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A bstract

This thesis applies spatial and spatio-temporal modelling to two broad areas of environ

mental statistics: wildlife abundance estimation and vegetation dynamics.

The first methodology considered is spatial modelling for estimating global characteristics 

through predicting the value of a response variable at new locations. The approach is 

based on generalized additive models and illustrated using spatio-temporal fisheries survey 

data. The method incorporates historical data to overcome shortcomings in the survey 

design. The GAM-based method substantially improves the precision of estimates over a 

traditional estimation method and is also useful in explaining complex space-time trends 

using environmental variables.

The second methodology addressed is spatial modelling for the description of the under

lying process. Its objectives lie in exploring local properties, such as autocorrelation. 

Auto-models (Markov Random Fields) are used for modelling discrete data. Autocorre

lation is estimated directly from the response, as a fixed effect, through the specification 

of a conditional probability of each observation, given its neighbouring values. The auto- 

Poisson model for counts has traditionally been restricted to the modelling of negative 

autocorrelation. This restriction is overcome by right truncating the Poisson distribution. 

Further modifications of this model are also investigated. Parameter estimation methods 

for this truncated auto-Poisson model are then compared via a simulation study. The 

method with accompanying model selection and validation techniques is illustrated for 

the auto-Poisson and auto-negative binomial model using seed and mite counts. An ex

ample of modelling the presence and absence of deer illustrating the auto-logistic model 

for binary data is also presented.

Finally, methodology for spatio-temporal modelling of the underlying process is considered. 

The use of transition models for modelling change of semi-natural vegetation in Scotland 

is investigated. The transition model is extended to incorporate spatial effects and it is 

shown that estimates of transition probabilities for Markov models can be improved.
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C hapter 1

G eneral in trod u ction

In environmental studies there are two broad areas, apart from epidemiology and toxicol

ogy, for which spatial and spatio-temporal modelling are relevant, namely wildlife abun

dance estimation and modelling vegetation dynamics. This thesis describes applications 

from both areas. Spatial modelling might be carried out for at least two fundamentally 

different purposes, leading to different conceptual approaches. The first approach can 

be described as spatial modelling for estimating global characteristics through predicting 

the value of a response variable at new locations. We illustrate this with an example 

from fisheries abundance estimation. The second approach is more concerned with spatial 

modelling for the description of the underlying process.

Besides abundance estimation there are many instances where the first approach is ap

propriate, e.g. using data from a few sample points of a forest to estimate the mean tree 

health status throughout the forest, or using disease incidence data in epidemiology to es

timate total incidence for an entire region. As a by-product predicted maps of tree health 

status throughout the forest or maps of expected incidence for the region are obtained. 

In addition such spatial modelling aids exploration of the relationships between spatially 

referenced response variables and explanatory variables.

For the first approach of predicting the spatial distribution, empirical modelling, where 

parameters do not necessarily have a meaningful interpretation, is sufficient. We use gen

eralised additive models (GAMs) (Hastie and Tibshirani, 1990) for prediction and assume 

that observations are independent. We present an application of fish egg population esti



mation in Atlantic mackerel {Scomber scombrus) (chapter 2). At the onset of the thesis 

we believed that autocorrelation could be eliminated by using very flexible models, such 

as GAMs. In our application in chapter 2 this turned out not to be the case and therefore 

the approach of modelling the spatio-temporal mackerel egg abundance data for stock 

assessment is not a statistically rigorous spatio-temporal model; it is merely a step in the 

development of robust methods for modelling the spatio-temporal trend in abundance.

The objectives of the second approach, spatial modelling for the description of the un

derlying process, lie in exploring the interactions between neighbouring responses, which 

can be competitive or co-operative. This also involves estimating the nature and extent 

of spatial interaction. There are a number of different methods involving explicit forms of 

the spatial auto-correlation structure in the modelling process. Even in the case of spatial 

independence, these types of models can obtain a better fit than models which do not 

account for autocorrelation, because they may capture the influence of spatial explana

tory variables which could not be measured because of cost or other practical reasons. 

Hence these models are well suited for prediction of spatial distributions. Many of the 

existing approaches for this task have been developed for use with continuous data. These 

methods are often inappropriate for use with counts, presence/ absence indicators, or cat

egorical data which commonly arise in environmental studies. Here we have concentrated 

on models for discrete data. This ‘process model approach’ is presented in chapters 3 to 

5, where auto-models (Besag, 1972) for discrete data are investigated. In chapter 6 we 

investigate the use of transition/Markov models (Agresti, 1990; Diggle et ah, 1994) for 

modelling change of semi-natural vegetation in Scotland. This method aims to improve 

estimates of transition probabilities for Markov models, often used in ecological simulation 

studies.

In chapters 3 to 6 we emphasise suitable models for describing vegetation dynamics pro

cesses, though applications presented are also from wildlife abundance estimation. A 

literature review on vegetation dynamics models reveals that most of the models are 

mathematical; they can be either stochastic or deterministic but are usually not directly 

based on data. They describe the dynamics of a process, with the aim of investigating dif

ferent scenarios. Examples of such models applied to vegetation dynamics include cellular 

automaton models (Green, 1989; Jeltsch et ah, 1996), models using differential equations 

(Tongeren and Prentice, 1986), neighbourhood population dynamic models (Pacala, 1986),



spatial patch dynamic models (Wu and Levin, 1994) and Markov models (Lerzman, 1996; 

Scanlan, 1994; Childress et ah, 1998). In some of the above approaches statistical methods 

are only used for calibration purposes, that is to estimate the model input parameters. 

There is broad scope for improvement of ‘ecological process models’ by incorporating data 

and we hope that chapters 3 to 6 have contributed to the improvement of ecological process 

models.



C hapter 2

M od ellin g  sp atia l correlation  using  

location a l covariates

2.1 In troduction

In this chapter we present an approach for modelling spatial data which assumes that val

ues of the response variable at different locations are independent. This approach is often 

used in wildlife distribution mapping. Regression methods in the form of generalised linear 

models (GLMs) or generalised additive models (GAMs) are applied under the assumption 

that values of the response variable at different locations are independent (Walker, 1990; 

Osborne and Tigar, 1992; Buckland and Elston, 1993). In these examples, counts or pres

ence/absence indicators for a particular plant or animal species, which are obtained by 

dividing a region of interest into a regular grid and visiting some or aU of the squares 

in the grid, are regressed on spatially referenced covariates. The covariates are typically 

measurements of physical and habitat-related characteristics drawn from a geographical 

information system (GIS). If covariate data are available for all the squares in a grid then 

a model fitted to the response in surveyed squares can be used to obtain predictions for 

aU squares, even those which were not surveyed. A complete map of the spatial distribu

tion of a species can then be produced. If abundance or density is estimated in surveyed 

squares, the map can also show densities throughout the area. Integration under the den

sity surface allows abundance to be estimated within any area of interest. However, these 

models only explore relationships between response and covariates: they do not help in



estimating effects of spatial autocorrelation. If there is no intrinsic spatial autocorrelation 

in the data present, these models are sufficient. Inclusion of locational covariates such 

as eastings and northings (or longitude and latitude) can possibly eliminate most of the 

spatial correlation in the residuals, especially when generalized additive models (GAMs) 

are applied. These covariates may act as proxies for unknown covariates that are causally 

related to the response.

In section 2.2 we describe GAMs and present an apphcation of GAMs for modelling spatio- 

temporal abundance data. In this example GAMs are used to estimate the spatial distri

bution of the density of mackerel eggs in the North Atlantic. The aim is to improve the 

precision of the total biomass of mackerel which is estimated indirectly from the total an

nual egg production (annual egg production method). This method requires multiple egg 

surveys during the spawning period, so that the total production of eggs can be estimated. 

Previously no spatial information was used to obtain this estimate. Here egg density is 

modelled as a function of spatial covariates and time, exploiting the fact that each egg 

survey is not carried out instantaneously. Since there is not full spatial coverage of the 

survey area throughout the spawning season, confounding of time and space presents a 

major challenge in these data. We show how, by constraining the model in time and space 

using historical stock boundary data, we can interpolate and extrapolate to time points 

and locations where no data are available. Using the GAM we can model complex trends 

in density with respect to space, time, and other explanatory covariates. In addition the 

changing spatial distribution of mackerel eggs can be monitored in time. This application 

is also published in Augustin et al. (1998a).

In section 2.3 we discuss the dangers of overfitting the data when such flexible models 

as GAMs are used and show how resampling methods for simulating data allow model 

selection uncertainty to be incorporated into estimates of precision. This work is published 

in Augustin et al. (1998b).



2.2 Spatio-tem poral m odelling for the A nnual Egg P rod u c

tion  M eth od  o f Stock A ssessm ent using G eneralized A d 

ditive M odels (G A M s)

2.2.1 Introduction to  th e use of G AM s in m odelling fisheries data

Generalized additive models (GAMs) provide a powerful and flexible statistical tool for 

modelling spatio-temporal distributions of animal abundance from survey data. They 

have previously been applied to relate fish survey or abundance data to locational and 

environmental covariates, e.g. in Swartzman et al. (1992, 1994, 1995); Swartzman (1997); 

Welch et al. (1995) and Maravelias and Reid (1997). Wood and Horwood (1995) re

late sole egg abundance data to locational variables only using thin plate splines. AU of 

these appUcations have the emphasis on applying GAMs to explore relationships between 

abundance and environmental and/or locational variables; they do not attempt to pro

duce reliable abundance estimates. Swartzman et al. (1992) give abundance estimates for 

Bering sea groundfish survey data, but find substantial downward bias in their estimates 

compared with estimates using design-based methods. Deriso et al. (1996) estimate an 

abundance index for Pacific sardine using GAMs, but only use relative abundance esti

mates. Bor chers et al. (1997b) go one step further and use GAMs to model egg density as 

a function of locational and environmental variables to obtain egg abundance estimates 

for the daily egg production method (DEPM). Here we want to improve upon the tradi

tional annual egg production method (AEPM) by modelling egg density survey data as a 

smooth function of space, time and oceanographic variables and thus improve precision of 

egg abundance estimates. The AEPM and DEPM estimate total fish biomass indirectly 

from an estimate of the total annual egg production and daily egg production respectively 

(see for details Gunderson, 1993; Anon., 1994). In contrast to commercial catch-based 

methods, they provide (like acoustic surveys) a fishery independent estimate of stock size. 

The AEPM requires egg plankton surveys of the spawning area at multiple time points 

through the spawning season, so that egg production can be estimated at each time point 

of the spawning season. In the DEPM, egg production is only estimated at a single point 

in time. While a single survey with sufficient spatial coverage, ideally at a single point in 

time, is adequate for the application of GAMs to the DEPM, spatio-temporal modelling 

of egg abundance for the AEPM requires adequate coverage of the survey area in both



space and time. Logistically, it is impossible to cover the whole survey area instanta

neously at any given time, and effects of space and time wiU always be confounded to 

some degree. We present GAM-based methods for spatio-temporal modelling which are 

more robust to the effects of this sort of confounding by incorporating historial data for 

spawning boundaries. We illustrate the methods using the 1995 egg survey data of the 

western stock of Atlantic mackerel {Scomber scombrus Linnaeus). When modelling egg 

production the random variable observed is egg count. Although we are interested in egg 

production, egg count as a response variable in the model is a natural choice and there 

are several distributions which can be used for such a response variable. The conversion 

of counts into egg production estimates can be handled by specifying an offset comprising 

the conversion factors required. Swartzman et al. (1992) use counts in their GAM as the 

response variable, but obtain estimates 30 to 50% lower than estimates from design based 

methods. Bor chers et al. (1997b) use counts as response in their GAM for the daily egg 

production method (DEPM) and their abundance estimate for Atlantic mackerel is 20% 

lower than the estimate obtained from the traditional method. We illustrate how such a 

count model in the presence of sub-sampling can lead to biased estimates from the GAM- 

based methods and how this bias can be avoided. Finally we compare the performance of 

the GAM-based AEPM with the traditional AEPM.

2,2.2 M ethods for fish egg abundance estim ation

T h e trad itional egg production  estim ation  m ethod (A E P M )

In the traditional AEPM, egg surveys are carried out over a number of periods through 

the spawning season and estimates for each period are assigned to the mid point of the 

period. The egg production curve is estimated by plotting these estimates against time 

and joining the estimates, either by straight lines or by using a nonlinear function such as 

cubic smoothing splines (Gunderson, 1993). Total annual egg production (Eg) is estimated 

by integrating under the curve.

The area of spawning is usually divided into strata and random samples are taken in 

each stratum and in each survey period. Samples are taken by lowering a plankton net 

down to 200m depth. Then the net is towed diagonally through the water-column over 

several nautical miles before it is retrieved (Figure 2.1). The multiple egg surveys carried



out throughout the spawning period are designed to provide full spatial coverage of the 

spawning area in each survey period. Mean daily egg production is estimated for each 

stratum  and survey period, for example by estimating egg production per grid square, 

and summing these estimates over the grid squares in the stratum. The estimated total 

daily egg production by period is then obtained by summing over strata.

vessel

200 m
plankton net

Figure 2.1: Schematic representation of the plankton net being towed through the 200 

water-column.

m

Variance estimation is based on the assumption that observed egg numbers are distributed 

with a constant coefficient of variation (cv) in space and time (Anon., 1996). When the 

egg production curve is assumed to be piecewise linear, as is the case with the AEPM as 

applied to Atlantic mackerel, the estimated variance for total annual egg production (E&) 

neglects the component of variance due to estimating the shape of the egg production 

curve.

T he G A M -based  A E P M

Although the traditional method treats data from each survey period as if they came 

from a single point in time (the survey period midpoint), sampling within each period is 

spread over time. Here we treat time as continuous and model egg density as a function 

of location, oceanographic variables and time, using GAMs. GAMs are an extension of 

generalized linear models (GLMs) (McCullagh and Nelder, 1989). Both accommodate a



variety of distributions for the response, but unlike GLMs, GAMs allow flexible nonlinear 

effects of the covariates on the response to be estimated from the data. GAMs have the 

following general form (Hastie and Tibshirani, 1990):

The function g{.) is the link function, which defines the relationship between the response 

and the linear predictor, Po +  Y!,k Ski^k)- The response, y, is assumed to be distributed 

according to one of a wide family of statistical distributions. The term Xk is the value 

of the kth  covariate, such as location or date, /3q is an intercept term, and Sk{-) is a one 

dimensional smoothing function for the kth. covariate. The degree of smoothing performed 

by a smoother Sk{.) is determined by the number of neighbouring points used for the 

smoothed estimates. We use cubic spline smoothers for 5'fc(.), where the degrees of freedom 

(df) associated with the smoother control the amount of smoothing; the fewer the degrees 

of freedom, the greater the smoothing. For example, df = 1 corresponds to a linear 

effect of the associated covariate, as in a GLM. For count data a common choice is a 

Poisson distribution with a log link function. The choice of distribution is intrinsically 

determined by the assumed relationship between y and its variance. For example, the 

Poisson distribution assumes the variance is equal to the mean (Var(y) = fj,, where 

is the expectation of the response); an overdispersed Poisson distribution assumes the 

variance exceeds of the mean (Var^y) ~  where <r̂  > 1 is the dispersion parameter); 

and the negative binomial (NegBin) distribution assumes Var{y) — jj,+ij?/k. The negative 

binomial distribution allows for more flexibility in the variance of the response than the 

Poisson distribution through the term fi^/k . The parameter k can be estimated from the 

data separately and kept fixed. It is also called the aggregation parameter. The greater 

A, the more similar the negative binomial distribution is to the Poisson distribution.

G A M s for egg den sity

Three possible types of response are: egg density, egg counts or egg presence/absence in a 

sample. The last of these is not illustrated here, but is useful in cases where zero eggs are 

observed over a large part of the survey area. Then egg density can be modelled in two 

stages, with one model for the presence/absence of eggs (stage one) and a second model 

for nonzero egg counts (stage two). This procedure is described by Borchers et al. (1997b).

When it comes to choosing the response in the GAM for modelling egg density it is useful 

to envisage the sampling process. The eggs obtained from a plankton sample are easily



counted, but to determine to which of the five identifiable stages each egg belongs is more 

time consuming. Therefore, subsamples for egg staging are typically taken in high density 

areas whereas in low density areas all sampled eggs might be staged. For different plankton

samples there wiU be a similar number of eggs in the subsample, but the egg density in the

sampled areas wiU vary considerably. If several vessels are involved in the survey, there 

might be other differences in the sampUng process, e.g. longer hauls wiU result in higher 

egg counts, as wiU the use of a plankton sampler with a larger opening.

TraditionaUy the number of eggs counted {uij) at a given stage is converted into egg density 

{densityij) per day per m^ by multiplying by the foUowing conversion factor {convij)\

nsij depthij 1
convij =  f — + — :-----— *     + mort.adj.

nsuhij volumeij durationij

where

• i IS the index for location,

• j  is the index for sampling day,

• ns represents the number of eggs of aU stages in the sample,

• nsub represents the number of eggs of all stages in the subsample,

• depth is the depth of the water column sampled,

• volume is the water volume sampled,

• duration is the duration of the selected stage and

• mort.adj. is an egg mortality adjustment

(see Gunderson (1993) for further details).

D en sity  m odel

If we choose density as the response variable, the best choice of distribution for the 

response is not obvious. A normal distribution with an identity Unk can lead to negative 

estimates of density in some localities at some occasions and while the actual distribution 

of egg density is often appreciably skewed, the normal is symmetric. A Poisson, gamma or 

negative binomial distribution might therefore be more appropriate. Although the Poisson 

distribution is only appropriate for discrete counts, the variance function of the Poisson

10



distribution might fit the data best. The model can then be fitted via quasi-likelihood, 

which only requires the specification of the variance function (McCullagh and Nelder, 

1989).

Our model for expected egg density of a given stage in the sample from location i and at 

day j  with j  = minday, {minday and maxday are the first and last days with

data available), is as follows:

/  K  K  \
E^densityij^ — exp I Pq -|- ^  ] Sk{xkij^ T ^  ^   ̂ 1 (2.1)

\  k k=ll>k j
where a log link function is used and

• exp(.) is the inverse of the log link function,

• Xkij represents the kth. covariate at the ith location on day j ,

• Po is the intercept parameter,

• 5a;(.) is the smoothing spline for the A:th covariate and

• SkiiP is the smoothing spline for the interaction term of the A;th and Zth covariate.

Given estimates Po, Sk{P and Ski{-) {k = l , . . . ,K ; k  < I < K),  the expected egg density 

E(densityij) at a given point in space and time with covariates Xk {k=l,...,K)  can be 

calculated.

C ount m odel

In the absence of sub-sampling, the preferred choice is to model the number of eggs 

observed in the sample nij from location i at day j  (t/̂ y; j=minday,...,maxday) using a 

GAM with an appropriate distribution (e.g. Poisson, gamma or negative binomial) and 

link function. However, in areas of high egg density the sample of eggs is typically sub

sampled to save time. Thus the volume of water sampled corresponding to a given count 

tends to be small when egg density is high. The assumed mean-variance relationship 

for counts does not reflect the mean-variance relationship of egg density. GAMs use the 

variance of the response (counts in this case) to construct weights in the iterative fitting 

procedure. When the error distribution is Poisson and the log link is used, the weights 

are equal to the mean response. This response is systematically reduced in areas of high
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density by the sub-sampling procedure, so that too little weight is attached to data from 

such areas and this leads to bias.

By moving the term convij from density ij = nij * convij in equation 2.1 to the right hand 

side we obtain the count model;

/  K  K  \
E{nij) = exp offsetij + ^k{xkij) + Ski{xkij.xuj) (2.2)

\  k k~l l~>k j
where o f f s e t i j  — -  log(coMUÿ) and a log link is used.

Given estimates Pq, Sk{-) and Ski{P {k = 1, . . . ,K \k  < I < K ),  the expected egg density 

at a point with covariates Xk (k=l,.. .,K)  is given by setting the offset term to zero:

  /   ̂ X K \
E(densityij) = exp j Sk(xkij) + XZX2 ̂ kl{xkij-xnj)

\  k k=ll>k j

In tegration  over space and tim e

Once a model has been selected, the GAM provides a smooth expected egg density surface 

which is integrated numerically over space, within the survey area, and time, within the 

spawning period, to provide an estimate of the total egg production in the survey area 

(Figure 2.2). Moreover, by integrating over the appropriate spatial and temporal limits, 

egg production can be estimated at any spatial and/or temporal resolution. In particular, 

the method can provide estimates of daily egg production at any given day in the spawning 

period over the whole spawning area, as well as an estimate of annual egg production (Eg).

In order to integrate the estimated egg production surface over space and time, the surface 

must be evaluated at points other than those at which samples were obtained. Explanatory 

variables which are not well defined except at sampled points and times (duration of haul 

and sampling depth, for example) present difficulties in this regard and should be excluded 

as candidate covariates. Time-dependent covariates are also only available at the sampled 

points and times. In order to use these covariates in integrating the egg production surface 

to obtain the egg production curve, they would have to be modelled as functions of space 

and time. This would add another dimension to the modelling problem, which we do not 

address.

D ealing w ith  sparse survey  coverage

Unless the spawning area is small relative to sampling resources available, surveys will
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rarely cover the complete spawning area. If observed egg densities at the outer limits of 

the sampled area are greater than zero, spatial and temporal extrapolation into unsampled 

regions of the spawning area can lead to positive bias. This can be avoided by defining 

outer boundaries beyond which spawning is known not to occur and constraining the fitted 

models to be zero (or nearly zero) at those points. Often historical data help to define 

these outer boundaries of spawning. In most cases these spatial boundaries will vary over 

time. Inadequate coverage in the time dimension can be dealt with similarly. The fitted 

models can be constrained at the beginning and the end of spawning by specifying times 

before which spawning would not have begun and after which spawning will have ended. 

Artificial data points with zero egg density along the spatial boundaries, and scattered over 

the whole survey area at the temporal limits, are added to the data. The additional data 

points are referred to as “structural zeros” and are used in estimation, model selection 

and variance estimation. In model selection the contribution of structural zeros to the 

deviance is removed before comparing models.

M od el selection

Model selection with GAMs involves choosing a distribution for the response, a link func

tion, an appropriate set of covariates and appropriate degrees of freedom for smoothing the 

covariates. We used plots of deviance residuals standardized by their estimated variance 

versus fitted values to examine the appropriate link function and distribution used. To 

examine whether the spatial distribution was adequately modelled, we plotted averages of 

deviance residuals by grid square and month.

V ariance estim ation

The variance of the annual egg production estimator {Ê^) can be estimated using para

metric bootstrap procedures. This involves generating b pseudo samples of the egg survey 

data using the fitted model, and refitting the GAM to each of these pseudo samples. For 

instance, for a model using the negative binomial distribution, a pseudo sample at loca

tion i and at day j  is produced by sampling from NegBin(/îij,fc), where k is fixed and 

l^ij is the fitted value. Integrating the predicted surface of each resample over space and 

time yields b bootstrap estimates for E^. The variance of these bootstrap estimates is the 

estimate of the variance for the GAM estimate. Bootstrap percentile confidence intervals 

(Efron and Tibshirani, 1993) can also be constructed from the 6 bootstrap estimates. The 

bootstrap procedure can generate variance estimates for egg production estimates at any
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spatial and/or temporal resolution.

Figure 2.2 gives an overview of the estimation procedure for the GAM-based AEPM.

Observed 

egg density data

Fit GAM 

to observed data

Regular grid of 

covariate data

Predict egg density 

surface per day

Model selection
Constraints: 

start/finish dates 
outer limits of spawning

Create bootstrap samples 

using fitted GAM

Fit GAM to bootstrap 

sample of egg data

Predicted surface of 
egg density 

(incl. bootstrap estimates)

Integrate surface over
Estimated annual 

egg production curve 

(incl. bootstrap estimates)

daily egg 
production

day 2

Integrate annual egg Total annual egg day

production curve production point estimate
over time (incl. bootstrap estimates)

I J

Figure 2.2: Schematic representation of the GAM egg production method. Boxes with 

rounded corners correspond to input data and output estimates, boxes with straight cor

ners correspond to estimation procedures.
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2.2.3 Exam ple: W estern A tlantic m ackerel 1995 egg survey data

The International Council of the Exploration of the Seas (ICES) has carried out triennial 

mackerel and horse mackerel egg surveys since 1977. We illustrate the CAM method 

using the 1995 ICES survey data of the Atlantic “western” mackerel stock. This survey 

was conducted by England, Germany, Ireland, Netherlands, Norway, Portugal, Scotland 

and Spain. Plankton sampling was carried out by national versions of a Gulf III type 

sampler with the exception of Spain which used Bongo and Pairovet samplers (Anon., 

1996). Although the stock assessments for the series of ICES surveys currently use the 

traditional AEPM, the GAM-based AEPM has been applied to data from three surveys 

(1989, 1992 and 1995) of the western area and from the 1995 survey of the southern area 

(Borchers et ah, 1997a).

Figure 2.3 shows the Atlantic mackerel 1995 survey coverage over intervals of 15 days 

spanning the sampling period. Note that there is only partial spatial coverage of the 

survey area during any time period. For example in the beginning of the survey period 

in February samples are only taken in the south of the survey area. This confounding of 

sampling in space and time makes it difficult to distinguish the effects of time and space 

at the beginning of the survey. An adaptive sampling strategy in the east-west direction 

was used in this survey. This strategy ensured that outer boundaries of spawning were 

sampled even if these extended beyond the “standard” sampling area. In comparison to 

previous survey years, the 1995 survey had the most complete coverage in space and time.

T he trad itional A E P M  applied to  A tlantic m ackerel

In the traditional AEPM as applied to Atlantic mackerel, egg density is estimated sep

arately in each survey rectangle (0.5° latitude by 0.5° longitude) per period, using the 

mean observed egg density of stage 1 eggs in each rectangle as the estimate. The survey 

was divided into six periods: (1) 16/3 -  25/3, (2) 26/3 -  14/4, (3) 15/4 -  21/4, (4) 22/4 -  

16/5, (5) 17/5 -  8/6, (6) 9/6 -  29/6, (7) 30/6 -  16/7. Egg mortality is ignored on the basis 

that it is negligible for the youngest egg stage, although ignoring mortality results in slight 

underestimation of biomass. For unsampled rectangles which are adjacent to at least two 

sampled rectangles and within the survey area, egg density is estimated by the arithmetic
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mean of the densities in adjacent rectangles. Other unsampled rectangles within a period 

and within the survey area are assumed to have zero egg density. Estimates of egg density 

within each rectangle are converted to estimates of egg abundance by multiplying them 

by the surface area of the associated survey rectangle. Total egg production in a single 

period is estimated by the sum of the estimates of egg abundance in each rectangle, over 

all rectangles in the survey region.

Annual egg production is estimated by integrating under the piecewise linear egg produc

tion curve over the whole spawning period (Anon., 1996). Each knot in this piecewise 

curve corresponds to the egg production estimate at the period mid-point. In order to 

estimate the total egg production over the whole survey period, an initial and a final time 

point, at which there are assumed to be no eggs in the area, are chosen. These two time 

points define the limits of the spawning period. Data for estimating the initial time point 

(the last time before the survey at which there were no eggs) and the final time point (the 

first time after the survey at which there were no eggs) are scant as there are no directed 

surveys in these periods. Although aU available data are used to decide where to locate 

the points in time, their date is necessarily somewhat arbitrary.

S ta rt/fin ish  dates and outer lim its o f  spaw ning for th e  G A M -based  A E P M

In 1995, sampling for mackerel seldom spanned the entire spawning area and did not 

span the entire temporal range of spawning. This is apparent from observed egg densities 

(Figure 2.4) at the outer limits of the sampled area and at the latest sample times. In both 

cases, egg densities were often substantially greater than zero. In order to avoid positive 

bias being introduced by spatial and temporal extrapolation into unsampled regions of 

the spawning area at any time, the outer boundaries of spawning were defined prior to 

fitting the G AMs, and the fitted models were constrained to be close to zero at these outer 

boundaries by using structural zeros, as described above. The spatial boundaries we used 

vary over time, in accordance with what are believed to be conservative estimates of the 

true outer boundary of spawning at various times through the spawning season (i.e. the 

true boundaries are likely to be within the assumed boundaries). The locations of these 

boundaries are based on data from all surveys of the area conducted up to 1995. Each of 

the five months between March and July was assigned a different spatial boundary defined 

by appropriately placed structural zeros (Figure 2.5). Except in July, no outer boundary
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was specified at the southern end of the western survey area. Egg densities there were 

high, and counts were made south of the boundary, for stock assessment in the southern 

area. We included these counts, to improve the fit of the GAM at the boundary. Spatial 

boundaries were chosen as follows: Using a grid of 0.5° latitude by 0.5° longitude, and 

extracting by grid rectangle the maximum egg density observed between 1977 and 1995, 

the boundary was defined to be the first rectangle that lay at least 0.5° longitude beyond 

the outermost rectangle with zero or near zero egg density. These rules were not always 

rigidly adhered to, but were adjusted slightly in the light of additional data from other 

sources.

A temporal limit at which it was assumed that spawning had not yet begun, and a temporal 

limit at which it was assumed spawning had ended, were defined and used similarly. The 

start date (minday) for spawning was assumed to be the 10th of February and the finish 

date was assumed to be the 31st of July {maxday). The same dates were used for the 

traditional AEPM.

M odel Selection  for th e  G A M -based  A E P M

In order to simplify the model selection process, we adopted the approach taken by 

Bor chers et al. (1997b) for model selection and considered only splines with either 4 de

grees of freedom {df=4 ) or one degree of freedom {df=l ) for covariates and their first order 

interactions. The covariates first entered the model with df=4, and backward stepwise 

elimination was used to select a set of covariates. Selection between smooths with df—4 

and smooths with df=l was performed in the next step. Finally, first order interactions 

of the previously selected covariates were first entered with df=4 , again using backwards 

stepwise elimination for model selection, and selection between smooths with df=4 a,nd 

df=l was performed in the next step. Comparisons between models were made on the 

basis of approximate F-tests (Hastie and Tibshirani, 1990). The covariates (%) used in 

the G AMs are as follows.

date = date in days since the 1st of January, 

lat = latitude in degrees.

Ion = longitude in degrees,

cdist = closest distance to the 200m depth contour line in nautical miles (negative if
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bottom depth >200m)\ the 200m contour line corresponds to the edge of the continental 

shelf,

gdist = distance along the 200m contour line in a north-south direction in nautical miles, 

and

log(depth) = logarithm of bottom depth in metres.

Substantial confounding between position, time and vessel precluded inclusion of a vessel 

factor. Sea surface temperature at a given location was found to be highly correlated with 

date. We chose to include date in preference to sea surface temperature as this avoids 

difficulties associated with predicting temperature at unsampled points. Aside from date, 

all covariates used in the model are constant with respect to time and all are known over 

the fuU range of the survey. The digitized bathometry data set (DBDB5) of the British 

Oceanographic Data Centre has been used to obtain bottom depths.

While models were selected using structural zeros to constrain the fitted model to be at 

or close to zero at the spatial and temporal boundaries of spawning, the contribution from 

these structural zeros to the deviance was removed before comparing models.

R esu lts

G A M  for egg density

Because subsamples were taken in areas of high density, we fitted egg density using equa

tion (1), with a negative binomial distribution and a log link function. The selected model 

for the spatial distribution of egg density includes the following covariates selected with 

smooths of df=4:s(date), s(cdist), s(gdist), s(log(depth)), together with all smoothed 1st 

order interactions between the covariates except cdist*gdist and cdist*log(depth). The 

residual deviance for this model is 1826 on 1587 df, with an estimated dispersion param

eter of 1.1, which indicates that the model fits fairly well. Approximate F-tests indicate 

that date is the most significant covariate, followed by log (depth). Deviance residuals plot

ted versus fitted value appear to be fairly random. Average deviance residuals plotted in 

space by grid square and per month (Figure 2.6) suggest that there may be some remaining 

unmodeUed spatial correlation. Calculating the correlograms (not shown here) on these 

averages of deviance residuals confirms this. The autocorrelation of deviance residuals in 

time, ignoring the spatial dimension, show strong correlation too (Figure 2.7). In March
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Figure 2.7: The autocorrelation function at different time lags (in days). The dotted 

lines correspond to approximate 95% confidence interval bands about the line of zero 

correlation.

observed average mackerel densities are highest in the south of the survey area along the 

200m contour line, while in May high densities are further north and to the west of the 

200m contour line (Figure 2.4). A comparison of the observed distribution of mackerel 

eggs (Figure 2.4) and the predicted spatial egg densities (Figure 2.8) indicates that the 

model has captured the south-north shift in spawning along the 200m contour line, as 

well as the peak in abundance and westward shift during May. The egg production curve 

(Figure 2.9) suggests a slightly lower peak than the curve from the traditional method, 

but overall it agrees fairly well. The plots using the centred covariates of the effects of 

the partial smooth functions, i.e. the effect of date given the inclusion of the other covari

ates, are given in Figure 2.10. The smooth corresponding to date indicates the peak of 

spawning in the middle of the survey period. The effect of the smooth function fitted for 

distance from the 200m contour line (Figure 2.10a) shows a peak west of the 200m metre 

contour line. The total annual egg production estimate from the density model is 1.49 

X  10^®(standard error (s.e.) = 0.10; coefficient of variation (cv) = 6.9) in comparison to 

the traditional method estimate of 1.48 x 10̂ ® (s.e. = 0.17, cv = 11.5) (Table 2.1). The
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Figure 2.9: Estimated egg production curves for Atlantic mackerel in 1995 using the density 

model (smooth curve) compared with the corresponding curve from the traditional method 

(piecewise linear curve).

difference between estimates is small in comparison to the estimated standard error of the 

estimates. The cv of the GAM method estimate is just over half the cv of the traditional 

method. This increase in precision is not unexpected given the substantial spatial and 

temporal trend in observed egg densities within the survey region. The GAM method is 

able to model this trend relatively parsimoniously using smooths, whereas the traditional 

method models spatial trend much less parsimoniously: it effectively models the spatial 

trend via a two-dimensional step function with a step (and hence a parameter) at every 

half degree block. In contrast to the above results, if we take egg count as the response, 

we obtain a much lower estimate. Egg densities of up to 800 were recorded, and these 

tended to have high conversion factors (Figure 2.11a), which means that volume of the
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200m contour lines (in nautical miles) and (d) log(depth) = log(bottom depth) fitted in 

the density model (response is density). The smooth indicates the partial effect of date 

on the linear predictor, i.e. the effect given that the other covariates are in the model. 

Zero on the vertical axis corresponds to no effect of the covariates fitted in the GAM. The 

covariates are centred, i.e. zero corresponds to the mean of the covariate. The dashed 

lines show the 95% confidence bands.
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subsample taken was small. If the count model is fitted here, the fitting procedure gives 

these high densities weights that are lower than is appropriate for their actual variances 

(Figure 2.11b). The resulting egg production estimate for 1995 is 43% lower than that 

obtained from the density model.

2.2.4 D iscussion and com parison of m ethods for the Annual Egg P ro

duction m eth od  of Stock A ssessm ent

GAM-based AEPM requires sampling to span the spawning area adequately throughout 

the spawning period. In cases of less adequate survey designs, the success of the methods 

depends on the availability of historical data for constraining the spatial distribution. 

Incorporating historical knowledge of the spatio-temporal distribution of mackerel in the 

form of constraints, namely start/finish dates and spatial boundaries of spawning, we 

can extrapolate beyond the sampled region. This is illustrated in our example for the 

predicted mackerel egg densities early in the season in 1995 (29 February and 20 March 

in Figure 2.8). The GAM method has extrapolated for the whole survey area in that 

time, when there were few sampling points and these were concentrated towards the south 

along the 200m contour line (Figure 2.4). Sampling effort can be concentrated on time 

points and locations where high abundances are expected. The traditional AEPM is 

less sensitive to confounding of sampling in space and time within a single period, but 

it is equally important to determine the boundaries of the spawning area, and with the 

traditional method aU extrapolation is essentially ad hoc, whereas with the GAM method 

it is model-based.

Table 2.1: Comparison of estimates of total egg production in 1995 (Ê^) from the GAM

GAM method Trad.

density model method

È .̂IO^G 1.49 1.48

Standard error 0.10 0.17

Coeff. of variation (%) 6.9 11.5
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The GAM-based AEPM in our example yields a more precise estimate and provides a 

variance estimate which contains ail relevant components of variation, with the exception 

of the component of variation due to unmodelled autocorrelation in residuals, but the tra

ditional method does not account for this either (see paragraph below for more details). 

In contrast to the GAM-based AEPM, the traditional method neglects the component of 

variance due to estimation of the shape of the egg production curve. Viewed in terms of 

survey effort required to achieve a given precision, the improved precision of the GAM 

method estimates would translate into a substantial reduction in survey costs. The survey 

design could be improved to better suit the GAM method, but the exact requirements and 

feasibility of optimal survey designs for the GAM-based AEPM deserves further investi

gation. In addition to improving precision, it is clear from our example that the GAM 

method provides information on the relationship between the response and covariates. Not 

surprisingly, the most important relationship is between date, which is a proxy for water 

temperature and other physical covariates, and egg density. This information on covariate 

response relationships could in principle be used to improve survey design.

As a by-product, the GAM-based AEPM is able to model complex trends in density 

with respect to space, time and other covariates, without ad hoc assumptions about the 

form of the trends. In addition, the method provides information on the nature of these 

trends with respect to a wide variety of covariates, and at a resolution which is likely to 

provide useful insights into the underlying mechanisms driving spawning distribution. In 

the traditional method only substantial changes in the distribution with time are visible, 

and only between a few time points.

A notable feature of the egg production curve estimated using the GAM method shown 

(Figure 2.9) is its relative insensitivity to the assumed start and end times for spawning 

(provided the times do not span too narrow a period). When egg production is low early 

in the season, the GAM estimated egg production curve remains low until substantial 

spawning is observed. When spawning starts early, the GAM curve is able to respond 

appropriately. The traditional method estimate, on the other hand, is completely unable 

to respond to what evidence there may be in the data for onset and ending of spawning; 

these limits are fixed by assumption, and changing them can have a substantial effect on 

the estimates, independently of the data.

Attractions of the traditional method are its simplicity and its supposedly assumption free

2 9



nature. While it is true that the point estimates of egg production for a given short period 

in time from the traditional method involve few assumptions, fairly strong assumptions are 

used in estimating the egg production curve as a function of time (start and end times for 

spawning and the piecewise linear shape of the curve are assumed without reference to the 

data), and ad hoc procedures are required to fill in unsampled rectangles. It is also true 

that the GAM method involves substantially more modelling than the traditional method, 

and like any powerful tool it could give misleading results if used inappropriately. As 

illustrated in the mackerel example, care needs to be taken when choosing the appropriate 

response variable in the model. An attraction of the GAM method is that it allows the 

data to determine the model. This is not true for the traditional method.

We considered two choices for response variable, egg count and egg density. When egg 

count is used, it is important to check whether the conversion factor depends on egg density. 

If, as here, it does, strong negative bias in the egg production estimate can be introduced. 

Similar bias has been observed by others, although the issue of bias correction has received 

little attention in the literature. It seems likely that the bias observed by Swartzman et al. 

(1992) was due to the bias described above. We advise in such circumstances to use density 

as a response.

If there is still unmodeUed spatial correlation as in our example (see Figures 2.6 and 2.7) 

this could be due to the fact that the smoothed functions of the covariates cannot fuUy 

explain the similarities between egg densities in neighbouring survey rectangles, either be

cause a potentiaUy important covariate has not been measured or because of more direct 

influences such as social behaviour. With the survey design of our example, it is unlikely 

that the autocorrelation is due to social behaviour of the mackerel. The distances between 

sampling locations are greater than the distance over which a spawning school might typ- 

icaUy travel. Also the plankton sampler is towed for several nautical miles and the egg 

counts are aggregated over space. It is most likely that the remaining autocorrelation in 

residuals is due to bad model fit, because the smoothers fitted are not flexible enough 

or important covariates such as information on currents and nutrients are absent. Not 

accounting for such autocorrelation results in underestimation of variance of the predicted 

surface and estimated abundance. It is likely that the same problems apply to the tradi

tional method. There are several possible solutions. First, it might be possible to obtain 

covariate information on currents and nutrients at the appropriate resolution from other
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data sources. Second, fitting more flexible smoothers, which are multidimensional in the 

time and space dimensions, might reduce the autocorrelation. Such multi-dimensional 

smoothers could allow for interaction between longitude and latitude and interaction be

tween space and time. Therefore the third and most promising solution is to model the 

remaining autocorrelation. For example this could be done by introducing a random effect 

for an autoregressive process in space and time; parameters of this autoregressive process 

could be estimated from a three-dimensional semi-variogram, with dimensions cdist, gdist 

and date. This could possibly be done via generalized additive mixed models (GAMMs) 

as proposed by Lin and Zhang (1999). To our knowledge GAMMs have not been applied 

to spatio-temporal data. Also, it is in principle possible to account for unmodeUed spatial 

correlation by introducing an autocovariate, i.e. an extra covariate depending on egg den

sity in surrounding survey squares (Besag, 1974; Augustin et ah, 1996, see also chapter 3). 

Adopting a more time-series oriented approach, such as dynamic generalised linear models 

(Lindsey, 1999; Meyer and MiUar, 1999), might also improve the fit and give more reliable 

variance estimates. It should also be investigated whether the model could be improved 

by incorporating a stage-structured population dynamics model (Wood, 1994). There are 

five identifiable mackerel egg stages and the model described uses only stage I eggs (the 

youngest stage) and assumes zero mortality. Counts of eggs at aU stages before hatching 

are available for these data and by utilizing this additional information, the estimation of 

egg production could be improved. By incorporating a mortality model, the age distribu

tion can be predicted backwards and forwards in time at locations where no samples were 

taken.

The application of the GAM method iUustrated here shows it to be a viable alternative 

to the traditional method. It is an alternative which has many desirable features not 

available with the traditional method, not least of which is a potential for a substantial 

saving in survey costs. With surveys designed specificaUy with a GAM method analysis 

in mind, the potential gains can increase further.

2.3 D angers o f overütting: A  sim ulation stu d y

When locational covariates are combined with flexible models, such as GAMs, it is gen

erally possible to produce a fitted surface whose residuals exhibit no detectable spatial
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correlation. The very flexibility of these models can, however, lead to overfitting of the 

data: fitted models often ‘reveal’ relationships that do not exist. To illustrate this prob

lem, and to show how model selection uncertainty can be incorporated into statistical 

inference using the bootstrap, two artificial examples are presented in which GAMs are 

fitted to spatial data. For both examples count data was simulated on a 20 X 20 grid using 

a negative binomial distribution, with probability mass function

Pr(Z  = .;^,Æ ) =  i î ± ^ ( ^ )  ( ^ )

where E{Z) = ji — ^  and Var{Z)  =  ^ -}- p? Jk. The first example {process Ï) contains 

geographical variation. A single realization is simulated from a negative binomial distri

bution with p — -f- y) and k = 3. Here x and y are locational covariates representing

eastings and northings, respectively.

The second example {process 2) contains no geographical variation and no spatial corre

lation and is generated from a negative binomial distribution with parameters p = 3 and 

k = 3.

To each of the realizations of process 1 and 2 a GAM is fitted assuming a negative binomial 

distribution for the response with a fixed parameter k = 3 and a log link function. Forward 

stepwise selection based on Akaike’s information criterion (AIC) was used to test for 

inclusion of terms in s{x),s{y) and s{xy), where s(.) represents a smoothing spline with 

4 degrees of freedom. For process 1 the fitted model is E{z) = exp{(d -f -h 5(y)) 

{(5 is the intercept) with a deviance of 424 on 391 df; for process 2 the fitted model is 

E{z) — exp{P -f s(a;7/)), with a deviance of 428 on 395 df.

Bootstrap resamples were generated for both processes using three different methods. 

Methods (a) and (b) both use the parametric bootstrap, generating bootstrap resamples 

from the fitted model of the form z* NB{pi,  k = 3) where pi is the fitted value at loca

tion i. Models were fitted to the bootstrap resamples by (a) applying the stepwise model 

selection procedure and (b) refitting the model which was originally selected. In case (a), 

model selection uncertainty is incorporated into inference (Buckland, 1982; Hjorth, 1994; 

Buckland et al., 1997). The bootstrapping methods used in (a) and (b) were compared 

with a more naive, non-parametric alternative, (c), in which resampling from the observa

tions with replacement was done. In this case, associated covariates were resampled along 

with the observations, violating the principle that analysis should be conditional on co-
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variâtes. Then forward stepwise model selection is carried out, applying a weighted GAM 

to each bootstrap resample with weights equal to the number of times each observation 

was selected for that resample. This method, which preserves the original {x,y)  locations 

associated with the resampled observations, also incorporates model selection uncertainty.

Bootstrap methods (a), (b) and (c) were used to calculate 95% bootstrap percentile con

fidence intervals (Buckland, 1984; Efron and Tibshirani, 1993) for both the overall mean 

and the fitted value at a specified location [x = y = 20), using 200 bootstrap resamples 

for each method. The bootstrap percentile confidence intervals are percentiles from the 

ordered set of bootstrap estimates of the parameter of interest. Thus a 100(1 — 2a)% 

confidence interval for the mean is obtained by estimating the mean in each resample, and 

ordering the estimates in increasing order. Then the rth  and 5th values in the list provide 

approximate lower and upper 100(1 — 2a)% confidence limits for the actual range, where 

r — a{B  -f 1) and 5 = (1 — (x){B 1) (Buckland, 1984).

The results for one realization of each process are shown in Table 2.2. In terms of esti

mating the overall mean of the data, the confidence intervals of the three methods are 

very similar. In fact methods (a) and (b) are identical for estimating the overall mean, 

if the same bootstrap samples are used. The confidence intervals for predicted values for 

X ~ y = 23 show more variation between the methods. For process 1, method (a) and (b) 

produce narrower confidence intervals than does method (c), whereas for process 2 method

(c) produces the narrowest confidence interval.

The number of times different models are selected is shown in Table 2.3. This table shows 

how bootstrap methods (a) and (c), which take account of model selection, can be used 

to investigate whether a nuU model should be rejected. In the case of process 2, in which 

the nuU model was the true model, it was selected by AIC 103 times in the analysis of 

200 bootstrap resamples generated under method (a), whereas the model from which the 

boostrap samples were generated was selected just 48 times. The corresponding figures 

for method (c), in which no advantage is given to the model selected by the original data, 

were 79 times for the true (null) model and 62 times for the model selected for the real 

data. In both cases, there is a clear message that we cannot rule out the null model.

Coverage accuracy for the three bootstrap methods is assessed by simulating 100 realiza

tions from the model for both processes. Then confidence intervals were estimated for each
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Table 2.2: Estimates and bootstrap 95% percentile confidence intervals obtained from 

models involving locational covariates: estimates are for one realization of process 1 and 

process 2 respectively; expected values are shown in italics; see text for details of processes

Process Bootstrap Overall Mean Observation sX x = y = 23

Estimate (CTO Estimate (C.E)

1 7.810 — 18.000 —

(a) 7.891 (7.352, 8.485) 17.661 (12.714, 22.324)

(b) 7^W1 (7.352, 8.485) 17.661 (12.714, 22.323)

(c) 7 j# l (7.292, 8.599) 17.661 (9.913, 21.434)

2 3.000 — ^.000 —

(a) 2.941 (2.703, 3.240) 3.555 (1.593, 5.846)

(b) 2.941 (2.703, 3.240) 3.555 (1.270, 5.846)

(c) 2.941 (2.728, 3.193) 3.555 (2.537, 5.087)

Table 2.3: Frequency of model selection in 200 bootstrap resamples using methods (a) 

and (c): see text for details of processes 1 and 2 and bootstrap methods; f initial model

Selected Covariates Process 1 

(a) (<0

Process 2 

(a) ^0

NuU Model 0 0 103 79

a(%) 0 0 9 11

a(%) 0 0 19 15

t s(æy) 0 0 48 62

t 5(æ) T a(y) 198 181 3 1

s{x) +  s{xy) 0 0 13 12

a(y) +  a(z3/) 0 0 5 11

4 (2 ) T s{y) +  s(xy) 2 19 0 9
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Table 2.4; Coverage accuracy of bootstrap 95% percentile confidence intervals based on 

100 Monte Carlo realizations of processes 1 and 2 respectively; see text for details of 

processes 1 and .g and bootstrap methods (a), (b) and (c); \shape =

Process Bootstrap C.I. for Overall Mean C.I. for Obs. at æ = y = 20

Coverage mean mean Coverage mean mean

% length shape! % length shape!

1 (a) 98 1.107 1.136 72 11.568 0.762

(b) 98 1.107 1.147 68 10.764 0.796

(c) 98 1.172 1.434 84 12.538 1.189

2 (a) 92 0.494 0.986 100 2.781 0.883

(b) 93 0.494 0.975 92 (1858 0.949

(c) 94 0.477 1.166 100 2.600 1.681

of these realizations and the number of times they contained the true value was counted. 

Coverage (percentage of intervals that cover the true parameter value) along with aver

age length and shape (Efron and Tibshirani, 1993), a measurement for asymmetry of the 

confidence intervals for p, where shape = 4 ^ ,  are shown in Table 2.4. For confidence 

intervals of the overall mean there is not much difference between the methods: coverage 

agrees well with the nominal value of 95%. In the case of process 2 method (c) come clos

est to the nominal coverage. There are more differences in results of confidence intervals 

for predicted value a,t x = y = 20. For process 1 all methods have substantially lower 

coverage than the nominal value although, method (c) agrees best with the nominal value, 

and method (b), which has the shortest confidence intervals on average, performs worst. 

Overall, method (c) yields the most asymmetrical confidence intervals. It is noteworthy 

that the naive method (c) performs best.

A slight improvement in coverage might be anticipated by using BCa or A B C  confidence 

intervals (Efron and Tibshirani, 1993) in place of the simpler percentile method.
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2.4  C oncluding remarks

The example of modelling mackerel eggs showed that it is very difficult to eliminate all 

spatial and spatio-temporal correlation in residuals. Even if there is no intrinsic auto

correlation present, it is rarely the case that all explanatory information is available to 

completely model the trend in data. Often to measure aU the relevant explanatory infor

mation is too costly. The result is bad model fit, indicated by auto correlated residuals. 

Ignoring this autocorrelation leads to a negatively biased variance, if the autocorrelation is 

positive. Another source of variability is model uncertainty. The parametric bootstrap we 

used in the application in section 2.2 assumed that the fitted model was the true model, 

and we fitted the same model to aU bootstrap samples. We have shown in the simulation 

study in section 2.3 that for estimating the overall mean, which is comparable to abun

dance estimation as in the mackerel example, the incorporation of model uncertainty into 

variance estimation does not have a big effect.
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C hapter 3

A u to -m od els  for d iscrete  

sp a tio (-tem p ora l) data

3.1 Introduction

When investigating the dynamics of vegetation and ecological processes some of the im

portant issues are;

• local interaction among neighbouring plots for response variables; this can be none, 

competitive, antagonistic or co-operative;

• nature and the extent of spatial interaction (for example how big is the resource 

capture area of a plant, and how far do plants have to be apart in order not to 

compete with each other);

• the types of relationship between spatially referenced response variables and covari

ates (for example, investigating whether the spatial distribution of plants or animals 

is related to spatial variation in environmental factors such as temperature).

The last of these points can be dealt with using conventional regression methods such as 

GLMs and GAMs as described in the previous chapter. If we want to describe ecological 

processes, modelling local interaction (autocorrelation) and underlying trend simultane

ously is preferred as both features are often present.
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There are several different types of model which involve an explicit form of intrinsic au

tocorrelation structure, the interaction between neighbours, in the modelling process. In 

addition, these models can incorporate the effects of covariates, i.e. model trend, pre

dict the value of a response variable at new locations, and estimate global characteristics 

of a spatial distribution. For example, they can use data from a few sample points in 

an agricultural crop to map the severity of a fungal infection throughout the crop. A 

global characteristic can be the yield of a crop under certain competition conditions in

duced by plant density. Even if no autocorrelation is present in the data, these types of 

model can provide a better fit, because they may capture the influence of unmeasured 

spatial covariates. Many of the existing approaches for this task have been developed for 

use with continuous data. They include regression models based on simultaneous auto

regressive schemes (Whittle, 1954), moving average models, conditional auto regressive 

(auto-normal) schemes (Cressie, 1991) and various forms of kriging (Cressie, 1991).

More recently generalised additive models have been used to account for trend and correla

tion in normally distributed spatial data (Durban et al., 1998; Gampe, 1998). With these 

methods cubic smoothing splines and spatial correlation parameters can be estimated si

multaneously. This is due to the work of Wang (1998), who represents cubic smoothing 

splines as a mixed model. His work allows estimation of the smoothing parameters as a 

ratio of variance components which can be estimated via restricted maximum likelihood 

(REML) alongside the other parameters in the model. These methods are currently being 

further developed for non-normal data. Lin and Zhang (1999) propose generalized addi

tive mixed models (GAMMs) which are an extension of Wang’s Gaussian nonparametric 

mixed models (Wang, 1998). Parameters are estimated using marginal quasi-likelihood. 

The GAMMs can model trend and in addition take account for overdispersion and corre

lation in the data. So far they have not been applied to spatial data.

Another approach for modelling spatially correlated counts is to use generalized linear 

mixed models (GLMMs). The random-effects Poisson model first introduced by Besag 

et al. (1991) belongs to this class and has mainly been applied in epidemiology for disease 

mapping (Breslow and Clayton, 1993). This model can be used to account for autocor

relation, over dispersion and covariate effects for trend. In addition to the usual fixed 

linear covariate effects, the model contains an independent random location effect for het

erogeneity and a spatially autocorrelated random effect. For the latter an auto-normal
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process (a Gaussian random field, see section 3.2) is assumed. The parameter for autocor

relation is often assumed to be positive, fixed and autocorrelation extends over a defined 

neighbourhood structure. In theory such a model can be extended to have a parameter 

estimating positive or negative autocorrelation, which would be important for the appli

cation in vegetation dynamics. This has been done by Ickstadt and Wolpert (1996) who 

constructed a Bayesian hierarchical Gamma-Poisson model (Wolpert and Ickstadt, 1998) 

which deals with positive and negative autocorrelation as well as dependence on other 

spatial covariates. For binary response variables there are several applications similar to 

image restoration where the auto-logistic model is used for the random location effect as 

a prior and the autocorrelation parameter is estimated (Besag et al., 1991; Hôgmander 

and M0Üer, 1995; Heikkinen and Hôgmander, 1994; Hoeting et al., 1999). Diggle et al. 

(1998) extend geostatistical methods to deal with non-normal data by formulating kriging 

as a generalised linear prediction model. The motivation of their work is in estimating 

spatial surfaces of non-normal variables, such as intensity of radioactivity and risk of in

fection. Another approach is to define a general covariance structure that accounts for 

autocorrelation. Gotway and Stroup (1997) use GLMs with a quasi likelihood, defined 

with a general variance-covariance matrix for spatially correlated data. They estimate 

the autocorrelation structure by fitting semi-variograms to residuals, after having fitted a 

GLM with trend only. As in the application of Diggle et al. (1998) their main concern is 

to obtain a better fit, rather than explaining the underlying process.

Figure 3.1 shows simulated count data with different degrees of local autocorrelation. The 

model used for simulating the counts assumes different underlying processes (see also sec

tion 4.3.6) including independence, trend along rows, positive autocorrelation and negative 

autocorrelation. It is not easy to establish different underlying processes by eye. In partic

ular, the simulated data from the model assuming independence between squares does not 

seem much different to the simulated data from the model assuming positive autocorrela

tion. Thus there is clearly a need to estimate autocorrelation using modelling techniques. 

When dealing with survey or field experiment data (Figure 3.2), there are potentially 

many effects causing trends, e.g. soil gradients, altitude and treatments. These show 

up as positive autocorrelation, which makes it difficult to distinguish autocorrelation and 

trend in estimation. In contrast to the random-effects approaches described above (Besag 

et al., 1991; Breslow and Clayton, 1993; Wolpert and Ickstadt, 1998), we attem pt to esti

mate autocorrelation directly as a fixed effect from the response. Also our emphasis lies in
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Figure 3.1: Simulated counts from models assuming different degrees of autocorrelation. 

(Note: These graphs correspond from top left to bottom right to Example 5, 6, 1 and 2 

in section 4.3.6.)

estimation of the autocorrelation parameter and the specific neighbourhood structure it 

applies to, in contrast to epidemiological applications, where the emphasis is on mapping 

the spatial distribution. Our interest lies also in finding a simple method for exploratory 

investigation of autocorrelation, which can routinely be used by biologists. For this we use 

the so-called auto-models first introduced by Besag (1972), to distinguish between the two 

components, trend and autocorrelation, with the aim of describing the underlying process. 

Auto-models include models for counts, the auto-Poisson, auto-binomial and auto-negative 

binomial model. They also include models for continuous data such as the auto-normal 

model mentioned above. The models are specified by the conditional probability of each 

observation given its set of neighbouring sites. The joint probability density, also called a 

Markov Random Field, is constructed using these conditional probabilities (Besag, 1974). 

These models incorporate a parameter for neighbour interaction (autocorrelation), caused
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Figure 3.2: Observed seed counts (log(count +1)) of the weed Poa sp. in an agricultural 

experiment observed in two consecutive years. See also section 5.3.

by competitive or co-operative effects, which can influence global characteristics. Auto

models aim to describe the underlying process, which is the main objective for applications 

in vegetation dynamics and this is the reason why we have chosen these types of model. We 

concentrate on investigating the properties and practicability of the auto-Poisson model. 

A major drawback of this model is that it is only able to model negative autocorrelation. 

We investigate how this restriction can be avoided by right truncating the distribution. 

Similar work has been done by Kaiser and Cressie (1997) who used the winsorized Pois

son distribution. Ferrandiz et al. (1995) used the truncated auto-Poisson distribution to 

model mortality counts in different counties in Spain. We investigate the properties and 

interpretation of the model and show how modiflcation of the auto-Poisson model leads 

to different properties and biological interpretation.

We explain the derivation of auto-models in general in section 3.2. Then we review the 

auto-logistic model for binary and binomial data (section 3.3). In section 3.4 we derive and 

investigate properties of the truncated auto-Poisson and auto-negative binomial model.
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3.2 D efin ition  o f au to-m odels /  M arkov R andom  F ields

Markov Random Fields (MRFs) were originally developed in physics for magnetic fields. 

The classic version of the first-order auto-logistic model is called the Ising model. Auto

models are constructed by specifying the conditional probability of each observation given 

its set of neighbouring sites (Besag, 1974). The joint probability density, also called a 

Markov Random Field, is constructed using the conditional probability of each observation. 

In the following a summary of Markov random fields (Cressie, 1991; Besag, 1974) is given. 

Matrices and vectors are given in bold.

Let Y  = (y(g^) : Si £ D) he B. random process on the lattice D — [si : i = l , .. .,ï i)  

defined by sites i. Then define a Markov Random Field (MRF) by specifying a neighbour

hood N{ for each component T(5i) of Y .  The neighbourhood Ni is the set of neighbours 

over which the interaction of Y (si) extends, such that Sj is a neighbour of site Si if

fr(y (s^ )|ÿ (3 i),..., y{si^i), y{si+i),..., y{sn))

depends only on neighbouring sites y{sj) and can be reduced to

Pr{y{si)\y{si), ...,y{si^i),y{si+i), ...,y{sn)) = Pr{y{si)\y{sjy,sj G Ni).

The neighbourhood Ni could be for example the “first-order” type neighbourhood struc

ture such as:

0 1 0  

1 i  1 

0 1 0

Sites in the lattice denoted by 1 are neighbours of site i  and comprise the neighbourhood 

Ni. Note that Ni excludes site i.

Now the ratio of two joint probability mass functions can be obtained via the Factorisation 

Theorem:
Pr jy )  ^  A  Pr{y{si)\y(si),. .. ,y{si-i),z{si+i),. .. ,z{sn))
Pr{z) ^J^Pr{z{si)\y(si),. . . ,y{si-i),z{si+i),. . . ,z{sn))

where y  — (ÿ (s i) ,..., y(sn))' and z  = (2:(s i) ,..., z(5„))' are possible realisations of Y .  All

possible configurations of y  must theoretically be possible {positivity condition): If 3/ E C,
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(  =  {y : Pr{y) > 0} and yi G Cn Ci = {Vi ' P^iVi) > 0} for i = 1 , n, then the positivity 

condition is satisfied if the set (  is the Cartesian product for all sets Q.

Except for the auto-normal MRF, of which details are given below, the joint density 

cannot be obtained directly via the factorisation theorem. For most other distributions 

the negpotential (negative potential energy) or Q()-function is needed in order to derive 

the joint density. The Q()-function is defined as follows

Q{y) = log(Pr(2/)/Pr(0))

where y  € C a-nd P r(0 ) is the probability that all events y{si) = 0. Q{y)  can then be 

constructed from equation 3.1 using the following result. Note that here the product of 

the different probability ratios of equation 3.1 simplifies to one ratio because aU the other 

terms cancel out.

S i
where O(a )̂ denotes y{si) = 0 and yi -  (^/(ai),..., y(8i_i),0 , 2/(^n)). Expanding 

<5(0 gives

n n —1 n

<5(3/) = YZ y{si)oci{y{si)) y{si)y{^3)iiÂy{ î)  ̂y{^ù)' (3-2)
1=1 i=l

Here only two-way interactions are assumed, j i j  = j j i  and multi-way interactions are 

assumed to be zero, i.e. 'yij...s{y{si),y{sj), ...,y{ss)) = 0. This expansion is obtained 

by defining the terms referring to trend, y(si)ai{y{si)).^ and local neighbour interaction, 

y{si)y{sj)'yij{y{si),y{sj)), in terms of different Q(.)-functions (see Cressie, 1991, p. 415). 

For instance y{si)ai{y{si)) = Q (0 ,..., 0, ?/(sj), 0,..., 0). In the models of interest here the 

terms ai{y{si)) and 'yij{y{si), y{sj)) in expansion 3.2 simplify to constants a{ and 'yij (since 

only two-way interactions are considered and conditional distributions of y{si) given Ni 

are that from the exponential family). Then for a homogeneous process where there is 

no dependence on spatially referenced explanatory variables, we have a* = a  for all i, 

whereas in a heterogeneous process a* = x\(5 is the parameter for the underlying trend,

the vector Xi is the i’th row of the design matrix and /3 is the vector of coefficients.

To ensure a unique joint probability structure it is necessary to restrict the functional form 

of Q{y).  Defined in the theorem by Hammersley and Clifford (1971), the restrictions are 

that 7 ij...s = 0 if sites *, j ,  ...,a are not all mutual neighbours. Then the probability mass
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function is

Pr{y) -  exp{Q{y))f  ^  exp{Q{z))

provided the summability condition ZIzEC < oo holds. If

available in closed form, full maximum likelihood estimation is possible.

M arkov random  fields theorem  (B esag, 1974)

If the response y { s i )  given N {  has any distribution of the exponential family,

e.g. F o i { p . i \ y { s j y  j  E iV̂ ), this theorem gives the Q(.)-function in terms of exponential

family parameters. The parameterisation for members of the exponential family is

P r ( y i \ y j ' J  E N i )  =  exp{ B i { y j \ j  E N i ) B i { y i )  + C i { y i )  + D i { y j - J  E N i )  ).

Note that to avoid clutter we now refer to location using index i only and % = y{si). 

The parameter $ i  is called the natural parameter. The first derivative of the likelihood 

of any exponential distribution with respect to Oi is equal to fii = E{yi). The functions 

B i { )  and Q () have some specific form and 9 i  and D i { )  are functions of the neighbouring 

sites. Besag’s theorem (Besag, 1974) assumes the above parameterisation and pairwise- 

only dependence between sites. As a consequence Q{y) can be defined in terms of the 

exponential family parameters up to an additive constant (Cressie, 1991).

Q(y) =  +  E Ê H y i W A V i h n -  (3-3)
i=l i—1

with i= l,...,n , = 7 j n 7 « = 0 and 7 ^̂  = 0 for k ^ Ni. This gives the “recipe” to

construct auto-models and makes it possible to formulate the model in terms of the natural 

parameter Bi'.

HVj'J G Ni) = x'iP +  Y , lijPiiVi)- (3.4)
j e N i

This formulation is analogous to a GLM with a canonical link, except that here the 

observations themselves are explanatory variables. We call these autocovariates, with

a u t o c o v a r i a t c i  =  ^  P j ( y j )

JEN,

and often we assume that neighbourhood effects are the same in all directions, 7  = 7 ,^, so 

that

Y ,  l i j P j { y j )  =  7 a u t o c o v a r i a t c i .
JGN.
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T h e norm al case: an excep tion

There is a continuous version of the factorisation theorem and with this the joint density 

f { y )  can be inferred for the auto-normal model as a multivariate normal. In the auto

normal model the responses Y{  ^  N(/ij,cr?), with m  = fii{yj]j € N{) and

yi =  ^  'liji^j -  «j),
jeNi

with i =  1 ,..., n, ~ 'yjiaf, j a  =  0 , jik =  0  for A; ^ N{ and the parameters a{ referring 

to trend and 'yij to local neighbour interaction. In the proof establishing the joint density 

(see Cressie, 1991, p. 413) the factorisation theorem is applied by substituting y  =  /j,  ̂

where y  = (^ i, ...,/^,i)% the mean vector of a multivariate normal distribution. The ratio 

then has the following form:

= exp ( - l ( a  -  -  C ) { y  -  /i»))

where y  — ( y i , î/n), C  is a. n x  n matrix with j ij  as the { i , j ) th  element and M  = 

dmy(crf, ...,(tJ). Using the fact that Jy^f^f{y)dy  =  1 and f { y )  = (27r)? implies that

f ( y )  = (27t)?|M|~2 | /  -  C \2 exp ~  y Y M ~ ' ^ { I  -  C ) { y  -  fx)^

and hence, provided ( /  -  C )  is invertible and ( /  -  C ) ~ ^ M  is symmetric and positive- 

definite

y -  MVN(/Lt, (/ -  C )-^M ). (3.5)

In summary the auto-normal MRF is an exception in several ways. First, the joint density 

is known and available in closed form. Second, it can be derived easily via the factorisation 

theorem. Third, the components of the asymptotic covariance matrix referring to the 

covariance between trend (a*) and neighbourhood interaction {'yij) are zero (Haining, 

1990).

3.3 T he auto-logistic m odel for binary and binom ial data

We give a short review of the auto-logistic model. For further details see Cressie (1991) 

or Besag (1974). The auto-logistic model was first introduced by Ising (1925) in the field 

of statistical mechanics. The response yi at each site of a finite lattice D with locations
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i — 1 , 7 1  is a Bernoulli random variate Y{ Bernoulli(p*) with conditional density

P r{Yi =  l \ y j , j  e Ni)  =  p f  (1  - k ) ' " »  

where p; =  Pr{Yi =  l|% ,j € Ni). Then the anto-logistic model is defined as

logit(Pr(y; = 6 JV.)) =  log ^ ' l i ) ]  =  +  E  %%%'

where logit(Pr(y*|yj; j  E Ni)) is the natural parameter of the Bernoulli distribution. This 

model has the same form as the classical logistic model, except that the response variable 

is part of the set of explanatory variables. Applying the procedure given in section 3.2, it 

can be shown that the Q(.)-function is defined as

n n —1 n

Q(y) =
î=l t=l j>i

with i= l,...,n , 7 ij = 'yji^ja =  0 and jik =  0  for fc ^ Ni. In section 3.4 the derivation for the 

auto-Poisson and auto-negative binomial model will be given in detail. For binomial data, 

where yi ^  Bin(p^,?ii) the form of the auto-binomial model is identical to the autologistic 

model in equation 3.6, but the Q(.) function has an additional term:

^ (  (  ' î W  ^
Q{y) = Y l  "UA + log + IZE TijViyj^

i=i \ y ^  )  )  ;>*
with j i j  defined as above. In theory the joint probability mass function for both models is 

available in closed form, but for most practical applications evaluation of the normalising 

term Y2zec 1̂  ^ot feasible. For instance for data on a 20 x 20 grid this would

mean summing over Q(.)-functions of 2 °̂  ̂possible arrangements of zeros and ones! As wiU 

be demonstrated in chapter 4 section 4.3 it is much easier to approximate this normalising 

constant using samples drawn from a Markov Chain.

Properties and applications

For illustration let us assume the simplest possible auto-logistic model with a first order 

neighbourhood and no heterogeneity:

logit{Pr{yi\yj'J G Ni)) = ayi 4- Y  IViVj'
jeNi

The auto-logistic model can deal with positive and negative auto-correlation, but as Fig

ure 3.3 shows there are regions in the parameter space of 7  for which different parameter
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(a)

(b)

(c)

Figure 3.3: Effect of 7  on y derived from 500 realisations of the auto-logistic model, (a) 

a = log(0.5), (b) a -  log(l) and (c) a = log(2).
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values give the same conditional probabilities and hence yield a process with the same 

mean response ÿ. This phenomenon is called a phase transition (Pickard, 1987). For 

a — log(l), which corresponds to Pr{yi) — 0.5 in the case of independent observations 

( 7  =  0), Figure 3.3b shows that critical values for 7  for such a phase transition are around 

7  > 1 and 7  < — 1. The limiting densities yield ÿ = 1 and ÿ = 0.25 respectively. In the 

phase transition for 7  < — 1 the pattern can be pictured as a chess board with patches of 

white, where white squares are the zeros. Then the probability of presence at a location 

i, which is surrounded by zeros, is

which can be interpreted as the persistence rate given in terms of the inverse link function, 

here a probability. Different values for a  shift the values where phase transition occurs. 

For a  =  log(0.5) (Figure 3.3a) it occurs for negative 7  closer to 0 than for a — log(l), for 

positive 7  it is further from 0. This shift is reversed for a = log(2) (Figure 3.3c).

The auto-logistic model has been extensively used in image analysis for accurate restora

tion of binary images (Geman and Geman, 1984). Typically the restoration is based on the 

posterior probabilities Pr{x\y)  of the true image æ given the observed image y.  The prior 

distribution of the true image is assumed to be a MRF, with the conditional auto-logistic 

model formulation. Heikkinen and Hogmander (1994) and Hogmander and Mplier (1995) 

apply this approach for atlas mapping of wildlife, the common toad and birds, assum

ing a homogeneous habitat across the study areas, but incorporating effort of voluntary 

observers as a covariate. Hoeting et al. (1999) extended their approach by introducing 

covariate information, hence allowing for habitat heterogeneity.

Additionally to the above applications the auto-logistic model has been fitted to data 

directly. The wide range of applications covers meteorology (Hughes and Guttorp, 1994) 

and biology including genetics (Geyer and Thompson, 1992; Abel et al., 1993), plant 

epidemiology (Freisler, 1993; Preisler and Mitchell, 1993; Gumpertz et al., 1997), plant 

species mapping (Huffer and Wu, 1998; Wu and Huffer, 1997), and wildlife population 

mapping Augustin et al. (1996, 1998b). Augustin et al. (1996) fitted an auto-logistic 

model to presence/absence deer survey data obtained from a random sample of sites by 

incorporating the Gibbs sampler. Their modelling strategy can be used not only to fit the 

auto-logistic model to sites included in the survey, but also to estimate the probability 

that the species is present in the unsurveyed sites. In section 5.4 we revisit this example
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in more detail.

3.4 T he (truncated) auto-P oisson  and auto-negative b ino

m ial m odel for counts

3 .4 .1  T h e  ( tr u n c a te d )  a u to -P o is so n  m o d e l

Assume that in an experiment or a survey we observe counts yi at locations i —

The counts could be for example the number of a particular species in a grid square or 

the number of fruits on a plant. If the distances between the locations are large, we can 

assume that the data are independent and that there is no neighbour interaction. We can 

fit a GLM with a Poisson or negative binomial distribution and a log link to these data:

log(/x) = X(3

with yi ~  PoiÇfii) or negative binomial yi ~  NegBin(//i, k), for which Var{y) = m  -f 

where k is the aggregation parameter. The negative binomial distribution allows for more 

variation in the observations than does the Poisson distribution. For now we will concen

trate on Poisson data. The matrix X  is the design matrix containing explanatory variables 

and/or factors. With this model we can investigate relationships between spatially refer

enced response variables and explanatory variables as discussed in chapter 2 .

If the counts are observed at adjacent locations, on a lattice structure D with sites z, 

(z = 1 ,..., n), we cannot always assume independence. In this case the auto-Poisson model 

can be used to describe the actual process underlying Y  and to test for the type of 

interaction present. The auto-Poisson model is a MRF, as described in section 3.2, It is 

assumed that the data observed are a result of a random process Y  = {Yi : i ^ D). The 

response at each site is a Poisson random variate Yi ~  Foi{pi\yj; j  G Ni) with conditional 

density function

Pr(}Q = E ^ .) =
V• Î

where pi = f.Li{yj\j E Ni) and the auto-Poisson model formulated in terms of the natural 

parameter is

\og{pi\yj,j E Ni) ^  a i+  Y  HjVj (3.7)
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with ai — Xi'/3. In order to derive the likelihood, we derive the Q(.)-function following 

the steps given in section 3.2. The construction of Q{ y)  is facilitated by the fact that it 

can be expressed in terms of the conditional probabilities Pr{yi\yj;j  E Ni).

Q{y) = \og{Pr{y)/Pr{0))
n  n —1 n

= + mZ laViVi
i=l i=l j>i

where =  7 *̂, 7 » = 0  and 7 *̂ =  0  for all j  ^ Ni.

Unfortunately this model can describe negative correlation only, as the interaction param

eter 7 ij is constrained to be negative (Besag, 1974): Y^zec^^P{Q{^)) ^  for all 7 ^̂  < 0 

only. We now propose a simple way to avoid having a normalising constant diverging to 

infinity: we truncate the distribution with a nominal truncation value r. We will give the 

detailed proof for the truncated auto-Poisson model below. The right truncated Poisson 

conditional probability mass function is then

with yi — 0 , 1 , ...,r  and the natural parameter log(jU,). We can then construct Q{ y )  as 

follows

Vi /  r  , . k \  Q j  /  r  , . k

= î/ilog(//i) -  log(yj),

where yi  = (z/i,...,yt_i,0,z/i.|.i, ...,z/,i) and 7 *̂ = 0 for k ^ Ni. We now insert the model 

formulation of the natural parameter given in equation 3.7 from Besag’s random field 

theorem (3.4):
n

Q { y )  -  Q i V i )  =  OLiyi -k Y ^ i j V i V j  -  log(z/i!), (3.8)
j = i

with i= l,...,n , 7 ij =  7 j i , 7 « = 0 and jik — 0 for k ^ N{. Then from equation 3.2 the form 

of Q(.)-function is a sum of the terms in 3.8 over i. Hence we have

n n —1 n

Q{y) = ~ + Y  (3.9)
1=1 t=l j > i
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The Q(.)-function of the truncated auto-Poisson model we derived above has the same 

expression as for the auto-Poisson model, but here Y)zeC for all finite

7 ,j. As demonstrated in Kaiser and Cressie (1997) an alternative derivation of the Q{.)~ 

function would be to start with the definitions of terms Bi{yi)x\(3 and Bi{yi)Bj{yj)'fij given 

in terms of conditional probabilities (see Cressie, 1991, p. 416). The most straighforward 

way of deriving the Q()-funtion is to use Besag’s theorem directly (equation 3.3).

An alternative to the truncated Poisson distribution is the Winsorized Poisson distribution 

that is used by Kaiser and Cressie (1997) for modelling Poisson variables with positive 

auto-correlation. A Winsorized variable is defined as

TV =  y  7 ( y  <  r) -{- r jf(y  > r)

with
0 : y  > r  ̂  ̂ 0 : y  < r

/(y < r) = ■{ and I { Y  > r) = <
1 : y  < r ( 1 : y  > r

for a fixed integer value r < oo. Then the probability mass function is:

F r(W ')=  I { W  ^  r)

I { W  < r  -  1 ) =
i y > r - l

and I {W  — r) = <
W  < r - l

1 : W  = r 

0 : VP 7̂  r

Using the Lagrange form of the remainder of Taylor’s expansion for this can be further 

simplified to

Pr{W)  =  I [ W < r ~ l )  + ( g e * " " )  I ( W  =  r)

where {ip — p) < 0. The normalising constant of the likelihood (or joint probability 

function) exp{Q{z)) is taking the sum of the Q(.)-functions over the whole support

of the distribution and as a consequence the likelihoods and parameter estimates resulting 

from maximising these likelihoods could differ between models assuming a truncated or a 

Winsorized auto-Poisson model. Figure 3.4 shows histograms of data where truncation and 

Winsorization was applied and illustrates the difference in shape of the two distributions. 

The data were distributed as r/ ~  Poisson(5) before the truncation or Winsorization was 

applied. If the value r is large relative to the mean of the distribution the difference 

between parameter estimates will be small; the shapes of the distributions in the bottom 

panel of Figure 3.4 with r = 30 do not differ. But if r is small (r =  9, top panel), shapes
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differ more and it is best to use the most appropriate distribution. For instance if counts 

greater than r  are censored, the Winsorized Poisson distribution is more appropriate.

P rop erties o f  th e  tru ncated  au to-P oisson  m odel

From now on we refer to the truncated auto-Poisson model as the basic m odel:

log{pi\yfJ e  Ni) a + 'y Y  (3.10)
jeNi

for yj = 0 ,..., r  assuming 'yij = 7  for all i and j  and assuming a homogeneous process with 

a i  =  a .  Investigating the mean response ÿ — ~ !C?=i Vi aids biological interpretation of 

parameters and determining whether the model is appropriate for explaining processes in 

vegetation dynamics. The auto-correlation parameter 7  has a direct influence on E{y) = 

fJ-i'
< exp{a) if 7  < 0  

= exp{a) if 7  = 0  

> exp{a) if 7  > 0

In the case where the observations in aU neighbours are zero, Y)jeNi Vj — 0:

^ogipi\yj;j e Ni) = ai.

Thus exp{ai) can be interpreted as the underlying persistence rate, given on the response 

scale. In Figure 3.5(a) the average ÿ {ÿ is the mean of a single realisation) from 500 

simulated data sets, i.e. 500 realisations of a MRF as specified in equation 3.10, is plotted 

versus different values of 7 . In section 4.2 we explain how MRF’s are simulated. A first- 

order neighbourhood is assumed and the persistence rate is exp{a) = 5. For 7  < — 1 

the average ÿ is roughly equal to half the persistence rate. This is because for such 

strong negative correlation the pattern is similar to a chess board and half of the sites are 

surrounded by zeros (see also Figure 3.6 top graph). The dip in 3 .5 (a) correponds to an 

image similar to Figure 3.6 (top) but with some patches with y-values near zero.

Correlation does not exceed an absolute value of one, so it would make sense to restrict 

the parameter 7  in a similar way. An ad hoc calculation can be used to assess the upper 

limit for 7 , which defines also the point where phase transition occurs. For example with 

ai = log(5) ~  1.61 for all z, 'yij — 7  for all i , j  and truncation value r = 100, pi should not 

exceed a maximum value Pmax’ Set Pmax with the rationale that Pr(z/* > r) < 0.000001
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truncated Poisson 
r = 9

Winsorized Poisson 
r = 9

I
10 15 10 15

truncated Poisson 
r = 30

l l .

10

count

Winsorized Poisson 
r = 30

10 15

Figure 3.4: Histograms of data y  ~  Poisson(5) before the truncation (left) and Winsoriza

tion (right) was applied. Truncation values are r = 1 0  (top panel) and r = 30 (bottom 

panel).
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(a) Basic truncated auto-Poisson modei

( b )  M o d i f i e d  t r u n c a t e d  a u t o - P o i s s o n  m o d e l

gam m a

( c )  T r u n c a t e d  a u t o - P o i s s o n  m o d e i  
w i t h  c e n t r e d  a u t o c o v

Figure 3.5: Average of ÿ from 500 realisations from (a) the basic truncated auto-Poisson 

model with parameters a = log(5) and different values of 7 ; (b) the modified truncated 

auto-Poisson model with parameters as in (a), (c) the truncated auto-Poisson model with 

a centred autocovariate, parameters as in (a).
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I 0.01 . m ean a 5 26

##yO@mma # 0.025, m » « n «  (>77

Figure 3,6; log(count-f 1 ) from single realisations using the basic truncated auto-Poisson 

model with a = log(5) and 7  = -5 ,-0 .5 ,0 ,0 .01 ,0 .02  (from top to bottom) applied to a 

first-order neighbourhood.
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Table 3.1: Ad hoc calculation of upper limits î o t  7  for different truncation values r for the 

basic, m odified and centred  truncated auto-Poisson model.

model a* r ymax ^ jeN i  Vj

upper

limit

lower

limit

persistence

rate

basic log(5) = 1.61 1 0 0 60.0 400 0.0062 —00 exp{ai) = 5

log(5) = 1.61 50 23.0 2 0 0 0.0076 —00 5

log(5) = 1.61 30 10.5 1 2 0 0.0062 —  C O 5

log(lO) = 2.3 1 0 0 60.0 400 0.0045 —  C O 5

m odified log(5) = 1.61 1 0 0 60.0 400 0.0063 -0.124 -

centred log(5) = 1.61 1 0 0 60.0 400 * *

* Upper and lower limits cannot be calculated.

for Poi(^maæ). Set YZjeNi Vj ~  4 * r, assuming a “first-order” neighbourhood for which 

there are, except at edge squares, four neighbours. Then

^  +  7 y  y Vj
jeNi

^ jeNi Vj 
upper limit > 7 .

Table 3.1 shows that r = 100 with pmax ~  60 gives an upper limit of 0.0062. The upper 

limit decreases with increasing a,-, e.g. for o;; = log(lO) for aU i, 0.0045 > 7 . Decreasing r 

does not change the upper limit dramatically because Pmax is reduced, e.g. taking r =  50 

increases the upper limit to 0.0076 > 7 , but taking r = 30 results in a small pmax — 10.5 

and 0.0062 > 7 . There is no lower limit on 7  due to the exponential link function, but 

as illustrated in Figure 3.5(a), any value of 7  < -1  yields the same effect. To summarise, 

7  < — 1 leads to phase transition and 7  > upper limit \ea,ds to explosion. Finally we show 

that the auto-Poisson model can describe a range of scenarios and patterns within limits 

of 7 .

1 . 7  < 0  = competition, which yields regular patterns, and in extreme cases, a chess 

board effect (see Figure 3.6 top);

2. 7  > 0 = co-operative effects, which yields clustering (see Figure 3.6 bottom);
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3. different values of 7  in different directions yields directional effects, for instance 

clustering along columns;

4. 7  > 0 in nearest neighbourhood and 7  < 0 in higher order neighbourhoods yields 

clusters of yfis with similar values extending over the nearest neighourhood.

M odifying th e  au to-P oisson  m odel: The fact that 7  can influence global characteris

tics is a desirable feature for data where competition is expected, but might not always be 

appropriate for other situations, for example positive correlation caused by latent effects, 

such as unobserved explanatory information. We can modify the (truncated) auto-Poisson 

model in such a way that the auto-correlation has no direct influence on the mean:

^og{pi\yj'J G Ni) ~  ai + Y  TijiVj ~ exp(aj))
j e N i

This model is similar to the auto-regressive model for normal data, where the autocorrela

tion acts on the response in the neighbourhood after subtracting the trend. We now derive 

the <5(.)-function for this model (note that the first line here follows from equation 3.8):

Q{y) - Q{yi) = yi^og{pi\yj]j e Ni) -  log(̂ J)

= y i  I <̂1- + S l i j i v j  -  ea:p(«j))| ~ 

with 'jij = 7 j î , 7 ü =  0 and 7 ,7. =  0 for k ^  Ni. This implies

n n—1 n

Qiy)  = Y^y^^i - iog(%!)) + YY. 'y^jyi^yj  -
1=1 1=1 j>i

Comparing the above function with the Q(.)-function given in Besag’s theorem in equa

tion 3.3 gives Bi{yi) = yi and Bj{ijj) = yj, assuming that the sum J2j>ilij^^P(<^j) is

absorbed into the the parameter a*. Thus the proposed modified auto-Poisson model is a

valid MRF. The summability condition Ylzç.^exp(Q{z)) < 0 0  holds for all 'jij.

Here auto-correlation does not affect ÿ for 7  within limits. Figure 3.5(b) shows this. In 

the case where aU neighbours are zero (Y2jeNi Vj ~  9) înd j i j  =  7  for aU i , j:

G Ni) = a i -  ‘y Y  Gæp(oj).
j e N i

For positive 7 , pi < exp{ai) and for negative 7 , pi > exp{ai). Hence for this model there 

is no unambiguous persistence rate.
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The ad hoc calculation with ai = log(5) for all i, 'jij = 7  for all i , j ,  truncation value 

r =  1 0 0  and Prnax = 60 is applied for the case where all neighbours are zero and this yields 

a lower limit:

^og{pmax) > «i -  7 5Z
jENi

<C 7
-  EjeNg

-0.124 < 7

The ad hoc calculation (Table 3.1) also yields an upper limit:

iQg(Mmaa;) ~~ ^

0.0063 > 7

which is similar to the result for the basic model. Again by decreasing the truncation 

value r  the upper limit does not increase substantially.

Another possibility for modifying the basic auto-Poisson model is

: j y ^ i )  = ai + yfij Y  ~  V)
jeNi

where ÿ is the average of observations y. This amounts to centring the autocovariate. 

Along the same lines as above we can prove that this model is a valid MRF. The mean 

response yi is affected by 7  as shown in Figure 3.5(c), which shows the behaviour is very 

similar to the basic (truncated) auto-Poisson model. The only difference is that this model 

has a lower limit. In the case where aU neighbours are zero (EjeNi Vj ~  9) a,nd j i j  = 7  

for all i , j :

g Ni) = a i - j  Y  ÿ-

the underlying persistence rate is e x p ( a i  — 7 EieNi v)- for the modified model lower 

and upper limits for 7  exist, but cannot be evaluated exactly (Table 3.1).

The lower limit is

^Og(prnax) > Oti -  J Y  V
jeNi

and the upper limit is

^ < 7zZjeNi y

Y2jeNiiVj -  ÿ) ~ 
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3.4.2 Tem poral truncated  auto-Poisson m odel

If data at different time points are available, the model can be easily extended to a spatio- 

temporal model by including counts at site i from previous time points as explanatory 

variables. Let ya be the count at site i at time point t and assume again the simple case 

ai = log(5) for aU i and j i j = 7  for all i , j  and

^og{pi,t\yi,t-i,yj,t]j G Ni) = eiog{yi^t-i 4 - 1 ) -k Oi -f 7
jeNi

with Yi t̂ ~  Voi(pi^t\yi,t-i,yj,t\3 G Ni), 9 is the coefficient for log(%,t-i + 1).

3.4.3 The (truncated) auto-negative binom ial m odel

For data which exhibit more variation than Poisson variables the negative binomial dis

tribution is more appropriate. If counts have a Poisson distribution with variable rate, 

the rate itself having a gamma distribution, then the counts can be shown to have a neg

ative binomial distribution (Johnson et al., 1992). Let y ~  Poi(A) with probability mass 

function (p.m.f)

Pr(y)  =  ^

with A ~  Gamma(/?, A;), /? > 0,A; > 0 and probability density function (p.d.f.)

f}k \ k—\p~(3\

The parameters k and j3 could be described as the shape and scale parameter, i.e. varying 

k changes the shape of the distribution and varying (5 changes the units of measurement. 

The marginal distribution of this mixture is a negative binomial with p.m.f.

fjk foo11̂  PC, _ _ _

= m i o  —
w  /9 /  1

y = 0 , 1 ,....
yîF(A;) \ P  + l J  V  4- 1

Thus Y  ~  NegBin(/z, A;), with p = ^  and Var{p) = /z 4- Again the parameter k can

be described as a shape or aggregation parameter. As A; 0 0 , the negative binomial

(NegBin) distribution tends towards a Poisson distribution. The parameter k can be 

estimated using an extra iterative step in the GLM procedure. If there is need to account 

for auto-correlation, a MRF can be specified with a NegBin distribution, yielding the

59



auto-negative binomial model;

Pr{yi\ypi  A i ) =  .

with mean pi = ^  and variance = j^ (l 4- ^ ) .  Note that we define fii = (3i{yj;j E Ni) to 

simplify notation. It follows that the natural parameter model is

log{~-Y^)  = a i + Y
jeNi

where j i j  = j j i , j n  = 0  and expressed in terms of the mean

A texp(a^4-E j€N ^7,'jy j)
y 'ij ~~ IT  ~  ~ 7 z ;  r *

Pi  1 -  exp (o i +  E j e n  l i j V j )

Note that only the parameter fii is a function of the response in the neighbourhood of site 

i, not k. We now derive the Q(.)-function as for the auto-Poisson model:

•  »'"«(jrîî)+‘« { ïw )
I 'ST' I 1 f^ iVi  "b

where 0 * denotes the event y i  = 0  and i/j- = ( y i , ..., y^_i, 0 , y*+i, ...,y») and j i j  = j j i , j u  -  0  

and jik = 0 for A: ^ Ni. Hence
n —1 n

Q(y) = ' Z v m  + + giog ( î ^r(% + ky
. l i j  Vi y J  -r  ^  I

1=1 j>i

As for the auto-Poisson case the model is only valid for negative auto-correlation and by 

truncating the distribution at the right end this can be circumvented. The truncated p.m.f 

is
- 1

P(/ +  A:) /  1
P \  A 4" 1

with yi = 0,1, ...,r  and the natural parameter log(jg^). Then

P^yilVjiJ  G Ni)Q{y) -  QiVi) = log
P r { O i \ y j ; j  E N i )
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A -1
where

/ ^ r(f  +  fc )/  1

I f e  "  + 1

and

Q(y) = t  a.3 .' + E t  - t  log .
1=1 1=1 i>i 1=1  ̂ /

with 7 ij =  7 j i , 7 ii =  0 and 7 *̂  = 0  for fc ^ iV̂ . As for the auto-negative binomial model 

the model expressed in terms of the mean is:

^ A; exp (a i-h E j= i7 ijy j)
Pij = -^ = -----------7-------------------- r .

Pi 1 -  exp (oi -k E"=i lijVi j

with A = A(%'U G #*) > 0 and A; > 0  for all i.

P rop erties o f  th e  tru ncated  auto-n egative binom ial m odel

Assume the following model

with Jij =  7  for aU i and j .  Unfortunately the restriction /) > 0  leads to a very low upper 

limit for 7 . In Figure 3.7 we show the average ÿ from 500 simulated count data sets with 

the truncated auto-negative binomial model for a range of 7  values. The other parameters 

were A? = 5 and a — Iog(0.5), corresponding to p = ^  = 5 for the case of independent 

observations and an untruncated NegBin distribution. The plot shows the same picture as 

for the auto-Poisson case, where we have an upper boundary for 7 . Again there is phase 

transition at the lower region of 7  and explosion at the upper boundary. Here the upper 

boundary is dictated by the restriction /5 > 0 .

This makes the (truncated) auto-negative model for positive correlation extremely cum

bersome to work with, and for highly overdispersed count data with auto-correlation, other 

methods such as gamma-Poisson random fields (Wolpert and Ickstadt, 1998; Brix, 1998) 

or Gaussian-Poisson random fields (Besag et ah, 1991; Breslow and Clayton, 1993) are 

recommended.

61



truncated auto-negative binomial model

“ T~
- 1 .0

T “ ~ T ~
-0.2

Figure 3.7: Average of ÿ from 500 realisations from the truncated auto-negative binomial 

model with parameters k ~  b, and a  = log(0.5) corresponding to /i = ^ = 5 for the case 

of independent observations and for a range of 7  values.
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3.5 Sum m ary

In this chapter auto-models for discrete data, in particular counts, were defined. We have 

derived the Q(.)-functions of the truncated auto-Poisson and the auto-NegBin (truncated 

and untruncated) model. We have shown that the problem of the restriction of the auto

correlation parameter 7  to be negative can be solved by truncating the Poisson or NegBin 

distribution. But investigating the properties of the diverse auto-models for discrete data 

showed that both the truncated auto-Poisson and the truncated auto-NegBin model still 

have an upper boundary for the autocorrelation parameter 7 . There are no restrictions 

on 7  for the auto-logistic model.
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Chapter 4

P aram eter estim ation  for 

au to-m od els

4.1 Introduction

Since the auto-models incorporate dependence between responses, the likelihood is not 

always available in closed form and parameter estimation is not straightforward. One 

method of parameter estimation is maximum pseudo likelihood (MPL). This method ig

nores the fact that observations are correlated and constructs the likelihood as usual by 

multiplying the conditional probabilities. An advantage is that it is a very cheap method 

in computing time and estimates can be obtained from a GLM package. An alternative 

is Monte Carlo maximum likelihood (MCML) (Geyer and Thompson, 1992), which ap

proximates the term EzE( Gæp(Q(z)) of the likelihood from equation 3.2 using samples 

drawn from a Markov chain. We compare the two methods to see whether the “noddy” 

MPL method is good enough for our purpose. We also check whether the MCML method 

converges.

MCML has been compared with MPL for the auto-logistic model by Wu and Huffer 

(1997), who conclude that the MCML method yields more accurate results in terms of 

standard errors and mean square error than the MPL method, but MCML estimates are 

more biased than MPL estimates. Huffer and Wu (1998) investigate the distributional 

behaviour of MCML estimates of parameters from the auto-logistic model and find that
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the Fisher information of the MCML can be used for variance estimation. In both papers 

the auto-logistic model is applied to modelling the distribution of plant species in Florida. 

Wu and Huffer (1997) and Huffer and Wu (1998) do not investigate convergence of the 

MCML.

In section 4.2 we introduce an important prerequisite of the MCML: the simulation of MRF 

data, which is also essential for fitted values and goodness-of-ht statistics. In section 4.3 

we describe the diverse parameter estimation methods and illustrate them using simulated 

data examples. We compare the different parameter estimation methods by a simulation 

study in section 4.4.

4.2 Sim ulating M R F data using the G ibbs sam pler

Data simulation is essential for the methods discussed here. In particular it is required for 

the MCML method described in section 4.3, and for obtaining fitted values and predictions. 

For a Gaussian MRF, also called an auto-normal model, data simulation is straightforward; 

it only involves simulating random white noise (see also Cressie, 1991, p. 202). The joint 

density distribution is a multivariate normal distribution with Y  MVN(p^, ( I —0 ) ~ ^ M ) .  

For simulation we use the equation Y  = fx-h Le  where L  is the Cholesky decomposition of 

the variance Var{Y)  =  ( I ~ C ) ~ ^ M  and e is a vector of iV(G, 1 ) independently distributed 

variables.

For other distributions simulation is not so straightforward. The joint density is generally 

not available in closed form and even when it is, it can be very computer intensive to 

simulate directly from it.

Given that our distribution of interest, the MRF defined by the auto-model, is not available 

in closed form and the fact that the fuU conditional densities for the response at locations 

i are available, the Gibbs sampler (Geman and Geman, 1984), a Markov chain Monte 

Carlo scheme (MCMC), is a natural choice for data simulation. In general the Gibbs 

sampler applies when the distribution of interest 7t(0 ) cannot be sampled from, but fuU 

conditional distributions 7r{9i\0j;j 7  ̂ z), z = 1, ...,p are available. The components 9{ can 

be scalars, vectors or matrices. As summarised by G amer man (1997), the algorithm is 

based on successive generations from the full conditional distributions:
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1 . Set the counter of the chain ( t o i  and set initial values

5l(0) ^

2 . Obtain a new value ) through successive updating of values

3. Set ( = ( +  1 and return to step 2  until convergence is reached.

Note that convergence in step 3 is not defined strictly. There are different ways to test for

convergence and some of these will be discussed below in section 4.2.1.

Now we translate the general algorithm to the case of the auto-Poisson model with 

Yi ~  truncPoi(/^i|î/j; j  G Ni), i = 1, ...,n:

€ N i )  =  x 'i(3  +  Y l  l i j V r  (4.1)

Here our distribution of interest is the joint density Pr{y)  of the MRF with the above 

conditional specification. Thus the Gibbs sampler is implemented as foUows:

1. Set the counter of the chain ( t o i  and set initial values by generating indepen

dent Y  where ~  Poi(/z^) with log(//j) = æ'/3. The term x'-(3 is the part of the

model in equation 4.1 describing the trend only.

2 . Update y  in the lattice successively by systematically scanning through the lattice 

or by picking locations at random and without replacement:

^ truncPoi(/Ui|2/j^^yj*”^̂ ; j  G Ni)

with fii as defined in equation 4.1. The neighbourhood N i  is calculated using the 

current realisation of the lattice, i.e. it can contain previously updated values y^p 

and ŷ  ̂ values which have not yet been updated.
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3. Set ( = ( +  1 and return to step 2  until convergence is reached. Once convergence 

is reached, save realisations at every Ith step yielding the sample of size m  

y(c)^y(c+0  ̂ where c is the point of convergence.

To simulate truncated Poisson variables we use the Poisson distribution and reject values 

which are greater than the truncation value r. When consecutive realisations are 

highly correlated and each realisation is saved, a higher sample size is required than for 

the case of low correlation between iterations. Instead, only every (th realisation of the 

Markov Chain can be stored, where I is chosen so that realisations are independent. This 

practice reduces the amount of storage and is referred to as thinning the chain (Raftery 

and Steven, 1995).

For samples y^^\y^"^\ generated by the Gibbs sampler to converge to the sta

tionary distribution P{y)  =  ^  Markov chain must be ergodic, that is

irreducible, positive recurrent and aperiodic (Roberts, 1995). Ergodicity ensures that tak

ing an average of the sampled realisations y^^ \y^ “̂\  is an approximation for E{y),

which is also called an ergodic average.

The probability of changing to state y P  at step t from state at step ( — l i s  the

transition probability for the Gibbs sampler. Here the transition probabilities which we 

denote in shorthand notation by Pr{yi\yj) are:

Pr(yi\yj) = Pr{YP = yP\yP, Ü G Ni) = — .

Note that yi = yi{yj',j € Ni) and that to simplify notation we refer to the Poisson 

distribution rather than the truncated Poisson distribution. Then

1. A chain is irreducible if any state can be reached from any starting point. This 

implies that all transition probabilities have to be greater than zero, which is the 

case here. Pr{yi\yj) > 0 since exp(-y i )  > 0;/^^' > 0; > 0.

2 . The chain is positive recurrent:

Define ra as the time of the first return to state i. The chain is positive recurrent if 

Pr{ru < d o )  = 1 and E ( th) < oo. This condition is fulfilled because aU Pr{yi\yj) > 

0. This also implies that the chain is aperiodic, the greatest common divider of ( 

the time of reoccurrence of state i, ( > 0 : Pru{t) > 0, is one.
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Simulation of auto-logistic and auto-negative binomial MRFs follows the same procedure. 

For the auto-logistic MRF the conditional distribution is B e rn o u lli(p i |J  € N{) and the 

model for pi is as defined in equation 3.6.

For data simulation of the auto-negative binomial MRF we make use of the fact that 

the NegBin distribution can be derived as a mixture of Poisson distributions with rates 

distributed as Gamma(/)*(%; j  € Ni),k)  (see section 3.4.3 or Johnson et al. (1992)). For 

sampling from Yi trunc. NegBin(/)i(%; j  G Ni), k), we first sample

Xi ~  Gamma(A(i/j;j G Ni),k),

for /3 > 0 , /î > 0  and then generate

yi ~  truncPoi(A)j% ; j  G Ni).

4.2.1 Convergence of the Gibbs sam pler

Convergence of the Gibbs sampler was assessed by monitoring the following summary

statistics of the likelihood (see section 4.3.3 for more details):

n n

t(y) = {ti,t2)' = (^Xiyi^-YYyiO-utocovariatei)',

where t \  corresponds to the summary statistic of the parameter (3 and (2  corresponds to 

summary statistic of the parameter 7 , assuming 7  = 'jij and autocovariatei = Vj

in the Q()-function of the truncated auto-Poisson model:

n n —1 n

Q{y) = - log(yJ)) +
i—l i—1 j>i

Computationally it is more practical to use the autocovariate in the auto-Poisson model 

(equation 4.1) to calculate (2  =  Y^^yiViVj = \  Y^yiCLutocovariatei.

We also evaluate the autocorrelation in the time series of summary statistics at different 

lags. This is to determine the length of the I steps for thinning the chain. For moderate 

levels of positive autocorrelation in the auto-Poisson model (equation 4.1), where a ho

mogeneous process is assumed with = a = log{h) and 7  = 0.015, there is almost zero 

correlation of summary statistics between samples of the Markov chain (Figure 4.1). For 

higher levels of positive autocorrelation {a — log{5),'j — 0.05) the correlation of summary



statistics between iterations increases and is positive (Figure 4.2). For negative autocor

relation ( 7  =  —0.5), there is low negative correlation between samples (Figure 4.3). In 

aU cases the mixing of the chain is fast. Mixing is the rate the sampler moves around 

the target distribution. Figures 4.1 to 4.3 show that the summary statistics from each 

iteration to not remain on similar levels for any length of time, thus the Gibbs sampler 

moves around the target distribution very fast.

For a more formal assessment of convergence we use a method given in Gelman and Rubin 

(1992) and Gelman (1995). This method is based on comparing the between and within 

variance of parallel sequences of monitored summary statistics from a Markov chain. The 

idea is that with convergence the empirical distributions obtained separately from each 

sequence is approximately the same as the distribution obtained by mixing all sequences 

together. Before the sequences have converged the simulation collected within each single 

sequence will be much less variable than the simulation collected from aU the sequences 

combined. Here we monitor both summary statistics tk, k = 1,2 in m parallel sequences of 

length n with i = l , . . . ,m  and j  — yielding tijk. The between-sequence variances

B  and within-sequence variance W  are calculated as follows (Gelman, 1995):

n - - 1 ^ _ 1 ”̂ _
B  =  r  ^ ( ( w .  -  where tki. = -  ^  and (&.. = —m — 1 f-f  n m f-fi—\ 3—1 1=1

1 ^  1 ^

^  = -  E  S;. where sf =

A conservative variance estimate of the target distribution is

var(tk) = - — - W  + ~ B.n n

With the above components we can estimate the ratio between the upper and lower bound 

for the standard deviation of tk, in our case (1 and (g:

With convergence this ratio declines to 1. In our case the ratio is close to 1 very rapidly, 

after only 1 0 0  iterations.
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(a) summary statistic = sum(y)

1 5

(b) Series : matrix{tout, nrow = 2)[1, ]

Lag

( c )  a u t o c o r r e l a t i o n  f o r  s u m m a r y  s t a t i s t i c  =  s u m ( y * a u t o c o v ) ,

(d) Series : matrlx(tout, nrow = 2)[2, ]

Figure 4.1: Convergence of auto-Poisson model with a ~  log{h) and 7  = 0.015. Graphs 

(a) and (c) show the sequence of summary statistic (1 and (2  (y-axis) respectively from 

each iteration (x-axis) of the Gibbs sampler. Graph (b) and (d) show the corresponding 

autocorrelation function at different iteration lags 0 to 5. The dotted lines correspond to 

approximate 95% confidence interval bands about the line of zero correlation.
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(a) summary statistic = sum(y)

10000

Series : matrix(tout, nrow = 2)[1, ]

( c )  a u t o c o r r e l a t i o n  f o r  s u m m a r y  s t a t i s t i c  =  s u m { y * a u t o c o v ) ,

10000

Series : matrix(tout, nrow = 2)[2, ]

Lag

Figure 4.2: Convergence of auto-Poisson model with a = log{5) and 7  = 0.05. Graphs 

(a) and (c) show the sequence of summary statistic (i and (% (y-axis) respectively from 

each iteration (x-axis) of the Gibbs sampler. Graph (b) and (d) show the corresponding 

autocorrelation function at different iteration lags 0 to 5. The dotted lines correspond to 

approximate 95% confidence interval bands about the line of zero correlation.

71



(a) summary statistic = sum(y)

4000 6000

Series : matrix(tout, nrow = 2)[1, ]

Lag

( c )  a u t o c o r r e l a t i o n  f o r  s u m m a r y  s t a t i s t i c  =  s u m ( y * a u t o c o v ) ,

Series : matrix(tout, nrow = 2)[2, ]

Figure 4.3: Convergence of auto-Poisson model with a = log{b) and 7  = —0.5. Graphs

(a) and (c) show the sequence of summary statistic (% and (2  (y-axis) respectively from 

each iteration (x-axis) of the Gibbs sampler. Graph (b) and (d) show the corresponding 

autocorrelation function at different iteration lags 0 to 5. The dotted lines correspond to 

approximate 95% confidence interval bands about the line of zero correlation.
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4.2.2 U tilisin g  sim ulation for fitted  values, residuals and goodness-of-fit 

statistics

When we fit an auto-model to data and use estimated parameters to simulate a MRF as 

described above, the ergodic average ÿ  of represents the approximate

fitted values fi with components This is justified by the following result, which can be 

found in any standard probability textbook:

Pi = Ei{yi) = Ej{Ei{yi\yj-J G N{)) = Y2
ViGC

where (  = {y  : Fr(y)  > 0}. The conditional expected value E{(yi\yj;j G Ni) is estimated 

with the fitted value from the auto-model. For instance for the auto-Poisson model we use

E(yilyj^J G = exp(âi +  Y2 %'yj)-
jGNi

If the likelihood was available in terms of pi, deviance residuals and residual deviance 

could be used to assess goodness-of-fit. Instead we can plug the approximate fitted values 

ÿi from ergodic averaging into the deviance function derived from likelihood functions as

suming independence of observations. This likelihood corresponds to the pseudo likelihood 

function, which will be described in section 4.3.1, but fitted values are not conditional on 

neighbourhood values. For example the deviance of the Poisson log-likelihood function is

D (y \y )  = 2Y2yiiog  f—)  -  (yi - m ) '

We can approximate the deviance by

D{y‘, =  -  {yi -  ÿi),
i=\

and calculate approximate deviance residuals

ViD = sign{yi -  yi)^2yilog -  {yi -  yi).

D{y\y)  can be used as a goodness-of-fit statistic since it can be shown (McCuUagh and 

Nelder, 1989) that D{y\y)  ~  df — n -  p. We assume that this is also the case 

for D{y\y) .  Also for comparing nested models the change of the approximated deviance 

D{y\Vq) — E {y \Va ) câ n be used as usual to test for the significance of a covariate. Here ÿg 

corresponds to fitted values of the null model and 2Ü1 corresponds to fitted values with the 

additional covariate. For the truncated auto-Poisson model the ergodic average ÿi would 

similarly be plugged into the deviance of the truncated Poisson log-likelihood function.
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Alternatively we can approximate the Pearson residual

Vi  -  È { y i )  y i  -  Ê { y i )
TiP -

which yields the Pearson goodness-of-fit statistic (McCullagh and Nelder, 1989)
n

YZ'^'iP -
i=l

Xdf, df — n — p, where n is the number of observations and p the number of 

parameters. We replace pi = E{yi) by its ergodic average ÿi.

In summary, by replacing fitted values pi with their ergodic averages ÿi, we can obtain 

the ingredients needed for classical model checking and goodness-of-fit statistics. Further 

work is needed to investigate the distributional properties of the deviance and Pearson 

X^-statistic.

4.3 Param eter estim ation  for auto-m odels

Parameter estimation for auto-models using fuU maximum likelihood (ML) is only possible 

if YlzeC Ga;p(Q(z)) is available in closed form. Then the log-likelihood has the form:

Kv) = Qiy) -  log eæp(g(z)) j . (4.2)

where r} is the parameter vector and y  Ç. (■, C ^  {y : Pr(y)  > 0}. For the auto-logistic 

model the likelihood is available in closed form (see section 3.3), but for most data sets 

evaluating the normalising constant is computationally too intensive. For the truncated 

and Winsorized auto-Poisson model the normalising constant can also be evaluated: Kaiser 

and Cressie (1997) derived full maximum likelihood estimates for a Winsorized auto- 

Poisson model. As for the auto-logistic model the procedure is very computer intensive. 

Kaiser and Cressie (1997) use a simulation example comprising six locations to test the 

influence of different truncation points on parameter estimates. Their example shows that 

if r, the value where the distribution is Winsorized (equivalent to the truncation value; 

see section 3.4), is substantially larger than the largest observation, changes in r have 

little effect on estimates. Deriving the normalising constant for a data set with more than 

six observations and a higher value for r, is so expensive that full maximum likelihood 

estimation becomes infeasible.
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Other possibilities for parameter estimation are:

• Pseudo maximum likelihood (Besag, 1974);

• coding (Besag, 1974);

• Monte Carlo maximum likelihood (Geyer and Thompson, 1992);

• Monte Carlo Newton-Raphson (Penttinen, 1984);

• stochastic approximation (Younes, 1988).

A comparison of these different methods (except coding and pseudo likelihood) is given in 

Geyer (1999).

4.3.1 Pseudo likelihood (PLE)

The pseudo likelihood function (Besag, 1975) is the product of the conditional probabili

ties, ignoring non-independence of observations. For example for the auto-Poisson model 

the pseudo log-likelihood has the form:

ipiB) = G A^))
i ~ \

n

~  Y I  l o g { { p i \ y j \ j  G N i )  - f  y i l o g { p i \ y f , j  G N i )  -  / o p ( 3 /d ) )

By formulating the auto-model as a GLM with the canonical link, maximum pseudo 

likelihood (MPL) estimation can be performed in any GLM package using iteratively re

weighted least squares. Because maximum pseudo likelihood assumes observations are 

independent, standard errors from iteratively re-weighted least squares are likely to be 

biased when strong autocorrelation is present. The parametric bootstrap can be applied 

to obtain standard errors, in which case the data are simulated using the Gibbs sampler 

as described in section 4.2.

4.3.2 Coding

Besag (1974) introduced coding, where the lattice is subdivided into two or more disjoint 

sub-lattices, so that the sites of the sub-lattices are mutually independent. Coding es

timators are obtained by maximising the conditional likelihood of one sub-lattice given
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the other. This yields two or more possible coding estimates that can be combined in 

some way. For example if correlation is assumed only among the four nearest neighbours, 

there are two sub-lattices Do and Di,  whose elements are mutually independent. Then 

the conditional log-likelihoods are:

lc,Doiv) =  Y I G Ni)),
ieDo

lc,Diiv) = Y2 l^9{Pr{yi\yj : j  G Ni))
ieDi

and estimates from the two conditional likelihoods are combined.

4.3 .3  M onte Carlo m axim um  likelihood (M CM L)

Monte Carlo maximum likelihood (MCML) was introduced by Geyer and Thompson 

(1992), but it is very similar to Monte Carlo Newton-Raphson introduced by Penttinen 

(1984). It can be applied to any model for dependent data derived from the exponential 

family such as MRFs. Other examples include spatial models for point processes, mod

els for Markov graphs and conditional maximum likelihood. We illustrate the method 

with the right truncated auto-Poisson model from equation 4.1, with the random variable 

Yi ~  truncPoi(^^|%; j  G Ni) at locations i =  1, ...,n  and truncation value r:

Pr{Yi = K \ y y , j e N , )  = ! ^ ( X ^
\k=0

with Pi = Pi{yj\j  G Ni). For explaining the MCML method it is best to rewrite Q{.) and 

l{r}) from equation 4.2 as

n n —1 n  i

Q{y) = Kyy-n = Yli^iVi ~ log{yi\)) -f Y lY l^ i j y i y i - I
i=l i=l 3>i \

Considering the log-likelihood as a function of the parameters l(o t,j)  the term ~log(yil) 

is a constant and can be omitted, so that (by redefinition of t(y)).
I

n —1 n —1 n |
%)'̂  = Ŷ aiiji + Ŷ Ŷ jijyiyj, !

i=l i=l j>i I

with vectors t{y) = ( i / i , ..., ÿn ,  2/ i 2/2 , ÿ n - U / n ) '  and rj = ( « i , 7 i 2 ,  • • • , 7 n - i , n ) ' .  Then 

define the normalising constant

c{rj) = Y2 exp{t{zyr)).
zee
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The log-likelihood takes the form

Now a constant term log{c{ÿ>)) is added to the likelihood. The term c('0) has the same 

form as the normalising constant c{r}), vectors and 77 are of the same length and the 

values of -0 are constant and close to 77. The log-likelihood is then

ly{r]) = log -i- log{c{i>))

It is now worth noting that the ratio is the moment-generating function M ^ { t} — 1̂ ) 

of t{y)

~ ^ )  = E^iexpit iyYiv ~ V’)))-

N.B. Define t  = r} — then

^  exp{t{yY{T 4- ^ ))
y

c ( t  H- - 0 )  _  c ( t7)

c('0 ) o{i>)

Thus the ratio can be expressed as the expected value E^{exp{t{yY{r) -  -0)), which 

can be approximated by its ergodic average

Ê (ezp(f(%/)%77 -  '̂ )) % E  earp(f(3/(*)y(77 -  V»))

with simulated from an ergodic Markov chain y^^\y^ “̂\  ...,y^'^^ with equilibrium

P ^[y ) ,  the joint density of the MRF with the auto-Poisson model defined by parameters 

ijy. The approximate log-likelihood is then

( 1 ^

— Y2oxp{t{y^^'^Y{rj ~i>))

^  i=i

Note that ((%/), 77 and -0 are all vectors of length p, the number of parameters, and the term 

exp ^((7 /( ') ) '(7 7  — '0)) is a scalar. Maximising this approximate likelihood yields the Monte
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Carlo maximum likelihood estimator (MCMLE) The approximate likelihood 

is only a good approximation to ly{r])  near 0 , so that iterative constrained maximisation 

is needed. The derivatives are

I L  =  t ( v \  ^  t{y^ '̂ )̂exp[r} -
i  HiLi oxpiii] -  (%/(*))]

and the Monte Carlo approximation of the Hessian matrix H{rf)  is

r r .. \ ^  ^  E ^ i  t{y^"^yexp[t{y(^^)Xri -  0 ) ]
^ y l )  ~  ~c 2 “  7 “ X 2

^ {m E ^ i ê p[(*7 -  'Y’YKŷ )̂]}
à  E%=1 t{ŷ ^̂ )t{ŷ ^̂ Ŷ P̂[(.‘n -  

^  E ^ i eæp[(»7 -  0)'((3/W)]

«  =  - y o r ( t ( 3/)).

The (j, A:)th element of H{r])  is

^ à  E ^ i (%/('))Ga;p[(?? -  ^  E ^ i (k(^('))'eæp[((7/('))%77 -  0)]
{^ES=i exp[(?7 -  0y((2/W)]}^

^E2=i (jte^^ )̂(fc(2/^ '̂ )̂ea;p[(77 -  0 )'((%/(*))]
^  EIli eæp[(T) -  0)'((2/W)]

^  ^T7,0(^j(3/))^,7,0(^t(3/)) -  .B^,0(^j(3/)4(3/))

The estimated standard error of the MLE can be derived as the square root of the diagonal 

elements of the inverse observed Fisher information, which is the negative Hessian matrix 

—H{rj).  The standard errors are valid under the usual regularity conditions for maximum 

likelihood estimation. They refer to the difference between the exact MLE and the true 

parameter value (17 — 77). The standard error of the Monte Carlo calculation, referring 

to the difference between the MCMLE and MLE, {fiŷ n — 77), can be estimated from the 

following variance matrix (for details see Geyer (1994), section 3):

m “ ^(-Lf(77))"^A(ï7)(-//(77))“ ^

where A{r))  is estimated using the empirical variances and covariances of the samples from 

the Markov Chain y^^Ky '̂^Y ...,y^'^Y
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We do not know the variance relating to the difference between the MCMLE and the true 

value

-  »?) =  “  ^) +  Var{fj ~  7? )  + 2Cov{{fjy^^ -  T}), {f} -  7? ) )  (4.3)

because Cov{(fjy^.^ — 7 7 ) ,  — is unknown. In cases where the asymptotics do not hold,

i.e. the standardised parameters do not follow a normal distribution, we cannot use the 

observed Fisher information for variance estimation. Instead the bootstrap can be applied 

(Geyer, 1995). Using the bootstrap has the benefit of estimating the variance referring 

to the difference between the MCMLE and the true value, Var(i)y^n ~  ’?)• Bootstrap 

samples can be taken from one run of the Markov chain with estimated parameters rf,. and 

their likelihood can be estimated using the same Markov chain sample in the normalising 

constant. Thus bootstrapping can be done from the same sample used for

the approximate likelihood at no extra computational expense.

Figure 4.4 gives a schematic overview of how MCML is performed in practice. For the 

initial approximation of the likelihood, 0 ,, is set to parameter estimates from another 

method such as MPL, coding or ML of a model assuming independence (i.e. without the 

parameter 7 ). Then auto-Poisson data with parameters 0,. are simulated using the Gibbs 

sampler and using these simulated data in the normalising constant the approximated 

likelihood can be derived and maximised. The maximisation is constrained to be within 

an upper and lower limit around 0,,. If the obtained estimates 7 7 ,. are close to 0  the 

approximation should be good enough and the 7 7 ,, are the MCML estimates. If they are 

not, we start again simulating data with 0 ^ + 1  = Vr so forth. We start from the MPL 

estimates in most examples. These are usually quite close to the MCML estimates, and 

convergence can be rapidly achieved.

4 .3 .4  M o n te  C arlo  N e w to n -R a p h s o n

The Monte Carlo Newton-Raphson method proposed by Penttinen (1984) is similar to 

Geyer’s (Geyer and Thompson, 1992) MCML method. It has recently been applied to 

a Winsorised auto-Poisson model by Lee and Kaiser (1997). A good description of the 

algorithm is given in Heikkinen and Penttinen (1999) or Geyer (1999). Rather than ap

proximating the likelihood as in MCML, here only the gradient and Hessian matrix are
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finish

Set

MPL /  coding/
ML from independence model

simulate auto-Poisson data 
with

Is f]̂  close to ?

initial parameter estimates

for

maximise the approximate log-likelihood

= KyYrj -  log [ ~ T aL\ e^p(% W )'(i7 -  -0 ^ ) )  
to obtain

Figure 4.4: Flowchart for Monte Carlo maximum likelihood (MCML). The vector

refers to summary statistics from the observed data and to summary statistics for

simulated data.
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approximated. For the update,

nr+i = -  ( iï(T 7 ,.))"^ ^ ,

where

~  =  t { y )  -  E n { t { y ) )

and

H{rj) = -Varrj{t{y)) .

In each update of the Newton-Raphson algorithm a sample y ^ ^ \ y ^ “̂ \  ...,y^'^^ from a 

Markov Chain with equilibrium P < q ^ {y) is drawn. The gradient ^  is replaced by t { y )  — 

i( 2/), where t { y )  is the ergodic average of t { y )  and H{ri) is replaced by the negative sample 

covariance matrix.

4 .3 .5  S to c h a s t ic  a p p r o x im a tio n

Younes (1988) first introduced a stochastic gradient algorithm based on the Gibbs sampler 

to obtain maximum likelihood estimates. Geyer (1999) proposes using this method as a 

starting point for MCML. The idea is to run a Markov chain with non-stationary transition 

probabilities, adjusting the parameter r) in each iteration to move towards the MLE. A 

simplified version of the algorithm is as follows:

From the sequence of simulated data t { y ^ ' ‘̂ ) from a Markov Chain using an auto-Poisson 

model with parameter a crude estimate of the score is:

Then the parameter rf  ̂ is moved in the direction of the score, which should on average 

move it toward the MLE. r) is updated by

r)r+l = »7r + fr(((l/(''^')) “  %^"'^)),

with

° = 1 , 2 , . . .
I P  pr

where p > 0  and co > 0  are constants, cq and p are chosen arbitrarily, which makes this 

method rather ad hoc. In addition the method does not supply estimates for standard 

errors, which is why we do not pursue this method further here.
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4.3.6 Sim ulated data exam ples for illustration

We use simulated data examples mainly to illustrate the MCML method applied to the 

truncated auto-Poisson model, but also to check whether this method converges and to 

illustrate one possible way in which data simulation can be used to assess goodness of 

fit. Six data sets were simulated on a 15 x 15 lattice using the Gibbs sampler with a 

truncated auto-Poisson model with six different sets of parameters. We simulated Yi ~  

truncPoi(//*|%; j  € N{), i =  1 , ...,n  and r = 100 defined by the model:

log(wl% ;i e  Ni) = a  + Pxi +  7 -  X ] Vi- (4.4)

where a  is the intercept, X{ is a covariate for row effect with Xi — rowi — ^Ya=i 

with slope parameter /3. The parameter 7  is the interaction parameter defining spatial 

autocorrelation, N( are the four nearest neighbours and rii = 4, except for edge sites. Then 

summary statistics are

Ky) = { h , t 2, h ) '  =  ̂̂  yiautocovariatei)\

where autocovariatei = the parameter vector is rj = ( « ,^ , 7 )^ For the

approximate likelihood in the MCML method m  = 1000 samples were used, by extracting 

every 2nd sample of the Markov chain, after discarding the first 100 iterations. The first 

4 examples are all processes without trend, that is ^  = 0. Parameter estimates from the 

MPL and MCML (Table 4.1) agree fairly well. Standard errors are smaller from MPL for 

Examples 1 and 3 where 7 , the parameter for auto-correlation, is positive. In Examples 

2 and 4 the MPL method gives larger standard errors than the MCML. For the MCML 

method Monte Carlo standard errors are also given. These measure additional variation 

introduced by MCML as defined in Section 4.3.3 and are very small compared with the 

asymptotic standard errors of MCML. Thus, the MCML estimate does not differ much 

from the true maximum likelihood estimate. The standard errors for the coding method 

are highest and in Example 4 coding did not work very well. The two coding estimates for 

a  are very far apart and the second one has a very high standard error. This is because 

the model used to simulate Example 4 had an autocorrelation parameter 7  = —0.5 which 

created a very regular pattern of zeros and high numbers. The data for the second coding 

estimate included most all of the zeros and a few ones. Therefore a  could not be estimated 

very well from the second coding data set of Example 4.
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Table 4.1: Auto-Poisson parameter estimates for Examples Î to 4 with different param

eter values using pseudo likelihood (MPL), coding (CODEl, C0DE2) and Monte Carlo 

maximum likelihood (MCML). The parameter (4 is zero for these examples. Asymptotic 

standard errors of MCML are denoted as [se] and Monte Carlo standard errors of MCML 

are denoted as (mcse). The Pearson goodness-of-fit statistic is given; for MPL and

Parameter a [se] (mcse) 7 [se] (mcse) X 2

Ex 1: true values 1.609 0.015

MPL 1.520 [0.142] 0.026 [0.026] 0 200.323

CODEl 1.512 [0.205] - 0.026 [0.038] 0 97.614

C0DE2 1.526 [0.197] - 0.026 [0.037] - 88.959

MCML 1.530 [0.170] (0.0057) 0.023 [0.032] (0.00097) 200.878

Ex 2: true values 2.308

MPL 2.311 [0 .1 0 2 ] 0 -0.209 [0.025] 0 174.410

CODEl 2.325 [0.167] - -0.214 [0.037] - 88.959

C0DE2 2.283 [0.140] - -0.199 [0.037] - 87.288

MCML 2.260 [0.086] (0 .0 0 2 1 ) -0.195 [0 .0 2 1 ] (0.00047) 186.881

Ex 3: true values 0.0001

MPL 2.407 [0.136] - -0.008 [0.013] - 208.656

CODEl 2.384 [0.199] - -0.003 [0 .0 2 0 ] 98.289

C0DE2 2.319 [0.197] - -0.003 [0.018] 107.142

MCML 2.440 [0.170] (0.0042) -0 .0 1 2 [0.017] (0.00042) 208.702

Ex 4: true values -0.5

MPL 2.270 [0.031] - -0.545 [0.038] - 192.335

CODEl 2.270 [0.036] - -0.538 [0.228] - 111.015

C0DE2 1.428 [1.700] - -0.443 [0.206] - 91.015

MCML 2.270 [0.030] (0 .0 0 1 1 0 ) -0.546 [0.038] (0.00084) 194.404
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The Pearson’s goodness-of-fit statistic, as defined in section 4.2.2, does indicate good 

fits for all models. We have not checked whether the distribution is appropriate for 

X^, this might be a problem for example 4 which contains many zeros (102 out of 225 

of the observations are zero). Figures 4.5 to 4.8 (top panel) show the sequence of 77,. for 

the MCML procedure on the same plot with the estimate from MPL and the two Coding 

estimates for Examples 1 to 4. Assuming a first order neighbourhood N{ means two coding 

estimates (CODEl, C0DE2) are obtained, corresponding to two sublattices. In aU cases 

the MCML estimate appears to converge.

The summary statistics f(y(^)) = (<1^,(2%) in Figures 4.5 to 4.8 correspond to Examples 1 

to 4 and were calculated from realisations of a simulated ergodic Markov chain with equi

librium J ^ ( y ) ,  using -0 equal to the estimates of MCML, MPL and coding respectively. 

These f(y(^)) can be used as a goodness of fit diagnostic, by plotting tu  versus and 

checking whether the observed ti and itg nre in the centre of the scatterplot (Geyer and 

Thompson, 1992). For aU examples the observed ti and tg nre weU centred in the convex 

huU of the f(y(^)) using MCML, MPL and Coding. In Example 2  the observed summary 

statistics appear more centred for the MCML method than for the other two methods. In 

the case of Example 4 the simulated É(y(^)) from coding estimates do not coincide at aU 

with the observed summary statistic; this is because the second coding estimate is very 

far from the true value. In Example 5 (Table 4.2) Y i ~  Poi(/i), with ju = 5, and no trend 

or autocorrelation is present (j3 = 0 and 7  =  0 ). Estimates and standard errors from 

both methods are almost identical. Example 6  represents a process with trend but with

out auto-correlation ( 7  =  0). In this case estimates are similar but standard errors from 

MPL are smaUer than from MCML, because 7  was estimated. Likelihood functions were 

plotted for the MPL and the MCML method. The contours of the pseudo likelihood and 

Monte Carlo likelihood are shown in Figures 4.9 to 4.11 for Examples 1 to 5. Note that 

likelihood windows of the same width are shown, but depending on the actual estimates 

the windows are shifted. The shapes of the likelihoods are fairly similar when comparing 

MPL and MCML, except for Examples 2 and 4 with 7  < 0 (Figures 4.9 and 4.10) where 

the shapes differ. In particular the likelihood from MCML for Example 4 has a plateau 

in the negative direction of 7 . This is not the case for the MPL surface. In Section 3.4.1 

(Figure 3.5a) we showed that any value for 7  < — 1 produces the same chess board effect, 

hence the plateau in the likelihood surface in the negative 7  direction.
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parameter estimates for alpha, parameter estimates for gamma

I ?

(true va!ue= 1.61 ) (true value= 0.015 )

Iteration

INCIVIL

I

I

PLE estimates

I

I
100 1150 1200 1250

t_1 (sum of obsefvatlons)

CODING (combined estimates)

1150 1200

l_1 (sum of observations)

8

1150 1200

t_1 (sum of ot>servations)

Figure 4.5: Example 1. From top left to bottom right: Parameter estimates for a and (3 

for the iterative process for MCML (*, final estimate marked as M), parameter estimates 

for MPL (marked as P), Coding (CODEl and C0DE2 marked both as C) and true values 

(marked as T). Plots of simulated summary statistics in  versus <2« using parameters from 

MCML, MPL and Coding. Where the two dotted lines cross corresponds to observed i\ 

and <2 -
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parameter estimates for alpha,
(true value= 2.3 )

a 8 -

parameter estimates for gamma
(true value= -0.2 )

MCML

8a
8

mi
§

I

950 1000

t_1 (sum of observations)

CODING (combined estimates)

950 1000

t_1 (sum of obsen/atlons)

I
8

8

§

PLE estimates

8

8

1

8

950 1000

t_1 (sum of observations)

Figure 4.6: Example 2 . From top left to bottom right: Parameter estimates for a  and (3 

for the iterative process for MCML (*, final estimate marked as M), parameter estimates 

for MPL (P), Coding (CODEl and C0DE2 marked as C) and true values (T). Plots 

of simulated summary statistics tu  versus <2« using parameters from MCML, MPL and 

Coding. Where the two dotted lines cross corresponds to observed t\ and <2 -
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parameter estimates for alpha,
(true value= 2.3 )

parameter estimates for gamma
(true value= 0,0001 )

5 - M : -
2  ■
Î -

p

i. ■9
S . gE
S  -

5  ■ 1 P
c -

8 T
1 -

M

Iteratkm

MCfVlL PLE estimates

8
§

§

t_1 (sum of observations)

CODING (combinetd estimates)

2250 2300 2350

t_ l (sum of observations)

2300 2400

t_1 (sum of observations)

Figure 4.7: Example 3. From top left to bottom right: Parameter estimates for a  and (3 for 

the iterative process for MCML (marked as *, final estimate as M), parameter estimates 

for MPL (P), Coding (CODEl and C0DE2 marked as C) and true values (T). Plots 

of simulated summary statistics tu  versus Î2i using parameters from MCML, MPL and 

Coding. Where the two dotted lines cross corresponds to observed t\ and I2.
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parameter estimates for alpha, 
(true value= 2.3 )

3  ^

parameter estimates for gamma 
(true value= -0.5 )

9  ■

« .
9

5  .
9

:  ^ T
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â S -

i

ttemtksn

MCML
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1000 1050 1100 1
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1000 1050 1100

t_1 (sum of observations)
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Figure 4.8: Example 4. From top left to bottom right: Parameter estimates for a  and (3 for 

the iterative process for MCML (marked as *, final estimate as M), parameter estimates 

for MPL (P), Coding (C) and true values (T). Plots of simulated summary statistics tu 

versus <2t using parameters from MCML, MPL and coding. Where the two dotted lines 

cross corresponds to observed t\ and <2 - Note that for coding the scatterplot does not 

contain the observed t\ and <2 -
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Figure 4.9: Contours of MPL (left) and MCML (right), Example 1 ((a) and (b)), Example 

2 ((c) and (d)). The y-axis represents the intercept parameter a and the x-axis represents 

the auto-correlation parameter 7 . Note that axes of plots for each example are of the same 

width, but do not show the same window of the log-likelihood.
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Figure 4.10: Contours for (a) MPL and (b) MCML for Example 3 and (c) MPL and (d) 

MCML for Example 4. The y-axis represents the intercept parameter a  and the x-axis 

represents the auto-correlation parameter 7 . Note that axes of plots for each example are 

of the same width, but do not show the same window of the log-likelihood.
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Table 4.2: Auto-Poisson parameter estimates for different parameter values using pseudo 

likelihood (MPL), coding (CODEl, C0DE2) and Monte Carlo maximum likelihood 

(MCML). Asymptotic standard errors are denoted as [se]. The Pearson goodness-of-fft 

statistic is given, for MPL and MCML the corresponding df are 222, for Coding 1

Parameter a [s.e.] /? [s.e.] 7 [s.e.]

Ex 5: true values 1.609 0 0

MPL 1.544 [0.031]

MCML 1.540 [0.031]

Ex 6 : true values 0.05 0

MPL 1.320 [0.151] 0.034 [0.009] 0.045 [0.031] 178.462

CODEl 1.357 [0.197] 0.034 [0.013] 0.038 [0.040] 71.312

C0DE2 L268 [0.235] 0.033 [0.014] 0.055 [0.049] 108.642

MCML 1.420 [0.180] 0.038 [0 .0 1 1 ] 0.025 [0.038] 180.484

1 .6 01 .5 81 .5 4 1 .5 61 .4 8 1 .5 0 1 .5 2

alpha

Figure 4.11: Example 5, likelihood for MPL (continous line) and MCML (dotted line).
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4.4  C om parison o f different param eter estim ation  m ethods: 

A  sim ulation study

4 .4 .1  C o m p a r iso n  o f  th e  th r e e  p a r a m e te r  e s t im a t io n  m e th o d s

The three parameter estimation methods, pseudo likehhood (MPL), coding (CODEl, 

C0DE2) and Monte Carlo maximum likelihood (MCML) were compared in a simula

tion study. The same model as in equation 4.4 is used for data simulation. Respective 

parameter values for studies 1 to 3 are given in Table 4.3, and those for study 4 in 4.4. 

In studies 1 to 3 the parameter /? was zero, so that no trend was present. A truncation 

value of r = 100 for the MCML method was assumed, except for the second simulation 

study with r = 20. For the MCML method the initial value for was taken from 

the model fitted assuming independence for those studies where the model was without 

auto-correlation (study 1 and 4). For studies 2 and 3, where the model included auto

correlation, the starting value was taken from the MPL estimates. This choice of was 

based on the speed of convergence.

The simulation study consolidates the findings from the illustrative examples in sec

tion 4.3.6. When comparing the mean asymptotic standard errors with empirical standard 

errors in Table 4.3 and 4.4, it appears that MPL underestimates standard errors in the 

simulation studies which incorporated zero or positive auto-correlation. In studies 1 , 2 

and 4 the mean asymptotic standard errors are substantially lower than empirical stan

dard errors for the MPL method. This is also the case for the MCML method, probably 

caused by the extra component of Monte Carlo variation, measured by the Monte Carlo 

standard error (mcse), but differences there are smaller. Unfortunately the mcse cannot 

be used to inflate the variance correctly, because the covariance Cov{{fjy^^ — fy), (rj — ij)) 

from equation 4.3 is not known. In simulation study 3, where negative auto correlation 

is incorporated, asymptotic standard errors from MPL are higher than their empirical 

counterparts.

The bias in parameter estimates in all methods appears to be negligible, given the associ

ated standard errors. It is surprising to see that the coding method gives the lowest bias 

only in study 2 for which 7  = 0.05. This is probably because the coding estimates are 

derived from only half of the sample size. (See also Example 4 of the previous section.)
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On average MPL gives the lowest bias in this limited investigation. In study 3, where 

7  =  —0.5, MCML gives the largest bias, underestimating a  and overestimating 7 . For 

investigating asymptotic normality parameter estimates were centred and standardised in 

the following way:
Vi -  lü ô E ^ t

^/var{r]i)
Checking histograms and qq-normal plots of these estimates in Figures A .l to A.8 , show 

that their distribution appears to be normal. Estimates from MPL plotted versus estimates 

MCML are shown in Figure 4.12 and 4.13. These appear to be fairly close, except for study 

3 where strong negative auto correlation was present and MCML had the largest bias.

4 .4 .2  I n v e s t ig a t io n  o f  c o r r e la te d  p a r a m e te r  e s t im a te s

So far the parameters of the models have been investigated only in a univariate sense. 

Consider the model used in simulation studies 1 to 3:

1 v-'
\og{}ii\yj\j E = « +  7 - .  2 ^

When the parameters are considered in a multivariate sense, for auto correlation greater 

than or equal to zero, the parameter estimates of a  and 7  from studies 1 to 3 are strongly 

correlated. This is in contrast to the auto-normal model, which has the property that 

parameters a  and 7  are orthogonal. The component of the asymptotic covariance matrix 

from the auto-normal model referring to the covariance between a  and 7  is zero (Haining, 

1990).

Plotting pseudo likelihood estimates from simulation study 1 to 3 oi a  versus 7  (Fig

ures 4.14(a) to 4.16(a)) shows strong negative correlation. For the modified model as 

discussed in section 3.4.1

G At) = a 4- 7 Z ]  (% “  e x p { ( y ) )
jeNi

fitted to the data from studies 1 and 2 , the pseudo likelihood estimates also show a strong 

relationship (Figure 4.14(b) to 4.16(b)). Here the correlation is negative for 7  > 0 and 

positive for 7  < 0 .

If we “centre” the autocovariate as in section 3.4.1,

e A*) =  « + 7  ^  (%- -  y)
JEW,
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Table 4.3: Means of parameter estimates, using pseudo likelihood (MPL), coding (CODEl, 

C0DE2) and Monte Carlo maximum likelihood (MCML)), from 100 simulated data sets 

for each of simulation studies 1-3. The mean of asymptotic standard errors are given in

Parameter a (s. e.) [s.e.] bias 7 (s. e.) [s.e.] bias

Study 1 

(r = 1 0 0 ) 

True values 

MPL

1.609

1.594 (0.131) [0.187] -0.016

0

0.003 (0.026) [0.036] 0.003

CODEl 1.578 (0.189) [0 .2 0 1 ] -0.031 0.006 (0.037) [0.038] 0.006

C0DE2 1.568 (0.188) [0.189] -0.042 0.008 (0.037) [0.037] 0.008

MCML 1.592 (0.175) [0.187] -0.017 0.003 (0.034) [0.036] 0.003

Study 2  

(r = 2 0 ) 

True values 

MPL

1.609

1.640 (0.128) [0.173] 0.030

O.OJ

0.045 (0.017) [0.024] -0.005

CODEl 1.618 (0.183) [0.178] 0.009 0.048 (0.025) [0.024] -0 .0 0 2

C0DE2 1.611 (0.185) [0.194] 0 .0 0 2 0.049 (0.025) [0.027] -0 .0 0 1

MCML 1.644 (0.157) [0.172] 0.035 0.045 (0 .0 2 1 ) [0.024] -0.005

Study 3 

(r = 1 0 0 ) 

True values 

MPL 1.600 (0.091) [0.082] -0 .0 1 0 -0.499 (0.051) [0.050] 0 .0 0 1

CODEl 1.590 (0.135) [0.136] -0.019 -0.497 (0.074) [0.077] 0.003

C0DE2 1.606 (0.131) [0.128] -0.004 -0.503 (0.074) [0.075] -0.003

MCML 1.585 (0.074) [0.076] -0.024 -0.491 (0.042) [0.042] 0.009
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Table 4.4: Means of parameter estimates from study 4, using pseudo likelihood (MPL), 

coding (CODEl, C0DE2) and Monte Carlo maximum likelihood (MCML)), from 100 sim

ulated data sets. The mean of asymptotic standard errors are given in brackets, empirical 

standard errors are given in square brackets.

P a ra m eter (s .  e .) [s.e .] b ias P ( s .  e .) [s.e .] bias 7 (s. e .) [s.e .] bias

S tu d y  4 

( r  =  100)  

T rue valu es  

M P L

1 .6 0 9

1.603 (0 .1 3 0 ) [0 .178] -0 .0 0 6

o .o s

0.0 6 0 (0 .0 0 9 ) [0.011] 0 .0 0 0

0

0.002 (0 .0 2 5 ) [0.033] 0 .0 0 2

C O D E l 1.567 (0 .1 8 8 ) [0.190] -0 .0 4 2 0.048 (0 .0 1 3 ) [0.013] -0 .0 0 2 0.008 (0 .0 3 6 ) [0.034] 0 .0 0 8

C O D E 2 1.667 (0 .1 9 0 ) [0.185] -0 .0 4 3 0 .0 4 8 (0 .0 1 4 ) [0.014] -0 .0 0 2 0 .0 0 9 (0 .0 3 6 ) [0.036] 0 .0 0 9

M C M L 1.601 (0 .1 6 7 ) [0.173] -0 .0 0 8 0 .0 5 0 (0 .0 1 1 ) [0.011] 0 .0 0 0 0 .0 0 2 (0 .0 3 2 ) [0.032] 0 .0 0 2

where ÿ is the average of observations y, parameter estimates are no longer correlated 

for the cases with 7  > 0 , as can be seen from pseudo likelihood estimates shown in 

Figure 4.14(c) and 4.15(c). This is not the case for 7  < 0 (Figure 4.16(c)). In aU three 

studies the range of parameter estimates for a  is narrower in comparison to the range from 

the basic and modified model.
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Study 1 Study 1
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alpha (PLE)

Study 2

alpha (PLE)

Study 3

S
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gamma (PLE)

Study 2
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8.
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0.04

gamma (PLE)

Study 3

I

1.7

Figure 4.12: Comparison of parameter estimates from simulation studies 1 to 3. Estimates 

a  (left) and 7  (right) of MCML plotted versus estimates of PLE.
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Study 4 Study 4 Study 4

1.61.4 1.8 0.03 0 .04 0.05 0.06 0.07

8

:  ^

i
0 02 0.02

gam m a (PLE)

Figure 4.13: Comparison of parameter estimates from study 4- Estimates a (left), P 

(centre) and 7  (right) of MCML plotted versus estimates of PLE.
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(a)

( b )

(c)

Figure 4.14; Parameter estimates using pseudo likelihood from simulation s t u d y  1. (a)

log{^i i \yj \3  e N i)  =  a  +  i^ )  ^og{fii\îjj] j  e  N i )  =  a  +  K E j ^ N ^ V j  ~  e x p { a ) )  and

(c) l og { f i i \ y j ' J  e  N i )  =  a  +  j J 2 j s N i ( y j  ~  V)-
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(a)

a 3 -

a 3

(b)

Figure 4.15: Parameter estimates using pseudo likelihood from simulation study 2. (a)

log(fJ, i \yj \ j  e  N i )  =  a  4- 7 Vh (b) l o g { j i i \ y j \ j  G N i)  =  a  +  7 ~ eæp(«)) and

(c) log{g, i \y j \3 ^ N i )  =  a  +  7EjE7vX% -  v) '

99



(a)

I  -

( b )

( c )

0.45 0.60 0.55 0.60

Figure 4.16: Parameter estimates using pseudo likelihood from simulation s tu d y  3. (a)

G JVJ =  +  3/;, N  W m lz/jU ' G jV,) =  a  +  -6 æ p (a ))  and

(c) E =  a  F  -  !/)'
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C hapter 5

A p p lica tion s o f  au to-m od els

5.1 Introduction

In the previous two chapters we have covered the theory, properties and parameter esti

mation methods for auto-models. Here we present several different applications of auto

models. In the literature not much advice on model selection and validation for auto

models is given. We illustrate a range of possible techniques.

1. Investigation of deviance or Pearson residuals as defined in section 4.2.2.

• Distribution validation. Plot residuals versus fitted values to assess whether 

the distribution is adequate.

• Spatial analysis of residuals. We use the correlogram (alternatively the var- 

iogram could be used) to check whether there is remaining autocorrelation 

in the residuals. Another option is to calculate a correlation coefficient, for in

stance Moran’s coefficient of correlation (Moran, 1950), which assumes a certain 

neighbourhood structure. Then a permutation test is performed, calculating 

the correlation coefficients for permutations of the data, to test whether the 

observed correlation is significant.

® Overall goodness of fit. The sum of squared deviance or Pearson’s residuals 

provide the deviance and the statistic respectively, which can be compared 

with the distribution to assess overall goodness-of-ht. The change in de

viance can be used as usual in model selection.
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2. Investigation of simulated summary statistics, such as ^  and y f \u to c o v a r ia té i \  

where yf^  are response values of the simulated data set. If the cloud of simulated 

summary statistics in a scatter plot contains the observed summary statistics then 

the model is plausible (see section 4.3.6 or Geyer and Thompson, 1992).

3. Mis classification rates of spatial predictions (not suitable for counts). We investigate 

the number of misclassified squares from simulated data.

In section 5.2 we compare estimates from the auto-Poisson model for the spatial distri

bution of mites using the MCML parameter estimation method with estimates from the 

Monte Carlo Newton-Raphson and MPL method. Section 5.3 shows how the auto-Poisson 

models can be used to improve the understanding of the spatial distribution of weeds in a 

field. Finally section 5.4 shows how the auto-logistic model can be used to improve spatial 

prediction of deer presence in the Grampian region of Scotland for the case where only 

presence/absence in a sample of squares is available.

5.2 M ite count data exam ple

The mite data are used by Lee and Kaiser (1997) to illustrate their proposed Monte Carlo 

Newton-Raphson (MCNR) estimation method for the Winsorized auto-Poisson model. 

The data are taken from Hairston et al. (1971) who examined distribution of soil arthro

pods. This is a good example for two reasons. First, the MCML method seems to work 

well because the positive auto-correlation is not very strong and therefore not close to 

the upper boundary of the autocorrelation parameter. Second we can use this example 

to compare the Lee and Kaiser (1997) parameter estimates with estimates obtained using 

the very similar MCML method (Geyer and Thompson, 1992).

Herbivorous mite counts were observed in 1965 on an 8  x 8  inch square of an abandoned 

field with continuous grass cover . A square was subdivided into 64 one inch cubes. These 

were labeled and taken to the lab, where the mites in each cube were counted. The data 

are shown below:

2 1 2 1 0 0 1 2

1 1 1 1 3 4 1 4

1 0 2



0 1 0 2 2 1 3 1  

0 0 0 3 3 0 1 2  

2 1 0 1 1 1 0 0  

1 1 0 1 2 1 0 1  

0 3 1 0 1 3 3 3  

0 0 0 0 1 5 0  1.

Similarly to Lee and Kaiser (1997) who fit a Winsorized auto-Poisson model, we fit a 

truncated auto-Poisson model to these data, using a truncation value r — 1 and assuming 

a first-order neighourhood interaction:

log(Mil%-;i G iVi) =  a  +  7  ^  yj
jeNi

(5.1)

Figures 5.1 (a) and (b) show the sequence of à  and 7  for the MCML procedure, together 

with the MPL estimate and that of a model assuming independence, that is equation 5.1 

without the term 7  YljeNi Vr The MCML method clearly converges. The MCML result is 

also very similar to Lee and Kaiser’s result (Table 5.2). The standard errors from MCML

Table 5.1: Mite data results. Results for MCNR are taken from Lee and Kaiser (1997). 

is the Pearson statistic of goodness-of-fit.
parameter MCML MCNR MPL ML

72.1862 71.9662 74.6261

à -0.199 -0.206 -0.215 0.198

s.e. 0.270 0.270 0.239 0.113

7 0.087 ffi088 0.090

s.e. 0.051 0.052 0.043 -

and MCNR are almost identical and if a 95% confidence interval for 7  was constructed 

using the standard error (assuming standard maximum likelihood theory) then it would 

only just include zero. This leads us to the conclusion that both the truncated auto- 

Poisson model and the model assuming independence might be adequate. Standard errors 

from MPL are smaller, but MPL possibly underestimates the variance when positive auto-
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correlation is present. The summary statistics and 4̂  ̂ =  Ylj^Ni v f \

calculated from realizations of a simulated ergodic Markov chain using MCML, MPL for 

the model in equation 5.1 and ML (independence) estimates (Figure 5.1(c) - (d)) demon

strate that aU of the models are plausible, but the independence model is marginal. In 

contrast to that, investigation of correlograms of Pearson residuals in Figure 5.2 showed 

that the positive correlation of 0.15 present in the first lag does not differ between the 

auto-Poisson and independence model. Using different ways of model validation we get 

different answers as to which model is appropriate. This example was mainly included 

for illustrative purposes and further investigation of the appropriate neighbourhood struc

ture over which autocorrelation applies is needed. Also, if the example was to be taken 

further one should consult a biologist on whether there are mechanisms causing positive 

autocorrelation in these data.

5.3 Long A shton  seed  count data exam ple

This example illustrates how the auto-Poisson model can potentially be used to improve 

model fit. It also illustrates parameter estimation problems when positive autocorrelation 

is present, typically caused by an unmodelled trend rather than true autocorrelation. The 

data are from a field experiment with a randomised block design (Table 5.2) which was 

conducted at Long Ashton Research Station. There were four blocks (16 columns and 5 

rows), two crops (WW = winter wheat, SW = spring wheat), two cultivation types (P = 

plough, T = tine) and five weed groups. A split-plot design was used, i.e. cultivation type 

and crop were only randomised among columns. The plot size was 3 x 3 m, and plots were 

5 m apart in the north-south direction and 2 m apart in the east-west direction. Here 

the counts of a perennial weed species Poa spp. (Figure 5.3) are analysed. Seed counts 

refer to the total number of seeds found in six soil cores of volume 0 .2  1, taken at 0  to 

10 cm depth, which were collected in four consecutive years. Here only the first two years 

are analysed. The aim of the experiment was to observe persistence of seeds in the soil 

of the five groups of weed species sown at the start of the experiment, and to examine 

the persistence of Poa seeds which were already present before the experiment took place. 

Figures 5.3 show the observed seed counts. Given the fact that counts are aggregated from 

six soil cores per plot, there is not much chance that “true” spatial autocorrelation, such 

as competition, can be observed. Therefore the analysis strategy is initially to fit a model
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(a) parameter estimates for alptia (b) parameter estimates for gamma
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Figure 5.1: Mite example: parameter estimates for (a) a and (b) 7  for the iterative 

process of MCML (marked as dots, final estimate as M) starting from ML estimates of 

the independence model (marked as I) and parameter estimates for MPL (marked as P). 

(c) - (e) are plots of simulated summary statistics versus 4 ^̂ using parameters from 

MCML, the independence model and MPL. Where the two dotted lines cross corresponds 

to observed and t.2.
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correlogram of Pearson residuals, all directions

i

9

Figure 5.2: Omni-directional correlograms of Pearson’s residuals from the auto-Poisson 

(MCML - solid line, MPL - dotted line) and independence (ML - dashed line) model fitted 

to the mite counts.

with block and treatment effects, then residuals are checked for remaining autocorrelation. 

The experiment design is such that effects of cultivation type and crop are confounded with 

columns. Since we are interested in the effects of the treatments rather than prediction, 

we fit block and treatment effects rather than column effects.

5 .3 .1  S p a tia l  m o d e ls  fo r Poa y e a r  1

Poa seed counts were lowest in year 1 , with a maximum of 9. We consider a GLM assuming 

either a Poisson or a negative binomial distribution. Let y a be the seed count at site i in 

year t. (In the following index t is omitted.) The maximal model considered is:

log(^i) = X-/3

= blocki -f weedi + cropi + culti

with y i  ~  Poi(/ii) or y i  ~  NegBin(/ii, A;), for which V a r { y )  — p i  -f n j /k ,  where k is the 

aggregation parameter. As A: i-> oo, the negative binomial (NegBin) distribution tends 

towards a Poisson distribution. A low value for k indicates high aggregation and a high 

value for k indicates little aggregation. With both distributions a log-link is used. The
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Poa year 1

0 0 0 1 0 2 0 4 6 0 1

0 1 2 3 1 0 1 0 0 1 1 2

0 0 1 0 2 2

1 G 1 0 0 0 2 0

2 0 1 0 2 3 3 1 0

Poa year 2

2 2 0 0 2 78 8 2 2 0

2 0 0 0 8 0 0 6 18 2 2 0

4 0 0 4 2 2 2 84 6 6 6

0 0 0 2 2 « 6 0

2 0 2 2 0 0

0

Poa year 3

172 46

24 « 10 2 40 30 0 «

80 2 2 14 90 20 90 4 « 4

2 2 6 24 72 14 44 2 10

12 2 2 12 6 114 46 56 4

40

Poa year 4

0 4 74 2

4 0 0 20 G 16 « 0

0 0 0 10 28 2 « 0

- 0 0 0 2 0 6 0

0 0 0 0 0 0 0 0 4 0 0

0

Figure 5.3: Poa seed counts in soil cores of volume 1.2 1 sampled in four consecutive years.
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Table 5.2: Long Ashton experiment. There are four blocks, two crops (WW, SW), two 

cultivation types (T, P) and five weed types (1-5) within each column. The numbers 1 to 

5 symbolise the five weed types. Weed type numbers are shown at their relative position

in the b ocks.
block 1 2 3 4

crop WW SW WW SW SW WW SW WW WW WW SW SW WW SW SW WW

cult T P P T T T P P T P T P P P T T

weed 3 5 5 4 4 1 3 4 3 5 2 4 2 3 3 5

type

1 3 1 3 2 4 1 5 2 1 3 2 1 2 4 4

4 1 2 5 5 3 4 1 1 2 1 1 5 4 2 2

2 4 3 1 1 5 5 2 5 4 4 3 4 5 1 1

5 2 4 2 3 2 2 3 4 3 5 5 3 1 5 3

best fit for Poa seed was obtained for the model

log{fj,i) = blocki + weedi +  cropi -f culti +  weedi.culti^ (5.2)

for both the NegBin and the Poisson distribution. The NegBin model has an estimated 

aggregation parameter of k = 3.32 (s.e.= 2.07) and the residual deviance is lower than 

that from the Poisson model (Table 5.3). The column effect is confounded with crop and 

cultivation type and not fitted. Deviance residual plots in Figure 5.4 show that there 

is little difference between the Poisson model and the NegBin model. After adjusting 

for overdispersion in the Poisson case, estimates and standard errors for the fixed effects 

are very similar. Spatial correlation in the Pearson residuals using correlograms in the 

north/south and east/west directions shows that in both models there is autocorrelation 

remaining in the north/south directions (Figure 5.5), which is slightly weaker for the 

NegBin model. The autocorrelation within a column could be caused by the tractor 

trailing along the columns. We can account for the autocorrelation by incorporating a 

specific term for autocorrelation in the north/south direction using the truncated auto-
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Poa : Poisson model P oa  : P oisson model

FItlod : -1 +  b lock  +  cu lt 4- w ood  +  c ro p  +  cult:w ood

P o a  : N e g a t iv e  B in o m ia l m o d e l

FItlod : -1 +  b lock  +  c u ll +  w ood  + c ro p  +  c u lbw ood

P o a  : N e g a t iv e  B in o m ia l m o d e l

Q u a n lH e so f  S ta n d a rd  N orm al

F iltod  : -1 +  b lock  +  c u ll +  w o o d  -r F itted  : >1 +  b lo (^  cu lt *  w o o d  +  c ro p  + c u ll:w ood Q u an tlio s  o f  S ta n d a rd  N o n n a l

Figure 5.4: Residual plots for the Poisson (top) and negative binomial (bottom) models 

fitted to Poa counts. From left to right: Deviance residuals plotted versus fitted values, 

count plotted versus fitted values and deviance residuals plotted versus quantités of the 

standard normal distribution.

Poisson model or the truncated auto-negative binomial model:

log(/ii|yj : i  /  t) =
’ *■' jeNi

with yi ~  Foi{iJ,i\yj] j  € Ni) or yi ~  NegBm{fii\yj] j  £ Ni]k)^ rii is the number of 

neighbours, Ni are the nearest four neighbours, except for edge plots, and autocovi — 

i^Y2jQNi y3' We define ')ij = ns for yj which are north/south neighbours and = ew 

for yj which are east/west neighbours. Parameter estimation for the auto-models can be 

carried out using pseudo likelihood, coding or the MCML method described in Section 4.3. 

When fitting this model using the MPL, only the north/south neighbourhood interaction
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(a) north/south correlogram of Pearson residuals

CÜ
o

o
d

<N
9

10 20

distance (m)

30

(b) east/west correlogram of Pearson residuals
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Figure 5.5: Correlograms in (a) north/south direction and (b) east/west direction of 

Pearson residuals from Poisson (solid line), auto-Poisson (dotted line) and NegBin model 

(dashed line) fitted to Poa year 1 seed counts. The auto-Poisson model is fitted by MCML.
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is significant. Although standard GLM software provides the deviance of the pseudo like

lihood when fitting the auto-Poisson model using the MPL method, it is not clear whether 

the deviance is approximately %^-distributed. In addition to MPL, the MCML method

Table 5.3: Results for the four different models (Poisson, auto-Poisson, NegBin and auto- 

NegBin) fitted to seed counts of Poa spp (year 1): Residual deviance, d/, estimates of 

the coefficient of autocorrelation ii j  and aggregation parameter k (fixed for the NegBin 

model). AU models have as a minimum terms for block, weed, crop, cult and the weed.cult 

interaction. For MCML deviance residuals and Pearson’s residuals for and Moran’s

Poisson auto 

Poisson 

MPL MCML

Negative

Binomial

auto

NegBin

MPL

df 6 6 65 65 6 6 65

1 0 0 .2 - 95.2 69.1 -

residual deviance 111.7 102.9 112.4 83.8 79.5

ÎÎS (north/south) n.a. 0.169 0.034 n.a. 0.165

{asymptotic s.e.} {0.072} {0.056} {0.075}

ew (east/west) n.a. - - n.a. -

k (aggregation) n.a. n.a. n.a. 3.3 3.3

{asymptotic s.e.} - - - 2.07 n.a.

Can residuals be assumed

random in space? yes - yes yes -

Moran corr. (first order) 0.047 - 0.046 0.047 -

(p-value perm, test.) (0.247) - (0.209) (0.238) -

Can residuals be assumed

random in space? yes - yes yes -

Moran corr. (north/south) 0.151 - 0.147 0.121 -

(p-value perm, test.) (0.085) - (0 .1 0 0 ) (0.138) ■

was appUed to obtain estimates for the auto-Poisson model. For MCML, the vector of 

summary statistics is
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where

autocovi — ~  yj.

We have 14 columns in the design matrix of the independence model from equation 5.2, 

The parameter vector is

TJ =  /5 i4 , ÎTS) .

One problem in this example is that the estimate for ns is at the upper boundary of the 

parameter space, which is around 0.1 using the ad-hoc calculation described earlier. This 

means that the MCML method cannot work very well, because simulation of data needed 

for the normalizing constant is restricted to values below or equal to the upper bound

ary. The MCML method breaks down, because estimates for 7  reach the boundary and 

the counts simulated by the Gibbs sampler are at the truncation value. The other prob

lem is that treatment, block and autocorrelation effects cannot be distinguished. When 

keeping the treatment and block parameter estimates from the Poisson model fixed and 

then estimating 7  with MCML, the estimate converges. Using the converged 7  we do 

one final run of MCML where all parameters are estimated simultaneously, and the re

sulting 7  = 0.034 (s.e. = 0.056) is our final estimate. It is only a quarter of the MPL 

estimate 7  = 0.169 (s.e. = 0.072) and a 95% confidence interval ( 7  +  /  -  1.96 * s.e.(7 )) 

for the MCML estimate would include 0, indicating that autocorrelation is not significant. 

The Gibbs sampler broke down when estimating the auto-negative binomial model, due 

to the restriction on the scale parameter of (3 of the NegBin distribution, which has to 

be greater than zero. Investigating the correlograms in the north/south (Figure 5.5a)) 

and east/west (Figure 5.5b) directions of Pearson residuals from the three models (Fig

ure 5.5), using the MCML estimates for the auto-Poisson model, shows no big difference 

between models. This is confirmed by a formal test of spatial correlation on the Pear

son residuals using Moran’s coefficient of correlation (Moran, 1950), which does not show 

significant positive correlation for any of the models when based on a first order neighbour

hood (Table 5.3). Calculating Moran’s coefficient of correlation based on a north/south 

neighbourhood, residuals from none of the models are significantly correlated, based on 

a 5% significance level. So in addition to the confidence intervals for the autocorrela

tion parameter ns from MCML estimates, correlograms and Moran’s coefficient indicate 

that autocorrelation is not significant. In contrast to this is the estimate of ns we ob

tain from MPL, for which confidence intervals indicate a significant effect. Calculation of 

Pearson residuals for the auto-models requires simulating data using the Gibbs sampler,
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as described in Section 4.2.2. With MPL estimates this could not be achieved, counts 

simulated by the Gibbs sampler are at the truncation value. It has been quoted in the 

literature that when estimates are near the critical value where phase transition occurs, 

MPL estimates are more variable than MCML estimates (Geyer, 1991). AU these encoun

tered problems add to the evidence that the model with autocorrelation as it stands is not 

appropriate. Figure 5.5b) shows that there is negative correlation in east/west direction 

at a lag of 15 m. Including an additional autocovariate for the counts of the third plot 

in east and west direction might improve the model fit. Further work in this respect is 

required.

5.3.2 Spatio-tem poral m odel for Poa year 2

The counts for poa seeds in year 2 are much higher than in year 1 with a mean of 5.3 

and maximum count of 84 (Figure 5.3). When fitting a Poisson model, overdispersion was 

very high, pointing to the negative binomial as the appropriate distribution, and the fitted 

model is:

log(m() = 9log{yit-i +  1) + x-/3

= 9log{yn +  1 ) -f blocki +  cropi -f culti -f cropi.culti

where the response ya is the seed count at site i in year t, with t = 2 and yn ~  

NegBin(/iit, A;). The model fit could not be improved by adding terms for the autocorre

lation. Parameter estimates are given in Table 5.4.

5.4 M odelling th e p resen ce/ absence o f red deer

In this section we summarise the work on modeUing red deer data of which a substantial 

part was submitted for the degree of Master of Science in Biometry at Reading University 

(Augustin, 1993). This example was published in Augustin et al. (1996, 1998b) and is 

included for several reasons. Firstly, it illustrates the auto-logistic model for the case in

which the response represents presence/ absence of a species in squares of a sampling grid,

where only a simple random sample is available. Secondly, since the original work was 

carried out, more insight has been gained on several aspects of the work. One aspect 

is the difference between theoretical approaches taken to derive abundance estimators in
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Table 5.4: Results for the NegBin model fitted to seed counts of Poa spp. (year 2) with 

and without a temporal component {log{yn + 1)): Residual deviance, df, estimates of the 

coefficient for the temporal effect (0) and aggregation parameter k (fixed for the temporal 

NegBin model). Both models have as a minimum the terms block, crop, cult and the 

crop.cult interaction fitted. For the temporal NegBin model k is kept fixed using estimate

NegBin temp. NegBin

df 73 72

residual deviance 88.4 82.7

§ - 0.67

{s.e.} {0.26}

k (aggregation) 0.82 0.82

{s.e.} {0 .2 1 } -

the comparison. Thirdly, an improvement to the bootstrap algorithm used for variance 

estimation is proposed.

The appropriate GLM for the presence/absence of deer in a sample of squares is a logistic 

model, which on adding the autocovariate becomes an auio-logistic model. If data are 

available only from a sample of grid squares, we need a mechanism for generating ‘ob

servations’ for unsurveyed squares so that we can evaluate the autocovariate term. We 

use simulation in the form of the Gibbs sampler to achieve this. We also show that a 

modification to the Gibbs sampler, in which we use expected values from neighbouring 

squares rather than simulated observations in the calculation of the autocovariate, gives 

lower misclassification rates when used to model Scottish red deer data (Augustin et ah, 

1996).

5 .4 .1  T h e  m o d e l

Suppose that the study region is divided into a grid of n squares with the response in 

square i denoted by y* (i = 1 ,.. .,n ). If the species being studied is present in square i 

then yi = 1, otherwise y, = 0. The conditional probability of presence in square i is given
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by
Pi -  Pr(Yt- =  l \ Y j  = V j J  e  Ni ) .

When presence/ absence is recorded in every square, the auto-logistic model may be fitted 

and the estimated conditional probability of occupation, pi,  may be obtained for all the 

squares using the equation

exp{x' i(3 -}- E jg iv , l i j V j )

1 +  exp(æ;/3 +  EjGM l i jV j  )

(Besag, 1972; Preisler, 1993). The term x'ifS represents a collection of effects associated 

with a set of spatial covariates, where Xi is the i’th row of the design matrix and /3 is 

the vector of coefficients. Omitting the term involving j i j  from the right hand side of the 

equation reduces the model to a classical logistic model.

It is also of interest to predict presence/absence in each square for comparison with the 

observed spatial distribution. Buckland and Elston (1993) describe two ways of doing this. 

Their first method is a deterministic prediction in which those squares which have the 

highest estimated probability of occupation are marked as occupied, subject to an overall 

number of YliPi occupied squares. Their alternative method is a stochastic prediction, or 

realisation, in which the outcome in square i is obtained by simulating from BernouHi(pi).

It is straightforward to fit an ordinary logistic model to data from a sample of, say, 20% 

of the squares, because the only terms in this model are the spatial covariates which are 

known for every square. Estimated probabilities of occupation can, therefore, be calcu

lated for every square and predictions of presence/absence can be obtained by retaining 

the observed ‘real’ values for the 2 0 % of squares included in the sample and using the 

deterministic/stochastic methods to obtain predictions for the remaining squares. Fitting 

an auto-logistic model to a random sample of squares is complicated by the fact that the 

neighbourhoods associated with sampled squares contain missing values. One solution is 

to use the Gibbs sampler to estimate presence/ absence in unsampled squares as described 

below.

5 .4 .2  I m p le m e n tin g  th e  G ib b s  sa m p le r

The specification of the auto-logistic model is inherently conditional, since y* depends on 

presence/absence in neighbouring squares. Our real objective, however, is to model the
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joint distribution of all the î/i’s. The Gibbs sampler allows sampling from the conditional 

distribution to generate the joint distribution by successively updating each response ac

cording to the conditional probability given the current values of all the other variables 

in the model. We can use the Gibbs sampler to overcome the problem of having sur

veyed just some of the squares by including the imputed presence/absence responses for 

the unsurveyed squares as additional variables in the model. The main benefit of this is 

that the autocovariate for each surveyed square can be computed, and so the auto-logistic 

model can be fitted to these squares. As a by-product, we obtain estimated probabilities 

of occupation for all the squares so that we can map the estimated spatial distribution of 

the species and estimate the total number of occupied squares.

The algorithm for implementing the Gibbs sampler is as follows. We assume that the 

autocorrelation parameter j i j  = 7 .

1 . Fit an ordinary logistic regression model to the surveyed sample of squares. Calculate 

the fitted probability,
_ exp(*;^)

Pi — ^
1 H- exp(æ;/3)

for all of the squares.

2. Set t — 1 and initialise Y  using the stochastic prediction method, where

~  Bernoulli (pi).

3. Calculate the autocovariate for each square using the map obtained in the previous 

step.

4. Fit the auto-logistic model to the 20% sample

log = 4/3 + 7  Z  %
jeNi

to obtain

5. Update y  successively:

^  B e r n o u l l i € Ni)

with Ni = where are already updated squares in the set and

are squares not yet updated, and
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6 . Set t = t 1 and return to step 4. Once convergence is reached realisations 

and the corresponding pW, p(^+”’-) are saved.

Note that steps 1 to 5 describe the process of fitting an auto-logistic model on its own 

and then generating a stochastic prediction of the distribution (with one iteration of step 

5), whereas step 5 describes the Gibbs sampling in addition. The repeated application 

of steps 5 and 6  allows us to assess the Monte Carlo variability introduced by the Gibbs 

sampler. The final map gives the predicted distribution of the species allowing for spatial 

autocorrelation. The selection of T, the number of iterations of the Gibbs sampler, depends 

on how much computing time is feasible and how quickly the sampler converges (see 

Section 5.4.4). In step 4 there are different possibilities to estimate parameters: MCML, 

MPL or coding as discussed in section 4.3. For computational ease we choose MPL in this 

application. We also implemented a modification to the auto-logistic model used in the 

EM/Gibbs sampler in step 4 of the algorithm, replacing yj by pj in equation (5.5).

Steps 1 to 6  of our algorithm combined with the modified version of the Gibbs sampler 

in step 4 are similar to the steps involved in the EM algorithm. The computation of the 

autocovariate using pj is analogous to the ‘E-step’ (estimation) and the maximisation of 

the pseudo likelihood is analogous to the ‘M-step’ (maximisation). Using the unmodified 

version of the Gibbs sampler in step 4 is analogous to the ‘S-step’ (simulation) in the 

stochastic EM algorithm (see Diebolt and Ip, 1995, for details). The main difference 

between our algorithm and the various EM algorithms is that the Gibbs sampler is needed 

to generate observations for all the unsampled squares in turn, taking into account their 

interdependencies, whereas the EM algorithm approach could be relevant if it were possible 

to generate values of the auto-covariate to replace missing values simultaneously. Due to 

the hybrid form of our algorithm, where the Gibbs sampler is used for the simulation or 

estimation step of the EM algorithm, we call our described algorithm EM/Gibbs sampler.

5 .4 .3  V arian ce  e s t im a t io n  - b o o ts tr a p

For variance estimation the following bootstrap procedure is used:

1. Perform the EM/Gibbs sampler algorithm as described above on the observed 20% 

random sample of sites, yielding
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y{t)^ the corresponding p(^\ p(^+"^).

2. Generate new presence/absence data from p(^+’̂ ) in step 1 .

3. Select a 20% simple random sample from the presence/absence deer data simulated 

in step 2 .

4. Perform the EM/Gibbs sampler algorithm as described in the previous section on 

the bootstrapped 20% sample from step 3, yielding and the

corresponding p(*\ pp+»n)_

5. Calculate the estimated number of expected occupied squares ôj, from Ob = Ya=i 

where n = 1277 and m  is the number of realisations created by the EM/Gibbs sam

pler algorithm.

6 . Repeat steps 3 to 5 120 times, yielding 120 o^’s. The variance Var{db) is the boot

strap estimate of variance for the number of occupied squares.

The bootstrap for the estimated number of occupied squares using the logistic model is 

very similar: all steps involving the EM/Gibbs sampler are replaced by a single step of 

fitting the logistic model. The estimated number of expected occupied squares o is the sum 

of fitted probabilities from the logistic model. An improvement to the above bootstrap 

procedure is to use the ergodic average ÿ from ..., to estimate p instead

of using in step 2 and in step 5 for estimating db ~  ÿ.

5 .4 .4  T h e  m o d e l f i t te d  to  th e  d e e r  d a ta

Buckland and Elston (1993) model the spatial distribution of red deer in the Grampian 

Region of Scotland using Red Deer Commission census data. Their response variable is 

the number of deer counted per 1 km grid square and their spatial covariates represent 

physical and habitat-related attributes. The distribution of counts is heavily skewed and 

so they use a two-stage modelling strategy (Aitchison, 1955): first presence/absence of 

deer is modelled using logistic regression and an estimate of the total number of occupied 

squares is calculated; this estimate is then multiplied by the average number of deer 

per occupied square to calculate overall abundance. Buckland h  Elston select a simple 

random sample of 20% of the 1277 1 km squares in the study area and use this to assess the
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effectiveness of logistic regression coupled with Aitchison’s method when only a sample 

of squares is surveyed. They compare estimates of overall abundance and maps of the 

predicted distribution of deer with the ‘true’ values from the complete census.

Buckland & Elston’s logistic regression model is based on

x'i(5 = a + pialtitude] +  (32northingi + jSsmiresi +  f^^eastinçi + (5.4)

where altitude^ northing, easting, mires and pine are aU variâtes {mires and pine are, 

respectively, the areas covered by mire and native pine woodland in each square). This 

model was selected using a forward stepwise procedure applied to a specific 2 0 % sample 

of squares. Our comparisons are based on the same 20% sample and we use the logistic 

model implied by equation (5.4) as a starting point for our auto-logistic model.

A suitable autocovariate for use with the deer data is

1 v~> 1
autocovi = T~ ^  1— (5. 5)

where hij is the Euclidean distance between squares i and j  measured from the square 

centre, hi = YljeN ii^/^ij) Ni is the set of neighbours of square i. Thus autocovi is a 

weighted average of the number of occupied squares in the neighbourhood associated with 

square i. This autocovariate is equivalent to using j i j  = in equation (5.3) and the

full auto-logistic model is given by

log — = a  -f (iialtitude'i -}- p2^orthingi -f P^miresi 4- P^eastingi -f p^pinei -b Peautocovi. 
1 -  Pi

Autocovariates corresponding to various neighbourhood sizes, ranging from Besag’s (1974) 

isotropic first-order scheme involving the four nearest neighbours of square i to a square 

of side 9 km, were computed according to equation (5.5). The most suitable autocovariate 

for the deer data was determined by examining the reduction in deviance of the pseudo 

likelihood obtained by adding a specified autocovariate to Buckland & Elston’s logistic 

model. In all cases fitting the autocovariate gave a significant reduction in deviance (see 

Table 5.5). We also tried unweighted versions of the autocovariates (equivalent to using 

■jij = pQ ^, where hi is now the total number of squares in the %th clique), but these 

were always outperformed by their weighted counterparts. The weighted autocovariate 

corresponding to a clique of side 7 km produced the greatest reduction in deviance (7.264 

compared to Xi) relative to the amount of extra computation required and was used in aU 

subsequent analyses. Once this autocovariate had been fitted, easting, northing and mires
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Table 5.5: Results of fitting different auto-logistic models: all models contain the ex

planatory variables altitude^, northing, mires, easting and pine in addition to the specified 

autocovariate.
Autocovariate Degrees of 

Freedom

Residual

Deviance

— 250 210.858

Besag First-Order 249 205.782

Besag Second-Order 249 205.504

5 x 5  Square, Unweighted 249 204.401

5 x 5  Square, Weighted 249 203.594

7 x 7  Square, Unweighted 249 201.129

7 x 7  Square, Weighted 249 200.882

9 x 9  Square, Unweighted 249 201.471

9 x 9  Square, Weighted 249 200.741

were no longer significant. We examined the effect of dropping these terms from the auto- 

logistic model before implementing the EM/Gibbs sampler when we compared the ability 

of different models to predict the total number of occupied squares (see Section 5.4.5).

Our model assumes that the probability of a square having deer present only depends 

on the presence of deer in neighbouring squares. The justification of this is that deer 

tend to occur in groups of similar sizes. Nevertheless it might be more adequate to let 

the probability of deer present in a square depend on the actual deer counts observed in 

neighbouring squares. Such an alternative model deserves investigation.

When running the algorithm we conditioned on the observed presence/absence from the 

2 0 % sample at each step, as we wished to predict presence/absence only for the 80% of 

‘unobserved’ squares. Thus in steps 2 and 5 of the algorithm, the stochastic method for 

generating presence/absence datais applied only to squares excluded from the 2 0 % sample. 

At the time the work was carried out we found that T = 20 iterations of the EM/ Gibbs 

sampler was practically feasible, although the parameter estimates (Figure 5.6) and the 

predicted probabilities (Figure 5.7a) continued to show considerable variation after 20 

iterations. This is because the autocovariate is calculated from a stochastic realisation of 

presence/absence data at each iteration. We therefore implemented a modification to the
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Figure 5.6: Convergence of parameter estimates for the EM/Gibbs sampler: (a) to (f) 

show estimates for autocov, altitude^, northing, mires, easting and pine, respectively.

auto-logistic model used in the EM/Gibbs sampler in step 4 of the algorithm, replacing yj 

by Pj in equation (5.5). This modified EM/Gibbs sampler converged within 10 iterations 

(see Figures 5.8 and 5.7b). We did not prove whether the auto-logistic model with the 

autocovariate defined in such a way is a valid Markov random field.

Figures 5.8 and 5.7b show that convergence of the modified EM/Gibbs sampler is towards 

fixed values of final parameter estimates. The unmodified EM/Gibbs sampler (Figures 5.6 

and 5.7a) has possibly converged too, not to a fixed quantity, but to the equilibrium 

distribution of the parameters. Although we have not done any formal convergence tests
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Figure 5.7: Convergence of fitted probabilities (a) for the EM/Gibbs sampler and (b) for 

the modified EM/Gibbs sampler.
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for this particular version of the algorithm, we have shown in section 4.2.1 that these types 

of algorithms converge very fast. The estimated coefficient for the autocovariate is around 

1 2  for both methods, but variability about this value is considerable for the EM/Gibbs 

sampler (Figure 5.6). This variability in the parameter estimates of each realisation of the 

Markov chain allows for the uncertainty in the missing values. In the modified EM/Gibbs 

sampler this information on uncertainty of the missing values is lost. By dividing the 

coefficient /?e = 12 by hi = 48 (there are 48 squares in Ni), we obtain 'jij = 0.25. Relating 

7 ij to Figure 3.3 in section 3.3 indicates that ^ij = 0.25 is not close to a value where 

’’phase transition” would be a problem. Since this model here is a lot more complicated 

than the model assumed for Figure 3.3, this is only a very crude check.

The modified EM/Gibbs sampler requires much less computation than the original ver

sion since there is no need to generate presence/ absence data at every iteration. Another 

option, which requires even less computation, is to perform just one iteration of the algo

rithm. This gives us a total of four methods for modelling the spatial distribution of the 

deer, namely Buckland & Elston’s logistic model, the basic auto-logistic model after one 

iteration of the algorithm, the EM/Gibbs sampler and the modified EM/Gibbs sampler. 

The performance of the methods is compared in the next section.

5 .4 .5  C o m p a r iso n  o f  m e th o d s

The effectiveness of the methods for predicting the spatial distribution of deer can be as

sessed by comparing predicted probabilities and stochastic realisations of presence/absence 

data with the ‘true’ distribution of deer. Formal comparisons based on misclassification 

rates are summarised in Table 5.6. Results are based on 120 stochastic realisations from 

the final map of fitted probabilities for each method. The modified EM/Gibbs sampler 

is the best of the four methods, giving the highest and least variable matching coefficient 

(the proportion of squares classified correctly). AU the new methods are better than the 

ordinary logistic model, although the standard, unmodified EM/Gibbs sampler performed 

marginaUy worse than the basic auto-logistic model. Visual comparison of maps of es

timated probabilities, based on ergodic averages of the 1 2 0  stochastic realisations

..., in Figures 5.9 (a) and (b) and stochastic realisations of presence/ab

sence data in Figure 5.9 (c) and (d) with the observed distribution (Figure 5.10) reveal 

that the new methods produce less uniform estimated occupation probabilities and more
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Figure 5.8: Convergence of parameter estimates for the modified EM/Gibbs sampler: (a) 

to (f) as in Figure 5.6.

realistic clustering than the ordinary logistic model. This is because the estimates from 

the logistic model reflect the average response to the habitat-related covariates across the 

entire region, whereas the auto-logistic approach incorporates local variations by adjusting 

for the response in neighbouring squares.

Comparison of the modified EM/Gibbs sampler and the logistic model in terms of their 

ability to estimate the total number of occupied squares is shown in Table 5.7. We gener

ated 1 2 0  parametric bootstrap samples using the predicted probabilités from the logistic 

model and from the algorithm with the modified EM/Gibbs sampler in step 4. We used the
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Figure 5.10: Observed spatial distribution of red deer in the intersection of the West 

Grampian Management Group areas with Grampian Region (excluding Moray District).
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Table 5.6: Comparison of mis-classification rates based on 120 stochastic realisations from 

the final map of fitted probabilities for each method. The matching coefficient is the 

proportion of squares classified correctly.

Comparison Based on Logistic

Model

Auto-Logistic 

Model

EM / 

Gibbs Sampler

Modified EM / 

Gibbs Sampler

Frequencies of 

T rue=l, Predicted=0 

True=0, Fredicted=l

Mean S.D. 

107.6 5.4 

157.8 1 1 . 2

Mean S.D.

102.5 5.0

148.6 9.9

Mean S.D. 

1 0 1 . 0  6 . 2  

150.6 15.6

Mean S.D. 

99.6 5.1 

144.7 9.3

Matching Coefficient 0.792 0.803 ffi808 0.809

bootstrap procedure without the improvement presented in section 5.4.3. Computational 

constraints, to do with programming of loops in S-PLUS, did not allow the application of 

the improved bootstrap version. Dropping the non-significant spatial covariates from the 

initial logistic model before implementing the modified EM/Gibbs sampler makes little 

difference to the standard error of the number of occupied squares. The ordinary logistic 

model clearly gives more precise estimates of the number of occupied squares than the 

modified EM/Gibbs sampler (and the same applies to overall abundance since the factor 

used in scaling up is the same whichever method is used to predict the number of occupied 

squares). These differences in precision arise because the estimator from the auto-logistic 

model (with or without the EM/Gibbs sampler) is model-based. It allows for an addi

tional source of variation: it assumes that the observed distribution is a realisation from 

an underlying super-population in which the locations of clusters are generated by a ran

dom process. By contrast, the logistic model is appropriate for quantifying the number of 

animals actually present at the time of the survey. The logistic model estimator (and the 

SRS estimator) can be seen as a design-based approach where observed presence/absence 

values are regarded as a sample from a fixed population and inference for estimation is 

based on the distribution of estimates generated by the sampling design. Section 7.2 in 

the general discussion gives more details on these two approaches.

Our comparisons suggest that the auto-logistic modelling approach combined with the 

modified EM/Gibbs sampler should be used when the main objective of a particular in

vestigation is to map the spatial distribution of a given species but that the ordinary
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Table 5.7: Comparison of estimates of the total number of occupied squares: the com

parison is based on 1 2 0  bootstrap samples for each method; the reduced model just has 

altitude^ and pine in addition to the autocovariate; corresponding estimates obtained us

ing a simple random sample which ignores covariates are also shown, together with the 

true value.
Method Used Estimated Number of 

Occupied Squares 

Mean Standard Error

Logistic Model 241 25.0

Modified Gibbs 237 5&4

Sampler with Full Model

Modified Gibbs 240 59.5

Sampler with Reduced Model

Simple Random Sample 240 2 & 0

True Value 190 —

logistic model is to be preferred when priority is to be given to estimating global charac

teristics of wildlife distributions such as total abundance.

5.5 C onclusions and discussion on au to-m odels and their  

applications

Biological understanding

When choosing a spatial model there has to be some understanding of the underlying 

biological process. For instance as for the auto-logistic model for binary data, the basic 

auto-Poisson model for counts features an underlying persistence rate for locations with 

zero counts in their neighourhood. It depends on the biological context whether this is a 

reasonable assumption. If the counts are from vegetation, then it is reasonable. But when
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the counts are from animals it is possibly inappropriate. An example for such a case is a 

population of mammals on an island where migration can be excluded.

One could claim that auto-correlation only makes sense for stationary processes. For 

a heterogeneous process things become more complicated; in particular positive auto

correlation cannot be distinguished from trend. As illustrated by the weed seed bank 

example, what appears as positive auto-correlation is often just caused by an underlying 

trend. Often the information to model this trend adequately is not available, because data 

collection on soil, habitat and physical characteristics would be too expensive. Generalized 

additive models (GAMs) provide a flexible tool to fit two-dimensional surfaces, which 

should be fairly good for estimating the trend. The combination of GAMs and models with 

an explicit auto-correlation structure, such as auto-models, deserves further investigation.

Is the auto-Poisson model useful for other non-biological applications?

Although the auto-Poisson model has been applied in other fields such as epidemiology, 

its features and interpretation have not been investigated. In the application of the basic 

truncated auto-Poisson model to mortality counts in Spain by Ferrandiz et al. (1995), it is 

questionable whether the choice of model was appropriate, especially since the data did not 

have the depth to make inference about “true” auto-correlation. Also, the interpretation 

of the auto-correlation parameter in such an application is not obvious. In this case, 

the modified version of the auto-Poisson model or mixed Poisson models (Breslow and 

Clayton, 1993) could be more adequate. Often, in empirical disease mapping and other 

epidemiological applications, counts are aggregated and there is not much reason for “true” 

auto-correlation to be observed, except for infectious diseases.

Correlated parameter estimates

If estimation of the auto-correlation parameters rather than prediction is the main aim, 

correlated parameter estimates in the auto-Poisson model is a problem. There are a few 

examples in the literature which exemplify that correlated parameter estimates are a com

mon problem in spatial statistics. Kaiser and Cressie (1997) analyse simulated data using 

the Winsorized auto-Poisson model using maximum likelihood and obtain a correlation of 

-0.939, as estimated from the Fisher information matrix, between the estimates of inter

cept and autocorrelation parameter. There is an example in Geyer (1999) for a spatial 

model fitted to point process data where the correlation between estimates of trend and 

autocorrelation is -0.983. Because of such high correlation between estimates of the trend
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parameter a* and the auto-correlation parameter 7 , as we demonstrated in section 4.4.2, a 

different method for constructing confidence intervals should be considered. If one of the 

parameters can be considered as a nuisance parameter, profile likelihood can be used. For 

instance consider a{ as a nuisance parameter. Obtain â{ while keeping 7  at a constant, 

then use the profile likelihood lz,m{ài,'y) for constructing likelihood intervals for 7 . If the 

data shows trend, (3 from the term x\(3 could be treated as nuisance parameters or for 

a homogeneous process the model could be fitted without an intercept. This and other 

possibilities for solving the problem deserves further investigation.

Parameter estimation

The simulation study showed that MCML works well for estimating the parameters and 

standard errors. Also standard errors are asymptotically normal. But MCML is quite 

computer intensive and a lot more complicated than the MPL method. Problems we 

encountered with MCML turned out to be caused by a constraint on the upper boundary 

for the auto-correlation parameter 7  in the auto-Poisson model. We have also shown that 

MPL gives unbiased estimates, but that its asymptotic standard errors are possibly biased. 

For the auto-logistic model of both MPL and MCML, estimates are consistent, but near 

the critical value of the autocorrelation parameter 7  where phase transition starts, the 

variability of PLE estimates can be much higher than MCML estimates (Geyer, 1991). 

This means that, if we are interested in estimating parameters and we expect strong 

autocorrelation, MPL is not advisable. Also MPL tends to overestimate standard errors 

when there is negative correlation and underestimate standard errors when correlation 

is positive in the presence of strong correlation. Standard errors of the coding method 

always exceed those of both MPL and MCML. Although we only assume models with a 

first-order neighbourhood structure that lead to two sub-lattices in the coding method, 

this results in a substantial reduction of sample size ( | )  leading to the increased standard 

errors. With higher order neighbourhoods the standard errors wiU increase even more. 

Given that generally the neighbourhood structure is unknown and different neighourhood 

sizes need to be tested, coding is not a pragmatic option.

The truncated auto-Poisson model has the problem that the usual 95% confidence intervals 

could exceed the upper boundary of the auto-correlation parameter 7 . In study 2 the 

simulated data had only mild positive auto-correlation ( 7  =  0.05), so that data simulation 

for the MCML method was still possible. It is quite likely that for higher values of 7 , close
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to the upper boundary, asymptotic normality does not hold and confidence intervals wiH 

not be symmetric. In such cases alternative ways for quantification of precision should be 

found. One possibility is likelihood intervals.

In section 3.4.2 we formulated the temporal truncated auto-Poisson model of which we have 

not investigated parameter estimation techniques. This deserves further investigation.

What the different application examples showed

The mite example showed that the MCML method works well for moderate levels of 

positive auto correlation. Also the results are very similar to results from the Monte 

Carlo Newton-Raphson method proposed by Lee and Kaiser (1997) and are in comparison 

substantiaUy less computer intensive (and less complicated).

We have seen in the seed bank example that the auto-Poisson models can be useful to 

improve model fit, even if the auto-correlation observed is just unmodeUed trend.

In cases where only a sample of squares in a lattice are available, auto-models can be 

combined with the Gibbs sampler as a mechanism for spatial prediction. The deer example 

showed that this works quite well for the auto-logistic model, which is not as problematic 

as the auto-Poisson model. There are no constraints on the parameter boundary as in the 

truncated auto-Poisson case. This makes estimation of parameters much easier.

Is the auto-Poisson model useful for vegetation dynamics ?

To summarize, the auto-Poisson has proven to be useful for modelling processes in vegeta

tion dynamics. It is very flexible and with slight modifications can accommodate a variety 

of processes. It can be applied even in cases with weak positive auto-correlation caused 

by unmodelled trend and can improve precision. When strong positive autocorrelation 

is present, parameter estimation becomes difficult, because estimates will be close to the 

upper boundary of the parameter space. Often strong autocorrelation indicates unmod

elled trend, so in theory by adequately modelling the trend, boundary problems could be 

avoided. If data exhibit more variation than Poisson, the auto-negative binomial model 

can be used, but its properties do not allow positive auto-correlation to be modelled. Then 

it is advisable to resort to other methods such as Poisson-Gamma random fields (Wolpert 

and Ickstadt, 1998).
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C hapter 6

M od ellin g  change o f sem i-n atu ral 

v eg eta tio n  in Scotland

6.1 Introduction

Spatial categorical data can arise in ecology when information such as vegetation species 

or vegetation type are recorded per grid cell on a lattice. Often these data are collected at 

different time points to study the changes and dynamics in the vegetation system. A first 

step in the analysis is to look at the proportions of cells that have changed to a certain 

category, given the category in the previous period. These proportions estimate transition 

probabilities pik and define the probability of change from category I to k and the matrix 

listing all possible pik is called a transition matrix.

The transition matrix and the categories are the main components of Markov chain models 

which have been extensively used to model dynamic systems in ecology. Their main 

feature is that under certain assumptions the long-term expected proportions, e.g. the 

species composition, can be derived. Usually the assumptions are that a stable state 

exists, that transition probabilities are stationary over time and that they depend only on 

a defined number of the immediately preceding states. If the number of preceding states is 

greater than one, the models are referred to as higher order Markov models and obtaining 

asymptotic results, such as long-term expected proportions, becomes more complicated.

Unfortunately in ecology, transition probabilities are rarely stationary and past history
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influences future changes, e.g. vegetation types recorded in year 1 0  depend on vegetation 

types present not only in year 9 but also in preceding years. Also, the transition probabili

ties differ with location and depend on the states in neighbouring locations. Despite these 

problems, Markov models have been used in simulation studies to mimic different sce

narios, test for equilibrium of the system and to predict future vegetation changes under 

different management strategies. This is done by applying a range of transition matri

ces representing different scenarios, for example representing different climatic periods in 

forest (Lerzman, 1995) and grassland dynamics (Scanlan, 1994). Childress et al. (1998) 

compared observed vegetation dynamics from a successional plant community (Mount St. 

Helens, Washington) with patterns predicted from Markov models incorporating different 

assumptions regarding stationarity. Similar applications include Gibson (1997) and van 

Groenendael et al. (1996). In most applications transition probabilities are estimated from 

two-way cross classified tables of empirical data and do not take spatial and other con

tinuous explanatory information into account. Often stationarity of transition matrices is 

assumed. As a consequence most of the models are not very successful in matching the 

observed population patterns and have limited predictive value.

We propose to improve estimates of transition probabilities pik, by estimating them as a 

function of location, neighbourhood information and other factors at time t — 1. Such a 

transition model provides a flexible tool to test different assumptions on the dynamics of 

a system. The probability of transition from category I at time f — 1 to category k at time 

t can be modelled using a multinomial logit model (Agresti, 1990). Although transition 

(Markov) models for categorical data have been applied to longitudinal data (see Diggle 

et ah, 1994, for a review), not many applications on spatial data exist. We illustrate 

this approach on Scottish vegetation land classification data. The Institute of Terrestrial 

Ecology surveyed change of semi-natural vegetation in Scotland using aerial photographs 

during 1946-1986. Figure 6.1 shows one of the 22 squares photographed. The grid cells, 

each 5 x 5m, classify the semi-natural vegetation type from aerial photographs taken in 

1947, 1967 and 1977. Initially we investigate different effects of explanatory variables on 

change of vegetation using a logistic regression model. We then use a transition model to 

test significance of the different explanatory variables and compare the predictive perfor

mance of different models. Since little information on management types is available and 

it is hard to retrieve, an additional aim of the analysis is to detect features characterising 

management styles.
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Figure 6.1: Vegetation category of a square of size 0.25 km^ with semi-natural vegetation 

near Banchory (Aberdeenshire, Scotland) in the years 1947, 1967 and 1977. Pixels are 

of size 5 x 5m. Vegetation types are bracken (P), rush (R), bogs (B), graminoids/heath 

co-dominant (I), graminoids neither enclosed nor improved (G), burned heath (L) and 

dwarf shrub heath (H).
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6.2 M odels for change

6 .2 .1  P o ss ib le  e x p la n a to r y  v a r ia b le s

Two different models are presented, first a model for the transition probability and second 

a model for the probability of change. For both models a similar set of explanatory 

variables can be used. These variables were agreed on with the collaborating ecologists as 

possible influential factors on transition.

1. neighbour: The number of neighbouring pixels with the same vegetation category. 

Here the neighbourhood consists of the 8  nearest neighbours, but the neighbourhood 

size could potentially differ between categories. For example neighbour effects for 

trees are likely to be more long range than for grass, where only adjacent pixels will 

have a strong influence.

2. centrality score: This score is a measure of the position of a pixel within a polygon, 

which is high if the pixel is in the centre of a polygon. Score 1 corresponds to a single 

pixel, score 2 corresponds to an edge pixel, score 3 corresponds to a pixel where the 

eight nearest neighbours are the same category (ci), score 4 is the equivalent for the 

24 nearest neighbours {c2) and score 5 is a pixel with at least 48 nearest neighbours 

from the same category {c3).

3. location: The location within the square, such as northing and easting^ might be a 

good proxy for other unmeasured variables such as soil type and slope.

4. edge-ratio: The ratio of the number of edge pixels over the number of pixels in the 

polygon, thus characterising the shape and size of the polygon. A small polygon has 

an edge-ratio close to one, a large polygon has an edge-ratio close to zero, unless it 

is a large polygon of very irregular shape.

5. changeit-i'. Change of vegetation category in the previous period time point £ — 2  

to £ — 1 on pixel i, where time £ refers to the period end point.

6 . management level: There can be ownership boundaries within a square and a factor 

can be used to indicate different management types depending on the ownership of 

the pixel.
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6 .2 .2  T ra n sit io n /M a r k o v  m o d e l

In our data example several changes in vegetation could have taken place between each 

observation. Therefore, for this model, it is assumed that succession of vegetation cate

gory does not tend to happen in any particular order and that the categories are strictly 

nominal. Define the response at time t with yu = m  for pixel i and t is the period end

point, where m  is one of k categories and i = I , ..., n. Then the response ŷ . is modelled as

a realisation at time £ of a first-order discrete time Markov chain. For first-order Markov 

chains, the joint probability mass function has the form (Agresti, 1990)

P r(s/o ,...,2/T) = Priyo)Pr{yi\yo)Pr{y2\yi)...^Pr{yt\yi_i)....Pr{yj.\yT_-^),

where T  is the last observed time point. Define the transition probability as the probability 

of change from category m  at time £ — 1 to category I at time £:

with J2l=zi Pilmi't) — 1" We assume a multinomial distribution for the response yu with class

probabilities pumif) a.nd a sample size of one. Then assuming that the yu are independent

with respect to £, the above likelihood takes the form
n /  k \  /  T  k k \

I I  ( n  n
i=l \Z=:1 /  \f=:l m—1 /

where pn is the probability for pixel i to be in category I at time 0. When explanatory 

information is not taken into account, the maximum likelihood estimates of pum{t) is the 

proportion of pixels which changed to category /, given they were category m  at time 

£ — 1. In the case where explanatory information is categorical or can be summarised into 

categories, the transition probabilities can also be estimated using a log-linear model with 

standard GLM software. This has the advantage of providing variance estimates for pa

rameters. If we want to estimate pUmif) as a function of continuous explanatory variables, 

such as easting and northing, the transition probability pum{i) can be estimated using 

a multinomial logit model (Agresti, 1990). The multinomial logit model is a generalised 

linear model (GLM) and parameters can be estimated using GLM software catering for 

the multinomial distribution. The model has the form:

Piim -  Privit = l\yit-i = m) = . y  (6.2)

with the linear predictor rjim = and the parameter vectors (3{ and Ps relate to cat

egories I and s respectively. The coefficient /?i is constrained to be zero for identifiability.
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The vector xa^i is a row of the design matrix containing a factor for yu-i and explana

tory variables at time £ — 1 and interactions. Note that x a - i  containing the factor yu -i 

is the minimal model fitted to estimate the transition probabilities. Estimating the above 

parameters amounts to maximising the right hand side term of the likelihood 6 .1 , which is 

a conditional likelihood. This conditional multinomial likelihood is maximised subject to 

the constraint of equation 6.2. For large sample size parameter estimates are normally dis

tributed and asymptotic standard errors are obtained from the inverse Fisher information 

matrix (Agresti, 1990). The Newton-Raphson algorithm can be used for maximisation, 

but we have found that it can be slow to converge when sparse data are combined with 

fitting models with continuous explanatory variables. Much better results were achieved 

by maximising the likelihood via neural networks using the S-PLUS function multinomÇ) 

provided by Venables and Ripley (1994) in their function library.

Having fitted the transition model, the future vegetation cover can be predicted, assuming 

that grazing pressure and other imposed management features remains constant. Summing 

over the predicted probabilities of transition into categories l,...,fc gives the predicted 

species compositions in £ -f 1 .

6 .2 .3  M o d e llin g  ch an g e  u s in g  lo g is tic  re g re ss io n

Instead of transition probabilities, the probability of change can be modelled. The response 

is then defined as yu = 1 for cells changed between time £ — 1 and £ or yu = 0  otherwise. 

The response yu has a BernouDi(p*() distribution and the logistic model has the form

logit(Pr(yif = 1 )) = log = 4 - 1^ , (6.3)

where the index i is the pixel i, i =  1 ,..., n, and £ is the sampling time point £. The 

parameter vector (3 contains the coefficients corresponding to xu-i-, a row of the design 

matrix containing explanatory variables recorded at time £ — 1 and their interactions. If 

we include the factor yu -i in the model, we are dealing with a transition or Markov chain 

model as defined in equation 6 .1 , and the parameter estimation amounts to maximising 

the conditional likelihood (see Diggle et ah, 1994, for details).

The above model assumes that the responses yu are mutually independent given the 

information at time £ — 1 . Standard GLM software for logistic regression can be used to 

fit the model.
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6 .2 .4  M o d e l s e le c t io n  an d  v a lid a t io n

Forward stepwise selection, based on the AIC statistic, was used for model selection of the 

logistic regression model in section 6.2.3.

For the multinomial logit model prediction is the objective and K-fold cross-validation 

(Davison and Hinkley, 1997) can be used to assess the aggregate prediction error of the 

different models. The usual leave-one-out cross-validation procedure removes a single 

observation at a time and the model is fitted to the remaining data set, called the training 

set. In K-fold cross-validation, whole groups of observations, here pixels, are omitted. The 

omitted observations constitute the assessment set and the model fitted to the training 

set is used to predict observations in the assessment set.

Omitting pixels can alter the values of explanatory variables neighbour and edge-ratio 

of the remaining pixels in the training set. Thus the way the assessment set is chosen 

matters. A reasonable strategy is to omit a group of adjacent pixels rather than a sample 

of non-adjacent pixels, because there will be fewer changes in explanatory variables of the 

training set. A large number of alterations in explanatory variables could possibly have 

an adverse effect on estimation of the prediction error.

The procedure is as follows: The n pixels are divided into a minimum of ^/n  disjoint 

groups of pixels. These groups define ^/n splits of the data into assessment and training 

sets. In our example the lattice consists of ti = 100 x 100 pixels and each assessment set 

contains a block of 1 0  x 1 0  adjacent pixels, i.e. the 1 0 0  x 1 0 0  grid is divided into a 1 0  x 

10 grid, with each grid square of size 10 x 10 yielding 100 different assessment sets. In 

each split the group of ^/n adjacent pixels is predicted once, leading to a prediction value 

for each pixel. Then the K-fold cross-validation estimate of mis-classification is used to 

assess the prediction error for the multinomial response:

C m i s  =  I  ^ ( 1  -  P i l k i t ) ) ,

where yu = I and yu -i = k. The mis-classification measure is the categorical version of 

the commonly used prediction error for other types of data.
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6.3 Exam ple: In stitu te  o f Terrestrial E cology survey on

change in habitat and vegetation  during 1946-1986

6.3.1 D ata description and exploration

Each of 2 2  squares of size ranging between 0.25 — Ikm^ in the Grampian region in the 

north-east of Scotland were photographed three times within a period of 40 years. There 

are 10 to 20 years between photographs which ranged in scale from 1:7500 to 1:25000. 

The same person (Roger Cummins) mapped and classified the vegetation seen on the 

photographs for all three time points. The time periods were chosen so that a change of 

vegetation could be noticed from aerial photographs. The maps were then converted to a 

grid format, with each pixel (ceU) equivalent to 5 x 5m on the ground, using procedures 

given in Green et al. (1993). The vegetation category for each pixel was ascribed to its 

components using six variables:

1. OveraU vegetation category;

2. Percentage coverage of predominant vegetation category: > 50%,

3 . 26 - 50% coverage,

4. 10 - 26% coverage,

5. < 10% coverage;

6 . Mosaic: used where the predominant vegetation category within a polygon occurs 

as discrete patches rather than as an intimate mixture.

The overall vegetation category analysed here contains the following codes:

• graminoid (grass-like) dominant vegetation such as: agricultural (A), enclosed rough 

grazings (E), graminoids neither enclosed nor improved (G), blanket bog-type veg

etation (Y), bogs (B);

• heath dominant vegetation such as: dwarf shrub heath (H), graminoids/heath co

dominant (I), heath burned within 4 years of the photograph being taken (L) and 

burned blanket bog (Z);
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• tall woody vegetation such as: shrub (S), jumper (J), plantation (T), birch (1), rowan 

(2), pine (3), mixed coniferous (4), undefined coniferous (5), undefined deciduous (6 ) 

and willow (7);

• bracken dominated (P);

• tall rush or reeds (R);

• other cover types such as: bare (roads, metalled tracks, rocks, etc.) (K), bare but 

readily colonised (e.g. minor soils) (M) and open water (X).

We use one of the 22 photographed squares as an example for demonstrating the possibil

ities of exploratory data analysis and modelling change and transition probabilities in this 

study. This square, situated on a hiU near Banchory, is of size 0.25 km^. It has no pixels 

classified as heavily managed vegetation (agricultural and plantation) and also has fewer 

vegetation categories than other squares. Some of the questions related to these data are:

• Do the transition probabilities (the probability that a pixel changes from one cate

gory to another) depend on polygon size and location within a polygon?

• Do stable areas remain stable? Are some vegetation categories stable and others 

not?

• Does the proximity of certain vegetation categories have an influence on the transi

tion at a pixel?

• Are there obvious features characterising certain management types?

The exploratory data analysis should answer some of these questions informally, and lead 

to suitable models to test different assumptions.

Seven different vegetation categories were observed at the three sampling time points, 

1947, 1967 and 1977 (see also Figure 6.1). The pixels were mainly graminoid dominant 

(B, G) and heath dominant vegetation (H, I, L), although there were a few pixels with 

bracken (P) and rush (R) (Figure 6.2). Most of the area was covered by dwarf shrub 

heath (H) in all three years. In 1947 and 1967, the second highest coverage was burned 

heath (L), but in 1977 it was graminoids (G). The transition probabilities in Table 6.1 

are estimated as the proportion of pixels which changed to category /, given they were
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category m  at time £ — 1 . These transition probabilities and other summary statistics help 

us to describe certain features:

S tab ility : The square is mostly covered with dwarf shrub heath and more than 70% of 

pixels remain in this category during both periods. More than half of the pixels with 

vegetation category P, R, B, L and I change in both periods. The grass/heather co

dominant vegetation category (I) is notably unstable, with only one pixel being so 

recorded in consecutive photographs, and is clearly a successional stage in transitions 

to and from H and G.

G razing  p ressu re : In the first period, 62% of the pixels with graminoid/ heath co

dominant vegetation (I) change into dwarf shrub heath (H) and 29% change into 

graminoid (G). This is reversed in the second period, where only 25% change into 

heath (H) and 74% change into graminoid. This may imply that grazing pressure 

had increased. Due to the small number of I pixels, we need to be cautious not to 

over-interpret these results. In 1967 there were only 265 (3%) pixels classified as 

I, divided into two distinct polygons and in 1947 there were 803 pixels (8 %), split 

between 4 polygons.

R o ta tio n  cycle for b u rn in g  hea th er: Vegetation category ’L’ is defined as heathland 

that was burned within 4 years of the photograph being taken. 136 (9 %) of pixels 

that were thus classified in 1967 were again classified as ’L’ in 1977. This shows 

that some areas are burned again after 6-14 years. However, this is a relatively short 

burning cycle for a deliberate management policy and it may be that the areas were 

burnt accidentally.

L iability  to  rep ea ted  change: Table 6.2 shows that a pixel that changed in the first 

period is 1.5 times more likely to change in the second period than a pixel which did 

not change in the first time period.

An important feature for characterising the square is polygon size. As Figure 6.1 shows, it 

increases over time. Figure 6.3 shows centrality score by year, indicating that the number 

of pixels within a large polygon {c3 = surrounded by pixels of the same category within a 

minimum of 45 x 45m) increases over the years. The transition probabilities of vegetation 

by centrality score (Table 6.3) for both periods show that the percentage of pixels which 

are graminoid (G) in both periods is highest for pixels within large polygons (c3). This
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Table 6.1: Transitions in 1947 - 1967 and 1967 - 1977; pik corresponds to the probability

vegetation vegetation category in 67 (/)

category in 1947 {k) R B I G L H total

P 0 0 0 0 0 45 45

A t 0 0 0 0 0 1

R 0 0 0 6 0 1 0 16

A& 0 0 0 0.37 0 0.63

B 0 0 0 0 0 29 29

Pik 0 0 0 0 0 1

I 64 0 0 233 1 0 496 803

Pik 0.08 0 0 0.29 0 . 0 1 0.62

G 38 0 50 373 56 290 807

Pik 0.05 0 0.06 0.46 0.07 0.36

L 9 28 34 26 377 1140 1614

0 . 0 1 0 . 0 2 0 . 0 2 0 . 0 1 0.23 0.71

H 34 152 181 577 1039 4703 6 6 8 6

Pik 0 . 0 1 0 . 0 2 0.03 0.09 0.16 0.70

total 145 180 265 1215 1482 6713 1 0 0 0 0

category in 1967 vegetation category in 1977

R 0 75 6 2 0 62 145

Pik 0 0.52 0.04 0 . 0 1 0 0.43

B 0 0 0 3 0 177 180

A t 0 0 0 0 . 0 2 0 0.98

I 0 0 1 197 0 67 265

Pik 0 0 0 . 0 1 0.74 0 0.25

G 0 72 251 593 0 299 1215

A t 0 0.06 0 . 2 1 0.49 0 0.24

L 0 1 0 23 67 136 1246 1482

Pik 0 0 . 0 1 0 . 0 2 0.05 0.09 0.84

H 0 60 130 411 826 5286 6713

Pik 0 0 . 0 2 0 . 0 2 0.06 0 . 1 2 0.78

total 0 217 411 1273 962 7137 1 0 0 0 0
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vegetation  classes

y ea r of survey

Figure 6.2: Frequency (number of pixels) of vegetation category by year. The category 

’rush’ (R) was collapsed with category ’bogs’ (B).

Table 6.2: Change 1947-67 by change 1967-77.
period period 1967 - 77

1947 - 67 change no change

change 3864 1589

0.71 0.29

no change 2152 2395

O.j? 0.52

effect is not discernible for the other categories. In particular, there are too few RR and 

BB pixels to make any inferences about the effect of polygon size.
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veQ. classes In i 047 veg. classes in 1 067 veg. classes In 1 077

Figure 6.3: Frequency (number of pixels) of vegetation category by year and centrality 

score. The category ’rush’ (R) was collapsed with category ’bogs’ (B).

Table 6.3: Percentage of pixels which remained in the same vegetation category.
centrality

score PP

trai

RR

isitior

BB

19̂

II

L7-67 ( 

GG

%)

LL HH

edge - 0 0 0 1 2 19 73

cl - - 0 0 30 2 1 73

c2 - - - 0 60 13 70

c3 - - - 0 75 31 73

centrality

PP

tra]

RR

nsitior

BB

I 19( 

II

)7-77

GG

%)

LL HH

edge - - 0 2 29 13 75

cl - - 0 0 44 8 81

c2 - - 0 0 57 9 84

c3 - - - 0 71 4 76
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6.3.2 M odel for change in th e  two periods 1947 - 1967 and 1967 - 1977

A possible maximal model for the probability of change, fitted to each period separately

IS,

logit(Pr(ÿi, =  1 )) =  log f  f r f a t  = \ ) )  ^

where the index i represents the pixel î = 1 , 1 0 0 0 0  and t is the period end time point, 

with t =  1967,1977 and periods 1947-1967 and 1967-1977. The design matrix x n - i  of 

the maximum model contains the following explanatory variables recorded at time t ~ 1 

and their interactions: neighbourit-.i, centrality scoren-i, edge-ration-i, changeit~i (only 

applicable for period 1967 - 1977) and vegu-iy the category at time t — 1. In this model 

the effects of the variables neighbour and edge-ratio were of specific interest and therefore 

locational variables {easting and northing) were not fitted.

There were only 16 pixels with category ‘rush’ (R) in 1947 and 145 pixels in 1967. These 

small numbers of pixels were not sufficient to make inferences about the interactions 

between explanatory variables and category at time t — I. To avoid this problem we 

coUapsed the category R with category ’bogs’ (B). At time t, i.e. at the end of period 

2, burned heather (L) is combined with heather (H), because burning heath is imposed 

management and cannot be predicted with a model of this type. The small sample size 

did not enable us to distinguish between the effects of changen-i and vegn-i. All pixels 

with category B and I changed in the second period, thus the effect of changeu-i was 

aliased with vegn-i. Therefore we abandoned the inclusion of changen-i into the set of 

explanatory variables and could not infer how previous change of a pixel affects its future 

change.

Initially we fitted a model to change in the second period and forward stepwise selection 

yielded the model

logit(Pr(ÿii = 1)) = vegu-i -f (3 neighbouru-i + vegit-i.f3 neighbourn-i, (6.5)

where t = 1977. The change of deviance when adding the variable neighbour is larger than 

the change in deviance when adding variables edge-ratio and centrality score. The change 

in deviance when adding the explanatory variables is 3587 on 9 d.f.. Although forward 

stepwise selection yielded a model with more terms for the first period, for comparability 

we also fitted the model of equation 6 . 5  to change in the first period, yielding a change in 

deviance of 2904 on 11 d.f..
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Figure 6.4 shows the fitted probability of change versus neighbour (the number of neigh

bours with the same category at time Z —la s  pixel i) for the two periods. For both periods 

vegetation category H has the lowest probability of change, and it is not very much affected 

by neighbour. In period 2, categories B and G have a much higher probability of change 

which decreases with the number of neighbours of the same category. For both periods 

neighbour has a similar effect on the two main categories H and G. Figure 6.4 also shows 

95% pointwise confidence bars of estimated probabilities of change. In period 1 not much 

information is available to model change of pixels that have category P or B in 1947. The 

confidence intervals for these categories are therefore very large (from zero to one), and 

are not shown on Figure 6.4a. Comparing observed probabilities with fitted probabilities 

of period 2  in Figure 6.5 shows a fairly good fit, although there are two large polygons 

of change in the lower half of the square (Figure 6.5a), which the model does not pick 

up. These changes are due to the occurrence of burned heath (L) within a bigger dwarf 

shrub heath (H) polygon in 1977. Burning heath is imposed management and therefore 

unpredictable with a model of our type. There is also an edge effect visible on the top 

edge of Figure 6.5 due to the neighbour variable. This happens because the the edge of 

the lattice is defined as a polygon edge and hence the number of neighbours of the same 

category at the lattice edge is the same as at a polygon edge.

6 .3 .3  T r a n s it io n /M a r k o v  m o d e ls  f it te d  to  th e  tr a n s it io n s  from  1 9 6 7  to

1977

Due to low frequencies of some transitions for different values of explanatory variables, 

we reduced the number of vegetation categories by combining R (rush) with B (bogs). 

For the period end time point f, category L (burned heath) was combined with H (dwarf 

shrub heath) as for the change model. Explanatory variables neighbour, edge-ratio and 

centrality score were derived from the uncollapsed data set.

Fitting a model to transitions between 1967 and 1977 indicates that all of the explanatory 

variables have an effect on transition probability. The effect of neighbour was stronger 

than the effect of centrality score, and centrality score was therefore not included in the 

cross-validation model selection exercise. In Table 6.4 we give deviance, AIC statistic 

and K-fold estimated prediction mis-classification rate of different fitted models. Model 7, 

including the explanatory variables northing, easting and neighbour, has the lowest K-fold
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Figure 6.4: Estimated probability of change by neighbour. The vertical bars join jittered

upper and lower 95% confidence intervals. Estimated probabilities are given for two periods

(a) 1947 - 1967 for pixels with categories P, B, I, L, G and H in 1947 (confidence intervals

for categories P and B were omitted) and (b) 1967 - 1977 for pixels with categories B, I,

L, G and H in 1967. For both periods category ‘rush’ R is combined with category ‘bogs’

(B) and at period end time point t burned heather (L) is combined with heather (H).
146



(a)
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Figure 6.5: (a) Observed change and (b) estimated probability of change during the period 

1967 and 1977.
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Table 6.4: Transition models fitted to data of the period 1967 (t—1) to 1977 (i). The K-fold 

cross-validation estimate of mis-classified pixels out of 1 0 0 0 0  is given in the last column 

(Cmis)- The symbol stands for the inclusion of the explanatory variables separately

explanatory variables in xa -i  

of rjim of equation 6 . 2 d.f.

residual

deviance AIC Cmis

1 * Hit—l 9988 9598.3 9622.3 2389

2 . V i t - i  * neighbouTit-i 9976 9316.5 9364.5 2338

3. ya -i * edge -  ratiou-i 9976 9284.0 9332.0 2395

4. ya -i * changeu-i 9976 8483.8 8519.8 3198

5. y u - i  * rowi * coli 9976 7346.7 7442.7 1987

6 . y i t - i  * neighbouTit-i * edge — ration-i 9952 8989.5 9085.5 2336

7. yit-i * neighbouvit-i * rowi * coli 9952 6926.2 7118.2 1908

estimated prediction mis-classification rate. 1908 pixels out of 10000 are mis-classified 

compared to 2389 for model 1 , which is just based on the 2 -way contingency table. This 

reduction in mis-classification (4%) shows that there are strong spatial effects present. 

It is surprising to see that model 4 with the explanatory variable changen-i performs 

worst in terms of mis-classification, probably due to the fact that changen..-i is aliased 

with yu -i. AU of the pixels in category B or I changed in the previous period. Having 

fitted the transition model to the period between 1967 and 1977, we can use it to predict 

change in vegetation cover for the period 1977 to 1987, assuming that grazing pressure 

and other imposed management features remain constant. Table 6.5 gives the predicted 

species composition for the best (model 7) and second worst model (model 1). It would be 

ideal to compare predictions with observed data, but these are not available for 1987. In 

comparison to the observed species composition in 1977, model 7 indicates 3.38% increase 

in H (heath), whereas for model 1 the percentage of H is predicted to decrease by 1.15%.

The predicted transition probabilities for period 1977 to 1987 from model 2  are shown as 

a function of neighbour in Figure 6 .6 . Depending on the category at the period start time 

point t — 1 (1977), the effects of the neighbour can be very different. For example the effect 

of neighbour on transition G to H is strong, but it is not very strong on the transition H 

to H and B to II.
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Figure 6 .6 : Predicted transition probabilities for the period 1977 to 1987 as a function of 

neighbour using model 2 .
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Table 6.5: Predicted species composition of square 45 for 1987 using different transition 

models fitted to data for the period 1967 to 1977. The first row gives the observed species

observed species composition in 1977 (%)

B I G H

2.17 4.11 12.73 80.99

predicted species composition in 1987 (%)

model B I G H

1 - yit-\ 1.95 4.20 14.03 79.84

7. Vit-i * neighbourit-i * rowi * coli 2.58 2 . 2 0 10.84 84.37

Figure 6.7 shows predicted transition probabilities for the period 1977 to 1987 using 

model 7. A stochastic realisation of predicted vegetation category in 1987 was simu

lated in Figure 6 . 8  by sampling at each pixel from a multinomial distribution with the 

predicted transition probabilities from Figure 6.7. The many single pixels the simulated 

image shows are atypical for this kind of vegetation. Also, the observed data in Figure 6.1 

has very few single pixels. Thus there is clearly an element of spatial autocorrelation 

missing in model 7 and improvement in that respect is needed.

6.4  D iscussion  and further work

We have modelled the land-classification data on the pixel level using regression techniques. 

Another approach is to model the data on the polygon level, but here the polygons do 

not change as a unit and it is therefore difficult to see how a polygon level model could be 

implemented. This requires further investigation.

Our limited investigation has shown that in the case of the Scottish land classification data 

there are strong spatial effects on the transition of vegetation. Fitting a multinomial logit 

model to transition probability showed that location {eastings, northings), the number of 

neighbouring pixels from the same category (neighbour) and the size and shape of polygon 

(edge-ratio) at time t —1 have a strong influence on transition probability. For prediction 

best results are achieved with a model including eastings, northings and neighbour. Our 

model attempts to describe the dynamic process, rather than imposed management. If
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Figure 6.7: Predicted probabilities of transition to the four categories H (top left), I (top 

right), B (bottom left) and G (bottom right) for the period 1977 to 1987 using model 7 .

management is imposed, such as burning heather, this results in bad model fit, as we have 

seen in section 6.3.2.

If in a long-term study we can measure grazing pressure in addition to recording vegetation 

cover at several points in time, then transition probabilities can be estimated under a 

range of grazing pressures. Preferably the square size should be bigger than 0.25 km^ 

if the polygon sizes are similar to our example, where on the polygon level the sample 

size was quite small. This allows prediction of future changes under a range of grazing 

scenarios, which could prove an invaluable aid for conservation management. In theory 

we can model several time periods simultaneously rather than merely fit separate models 

for each time period. In such a model, the responses of the two time points 1967 and 1977 

are combined into one variable y^ and the responses of 1947 and 1967 are combined into
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Figure 6 .8 : A stochastic realisation of predicted vegetation category in 1987. At each pixel 

one of the four categories B, I, G and H was sampled using a multinomial distribution with 

the probabilities given in Figure 6.7. Vegetation categories are bogs (B), graminoids/heath 

co-dominant (I), graminoids neither enclosed nor improved (G) and dwarf shrub heath (H).

another variable Vt-i- A factor for grazing pressure or period is included in the model. 

By fitting such a model, forcing 2/t_i to interact with all other variables, we would get 

similar results to the two separate models fitted to the two periods.

So far the issue of spatial autocorrelation of transitions has not been addressed and incor

porating this into the model could potentially improve estimates of transition probabilities. 

Ignoring strong positive autocorrelation can lead to underestimating variance. Both, the 

model for change and the transition model assume that the responses ya are mutually 

independent given the information at time t — I. Ecologically this is an unlikely scenario 

and estimates of transition probabilities could potentially be improved by incorporating 

spatial autocorrelation into models. One possible way is to include so-called ’autocovari- 

ates’ as described in chapter 3. For the change model, the ’autocovariate’ would be defined 

as the number of neighbours which change, YljeN,yjt- The resulting model is called an 

auto-logistic model and parameter estimation methods for such methods were discussed
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in chapter 4.3,

Another possible way of accounting for autocorrelation would be to introduce random 

effects into the multinomial model. For instance a random effect for polygon in year t — 1 

could be introduced. Alternatively the random effect could follow a Gaussian random 

field, which could have different parameters and neighbourhood structures depending on 

the response category ya. The model could be fitted within a Bayesian framework and 

would have the following form

Tjilk — T

where rfuk is the linear predictor of the multinomial model as defined in equation 6.2, and 

the random effect r* has distribution

ri ^  e Ni),a'^)

where

jeNi
Similar to the above is the random-effects Poisson model first introduced by Besag et al. 

(1991), which has mainly found applications in epidemiology for disease mapping (Breslow 

and Clayton, 1993).

The improved estimates of transition probability could feed into Markov models used in 

simulation studies testing different management strategies, and improve their predictive 

value.
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C hapter 7

G eneral d iscussion

In this chapter we discuss briefly two general points which are relevant to all the work 

described in this thesis: Firstly allowing for trend and autocorrelation in the same model; 

and secondly the inference implications of using a design-based approach rather than a 

model-based approach.

7.1 D istinguish ing trend and autocorrelation

One of the biggest problems encountered is that trend and positive autocorrelation can

not easily be distinguished. In a lot of environmental applications, apparent unmodelled 

autocorrelation is due to bad model fit, rather than true intrinsic autocorrelation from 

competitive or enhancing interactions between spatial neighbours. In order to validate 

the model, spatial autocorrelation in residuals needs to be investigated. We have used 

descriptive tools, such as the investigation of correlograms of residuals or the visual inves

tigation of residual maps. Also, we have used a permutation test on Moran’s correlation 

coefficient (Moran, 1950), which assumes a certain neighbourhood structure, to determine 

whether residuals are correlated. Further work in establishing spatial model validation 

and selection procedures is needed.

Although the spatial analysis of residuals described above aids model validation and se

lection, there still remains the problem of non-separability of trend and autocorrelation. 

This problem is not confined to the type of spatial model considered here. It also occurs
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elsewhere, for example in the analysis of agricultural field trials. In this area classical com

petition models have recently been extended (Durban, 1998; Durban et al., 1998) to allow 

the estimation of spatial trends using multi-dimensional smoothers within the framework 

of semi-parametric additive models (SAMs). Although SAMs incorporate estimation of 

the smoothing parameters, the underlying theory of additive models assumes that residu

als are not correlated. If this is not the case, the use of certain criteria for the selection of 

smoothing parameters can lead to an under-smoothed surface, (i.e. a too wiggly surface). 

Thus it is not always possible to distinguish between spatial trend, treatment interference 

and autocorrelation in the estimation procedure.

Often non-separability of trend and autocorrelation can be avoided by making assumptions 

about the underlying process causing autocorrelation. For instance it is important to 

decide whether the underlying process is likely to produce autocorrelation as well as spatial 

trend and whether the scale of sampling actually allows the observation of autocorrelation. 

In the seed count example in section 5.3 this was demonstrated. We assumed that observed 

autocorrelation could not be distinguished from treatment and block effects. Because seed 

counts were aggregated in the data collection process, autocorrelation was not likely to be 

observed. Therefore the assumption was made, that most of the autocorrelation was due to 

treatment and block effects. The estimated autocorrelation parameter was not significant 

when these effects were kept fixed. We had similar experiences with other spatial count 

data sets. This approach of keeping treatment and trend effects fixed, while estimating 

autocorrelation, is common practice in spatial modelling. For example Gotway and Stroup

(1997) present an example on weed count modelling using GLMs with a quasi likelihood, 

defined with a general variance-covariance matrix accounting for autocorrelation. They 

initially fit a GLM with trend only, then estimate the autocorrelation structure from the 

semi-variogram of the residuals. The estimated correlation matrix is then inserted into 

the variance-covariance matrix when fitting the final GLM using quasi-likelihood.

7.2 D esign-based  versus m odel-based approach

In the deer modelling example in section 5.4 we compare estimates of total number of 

occupied squares using estimators based on different theoretical approaches. The estimator 

from simple random sampling (SRS) is a design-based estimator, whereas the estimators
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based on the auto-logistic model are model-based. The estimator from logistic regression 

can be interpreted as either a design-based or a model-based estimator.

To clarify the difference between the two approaches a summary is given below. Material is 

drawn from Barnett (1991); Thompson (1992); Brus and DeGruijter (1994) and Grégoire

(1998).

Let yi be the sampled value in area A at location i. In a design-based approach the yi 

values are regarded as a sample from a fixed population, that is the observed values are 

regarded as fixed and the sample locations are regarded as the random quantity. Inference 

is based on the distribution of estimates generated by the sampling design and is free 

of any assumptions about the distribution of yi. In contrast to that, the model-based 

approach regards the ^-values as random variables. The population is a realisation of a 

random process, called a ’’superpopulation” with an underlying model, the “superpopula

tion model” . Thus yi, . . . ,2 /n are regarded as realisations of the random variables Yi, ...,y„ 

of the superpopulation. As a consequence only under the model-based approach do we 

need to model spatial autocorrelation, if present. In the model-based approach inference 

is based on the model and the model should mimic the superpopulation model as well as 

possible. In the design-based approach inference is based on the distribution of estimates 

generated by the sampling design and it is free of any assumptions about the distribu

tion of yi. The fact that the data of the sample might be correlated does not have any 

implication on estimators from the design-based approach.

For both approaches unbiased estimators exist (at least asymptotically). Models can be 

used in the design-based approach, but they then describe the population itself, whereas 

in the model-based approach they describe the superpopulation model (data generating 

process). For illustration we compare expected values of the design-based and model-based 

approach for the case of estimation of the mean in simple regression.

Let yi be the sampled value in area A at location i, where either sampling location i is 

the random variable (design-based approach) or yi is the random variable for the model- 

based approach. Let Xi be an explanatory variable at location i which is correlated with 

yi and has expected values jUx. In the design-based approach there is an estimator which 

accounts for any sampling design: the Horvitz-Thompson estimator (Thompson, 1992). 

We first illustrate this estimator on estimating the mean of ,..., under the design-based
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approach:

The n* is the inclusion probability, the probability that location i is included in the 

sample, and for SRS these are aU equal, ü j = ^  yielding fiA ~  Ya=i The expected 

value Es(fÎA) =  Y,s=i P{^)P'As  ̂ where s is one of many possible sampling designs and S  is 

the total number of possible designs.

The design-based regression estimator (with an unknown slope /? and intercept a) under 

SRS is

fjiA — â PjJix

where

and

Then substituting for ô

A _  ~ ^)(yi ~ y)

i^A — y T Pi.h'x

If the model is not known, i.e. /? needs to be estimated, then expectation and variance 

can be shown to be asymptotically (Barnett, 1991, p. 96):

E{jlA) =  /i + 0 (n " ’‘)

and

V a r i M  =  i — -  ply) +

where pxy is the correlation of x and y, Syy is the usual sum of squares for y. The quantity 

0 ( /(n ) )  0 proportionally to f{n )  and with increasing n the bias order 0 {n~^) in E{fLA)

goes to zero more slowly than for Var(iJLA) with bias of order 0 (n “^/^). This means that 

only for large samples are regression estimators approximately unbiased and the greater 

the correlation between x and y the better the improvement in precision in comparison 

to just calculating the mean. Bias can be a problem for small samples in particular if the 

relationship is not linear, or x is highly skewed. The design-based variance, omitting the 

bias term, can be re-expressed as (Thompson, 1992)

y n r ( / l y i )  =   ̂ ^ ( %  -  & -I- ( 7 .1 )
n[n — zj *-r
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The model-based variance is the same, but without the finite population correction,

V a r ( f i A )  — _  2  ̂ “  ô: -|- , (^-2)

which is unbiased under the usual regression model assumptions. Although the formulas

7.1 and 7.2 are the same (ignoring the finite population correction), the estimated param

eters have a different meaning. For the design-based approach they relate to the observed 

population and for the model-based approach they relate to the superpopulation.

For sampling with unequal probability designs, e.g. probabilities proportional to their 

size, design-based regression estimators are derived by using the inclusion probabilities as 

weights in a similar fashion to the simple case of estimating the mean (see above).

For multiple regression, design-based estimators are constructed in a similar fashion as 

described above (see also Thompson, 1992). Further work is needed to determine the 

properties of design-based estimators based on generalized linear models and generalized 

additive models. To my knowledge there are no publications on this issue, but there is 

some work on comparing design and model-based kriging estimators (Brus and DeGruijter, 

1994; Brus and deGruijter, 1997).

7 .2 .1  T h e  d e e r  e x a m p le  in  c h a p te r  5 - rem ark

• From the model-based approach: In the deer example some of the difference of 

variance between estimates from the logistic and auto-logistic models is due to the 

fact that the logistic model does not include autocorrelation. There might also be 

some extra Monte Carlo error introduced by the Gibbs sampling in the process of the 

bootstrap for the auto-logistic model, which adds to the variance of the autologistic 

model-based estimate.

• From the design-based approach: The logistic model estimator can be seen as a 

design-based estimator, and it is expected that variance could be reduced with such 

an estimator in comparison to simple random sampling. In the bootstrap procedure 

the finite population correction was included by keeping the observed 20% sample 

fixed, i.e. only the remaining 80% of the squares were predicted using the model 

fitted to the bootstrap sample.
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7 .2 .2  T h e  m a ck ere l e x a m p le  in  c h a p te r  2 - rem a rk

• From the model-based approach: Examination of residuals indicated spatial and 

temporal auto-correlation. Thus the model does not entirely describe the “data 

generation process” or the superpopulation model. Estimators from such a model 

could be biased, in particular underestimate the variance due to the unmodelled 

positive autocorrelation.

• From the design-based approach: The sampling design is not random; it is designed 

so that most of the spawning distribution is sampled, and at the edge of the survey 

area the sampling design is adaptive. The area sampled changes during the spawning 

season, for instance in the first period of sampling, only squares in the south of the 

survey area are sampled, in later periods the area of sampling is expanded. Thus 

at some time points some of the squares have zero probability of being included 

in the sample. A design-based approach would require the calculation of inclusion 

probabilities for a Horvitz-Thompson type estimator. The inclusion probabilities 

would be proportional to the volume of water sampled. It is not obvious whether 

inclusion probabilities can be calculated with the survey design as it stands, and as 

a consequence the design-based approach cannot be applied.

The choice of approach taken depends on the objective of the survey. In most fisheries 

surveys, as in the mackerel example, the surveys are done to estimate stock size at the 

time of the survey. If the main aim of the surveys is to quantify what was there at the 

time of the survey, the design-based approach should be preferred.
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A ppendix A

E m pirical d istr ib u tion s o f  

param eter estim a tes  gen erated  by  

th e  sim u lation  stu d y  in section  4 .4  

- F igures
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Figure A.l; The empirical distribution of standardised â  from simulation study 1. On

the left histograms and on the right qq-plots are shown. Estimates from PLE, Coding 1,

Coding 2 and MCML are shown (top to bottom).
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Figure A.2: The empirical distribution of standardised 7 from simulation study 1. On

the left histograms and on the right qq-plots are shown. Estimates from PLE, Coding 1,

Coding 2 and MCML are shown (top to bottom).
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Figure A.3: The empirical distribution of standardised â  from simulation study 2. On

the left histograms and on the right qq-plots are shown. Estimates from PLE, Coding 1,

Coding 2 and MCML are shown (top to bottom).
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Figure A.4: The empirical distribution of standardised 7 from simulation study 2. On

the left histograms and on the right qq-plots are shown. Estimates from PLE, Coding 1,

Coding 2 and MCML are shown (top to bottom).
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Figure A.5: The empirical distribution of standardised â  from simulation study 3. On

the left histograms and on the right qq-plots are shown. Estimates from PLE, Coding 1,

Coding 2 and MCML are shown (top to bottom).
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Figure A.6 : The empirical distribution of standardised 7 from simulation study 3. On

the left histograms and on the right qq-plots are shown. Estimates from PLE, Coding 1,

Coding 2 and MCML are shown (top to bottom).
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Figure A.7: The empirical distribution of standardised â  from simulation study 4. On

the left histograms and on the right qq-plots are shown. Estimates from PLE, Coding 1,

Coding 2 and MCML are shown (top to bottom).
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Figure A.8: The empirical distribution of standardised 7 from simulation study 4. On

the left histograms and on the right qq-plots are shown. Estimates from PLE, Coding 1,
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