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ABSTRACT

It is well known that given f there is a unique polynomial of degree at most n
which interpolates f on the standard triangle with uniform nodes (i, j),1,j=20,i+j <n.

This leads us to the study of polynomial interpolation on a "triangular" domain with the

-
nodes S = (([il, [j): 1,2 0,i+j<n), [Kl = [kl =w11?‘lq— , ¢ > 0, which includes

the standard triangle as a special case. In Chapter 2 of this thesis we derive a forward
difference formula (of degree at most n) in the x and y directions for the interpolating
polynomial P, on S. We also construct a Lagrange form of an interpolating polynomial
which uses hyperbolas (although its coefficients are of degree up to 2n) and discuss a
Neville-Aitken algorithm. In Chapter 3 we derive the Newton formula for the
interpolating polynomial Py, on the set of distinct points {(xj, yp:1,j20,i+j<n}. In
particular if x; = [il, and y; = [jlg, we show that Newton's form of P, reduces to a

forward difference formula. We show further that we can express the interpolating

polynomial on S itself in a Lagrange form and although its coefficients L? ; are not as
simple as those of the first Lagrange form, they all have degree n. Moreover, L? ; can

all be expressed in terms of Lglo, 0 <m <n. In Chapter 4 we show that P, has a limit

when both p, q — 0. We then verify that the interpolation properties of the limit form

depend on the appropriate partial derivatives of f(x, y). In Chapter 5 we study
integration rules I, of interpolatory type on the triangle S, = {(x, y): 0<x <y <[n]}.
For 1 £n <5, we calculate the weights w?’j for I, in terms of the parameter q and study

certain general properties which govern w]in jon S,. Finally, Chapter 6 deals with the

behaviour of the Lebesgue functions A (X, y; q) and the corresponding Lebesgue

constant. We prove a property concerning where A, takes the value 1 at points other

than the interpolation nodes. We also analyse the discontinuity of the directional

derivative of A, on Sy,.
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Chapter 1

Interpolation and preliminary results

1.1 The interpolating polynomial

One of the most common methods of approximating functions is by
polynomials. The use of polynomials is justified by the following classical theorem

given by Weierstrass in 1885. (See [20].)

Theorem 1.1 Let f(x) € Cl[a, b]. For any € > 0, there exists a polynomial
P(x) such that
[ f(x) -Px) |l <e for all x e [a, b].

Perhaps the most direct way in which a polynomial of degree n can be fitted to a given
function f(x) is by interpolation at prescribed points. We know that a straight line can
be passed through any two points having distinct abscissas. Similarly a parabola can
be made to pass through any three points having distinct abscissas. The following is a

generalization of these results.



Theorem 1.2 Given the values of f(x) at n + 1 distinct points Xg, X, ..., Xp,

there exists a unique polynomial P,(x) of degree at most n such that
Py(x;) = f(xp), i) 1y ey 1h (1.1)

This result may be proved in a number of ways; see for example [6]. Since the

polynomial is of degree < n, it may be expressed as

n
Polxy= 2 gt .
i=0

Written out in matrix form, (1.1) becomes

1 X0 X02 Ko Xon CO fO
1 X1 X1 2 se X1 B ¢ fl
1 x, xn2 g ] “n fn

where we have denoted f(x;) = f;. The determinant of this matrix is Vandermonde's

determinant, and has the value

which is non zero if the points are distinct.

The interpolating polynomial is often represented by the Lagrange formula
where the polynomial is expressed explicitly interms of the ordinates involved.

Let xq, Xy, ..., X, be distinct points in [a, b] and for each i=0, 1, 2, ..., n, introduce

the following product:

(x—X%g) «+o (X=X 1DX = Xjq1) «o0 (X=Xp) .



For i=0,1,2,...,n, the normalized version of this product

n

L= —
o i v
v#i

is a polynomial of degree n and satisfies the condition

It follows that the function

Pa(x) = D, f; Li(x)
i=0

(1.2)

is a polynomial of degree at most n and satisfies the required interpolation conditions

(1.1). Formula (1.2) is called the Lagrange interpolation formula. Note that, since the

interpolation problem (1.1) has a unique solution, (1.2) gives the only polynomial

P, (x) of degree at most n which satisfies (1.1).

The accuracy with which the interpolating polynomial approximates the function

f(x) depends on the choice of Xg, X[, ..., X, . If f(x) € C[a, b] and f™*D(x) exists for

a <x < b, we can estimate the error f(x) —P,(x) in terms of the (n + 1)th derivative of

f(x). (See[7].)

Theorem 1.3 For any x € [a, b],

fILE
f() = Pp(x) = (x=XQ)(X = X1) .. (X =Xn) GryTyT

(1.3)

where min (x, Xg, X, +.., Xp} <&y <max {X, Xg, X1, ..., X5 }. The point &, depends

upon X.



The interpolating polynomial can also be constructed recursively by an
algorithm without reference to the Lagrangian formula (1.2). The basic tool is a lemma
which enables us to represent an interpolating polynomial of degree m+1 in terms of
two such polynomials of degree m. If S is any non empty subset of all interpolating
points {xg, X1, ..., Xp}, we denote by Pg(x) the polynomial that interpolates f(x) at
those points x in S. Thus if S contains k+1 points, Pg(x) is the unique polynomial of

degree < k such that Pg(x;) =fj, forall x; € S. We have (see [9])

Lemma 1.1 Let S and T be two proper subsets of {xg, Xy, ..., X;}, having

all but the two points x; € S and xj € T in common. Then

(x — x;) Pp(x) — (x — x;) Pg(x)
Xj — Xj )

PsuT(x) =

The expression on the right is called a linear cross-mean. Lemma 1.1 enables
us to generate interpolating polynomials of higher degree successively from

polynomials of lower degree. Two standardised choices of the sets S and T used to
obtain the polynomial Pg_T have become widely utilized, one named after Neville, the

other after Aitken. In Neville's scheme, a triangular array of polynomials Py ., q(x) are

generated. Here Py y,q(x) is a certain polynomial of degree d that interpolates f(x)

on a set of d + 1 points depending on k. Neville's scheme is as follows.

Neville's algorithm Ford =0, 1, ..., n construct the polynomial Pk,k+d as

follows:

Pk,k(x) = fk, k= 0, 1, sy N

(X = Xg) Prst ked®) = (X = Xppq) Py gra-1(x)
Xk+d — Xk

Py k+d(X) =



Table 1.1 indicates the order of the calculations. The entry P; 5(x) is computed by

linear cross-mean multiplication of the bold entries.

X — Xj d=0 d=1 d=2 d=3
X —=X0 PO,O = fo

Po'l(x)
X = Xy Pyg =4 Pg.2(x)

Pl,z(x) P0,3(X)
X =X Pog =ty Pal®)

P, 3(x)
X - X3 P3,3 = f3

Table 1.1

Continuing in this way, the final value is Py (x), which is the polynomial that

interpolates on the set of all points xg, X1, ..., Xp.

1.2 The Newton formula and ¢-differences

Another method of evaluating the interpolating polynomial uses divided

differences. Let us attempt to express the desired polynomial in the form

Py(x) =ag+ (x—xg)a +... + X—xp)(X —Xq) ... (x—X%p,_1) 2y (1.4)

for some values of ag, 4y, ..., a5. To determine the constants a;, set X = Xg, X =Xy, ...,

successively, and solve the resulting linear equations. We obtain



ag = f(xg)

_f(xy) — f(xo)

i

1

az=X2—X1(

f(xg) = f(xg)  £(xy) — (x0)
X9 — X X1 —Xp

)

for the first three coefficients. Further investigation shows that P(x) can indeed be
written uniquely in form of (1.4). Note that for a fixed set of points Xg, X1, ..., Xp,
each a; is a linear combination of the f(x;) and that, furthermore, a; involves only
f(xg), ..., f(xj). Thus a; can be designated by a; = f[xp, Xy, ..., Xj], say. The constant
flxg, X715 «.., X;] is called a divided difference of order i. In this notation the

interpolating polynomial is written as

P,(x) = f[xp] + (x — xq) flxg, x1] + ... + (x—x%g) ... (x —Xp_1) flXg, -.0» Xp) (1.5)

This is called the Newton interpolation formula of f(x) on the set {xg, Xy, ..., Xp}.

A compact formula for a; can be found by comparing (1.5) with the Lagrange

formula (1.2) with which it must coincide. Hence

k k
a = f[xg X1, oo xi ] = 2, {fx) /] xi— %) (1.6)
i=0 v=0

v#£i

Divided differences can be expressed in terms of lower order divided differences, as

follows:

F1X4s X5y wrro K] = Xy X snon Xig=1]

f[Xg, X15 «+s Xpl = S

(L.7)

This is easily verified using the symmetric form (1.6). Formula (1.7) provides a



standard procedure for calculating divided differences, as indicated in Table 1.2 .

X0 flxpl

x1  flxq] fxq, x1]

Xg f[x5] x4, x5] f[xg, X1, X3]

X3 f[x3] f[x5, x3] f[xy, X2, X3] fxg, X1, X2, X3]

Table 1.2

It is often convenient to think of the divided difference f[xq, Xy, ..., xp] as a

value of the nth derivative of the function f(x) divided by the factor n!, provided this

derivative exists. Let us write

fIxgs X1 oovr Xl ~ £[X, X@5 o0y Xg_1]
Xk — X :

f[x, Xg; «»er Xkl =

Then it can be shown that (see [18])

f(x) = f[xq] + (x—xg) flxg, x1] +... + (xX—Xg) ... (x—xp_1) f[Xq, ..., Xpl

+ (x=xg) ... (x=%x5) I[X, X0y +.«s Xp] (1.8)

On using (1.5) and comparing with the error formula (1.3), we find that

f(n+1)(§ )
£IX, Xg» «0v0 Xl = m—)"—, (1.9)
where min (x, Xq, X1, ..., X3} < Ex < max {x, xg, X1, ..., Xp}. In particular, on

retaining the divided difference notation and reducing the number of points used, we

have



M)

n!

Ky Xysons X =

where min {Xg, X1, ..., Xg} <7 <max {Xq, X1, «.., Xp}.

In the case of interpolation abscissas xg, X1, ..., X, that are spaced evenly,
where xp =xg+kh, h>0,k=0, 1, ..., n, the divided differences may be given an
elegant expression in terms of forward differences. We define the forward operators A

on f(x) by Af(x) =f(x +h) —f(x) and higher differences by
APf(x) = AAM-1£(x)) = AM-1f(x + h) — AP-1f(x), m=2,3,...

Lemma 1.2 We have

m
Amfk =2(_1)i (rin) fk+m._i, k=0, 1,...,n-m.

i=0
As a consequence of taking the points x; to be equally spaced, we have

Am f

k
Lemma 1.3 f[xk, Xk41s +oos xk+m] = m 5

fork=0,1, ..., n.

Thus the interpolating polynomial in (1.5) can now be written as

An f()
n! hP

Af
Py(x) = fo + (% —%0) 0 + ...+ (K= X0)(X —X1) ... (X ~Xp_1) (1.10)

and each forward difference can be calculated systematically using a similar scheme to

that in Table 1.2 .

If we change the variable x by putting x — Xg = sh, then we can simplify x — xy

= (s —~k)h and



Ak £ K Ak £
(X—XO)(X uxl) o X —xk_l) K1 Bk = h¥s(s—-1) ...(S—k +1) m
- ()0
Thus the polynomial (1.10) becomes
. n
P, (x) = fy+ G) ALy 4 Lotk (ISJ anfy =Y (nsn) Am £, (1.11)
m=0

which is called the forward difference formula for P (x).

Thus Newton's interpolation formula (1.5) simplifies considerably, to give

(1.11), in the case where the points xj = xg + kh form an arithmetic progression, for

the divided differences reduce to ordinary differences. In [22] 1. J. Schoenberg
emphasized that a simplification also occurs in the case when the points of interpolation
form a geometric progression. The problem of polynomial interpolation in one
dimension at the points of a geometric progression was originally proposed by J.

Stirling [25]. Specifically, let
xy =agk, k=0,1,..., a#0,q#1, q>0 (1.12)

be a geometric progression. Let us consider Newton's formula (1.5) for this case.

Following Schoenberg [22] we define g-differences £™ f(x) recursively by
9 1(xy) = f(xy),

H™ () = D™ fixpepr) - g1 D™ ),

m=1,2,.... Interms of these differences we have the following result.



Lemma 1.4 For the interpolation points (1.12) the divided differences are

1
al (g™ - 1)(g™ - q) ... (g* — g*-1)

fla, aq, ..., aq"] = O" 1(a) .

Hence, using (1.5) we obtain the g-forward difference formula for Pj(x)

n %
(x — a)(x —aq) ... (x —aqi-1) i
P = fi e - ; ; D' f@).
W(x) = f(a) + ;1 S =D . oo P

In particular, for x = 0 we obtain

n

P,0) = fa) + 3, 1

— D' f
o Q-9 -q2) ... -q) (@)

which Schoenberg calls the Stirling-Schellbach formula.

10

Schoenberg {22] further pointed out that the Romberg algorithm is equivalent to

the Neville-Aitken algorithm when the interpolation nodes form a geometric

progression. Letr be a constant such that |r| > 1. Starting from the column of values

Rgn) we form the Romberg triangular array

Ry

RO
RY) R

R RO
R® RO

R?

€©))
Ry
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the general recursive definition being

&+1) o (K)
R® _ R et — R

L r _ 1

Let us apply the Neville algorithm for a geometric progression Xy = agX and for
interpolation at x = 0, and form the Neville triangular array. On taking py (0) = Rg‘)

k=0,1,...,,n and assuming that Pk k w0 = R&k) we obtain

(-aq®) Piy 1 kg 1€0) — (-agk+d+l) py o, 4(0)
Pk k+d+1(0) = aql+d+1 _ gk

k+1 k
_R§1+ )+ qd+1 R(d)

qd+1 * 5

Now, write r = 1/q to give Pk k+d +10) = R((:?l. Hence these two algorithms are

equivalent.

1.3 Two-dimensional polynomial interpolation

The result of Theorem 1.2 can be extended to polynomial interpolation in two
dimensions at certain finite sets of points defined in a certain region of the X-Y plane.
Here, we shall deal with the question of the existence, uniqueness and representation of
the interpolating polynomial using a triangular network of interpolating points. A

function P(x, y) in x and y is said to be a polynomial of degree not greater than n if

n n-i

P(x, y) = Z Z Ci,j Xi yj .
i=0 j=0
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In [14], A. R. Mitchell and G. M. Phillips showed the existence and
uniqueness of the interpolating polynomial at the (n + 1)(n + 2)/2 uniform nodes over

the standard triangle with vertices at (0, 0), (1,0), and (0, 1).

Theorem 1.4 Let f(x, y) be a function defined over the standard triangle.

There exists a unique polynomial P (x, y) of degree not greater than n in x and y which

takes the same values as f(x, y) at (i/n, 1 —j/n), 0<i<j<n.

Let us consider a function f(x, y) defined over the standard triangle with
vertices at (0, 0), (n, 0) and (0, n). For brevity let f(i, j) be denoted by fi,j. It is
possible to represent the interpolating polynomial at the uniform nodes (i, j), i,j =20,

i+j<n, in a Lagrangian form. We have

n n-i
PaCx,y) = X, 3, Li(x ) fij (1.13)
i=0 j=0
where
1 i1 ﬁ n-izj-1
n = S _— — — —
LiJ(X’Y)*i!js(n_i_j)gvgo(x v) 1l y-v) V=O(n v-x-y) (1.14)

are polynomials satisfying

1 if (s, t) = (i, j)
L (s 1) = {0 if (s, 1) = (3, %)

where 5,120, s+t<n.
This interpolating polynomial can also be computed by an iterative process. In

[12], S. L. Lee and G. M. Phillips presented an efficient algorithm for the evaluation of
the polynomial (1.13).
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f?,j(x,y)=fi’j for 1,j=0, i+j<n
and form=1,2, ..., n, define f‘;'j(x, y) recursively by

mt‘ig(x’ y)—_—(m+i+j—x—y)fg'j_1 x,y)+ (x-i)f;:5(x,y)+ y-1 ff;ll x, y)

for i,j=0, i+j<n-m. (1.15)

Lemma 1.5 LetP,(x, y) be the polynomial interpolating the function f(x, y) at (i, j),

0<i+j<n. Then

Py(x,y) = fno’o(x: y).

Note that this algorithm is a generalization of the Neville-Aitken algorithm for

computing the one-dimensional interpolating polynomial.

Since the interpolation nodes chosen on the standard triangle are uniform nodes,

it is appropriate to introduce forward differences Ay, Ay in the x and y directions

respectively. On defining

0 0
Axfi,j = fi,j 5 Ayfi' = fi,j

and for m = 1, 2,
m m-1 m-1
Ax fi,j = Ax fil 1 = Ax fi,j

g S A‘y“*‘ frer = K4

yl,_]_ y ,js

the authors derived a forward difference formula for P,(x, y). This is a two-
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dimensional analogue of the forward difference representation of the interpolating

polynomial for a function defined on equally spaced points on the real line.

Theorem 1.5 Form=0,1,...,n and 1,j20, i+j<n-m

k 5 .
e =23 (7 @D s,

In particular, let P,(x, y) be the interpolating polynomial of f(x, y) at the points (i, j),

0<i+j<n. Then
L X y r pk-r
Pl’l(x, Y) = kzz“o é) (r) (k o r) Ax Ay fO,() 4

It is interesting to consider the problem of finding an interpolating polynomial
on a triangle where the nodes are not necessarily uniformly spaced, for example a
system of nodes which are in geometric progression. J. Stirling [25] was the first to
propose polynomial interpolation in one dimension at the points of a geometric
progression. As we have encountered earlier, I. J. Schoenberg [22] discussed various
works with this setting and give a unified version of the problem. He showed the
connection between the results of J. Stirling (1749), K. H. Schellbach (1864) and C.
Runge (1891) on this problem. Schoenberg pointed out that the Stirling-Schellbach
formula may be regarded as a g-forward difference formula. He also showed that the

Romberg algorithm leads to this formula.

In [13], S. L. Lee and G. M. Phillips extend these results to the two-
dimensional case, for a triangle domain, using as nodes the data points obtained by
intersections of lines parallel to the axes in geometric spacing. They introduced a real

parameter q >0, q# 1, and used q-integers defined by



_ L=q"
[n] l_q 3

where n is an integer. Note that the g-integers satisfy:

. _J1+q+..+q"1 if nis positive integer
© [“]"{ 0 if n=0

15

(i) [-n] = % = —qM—q™l_  _—q!, wheren is a positive integer

q
(i) [n]-[k] = g¥[n—k], for 0<k<n

(iv) If kiIn then [k} [n]

w) lim [n] =n.
g—1

(1.16)

G. E. Andrews [1] mentioned that C. F. Gauss (1863) was the first to study the

polynomials of the form

(1=g®d —g™D ... A ~q¥+]
G(n -k, k; = .
! L R

These polynomials are known as Gaussian polynomials and involve the use of the g-

integers. In fact, letting [k]! = [k][k—1]...[1], we have

S | B
Gin-k k;q) = K] [n - k]! = [k]

which are the g-binomial coefficients. For 0 < k < n, we see that the q-binomial

coefficients satisfy the following relations.
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ﬁ[n’_ n! _(n
a1 Lk ‘M(n-mz*(k)

fn] _[n-1]7 . n—l]

LS T L & Y [k—l

(n] _ [n-1"7 k[ n-1

_kj—hk-1_+q|: K :] (1.17)

Specifically, Lee and Phillips [13] considered the interpolating polynomial
P,(x, y) for f(x, y) on the triangular geometric mesh points {([i], [j1): 0 <i<j<n }.

Note that all of the nodes lie on the union of the straight lines y=qVx+ [v],

0 € v < n, which meet at the point (1 1 ), see Figure 1.1 . Then the

1
T 1-gq
authors constructed the Lagrange form of the unique interpolating polynomial P,(x, y)

and derived a forward difference formula for P,(x, y).

Y
(3]
2 y=qx+1
y=qx+[2] & |
> y=Xx
[2]
X
( 1 1 ) 10 [1] [2] (3]

I—q T-q

Figure 1.1
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Theorem 1.6 Given a function f(x, y) defined on {([i], [j]): 0<i<j<n]},

there exists a unique polynomial P(x, y) of degree at most n such that
Py(il, ) =f;; forall 0Si<j<n,

where we have written f; jto denote f([i], [j]). Furthermore Py(x, y) may be written in

the Lagrangian form

b
Py(x,y) = Y, i L'i‘,j(x, v fij (1.18)
=0 =0

where

n. . qnbie = n ot =i
L¢my)—ﬁnﬁ_ﬂun_ﬂ,ELOV-WDngqw—y)£lou4vx—wn

(1.19)

are polynomials satisfying the conditions
1 (Lk], Im]) = ([i}, (G
i m={o (i tmd = (i1, 0D

Since all the points ([i], {j1): 0 <i<j<n licon the lines y = g¥x + [v] and
y=[vl,v=01,...,n,itis appropriate to define q-differences along these lines. The

differences along the y-direction are defined by

0 i
3] . f; g = £i J
and
—1 L -1
lefu:@l; fi,j+1 —qle;n fi,j’
form=1,2,.... The differences along diagonal-direction are defined by

0
o, fij = fiy

and
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BP =00 Baiga = ™ B0 45,
form=1, 2, .... Mixed qg-differences f);n i);,‘ are defined in a similar manner by
OTOY £ = OO f,150 ~ e OTION g (1.20)
Using this notation we have the following q-forward difference formula for P (x, y).

Theorem 1.7 Let P, (x, y) be the polynomial of degree n which interpolates the

function f(x, y) at ([i], [j1): 0 <i<j<n. Then

Pn(xv Y) =
i —k(k-1)/2 : lﬁl (x - [vD kﬁl(y —qVx -~ [V]) gmgkm ¢ (1.21)
k=0q m=0 v=0 [V + 1] o fvi41] 2%y 00 .

where the void product is taken to be 1.

As a special case of Theorem 1.7, set x =0 in (1.21). This gives

n

k-1
(¥=Iv]) sk
P,.(0, = ~k(k=1)/2 L RS D LRy L8
n(0, ¥) kz_',q v|=|0 V1] Dyloo

which is the one-dimensional analogue of equation (1.21), which Schoenberg calls the

Stirling-Schellbach formula.

The authors further evolved an iterative process similar to the Neville-Aitken

algorithm for evaluating the interpolating polynomial P,(x,y) efficiently. This algorithm

can be given as follows. Let
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fori<j<n and, form=1,2, ..., n, define f'i?j(x, y) recursively by
- ; o : s S %
o [m] £5 (%, y) = (m+j1 -0 & y) +y-a-ix-G-D§; &y
+ - -, &),

i+1,j+

0<i<j<n-m Then fTJ (x, y) is a polynomial in x and y of total degree m.
Furthermore f‘l: (x, y) interpolates the function f(x, y) at ([i +s], [ +t]),0<s<t<m.

In particular fg 0 (x, y) interpolates f(x, y) at ([s], [t]), 0 £ s <t < n and hence

f&o(xa Y) =) Pn(x, Y)

dkok ok
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Chapter 2

Interpolating polynomial on a g-triangle

2.1 Imtroduction

It is known that for a function f(x, y) defined over the standard triangle with
vertices at (0, 0), (n, 0) and (0, n), there exists a unique polynomial P,(x, y) of
degree atmost nin x and y which interpolate;s f(x, y) atthe (n+ 1)(n+2)/2 points
of the mesh (i,j), 1,j=20, i+j<n. In[12], S. L. Lee and G. M. Phillips derived a
forward difference for the polynomial P,(x, y) and represent it in the x and y
directions. In a subsequent paper [13] the authors extend the results on polynomial
interpolation at the points of geofnetric progression to the two-dimensional case. They
considered the interpolating polynomial P, (x, y) for f(x, y) on the "triangular" mesh
points {([i], [j]): O €1 £j < n} and gave a forward difference formula in the y and

"diagonal" directions.

In view of this, we ask whether a forward difference formula can be
derived for the interpolating polynomial on a "triangular" domain with the nodes
S ={(i], j:1,j 20,1+ ) <n}, which includes the standard triangle as a special case.
In this chapter we shall derive a forward difference formula in the x and y directions for

the interpolating polynomial at the nodes of S. We also construct a Lagrange form of
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an interpolating polynomial on S and discuss a Neville-Aitken algorithm.

2.2 Successive (-forward differences

We begin by extending the definition of the g-integers to g-real. Foranyte R

the g-real t, denoted by [t], is defined by

—qt
[t].:{ll_‘;%, q#1landg=220
s q=1

We see that the numbers g-real satisfy the following properties.
(a) Foreachte R, [t] is a continuous function of q.
(b) [s]-[t]=qt[s—t] foranys,te R.

(c) Forany q# 1, given any real number z satisfying 1 —z(1 —q) >0 there exists
=1n {1-2(1 —q)}/In q such that z = [t]. Thus for q > 1 this holds for any z >

l=q
and for 0 < q < 1 this holds for any z < i 1 q See Figure 2.1. For q = 1, then for

any real z, we simply choose t = z.

z : Z
e 1
1__q Z:-l—-(—l >0
withq>1 t
g Bagzl
0 L
0 t
Z=']—' <0
1-q
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If t is an integer we will also refer to the g-real [t] as a g-integer. We note that the g-
integers satisfy the properties mentioned in (1.16). Furthermore for any te R and k

e Z, with 0 £k <t, the g-binomial coefficient is denoted and defined by

k-1
t] _ [el[t—=1]..[t—-k+1] _ [t—V]
[k] 2 k]! ’VI=IO[V+1]

where [0]! = 1. If t <k we define [ li ] = (. We note that if t = n, a positive integer,

then the g-binomial coefficients satisfy the relations given in (1.17).

Given a positive integer n, let us consider the triangular array of (n + 1)(n + 2)/2
points: ([i], [j]) where i, j 2 0, and i + j < n, formed by the lines x = [i] and y = [j], as
shown in Figure 2.2 . If q = 1 then the nodes ([i], [j]) = (i, j) become the lattice
points with integer coordinates. This array of nodes is bounded by the X-axis, the Y-
axis and the hyperbola x + y— (1 —q)xy = [n]. We shall call this region a standard
g-triangle of order n. The derivation of the hyperbola equation will be shown in

section 2.4. We note that for any (x, y) within the g-triangle there exist X, y € R such

that (x, y) = ([X], [¥]).

(4]

(31

x+y—-(1-qxy = [4]

(2]

0 1 [2] (3] 4] X

Figure 2.2
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Given a function f(x, y), let us denote f; §= f([il, [jD wherei,j20, i+j<n.

Then the forward difference operators £ f;;, O f;; are defined as follows.
Let 92 fij= fij and form=1,2,3, ..., define recursively

OV = O g~ gL OM g
Similarly let 98 i j= fij and forn =1, 2, 3, ..., define recursively

~1 - =1
Qly)fi,j=£)ryl fiJ+1“qn1£3 fi,j‘

It follows that form =1,2,3, ... ,and n =0, 1, 2, ... , the mixed g-differences

DD f;; satisfy

OROVfj = OO0 - OOV £
and fom=0,1,2,...,andn=1,2,3, ...,

L60 6;= 00 0Dy — g™ 800§

From the definition above we see that divided differences O fi; and 7 f;;

and mixed divided differences 3?)::‘ .‘D; fi j can be expressed in terms of function values.

We need the following Lemmas.

Lemma 2.1 Letq be a positive number. Then for n 2 1 and all real x

x=Dx-a) . k=D = 3, V[ (] qve-nz sy,
v=0 V
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Proof The proof is by induction on n. The above relation clearly holds if n = 1.

Suppose it is true for n. Then

x-Dx-qg ... x—qg"

x(x =~ Dx =) ... ®=gF) — g (x=1)x~@) ... &~

2 (- 1)v|: :| qvv-172 xn+l1-v 4 2 (-1)v+1 [ ] qn+v(v—1)/2 xn—v 2.1)
v=0 v=0

- [ 3 :| xn+l 4 (_1)n+ll: ] qrnm-1)/2
i z 1)k {[ ] k-2 4 [ i ] QnrH-1)(k-2)/2 } ks

where we have written k = v in the first summation of (2.1) and k = v + 1 in the second
summation. Factorising the terms in the last summation above and using the g-

binomial property (1.17), we obtain

== c-qi=| M5 [t 4 o[ DE D] qesin

" Z - 1)1({[ 4 ] [ Iy ] g1k } qh(k-1)2 gk 1

n+1

- Y 1)k[ e 1 ] (k=12 gn-k+1
=0

and this complete the proof.
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Corollary  Taking x = -1 in Lemma 2.1 we see that

noo-n n-1
> [y]ae-n2 = TTa+av .
v=0 v=0

For q = 1 this reduces to the familiar identity

> (1) = 2.

v=0
Lemma 2.2 For all real x and y,
-1 s—1 r s )
[Tx-a» Iy -ab) = X, X (~1)o+b [;] [E] g xi—0t y5-B
=0 p=0 o=0 B=0

where d=o(a—1)/2 + BB -1)/2.

Proof Lemma 2.1 implies

-1 s—1
[Tx-a»]] -6
o=0 =0

= i (-1 I: z ] q(x((x—l)/2 xI—0. i (~1)B [ 5] qB(B_l)ﬂ ys—B
=0 e p=0 B

S X r s
= azlo [3z="o (~1)o+P [(x] [B] qe-1)/2 + B(B-1)/2 yr-o ys—f

We can now express @;9; fjj in terms of function values.



Lemma 2.3 The mixed g-forward differences of order (r, s) satisfy

ros #5 g

OO . = _1oc+[3[ :I[ :l A
x*y a=0l3§0( ) ollp 9" Lisr-o,jes—P

where d = oo — 1)/2 + BB — 1)/2.

Proof Let Ey and Ey denote the g-forward shift operators defined by

Ey fij = fiy1j and By fi; = fj5

then the operators E, and £, satisfy

E, fij = fiyj and Oy = Bx-1,
where 1 is the identity operator. Similarly
E;fu = fij4s and Oy = B, -1

Since

26

(2.2)

1
Q:ZH- fi,j = 9:? fi+1,j —qmi);n fi,j = me Ex fi,j = me qm Ifi,j = 9;“ (Ex —qm I) fiJ

we also have

O = Bx-DEx-qD... EBx~q—'D) forr=1,2,..,

and similarly
9} = EBy-DEy-qD..By gD for s=1,2,...,

. 0 _ 0o _
w1th£)x—§f)y-l.

(2.3)
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Now using (2.3) and Lemma 2.2, we can write the mixed divided difference as

r-1 s—1
D01 = 11 Ex-q>D %:[0 (By —qP D) £

o=0
5 5 coms[ ]3] weents,

o=0

where d = oo —1)/2 + B(B —1)/2 and hence

S ] [8
ot i d ;
o0y5, = 3, B%(—l)wﬁ[a] [ 6] o ferajuscp -

Note that, taking r = 0 or s = 0 in (2.2), we have the special cases

T
M D5y = 0o ] qeg,

o=0

.. S S
@) 9 6;=Y (DB | g aBB-DRg g
B=0
Corollary It follows immediately from Lemma 2.3 that
f)ib;fld =®;Q;fi’j fOl‘l‘,S=1,2,3,...,

that is, the mixed q-differences are commutative.

2.3 Forward difference formula on the g-triangle

Let P,(x, y) be the polynomial of degree n which interpolates a function f(x, y)

at nodes ([i], [j1), 1, j=2 0,1+ j < n . First we derive a representation of such a
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polynomial. For the cases n =0 and n = 1, we can take

Po(x, y) = fo’o
and

Pi(x,y) = fo0 +xOxfoo + vy Dyfop
respectively since Py([0], [0]) =fp 0, Py([1], [0D) =f1o and Py([0], [1]) =fp; .

Now for n = 2 let us try to write Pp(X, y) in the form

Ax(x —[1 i
PZ(X’ Y) = Pl(x’ Y) +‘AqﬁL12 + Bxy +_9ng.%2'p[_D. .

Note that the last three terms of P,(x, y) are multiples of the Lagrange coefficients for
which i + j = 2. We require that Py([i], [j]) = fi,j fori,j=0, i+j<2 and we see
immediately that Py([i], [j) = P([il, i) = fi,j fori,j=0, i+j < 1. Therefore the

constants A, B and C must satisfy the following conditions. First

fz‘o = f0,0 + [Z]Q,(f(),o + A = fl,() + qu f0,0+ A

and this gives
2
A = 9,610 - q®, 6o = D foo -

To determine B, we have

fl,l = f0,0 +9xf0,0 + i)y f0,0 +B = fl,O + Qy f0’0+ B

and therefore
B = Dyfig - Dyfop = DD, fop -
Finally,
fo2 = foo + [2]£)yf0,0 +C=fp; + qi)y foo+ C
and hence

2
C = i)y o1 — qi)y fo,0 = Qy fo,0 -
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Thus P,(x, y) can be written as

x(x—[1 2
Pr(x,y) = fo’o + XQXfO,O ¥ yny0,0 +——(q—[2'}'l'!i'—]-)' Qx f0,0 + Xy i)xf)yfo’o

y(y = [1D &2
+qEr Py foo

Similarly for n = 3 we begin by writing

Ax(x—-[1Dx-[2]) | Bx(&x —[1Dy

L Cxy(y -[1])
¢[3]! qr2pt

ql2]!

P3(x,y) = P (x,y) +

L Dy(y - 11Dy ~ 12
q331! '

and thus P3([i], [j1) = Po([il, [jI) forall i,j=0, i+ j<2, We determine A, B, C and
D as follows. On evaluating P3(x, y) at ([3], [0]) we have

fi0 = fop + [31D.fop + [3192fg0 + A .

Therefore
A =f30-fo0—(1+q+q2) Dy oo~ (1 +a)(Dx f10-aDx fo0) — 2D fo 0

2
= f30 — f10 - Dy — D 1 — @2D; fyp

Since
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we obtain

B = f51—foo— Dy fon— (1 + Dy foo— D fog— (1 + (D fo,1 - Dy fo0)

fl

2
f2’1 = fO,l - bx f0’1 o qi)x fO,l = Qxfo’o

%)
D11 - qPxfo1 — D fop
2 2 2 1
= bxfo,l — QX f0,0 = i)x nyo,o .
Similarly we have

fiz = foo + Dxfog + 21Dy Too + 219,0 foo + Do + C
which gives
162

C =95 fho

and
fo3 = foo + [3]937 fo,() + [3]93 f010 + D

which yields

D = "b?, fo,0 -

Hence we obtain an interpolating polynomial

P3(X, y) = fo’o + { xi)x f()’() Ty Qy f0,0 }

+

{%Dgz foo + xy D9, fop +A§D]E—D 92 0}

+ | x(x—[I])(x—IZ])gp L, Xx—[1])y Q%l

q? [3]! T ql2]!
+ X0 =MD ¢ @2 LY =D -2 g3

q[2]! q3[3]! y f0,0 }
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which is of degree at most three. Alternatively we can write Pz(x, y) as

3 r r-s—1 s—1
(x = [v]) (y = [V]) Qrsgs
Pa(x,y) = OTH
3 2:0 ot w0 VIV 4 1l o q¥Iv+ 1] * T

We conjecture that P,(x, y) is a polynomial of degree at most n which may be

written as

L1} r I

—5—1 s—1
(x = [v]) (y = [V]) er—sgs
P.(X,y) = I I I I 7D fha - 2.4
n ZO o0 we) VIV ¥ 1] yepg¥ly k1] % ¥ G

We know that for a given point (x, y) in the g-triangle there exist X, y € R such that

x = [x] and y = [y]. Then the double products in (2.4) become

’ﬁl G-l S G- | g~ & -nh

v=0 qVIv + 11350 qVIv + 1] v=0 aqVIv + 11 yZp qVIv + 1]

—-s-1

_ =] - v
v=0 [V+1]v.___0 [v + 1]

since [X] —[v] = q¥[k~Vv] and [;:' _ L[t~ 1] ﬁ(.]![t—— k+1]

Hence, using these q-binomial coefficients, the polynomial in (2.4) may be written
more simply as

n T ” w“ ——

= X I
Pn(x’y)"z Z [r_s][z] Qx nyo’o ;
=0 s=0
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We are now ready to justify the conjecture expressed in (2.4).

Theorem 2.1 Let f(x, y) be defined at all points of the g-triangle of order n.

For any (x, y) in the g-triangle, let

n

T - -
= X y -8 4~ S
Pa(x, ¥) 2(‘,) | X S] [S] O fop 2.5)
where x =[X] and y = [¥]. Then the polynomial P (x, y) interpolates f(x, y) at the

nodes ([i], [j]), 1,j=20, i+j<n.

Proof Clearly the theorem is true for n = 0. Suppose the theorem is true for n. Now

for all points ([i], [jI) with 1,j=20 andi+j<n,

n

Pyl ) = E) é})[ris BT

n+1l . i
1 ] n+1-s & $
+S§O[n+1—s][s]‘®x nyo’o

The second summation is zero because, if s > j then [ “l ] is zero and similarly if s < j

i

ok T g ] is zero. Thus

then iSn—j<n-s<n+1-s and therefore [

P 1(GL 0D = Pp(fi), i) = £, 0<i+j<n.

To complete the proof by induction, we have to show that Pp,1([il, [j]) = fj

for all points ([i], [j]) withi+j=n+1. We obtain

Poa (il D = Iil i [ : : ][‘] ] DTHS fo0
0 s=0 LS S X y V¥
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“ 2 2 [r—is ][i] 9,79} fo
1] #1950

where we have changed the order of summation and written t=r—s. We now use the

fact that the g-binomial coefficient I: '; ] =0 ifj<s,andthati=n+1-j<n+1-s,

to obtain

i

Pas1(ll, 1) = g}éﬂ HIHECEYE

We then apply Lemma 2.3 to give

P =% ¥ [ 53 oot [ ][ 8] o st

s=0 =0 o=0 B=0

where d = oo — 1)/2 + B(B — 1)/2. If we substitute o =t -k and f = s — m and

rearrange the summations, the last equation above becomes

Ppa(([il, (GD

il
M....

53 Sevrm L2 L) e eo

s=0 m=(

T
o

In (2.6) we write

[dlesel=Lellize ] Bllezal- (21025 ]
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and change the order of the summation, writing

This gives

Ppa ([, 3D

-2 33 Senen[ T[R40 Jotnn

k=0 m=0 t=k s=m

; : i-k j-m . _ ¢
[ llc ] [ rJn ] ficm 2 X [1 v k] [J um] (=1)yv+i qulv-1)72+u(p-1)/2
v=0 u=0

i
k=0 m=0
where we have writtenv=t—kand u=s-m.

If we choose k < i, it follows from Lemma 2.2 on setting x = y = 1, that

.-k 2 5
l Jf [1 » k] [J - m] (=1 VHR QVOv-D2+@-D12 = @
v=0 p=0 o b

and similarly if k =1 and m < j this sum is also zero. Thus, taking k =i and m = j, we

have P, 1([il, [G]) = £ j and the theorem follows.

Remark When q = 1, (2.5) reduces to Theorem 1.5. a forward difference

formula for polynomial interpolation on the standard triangle:

n T
o =3 5 (2 (1) &8
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Example 2.1 To establish the forward difference formula given in (2.5), we

consider the function f(x) = exp(0.003x + 0.01y) defined on the standard q-triangle of

order 5 with q = 3, and then evaluate the interpolating polynomial P5(x, y) at the point

(2.5, 6.0). From Theorem 2.1, the interpolating polynomial P5 can be written as

5
P5(2.5,6.0) = ),
m=(

EMB

ISl

where
[X]=2.5 and [y] =

and

[i] 1-g* 1-—g*l 1 — gqx-k+1
_1_‘_qk.1_~qk—1 PR 1_q +

In Appendix 2, we give a detailed Pascal computer program, created to evaluated
P5(2.5, 6.0). The result shows that
(2.5, 6.0) = 1.0698302596
P5(2.5, 6.0) = 1.0698302625.

We obtain a good estimate to f(x, y) at the point (2.5, 6.0), where the error is less than

3.0 x 10-9 .

2.4 Lagrange interpolation formula using hyperbolas

Let f(x, y) be a function defined on the g-triangle of order n with the set of
nodes S = {([i], [j1): i, j =2 0,1+ j < n}. For q = 1 it has been shown (see, for
example, Lee and Phillips [12]) that the interpolating polynomial of degree n on such a
triangle can be written in Lagrangian form (1.13) and (1.14). In this section we shall
construct the Lagrange form of an interpolation polynomial at the points S on the q-
triangle. On a system where q =1, the diagonal nodes (i, j), wherei, j=0 and

i+ j =k, lie on a straight line. For q # 1, let us consider a curve that passes through
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the "diagonal nodes" {([i], [j]): 1,j=20, i+j=k]}. Its parametric equations are given
by
x(1-q) = 1-¢" and y(1-q) = 1-¢/, withi+j=k
This curve satisfies
{1-(-gx}{1-(1-qy} =1-1-x—(1-q)y +(1-q)%xy =gk
and it is a hyperbola
x+y—(1-qxy=[k],
(see also Figure 2.2) which we will write as Y(x,y) =[k].

We now recognize that the nodes in the set S are formed by two linear systems
x = [v], y = [Vv] and the system of hyperbolas y(x, y) = [v] wherev=0, 1, ...,n. So
given any point ([il, [j]) on the triangle, the union of the hyperbolas ¥(x, y) = [n — v]
for v=0,1,...,n—-1-j—1, the straight lines x=[v] forv=0,1,...,i—1and
y=[v] forv=0,1,...,]j— 1 contain all nodes on the triangle except the point (fi], [j])

itself. Thus the product

i-1 j—1 n—i—j-1
I &x-1vD i’[ - T an-vi-vx y»
v=0 v=() v=0

vanishes at all nodes ([h], [k]), h, k=0, h+k <n, except at the point ([i], [j]) where

its value is
i, ) = [t q0-D2 [j]t qG-DI2 ([ ~ [+ ([0 — 11~ i+ 1) .. (i + 11~ i+ )
= [i]! [jI! [n —i—j]t qG+D@o-1--)2-ij

Note that y([i], [j]) = [i +j]. It follows that, fori, j 2 0, i+ j < n, the polynomial

1— N—i—j~1

M. j® Y= ITx-vn h (y—-[vD ([n = v] —v(x, y)) (2.7)
( 1, ) v=0 v=0 v=0
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satisfies the conditions

at all other nodes in §

’ _f1 (b1, kD=, [1)
M. nl, kD = { ¢

We also note that, in the above expression for M? J(x, y), an empty product (wheni=0

or j=0 or i+j=n)is taken to have value 1.

Thus we obtain a Lagrangian form of an interpolating polynomial which uses

hyperbolas and two linear systems. The polynomial can be expressed as

n n-i
P(,y) = X, 3, ML Y) fij - 2.8)
i=0 =0
In this case the degree of P(x, y) is at most 2n, since the degree of any M? ,j(x, y) is at

most 2n —1i —j. However, letting q tend to 1, the polynomial P(x, y) in (2.8) reduces
to (1.13), the interpolating polynomial of degree n on the standard triangle. Later we
will obtain an interpolating polynomial of possibly lower degree than that of P(x, y) for

the above system of points.

By following the method in Lee and Phillips [13], we now give an algorithm

for evaluating the Lagrange coefficients M? J(x, y) in (2.8).
Let ago(x,y)= landfor m=1,2...,n define a?:i x,¥),1,j20,i+j<m,
recursively by

n-m+ 1127 & y) = g {In-m+1+i+j]-¥x ) a;‘jj‘1 (%, ¥)

+qHe-fi-1all ey + g+ g-[-1 Al xy) 29
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and a;f} (x, y) = 0 otherwise.

Then, as we will see from Lemma 2.4 below,

B = M
wherei,j20,i+j<n.

Lemma 2.4 Form=0,1,...,n and 1,j20, 0<i+j<m,

m _ M m
ai,j (X, Y) = ’Ci,j bld (X, Y) (210)
where
i g 1 n
) = gHeden i e/ [ ]

and

i-1 j-1 m—-i—j-1

iy = [Tec-wh [To-vd Ildn-vi-vey).
v=0 v=0 v=0

Proof By definition ag o %, ¥) = 1. Suppose (2.10) is true for m — 1. Then
n-m+11a% Y= 75 {In-m+1+i+j] = 10,9} B & y)

+ gl 'C:T—]Ll; x-[i-1] b"_‘;lj x,y)

1

vl 2 -1 . o
+ QM T (- G- 1D )

—j—j m-1 —i ~m-1 i em-1
= {q+ Ti,j + glH Ti—l,j + ql+i-i Ti,j—ll bi,j x,y)
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qd

d+m-—i—j
_ q
=T m o T=T=

[i~ 131 1 [ =1~ ]

-+

qd+m—1

n
+ =i Ve e/ [ty ]

where d =ij — (i +j)(@m — 1 —i—j)/2. Thus

s . m-—-i'—j = m_j
[n-m+ 1) a] (x, y) =HE S S Jad b o Y)/[ i § }

and so

m _ [m] [m—-1]![n—-—m+ 1]!
a5 0oV = [T fm =T~ fnom+ 11 0al7 9 i 09

=B G, y)
since [m] g™™ = [n] — [n —m] . Thus completes the proof by induction.

Corollary Fori,j20, 0<i+j<n,

n 1

2.5 Neville-Aitken Algorithm

We also construct a Neville-Aitken algorithm for an interpolating polynomial on

the g-triangle of order n. For each m =1, 2, ... , n, the algorithm generates

polynomials f;: (x,¥):1,j=2 0,1+ j £n—m, which interpolate f(x, y) on T:"J s k120,

i+j<n-mrespectively. Here we have used the notation Tirg to mean the set of nodes

Ti‘:; = {([i+s],[j+1t]): s,t=0 and s+t<m}.



40

These are in the g-triangle bounded by the lines x =[i], y = [j] and the hyperbola
¥(x, y) =[m+1-+j].

Lemma 2.5 Let f?J % y)=fij, ,j20, i+j<n For m=1,2,..,n, we

define t‘;: x,y), 1,j 20, i+j<n-—m, recursively by
qHi [m] £} (x,y) = (m+i+j-vx ) ;7 &)
+ (¥ ) -y = [} 575 G )
+ gl (=) % Y) @.11)

Then flg (x, y) interpolates f(x, y) on TI"; ;

Lemma 2.5 is a special case of Lemma 2.6 which we state and prove below.

Note that the recurrence relation in (2.11) gives us an interpolating polynomial

5,00, ¥) which satisfies £ ; ([s], [t]) = fs¢, 0 <'s + t < n. However, as we will see,

this polynomial is not the same as P(x, y) in (2.8). We also see that there is an

asymmetry in the last two coefficients on the right side of (2.11). By modifying these

coefficients, we can derive a one-parameter family of polynomials f8 o (X, ¥) which

satisfy the above interpolating property.

Lemma 2.6 Let £i(x,y) =fij ,j20, i+j<n Form=1,2,...,n,we
define f;:;(x, ), 0 €1+ j < n—m, recursively by

qititm] £} (5, y) = {[m+i+j1 v I (x, y)
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+ =D {e =M1 - )y — D) fy7; (% ¥)
+ (- [Dla - (A~ - ~[D) §,] cy)  212)
where A is an arbitrary real number. Then t‘ij}(x, y) interpolates f(x, y) on T:',]J

Proof First we note that the coefficient of f{'}'l (x, y) in (2.12) may be expressed as

[m +i+j] —y(x, y) =g [m] - ¢ (x = [iD) - q' (y - [i]) + (A = &x — [y - GD -

This is easily verified and this alternative form makes the rest of this proof easier.

When A = 1, (2.12) simplifies to give (2.11), because

x-[D {d-A -y -[D}=&x-0D {1 -1 -y} =7x, y)—qiy-I[il .

The proof is by induction. Clearly the above result holds for m =0 where
f? i 0 <i+j<n, interpolates f at the single point ([i], [j]). Suppose that (2.12) holds
for some m — 1. Therefore the polynomials f?’}"l, fﬂ;lj and f:"J';Il interpolate f on
Tim’j"], T':_I}J and T:;';ll respectively, as shown in Figure 2.3 . For any integers i, j 2 0,
0 <i+j<n-m consider the function fg}(x, y) at the nodes

Tm—l

o= I UT™LOT™ ! = ((i+s),[j+1]),5t20,0<s+t<m] .

i+1, i,j+1
We now show that polynomial fi“:;(x, y) interpolates f on 'I‘:T; . First we see that
if the node ([h], (kD € T{ AT AT, then

i+1,j i,j+

£ (th), (kD) = €57 (Oh, (D) = £, (Ehl, (KD = fie

i+1,j ij+



42

and hence
qi*i [m] fi: ((h], (kD) = { g™ {[m]—[h—i] -[k-j] + (1 —q)[h—-il{k—j]}
+ qi*i [h—i]{1 - A1 - Lk ~j1}
+ gt [k-j1{1 -1 -1 -qlh-il}} fux

= qi‘*‘j [m] fh,k 5

We see also that on the three extreme points ([i], [j]), ({i + m}, [j]) and ({i), [j + m])

q* [m] £ (@i, ) = g [ml €57 @, [ = q* [m] £

and similarly

fij @ +ml. G1) = fiamy, and £ (@ G +mD = fijim -

([il, (j+m])

({i], fj+m-1])

Y (%, y) = [m-+i+j]

uuuuuu

.............

@, G+17) .. e ok TR s

1D s, i [4m-13, D (G+m), )

Figure 2.3
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To complete the proof we consider the rest of the nodes, which are on the
hyperbola y(x, y) = [m +1 + j] or one of the straight lines x = [i] and y = [j]. On the
hyperbola y(x, y) = [m +1i + j], at the nodes (fh], [k]) such thath<i+m,k <j +m,

we have

£L ([h), (kD) = £ (hl, KD = fi

i+1,j ij+

and thus
qi*i [m] £ ([h], KD = { q{[h~ i)~ A(1 — @[~ ){k  j1)
+ q*i{[k - j] - (1 -1 - rh - il[k —j1} Hpx
= qiti{[h~i] + [k —j] — (1 —q) [h—il[k — j1)fp &

= q*i [m] frx ,

where h, k20, h+k=m+i+j.
On the line x = [i], with j < k < j + m, we obtain
qi*i [m] £} (G, (kD) = { g3 {[m] - [k —j1} +q* [k —j1 } fic
= g [m] fix .
Similarly, on the line y = [j] withi<h <i+m,

f;‘j ((hl, [31) = fj -

Thus, by induction, the formula is true forallm, 0 <m<n.
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We note further that the recurrence relation (2.12) cannot be written in the form
g [m] £ (x,y) = ([m+i +J]-¥x, )} £ (%, )
. ) = . : o]
+ g =Dy + @ o -GD 5 &)

as we might expect, in seeking to generalize the case of q = 1. This is because, at the

. m-1 m-1 -1 .
points of T, AT N T’:\'] .1+ We would require

qi*d [m] £} ([ + 51, [j + 1) = (qH#¥ [m = s =] + g [s] + G [1]) figg jur

= g {[m] —[s + 1]+ [s] + [1]} firsjat »

which means

f?’; ([i+s],[j+t]) = [m] + (1 — g)[s]]t] "

[m] i+s,j+t
Thus we would require

[m]+ (1 —q)[s]t] _
[m]

and, unless ¢ =1, the above equality holds only fors =0 ort =0.

We note that f?) 0(x, y) in (2.12) and P(x, y) in (2.8) are two interpolating

polynomials on the same g-triangle of order n. Thus it is natural to ask, are these

polynomials identical 7 We know that the degree of P(x, y) is at most 2n. In fact some

of the Lagrange coefficients M?J (those for which i + j = n) are of degree precisely n.

Similarly the class of polynomials t“o oX, ¥) given by (2.12) are of degree at most 2n.

However none of the Neville-Aitken algorithms of the form (2.12) generate the
interpolating polynomial defined in (2.8). This is shown in the following counter

example.
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Example 2.2 Consider the two interpolating polynomials P(x, y) and ftl) o% ¥)

defined by (2.8) and (2.12) respectively on a g-triangle of order 1. From (2.8) we

have
P(x,y) = Mgo(x, y) foo+ My ot ¥) fio + Mg () fo1

= {1-'Y(X, y)} f0,0+ Xfl,() + yf(),] &

Now let us consider the recurrence relation (2.12). We have

000 V) =f00, £] % ¥) =f1 0 and £3,(x,y) =fo

and thus
f(l,'o(x, y) = (- ) fg,o(x, y) +x(1 -1 - qy} £ o ¥)

+y(1-(1 =N -@x} £ 1%, Y) .

Hence

P(x, y) —f g%, ¥) = (1=@){Mf10+(1-2) fo1}xy

which is identically zero only for q = 1. As a result the polynomial P(x, y) in (2.8) can

not be written in the form

- n—m-i

> 2 fayaifxy
=0 j=0

n-m

where a; i (x, y) is defined recursively in (2.9). For if m = (0 and m = n the above

expression reduces to
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n n-i

go Eo 100 ) M0, y) = Pl y) and £,4(x, )

respectively.

2.6 Generalised Neville-Aitken Algorithm

Having shown that none of the Neville-Aitken algorithms of the form (2.12)
generate the interpolating polynomial defined in (2.8), it is interesting to explore
whether there exists some other Neville-Aitken algorithm which génerates the

interpolating polynomial defined in (2.8).

Let J( y)=fi,j, where 1,j20 and i+j<n. Form=1, 2, ...,n, we define

f:: x,¥), 0 £i+j<n-m,recursively by

£ 00 y) = N y) + dliex ) 56 + ey 5] & y)

i+1,j Lj+1
(2.13)
where
m m m
¢ jx ¥} + dix,y) + e (xy) =1. (2.14)

We shall call (2.13) a generalised Neville-Aitken algorithm. It includes the

class of algorithms given in (2.12) as a special case. An examination of equations

(2.13) and (2.14) shows that

i) the three coefficients cannot be of the form
m _ [m+i+j]-v(X,¥) .m _(x-[D) .m _y-0D
Ci,j g p= qi*+i [m] ; diJ ¥ gi [m] ’ %, % y) = gl [m]
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which extends the case q = 1 in an obvious way,

(i)  if the degrees of cf; &, y), d'ir,'j (x, y) and eli],]j (x, y) are r, s and t respectively,

then the degree of f:} (X, y) is not greater than m . max{xr, s, t} .

We observe further that the recurrence relation (2.13) cannot give (2.8). For let P(x, y)
and f(l) of%; ¥) be the two interpolating polynomials on a g-triangle of order 1 defined by

(2.8) and (2.13) respectively. Following the argument used in Example 2.2, we see

that the polynomial

£,005 ¥) = €50 ) g o, ) + dg o0 ¥) £ 0%, ¥) + € %, ¥) £0, 1%, Y)

is equal to P(x, y) if and only if
c(l)’o(x, y)=1-vx,y), d(l)’o(x, y)=x and e(l),o(x, y) =Y.

o . 1 1 1
This contradicts the fact that CO,O(X’ y) + d0,0(x’ y) + CO,O(X’ y)=1,

The following example shows that, even if we relax the condition (2.14) so that

it holds only for points in T:'] and not for all x and y, we still cannot find a Neville-

Aitken algorithm of the form (2.13) which generates P(x, y) in (2.8).

Example 2.3 Consider the polynomial in (2.8) which interpolates f(x, y) on

2
the set TO,O’

PG, y) = 17 (21~ ¥(x, X1 ~¥(x, ) fo o + % x([2] — Y%, ¥)) f1 0

1 1 1
g YUl -y gy F Ry By #opysx-1) Bo+tqE Yy -Dioz.
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Suppose that the polynomial can be expressed in the form of (2.13) such that the
condition (2.14) holds on T(Z) o So for some coefficient functions c(z) 0(x, V), d% O(x, y)

and e% 0(x, y), wWe can write

P(x, ) = g 5% ¥) POO(X, ) + g o(x, ) PLO, y) + €§ o(x, ) POL(x, )
where

POO(x, y) = (1 —¥(x, y)) fo,o + x f1 0+ ¥ fo,1

1 1
P10, y) = q 21 =Y ) fio+ g x=D g +yfy,

1 1
PO1(x, y) = q (2] —y(x, y) fo1 +xfy 1 + q (y-1)fo2

are the interpolating polynomials on T(l) 0° TI1 o and T(l) | Tespectively. However on

comparing the coefficients of fy, fy o and fp,, we obtain
ot V)= 2 -W6 ), ot y)= pyx and o, y) = 31
0,0% ¥ = 12 nE Yap- 0T ] 0,0% ¥ = 27

on TE),O‘ This implies that on T%,O

c%’o(x, y) + d(Z),O(x, y) + e(z)’ o0& = [2] + E;}— QXy <

unless q = 1.

Now, given a generalised Neville-Aitken algorithm (2.13) which generates the

polynomial f'(; ol ¥) = P(x, y), say, we can always define the corresponding Lagrange

coefficients a?J(x, y) for B(x, y) as follows.

Let ago(x’Y)=1 and form=n-1,...,0 deﬁnea?}m, ,j20, i+j<n-m,

recursively by
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n—m+1 _ .m n—m m n—m
ai,j (x, Y) = ci,j(x$ Y) al,] (X, Y) + di__l’j(xa Y) al—l,j(x, Y)

m

i,j—l(x’ y)ar N (x,y) (2.15)

+ e )

where airg(x, y) = 0 if 1,j<0 or i+j>m. Then we shall see that P(x, y) can be

written in terms of both f‘ir}(x, y) and a‘i‘;m(x, y) for any m satisfying 0 Sm < n.

?,

Theorem 2.2 Let P(x, y) be the interpolating polynomial on a g-triangle of order

n generated by the generalised Neville-Aitken algorithm. Then, for m=0,1,...,n,

n-m n-—m-j
ﬁ(x, y) = Z 2 f?,‘j(x’ y) a:l’;m(x7 Y) ’
F0 =0

where ai“’}m(x, y) is defined recursively by (2.15).

Proof The formula is true for m = n since ag O(x, y)=1 and tno O(X, y), which we

have denoted by P(x, y), is the polynomial generated by (2.13) and interpolates f on

Tg o - Suppose the formula is true for some m > 0. Then using (2.13) we show that it

is also true for m — 1. First we see that

n-m n—-m-—j
P n-m
P(x’ Y) = z Z fli];lj(x, y) al,J (x, y)
j=0 i=0
n-m n—m-j . 1
Sz m n— m %
= jgo % R CY) flu (x,y) + d3(x, ) f'i'll,j(x, y)

+ elh0x y) 57 (9} af; "k, y)
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n—m n—m-j :
=X 2 ch y) A" ()
&0 i=0 k ’ >

n-m n-m-j+1 - - .
+ 2(:) hzll dh—-l,j(x’ y) ah:l,j(x’ y) f;:; (x, y)
= =

n-m+1 n-m-k+1

£ 2 X GuEnahe ey
= 1

where we have written h =1+ 1 and k =j + 1 in the last two double summations. Thus

n—-m+1 n-m-j+1

By = 2 X chxyale ey
=0 =0 ’ ’

n-m+1 n-m—j+1 0 " i
—-m Y
£ 2 2‘ A 06 ) g5, y)f‘,?d (x, y)
=0 h=0

n-m+1 n-m-k+1

Y Y ey alme ) ik y)
k=0 i=0

where the added terms in each double summation are all zero. This follows, since by

definition a{ J(x, y)=0 if i,j<0 or i+ j>r. Finally we obtain

n-m+1 n-m+1-j

Bix,y) = J_ZO 2 e ajeoy + dl ey alic )

- = |
+ ey ey TS y)

n—-m+1 n-m+1-j 1 ’
m-— n-m+
= 2 2 fli,j %, y) ai,j x,y) .
j=0 i=0

Therefore by induction the formula is true forall m=0, 1, ..., n.
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In particular, for m = 0, the interpolating polynomial in Theorem 2.2 reduces to
n
Px,y) = z z a (x,

n . s . . . . . ~
and thus ai,j(x’ y), 1,720, i+ j<n, are the Lagrange coefficients for P(x, y). Asa

special case, we note that the Lagrange coefficients for the interpolating polynomial

generated by the Neville-Aitken algorithm (2.12) can be obtained from the recurrence

relation
qi*i [m] ;™! G, y) = (Im+i+i1-vx ) A" (5, )
+ (x—[i- 1) {gl =M1 -q)y - [jD} & 13 i &9
+(y-[-1D{qi - A -1 - q)x - [i])} alJ 1 % ¥).
Hence
£ (x 0 _ o m n-m _
0,0 ¥) 8 (X, y) = Yy ¥ iy a5 (xy), foom=n-1,n-2,..,1,
=0 =0
n-—j
Z 2 fl,_]a (X, y)
=0 =0

where f o(x, y) is the interpolating polynomial on T(j , generated by the recurrence

relation (2.12).

Aok keokok
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Chapter 3

Newton formula and Lagrange coefficients for the
interpolating polynomial

3.1 Introduction

Let xg, X1, ..., Xy be n + 1 distinct points in [a, b]. From (1.5) we see that,

the Newton form of the polynomial that interpolates f(x) at xg, Xy, ..., Xp can be

written as
n i-1
P = ). Axg X1y e v [ 6-%0),
i=0 v=0

where f[xg, X1, ... , X;] is the divided difference defined by

f[Xl, X2 vee s Xi] —f[XO, Kis «ev s xi_l]

f[Xo, X1y 2o s Xi] = X; - xO

While the above is not the only notation for divided differences, it may be the one most

commonly used. Another notation uses [xg, X1, ... , X;]f in place of the previous
notation f[xg, Xy, ..., xj] and this is more suitable for extending divided differences to
two dimensions. We shall modify the notation of one-dimensional divided differences

to suit a scheme for a higher dimension, using suffices to denote divided differences
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with respect to x and y respectively.

Let f(x, y) be a function defined on some region containing the set of distinct
points S = {(x;, y)):1,j 20,1+ j<n}. Note that, if we choose Xg <x; <... <X
and yp<yj <...<yp these points will lie in a triangular formation. In the first
section however, we will derive a two-dimensional Newton's formula for f(x, y)
without imposing such a restriction . In section two, we discuss the error of the above
interpolating polynomial. We will also study the Newton form of the interpolating
polynomial when the nodes are arranged in particular ways. Specifically, we consider
the following three systems of nodes in triangular formation. If x; and y; are chosen to
be equally spaced on the X and Y axes respectively, we will show that the Newton's
formula reduces to the forward difference formula. In another case, we will let x; and
y; be two different ¢-integers on the X and Y axes respectively and derive the forward
difference formula on a g-triangle. As a comparison, we also will include the system of
nodes on a triangle considered by Lee and Phillips [13]. We find that the Newton's

formula simplifies to give the backward difference formula.

In the last section, we answer the question raised in Chapter 2. We will prove
that there is a Lagrange form of an interpolating polynomial of degree lower than 2n,

(in fact of degree at most n) on the g-triangle of order n. We also study the properties of

the Lagrange coefficients L?j(x, y)=0,n=2,3,4,5 for general values of q. In this

case a significant property of the Lagrange coefficients has been found: each L;' j

contains i + j linear factors and the remaining factor is a transformation of the function

D
LO ‘0 .

3.2 Two-dimensional Newton interpolation formula

Let xg, X, ... » Xy be any n + 1 distinct points. Then for a fixed value of y,
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we denote x-divided differences by
[xgly £(, ¥) = f(xq, y)

and

[XO’ Kis eev s xll]x f(" Y)

_ [xlr X3 e s xn]x f(‘, y) o [XO, X1y oor s xn_l]x f(°, Y)
- Xp — X0

Similarly let yg, ¥1, ... » Ym be any m -+ 1 distinct points. Then for a fixed x, we

denote y-divided differences by

[yoly f(x, -) = f(x, yo)

and

[50, Y1» -+ » Ymly £, )

[y]y Y25 --0 ym]y f(X, ') o [yO’ Y1s «ov o ym—l]y f(X, ‘)
Ym — Y0

We define, in an obvious way, the mixed divided difference

[}’0, YI, s g ym]y[XO? xly oy | xn]x f = [yos vos iy )’m]y ([XO’ e ¥ xn]x f('a Y)) .

Since the extended form of formula (1.6) gives

n
f(x;,
[XO, X1s eev s xn}x f('? )’) = 2 n (XI y) = ¢n(Y)y
i=0 H (X - X)
&

say, then
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. = & q)n()’i)
{yo’ )’1, eve 3 ym]y ( l.x0$ X], LA S EE ] xn]x f('v }’) ) - 20 m
" E_[O (¥j ~ ¥i)

k#j

and thus

f(Xi, YJ)

m
[¥o: Y15 5455 ym]y [xgs X15 -ee s Xl £ = 2

n

. m n
e IT &y - vo IT (i = %0
= =

From this, the following result is obvious.
Lemma 3.1 Mixed divided differences commute, that is,
[yo: ¥1s o<e» ym]y IXGs Xisoveo Xply £ 7= [X0sEncner s Bale [0 Viocens 5 ym]y :
Now let us extend the one-dimensional Newton interpolation formula to two

dimensions, using the method of D. D. Stancu [24]. For any fixed y, f(x, y) may be

regarded as a function of the single variable x. Apply (1.8), the one-dimensional

Newton formula with remainder to (-, y) at the nodes x =x;,i=0,1,...,n, to give

n i-1
05, 3) =Y, [Xg, Xin oo » il 8690 T ] (-my)
i=0 v=0
n
+ [X, Xgs ove » Xpdy £C, 9) TT x—%y) . 3.1)

v=0

Apply the Newton formula once again to the function

Aiy) = [x0. X155 Xily £G4 Y)
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atthenodesy =y;j, j=0,1,...,n—1i to give

n—i -1
Ay) = go [¥0: Y15 -+ » ¥jly [X0s X1s oo Xily £ h &y -y) + Ri(y) (3.2)
j v=0

where
n—i

Ri) = 1% Y0, -+ » Yncily X0 X1 o n xil £ [T 0 = 30)
v=0

Substitute (3.2) into (3.1) to obtain

n—i j—1 i-1
f(x,y) = 2 {3 o - Yily [x0s -5 Xilx £ i_[ o-y) + R x-xy
i=0 j=0 v=0 v=0

n
+ [X, Xgy oo 5 Xply TG, Y) H (x —xy) .
v=0

We will write this as
f(x,y) = Pp(x,y) + R(x,y)

where

n n—i
P, ) = 2 { 2 [y0s v s ¥jly [Xow oo s Xil4 £ h(y ) ) H(x—xv)

i=0 =0

and

n i-1 n
R, y) = 2 R;(y) H x—-xy) + [X,X0, ..., Xply £, ¥) H x-xy). (3.3)
i=0 v=0 v=0

We note that each of the terms

i—-1
Ri(y) [T x - xy)
v=0
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is zero when X =Xg, X1, ... , Xj_j OF Y0, ¥1» -+ » ¥n-i» Which includes all points in the

set S8 = {(x, yg): 1,820, r+s<n}. Also the term

n
[X, X0s -+ » Xl G, ) [T (x = xy)

v=0

is zero at all points of S. Thus R(x, y) is zero at all points in the set S and so we have

shown the following.

Lemma 3.2 Let xq, Xy, ... , X, be distinct and let yg, y1, ... , yn be distinct.
Then
n n-i i-1 j—1
PaC,y) = 2, 2, [x0s oo Xily [yoo oo ¥ily £ ] = xy) To-w. 6o
i=0 j=0 v=0 v=0

interpolates f(x, y) at all points in the set {(xj, yp:1,j20,1+j<n}.

3.3 The error in polynomial interpolation

Let P,, be the set of one variable polynomials of degree at most n. The

following lemmas show how divided difference operators reduce the degree of a

polynomial.

Lemma 3.3 If P(x) e Py, then [x, xq, ..., X JP(X) € Pp 1

where 0<k<n-1 and xg, Xy,..., Xk are any k + 1 distinct real numbers.

Proof The proof is by induction on k. It is easily verified that the statement is

true for k = 0. Assume that the divided difference [x, xq, ... , Xg_1JP(x) is a

polynomial of degree n —k, for any k =2 1. Then



58

[X, XQs +o0s X1 1P(X) — [Xgs X1, oovo X JP(X)
X — Xk !

[x, Xg, ovoy X JP(X) =
Since [xg, Xy, ..., Xx]P(x) is a constant, the numerator is a polynomial of degree n -k
and is zero when x = xi. Hence (x —xg) is a factor of the numerator. This implies
that [x, xg, ..., Xg]P(x) is of degree n —k — 1. Hence the statement is true for all

0<k<n-1.
Lemma 3.4 If P(x) e Py, then [x, Xg, ..., xa]P(x) = 0.

Proof Taking k = n — 1 in Lemma 3.3 we see that [x, X, ..., Xp-11P(x) € Py
and so is independent of x and has the value [xy, Xq, ..., Xp_1]/P(x), say, on putting

X = Xp. Thus we have,

[X, Xps vois X1 IP(X) — [Rgs Kysoo0s X JPLX)

B o i BalP(X) = = ().

Now we will verify that if f(x, y) is in ¥, the set of all polynomials of degree
at most n in x and y, then the error R(x, y), defined above, is identically zero.
Consider the repeated divided difference of (3.3),

[y, )’0, seey yn-—-i]y [ [xO’ X], resy xi]x f('» Y) }'
We may write any f(x, y) € ®, in the form

f(x,y) = ap(y) +a,_1(y) x + ag_(y) X2 + ...+ ag(y) x1,

where a;(y) is a polynomial in y only, of degree < j. Then, for a fixed value of y,
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n
[XO, X1 eees xi]x { Z an—j(Y) xj }
=0

[XO: X1s voes xi]x f('a Y)

n

>, an_j(y) [X0» X1, +oos Xily xl
=0

Since [Xg, X1, ... Xjl, X} = 0 if j <i, we have

n
[XQy X1 +os Xily £C, Y) = 2 an_i(y) [X0s X1, ..0r Xi]y %I
At

Thus [xg, X1, ..., Xl f(:, y) is a polynomial in the variable y only, of degree not

greater than n —i and so

[ys Yo, +-e» yn—l]y { [XO, X1s eves xi]x f(" y) } = 0.

It follows that
n i-1 n—i
2 19 Y0, o5 Yacily (X0 X1, o xi1, £ ) [T k= x0) TT v —yw) =0.
i=0 v=0 v=0

Since the remaining error term in (3.3),

n
[X, X@s +o05 Xl £G4 ¥) H x - xy)

v=0

is also zero, we deduce that f(x, y) € ¥, implies R(x,y) = 0.

It will also be convenient to express the error (3.3) in terms of partial
k+1

axk+l

derivatives of f(x, y). We know from (1.9) that if f(x, y), exists then for any y
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1 ak+1
[X; Xgs < xk] f(,y) = (k+1)' 3% Seul, (é Y) (3.5)

where & lies between the minimum and maximum values of x, xg, ..., Xx. A similar
k+1
; = f(x, y). Suppose that f(x, y) possess all partial derivatives up to
y

result holds for

order n + 1. Apply (3.5) repeatedly to the mixed divided differences in R(x, y), to give
[y» Y05 ++ s yn—i]y { [an Xis cves xi]x f(': Y) }
1
= [y, Yoo ++0» yn—i]y i gf(ﬁ.-i’ ¥)

on+l 1
axl ayn—l+1 (n -1+ 1)!1! (€ M),

say, where &; and 1; lie between the minimum and maximum values of xg, ..., x; and

¥, Y0s -++» Yn—i respectively. Hence the error of (3.3) becomes

n 1 an+l
R(x,y) = v];_!)(x_xv) (IH-l)' 5 R nal (E,- y)

n-i n+1

+Z il (n_1+1)tn(x‘xv)n(y W) S e la =

£f(&; My)

where  lies between the minimum and maximum values of x, xg, ..., X; . Note that

in the above error term, each 1; depends on y. From this form of the error of

interpolation it is easy to see that R(x, y) = 0 whenever f(x, y) € ®,,, as we verified

above from the divided difference form of the error.

We may deduce from the error property discussed above that the polynomial

Pp(x, y) in (3.4) is unique. Suppose there is another polynomial P*(x, y) € ®,, which
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agrees with f(x, y) at {([i], [j1):1,j =2 0,1+ j £ n}. Then Py(x, y) is an interpolating
polynomial for P*(x, y) on this set of points. Since P*(x, y) € ®, the error R(x, y) is

identically zero and thus P*(x, y) = Py(x, y).

3.4 Newton formula on a triangle with equally spaced nodes

The Newton form of the polynomial Py(x, y) in Lemma 3.2 can be simplified
further if the nodes are arranged in particular ways. First let x; and y; be equally spaced
so that x; =xp+1ih, h>0, 0<i<n, andyj=y0+jk, k>0, 0<j<n. Fora fixed

value of y, let the forward difference operator in the x-direction be defined by

Ax f(X, y) = f(x + h’ }') - f(X, Y)-

Then we have from Lemma 1.3 that

1 .
(X0, X35 e s Xily £ ¥) = =y A f(xq, y) .

Similarly for a fixed value of x we have

1 s
[y()’ yl’ e y_]]y f(x" ') = —I(T__]-T AJy f(X, yO)

where Ay f(x, y) = f(x, y + k) — f(x, y) is the forward difference operator in the y-

direction. The mixed divided differences simplify to give
1 .
[X0s X15 +ov s Xily [¥0s Y10 05 Wiy £ = [X0 Xq, o0y Xl I{J-—J,-!-A“;, f(x, yo)

1

S S BN
“hid g xty ey

Given a function f(x, y) then, from Lemma 3.2, the Newton form of the

interpolating polynomial on S = {(xq + ih, yg + jk): 1,j 2 0, i+ j <n} can be written as
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n n-i i-1
posp s TS n<x-xv>h<y W

AL A f(xg, o) -
i=0 70 v=0 higd g1 Cx Ay f&oyo)

On putting x = Xq + sh and y = y( + tk, we obtain

i-1
I] x-xp)=hisGs—1)...s-i+1)

v=0

i-1 ,
[Mo-yw=Kte-1..t-j+1)
v=0

and therefore
n n-i
Pa(xo +sh,yo+1k) = 3. > ($) (J‘) AL & £(xo, y0) - (3.6)
i=0 j=0

Thus for the triangular grid defined above, where the spacing of points in the x and y-
directions is not necessarily the same, the Newton interpolation formula (3.4) reduces

to the forward difference formula (3.6).

3.5 Newton interpolation formula on a g-triangle

In this section we consider set of points S = {(x;, yy):1,j 2 0,1 +j <n}, where

; - : 1-gl
Xp=llp=1_—p dnd yj=D]q=T_—:%’ (3.7

and p, q > 0. Now for a fixed y define the forward difference operator in the x-

direction by

O 1({ilp, y) = f(lilp )
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O ([l y) = DV LG+ 1 y) — p1 OV (i y),  n=1,2,...

Similarly, for a fixed value of x, we define the forward difference operator in the y-

direction by
O £x, ljl) = £(x, [ily)

OF f(x, [l = &‘);1“1 f(x, [j + 11g) — g1 9;“1 fx, [l m=12,....

On taking divided differences in the x-direction we obtain, for a given value of y,

(0], £C,y) = £[01, ),

and
(01, (11, ..., G, £C» y)

_ o2, .l £C, ) = [0, - 1] G y)
- [, - [0], ’

fori=1,2,...,n.

Above, we have written the notation [[0], (1], ..., [il]x where strictly we should have

written [[0]p, (Mg s eee s [i]p]x . The omission of the subscript p should cause no

confusion. We obtain similar results on taking divided differences in the y-direction.
We now show how divided differences are related to forward differences.
Lemma 3.5 For a fixed value of y

1
[n]pg pin+(-1)n/2

(G, G+ 10, li+0]] fC,y) = D7 (il y) .
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Proof The proof is by induction on n and the case n = 0 is trivial. Suppose it is true

forn=k=20. Then forn=k + 1 we have
(G, G+10, ..., i+ k+ 1), £C, y)

[i+10,+2],.. Gi+k+ 1], £C,y) - [0l i+ 11, ..., [+ k1], £C-, y)
= [i+k+1]p-[ilp

. q ( O £([i + 11, ¥) X ([ilp, y) |
T opifk+ 1], - [klp! pU+Dke(-DK2 ]t pik+Ge-Di/2 © °

Thus

(G 6+ 1), G+k+11], £, y)

1
Tk + 115! pit(i+ Dk+(k-1)k/2

(O (01 + 13, y) - p* O (1,0 )

1
- [k + ”p! pilk+1)+k(k+1)/2

O (il y) -

Following the same argument as above we obtain for a fixed x that

1
[m]q! qjm+(m~1)m/2

(G G+10, ..., [ +m]] £x, ) = T f(x, [ilg).

In particular we have

£ £([01,, y)

(o1, (11, ..., 1], £C y) = W

and
HT f(x, [0]y)
[m]ql q(m—l)m/2 ’

L1036 17 s & [m]]y flx, <) =

Thus, for mixed divided differences, we obtain
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1
[ilp! p-1)i/2 lilg! qU-Dir2

[0, .., ], [1on, ..., Gl £ = 9, DY £([0}p, [0]y) -

(3.8)

We can now express the polynomial P(x, y) in terms of forward differences.

We have from (3.4) that
n n-i i-1 j—1
Pox,y) =D, 2, I'[(x-[v]p)h(y—[v]q) (o3, (11, ..., titl, [ro3, 0, ..., cill,, £
i=0 j=0 v=0 v=0
(3.9)
Let X, ye R satisfy x=[X], and y =[¥];. Then we may write
n n-i i-1 -1 r=
[X —v] [y-v] i g
Pu(x,y) = = s ——A & O 1]0][0)y .
0 ¥ %E{,g[vn]pg[vu]q A
Thus
R SNEINE 191 f(10],, [0 3.10
Pn<x,y)—i§(”);0 [i]p[j]qu J £(01,, [0]q) (3.10)

When p = q we note that (3.10) reduces to Theorem 2.1 .

3.6 Newton formula on another set of nodes

In the above discussion we gave two-dimensional Newton's formula for
interpolating f on the set {(x;, ypi i j20,1+j<n}. Let us write this formula for
interpolation on the set S' = {(x;, yg): 0 <r<s<n}. We therefore consider the set S
= {(x; Yn—j)* i,j 20,1+ j<n} where we kept the order of {xg, ... , Xy} and reversed
the order of {yq, ¥1, ... , ¥Yn} to give {¥n, Yn-1, --- » Yo}. Then the restrictioni+j<n

becomes i+ (n—j)<n, thatisi<jand S is changed to S'. Thus (3.4) becomes
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n n—i

Pn(x$ Y) = 2 Z [XO, X], AR | xi]x [Yna Yn—-la LS AE | Yn—j]y f
i=0  j=0

i-1 i-1
X U() (X 2 xv) i_,[ (y = Yn..v) . (3.1 1)
V=

v=0

We now consider (3.11) for the case where x; = [i]p, yj = [i]q, as defined in

(3.7) above. We need to simplify the divided differences in the y-direction, as follows.
We have
(1], £(x, ) = f(x, [nlg)

and

[, =11, ... ,[n—klly f(x, -)

~ [(nl,n-1],...,[n-k - 1]]y f(x, ) = [In -1}, (n =21, ... s [n -k]]y f(x, +)
a [n]g — [n-klq '

It is helpful to define
0 . ;
B fx, [j]y) = £0x, 1]y

m N m-1 . m-1 : —
By fx, 0 = a B [l) - 9" B fx, -1, m=12,...,n

We will called these backward difference operators and we now examine their relation

to divided differences.

Lemma 3.6 Fork=0,1,2,...,n

1
[k]q! qnk-k(k-1)/2

[).n-11,...,In- k]]y f(x, ) = ’631; f(x, [n]g). (3.12)
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Proof Clearly (3.12) holds for k = 0. Suppose that (3.12) is true for any k = 0.
Then

[m),m-1],...,(n-k- 1]]y f(x, *)

Lol fa = 35 e 5 [ = k]]y 1%, ) — [la—=13, In~ 23, w0 s o= Jo= 1]]y %, 3
[nlg—[n-k-1]4

k k
_ 1 ( By fx, [nlg) By £(x, [n - 1]g) }
[k + 115 qo-k-1 © [K] ! glo-kGe-1)2 - k] f glo-1)-Kk-1)2

—= 1 k k+1 mk
- [k i l]q' ql'l—-k-l'kl‘l—k(k-—l)/Z {q “y f(xy [n]q) -q 7 ny f(X, [l’l Pt l]q)}

1
" [k + 1]t q+Dn-k(k+1)/2

B £, [nlg) -

Thus by induction (3.12) holds for all k=0, 1, ... , n. In particular, if we take k =n,

1

(), 11, ..., fony £, +) = “—[n]q! qnn1)72

By £(x, [n]g) .

On defining X, ¥ € R sothatx = [X]p and y = [y +nl,, the Newton interpolation

formula (3.11) for f(x, y)on S = {([i]p, [i]q): 0 <i<j<n} can be written as

n n-i

Patoy) = 2, 2 [ionm, ...l () -1, -]
i=0 =0
i-1 j—1
X pY [x-V], h qV [y +Vlg. (3.13)
v=0 v=0

Using Lemmas 3.5 and 3.6, we have
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o} B! £(101,, [n]y)
lilp! pU-D2 [j]ot qin-G-1i/2

[0y, (1, ..., )y [whtn-11, ..., in-j0] £=
and thus (3.13) simplifies to give

n n-i

s 4 y+j-1 imi
ik ) = 3, Jgo [i]p[ ] ]q L B £101,, ()

We see that finally the polynomial is expressed in terms of mixed differences at the

point ([0], [n]g).

Alternatively, let us redefine the backward difference operators in a similar way

to the forward difference operators so that, for a fixed x,
0 cR .
ny f(x: [J]q) o f(x’ []]q) £l

BY f(x, [ilg) = By fx, [ilg) — @™ B, [~ 11, m=1,2,...,n.

Then, by following the same argument as above, we obtain

1
[k]q! an—k(k+l)/2

_ k
(), m-11, ..., -k, £x, ) = B f(x, [n]g),

k=0,1,2,...,n Thus we obtain the interpolating polynomial in the form

n n-i

= 1Y a(=29+j+1)j2 | X y i mi o
P(x, Y) ;0 j2=,0( 1)) q(-25++Dj [i]p[j]qi)x B £[01,, [nlg)

where X,y € IR, such that x = [X];, and y = [n ~ ], . The simplification of the
definition of the backward differences is offset by an increase in the complication of the

latter formula.

2 pamSE
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3.7 Lagrange coefficients for the interpolating polynomial

Let f(x, y) be defined on the g-triangle bounded by the lines x =0, y = 0 and
the hyperbola y(x,y) = x+y—(1 —q)xy = [n]. We see from Theorem 2.1 that

there is an interpolating polynomial P,(x, y) of degree at most n which interpolates

f(x, y) on the set S = {([i], [j1):1,j=2 0,1+ j <n} and

n n-

Py(x,y) = 3. Z [ ][ﬂ sbj(f)jy fo,0 (3.14)

i=0 j=0

where %,§ € R such that x =X}, y = [§]. Let us rewrite the polynomial P,(x, y) in

the Lagrangian form

Pux,y) = Z 2 le(x’ y) fi
i=0 j=0

where

if ([k], [m

D=
L jUKL [m]) = {o if ([k], [m]) = EE

I—.J\—J

From (1.13) and (1.14) we know that L?J(x, y) is a product of n linear forms when

q = 1. Thus it is interesting to explore the properties of Lin J(x, y) for general values of

q. For the simplest case n = 1, we can write

1

1-i
Pi(x,y) = (1-x=y)foo+xflo+yfor = D, 2, L,J(x y) i
i=0 j=0

In this case each Lagrange coefficient Lil j(x, y), 0 €1+ j <1, is linear and is

independent of q.
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Figure 3.2

q=0.7

Graphs of Lg,o(x, y)=0 where (0 <q<1) q=02and q=07
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The interpolating of degree two can be written as

Py(x,y) =Pi(x,y) + Bl{i—-l—li)z fo.0 + [X][ylfJ o! yfo0 + ll‘v“-—92 f0,0

[2]! [2]!
1 -1
={1-x- Y+J['2']T‘“) + Xy +1%]*,—} foo +x(1-y - xq ) f1,0
-1 -1 -1
+ y(1-x ——qL) fo,1 + L(q’bT) fpp + xyfy; + %ﬁ‘) fo.2
2 2-i
-22 LY ) fij -
i=0 j=0

All of the Lagrange coefficients are products of two linear forms except Lg o ¥). In
Figures 3.1 and 3.2 we plot the graphs of L(z) O(x, y) =0 for various values of q.
Lemma 3.7 Let

L(2),0(x,y)=l—x—y+—)%]:!-l~)~+xy+-ﬁ[z—2]7!—1—)

be the Lagrange coefficient of fp( of the interpolating polynomial on the set
= {(i}, GD: 1,j=20,1+j <2} and let us consider the conic L(Z] 0(x, y) =0. We find

that
(1) if q =1, this conic is the pair of straight lines x+y=2and x+y=1,
(1) if 0 <q < 1, itis an ellipse with axes x=y and x+y = §(2++q) g
i 4 il 4 : 22+q)
(iii) if g > 1, it is a hyperbola with axes x =y and x+y = T4q
Proof Setting the coefficient L(z) 0%, ¥) to zero, we have

X2+y2+(1+qQxy-Q2+qx —2+qQy+(1+q) =0
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On reducing this conic to standard form, we obtain

4 +20\2 1-— 2
i =3 0" STtk = T

On examining the last equation, we see that the conic L(z) o(X; ¥) = 0 is indeed a pair of

straight lines, an ellipse or a hyperbola for q=1,0 <q < 1 or q > 1 respectively, as

given in the statement of this lemma.

For P3(x, y), we have

- 1 - 2 o |
P, y) =By, yy + BIR=UIE =21 03 BIK=11I9) gzt
[XI[y1Ey — 13 5 [Y][y = 1]y — 2] 3¢
T ) I A Bl Dy
3 3- 3
- gggg)Lhﬁx,y)ﬂJ.
Since L (x y) = ii(y’ x) we will not write down all ten Lagrange coefficients

Li J-(x, y), but only the six for whichi2j. We have

=] ~1 - D(x-[2
L?),O(x’ B = L-x~y +1%Tr*) + Xy + Y([Yz]! ) _ xx [%gf [21)
_x(x=Dy  xy(y-=1) _ yly=D(y-[2])
[2}! [2]! 3 ,
13 ) o iy Bk o DG - QY =Ty STy,

q q2 [2]! q [2]!

3 x(x-1) - {2]
LZ,O(X’ y) = q[Z]l {1- T

-yh
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x—1 -1
L:is,l(x’ Y) = x}'{l" q - yq }a

x(x - D& - [2])
q3 [3]!

-1
13 ot y) = and L} (xy)= 2ES20

We observe that the functions Lij(x, y), 2 <1+ j <3, are all products of three

linear forms, whereas for q # 1, L'J; 0(x, y) and Lg 1(x, y) are both products of one

linear form and one conic (ellipse or hyperbola). Making the substitution x = 1 +gX
and y=Y in L? 0(x, y), we obtain

X(X-1)
[2]!

Y(Y-1)

L3 g% y) =(1 +qX) {1 =X =Y + Sl

+ XY +

We deduce from Lemma 3.7 that the quadratic factor in coefficient L? 0%, ¥) is

elliptical if 0 < q < 1 and is hyperbolic if q > 1.

The remaining coefficient Lg o(X, y) has no obvious factor. However, on
examining the graph of Lg olX, y) = 0 for various values of q (see Figures 3.3 to 3.6),

Lg 0(x, y) appears to have a linear factor for the value of ¢ for which the points ([3], 0),
(0, [3]) and ([1], [1]) lie in a straight line. This occurs when ([1], [1]) lies on the line

X +y=[3] and hence [3] =2, giving q= (V5 -1)/2. Wecan obviously construct a

conic to pass through the remaining six interpolating points and so Lg of%; y) does

factorize for q = (V5 — 1)/2. To complete the details we state a lemma which is readily

verified.

Lemma 3.8 If a and b are distinct non-zero real numbers, the conic
x2+y2+xy—(a+b)(x+y)+ab=0
passes through the six points (a, 0), (b, 0), (a, b) and (0,a), (0, b), (b, ). This conic

is an ellipse, which may be written as

(x+y—%(a+b))2+%(x—y)2=g(a2—ab+b2).




Graph of Lg,o(x, y) =0 where q=0.61

Figure 3.
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Graph of Lg o% y) = 0 where q=0.62

75

Graph of Lg 0%, y) =0 where q=0.63

Figure 3.4
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Graph of LS o(%, ¥) =0 where q=0.80

Graph of Lg 0%, ¥) =0 where q=0.95

Figure 3.5
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Graph of Lj o(x,y) =0 where q = 1.05

Graph of L ,(x,y) =0 where q=2.00

Figure 3.6
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Let us apply Lemma 3.8 to the case where a =[1] and b = [2]. It follows that

Lg’o(x, y=Kx+y ~ 2)(x2 + y2 +Xy-Q+Ex+y) +(1+q)

for q= (JS (il 1)/2, and the condition L?) 0(0, 0) =1 giV@S the value K = (1 o] 'JS)/‘L

Note that the ellipse which is part of the graph of Lg o(%; ¥) =0 has its centre at

3+45 3 ++5 ik SN LT o d 3 5 2
( 6 6 ) and has semi-major axis J3 and semi-minor axis 3 .

Having shown that there is one value of q for which Lg o(x, ¥) factorizes, we

have looked at Lg 0% ¥; @ =0 and Lg o, ¥; @) =0, but have found no value of q

for which either of these Lagrange coefficients factorizes. (See Appendix 3.)

In (2.8) we obtained a Lagfange form of an interpolating polynomial on the g-
triangle where the Lagrange coefficients have degrees between n and 2n. We now
obtain the interpolating polynomial on the g-triangle of smallest possible degree, where

each Lagrangian coefficient is of degree at most n.

Theorem 3.1 Let us rewrite the interpolating polynomial (3.14) in the
Lagrange form
n n-i
Pk, y) = D, 9, L‘i‘j(x, y) fis:
=0 0

Then fori, j =20, 0 1+ j <n, the Lagrange coefficients may be expressed in the form

5 n—j n-r - S " = s B
L x, y) = vy (_1)r+s-1-1[ : ] [ j ] [:] [Z} QEDED2 + ()12,

=i s=j
(3.15)

where x =[], y = [§] for some X, ¥ in R.



79
Proof First we expand the forward differences in (3.14) to give (see Lemma 2.3)

n n-r T S

Pax, =2, 2, | X] [g] X 5 (_1)a+3[;] [E] GO +BE-D2 ¢ o

=0 s=0 0=0 p=0

On putting L =1 — o, vV = s — B we obtain

=5 S5 e L] e

whered=(r—-p)r—pn—-1)/2+ (s—Vv)(s—v—1)/2. Thus

sy = 3 8 3 S o LT[ o

On picking out the coefficients of f; ; , for fixed values of i and j, we obtain

n n-r

LA, y) = Z‘o go (_1yr+s-ic] [ r ] [ JS :| [X] Z] QEDGE-1)2 + (55112

-
Since [ﬂ: 0 if 0<r<i and similarly [j = 0 if 0<s <j, we obtain the

required result (3.15).

We now verify directly that
1 if ([k], [m]) = ([}, (i) . . 5 s
LD = {0 ir (k) tmly = (1, 01y B120.0Si+isn.
We have

n—j n-r

L@, D=2, X, D q<f-i><f-i-1>/2[ 5 ] [ ;} (~1)s q<s-i><H'-1>/2[ j’ ] [g ] ,

r=i S=j
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Since

IR

forr =1iand s = j and is zero otherwise, it follows that L? ,j([i]’ D=1. Fork, m=0,

k + m < n and ([k], [m]) = ([i], [j]), we have

Li}([k], [m) =§ nf (~1yr-i q(f-i><r-i-1>/2[ : ] [ k ] (~1)s-] q(sf—j)(S-j—l)/Z[ ! ] [ i ] ,
=i s=j

m

o

Since |:ll(]= 0 forr>k and [ ]= 0 for s > m, we have

I{j([k], [m]) = Ek: -1y q(H)(r—i—l)lz[ ﬁ ] [ k ]

r T
=i

m
i 3 y S m
X z (~1)8-3 q(s-D)(s-j-1)/2 [ : ] [ S ] (3.16)
s=j
fork>iand m=>j, and L{"j({k], [m]) = O otherwise. Writing t = s — j in the second
sum on right hand side of (3.16), we obtain

LS - m-j .
Y nrqedeon[ it m b [m] S cpqenn] ™o
t=0 J J .

From Lemma 2.1 we see that this last summation is zero. (Similarly we note that the
first sum in (3.16) is also zero.) Thus L;'j([k], [m])=0 fork, m=20,k+m<n and

([k], [m]) = ([il, [jD.

For a fixed value of n, there are (n ; 2) Lagrange coefficients L;' J(x, y) for

i, j2 0,1+ j < n. However the following theorem shows that each Lagrange

coefficient L;:j contains i + j linear factors. The remaining factor is a transformation of
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the function Lg'gj . Since the coefficients Lg o(X, y) are of such importance, we will

write them down explicitly. We have

n n-r

Lo, Y)=§ ?::0 (-1)r+s qd [’r‘] [g] (3.17)

where 2d =r(r — 1) + s(s — 1).

Theorem 3.2 Let L?j(x, y) be the Lagrange coefficient of f; J where i,j 2 0,

i+j<n. Then

e = [3][3] o

where x=[X], y=[y¥] and X=[x-1], Y =[y—]j].

Proof In (3.15) forr =i we write

and, for s = |,

Thus we may rewrite (3.15) in the form

n—j n-r

e =[F][1] 2 2 o 22{][3 2]

=i $=j

where 2d=(r—-i)@—i-1) + (s—-j)(s—j—1). Wenow write X =[x —i} = [X],
Y =[§-jl=[Y] and g =1 -1, v= s—j, 1o give
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e =[]

—tey

n—i—j n-i—j-y % ?] 4
1> (‘”W[u”v q

n=0 v=0
where 2d = p(u — 1) + v(v — 1). On comparison with (3.17) we obtain
iy = [¥][1] iiewn.

As a consequence of Theorem 3.2, we see that the curve L;‘ j(x, y) = 0 consists
of the straight lines
x=[u], 0spu<i-1,
y=[v], 0sv<j-1,

together with the curve Lg’_(;_j(X,Y) =0, where X = q"i x-[D, Y= q_j vy - [GD.

This result implies that in order to be able to write down all Lagrange coefficients of the
form L;'J.(x, y), for a fixed value of n, we need only concern ourselves with the (non-

linear) coefficients L(')no(x, y),for2<m<n.

stk e s ok



83

Chapter 4

On the limit of the interpolating polynomial

4.1 Introduction

Let f(x,y) be a function defined on some region containing the set of distinct

nodes S = {([r]p, [s]q): 0<r+s<n, r,s20}, p,q>0. We will assume that f(x, y)
possesses partial derivatives of appropriate order at (1, 0), (0, 1) and (1, 1). We know
from (3.10) that the Newton form of the interpolating polynomial at the nodes of S can

be written as

Py =% 3 [’;‘]p H Y @1

where x = [X] P and y = [5']q . fweletptendtoO, [0]p converges to zero and the other

distinct numbers [1] P [n]p all converge to 1. Hence for r = 1 the expression

—1
ez [x] - x-[Hlp
d [f]p ul;% W+ 11,

simply reduces to x(x — 1)*~1 as p tends to 0.
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In this chapter we show that the polynomial P,(x, y) has a limit when both

p—0 and g—0. This task depends on the simplification of the limit of the expression

' foo/ p@e-1)/2) | To simplify our notation we will write

Qux,y) = 1111)“0 (}E)n() Pyx, y)

provided this repeated limits exists. Then we will study the interpolation properties

satisfied by the polynomial Q,(x, y). We will verify that these properties depend on the

appropriate partial derivatives of f(x, y) evaluated at the three points (1, 0), (0, 1) and

(1, 1). In the last section we show that Q,(x, y) can also be derived as a limiting form

of the interpolating polynomial on a simpler system of nodes.

4.2 Note on taking the limit of the g-forward differences directly

First we consider the polynomial Py(x, y) which interpolates f(x, y) at the three

nodes (0, 0), (0, 1) and (1, 0),
Pix,y) = (1 -x-y)fpo+xfipo+yfps-

Since P;(x, y) is independent of p and q there are no difficulties in taking the limit as

p—0 and g—0. Note that, in the rest of this chapter, we may drop the subscripts p and
g. Thus [k] will mean [k], when it is associated with the variable x and [klq when

associated with the variable y. In particular we may write the ordered pair ([ulps [Vl

simply as ([, [V]).

Let Py(x, y) be the interpolating polynomial of degree two which interpolates

f(x, y) at the nodes {([r], [s]): r,520,r+s<2}. Then

ey L Q2t o e

B e LY

Rl P W

g e 34 s




85
_ 1 1 X(x = 1) g2 i &l
Pz(x, y) = f()'o + xi)x f0,0 + yby fo’o + p[2]p Qx f0,0 + Xybx by f0,0
y(y — 1) &2
+ q[2]q by fo'o.
Since
. 1 &2 _ f(1+p,0-£(1,0
glglopf)x foo = %’g’o 2 f10 + fo0
= fx(l, 0)—f1’0 + fo’o
and similarly
. Y
(11131)0 = nyo,o = (0, 1) - o1 + fop., (4.2)
we have

Jim, bieg, Po(x, ¥) = fo,0 + x(10—T0,0) + y(fo,1 — fo,0) + xy(f1,1 ~ fo1-fr.0+ fo0)

SO Y o L @D
e o - .
+ x(x );lmopbx fo0 + yly-1 élm qby f0,0

Hence
Qu(x,y) = (1-2x -2y +xy +x2+y2) foo+x(2—x-y) 1o
+yQ2-x-y)fp1+ xyfy 1 +x(x -1 £(1,0) +y(y-1) 0, 1).
We see that Qy(x, y) satisfies the following conditions.

Qy([k], [m]) = fx;m, 0<k,m<1,

—Q-Qz(l, 0) = £(1,0)
ox
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and

0
— , 1) = £,00,1).
5y 20D = §0.D

We now consider the interpolating polynomial (4.1) of order 3,

1 2D 1 zl
P3(x,y) = Py(x,y) + s [3;::( [])p £)3 0,0 + X(E(?-] ,) £)2§31

xy(y — 1) 1 2 LYV =D -[2) 1 43

Here we need to simplify the limits involving the third order differences in P3(x, y).

First we consider

A &3 - 1 ¢2
5% Dy foo o 55 {p3£ flo- P£ fol -

Using the definition

2 1 1
D f10=D,fHp-p D, f1g

and then applying L'Hospital's rule, we have

1 42 A 2.0) -
p_,oq_)opg,@ fio = lim 5 (f1+p+p% 0) = (1+p) K1 +p, 0) + p£(1, 0))

L 2
31_263]?2 {(1+2p) f5(1 +p +p2,0) - (1 +p) £5(1 +p, 0)

~f(1 +p,0) +1£(1, 0)] .

On applying L'Hospital's rule repeatedly, we obtain
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pléllrgoggfb f1,0= lim 6 {(1 +2p)2 fx (1 +p + p2, 0) + 26, (1 + p + p, 0)

~(1+p) f3x(1 +p, 0) -2 (1 + p, O)}

=3"L“o% {(1 +2p)3 £ (1 +p + P2, 0) + 6(1 + 2p) fy(1 +p +p2, 0)

— (1 +p) fyxx(1 +p, 0) — 3f4(1 + p, 0)}

1
= ffxx(l’ 0).

Thus we obtain

lim lim 93 foo

1
P30 430 p3 2 (L, 0= £(1,0) + fio~fog,

and similarly

1
1%l_r;‘lo (}lgloq—:;b foo = Efyy(o, 1)—fy(0, 1) + fO,l —fo’o.

Also on using (4.2), we obtain

gli)nO(}]—g’Opb Qlfoo —gll)n (}nn{ 92f01 li) foo}

= {fx(l, l)"fl,l + fO,I} = {fx(l,O)—fLO + fo’o},

and similarly

gll)noéxgbq@ ©? yfo0 = (f(1, D —f1q + fi0) - (£(0, 1)~ o1 + fop) -

Thus we have
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Q3(x, ) = Qalx, 3) + x(x = 1)2 {5 (1, 0) ~ £5(1, 0) + F1.0— Fo 0)
+x(x = D)y {£(1, 1) — £ 1 + .1 — (1, 0) + £, o — fo,0)
+xy(y = 1) {fy(1, )~ fy + f1 0~ £(0, 1) + o1 ~Fo 0)

30y~ D2 { 36,0, )= £,0, 1) + 01 —f0,0)

and after some simplification we obtain
Q3x, Y ={-1+xy@-x—-y) - (x-1P3-(y-13) foo + xyBG-x-y) f]
+(3-3x -3y +x2+xy +y2)(x f o+ y fp 1) + x(x = )2 —x —y) £x(1, 0)
+ y(y-DR-x-y 0, 1) + x(x-Dy (1, 1) + xy(y-1) f(1, 1)

1 1
3 X% = 12 £3y(1, 0) + 5 y(y = D2 £y (0, 1).

We now verify the interpolation properties of Qs(x, y). We differentiate the

function Q3(x, y) with respect to x to give

d
™ Qa(x, y) = {y(3 —2x —y) = 3(x — 1)2}(fo 0 — f1,0) — y(3 —2x — y)(fo,1 — f1.1)

+(2x — Dy £, (1, 1) + (6x —3x2 - 2xy + y — 2) f,(1, 0)

+(y =y (50, 1) — £ (1, D) +75 Bx2—4x +1) (1, 0)

and differentiate again to give
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92
ﬁ Q3(x, y) = (6—6x—2y){fyo—1f; 0+ (1,0} + 2y{fo1 - 11+ 50, 1}

+(3x ~2) fix(1, 0) .

Since the polynomial is symmetric in x and y, partial derivatives of Qsz(x, y) with
respect to y can be obtained similarly. We may verify that Q3(x, y) satisfies the

following ten conditions.
@)  Qa(kl, [m]) = fipm, 0<k,m<1

(i1) iQ3(1,k) = fy(1, k) and —a~Q3(k, 1) = fy(k, 1) for k=0,1
ox oy

o2 92
(i) 5 Q0 0) = £x(1,0) and 575 Q3(0,1) = £yy(0, 1)

4.3 The limit of P, (x, y) as p, q tend to zero

It is clear that the derivation of Q,(x, y) by the methods used above becomes

progressively more tedious as n increases. We therefore seek an alternative approach.

If g is a function of one variable and g(r)(x) exists, then we have from (1.9)

g0

3 (4.3)

[X0s X135 «on s Xp] E=

where  lies in the interval (min x;, max x;). We now use this result to derive limits

of g-differences. From Lemma 3.5 we have for a fixed y
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[0, 6411 il £, 9) = s O 6L ) @4
Then from (4.3) and (4.4) we obtain
iy p(mm o' f(1,y) = lim, fm(r? y) 1< < [1+41],
- aa—f(l, v (4.5)

Note thatin (4.4) lim [r]! =
p—0
Similarly
s -k O
c}1—>oq(s+1)s/2§3 f(x, 1) = 5 395 f(x, 1)

and hence

im & 1 " _
;}x—I—I)IO({lglOp(r+1)r/2q(s+1)s/2£ 2 f(l b { f(l D}

——)0 p(f+1)f/2

f(1,1). (4.6)

As we have already noted, as p—0, [r]p—)l for all r > 0 and [0]p——>0. Thus it is

appropriate to express the forward difference operator i); f(0, y) in terms of £(0, y)

and ! £(1,y), 0St<r~1. We will show that, forr 20,

-1
O 10, y) = (1) pe-D/2£0, y) + E, (L1 ple-1)eed2 O £(1, ) 4.7)
and similarly
s—1
9; f(x, 0) = (1) q-Ds2 f(x, 0) + ), (~1)s~0-1 q(s-u-D)(s+u)2 Q; f(x, 1).
u=0

(4.8)
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We will verify (4.7) by induction, and this will also verify (4.8). First, (4.7) evidently
holds for r = 0, where the sum is empty and has the value zero. Suppose that (4.7) is

true for any r 2 0. Then

r+1
O 10, y) = DT £(1, y) - p* D’ 10, y)

-1
= 9; £(1, y) + (1)1 pea=D2 £, y) + 2 (~1)Ft prHi—-1)(r+1)/2 9; (1, y),
IFO

and this simplifies to give

I
D0, y) = (DM pED (0, y) + 3 (1) pEED2 Y 11, )
=0

showing that (4.7) holds for r + 1. This completes the proof.

Now divide both sides of (4.7) by p(r‘l)r/2 and note that (r—t— 1)(r +1)/2
—r(r—1)/2 =—t(t+1)/2. Let p—0 and apply (4.5) to give

-1
£510.) = i) +ry, (v k Ly,
=0 ox

o p<r—1)r/2

Similarly we have

—1
98 f(x, 0) = (=1)8 f(x, 0) + (=1) 3, (=1 )U+1———f(x, ). 49
= dys

EI)

b - l)s/z

We now consider limits involving mixed forward differences.
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Lemma 4.1 Suppose that all derivatives of f(x, y) of order up to n exist. Then

L 1 ¥ i
;}1310 c}“-?o p-1r/2 g(s-1)s/2 2,9 y f0,0

r-1 11 at s—1 i au
— (__1\[+S 1\l 2 % il 2
= (1) {f°’°+,,>=:o DU axtfl,o+u§0 M g0

-1 s-1 1 Jl+u

1\ I
+§0 u§=‘6 1M Sxioys f11). (4.10)

Proof Using (4.7), we apply the operator £* to each term of £3 f(x, 0) in (4.8),
X y

after putting x = (. This gives

9; f); f0,0 =(~1)8 q(s—l)s/2 [ 1) p(l”‘l)"/2 £(0, 0)

—1
+ ¥ (1 pl==1)(r)/2 Q; £(1,0) }
=0

s-1
+ 2, (1o g2 { (1) p-Dir2 HT R, 1)
u=0

r-1
+ 3 ) p-DE2 D DY R, 1) )
=0 o

Hence, abbreviating the notation in an obvious way, l
O] D fo o= (1) pl-Dri2 gD £

r-1
+ (S qO-DI2 Y (1) plDER S £
=0
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s-1
+ (=1)F p(r—l)l‘/2 2 (_1)8—-U—-1 q(S—u_l)(s+u)/2 f); fO,l
=0

it

-1 s-1
" Z’O go (=1)Hs—1-U p(r-t=-1)(r+H)/2 g(s-u-1)(s+u)/2 9; g); f11-

“4.11)
Now divide both sides of (4.11) by p@=Dr/2 q(s-1s/2 and let p—0, qg—0 in turn to give

r—1

: ; 1 I' ¢S _ +§ r—t-1 l_i
I?Lno c{li)n() p(=Di/2 g(s-1)s/2 bx Qy fo0 = 1) fpo + (-1)° Z(:) -1 th 3.t fi0
s—1
1 08
+ 1) ), Dl —fh
ug:o u! ays
-1 s-1
) 1 at+u
_1\I+s—1-u A
* g(:) gf) 1) thul 5ytgyu EE

Finally the powers of (—1) can be written more neatly to give (4.10). We note that
(4.10) is valid even for r = 0 or s = 0, so that it applies to "single" forward differences

also.

We are now ready to obtain the limit of the interpolating polynomial P, (x, y) as

p, q—0. Since

n  n-r 0 0 n 0

b o m o A% K

=0 s=0 =0 s=0 r=1 s=0

LMo
™M
+
™M
M

we can write the polynomial (4.1) in the form
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n -1

Py = fo0+ 3 TT 2l prgo o 3 [ Lo _geg
r=1 —

0,0
pH [ll+1] s=1 v=0 q"[v+1] .

n-r r-1 s—1

+2 zn_’ﬂnﬂl_.@;@sf

0,0 -
=1 s=1 p=0 PMI[W+1] yZp qY [v+1] y

As p—0 and q—0, [u]—0if p =0 and [p]—=1if 0 = 1. We obtain the following

results concerning Q (X, y), the limit of Py(x, y) as p—0, q—0.

Theorem 4.1 Let f(x, y) possess partial derivatives up to order n. Then

n-1 (_1) a
Qu(x, y) =atx, y) fop + 2, byx, y) - a0
=0
u s n-2 n-2-t (=1)tFu  gu+u
+> Db —fy g + c : ;
1§) u( ays 01 E(') ugfo tu Y) gt axt gyu L1
where
n-1 n-r
ax,y) = l—xz £ gt y 2 (1 —y)s‘1 + Xy 2 Z 1a-x-1a —y)S‘
=1 r=1 s=1
n-1 n-r
byx,y) = x 2 (1 -x)™! — xy z z 1 -x)1(1-y)s?
r=t+1 r=t+1 s=1
and
n—-1-u n-r
Cal. 3 = xy ¥, X, (1=t -yFt,
r=t+1 s=o+1

Proof Let p—0, @—0 in turn to give
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It
w 1
Quxsy) = fog + X, xtx = 1 lim —5507 & fo

r=1

Il
_1ys-1 3 __L__ s
+ Zi Yy = D lim - 9y fo

n-1 n-r 1

q 1 i I &8
+ 2 z xy(x — 1)F (y~1)S ._,o(}l.glop(r—l)rlzq(s—l)SIZb ) foo

r=1 s=1

Applying (4.10) to the limits involving the forward differences, we have

ot
Qu(x, y) = foo + 2 x(x— D1 (- 1)r{foo+z (_1)¢+1L ;fm}
r=1
n s-1 1 ou
+ 2 Y -DT DS { oo+ X, (DM o —fo )
s=1 u=0 Y .oye
n-1 n-r -1 1 ot
+ 2 z Xy(x — l)r-—l(y —1)s-1 (=1)r+s | fo0 + z (_1)t+l =—1f10
= s=1 : t=0 t a t
s—1 r—
ot+u
+ 2F |J+1 G _1)\t+u 1 £
é( el Zo u‘éo< D ol ogn 11 )
(4.12)

We now rearrange the expression (4.12), collecting together all terms involving fo o ,

those involving f; ( and its partial derivatives, and so on, to give

n n n-1 n-r
Qux, y) ={1-x2, (1 =x)F1—y> (1-y)*T+xy Y, Y (1 -x11 -y
r=1 s=1 =1 s=1
n-1 n n-1 n-r ) ot
+ 3 [ Xx-x0=1 - ¥ % xy -1 -yl }-—ﬂ—a——{fl,o

=0 r=t+1 r=1+1 s=1

gy
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n-1 n-s (_1) a
+Z (Sya-pl = 3 Sayd—n-ta-yH) -
u=0 s=u+l s=u+1 r=1 dy

n-2 n-2-¢ n-l-u n-r thu  t+u
Y Sl Y X -nela-ysl) G Sy
=0 u=0 r=t+1 s=u+l ox! dy
Jt+u
The last line, involving the coefficients of Sxtava f1,1 » was obtained by first changing
X" oy
n-1 np-r r-1 r-1 n-r s-1
T o
=1 s=1 =0 u=0 =1 =0 s=1 u=0

Then we rearrange the first two and the last two summations as a pair to give

n-2 n-1 n-r-1 n-r

)Y P TR

t=0 r=t+1 u=0 s=u+l

Finally we rearrange the second and third summations to give

n-2 n-2-t n-l-u n-r

> 2 X X

=0 u=0 r=t+1 s=u+l

This completes the proof of the theorem.

4.4 Interpolation properties of Q,(x, y)

Before analysing the properties of the functions a(x, y), bl(x, y) and ct,u(x, y)
which will determine the properties of the polynomial Q,(x, y), we need the following

lemma.
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Lemma 4.2 For any integern=2

n-1 n-r
B = Xh_.yn xn+l _ yn+l
(1-X>(1~Y)§ z_:lxrlel = 1-X0-Y0 - ST+ B

Proof First we simplify the geometric sum to give

n-1 n-r

z 2 xr-1 ys-1

=1 s=1

=(0+Y+. +Y"2) + XA+ Y 4. +Y"3) + X2(1+Y +...+ Y9

+on+ X3 (1 +Y) + X02

2 1—yn3

l_Yn-—l I_Yn—2
+X1 =

T AT Y

B NI

n-1 X 2 -2
- 1—:1—?(1+X+...+X“‘2) - I—Y—_—?(l+?+(§) +...+(—§—)n )

1 _Xn—-l Y Yn~l — Xn—l
=1—Y(1~X)_1—Y( Y — X ).

Hence, we obtain

n-1 n-r
A=X}1-7) Y, 2 x+=1ysl
r=1 s=1
x Y1 =X)(yr! - xn-hy
= n-1
= 1-X"" - Y ox

Y -X-Y"4 XM 4 YOX - YXP
= T =%
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Yo . xn I YX — Yn+1 —YXD + Xn+1 + Yn+1 _ Xn+1

=l =% Y- X

Xn_yn Xn+1 _ Yn+1

= 1-X0-Y Ty YT XY

This completes the proof.
We can now simplify the first coefficient a(x, y). Since

n n
1-A-%)3 X1 (1-Yyl=1-(1-Xx0m-(1-YD

r=1 s=1
we have

xn+l _ yn+l XN _ yn

ALY =" XY - X-Y

where X =1-x and Y =1-y. To investigate the properties of a(x, y), that it has
the value 1 at (x, y) = (0, 0) and is zero, and appropriate partial derivatives are zero, at

(1, 0), (0, 1) and (1, 1), let us write a(x, y) in the form
ax,y) = X"+ X-ly 4+ . +Xyn-1l4yn
— X4 X2 4+ X Y24 Yyl

When x =y =0, X =Y =1 and we see that a(0, 0) = 1. It is also easy to see that
a(1,1) =0 and all partial derivatives of order not greater than n —2 are zeroatx = 1,
y=1

Let us now write a(x, y) in the form

ax, ) =X"-1 -V + X2y 4 .. + X Y2 ; YO-1)
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We see that all partial derivatives with respect to X of order <n — 1 are zeroatx = 1

and y = 0 and also a(1, 0) = 0. Similarly we may write
ax, y) =Y — (1 -X)X™1 4+ X2y 4+ . + X Y2 4 Y1)
and likewise deduce that

k
a0 =0 i 0TS 0: TR O ERE T
ayk

Let us now consider the second coefficient

n n-1 n-r
b= -X) > X - 1-%a-Y) Y, Y X1yl
r=t+1 r=t+1 s=1

We can extract the common factor X! from each sum to give

n-t n-t—-1 n—t-r
bitx, y) =XW1 X)), X1 - X1 -X)(1-Y) Y, 3 x+lysl,
r=1 =1 s=1

Using Lemma 4.2 we obtain

Xn-t _ yn-t Xn—t+1 = Yn—l+1
X_¥ ¥ X - Y E

byx, y)= Xt-xn_xt {1-xm-t_ymt _
This simplifies to give

bl(x, y) = Xt {1 X)(xn—l——l + X2 Yo . % Yn—l—l) )

Since each term is of "total degree" n — 1 or n, all partial derivatives of by(x, y) of
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degree < n — 2 are zero at x =y = 1 and also by(1, 1) = 0. Thus there is no contribution
1+u

)
to P(1, 1) from b,(1, 1) or
n(1, 1) (1, 1) Ixt oy

b(1, 1). We note also that, at x = 0, b,(x, y) and

all partial derivatives with respect to y are zero. Whenx =1,y =0, by(1, 0) = 1.

The lowest power of X in by(x, y) is X*. Hence, for0 <k <t,

ok
— b1, 0)=0.

Fort<k<n-1, when x =1, we have

k k
5ax—k- b(x,y) = ai)x—k (Xkyn-1-k _ xkyn-ky = 0 fory=0

and finally, when x = 1,

ot ot
S;Ibl(x’ y) = a—{t(] LYY=t = )ty , fory=0.

Now we consider the remaining coefficient

n-1-u n-r

sy & (1-X}1-Y)y 3. D Xriy-l

r=t+1 s=u+l

We may remove the common factor X'YU to give

n-l-t-u n-{-p-r

Culiy) = X'V (- -y Y Y x~lysl,
s=1

r=1

On applying Lemma 4.2, with n replaced by n —t — u, we obtain
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X0-t-u _ yn-t-u  yn+l-t-u _ Yn+1—t—u}

Crplty) = XYO {1 Xptu yrtu 2 o oy v

We may write this as

Ct,u(xv y) = Xtyu _ ( xn-u-lyu o yn—u-2yutl o g+l yn-t-2 | ybyn-t-1 )
+ ( Xr-u-lyutl o X0-u2yut2 o w2 yn-t-2 4 g+ lyn-t-1 ).

Note that each term in the first bracket is of total degree n — 1 and each term in the

second bracket is of total degree n. So for all partial derivatives of C; ,(x,y) of order

<n-2atx =1,y =1, there is zero contribution from all terms in these two brackets.

Thus, for0<k+m<n-2,

ok+m k m

B A caat Sl e
mct,u(X, V=g -x) oy (1-y* forx=1,y=1

and this is clearly zero unless k =t and m = u, when

Jt+u
oxt gyt

Coux. ) =D ttul forx=y=1.

We also have ¢ (0, 0) = 0 for all t, u. Moreover, by writing
C‘,u(x, y) =Xt (Y- Yn-—t—l) T Y)(xﬂ»ﬂ—-lyu + Xn—u—2Yu+l + ...+ Xt+1 Yn~t—2)

we find that C; ,(x, y) and all its derivatives with respect to x are zero when y = 0.

Similarly, on writing

Ct,u(x, y) = Xt - Xn—u—l>yu W . X)(Xn—u—2yu+l + X0-u-3yud2 o xt Yn—t—l)
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we see that C ,(x, y) and all its derivatives with respect to y are zero when x =0.

As a consequence of the properties satisfied by a(x, y), by(x, y) and Crul%, y)

at (0, 0), (1, 0), (0, 1) and (1, 1), we have the following theorem.

Theorem 4.2 The polynomial Q(x, y) satisfies the following (n + 1)(n + 2)/2

interpolation properties.

(@) Qu(0, 0) = fo,o .

ok ok
®)  Qul,0)=fy and, for 1 Sk<n—1, —5Qu(L,0) == 1,0).

om om
(©) Qn(0,1) = fO,l and,for I <m<n-1, é;_rHQ“(O’ 1) _a_lﬁf(o 1).

(d Qu(1, 1) = f],l ’

k
aakQﬂ(l 1)_5’15“f(1 1) forl<k<n-2,

am

o Q1 1= ——f(l 1) forl<m<n-2,
oy™

ak+m k+m

%k Oy T s D= Wf(l,l) for km=21,k+m<n-2.




103

4.5 An alternative derivation of Q,(x, y)

In Theorem 4.1, we established the existence of the approximating polynomial
Qu(x, y) as a limiting form of the interpolating polynomial based on the g-triangle. We

now show that Q,(x, y) can also be derived as the limiting form of the interpolating

polynomial on a simpler system of nodes. Specifically let p, q > 0 and define a new

"arithmetic mesh"
S = {(xi,yj):i,jZO,i+an)
where
X0=O, Xi=l+(i—1)p, 1<i<n

yo=0,yj=1+G-1)q, 1<j<n, (4.13)

If f(x, y) is a function defined on a region which includes S then from Lemma 3.2 there

exists a polynomial of degree at most n which interpolates f on S.

Since xq , ... , X, are equally spaced we know from Lemma 1.3 that
_ 1 i1
X1, .ox]fC,y) = G pil A (1, y) (4.14)
where

AL £, y) = £(x +p, y) — f(x, ¥)

and higher order differences are defined in the usual way.

We cannot extend relation (4.14) to include the point x since, unless p = 1, the
points Xq , X1 , ... , Xy are not equally spaced. The following lemma will be used to

overcome this difficulty.
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Lemma 4.3 Let x1, Xp, ... be distinct non-zero real numbers. Then fori > 1

and a fixed value of y

(=t

0,%1,....,%1fC,y) = (0,
[0, il ¢, Y) RpRey aee Xy ©.y)
i _1)k-1
4 : .(1) ? [x1, X9 5 ..
ko1 X Xi-1 e Xiek+ 1
Proof We have by definition

fxpy)  £0,y)

[0, x1] £, y) = =2 .

- Xi—k+1] TG ) .

which shows the above statement holds for i = 1. Suppose the formula is true for a

giveni= 1. Then we have

{0’ X1y eens xi+]] f(', y)

- [xli X2 5 een gy xi+1] f(‘y )’) =5 [Oa X1 s eee s x|] f(': Y)
Xi+1

[xlv X2 5 eve s xi+l] f(" Y)
Xi+1

1 D ).
- (0, y) +
Xit+1 {xi X1 e X1 1Y) g{ Xj Xj-1 -+ Xjk+1

-

We may combine the first term above with the summation to give

_1)i+1
[0, %1+ -ves Xiga] £ y) = — AL

£(0,
i+1 Xi .- X1 )

[Xl a

gl 19 ] -




105

i+1

(1)L
k=1 Xi+1 Xioeee Xjoke2

(X1 X2 5 v s Xiga2] £, y)

where, in the original summation, k has been replaced by k — 1. Hence by the

induction principle, the formula is true for alli 2 1.

Let x1, X9, ... be defined as in (4.13) and let y be fixed. From (4.14) and
Lemma 4.3 we have, for anyi=2 1,

[0, X1 s eees Xi] f(°, y) = %f«), y)

Xi Xi—l

il _1)ik-1
" z (~1) 1
k=0 xi xi—l «or Xkt1 k! P

k
= AL (1, y).

(In the summation in Lemma 4.3 we have replaced k by i — k.) Similarly, let yq, y, ...

be defined as in (4.13). Then for a fixed x and any integer j = 1

(—l)j
0’ PRI A1 f R — —-—-——.——-—f ,0
[0, y1 yjl f(x, *) Yi¥io1 - Y1 (x, 0)
i—1 ( 1 j~m-—1 1 5 1) g
A ’ . .
m=0 YiYj-1 +-- ¥Ym+1 m! qm y (x ( )

We can now express mixed divided differences in terms of forward differences.

First, apply the operator [0, x; , ..., X;] to each term of (4.15). We obtain

[O’ X155 eee ,Xi] [0,)’1, “'syj]f

1 . .
—1)—-m-1 i
= i =L T SR
m=0 Yj¥j-1 «~+ ¥Ym+1 m! qm Xj Xj-1 ... X1 ¥




i—1 .
(=1)i-k-1 1,k ,m
+ 73 o §

g, Xj Xj-1 - Xk+1 k! pk XY (1, )

(1) =D

(0, 0
YjYj-1 .- Y1 "XiXj1...X] ©.0)

i-1 :
(=1)i-k-1 L qk
+ A, £(1, 0)}.

,;0 Xj Xj-1 -+« Xk+1 k! pk X 0]

Hence we can rearrange the summations to give

[0,)(1 o ,Xi] [O,y1 » Fa ,yj]f

i-1 -1 1 )i—k+j—m 1

S =y KiXior e Xee1) (V) Yje1 o+ Ym+1) k! m! pkgm "X Y

D § enikt

Yj¥j-1 -+ Y1 & XiXi-1 - Xk+1k! pk

-+

k
A, f(1, 0)

(=1)i Ji‘ (1)i-m-1 1

Xi Xij—1 -+ X1

A™ £(0, 1
m=0 Yi¥i-1 <+ Ym+1 miqm Y el

+ (=1)i
(Xj Xj—1 oo X1) (¥§ ¥j-1 -+ Y1)

£(0, 0).

We know from the one-dimensional case that

L e i s s
Sl_r_?o or A f(l,y) = axrf(l,y) and &E)no r Ay f(x, 1) = o fix, 1)

It follows that

A¥ A™ £(1, 1)

106




107

4 T EY 1
P30 30 pF g5 hm{ £ Ay (lim qA f1, D}

aH-S

" xay

f(1, 1) .

We deduce that

i

. =l e ok
Bim [0, %1, ..., X1 £G,y) = DiRO,y) + (i Y, RO g

kI oxk
(4.16)
- (_ +1 gm
4 . — — J T —
c}lg’o [0, y15 .05 yjl (%, ) = (=1)} f(x, 0) + (1)) :nZ,O Sy f(x, 1)
(4.17)
and
gigloélm [0, %1, s %31 [0, y15 .5 Y51 f
T o il 1 k+m gk+m
= (-1 £0,0) + (1) o £(1, 1
D) £0,0) + (1) kg()m:o kil gk gym 10 D
( 1)m+1 om
D —~— (0, 1).
(4.18)

We are now ready to find the limit of the interpolating polynomial P,(x, y) on

the set S defined in (4.13). From Lemma 3.2 the polynomial can be written as

n n-i i-l

-1
Pax,y) =2, Y, Jlx-xu h(y—m [%0: X1 5 - Xil [yos ¥1 5200 n W31 £
i=0 j=0 p=0 v=0
n i-1
= 10,0 + 2 [T x-x[0,x1,....x] £, 0)

=0

W
'F
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n

j-1
+ X h -0, y1,....y] £0, )

=1 v=0

n-1 n-i i-1

ji—1
* 2 z H(x—xu) i—%(Y'—YV) [O, S IEREE ’xi] [O’ Y1500 sYJ] f.
V=

i=l j=1 p=0

Let p—0 and q—0 and apply (4.16), (4.17) and (4.18). We obtain

lim 11m Py(x,y) =fgo + z x(x — 1)i-1 (1)1 { fo0 + 2 (—l)k"‘1 L o —f10)

p—%O i=1 a k
i1
om

+2 y(y = 1) { fp 0 + t 1 )“’“;1; Jym 01 }

=1 m=0

n-1 n-i ok
+2] 21 xy(x — DIy — 1~ (1) | foo+2 D S f1.0

i=1 =

j—1 i-1  j-1
1. a® t 1 oktm
m+1 = — _1yk+m
mi_o D™ gym fo,1 +k§0 & D e m dxkgym fii).

This is indeed the same polynomial as the polynomial Q,(x, y) defined in (4.12).

Rk R
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Chapter 5

Integration rules of interpolatory type on a triangle

5.1 Introduction

In this chapter we shall use interpolating polynomials to study integration rules

on the triangle S, = {(x, y): 0 £ x £y < [n]}. Many formulae for approximating

double integrals have the form (see [23])

N
fBj K(x,y) fx, y) dxdy = Y, w; faj, b)

i=0

where B is a given closed region in R2, where K(x, y) is a fixed positive weight
function (often K(x, y) = 1), where (a;, b;) are points which lie in B and where w; are
constants. R. Lauffer [11] obtained certain integration rules on the general simplex.
Special cases of Lauffer's rules (taking the dimension of the simplex to be 2) are special

cases of the rules to be obtained here (taking the parameter q to be 1). Given a function

f(x, y) on S, we shall find an integration rule I, which uses the approximation

f j f(x,y)dxdy = J J' P,(x, y) dx dy .
S Sh

n
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Here P,(x,y) is the interpolating polynomial on S, constructed at the nodes ([i], [j]),

0 <i<j<n. Note that the rule I, is exact if the function f is a polynomial of degree at

most n in x and y.

We know from Lee and Phillips [13] (see Theorem 1.6) that this interpolating

polynomial exists and
Pp(x,y) = 2 i L0 ¥) i

=0 =0

where the Lagrange coefficient L? j(x, y) takes the form

q—(2n-j-1)i/2 il Bl

6:1)

L% ¥) = Grt =TT =370 H<X—M) II @i-v 1 & - avx—vD.

v=j+1 v=0

Integrating (5.1) over S;,, we obtain

no_j
[ ] Paxyyaxdy = 3 % wiify = L®
S =0 =0

n

say, where w‘i‘ : is called the weight at the node ([i], [j]) and is given by

Note that, taking f = 1, the weights (5.4) clearly satisfy

Zﬁ Wi = J'dxdy=A,

=0 i=0 Sh

(5.2)

(5.3)

(5.4)

the area of the triangle S,,. The first aim of this chapter is to use this method to calculate
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the weights for the integration rule I, n = 1, 2, ..., 5 directly from formula (5.4).

Later we will discuss an alternative method of obtaining these weights wi. . We also

study certain properties which govern the weights W?J on the triangle. We will verify

that all the weights of Iy, I3 and I5 are positive for certain values of q including q = 1.

We will also consider the expression W?J(l/q), and show that these weights satisfy a

kind of symmetric property. In the last section we study a relation between integration

rules over certain triangles of the same order.

5.2 The integration rules - in terms of a parameter ¢

If we let q = 1, the integration rule I, in (5.3) reduces to the Lauffer rule. We

tabulate below the relative weights for the Lauffer rules with n = 1, 2 and 3. For a

given n, the actual weight w? J is obtained on multiplying the relative weight by the

factor o, displayed below, where A denotes the area of the triangle. See also Phillips

[16].
4 9 9 4
0 1 0 9 54 9

1 1 1 1 9 9

1 0 4
o =A/3 op=A/3 o3 = A/120

(a) (b) ©
Figure 5.1

We now give an integration rule on the triangle S, for a general value of q > 0.

For n = 1, 2, 3, 4, 5 we use Maple to calculate directly the weights wril It See
Appendix 5A for the details. Note that if n = 1, all three weights wil jare independent

¥ .
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of q and thus we simply have the Lauffer rules given in Figure 5.1(a). Using the same

format as in Figure 5.1, the weights required for I, n = 2 and 3, are given in Figures

5.2 and 5.3 below.

2 | -1 +q2 e | 21+

11 | 212 [212

[0] | =2q(-1+q) B
(0] 1] 2]

Figure 5.2  Weights on the triangle S,

[3]1 | 2[2]1 F(q) 312 2q3 - 2¢%2 - 29 + 1)| [3]12H(9) | 2 G(q)

[2] |-1312 (a3 ~292-2q+2)| 21313 [312H(Q)

(1] | -al312(3q?-29-2) | —ql312(3¢®2-29-2)

[01 | 293G

(0] (1] (2] (3]
A

*3 = so1214>

Figure 5.3 Weights on the triangle S3

In order to write the above weights in a compact form, we have written
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F@ = q°-q°-29* +5¢3-2¢>~q +1
G(q) = 3q*+q3-692+q+3
H(q) = 292 +2q - 3.

Calculation for the rules I, n = 4 and 5 involves polynomials of higher degree.

However the weights for these rules satisfy

4 4 r
Wi gaq VD= COW @, wi s ()= a8 wj; @.

n
ij
where 0 is a factor chosen so that the relative weights C? j are polynomials in q. Then

We will show this "symmetric" property later. Let C?J be such that w;. = o X C'il j o

the rules I;;, n =4, 5 can be summarised as follows. (Because the expressions for the

relative weights C? ; and Cf j are somewhat lengthy, we have had to give up the

triangular lay-out which we have used above for n =2 and 3.)

Coo=-6121° (@~ 1) a6+ g% +q*~3q3 + g2 +q+2)

Coa= Ciy = 3214163 @+ 1) a5 —q* ~2q3 +q+ 1)

Co2= 431 @+ )% (2q7 - 5q6 - 395 — g% + 9g3 + g2 —q - 3)
Cl,=-a B 42 @+ 1) Qg3 -2 -q-1)
€32 =-a[3] @+ 1)% (46 + 295 - 11g3 +2q + 4)

Co3=121141 (@ +1) (@8- q7 ~2q5 +2q5 + 5q* + g3 4q2 — 2q + 3)
Cly=-DB1M2 @+ 1@ - -q2-q+]1)

cg4=_[2]2(3q10+q9+3q8—5q7+9q6+3q5+9q4—5q3+3q2+q+3) (q-1)2

.
180[3]q6

Table 5.1 Weights on the triangle Sy

0y




114

C5 o= 610 (10q!6 + 2615 + 30q14 + 11q13 - 35q12 — 54q11 —27q10 + 309 + 73q8

+30q7 — 27q6 — 54q5 — 35q# + 11g3 + 30q2 + 26q + 10)

C 1 =C3,=—3q5[5]2 (10q'2 + 16q!1 + 4q10 — 19¢9 — 328 — 2q7 + 22q6 + 26"

+10g4 — 1293 - 17q2 - 12 - 4)

cg ,=—q3 [512 (1 +g2) (10q13 — 14912 - 44q11 — 1710 + 4q° + 598 + 5697 — 196

—40q5 — 4994 - 9¢3 + 18q2 + 18q + 12)
C; o= g3 [4]1[513 (108 + 6q7 — 12q6 — 95 — 6g* + 5q3 + 92 + 6q + 3)
Cg ,= @ [512 (1 +q?) (20q!2 + 32q11 + 8q10 - 10q° - 648 — 53q7 + 37q6 + 5293

+55q4 + 4q3 — 272 — 24q — 15)

cg 3 =—q[512 (1 + ¢?) (515 — 2q14 — 17q13 + 4q12 + 19q11 + 48q10 + 23¢® —40¢8

—49q7 - 46q6 + 199> + 39g4 + 1293 — 18q — 12)
€= a D315 (1 +?) (5° - 78 - 5q7 - 3¢5 - g5 + 12q* +3q3 + 4>~ q - 3)

cg 3 =—q[31[5]2 (1 +q?) (5q12 + 8qll+9q10 + 8q? — 9q8 - 15q7 — 176 — 15¢°

—~9q% +8q3 +9q2 + 8q + 5)

Cg 4 =—[51 (322 + 721 + 5q20 — 5q19 — 15q18 + 2q17 + 28416 + 30915 — 10914

—80q13 - 120q12 — 106q! — 44q10 + 27q% + 65q8 + 55q7 + 11q6 — 33g°

—42g% + 3092 + 30q + 12)
Cf,4 = [2] [41[513 (3q10-2q° - 4q8 + q" —q6 + 12¢7 — q* + 3~ 4q% - 2q + 3)

C(S) s=6 (2926 + 5025 + 5¢24 — 10g22 — 9¢21 + 5¢20 + 20919 + 20q18 - 15q17

—33q16 — 15q15 + 25q14 + 55q13 + 25q12 - 15q!1 — 33q10 — 159 + 20q8
+20q7 + 5q6 —9g5 — 10g* + 5¢2 + 5q + 2)

AR N
571260 q10 [4]1"

Table 5.2 Weights on the triangle Sg
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It is easily verified that for q = 1 the rules given in Figures 5.2 and 5.3 do
indeed coincide with Lauffer's rules for n =2 and 3 given in Figure 5.1 . On putting
q = 1 in the above rules given for n = 4 and 5, we obtain the rules given below. These
are not given in Lauffer [11].

11 25 25 25 25 11

0 4 -1 4 0 25 200 25 200 25
4 8 8 4 25 25 25 25
-1 8 -1 25 200 25
4 4 25 25
0 11
oy = A/45 o5 = A/1008
Figure 5.4

5.3 Positive weights on the triangle S,

For each of the rules discussed above we will determine whether there are
values of q for which all weights are positive or at least all non-negative. The case

n = 1 is trivial: the weights are independent of q and are all positive. However the

weights on triangles S, and S4 do not possess this property. In fact

w%2=_ﬁ%(qwl)2<0 forall >0, q# 1.

Thus the weights of I, are never all positive and they are all non-negative only for

q = 1. For the rule I, let us examine the weight

4 A
Wo o=~ ﬁ(;q—s(qZ +1)2 (4g0 +2q5 — 113 +2q + 4) .
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Since q2M>2qM—1 then forallq>0

496 +2q5 - 113 +2q+4 = 4Q2q3 - 1) +2(2q3 —q) - 11g3 +2q + 4

g > 0.

This shows that the weights of I are never all non-negative.

For n =3 and n =5 we have already seen that the weights are all positive when

q = 1. We know that if there is a q such that all weights of I, are positive then, by
continuity, there is an interval containing this value of q for which all weights of I, are

positive.

Let us consider the rule I3. Since (see Figure 5.3) a3 > 0 forall ¢ > 0, it

suffices to examine the positivity of the relative weights given in Figure 5.3 . First it is

clear that

w] , =03 [2] [31° > 0 for all g > 0.

Next consider the function G(q) which is quoted in Figure 5.3 . We have

G(@ = 3q*+3-6¢2+q+3 = 3(@2-1)2+q3+q > 0 forallg>0

and thus wg o and wg 5 are positive for all ¢ > 0. We also have (again see Figure 5.3)

i 1
—F(Q) = 5(q®-q°~2q*+59° - 2g2 ~q + 1).
q q

Onputtingc=q+ql -2

—F(@ = 63+562+36+1>0.
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for all g >0, since ¢ =2 0 for all q > 0. Hence wg 3 >0forall g>0. We also see that

(with q > 0) the polynomial —3q2 +2q + 2 is positive for q < (V7 + 1)/3 and thus the
polynomial 2q2 + 2q — 3 is positive for q > 3/(V7 + 1) = (V7 = 1)/2. Thus the

weights wg ; and wg » are positive for

27 g | V7 + 1
g <d &g (5.5)

and we note that w? 1= wg , and wg 3= wg o+ It remains to examine the weights

Wg,z and wi3. These are positive if and only if —q3 +2q2 +2q -2 and

293 +2¢2+2q-1 = ¢3(-q3+2q2+2q71-2)
are both positive. By direct calculation we find that this holds in the intersection of the
two intervals (0.68889, 2.48119) and (1/2.48119, 1/0.68889), approximately, where

the numbers have been given to five decimal places. Since both these intervals contain

the interval defined by (5.5) above, it follows that all weights for the rule I3 are positive

if q satisfies the inequality in (5.5).

Now let us consider the weights of the rule Is. In this case more extensive

calculations are necessary because the degrees of the polynomials involved are higher.
To find intervals for which the weights of I5 are positive, we need only consider the

polynomials obtained by dividing each C;S j by its obvious positive factors. By using

the Maple "fsolve" command to find the roots of the polynomials and comparing with

their graphs, first we find that

WS,O’ W?,Z, w51’4 and W(5),5 are positive for all g > 0.

(See Table 5.5 and Figures 5.5 and 5.6 .) This is also true for wg 4 and wg 5, since if a

function f(q) is positive for 0 < a < q < b then f(1/q) is positive for 1/b < q < 1/a.

Intervals on which the other weights of I5 are positive are obtained similarly and these
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results are shown in Tables 5.3 and 5.4 below. (See also Appendix 5B for details.)

Weights W), A factor of w?, considered Interval on which w?, > 0
LJ 1 L)
5
C
5 5 0,1
, 01 0, 1.05974
5 0
- s 0.92351, 2.96624
w0,2 q3[5]2(1 + q2) ( )
5
C
5 2.2
: 0.94273, oo
Y22 BI512(1 + q2) ( )
5
C
S 0,3
w TS 1 S 0, 1.07591)
0.3 ql512(1 + q2) |
5
w C1a (0.73974, 1.05853)(1.91397, oo)
13 q[310513(1 + q2) : ' ’
5
w 5 3 (0.90951, 1.09949)
o ql3151%(1 +q2) ’
CS
W4 -8 (0.88838, 1.38397)

Table 5.3

As we will verify later, the weights wi5 : satisfy

5 1 5
W55 (V=g Wi (@

This allow us to determine intervals for which the remaining weights wi5 j are positive.

These intervals, which can be deduced from Table 5.3, are as follows.
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Weights wij Interval for Wis,j >0 Weights wii Interval for wi5 i 0

wy, (0,0.52247) U (0.94471, 1.35183) W) (0.72256, 1.12564)

%ia (0, 1.06075) wj 5 (092945, o)

W4, Wes (094363, o) W) 5 (0.33713, 1.08283)
Table 5.4

Thus all weights of the rule I5 are positive if 0.94471 < q < 1/0.94471 = 1.05853,

approximately.

Thus we have found that for q = 1 the weights of I3 and I5 are positive and have

derived the largest interval around q = 1, in each case, for which the weights are still all

positive. We might be tempted to conjecture that this will hold for all I;, with n odd.
Let us consider the weights associated with the interpolating polynomial on equally
spaced nodes over the triangle {(x, y): 0 < x £y <7}. This is the integration rule I in

(5.3) with q = 1. From (5.2) we have

P7(x, y) = 2 Z L] (x y) £
=0 i=0

where

_1_

L(x y) = =it 0~ 1)'(n—J)'H(x V)H(V Y)H(y X =V)

v=j+1 v=(0

We use Maple again to calculate the weights I and these are shown in Appendix 5C.

We find that the weight I1 3 (and also 12 3> I1 5 I; 6 IZ 5 I4 6) is negative. This

shows the above conjecture to be false.

i
s
1
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Roots for the weight W02 (n = 3).

W02 = A [3]72 (-g"3 + 2*q™2 + 2*q - 2) / (60 [2]) g™3)

fsolve (-g*3 + 2*g"2 + 2*q - 2, Q)

-1.170086487, .6888921825, 2.481194304

Roots for the weights W00,Wl2,Wl4d and W05 (n = 5).

Let Bij denote the polynomial factor considered in Table 5.2
{(obtained by dividing Cij by its obvious positive factors).

B0OO := 10

Bl4 := 3

= 2

BOS5 :

2+ 5

17
= 19

10
= 33

26
+ 2 q

« fsolve (BOO,

» fsolve (B12,

« fsolve (BOS,

16 15 14 13 12 13
g + 26 30 +1I 9 =~ 39 q - 54 g
10 9 8 7 6 5 4
-~ 27 g+ 30qg +783qg +30q =27Tq =54 g —354¢q
3 2
+ 1l g +30¢g + 26 g+ 10
8 7 6 5 4 3 2
B2 += 10 g #+#6qg —-1l2qg ~9q ~649g +5qg + 9aq + 6:q+.3
10 9 8 7 6 5 4 3 2
9 -29q -4qg +t+qg -qg +12g -qg +qg -4gq
q+ 3
5 22 21 20 19 18
g—9q =-10g —=-9d¢ +5¢g +204 + 20 g
16 15 14 13 12 11
-3qg =]15g +26g +55 g +25qg =154
9 8 7 6 4 2 25
15 g +200g +20 g 4 9¢g <10 g + 5 g + 5ig
24
+ 5y
q)
q);
-1.281205350, -.7259561389
q);
q)i

* fsolve(Bl4,

-1.469135153, -.6806725696

Table 5.5
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5.4 Symmetric weights

Referring to Figures 5.2 and 5.3, we see that the weights on the triangles Sy
and S3 possess some kind of symmetric property. By using a command in Maple:

"normal (subs (q = 1/q, wi2 : )", we calculate wﬁi(l/q) and normalise it. We find that

2 1 1 2 2 1 1 2
W5 (Z) =35 Wy (@, Wis (Z)=—5 Wy, (@
22%q q2 0,0 1,2 q q2 0,1

T | 1. .9 2 4 1 .2
Wialg) =2 Ha @ e Wy (g)=s Yoy

We show further that this property holds in general.

Theorem 5.1 Let w? j(q) be the weight at the node ([i], [j]) for the rule I,.

Then

n s, n
wn_j’n_i (q) o q2(n—1) wl,j (Q) ‘.

In order to prove Theorem 5.1 above we need the following lemma. First let us write

Lirl ,j(x’ y; @), for 0 €1 <j <n, to denote the Lagrange coefficients of the interpolating

polynomial P, (x, y) on the triangle S,;, where we have emphasised the dependence of

n
L, jon the parameter q.

Lemma 5.1 For 0<x<y<ql-"[n], 0<€£<n<[n] and 0<i<j<n,

1
Loy & %3 " L G&m 9
where

E=[n]-q+ly and M=[n]-q™1x.

Proof First we note from (5.2) that the constant which precedes the three

products is a normalising factor. We may rewrite L;' ,j(x, y; q) in the form

Tyt i g

s S g Yo
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=1
eno- I GER) T1(M=D T (=5t

S (2o 1 (en) B (raecm)

q\'[l veit] q][\, q1+v[J
Then for 0 £ x £y < [n] we have

n A
Ln—j ,n—i(x’ y; @)

= V] [vl - BELC v — qvx -
ey B mar ) ey

qv[“ v=n—i+1 qn i (Vv = aidd] V—

By making a change of variable q —>% the domain changes to 0 < x <y < ql-7 [n]

which is where L‘r:_j ni% ¥; 1/q) is defined. ThusforO<x<y< q!-" [n]

i —qgl-v 1-v w
L2 = T (AR ] (S=r )

varidet G B <n 4]

jei-1

y-—qVx —ql-v [v]
2 \I):% q—n+1+llJ S ) ©.6)

Now consider a transformation (x, y) — (&, 1) given by

_Inl-n7 _ In-¢

qn—l . qn~1

Then each point ([n — jl, [n — i) which changed into (-2.2d], [B=i1) py g , 1
qn—-J-«l qn—l—l

q b
is transformed into ([i], [jl) and the inequalities 0 < x <y < q!-"[n] correspond to

0 <& <£m < [n]. Each product of L:_j n—i(x’ y; 1/q) is thus transformed as follows.
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n—j-1

x — ql=v [v] ~ “ﬁl gn-1 x — go-V [v]
v=0 @™+ In-j-vl vy qln-j-v]

n—j-1 n

_ [n-vl-u% _ [u]l-m
v=0 @ In—-j-vl 5@ [p -]l
and
oY N-y . oy @Yvl-gvly
v=n-i+1 ql_v [V = I i] v=n-i+1 qn—V [V = i]

B I LELY = S T

veni+l QVV IV -n+i] i qM[i-pl

where we have denoted pL = n —v. Finally

Bl y g vx-gl-vv] L gn-ly _gn-lv g gy [y)

ve0 QL [j—i—v] V=0 gi[j —i=v]

i neet-mlrg n-v)
o @V [ -1 -]

A g —grE -

u=0 Q7R [ —i- ]

where we have taken @ = v. Hence, by substituting the above transformed products

into (5.6), we obtain

n

-1 7 (&= ) F(n-g*& -
I ook ¥ Tg)s : s e
a7 10 ugl Qi - j] uI;IO (q” [i - ] g (Q‘*” b-1-pl

= Lj; & 9.
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Proof of Theorem 5.1 Let the triangle S, = S,(q) be transformed into the

triangle S,(1/q) under q — é From (5.4) we have

Woini W = [ L0y ) dxdy.
Sp(1/9)

Under the transformation x = ([n] —=M)/q™! and y = ([n] - &)/q™! the region S,(1/q)

is mapped onto S;,(q) and, on using Lemma 5.1, we obtain

J e olden laam

Wn_ini (V)
Sh@

]

This completes the proof. Note that if we consider (D{‘J. = w? : / Area, a relative weight

on the triangle, then we simply have

Op i (V) = 0 @.

5.5 Alternative method of obtaining the weights

Consider any integration rule of the form

noj
oM = > D, wi; (il D) .
j=0 i=0

Suppose this rule is exact, that is

Lo = ] | oy axy,
n
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for all f e ® . In particular, let us choose f = L?,j’ the Lagrange coefficient on S, at the

point ([i], [j1),0<i<j<n. As L?J e ®,, we obtain In(L?’j) = w?‘j and so there is a

unique rule of this form. Since the rule is exact for all monomials in ®,,, we also have

[n] y n i
L6yh) = | [ xeyBaxdy = Y 3 w8
g 0 70 =0
so that
no_j o+P+2
D e P = [n]
J;o iz;’o Pl (o + 1)(ox + B +2)°

for each o, B 20, o + B < n. This is a system of (n + 1)(n + 2)/2 linear equations in

the (n + 1)(n + 2)/2 unknowns w? i 0 <£i<j<n Wecan determine w'ild by solving

these linear equations as an alternative to the method, which we used above, of
integrating the Lagrange coefficients. Note that, since the above linear equations have a

unique solution, the matrix must be non-singular.

5.6 Relation between integration rules over certain triangles

of the same order

Consider another triangular formation of nodes, formed by the set of points
(i-jlp, {-lp:0<j<i<n}, (5.7
where p > 0. This set of points lies in the union of the three pencils of lines
x = [ilp, 0<isn,

y =l 0<jsn,
x+pKy = [klp, 0<k<n.
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If we let q = 1/p, we have

and using the fact that {(tj_j, u)): 0<j<i<n}={(t, vj:i,j20,i+j<n} the setof
points (5.7) can be expressed in the form

((lilp qlilg: 1,2 0, +j<n). (5.8)

Let f(x, y) be a function defined on a triangle
Ap={x,y):x,y20, x+py <[n],}.
For simplicity, let us denote q[jlg by y;,j=0,1, ..., n. Then from Lemma 3.2, the

interpolating polynomial at the set of nodes in (5.8) can be written as

Pn(x’ Y) =
n n-i i-1 -1
EO jz~0 E} (x = [V1p) ijlo (y—alvly [, ...l [ye > yjly £ (5.9)

Here, we have used the notations [[0], [1], ..., [i}]x fC, y) and [yg, ¥15 --- » yj]y f(x, ),

defined earlier in Chapter 3, to denote divided differences in the x and y directions
respectively. First we shall express the polynomial (5.9) in terms of forward difference

operators. By virtue of Lemma 3.5, we only need to find the relation between the

divided difference [yq, y1, --- » yj]y f(x, -) and the corresponding forward difference.

For a fixed value of x and any m = 0, we have

i
[m]q! q(2j+m+ 1)m/2

[¥j> Yiets -+ » Yjemly £, ) = i);" f(x, yj) - (5.10)

where the differences Q;] f(x, y;) are defined by
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DY fx, y) = fx, ¥,

OF flx,y) = OF 7 fx, ypp) — a1 O e, y),  m=1,2,...

This result is similar to Lemma 3.5. We give a brief proof of (5.10). The

proof is by induction. Obviously (5.10) holds form = 0. If (5.10) is true for any

m = 0 then

[Yj’ Yitls «oe s )’j+m+1]y f(x, *)

[Yj+1! e ) )’j+m+1]y fx; =)~ [Yj, e Yj+m]y f(x, -)
Yji+m+1 — Yj

. 1 L. 1 M v
~ [ty F gt qim+3)m/2 Dy £, Y1) - fmig! Qi Dm/2 £7 fx, v}

s 1 m+1 "
T q@itm+2)(m+1)/2 [ 11! Qy fx, yp ,

which means (5.10) is also true for m + 1. Hence (5.10) holds for all m = 0.

As a special case of (5.10) we obtain

1
= q(m+1)m/2 [m]q!

[yo, Y1s -+ » Ymly fx, 2 Q;’ £(x, yo) - (5.11)

Now apply Lemma 3.5 and (5.11) to the mixed divided difference in (5.9), to
give

o B - -Genie B = ¢ ach
Pat,y) = 2 2 !‘}j] i ITx-wip h(y—q[\']q) 9 D fo0
i=0 j=0 B w4 v=0 v=0
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If we let x =[X], and y =q[y]q forsome X, ye R then the above polynomial

simplifies to

-1 .
Pp(x, y) = 22 i, 1H[X —Vlp Gl ch[y“"]q Q;QJny»O’
i=0 j=0 v=0

or, in the g-binomial notation,

P(x,y) = g} :Z; [’1‘] ) [Jy] qﬁ)j( o) f0.- (5.12)

In (5.12), if we take the limit as p — 1 then, since q = 1/p, this means that ¢ — 1 also.

Then

filpt = il, [lg > il
[X=V]p =3 X=V, y-vlg = y-v,
D, B fop A Al y fo.0

and hence Py(x, y) in (5.12) tends to

n n-i

Pxy) =2 X (7] (5) 454 foo

i=0 j=0
which agrees with (3.6).

Let J, be the integration rule over A,. To obtain J,, we need the interpolating

polynomial Py(x, y) expressed in the Lagrange form. First we write
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. 11-p-i ]
Yj=fl[]]q=51—_1;/—p =*p—jn

and for simplicity we will drop the subscript p in the notation of [k],. We see also that
the interpolating nodes {([i], [j1/p} ): i,j =0, i +j < n} lie in the union of the three
pencils of lines
x = [i], 0<i<n,
y =) 0<j<n,
x+pKy = [k], 0<k<n.

Hence following section 2.4 , we have

n 1

Patoy) = 2 3, MUGx, y) (01,
i=0 j=0 P

where the Lagrange coefficient Mi“J(x, y) takes the form

ful -1 - n-i—j-1 r
- [v] y — p~Viv] [n —v] —x — p"Vy
M (x, y) = [ —— . .
E \]i}) [i] = [v] E) pIjl —=pVIvl =0 [n—v]-[i] = p*VI[j]

Thus M?J(x, y) has the value 1 at ([i], [j]) and is zero at all other nodes. See also

Figure 5.7 .

Let V?,j be the weight at the node ([i], —g%) Then we have

Vi = jAj M?(x, y) dx dy.
n

It is interesting to compare the weights V} jon Ay and the weights wh ; for the

integration rule on the triangle S, = {(X, y): 0 < x <y <[n]}. For the case n =1, we
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obtain

el 1 ol "
Wo0=P Vo1 Wp1=PVgo and wy,=pV;,

and, for the casen=2,

2 2 2 2 2 v2
W0,0=P* Vo2 Wo2=P* Vo
2 72 2 2
Wo.1=P* Vo1 Wi, =P Vi
2 2 2 2
wi1=P* V), Wr,=P* V5,

These results and those for the other small values of n suggest the following lemma,

where we show that there is a relation between the integration rules I on S, and J;, on

A, for all values of n.

Lemma 5.2 Let ng be the weight at ([i], [j]) on S,. Then the transformation

E=x, M= —l[“;n“ (5.13)

maps S, onto Ay = {(E,m): &, Nn=0, E+p"n <[n]} and the weights w? . into

: -3
V?J , the weight at ([i], %]l) on A, such that

n_ gyl
Wiy = P Vg5

Proof _ First we see that the transformation (5.13) maps: each node ({i], [n - j])
into ([il, %%), and each line y =p"™Vx+ [n-V] onto &+ pYmn =[v]. Hence the

region S, is transformed onto the region A,. Note that the (n + 1)(n + 2)/2
interpolation nodes ([i], Lp%) on A, still lie on the lines

E=[k] or m g(] or E+pkn=[k], O0<k<n




Y p
[n] — /
[i]
S n
y=x
X p
0 [i] [n]

RN
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C+p'y =

o

0 [

Now let us consider the Lagrange coefficient L? n_j(x, y) on S,. From (5.2) we

have

i-1
L. (y) =
g ¥ L ] = [v]

If we apply the transformation (5.13) to L} .

On applying the transformation (5.13) to the second product in L

H X —[v]

55 el

I

v=n—j+1 [V] = [n = j]

i,n—j

n—i—j—1

P PV —[V] _
v=0 [n—j]-pVI[i] - [v]

(x, y), the first product requires no work.

n .
i n_j(%» ¥), we obtain

n

H vl -y

v=n-j+1 [V] = [0 = j]

on putting il = n—Vv. Thus

n

I1

v=nj+1 [V] =

Ml<y _
[n—jl

n—u] = [n] + p™y

joi
-1 !
p=0

-1

u=0

[n-pl-[n-j]

p™ — pH{u]
pifj — pl
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B n-pHpl
w0 Pl — pHp]

The third product in Li“n_j(x, y) is transformed to give

""ﬁ”l y-p¥x—[v] _ “"ﬁ"l [n] — p™n—p¥E — [Vv]

v=0 [n=j]-pVI[i] - [v] v=0 PV[n-j—-v]-pV[i]
= [n—v]—p"¥n -§

v=0 —In—-v]l+[n-j—-v]+[n-v]-][i]

n—iej-1

[n—u] - € - ph-bn
=0 [n— ul - [i] — pr-i-H[j] ’

on writing L =v. Hence L?n_j(x, y) is transformed into

Mp~ . ) - ~ n“P*u[H]
1 uI}) [1]~[u] pi,:[o prilj] - pHIu]

n-i-j-1

[n - p] - & — pi-bq
u=0 [0 —pl - [i] - pr=i-K[j]

the Lagrange coefficient on A,

Finally, we establish the relation between the weights W?n—j and V'i' ¥ of the

rules I, and J,, respectively. We obtain

w?,n—j = J J 1n J(x y) dx dy

n

H M6 m | $85 | ag an

n
pt Vi,j .

H
I

p | [ MiEmdedn
Ap

L et
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Chapter 6

Lebesgue functions and Lebesgue constants
of the interpolating polynomial

6.1 Introduction

Given values of f(x) at n -+ 1 distinct points xg, X1, ..., Xy in [~1, 1], we know
from Theorem 1.2 that there exists a unique polynomial P,(x) of degree at most n such
that P(x;) = f(x;), j = 0, 1, ..., n. Also from (1.2), the polynomial can be written in

the Lagrangian form

n
Py(x) = 2 f0xp) L) 6.1)
i=0

where
e §
n - II S I
Li(x)". Xj— X'
.1=0 ]
J#1

Consider the error in approximating to f(x) by the polynomial (6.1), given by

G, = maxl [ f(x) —Pp(x) I .

-1€x<

It is well known that G;, is not in general the smallest error that can be achieved in

approximating f(x) by polynomials. Let [P,, denotes the class of polynomials p(x) of
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degree at most n. Given f(x) in C[-1, 1], there exists a polynomial p,* in [P, such that

E, = —irsl?él | f(x) —pp*(x) | < —igxa)s(l | f(x) —p(x) !, forall p(x)inP.

If one compares G, with the least error E,;, we have (see [21])

n
< » ;
Gp < E, (1 +_ig§§1 %lLl(x)l)

The function

M) = 2 LTG0 |
=0

which appears in the above comparison is called the Lebesgue function of order n and
the quantity A, defined by
Ap= max_ Ap(x)

-1<x<1
is called the Lebesgue constant of order n. We see that

An(x)) = lL}‘(xj) | = 1, forall j=0,1,...,n.
Also, on taking f(x) = 1 in (6.1), we have

YL =1 (6.2)
i=0)

and hence

n
M) 2 | YL | =1, forallxin[-1,1]. (6.3)
i=0

Let us determine whether A,,(x) = 1 at more than the n + 1 points noted above.
First we consider the Lebesgue function A4(x) on [-1, 1], constructed at the points
xg=—09, x;=-02, x9=0, x3=0.3 and x4 =0.6 .

Note that the Lagrange coefficients of A4(x) take the form
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Lo®) = 1737 % + 2)(x — 3)(x — .6)
L1 = 55 (% + 9)(x — 3)(x - .6)
Lo = X (x + .2)(x - 3)(x - .6)
L3(x) = 587 % + 9 + 2)(x - .6)

Ly(x) = ﬁ (X +.9)(x +.2)(x —.3) .

The graph in Figure 6.1 reveals that A4(x) = 1 at xq, X1, X3, X3 and x4 and A4(x) > 1 at

all other points of [~1, 1].

In the following lemma, which is well known, we see that, for all n 2 2, A (x)

cannot assume the value 1 other than at the interpolation points xg, X1, ..., Xy
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Lemma 6.1 Let —1<xp<x;<...<x,;<1and let A,(x) be the Lebesgue function

defined on [-1, 1]. Then

G M) =1 on [xg, %] and Ay(x) > 1 on[~1, 1]\ [xg, X1].

(ii) Forn2>2, Ay(x) > 1 on [-1, 1]\ {xq, Xy, ..., Xp}-

Proof We begin with the case n = 1. For any x € [xg, x1], we have
1,.,_ X1 —X 1,.,._ X—Xp
Ly&x) = X1 = X0 20 and Li(x)= X %5 © 0
and thus, for xg<x <xq,
o | 1 1 1
ME) = 1L |+ ILix) | = Lyx) + Lj(x) = 1.

For any -1 <x <xq, Lo(x) >1 and L;(x) is negative, therefore A;(x) > 1. Similarly

if xj<x<1 then Lg(x) <0 and Ly(x) > 1, therefore A;(x) > 1.

Next, consider the case n = 2 and suppose that Ap(x) = 1 for some x € [xq, X]
\ {xqg, X1 ...» Xp}. (We will consider x € [-1, xg] U [xy, 1] later.) Then from (6.2)

we have

¥YiLtwl = | Y L .
i=0 i=0

This means that all L?(x) have the same sign. Now each L?(x) has the value 1 at x; and

has simple zeros at x;, j # i. Therefore the function satisfies

L;'(x) 20 on [x;_1, Xj41] and L;‘(x) <0 on [xi2,Xi-1] U [Xje1> Xig2l.  (6.4)

Similarly, we have
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L 1(x) 20 on [x9 %] and LI ;(x) O on [Xi3, Xi2] U [Xp, Xj41]

and
L ) 2 0 on [x;,x42] and LY (x) <0 on [xi_1, %] U [Xj42, Xi43).

On examining the three Lagrange coefficients L?_l(x), L?(x) and L?ﬂ(x) on

the interval (xj_1, X;) U (X}, X54.1), We see that either Li"_1 or L?+1 is negative. See

Figure 6.2 . This gives a contradiction. Thus

n
M) = D ILYx) | > 1 on [xg, x41\ {X0, X1, s Xp)
i=0

because we know from (6.3) that A,(x) = 1 for all x € [xq, X,].
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To complete the proof, we consider the value of A,(x) on the end-
intervals [-1,%g) and (xy, 1]. From (6.4) we see that Li(x) >0 and Ly(x) <0 in
(xg, x1) and neither coefficient has any zeros in [-1, Xg). This means that L'l'(x) <0
and L'2‘(x) >0 on [-1, xg). Therefore Ay(x) # 1 forall x € [-1, xp) for otherwise

all L{(x) would need to have the same sign at some point on this interval. Hence

Ap(x) > 1 on [-1, xg). Similarly A,(x)> 1 on the other end-interval (xp, 1].

It is interesting to extend this idea to consider a two-dimensional Lebesgue

function and Lebesgue constant of the interpolating polynomial P,(x, y; q).
Specifically, given a function f defined on a triangle S, = {(x, y): 0 <x <y < [n]},

we consider the polynomial

.
Pa(x,y; @) = i LIy ) £y
i=0 =0

Then Py([i], [i]) = £; 7 0 <1i<j<n, and the Lagrange coefficients take the form

n :
Li,j(x’ ¥ Q)

q-@n-i-njz 1 n j=i-1
=TT g (x ~[vD vl -y (y —qVx — [vD. (6.5)
[ — 11 n - 31! el vgl x]/;[()

We now define, in an obvious way, a two-dimensional Lebesgue function of order n

by

n o _j
Ale ygy= Y ¥ [LZ vl (6.6)
j=0 i=0

Clearly, A,(x, y; q) = 1 at the interpolating nodes {([i], [jI): 0 €1 £ j < n} and,

similarly to (6.2), we obtain

n _Jj

;0 iZO Ly = 1 6.7)
J =l

T LT T DTN G PnT
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and hence A (x, y; @) = 1 forall (x,y) € S,. We also define the Lebesgue constant of

order n

Ap(Q) = (X, y; Q).

os;rslg)é[n]
The simplest case to consider is the function A;(x, y; q) defined on S;. Since
all points on S; satisfy 0<x<y<1,wehaveforallq>0
ME Yy, =11-yl + ly-xI + Ix] = 1.
This means that

A(Q) = AM(x,y;q9 =1 forallg>0.
(@ = max My =1 forallg

XSy

The other cases are not trivial due to the complexity of L? 3 x, y; -

In the rest of this chapter, we will investigate further the behaviour of the
Lebesgue function defined in (6.6) and its corresponding Lebesgue constant. To obtain
conjectures concerning properties of A,(x, y; q), for a fixed value of q > 0, we shall
plot the surface of this function using a Unimap package [26]. We will write a program
(again in Pascal) to create a data point of A,(x, y; q) for the package. Then we will
examine the existence of maximum points of A,(x, y; q) over S,,. We also will prove
an analogue to the Lemma 6.1 concerning the value of A, = 1 at points other than the
interpolation nodes. In section 6.5 we proceed with the study of Lebesgue constant
and show that A (q) are symmetric. In the last section we analyse the discontinuity of

the directional derivative of A, atx = [k],y=[k], y = qk x+[k], k=1,...,n-1.

6.2 Surface plots of Lebesgue functions

We begin by writing a Pascal program to evaluate the Lagrange coefficients

L;:i(x, y; q), where n is fixed positive integer. Letq > 0 and (x,y) € S,. For any

pair (i, j), 0<1i<j<n, we evaluate each product
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i-1 n il
[Tx-vb., JI avi-y) and J] (y—qx—[vD)
v=(

v=0 v=j+1

of L?J(x, y; q) and add all absolute values of L'i]j(x, y; q) to give A (X, y; q). The

resulting Lebesgue function is denoted by the Pascal function LN(x, y: real): real.

Then we choose a regular grid on S, with the grid spacing d, say, so that the set of grid
nodes includes the interpolating points {([i], [j]): 0 £i <j <n}. To create a data point

for z = A, (X, y; q), we evaluate the function LN(x, y) at these grid nodes and the

arrange values of x, y and z in three separate columns. A program for the evaluation

of A,(x, y; @) is given in Appendix 6A.

We are now ready to plot the surface of A,(x, y; q), using the Unimap package.

Unimap reads the data points as irregular data and generates a new set of regular data
before plotting the surface. This is done under a Unimap interpolation method (which
we chose as bilinear). The method replaces the original data points by a more dense
regular grid of nodes. To plot the surface of A,(x, y; q) over a triangular area, we need
to define the region. Otherwise the new regular data points and the surface plotted are
based on a rectangular area. A region is defined as a number of border descriptions

which are sets of (x, y) coordinates. The region chosen here overlaps S, each side

being increased by an amount d, the grid spacing. Note that, if the region is chosen to

be precisely S, Unimap plots the surface only in the interior of S,.

First we plot the surface of z = A4(x, y; 2) over S4 using the grid node spacing
d=0.2. A brief Unimap plotting instruction sequence is given as follows.
DATA /IRREGULAR /READ /.., To read a data points stored in the file data.dat .
INTERPOLATE / GRID CELL /.., To interpolate the data points into a specified
number of grid cells.
METHOD /.., To choose an interpolation method.
DATA /REGION/READ /.., To read a region data stored in the file reg.dat .

O Il - T NN - 2 S ] RN T o
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MAP / GALLERY /.., To choose a map type required, e.g. 3D-contour.
LAYOUT / AXES /.., To add primary or vertical axes and scale.
STYLE /3D / VIEWPOINT /.., To get 3D-viewpoint from a position above the

X-Y plane by specifying Elevation and Azimuth.

Figure 6.3 shows the 2D grid representation of A4(x, y; 2) where the surface

has been plotted over the whole triangular region. Also, on using the same data
for A4(x, y; 2) and for the region, Figures 6.4 and 6.5 give 3D-contour representation
of the surfaces with the viewpoint 75; 70 and 90; 320 respectively. Note that, if we
view-the diagonal side of the surface from the horizon, we see that the surface covers

both ends of the diagonal boundary. These Figures also indicate that A4(x, y; 2) has

minimum values at the interpolation nodes of f(x, y). From (6.5), we know that these

values are 1.

(=]
5]
[
B
=L
e

15.0

12.56

10.0

ABOVE

2025

0.0 2.5 5.0 75 10.0 12.5 15.0

Figure 6.3: The map (2D-grid) of A4(x, y; 2).
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Figure 6.4 : The map (3D-contour) of A4(x, y; 2), viewpoint 75; 70.

it
'I'fo'l,' Ny

:II ":t' x’ 5

| ER

o
(@]

LIRS0 B N I A I

1
(@]

Ad
(@]

S

Figure 6.5 : The map (3D-contour) of A4(X, y; 2), viewpoint 90; 320.
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6.3 Peaks of the Lebesgue functions

We noticed from the surface of A4(x, y; 2) over Sy, that the contour of a higher
peak hides away some contour of the lower one. Since the value of q = 2 is large, only
the higher peaks of A4(x, y; 2) are well plotted. To overcome such a disadvantage, we
choose q close to 1. This reduces the height of the higher peaks considerably and

reveals more features of the surface in the vicinity of the lower peaks. Let us consider

the Lebesgue functions A, (x, y; q) where n =2, 3 and q = 1.1, 0.5. In Table 6.1, we

summarise some of the plotting information used in the mapping of these surfaces.

Order Grid Number of Number of  Surface Map Anx, y; Q)

n mesh d data grid cells viewpoint type Surface

q = Ll

2 0.1 253 80 x 80 60; 120 3D-LINE Figure 6.6

3 0.05 2278 100 x 100 35,70 3D-LINE Figure 6.7

3 0.03 6216 160 x 160 2D-LINE Figure 6.8

= 0.5

2 0.05/ 1281 120 x 120 75:238 3D-LINE + Figure 6.9
0.025 PROJ

3 17.05/ 1036 140 x 140 2D-LINE Figure 6.10
025

3 1/.05/ 1036 140 x 140 50; 215 3D-LINE Figure 6.11
025

Table 6.1

Note that, we have used a different grid spacing for the case where q =0.5. On S,
we chose d =0.05 and 0.025 for 0<y <1 and 1<y <1.5 respectively. On Ss,
we chose d =0.1, 0.05 and 0.025 for 0<y<1,1<y<15 and1.5<y<175
respectively. We see that A»(x, y; 1.1) has only one maximum, and Asz(x, y; 1.1) has

six maxima and one minimum point, ([1], [2]). The surface of A(x, y; 0.5) possesses
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Figure 6.6 :

The map (3D-line) of A,(x, y; 1.1).

Figure 6.7 :

The map (3D-line) of Az(x, y; 1.1).
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Figure 6.8 : The map (2D-line) of A3(x, y; 1.1).

Figure 6.9: The map (3D-line) of A,(x, y; 0.5).
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Figure 6.10 : The map (2D-line) of As(x, y; 0.5).
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Figure 6.11 : The map (3D-line) of A3(x, y; 0.5).
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one maximum, and Az(x, y; 0.5) has three maxima and one minimum. Note also that,

in Figures 6.6 and 6.8, there are substantial gradient changes at the lines x = [i], y = [j]

and at the interpolation nodes respectively.

Let us examine the existence of all maximum points of A3(x, y; 1.1) in the
subregions of S3. Divide S along the lines y = [V], y = ¢Vx + [V] and x = [V], where
v = 1 and 2, to give nine subregions Aj, A, ..., Ag, say as shown in Figure 6.12.

We see that the six maxima points of Figure 6.8 lie in Ay, Az, A4, Ag, A7and Ag.

(3]
A5 A7 A9
A6 A8
A4

(2]

A3

1
[]Al

i J2
To determine whether each of the other subregions also possesses a maximum point,

we refine the data points of A3(x, y; 1.1) and produce its 2D-LINE plot on a suitably

small area in the subregion. The details of the plotting are as follows.

Subregion Area chosen spacing d No. of grid cells Surface

Ay 025<x<y-025 0.01 110 x 54 Figure 6.13
08<y<11

As 0<x<y 0.03 200 x 27 Figure 6.14
25<y<29

Ag 1.9<x<y 0.005 150 x 75 Figure 6.15
26<y<28

Table 6.2

Wiz
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Figure 6.13 : The map (2D-line) of A3(x, y; 1.1) over subregion A;.
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Figure 6.15 : The map (2D-line) of A3(x, y; 1.1) over subregion Ag.
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The information in Table 6.2 suggests that A3(x, y; 1.1) possesses at least one
maximum point in each of its subregions. If we choose g = 2 then some contour-lines

on the lower peaks are lost due to the very large contours difference on the highest

peak. The surface of A4(x, y; 2) in Figure 6.4 already exhibited such a phenomenon.
However A,(x, y; q) does not always possess a maximum in every subregion of S;,.

This is shown in the example below.

Example 6.1 Consider the function A,(x, y; q), q > 0 and divide S, = AABC
into four subregions Ay, Ay, A3 and Ay by lines joining the middle nodes D, E and F.

See Figure 6.16. We seek maximum points of Ay(x, y; q) on these subregions.

2) [ - -
A2 s A4
[ 2 ¢
Al
0'A
Figure 6.16

We obtain from (6.5) and (6.6) that

z = MX,y;q = Il—y[12|][2]—yl 4 |[2]—)£1| ly —xI Il l[%l]_yl

Iy—xlly—qx-ll+lxlly—xl Ixl 1x — 11

* al2] a T oagg ~ B8

Let zi(x, y) be the surface section of Ay(x, y; q) on subregion A, k=1, 2, 3 and 4,

and write




zo(x, y) =

Then each function zy(x, y), k = 1, 2, 3 and 4, can be written as follows.

q

(21=-Y=-x) x([2]-y)

-+
q q

2]-y) (y-x)y-gx-1) x(x-1)

X(y—X).

z1(x,y) =

za(x, y)

1]

z3(x, y)

Z4(X, Y) =

A -y
73

[2]

ql2]

ql2]

(2]

ql2]

_ A=y =) Y -2y ~qx—1) x(x-1)

q(2]

Q-2 -y) G-x(-gx-1) x&x-1)

(2]

ql2]

q[2]

(A -zl -y
[2]

q(2]

=y —gx-1)  x(x-1)

q[2]
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+ zo(X, y)

+ zp(X, y)

+ 2o(x, y)

+ ZO(X, Y)'

We now determine the relative maxima of A,(x, y; q) and the results are summarised in

the Tables 6.3 and 6.4 below.
zy(x, y) z9(x, y)

o0z 2 2
- 1 (y —2x) ~ a2 2x-1)
oz 2 2
ay - a2l Qy-[2]x-1) 2] Ry-2-q)

sa ; 1 2 1 2+
Critical point (§*_—a s 3_:—_(]) (5 > _Z_Cl)
(x0. Y0)
Condition on 0<x9<yp xp20
q such that yo<s1 qxg+ 1 <yp<[2]
(X0, Yo) € Ak =0<qx<1 =q>0
A 46-q), 16,

q4[2] ql2]

Table 6.3
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z3(x, y) z4(%, y)
o0z 2 2
P q(y—2X) a2 ([2]y —2qx - 1)
0z 2 2
— —=Ry-—x-[2 —=Qy-x-[2
w q()’X[]) q(yx[])

o ; 2] 2[2 2429g-1 292 +2q-1
Critical point (u [ ]) (q 3q _ql , 9 34 _ql )
(XO) }’0)

Condition on xg<1 xg21
q such that 1syp<gxg+1 X0 Sy S (2]
(x0, Y0) € Ak =1/2<q<2 =q>1
(q#1)
12 4(3q - 1
A —=>0
q? q%(1 + q)

T

In these tables A denotes the value of

sxoa (FEg
ox2 9y?2  9x dy

evaluated at (xg, yg)-

We see that the existence of a local maximum in each subregion depends on

varying conditions on q. Hence the Lebesgue function does not necessarily have a

local maximum in every subregion of S,. We note further that, if q — 1, then the local
maxima points of A(x, y; @) tend to (1/2, 1), (1/2, 3/2), (1, 3/2) and (2/3, 4/3). The
first three are the middle points of the boundaries of A3 and the last point is the centroid

of Az. We also notice that if a local maximum of A,(x, y; q) exists in a subregion, then

it is unique.
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6.4 The characteristic nature of the Lebesgue functions

In the case of the one-dimensional Lebesgue function, we showed in Lemma

6.1 that A (x) > 1 forall x € [-1, 1]\ {xg, X1, ..., X3} . We now show that this

property can be extended, in the two-dimensional case, to A,(x, y; q). First we state:
Lemma 6.2 Let Ax(x,y; q) be the Lebesgue function defined on S,. Then

M, y;q>1
if (x, y) is not one of the interpolation nodes on S,.

Proof Suppose that for some point (x, y) in Ry = S\ {([i], [j1): 0 <i<j <2},

2 ]
My =D, D, |L?J(x, vl = 1,
=0 i=0

Then, on using property (6.7), we have

2 |
Zi ILix vl = |Zi Lyl .

=0 =0 =0 i=0

This implies that each Li2 J(X’ y; @), 0 <1 <j <2, has the same sign at these points.

Now divide S, = AABC into four subtriangles as shown in Figure 6.16. Let us
verify the sign of Lizd.(x, y; @) on each of the subregions. We begin with the first three

Lagrange coefficients Ly, Ly and L. Here we have used Lg = Li(x, y; @) to denote

the Lagrange coefficient with respect to the interpolation node K on AABC. We see

that each Ly is expressible as a product of two linear forms, so that
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LK(X) = C (alx + bly + Cl) (a2x + b2y + 02)

and therefore Ly is zero only on the lines a;x + by +c; =0and agx + bpy +cp =0
and changes sign on these lines. See also Figures 6.17, 6.18 and 6.19 (in Appendix
6B) which show the surfaces of Lagrange coefficients L, Lg and Ly respectively.
Note that each Ly has the value one at the node K and is zero at all other interpolation
nodes. Hence the single value at the node K determines the sign of Lg on AABC and

the lines (which contains the other interpolation nodes) separate AABC into regions

where Lg has a constant sign.

A A A
Signof L o Signof L Signof L
Figure 6.20

In particular, let us determine the sign of Ly = (1 — y)([2] — y)/[2]. Since L, is
positive at A, the same sign is maintained in the interior of subtriangle ADE and, in the
interior of the lines AE and AD. This means the sign of L, changes to negative in the
interior of subtriangles BEF, DEF and CDF, and in the interiors of the lines BE, EF,
DF and CD because these parts lie on the other side of the line DE. Note that, the signs
of Lg and Ly are determined similarly and both are shown in Figure 6.20. We see that
L4, Lg and L do not have the same sign in the interior of

(i) the subtriangles AED, BEF, DEF and CDF,
(ii) the lines DE, EF and FD,

(iii) the outer lines AE and BE.
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To complete the proof, we consider the sets {Lg, Lg, Lo} and {Ly, Lp, Lc}.

By symmetry, each set does not have the same sign on the sets (i) and (ii) above and

also on the lines BF, CF and AD, CD respectively. Hence the six Lagrange

coefficients do not have the same sign at any point of Ry. Thus no point in Ry where

A, has the value one and, since A, 2 1 on AABC, this means A,(x, y; q) > 1 on Ry.

Lemma 6.3 Let R, = S; \ {([i}, [i1): 0<i<j<n} where n23. Then
A, y;q@ > 1 forall (x,y) € R,

Proof Lemma 6.2 dealt with the case where n = 2. For n 2 3, suppose that
An(%, y; @) = 1 for some point (x, y) € R,,. Using the same argument as in Lemma

6.2, we see that all the Lagrange coefficients L;‘ 3 (%X, y; @), 0 £i £j <n, must have the

same sign at these points.

Let us divide S, into triangular subregions by drawing the lines x = [v], y =[V]
andy =qVx + [v] wherev =1, 2, ..., n— 1. We will determine the sign of L? ’j(x, y; Q)
at all subregions of S;,. However it suffices to find the sign on any subtriangle ABC of

S, of the form
AABC = {(x,y): x2[il, y<[j+2], y2qg-ix +[j-i]}

where 0 <i<j<n-2. We see that the subtriangle ABC contains six interpolation
nodes {([i +1], [j+s]): 0<r<s<2}. See Figure 6.21. The lines joining the middle
nodes of AABC, thatis, x =[i+ 1], y= [+ 1] and y=qgi-+1x +[j—i+ 1] divide
the subtriangle further into four subregions ADE, BEF, DEF and CDF.
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[i+2] B
[j+1] E
jH 5
y=q x+[j]
[i A
fi] [i+1] [i+2]
Figure 6.21

We know that each Lagrange coefficient, L? j(x, y; q) in (6.5) consists of n

linear forms which pass through all interpolation nodes except the node ([i], [j]).

Therefore the sign of each L?J(x, y; q) remains unchanged in any subregion formed by

the above linear forms until a boundary is crossed. Of the (n + 1)(n + 2)/2 Lagrange

coefficients L;‘J(x, y), we will restrict our attention to the six Lagrange coefficients

associated with the nodes on the subtriangle ABC. We see that the previous argument

in Figure 6.20 of Lemma 6.2, also applies to the above AABC. Therefore we have

shown that not even six L?,j(x, y) named above have the same sign on

AABC \ {(i+r}, [[+s]):0<r<s<2}.

This implies that all L? j(x, y), 0<i<j<n donot have the same sign on any point in

R;,. Thus, there are no points in the region R, such that A,(x, y; q) = 1. Finally, since

An(x, y; @ 2 1 forall (x, y) € Sy then Ay(x, y; Q) >1onR,,.
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6.5 Lebesgue constants

In this section, we shall investigate two properties: first, the minimum value of

the Lebesgue constants and second, the symmetric property of the constant. We know

that the Lebesgue function on S, is bounded below by 1 and

min  ApX,y; Q=1
(X, )G Sﬂ

holds for all n and g. On taking the maximum value of the Lebesgue function we shall

investigate the variation of

Ap(@) = max  An(x,y; Q)
(X:Y)G Sl’l

with respect to n and q. The case n = 1 is exceptional, since A(q) = 1 for all g > 0.

We now evaluate A,(q) for n = 2, 3 and 4, and compare A (q) for different

values of q. In our numerical experiment we have taken values of q between 0.3 and

4.0 . For each g, we chose a small grid spacing for the mesh on S, so that the value of

A, (q) is correct to three decimal places. Note that, for a given q

max _ AX,y; Q) £ max  Ay(x,y; Q)
x.)eG x.y)€Sq

where G is the set of grid nodes on S;. Hence the approximate value of A,(q) does not

only depend on the smaller grid spacing, d, it is also depends on how close is the grid
mesh to a maximum point of A,(X, y; Q). We now give the approximate values of

Aq(q) forn =2, 3 and 4.
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q MA@ As(q) Ay@
4.0 3.326 37.602 1826.140
3.0 2.687 17.733 362.349
2.0 2.067 6.884 43.465
1.5 1.778 3.967 12.142
1:25 1.700 2.983 6.333
1.1 1.673 2.552 4.374
1.05 1.668 2.387 3.890
1.005 1.667 2.279 3.513
0.95 1.668 2.394 3.914
0.9 1.674 2.553 4.491
0.8 1.700 2.983 6.332
0.7 17152 3.656 10.064
0.5 2.067 6.884 43.466
0.4 2.374 11.357 133.970
0.3 2.899 23.213 650.651
Table 6.5

We see from Table 6.5 that the values of A,(q) decrease as q approaches 1. We

conjecture that Ap(q) attains its minimum at ¢ = 1. In Appendix 6C, we give a detailed

calculation of the minimum of A (q) through the sequences of g-values

0.957, 0.962, ..., 0.997

and 1.052, 1.047, ..., 1.002.

Although this result strengthens our belief that the conjecture is correct, we have no

proof of this.

If we seek the minimum values of Ap(q) forn=1, 2, 3, 4 and 5, we obtain:
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Degree n L 2 3 B 5
min Ay(Q) l 1.000 1.667 2.274 3.890 6.638
0

We note that, for the values of n considered, min Ap(q) increases as n increases.
>0

Let us refer again to Table 6.5. On comparing A,(q) with A (1/q) forn=2,3

and 4, we obtain

A;(0.95)

I

Ay(1.05), A, (0.90)

I

An(1.10),

A40.80)

it

A (1.25), AL(0.50)

I

Ap(2.00).

The result suggests that A,(q) is invariant under a transformation q — 1/q. We show

that this conjecture is correct.
Lemma 6.4 Forn=1,2,3,... the Lebesgue constant satisfies Ap(q) = Ay(1/q).

Proof. Let L?,j(x, y; 1/q) be the Lagrange coefficient of the interpolating
polynomial on the triangle S;(1/q) = {(x, y): 0 x £y <[n}/q"™-1}. From Lemma 5.1
we have

Loy V) = Lo €ms ).
where

x = (n]-m)/g™! and y = ([n]-&)/q™1.

Hence, the Lebesgue constant on S, (1/q) is transformed into

n

J
A1) = max >3 | LYy V)l
OSxSys[n]/q“—1 =0 i=0
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n
=  max }j | L. & mol. 6.9)
0<&<n<(n] Jg(‘) =0 o

Now substitute r=n—j, s =n—1i and change the order of summation in (6.9), to
give
n

S
Ap(l/g) = | L2 Ema)l = Aq(g
(W) = e gzﬁo e g a(@)

This complete the proof.

6.6 The discontinuity of partial derivatives of the Lebesgue functions

Let us consider the surface of z = Ay(x, y; q) over the subtriangles A;,i=1, 2,

3 and 4, as shown in Figure 6.16. We know from Lemma 6.2 that, on any of the
subtriangles A;, the surface of z is always above the plane Z = 1 and it assumes the
value one only at the vertices of the subtriangle. If we restrict z = A5(x, y; q) to the
interior of A;, then z reduces to a polynomial and hence all its partial derivatives exist
and are continuous. We notice also that the gradient of z changes considerably at the

boundaries of the subtriangles.

First we find partial derivative of z at the adjacent boundary of A3 and A4. Here
it is appropriate to consider the function z in the subregion A3z U A4. Using (6.8) and

the fact that 1 £y <[2] and x <y < qgx + 1, then z can be written as

_ IxI Ix — 11
z= g(x’ y) . (][2]

where g(x, y) is a polynomial that does not change sign in A3 U Ay4. For any point

(x, y) € the interior of A3, we have




162

j =
Z= g(x9 Y) + L(E]Tﬁ&)‘
and hence
9z _dglx,y)  1-2x
ox  ox q(2]

Similarly, if (x, y) € Ay
x(x-1)

zZ = g(x, y) + W
and
Q_%_ _ag(x, Y) g 2x -1
x  ox ql2]

On taking the limit of dz/dx as x approach the boundary, we obtain

oz _ odg(l,y) _1 -
T o apy B+l fomas, b

and

= 5 oy Bx- 1" from Ay. (6.11)

Hence 0z/dx is discontinuous across the boundary. On the other hand, there is no

discontinuity of dz/dy along the boundary since dz/dy = dg(1, y)/dy forall 1 <y <[2].

We note also that the slope of z on the opposite side of the boundary may not

necessarily of different sign. In particular, since

__0-y@l-y |, (21-9@-% , (2]-yx
BB~ =T ¥ q I

_ =0 -—gx-1)  x(y —X)
ql2] q

then
9g _ 2[2ly —4qx —2x -1
ox q[2] :
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From (6.10) and (6.11), we see that

_2 < lim a_z < —(q-—l) forall 1<y <[2]
q x—1= 0X
and
2 dm % b Sorsll fuyelad
B ¥ SFEST Ry

0< lim %

9z _ 29
Ly 1w < 2] forall 1 + ]S <y<[2].

Therefore if 0 <q < 1, the slope on both sides of the boundary remains negative for all
1€y<1l+ [%T and x is sufficiently closed to the boundary.

We now generalise the above result to the partial derivative of any Lebesgue

function Ay (x, y; q) at adjacent boundaries of subtriangles of S,. We obtain:
Theorem 6.1 Let S, be divided into subtriangles by the lines
x=[v], y=[v] and y=q'x+[v], v=1,2,...,n-1.

Then the directional derivative of A,(x, y; q) at the interior boundary of any two

adjacent subtriangles is discontinuous in all directions except along the boundary.

Proof The subdivision of S;, produces n? subtriangles. However it suffices to

prove the discontinuity at the following n(n — 1)/2 subtriangles ABC of the form
AABC = ((x,y): y=[j], x<[i] and y <g-*1x +[j—i+ 1]}

where j=1,2,...,n-1 and i=1,2,...,].
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G+1] D

i+1 .
q X + [j-i+1]

]| A

Hoo
y=q x+[H]

[i-1] [i]
Figure 6.22

First we consider the Lebesgue function A,(x, y; q), defined in (6.6) over the region
AABC U AABD. Here we have the segment AB, the boundary of two adjacent
subtriangles AABC and AABD and it lies on the line y = gi-#+1 x + [j —i + 1]. We see

that each L;'J(x, y; @), 0 <1i<j<n, does not change sign within a subtriangle, but
only when a boundary is crossed. Hence, the Lebesgue function on AABC U AABD

can be written as two sums,

My = X Lol + X , | Lyl

where the second sum has all terms which contain the form y — gi-i+1x — [j —i + 1].

The first sum is a polynomial and for simplicity we let

2 Lol = gxy).

On factoring the second sum, we obtain

2, Lyl = ly-g-*x+[j-i+1]1 h(x,y)
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for some polynomial h(x, y). Thus the Lebesgue function can be written as
A, y; @) = g, y) + ly—g-i*lx+[j—i+1]1 h(x, y).

Note that, g(x, y) and h(x, y) do not change sign and both are positive in the interior of

AABC U AABD. The reason for the latter is that each function is a sum of moduli and

hence can only be zero if each term is zero.

Now let us find the directional derivative at any two points Q; and Q, in AABC

and AABD respectively. For all (x, y) € the interior of AABC,

A%y @ = g(x,y) —(y —gi+lx — [j—i + 1]) h(x, y).
This gives
oA og

L = _ (y- qj~i+1x —fj-=441]) Ql_l i qj-i+1h,
ox ox

n —
ox

Jg
dy

oAy =28 _ (y-gHHig—[j—i+ 1])9ll == R,
dy dy

Then the directional derivative at Q in the direction of 6 is given by

dA, A, Ay
HS—=XCOSG + 5—;-sm6

oh

= £9§cose + i3—‘3sine — (y—qgHitIx —[j—i+ 1])( hcos9+a—hsin6)
) ox dy

gx y
+ gi-i*lh cos 6 —h sin 0,

evaluated at the point Qg in AABC. Similarly, we have for any (x, y) € interior AABD
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xn(x: y; (1) = g(X, Y) + ()’ 2= qj—i+1x = [J —i+ 1]) h(X, Y)

and
% ag + (y—-qgHlx —[j—-i+ 1])_ — gi-itlh,
x  ox
. - % + (y—qi-itlx - [_]-l+1])—" + h.
dy  dy dy

Hence the directional derivative at Q, takes the form

S

. Qg—cose + g—gsine + (y—qj"i+1x—[j~i+1])(%c089+§hsin 0)
dy ox dy

o,

§ ox

— gi-i*lthcos @ +hsin @,

evaluated at the point Qy in AABD.

Let Q = (a, b) be any point in the interior of AB. On taking the limit of dA,/ds

as Q; — Q, we obtain

by S _ 8@b) o dgab)

n® + gi-i+1lh(a, b) cos 6 — h(a, b) sin 6.
e ® T ox 3y ¥

Similarly, if Q; — Q then

dr
lim dsn = 95(8, b) cos O + dg(a,b)

sin @ — gi-i*lh(a, b) cos O + h(a, b) sin 0.
Q2—Q ox dy

Thus directional derivative at Q is continuous if and only if

gi-i+1h(a, b) cos ® — h(a, b)sin® = 0 (6.12)
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Since h # 0 on the interior of AB, then the directional derivative at Q is continuous if
and only if © = tan™! (gi-i+1), the direction of AB itself. This completes the proof for

the discontinuity on the boundary AB.
Finally, we note that the discontinuity at the other boundaries of AABC can be
dealt with similarly. In fact, if Q is in the interior of BC or interior of AC then equation

(6.12) reduces to hcos 8 =0 or hsin 6 =0 respectively.

Bt Sk




Appendix 2 Evaluation of forward difference formula of the

interpolating polynomial on q-triangle

program pned;
const
nmax = §;

type DDfij = array[0..nmax, 0..nmax, 0..nmax, 0..nmax] of real;

var

f: text; n, m,k, 15,1, j: integer;
q, fvlue, x, y, x1, y1, psum, pp: real; d: DDfij;

function F(, j: integer): real; {to calculate f([i], [j])}

var fij: real;

begin

fij:= 0.003*(1—exp(*In@))/(1—q);  fij:= fij + 0.01*(1—exp(j*In(q)))/(1-q);
fij:= exp(fij); F:= fij;
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end;
function bmial(x: real; s: integer): real; {to calculate the g-binomial coefficient}
var
i, r: integer; B: real;
begin
if s>0 then
begin
Bi=1; ri=s; fori=1 to s do
begin
B:= B*((1-exp(x*In(q)))/(1-exp(r*In(q)));
X:= x—1; ri=r-1;
end;
bmial:=B;
end
else bmial:= 1;
end;

begin {main program}

rewrite(f,'pned.out');

writeln(‘Enter the degree of the polynomial and the value for the g-integer');
readln(n, q);

for m:=0 to n do
for k:=0 to m do
d[0, 0, k, m—k]:= F(k, m-k);

writeIn("The list of D(O)D(0)f(j) is '); writeln(f, "The list of D(0)D(0)f(ij) is

for m:=0 to n do
for k=0 to m do

begin writeln(d[0, 0, k, m—k]); writeln(f, d[0, 0, k, m-k]); end;
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for ;=0 to n-1 do
for s:=0to n-1-r-1 do
for i:=0 to n-1-r—s do
for j;==0 to n—1-r-s—i do

begin

d[r+1, s, i, jl:=d[r, s, i+1, j] — exp(r*In(q))*d[r, s, i, jl;
d[l('l, s+1, i, jl:=d[r, s, i, j+1] — exp(s*In(q))*d[z, s, i, jl;
end;

writeln("The list of D()D(s)f(0, 0) is: ");
writeln(f, "The list of D(r)D(s)f(0, 0) is: ');
for m:=0 to n do
for k=0 to m do
begin writeln(d[k, m-k, 0, 0]);
writeln(f, d[k, m—k, 0, 0]);

end;
writeln('Enter the chosen point (x, y)"); readln(x, y);
fvlue:= exp(0.003*x + 0.01*y);
writeln("The value of x is ', x); writeln('The value of y is ', y);

writeln(f, "The value of x is ', x);  writeln(f, 'The value of y is ', y);
x1:= In(1-(1-q)*x)/In(q);
y1:=In(1-(1-9)*y)/In(q);

psum:=0;
for m:=0 to n do
for k=0 to m do
begin
pp:= bmial(x1, k);
pp:= pp*bmial(y1, m—k);
pp:= pp*d[k, m-k, 0, 0];
psum:= psum + pp;
end;

writeIln(‘The value of Pn(x, y) is ', psum);
writeln(f, 'The value of Pn(x, y) is ', psum);
writeln("The value of f(x, y) is ', fvlue);
writeln(f, 'The value of f(x, y) is ', fviue);
writeln("The error is ', psum — fvlue);
writeln(f, "'The erroris ', psum — fvlue);
end.

Aok
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Appendix 3 On the reducibility of the Lagrange coefficients

Let Lg o, y) be the Lagrange coefficient of the interpolating polynomial on the

g-triangle as given in (3.17). From Lemma 3.7 and Lemma 3.8, we showed that the
Lagrange coefficients Lg O(x, y) =0, n = 2, 3 are reducible. To discuss whether this

property holds in general let us consider

L?).o(x, y) = Lg,o(x, y) + ﬁ'— x—-1Dx—-[2Dx-[3]) + [—’;]L‘ (x - D —[2])
XY X
+ o - DO =D+ G &0 - D - 12D+ gy & - DO - 2D~ 3D.

We use MacTutor package [ 2 ] to plot some graphs of Lg ol%s y) = 0 and these

are shown in Figures 3.7 to 3.12. We see that all the graphs of L?) o(%, y) = 0 are

symmetric with respect to the line y = x and when q > 1, the graphs splits into four
branches of "hyperbolic" form. When 0 < q < 1, the graphs split into two closed
curves in two different configurations, one inside the other if 0 < q < 0.71 and two
separate closed curves if 0.73 < q < 1. The transition between these two phases is not
clear, the best possible picture available (see Figure 3.9) shows that the graph might

look like two ellipses. We examine this idea further algebraically.

Consider the graph of Lg ol%; ¥) = 0 with g = 0.72. Suppose that the graphs

split into two ellipses ABCDEF and GHIJKL. Then each ellipse must satisfy
(x+y—a)2+b(x-y)2=c2, forsome constantsa,b,c
where the axes are y — x = 0 and y + x = a respectively.  The ellipses must pass
through 14 interpolation nodes of the g-triangle. Using just three nodes ([1], [0]), ([2],
[0]) and ([2], [1]) from the six interpolation nodes of the first ellipse ABCDEF, (the
others are ([0], [1]), ([0], [2]) and ([1], [2])), we obtain
b=1/3, a=(@+2q)/3 and c2=4(1 +q+q2)/9.
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Therefore the equation of the first ellipse ABCDEF is

(x+y—-2(1+[2D)/3)2+ (x-y)2/3 = 4[3]/9.
The other eight nodes must lie on the second ellipse GHIJKL. Substitute the first two
nodes ([1], [1]), (I2], [2]) to gives a =2 + q and ¢ = q. Using the second two nodes
([41, [0]) and ([3], [1]) we obtain two values for b and hence

(—q0-2¢° —q* +2¢3 +3¢2 - 1)/ [4)2 = (1-q®)/[2]2.
Thus (q—1)2(q+1) (g2 +q+ 1) =0 which means b has no solution. Therefore

Lg O(x, y) = 0 does not factorizes into two ellipses.

Now let us consider the equation L(S) o(%, ¥) = 0. See Figures 3.13 to 3.20. If

0 < q < 0.744 the graphs of Lg o y) = 0 consist of curve 1: a "hyperbolic curve"

which interpolates {([k], [0]), ([O], [k]): k=1, 2, ..., 5} and, curve 2 and curve 3:
two separate closed curves which interpolate {([i], [j1): 1 <1,j<2,2<i+j<3} and
{([i], (D: 1 <1,j<4,4<i+j <5} respectively. If 0.745 < q < 0.781, curve 3 breaks
up: the upper part of it forms a "hyperbolic curve", curve 4 say, which interpolates
{([i], D:1,j=2 0,1+ j=35}. The lower part of curve 3 connects to the curve 1 to form
a closed curve which we shall call curve 5. Note that curve 5 interpolates the nodes
{([k], [OD, ([0], [kD: 1 <k <4} U {([i], [j1):1,j= 1, i+ j =4} and it contains curve
2. If 0.782 < q < 1 both curve 2 and 5 break up: their upper parts combine to form a
closed curved which interpolates {([i], [jI): 1, j= 0, 3 <i+j <4} and their lower parts
form another closed curved which interpolates {([i], [j1):1,j=2 0,1 <i +j < 2}.
However curve 4 does not change form. If q > 1, the graphs separate into five

"hyperbolic curves".

As q varies from 0.50 to 0.9, the graphs of Lg o(X; ¥) = 0 approach two critical

values, that is when q close to 0.7447 and 0.7812. In both cases, the two closed

curves cannot be ellipses since the remaining curve is not linear. Hence L(S) 0% y) =0

is not reducible.




172

....... .. W o m—

£ 4
:Figure 3.7 Graph of L, (x, y) = 0 with g = 0.62

206

........ 00 . “eae S

& 4
:Figure 3.8  Graph of LO 0 (x,y)=0withq=0.71
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"0 - SRLLRIERS 40

 Figure310  Graph of Ly , (x, y) = 0 with q = 0.73

' Figure .11 Graphof Ly, (x,y)= 0 with g = 0.8

4
Graphof L, (x,y)=0withq=2.0
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Figure 3.13  Graph of L] o(x, y) = 0 with g = 0.5

Figure 3.14  Graph of L) .(x, y) = 0 with q = 0.74
figure 219 0,0 q
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Figure 3.15  Graph of Ly ((x, y) = 0 with q = 0.7447

Figure 3.16 ~ Graph of Ly 4(x, y) = 0 with q = 0.75
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...........

Figure 317 Graphof L) (x, y) = 0 with g = 0.78

Figure 3.18  Graph of L] ((x, y) = 0 with q = 0.7812
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Figure 3.19  Graph of Lg’o(x, y) =0 with q = 0.782

Figure 320  Graph of L) o(x, y) = 0 with g = 0.9

Fkk




178
APPENDIX 5A  Calculation of the integration rules I,

In Figures 5.2 and 5.3, and Tables 5.1 and 5.2, the weights are calculated

directly from formula (5.4)

n] y
wii = GJ oI LY(x, y) dx dy

where the Lagrange coefficients L? j(x, y) are defined as in (5.2). Here we give a
detailed Maple calculation of the integration rules I, n =1, 2, ..., 5. First we comment

on some of the Maple notations used in the calculation, which are as follows:

y
Sij :=int (L?J(x, y), x =0.y) for evaluating OJ L?j(x, y) dx ,
[n] [n] y
Tij :=int (Sij, y =0..[n]) for eva]uatingd[ s%,dy=| Oj LY (x, ) dx dy,
0 3,
. . .o - . . 1]
limit (Iij,q=1) for evaluating égn)l Wij Q).

Foreachn=1,2,3,4, 5, we also check that the sum of all the weights is equal to

[n] y

An=6[ Oj dx dy ,

the area of the triangle S,,. Furthermore, letting q tend to 1, we see that the limits of
n

le

are in agreement with the results of Lauffer [11] for n < 3.




Integration rule on a triangle {(x,y): 0 £ x £y < [1]}
Walghts Iij at the nodes ([i],[j]), 0 i< j<1

Sl:=int(l,x=0..y);

Sl =y
s Al:=int(Sl,y=0..1);
Al :=1/2
* S00:=int (1~y,x=0..y);
S00 :=-(-1+Vyy
¢ 1003=inc (S00,y=0,.1);
100 := 1/6
* SO01:=int (y-x,x=0..y);
2
S01 :=1/2 y
¢ I0l:=int(s01,y=0..1);
I01 := 1/6
* Sli:=int (x,x=0..y);
2
S11 :=1/2 y
¢ T11:=int(511,y=0..1);
I1l1 := 1/6

Integration rule on a triangle {(x,y): 0 £ x <y < [2]}
Weights Ilij at the nodes ([i],[]j]), 0 < i <5 <2

n[2] :={1-g"2) / (1~ :

S00:=int ((1=y) * (n[2]-y) /n[2],x=0..y) :
T00:=int (SO0, y=0..n[2]);
2
I00 :=-1/12 (g+ 1) (-1+q)

801 :=int ((n[2]-y) * (y-x) /q, x=0..y)
I01:=int (S01,y=0..n[2});

q
(@ +1)
I0l := 1/24 —~————
q
» 511:=int (x* (n{2]-y) /q, x=0. .y) :
I11l:=int (S11,y=0..n[2]);
4
(g+1)
111 i= 1/24 =mmmmmmm
q

S02:=int { {y-x) * (y-g*x-1) / (g*n[2]) ,x=0..y) :
102:=int (S02,y=0..n[2)):

z 2
g+1) (g -2g+1)
102 := - 1/24

q
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* S12:=int (x* (y-x) /g, x=0..y) :
I12:=int (S12,y=0..n[2]};
4
g+ 1)
T12 = 1/24 ==
q

¢ 522:=int (x* (x-1) / {g*n[2]) , x=0..y) :
122:=int (S22,y=0..n(2]);

g+ 1) (=149

+ Integration rule on a triangle {(x,y): 0 S x Sy < [3]}
Weights Iij at the nodes ({i],([j]), 0 €1 <3 <3

n[3] :=(1-a"3) /(1) :
£(3] :=ni3]*n([2]:

* S00:=int ((1-y}*(n[2]-y) *(n{3]-y} /£[3],%=0,.y):
100:=int (S00,y=0..n(3]) ;

6 5 4 2 3 2
B3g +4qg -2g -2q -4q +4q+3) (g +g+1)
100 := 1/60

g+l

¢ SOL:=int {{n[2]}-y}*(n[3]~-y) *{y-x) / (n[2] *¢"2} , x=0..y) :
I01:=int (801,y=0..n(3]);

4 3 2 2 3
3g +q g =4qg-2) g +q+d)

I01 := - 1/120
2
q (g+1)

» Sll:=int (x*(n(2]-y) * (n[3}-y) /(n[2]) *q"2) , x=0..y) :
I1l:=int (S11,y=0..n(3]);

4 3 2 2 3
3g +qg -q ~-4g-2) (g +g+1)
111 := - 1/120

2
g f{g+1)

¢ S02:=int {{n[3]~y) * (y—=x) * (y-g*x~1) / (n[2] *q"3) , x=0..y) :
102:=int (S02,y=0..n{3]) ;

5 4 3 2 2 3
@ ~q -3qg =2q +2) (g +qg+1)
102 := - 1/120
3
g (g+1)
« S12:=int (x* (n{3]-y) * (y=x) /q"3, x=0..y)
T12:=int{S12,y=0..n(3]);
2 5
@ +g+ 1)
112 ;= 1/120 =———m—eemime e
3
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* S22:=int (x* (x-1)* (n[3]-y) / (n[2]*q"3) , x=0..y) :
122:=Ant (S22,y=0..n(3]);

4 3 2 2 3
g +4q +q9 -q-3) (g +g+1)
122 := 1/120
3
g (g+1)

* S03:=int ({y-=x) *{y—a*x~1) *(y-x*q"2-n{2]) /(£(3)*q"3) , x=0. .y) :
103:=int (S03,y=0..n[3]);

2 2 6 5 4 3 2
(@ +q+1) (@ -9 ~2q +5q -2q -qg+1)
103 := 1/60

3
q

* S13:=int (x* (y—x) * (y-a*x~-1) / {n[2] *q"3) ,x=0, .y) :
I13:=int (S13,y=0..n[3}};

3 2 2 4
2q -2q ~2q+1) (g +g+1)
113 := - 1/120
3
q (q+1)

¢ 823:=int (x* (x~1) * {y-x) / (n{2] *q"3} , x=0. .y} :
123:=int (S23,y=0..n{3]);

2 2 q
(29 +2qg-3) (g +g+1)
123 := 1/120
3
g f{a+1)

¢ S33:=int (x* (-1} * (x-n[2]) /(£[3]*q"3) , x=0..y) :
133:=int (533,y=0..n[3]);

4 3 2 2 2
Baq +g -6qg +3+a (g +gq+1)
133 := 1/60
3
qa «g+1)

* Integration rule on a triangle {(x,y): 0 < x <y < [4]}
Weights Iij at the nodes ([i],[j]), 0<i< j<4

n[4] :=(1-g™4) /(1-q) :
£[4] :=n[4)*f[3]):

* S00:=int {(1-y) *(n{2)-y) *(n{3]-y) * (n[4] -y) /£ [4],%=0..y) :
100:=int (S00,y=0..n[4]);

3 2
T00 :=-1/60 (@ +q +aq+ 1) (

11 10 9 8 7 6 S 4 3 2
2q +3q +2q -2q -4qg -q +tq +t+4q +2q ~2q ~3g-2

/ 2
) / (g +g+l)
/
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* S01:=int ( (n[2]=y) *(n[3]-y) * (n[4]=y) * (y=x) /(£ [3]*q"3) ,x=0..y) ¢
I01:=int (S01,y=0..n[4]);

101 :=
3 2 3 8 7 6 5 4 2
 +q +q+1) (29 +q -9 - q -2qg +2q +2qg+1)
1/120
2 3
@ +q+1) g

» Sll:=int (x*{n{2]-y) *(n{3]-y) *(n[4]-y) / (F[3)*a"3) ,x=0. .y} ¢
I11l:=int (S11,y=0..n[4));

111 :=
3 2 3 8 7 6 5 4 2
g +q +q+l) (2qg +qg -qg -q -2q9 +2q9 +2qg+1)
1/120
2 3
g +g+1)q

¢ S02:=int ({n[3]~y) *(nl4]-y) * (y-x) * (y~g*x-1) /(n[2]*n[2]*q"5) ,x=0..y) :
102:=int (S02,y=0..n{4]);

2 3 2 2
102 :=1/360 (@ +1) (@ +q +qg+ 1)

9 8 7 6 5 3 2 £
g “Rg ~q —6g +6qg 8y =29 ~qg=3 / q
/

¢ S12:=int (x* (n[3]-y) * (n[4]~y) * (y-X) / (n[2] *q"5) , x=0. .y) :
I12:=int (S12,y=0..n[4]};

3 2 4 5 4 3 2
g +g +g+1) (29 -q +q -2q -q-1)
112 := - 1/360

5
q

¢ S522:=int (x* (x~1) *(n[3]-y} * (n[4]-y) / (n[2]*n[2]*q"5) , %x=0..y) ¢
122:=int (S22,y=0..n(4]);

2 3 2 2
122 :=~1/360 (@ +1) (g +g +g+1)

8 7 6 5 3 2 i 8
g +2q +4q -9%9g -99g +4q +2q+4) / g
/

* S03:=int ((n[4]-y) * (y-x) * (y~q*x-1) * (y-x*q"2-n{2]) /{£[3] *q"6) , x=0..y) :
J103:=int (S03,y=0..n[4]);

103 := 1/360

3 2 3 Al 9 T 6 S 3 2
@ +q +gq+1) (g -2qg +4qg +6qg +4g -2qg -3qg +qg+3)

2 6
g +g+1) g

o S13:=int (x* (n[4]=y) * {y=x) * (y=q*x-1) / (n[2) *q"6) , x=0..y) :
I13:=int (S13,y=0..n[4]);

3 2 4 6 5 3
g +q +q+l) & “g —2Zyg ~g+d)

113 := - 1/360
6

q
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» S23:=int (x* (x~1) *(n[4]=y) * (y=x) / (n[2] *q"6) , x=0,.y) :
123:=int (S23,y=0..n[4]);

3 2 4 5 4 3 2
@ +qg +q+1) (g +q +2qg -q +q-2)
123 1= 1/360

6
q

¢ S33:i=int (x* (x-1) * (x-n[2]) *(n(4]-y) / (£[3] *q"6) , x=0..y) :
133:=int (833,y=0..n[4]);

3 2 3 8 7 6 4 3 2
g +q +q+1l)] (g +2q +2qg -2qg -q ~q +g+2)
I33 :=1/120
2 6
@ +q+1) g

» S04:=int ((y-x) * {y—=g*x-1} * (y-x*q"2-n[2]) * (y—x*q"3-n[3]) / (£[4] *q"6) , x=0,.y) :
I04:=int (S04,y=0..n[4]);

3 2 2 14 13 12 11 10
104 :=-1/360 (g +gq +g+1) (3q +qg =-3qg -7g +6gqg

9 8 7 6 5 4 3 2
+14q -6q -16q -6q +14q +6g -7qg -3qg +qg+3)

7 G 2
/@ @ +qg+1))
/

* Sld;=int (x* (y-X) * (y—g*x—1) * (y=x*q"2-n[2]) /(£ [3] *q"6) , x=0..y) :
I14:=int (S14,y=0..n[4)):
114 := 1/360

3 2 4 8 7 6 5 4 3 2
@ *g +q+1) Bq -2q ~4g +q +5g +2qg -2q9 -qg+1)

6 2
g (g +q+1)

* S24:=int (x* (x~1) * (y~x) * (y-q*x-1) / (n[2] *n[2] *q"6) ,x=0..y) ¢
124:=int (524,Y=0~ -n(4] ) ;
124 := - 1/360

2 2 3 2 2 7 6 5 2 4 3
@ +1) (g +qg +g+1) 3q +qg -g +3q -9qg -2+qg +5¢9

6
9

o S34:=int (x* (x=1) * (x-n[2]) * (y=x) /{£[3] *q"6) ,x=0..y) :
I34:=int(S34,y=0..n{4]);

3 2 3 5 4 2
@ +g +g+1) (g +q -2q9 -qg+2)
134 := 1/120
6 2
q g +qg+1)

¢ S44:=int (x* (x-1) * (x-n[2]) * (x-n[3]) /(E{4] *q"6) , x=0..y) :
T44:=int (S44,y=0..n{4]);

< 2 8 7 6 5 3 2
la +q +q+1) (29 +g —q -4g +4qg +q -qg-2)
144 := 1/60

6 2
q g +qg+1)
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<

* Integration rule on a triangle {{x,y): 0 < x Yy < [5])
Weights Iij at the nodes ([i],[j]), 01 < j<5

* n[5):=(1-9"5)/ (1) :
£[5] :=n[5}*£(4]:

* S00:=int { (1-y) *{n[2]-y) * (n[3}-y) *{n[4]-y) * (n[B] -y} /£[5),x=0..y) ;
I00:=int (S00,y=0..n[5]) ;

2 3 4 5 13 17
T00 :=1/420 (10 + 36 q+66q + 771 q =42q -2q -75q +7T7q

12 16 11 8 10 19 14
-13q +42q +52q -13qg +7q +36q -7q

18 15 20 7 6 9
+66q -22q +10g -75q -75q +52q)

4 3 2 / 2 3 2
g +g +qg +g+1) / {g+1) (g +q+1) (g +q +qg+1))
/

* S01:=int {(n[2]-y) *(n[3}-y) *{n[4]-y) *(n[{5]-y) * (y-x) /(£ [4]*q"4) , x=0..y) :
I01:=int (501,y=0..n(5]);

2 3 4 5 15
01 :=-1/840 (-4 -16q-33q -85q -35q ~5q +26q

11 13 12 16 7 14 8
-3q +1lg -21lg +10qg +44qg +30g +2qg

10 6 9 4 3 2 3
=27Tqg +29q —-5q} (g +qg +qg +q+l)

V4 2 3 2 4
/ g+l (g +q+1) g +qg +g+l) q)
%

* S1l:=int (x* (n{2]-y) *{n[3]-y) * (n[4] =y) *(n[5]~y) / (£ [4] *q"4) ,x=0..y) :
I11:=int (S11,y=0..n(5});

2 3 q 5 15
I11 ¢=-1/840 (-4 ~16q—-33q -45q -35qg -5q +26¢q

11 13 12 16 7 14 8
-3Bg +1l1lg ~21qg +10g +44q +30g +24qg

10 6 9 4 3 2 3
-27qg +29q -59) g +g9g +g +qg+1)

/ 2 3 2 4
/ g+l (@ +g+1) (@ +g +g+1) q)
/

* S02:=int{(n[3]-y) * (n[4]-y) * (n[S}=y) * (y=x) * (y~*x-1) / (E(3)*n(2]*q"7) , x=0..y) :
102:=int {S02,y=0..n{5]);

2 3 4 S 9 8
T02 := - 1/2520 (12 +30q+48q +39q -10q -62q +60g +79g

15 6 12 16 13 17 11
-48q -99q -12gq -4g -6lg +10g + 5 g

14 7 10 4 3 2 3
-65qg ~6lg +83q ) g +q +tq +qg+1)

A 2 4
/ g g+l g +qg+ 1)}
/
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¢ S12:=int (x* (n[3]-y) *(n(4]=y) * (n[5)-y) * (y-x) /(£[31*q*7) ,x=0..y) :
I12:=int (512,y=0..n[5]);

2 3 4 5 9 8
T12 = 1/2520 {3 +9g+18q +23gq +17q +5q -5gq -1l g

12 1 7 6 10 4 3 2 4
+10q +16g -16q -13q +4q ) (g +q +q +q+1)

& 5T 2
/ la {g+1) (g +qgq+ 1))
/

» $22:=int (x* (x-1) * (n[3]-y) * (n[4]-y) * (n{5]-y) / (£[3]) *n[2]*q"7) ,%x=0..y) :
122:=int (822,y=0..n[5]);

2 3 4 5 6

122 = 1/2520 (- 15 -39 qgq~-66q -62q ~-7Tq +60q + 12l g

9 15 10 13 12 16 11
3Bqg +52qg -82q +50q -14q +20q -~87¢q

14 8 7 4 3 2 3
+60qg +27qg +Bg) g +g +g +g+ 1)

/7 2 2
/ @ @+l @ +q+l)
£

* S03:=int ((n[4]-y) * (n[5]=y) * {y=x) * {y—q*x-1) * (y=x*q"2-n{2] } / (£[3]1*n(2)*q"9) , x=0..y) :
T03:=int (S03,y=0..n([5));

2 3 4 S 6

103 1=~ 1/2520 (-12-30g-30qg -18q +21q +52q +24 g

13 15 12 16 1 19 14 18
+77q +9q +54qg -10qg +q +5q +5q9g +3q

9 17 7 10 8 4 3 2 3
Bq -Mqg -25q ~64g -77q) (g +q +q +q+1)

/9 2 2
/g g+ @@ +g+ 1)
/

¢ S13:=int (x* (n[4)~y) * (n[5])=y) * {y—x) * (y=a*x~1) / (n[2] *n[2] *q*9) , x=0. .y} *
I13:=int (513,y=0..n[5]);

2 a 5 9 8 10
113 :=1/2520 (-3 -4g=-3q +12q +14g -1lqg -4q -10q

12 11 13 7 6 4 3 2 4
-2q -79 +5q +6g +12q) (@ +g9 +g +qg+1)

£ 2 9
/ g+ q)
/

« S23:=int (x* (x-1) * (n[4] -y} *{n[5]-y) *{y-x) / {n[2]*n[2) *q"9) , %=0..y) :
I23:=int (S23,y=0..n[5]);

2 3 4 5 12 11
123 :=-1/2520 (5+8g9+9q +8qg -9q -15q +5q +8q

9 8 7 6 0 4 3 2 4
+8q -9q -15q -17q +9q ) (g +g +q +g+1)

/ 2 9
/ (g+1) qg)
/
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¢ S33:=int (x* (x~1) * (x—n{2]) * (n[4])-y) *{n[5]-y) / (£[3] *n[2}*q"9) , %=0..y) :
I33:=Ant (S33,y=0..n(5]);
2 3 4 5 16
I33 ;=-1/2520 (-20-52q-60q -50qg +14q +87q +15¢q

11 15 14 12 9 8 13 7
-60g +39q +66g +7qg -9%q ~27q +62q + 38q

6 10 4 3 2 3
+8q -121q ) (g +g +g +g+1)

o 2 2 9
/ g +ag+1) (9+1) q)
/

* S04;=int ((n[5]-y) * (y=-x) * {y-q*x~1) * (y-x*q"2~n(2]) * {y-x*q"3-n[3]) / (£[4}*g™10) , %x=0,.y) :
I04:=int (S04,y=0..n[5]);

2 4 5 9 8
I04 :=~-1/2520 (12 +30g+30qg -42¢gq -33g +27q +65q
10 i4 18 13 17 15 20
-44q -10q -15q -89 +2qg +30g +5¢g
11 22 7 6 12 16 19 21
-106q +3q +55q +11qg -120qg +28q =~-5q +17¢q
4 3 2 3
) g +q +qg +qg+1)
/ 10 2 3 2
/g g+ D (g +qg+1l) (@ +g +q+1))

/

* S14:=int (x* (n[5]=y) * (y=x) * (y-g*x-1) *{y-x*q"2-n[2]) /(£ [3)*q~10) ,x=0..y} :
I14:=inc(S14,y=0..n(5)]);

4 3 2 4 14 13 12 11
T14 :=1/2520 (g +g +qg +q+1) (3g +q =-3q =-2q

10 9 8 7 6 5 4 3 2
-3qg +6q +7qg +124g +7q +6q -3q -2q =3g +¢g

£ A0 2
+3) / g (g +q+1)
/

* S24:=int {x* (x-1) *(n[5]~y) * {y-x) * (y=g*x~1) / (n[2] *n[2] *q*10) , x=0. .y} :
I24:=int (S24,y=0..n[5]);

2 3 4 5 8 13
124 :=-1/2520 (-5+2q+7q +10qg +11q +4g -14q +3qg
12 11 9 7 6 4 3 2 4
+4g +3q -12q -12q ~6q) (g +q +qg +g+1)
/ 10 2
/g (@+1))
/

* S34:=int (x* {x=1) * (x~n[2]) *{n[5]=y) * (y-x) /(£ [3} *q*10) ,x=0.,.y) :
I34:=int {334,y=0..n[5]);
2 3 4 5 10 11
134 :=1/2520 (10 +16q+4q ~-5q -11gq -16g +18g +9qg

6 9 12 7 8 4 3 2 4
=13q +23g +3g +5q +179) (g +q +q +q+1)

/ 10 2
/ g {g+1) (g +q+1))
/
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* S44:=int (x* (x~1) * (x—n[2]) * (x~n(3}) *(n[5]=y) /(£ [4]} *q"10) , x=0. .y} :
T44;:=int (544,y=0..n[5]);

2 3 4 5 8
144 :=1/840 (~10-269~-30g -11lq +21q +33q ~24qg
13 15 16 11 14 6 9 7
+45q +16qg +4q +5q +33qg +27q -44q +5¢q
12 10 4 3 2 3
+35q =-29gq ) (g +q +q +q+1)
/ 10 2 3 2
/g g+1) (g +g+l) g +qg +qg+ 1))

/

¢ S05:=int ({y=x) * (y=cr*x=1} * (y=x*q"2-n{2]} * {y-x*¢*3-n[3]) * {y-x*q*4-n[4])
/(£1(5)*g"10) ,x=0..y) :
1053 =int {S05,y=0..n(5});

5 4 2 9 8 10
I05 = 1/420 2+ 59-9qg -10g +5q -15qg +20q -33qg

7 6 22 21 15 20 14 19
+20qg +5q ~10g -9q -159q +5g +25q +20q

13 18 12 17 11 i6 24
+5q +20g +25q =-15g =-15qg -33qg +5q

26 25 4 3 2 2
+2q +5q ) g +qg +q9 +g+1)

/ 10 3 2 2
/ la g +a +g+1) (g +g+1) (g@+1))
/

» S15:=int (X% (y=x) * (y—q*x~1) * (y-x*q"2~n[2] ) = (y-x*q*3-n[3]) /(£[4)1*q"10) , x=0..y) :
I15:=int (515,y=0..n[5));

4 14 5 15 3 2
I15 :=-1/2520 3-10qg -42q +4q+20q -30qg =-10qg -2qg
8 18 6 9 10 33 12 17
-50qg +12qg +30g -8q -20g +21q +62q +18¢q
11 4 3 2 4
+44q ) (g +q tq +g+1)
/10 2 3 2
/ g (g+l) (g +g+1 (g +g +qg+1))

/

¢ S25:=int (x* (x~1) * (y=x) * (y—g*x-1) * (y=x*q"2-n(2]) / (£ (3] *n[2] *q*10) , x=0..y) :
I125:=int (S25,y=0..n[5]);

15 5 4 3 2 8
125 :=1/2520 (-5+12gq +29-48q -19q -4q +17q +49q

14 12 9 10 6 11 7
+18q =-12q +46q -19g -23q -39qg +40q)

[/ 3 2 4 / 10 2 &
@@ +qg +g +qg+1) / (g {(g+1) (@ +qg+1)
/
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¢ S535:=int (x* (x-1) * (x-n[2] ) * (y=x) * (y=q*x~1) / (£ [3] *n[2] *q"10) , x=0. .y} :
I35:=int (S35,y=0..n(5));

5 4 3 2 6
I35 :=-1/2520 (10 - 14 g+ 58 ¢q +4dq -17q -4dq +56q

11 13 9 8 10 7 12
+18q +12q =-49q -40qg -9q -19q +18q )

4 3 2 4 / 10 2 2
@ +qg +qg +a+1) / g (g+1 (g +q+1))
/

¢ S45:=int (x* (x=1) *{x-n{2]) * (x=n[3]) *{y-x) 7 (£[4) *q*10) ,x=0..y) :
145:=int (S45,y=0..n[5]};

5 4 3 2 11 9
I45 :=1/840 (- 10~ 16g+2q +32q +19q =4qg +12g +12qg
6 10 ? 12 4 3 2 4
-10g -2 qg +17q -26q +4qg9q ) (@ +9 +g +qg+1)
/ 10 2 3 2
/ @ @+1) (@ +g+1) (g +q +qg+ 1))

/

* S55:=int (x* (x~1) * (x-n[2]) * (x-n(3]) *(xn[4]) /(£ [5] *q"10) , x=0..y) ;

5 4 3 2
855 :=-1/60 (-30-90qg-9%q ~-150qg -180qg -150qg + 80y

6 6 2 3 2 2 2 2
+180yqg+20q y-30g -105y q -135y gq-Qy ~-135y g

2 4 3 4 3 3 3
+20yq +160yqg +280yqg -10y +12y g +36y q

5 2 2 4 3 3 42 S 2
-15q y =45y q +48y +24y q +8q y)y

/10 4 3 2 3 2 2

/ g @ +qg +qg +qg+1) (@ +g +g+l) (g +g+1) (g+1))
/

o I55:=int (S55,y=0..n(5});

15 5 4 3 2 16
I55 3=1/420 (10 + 26 q +26g~54qg -35qg +11g +30g +10q
10 7} 9 8 13 12 ik 14
-27q +30qg +30q +7q +11q -35q =-54q +30¢q
6 4 3 2 2
-2lq) (g +g +9 +g+1)
i 1 3 2 2
/ g (g +qg +g+1) (@ +q+1) (g+1))

/
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APPENDIX 5B Interval on which Wij > 0 (n=5)

Let Bij dencte the polyncmial factor (considered in Table 5.3) obtained by dividing Cij
by its obvious positive factors.

12 11 10 9 8 7 6 5
B0l :=10g +16q +4qg -19¢g ~32q ~2q +22q +26¢q

4 3 2
+10qg ~12q ~-17q -12g-4

13 12 11 10 ) 8 £ 6
B2:=10qg =-14q =-44g -1/g +4q +58qg +56q -19¢g

S 4 3 2
-40q -49q -9qg +18qg + 18 g+ 12

12 11 10 9 8 7 6 5
B2 :=20q +32q +8q -10qg -64g -58q +37q +52¢q

4 3 2
+55q +4q -27Tqg -24q-15

15 14 13 12 11 10 9 8
B3:=5q -2q -17q +4q +19q +48q +23g -40¢g

s

7 6 5 4 3
-49qg -46q +19q +39qg +12q ~-18qg- 12

9 8 7 6 5 4 3 2
Bi3:=5q ~-7q9q -5 -3g -q +12q +3gq +gq ~-g-3

12 11 10 9 8 7 6 5] 4
B3 :=5q +8qg +9q +8q -9g -15q ~-17g -15q -92q

3 2
+8q +9q +8¢g+5

22 21 20 19 i8 17 16 15
B0 :=3qg +7q9 +5q -5qg -15q +2q +28q +30g

14 13 12 11 10 9 8 7
-10q ~8gqg -120q -106q ~44q +27q +6q +55q

6 5 4 2
+11q -33q =-42q +30qg +30qg+ 12

« Roots of Bij > 0 (n = 5)

fsolve(BOl, @);
~1,291881517, 1.059740995

« fsolve(BOZ, q);
-,7950764185, .8235112258, 2.966237082

« fsolve(B22, q);
~. 7740048931, .9427304614

-

fsolve (BO3, q);
-1,702916753, -1.058809519, 1.075906744

* fsolve(Bl3, q);

—-. 9660981586, ~.7352266109, .7397382670, 1.058533923, 1.913972906

* fsolve(823, q);

-1,430757608, -.6989304090, .9095109318, 1.099492007

fsolve(B04, q);

-1.503733574, -.7309178485, .8883820534, 1.383973508
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APPENDIX 5C Integration rule on odd order standard
triangle {(x, y): 0 < x <y < 7}

¢ S7i=int(1l,y=x..7):
A7:=int(S7,%x=0..7; A7 = 49/2

For brevity,the commands Iij:=int (Sij,x=0..7) will not be displayed.

¢ S00:=int ((7-y) *{6-y) * (5=y) * (4=y) * (3-y) * (2-y) *{1~y) /7!, y=x..7) :

I00 := 8183 / 64800

* SO0L:= Int{(7-y) *(6-y) * (S~y) * (4-y) * (3-y) *(2-y) * (y-x) /6!, y=x..7) :

101 := 146461 / 518400

¢ 81li= Int (x* (7-y) * (6-y) * (5-y) * (4-y) * (3-y) *(2~y) /6], y=x..]) ¢
I11 := 146461 / 518400

*S02:=int ( (7-y) * (6=y) *(5~y) * (4-y} * (3-y) * (y—x) * {y-x-1)/ (2!*5!),y=x..7) :
102 := 175273 / 518400

* S12:= int {x*(7-y) * (6-y) * (5~y) *{4-y) * (3-y) * (y-x) /5!, y=x..7) :

T12 := 789929 / 259200

* §22:= int (x* (x~-1) *(7~-y) * (6-y) * (5-y) * (d=y) * (3-y) /(21*5!) ,y=%..7) :

122 := 175273 / 518400

*803:=int ((7-y) * (6-y) * (5-y) * (d~y) * {y=x) * (y-x~1) *{y=x=2) / (3!*4!),y=x..7):

103 := 26411 / 103680

* 513:= int (x* (7-y) * (6-y) * (5-y) * (4~y) * (y-x) = (y-%-1) / (21 *4!)} ,y=x..7) :

I13 := - 16807 / 25920

¢ 523:= int (x* (x-1) *(7-y) * (6-y) * (S5~y) * (4=y) * (y=x) /(2! *4!) ,y=x..7) :

123 := - 16807 / 25920

* S33:= int (x* (x~1) * (x=2) * (7=y) % (G=y) * (5-y) * (4~y) /(3! *41) ,y=x,.7) :

133 := 26411 / 103680

*S04:=int ({7=y) * (6-y) * (5-y) * (y—x) * (y-x-1) * (y=%~2) * (y-x~3) / (31*4}),y=x..7):

104 := 26411 / 103680

*514:=int (X* (7-y) * (6-y) * (S-y) * (y-x) * (y=x=1) * (y-x~2} / (3!*3!),y=x..7):

114 := 218491 / 51840

»S24:=1int (x* (x~1) * (7=y) * (6=y) * (5-y) * (y=x) * {y~x~1) / (21*2!*31) ,y=x,,7) :

T24 := 16807 / 51840

* S34:= int (x* (x=1) * (x=2) * (7~y) * {6-y) * (5-y) * (y—=x) /(3! *31) ,y=x..7) :

T34 := 218491 / 51840

* S44:= int (x* (x~1) * (x=2) * (x=3) * (T-y) * (6-y) * (5-y) /(3! *4!) ,y=x..7) :

144 := 26411 / 103680

*S05:=int ((7-y) * (6=y) * (y=x) * (y=x~1) * (y-x-2) * (y=x-3) * (y-x—4) / (2!*S!),y=x..7) :

I05 := 175273 / 518400

*S1S:=int (x* (7-y) * {6-y} * (y—X) * (y-x-1) * (y=x-2) * (y=x=-3) / (2!*4!)},y=x..7) :

115 := - 16807 / 25920
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*S25:=int (x* (x-1) * (T-y) * (6-y) * (y—x) * (y=x~1) * {y-x~2) / (2}1*2!*3!),y=x..7) :

125 := 16807 / 51840

*8351=int (x* (x~1) * {x=2) * (T-y) * (6=y) * (y-x) * (y=x~1) / (21%2!%31),y=x..7):

I35 := 16807 / 51840

* S45:= inkt (R* (x-1) * (x-2) * (x=3) * (7-y) * (6-y) * {y-x) /(2! *4!) ,y=x..7) :

145 := - 16807 / 25920

* S55:= int (x* (x~1) * (x~2) * (x~3) * (x—4) * (7=y) * (6~y) /(2! *5!) ,y=x..7) :

IS5 = 175273 / 518400

*S06:=int ((7=y) * (y~x) * (y=x=1) * (y=%x-2) * (y-x=3) * (y-x~4) * (y=x-5) /6!,y=x..7):
106 := 146461 / 518400

¢ S16:= int (x* (7-y) * (y=x) * {y=x~1) * {y~x~2) * (y=%~3) * {y-x-4) /5!, y=x..7) :

I16 := 789929 / 259200

*526:=int {x* (x~1) * (7-y) * (y—x) * (y=x-1) * (y=x=2) * (y-x~3) / (2!1*4!),y=x..7):

126 := - 16807 / 25920

#5362 =int (x* (x=1) * {x-2) * (7=y) * (y=x) * {(y=x=1) * (y=x=2) / (3!*3!),y=x..7):
I36 := 218491 / 51840

* S546:= int (x* (x~1) * (%~2) * (x=3) * (7-y) * (y=x) * (y-x-1) /(2! *4!) ,y=x..7) :

I46 := - 16807 / 25920

+ 856:= int (x* (X=1) * (x=2) * (x=3) * (x~4) * (T-y) *{y—x) /5!, y=x.. ) *

I56 := 789929 / 259200

* 566:= Nt (x* (x-1) % (x=2) * (%~3) * (x~4) * (x-5) * (7-y) /6!, y=x. . 7) 1

166 := 146461 / 518400

*S07:=1int ( (y=x) * {y=x~1) * {y=x~2) * (y=x=3) * (y=%—4} * (y-x=5) *(y—x-6) /7!,y=x..7):
I07 := 8183 / 64800

*S17:=int (x* (y—x) * (y—x~1) * (y-%-2) * (y=x-3) * (y-x-4) * (y=x-5) /6!,y=x..7):

I17 := 146461 / 518400

*S27:=int (x* (x=1) * {y-X) * (y=x~1) * (y=x=2) * (y=x-3) * {y=-x-4) / {21*51),y=x..7) :

127 := 175273 / 518400

#S37:=int (x* (x~1) * (3=2) * {y~x) * (y=%x~-1) * (y=x~2) * (y=x=3) / (3!*4!),y=x..7):

137 := 26411 / 103680

*SAT:=int (X* (x~1) * (x-2) * (23} * {y=%) * (y-x~1) * (y=-x=2) / {3!*4}),y=x..7):

I47 := 26411 / 103680

¢ 857:= int (x* (x~1) * (x-2) * (x-3) * (x~4) * (y=-x) * (y=x~-1) / (2!1*5!) ,y=x..7) :

I57 := 175273 / 518400

* 567:= Int (x* (x-1)* (x=2) * (x~3) * (x~4) * (x-5) * {y-x) /6!, y=x..7) ¢

167 := 146461 / 518400

o STTi= int (x* (x=1)* (x-2) * (x=3) * (x=~4) * (x=5) * (x=6) /7!, y=x..7) :

177 := 8183 / 64800
*kk




Appendix 6A Evaluation of the Lebesgue function Ap(x, y; q)

Program Ldim; ({To find data point for A,(x, y; q)}

var

f: text;

n: integer;

1, 8, nomy, q, d: real;

function QI(k: integer): real; {QI(k) = [k], the g-integer})
begin
if =1 then Ql:=k
%lse QL= (1 — exp(k*In(q)})/(1 - q);
end;

function QF(i: integer): real; {QF(i) = [i]'}
var

k: integer;

gfac: real;

begin

gfac:=1;

if i > 0 then for k:= 1 to i do qfac:= qfac*QI(k);
QF:= qfac;

end;

function LN(x, y: real): real; {LN(x,y) = Ap(x, y; @)}
var
v, u, W, i, j: integer;
vluex, vluey, vluez, prdct, gsum: real;
begin
qsum:= 0;
for j:=0 ton do
fori:=0tojdo
begin
viuex:= 1;
ifi—1>=0 then for vi= 0 to i — 1 do vluex := vluex * (x — QI(v));
viuey:=1;
if j+ 1 <=n then for w:= j + 1 to n do vluey := viuey * (QI(u) - y);
vivez:= 1;
ifj—i-1>=0thenforw:=0toj-i~1do
viuez ;= viuez * (y — exp(w * In(q)) * x — QI(w));
prdct:=exp((— (2 * n—j— 1) * j/2) * In(q)) * vluex * vluey * vluez/
(QF() * QF(n - j) * QF( - i));
gsum:= qsum + abs(prdct);
end;
LN:= qsum;
end;

begin {main program}
rewrite(f, 'Ldim.out’);
writeln(‘Enter degree n, value q and spacing d');

readIn(n, g, d);
writeln(f, 'LBfunction n, q, d', n, q: 8: 4, d: 8: 4);
writeln(’ value of x value of y LN(x, y)'):

writeln(f, ' gridx gridy LN(x, y)9;
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s:= 0; while s<= QI(n) + 0.00001 do
begin
r:=0; while r<=s + 0.00001 do
begin
nomg:= LN(r s),
writeln(r, ' S, ', nomg);
wmeln(f r: 8: 4, s 8 4, nomgq: 10: 6);
=r+d
end;
=s+d
end;
end.

Appendix 6B Evaluation of the Lagrange coefficient L?’j(x, y;

Program LC; (Evaluation of the Lagrange coefficient}

var

f: text;

i, j, n: integer;

1, S, nomgq, q, d: real;

function QI(k: integer): real; {QI(k) = [k], the g-integer}

function QF(i: integer): real; {QF(®) = [i]!}

function LNC(j, j: integer; X, y: real): real; {LNC(x, y) = L? J(x, y: @)}
var

v, u, w: integer; vluex, vluey, vluez: real;

begin

viuex:= 1;

ifi—1>=0 then for vi=0to i - 1 do vluex := viuex * (x — QI(v));
viuey:= 1;

if j + 1 <=n then for uz=j + 1 to n do vluey := viuey * (QI(u) —y);
viuez:=1;

ifj—i~1>=0thenforw:=0w0j-i~1do
vluez := vluez * (y — exp(w * In(q)) * x — QI(w));
LNC:=exp((~ (2 *n—j—1) * j/2) * In(q)) * vluex * vluey * viuez/
(QF() * QF(n - j) * QF( - 1))

end;

begin {main program}
rewrite(f, 'LC.out');
writeln(‘Enter degree n, value q and spacing d'); readin(n, q, d);
writeln(f, LBfunction n, q, d =', n, q: 8: 4, d: 8: 4);
writeln('Enter i, j for Lagrange coefficient LNij(x, y)");
readin(i, j);
writeln(f, 'Consider the Lagrange coefficient LN/, i, j, '(x, y)");
writeln( ' value of x value of y LNij(x, y)";
writeln(f, ' value of x value of y LNij(x, y));
s:=0; while s<= QI(n) + 0.00001 do
begin
r:=0; while r<= s + 0.00001 do
begin nomq:= LNC(, j, 1, s); writeln(r, ' I ', nomq);
writeln(f, r: 8: 4, s: 8: 4, nomq: 10: 6);
c=r+d
end;
si=s+d
end
end.
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Figure 6.19 The surface of L(z) 2(x, y).
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Appendix 6C The Minimum of Aj(q) and A3(q)

Select 20 regular values for q near 1, ranging from 0.957 to 1.052. For each q
we subdivide each triangle Sy and S3, using a grid with regular spacing d. We took

five choices of d, ranging from 0.160 to 0.004. For each spacing d, we then estimate

As(q) and A3(q) up to 6 decimal places. The results of the calculations are given in

Tables 6.6 and 6.7 . The Pascal program used for these calculations is as follows.

Program Lenst; {To find the smallest Lebesgue constant)
var

f: text;

n, meshq, testd: integer;

1, S, nomg, q, delq, d1i, d, deld, Limdc, xmax, ymax: real;
function QI(k: integer): real; {QI(k) = [k], the g-integer)
function QF(i: integer): real; {QF() = [i]!}

function LN(x, y: real): real; {LN(X, y) =Ay(x, y; @)}

begin

rewrite(f, 'Lenst.out');

writeln('Enter the degree of polynomial: n'); readin(n);

writeln('Enter initial value for q and increment delq'); readin(q, delq);
writeIn('Enter initial grid interval d1 and increment deld'); readIn(d1, deld);

writeln(f, 'Lebesgue constant of order: ', n);
writeIn(f, 'Initial value forq: ', q: 10: 6, ‘incrementdeltaq: ', delg: 10: 6);
writeln(f, 'Initial value for d: *, d1: 10: 6, 'increment delta d: ', deld: 10: 6);

for meshq:= 1 10 20 do
begin
writeln(' Meshq  LBconst Grid Maximum point');
writeln(f,” Meshq LBconst Grid Maximum point');
d:=dl;
for testd:=1t0 5 do
begin
Lmdc:=0
s:=0; while s<= QI(n) + 0.00001 do
begin
r:=0; while r<= s + 0.00001 do
begin  nomq:= LN(, s);
if nomq > Lmdc then begin Lmdc:= nomq; xmax:=r; ymax:=s end;
r=r+d
end;
si=s+d
end;
writeln(q: 10: 6,' ', Lmdec: 12: 6, ', d: 10: 6," ', xmax: 10: 6, ymax: 10: 6);
writeln(f, q: 10: 6,"' ', Lmdec: 12: 6, ', d: 10: 6,' ', xmax: 10: 6, ymax: 10: 6);
d:=d - deld;
end;
q:=q+ delq;
end;
end.




198

Lebesgue constant of order: 2,

Initial value for q; 0.957000 Initial value for d: 0.016000
increment delta q: 0.005000 increment delta d: 0.003000

Meshq LBconst Grid Maximum point

0.957000 1.667954 0.004000 (0.652000, 1.304000)
0.962000 1.667659 0.004000 (0.656000, 1.308000)
0.967000 1.667417 0.004000 (0.656000, 1.312000)
0.972000 1.667202 0.007000 (0.658000, 1.316000)
0.977000 1.667021 0.010000 (0.660000, 1.320000)
0.982000 1.666884 0.010000 (0.660000, 1.320000)
0.987000 1.666778 0.013000 (0.663000, 1.326000)
0.992000 1.666710 0.004000 (0.664000, 1.328000)
0.997000 1.666670 0.007000 (0.665000, 1.330000)
1.002000 1.666667 0.004000 (0.668000, 1.336000)
1.007000 1.666693 0.010000 (0.670000, 1.340000)
1.012000 1.666759 0.010000 (0.670000, 1.340000)
1.017000 1.666855 0.016000 (0.672000, 1.344000)
1.022000 1.666975 0.004000 (0.672000, 1.348000)
1.027000 1.667139 0.013000 (0.676000, 1.352000)
1.032000 1.667318 0.013000 (0.676000, 1.352000)
1.037000 1.667547 0.007000 (0.679000, 1.358000)
1.042000 1.667793 0.010000 (0.680000, 1.360000)
1.047000 1.668065 0.004000 (0.680000, 1.364000)
1.052000 1.668380 0.004000 (0.684000, 1.368000)

Tablc 6.6

Lebesgue constant of order: 3,

Initial value for q: 0.957000 Initial value for d: 0.020000
increment delta g: 0.005000 increment delta d: 0.003000

Meshq LBconst Grid Maximum point

0.957000 2.374327 0.020000 (0.440000, 0.880000)

0.962000 2.360392 0.017000 (0.442000, 0.884000) ;
0.967000 2.346697 0.017000 (0.442000, 0.884000) ;
0.972000 2.333230 0.017000 (0.442000, 0.884000)

0.977000 2.320029 0.014000 (0.448000, 0.896000)

0.982000 2.307085 0.014000 (0.448000, 0.896000)

0.987000 2.296035 0.017000 (0.544000, 1.088000)

0.992000 2.285757 0.017600 (0.544000, 1.088000)

0.997000 2.275702 0.014000 (0.546000, 1.092000)

1.002000 2.273693 0.008000 (1.904000, 2.456000)

1.007000 2283584 0.008000 (1.912000, 2.464000)

1.012000 2.293647 0.020000 (1.920000, 2.480000)

1.017000 2.303830 0.014000 (1.932000, 2.492000)

1022000 2.316199 0.008000 (2.136000, 2.600000)

1.027000 2.328688 0.008000 (2.144000, 2.616000)

1.032000 2.341315 0.008000 (2.152000, 2.624000)

1.037000 2.353999 0.017000 (2.15%9000, 2.635000)

1.042000 2.366790 0.008000 (2.168000, 2.648000)

1.047000 2.379669 0.011000 (2.178000, 2.662000)

1.052000 2.392627 0.008600 (2.184000, 2.672000)

Table 6.7

ek
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