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ABSTRACT

It  is well known that given f  there is a unique polynomial o f degree at most n 

which interpolates f  on the standard triangle w ith uniform nodes (i, j) , i, j  > 0, i + j  < n. 

This leads us to the study o f polynomial interpolation on a "triangular" domain with the 

nodes S = {([i], {]]): i, j  > 0, i + j  < n}, [k] = [k ]q  = i Z \  , q > 0, which includes

the standard triangle as a special case. In Chapter 2 o f this thesis we derive a forward 

difference formula (o f degree at most n) in the x and y directions for the interpolating 

polynomial on S. We also constr uct a Lagrange form o f an interpolating polynomial

which uses hyperbolas (although its coefficients are o f degree up to 2n) and discuss a 

N eville-A itken algorithm. In Chapter 3 we derive the Newton formula fo r the 

interpolating polynomial P„ on the set o f distinct points {(xj, yj): i, j  > 0, i  + j ^  n}. In 

particular i f  xj = [i]p  and yj = [j]q, we show that Newton's form  o f P^ reduces to a

forward difference formula. We show further that we can express the interpolating 

polynomial on S itse lf in  a Lagrange form and although its coefficients L "j are not as

simple as those o f the firs t Lagrange form, they all have degree n. Moreover, L?j can

all be expressed in terms o f L ^ q, 0 < m < n. In Chapter 4 we show that P^ has a lim it

when both p, q —> 0. We then verify that the interpolation properties o f the lim it form

depend on the appropriate partial derivatives o f f(x , y). In Chapter 5 we study 

integration rules I^ o f interpolatory type on the triangle S„ = {(x, y): 0 < x < y < [n ]}. 

For 1 < n < 5, we calculate the weights w "j for I „  in terms o f the parameter q and study 

certain general properties which govern w "j on Finally, Chapter 6 deals with the 

behaviour o f the Lebesgue functions ^^(x, y; q) and the corresponding Lebesgue 

constant. We prove a property concerning where takes the value 1 at points other

than the interpolation nodes. We also analyse the discontinuity o f the directional 

derivative o f ̂  on
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Chapter 1

Interpolation and preliminary results

1.1  The interpolating polynomial

One o f the most common methods o f approximating functions is by 

polynomials. The use o f polynomials is justified by the fo llow ing classical theorem 

given by Weierstrass in 1885. (See [20].)

Theorem 1.1 Let f(x) e C[a, b]. For any e > 0, there exists a polynomial 

P(x) such that

I f(x) -  P(x) I < e for all X e [a, b].

Perhaps the most direct way in which a polynomial o f degree n can be fitted to a given 

function f(x) is by interpolation at prescribed points. We know that a straight line can 

be passed through any two points having distinct abscissas. Sim ilarly a parabola can 

be made to pass through any three points having distinct abscissas. The follow ing is a 

generalization of these results.



Theorem 1.2 Given the values o f f(x) at n + 1 distinct points xq, x j, x„,

there exists a unique polynomial Pn(x) o f degree at most n such that

Pn(xj) = f( x j) , i  = 0, 1, 2, n. (1.1)

This result may be proved in a number o f ways; see fo r example [6]. Since the 

polynomial is o f degree < n, it  may be expressed as

Pn(x) = 2  Ci x' .
i=0

Written out in matrix form, (1.1) becomes

1 Xq Xo  ̂ ... Xo" ~ ^o " f f o l
1 Xi ... X j” Cl

— 1 Xĵ  Xĵ  ... Xjj _ -  Cn _ - fn -

where we have denoted f(x|) = fj. The determinant o f this matrix is Vandermonde's 

determinant, and has the value

n (xj - xi)
0<i<j<n

which is non zero i f  the points are distinct.

The interpolating polynomial is often represented by the Lagrange formula 

where the polynomial is expressed explicitly in ternis o f the ordinates involved. 

Let XQ, x j, ..., Xj, be distinct points in [a, b] and for each i = 0, 1,2, ..., n, introduce

the follow ing product:

(X-XQ) ... ( x -  Xj_i)(x -  Xi+i) ... ( x - x j  .



For i = 0, 1, 2, . . n , the normalized version o f this product

" X -  X,
Ll(x) = n # 7̂

v=0
V?£i

is a polynomial o f degree n and satisfies the condition

y X \ _ f  1 i f  j  = i
Li(Xj) -  I  0 i f  j  ^  i ■

It follows that the function
n

Pn(x) = X  fi L i(x) (1.2)
1=0

is a polynomial o f degree at most n and satisfies the required interpolation conditions 

(1.1). Formula (1.2) is called the Lagrange interpolation formula. Note that, since the 

interpolation problem (1.1) has a unique solution, (1.2) gives the only polynomial 

Pjj(x) o f degree at most n which satisfies (1.1).

The accuracy with which the interpolating polynomial approximates the function 

f(x) depends on the choice o f xq, x j, ..., x^ . I f  f(x) e C” [a, b] and f("'^^)(x) exists for 

a < X < b, we can estimate the error f(x) -  Pn(x) in terms o f the (n + l)th  derivative o f 

f(x). (S eem .)

Theorem  1.3 For any x e [a, b],

f("+ l)(Wf(x) - P„(x) = (x -X o )(x -X i)  ... (x -X n ) ^  (1.3)

where min {x, xq, xj, ..., x„}  < {x, xg, x j, ..., Xj,}. The point depends

upon X.



The interpolating polynom ial can also be constructed recursively by an 

algorithm without reference to the Lagi'angian formula (1.2). The basic tool is a lemma 

which enables us to represent an interpolating polynomial o f degree m+1 in terms o f 

two such polynomials o f degree m. I f  S is any non empty subset o f all interpolating 

points {xq, X], ..., x „} , we denote by P§(x) the polynomial that interpolates f(x) at 

those points x in S. Thus i f  S contains k+1 points, Pg(x) is the unique polynomial o f 

degree < k such that Ps(xp = f|, fo r all xj e S. We have (see [9])

Lemma 1.1 Let S and T be two proper subsets o f {xg, x j, ..., x^}, having

all but the two points Xj e S and xj g T in common. Then

(X -  Xi) P t(x ) -  (x -  Xj )  Pg(x)
P s ^ t (x ) =  --------------------- --------------------------------- •

The expression on the right is called a linear cross-mean. Lemma 1.1 enables 

us to generate interpolating polynomials o f higher degree successively from 

polynomials o f lower degree. Two standardised choices o f the sets S and T used to 

obtain the polynomial PsuT have become widely utilized, one named after Neville, the 

other after Aitken. In Neville's scheme, a triangular array o f polynomials Pk,k+d(x) are 

generated. Here Pk,k+d(x) is a certain polynomial o f degree d that interpolates f(x) 

on a set o f d + 1 points depending on k. Neville's scheme is as follows.

Neville's algorithm For d = 0, 1, ..., n construct the polynomial Pk,k+d as 

follows:

Pk,k(x) = fk ’ k = 0, 1, ..., n 

(x -  Xk) Pk+l,k+d(x) -  (x -  Xk+d) Pk,k+d-l(x)
Pk,k+d(x) — Xk+d Xk

k = 0, 1, ..., n -d .



Table L I indicates the order o f the calculations. The entry P j g(x) is computed by 

linear cross-mean multiplication o f the bold entries.

X -  Xi d  =  0 d  =  l d  =  2 d  =  3

X - X g Po,o =  %

P o . i M

X -  X j ^1,1 P q ,2 (x )

P i , z ( x )

X “ X2 P2.2 =  f z P 1 .3 W

P 2 .3 ( * )

X -  X3 ^ 3,3 =  %

Table 1.1

Continuing in this way, the fina l value is Pq ^(x), which is the polynomial that 

interpolates on the set o f a ll points xg, x j, ..., x„.

1.2  The Newton formula and q-differences

Another method o f evaluating the interpolating polynom ial uses divided 

differences. Let us attempt to express the desired polynomial in the form

P n(x) =  ag +  (x  -  Xg) a i +  . . .  +  (x  -  x g )(x  -  X j)  . . .  ( x - x ^ . i )  a „ (1 .4 )

fo r some values o f ag, a%, ..., a„. To determine the constants â , set x = xg, x = x j, ..., 

successively, and solve the resulting linear equations. We obtain



ao = % o)

f(x i)  - f ( x o )
ai X I  -  XQ

=  1 / f(x2 >  -  f ( x p )  _  f ( x i )  -  f ( x p )
^2 X2 -  x i   ̂ X2 -XQ x i - x p  ^

fo r the firs t three coefficients. Further investigation shows that Pn(x) can indeed be 

written uniquely in form o f (1.4). Note that fo r a fixed set o f points xp, x j, ..., x^, 

each 3-1 is a linear combination o f the f(x|) and that, furthermore, aj involves only 

f(xp), ..., f(x j). Thus aj can be designated by a, = f[xp, x j , ..., Xj], say. The constant 

f[xp, x j ,  Xj] is called a divided difference o f order i. In  this notation the 

interpolating polynomial is vwitten as

Pn(x) = f[xQ] + ( x -x p )  f[xp, X j] + ... + ( x -x p )  ... (x -X n_ i)  f[xp, ..., x J . (1.5)

This is called the Newton interpolation formula o f f(x) on the set {xp, x%,..., x^].

A compact formula fo r aj can be found by comparing (1.5) with the Lagrange 

formula (1.2) with which it must coincide. Hence

k k
ak = f[xp, x i, ..., Xk] = 2  ( f ( x j ) /  ( x j - x v ) }  (1.6)

1=0 v=0v̂ i

Divided differences can be expressed in terms o f lower order divided differences, as 

follows:
f [ x j ,  X2> ..., Xj|] — f[xp , x%, ..., Xj|_i] 

f[xp, X j, ..., x „] = -------------------------------—------------------------- . (L7)

This is easily verified using the symmetric form (1.6). Formula (1.7) provides a



standard procedure for calculating divided differences, as indicated in Table 1.2.

XQ f[Xp]

f[Xj] f[xp, Xj]

X2 f[x2] f[x j, X2] f[Xp, Xj, X2]

^3 f[x3] f[x2, X3] f[Xj, X2, X3] f[xp, Xj, X2, X3]

Table 1.2

It is often convenient to think o f the divided difference f[xp, X j, ..., x J  as a 

value o f the nth derivative o f the function f(x) divided by the factor n!, provided this 

derivative exists. Let us write

-, f [ x p ,  X ] ,  . . . ,  Xj j ]  f [ x ,  Xp ,  . . . ,  X k _ j l  
f [ x ,  Xp,  . . . ,  XkJ — Xk -  X

Then it can be shown that (see [18])

f(x )= f[xp ] + (x -x p )  f[xp, xj] + . . . +  (x -X p ) ... (x~Xn_i) f[xp, ..., x„]

+ (x -x p )  ... ( x - x „ )  f[x , xp, ..., x„]. (1.8)

On using (1.5) and comparing with the error formula (1.3), we find that

f[x,xo, = (^ n n ry r

where min {x, xp, x j, ..., x^} < < max {x, xp, x j ,  ..., x^}. In particular, on

retaining the divided difference notation and reducing the number o f points used, we 

have



_ - _f[XO, X j, Xyj] —

where min (xg, x%, x^} < T|o < max {xg, x j, x^}.

In the case o f interpolation abscissas xg, X j, x „ that are spaced evenly, 

where x^ = xg + kh, h > 0, k = 0, 1, n, the divided differences may be given an 

elegant expression in terms o f forward differences. We define the forward operators A 

on f(x) by Af(x) = f(x  + h) -  f(x) and higher differences by

A">f(x) = A(A">-lf(x)) = A "^-lf(x  + h) -  A^-lfC x), m = 2, 3 ,.. .

Lemma 1.2 We have

m
A'^fk = 2  ( - l y  fk+m -i, k = 0, 1, ..., n - m .

As a consequence o f taking the points Xj to be equally spaced, we have

Am fk
Lemma 1.3 f[xk> Xk+i, Xk+ml = , , _ , fo r k = 0, 1, ..., n.

m! hm

Thus the interpolating polynomial in (1.5) can now be written as

Af g  A» fg
P n (x ) = fo  + ( x - x g ) - j ^  + ... + ( x - x g ) ( x - X j )  ... (x -X n _ j)^ ^y -^  (1.10)

and each forwaid difference can be calculated systematically using a similar scheme to 

that in Table 1.2 .

I f  we change the variable x by putting x -  xg = sh, then we can sim plify x -  Xk 

= (s -  k)h and



fn A^ fn
( x - x o ) ( x - x i )  ... (x -  Xk_i) = h k s ( s - l )  . . . ( s - k +  1)

= ( g A k f o .

Thus the polynomial (1.10) becomes

Pn(x) = fo + Ç )  Afo + ... + Ç )  A " fo = i  g )  Am % (1.11)

which is called the forward difference formula for P„(x).

Thus Newton's interpolation formula (1.5) sim plifies considerably, to give 

(1.11), in the case where the points x^ = xg + kh form an arithmetic progression, for

the divided differences reduce to ordinary differences. In [22] I. J. Schoenberg 

emphasized that a simplification also occurs in the case when the points o f interpolation 

form  a geometric progression. The problem o f polynomial interpolation in one 

dimension at the points o f a geometric progression was orig inally proposed by J. 

Stirling [25]. Specifically, let

Xk = aq^ , k = 0, 1, ..., a 96 0, q ^^ l,  q > 0. (1.12)

be a geometric progression. Let us consider Newton's formula (1.5) for this case. 

Following Schoenberg [22] we define q-differences f(x) recursively by

f(Xk) = f(Xk) ,

£)■”  f(xk) = Æ»” -*  f(Xk+i) -  qm-l f(xk),

m = 1, 2 ,... . In terms o f these differences we have the follow ing result.
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Lemma 1.4 For the interpolation points (1.12) the divided differences are

 =  a n ( q n - l ) ( q n _ q ) . . . ( q n _ q „ - l )  '

Hence, using (1.5) we obtain the q-fom ard difference formula for ?n(x)

In particular, for x = 0 we obtain

which Schoenberg calls the Stirling-Schellbach formula.

Schoenberg [22] further pointed out that the Romberg aigorithm is equivalent to

the N eville-A itken algorithm  when the interpolation nodes form  a geometric

progression. Let r be a constant such that I r I >1. Staiting from the column o f values 

Rq̂  ̂ we form the Romberg triangular array

R f

r (*̂

<

R f

R ®

R ®
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the general recursive definition being

j.m p^(k+l) _  j^(k) 
R(k) ^  ̂ ^m-1 ^  m-1

m rm _ 1

Let us apply the Neville algorithm for a geometric progression = aq^ and for 

interpolation at x = 0, and form the Neville triangular array. On taking p^ ̂ (0) = 

k = 0, 1, ..., n and assuming that Pk,k+d^^  ̂ “  we obtain

_ (-aq*^) Pk+i.k+(l+l(0) -  (-aqk+d+i) Pk_k+d(0)
P k ,k + d + 1 w  a q k + d + 1 - a q k

+ qd+l r (^>
q d + 1  _  1

Now, write r = 1/q to give Pkk+d+1̂ ^  ̂ “  ^ î+ 1* Hence these two algorithms are 

equivalent.

1 .3  Two-dimensional polynomial interpolation

The result o f Theorem 1.2 can be extended to polynomial interpolation in two 

dimensions at certain fin ite  sets o f points defined in a certain region o f the X-Y  plane. 

Here, we shall deal with the question o f the existence, uniqueness and representation o f 

the interpolating polynomial using a triangular network o f interpolating points. A 

function P(x, y) in x and y is said to be a polynomial o f degree not greater than n i f

n n -i

P(x, y) = X  X  C ij x̂  yj .
i=0 j=0
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In [14], A. R. M itche ll and G. M. Phillips showed the existence and 

uniqueness o f the interpolating polynomial at the (n + l)(n  + 2)/2 uniform nodes over 

the standard triangle w ith vertices at (0, 0), (1, 0), and (0, 1).

Theorem 1.4 Let f(x , y) be a function defined over the standard triangle. 

There exists a unique polynomial Pn(x, y) o f degree not greater than n in x and y which

takes the same values as f(x, y) at (i/n, 1 -  j/n ), 0 < i  < j  < n.

Let us consider a function f(x , y) defined over the standard triangle with 

vertices at (0, 0), (n, 0) and (0, n). For brevity let f(i, j)  be denoted by f j j .  It is

possible to represent the interpolating polynomial at the uniform nodes (i, j), i, j  > 0, 

i  + j  < n, in a Lagrangian form. We have

n n - i

Pn(x,y) = X 2  Hj|(x, y ) f j j  (1.13)
1=0 j=0

where

y) -  / I _ dx, n  (x -  V) J ][ (y -  v ) J ] [ ( n - v - x - y )  (1.14)
 ̂  ̂ v=o v=0 v=0

are polynomials satisfying

0 i f  (s , t)  ^  ( i.  j )

where s, t > 0, s + t < n.

This interpolating polynomial can also be computed by an iterative process. In 

[12], S. L. Lee and G. M. Phillips presented an efficient algorithm for the evaluation o f 

the polynomial (1.13).
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Let

y) = f i j  for i , j > 0 , i + j < n

and for m = 1, 2, ..., n , define f|^(x, y) recursively by

m j^ ( x , y )  = (m + i + j - x - y ) f P j  ^ (x ,y )+  (x ~ i)  (x, y) + (y -  j )  ^ (x, y)

for i, j  > 0 , i + j < n - m .  (L15)

Lemma 1.5 Let Pn(x, y) be the polynomial interpolating the function f(x, y) at (i, j), 

0 < i + j  < n. Then

Pn(x, y) = f^  o(x, y ) .

Note that this algorithm is a generalization o f the N eville-A itken algorithm fo r 

computing the one-dimensional interpolating polynomial.

Since the interpolation nodes chosen on the standard triangle are uniform nodes, 

it  is appropriate to introduce forward differences A^, Ay in the x and y directions

respectively. On defining

j  = fy  ’ f i j  = f i j

and for m = 1, 2, ...

f i j  = f - i j  -  f i j

Ay fiJ  = A™-* f ij+ . -  A™-* f i j

the authors derived a forward difference form ula fo r Pn(x, y). This is a two­
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dimensional analogue o f the forward difference representation o f the interpolating 

polynomial for a function defined on equally spaced points on the real line.

Theorem  1.5 For m = 0, 1 ,..., n and i, j  > 0, i  + j < n - m

y) = X  S  r  ' )  ( U 1 )  4 " '  ■
k=0 r=0

In particular, let Pn(x, y) be the interpolating polynomial o f f(x, y) at the points ( i,j) , 

0 < i + j  < n. Then

Pn(x,y) = i s  ( Ï )  ( k - r )
k=0 r=0

It is interesting to consider the problem o f finding an interpolating polynomial 

on a triangle where the nodes are not necessarily uniform ly spaced, for example a 

system o f nodes which are in geometric progression. J. Stirling [25] was the first to 

propose polynomial interpolation in one dimension at the points o f a geometric 

progression. As we have encountered earlier, I. J. Schoenberg [22] discussed various 

works w ith this setting and give a unified version o f the problem. He showed the 

connection between the results o f J. S tirling (1749), K. H. Schellbach (1864) and C. 

Runge (1891) on this problem. Schoenberg pointed out that the Stirling-Schellbach 

formula may be regarded as a q-forward difference formula. He also showed that the 

Romberg algorithm leads to this formula.

In [13], S. L. Lee and G. M. PhiUips extend these results to the two- 

dimensional case, fo r a triangle domain, using as nodes the data points obtained by 

intersections o f lines parallel to the axes in geometric spacing. They introduced a real 

parameter q > 0, q 9* 1, and used q-integers defined by
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where n is an integer. Note that the q-integers satisfy:

Fni -  11 + q + ••• + q " ”  ̂ i f  n is pos it ive  integer 
 ̂ M  0 i f  n = 0

(ii) [-n ] = = -  q~" -  q-” +l - . . .  -  q - ^ , where n is a positive integer
q"

(iii) [ n ] - [ k ]  = q k [n -k ] ,  for 0 < k < n

(iv) I f  k i n then [k] I [n]

(v) lim  [n] = n . (1.16)
q->l

G. E. Andrews [1] mentioned that C. F. Gauss (1863) was the firs t to study the 

polynomials o f the form

These polynomials are known as Gaussian polynomials and involve the use o f the q- 

integers. In fact, letting [k]! = [ k ] [ k - 1] ... [1], we have

G(n k, k;q) -

which are the q-binomial coefficients. For 0 < k < n, we see that the q-binomial 

coefficients satisfy the follow ing relations.
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[ " 1 n
_ k j _ n -  k _

[ k ] - kl (iT-k)! - (k )

[ n ' '  n -  1
k . k

n ” ■ n -  1 ■
k . _ k -  1 .

+ q

+ q' ["
-  1 
k (1.17)

Specifically, Lee and Phillips [13] considered the interpolating polynomial

Pn(x, y) for f(x, y) on the triangular geometric mesh points {([i], [j]): 0 < i < j  < n }.

Note that all o f the nodes lie on the union o f the straight lines y = q^ x + [v], 

0 < V < n, which meet at the point ^  y  ^ q)> see Figure 1.1 . Then the

authors constructed the Lagrange form o f the unique interpolating polynomial P^(x, y) 

and derived a forward difference formula fo r P^(x, y).

y = qx + 1
q X + [2]

y  =  X

0 [1]}
q

Figure 1.1
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Theorem  1.6 Given a function f(x , y) defined on {([i], [j]): 0 < i < j  < n }, 

there exists a unique polynomial P^Cx, y) o f degree at most n such that

P n ( [ iL Ü ])= f i j  fo ra ll 0 < i < j < n ,

where we have written fy  to denote f( [i], jj]) . Furthermore Pn(x, y) may be written in 

the Lagrangian form

Pn(x, y) = 2 ^  L " j(x ,  y ) f i j  (1.18)
j=0 i=0

where

y) = [ i ] ! U - i ] ! [ n -  j ] !  I I  ( ^ -  [v]) I I  ((v] -  y) H  (X -  9 ''*  “  M )
i-1  n j- i-1n(M-y) n
v=0 v= j+ 1 v=0

(1.19)

are polynomials satisfying the conditions

L y ( M , I m ] ) - ( o  ( [k ] ;  [ m ] U  ( f i L  [J]) '

Since all the points ([i], fj]): 0 < i < j  < n lie  on the lines y = q^x + [v ] and

y = [v ], V = 0, 1, ..., n , it is appropriate to define q-differences along these lines. The

differences along the y-direction are defined by

f i j  = f i j

and

f y  ,

for m = 1,2,... . The differences along diagonal-direction are defined by

=  f y

and
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fo r m = 1, 2 , . . . .  Mixed q-differences £)^ £)y are defined in a similar manner by

f i j  = %+lj+l -  q” -""-’ 13” - ^ f y  . (1.20)

Using this notation we have the follow ing q-forward difference formula for Pn(x, y).

Theorem 1.7 Let Pn(x, y) be the polynomial o f degree n which interpolates the 

function f(x, y) at ([i], fj]): 0 < i < j  < n. Then

Pn(x, y) =

X q - k ( k - i , / a i  f i fo,o (1.21)
k=0 m=0 v=0 LV + 1] v=0 [V + 1]

where the void product is taken to be 1.

As a special case o f Theorem 1.7, set x = 0 in (1.21). This gives

p„(0.y) = X q - ‘' ™ n ^ P ^ ^ ^ o .
k=0 v=0 IV + I j

which is the one-dimensional analogue o f equation (1.21), which Schoenberg calls the 

Stirling-Schellbach formula.

The authors further evolved an iterative process sim ilar to the Neville-Aitken 

algorithm for evaluating the interpolating polynomial P^(x,y) efficiently. This algorithm

can be given as follows. Let
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y) = fij

fo r i  < j  < n and, for m = 1, 2, ..., n , define ff)(x, y) recursively by

q) [m] ^  (x, y) = ([m + j ]  -  y) f|^j * (x, y) + (y -  q i-‘ x -  [j -  i])  (x, y)

+ q i-M x - [ i] ) f |^ j+ i (x .y ) ,

0 < i < j < n - m .  Then f ^  (x, y) is a polynomial in x and y o f total degree m. 

Furthermore (x, y) interpolates the function f(x, y) at ([i + s], [j + t]), 0 ^  s < t < m. 

In particular f^ ̂  (x, y) interpolates f(x, y) at ([s], [t]), 0 < s < t < n and hence

^  o(x. y) = Pn(x, y).

* * * * *
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Chapter 2

Interpolating polynomial on a q-triangle

2 .1  Introduction

It is known that for a function f(x, y) defined over the standard triangle with 

vertices at (0, 0), (n, 0) and (0, n), there exists a unique polynomial Pn(x, y) o f

degree at most n in x and y which interpolates f(x, y) at the (n + l)(n  + 2)/2 points 

o f the mesh (i, j) , i, j  > 0, i + j  < n. In [12], S. L. Lee and G. M. Phillips derived a 

forward difference fo r the polynom ial P^(x, y) and represent it  in the x and y

directions. In a subsequent paper [13] the authors extend the results on polynomial 

interpolation at the points o f geometric progression to the two-dimensional case. They 

considered the interpolating polynomial P^(x, y) for f(x, y) on the "triangular" mesh

points {([i], [j]): 0 < i < j  < n} and gave a forward difference formula in the y and 

"diagonal" directions.

In view o f this, we ask whether a forward difference formula can be 

derived for the interpolating polynomial on a "triangular" domain with the nodes 

S = {([i], []]): i, j > 0 ,  i + j < n } ,  which includes the standard triangle as a special case. 

In this chapter we shall derive a forward difference formula in the x and y directions for 

the interpolating polynomial at the nodes o f S. We also consti'uct a Lagrange form o f
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an interpolating polynomial on S and discuss a Neville-Aitken algorithm.

2 .2  Successive q-forward differences

We begin by extending the definition o f the q-integers to q-real. For any te  IR 

the q-real t, denoted by [t], is defined by

[t] = | r ^  ’ q 5̂ 1 and q > 0 
I t ,  q = 1 .

We see that the numbers q-real satisfy the following properties.

(a) For each te  fR, [t] is a continuous function of q.

(b) [s] -  [t] = q̂  [s - 1] for any s, te  IR.

(c) For any q 1, given any real number z satisfying 1 -  z (l -  q) > 0 there exists

t = In {1 -  z(l -  q) }/ln q such that z = [t]. Thus for q > 1 this holds for any z >  ̂ ^  q

and for 0 < q < 1 this holds for any z < ^ . See Figure 2.1. For q = 1, then for

any real z, we simply choose t = z.

with q >  1

>0z =

< 0

, 0 <  q < 1

Figure 2.1
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I f  t is an integer we w ill also refer to the q-real [t] as a q-integer. We note that the q- 

integers satisfy the properties mentioned in (1.16). Furthermore for any t g IR and k 

G Z ,  with 0 < k < t, the q-binomial coefficient is denoted and defined by

k - l [ t - v ]r  t 1 [ t ] [ t -  1] ... [ t - k +  1] T-r
L k J  -  M ! -  [V  + 1]

where [0]! = 1. I f  t < k we define [  ^  ]  = 0. We note that i f  t = n, a positive integer, 

then the q-binomial coefficients satisfy the relations given in (1.17).

Given a positive integer n, let us consider the triangular array o f (n + l)(n  + 2)/2 

points: ([i], []]) where i, j  > 0, and i + j  < n, formed by the lines x = [i] and y = |j], as 

shown in Figure 2.2 . I f  q = 1 then the nodes ([i], [j]) = (i, j)  become the lattice 

points with integer coordinates. This array o f nodes is bounded by the X-axis, the Y- 

axis and the hyperbola x + y -  (1 -  q)xy = [n]. We shall call this region a standard 

q-triangle of order n. The derivation o f the hyperbola equation w ill be shown in 

section 2.4. We note that for any (x, y) within the q-triangle there exist x, ÿ g  IR such 

that (x, y) = ([x], [ÿ]).

x + y - ( l - q ) x y  = [4]

Figure 2.2
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Given a function f(x, y), let us denote fy  = f([i], fj]) where i, j  > 0, i + j  < n. 

Then the forward difference operators £)j^ f j j  , £)y f | j  are defined as follows.

Let £)^ f i j  = f i j  and for m = 1, 2, 3, ... , define recursively

Similarly let £)y fi j = f i j  and for n = 1, 2, 3, ... , define recursively

It follows that for m = 1 ,2 ,3 , ... , and n = 0, 1 ,2, ... , the mixed q-differences 

satisfy

and for m = 0,1, 2, ... , and n = 1, 2, 3, ... ,

f i j  = f i j+1 -  q "- ' K ' K  f i j

From the definition above we see that divided differences T : and ^  ”  ft jX ^>j y  ^»j

and mixed divided differences £)J^£)y f i j  can be expressed in terms o f function values. 

We need the following Lemmas.

Lemma 2.1 Let q be a positive number. Then for n > 1 and all real x

r n  1
( x - l ) ( x - q )  . . .  ( x - q ^ - 1 )  =  ( - 1 ) ' '  q V ( v - l ) / 2  x n - v

v=0 ^
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Proof The proof is by induction on n. The above relation clearly holds i f  n = 1. 

Suppose it is true for n. Then

(x -  l)(x  -  q) ... (x -  qn)

= x(x -  l)(x  -  q) ... (x -  q"-^) -  q" ( x -  l)(x  -  q ) . . . (x -  q "- l)

=  2  ( - l y  P l  q V ( v - l ) / 2  x n + l - v  +  ^  ( _ 1 ) V + 1  [ " 1  q n + v ( v - l ) / 2  ^ n - v  (2.1)
x . _ n  LVJ Y=0V = 0

qn+n(n-l)/2

+ ( - l ) k  { T  M  q k (k -l) /2  +  ^ ^   ̂ q n + (k -l)(k -2 )/2 1 x n -k + 1

k = l

where we have written k = v in the first summation of (2.1) and k = v + 1 in the second 

summation. Factorising the terms in the last summation above and using the q- 

binomial property (1.17), we obtain

( x -  l ) ( x - q )  ... ( x -q " )
n + 1 

0
xn+1 + (_l)n+l

n :  n

k=l

n " n
k + k -  1 _

q O + l — k  ^  q k ( k — 1 ) / 2  x n —k + 1

n+1 p I 1 n
=  ^  ( - 1 ) ^  ^  ,  q k ( k - l ) / 2  x H - k + l

k = 0  ^

and this complete the proof.



25

Corollary Taking x = -1 in Lemma 2.1 we see that

Z  [ v l  = n  (1 + q^)
v=0 v=0

For q = 1 this reduces to the familiar identity

È C )  = 2"
v=0

Lemma 2.2 For all real x and y,

n ( x - q “ ) r i ( y - q P )  = É  Z  (- i)« + P
a=0 P=0 a=0 P=0

-  J. -

_0C.
j  qd x*‘~“  y^“ P

where d ~ a (a  — l )/2 + P(p — l )/2 . 

Proof Lemma 2.1 implies

r-1 s-1
r i ( x -  q^) n  (y -  q^)
a=0 p=0

= ^  (—1)°  ̂ qa(a-l)/2 y  (—1)P „ qP(P-l)/2 yS-P
0=0 L a j  LPJ

r s
~ ^  ^  (—1)G(+P r qa(a-l)/2  + P(P-l)/2 x f -o t  yS —P

0=0 p=0 L

We can now express terms of function values.
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r  s

0=0 P=0
f i j  = S  Z  ( - 1 ) “ -^^ a B q " f i+ r - a j+ s - f  (2.2)

n - n  R -f) L ^  J L H J

where d = a (a  -  l )/2 + P(p -  l ) /2.

Proof Let and By denote the q-forward shift operators defined by

E x  f i j  =  f i + l j  E y f y  =  f i j + i

then the operators and £)^ satisfy

E x  f i j  =  f i + r j  and £>x = E ^ - I ,

where I is the identity operator. Similarly

E f j j  -  fij+s and £)y — Ey I.

Since

^ r ' f i j  = fi+ ij -  f i j  = ^ x  Ex f i j - ^ x  q""! f i j  = (Ex - q"> I) fiw

we also have

A '  = ( E x - I ) ( E x - q I )  ... (E x -q r - i l )  for r = l , 2 , ...,

and similarly

A y  = (E y - I)(Ey -  q I)...(Ey -  qS-l I) for s = 1, 2 , . . .  , (2.3)

with A °  = A ”  = I.
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Now using (2.3) and Lemma 2.2, we can write the mixed divided difference as

KK  fij = fi (Ex -  q“ I) n (Ey -  qp I) fij
0=0 p=o

r s

where d = a (a  -  l )/2 + p(p -  l )/2 and hence

r s

0=0 p=0 a f i+ r -o , j+ s -p

Note that, taking r  = 0 or s = 0 in (2.2), we have the special cases

(i) K  fij = Z  (-1)“ [^] q“(«-*)/2fi
0=0

s

4 + r -o ,j

(ii) f i j  =  2  ( - l ) P  p J qP(P-l)/2fjj^g_p
p=o

Corollary It follows immediately from Lemma 2.3 that

a ;  fij = A " a ;  fij for r, s = 1. 2. 3........

that is, the mixed q-differences are commutative.

2 .3  Forward difference formula on the q-triangle

Let Pn(x, y) be the polynomial o f degree n which interpolates a function f(x, y) 

at nodes ([i], [j]), i, j  > 0, i + j  < n . First we derive a representation o f such a
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polynomial. For the cases n = 0 and n = 1, we can take

P o(x .y ) = fo,o

and

P i(x , y) = fo,o +  x A x  fo,o + y  & y  fo,o 

respectively since P i( [0 ],  [0 ]) = , P i ( [ l ] ,  [0 ]) = and P i( [0 ],  [1]) = %j  .

Now for n = 2 let us try to write P2(x, y) in the form

P2(x, y) = P i(x. y) + + Bxy +

Note that the last three terms of P2(x, y) are multiples of the Lagrange coefficients for 

which i  + j  = 2. We require that P2([i], t jl)  = A j for i, j  ^  0, i  + j  < 2 and we see 

immediately that P2([i], [j]) = P i([i], [j]) = f i j  for i, j  > 0, i  + j  < 1. Therefore the 

constants A, B and C must satisfy the following conditions. First

^2,0 = fo,0 + P]£>xfo,o + A = f i  o + q ^ x  fo,0 + A

and this gives

A = ^ x f l ,0 -  q ^ x  %,0 = •

To determine B, we have

f l , l  = fo,0 + fo,0 + fo,0 + B = f^ q + 0̂,0 + ®

and therefore

B = ^ y f i ,0 -  ^ y %0 = ^ X ^ y  %,0 •

Finally,

%,2 = fo,0 + P 3^yfo ,0  + C = fo j  + q ^ y fo ,0 + E!

and hence

C = £)y fo j -  q ^ y  fo,o = fo,0 •
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Thus ?2(x, y) can be written as

P2(x, y) = fo ,0 + + y ^ y f o ,0 fo,0 + x y ^ x ^ y f o ,0

Similarly for n = 3 we begin by writing

P 3 (x .y ) =  P . ( x . y )

D y ( y - r n ) ( y - r 2 1 )
q3[3]!

and thus P3([i], [j]) = P2([i]» U3) foi" all i, j  > 0, i  + j  < 2. We determine A, B, C and 

D as follows. On evaluating Pg(x, y) at ([3], [0]) we have

fs.O = fo,0 +  [3 ]^ x % ,0  + [3 ]^ x ^ 0 ,0  + A  .

Therefore

A  = f3,o -  fo,0 “  (1 + q + q^) 0̂,0 -  (1 + q ) (^ x  f l ,0 “  q ^ x  fo.o) "  q ^ ^ x  %,0

“ fs,0 -  fl,0 ” ^x fl,0 ~ q^x fl,0 ~ q^^x 0̂,0 

= f 2,0 -  q ^ x  fl.O -  q ^ ^ x  fo.O

= fl.O “  fo.o =  ^ x  fo.o •

Since

2̂,1 = %,0 + [2 ]^x fo ,0  + ^y fo ,0  + ^x^0,0 + [ 2 ] ^ ^ ^  fgg + B
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we obtain

B = f2,i -  fo ,0 ”  fo,0 -  (1 + q ) ^ x  ^0,0 “  ^0,0 “  (1 + q ) ( ^ x  fo ,l -  fo,o)

= % ! -  fo ,l -  ^ x  fo ,l -  q ^ x  fo ,l -  ^ x  ^0,0 

~ ^ x  f l , l  -  q ^ x  %,! ~ ^ x ^ 0,0 

= ^x^O .l -  ^ x  4),0 = ^ X  ^ y  ^0,0 *

Similarly we have

fi,2 = fo,o + ^ x  fo,o + [2 ]^  y fo,o + [2]£)^£)y fô o + ^y fo ,o  + C 

which gives

C  =  f0 .0

and

fo,3 = fo,0 + [3 ]^ y fo ,0  + [3 ]£ )y fo ,o  + D

which yields

D = £
yD = fo.o •

Hence we obtain an interpolating polynomial 

P3(x, y) = fo,o + { x£)x fo,0 + Y ^ y  %  )

* I >0,. * ®.0 , %  ,

*  I fo ,

*  ' 0,  *  '>■» 1
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which is of degi^ee at most three. Alternatively we can write Pg(x, y) as

3 r  r-s -1 s -1

We conjecture that P^(x, y) is a polynomial o f degree at most n which may be 

written as

( 2 . 4 )

We know that for a given point (x, y) in the q-triangle there exist x, ÿ g IR such that 

X = [x] and y = [ÿ]. Then the double products in (2.4) become

T &  (X  -  [ V ] )  T -r  ( y  -  [ V ] )  _  *^T^^( [ x ]  -  [ V ] )  T - r  ([ÿ ] -  [ V ] )

vJo q^[v  + 1] Ü  q n v  + u  iJo q ^ v  + u  q^ iv  + u

^  [ X -  v ]  T-T [ÿ  -  v ]  

v = 0  [ ’V +  1 ]  V =0 [V  +  1 ]

since [x] -  [v] = qv [ x -  v] and [ t ] [ t -  1] ... [ t - k  + 1]
[k]!

Hence, using these q-binomial coefficients, the polynomial in (2.4) may be written 

more simply as

n r

En(x, y) = Z  X
8=0

X ÿ
_r -  s_ _s _
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We aie now ready to justify the conjecture expressed in (2.4).

Theorem 2.1 Let f(x, y) be defined at all points o f the q-triangle o f order n. 

For any (x, y) in the q-triangle, let

n r r-

P n ( x ,y )  =  Z  Z
p=0 s=0

X
Lr  -  s j [ I ] (2.5)

where x = [x] and y = [ÿ]. Then the polynomial P^(x, y) interpolates f(x, y) at the 

nodes ([i], [j]), i, j  > 0, i + j  < n.

Proof Clearly the theorem is true for n = 0. Suppose the theorem is true for n. Now 

for all points ([i], [j]) with i, j  > 0 and i + j  < n.

n r r

P „ + l([ i] ,  Ü1) =  z Z
n=0 s=0

1
r  -  s

n+1 p . -,

+ Z  [ n + 1 -  s ]

The second summation is zero because, i f  s > j  then

then i < n - j < n - s < n 4 - l - s  and therefore n -f 1 -  s

is zero and similarly i f  s < j  

is zero. Thus

Pn+l(W,Ü]) = Pn([i], U3) = f i j ,  0 < i + j < n .

To complete the proof by induction, we have to show that Pn4-i([i], [j]) = f j j  

for all points ([i], [j]) with i + j  = n + 1 . We obtain

n+1 r

P „ + l( [ i ] J j ] )  = Z  Z
11=0 s=0

i '  j  '
_ r -  s . .  s _ fo.o
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n+1 n+1

Z  Z
s=0 r=s

1

r  -  s

n+ 1 n+1 s p . -I p , -,

= S 5

where we have changed the order o f summation and written t = r  -  s. We now use the

= 0 i f  j  < s, and that i  = n 4 - l - j < n  + l - s ,fact that the q-binomial coefficient 

to obtain

J 1

P„+ l([i], Dl) = Z  Z
s=0 1=0

'  i ' '  j  '
-  t . _  s _

f0.0 •

We then apply Lemma 2.3 to give

P„4.l([i]. D]) = Z  Z
s=0 1=0

" i ' ■ j  '
. t . -  s .

Z  Z  (-i)-p
a=0 p=0

t
a LpJ ft-a,s-p

where d = a (a  -  l) /2  + P(P -  l)/2. I f  we substitute a  = t -  k and p = s -  m and 

rearrange the summations, the last equation above becomes

P n + l(M , Ü1)

=Z  Z  Z  Z  (-1)'-’̂ +®-"'
1=0 s=0 k=0 m=0

t
t -  k

s
s -  m

' i ’ '  j  “
t s qd . (2.6)

In (2.6) we write

'  i ' t i ■ i  -  k ■
_   ̂ _

s
. t _ _ t — k _ - k _ _ t -  k _ ’ .  s _ _ s -  m _ i][iJ

m
m 

s -  m



and change the order o f the summation, writing

i t i i s J 1
I X  = I S  and t l = l t

s=0 m=0 m=0 s=m

This gives

Pn+l(m, Ü])

=z i z i
k=0 m=0 t=k s=m

'  i ' i - k ■ j ■ j  -  m ■
_ k _ . t — k _ m . _ s -  m _ qdf.
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1 Jz z
k=0 m=0

J
m fk,m 2 ,  2 ,

V = 0  12=0

J -  m

.

k,m

(_l)v+|2 q V ( v - l ) / 2 + p ( | a - l ) / 2

where we have written v = t — k and |2 = s — m.

I f  we choose k < i, it follows from Lemma 2.2 on setting x = y = 1, that

i —k  j —iTi p '   k i r i    m n
^  2   ̂ (_ 1 )V + |2  qV(v-l)/2+|i(|2-l)/2 = 0
v=0 |JL=0 L ^  J L M- J

and similarly i f  k = i and m < j  this sum is also zero. Thus, taking k = i and m = j, we 

have Pn+i([i], Ü1) = A j the theorem follows.

Remark When q = 1, (2.5) reduces to Theorem 1.5. a forward difference 

formula for polynomial interpolation on the standard triangle:

n r

Pn(x,y) = Z  Z ( r : s )  ( I )  A r < f 0.0 -
p=0 s=0
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Example 2.1 To establish the forward difference formula given in (2.5), we

consider the function f(x) = exp(0.003x + 0.0 ly ) defined on the standard q-triangle of 

order 5 with q = 3, and then evaluate the interpolating polynomial P^(x, y) at the point 

(2.5, 6.0). From Theorem 2.1, the interpolating polynomial P5 can be written as

ps(2.5.6.o) = z z [ : ] L ^ k ]
where

and

[x] = 2.5 and [y] = 6.0

_  1 -  q ^  1 -  q^~^ 1 -  q x -k + 1
1 _  q k  1 _  q k ~ l  * "  1 -  q

In Appendix 2, we give a detailed Pascal computer program, created to evaluated 

Pg(2.5, 6.0). The result shows that

f(2.5, 6.0) = 1.0698302596 

Pg(2.5,6.0) = 1.0698302625.

We obtain a good estimate to f(x, y) at the point (2.5, 6.0), where the error is less than

3.0 X  10-9 .

2 .4  Lagrange interpolation form ula using hyperbolas

Let f(x, y) be a function defined on the q-triangle o f order n with the set o f 

nodes S = {([i], [j]): i, j  > 0, i + j  < n}. For q = 1 it  has been shown (see, for 

example, Lee and Phillips [12]) that the interpolating polynomial o f degree n on such a 

triangle can be written in Lagrangian form (1.13) and (1.14). In this section we shall 

construct the Lagiange form of an interpolation polynomial at the points S on the q- 

triangle. On a system where q = 1, the diagonal nodes (i, j), where i, j  > 0 and 

i + j  = k, lie on a straight line. For 1, let us consider a curve that passes through



36

the "diagonal nodes" {([i], []]): i, j  > 0, i + j  = k}. Its parametric equations are given 

by

x ( l - q) = 1 - q* and y ( l - q) = 1 - q i , w ith i + j  = k.

This cuwe satisfies

{1 -  (1 -  q)x} {1 -  (1 -  q)y} = 1 -  (1 -  q)x -  (1 -  q)y + (1 -  q)^xy = qk

and it is a hyperbola

X + y -  (1 -  q)xy = [k] ,

(see also Figure 2.2) which we w ill write as y(x, y) = [k] .

We now recognize that the nodes in the set S are formed by two linear systems 

X = [v], y = [v] and the system o f hyperbolas y(x, y) = [v] where v = 0, 1, ... , n. So 

given any point ([i], [j]) on the triangle, the union o f the hyperbolas y(x, y) = [n -  v] 

for V = 0, 1, ... , n -  i -  j  -  1, the straight lines x = [v] for v = 0, 1 ,... , i  -  1 and 

y = [v] for V = 0, 1, . . .  , j  -  1 contain all nodes on the triangle except the point ([i], [j]) 

itself. Thus the product

i - l  1-1 n - i - j - 1II(̂ - [V]) n (y -  [v]) n ([n -  V] -  7(x, y))
v = 0  v = 0  v=0

vanishes at all nodes ([h], [k]), h, k > 0, h + k < n, except at the point ([i], [j]) where 

its value is

co(i, j)  = [i]! [j]! q(i-» j/2 ([n] -  [i + j])([n  -  1] -  [i + j ] ) ... ([i + j  + 1] -  [i + j])

= [i]! [j]! [ n - i - j ] !  q(HX2n-i-H)/2 -  ij _

Note that y([i], [}]) = [i + j]. It follows that, for i, j  > 0, i + j  < n, the polynomial

1 i - l  H  n - iJ - l
M fi (X, y) = - T —  n - M) n (y - M) n -  y(x, y» (2.7)

œ ( i , j )  v = 0  v = 0  v=0
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satisfies the conditions

M " ah l r ic B - f   ̂ ( [h ] ,  [k ] )  = ( [ i ] ,  [ j ] )M. j  (LhJ, [k j) -  I  Q at a ll o ther nodes in  S

We also note that, in the above expression for mP.(x, y), an empty product (when i = 0 

or j  = 0 or i + j  = n) is taken to have value 1.

Thus we obtain a Lagrangian form o f an interpolating polynomial which uses 

hyperbolas and two linear systems. The polynomial can be expressed as

n n-i
P(X, y) = z z M?j(x, y) fij . (2.8)

1=0 j=0

In this case the degiee o f P(x, y) is at most 2n, since the degree o f any m P.(x , y) is at

most 2n -  i -  j. However, letting q tend to 1, the polynomial P(x, y) in (2.8) reduces 

to (1.13), the interpolating polynomial o f degree n on the standard triangle. Later we 

w ill obtain an interpolating polynomial o f possibly lower degree than that of P(x, y) for 

the above system o f points.

By following the method in Lee and Phillips [13], we now give an algorithm 

for evaluating the Lagrange coefficients m P.(x , y) in (2.8).

Let ÜQQ (x, y) = 1 and for m = 1, 2 ... , n define a™ (x, y), i, j  > 0, i + j  < m, 

recursively by

[n -  m + 1] (x, y) = q~H {[n -  m + 1 + i + j]  - y(x, y)} a!"r^ (x, y)
 ̂>J

+ q l- i (x -  [i -  1]) a|^~ J  (x, y) + q l+H  (y -  [j -  1]) a |" r j (x, y) (2.9)
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and (x, y) = 0 otherwise.

Then, as we w ill see from Lemma 2.4 below.

where i, j  > 0 , i  + j  < n.
'

Lemma 2.4 For m = 0, 1 , ... , n and i, j  > 0, 0 < i + j  < m.

a(“ (x .y ) = T -b - ;; (x ,y )

where

(2.10)

■ i i i r n i n L - i . i i i  /
n
m

and
i—1 j —1 iTi—i—j —1

b|" (X. y) = n  -  [V]) n  (y -  [V]) n  <[« -  v] -  y(x, y » .
v= 0  v= 0  v= 0

Proof By definition aQ q (x, y) = 1. Suppose (2.10) is true for m -  1. Then

[n - m  + 1] a!^ (x, y) = q~H t ! "   ̂ {[n -  m + 1 + i + j]  -  y(x, y)} b g   ̂ (x, y)m -1

m -1

+ q '« - j ( y - ü - i ] ) b | ; ; : l ( x , y )

= {q -H  T” - '  + ql-> T - J  + q:+H  x ff,]  (x. y)
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qd q d + m -i- j

“  I  rn t  rn f  Frr, _  1 _  1 _  n i[ i ] !  [ j ] !  [ m - 1 - i - j ] !  '  [ i - 1]!  [ j ] !  [ m - i - j ] !

, urn . . / r  n
[ i ] !  [j -  1] !  [ m - i - j ] !  ;

where d = ij -  (i + j)(2m -  1 -  i -  j) /2. Thus

["  - »  - 1  <  k  V) k ' b ;  k  , v [  „  ■ ,
and so

y) = [ i ] !  [ j ] !  [ J - i - j J !   ̂ [n -  m + 1] [n ]! b y  (x, y)

= x |:S b™ (x,y).

since [m] q^-m = [n] _ [n -  m ] . Thus completes the proof by induction.

C o ro lla ry  For i, j  > 0, 0 < i + j  < n,

2 .5  N eville -A itken  A lg o rith m

We also construct a Neville-Aitken algorithm for an interpolating polynomial on

the q-triangle o f order n. For each m = 1, 2, ... , n, the algorithm generates 

polynomials f|^ (x, y): i, j  > 0, i + j  < n -  m, which interpolate f(x, y) on T|^ , i, j  > 0,

i + j  < n -  m respectively. Here we have used the notation Ty to mean the set o f nodes

i f î  = {([i + s], [j + t]): s, t > 0  and s + t < m } .
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These are in the q-triangle bounded by the lines x = [i], y = [j] and the hyperbola 

Y(x, y) = [m + i + j].

Lemma 2.5 Let (x, y) = , i, j  ^  0, i + j  ^  n. For m = 1, 2, , n, we

define ff] (x, y), i, j  > 0, i + j  < n -  m, recursively by

q H  [m] (x, y) = {[m + i + j ]  -y (x , y)} ^   ̂ (x, y)

+ {Y(x, y) -  qi y -  [ i ] } (x, y)

+ q : ( y - m ) 4 ] ; i ( x , y ) .  (2.11)

Then ff! (x, y) interpolates f(x, y) on Tf .̂ .

Lemma 2.5 is a special case of Lemma 2.6 which we state and prove below. 

Note that the recurrence relation in (2.11) gives us an interpolating polynomial

^  Q(x, y) which satisfies fJ] ^ ([s], [t]) = fg j_, 0 ^  s + t < n. However, as we w ill see,

this polynomial is not the same as P(x, y) in (2.8). We also see that there is an

asymmetry in the last two coefficients on the right side o f (2.11). By modifying these 

coefficients, we can derive a one-parameter family o f polynomials f^ q ( x ,  y) which

satisfy the above interpolating property.

Lemma 2.6 Let f?j(x, y) = f j j ,  i, j  > 0, i + j  < n. Form  = 1, 2, ... , n. we

define ^ ( x ,  y), 0 < i + j  < n -  m, recursively by

qi+J[m] f|”  (x, y) = {[m  + i + j]  - y(x, y)}f|^   ̂ (x, y)
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+ (x ~ [i]){q j -  X(l -  q)(y -  [j])} j (x, y)

+ ( y - m w  - (1  - m  - q ) ( x -  [i])} (X, y) (2.12)

where X is an arbitrary real number. Then fg(x, y) interpolates f(x, y) on T|”j.

Proof First we note that the coefficient o f f !^ " \x , y) in (2.12) may be expressed as 

[m + i + j ]  -  Y(x, y) = q»+j [m] -  qj (x -  [i]) -  qi (y -  Ij]) + (1 ~ q)(x -  [i])(y -  | j ] ) .

This is easily verified and this alternative form makes the rest o f this proof easier. 

When A. = 1, (2.12) simplifies to give (2.11), because

( x - [ i ] )  { q j - ( l  “ q ) ( y - f j ] ) }  = ( x - [ i ] )  ( 1 - ( 1  - q ) y )  =y(x, y ) - q i y - [ i ] .

The proof is by induction. Clearly the above result holds for m = 0 where 

f?j, 0 < i  + j  < n, interpolates f  at the single point ([i], [j]). Suppose that (2.12) holds 

for some m -  1. Therefore the polynomials \  and j interpolate f  on

TÎ^“ \  j  respectively, as shown in Figure 2.3 . For any integers i, j  > 0,

0 < i + j < n - m  consider the function f!^(x, y) at the nodes

= {([i + s] ,ü + t ] ) , s , t > 0, 0 <s  + t < m }

We now show that polynomial j^ (x , y) interpolates f  on t !^ . First we see that

i f  the node ([h], [k]) e n  n  then

([h], [k]) = ([h], [k]) = ([h], [k]) = fh.k ,
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and hence

qi+J [m] f|" ([h], M )  =  { qi+j { [ m ] - [ h - i ] - [ k - j ]  +  ( 1 - q ) [ h - i ] [ k - j ] )

+ q i + j [ h - i ] [ l - X ( l - q ) [ k - j ] }

+ qi+j [k -  j ]  {1 -  (1 -  X)(l -  q)[h -  i ] } ] fh,k 

= q'+j [m] .

We see also that on the thiee extreme points ([i], fj]), ([i + m], [j]) and ([i], [j + m])

qi+j [m] f j ]  ([i], Ijl) qi+j [m] ([i], fj]) = qi+j [m ] f i j

and similarly

( [j + m], 0 ]) = fi+m j . and ([i], [j + m]> = fy+m  •

([i], [j+m-1])

Y (x , y ) =  [m + i+ j]

( [ i+ m -1 ] ,  [ j] )  ( [ i+ m ], [ j] )

Figure 2.3
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To complete the proof we consider the rest o f the nodes, which are on the 

hyperbola y(x, y) = [m + i  + j]  or one of the straight lines x = [i] and y = [j]. On the 

hyperbola y(x, y) = [m + i + j] ,  at the nodes ([h], [k]) such that h < i  + m, k < j  + m, 

we have

C u  ( [h ] , M )  =  ( M .  M )  =  fh,k

and thus

qi+j [m] f | ]  ([h], [k]) = { q i+ j([h -  i] -  X(1 -  q)[h -  i] [k  -  j ] )

+ q i + j { [ k - j ] - ( l - J l ) ( l - q ) [ h - i ] [ k - j ] )

=  qi+j{[h -  i] +  [ k - j ]  -  (1 -  q) [h -  i][k  - j ] ) 4 . k  

= qi+j [m] ,

where h, k > 0, h + k = m + i+  j .

On the line x = [i], with j  < k < j  + m, we obtain

qi+j [m] ^  ([i], [k]) = { qi+j {[m] -  [k -  j ] )  + qi+j [k -  j]  )

=  qi+j [m] f i j j .

Similarly, on the line y = [j] with i < h < i + m,

f l j ( [ h L [ j ] )  = f h j .

Thus, by induction, the formula is true for all m, 0 < m < n .
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We note further that the recurrence relation (2.12) cannot be written in the form 

q H  [m] ^  (x, y) = {[m  + i + j ]  -  y(x, y)} fj” “  ̂ (x, y)

+ qJ (x ~ [i]) f|^“ |. (x, y) +  q X y -  [j]) f| ĵ~ j  (x, y)

as we might expect, in seeking to generalize the case o f q = 1. This is because, at the

points o f n  T j^^j ^  would require

qi+j [m] q  ([i + s], fj + t]) = ( qi+j+s+t [m -  s - 1] + qi+j [s] + qi+J [t] ) fi+gj+t

= q'+j I [m] -  [s + t] + [s] + [t] ) fi+sj+t ,

which means

4]  ([j + s], Ü + 1]) = M  + ,

Thus we would require

[m ] + (1 - q ) [ s ] [ t ]  _ .
[m] -  1

and, unless q = 1, the above equality holds only for s = 0 or t = 0.

We note that f^ Q(x, y) in (2.12) and P(x, y) in (2.8) are two interpolating

polynomials on the same q-triangle o f order n. Thus it is natural to ask, are these

polynomials identical ? We know that the degree of P(x, y) is at most 2n. In fact some 

of the Lagrange coefficients M^j (those for which i + j  = n) are of degree precisely n.

Similarly the class o f polynomials ^  q (x ,  y) given by (2.12) are o f degree at most 2n.

However none o f the Neville-Aitken algorithms of the form (2.12) generate the 

interpolating polynomial defined in (2.8). This is shown in the following counter 

example.
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Example 2.2 Consider the two interpolating polynomials P(x, y) and fJ q (x ,  y)

defined by (2.8) and (2.12) respectively on a q-triangle o f order 1. From (2.8) we 

have

P(x, y) = M q q (x ,  y) fo,o + m } q(x , y) fj^o + Mg ̂ (x, y) fo,i

= {1 -7 (x , y)l fo.o + X f i,o  + y fo ,i •

Now let us consider the recurrence relation (2.12). We have

y) = ffl.O > y) = f l ,0 and ig j(x, y) =

and thus

Hence

0̂,0^^’ y) = { 1 - 7(x, y)} f^o(x, y) + x{ 1 -  X(1 -  q)y} q(x, y) 

+ y {1 -  (1 -  X)(l ~ q)x} f^ j(x, y) .

P(x, y) -  fQ q(x, y) = ( i -q ) {? i f i ^ o  + ( l - ^ ) f o , i ) x y

which is identically zero only for q = 1. As a result the polynomial P(x, y) in (2.8) can 

not be written in the form

n-m  n -m -i

X  X  y) a " j”^(x, y)
i=0 j=0

where a"j^^(x, y) is defined recursively in (2.9). For i f  m = 0 and m = n the above 

expression reduces to
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n n - i

X X ^ j(^ ,  y) y) = P(x, y) and fg g(x, y)

respectively.

2 .6  Generalised N eville -A itken A lgo rithm

Having shown that none o f the Neville-Aitken algorithms of the form (2.12) 

generate the interpolating polynomial defined in (2.8), it is interesting to explore 

whether there exists some other Neville-Aitken algorithm which generates the 

interpolating polynomial defined in (2.8).

Let f?j (x, y) = fj j , where i, j  > 0 and i + j < n. For m = 1, 2, ... , n, we define 

(x, y), 0 < i + j  ^  n -  m, recursively by

(x, y) = c|](x, y) f ^ \ x ,  y) + d|” (x, y) f|!^]j(x, y) + e|](x, y) fJ ’̂ j  (x, y)

(2.13)

where

Cg(x, y) + d! j(x , y) + e|^(x, y) = 1 . (2,14)

We shall call (2.13) a generalised Neville-Aitken algorithm. It includes the 

class of algorithms given in (2.12) as a special case. An examination o f equations

(2.13) and (2.14) shows that

(i) the three coefficients cannot be of the form



47

which extends the case q = 1 in an obvious way,

(ii) i f  the degrees o f c[^ (x, y), d™ (x, y) and e^j (x, y) are r, s and t respectively, 

then the degree of f f j  (x, y) is not greater than m . max{r, s, t} .

We observe further that the recurrence relation (2.13) cannot give (2.8). For let P(x, y) 

and fJ q(x , y) be the two interpolating polynomials on a q-triangle o f order 1 defined by

(2.8) and (2.13) respectively. Following the argument used in Example 2.2, we see 

that the polynomial

y) = cJ_o(x, y) f g o ( x .  y) + d *  (,(x, y) q( x , y) + e j „ (x ,  y) fg  ,(x. y)

is equal to P(x, y) i f  and only i f

CQ o(x, y) = l -  y(x, y), d j q(x, y) = x and e j q(x, y) = y.

I l l  This contradicts the fact that Cq q( x , y) + dg q( x , y) + Cq q( x , y) = l.

The following example shows that, even i f  we relax the condition (2.14) so that 

it  holds only for points in T y  and not for all x and y, we still cannot find a Neville-

Aitken algorithm of the form (2.13) which generates P(x, y) in (2.8).

Example 2.3 Consider the polynomial in (2.8) which interpolates f(x, y) on 

the set Tq q,

P(x, y) = p&r ([2] -  Y(x, y ))( l -  y(x, y)) fo,o + ^  x([2] -  y(x, y)) fi,o[2] q

+ ^  y([2 ] -  Y(x, y)) fo,l + xy fi i + ^  x(x -  1) f2,o + ^  y(y “  1) %,2
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Suppose that the polynomial can be expressed in the form o f (2.13) such that the
2 2 2 condition (2.14) holds on Tq q. So for some coefficient functions Cq q(x, y), dQ q(x, y)

2
and Cq q(x , y), we can write

P(x, y) = Cq q(x, y) PO.O(x, y) + d^ q(x, y) pl>0(x, y) + Cq q(x, y) pOd(x, y) 

where 

P0.0(x, y) = (1 -  Y(x, y)) fo,o + x f^ o + y fo,i

P f0(x, y) = ^ ([2] - Y(x, y)) fi,o + ^ ( x - l )  fi.o + y f i , i

pOd(x, y) = I  ([2] -  Y(x, y)) fo.i + X f i j  + i  (y -  1) fo,2

1 1  1are the interpolating polynomials on Tq q , T j q and Tq j respectively. However on 

comparing the coefficients of fg g , f 2̂ o %,2> we obtain

Cq q(x, y )=  ^ ( [ 2 ] - Y ( x , y ) ) ,  dQo(x, y) = and Cq o(x , y ) = - ^ y

2 2 on Tq q. This implies that on Tq q

c^o(x,y) + d^_o(x.y)+e^ o(’' 'y j  = .q)xy. ^ i

unless q = 1.

Now, given a generalised Neville-Aitken algorithm (2.13) which generates the 

polynomial f^ q(x , y) = P(x, y), say, we can always define the corresponding Lagrange

coefficients a f .(x, y) for P(x, y) as follows.IJ

Let Bq q(x, y) = 1 and for m = n -  1, ... ,0  define i, j  > 0, i + j  < n -  m,

recursively by
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(x, y) = Cy(x, y) a " T ( x ,  y) + d|^^j(x, y) a"_j^(x, y)

+ G?^^(x, y)a?T^;CKcK> CL15)

where a. .(x, y) = 0 i f  i, j  < 0 or i + j  > m , Then we shall see that P(x, y) can be 
w

written in terms of both ^ ( x ,  y) and a"T*” (x, y) for any m satisfying 0 < m < n.

Theorem 2.2 Let P(x, y) be the interpolating polynomial on a q-triangle of order 

n generated by the generalised Neville-Aitken algorithm. Then, for m = 0, 1,... , n ,

n—rn —j
P(x, y) = X  y) y ) ,

where a " j”^(x, y) is defined recursively by (2.15).

Proof The formula is true for m = n since a^ q (x , y) = 1 and f^ q (x , y), which we

have denoted by P(x, y), is the polynomial generated by (2.13) and interpolates f  on 

Tq q . Suppose the formula is true for some m > 0. Then using (2.13) we show that it

is also true for m -  1. First we see that

n -m  n -m - j

P(x, y) = s  X  y) a"]"^(x, y)
j= 0  1=0

n -m  n -m - j

= Z  Z  ( C y k  y) * (X , y) +  d y ( x .  y )  ^ J j ( x .  y )
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n -m  n -m - j

X X c^j(x, y) a":""(x, y) y)
j= 0  i=0

n -m  n -m -j+ 1

+ Z  Z, d%Lij(x. y) a;;:™ (x, y> y)
j= 0  h =l

n -m + 1  n -m -k + 1

+ Z  Z  e™ _i(x, y) al"-™ (X, y) fj^;*(x, y)
k = l i=0

where we have written h = i + 1 and k = j  + 1 in the last two double summations. Thus

n -m + l n -m -j+ 1

^(x, y) = S X Cy(x, y) a":""(x, y) y)

n -m +1 n -m -j+ 1

+ Z  Z  C l y )  Cl"/’'’y> Cj y>
j= 0  h=0

n -m + 1 n -m -k + 1

+ Z  Z  C -/" ’ y) y) y)
k=0 i=0

where the added terms in each double summation are all zero. This follows, since by 

definition a[ -(x, y) = 0 i f  i, j  < 0 or i + j  > r. Finally we obtain

n-m + 1  n - m + l- j

P(x, y) = S X { c^:(x, y) a"j"^(x, y) + d|^j .(x, y) a | ^ ( x ,  y)
j= 0  1=0

+ e!]_^(x, y) a"j_^(x, y) } f*^ \ x ,  y)

n -m + 1 n - m + l- j
r .m -1/- \  _ n -m + LZ  Z  C r  y) an"" (X. y ) .

J=0 1=0

Therefore by induction the formula is true for all m = 0, 1, , n.
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In particular, for m = 0, the interpolating polynomial in Theorem 2.2 reduces to

and thus a f .(x, y), i, j  > 0, i + j  < n, are the Lagrange coefficients for P(x, y). As a

special case, we note that the Lagrange coefficients for the interpolating polynomial 

generated by the Neville-Aitken algorithm (2.12) can be obtained from the recurrence 

relation

q'+j M  (x, y) = {[m  + i+ j ] - y ( x , y ) ]  (x, y)

+ (X -  [i -  l]) (q j -  Ji(l -  q)(y -  [j])) (x. y)

+ (y -  Ü -  i]) (q ‘ -  (1 -  %.)(! - q)(x -  [i])) (x, y).

Hence

n -m  n -m - j

0^ ’̂ y) ^0,0 y) = X  X  y) a "^ (x , y), fo rm  = n - l , n - 2 ,  ... , 1,
j=0 i=0

= i f  f i ja ^ ( x . y )
j=0 i=0

where f^ q ( x ,  y) is the interpolating polynomial on Tq q  generated by the recurrence 

relation (2.12).

* * * * *



52

Chapter 3

Newton formula and Lagrange coefficients for the 
interpolating polynomial

3 .1  Introduction

Let xq, x j, be n + 1 distinct points in [a, b]. From (1.5) we see that,

the Newton form o f the polynomial that interpolates f(x) at xg, X j, ... , x^ can be 

written as
n i- l

Pn(x) = 2  f[xg, X i ,  . . .  , Xj ]  (x -  X y )  ,
1=0 v=0

where f[xg, x j , ... , Xj]  is the divided difference defined by

f [ X | ,  X2> ••• 5 X j ]  f [ X Q ,  X j ,  . . .  , X j _ j ]
f [ X g ,  X j ,  . . .  , Xj] X j - X g

W hile the above is not the only notation for divided differences, it may be the one most 

commonly used. Another notation uses [xg, x j, ... , x j f  in  place o f the previous 

notation f[xg, x%, ... , Xj] and this is more suitable for extending divided differences to 

two dimensions. We shall modify the notation o f one-dimensional divided differences 

to suit a scheme fo r a higher dimension, using suffices to denote divided differences
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with respect to x and y respectively.

Let f(x, y) be a function defined on some region containing the set o f distinct 

points S = {(xj, yj): i, j  >  0, i  + j  < n). Note that, i f  we choose xg < x^ < ... < x„ 

and yg < y i < ... < y^, these points w ill lie  in a triangular formation. In the firs t 

section however, we w ill derive a two-dimensional Newton's formula fo r f(x , y) 

w ithout imposing such a restriction . In section two, we discuss the error o f the above 

interpolating polynomial. We w ill also study the Newton form o f the interpolating 

polynomial when the nodes are arranged in particular ways. Specifically, we consider 

the follow ing three systems of nodes in triangular formation. I f  Xj and yj are chosen to

be equally spaced on the X and Y axes respectively, we w ill show that the Newton's 

formula reduces to the forward difference formula. In another case, we w ill let Xj and 

yj be two different q-integers on the X and Y axes respectively and derive the forward 

difference formula on a q-triangle. As a comparison, we also w ill include the system o f 

nodes on a triangle considered by Lee and Phillips [13]. We find that the Newton's 

formula simplifies to give the backward difference formula.

In the last section, we answer the question raised in Chapter 2. We w ill prove

that there is a Lagrange form o f an interpolating polynomial o f degree lower than 2n,

(in fact o f degree at most n) on the q-triangle o f order n. We also study the properties o f 

the Lagrange coefficients L “ .(x , y) = 0, n = 2, 3, 4, 5 for general values o f q. In this

case a significant property o f the Lagrange coefficients has been found: each L^.
* J

contains i + j  linear factors and the remaining factor is a transformation o f the function 
T n - i - j
M).o *

3 .2  Two-dimensional Newton interpolation formula

Let Xg, x j, ... , x „ be any n + 1 distinct points. Then fo r a fixed value o f y.
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we denote x-divided differences by

[xolx y) = f(xQ, y)

and

[XQ, x i, ... , x j^  f( ', y)

[X |, X2> ' y ) [xq» X j, ... , f(*> y)
^  ^  .

Sim ilarly let yg, y^, ... , y,^ be any m + 1 distinct points. Then for a fixed x, we 

denote y-divided differences by

[yoly f(x, •) = f(x, yg)

and

[yo, y i, ••• »ymly f(x, •)

[yi> y i ,  ••• ’ ymly f (x ,  •) -  [yo, y i ,  ••• , y m - J y  f (x ,  •)
ym “  yo

We define, in an obvious way, the mixed divided difference

[yo» y i ’ ••• » ym ]y[x0’ x%, , xnlx ^ ~ [yo» •** » ymly ([xo» » Xnlx ^(‘» y)) •

Since the extended form o f formula (1.6) gives

r 1 r/ \ f(Xi, y) J. / N[xg, Xi, ... ,Xnl^f(-, y) = 2^ — -----------------  = 4)n(y)»

n  (Xi -  X,)
k=0
k#i

say,then
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m

[yo» yi» » ym]Y ( [xg» x j, ... , x^Jĵ  f(*, y) )
0n(yi)

n  (yj -  Yk)
k=0kï*j

and thus

m n

[yo» y 1» ••• » ym]y [xo» xi> ««♦ » x^^]^f Xi
f(x j, y j)

m n

n  (yj -  Yk) n  (Xi -  x0

From this, the follow ing result is obvious.

Lemma 3.1 Mixed divided differences commute, that is,

[yo» y 1» • • • » ymly [xo» X j > • • * , x,^]^ f  — [xg, X | ,  ... , [yo» yi» • • • » ymly ^ •

Now let us extend the one-dimensional Newton interpolation formula to two 

dimensions, using the method o f D. D. Stancu [24]. For any fixed y, f(x, y) may be 

regarded as a function o f the single variable x. Apply (1.8), the one-dimensional 

Newton formula with remainder to f(*, y) at the nodes x = X j, i  = 0, 1 ,... , n , to give

n i- l
f(x, y) = X} [xo, x%, ... , Xj]  ̂ f(-, y) 1% (x -  Xy) 

1=0 v=0

n
+  [X, Xg, . . .  , X„]^ f(', y) n  (X -  Xy)  . (3.1)

v=0

Apply the Newton formula once again to the function

A j(y) = [xg, x i ,  . . .  ,X j]  f(-, y)
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at the nodes y = yj, j  = 0, 1, ... , n -  i to give

n—i 1—1
Aj(y) = X [yo» yi, ', yj]y [xo, xj , , xĵ  f II (y - yv) + Ri(y) (3 2)

j=0 v=0

where
n-i

R i(y) = [y, yo Yn-ily [xq, x j , . . . ,  Xj]^ f  1% (y -  y^) .
v=0

Substitute (3.2) into (3.1) to obtain

n n-i j-1 i - l
f(x,y) = X Œ  [yo,• • • ,yj]y[xo>•• • ,x j^ f  r i ( y - y v )  + R i( y ) )n (x - x ^ )

i=0 j=0 v=0 v=0

+ [x, Xg, ... , x j^  f(", y) n  (x -  Xy)  .
v=0

We w ill write this as

f(x, y) = Pn(x, y) + R(x, y)

where

n n-i j—1 i—1
Pn(x.y) = Z  { Z  [yo y jiy  [^o- - x j*  f  H  (y -  yv) ) H  (x -  %v)

i=0 j=0 v=0 v=0

and

n i- l  n
R(x, y) = X  R i(y) n  (x -  Xv) + [x, xg, . . .  , x Jx  f(s y) r i  (x -  Xv) . (3.3)

i=0 v=0 v=0

We note that each o f the terms

i - l  
R i(y) n  (x -  X y )  

v=0
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is zero when x = xg, x j , ... , Xj_% or yg, y i, . . . ,  yn_i, which includes all points in the 

set S = { (Xj., yg): r, s > 0, r + s < n }. Also the term

[x, X g , ... , x j^  f(-, y) n  (x -  X y )

v=0

is zero at a ll points o f S. Thus R(x, y) is zero at a ll points in the set S and so we have 

shown the follow ing.

Lemma 3.2 Let xg, x%, ... , x „ be distinct and let yg, y i, , yn be distinct. 

Then

n n-i i - l  j-1
Pn(x, y) = X  X  [xg, ... , Xj]^ [yg, ... , y j] f  1% (x -  Xy) H  (y -  yy) . (3.4)

i=0 j=0 v=0 v=0

interpolates f(x, y) at all points in the set {(xj, yp: i, j  > 0, i + j  < n},

3 .3  The error in polynomial interpolation

Let fPn be the set o f one variable polynomials o f degree at most n. The 

fo llow ing lemmas show how divided difference operators reduce the degree o f a 

polynomial.

Lemma 3.3 I f  P(x) e IP th e n  [x, x g ,..., Xk]P(x) e iPn-k-l

where 0 < k < n -  1 and xg, x^,..., x^ are any k + 1 distinct real numbers.

Proof The proof is by induction on k. It is easily verified that the statement is

true fo r k = 0. Assume that the divided difference [x, xg, ... , X}^_i]P(x) is a

polynomial o f degree n - k ,  fo r any k > 1. Then
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,  [x ,  Xq , X k _ l ]P (x )  -  [Xq, X j , X k ]P (x )
[x, Xq, Xk]P(x) =  ------------------------------------------^ -----------------------------------

Since [xg, x\, . . Xk]P(x) is a constant, the numerator is a polynomial o f degree n - k  

and is zero when x = xĵ . Hence (x -  x^) is a factor o f the numerator. This implies 

that [x, xg, ..., Xk]P(x) is o f degree n - k - 1. Hence the statement is true for all 

0 < k < n ~ 1.

Lemma 3.4 I f  P(x) e IP^, then [x, xg, ..., xJP (x) = 0.

Proof Taking k = n -  1 in Lemma 3.3 we see that [x, xg, ..., Xn_%]P(x) e IP g

and so is independent o f x and has the value [x„, xg, Xn_j]P(x), say, on putting 

X = Xfj. Thus we have.

[x ,  xg, . . . ,  X n _ i ] P ( x )  -  [Xg, X j ,  . . . ,  X n ] P ( x )
[x ,  Xg, . . . ,  X n ]P (x ) = -----------------------------------   = 0.

Now we w ill verify that i f  f(x, y) is in the set o f a ll polynomials o f degree 

at most n in X and y, then the error R(x, y), defined above, is identically zero. 

Consider the repeated divided difference o f (3.3),

[y, yo» •••’ Y n - ily  { [%0» Xj]^ f( ‘, y) }.

We may write any f(x, y) e in the form

f(x, y) = a„(y) + a„_i(y) x + a„_2(y) x̂  + ... + ag(y) x",

where aj(y) is a polynomial in y only, o f degree < j. Then, for a fixed value o f y.
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[xq ,  X i ,  ..., x^x f( ', y) = [xq ,  x i , . . . ,  x jlx  {  X  an-j(y) xJ }
j=0

X  ^n-j(y) [xQ, ^ 1» xJx  •
j=0

Since [xg, x ^ , ..., x j^  x-i = 0 i f  j  < i, we have

n

[xg, X j ,  . . . ,  xJx fO, y) = X  ^n-j(y) [XQ, X j ,  . . . ,  xJx  xi
j=i

Thus [xg, Xj, xJx f( ', y) is a polynomial in the variable y only, o f degree not 

greater than n -  i and so

[y, yo» •••» yn -ily  ( [xg, x ^ , ..., x j^  f(-» y ) } == o.

It follows that

n i - l  n - i

X  [y» yo» •••» yn-ily  [ [ x g ,  Xi, ..., xdx f( ‘, y )} n  “  Xy) n  (y -  y y )  =  0 .
i=0 v=0 v=0

Since the remaining error term in (3.3),

[x, x g  x Jx  f(", y) n  (x -  X y)
v=0

is also zero, we deduce that f(x, y) e implies R(x, y) = 0.

It w ill also be convenient to express the error (3.3) in terms o f partial
ak+l

derivatives o f f(x, y). We know from (1.9) that i f  — —  f(x, y), exists then for any y0X^+1
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1 ak+1
[x, Xq, Xklx f(s y) = % ,  y) (3.5)

where Ç lies between the minimum and maximum values o f x , x q ,  . . x^. A  similar 
0k+l

result holds for ——  f(x, y). Suppose that f(x, y) possess all partial derivatives up toOyX+i

order n + 1. Apply (3.5) repeatedly to the mixed divided differences in R(x, y), to give

[y, yo, - ,  yn -ilv  ( f(*» y) 1

1
[y, yo, -  , yn-ily p y)

an+i I
0x;i OyH-i+l (n -  i + l ) î  Ü fii):

say, where and T|j lie  between the minimum and maximum values o f xg, Xj and 

y, yo, -  - , yn-i respectively. Hence the error o f (3.3) becomes

R(x, y) = n  (X -  X v)  ^  ~  m, y)

n  ̂ i - l  n—i 0 n + l

+ I  i!  ( n - i  + i ) . n ( - x v ) n ( y - y v )

where ^ lies between the minimum and maximum values o f x, x g ,..., x „ . Note that 

in  the above error term, each r\i depends on y. From this form  o f the error o f 

interpolation it  is easy to see that R(x, y) = 0 whenever f(x, y) g as we verified 

above from the divided difference form o f the error.

We may deduce from the error property discussed above that the polynomial 

Pn(x, y) in  (3.4) is unique. Suppose there is another polynomial P*(x, y) g which
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agrees with f(x, y) at {([i], [j]): i, j  > 0, i + j < n). Then Pn(x, y) is an interpolating

polynomial fo r P*(x, y) on this set o f points. Since P*(x, y) E the error R(x, y) is

identically zero and thus P*(x, y) = P^(x, y).

3 .4  Newton formula on a triangle with equally spaced nodes

The Newton form o f the polynomial P^(x, y) in Lemma 3.2 can be simplified 

further i f  the nodes are arranged in particular ways. First let x j and yj be equally spaced 

so that Xj = Xq + ih, h > 0, 0 < i < n, and yj = yg + jk , k > 0, 0 < j  < n. For a fixed

value o f y, let the forward difference operator in the x-direction be defined by

Ax f(x, y) = f(x + h, y) -  f(x, y).

Then we have from Lemma 1.3 that

2
[x g , X j, ... , Xjlx f(', y) = f (x g , y) .

Sim ilarly for a fixed value o f x we have

1
[yo, yi, , yj]y •) = yo)

where Ay f(x, y) = f(x, y + k) -  f(x, y) is the forward difference operator in the y- 

direction. The mixed divided differences simplify to give

2
[x o , x j ,  . . .  , X j]^  [y o , y i ,  • — , y p y  ^ “  [xo , x%, ♦ • • , X j]x  A y  f ( x ,  y g )

h i k j i !  j !  yo) •

Given a function f(x , y) then, from Lemma 3.2, the Newton form  o f the 

interpolating polynomial on S = { (x g  + ih, yg + jk ): i, j  > 0, i + j  < n} can be written as
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Pn(x, y) =  Z  Z  n  (x -  Xv) n  (y  -  yv) : 'i~ ;T 7 r 'ü  ^ x  4  yo) •
i=:0 j=0 v=0 v=0 i ' J "

On putting x = xg + sh and y = yg + tk, we obtain

i - l
I I  (x -  Xy) = hi s(s -  1) ... (s -  i + 1) 
v=0

t4n  ( y - y v )  = kJ t ( t - 1 )... ( t - j  +1) 
v=0

and therefore

n n-i
P n(xg  + sh, yg + tk) = X  X  ( 0  ( ! )  f(x g , y g ) . (3.6)

i=0 j=0

Thus fo r the triangular grid defined above, where the spacing o f points in the x and y- 

directions is not necessarily the same, the Newton interpolation formula (3.4) reduces 

to the forward difference formula (3.6).

3 .5  Newton interpolation formula on a q-triangle

In this section we consider set o f points S = {(xj, yj): i, j  > 0, i + j  < n ), where

" i = Mp = yj = U]q = f z ^  ' (3.7)

and p, q > 0. Now for a fixed y define the forward difference operator in the x- 

direction by

£ i “ f ( [ i ]p ,y )  =  f ( [ i ]p .y ) ,
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f([i]p . y) = + l]p- y) -  p " - ' y ) .  n = 1, 2, ... .

S im ilarly, fo r a fixed value o f x, we define the forward difference operator in the y- 

direction by

£ »yf(x .[j]q ) = f(x ,ü ]q )  

f(x. Ü]q) = Ü + l]q ) -  q ""-' f(x. Ij]q) m = 1, 2, ... .

On taking divided differences in the x-direction we obtain, for a given value o f y,

[[0 ]]x  f( ',  y) = f([0 ]p , y ) ,

and

[[0], [1 ]................ f( ', y)

[[1], [2] . . . .  , [i]]^ f(- ,  y) -  [[0], [ I ]  , ... , [i -  1)]^ f(- ,  y)

[i]p -  [0 ]p

fo r i  = 1, 2, , n .

Above, we have written the notation [[0], [ 1 ] , ,  [i]]^ where strictly we should have 

written [[0]p, [l]p  ,... , [i]p]^ . The omission o f the subscript p should cause no

confusion. We obtain sim ilar results on taking divided differences in the y-direction. 

We now show how divided differences are related to forward differences.

Lemma 3.5 For a fixed value o f y

O + ' j  '■ +  " jJ x  « •>  y )  =  [n ]  , p i„ + ( n - l ) „ /2  y>
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Proof The proof is by induction on n and the case n = 0 is triv ia l. Suppose it is true 

fo r n = k > 0. Then fo r n = k + 1 we have

[[i], [i + l l  [i + k + l ] ] ^ f ( - ,  y)

[ [ i  + 1], (1 + 2] , , [i + k + 1]]^ f(- , y) -  [ [ i ] ,  [i + 1 ]  [i + k ]]^  f(-, y)
"  [ i  + k +  l ] p - [ i ] p

1 f + Up, y) _ y) 1
I  ri.T I “  r i . i  1 J *p i  [ k  +  l ] p  [k ]p !  p ( i+ l )k + ( k - l ) k /2  [k ]p !  p ik + (k ~ l)k /2

Thus

[[i], [ i+1] , . . .  .[i + k+1]]^ f(«, y)

{ £ ) ^ f ( [ i + l ] „ ,  y ) - p k £ j^ f ( [ i ]p ,  y)}
[ k  +  l ] p !  p i+ ( i+ l ) k + ( k - l ) k /2  x

[ k  +  U p !  p i ( k + l ) + k ( k + l ) /2  f ( W p , y ) -

Following the same argument as above we obtain for a fixed x that

[ra- U + "  U + -) = [„;j;,^ .i^ (m -l)m /2  0]q)-

In particular we have

1 f([0 ]p ' y)
 M l x f L y )  =  [n ]p , p (n - l )n /2

and

1 . ^ y f ( x , [ 0 ] q )
 = [m L . q(m-l)m/2

Thus, for mixed divided differences, we obtain
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[ [ 0 ] , . . . ,  w l x  [ [ 0 ] , . . . .  [ j ] ] y  f  p ( i - l ) i / 2  | j ] q !  q ( j - l ) j / 2  *

(3 8)

We can now express the polynomial ?n(x, y) in terms o f forward differences. 

We have from (3.4) that

n n - i  1-1 J-1

Pn(x.y) = Z Z  n  (* -  Mp) n  (y -  Mq) [ra.m,...  , [ i ] ] x [ [ 0 ] , [ l ]  Ü l l y f
1=0 j=0 v=0 v=0

(3.9)

Let X, ÿ e IR satisfy x = [x]p and y = [ÿ ]q . Then we may write

Thus

Pn(x,y) = i z  [ f l  [?1 £ > x ^ if([0 ]p ,[0 ]q ). (3.10)
1=0 j=0 J p L J J q

When p = q we note that (3.10) reduces to Theorem 2.1

3 .6  Newton formula on another set of nodes

In the above discussion we gave two-dimensional Newton's formula fo r 

interpolating f  on the set {(xj, yj): i, j  > 0, i  + j  < n}. Let us write this formula for 

interpolation on the set S' = {(Xj., yg): 0 < r < s < n}. We therefore consider the set S 

= { (xj, yn-j). i J ^ O ,  i + j < n )  where we kept the order o f {xg, ... , x^} and reversed 

the order o f (yg, y j, ... , y „} to give {y„, yn_i, . . . , yg). Then the restriction i  + j  < n 

becomes i + (n -  j)  < n, that is i < j  and S is changed to S'. Thus (3.4) becomes
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n n-i
Pn(x, y) = Z  Z  [XQ, Xi, ... , xJx [y„, Yn-I, ... , yn-jJy f

i=0 j=0

i-1 M
n  (X -  Xy) r i ( y - y n - v ) -  (3 11)
i-1 i-1

X
v=0 v=0

We now consider (3.11) fo r the case where Xj = [i]p , yj = jj]q, as defined in 

(3.7) above. We need to simplify the divided differences in the y-direction, as follows. 

We have

[ [n ]]y  f(x, •) = f(x, [n]q)

and

[[n], [n -  1], , [n -  k]]y f(x, •)

[[n], [n — 1], ... , [n — k — l ] ] y  f(x ,  •) — [[n — 1], [n — 2], ... , [n — k]]^  f(x , •)
[ n ] q - [ n - k ] q

It is helpful to define

Î5yf(x.ü ]q) = f(x ,ü ]q ).

f(x, [j]q) = q f(x, U]q) -  q-" f(x. [j -  l ] q ) . m = 1, 2, ... . n.

We w ill called these backward difference operators and we now examine their relation 

to divided differences.

Lemma 3.6 For k = 0, 1, 2, ... , n

[[n], [n 1],... , [n k]]y f(x, •) qnk-k(k-l)/2 M q)- (3.12)
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Proof Clearly (3.12) holds fo r k = 0. Suppose that (3.12) is true for any k > 0. 

Then

[[n], [n -  1] [n -  k ]]^  f(x , ■) -  [[n -  1], [n -  2] [n -  k -  1]]^ f (x ,  ■)
[ n ] n  — [ n  — k  ~  l ] n

1 ________f ( x ,  [ n ] q )  _  f ( x ,  [n  -  l ] g )

ill—k —1 r k l  I fikn—k (k ~ lV 2 rirl I nk(n—1)—kfk—1V2[ k  +  l ] q  q n - k - 1  [k ]q !  q k n -k (k ~ l) /2  [k ]q ! q k ( n - l ) - k ( k - l ) /2

[ k H - l ] q ! q n - k . k n - k ( k - l ) / 2  ®  y t "  '  *

[ k  +  1 ]„ !  q ( k + l ) n - k ( k + l ) /2  '

Thus by induction (3.12) holds for all k = 0, 1, ... , n. In particular, i f  we take k = n, 

[[n], [n - 1 ] . . . . .  [0]]y f ( x . .) = «X, [n ]q).

O n  defining x, ÿ e IR so that x = [x]p and y = [ÿ + n ]q , the Newton interpolation 

formula (3.11) for f(x, y) on S = {([i]p , [ j]q ):  0 < i < j  < n }  can be written as

n n - i

Pn(x.y) = Z  Z  [M , [1 ] [ i l ] , , [ [ n l , [ n - l ] . . . . , [ n - j ] ]  f
i=0 j=0 ^

i - 1  j - 1

X I I p '' [ * - y ] p  n  ‘I " - '' ty + v lq- (3.13)
v=0 v=0

Using Lemmas 3.5 and 3.6, we have
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« i  f ( [0 ]p .  [n ]q )
[ [0 ] , [ 1 ] . . . .  . [ i l ] ,  [[n ], [n -  1 ] , ,  [n -  j j ] ,  f  =   -----------------^-------------------------  -—

'y [i]p! p0-l)i/2  [j] ! q jn-ü-I)j/2

and thus (3.13) simplifies to give

n n - i

Pn(x. y) = Z  i  [ f  1 r 1 <  f ( [0]p . [ n ] , ) .
i=0 j=0 *- J p L J J q

We see that fina lly  the polynomial is expressed in terms o f mixed differences at the 

point ( [0 ]p , [n ]q ).

Alternatively, let us redefine the backward difference operators in a similar way 

to the forward difference operators so that, for a fixed x,

î i y f ( x j j ] q )  =  f ( x , [ j ] q ) .  

f(x, Ijlq) = f(x , [j]q) -  qm-1 f(x , [j -  l ] q ) , m = 1, 2, ... , n.

Then, by follow ing the same argument as above, we obtain

[[n ], [ n - l ] , . . .  . [ n - k ] ] y f ( x ,  •) = [k]q! qnk-k(k+l)/2

k = 0, 1,2, ... , n. Thus we obtain the interpolating polynomial in the form

n n - i

P n ( x ,y )  =  Z  Z  ( - l ) i  q ( -2 W + l) j /2
i=() j= 0

" x ‘ "ÿ
.  i . P J  -

where x,ÿ e IR, such that x = [x]p and y = [n -  y]q . The sim plification o f the 

definition o f the backward differences is offset by an increase in the complication o f the 

latter formula.
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3 .7  Lagrange coefficients for the interpolating polynomial

Let f(x, y) be defined on the q-triangle bounded by the lines x = 0, y = 0 and 

the hyperbola y(x, y) = x + y -  (1 -  q)xy = [n]. We see from Theorem 2.1 that 

there is an interpolating polynomial Pn(x, y) o f degree at most n which interpolates 

f(x , y) on the set S = {([i], [j]): i, j  > 0, i  + j  < n) and

Pn(x, y) = Z  I  [  f  1 r f  1 %  (3.14)
I J L J J  ^

where x,y e [R such that x = [x], y = [ÿ ] . Let us rewrite the polynomial Pn(x, y) in 

the Lagrangian forai

Pn(x, y) = Z  Z  L"j(x. y) f i j
i=0 j=0

where

L " j(M , [m]) -  (  Q I f  ( [k ] ’, |m |) ([!]; f j j )  O S i + j S n .

From (1.13) and (1.14) we know that LJ .̂(x, y) is a product o f n linear forms when 

q = 1. Thus it is interesting to explore the properties o f l P.(x, y) fo r general values o f

q. For the simplest case n = 1, we can write

1 l - i
P l(x ,y ) = ( l - x - y ) f o , o  + x f i o  + y fo , i = S S  L i j ( x ,  y ) f i j

i=0 j=0

In this case each Lagrange coefficient L? .(x, y), 0 < i  + j  < 1, is linear and is ̂J

independent o f q.
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q=4

q=4
q=L5 q=1.5

Figure 3.1 Graphs o f L q q(x , y) = 0 where (q > 1) q = 1.5 and q = 4

/ q=0.2

0 .$

q=0.2

D.Ô 0‘5 f:s

q=0.7

Figure 3.2 Graphs of Lq q (x , y) = 0 where (0 < q < 1) q = 0.2 and q = 0.7
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The interpolating o f degree two can be written as 

P2(x ,y )= P ,(x ,y )  +

= { l - x - y + ^ ^ | j ^ +  xy + ^ % p ) f o , o + x ( l - y - ^ ) f i . o

+ y ( l  -  X -  fo , l +  f l . l  +  " ^ q [2 j ! ^  ^0.2

2 2 - i
2

=  Z Z  L ;  j ( x .  y ) f i j .
1=0 j= 0

2
A ll o f the Lagrange coefficients are products o f two linear forms except Lq q ( x ,  y). In 

Figures 3.1 and 3.2 we plot the graphs o f Lq q ( x ,  y) = 0 for various values o f q.

Lemma 3.7 Let

Lo_o(x. y) = 1 -  X -  y + xy +

be the Lagrange coefficient o f fq o o f the interpolating polynomial on the set 

S =  { ([i], [j]) : i, j  >  0, i +  j  <  2) and let us consider the conic L q  q ( x ,  y) =  0. We find

that

(i) i f  q = 1, this conic is the pair o f straight lines x + y = 2 and x + y = 1,

(ii) i f  0 < q < 1, it  is an ellipse with axes x = y and x + y = ,

( iii)  i f  q > 1, it is a hyperbola with axes x = y and x + y = .

2Proof Setting the coefficient Lq q ( x ,  y) to zero, we have

x2 4- y2 + (1 + q)xy — (2 + q)x — (2 + q)y + (1 + q) = 0 .
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On reducing this conic to standard form, we obtain

2
On examining the last equation, we see that the conic L q  q ( x ,  y) = 0 is indeed a pair o f

straight lines, an ellipse or a hyperbola fo r q = 1, 0 < q < 1 or q > 1 respectively, as 

given in the statement o f this lemma.

For Pg(x, y), we have

P3(x. y) = P2(x. y) + fo.o + ta tx-r  ,i ] [,a  ^ 2^ i

+ A ' A :  fo,o + tS ]K .:2 .U p .. -  2 ] ^ 3

3 3- i

Z Z  L ;  . ( x , y ) f y .
i=0  j= 0

3 3Since L | j(x , y) = L j .(y, x) we w ill not write down all ten Lagrange coefficients 

L. .(x, y), but only the six for which i > j. We have

L^,o(x.y) = i - x - y + ^ % r ^  + xy + ~ ~ ™

x ( x -  l ) y  xy(y -  1) y(y -  l ) ( y  -  [2])
[2]! “  [2]! “  [3]!

" i / " ' y> ■ % i i ' ' I ' - -  ' I -
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• « '  4 , k ' ) - 4 m r ^

3We observe that the functions L. j(x , y), 2 < i + j  < 3, are a ll products o f three
3 3linear forms, whereas fo r q # 1, L j q(x , y) and L q j(x , y) are both products o f one 

linear form and one conic (ellipse or hyperbola). Making the substitution x = 1 + qX
g

and y = Y in L j q ( x ,  y), we obtain

Li.o(x.y) =(i +qx) { i - x - Y  + XY + ; .

a
We deduce from Lemma 3.7 that the quadratic factor in  coefficient L j q ( x ,  y) is 

elliptical i f  0 < q < 1 and is hyperbolic i f  q > 1.

g
The remaining coefficient Lq q ( x ,  y) has no obvious factor. However, on

g
examining the graph o f Lq q ( x ,  y) = 0 fo r various values o f q (see Figures 3.3 to 3.6),

g
Lq q ( x ,  y) appears to have a linear factor for the value o f q for which the points ([3], 0),

(0, [3]) and ([1], [1]) lie in a straight line. This occurs when ([1], [1]) lies on the line 

X + y = [3] and hence [3] = 2, giving q = (^5 -  l)/2 . We can obviously construct a
g

conic to pass through the remaining six interpolating points and so Lq q ( x ,  y) does 

factorize for q = (V5 -  l)/2 . To complete the details we state a lemma which is readily 

verified.

Lemma 3.8 I f  a and b are distinct non-zero real numbers, the conic

x2 + y2 + xy -  (a + b)(x + y) + ab = 0 

passes through the six points (a, 0), (b, 0), (a, b) and (0,a), (0, b), (b, a). This conic 

is an ellipse, which may be written as

(x + y - 1 (a + b))^ 4- ̂  (x -  y)^ = ^  (a^ -a b  + b ^ ) .
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Graph o f Lq q ( x ,  y) = 0 where q = 0.40

Graph o f Lq q (x , y) = 0 where q = 0.61

Figure 3.3
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Graph o f Lq q ( x ,  y) = 0 where q = 0.62

Graph of Lq q (x , y) = 0 where q = 0.63

Figure 3.4
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Graph o f L? q(x, y) = 0 where q = 0.80

Graph o f Lq q ( x ,  y) = 0 where q = 0.95 

Figure 3.5
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-2

Graph o f «(x, y) = 0 where q = 1,05

-2

Graph o f «(x, y) = 0 where q = 2.00

Figure 3.6
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Let us apply Lemma 3.8 to the case where a = [1] and b = [2]. It follows that

Lg gCx, y) = K (x + y -  2)(x^ + y^ + xy -  (2 + q)(x + y) + (1 + q))

fo r q = (Vs -  l)/2 , and the condition L q q (0, 0) = 1 gives the value K  = (1 -  VS)/4.
g

Note that the ellipse which is part o f the graph o f Lq q ( x ,  y) = 0 has its centre at
/ 3 + Vs 3 + Vs \ j  1 . 2 < . .  . 2( — g— , — g—  ) and has semi-raajor axis and semi-minor axis ^ .

Having shown that there is one value o f q fo r which Lq q ( x ,  y) factorizes, we 

have looked at Lq q ( x ,  y; q) = 0 and Lq q ( x ,  y; q) = 0, but have found no value o f q

for which either of these Lagrange coefficients factorizes. (See Appendix 3.)

In (2.8) we obtained a Lagrange form o f an interpolating polynomial on the q- 

triangle where the Lagrange coefficients have degrees between n and 2n. We now 

obtain the interpolating polynomial on the q-tiiangle o f smallest possible degree, where 

each Lagrangian coefficient is o f degree at most n.

Theorem  3.1

Lagrange fom i

Let us rewrite the interpolating polynom ial (3.14) in the

n n - i

P n (x . y) =  Z  Z  y ) f j j  .
i=0 j=0

Then fo r i, j  > 0, 0 < i + j  < n, the Lagrange coefficients may be expressed in the form

n - j n - r

L y(x , y) = i i  L
r=i s=j J J

q (r—i)(r—i—1 )/2  +  (s -j)(s—j —1)/2^

(3.15)

where x = [x], y = [ÿ] for some x, ÿ in [R,



79

Proof First we expand the forward differences in (3.14) to give (see Lemma 2.3)

n n - r r s

Pn(x,y) = S  S  [ î ] [ f l  I  W p
r=0 s=0 ^ a=0 P=0 L«,j l p j

On putting |j, = r - a ,  v = s -  (3we obtain

n n - r r  s

P n ( x . y ) = I  X r ^ ï ï f l S  X ( - l ) - P « - v
p=0 s=0 |i=0  v = 0

r
r -  | L i

where d = (r -  p.)(r -  p -  l)/2  + (s -  v)(s -  v -  l)/2  . Thus

n n - r  r s

p „ (x>  y) = X  X  X  X  (-1)’'-^+*-''
r=0 s=0 p=0 v = 0 ][:][

On picking out the coefficients o f fj j , for fixed values o f i  and j, we obtain

Ly(x, y) = X  X  [ i ]
r=0 s=0

" s ' X ' f
-  j  - _ r _ _s_

q ( r - i ) ( r - i - l ) / 2  +  ( s - j ) ( s - j - l ) /2

Since [1] = 0 i f  0 < r < i  and sim ilarly s
L j

0 i f  0 < s < j,  we obtain the

required result (3.15).

We now verify directly that 

{L “/ [ k ] ,  [m ]) 1 i f  ( [k ] ,  [m ]) = ( [ i ] ,  [ j ] )
0 i f  ( [k ] ,  [m ]) ^  ( [ i ] ,  [ j ] ) i, j > 0 ,  0 < i + j < n

We have

n - j  n - r

L y ( [ i ] ,  Ü D  = X  X  ( - 1 ) "  q M ) W - l ) / 2
r=i s=j

(—l ) s - j  q (s - j ) (s - j - l ) /2 s ' '  j  '
.  j  _ - S _



80

Since

for r = i  and s = j  and is zero otherwise, it  follows that L ” j( [ i], [j])  = 1 . For k, m > 0, 

k + m < n and ([k ], [m ]) ([i], [j]), we have

L |V (M , [m ]) 2  (_ l ) r - iq ( r - i ) ( r - i - l ) /2 [ ^  r  j  j" k j  (_ i)s_jq (s_j)(H -l)/2 |^  j  ]  [  T  ]

Since = 0 for r > k and [T] =
0 for s > m, we have

r=i

m
X ^  (—l ) s - j  q ( s - j ) ( s - j - l )/2

s=j

“ s ' '  m '
- j  - s (3.16)

for k > i and m > j, and L. .([k], [m ]) = 0 otherwise. W riting t = s -  j  in the secondIJ

sum on right hand side o f (3.16), we obtain

m -j
(—l ) t  q ( s - j ) ( s - j - l ) /2

t=0

'  j  + t " m m '
j - j  + t . j

m -j r

X  (-1)^ qKt-l)/2 r  “  J 
1=0 ^

From Lemma 2.1 we see that this last summation is zero. (S im ilarly we note that the 

firs t sum in (3.16) is also zero.) Thus L ” j([k ], [m ]) = 0 fo r k, m > 0, k + m < n and

([k ], [m ]) ^  ([i], [j]).

For a fixed value o f n, there are (  J  )  Lagrange coefficients L “j(x , y) for

i, j  > 0, i + j  < n. However the fo llow ing theorem shows that each Lagrange 

coefficient L". contains i + j  linear factors. The remaining factor is a transformation o f
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the function L q'q-̂ . Since the coefficients L " ^(x, y) are o f such importance, we w ill0,0'
write them down explicitly. We have

LS.o(’^.y) = i  X  ( - iy «  q" [ i ]  [ i ]
p=0 s=0 L i J  L î » J

(3.17)

where 2d = r(r -  1) + s(s -  1).

Let L"j(x , y) be the Lagrange coefficient o f f j j  where i, j > 0,Theorem 3.2

i + j  < n. Then

Li j(̂ 5 y) — y
LJ J

L% "LX ,Y )

where x = [x], y = [ÿ] and X  = [x -  i], Y  = [ÿ -  j]. 

Proof In (3.15) fo rr  > i  we write

[
'  r ’ ' x '
_  i - _r_

and, for s > j.
s
j  J [ ! ] [ ? : ] ]

Thus we may rewrite (3.15) in the form

n - j  n - r

Ly(x, y) = ^ ÿ X  X
L J L J J

X — 1
r -  i

where 2d = ( r - i ) ( r - i  -  1) + (s -  j)(s -  j  -  1). We now write X  = [ x - i ]  = [X ], 

Y  = [ÿ _ j]  = [Y ] and p. = r -  i, v = s -  j, to give
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L "j(x , y) X ÿ "
_ i  _ J .

n—i—J n—i—J—pX X (-!)*'+''
)x=0 v=0

' x ' “ y "

_F_ .  V _

where 2d = p(p -  1) + v(v -  1). On comparison with (3.17) we obtain

y) = [ f ] [ f ]

As a consequence o f Theorem 3.2, we see that the curve L^.(x, y) = 0 consists1J

o f the straight lines

X = [p ], 0 < p < i - 1,

y = [ v ] ,  0 < v ^ j - l ,

together with the curve L q" “̂ '^(X,Y) = 0, where X = q~  ̂ (x -  [i]), Y  = q“ i (y -  [j]).

This result implies that in order to be able to write down all Lagrange coefficients o f the 

form L^.(x, y), fo r a fixed value o f n, we need only concern ourselves with the (non-

linear) coefficients L|ĵ Q(x, y), fo r 2 < m < n.

* * * * *
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Chapter 4

On the limit of the interpolating polynomial

4 .1  Introduction

Let f(x, y) be a function defined on some region containing the set o f distinct 

nodes S = {([r]p, [s ]q ): 0 < r + s < n, r, s > 0}, p, q > 0. We w ill assume that f(x, y)

possesses partial derivatives o f appropriate order at (1, 0), (0, 1) and (1, 1). We know

from (3.10) that the Newton form o f the interpolating polynomial at the nodes o f S can

be written as

Pn(x.y) = X X [J] [ I ]  (4.1)
M) s=o i r j p L S J q  ^

where x = [x]p and y = [ÿ ]q  . I f  we let p tend to 0, [0]p converges to zero and the other 

distinct numbers [ l ] p , . . . ,  [n]p all converge to 1. Hence fo r r  > 1 the expression

p(r-l)r/2 r  x l  _  TT  *

L ' - l p  [H +  l ] p

simply reduces to x(x -  1) -̂1 as p tends to 0.
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In this chapter we show that the polynomial P^(x, y) has a lim it when both

p-40 and q-^0. This task depends on the simplification o f the lim it o f the expression 

%,0 /  . To sim plify our notation we w ill write

Q„(x,y) = Km |m  P„(x,y)

provided this repeated lim its exists. Then we w ill study the interpolation properties 

satisfied by the polynomial Q„(x, y). We w ill verify that these properties depend on the

appropriate partial derivatives o f f(x, y) evaluated at the three points (1, 0), (0, 1) and

(1,1). In the last section we show that Q^(x, y) can also be derived as a lim iting form

o f the interpolating polynomial on a simpler system o f nodes.

4 .2  Note on taking the limit of the q-forward differences directly

First we consider the polynomial P i(x, y) which interpolates f(x, y) at the three 

nodes (0 , 0), (0, 1) and (1, 0),

Pi(x,y) = ( i-x -y )fo ,o  + xfi,o + yfo,i-

Since P i(x, y) is independent o f p and q there are no d ifficulties in taking the lim it as 

p—>0 and q-^0. Note that, in the rest o f this chapter, we may drop the subscripts p and 

q. Thus [k ]  w ill mean [k ]p  when it  is associated w ith the variable x and [k ]q  when 

associated w ith the variable y. In particular we may write the ordered pair ( [ | i ]p ,  [v ]q )  

simply as ([p.], [v ] ) .

Let P2(x, y) be the interpolating polynomial o f degree two which interpolates 

f(x , y) at the nodes {([r], [s]): r, s > 0, r  + s < 2). Then
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P2(x, y) = fb,o + fo,o + y ^y  fo,o + %,o + ^y^x  0̂,0 f

we have

Hm |5*o y) = %.o + x(fi,o -  fo.o) + y(fo,i -  fo.o) + xy(fi,i -  fo.l -  fl.o + fo,o) 

+ x(x - 1) t a  i  f ) ^  fo,o + y(y - 1) t a  i  fo .o .

Hence

Q2(x,y) = ( l ~ 2 x ~ 2 y +  xy + x2 + y2)foQ + x (2 -x -y ) f j^ O

+  y(2 -  X -  y) fo  1 + xy +  x(x -  1) f x ( l ,  0 )  +  y(y -  1) f y ( 0 ,  1) 

We see that Q2(x, y) satisfies the follow ing conditions.

Q2([k], [m ]) = fk m » 0 < k , m < 1 ,

02 (1. 0) = fx (l.O )
dx

Since

-  fi,o  + fo.o

=  f x ( l ,  0 )  - f i , 0  +  % , 0

and similarly %

q ^0.0 =  ^ y (°-1) -  fo.i +  fo,o. (4.2) g
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and

| - Q 2(0. 1) = fy(0. 1) .
dy

We now consider the interpolating polynomial (4.1) o f order 3,

P 3 h . , ) .  y) * K  fo.o *  5  e ;  %

.  “ V  ;  *> : '»■» *  '»•» ^

Here we need to sim plify the lim its involving the third order differences in Pg(x, y). 

First we consider

p“!?o q'̂ l’o ̂  %.0 = ^  fi.o - J &x fo.o) •

Using the definition

^ x ^ l , 0 = ^ x ^ 2,0 ~P ^ x  ^1,0

and then applying L'Hospital's rule, we have

^ + p + p 2 .o ) - ( i  + p ) f ( i  + p,o) + p f ( i ,o )}

= plimj ^  ( 0  + 2p) fx (l + p + p2, 0) -  (1 + p) fx ( l + p, 0)

- f ( l + p , 0) + f ( l , 0)) .

On applying L'Hospital's rule repeatedly, we obtain
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p , ^ 0  j ï  f | . 0  =  ^  t ( l  +  2 p )2  fxx(l +  p  +  p 2 , 0 )  +  2 fx (l +  p  +  p 2 , 0 )

( l+p)fxx(l+p ,0 )-2fx(l+p ,0 ))

pi?0 5  ̂ x̂xx(l + p + p2, 0) + 6(1 + 2p) fxx(l + p + p2, 0)

(1 4- p )  fxxx(l +  P> 0) — 3fxx(l + P> 0) }

“  2 ^xx(L 0)

Thus we obtain

p i ? 0 q ^ p 3  -  2 ^ x x ( L  0 ) ~ f x ( l , 0 )  +  f i , o - f o , 0

and similai’ly

pHS) q'S ) q3 ^0.0 -  2 1) + % .l -  %,o

Also on using (4.2), we obtain

^ 0 <|!%p ^ x  %,0 = plim % ,! - ÿ ^ x  %.o)

-  1) "^1,1 + fo,i) “  {^x(L 0 ) - f j  0 + fo,o)»

and similarly

p % q ^ q  % ,0  -  ( f y ( l ,  1 )  - f l , l  +  f l , o )  -  { f y ( 0 ,  1 ) " f o , l  +  f o , o l -

Thus we have



Qs(x. y) = Q2(x. y) + x (x  - 1)2 ( i  fx x ( i,  0 ) -  fx ( i ,  0) +  f i,o  -  fo,o)

+ x ( x -  l )y  { fx ( l ,  l ) - f i , i  + fo ,l 0) + f l .o - fo .o )

+ xy(y -  1) {fy(l, l ) - f i . i  + fi.o -fy (0 , l)  + fo , i- fo .o )

+ y(y -  1)2 { 5  fyy(0, 1) -  fy(0, 1) + fo .i -  fo.o)

and after some simplification we obtain

Q3(x, y) = { -  1 + xy(3 -  x -  y) -  (x -  1)3 -  (y -  1)3} fg Q + xy(3 -  x -  y) f% j

+ (3 - 3x -  3y + x^ + xy + y^)(x f% 0+ y %j )  + x(x -  1)(2 - x - y )  fx ( l, 0)

+ y(y -  1)(2 - x - y )  fy(0, 1) + x(x -  l)y  f^Cl, 1) + xy(y -  1) fy(l, 1)

+ 1  x(x -  1)2 fxx (l, 0) + 1  y(y -  1)2 fyy(0, 1) .

We now verify the interpolation properties o f QsCx, y). We differentiate the 

function Qg(x, y) with respect to x to give

^  Qs(x, y) = {y(3 -  2x -  y) -  3(x -  i)2)(foQ -  fi^o) -  y(3 -  2x -  y)(fo,i -  f i, i)

+ ( 2 x -  l )y  fx (l, 1) + ( 6 x - 3 x 2 - 2 x y  + y - 2 )  f^Cl, 0)

+ (y - y2){fy(0, 1) - fy (l, D) + J  (3x 2 _ 4x  + 1) fxxd. 0)

and differentiate again to give
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^ Q s (x .  y) = (6 - 6x - 2y){fo ,o- f l ,o  + fx(1. 0) } + 2y ( f o , i - f i , i + f x ( l ,  1))

+ (3 x -2 ) f x x (1 .0 ) .

Since the polynomial is symmetric in x and y, partial derivatives o f Qg(x, y) with 

respect to y can be obtained sim ilarly. We may verify that Qg(x, y) satisfies the 

follow ing ten conditions.

(i) Q3([k ].[m ]) = fk,m , 0 < k , m < l

(ii) —  Q 3( l , k )  = f x d . k )  and —  Q 3(k , 1) -  fy (k , 1) fo r k  = 0, 1 
dx dy

(iii) | | q 3(1. 0) = fxx(l.O) and ^ Q 3(0, D = fyy(0, 1) .

4 .3  The lim it o f Pn(x, y) as p, q tend to zero

It is clear that the derivation o f Q^(x, y) by the methods used above becomes 

progressively more tedious as n increases. We therefore seek an alternative approach. 

I f  g is a function o f one vaiiable and g^^ (̂x) exists, then we have from (1.9)

[xq, Xl, ... , x j  g = (4.3)

where Ç lies in the interval (min x j , max xj). We now use this result to derive lim its 

o f q-differences. From Lemma 3.5 we have for a fixed y
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[W - 0 + 1 ]  0  +  y )  =  [ ,J 1 p i r ! ( r - l ) r /2  ^ x  ^ ( W ’ y> '

Then from (4.3) and (4.4) we obtain

« 1. y) = ’ 1 < ^ < [l+ r],

Note that in (4.4) lim [r]! = 1.
p -> 0

Similarly

and hence

p ^ 0 q '^ p ( r + l ) r / 2 q (s + l)s /2 ^ x ^ y f ( l ’ 1 ) p'ËJop (r+ l)r /2  ^ x

1 Ô +s 
r! si ;  (4.6)dx̂  dŷ

As we have already noted, as p-^0, [r]p~^l for all r  > 0 and [0]p~»0. Thus it is 

appropriate to express the forward difference operator f(0, y) in terms o f f(0, y) 

and f ( l,  y), 0 < t < r  ~ 1. We w ill show that, fo r r  > 0,

r - l

£>x f(0> y) = (-!)'■ f(0. y) + X  ( - I ) '- ! - ' p(f-t-l)(r+t)/2 1)1 f ( l,  y) (4.7)
t=0

and sim ilaiiy

s-1
£ ) y  f ( x ,  0 )  =  ( - l ) S  q (s - l)s /2  f ( x ,  0 )  +  2  ( - 1 ) ^ “ " “  ̂ q (s -u - l) (s + u )/2  £)JJ f ( x ,  1 ).

u=0 ^

(4.8)
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We w ill verify (4.7) by induction, and this w ill also verify (4.8). First, (4.7) evidently 

holds for r = 0, where the sum is empty and has the value zero. Suppose that (4.7) is 

true for any r > 0. Then

f(0, y) = f ( l ,  y) -  f(0, y)

r-1
y) + ( - ly + l  pf+(r-l)r/2 f(o, y )  + ]£  pr+(r-t-l)(r+t)/2 £ ,t y)_

t r = 0

and this simplifies to give

f(0, y) = ( - i r ^  f(0, y) + £  p(r-t)(r+t+l)/2 fq  y) ,
1=0

showing that (4.7) holds for r + 1. This completes the proof.

Now divide both sides o f (4.7) by p(:'-l)r/7 and note that (r - 1 -  l) ( r  + 1)/2 

-  r(r -  l)/2  = -  t(t+ l)/2 . Let p—>0 and apply (4.5) to give

lim ^  f(0, y) = ( - l ) f  f(0. y) + ( - l ) f  2  (-1 )'+ ' & f r f ( l . y ) .p ^ 0 p(r-l)r/2 ^ ’ éo

Similarly we have

0) = ( - 1 ) ' 0 )  + (-1 ):S  À  1) • (4.9)

We now consider lim its involving mixed forward differences.
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Lemma 4.1 Suppose that all derivatives o f f(x, y) o f order up to n exist. Then

^  q S o  p ( r - l ) r /2  q (s - l )s /2  % ,0

1 at „ W   1 au

r - 1  s -1  2 0 t+ u

Proof Using (4.7), we apply the operator £)^ to each term o f £)y f(x , 0) in (4.8), 

after putting x = 0. This gives

%.0 = ( - 1)" { (-I)'" f(Q, Q)

r -1

+ X  ( - 1)''“ '“ '  p(r-t-l)(r+t)/2 f ( i,  0) j
t?=0

s-1
+  X  q (s -u -l)(s + u )/2  { ( _ i ) r p ( r - l ) r / 2  £ ) «  f(Q , l )

u=0 ^

r-1
+  X  p ( r - t - l ) ( r + t ) /2  £ | t  £ , u  q  }

t=0

Hence, abbreviating the notation in an obvious way,

% .0  =  p (r - l) i- /2  q (s -l)s /2  ^

r-1
+ ( - I f  q (s - l)s /2  ^  ( - l ) r - t - l  p ( r - t - l ) ( r + t ) /2  £ ) ^  ^

1=0 ^
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s-1
+  ( _ iy p ( r - l ) r /2  2  ( - l ) S - u - l  q (s-u -l)(s+ u)/2

u=0 ^

r—1 s—1
+ X  X  p(r-t-l)(r+ t)/2  q(s-u -l)(s+ u)/2  £ )^  j .

t=0 u=0 X y ,

(4.11)

Now divide both sides o f (4.11) by p (r-l)r/2  q (s-l)s/2  and let p - > 0 , q -^0  in turn to give

^ 0 fo,o = ( -D - fo ,o  + ( - 1)^I ( - 1) - '- ^

s-1 1 as.(-«■X

Finally the powers o f (-1 ) can be written more neatly to give (4.10). We note that 

(4.10) is valid even for r = 0 or s = 0, so that it applies to "single" forward differences 

also.

We are now ready to obtain the lim it o f the interpolating polynomial Pn(x, y) as 

p, q—>0. Since

n n -r  0  0 n 0  O n  n -1  n - r

X  I  = I  X  + X  X  + X  X + X  X .
n=0 s=0 r=0 s=0 p=1 s=0 r=0 s=l p=1 s=l

we can write the polynomial (4. 1) in the form
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+ V y fi ̂  ~ fnr y ~ .
^  à  iS  p t ^ [ ) i+ i ]  ^  q'' [ v + 1] "  y

As p~>0 and q—>0, [|i]-> 0  i f  | i = 0 and [p ,]-^ l i f  p, > 1. We obtain the fo llow ing 

results concerning Qn(x, y), the lim it o f P^Cx, y) as p -^0, q-^0  .

Theorem  4.1 Let f(x, y) possess partial derivatives up to order n. Then

Qn(x, y) = a(x, y) fo ^  + X  b.Cx, y)

y X b . , y , x , < ^ ^ y . y / x T M x . y , < ^ ^ , , , ,

where

a(x, y )  =  1 -  X X  (1  - x /  1 -  y  X  -  y )^ “  ̂ +  x y  X  X  (1  -  yf~^ ,
r= l s=l r= l s= l

n n -1  n -r

bt(x , y) = X X (1 “  x )^ -l -  xy X X "  x)^"^ (1 -  yf~̂
r= t+ l r= t+ l s=l

and

n — 1 —u  n —r

Ct,u(̂ > y) = xy X  X  (I -  (1 -  y) "̂  ̂ •
r= t+ l s=u+l

Proof Let p—>0 , q—>0 in turn to give
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Q „(x .y )  =  %  + £

+ I  1  p“ ?0 |3 I)p (r-l)r/2 q (^ l)s /2 %.0 '

Applying (4.10) to the lim its involving the forward differences, we have

Qn(x, y ) =  fo,o + X  x ( x -  1)  ̂  ̂ ( - 1)*' { fo,o + X  h ^ ^ 1,0 1
m l t=0 o x i

s-1 1 au
+ X  y ( y -   ̂i-̂y { %,o + X  (-1 ) “ '^^ ^  —  % , i }

s= l u=0 o yu

+ X  X  xy(x -  l)^-^(y -  1)^-^ ( - 1)̂ -̂  ̂ { fo,o + X  ( - 1)^^  ̂^ ^ f i , o
m l s= l t=0 * ox^

(4.12)

We now rearrange the expression (4.12), collecting together all terms involving fq g , 

those involving f j  q and its partial derivatives, and so on, to give

Q n ( x , y ) = { i ~ x X  (1 - x ) ^  ^ - y X  (1 - y ) ^   ̂ + x y  X  X  (1 - ^ ) ^  H l - y ) ^  Mfo,o
m l s=l m l s=l

+ %  { i x ( l _ x ) -  -  I  I  x y ( l - x ) - ( l - y ) - ) ( f ^ | i f , o
t=0 mt+1 mt+1 s=l ' ox (



96

n—1 n n—1 n—s  ̂ ^

+ £  { -  £  Z  x y (i -  x y - i ( i  -  y )^ - ' }  -  %,!
u=0 s=u+l s=u+l m l ’

* 1

at+u
The last line, involving the coefficients o f ̂   ̂^ ^ f% j  , was obtained by first changing

n—1 n—r r—1 s—1 n—1 r—1 n—r s—1

I Z I I t o X Z I Z -
m l s=l t=0 u=0 m l 1=0 s=l u=0

Then we rearrange the first two and the last two summations as a pair to give

n -2  n -1  n -r -1  n - r

S  I  X  I
t=0 m t+1 u=0 s=u+l

Finally we reairange the second and third summations to give

n -2  n -2 - t  n - l - u  n - r

X  X  X  X  •
t=0 u=0 m t+1 s=u+l

This completes the proof o f the theorem.

4 .4  Interpolation properties of Qn{x, y)

Before analysing the properties o f the functions a(x, y), b^(x, y) and q(x, y) 

which w ill determine the properties o f the polynomial Q^(x, y), we need the follow ing 

lemma.
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Lemma 4.2 For any integer n > 2

( i - x ) ( i - y ) £  = 1 - X " - Y” -  y  +
m l s= l

Proof First we simplify the geometric sum to give

n -1  n -r

X  X  x '- i  ys-i
m l s=l

= (1 + Y + ... + Y"-2) + X(1 + Y + ... + Y"-3) + X2 (1 + Y + ... + Y "^ )

+ . . .+  X " - 3 ( 1 + Y )  + X "-2

= ( i + x  + . . . + x " - 2 )  -  Y ^ ( i + ^ + 0 \ . . .  +  ( ^ y

1 / I  - X " - \  Y  ^ y n - 1  _  X " - l  \  
“ l - Y M - X ^ - l - y V  Y - X  /

Hence, we obtain

(1 -X ) (1 -Y )X  X^i- 'Y®-!
m l s=l

_ 1 vn -1 Y ( i - x ) ( y n - i  -  x " - i)  
-  -  Y - X

Y -  X  -  Y " + X " + Y "X  -  Y X "
Y - X
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Y " -  X " Y "X  -  -  Y X " + X""^^ + -  X ” **"̂+Y -  X  ' Y - X

This completes the proof.

We can now sim plify the first coefficient a(x, y). Since

n n
l - ( l - X ) 2 ^ x r - l  -  (1 -  Y) ^  YS-1 = 1 - ( 1 _ X " ) - ( 1 - Y ” )

m l  s = l

we have
v n + l _ Y n + l  X "  -  Y "  

a(x, y) = X  -  Y “  X  -  Y

where X  = 1 -  x and Y = 1 -  y. To investigate the properties o f a(x, y), that it has 

the value 1 at (x, y) = (0, 0) and is zero, and appropriate pai tia l derivatives are zero, at 

( 1, 0), (0, 1) and (1, 1), let us write a(x, y) in the form

a(x, y) = X " + X " - ' Y  + ... + X  Y "- l + Y "

-  (X "-l + X "-2 Y + ... + X Y "-2 + Y » - l ) .

When X = y = 0, X  = Y  = 1 and we see that a(0, 0) = 1. It is also easy to see that 

a (l, 1) = 0 and all partial derivatives o f order not greater than n - 2  are zero at x = 1, 

y = 1.

Let us now write a(x, y) in the form

a(x, y) = X" -  ( 1 -  Y)(X"-1 + X"-2 Y + ... + X Y"-^ + Y " -*).
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We see that all partial derivatives with respect to X  o f order < n -  1 are zero at x = 1 

and y = 0 and also a(l, 0) = 0. Sim ilarly we may write

a(x, y) = Y " -  (1 -  X)(X"-1 + X “ -2 Y  + ... + X  Y "-2 + Y"->)

and likewise deduce that

dk
a(0, 1) = 0 and a(0, 1) = 0, for 0 < k < n -  1. 

Oy^

Let us now consider the second coefficient

b((x, y) = (1 -  X ) X  X i- i -  (1 -  X )(l -  Y ) X  Z  X '- i Y s-i
r=t+l r=t+l s=l

We can extract the common factor X^ from each sum to give

bi(x, y) =  X H l - X ) X  Xi-1 -  X ‘( l -  X )(l -  Y ) X  Z  X"-' ys-1
m l m l s=l

Using Lemma 4.2 we obtain 

b i ( x , y )=  X ' - X " - X i  { l - X " - ‘ - Y " - ‘ -  ' + '" "  x  -  T  } •

This simplifies to give

bi(x, y) = X ‘ (1 -  X )(X "-‘- l  + X "-‘-2 Y + ... + Y " - '- l) .

Since each term is o f "total degree" n -  1 orn, a ll partial derivatives o f b[(x, y) o f
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degree < n - 2  are zero at x = y = 1 and also 5^(1, 1) = 0. Thus there is no contribution
0t+u

to Pn(L 1) from 0^(1, 1) o r----------- b ( l ,  1). We note also that, at x = 0, b^(x, y) and
Ox  ̂Oyu

all partial derivatives w ith respect to y are zero. When x = 1, y = 0, b g (l, 0) = 1.

The lowest power o f X in b^Cx, y) is X\ Hence, for 0 < k < t.

| | b , ( l , 0 )  =  0 .

For t < k < n -  1, when x = 1, we have

^k Âlk
— -b t(x ,y )  = = 0, fo ry = 0

and finally, when x = 1,

:~ b t(x , y) = —  ( l - x ) ^ Y ”  ̂  ̂ = ( -1 )4 !, for y = 0. 
dx^ dx^

Now we consider the remaining coefficient

Ct,u(x. y) = (1 -  X ) ( l  -  Y) X  Z  YS-l
r=t+l s=u+l

We may remove the common factor X^Y^ to give

n - l - t - u  n - t-u -r
Ct,u(x, y) = X t Y “ (1 -  X ) (1 -  Y) X Z  X'-: Y »-'

m l s= l

On applying Lemma 4.2, with n replaced by n - 1 -  u, we obtain
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( vn-t-u  vn-t-u  vn + l-t-u  v n + l-t-u .
Cq„(x, y) = X ‘Y“ { 1 - X " - ‘- “ -  -X 5  Ÿ------ + --- -------X ^ - 7  1 •

We may write this as

Ct,u(x, y) = X^Y" -  (  X " - " - ^ Y "  + + ... +  X^+l + X ^Y ^ -t- l )

+ ( + X ” “ ^“ ^Y'“‘̂ ^ + ... + X "̂̂  ̂Y""^"2 4. ]^ t+ lY a-t-l )

Note that each term in the firs t bracket is o f total degree n - 1  and each term in the 

second bracket is o f total degree n. So for a ll partial derivatives o f u(x, y) o f order

< n -  2 at X = l , y  = 1, there is zero contribution from all terms in these two brackets. 

Thus, fo r 0 < k + m < n -  2,

dk+m 0k 0m

and this is clearly zero unless k = t and m = u, when 

0t+u
^ „ 4  u (x , y) = (-1)^+" t! u! for X = y = 1.
d x t  dyu

We also have y(0, 0) = 0 for all t, u. Moreover, by writing

Cqu(x, y) = X ‘ (Y“ - Y " - ‘- l ) - ( l  -Y ) (X " - “ -1Y“  + X "-“-2y ‘‘+ ' + ... +X'+1 Y "-‘-2)

we find that C( „(x , y) and all its derivatives with respect to x are zero when y = 0. 

Sim ilarly, on writing

Ct,u(x, y) = (X‘ - X"-“- l)Y “ - (1 - X)(X"-“-2Y“+1 + X"-“-3y“+2 + Y”-'-*)
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we see that Cî u(x, y) and all its derivatives with respect to y are zero when x = 0.

As a consequence o f the properties satisfied by a(x, y), b^(x, y) and y(x, y)

at (0, 0), (1, 0), (0, 1) and (1, 1), we have the follow ing theorem.

Theorem  4.2 The polynomial Q„(x, y) satisfies the follow ing (n + l)(n  + 2)/2 

interpolation properties.

(&) Qn(0, 0) = fg Q .

(b) Q n(l, 0) = f j  Q and, fo r 1 < k < n -  1, ~  Q (̂l, 0) = ^  f ( l,  0)

0m 0m
(c) Qn(0, 1) = fo 1 and, fo r 1 < m < n -  1, —  Q^(0, D = —  f(0, 1)

0y»« 0 y m

(d) Qn(l,

^ Q n ( l ,  l ) = ^ f ( l ,  1) for 1 < k < n - 2 .

0m 0m
Q n ( l ,  1) = ——- f ( l ,  1) for 1 < m < n -  2 ,m0ym 0y

0k+m 0k+m
Q n ( l ,  1) f ( l ,  1) for k, m > 1, k + m < n - 20xk 0ym ' 0^k 0ym
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4 .5  An alternative derivation of Qn(x, y)

In Theorem 4.1, we established the existence o f the approximating polynomial 

Q n (x , y) as a lim iting form o f the interpolating polynomial based on the q-triangle. We 

now show that Q „ ( x ,  y) can also be derived as the lim iting  form  o f the interpolating 

polynomial on a simpler system o f nodes. Specifically let p, q > 0 and define a new 

"arithmetic mesh"

S = {(xj, yj): i , j  > 0, i + j  < n }

where

XQ = 0, X| = 1 + (i -  l)p , 1 < i < n

yo = 0, yj = 1 + ( j ~ l ) q ,  1 < j  <n. (4.13)

I f  f(x, y) is a function defined on a region which includes S then from Lemma 3.2 there 

exists a polynomial of degree at most n which interpolates f  on S.

Since x ^ , . . .  , x^ are equally spaced we know from Lemma 1.3 that

 ’'i i  y) = q  _~i7 i p i - 1 y) (4.14)

where

f(x, y) = f(x  + p, y) -  f(x, y)

and higher order differences are defined in the usual way.

We cannot extend relation (4.14) to include the point XQ since, unless p = 1, the 

points xq , x j , ... , x „ are not equally spaced. The follow ing lemma w ill be used to 

overcome this d ifficulty.
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Lemma 4.3 Let x j, X2, ... be distinct non-zero real numbers. Then for i > 1

and a fixed value o f y

[0, X, , ... , Xil f(-. y) = XI y>

+ z  [XI, X2 . . . . .  Xi_k+i] f(-, y ) .

Proof We have by definition

[0, x j] f(., y) = >

which shows the above statement holds fo r i = 1. Suppose the formula is true fo r a 

given i > 1. Then we have

[0, x i , ... , X j+i] f(-, y)

_ [ x i ,  X2 , ... , Xj4 i ]  f(", y) -  [0, Xi  , ... , Xj] f ( ' ,  y)
^i+1

[ x i ,  X2 , ... , Xi+iJ f ( ' ,  y)
Xi+i

^ i+1 ( x / xw^! .  x / %y )  + i  xTx ;jï'^4 i_ ,+  . [̂ 1- ... ,X i_k.l]f(-.y)}

We may combine the first term above with the summation to give

[0, X i Xj+i] f(., y) = ( f(0, y)Xi+I Xj ... AJ
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XT' (—I)k—1
+ Z  ; y .— z t t t  [x i ,  X2 , ,  xi_k+2l f(-, y)

i+1
y
^  X j+ i  X j . . .  X j_ k + 2

where, in the original summation, k has been replaced by k -  1. Hence by the 

induction principle, the formula is true for all i > 1.

Let x^, X2, ... be defined as in (4.13) and let y be fixed. From (4.14) and 

Lemma 4.3 we have, for any i > 1,

[0, XI , ... , xJ fo , y) = -  ( f(0 , y)
A  2 A | _ |  . . .  A  J

1-1

(In the summation in Lemma 4.3 we have replaced k by i -  k.) Sim ilarly, let y j, y2, .., 

be defined as in (4.13). Then for a fixed x and any integer j  > 1

[0, y i  y j] f(x , ■) = -y . y ,  % .  0)

We can now express mixed divided differences in terais o f forward differences. 

First, apply the operator [0, x j , . . . ,  xJ to each term o f (4.15). We obtain

[0, x j  , ... , Xj] [0, y i , ... , yj ] f

= V   L _ f _t l i____A">ff0 n
^ 0  y j  4 - 1  ••• Ym + l  m ! qm 4 j  X j _ i  . . .  x ^  y  ̂ ^
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+ V   L _  *k
Z  XiXi_i  ... Xk+, k! pk^x-^y  1»

k=0

Hence we can rearrange the summations to give

[0, x j , ... , Xj] [0, y i , ... , y j ] f

= y   L _ A '^ A " ’ fn n
k=0 m=0 ^ '-1  ■■■ X k+ l) (yj y j- 1  ••• ym +l) k! m! pkqu> * Y

+  t l ) j  y  - M ) ! ± - ^  L_A>=f(i 0)
yj yj-i ••• yi g  x; x i_ i ... x^+i ki pk x  ̂ - >

+ (-1)‘ V (-pi-""-' 1 ,m ™
Xi Xi_i ... XI ^  yj yj_i  ... ym+i m! q™ Y  ̂ ’

------------------- f(0, 0).(xj X[_i ... x i )  (yj y j_i  ... y , )

We know from the one-dimensional case that

^ < f( i>y)  = | ; f ( P y )  and f(x. d  = ^ f ( x . d

It follows that
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< 4 ^ 1 -  '> = “i ?0 1) 1)

f ( l .  1)
dx^dy 

We deduce that

lim  [ 0 , x i .........Xi ] f (- ,y) = ( - l ) i  f(0, y) + ( - l) i  ^  fd , y),
p-»u ^  X.

(4.16)

lira [0. y i  yj] f(x , ■) = ( - 1)1 f(x, 0) + ( - 1)1 £  f  _ % . 1)
q->0 m=0 3y

(4.17)

and

^ o q ^ o  y i Y ••• »yj ] f

- M r ) , , » . g
k=0 m=0

(4.18)

We are now ready to find the lim it o f the interpolating polynomial P^Cx, y) on 

the set S defined in (4.13). From Lemma 3.2 the polynomial can be written as

n n - i  i -1  i-4

Pn(x, y) = Z  Z  n (^ -  V  n  (y -  yv) ho* , ... , xJ [yp, y i , , y j] f
i=0 j= 0  p=0 Y=0

n i-1

=  f ( 0 ,  0 )  +  %  n  (x  -  x ^ )  [0 ,  x i  , . . .  , X j] f ( s  0 )  

i= l  p=0
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n j~ l

+ Z  n  (y -  yv) [0» y i > ••• » y j] 0
j = l  v = 0

n -1  n - i  i -1  M

+ Z  Z  n  (x -  V  n  ( y  “  y v )  [0 ,  Xi , ,  Xj] [ 0 ,  yi , , yj] f .
i= l  j = l  jj,=0 v = 0

Let p—>0 and q-+0 and apply (4.16), (4.17) and (4.18). We obtain 

q 'S ) y) = ^ ’0 + i  x(x -  l ) i- l  ( - l) i  { fo,o + Z  ( - 1)"+^

+ Z  y(y -  i)i '  (-i>i { fo,o + (-1)"’'̂  ̂^  fo , i}
j = l  m=0 oy"^

+  z  z  x y ( x -  l ) i - l ( y -  l ) j - l  ( - l ) H  [  fq .o +  Z  ( - P " " " '  
i= l  j = l  k=0

This is indeed the same polynomial as the polynomial Q n (x , y) defined in (4.12).

* * * * *
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Chapter 5

Integration rules of interpolatory type on a triangle

5»! Introduction

In this chapter we shall use interpolating polynomials to study integration rules 

on the triangle S^ = {(x, y): 0 < x < y < [n]}. Many formulae for approximating

double integrals have the form (see [23])

f r xS
J J K(x, y) f(x, y) dx dy « X  Wj f(aj, bj)

B  i=0

where B is a given closed region in IR^, where K(x, y) is a fixed positive weight 

function (often K(x, y) = 1), where (aj, bj) are points which lie  in B and where Wj are

constants. R. Lauffer [11] obtained certain integration rules on the general simplex. 

Special cases o f Lauffer's rules (taking the dimension o f the simplex to be 2) are special 

cases o f the rules to be obtained here (taking the parameter q to be 1). Given a function 

f(x, y) on Sn we shall fin d  an integration rule Ijj which uses the approximation

J j f(x, y) dxdy = j j P„(x, y) dx dy .
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Here Pn(x, y) is the interpolating polynomial on constructed at the nodes ([i], []]), 

0 < i < j  < n. Note that the rule Ijj is exact i f  the function f  is a polynomial o f degree at 

most n in X and y.

We know from Lee and Phillips [13] (see Theorem 1.6) that this interpolating 

polynomial exists and

Pn(x, y) = Z  ^  L ".(x , y) f j j  (5.1)
j=0 1=0

where the Lagrange coefficient L”j(x , y) takes the form

n /  q —(3n—j —l) j /2  Î —1 J L
L j  j ( x ,  y) =  [ i ] , r .  . ] j r ^  _  YÏ ( x  -  [v]) ([v]-y) (y -  - [v]).

v=0 v=j+l v=0

(5.2)

Integrating (5.1) over Sjj, we obtain

J J Pn(x. y) dx dy = £  X w", fq  = I„(f) (5.3)
Sjj j=0 1=0

say, where w 4 is called the weight at the node ([i], [j]) and is given by

= j  j  L 4 (x, y ) d x d y .  (5.4)
Sn

Note that, taking f  = 1, the weights (5.4) clearly satisfy

È = J J dx dy = A,
j=0 i=0 S„

the area o f the triangle S^. The first aim o f this chapter is to use this method to calculate
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the weights fo r the integration rule n = 1, 2, 5 directly from  formula (5.4).

Later we w ill discuss an alternative method o f obtaining these weights wP. . We also 

study certain properties which govern the weights Wg on the triangle. We w ill verify

that all the weights o f I j ,  I3 and I5 are positive fo r certain values o f q including q = 1. 

We w ill also consider the expression w 4 (l/q ), and show that these weights satisfy a

kind o f symmetric property. In the last section we study a relation between integration 

rules over certain triangles o f the same order.

5 .2  The integration rules - in terms of a parameter q

I f  we let q = 1, the integration rule Ijj in (5.3) reduces to the Lauffer rule. We

tabulate below the relative weights for the Lauffer rules w ith n = 1, 2 and 3. For a 

given n, the actual weight w 4 is obtained on m ultiplying the relative weight by the

factor oCjj displayed below, where A denotes the area o f the tiiangle. See also Phillips

[16].

4 9 9 4

0 1 0 9 54 9

1 1  1 1  9 9

1 0 4

a j = A/3 = A/3 (Xg = A/120

(a) (b) (c)

Figure 5.1

We now give an integration rule on the triangle Sjj for a general value of q > 0. 

For n = 1, 2, 3, 4, 5 we use Maple to calculate directly the weights w 4 . See 

Appendix 5A for the details. Note that i f  n = 1, all three weights Wg are independent
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o f q and thus we simply have the Lauffer rules given in Figure 5.1(a). Using the same 

format as in Figure 5.1, the weights required for !„ , n = 2 and 3, are given in Figures

5.2 and 5.3 below.

2( - l  + q)[2]

[1]

- 2q (- l + q)[0] ^  "  12q

[0] [2][1]

Figure 5.2 Weights on the tiiangle $2

[3] 2[2] F(q) -[3 ]2 (2 q 3 -2 q 2 -2 q +  1) [3]^H (q) 2 G(q)

[2] „ [ 3]2 (q 3 _2 q 2 -2q  + 2) [2][3]3 [3]3H(q)

[1] (3 q 2 -2 q -2 ) -q [3 ]2 (3 q 2 -2 q -2 )

[0] 2q3 G(q)

[0] [1]
A

[2] [3]

“ 3 - S0[2]q3’

Figure 5.3 Weights on the triangle S3

In order to write the above weights in a compact form, we have written
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F(q) = q6 -  q5 -  2q^ + 5q^ -  2q2 -  q + 1 

G(q) = 3q4 + q3 -  6q^ + q + 3 

H(q) = 2q2 + 2q -  3.

Calculation for the rules n = 4 and 5 involves polynomials o f higher degree. 

However the weights for these rules satisfy

(1/q) = q'® w l  (q), w L ,5_i (l/q ) = q“ ® w?. (q).

We w ill show this "symmetric" property later. Let Cg be such that Wg = x C g  ,

where a „ is a factor chosen so that the relative weights Cg are polynomials in q. Then

the rules 1 ,̂ n = 4, 5 can be summarised as follows. (Because the expressions for the 

relative weights C g and C g are somewhat lengthy, we have had to give up the

triangular lay-out which we have used above for n =2 and 3.)

Cq 0 = -  6 [2] q<5 (q -  1) (2q̂  + q5 + q4 _ 3q3 + q2 + q + 2) 

Cq i = cl_i = 3 [2] [4] q3 (q2 + 1) (2q5 -  q4 -  2q3 + q + 1)

Cp2 = q [3] (q2 + 1)2 (2q? - 5q6 -  3qS-q4 + 9q3 + q 2 _ q _ 3 )  

c L  = -  q [3] [4]2 (q2 + 1) (2q3 -  q2 _ q -  1)

Ĉ  2 = -  q [3] (q2 + 1)2 (4q6 + 2q5 -  1 lq3 + 2q + 4)

Cg g = [2] [4] (q2 + 1 ) (q8 -  q2 _ 2q6 + 2q5 + 5q4 + q3 -  4q2 -  2q + 3)

3 = -  [3] [4]2 (q2 + I ) ( q 4 _ q 3 _ q 2 _ q + l )

C _̂4 = -  [2]2 (3ql0 + q9 + 3q8 _ 5q7 + gq6 + 3q5 + 9q4 _ 5q3 + 3q2 + q + 3) (q -  1)2

A

180[3]q6'

Table 5.1 Weights on the triangle S4
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Cq 0 = 6 qlO (lOqlâ + 26ql5 + SOqW + 1 lq l3  _ 3 5 q l2 _ 5 4 q l 1 _  27ql0 + 30q9 + 73q» 

+ 30q7 -  27q6 -  54q5 -  35q4 + 1 lq3 + 30q2 + 26q + 10)

Cq J = C j 1 = -  3q6 [5]2 (10ql2 + 1 6 q " + 4ql<> -  19q« -  32q» -  2q2 + 22q6 + 26q5 

+ lCq4 -  12q3 -  17q2 -  12q -  4)

Cq_2 = -q 3  [5]2 (1 +q2) (IQqlS _ I4 q l2 _  4 4 q ll _  17qlO + 4q9 + 59q8 + sgq? _ I9q6

-  40q^ — 49q^ — 9q^ + 18q^ + 18q + 1 2 )

C® 2  = q3 [4] [5]3 (lOqS + 6 q? -  12q6 -  9q3 -  6q4 + 5q3 + 9q2 + 6 q + 3)

c L =  q3 [5]2(1 +q2) (20ql2 + 32ql 1 + 8 q l» -  lO q » -6 4 q 8 - 53q2 + 37q^ + 52qS 

+ 55q4 + 4q3 -  27q2 -  24q -  15)

Cq_3 = -  q [5]2 (1 + q2) (5ql5 _ 2q'4 _ 17ql3 + 4 q l2 + I 9 q l l  + 4 gqlO + 23q9 _ 4Qq8

-  49q2 -  46q6 + 19qS + 39q4 + 12q3 -  18q -  12)

= q [3] [5]3 (1 + q2) (5q9 -  7q« -  Sq? -  3q6 -  q3 + 12q4 + 3q3 + q2 -  q -  3)

C® 3 = - q [3] [5]2 (1 + q2) ( 5ql2 + g q ll + 9 qlO + gq9 _ 9 q8 _  I5q7 _  I7q6 _ I5q5

-  9q4 + 8q3 + 9q2 + 8 q + 5)

Cq_4 = -  [5] (3qZ2 + 7q21 + 5q20 _ SqI9 _ I 5 q l8 + 2ql7 + 2 8 q ^  + 30q>5 -  10ql4

-  80ql3 -  120ql2 _ lO O q" -  44ql0 + 27q9 + 65q» + 55q7 + l l q 6  -  33q5

-4 2 q 4  + 30q2 + 30q + 12)

C® 4  = [2] [4] [5]3 (3ql0 -  2q9 -  4q» + q’  -  q6 + 12q5 -  q4 + q3 _  4 q2 _  2q + 3)

Cq 5 = 6  (2q26 + 5q25 + $q24 _ lQq22 _ 9q21 + 5q20 + 20ql9 + 20ql3 _ 15ql7 

- 3 3 q l6 -  ISqlS + 25ql4 + 5 5 q l3 + 25ql2 -  15q ll -  33q>0 -  15q9 + 20q«

+ 20q7 + 5q® -  9q3 -  10q4 + 5q2 + 5q + 2)

a c =   --------
® 1260 qlO [4 ]! '

Table 5.2 Weights on the triangle S5
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It is easily verified that fo r q = 1 the rules given in Figures 5.2 and 5.3 do 

indeed coincide with Lauffer's rules for n = 2 and 3 given in Figure 5.1 . On putting 

q = 1 in the above rules given for n = 4 and 5, we obtain the rules given below. These 

are not given in Lauffer [11].

25 1111 25 25 25

0 4 -1 4 0 25 200 25 200

4 8 8 4 25 25 25 25

-1 8 -1 25 200 25

4 4 25 25

0 11

= A/45 ag = A/1008

Figure 5.4

5 .3  Positive weights on the triang le  S„

For each o f the rules discussed above we w ill determine whether there are 

values o f q for which all weights are positive or at least a ll non-negative. The case 

n = 1 is triv ia l: the weights are independent o f q and are all positive. However the 

weights on triangles S2 and S4 do not possess this property. In fact

Wq 2 = “  (q -  1)2 < 0 for all q > 0, q 9̂  1.

Thus the weights o f I2 are never all positive and they are all non-negative only for 

q = 1. For the rule I4, let us examine the weight

W2  2  = -  — (q^ + 1)  ̂(4q6 + 2q^ -  1 l q 3  + 2q + 4).
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Since > 2 -  1 then for all q > 0

4q^ + 2q^ — 1 Iq^ + 2q + 4 > 4(2q^ — 1) + 2(2q^ — q) — 1 Iq^ + 2q + 4

= q3 > 0 .

This shows that the weights o f I4 are never all non-negative.

For n = 3 and n = 5 we have already seen that the weights are all positive when 

q = 1. We know that i f  there is a q such that all weights o f I „  are positive then, by 

continuity, there is an inteiwal containing this value o f q for which all weights o f are 

positive.

Let us consider the rule I3. Since (see Figure 5.3) ag > 0 for all q > 0, it 

suffices to examine the positivity of the relative weights given in Figure 5.3 . First it is 

clear that

w j 2 = 0C3 [2] [3]^ > 0 fo r all q > 0.

Next consider the function G(q) which is quoted in Figure 5.3 . We have

G(q) = 3q^ + q^ “  6q2 + q + 3 = 3(q^ -  1)^ + q^ + q > 0 for all q > 0

3 3
and thus Wq q and w^ 3 are positive for all q > 0. We also have (again see Figure 5.3)

\  F(q) = ~  (q6 -  q5 -  2q̂  + 5q^ -  2q^ -  q + 1). 
q^ q^

On putting cy = q + i  -  2

~  F(q) = + 5 + 3 e + 1 > 0.
q 3
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fo r all q > 0, since a > 0 for all q > 0. Hence Wq  ̂> 0 for all q > 0. We also see that

(w ith q > 0) the polynomial -3q^ + 2q + 2 is positive for q < (V? + l)/3  and thus the

polynom ial 2q^ + 2q -  3 is positive fo r q > 3/(V? + 1) = (V? ~ l) /2 . Thus the
3 3weights Wq j and w^ ̂  positive for

V? - 1  V? +  1
— 2—  < q < — 3—  (5.5)

3 3 3 3and we note that Wj  ̂= Wq j and w^ 3 = w^ 2* It remains to examine the weights

Wq 2 and w j y These are positive i f  and only i f  -q3 + 2q^ + 2q -  2 and

—2q3 + 2q^ + 2q — 1 = q3(—q~3 4- 2q~^ + 2q~l — 2)

are both positive. By direct calculation we find that this holds in the intersection o f the 

two intervals (0,68889,2.48119) and (1/2.48119, 1/0.68889), approximately, where 

the numbers have been given to five decimal places. Since both these intervals contain 

the interval defined by (5.5) above, it follows that all weights for the rule I3 aie positive

i f  q satisfies the inequality in (5.5).

Now let us consider the weights o f the rule I 5. In this case more extensive

calculations aie necessary because the degrees o f the polynomials involved are higher. 

To find intervals for which the weights o f I5 are positive, we need only consider the 

polynomials obtained by dividing each C?j by its obvious positive factors. By using

the Maple "fsolve" command to find the roots o f the polynomials and comparing with 

their graphs, first we find that

5 5 5 5Wq Q, Wi 2> W] 4 and Wq g aie positive for a ll q > 0.

(See Table 5.5 and Figures 5.5 and 5.6 .) This is also true for Wg 4 and Wg g, since i f  a

function f(q) is positive fo r 0 < a < q < b then f( l/q ) is positive for 1/b < q < 1/a. 

Intervals on which the other weights o f I 5 are positive are obtained sim ilarly and these
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results are shown in Tables 5.3 and 5.4 below. (See also Appendix 5B for details.)

Weights W; . A  factor o f w, ■ considered Interval on which w- . > 0

I p i
3q6[5]2

(0, 1.05974)

w0,2
"0.2

q3[5 ]2 (l + q 2) (0.92351, 2.96624)

w 2.2
" 2,2

q3 [5 ]2 (l + q 2 )
(0.94273, oo)

w0,3
"0.3

q [ 5 ] 2 ( l  +  q 2 )
(0, 1.07591)

w 1.3 i l
q [ 3 ] [ 5 ] 3 ( l  + q 2 )

(0.73974, 1.05853)u(1.91397, oc)

w2,3
"2,3

q [ 3 ] [ 5 ] 2 ( l  + q 2 )
(0.90951, 1.09949)

w0,4
'0,4
[5] (0.88838, 1.38397)

Table 5.3

As we w ill verify later, the weights w -j satisfy

(1/q) = ÿ  wfj (q).

This allow us to determine intervals for which the remaining weights w. j are positive. 

These intervals, which can be deduced from Table 5.3, are as follows.
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Weights w f. Interval for w f ■ > 0

W2 4 (0, 0.52247) U  (0.94471, 1.35183)

W33 (0, 1.06075)

W4 4 , W4 5 (0.94363, 00)

5 5Weights w. • Interval for w .. > 0

5
1.5 
5
2.5 
5
3.5

(0.72256, 1.12564) 

(0.92945, 00)

(0.33713, 1.08283)

Table 5.4

Thus a ll weights o f the rule I5 are positive i f  0.94471 < q < 1/0.94471 = 1.05853, 

approximately.

Thus we have found that for q = 1 the weights o f I3 and I5 are positive and have

derived the largest inteival around q = 1, in each case, for which the weights are still all 

positive. We might be tempted to conjecture that this w ill hold for all I„, w ith n odd.

Let us consider the weights associated w ith the interpolating polynomial on equally 

spaced nodes over the triangle {(x, y): 0 < x < y < 7}. This is the integration rule I7 in

(5.3) with q = 1. From (5.2) we have

P?(x. y) = É  2  L? .(x, y) f j j  
j=0 i=0

where

. i-1  .. j—
Lg(x, y) = i î  (j _ i ) !  ( n  _ j) t  r i  r i  (y -  X -  V )  .

v=0

We use Maple again to calculate the weights Ij j and these are shown in Appendix 5C. 

We find that the weight I j  3 (and also I^ 3, i j  g, I^ I 4 5, I4 ^̂ ) is negative. This

shows the above conjecture to be false.
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• Roots for the weight W02 (n = 3).

WO2 = A [3]"2 (-q^3 + 2*q"2 + 2*q - 2) / (60 [2] q"3)
• fsolve(-q^3 + 2*q^2 + 2*q - 2, q);

-1.170086487, .6888921825, 2.481194304

• Roots for the weights W00,W12,W14 and W05 (n = 5) .
Let Bij denote the polynomial factor considered in Table 5.2 
(obtained by dividing Cij by its obvious positive factors).

16 15 14 13 12 
BOO := 10 q + 26 q + 30 q + 11 q - 35 q

11 
54 q

10 9 
- 27 q + 30 q +

8 7 6 5
73 q + 30 q - 27 q - 54 q

4
- 35 q

3 2
+ 11 q + 30 q + 26 q + 10

8 7 
B12 := 10 q + 6 q

6 5 4 3 
— 12 q — 9 q — 6 q -t- 5 q +

2
9 q + 6 q + ;

10 9
B14 := 3 q - 2 q

8 7 6 5 4 
- 4 q + q - q + 12 q - q

3
+ q - 4

2
q

- 2 q + 3

5
B05 : = 2 - f 5 q ~ 9 q  -

22 21 20 19 18
10 q - 9 q + 5 q  + 2 0 q  + 20 q

17 16 
- 15 q - 3 3  q

15 14 13 
15 q + 25 q + 55 q + 2 5

12
q - 15

11
q

10 9 
- 3 3  q - 15 q +

8 7 6 4 
20 q + 20 q + 5 q — 10 q +

2
5 q + 5

25
q

26 24
+ 2 q + 5 q

• fsolve(BOO, q);

• fsolve(B12, q);
-1 .2 8 1 2 0 5 3 5 0 ,  - .7259561389

• fsolve(B05, q);

• fsolve(B14, q);
-1.469135153, -.6806725696 

Table 5.5
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20

Graph o f B q q -  0

2

20

Graph o f B, « = 0

Figure 5.5
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30

15
Graph o f B j 4 = 0

SO

“45

30

20

Graph o f 
Bn < = 0

Figure 5.6
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5 .4  Sym m etric weights

( J  ) = ^  '^o.o (q)' '" 'u  4  > = ^  '^ 0,1 (q)

where

Ç = [n] -  qn-1 y and r| = [n] -  q”~l x .

Proof F irst we note from  (5.2) that the constant which precedes the three

products is a normalising factor. We may rewrite L^.(x, y; q) in the form

1
I
-I

Referring to Figures 5.2 and 5.3, we see that the weights on the triangles S2

and S3 possess some kind o f symmetric property. By using a command in Maple:
2 2 "normal (subs (q = 1/q, w. j ))", we calculate w -( l/q ) and normalise it. We find that

2 y 1 X 1 2 /  X , 2 / 1 x 1 2 , .
" '1,1 < i  ^  '̂ 1,1 (q) “ “I '^0,2 ( 5  ) = 3  (q). I

We show further that this property holds in general. |

.
Theorem  5.1 Let w j‘j(q) be the weight at the node ([i], [j])  for the rule I„.

Then

In order to prove Theorem 5.1 above we need the follow ing lemma. First let us write 

L "j(x , y; q), fo r 0 < i  < j < n, to denote the Lagrange coefficients o f the interpolating j

polynomial P^(x, y) on the triangle S^, where we have emphasised the dependence o f 

L j'. on the parameter q.

Lemma 5.1 For 0 < x < y < q l- "  [n], 0 < Ç < T| < [n] and 0 < i  < j  < n,

L "_ j,„_ i(x .y ;|) = (%, n; q)
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v=o vtjii ^=0 ü ] -q ' 'm-[v] '

r i  (  Ji—M J)  r i  (  M  -  y ") ^ r iV  y -  q^x -  [v i \
l i  q ' ' [ i -v]^ v ijii q j[v - j ]  l=o q^'^''ü-‘ - v ] ^

Then for 0 < x < y < [n] we have

y; q)

= r i^ Y —JLrJy] )  r i (  tv] -  y \  W l  y -  q̂ 'x -  tvi \
v=0 q ' ' [ n - j - v ] " ^  v=n-i+l tv -  n + ^  \ q n - j + V [ j _ i _ v / '

By making a change o f variable q ^  the domain changes to 0 ^  x < y < q l“ ”  [n] 

which is where L " . ^_.(x, y; 1/q) is defined. Thus for 0 < x < y < q^-" [n]-J,n

n - j-1  /

Now consider a ti'ansformation (x, y) -> (%, r|) given by

V _  M  -  ^  _ [n ] - %
q n -1  ’ qn-1

Then each point ([n -  j] ,  [n -  i])  which changed into ^^n-i-1̂ )  by q ^  ,

is transformed into ([i], [j]) and the inequalities 0 < x < y < q^~” [n] correspond to 

0 < ^ < Tj < [n]. Each product o f l V  ^_.(x, y; 1/q) is thus transformed as follows.



V t  ̂ X  -  q ^ ~ v  [ v ]  _  V t  ̂ q n - 1  ^  -  q n - v  [ y ]

Ü  q - "+ j+ l [n -  j  -  V ] "  q j [n  -  j  -  V]

_ V t ^  [n -  v ]  -  t i _ T& [M-] -  T1 I

v=o q^ -  j  -  v ]  |Li=j+i q^ [ m- ~ j ]

and

f l  q l - v  [ V ]  -  y  ^  A  q f l - v  [ V ]  -  q n - 1  y  

v = n - i+ l  q l - v  [V  -  n  +  i ]  v = n - i+ l  q " " ^  [V  - -  n  +  i ]

v=n-i+l q " - v  [V  -  n + i ]  1̂ =0 qM- [ i -  ]x] 

where we have denoted | i == n -  v. Finally

j 1 1 y  -  q - v  X -  q l-v  [v ] _ j J j l  q O - 1  y -  q n - l - v  % _  q n - v  [y ]
-L  no-î-ul r* -.-1 Xx

v= 0 q - n + i + l  q i [ j _ i _ v ]

T| -  q v  ^  -  [n]  + q v  [n -  v ]  

v i  ql+v [ j - i - v ]

T) -  qM̂ ^ -  [p.]

=  L| \  (Ç, Ti; q).

where we have taken jj, = v. Hence, by substituting the above transformed products 

into (5.6), we obtain Jg
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Proof of Theorem 5 J Let the triangle = S „ (q )  be transformed into the

triangle S n ( l /q )  under q ^ . From (5.4) we have

(1/q) = J J y;
Sn(l/q)

Under the transformation x = ([n] -  T()/q"-l and y = ([n] -  ^ )/q "-l the region S „(l/q ) 

is mapped onto S^(q) and, on using Lemma 5.1, we obtain

(1/q) = J J Lw(̂ -n: q) I I dn
Sn(q)

-  q2( L l)  (q)-

This completes the proof. Note that i f  we consider CO"j = w^j /  Area, a relative weight 

on the triangle, then we simply have

®Lj,n-i (1/q) = < j (q)-

5 ,5  Alternative method of obtaining the weights

Consider any integration nile o f the form

Suppose this rule is exact, that is

In(f) = J j  y) dx dy,
Sn
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fo r all f  G tP„. In particular, let us choose f  = l JY, the Lagrange coefficient on at the 

point ([i], [j]), 0 < i < j  < n. As L"j e we obtain I^(L "j) = w” j and so there is a 

unique rule o f this form. Since the rule is exact for all monomials in we also have

[n] y

so that

r r  n j
In(x“ yf̂ ) = J J x(̂  yp dx dy = 2  2  w” . [ i ] “ rj]^

0 0 j= 0  i=0

t i  - W 2 , '

fo r each a , P ^  0, a  + P < n. This is a system o f (n + l)(n  + 2)/2 linear equations in 

the (n + l)(n  + 2)12 unknowns w f = , 0 < i < j  < n. We can determine w f. by solving

these linear equations as an alternative to the method, which we used above, o f 

integiating the Lagrange coefficients. Note that, since the above linear equations have a 

unique solution, the matrix must be non-singular.

5 .6  Relation between integration rules over certain triangles 

of the same order

Consider another triangular formation o f nodes, formed by the set o f points

{ ( [ i - j ] p ,  - [ - j ] p ) : 0 < j S i < n ) ,  (5.7)

where p > 0. This set o f points lies in the union of the three pencils o f lines

X = [i]p, 0 < i < n, 

y = -H ip . 0 < j <n,

X + pk y = [k]p, 0 < k < n.
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I f  we let q = 1/p, we have

r 1 1 -  p “ i  1 -  q j
H i p  -  -  1 _  p  -  q 1 _  q  -  q [ j lq  ,

and using the fact that { ( ty , uj): 0 < j  < i  < n) = {(tj, uj): i, j  > 0, i + j  ^  n) the set o f

points (5.7) can be expressed in the form

{([ilp , qOlq): i , j > 0 , i + j < n } .  (5.8)

Let f(x, y) be a function defined on a triangle

An = {(x, y): X, y > 0, x + p»y < [n]p).

For sim plicity, let us denote q [ j]q  by yj, j  = 0,1, ..., n. Then from Lemma 3.2, the 

interpolating polynomial at the set o f nodes in (5.8) can be written as

Pn(x, y) =

n n - i  1 - 1  w

X X  n ( * - M p ) I I ( y - q M q )  [m. " . [yo, - . y j ] y f  (5.9)
i=0 j= 0  v = 0  v= 0

Here, we have used the notations [[0], [1] , . . . ,  f(-, y) and [yp, y%, ... , yj jy f(x, ),

defined earlier in Chapter 3, to denote divided differences in the x and y directions

respectively. First we shall express the polynomial (5.9) in terms o f forward difference

operators. By virtue o f Lemma 3.5, we only need to find the relation between the 

divided difference [yq, y i, ... > y jly  f(x, •) and the corresponding foiward difference.

For a fixed value o f x and any m > 0, we have

[y j’ y j+ l yj+m]y «>=. •) = [m]q! q(2L + l)m /2

where the differences f(x, yj) are defined by
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yj) = yj),

f(x, yj) = f(x, y j+ i) -  £)y f(x, yj), m = 1, 2, ... .

This result is sim ilar to Lemma 3.5. We give a brie f proof o f (5.10). The 

proof is by induction. Obviously (5.10) holds fo rm  = 0. I f  (5.10) is true for any 

m > 0 then

[yj» yj+i» ••' » y j+m + ily  Kx, •)

[yj+i» ••• » y j+m +i ly  ^(x> •) ~ [yj,  . . , y j+mly f(x> •)

yj+m +i “  yj

=  [ m + l ] q  1 (m jq! q (2 j+ m + 3 )m /2  ^ j+ l )  “  [m]q! q (2 j+ tn + l)m /2  1

_ -----------------1----------------- fCx vO
q(2j+m +2)(m +l)/2 [ m + l ] J  Y  ̂ ’

which means (5.10) is also true for m + 1. Hence (5.10) holds for all m > 0.

As a special case o f (5.10) we obtain

[yo» yi» ••• » ymly % » •) q (m + l)m /2  [m ]  ! ‘

Now apply Lemma 3.5 and (5.11) to the mixed divided difference in (5.9), to

give

p.»,») - is 44%
i=n i=0 v=0 v=n ^
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I f  we let X = [x]p and y = q[ÿ]q fo r some x, ÿ e IR then the above polynomial 

simplifies to

Pn(x.y) = £ Ë  r i T j I l  [ ^ - y ] |

or, in the q-binomial notation,

P n f c y ) = I  E
n n - i  r- -,

X ' ÿ "
.  i  _ P .  j  _ K  4  fo,o (5.12)

In (5.12), i f  we take the lim it as p —> 1 then, since q -  1/p, this means that q —> 1 also. 

Then

[ i]p ! - »  1! , U lq ! j ! ,

[x —v]p —> X — V, [ÿ —v]q —> y —V,

and hence P^(x, y) in (5.12) tends to

n n - i

■ S &  (Î) (j)

which agrees with (3.6).

Let Jn be the integration rule over A^. To obtain we need the interpolating 

polynomial Pn(x, y) expressed in the Lagrange form. First we write
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1 1 -  p - j [j]p
yj = qW q = p T x r t 7 j

and fo r simplicity we w ill diop the subscript p in the notation o f [k]p. We see also that 

the interpolating nodes {( [i], [j]/p j ): i, j  > 0, i + j  ^  n} lie  in the union o f the three 

pencils o f lines

X = [i], 0 < i  < n, 

y = —[—j],  0 < j < n ,

X + pk y = [k], 0 < k  < n.

Hence follow ing section 2.4 , we have

n i
Pn(x. y) = É  É  y) %

1=0 j= 0  ^

where the Lagrange coefficient M |\(x, y) takes the form

M " ( x , y )  = n . ^ L ^  r i  y  [ n - v ] - x - p n -
*’J r i i  _  r \ / i  n - i n i _ n - v r v i=0 [ i]  -  [V] v=0 P“J[j] -  P~^[v] v=0 [n -  V] -  [ i]  -  p » -v -J [j]

Thus M fj(x , y) has the value 1 at ([i], [j]) and is zero at a ll other nodes. See also 

Figure 5.7 .

Let V f. be the weight at the node ([i], W ). Then we have
p j

Vy = J J M "j(x, y) dx dy.
An

It is interesting to compare the weights V f j on A „ and the weights w f j  fo r the 

integration rule on the triangle = {(x, y): 0 < x < y < [n]}. For the case n = 1, we
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obtain

«'Ô.O = P '^0,l> wJ_l = p V j o  and w j _ i = p v j ( ,  

and, for the case n = 2,

'^ 0,0 “  '^0.2 ~ P^ ^ 0,0

< n - i =  ■

Proof First we see that the transformation (5.13) maps: each node ([i], [n -  j])

into ([i], ^ ) ,  and each line y = p "-v  x + [n -  v ] onto ^ + p^ T| = [v ]. Hence the

region S„ is transformed onto the region A „. Note that the (n + l)(n  + 2)/2 

interpolation nodes ([i], on A„ still lie on the lines

Ç = [k] or T| = ^  or Ç + pk t) = [k], 0 < k < n.
pk

i

<1  = P '< 1  < 2  = P 'V ^,0  I

These results and those for the other small values o f n suggest the follow ing lemma, '§
where we show that there is a relation between the integration rules I„  on and on Y

Ajj, fo r all values o f n.

Lemma 5.2 Let w |\ be the weight at ([i], [j]) on Then the transformation 1

^ = x, n  = (5.13)pn

maps Sjj onto A „ = {(%, T|): %, T) > 0, ^ + p”  T] < [n ]} and the weights w f^  j into 

V f . , the weight at ( [i], on A„, such that
« pJ
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y =  x

=  tn]

Figure 5.7

Now let us consider the Lagrange coefficient L f n_j(x, y) on S„. From (5.2) we

have

L" (X y) = n n y-p̂x-[v]
'■"■J ’ i o  [ i]  -  [ V ]  V = n - j+ l  [ V ]  -  [n -  j ]  [n  -  j ]  -  p V [ i ]  -  [v ]

I f  we apply the transformation (5.13) to L ” „_j(x, y), the firs t product requires no work. 

On applying the transformation (5.13) to the second product in l " jj_j(x, y), we obtain

n [v ] ~ y _ [n -  p.] -  [n ] + p"T|

v=n-j+l ~ j ]  p.=0 [it — p ] -  [n  — j ]

on putting p = n -  v. Thus

f r  [V] - y  ^  #  p n n - p n - P [ | i ]
V = n - j+ i  [ V ]  -  [n -  j ]  p M [j -  p ]
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jQ  TI -

|1=0 P“ j[ j ]  -  p -^ [p ] 

The third product in L"^_j(x, y) is transformed to give

y - p v x - [ v 3 ^  " i4 - ‘ [n ] - p " T i - P ^ ^ - [ v ]
i o  [ n - j l - p ^ m - C v ]  t i  p V [ „ _ j _ v ] - p V [ i ]

_______ [n -  V] -  P i-vn _ I
V=0 - [ it -  V ]  +  [n  -  j  -  V ]  +  [n  -  v ] -  [ i ]

^  "  t4 “  ̂ [n -  H] -  ^ -  P " -N
i ü  [n -  IX] -  [ i]  -  p n -j-P [j] ’ 

on writing p = v. Hence y) is transformed into

= f t

^ [ n - H ] -   ̂ -  p-'-Pn
[n -  p ] -  [ i]  _ p n -j-P [j]

the Lagrange coefficient on A„.

Finally, we establish the relation between the weights w "^ j and V ” j o f the 

rules In and Jn respectively. We obtain

< n - j = n  L "n -/= ^.y)dxdy = J J M|V(^, Tl) i I dTl

= P" J J M|V(tll)d4dTl = pnvj’j.
An

* * * * *
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Chapter 6

Lebesgue functions and Lebesgue constants 
of the interpolating polynomial

6 .1 In tro d u c tio n

Given values o f f(x) at n + 1 distinct points xq, xj, x„  in [-1 , 1], we know 

from Theorem 1.2 that there exists a unique polynomial Pn(x) o f degree at most n such 

that Pn(xj) = f(x j), j  = 0, 1, ..., n. Also from (1.2), the polynomial can be written in 

the Lagrangian form
n

Pn(x) ^(^i) (6.1)
i=0

where
”  x  -  Xj

is
Consider the error in approximating to f(x) by the polynomial (6.1), given by

On = max I f(x) -  P„(x) I .
-1<X <1

It is well known that G„ is not in general the smallest error that can be achieved in 

approximating f(x) by polynomials. Let IP  ̂denotes the class o f polynomials p(x) o f
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degree at most n. Given f(x) in C [- l, 1], there exists a polynomial p „* in IP  ̂such that

Ejj = max 1 f(x) -  Pn*(x) I < max I f(x) -p (x ) I , fo r all p(x) in [P„ 
- l< x < l -1 ^ < 1

I f  one compares G„ with the least error E^, we have (see [21])

n
G „ S E „ ( 1 + max %  I L ; (x )  I ) .

The function

^n(x) = Z  I L ” (x)|
i=0

which appears in the above comparison is called the Lebesgue function o f order n and 

the quantity defined by

An = max ln (x )
-1<X <1

is called the Lebesgue constant o f order n. We see that

A,n(xj) = I L "(x j) I = 1, for all j  = 0, l,  .. .,n.

Also, on taking f(x) = 1 in (6.1), we have

n
£  L j ( x )  = 1 (6.2)

and hence

X„(x) > I X  LJ(x) I = 1, for all X in [-1,1], (6.3)
i=0

Let us determine whether \^ (x ) = 1 at more than the n + 1 points noted above. 

First we consider the Lebesgue function X^(x) on [~1, 1], constructed at the points 

XQ = -  0.9, x^ = -  0.2, X2 = 0, X3 = 0.3 andx4 = 0.6.

Note that the Lagrange coefficients o f ̂ .^(x) take the form
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LqW  = Î7T34 -  .3)(x -  .6)

L j(x ) = (x + .9)(x -  .3)(x -  .6)

I^ (x ) = (x + .2)(x -  .3)(x -  .6)

Lg(x) = Q-Q^ (x + .9)(x + .2)(x -  .6)

L^(x) = o i\6  + 2)(x -  .3)

The graph in Figure 6.1 reveals that X^(x) = 1 at x q , x j , X2, X3 and X4 and ^^(x) > 1 at 

all other points o f [ - 1, 1].

6..

2..

- 0 . 6- 1 . 0 - 0 . 2

Figure 6.1

In the follow ing lemma, which is well known, we see that, fo r all n > 2, X^Cx) 

cannot assume the value 1 other than at the interpolation points xq, x j , . . . ,  x„.
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Lemma 6.1 Let -  1 < xq < x j < ... < x„ < 1 and let ^ (x )  be the Lebesgue function

defined on [-1 , 1]. Then

(i) A,i(x) = 1 on [xq, x i] and ^ i(x ) > 1 on [ - 1, 1] \  [xq, xj ].

(ii) For n > 2, Xji(x) > 1 on [-1 , 1] \  {xq, x^, Xn).

Proof We begin with the case n = 1. For any x e [xq, x^], we have

1 X i  -  X 1 X -  Xo
S 0 and L j ( x )=  > 0

and thus, fo r xg < x < x^,

% i(x) =  I l J(x )1 +  I l J(x ) I  =  L^(x) +  l }(x ) =  1.

For any -1 < x < xg, Lg(x) > 1 and L j(x ) is negative, therefore A.j(x) > 1. Sim ilarly 

i f  x i < X < 1 then Lg(x) < 0 and L%(x) > 1, therefore ?ii(x) > 1.

Next, consider the case n > 2 and suppose that X,n(x) = 1 for some x e [xg, x „] 

\  {xg, x i, Xji). (We w ill consider x e [-1 , xg] v  [x„, 1] later.) Then from (6.2) 

we have

f  I L j(x )  1 = 1 2  L " ( X )  I .
1=0 1=0

This means that all L ” (x ) have the same sign. Now each L ” (x ) has the value 1 at xj and 

has simple zeros at xj, Therefore the function satisfies

L " ( x )  > 0  on [x i_ i,  X i+ i]  and L ” (x )  < 0  on [Xj_2, X i_ i] u  [x ^+ i, Xj+2] .  (6 .4 )

Similarly, we have
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and

L "_ j(x )  > 0  on [x j_2, X j] and L ^  ^Cx) < 0  on x^_2] u  [x |, X j+ j]

L"^j(x) > 0 on [xi, Xi+2] and L|^^(x) < 0  on [x i_ i, xJ u  [Xi+2, Xi+g].

On examining the three Lagrange coefficients L||_^(x ), L ”(x ) and L |^^(x) on 

the interval (x^_^, x )̂ u  (xj, Xj^.i), we see that either L"_j or is negative. See

Figure 6.2 . This gives a contradiction. Thus

^n(x) = %  l L " ( x ) |  > 1 on[xQ, Xn]\{xo, Xi, ...,Xn) 
i=0

because we know from (6.3) that X^Cx) > 1 for all x e [x q , x J .

1-2 Ï - 1 i+l

-1

Figure 6.2
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To complete the proof, we consider the value o f X^(x) on the end- 

intervals [-1 , XQ) and (x^, 1]. From (6 .4 ) we see that L "(x) > 0 and L ” (x ) < 0 in 

(xQ, x i)  and neither coefficient has any zeros in [-1 , x q ) .  This means that L "(x) < 0 

and l " ( x ) > 0 on [-1 , x q ) .  Therefore X„(x) 96 1 for a ll x e [-1 , x q )  for otherwise 

all L ” (x )  would need to have the same sign at some point on this interval. Hence 

Xn(x) > Io n  [-1 , Xq). Sim ilarly X̂ (x) > 1 on the other end-interval (x„, 1].

It is interesting to extend this idea to consider a two-dimensional Lebesgue 

function and Lebesgue constant o f the interpolating polynom ial P^(x, y; q). 

Specifically, given a function f  defined on a triangle S„ = {(x, y): 0 < x < y < [n ]), 

we consider the polynomial

Pn(x, y; q) = S  ^  L \ ( x ,  y; q) f j j  .

Then Pn([i], [j]) = fy , 0 < i < j  < n, and the Lagrange coefficients take the form

L "j(x , y; q)

(2n -j-l)j/2
= ÏÏJ lf j - i ] ! [ n  -  j ] !  n  -  [V]) n  ([V] -  y) n  (y -  q^^ -  M ). (6.5)

We now define, in an obvious way, a two-dimensional Lebesgue function o f order n 

by
n j

Xn(x, y; q) = X X  IL ?  j(x, y; q) I . (6.6)
j=0 1=0

Clearly, X „(x, y; q) = 1 at the interpolating nodes {([i], [j]): 0 < i < j  < n} and, 

sim ilarly to (6.2), we obtain
n j

S  £  L "  (X . y; q) = 1 (6,7)
j= 0  1=0
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and hence X„(x, y; q) > 1 for all (x, y) e S^. We also define the Lebesgue constant o f 

order n
An(q) = A,n(x, y; q).

0<x<y<[n]

The simplest case to consider is the function X j(x, y; q) defined on S^. Since 

all points on S i satisfy 0 < x < y < 1, we have for all q > 0

^ l(x , y; q) = l l - y l  + l y - x l  + I x l  = 1.

This means that
A i(q ) = max ^ i(x , y; q) = 1 fo r a ll q > 0 .

0<x<y<l

The other cases are not triv ia l due to the complexity o f L^j(x, y; q).

In the rest o f this chapter, we w ill investigate further the behaviour o f the 

Lebesgue function defined in (6.6) and its corresponding Lebesgue constant. To obtain 

conjectures concerning properties o f A.n(x, y; q), for a fixed value o f q > 0, we shall

plot the surface o f this function using a Unimap package [26]. We w ill write a program 

(again in Pascal) to create a data point o f A,n(x, y; q) for the package. Then we w ill 

examine the existence o f maximum points o f X^(x, y; q) over S^. We also w ill prove 

an analogue to the Lemma 6 .1 concerning the value o f = 1 at points other than the

interpolation nodes. In section 6.5 we proceed with the study o f Lebesgue constant 

and show that A„(q) are symmetric. In the last section we analyse the discontinuity o f 

the directional derivative o f at x = [k], y = [k], y = q ^x  + [k ], k =  1, . . . ,  n -  1.

6 .2  Surface plots of Lebesgue functions

We begin by w riting a Pascal program to evaluate the Lagrange coefficients 

L "j(x, y; q), where n is fixed positive integer. Let q > 0 and (x, y) e S^. For any

pair (i, j) , 0 < i < j  < n, we evaluate each product
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i-1  n j - i - 1

n  ( ^ -  » n  ([V] -  y) and n  (y -  -  [V])
v= 0  v = j+ 1 v=0

o f L g (x , y; q) and add all absolute values o f L ” j(x , y; q) to give ^n(^> y: q)- The

resulting Lebesgue function is denoted by the Pascal function LN (x, y: real): real. 

Then we choose a regular giid on with the grid spacing d, say, so that the set o f grid

nodes includes the interpolating points {([i], [j]): 0 i  ^  j  < n}. To create a data point 

fo r z = ?Un(x, y; q), we evaluate the function LN (x, y) at these grid nodes and the

arrange values o f x, y and z in three separate columns. A  program for the evaluation 

o f )q^(x, y; q) is given in Appendix 6A.

We are now ready to plot the surface o f X„(x, y; q), using the Unimap package. 

Unimap reads the data points as irregular data and generates a new set o f regular data 

before plotting the surface. This is done under a Unimap interpolation method (which 

we chose as bilinear). The method replaces the original data points by a more dense 

regular grid o f nodes. To plot the surface o f A,̂ (x, y; q) over a triangular area, we need

to define the region. Otherwise the new regular data points and the surface plotted are 

based on a rectangular area. A region is defined as a number o f border descriptions 

which are sets o f (x, y) coordinates. The region chosen here overlaps S„, each side

being increased by an amount d, the grid spacing. Note that, i f  the region is chosen to 

be precisely Unimap plots the surface only in the interior o f S„.

First we plot the surface o f z = ^^(x, y; 2) over S4 using the grid node spacing 

d “  0.2 . A brief Unimap plotting instruction sequence is given as follows.

DATA /  IRREGULAR / READ /.., To read a data points stored in the file  data.dat. 

INTERPOLATE /  GRID CELL /.., To interpolate the data points into a specified

number o f grid cells.

METHOD /.., To choose an interpolation method.

DATA /  REGION /  READ /.., To read a region data stored in the file  reg.dat.
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M A P /G A LLE R Y /.., 

LAYO U T/A X E S  /..,

STYLE /  3D /  VIEWPOINT /..,

To choose a map type required, e.g. 3D-contour. 

To add primary or vertical axes and scale.

To get 3D-viewpoint from a position above the 

X -Y  plane by specifying Elevation and Azimuth.

Figure 6.3 shows the 2D grid representation o f X,4(x, y; 2) where the surface

has been plotted over the whole triangular region. Also, on using the same data 

for ^ 4(x, y; 2) and for the region. Figures 6.4 and 6.5 give 3D-contour representation

o f the surfaces w ith the viewpoint 75; 70 and 90; 320 respectively. Note that, i f  we 

view- the diagonal side o f the surface from the horizon, we see that the surface covers 

both ends o f the diagonal boundary. These Figures also indicate that ^4(x, y; 2) has

minimum values at the interpolation nodes o f f(x, y). From (6.5), we know that these 

values are 1.

15.0

12 .5

10.0

7 .5

ABOVE 44
40 - 44
3 6 - 40
3 2 - 36 5 .0
2 8 - 32
2 4 - 28
2 0 - 24
1 6 - 20 2 .5
1 2 - 16
8 - 12
4 - 8

BELOW 0.0

0 .0  2 .5  5 .0  7 .5  10 .0

Figure 6.3 : The map (2D-grid) o f A,4(x, y; 2).

12.5 15.0
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Figure 6.4 : The map (3D-contour) o f y; 2), viewpoint 75; 70.

Figure 6.5 : The map (3D-contour) o f ̂ 4 (x, y; 2), viewpoint 90; 320.
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6 .3  Peaks of the Lebesgue functions

We noticed from the surface o f y; 2) over S4, that the contour o f a higher

peak hides away some contour o f the lower one. Since the value o f q = 2 is large, only 

the higher peaks o f A,4(x, y; 2) are well plotted. To overcome such a disadvantage, we

choose q close to 1. This reduces the height o f the higher peaks considerably and 

reveals more features o f the surface in the vicin ity o f the lower peaks. Let us consider 

the Lebesgue functions X;̂ (x, y; q) where n = 2, 3 and q = 1.1, 0.5. In Table 6.1, we

summarise some o f the plotting information used in the mapping o f these surfaces.

Order Grid 
n mesh d

Number o f 
data

Number o f 
grid cells

Surface
viewpoint

Map
type

y; q) 
Surface

q = 1.1

2 0.1 253 8 0 x80 60; 120 3D-LINE Figure 6.6

3 0.05 2278 100 X  100 35; 70 3D-LINE Figure 6.7

3

q =

0.03

0.5

6216 160 X  160 2D-LINE Figure 6.8

2 0.05/
0.025

1281 120 X  120 75;238 3D-LINE + 
PROJ

Figure 6.9

3 .1/.05/
.025

1036 140 X  140 2D-LINE Figure 6.10

3 .1/.05/
.025

1036 140 X  140 50; 215 3D-LINE Figure 6.11

Table 6.1

Note that, we have used a different grid spacing fo r the case where q = 0.5 . On S2, 

we chose d = 0.05 and 0.025 for 0 < y < 1 and 1 < y < 1.5 respectively. On S3,

we chose d = 0.1, 0.05 and 0.025 for 0 < y < 1, 1 < y < 1.5 and 1.5 < y < 1.75 

respectively. We see that X.2(x, y; 1.1) has only one maximum, and ^g(x, y; 1.1) has 

six maxima and one minimum point, ([1], [2]). The surface o f ?i2(x, y; 0.5) possesses
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Figure 6.6 : The map (3D-line) o f y; 1.1).

Figure 6.7 : The map (3D-line) of Xg(x, y; 1.1).
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I I I I I I I I I I I I I I I I I I I I I I I

0 .0  0 .5  1.0 1.5  2 .0  2 .5  3 .0

Figure 6.8 : The map (2D-line) o f Xg(x, y; 1.1).

Figure 6.9 : The map (3D-line) of X2 <x, y; 0.5).
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1.75

1 .5 0 - 1

1 .25  H

1.00 H

0 .7 5 - 1

0 .50

0 .2 5

0.00 - F r i  I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 .0 0  0 .2 5  0 .5 0  0 .7 5  1 .00 1 .25 1 .50 1.75

Figure 6.10 : The map (2D-Iine) o f y; 0.5).

Figure 6.11 : The map (3D-Iine) of kg(x, y; 0.5).
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one maximum, and l] ( x ,  y; 0.5) has three maxima and one minimum. Note also that, 

in Figures 6.6 and 6.8, there are substantial gradient changes at the lines x = [i], y = [j] 
and at the interpolation nodes respectively.

Let us examine the existence o f a ll maximum points o f ^^(x, y; 1.1) in the 

subregions o f S3. D ivide S3 along the lines y = [v ], y = q^x + [v ] and x = [v ], where 

V = 1 and 2, to give nine subregions A^, A2, ..., A 9, say as shown in Figure 6.12. 

We see that the six maxima points o f Figure 6.8 lie in A^, A 3, A4, Ag, A 7 and A 9.

A9A7A5

A8A6

A2 A4

A3

A1

F igure 6.12

To determine whether each o f the other subregions also possesses a maximum point, 

we refine the data points o f y; 1.1) and produce its 2D-LINE plot on a suitably

small area in the subregion. The details o f the plotting are as follows.

Subregion Area chosen spacing d No. o f grid cells Surface

A i 0.25 < X ^  y -  0.25 
0.8 < y <  1.1

0.01 110x54 Figure 6.13

As 0 < X < y 
2.5 < y ^  2.9

0.03 200 X  27 Figure 6.14

As 1.9 < X < y 
2.6 < y < 2.8

0.005 150 X  75 Figure 6.15

Table 6.2
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m m

0 .9 -

1 I I I I I I I I I I I r

0.3 0.4 0.5 0.6 0.7 0.8
Figure 6.13 : The map (2D-line) o f kg(x, y; 1.1) over subregion A j.

0.0 0.5 1.0 1.5 2.0 2.5

Figure 6.14 : The map (2D-line) o f A.](x, y; 1.1) over subregion A5.
2.80

2 .7 5 -

2.70 -

2 .6 5 -

2.60
2.00 2.05 2.10 2.15 2.20 2.25

Figure 6.15 : The map (2D-line) o f lg (x , y; 1.1) over subregion Ag.

2.30
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The information in Table 6.2 suggests that lg (x , y; 1.1) possesses at least one 

maximum point in each o f its subregions. I f  we choose q > 2 then some contour-lines 

on the lower peaks are lost due to the very large contours difference on the highest 

peak. The surface o f X^(x, y; 2) in Figure 6.4 already exhibited such a phenomenon. 

However Xn(x, y; q) does not always possess a maximum in every subregion o f Sj,. 

This is shown in the example below.

Exam ple 6.1 Consider the function ^2(x, y; q), q > 0 and divide S2 = AABC 

into four subregions A j, A2, A 3 and A4 by lines joining the middle nodes D, E and F. 

See Figure 6.16. We seek maximum points o f A,2(x, y; q) on these subregions.

A4A2
A3

A l

Figure 6.16

We obtain from (6.5) and (6.6) that 

z = A,2(x, y; q)
11 -  yl ][2] -  yl l[2 ] ~ y l l y  -  xl Ixl l[2 ] -  yl 

[2] + q + q

+ !y -  xl ly -  qx ~ II Ixl ly -  xl 1x1 Ix -  11 
q[2] q q [2] (6.8)

Let z^(x, y) be the surface section o f ^ 2(x, y; q) on subregion A^, k = 1, 2, 3 and 4, 

and write
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zo(x. y) ^

Then each function z^(x, y), k = 1,2,3 and 4, can be written as follows.

-  c - ' i W ' - "  w . y )

y jf r .  y> -  -  *  ■«<-■ «

We now determine the relative maxima o f ^^(x, y; q) and the results are summarised in 

the Tables 6.3 and 6.4 below.

zi(x, y) Z2(x, y)

9z
| ( y - 2 x )

- q | [ 2 ] ( ^ * '

dz
9y

~ [ i j  ( 2 y - 2 - q)

Critical point

(XQ, yo)

( 1 2 .
^3 -  q ' 3 -  q /

A + q \ 
l 2 ' 2 /

Condition on 
q such that 

( x q , yo) e Ak

0 < Xq < yo

y o ^ i
=> 0 < q < 1

Xq ^  0

qxQ + 1 < yo < 

=> q > 0

[2]

A
q[2]2 ^ ^

Table 6.3
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Z3(x, y) Z4(x ,  y)

9 z

9x
| ( y - 2 x ) q[2] "" “  ^)

dz
dy

- | ( 2 y - x - [ 2 ] ) - | ( 2 y - x - [ 2 ] )

Critical point

(xQ, yo)

A2] 2 [2 \
1 3 : 3 /

(.q2 + 2q -  1 2q2 + 2q -  K  

'' 3q -  1 ’ 3q -  1

Condition on X Q <  1 X Q >  1
q such that 1 < yo < qxQ + 1 XQ < yo ^  [2]

(xQ, yo) G Ak = >  1/2 ^  q  ^  2 
(q ^ i  1)

=> q > 1

A g -

Table 6 ,4

In these tables A denotes the value o f

d'̂ z /  d'̂ z \ 2  

dyA dŷ  9x 9y

evaluated at (xq, yo).

We see that the existence o f a local maximum in each subregion depends on 

varying conditions on q. Hence the Lebesgue function does not necessarily have a 

local maximum in every subregion o f 82- We note further that, i f  q —> 1, then the local 

maxima points o f ^2(^’ y: q) tend to (1/2, 1), (1/2, 3/2), (1, 3/2) and (2/3, 4/3). The 

first three are the middle points o f the boundaries o f A 3 and the last point is the centroid 

o f A 3. We also notice that i f  a local maximum o f ̂ (x , y; q) exists in a subregion, then 

it  is unique.
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6 .4  The characteristic nature of the Lebesgue functions

In the case o f the one-dimensional Lebesgue function, we showed in Lemma 

6.1 that A,ji(x) > 1 for a ll x e [-1 , 1] \  {xq, x j , ..., x^} . We now show that this 

property can be extended, in the two-dimensional case, to ^ (x , y; q). First we state:

Lemma 6.2 Let A.2(x, y; q) be the Lebesgue function defined on 82- Then

^ (x ,  y; q) > 1

i f  (x, y) is not one o f the interpolation nodes on 82.

Proof 8uppose that fo r some point (x, y) in R2 = 82 \  { ([i], [j]): 0 < i  < j  < 2},

2 j
^ 2(x, y; q) = X  X  I L^Xx, y; q) I = 1.

j= 0  i=0

Then, on using property (6.7), we have

X  ^  I L j j ( x ,  y; q) I = I X  ^  L?j(x, y ;q ) |  .

2
This implies that each L. j(x, y; q), 0 < i < j  < 2, has the same sign at these points.

Now divide 82 = AABC into four subtriangles as shown in Figure 6.16. Let us 
2

verify the sign o f L. .(x, y; q) on each o f the subregions. We begin with the firs t three 

Lagrange coefficients L ^, Lg and Lg. Here we have used L ^  = L^(x, y; q) to denote

the Lagrange coefficient with respect to the interpolation node K  on AABC. We see 

that each L ^  is expressible as a product o f two linear forms, so that
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Lk(x) = c (ajx + biY + cj) (a2% + b2y + C2)

and therefore Lj^ is zero only on the lines a%x + b^y + 0 ^ = 0  and a2% + b2y + C2 = 0

and changes sign on these lines. See also Figures 6.17, 6.18 and 6.19 (in Appendix 

6B) which show the surfaces o f Lagrange coefficients L ^, Lg and Lg respectively. 

Note that each has the value one at the node K  and is zero at all other interpolation 

nodes. Hence the single value at the node K  determines the sign o f on AABC and 

the lines (which contains the other interpolation nodes) separate AABC into regions 

where Lj^ has a constant sign.

Sign o f

FB C

E

A

Sign o f L g  

Figure 6.20

FB C

E

A
Sign o f L g

In particular, let us determine the sign o f Lyŝ  = (1 -  y)([2] -  y)/[2]. Since L ^  is

positive at A, the same sign is maintained in the interior o f subtriangle ADE and, in the 

interior o f the lines AE and AD. This means the sign o f L ^  changes to negative in the

interior o f subtriangles BEF, DEF and CDF, and in the interiors o f the lines BE, EF, 

DF and CD because these parts lie on the other side o f the line DE. Note that, the signs 

o f Lg and Lg are deteraiined sim ilarly and both are shown in Figure 6.20. We see that 

Ly ,̂ Lg and Lg do not have the same sign in the interior o f

(i) the subtriangles AED, BEF, DEF and CDF,

(ii) the lines DE, EF and FD,

(iii) the outer lines AE and BE.
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To complete the proof, we consider the sets (Lg, Lp, L ^ } and (L ^ , Lg,, L^}. 

By symmetry, each set does not have the same sign on the sets (i) and (ii) above and 

also on the lines BF, CF and AD, CD respectively. Hence the six Lagrange 

coefficients do not have the same sign at any point o f R2. Thus no point in R2 where 

^2 has the value one and, since ^2 -  1 on AABC, this means ^ (x , y; q) > 1 on R2.

Lemma 6.3 Let R „ -  Sj, \  {([i], [j]): 0 < i < n )  where n > 3 . Then

?^n(x, y; q) > 1 for all (x, y) e R„.

Proof Lemma 6.2 dealt w ith the case where n = 2. For n > 3, suppose that

y; q) = 1 for some point (x, y) e R„. Using the same argument as in Lemma

6.2, we see that all the Lagrange coefficients l !̂ .(x , y; q), 0 < i < j  < n, must have the

same sign at these points.

Let us divide into triangular subregions by drawing the lines x = [v], y = [v] 

and y = q^x + [v] where v = 1, 2, ..., n -  1. We w ill determine the sign o f lP .(x , y; q)

at all subregions o f S .̂ However it suffices to find the sign on any subtriangle ABC o f 

S„ o f the form

AABC = {(x, y): x > [i], y < (j + 2], y ^  qH x + [j - i ] }

where 0 < i < j < n - 2 .  We see that the subtriangle ABC contains six interpolation 

nodes {([i + r], [j + s]): 0 < r  < s < 2). See Figure 6.21. The lines join ing the middle 

nodes o f AABC, that is, x = [i + 1], y = [j + 1] and y = q j-l+ lx  + [j -  i  + 1] divide 

the subtriangle further into four subregions ADE, BEF, DEF and CDF.
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B[j+2]

j - i+1
y  =  q

Ü+1] E

y = q X + ü - i]
A

[i]

Figure 6.21

We know that each Lagrange coefficient, L ” j(x , y; q) in (6.5) consists o f n

linear forms which pass through a ll interpolation nodes except the node ([i], [j]). 

Therefore the sign o f each L |\(x , y; q) remains unchanged in any subregion formed by

the above linear forms until a boundary is crossed. O f the (n + l)(n  + 2)/2 Lagrange 

coefficients L f .(x, y), we w ill restrict our attention to the six Lagrange coefficients

associated with the nodes on the subtriangle ABC. We see that the prcvious argument 

in Figure 6.20 o f Lemma 6.2, also applies to the above AABC. Therefore we have 

shown that not even six L ^ /x , y) named above have the same sign on

AABC \  {([i + r], [j + s ] ) : 0 £ r < s S 2 } .

This implies that all L|'.(x , y), 0 S i < j  < n do not have the same sign on any point in

Rn* Thus, there are no points in the region R„ such that ^ (x , y; q) = 1. Finally, since 

y; q) ^  1 for all (x, y) e Sn then ^n(x, y; q) > 1 on R„.
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6 .5  Lebesgue constants

In this section, we shall investigate two properties: first, the minimum value of 

the Lebesgue constants and second, the symmetric property o f the constant. We know 

that the Lebesgue function on is bounded below by 1 and

min A,n(x, y; q) = 1 
(x,y)ESn

holds for all n and q. On taking the maximum value o f the Lebesgue function we shall 

investigate the variation o f

An(q) = max X,n(x, y; q) 
(x,y)G Sn

with respect to n and q. The case n = 1 is exceptional, since A i(q ) = 1 for all q > 0.

We now evaluate A „(q) for n = 2, 3 and 4, and compare A „(q) for different

values o f q. In our numerical experiment we have taken values o f q between 0.3 and 

4.0 . For each q, we chose a small grid spacing for the mesh on so that the value o f 

A„(q) is correct to three decimal places. Note that, for a given q

max X̂ ix, y; q) < max ^ (x ,  y; q) 
(x,y)G G (x,y)e Sn

where G is the set o f grid nodes on S„. Hence the approximate value o f A^(q) does not

only depend on the smaller giid spacing, d, it  is also depends on how close is the grid 

mesh to a maximum point o f XnOi, y; q). We now give the approximate values o f 

An(q) for n = 2, 3 and 4.
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q A2(q) As(q) A4<q)

4.0 3.326 37.602 1826.140

3.0 2.687 17.733 362.349

2.0 2.067 6.884 43.465

1.5 1.778 3.967 12.142

1.25 1.700 2.983 6.333

1.1 1.673 2.552 4.374

1.05 1.668 2.387 3.890

1.005 1.667 2.279 3.513

0.95 1.668 :L394 3.914

0.9 1.674 2L553 4.491

0.8 1.700 3h983 6.332

0.7 1.752 3.656 10.064

0.5 2.067 6.884 43.466

0.4 2.374 11.357 133.970

0.3 2.899 23.213 650.651

Table 6.5

We see from Table 6.5 that the values o f A^Cq) decrease as q approaches 1. We 

conjecture that A^(q) attains its minimum at q = 1. In Appendix 6C, we give a detailed 

calculation o f the minimum o f A^Cq) through the sequences o f q-values

0.957, 0.962, ..., 0.997 and 1,052, 1.047, ..., 1.002.

Although this result strengthens our belief that the conjecture is correct, we have no 

proof o f this.

I f  we seek the minimum values of A^(q) for n = 1 , 2, 3, 4 and 5, we obtain:
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Degree n 1 2 3 4 5

min A„(q) 
q>0

1.000 1.667 2Ji74 3.890 6.638

We note that, for the values o f n considered, min An(q) increases as n increases.
q>0

Let us refer again to Table 6.5. On comparing A^(q) w ith A^Cl/q) for n = 2, 3 

and 4, we obtain

An(0.95) = An(1.05), An(0.90) = An(LlO),

An(0.80) = An(1.25), An(0.50) = An(2.00).

The result suggests that A^(q) is invariant under a transformation q 1/q. We show 

that this conjecture is correct.

Lemma 6.4 For n = 1, 2, 3, ... the Lebesgue constant satisfies A^(q) = A „(l/q ).

Proof. Let L "j(x , y; 1/q) be the Lagrange coefficient o f the interpolating

polynomial on the triangle S n ( l / q )  = {(x, y): 0 < x < y < [n ]/q "-l). From Lemma 5.1 

we have

L fj(x ,y ; 1/q) = j  ̂ q).

where

X = ([n] -  T|)/qn-l and y = ([n] -  ^)/q"-^ .

Hence, the Lebesgue constant on S^(l/q) is transformed into
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Now substitute r  = n -  j,  s = n -  i  and change the order o f summation in  (6.9), to 

give
n s

An(l/q) = max ^  %  I L " Æ ,î i ;q ) l  = A „(q).
OS^SrisM S  t o  '

This complete the proof.

6 ,6  The discontinuity of partial derivatives of the Lebesgue functions

Let us consider the surface o f z = X2(x, y; q) over the subtriangles A j, i  = 1, 2,

3 and 4, as shown in Figure 6.16. We know from Lemma 6.2 that, on any o f the 

subtriangles A j, the surface o f z is always above the plane Z = 1 and it  assumes the 

value one only at the vertices o f the subtriangle. I f  we restrict z = A,2(x, y; q) to the 

interior o f A j, then z reduces to a polynomial and hence all its partial derivatives exist 

and are continuous. We notice also that the gradient o f z changes considerably at the 

boundaries o f the subtriangles.

First we find partial derivative o f z at the adjacent boundary o f A 3 and A 4. Here 

it  is appropriate to consider the function z in the subregion A 3 u  A 4. Using (6.8) and 

the fact that 1 < y < [2] and x < y < qx + 1, then z can be written as

/ \ . Ixl Ix -  II
z = g(x, y) + - q p ]

where g(x, y) is a polynomial that does not change sign in A 3 u  A4. For any point 

(x, y) e the interior o f A3, we have
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and hence

Sim ilarly, i f  (x, y) e A 4

and

^  y) , 1 -  2 x
dx dx

x ( x - l )  
Z = g(x, y) + q [2]

^  _ ^g(x, y) 2x -  1 

9x dx

On taking the lim it o f dz/dx as x approach the boundary, we obtain

9x “  q[2] ’ a sx ->  1 from  A 3, (6.10)

and

9x 9x 9.[2]
asx->  I'*' from A 4. (6.11)

Hence dz/dx is discontinuous across the boundary. On the other hand, there is no 

discontinuity o f dz/dy along the boundary since dz/dy = 9 g (l, y)/3y for all 1 < y < [2].

We note also that the slope o f z on the opposite side o f the boundary may not 

necessarily o f different sign. In particular, since

g(x v l -  -  (1 -  y)([2] - y )  ([2] -  y)(y -  x) ([2] -  y)x
gfx, y j-  [2] + q + q

(y -  X )(y  -  qx -  1) x(y  -  x )
q[2] + q

then
9g 2 [2 ]y  — 4qx — 2x — 1
ax "  q[2]
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From (6.10) and (6.11), we see that

^  S Hm —  < | ( q - l )  for all 1 < y ^  [2]
q x-»i-ôx q ^

and

ï4 r ^  ] i m ^ < 0  f o r a l l l < y < l + Æ ,  
 ̂ J x ^ l+  dx

0 < lim  ^  ^  fo r all 1 + r3n < y < [2].
x ^ l +  o x  L^J L^J

Therefore i f  0 < q < 1, the slope on both sides o f the boundary remains negative for all 

1 < y < 1 + ^  and x is sufficiently closed to the boundary.

We now generalise the above result to the partial derivative o f any Lebesgue 

function A/̂ (x, y; q) at adjacent boundaries o f subtriangles o f We obtain:

Theorem  6.1 Let be divided into subtriangles by the lines

X = [V ] ,  y = [v] and y = q"̂  x + [v ], v = 1, 2, . . n -  1.

Then the directional derivative o f X̂ (x, y; q) at the interior boundary o f any two 

adjacent subtriangles is discontinuous in all directions except along the boundary.

Proof The subdivision o f Sj, produces n^ subtriangles. However it  suffices to

prove the discontinuity at the follow ing n(n -  l)/2  subtriangles ABC o f the form

AABC = {(x, y): y > [j], x < [i] and y < qH + ix + [j - i + 1]} 

where j  = 1, 2, ..., n -  1 and i = 1, 2, ..., j.
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DÜ+1]

j- i+ 1

A

F

[ i- 1] [i]

F igure 6.22

First we consider the Lebesgue function y; q), defined in (6.6) over the region

AABC u  AABD. Here we have the segment AB, the boundary o f two adjacent

subtriangles AABC and AABD and it lies on the line y = qj~i+l x + [j -  i + 1]. We see 

that each L ” j(x , y; q), 0 ^  i  < j  < n, does not change sign w ithin a subtriangle, but

only when a boundary is crossed. Hence, the Lebesgue function on AABC u  AABD 

can be written as two sums,

y; q) = S  1 I L"j(x, y ; q ) l  + X  2 I y : q ) l  ,

where the second sum has a ll terms which contain the form y -  qj-^+lx -  ü -  i + 1]. 

The first sum is a polynomial and for simplicity we let

Z  1 I y ; q ) l  = g(%, y)-

On factoring the second sum, we obtain

X  o I y; q) I = ly - q H + lx  + [j ~ i + 1] 1 h(x, y)
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for some polynomial h(x, y). Thus the Lebesgue function can be written as 

^n(x, y; q) = g(x, y) + I y -  qH + lx + [j -  i  + 1] 1 h(x, y).

Note that, g(x, y) and h(x, y) do not change sign and both are positive in the interior o f 

AABC u  AABD. The reason for the latter is that each function is a sum o f moduli and 

hence can only be zero i f  each term is zero.

Now let us find the directional derivative at any two points Q j and Q2 in AABC 

and AABD respectively. For all (x, y) e the interior of AABC,

\i(x, y; q) = g(x, y) -  (y -  qH + lx -  [j -  i + 1]) h(x, y).

This gives

^  ^  -  ( y - q j - i + l x - [ j - i  + 1] ) ^  + q i-i+ lh ,
dx dx dx

-  (y -  qj“^+lx -  Ü -  i + 1]) ™  -  h.
dy dy 9y

Then the directional derivative at Q i in the direction o f 0 is given by

^  = f ^ c o s 0  + ^  sine 
as dx dy

—  cos 0 + —  sin 0 -  (y -  qi“ '+ lx  -  [j -  i + ! ] ) (  —  cos 0 + —  sin 0)
Bx By Bx By

+ q j-i+ lh  cos 0 -  h sin 0 , 

evaluated at the point Q j in AABC. Sim ilarly, we have for any (x, y) e interior AABD
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y; q) = g(%, y) + (y -  qJ-^+^x -  [j -  i + l ] )  h(x, y)

and

^  ^  + ( y - q H + l x - [ j - i 4- 1] ) ^  -  qH + lh ,
dx dx dx

^  ^  4- (y -q j~ ‘+ l x - [ j - i + 1 ] )—  + h.
dy dy dy

Hence the directional derivative at Q2 takes the form

^  cos 8 + ^  sin 0 + (y -  qH+^x -  [j -  i + 1])( —  cos 0 + —  sin 0)
dx dy dx dy

-  qH +lh cos 0 + h sin 0 ,

evaluated at the point Q2 in AABD.

Let Q = (a, b) be any point in the interior o f AB. On taking the lim it o f dX^/ds

as Q i Q, we obtain

3g(a, b) 9g(a,b) .- g - = —  cose + - —  -
Ql->Q dx dy

lim  cos 0 + sin 0 + qi-i+ lh(a, b) cos 0 -  h(a, b) sin 0.

Similarly, i f  Q2 ^  Q then

lim 3x aylim  —  cos 0 + — — sin 0 -  qH+lh(a, b) cos 0 + h(a, b) sin 0 .

Thus directional derivative at Q is continuous i f  and only i f

qj“ i+lh(a, b) cos 0 -  h(a, b) sin 0 = 0 (6.12)
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Since h 0 on the interior o f AB, then the directional derivative at Q is continuous i f  

and only i f  0 = tan~^ (q j-i+ l), the direction o f AB itself. This completes the proof for 

the discontinuity on the boundary AB.

Finally, we note that the discontinuity at the other boundaries o f AABC can be 

dealt w ith sim ilarly. In fact, i f  Q is in the interior o f BC or interior o f AC then equation 

(6.12) reduces to h cos 0 = 0 or h sin 0 = 0 respectively.
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Appendix 2 Evaluation of forward difference formula of the

interpolating polynomial on q-triangle

program pned;

const 
nmax = 8;
type D D fij = array[0,.nmax, 0..nmax, 0..nmax, 0..nmax] o f real;

var
f: text; n, m, k, r, s, i, j: integer;
q, fvlue, X, y, x l , y l ,  psum, pp; real; d: DDfij;

function F (i,j: integer): real; {to calculate f([i], [j]))
var fij: real;
begin
fij:=  0 .003*(l-exp(i*ln (q )))/(l-q ); fij:=  f ij + 0 .01*(l-exp (j*ln (q )))/(l-q );
fij:=  exp(fij); F := fij;
end;

function bmial(x: real; s: integer); real; {to calculate the q-binomial coefficient} 
var
i, r: integer; B: real;
begin
i f  s > 0 then 

begin
B:= 1; r:= s; for i:=  1 to s do 

begin
B:= B ’̂ ((l-exp(x*ln(q)))/(l-exp(r*ln(q))); 
x := x - l ;  r := r - l ;
end; 

bmial:= B; 
end

else bmial:= 1; 
end;

begin {main program} 
rewrite(f,'pned.out');
writeln('Enter the degree o f the polynomial and the value for the q-integer'); 
readln(n, q);

for m:=0  to n do
for k:=() to m do

d[0, 0, k, m -k]:=  F(k, m -k); 
w rite ln ('The listo fD (0)D (0)f(ij) is '); w riteln(f,'The l is to f D (0)D (0)f(ij) is ’);

for m:= 0 to n do
for k :=0  to m do

begin writeln(d[0, 0, k, m -k]); w riteln(f, d[0 , 0, k, m -k]); end;
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for r;= 0 to n-1 do
for s:= 0 to n - l- r -1 do

fo r i:=  0 to n - l- r -s  do
for j:=  0 to n - l- r - s - i do 

begin
d [r+ l, s, i, j]:=  d[r, s, i+ 1, j ]  -  exp(r*ln(q))*d[r, s, i, j] ;  
d[r, s+1, i, j]:=  d[r, s, i, j+ 1] -  exp(s*ln(q))*d[r, s, i, j] ;  
end;

writeln('The lis t o f D(r)D(s)f(0, 0) is: ’); 
w riteln(f, 'The lis t o f D(r)D(s)f(0, 0) is: '); 
fo r m :=0  to n do 

fo r k :=0  to m do
begin writeln(d[k, m -k, 0, 0]); 
w riteln(f, d[k, m -k, 0, 0]); 
end;

writeln('Enter the chosen point (x, y)'); readln(x, y); 
fvlue:= exp(0.003*x + 0.01 *y);
writeln('The value o f x is ', x); writeln('The value o f y is ’, y);
w riteln(f, 'The value o f x is ', x); w riteln(f, 'The value o f y is ', y);
x l:=  ln (l-(l-q )*x )/In (q ); 
y l:=  ln (l-(l-q )*y )/ln (q );

psum:= 0;
for m :=0  to n do

for k:= 0 to m do 
begin
pp:= bm ia l(xl, k); 
p p .- pp*bm ial(yl, m -k); 
pp:= pp*d[k, m -k, 0, 0]; 
psum:= psum + pp; 
end;

writeln('The value o f Pn(x, y) is ', psum); 
w riteln(f, 'The value o f Pn(x, y) is ', psum); 
writeln('The value o f f(x, y) is ', fvlue); 
w riteln(f, 'The value o f f(x, y) is ', fvlue); 
writeln('The error is ', psum -  fvlue); 
w riteln(f, 'The error is ', psum -  fvlue); 
end.

* * *
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Appendix 3 On the reducibility of the Lagrange coefficients

Let Lqq(x, y) be the Lagrange coefficient o f the interpolating polynomial on the

q-triangle as given in (3.17). From Lemma 3.7 and Lemma 3.8, we showed that the 

Lagrange coefficients Lq q( x , y) = 0, n = 2, 3 are reducible. To discuss whether this

property holds in general let us consider

L^_o(x, y) = L^ g(x. y ) + [ % ( % - l) (x  -  [ 2 ] ) ( X  -  [3]) + ^  (x -  l)(x -  [ 2 ] )

+ (X -  l)(y  - 1 )  + ^  (y -  l)(y  -  [2]) + (y -  D(y -  [2])(y -  [3]).

We use MacTutor package [ 2 ] to plot some graphs o f L q q(x, y) = 0 and these 

are shown in Figures 3.7 to 3.12. We see that a ll the graphs o f L q q(x, y) = 0 are

symmetric w ith respect to the line y = x and when q > 1, the graphs splits into four 

branches o f "hyperbolic" form. When 0 < q < 1, the graphs split into two closed 

curves in  two different configurations, one inside the other i f  0 < q < 0.71 and two 

separate closed curves i f  0.73 < q < 1. The transition between these two phases is not 

clear, the best possible picture available (see Figure 3.9) shows that the graph might 

look like two ellipses. We examine this idea further algebraically.

Consider the graph o f Lq q ( x ,  y) = 0 with q = 0.72. Suppose that the graphs

split into two ellipses ABCDEF and GHIJKL. Then each ellipse must satisfy 

(x + y -  a)^ + b(x -  y)^ = c^, for some constants a, b, c 

where the axes are y -  x = 0 and y + x = a respectively. The ellipses must pass 

through 14 interpolation nodes o f the q-triangle. Using just three nodes ([1], [0]), ([2], 

[0]) and ([2], [1]) from the six interpolation nodes o f the firs t ellipse ABCDEF, (the 

others are ([0], [1]), ([0], [2]) and ( [1], [2])), we obtain

b = 1/3, a = (4 + 2q)/3 and c^ = 4(1 + q + q^)/9 .
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Therefore the equation o f the first ellipse ABCDEF is

{x + y - 2 ( l  + [2])/3}2 + ( x - y ) 2 / 3 =  4 [3 ]/9 .

The other eight nodes must lie  on the second ellipse GHIJKL. Substitute the firs t two 

nodes ([1], [1]), ([2], [2]) to gives a = 2 + q and c = q. Using the second two nodes 

([4], [0 ]) and ([3], [ 1]) we obtain two values for b and hence

( - q 6 - 2 q 5 - q 4  +  2q3  +  3 q 2 - l ) / [ 4 ] 2  =  ( l - q 2 ) / [ 2 ] 2 .

Thus ( q  -  1)2 (q  + 1) (q2 + q  + 1) = 0 which means b has no solution. Therefore 

Lq q ( x ,  y) = 0 does not factorizes into two ellipses.

Now let us consider the equation Lq q ( x ,  y) = 0, See Figures 3.13 to 3.20. I f  

0 < q < 0.744 the graphs o f Lq q ( x ,  y) = 0 consist o f curve 1: a "hyperbolic curve"

which interpolates {([k ], [0]), ([0], [k ]): k = 1, 2, ..., 5} and, curve 2 and curve 3: 

two separate closed curves which interpolate {([i], [j]): 1 < i, j  < 2, 2 < i + j  < 3} and 

{([i], [j]): l < i , j < 4 ,  4 < i + j < 5 }  respectively. I f  0.745 < q < 0.781, curve 3 breaks 

up: the upper part o f it  forms a "hyperbolic curve", curve 4 say, which interpolates 

{ ([i], [j])* i, j  ^  0, i  + j  =5} .  The lower part o f curve 3 connects to the curve 1 to form 

a closed curve which we shall call curve 5. Note that curve 5 interpolates the nodes 

{([k ], [0]), ([0 ], [k]): 1 < k < 4} u  {([i], [j]): i, j  ^  1, i + j  = 4} and it contains curve 

2. I f  0.782 < q < 1 both curve 2 and 5 break up: their upper parts combine to form a 

closed curved which interpolates { ([i], [j]): i, j  > 0, 3 < i + j  < 4} and their lower parts 

form  another closed curved which interpolates {( [i], [j]): i, j  > 0 , 1 < i + j  < 2 }. 

However curve 4 does not change form. I f  q > 1, the graphs separate into five 

"hyperbolic curves".

As q varies from 0.50 to 0.9, the graphs o f Lq q ( x ,  y) = 0 approach two critical

values, that is when q close to 0.7447 and 0.7812. In both cases, the two closed 

curves cannot be ellipses since the remaining curve is not linear. Hence Lq q ( x ,  y) = 0

is not reducible.
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0.0

Iliguiê.3..J Graph of L q q (x, y) = 0 with q = 0.62

2.Ô

0.0 2:0

: Figure 3.8 Graph of  ̂ (x, y) = 0 with q = 0.71

3:0

..... KO 4.0

Figure 3.9 Graph of Lq q ( x ,  y) = 0 with q = 0.72
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-r.o'

2.0

0.0 3:0.............4:0'

' Figure 3.10 Graph of L q q (x , y) = 0 with q = 0.73

2.0

0.0 ’2:o’ 4:0'

■ Figure 3.11 Graph of L q (x , y) = 0 with q = 0.8

Graph of L q „ (x, y) = 0 with q = 2.0

5.0 Figure 3.12

• • ■ 0.Ô 3:0
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2 .0]

Curve 3

Curve 2

Curve 1
0.0 2 !0' 3:0

Figure 3.13 Graph o f q ( x , y) = 0 with q = 0.5

0.0
' 2.0 4.0

Figure 3.14 Graph of Lq q ( x ,  y) = 0 with q = 0.74
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■ ■ 0.0 ..........................................................' ' t i y ................4.0

Figure 3.15 Graph o f Lq q ( x , y) = 0 with q = 0.7447

Curve 2

Curve 4

Curve 5
0.0 4.0

Figure 3.16 Graph of L q  q ( x ,  y) = 0 with q = 0.75
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3.0

2.0

0.0

Figure 3.17 Graph o f «(x, y) = 0 with q = 0.78

3.0

2.0

0.0 2.0

Figure 3.18 Graph o f L,. Jxy y) = 0 with q = 0.7812
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4.0

3.0

2.0

0.0 '2.0 4.0

Figure 3.19 Graph o f m(x, y) = 0 w ith q = 0.782

4.0

3.0

b :o'

Figure 3.20 Graph of ^(x, y) = 0 with q = 0.9
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APPENDIX SA Calculation of the integration rules I„

In Figures 5.2 and 5.3, and Tables 5.1 and 5.2, the weights are calculated 

directly from foraiula (5.4)

[n] y

= j  y )d xd yd Q Q d

where the Lagrange coefficients L "j(x , y) are defined as in (5.2). Here we give a 

detailed Maple calculation o f the integration niles 1̂ , n = 1, 2, 5. First we comment

on some o f the Maple notations used in the calculation, which are as follows:

y
Sij := in t (L” |(x, y), x = 0..y) for evaluating J L^.(x,  y) dx ,

[n] [n] y

l i j  := in t (S ij, y = 0..[n]) for evaluating J S ^ . dy = J J L?.(x, y) dx dy,
0 ’J 0 0

lim it ( lij , q = 1) for evaluating hm w". (q).
q—>l Id

For each n = 1, 2, 3,4, 5 , we also check that the sum o f all the weights is equal to

[n] y

An = J J dx dy ,

the area o f the triangle S^. Furthermore, letting q tend to 1, we see that the lim its o f 

w |\ are in agreement with the results o f Lauffer [11] for n <3.
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I n t e g r a t i o n  r u l e  on  a t r i a n g l e  { ( x , y )  : 0 ^ x  5  y  [ 1 ] }  
W e ig h ts  l i j  a t  t h e  n o d e s  { [ i ] , [ j ] ) ,  0 ^ i  S j  < 1

• S l : = in t ( l , x = 0 . . y ) /
31 :=  y

• A l : = in t  (31, y=0 . .  1) /
A l  :=  1 /2

• 300 : = in t  (1 -y , x= 0 . .  y) ;
300 :=  -  ( -  1 + y) y

• I0 0 := in t (S 0 0 ,y = O .. l) ;
100 :=  1 /6

• SOI : = in t  (y -x , x=0 . .  y) ;
2

SOI := 1 /2  y

• I0 1 := in t(S 0 1 ,y = 0 ..1 ) ;
101 :=  1 /6

• 311:= in t ( x ,x = 0 . . y ) ;
2

S l l  :=  1 /2  y

• I l l : = i n t ( 3 l l , y = 0 . . 1 ) ;
111 :=  1 /6

I n t e g r a t i o n  r u l e  on  a  t r i a n g l e  { ( x , y ) : 0 ^ x  ^ y  < [ 2 ] }  
W e ig h ts  l i j  a t  t h e  n o d e s  ( [ i ] , [ j ] ) ,  0 < i < j < 2

SOO:=int ( d - y )  * ( n [2 ] - y )  /n [2 ]  ,x= 0 . ,y) ; 
I0 0 := in t (S 0 0 ,y = 0 . .n [2 ] ) /

2
100 ;=  -  1 /12 (q + 1) 1 + q)

SOI ; = in t  ( (n [2 ] -y )  * (y -x) /q ,  x= 0 . .y) : 
I0 1 := in t (S 0 1 ,y = 0 . .n [2 ] ) ;

4
(q + 1) 

101 :=  1/24 --------------
q

S l l  ;= in t  (x *  (n [2 ] -y )  /q ,  x=0. .y) : 
I l l : = i n t { S l l , y = 0 . . n [ 2 } ) ;

4
(q + 1) 

111 := 1/24 --------------
q

S 0 2 ;= in t ( { y - x ) * ( y - q * x - l ) / < q * n [2 ] ) , x - 0 . . y ) : 
l0 2 := in t (S 0 2 ,y = 0 . .n [2 ] ) /

2 2
(q + 1) (q -  2 q  + 1) 

102 :=  -  1/24 ------------------- ----------------------
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S 1 2 := in t(x*(y-x)/ q ,x= 0 ..y ) :
I12 := in t(S 1 2 ,y = 0 .. n [2 ]);

4
(q + 1) 

112 ;= 1/24 --------------

S22 := in t  (x *  (x -1 ) /  (q*n [2 ] ) , x= 0 . ,y) : 
I2 2 ;= in t (S 2 2 ,y = 0 . .n [2 ] ) ;

2
(q + 1) ( -  1 + q)

122 :=  1/12  ------------------------------------

q

• I n t e g r a t i o n  r u l e  on  a  t r i a n g l e  { ( x , y )  : 0 < x  y  ^ [ 3 ] }  
W e ig h ts  l i j  a t  t h e  n o d e s  { [ i ] ,  [ j ] ) ,  0 < i  ^ j  < 3

n [3 ] ;=(l-cr3)/(l-q) : 
f [ 3 ] : = n [3 ] * n [ 2 ] :

SOO ;= in t  ( ( 1-y ) *  (n [2 ] -y ) *  (n 13 ] - y ) / f  [3 ] ,  x=0 . .  y) :
IO O ;= in t (S00,y=0. .n [3 ] ) ;

6 5 4 2 3 2
(3 q  + 4 q  -  2 q  -  2 q  -  4 q  + 4 q  + 3) (q + q + l )  

100 ;=  1 /60  --------------------------------------------------------------------------------------------------------
q  + 1

S 0 1 := in t ( (n [2 ]-y )  *  (n [3 ]-y )  *  (y -x ) /  (n [2 ] *q^2) ,x= 0 . .y ) : 
I0 1 := in t (S 0 1 ,y = 0 . .n [3 ] ) ;

4 3 2 2 3
( 3 q  + q  -  q  -  4 q - 2 )  (q + q + l )

101 : =  -  1/120  ------------------------------------------------------------------------------------------------------------

2
q (q + 1)

S l l  z = in t (x *  (n (2] -y )  *  (n [3 ] -y )  /  (n [2 ) *q^2) ,x=Q. .y ) :
I l l : = i n t  ( S l l , y = 0 . . n [3 ] ) /

4 3 2 2 3
(3 q  + q -  q  -  4 q - 2 )  (q + q + l )

111 ;= - 1/120    -----------------------
2

q (q + 1)

S02:=int((n[3]-y)*(y-x)*(y-q*x-l)/ (n(2]*q^3) ,x=0..y):
102:=int(S02,y=0. .n[3]);

5 4 3 2 2 3
(q -  q - 3 q - 2 q +2) (q + q + l)

102 : =  -  1/120  ---------------------------------------------------------------------------------------------------------------

3
q (q + 1)

S l2 := in t  ( x * (n [3 ] - y )  * (y -x ) /q ^ 3 ,x = 0 . .y) : 
I1 2 ;= in t (S 1 2 ,y = 0 . .n [3 ] ) ;

2 5
(q + q  + 1)

112 := 1/120 --------------
3

q
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S 2 2 := in t(x * (x -l)* (n [3 j-y )/(n [2 ]* q ^3 ) ,x = 0 . .y ) :
l2 2 := in t(S 2 2 ,y = 0 ..n (3 ]);

4 3 2 2 3
( 2 q  + 4 q  + q  - q - 3 )  (q + q + l )

122 :=  1/120  ------------------------------------------------------------------------
3

q (q + 1)

S 0 3 := in t { (y -x ) *  ( y - q * x - l)  *  (y -x *q ''2 -n f2 ] ) / ( f  [3 ] *q ^ 3 ), x= 0 . .y ) ;
I0 3 := in t (S 0 3 ,y = 0 . .n [3 ] ) ;

2 2 6 5 4 3 2
(q + q + l )  (q -  q  -  2 q  + 5 q  -  2 q  - q + 1 )

103 :=  1 /60 ----------------------------------------------------------------------------------------------
3

q

S l3 := in t  (x *  (y -x ) *  ( y - q * x - l ) / ( n { 2 ]  *q ''3 ) ,x= 0 . .y) : 
I1 3 ;= in t ( S l3 ,y = 0 . .n [3 ] ) ;

3 2 2 4
(2 q  -  2 q  - 2  q + 1 )  (q + q + l )

113 :=  -  1 /1 2 0 ------------------------------------------------------------- —
3

q (q+1)

S 2 3 := in t ( x * ( x - l ) * ( y - x ) / ( n [ 2 ] * q ^ 3 ) , x = 0 . . y ) : 
I 2 3 : - in t ( S 2 3 ,y = 0 . .n {3 ] ) ;

2 2 4
(2 q  + 2  q - 3 )  (q + q  + 1)

123 :=  1/120 ------------------------------------------------------
3

q (q + 1)

S 3 3 := in t ( x * (x -1 ) * ( x - n [2 ] ) / ( f [ 3 ] *q^3) , x = 0 . . y ) ; 
I3 3 := in t (S 3 3 ,y = 0 . .n [3 ] ) ;

4 3 2 2 2
(3 q  + q  -  6 q  + 3 + q) (q + q  + 1)

133 î=  1 /60 — —--------------— -------------- _____—  ------------------
3

q (q + 1)

I n t e g r a t i o n  r u l e  on  a t r i a n g l e  { { x , y ) : 0 < x  ^ y  ^ [ 4 ] }  
W eig)tits l i j  a t  t h e  n o d e s  ( [ i ] ,  [ j ] ) ,  0 < i  < j  ^ 4

n [4 ] ; = ( l - q ' '4 ) / ( l - q )  ; 
f [ 4 ] : = n [ 4 ] * f [ 3 ] :

• S O O := in t ( ( l - y ) * ( n [2 ] - y ) * ( n ( 3 ] - y ) * ( n [ 4 ] - y ) / f [ 4 ] , x = 0 . . y ) : 
l0 0 ; - in t ( S 0 0 ,y = 0 . .n [4 ] ) ;

3 2
100 :=  -  1/60 (q + q  + q  + 1) (

11 10 9 8  7 6 5  4 3 2
2 q  + 3 q  + 2 q  -  2 q  -  4 q  -  q  + q  + 4 q  + 2 q  -  2 q  -  3 q  -  2

/  2 
) /  (q + q  + 1)

/
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SOI := in t ( (n[2]-y) * (n[3) -y) * (n [4]-y) * (y-x) /  (f  [3) *q''3) ,x=0. .y) :
101:= int(SO I, y=0. . n [4 ])/

101 : =

3 2  3 8 7 6 5  4 2
(q + q  + q  + l )  (2 q  + q  -  q  -  q  -  2 q  + 2 q  + 2 q  + l )

1/120 -------------------------------------------------------------------------------------------------------------
2 3

(q + q  + 1) q

• S l l : = in t ( x * ( n [2 1 - y )  * ( n ( 3 ] - y ) * ( n [ 4 j - y ) / ( f  [3 ]*q ^3 ) ,x= 0 . .y) :
111:= in t ( S l l , y = 0 . . n [ 4 ] ) /

111

3 2  3 8 7 6 5  4 2
(q + q  + q  + l )  (2 q  + q  -  q  -  q  -  2 q  + 2 q  + 2 q + l )  

1/120 --------------------------------------------
2 3

(q + q + 1) q

S 0 2 := in t ( ( n [ 3 ] - y ) * ( n l4 ] - y ) * ( y - x ) * ( y - q * x - l ) / (n [2 ] * n (2 ]* q ^ 5 ) ,x = 0 . .y ) : 
I0 2 := in t (S 0 2 ,y = 0 , .n (4 ] ) ;

2 3 2 2
102 := 1/360 (q + 1 )  (q + q  + q  + 1)

9 8 7 6 5 3 2  /  5
(2 q  -  5 q  -  q  -  6 q  + 6 q  + 8 q  -  2 q  - q - 3 )  /  q

/

S l2 := ln t  (X* (n [3 j- y )  * (n [4 ]-y )  *  (y -x ) /  (n [2 ] *q^5) ,x= 0 . .y) ;
I1 2 := in t (S 1 2 ,y = 0 . ,n [4 ] ) ;

3 2 4 5 4 3 2
(q + q  + q  + l )  (2 q  -  q  + q  -  2 q  -  q - 1 )

112 :=  -  1 /360 -------------------------------------------------------------------------------------------
5

q

S22 := in t  (x *  (x-1) *  (n [3 ] -y )  *  (n [4 ] -y )  /  (n [2 ] *n  [2 ] *q ^ 5 ) , x=0 . . y) : 
l2 2 := in t (S 2 2 ,y = 0 . .n [4 ] ) ;

2 3 2 2
122 ;=  -  1/360 (q + 1 )  (q  + q  + q  + 1)

8 7 6 5 3 2  / 5
(4 q  + 2 q  + 4 q  -  9 q  -  9 q  + 4 q  + 2 q + 4 )  /  q

/

• S 0 3 := in t { (n [41 -y ) * (y -x ) *  ( y - q * x - l)  * (y -x *q ''2 -n  (2) ) /  ( f  [3 ] *q ” 6 ) , x=0. .y) : 
I0 3 := in t  (S03,y=0. .n [4 ] ) ;

103 :=  1/360

3 2  3 11 9 7 6 5 3 2
(q + q  + q + l )  (q -  2 q  + 4 q  + 6 q  + 4 q  -  2 q  -  3 q  + q  + 3)

2 6 
(q + q  + 1) q

S13 := in t  (x *  (n [4 ] -y )  *  (y -x ) *  (y - q * x - l)  /  (n [2 ] * q "6 ) , x= 0 . .y ) :
113;= i n t (513, y = 0 , . n ( 4 ] ) ;

3 2 4 6 5 3
( q + q + q + 1 )  ( q - q - 2 q - q + l )

113 := -  1/360 ------------------------------------------------------------------------------
6 

q
----------------------------------  I
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S23:= int (x* (x-1) *(n[4]-y) * (y-x) /  (n[2]*q^6) ,x=0. .y) :
123;= int(S23,y=0. . n [4 ]);

3 2 4 5 4 3 2
(q + q  + q  + 1) (q + q  + 2 q  -  q  + q  -  2)

123 :=  1/360 ---------------------------------------------------------------------------------------
6

q

• S 3 3 ;= in t ( x * (x -1 ) * ( x - n [ 2 ] ) * (n [4 ] - y ) / ( f [3 ] * c f  6) ,x = 0 . . y ) ;
133;= in t(S 3 3 , y=0 , , n [4 ] ) ;

3 2  3 8  7 6 4 3 2
(q + q  + q + l )  (q + 2 q  + 2 q  -  2 q  -  q  -  q  + q + 2 )

133 ;= 1/120 ---------------------------------------------------------------------------------------------------
2 6 

(q + q  + 1) q

S04 := in t  ( (y -x ) *  ( y - q * x - l)  * (y -x *q ^2 -n  [2 ] ) *  (y -x *q ^3 -n  [3] ) /  ( f  [4 ] *q ^ 6 ), x=0. .y ) : 
I0 4 ;= in t  (S04,y=0. .n [4 ] ) ;

3 2 2 14 13 12 11 10
104 ;=  -  1/360 ( q + q + q  + 1) (3 q + q  -  3 q  -  7 q  + 6 q

9 8  7 6  5 4 3 2
+ 1 4 q  -  6 q  - 1 6 q  -  6 q  + 1 4 q  + 6 q  -  7 q  -  3 q  + q  + 3)

/  6 2
/  (q (q + q  + 1) )

/

• S l4 := in t  (x * (y -x )  * ( y - q * x - l )  * ( y - x * q ' '2 - n [ 2 ] ) / ( f  [3 ]*q ''6 )  ,x= 0 . .y) : 
I1 4 ;= in t (S 1 4 ,y = 0 . ,n (4 ]) ;

114 :=  1/360

3 2  4 8 7 6 5 4 3 2
(q + q  + q  + l )  (3 q  -  2 q  -  4 q  + q  + 5 q  + 2 q  -  2 q  -  q + 1 )

6 2
q (q + q + 1)

• S24 := in t  (x* (x-1) *  (y -x ) * ( y - q * x - l)  /  (n[21 *n [2 ] *q ''6) ,x= 0 . .y) :
I2 4 := in t  (S24,y=0. .n [4 ] )  ;

124 ;=  -  1/360

2 2 3 2  2 7 6 5  2 4 3
( q + 1 )  ( q + q + q + 1 )  ( 3 q + q - q + 3 q - 9 q - 2  + q +  5 q )

6
q

S 3 4 ;= in t ( x * (x -1 ) * ( x - n [ 2 ] ) * ( y - x ) / ( f [ 3 ] * q " 6 ) ,x = 0 . .y ) : 
I3 4 := in t (S 3 4 ,y = 0 . .n !4 ] ) /

3 2 4 5 4 2
(q + q  + q + l )  (q + q  -  2 q  - q  + 2)

134 ;=  1 /120 ------------------------------------------------------------------------------
6 2 

q  (q + q  + 1)

• S44 := in t  (x* (x-1) *  (x -n  [2 ] ) *  (x -n [3 ] ) /  ( f  [4 ] *q"6) ,x= 0 . ,y) :
I4 4 := in t  (S44,y=0. .n [4 } )  ;

3 2  2 8 7 6  5 3 2
(q + q  + q  + l )  (2 q  + q -  q  -  4 q  + 4 q  + q  - q - 2 )

144 :=  1 /60 ------ ----------------------------------------------------------------------------------------------------------
6 2 

q  (q + q  + 1)
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I n t e g r a t i o n  r u l e  on a t r i a n g l e  { ( x , y ) : 0 < x  < y  < [ 5 ] }  
W e ig h ts  l i j  a t  t h e  n o d e s  { [ i ] , [ j ] ) ,  0 < i  < j  < 5

• S O O := in t( (1 -y ) * (n [2 ] - y ) * (n [3 ] - y ) * (n [4 ] - y ) * (n [5 ] - y ) / f [ 5 ] , x = 0 . . y ) ; 
I0 0 := in t (S 0 0 ,y = 0 . .n [5 ] ) ;

2 3 4 5 13 17
100 :=  1 /420 (10 + 36 q  + 66 q  + 77 q  + 42 q  -  22 q  -  75 q  + 77 q

12 16 11 8 10 19 14
-  13 q  + 42 q  + 52 q  -  13 q  + 79 q  + 36 q  -  75 q

18 15 20 7 6 9
+ 66 q  -  22 q  + 10 q  -  75 q  -  75 q  + 52 q  )

4 3 2 /  2 3 2
(q + q  + q  + q  + 1) /  ( (q + 1) (q + q  + 1) (q + q  + q  + 1) )

/

S 0 1 := in t ( (n [2 ]-y )  *  (n [3 ]-y )  *  (n [4 j- y )  * (n [5 ]-y )  *  ( y - x ) / ( f  [4 ] *q ''4 ) ,x= 0 . .y) 
I0 1 := in t (S 0 1 ,y = 0 . .n [5 ] ) ;

2 3 4 5 15
lO l  := -  1/840 ( -  4 -  16 q  -  33 q  -  45 q  -  35 q  -  5 q  + 26 q

11 13 12 16 7 14 8
-  33 q  + 11 q  -  21 q  + 10 q  + 44 q  + 30 q  + 24 q

10 6 9 4 3 2 3
- 2 7 q  + 2 9 q  -  5 q  ) (q + q  + q  + q + l )

/  2 3 2 4
/  ( ( q + 1) (q + q  + 1) (q + q  + q  + 1) q  )

/

S l l  ;= in t  (X* (n (2 ] -y )  * (n [3 ] -y )  *  (n [4] -y ) * (n [5 ] -y )  /  ( f  [4 ] *q ''4 ) ,x= 0 . .y) ; 
I l l : = i n t ( S l l , y - 0 . . n ( 5 ) > ;

2 3 4 5 15
111 := -  1/840 ( -  4 -  16 q  -  33 q  -  45 q  -  35 q  -  5 q  + 26 q

11 13 12 16 7 14 8
-  33 q  + 11 q  -  21 q  + 10 q  + 44 q  + 30 q  + 24 q

10 6 9 4 3 2 3
- 2 7 q  + 2 9 q  -  5 q  ) (q + q  + q  + q + l )

/  2 3 2 4
/  ( ( q + 1 )  (q + q  + 1) (q + q  + q  + 1) q  )

/

• S 0 2 := in t ( ( n { 3 ] - y ) * ( n [4 ] - y ) * ( n ( 5 ] - y ) * ( y - x ) * ( y - q * x - l ) /  ( f [ 3 ] * n [2 ] * q f  7 ) ,x = 0 ..y )  
l0 2 : - in t ( S 0 2 ,y = 0 . .n [5 ] ) /

2 3 4 5 9 8
102 :=  -  1/2520 (12 + 30 q  + 48 q  + 39 q  -  10 q  -  62 q  + 60 q  + 7 q

15 6 12 16 13 17 11
- 4 8 q  -  99 q  -  12 q  -  4 q  - 6 1 q  + 1 0 q  + 5 8 q

14 7 10 4 3 2 3
-  65 q  -  61 q  + 83 q  ) (q + q  + q  + q  + 1)

/  7 2 2
/  (q (q+1) (q + q + D )

/
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■ S12:= int (x* (n[3]-y) * (n[4]-y) * (nl5]-y) * (y-x) /  (f 13] *q''7) ,x=0, .y) ;
I1 2 ;= in t (Sl2,y=0. .n[5] ) ;

2 3 4 5 9 8
112 :=  1/2520 (3 + 9 q + 1 8 q  + 2 3 q  + 1 7 q  + 5 q  -  5 q  - l l q

12 11 7 6 10 4 3 2 4
+ 10 q  I- 16 q  -  16 q  -  13 q  + 4 q  ) (q + q  + q  + q  + 1)

/  7 2
/  (q (q + 1) (q + q  + 1) )

/

• S22 ; = in t  (x *  (x -1 ) * (n [3] -y )  * (n [4 ] -y )  *  (n [5 ] - y ) /  ( f  [3 ] *n  [2 ] *q ^ 7 ) , x=0 . . y> :
122:= in t(S 2 2 ,y = 0 . . n [ 5 ] ) /

2 3 4 5 6
122 :=  1/2520 ( -  15 -  39 q  -  66 q  -  62 q  -  7 q  + 60 q  + 121 q

9 15 10 13 12 16 11
-  38 q  + 52 q  -  82 q  + 50 q  -  14 q  + 20 q  -  87 q

14 8 7 4 3 2 3
+ 60 q  + 27 q  + 95 q  ) (q + q  + q  + q  + 1)

/  7 2 2
/  (q (q + 1) (q + q  + 1) )

/

• S 0 3 := in t ( (n [4 ]-y )  * ( n [5 ] - y )  * ( y -x )  * ( y - q * x - l)  *  (y -x *q ''2 -n {2 ] ) /  ( f  [3 ]*n [2 ]* q ^ 9 )  ,x= 0 . ,y ) 
I0 3 ;= in t  (S03,y=O. .n [5 )  ) ;

2 3 4 5 6
103 -  1/2520 ( -  12 -  30 q  -  30 q  -  18 q  + 21 q  + 52 q  + 24 q

13 15 12 16 11 19 14 18
+ 7 7 q  + 9 q  + 5 4 q  - l O q  + q  + 5 q  + 52 q  + 3 q

9 17 7 10 8 4 3 2  3
-  93 q  - 1 4 q  - 2 5 q  - 6 4 q  - 7 7 q )  (q + q  + q  + q + l )

/  9 2 2
/  (q ( q + 1 )  (q + q  + 1) )

/

♦ S13 := in t  (x* (n [4 ] -y )  *  (n [5 ] -y )  *  (y -x ) *  (y - q * x - l)  /  (n [2] *n  [2 ] * q ''9 ) , x=0 , ,y) : 
I1 3 := in t ( S l3 ,y = 0 . .n [5 ] ) ;

2 4 5 9 8 10
113 :=  1/2520 ( - 3 - 4 q - 3 q  + 1 2 q  + 1 4 q  - l l q  -  4 q  - l O q

12 n  13 7 6 4 3 2 4
-  2 q  -  7 q  + 5 q  + 6 q  + 1 2 q )  (q + q  + q  + q + l )

/  2 9
/  ( (q + 1) q  )

/

• S23 ;= in t  (x* (x-1) *  (n [4 ] -y ) * (n [5 ] -y )  *  (y -x ) /  (n 12] *n  [2 ] *q ^ 9 ) , x= 0 . .y) : 
l2 3 := in t (S 2 3 ,y = 0 . .n [5 ] ) ;

2 3 4 5 12 11
123 :=  -  1/2520 ( 5 + 8 q + 9 q  + 8 q  -  9 q  - 1 5 q  + 5 q  + 8 q

9 8  7 6 10 4 3 2  4
+ 8 q  -  9 q  - 1 5 q  - 1 7 q  + 9 q  ) (q + q  + q  + q  + l )

/  2 9
/  ( (q + 1) q )

/
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• S 3 3 := in t (x * < x - l)  * { x -n [2 ]  ) * (n [4 ]-y )  * ( n I 5 ] - y ) /  ( f  [3 ]*n [2 ]*q ^ 9 )  ,x= 0 ..y>  : 
I3 3 ; - in t ( S 3 3 ,y = 0 . .n (5 ) ) ;

2 3 4 5 16
133 ;=  -  1/2520 ( -  20 -  52 q  -  60 q  -  50 q  + 14 q  + 87 q  + 15 q

11 15 14 12 9 8 13 7
- 6 0 q  + 3 9 q  + 6 6 q  + 7 q  -  95 q  -  27 q  + 62 q  + 3 8 q

6 10 4 3 2 3
+ 82 q  -  121 q  ) (q + q  + q  + q + l )

/  2 2 9
/  ( (q + q  + 1) (q + 1) q  )

/

• S 0 4 ;= in t ( ( n [5 ) - y ) * ( y - x ) * ( y - q * x - l ) * ( y - x * q ^ 2 - n [2 ] ) * { y - x * q / '3 - n ( 3 ] ) /  ( f  [4 ]*q ''1 0 ) ,x = 0 , .y) 
I0 4 := in t  (S 04 ,yH l. . n [ 5 ] ) /

2 4 5 9 8
104 ;=  -  1/2520 (12 + 30 q  + 30 q  ~ 42 q  -  33 q  + 27 q  + 65 q

10 14 18 13 17 15 20
- 4 4 q  - l O q  - 1 5 q  - 8 0 q  + 2 q  + 3 0 q  + 5 q

11 22 7 6 12 16 19 21
-  106 q  + 3 q  + 55 q  + 11 q  -  120 q  + 2 8 q  -  5 q  + 7 q

4 3 2 3
) (q + q  + q  + q + l )

/  10 2 3 2
/  (q (q + 1) (q + q  + 1) (q + q  + q  + 1) )

/

• S14 := in t  (x *  (n [5 ] -y )  *  (y -x ) *  ( y - q * x - l)  *  (y -x *q ''2 -n [2 ] ) /  ( f  [3 ] *q ''1 0 ), x=0. ,y ) ; 
I1 4 := in t  (S14,y=0. .n [5 ] ) ;

4 3 2 4 14 13 12 11
114 :=  1/2520 ( q + q + q + q + 1 )  (3 q  + q  -  3 q  -  2 q

10 9 8  7 6 5 4 3 2
-  3 q  + 6 q  + 7 q  + 1 2 q  + 7 q  + 6 q  -  3 q  -  2 q  -  3 q  + q

/  10 2 
+ 3) /  (q (q + q  + 1) )

/

> S24 := in t  (x *  (x-1) * (n [5 ] -y )  *  (y -x ) *  ( y - q * x - l)  /  (n [2] *n [2 ] *q ''1 0 ), x=0. ,y) : 
I2 4 := in t(S 2 4 ,y = 0 ..n [5 ]  ) ;

2 3 4 5 8 13
124 :=  -  1/2520 ( - 5 + 2 q + 7 q  + 1 0 q  + l l q  + 4 q  - 1 4 q  + 3 q

12 11 9 7 6 4 3 2  4
+ 4 q  + 3 q  - 1 2 q - 1 2 q ~ 6 q )  ( q + q + q + q + 1 )

/  10 2 
/  (q ( q + 1 )  )

/

'  S 3 4 := in t ( x * (x -1 ) * ( x - n [ 2 ] ) * (n [5 ] - y ) * (y - x ) / ( f [ 3 ] * q ^ l0 ) , x = 0 . .y ) ;
134;= in t(S 3 4 ,y = 0 . . n [5 ] ) ;

2 3 4 5 10 11
134 1/2520 (10 + 16 q  + 4 q  -  5 q  -  11 q  -  16 q  + 18 q  + 9 q

6 9 12 7 8 4 3 2  4
- 1 3 q  + 2 3 q  + 3 q  + 5 q + 1 7 q )  (q + q  + q  + q + l )

/  10 2
/  (q ( q + 1 )  (q + q  + 1) )

/
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• S 4 4 := in t(x * (x -1 )  * ( x - n [ 2 ] ) *  ( x -n [3 ])  * ( n [5 ] “ Y ) /  ( f  [4 ]*q ''1 0 ) ,x= 0 . .y) : 
I4 4 ;= in t< S 4 4 ,y= 0 . .n [5 ] )  ;

2 3 4 5 8
144 :=  1/840 ( -  10 -  26 q  -  30 q  -  11 q  + 21 q  + 33 q  -  24 q

13 15 16 11 14 6 9 7
+ 45 q  + 16 q  + 4 'q + 5 q  + 33 q  + 27 q  - 44 q  + 5 q

12 10 4 3 2 3
+ 35 q  -  29 q  ) <q + q  + q  + q  + 1)

/  10 2 3 2
/  (q (q + 1) (q + q + 1 )  (q + q  + q  + 1) )

/

• S05 ; = i n t ( ( y - x ) * ( y - q * x - l ) * (y - x * q ' '2 - n [2 ] ) * (y -x *q ^3 -n  [3 ] ) *  (y -x *q ^4 -n  [4 ] )
/ ( f  [5 ]*q ''1 0 ) ,x= 0 . ,y ) :
105:: = in t  (S05,y=0. .  n [5 ] ) ;

5 4 2 9 8 10
105 :=  1/420 (2 + 5 q  -  9 q - l O q  + 5 q  - 1 5 q  + 2 0 q -  33 q

7 6 22 21 15 20 14 19
+ 20 q + 5 q -  10 q -  9 q  -  15 q  + 5 q  + 2 5 q  + 20 q

13 18 12 17 11 16 24
+ 55 q  + 20 q  + 2 5 q  -  15 q - 15 q  -  33 q + 5 q

26 25 4 3 2 2
+ 2 q  + 5 q  ) (q + ,q + q  + q  + 1)

/  10 3 2 2
/  (q (q + q  + q  + 1) (q + q  + 1) (q + D )

/

• 515 : = in t ( x * ( y - x ) * ( y - q * x - l ) * (y -x *q ''2 -n [2 j)1 * (y -x * q ''3 -n [3 ] ) / ( f [4 ]* c T 1 0 ) ,x = (
115::= in t(S 1 5 , y=0 . . n [ 5] ) /

4 14 5 15 3 2
115 = -  1/2520 (3 -  10 q  - 42 q  + 4 q  -I- 20 q  -  30 q ■ 10 q  -  2 q

8 18 6 9 10 13 12 17
-  50 q  +  12 q  +  30 q -  80 q  -  20 q  + 21 q  + 6 2 : q  +  18 q

11 4 3 2 4
+ 44 q  ) (q + q  + q + q  +  1)

/  10 2 3 :I
/  (q (q + 1) (q + q + 1) (q + q + q  +  1) )

/

• S25 := in t ( x * ( x - 1 ) * ( y - x ) * ( y - q * x - l ) * (y -x *q ^ 2 -n [ 2 ] ) / ( f [ 3 ] * n [2] ^q'^lO) ,x= 0 , .y ) :
125 := in t(S 2 5 ,y = 0 . .  n (5] ) ;

15 5 4 3 2 8
125 :=  1/2520 ( -  5 + 12 q + 2 q  -  48 q -  19 q  -  4 q  + 17 q  + 49 q

14 12 9 10 6 11 7
+ 18 q  -  12 q  + 4 6 q  -  19 q 23 q  -  39 q  + 40 q  )

4 3 2 4 /  10 2 2
(q + q  + q  + q  + 1) /  (q (q + 1) (q + q  + 1) )

/
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S35 : = in t (x* (x-1) * (x-n [2] ) * (y-x) * (y-q*x-l) /  (f [3] *n [2] *q''10), x=0. .y) ;
I3 5 := in t (S35,y=0. .n(5] ) ;

5 4 3 2 6
135 :=  -  1/2520 (10 -  14 q + 5 9 q  + 4 q  - 1 7 q  - 4 4 q  + 5 6 q

11 13 9 8 10 7 12
+ 1 8 q  + 1 2 q  - 4 9 q - 4 0 q - 9 q  -  19 q  + 18 q  )

4 3 2  4 /  10 2 2
( q + q + q + q + 1 )  /  (q ( q + 1 )  (q + q  + 1) )

/

* S 4 5 := in t (x *  (x -1 ) *  ( x -n [2 ] ) *  ( x - n [3 ] ) *  (y -x ) /  ( f  [4 ] *q ^ l0 ) ,x= 0 . .y) ;
I4 5 := in t  (S45,y=0. . n [ 5 ] ) ;

5 4 3 2 11 9
145 :=  1 /840 ( -  10 -  16 q  + 2 q  + 32 q  + 19 q  -  4 q  + 12 q + 12 q

8 6 10 7 12 4 3 2 4
- l O q  -  22 q + 1 7 q  - 2 6 q  + 4 q  ) (q + q  + q  + q  + l )

/  10 2 3 2
/  (q (q + 1) (q + q  + 1) (q + q  + q  + 1) )

/

• S 5 5 ;= in t (X* (x-1) * (x -n  [2] ) *  (x - n [3 j)  * ( x -n [4 ]  ) /  ( f  [5 ] *q ’'10) ,x= 0 . .y) ;

5 4 3 2
S55 ;=  -  1 /60  ( -  30 -  90 q  -  90 q  -  150 q  -  180 q  -  150 q  + 80 y

6 6 2 3  2 2 2 2
+ 180 y q + 2 0 q  y - 3 0 q  -  105 y  q  -  135 y  q  -  90 y  -  135 y  q

2 4 3 4 3 3 3
+ 240 y  q  + 160 y  q  + 240 y  q  -  10 y  + 1 2  y  q  + 3 6  y  q

5 2  2 4  3 3 2  5 2
-  15 q  y  -  45 y  q  + 4 8  y  + 2 4  y  q  + 80 q  y) y

/  10 4 3 2  3 2  2
/  (q (q + q  + q  + q  + 1) (q + q  + q  + 1) (q + q  + 1) (q + 1) )

/

• I5 5 := in t  (S 5 5 ,y = 0 ..n [5 1 );

15 5 4 3 2 16
155 :=  1/420 (10 + 26 q  + 26 q  -  54 q  -  35 q  + 11 q  + 30 q  + 10 q

10 7 9 8 13 12 11 14
-  27 q  + 30 q  + 30 q  + 73 q  + 11 q  -  35 q  -  54 q  + 30 q

6 4 3 2 2
-  27 q  ) (q + q  + q  + q  + 1)

/  10 3 2 2
/  (q (q + q  + q  + 1) (q + q  + 1) (q + 1) )

/
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APPENDIX 5B Interval on which Wij > 0 (n=5)
l e t  B i j  denote th e  p o ly n o m ia l fa c to r  (co ns ide red  in  Ta b le  5 .3 ) o b ta in e d  by d iv id in g  C i j  
by i t s  obv ious p o s it iv e  fa c to rs .

12 11 10 9 8 7 6 5
BOl : = 1 0 q  + 1 6 q  + 4 q  - 1 9 q  - 3 2 q  -  2 q  + 2 2 q  + 2 6 q

4 3 2
+ 10 q  -  12 q  -  17 q  ~ 12 q  -  4

13 12 11 10 9 8 7 6
BQ2 := 10 q  -  14 q  -  44 q  -  17 q  + 4 q  + 59 q + 56 q -  19 q

5 4 3 2
-  40 q  -  49 q  -  9 q  + 18 q  + 18 q  + 12

12 11 10 9 8 7 6 5
B22 := 20 q  + 32 q  + 8 q  -  10 q  -  64 q  -  53 q  + 37 q  + 52 q

4 3 2
+ 55 q  + 4 q  -  27 q  -  24 q  -  15

15 14 13 12 11 10 9 8
B03 : = 5 q  - 2 q  - 1 7 q  + 4 q  + 1 9 q  + 4 8 q  + 23 q  -  40 q

7 6 5 4 3
-  49 q  -  46 q  + 19 q  + 39 q  + 12 q  ~ 18 q  -  12

9 8 7 6 5  4 3 2
B13 : = 5 q  -  7 q  -  5 q  -  3 q  -  q + 1 2 q  + 3 q  + q  - q - 3

12 11 10 9 8 7 6 5 4
B23 : = 5 q  + 8 q  + 9 q  + 8 q - 9 q - 1 5 q - 1 7 q - 1 5 q - 9 q

3 2
+ 8 q  + 9 q  + 8 q + 5

22 21 20 19 18 17 16 15
B04 : = 3 q  + 7 q  + 5 q  -  5 q  - 1 5 q  + 2 q  + 2 8 q  + 3 0 q

14 13 12 11 10 9 8 7
-  10 q  -  80 q  -  120 q  — 106 q  — 4 4 q  + 2 7 q  + 6 5 q  + 5 5 q

6 5 4 2
+ 11 q  -  33 q  -  42 q  + 30 q  + 30 q  + 12

R o o ts  o f  B i j  > 0  (n  = 5)

fs o lv e (B O l, q ) ;
-1.291881517, 1.059740995

fso lve (B 0 2 , q) ;
-.7950764185, .9235112258, 2.966237082

fso lve (B 2 2 , q) ;
-.7740048931, .9427304614

fso lve (B 0 3 , q ) ;
-1.702916753, -1 .058809519, 1.075906744 

fso lve (B 1 3 , q ) ;  '  ~

-.9660981586, -.7352266109, .7397382670, 1.058533923, 1.913972906 

fso lve (B 2 3 , q ) /

-1.430757608, -.6989304090, .9095109318, 1.099492007

fs o lv e  (B04, q) ;

-1.503733574, -.7309178485, .8883820534, 1.383973508
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APPENDIX 5C I n t e g r a t i o n  r u l e  on odd  o r d e r  s ta n d a r d  
t r i a n g l e  { (x,  y ) : 0 ^ x < y  ^ 7}

• S 7 ;= in t ( l , y = x . .7 ) :
A 7 := in t(S 7 ,x = 0 ..7 ) ;  A7 :=  49/2

F o r b r e v i t y , t h e  commands I i j : = i n t  (S ij ,x = 0 ,  .7) w i l l  n o t be d is p la y e d .

• S O O ;= in t( ( 7 -y ) * (6 -y ) * (5 -y ) * (4 -y ) * (3 -y ) * (2 -y ) * ( 1 - y ) /7 ! , y = x . .7) :

100 :=  8183 /  64800

• SOI;=  i n t ( ( 7 -y ) * (6 -y ) * (5 -y ) * (4 -y ) * (3 -y ) * (2 -y ) * ( y - x ) /6 !  ,y = x . .7) :

101 ;=  146461 /  518400

• S l l ; =  in t ( x * ( 7 - y ) * (6 -y ) * (5 -y ) * (4 -y ) * (3 -y ) * ( 2 - y ) /6 ! , y = x . .7) ;

111 :=  146461 /  518400

• S 0 2 := in t ( (7 -y ) * (6 -y ) * (5 -y ) * (4 -y ) * (3 -y ) * (y - x ) * ( y - x -1 ) /  ( 2 ! * 5 ! ) , y = x . .7 ) :

102 :=  175273 /  518400

• S12:= in t< x * ( 7 - y ) * ( 6 - y ) * { 5 - y ) * { 4 - y ) * ( 3 - y ) * ( y - x ) /5 ! , y = x . . 7 )  :

112 :=  789929 /  259200

« 822:=  in t ( x * ( x - l ) * ( 7 - y ) * ( 6 - y ) * ( 5 - y ) * ( 4 - y ) * ( 3 - y ) / ( 2 ! * 5 ! ) , y = x . . 7 ) :

122 ;= 175273 /  518400

• S 0 3 := in t( (7 -y ) * (6 -y ) * (5 -y ) * (4 -y ) * (y - x ) * ( y - x -1 ) * (y - x -2 ) /  (3 !*4  ! ) , y = x . .7 ) :

103 := 26411 /  103680

' S13:= in t ( x * ( 7 - y ) * ( 6 - y ) * (5 -y ) * (4 -y ) * (y - x ) * ( y - x -1 ) / (2 1 * 4 ! ) ,y = x . .7 ) :

113 :=  -  16807 /  25920

• 823:=  in t ( x * ( x - 1 ) * (7 -y ) * (6 -y ) * (5 -y ) * (4 -y ) * (y - x ) / ( 2 ! * 4  ! ) , y = x . .7 ) :

123 :=  -  16807 /  25920

• 833 :=  in t ( x * ( x - l ) * ( x - 2 ) * ( 7 - y ) * ( 6 - y ) * ( 5 - y ) * ( 4 - y ) / ( 3 ! * 4 ! ) , y = x . . 7 ) :

133 := 26411 /  103680

•804; = i n t ( (7 -y ) * (6 -y ) * (5 -y ) * (y - x ) * ( y - x -1 ) * (y - x -2 ) * (y -x -3 ) /  ( 3 ! * 4 ! )  , y = x . ,7)

104 :=  26411 /  103680

•814:= ± n t (x * (7 - y ) * (6 -y ) * (5 -y ) * ( y - x ) * (y - x -1 ) * (y - x -2 ) /  ( 3 ! * 3 ! ) , y = x . .7 ) :

114 :=  218491 /  51840

•824:= in t ( x * ( x - 1 ) * (7 -y ) * (6 -y ) * (5 -y ) * (y - x ) * ( y - x -1 ) /  ( 2 ! * 2 ! * 3 ! )  , y = x . ,7) :

124 :=  16807 /  51840

• 834:=  in t ( x * ( x - l ) * ( x - 2 ) * ( 7 - y ) * (6 -y ) * (5 -y ) * ( y - x ) / ( 3 ! * 3 ! ) , y = x . .7 ) :

134 :=  218491 /  51840

• 844:=  i n t ( x * ( x - 1 ) * (x -2 ) * (x -3 ) * (7 -y ) * ( 6 - y ) * (5 -y ) / ( 3  !*4  ! ) , y= x . . 7H

144 :=  26411 /  103680

•805 := in t  ( (7 -y) *  (6 -y) *  (y -x ) *  (y -x -1 ) *  (y -x -2 ) *  (y -x -3 ) *  (y -x -4 ) /  (2 ! *5  ! >, y = x . . 7)

105 :=  175273 /  518400 

'8 l5 := in t ( x * ( 7 - y ) * (6 -y ) * ( y - x ) * ( y - x -1 ) * ( y - x -2 ) * ( y - x -3 ) /  (2 !*4  ! ) , y = x . .7 ) :

115 :=  -  16807 /  25920
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•S 2 5 := in t( x * (x -1 ) * (7 -y ) * (6 -y ) * ( y - x ) * ( y - x -1 ) * (y - x -2 ) /  (2 i * 2 ! * 3 ! ) , y = x . .7 ) :

125 i=  16807 /  51840 

.S 3 5 := in t (X * ( x -1 ) * (x -2 ) * (7 -y ) * (6 -y ) * (y - x ) * ( y - x -1 ) /  (2 1 *2 !*3 !)  , y = x . .7 ) ;

135 :=  16807 /  51840 

► S45:= in t ( x * ( x - l ) * ( x - 2 ) * ( x - 3 ) * ( 7 - y ) * ( 6 - y ) * ( y - x ) / ( 2 i * 4 ! ) , y = g t . . 7 )  ;

145 :=  -  16807 /  25920

• 555:=  i n t ( x * ( x - l ) * ( x - 2 ) * ( x - 3 ) * ( x - 4 ) * ( 7 - y ) * ( 6 - y ) / { 2 ! * 5 ! ) , y = x . . 7 ) :

155 :=  175273 /  518400

•S 0 6 := in t ( (7 -y ) * (y - x ) * (y - x -1 ) * ( y - x -2 ) * (y - x -3 ) * ( y - x -4 ) * (y -x -5 ) / 6 ! , y = x . .7 ) :

106 :=  146461 /  518400

• S16:= in t ( x * ( 7 - y ) * (y - x ) * (y - x -1 ) * ( y - x -2 ) * (y - x -3 ) * ( y - x - 4 ) / 5 ! , y = x . .7 ) :

116 :=  789929 /  259200

• S 2 6 ;= in t ( x * (x -1 ) * (7 -y ) * (y - x ) * ( y - x -1 ) * (y - x -2 ) * (y - x -3 ) /  (2 ! * 4 ! ) , y = x . .7 ) :

126 :=  -  16807 /  25920

• S 3 6 ;= in t ( x * (x - 1 ) * (x -2 ) * (7 -y ) * (y - x ) * ( y - x -1 ) * (y -x -2 ) /  (3 !*3  ! ) , y = x . .7 ) :

136 :=  218491 /  51840

• S46:= in t ( x * ( x - 1 ) * (x -2 ) * (x -3 ) * (7 -y ) * (y - x ) * ( y - x -1 ) / ( 2  !*4  ! ) , y = x . .7) :

146 :=  -  16807 /  25920

• S56:= in t ( x * ( x - l ) * ( x - 2 ) * ( x - 3 ) * ( x - 4 ) * ( 7 - y ) * { y - x ) / 5 ! , y = x . . 7 )  :

156 :=  789929 /  259200

• S66:= in t ( x * ( x - l ) * ( x - 2 ) * ( x - 3 ) * ( x - 4 ) * ( x - 5 ) * ( 7 - y ) / 6 ! , y = x . . 7 ) :

166 ;=  146461 /  518400

• S07:= i n t ( ( y - x ) * (y -x -1 ) * ( y - x -2 ) * ( y - x -3 ) * (y -x -4 ) * (y - x -5 ) * (y -x -6 ) / 7 ! , y= x ..7 )

107 :=  8183 /  64800 

• S l7 : = in t ( x * ( y - x ) * ( y - x -1 ) * (y - x -2 ) * (y - x -3 ) * (y - x -4 ) * (y -x -5 ) / 6 ! , y = x . .7 ) :

117 :=  146461 /  518400

• S27: = in t ( x * ( x - 1 ) * (y - x ) * (y - x -1 ) * (y - x -2 ) * (y - x -3 ) * (y -x -4 ) /  (2 !*5  ! ) , y= x . . 7 ) :

127 :=  175273 /  518400

• S 3 7 := in t ( x * (x - 1 ) * (x - 2 ) * ( y - x ) * ( y - x -1 ) * (y - x -2 ) * ( y - x -3 ) /  (3 !*4  ! ) , y = x . .7 ) :

137 := 26411 /  103680

• S 4 7 := in t ( x * (x - 1 ) * (x -2 ) * (x -3 ) * (y - x ) * ( y - x -1 ) * ( y - x -2 ) /  (3 !*4  ! ) , y = x , ,7 ) :

147 := 26411 /  103680

• S57:= i n t ( x * ( x - 1 ) * (x -2 ) * (x -3 ) * (x -4 ) * ( y - x ) * ( y - x -1 ) / ( 2  !*5  ! ) , y = x . .7 ) :

157 :=  175273 /  518400

• S67;=  i n t ( x * ( x - 1 ) * (x -2 ) * (x -3 ) * (x -4 ) * (x -5 ) * ( y - x ) / 6 !,  y= x . . 7 ) :

167 :=  146461 /  518400

• S77:= in t ( x * ( x - 1 ) * (x -2 ) * (x -3 ) * (x -4 ) * (x -5 ) * ( x - 6 ) /7 ! , y = x . .7) :

177 :=  8183 /  64800
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Appendix 6A E valuation o f the Lebesgue function Xn(x, y; q)

Program Ldim; {To find data point for y; q)) 

var
f: text; 
n: integer;
r, s, nomq, q, d: real;

function QI(k: integer): real; {QI(k) = [k], the q-integer) 
begin
if q 1 then QI:= k 

else QI:= (1 -  exp(k*ln(q)))/(l -  q); 
end;

function QF(i: integer): real; (QF(i) = [i]!} 
var
k: integer; 
qfac: real; 
begin 
qfac:= 1;
if i > 0 then for k:= 1 to i do qfac:= qfac*QI(k);
QF:= qfac;
end;

function L N (x , y: real): real; {L N (x , y) =  X,^(x, y; q)} 

var
V, u, w , i, j: integer; 
vluex, vluey, vluez, prdct, qsum: real; 
begin 
qsum:= 0; 
for j:= 0  to n do 

for i:=  0  to j  do 
begin 
vluex:= 1;
i f  i -  1 > =  0 then for v:=  0 to i ~  1 do vluex := vluex *  (x -  Q I(v )); 
vluey := 1;
i f  j  +  1 < =  n then for u:= j  +  1 to n do vluey : -  vluey *  (Q I(u ) -  y); 
vluez:= 1;
i f  j  -  i -  1 > =  0  then for w := 0 to j  -  i -  1 do 
vluez := vluez *  (y -  exp(w *  ln(q)) *  x  -  Q I(w )); 

prdct:= e x p ((- (2 *  n -  j  -  1) *  j /2 )  *  ln(q)) *  vluex *  vluey *  vluez/ 
(Q F (i) *  Q F(n -  j )  *  Q F(j -  i)); 
qsum:= qsum + abs(prdct); 
end;

L N :=  qsum; 
end;

begin {main program} 
rewrite(f, 'Ldim.out');
writeln('Enter degree n, value q and spacing d'); 
readln(n, q, d);
writeln(f, 'LBfunction n, q, d', n, q: 8: 4, d: 8: 4);
tvritelnC value of x value of y LN(x, y)');
writeln(f, ' gridx gridy LN(x, y)’);
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s:= 0; while s<= Q I(n ) +  0.00001 do 
begin
r:=  0; while r< =  s +  0.00001 do 

begin
nomq:= L N (r , s);
w riteln(r, ' s, ' nomq);
w riteln(f, r: 8: 4 , s: 8: 4 , nomq: 10: 6); 
r:=  r + d 
end; 

s:= s +  d 
end; 

end.

Appendix 6B Evaluation of the Lagrange coefficient L " j(x , y; q)

Program LC; {Evaluation of the Lagrange coefficient) 

var
f: text;
i, j, n: integer; 
r, s, nomq, q, d: real;

function QI(k: integer): real; {QI(k) = [k], the q-integer) 

function QF(i: integer): real; {QF(i) = [i]! )

function LNC(i, j: integer; x, y: real): real; {LNC(x, y) = L^.(x, y; q)) 
var
V, u, w: integer; vluex, vluey, vluez: real;
begin
vluex:= 1;
if i -  1 >= 0 then for v:= 0 to i -  1 do vluex := vluex * (x -  QI(v)); 
vluey:= 1;
if j + 1 <= n then for u:= j + 1 to n do vluey := vluey * (QI(u) -  y); 
vluez:= 1 ;
if j -  i -  1 >= 0 then for w:= 0 to j -  i -  1 do

vluez := vluez * (y -  exp(w * ln(q)) * x -  QI(w));
LNC:= exp((- (2 * n -  j -  1) * j/2) * ln(q)) * vluex * vluey * vluez/ 

(Q F ( i) *Q F (n - j) *Q F ( j- i ) ) ;
end;

begin {main program ) 
rewrite(f, 'LC.out');
writeln('Enter degree n, value q and spacing d’); readln(n, q, d); 
writeln(f, 'LBfunction n, q, d n, q: 8: 4, d: 8: 4); 
writeln(’Enter i, j for Lagrange coefficient LNiJ(x, y)'); 
readln(i, j);
writeln(f, 'Consider the Lagrange coefficient LN’, i, j, '(x, y)'); 
writeln( ' value of x value of y LNij(x, y)');
writeln(f, ' value of x value of y LNij(x, y)');
s:= 0; while s<= QI(n) + 0.00001 do 

begin
r:= 0; while r<= s + 0.00001 do

begin nomq:= LNC(i, j, r, s); writeln(r, ' s, ' nomq); 
writeln(f, r: 8: 4, s: 8: 4, nomq: 10: 6); 
r:= r + d 
end; 

s:= s + d 
end 

end.
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Figure 6.17 The surface o f Lq q ( x , y ) .

AS-

AJO-

OS-

0.0-

Figure 6.18 The surface o f L q j(x, y)

Figure 6.19 The surface of Lq 2 (x, y).
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Appendix 6C The M in im um  o f A 2 (q) and A 3 (q)

Select 20 regular values for q near 1, ranging from 0.957 to 1.052. For each q 

we subdivide each triangle 82 and S3, using a grid with regular spacing d. We took

five choices o f d, ranging from 0.160 to 0.004. For each spacing d, we then estimate 

A 2(q) and A 3(q) up to 6 decimal places. The results o f the calculations are given in

Tables 6.6 and 6.7 . The Pascal program used fo r these calculations is as follows.

Program Lcnst; (T o  find the smallest Lebesgue constant] 

var
f: text;
n, meshq, testd: integer;
r, s, nomq, q, delq, d l ,  d, deld, Lmdc, xmax, y max: real; 

function Q I(k: integer): real; {Q I(k ) =  [k], the q-integer] 

function QF(i: integer): real; (Q F (i) =  [i]!] 

function L N (x , y: real): real; (L N (x , y) =  ^^(x , y; q)]

begin
rewrite(f, 'Lcnst.out');
writeln('Enter the degree o f polynomial: n’); readln(n);
writeln('Enter initial value for q and increment delq'); readln(q, delq);
writelnCEnter initial grid interval d 1 and increment deld'); readln(dl, deld);
writeln(f,'Lebesgue constant o f order: ', n);
writeln(f, 'Initial value for q: ', q; 10: 6, 'increment delta q: ', delq: 10: 6); 
w riteln(f, Initial value ford : ', d l:  10: 6, increment delta d: deld: 10: 6);

for meshq:= 1 to 20 do 
begin
writelnC Meshq LBconst G rid M axim um  point'); 
w riteln(f, ' Meshq LBconst Grid M axim um  point'); 
d:= d l;
for testd: = 1 to 5 do 

begin 
Lm dc:= 0
s:= 0; while s<= Q I(n ) +  0.00001 do 

begin
r:=  0; while r<=  s +  0.00001 do 

begin nomq:= L N (r , s);
i f  nomq > Lmdc then begin Lm dc:= nomq; xmax:= r; ymax:= s end; 
r:= r  +  d 
end; 

s:= s + d 
end;

writeln(q: 10: 6, ' ', Lmdc: 12: 6,' ', d: 10: 6, ' ', xmax: 10: 6, ymax: 10: 6);
w riteln(f, q: 10: 6, ' ', Lmdc: 12: 6,' ', d: 10: 6, ' ', xmax: 10: 6, ymax: 10: 6);
d:= d -  deld; 
end;

q:= q +  delq;
end;
end.
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Lebesgue constant o f order: 2.
In itia l value for q: 0.957000
increment delta q: 0.005000

Initial value for d: 
increment delta d:

0.016000
0.003000

Meshq LBconst Grid M axim um  point

0.957000 1.667954 0.004000 (0.652000, 1.304000)
0.962000 1.667659 0.004000 (0.656000, 1.308000)
0.967000 1.667417 0.004000 (0.656000, 1.312000)
0.972000 1.667202 0.007000 (0.658000, 1.316000)
0.977000 1.667021 0.010000 (0.660000, 1.320000)
0.982000 1.666884 0.010000 (0.660000, 1.320000)
0.987000 1.666778 0.013000 (0.663000, 1.326000)
0.992000 1.666710 0.004000 (0.664000, 1.328000)
0.997000 1.666670 0.007000 (0.665000, 1.330000)
1.002000 1.666667 0.004000 (0.668000, 1.336000)
1.007000 1.666693 0.010000 (0.670000, 1.340000)
1.012000 1.666759 0.010000 (0.670000, 1.340000)
1.017000 1.666855 0.016000 (0.672000, 1.344000)
1.022000 1.666975 0.004000 (0.672000, 1.348000)
1.027000 1.667139 0.013000 (0.676000, 1.352000)
1.032000 1.667318 0.013000 (0.676000, 1.352000)
1.037000 1.667547 0.007000 (0.679000, 1.358000)
1.042000 1.667793 0.010000 (0.680000, 1.360000)
1.047000 1.668065 0.004000 (0.680000, 1.364000)
1.052000 1.668380 0.004000 (0.684000, 1.368000)

Table 6 .6

Lebesgue constant o f order: 3.
In itia l value for q: 0 .957000
increment delta q: 0 .005000

Initial value for d: 
increment delta d:

0.020000
0.003000

Meshq LBconst Grid M axim um  point

0.957000 2.374327 0.020000 (0.440000, 0 .880000)
0.962000 2.360392 0.017000 (0.442000, 0 .884000)
0.967000 2.346697 0.017000 (0.442000, 0 .884000)
0.972000 2.333230 0.017000 (0.442000, 0 .884000)
0.977000 2.320029 0.014000 (0.448000, 0 .896000)
0.982000 2.307085 0.014000 (0.448000, 0.896000)
0.987000 2.296035 0.017000 (0.544000, 1.088000)
0.992000 2.285757 0.017000 (0.544000, 1.088000)
0.997000 2.275702 0.014000 (0.546000, 1.092000)
1.002000 2.273693 0.008000 (1.904000, 2.456000)
1.007000 2.283584 0.008000 (1.912000, 2 .464000)
1.012000 2.293647 0.020000 (1.920000, 2.480000)
1.017000 2.303830 0.014000 (1.932000, 2.492000)
1.022000 2.316199 0.008000 (2.136000, 2.600000)
1.027000 2,328688 0.008000 (2.144000, 2.616000)
1.032000 2.341315 0.008000 (2.152000, 2.624000)
1.037000 2.353999 0.017000 (2.159000, 2 .635000)
1.042000 2.366790 0.008000 (2.168000, 2 .648000)
1.047000 2.379669 0.011000 (2.178000, 2 .662000)
1.052000 2.392627 0.008000 (2.184000, 2.672000)

Table 6.7
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