the second harmonic generation process. The conversion efficiency, though
small, was sufficiently high to enable such experiments to be undertaken.
In order for the technique to find many applications, the efficiency and
tunability would probably need to be increased; techniques for doing this

are outlined in the final chapter.
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CHAPTER TwO
REVIEW OF SECOND HARMONIC GENERATION

AND RELATED PROCESSES 1IN VAPOURS

This chapter begins with a simple theoretical treatment of second harmonic
generation in a quantised medium. Second harmonic generation (SHG) does
not occur in an isotropic medium unless the symmetry is somehow broken;
four ways of doing this are then described, and the publications in these

fields are reviewed. SI units will be used throughout this work.

2.1 THEORETICAL OVERVIEW OF SECOND HARMONIC GENERATION IN

QUANTISED MEDIA

Consider the idealised three-~level system shown in figure 2.1.1. Second
harmonic generation occurs in such a system by the simultaneous absorption
of two photons of the fundamental radiation and the emission of one photon

of twice the energy.

Figure 2.1.17 Energy level scheme for second harmonic
generation in sodium vapour.
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There need be no static population of the excited states in this parametric
process, but near coincidences of the laser freguency, w, with the allowed
single-photon transition at Woq, OF of 2w with the allowed two-photon

transition at Wgqs will strongly enhance the generation process.

The wavefunction of the atom may be written as

-'-iwzj t ‘iW31 t

Y = a,(t) u, + a2(t) u, e + a e

1 1 4+ CiniCin 2.1.1)

2 3Y3
where a, is the amplitude of U which is the eigenfunction of level n.
These amplitudes are considered to be slowly varying functions of time to

allow for transitions in the medium. c.c. denotes the complex conjugate.

The electric field of the fundamental beam may be described as

E 0 e + CiaiCie (2.1.2)

To calculate a5 and az, VY is 1inserted into the perturbed time-dependent
Schroedinger equation
(H, + V¥ = -hH oV (2.1.3)
i ot

0

where the perturbation, V, in the dipole approximation, is given by

(2.1.4)

and is caused by the electric field of the fundamental beam. If the
resonances are as shown in figure 2.1.1, and if the excitation is weak, the

time-dependence of a, and ag may readily be calculated to be

2




b, = 14 <@ler|1> Byl W21 T W o (2.1.5)
2 f

ag =11 <3ler|2> gwoe1(”32 - a, (2.1.6)
2 #

where <iler|j> is the dipole matrix element defined as ‘Ju?(ef)uj dv, where
the integration is over all space, and an electric dipole interaction is

assumed. In the approximation of a relatively weak input wave, 8y = g =
constant, and the above two equations may be integrated to give expressions

for as and az. These are then inserted into equation 2.1.1 to give an

expression for the wavefunction of the medium.
The expectation value of the polarisation of the atoms is given by
*
<p> = J‘V ery dv AT

where the polarisation is assumed to have a dipole nature. The calculated
expression for ¥ is inserted into this equation, and the component
oscillating at 2w is extracted, giving the second harmonic polarisation as

2 ~i2ut
By, = laggl™ <1lerl3><3ler|2><2|er|1> Sl (2.1.8)

2

(w21 - W) (w31 - 2w)

The second order susceptibility XﬁZ) is defined by

(2> _ (2) 2

Pow (2.1.9)
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6 X?k—Zw;w,w) = N <1ler|3><3|er|2><2|er{1> (2.1.10

2
il 60 (w - W) (w31 - 2w)

21

To include damping in equations 2.1.8 and 2.1.10 the factor % 1xij must
be inserted into each denominator with the resonant frequency wij’ with
the signs chosen correctly [10, 191. This is not important for the present
discussion, though it is required in the more detailed analysis in chapter

three.

Equations 2.1.8 to 2.1.10 describe the SHG process. For media with
definite parity, such as atomic vapours in the absence of applied fields,
XFZ) will vanish in the dipole approximation. To see this, consider again
the three Llevel atom: if U, has even parity, then for <2|er|1> to be non-
zero u, must have odd parity; similarly Uz must have even parity, but now
<1ler|3> is zero as both uy and ugz are even. This is readily seen in

the following example. Let states 1, 2 and 3 be the 35S, 3P and 4D states
of the sodium atom. The AL = + 1 selection rule for dipole radiation is

well known, and so while 3S - 3P and 3P - 4D transitions are allowed, 4D -

3S is not.

If electric quadrupole or other higher order radiation processes are
considered, XﬁZ) may no longer be parity-forbidden. The electric
quadrupole matrix element is of the form <ilerr|j>, so a chain of two
dipole transitions and one quadrupole transition would seem to be allowed.
In the example given above, transitions from 4D to 3S are allowed by
quadrupole radiation processes. However, a more detailed study shows that
collinear three~wave mixing in an isotropic vapour is still forbidden. In
order to see this, consider three waves of frequency and wave vector

(w1, 51), (wz, 52) and (w3, 53) where W > W P Wa o and assume that

these three waves are propagating collinearly through the vapour. As the
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state of an atom is unchanged in a parametric process, the waves must
satisfy certain conservation laws. Photon energy and momentum conservation
demand that W = Wy + Wy and 53 = 52 + g1 respectively. Angular

momentum must also be conserved among the three waves. It is permissible
to choose the axis of quantisation along the direction of collinear
progogation, z, (or any other axis, as the medium is isotropic). Thus

m; = m, + m, . where m is the z component of angular momentum of the nth
photon. As the electromagnetic wave is transverse, each photon must carry
+ 1 units of angular momentum along z, regardless of the type of radiation
from which it arose. There is no way in which three photons can obey such
a conservation law, and so collinear three-wave mixing in an isotropic

medium is not possible. This is a general result, independent of the type

of matrix elements involved.

Despite these restrictions, methods have still been found to mix three

optical fields in a vapour:-

i) A static electric field may be applied to perturb the eigenfunctions of
the medium, mixing together states of opposite parity. This is often
described in terms of a third order nonlinearity, where two photons of the
fundamental field are mixed with one of the zero frequency electric field

to produce the second harmonic photon.

ii1) The transverse intensity gradient of high-intensity laser pulses at the
fundamental frequency may produce quasistatic electric fields which then

act to break the vapour's symmetry in a mannner analagous to (i).

i11) Two intersecting, orthogonally-polarised, focussed beams can produce
a gquadrupole radiation field at the sum or difference frequency, using the

second order nonlinearity.
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iv) A static transverse magnetic field may be applied to the focal region
of a single beam, causing the quadrupole radiation at the second harmonic

frequency to radiate coherently in the forward direction.

The study of this last type of symmetry-breaking process forms the bulk of

this thesis; all four types are described in more detail in the following

sections.
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2.2 ELECTRIC~FIELD-INDUCED MIXING PROCESSES

The second harmonic polarisation produced in a quantised medium of atomic

density N by an optical electric field gw = (1/2) EwO éJWt + CuCe 1S

P(2w) = N <1|er|3><3|er|2><2|er|1> Ei éqZWt. (2.2.1)

2

0

4 - 2w) (w

(Wz4 29 =W

For media with definite parity, such as atomic vapours, at Least one of the
<iler|j> dipole matrix elements in equation 2.2.1 must be zero. However,
the application of an external static electric field can mix levels of
opposite parity, thus allowing all three dipole matrix elements to be
non-zero. The static field imposes a preferred direction on the vapour,
and it is no Longer permissible to quantise the angular momentum of the
atom along the propagation direction; the momentum must be quantised along
the direction of the static electric field. Conservation of angular
momentum among the three waves is possible in this direction, so second
harmonic generation becomes allowed by both parity and angular momentum

arguments.

For atoms and symmetrical molecules there is usually no linear shift in

energy levels with an electric field E, (linear Stark effect), as they do

0
not possess permanent dipole moments which would interact with the field.
However, an electric field can induce such a dipole moment in the atom,
proportional to ED’ and thus give rise to energy level shifts proportional
to EO' This is called the quadratic Stark effect. If the states of
opposite parity are well separated in energy, second order perturbation

theory may be used to determine the effect of a weak electric field on the

atom (203:
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WM = W @)+ |g012 [<ext g M| er [ dm> | 2 (3,89
0(')J' W@Jg) - Wx'J")
YJM) = Yum) - Igol ZW(IX'J'M) <" J'Merjxym> (2.2.3)
WJ) = W(Xryr)

oy
)

where W is the energy lLevel of the state, EO is the static electric field,

and ¥ and ¥ are the perturbed and unperturbed eigenfunctions respectively.

These relationships break down at fields which are sufficiently strong that
the Stark splittings are comparable to the energy differences between
states of opposite parity. The same is true when the basis states are
almost degenerate, as in the hydrogen atom, or in high level Rydberg
states, which have hydrogenic eigenfunctions. In these cases the Stark
effect can be shown to produce energy Level shifts proportional to the

electric field strength [20,21].

As a specific example of an electric=field=induced mixing process in which
only the quadratic Stark effect is involved, consider the scheme reported
by Bethune et al [22] where sodium vapour was used as the nonlinear medium.
The angular frequencies Wy and Wy of the optical electric fields were
chosen to be close to the 3S - 3P and 3P - 4D resonances. With no static
electric field applied, the dipole matrix elements involved were
<3s|er|4d><4d|er|3p><3pler|3s>, the first of which is zero. When a static
electric field was applied to the vapour, eigenfunctions of opposite parity
were mixed as described by eq. 2.2.3. Equation 2.2.1, modified for mixing

rather than second harmonic generation, then becomes
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°

0

PQ2w) = ;Ei -<3s|er|np><np|er|4d> + <np|er|4d><3s|er|np>\.E

ﬁ(w + Wy = wnp) 'ﬁwnp

1E éi(w1+ Wy t

(w4d - Wy Wy = 1?)(w3p - wq)

x <4d|er|3p><3pler|3s> E (2.2.4)

Thus the sum freguency polarisation is proportional to the static electric
field EO’ and to the two optical electric fields. This dependence on three

electric fields has Led most authors to describe such processes using XfS)

nonlinearities, even though the expression was derived from a XfZ) type
of description. Although the formalism described above is restricted to
certain cases, similar arguments apply to non-resonant processes, and to

other atoms and molecules in which the quadratic Stark effect is the

dominant perturbation.

Two ways of visualising the symmetry-breaking properties of the static
electric field have been proposed. The first follows the eigenfunction
mixing argument as above; the second considers the mixing process in ways
similtar to conventional X}S) processes such as third harmonic generation.
The latter model treats the static electric field in the same manner as
the opticat fields, and the sum freguency output is considered as the
mixing of two fields of frequency w and one of frequency zero. Four-wave
mixing is allowed by dipole selection rules; the zero-freguency transition
in this model is essentially the same as the effects of state mixing

considered in the first description.

Situations where the quadratic Stark effect is not applicable have been
reported; they are described separately in the following literature review.
The number of papers discussing electric-field-induced SHG is much greater

than that of any other type of symmetry-breaking process.
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Terhune and co-workers [23] were the first to report electric-field-induced
second~harmonic generation (ESHG) in a medium with a centre of symmetry.
They focussed a one joule pulse from a ruby laser through a calcite crystal,
which was in an electric field, and used the birefringence of the crystal

to phase-match the process. The intensity of the ESHG was measured to be

proportional to the square of the dc electric field strength.

A small amount of second harmonic was generated when no field was applied;
this was explained as a second order process involving a guadrupole
transition. The quadrupolar route was possible as calcite is not
isotropic, as explained in more detail by Pershan [241. (Bulk quadrupolar
SHG is currently of interest in centrosymmetric semiconductors; see, for

example, reference 25.)

The first reports of ESHG in vapours, which are isotropic, were by Mayer
and co-workers [26, 271, and by Finn and Ward [28]1. Purely theoretical
treatments were given by Kielich [29, 30]. These pioneering studies are
summarised in table 2.2.1. Finn and Ward verified that the second harmonic
powerlPZw was given by

(3)

2 .2 2
P, < ® D% ESIX /Algol (2.2.5)

where Pw is the fundamental power, E. is the dc electric field strength,

=0
Ako = (2l5w - Kw) is the mismatch between the fundamental and second
harmonic wave vectors, and Xﬁ3) is the appropriate element of the

effective third order polarisability tensor (as discussed below). The
constants of proportionality appropriate to the experimental arrangement
were derived, and good agreement was obtained between theory and
experiment. The number of photons generated per pulse from their 1 MW ruby

Laser ranged from 600 for xenon to 4000 for hetium.
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Paper Type Medium Laser Findings

23] 1962 ESHG calcite ruby Finite SH power quu) at zero field, but
Terhune 694 nm (P2w - Pgu)ec Eg._4Conversion
Maker 14 efficiency S x 10 that of KOP.
Savage
261 1968 ESHG various gaseous ruby Second harmonic power proportional to square
Mayer molecules 694 nm of fundamental power, except near breakdown
(In French) 7 MW fields in C2H51 and Czﬂsar. Phase matching,
25 ns and the difference between polar and nonpolar
molecular nonlinear media noted.
10~13 conversion efficiency.
291 1968 ESHG Theory. Nonpolar molecules contribute only
Kielich THEORY to the purely electronic third order hyper=-

polarisation. Dipolar molecules also
contribute a temperature~-dependent second
order term due to orientation of the dipoles

in the electric field.

301 1969 ESHG Extension of [29], to include "electric
Kielich THEORY saturation" effects.

281 1971 ESHG  inert gases ruby In Helium, P, o PI(ED", n=2.00 + 0.06,
Finn 694 nm m = 2.06 + 0.06 for conditions used. Also
Ward 0.8 MW phase (mis)matching, dependence on electrode

position and confocal parameter, measurement
of hyperpolarisabilities of inert gases.

10—13 conversion efficiency.
271 1971 ESHG various gaseous ruby As (26]1. Also studied Raman effects, and
Hauchecorne molecules 694 nm found hyperpolarisabilities. qu 9 times
Kerherve stronger with EHH‘EO than with EH.[ Eo.
Mayer Propose mechanism for increased ESHG near
(In French) breakdown fields in ethyl bromide and

ethyl iodide.

Table 2.2.1. Pioneering experiments in electric-field-induced second
harmonic generation. None of these processes used resonant enhancement.
PZw and E0 are the second harmonic power and the symmetry-breaking static

electric field respectively.



Many papers have since been published on electric-field-induced mixing
processes, and these are summarised in the tables in this section. The

reports have been arranged in groups according to the aim of the papers.

The lLargest group contains those papers concerned with measuring the
hyperpolarisabilities of atoms and molecules, which are defined in an
analogous way to linear polarisabilities. The dipole moment p induced in a

system by an electric field E is

p, = 50(’{1'553- * 1B EsEy 1x1.jkLEjEkEL> (2.2.6)

2 6

where X is the polarisability and p and Y are the first and second hyper-
polarisabilities respectively [31]. p and ¥ are sometimes also referred to
as the second and third order (in electric field) polarisabilities. A
review of the properties of molecular hyperpolarisabilities is given by
Buckingham and Orr [31], though it was written before most of the papers
listed here were published. The major cause of interest in hyperpolaris-
abilities at that time was the importance of f and ¥ in the Pockels and
Kerr effects respectively. In the Pockel's effect the birefringence of a
material varies linearly with the electric field strength, and cannot occur
in a centrosymmetric medium. The Kerr effect may occur in such a medium,
and depends on the square of the electric field strength. Most of the
papers summarised in table 2.2.2 use a slightly different notation for the

is written as 3/2 X&

hyperpolarisabilities, where 1/6 Xijk FGHM®

L

Consider a gaseous sample of molecules in a dc electric field and with
Light of frequency w passing through it. These molecules develop induced

dipole moments at the second harmonic frequency [321; the average moment,
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Paper Type Medium Laser Findings
. 3 2) 2

271 197 ESHG  various ruby Measurement of X and X using ESHG and
Hauchecorne molecules 694 nm Raman effects. R = X(“S)/Xf) = 3 using
Kerherve ethyl bromide.

Mayer

(In French)

’ (3) I

281 1971 ESHG  ijnert gases ruby X of inert gases.

Finn 1 MW

Ward 694 nm

X (3) ,,(3) .

341 1974 ESHG  inert gases ruby RZX,”"/X;”" of inert gases all equal to three
Bigio 1 MW to within experimentalt error.

Ward 694 nm

351 1974 ESHG  halogenated ruby x§ of on, and CF, directly from S

finn methanes 1 MW intensity, 'X.(“z) of CHZFZ' CHF3, CF{.' CCLF3,
Ward 694 nm Brfy from SH intensity minus theoretical

estimate of X?).
321 1975 ESHG  halogenated ruby Temperature dependence of SH intensity
Ward methanes 1 MW measured to give X(u3) SE’), ')(.(“2) and Xiz)
Qig1o 694 nm for CH‘,', CH3F, CHZFZ’ EI;)FB'CFQ’ CClF3 anc(lz)
CBrFs. BAA good for X but poor for X “°.

361 1977 ESHG  halogenated ruby As [321, extended to all CXnYl'_n with
Miller methanes 1 MW X,Y = F, CL, H.

Ward 694 nm

371 1978 ESHG ethylene ruby Temperature dependence of SH intensity
ward 1,3 ,butadiene 1 MW measured to give X‘,?) and ’)(,_(1_3) for these
Elliot 1,3,5,hexatriene 694 nm molecules.
. benzene

381 1979 ESHG  "small ruby As [321, for Hz, NZ' 02' co, coz, HZO‘ st,
Ward molecules 1 MW NH3, SF6, (CH3)20, CHSOH.

Mitler 694 nm

Table 2.2.2, continued overleaf.




Paper Type Medium Laser Findings
391 1982 PPM various art Frequency dependence of Xés) for He
Shelton ESHG molecules cw 1 W and CH4, vibrational resonance seen 1n CH4
Buck ingham 458 ~ Temperature dependence of SHG g1ves‘X" and

514 nm Xm for He, N Y 2, 2, COZ' 4 CH3F,

CHF3, CFA’ SF6 at 514.5 nm,
401 1984 ESHG Expressions for third-order frequency-
Hameka THEORY dependent hyperpolarisabilities of molecules.
Svendsen Also review of previous theoretical work.
411 1984 ESHG  various Deviations from Kleinman symmetry.
Elliot molecules
Ward
421 1985 ESHG  HF, HCL ruby Temperature dependence of SHG measured to
budley 1 MW give XES) and X&Z) for HF and HCL. Values
Ward 690 nm for HF do not agree well with theory.
3 + WP oLy O G |

331 1985 PPM various Ar’', dye Frequency dependence of R =% IX:J~ oK
Mizrahi ESHG cw 1T W significantly different from 3, for He, Ar,
Shelton 488, 515 Kr, Xe, CHA, CFA' SFé, HZ’ 02, NZ' 02, CO2

590 nm C2H6, CHF3, EZHA'

+ 3 3)

433 1985 PPM Ar, NZ’ 02 Ar , dye Frequency dependence of Xﬂ (gas)fx (He)
Mizrahi ESHG cw 1 W measured, nonlinear dispersion > t1near
Shelton 458 - dispersion.

700 nm

+ {3) (3

441 1985 PPM HZ’ D2 Ar', dye Ffrequency dependence of %" (H )IX|| (He) and
Mizrahi ESHG cw 1 W Xjﬁ)(H )/XhB)(DZ) measured. Extrapolated to
Shelton 458 - zero frequency to test ab initio calculations

700 nm which are too high. Vibrational resonances

significant.

Table 2.2.2 (continued). Papers reporting measurements of hyperpolaris—
abilities using electric-field-induced second harmonic generation (ESHG).
None of these reports used resonant enhancement of the process. X and
XuL are XYYYY and XYYXX respectively, the two independent non-zero
components of the hyperpolarisability tensor [32]. BAA is the bond
additivity approximation; the calculated contributions for each bond are
added together to give an estimate for the total effect [31]. PPM is
periodic phase matching [39]. AlL of the quoted power conversion
efficiencies were around 10-14; the Low power of the continuous wave laser
was compensated for by using periodic phase matching to increase the

generation length.




p, per molecule is

pp = (3/2) b s

Fanm (2w 0w W) gl gW gW (227D

G H M

where'ngHM(-Zw;O,w,w) is an effective molecular hyperpolarisability, the
"E'"s are electric field amplitudes at freguencies indicated by the
superscripts, and F, G, H, M stand for X, Y, or Z in the laboratory
coordinate frame. The factor 3/2 is included in accordance with the

convention that‘Xﬁ—wO;w1,w2,w3) should tend to X(0;0,0,0) as alt

the frequency terms tend to zero [281].

In non-polar molecules the only contribution to XSGHM comes from the third
order polarisability. However, molecules with a permanent dipole moment u
will undergo a temperature-dependent partial alignment in a dc field, and

the second order polarisability is then non-zero due to the induced

anisotropy [32]. The two contributions may be written explicitly as

& (2w 0w, = x{%‘HM(-zw;o,w,m

G/ IRGTIXEL (2w, W) (2.2.8)
These laboratory—-frame—averaged hyperpolarisabilities are related to the
molecular hyperpolarisabilities by relations given in reference 32. The
Laboratory frame coefficients are subject to symmetry restrictions due to
the macroscopic isotropy of the gas. This implies that there are only two
independent non-zero spatial components for each hyperpolarisability.
These are conventionally chosen as the YYYY component, which is measured
with the optical and dc electric fields parallel (i), and the YYXX
component, which is measured with the optical and dc electric fields

perpendicular to each other (L).
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One approximate-symmetry property of the hyperpolarisabilities is that they
are invariant under any permutation of their spatial indices; this is
called Kleinman symmetry [31, 331. This symmetry is exact at zero
freguency and results in R = Xﬁf)(w=0)fxﬁ?)(w=0) = 3, This relationship is

expected to hold at frequencies far below the first electronic resonance.

Tests of this relationship are listed in table 2.2.2.

The temperature dependence of the second order polarisability allows
independent determination of‘X(S) and XfZ) by measuring the variation

of SH power with vapour temperature, as noted in the same table.

Most of the ESHG experiments used high peak power pulsed lLasers in order to
obtain a measurable number of second harmonic photons. There was no
resonant enhancement of the ESHG and the efficiency was also limited by
phase mismatching. A significant advance was made by Shelton and
Buckingham [39] who used periodic phase matching. An array of electrodes
was used which was designed to reverse the polarity of the electric field
every coherence length LC = nvczgw = 52w>, where kw is the wavevector at
frequency w in the gas. The resulting periodic phase shift in the
generated second harmonic served to cancel the accumulated phase shift due
to dispersion in the medium, thus allowing continued growth of the SH
signal over the whole length of the sample. This allowed Shelton and

co-workers to perform various measurements using relatively lLow power

continuous—wave lasers.

Table 2.2.3 summarises the results of some ESHG experiments in Lliguids.

The theory of the process is similar to that of non-resonant ESHG in gases.
The data obtained were interpreted to determine various parameters of the
molecules involved, such as the properties of hydrogen bonding. Levine and

Bethea [47] reviewed some of these possibilities.
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Paper Type Medium Laser Findings
451 1974 ESHG nitrobenzene Nd:YAG Measurement of hyperpolarisabilities;
Levine LiQ nitromethane 1.06 pm conjugated bonds make strongest contribution.
Bethea jodomethane
461 1974 ESHG nitrobenzene Determination of sign of hyperpolarisability
Levine LIQ by interference of ESHG and other types of
Bethea SHG. See also [601.
471 1976 ESHG  nitrobenzene~ ESHG gave information on dipolar forces,
Levine L1a benzene mixtures, hydrogen bonding, charge transfer
Bethea water-methanol interactions and other solute-solute and
mixtures solute-solvent effects. Also review.
481 1976 ESHG pym’dine-l2 Nd:YAG X(Z) of this charge transfer complex
Levine LIiQ 1.32 pm dissolved in benzene measured to be 30 times
Bethea 100 kW that of pyridine, theoretical agreement.
70 ns
491 1984 ESHG monosubstituted ESHG measured and compared with theory
Song LIQ benzenes
Cho
Lee
Chang
(In Korean)

Table 2.2.3.

generation in

Papers reporting electric-field-induced second harmonic

Liguids (ESHG LI®).

ALl these processes were non-resonant.

B




Of more direct relevance to the subject of this thesis are the reports of
resonant ESHG Listed in table 2.2.4. The use of resonant enhancement
permits extremely high values of the nonlinear susceptibility to be
obtained; Boyd and co-workers [54 = 571 have studied electric-field-induced
sum freguency mixing using Rydberg levels of the sodium atom for resonant
enhancement and have measured the susceptibility for second harmonic
generation to be ten times that of the well known harmonic generation
crystal, potassium dihydrogen phosphate (KDP). The process was not phase
matched, however, so the power conversion efficiency was low. The Rydberg
Llevels are hydrogenic and are thus affected predominantly by the Llinear
Stark effect. The wave-function mixing in this case 1is not proportional to
the static electric field strength, but is almost independent of it in the
range where the Linear Stark effect is greater than both the fine structure
sptitting and the quadratic Stark splitting. Boyd and Xiang therefore

class this as a N&Z) process.

Earlier, Abrams et al [51, 521 had used resonances of the NHZD molecule
to enhance difference-freqguency mixing of a carbon dioxide laser beam and a
microwave signal, generating a single sideband of the CO2 laser radiation
in a microwave Stark cell. The quadratic Stark effect does not describe
the energy splitting well, as the Stark splittings are greater than the
separation of states of opposite parity. The chain of dipole matrix
elements was calculated to be zero at high and zero field strengths, but
finite at intermediate field strengths. The electric field strength was
chosen to shift the energy lLevels of the molecule into the position of
maximum resonant enhancement. The complicated dependence on electric field
(2)

strength led the researchers to classify this as a X process, induced

by an electric field.
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Paper Type Medium Laser Findings
501 1974 ESHG Theoretical treatment of resonant ESHG; non-
Krochik polar and polar molecules considered.
Khronopulo
51, 521 1977 EDFM NHZD cw singte Single sideband IR generation. Difference
Abrams o 505 mode (:02 frequency power proportional to microwave
Yariv 0 6m D[l:.” 10.6 pm; power. Maximum generation efficiency when
Yeh < 46 06 microwave levels Stark-shifted into exacEBresonance.
Asawa Ez0- 3570 Vem~! THT 4 W DFM Linewidth 130 MHz. 2 x 10 ~ conversion
Plant 4 GHz of microwave power to difference frequency
Popa wave.
22, 531 1977 ESFM  Sodium dye Measurement of X'g /x> by interference
Bethune and 4D 592 nm & between ESFG and non-collinear SFG, which was
Smith NCSFM 566 SFB'?,ZBQ 566 nm driven by a quadrupole moment; gives value
Shen 5921 J/ 35 10 W and for 38 - 4D quadrupole matrix element.
100 W

541 1982 ESFM  Near resonant Theoretical treatment for SFM using Rydberg
Boyd THEORY Rydberg level states for resonant enhancement; laser should
Xiang 422 SFN;,ZI'S be tuned between Stark-shifted levels.

5E gs Predicts SHG susceptibility > 100 times that

of KDP.
551 1983 ESFM  Sodium dye Experimental verification of [541. ESHG
Gauthier m:er level 422 nm & susceptibility ten times that of KDP. Not
Krasinski 422 SFM245 589 nm phase matched, so power conversion efficiency
Boyd gi;- gz “few ns" only 10-5. Suggestions Tor improving
susceptibility and efficiency.
56, 571 1984 ESFM  Sodium dye Same susceptibility as [55]. Blue Llaser
Boyd Mﬁ"" level 422 nm & scanned and resonant enhancement seen for
Gauthier 422 SFg?:,ZLS 589 nm each Stark-shifted Level. Effects of tuning
Krasinski 5E 35 125 kW yellow laser shown. Max efficiency 3 x 1074,
Malcuit 4ns Also some SHG at zero electric field.
A¥:5 GHz

Table 2.2.4. Papers reporting resonantly-enhanced electric-field~
induced mixing processes. Wavelengths in the diagrams are given in nm
unless otherwise stated. The energy level shifts with field in the
schemes used in [22] and [53] are described well by the quadratic Stark
effect. Papers [54 - 571 deal with hydrogenic atoms, and thus the Llinear
Stark effect is dominant. In [511 and [52] the electric field is a very
large perturbation, and there is no simple dependence of DFM efficiency on
electric field strength.




Electric-field-induced sum frequency mixing was demonstrated uging the
sodium atom for resonant enhancement by Bethune et al [22, 53]1. They used
a crossed-beam geometry so that a quadrupole-driven SFM process could also
occur. fhe interference between the two types of mixing process allowed a
determination of the magnitude and sign of the <3$|r214d> quadrupole

matrix element.

The remainder of the electric~field=induced mixing experiments are Llisted

in table 2.2.5. The first two describe the use of ESHG as a sensitive probe
of the focal region of a Laser beam. This probe is more sensitive than
conventional methods for determining mode distortions, and with a 10_14
conversion efficiency it is very loosely coupled. The report by Bethea

[60]1 of ESHG in glass 1is important due to the use of glass cell walls in

containing gases and liquids under investigation.
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findings

Paper Type Medium Laser
581 1975 ESHG  air ruby
Bigio 694 nm
Finn 1 MW
Ward 20 ns
591 1976 ESHG  air ruby
Guha 694 nm
50 MW
20 ns
601 1975 ESHG glass Nd:YAG
Bethea 1.06 pm
250 kW
20 ns
611 1981 ESHG  chloromethane ruby
Dudley 694 nm
Ward . 0.25 MW
40 ns
621 1982 ESHG
Lam THEORY
Thirunamach=-
andran
631 1986 PPM  He, Ar, H,, Ar+, dye
Shelton ESHG DZ’ N2, 02 458 -
Mizrahi 700 nm
1 W

ESHG as a probe of the focal region of the
laser beam; theory and experiment. ESHG
sensitive to small deviations from TEMO0

mode. 10_14 conversion efficiency.

ESHG as beam probe. Extension of theory in
[58] to higher order beam modes. Good
agreement between theory and experiment.

ESHG coefficients determined. Generation
efficiency ‘l[)m6 that of quartz.

ESHG in crossed beam geometry, but no
quadrupole driven SHG. ESHG collinear with
each beam and along the bisector.
Dependences on particle density and

electrode geometry determined.

Theoretical treatment of ESHG in chiral
molecules, including electric quadrupole and

magnetic dipole transitions.

Measurements of the refractive indices of
these gases as functions of freguency.

10-15 conversion efficiency.

Table 2.2.5. Other reports of electr
None of these was resonantly enhanced.
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2.3 THREE~WAVE-MIXING PROCESSES WITH NO EXTERNAL SYMMETRY-BREAKING

The arguments against the possibility of collinear second—harmonic
generation in the absence of an applied field are strictly valid only for
the hypothetical infinite plane wave. In a conventional mixing experiment
a focussed Gaussian beam of Limited diameter is used, typically 300 pym. In
this type of arrangement, some asymmetry can be imposed upon the medium by
the beam itself; the transverse intensity gradient of the beam imposes an
anisotropy along the radial direction. Although no SHG has been observed
using low power Lasers [64], there have been numerous reports of SHG in
otherwise isotropic vapours when high power pulsed lLasers were used to
provide the fundamental radiation; these papers are summarised in table
2.3.1. Several different mechanisms have been proposed [65 - 67, 69, 71,
761, and it seems Llikely that different mechanisms may predominate in
different situations. However, most reports suggest that a quasistatic
electric field is set up in the direction of the intensity gradient of the
beam, and thus electric=field=induced second harmonic generation of the
type reviewed in the previous section may occur; the origin of these
quasistatic electric fields is the subject of some controversy. 1In a
minority of reports, totally different mechanisms have been proposed,
inctuding optical pumping of Zeeman sublevels, collisional state mixing,

and quadrupolar processes depending on the optical electric field gradient.

The first observation of SHG induced by a high power beam (PSHG) in the
absence of external symmetry breaking was by Mossberg et al [65]1. A
nitrogen—-laser-pumped dye lLaser with 5 kW peak power was tuned to the
6 2P1/2 -7 ZP”2 two=photon transition in thallium vapour, and a small

amount of SHG was observed in the absence of any external fields. Second

harmonic radiation was detected only under conditions suitabte for
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Paper Type Medium Laser Findings

651 1978 PSHG  Thallium dye P, W P,
e Mossberg 6%, = 7%y, 568 10 2 efficiency, :
l'“ Flusberg 6 P"/2 -8 P1/2 S kW SH unpolarised, f
Hartmann 7 ns SHG dependent on two photon absorption,

¥ independent of magnetic field.

Proposed mechanism: Multiphoton ionisation
% fot lowed by radial charge separation, to
produce ESHG.

v

661 1979 PSHG  Non resonant Nd:YAG P2w°c N2 R:, n>4, saturation at high Pw'
Miyazaki Sodium 1.06 um SH radially polarised, zero SH at centre,
Sato 1.8 GW Proposed mechanism: Spontaneous field due to
Kashiwagi 28 ps radiation pressure, to produce ESHé.
671 1980 PSHG  Barium dye P B,
Heinrich 652 180-6585180 582 nm Proposed mechanisms: Possibly opticatl
Behmenburg 652 150—5d75102 20 kw pumping of Zeeman sublevels, quadrupolar

4 ps transitions.

AV=10 GHz
681 1981 PSHG Non resonant  Nd:YAG P, o N° B[, n>4,saturation at high P,
Miyazaki Sodium 1.06 pm SH radially polarised, zero at centre,
Sato 1.8 GW Proposed mechanism: Spontaneous field due to
Kashiwagi 28 ps radiation pressure, to produce ESHG.
691 1981 PSHG Lithium dye qucc N7 Rs, n = 2 till phase mismatching,
Okada 2281/2 - 3251/2 735 nm 10-8 efficiency, SH polarised along
Fukuda 1 MW intensity gradient of fundamental.
Matsuoka 30 ps Degree of ionisation measured, quasistatic

AV=60 GHz electric field strengths measured by SHG and
by ratio of SHG/third harmonic generation.
Proposed mechanism: Multiphoton ionisation
followed by free expansion of photoetectrons, .
to produce ESHG.
(Ambipolar diffusion and radiation pressure
effects considered to be negligible).

Table 2.3.1, continued overleaf.




Paper Type Medium Laser Findings

701 1981 PSHG  Mercury doubled Observation of resonant enhancement.
Bokor 6s° 1SD-ésbd 102 dye 107° efticieny
Freeman 280 nn No SHG on 6s° 'Sy -6s6d'D,
Panock 4 MW
White 4 ns
&V=9 GHz
71, 721 1981 PSHG  Sodium Theory Theoretical Review.
Bethune THEORY Resonant and Proposed mechanisms all depend oﬁ transvere
non resonant nonuniformity of pump intensity. Claims (68]

incorrect. Gives magnitudes under different
conditions for ESHG using field due to:
free electrons driven by radiation force;
free expansion of photoelectrons;
nonuniform polarisation of neutral atoms
via (2);
and also:
direct SHG from nonuniform free electron
distribution;
Direct SHG due to XfZ) of neutral atoms.

73, 741 1981 PSHG  Calcium dye 107 efficiency,

Arkhipkin 4s? s -ss! Ts 600 nm  sH radially polarised.

Makarov 10 kW

Popov 10 ns

Timofeev AV=60 GHz

Epstein

75, 761 1981 PSHG  Sodium dye PZHOC ﬁ?, n>2, 2, 1 with increasing IPw,
Freeman i) 38 - 4D 579 nm 1['.1"5 efficiency,

Bjorkhotm ii) 3§ - 5p 571 nm SH modes and polarisation:

Panock 109 Ncm_2 i) bimodal and same Linear polarisation as w

Cooke AV=9 GHz i1) donut and same linear polarisation as w
In both cases mode width of SH > fundamental
Resonant enhancement distorted, implying
bulk effects important.
Proposed mechanism: None of above
mechanisms fit (see text). Working on

quadrupolar model.

Table 2.3.1, continued overleaf.
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Paper Type Medium Laser Findings

773 1982 PSHG Zinc dye i) 10"5 efficiency; ii) 10-6 efficiency,
Jamroz i) 45150—4102 320 mm Intensity SHG/third harmonic generation
Larocque ii) 45150—4102 358 nm measured to find quasistatic field strengths
stoicheft 10 Kku ) 5.2 kVem™!, §1) 4 kven™!, 2% atoms

12 ns jonised. Generation bandwidths:

AV=15 GHz ) 90 GHz, ii) 30 GHz. Proposed mechanism:
multiphoton ionisation followed by free
expansion of photoelectrons to produce ESHG.

781 1983 PSHG Potassium dye SHG when tuned to any nS, nP or nD (70 ~ 34P)

Dinev 3s - nS,P,D 572 nm - Peak efficiency at n = 1. PZJx N2 for S

de Garcia 615 nm and D, N4 for P. SH unpolarised for §, as

Meystre 600 kW punp for D, A pump for P. Doubts on radial

Salomaa 5 ns fields or quadrupole transitions. Proposed

Walther mechanism: mixing of L values by collisions.

571 1984 PSFM Sodium Rydberg dye peaks when sum frequency equal to frequency

Boyd states 420 rm & of S or D Rydberg states. Consistent with

Krasinski 590 nm multiphoton ionisation followed by free

Matcuit 100 kW expansion of photoelectrons to produce ESHG.
4 ns

79,801 1985 PSHG Magnesium dye 10—4 efficiency for SHG,

Kiyashko 4thHG 352 1SO~45 1So 460 nm 10‘10 efficiency for 4th harmonic generation.

Popov 20kW 7ns; Phase mismatch behaviour seen.

Timofeev 920 nm

Makarov 1.2MW 30ns

Epstein

641 1986 PSHG Not two photon cw dye Low power fundamental, sensitive detection,

Mizrahi PPM resonant 589.3 nm No SHG observed.

Shelton Sodijum 500 mW

Table 2.3.1, continued. Reports of second-harmonic-generation types of

ALL
PPM is periodic phase

mixing processes in vapours with no external symmetry breaking used.

used resonant enhancement unless otherwise noted.

matching (see section 2.2).




two-photon absorption, and the SH power increased when another laser was
tuned to a non-resonant frequency to increase the multi-photon-ionisation
that was occurring. The SH intensity was independent of an external
magnetic field, and was unpolarised. Mossberg et al proposed a mechanism
which was later confirmed by the experiments of Okada et al using Lithium
vapour as a nonlinear medium. The Llatter authors investigated the
polarisation of the second harmonic more thoroughly and found that it was
always in the direction of the transverse intensity gradient of the
fundamental beam, and that the SH power was zero at the centre of the beam.
The dominant contribution to the SHG was calculated to be electric-field-
induced second harmenic generation, where the electric field was produced

by the free expansion of photoelectrons produced by multiphoton ionisation.

In the Okada arrangement [691, four-photon ionisation of the Lithium vapour
produced 1.35 eV photoelectrons which would have had an initial velocity of
about 7 x 105 ms-1. These electrons were fast enough to travel a
significant fraction of the beam diameter during the laser pulse and so a
radial electric field, due to the macroscopic charge separation, was
superimposed on the local random electric field due to the ionisation.

Such an electric field would be zero at the centre of the Gaussian beam,
and would Lie along the radial direction of the beam. This effect was
modelled theoretically by Okada et al; their results are reproduced as
figure 2.3.1. These authors also estimated the guasistatic electric field
strength experimentally from measurements of the second harmonic power and
from the ratio of the intensities of the second and third harmonic
radiation that were produced concurrently. The two methods gave results of
7 chm—1 and 60 chm—1 respectively, in fair agreement with each

other and the theoretical calculations.
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Erad {kV/cm)

Figure 2.3.1. Distribution of the radial electric field érad

agains§1thg3 radial distance r for a photoelectron density

n=10"" m~. The initial distribution of the photoelectrons

f(r,0) is also shown. From [69].
Other mechanisms for the generation of the quasistatic electric fields have
been proposed; Bethune [71,72] predicts the relative magnitudes of these
processes in his comprehensive review of the subject. He shows that the
photoelectrons may also be driven radially by radiation pressure, but not
in the manner that was proposed by Miyazaki et al [66, 681; Bethune [71]
and Okada et al [69] agree that the spontaneous generation of a field due

to radiation pressure, proposed by Miyazaki and coworkers, did not give a

correct description of the physics of the process.

The results in most subsequently published papers have been consistent with
the free expansion of photoelectrons producing suitable electric fields for
ESHG. Several of the two-photon transitions that were used for resonant
enhancement by various authors had upper and lLower states as S states. in
these cases the electric field mixed these states with the P states of
opposite parity to explain the generation process as in section 2.2. In
the absence of an electric field there is no possibility of even a
quadrupolar or other higher order radiation process being used for the

return route as this is not allowed by selection rules.
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However, quadrupolar=driven processes may become important in other
arrangements, though Bethune [711 calculates them to be weak. Heinrich and
Behmenburg [67] proposed that in their SHG experiment the symmetry of the
barium vapour may have been broken by optical pumping of the Zeeman
sublevels or by quadrupolar processes relying on the electric field

gradient.

More recently, Freeman et al [75, 761 have generated the second harmonic of
a pulsed dye laser in sodium vapour, using the 3S - 3P and 3S - 4D
transitions for resonant enhancement. The results obtained were not
consistent with any of the proposed models. The second harmonic power did
not increase with increased photoionisation caused by another laser, so the
process did not seem to rely upon multiphoton jonisation in the same way as
others described above. The polarisation of the second harmonic was not
along the intensity gradient of the fundamental, ruling out the ESHG
theories. Bethune [81, and section 2.4 of this thesis]l has proposed
guadrupolar routes for SHG which may be important in the case of focussed
beams with mixed transverse modes; scrambling the transverse modes in
Freeman's experiment had no effect. 1In addition, the maxima of the second
harmonic modes were well outside those of the fundamental. The authors
calculated the magnitude of the quadrupole moment produced by the focussed
beam due to the field gradient, but found this to be 10-6 of the

moment calculated from the observed SH power. They reported that they were
"working on a mechanism ... that relies upon ionisation and quadrupole
coupling'. Rather than the ijonisation being important due to the static
electric fields produced, it was being considered to be important in the
spatial variation of the atomic ground state density. Freeman et al claim
that when this is coupled with the spatial variation of the intensity of

the fundamental, qualitative agreement is obtained with observations.
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Dinev et al [781 propose yet another possible mechanism. They observed
well-cotlimated DFM when their laser was tuned into two-photon resonance
with any nS, nP or mD (n =9 - 34, m = 7 - 34) level of potassium. Their
results were not consistent with quasistatic~electric~field induced SHG, or
quadrupole SHG. Instead, they suggested that, at the relatively high
densities of potassium atoms used, the high collisional cross sections of
the Rydberg states led to collisional effects being of importance. The S
and D states may be collisionally mixed with the P states, and the authors
proposed that the radiation from the collisionally induced dipole moments

may add coherently, giving rise to SHG.

It would seem that in contrast to the well understood area of conventional
ESHG, a considerable amount of work has yet to be done to obtain a full

exptanation of second harmonic generation caused by high intensity Gaussian

beams in otherwise isotropic media.




2.4 QUADRUPOLE RADIATION

As discussed in section 2.1, three-wave mixing in atomic vapours is not
forbidden by parity arguments if electric quadrupole transitions are taken
into consideration. Electric quadrupole radiation has been treated by
several authors, for example [21, 82 - 84]; a brief introduction to the
differences between electric dipole and electric quadrupole processes is
given here. Examples of classical static‘electric dipoles and quadrupoles

are shown in figure 2.4.1.

+q 0O -9 @---O+9
-9 @ +q O~ @ -9
(a) (b)

Figure 2.4.1. a) Classical electric dipole
b) One type of classical electric
quadrupole.

It is well known that an oscillating electric dipole radiates an electro-
magnetic wave. The electric quadrupole in figure 2.4.1 has no net dipole
moment, but if the dipoles within this quadrupole were to oscillate, each
dipole would radiate. However, if their phase relationship remains fixed
as shown in the diagram, and if the dimensions of the quadrupole are very
much less than the wavelength of the radiation, the radiation fields from
the two dipoles will interfere destructively, and no radiation will be
observed. The assumption that the size of an oscillating charge
distribution is very much less than the wavelength of the radiation it
produces gives rise to the 'dipole approximation', in which it is assumed
that oscillating dipoles are the only significant source of radiation.
However, the destructive interference in the above example will not be

complete if the source is of a finite size. The small amount of residual
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radiation is what is known as gquadrupole radiation.

The dipole approximation is often very good; for example, the size of an
atom is of the order of 10_12 m, and visible light has a wavelength of the
order of 5 x ’IO-7 m. It would be unwise to consider the radiation
processes of the atom purely in this clasical manner, but it is found that
classical [82] and quantum mechanical [83] treatments provide similar

results, and dipole transitions are the dominant radiative processes in

atomic physics.

In the semiclassical [21] atom-field theory the full matrix elements for a

ke s

transition between energy states of an atom take the form <j|é.pe '
where € is a unit vector in the direction of polarisation of the radiation,
k is the wavevector of the radiation, i and j denote the quantum numbers of
the two atomic states, and p = qr is the dipole moment of the electronic
charge distribution, q is the electronic charge, and r is its position
vector. The exponential term is included to allow for phase retardation of

the wave produced by the electron at different positions r. For small k.r

the exponential may be expanded to give

e 2] # JKef F s (2.4.1)

In the dipole approximation, in which phase retardation is neglected, the
exponential is approximated to unity. The term involving k.r gives rise to
higher order multipole radiation, specifically magnetic dipole radiation
and electric quadrupole radiation. In many situations in atomic physics
the dipole approximation is quite adequate, as k.r is often very small.
Simple arguments show that the ratio of electric dipole to electric
quadrupole transition rates (if allowed) is of the order of (Z/130)2

where Z is the atomic number of the atom [21, 851.
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The matrix elements of electric dipole and quadrupole transitions are
significantly different. Dipole matrix elements take the form <jl&.qrli>,
while the quadrupole element is <j}é.qrr|i>. This results in the selection
rules for the (weaker) electric quadrupole transitions being significantly
different from those of the better known dipole transitions. In
particular, the electric quadrupole operator has even parity. Thus, if an
electric dipole transition is forbidden by selection rules, a higher order
multipole transition may be observable, if rather weak. The selection
rules for the three types of radiation mentioned above are summarised in

table 2.4.1.

Electric dipole

Magnetic dipole

Electric quadrupole

() 4] =0, %1
0«0

2 dM =0, £ |

(3) Parity change

(4) One electron jump

4] =0, £+ 1

0 +++0)

aM =0, 4+ 1
No parity change
No electron jump

Aj"—“ov:tl-:t:z

(0«0, 1p > 15, 0++> 1)

4dM =0, 41, £ 2
No parity change

One or no electron jump

4 = + 1 4 =0 4 =0, +2
dn =0
(5) 45 =0 48 =0 48 =0
(6) 4L =0, + | 4L =0 AL =0, + 1, 4+ 2
(0 «++0) (O« 0,0+>1)

Table 2.4.1. Selection rules for different types of
transition. From Garstang [86]




2.5 NON-COLLINEAR QUADRUPOLE SUM FREQUENCY MIXING

Even when gquadrupole matrix elements are taken into account, collinear
three-wave mixing in an isotropic vapour is still forbidden due to the
angular momentum conservation laws discussed in section 2.1. However, if
two non-collinear beams with wavevectors &1 and 52 are used, and the
guantisation direction is taken as 51 + gz, there is a non-zero probability
amplitude for one of the photons to have &m = 0, thus allowing SFM. Also,
the natural dispersion of the medium may be used to satisfy the energy and
momentum conservation laws at a particular angular separation of the beams.
Papers reporting non-collinear sum frequency mixing (NCSFM) are Llisted in
table 2.5.1. Bethune et al [87] were the first to report such quadrupole
wave mixing, and used the 3S - 3P and 3S - 4D transitions of the sodium
atom for single and two photon resonant enhancement respectively. The 4D -
3S quadrupole transition was used to complete the chain of matrix elements.
These authors produced a theory, on which they lLater expanded [101, which
was in good agreement with experiment. The spherical symmetry of the atoms
restricts the elements of the quadrupole tensor which may contribute to
SFM. It can be shown [53] that the effective dipole Eeff of the

quadrupole radiation with wavevector 53 = n3w3/c §3 is

Paps = ~1Kz.¢
- )
= i [lkgnEIE, + (kguE)E, = 2/3)(E,.ENks.  (2.5.1)

The scalar products show that a non-collinear geometry is required, and
that the SFM is a maximum for orthogonally polarised beams. The output
power is a maximum when the wave-vector mismatch Ak = (53 = 51 - 52)

is zero, in which case the generated wave stays in phase with the

fundamental beams throughout the interaction length. The phase matching

condition was satisfied by tuning one laser close to the 35S = 3P transition
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Paper Type Medium Laser Findings
871 (1976) NCSFM  Sodium dye Theory given. Resonant enhancement at 35-4D,
Bethune 38 - 4D 590 nm & Linewidth Llimited by lasers. Phase matching
Smith 568 nm angle (~2.3%) agrees with theory. Psm<7¢I’,|lP2M2
Shen 100 W 10-8 conversion efficiency.
pulsed
AV:9 GHz
221 (1977) NCSFM  Sodium as above Interference of quadrupole SFM and ESFM to find
Bethune 3S - 4D XfZ)/X<3) and hence 35-4D quadrupole matrix
Smith element.
Shen
881 (1977) NCSFM  Sodium dye Interference of quadrupole SHG and magnetic
Flusberg 35S - 4D 590 nm & field induced SHG for various magnetic field
Mossberg 568 nm and Laser polarisation directions. 10"9
Hartmann 170 kW conversion efficiency.
6 ns
Av21 GHz
101 (1978) NCSFM Sodium dye Theoretical treatment of quadrupole SFM,
Bethune 35 - 4D 590 nm & including spin-orbit and Zeeman effects,
Smith 568 nm Doppler effect and Laser Llinewidth.
Shen ~ 100 W Otherwise expansion of (871, inctuding
600 ns limiting processes (see text).
A¥+4 GHz
531 (1978) NCSFM Sodium as above Less formal version of [10] and [87].
Bethune 35 - 40
Smith
Shen
891 (1978) NCSFM Sodium Review of non-collinear and magnetic-field-
Flusberg 35S - 4D induced sum frequency mixing.
Mossberg
Hartman
811 (1981) NCSHG Theory Theory Theoretical treatment of quadrupole SHG for
Bethune focussed beams of arbitrary transverse mode
structure and polarisation. Beam with mix of
TEMOO and TEM01 modes gives 1010 increase in
SHG over two TEH00 modes.

Table 2.5.1. Papers reporting non-collinear quadrupolar three wave

mixing. ALl used resonant enhancement.
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and choosing an intersection angle to create Ak = 0. Bethune et al
verified the above properties experimentally, and showed that this second-
order dipole-forbidden process was as strong as a third-order, dipole-

al lowed process such as third harmonic generation.

They also considered processes which would Limit the generation efficiency
[10]. The squared dependence on atomic density, N, observed for

N < 1022 m_3, saturated at higher densities due to lLinear absorption

of the pump beam, thus Limiting the vapour density which may be used. The
sum frequency powerIP3 is expected to vary linearly with both P1 andIPz,
but this saturated at high input intensities due to saturation of the two-
photon absorption. The most serious Limiting process was found to be
induced refractive index changes through saturation of the dispersion [90],
two-photon resonance [91] and population redistribution. This led to self-
defocussing which resulted in smaller intensities at the focus. Rather
more important was the breaking of phase matching produced by these changes
of refractive index. Three-photon ionisation may also Limit the maximum

powers used, by causing changes in the refractive index, but the amount of

ionisation measured was less than expected.

Bethune et al [10] also considered theoretically the effect of a magnetic
field on this process, and determined that magnetic-field~induced SFM
should be comparable with the noncollinear process at a field strength of
only 1 mT (10 gauss). Flusberg et al [88] had lLooked at this
experimentally, using the same atomic transitions. They found the two
processes to be of comparable efficiency at 2.5 mT (25 G). Depending on
the relative directions of the polarisations of the two fundamental beams
and the magnetic field, the SFM was enhanced or degraded by the application

of the externat field. Their results were in good agreement with their

clearly presented theory.




The interference between non-collinear SFM and electric-field-induced SFM
was used by Bethune et al [22] to determine the 3S - 4D quadrupole matrix
element of sodium. The power of the generated wave is given by

2> (3)
|P3 o |[- 1k3.x

+E ] E E I (2.5.2)
where EO is the applied dc field, and‘x(3) is the third-order nonlinear
susceptibility. The two processes were of the same efficiency when a field

-1

of 20 kVm ' was applied. The interference between the two generation

processes as EO was varied allowed a value for xﬁf’rx to be measured.
Knowing this quantity, and the dipole matrix elements involved, the

quadrupole matrix element was calculated. This was found to be 50% Llarger

than that calculated theoretically by Tull et al [921.

Finally, Bethune [81] considered theoretically the effects of mixed
transverse modes in a single laser beam. He found that quadrupole SFM may
be relatively strong if two different spatial modes with orthogonal

polarisations are present in the beam.
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2.6  MAGNETIC-FIELD-INDUCED THREE-WAVE MIXING

The use of a magnetic field to break the symmetry of a vapour was first
proposed by Hinsch and Toschek [93]. However, in their scheme, the field
did not break the symmetry in the direct manner of the processes described
in the previous sections. They suggested that a net polarisation may be
introduced in the medium by optical pumping of atoms between Zeeman levels

of the ground state. This effect has not yet been unambiguously observed.

Magnetic-field-induced three-wave mixing is now well known, and comes about
from the mixing of the wavefunctions of the Zeeman sublevels by the
magnetic field, in much the same way that an applied electric field mixes
states of different angular momentum quantum number. Consider the
conservation lLaws Llisted earlier. At low atomic densities the dispersion
of the medium is often negligible at the wavelengths of interest, so

51 + 52 = g3. Energy is conserved, as Wy ot Wy = Wge The two-photon
absorption creates a coherence between the wavefunctions of the upper and
lower levels, with AL = 0, +2, and am = 0, +2, where the quantisation axis
is taken along the common direction of propagation of the beams. The use
of a quadrupole or magnetic dipole transition from the upper to lower
levels allows the AL = + 2 transition, and, incidentally, the Al =0
transition if the angular momentum quantum number of the lower state is not
zero. However, only a &m = + 1 transition may radiate along the
guantisation axis, regardless of the type of transition involved [84], and
so three~wave mixing is forbidden. This is equivalent to saying that the
m, + my, = Mg conservation rule is impossible to satisfy. When a transverse
magnetic field is applied, the wavefunctions of the magnetic sublevels are
perturbed, and receive a rotation transformation. This brings about new
components of the guadrupole moment with Am = + 1, which may radiate along

the forward direction, thus generating the second harmonic. A qualitative
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description of magnetic-field-induced second harmonic generation (BSHG) was
given in section 1.3, and a detailed theoretical analysis is given in

chapter 3.

Flusberg et al [94] were the first to report magnetic-field-induced three-
wave mixing in a vapour; this was difference frequency mixing in atomic
thallium vapour. Resonant enhancement was used to produce the difference
frequency of two nitrogen laser pumped dye lasers operating at 378 and

535 nm; the difference frequency wave was driven by a magnetic dipole
transition between the 62P3/2 and 62P1/2 levels. The energy level scheme
is shown in table 2.6.1, along with other reports of magnetic-field-induced
three wave mixing. Flusberg et al considered the symmetry-breaking
mechanism proposed by Hinsch and Toschek, but calculated that the effect of
wavefunction mixing was about 104 times stronger than the effects of the
induced transverse polarisation of the ground state Zeeman levels. They
used symmetry considerations to find a formula for the induced magnetic
dipole moment, and confirmed experimentally that the difference frequency
wave power varied as N2P1P282, where B is the magnetic field strength
perpendicular to the propagation direction, N is the particle density, and
P1 and P2 are the laser powers. No DFM was observed in a lLongitudinal
magnetic field up to 0.03 T, nor with an electric field up to 50 ka-1. At
sufficiently high vapour densities the 378 nm Laser beam produced
stimulated Raman scattering at around 235 nm, which was then used for the

same scheme of DFM.

These researchers considered the mixing of the hyperfine Levels to be the
dominant means of symmetry breaking; Matsuoka et al [95] disputed this,
determining that the mixing of the hyperfine lLevels was of secondary

: p

|
importance to the mixing of the initially degenerate magnetic sublevels.

This group was also the first to report magnetic-field-induced second
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Paper Type Medium Laser Findings
943 1977 BDFM Thallium dye Theory given. Magnetic dipole moment
Flusberg 7251,,. 378 nm & stronger than electric quadrupole moment.
Mossberg g;’: G’P;u 535 nm Transverse magnetisation smatl and
Hartmann ___MFMQSO 2 kW, 5 ns unimportant. Claim mixing of hyperfine
G’PVZ 1-10 GHz tevels is important. PSFMOC N292P1P2,though

stimutated Raman scattering seen at large ;.

10_6 conversion efficiency.
881 1977 BSFM Sodium dye Quadrupole driven. Interference between
Flusberg 4D 3 kw magnetic-field-induced SFM and non=collinear
Mossberg sea| [[SFM289 590 nm 8  sFM. 107 efficiency.
Hartmann 590 gg 568 nm

170 W, 6 ns
12 & 21 GHz

951 1977 BSHG Sodium dye Theory given, but hyperfine splitting
Matsuoka 3D 685 nm neglected. P, o Nzezﬁlzsinze. Field
Nakatsuka o 3P 3 kW 500 ns transforms initially degenerate magnetic sub-
Uchiki 665 VSH:§353L3 32 GHz levels. Also used Calcium vapour with
Mitsunaga simitar results. 7 x 10—7 efficiency.
891 1977 BSFM Review of magnetic~field-induced SFM and non-
Mossberg collinear SFM.
flusberg
Hartmann
101 1978 BSFM Sodium theory Mostly non=collinear SFM, but some theory on
Bethune magnetic~field-induced SFM.
Smith
Shen
651 1978 BSHG Thatlium dye PZuoc NZBZI:,Z, and deviation from phase
Mossberg 7’Pm 568 nm matched behaviour. Also includes section on
Flusberg 58 lleHG26s 5 kW, 7 ns  spontaneous-field-induced SHG.
Har tmann 568 S’P:/; 1-10 GHz

Table 2.6.1,

continued overleaf.
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Paper Type Medium Laser findings
961 1979 BSHG Sodium dye Detailed theory, but hyperfine splitting
Uchiki 3D 685 nm ignored. SH intensity saturates at 100 mT,
Nakatsuka = 3P 2 kW 2.5 ns and polarisation of SH is rotated.
Matsuoka 685 \LSH:!GS“B 64 GHz 5 x 1077 efficiency.
181 1983 BSHG Sodium cw dye PZuocNZBZPf, and deviation from phase
Dunn 4D 579 nm matched behaviour. SH generation Linewidth
57 Sl"gSPZGQ ~1 Wecw 2.8 GHz at 15 mT measured with single
S79| \_ 35 < 5 MHz frequency laser. 8 x 10 efficiency.
971 1983 BSHG Sodium dye Petailed theory including fine, hyperfine and
Uchiki — 3D €85 an Zeeman splitting. At 8 nT P, o N°B%sine.
Nakatsuka 685 3P 3 kW, S00 ns and collisional decay rate of 30 - 35
Matsuoka 685 SH3GS:’“ 1 kW, 2.5 ns transition measured. Start of saturation of
e 32 8 64 GHz P, with field at 50 aT, and rotation of
potarisation of SH. 10—6 efficiency.
981 1985 BSHG Sodium dye 82 dependence below 30 mT, saturation at
Yigun 4D 579 nm 90 mT. Pulse length of SH was 26 ns.
(In Chinese} 58 SH:?P289 1 MW, 30 ns
9 W 35 8 GHz.
99, 1001 1986 BSHG Sodium cw dye As reported in this thesis. Theory of [971
Sinclair 4D 579 nm extended. Deviation from phase matched
bunn i SH3GP289 0.5 W cw behaviour. Line profiles of SHG at different
5791 3s 0.5 MHz fields and polarisations, and comparison with
line profiles of 35 - 4D absorption. Power
and polarisation properties as functions of
field and frequency. 6 x 10-8efficiency.

Table 2.6.1, continued. Papers reporting magnetic-field-induced three

wave mixing in vapours. ALl except [94] rely solely on a quadrupole
moment to drive the generated wave. ALl use resonant enhancement. The
laser characteristics given are the wavelength of the laser Light in

nanometres, the peak pulsed power in watts, the pulse length in seconds,

and the laser linewidth in hertz.
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harmonic generation in a vapour. The second harmonic of their 685 nm
pulsed dye lLaser was generated in sodium vapour, using the 3S - 3D
transition for two-photon resonant enhancement. They determined
experimentally that the transverse magnetisation produced through optical
pumping in the magnetic field was unimportant: if the magnetisation were
responsible for the BSHG, the SH power would not vary simply as the square
of the fundamental power, and the SH power should follow the slowly
precessing magnetisation (about 50 ns/radian); a squared dependence on
fundamental power was observed, and there was no delay in the growth of the

SH output.

Matsuoka and coworkers have produced two more papers on SHG in sodium

[96, 971, refining their theoretical treatment with each publication. Their
latest paper on the subject [97] modetled the sodium atomic system taking
into account fine, hyperfine and Zeeman splitting terms. The expectation
values of the quadrupole moments induced by the two photon absorption were
calculated, taking into account the rotation of these moments about the
magnetic field. This derivation is followed in chapter three, but there
the homogeneous and inhomogeneous broadening processes are treated
separately. Using a multimode, pulsed dye lLaser Matsuoka and coworkers
calculated the intensity and polarisation of the second harmonic radiation.
They found theoretically and experimentally that at magnetic fields less
than 0.05 T (0.5 kG) the second harmonic power varied as quggzsinze,
where theta is the angle between the magnetic field and the polarisation of
the fundamental radiation. When the Zeeman splitting was of the order of
the Doppler width the squared dependence of the SH power on magnetic field
saturated, and the polarisation of the second harmonic was significantly
rotated (~10°). The addition of a buffer gas to the vapour decreased the
SH power by increasing the damping constant used to describe the coherence

between the 3D and 3S levels. This effect was used to determine the
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collisional decay rate of the dipole-forbidden 3D - 3S transition to be

14 MHz/mbar, but no independent measurement of this quantity had been made
to confirm this result.

Their SHG experiment using the 452 1SO -~ 4s3d 102 two—-photon transition

in calcium [95] was important in showing that it is the mixing of the
initially degenerate magnetic sublevels by the magnetic field that is
important to the generation process, rather than the mixing of hyperfine
levels [94]. The ground level of calcium has no net spin, and the excited
level has no hyperfine splitting, so the transformation of the quadrupole
moment was possible only through the transformations in the magnetic

sublevels of the 102 state.

Deviation from a squared dependence of SH power on particle density was
first noted by Mossberg et al [65]. At sufficiently high particle
densities, the difference in refractive index of the vapour between
fundamental and second harmonic radiation is sufficient to cause the
wavevector of the second harmonic to be significantly different from twice
that of the fundamental. In this case, the SH generated in one region of
the vapour will be out of phase with that generated at another region, and
the waves will interfere destructively. The need to match the phase
velocities of fundamental and second harmonic is well known in SHG in
crystals, and is treated by Yariv [12], amongst others. The phase velocity
mismatch Leads to an oscillatory dependence of SH power on particle density
at high particle densities. This subject is treated in more detail in
section 5.2. Mossberg and coworkers also reported interference between

magnetic-field-induced and non-collinear sum frequency mixing [88, 891.

bunn [181 is the only author to have used a continuous wave laser as the

fundamental Llight source. ALl other investigators have used pulsed lasers,
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with pulse durations Lless than 500 ns and Llinewidths in excess of 1 GHz.
Dunn used the 35 - 4D transition in sodium for resonant enhancement of
BSHG; intracavity and extracavity arrangements were used. In the latter
case the laser Llinewidth was less than 5 MHz. This altlowed him to
determine the SHG line profile to be 2.8 + 0.1 GHz (FWHM) when a 0.015 T
(150 G) transverse magnetic field was applied to the vapour, which was at a
temperature of 400 °C. This linewidth was in good agreement with the
esfimated width taking into account fine, hyperfine and Zeeman splitting of
the atomic states broadened by the Doppler effect. Dunn also observed an
oscillatory dependence of SH power on atomic density at high densities, and
proposed that the process may be phase matched using a suitable buffer gas
to offset the dispersion of the sodium vapour. He also suggested the use
of the sodium dimer as a nonlinear medium to give increased tunability, and
the use of BSHG to determine spatial distributions of vapour temperatures.
These topics will be discussed further in appendix E and section 5.9

respectively.

There have been a few other reports of continuous-wave three-wave mixing in
vapours, but all using an electric field for symmetry breaking. Only
Abrams et al used a single frequency source. In all other cases any
linewidth measurements have been associated with the linewidth of the

fundamental radiation, rather than the nonlinear medium.

The laser used in the work reported in this thesis had a Linewidth of less
than 0.5 MHz. This allowed a detailed study of properties of the SHG
process that changed across the Line profile of the resonantly enhancing
two-photon transition [99, 1001. This is reported in full in the following

chapters.
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CHAPTER THREE
THEORETICAL MODELLING OF MAGNETIC-FIELD-INDUCED

SECOND HARMONIC GENERATION
3.1 DESCRIPTION OF THE ATOMIC EIGENSTATES AND EIGENENERGIES

The levels of the sodium atom that are directly concerned in the second
\ : 2 2
harmonic generation are the 3 81/2 ground states, the 3 93/2’1/2

states and the 420 states. The 3S - 4D two-photon transition is

5/2,3/2
used for resonant enhancement of the SHG; the single-photon allowed 3S - 3P
transition also contributes some resonant enhancement, being some 300
wavenumbers from resonance with the laser Light frequency. In order to
predict properties of the SHG which change across the line profile of the
35S - 4D two-photon transition, the description of the atomic eigenstates

must include fine, hyperfine and Zeeman splitting terms. Some relevant

energy levels of the sodium atom are depicted in figure 3.1.1.

o J=3/2 g

o
A ,/ /’
Q//"3';,_.___.L Y, 4 , | /
(97 /" NI
,/ 7 B~ & F:::;Z Slae—
R TR L g 1 177 GHz

Figure 3.1.1. Energy levels of the sodium atom.
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3.1.1 The 3S states

With no external magnetic field applied, the ground stateé of the sodium
atom are split into two sets of st;tes by the hyperfine interaction. This
effect is reviewed by Arimondo et al [1011. The nucleus of the atom
possesses a magnetic moment, Hi = —ngBl, where 9; is the nuclear g fgctor,
Hg is the Bohr magneton and I is the nuclear spin quantum number. The
nuclear magnetic moment interacts with the magnetic field at the nucleus
produced by the orbiting electrons. This interaction gives rise to eﬁergy

shifts AE(F) given by

AECF) = a [F(F+1) - I(I+1) -4CJ+D 3. (3.1.1)
2

Here F is the total atomic angular momentum, F = I + J, and J is the
electronic angular momentum. In sodium I = 3/2, and in the 3S state the
only contribution to the electronic angular momentum is from the electronic
spin, and thus J = S = 1/2. The separation of the states with different F
values may be measured very precisely using atomic beam magnetic resonance
techniques. In the sodium atom this separation is i??1.6261288(10) MHz

(102, 103]; the hyperfine constant, ash is half this value.

The application of an external magnetic field Lifts the degeneracy of the

energy states. At low fields, when the Zeeman energy shifts are small, the

-

Levels are given by

AE(F,mF) = alF{(F+1) - I(I+1) - J(U+D1]

a
2
= {pIEI(I+1) + FCF+1) - JWU+D /I

+p LIQHD + FGFH) = T+ /Y m B (3.1.2)
SECE D

where ) is the atomic magnetic moment, and B is the magnetic field
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strength. In this regime, the energy shifts due to the magnetic field are
small and so the energy levels are calculated by treating the Zeeman
interaction as a small perturbation to the eigenstates. F and me are good

quantum numbers and the energy level shifts are proportional to me.

In very high magnetic fields, the I - J coupling is broken down and the
hyperfine interaction can be considered as a small perturbation to the
Zeeman effect. In this case, the energy levels are given by

AE(I,J,mI,mJ) = amm, - pJBmJ - pIBm (3.1.3)

I

J I

where m and m, are the quantum numbers for the projection of I and J on B.

As fpgl <<y l, the dominant magnetic-field-dependent term in the above
equation is the one involving Hy- In this range of magnetic field strengths

the energy level shift is proportional to m In the case of S states

J
my=m.. Figure 3.1.2 shows that this gives rise in high fields to two
groups of levels corresponding to mg = + 1/2.

To determine the ejgenfunctions at intermediate field strengths, a secular
equation must be solved, as neither the Zeeman splitting nor the hyperfine
interaction may be regarded as a small perturbation on the other. An
(mI,mJ) representation may be chosen, giving matrix elements of the form
<mI,mJ|HImI,mJ>. As J = S = 1/2 in the case under consideration, the
problem is not unduly complicated. The solution for the eigenenergies was
first presented by Breit and Rabi [1041, and the derivation is given by
Ramsey [105]1. The method will be outlined here due to its_importance in
the modelling of the SHG, and the difficulty in finding a treatment which

gives all the quantities required in the SHG model.
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Figure 3.1.2 (a) Energy levels and (b and ¢) eigenfunction components of
the 35S states plotted as functions of magnetic field strength. The box by
(a) shows the F, me guantum numbers of each level, the other two boxes
identify each SA g curve with its gquantum numbers. The curves with the
short dashes are drawn for S* A’ the longer dashes for S -
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The wavefunctions of the 3S states may be described in the

It s 1 m_m, m> scheme by

|s% > = §,(F,m ,H)\Oj_;SO 1 m~1
g AR 32 2F2>

A SB(F,mF,H)‘O 130-1 m+1 (3.1.4)
2

abbreviated to ¢ = Si+k + SBWE. The two wavefunctions which are chosen as
WA and Wé are the wavefunctions of the 3S levels in a high magnetic

field, in which the hyperfine coupling is broken. %% and Yg form a very
good approximation to a complete orthonormal set under the fields in
question, as the energy differences between these states and other states
of the atom are large compared with the Zeeman splitting. The ortho-
normality implies that $% + Sg = 1.

A

When m. = I + 1/2, only the state (mI= I, m, = 1/2) can give the necessary

F J

me, SO SA and SB are 1 and 0 respectively, at all magnetic field
strengths. A similar argument holds for me = I - 1/2. Thus in figure
3.1.2 the F=2, me = + 2 levels are the ones which have a Llinear dependence
of energy on magnetic field strength at all fields, and have S% and Sg

constant.

The eigenenergies and eigenfunctions of the other states are found by using
the Rayleigh Ritz method. The derivatives of the state energy with respect
to SA and SB are set to zero to find the minimum energy of the state. The

energy of the state IS?F> is given by

E= [¢*H ¢ dv. (3.1.5)

J4f“1> dv

and the state energy is minimised when
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sAo{AA - E) + sBHAB = (3.1.6)
and sA}fBA + SB(HBB - E) =0, (3.1.7)
where M, = I\P’Q{‘Pj dv . (3.1.8)
This may be written as the secular equation
H,-E H
AR he = 0. (3.1.9
Haa Hgg ~ E

As the integrals in the secular equation are known, expressions for E may

be found, and SA and SB determined from equations 3.1.6 and 3.1.7.

The energy shifts due to the hyperfine interaction and the external

magnetic field are given by

H= al.J - $BI, = pBJ, {3110y

I J

and, knowing the commutation and expectation value relations for the
angular momenta involved, expressions for }Qj may be found [105].

This gives the Breit Rabi formula:

AECF,m.) = - AW - MBm_ + AW [(1 + 4m_x + x%) (3.1.11)
IF -0 F
2T + 1) 1 2 21I+1

where X = (—pJ/J + pI/I)B/Aw (3:d.+12)

and AW is the separation of the F =1 + 1/2 and F = I -~ 1/2 levels at zero

magnetic field. The upper sign is taken for states belonging to
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F=1+1/2 at zero field, and the lower sign for the other states. Uchikt

et al [97] use the notation

Ecsly = b + oa® + AT/? (3.1.13)
where_ a= EmFA + (gJ - gI)pBB]/2 (3.1.14)
b = -A/4 + mFngBB (3.1.15)
¢ = AL - m)@ + m1%/2 (3.1.16
G = = 14172 (3.1.17

( 1 for F
-1 for F

The gyromagnetic ratios 9, and 9, are 2.002 and =-0.0008 respectively

I-1/2

[1011, and A/h = AW/2h = 885.813064 MHz, where h is Planck's constant.

Insertion of the energy values to equation 3.1.6 gives expressions for the

two wavefunction components as

5, = [a+ afca® + st (3.1.18)
55 = o/t (3.1.19)
ghsre & = 0CE % 6da® « o0 & P, (3.1.20)

The values of Si and S% are plotted as functions of magnetic field

B
strength in figure 3.1.2. For m. = 2, it is seen that Si =1 and Sg = 0;
the reverse is true for m = -2. In these cases only one combination of

(mI,mJ) can contribute to the eigenfunction. For all other values of
me, both Si and Sg are field dependent. At zero field the me = 0
wavefunctions are composed of equal amounts of the two basis functions,
whereas the me = 1 (~1) state contains more (less) of the L 1/2 basis

state. As the field is increased the admixtures change. At the highest

fields shown, there is little variation of the values of 52

2
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from 0 or 1. This is because the (mI,mJ) representation is now the one
which best describes the atomic wavefunctions; the coupling between the
nuclear and electronic angular momenta has been broken down, and F is

therefore no longer a good quantum number.

3.1.2 The 3P states

The 3251/2 - 32P3/2’1/2 transitions at 589.0 and 589.6 nm give rise to

the well known sodium D lines. These single~photon transitions contribute
some resonant enhancement to the SHG, but as the3P states are some 300 cm_1
off resonance with the fundamental radiation the 3P states are not
populated. The change %n energy levels of the3P states with magnetic
fields or pressure is negligible compared to the detuning of the
fundamental from single-photon resonance, so these perturbations may be

neglected. The eigenstates may be expressed using 3~j notation [20] as

|PTJ>=Z(—1)m-'+1/2 Zist /1 12 4
M yMs

m, m_ -m
L

S J

x IL = m_m> 1 m>. (3.1.21)

3.1.3 The 4D states

The interaction between the orbital and spin angular momenta of the
electron in the 4D state gives rise to fine (spin-orbit) splitting. The
angular momentum quantum number J can take vaLues 3/2 and 5/2; simple
atomic theory suggests that the J = 3/2 state should have the lower energy.

However, the nD (n = 3 to 16) levels of the sodium atom are found to be
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inverted, that is, the states with the higher J value have the lower
energy [106, 107]1. This was first noted by Meissner and Luft [108], who
also measured the 4D fine splitting to be 1038 + 50 MHz. Beck and Odabasi
L1091 have gone some way to explaining the inversion in terms of

corrections due to relativistic and correlation effects.

The fine splitting of the 4D states was measured with high precision in the
mid-1970s, when the dye lLaser had been developed to the point where it was
a useful spectroscopic tool, and various groups used it to perform two-
photon spectroscopy of the 3S - 4D transition. Using an atomic beam to
minimise Doppler broadening, Pritchard et al [1103 determined the splitting
to be 1025 *+ 6 MHz, while Hansch et al [111] performed the first’reported
Doppler-free two-photon spectroscopy experiment obtaining a value of

1035 + 10 MHz. The most precise measurement to date was reported by
Fredrickson [112] who used level=crossing spectroscopy to obtain a value of

1028.3 + 0.6 MHz.

As the wavefunctions of the 4D states do not penetrate the nucleus
significantly, the hyperfine splitting of these states is expected to be
much Lless than that of the 3S states. Indeed, the hyperfine splitting of
the 4D states has been shown to be smaller than the natural linewidth of
these levels; Schenck and Pilloff [113] used a gquantum=-beat method to
obtain a value for the hyperfine splitting constant for the 4203/2

levels of 0.507 + 0.068 MHz. This is very much smaller than the 35 MHz
pressure-broadened Linewidths determined in the course of this work, and
so the effect of the hyperfine interaction on the 4D levels may be safely

neglected.

The effect of an applied magnetic field on the 4D energy levels is similar

to that described for the 3S levels. At low fields the splitting is
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proportional to m, but in
i +
proportional to mL gsms,
magnetic guantum numbers, a
is approximately equal to t
by Condon and Shortley [841

3S states. The eigenfuncti

ld? >=0,0,m B

the high field timit the splitting is

where m and m, are the orbital and spin

nd 9 is the g value for the electron, which

wo. The case of intermediate fields is treated
in an analogous way to that described for the

ons are described in the |l s m ms> scheme as

[2 172 mJ-1/2 1/2>

+ DB(J,mJ,B) |2 172 mJ+1/2 -1/2> (3.1.22)
The eigenenergies are [97]
502 | _

E(DS/Z) = (1 + 39)Y (3.1.23%)

m 2 !
E(DS;Z) = (=1/4 + m,y +4/2y + 8mJy + 25 /4) (mJ #+65/2) (3.1.24)

e - 2 ;
E(DS/Z) = (-1/4 + m,y JZy + 8mJy + 25 /4) (3.1.25)

]

where y = pB/¥, and ¥/h
to 2/5 of the separation of

wavefunction components are

-411.3 + 0.2 MHz is the spin perturbation, equal

the levels at zero magnetic field. The

D,(5/2, 5/2,8) =1, Dg(5/2, 502, B =0,
(3.1.26)
D,(5/2, -5/2, B) = 0, Dg(5/2, =5/2, B) =1,
and for m, £t 5/2,
2 TR,
DA(J, m ., B) = (m +y +qj)/ + 2m y + 25/4)/d, (3.1.27)
Dg(J, m , B J(5/2 +m)(5/2 - my/d (3.1.28)
where  d = [(5/2 + m)(5/2 = m) + (m +y+7/y +2m y+25/4)2]1/2 (3.1.29)
and 1 = 1 for J = 5/2
(3.1.30)

= -1 for J = 3/2




The energy levels and wavefunctions are plotted as functions of magnetic

field in figure 3.1.3.

Similar results hold as in the 3S state, but in the

4D states the spin orbit coupling is being progressively broken down by the

magnetic field, rather than the hyperfine interaction in the case of the

ground states.
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3.2 DETAILED THEORY OF MAGNETIC~FIELD-INDUCED

SECOND HARMONIC GENERATION

The analysis of second harmonic generation in sodium vapour presented here
follows that of Uchiki et al [97]1, but their theoretical treatment is
extended by distinguishing between homogeneous and inhomogeneous broadening
processes, and by consideration of the special case of single frequency
fundamental radiation. The use of a single frequency fundamental beam
permits examination of many interesting effects which would have been

"smudged out'" by a large Llinewidth Llaser.

The absorption of two-photons from the fundamental beam by an atom can
induce a coherence between its 4D and 3S states. Under certain conditions
this can cause second harmonic generation in the forward direction, by
means of an electric quadrupole transition. The aim of the theoretical
modelling described here is to calculate the value of the 3S - 4D
guadrupole moments under the conditions of interest. Expressions are thus
obtained for the power and polarisation of the second harmonic beam as
functions of the laser frequency, the magnetic field strength and the power

and polarisation angle of the fundamental Llight.

The atomic system is considered to consist of the three groups of states
listed in the previous section, that is, the 3S ground states, the 3P
intermediate states and the resonantly enhancing 4D states of the sodium
atom. These are labelled s, p and d respectively. The Hamiltonian, HO’

of the atomic system includes fine, hyperfine and Zeeman splitting terms as
described above. The homogeneous linewidth enters the analysis as a

damping constant in the two~photon-induced coherence between the upper and
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Lower states. The inhomogeneous (Doppler) Llinewidth is taken into account
by integrating the equations for the induced quadrupole moments across the
Maxwellian velocity distribution of the sodium atoms, with appropriately

shifted atomic resonant freqguencies.

The expectation values of the quadrupolte moment oscillating at the second
harmonic frequency can be derived by consideration of the time evolution of
the density matrix operator p £121. The quantum mechanical system is

considered to be in a state

dCr,t) = ngcnm P e, (3241
where cn(t) = JW:(r) b(r,t) dv, and W%(r) form a complete orthonormal
set of eigenfunctions. The average value of an expectation value of an

operator A is

= ¥
<A> _S_nm e A (3.2.2)
where A = I\P*m AY (m) dr (3.2.3)
mn m n * G

Density matrix elements are defined as the ensemble average

= ok

- Cnln’ (3.2.4)
and the matrix form of these elements is known as the density matrix [12].
The time evolution of this matrix may be determined from the time-dependent

Schroedinger equation

H 4¢r,t) = ih 3¢(r, D), (3.2.5)
ot
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as each system in the ensemble must satisfy this equation. This leads to

the Liouville equation for the time evolution of the density matrix
d = i Cp,HI, (3.2.6)
ot h

The effect of collisions may be introduced by modifying this equation to

%%ij = —% EH’P]ij - Xij(P - P)ij (3:2.7)

where H = HO + H,] (3.2.8)

H1 = -p.E = V expl-iwt] + c.c., (3.2.9)

and p = exp[:Hb/kBT] (3.2.10)
tr(exp[—Hb/kBTJ)

is the thermal equilibrium value of the density matrix [12]. Here Xii is
defined to be the relaxation rate for the population in level i, which
depends on spontaneous emission as well as collision processes, and

&j (i # j) is the rate at which Pij relaxes to zero. This quantity
describes the phase coherence between levels i and j, which will decay due
to collisional dephasing. HH is the perturbation caused by the electric
dipole interaction energy between the fundamental laser field

E,~ Eexpl[-iwtl + c.c. and the atomic system, where £ and w are the
amplitude and angular frequency of the fundamental field respectively. A
representation is chosen in which (HO)ij = Eiéij’ and wij is defined as
W,, = (E_i - Ej)fﬁ. The thermal equilibrium values of the density matrix

1]
elements then take the form

Pyy = 0 for i # j (2.2.10
Py = expL-E./kgTI/ 02& sexpE-Ej/kBT]) (3.2.12)
State
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The subscripts i and j correspond to the s, p and d states of the sodium

atom. The equations of motion of the density matrix are then

dps = —iwgspas = iLV,plLL = ¥ (p = Py (3.2.1%
ot h
where  [V,pl.. = %“(;;ivgvj = Hi Py ECE), (3.2:.148)

and ”ij is the ij element of the dipole moment operator. An integral

perturbic solution may be found for p [12] as

E
n) = A C =) —
i = i [Texpticu, =¥ )=

-w o
x e, oo, de (3.2.15)
i
. @
where PT] = P‘j # P.i.j + Pi] e (3.2.16)
0 _ .
aﬁd Pij = Pij aij' (3.2.17)

Equation 3.2.17 describes the populations of the states when no electro-
magnetic field is present. In the magnetic fields used in this study the-
maximum splitting of the 3S states is less than 0.1% of kBT’ )

the equilibrium populations of these states are essentially equal. The
energy of the 3S - 3P transition is about thirty times greater than

kBT, so the populations of the 3P and 4D states are essentially zero

in thermal equilibrium. The zero value for off-diagonal matrix elements
Pij (i # j) 1is due to the lack of coherence betweeen states when no
electromagnetic field is present; any coherenece that had been generated by
an electromagnetic field previously is assumed to have been lost due to

damping processes.

Equation 3.2.15 may now be evaluated to give the higher order terms in

equation 3.2.16. The optical electric field amplitudes of the fundamental
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radiation are taken as constant for the cw excitation under consideration.
The “rotating wave approximation' is used, in which only near resonant

terms are kept; in this case

Pil) = - 22) Vps expl-iwtl. (3.2.18)
Alw. - w - i )
ps ps

The excitation is assumed to be weak, so all other Pg;)' including Pil)'

are zero to first order in the perturbation. The matrix element which
drives the second harmonic is Pys* It may be calculated from the above

equations as

_ @
Pds Pds
= zgj Pss expl=2iwt]
R (i +iX_ )
P ps ' ps
t
. ., . 2 '
x-J expLi (Ru-wy +18y ) (t=t)1 Vv dt! (3.2.19)
and .". Pds = ZE Pss Vdp VpS expl-2iwt] (3.2.20)
2 - :
5 h° (w wps+1xps) (2w-wds+1xas)

if Vnm are not time dependent. As w - wps is of the order of 300
wavenumbers, the small differences in (w - Voa Gk ilps) between different
3S - 3P state combinations, and between small laser detunings, will not
affect the resonant denominator significantly, and so this gquantity may be

replaced by its mean value and moved outside the summation over P states.

Following Shore and Menzel [203 and Uchiki et al [971, the quadrupole

moment operator is defined as

- - - il - )
qu = -e (rurV r Suv/3) (u,v = Xx,y,2); (3.2.21)
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this is different by a factor of three from the expression given by some

other authors [25, 114]. The expectation value of this operator is thus

<@ > = Tripa ) =§Pds(auv)ds + c.c. (3.2.22)

where the summation is taken over all the 3S and 4D states. The slowly

varying amplitude of <qu> is then given by

<qu> = ;E Pss
T Mocw - w._ + if_>
t 2 1 ]
x_J expli(2u = wy_ + 1¥ ) (t-t")] Z VaVps @y gsdt' s (3.2.23)
Calculation of §:V @ ) is most readily achieved using spherical

dp ps uv ds

tensor formalism [20]. 1In this case, the quadrupole matrix elements may be

expressed by the spherical tensor elements Qq defined as

QD = - [3/2 sz (3.2.24)
Qt1 =% (sz £ iQyz) (3.2.25)
Qtz = - (QXx = ny + 2iQxy)/2 $35:2.26)

and thus <@ > = p
q E Ss
e

ds ih <w - wps + ¥ >

ps
t
3 - 1 g ] L]
X ql expli(2w Wys + 1de)(t t9)1 Tq dt (3.2.27)
where T, = ; Uil 8 S (3.2.28)

2e <D"‘4|g r!P‘“P><P"‘P|g r|s"‘f><s"‘F IQ(Z)

| e > (3.2.29
5 d
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The selection rules of the SHG are embodied in the two dipole matrix
elements and the quadrupole matrix element. Evaluation of Tq is made
easier by the Ams = 0 selection rule for both dipole and quadrupole
transitions. This allows each wavefunction to be described in terms of its
My, = + 1/2 components, which may then be treated separately. The geometry
of the system Lies in the m values of the states. This geometrical
depéndence may then be determined with the aid of the Wigner Eckart theorem
201, which may be used to split the matrix elements into two parts:
<«Jm|1‘q':’ | dtm'> = CUlm'; kalgm) «J|T

23+ 1

K poas g5, (3.2.30)

Wim'; Kg|¢m) is a Clebsch Gordon coefficient which contains the geometry

of the system, while <dJ|T(k)Ha

'J'> dis a reduced matrix element, which is
independent of the geometry. The properties of the Clebsch Gordon
coefficients are described by Shore and Menzet [20], whose notation is used
in this work. The reduced matrix element corresponds to the square of the

transition probability summed over all magnetic quantum numbers m.

oL symbolises all the other guantum numbers of each of the two states.

As the hyperfine splitting of the 4D states is so small, the selection
rules associated with the hyperfine interaction may be neglected. By
expansion of the wavefunctions in the way described in the previous

section, the quadrupole matrix element may be written as

me 102D | nmy
<sg IQ(l IDJd>

(2)

10 103 ¥g,1/2 * Pg¥g,-1/2

<Sp¥s,1/2 * Se¥s,-112
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Then, by use of the Wigner Eckart theorem and the AmS = 0 selection rule

(22

My
<8 |a q

md):
lDJa

A _ (2)
SpDA -1 B\md 1+.7 <qls’1/2||a ¥y 1/2”
J5 2

_ay2-q (2)
+ 5Dy (-1 6Lmd+1+q) <\PS’_1/2|Q ||‘-Vd’_1/2> (3.2.32)

5 2

The scalar product £.r in spherical coordinates [203 is

- _azt
£.r -Z( (R (3.2.33)
t

SO Tq may be written as

Ty = Z Z 2 (-1)% 9 5‘3 s‘(‘;
Joip qud2 A

my ) mMp mps (1) m Mg 2 My
x <0y |r‘_q1 LAS2GH ?r_qz|3r"><3r |dq|DJd>. (3.2.34)

The quadrupole matrix element may be replaced using equation 3.2.32, and
then the wavefunctions for the S, P and D states given in eqguations 3.1.4,
3.1.21 and 3.1.22 may be inserted into the dipole matrix elements in a
similar manner to that used in equation 3.2.37. Use of the Ams =0

selection rule and the Wigner Eckart theorem on the resultant dipole matrix

elements give




=5 S fe-nhte Eg, £ (-1 (20 +1)(1/543)
M 449, £
x € $202 (1 172 9 \°  ,m-1/2;1,-q,12,m ~1/2)
A A ( p) ’ p r r 1 ’ d
m=1/2 1/2 -m
P P

X (0,0;1,—q2|1,m -1/2) a<m - 1/2 + q)

NES
a1 728150127 <tn 21 ¥ 122 <Wep 1210

¥y4,2
2

2 n2 -
+ SBDB 1 1/2 Jp (1,mp+1/2,1, q1|2,md+1/2)
m+1/2 =1/2 -m
p

X (0,0;1,—q |1,m +1/2) 6(m +1/2 + Q)

@)
x <Yy 20V 1 /22 <¥ g 2N ¥ /22 <Hg 210

Wiyq,22 2

(3.2.35)

where the mp are the magnetic quantum numbers of the total angular momentum

for the 3P states. The second Clebsch Gordon coefficient in each pair is

equal to 6(mp:1/2+q2), S0 mp;1/2 may be replaced by ~d5» and similarly

the B(md + 1/2 + q) terms, which arose from the quadrupole matrix

element, allow my + 1/2 to be replaced by -q. Then, since a, + a5

must equal g to give a non-zero value for the remaining Clebsch Gordon

coefficients, and calculating the values of the 3-j symbols using the

relationships in [20] and [84], in particular
(m/z | tighes MR o s aE 1VYE, B.2.36

M -M-1/2 1/2) [ ]

(2J+2) (24+1)

Tq may be evaluated to be

e /543, (3.2.30)

= - 3
Tq B CF., me Jd,md,B) ( E)Z,q e dp b8 sd
a2 2 -
where Bq = J ,md,B) 3 (Fom,B) 5(md 172 + @)
+ DZ(J

d,md,B) sgw,mF,e) 6(md +1/2 + q), (3.2.38)
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and B is the magnetic field strength. (EE)2 q is a second rank
’

spherical tensor defined by

€€ = (1,a.:1,9412,@ . (3.2.39)
€, . Z 1,9,:1,9,12,9 Eq1£q2

%192

where Eq and aqz are the firt rank spherical tensor elements of equation
1
3.2.33. The quantity rdprpstd is the product of the reduced matrix

elements of the three original matrix elements.

The spherical tensor matrix elements of the quadrupole moment may therefore

be written as

A t
g : - : -t
<Qq> = ZE ‘[Pss expli(2w Wy + 1de)(t : o |

@ i 58 7P = uos * 10

2

X Bq (EE) e rdprpsasd d

(3.2.40)
2.9 3.2.40

As the quantum numbers of the P states do not appear in this equation, the

4D state guantum numbers will now be written as J, m, for the total angular

J

momentum and the magnetic quantum number of the angular momentum

respectively.

The geometry of the system is defined in figure 1.3.2; the fundamental
Laser beam propagates along the y axis, and thus the second harmonic wave

is driven by the effective dipole

(PX,PZ) = —1|52| (Qxy,QZy)/Z (3.2.41)

where 52 is the wavevector of the second harmonic radiation, and

Qxy and sz are two of the quadrupole matrix elements defined in
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equation 3.2.21. To find the values of these elements it is necessary to
convert from the spherical tensor formalism, which was appropriate for the

calculation of Tq, to Cartesian tensor formalism, using the relations

2 Q

o = 1@ (3.2.42)

and 2 Q g (Q1 + Q_

zy

1). (3.2.43)

I

t 2
- 3 - ; -t
Then 2 Qxy ZE \Ipss expli(2w Wy * 1Uds>(t t"] e rdprpstd

ds P )
“00 543 A<u wps + 1Xps>
X E82 (66)2’2 - B_.2 (66)2’_23 dt! (3.2.44)
and 2 Q = ¢ expli(2w = w + 9%, ) (t-t")] e2 r,.r_Q
2y 2 Jpss P ds ds dp ps sd
2 )
4s 503 A°<w - Wos + 1Xps>

]
x [B, (€£), , +B_, @), 1 dt (3.2.45)

The (EE)Z . terms are evaluated using equation 3.2.39 to give
4

t
a = -Zj expli(2w = wy + i¥,0(t - t)1 (B, - B_,)
d,s 2 _
7 Yoo 20 J3 A°<w wps + 1Xps>
X 52 e2 (Y o dt' (3.2.46)
X dp ps sdPss e
t 3 .
and i e -Zj expli(ay = .+ Y It = t3] 2(B, - B,)
2 ;
d,s -
» 20 I3 A<w = wo o+ A¥ >

2 '
X EfE, & rdprpsqsdpss gt (3.2.47)

The geometry of the system is now included only in the Bq terms and the
laser polarisation. The laser used in the work covered in this thesis was

a single mode, linearly polarised continuous wave laser, the field of which




may be described as
(EX,EZ) =& expl~iwt]l (sin®,cos®) + c.c. (3.2.48)
where B is the angle between the plane of polarisation of the laser and the

z axis. 1In this case the integrals in equations 3.2.46 and 3.2.47 are

readily calculated to give

t

= —SER -
G, = -ike2 2 8, - 8_, (3.2.49)
<wps - W - 1Xps> Emr,(wds - 2w - 1de)
J,ml
sz = -iKe €, 2%: 2B, = B_y) (3.2.50)
<wps - W - 1Xps> Fir, (wdS - 2w - 18ds)
J.my
here K = 8op Q (3.2.51)
" dgrgs sdPss s
203 #°

The thermal motion of the atoms is taken into account by including the
effect of the Doppler shift in these equations [10, 12]1. The angular
transition frequency of an atom moving with velocity vy along the

direction connecting the observer and the atom is

& +
Wis Y4s0 k2wv » (3.2.52)
where Y450 is the resonant angular frequency of an atom at rest relative
to the observer and BZw is the wavevector of the second harmonic. The

Maxwellian velocity distribution function for a gas with atomic mass M at

an absolute temperéture T is

- e
f(vy) —J(M/ZHKBT) expl My7/2kBTJ (3.2.53)
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where kB is Boltzmann's constant. Equations 3.2.49 and 3.2.50 are

therefore modified to the form

8 = —ike? AM/2mk_T)
Xy X B

< | >
7 W 1xps

o0

2
X J (B,~B_,) expl-Myy /2k Tldv, (3.2.54)
j}zﬁ.ﬁw Cwyo + kvy - 2w - 1bhs)
~ = -'- 2 = 1 »
_ . iKe? Z(az B_,) ZL(2w = Wy + i¥ /1 (3.2.55)
Rroan F,ﬂ'lp, &
<“ps W 1sz>fl s,
and a, =-ikeg 22(51—13_1> 202w = Wy + 1%, /M1 (3.2.56)
. F,m;.
<wps—w-15ps>ﬂ J.m,
where Q= 2u/(2k T/Mc%) (3.2:57)

is the Doppler width (half width 1/e maximum) of the second harmonic

radiation, and Z{(a + ib) is the plasma dispersion function

g2 2
Z(a + ib) = 1 J expl~t°] dt . (3.2.58)
I

2% &= K8+ i)

The properties of this function are described by Fried and Conte [115].
Its value must be found for each of the 80 pairs of energy levels

(F,mF) -> (J,mJ}, for every laser frequency, and for any homogeneous

and inhomogeneous linewidth of interest. The plasma dispersion function
and the numerical routines used for calculating its value are described in

appendices A and B respectively.

The above theoretical treatment allows calculation of the guadrupole
moments of each atom. In some situations bulk effects in the medium modify

the overall result, but this treatment was found to be an excellent basis

on which to work.




The two quadrupole moments Qxy and sz may be regarded as effective

dipoles generating second harmomic radiation parallel to the x and z axes
respectively. As expected from the quadrupole selection rules [831, the
sz moment is driven by Am = + 1 transitions, and the Qxy moment is driven
by AmL = + 2 transitions. These selection rules enter the theoretical
treatment as the Bq terms of equation 3.2.37 and 3.2.38. The

intensity and polarisation properties of the second harmonic may be derived

from the magnitudes and relative phases of the two quadrupole moments.
The intensity of the second harmonic radiation is given by
I, o (& @ +e W o +8 T (3.2.58)

(3.2.60)

The second harmonic Light 1is, in general, elliptically polarised. Its
polarisation state is specified by the orientation of the ellipse axes, and
their Lengths a and b. The latter information may be given in terms of the

second harmonic power, and the eccentricity [116] of the ellipse,

ﬂ = (a - b)/a. (3.2.61)

If the radiation is examined through an analyser which has its transmission
axis at BA to the z axis, the intensity of the detected signal is given by
ISH(OA) oL IQxys1n9

= 2
At szcoseAl (3.2.622

The value of GA which gives the maximum value of ISH(eA) is

= I 2% o % 2 _mx g2
Opmax = 0-5 tan L@ GZ +&LR H/(y 17 - 18, 191 (3.2.63)

3.25



This corresponds to the angle between the z axis and the major axis of the
ellipse describing the light. The eccentricity of the polarisation ellipse
of the tight can then be obtained from
=1 - (1.0,  +90°)/I (0, 172 (3.2.64)
n, SH "Amax SH ™ "Amax N "
The results of this treatment will be presented alongside the experimental
results in chapter five, but some general comments are given here. If no

magnetic field is present, BZ(J,mJ,F,mF,O) =8_ (J,—mJ,F,—mF,O) and

2
wds(J,mJ,F,mF,O) = wds(J,—mJ,F,—mF,D); this leads to a zero result for

the sum in equation 3.2.55 which gives 6xy’ and so no effective dipole for
SHG exists in the x direction. A similar argument holds for the effective
dipole in the z direction. When a transverse magnetic field is applied to

the vapour, Zeeman splitting breaks these equalities and so SHG is then

possible.

The Biq terms are dependent on the magnetic field strength but not the Laser
frequency. They describe the mixing of the magnetic quantum level eigen-
functions by the magnetic field as the field is increased from zero,
through the Low=field Zeeman effect, and into the Paschen—-Back and Back-
Goudshmidt regions. AlL the Biq terms are non—-negative, and if Bq is
finite for a particular transition B_q will be zero (and vice-versa), as
the g indicates the change in the value of m between the initial and final
states. The B__q term enters equation 3.2.55 as —Qq; Bq and ~B_ _ are
plotted as functions of magnetic field in figure 3.2.1. As noted in the
previous paragraph, at zero field B+q(J,mJ,F,mF,O) = B_q(J,-mJ,F,-mF,O)

for all such pairs of transitions, this is indeed seen in the diagrams. As

the magnetic field is increased from zero the B+q values change. Examination
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of these graphs shows at any field which transitions are involved in the
SHG. There 1is little change in the values of Biq above 0.15 T, as the
hyperfine and spin-orbit interactions have largely been broken down by the
Zeeman effect, causing m and m to be good quantum numbers.

The resonant denominators, however, are dependent on both the magnetic
field strength and the laser frequency. The contribution to the resonant
enhancement of the SHG made by any transition depends on its detuning from

the SH frequency, and hence on the magnetic field through Zeeman splitting.

Consider this in more detail for the case of the laser polarisation at 90°
degrees to the magnetic field. 1In this arrangement only the Qx moment may
be non-zero, due to £l being zero in equation 3.2.56. It is seen 1in
equations 3.2.38 and 3.2.55 that only AmL = + 2 transitions may éontribute

to the Qxy moment. The contribution of each transition to the amplitude

of this gquadrupole moment is

o - » ] . . -
Qxy(J,md,F,mF,B) iK' ZL(2w wds)[n + 1XdSAQ] (82 B .3

2

il

-iK' Z0QRw-w, )/ + i¥, /0] x
s ds

d
? o2 2 ol
{DASAS(mJ+3/2) + DBSBS(mJ+S/2)

_ nle? oy . n2c? —
oAsAS<mJ 5/2) DBSBS(mJ 3/2)) (3.2.65)

where K' is a constant whose real part is very much greater than its
imaginary part. At most one of the terms with the Kronecker delta

functions may be finite for any one transition.

It is perhaps more illuminating to look at the contributions of pairs of

transitions with magnetic quantum numbers (+m ).

J* J° F

where the signs of m and m. are chosen such that the first pair result in

+mF) and (-m
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a zero value for 8_2 and the second pair a zero value for B+2. In this case

'ﬁ'xy(J,+m F #m,B) + ﬁ'xyu,—mJ,F,—mF,B) =

J ’

iK' B+2(J,+m F,+mF,B) ZL2u-w F,+mF,B)01 + 1%, /n]

ds s gr ds
F,—mF,B) ZC(Zw—wdS(Jd,—md,F,—mF,B)Ai + 1ﬁasﬂ1]

J ’

- iK' B

_Z(J,~m

JI
(3.2.66)

At zero field the B+ and 8_2 terms are equal, as are the two Z terms,

2

and so no net contribution is made to the SHG by this pair of transitions

(or any other such pair). As a magnetic field is applied the B+2 terms

change as described above, and the real arguments of Z change due to Zeeman

shifting. B+2(J,+m F,+mF,B) - B ,{J,-m F,—mF,B) is proportional the

J’ =2 7

magnetic field strength at Low fields, so as long as the changes in Z are

small, the net resutt is that the magnitude of Exy(Jd,+md,F,+mF,B) +

Q
Xy
strength. The size of the change in Z depends on the original detuning of

(Jd,—md,F,—mF,B) is approximately proportional to the magnetic field

the transition from exact resonance with the laser, but when this argument
is extended to cover all such pairs of transitions it is found that the
proviso for the quadrupole moment being proportional to the magnetic field
strength is that the Zeeman spltitting should be somewhat Lless than the
Doppler width. Thus at low magnetic field strengths the second harmonic
power, which is proportional to the square of Exy, is proportional to the
square of the magnetic field strength. At higher fields, the B+2 components
may be in resonance while the 8_2 are far from it (or vice versa), and |Z|
is much larger in the former case than the latter. Clearly the low field
relations break down, and the second harmonic power dependence on the

magnetic field strength saturates.
|

The interference in the SHG amongst the various routes is calculated in the

computer model using the above equations. The contributions to the SHG of
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the various transitions are shown in figure 3.2.2 at a selection of
magnetic field strengths. A vapour temperature of 300°C and a homogeneous
linewidth of 35 MHz (HWHM) were used in the calculations, and the Laser
frequency was chosen to lie approximately 3 GHz from the centre of the two-
photon absorption. The upper graph at each field strength shows the
amplitudes of the contributions which are in phase with EE,

and the lower graph shows those which are in quadrature. These correspond
to the real and imaginary parts of equation 3.2.55 respectively. The thick
line alongside each graph shows the sum of these contributions. At zero
field these sums are zero, but as the field is increased the B, and B_,
terms change due to state mixing, and Zeeman splitting changes the resonant
frequencies. The different transitions then no longer interfere totally
destructively, and a net quadrupole moment results, as outlined above. The
amplitude and phase of these moments are represented by the length and
direction of the line in the centre of the circles at the top of the
diagrams. At the frequency which is illustrated there are considerable

changes in the phase of the SH as the field is varied.

The homogeneous and inhomogeneous linewidths enter this description in the
dependence of Z on the detuning of the laser from the resonant frequency of
each transition. Although the transitions are plotted in figure 3.2.2 at
their centre frequencies, the frequencies of the transitions measured in
the laboratory frame will vary due to the Doppler effect. However, the
greater the detuning between the laser and the centre frequency of a
transition, the fewer atoms will be Doppler shifted into resonance with the
taser; the width of this resonance depends on the natural linewidth. The
combination of these effects results in the shapes of the curves describing
the plasma dispersion function. The evaluation of Z is discussed in appen-
dix A, where figure A.1 shows the dependence on detuning of the real and

imaginary parts of Z. The different shapes of these curves result in the
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imaginary part of the effective dipole being very much more sharply peaked
about the resonant frequencies than the real part. The result of this is
seen in figure 3.2.2 as the SH being in phase with the fundamental except

when the laser is tuned to be very close to the resonant frequencies.

As Re(Z(a + ib) = -Re(Z(~a + ib) the sign of the contribution to the real
part of the effective dipole of any transition changes as that transition
is Zeeman shifted through exact resonance (frequency detuning = a = 0).
This is seen in figure 3.2.2 around 0.2 T for the high frequency group of
transitions. The figure also shows the effects of Zeeman splitting moving
the enhancing transitions in and out of the Doppler broadened resonance,

these transitions then contribute more and less to the SHG.

At low fields, in which the Zeeman splitting is very much Lless than the
Doppler width, axy and ﬁzy are both proportional to the magnetic field
strength; this causes the second harmonic intensity to be proportional to
the square of the magnetic field strength, and the second harmonic to have
the same Llinear polarisation as the fundamental. At higher fields
differences in Zeeman splitting between the sets of sublevels enhancing the
two quadrupole moments become comparable to the Doppler width. In this
case the amount of resonant enhancement of the two effective dipoles is
different, and the two guadrupole moments of interest grow at different
rates, causing a rotation of the polarisation of the second harmonic. The
real and imaginary parts of each moment also have different dependencies on
the magnetic field strength, which results in a phase difference between
the two effective dipoles, and hence a deviation from lLinear polarisation

of the second harmonic Light.

ALl of these points will be discussed further in connection with the

experimental results reported in chapter five.
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CHAPTER FOUR

EXPERIMENTAL APPARATUS AND TECHNIQUES
4.1 INTRODUCTION

A schematic diagram of the system used to investigate the second harmonic
generation is shown in figure 4.1.1. The components of this system are

described in more detail in the following sections.

ﬂB
Ring dye | e

s;?s%err{e sy P1 —-—O— SodluB oven —[PZ _g., PMT
L1 M

Figure 4.1.1. Experimental apparatus used to study BSHG in
sodium vapour. Key:~ P1 and P2 -~ polarising optics, L1 -
20 cm focal length lens, B - variable DC magnetic field,

M - dichroic mirror, transmitting at 289 nm, reflecting at
579 nm, PMT - filtered solar blind photomultiplier tube.

4.2 DYE LASER SYSTEM

4.2.1 The dye Llaser

A Spectra Physics 380D actively stabilised ring dye lLaser was used as the
source of the fundamental radiation. The narrow linewidth radiation
produced by this device (about 150 kHz [9]) allowed investigation of the
properties of BSHG in such detail as described in this thesis. The
principles of dye Laser operation have been reviewed by Schafer [117], and
this particular model of laser is described by the manufacturer's

Literature [118], and by Kane [9].
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Figure 4.2.1. Schematic diagram of the ring dye laser.
Key:— M1 to M4 - laser mirrors, UDD - uni-directional device.

The active medium of the dye laser was a free-flowing jet of a 2 x 10—3
molar solution of Rhodamine 6G dye dissolved in ethylene glycol. A
Spectra Physics 171/07 argon ion laser, which produced 4 W of Llight at
514.5 nm, was used to pump the dye Laser. The dye lLaser cavity was in the
form of a ring, as shown in figure 4.2.1. The birefringent filter and the
air-spaced Fabry Perot etalon acted as coarse and fine tuning elements
respectively. The unidirectional device constrained the laser radiation
field to travel in one direction. The use of a travelling wave rather than
a standing wave made it much easier to obtain single mode operation of the
laser, as there was then no spatial nonuniformity of the gain depletion
that would occur due to "hole burning' by a standing wave. The Llaser
wavelength was scanned by tilting the two Brewster-angled quartz rhombs;
this altered the optical path length of the cavity, and thus the lasing
wavelength. In this configuration, the lLaser would operate reliably on a
single longitudinal cavity mode at output powers of up to 700 mW, though

400 mW was typical. The laser was tunable in the 570 - 620 nm range.
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Although the laser operated on a single cavity mode, the frequency of this
mode was not stable, as the cavity length was susceptible to disturbances
due to temperature changes, dye jet fluctuations, and acoustic disturb-
ances. To counteract these problems, the lLaser was actively stabilised.
To do this, a small amount of Light was split off from the dye laser output
and passed through two external confocal Fabry Perot interferometers
(Spectra Physics model 488 Stabilok system), the longer of which was temp-
erature stabilised. As the lLaser freguency drifted, the transmission of
the interferometers would change; photodiodes detected such changes, and
suitable correction signals were generated by the electronics of the
system. These signals moved the Brewster-angled rhombs and the piezo-
electric mount of mirror M2 to keep the optical path Length of the cavity
constant. The manufacturer claims that the effective Linewidth of the
Laser, which is due to residual frequency jitter, is less than 1 MHz RMS;

Kane measured the linewidth of this particular Laser to be 150 kHz [91].
4.2.2 Monitoring devices

A block diagram of the laser system assembled for the work described in
this thesis 1is shown in figure 4.2.2. Beam splitters take small- amounts of

the Laser beam to various monitoring instruments.

The wavelength of the dye laser was measured conveniently to a precision of
1 part in 106 by a Kowalski-style travelling wavemeter {119, 1201. This
was essentially a double Michelson interferometer in which the length of
one arm was scanned. The wavelengths of a polarisation-stabilised helium-
neon Laser and the dye lLaser were compared by fringe-counting techniques;
the wavelength of the second harmonic of the dye laser radiation was
displayed directly by the counting electronics. This useful piece of

apparatus has been described in full by Kane ([9].
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Figure 4.2.2. Schematic diagram of the laser system. Key:-
CFPE - confocal Fabry-Perot interferometer.

The mode structure of the laser was analysed by a scanning confocal Fabry
Perot interferometer, which confirmed that the laser was operating on a
single mode. laser stabilisation is the reference station, consisting of

two interferometers, which was described in section 4.2.1.

The marker interferometer was a confocal Fabry Perot interferometer with a
30 cm mirror separation; this instrument therefore had a free spectral
range of 250 MHz. The interferometer was thermally stabilised to better
than + 0.1 C. As the laser was scanned, the laser Light transmitted by the
interferometer was mopitored by a photodiode. The 250 MHz fringes so

measured acted as a frequency calibration for the experiment.

The reflectivity of dye laser mirror M3 was not 100%; the few milliwatts of
Laser Llight that passed through this mirror was sent through a glass cell
containing iodine vapour. The fluorescence of the excited iodine molecules
was detected at right angles to the laser beam by a photomultiplier (RCA

931B). The absorption spectrum of iodine has been carefully studied using
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Fourier Transform Spectroscopy; Gerstenkorn and Luk [1213 have published an
atlas showing the absorption spectrum of 12 from 14800 to 20000 wavenumbers.
Comparison of portions of the atlas with the iodine spectrum obtained when )
the Laser was scanned allowed a determination of the laser frequency to an
accuracy of one part in 108. The wavemeter was still required, however,

to determine in which part of the atlas to Look for matching.

»

4.1.3 Data collection

Second harmonic generation Line profiles may be recorded by scanning the
Laser across the 3S - 4D transition while recording simultaneously on a
chart recorder the signal from the SH detector and the transmission of the
marker interferometer. This procedure was follwed in the earlier stages of
this project, and by Kane [9]1. However, the dye laser scan was not
strictly linear with time. To compensate for changes in the laser scan
speed whén the results are on chart recorder paper is rather difficult.
Instead, a computerised data collection system was desighed and con-
structed. This 1is described in more detail in appendix Q. Sigﬁals from
the following devices were recorded by a BBC model B microcomputer: the SH
detector (or any other detector); the photodiode monitoring the trans-
mission of the marker interferometer; and the photomultiplier measuring the
iodine fluorescence. These signals were all displayed on the VDU screen in
real time, which proved to be very convenient. The results were later
transferred to the University's VAX 11/785 mainframe computer. This
machine used a simple algorithm to Llinearise the data by ensuring that the
interferometer fringes were equally spaced; one such Fortran program is
Listed in Appendix D. Apart from the linearisation, this system was also
very useful in aiding the comparison of data from different runs: graphs
could be drawn to specified scalings, and the absolute frequency of the

Lasér, measured using the iodine cell, was also available.
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The fundamental laser beam was usually chopped at about 360 Hz, and the
signal from the SH detector was passed through a phase~sensitive detector
(PSD) tuned to the appropriate phase and frequency. This system proved
efficient at improving the signal to noise ratio. The time constant on the

PSD was set between 0.1 and 3 seconds depending on the conditions in the

experiment.

4,3 OTHER APPARATUS
4.3.1. Production of the metal vapour

Sodium was chosen as the nonlinear medium for a number of reasons: it is
relatively easy to produce sodium vapour; the atomic energy levels of the
sodium atom are well known; the sodjum atom has a strong two-photon
resonance at a wavelength readily accessible by Rhodaminé 6G dye lasers;

and SHG in sodium has been reported by other workers [18, 66, 68, 71, 72,
75, 76, 95-971

Sodium melts at 97.8 °C [122] and can be méde to evaporate or boil to
produce a moderately dense vapour at reasonable temperatures. This vapour
consists mainly of sodium atoms, Na, but a small percentage o; these
combine to form sodium dimers, Naa. The particle density of a saturated
sodium vapour is shown in figure 4.3.1. The circles represent experimental
determinations of the sodium vapour pressure as compiled by Nesmayanov

£1231. The solid Lline is from a formula quoted by Miles and Harris [124],

who relate the atomic density, N, to the absolute temperature, T, by the

approximate formula

BT




N = 9.66084 x 10°% exp[-12423.3 + 17.39141 atoms m - %.3.1
T T

The Line showing the dimer concentration is deduced from data given by Lapp
and Harris [125] on the percentage of dimers present in the vapour at any
25

temperature. The vapour pressure js given by P(mbar) = NT x 1.38 x 0%,

at 300°C it is 0.02 mbar.
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Figure 4.3.1. Particle density of saturated sodium vapour
plotted as a function of temperature. See text for details.

Two methods of producing volumes of sodium vapour with uniform density have
been widely reported: heat pipe ovens and gehlenite glass cells. To
produce a density of 1021 atoms m"3 the sodium must be heated to 344°C.
Sodium is very reactive at these temperatures, so care must be taken in the
choice of containment materials; it is also essential to prevent the sodium

from condensing on the optical windows used in any device.
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| The gehlenite glass cell has the advantage of relative simplicity, but the
| windows must be kept at a higher temperature than the rest of the cell to
minimise fogging problems due to condensation of the sodium vapour.
Woerdman [126] describes a suitable cell, which he used to produce sodium
vapour with temperatures greater than 500°C. The gehlenite glass cell was
placed in a quartz tube covered with a transparent semiconducting material
which served as an oven. The transmission of the system was poor: 70% at

600 nm and 30% at 330 nm.

The heatpipe oven was first proposed by Vidal and Cooper L[1271. It is shown
schematicaltly in figure 4.3.2. The main body of the oven consists of a
matertal with which the vapour does not readily react, stainless steel for
example. Inside the tube is a wick of a few turns of fine stainless steel
mesh. The centre of the pipe is heated and the ends are water cooled. As
the ends do not get hot, the windows may be fixed to the ends with

conventional O=ring seals.

“ buffer gas inlet

ALALELALARARRANAANNY

AALALLALALAARARRUNRNN

heater s

cooling

window

Figure 4.3.2. Schematic diagram of a heat pipe oven.

The initial charge of metal is placed in the centre of the oven and an
inert buffer gas is introduced into the pipe. As the metal is heated it
melts and wets the wick; the metal boils when its vapour pressure reaches

the pressure of the buffer gas. The vapour moves out towards the ends of
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the tube where it hits the cooled buffer gas and there it condenses on to
the wick to be returned to the centre of the oven by capillary action. In
an ideal heat pipe the temperature at which the metal boils is determined
by the pressure of the buffer gas, and a zone of high uniformity of metal
vapour density is formed. Extra heating should not affect the temperature
of the vapour significantly, but should extend the vapour zone to nearer

the cooling coils.

Heat pipe ovens were chosen for this study, as the technology for con-
structing these devices was readily available. In most cases the ovens
were not operated in the true "heat pipe" mode. This was because the pipes
were typically operated at sodium vapour pressures of 0.02 mbar; if the
argon were at the same pressure the mean free path of the atoms would be of
the order of 20 cm, which would result in condensation of the sodium on the
end windows; thus the buffer gas pressure was usually at least 1 mbar.
However, these devices did produce a sufficiently uniform vapour zone for

the purposes of this work.

Severat different ovens were used; they are shown in figure 4.3.3. A
detailed cross section of one of them is shown in figure 4.3.4. ALl the
ovens were fabricated from stainless steel. The main body of each was
lined with several turns of stainless steel mesh (32 wires/cm, 39 SWG
wire). The end windows were optically polished quartz discs.(Jencons
Scientific Ltd.), which were either mounted directly on to the end flanges
using viton 0-rings, or cemented on to the ends of "Pyrex' glass tubes
which had been sealed to stainless steel flanges (Vacuum Generators). The
ends of the ovens were water cooled, and the central sections were heated
using resistance heating cords (Electrothermal = HC503, 400 W, 800°C
maximum temperature, or HC104, 480 W, 450°C maximum temperature). These

heating cords were wound non-inductively to minimise any stray magnetic
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Figure 4.3.3. Heatpipes used in this work. The main body of each pipe is
shown, the central region of each was covered with the heating element and
insulation. The pipes in parts (a) and (d) were terminated with quartz
windows cemented on to pyrex tubes, the others had the quartz windows fixed
to the end flanges by "0" ring seals. The single circles in the end
flanges represent the connection to the gas handling system; the pairs of
circles indicate the pipes for water cooling.
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fields due to the heater current, which was up to two amps. The heaters
were lagged with mineral wool insulation. The temperature of the central
body of the oven was measured using a thermocouple (Comark Electronics

mineral—-insulated stainless-steel-sheathed NiCr/NiAl type K thermocouple

KM30/L2PS, or a similar probe marketed by Electroplan, TC4 probe).

For many of the experiments the oven temperature was varied simply by
altering the power input by using a 'Variac'" variable transformer. After
some three-guarters of an hour the oven would stabilise at a temperature
determined by the heat input and the rate of cooling of the oven. As the
ovens were not operating in the true heat-pipe mode, variations in the
heat=input/heat~loss balance did affect the sodium temperature, and
numerous small adjustment to the "Variac" were needed to keep the
temperature within 2°C of the desired level. In the later stages of the
project a three-term temperature controller was used (FGH Controls Ltd,
Type S$900~K-2-0-240 Vigilant temperature controller). This drove a triac
power controller (FGH Controls Ltd type TRZ-10-240 with zero crossover
control); the combination had a two second cycle time, which was
considerably less than the thermal time constant of the oven. This system
proved to be very convenient, as the warm~up time was much reduced, and the
temperature measured by the thermocouple was stable to better than 1°C.
When stabilised, the fluctuations in second harmonic output power were less
than * 3%, which corresponds to a temperature stability of + 0.2 C. The
use of SHG as a particle density or temperature probe is considered further

in section 5.9.

The temperature measured by the thermocouple at the outside wall of the
oven was not the same as the temperature of the sodium vapour, as there
were temperature gradients within the cell walls. To allow for this

effect, a thermocouple and flange were inserted into the oven in place of
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one of the end windows; this thermocouple was embedded in the molten sodium
while the oven was operated under its usual conditions. The temperature
measured on both thermocouples was noted as the oven temperature was
increased; these results were then used to estimate the sodium temperature
from the temperature measured by the external thermocouple. A cooling
curve was also taken using the internal thermocouple; a plateau was
observed in the temperature/time relationship at within 1.5°C of the

accepted value of the melting point of sodium.

The preliminary experiments were performed using the heat pipe shown in
figure 4.3.3(a). The pipe that was used for most of the experiments
reported in sections 5.2 to 5.5 had walls of uniform thickness, and is
shown in figure 4.3.3(b); the small side windows were not used in these
experiments. Most of the other experiments in chapter five were performed
using the heatpipe shown in figure 4.3.3(¢) and figure 4.3.4. This pipe
had a thickened central region to increase the thermal time constant of the
oven and to allow the thermocouple to be mounted between the heater and the
sodium. For the study of the sodium dimer, which is reported in appendix
E, a "T" heat pipe was constructed, as shown in figure 4.3.3(d). This had
a side arm of 12 mm internal diameter, fixed to the centre of the oven.

The arm had a wick and heater similar to those in the main body, and was
terminated by a quartz window, which allowed observation of the spontaneous
fluorescence from the excited states of the sodjum atom and dimer at right
angles to the exciting beams. Figure 4.3.3(e) shows the lLonger heat pipe

which was constructed for the experiments of section 5.9.

The ovens were cleaned using the reagent aqua regia, and then rinsed in
running water. After assembly and testing of a pipe, about 4 cm3 of
sodium metal was loaded into its centre. The sodium was supplied as metal

blocks under paraffin (Hopkin and Williams, laboratory reagent: sodium,




metal lump). These blocks were rinsed in petroleum spirit to remove the
paraffin, then immersed in ethanol to remove the surface layers of oxidised
sodium in the reaction between the ethanol and the sodium and its oxide.
The sodium was again rinsed in petroleum spirit before being transferred to
the heat pipe, which was being purged with dry nitrogen. The oven was then
evacuated to a pressure of less than 10~3 mbar. During use the oven

was filled with argon buffer gas (BOC Research Grade) at pressures from

0.7 mbar to several hundred mbar, but typically 1 mbar.

Before being used in the experiments the oven was cycted through its full
temperature range several times, being evacuated between cycles. This

al lowed the sodium to distribute itself through the wick, and some of the
impurities were removed by the evacuations. It was noted, in particular,
that when the sodium was melted for the first time there was a small rise
in pressure on the mechanical pressure gauge, but a very much larger
increase in the reading of the Pirani gauge. It is well known that the
Pirani gauge head is more sensitive to some gases than others. The argon
pressures were therefore normally measured using the mechan{cal abscolute
pressure gauge, which was calibrated against oil and mercury manometers.
In the experiments using argon pressures greater than 50 mbér, a mercury
manometer was attached to the gas handling system through a liquid nitrogen

cold trap.

4.3.2 Production of the magnetic field

Various arrangements were used to produce the transverse magnetic field
which was needed to break the symmetry of the vapour. The simplest
arrangement used polymer-based cobalt—-samarium permanent magnets (Magnetic
Polymers, Hera magnets) mounted on mild steel pole pieces which ran down

each side of the pipe. The magnetic fields were measured using a Hall
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probe (Scientifica and Cook). The magnets produced a field of 0.02 T

(200 G), which was uniform to a few percent for 50 mm along the beam.

A small electromagnet (Newport Instruments type C) was used to provide a
variable magnetic field. This was used with coned polepieces to provide a
field of up to 0.14 T (1.4 kG), which dropped to half that value 32 mm from
the centre of the polepieces. This magnet was used mostly for the
spectroscopy carried out using the "T" oven. In this case the uniformity
of the field was not important, as onty a small region, about 10 mm, of the

beam could be observed.

For most of the second harmonic generation study, a lLarge electromagnet
(Newport Instruments type A) was used. The 100 mm diameter plane
pole-pieces were separated by 80 mm. This arrangement produced fields of
up to 0.3 T (3 kG). The field dropped to half this value 74 mm from the

centre of the pole-pieces.
4.3.3 Detection of the second harmonic

The second harmonic radiation produced in these experiments had a wave-
length of 289.3 nm. Hence, normal glass, which is opaque at this wave-
length (the transmission of borosilicate glass drops sharply from 95% at
360 nm to 8% at 310 nm [1221), was unsuitable as a window material. The
windows of the heat pipe were made of fused silica ("quartz"), which
transmits radiation of wavelengths down to 200 nm. In most cases a
dichroic mirror was inserted in the SH beam to discriminate against the
fundamental radiation. This mirror was highly reflecting in the visible,
but highly transmitting in the ultraviolet. The substrate of this mirror
was made of quartz, as were the lens and neutral density filters which were

sometimes placed in the SH beam.
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The SH radiation was normally detected by a filtered solar-blind photo-
multiplier tube (Hamamatsu R166UH tube with two Corning 9863 filters). The
photomultiplier tube was largely surrounded by a permalloy cylinder of high
permeability, which shielded the tube from the effects of magnetic fields.
The tube was operated at T kV; the spectral responsivity of the system is

shown in figure 4.3.5.
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Figure 4.3.5. Spectral responsivity of the filtered solar-
blind photomultiplier tube {122, 128].

The arrangement was chosen to provide high sensitivity at the SH wave-
length, but to be insensitive at the wavelengths of the other dominant
radiations: the fundamental beam at 578.7 nm, and the spontaneous
fluorescence at 330 nm, 568 nm and 589 nm from the cascade decay of the 4D
states. The 330 nm radiation was the most difficult to discriminate
against, but, as shown i1n figure 4.3.5 the responsivity of the system is a
factor of 40 down at this wavelength compared with that of the second

harmonic. Moving the photomultiplier some distance from the cell, or




putting an iris diaphragm of physically small aperture around the
fundamental beam helped the discrimination; the SH followed the path of the

fundamental , whereas the 330 nm was emitted into 4T steradians.

The photomultiplier tube was a side window type with a circular cage
electron multiplier; such tubes have poor spatial uniformity of gain [128].
This caused problems in one experimental scheme where the SH beam position
on the photomultiplier tube changed. In that case, a null measuring method

was devised, as described in section 5.4.

The 330 nm radiatijon was measured using another filtered photomultiplier
tube, a Hamamatsu R212 with two Corning 9863 filters. This combination had
a responsivity of 18 V/nW at 330 nm and 13 V/nW at 289 nm. The responsivity

at the fundamental wavelength was more than five orders of magnitude less.

4.4 SPECTROSCOPIC TECHNIQUES

At various stages in this work it was necessary to use nonlinear Llaser
spectroscopy to measure features that would otherwise have been obscured by
Doppler broadening. An example is the measurement of the pressure-
broadened Linewidth of the sodium 3S - 4D transition; this is around

70 MHz full width at half maximum (FWHM) at the atomic frequency, while the
Doppler width of the transition is 3.7 GHz at 400°C. These techniques are
reviewed in references [107, 117, 1291, amongst others. Two basic types of
Doppler—-free spectroscopy were used, these are described in this section.
Saturated absorption spectroscopy probes transitions of the same energy as
the Llaser photons, while two-photon spectroscopy probes transitions of
twice this energy. For some of the experiments on the sodium dimer, a

combination of both techniques was used.
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4.4.1 Saturated absorption spectroscopy

Consider the two-level atoms as indicated in figure 4.4.1(a). These atoms
will be moving, and thus their resonant frequencies measured in the
Laboratory frame will be shifted due to the Doppler effect. A single
frequency laser beam passing through the atomic vapour will interact with
only one velocity packet, producing the population changes shown in part
(b) of the figure. As the laser is tuned across the transition the "hole"
will move across this curve. A saturated absorption spectroscopy
experiment is set up as in part (c). A strong "pump' beam acts in the
manner described above, depleting the population of the Lower state at one
particular fregquency. A low power "probe" beam of the same frequency as
the pump beam is passed through the vapour in the opposite direction. The
population of the Lower level will then be as shown in part (d). As the
two lLaser beams are propagating in different directions, they will interact
with different velocity packets of atoms. However, when the Laser beams
are tuned to the centre of the transition, both beams will interact with
the zero velocity packet of atoms. In this case the probe beam is absorbed
much Less than it would be in the absence of the pump beam. The probe
field absorption is plotted in part (e). The dip in the centre of the
curve has the Linewidth associated with homogeneous broadening in the
sample, and is thus "Doppler-free'. The pump beam is usually chopped at a
known frequency, and the signal from the probe beam detector is passed
through a phase-sensitive detector tuned to this frequency. The resultant
signal, which is sketched in part (f), shows the Doppler—free Line profile
of the transition. This technique essentially selects out those atoms with

zero velocity along the lLaser beam direction to contribute to the signal.
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4.4.2 Two-photon spectroscopy

This form of spectroscopy makes use of two-photon transitions, and is thus
fundamentally different from the type of spectroscopy described in the
previous section. Again, consider a two-level atom with resonant frequency
Voo Atoms of velocity v in the direction of the lLaser beam will be
excited by two photons from a unidirectional Laser beam when the laser
frequency w satisfies the relationship Woo = 2(w - ky) where k is the
wavevector of the Laser radiation. This is obviously a Doppler-limited
condition. However, the atoms may absorb one photon from each of two
counter-propagating lLaser beams when Wyo = (w + kv) + (w= ky) = 2w. Thus
when the laser is tuned to the atomic resonant frequency, all the atoms may
absorb one photon from each beam to be excited, regardless of their
velocity; this gives rise to a large increase in absorption at this freg-
uency, and the Doppler—free signal. These effects are shown schematically

in figure 4.4.2.

The experimental arrangement used in this work for two-photon spectroscopy
of the sodium dimer is shown in figure 4.4.3. The laser light was focussed
into the sodium heat pipe by a 20 c¢m focal Length lens, and was reflected
back along the same path by a concave mirror. The absorption of the laser
beam was very small; instead the two-photon spectroscopy relied on
monitoring the population of the 4D states by measuring the ultraviolet

radiation produced in their cascade decay back to the ground states.

The isolator was necessary to prevent feedback of Llight into the Llaser
cavity, which made the laser unstable. A Soleil-Babinet compensator was
used as a circular polariser. The retroreflected beam had %ts direction of
circular polarisation reversed on reflection, and so the beam passing back

through the quarter-wave plate had its linear polarisation at 90 degrees to
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the initial Laser beam. This return beam was then readily blocked by using

a Linear polariser.
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Figure 4.4.2. Two~photon resonance in a standing wave.

a) Cancellation of the Doppler shift by absorbing one
photon from each of the two counterpropagating beams.

b) No cancellation of the Doppler shift by absorbing both
photons from the same beam. <¢) The shape of the absorption
(or fluorescence) signal produced in a Doppler~free
two-photon spectroscopy experiment.
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Figure 4.4.3. Experimental arrangement for two-photon
spectroscopy of the sodium dimer. Symbols are as in figure
4.1.1, but here L2 is a 12.7 cm focal length quartz lens.

Four peaks were recorded in the two photon spectroscopy of the Na 3S - 4D
transition, as presented in figures 5.1.4 and C.2, and by other authors
[17]1. The second peak, corresponding to the 35S (F=2) ~ 4D (4 = 5/2)

transition was often used as a frequency reference in the SHG experiments.

This frequency is defined here as fD'
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CHAPTER FIVE
MEASUREMENT OF THE PROPERTIES OF MAGNETIC FIELD

INDUCED SECOND HARMONIC GENERATION IN SODIUM VAPOUR

5.1 INITIAL CONSIDERATIONS

51 Basic properties of the second harmonic generation

The laser system was set up as described in section 4.1. A 20 cm focal
length lens focussed the dye Laser beam through the sodium heat pipe shown
in figure 4.3.3(c). The divergence of the beam beyond the heatpipe was
measured, from which the radius of the beam waist was calculated to be

90 um + 20%. The power of the laser beam at the oven was typically 200 mW,
from which the power density at the focus was inferred to be of the order

of 107 wm 2.

The oven was filled with argon buffer gas at a pressure of 0.9 mbar and

heated to 285°C. A magnetic field of 0.018 T was applied perpendicular to
the Laser beam and to the laser polarisation. When the laser was tuned to
a wavelength of 578.7 nm, the second harmonic was generated. With the aid

of the iodine cell the laser frequency at which the second harmonic

1 1

generation was a maximum was measured to be 17274.368 cm |+ 0.002 cm

this figure is very close to the tabulated value for the separation of the
sodium 3S and 4D levels, 2 x 17274.5 cm"1 £1301. Additionally, it is

shown in the following section that the SHG line profiles are intimately

connected with the Line profile of the 35S - 4D two-photon absorption.

The wavelength of the second harmonic radiation was measured using a 1 m

5.1
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monochrohator (Monospek 1000) to be 289.48 nm + 0.12 nm. This was, as

expected, half the wavelength of the fundamental radiation.

The laser frequency, atomic density and magnetic field strength were

1, 3.4 X 1020 atoms m—3

adjusted to be at the optimum for SHG, 17274.37 cm
and 0.1 T respectively. When a fundamental power of 120 mW was measured
immediately before the heat pipe, the second harmonic power was measured to
be 7 nW. This corresponds to an efficiency of 6 x 10_8. The computer

model of the SHG described in chapter three and appendix B evaluates that

1S ®. -B.) Z|4L =1.0 x 1077 (5.1.1)
F,m;, +2 "2
J,my

under these conditions. Using the matrix elements tabulated by Miles and
Harris [124] and Tull et al [92] the expected SH power was calculated to be

2.1 nW.

In this chapter the following abbreviations will be used in the figure
captions:- fL = laser frequency; T = sodium vapour temperature;

B

H

magnetic field strength; P = approximate argon pressure; heatpipes a to

the heatpipes sketched in figures 4.3.3 (a) to (e).

@
]l

Equations 3.2.55 and 3.2.60 predict a squared dependence of the second
harmonic power on the fundamental laser power. To test this, various
neutral density filters were inserted in the fundamental beam while
monitoring the SH power. A beamsplitter and photodiode were used to
measure the fundamental power immediately before the heatpipe. This
produced the results shown in figure 5.1.1. The two sets of results were
taken at the centre of the SHG Line profile, at magnetic field strengths of
0.018 T and 0.297 T. The gradients of these graphs are 1.97 + 0.02 and

2.08 + 0.02 respectively. When other sources of error are taken into
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Figure 5.1.1. Dependence of second harmonic power on
fundamental power. f, = f,, T =285°, B = 0.018 T
and 0.297 T, P = 1 mbar, heatpipe c.

account, there is no significant deviation from a square law dependence of
SH power on fundamental power. The lack of saturation with fundamental
power is not surprising, as the optical power densities at the beam focus
were modest. The SHG efficiency is expected to be Limited at high power
densities by competing processes such as multiphoton ionisation and
saturation of the two photon absorption [10, 124]. In their non-collinear
SFM experiments in sodium vapour Bethune et al [10] measured the fractional
jonisation to be 1% when one laser was tuned to be ten wavenumbers from the
3S - 3P transition and the other was tuned such that the sum frequency was
in resonance with the 3S = 4D transition; the intensity of each beam was

2

5 x 109 Wm -. The same authors studied the effects of saturation of the

two photon resonance; with a 41.2 cm_1 detuning from single photon res-




eyl
- PR

onance they found a deviation from the sum frequency power being proport-

jonal to the product of the intensities of the two laser beams at 3 x ?
1017 wzm—4. In the experiments described in this thesis the detuning from
single photon resonance was about 300 cm_1, which would lead to a much lower
multiphoton ionisation rate and an even higher intensity being required to
saturate the two photon absorption than in the case described by Bethune et
al. Even if this were not the case, the power densities achieved with the

cw laser were less than those that Bethune et al required to observe the

Limiting effects.

The spatial intensity profiles of the second harmonic and fundamental beams

were examined. The former was measured by fixing 2 1.1 mm diameter pinhole

in front of the SH detector, mounting the combination on a travelling

microscope stage, and moving the pinhole across the beam. A similar

arrangement was used to measure the fundamental beam profile, but a photo- b
diode was used instead of the photomultiplier tube. In both cases the

beams were expanded using a 5 cm focal length quartz lens. The fundamental

beam was approximately Gaussian, as it had an intensity distribution close

to ILr) = IL0) exp[—urzl, where r is the distance from the centre of the
beam. As the second harmonic intensity was proportional to the square of

the fundamental power, the beam profile of the second harmonic was expected

2

to have an intensity dependence of the form I w(r) = 15(0) expi=24r~1.

2
Figure 5.1.2 shows the distribution of the intensity of the SH beam and the
square of the intensity of the fundamental beam. The two curves are seen

to be similar, supporting the above arguments.




-
o
o

~
o8 L. 4 o
o { o
= I
§§ l ;
& "
Qg
G
gg S5t S Ny
g% | y
£'5
-Dm "
65 >
32 *
U)g E a
x
ob.xL 2 o " A s L A - . "

Detector position {mm)

Figure 5.1.2. Spatial distribution of the intensity of the
SH beam and the square of. the intensity of the fundamental
beam. A gaussian curve has been drawn with a similar width
as that of the experimental results. fL = fO’ T = 250 °C,
B =0.06 T, P=1 mbar, heatpipe e.

5.1.2 Measurement of the homogeneous and inhomogeneous Linewidths of the

35S ~ 4D transition

In modelling the SHG, two important variable parameters are the Doppler
width and the pressure-broadened Linewidth of the 35S = 4D two-photon
transition. The Doppler width may be calculated from the temperature of
the vapour; the half width at 1/e maximum, {1, for a transition at

frequency v is

_O_ =V, 2 k. T R (5.1.2)
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where k8 is Boltzmann's constant, T is the absolute temperature of the
vapour, M is the mass of the sodium atom, and ¢ is the speed of Llight. The
Doppler width was measured experimentally by tuning the Laser through the
transition and observing the ultraviolet radiation emitted in the
spontaneous decay of the 4D states. Knowing the fine and hyperfine
splittings of the lLevels, the Doppler width could be estimated if the

homogeneous Llinewidth was assumed to be small.

The homogeneous Linewidth (FWHM) 1is given by AVH = AVN + PP, where ﬁVN is
the natural linewidth of the transition, P is the pressure of the perturb-
ing gas, and @ is the pressure broadening constant. This constant is not,

in general, the same for all transitions of an atom.

The pressure-broadened Linewidth of the sodium 3S - 4D transition has been
measured at pressures up to a few tens of mbar by Doppler-free two-photon
absorption [1311, free induction decay of a coherently excited 4D state
[132]1, and by tri-level echoes [133]1. The Llinewidths of the same trans-
ition have been measured at pressures of several atmospheres by Doppler-
Limited two-photon absorption [134]. The pressure broadening.constant f5,

measured in MHz/mbar, depends on the temperature of the vapour as

£5.1.3)

where o, is the Ar-Na collisional cross section at an absolute temperature
Tn £1331. If the o, are approximated to be independent of temperature, it
is possible to convert the published values of ﬁn to one temperature,
chosen here to be the temperature at which most of the SHG experiments were
carried out. These values are shown in table 5.1.1. In addition to the

broadening of the spectral line by the perturbing gas, the energy levels of
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the sodium atom are also shifted due to the interaction of the potentials

of the sodium and argon atoms.

Reference ﬁ558 MHz/mbar: FWHM )
131 39 + 4
132 39 + 3
133 39+ 6
134 36 + 6
This work, 529 K  38.7 + 1
£

This work, 558 K  39.8

s . S o S o St

Table 5.1.1. Pressure broadening constant of the 3S - 4D
two-photon transition in sodium perturbed by argon buffer
gas at 558 K.

PMT

Ring dye laser : . |
system S— A Sodium oven -O--E}.

P L1 L2 M

Figure 5.1.3. Experimental setup for two-photon spectroscopy.
Key:= P = linear polariser, A4 - guarter wave plate, L1 -

20 cm focal Length lens, L2 - 12.7 cm focal length quartz lens,
M - dichroic mirror, PMT ~ filtered photomultiplier tube.

The homogeneous Linewidths under the experimental conditions used in this
work were measured by Doppler-free two-photon spectroscopy. Thé exper-
imental arrangement used is shown in figure 5.1.3. A dichroic mirror and a
12.7 cm focal length quartz lens were used to retroreflect the laser Light
and to focus the spontaneous ultraviolet fluorescence, which monitored the
population of the 4D states, on to a filtered photomultiplier tube. This
observation of the fluorescence along the direction of the Laser beam is
different from the conventional two-photon spectroscopy arrangement shown

in figure 4.4.3. The experimental geometry had the disadvantage that care
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had to be taken to discriminate against the fundamental laser beam.
However, it had the advantages that the whole region of two-photon absorp-
tion was, to some extent, observable, and the central region of the oven
was not subjected to any heat losses due to a side arm. The pressure of
the argon gas was measured using a Bourdon gauge which had been calibrated

against an oil manometer.

Both pressure-broadening and pressure-shift may be seen in figure 5.1.4,
which shows some of the results of two-photon absorption spectroscopy exp-
eriments carried out using the heatpipe of figure 4.3.3(c), at a temp~
erature of 256 °C. Eleven traces were recorded at argon pressures from 0.8
to 13 mbar. The measured pressure broadening constant from these traces

was oo = 39.8 + 1 MHz/mbar, which gave a value of 43558 = 38,7 + 1 MHz/mbar.

UV FLUORESCENCE

LASER DETUNING (GHz)

Figure 5.1.4. Two photon excitation spectra of the sodium
38 - 4D transition, at various buffer gas pressures:-

a) P =0.8 mbar, b) P = 2 mbar, ¢) P = 5.4 mbar,

d) P = 12.6 mbar. The same frequency scale is used for each
trace, but the fluorescence maxima have been normalised.

T = 256°C, B = 0, heatpipe (c).
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A similar study was carried out at 285°C, but with six scans. This gave a
value ?&m directly as 39.8 + 1 MHz/mbar. These measurements were thus

consistent with each other, and with the other values in table 5.1.1.

The value of de used in the theoretical calculations is the HWHM of

the pressure broadened linewidth at the atomic frequency. This was
calculated from the experimentally derived equation X&S (MHz) = HWHM =
19.4 P(mbar) + 12. The agreement of the published values at Low and high
pressures of argon gas justified using this equation throughout the
pressure range investigated in the SHG experiments, 0.8 to 230 mbar. The
shift in the resonant frequency with pressure was not included in the SHG
model, as it was small compared to the laser frequency, and was equal for

all components of the 3S - 4D transition.

The effects on the SHG of changing the buffer gas pressure are studied in
section 5.8. For most of the other experiments the buffer gas pressure was
set at 1 mbar. The homogeneous linewidth under these conditions at 300°C
was measured to be 35 MHz (HWHM at the atomic frequency), and therefore

35 MHz was the value of de used in the theoretical modelling of these
experiments. The effects of changing the homogeneous linewidth are studied
theoretically and experimentally in section 5.8. Variations in de are
not expected to influence the SHG much around the 35 MHz value measured and
used in the calculations. An increase in Xﬁs is expected to cause a
decrease in the SH power, as de is essentially a damping term, though its

effect will not be Large until it is of the order of the Doppler width.

Two-photon spectroscopy was also used to provide an absolute frequency
calibration of the laser with respect to the atomic transition. The centre
of the SHG Line profile was close to the peak corresponding to 35S (F=2) ->

4D (J=3/2). transition, the second peak in figure 5.1.4. This frequency was

-
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defined as fﬂ. For certain experiments the laser was tuned to fo by
measuring the two-photon-induced Doppler-free fluorescence. The Llaser
could then be tuned by a known amount by monitoring the transmission of the

250 MHz free spectral range marker interferometer.

5.2 SECOND HARMONIC POWER DEPENDENCE ON SODIUM ATOM DENSITY
The macroscopic SH polarisation fzw(r,t) in the medium [14] 1s
faw(r,t) = Ngzw(r,t) (5.2.1)

where N is the number density of the sodium atoms and Py, is the

effective dipole for SHG defined by equation 3.2.41. As the amplitude of
the generated second harmonic wave is proportional to the macroscopic SH
polarisation, the power of the SH generated in any region of the vapour is
proportional to NZ. However, in calculating the total SH power generated
in the vapour, the relative phases of the SH generated in different regions
of the vapour must be considered. The formalism developed here is similar
to that of Yariv [12], and treats the fundamental and SH beams as infinite

plane waves.

The electric field of the generated second harmonic is proportional to_gzw,
and, from equation 3.2.55, it is seen that_PZQ is proportional to the
square of the electric field of the fundamental radiation, though it is
shifted in phase by an amount defined here as ¢. Following Yariv [12], the
slowly varying amplitude of the electric field of the second harmonic,
EZw’ for waves travelling in the positive y direction is

ok

u? : R
oy 2 (fNE,,/2) exp[w(gzw -2 gw)z] explLi¢l dy, (5.2.2)
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where gw and EZw are the wavevectors of the fundamental and second harmonic
radiation respectively, and f is a real number dependent on the magnetic
field strength. In the case of a uniform magnetic field strength in the
interaction region, ¢ and f are not functions of position. If the
intensity of the fundamental beam changes negligibly through the medium,

Ew may be regarded as a constant. Defining the wave vector mismatch

Ak = E2w -25w, and integrating over a vapour length L gives

E, W = £ NEEO exp [ip] expLiokld - 1 (5.2.3)
2 Ak

. - "'* = . .
The total SH power Wéw is proportional to (g2w.g2w), which results in

P, o« N® Eroy L2 sin(akL/2) $5.2.4)

(akL/2)°

For maximum generation efficiency Ak should be zero. The wave vector

mismatch arises from the change of refractive index between the fundamental

and second harmonic frequencies:
Ak = EZw -2 Ew = 2uW (n2w - nw)/c (5:245)

where n, and n,, are the refractive indices of the medium at the

fundamental and second harmonic frequencies respectively.

The refractive index of a vapour at a wavelength A may be determined from

the Sellmeier equation [143

nA -1 =N Py ;éi‘xi fij (5.2.6)
2 2
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where N is the number density of the atoms, e, is the classical electron
radius equal to 2.8 x 10 15 m, fij is the oscillator strength of the
transition of wavelength )ij from level i to level j, and &, is the
fractional poputation of level i. The wavelength dependence of the
refractive index of sodium vapour is shown in figure 5.2.1, which was
calculated using the oscillator strengths tabutated in [130]1. It was

assumed that all the atoms were in the ground state, which is justified in

the conditions of the experiments.

The dominant resonances are those of the sodium D lines at 588.9 nm and
589.5 nm. These two transitions account for 98% of the oscittator strength
of the ground states. The fundamental wavelength Lies in the wings of the
D lines; the refractive index of the vapour at the second harmonic wave-

Length is much lLess strongly perturbed from 1.0. The wavevector mismatch

was calculated to be Ak = 8.97 x 10 20 m-1, where N is the atomic
density in atoms m-3.
4
2.
° e
o)
x 0 +
i
c
..2-
A — L
2893 5787
WAVELENGTH (nm)

Figure 5.2.1. Refractive index, n, of atomic sodium vapour
as a function of waveLength20 Thg ordinate scaLe was was
calculated for N = 2.3 x 10 (T = 300%C).




This calculation of the wavevector mismatch has neglected the effects of
the sodium dimer population on the refractive index. These dimers have
many allowed transitions across the visible spectrum, but any one
transition has a low oscillator strength. The percentage of sodium dimers
in the vapour at 400°C was less than 5%, and less than 1% of these dimers
would be in any one vibronic lLevel, resulting in the population of any
dimer state being Less than 5 x 10—4 that of the atomic density. However,
the dimer population increases rapidly with temperature, and will become

more significant at higher temperatures.

The dependence of the SH power on particle density may be calculated for
the experimental conditions described, using equation 5.2.4. As Ak is
proportional to N, P2w is proportional to sinZAkN; For a vapour zone
Length of 10 ¢m, and a fundamental beam powerIPw,

Tw. (5.2.7

W%w‘x ﬂL sin°(4.48 x 102
A retatively low field of 0.06 T was applied across the oven of figure
4.3.3(b) and the laser was tuned to the peak of the SHG profile; the polar-
isation of the laser was perpendicular to the magnetic field. The temp-
erature of the oven was slowly increased, and the sodium density was
inferred from the oven temperature as described in section 4.3.1. At low
particle densities, the wavevector mismatch was negligible, and an N2
behaviour was obtained as expected. These results are shown in figure
5.2.2, which is plotted on a lLog-log scale to allow an easy test of the N2
behaviour at low particle densities. This behaviour is important, as
although the power of the parametrically generated wave depends on the
square of the particle density, non-parametric processes such as two=-photon
absorption followed by spontaneous fluorescence would be expected to show a

Linear dependence on the particle density.
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At higher particle densities, an oscillatory behaviour was observed, as
predicted by equation 5.2.7. This equation also predicts that the first
peak in second harmonic power should occur at a particle density of

3.4 x ’IDZD m_3 which is close to the measured value of 3.5 x 1020 m_3.

The small discrepancy is well within the error caused from estimating the

vapour zone length and approximating the focussed beam to a plane wave.

Figure 5.2.3 shows the results of a similar experiment plotted using Linear
scales. In this case the heatpipe shown in figure 4.3.3(a) was used. The
temperature of the sodium in the pipe was not as accurately known as in the
previous experiment. Nevertheless, the sinz(AkN) behaviour is

obvious, though it is damped due to absorption of the fundamental Light by
the sodium dimers, the population of which becomes significant at higher
temperatures. The increase in Doppler broadening and homogeneous linewidth

with increasing particle density will also have contributed to the decrease

in the amplitude of these oscillations.
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5.3 LINE PROFILES

The variation in the second harmonic power as the laser was tuned through
the resonantly-~enhancing two-photon transition was examined experimentally
using the same laser system, and the heatpipe of figure 4.3.3(b). The
polarisation of the fundamental was arranged to be at 90° to the magnetic
field, and the SH was detected using the filtered solar btind photo-
multiplier tube. To reduce problems caused by wave vector mismatching, éLL
these experiments were carried out at 300°C, corresponding to a particle

density of 2.3 x 1020 atoms m-3; the buffer gas pressure was 1 mbar.

Sets of SHG Line profiles such as those shown in figure 5.3.1(a) were
produced; each curve in this figure corresponds to a different magnetic
field strength, and the same scale was used for each one. A set of
theoretically calculated curves, based on a temperature of 300°C and a

xds of 35 MHz is shown in part (b) of this figure. The peak SH power
varies as the square of the magnetic field strength at low magnetic fields,
but when the Zeeman splitting is comparable with the Doppler width there is
no further increase in peak SH power with magnetic field. The satisfactory
agreement between the theoretically calculated and experimentally observed
Line profiles is a clear indication of the successful role of selection
rules in modetling this nonlinear process. These will be considered
further once the line profiles of two-photon absorption have been
presented, so that the selection rules for the SHG and the two-photon

absorption may be compared and contrasted.

The Line profile of the SHG was compared experimentally with that of the
two-photon absorption. In these cases the SH and the spontaneous

fluorescence at 330 nm were focussed on to the input slit of a 1 m mono~-
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SH POWER (arb. units)

LASER DETUNING (GHz)

Figure 5.3.1. (a) Experimentally and (b) theoretically obtained variation
of second harmonic power with laser frequency, at different magnetic field
strengths:= B = 0.016 T (the curve with the lLowest maximum), 0.028 T,

0.052 T, 0.074 7, 0.096 T, 0.121 T, 0.147 T, 0.167 17, 0.210 T, 0.250 T, and
0.290 T (the widest curve). The magnetic field was perpendicular to the
Laser polarisation. Zero detuning correspends approximately to fO.

T= 300°C, P = 1 mbar, heatpipe b.
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chromator (Monospek 1000), and detected by a filtered photomultiplier tube.
The entry and exit slits of the monochromator were wide open, which allowed
the monochromator to act as a spectral filter of 2 nm FWHM. The mono-
chromator was set to 330 nm or 289 nm to separate the SHG and 330 nm
radiation. The shapes of the Line profiles obtained at 0.02 T and 0.275 T
are shown in figure 5.3.2. At the lower field the SH line profile is seen
to be similar to, but slightly narrower than, the Line profile of the
enhancing two-photon transition. The theoretically calculated SHG Lline
profile is shown by a broken Line; agreement between theory and experiment

is very good.

At the higher magnetic field, when the Zeemén splitting exceeded the
Doppler width, the relative contributions of the different magnetic
sublevels changed significantly across the Lline profile, and this resulted
in the structure seen on both the fluorescence and SHG profiles in figure
5.3.2¢(b). The marked difference between the two profiles is due to the

different selection rules inveolved in the two cases.

The effects of the magnetic quantum number selection rules are most readily
expltained at high magnetic field strengths, as the fine and hyperfine

couplings have been broken down, and m and m approximate well to good

;, Di, and 6§ are each close to either zero

or one. Figure 5.3.3 showsthe energy levels of the 35S and 4D states with

quantum numbers, that is SZ, S

the appropriate high field (ml,ms) designation for each one. Two-photon
absorption of circularly polarised Light occurs with Ams = 0 and

AmL =0, +1, + 2. This may be expected to give rise to ten groups of two-
photon absorption peaks, five for each of W= + 1/2. However, at high
magnetic fields the energy difference between the . = 1/2 and m, = -1/2
ground states 1is approximately the same as that betweeen the 4D states

which differ 1in m by two, so only five sets of absorption peaks should
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Figure 5.3.2 Line profiles as the laser was tuned across the 3S = 4D
resonance (a) at 0.02 T and (b) at 0.275 T, with the laser polarisation

at 90° to the magnetic field. The dashed Lline is the theoretically
calculated curve for the SHG, the narrow solid Line is the experimentally
determined SHG Line profile, and the thicker solid Line is the line profile
of the 330 nm radiation emitted in the cascade decay of the 4D population.
T =2300°C, P =1 mbar, heatpipe b.
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of a magnetic field.

fields.

5.3.3. Energy levels of the sodium 3S and 4D states in the presence
The boxes at the right hand side of the figure give
the magnetic quantum numbers that best describe the states in high magnetic

The '"code numbers' for the transitions are used in figure 5.3.4.
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be expected. These peaks are most readily identified using Doppler-free
two-photon spectroscopy, and the result of such a study is shown in figure
5.3.4 for a field strength of 0.2865 T. Five groups of peaks are indeed
observed, corresponding (from Left to right) to AmL ==2,-1,0,1, and 2.
Plotted under the experimental trace are the theoretically determined
frequencies of the transitions which are allowed in a high magnetic field.
Each group of peaks is due to two groups of transitions, one with 0, = = 172
and one m, = + 1/2. A non-standard notation for the energy levels is
defined in figure 5.3.3 and used to describe the origin of each peak in
figure 5.3.4. This notation was chosen to emphasise the regular pattern of
the transitions. The Zeeman splitting formulae described in section 3.1
obviously work well in describing the energy levels at this magnetic field

strength at least.

When the laser radiation was Llinearly polarised perpendicular to the
magnetic field two-photon absorption could occur with only AmL =0, +2 and
Ams = 0, which would correspond to the centre and two outer groups of peaks
in figure 5.3.4. These are seen in figure 5.3.2(b) as the three Doppler

broadened peaks tabelled '"330 nm'.

The SHG is known to be enhanced by allowed two-photon transitions, so one
may at first expect to see three peaks in a SHG Lline profile recorded under
the same conditions as the two-photon absorption spectrum of figure
5.3.2(b). However, as shown in equation 3.2.29, SHG depends on the product
of three matrix elements <D|g.§lP><Plr.§|S><S|Q§%)|D>; only the first two
are involved with the two-photon transition. The third matrix element is
the quadrupole matrix element, and for this laser polarisation it restricts
the transitions to Amt =+ 2, with Ams = (0, as was determined in the
derivation of the BiZ terms of equation 3.2.38. Thus the Am, = 0

L

transitions, which gave rise to the central peak in the two-photon
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Figure 5.3.4. (a) Experimentally obtained two-photon absorption spectrum ,
of the sodium 3S - 4D transition in a 0.286 T magnetic field. T = 238°C,
P = 1 mbar, heatpipe b. Part (b) shows the theoretically calculated
transition frequencies, and numbers them for identification below, using
the code numbers in figure 5.3.3.

AmL = =2 AmL =: =7 AmL =0 AmL =‘1 AmL =2

1: B4 => =-3b 9: B4 -> -2b 17: B4 => =1b  25: A4 => 2a 33: A4 -> 33
2: B3 ~> =3b 10: A4 -> Qa 18: A4 -> 1a  26: B4 -> 0b  34: A3 -> 3a
3: A4 => -1a 11: B3 =-> -2b 19: A3 -> 1a 27: A3 ~> 2a 35: B4 -> 1b
4: B2 -> ~3b 12: A3 -> Qa 20: B3 -> -1b 28: A2 -> 2a 36: A2 ~> 3a
5: A3 -> =1a 13: B2 => -2b  21: A2 -> 1a 29: 83 ->0b 37: Al ~> 3a
6: B1 -> =3b 14: A2 -> Da 22: B2 -> -1b  30: A1 -> 2a 38: B3 -> 1b
7: A2 => -1a 15: B1 -> =2b 23: A1 -> 1a 31: B2->0b 39: B2 ->1b
8: A1 -> -1a 16: A1 -> Oa 24: B1 ~> -1b 32: BT -> 0b  40: B1 -> 1b




absorption spectra of figure 5.3.2(b), do not contribute to the SHG, and
only the two outer peaks are seen in the SHG Line profile. It is believed
that this is the first report of the direct observation of differences in
magnetic quantum number selection rules for two-photon absorption and

second harmonic generation.

The theoretically calculated contributions to the SHG of the different
two-photon transitions may be seen in figure 5.3.5 where the magnetic field
is the same as that for the highest field plotted in figure 5.3.1, that is
0.29 T. The diagrams are plotted in a similar form to figure 3.2.2; the
circles contain vectors which represent the magnitude and phase of the
effective dipole driving the SH, and the upper and lower axes show the
contributions to the real and imaginary parts of the effective dipole

respectively.

There are only two groups of transitions which contribute to the SHG,
corresponding to the AmL = + 2 transitions discussed above. When the laser
is tuned far below the 3S - 4D resonance the contributions of the two
groups to the real part of the effective dipole are opposite in sign,
approximately equal in magnitude, and small. The reversal in sign is a
result of the Low frequency group being described by the B_2 term and the
high frequency group by the B+2 terms, that is the q = -2 and +2 elements
of the quadrupole matrix respectively. The contributions within each group
are of the same sign as all have the same value of q. The imaginary part
of Z drops off more rapidly with detuning than does the real part, and so

the imaginary contributions to the effective dipole are very small.

As the laser is tuned further into the wings of the Doppler-broadened
transition the magnitudes of the contributions to the real part of the

effective dipole made by the Low frequency group of transitions increase,
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as 1s shown in the -6 GHz diagrams. The contributions of the high
frequency transitions are not much changed, as the laser frequency is not
yet significantly into the wings of those Lines. This results in a net
positive value for the real part of the effective dipole, shown at the side
of the diagram. There are some small contributions to the imaginary part

of the effective dipole, which cause the slight phase difference between

the second harmonic and the square of the fundamental; this is shown by

the deviation from horizontal of the SH vector at this laser frequency.

The -4 GHz diagrams show the lLaser frequency approximately in the centre of
the Low frequency group. In this case, as a result of the shape of Re(Z),
there are both negative and positive contributions from transitions in this
group to the real part of the effective dipole. The interference between
these transitions results in there being only a smallt net in-phase
component. The sharp peak of Im(Z) 1is centred on the same group, and so
the imaginary part of the effective dipole is large, resulting in a phase
difference of 99 degrees between the effective dgpote and Ei.

The other diagrams show the contributions of the various transitions as the
laser is tuned further across the Lline profile, and how the phase and
magnitude of the effective dipole are changed as a result of the laser

detunings from the various transitions.

At lower magnetic field strengths the roles of the different transitions
are not so readily explained, as m and m  are not good guantum numbers,
and the Zeeman splitting pattern is much less easily interpreted. However,
as shown in figure 5.3.6, the calculated frequencies of the transitions
agree well with the experimental trace of Doppler-free two-photon
absorption. The Ams = 0 and AmL = + 2 selection rules for this geometry

of SHG still hold, which is why 1in section 3.1 the wavefunctions of each

atomic energy level were expressed as superpositions of the mg = + 1/2
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states. The contribution of any transition to the SHG depends on the
amount of the m, = 1/2 (or m, = -1/2) eigenfunction in the two wave-
functions involved. This results in the Bt2 terms of equation 3.2.55
which were plotted as functions of field in figure 3.2.1. An additional
factor to be considered in the low field case is that the (Jd,md,F,mF) and
(Jd,-md,F,-mF) transitions lie within a Doppler width of each other, and
will interfere in the manner that was described in section 3.2. This
causes the peak SH power to be predicted to be proportional to the square
of the magnetic fietd.strength at Low magnetic fields, as is séen to be the
case experimentally. The width of the SH Line profile also increases with
magnetic field as the Zeeman splitting broadens the range of two-photon

absorption frequencies.

A magnetic field strength of 0.016 T (the same field as that which was
present for the curve with the lowest maximum in figure 5.3.1) was chosen
for figure 5.3.7, which shows the theoretically calculated contributions of
the various transitions to the effective dipole for SHG as the Laser is
tuned across the Line profile. In the high magnetic field case depicted in
figure 5.3.5 the B, and B_, transitions were split into two

widely separated groups, but in the low field case this has not yet
happened. The transitions are grouped within a much smaller frequency
range, and the signs of the contributions of the Llevels do not seem to
follow any regular pattern, though in fact the signs are readily explained.
When the laser is tuned to be below all the transition frequencies, as in
the -3 GHz diagram, all the positive contributions to the effective dipole
come from the transitions with m, = =2, and all those with negative

L

contributions are due to m = +2 transitions. The sign of the
contribution to the real part of the effective dipole made by any
transition is expected to change sign as the laser is tuned through the

transition's centre frequency, due to the shape of the real part of the
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plasma dispersion function. This is indeed seen in figure 5.3.7. The
phase and magnitude of the effective dipole change across the Lline profile
due to the changes in the net contributions to the real and imaginary parts
of the effective dipole, as shown in the diagrams. Although these diagrams
are more difficult to interpret than those of figure 5.3.5, because of the
small Zeeman shifting and m and m not being good quantum

numbers, the same general principles still apply. The complexity of the
figures gives some idea of the amount of computation required to calculate
each Line profile. This is, however, well worth it when such gocd

agreement is obtained between theory and experiment.

The asymmetry in the experimental curves of figure 5.3.1 is not expected to
such a degree from the theoretical model developed in chapter three. The
origin of this asymmetry is discussed further in section 5.6; it was due to
the phase mismatching effects in the medium which were freqguency dependent

due to the non-uniformity of the magnetic field.

Model ling the homogeneous and inhomogeneous linewidths separately involved
a substantial increase in computing time. It was therefore gratifying to
observe that this model agreed considerably better with the experiment than
did the theory which used only a single damping constant related to the
Doppler width [971. This can be seen in figure 5.3.8, in which the
experimental Line profiles and the predictions of the two theoreticatl

models are compared.

The side-window heat pipe of figure 4.3.3(d) was set up for SHG in a manner

similar to that shown in figure 4.1.1, with the addition of a photo-

multiplier tube to monitor the 330 nm fluorescence through the side~window,
and the use of a 23 cm radius of curvature dichroic mirror to reflect the

fundamental beam back along its own path. Angular movement of the retro-
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Figure 5.3.8. Second harmonic line profiles at different magnetic field
strengths, conditions as in figure 5.3.1. Part (a) shows the experimental
line profiles, part (b) shows the Line profiles calculated using the model
developed in chapter three, and part (c) shows the Line profiles calculated
using a theoretical model which did not consider homogeneous and inhomo-
geneous broadening separately, but just used a single damping term in the
calculations.
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reflecting mirror caused the arrangement to change from a standing wave to
a running wave setup. No difference in the shape of the SHG line profile
was seen between the two cases, though the conditions for Doppler-free
two~photon absorption in the former case were correct, as evidenced by the
observation of Doppler-free two-photon absorption peaks through the side
window. Untike two-photon absorption, SHG cannot be a Doppler-free
process, as a second harmonic photon can be generated only by the
absorption of two photons from one beam. This arises from the conservation
of photon momentum discussed earlier; in a parametric process it is not

possible for the atom to be made to recoil to conserve total momentum.

Linearly polarised fundamental radiation was once more focussed into the
heatpipe, but an out-of-plane three-mirror arrangement was used to align
the plane of polarisation of the Laser Light at 45° to the magnetic field.
This altowed both the Qxy and sz effective dipoles to be driven, as
described by equations 3.2.55, 3.2.56 and 3.2.59. The 45° angle caused the
effective dipoles to have the same geometrical weighting factor. The Line
profiles of the radiation emanating from the two effective dipoles were
measured separately by inserting an appropriately orientated linear

polariser in the second harmonic beam.

At Low field strengths, the Line profiles were similar, as shown in figure
5.3.9(a). At a higher field of 0.294 T the Line profiles of the two effec-
tive dipoles were significantly different, as shown in figure 5.3.9(b).
Equation 3.2.38 shows that different two-photon transitions resonantly
enhance the two effective dipoles. The Qxy moment is associated with

AmL = + 2 transitions, while the sz moment is associated with AmL =+ 1
transitions. The differences in frequency dependence of the magnitudes of

the Qxy and sz moments are therefore most evident at high fields, when

the Zeeman splitting is large and m approximates to a good quantum number.
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Figure 5.3.9. Line profiles of the second harmonic radiation emanating
from the two effective dipoles (a) at 0.022 T and (b) at 0.294 T, with the
Laser polarisation at 45° to the magnetic field. The solid Lines are
experimentally determined, the dashed Lines are theoretically calculated.
The curves with the greater maximum in each case were produced by the z
effective dipole, the other by the x effective dipole. T = 290°C,

P = 1 mbar, heatpipe b.
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The four peaks at high magnetic fields may be identified with the
resonant enhancement of the outermost four peaks of the two-photon
absorption trace of figure 5.3.4. At high fields, the Qxy profile

shows about twice the splitting of the sz profile due to these
differences in selection rules. The maximum intensities of the radiation
emitted by the two effective dipoles are different, which is also due to
the greater relative Zeeman splitting of levels contributing to Qx

than to sz: the greater splitting of the Qxy line profite Leads

to a Lower field being required to split the peaks beyond the Doppler
width, at about which value of field the maximum SH intensity no Llonger

increases with magnetic field strength.

At Llow fields, as in figure 5.3.9(a), the Zeeman splitting is small, and so
there is Llittle difference in the resonant enhancement of the two effective
dipoles, and thus the two Line profiles are similar. In all the cases
shown in figure 5.3.9, the agreement between theory (dashed line) and
experiment (solid Line) is good. Some of the small deviations between the
experimental traces and the theoretical ones may have been due to the
variation of the sensitivity of the photomultiplier tube with position and

polarisation of the beam [128].

When the polariser was removed from the SH beam, both effective dipoles
contributed to the second harmonic generation. The SHG line profiles under
these conditions are shown in figure 5.3.10; they are considerably different
from those of figure 5.3.1 as the sz moment was now also contributing to
SHG. It is easy to see how the Line profiles of the two effective dipoles
shown in figure 5.3.9 would add up to give the appropriate curves in figure
5.3.10. As the polarisation of the radiation emitted from the two effective
dipoles is (by definition) perpendicular, it is permissible to add

intensities, as shown in equation 3.2.60. The two radiation fields cannot
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interfere, but the polarisation properties of the SH beam will depend on
the relative magnitudes and phases of the two effective dipoles. This is

explained further in the following section.
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Figure 5.3.10. Line profiles of the second harmonic generation with the
fundamental radiation at 45° to the magnetic field. The curves in (a) are
experimentally determined, those in (b) are theoretically calculated. The
curves are at different magnetic field strengths:~ B = 0.016 T (the curve
with the lowest maximum), 0.028 T, 0.052 T, 0.074 T, 0.100 7, 0.120 T,

0.147 T, 0.168 T, 0.212 T, 0.250 T, and 0.290 T (the widest curve). :
T = 284°C, P = 1mbar, heatpipe b. '
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5.4 VARIATION OF THE POWER AND POLARISATION PROPERTIES OF THE

SECOND HARMONIC WITH MAGNETIC FIELD

The Laser polarisation was set at 45° to the magnetic field so that both
effective dipoles were excited. The power and polarisation properties of
the SH were examined as the magnetic field strength was varied, at a
constant laser frequency. The SH power was measured using the filtered
solar blind photomultiplier tube. The polarisation properties of the SH
Light were measured in two distinct ways. In the first, a linear polariser
was inserted between the oven and the detector. The polariser was rotated
to the positions of minimum and maximum SH signal; the angle of the
polariser gave the polarisation angle of the SH, and the square root of the
ratio of the signal strengths at the two positions gave the ratio of the
'Lengths of the ellipse axes. A second, "null', method was devised to
measure a/b, in order to avoid problems due to the non-uniform response of
the photomultiplier tube [128]1. A Soleil Babinet compensator was set up as
a quarter-wave plate at 289.3 nm and was inserted in the SH beam with a
Linear polariser between it and the detector. Zero SH signal was obtained
only if the axes of the quarter wave plate were along the axes of the
polarisation ellipse, and if the transmission axis of the polariser was at
90° to the Linearly polarised light created by the quarter-wave plate. The
orientation of the ellipse was then given directly by the angular position
of the quarter-wave plate, and the ratio of the lengths of the ellipse axes
was given by the tangent of the angle between the quarter wave plate and

the Linear polariser.

The power and polarisation properties of the SH were investigated at three
Laser frequencies: fO’ fo + 1.5 GHz, and fo + 3 GHz. The strikingly

different results obtained at these three frequencies are shown in figures
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5.4.1, 5.4.2, and 5.4.3. In all cases there is good agreement between the
theoretically predicted behaviour, which is shown by solid Lines, and the
experimental readings marked as points on the graphs. The polarisation
state of the SH radiation at selected magnetic fields is indicated by the

polarisation ellipses at the top of the figures.

At fO’ which is approximately at the centre of the Doppler-broadened two-
photon absorption peak, the SH power is seen (figure 5.4.1(c)) to rise to a
peak at 0.16 T, as can also be deduced from figure 5.3.10. The eccentricity
of the SH is very close to one (i.e., the polarisation of the SH is almost
Linear) at all fields as seen in figure 5.4.1(b). This is due to the two
effective dipoles being almost exactly in phase with each other at all
field strengths; the maximum expected phase difference between them is
calculated to be 1.3°. Because of the different growth rates of the two
effective dipoles, the polarisation of the SH rotates as the field is
increased, as shown in figure 5.4.1(a). At low fields the two effective
dipoles have approximately the same magnitude, and so the second harmonic
is potarised at the same 45° angle to the magnetic field as the fundamental
beam. At this laser frequency at higher magnetic fields the z effective
dipole is Llarger than the x one, as shown in figure 5.3.9, and so the
polarisation direction moves towards the z axis.

The power and peclarisation properties of the SH at f, + 3 GHz may be

0
explained with reference to figure 5.4.4, which shows the theoretically
calculated size and relative phase of the two effective dipoles when the
Laser is tuned to‘this freguency; a damping constant of 35 MHz and a vapour
temperature of 300°C were used in the calcutation. At this laser

freguency the peak in the magnitude of the x effective dipole occurs at

0.23 T, as is seen experimentally in figure 5.3.1. This is due to the

transitions which contribute to Qxy being Zeeman-shifted to cause maximum
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Figure 5.4.1. Power and polarisation properties of the second harmonic
radiation as functions of the magnetic field strength. The field was at 45°
to the polarisation of the fundamental, and the laser was tuned to f..

The experimental points in parts (a) and (b) were taken in the two ways
described in the text:- + using the linear polariser alone, x using the
null technique. The curves are theoretically calculated; the curve in part
(¢) was normalised to have the same maximum as the experimental readings.
The ellipses at the top of the diagram are drawn to indicate the
polarisation state of the Light at various magnetic field strengths; in
these diagrams the x axis is vertical and the z axis horizontal.

T = 294", fL = fO’ P = 1 mbar, heatpipe b.
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resonant enhancement, as was shown theoretically in figure 3.2.2. Because
the transitions which drive sz are subject to less relative Zeeman
splitting than those driving Qxy' the size of the former moment is seen
still to be increasing at 0.3 T, as the Zeeman effect moves the appropriate
level differences closer into resonance with the SH frequency. The sum of
the SH powers due to the Qxy and sz moments gives the total SH power shown
in figure 5.4.3(c). Figures 5.4.1(c) and 5.4.2(c) show peaks in the SH
power; as these results were taken closer to Lline centre than those of
figure 5.4.3, a smalter field was required to shift the appropriate levels
into positions of maximum resonant enhancement, and the sizes of both the x

and z effective dipoles have passed their maxima by 0.3 T.

The calculated phase difference between the two effective dipoles at the
Laser frequency fO + 3 GHz is shown in figure 5.4.4(c) as a function of
magnetic field. The maximum phase difference at this laser frequency is
much greater than at fo. The relative phase of the two moments affects
the polarisation state of the SH radiation. This is seen in figure
5.4.3(b) as a reduction in the eccentricity of the SH, though circularly
polarised lLight was not produced, as the two moments had different
magnitudes. However, a phase difference of greater than 90° would have
resulted in the polarisation angle passing into the next quadrant; figures

5.4.3(a) and 5.4.4(a) show this happening at 0.26 T.

The change in the polarisation properties of the SH with magnetic field
strength may thus be explained in terms of the changes in the relative
phases and magnitudes of the two effective dipoles. These changes are
brought about by differences between the resonant denominators applying to
the transitions which enhance the two effective dipoles. Near Line centre
the phase differences between the fundamental and the effective dipoles are

always small, and so the eccentricity of the SH is close to 1.0 (the
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reasons for the small phase difference in the case of the x effective
dipole were shown schematically in figures 5.3.5 and 5.3.7). Further from
line centre, as was shown in figure 3.3.2 for the x effective dipole, the
imaginary part of the effective dipoles may become significant, and the
phase difference between the two effective dipoles causes significant
deviations from linear potarisation of the SH. Similarly, the amount of
polarisation rotation depends on the relative sizes of the effective
dipocles, the rotation being much greater at fo + 3 GHz than at Lline

centre.

5.5 SECOND HARMONIC POWER DEPENDENCE ON THE FUNDAMENTAL

POLARISATICN

In order to measure the dependence of the second harmonic power on the
fundamental polarisation angle, a half-wave plate was inserted before the
oven to vary the angle between the plane of polarisation of the fundamental
and the magnetic field. The SH power was measured directly by the filtered

solar blind photomultiplier tube.

At low fields, in which the two effective dipoles grow at the same rate
when the fundamental polarisation is at 45° to the magnetic field, the SH

power is expected to show a sinze dependence on the polarisation angle

~ Sk ~mx o i ohB 2 2
0, as ISHOC Qx;axy + szsz ( xsxy) + (Exgzgzy) where §xy represents
o~ 2 ~ . :
ny/Ex and szy represents sz/ExEy in equations 3.2.55 and 3.2.56. The
§iy are approximately equal at low fields, so Isﬁx'(fi)z + (EXEZ)2 = sin2 0.

This was observed, and is shown in figure 5.5.1. The difference in the
growth rate of the two effective dipoles in higher magnetic fields was
described in the previous section. This lLeads to a more complicated than

in the low field case. At a fundamental polarisation angle of 90°
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Figure 5.5.1. Variation of the SH power with the fundamental polarisation
angle. Each theoretically calculated curve was normalised to have the same
peak power as its associated set of experimental results. Columns 1 to 3
show the results for the laser tuned to f., fo + 1.5 GHz, and f, + 3 GHz
respectively. The different rows show thg results for differen? magnetic
field strengths. T = 285°C, P = 1 mbar, heatpipe b.

only the x effective dipole is driven, and the SH power appropriate to that
dipole alone is obtained. At other angles the z effective dipole is also
driven, and it adds to the total SH power. This effective dipole is
strongest at angles of 45° and 135°. Figure 5.5.1 shows that the theory
and éxperiment agree that the maximum deviation from the sinze

behaviour occurs at the highest magnetic fields, in which cases the
differences in the magnitudes of the two effective dipoles are generally

the greatest. The dependence of the shapes of the curves with respect to

taser frequency may be understood with reference to figure 5.3.9; the
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frequencies in figure 5.3.9(b) at which there is the greatest difference in
magnitudes of the two effective dipoles are the frequencies at which there
is greatest deviation from the sin29 behaviour in the graphs in the

lowest row of figure 5.5.1.

5.6 INVESTIGATION OF THE ASYMMETRY OF THE SECOND HARMONIC LINE

PROFILES IN HIGH FIELDS

For all the studies reported so far in this thesis, apart from those in
section 5.2, the properties of the SH have been calculated from the
interaction of a single atom with the field, with allowance made only for
the Doppler effect causing differences between atoms. This has given good
agreement for most SH properties, but has failed to explain the difference
in the heights of the two peaks in the SH line profile in high fields, such
as shown in figure 5.3.1. 1In this section bulk effects in the medium &
will be included in the model. Three mechanisms for frequency-dependent
phase-mismatching effects will be considered as possible reasons for the
asymmetry of the high-field Line profiles: dispersion due to quadrupole or
two-photon resonances on the 3S - 4D transition, and the effects of a %

non-uniform magnetic field.

As has already been noted, the major contribution to the difference in the
phase velocity of the fundamental and the second harmonic is from the 35 -
3P transitions. These are some 300 cm-1 off resonance with the Laser
Light, so the variation in refractive index due to these transitions will
be negligible across the 3S - 4D line profile. This is not so, however,
for the contribution to the dispersion from the 35 = 4D transitions.

Although these electric quadrupole and two-photon transitions are very



weak, they would be exactly in resonance, and so may become significant.

This is considered in the following paragraphs.

For resonant transitions the Sellmeier equation must be modified to include

a damping term; in this case, using the same notation as 1in equation 5.2.9,

n(l) - 1 = Nr N Fi s (5.6.1)
e i 1)

A2, = 1R + X271 + A°12 )
1] 1 g 55

27 7]
where Xi is the damping constant for Level i, which is equal to the FWHM
of the absorption Line. Tull et al [92] calculated gkfik for the 3S = 4D
transition to be 9.97 x 10'7', where 9 is the statistical weight of the 4D
level. An estimate of the contribution of this quadrupole resonance to the
refractive index was made by calculating n(i) - 1 for one of the 3S - 4D
transitions, ignoring the Doppler effect, and taking Xi to be 70 MHz. The
maximum values of |n(A) - 1| occur tKJ? from the resonant frequency, and

were calculated to be 2.8 x ‘IO_29 x N. This figure is two orders of

magnitude smaller than the value of the same quantity caused by the sodium

D Llines. Additionally, the dispersive effects of this quadrupole resonance
will be lessened by Doppler broadening and the presence of the other 3S =
4D transitions. Thus it seems unlikely that the asymmetries in the Lline
profiles were due to frequency~dependent phase~mismatching effects due to

the dispersion caused by the quadrupole resonance.

As the two-photon absorption strength is dependent on the laser intensity,
so is the change in refractive index caused by the two-photon absorption.
The relative stfengths of the refractive index changes due to the
quadrupole and two-photon transitions may be éonsidered by calculation of
the relative absorption rates of the two transitions. The 3S - 4D two-

photon absorption rate per atom wTPA is given by Hanna et al [14] as
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= T2 2
Veop =40 ( ¥4 Han Hos (5.6.2)
4 2 2 2 z :
2£§ﬁ ¢\, —2w) +‘Kd 7 wps - W

where IL is the laser intensity, Xd is the damping constant for the 4D

states, and the other symbols are as defined in chapter three. The single-

photon guadrupole transition rate NQ £12, 92, 1301 1is

| -5
Wq = 6.67 x 107" g fy I ( ¥4 ) - (5.6.3)
VY.
e 2.9, n° oW\ Gugg - 2 w)" Y

Miles and Harris [124] tabulate the dipole matrix elements in equation

5.6.2 to be <3S|er|3p> = 2.13 x 10727

Cm and <3P|er|4D> = 7.31 x 10730 Cm;
the value used for the oscillator strength for the quadrupole transition
was the one mentioned above. In this case the ratio of the absorption

rates 1is WQ(ZWL)/WTPA(WL):1.5x108/IL, For a 100 um diameter laser beam waist
and a laser power of 0.5 W, this ratio equals 2. Therefore under the
conditions of these experiments the effect of the quadrupole transition on
the dispersion is expected to be greater than that of the

two-photon absorption. When the beam was not focussed, the effects of

two-photon absorption on the dispersion would have been even less.

The phase of the generated second harmonic depends on the strength of the
magnetic field and the laser frequency, as was illustrated in figures
3.2.2, 5.3.5 and 5.3.7. Thus, in an inhomogeneous magnetic field,
frequency dependent effects may arise from magnetic field gradients causiﬁg
a variation in the phase of the second harmonic which may tend to
counteract or reinforce the phase mismatching processes described in
section 5.2. This effect may be significant at particle densities near or

above the first phase-match peak of figure 5.2.2 if the change in magnetic
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field is not symmetrical about the centre of the vapour zone and beam

focus.

Experiments were carried out to determine which of these effects dominated
the production of the asymmetry of the Line profiles. The laser polar-
isation was perpendicular to the magnetic field throughout. The asymmetry
of the peak heights at 0.3 T was found not to be dependent on the Laser
power, confirming that the dispersion due to two-photon absorption was not
important. The lens that focussed the laser beam into the cell was moved
along the beam axis, and SH Line profiles were recorded at 0.284 T. The
ratios of the heights of the two peaks are plotted against the position of

the Llens in figure 5.6.1. Here it is seen that the ratio may be greater or

o
0’0
154 o 0
o
o 0
T °
g | o .
x 10 +
i)
a
0 : '
o L]
=
<C 8
% o5 "ot
O'o 1 1 B 1
-20 -10 ¢ 10
LENS POSITION {em)

Figure 5.6.1. Ratio of the SH powers at the lLow and high
frequency peaks of SHG in a 0.284 T field, as a function of

the position of the 20 c¢cm focal length lens. The lens was

26.4 ¢m from the centre of the oven at the zero of the lens
position axis. T = 285°C, B = 0.284 T, P = 1 mbar, heatpipe c.
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Ltess than one, depending on the position of the lens. The separation of
the maximum and minimum in this curve is approximately the same as the

vapour zone lLength. When no lens was used the peak height ratio was 1.0;

in this situation the lLaser beam was only very slightly divergent during
its passage through the vapour. It is unlikely that the dispersion due to
the quadrupole resonance would produce this shape of curve, so further work

was done to investigate the effect of the non-uniform magnetic field.

The theory of harmonic generation using a focussed beam has been given by

Ward and New [135]1; the presence of a beam focus introduces phase shifts,

and the gaussian beam intensity and phase distribution must be taken into é
account. To simplify comparison of experiment with theory, further
experiments were conducted without using the focussing lens, so that the

2 mm diameter laser beam may be treated approximately as an infinite plane
wave. It was shown in section 5.2 that for such a plane wave

= 2 . ~ .
dE = fN(EWIZ) exp[1(k2w 2kw)y3 expLidpl dy. (5.6.4)

2w
The quantity f.expLidl depends on the magnetic field strength, and is
proportional to axy when the magnetic field and laser polarisation are ;

perpendicular to each other. Putting Qxy = QR + 1QI (where QR and GI

are real), Ak BZw -2 gw, and assuming a non-depleted input wave gives
dE, = Nk' [QRcos(yAk) ~ QIsin(yAk) +

i(QIcos(yAk) + Q,sin(yAk))] dy (5.6.5)

R

where k' is a constant. This eguation was integrated for the conditions of

interest, viz




constant for 0 < y < 0.12 m
N = { (5.6.6)
0 for 0.12 m < y < 0
k = 8.97 x 10“20 N m-1. :
In a uniform magnetic field the result is the same as from equation 5.2.7, ;

and in a situation where the magnetic field is symmetrical about the centre
of the vapour zone the heights of the two SH peaks are still approximately
equal. However, if the beam experiences more positive magnetic field
gradient than negative magnetic field gradient, this is no longer the case.
At particle densities below the first phase match peak, and in a positive
magnetic field gradient, the change in expli¢l with position reduces the
phase velocity mismatch for the Low frequency peak in SHG, but increases

the phase velocity mismatch for the high frequency peak.

To test this experimentally the electromagnet was moved 3.5 cm out from the
position that was symmetrical about the vapour region. SHG Line profiles ?
were recorded with a peak field of 0.288 T over a range of particle
densities, and then analysed to give plots of SH power against particle
density at a number of frequencies across the line profile. Two such
curves are shown in figure 5.6.2 for frequencies that correspond to the two
peaks in SHG at 'low particle densities. The experimental arrangement was
such that there was more positive magnetic field gradient than negative;
the figure shows the beneficial effect of this arrangement on the Llow
frequency peak and the detrimental effect on the high frequency peak, as

expected from the arguments outlined above.

The theoretically calculated curves are shown in part (b) of the same

S e el T A s R e [ i s D el G A TR S A RS T s gD S SR B B SR G g ) S

figure. The agreement is fairly good; the main features of theory and
experiment correlate well. It was found that the depths of the minima in
the theoretically calculated curves were rather sensitive to the magnet

position. The small displacement of the peaks between theory and
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Figure 5.6.2. (a) Experimental and (b) theoretical variation of SH power
with sodium atom density in the nonuniform magnetic field described in the
text, the peak strength of which was 0.288 T. The lLaser frequencies were
chosen to be close to the two frequencies of peak SHG in this magnetic field
strength. The lines drawn in part (a) are to guide the eye. P = 1 mbar,

fL = fO + 3.9 GHz (high), fL = fO - 4.1 GHz (low), heatpipe c.
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experiment may well have been due to nonuniformities in the vapour density,
or an incorrect estimate of the vapour temperature. However, these results
verify that the asymmetry in the line profiles was indeed due to the
effects of the nonuniform fietd. Similar considerations will hold for the
case of a focussed beam, but the lLocation of the beam focus in the
inhomogeneous field must also be considered. Detailed calculations were
not carried out for such cases, due to the complications mentioned above.
This study has, however, unambiguously determined that changes in the phase
of the generated second harmonic due to changes in the magnetic field
strength can produce asymmetries in the SHG Lline profiles such as those

that were observed.

At particle densities much less than the first phase match peak the phase
changes have Little effect in theory; in practice the peaks in the Lline
profiles are seen to have approximately equal peak heights. At particle
densities less than, but near, that of the first phase match peak, the low
frequency peak in the Line profile is greater than the high frequency peak
under the conditions described above. At higher particle densities,
certain frequencies may correspond to a minimum on the phase match curve,
and others to a maximum; this would give rise to a much distorted line
profile. Such a trace is shown as the thicker Line in figure 5.6.3; the

thinner Line is a Line profile at a particle density below the first phase

match peak.
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Figure 5.6.3. SHG line profiles well below and far above the
first phase match peak. The thin Line is the experimen;at[y
recorded.line profile at an atomic density of 2.79 x 10

atoms m ~; the thick21tine is gge same, but at an atomic
density of 1.08 x 10° atoms m ~. B = 0.289 T, P = 1 mbar,
heatpipe c.

5.7 EFFECTS OF TEMPERATURE CHANGE

Changes in the temperature of the sodium vapour cause changes in the
particle density, the results of which have been described in sections 5.2
and 5.6. A much less significant effect of a change in vapour temperature
is the resulting change of Doppler width. A change in vapour temperature
from 238 °C to 3199 resulted in a 150-fold increase in SH power, but an
increase in Doppler width to a width of only 1.08 times that at the ori-
ginal temperature is expected from equation 5.1.2. The fractional increase
in the SHG Llinewidth is even less, as fine, hyperfine and Zeeman splitting
are significant, and independent of the Doppler width. The temperature at
which the SHG was a maximum was 319°C, and 238°C was the lowest temperature

at which Line profiles could be readily recorded with a reasonable signal
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to noise ratio. For completeness, sets of Line profiles at these temper-
atures are shown in figure 5.7.1, but there is Little to be seen in this

figure that has not already been mentioned in the previous sections.

10
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Figure 5.7.1. Experimentally obtained line profiles at (a)°238 C and

(b) 319°C. The magnetic field strengths used for both sets of line
profiles were:- 0.015 T (the curves with the lLowest maximum), 0.028 T,
0.052 7, 0.074 1, 0.096 T, 0.121 T, 0.147 T, 0.167 T, 0.210 T, and 0.290 T
(the widest curves). P = 1 mbar, heatpipe b. E
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5.8 EFFECTS OF CHANGES IN THE BUFFER GAS PRESSURE

The pressure of the buffer gas affects the SHG process through changes in

the damping constant in the equations for the magnitude of the

Xas'
effective dipoles. Collisions of the sodium atoms cause the phase of the
atomic wavefunctions to be changed, and thus the coherence between the 3S
and 4D wavefunctions is lost. An increase in such collisions decreases the
second harmonic generation efficiency, and broadens the Llinewidth of the
resonantly-enhancing two-photon transition. Collision broadening and
pressure effects on spectral lines have been reviewed by Hindmarsh and Farr
C136]1, Ch'en and Takeo [137], and Margenau and Watson [138]. The

experimental determination of the effects of buffer gas pressure on the

two~photon tinewidth was described in section 5.1.2.

SHG Lline profiles were measured in the manner described in section 5.3, but
using the oven shown in figure 4.3.3(c). Figure 5.8.7 shows SHG Lline
profiles taken at 1 mbar and 234 mbar, in both cases at 285°C and with a

0.275 T magnetic field which was perpendicular to the laser polarisation.

10
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Figure 5.8.1. Experimentally obtained SHG Line profiles with a
0.275 T magnetic field perpendicular to the laser polarisation,
at buffer gas pressures of 1 mbar and 234 mbar. T = 285°,
heatpipe c.
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The pressure broadening and shift between the two profiles is readily seen.
The peak SH power was also reduced by a factor of 240 by the increase of

the buffer gas pressure.

A number of such Line profiles were recorded as the buffer gas was
increased; the dependences on de of the peak SH power at 0.02 T and

0.275 T are shown in figure 5.8.2.

Argon pressure (mbar)
1 19 100 1000

1000

100

SH Power larb units)

10}

1 . st 13t PSRN W S BN I W 1 | [RE WO S SR ITA 71 | 1 i 41y
10 100 1000 10000 100000
¥, MHz)

Figure 5.8.2. Dependence of SH power on damping constant ¥, . The

circles show the SH power at the peak of the SHG Lline profi?g at 0.02 T,
the crosses show the SH power at the low frequency peak of the SHG Lline
profile at 0.275 T. The calculated dependence is shown by the solid lines,
the maximum intensity of the 0.02 T curve was normalised to fit the
experimental data. T = 285°C, heatpipe c.

5.56




Theory and experiment agree that there is Little change in peak SH power
with de until de becomes a significant fraction of the Doppler width.

In contrast, at high pressures, the Doppler broadening is negligible
compared with the pressure broadening. In this case, equation 3.2.55 may be

simplified to give the expected value of the effective dipole as

Qo 2 B, - B [tw,, — 2w +i¥,] (5.8.1)
P I
F,mg, (wds - 2w)" + de
J,MJ

which leads to the SH power being expected to fall off as the fourth power
2 _ 2 : ; ¢

of Zas when 3as >> (wdS 2w)~. As the levels are split more in a high

magnetic field than in a lLow one, the above condition is satisfied for all

levels at a higher value of de in a higher magnetic field. Thus the

~4 power dependence of the peak SH power on Xas is expected to occur at

higher Xas for higher fields, as is seen in figure 5.8.2.

Although there is a fair qualitative agreement between theory and
experiment at these higher pressures, there are substantial deviations
between the experimental results and the theoretical predictions,
especially at the higher maénetic field strengths. Some of this may be
instrumental. At low pressures the SH power sometimes rose slightly with
increasing buffer gas pressure, though the amount varied between runs and
between ovens. It is suggested that this may have been caused by the
buffer gas affecting the evaporation rate of the sodium; similar, but
detrimental effects may have been occurring at higher gas pressures.
Figure 5.8.3 shows the results of the same experiment, but using the
heatpipe of figure 4.3.3(a), and using permanent magnets to produce the
0.02 T magnetic field. In this case the theoretical prediction of the peak
SH power at any buffer gas pressure is in reasonable agreement with the

experimentally obtained values from the three different runs. The former
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heatpipe was operated to keep the temperature measured by the thermocouple
constant, the latter heatpipe was operated under conditions of constant
heat input. Changing the buffer gas pressure may have changed the
temperature distribution and rate of heat flow in the pipes, resulting in a
change of particle density or vapour zone length. Further experiments need

to be done to investigate whether or not such effects occur.
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Figure 5.8.3. Dependence of the SH power on damping
constant X . The different markers show the
exper1mentaf results from different runs using heatpipe
a, the solid lLine shows the theoretically calculated
dependence, normalised to the experimental results.

T = 330°C, heatpipe a.

Another possible explanation for the differences between observed and
predicted behaviour is that the modelling of the effects of fhe buffer gas
pressure in terms of de is not realistic; the perturbing atoms may well
have more effects than just collisional dephasing. For example, the
collisions may induce population redistribution amongst the magnetic

sublevels.
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Line profiles at various buffer gas pressures at 0.02 T and 0.275 T are
shown in figures 5.8.4 and 5.8.5. As described above, the measured drop
in SH power with buffer gas pressure is greater than expected, but

otherwise fair agreement is obtained between theory and experiment.

Figure 5.8.6(a) shows a family of Line profiles taken at a buffer gas
pressure of 109 mbar. These agree well with the tHeoreticaLLy model Led
curves in figure 5.8.6(b), and contrast with the line profiles in part (c)
of the same figure, which were plotted for 1 mbar buffer gas pressure. A
higher magnetic field was required to saturate the SH dependence on
magnetic field strength in the higher buffer gas pressure, as in the high
pressure case a higher field was required to split the Line profile beyond
the higher pressure and Doppler-broadened linewidth. The same was true of
the Line profiles taken with the field at 45 degrees to the laser

polarisation.

The dependence on magnetic field strength of the power and polarisation
properties of the second harmonic were determined at 109 mbar in a similar
manner to that described in section 5.4. The results of this study at a
Laser frequency f0 + 3 GHz are shown in figure 5.8.7. Although there

are significant differences between the theoretical and experimental values
for the eccentricity, good agreement was obtained for the polarisation
angle and the SH power curves. This figure should be contrasted with the
low pressure results of figure 5.4.3. The polarisation rotation and
deviation of eccentricity from 1.0 are much less in the high pressure case

than in the low pressure one.
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Figure 5.8.4. (a) Experimentally and (b) theoretically calculated
variation of second harmonic power with laser frequency at different buffer
gas pressures:— 5.3 mbar (the curve with the greatest maximum), 14 mbar,

32 mbar, 61 mbar, 106 mbar (the curve with the lLowest maximum). These
values correspond to values of ¥, of 120 MHz, 300 MHz, 670 MHz, 1277 MHz,
and 2200 MHz. Each experimental Zurve has been plotted with zero laser
detuning at its centre; in reality, the central frequency of each curve was
different due to pressure shifting of the energy levels. T = 2859,

B = 0.02 T, heatpipe c.
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Figure 5.8.5. (a) Experimentally and (b) theoretically calculated
variation of second harmonic power with laser frequency at different values
of buffer gas pressure as listed in figure 5.8.4, but with a 0.275 T
magnetic field. T = 285°, heatpipe c.
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Figure 5.8.6. (&) Experimentally and (b) theoretically obtained variation
of the SH power with Laser frequency, with 109 mbar argon buffer gas, and
at magnetic fields of 0.018 T (the curve with the lowest maximum), 0.068 T,
0.123 7, 0.17 T, 0.218 T, and 0.268 T (the curve with the greatest
maximum). T = 285°C, heatpipe c. Part (c) show the theoretically
calculated Line profiles with 1 mbar of buffer gas, but otherwise the same
conditions.
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Figure 5.8.7. Power and polarisation properties of the second harmonic
radiation as functions of the magnetic field strength, at a buffer gas
pressure of 109 mbar (¥, = 2130 MHz). The magnetic field was at 45°to
the Laser polarisation, &nd the laser was tuned to f. + 3 GHz. The curves
are theoretically calculated, the curve in part (a) was normalised to have
the same maximum as the experimental results. T = 285°C, heatpipe c.
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5.9 USE AS A PARTICLE DENSITY PROBE

In the SHG experiments described in the previous sections the second
harmonic is generated only in the volume in which the Llaser beam and
magnetic field cross. At relativiey low particle densities (that is
densities well below the first peak in the relationship between SH power
and particle density) the amount of SH generated in such a volume is
proportional to the sguare of the atomic density. Thus measurement of the
SH power as the laser beam and a localised magnetic field are moved around
would allow a three dimensional mapping of the atomic density to be

performed [18].

For such a technique to be useful the magnetic field must be restricted to
a relatively small fraction of the length of the region occupied by the
vapour. This was achieved using the permanent magnets described in section
4.3.2, but mounting them in stacks tipped by conical polepieces. At the
relatively low magnetic field produced at the centre of the polepieces
(0.02 T), the SHG efficiency was proportional to the square of the magnetic
field strength; the spatial distribution of the SHG efficiency was thus

calculated to be as shown in figure 5.9.1.

This magnet assembly was set up across the relatively lLong heatpipe shown
in figure 4.4.3(e). The laser beam was focussed into the pipe with a

0.53 m focal Length lens, and the SH was detected as described previously.
The peak SHG efficiency ocurred when the thermocouple on the outside
surface of the heatpipe read 330°C; the experiments were performed at
273°C. The oven was moved relative to the apparatus, thus removing
problems such as the spatially non-uniform response of the photomultiplier
tube which would have had to have been considered if the lLaser beam had

been moved.

5.64




~.10F
0
E
=2
-~
O
ke
&)
I
w
0 P M SR G SEDY SDWU URSOR G Tovaen |
-6 =& =2 0 2 4 6
Position {cm)

Figure 5.9.1. SHG efficiency as a function of position along
the heatpipe. Position 0.0 corresponds to a position in the
centre of the magnet's polepieces.

Even with the efforts made to minimise the spatial extent of the magnetic
field, the SHG efficiency was greater than half maximum over 34 mm, so the
sample length examined by this technique was large. The results for a scan
along the axis of the pipe at a buffer gas pressure of 0.02 mbar are shown
in figure 5.9.2. The restriction of the sodium vapour to the central
region of the pipe is evident, but it is not possible to determine a
detailed particle density distribution due to the long sample lLength.
However, it can be seen that the pipe is not operating in a true heatpipe
mode, as two peaks are seen in the SH power, corresponding to peaks in the

sodium atom density.

The pipe was then moved so that the magnet was in the centre of the vapour
zone. Horizontal and vertical movement of the pipe produced the results
shown in figure 5.9.3. Although the SH is generated in a relatively large

length along the beam, the SHG occurs only across the width of the beam,
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Figure 5.9.2. SH power measured as a function of the position of the

intersection region of the lLaser beam and magnetic field in the oven; the

oven was being moved in the direction

of the laser beam.
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Figure 5.9.3. SH power measured as functions of the position of the
intersection region of the lLaser beam and the magnetic field in the oven;
the oven was moved in the directions indicated.
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which is less than 1 mm. The scans in figure 5.9.3 therefore show in some
detail transverse variations in atomic density. The atomic distribution
seems to be constant in the vertical plane through the centre of the pipe,
but there are significant variations in the atomic density in the
horizontal plane through the centre of the pipe. Obviously a series of
such measurements would allow a detailed mapping of the atomic density

distribution in the oven.

Similar ideas were used in testing the stability of the FGH temperature
control apparatus. The oven of figure 4.3.3(c) was again run at a
temperature well below the first phase match peak, but with a magnetic
field along the full length of the oven. The oven was brought up by the.
controller to a temperature of 290°C (read by the thermocouple embedded in
the oven wall), then the temperature set-point of the controller was
increased to 300°C. Figure 5.9.4 show; the slight overshoot in oven
temperature as the controller raised the oven temperature to the new
set-point. The stability of the oven temperature at this set-point was
determined from the variation in the SH power measured for time greater
than ten minutes. From equation 4.3.1 and the fact that the second
harmonic power is proportional to the square of the sodium atom density, it

can be shown that the fractional change in SH power dP2w/lP2w is

dP2w = =2 (1 - 12423.3/T) dT (3919

P2w T

where T is the absolute temperature of the vapour. Thus as the variation
in PZw was measured to be3%, the variation in temperature was 0.07%,

or 0.4 C.
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Figure 5.9.4. SH power as a function of time, when the FGH temperature
controller was reset at time zero from 290°C to 300 °C.
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CHAPTER SIX
SUMMARY AND FINAL DISCUSSION
6.1 SUMMARY

The role of the 3S - 4D two-photon transition in enhancing magnetic-field-
induced second harmonic géneration in sodium vapour has been studied in
detail, using a single-frequency laser. A theoretical model has been
developed which includes the effects of atomic selection rules, Zeeman
splitting, the mixing of atomic eigenfunctions in a magnetic field, and

homogeneous and inhomgeneous broadening mechanisms.

Experimental measurements of the usual basic properties of second harmonic
generation (SHG) were as expected; the second harmonic (SH) power varied as
the square of the fundamental power over the range of power densities used
(~10S to 107 Wm_z) and the width of the SH gaussian beam was 1//2 that of

the fundamental.

The SH power was measured to be proportional to the square of the sodium
atom density at low particle densities, but this relationship broke down

above 1020

atoms m"3 as the difference in refractive index of the vapour at
the wavelengths of the fundamental and the SH lLead to a mismatching of the
phase velocities of the two waves. This led to an oscillatory dependence

of the SH power on the atomic density.

The theoretical model, which was developed in chapter three, was found to
be in excellent agreement with experimental results as Long as the homo-

geneous Linewidth was less than the Doppler width. The properties of the
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SH were first measured at approximately 300 °C and with 1 mbar of argon

buffer gas.

No SHG was expected, or observed, when the magnetic field was zero, or was
orientated parallel to the Linear polarisation of the fundamental beam. An
applied magnetic field induced Zeeman splitting in the atomic energy
Levels, and caused a change in the relative amounts of the m = + 1/2
components in the atomic wavefunctions. It was shown how this could lead
to SHG, and that, as long as the Zeeman splitting was small compared to the
Doppler width, the SH power depended on the square of the magnetic field.
It was also shown how two perpendicular quadrupole moments could act as
"effective dipoles'" for the SHG, one enhanced by am = + 2 two~-photon
transitions, the other by AmL = + 1 two-photon transitions. The
experimental line profiles of SHG and two-photon absorption were compared
and contrasted; SHG occurred only within the Line profile of the resonantly
enhancing two—photon absorption, but was not enhanced by the Aml =0
transitions. The Lline profiles due to the two effective dipoles were
similar at lLow magnetic fields (~0.02 T). However, in higher fields, in
which Zeeman splitting was comparable to the Doppler width, these Line
profiles were significantly different, due to large differences in the
amount of resonant enhancement afforded to the two effective dipoles. The
different dependences of the magnitudes and phases of the two effective
dipoles on magnetic fietd strength also led to other effects. For example,
when both effective dipoles were driven, polarisation rotation and dev-
jation from Llinear polarisation of the SH resulted; the amount of each was
dependent on the magnetic field strength and the laser frequency. Also, at
magnetic fields below 0.05 T the SH power was dependent on the square of
the sine of the angle between the direction of Linear polarisation of the
fundamental and the magnetic field, but a more complicated dependence was

predicted and observed at higher magnetic field strengths.
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The effects of altering the vapour temperature were studied, but few
changes were observed apart from those due to the associated change in
sodium atomic density. Raising the pressure of the argon buffer gas,
however, produced significant changes in the SHG, due to the resulting
decrease in the Lifetime of the coherence between the 3S and 4D wave-
functions. The peak SH power was expected to decrease as the fourth power
of the homogeneous linewidth when the homogeneous Llinewidth was much
greater than the Doppler width. Experimentally, however, the SH power was
seen to drop somewhat more rapidly. This disagreement certainly requires
further investigation. Raising the buffer gas pressure also caused an
increase in the width of the SHG Lline profiles; good agreement between
theory and experiment was obtained for a family of Line profiles taken at a
buffer gas pressure of 109 mbar. When both effective dipoles were driven,
magnetic-field— dependent rotation of the SH polarisation and deviation
from linear polarisation of the SH were observed, though, as expected, the

magnitudes of these effects were less than in the low pressure case.

The phase difference between the second harmonic and the fundamental
radiation was expected to be dependent on the magnetic field strength and
the laser freguency. This phase difference was involved in the asymmetry
of the SH lLine profiles in high magnetic fields. The magnetic field that
was used was inhomogeneous, which, although it was a defect in the
experimental arrangement, gave rise to the asymmetries of the line
profiles, the investigation of which Led to interesting insights into the
SHG process. In a magnetic field gradient the phase of the generated SH
changes with position, and this phase change may act to enhance or

reduce the effects of the phase velocity mismatch of the fundamental and SH
beams. In high magnetic fields the phase of the SH is an odd function of

Laser detuning from the centre of the two photon transition; thus, in a
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magnetic field gradient, the Low frequency components of the SHG could be
enhanced while the high frequency components were reduced, leading to the
observed asymmetries in the line profiles. These ideas led to the
suggestion of tailoring the magnetic field to produce specific effects.
For example, since a reversal of the magnetic field changes the SH
polarisation by 180°, a spatially alternating magnetic field could be used
to produce pseudo-phase-matching similar to that used for electric-field-

induced SHG by Shelton and Buckingham [39].

The final section of chapter five showed one possible application for
magnetic-field-induced second harmonic generation, the production of a
three dimensional map of the particle density in a vapour. SHG occurs only
in the volume of overlap of the magnetic field and the laser beam, and the
magnetic field in any such region is proportional to the square of the

sodium density.

Throughout the study, much better agreement was obtained between experiment
and theory when the homogeneous and inhomogeneous linewidths were modelled
separately instead of just using a damping constant related to the Doppler
width [97]. The use of a single frequency laser and an atomic nonlinear
medium allowed an experimental investigation of a second harmonic
generation process in great detail, providing a stringent test of the model
that was developed to predict the properties of the nonlinear effect in
terms of fundamental atomic parameters. Apart from some discrepancies at
high buffer gas pressures, the model agreed remarkably well with the

experimental results.
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6.2 RELEVANT FUTURE WORK

The experimental work reported in this thesis has concentrated on the

basic physics of magnetic-field-induced second harmonic generation in
sodium vapour. The applicability of the model has been confirmed over
almost all the experimental conditions used. The conversion efficiency,
though small, was quite sufficient to allow such a study to be undertaken.
However, in this wavelength region and at the power densities used, the use
of a nonlinear crystal such as potassium—dihydrogen-phosphate would allow
much more efficient generation of second harmonic. Possible uses for
magnetic-field=induced SHG in vapours are more Likely to occur at
wavelengths at which crystals are not transparent, so any extension of this
work should look at the possibility of using other vapours or gases to

generate coherent radiation below 200 nm.

Increases in tunability and conversion efficiency are also desirable. The
first may come from using a molecular medium, in which there are many
ctosely spaced allowed two-photon transitions which may be able to enhance
the SHG, though care must be taken to select lLevels that are magnetically
active, and which do not have high pressure broadening constants. Though
such a medium is unlikely to be obtainable for continuously tunable SHG,
Line tunablity should be possible. The most obvious means to increase the
efficiency of the SHG is to increase the power density of the fundamental
beam (as the efficiency is proportional to the power density of the
fundamental laser beam), though to ensure good efficiency the Linewidth of
the lLaser should not be much greater than that of the SHG Line profile.
The maximum useful power density would be limited by processes such as
multi-photon ionisation [10]. Higher power densities may be achieved in
any of the following ways:= i) by using a higher power, possibly pulsed,

Laser, i) by locating the doubling medium inside the laser cavity [8]
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where the circulating radiation field is quatly substantially larger than
the field that is transmitted through the output coupler, and 1ii) by
locating the vapour in an external, resonant, cavity which is locked to the
laser frequency [139]1, which would again produce a high circulating

fundamental radiation field.

The SH power is dependent on the square of the sodium atom density, N, as
long as the phase velocity mismatch of the SH and fundamental beams is
sufficiently small that the SH generated at different points in the vapour
contributes to the second harmonic wave in phase. In the experiments
reported in this thesis it was found that this relationship broke down at
relatively Llow particle densities (3 x 1020 atoms m_3). If some means of
compensating for the dispersion caused by the sodium D lines was available,
the N2 dependence could be extended to higher atom densities, and thus much
more efficient SHG could be achieved. Phase matching of third harmonic
generation in metal vapours has been reported [14, 124, 1401; by choosing
the correct ratio of concentrations of the nonLineér medium and another gas
or vapour with the opposite change in refractive index between the two
wavelengths of interest, a mixture could be produced which allowed phase
matched third harmonic generation. A search was made for possible media to
use to phase match SHG in sodium; it was calculated that a 10:1 ratio of
calcium:sodium or 70:17 aluminium:sodium should produce phase matched SHG.
Although it would be difficult to construct and operate a system in which
the vapour pressures of the two atomic species could be varied indep—
endently, the heat pipe oven variant described by Bloom et al [140] should
have the desired properties. The other possibility would be to use a
spatially oscillating magnetic field to‘achieve pseudo-phase-matching as

mentioned earlier in this chapter.
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APPENDIX A

The PlLasma Dispersion Function

The plasma dispersion function occurs frequently in modelling damped

systems which contain a Maxwellian velocity distribution. The integral

7 A
-do Vds

00 2
exp[—mvyIZkBT] dv
4 (A.1)

+ kvy - 2w - 1st

must be evaluated to solve equations such as 3.2.55, where Wy is the
frequency of the 3S - 4D transition when the sodium atom is at rest, w is
the laser frequency, de is the HWHM due to natural and pressure broadening,
and vy is the atomic velocity in the y direction. Equation A.1 may be
rearranged to be proportional to the standard form of the plasma dispersion
function

Z(K) =71

i expl-t ] dt
L J - (A.2)

-0

where K and Z are complex, and t is real. K = x + iy, where

x = (2w = wy )/, and y = ¥, /n; £l is the Doppler width of the

ds
transition, as defined in equation 3.2.57. The methods of Fried and Conte

L1151 were used to solve this integral.

For y < 1, numerical integration of the differential eguation defining the
plasma dispersion function was appropriate. The function may be charac-

terised by the differential equation and boundary condition

Z' = -2(1 + KZ) for all K, K complex, (A.3)

2¢0) = irt’?. .4

The University's VAX 11/785 mainframe computers have various numerical
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routines in the "NAG" Llibrary suitable for solving real differential
equations. Thus equation A.3 was split into its real and imaginary parts.

Defining Z = ZR + iZ A.3 becomes

II
' = =2 +xZR - yZI] o+ 1EyZR + xZIJ); (A.5)
and by definition

' = dZ = dz = 32 dx + OZ dy. (A.6)
dK  d(x+iy) dx dK  dy dK
But oK/dx = 1 and OK/dy = i, so
7' = DZ/dx - id0L/dy (A7)
= bZR/bx + bZI/by + i(bZI/bx - bZR/by). (A.8)
The real and imaginary parts are separated to obtain
bZR/bx + bZI/by = =2(1 + XZp = yZI), (A.9)
GZI/bx - bZR/by = -Z(yZR + xZI). (A.10)

The NAG routines can cope with these two coupled real equations. To find
Z(x + iy) a numerical integration was performed from (0 + i0) to (0 + iy)
with x = 0, then from (0 + iy) to (x + iy) with y constant to get the final
solution for Z in terms of its real and imaginary parts. The NAG routine
DO2BAF was selected as being the most suitable. Its use is shown in

Appendix B. To find the value of Z for negative x, the relationships

ZR(x + 1y) —ZR(-x + iy), (A1)

and ZI(x + iy) ZI(—x + iy) ) (A.12)

were used.
The above method of evaluation of the plasma dispersion function is not
suitable for large values of y due to the accumulation of truncation and

round-off errors. Instead a method based on continued fractions was used :

when y > 1. The appropriate continued fraction, which may be derived from
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the asymptotic form of the plasma dispersion function [115]1, is

Z(K) = K (A.13)
2

~K~ 4+ 112 + (-1)1/2)

K% + 5/2 + (=2)(3/2)

3
e +9/2+a .
Prir ¥ 3ne2
where ay =K, (A.14)
a4 = -n(2n - 1) /2 for n = 1,2,eenas (A.15)
and b g = K2 4103 + 20 forn = 0M,0uns (A.16)

The continued fraction may be evaluated [141] by the recursion relations

An+1 = bn+1An + an+1An_1 (A.17)
and Bn+1 = bn+1Bn + an+1Bn~1 (A.18)
where A__1 =1, AO =0, )
) (A.19)
B_1 = 0, B0 =1, )
and Z(KY = Lim An y >0 (A.20)
nN=>00 ==
B
n

The Fortran subroutine "CONTFRAC'" was incorpoated in the computer program
shown in appendix B to evaluate Z using these recursion relations.
Negative values of x were dealt with in the same way as in the method for

y < 1.

The results of the computer code were compared with selected values
quoted by Fried and Conte [1151, and with each other in the region where both
methods were valid, ie at y = 1. The values obtained agreed to at Lleast

five decimal places in all the cases tested.
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The values of the real and iméginary parts of Z(a + ib) are shown in
figure A.1 as functions of a, at two values of b. The values of b have
been chosen to correspond to the experimental situations: a vapour temp-
erature of 300° (N= 2.2 GHz) in both cases, with (a) de = 35 MHz

and (b) Kas = 2180 MHz.

b=0016 b=098
1 1
Re(Z) RelZ)
0 0
= | \.//’— Ak
-9 0 9 -9 0 9
a Q
2 2
Im(Z) Im(Z)
1 1
-9 0 9 -9 0 9
a a

Figure A.1. The real and imaginary parts of the plasma
dispersion function plotted as functions of a (the real argument
of the function), at two values of b (the imaginary argument of

the function).
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APPENDIX B

PROGRAMS FOR NUMERICAL MODELLING OF THE SECOND HARMONIC GENERATION

This appendix contains an example of one of the computer programs used to
calculate the properties of the SHG using the theoretical modelling
described in chapter three. The first program that is listed here was used
to generate data files which contained the values of the quadrupole moments
at a number of different frequencies across the line profile, at a magnetic
field, vapour temperature, and Eas specified by the user. The second
program was used to calculate the Line profiles of the SHG from the data in

the file produced by the first program.

FORTRAN PROGRAM USED TO CALCULATE LINE PROFILES

This program requires routines from the '"NAG" Llibrary of numerical
routines, so the compiled version of the program must be '"linked" with the

NAG library.

BDS 30.7.86 LPGEN.FOR
PRODUCES VALUES OF QUADRUPOLE MOMENTS AT SPECIFIED FIELD
OVER A RANGE OF LASER FREQUENCIES
Contains plasma dispersion function evaluation by
numerical integration of differential equation for small
homogeneous Linewidth, and by method based on continued fractions
for Larger homogeneous linewidth.
To run, first compile and then LINK LPGEN,NAG/LIB

OO0 00

F,MF Quantum numbers of lower state
JS,MJS Substitute guantum numbers of 4d state:

JS=440.5 MJS=MJ+0.5

So J 1.5 2.5
MJ =1.5 -0.5 0.5 1.5 =2.5 =1.5 =0.5 0.5 1.5 2.5

become

OO0 00
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OO0

(g}

D EI I CH LI EIED O

JS 2 3
MJS -1 0 1 2 -2 =1 0 1 2 3

MJS=1-JS to JS

IMPLICIT NONE

declare subroutines involved in plasma dispersion function
EXTERNAL PLASMAX,PLASMAY,CONTFRAC

declare other variables, including:-

H - magnetic field strength
w108 - Laser frequency in 100 MHz units
ES(F, mF, H) - energy of S states

SAS(F, mF, H)
SBS(F, mF, H)
EDCJS, MJS, H)
DAPH(JS, MJS, H)
DBPH(JS, MJS, H)

spin +1/2 component of S states
spin =1/2 component of S states
energy of D states

spin +1/2 component of D states
spin =1/2 component of D states

QRX(H) - real part of xy quadrupole moment
QIX(H) - imaginary part of xy quadrupole moment
QRZ(H) - real part of zy guadrupole moment
QIZ(H) - imaginary part of zy quadrupole moment

REAL ES(1:2,-2:2,0:3100)

REAL SAS(1:2,-2:2,0:3100)

REAL SBS(1:2,-2:2,0:3100)

REAL DAPH(2:3,-2:3,0:3100)

REAL DBPH(2:3,-2:3,0:3100)

REAL ED(2:3,-2:2,0:3100)

REAL ISH(2000) ,GRAPHX(200) ,GRAPHY (200)
REAL SH(0:500)

REAL QRX(0:3100),QRZ(0:3100),QIX(0:3100),Q01Z2(0:3100)
REAL QRXMAX,QRZMAX,QIXMAX,QIZMAX
REAL B1,B2

REAL Y,DA,DB,J,MJ,R00,N,K

REAL SUM,SA,SB

REAL ISHMAX

REAL A,B,C,CAPA,E,SIG

REAL HP, HR

REAL GAMDS ,GAMDS2,W,W2

REAL DENOM,DELTA,SUMRX,SUMRZ

REAL SUMIX,SUMIZ

REAL SINTH,COSTH, THETA

REAL TC,T,OMEGA,XEND4,YEND4,IMAG,ZR,21
REAL DELTAO

REAL*8 YEND

COMMON YEND

REAL*8 ZMID(2)

INTEGER GAMDSI ,VI

INTEGER W108,BDH

INTEGER I,H,F,MF,MJS,JS

INTEGER FILESTART,FILEEND,FILEINT
INTEGER COUNT ,NOPOINTS
CHARACTER*15 NME

Constants

Hyperfine Splitting Constant
CAPA=885.813E6
Fine Splitting Constant
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30
35
40

50
52

59

K=-4.112E8

Ground state energy lLevels ES and components of wave-

functions SA and SB.

DO 52 F=1,2

PO 50 MF=-F,F

DO 40 H=0,3100,5
A=(CAPA*MF+2.0028+%1.399E6%H) /2
B=~CAPA/4-MF*0.0008*1.399E6*H
C=CAPAX ((2-MF)* (2+MF) ) **0.5/2
IF (F.EQ.1) SIG = -1

IF (F.EQ.2) SIG =1

IF (MF.EQ.-2 .AND. A.GT.0.0) SIG = -1
E=B+SIG* (A*x*2+(*x*2)**0.5
ES(F,MF,H) = E

SUM=SIG* (A*x*2+C**2)*x0.5
DENOM=( (A+SUM) **2+C**2) *¥*x(0.5
IF (DENOM.NE.O) GOTO 30

SA=0

SB=1

GOTO 35

SA=(A+SUM) /DENOM

SB=C/DENOM

SAS(F ,MF,H) =SA

SBS (F ,MF ,H) =SB

CONTINUE

CONTINUE

CONTINUE

4D wavefunction components DAPH and DBPH

DO 59 H=0,3100, 5

DAPH(3,3,H)=1

DAPH(3,-2,H)=0

DBPH(3,3,H)=0

DBPH(3,-2,H)=1

CONTINUE

bo 70 Js=2,3

IF (JS.EQ.2) N= -1

IF (JS.EQ.3) N= 1

DO 65 MJS = -1,2

MJ=MJS-0.5

DO 60 H=0,3100, 5

==3.41E~3%H

ROO=MJ+Y+N* (Y**2+24MJ*Y+6.25) *%0.5
DENOM=((2.5+MJ)*(2.5~MJ) +(ROO**2))
IF (DENOM.EQ.0) DENOM = 1.0E-20
DAPH(JS ,MJS ,H)=R0O0/ (DENOM**0.5)
DBPH(JS ,MJS  H)=((2.5+MJ) *(2.5~MJ) /DENOM) **0.5
CONTINUE

CONTINUE

CONTINUE

4D state energy levels ED
DO 98 H=0, 3100, 5

Y==3.41E-3%H
ED(3,3,H)=(1+3%Y)*K
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90
98

OO OO0 0O0

zNeNe N

ED(3,-2,H)=(1-3*%Y)*K

DO 90 MJS=-1,2

MJ=MJS-0.5
ROO=(4xY**2+8*xMJ*Y+25) *x0.5
ED(3,MJS, H)=(~0.25+MJ*Y+0.25*%R00) *K
ED(2,MJS , H)=(~0.25+MJ*Y-0.25%R00) *K
CONTINUE

CONTINUE

PRINT*,'Energy level calculations finished'
START OF B BIT

W108 integer frequency in 100 MHz units

W real frequency in MHz

W2 2 * W

SUMRX real part of effective dipole summation in x

SUMIX imaginary 4

GAMDS DS damping term

QXR(W108) Real part of effective dipole in x at W108
PLASMAX/Y Numerical Routines to evaluate Plasma Dispersion
Function when imaginary part of argument < 1

CONTFRAC used to evaluate plamsa dispersion function when
imaginary part of argument greater than or equal to 1

COLLECTED CONSTANTS
Natural Llinewidth HWHM
GAMDS=35.0E6
PRINT*,'NATURAL DAMPING, 35MHZ?'
READ*, GAMDS
Temperature of vapour in Celsius
TC=360.0
PRINT*,'TEMPERATURE OF VAPOUR IN CELSIUS, 3607?'
READ*,TC
Temperature of vapour in Kelvin
T=TC+273.0
Hence Doppler half width at 1/e point
OMEGA=9.27E7*SQRT(T)
Imaginary part of plasma dispersion function argument
=doppler width/homogeneous width
IMAG=GAMDS /OMEGA
YEND is "common' throughout subroutines etc carrying double

precision value of imaginary part of plasma dispersion function

argument

YEND=DBLE (IMAG)
OMEGA=0MEGA*1.0
PRINT*,'FIELD?'

READ*, H

PRINT*, '"FILENAME IN QUOTES?'
READ*, NME

NOPOINTS=0
IF (IMAG.LT.1.0) CALL PLASMAY(ZMID)

values of quadrupole moments are filed as result of program

in file specified by program user. Range of laser frequencies

for which moments are calculated is defined by filestart,end,
int, where units are in 0.1 GHz.
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FILESTART=20

FILEEND=180

FILEINT=3

DO 495 W108=FILESTART ,FILEEND,FILEINT
W=W108%1.0E8

W2=2+*W

SUMRX =0.0

SUMRZ =0.0
SUMIX =0.0
Sumiz =0.0
DO 490 F=1,2

DO 480 MF=-F,F

DO 470 Js=2,3

DO 460 MJS=1-4S,JS
MJ=MJS-0.5

IF (MJS.EQ.-2) THEN
B2=(DBPH(JS ,-2,H) *SBS (F ,MF ,H) ) **2
B1= 0

ELSE IF (MJS.EQ.-1) THEN
B2=(DAPH(JS ,=1,H)*SAS(F ,MF H) ) **2
B1=(DBPH(JS ,=1,H)*SBS (F ,MF ,H) ) %%2

ELSE IF (MJS.EQ.0) THEN
B2=0
B1=(DAPH(JS ,0,H)*SAS (F ,MF H) ) *%2

ELSE IF (MJS.EQ.7) THEN
B2=0
B81=~(DBPH(JS,1,H) *SBS(F ,MF ,H) ) *%2

ELSE IF (MJS.EQ.2) THEN
B2=~(DBPH(JS,2,H)*SBS (F ,MF ,H) ) **2
B1=-(DAPH(JS,2 ,H)*SAS (F ,MF ,H) ) **2

ELSE IF (MJS.EQ.3) THEN
B2=-(DAPH(JS,3,H)*SAS (F ,MF ,H) ) **2

B1=0

ENDIF
C Real part of plasma dispersion function argument is
C calculated as XEND4

XEND4&=(W2-ED(JS ,MJS ,H)+ES(F ,MF ,H)~-2.0E10) /OMEGA
IF (IMAG.LT.1.0) THEN
CALL PLASMAX(ZMID,XEND4,ZR,Z1)
ELSE
CALL CONTFRAC(IMAG,XEND4,ZR,ZI)
ENDIF

SUMRX=SUMRX+ZR*B2
SUMIX=SUMIX+ZI*B2
SUMRZ=SUMRZ+ZR*B1
SUMIZ=SUMIZ+ZI%B1

400  CONTINUE
460  CONTINUE
470  CONTINUE
480 CONTINUE
490  CONTINUE
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495

499
600
601
602
604
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OO0 OO0

QRX(W108)=1.0E10*SUMRX/OMEGA
QRZ (W108)=2.0E10*SUMRZ /OMEGA
QIX(W108)=1.0E10*SUMIX/OMEGA
QIZ(W108)=2.0E10*SUMIZ/OMEGA

IF (QRX(W108).GT.QRXMAX) QRXMAX=QRX(W108)
IF (QRZ(W108).GT.QRZMAX) QRZMAX=QRZ(W108)
IF (QIX(W108).GT.QIXMAX) QIXMAX=QIX(W108)
IF (QIZ(W108).GT.QIZMAX), QIZMAX=QIZ(W108)
NOPOINTS=NOPOINTS+1

GRAPHX (W108) =W

CONTINUE

Filing values of curve produced
OPEN(UNIT=1,FILE=NME,STATUS="NEW')
WRITE (UNIT=1,FMT=601) GAMDS
WRITE (UNIT=1,FMT=601) OMEGA
WRITE (UNIT=1,FMT=600) H
WRITE (UNIT=1,FMT=600) NOPOINTS
WRITE (UNIT=1,FMT=601) QRXMAX,QRZMAX,QIXMAX,QIZMAX
WRITE (UNIT=1,FMT=604) FILESTART,FILEEND,FILEINT
DO 499 I=FILESTART,FILEEND,FILEINT
WRITE (UNIT=1,FMT=602) GRAPHX(I),QRX(I),QRZ(I),QIX(I),QIZ(I)
CONTINUE
FORMAT (I5)
FORMAT (4E12.5)
FORMAT (5E12.5)
FORMAT(316)
CLOSE (UNIT=1)
STOP
END

Numerical Integration Routines for Plasma Dispersion
Function

SUBROUTINE PLASMAX(ZMID,XEND4,ZR,ZI)
To integrate differential equation definition of Z
from (0,YEND) to (XEND,YEND) when YEND=IMAG < 1.0
ZMID holds real(1) and imaginary(2) values of Z{(0,YEND)
Z holds real(1) and imaginary(2) values of Z(XEND,YEND)
ZReal (=X,Y)=-ZReal (X,Y), hence ZEROCH
Equations are of form @XY=iZ, so x+iy -> ix-y

IMPLICIT NONE

REAL ZR,ZI ,XEND4

REAL*8 X,XEND,TOL,Y,ZEROCH
INTEGER IFAIL,N

REAL*8 W(2,7),2(2) ,zmid(2)
EXTERNAL FCN1

ZEROCH=1.0

IF (XEND4.LT.0.0> THEN
XEND4=-1.0%XEND4
ZEROCH=-1.0

ENDIF

N=2

ToL=0.000005
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X=0.0

XEND=DBLE (XEND4)
Z(1)=IMID(1)
Z(2)=ZMID(2)
IFAIL=0

CALL DO2BAF (X, XEND,N,Z,TOL,FCN1,W,IFAIL)
2(1)=2(1)*ZEROCH
ZR=-SNGL (Z(2))
ZI=SNGL(Z(1))
RETURN

END

SUBROUTINE PLASMAY(ZMID)
Numerical Integration of Differential Equation for Z
from (0,0) to (0,YEND)
Paired with plasmax

IMPLICIT NONE

REAL*8 Y,YEND,TOL

INTEGER IFAIL,N

REAL*8 W(2,7),2(2),ZMID(2)
EXTERNAL FCN

COMMON YEND

N=2

TOL=0.000000001

Y=0.0

2(1)=0.0
2(2)=SQRT(3.1415927)
IFAIL=0

CALL DO2BAF(Y,YEND,N,Z,TOL,FCN,W,IFAIL)
ZMID(1)=2(1)

ZMID(2)=2(2)

RETURN

END

SUBROUTINE FCN(T,Z,F)
Equations for integration along imaginary axis

REAL*8 T

REAL*8 F(2),Z(2)
FC1)=+2%(T*Z(1))
F(2)=-2%(1-T*7(2))
RETURN

END

SUBROUTINE FCN1(T,Z,F)
Equations for integration along y=yend to (xend,yend)

REAL*8 T,YEND

REAL*8 F(2),Z(2)

COMMON YEND
F(1)==2%(1+T*Z(1)-YEND*Z (2))
F(2)==2%(YEND*Z (1)+T*Z(2))
RETURN

END

SUBROUTINE CONTFRAC(IMAG,XEND4,ZR,ZI)

To calcutate Z by the continued fractions method
when YEND(=IMAG) > 1.0.
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ZRC and ZIC hold real and imaginary parts of
Z(XEND4,IMAG). Final egns are of form

C AXY=iZ so x+iy -> ix-y

IMPLICIT NONE

REAL ZR,ZI,ZRC,2IC,IMAG,XEND4,ZEROCH

INTEGER n,I

COMPLEX w ;
COMPLEX AC(-1:40),BC(-1:40),a(~1:40) ,b(~-1:40),ZC(-1:40)
AC(-1)=(1.0,0.0)

AC(0)=(0.0,0.0)

BC(~1)=(0.0,0.0)

BC(0)=(1.0,0.0)

(]

ZC(M=0.0
n=0
ZEROCH=1.0

IF (XEND4.LT.0.0) THEN
XEND4=~1.0*XEND4

ZEROCH=-1.0

ENDIF

w=CMPLX (XEND4 , IMAG)

9930 IF (n.GT.4.AND.ABS((Z2C(n)~ZC(n-1))/(ZC(M+ZC(n=-1))).Lt.

z 0.000001) GOTO 9939

IF ((n+1).EQ.1) THEN
aln+1)=w

ELSE
aln+1)==1.0%n*(2%n=-1) /2

ENDIF

b(n+1)==w*x*x2+0.5+2%n

AC(n+1)=b(n+1)*AC(nN)+a(n+1)*AC(n-1)

BC(n+1)=b(n+1)*BC(n)+a(n+1)*BC(n-1)

2C(n+1)=AC(n+1) /BC(n+1)

n=n+1

GOTO 9930

9939 CONTINUE

ZRC=REAL (ZC(n))

ZIC=AIMAG(ZC(n))

ZRC=ZRC*ZEROCH

IR=-71C

ZI=ZRC

RETURN

END
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FORTRAN PROGRAM TO PLOT OUT LINE PROFILES

This program requires routines from the "GHOST" graphics package, and so
the compiled version of this program must be linked with the appropriate
GHOST Llibraries.

OOOOOOOOO0O00O000

100

499

600

Obtain filename

BDS 6.86 PTGEN.FOR

Reads data from files generated by LPGEN to produce

Line profiles of SHG process. In this case the Line profiles
of the Z and X effective dipoles are plotted for the case of
the fundamental polarisation at 45 degrees to the magnetic field.
The other curve is the Lline profile expected if a Llinear
polariser were placed in the SH beam at 45 degrees to the
magnetic field.

To run, compile then LINK PTGEN,GHOST/LIB,GRID/LIB

graphical output will appear in DEFAULT.GRD. To examine
graphical output type T4010 at VAX command level and follow
guestion and answer sequence.

IMPLICIT NONE

REAL QRXMAX,QIXMAX,QRZMAX,QIZMAX

INTEGER FILESTART,FILEEND, FILEINT

REAL GRAPHAMAX,GRAPHBMAX ,GRAPHCMAX

REAL GAMDS ,OMEGA ,ISHMAX

REAL GRAPHX(200) ,GRAPHA(200) ,GRAPHB(200) ,GRAPHC (200>
REAL QRX(200),QIX(200),QRZ(200),Q1Z(200)

INTEGER H,J,I,NOPOINTS

INTEGER REP

CHARACTER*15 NME

PRINT*,'FILE?"'
READ 2, NME
FORMAT (A15)

Set up Ghost graphics package

CALL PAPER(1)

CALL AXNOTA (1)

CALL PSPACE(0.08,0.948,0.2,0.672)
CALL BORDER

Read file contents into appropriate arrays

OPEN (UNIT=1,FILE=NME,STATUS='0LD"') ]
READ (UNIT=1,FMT=601) GAMDS 1
READ (UNIT=1,FMT=601) OMEGA

READ (UNIT=1,FMT=600) H

READ (UNIT=1,FMT=600) NOPOINTS

READ (UNIT=1,FMT=601) QRXMAX,QRZMAX,QIXMAX,QIZMAX

READ (UNIT=1,FMT=604) FILESTART,FILEEND,FILEINT

1=0

DO 499 J=FILESTART,FILEEND,FILEINT

I=I+1

READ (UNIT=1,FMT=602) GRAPHX(I),QRX(I),QRZ(I),QIX(I),RIZ(I)
CONTINUE

CLOSE C(UNIT=1)

FORMAT (I5)
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328

329

FORMAT (4E12.5)
FORMAT (5E12.5)
FORMAT (316)
CONTINUE

Plot out the three Line profiles on the same scale,
with the scale chosen to place the greatest maximum
at 0.9 of the way up the vertical axis.

GRAPHAMAX=0.0

DO 328 I=1,NOPOINTS

GRAPHA (I)=QRX (I)**2+QIX(I)**2

IF (GRAPHA(I).GT.GRAPHAMAX) GRAPHAMAX=GRAPHA(I)
CONTINUE

GRAPHBMAX=0.0

DO 329 I=1,NOPOINTS

GRAPHB(I)=QRZ (I)**2+QIZ(I)**2

IF (GRAPHB(I).GT.GRAPHBMAX) GRAPHBMAX=GRAPHB(I)
CONTINUE

GRAPHCMAX=0.0

IF (GRAPHAMAX.LT.GRAPHBMAX) GRAPHAMAX=GRAPHBMAX
IF (GRAPHAMAX.LT.GRAPHCMAX) GRAPHAMAX=GRAPHCMAX

CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL

STOP
END

MAP(0.25E10,1.75€E10,0.0, GRAPHAMAX*1.1)
SCALES

BROKEN €10,10,10,10)
CURVEO(GRAPHX ,GRAPHA ,1 ,NOPOINTS)
CURVEO (GRAPHX ,GRAPHB,1,NOPOINTS)
CURVEOQ (GRAPHX ,GRAPHC ,1,NOPOINTS)
FRAME

GREND




APPENDIX C

COMPUTERISED SYSTEM FOR DATA COLLECTION AND ANALYSIS

AlLL the Line profiles shown in this thesis were recorded using the comput-
erised data collection system described in section 4.2.3. This system was
developed in co-operation with Mr Alistair Poustie; he describes an early
version of the setup in reference 142. A block diagram of the data

collection apparatus is shown here as figure C.1.

ISH Detector via PSD l— e
[ Marker Interferometer Photodiod;}—

Interface BBC Model B 6502 Second
[ todine Cell Photomultiplier I Microcomputer Processor

[Ring Dye Laser Electronics  f— ' [ Dec DrivL I

Figure C.1. Block diagram of the computerised data

collection system.
The data collection program, which was written in BBC Basic and is listed
in appendix D, first ran through a gquestion and answer sequence to set up
parameters such as the laser scan time. The computer then checked that the
Llaser was Locked to the reference interferometers and waited for the
operator to start the laser scanning. The 'scan on' signal started the
data collection part of the program, which read the values of the exp-
erimental parameters via the computer's analogue to digital converter.

These values were displayed graphically on the screen and stored in three
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arrays in RAM, 3600 points for the SH signal, and 1200 points for each of
the other two parameters. At the end of the scan another question and
answer sequence allowed the operator to store some or all of these values

on the floppy disc.

At the end of an experimental session the files of Line profiles stored on
the discs were transferred to the University's VAX 11/785 mainframe
computer. The Fortran program which was used to analyse this data is also
listed in appendix D. Its main function was to linearise the laser scan.
This was done by expanding and contracting parts of the scan data to ensure
that the interferometer transmission period remained the same throughout the
scan. Graphs could then be drawn to specified scalings on the computer
screen or graphics plotter. As the absolute frequency of the laser was
recorded in the form of parts of the iodine spectrum, Line profiles taken
under different conditions could be plotted out and combined on one graph
for comparison. This would have been nearly impossible without the

computerised system.

The Linearisation was tested by Doppler-free two-photon spectroscopy of the
sodium 35 - 4D transition. The SH detector was replaced by a photo-
multiplier tube which monitored the 330 nm radiation as described in
section 4.4.2. Figure C.2 shows the output from the plotter; the top trace
is the two photon absorption spectrum, the middle trace is the signal from
the photodiode of the marker interferometer, and the bottom trace is the
iodine absorption spectrum. The graph is annotated in units of the free
spectral range of the marker interferometer. This is 250 MHz at the laser
frequency, corresponding to 500 MHz at the atomic frequency. The
separations of the peaks were measured, and are shown in table C.1.

Agreement was good to 0.5%, so the linearisation obviously worked well.
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Figure C.2. Doppler free trace of the sodium 3S - 4D transition
as recorded and displayed by the system described in this
appendix, see text for full explanation. The transitions are:-
a) 3S (F=2) -> 4D (J=5/2), b) 35 (F=2) -> 4D (J=3/2),

c) 38 (F=1) -> 4D (J=5/2), d) 3S (F=1) => 4D (J=3/2).

Peaks | Peak Separation (GHz)
.| Experimental Accepted

a-c 1.775

1.772
b-d s T
a-b 1.032

1.028
c-d 1.034

Table C.1. Measured and accepted values for the hyperfine
splitting of the sodium 3S state and the fine splitting of
the 4D state.
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APPENDIX D

DATA COLLECTION AND ANALYSIS PROGRAMS

Data Collection Program

To be run on a BBC model B microcomputer with a 6502 second processor and a
single density floppy disc drive. The hi-basic chip must be in use; in our
case the command *FX142,1 enabled this chip. The data recorded in RAM is
subsequently stored on the disc in ASCII format by use of the *SPOOL
command. This is the data format in which the mainframe computer onLd

most readily accept the data.

10 REM DATA RECORD PROGRAN FOR S0DIUM SPECTROSCOPY EXPERIMENT
20 REM #6308 s s uad e pd sk antauaraea v i pan iR s R RN AR RN RN RS
JO#FX 16,3
40 MODE 1:COLOUR 2:CLS
50 V=0:CON$=BLANK “tL¥=0tBD%=1
60 DIM PEDX%(3693),10D% (12331 (PHR(1233) ,LKOFF%(50),P8%(15),POIT%(20)
70 PRINT #S 4240 aa b an s d S0 N e n e R F R R R b uau e PRINT #"TAB(3R) j "#*tPRINT"#" TAB(39) ) "¢":
PRINT"#*;TAB(5)) "Sodium Spectroscopy Experiment“jTRB(39))"%"
B0 PRINT '."TAB(S)"---n--nna:-----:l--u:ua:-:::--',TAB(;Q)|'|'
90 PRINT “#*jTAB(39)y"#"1PRINT “#*;TAB(3I9) j*« 1 PRINT “#*jTAB(17)3“By*  TAB(39)j “#“1PRINT "¢ T
AB(39);*#"1PRINT *#“jTAB(39);"#"1PRINT “#";TAB(10);"AP and BS")TAB(3I9);"#"
100 PRINT*#*3TAB{39) 3" #*sPRINT “a*pTAB(146) " 1985 TAB(39) " # tPRINT “#*;TAB(39) ;" #“1PRINT " sess
L e iR T
110 ToTINE+2:1REPEAT:UNTIL TIHE>T
120 R=0
130 NODE 1:VDU 26:V=0tREPEATIPRINT:VaV+1gUNTIL V=101PRINT TAB(3)§*MAIN MENU :~"1PRINT TAB{3)}"
--------- "1PRINTiPRINT
140 PRINT TAB(&);”"1. Data Recording"tPRINTiPRINT TAB(4);"2, Reset PSD Range”1PRINT1PRINT TAB
(4))"3. Spare"
150 PRINTIPRINY TAB(&);"4. Record results on disc*:PRINTIPRINT TAB(&);*5. GBraphics Notepad":
PRINT:PRINT TAB(&)}*4, Exit program”
140 PRINTtPRINTIPRINTIPRINT
170 PRINT * SELECTION? 1 SEL$=GET$#: SELY=VAL(SEL$}e¢IF BELX>6 OR BELX<1 THEN GOTD 170
180 ON SELY GOTOD 200,1B85,130,430,970,1130
185 PROCrange:BD%=01 GOTO 130
190
200 REM #sszsssvedss DATA RECORDING wudeassasssssras
210 IF BD%=1 THEN PROCrangetBD%=0
220 KODE 01CLG:CLS
230 PROCaxes
240 YDU 24,03505128051024;
250 VDU 28,0,31,45,30
260 PRINT1INPUT*Enter the laser scan time (secsti- *,LST
270 IF LST(=72 THEN NOX=1:DPLUS=03GOTO 380
280 D= ((LST#100)~7200)/(122643)
290 IF D<2 THEN NO%=1iDPLUS=D180TO 310
300 NOX%=INT{D) ¢DPLUS=D-NO%
310 ON NOY% BOTD 380,380,380,320,320,330,330,340,340,350,350,360,340,370
320 NO%=NDX+1160TO 380
330 NOX=NOX+2:160T0 380
340 NO%=NOZ+3:80T0 3BO
350 NOX=NOX+43B80T0 380
340 NO%=NOX+5;B0T0 380
370 NO%=NQ%+é&
380 LDCK%=ADVAL(0) AND 3:iF LOCK%=2 OR LOCKZ=0 THEN 410
390 PRINTsPRINT"Lock the laser.....”
400 LOCK%*ADVAL{O) AND 33IF LOCKY=2 OR LOCK%=0 THEN 410 ELSE 400
410 PRINT"Confirmation:~ Stabtlock On*
420 T=TINE+&403REPEATIUNTIL TINEDT
A30 PRINT1PRINT"8tart laser scan to begin...."
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440 SCAN%=ADVAL(0) AND 3:IF SCAN%=0 THEN 450 ELHE 440

450 PRINT

460 BDYA=1

470 PLTZ=0

480 PLYA=PLT%+1

490¢ Hi=1i1PROCpsd

500 PLOY &49,PLY2450,T%DIV 104573

510 10%=ADVAL(2) DIV 143 I0D%(PLTX)=I0%X1PLOT 69,PLT%+50,104D1V21+325

520 H%=231PROCpsd

530 PL=ADVAL(3) DIV 1&:PHL(PLTX)=PX1PLOT 69,PLT#+50,PXDIV21+75

540 HY=3)PROCpsd

550 IF PLTX=1230 THEN GOT0 580 ELBE 480

570 8070 130

580 PRINT"Mark section of graph (Y/N) “1ANS$=GET#:1F ANB#="N* THEN L%=1160TQ 400

590 L%=0:PROCexp

400 PRINTIPRINT TAB{10);"1. Main Henu 2. Notepad i1~ Selection “1A¥=BETH1AX=VAL (A$)10N AX
BOTO 130,1220

&10 68070 1130

620

630 REM #dsaxsasseasss NRITE RESULTS TO DIBC #¥#suuprsrsendesss

640 CLOSELO

450 MODE 1:PRINTtPRINT:PRINTIPRINT*Writing results to disc 1="1PRINT"~m=m==mmea== cnsdananems

460 PRINTtPRINTIPRINT TAB{3};*1. P.5.D. and Photodiode data points*tPRINT:PRINT TAB(3);"2, P.§
.D. , Photodiode and Iodine”t1PRINTIPRINT TAB(&))“data points“tPRINTtPRINT TAB{3};“3. Return to M
ain Hepu"

&670- PRINTARRINT: INPUT2Selection *jAX: IF AXCE OR-A%>I -THEN 670

480 ON AX BOTO 690,820,130

490 R=R+13IF R=4 THEN PRINT*Disc Full- Insert new Disc* ELSE 720

700 PRINTIPRINTtINPUT"Cantinue (Y/N) *,C$:tIF C#="N* THEN 130

710 6070 120

720 ON R BOTOD 730,750,770

730#5P00L PSRUNI

740 GOTO 780

750#5P00L PSRUN2

760 GOTD 780

770#SP00OL PSRUNI

780 PRINT COM$

790 UZ=1:PROCdisc

800#SPOOL

810 6470 450

820 R=R+1tIF R=3 THEN PRINT“Disc Full- Insert new Disc* ELBE 8350

830 PRINTIPRINT:1INPUT*Continue (Y/K) *,C#11F C#="N" THEN 130

840 8070 120

B850 ON R GOTO 840,880,900

840#SPOOL ALRUNL

870 EOTO 910

B8B0*5PO0L ALRUN2

890 8070 710

910 PRINT COM$

920 UX=0:PROCdisc

930#8P00L

940 BOTO 650

560

970 REM #esxsxssapssd GRAPHICS NOTEPAD #essnedrsesvsres

980 PROCrange

990 PROCaxes

1000 PRINT *A TO ABORT"
1010 PLTX=0
1020 REPEAT
1030 KEY#=INKEY$(0):IF KEY$="A" THEN 1100 ELSE 1040
1040 T%»ADVAL(1) DIV 14:PLOT &69,PLTX+50,TXADIV 10+373
1050 10%=ADVAL(2) DIV 1&61PLOT 69,PLTR+30,10%DIV21+325
1060 PX=ADVAL(3) DIV 1&61PLOT &69,PLTA+50,PADIV21+75
1070 PLTX=PLT%+1
1080 IF PLTX=1230 THEN PLTX=0:1PROCaxes
1090 LNTIL KEY#$="A*
1100 PRINT"Run Again (Y/N) "1V$=B8ET$
1110 IF V$=*"N" THEN 130
1120 &0TO 970
1130 VDU 4
1140 VDU 24
1150 MODE OtEND
. 1160 DEF PROCmark
1170 MOVE PLTX+50,75:PLOT 21,PLT%+50,1100
1180 IF SDX%=50 THEN £200
1190 LKOFFX(BDX)=PLT%tSD%=ED%+1
1200 ENDPROC
1210
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1220 REM #eszsssns NOTEPAD ##dnssdusss

$230 VDU 261CLE:CLEIPRINTIPRINTSPRINTsPRINT TAB(30) ) *NOTERAD*1PRINT TAB(30Q) | “manauan®

1240 VDU 24,0;03128051000; '

1250 MOVE 0,01 DRAW 1279,01DRAK 1279,5000: DRAN 0, 10001 DRAN 0,0:NO0VE 15,153 DRAN 1264, 151 DRAN 1264
,9871DRAN 15,9871DRAW 15,15

1260 VDU 3

1270 MOVE 100,8001PRINT"Enter comments here and than press (return)®

1280 VDU 41VDU 28,10,25,70,10

1290 INPUT COM$:VDU §

1300 MOVE 400,753PRINT “Press Space-Bar to continue®

1310 A%=GETIIF AX<>32 THEN 1310

1320 VDU41VDU2é

1330 GOTO 130

1340

1350 DEF PROCpsd

1360 I1%=0

1370 REPEAT

1380 Ix=1%+1

1390 PSX{IX)=ADVAL(1) DIV 1&

1400 CHECKE®ADVALS) AND 340N (CHEGK%+1) G6TO 1440,1410,1420, 1430

1410 VDU 71PROCmark:GOTD 1440

1420 VOU 71PRINT"Bcan off1"s60T0 580

1430 VDU 7tPRINT"Scan and Btabilock off"160T0 580

1440 UNTIL IX=NOX

1450 SUM%=0:X%=0sREPEATIX%w X%+ SUNX=SUNY+PEX(X%) t IUNTILXX=NO%: TA=BUNKDIVXY

1450 PSDR{I#PLTA+HY) TR

1470 DEEXX=INT(DPLUS#85) 1FOR F%=l TO DEEXXrNEXT

1480 ENDPROC

1490

1500 DEF PROCexp

1510 LOCAL

1520%FX4,1

1530 DA=01Bi=l

1540 PRINT1X%=5600 INCA=118PA=131NX=01F¥=22

1350 PROCln

1560 REPEAT

1570 BA=QET

1580 IF S%=1346 THEN 1590 ELSE 1400

1590 PROCIniX¥%=X%X=-(INCX#8P%)1PROCLn

1600 IF §X%=137 THEN 1410 ELSE 1620

1510 PROCIns X%=X%+ (INCX#8PX)s1PROCIN

1620 N%=NX+i1IF N%<(=20 THEN SP%=!{ ELSE SPX=10

1630 IF INKEY(-122)<>=1 AND INKEY(-2&)<¢>=1 THEN N%=0

1640 UNTIL BX=B881DX=DX%+11POITX(DA) =XX~50:F%=211PROCIn

1650 IF DX=2 THEN 1670

1660 6070 1540

L670%FX4,0

1680 ENDPROC

1690

1700 REF PROCln

1710 IF X%>=1279 THEN X%=1279:G07T0 1730

1720 IF XX<¢=351 THEN X%=351

1730 MOVE XX ,79¢PLOT F%,X%,1024

1740 ENDPROC

1750

1760 DEF PROCaxes

1770 HODE O

B;?ggSHDVE 50,73:DRAW 50,275:HOVE 50,325:DRAW 50,525:MOVE 50,75:DRAN 1280,751MOVE 50,3251DRAN 12

1

1790 VDU 5

h12231::VE 44,525 PRINT"~*tMOVE 44,2731PRINT***1MOVE 1150,3151PRINT " lodine*sHOVE 1100,45tPRINT"P
o (]

:gxo IFVNARK-l THEN 1820 ELSE 1850

20 MOVE 50,575:DRAN 50,1024 MOVE 50,580:PRINT . A

.5601PRINT'P.§.9,~ ' 1 PR STRING#(77, J1NOVE 44,10201PRINT*A*INOVE 1150
1830 VDU 4

1840 GOTO 1870

1850 MOVE 50,373:DRAN 50,10241M0VE 50,7851PRI LP] Y]
.775:Pn|u1'9.§.p.- ' ' NT STRING$(77,"~*)tMOVE 44,10201PRINT*A*1KOVE 1150
1840 vOU 4

1870 ENDPROC

1880

1890 DEF PROCrange

1300 MODE 1:CLG

1910 V=0(REPEATIPRINT1V=V+11UNTIL V=40

1920 PRINT “Phase Sensitive Detector ranges t1-*

1930 PRINT "=—v-ommecnrmamenanaan -
’:240 PRINTtPRINTtPRINTIPRINT TAB(10)3*P8BDt~ 1, O TO +1 “:PRINTIPRINT TAB(10)y" 2, -4 10
1950 PRINTIPRINTIPRINT

1960 PRINT “Selaction? “: S4=BET$18%=VAL(B$)1IF 8%<1 QR 8%>2 THEN BOTO 1940

1970 IF S¥iw=i THEN MARK=1 ELSE MARK=0

1980 ENDPROC

1990
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2000
2010
2020
2030
2040
2050
2040
2070
2080
2090
2100
2110
2120
2130
2140
2150
2140
2170
2180
2190
2200
2210
2220
2230
2240
2250

DEF PROCdisc

IF LX=1 THEN EN%=123046T%=1:60T0 2050
Ti=-1

TA=T%+2

BTEwPOITA(TR) sENY=POITL(TY+{) 1 IF ENXCBTR THEN ENX=POITX(TZ) 1 STA=POITA(TA+])

QXL=LOSI PRINT
PRINT BTX,EN%,80%-1
PRINT

FOR I%=f TO SD%-1:PRINT LKOFFX(I%)iNEXT I%

PRINT

FRu (I#8T%)-2

FOR 1%=8T¥% TO ENZ

IF UX=0 THEN 2130 ELSE 2140

PRINT PBDX(FX),PHA{I%),10D%(I%):60T0 2150

PRINT PBDX(FA),PHX(1X}
Fr=F%+1

NEXT 1%

FOR I%=FX TD (3#ENX)~2 BTEP 5

PRINT PBDX(IZ) PEDX{I%+1) ,PEDU(I%+2) ,PEDA(IR+3} ,PEDX(I%+4)

NEXT I%

FOR BX=I%+1 TO (J*#ENZ)-2
PRINT PEDX(6%)

NEXT G%

IF Li=| THEN 2240

@%=10

ENDPROC
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Data Analysis Program

To run on the VAX computer system. The program must first be complied,
then Llinked with ghost/lib,gridt4010/lib. It is designed to work on a

terminal compatible with the Tektronix T4010 standard.

BD2.FOR REVISED 9.5.86
Prog to analyse and plot BBC data

Developed by Alistair Poustie and Bruce Sinclair
August 1985. To run, compile the program and
LINK BD2,GHOST/LIB,GRIDT4010/L1B

The data from the BBC collection must be in

a suitably formatted file with a .DAT

file specification. Various operations can be
performed on the data; if specified, the final
graphs and annotations are filed in a gridfile
called BD.GRD.

OO0 OO0 0O0

C *%** DECLARATIONS

IMPLICIT NONE

INTEGER BDI

INTEGER I,R,M,C,IPEAK(100) ,PSDPK1,PSDPK2,CODE
INTEGER ST,PHMAX,S,DUM,EN,ICHAR,IPK,F,PSDST,PSDEN
INTEGER REPEAT,PDIO

INTEGER PHMX,PMAX,PHMIN,PMX(1000) ,PHMN,PMN(1000) ,PMIN
INTEGER ITR,ITRO(1000),STT,ENN,MID(100),MD(100)
INTEGER START,PSDFIN,AP,PSDF,STAR,MIDD,STA,FIN
REAL PHPOSX,PHPOSY,IOPOSX,IOPOSY,PSDPOSX,PSDPOSY
REAL BDPSDMAX, BDPSDMIN

REAL TOP,BOTTOM,HALF,LEFT,RIGHT

REAL CONT,MK(2),0FF(20)

INTEGER EX,TR,A,D,SD,LKOFF(20),Q,K

REAL PSDNO(3900),PSD(3900) ,PHNO(1300),PH(1300),
Z 10D¢1300),V,DIFF,COUNT

REAL OFFSET

REAL PS,P,I0,PSDDIFF,MAG,X,PSDSCL,PHSCL,PHSC,I0SCL
REAL XMIN,XMAX, Y

REAL XMARK,YMARK

INTEGER FM

INTEGER BDREPEAT

CHARACTER*30 NME,NME1

CHARACTER#*100 COM

CHARACTER*1 ANS

(
C *%* MAIN MENU, DATA INPUT
C

PRINT*,"' '

PRINT*,"' !

PRINT*,"' '




—_O0O0

- O

29

11

*Kk%k

PRINT*,'Ghost Plotting of BBC Data'

PRINT* > Ilggemmoomssmnm=asossnsossss!

PRINT*,' !

PRINT=*,' 1. P.S.D. & Photodiode Data'
PRINT*,' !

PRINT=*,' 2. P.S.D., Photodiode & Iodine Data'
PRINT*,' !

PRINT=*,' 3. Exit Program'

PRINT*,' !

PRINT*,'Selection ?'

READ*,S

IF (S.EQ.1) GOTO 10

IF (S.EQ.2) GOTO 19

IF (S.EQ.3) GOTO 210

IF (S.LT.1.0R.S.GT.3) GOTO 1

PSD & Photodiode points

PRINT*,' !

PRINT*,' !

PRINT*,'P.S.D. & Photodiode!
PRINT*," '
GOTO 29

PSD,Photodiode and Iodine points

PRINT*,"' '

PRINT#*," *

PRINT*,'PSD,Photodiode & Iodine'
PRINT*,' ———t
PRINT*,' '

PRINT*,'Enter the Data File name:'
READ 2,NME

FORMAT (A30)

READ IN FROM DATA FILE

OPEN (UNIT=1,FILE=NME,STATUS='0LD")
READ(UNIT=1,FMT=3) COM

FORMAT (A100)

READ(UNIT=1,FMT=4) DUM,DUM
READ(UNIT=1,FMT=4) ST,EN,SD
FORMAT(I5,15,15)

READ(UNIT=1,FMT=4) DUM,DUM

IF (SD.EQ.0) SD=1

D0 9 I=1,SD

READ(UNIT=1,FMT=11) LKOFF(I)
CONTINUE

PRINT*,'NUMBER OF LOCKOFF POINTS IS', SD-1
FORMAT (I5)

PSDST=(3%ST) -2

PSDEN= (3%EN) -2

F=PSDST

READ (UNIT=1,FMT=4) DUM,DUM

DO 7 I=ST,EN

READ(UNIT=1,FMT=5) PS,P,IO
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5 FORMAT(F5.0,F5.0,F5.0)

PSDNO(F)=F

PSD(F)=PS

PHNO(I)=1

PH(I)=P

I0D(I)=1I0

F=F+1
7 CONTINUE

DO 20 I=F,PSDEN,S

READ(UNIT=1,FMT=8) PSD(I),PSD(I+1),PSD(I+2),PSD(I+3),

Z PSD(I+4)
8 FORMAT(F5.0,F5.0,F5.0,F5.0,F5.0)

PSDNO(I)=1I

PSONO(I+1)=I+1

PSDNO(I+2)=1I+2

PSDNO(I+3)=I+3

PSDNO(I+4)=1+4
20 CONTINUE

DO 22 R=I+1,PSDEN

READ(UNIT=1,FMT=21) PSD(R)

PSDNO(R)=R
22 CONTINUE
21 FORMAT(F5.0)

CLOSECUNIT=1)

PRINT*,'FILE READ'

BDPSDMIN=4095.0

BDPSDMAX=0.0

DO 23 BDI=PSDST,PSDEN

IF (PSD(BDI).GT.BDPSDMAX) BDPSDMAX=PSD(BDI)

IF (PSD(BDI).LT.BDPSDMIN) BDPSDMIN=PSD(BDI)
23 CONTINUE

PD10=0

C *** DETERMINATION OF MAX AND MIN VALUES OF PHOTODIODE TRACE

PHMAX=PH(ST)

PHMIN=PH(ST)

DO 30 I=ST,EN

DO 25 @=1,SD

IF (LKOFF(Q).EQ.I) PH(I)=PH(I-1)
25 CONTINUE

IF (PHCI).GT.PHMAX) PHMAX=PH(I)

IF (PH(I).LT.PHMIN.AND.PH(I).GT.0.0) PHMIN=PH(I)
30 CONTINUE

MIDD=((PHMAX-PHMIN) /2) +PHMIN

PRINT*,"MEAN POINT FOUND, STARTING ON PEAKS'

C *%* FINDING POSITIONS OF MAXIMA OF PHOTODIODE TRACE

=1

PHMX=PHMAX~( (PHMAX~PHMIN) /3)

PMAX=PHMX

D0 35 I=ST,EN

IF (PH(I).GE.PMAX) THEN

PMAX=PH (1)

IPK=1

ENDIF

IF (PH(I).LT.MIDD.AND.PMAX.GT.PHMX) GOTO 33
GOTO 35
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33

60

41

40

PMX (C)=PMAX
IPEAK(C)=IPK
C=C+1
PMAX=PHMX
CONTINUE

Troughs and positions of troughs

PRINT*,'STARTING ON TROUGHS'

C=1
PHMN=PHMIN+ ( (PHMAX-PHMIN) /3)
PMIN=PHMN

DO 34 I=ST,EN

IF (PHCI).LT.PMIN) THEN
PMIN=PH(I)

ITR=I

ENDIF

IF (PH(I).GT.MIDD.AND.PMIN.LT.PHMN) GOTO 60

GOTO 34
PMN(C)=PMIN
ITRO(C)=ITR
PMIN=PHMN
C=C+1
CONTINUE

Set TR=1 if trough before peak

TR=0

IF (IPEAK(1).GT.ITRO(1)) TR=1
IF (TR.EQ.1) C=C-1

PRINT*,'STARTING TO FIND',C-1
Mid points

M=1
DO 70 1=1,C-1

MID(M)=((PMX(I)-PMN(I))/2)+PMN(I)

IF (TR.EQ.1) THEN
STT=ITRO(CD)
ENN=IPEAK (I)

ELSE

STT=IPEAK(I)
ENN=ITRO(I)

ENDIF

EX=0

MD (M)=0

DO 40 R=STT,ENN

IF (PH(R).EQ.(MID(M)+EX).OR.PH(R).EQ.(MID(M)~EX)) MD(M)=R

CONTINUE

IF (MD(M).EQ.0) THEN
EX=EX+1

GOTO 41

ENDIF

M=M+1

CONTINUE

Distance between mid-points

PRINT*,'STARTING TO FIND DISTANCES BETWEEN MID POINTS'

COUNT=0

1
r
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K=1
DO 80 I=2,M~1
PSDDIFF=((3*MD(1))-2)=-((3*MD(I-1))~2)
DIFF=MD(I)-MD(I-1)
D=(3*MD(I-1))-2
V=0
DO 81 R=MD(I-1),MD(I)
PHNO(R)=COUNT+(V*(1/DIFF))
PSDNO(D)=COUNT+(V*(1/PSDDIFF))
V=V+1
D=D+1

31 CONTINUE
DO 82 A=D,(3*MD(I))-2
PSDNO(A)=COUNT+(V*(1/PSDDIFF))
V=V+1

82 CONTINUE
COUNT=COUNT+1

0 CONTINUE

Plot these points on Ghost

OO

XMIN=0

XMAX=COUNT

PSDPOSX=PSDNO(MD(1))

PSDPOSY=PSD(MD (1))

START=(3*MD (1)) -2

PSDFIN=(3*MD(M-1))-2

PHPOSX=PHNO(MD (1))

PHPOSY=PH(MD (1))

STA=MD (1)

FIN=MD(M-1)

IOPOSX=PHNO(MD (1))

IOPOSY=I0D(MD (1))

CALL PAPER(1)

PRINT*,! to mark the boundaries of expasion'
PRINT*,' to expand but not file anything'
PRINT=*,' to file all that is on screen'
PRINT*,' to quit'

PRINT*,' to mark Lleft hand point'

PRINT%,' to mark right hand point'
PRINT*,' to plot at cursor L-R separation'
PRINT* ' to mark top of peak'

PRINT=*,' to mark bottom of peak and plot'
PRINT*,' a half height marker'

PRINT*,' H to plot at cursor T-B separation'
PRINT*,' X to mark x coord in MHz'

U~MExiremTm=T

C MAIN EXECUTION LOOP
BDREPEAT=0

85 PRINT*,' !
CALL ERASE
c SET EXPANSION PARAMETERS FOR NEXT SCREENLOAD

145 CALL ERASE
PRINT*, 'EXPANSION PARAMETERS'

PRINTx, ' !

PRINT*, ' 0 To exit from the program'
PRINT*, ' '

PRINT*, ' 1 For the frequency axis Llimits®
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PRINT*, ' as marked on graph, or unchanged'
PRINT*, ' ' 4

PRINT*, ! 2 To insert numerical values for'
PRINT*, ! axis Limits'

PRINT*,' *

PRINT*, 'Input choice'

READ*, FM

IF (FM.EQ.1) GOTO 150
IF (FM.EQ.Q) GOTO 200
PRINT*, ' *
PRINT*, 'Input minimum frequency'
READ*, MK(1)
PRINT*, 'and now the maximum freguency'
READ*, MK(2)
150 IF (BDREPEAT.EQ.O.AND.FM.ER.1) THEN
MK (1)=XMIN
MK (2) =XMAX
ENDIF
IF (MK(2).GT.MK(1)) THEN
XMAX=MK (2)
XMIN=MK (1)
ELSE
XMIN=MK (2)
XMAX=MK (1)
ENDIF

PRINT*,'Type 1 for PSD only?
READ* ,PDIO
86 PRINT*,'File header comment is ', COM

PRINT*,* !

PRINT*, 'Input integer code number for graph'
READ*, CODE

CALL ERASE

PRINT*,'Input the zero offset'

READ* ,OFFSET

PRINT*,'Input 0O to the next question to'
PRINT*,'get bdsstandard scaling'
PRINT*,'For standard psd mag use', 4095/
Z (1.1*(BDPSDMAX)-0FFSET)

PRINT*,'Input the PSD magnification '
READ* ,MAG

IF (MAG.EQ.Q) THEN
MAG=4095/(1.1*(BDPSDMAX~-BDPSDMIN))

DO 4010 BDI=1,PSDEN
PSD(BDI)=PSD(BDI)~BDPSDMIN

4010 CONTINUE

ENDIF

CALL ERASE

IF (S.EQ.1) THEN

PSDSCL=0.2

PHSCL=0.16

PHSC=0.08

ELSE

PSDSCL=0.3

PHSCL=0.26

PHSC=0.18

I0SCL=0.16

ENDIF




CALL PSPACE(0.08,1.0,0.72,0.75)
CALL MAP(0.0,1.0,0.0,1.0

CALL CTRMAG (20)

CALLPLOTNI(0.45,0.1,C0DE)
C Plot PSD points
IF (PDIO.NE.1) THEN
CALL PSPACE(0.08,0.948,PSDSCL,0.772)
ELSE
CALL PSPACE(0.08,1.0,0.08,0.7)
ENDIF
CALL MAP(XMIN,XMAX,0.0,4095.0/MAG)
CALL SCALES
CALL BORDER
CALL POSITN(PSDNO(START) ,PSD(START))
DO 90 I=START,PSDFIN
CALL JOINCPSDNO(I) ,PSD(I)-OFFSET)
90 CONTINUE

C Plot Photodiode Points
IF (PDI0O.EQ.1) GOTO 101
AP=1
CALL PSPACE(0.08,0.948,PHSC,PHSCL)
CALL MAP(XMIN,XMAX,0.0,4095.0)
CALL BORDER
CALL POSITN(PHPOSX ,PHPOSY)
DO 94 I=STA,FIN
DO 99 Q@=1,SD
If (LKOFF(Q@).EQ.I) THEN
CALL CTRMAG(15)
CALL PLOTNC(PHNO(I),0.0,192>
CALL POSITN(PHNO(I=1) ,PH(I-1))
CALL CTRMAG(10)
OFF(AP)=PHNO(I)
AP=AP+1
ENDIF
99 CONTINUE
CALL JOINCPHNO(I) ,PH(I))
94 CONTINUE

C Plot Iodine Points
IF (S.EQ.1) GOTO 101
CALL PSPACE(0.08,0.948,0.08,10SCL)
CALL MAP(XMIN,XMAX,0.0,4095.0)
CALL BORDER
CALL POSITN(IOPOSX,I0POSY)
DO 93 I=STA,FIN
CALL JOINCPHNO(I),IOD(I))
93 CONTINUE

C SETTING UP AND USING CURSOR TO ANNOTATE ETC

BDREPEAT=1

101 IF (PDIO.NE.1) THEN
CALL PSPACE(0.08,1.0,PSDSCL,0.7)
ELSE
CALL PSPACE(0.08,1.0,0.08,0.7)
ENDIF
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98

103

104

105

106

97

140

200
210

CALL MAP(XMIN,XMAX,0.0,4095.0/MAG)
CALL CTRMAG (25)
MK (1)=XMIN
MK (2) =XMAX

1=0

I=I+1

CALL CURSOR(X,Y,ICHAR)

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

(ICHAR.EQ.88)
(ICHAR.EQ.84)
(ICHAR.EQ.72)
(ICHAR.EQ.76)
(ICHAR.EQ.82)
(ICHAR.EQ.87)
(ICHAR.EQ.77)
(ICHAR.EQ.66)
(ICHAR.EQ.81)
(ICHAR.EQ.7()
(ICHAR.EQ.69)

GOTO 96

BOTTOM AND HALF HEIGHT

BOTTOM=Y
CALL PLOTNC ¢X,Y,176)
HALF= (TOP+BOTTOM) /2

CALL POSITNCXMIN,HALF)

CALL
GOTO
CALL
GOTO
GOTO
CALL
GOTO
GOTO
GOTO
GOTO
GOTO

PLOTNF(X,Y,X*250,1)

104

PLOTNF(X,Y, (TOP-BOTTOM) ,1)
105

106

PLOTNF(X,Y, (RIGHT-LEFT)*250,1)
97

103

200

140

145

CALL JOINCXMIN+ (XMAX-XMIN)/50,HALF)
GOTO 96

TOP

=Y

CALL PLOTNC (X,Y,176)
GOTO 96
LEFT=X ,
CALL PLOTNC (X,Y,124)
GOTO 96
RIGHT=X
CALL PLOTNC(X,Y,124)
GOTO 96
MARKERS FOR EXPANSION

CALL BROKEN(10,10,10,10
CALL POSITN(X,0.0)
CALL JOIN(X,4095.0/MAG)
CALL FULL

IF
MK ¢

(I.GT.2) I=2
=X

GOTO 98

SAVE INTO GRIDFILE

CALL FRAME
CALL PICSAV('USER2:[PHRBSIBD.GRD',A,19,0)

GOTO 85
CALL GREND
STOP

END




APPENDIX E

STUDIES INVOLVING THE SODIUM DIMER

Rather than treat the sodium dimer population as an undesirable but un-
avoidable Loss mechanism for second harmonic generation in sodium atoms, it
was decided to investigate the possibility of using transitions in the
dimer for resonant enhancement of magnetic-fietd-induced second harmonic
generation. The many degrees of freedom of the molecule result in a large
number of possible transitions; it was hoped that some of these would be
suitable for enhancing the SHG process, thus giving many more frequencies
at which the second harmonic could be generated. A disadvantage of a
molecular medium is that many molecular states are not significantly per-
turbed by a magnetic field, which restricts their use in a magnetic-field-
induced process. Another problem is that the spectroscopy of the highly
excited states of the sodium dimer is not well understood, though strong

two-photon absorption has been reported [143].

The theory of the structure and spectra of diatomic molecules is given by
Herzberg [1441, and his notation will be used throughout this appendix.

The angular momenta involved in describing the states of the sodium dimer
are shown in figure E.1. The angular momentum of the electrons, L,
precesses around the inter-nuclear axis; the component of this momentum
about this axis is A= ImLI. Any angular momentum due to electron

spin will also precess about the inter-nuclear axis, with a component 2
along this axis. The total angular momentum along this axis is then

Q= A+X . The etectronic angular momentum and the total angular momentum,
J, are guantised, the nuclear angular momentum, N, is not. The angular
momenta are coupled according to Hund's rule (a). States with A =0, 1, 2

are classified as &, M,A respectively. ALl states withA# 0 are doubly
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degenerate, as m, can have the two values #A. In diatomic molecules

L
any plane passing through the internuclear axis is a plane of symmetry.
The electronic eigenfunctions either remain the same (positive states), or
change sign (negative states) when reflected in such a plane. If, as in
the sodium dimer, the nucleii have the same charge, the electric field
experienced by the electrons remains the same on reflection of the nucleii
in the centre of symmetry. As a consequence, the electronic eigenfunction
remains the same (even, gerade state) or changes sign (odd, ungerade
state), when it undergoes such a transformation. The symmetry of the
rotational levels with respect to an exchange of nucleii leads to positive
rotation levels being symmetric and the negative levels antisymmetric for

even electronic states (for exampLe,Zé), and vice versa for odd

electronic states (for examplezu).
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Figure E.1. Coupling of angular momenta in a diatomic
molecule 1in Hund's case (a), see text for details.
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Consideration of the symmetry properties of the molecular wavefﬁnctions and
their interaction with radiation [86, 1441 gives the selection rules for
electric dipole radiation shown in table E.1. Two photon selection rules
are found by a repeated application of the selection rules for single

photon transitions. The quadrupole selection rules are given in table E.2.

Table E.1. Selection rules for electric dipole transitions

in homonuclear dimers. g and u denote gerade and ungerade
states, s and a are symmetric and antisymmetric wavefunctions,
and + and - denote even and odd parity wavefunctions.

g<«—>g u <——> u g <+ u

§ —>5 gé&—>3a a<+>s

+ > + - —> - + €—f—> -

e 2Z" Fe—>s5 etz

Al =0, +£1, 2

but J=0 <+ J=0, J=1/2 <> J=1/2, J=1 <> J=0

AS =0

AZ=0

AJ\—"' 0’ "_' 1, 3'2

Table E.2. Quadrupole transition selection rules for Naz.

The Z states, of which the ground state of the sodium dimer is one, have

very small Zeeman splittings AW

AW = gy BM (E.1)

where g is the g factor, is the nuclear magneton, and M is the
M
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magnetic quantum number. For other electronic states belonging to Hund's

case (a) the Zeeman shifts are

AW = (L+25) (L+5) B M (E.2)

J W0+

where ugis the Bohr magneton. Thus the splitting is very much greater than
for the 2 stafes. However, the rotational averaging results in the

J(J + 1) term in the denominator, and thus the Zeeman splitting decreases
rapidly with increasing J. This is illustrated in figure E.2 for a 1ﬂ

g
state.

3 & 5

=1 2
1TT [E—E;-- IA\’“

igure E.2. Energy level splitting in a magnetic field for a
M or a 3T state. The magnitude of the normal Zeeman
splitting is given by the broken Line arrow. From [144].

A possible scheme for magnetic-fietd-induced SHG must include magnetically
active states; one such scheme is shown in figure E.3. 1ﬂ' states were
found by Morgan [143, 145] in his study of high lying gerade Rydberg states
of the sodium dimer. He used Doppler free two-photon absorption to

populate such states, and classified four of them as 1ﬂg (3s + 4d)

states, as shown in table E.3.

E.4



J= 0 1 2 3 4

Figure E.3. Possible scheme for BSHG in sodium. Single Llines
represent enhancing single photon transitions, the double Llines
represent the quadrupole return route. Similar schemes are
possible for other J values.

s s o o — v

Lasgq frequency Gr?ugd State En?ancing State ypper State
) X 5 A

(cm A 1T (3s + 4d)
(vri9grn) w40 Wi

16948.120 (3,30) (26,31) (6,30)

16960.285 (4,35) (28,34) (8,34)

17049 .480 (2, 1) (25, 2) 6y O

17086.985 1,60) (26,59) (7,60)

Table E.3. Two photon transitions from X 1§+ to 1ﬂ'g(3s + 4d)

assigned by Morgan et al [143]. 9
Doppler free two~photon spectroscopy of the type decribed in section 4.4.2
was carried out with the aim of finding magnetically active upper levels,
such as would be expected from the above classifications. The heatpipe of.
figure 4.3.3(d) was used at a temperature of approximately 400°C. The dye
Laser was tuned to the transitions listed by Morgan; these transitions, and
others that were found nearby, were examined. Portions of the spectrum
from 584 nm to 602 nm were examined. The Linewidths of the two photon
absorption peaks were measured in zero and 0.13 T fields. The detuning of
some of the intermediate states were determined using saturation

spectroscopy. These results are summarised in table E.4.

This study left us in some confusion; some transitions that had been

classified by Morgan as Z->Z2~>% , which were not expected to be
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magnetically active, were found to be so, and one of the E-> 23T
transitions showed no broadening whatsoever. Other recent work by an
Anglo-French [1461 group using Fourier-Transform spectroscopy disputes some
of Morgan's classifications, but some of the transitions that they classed
as Z-> £ ~>Z still showed some broadening in a magnetic field in our
experiments. Schawlow [147] comments that very few of the Llines Listed in
reference 143 had been given the careful tests described in that reference.
His group is continuing to investigate the'energy Level structure of this
molecule [148]1. Part of the problem may well have been due to Llevels of
different terms being close to each other in energy, and their wave-

functions mixing slightly [1493, thus giving each level some character of

the other.

In the Light of the uncertainty regarding the assignments of the N32
Rydberg levels, the study of the sodium dimer as a nonlinear medium was
discontinued. Obviously much work has yet to be done to determine the
level structures unambiguously. It was, however, considered worthwhile to
tabulate the results that had been obtained, in the hope that they may be
useful at some later date. Certain transitions looked very interesting;

a transition near 16799.40 cm-1, for examﬁle, grew greatly in intensity
when the magnetic field was applied. This may have been due to the

resonantly enhancing intermediate state being Zeeman shifted closer into

resonance, or an increase in the wavefunction mixing mentioned above.

Table E.4 shows the wavenumbers of the transitions that were found, and
lists the magnitudes of the peak two-photon absorption signals from the
photomultiplier tube at 0.0 and 0.13 T magnetic fields. The widths of the
resonances (FWHM at the laser frequency, HWHM at the atomic freguency) are
also listed at the same fields. The cells were heated to 400T, and were

filled with 1 mbar of argon buffer gas. These experiments were carried out
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over several weeks; although there were significant differences between
peak heights between different runs (up to a factor of two), the values
listed should give some idea of the relative strengths of the transitions.
The assignments of Morgan et al [145] and Cooper et éL L1461 have been
given alongside the experimental data when the measured transition

frequency was less than 0.1 wavenumber from that Llisted by these authors.
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Wavenumber

17103.22

17088.369

17088.209

17088.174

17087.271

17087.269

17087.259

17086.985

17049.735

17049.480

17006.292

Table E.4,

Strength Width

SO
SB

S0
SB

SO
SB

SO
sB

SO
S8

SO
SB

SO
SB

SO
SB

S0
S8

SO
SB

continued overleaf

38
29

32
20

86
27860

W0
wB

WO
wB

W0
WB

Wo
WwB

Wwo
WB

W0
W8

WO
WB

Wwo
wB

w0
WwB

wo
WO

7D
72

80
100

67
83

134
128

27
27
34

266
flat

52

114
160

95

Comments

Ratio of strengths with linear and circular
potarisatipn 0.82. »

Morgan XZ40,30) -2,(3s+5s) (26,28)

Cooper XZ3(1,61) -2(?,63)

On side of next peak.

Cooper classification includes collisional
energy transfer in intermediate state:
Cooper X£f (2,34) - AZ.(26,35) then
A2.(26,35) - ASI(26,37) jump
and A'2(26,37) - ‘st (7,38)

Peak flattens at 0.01 T.

Morgan th L@;

Ratio of peak strengths in Llinear and
circular polarisation 2.8. Linewidth
increases at 0.6 GHz/T.

Morgan X'£§(2, 1) - Tg(3s + 4d) (4,2)
Cooper X23(0,63) - E;(?,63)

Splits into two peaks, at a rate of

1.08 GHz/T. Peak heighte P*S, but

saturates at 100 mW. Saturation behaviour
of the two peaks different: peak height
ratio at low pressure and lLaser power
density was 12, "usually' was 2.7. Pressure
broadening 40 MHz/mbar (FWHM at atomic
frequency). Peak signal rises by factor of
three from 1 to 5 mbar argon, then decreases
by 6% by 15 mbar. Saturated absorption and
intermodulated fluourescence spectroscopy
show no change in intermediate "enhancing"
levels with magnetic field. Neargst one
photon resonance at 17006.294 cm .

Morgan X's (0,54) ~-'4(3s + 5s)(25,54)

Cooper X'5;(1,61) -48(?,61)

E.8



Wavenumber

17005.490

17005.122

17004.49

17004 .4

17002.49

16960.369

16960.285

16960.143

16959.721

16959.689

16948.804

16948.692

16948.120

16933.949

16933.632

16933.148

16933.027

16932.994

Table E.4, continued overleaf

Strength

SO 9.3
s8 9.0

SO
SB

S0

.0
ol
.6
SB -4

U1 N

SO
S8

o o oo 0 O

SO
SB

- N
0 N
. "
oo o=

SO
SB

NN

[o VLI
L] -
]

SO
SB

n N
.
N~

oo oo oo [= N} ~ O
.
O 0

SO
SB

0
o

S0
SB

S0
SB

SO
SB

L]
- W W

SO0 0.94
sB 0.75

SO 24
sB 21

SO
SB

SO
SB

R Q. ¥
- =]

SO
SB

oo o9 op

N

Width

Wo
WB

w0
wB

w0
wB

w0
WB

WO
WB

W0
WB

WO
WB

w0
WB

WO
WB

Wo
WB

Wwo
wB

Wo
WwB

w0
w8

W0
WwB

Wo
WwB

WO
WwB

34
26

59
63

30
53

36
39

41
28

43
92

49
49

29
30

192
191

33
53

25
25

42
33

83
88

42
39

65
90

62
63

Comments

Broadening 0.36 GHz/T.

Morgan X '& - 'm

Morgan X'&=%;(3s + 4d)

Large pedestal

Morgan Xé:- L



Wavenumber

16927.014

16926.285

16925.507

16925.267

16923.970

16923.653

16922.688

16922.710

16922.453

16914.988

16914.952

16898.435

16890.408

16883.27

16883.00

Table E.4,

Strength

SO 0.48
SB  0.46
SO 0.33
s8 0.32
SO 0.69
sB 0.6

SO 0.51
S8 0.42
SO 0.27
sB 0.18
S0 33

sB 30

SO 0.1

SB

SO 1.0

sB 0.8

S0 3.7

sB 2.8

S0 27

SB 27

S0 0.7

s8 0.7

SO 1.0

sB8 1.0

s¢ 0.18
SO 4.3

SO0 4.3

continued overleaf

Width

Wo
WwB

32
29

WO
WB

60
72

WO
WwB

39
37

wo
WB

27
23

Wo
WwB

70
70

Wwo 61
wB 60

Wo
WB

24
24

Wwo
WB

35
36

Wwo 35
WwB 41

W0
wB

58
58

Wwo
WB

68
68

Wo
WB

53
56

wo 150

Comments

Morgan X'&-5,(3s + 5s)

Morgan X'5-'£(3s + 5s)

Peak flattens out in field.
Morgan X's3= %(3s + 5s)

Active group of transitions; shows structure
at zero magnetic field, and in an increasing
magnetic field splits into a lone peak,
which remains at the same frequency, and two
group of peaks, one of which moves to higher
frequencies at 1 GHz/T, while the other
moves to lower fr‘equencies;,I Single photon
transition at 16883.286 cm .

Two main peaks split from 200 MHz separation
in zero field to 800 MHz separation at

0.13 T. Si?gLe photon transition at

16883.0 cm .

E.T0



Wavenumber Strength Width

16850.574 SO 100 Wwo 93
SB 94 wB 79

16846.367 SO 0.9 WO 30
s8 0.9 WB 30
16845.749 SO 6.3 WO 27
SB 6.3 wWB 29

16845.570 sO 35 W0 36
sB 33 WB 34

16844.677 SO 12 Wwo 50
sB 7 WB 113

16817.349 SO 2.9 WO 164
SB 1.4 WB 250

16816.321 SO 3.8 WO 26
SB 3.6 WB 28
16815.892 SO0 4.3 W0 30
SB 4.2 WB 32

16812.430 sO 1.1 WO 250
sB 0.3 uwWB 512

16806.212 SO 14 w0 55
SB 14 W8 51

16806.066 SO 5.6 WO 42
SB 5.4 WB 38
16805.981 SO 0.6 WO 52
S8 0.2 WB 144

16799.399 SO0 1.9 WO 360

16794.648 SO 13.5 WO 25
SB 13.5 WB 26

16794.18 SO 22 Wwo 33
sB 22 WwB 34

Table E.4, continued overleaf

E.

Comments

Morgan XE;— £(3s + 5s)

Morgan X2 -'44(3s + 5s)

Active doublet. Low freguency peak remains
approx. constant, high freguency pezak
broadens. Morgan X% -'5(3s + 4d)

Active doublet. Main peak broadens and
moves up in frequency 1.4 GHz/T;
subsidiary peak moves down in frequency at
7.4 GHz2/T.

Measurements taken at 1/10 usual fundamental
power, Doppler free peak in dip at top of
Doppler broadened peak.

Structured peak at zero field, values listed
here for 0.03 T field. Broadening 10 GHz/T.

Structured Doppler free peak broadens and
moves to higher frequency with increasing
field, and another peak grows from zero at
5 GHz lower frequency. Doppler broadened
UV peak grows by factor of 11. Small
changes in fluorescence at visible
frequencies.

"



Wavenumber

16793.971

16789.676

16785.423

16785.087

16781.785

16779.668

16738.501

16738.304

16738.173

16736.626

16724.974

16720.373

16705.34

16704.2

16704.028

16698.451

16694 .223

Table E.4, continued overleaf.

Strength
sO0 8.6
SB 8.7
SO 68

SB 65

SO 1.1
SB 1.0
sO0 0.9
SB 1.0
s0 1.9
SB 1.8
SO 1.0
sB 2.0
S0 8.4
SB 8.4
s0 1.5
SB 1mS
S0 (o,
SB 1.8
SO 1.0
s8 1.0
sO 0.5
sB 0.5
S0 74

SB 73

SO 2.1
SB 2.1
s0 0.5
SB 0.6
SO 50

SB 50

SO 3.4
SB 3.4
SO0 4.5
SB 1.8

Width

wg 29
WB 26

WO 47
WB 44

Wo 221
WwB 235

wo 28
WwB 28

Wwo 81
WwB 98

wo 32
WwB 34

WO 35
we 30

Wwo 32
WB 32

Wo 27
W 27

W0 240
wB 240

WO 61
WB 54

wo 52
WB 48

wo 30
wB 37

WO 45
wB 50

wo 29
wB 29

Wo 261
WB 490

Comments

+ 4

Morgan X%~ &(3s + 5s)

Morgan X%-'{{(:&s + 5s)

Morgan X'Zj'— ’23(35 + 5s)

Active group of transitions. Structured
peak splits into two main components. No
noticeable change in visible fluorescence.

Morgan X4 -'&(3s + 5s)

Morgan X%;-%;(3s + 58)

This and next line in Llist are magnetically
active, decreasing their separation by
5.8 GHz/T. Morgan X'§r~'{5+(3s + 5s)

E.12



Wavenumber Strength Width Comments

16694.172 SO 4.5 WO 178
S8 2.9 WuWB 220
16691.831 SO 0.8 WO 28
S8 0.8 wB 26
16691.636 SO 1.2 WO 29 Morgan X& -'%(3s + 5s)
S8 1.3 WB 28
16691.376 SO 2.8 WO 32
SB 2.7 WB 32

16690.646 SO 1.8 WO 26

SB 1.8 WB 27
6 WO 32
5

16689.952 SO 4.
4.5 WB 38

SB

16672.623 SO 8.8 WO 56 Morgan X%-5(3s + 5s)
SB 8.1 WB 47

16668.783 S0 12 WO 65
sB 11 wB 58

16635.5 SO 20 WO 57 Morgan X'&-%(3s + 5s)
SB 19 WB 57

16614.4 SO 36 WO 55 Morgan X'&-5'(3s + 5s)
S8 35 WB 50

16612.2 SO 1.3 WO 21
SB 1.2 wWB 23

16611.9 SO 0.6 WO 144  Morgan X% -'45(3s + 4d)
SB 0.6 WB 156

16610.7 SO 0.4 WO 180
s8 0.4 WB 190

16609.41 SO 1.0 WC 380 Structured peak. Total pattern width
SB 0.4 WB2900 increases at 20 GHz/T.

16601.8 SO0 30 Wl 61 Line studied in detail by Woerdman [150].
S8 29 WB 63 Morgan X5-'§(3s + 5s)

16583.6 SO 28 WO 41 Morgan X&-245(3s + 5s)
S8 28  WB 42

Table E.4 (continued). Observed Doppler-free two~photon transitions
in the sodium vapour. SO and SB are the peak heights of the two-
photon absorption trace at 0 and 0.13 T magnetic fields respectively.
W0 and WB are the Linewidths (FWHM at the laser frequency) of the
transitions uner the same conditions, measured in MHz. See text

for further comments.
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