
 
 

STUDIES OF COPPER HALIDE LASERS 
 
 
 

E.S. Livingstone  
 
 
 

A Thesis Submitted for the Degree of PhD 
at the 

University of St Andrews 
 
 

  

1992 

Full metadata for this item is available in                                                                           
St Andrews Research Repository 

at: 
http://research-repository.st-andrews.ac.uk/ 

 
 
 

Please use this identifier to cite or link to this item: 
http://hdl.handle.net/10023/13894          

 
 

 
This item is protected by original copyright 

 

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13894


Studies of Copper Halide Lasers

A thesis presented by 

E.S. Livingstone BSc (St. And), MSc 

to the

University of St. Andrews 

in application for the degree of 

Doctor of Philosophy 

June 1991



ProQuest Number: 10166920

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10166920

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 48106- 1346



A '-  , ,
A



Declaration.

I hereby certify that this thesis has been composed by me and is a record of work done 

by me and has not previously been presented for a higher degree.

This research was carried out in the Physical Sciences Laboratory of St. Salvator's 

College, in the University of St. Andrews under the supervision of Dr. A. Maitland

I was admitted to the Faculty of Science of the University of St. Andrews under 

Ordinance General No. 12 in October 1987 and as a candidate for the degree of Ph.D. 

in October 1988.

E. S. Livingstone



Certificate.

I certify that E.S. Livingstone has spent nine terms at research in the Physical Sciences 

Laboratory of St. Salvator's College, in the University of St. Andrews under my 

direction, that he has fulfilled the conditions of Ordinance No. 16 (St. Andrews) and 

that he is qualified to submit the thesis in application for the degree of Doctor of 

Philosophy.

A. Maitland 

Research Supervisor



Acknowledgements.

I would like to thank Dr. Arthur Maitland for his valued guidance and encouragement 

throughout this work. I would also like to thank Cliff Weatherup and Graeme Clark, 

for many helpful discussions.

I am grateful to Frits Akerboom for his expertise in fabricating the discharge tubes used 

in this work. Thanks also go to the members of the mechanical and electionic 

workshops who contributed greatly to these studies.

I wish to thank my friends and colleagues who have made life enjoyable and given 

valuable help. In particular I would thank Andy Kidd, Low Kum-Sang, Colin Pirrie 

and Natalie Ridge.

X also thank EEV for their considerable interest and support, both financial and 

technical. In particular, I would like to thank Chris Neale for his help and patience.

Finally, I would like to thank my parents for their many years of help, support and 

encouragement.



Contents.

A b strac t.............................................................................................................. 4

Chanter 1. The copper vapour Laser.

1.1 Introduction........................................................ ...........................5

1.2 Development of copper vapour lasers...................................... 6

1.3 Atomic energy level structure of copper......................................... 7

1.4 The discharge circuit.......................................................................8

1.5 Laser tubes with insulating and conducting walls ................... 9

Chanter 2. Energy level population dynamics and gas discharges.

2.1 Introduction..........................................................   11

2 . 2  The cyclic laser..................   1 1

2.3 The copper vapour laser..................................................................13

2.4 The copper halide vapour laser.... .................................................16

2.4.1 Discharges in an attaching gas........................................................ 19

2.4.2 Additives........................................................................................ 20

2.5 Contaminants; sources and effects...........................................23

2.6 Conclusions................................................................................... 24

Chanter 3. Power conditioning.

3.1 Introduction.................................................................................... 27

3.2 High voltage power supply.....................   27

3.3 Power modulator............................................................................28

3.3.1 Hydrogen thyratrons......................................................................28

3.3.1.1 Triggering...................................................................................... 28

3.3.1.2 Recovery........................................................................................29

3.3.1.3 Cooling........................................................................................... 30

3.4 Charging circuit........................................................................ 30

3.5 Discharge circuit............................................................ : ................33

1



3.5.1 Introduction..................................................................  33

3.5.2 The capacitor transfer circuit and its optimization......................... 34

3.5.3 Double pulse excitation................................................  41

3.5.4 Geometrical constraints on circuit design  .................41

C hapter Jt. Thermal insulation.

4.1 Introduction.................  -..........44

4.2 Insulation requirements of the CVL and CHVL............................ 45

4.3 Insulating materials..................................................................47

4.4 Heat transfer in copper lasers.........................................................50

4.4.1 Basic analysis of heat transfer processes....................................... 50

4.5 Implications of heat management on laser head design................. 58

Chapter 5. Discharges confined by metal tubes.

5.1 Introduction....................................................   63

5.2 D.C. theory.................................................................................... 64

5.3 Pulsed discharges...........................................................................6 6

5.4 Comparison of dielectric and metal walled tubes in a

discharge cir cuit............................................................................ 70

5.5 Conclusions.................................................................................... 71

..

6 .1 Introduction....................................................................................74

6.2 Initial experiments...........................................................................74

6 .3 CuBr distributed in dielectric walled tubes.....................................76

6.4 The sealed-off CuBr laser.............................................................. 79

6.4.1 Requirements for reliable operation.....................   79

6.4.2 A simple tube with CuBr reservoirs....................................... 80

6.4.3 Laser tube with diaphragms and CuBr reservoirs..........................81

6.4.4 Tube construction and processing.................................................. 82

6.4.5 Reservoir heaters............................................................................ 84



6.4.6 Experimental results................................................................ 85

6.4.7 The effect of hydrogen as an additive............................................ 8 8

6.4.8 Lifetest of the sealed-off laser tube................................................ 8 8

6.4.9 Improvements to the sealed-off laser......................................89

6.5 Copper halide lasers with segmented metal tubes......................... 90

6.5.1 Segmented metal tubes with CuBr powder............................. 90

6.5.2 Segmented metal tubes with flowing buffer gas and Br2 ........... 92

6.5.3 Segmented metal tubes with flowing buffer gas and CI2 .............. 94

6.5.4 Segmented metal tubes with flowing buffer gas and HBr............. 95

6.5.5 Proposed single segment laser tube............................................... 97

6 . 6  Conclusions..................................................... ............................. 98

6.7 Suggestions for future work ................................................... 99

C hapter 7. Overview and conclusions..................................................... 101

Appendix A. The gold vapour la se r......................................................... 106

Appendix B. Patentjs_and publications.

B .l U.K. patent application GB 2 219 128 A...........................110

B.2 U.K. patent application GB 2 213 313 A  ................. I l l

B.3 U.K. patent application 9024733.9.............................................. 112

B .4 Breakdown voltages of attaching gas mixtures in metal...............

segmented tubes............................................................................. 113

B.5 A low temperature, segmented metal, copper vapour laser......... 114

B . 6  A high power, segmented metal, copper bromide laser..............115

B .7 Early illumination in experimental photodynamic therapy............

comparison with conventional treatment...................................... 116



Abstract.

Copper Halide lasers are discussed and the results of experiments reported.

It is found that the presence of small quantities of an electron attaching gas (such as 

bromine) cause discharge instability. Specially designed electrodes which remove 

excess bromine cure this problem and yield a stable discharge.

A 4W copper bromide laser is operated, sealed-off, for 100 hours. This laser has an 

apertured discharge tube with side-arm reservoirs to control copper bromide vapour 

pressure, a feature essential to stable operation. The addition of small amounts of 

hydrogen changes the beam from an annular to a gaussian-like profile. The estimated 

lifetime of this laser tube is 1 , 0 0 0  hours.

Exploiting the theory of metallic walls for discharge confinement, it is found that metal 

segments shorter than about Im can support a stable discharge at high pulse repetition 

rates (5 - 20kHz). On the basis of this, a novel copper halide laser containing 

cylindrical copper segments is demonstrated. Neon and halogen gases flow through 

the tube. The reaction between the halogen and the copper segment walls forms copper 

halide in-situ. Hydrogen bromide, bromine and chlorine have been used. Hydrogen 

bromide proves to be the most suitable. A one metre long laser tube of this design 

produces 40W.

Pulsed power supplies for metal vapour lasers are discussed. The conventional form of 

the capacitor-transfer circuit has the peaking capacitor value around one half of the 

storage capacitor value. It is found that equal capacitor values produce the best results 

for the gold vapour laser system we describe.

The reliability of a gold vapour laser is improved by replacing the hollow anode 

thyratron (which has a high latch rate) with a solid anode thyiatron. The replacement 

thyratron, in combination with a saturating charging choke, significantly reduces the 

latch rate. The laser is used for studies of photodynamic therapy of cancer in a local 

hospital.



Chapter 1
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1.1 Introduction.

The copper vapour laser is the best known member of the family of cyclic (pulsed) 

metal vapour lasers. It is noted for its ability to deliver high output powers on two lines 

in the visible spectrum (510.6, 578.2 nm), at efficiencies which no other visible laser 

can match. Conventional copper vapour lasers employ a low pressure, high repetition 

rate, pulsed gas discharge to melt and vapourize metallic copper. When the copper 

atoms forming the vapour are excited by electron collisons in the discharge into the 

upper laser levels of the neutral atom, spontaneous or stimulated emission takes place 

as the atom de-excites into the lower laser levels which are metastable. Because the 

lower levels are metastable, the population inversion is self terminating and lasts for a 

few tens of nanoseconds. The discharge must then be removed to allow de-excitation 

of the metastable levels between pulses.

The high operating temperatures of conventional copper vapour lasers (about 1550°C) 

bring many problems to laser design and operating conditions. The main problems 

arising are materials failure in the laser head and contamination of the buffer gas 

carrying the discharge current. A flow of buffer gas must therefore be aiTanged to 

sweep out the contaminants and regular maintenance of the laser head must be observed 

to reload with copper or to repair any damage that may arise

Alternative methods of achieving high (0.5 Torr) copper vapour pressures (fig 1.1) at 

lower temperatures have been sought. The most promising devices to have emerged 

are those based on the halides of copper, particularly copper bromide (fig. 1.2). The 

low melting point of copper bromide (492°C) and its high vapour pressure, enables the 

required vapour pressure of copper to be achieved at about 500°C. The high repetition



rate, pulsed discharge dissociates the copper bromide and pumps the copper. 

Efficiencies have been reported for copper bromide lasers which exceed those achieved 

in elemental copper lasers by 60%. The low temperatures required by copper halide 

lasers mean that fused silica tubes may be used in construction. There is no 

requirement for much of the thermal insulation used in high temperature devices and 

which is a major cause of contamination.

1.2 Development of copper vapour lasers.

In 1965, laser action was reported on self-terminating transitions in lead (ref 1), 

manganese (ref 2) and copper (ref 3). The study of cyclic metal vapour lasers began at 

this time and in the intervening years, many more metals have been shown to produce 

laser light under similar conditions (fig 1.3). Copper lasers remain the most powerful 

of all visible lasers with commercial devices capable of emitting over 100 W from a 

single laser tube (ref 4).

Initial development of copper vapour lasers was spurred by the main application

considered for these devices. The high power and high efficiency of copper lasers

made them very attractive as an alternative to argon ion lasers as pump sources for dye 

lasers involved in the photo-ionization and separation of U2 3 5  from other uranium

isotopes. The uranium isotope sepaiation projects in the United States and the 

U.S.S.R. resulted in many technical breakthroughs and the progress of copper laser 

technology became rapid. The first copper lasers relied on external furnaces to heat the 

laser tubes sufficiently for copper vapour to be produced. A spark gap driven circuit 

discharged a capacitor through the gas in the laser tube and a pulse of laser light was 

emitted. A major step forward in both output power and efficiency came when self 

heated lasers were introduced by Isaev et al, (ref 5). The waste heat firom a high pulse 

repetition frequency discharge was used to heat the well-insulated laser tube and an 

output of 15 W at 1% efficiency was reached. Shortly after this device was announced 

the first intensive research on copper halide lasers began. Devices were constructed



using copper bromide, copper chloride and copper iodide but tlie bromide proved to be 

the one which gave the strongest laser output (refs 6,7). Continuing interest in the 

halide lasers have brought copper bromide devices into commercial production with a 7 

watt, sealed off device (ref 8 ) but in general they are not readily available. Problems 

with the control of excess bromine partial pressure in sealed off tubes has led to low 

reliability and shoit lifetimes. Once these problems are overcome, the copper bromide 

laser will challenge both the high temperature copper laser and the argon ion laser in the 

market place.

1.3 Atomic energy level structure of cQDPer.

The energy levels of the neutial copper atom are low lying, with the upper laser levels 

having an energy of around 3.8 eV. When this value is contrasted with the 36 eV 

required to reach the upper argon H laser level, the potential advantages of copper lasers 

are obvious. The upper laser levels of copper are strongly connected to the ground 

state and are easily pumped by electron collision. Although the lifetime of these upper 

laser levels is short, of the order of a few nanoseconds, radiation trapping at high 

copper densities extends this lifetime to a value comparable with that of current 

risetimes in fast discharge circuits. (Radiation trapping in copper is where upper laser 

level resonance radiation (324.8, 327.4 nm) is emitted by one atom and absorbed by 

another, so retaining the quanta of energy within the vapour.)

Stimulated emission occurs on the two laser lines (510.6, 578.2 nm) to the lower laser 

levels. These levels are metastable with lifetimes up to 20 i l l s  s o  the populations of 

these levels rise rapidly during a laser pulse and destroy the population inversion. 

Laser output lasts for a few tens of nanoseconds, only. The discharge must then be 

discontinued until the metastable laser levels have de-excited and it becomes possible to 

build up another population inversion.



The dynamics of the energy level populations in copper halide lasers and high 

temperature copper vapour lasers are very similar. The dissociation energy of copper 

bromide is 2.5 eV. Once this energy has been supplied by the discharge, the copper 

atom behaves as if it were in an elemental copper laser. There is a net recombination 

rate associated with copper and bromine but this can be reduced by maintaining the 

discharge at a high pulse repetition frequency. Once copper bromide has been 

dissociated, energy is released as waste heat if the atoms ai*e allowed to recombine. 

The electron attaching natuie of bromine has been a major stumbling block in the 

development of sealed-off copper bromide lasers. Due to the relatively cool walls in 

these devices, copper condenses and leaves free bromine in the discharge volume. This 

process allows the bromine partial pressure to build up and eventually the discharge 

becomes unstable and constricts into a 'twisted wire' form. At this stage, laser output 

is extinguished and the tube requires pumping out and a fresh charge of buffer gas 

installed.

1.4 The discharge circuit.

Pulsed power is supplied to the laser head by a thyratron-switched capacitor-transfer 

circuit (fig 1.4). A storage capacitor is resonantly charged to a high voltage (10-20 kV) 

and is discharged through the thyratron into a peaking capacitor, generally of smaller 

value than the storage capacitor. The peaking capacitor is mounted as close to the laser 

head as possible and the laser head generally has a coaxial current return from one of 

the electrodes (anode usually) to reduce laser head inductance. With a small value of 

inductance, generally 200-500 nH, the discharge current will rise quickly and pump the 

upper laser levels efficiently. There is a strong interaction between the behaviour of the 

laser as a load and the performance of the thyratron. This interaction is not well 

understood but it has consequences for both laser output power and thyratron lifetime. 

The modulator used for a particular design of laser head should be tailored to that 

design for maximum effectiveness.



1.5 Laser tubes with insulating and conducting wallg.

Copper vapour lasers are divided into the high and low temperature types. Both of 

these types use thermally and electrically insulating materials for the discharge tube. 

The high temperature copper laser generally makes use of alumina (aluminium oxide), 

zirconia or beiyllia tubes but lasers have been designed and operated with metallic walls 

(ref 9). Copper halide lasers generally take advantage of the properties of fused silica 

and tube construction is normally with this material. Metal segmented laser tubes have 

not been used with copper halide lasers but appear to perform well when so used 

(chapter 6 ). Pulsed dischaiges in metal tubes appear to pose few problems as long as 

the basic physics is understood and allowed modes of operation adhered to. The high 

pulse repetition frequencies of copper and copper halide lasers are ideal for use with 

metal discharge tubes as an ionized pathway is established on the tube axis which will 

break down in preference to the intersegment gaps. The maximum segment length 

which will support an axial discharge is dependent on the ratio of electron temperature 

to electric field (chapter 5), so the buffer gas pressure and discharge current both affect 

the choice of segment length. Metal segmented tubes have proven successful as copper 

halide lasers with the operation of one of the most powerful copper bromide lasers to 

date. The design and operation of this 40 W laser is discussed in chapter 6 .
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Figure 1 3 . Some metals which exhibit lasing under the cyclic 
excitation_scheme.

Metal Wavelength
(nm)

Relative Power Operating Temp. 
(°C)

Copper (Cu) 510.6 0 . 6 6 1550
578.2 0.33

Gold (Au) 312.2 0 . 0 1 1800
627.8 0.1-0.3

Barium (Ba) 1130 low 800
1500 0.3

Lead (Pb) 722.9 0.2-0.3 900

Manganese (Mn) 543.1 0.2-0.3 1 2 0 0

1290 low

Calcium (Ca) 852 low 700
8 6 6 low

Iron (Fe) 452.9 - 1700

Tellurium (Te) 535.1 - 650

Strontium (Sr) 645.7 - 700



CsLch laser

- j ^
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Figui!e_,1.4 Capacitor-transfer discharge circuit.



Chapter 2

Energy leyel population dynamics and gas discharges.

U  Introduction.

This chapter is concerned with the concept of the metal vapour cyclic laser in general 

and with copper as the metal of interest. The requirements for an efficient pulsed laser 

ar e set out and discussed in detail. Copper is then examined as the metal which comes 

closest to fulfilling these ideals. There are certain implications for laser tube design 

which arise from the nature of the cyclic laser pumping requirements. These are 

outlined, along with the effect of an attaching gas (in the case of a halide laser) on 

pumping and design considerations. The effects of additives on laser parameters are 

discussed. Those found to be advantageous are alkali halides and hydrogen. Finally 

there is a short section on the role of other, less welcome contaminants.

2.2 The cyclic laser.

In this section, the term ’cyclic laser' will be discussed in detail. Cyclic lasers are 

devices where the energy level structure of the active media are such, that continuous 

generation of laser radiation is not possible. The laser discharge then, is pulsed and the 

pumping of the energy levels, stimulated emission and de-excitation of the laser media 

take place in a cyclic manner. The energy level structure of atomic metal vapours will be 

examined to find the conditions necessary for their high efficiency operation as laser 

media. The effects of the requirements of discharge pumping the laser transitions, on 

laser head design parameters will be determined.

In a laser such as copper, the energy level structure can be considered as a three level 

system having a ground state, an upper laser level and a lower laser level which is 

metastable and acts (on the short timescale) as a virtual ground state. The metastable 

level is not connected to the tme atomic ground state by an allowed transition path. The

11



upper laser level is a resonance level which should be strongly connected to the ground 

level so that efficient electron impact pumping can take place between the ground and 

upper laser levels, (fig. 2.1). In this way, once a population inversion is established, 

the upper levels drain into the lower levels as stimulated emission occurs. The 

stimulated emission intensity peaks and then tails off sharply as the lower level 

population builds up, reducing the population inversion. It is then necessary to wait 

until the metastable level population has been reduced to its initial low value before 

pulsing the discharge once more. The basic three level system described above must 

have a number of additional attributes which are necessary if the laser is to be useful 

and efficient. First of all, if the level system as given in fig. 2.1 is pumped by a 

discharge, the branching ratio would have to be such that most, if not all, of the upper 

level population relaxes through the laser transition. This means that although the 

resonance between the giound and upper laser level is very strong, giving efficient 

pumping, the radiation emitted when a metal atom relaxes directly to the ground state 

must be trapped somehow and retained until it can be utilised in the laser transition. 

This is radiation trapping. If resonance radiation is passed from one metal atom to 

another then this will extend the effective lifetime of the upper laser level population. In 

copper, the radiative lifetimes of the upper levels are increased by over an order of 

magnitude, from a few nanoseconds to a time which is compatible with the current 

risetimes in high voltage switching circuits. Thus, once the metal atoms reach the upper 

laser level, they are effectively channelled into the laser tr ansition path, providing there 

are no other competing transitions from the upper laser level.

The preceding points deal with the pumping of the laser transitions. Of equal 

significance, is the ratio of the energy in a laser photon to the energy required to excite 

an atom to emit such a photon. This ratio is called the quantum efficiency. In laser 

systems such as the argon or krypton ion, a lar ge amount of energy has to be deposited 

in the discharge for the gas atoms to ionize and reach the upper laser levels. After 

pumping and de-excitation by spontaneous or stimulated emission, the gas ion is left in

12



the lower laser level from where it is swiftly removed by de-excitation to the ion ground 

state. A proportion of these ions can be excited to the upper laser level again. The rest 

undergo further loss of energy in transitions to the atomic ground state before re- 

excitation through the laser scheme again. The energy lost as heat in this cycle may 

come very close to 100% of the invested energy. A typical electrical/optical conversion 

efficiency for argon laser is 0.05 - 0.1%. If a laser system is low lying then the 

quantum efficiency can be that much higher for the same, or similar, output 

wavelengths from two different laser types. The example shown in figure 2.2 shows 

argon ion (488nm) and copper (510nm) levels. The advantage that copper has in terms 

of quantum efficiency is obvious as two thirds of the input energy is returned as a laser 

photon making this type of device potentially very efficient.

The operating temperature must also be considered here as the level system which 

makes lasing possible would be defeated if the lower laser level were to be thermally 

populated. This level may also be filled by low energy discharge electrons at the 

beginning of a cuirent pulse (refs 2,3), so it is important that the electron temperature is 

raised quickly above this energy.

The cyclic laser, then, should have a set of low lying energy levels which comprise a 

ground level and laser upper and lower levels, the upper level being well connected to 

the ground level for ease of population by electron impact excitation. The lower level 

should be metastable and not so low lying in energy terms that it will be significantly 

thermally populated. Radiation trapping in the upper level is also necessary if lasing is 

to be possible with high output powers.

2.3 The copper vapour laser.

The copper vapour laser has proven itself as the type which satisfies the conditions 

discussed in the preceding section. The energy level diagram shown in figure 2.3 

confirms that the group of levels involved in the lasing scheme are indeed low lying for

13



excellent quantum efficiency and have no other competing levels between the upper 

laser levels and the ground level. When radiation trapping comes into effect at copper 

densities around 10^  ̂/cc (ref 4), the branching ratio becomes close to 1 in favour of the 

laser transitions. During the discharge pulse, however, it is possible not only to pump 

into the upper laser level but to pump beyond them into higher lying states and even 

ionize the copper. The energy required for ionization, 7.72eV, is sufficiently close to 

the upper laser level energy of around 4eV, that some of the copper will always be 

ionized during a cunent pulse. Discharge energy is wasted in the ionization of copper, 

in directly populating the 2D lower laser levels and also in populating the upper (2P) 

laser levels to compensate for for the population of the lower levels. The energy used 

for these purposes is not returned as light. Some detailed computer modeling of the 

discharge kinetics in copper lasers has been done (refs 5,6,7,8 ), so it is not proposed to 

do more here than explain the mechanisms by which laser action is produced.

As the discharge pulse begins, the election temperature and density are rising. The 

average electron energy passes through the region required to excite the copper atoms 

into the lower laser levels and the population of these levels will begin to increase. It is 

therefore very important to have a fast rise of current (and hence electron energy) so 

that the action of populating the lower levels is minimised and that the pumping of the 

upper laser levels can begin as quickly as possible before the lower levels are 

substantially filled by low energy electrons. To achieve a population inversion it is of 

course necessary to provide more than one atom in the upper state to compensate for 

each one in the lower state. The reason behind the external design of the laser tubes and 

the discharge circuitry itself (see chapter 3) is to increase the rate of current rise to 

efficiently populate the upper laser levels. To this end it is necessary either to increase 

the voltage across the laser tube or to decrease the laser head and circuit inductance.

14



From,
dl V 
dt “ L

it can be seen that this is the case. In practice, both of these measures are taken and the 

designer strives for a compact laser head with a current loop that is physically as small 

as possible.

Once a population inversion is created, spontaneous or stimulated emission begins to 

deplete the upper levels and fill the metastable states below. As these levels have very 

long lifetimes in comparison with the upper levels then this retards the copper atoms in 

their return to the ground state. Early copper lasers operated at low pressures (< 20 

Ton) to allow rapid deactivation of metastables by wall collisions (refs 9,10). This 

imposed a maximum on the pulse repetition frequency (15 - 20kHz) and consequently 

on the output power. Scaling up of the bore diameter requires a reduction in the pulse 

repetition frequency due to the radial diffusion times involved. From an engineering 

point of view, the low pressure also allows a fast migration of copper to the cold zones 

of the laser reducing the intervals between replacement of the copper charge.

It was discovered that increasing the buffer gas pressure actually led to a new operating 

regime (refs 1 1 , 1 2 ) where the dominant deactivation processes for the metastables 

occur in the bulk of the discharge volume rather than at the boundaries. The main

processes in action here may be;
(a) Cu* + Ne <:> Cu + Ne + AE

(b) Cu* + Cu <:> 2CU + AE

(c) Cu* + e <:> Cu** + e ; Cu** <:? Cu + hv

(d) Cu* + e <:> Cu + e

The data presented in reference 13 shows that the reaction labeled (a) is of little 

importance in deactivating the lower laser levels. Also, since the optimum pulse 

repetition frequency (PRF) appears to be reduced in the presence of high copper 

densities, (ref 9), then the reaction labelled (b) cannot be dominant as an increased

15



copper density would lead to an increase in the reaction to the right, effectively creating 

more copper ground states and the opportunity to increase the PRF. A prolonged 

afterglow (of 50 - 70|i.s) was observed in ref 14; this suggests that the reactions in (c) 

may provide a substantial contribution to the deactivation of these long lived species. 

Straightforward quenching by cooling discharge electrons is the last reaction 

mentioned, (reaction (d)). The rate at which this proceeds depends on buffer gas 

pressure which is a controlling factor on the electron temperature and density. As the 

buffer gas pressure rises and the plasma density increases, so recombination rates are 

increased and this reduces the numbers of electrons available to de-excite the copper 

metastables. With an increase in gas density, the electron temperature will decrease and 

thus bring the mean electron temperature closer to that required for metastable 

deactivation, reaction (d), but will reduce the probability that the radiative path, 

(reaction (c)) will be taken.

Various buffer gases have been used in the copper vapour laser but normally neon is 

the one preferred. Its use consistently leads to higher output powers and the possibility 

of using higher pressur es which reduces the copper diffusion rate.

2.4 The copper halide vapour laser.

Various compounds of copper have been used to generate the required vapour pressure 

of copper at artificially low temperatures. Copper acetylacetonate operates at 40°C, 

copper nitrate between 150 and 215® and the halides, copper iodide, chloride and 

bromide between 300 and 600®C (ref 15). The non-halides above have low operating 

temperatures but when high input powers are applied there are severe cooling problems 

and output powers are limited. The operating temperatures of the halides allow fused 

silica tubes to be used and as will be shown later, this is a major advantage over the 

high temperature copper laser.
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As far as the energy levels involved with the laser transitions are concerned, there is no 

difference between a copper laser operating at about 1500^C and a copper halide laser 

operating at about 1000® less. Once the copper halide molecule has dissociated, the free 

copper atom behaves as in the high temperature device. The copper and halogen atoms 

will recombine if they are left to do so in a low repetition rate device. A further 

investment of energy is then required to re-dissociate the molecule before the copper 

atom may be pumped again.Many investigations were undertaken into the copper halide 

lasers between the mid 1970s and the early 1980s (refs 16,17,18). The main 

discoveries were, that in a double pulse laser (dissociation pulse followed by pumping 

pulse), the copper bromide gave out twice as much optical energy as the copper 

chloride laser, which in turn was more productive than the iodide. It then followed that 

copper bromide and chloride were investigated further but the widespread interest in 

both devices waned in the mid 1980s. Further work on copper bromide by Dr. N.V. 

Sabotinov and his co-workers in Bulgaria, has proved that the copper bromide laser has 

a place in the world laser market.

In the double discharge devices, many experiments were done to determine the 

optimum time delay between the two current pulses. It was found (ref 16) that the 

optimum delays for the bromide, chloride and iodide devices were in the same order as 

their electron affinities, that is, chlorine has the greatest electron affinity of the three and 

has the fastest recombination rate with copper. The best time for the pumping pulse, 

then, is before the ground state population has been seriously depleted by 

recombination. Bromine is less reactive than chlorine and so the ground state 

population is reduced at a lower rate. Iodine is less reactive again and the optimum 

interpulse delay was found to be greatest in this easel The actual values of these delay 

times are very dependent on buffer gas pressure, tube diameter and wall temperature, 

the latter controlling the vapour pressure of the particular halide of copper in use.
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During the course of the work described here the compound used was copper bromide 

because the bromide always produced greater output than any of the other halides.

In a discharge tube with a density of copper bromide (CuBr) molecules around 10^^ - 

10^^/cc, there is very little thermal dissociation as the temperature is only 450 - 500®C. 

It therefore requires at least two discharge pulses to produce laser output. The first 

pulse is responsible for dissociating the CuBr molecule and the second and subsequent 

pulses, providing they occur sufficiently close in time to the dissociating pulse, excite 

the free copper atoms to produce the laser emission (fig. 2.4). The dissociation energy 

of CuBr is ~ 2.5eV (ref 19) is supplied to the molecule by electron impact. After 

dissociation, the copper atom is left in the lower laser level, metastable. An immediate 

excitation pulse would be wasted as there are insufficient ground state atoms to create a 

population inversion. A time delay is now necessary to allow the metastable population 

to decay and fill the ground state. Meanwhile, the ground state atoms that do exist are 

being removed by recombination with free halogen. There is a ’window' during which 

the metastable level and ground state populations are such that laser action is possible 

on pumping (fig 2.5). At one extreme of this range the metastable population is too 

high and at the other, the ground state population too low to achieve lasing threshold on 

pumping. The actual number densities and delay times involved are dependent on tube 

parameters and buffer gas attributes (refs 20, 21). It has been found, however, that the 

ground state depletion effect is less serious in a continuously pulsed laser as the ground 

state population can build up over a few cycles to a substantial value allowing higher 

repetition rate operation than is possible with a double pulsed device (ref 22). It then 

becomes advantageous to operate the laser at high pulse repetition rates to cycle the 

copper atom through the laser system as many times as possible before it recombines 

with a bromine atom and gives up its dissociation energy as heat. The recombination 

time of copper and bromine depends veiy much on the geometry and temperature of the 

discharge tube and the buffer gas type and pressure. Typical curves are shown in 

figure 2.6 for a laser tube in which a dissociation pulse has just taken place. The
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continuing increase in copper ground state population after the end of the pulse is due, 

both, to the relaxation of metastable copper and the relaxation of higher lying levels 

transforming energy within the plasma and causing further CuBr dissociation.

2.4.1 Discharges in an attaching gas.

When copper bromide laser is operating, the free bromine and copper concentrations 

are both about 10^^/cc. The wall temperature is in the region of 450 - 500®C so there 

will be some condensation of copper on the wall. The vapour pressure of copper being 

reduced by copper condensation leads to the vaporization of more CuBr to maintain 

equilibrium. By the mechanism of copper loss to the walls and replacement with CuBr, 

the concentration of free bromine slowly increases with time in the discharge. Work 

described in chapter 6  shows that high bromine concentrations lead to instabilities and 

discharge hopping on the electrodes. As the bromine concentration increases further, 

the discharge becomes unstable and lasing ceases altogether. Work done on this 

problem (refs 23, 24) has shown that as the bromine concentration increases, the 

electron density in the afterglow drops more rapidly due to the attaching nature of the 

bromine. The drop in electron density during the afterglow has two consequences of 

great importance for copper lasers, the first being that the preionization density for the 

subsequent pulse is reduced. Lack of sufficient preionization both creates non-uniform 

discharges and reduces the pumping rate to the upper laser levels. Laser output is then 

reduced in power and may be spatially altered in intensity between pulses or else the 

discharge may flicker and spiral into a 'twisted wire' shape. The second consequence is 

that fewer electrons are available to interact with the metastable copper atoms as the 

average electron temperature drops through the interaction region. The pre-pulse 

metastable population remains high and laser output is reduced in the subsequent pulse. 

It is important to have a good system to manage the bromine vapour pressure over 

extended operating periods. In a sealed off copper bromide laser, some device would 

be required to maintain the bromine pressure at an optimum value. This value would
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not be, 'as low as possible', because the bromine is also responsible for regeneration of 

the primary laser material and for tube lives expected to reach thousands of hours, this 

is an important process,

2.4.2 Additives.

The problems of excess bromine concentrations mentioned in section 2.4.1 are serious 

and warrant detailed investigation. An approach to the control of bromine (or chlorine 

in copper chloride devices) has come in the form of chemical additives. The most 

successful of these additives have been shown to double laser output power for a given 

input power, to improve beam quality and to improve discharge stability. The 

compounds tested have been alkali chlorides such as sodium and potassium (ref 25), 

hydrogen chloride (ref 26) and hydrogen itself (ref 27, 28). The results showed that, 

although the mechanisms are not understood, the alkali chlorides, especially NaCl can 

increase the energy per pulse and the tolerance of the discharge to excess bromine 

concentration. Operation at temperatur es elevated far above those normally reached are 

also possible with none of the degradation of discharge quality found in copper halide 

lasers with no additives. In the copper chloride laser for example, on addition of an 

alkali chloride the reaction,

MCI + Cu <:> M + CuCl,

where M signifies the metal, is driven to the right with increasing temperature and so 

forces a higher-than-normal vapour pressure of copper halide. This allows operation at 

temperatures where, normally, the free halogen concentration would render the 

discharge fillamentary and unstable.

The addition of HCl to a copper chloride laser (ref 26) had the effect of increasing the 

output power of the device and also the maximum possible pulse repetition frequency. 

It was suggested that this was due to an increased decay in the copper metastable 

population during the interpulse period. When chlorine and hydrogen were introduced.
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in separate experiments, to the same tube, it was found that chlorine suppressed output 

and brought on instability whilst hydrogen replicated the HCl results. In a similar 

experiment with HBr in a copper bromide laser, performed during the course of this 

work, the output power was also seen to rise and the laser beam, which had previously 

been annular due to axial gas heating at high pulse repetition frequency, lost its annular 

shape and became the standard copper vapour laser 'top hat' profile. Further, 

increasing the HBr pressure made the profile more gaussian-like before the beam finally 

extinguished. This experiment is described in chapter 6  of this thesis.

Hydrogen has been used as an additive in copper chloride (described above) and in 

copper bromide lasers, where it is now becoming part of a sealed tube design (Technik, 

Bulgaria). The effect of hydrogen in increasing the output power of not only the copper 

bromide laser but elemental copper (ref 29) and gold (ref 30) have been documented. 

The physical manifestations of the 'hydrogen effect' are;

1. Up to 100% increase in output power. At optimum hydrogen partial 

pressure in neon, (found to be 0.3 Torr, independent of neon pressure in CuBr, Cu and 

Au lasers) the output power increases, peaks and decreases over a narrower reservoir 

temperatuie range than in pure neon (approximately 2/3 of the range), (fig. 2.7). A 

factor of two is available in power and efficiency over a laser with a conventional gas- 

fill.

2. A change in laser beam profile. As the hydrogen pressure is increased from 

the background to around one Torr, the beam profile in a copper bromide laser at high 

pulse repetition rate changes from annulai* through top hat, as the hole fills in, to 

gaussian-like, as the centre brightens. Narrowing of the beam is also noticed at this 

point. The output power of the laser continues to increase until the beam has gone fully 

gaussian-like and then as the hydrogen pressure is increased further towards ITon*, the 

beam power falls whilst maintaining this profile until, at 1 Torr hydrogen partial
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pressure, the beam power is similar to that of the annular beam with no hydrogen 

present.

3. Increase in the laser breakdown voltage. At the hydrogen partial pressure 

found to give greatest output power, the laser breakdown voltage increases from the 

usual 2-4kV, (in tubes of 2-3cm internal diameter and between 50 and 100cm long) to 

the unusually high value of 10-12kV. This may substantially increase the pumping rate 

making this process more efficient.

The reasons behind these physical changes which accompany the addition of hydrogen 

are not clear. One possible explanation may be that during the initial voltage rise on the 

laser tube, electrons collide with hydrogen molecules and dissipate their energies by 

exciting the vibrational levels. This continues until the voltage rises high enough for 

sufficient ionization to build up and for breakdown to occur. The average electron 

energy then rises much more quickly due to the high fields present and the copper 

metastable levels have less time to be populated. The establishment of a population 

inversion is then much more easily attained making the laser more powerful. In a 

pulsed discharge containing helium, sodium and hydrogen, it was shown (ref 31) that 

the electron temperature and density were significantly reduced in the initial stages of 

the discharge. Figure 2.8 shows that at low electron energies (2-4eV) the hydrogen 

molecule can soak up the electron energy in the vibrational levels. The cross section for 

the lower copper laser levels (2D) at 6 eV are botli around 1 x 10" ̂ ^cm^ and for the 

upper 2P levels, the cross sections are around 5 x 10" ̂ ^cm^. Therefore, the metastable 

levels compete against the greater cross section of the hydrogen and the upper laser 

levels have a much larger cross section. The population inversion meets threshold more 

rapidly and a greater amount of energy can be converted into light

An alternative explanation put forward by Sabotinov and his co-workers (ref 28), holds 

that the hydrogen atoms left in the discharge volume by the previous pulse, soak up 

high energy electrons to become negative ions. This process has a high cross section
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(ref 32) and so a large population of these ions is built up. During the initial stages of 

the next pulse the detachment rate of electrons is greater than the ionization rate of 

copper by over an order of magnitude (fig 2.9). Copper atoms which would otherwise 

be ionised are left in the ground state whose population is now increased in the 

presence of hydrogen and can now contribute more to the upper level population.

2.5 Contaminants; sources and effects.

In lasers such as the copper and copper halide which operate at elevated temperatures, 

the ingress of contaminants firom the materials used in the structure of the laser tube is 

very difficult to avoid. The best processed tubes still exude deep seated species from 

the zirconia, alumina, quartz or metal construction materials by diffusion under low 

pressures and high temperatures. As may be expected, the higher operating temperature 

of the copper vapour laser encourages contaminants to migrate into the discharge at a 

higher rate than from a copper bromide device. This difference means that the bromide 

laser may be sealed off for its lifetime and (at the moment, at least) the high temperature 

device cannot. The thermally insulating materials used in a copper vapour laser, 

alumina for instance, are formed and fired at high temperatures in atmospheres which 

ensure that oxygen, niti'ogen and various trace metals from manufacture, such as 

sodium, calcium and magnesium are incorporated deep in the bulk of the material. 

Heating the laser tube to its operating temperature enables a stream of contaminants, 

like a slow leak from a vast reservoir, to work their way into the discharge. A high 

concentration of contaminants can raise the laser impedance and cause latching of the 

thyratron by altering the modulator circuit characteristics. The effect on lasing is the 

same as if an attaching gas had been admitted to the tube. Oxygen and nitrogen both 

reduce the electron temperature and soak up electrons making it more difficult to reach 

threshold. It becomes far more difficult to predict the behaviour of a contaminated laser.
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 ConclusiQns.

Copper and copper bromide lasers differ mainly in that the bromide device operates at 

temperatures where the lower laser levels are unlikely to be substantially thermally 

populated. Furthermore, there is a relatively high vapour pressure of CuBr and free 

bromine in the discharge tube. The copper energy levels involved in lasing aie similar 

in both types as are the vapour pressures of copper required for radiation trapping and 

efficient stimulated emission to begin. It has been found that to optimise the output 

power of copper bromide lasers, the pulse repetition rate must be higher than in 

conventional copper types. This is to maintain a dissociated population of copper and 

bromine atoms.

The use of additives, in particular hydrogen, can lead to a doubling of the operating 

efficiency and output power of some lasers. This effect has been noted in copper, 

copper bromide and gold lasers although no explanation of this effect has proven 

conclusive enough to gain general acceptance.
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Chapter 3.

Power Conditioning.

3.1 Introduction.

The power requirements of the copper vapour laser are dictated by the atomic energy 

level dynamics of copper. A fast rising current pulse is necessary to create the non­

equilibrium situation in which lasing takes place. Beyond 50 - 80 nanoseconds from 

discharge current initiation, lasing has ceased and so any current still flowing is serving 

only to heat the discharge volume and prevent relaxation of the lower laser levels. Short 

cunent pulses are therefore in order and at a repetition rate commensurate with lower 

level recovery time. Depending on bore diameter and operating pressure, the pulse 

repetition frequency ( p.r.f. ) will be optimum somewhere between 5 and 25 kHz, 

(ref 1 ), the lower values corresponding to large diameter, low pressure devices where 

wall collisions dominate over other relaxation processes. The power conditioning needs 

are usually met by a high voltage power supply capable of 10 - 15 kV and with 

sufficient current capacity to meet the input wattage requirements. This power is then 

modulated with a high voltage switching circuit producing short pulses at the desired 

repetition rate. Normally a hydrogen thyratron is used as the switching element in this 

circuit but, depending on requirements and the laser head design, spark gaps or 

semiconductor switch arrays may be employed successfully. For the experimental work 

documented here, two types of hydrogen thyratron were used, they were EEV types 

CX 1535 and CX 1825, both pentode ( triple grid ) tubes, (refs 2,3).

Primary high voltage is normally obtained by transforming up from the three phase 

mains supply and using a diode bridge to rectify the output. There are usually some 

large value capacitors and inductors in the output line to smooth any voltage ripple from
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the half or full wave rectification. These elements also help to protect the bridge from 

any transients which originate in the load or modulator circuits. In the more compact 

switched mode power supplies where semiconductors such as MOSFETs switch 

relatively low ( 600 V ) voltage through pulse transformers at very high frequencies, 

voltage ripple on the output is negligible so very little smoothing is needed and the high 

switching frequencies mean that these power supply units can be made very small, 

(ref 4). Unfortunately they are easily damaged by transients generated outwith the 

power supply and so it is unusual to find switched mode devices associated with loads 

requiring more than 3 or 4 kilowatts.

3.3 Power Modulator.

3.3.1 Hydrogen Thyratrons.

The hydrogen thyratron, (refs 5,6), is a high voltage switching device capable of 

passing large peak currents at high repetition rates and with very little jitter associated 

with the accuracy of the firing time.

In its simplest form, the thyratron consists of an anode and a cathode separated by a 

control grid, these electrodes are housed in a glass or ceramic envelope which is filled 

to a low pressure with hydrogen or deuterium gas. The gas pressure and electrode 

separation are such that the switch operates on the left hand side of the Paschen curve. 

This means that small electrode gaps can hold off high voltages and be triggered to 

conduction by relatively low voltage. Each high voltage gap can hold off 25 -30kV so 

by stacking a few in series within a single envelope, extremely high voltages can be 

switched.

l i M J  Iki&g&rm&L

The EEV types CX 1535 and CX 1825 both have three grids. Grid 1, closest to the 

cathode and grid 2 are responsible for turning the tube on while grid 3, closest to the
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anode, promotes recovery and allows operation at high p.r.f. In the particular circuit 

configuration used here, a constant discharge was maintained between G 1  and the 

cathode. The control grid, G2, was kept at a negative potential with respect to the 

cathode to suppress electron invasion of the grid anode space. A positive trigger pulse 

of 2-3 kV was applied to G2 from an EEV sub-modulator to initiate G2 - cathode 

breakdown. Plasma from this discharge then leaks through the slots in G2 into the 

anode space causing sufficient ionisation to initiate full anode current flow. This is the 

process of commutation.

Gas pressure in the CX 1535 and the CX 1825 is set by a separate reservoir heater. 

Control over pressure is useful when running at high repetition rates and at voltages 

lower than the rated value for the thyratron. The gas pressure can be increased to the 

point where the tube will still hold off the required voltage but will give a higher rate of 

current rise. The minimum recovery time will be increased, however, as this process is 

dominated by wall collisions. A higher gas pressure slows diffusion and can therefore 

restrict the maximum repetition rate possible without thyratron recovery failure 

( latching ).

3.3.1.2 Recovery

When forward conduction ceases in the thyratron, the plasma will begin to decay. The 

rate of decay determines how soon voltage may be reapplied to the anode and hence 

gives a limit to repetition rate attainable. Recovery time can be ,shortened by aiTanging 

the discharge circuit such that a negative voltage is applied to the anode at the end of the 

cunent pulse. This cuts off the forward current and encourages the plasma to decay by 

drawing off the ionic content. The third grid ( G3 ) is normally grounded to the cathode 

through a small valued resistor and this also helps to increase the decay rate. In general, 

small volume tubes recover faster as the surface area to volume ratio is greater. During 

the experiments which were performed, it was noted that the minimum time for 

recovery of the CX 1535 was 3 - 4 p,S but the large CX 1825 required 7 - 8  |xS if
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latching was to be avoided. The main trigger grid, G2, loses control when the tube is 

in conduction but once the plasma has begun to decay the negative bias can begin to 

assert influence over it and remove some ions, this is an important recovery mechanism 

as a high resistance in the trigger line may cause severe latching problems [see 

Appendix A, The gold vapour laser ].

3.3 .13___

The ceramic/metal bodied tube used in the work reported in this thesis requires cooling 

by immersion in oil. Shell Diala B.G. transformer oil was used and water based heat 

exchanger systems were set up. A stream of cooled oil was directed at the cathode base 

plate to maintain constant gas pressure within the thyratron. For the small tube, 

convection in the oil was sufficient to cool the rest of the body but the larger tube 

required oil to be forced past the grid structures.

3.4 Charging Circuit.

The part of the CVL circuit responsible for charging the storage capacitor, Cg, also

plays a vital role in other aspects of the total system performance. Between the power

supply and the discharge circuit is the charging element, (figure 3.1), which has to

perform the dual functions of holding off forward voltage until the thyratron has

recovered and then limiting the charging current to the storage capacitor. The bypass

element lies in parallel with the laser and serves to control the proportion of cunent

which passes through the partially ionised laser during the charging period. It also

blocks the discharge pulse current from leaking to ground when the thyratron switches. 

There are two main methods of charging Cg to high voltage, these are resistive and

inductive charging. Resistive charging, as its name suggests, uses a suitably valued 

resistor to limit charging current and whose time constant, in conjunction with the 

storage capacitor and bypass element, is less than or equal to that required for the 

maximum repetition frequency to be used. One major disadvantage of resistive charging
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is the substantial power dissipation in the charging element. For example, if a power 

supply of voltage Vg is to place a charge Q on a capacitor of value Cg, then the energy

transferred out of the power supply is QVg. However, the stored energy in the 
1 9 1capacitor is equal to ÿZgVg = ÿJVg, giving an energy loss of 50%. Half of the

input energy is converted to heat in the charging resistor. Inductive charging is

inherently more efficient as the charging element is reactive rather than dissipative. 

Immediately after a pulse, the capacitor Cg is discharged and the cuirent through the 

charging inductor, L^h» is zero. Following the characteristics of an LC, low resistance ■ 

circuit, the voltage across Cg will begin to oscillate, shown by the dashed line in 

figure 3.2, the peak voltage will be slightly less than 2Vg due to losses in the circuit. If 

left undisturbed this voltage oscillation will decay until a steady state voltage of Vg 

appears across the capacitor Cg . Again 50% of the input energy will have been

dissipated in the circuit by this time and the advantages of inductive charging lost. If,

however, the pulse repetition frequency is such that the switch closes when the voltage 

across Cg , (V^g) reaches a maximum, then, as V^g is approximately 1.9Vg, the

charging efficiency is in the region of 95%. At this time the cunent through L^h is zero

so each successive charging cycle is identical to the previous one. The operating 

fi*equency of the switch for maximum efficiency is determined by the values of L^h and

Cg. If it is assumed that the duration of the switched pulse is negligible with respect to

that of the charging pulse (normally the two are separated by two or three orders of 

magnitude), then Tp the repetition period, is half of the charging period, T

T = 27C'>jLçj|Cg ,

Tj. = •

For many applications, the p.r.f. constraint is unacceptable so, at the expense of a few 

more watts, a diode is incoiporated in the circuit between the charging inductor and Cg,

to prevent the capacitor discharging during the reverse part of the oscillation; the effect 

can be seen in figure 3.3. With this modification, the period between pulses can be any
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value greater than Tj-. Some leakage will occur if high voltage remains across the 

capacitor for extended periods but a suitable value for Lq may be chosen such that at 

maximum p.r.f., the voltage does not remain on the thyratron for long. This method is 

known as resonant charging and is employed, with or without a diode, in most CVL 

driving circuits.

A modified form of resonant charging is becoming more widespread as the value of 

magnetic materials for switching is realised. If a saturable inductor is used as the 

charging element, then it can be arranged that the unsaturated inductance is large 

enough to give ample recovery time to the thyratron and then, on saturating, the high 

voltage is restored to the anode in a much reduced time giving an increase in the 

maximum p.r.f. A saturating charging inductor was designed and built for a gold 

vapour laser system suffering from chronic latching of the thyratron. The inductor 

proved enormously successful in curing this problem. A discussion of this subject can 

be found in appendix A.

As with the main charging element, the bypass element can be resistive or reactive. Due 

to the nature of the laser load, the type and size of the bypass element has a large impact 

on both laser and charging circuit operation, (ref 7). When the laser is at its operating 

temperature, the gas conductivity is high due to the residual ionisation from the 

previous pulse and the metal vapour present. If the impedance of the bypass element is 

too high then a significant fraction of the charging current will flow through the laser 

volume, maintaining a high level of ionisation and reducing the laser breakdown 

voltage for the subsequent pulse. This leads to a drop in the laser output power. 

Alternatively, if the impedance is too low the discharge current will be able to leak 

through the bypass to ground, effectively shorting the load. An inductor is preferred 

over a resistor here as it provides a low impedance to the slow charging current yet 

blocks the discharge current.
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In a contaminated laser, the impedance is high, so more energy than normal is lost to 

the circuit components. If an inductor is used as a bypass element the discharge voltage 

will oscillate between the inductor and peaking capacitor. This leaves a negative voltage 

on the thyratron, helping recovery but the inductor will be forced to pass an unusually 

high current and will heat up. A resistor, on the other hand will damp any oscillation 

and bleed the voltage to ground but will also leave a positive voltage on the thyratron 

anode, delaying recovery and possibly causing the thyratron to latch. In this case, it 

has been found beneficial to have a resistor and an inductor in series as a bypass arm. 

The inductor still returns a negative reflection to the thyratron and the resistor damps 

out the oscillation. Normally the resistor may be removed when the laser is at its 

operating temperature and the plasma impedance is low but on stai ting from cold with a 

tube containing traces of water vapour or nitrogen the resistor is necessary. The subject 

of bypass elements and their effect on circuit performance has never been rigorously 

treated for the case of metal vapour or other high repetition rate lasers.

3.5 Discharge Circuit

2L&1 IntrQdtfçtÎQiIi

To deliver an electrical pulse of known characteristics to a load it is usual to charge a 

capacitor to a known voltage and discharge it through a switch into the load circuit. If 

all the component values and physical parameters such as cuiTent loop sizes are known 

then it is possible to predict both the duration and peak value of the current pulse. This 

concept is the basis for all copper vapour laser modulator circuits. Some modifications 

to this basic circuit must be made to accommodate the requirements of the load and the 

switching device. Thyratron operational lifetimes increase markedly with a reduction in 

the rate of rise of current, however, the nature of the copper vapour laser requires a fast 

rising current pulse for efficient pumping of the medium. To overcome this conflict in 

excimer and nitrogen lasers, the capacitor transfer circuit was developed and with the
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advent of metal vapour lasers this circuit was seen to be adequate while the engineering 

of the laser heads was the priority.

3.5.2 The capacitor transfer circuit and its optimisation.

The capacitor transfer circuit normally employed in a copper or gold vapour laser 

system is shown in figure 3.1. A set of storage capacitors, C§, of the order of a few 

nanofarads is charged resonantly through the inductor, Lch> to typically 

10 - 20 kV. When the thyratron is triggered, part of the charge stored in Cg is 

transferred through the thyratron to a set of smaller peaking capacitors, Cp. These

peaking capacitors are normally mounted directly across the laser tube and so provide 

a much lower inductance discharge circuit than is possible with the thyratron and 

storage capacitors in the main current loop. By assuming negligible damping due to 

the thyratron impedance after breakdown, the voltage across Cp and hence the laser

tube can be readily shown to swing to a maximum negative voltage, Vmax, equal 

to,

- 2C.
V„ (3.1),max C_ + C„ o

® P

where Vo is the voltage applied across Cg. For optimum performance from the

capacitor transfer circuit, the laser should break down only when the maximum 

possible voltage has developed across the peaking capacitor The corresponding 

amounts of charge and energy transferred to the peaking capacitor aie then given by,

2C_Cg 2C

and

1  9  4C C
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where Qo and Eg aie the charge and energy stored in the main capacitor prior to

discharge. As a function of the peaking capacitor value, the energy Uansferred from 

the storage capacitor becomes a maximum when Cp = Cg. However, for efficient

pumping of self-terminating lasers, one has also to consider the risetime of the cuiTent 

pulse in the laser. This is governed by,

1  = 1  V V p

where Lg is the inductance of the discharge circuit formed by the laser tube and

peaking capacitors. It is obvious that there is a trade-off between the maximum 

transferable energy and the rise time of the current in the laser. In most of the work 

reported to date, the peaking capacitor value is chosen to range from 0.2 to 0.5 of the 

storage capacitor value (ref 8 ). With these ratios, the maximum voltage developed 

across the peaking capacitor ranges from 1.67 to 1.33 times the value of the charging 

voltage. Correspondingly, one third to two thirds of the stored energy will be 

transferred to the peaking capacitor. The remaining energy will subsequently 

discharge through the thyratron and the laser as a secondary, slower cunent pulse. In 

this way the laser current pulse becomes double humped and is broad.

For high peak power lasers such as excimer and nitrogen, the rate of rise of the first 

current pulse from the peaking capacitor is critical to performance. With short upper 

state lifetimes, of the order of tens of nanoseconds, very high electron temperatures 

must be quickly established to obtain satisfactory pumping of the laser levels.

A small valued peaking capacitor and a low inductance transverse discharge design will 

give an initial cunent spike to pump the laser. The much larger inductance of the 

main switching device circuit does not allow the second current pulse, which contains 

most of the energy, to effectively pump the active medium. In these lasers, the 

requirement for a fast rising current pulse invariably leads to an optimum ratio where
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the value of Cp is a fraction, typically one half to one third, of the value of 

Cg ,(refs 9,10).

For metal vapour lasers, the upper state lifetime is of the order of hundreds of 

nanoseconds due to radiation trapping, (ref 11). The duration of the laser pulse is 

limited mainly by the metastable lower levels with lifetimes of the order of tens of 

microseconds. It is thus expected that stimulated emission could be maintained for 

much longer than in excimer or nitrogen lasers. However, with the longitudinal cavity 

design of metal vapour lasers, the current risetime is limited by the inductance inherent 

in the current return path. It is therefore not obvious that the conventional capacitor 

transfer configuration is optimum for use in these lasers. More importantly, it is 

noted that as the laser warms up to its operating temperature, it will break down 

well before the maximum peaking capacitor voltage is achieved. This is due to the 

high level of residual ionisation in the laser tube and is particularly manifest in metal 

vapour lasers operating at high repetition frequencies. When this occurs, the peaking

capacitor becomes less effective as it is not fully charged prior to breakdown. If the 

breakdown voltage of the laser is such that the voltage on Cp is less than that 

remaining on Cg, then the peaking capacitor is completely ineffective and the

discharge now draws its main current from the storage capacitor through the high 

inductance switch loop. This feature ultimately limits the operation of capacitor 

transfer circuits as effective pulsers for metal vapour lasers. In fact, for some of the 

lasers reported, peaking capacitors were not used at all in order to obtain simpler 

current and voltage dynamics in the discharge circuits.

In view of the non-constant operating conditions of metal vapour lasers, it is important 

that the characteristics of the discharge circuits be examined in further detail. In 

essence, the optimum circuit configuration adopted for relatively low repetition 

rate, low inductance, transverse discharge lasers, is not necessarily optimum for 

metal vapour lasers.
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Experimental apparatus.

For this study, a gold vapour laser of conventional self heating design, operating at 

temperatures between 1850 and 1900 °C, was used. All temperatures were measured 

with a Minolta/Land Cyclops 52 optical pyrometer. The laser consists of a high purity 

alumina tube of 20mm internal diameter and 900mm length, wrapped in zirconia 

thermal insulation felt and placed inside a quartz tube, (figure 3.4). An outer pyrex 

tube of larger diameter forms a vacuum jacket to aid in theimally insulating the 

discharge tube. The whole laser body is water cooled inside a metallic jacket which also 

acts as a coaxial current return. The effective discharge length is 800mm and the 

pressure of the neon buffer gas is maintained at 15mb with a slow flow to remove 

contaminants.

The high voltage power supply resonantly charges the system at a rate of lOkHz 

through a series inductance of 150mH (T.E.C.). A hydrogen thyratron (EEV type 

CX 1535) was used as the switching device. The discharge characteristics of the laser 

were monitored by measuring the voltages and currents associated with the thyratron 

and the laser tube. Tektronix P6015 voltage probes and Ion Physics cuiTent 

transformers were used for this purpose. The waveforms were displayed on a four 

channel HP 54112D (400 Megasamples per second) digitizing oscilloscope. Laser 

output power was measured with a Scientec S200 power meter, calibrated with 

respect to an argon ion power meter (Spectra Physics 210).
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Results.

Laser output power was measured when the device was operated with a chai'ging 

voltage of 12kV on a storage capacitance of 8 nF. The pulse repetition frequency was 

maintained at lOkHz. The peaking capacitance was varied between 2 and 12nF, 

Figure 3.5(a) shows that the maximum output power occurs when Cp = Cg = 8 nF.

This is contrary to the ratio normally quoted for high power pulsed lasers.

The voltage and current waveforms corresponding to Cp = 2nF and Cp = 8 nF are 

shown in figure 3.6. In all cases the measurements were taken when the laser 

reached steady-state conditions. Due to discharge instabilities, however, the 

amplitude of the measured waveforms would deviate from the average by up to 5%. In 

both figures 3.6(a) and 3.6(b), the two oscilloscope traces show the voltage across 

and the current through the thyratron. As the probe could not be connected directly 

across the thyratron, the voltage measured includes the effect of a small part of the 

circuit loop inductance. The two traces, 3.6(c) and 3.6(d), show the voltage across 

and the current through the laser tube.

For the case of Cp = 2nF, (fig.3.6 (a),(c)), it is seen that both the voltage across 

the thyratron and the laser tube are strongly oscillatory due to impedance mismatching 

in the circuit. After thyratron breakdown, the voltage drops from 12kV to -5kV with a 

fall time of 8015ns, (half periodic time). This gives a value of 400140nH for the

inductance of the thyratron loop. The voltage across the laser tube reaches a maximum 

magnitude of -12kV, substantially less than the expected maximum of -20kV as 

given by Equation (2). The incomplete voltage swing indicates that the laser 

begins to conduct relatively early in the Cg - Cp transfer cycle. At this voltage, 

only 24% of the stored charge is transferred to Cp, compared with the 40% 

expected when Cp = Cg/4. The peaking capacitor here is not being used to best 

advantage. Examination of the current waveforms will also clarify the role played by
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the peaking capacitor. The thyratron current is double humped with much more

energy transferred in the second part of the pulse. Laser current begins to flow at a 

Cp voltage less than 5kV, this is due mainly to residual ionization in the laser tube

lowering the breakdown voltage. It should be noted that the laser current scale is 

different from that of the thyratron current. The laser output pulse begins 50ns after 

the laser current pulse commences and it has a full width at half maximum, (FWHM), 

value of approximately 50nS, so with the bulk of the stored energy being deposited in 

the gas after this time, pumping efficiency is relatively low and most of the energy 

is used simply to heat the tube.

For the case of Cp = 8 nF, (fig 3.6 (b) and (d)), it can be seen that there is less

oscillation of voltage and current due to improved circuit impedance matching. From 

the voltage fall-time of 1701 lOnS, a circuit inductance of 360 160nH is inferred, 

in agreement with the previous calculation for Cp -  2nF. Laser breakdown is again

observed to occur at relatively low voltage. The maximum peaking capacitor voltage

is measured at -8.2kV giving a 6 6 % transfer of charge compared with the 100% which

is theoretically possible. As the laser voltage reverses to a maximum of 4.5kV the

discharge goes out and conduction ceases. A curr ent pulse has been passed with a 

single peak and which is 25% shorter in FWHM than when Cp = 2nF. There is,

however, a substantial voltage reversal across the laser (indicating impedance

mismatch). This mismatch gives rise to a forward voltage across the thyratron and

so results in a second current pulse. After this pulse, the thyr atron anode is left 

with a negative charge which aids recovery. Under the Cg = Cp scheme it was

noted that the failure rate for thyratron recovery was substantialy reduced.

In an attempt to optimise the coupling of electrical energy into the useful part of the 

discharge (that is the first 50nS) the same Cg = Cp scheme was used but the value of

the capacitance was progressively reduced with a corresponding increase in charging 

voltage to maintain a constant input energy. The result, shown in figure 3.5(b), is that
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by increasing the voltage on a smaller capacitor, the energy coupling becomes more 

effective and the electrical-to-optical efficiency increases. By reducing the capacitor 

value and increasing Vg, the rate of rise of current, dl/dt, is increased. This allows

more power, (P = I^R), to be deposited in the gas before the metastable levels are 

substantially populated. Hence, power output and overall efficiency are increased. A 

maximum of 18kV was available at the thyratron anode due to power supply 

limitation. The capacitance could not, therefore, be reduced below 4nF and still 

provide the average input power required to maintain a constant laser tube 

temperature.

D iscussion .

It appears from the above results that the rate of rise of current in the laser is not the 

only important parameter in the discharge circuit. It has been shown that by coupling 

more energy into the first part of the current pulse, laser power is increased, even 

though the rate of rise of current is been markedly reduced. By operating the laser 

with equal values for the storage and peaking capacitors, several benefits can be 

realised. The laser current is a fast, smooth pulse, which has a single peak and 

terminates cleanly. Output power is improved over the original scheme and can be 

further improved with a reduction in the capacitor value and an increased charging 

voltage. The thyratron is subject to less voltage oscillation and fewer recovery 

failures take place. The low breakdown voltages associated with these devices mean 

that the discharge circuits should be designed for hot tubes with high residual 

ionization. It should not be assumed then, that the conventional storage to peaking 

capacitor ratio is optimal for use with metal vapour lasers.
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Many of the early copper halide lasers were driven by double pulse discharge circuits. 

These devices were externally heated to decouple the copper halide vapour pressure 

from the discharge input power. In many cases it was found that an optimum delay time 

existed between the first pulse which dissociated the copper halide and the second pulse 

which created the population inversion, (refs 12,13,14). The optimum time delay 

would depend on many physical factors, including tube diameter and gas pressure, but 

would be in the interval of 50 - 200|is. In a continuously pumped (self heated) laser, 

this would conespond to operation between 5 and 20 kHz. Copper halide lasers now 

run at these high repetition frequencies with one pulse acting as pump for the current 

cycle and also dissociating any copper halide molecules which have recombined. 

Double pulse excitation is now rarely used unless for investigations of discharge 

kinetics.

3.5.4 Geometrical constraints on _circuil_design^

Throughout the development of driving circuits for copper lasers, it has been evident 

that in order to increase efficiency in the system, much attention has to be paid to the 

layout of circuit components. As with excimer lasers, when the discharge circuit 

inductance is reduced, the output power generally increases. For this reason, the 

thyratron should be mounted as close to the laser tube as is practicable and all 

interconnections made with high voltage coaxial cable to reduce inductance. Many 

workers are now turning to magnetic switches in order to increase the performance of 

their systems. These devices have many advantages but are not simple to engineer and 

each design will only work well within a very narrow operating range. Consequently, 

as we make many design and operational changes in the lasers discussed here no 

magnetics were used in the discharge circuit. Some references are included, however, 

for completeness, (refs 15,16,17,18).
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Chapter 4.

Thermal insulation.

4.1 Introduction,

One of the major design factors in CVL engineering is the need to produce sufficient 

vapour pressure for laser action to be possible. This problem does not exist in the 

majority of lasers in commercial production such as CO2 , excimer, solid state and

noble gas ion lasers. In order to obtain the vapour pressure necessary for laser action to 

be possible, the copper charge in a CVL must be raised to 1500°C. At this temperature, 

the vapour pressure of copper is around 0.5 Torr, (fig.4.1), giving a copper density in 

the discharge tube of around 0.5 x 10^^ atoms/cm^. The demands in the copper halide 

vapour laser (CHYL) are not so stringent, with the conect density (of molecules) 

reached at 500°C (fig. 4.2). Again this is around 0.5 x 10^^ CuBr molecules/cm^. The 

radiation trapping effects discussed in chapter 2  are operative at this copper density and 

so laser oscillation can take place. High temperatures are therefore a precondition for 

lasing in copper and the methods and materials for retaining this heat are among the 

most important considerations when designing a laser head.

Many forms of theimal insulation have been used in the construction of copper vapour 

lasers. Previous devices used firebrick and comndum, (refs 1, 2, 3) while the latest 

models use alumina or zirconia in loose fibre or sheet forms, or in rigid, high density 

preformed shapes such as boards or cylinders. Metal foil radiation shields and coaxial 

vacuum jackets have also been used in a number of designs (refs 4, 5) but poor 

reliability due to insufficient development have led to these methods being left behind.

In many ways, the insulation affects the physical design of the laser head. Its qualities 

determine the overall diameter of the laser, the operating efficiency, constinction 

materials and whether the laser can be sealed off or must have a flowing buffer gas.
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This last point will become the telling one, as most copper lasers, currently in 

commercial production, require a gas flow, making a vacuum pump, gas cylinder and 

gas handling system a necessary but unwelcome expense and encumberance. The small 

sealed off copper bromide lasers, however, suffer none of these disadvantages and are 

now beginning to enter the market.

In this chapter the role of thermal insulation in the CVL and CHVL will be examined 

and the vaiious types and forms available will be discussed. Implications of insulation 

properties for laser head design and performance will be looked at along with the heat 

transfer processes in action. It will be shown that certain trade-offs in performance will 

have to be accepted and that, with present insulation technology, any practical device is 

still far from the ideal,

4.2 Insulation reauireinents of the CVL and CHVL

For efficient electrical to optical conversion to take place in either the copper or copper 

halide laser it is necessary to retain some waste discharge heat in the laser tube 

assembly. Due to the significantly lower operating temperature of the halide device 

(500°C), the demands on thermal insulation are not as extreme as for the copper laser 

at 1500°C. Normally, however, the environments to which the thermal insulation is 

exposed are different in the two cases. In the high temperature variety, the insulation is 

exclusively located inside the vacuum envelope where it is exposed to severe heating 

under reduced pressure in an environment which needs to be maintained free of 

contaminants. This is an almost impossible task with large surface area, ceramic 

insulation, as the manufacturing and pre-firing process ensures that impurities are 

tightly bound and escape very slowly, even at these temperatures. One of the great 

attractions of copper halide devices, is that any insulation required can be removed to 

the outside of the vacuum envelope and heated in air. Thus, a major source of 

contaminants is removed from the laser tube and the coaxial return can be more tightly 

coupled at the same time allowing more efficient discharge pumping and also permitting
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the tube to be processed until it is veiy clean and then sealed off with no worries over 

contamination build up from thermal insulation. The properties of the thermal insulation 

do not, then, need to be similar. In practice, however, the same materials are used in 

both types of laser and the requirements for the copper laser are given below.

1. Ability to withstand the operating temperatures of the laser, that is 1500 - 1800°C. 

The melting point of the thermal insulation should be substantially higher than the 

maximum laser working temperature. Also, the insulation material should not soften or 

have an appreciable vapour pressuie at this temperature.

2. Low thermal conductivity.

The theimal conductivity should be as low as possible to minimise the amount of 

material necessary inside the clean zone of the laser head. This allows the current return 

to be as physically close to the laser tube as possible to reduce inductance and aid 

discharge pumping efficiency.

3. Chemical composition, stability and compatibility with operating environment.

The material comprising the thermal insulation should be such that it is very stable and 

unreactive with any chemical species found in the laser tube at the temperatures 

involved. It should undergo no changes of phase which may result in altered thermal 

properties and/or changes in physical size. The environment in which the theimal 

insulation is to operate must be clean and free of dust or debris, so the material should 

be as pure and uncontaminated as possible with no binders which may enter the plasma 

tube and react with the laser walls or windows. The material, if fibrous, should also not 

break into small pieces and drift around as the beam quality will suffer badly due to the 

scattering effect in combination with the very high gain associated with these devices.

4. Practicality of use, toxicity and ease of handling.

Safety and convenience are major considerations for the users of copper lasers and also 

in the development laboratory. As a uniform "blanket" of thermal insulation is usually

46



required around the alumina plasma tube the ease with which this can be achieved in 

both small and large bore lasers is often a deciding factor in using that material or 

material in a particular form, be it felt or low density mat. The nature of the material as 

regards toxicity, is also important as the laser must be opened every so often to 

recharge the copper load. Toxic materials may require awkward and expensive handling 

procedures to be enforced, thereby making the laser very "user unfriendly" and ruling 

out its use in many applications.

5. Low initial shrinkage and low coefficient of thermal expansion.

When the laser is packed with thermal insulation, it is normally filled with a known 

mass of material to a particular density. This allows more accurate control of the 

thermal conductivity. If the material shrinks or expands during heating, this may leave 

the plasma tube loose and off-centre or else risk placing excess stress on the vacuum 

envelope and stretching or rapturing it.

The two most popular materials for use as insulation in copper vapour lasers are the 

oxides of aluminium and zirconium, alumina and zirconia. These can be fabricated in 

forms convenient for use. Construction methods involving vacuum jackets with metal 

radiation reflectors and all metal designs have been proven to work but are difficult to 

assemble and maintain.

Zirconia and alumina have been used in the experiments described in this work but in

different forms. The zirconia was in the form of sheets of felt, nominally 2.5mm thick

and prefired to reduce outgassing and reactivity. The zirconia is stabilised by the 

addition of 8 % by weight, yttria (Y^Og) to prevent a change of phase and subsequent

shrinkage at around lOOO^C. The felt is quite easily damaged or tom so it is difficult to 

use on a small bore or a long tube. It is wrapped around the recrystalised alumina
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plasma tube to the required thickness and the whole assembly is pushed into a quartz or 

pyrex tube which provides a vacuum envelope.

Once heated to over 1300®C the felt loses its flexibility and becomes stiff and friable. It 

is virtually impossible to re-use the felt from one laser tube in another and so, due to the 

expense of this material, it was used infrequently.

The demand for high purity, high temperature vacuum furnaces has prompted the 

development of new forms of zirconia. The most useful being those of rigid boaids and 

cylinders. They have long been attractive due to the mechanical strength, high density, 

low outgassing and lack of reactivity. The presence of volatile binders, organic and 

inorganic, has precluded their use in most cases up till now. The latest types have no 

organic binders and the inorganic ones are stabilised to prevent 'dust' from entering the 

discharge tube. Some types have no binders at all and are readily machinable, these will 

be utilised in the next generation of copper lasers. None of the above prefoims were 

used in any of the lasers described here, but in an experiment, two 'low binder' types 

were heated in air with an electric fire element. Both turned brown and fumed badly at 

200®C, showing that a small amount of organic material can produce an unacceptable 

amount of contamination, rendering them unsuitable for inclusion in a laser. The 

characteristics of zirconia felt, showing thermal conductivity and other important 

parameters, can be found at the end of this chapter, (table 4,1).

Alumina, in its recrystalised form, was used exclusively for laser tubes in the high 

temperature lasers, (copper and gold). It was also used in some of the copper halide 

devices where quartz was not considered to have sufficient structural strength at the 

temperatures reached. Alumina in this form has two main disadvantages from the 

viewpoint of the laser engineer. The inclusion of deep seated impmities means that 

extended vacuum baking or processing is required if anything approaching clean 

conditions is to be achieved in the laser head. The molecules most often encountered in
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outgassing from alumina tubes are O^, N2  and HL, with metals such as Na and Ca also 

showing their presence when heat is applied, (ref. 7).

The second characteristic of recrystallised alumina which causes concern is the 

coefficient of thermal expansion (table 4.2). Over a number of thermal cycles it 

becomes physically difficult to locate an alumina tube accurately. Large temperature 

gradients imposed on the alumina by non uniform heating or rapid cooling can cause 

theimal shock and subsequent fracture of the tube. Although the maximum working 

temperature recommended for alumina tubes is 1950°C, softening can take place at 

temperatures below this and seriously warp or deform the tube. The gold vapour laser 

is more prone to this because of its higher operating temperature but it has also been 

observed in copper lasers, (ref. 8 ).

Alumina which is in the form of thin fibres and made into a low density mat, (I.C.I. 

Saffil), was used as the primary insulation on all of the copper vapour lasers described 

here, whether as packing round the alumina laser tube or as an external blanket around 

the current return. This form is easier to use and is much less expensive than the 

zirconia felt described previously. The thermal conductivity of this form is higher, 

however, (table 4.3) which means that more material must be placed between the laser 

tube and the current return. If this entails increasing the current return diameter, then the 

laser head inductance will increase. The practical advantage is that an alumina tube can 

be held centrally inside the vacuum envelope with a jig and then chunks of fibre can be 

tom from the mat and packed around it. This is not a pleasant task as the fibre breaks 

up into tiny needles and forms a thick cloud which irritates skin and makes goggles and 

face masks a pre-requisite. However, a relatively uniform packing density can be 

achieved and the alumina tube more accurately located than with rolled zirconia felt.
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4.4 Heat transfer in copper lasers.

Virtually all CVL's made today are self heated devices. It is therefore very important 

that the waste heat from the discharge should be used to best effect to maintain the high 

efficiency inherent in copper vapour lasers. The thermal insulation should act to retain 

sufficient heat for the operating temperature to be reached and yet not allow the laser to 

overheat when full input power is applied. If the power loading on the laser tube wall is 

known, then the radial temperature profile can be calculated for various types and 

thicknesses of material in the surrounding assembly. Where constraints have to be met, 

such as the maximum operating temperature of -lOOO^C for fused silica, this can be 

taken into consideration when applying boundary conditions. Corresponding radial 

temperatures in the plasma during laser operation are not so simple to calculate, 

however, but since the copper vapour pressure is proportional to the source 

temperature, this can be taken as the temperature at the wall in a CVL where the copper 

is distributed randomly. In a CHVL, the source temperatuie is taken as either that of the 

reservoir or wall, depending on the tube construction . The plasma temperature limits 

the gain to a great extent and many CVL's which are run at too high a pulse repetition 

frequency have annular outputs due to gas heating on axis populating the lower laser 

levels.

4.4.1 Basic analysis of heat transfer processes.

The three ways in which heat can be transported through a system aie conduction, 

convection and radiation. The first quantity, conduction, is regarded as the most 

influential mechanism as far as the transfer of heat from the laser tube to the outer wall 

is concerned. Convection plays a large part in passively cooled lasers, tending to be in 

the l-3kW range and is mostly ignored in the larger water cooled devices. The part 

played by radiation in laser cooling is difficult to calculate accuiately due to the nature 

of the materials and their geometry as will be made clear in the following sections.
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A general analysis in basic form is given below for a conventional copper vapour laser 
designed as in figure 4.3. An alumina tube of length L, internal diameter r^ and outer

diameter r2 » is sunounded by an annulus of ceramic theimal insulation, thermal

conductivity kg, contained in a fused silica tube of internal diameter r^ and outer

diameter r^ with thermal conductivity kq. Most modern CVL's follow this design up to

this point but outside the vacuum envelope, many different forms of heat management 

and removal are used. Some devices have more insulation contained within a water 

cooled jacket, some have only a water jacket and others simply a metallic jacket for 

forced air or natuial convection cooling.

A treatment follows for the general vacuum envelope design and two of the above

cases, ( 1 ) more insulation followed by a water cooled jacket and (2 ) an air cooled

metallic casing. The important parameter from an engineering point of view is the 
pyrex/quartz inner waU temperature, Tg.

The heat flux, q, between two cylindrical surfaces is given by, (ref. 9)

2TCkAL^T2 - T ^]

In

q = r \  

v'ly

(4.1)

Where k ^  is the thermal conductivity of alumina,

k§ is the thermal conductivity of saffil at - 1 0 0  kg/m^, 

kq is the theimal conductivity of quartz.

Tn =

q ln

27tkAL

/ (  \
^ 2 q ln

k J
27tk§L
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Ta = Ti + _a_
2tï:L

f  \ f  \
In ^ 2 In

+ —r A
kA ks

(4.2)

If this temperature is in the range 400 - 1000® C, then pyrex cannot be used and either 

fused silica must be employed instead or a thicker blanket of insulation placed between 

the plasma tube and the vacuum envelope. The use of insulation with a lower 

coefficient of thermal conductivity will also help to reduce the temperature at the 

vacuum envelope wall.

The outer wall temperature is given by,

q In

T4  = T3  +

H

2 iikqL

In
f  \ f  \

^ 2 In 3̂ In

I — _ 4 -  — -

kA ks

(4.3)

As an illusti*ation of the difference in vacuum envelope diameter possible between 

alumina fibre and zirconia felt, a laser tube configuration is given and the boundary 

conditions fixed.

q = 3 kW 

L =  1 m 
rĵ  = 1 2  mm

r2  = 17 mm 
T i = 1500°C 

T3  = 800°C

kA = 5W/m°K 

ks =0.37 W/m°K 

k z  = 0.25W/m°K
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From equation 4.2, rearranging, we have.

In = ks
2 ^L /  \

( \
In

kA

therefore,

rg = r2  exp kg 2tcL /  \ In
r \  

! 2  

^ 1

kA

= 28.5 mm

=> 57 mm diameter.

With the value for k^ substituted for kg the radius becomes,

rg = 24.4 mm

=> 48.8 mm diameter.

This saving of -  1 cm on the diameter represents a possible lowering of laser head 

inductance with a consequent increase in operating efficiency (section 4,5).

The effect of radiative heat transfer is difficult to estimate. If the alumina laser tube were 

radiating to a coaxial water jacket then it would lose, (ref. 1 0 ),

4 4
q = AFge<j(Tj-T 2 ) Watts (4.4),
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where A is the surface area of the alumina tube, <y is Stefan's constant, e is the 

emissivity and Fg is the shape factor, which for infinite cylinders is,

Fs =  T ^ T  ;  (4.5).

® 1  A2

This process is complicated by the alumina radiating to the surrounding saffil or

zirconia fibres and the heat being passed on by conduction and radiation. The radiation

formula above would then indicate that much more heat was being lost through
4

radiation than in actuality. Radiative losses are proportional to T so that the outer 

surface of insulation, saffil or quartz, will lose heat by radiating to the cold metal jacket. 

The temperature difference here will be only a fraction of that between the alumina and 

the metal jacket. It would therefore be more realistic to take the temperatures of the 

insulation and jacket surfaces as the major radiation transfer parameters, assuming the 

quartz to be a transparent, non radiator.

As before, with L = 1 m
rg = 57 mm,

and assuming a wall thickness of 3 mm for the quartz, this gives a water jacket radius 

of

rj = 61 mm, say.

Other data required to calculate the radiative heat flux;
=0.5 o  = 5.676 X 10'^ W /m ^ld"saffil

"stainless St. ^1
Fg = 0.294 T2  = 300®K

_  = 0.4 Ti = 600® K

This gives a heat flux of,

q = 363 Watts. 
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This value will vary by a large amount depending on the surface quality and finish of 

the metal. Rough or oxidised steel will absorb radiation more readily than if polished 

and consequently will transfer more heat. This, however, is not the full story, as visible 

radiation is seen to be transmitted through the saffil when lasers of this construction are 

run up to operating temperature and the power input is switched off. More heat is being 

lost through radiation than can be simply accounted for.

The desired laser output power gives an idea, through the projected operating 

efficiency, of the required power input to the laser head. In general, if the power to be 

dissipated is above 2 - 3kW, then the laser will require water cooling. If not then air 

cooling is an option which makes the laser more attractive from the point of view of the 

user. This approximate figure comes from the wide base of work done by many 

researchers in this field. To give some impression of the capabilities of both water and 

natural convection cooling, an outer jacket/current return diameter of 50 mm is 

arbitrarily chosen and analysed for the two cases.

1. water cooling.

Water jacket o.d. 100 mm.

Length Im,
Inner wall temperature 100® C,

i.d. 94 mm.

Water temperature 10® C, 

^stainless steel @ C = 16.9

From equation 4.1 we have,

27ikLr7 _ - T-  ̂ out ^inn

In
/' \  
‘■out

yirniy

and inserting the values above, we get.

q = 154 kW.

This is a large amount of heat and shows the capability of water cooling if sufficient 

care is put into flow management to maintain a constant water temperature over the
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whole surface. This figure will be reduced substantially by the thermal conductivity of 

the air gap between the water jacket and the hot wall which will set an upper limit on 

heat transfer. Even assuming that the cooling is much less effective than this leaves the 

designer with the potential over-cooling of the laser. It is then necessary to increase the 

thickness of insulation around the tube to reduce the temperature of the wall to be 

cooled. This can lead to the laser becoming bulky and inductive.

2. convection cooling

Removal of heat by natural or forced convection of air is a complex subject involving

fluid dynamics on both the macroscopic and microscopic levels. It is important to have

some idea of how the fluid, air in this case, will move past the surface to be cooled.

Depending on surface finish and temperature, the flow may be laminar, turbulent, or a

mixture of the two with one type dominating for a short time and then changing to the

other type. If the surface is smooth and not too hot, then the flow will be laminar. As

there is minimal mixing of the fluid from adjacent lamina the transport of heat is by

molecular conduction. This is very resistive to heat transfer and the layers can act more

as insulators than as a heat removal system. As the air moves faster over the surface or

is disturbed by irregularities then the boundary layer of laminar flow becomes confined

closer to the surface and eventually separates with the layers mixing together as the

flow becomes turbulent. Chaotic or turbulent flow is a much more effective way of

cooling a hot body but due to the nature of the flow, prediction or control of the 

process is inexact and difficult to model. In some lasers, such as axial CO2  devices, a

wire turbulator is wound into the coaxial water space around the laser tube. This forces 

the cooling water to become turbulent and the tube is cooled more evenly and 

effectively.
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The basic rate equation for convective energy exchange is, (ref. 9)

q = hA A T (4.6).

Where AT is the temperature difference between the surface and the fluid. A, is the 

contact area and h is the convective heat transfer coefficient. This coefficient is related 

to the fluid flow mechanism, the properties of the particular fluid and the system 

geometry. The expressions involved in finding a value for h are complex but can be 

simplified by assuming that the cooling takes place by natural convection in air.

The expression becomes,

/A T \b
h = a (4.7),

where a and b are constants which depend on geometry and flow conditions. The 
quantity, Lg, is a characteristic length and is dependent on the flow type, whether it is

laminar or tends towards turbulence. Values are suggested for a, b and Lg in ref. 11,

relating to flow around cylinders. They are a = 1.32, b -  0.25 and Lg equal to the

diameter of the cylinder.

For the cylindrical current return assumed earlier with diameter 100 mm and wall 

temperature 200®C the rate of convective cooling in still air at 20®C would be,

q = 25.133 h.

With h given by equation 4.7 h = 8 . 6  ,

therefore, we have q -  486 Watts.

Cooling of the metal cylinder in this case would be aided to a great extent by the 

radiation transfer of heat to the cool surrounding room. In the case of our laboratory 

lasers, the cunent returns were normally made from brass tubing which oxidises very 

quickly over all of its surface. This is an ideal situation for efficient radiative transfer as
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the emissivity of oxidised metals is usually much higher than even an unpolished 

sample of the metal itself. Returning to equation 4.4, we can see that, as

^oxidised brass “
= 473 K and = 273 K

then, q = 731 Watts.

Thus, radiative transfer seems to account for a greater proportion of the tube cooling 

than does convection in laminar flow. It is unlikely, however, that convective flow over 

this smface will be laminar as no attempt was made to remove surface imperfections 

which cause boundary layer seperation and turbulence. In most designs of this type it 

was possible to dissipate 2 - 2.5kW of power without raising the current return 

temperature above 200®C.

4.5. Implications of heat management on laser head_ design.

It has been shown above that the various types and sizes of laser head have widely 

varying requirements in terms of thermal management. Pure copper lasers have the 

problem that expensive, high temperature and high purity materials must be used if the 

physical size of the head is to be minimised. This is an important consideration from the 

point of view of efficiency as laser head inductance has a direct bearing on discharge 

pumping of the copper laser levels.

Other considerations which assume importance in different applications are input power 

and warm-up time. If the input power is limited, then there is a protracted warm-up 

time, especially if the laser head has a large thermal mass. If this is the case, then one 

positive point is that the thermal mass will tend to buffer any transient change in input 

power if the supply is not stabilised. The tube temperature will change only slightly and 

very slowly, maintaining stability of the beam quality and wavelength power ratio. A 

laser with low thermal mass and with lasant vapour pressure dependent on tube
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temperature will waim up quickly but will follow the input power more closely, in that, 

if the matching changes for a few moments due to the ingress of contaminants, the tube 

temperature will rise or fall giving a change in output power, beam profile and the ratio 

of the wavelength intensities. One way to avoid this is to decouple the copper vapour 

pressure from the discharge input power and this can be done effectively in copper 

halide laser devices (chapter 6 ).

As a consequence of the fused silica construction often employed in copper halide 

lasers, it is possible to make devices with very low thermal mass. If metal tubes are 

used for discharge containment and the quartz vacuum envelope is sandwiched between 

this and the closely coupled metal current return (fig.4.4), then the laser head 

inductance can be drastically reduced. The inductance of a coaxial system such as a 

copper laser head is given by.

L . ÿ . ÿ l . Henry s/m , (4.8)

where r j and T2 are the radii of the inner conductor (discharge tube) and outer conductor

(current return) respectively. Figure 4.5, shows the values of the inductance of a 

coaxial laser head when the discharge tube internal diameter is 2 0 mm and the current 

retmn diameter is varied from 22mm to 100mm. In evaluating equation 4.8 for fixed 

discharge tube diameters, it is assumed that the discharge fills the tube. If the discharge 

is constricted then the effective inductance of the discharge circuit will increase. It is 

also possible to remove heat at a much greater rate from the laser tube as the limiting 

factors are now conduction through the quartz and the air cooling of the current retuin. 

One such device, constiucted in our laboratory, started from cold and produced 10 

Watts after 38 seconds. This demonstrates that copper lasers need no longer be 

associated with unacceptably long waim-up times but as virtually instant light systems 

with the limiting factor being thyratron warm-up time.
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It is possible to take the theme of high flux, heat extraction another step forward. If 

instead of using a tubular metal current return with air (or water) cooling, the laser tube 

is surrounded by a material which can withstand the temperatures involved, conduct 

heat very well and act as a current carrier, then the laser may be made less inductive and 

the large thermal gradients which shorten tube lives can be moved further from the 

critical vacuum envelope (ref 12). Liquid metal best fits this requirement and in 

particular tin. The melting point of tin is 232®C and it boils at lllO PC  giving it a veiy 

large liquidas indeed. If the laser tube is surrounded by tin, then at the plasma tube/tin 

interface, the tin will be molten (copper or copper halide lasers) and will conduct heat 

extremely well. The tin may either be flowed through heat exchangers using 

electromagnetic pumps or may be allowed to sit stationary in its containment. In the 

latter case, a liquid/solid interface will form at some radial distance from the laser tube. 

Heat will be rapidly conducted away from the laser tube to some external cooling 

system where the thermal shock can be more easily dealt with, say by a cooled metal 

wall. In this device, (which has been proven in principle) an inordinately large amount 

of heat is deposited by the discharge in the laser tube, for a 1  metre long 1 cm diameter 

tube this may be in the region of lOOkW. If laser efficiency can be maintained at, or 

around 1 %, then a huge amount of laser light can be extracted from a relatively small 

laser tube. Calculations show that IkW of light output may be expected from a Im 

long laser tube such as described above. The presence of liquid metal on the outer wall 

of the tube provides a method of maintaining the tube at a constant temperature which 

optimises laser output. The metal can also act as a very tightly coupled current return. 

As with the design of the argon ion laser where the power loading on the tube walls is 

enormous, the thermal management, if done correctly, will remove this heat with little 

or no detraction from the laser output power.

These, then, are the two extremes. The fat, bulky CVL with much insulation, operating 

under conditions requiring high heat retention but limited in output power due to the
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ease of overheating, or the slim copper halide laser where heat removal is the priority 

and the problem of insulation borne contamination does not arise.
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Table 4.1: Properties of zirconia insulatj-On_ products. 

(Zircar products incX

M aterial form Rigid boards 
Cylinders

Product code 

Description

Availability

Composition

ZYFB6

Rigid prefoims containing 
no binder; 1 0 0 % ZrO^

fibres sintered together, 
low outgassing and reactivity outgassing. Good flexibility.

Felt

Mechanically locked ZrO^ felts 
fired to a high temperature,

having low reactivity and low

Square boards
Disks
Cylinders

™ 2  

Y2 O3

SiO^ <0.3%

92%
8%

18” X 24” rectangles, nominal 
thickness 0.05” or 0.1”.

YrOg
%

92%
8%

SiOg <0.3%

Porosity 

Bulk density

Stability, shrinkage 
after hours @ temp.

Melting temp.

Maximum use temp.

Thermal conductivity 
W/m^K @

400°C
800°C

1100°C
1400°C
1650°C

84%

1000kg/m3

0.5%
1 h o u r#  1650°C

2590°C

1650%

0.16
0.19
0.22
0,25
0.27

96%

240 kg/m3 

4.6%
1 h o u r#  1650% 

2590%

2200°C

0.1
0.15
0.2
0.26
0.32



Figure 4.2; Properties of alumina tubes.

(Friedrichsfeld Degussitl 

Material grade AI 23

Composition

Density

Grain size

Porosity

Hardness

Elastic modulus

Resistance to thermal shock

Melting point

Max. working temperature

Specific

Thermal conductivity

Coeff. of linear expansion 
between 0  and 1 0 0 0 % .

Emissivity at 1000%.

Electrical resistance at

Electrical breakdown strength

typical 99.7% Al^Og 

minimum 99.5% 

3700 - 3950 kg/m^

1 0  - 2 0  |im

0% 

23000 N/mm^

3.5 X 10^ N/mm  ̂

good 

20309c 

1950%

850 J/kg K

100% 
1000%

8.1 X lO'^/K

21%

20% 
1000% 
1500%
22kV/mm

25-30W /m %  
5 W /m%

>10^^ Ohm cm 
5x10^
1 x 1 0 ^



Table 4.3: Properties of Saffil low density mat.
(T.C.T. Chemicals and polymers)

Maximum use temperature 1600%

Shot content 

Main components

negligible

SiOn
95%

5%

Trace components iron
chromium
nickel
sodium
magnesium
calcium
chloride
(total)
chloride
(leachable)

400ppra
60

140
875
130
525

80

Chemical resistance Very good resistance to acids, alkalis 
and reducing atmospheres.

Thermal conductivity @ density 
of 96kg/m^

Linear thermal shrinkage 
24 hours @ temperature

% W/mK
2 0 0 0.062
600 0.106

1 0 0 0 0.182
1400 0.314
1600 0.412

% Shrinkage '
1 2 0 0 0

1400 < 2

1500 <3
1600 < 4



quartz tube

alumina tube

fibrous insulation

Figure 4.3; Design scheme for copper vapour laser.
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alumina spacers

quartz

copper segment

________ __________ __________________

Figure 4.4 Low inductance tube with metal segments.
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Chapter 5.

Discharges confined bv metal tubes.

5.1 Introduction.

The use of metal tubes for the confinement of laser discharges began with the argon ion 

laser (ref 1). At this time, laser tubes were made of quartz which suffered badly from 

ion bombardment of the walls. Tube lives were short and in sealed devices the lasing 

gas was trapped by these impacting ions and quickly cleaned up. It was these problems 

which prompted the search for an operating regime which lent itself better to prolonged 

tube life. One solution which became accepted was the use of metal segments to foim 

the discharge tube. Each segment was insulated from its neighbour by separation, so 

that its potential could vary independently of the others according to its position in the 

potential gradient between anode and cathode. In this way and at the pressures 

involved in argon ion discharges, it was found that metal segmented laser tubes not 

only worked but had some major advantages.

One problem encountered with quartz laser tubes was decomposition of the wall 

material and contamination of the discharge. This is not only a problem in ion lasers 

but any laser which requires a high purity envkonment for optimum performance. 

Metallic walls do not decompose but rather sputter, producing no contamination to 

upset the power supply matching to the discharge (chapter 3). The metallic wall makes 

the plasma tube more robust and resistant to thermal shock. When used in a copper 

vapour laser, for example, the problems associated with refractory ceramic tubes are 

legion. They crack due to thermal shock and due to electric field stress, have a great 

tendency to ’creep’ and collapse at temperatures much less than their stated softening 

point and perhaps worst of all they contain a relatively massive amount of deep seated 

impurites which diffuse out slowly when the tube is heated. Metal has none (or very
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few) of these problems. In addition metallic segments or walls can remove discharge 

heat at a vastly greater rate than quartz or alumina (see chapter 4).

5.2 D C. Theory

As metallic walls became important for argon ion lasers, the theory behind the operation 

of metal as a plasma confinement material began to develop (ref 2,3). It emerged that, 

as the gas in the segmented tube is ionised, there is a drift of ions and electrons to the 

wall. It can be seen from kinetic theory equations that the average velocity of a gas 

particle is (ref 4),

1
v =

f  ^
8kT

yTtm J

So that with m^~ 1000 m^ and, in an ionization non-equilibrium state such as exists in 

the rising edge of a current pulse, T^, the electron temperature, much greater than T^,

the ion temperature, we see that,

' ' e > v + -

Normally the ratio of these velocities is of the order of 1000 : 1, for the gases used in 

laser discharges.

The greater velocities of the electrons means that, as the discharge develops, more 

electrons than ions will collide with the metal segment. If this segment is not connected 

to an external voltage source, then it will acquire a negative potential with respect to the 

plasma. As this potential grows, electrons arriving from the plasma will be repelled 

and ions attracted. A region will develop between the plasma and the wall which 

contains positive ions almost exclusively . A few high energy electrons will still 

penetrate this sheath, sufficient to maintain the steady state negative potential of the 

segment. Figure 5.1 shows the situation in this case. If a dielectric tube (alumina, 

zirconia) were used, then its wall potential would follow the dashed line. Since a metal

(5.1)
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segment has an equipotential surface there must be a difference in potential (with

respect to the plasma) between the ends of the segment. Therefore, at the anode end of

the segment, the potential difference between the plasma and the segment is greatest.

The segment appears more negative here and as such, will attract a greater ion than

electron current. The positive ion sheath will be at its greatest thickness here. As we

move towards the cathode end of the segment the ion cunent is reduced and the

electrons can penetrate the sheath more easily. There is a ring on the surface at some

distance from the anode at which the ion and electron currents are equal before the

electron current increases towards the cathode end. The point at which the currents are 
equal occurs when the potential of the segment with respect to the plasma is V .̂ Over

the total surface area of the segment, by conservation of charge, the total ion and 

electron currents are equal. If one or more metal segments are present in a discharge 

tube, then prior to breakdown, the electric fields between the segments and between the 

electrodes and the segments will be increased. Figure 5.2.

It has also been shown, (ref 2) that, for discharges with fixed conditions, (gas type, 

pressure and electric field) there is a maximum segment length permitted. This length 

(in a steady state discharge in neon) is given by,

djjjax = 1.32X 10"^T ^/X  metres (5.2),

where T^ is the electron temperature and X is the potential gradient in the discharge tube 

given by,

X = (voltage across tube)/(tube length) Volts/metre.

If the segment is too long (Figure 5.3), then the cathode end will become positive with 

respect to the plasma. The anode end is still negative with respect to the plasma so all 

or part of the interelectrode current will then run through the tube walls. The ratio of 

the wall current to the plasma current will be the inverse ratio of the impedances of the 

wall and axial paths.

65



For segments with short gaps between them, the electric fields in the gaps may be high. 

In discharge tubes at relatively high pressures (100 Torr - atmospheric) this may cause 

a problem due to short-gap breakdown. Paschens law shows that the breakdown 

voltage of a gap between two conductors is dependent on the product of the gap 

distance and the gas pressure (for a given gas). Figure 5.4 shows the relationship 

(Paschen curves) for neon and hydrogen. It can be seen that for short gaps, it is 

advantageous to work at low pressures, on the left of the Paschen minimum, as the 

breakdown voltages here rise rapidly. This is the regime under which hydrogen 

thyratrons operate. Very short gaps can hold off many thousands of volts. No 

theoretical consideration has been given to the optimum gap distance which is very 

much dependent on the specific operating conditions.

5.3 Pulsed Discharges

In a pulsed discharge after breakdown, the current rapidly increases, peaks and then 

decreases to zero. In a copper vapour laser discharge, (high temperature or halide), 

much depends on the immediate past history of the tube. If the tube is cold, there will 

be little ionization remaining at the end of the interpulse period. As the plasma 

recombines, the potential of the adjacent segment becomes less negative (reduced 

electron current to the segment) and approaches that of the plasma. When voltage is 

applied for the subsequent pulse, both the gas and the segment - gap combination 

present themselves as potential discharge paths but with different breakdown voltages. 

If the sum of the breakdown voltages in the gaps is less than that of the gas in the 

discharge channel, then the discharge will indeed run through the metal and through 

randomly sited arcs between the segments. In a hot tube, there is normally a well pre­

ionized path available with a low breakdown voltage, as the plasma has a high density 

of electrons, ions and metal vapour. It is an advantage then, to start a metal segment 

pulsed laser from cold at a high pulse repetition frequency to maximise the pre-pulse 

ion-electron density.
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By examining the time which is taken by the ions and electrons in the plasma to 

respond to changing electric fields, it can be shown that if the Debye length is small 

compared with the tube radius, then charges in the periphery of the plasma will move to 

screen the bulk of the plasma from any change in wall potential.

As the electron temperature increases rapidly as the current increases, the walls become 

more negatively charged and the maximum sustainable segment length increases.

If the ratio T^/X is increased suddenly (on a timescale short compared with the plasma 

response time) then the maximum segment length, d^^^ , increases to the new

equilibrium value and because the plasma response is relatively slow, this length will

continue to increase but will then peak and decrease to the equilibrium value as the

plasma begins to ’perceive’ the new distribution of charge and responds accordingly. 
The parameters which determine the degree of overshoot of d^^^ , if there is an

overshoot at all, are the Debye length and the plasma frequency, cOp. These are given

by, (ref 6),

^ d ” % 2

J
metres and (Op = rads/sec.

where the symbols have their usual meaning. Assuming an initial electron temperature 
value close to that of the gas temperature (2000 K) and an initial electron density n^^ of

13IxlO^/cc, (ref 7), the Debye length and plasma response times on discharge initiation

are estimated at 1mm and 5ns, respectively. These values mean, that, at this stage in

the discharge development, the walls are not well screened from the plasma. The

maximum segment length will follow the electron temperature closely and increase. As

the electron density increases, the Debye length and plasma response time both decrease

and as the current pulse peaks there may be a slight over-shoot in the maximum 
segment length. It is seen then, from equation 5.2 that, as both T^ and X are functions

of time in a pulsed discharge, then d^^^ must also be time-dependent. The electric
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field which has built up before breakdown, collapses as the current rises. The electron

temperature will have a low initial value and rise during this time. Both of these effects 
will increase d^^^ and help the discharge, in that, if the segments in a real laser are

slightly too long, then the discharge will be initiated in the gaps between them.

Through subsequent pulses, sufficient ionisation will build up within the segment

volume to carry some of the current axially. As the current during a pulse begins to

flow, it will begin by being attached to the segments (as they are longer than the 
allowed d ^ ^  at that time) and as the current increases, the discharge will 'peel' away

from the segments towards the axis of the tube. Using a model for the electron 

temperature which is based on experimental observation (ref 9) and taking a generalised 

capacitive fall as a basis for the collapsing electric field, we have,

/  \  

J '  y
(5.3)

where a is a constant and t is the full width of the current pulse, (assumed here to be 

2(X) ns). Inserting boundary conditions,

1. a t t  = 0,Tç = 2000K

2. at t = 100 ns, T^ = 54180 K (= 7eV ) (ref 8), 

we obtain,

Tg(t) = 2 X 10^ ^  *, (5.4)

these conditions are valid during the current rise time.

Also, we have

X = X „ e x p r-ij  (5.5)
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where T is a constant which sets the rate at which the electric field falls. The boundary 

conditions here are:

3
1. at t = 0, X = 5 X 10 Volts/metre

2
2. a t t =  100ns, X = 5 x 10 Volts/metre (sustaining field).

The electric field, X, is given by,

O ‘[4 . 3 4  X 10'®)
X(t) = 5 xlO e volts/metre. (5.6)

The functions for electron temperature and electric field aie plotted in figures 5.5 and
5.6. The corresponding time-dependence of d ^ ^ ,  is seen to be, from equation 5.2

26.4e3-3  ̂ 10 *̂
1 0 - 2 . 3 x 1 0 7 .  ~

7t
so we get ^max ^ 10"^ e^*  ̂^ metres, (5.7)

since the electric field exponent is dominant. The form of d^^^ can be seen in figure

5.7. From the shape of the function it can be seen that discharge attachment to the 

segmented walls of a laser tube should last for only a small part of the current risetime 

before the discharge exits the metal and moves towards the tube axis. It is possible to 

use a metal tube which is too long for the discharge and yet escape some of the 

consequences due to the effect of the changing maximum segment length. This makes 

the use of metal segments very flexible, as one set of segments of fixed dimensions can 

accommodate a variety of discharge conditions.

The effect of reducing or increasing the buffer gas pressure has an effect on the electron 

temperature. As the pressure is increased for example, the electron temperature is 

reduced and the maximum sustainable segment length becomes shorter.
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The high repetition rate of copper lasers has an important consequence for the 

establishment of a uniform axial discharge. Due to incomplete recombination between 

discharge pulses there will be some portion of the plasma still in evidence when the 

voltage is reapplied for the subsequent pulse. As there is plasma already in the tube, 

there is also the remains of the sheath on the walls, the negative chai*ge on the metal 

segments decaying with the plasma. Thus, the initial charge on the segment wall 

depends to a great extent on the tube temperature and proximity to its operating region. 

If the tube is cold, there is a low ionization level and small wall charge which will 

brings a greater chance of Paschen breakdown between the segments. At higher 

temperatures and with metal vapour in the discharge tube, the pre-pulse ionization level 

(and hence wall charges) are substantially greater. The axial path has a much lower 

breakdown voltage and so the discharge is more likely to establish itself along the tube 

axis. In some of the experiments described in chapter 6, it was necessary to run 

discharge devices at low pressures until the ionization level had risen sufficiently to 

allow an axial discharge at the desired, higher operating pressures.

5.4 Comparison of dielectric and metal walled tubes in a discharge 

circuit.

In order to determine the effect of a discharge tube composed of metal segtnents on the 

electrical behaviour of an established circuit, the following experiment was conducted. 

A glass tube of 50 mm internal diameter with two metal end flanges was prepared. The 

end flanges are provided with windows and electrode holders. The electrodes are 

rolled molybdenum sheet and are separated by 365 mm. Gas inlet and outlet pipes are 

also provided on the end flanges. The modulator circuit used is the standard copper 

laser circuit but with no peaking capacitor. Fig 5.8. The storage capacitor is 2 nF and 

in each part of the experiment the pulse repetition frequency (prf) is fixed at 2kHz , the 

voltage on the storage capacitor is fixed at lOkV and the buffer gas neon) pressure is 

held at 10 mb.
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The tube was first operated under the above conditions with no metal segments. The 

voltage across the tube and the cunent thiough it may be seen in Fig 5.9 (a). A copper 

tube of internal diameter 43 mm and length 240 mm was placed inside the glass tube, 

centrally between the electrodes. Again a discharge was struck and measurements of 

voltage and current taken Fig 5.9 (b). The copper tube was then cut into three equal 

sections of 80 mm length electrode-segment and segment-segment spacing were equal. 

The results of a pulsed discharge in this arrangement are shown in Fig 5.9 (c).

Examination of the waveforms from the three cases above show that only minor 

differences exist between them. The tube which contains no segments has a peak 

current 10% greater than the two segmented tubes and this current pulse appears to 

terminate 30 ns (or 6% of the base width) before the other two. For such a major 

alteration in the material bounding the discharge, there are surprisingly few effects 

impressed on the behaviour of the tube as a load. The length/diameter ratio appears not 

to disturb the operation of the circuit and so these segments may be used where 

previously insulating walls only have been applied.

gjg CffffÇlMiSiQns

The adoption of segmented metal tubes for argon ion lasers was a significant step

forward in terms of tube life, reliability and robustness. The theory of operation has

been extended to cover pulsed discharges and, in particular, those associated with

copper vapour lasers. In this chapter, the behavior of metal segments during a pulsed

discharge has been described theoretically. The time-dependence of the maximum

segment length has also been calculated and the conclusions drawn from the results are

that, in a discharge tube with metal segments, the maximum segment length increases

from a level determined by the pre-pulse plasma density. The fall of the axial electric 
field, dominates the equation which determines d^^^, (equation 5.2). The maximum

segment length increases rapidly during the current pulse rise and so forces any current 

which is running through the wall, to leave the metal and fill the axial dischaige
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volume. No reasons have been found why segmented metal tubes cannot form the basis 

of a successful copper vapour laser.
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Chapter 6.

Copper halide lasers; experimental results.

6.1 Introduction

The work described in this chapter concerns the development of copper halide vapour 

lasers at the University of St Andrews. From the first, crude, experiments with copper 

bromide (CuBr) powders and pellets, through more sophisticated tubes, designed to 

counteract the various problems which became evident as a consequence of using 

copper halides. A final design for the series of lasers without metal segments was built 

and tested. It performs well and produced 5W of laser light during a 100 hour period 

of sealed-off operation. After termination of the test period there was estimated to be a 

10 -15 % loss of CuBr from the reservoirs indicating a possible 1000 hour sealed-off 

lifetime.

Work performed concurrently with the above is also described in section 6.5. This 

section deals with the application of segmented metal discharge tubes to copper bromide 

lasers. As with the series of designs not incorporating metal tubes, problems were 

found with the control and management of free bromide molecules which cause 

instabilities in the discharge. A novel method of obtaining copper halide by reacting a 

halogen gas (entrained in the flowing buffer gas) with the hot copper segments is 

described and the performance of various halogens and a halogen donor are assessed.

6.2_Initial experiments

Prior to work beginning on copper halide lasers in their conventional form, some 

attempts were made to prove the principle of the copper halide flame laser. A 

description of this proposed device can be found in Appendix B. One method of 

introducing copper halide to the flame was later used in the setting of a conventional 

discharge tube. A flow of buffer gas (helium in this case) is arranged through a glass
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tube which has a bulge in it. This bulge contains copper bromide powder which, when 

heated, gives off CuBr vapour. The vapour is then entrained in the buffer gas flow and 

drawn through the laser tube, undergoing dissociation and excitation in the pulsed 

discharge to produce copper vapour laser light.

The modulator circuit is standard for most of the initial experiments (Fig 6.1); the 

storage capacitance is 4nF, charged through a 150mH choke. The storage capacitor is 

discharged through an EEV CX1535 thyratron into the peaking capacitor (2nf). Power 

input is controlled by varying the charging voltage. The pulse repetition frequency 

(PRF) is fixed at IkHz to avoid overheating the tube.

The discharge tube is simply a 30cm length of fused silica tubing with a 15mm internal 

diameter. An aluminium flange at each end of the tube acts as a window holder and as a 

gas inlet/outlet port. The flanges are sealed to the tube with O-rings. Electrodes are 

made by rolling molybdenum foil into cylinders and partially inserting them into the end 

flanges. The tube is operated under various buffer gas pressures, and several effects are 

noted. Initially the discharge in the tube is the pink-white of helium but after a few 

seconds of applying gentle heat from a bunsen burner to the CuBr reservoir bulge, the 

discharge colour can be seen to turn blue and become both constricted and unstable. 

This chaotic behaviour ceases when heating is discontinued. Under more intense 

heating, the discharge becomes first blue (as above) and then white, with a slight green 

tinge around the periphery of the axially emitted light. At this point, when the pulse 

repetition frequency is increased momentarily to lOkHz, more green emission is noted 

but no oscillation takes place, even with two 100% reflecting mirrors defining the 

cavity.

The above tube is no longer to be used for the reasons that (a); an external heat source 

is required for the reservoir and this reduced efficiency, (b); very little control is 

available over the bromine pressuie in the discharge tube -thus rendering the device
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unreliable. To simplify the design, it is necessary to incorporate the copper halide in 

the laser tube, so that self heating can play a part in determining the vapour pressure.

6.3 Copper bromide distributed in dielectric walled tubes.

A copper bromide laser tube design should take into account the energy which is 

dissipated by the discharge. This energy is deposited as heat in the laser tube and if not 

properly managed, excess heat can cause problems by damaging the tube structure or 

by raising the CuBr vapour pressure above the desired level. Water cooling a laser tube 

is an efficient way of removing heat (chapter 4). If the outer wall of the tube is cooled 

by water flow (fig 6.2(a)), then heat deposited in the plasma will be conducted through 

the fused silica walls and removed by the water. The copper bromide which is in 

contact with the inner tube wall will be heated by the dischaige and cooled by 

conduction through the wall. The effect of directly water cooling the tube outer wall is 

to increase the heat transfer from the laser over that of a tube with a water cooled jacket 

which has an air gap between the jacket and the wall to be cooled. Direct cooling allows 

more energy to be deposited by the discharge without overheating the CuBr. Increasing 

the PRF or the charging voltage should increase the laser output power. This theme is 

discussed in Chapter 4 with further refinements.

A copper bromide laser, made of quartz with an integral water cooling space is 

designed. An alumina liner is inserted in the quartz tube to protect it from copper 

migration and devitrification. The copper bromide is placed in this liner (fig 6.2(b)). 

The alumina tube is 500mm long by 10mm internal diameter. Tantalum cylinders, 

fixed to the end flanges, act as electrodes and the mirrors are mounted on bellows and 

are part of the vacuum envelope. A brass gauze is wrapped around the outer laser wall 

to act as a cylindrical current return path. The circuit shown in figure 6.1 is employed 

and temperature contiol in the laser tube is achieved by varying the pulse repetition 

frequency or charging voltage.
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Copper bromide (CuBr) powder is distributed in 5 heaps of 5 giams each, equally 

spaced along the alumina tube. When evacuating the tube, the powder sometimes 

creeps along the floor of the tube in the direction of gas flow. This creep can be 

avoided by reducing the pressure very slowly. Once a discharge has been struck at low 

power (100 watts) in the buffer gas, (usually neon at 5-10 Ton-) it is possible to see the 

green and yellow copper laser lines (510, 578 nm) within a few seconds. These 

characteristic spectral lines aie probably due to CuBr dust being caught in the discharge 

and dissociating to leave a small amount of atomic copper which is then excited. As 

the power input is increased, the following changes can be seen in the colour 

distribution of the laser tube side light. The pattern of colour distribution changes may 

be observed in most copper bromide lasers with distributed lasant. The appearance of 

copper lines at a particular point in the laser tube is an indication of the wall temperature 

at that point reaching about 470®C. There is a constant pink neon light but a green 

glow which begins at the cathode, spreads towards the centre of the tube. The anode 

region then begins to glow green. The green glows, spreading from both ends, then 

coalesce in the tube centre, generally accompanied by the onset of lasing. In the case of 

the tube described here, however, when the whole tube is glowing green, a strong blue 

(bromine), 478.6,470.5 emission is seen in the light emitted from the output coupler. 

It is in the midst of this blue light that the first tinges of a green laser beam are seen 

which slowly build up from an irregular shape on axis, to a complete circle of 2/3 of the 

laser tube diameter. Once lasing has started, it typically continues for between 1 and 2 

minutes before becoming unstable and flickering out amidst intense blue end emission. 

It is supposed that at the temperature required for lasing, an excess of bromine is being 

liberated and this is attaching electrons and preventing both lasing and the maintenance 

of a stable discharge.

To remove excess bromine from a charge of copper bromide, the laser tube can be 

repeatedly discharge heated to just below the temperature required for lasing to 

commence and then pumped down. Bromine gas which has been trapped in the CuBr
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powder is then released from the molten compound and removed. After processing in 

this way, the discharge becomes more stable, with less emission on the bromine lines at 

the temperatures required for lasing. Stability of the discharge is a problem with this 

tube until the CuBr charge is exhausted. The discharge then becomes stabilised in the 

laser tube and ceases to hop from point to point on the electrodes.

When the voltage of the storage capacitor reaches llkV  and the pulse repetition 

frequency is lOkHz, lasing begins on the yellow (578 nm) line only. There is a very 

faint green (510 nm) emission which may be seen by the spectroscope (Zeiss hand held 

model), but cannot be discerned by eye alone. The yellow beam had a power of 

500mW and it can be seen that if the neon pressure is doubled to 10 Torr, the green line 

appears and the beam power is reduced, but divides into the green and yellow 

components. At 15 Torr the yellow line disappears and only the green remains but at a 

power of only 50mW. By scanning the pressure between the two extrema (5 and 15 

Torr) any ratio of green to yellow can be obtained (Fig 6.3).

The reason proposed for the pressure dependent wavelength effect is related to the 

minimum value of gas and electron temperature in the inteipulse period. If the pressure 

is low then a greater gas temperature will ensue due to the higher electron energies in 

the pulse and the lower bulk plasma recombination rate. The lower levels of both laser 

lines will be populated by thermal and cooling electrons. The green (510 nm) line will 

be affected more so than the yellow (578 nm) due to its lower energy level being 

situated closer to the ground state and hence being more easily populated by low energy 

electrons. Thus at low pressures the green line will be suppressed. As the pressure is 

increased, the electron temperature and the wall temperature fall, lowering the 

population of the lower laser levels and biinging the green transition into action. As the 

wall temperature falls further, the vapour pressure of CuBr is reduced and, with it, the 

vapour pressure of copper. As the copper vapour pressure drops to about 10 "̂ /̂cc, the 

yellow line ceases to lase, leaving only the green transition . If the input power were
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increased at this point, the wall temperature and hence the vapour pressures of CuBr 

and copper would rise and the yellow line would again begin to lase.

Problems associated with the particular design of this laser soon became apparent. The 

gas outlet tubes were narrow and easily blocked by CuBr powder. The windows 

became coated with this powder after only a few hours, and the tantalum electrodes 

were damaged by bromine attack. A purpose-built tube was required which would 

incorporate means for controlling the bromine pressure, the CuBr vapour pressure and 

the diffusion of CuBr to the window areas.

In order to remove any contribution to the above problems by the flowing buffer gas, a 

design was sought which could be processed with a flowing buffer gas and sealed-off 

when the tube was deemed to be substantially free of contaminants. Further 

experiments using flowing gases were conducted under different circumstances and are 

described in section 6.5.

6.4 The sealed off copper bromide laser.

6.4.1 Requirements for reliable operation.

To produce a sealed copper bromide laser with its inherent advantages, a few problems 

must be solved. These are, principally :

(1) efficient control of CuBr vapour pressure;

(2) reduction of excess bromine partial pressure;

(3) contamination of the windows.

It is noted from the previous experiments that if CuBr is coated on the tube walls and is 

in direct contact with the discharge, then the vapour pressure of CuBr becomes 

uncontrollable and a large amount of bromine is liberated by dissociation of the CuBr. 

This makes the discharge unstable. If, however, sideanns or wells are used where the
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CuBr powder can be placed so that the discharge is not in direct contact, then better 

control of the CuBr vapour pressur e can be achieved.

6.4.2 A simple tube with CuBr réservoirs.

A tube which has a 20mm internal diameter and a distance of 500mm between 

electrodes is shown in figure 6.4. The cathode is an open copper cylinder, mounted 

coaxially within the tube and the anode is a tungsten rod mounted off-axis in a sidearm. 

The tube itself is made of quartz and has three sidearms acting as copper bromide 

reservoirs. Brass gauze is used for a co-axial cuiTcnt return and the tube is cooled by 

convection.

To prevent powder fouling of the windows by CuBr powder during evacuation, copper 

bromide pellets are used . CuBr powder is compressed in a 5 ton/cm^ press, then the 

pellets (6 pellets of 10mm diameter and 2mm thick) are each broken into two pieces and 

the pieces placed in the sidearms. Heater tape (Hotfoil) is wrapped around the laser 

tube assembly and the whole tube is baked under vacuum at 300 ®C for 24 hours.

Neon is used a a buffer gas at a pressure of 10 Torr. The tube is sealed at the gas inlet 

and outlet taps before testing commences. Reservoir heating comes both from the 

discharge and from two IkW firebars attached in paiallel to a variac and placed beneath 

the reservoirs. It is found that after a few minutes, CuBr 'dust' begins to gather at the 

tube ends and stick to the windows. Cylindrical heaters may be used to keep the 

windows free of condensing CuBr by evaporating any which condenses there.

It is possible to vary the laser output power and discharge characteristics of the above 

laser by varying the heat supplied by the firebars under the reservoirs (Fig 6.5). 

Maximum output power is 0.8W, which occurs at a reservoir temperature of 490°C. 

The temperature is measured with a Ni-Cr/Ni-Al thermocouple attached to a Fluke 

80TKthermocouple/voltmeter adaptor. The temperature readings are taken when the 

tube is in steady state operation and the discharge switched off momentarily. Above
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500®C the laser power drops sharply and becomes unsteady until at around 505®C a 

stable discharge can no longer be maintained. As has previously been noted in 

describing the performance of the laser tube of section 6.3, there was much blue 

emission indicating a bromine overpressure.

6.4.3 Laser tuhe with diaphragms and CiiBr reservoirs.

Previously reported work (refs 1,2,3,4) has suggested that a laser tube which contains 

a coaxial sequence of annular diaphragms helps to stabilise the discharge over a wider 

range of bromine partial pressures. The diaphragms prevent the discharge from 

touching the wall where the CuBr density is unpredictable. The discharge is 

constrained by the apertures and, with sidearm reservoirs, a more precise control over 

CuBr pressure can be kept. Some method of controlling the partial pressure of free 

bromine is also required. As elemental copper is deposited by condensation on various 

parts of the tube, the bromine liberated can act as an attaching agent in the discharge or 

may poison the cathode. Both of these effects are detrimental to efficient long-lived 

operation. An electrode structure is designed (ref 5) which consists of the electrode 

and a surrounding CuBr trap. The electrode itself, is made of compressed copper wire 

and moulded into a hollow cylinder, closed at one end. (Fig 6.6). Surrounding this 

electrode is a perforated wall of quartz, on the outside of which are pieces of copper 

wire wound into tight spirals and contained in a bulge in the quartz vacuum envelope. 

The concept behind this arrangement is to ensure that firee bromine in the discharge tube 

wül strike the electrode and react with the large surface area of hot copper. The copper 

bromide thus formed either evaporates and returns to the discharge or may diffuse 

towards the copper spirals and the cool outer wall. This maintains the free bromine 

concentration at a low value and allows stable operation of the discharge.

The laser tube to which the above electrodes are attached, is shown in figure 6.7. The 

most striking features are the quartz diaphragms which define the discharge diameter 

and hence that of the laser beam. The diaphragms between the electrodes serve to
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distance the discharge from the wall and hence remove the effect of flash heating CuBr 

into evaporation straight from the walls. Diaphragms placed between the electrodes and 

the windows create convection cells, in which the buffer gas and any dust which it 

carries cannot move straight to the window. Due to the absorption of heat radiated and 

conducted from the discharge volume, gas and dust particles become trapped in a 

convection vortex in each cell bounded by diaphragms. CuBr which would normally 

drift straight to the windows, now becomes trapped in these vortices until it comes into 

contact with the tube wall and condenses. The pollution of the windows is markedly 

reduced over lasers with no diaphragms and the need for window heating is removed.

ÛAA Tube construction and processing.

The dimensions of the tube are;

Electrode Separation 50 cm

Diaphragm i.d. 2 cm

Diaphragm o.d. 4 cm

Electrode/window separation 25 cm

Fused silica is used exclusively as the material of contraction. One window is glass 

(BK7 grade) and the other UV fused silica to facilitate optical spectroscopy. The 

current return path from the anode is formed from two sheets of aluminium which are 

mounted along the sides of the laser tube and shaped to cover as much of the tube 

surface as possible. Material is cut from the aluminium sheets to allow space for the 

reservoir heaters.

A detailed procedure for construction and processing is listed as follows.

1. Prepare electiode structures

2. Mount diaphragms in laser tube (held by ’tucks' in quartz wall)
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3. Attach sidearms and electrode structures

4. Seal poor quality windows on with 'Torr seal"

5. Evacuate and bake out tube, refilling with Ne at atmospheric pressure

6. Prepare CuBr charges by melting powder and cooling under vacuum (see later)

7. Remove windows under slowly flowing buffer gas and insert CuBr slugs

8. Fit good windows, again with 'Torr seal', evacuate and re-bake tube at 200°C

9. Run discharge in flowing Ne for a few hours at less than input power requked for

lasing

10. Increase power until lasing begins

11. Evacuate tube, refill with Ne to working pressure and seal off.

The slugs of copper bromide are prepared by weighing 33 grams of powder into each 

of three quartz furnace tubes, designed so that when melted and solidified, the CuBr 

will fit neatly into the laser tube sidearms. Each tube in turn is connected through a 

graded glass/quartz seal to a vacuum system. Two liquid nitrogen cold traps are 

included to prevent damage to the sensitive vacuum gauges by either the CuBr vapour- 

or pump vapours backstreaming through the pump lines. The furnace tube is pumped 

slowly to its ultimate vacuum of 10 Tor% and a nichrome wire heater placed over the 

tube. Once the CuBr has melted totally, it is left molten for one hour whilst pumping 

continues. It is then allowed to slowly cool and solidify under vacuum before the 

fur-nace tube is filled with neon to atmospheric pressure and sealed off. Once all the 

CuBr slugs are prepared and the laser tube is ready, the quar tz is cracked off the CuBr 

and the slugs are quickly inserted into the sidearms using a tube and rod arrangement. 

Once the windows are in place, the Torr seal is 'quick cured’ by heating to 60®C for an
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hour. After this, the tube may be evacuated whilst the T o it  seal cures hard (12 hours at 

room temperature).

6.4.5 Reservoir heaters.

Reservoir heaters are made up using quartz tube, castellated at each end, with flat 

nichrome ribbon wound fr om end to end. Each heater is wr apped in a little zirconia felt 

to increase efficiency and placed so that it encloses a CuBr reservoir sidearm. Initial 

experiments are carried out using independent variacs for the reservoir heaters. Before 

working on a system of temperature stabilisation using proportional controllers, the 

laser will be operated and its performance assessed. If accurate control of temperature 

is to be maintained electronically in the high interference environment surrounding a 

pulsed discharge laser such as the copper bromide device then much effort is required 

to protect the sensitive diagnostic and control units. Each heater has a resistance of 4 

ohms and requires a driving voltage of up to 20V. The maximum output power of each 

heater is around lOOW, so, with a (pulsed) power supply input, to the tube, of 1.3kW, 

the reservoir heaters provide almost 20% of the total energy input. The relatively large 

proportion of energy which may be supplied by the heaters, means that changes in 

heater voltage have a rapid effect on the laser characteristics. In a thermally efficient 

laser with low heater power, the response time of the laser to changes in heater power 

would be long.

During the course of the experiments performed on this laser, the laser tube is sealed 

off by taps rather than by hard sealing the quartz pump tubes. The gas piping up to the 

inlet and leading from the outlet are both evacuated after the tube is filled and the taps 

closed. This arrangement is not ideal but allows the tube characteristics to be measured 

under a variety of operating conditions, before it is sealed off with the optimum gas 

pressure and mixture inside.
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6.4.6 Experimental results.

The laser is operated with a conventional capacitor transfer circuit (fig 6.1) but with a 

storage capacitance of 1.3nF and a peaking capacitance of 0.7nF. Initial observations 

are that the tube supports a very stable discharge. The discharge attachment to the 

electrodes appears to be diffuse and originates inside the hollow copper cylinders. The 

tube warms up in a few minutes but it is found to be necessary that one layer (2.5mm 

thick) of zirconia felt is wrapped around the tube, inside the shaped aluminimum sheets 

comprising the current return, in order to maintain the desired tube and reservoir 

temperature without overheating the electrodes. When the tube is operating under these 

conditions with lOkV on the storage capacitor and at 16kHz (power input 1.0 kW) with 

no heater power applied, the copper lines may be seen with a spectroscope but are faint. 

Once heating is applied to the reservoirs, however, the lines increase in intensity and 

lasing begins within 5 minutes (fig 6.8). The heaters are maintained at a constant 

voltage and the buffer gas at a constant pressure (tube sealed) while the pulse repetition 

frequency is varied briefly to discover the effect on output power without unduly 

upsetting the thermal balance previously attained at steady state. The results are shown 

in fig 6.9. The maximum occurs at 16kHz with a secondary peak at 19kHz. The 

optimum time between pulses is found to be 62.5pS. This is the point at which the 

copper ground state and metastable state populations, coupled with residual electron 

density, are optimum to maximise the stimulated emission flux. It was noted that 

above 14kHz the beam continues to increase in power but becomes annular and at peak 

average output is a sharply defined annulus with an 8 mm diameter 'hole' in the centre. 

This is most likely due to gas heating on axis causing high population of the metastable 

lower laser levels. When the power input is held constant at a pulse repetition 

frequency (prf) of 16 kHz and a constant heater power, variation of the output power 

with neon pressure is determined (fig 6.10). Below about 5 Torr, the discharge fills 

almost all of the tube volume, extending out to the windows and filling the CuBr tr ap
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regions of the electrodes. Between 5 and 15 Torr, the laser power climbs rapidly to a 

maximum and then decays slowly. Above 50 Torr, the power continues to drop 

steadily until lasing is extinguished at around 200 Torr. The temperatures of the 

reservoirs are controlled under conditions of constant discharge input power and buffer 

gas pressure. The results (fig 6.11) show that, as with the previous sidearm tube, the 

maximum output occurs at a temperature around 495°C. This corresponds to a CuBr 

partial pressure of around 0.4 Torr. Above 500®C the power drops rapidly until the 

discharge becomes unstable, constricted and twisting. When the reservoir heat is 

reduced or removed, the discharge stabilises and output power returns to that plotted in 

fig 6.11.

It is found that the beam is 85% polarised by the Brewster angled windows. When the 

output light is split into its two components these are also found to be polarised to the 

same degree. The high gain of the system means that many of the photons in the output 

beam are the result of single pass gain and therefore only traverse one Brewster 

window. The attenuation caused by the window to the light, which is not of the 

favoured polai'ity, is not 100% therefore a substantial amount of this light is 

transmitted.

To determine the effects of different CuBr vapour pressures on the output power and 

the electrical characteristics of the modulator circuit driving the laser, the heater voltages 

were maintained equal and the laser was operated under three different sets of heater 

input conditions. Voltage and current waveforms for this diaphragm apertured tube may 

be seen in fig 6.12 and information on the matching of the laser load to the electrical 

driving circuit obtained. The tube is sealed with 15 Torr of neon and operated with 

lOkV on the storage capacitor and a prf of 16kHz. Initially, the discharge is operated in 

the tube without reservoir heating applied (fig 6.12 (a) and (e)). The heaters are then 

set for optimum laser output power (each heater delivering 56 Watts) and the laser 

allowed to reach equilibrium.
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This corresponds to an output power of 5.5W (fig 6.12 (b) and (e)). A further increase 

in heater power (each one delivering lOOW) reduces the output power level to a new 

equilibrium of 2.3W but the green/yellow ratio remains constant at 3:1, fig 6.12 (c) and 

(f). It can be seen from the thyratron voltage and current waveforms in 6.12(a), (b) 

and (c) that as the CuBr concentration is increased, the slight mismatch between the 

driving voltage and the laser tube (seen in the magnitude of the voltage oscillation) 

becomes greater due to the increasing impedance of the gas mixture which is becoming 

more attaching as the bromine concentration increases. This is shown more clearly by 

the voltage appearing across the peaking capacitor when the thyratron is triggered. In 

this series of photographs, (fig 6.12 (d), (e) and (f)), it can be seen that as the copper 

bromide/bromine concentration is increased, the voltage at which the laser breaks down 

is raised from 6.4kV in (a) to an optimum of 7.6kV in (b) and then to a high of 9.4kV. 

A flint glass prism can be used to separate the two wavelengths in the output beam and 

a photo-detector ( ITL) used to show the difference in amplitude, pulse shape and 

timing between the two.

Figure 6.13 (a) shows the green (510.6 nm) component of the laser pulse compared 

with the laser voltage to establish the timing of the light pulse. Laser emission begins 

about 10ns after breakdown begins and the voltage across the laser stops increasing and 

turns over. The yellow (578.2 nm) component begins approximately 5ns after the 

green line begins and reaches a peak intensity which is approximately 60% of that 

reached by the green line. The yellow line reaches its peak intensity 10ns after the 

green line has peaked but its full width at half maximum value, 35ns, is greater than 

that of the green, 25ns. The fiont edge of the laser pulse, then, is predominantly green, 

whereas the final 20ns or so is entiiely yellow.
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6.4.7 The effect of hydrogen as an additive.

The addition of small amounts of hydrogen, to the gas mix in this tube, has a great 

effect on the laser output. When the laser is operated at maximum output power, the 

beam is annular and has a green to yellow ration of 3:1. As hydrogen is slowly bled 

into the laser tube, the power increases by a maximum of 10% but a major change 

occurs in the beam profile. From a sharply defined annulus, the beam profile becomes 

the 'top-hat' shape normally associated with copper lasers and continues to change, as 

the hydrogen partial pressure is increased, to an intense (same power) on-axis beam 

which is predominantly yellow with a diameter of 10mm (cf 20mm diaphi agm internal 

diameter). Although the breakdown voltage of the laser tube is increased by a few 

hundred volts at most, there are no other obvious differences in the electrical 

characteristics of the tubes with and without hydrogen.

6.4. 8 Lifetest of the sealed-off laser tube.

To determine the factors which lead to end-of-life in a laser tube such as the one 

described here, a period of continuous operation is required. When the laser is 

subsequently examined after such a period of operation, valuable information may be 

obtained which wiU extend the lifetime of the next generation of sealed-off CuBr laser 

tube. After 100 hours of stable, sealed-off operation at 4.5W with a variation of 0.2W, 

the power supply failed and the lifetest was terminated. As it is relatively easy to view 

the inside of the reservoirs through the very thin copper coating on the walls, it is 

estimated that 10-15% of the CuBr has evaporated and been transported elsewhere in 

the tube, giving rise to the belief that the tube may run for up to 1000 hours. There are 

no traces of CuBr on the windows but the traps in the electrode structures show that a 

substantial amount has condensed there. During operation, the electrodes are red hot. 

The heat from the electrodes evaporates CuBr from the traps and forces it back into the 

bulk of the electrode which may eventually cause discharge instabilities. The cathode
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has risen to such a temperature during operation, that the hard solder joint holding it to 

the tungsten rod has melted and allowed the copper cylinder to slump down 

approximately 1 cm further in the housing. Apart from minor damage to the cathode, 

there is no damage to the structure of the tube and the windows appear to be completely 

free of contamination. During operation of the laser it can be seen that the discharge 

touches the wall of the vacuum envelope at each electrode opening as it bends to enter 

the aperture in the annulus adjacent to the opening. If copper is deposited on the wall on 

these comers, then diffusion of the copper into the quartz will take place in the heat of 

the discharge, leading to devitrification of the quartz.

6.4.9 _IinDrovements to the sealed-off laser tube.

A second tube, which is identical to the first, but has the following modifications is to 

be tested. The electrodes are still composed of crushed and shaped copper wire but the 

tungsten support rods are threaded and screwed into the base of the electrode. In this 

way, heat has no serious effect on the joint. Another modification applies to the 

positioning of the annulae closest to the electrodes in the discharge section of the tube. 

Previously, these annulae have not been placed directly adjacent to the electrode 

openings and the discharge touches the quartz wall of the tube as it bends round from 

the electrode to the main tube axis. To prevent damage by the discharge or by copper 

diffusion, an annulus is placed directly adjacent to each electrode opening so that the 

discharge is forced to continue upwards and only bend when it approaches the aperture 

in the annulus. As the annulus is not a load bearing structure, it is not important if 

copper diffuses into the bulk of the quartz forming it. The final modification is in 

doubling the diameter and depth of the electrode based CuBr traps to reduce the 

temperature of the outer wall and retain more CuBr. The laser tube with these 

modifications has not yet been processed and tested.

89



6.5 Copper halide lasers with segmented metal tubes.

Following on the success of the argon ion laser with high aspect ratio metal segments 

(ref 6) and the subsequent use of metal dispenser segments in high temperature copper 

lasers (ref 7), it is a natural extension to employ metal segments in copper halide 

devices. The merits of using such segments and the ensuing electrical consequences 

for the discharge are discussed in chapter 5. There is a strong case for their use but 

prior to publication of the first work from this section, no other researcher has 

published in this field.

6.5.t_Segm ented metal tubes with CuBr powder.

The work described in section 6.3 with quartz and alumina walled tubes is also 

conducted in metal walled tubes. Tire basic laser head used in performing the following 

experiments has water cooled end flanges with window apertures of 25mm diameter. 

A circular cut-out of 40 mm diameter in each end-flange provides a holder for open 

cylindrical electrodes, normally made of molybdenum. A quartz tube of 55mm internal 

diameter and Im length, forms the vacuum envelope between O-ring seals to the end 

flanges. The quartz tube contains the metal segments and any alumina rings supporting 

or separating them. The quartz tube is held within an evacuable pyrex outer sleeve 

(diameter 120 mm) which is enclosed by a water cooled jacket/current return.

To avoid problems with spurious arcing between segments, a relatively low aspect ratio 

(length/diameter) is chosen for the segments themselves. The segments are cut from a 

copper pipe (99.5% purity) and measured 100mm long by 53mm outside diameter and 

51mm internal diameter. As they were a close fit to the quartz tube, discharges do not 

run in the space between the outer segment wall and the quartz.

Power supply and modulator circuitry to drive the metal segment laser are as shown in 

Figure 6.1. A charging voltage of lOkV is available, which can be almost doubled by
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the use of inductive charging with a diode. Capacitor values are chosen to be 4nF 

(storage) and 2nF (peaking). This combination has previously been successful in 

dielectric walled tubes and the intention is to investigate the performance of various 

laser head arrangements under a common driving circuit.

In the first experiment to determine the effect of metal segments on a high repetition rate 

discharge, the segments are placed in the quartz tube such that they are separated by 

2cm. The ends of each segment are smoothed so that they have no rough or projecting 

points which will give electric field enchancement and aid inter-segment breakdown. 

The establishment of a discharge in this tube is straightforward if the buffer gas (helium 

or neon) pressure is below 50 Ton*. Above this pressure, spurious arcing between 

segments and axial discharges over part of the tube length may be seen. Towards the 

high pressure end of the range noted above it is also helpful to have a pulse repetition 

frequency above a few kiloherz. The high repetition frequency allows ionization to 

spread into the segments, reaching further with each pulse until an axial discharge path 

is established and has a lower breakdown voltage than the sum of the segment-segment 

and electrode-segment gaps (ref 8). On dismantling the tube after a few hours of 

operation with a flowing buffer gas (neon at 25 Torr) it is found that inter-segment 

arcing has deposited copper on the wall of the quartz vacuum envelope and subsequent 

heating has caused this copper to diffuse into the wall, devitrifying it. The laser head is 

re-assembled with copper segments of the same length as before but of 44mm outside 

and 42mm inside diameters. The copper segments are supported at each end by an 

alumina sleeve (fig 6.14) which also protects the quartz wall.

Copper bromide powder is placed in a small mound at the centre of each metal segment. 

The tube is evacuated slowly before a slow flow of neon at 25 Torr is started. A 

discharge is struck in the tube at 10 kHz and with 6 kV on the storage capacitor. The 

tube barely has time to warm up, when arcing between segment ends begins to disrupt 

the discharge and causes the thyratron to latch. A modified alumina spacer is used to
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aperttue the tube by projecting into the discharge volume and removing the possibility 

of any direct ’line of sight' contact between segments (fig 6.15). Again CuBr powder 

is placed in the centre of each segment and a slow neon flow arranged at a pressure of 

25 Torr. As before, the neon pressure and pif are fixed, with input power being 

controlled by the magnitude of the charging voltage. The tube is allowed to warm up 

slowly and no arcing is observed. When the voltage on the storage capacitor reaches 

8kV a strong blue (bromine) emission is observed along with increasingly unstable 

behaviour of the discharge. As with the dielectric walled tubes described in section 

6.3, repeated heating and pumping of the tube is required to drive off the excess 

bromine. Once this is done, lasing at output powers up to 5 W is achieved but again, 

little or no control is possible over the discharge heating of CuBr deposits on the walls. 

Invaiiably, unstable behaviour follows the onset of lasing by as little as three minutes. 

This approach to the copper bromide laser with metal segments results in very similar 

problems to the dielectric walled tubes.

■6i5.t2 Segmented metal tubes with flowing buffer gas and bromine.

To try to gain some measure of control over the vapour pressure of CuBr and to 

decouple this vapour pressure from the laser tube temperature a novel approach is taken 

(refs 9,10). A laser tube is constructed with the same basic structure as described in 

section 6.5.1. A segmented copper tube with segments 100mm long and an internal 

diameter of 45mm. The electrodes are molybdenum foil and are separated by 800mm. 

To protect the quartz wall and also prevent arcing between segments, the alumina 

spacers are as shown in figure 6.15. If a small amount of bromine is entrained in the 

flowing buffer gas, then it will enter the laser tube. The bromine then reacts with the 

hot copper walls to form CuBr. At the temperatures reached on the metal surface (600- 

800°C), the CuBr evaporates immediately and is dissociated in the discharge. In this 

way, copper is made available for excitation and laser action. The bromine atoms either 

recombine in the bulk of the discharge volume, to be dissociated again, or will transport
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more copper from the wall. By controlling the amount of bromine entering the 

discharge tube, a control may be kept over the CuBr vapour pressure and hence that of 

free bromine. Eventually each bromine atom will combine with copper and condense 

on the cool part of the wall at each end of the discharge tube. The tube is operated at a 

pulse repetition frequency (prf) of 1 IkHz (limit of trigger generator available) for a few 

hours under the same discharge conditions as in the previous section. The buffer gas is 

again neon at similar (25 Torr) pressures and flowing slowly (1-2 litre atmos/hr).

Most of the impurities on the inner surface of the laser tube are outgassed during a few 

hours of operation and are removed by the buffer gas flow. The laser is allowed to 

reach thermal equilibrium with 13.5 kV on the 4 nF storage capacitor. This 

corresponds to an overall switched power of 4 kW. Bromine vapour, at the top of a 

glass vessel containing liquid bromine and attached to the gas inlet, is allowed to mix 

with the incoming neon and be drawn into the laser tube. Within 60 seconds of 

bromine flow beginning, a change in discharge colour is observed. After a further 30 

seconds, green emission is seen from the anode (gas inlet) window. This spontaneous 

emission grows brighter over the following 60 seconds before lasing begins. The 

beam begins as an annulus, with a green/yellow ratio of 3:1, but becomes more like the 

'top hat' profile normally encountered with copper lasers. As the profile changes, so 

the output power builds up steadily to a peak of 20 watts, before dropping to a few 

watts again. The discharge becomes confined to a thin annulus very close to the walls 

where some arcing and flashing is noted. The laser beam follows the discharge and 

also becomes a thin annulus. The laser then grows unsteady as an intense blue 

emission signals the presence of excess bromine. In dielectric walled tubes with a 

surfeit of bromine, the discharge becomes constricted and sometimes helical with the 

attachment points to the anode and cathode jumping randomly over the electrode 

surfaces. The absence of this behaviour in the metal wall tube is beneficial to the 

matching between the laser and the modulator, as there are no large changes in 

discharge impedance between pulses. The stability of the discharge at high bromine
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partial pressures appears to be attributable to the metal walls. By removing the 

discharge and flushing the hot tube with neon, most of the bromine existing as free 

atoms or as CuBr aie swept out.

A steady state power output of 22 W is the maximum produced from the segmented 

copper laser tube with flowing bromine. At optimum power output, the partial pressure 

of bromine is estimated at 1.0 Torr, that is, 4% of the gas entering the laser. With a 

power input to the modulator/laser circuit of 4 kW, this represents 0.55% efficiency. 

The bromine vapour is drawn from liquid bromine by reducing the pressure in the glass 

flask containing the bromine. Accurate metering of the pressure is difficult to achive 

and so continuous adjustments have to be made to the bromine concenuation entering 

the laser. Changes in the bromine concentration have little effect on the laser 

performance for up to 10 minutes due to the slow flow rate of gas and the large volume 

of the laser tube.

6.5.3 Segmented metal tubes with flowing buffer gas and chlorine.

The use of chlorine enables much more accurate control to be maintained over the 

halogen partial pressure. Chlorine is used in the same manner as bromine in the laser 

tube design described above. Lasing begins with 5 minutes of initiating chlorine flow 

and is controlled by increasing or reducing the chlorine input. Again, if the halogen 

partial pressure is allowed to increase beyond about 5 Torr then the discharge becomes 

unstable. Power output can be controlled easily but there still remains the ten minute 

feedback time of the laser tube. Faster gas flow reduces this response time to a few 

minutes but a much larger amount of gas is pumped through the system (up to 10 litie 

atmos/hr).

At optimum steady state operation, the chlorine based, flowing gas laser produces 18 

watts. At this power level, the chlorine comprises about 4% of the gas, similar to the
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optimum bromine concentration. Laser efficiency is slightly less than with bromine, at

0.45% but the system is much easier to operate.

6.5.4 Segmented_inetal_tubes with flowing _buffer_gas_aM_hvdrQge_n 

bromide.

Both bromine and chlorine have problems associated with their use. Bromine is liquid 

at room temperature and so it is difficult to control the amount of vapour which is 

entrained in the flowing buffer gas. The slow gas flow rate makes the laser response 

time long and so makes stable operation over a period of time difficult to achieve. 

Chlorine is a gas at room temperature and so it can be drawn at constant pressure from 

a cylinder, making flow management simpler. Chlorine has been found less effective 

then bromine when used in a copper halide laser (ref 11). The use of hydrogen 

bromide (HBr) combines the desired characteristics of both bromine and chlorine, as it 

can donate bromine atoms to the discharge, yet as a gas it can be entrained in the neon 

flow in reproducible quantities (ref 12). The hydrogen liberated by the reaction of HBr 

with copper does not pose a problem in the small quantities present. Indeed, hydrogen 

has been shown to have a beneficial effect when present in quantities similar to those 

present in the HBr-Cu laser (ref 13). Furthermore, hydrogen has been used 

exclusively as a buffer gas in elemental copper lasers, with output power under 

optimum conditions, being up to 50% of that achieved with neon (ref 14).

The laser tube of section 6.5.2 can be cleaned and re-used under similar conditions to 

those recorded above. The laser emits a total of 40 watts of green and yellow light 

which is stable and reproducible. Lasing is observed to continue at reduced power as 

the neon pressure is increased to 225 Torr. Beyond this point, lasing becomes erratic 

and faint as the discharge becomes a thin annulus, close to the wall. At optimum 

power, the hydrogen bromide comprises about 5% of the gas entering the laser, with 

the flow rate of the gas mixture being 2-3 litre atmos/hr.
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An interesting property of the HBr-Cu laser is that it may be brought from cold to 

lasing in a very short period of time. If the tube has been operated previously, so that a 

thin layer of CuBr is attached to the walls, then the application of higher input powers 

on start-up (up to 200% of normal), will flash heat the CuBr and bring lasing on much 

more quickly than would be the case in a clean walled tube (no CuBr). Once the tube 

has reached its operating output power, the high input power may be reduced to noimal 

and with the continuing flow of neon-HBr, the 'reservoir' of CuBr which is used on 

fast start-up will be replenished. The laser described above begins to lase within 30 

seconds of discharge initiation in a cold tube and reaches 10 W within 45 seconds. Full 

power requires ai'ound 120 seconds to achieve.

When the Ne-HBr laser tube is dismantled, it is seen that the alumina spacers have 

become coated in places with copper. Some of the spacers become conducting, and in 

all, 60% of the total tube length is acting as a single segment. No noticeable loss of 

power has occurred due to this effect but part of the dischaige current is probably 

travelling down the wall of this 'long segment'. The copper deposited on the spacers, 

appears as growths protruding from the segment rims (fig 16). Initially, a whisker of 

copper would giow into the discharge volume and this then attracts copper which is 

deposited on the tips of the whiskers to form tree-like structures. The effect on the 

laser beam is to make the beam periphery ill defined. In continuing operation, these 

structures grow to about 5-8mm in height (projecting into the discharge) and then 

collapse. They do not appear to be a long term threat towards substantial aperturing of 

the beam.

Laser head inductance is the factor which most influences the rate of rise of discharge 

current. To reduce the laser head inductance it is necessary to reduce the gap separating 

the discharge tube from the current return path. In high temperature copper lasers, this 

is a limiting factor due to the (necessary) presence of thermal insulation. No such 

requirement exists for the copper halide laser however, so the coupling between the two

96



conductor radii may be as close as is electrically safe. In the case of the tube discussed 

above, the water jacket/current return and pyrex sleeve were removed. They were 

replaced by a close fitting brass tube of 60mm internal diameter.

As the previous current return had been 110mm internal diameter and the discharge
To

channel is 40mm in diameter, the factor governing inductance. In — , where r^ and r^

are the inner and outer conductor diameters respectively, is reduced by 40%. Thus the 

rate of rise of current is increased theoretically by the same amount. Experiment has 

verified this but as yet no output power greater than 7 W has been achieved from this 

device although at 1 kW input, the efficiency is 0.7%. Contamination of the HBr is a 

problem, as hydrobromic acid is formed when water molecules trapped in the cylinder 

wall react with HBr. The hydrobromic acid then etches the wall further and more water 

molecules are released to react with HBr. Lack of laser output and a dim, constricted 

discharge, points towards contamination of the HBr. Further work on this discharge 

tube has yet to be carried out.

6.5.5 Proposed single segment laser tube.

One tube which is proposed but as yet has not been demonstrated, has a single copper 

tube as a discharge channel, separated by a short distance at each end from the 

electrodes. During operation at high (25-50 Torr) pressure, the discharge penetrates a 

proportion of the way through this segment. The centre part of the segment has the 

discharge current running through the copper wall for a distance before it breaks from 

the wall and returns to the axis of the tube. In a flowing halogen/buffer gas regime, the 

copper halide formed is used to produce laser light where the discharge is axial but 

condenses on any part of the wall where the discharge passes in the metal. Thus a 

reservoir of copper halide builds up in the centre of the tube during operation (Fig. 

6.17(a)). For fast start up times, the system pressure may be lowered which increases 

the electron temperature and hence the maximum allowable segment length (Chapter 5). 

The discharge now runs the entire segment length on the tube axis, quickly heating and
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evaporating the copper halide laid down during previous high pressme operation (Fig. 

6.17(b)). The buffer gas pressure is slowly increased as the wall temperature rises and 

CuBr becomes available from the reaction of entrained HBr on the copper segments. 

In this way, both fast start-up and high power long term operation are achieved.

6,6 ÇQBÇlWSÎQnSt

In this chapter it is shown that copper halide lasers may be constructed in a wide variety 

of ways. Metal, glass and ceramic materials may all be used to advantage when the 

operating temperature of the laser is reduced from that of elemental copper devices to 

that of the halides. The design of copper halide lasers based on simple quartz tubes is 

found to be inadequate, as two main problems continually appear. These problems aie 

connected with the control of excess bromine in the discharge tube and the effect of the 

discharge coming into contact with the copper halide powders used. Once these 

problems are dealt with, to some degree, by the design features described in this 

section, a tube can be built which appears to be capable of operating in a sealed off 

condition for a few hundred hours, at least. This type of operation sets the copper 

halide laser apart from its high temperature contemporary and makes it very attractive to 

non-expeit users.

The application of metal bounded discharge tubes to copper halide lasers brings many 

interesting problems and some encouraging results. It is shown that, as with dielectric 

walled tubes, the discharge must be kept remote from the walls, by diaphragms or 

apertures, to avoid discharge instabilities. A novel method of obtaining high output 

powers is demonstrated by entraining a halogen such as bromine, chlorine or a halogen 

donor such as hydrogen bromide, in the buffer gas which is flowed slowly through the 

copper walled laser tube. Although the alumina spacers separating the copper segments 

become conducting, due to deposition of copper vapour, output powers of 40 W are 

achieved at 1% overall efficiency. On the basis of the very large amounts of copper 

present which act as both discharge confinement and lasant reservoir, the projected
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lifetime of this type of laser is many hundreds, or thousands, of hours . The copper 

walls of the devices described above are 1mm thick but in practice, any thickness may 

be used to give increased reservoir capacity.

Two different embodiments of the same laser type are developed. One is a low power, 

sealed off tube with potential applications where mobility is a requirement. The otlier 

laser tube uses a glass-metal-ceramic construction to produce high power output from 

an inexpensive and essentially, low technology, laser tube.

6.7 Suggestions for future work.

There is a general requirement for a low cost, low maintenance, efficient laser in the 

visible (particularly green/yellow) part of the spectrum. Also, the effect of small 

amounts of hydrogen on the efficiency of copper bromide lasers has yet to be explained 

to general satisfaction. Hence, the pursuit of a sealed-off copper halide laser is 

desirable from both the engineering and physics points of view. Spectroscopic studies 

of the role of hydrogen in this laser system would form an excellent continuation of the 

work described.

A number of metals present problems when used as laser media in their elemental form. 

The method of using a flowing halogen or halogen donor, such as hydrogen bromide, 

for achieving high metal vapour pressures at artificially low temperatures may be 

applied to such metals and others in order to make laser action easier to achieve.
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Figure 6t8 Sealed-off sidearm tube in operation.



I
I

4

2

annulai* beam

T
12 14 16 18 20

Pulse repetition frequency (kHz)

Figure 6.9 Variation _Qf_laser_outPut_power_with 

Riilsfe,r̂ petitiQn frgqugnçyt

22

IA
I

1 -

I

10
“TT"
30

—T—
4020 30 40 * 50 60

neon pressure (Torr)

Figure 6.10 Variation of output power with

neon pressure



IP4

4

3

2

T T
450 460 470 480 490

Resei*voir temperature (Celsius)

500 510

 Variation of output power with reservoiriemperature



V thy. 
2kV/div

I thy. 
200A/div

V thy. 
2kV/div

I thy. 
200A/div

V thy. 
2kV/div

I thy. 
200A/div

H H E
(a)

m m

(b)

(c)

Figure 6.12 (a), (b) and (c). Thyratron voltage and current for 
sealed-off CuBr tube with increasing reservoir temperature (a to c).



V laser 
2kV/div.

V laser 
2kV/div.

V laser 
2kV/div.

m Ê Ê

■ ■

(d)

' ^̂ ^̂ 5 ̂ ^̂ 5̂ iB H (e)

I H M
(f)

Figure 6.12 (dl. fe) and m  Laser tube voltage for sealed-off 
CuBr tube with increasing reservoir temperature (d to f).



(a) 510.6 nm laser 
line

(b) 578.2 nm laser 
line

Figure 6.13 Voltage across sealed-off CuBr tube (upper 
trace) >vitli (a) green (510.6niii) line and (b) vcllow 
(578.2nm) line. Note timing variation.
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Chapter 7

Overview and conclusions.

Copper vapour laser technology has advanced rapidly in the last decade. Laser tubes 

have been designed recently to give hundreds of watts of output power but their 

lifetimes are limited by the need to recharge with copper at intervals of a few hundred 

hours. The fundamental problems associated with these high temperature devices have 

not changed during this time and continue to cause difficulty and inconvenience in 

modem copper vapour lasers. The cause of most of the inconvenience associated with 

conventional copper lasers lies in the high operating temperatures of 1450 - 1500°C. 

An alumina tube with insulating material wiapped around it will outgas for a very long 

period at these temperatures. The continuing ingress of contaminants means that the 

tube cannot be sealed off, but must have a flow of buffer gas to maintain a high purity 

discharge channel. The physical size of the container for the thermal insulation means 

that the current return path is sepai'ated from the discharge tube and hence laser head 

inductance is increased with a consequent reduction in discharge pumping efficiency. 

Furthermore, the thermal mass of such lasers is large and the alumina laser tube has 

relatively poor resistance to thermal shock. These characteristics combine to cause long 

heating and cooling times if tube fracture is to be avoided.

The use of copper halide as a laser material can dramatically alter the design of a copper 

laser tube and so avoid or reduce some of the problems associated with high temperature 

copper lasers. Copper halide devices, whilst having their own unique drawbacks, can 

address and to a large extent eliminate most of the problems associated with high 

temperature CVLs. The operating temperature of around 500 - 600^0 means that fused 

silica may be used as the laser tube. The adoption of fused silica brings tluee distinct 

advantages, these are, the ease of laser tube fabrication, improved thermal shock 

properties and the very low outgassing rate. Any fibrous thermal insulation required
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may be placed on the outside of the vacuum envelope where it cannot contaminate the 

discharge volume. Such lasers may be processed to remove surface and absorbed 

contaminants, then sealed-off with the optimum content of buffer gas. The reduced 

requirement for thermal insulation allows the current return to be brought closer to the 

discharge tube and the laser head inductance lowered. Improving the thermal shock 

properties of the discharge tube whilst reducing the thermal mass enables the operating 

temperature to be achieved in a much reduced time.

Two approaches to the design of a copper bromide laser are described in this thesis. 

The first approach addresses the ideal situation of a rapid warm-up, sealed-off laser tube 

capable of being mounted in a mobile system. A laser tube was built to demonstiate the 

feasibility of a sealed-off, air cooled, copper halide laser with low inductance to show 

that commercially acceptable lifetimes may be attained. The laser tube design is such 

that it is inexpensive to fabricate and may be considered as disposable at end-of-life, 

with a new tube simply plugging into the existing socket. The tube operated sealed-off 

at around 5W for 100 hours and showed potential for several hundreds of hours more 

life before the CuBr charge was exhausted. Although this tube did not contain metal 

segments, it may be advantageous to include these in future designs as they will provide 

another means of reducing the bromine concentration in a useful manner.

The addition of small amounts (< 1 Torr) of hydrogen, leads to a large change in the 

laser beam profile. The effects of hydrogen on the detailed laser kinetics are not yet 

clear but the advantages of hydrogen in improving both beam quality and power are so 

marked as to warrant a large scale spectroscopic investigation.

The sealed-off laser tube described above may be incorporated in a mobile, air-cooled, 

single phase laser system with short warm-up and warm-down times. The absence of a 

flowing buffer gas lends this type of device to microprocessor control and turnkey 

operation. Such a system would find many applications in a research, medical or
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industrial environment. Some applications which already use copper vapour lasers are 

listed here;

1. Uranium isotope separation.

2. Treatment of vascular lesions (port-wine stains).

3. Latent fingerprint detection.

4. High speed photography.

5. Flow visualisation.

6. Video projection (simulators).

7. Ultrashort pulse amplification.

8. Projection microscopy and surface treatment.

The theory of discharges in metal walled tubes was exploited in the design and operation 

of a high power copper bromide laser. The novel method of operation of this device led 

to the granting of a patent and subsequent industrial interest. A mixture of neon and 

hydrogen bromide is flowed through a segmented metal walled tube at a rate slightly 

above the flow rate of buffer gas in a conventional copper vapour laser. The hydrogen 

bromide is dissociated by the discharge and the bromine released reacts with the copper 

wall to form copper bromide. At the operating temperature of the device (500 - 600^C) 

the CuBr will evaporate from the wall to be dissociated in the discharge volume. The 

copper liberated then participates in the cyclic laser excitation and de-excitation scheme 

until such time as it recombines with a bromine atom or condenses on the wall. The 

simplicity of this device, a fused silica tube with alternating copper and alumina
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cylinders, makes it very inexpensive and again the tube may be disposed of at end-of- 

life. The usage of the copper cylinders dictates the lifetime of such a tube and so thick 

walled copper may be used to provide a copper reservoir which is very large indeed. A 

laser tube of this construction gave 40W of light output from an unoptimised cavity (a 

world record for a copper halide laser). The application of scaling theory, coupled with 

novel cooling techniques (also patented) will see lasers of this type produce hundreds of 

watts.

The importance of the power modulator circuitry to drive metal vapour lasers was 

demonstrated in the improvements made to the reliability and output power of a gold 

vapour laser. By considering the thyratron as a gas discharge in its own right and not a 

a simple switch, the charging and discharging circuits were altered to better allow the 

thyratron to recover its non-conducting state between pulses. The gold vapour laser 

improved by this means was used as the radiation source for the photodynamic therapy 

of cancer at Ninewells hospital, Dundee. Experiments showed that a new technique 

involving early irradiation of the tumour after photosensitization was more effective than 

the accepted protocol of 24 - 48 hours delay between photosensitization and subsequent 

irradiation.

We have demonstrated the feasibility of operating copper halide lasers as sealed-off 

units for times which are commercially useful. Such sealed lasers will make an impact 

on the world marked for lasers in the low to medium power range. Along with the 

general scientific applications, there is scope for its widespread use in hospitals and 

clinics where the optical characteristics of the light are in increasing demand for 

dermatological and cancer therapies. The indications of our results are that such 

systems will be highly reliable and stable. Ultimately, they will be under the control of 

self teaching neural network programs. Industrial use of copper vapour lasers will 

continue in isotope separation and may extend to material processing where research is 

already underway. In addition, the unique properties of copper as a gain medium enable
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high quality projection microscopy to be undertaken in the microelectronic industries 

and biological fields. The use of hydrogen bromide has recently enabled many metals to 

give gieater power output from systems of greatly simplified design and operational 

characteristics. The technology and understanding of segmented metal systems 

developed as described here may equally well be applied to all metals which form 

halides having substantial vapour pressures at temperatures below 1100°C. The 

realization of reliable metal halide laser systems which provide a broad coverage of the 

infra-red, visible and ultra-violet spectral regions must open up new avenues for 

scientific, medical and industrial applications.
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Appendix A.

T hf sal<l..-Y.ap.9.mLlaa£ju

The gold vapour laser (GVL) belongs to the same family as the copper vapour laser. 

The gold laser operates on two lines at 312.2 nm and 627.8 nm. Similar tube 

construction and power conditioning criteria to the copper laser also apply to the GYL, 

as the energy transfer through the atomic levels concerned follows similar rules. The 

essential differences between copper and gold lasers are twofold. Firstly, the vapour 

pressure required to support lasing in gold is achieved at about 1700-1800°C. This 

high temperature increases the problems associated with material failure and 

contamination, over those of the copper laser. The second difference between copper 

and gold lasers is that the electrical-optical efficiency is lower in gold by almost an 

order of magnitude. Hence gold vapour lasers are normally relatively low power 

devices.

An application arose locally for a GVL emitting up to 5 W in the 627.8 nm line. The 

application was the detection and treatment of cancerous tissue (tumours) using 

wavelength specific photosensitizing dyes in photodynamic therapy. Some of the work 

carried out on this project is described in Chapter 7.

A gold vapour laser was built (ref 1) for the application but after a few tens of hours of 

operation, became troublesome with the thyratron continually latching (failing to 

recover its non-conducting state after a current pulse), even at moderate voltages and 

pulse repetition fi-equencies. Increasing the buffer gas pressure in the laser tube from 

20 Torr to 50 Torr reduced the latching rate but from a clinical point of view, the 

latching rate was still such that no experiments could be undertaken with the required 

confidence level of stable laser output power. The cause of the latching was finally 

traced to the thyratron itself, after all of the circuit components had been examined for 

damage and breakdown at high voltage. Examination of the thyratron anode voltage
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(fig A .l) showed that the EEV CXI 825 hollow anode thyratron was performing as 

designed and conducting in reverse. The hollow anode thyratron, as its name suggests, 

has a large cavity within the anode where discharge plasma is retained after a current 

pulse. If the discharge circuit is such that a large reverse (-ve) voltage appears on the 

cathode, then instead of breaking down via a metal vapour arc from anode (-ve) to 

cathode (+ve), the plasma present in the anode will begin the conduction at a low 

voltage and encourage a glow discharge to form. The anode is not then bombarded by 

high energy ions and damaged. From the voltage waveform (fig A .l) it can be seen 

that once switching has taken place and the forward current has ceased, the circuit 

swings so that a negative voltage appears on the thyratron anode. Reverse breakdown 

occurs and the voltage is held constant for a time. The series of peaks and plateaus 

show that reverse conduction is taking place throughout the period when the thyratron 

should be recovering. When forward voltage is reapplied after 22 \is or so there still 

remains some plasma in the hollow anode which lowers the voltage hold-off capability 

and causes latching of the thyratron. When this thyratron was replaced by one of 

equivalent size but with a solid anode (EEV CXI 825) it was noted that the anode 

voltage (fig A.2) became negative but the thyratron did not conduct in reverse. In this 

case a negative voltage remains on the anode, gradually diminishing, as the storage 

capacitor is recharged through the charging choke. As no current is passed through the 

thyratr on for over 20 jas, recovery can be substantially complete when the next pulse is 

applied and the rate of latching is thus decreased considerably.

During the warm-up phase of operation, the latch rate would increase as gold began to 

vapourize and enter the discharge tube. The magnitude of the reverse voltage on the 

thyratron anode had decreased to the point where it was being brought positive in 

approximately 8-10 p̂ s by the charging of the storage capacitor through the 150 mH 

charging choke. To maintain a negative voltage until the thyratron had fully recovered 

(15-20 |xs), a saturating charging choke was designed and built (ref 2). This choke had 

an unsaturated inductance such tliat the reverse thyratron anode voltage was maintained
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for 17 lis. The choke would then saturate and charge the storage capacitor in around 

half the time taken by the non-saturating choke. The inclusion of this charging element 

reduced the latch rate to virtually zero and allowed the experiments to be performed 

with the confidence of a reliable light source. Figure A.3 shows the working gold 

vapour laser and fibre optic beam delivery system.
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Appendix B.

Fatents and-jmhUff atiens.

B .l U.K. Patent application G.B. 2 219 128 A, April 1988.

B.2 U.K. Patent application G.B. 2 213 313 A, June 1988.

B.3 U.K. Patent application 9024733.9, November 1990.

B.4 Breakdown Voltages of attaching gas mixtmes in metal segmented tubes.

B.5 A low temperature, segmented metal, copper vapour laser.

B.6 A high power, segmented metal, copper bromide laser.

B.7 Early illumination in experimental photodynamic therapy: Comparison with 

conventional treatment.
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U.K. Patent application G.B. 2 219 128 A

This patent relates to laser tubes in which the lasant is fomied in-situ by the reaction of 

a halogen or halogen donor with metal located in the discharge tube. The metal halide 

thus formed is evaporated by discharge heating and enters the discharge volume. High 

repetition rate pulsed discharges both dissociate the metal halide and excite the metal 

vapour to form a population inversion. Laser action may then take place in the metal 

vapour.

If the metal is in the form of cylindrical segments, separated by spacers, then the laser 

tube may be operated in any orientation as there is no liquid or solid lasant free to move 

within the tube.The laser tube itself, if composed of fused silica, metal and alumina 

may be inexpensive and have a long lifetime.

Experiments conducted on segmented metal tube lasers with flowing halogens are 

described in Chapter 6 (section 6.5.2 ) and in this Chapter (B.5, B.6,B.7 ).
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1/7605/EEV
LASER APPARATUS

This invention relates to laser apparatus and more 
particularly to such apparatus in which metal vapour 
constitutes the laser amplifying medium.

In a known copper vapour laser, copper metal is 
distributed along the length of a discharge tube and is 
heated by a discharge or discharges within the tube to 
produce copper vapour. The discharge energy also acts to 
produce a population inversion and achieve laser action. 
The operating temperatures of such a laser are typically 
around ISOO^C, requiring a considerable amount of thermal 
insulation around the discharge tube.

The present invention arose from an attempt to 
provide an improved metal vapour laser.

According to a first aspect of the invention, there 
is provided metal vapour laser apparatus comprising an 
envelope, which contains metal, and means arranged to flow 
a halogen gas or halogen donor gas through the envelope to 
produce a metal halide which vaporizes and dissociates on 
heating to produce metal vapour.

A halogen donor gas is a halogen compound, such as 
hydrogen bromide, which readily dissociates during 
operation of the laser apparatus to give halogen 
molecules or ions. When a halogen donor gas is used, 
means must be included to cause it to dissociate and thus 
release free halogen which then reacts with the metal to
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form a metal halide. Dissociation of the halogen donor 
gas is preferably achieved by passing an electrical 
discharge through it. The halogen gas reacts with the 
metal at its surface to produce a film of metal halide 
which can be of very high purity if the purity of the 
copper and halogen, or halogen donor, is also high.

Apparatus in accordance with the invention is able to 
operate at low temperatures, for example in the 
region of GOO°C for a copper vapour laser. This avoids 
the need for extensive thermal insulation around the 
envelope and also enables a fast start-up time to be 
achieved.

In an advantageous embodiment of the invention, means 
are included for varying the pressure within the envelope 
such that initially it is relatively low to establish 
stable discharge conditions and subsequently, during 
heating of the metal halide, it is relatively high to 
optimize performance in accordance with the changing 
composition of the gas mixture. The pressures involved 
depend on the particular dimensions of the laser apparatus 
and its contents. In a typical arrangement, the pressure 
is initially less than about 5 torr and then it is 
increased to about 30 torr.

In a particularly convenient embodiment of the 
invention, the metal is in the form of a single hollow 
cylinder arranged coaxially with the longitudinal axis of 
the envelope. In another embodiment of the invention, a
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plurality of hollow cylinders is included, the cylinders 
being spaced apart in the direction of the longitudinal 
axis. The introduction of copper in the form of a 
cylindrical segment or segments, in conjunction with the 
flow of halogen gas, or halogen donor gas over it, enables 
a particularly uniform distribution of the laser 
amplifying medium to be produced.

The invention is particularly applicable where the 
metal is copper, although other metals such as gold may be 
used, and it is preferred that the halogen, or halogen 
donated, is bromine.

According to a second aspect of the invention there 
is provided metal vapour laser apparatus arranged to 
operate in a sealed-off mode comprising an envelope 
containing a metal halide and wherein, prior to laser 
operation, a halogen gas or halogen donor gas is arranged 
to flow over metal within the envelope to produce a metal 
halide.

Preferably, a buffer gas is arranged to flow through 
the envelope with the halogen or its donor and it is 
preferred that the buffer gas is one of, or a mixture of, 
the inert gases such as neon.

Some ways in which the invention may be performed are 
now described by way of example with reference to the 
accompanying drawings, in which:

Figures 1, 2 and 3 are schematic longitudinal sections 
of respective metal vapour lasers in accordance with the



-  4 -

invention.
With reference to Figure 1, copper vapour laser 

apparatus in accordance with the invention includes a 
quartz envelope 1 having end windows 2 and 3. Two 
cylindrical electrodes 4 and 5 are arranged with one at 
each end of the envelope coaxially with the longitudinal 
axis X-X. A plurality of cylindrical copper segments 6 
are located between the electrodes 4 and 5. The segments 
6 are spaced apart by ceramic spacers 7 of smaller 
internal diameter (id) than the id of the metal segments
6. Each segment 6 has a length which is about twice its 
diameter and is arranged coaxially with the longitudinal 
axis X-X. The apparatus includes a pressure regulator 8 
to which helium buffer gas and bromine are supplied 
through lines 9 and 10, respectively. A control circuit 11 
governs the proportions and pressure of the gases applied 
to the envelope 1 via the regulator 8.

During operation of the laser apparatus, a mixture of 
helium buffer gas and bromine is arranged to flow through 
the envelope 1, and over the copper segments 6. The gases 
are applied at an input port 12 and taken from a port 13 
at the other end of the envelope 1. The bromine reacts 
with copper at the surface of the segments 6 to give 
copper bromide. The control circuit 11 initially acts to 
maintain the pressure within the envelope 1 at a 
relatively low level, which in this case is about 5 torr, 
for a given time to heat the copper segments 6. The
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control circuit then increases the pressure within the 
envelope 1 to about 30 torr. Discharges established 
between the electrodes 4 and 5 cause the copper bromide to 
vaporize and dissociate to produce copper vapour, The 
copper vapour is then excited to establish a population 
inversion and laser action occurs.

When the laser apparatus is operating in its higher 
pressure mode, the centre of the laser tube is cooler 
than its ends. Thus, copper bromide tends to condense at 
the centre rather than on the windows 2 and 3 and forms a 
"reservoir" of copper bromide which is used during the low 
pressure stage of the next cycle of operation.

The inner surfaces of the ceramic spacers 7 are 
nearer the centre of the tube than the copper segments 6 
and thus are warmer. The tendency for copper to condense 
on the spacers 7 is therefore less than would be the case 
if the spacers 7 had the same internal diameter as the 
copper segments 6, This difference in internal diameters 
also reduces movement of any debris or particles along the 
tube, which is particularly useful in cases where it is 
wished to operate the laser in a vertical orientation. If 
such operation is intended, the spacers 7 may be modified 
by including a depression in one or both of their 
transverse surfaces so as to retain debris within them.

With reference to Figure 2, another laser apparatus 
in accordance with the invention includes a quartz 
envelope 14 which contains electrodes 15 and 16 and a
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copper tube 17 located between them, the tube 17 being 
about 1 metre in length.

During operation, the pressure within the envelope 14 
is maintained at a relatively low pressure, which in this 
case is about 5 torr. The bromine combines with copper at 
the surface of the tube 17 to give copper chloride. A 
control circuit 18 maintains the pressure at this lower 
level for a given time to heat the copper tube 14. It 
then acts to increase the pressure within the envelope 14 
to about 30 torr. Discharges established within the 
envelope 14 cause the copper chloride to vaporize and 
dissociate to give copper vapour and excite it to produce 
a population inversion.

In another copper vapour laser in accordance with the 
invention, the metal halide is produced within the 
envelope of the laser by flowing a halogen donor gas, 
which in this case is hydrogen bromide, over a single long 
copper cylinder. As the hydrogen bromide is passing over 
the surface of the metal segment, an electrical discharge 
is established within the envelope, causing the halogen 
donor to dissociate and release free halogen. This then 
combines with the copper at the surface of the copper tube 
to give copper bromide.

After the copper bromide has been produced, the laser 
envelope is "sealed off" to give apparatus as illustrated 
in Figure 3. The envelope includes helium buffer gas, the 
copper tube 19 and the copper bromide 20 on the surface of
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the tube. Electrodes 21 and 22, which were used to 
produce the initial electrical discharges during 
production of the copper bromide, are used to establish 
further discharges within the tube to heat it. The 
copper bromide 20 vaporises and dissociates to give the 
copper vapour which is used as the laser amplifying 
medium.



CLAIMS
1. Metal vapour laser apparatus comprising an envelope 
which contains metal, and means arranged to flow a halogen 
gas or halogen donor gas through the envelope to produce 
metal halide which vaporizes and dissociates on heating to 
produce metal vapour.
2. Laser apparatus as claimed in claim 1 and including 
means for varying the pressure within the envelope such 
that initially it is relatively low and subsequently, 
during heating of the metal halide, it is relatively high.
3. Metal vapour laser apparatus arranged to operate in 
sealed-off mode comprising an envelope containing a metal 
halide and wherein, prior to laser operation, a halogen 
gas or halogen donor gas is arranged to flow over metal 
within the envelope to produce a metal halide.
4 . Laser apparatus as claimed in claim 3 and including 
means for producing an electrical discharge within the 
envelope to produce the metal halide.
5. Laser apparatus as claimed in any preceding claim 
and, where halogen donor gas is arranged to flow, 
comprising means for causing dissociation of the halogen 
donor gas to release free halogen for reaction with the 
metal,
6. Laser apparatus as claimed in claim 5 wherein the 
said means for causing the dissociation is arranged to 
pass an electrical discharge through the halogen donor 
gas .
7. Laser apparatus as claimed in any preceding claim
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wherein the metal is in the form of a single hollow 
cylinder arranged coaxially with the longitudinal axis of 
the envelope.
8. Laser apparatus as claimed in any of claims 1 to 6 
wherein the metal is in the form of a plurality of hollow 
cylinders spaced apart in the direction of the 
longitudinal axis,
9. Laser apparatus as claimed in claim 8 wherein each 
cylinder has a length which is up to approximately twice 
its diameter.
10. Laser apparatus as claimed in any preceding claim 
and including means arranged to produce a discharge within 
the envelope which provides heating of the metal halide.
11. Laser apparatus as claimed in any preceding claim 
wherein the metal is copper.
12. Laser apparatus as claimed in any preceding claim 
wherein the halogen, or donated halogen, is bromine.
13. Laser apparatus as claimed in any preceding claim 
wherein a buffer gas is arranged to flow through the 
envelope with the halogen or halogen donor gas.
14. Laser apparatus as claimed in claim 13 wherein the 
buffer gas is an inert gas.
15. Laser apparatus as claimed in any preceding claim 
wherein the envelope is of quartz .
16. Metal vapour laser apparatus substantially as 
illustrated in and described with reference to Figure 1, 2 
or 3 of the accompanying drawings.

PubllBh8dl089atThePatt.ntomce.8tateHoufl8.66/71HlghHolboni.LondonWClB4TP.Pur«iercopieflniflybeobtainedfromTh<»P^nt(MQo8.
Sales Branch, Bt Maiy Cray, Orpington, Kent BBS 3RD. Printed By Multiplex techniques ltd. St Mary Cray. Kent, Con. 1/87
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ABSTRACT 
METAL VAPOUR LASER APPARATUS 

Metal vapour laser apparatus includes an envelope 1 
within which is contained electrodes 4 and 5 and a 
plurality of cylindrical copper segments 6 arranged 
between the electrodes 4 and 5. During operation of the 
laser, bromine and helium buffer gas are arranged to flow 
through the envelope 1, causing copper bromide to be 
produced. When a discharge is established between the 
electrodes 4 and 5, the copper bromide vaporizes and 
dissociates to give copper vapour which is then excited to 
produce a population inversion. Such apparatus is able to 
operate at relatively low temperatures, in the region of 
600°C.
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U.K. Patent application G.B. 2 213 313 A

This patent relates to a method of introducing laser amplifying media into a gas 

discharge tube in a form suitable for excitation by discharge pumping. The general 

method described is the atomisation of liquid or solid lasant or lasant in solution, and 

the subsequent introduction of this lasant to the dischaige tube by means of flowing 

gas.

In a particular embodiment of this method a mixture of combustible gas, oxygen and 

inert gas (helium or neon ) is drawn past an atomiser which seeds the gas flow with an 

atomised solution of a copper compound (copper sulphate, copper bromede etc). This 

solution is entrained in the gas flow and taken into a discharge tube where a flame is 

burning at low pressure (between 1 and 50 Torr ). The flame evaporates any solvent 

attached to the copper compound and may dissociate the compound. A pulsed electrical 

discharge is then arranged between two electrodes, either longitudinal or transverse, 

and the copper is then dissociated from its compound if it has not been already and then 

excited to form a population inversion from which laser light is produced.

The main advantages of such a device are that laser action may be initiated in a very few 

seconds and many different metals may be used singly, or simultaneously to give multi­

wavelength output.

I l l
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(57) In a laser arrangement, a solid or liquid material 3, at 
least part of which comprises a laser amplifying medium, is 
atomised in a gas 2 prior to being applied to a discharge 
region 6. In one embodiment of the invention, the gas is 
combustible and is ignited to produce a flame 16 which 
provides heating of the material.

In another embodiment of the invention, the material is 
atomised in an inert gas and discharge within a laser 
discharge tube is used to provide excitation. The invention 
is particularly applicable to metal vapour lasers.
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I/7495/EEV
LASER ARRANGEMENTS 

This invention relates to laser arrangements and more 
particularly, but not exclusively, to metal vapour lasers.

Presently known metal vapour lasers usually operate 
in gaseous electrical discharges at pressures below 1 bar.

 ̂ Metal, or a metallic compound, is contained in the laser 
discharge tube. The metal or metal compound is heated to 
a temperature at which the metal vapour pressure is 
sufficient to support laser action when the vapour is 
suitably pumped to establish a population inversion. One 
disadvantage of presently known metal vapour lasers is 
that the time required to achieve the operating 
temperature (termed the "warm-up" time) for laser action 
can be unacceptably.long. Another disadvantage is that a 
laser tube containing free metal or a metallic compound 
cannot be moved, tilted or operated vertically without 
some provision being made to retain the solid or liquid in 
position along the tube.

The present invention aims to provide an improved 
laser arrangement in which the above disadvantages are 

20 reduced or eliminated.
According to the invention there is provided a laser 

arrangement in which solid or liquid material, at least 
part of which is to comprise a laser amplifying medium, is 
atomised and dispensed into a gas flow prior to being 

25 introduced to a discharge region. Atomisers are known
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devices in which a solution, or fine particles, is sprayed 
through a nozzle into the gas flow. As the particles or 
droplets are small, when they reach the discharge region 
only small amounts of additional energy are required to 

5 vaporise them and bring the laser amplifying medium to a
state ready for lasing.. The warm-up times necessary are 
correspondingly reduced.

The invention may be particularly advantageously 
employed if the laser amplifying medium is to be a metal 

^0 vapour.
In one advantageous embodiment of the invention, gas 

in which the material is atomised is combustible and means 
are included to ignite the gas to produce a flame whereby 
the atomised material is vaporised. Thus, the flame can 

^5 be "seeded" with atoms or molecules which are to form the
laser amplifying medium. Further excitation may then be 
provided by an electrical discharge to obtain a population 
inversion. In one embodiment of the invention the
material is methyl iodide, which preferably is atomised in

2^ a mixture of propane and oxygen. On combustion, an oxy-
iodine reaction occurs which results in laser radiation- 
being generated in the infra-red part of the spectrum, at 
1 . 3 }im .

The solid or liquid material may be applied to an 
25 atomiser to directly atomise it in the combustible gas, or

it could be atomised in a non-combustible gas which is
then mixed with another gas to, obtain a combustible 
mixture. The laser action may be arranged.to occur at
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atmospheric pressure, in which case no containing envelope 
is required, although it may be desirable in some 
circumstances to provide shielding of the flame from 
atmospheric disturbances. The combustible gas carrying 

5 atomised material may be arranged to pass through a burner 
where it is ignited. The burner may be made of metal, in 
which case it may act as an electrode in a discharge
circuit arranged to produce a discharge in the flame. In
an alternative arrangement, the burner may be made of

10 ceramic. In one particularly advantageous configuration,
the burner is elongate and has a passage along its length 
(a longitudinal passage) through which gas is arranged to 
flow and a plurality of apertures transverse to the 
longitudinal passage which connect it to the atmosphere 

15 surrounding the burner, with the length of the burner
horizontal, A flame which is substantially uniform burns 
vertically along the length of the burner. It is preferred 
that an electrode of a discharge circuit is essentially 
parallel to the length of the burner so as to produce a

20 uniform discharge in the flame.
Where the burner is of metal it may be ‘arranged to • 

act as the other electrode of the discharge circuit. 
Alternatively, the metallic burner may be electrically 
isolated from the two electrodes in the discharge circuit. 

25 If  the burner is of ceramic, or another insulating
material, another electrode parallel to the length of the 
burner must be provided.
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In an alternative advantageous arrangement, laser 
action is arranged to occur at low pressure within an 
envelope. By "low pressure" it is meant that the pressure 
is sub-atmospheric, and it may be as low as a few torr.

5 In such an arrangement, two electrodes may be positioned 
such that a discharge established between them in the 
flame causes longitudinal excitation of the amplifying 
medium. One of the electrodes may be annular and arranged 
to hold the base of the flame, that is, the flame may be 

10 arranged to originate at the electrode. Preferably, a 
tube is arranged to surround the flame within the 
envelope, as this is helpful in enabling a laminar flow of 
the flame to be established. This is desirable as it 
tends to reduce variations in refractive index along the 

15 length of the envelope. Advantageously, a mirror defining 
part of the laser resonant cavity has an aperture 
therethrough. This enables the flame to pass through the 
mirror,

In another arrangement in accordance with the 
20 invention, instead of using combustible gas and causing it 

to ignite, the gas in which the material is atomized is an 
inert gas. In such an arrangement it is preferred that 
laser action is arranged to occur within an envelope at 
low pressure. Such an arrangement is particularly 

25 advantageous where the material is a metal bromide, such 
as copper bromide, as such compounds may sublime.

Some ways in which the invention may be performed are



now described by way of example with reference to the 
accompanying drawings, in which:

Figures 1 to 5 schematically illustrate different 
laser arrangements in accordance with the invention.

5 With reference to Figure 1, a laser arrangement in
accordance with the invention employs a combustible gas in 
which atomised copper sulphate solution is entrained.
When the gas is ignited within an envelope, copper vapour 
is produced by dissociation of the sulphate molecules and 

10 is then excited to provide a population inversion in the
copper atoms to generate laser radiation. The arrangement 
includes an atomizer 1 to which oxygen gas is applied via 
a pipe 2 and copper sulphate solution via a pipe 3. The 
atomiser 1 causes droplets of the copper sulphate solution 

15 to be injected into the oxygen so that they become
suspended in it. -The atomised solution in the gas is then 
mixed with natural gas flowing in a pipe 4 to give a 
combustible gas mixture which is then supplied via a
regulator 5 to a laser discharge tube 6. The laser

20 discharge tube 6 is arranged with its optical axis
■• substantially.vertical. It comprises an envelope 7 within

which are contained two annular electrodes 8 and 9 having 
a cylindrical quartz tube 10 located between them. The 
laser resonant cavity is defined by three mirrors 11, 12 

25 and 13. The mirror 11 has a concave reflecting surface.
The mirror 12 is a folding mirror which has a planar 
surface inclined to the optical axis and an aperture 14
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passing through it along the optical axis. The mirror 13 
is partially transmissive and is aligned with respect to 
the mirror 11 so as to form a resonant cavity via mirror 
12.

The gas mixture carrying the suspended atomised 
5 copper sulphate solution is arranged to pass into the

envelope via the regulator 5 and flow around the outside 
of the concave mirror 11. The gas is constrained to pass 
through the annular electrode 8 nearest the concave mirror 
11 where a spark produced between electrodes 15 located 

10 near the electrode 8 ignites the gas. The flame 16 which 
results extends along the envelope 7 and is confined by 
the tube 10 and the second annular electrode 9 , the base 
of the flame being held by the electrode 8. The end of 
the flame is arranged to pass through the aperture 13 in 

15 the planar mirror 12 and impinges on a water-cooled heat 
sink 17 located at the end of the envelope 7. As the 
atomized copper sulphate solution enters the flame, the 
solvent evaporates and the sulphate dissociates to yield 
the copper atoms required. When it is desired to produce 

20 laser radiation, a discharge is established between the 
electrodes 8 and 9, using a conventional laser discharge 
circuit, and the longitudinal excitation initiates laser 
action. Copper which condenses or which does not become 
vaporised as it travels along the discharge tube is 

25 carried by the flame through the aperture 14 and deposited 
on the heat sink 17.
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An outlet 18 enables gas to be drawn out of the laser 
discharge tube 6 so that pressure within the envelope 7 
may be controlled. The pressure must be maintained at a 
low value so that a glow discharge can be established 

5 within the laser discharge tube 6.
With reference to Figure 2, in another laser 

arrangement, laser action is arranged to occur at 
atmospheric pressure. As in the arrangement shown in 
Figure 1, copper sulphate solution is atomised in oxygen 

10 using an atomizer 19 and the resulting suspension is mixed
with natural gas to form a combustible mixture in which
the copper sulphate droplets are suspended. The 
combustible gas is applied via a pipe 20 to an elongate 
burner 21, The burner 21 is made of metal and has a 

15 passage 22 which is extensive along its length and a
plurality of apertures 23 which connect the passage 22 
with its external surroundings. It should be noted that 
the burner 21 is shown in cross-section for a clearer
understanding of its configuration. As the gas leaves the

20 burner 21, it is ignited by a spark and the resulting
flame 24 containing vaporised copper is produced along the
length of the burner 21.

The burner 21 is arranged to act as an electrode in a 
laser discharge circuit. The circuit also comprises two 

25 capacitors 25 and 26, a thyratron switch 27 and a
plurality of electrodes 28. The electrodes 28 are 
distributed along the length of the flame 24. Resistors
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2 9 limit the current to the individual electrodes 28.
When it is desired to initiate laser action within> the 
flame 24, the capacitor 25 is charged and then the switch 
27 is closed so that charge is transferred to the other 

5 capacitor 26. When the breakdown voltage between the
electrodes 28 and the burner 21 is reached, discharges are 
established between them. The resistors 29 ensure that 
the discharges occur simultaneously and uniformly along 
the length of the flame 24. The copper vapour, excited by 
the discharge enables laser radiation to be generated.

With reference to Figure 3, in an alternative 
arrangement to that shown in Figure 2, the burner 30 is 
made of ceramic material. A pair of electrodes 31 and 32 
are located such that, when a flame 33 is present, it is 
located between them.

With reference to Figure 4, another laser 
arrangement in accordance with the invention is similar to 
that illustrated in Figure 2 but includes an envelope 34 
within which the burner 35 is contained, and the laser 

20 operates at a few torr pressure.
With reference to Figure 5, in another laser 

arrangement in accordance with the invention, a solid 
material is atomised in an inert gas and then supplied to 
a laser discharge tube. Unlike the other illustrated 

25 arrangements, a flame is not used in this arrangement. The 
laser discharge tube is similar to that shown in Figure 1, 
but electrodes.15 are omitted. During operation of the
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arrangement, fine copper bromide powder is entrained in 
argon gas in the mixer 36. The resulting suspension is 
supplied via a regulator 37 to the laser discharge tube 
38. When it is wished to establish laser operation within 

5 the discharge tube 38, a discharge is established between
two electrodes 39 and 40 within the discharge tube. The 
heat of the discharge causes the copper bromide to 
vaporise and to dissociate, with the formation of copper 
vapour. Further discharges between the electrodes 39 and 

10 40 excite the copper vapour and enable laser action to be
initiated.
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CLAIMS
1. A laser arrangement in which solid or liquid 
material, at least part of which is to comprise a laser 
amplifying medium, is atomised and dispensed into a gas

5 flow prior to being introduced to a discharge region.
2. An arrangement as claimed in claim 1 wherein the
laser amplifying medium is a metal vapour.
3- An arrangement as claimed in claim 1 wherein the 
material is methyl iodide..

10 4. An arrangement as claimed in claim 1, 2 or 3 wherein
gas in which the material is atomised is combustible and 
including means arranged to ignite the gas to produce a 
flame whereby the atomised material is vaporised.
5. An arrangement as claimed in claim 4 when dependent 

15 on claim 3 wherein the gas is a mixture of propane and
oxygen.
6. An arrangement as claimed in claim 4 or 5 wherein laser 
action is arranged to occur at substantially atmospheric 
pressure.

20 7. An arrangement as claimed in claim 4, 5 or 6 wherein the
combustible gas carrying atomised material is arranged to.
pass through a burner where it is ignited.
8. An arrangement as claimed in claim 7 wherein the
burner is made of metal.

25 9. An arrangement as claimed in claim 8 wherein the
burner acts as an electrode in a discharge circuit 
arranged to produce a discharge in the flamne.
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10. An arrangement as claimed in claim 7 wherein the 
burner is made of electrically insulating material.
11. An arrangement as claimed in claim 1 ,  8, 9 or 10 
wherein the burner is elongate with a passage along its

5 length through.which gas is arranged to flow to leave from 
a plurality of apertures transverse to the passage in the 
burner wall.
12. An arrangement as claimed in claim 11 wherein an 
electrode of a discharge circuit arranged to produce a

10 discharge in the flame is substantially parallel to the 
burner along its length.
13. An arrangement as claimed in claim 4 or 5 wherein 
laser action is arranged to occur within an envelope.
14. An arrangement as claimed in claim 13 wherein laser 

15 action is arranged to occur at sub-atmospheric pressure.
15 . An arrangement as claimed in claim 13 or 14 and 
including two electrodes positioned such that a discharge 
established between them in the flame causes longitudinal 
excitation of the amplifying medium.

20 16. An arrangement as claimed in claim 15 wherein one of
the electrodes is annular and is arranged to hold the base 
of the flame.
17. An arrangement as claimed in any of claims 13 to 16 
wherein a tube is arranged to surround the flame within

25 the envelope.
18. An arrangement as claimed in any of claims 13 to 17 
and including a mirror defining part of the laser resonant
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cavity and having an aperture therethrough through which 
the flame is arranged to pass.
19. An arrangement as claimed in claim 18 wherein the 
mirror has a planar reflective surface and is inclined

5 with respect to the optical axis of the laser.
20. An arrangement as claimed in claim 1 or 2 wherein
the gas in which the material is atomised is an inert gas. .
21 . An arangement as claimed in claim 3 wherein the gas 
in which the material is atomised is an inert gas.

10 22. An arrangement as claimed in claim 20 or 21 wherein laser 
action is arranged to occur within an envelope.
23. An arrangement as claimed in claim 20, 21 or 22 and 
including a mirror defining part of the laser resonant 
cavity and having an aperture therethrough, through which

15 hot gases are arranged to pass.
24. An arrangement as claimed in claim 20, 22 or 23 
wherein the material is a metallic compound.
25. An arrangement as claimed in any preceding claim and 
including a laser discharge tube arranged to operate in an

20 oprientation such that the optical axis of the discharge 
tube is substantially vertical.
26. A laser arrangement substantially as illustrated in 
and described with reference to Figure 1, 2, 3 or 4 of the 
accompanying drawings.

Published 1989 «.Tbe P&wnt omce. Siam House.6671 High Holbom, London WCIR 4TP. PurLher copiesmay be oblamod from The Petent Office. 
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ABSTRACT

10

LASER ARRANGEMENT 
In a laser arrangement, solid or liquid material, at 

least part of which comprises a laser amplifying medium,
is atomised in a gas prior to being applied to a discharge
region. In one embodiment of the invention, the gas is
combustible and is ignited to produce a flame which
provides heating of the material. The invention is 
particularly applicable to metal vapour lasers.

In another embodiment of the invention, the material 
is atomised in an inert gas and a discharge within a laser 
discharge tube is used to provide excitation.
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U.K. Patent application 9024733.9

This patent describes a method of constructing and operating a metal vapour laser, 

whereby, instead of providing thermal insulation to raise the temperature of the laser 

tube, the tube is maintained at its operating temperature by being cooled. In this way, 

the input power from the pulsed discharge may be increased by a lai’ge amount while 

the laser tube remains at its optimum operating temperatuie (see Chapter 1 figure 1.3). 

Output power from most of the metals exhibiting cyclic laser action is proportional to 

input power, therefore, high output powers may be attained.

If a copper laser tube is constructed such that the central plasma tube is cooled directly 

by molten tin (melting point 232^0, boiling point 2720°C) then the temperature of the 

plasma tube may be raised by discharge heating to the operating temperatutre of copper 

(1500*^C) while the excess heat is carried off by the tin to a heat exchanger. The liquid 

tin sunounding the laser tube also acts as a coaxial current return, providing the laser 

head with a very low inductance circuit and increasing discharge pumping efficiency.

112
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Laser Apparatus

This invention relates to a laser apparatus and more 
particularly to apparatus in which metal vapour forms the 
laser amplifying medium.

Lasers which use metal vapour as the amplifying 
medium, for example copper or gold vapour, require a high 
temperature to be maintained within the laser tube within 
which laser amplification occurs. This is necessary in 
order to maintain the vapour at a suitable operating 
pressure which is typically about one torr. For example, 
in a copper vapour laser, it is necessary to maintain the 
temperature within the laser tube at about 1600° C. In 
presently available lasers, this is achieved by using 
thermally insulating material around the laser tube so as 
to reduce heat losses to a minimum and attain the high 
temperatures required.

In one class of metal vapour laser, the amplifying 
medium is derived from a metal halide which dissociates at 
a lower temperature than that required to produce vapour 
from a solid metal. For example, in a copper vapour
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laser, copper bromide may be used which has a 
dissociatation temperature in the region of 600 - 700 
degrees C. However, although this temperature is 
relatively low when compared to a laser in which the metal 
vapour is produced from solid metal, it is still necessary 
to provide a large mass of thermally insulating material 
around the laser tube to enable the system to be heated 
from room temperature to the operating temperature and 
also to ensure that at the operating temperature, power 
applied to the amplifying medium is available to the laser 
process.

The present invention seeks to provide improved metal 
vapour laser apparatus in which high output powers may be 
achieved.

According to the invention, there is provided metal 
vapour laser apparatus comprising a laser tube within which 
laser action occurs during operation of the apparatus and 
means for flowing coolant,over the outer surface of the 
tube. The inventors have realised that cooling of the 
tube, rather than using the conventional technique of 
surrounding it with thermal insulation, allows greater 
input powers to be used and hence results in higher laser 
output powers. The coolant, which may be a liquid or a
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gas, directly cools the outer surface of the tube, removing 
heat from the interior of the tube. The coolant can then 
in turn be cooled, after passing over the tube, at some 
remote location. The power which is applied to the laser 
medium must be sufficiently great so as to maintain it at 
the optimum temperature at which laser radiation is 
generated against thermal losses from the tube. For copper 
vapour, for example, the optimum temperature is 1600°C and 
it is desirable not to exceed 2500°C in the laser medium.
As thermal losses increase, the input power may also be 
increased so as to maintain the optimum temperature. 
Therefore the power of the laser output is also increased, 
this being a function of the input power.

In a particularly advantageous embodiment of the 
invention, a metal envelope is included and surrounds the 
tube and the coolant path, the envelope being arranged to 
act as a return current path. As the envelope may have a 
smaller diameter than would be the case were conventional 
thermal shielding to be included in the assembly, the 
inductance of the laser apparatus is relatively low, 
especially if a laser tube of small diameter is used.
Thus, a current pulse having a short rise time may be 
obtained, giving an increase in efficiency. The envelope 
may conveniently be arranged to partly define the volume
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through which the coolant flows.

Preferably,, the tube is of quartz as this is a 
material which is particularly good at withstanding thermal 
shock and thus enables large thermal gradients to be 
maintained across it without fracture. The inner surface 
of the tube may be maintained at temperatures of up to 1000 
degrees C whilst the outer surface is kept at a temperature 
of less than 50 degrees c by the flow of coolant, which 
conveniently is water, over it.

Advantageously, the coolant is molten tin, as this 
has a large thermal capacity and is capable of removing 
large quantities of thermal energy from the surface of the 
laser tube.

The metal vapour may be produced from solid metal 
located within the tube or from a metal halide. For 
example, copper bromide may be formed within the tube by 
flowing the halogen gas over the surface of metal within 
the tube. Heating of the laser amplifying medium may be 
achieved using a discharge produced between electrodes 
located within the tube. The flow of coolant over the 
outer surface enables high repetition rated to be used.
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One way in which the invention may be performed is 
,now described by way of example with reference to the 
accompanying drawings in which:-

Figure 1 is a schematic transverse section through a 
laser in accordance with the invention; and

Figure 2 is a schematic longitudinal section of the 
laser shown in Figure 1.

With reference to Figures 1 and 2, a copper halide 
vapour laser includes a quartz tube 1 which has an internal 
diameter of approximately 1 cm and a wall which is about 1 
mm thick. The quartz tube is about 1 m in length and 
includes wider end portions 2 and 3 within which are 
located copper electrodes 4 and 5. An outer metal envelope 
6 is arranged around the quartz tube 1, being spaced from 
it to leave a volume 7 through which, in operation, tin is 
arranged to flow in the direction illustrated by the 
arrows. The envelope 6 also provides a current return 
path.

In this embodiment of the invention, copper bromide 
is produced within the tube by flowing bromine mixed with 
an inert gas through the laser so that it passes over the
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hot surface of at least one of the copper electrodes 4 and 
5.

When it is wished to obtain laser action a discharge 
is produced between the electrodes 4 and 5, causing 
heating and dissociation of the copper bromide and 
exitation of the resulting copper vapour.

The tin is arranged to flow through the volume 7 at a 
rate which maintains the outer surface of the tube 1 at a 
temperature below 50 degrees C whilst the interior of the 
tube reaches temperatures in the region of 600 - 700 
degrees C. This enables up to lOkW to be applied to the 
contents of the tube 1 and output powers in the region of 
1000 to 50 W to be reached.
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CLAIMS

1. Metal vapour laser apparatus comprising a laser 
tube within which laser action occurs during operation 
of the apparatus and means for flowing a coolant over 
the outer surface of the tube.

2. Apparatus as claimed in claim 1 and including
a metal envelope surrounding the tube and the coolant 
path, the envelope being arranged to act as a current 
return path.

3. Apparatus as claimed in claim 2 wherein the metal 
envelope partly defines the volume through which the 
coolant is arranged to flow.

4. Apparatus as claimed in claim 1, 2 or 3 wherein 
the tube is of quartz.

5. Apparatus as claimed in claim 4 wherein the tube 
has an internal diameter of approximately 1 cm and is 
approximately 1 mm thick.
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6. Apparatus as claimed in any preceding claim 
wherein the coolant is water.

7. Apparatus as claimed in any preceding claim 
wherein the coolant is a molten metal.

8. Apparatus as claimed in any preceding claim
wherein the metal vapour is obtained by heating metal
located within the tube.

9. Apparatus as claimed in any of claims 1 to 7
wherein the metal vapour is obtained from metal halide
located within the tube.

10. Apparatus as claimed in any preceding claim 
wherein heating of the laser amplifying medium to 
produce laser action is obtained using a discharge 
established between electrodes within the tube.

11. Metal vapour apparatus substantially as 
illustrated in and described with reference to the 
accompanying drawings.
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ABSTRACT

Metal vapour laser apparatus includes a small 
diameter laser tube 1 which is surrounded by a metal 
envelope 6. During operation of the laser, coolant, 
conveniently water, is arranged to flow through the 
volume 7, and over the outer surface of the tube 1 
enabling high output powers to be achieved.
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Breakdown Voltages of attaching gas mixtures in metal segmented 

tubes.

E.S.Livingstone and A .Maitland.

Contributed papers, 19^ International Conference on Phenomena in Ionized Gases, 

Belgrade 1989.

The breakdown voltages of various mixtures of gas are given for quartz and metal 

bounded dischaige tubes. It is found that the breakdown voltage of the gas in a 

discharge tube is lowered when metal tubes are introduced and then increases with the 

number of these tubes. The effect of adding chlorine to a He-Ne gas mixture is to raise 

the breakdown voltage and also raise the voltage required to sustain a continuous d.c. 

discharge.
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Breakdown voltages of attaching gas mixtures in metal segmented 

tubes.

E.S. Livingstone and A. Maitland

Department of Physics and Astronomy, University of St. Andrews, St. Andrews, 

Fife, Scotland, UK, KY16 9SS.

1. Introduction.

The copper vapour laser is perhaps the most widely studied of all the metal vapour 

laser family. Its efficiency and ability to produce high average output powers ai*e well 

known, as are the problems associated with maintaining a plasma tube at '-•1550^0. 

Utilising the halides of copper is a good way of reducing the operating temperature 

of the tube to around 600°C which is compatible with fused silica working 

temperatures. Although many successful copper halide vapour lasers (CHVLs) have 

been demonstrated, only one company presently offers a commercial model. To- 

date, CHVLs have produced efficiencies which equal and sometimes exceed that of 

the high temperature lasers. The most appealing attributes of the CHYL, however, are 

the simplicity and longevity of the laser tube. Work on the CHYL at St Andrews 

involves gas discharges confined by metal walls. Some data is presented here on the 

DC breakdown voltages of various gas mixtures including neon, helium and chlorine. 

Many metal wall configurations are also included to show the effect on the 

breakdown voltage. The approach to these experiments was primarily to provide 

useful infoimation for practical applications and to raise questions on the fundamental 

processes involved. At our present level of data collecting and understanding, any 

explanations of the mechanisms at work in metal bounded systems would be 

premature and speculative.



2. Discharge tube.

The discharge tube used for this work was a quartz envelope of diameter 45mm 

containing electrodes of molybdenum foil rolled to cylinders of 38mm diameter and 

separated by 365mm. A single piece of brass tube of diameter 43mm and length 

320mm was placed between the electrodes coaxially. This metal tube was repeatedly 

cut in half to produce the shorter segments. A pipe cutter was used to ensure no loss 

of material. The high voltage supply was a Hartley Measurements 20kV unit which 

was connected across the electrodes with a current limiting resistor of 20 kOhms in 

series.

3. Experiment.

The discharge tube was evacuated by a two stage yotary pump filled with a chlorine 

compatible oil and was then back-filled with the gas mixture under test. Voltage was 

applied slowly to the electrodes and measured with a Tektronix P6015 high voltage 

probe and a Tektronix 2445A oscilloscope.

Metal segments were placed inside the quartz envelope at equal distances from each 

electrode and its adjacent segment. The spacing between segments was maintained at 

5mm in each experiment whilst keeping the total non-metallic path length constant 

between the anode and cathode. That is, we have,

where A is the anode to first segment spacing, Bn is the spacing between segments n 

and (n+1) and C is the spacing between the last segment and the catliode. The cathode 

dark space region was not invaded as, when metal segments are introduced, the space 

between each segment becomes a discharge gap in its own right and has its own dark 

space and positive column.



4. Results.

Figure 1 shows the breakdown voltages in pure neon in quartz and with metal 

segments. Figures 2 and 3 relate to attaching gas mixes in quartz alone and in the 

quartz tube with the tubular metal segments. Breakdown voltages are plotted against 

chlorine partial pressure for each gas mixture. In all cases the breakdown voltage of a 

given total non-metallic spacing between anode and cathode decreases when metal 

segments are introduced. This breakdown voltage then increases as the number of 

segments increase, even though the total length of metal and the total length of gas 

remain constant. It was also noted that the sustaining voltage for a discharge 

increased with the number of segments.
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A low tem perature, segmented metal, copper vapour laser.

E.S. Livingstone and A. Maitland.

J. Phys. E: Sci. Instrum. 22, (1989), 63.

This paper describes a copper halide laser which operates with a segmented copper 

discharge tube and a flowing buffer gas / halogen mixture. The results of using 

bromine and chlorine as the halogens of interest are given. Output powers of 22W and 

18W are achieved with bromine and chlorine respectively. This work is described in 

Chapter 6, section 6.5.2 and the associated patent is repoduced in section B.l.
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A Low Temperature, Segmented Metal, Copper Vapour Laser.

E.S Livingstone and A. Maitland

Department of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, 

Scotland, KY16 9SS.

Received 1 August 1988

Abstract

A copper vapour laser is described which uses in-situ formation of copper halide by a 

flowing mixture of halogen and inert gas. The discharge is confined by copper 

segments which also act as the copper reservoir.

Modern copper vapour lasers stand out amongst visible lasers for their ability to 

produce high average powers at efficiencies up to 1%. In many areas they are 

beginning to supercede the less efficient and more expensive argon ion lasers. It is 

obviously preferable for applications such as dye pumping, high speed motion analysis 

and scientific research to have a 10 or 15 watt compact, single phase, air cooled laser 

rather than one which needs three phase supplies and water cooling for the same output 

power.

Although commercial lOOW copper vapour laser systems are now available, the laser 

user still has to maintain the laser tube to ensure continuity of performance. This 

maintenance usually means removing a window and renewing the copper charge along 

the laser tube. Sometimes maintenance can involve tasks such as removing broken laser



tubes and replacing them in new insulation inside the metal outer jacket. Such 

maintenance is essentially due to the high operating temperatures used.

At the operating temperature of around 1650®C alumina will 'creep* and eventually sag 

to obscure the beam. Cracks in the alumina also become serious when molten copper is 

lost from the tube by soaking into the fibrous insulation. Migration of copper vapour to 

the cool end zones of the laser limits the lifetime to a few hundred hours for the copper 

reservoir before the laser must be opened and recharged. Recharging is always 

accompanied by some contamination.

The operating temperature of copper vapour lasers may be reduced to about 600®C by 

using the copper halides; CuBr, Cul and CuCl. ( 1 - 6 ) .  The halides have been shown 

to give similar efficiencies to pure copper both in average and peak powers. There is, 

however, a short lifetime still associated with these lasers which necessitates removal of 

the windows and insertion of fresh halide.

We have found that a compact, high power and virtually maintenance free copper 

vapour laser is possible at very little cost. The laser consists of a quartz tube containing 

segments cut from copper tubing and seperated by alumina rings. The quartz tube is 

held within a pyrex outer sleeve which is also in a water cooled jacket/current return.

A mixture of helium or neon with a halogen is flowed slowly through the tube at the 

same flow rates as are usual with copper lasers. The halogen reacts with the discharge 

heated copper wall to produce copper halide which then evaporates into the main 

discharge volume. The pulsed discharge dissociates the metal halide molecules and 

excites the free copper atoms so that laser action can take place. The discharge tube is 

40mm in diameter with 800mm between the molybdenum foil electrodes. The copper 

segments measure 100mm in length and have an internal diameter of 45mm.

Because the discharge tube is quartz lined with copper segments, contaminant 

outgassing is many times less than with the conventional alumina tube operating at



lôOO^C. Experiments conducted to date have included both bromine and chlorine, 

with helium and neon as buffer gases. Easing was achieved with small (few percent) 

partial pressures of bromine and chlorine at total pressures varying from 5mb to 

300mb; above this pressure the discharge became unstable and began to arc to the 

walls. It was noted that increasing the halogen partial pressure did not cause an 

unstable discharge but forced it into a thin annulus very close to the walls where some 

arcing and flashing was noted. This appears to be attributable to the metal walls as 

similar conditions in a bare quartz tube produced a constricted, unstable discharge.

All experiments were carried out at 1 IKHz and power input was controlled by the 

charging voltage. The 4nF storage capacitor was charged through a 150mH choke and 

discharged into a 2nF peaking capacitor through an EEV CX1535 thyratron. Little 

attempt was made to optimise the output power by manipulating the charging voltage 

or repetition rate but emphasis was placed on the gas pressure and composition. 

Maximum power obtained with bromine was 22W, with the beam apertuied to 25mm 

diameter by the original window stmcture. Using chlorine the highest power achieved 

to date is 18W with a 40mm aperture.

At present a mass spectrometer is being used to determine the halogen fractions under 

various operating conditions at which laser power is a maximum.
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A high power, segmented metal, copper bromide laser.

E.S. Livingstone and A. Maitland.

Accepted for publication in J. Phys. E: Sci. Instrum, (submitted May 1991).

This paper continues the work described in the paper of section B.5. The paper 

introduces the use of hydrogen bromide (HBr) as a bromine donor in flowing halogen, 

metal vapour lasers. In a copper vapour laser described in the text, a maximum output 

of 40W is achieved at an overall electrical /  optical efficiency of 1%. The applications 

of this method of obtaining high metal vapour pressures at artificially low temperatures 

are recognised, with reference to metals which may or may not present problems when 

used as laser media in their elemental state.
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A high power, segmented metal, copper bromide laser.

E.S. Livingstone and A. Maitland 
Department of Physics and Astronomy,
University of St. Andrews,
St. Andrews, Fife,
Scotland,
1st May 1991

Abstract.

A copper bromide laser which delivers high average power (40 Watts) is described. 

Copper bromide is formed in-situ by using hydrogen bromide flowing through a 

segmented copper discharge tube. The buffer gas is neon. \

Introduction.

Within the last decade, copper vapour lasers have become an increasingly important 

source of visible (510.6, 578.2nm) laser light. Copper vapour lasers are divided into 

two distinct types; high and low temperature. The high temperature type uses molten 

copper and gives powers of up to lOOW in commercial devices. The low temperature 

type uses a compound of copper haying high vapour pressure at low temperature; 

copper halides are suitable. Examples of these halide devices producing over lOW are 

rare. In general, copper lasers of either type have the advantage of gi*eater efficiency 

and lower operating costs than most other visible gas laser sources. However, one of 

the drawbacks to using high temperature copper vapour lasers is maintenance of the 

plasma tube. This typically involves replacement of the copper charge at intervals of a 

few hundred hours but may also require the user to rebuild the laser head if the central 

alumina tube has failed. Most faults which develop in the laser envelope have their 

origin in the high (1550%) operating temperatures involved.



Copper halide lasers have been studied as a way of reducing the operating temperature 

of copper vapour lasers to a more manageable level but are still not readily available 

commercially. Using CuCl, Cul or CuBr, the operating temperatures can be reduced to 

around 600^C thus enabling fused silica laser tubes to be used. The advantages 

contributed by tlie improved thermal shock properties of fused silica, together with the 

general reduction in contamination levels reduce the maintenance required for such 

lasers.

It was shown (Livingstone and Maitland 1989) that a copper halide laser could be made 

by using a segmented metal laser tube and a flowing mixture of halogen and either 

helium or neon through the tube. If the metal is copper, then the corresponding copper 

halide is formed and then evaporated from the discharge heated wall where its vapour is 

first dissociated and then excited by successive discharge pulses at repetition rates 

above about 5 kHz or so. Bromine and chlorine have both been used successfully as 

the halogen in this scheme but both have practical problems associated with them. 

Bromine is liquid at room temperature and so we have found it to be difficult to control 

the amount of vapour which is entrained in the flowing buffer gas. As the laser appears 

to be very sensitive to halogen partial pressure and the slow flow rate of gas makes the 

laser response time long ( -10 minutes), stable operation over a period of hours 

becomes difficult to maintain. Chlorine is a gas at room temperature, which allows for 

more simple handling and metering but has been found to be inferior to bromine when 

in combination with copper as a laser material, (Gabay et al 1977). The use of 

hydrogen bromide combines the best characteristics of both bromine and chlorine, 

being able to donate bromine to the discharge, yet, as a gas, making flow control more 

simple. Hydrogen has also been shown to have beneficial properties when present in 

small quantities (Astadjov et al 1988). Laser action has been obsei*ved using hydrogen 

exclusively as a buffer gas, with power output in this case being 50% of that achieved 

using neon under optimum conditions (Clark and Maitland 1988).



Experiments.

The laser consists of a quartz tube containing segments cut from copper tubing and 

separated by alumina rings. The discharge tube is 40mm in diameter with the 

molybdenum foil electrodes separated by 800mm. The copper segments are each 

100mm in length and have a 45mm internal diameter, the tube being apertured to 40mm 

by the alumina ring spacers. The quartz tube is held within a pyrex outer sleeve which 

is also in a water-cooled jacket/current return. The experiments were carried out at 

llkH z with input power being controlled by the charging voltage. The storage 

capacitor (4nF) was chai'ged through a 150mH choke and discharged through an EEV 

CXI535 thyratron into a 2nP peaking capacitor. During the experiments, input power 

to the laser was held constant at a chosen value and laser power was optimised by 

varying the gas composition and pressure. Maximum output from the laser was 40W. 

This occurred when the gas pressure was 3.3kPa, with a flow rate of approximately 2- 

3 litre atmosphres/hr. At maximum power, the hydrogen bromide comprised 

approximately 5% of the gas entering the laser, the remainder being neon. A stable 

discharge could be maintained at pressures up to 30kPa but lasing was faint and 

increasingly erratic at higher pressures. Very short warm-up times were possible in this 

device, with laser emission beginning within 30 seconds after start-up of a cold tube. 

Powers of up to 10 Watts or so were reached in about 45 seconds.

Conclusion.

A number of metals present problems when used as laser media in their elemental form 

(Sh'penik and Kel'man 1989).The method described in this paper for achieving high 

metal vapour pressures at artificially low temperatures by the use of flowing halogen, 

or a halogen donor such as hydrogen bromide, may be applied to such metals and 

others in order to make laser action easier to achieve.
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Early illumination in experimental photodynamic therapy: Comparison

with conventional treatment.

A. A1 Hadrani, M. Lavelle-Jones, E.L. Newman, E.S. Livingstone, K.S. Low and 

A. Cuschieri.

Presented at the Third Biennial Meeting of the International Photodynamic Association, 

Buffalo, N.Y., July 1990.

To be published in the Journal of Photochemistry and Photobiology.

Photodynamic therapy (PDT) involves the interaction of light with a previously 

administered photosensitizer in the treatment of cancer. The photosensitizer, in the 

prescence of oxygen and light of the correct wavelength, results in the production of 

singlet oxygen and other reactive oxygen species. The end result is the destruction of 

targeted tissues containing the photosensitizer.

Conventional protocol for PDT requires a delay of 24-48 hours between administration 

of the photosensitizer and subsequent photoin*adiation. This protocol is compared with 

a new one, in which photoirradiation is carried out within three hours of 

photosensitization. It is found that (a) both early and delayed forms of treatment have 

significant effects on tumour size and (b) that early treatment causes a much longer 

tumour regression period than delayed tieatment.
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ABSTRACT

Ve have compared a new protocol for photodynamic therapy, in which 

illumination of the tumor is carried out within three hours of 

photosensitization, with conventional therapy in which,there is a delay 

of 24-48 hours before illumination. In our experimental system of 

xenografts of human colorectal tumor cells (COLO 520DM) growing as 

subcutaneous masses in nude mice, we find (a) that both early and 

delayed forms of treatment have significant effects on tumor size and 

(b) that early treatment causes a much longer tumor regression period 

than conventional treatment. This correlates well with the higher 

circulating levels of photosensitizer at the earlier time, reinforcing 

the evidence for a vascular mechanism of action of photodynamio therapy 

and suggesting new methods of treatment in humans.



INTRODUCTION

PDT^ involves the interaction between light and a previously 

administered photosensitizer which, in the presence of triplet (ground- 

state) oxygen, leads to the production of singlet oxygen and other 

reactive oxygen species. The end result is the destruction of targeted 

tissues containing the photosensitizer. The procedure has been adopted 

with success in the treatment of experimental and human cancer (reviewed 

by Dougherty 1989).

The conventional protocol for PDT requires that a delay of 24-48 hr be 

introduced between the administration of the photosensitizer and 

subsequent photoirradiation. The rationale for this delay is based on 

the observation that tumor tissues often retain sensitizers such as 

hematoporphyrin derivative more selectively than normal tissues and that 

the tumor : normal tissue ratio reaches its highest value at about this 

time (Comer and Dougherty 1979; Bugelski et al. 1981). Thus, 

photoirradiation after this interval should result in a high degree of 

tumor destruction coupled with minimal damage to surrounding normal 

tissues.

There is, however, an increasing body of evidence that the mechanism of 

action of PDT in vivo involves a primary vascular occlusive effect 

followed by ischemic damage to the tumor (Henderson et al. 1985; Wieman 

et al. 1988; Nelson et al. 1988). If this is the case, the levels of 

photosensitizer in the blood vessels, rather than the tumor tissue, at 

the time of treatment may be the more important. By 24-48 hr after 

administration, these are likely to have fallen considerably from their



pealî and as a result the tumors may not be maximally photosensitive 

during conventional "delayed" photoirradiation.

A beneficial effect of Irradiation 5 minutes after i.v. injection of 

hematoporphyrin derivative in a rat tumor system has previously been 

demonstrated (Olivo et al. 1989). This time would be expected to 

coincide approximately with the serum peak level of photosensitizer. 

Henderson & Bellnier (1989) have also reported data on mice carrying the 

RIF tumor, using intracardiac administration of photosensitizer and 

Immediate photoirradiation. We decided to use i.p. injection, with 

consequent slower pharmacokinetics, in order to be able to characterize 

the relationship between circulating photosensitizer levels and anti­

tumor effect.



MATERIALS AND METHODS

Pharmacokinetics. Five six-week-old male MF1 nu/nu mice were injected 

i.p. with 10 mg/kg "hematoporphyrin esters" (a preparation very similar 

to hematoporphyrin derivative and given by Prof. T.G. Truscott, 

University of Keele, UK). Peripheral blood samples were obtained by 

tail-tipping and serum was stored frozen until assay for total 

hematoporphyrin, essentially by a published method (Kessel and Cheng 

1985), correcting for the efficiency of extraction of the porphyrins 

into the chloroform : methanol layer.

Experimental tumor model. Human colorectal tumor cells COLO 520 DM were 

obtained from the European Collection of Animal Cell Cultures (Porton 

Down, UK) and cultured in Dulbecoo's modified Eagle medium supplemented 

with 10 % fetal calf serum, 50 units/ml penicillin and 50 ug/ml 

streptomycin. They were harvested by gentle trypsinlzation and 10^ 

viable cells were injected s.c. into the flank of nu/nu mice. Tumors 

grew to volumes of 50-50 mm^ after 10-14 days, at which time they were 

used for treatment.

Photodynamio therapy. Animals bearing tumors of 50-50 mm^ in volume were 

divided into three groups matched for mean tumor size. The control group 

(10 animals) received no treatment. The "early PDT" group (7 animals) 

were photoirradiated 5 hours after administration of hematoporphyrin 

esters as above. Animals in the "conventional PDT" group were 

photoirradiated after a delay of 24 hours. In all cases a blood sample 

was taken immediately prior to irradiation for assay of the circulating 

photosensitizer level.



The light source was a gold vapor laser (built in the Department of 

Physics and AstronomyUniversity of St. Andrews), producing 

monochromatic red light at 628 nm. The output was coupled into an optic 

fiber and the laser run under such conditions that the Incident power 

density at the tumor surface was 150 mW/cra^. The animals were lightly 

anesthetized and all except the tumor plus a margin of about 0,5 cm was 

protected with thick black card. The irradiation time in all cases was 

16 minutes, resulting in a total energy delivery of 150 J/cra^. No 

photothermal effects were noted (data not shown). Animals were housed 

under subdued lighting for the remainder of the experiment.

Assessment of response and data analysis. Tumor growth was measured by 

calipers, taking three orthogonal axes and calculating the volume of the 

equivalent ellipsoid. This method has been reported to yield the most 

accurate estimate of tumor size (Tomayko and Reynolds 1989). The volumes 

were normalized to a value of unity on the day of treatment in order to 

prevent small differences in absolute size from confusing the analysis. 

The growth of each tumor in terms of the number of days for which it 

remained at or below its pretreatment volume and the overall time taken 

to reach a fixed endpoint size of ten times this size was calculated.

The doubling time was also assessed once the tumor had regrown to five 

times the pretreatment volume, in order to minimize any interference 

from remaining dead tissue (Begg 1980).
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RESULTS

Serum levels of porphyrin. The total fluorescent porphyrin level reached 

a maximum 3 hours after i.p. injection (Fig. 1) and then declined with a 

half-life of 5-6 h. The levels at the peak, were abqut 5-fold higher than 

those at 24 h. Our results are entirely consistent with previously 

reported data from another laboratory (Henderson and Bellnier 1989), 

showing similar kinetics for i.p. ^'^C-labelled Photofrin II in DBA/2Ha 

mice. It should be noted that neither method of assay can quantitate the 

photodynamically active oomponent(s) of the injected compounds since 

these remain chemically ill-defined. Ve elected to compare the effects 

of PDT administered 5 hours after photosensitization with conventional 

treatment at 24 h.

Tumor growth. The mean growth curves are shown in Fig. 2. Both protocols 

caused a cessation in tumor growth in all cases and complete 

disappearance of palpable tumor in some individuals (5 in the "early" 

group and one in the conventionally-treated group). Ve have never 

observed spontaneous COLO 520 DM tumor regression in any animal (approx. 

100 studied).

The period during which tumors remained at or below their pre-treatment 

size was significantly longer in the "early" group than in the group 

receiving.conventional treatment and this was also reflected in the time 

taken to reach the chosen endpoint (Fig. 5). All tumors eventually 

regrew. Their doubling times were slightly longer in the two treated 

groups than in the control group, but these differences were not 

statistically significant (early, 5.9a 0,1 d; delayed, 4.4 i0.6 d; 

control, 5.5 a0 . 5 d).



8

Serum levels of total heraatoporphyrin-related species at the time of 

irradiation were 5.6-fold higher in those animals receiving early PDT 

than in those receiving conventional treatment (Fig. 5.).
t '

Treatment-induced damage to normal tissue surrounding the tumor was 

generally only mild (rapidly reversible oedema and erythema). In some 

cases the skin overlying the tumor formed a scab which was eventually 

lost to reveal a whitish area of normal skin whose revascularization 

coincided with tumor regrowth (data not shown).



DISCUSSION

Our results are entirely consistent with those of other groups (Olivo et 

al. 1989; Henderson and Bellnier 1989), once the slower pharmacokinetics 

associated with the i.p. route are taken into account. An advantage of 

this route is that it allows these pharmacokinetics to be measured and 

it ensures that relatively stable serum levels of photosensitizer are 

maintained during the course of early illumination (options not 

available where the route of administration results in rapidly rising 

and/or falling levels).

The present work demonstrates that conventional therapy results in 

shortlived tumor regression in our experimental system. Early therapy, 

timed to coincide with maximum circulating levels of the 

photosensitizer, is more effective. A key observation is that the ratio 

of the tumor regrowth delays induced by the two treatments (5.5) is 

similar to that of the serum levels of photosensitizer at the time of 

rradiation (5.2). Our current work is directed towards discovering 

whether this relationship holds for a variety of serum concentrations at 

the time of treatment, irrespective of the delay between drug injection 

and illumination.

Although early irradiation would appear to be of possible clinical 

benefit, its effect on normal tissue must be taken into consideration.

It may find application in cases where the tumors can be accurately 

targeted with light, such as skin tumors or those readily accessible and 

visible through an endoscope.
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Rather than employ the same dose of photosensitizer in early PDT as is 

used in conventional therapy, it may be possible to use a lower dose and 

maintain the existing therapeutic efficacy. This could result in useful 

reduction of the duration and severity of cutaneous photosensitivity, 

which is a common clinical side-effeot of PDT (Razqm et al. 1987). 

Experiments to test this hypothesis are underway in our laboratories.
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FIGURE CAPTIONS

Figure 1. Serum porphyrin pharmacokinetics. Five nude mice were injected 

i.p. with 10 mg/kg hematoporphyrin eaters and blood samples taken 

from the tail. The graph shows the mean (+/- standard deviation) 

serum levels at each time point.

Figure 2 . Effects of early and delayed PDT on tumor growth. The tumor 

volumes were normalized to unity at the time of treatment. Their 

mean values on each day have been plotted on a logarithmic scale to 

reveal the exponential regrowth. o— o untreated control animals, h:—  

early photoirradiation (3 hr after sensitization), JW— èh delayed 

photoirradiation (24 hr after sensitization).

Figure 3 . Results of treatment in the two groups. The open bars

represent the early treatment group and the hatched bars the delayed 

treatment group. A: Levels of photosensitizer were measured in serum 

samples collected immediately before photoirradiation. B: The 

regrowth delay was calculated as the time taken by each tumor to 

recover its pretreatment volume. The time taken for each tumor to 

grow to an endpoint size of ten times its pretreatment volume was 

also recorded. The mean values (+/- standard deviation) of these two 

growth parameters are shown. Note that these are different from 

estimates obtained by Interpolation in Figure 2, because of the 

different averaging domains in the two methods of analysis. All 

differences between the two treatment groups were significant (P < 

0.003, Student’s t test).
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