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PREFACE

The main ideas for the work included in this
volume were formulated while I was holding an S.R.C.
Research Studentship in the Department of Theoretical
Physics, University of St. Andrews, during the period
October 1967 - March 1870. The tidying up of these
ideas (the hardest part) was completed under the
auspices of the Department of Mathematics, University of

Canterbury, New Zealand.

The thesis divides naturally into two parts.
Part I raises, and in some cases answers, questions
concerning symmetry in classical mechanics. §1~-84 is
largely an attempt to tidy-up some left-overs from my
earlier M.Sc. thesis. §5 and §6 treat the problem of
the correspondence between Lie groups of transformations
and realizations of Lie algebras in terms of infinitely-
differentiable functions on phase space. The main result
(Theorem 6.4) shows that the assumption of the existence
of a realization puts an upper limit on the rank of the

algebra.

The heart of the thesis (covering three-quarters of
the volume) is section II on the quantization of

classical systems. §1 lists axioms desirable in any

quantization rule for the 'functions of the g's'. The
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momentum observablesare introduced in §2 prior to their
quantization in §u, §5 essentially shows how conven-
tional quantum mechanics fits into this scheme of things.
By progressive specialization from a general manifold
to a vector space, from a general quantization scheme

to one which is linear on the linear momentum functions,
and finally to an entirely well-behaved (admissible)
quantization rule, into which conventional quantum
mechanics fits nicely, we obtain in §7-8§9 results which
become progressively more and more powerful, The final
theorem (Theorem 9.2) is perhaps the most significant of
all. This result states that there exists a class of
functions, which contains all functions of the ¢'s and
functions of the p's and all momentum observables and
which is closed with respect to any linear canonical
transformation Lj; a rule A assigning a unique self-
adjoint operator to each such function f; a unitary
operator WL corresponding to L and an eguation

-1
MfoL) = W 'AfH,.

I am indebted to the Science Research Council for
the financial support for this work and to Professor R.B.
Dingle for the gaining of that support in the first place
and for numerous other things. Finally I wish to express

my great appreciation for the generous help given by my
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supervisor, Dr. J.F. Cornwell, from the very inception

of this work right to the very end.

Christchurch, New Zealand
P. B. GUEST

Marech 4, 1972
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ABSTRACT

The thesis divides naturally into two parts.

Part I raises, and in some cases answers, questions
concerning symmetry in classical mechanics. §1-84 is
largely an attempt to tidy-up some left-overs from my
earlier M.Sc. thesis. §5 and §6 treat the problem of

the correspondence between Lie groups of transformations
and realizations of Lie algebras in terms of infinitely-
differentiable functions on phase space. The main result
(Theorem 6.4) shows that the assumption of the existence
of a realization puts an upper limit on the rank of the
algebra.

The heart of the thesis (covering three-quarters of
the volume) is section II on the quantization of
classical systems., §1 lists axioms desirable in any
quantization rule for the 'functions of the g's'. The
momentum observables are introduced in §2 prior to their
quantization in §4. §5 essentially shows how conven-
tional quantum mechanics fits into this scheme of things.
By progressive specialization from a general manifold
to a vector space, from a general quantization scheme
to one which is linear on the linear momentum functions,
and finally to an entirely well-behaved (admissible)
quantization rule, into which conventional quantum
mechanics fits nicely, we obtain in §7-89 results which
become progressively more and more powerful. The final

theorem (Theorem 9.2) is perhaps the most significant of

all. This result states that there exists a class of




functions, which contains all functions of the q'é and
functions of the p's and all momentum observables and
which is closed with respect to any linear canonical
transformation L; a rule A assigning a unique self-
adjoint operator to each such function f; a unitary
operator W, corresponding to L and an equation

e 1
Mf o L) = W' AfW,..

"




And I proceeded to give my heart to knowing wisdom
and to knowing madness, and I have come to know folly,
that this too 18 a striving after wind. For in the
abundance of wisdom there is an abundance of vexation,
8o that he that increases knowledge increases pain.

King Solomon (Ecelesiastes 1: 17-18)



SYMMETRY IN CLASSICAL MECHANICS

The concept of symmetry in classical mechanics is
not new. Apart from the well-~known three-dimensional
rotationai symmetry of a Hamiltonian with a spherically
symmetric potential, the idea that other hidden symmetries
may be present was recognized as long ago as 1933 when
Klein (see Hulthen [1]) showed that the Hamiltonian for
the Kepler problem possesses a symmetry group (locally)
isomorphic to the four-dimensional rotation group. The
Hamiltonian for the three-dimensional harmonic oscillator
has been shown to have SU(3) as a symmetry group
(Bargmann [1] ; Fradkin [1]). A representative review of
these and other questions of classical symmetries will
be found in the author's M.Sc. thesis (Guest [1]).

An attempt to generalize these results to a wider
class of Hamiltonians and to more general.groups has been
the cause of much conjecture recently. In particular, a
number of papers have been written on the problem of find-
ing canonical realizations of Lie groups and their
corresponding Lie algebras. A detailed general theory

has been given by Pauri and Prosperi [l] concerning



general Lie groups and by Mukunda [1] concerning semi-
simple Lie algebras. Specializations to the rotation
group (Pauri and Prosperi [2]) and the Galilei group
(Pauri and Prosperi [3]) have also been given. Almost
all of the literature, however, is implicitly concerned
with local properties; indeed, it is a topic of great
concern of deciding when a given local realizétion of a
Lie algebra can be extended and hence defined globally.
See, for example, Guest and Bors [1] on the problem of
the 0(4) symmetry of the hydrogen atom.

For the present we shall restrict ourselves to the
case of a single particle moving throughout three-
dimensional space R?® under the influence of a central
potential V. The classical Hamiltonian in Cartesian

coordinates will be

B = E%(pﬁ +p2+p2)+V(r) (1)

and in polar coordinates

B o= L(p? P8 P )4 v(p) (2)
z2m' Pr e -‘LrZ sin® @

Here m is the mass of the particle, (g1, g2, g3) and

(p,s P,s P3) are the position and momentum coordinates;

(¥ 85 o) (pr, Pg> p¢) are defined by



q1 = r sinB cos ¢

g2 = r 8in 6 sin¢ (3)
gs = r cos b,
Py = m%%, Pg = mrzgég Py = mp 2 sin26%%3 (4)
where t is the time. We have the following relations

among the variables:

rp, = P191*P292 *Psq3>
Vai+ q3 Py = P(qsp, - PPy) (5)

P¢ = gqip2 -~ q2pP1-

The Poisson Bracket of two suitably differentiable

functions f and g of the six variables (qi, Q25 g3, P1is

ps, ps) can be defined by

3

- of 29g of 2dg

ir, gl = 3 [ . ] (6)
J=1 10y OR; @R, ¥4 o

§1. Definition of the vectors B and (.

The fact that higher symmetries in classical
mechanics are connected with extra constants of motion
suggests that, in the case of a single particle at least,
we attempt to analyse the set of all constants of motion
possessed by a given system. Since a function f is a

constant of motion iff [f, H] = 0, this equation will, in



principle, provide us with all the information we

require. With H given by (2) we obtain
8f pg Of P 3f pgz Py’ o f
Pr 527 %% 356 77sin? 6 5_54'[ »3 * 7%sin e-mV'(r)] 3p,,

2
sPpcos DB o (2

r*sin”® @ 9P g

We now briefly review the properties of the vectors
B and ¢ which are constants of motion obtained from the
solutions of this equation. Define the angular

momentum vector L by

Q_.—:r_xR" (8)'
then B = %[(_1:‘_ XL) cos G- rL sin G], (9)

g'_=-f;-[(r_><§_) sin G + rL cos G}, (10)
where L = VL% + L5+ L% and

¢ = - dr , (11)
» ;E’E-(E- V(r))r? -1

L and E = H being considered as constants in the inte-

gration. (Guest [1])%.

The following relations exist between L, B and C:

* B as defined here is equal to minus that defined in
this reference.



In addition, all
L
L

are orthonormal.

Poisson Bracket commutation relations

1
L(_IB_XQ)
Le¢ xp)
1(p xB)
rows and
Ly La
By Bs
Ca C»s

It can be verified

[z,

ELi, ch = Cps

where (1, J,

lc,,

LJ.]]

¢;l

J

(12)

columns of the matrix

Lg
B
Cs

Ly

[[c'i, Lj]l

~Lk’

k) is in cyclic order.

{Ll.’ LZ.’ LSJ Bl: BZ: BS} and {Ll: LZ:

(13)

that the following

are satisfied:

= B (14)

k.’

(15)

Ck,

Thus the sets

L3.’ Cl: 02; 03}

are each realizations of D,, the Lie algebra of the

inhomogeneous Lorentz group.

Furthermore, using the

relations (12), it can be verified that




K

‘[B'I:, LB = C?:: I[Ci, L]] = -B'i',
ﬂBi’ Ciﬂ =L, (16)
EBi’ Cj]] = 0, (2 # J)

showing that (formally, at least) we have a ten-dimensiona.
algebra spanned by the set {L, L., L2, L3, By, Bz, Bs,
Ci, Cz2, C3} and containing two copies of D, as

subalgebras.

§2. The Case of Circular Orbits.

All of this argument is purely formal; indeed, when

]

we look more closely at the actual functions Bi’ Cz

we find that they are not at all well-behaved functions

in general; in one case, at least, the component Bgj
possesses a discontinuity at each of an infinite set of
points in phase space. For an algebra of functions
defined on phase space to generate a group of trans-
formations, it is necessary that the functions be real-
valued and infinitely differentiable and that their
respective vector fields be complete. While the

vectors B and ( are certainly real where they are defined,
the second condition does not hold while the third is

entirely fortuitous at this stage.



It is found that the main difficulty occurs with
Hamiltonians for which circular motion is possible: the
integrand of ¢ is L/@“pr)which is not defined for
circular orbits (pr = 0). Consequently, we are led to
define a new vector constant of motion which is closely
related to the vectors B and ¢ and which vanishes for
circular motion. The simplest form for such a vector

will be
X = Y, (E, L)B+V,(E, L)C, (17)

We require also that the components of this vector shall
satisfy the same commutation relations as those of B or
c. This last condition puts the following restriction

on the functions ¢,, ¥,:
¢§+w§=1+—h—£§-—)— (18)

for some function k& of E. With this understanding, the
set {Li, L2, L3, K1, K2, K3} is a realization of the Lie
algebra Dj,. If we introduce another vector J, linearly

independent of X, and of the form
J = ¢,(E, L)IB+ ¢,(E, L)C,
% E
with ¢§ +¢5 = 1 +-—-—Z£2),
for some function 7 of E, and demand that the set

{L, L1, L2, L3, K1, Ko, K3, J1, J2, J3} shall be a ten~-



dimensional algebra with the additional commutation
relations the analogues of (16), we find that we cannot
do so unless h = 0. The first and second of equations

(16), for example, would have the analogues

For these equations to hold, it is straightforward to

verify that we must have

¢1 = fwza ¢2 = wl-

However, using these values for ¢; and ¢,, we find that

)
[[K?;-’ J,,;]] - (d’%"“"% + (B;+ C;)é—ll—z-(q;%-,«- ll)%))L
2
= (1 +f‘£3:. L.
W

This equation is the analogue of the third of equations
(186) . We obtain an algebra iff & = 0. Since Y; and
Y, are each required to vanish for circular orbits, it
is clear that we cannot take h to be zero. Thus the
generators of the symmetry group have been made
continuous at the expense of destroying the supposed
higher symmetry given by equations (16). It may be
remarked here that for Hamiltonians for which circular
motion is not possible, we are free to take # = 0 in
(18) and in this case the higher symmetry is preserved.

The most obvious examples are the free particle and a



particle in a repulsive Coulomb potential; in each case
B and ¢ may be evaluated explicitly and are found to be
infinitely differentiable (almost) everywhere.

The actual determination of 2 in the general case

is dafficult. Since for a circular orbit p, = 0, we
must have :
¥ 2
S + V(2 ) (19)
#o = omr ? e’

Also, Hamilton's equations of motion give

2

mV'(r,) = pca s (20)

c

where the subscript ¢ refers to the case of a circular

orbit. Substitution of (20) into (19) gives

Hc = %PGV’(ra)+ V(ra). (81)

Formally, we can argue as follows: Elimination of r,
between (20) and (21) will give a relation between H,
and ch from which can be obtained, on solving for ch,
an expression involving H, only. If we now write E

for H, and h(E) for -ch we obtain an expression A(E)
which is equal to -L? in the case of circular orbits.
Thus 1+ h(E)/L?* will be a continuous function which
vanishes for circular orbits. Identifying the function
A in this manner, we can now look upon r, as a parameter
w having range (0, «); (20) and (21) can therefore be

written
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ho= -mwiV’'(w) {58}

E = 30V'(w) +V(w), (23)
which gives a parametric representation of A(E). A

necessary and sufficient condition fori(E) to be well-
defined is that whenever E(w;) = E(wy) for some values
wy, we of w, then A(wi) = Alwy). This is clearly
satisfied if F(w) is a strictly increasing or strictly
decreasing function. Furthermore, A(E), as given by
(22) and (23), is defined only for those values of E
assumed by the right side of (23). These values may
not exhaust the totality of possible values as given
by the Hamiltonian. In this case, we may extend h to
these values also, at the same time preserving if
possible the properties of continuity, differentiability,
ate..

We note that

dh

&L = -mw? [wV"(w) + 3V (w)]
@ e BOR
= 2mw ol
so that
%% = -2muw?

or w = //gg, (24)

where p = -h/2m.
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Substitution in (22) and (23) gives differential

equations for p:

3/2
dp /dp

d d q
% zz“%"'[/z%]“’[/zzﬂ]: (26)

which, however, are of more academic than practical

=
Il

interest.

Solving (23) for V, we find

Viw) = 2y J WE () du + L, (27)
where k is arbitrary. Choosing E(w) to be the 1~1
function

E(w) = a(l-f%dws, (28)

where s €( - o, -2)U (-2, 0)VYU (0, ») and a # 0, so that

we can be sure that A(E) is defined, we obtain from (27)
_ s, k
V(w) = aw +-(:)? . (29)

(22) now gives

2

htw) = ~-masw® T + 2mk,

or, from (28),

E ‘¥ E
h(E) = -mas S + 2mk . (30)
a(1+§)



If we let
E(w)

we obtain from (27)

V(iw)
and from (22),

hw)
i.e.

h(E)
In the case

E(w)

we obtain from (27)
T(w)
Substitution in (22)

h{w)

so that %Z(E) can be defined in this case also:

h(E)

I

a/2w?, (a # 0)

3%-1n0)+4%3
w w

2ma lnw - ma + 2mk,

ma In (a/2E) - ma+ 2mk.

0,

k/w?.

now gives

With the wvalues k

function % in the case

V(w)

h(E)

=

Il

a2mk ,

2mk.

= (0, 8 = 2,

of the oscillator:
aw?,

-mE?
2a

(30) gives the

1.4

(31)

(32)

(33)

(34)

(35)

(36)

(87)



and in this case the range of the

equal to that of the Hamiltonian.

k =0, s = -1, give
Viw) = a/w
h(E) = ma?®/2E.

The right side of (28) is in this

if a <0 its range is equal to (-,

13

right side of (28) is

Similarly, the values

(38)

case equal to a/2w and

0) so that (38) is

defined initially only for negative values of E.

However, there is no continuous extension of % for positive

values of EFj; indeed, it is well-known that the hydrogen

atom possesses two distinct symmetry groups according as

the energy is less than or greater than zero.

§3. The Coulomb Potential.

With V(») = -a?/», we obtain from (11)

1 L? - mo?r

G = - sin

r/m?0? + 2mEL2 |’

and substitution in (9) gives

2
Efpx g =it

i Ym?a? + 2mEL?

ma,

Multiplication by 1-+§EE?

the expression

. (39)

, obtained from (38), gives
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As a function depending on E, this vector is pure

imaginary for E < 0 and real for E> 0. If we define

r), (40)

1 ma 2
E = Tmle] (2x2- %

1 mo 2
C = ;@;T§T [Lp- =7 (Lxp)l, (41)

where F # 0, and ¢ = +(L xB), we obtain for E >0 two

|

copies of the algebra Dy, namely {Li, La, Ls, Bi, Ba, B3}
and {Li, La, L3, Ci1, Ca, C3}, the generators of which
are continuous functions differentiable almost every-
where. In the region E <0 we obtain two copies of the
compact form of D, (the Lie algebra of 04). B as given

by (40) is of course the Lenz vector (Lenz [1]).

For future use we remark here upon the commutation

relations between B and (. With ¢, = 21 & mot/2EL?,
Yo, = 0 in (17), it follows from the discussion following

(18) that the relations

ﬂBi, L] = ci,~ Hci, L] = —Bi (42)

are satisfied.
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§4. The Two-Body Problem.

The Hamiltonian for a system of two particles of
masses m; and m,, moving under a potential depending only

upon the distance apart of the particles is

____Z_ pe p
* (pr-+;7-+;3j;£?—a ) +V(r) , (43)

Here », 6, ¢, etc. refer to the relative coordinates and
5, 6, $, etc. to the centre of mass coordinates;
m = mims/(my1 +ms) is the reduced mass; m = my+ my is the
total mass.

The constants of motion can be found by solving an
equation similar to (7)3; they can be conveniently written
in the following form:

Zl.’ 22.’ Z3; bl: bz: ba:‘ Cy, C32, C3, 8':'

_ ey w M (44)
2rs Uas 1si Bas DBas bBasi eus 02 oxi &

For the relative motion, 7,, l2, L3 are the angular momentw
components; by, by, by and e;, s, ¢s are the components
of the vectors b and ¢ analogous to the vectors B and (
defined in (9) and (10), respectively; & is the energy.

~ ~

Similarly, the components Zl, 1,2, L3, etc. are the
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corresponding quantities for the centre of mass motion.
The scalar constant of motion n is peculiar to the

two-body problem:

2

Pz m rdr
e il M G g e e B e (d5.)
2 3
LR /2%13-V(r)]r2» 1

where & and 7 are considered as constants in the inte-
gration. The commutation relations between 1, b, ¢ and
& and between Z, b, ¢ and & are the same as those in §1;

in addition, any quantity from the first set commutes with

any quantity from the second set. Also, we have
[n, 2,1 = n, 5,1 = In, e,1 =0n, 2,1 =10n, b,
b ‘[n: Zi]] =l0., (46)

[& nl = -[& nl = 1.

There are several ways in which n can be incorporated in
a Lie algebra containing some or all of these functions.

We could define
ni1 = sinn, N2 = COS N,

to obtain

II&.: nl]] = -'[[g,ﬂlﬂ

|

N2,
[& n.l = -[&n,] = -n;.

Alternatively, we could define
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~

p1 = &n, p2 = &n
to obtain

[& p.] = -[& p,] =&

l[&, p2]] = "l[é: Dz]]

2

&

Il

The question whether a semi-simple symmetry higher
than D, exists for the general two-body problem must
remain unsolved because of the difficulty of dealing with
the function n. In particular, it would be interesting
to see if globally-defined (except perhaps for zero
relative energy) generators of a higher algebra could be
constructed for the Coulomb two-body problem in a way
analogous to that of §2. It is, however, doubtful
that this would be the case; in fact, it seems plausible
that almost all Hamiltonians have only the symmetry groups
generated by themselves (see, for example Abraham [1],
Peld2 )« Notable exceptional cases are the Hamiltonians

for several non-interacting particles and the Hamiltonians

derived from these by canonical transformations. In
this connection, we notice that for V(r) = 0 we have,
from (45),

n = No = %[:é@_ﬁgﬁ] . (47}

neis clearly a constant of motion which connects the
relative and centre-of-mass motions and for non~interacting
particles it is globally-defined and differentiable almost

everywhere.
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§5. Symmetry in Classical Mechanics.

" The manifold of prime importance. in classical
mechanics is phase space. Geometrically, this has the
. structure of a differentiable sympletic 2zn-manifold
which allows the occurrence of phase variables in
canonically conjugate pairs. One of the most important
operations admitted by this special sfructure of phase
space is that of the Poisson Bracket.

In the usual applications of.classical symmetries
we consider a group of canonical transformations of phase
space that leaves invariant a distinguished real-valued
function called the Hamiltonian. The infinitesimal
generators of this group are vector fields each of which
defines (up to a constant) a real-valued function on
phase space. The vector space spanned by the set of
infinitesimal generators is, of course, a Lie algebra
(with reépect to the commutator) and the space spanned
by the corresponding set of real-valued functions is a
Lie algebra with respect to the Poisson Bracket. These
two Lie algebras are isomorphic.

Let us state the situation more precisely. Here a
manifold will always mean a Hausdorff, second countable
¢” differentiable manifold of constant dimension. In
the rest of this section M will denote an arbitrary fixed

symplectic 2n-manifold.
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Let F(M) denote the vector space over R (reals)
of all ¢” real-valued functions on M. A diffeomorphism
of M is a 1-1 ¢° function M+ ¥ whose inverse is also
c”. D.. will denote the group of all diffeomorphisms

M

of M. We shall say that ¢:G-+DM is an action of a
(finite dimensional) Lie group 6 on ¥ if ¢ is a
homomorphism and the mapping 6 x ¥+ M given by

(g, m)>d(g)m is C".

&5« da Definition.

Let ¢ be an action of a Lie group G on M. i
HEF (M), G 28 a symmetry group of H i1ff ¢(g) is symplectic
for all g€6 (i.e. ¢(g) 18 a homogeneous canonical

transformation) and Ho ¢(g) = H for all g€ G.

5.2. Theorem

Let ¢ be essential (i.e. 1- 1 and into) and
symplectic (i.e. ¢(g) <18 symplectic for all g€ 8) and
1(G) the Lie algebra of G. Then, for each point m€ M,
there exists an open neighbourhood U of m and a mono-

morphism ¢':1(6&) > F(U) such that
|[¢'(x1), ¢'($2)}] = '[wl: x2].,

for all ®1s &2, € 1(8), (On the left we have the Poisson
bracket operation in F(U) and on the right the bracket

operation in 1(G).)
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Proof. The proof is direct but will not be given
here. See, for example Abraham [1l], p. 148 et.seq..

This theorem shows that we can transfer the problem
of finding groups of transformations to the problem of
finding Lie algebras of functions in the sense that the
existence of a particular group implies the existence
of a set of functions that satisfy (up to a sign) the
same commutation relations as those of the Lie algebra
of the group. This is the attitude usually taken when

one talks of symmetries in classical mechanics.

§6. Realizations of Lie algebras.

6.1. Definition
Let A be a Lie algebra over R.

A realization w of A, on M, is an isomorphism

w:A->w(A)CF (M),
where

wilai1, a2l = [wai, wazl

for all ai, a2 €A,

We shall write G = w(A). Note that G is a real vector
space having the same dimension as A, thus ruling out
the possibility that wa = 0 for some a # 0 and in
particular the trivial 'representation' wa = 0 for all

a €A,
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If we assume that there exists a realization of a
Lie algebra and if we restrict ourselves to those which
are semi-simple, then a number of interesting results
can be obtained. Necessary conditions of existence
are given by Simoni, et.al. [1l], for example, and the
present section is devoted to the presentation of a
rigorous proof of a theorem already given by these
authors and conjectured by Mukunda [1]. It is shown
that the rank of a semi~simple Lie algebra such that
there exists a realization on a symplectic 2xn-manifold
M is at most equal to =n.*

It is perhaps intuitively plausible from the
considerations given by Simoni, et. al. (which amount to
no more than four lines) that the theorem in true, but
it is by no means obvious. In the rigorous formulation
of classical mechanics (Abraham [1l] ), Poisson Brackets
are defined only for real functions, and a careful
consideration of the 'complexification' of the algebra
is an important step in the proof. Our treatment of
realizations of Lie algebras is based upon a differential
~-geometry-theoretic approach. It will be seen how

many obscurities in the classical treatment can be

* The present author constructed the proof to be given
here while he was unaware of the work by Simoni
referred to above.
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cleared up when the whole is rephrased in the language
of modern mathematics (Guest [2]).

We shall be interested in functions that are
'regular' in the sense that they are not constant

anywhere.

6.2.  Definition
Let N be a manifold.
fFEF(N) is regular on N i1ff there does not exist a

nonempty open set UCHN such that flU is econstant.

6.3. Definition
A realization w of A on M is regular i1ff wa is

regular for all a €A, a # 0.

Let us now consider the case when A is semi-simple.
We shall show that if A is semi-simple and finite-
dimensional, then there exists no realization of A on
M if the rank of A exceeds #n. Otherwise stated, if ¢ is
an essential symplectic action of a finite-dimensional,
semi-simple Lie group 6 on ¥, we obtain, by 5.2, for
each m€ M, an open neighbourhood U of m and a realization
(apart from a sign)of 72(G) on U. Clearly,in the theory
that follows, we can, without loss of generality, take
U to be the whole space M. G, then, is of necessity

locally isomorphic to one of the following:
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S0g, 5055 seay 302n+1;

§O0us 806y +oes S50, ;

SUps SUss wevs SU, 3

Sp1s Op2s ey Spn;

E; (1 = 6,7,8; ndt)
Fuy; (n >4)

Ga. (n22)

The reason for this limitation on the rank of & is
connected with the symplectic structure of phase space.
If is certainly not surprising, any more than the common

knowledge that any group of linear transformations that

2

leaves invariant the quadratic form x%+ a2+ ...+ x

in m-dimensional Euclidean space and having unit deter-
minant must_be a subgroup of Som(and hence have dimension
at most equal to &m(m-~-1)). In phase space, we do not
have a quadratic form but an exterior form
dql/\dp1‘+..,-+dqn/\dpn which is left invariant by our
Lie transformation group.

We consider the complex extension ¢ of G defined by
G =C®c¢ (48)

where 0 is the real space of complex numbers.
Tf {24 4k {ej:j = 1,2,...,dim ¢} are bases of C

and G, respectively, a general element x of G can be

written
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2 = 3la%(1®e.)+bI(i®e.)] (49)
j J J

with aJ, b’ €R. From the normal rules governing tensor
products, we see that this is the same as
x =1®(za’e.) +1®(3b7e )
: J : J
d J
= 1®f, +i®Ff,, (50)
where -.f1, fz €G.
G so constructed is a real vector space which can

be made into a complex space by defining, for

X = A1 +4%2€C, X145 X ER,

e = AOF, + A2 ®F,

I

1®(Aif1~Xaf2) +2®(Ayfa+ Aaf1)., (51)
G also has a natural Lie algebra structure over C:
[z, y1' = [1®f1+2®f,, 1®g1+ 7 Bg,]' =

I1®([Ff1s g1l - [Ff2s gal)+2i®([Ff1s g2l +0F2s g, 1), (52)

~

Furthermore, G is semi-simple iff ¢ is semi~simple, and
if @ is a Cartan subalgebra of ¢, then
Q = C®QCf is a Cartan subalgebra of ¢ (Jacobson [1],

Dp. 104 BL). Thus if
{Hi: £ =1, 8 uedinf}
is a basis of Q,

{Hi 2°

i
~
&
o
o,
]
~

'
)

A"

c., dimQ}

is a basis of .
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Now let A be finite dimensional and dimnﬂ — dimcﬁ = IS
17 is called the rank of G or G. Recall that a root of

¢ is a linear mapping

~

a; Q+*6
with components o = oc(flj) which are eigenvalues of Ad ﬁj
acting in G with eigenvector Ea(j w 1. Biiess bl

(Ad X, for X €G is the linear mapping G + G defined by

AdX.f =[x, fl' for all fE€&.) Thus

[g., 1" = B . (53)

It is also true that there are I linearly independent

roots o, B, ... with 7 corresponding linearly independent
eigenvectors Ea’ EB’ R -
Let
= S 2
Ea—1®E’a+'L®E’a. (54)

Then (53) becomes
1 . 2
1®[[Hj" Ea]I+7’®[[Hj’ Ea]]
= 2
= ocj(l ®an+7’®Eoz)' (55)

We shall need one further property of the tensor
product. For any bilinear (over R) mapping
g: CXG>V
where V is a real vector space, there exists a unique

linear (over R) mapping

¢ G +V
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such that
G(ABF) = Y(A, f) (66)
for all A€€C, fea.
Let ¥V = C and, for m€M, let
YA, F) = Af(m).
It is easily seen that ¢ is bilinear, for
V(ak +bu, f) = (ak+bu)f(m) = alxf(m)l +bluf(m)]
aP(x, f)+by(u, f)

Il

and

Y(A, af + bg)

Xlaf + bg)(m) = Al(af)(m)+ (bg)(m)]
Aaf(m) + bg(m)} = arf(m)+ brg(m)
aP(r, Ff)+bV(A, g),

for a, DER; X, nE€C:y £, g€FE(NM]. The second and

il

third steps in the second part are a consequence of the
fact that F(M) is a vector space over R with corresponding
definitions of addition and scalar multiplication. Hence
d(A®F) = Af(m).
Equation (55) now gives on operating on each side
with ¢:

HHJ, B I (m) + 200, BiN(m) = a LB (m) + iBl(m)]. (57)

The Poisson bracket of two functions f, g €F(M) is

defined in a coordinate-free manner by

If, gl(m) = _df'(m)olxg(m)], (58)
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where Xg is the unique vector field on M associated with
g and df is the unique differential l-form associated

with f. The left side of (57) is therefore

de(m)-[XE&(m)]+-ide(m)-[XE;(m)]. (59)

Now let Eg(j = 1,24...5L) be real numbers such

that

Z .
r &dH . (m) = 0 . (60)
J=1 :

Multiplying the expression (59) by £/ and summing from

1 to 1, we obtain

Z . 7 .
[ L EJdH.(m)Jo{XE1(m)]-+i[ )X EJdH.(m)]'[XEz(m)],
i=1 4 o J=1 4 o
which is zero. Thus, from (57),
% gju.[El(m)-+iE2(m)l = 0. (61)
j=1- d @ o

6.4 Theorem
Let w be a realization on a symplectic 2n-manifold
M of a finite-dimensional semi-gsimple Lie algebra A.

Then rank (A) < n.

We shall first prove several lemmas. A will be as in

the statement of the theorem.

6.5 Lemma
Let f€G = w(AR), f # 0, and let UCM be a nonempty
open set such that f|U is constant. Then g|U = 0 for all

g €G.
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Proof. Let ¢, CF(U) be the Lie algebra spanned by
the set {g|U: g €¢}. Define the mapping 1: G-+ G;:

g—+glu. Since
[tg, th] = [g|U, R|UL = [g, R1|U = <lg, hI

for all g, Rh€ G, T is a homomorphism. (For the second

step see Abraham [1], pp. 99, u48). We have

0 = [flu, glvl = <lf, gl

for all g €4G.

We shall assume that G is simple; the extension to
the case where ¢ is only semi-simple is straightforward
and follows from the fact that a semi-simple algebra is
the direct sum of simple algebras. If ¢ is simple,

[f, 2] # 0 for some W€ G, since [f, gl = 0 for all g€a@
implies {f} is a non~trivial ideal in G.

Thus 1 '{0} # {0} and is an ideal in G. Therefore

7 {0} = ¢; i.e. Té = 0 for all g€ @; i.e. g|U = 0 for all

g €G.

6.6, Lemma.
Let fE€G, f # 0. Then there exists a nonempty
open set c(w) CM such that fle(w)€ F(e(w)) is regular on

el(w).

Proof, Let W = U{U: UCM is open and f|U is constant}

By 6.5, f|W = 0. Let ¥ denote the closure of W. By
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continuity, f|W = 0. Thus e(w) = M- ¥ is open (since
W is closed) and nonempty (for otherwise M = W and
flM = f = 0). It should be clear that fle(w) is

regular.

6.7. Lemma

gle(w) is regular on c(w) for all g€ G, g # 0.

Proof. If there is an € G, h # 0,such that
h|e(w) is not regular, then there exists a nonempty open
set V Ce(w) such that 2|V is constant. By 6.5, this |
implies that g|V = 0 for all g €G; in particular, f|V = 0,
which contradicts 6.6.

It is obvious from this result that the set c(w)

of 6.6 is independent of choice of f.

6.8. Lemma
wy: A>Fle(w)): a=+(wa)le(w)
28 a regular realization of A on the sympleectic 2n-manifold

c(w).

Proof. Since wia = (wa)|e(w) # 0 if a # 0, w: is
1-1 (see 6.7). Hence, since [, ] and linear operations
in G commute with restrictions, w; is in fact a realizatio
That it is regular follows from 6.7. Since e¢(w) is an
open subset of ¥ it follows that e(w) is symplectic and

of dimension 2n.
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6.9 Lemma

Let N be a manifold. If r funetions i1, f25004s
erEF(N), r finite, are regular on N, then there is a
nonempty open set UCN such that fi(u) # 0 for all u€VU

and eath © = 152:;8s: veslbs

Proof. It is clear that there is an m € ¥ such that
fi(m) # 0. Hence U; = f1-1(3~ {0}) is nonempty and
since R - {0} is open in R and f; is continuous,
f1 ' (R- {0}) is open in N.

Similarly, there is an m€ U; such that fao(m) # 0.
Hence U, = Uy Nf, '(R-{0}) is nonempty and open. We
can repeat the argument and obtain after »r steps the

nonempty open set U = U, . ¢es. CUy CN on which no

r-lc

member of the set {fi: 2 % 1,2,...,2F vanishes.

6.10 Lemma

Let N be a symplectic 2n-manifold and gis, gos+«+»
ngEF(N). We say that {g1s goseess gk} 18 in involution .
on N 2ff

(i) For each mEN, {dgi(m): t = T80kt 18 a
linearly independent set in Tm*(N), where Tm*(N) 18 the
cotangent space at m;

(21) ﬂgi, gjﬂ = O For $5 § = 45 8eva3 ks

Then £Ff {g1s Gasvens gk} t8 in involution on N, k< n.
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Proof. The method of proof makes use of the

symplectic structure of ¥ (see Abraham [1], p. 112).

Proof of Theorem 6.4
Since EaEE& is a member of a linearly independent

set, Ea is not null, and, therefore, from (5§4), not both

of Eu1 and Ea2 are null. Assume that Eakl(k1 = 1 or 2)

is not null. Apply 6.9 with ¥ = e(w) and the set of 1

K1 ks

functions {F_ "', E 3
o B

is a member of G and so is regular on c(w). By 6.9,

i % ka Each element of this set

there is a nonempty open set U Ce(w) such that

Eakl(u) # 0, E kz(u) # 0, ... for all 7 roots d, B, ...

B
and for all u€U.

(61) now gives, for m = u €U,
/)

J
Y E%aq,; = 0,
g=1 J
7 (62)
dJd
, = 0
jﬁzg BJ ?
Since o, B, ... are linearly independent, we have
0(.1 012 LR az
Bl BZ ° 0 e BZ # 0

and hence

el a g (7 = 1.8,..0510, (63)
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Thus, from (60), {de(u): Jd =1,2,...,L} is a linearly
independent set in Tu*U for all u€U. Further,
nyi|u, Hjluﬂ = [&,, HjBlU =0, and so {(H,: % = 1,2,...,1}
is in involution on U. Since U is an open subset of ¥,
U is a symplectic 2n-manifold. Hence, applying 6.10
with ¥ = U, we obtain 1< n. This completes the proof
of the theorem.

The set e(w)C M described in 6.6 will be called the
carrier of the realization w. It is clear that e(w)
has the following properties:

._(2) e(w) is open and nonempty;

(i1) g|(M~-c(w)) = 0 for all g €G;

(i22) gle(w) is regular on c(w) for all g€ G, g # 0.
e(w) may be connected or not connected, a proper subset
of M or M itself. It is not known whether the fact that

A is semi-simple puts extra restrictions on e(w).

6.11 Theorem

Let w be a realization on a symplectic 2n-manifold M
of a finite-dimensional semi-simple Lie algebra A. Let
HEF (M) be nonconstant on a connected component of the
carrier. of wand let [H, gl = 0 for all g€G = w(A).

Then rank (A) < n -1,
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Proof. First note that dH|D # 0 for some connected
component D of e(w); for dH|D = 0 implies that H|Dp is
constant. Note that D is open (manifolds are locally
connected; each component of a locally connected space
is open).

Thus there is a point m €D such that dH(m) # 0;
DOdH" " (r*M - {0}) is therefore nonempty (7#*M is the co-
‘tangent bundle over M) and, since dH is continuous, is
open in M. Since DCe(w), g is regular on D for all
gE€G, g # 0. Applying 6.9, we are assured of the

-

¢ -l
existence of a nonempty open set UCDNdH (T*M- {0})
P

on which no member of the set {Eakl, EB ,++.} vanishes.

Now let £, &', E%, ...3 EZ be real numbers such
that

L d
EdH(u) + L E“dH .(u) = 0 (64)
Jg=1 Jd

where u €U, We now conclude, as before, since H
commutes with Eal, Eaz, EBI’ EBZ’ ..., that &7 = ¢
(F 2 2,8,.0u5b)s Hence, since dH(u) # 0, we must have
E = 0. Thus the set {dH(u), de(u): JF = 1,2, .5 8) 38

linearly independent in Tu*U for each € U and is also
in involution. Hence, by 6.10, L+ 1< n. This completes

the proof of the theorem.

Finally, consider the following consequence of
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6.12 Theorem
Let ¢ be an essential action of a finite-dimensional,

semi-gimple Lie group 6 on a p-manifold N (not necessarily

symplectic). Then rank (6) < p.
Proof. For g€6, [¢(g)]* is an essential action of
6 on the symplectic 2p-manifold T*N (see II §2). More-

over, [¢(g)]* is symplectic (see Abraham [1], p. 97).
Also, rank [¢(G)]* = rank ¢(G). Hence by 6.4, rank (6)
S B

In more familiar terms (and considering the case
where ¥ = RP): if there exists a faithful (not necessarily
linear) representation of G by a group of ¢” transformations
of RP, then rank (B6) < p.

Obvious generalizations of 6.11 to the case where G
commutes with two or more 'functionally independent'
functions can be made. However, the statements of the
corresponding theorems become more complicated the greater
the number of commuting functions.

It is important to note that 6.4 and 6.11 give only
necessary conditions for the existence of a realization
of a particular Lie algebra. An example is given by
Mukundé [1] which shows that no realizations exist on a
g-manifold of the semi~-simple algebras B, or G, such that
w(Bs) or w(G,) commutes with a regular Hamiltonian. It

is clear that such realizations are not ruled out by 6.11.



35

This concludes our discussion of classical
symmetries. In Part II we shall see how such symmetries
become important when we consider the quantization of

classical systems.



o 4

THE QUANTIZATION OF CLASSICAL SYSTEMS.

A classical (holonomic) system is popularly described
by the giving of its configuration space M and a real-
valued function on T¥ (the Lagrangian on the tangent
bundle of M or 'state space') or on T#M (the Hamiltonian
on the cotangent bundle of M or 'phase space'). For
example, for a free particle moving throughout physical
space, M is equal to R® or three-dimensional Euclidean
space; for a particle moving in a Coulomb field of force
M is equal to R%® - {0} (R® with the origin removed); for
a double pendulum ¥ is equal to the torus (the Cartesian
product S! x S! of two unit circles); for a spinning top
M can be taken to be 07(3) (the space of all orthogonal
3 x 3 matrices with positive determinant). In each case
M has the structure of ac¢” differentiable manifold. The
phase space T#*M, in particular, is then uniquely determined.

We shall be concerned exclusively with Hamiltonian
systems and with the cases where M is finite dimensional.
A classical observable is then a real-valued Borel
function on T#*M.

Many attempts have been made and are still being

made to set up a 1- 1 correspondence between a subset of

36
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the set of all classical observables and a subset of the
set of all quantum observables. By a quaﬁtum observable
we mean, of course, any self-adjoint operator in a
complex, infinite-dimensional, separable Hilbert space
(the Hilbert space will depend upon the quantum system
under consideration). Most of the quantization procedures
given in the past have been purely formal in character:
not only have they been mathematically non-rigorous but
also little attempt has been made to incorporate even
simple physical principles into the scheme.

We shall for the moment write 4 for the quantum
observable corresponding to the classical 4. Von

Neumann's rules are as follows (Von Neumann [1]):

(1) [Fea)l” = F(d),

I

(ii) (4+B) = A+ B,

1

where 4 and B are classical observables and f is a real-
valued function (presumably well-behaved: we shall not
stop here to explain in detail what is meant by a function
of an operator.). These rules are inconsistent since in
certain cases it can be shown that they lead to different
operators for the same classical observable. In other
words, the assignment 4~+ 4 is not a mapping in the

mathematical sense.
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The most remarkable quantization procedure is
probably that due to Weyl [1]. If 4(q, p) is a
classical observable, we form the 2n-dimensional 'Fourier

transform' y defined by

Y(xz,y) = (am)”" e—i[(x]q)+ (y|p)] A(q,p)dqdp

H2n
where (Q.’p} = (Q1,Qz,---,qn: pl:pZ:--':pn).,
n
(x,y) = (ml,mz,...,xn, yl,yz,...,yn), (xlq) = iglxiqi’
n
(y|p) = igzyipi' We then take the inverse Fourier
transform of y but in operator form, i.e. we write
i= (am)7" L@z + (Ply)] il i,
RZn
where § = (Ql,Qz,...,Qn), P = (P1,P2,...,Pn) and
(Q|x) and (P|ly) have their obvious meanings. Qyis the

operator f - q;f, P the operator f—+%.§¥;where f is an
arbitrary function in the Hilbert space. Such an
integral of operators that appears in the definition of
A can of course be defined for certain functions ¥y

Rzn) but apart from

(notably, if y is integrable over
this the main difficulty is in the definition of y when

4 is not integrable. However, it can be shown
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(McCoy [1]) that Weyl's rule leads to several undesirable
features, notably the nonexistence of a correspondence
between classical and quantum constants of motion.
Nevertheless, Weyl's rule is interesting because of its
elegance and because no mention is made of symmetrisation.
Several other quantization rules involving integrals have
been given (Rivier[1l]).

Among the plethora of other quantization schemes,
mention may be made of simplicity rules (Yvon [1]),
symmetrisation rules (Tolman [1l, p.206]) and of course
Dirac's rule (Dirac [1,2]). Dirac's rule is the Poisson
bracket-commutator correspondence.

As an illustration, we give an example to show how
inconsistencies may arise due to the adoption of some of
the rules mentioned above. With obvious notation, we
wish to form the operator corresponding to the classical
function ¢%p? for a system consisting of one degree of
freedom. Depending upon how we write ¢®p?, we can
arrive at several different expressions for (q3p2)~.

Thus writing @ for ¢, P for p, we have
(¢°p*)~ = [q.(qp)2]” = %1Q(QP+ PQ)* QP+ PQSQ]

2
=-h2[q3—2-88q + 3q2—3§c-l—+ %Q]; ()
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(q%p2)~ = (q%.p%)~ = %(@°P?+ P2@?)
= _hz[qa—g;-+3qziL-+3q]; (i1)
aq 9q
(q%p2)~ = lg%.(qp?)]1~ = %[Q2(qP? + P2Q) + (QP%+ P?Q)Q?]
= -h? 332+32—8—-—+2 ; (211)
PLt IR e S s e
(q%p2)~ = [(qp).pl~ = %[(Q3P+ PQ3)P+ P(Q°P+ PQ°)]
92 3 , 3 ;
= -flz[qs—a—&-z'-l- 3q2-a—a"+ '-ég-]. (Zv)

Lest it be thought that the simplest classical form
(say (%)) would surely give the 'correct' operator, one

need only notice that if we write
(q3p2%)~ = 882~ 28,

where S; and S, are the operators in (Z<) and (2i%),

respectively, we arrive at
32
(¢°p?)"~ = -hz[q3551~+3q ol
surely the 'simplest' operator of them all, and yet this

operator results from writing the classical expression

in the form
gla®. tap®J)) = 2(g"*. p%)
and is in fact the operator
%(3Q%P%q + 3QP2Q% - Q3P% - P2Q%).
Here we have used the conventional association

Q:fraf, P:f+3 oL

TR
e/
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A major error in all of the rules of quantization
discussed above is the attempt to quantize too large
a set of classical observables. We quote from Mackey [4]:
"... there is no feason to suppose that every classical
observable has a quantum counterpart or that if it has
one it has only one ... they [the quantum observables]
will not correspond in a one-to-one fashion to classical
ones. Moreover as classical mechanics is a limiting
case of quantum mechanics it would not be surprising to
have a number of different quantum observables coincide
in the classical limit. On the other hand, we shall
find natural correspondences between the basiec classical

observables and corresponding quantum ones."

8§l. Prequantization Schemes.

If N is a topological space B(N) will denote the set
of all Borel subsets of N, i.e. the o-algebra generated
by the open subsets of M (this is the smallest collection
of sets which includes the open sets and is closed with
respect to the formation of differences and countable
unions). In this work we shall refer to a mapping f of
N into a topological space N' as measurable if FFlaesm)
whenever A'€B(N'). Continuous functions and all point-

wise limits of continuous functions are measurable.
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We shall consider the configuration space and phase
space of a classical system. Since, however, the former
is nothing more than a manifold #' (in which case the
latter is T#M'), it will be convenient in view of later
developments to formulate everything in terms of an
arbitrary manifold M.

The mapping T:7*¥ +M will denote the cotangent
bundle projection of ¥ (i.e. it sends (g,p) into gq). If

f is a real-valued measurable function on M, then fo T

is a real-valued measurable function. We shall write
Q =0(M) = {fo1: f is a real-valued measurable function
-on M}. (Elements of @ are functions of the g¢'s only.)

A classical observable will be defined as a real-valued
measurable function on T*M.

We shall for the present restrict ourselves to
Q(M) and shall set up a quantization scheme which
successfully 'quantizes' these functions. But first a
digression on terminology is in order.

An operator in a Hilbert space ¥ with norm l-l and
inner product (, > linear in the first variable is a |
linear map 4 from a linear  subset D(AL'called the domain
of A into (. A is said to bé eclosed if whenever
xnfED(A) and both z -z and Az -y for some y in ¥, then
x€D(A) and Ax = y. An operator A' in # is called an

extension of A, symbolically, ACA', in case D(A)C D(A')
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and the two operators agree on their common domain.
-Suppose A and B are operators in # and let ¢ be é scalar.
Then

(1) A+ B is defined as'the operator whose domain
is D(4) ND(B) and which has the value Ax + Bx for any
vector x in this domain;

(2) AB is defined as the operator whose domain
consists of all vectors x in D(B)such that Bx € D(4)
and which has the value A(Bxz) on any such vector;

(3) eA is defined as the operator with domain D(4)
and having the value e(4x) for any vector z in this
domain.

We shali say that a sequence {An: %S a2y 8ys mired
of partially-defined operators in ¥ converges to another
such operator 4 if the following conditions hold:

There exists an integer no, such that

(i) D(A) = {x: 2€D(A_) for all n> ng, lim A =
n n
n>Mng
exists in ¥},

(22) Ax = lim Anx fors all #E€DlA).
n>ny

The convergence is of course taken in the topology of #.
We shall write A, A,
If A is an operator in ¥ with dense domain D(4)

the adjoint A* of A is defined as the operator whose
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domain consists of all vectors y in H for which there
exists another vector y' in # such that (4dx,y) = (x,y")
for éll x in D(A), and which hdas the value y' on such

a vector y (the value y' is unique in view of the density
of D(4)). If A, B and A+ B are all densely defined,
then

A*+ B* C(A+B)*,
Similarly, if 4, B and AB are densely defined, then
B*A* C (AB) *.

If A is densely defined and ACB, then B*C A%,

An operator A4 is séid to be self-adjoint if A is densely
defined and 4 = A*%*. An operator A is called symmetric
in case it is densely defined aﬁd has the property that
(Ax,y ) = (x,Ay) for all vectors x and y in its domain.

A densely-defined operator 4 is symmetric iff A4 CA*,

An operator is said to be closable if it has a closed

extension. A 1s closable iff
x €D,, lim x_ = 0 and lim Ax_ = y
n A" e S
imply
y = 0.

The minimal closed extension 4 of a closable operator 4
(in the sense that any closed extension of A is also an

extension of Z) is called the celosure of 4. A vector x
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belongs to D(4) iff there exists a sequence (x, ) of

elements of D(4) such that both lim =z and lim Amn exist

nro N 9>
and 1lim 2 = z. i de = 113
Al W, In this case we have Ax %iﬁ Awn

If 4 is self-adjoint, then 4 is the unique self-adjoint
extension of 4. The adjoint 4% of any densely defined
operator 4 is closed; consequently any symmetric operator
is closable. The closure of a symmetric operator 4 is
equal to A#** and is,symmetric. A self-adjoint operator
is symmetric and closed.

The symbols 0 and I will represent the null and
identity operators respectively, each having domain .

The first quantization scheme we shall employ will
comprise five axioms. It is to be understood that all
of our considerations are nonrelativistic. Furthermore,
we shall pretend that identical particles are distinguish-
able. (The only difference here is that our Hilbert
space is larger than the correct one, which is the
symmetric or anti-symmetric subspace of a multiple tensor
product according as the particles are bosons or fermions,

respectively.)

T Definition.
A prequantization scheme on M is a mapping A of
Q(M) into the set of all self-adjoint operators in a

complex, infinite-dimensional, separable Hilbert gpace X
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such that the following conditions (1)-(5) are satisfied.

If f, g€0Q, c€R, then

(1) Af+ Ag is closable and A(f+ g) = Af+ Ag;
(2) Mef) = chf; |

(3) AfAg is closable and A(fg) = Afhg.

(4) If h(x) = 1 for all x€T*M, then Ah = I.

(5) If f5 £, €Q (n = 1,2,3,...), if Ifn(x)ls [ Fitw) |
and %i@ fn(x) = f(x) for all xGET%M, then

Afn-+ﬂf.

Apart from the fact that the self-adjoint operators
involved may not be everywhere defined, axioms (1)-(3)
can be considered as describing an algebra homomorphism.
More precisely, if Q' is that subset of Q@ consisting of
all f€0 for which Af is everywhere defined, then Q' is
an algebra (i.e. is closed under addition, scalar
ﬁultiplication and formation of products; this can be
verified from axioms (1)-(3))and A:Q' > AQ' is an algebra
homomorphism. It is clear that AQ' is a commutative
algebra. Axioms (1)-(3) then describe the generalization
to the whole of Q of the restriction of A to Q'. Axiom
(4) is a normalisation condition. Loosely, axiom (5)
says that A satisfies a kind of continuity condition with

respect to dominated convergence of sequences in Q.
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However, Q' is not closed with respect to formation of
these sequences; in fact the closure of Q' with respect
to formation of dominated sequences is @ itself. It
will not be necessary to pursue these matters in the
sequel.

A number of non-trivial results can be deduced from

the axioms. If A€B(M) and XA is the characteristic
function of A(i.e. XA(x) = 1 if € A and is zero otherwise),
then clearly XA is a measurable function on M. We shall

write P(A) = A(XAO t)e

1.2 Theorem

For every AEB(M), P(A) is a projection.

Proof: We have

P(A) = A(Xyo T) = A(XZO t) = A[(on T) . (Xyo T)]

= Mxp o TIA(Xy0 T) = P(A)? = P(A)?

by axiom (3) and the fact that (f. T).(goT) = (fg)o T
for real-valued measurable functions f, g on M.
Since P(A)* = P(A) and D(P(A)) = D(P(A)?) we have,

If o EDIPIAIY,

IP(A)al?

(P(A)x,P(A)z) = {z,P(A)>%x)

(x,P(A)x) < lelllP(A)cl
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so that

I2ca)al < Izl .
Hence P(A) is continuous at every point of its domain.
Let z €X, anD(P(A)) (i = 1,2,8,+++) anad |lxn-z|l+0,

Then (xn) is a Cauchy sequence and

HP(A)wn- P(A)mmﬂ HP(A)(mn-mm)ﬂs “mn~ xmﬂ.

Therefore (P(A)x ) is a Cauchy sequence also and hence
converges to a vector y€ i. Since P(A) is closed we
have 2 €D(P(A)) and P(A)z = y. Thus D(P(A)) = &
and since P(A)? = P(A), P(A) is a projection.

Recall that a projection-valued measure on a set X
is a map S from a o-algebra of subsets of X to the pro~-
jections on a complex Hilbert space which satisfies the

following conditions (Z)-(Zv):

() S(ENF) = S(E)S(F)

and S(E)S(F) = 0 if E and F are disjoint.

(i) S(E)* = S(E) = S(E) 2.

(ti2) 8S(X) = I.
(iv) 1If E = QEi, where the E, are mutually disjoint,
i
then
S(E) =

ES(Ei)

in the senge that

n
S(E)x = 1lim I S(Ei)w
nroo =1
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for all x in the Hilbert space, where the limit is taken

in the Hilbert space topology.

1.8 Theorem
The map A~+P(A) of B(M) into the projections on ¥

i8 a projection-valued measure on M.

Proof. We must verify that the above conditions
(2)-(Ziv) are satisfied.

For (2), we have

P(A1NA2) = A(Xy np, o T = A(Xp:Xp,) 0 T

A[(XA1 o T)'()(Azo'[')] = A(XA1 o T)A(XA2 o T)

P(Ay)P(A2) = P(A1)P(A2)

from 1.1 (3). If Ay,NA, = ¢, then P(A,)P(Ay) = P(¢) =

A(X¢o T)'= A(O0.f) for any f€ Q. By 1.1 (2) this ds

equal to O.Af = O|D(Af) = 0.
' (11) follows immediately from 1.2.

For (Zii), we have P(M) = A(xMo ) = I by 1.1 (4).

For (iv), we note that if A;N A, = ¢ then

P(A1Yb2) = P(Xp, 1up,° T) = MUXp, +Xp,) 0 T) =

A(xAloT-+xAzo T) = A(XA1° ) # A(XA1° T) = P(A1) + P(A3) =
P(Ay) +P(A;) by 1.1 (1). Extending to any finite
collection {Ai: i =1,2,..,n} of pairwise disjoint sets,

we have
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n
P( VUA,) = L P(A,).
=1 ¢ i=1  *

B(M), let 8, =X
;S

6 AL® T3 then 6,8
1A1: i=1 1

hC3

pointwise and 8,<8;3 hence by 1.1 (5), Asn-+As. Thus

0 n
P(iU A.)Je = 1lim P( U _A.)x

=7 7 N> =1 7
n
= 1im Y P(A.)zx
nro 4=1 T

for all x €.

We shall now appeal to the general theory of
representations of C%-algebras (the algebra of bounded
operators on # generated by the P(A) for A€B(M) is such
an algebra) as developed by Bochner, Godement, Gelfand
and Neumark. We shall quote a standard result of that
theory (1.4). The relevant theory leading to this
result is not readily found in the literature; see, for
example, Dieudonne [2, chap. 15], Mackey [2]; perhaps
Halmos [1l, chap. 3] is the néarest classical exposition.

A cyclic vector for a set S of everywhere defined
linear operators on a topological linear space L is a
vector z in I such that the finite linear combinations
6f the vectors of the form 4z, A€ S, form a dense subset

of L.
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Let N denote the set of integers »1 and for each

be the set {nE€N: 1<n <k}. Define N_ = N.

k €N 1e*§ N;,<

1.4 Theorem

Let S = {P(A): AEB(M)}. Then H 18 a direct sum #*
H = @ ﬂ%
k ENU {=}

of elosed subspaces ﬂ% and each ﬂ% 18 a direct sum
A
.’!(’k = iE@Nk ZFCk
of closed subspaces ﬂi such that
(i) each ﬂi is left invariant by all members of
S and'has a ecyelic vector for the relative action of S
restricted to that subspace,
(17) for each k, for each %, j‘ENk, there is a
unitary mapping of ﬂi onto ﬂi which carries P(A)|ﬂi
into P(A)|ﬂﬁ,

(1£2) 27k # L 2f 1 €Ny JC€ N, and 2f

k.’ Z.’
ﬂi # {0}, no unitary mapping exists of Rz onto ﬂ% such
that P(A)|H; 18 carried into P(A)Iﬂ%.

The subspacesﬂ% are uniquely determined by P.

For the further development of the theory we give the

following.

%* By direct sum we shall always mean a Hilbert sum
(cf. Dieudonne [1, p.123]).
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1.5 Definition

Let N be a topological space and v a (nonnegative,
countably additive) measure on B(N).

£2(N,v) will denote the set of all complex-valued,
measurable functions f on N for which J]f]zdv is finite.
vfz(N,v) will denote the set of all equjzalence classes
of such functions, two funetions being equivalent iIff
they are equal except on a set in B(N) of v-measure zero.
As s known,fz(ﬂ,v) 18 a Hilbert space with inner
product (f,g) = J fgdv. We shall generally suppress
the distinction bgtween Lo(N,v) and fz(N,v).

Let h be a complex-valued measurable function on N.

By m(h) we shall mean the operator defined by
D(m(h)) = {fE€EL2(N,v): RfELL(N,V)},
m(h)f = hf for all FfE€D(m(h)),

where (hf)(x) = h(x)f(x) for all xz€N. m(h) 218 self-
adjoint in EyN,v) <ff h is real-valued.
For v» = 1,8,..05 define ¥ =CxCx...xC (r times)

together with i1ts obvious vector space structure. With

: _ 5 . _
the norm Hx"r = i21|xi| and inner product <x’y)r =

r

T Bl ey C” is a Hilbert space. Define € to be the set

of all sequences n>x for which .lexi|2< w, With the
1=
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2 and inner product {z,y’_ = .I .y

rm lxll = y .
no xl B |x$| JL®iYgs

1=1
C” is a Hilbert space.
For » = w,i,z,..., define £2(N,Cr,v) to be the set
of all C”-valued measﬁrable funetions f on N for which

I Ircx)h2dv is finite. With the norm Ifl_ = J NfF(xe)l2dv
and inner product (f,g)r = J L), g(x)>rdv, the set
N

E,(n,C%,v) of equivalence classes of such functions is
a Hilbert space
If h i8 a complex-valued measurable function on N,

m(h) will be the operator defined by
D(m(h)) = {fE€L(N,C",v), RfEL,(N,C",v)},

m(h)f

hf for all fE€D(m(h)),

where (hf)(x) = h(x)f(x) for all x€N. m(h) is self-

adjoint in L£,(N,C ,v) iff h is real-valued.

(Whenever m(%) is mentioned it will be generally
clear from the context which space £2(N,Cr,v) is referred
to. If r = 1, the second definition agrées with the

earlier one.)
We shall also need

1.6 Lemma
For ¥ = 1,2,..., (resp. » = ), let S denote the

direct sum of » copies (resp. ¥y copies) of Lo(m,v).




S

Then S 18 unitarily equivalent to Lo(N,C",v).

Proof. Por » & 1; 25vany 1L
fle) = (Fr(x),falz)yee.,f(w)) for all § = (f1,f2,+..,f,) €S,

Then f is measurable from N into €¥ and we have

r

v 2 _
JNHf(x)Hrdv = JN[iillfi(m)|2)dv

b o]
= 2 == B o
= 3 Jlei(x)l dv = Ifl% <,

=1

(where "'"S is the norm in 8),so that f’GoCz(N,CP,v);
hence we can write "}"r = ﬂfHS; since f+-} is linear
and clearly onto, it is unitary.
If v = », let f(x) = (f1(x),fa(x),...) for all
P (PasPosiied B B The same conclusions hold as in the

e

finite case if we note that "f“; = _21 J Ifi(m)lzdv< o
‘ = N

(by definition of direct (Hilbert) sum); hence we can
interchange the order of integration and summation to

obtain IfI2 = JNH%(m)u;dv.

It is clear that the operator S which is the direct
sum of the operators m(%) in each summand £, (¥,v) is
carried into the operator m(k) in L,(N,CY,v) by the

unitary mapping f- F.

Of great importance is the following
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1.7 Theorem

With the notation of 1.4, for each AEB(M) and each
kEN-U{'w}, 1 €N, P(A) on JCZ ie unitarily equivalent
to m(xA) on ﬁz(M,vk) for any o«finite measure vy on B (M)

whose null sets A are those for which P(b) |3, = 0.

Proof. Let Zz be the set of all finite linear combina-

tions gch(Aj)zi, where zi is a cyclic vector in ﬂi

for {P?A)|ﬂ%: AE€EB(M)}. Then Zi is dense in Hi.
It is clear that vi: Ae-(P(A)zz, zz) is a measure

on B(M) and that the null sets for VZ are those for
which P(A)IH% = 0. For P(A)zz = 0 implies
gcJP(Aj)P(A)zz = (0 which implies P(A)Z ch(Aj)zz = 03

J . J s
hence if P(A)zz = 0 then P(A) vanishes on Zz, i.e.

P(A)]ﬂi = 0. Conversely, P(A)|ﬂ2 = ¢ implies

P(M)sl = 0 trivially. Hence P(A)a} = 0 iff p(a) |3 = 0.

But vz(A) “P(A)zzﬂz which is zevro iff P(A)zz is zero
iff P(A)|ﬂi is zero.

Let S be the set of all measurable, complex-valued

z

step functions on M. Then S is dense in £2(M,vk).
. i i |
Define Uk: S-*Zk by
> n * n . .
vt [ r e? ] = I ¢/P(A.)at

n .
where the step function I chA is written so that
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Ajr\Aj, =¢ if g # 4°'. We have

n I3 . n . ' .
I3 e P(A )z$“2 ( T edp(a.)zt, 1 ¢! P(A.,)al )
j=1 j=1 SN L A

n -
I (P(A na, )zk, zZ)
j'=1

]

Jye A fla. 2,
Jhlle |2¢P(A, )zk_, 2y) = 4% le?| ALY

n - . n 3 .
-z J laef ]2y avt = J [ 7 [o |2y, |avi

d
n . . n .
= z |edx Iz]dvz =1 3 e'x, 12
JM[J=1 By ko g=1 "8y
where the last norm is taken in £2(M,vZ). Hence U;
is a norm-preserving linear map of S onto ZZ‘ Uz

extends uniquely to a unitary map UZ: 32(M,vz)4-ﬂ2.

Further
n .
P(A)UE 3 od X, = P(A) z cJP(A )z
k,j—' A. J—-l
Jd
J £ = i
= ZcP(AﬂA)z =U, L eY%
. ANA.,
J=1 kg—l J
. n -
7 J
= U % 5.6 Y s
."'1

T < 9 UZ P(A)sz = fo for all fE€ S. m(xA) is the

unique continuous extension to £2(M,vz) of its restric-
-1 3 ;
tion to S and hence equals UZ (P(A)lﬂi)Uz.
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Now let Vg be any o-finite measure whose null sets A
are those for which P(A)|ﬂ% = 0. By 1.4, P(A)|ﬂi =0
y !
i P(A)|3‘C; = 0 (%, i'ENk)_; hence for any iENk,

P(A)|¥C = 0 iff P(A)|¥, = 0. Thus the null sets of v,

, 7

are the same as those of v; and the mapping f - iﬁ& T
dvk
is unitary from fz(M,vz) onto fz(M,vk) and carries
m(xA) in £2(M,vz) into m(xA) in £2(M,vk). This completes

the proof of the theorem.
If f€Q(M) we shall denote by f' that real-valued

measurable function on ¥ such that f = f',. 1.
We now have

1.8 Lemma
With the notation of 1.1, 1.4 and 1.7, for each
k€ NU{w}, iGENk, ﬂi 18 invariant under Af for any
FEQM(M) and there exists a unitary mapping Uz: fz(M,vk)*-ﬂi
such that for all fE€Q(M),

. . 0-1
e ik £ xqalh
(Af) |JCk = U, m(f')U,
Proof. Let f€Q(M). There exists a sequence (fn')

of measurable, real-valued step functions on ¥ such that
|f, "l < |f'] and 1lim f '(x) = f'(x) for all €M
n n+o N

(Hewitt and Stromberg [1, p.159]). Hence if O fn'o T
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1.1 (5) gives Af% + F,

Now fn' can be written as a finite sum

o il
fn' = LeiXp . (AjeB(M)).
J J
Hence
e Beid)
Afn = §cnP(Aj)

by 1.1 (1) ahd 1.1 (2) since each term is everywhere
defined. Thus each ﬂi is invariant under Af Dby 1.4
and since, for y €D(Af), (Af)y is the limit of the
sequence ((Afn)y), ﬂi is invariant under Af.

By 1.7, there is a unitary mapping Ui: Ez(M,Vk)*'ﬂi
such that P(A)Iﬂi = U%m(xA)Ui-l. Hence we have

. -1
(Af,) |36

7 g A
Uk(§cnm(xAj))Uk

. a""l
z T
vim(f, Uy

Il

We shall next show that m(fn')e-m(f') in £52 = £2(M,vk).
Let

D = {h€E€L,y,: 1im Ff 'h exists in £, 1},
nro N

W€ D implies that there is %€ £, such that "fn'h— hill > 0
(norm in £3). Since also (fn'h)(x)*(f'h)(m) for every
2 €M, we have f'RE€ L, and f'h = =, V- a-e.. Hence

W€D implies W E€D(m(f')) and lim m(fn’)h =m{f')h,
N+
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Conversely, if A€ D(m(f')), then since fn'h+-f'h pointwise
and Ifn'h|< |F'n| so that |fn'h-f'h|2+-0 pointwise and
|f,'h-f'm|*><4|f'n|?, the dominated convergence theorem
shows that an'h-f'hﬂ-+0. Hence A E€D(m(f')) implies
HED. Thus D = D(m(f')) and we have m(fn’)~*m(f').

Finally, by continuity, we have
| -1

(Af)lﬂk = Uy m(f')Uy

1.9 Theorem
Let N be a prequantization scheme on M with values
the self-adjoint operators in ¥ Then ¥ is the direct

sum

H = ® Mk
k€N U{w}

of uniquely determined closed subspaces H% invariant
under every Af, fE€QU(M), such that there exist o-finite
measures V; on B(M) and unitary mappings Ug fz(M,ck,vk)+

JCk(kGNU{w}) with the property that for each fE€Q(M)

(Af) |, = v m(f Uy}

Conversely, i1f such a decomposition of H, measures

Vo and unitary mappings U, are given, then the map

f = ® Ukm(f")Uil
k €ENU {=}

of Q(M) into the self-adjoint operators in ¥ is a pre-

quantization scheme on M.
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Proof. With the notation of 1.8, the map from the direct
sum of k copies (if kEN) or ¥, copies (if k= «) of

fz(M, vk) onto J(’k given by

(Prsfossss ) (U;fl,z/;(fz,...)

is unitary and carries the direct sum of the operators
m(f') in each copy of fz(M,\)k) irito AL By 1.6 and
the remark following 1.6 the first conclusion follows.
For the converse, we must verify that axioms
1.1 (1)~-1.1 (5) are satisfied. It will clearly
suffice to pfove this for the mapping A: f->m(f') of Q
into the self-adjoint operators in some £y = L (M),
If f,€0, fEQ, |£, 1< |f| and f, »f pointwise then
a similar argument to that used in the proof of 1.8 shows
that II_l(fn') +m{f*), Llie. Afn->Af, and 1.1 (5) is satisfied.
1.1 (4) follows immediately since if h(x) = 1 for
all x €M, then m(.h) = T.

1.1 (2) follows from the fact that m(eh) = em(h)

if ¢€R and ¢ # 0 and m(0.h) = m(0) = 0 = 0|D(m(h)) = 0.m(h)
for any real-valued measurable function % on M.

To verify 1.1 (1) we proceed as follows. Let
fs g be real-valued, measurable functions on M. It
hED(m(f)+ m(g)), then fhEL,, gh€ L, é.nd hence
fh+gh = (f+g)h€Ly, i.e. RED(m(f+ g)). Hence
m(f) +m(g) Cm(f+g). This proves that m(f) +m(g) is
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closable. Now m(f) +m(g) is densely defined, for let
) o8 be the characteristié function of the set
{z€M: |f(z)|<n, |g(x)| $n}. Then for any hE€L, we
have Ifxnh|6n|h], lgx,,7| sn|n| so that fx,h€ L, and
gx,h €L,, i.e. X,,h €ED(m(f)) ND(m(g)) = D(m(f)+ m(g)).
Since llxnh- hl » 0 as > (norm in £,), which follows
easily from the dominated convergence theorem,
D(m(f) +m(g)) is dense in £,. It follows that the
adjoint (m(f) +m(g))* is defined and we have
(m(f) +m(g))*Om(f)*+m(g)* = m(f)+ m(g) so that
m(f) +m(g) is symmetric.

Let now % €D[(m(f) + m(g))*]. Then there is

hy € £, such that
((f+gly, h) = (ysh1?

for all y€ D(m(f) +m(g)). Replacing y by -xny gives

IM(J"-/-g)xnyEdv JMxnyhldv

or

fl

J y-Xn(f+g)hdv J y.xnhldv s
M M

Now |x, (f+g)n| = x,|(f+ g)hls (x,|f] +xn|g|)|hls on|h|
so that xn(f+g)h €L,. Since also xnh1€£z, the last

equation can be written

Cys X, (F +g)n) = Cy, X, b0
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This holds for all y in the dense set D(m(f)+ m(g)).

Hence

(f+g)xnh=xnh1 Vi s @s s

The fact that xnhEED(m(f+-g)), th*'h: (f+ g)xnh = xnh1+'h1
in the topology of £, and m(f+g¢g) is closed shows that
hE€ED(m(f+g)) and that hy, = (m(f)+ m(g))*h = (f+ glh.

Thus (m(f) +m(g))*Cm(f+g) and by a previous

relation m(f +g) € (m(f)+ m(g))*; hence
m(f+g) = (m(f)+m(g))*.

Since m(f)+ m(g) is symmetric, we have finally

m(f) +m(g) = (m(f)+m(g))** = m(f+gl.

This proves 1.1 (1).

-In a similar way it can be proved that 1.1 (3)
holds.- Again, let f, g be real-valued measurable
functions on M and let A€ D(m(f)m(g)). Then gh€ £,
and fgh€ £,; hence h€D(m(fg)) and m(f)m(g) Cm(fh) so
that m(f)m(g) is closable. m(f)m(g) is densely defined,
for if ﬁ€E£2 then since lgxnh|< n|h| and |fgxnh|< n?|n|
we have x h €D(m(f)im(g)). The fact that "xnh-h"-+0
means that D(m(f)m(g)) is dense in £,.

Let now 2 €D[(m(f)m(g))*]. Then there is h1€ L,

such that

(fgy, h) = (y, hy)



63

for all y€D(m(f)m(g)). Replacing y by X,,Y gives
Ffgx. yhdv = J X yhi1dv
IM i M
or
JMy.xnfghdv e JMy‘thldv'
Now |x,fgh|<n®|n| so that x fgh€L,. Since also

xnh1€E£2, the last equation can be written

Cys x,fgh? = Ly, X,h10
for all y in the deﬂsé.set D(m(f)m(g)). Hence
Ffax,h = X, vV-a.e..
As before we concé¢lude that € D(m(fg)) and that
hi = (m(f)m(gl))*h = fgh.
Thus (m(f)m(g))*Cm(fg) and by a previous result we

obtain

m(fg) = (m(f)m(g))*.

Since (m(f)m(g))* = m(fg) = m(gf) = (m(g)m(f))*
Dm(f)*m(g)* = m(fim(g), m(f)m(g) is symmetric and we

have finally
m(fimlg) = (m(f)m(g))** = m(fg).

This proves 1.1 (3).

We shall say that a prequantization scheme is of

multiplieity m if for each subspace ﬂk of 1.9 we have
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ﬂ% = {0} if Kk # m (mMmE NU {=}), We now add the following

assumption.

t  If M is the configuration space of a classical
system consigting of N particles,the nth particle
having spin jn'and isotopic spin kn’ and 2f A is a

prequdntization scheme on M, then A is-of multiplicity

N
n£1(23n+-1)(2kn+-1).

Note that we are not asserting a converse
assumption; indeed, if the nth particle had spin jn'
and isotopic spin kn' A would have the same multiplicity
N

N
. . _ - ’
provided that ngl(Zgn-+1)(2kn-+1) = n21(23n 4-1)(2kn + 1).

The precise specification of the actual system cannot be
done at this stage: it would appear as an extension of
the theory to be given in succeeding sections. Let us
note parenthetically that the most general quantum system
that can be 'described classically' in some sense would
correspond to the most general décomposition 248 It
has not yet been ascertained by the author to what systems
such a general decomposition would correspond. Note
also that T could clearly be generalised to the case of
supermultiplets.

If A is a prequantization scheme of multiplicity I

on a manifold ¥, and if S is the set of all P(A) for
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A€EB(M), then it can be shown by the theory that leads

to 1.4 that S is maximal Abelian in the set of all
projections on ¥, i.é. if J is a projection which commutes
with every element of S then J€ 8. This condition is
equivalent to the statement that if 4 is a bounded
operator on ¥ which commutes with every member of the
algebra S" of bounded operators generated by S, then
A€S8" (in the terminology of Dirac, S" is a complete
commuting set.of operators). Clearly, a single particle
of spin zero is described by a prequantization scheme of
multiplicity 1. Tt must be considered an axiom that

T is the correct generalisation to the case of higher

spins.

§2 Momentum Observables

In this section we introduce the notion of momentum
observables. We shall have occasion to use some basic
notions in the theory of differentiable manifolds. For
the details see Abraham [1l], Sternberg [1l] or Helgason [1].

Let ¥ be a manifold. The tangent bundle TM of M

can be considered to be ¥ with a vector space of the same

dimension as M attached at each point, i.e.

™ = U{q}XV,
qEM ?
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where for each q€M, Vq is a finite-dimensional real
vector space.
For any finite-dimensional vector space V, let us

write TZ(V) for the space of tensors on V of contravariant

order r and covariant order s(r,s = 0,1,2,...). We write
M = U {q} xT (V).
8 qEM 8 (q
We have TlM = TM; T*M = TIM = U Lqlx 7 * is called the
q

cotangent bundle of M.* In the case where M is an open
subset of a finite-dimensional vector space V, we can

identify Vq with ¥V for every g and we have
™M = MXV, TiM = MxV*

In general, Vq can be thought of as the set of possible

'velocities' of the system when in the position g; V_*

q
will then be the corresponding set of 'momenta'.

Let ¢:M +M be a‘diffeomorphism. Then we can define
TZ¢: TZM-+T§M (Abraham [1, §6]. T¢ = Ts¢ is called the
tangent of ¢. For Tg¢ we write ¢*. If M is an open

subset of ¥V, then T¢ works out to be
Te(q,v) = ($(q), Dé(q).v)
where (qg,v) €EMxV, and ¢*:
6*(q,p) = (6(q)s po DO 1((q)))

where (q,p) €EM x V*. [ In terms of coordinatesg: if

* If V is a finite-dimensional real vector space, the
dual space V* is the space of linears maps V- R.
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q = (qt)izl, v o= (vt)izl with respect to a basis of ¥
and p = (pi)izl with respect to the dual basis, then

writing ¢(q) = (6%(q)) ", ¢71(q) = (6712 (q)) 2, we nave

i 3¢ n
T(,v)=[(7’()).n,{2v‘7 ] ]
e MRS g=1 aq?)*=1

and
: 3 n —l,j 7
*(q,p) = [( Yrarg . [ 5 .[ﬁi- ] ] ]

As a simple example, let ¥ = V = R and ¢:R~+R,

q +sinhq .. Then
T¢(gq,v) = (sinh q, v coshgq),
¢*(q,p) = (sinhq, p/coshgq).

The point about ¢* in general is that if ¥ is the
configuration space of a classical system then T*M will
be phase space and ¢* will be a canonical transformation.

For a manifold ¥, let X(M) denote the set of all
vector fields on M, i.e. the set of all c” maps

X: M> UV for which X(q)€ V_ for ever emt, X(M)
’q X(q) €V, y q

can be identified with the set of all R-linear deri-

vations of F(M). For each qo €M, X €X(M) defines a

% This definition of a vector field differs from the one
tacitly employed in I §6 and the usual definition as

a map M-+ TM. Our purpose is to simplify the state~
ments of results to be given below. The same applies
to our definition of df which is different from the
usual df: M ~+T*M used in I 86. The tangent space at
q€M is TqM = {q} x Vq, the cotangent space

T *M = X V*,
q bgs mVg
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local ¢* one~parameter group {Ft: itl <a} for some
a€R, g >0, of diffeomorphisms of a neighbourhood of
qo- If M is an open subset of ¥V, this local group is

given by the solution of the equation

De(t) = X(e(t))
where c(t) = tho(c is a curve at qo). [In classical
notation and writing X(q) = (Xi(q))izl the above equation
becomes the system of differential equations

dg*(t)

Tt = thql,qz,...,qn) (15 € n)

with the initial condition q(0) = 'go.]

We say that X is complete on M if the local group
can be extended to a group of diffeomorphisms of M.
This is the same as saying that the solution of the
above equations with arbitrary initial point g, exists
for all t€ R, In case X is complete, we write
{Ft:tGER} for the one-parameter group and call F the

flow of X on M. Then we have
F: RxM->M, (t,q)-*th

and F is ¢ on Rx ¥ (see Abraham [1, §7] for details).

For f€F(7%y), we shall denote by X, the vector field

f
in X(T#*M) generated by f (Abraham [1l, p.9%8]). In case

M is an open subset of V we have

“%gi (n+ 18 1< 2n)



69

If Xf is complete on T*M we shall write
Ff: R xT*M~>T*M, (t,x)ﬂ-Fix for the flow of Xf on T*M,

In this case f is a'generating function' for the group
: {F{: tE€RL.
For fEF (M), we shall denote by df: M~> U V #
qEMq
the differential l1-form associated with f.*% If ¥ is an
n
open subset of ¥ then df = Df and df(q) = [%gi}i—l with
respect to the dual basis.

2.1 Definition

If X€X(M), define T'(X): T*M~ R by
I'(x)(gq,p) = p.X(q)

(observe that p& Vq*, X(q)GEVq). I'(X) is called the

momentum of X.

If M is an open subset of V and X(q) = (X%(q))izl’

n '3
then T'(X)(q,p) = I Xt(q)pi.
=1

The following results are of importance:

2.2 Theorem
() T(X) €EF(T*M) for all XEX(M);
(Z2) 1if ¢:M>+M 28 a diffeomorphism, then ¢*:

T*M~> T*M is a symplectic diffeomorphism;

=

See footnote on page 67.
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(122) <if X €EX(M) is complete on M.with flow ¢,
then XF(X) 18 complete on T*M with flow ¢*, where
* ” * .
(¢ )t (%} 3
(tv) T(X(M)) is a Lie subalgebra of F(T*M) and T

i8 an anti-homomorphism, i.e.
[rcx),r(x)l = -r(lx,2]),

where [X,Y] is the Lie bracket of the vector fields X,Y
(XY - YX when X, Y are identified with derivations

(differential operators) of F(mM)).

Proof. See Marsden [1l, p. 351] (statement (Zv) is
included here for completeness only and will not be
needed in the sequel).

In view of 2.2(Z47), for such ¢ we shall write
b, = (0*), = ($,)%.

Let M be a manifold. We shall write

P(M) = {T(Xx): X€X(M) is complete on M} |

Elements of P(M) will be called momentum observables
on M. By 2.2 (<) they are ¢® real-valued functions on
T*M, If ¥ is an open subset of V, P (M) consists of
those functions of the form (q,p)-*iglai(q)pi with
Cwai% for which the vector field X: ¢ +(ai(q))izl is
complete on M. Examples for the case M = V = R?® are
the linear momentum components Pi> the angular momentum

; ; g 5
components qu.-qu. and the scalar X qtp-.
& 7 =1 7
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As an illustration of the foregoing definitions we
consider the following example. Let ¥ = R- {0} so that

T*M = M xR* and let f: T*M~+R be given by

f(q,p) = 1nlq| p.q

for all (q,p)ET*M. Then f is ¢° on T*M and the vector

field Xf: MxR->RxR#* is given by

Xf(q,p) = (q In|gq|, -(1+ In|q| )p)

for all (q,p) €ET*M. Xf is complete on T#*M with flow

Ff: R xT#M »~T%*M given by

t :
Fiq.p) = (sen(q) |q|®, ¢ "% |ql'"¢ p)

2
where sgn(q) = 1 if g> 0, -1 if g< 0. f is also in
P(M) for it is of the form TI'(X) where X€ X(M) is given
by |

X(q) = q 1n|q|
for all q€¥M (see 2.1). X is complete on M with flow
¢: RxM-+M given by

: Jt

9,9 = sgn(q) |q|” .
According to 2.2 (ii7), the flow Ff of Xf is also given
by Fi = ¢t* where

$3(q,p) = (8,4, po Do_,(0,4)).

An easy computation shows that this is the same as
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F{(q,p). f is an example of a momentum observable on

M =R-{0}.

§3 The set L (M)

We shall be particularly interested in those
classical observables which are sums of momentum

observables and position observables. We define

L(M)

Qm) +P (M)

{f1+ f2: F1€EQ0(M), F2EP(M)]}.

Observe that every f€L(M) has a unique decomposition
f = Ff1+f2 where f1L €Q(M), f2€P(M). TFor f, €P(M) implies
f2(q,0)
filgsp) = fi1(q,0) = f(qs0)- falq,0) = f(gq,0) and so f,
is uniquely determined by f. If f€L(M) we shall denote

0 for all q€M (see 2.1), hence

by fi, f2 the components of f in Q(M), P (M) respectively.
We shall denote by Xf that unique vector field in X(M)
such that f, = P(Xf). ¢f: R xM~> M, (t,q)-+¢£q will
denote the flow of Xf on M.
Since the function identically zero is in both
Q(M) and P(M), it follows that Q(M) CL(M) and P(M) CL(M).
Let LY(M) = L(M) NF(T*M), i.e. L(M) is the set of

¢” members of L(M). Clearly P (M) C LY (M) CL(M).

The next theorem is of importance.
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3.1 Theorem
Let fEELm(M). Then Xf 18 complete on T*M; the

flow Ff of Xf i8 given by

t

FJ;(q,p) = [cb";q, P2 o ¢J;‘*(q,p,)- J d(fqo ¢§_t)(¢£q)ds]

0

for all (q,p) €T*M, where P, is the projection onto the

second factor: (q,p)~p.

Proof. We shall construct an integral curve of Xf at
(qospol ET*M. By means of a diffeomorphism of an open
set T*U Cr*M (U is open in M) with (qo,po) € T*U onto
A x ™" where U'CR" is open, we can suppose everything
to take place in U' xﬂn*. Thus we have Xf: u'-+R",
fexwr), fl: vt R, fo: U'xR* >R, (q,p) +p.x(q) and
fi€F(u’).

Let e: (—a,a)-*U'><Rn*, t >(e,(t),er(t)) for some
a> 0 be an integral curve of Xf at (qospo). The classical

equations of motion are
Dei(t) = X (er(2)), (1)
De, (%) = -Df!(c1(t))-Dlca(t) o X0 )(er(t)) (ii)

for all t € (-a,al. We have

D(ca(t) o X )(c1(t)) = Dlea(t))(xler(t)) o DX (a1 (t))

8,(%) o DXT ey (t))
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since e,(t): R" >R is linear. Hence by (2%)
Dea(t) = -Dff{(e (t))- cy(t)e DX (oy(8)).  (idi)

. By assumption the solution of (Z) is known:

c1(t) = ¢lqo; (iv)
Hénce (277) can be written
Do, (t) = -Df{(93q,) - c,(t)o DX (91q,). (v)
(v) is of the form
Dea(t) = A(t) « ca(t) +B(t) (vi)

* %
where A(t): R" +R" " x-+—m‘=DXﬁ¢£§o) is linear and
Jc'

*
B(t) th)EERn . The solution of (vi) can be

-Df (¢
expressed in terms of the solution of the corresponding

homogeneous equation
Dey(t) = A(t) - ea(t). (vii)

By assumption the solution of (viZ) is known:

*
ca(t) = Pao 61 (qo,p') (viii)
g %
where p'EERn is arbitrary. We refer to Dieudonne
{1, p.305, 10.8.4]. If |s| <a, our need is for a

particular solution (viiz) with the property ca(s) = po.

The choice p' = on¢f; (¢£qo,po) in (viii) gives
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c2(t) = Pao L (qo,Pao o7 (07q0,p0))

*
Pao 05" o of (67q0,p0)
el
= Pao ¢y _ (95905P0)

as the unigue solution of (viZ) with the property
ca(s8) = po- The solution of (wZ) having the property

e2(0) = po is consequently
£ ; I TR
Gz(t) = Pso ¢t (qo,po) — JOPZ o ¢t_8(¢SQO,Df1(¢SCZ0))dS

(Dieudonne, loc. cit, p.306, 10.8.6). Since

o0 (65q0,0r1065q00) = (65q0.Dr 8T q0) 0 DT _ (414000,

we can write for the integral curve ec:

t
*
c(t) = (61q0,P2 0 91 (qospo) - JODf{(¢£q°)o ol _, (6lq,)de)
f £+ P ekl il .
= (¢3905P2 0 ¢ (qosPo/ - jOD(flo 054/ (9,90)ds) (i)
with e(0) = (qo,po)s |t| <a. On transferring via the

inverse diffeomorphism to T#*U e(t) can be written finally

in an invariant form:
. *
e(t) = F{(QOJPO) = (¢£40:P2° ¢{ (qospo)

t
-Jod(f{o o7 (03q0)ds) ()

where (qo,po) € T*U and |%]| < a.
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Clearly, for each (go,po) € T*M, the local flow given
by (x) can be extended to a flow Ff:Rx 7AiM+ T*M (define
Ff by (x) for any (qo,po) € T*M and any t€ R). Thus Xf
is complete on T*M.

Both 3.1 and the next theorem are important for the
theory to be developed. If x€X(M) is complete on M
with flow F and ¢: M+ M is a diffeomorphism, we define )
¢X €X(M) to be that (unique) vector field having the flow
(t,q) > do Fyo ¢~ (q). If M is an open subset of V then

60X is given by (¢X)(q) = Dé(¢ " q).X(¢ " 'q).

3.2 Theorem

Let FEL (M), gEL(M). Then for all t€R,
go FJ;EL(M),

t
(g o F{);(q) = g{(¢£q)- Jod(f{o ¢£_t)(¢{q).xg(¢{q)ds

for all q €M and
(goFL)o = T(of x9).
If g ELY(M) then go FJZE'-'”(M)- If g€ QM) then
g o F{EQ(M).
Proof. By 8.1; for g€L(M),;
(g0 F5)(qup) = g(Fi(q,p)) = g{(e5q)+

T
*
Poo ol (q.p).x% (05q) - jod(f;o of ) cofq). 19 43qrde
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for all (q,p) €ET*M. By means of a local diffeomorphism

into R” we can write

Pao 05 (q.p).x9(0,q) = p.[D¢T (05q). 19 (9q)]

p. (67 x9)(q)

reol x9)(q,p).

Thus g o Fi is the sum of a function in Q(M) and a
function in P (M) and hence is in L(M). If ge€Q(M)
then g, = 0, x9 = 0 and (g o F‘:)z = 0. That goF':E LOO(M}

if g€L”(M) is obvious.

§4 Quantization Schemes

If ¥ is a topological space we shall say that.a

“aites TF

real-valued function f on N is loeally bounded
if for each compact set SCWN, f|S is bounded. A con-
tinuous function on ¥ is locally bounded.

If ¥ is a manifold Lo (M) will denote the set of
locally bounded members of L(M). We have the inclusions
P(M)CL™(M)C Lo (M) CL(M). It is clear that if
g€ Lo(M), fEL™(M), then go FLELo(M) for every t€R.

Put U(m) = Q(M) VY Lko(M).

The object of study in this section is summarised

in
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4.1 Definition

Lat nL.>0. A quantization scheme on a manifold M
is a mapping A of U(M) into the set of all self-adjoint
operators in a complex, infinite-dimensional, separable
Hilbert space ¥ such that A|Q(M) is a prequantization

scheme on M and if fELY(M), then for all g€ U(M) and

t &R,
Ty o f
where of = exp (EEA 7)
& T :

We shall say that A is of multipliecity m if

AlQ(M) is of multiplicity m.

4.1 is seen to embody a global version of the
Poisson bracket-commutator relations, for proceeding
formally and ignoring questions about domains of

operators we have

d I g ~
A('c—ztg(gol"t))tzo = Alg,fl) =
78 P ol B
[Ut(ﬁ-!\ f)AgU_t+ UtAg(-ﬁAf)U_t] oHouech

= [%HUZ(AgAf- AfAQ)Uj;]t=0

f%(AgAf-Ang),

ice Allg,fl) = i—lﬁ-[Ag,Af].
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On the other hand, 4.1 can be looked upon as the
mathematical expression of the principle of equivalence
between observers displaced with respect to each other
in phase space. For instance, if M = R" and g is the
1th coordinate function q-+qi, then an observer trans-
lated by an amount ¢ in the direction of the negative
xi axis with respect to a second observer will observe
the function q~+qi+-t. Contained in 4.1 is the state-
ment that the corresponding quantum observable defined
by the first observer will be connected withthat defined
by the second observer by a unitary equivalence and
furthermore that unitary equivalence will be expressible
directly in terms of the 'generating function' of the
displacement. The same will apply for rotations and in
general for any one-parameter group of ¢” transformations
of M. A similar line of argument holds for an observer
moving with constant velocity ¢ in the direction of the
negative xi axis. He will observe the <th linear
momentum coordinate p; of a particle of mass m to be
pi+-mt and 4.1 contains the statement that the corres-
ponding quantum observable. shall be unitarily equivalent
to that defined by a stationary observer.

Again, if we take M = R, f(q,p) = p.1, g(q,p) = q

in 4.1 we obtain the requirement
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MgoFL) = AMg+t) = Rg+ K% (by 1.1 (1))
= Ag + ¢TI (by 1.1 (4) and
1.2 €8) 1
= Ag+ tI,

where we have simply written ¢ for the constant function
with value ¢, and

exp (is(Ag+ tI)) etSte®3Ag

eit/hAfezsAge-it/hAf,

ey ett/hAfezsAg ” eztsezsAgett/hAf.

The last equation is Weyl's form of the Heisenberg
commutation relations (Weyl [2]), all solutions for

Ag, Af of which were obtained by von Neumann [2].

§5 An Example

We shall give an example of a quantization scheme;
the following terminology will be necessary.

If M is a manifold we shall say that a measure p on
B(M) is quasi-invariant under a diffeomorphism ¢ of
M if the measure u¢: A>wu(d(A)), AEB(M), is equivalent
O Uy LB u¢(A) = g 1FF plA) = 0. Any manifold admits
a measure which is quasi-invariant under all diffeo-
morphisms of ¥ (an example is Lebesgue measure in R™).
If p is quasi-invariant under ¢, we can define the Radon-

dug

Nikodym derivative an This is a real-valued function
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du
on M and has the property Tiﬁ(h(“) >0 for p-almost all x €M.

A measure which is quasi-invariant under all ¢ one-
parameter groups of diffeomorphisms of ¥ will be simply
called quasi-invariant.

Let 4 be a o-finite quasi-invariant measure on B(M).

If fFEL(M) let u': = u¢f. Let # = EZ(M,Cm,u). Suppose
fE€Lo (M). Then fi istlocally bounded on M. For each x€ M
the map R-*M; s->¢£§ is continuous; hence the sets

{d{x: 0<se<t} if t» 0 and {cb']:x: t<s< 0} if t <0 are com-
pact. Since f] are measurable and moreover bounded on these

t

sets, the integral J f{(¢£x)ds exists and is finite for

0
each t €R,
If f€Q(M), then d)':ac = x for all x€ M and t€ R so that
t
J f{(¢sx)ds exists in this case also. For hEEﬁz(M,Cm,u)
0

and f€U(M) let U{h: M~ C be given by

t
f
ricefzas). /P neole) 1)
du

(Uih)(x) = exp (Z/h J
0

for all 2 €M, Then we have

5.1 Lemma
Uf: t-*U{ 18 a strongly continuous unitary representa-

‘tion on fz(M,Cm,u) of the additive group of real numbers.

Proof. If f is any measurable, complex-valued function

on M for which J fdu is defined and if ¢ is any
M
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diffeomorphism of M, then J fo¢du¢ is defined and

M

J f(x)du(x) J f(¢m)du¢(x). ()
M M

Hence

2 2
JM“(Uih)(x)“mdu(x) JM"h(¢£w)"mdu£(x)

JMIIh(x) 12du(a) = IRI2 < .

Thus for each ¢, U{ is a unitary mapping onto

°C2(M3cm.1u}-

We next prove that for all s, t €R

duf duf | duf
_ s+t e B i s .
2 (x) T (x) T (¢sx) (11)
for p-almost all x €M. We have, for A€EB (M),
f - i _ Fooafsy o oFead
wooa) = ueed a0 = uced o 0a) = ulceln
duf
= duf(m) = J X fxe)>"t(x)dulx)
J¢fA [ T
= J () “£(¢fx)duf(x) (by (4))
MX¢];A du
f f

= J Xp () 7 *(¢f ) et )
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f
'But u£+t(A) = JMXA(m)§%3+t(x)du(x); hence (2Z) follows.

Furthermore, if

af(z) = exp (i/n J:f{(¢£x)du), (i3i)
then
afiwialele) = af () (iv)
for all s, t €R and
adz) =1, (v)

By (Z2), (Zv) and (v) it follows easily that

ofol = v, i.e. 0f is a representation of the additive
s t s+t ;
group R.

It remains to be shown that Uf is strongly continu-
ous, i.e. for each hGEfg(M,cm,u), the map R-+fz(M,cm,u),
t-*Uih is continuous. For this it is sufficient to show
that the map R~ C, t-*(U{f,g)m is measurable for all
£, €L M C" 0.

We first note that we may assume the map R x ¥~> R,

duf
(t,x)ﬁ-ait(x) to be measurable (Mackey [1, p.317],

Varadarajan [1, p.16]). Next we shall show that the
t
map R x¥ +R, (t,x)-+gf(t,x) = J f{(¢£x)ds is measurable.

0
If ¢t> 0 we have

; read
el (t,2) = Jnxto,t](s)f1(¢sx)ds.
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The function n: [0,») xR =R, (t,s)-*x[o,t](s) is
measurable; for if a <0 (resp. a>1) n"'(la,®)) = [0,%) xR
(resp. ¢) while if 0<a <1 n '((a,®)) = {(t,8): 0 ss t}
which is of the form {y € [0,%) xR: 0<pra(y) s pri(y)}
where pr. is the 4th projection. Hence

n"Y((a,»)) EB([0,») x R) (Hewitt and Stromberg [1, p.152]).
It féllows that the function [0,«)x Mx R->R,
(t,m,s)-*xlo,t](s) is measurable.

The function M xR~ R, (x,s)-*f{(¢£x) is measurable;
for (x,s)-+¢£x is continuous and f| is measurable. Hence
the function [0,x) xM x R+ R, (t,x,s)**f{(¢£m) is measurable.
It follows that the function [0,~) xM xR >R,

5

(t,x,s)*'xlo,t](s)f{(¢sx) is measurable and by writing
this function as the difference of its positive and
negative parts it follows from the Fubini theorem that
the function [0,«~) x ¥ >R, (t,x)-*Ef(t,x) is measurable.

A similar argument holds if ¢t < ¢, that
(-»,0) x M >R, (t,x)-*&f(t,x) is measurable. Hence the
map Rx M-+ R, (t,x)-*Ef(t,x) is measurable. Clearly, the
same is true for the function RXx M->R, (t,x)+-A{(m) =
exp (i/h &f(t,2)).

Since for all f, g€E£2(M,Cm,u) the maps (t,m)—*f(¢£m)
and (t,x) ~g(x) are both measurable, it follows by

considering components that (t,x)*-(f(¢£x),g(x))m is

measurable.
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Thus we have proved that the mapping Rx ¥+ C

given by

duf

(¢,0) *al() [ ) C£(47z),g02)),

is measurable. But this mapping is just the mapping
(t,m)*-((Uif)(x),g(w))m, By the Fubini theorem it now

follows that

t> (vl g = JM Culf) (z),g(2)) du(z)

is measurable. This completes the proof.

If {Ut: t €ER} is a strongly continuous one-parameter
group of unitary operators on a Hilbert space then there
exists a unique self-adjoint operator 4 such that
Ut = exp (ZtA) for all t€R. A is called the self-

adjoint generator of the group.

5.2 Theorem

For each FEU(M) let Af in L,(M,C",u) be h times the
self-adjoint generator of the group {Ui: t €R}, where U{
18 given by (1).

Then A is a quantization scheme of multiplicity m on

M'

Proof. First observe that if f€ Q(yM) then f, = 0,

¢j;x = g for all x €¥ and tE€R and u{ = 1. Hence
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t
(Uih)(x) = exp (i/h J fi(x)ds)h(x) = exp (it/hf{(x))h(x)
0

for all?z€£2(M,Cm,u), i.e. U{ = m(exp (it/hf}l)). The
self-adjoint generator of the group {UZ: t€ R} is then
m(f{/h) = 1/hm(f]) and Af = m(f]). By 1.9 it is
immediate that A|Q(M) is a prequantization scheme of

multiplicity m on M.

It suffices to prove that

f
Pooulf _ pyge R
Py, =0 "2

for all fEI-m(M), gEUiM), a, tER,

We shall first prove that for all FeEL(M), gEL(M),

r f 9 goF
fll-t(:lc) iﬂ (¢g° ¢fx) f~ﬁ (¢fx) = iis t(x) (1)
du du du t du i

for u-almost all x €M. By 3.2
Xg° Ff q)f Xg

>

g
¢9 ° Fyoof x9° ¢ is given by

hence the flow

f
g ofe . ofF g .f "
7 ° Tt = 97 0 07 o 93, (i%)
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If A€B(M),

7l

f
(o] OF
ug *TEA) = wgg e pE8) = u0e] ) = ucof o 980 6Ta)

1

W (690 6Tn) = anl ()
g . of
67 o o7

r d f‘
= chg 5 d)fA(x) 'a_u" (:L')du (x)
)y s t

aid
f g e
= XA(¢~t °¢_3$) = {x)du(x)

"M

du 5 du g
f et g e
xA(¢ x) 7y (¢ x) 5 (x)du(x)
M

a’ a9 ay?,
= J Xp (%) 111 . (¢g °¢f§) zas (¢£x) Eﬁt (x)du(xz)
M

by (7)) of 8.1).

f dug o FJ';‘
But ug o Fy(n) = J Xp () zﬁﬁ (x)du(xz); hence (i) follows.
M
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Now suppose that fGELm(M), geU(mM). A straight-

forward calculation gives

Franl _
(UtUsU_th)(x) =

T s -t
exp [i/h{J f{(¢£x)du+—f g{(¢zo ¢£x)du+ J f{(¢£o¢go¢£§)du]].
0 0 0
auf  auf dn?
'/Z;-ﬁt(w) 7 (69 650 =2 (olwincol o 49 ole). (i)

For any g €M let cq(s) = ¢gq; then by means of a

local diffeomorphism into R"” we can write

= v9 ¢¢9
Do (s) = x7(49q)

for all sufficiently small s. Let x = ¢ftq. Then
De L (8) = x9(¢9 o ¢Ta);
¢£& 8 t

hence

Difyeof )06d o 0Tu) 9 (49 o 91a)

=n(f! ool 10?07 De g (o)
fo

= D(f! °¢fv)(c¢f&(s))'Do¢fx(s)
3 t
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= D(flo of

) o c¢f )(8)

e
_ 9 i
= as(f{° ¢, © c¢£x(s))

I

2rief o 090 ¢32).
Integration with respect to v gives, in invariant form,
tl—?—f'mf 9 o ¢7z)1dv =
0 Bat g ¥ g Ny B

. T f

Jod(f; o 01,0 (%0 03x).x9 (970 ¢lm)dv. (iv)
The functions (v,s)-+f{(¢fvo ¢g o¢£¥) and

Sppgaf g F :
(v,s)-+Bs 1(¢~v° ¢so ¢tm)are both continuous on
[o,t]1xR (t 20) or [£,0] xR (tg 0) (remember that fEELw(M)).
Since also the closed interval with endpoints 0, ¢ is
compact we may interchange the order of integration and

differentiation in the first integral to obtain

t .
jof;(¢fvo 49 o 03z)dv =

st
JOJOd(f{o 67,0 (89 0 072 x9 (8 o 6Tw)dvdu + 1 (t,2).

kf is obtained by putting s = 0:

£
1k (t,m) = J f;(¢32_vx)du.
0

Simple changes of variable in all three integrals gives

finally
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t
J f' (¢f° ¢9 & ¢f )du+J0f{(¢£x)du =

- . td( ! )( g f 'Xg g f )dvd
0 fl 9 ¢v_t ¢u o d).bw) (¢u o ¢tx vau .
0

The inner integral on the right is

t
Jod(f{o 0,0 (65 0 oF o 08 o 03m) x94T o 67, 0 490 ¢la)av

which by 3.2 is equal to
g 1069 o ¢3a) - (g0 FL) 1067, o 49 o 9Tw)
Hence

t 8 -t
Jof;(¢£x)du +J g1 (99 o o7z + Jo F1eet e o7 o olu)au

=J (goFf)'(¢f o¢go¢f&‘)du
0

¥ f
= | tgo ) 10e?° Ftuyan (v)
J 0 U

by (21)s Using (z), (ZZ) and (v), (i%2%) can now be

written

Tygyf -
(UtUsU-th)(x) =
: a Fir,.d0 FL us
exp (z/h (g‘oFt)l(¢u 2)du) . (m)h(¢
0

f‘
= (Ug°Fth)(m).

Hence

Ung f
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This completes the proof of the theorem.

A quantization scheme of the type described in 5.2
will be called canonical. The variables describing
all such canonical schemes are the multiplicity m, the
measure u and the manifold M. We stress here the
hypotheses on u of o-finiteness and quasi-invariance.
If ¥ is a finite-dimensional normed space V then there
is only one such measure u (apart from equivalence)
so that we may speak in this case of the canonical
quantization scheme on ¥V of given multiplicity.

Let us remark at this point that the operator
correspondences given by the canonical schemes are in fact
the ones employed in conventional quantum mechanics.

If the reader will take M to be R”, U to be Lebesgue

7 o
measure and f(q,p) = al(q) + X ba(q)p and evaluate

j=1 d
r
formally h/i[iﬁt] he will find that Af turns out to be
o0t J 4 p
something like
aob Bl a2 08
Of course this can be done rigorously. As in 5.2 the

operators Af are best defined in terms of the groups they

generate, at least for non-linear manifolds.
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These and other topics will be discussed in
§7.

5.2 is important as an existence theorem: without
it we would not know that quantization schemes exist

at all.

§6 Systems of Imprimitivity

The material of this section is largely the work
of Mackey. We shall deal with a small portion of the
theory, simplifying it somewhat by transcribing it in
our context of differentiable manifolds and unitary
representations of the additive group R (the general
theory deals with metrically standard Borel spaces and
projective representations of separable, locally-compact

groups) .

8.1 Definition.
Let M be a manifold and P a projection-valued
measure on B(M) with values the projections on a
separable Hilbert space ¥. Let U be a strongly continuous,
unitary representation on ¥, of the additive group R.
Let ¢: BRxM~M, (t,x)-+¢tx be measurable and such that

for all e, tER, ¢t:M-+M 1g 1-1, onto and measurable

Vort = 9g° 0y and
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U P(M)U_, = P(¢_,0)

t

for all AEB(M).

Then the pair (P,¢) is called a system of imprimitivity
for U (Mackey [3, p.279]).

6.2 Theorem (Mackey [3, p.283])

With the notation of 6.1, let u be a o-finite
measure on B(M) quasi-invariant under every ¢t(t€R),
let 3 = L, (M,C", 1) (mENU {=}) and P(A) = m(x,) for all
AEB(M).

Then for each t€R there is a mapping A, of M into

the unitary operators on " such that

. / du
(U k) (x) = A (x) Eﬂ¢t (2)h( )

for all hE€L,(M,C™,u), = €M. A has the following
properties:

(Z) for all &, t€R
As_l_t(x) = As(x)/lt(cpsx)

for u-almost all x € M;
(i1) Ao(x) ie the identity operator on e for
u-almost all x€ M;

(i21) for all z, 2! €c™ the mapping

Rxy-~>C, (t,w)-*(At(m)z, z')m
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is measurable and for all t €R the mapping
!
M~C, w-+<At(x)z,z )m
18 measurable.
Let now A be an arbitrary quantization scheme of
multiplicity m on M, with values the self-adjoint
operators in J. For each A€B(M), put g, = Xpo Ts

P(A) = Ag,. Then gAGEU(M) and P is a projection-valued

measure on M. If FEL (M),

gpo F{(q,p) » gA(Fifq,p)) = xA(¢£q)

= X (q) = g (q>p)
of A ¢of A

by 3.1; hence

gy e F£'= g¢ftA.
By 4.1 we then have
peof 8) = vipcn)v?, (2)
where
vl = exp (it/hAf). (3)

t

Since ¢f is continuous on Rx ¥ and for each ¢ ¢{ is

continuous on M, (P,¢f) is a system of imprimitivity for

v?,
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By 1.9 we may assume that if f€ Q(M) then Af = m(f’) in
fz(M,Cm,u) for some o-finite measure p and in particular
Ag, = P(A) = m(xA). Furthermore it is clear that the
null sets of u are the same as those of P; hence by (2),
wd) = o iff ueeda) = ul(a) = 0, i.e. u is quasi-
invariant under every ¢£(t€59, FEL™(M)). The following

theorem is now immediate.

6.3 Theorem
Every quantization scheme of multiplicity m on M 18

unitarily equivalent to a quantization scheme A on M with
values the self-adjoint operators in fz(M,Cm,u) for some
o-finite quasi-invariant measure | and having the following
properties:

(1) Af = m(F') for all FEUIN);

(17) for each FEL"(M) there is a mapping af of

RxM into the unitary operators on C” such that

ta) (u{h}(m) e af e, m) /%—E—E (ac)hnp{x) (4)

for all W E€L,(M,C™, 1), where UJ; = exp (it/hAF),
(b) for all s, t€ER

Af(s-+t,x) = Af(s,m)Af(t,¢£x) {5}

for u-almost all x €M,

(a) Af(O,x) is the identity operator on ¢" for

u-almost all x €M,
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(d) for all z, z'€C™ the mapping
Rxy~GC, (t,w)'+(Af(t,x)z,z'>m
is measurable and for all t€ R the mapping
M~>C, m'+(Af(t,x)z,z')m
18 measurable,

te) if gELm(M) then for all s, tE€R
I
a9 Tt e,m) = a¥it,0009 (o, 08m)al (6,07 0 090 ¢72)71 (o)

for uw-almost all x€ M.

Proof. The quasi-invariance of y follows from the fact
that every c” one-parameter group of differomorphisms of
M is of the form {cb{: tE€ R} for some FEP(M).

(7) and (Zia)-(iid) follow from previous remarks and
8: 8. To prove (iZie) substitute (4) and a similar
equation involving g into the basic identity given in
4.1 to obtain

!
go F
4 t(sax) = Af(t,x)Ag(s,¢£m)Af(-t,¢go ¢{x).

That

I g atey o ad T af  alday=d

AT (-t,09 o ¢hm) = A7 (8,07 007 o p)
follows from (ZZb) and (ZZe) on replacing s by t, t by =~t¢
and x by ¢fto ¢g o¢£ x

The problem of determining all quantization schemes
involves the determination of all functions e satisfying

(b)-(e) of 6.3. This apparently is very difficult.
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(5) can in a certain sense be 'solved' for particular
functions f, notably when for each x¢ € M the mapping
t~*¢{xo of R onto the orbit Omo = {¢£xo: t€R} is a
diffeomorphism, or at least when the set of x, for which
this is not the case has u-measure zero. In the former

case (5) gives

Af(t,¢£xo) = Af(s,wo)_lAf(s-+t,xo).

Let y(t) = ¢{xo and put s = Y'lx; then

Af(t,w) = Af(y-lx,xo)_zAf(Y_lx-+t,xo).

Since y(y lw+ t) = ¢f_1 To = ¢{¢f_1 To = ¢{w,
Y

Y “x+ ¢
we have
aft,z) = Af(Y“lw,wo)'lAf(Y"l(¢’;x),xo)-
For each xEEOxO write Bio(x) = Af(Y—lx,xo). Then
A (t,a) = 8L ()77 B (41
for all xEEOxo. We may choose an x, in each orbit and

write Bf(x) = Bgo(m) if mGEGxo, thus defining Bf almost

everywhere and we have

af(t,2) = BT (2)7 BT (4T (7)

for p-almost all x € M. Conversely, if Bf is any map

from M into the unitary operators on Cm, then Af(t,x)
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defined by (7) satisfies (5).

§7 Quantization Schemes on Vector Spaces

If ¥ is a finite-dimensional real normed space V the
results of the preceding section can be made more precise.
First of all, the measure y may be taken to be Haar

measure (and hence Lebesgue measure when V = B

7.1 Theorem
Any quasi-invariant, oO-finite measure u on V is

equivalent to Haar measure.

Proof. If a €V, t€R, the mapping V+V,  +x+ ta is a
diffeomorphism and the set of all such mappings for fixed
o and varying ¢t is a g one-parameter group of diffeo-
morphisms of V. By hypothesis, for each A€B(V), we have

for each o €V (putting ¢t = 1)
u(A) = 0 iff u(A +a) = 0.

The function V xV~+R, (m,y) »x,(x+y) is measurable
since it is the composition of the continuous function
(x,y) >x+ y with the measurable function x-*xA(x). Let
X denote Haar measure on the locally compact additive

group V. By the Fubini theorem
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J xA(x+-y)d(AC>u)(x,y) = J [I xA(x+ y)dl(m)]du(y)
VXV 14

|4

= J [J XA(x)dl(w)]du(y) = I X(A)duly) = A(AIu(V)
V\'v /4

(with the usual convention that 0.v = 0, ©,® = ), Also

J xA(x+ y)d(x ®u) (x,y) = J [J xA(x-+y)du(y)]dA(x)
Vxv V¥

- J U xA_x(y)du(y)]de) = j W(A- z)dA(z).
Vv 4

Hence

j WA - x)dr(x) = X(A)u(V).
14

Suppose that A(A) = 0. Then J M(A -x)dA(x) = 0;
4
hence u(A-x) = 0 for A-almost all z €V and in particular

(since X # 0) w(A-x) 0 for some x€ V. Hence

u(a) = 0. Conversely, suppose that u(A) = 0; then

11(A--:Jr:)‘== 0 for all x€V so that J WA - x)dA(x) = A(A)u(V)= 0.
Since p # 0 (the Hilbert space Ez(z,cm,p) is infinite-
dimensional) we have u(V) # 0, hence A(A) = 0. Thus

u(a) = 0 iff A(A) = 0 and p and A are equivalent.

The mapping A +> /%%h is unitary from fz(V,cm,u) onto
EZ(V,Cm,A) and carries m(f) in the first space into m(f)
in the second space for any complex measurable function f.

Hence in the case M = V the measure p of 6.3 may be taken
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to be Haar measure.

More generally, it is almost obvious that a result
analogous to 7.1 could be proved in the case where ¥ is
an arbitrary Lie group or even where M is an open subset
of a Lie group. For reasons of space we shall not

pursue these matters here.

For ease of calculation in applications we note here
that in the case where ¥ is an open subset of V and A

is the appropriate restriction of Haar measure, the

) A ; e
function §7t for f€U(M) can be given an explicit form

in terms of the determinant of ¢£. The vesult is
ark
5 = ldet o7 | A\-a.e.. (8)#

We next show that, with certain restrictions, the
quantized linear momentum components can always be taken
to be those of conventional quantum mechanics. Im

will denote the identity operator on £”,

7.2 Theorem
Let the notation be as in 6.3 with M = V, u = A.
Let (ek)Z=1 be a linearly independent family of vectors

in V. For each k let f;, €P(V) be given by

fk(qap) = p'ek

* By det S, for any differentiable map S: V-V, we mean
the function x +det [DS(z)].
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for all (q,p) € T*V. Then there exists a unitary mapping
W of fz(V,Cm,l) onto iteelf which commutes with all
multiplication operators and for which

W exp (it/hAfk)W_l = Uy (t) (1S ks n)

for all t €R, where

(Uk(t)h)(x) = h(x + te,)

k

for all WEL,(V,C",1), tER and A-almost all xE€ V.

Proof. Let 1< k<n. The flow ka of Xf is given by

k
Fr
Ft (q,p) = (q+ tey,pl,
and ¢fk by
up
¢, q = q+ tey.
dxfk
Clearly =Lt (x) = 1for A-almost all z €V,

dx

By (4), we have

(exp(it/hAfk)h)(x) = Ak(t,x)h(x+-tek)

for all h€5£2(V,Cm,A), where Ak = Afk; (5) gives

Aj(s+-t,x) = Aj(s,x)Aj(t,w+-sej) (1 &4 n) ()

for all s,t€R and A-almost all x€7V. Put f = fj,

g = fk in (6) to obtain

e -1
Ak(s,x) = Aj(t,x)Ak(s,x+-tej)Aj(t,x+ sek)

(1€ J,%

A

n) (21)
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for all s,t€ R and A-almost all x€7V. Replace t by s,
8 by t and « by x - se in (ZZ) to obtain
_ _ _ ¥ :
Ak(t,x- sej) = Aj(s,x sej)Ak(t,x)Aj(s,x sej+-tek)
(1 jsken) (iit)
for all s, ¢t €R and A-almost all =€ V.
We shall use the following convention for a product

of operators. If 815 Spsaaasy Sm are operators we shall

write

etc..

We may adjoin to the set {ek: 1< ksn} a set

{ek: n+1<kgn'} of elements of ¥V so that

{e,: 1<k sn'} is a basis of V. For € V write
k .t
g = L xtei where z“ € R. Let
1’=
A n . J"‘Z 'L
W(x) = 1 A.[xa,,z x e.] (iv)
j:l dJ =1 7
(the summation is taken to be 0 when g=1). If 1gk<smn

we have
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" " _ n 5 i1 4
W(x)A, (t,x)W(x+ te,) 4 =[ 1T Aa.(x9, Z zte. )]A (t,z).
1 . J-1 z
04, (x + tﬁJ, L (xb+ t8* ) e. )
Jen d fad
k 1 n j-‘l . 1 . j—l . : -
[ H A (z? PO xﬁe.)]zk(t,x) i} A.(xg, 5 xte.)” 1
=1 1=1 + j=k-1 4d =1 ¢
where
j -1 4
Z (t,x) = [ H A (x? > s Z x e, )]A (E,2) .
g=k =
k+1 . g=1 k-1 i 7
A T a.x?, © x%e. +-tek)]A (x N T S " D
J=n J =1 =1 &
Repeated use of (Z2Z) shows that )
I A, (x? Z xte. ) A (t,2) A x x” e, + te, )
dupips AT Pgad 7nts¢ ’31 k
k2
= A . {(t, & 2 a.)
k ,1:=1 7
so that
k k 1 o k 1; k k-—] i -
Z (t,8) = Ak(x s L z*a, )A (t T # e, (e + % T a%a )
=1 =1 A =1 e
= I
m
by (). Thus
~ . ~ _1 _
W(x)Ak(t,m)W(x+-tek) g 1O (1< kg n) (v)

Define W on £2(V,cm,l) to itself by (Wh)(x) = Wix)h(x).

Then W is unitary and we have
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1

W exp (it/hAfk)W- = Uk(t) by (v).

Clearly W commutes with all multiplication operators.

7.2 is not true in general if the e, are not
linearly independent. To see this observe first that
if A is a quantization scheme of multiplicity m on V and
¢€R, ¢ # 0, then A' defined by A'f = Af if FEW(V),
A'f = Af+ el if fFEU(V) - Q(V) is a quantization scheme
of multiplicity m on V. For suppose that g€ Q(v);
then go F{_‘GO(V) for all FEL (V). Hence
exp (it/hAN'fIN'g exp (-it/hA'f) = exp (it/hAf)Ag exp
(-2t/hAf) = A(g o F{) = A'(go F{). Next suppose that
gEU(V) -Q(V); then g o FLE€U(V) - Q(V) for all FEL™(V).
Hence exp (it/hA'f)A'g exp (-it/hA'f) = exp (it/hAf)Ag
exp (-it/hAf)+ eI = Mgo FL)+ oI = A'(ga FL).

Now let fa(q,p) = p.o for all (gq,p) €ET*V, o€V and
(U, (t)h)(x) = h(x +ta) for all tER, RE Eatvs 67 0)
and A-almost all x €V. Let a€V, a€R, a # 1. Let
A be as in 6.3 with M = V, u = A. If there is no
unitary mapping W on £, (v,€",A) such that

W exp (it/RAf W' = U (t)

and

W exp (it/nAfau)w"1 = v, (t)
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for all t €ER, there is nothing to prove. Otherwise, we
can consider the quantization scheme A such that

exp (it/hAf ) = U (t), exp (it/hAf ) = U, (%) for all

t €R, Suppose there is a unitary mapping ¥ such that
W exp (it/hA'fa)W'l = U (¢t)
and
; [} =% _
W exp (Zt/hA faa)w = Uau(t)
for all ¢ €R, Then we will have
ite/h -1 _
e WUa(t)W = Ua(t)
and
ite/h -1
e WUaa(t)W = Uau(t)’
i.e.
ite/h -1 _ _ _ Zate/h -1
e WUaa(t)W = Uaa(t) = Ua(at) = e WUu(at)W
_ _Zate/h -1
= e WUaa(t)W
giving

ettc/h " ezatc/h
for all t€R, or
a = 1,

a contradiction. Thus no such mapping W exists.
Since the set {a, aal is linearly dependent, our

assertion is proved.
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We next introduce a set of classical observables

‘which will be important in the sequel.

For 2 = (a,B)E€E VXxV* let fZEEU(V) be defined by

fz(q,p) = p.o~-B.q (9)
for all (q,p) €T*V. Note that £, is linear in =z,
x - fz+ st fz+ fz’ and fcz = cfz for any 8, 8'€ ¥ x V¥,
e €R. Let
1 (V) = {f,: a €V xV*}.
Let ¢ be an inner product in V. Associated with

¢ is an isomorphism, also denoted by G, of V onto V#* and
defined by Gx.y = G(x,y) for all =, y€ V. Thus we have
G(x,y) = G(y,x) = Ge.y = Gy.x for all z,y€ V. If L

is a linear mapping of V into V* define the linear map

L% V=>V* by L*z.y = Ly.a for all z,y €V, Clearly
G = G*.
Let o€V, aoaF 0, BE V*, Define K: V—>V* by
G(o,x) (B.o)
et e | A ——r——
e Gla,o) L8 2G(a,a) Gol
for all #E€ ¥V, Then X has the property that

Ko +K*a = B.

We can now prove
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7.3 Theorem

Let A be a quantization scheme of multiplicity m
on V, with values the self-adjoint operators in
zafV,Cm,A). Let (ek)Z=1 be a basis of V. Then there
exists a unitary mapping W of L,(v,C",)) onto itself

such that for all z = (a,B) €V xVH*
(W exp (it/hAfz)W'lh)(w) =
exp [-i/h((B.x)t4—%(B.a)t2)]Aa(t)h(x+ ta)

for all t €R, heﬁz(V,Cm,}\) and A-almost all x€ V,

where Au(t) 18 a unitary mapping on ¢™ with the properties

Aoc(8+ t) = Au(S)Acx(t)

and
Ao(t) = I Aek(t) = I (1gksn)
for all s, t€ER,
: Ta
Proof. First observe that ¢, "¢ = g+ to for all g€V,

t€ R, so that by (8) and 6.3 there is a unitary mapping

W on 32(V,cm,l) such that

- f
(W exp (4t/BAE_)W Iy)(e) = A4 3(t,x)h(z+ to)
for all h€£2(V,Cm,)\), t€R and A-almost all x €V and
- .
WAFW =m(f')

for all FE€EQV).
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If o = 0 then szQ(V) and the result is obvious.

Suppose that o # 0 and put foc = f(oa 0)° Ay = Afa,

Ay = A, (1< ksn). Let K: V> V#* be any linear map
k .
with the property Ka + K*a = B and let
g(q,p) = Kq.q

for all fg,pl ET*V. Then g€ Q(v) N L°(v) and calculation

shoﬁs that
Dg'(q).z = Kq.x +Kx.q = (Ke + K*x) . q
for all q, x€V. Hence
Dg'(q).o = B.q

for all q€& V. Since ¢§q = q for all q€v, t€R, 3.2
t
gives (foc° Fg){(q) = -J Dg'(q).ods = -tB.q and

0

(fao F%)2= I‘(Xfa) = Lo i.e.

(fao F%) (qgsp) = p.o~-1tB.q

for all (q,p) €T*V, t€R. Hence

¥ =
foc° Fl fz

for all 2 = (0,B)EVXV*, a # 0.

Clearly 49 (t,z) = exp (it/hKac.x)Im for all t€R

and \A-almost all x €V. Hence by 6.3(e) we have

£
4 B(e,z) = exp [i/h(Kz.x - K(x+ s0). (x+ sa))]A (s,2)
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for all s €R and A-almost all € V. The argument of the
exponential can be written -</h[s(Kx.oa+ Ka.x) + s?Ka.o] =
—i/h s (Ko + K*a).x + 82/2(Ka+ K*a).al = -i/h(sB.z +%s?B.a)

so that finally

£
A z(s,x) = exp [-i/h((B.x)s+ %(B.Q)sz)]Aa(s,x)

for all s€R and lA-almost all x€ V.

6.3 (2ib) gives
Aa(s+-t,x) = Aa(s,x)Aa(t,x+-sa).

analogous to (ZiZ2) of 7.2 we find

Aa(t,x— sek) = Ak(s,x- sek)Aa(t,x)Ak(s,x- sek+ ta)-l

(1< k<sn).
By 7.2 we may suppose that Ak(t,m) L for all t€ R and
A-almost all x €V (1< k< n) so that the last equation
becomes
Aa(t,x— sek)=Aa(t,x) (1s kgn)

for all t€R and A-almost all x€ V. Since the ey
form a basis of V, 4 (¢,x) is therefore independent of
A-a.e.. Write Aa(t,x) simply as Au(t)' This completes

the proof of the theorem.

The remark following 7.2 shows that we cannot assume

in general that Aa(t) = I for all a€V.
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If we take V = R” and (ek)z=1 to be the standard
basis then if A is a quantization scheme of multiplicity
m on R™ 7.3 shows that we may assume Afz to be the

operator whose formal expression turns out to be

H/t 4 J .9
Afz = /zjil o axj-B.x+-ca

in £,(R", 8™ 1), where a = (al,0%,...,0"), @ = (2,22, ...,2")
and 2, is a mx m constant matrix with the property
e, = 0 whenever o = 0, ey (1< ks n). Again, we cannot

assume in general that @, =0 for all o €R".

Results analogous to 7.2 and 7.3 can be given for
other observables by making use of the fundamental

equations.

§8 Standard Quantization Schemes

The physicist reader will no doubt complain that the
theory so far covered has given a rather asymmetric
treatment of 'q' and 'p'. He is accustomed to having
the option of working in 'momentum space' or 'configura-
tion space' as he pleases, thus placing 'p' on an equal
standing with 'q'. There is no reason to suppose that
for an arbitrary manifold such a symmetric treatment of

coordinates and momenta is possible. On the other hand
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for vector spaces a symmetric treatment is forthcoming

in certain cases. In this and the next section we
propose to carry out this procedure and in fact to give

a far-reaching extension of the quantization schemes

so far discussed. 7V will continue to denote a finite-
dimensional real normed space. The topology on V* is
understood to be that induced on V* when V* is considered
a subset of T#*V; it is of course the same as that defined

by any norm on V#, A will denote Haar measure on V.

Let S8 be a subset of a real vector space. A map
L of § into the self-adjoint operators in a Hilbert space
will be called limear if the following conditions are
satisfied:

(i) if =, y, *+y €S then Lx+ Ly is closable and

L(x +y) Lx+ Ly3;

(ii) if e€R, x, ex € S then L(ex) elLx.

A prequantization scheme is linear.

i = e
We shall write fa f(u,O) for a€ ¥V and put
(V) = {fu: o€ 7l.
We shall call a quantization scheme A on V standard if

Al 1y (V) is linear.

For each inner product G on V thereis k> 0 such that

the mapping T: fz(V,Cm,A)-*ﬁz(V,Cm,l) where
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(Th)(x) = KJ e*iG(x’y)h(y)dk(y) (10)
4

for all hE€ L (V,C™,A)NL,(V,C™,2) is unitary and has the
property (T ‘h)(x) = (Th)(-z) for all hE€ L, (V,C",1).

[If v R™ and A is Lebesgue measure then we can take

K = (Zﬂ)—n/z/]det G;1G| where G, is the Euclidean inner
n .

product: G°(ei’ej) = 6ij where (ei)i=1 is the standard

basisj in this case T is the Fourier (Plancherel)

transform when G = Gg.]

Our first result says that if A is standard then the
factor Aa(t) of 7.3 may be assumed to be the identity

for all a€V.

8.1 Theorem
Let A be a standard quantization scheme of multi-
plicity m on V with values the self-adjoint operators

in £,(v,C", ). Then there exists a unitary mapping W

of Lo(V,8™, ) onto itself such that for all z = (a,B)E Vx V%

(W exp (it/WAf )W "h)(z) =

exp [-2/h((B.x)t+ %(B.a)t?)] h(x+ to) (2)
for all tER, 7z€£2(V,Cm,A) and A-almost all x€ V.
Conversely, 1f A is such a quantization scheme

having the property (i) for some unitary map W, then

A 18 standard.
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Proof: By 7.3 with B = 0 there exists W such that for

all o€V
(W exp (it/hAf IR "h)(x) = A (t)h(x+ ta)
for all t E€R, iz€£2(V,qu) and A-almost all x€ V, where
Ae (£) ==Im (1< ks n)
k
for all t €R,

It follows easily that

(TW exp (it/hAfu)W-lT'lh)(x) = exp (itG(w,0))A (t)h(z)

(22)
for all ¢, h, a and A-almost all =z. If A is standard
go is A': f—*TW‘AfW-lT"l(fGEU(V)) and we have
A'f,, = m(hGe,) where f, = f (1<ksn). We shall show

k k k ey
that for all afEV,A'fa = m(hGa).
n i 7 _ k 7
let o = % a e. (o €R) and put T, Iz ae
i=1 * i=1 *
(1s k<sn), Suppose that
. 5 & stes oy
fYk = ml i=1u Gei (ti¢)

for some k <n. Then
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k+1
AlF = A'f = A'"(f. +0a 5 )
Yier1 Yk+ock+lek+1 Y Je+ 1
R R A k & . z
o o 3 k+1 _ 7 k+1
= A fYk+-a A’fk+1 = m(ﬁigza Gei)+ m(ho Gek+1)
k+1 y)
=m(h £ a"Ge.)
=1 C

where we have used the fact that m(f) + m(g) = m(f+g)
for measurable functions f, g on V (cf. the proof of 1.9

(p-B82)). Thus (i442) is true for k+ 1. Since

A'fY = 1\"1"&1@1 = A'(alfi) =alA'f, = a'm(hGe,) = m(ha'Ge,),
1
(i17) is true for k = 1. By induction it follows that

(112) is true for k = n, i.e. A'fa = m(hga).
Hence

(TW exp (it/hAfa)W'lT"lh)(x) = exp (4tG(xz,a))h(x) (iv)

for all ¢, kA, o and A-almost all x. Comparing (<<) and

(tv) we see that

Aa(t).= Im

for all a€ Vv, tER, The first result now follows from

7.8.

For the converse, let A have the property (Z) for

some W. Then A’fa = m(hGa) for all o€ V. Hence
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m(hGo) +m(hGa’) is closable and

Il

REE = NEP,

A'fa+ A'fa, = m(hG(a+a’)) = A'f

g for any o, a’'€ V.

Also A'f, = m(hG(ea)) = m(chGa) = em(hGa) = cA'f ~for

any a €V, ¢ €R, Hence A'’, and hence A, is standard.

It is relatively easy to prove from 8.1 that A is
standard 1ff A|1(V) is linear, in fact, iff the restric-
tion of A to the larger set {fz+ e: szil(V), c€ R} is

linear, though the latter result requires further study.

By the remark immediately following 7.3 it follows
that not every quantization scheme on ¥ is standard.
By taking M = V, u = A, f = fz in 5.2 it follows that the

canonical scheme of multiplicity m on V is standard.

Let A be a quantization scheme of multiplicity m on
V and let ¢c€R, ¢ # 0. Put A'f = Af if FEQV) UL (V),
A'Ff = Af+eI if FEU(Y) -QV)ULY(V). If g€EQV)UL (V)
(resp g€ U(V) - Q(V) UL®(V)) then g o FL, €Q(V) ULT(V)
(resp. g o FL €U(V) -Q(V)UL™(V)) for all FELT(V), tER.
It follows easily that exp kit/hA'f)A'g exp (~it/hN'f) =
A'(go FY) for any FEL™(V), g€U(V), tER, i.e. A is a

quantization scheme of multiplicity m on V.

Now suppose that A is canonical. Then A' is

standard. Since X-f = "Xf and hence F;f = Fft for all
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fEF(T*y), tE€R (Abraham [1, p.u40]), (1) and (8) show

that if f€ U(V) then

(exp (2t/AA(-F))h)(x)

t .
= exp (-i/hf ! (¢fsx)ds)/ | det ¢l () |h(¢ftm)
, . !

i

-t
&3 (»a/hj f{(d)‘:x)ds)/| det ¢ft(x)|h(¢ftx)
0

= (exp (~it/hAf)h) (x)

for all h€L,(V,"\), t€R and A-almost all z€ V. Hence
A(-f) = -Af. If there exists a unitary mapping ¥ such
that WA'fW ' = Af for all fE€U(V) then we have

A'(-f) = -A'f and so if FEU(V)- QV) VUL (V)

0 = NTF-A'f = A'F+ A" (~F)

= AF+A(-F) + 26T = Af - AF + 2o1

= 2el,

i.e. e = 0, a contradiction. Thus no such W exists and
we have shown that not every standard scheme of multi-

plicity m on V is equivalent to the canonical one.

Obviously, a linear quantization scheme on V is
standard, but not every standard scheme is linear. For
if A is linear then A’ as defined above is standard but

if FeU(v) - acv) ULY(V) and a # 0, a # 1, then
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A(af)

AMaf)+ el = aAf+ eI
= aq(Af+cI)+c(l-a)l

= al'f+ecl(l~al)l # ah’'f = al'f,

so that A' is not linear.

Having made these remarks we shall now proceed with
the development of the theory. Throughout the rest of
this section A will denote a standard quantization
scheme of multiplicity m on ¥V with values the self-adjoint
operators in a Hilbert space #. For each

2 = (0,B)E VX TV* let
S(z) = exp (i/hhfz). (11)

By 8.1 there is a unitary mapping W of ¥ onto

fz(v,ﬁm,k) such that for each z

Hacgiwt = 8ts) (12)
where
(S(z)h)(x) = exp (-i/h(B.z+ ¥B.a))h(x+ o) (13)
for all hetﬁg(v,cm,l) and A-almost all z€ V. For each

a€ V, BEV* put

Q(o) S(a,0), R(B) L0587,

(14)

S(a,0), R(B) = S(0,B).

5(&)

Let n: (VxV#*)x (VxV*)+R be defined by

nfz,eg’') = B.a"+B'.0 (186)
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where 2 = (a,B), z2' = (a',8'). We then have

8.2 Lemma

(Z) for all z, 2'€VXV*

S(z)S(z') = exp (g%ﬂ(z,z'))S(z+-z'); (16)

(¢i) for all a €V, BEV*

Q(a)R(B) = exp (~i/hB.a)R(B)Q(a); {22)

(iii) @ (resp. R) is a strongly continuous unitary
representation on W of the locally compact additive
group V (resp. V*).

[+}

Proof. Equation (16) with S replaced by S follows
immediately from the definition (13). (16) itself then

follows from (12).

Put z = (0,0), 2' = (0,8) in (18) to obtain
Q(a)R(B) = exp (—g% B.aJS(a,B): Similarly =z = (0,8B),

2" = (a,0) in (16) leads to R(B)Q(a) = exp (g% B.oa)S(a ,B8)

whence Q(o)R(B) = exp (-i/hB.a)R(B)Q(a) and (17} is

proved.
To prove (iii) first observe that z = (0,0),
g'" = (o0',0) in (16) gives

Q(a)@(a') = @(a+a’),
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while 3 = (0,B), 2' = (0,8') in (16) leads to
R(BJR(B') = R(B+B').
Hence @ (resp. R) is a unitary representation of ¥
(resp. V#*) on &,
Now, by (13} .

(d(a)h) ()
(R(BIM) ()

h(x+ o),

il

exp (-i/hB.x)h(x)

for all K€L, (V,C™,A), a €V, BEV*, A-almost all z€ V.
Since, with T defined by (10), we have

(1§(0) 7™ n) (x) = %% ®n(x) for all K€L, (V,E", 1), and
in view of (12), to prove that @ and R are strongly
continuous representations it is sufficient to show
that the map V*-+f2(V,Cm,A), Bﬁ-m(eis)h, where eiB
denotes the function x—*eie'm, is continuous for all

h€5£2(V,Cm,X). To do this it is clearly sufficient to

prove continuity at 0. Without loss of generality we may

assume the norm on V* to be given by lIgl = sup|B.z]|
x€V
el

for all BE V4, We have

lm(e®®)n- nl? |82 1)2 | n(x) | 2dA(x)

Y

)
= | 4 sin? (B2Z)|nca) |2dr(x);
JV 2
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since 4 sin? (§§£)|h(x)|2s (B.x)?|n(z)|2s Igl2lxl?|n(x)|?
the integrand tends to 0 with B. Since also
4 sin? (§§£)|h(x)|2~s4|h(x)|2, the dominated convergence

theorem applies to give

idn Tite S ih « 1 = B
B8+0

for any heEL,(v,C", 1), This completes the proof of the

theorem.

A 1-1 linear mapping L: Vx V*>Vx V* is symplectic
(regarded as a mapping of T*V onto T*V) iff it leaves the

antisymmetric bilinear form n invariant, i.e.
Nt Lae') = nlg,s') (18)

for all z, z2'€VxV* (Abraham [1, p.96, 14.13]1). The
set Sp(V) of all symplectic automorphisms of Vx V* is a
group under composition, called the symplectic group.
It is a locally compact Lie group of dimension on’+ n,

where #n is the dimension of V.

If LE€ESp(V) and sz|(V), z = (a,B), then

fz(q,p) p.o~ B.q

n((q,p),z)

for all (q,p) €T*V, so that

il

(fz° L)(qg,p) fz(L(q,p)) = nlL{qg,pls+8)

n((q,p),L"'a) = f£;-1,(q,p)
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for all (q,p) € T'*V. Hence

fzo L = fL-lz (19)

for all s€ 7V x ¥+, (Thus the map fzﬁ-fzo L leaves | (V)

invariant.)

We shall write

- o I TG |

S;(z) = S(L "z), 5;(2) = S(L "3), (20)
o o] Q o] (21)
QL(OC) = SL(G»,O): RL(B) = SL(O.,B).’

for all z€EVx V*, a€V, BET*. We then have, in

analogy with 8.2,

8.3 Theorem
Let LE Sp(V). Then
(1) for all z, 8'€VxV*

SL(z)SL(z’) = exp (g% n(z,z'))SL(z+ gt); (22)

(1) for all a€V, BEV*

QL(a)RL(B) = exp (~i/h8.a)RL(B)QL(a); (23)

(1i1) QL(resp. RL) i8 a strongly continuous unitary

representation on ¥ of the additive group V (regp. V*).

Proof. By 8.2(%),
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1

S, ()8, (z") S(L"ggS(L‘ a')

1

exp (g% n(r e, n”tas(n izt at))

= exXp (gﬁ n(z,z'))SL(zf-z’}.

Put z=(a,0), 2' = (0,B) in (22) to obtain
0, ()R, (B) = exp (g B.0)5,(0,8).  Similarly, z = (0,8),
B! = (a,0) in (22) leads to RL(S)QL(a) = exp (gfﬁ.a)SL(a,B)

whence QL(a)RL(B) = exp (-i/hB.a)RL(B)QL(G)and (23) is

proved.
To prove (iii) first observe that z = (a,0),
z' = (a’,0) (resp. 3 = (0,8), s' = (0,8'))in (22) gives

@ (0)@ (a’) = Qr(a+al’) (resp. R (BJR (B') = R, (B+ B')).
Hence &, (resp. RL) is a unitary representation of V

(resp. V#*) on ¥,

Since S(a,B) = exp (ﬁ% B.a)Q(o)R(B), we have

q (a) = 5;(a,0) = (L7 (0,0))

= exp (% 53 (0,00 .57 (0, 000007 (0, VR(L; (0, 0))
(i)
and similarly
R, (B) = exp (5§ D3'(0,8).57'(0,8))Q(L1"(0,8))JR(L5(0,8))
(i4)
where we have written L™ '(z) = (53%(2),L3"(z)) for any

a€E VX V%, Since the maps V>V, a+~LEl(a,0); V%,
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= - -
a>L3 (0,0); VA+V, B+L1'(0,8); V*>V*, B>L3 (0,8)
are continuous, it follows from equations (<) and (%)

and 8.2 (iiZ) that QL and R. are strongly continuous.

L

We next introduce the character group V'. This is
the set of all continuous homomorphisms w of V into the
multiplicative group of all complex numbers of modulus 1.
V' is a group relative to the usual pointwise product of
functions and is equipped with the topology defined by
the set of basic neighbourhoods {N(wp,C,€): woeE V', CCV

is compact, € > 0} where
N(wg,C,re) = {wEV': |w(x) -wo(x)| <e for all x€C}.

With respect to this topology V' is a locally compact
topological Abelian group. For our work the following

result is of importance.

8.4 Theorem

The mapping J: V'>V*, w~+1hDw(0) (considering w as
a map into the two dimensional real space of complex
numbers Cy) is a homomorphic homeomorphism onto V?*, whose
inverse 1s given by (77 'B)(z) = exp (-i/hB.x) for all

BE ¥¥, £€ V.

Proof. We shall show first that every w€ V' is a

continuously differentiable mapping into €, and that
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wl(x) = exp (Dw(0).x) (i)

for all 2€ V.

n
k’ k=1

i wIEk and define 0,: R>Cy by 0, (t) = wy(tey).

Let (e be a basis of V and put E, = {te,: t€ R},
w

By definition w(x +y) = w(x)w(y) for all x,y€ V. Hence

ek(s+ t) = wk(sek+ tek) = wk(sek)wk(tek)
(27)
for all e, tE€R, Let
t
gk(t) = J Gk(s)ds.
0

Clearly there exists a€ R such that gk(a) # 0; hence

ra
Ok(t)ek(s)ds

gk(a)ek(t) i

ra t+a
= ek(s+ t)de = j

‘0

0, (s)ds
- k

gk(t+ a) - g (t),

ek(t) (gk(t+ a)-gk(t))/gk(a). (i11)

Since ek is continuous gk.is differentiable in R and,

by (Z2%), we conclude that Gk (and hence wk) is differen-
tiable in R. Differentiating (27) with respect to s and
setting § = 0 we have Dek(t) = Gk(t)Dek(o) with solution
6,(t) = exp (D6, (0).¢) for all tER, In terms of w,

these formulas read
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Dwk(x) = wk(x)Dwk(O) (iv)
and
wk(m)'= exp (Dwk(O).w) (v)
for all xGEk.
n
For « €V put « = X L where xke Ek' Then
k=1
(considering V as the product E X E2><...><En) we have
Dkw(x) « (I wi(mi))Dwk(xk)
1#k
= (igkwi(mi))wk(mk)Dwk(O) by (iv)
= w(x)Dwk(o) (IS ks n) (vi)
for all = €V. By (vi) for each k the map xﬁ-Dkw(m)

of V into the normed space of R-linear maps of V into Co

is continuous. Hence w is continuously differentiable
in V and
Dw () g D, w(x) 5 (x)Dw, (0) ( )
wlx).y = w(z).y, = I w(x)Dw,(0).y Vit
for all , y€ V. Thus in particular, since w(0) = 1,
n L
Dw(0).x = T Dw,(0).x (viii)
k=1 K K

for all x€ V. Finally (v) and (vi<i) give

wlx) = gwk(xk)

n
exp (kEJDwk(O).xk)

exp (Dw(0).x)
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for all € V. This proves (7).

Since w(x) must lie on the unit circle in the
complex plane Dw(0).x is pure imaginary, hence ZhDw(0).x
is real. This proves that thDw(0)is an R-linear mapping

of V into R, i.e. Jw = thDw(0) € V*,

For w;, ws €EV' let wiw, denote the mapping
e+ wil(x)wa(x). Then J(wiwy) = thD(wiw2) (0) = 2h(Dw1(0)

+ Dwa(0)) = Jwi + Jws. Thus J is a homomorphism.

By (vii) and (viii) we have Dw(x) = w(x)Dw(0) for
all wEV', x€V. Hence Jw = Dw(b) = 0 implies Dw(x) = 0
for all €V, i.e. w(x) = ¢ for all x€V (e a constant).
Thus ¢ = w(0) =w({ +0) = w(0)w(0) = e*, i.e. ¢ = 1.
Thus the kernel of J consists entirely of the identity

in V'3 hence J is 1- 1.

Let BE V%, Then the map wB: V+C, x+exp (-2/hB.x)
B8

is in Vv’ and Jw" = B. This proves that J is onto ¥V* and

consequently that J 'B = 0P,

It remains to be proved that J and J~! are continuous.

Let wo €V'. Let €> 0 and suppose that wE€N(wo,C1,r)
where ¢, = {2z €V: lzll <1} and » = 2 sin (min (f%, g)).

Then |w(x) -wo(z)| <r for all x€C,, i.e.

|exp (Dw(0).z - Dwo(0).2z)~1|<r
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But this is the same as
|sin (—2—15(Jw-on).m)|<r/2 (i)

for all € (.

integer o such that

Thus for each xz€ C,

there exists an

1 :
nx’fT-6<2h (Jw-on).ac<nx'rr+s

where 8 = min (€&/(4¢h),n/3).

Suppose that n,*? 0.

-g-- 27823: < E:Z“E(waon).y <—12L+?i-;
where y = x/(an)(:' 0y Since s/(2nx)\< s/2& /6, we
. have
%<-§E(Jw-Jwg).y<%1;
hence

sin (Elg(Jw- Jwo).y) > sin [-—]z sin s

which contradicts (zz).

we assume nx < 0. Thus nx = (0 and we have

|'22‘ﬁ (Jw - Jwg).x| < s

for all € (C;. Hence
lJw - Jwoll = sup |(Jw - Jwe).x| s 2hs
.’BEC;L
£ €/2< €

and J is continuous at wg, for every wo€ V'.

NCY b

Then

A similar argument holds if
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Let By EV*., Let €> 0 and suppose that BE V#* and

g - goll < he. Then

sup | (B~ Bo).x| <he;

:x:E(Jl
hence |(B- Bo).x|<he for all x €¢;. Now
|7 B (%) - 7™ Bo(x) | = |exp (~i/B(B- Bo).x) = 1|

= 2 |sin gﬁ (B-Bo).z|< %](B- Bo).xz| < € for all z€ C,.
Thus J ‘B EN(J 'B,,C1,€) and J ' is continuous at 8o, for

every RBoE€ V*#, This completes the proof of the theorem.

If we put RI!I = RLoJ then by 8.3 (i), 8.8 (ii%)

and 8.4 we have

8.5 Theorem
Let LGESp(V). Then Q; (resp. R;) 18 a strongly
continuous unitary representation on H of V (resp. V')

and for each o€V, w€V' we have

= 14
QL(a)Ri(w) = w(a)R;(w)Q(0). (24)
We now obtain the following fundamental result.

8.6 Theorem
Let AN be a standard quantization scheme of multi-

plieity m on V. For each L‘ESP(V) there exists a

: ¥ sueh that for all fEI(V),

unitary mapping W

~1
A(foL) h WL Af WL.
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Proof. By 8.5, 1.6 and Mackey [1, p.314, Theorem 1]
or Hewitt and Ross [1, p.323], there is a unitary mapping

Wy of ¥ onto EZ(V,Cn,A) for some n€ NU {»} such that

(WIQL(a)WIlh)rx) hlmd ol (1)
and

w(x)h(x) (i)

(WlRé(w)WIlh)(x)

for all o€V, wEV’, h.€£2(V,Cn,A) and A-almost all

z2e V.

It follows from (22) that if z = (a,8) then
SL(z) = exp (5% B.a)QL(u)RL(B). Consequently, by (),
(77) and 8.4, we have
W18, (2)WT' = §'(a) (1ii)
for all s €V x V*, where 5’(3): fz(V,cn,A)~+£2(V,cn,X)

is given by (S'(z)h)(x) = exp (-i/h(B.x+ ¥B.a))h(z+ o)

for all h€5£2(V,cn,A). However, by (12) we have

WS (z)W "t = Ws(1T e = S(L"'z), so that (444) gives
(L7 z) = WaS'(a)W3' (iv)

where W, = WWII. W, is a unitary mapping of fz(V,Cn,A)

onto fz(V,Cm,A).

we shall show that n w=m. By 1.8 L20vsC8;a),
where p = m (resp. p = n), is a direct sum of closed

’ o
subspaces (ﬂ%)i=1 invariant under all S(z) (resp. S'(z)),
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each of which is identifiable with Eo (V). Since

§(z) can be expressed in terms of the product of 5(&)
and ﬁ(s) and since 1t is well-known that the set of
operators {é(a), ﬁ(e): o€V, BEV*} acts Zirreducibly on
EZ(V,A), each ﬂ% (1< k<sm) is irreducible with respect
to the operators {5(z): 2€VxTV*}, An analogous result

holds for the set {§'(z): z€ vXx v*} acting on each

Let I k<n, 1<£5j<m. Then by (Zv), ijﬂ WZ(JCk)
is invariant under all 5(3); as this set of operators
acts irreducibly on ﬂb we must have ﬁbowz(ﬂ%) = {0}
or ﬂ}' Hence for each k (1< kg n) there exists
k' (1€ k"< m) such that H%,fWWZ(H%) = 4t ,. Now
WZl(ﬂk,) = ﬂ%fﬁwzl(ﬂ%,) # {0} and by the argument just

il
given but applied to W, we conclude that

i T 5 v *
Kkriwz (ﬂ%,) = ﬂ%, thus Wz(ﬂk) —‘ﬂk,. The mapping
N, *N,» k+k' is clearly an injection. Hence n< m.
Similarly, it may be proved that m< n. Hence m = n.

We can now write §Yz) for S'(z) and (ii<) and (12)

- o -~ — .
give SL(z) = Wlls(z)W1-= WIIWS(z)W 1W1, i.e.

SL(z) = WEIS(z)WL (v)

for all z€ V xV*, where WL = W-IWI.
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By the remark following 8.1 or directly from 8.1
itself it follows that exp (it/hAfz) = exp (i/hAftz)

for all t€ R; hence

exp (it/BMA(f o L)) = exp (it/MAf -1 )

= exp (i/hAf,;-1,) = GUtE™* »)

-1 -1
= 8(L "ts) = Sp(ta) = W, S(tz)W; (by (v))
= W.' exp (i/BAf, )W
L P t4" "1
-1 .
= W;" exp (zt/hAfz)WL
for all t€R, 2EVxV*.  Hence A(f_o L) = W  Af W,
for all s €V x V%, This completes the proof.

It should be noted that the requirement that A be
standard i1s also a necesgary condition for the existence
of 8.6. For if a, a’'€ V, there is always a LGESP(V)
such that L™ *(a,0) = (0,8), L *(a',0) = (0,8') for some
B, B'E¥* (for éxample, let G be an inner product on V
and define L by L(q,p) = (e tp, =Ggll. Hence if 8.6

holds we have

Rf #Af,, = W, (A(f L) +A(Ff o L))Wzl

et
= W (RE o) #AE 5 or))W]

-1

= W A(f (0,8+8")"L

-1 _
o, 83 *Eo, g0’ = WAL

-1
= Wphtlspqre BV

Af

weqt = NP+ Fyr)s
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g e ; :
since f(O,B)’ 0,87 Q(v) and A|Q(V) is linear.
Similarly we may prove that A(cfa) = cAfa for all

ec€R., Thus A|l,(V) is linear.

Because of the use of the uniqueness theorem of
Mackey in the proof, 8.6 has been obtained with
essentially little work. On the other hand, the proof
of 8.6 is a nonconstructive proof, giving no prescription

for finding the operator W, for given L. An alternative

L .
and ‘semi-constructive proof which makes no use of

Mackey's theorem can be obtained as follows.

If gt E VX V%, the mapping Lz,: VXVA>TV xXV*,

z+z+n(z,2')z"' is called a symplectic transvection.

We have LZ,GESp(V). If we define
W, = exp (FE(AE,,)%), (25)

Z'

then W has the property that A(fo Lz,) = Wt Afw

Lz' Lz' Lz'
for all FE€ (V). This is proved by using 4.1 and the
relation

L tA? 2 (ite)s?/(4t) ish
Z .. -(ite)s i8
e = 1lim e e ds
esg VEN|E]
€ >0 R

for any self-adjoint operator 4 and t€R (¢t # 0) (upper
sign to be taken if ¢ > b, lower if ¢< 0). The inter-

pretation of this equation is that
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EbA 2 gin/d (ite)s?/(4t), i8h
{ a* Y = 13 g FeRSsd (e x,y)ds
= Sed o Vhm|t] 4
>0 R
for all x, y in the Hilbert space. Sinc@ any LE Sp(V)

is a product of symplectic transvections (Artin [1,

p.139]), this provides an alternative proof of 8.6.

For given L €8Sp(V), the operator W_ of 8.6 is not

L
unique. However, if Wi is another such operator then
we must have W£ = C W, where ¢, is a unitary operator on

H{ that commutes with every exp (it/hAfz) (i.e. with
every S(z), z€V xV*), The following lemma shows that

¢, must be of a special form.

8.7 Lemma

Let C be any unitary operator on Eg(V,Cm,X) which
commutes with every S(z) (2€VXV*), Then there exists
a unitary operator C on C" such that (Ch)(xz) = Ch(z) for

all hEeCz(V,Cm,A) and A-almost all =€ V.

Proof. With 2 = (0,B) we see that ¢ commutes with all
8

multiplication operators m(elB) (where e

_)e?:B.x) .

is the function
x By standard arguments we conclude that C commutes
with every m(xA) (AE B{(V)). Hence ¢ must be of the

form (Ch)(x) = C(x)h(x) where for each €V, Clx) is a
unitary operator on €™ (Mackey [4, p.282]). The fact

that ¢ commutes also with all translation operators
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§(a,0) shows that C(x) must be independent of x for

A-almost all z.

8.6 further shows that if L, L'€ Sp(V) then

W = C(L,L’)WLWL, where C(L,L') commutes with every

LL'
S (&) If m = 1 then by 8.7 C(L,L') will just be a
complex number of modulus I and in addition we shall have

in this case

C(Lle,Lg)C(Ll,Lz) = C(L;,Lst)C(Lg,La)

for all Li,Ls,L3 € Sp(V) This follows on writing

Li1L,Ls in the two forms (Li1L,)Ls and Ly (L,Ls). Indeed,
if m = 1, ¢ will be a multiplier for Sp(V) and W: L= W,
will be a projective representation of Sp(V). It would
be interesting to find the conditions under which ¢ is a

multiplier if m # 1 and under which W is strongly conti-

nuous (for any m).

For properties of the symplectic group see

Helgason [1] or Artin [1].

§9. . Admissible Quantization Schemes.

If A is standard and g€ U(V) - 1(V), then if

LESp(V), go L need not lie in U(V) and when it does we

cannot be sure that A(go L) will equal WZIAgWL.
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A quantization scheme A of multiplicity m on V
will be called admissible if A is standard and if, in
the notion of 8.6, for each LE Sp(v), g€ U(V),

(i) WZIAgWL is independent of choice of W, and

L
(ii) go LEU(V) implies A(go L) = w;lAng.

9.1 Theorem

Let A be a canonical quantization scheme on V. Then

A 18 admissible.

Proof. The only proof that the author has been able to
find for general V is exceedingly long and complicated.
For reasons of space, therefore, we shall give the proof
for the relatively simple case of one-dimensional V,

identified to R.

By a remark following 8.1 we know that A must be
standard. Let A be Haar measure on R. By (1) and

(8) we have

% gl 7 f
(exp (Lt/BAfIh)(z) = exp (i/h J r1ceferds) [ldet o3 (2) |n(oFe)
0 8
(2)
for all fF€U(R), t€ER, KE £,(R,C™ %) and A-almost all
x€R. If AM(fo L) = WEIAfWL for all f€ I(R) then any
other such operator WL' is such that WL' = CLWL where,
by 8.7, (CLh)(w) = @Lh(x) for all hE‘ﬁz(R,cm,X), where

@L is a unitary operator on C". Hence if FfE€U(R),
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1

-1 . = = .
Wy exp ('Lt/hAf)WL’ = W,C.~ exp (it/DAfIC W

-
L 7L
= WE’I exp ('zlt/hAf)WL, since it is easily seen from ()

that ¢, commutes with exp (Zt/hAf).

We next identify the set 0(L) of functions g € U(R)
such that g o LEU(R). To do this we identify R#* with R
via the mapping p +p.1 of R* onto R and write L in the
form L: (q,p) > (aq + bp, c¢q + dp) where a, b, ¢, d€ER.
In order that LE€Sp(V) it is necessary and sufficient
that ad - be = 1. Let g€ U(R) be written as
g(g,p) = A(q) +p.X(q), where A€ g/, X = x? and suppose

that go L €EU(R). Then we must have
A(aq + bp) + (eq+ dp)X(aq + bp) = B(q) + pY¥(q) (i7)
for all (q,p) € Rx R* and some measurable function B:

R+R and ¢ y: R>R.

If b = 0 then a # 0 and clearly B(q) = A(aq) + cqX(aq),
Y(q) = 1/aX(aq) satisfy (<i) for any A and X. Hence in
this case O(L) = U(R). Let faJCEU(R) be defined by
fo,0(a>p) = 1n la|.qp - ey(a)q?
where y(a) = 1n |al|/(a- 1/a) if |a| # 1, (1) = #1/2.
Then calculation shows that
fa,e
F,7°7(qsp) = (lalq, p/lal £ eq)

(the upper sign is taken if a > 0, the lower if a< 0).
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Hence L: (q,p) * (aq, p/a+cq) can be written as

L = tF1 If we let K: RxR*+ Rx R*¥, z - -z, this is

fa,c

€ (a>0) L = F1 o K(a< 0).

the same as L = Fla’

If g €U(R), then g o K(q,p) = gi(-q)-p.X9(-q),
i.e. go KEU(R) and (go k)] = glok,, X9°% = ko 29, k,,
where K;: R >R, 2~ -x. Let (Kh)(x) = h(-z) for all
nEL,(R,C™, ). We shall show first that A(g e K) = kAgK

for all g €U(R). By (Z),

(X exp (it/hhg)EKh)(x) =

t
exp [Z/h J g{(¢g(—x))ds]//|det ¢%(-w)lh(~¢i(—x)).
0 s Y
(i4d)
The flow ¢g°'K of ¥9°% on R is given by ¢i°'K = K1<>¢i o K1
(see the remark immediately prior to 3.2). Thus
D(b%o K(:L') = DKl(d)% o Kix) o D¢i(K1x) e DK1(2) = K10D¢i(-x) o K13
hence det ¢i° Kig) = det [D¢i° K(m)] = (det Kl)zdet[D¢i(—x)]
= det [D¢i(-w)] = det ¢i(—x). The right side of (<%<)

now becomes

t
exp [</h J gio K1(¢g °Kx)ds]//ldet ¢i °K(x)|h(¢%° Bl
, 0
i.e. KAgKk = M(g o K).

s
Let g €U(R). Then if a> 0, Afge L) = A(g s an,c) _
exp (i/hAf, _)Ag exp (-i/BAf, ) by 4.1. This in
2 >

particular holds if g€ I(R) so that we may write

: ’ o1
W, = exp (-t/hAfa,c), this shows that A(g o L) = W, AgW,
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f
for all g€0(L). If a<0 we have A(go L) = Alge F,** %0 k)
f
_ Bl ¥ .. ¥ . o v
= KA(go F, )JK = K exp (t/hAfa,c)Ag exp ( t/hAfa,c)
so that if we write WL = exp (-i/hAfa e)o X then
3

Alg o L) = WEIAQWL for all g€ (L) in this case also.

If b # 0, again the first step is to identify O(L).
Put ¢ = 0, p = (ag+bp)/b in (ii) to obtain
A(aq + bp) + (ad/bq + dp)X(aq + bp) = B(0)+ (a/bg+ p)Y(0).
As ad/b = e+ 1/b this is A(aq+ bp) + (eq+ dp)X(aq + bp)
+ q/bX(aq +bp) = B(0)+ (a/bq+ p)¥Y(0) and comparison with
(Z2) yields q/bX(aq+ bp) = B(0) - B(q) + aq/b¥Y(0) + p(¥Y(0) - Y(q))
The substitution g = b, p = q/b- a gives X(q) = B(0)
- B(b) +a¥(b)+ 1/b(Y(0)- Y(b))q. Now put ¢ = 0, p = q/b
in (4%) to obtain A(q) = B(0) + q/b(¥(0) - dX(q)) and
consequently from the last result, A(q) = B(0)- 1/bld(B(0)
- B(b)+ a¥(b))~ X(0)1q-d/b2(X(0) - X(b))q?. Thus we
have proved that for go L to lie in U(R) we must have
X(q) = oo+ a1q, A(q) = a»+ asq- dar/bq? for some op, a1,
a2, o3 €R. Substitution in (%) shows that this

condition is also sufficient and we obtain further that if
gl(q,p) = as+ aszq~ day/bg?+ plag+ a1q) (iv)
then

(g oL)(q,p) = s+ (cog+ans)qg - ani1/bq?+ p(dog+ bas - a1q).
(v)
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O(L) is the set of functionsg of the form (Zv).

Any self-adjoint operator is the closure of its
restriction to any domain which is dense in the Hilbert
space and invariant under the one-parameter group which it

. 5 o o -
generates. Thus if H = Ag|Co(R) where Co(R) is the set
of CM-valued functions on R with compact support, we have

Ag = E: Calculation shows that
(Bh)(x) = (o2 +ha1/(24)+ asx - doi/bx2)h(x)

+h/i(0g+ ayx)Dh(x) (vi)
for all hE Ch(R). If we write Hy; = Af 5
{109
° (o0 L (o] -
Hy = Af(U -1)° Hy = H1|CQ(R), Ho = HZICO(R), (vi) can be
written H = a,I+ aoﬁ1+-aaﬂz-da1/bﬁ§-+a1/2(ﬁ1ﬁ2+-ﬁ2ﬁ1).
Let

H = ol +a¢H) + G3Ho - dal/bH§
+ o1 /2(H1Hy + HoHy) .

H is obviously densely defined and has the property

H* D H, Thus H is symmetric and hence so is its closure
H. Since #D# and so DN = Ag we have BEC F*C Ag, i.e.
B = Ag.
L -1 L -1 L -1
Let H7 = WL HIWL_, Hy = WL H2WL, H™ = WL HWL.

Then WEIAgWL is the closure of H' and

HL = QoI + OLoHlll'f' ObgH‘zz:l - dul/b(H€)2+ OL1/2(H€‘H£’+ H'ZH‘E’).

Since also HY = A(F 0 Gl oA

(1,0) £d,-c)?
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L _ _ ; .
Hy = A(f(o,-l) o L) = Af(b,~a) the respective restrictions
L and BY of these operators to Cg5(R) are given by
(8%%)(2) = cah(x)+ h/idDh(x) and (E3n)(x) = aw+h/ibDh(z),
respectively, for all nECYL(R). Hence the restriction

oL L

A" of H" to Co(R) is given by

(B"h) (x) = (as - hay1/(20)+(cao + ans)x
~aai1/bx?)h(x) +h/7 (doy + bas~- ci1x)Dh(x). (vii)

However, (v) and the same argument that led to (v<) shows
that &% as given by (vii) is equal to A(go L)lC?(R) and

moreover A(g o L) = EL. Thus WzlAgWL = EIIDﬁL

=A(g° L)l
Since WzlAgWL and A(go L) and both self-adjoint, it
follows that WEIAgWL = A(g o L). This completes the proof

of the theorem.

Let A be admissible and put
Uv) = {foL: FEU(V), LESP(V)}.

Clearly U(v) CU(v). We extend A from U(v) to U(v) by
defining, in the notation of 8.6, A(fo L) to be
w}J‘Awa (f€U(V)). To show that this definition is

possible it is only necessary to check that

WZi Af(l)WLl = WZ: Af(‘g)WL2 whenever f(l), f(g)EEU(V)

and f(Z)o Li = f(Z)o L, for some L, Lo €Sp(V). But

f(l) o Ly = f(2) o Ly implies f(Z) = f(l) o Lo L;l and by
(8) _ =1 1)

L W W &Y e

the hypothesis of admissibility Af LlLZIAf Ly L5
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Since, however, Wz i 1AgWL T A(go Lio L') =
WLZA(9° L1)Wz = WL WL AgWL WL for all g€l (V), by the
hypothesis of admissibility of A we also have
(2) _ =1,0(1) -1 (2) (1),
Af = WLZWLlAf WLlez' Hence W Af L2 = WLzAf L1'

If f€U(V) then fo LEU(V) for any LESp(V).

Also, f

goL' for some g€ U(V), L'ESp(V). Thus

A(folL) Alg oL' o L) = W, ,,.AgW which, by an argument

L'L A T
similar to that just given, is the same as

= 1 ' w HrA
W AgW = W, Mgoe L)W, = W _"AfW. Thus the

L L’ L

following theorem has been proved.

9.2 Theorem

Let A be an admissible quantization scheme on V with
values the self-adjoint operators in . Then A can be
extended to U(V) in such a way that for each L €Sp(V)
there exists a unitary mapping Wp: H >3 with the property
A(fo L) = WilAfWL for all FEU(V). This extension is the

unique one with this property.

(Observe also that U(V) is completely symmetric with

respect to 'q' and 'p'.)

This result has obvious theoretical significance.
We are not concerned here with the determination of WL in
the general case, nor with seeing what the set of

functions U(V) looks like (simple examples will show that
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the form of these functions is exceedingly diverse). Nor
are we concerned with possible extensions or generalisations
of our entire theory. There is no space even to hint at

these.

We shall conclude by working out two examples.
First, let us take V = R and identify R* with R as in the
proof of 9.1. Suppose, for some reason, we wish to

attach an operator to the classical observable
flgsp) = (p+q)°+ (p?- q?) sech (q+p).

As it stands, f is not a member of U(R). However, if
there is L € Sp(R) such that fo LEU(R), then we shall
have fEU(R) and we shali be able to incorporate f within
. the scope of an extended admissible quantization scheme.
Let a, EEER, b # 0, and define L(q,p) = (aq~-p/b,(b-alq+

p/b). Then L €Sp(R) and we have
(foL)(q,p) = b%°q%+ [b(b- 2a)q®+ 2qp] sech (bq).

It can be shown that fo LE U(R), so that if A is any
admissible quantization scheme on R we can write

A(foL) = W, AfW, or Af = W A(F oL)W;'.  Given A on

U(R) we can be assured that the operator Af we shall
obtain in this way will be independent of choice of

L (i.e. of a and b») and, for fixed L, will be independent

of choice of WL' This said, we might as well take
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b =1, a = %, so that (fo L)(q,p) = q° + 2qp sech gq.

If A is canonical, we have, formally

A(foL) = % +h/7 [ 22 sech wgz +

% (2 sech x - 2x sech & tanh z=)].

Hence

kP = WL[x5+-h/i (2x sech x§§+-sech x - x sech x tanh x)]WZl,

where L(q,p) = (q/2-p, q/2+p).

As a more familiar example we shall 'quantize' the
components of the vector commonly denoted px N, where
p. is the linear momentum vector and N the angular
momentum vector of a single particle. The case in point

is v = R® and
(N1€q.p)sNa(q.p)sN3(q,pl) =
(¢%ps - q°p2,9°P1- q'Pasq'p2- a°p1),
relative to the standard bases of R® and R?%#, Let
p XN = S, Then, for example,
Ss3(q,p) = p1lNa2(q,p) - p2Ni(q,p) =
-p1psq’ - p2p3q® + (pi+p3lq’.

Let G, be the ordinary Euclidean inner product on R3,

: = 3 . :
i.e. Go(ei,ej) = Gij where (ei)i=1 is the standard basis.
Then I defined by L(q,p) = (G5 p,-Gog) is in Sp(R3).

In component form we have




14y

L(ql,qz,qa,p1,p2,p3) = (plap2:p3:'q1:'q2:”q3):
so that S3o L is given by
g * 22
(S3o L)(q,p) = -q'q*p1 - q*q’p2+ (q' +q* )ps.

It is easily seen that 830 LEU(R?); hence S3s€U(RY),
If A is any admissible quantization scheme on R?, then

A(S30 L)

w;lAsaw or ASs = W A(S3o L)Wzl. We shall

L

assume that A is canonical and XA is Lebesque measure on

R3. Calculation shows that W, is the unitary extension

to all of fz(Rs,Cm,A) of its restriction to

L,.(R3,C™,2)n £,(R3,C™,)) given by

(W) (z) = (znh)~ 3/ Jnae“i/hG°(x’y)h(y)dy

for all % in this domain. For it easily verified that
-1 0 o -
WL S(Z)WL = S(L

are the formal results W'z

teh, Following immediately from this

Ko © o % Do
p & Wy = 0/i 5ok,

-1 . 0 k . 3 A
WL h/g 3ok WL = -x°, with obvious notation (k = 1,2,3).

Formally, we have (see the remarks at the end of

§5)
2 2
Af(Ss o L) = h/i[—xlxsg%l—-wzmag%q-+(xl +x? ) 553
+ ¥(-2% =2°)]
. i 2 22 32,3 § .09 2 0 3.0
= h/7[(x +2° +x )353~ x°(x §E1+-x Cp s e ¥l
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so that

2
dx 3

9
o 1zt +-§;2x2+ 2,23~ 1)-V2z3]

_ o~ 2
N(S3) = W A(Ss o L)W, = 02 [gms(5z Y

h? [(xl“'a%q +x2§%2 +m338_xs +1)3—B§3 - x3V2]

and, in general,

MS,) = R2[(m g + w2y + w3y + 1)giy - V2 (K = 1,2,8).

Note that the formal expression for A(S3e. L) can be

written
KfFsn B = %[ [ A 0 rnd2ey — atly)
3 ’ oxt ox
-xz-h/i(nggs - xsg%z)] - [h/i(mzfga - xs-%c-z)xz
., 39 .10
_h/'l’(x axl X axS)x ]}
so that

A(Ss) = ¥LIN/i2or /4 (00 - aias)

-h/ia—gc-z.h'/i (”2'3%3 - xs—%c-z)] - [h/i(ng-ga . x3§—£2) .h/i-é%

-ﬁ/'b(x 3al =& —-—3) h/a 1.3 }s

i.e. the same as obtained in conventional quantum
mechanics by 'symmetrisation'. (Let us not be led into
thinking that the purpose of our whole programme has been

to prove this.)
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APPENDIX

For reference purposes we give here an explicit
description of the elements of Sp(V). If A V¥,
B: V>V, C: V~>V*, D: V#~>V* are linear maps, define
A%s pray%, B3x: VA=V, % V*V*, D% V =V by
A*p.q = p.Aq, p.B*p' = p'.Bp, C*q.q' = Cq'.q, p.D*q = Dp.q
for all g, @ "€V, ps p'E V2, Let I be the identity on V.

It follows from (18) that a linear map L: VX V*>Vx V%,
(qsp) > (Aq + Bp,Cq + Dp) is in Sp(V) iff

D*B = B*D, C*4 = A*C,

D*A - B*C = I, A*D~ C*B = T%,
Since L~ ! is the map (q,p) » (D*q - B*p, -C*q +A*p) and
L—IGESp(V), it follows from the above relations that

CD* = DC#* AB* = BA#,

AD* - BC* = T, DA* - CB* = I*

also hold.
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