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ABSTRACT

This thesis contains an account of several modifications to two
algorithms for unconstrained optimization, both of which are due to
'Gill and Murray.

Chapter One contains a brief survey of unconstrained
optimization and contains also some results which are used
subsequently.

Chapter Two contains an account of some work on iterative
procedures for the solution of opefator equations in Banach spaces
due to Wolfe (1978a) in which it is suggested that it may be possible,

in certain circumstances, to use high-order iterative procedures

rather than Newton's method, thereby obtaining computaticnal advantages.

In Chapter Three the Newton-type algorithm of Gill and Murray
(1974) is described and the ideas contained in Chapter Two are used to
construct some modifications of this algorithm.

Chapter Four contains some algorithms for the numerical
estimation of both full and pand-type Hessian matrices. These
algorithms may be used in conjunction with the optimization algorithms
which are described in Chapters Three and Five.

In Chapter Five the least-squares algorithm of Gill and
Murray (1976) is described and the ideas contained in Chapter Two
are used to construct some modifications of this algorithm.

Chapter Six contains the computational results which were obtained
by using the algorithms which are described in Chapters Three, Four and
Five to solve the test problems which are listed in Appendices.One

and Two.
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Chapter 1.

Unconstrained Optimization

Tet Historical Suxvey
The existence of optimization problems is as old as mathematics.,

Indeed, even Euclid knew how to find the point on the straight line
ax + by = ¢ {1.1.1)

which is closest to the origin, using the compass and straightedge;
in fact he was mininizing (x? + :y'2 )Vl subject to the linear
constraint (1,1.1). In the Seventeenth Centufy, Newton and Leibnitz
derived the fundamental theorems of differvential calculus, with which
it became possible to find maximizers and minimizers of continuous
functions, By the Nineteenth Century the more specialized method of
Lagrange multipliers had .been developed for solving optimization
problems subject to equality constraints,

" In 1847 Cauchy introduced the method of steepest descent for
unconstrained minimization and it was subsequently used by Courant
(1943), Curry (1944) and some others, The method of steepest descent
was one‘of the few optimization methods which wére supported by a
convergence theory (see Goldstein (1962))., Another method which was
supported by convergence theory was Newton's method which converges
quadraticaliy (see Cauchy (1829) and Traub (1964)). The slow
convergence of the method of steepest descent oﬁ one hand and the
need to determine the first and second order partial derivatives of
the objective function in Newton's method gave rise to the developument

of many other unconstrained optimization methods some of which are



reviewed by Broyden (1965), Box (1966), Kowalik and Osboxrne (1968),
Bard (1970), Huang (1970), Powell (1971), Dixon (1973), Gill and
Murray (1974), Dennis and Moxe (1977), Brodlie (1977) and Wolfe (1978). |
But in both Newton's method and in the quasi-Newton methods, some
practical difficulties still remained; the mogt important one being
the indefiniteness of the Hessian or its approximation. In the case
of non=linear leastwsquares problems, Levenberg (1944) added a
suitable multiple of the identity matrix to the approximated Hessian,
as did Marquardt (1963)., Greenstadt (1967) applied eigen-system
analysis to Newton's method, and Fiacco énd Mccormick (1968) applied
Cholesky factorization to Newton's method. DMurray (1972) suggested
a modified Cholesky factorization which is numerically stable and
provides a positive definite matrix as an approximation to the Hessianj
this idea has been implemented by Gill and Murray (1974a). Also, Gill
and Murray (1976) have described numerically stable methods involving
the singular value decomposition of the Jacobian for solving
unconstrained non~linear least squares problems,

From 1959, when Davidon described what might be called the
first quasi~Newton method, until about 1970, many authors devoted
their attention to the construction of efficient quasi-Newton methods,
Since about 1970, however, several authors, among whom are Powell
(1971a), Broyden, Dennis and.Moré (1973), Dennis and Moxe (1974),
and Mor€ and Trangenstein (1976), have contributed to the convergence
theory of various algorithms for unconstrained optimization,

Beforé about 1970, high~accuracy linemsearéhes were used in most
unconstrained optimization algorithms, Nowadays a great deal of
attention is devoted to the replacement of line searches with step=

length algorithms, Furthermore, much attention has recentlylbeen
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given to the convergence theory of methods for unconstrained optimiza~
tion in which steplength algorithms rather than line~searches are
used. The reader is referred to the papers by Stoer (1975) and

Powell (1975), for example,

1.2 Descent Methods,

An important class of methods for the unconstrained minimization
of diffevrentiable functions F ¢ Rﬂ--;t- Ri is the class of descent
methods, Tach membexr of this class is iterative and is such that the
value of the objective function F decreases at each iterr.-aigion. In
order to describe the class of descent methods in greater detail we

need the following definition,
Definition 1,2.1
n 1 '
Suppose that F ¢+ R—==»=R is G =~ differentiable.

Then the vector p eRn is maid to be a down=hill direction for I' at

X €R" if and only if

g (x)<o0 ' {1.2.1)
where g (x)ERn is the gradient vector of F at x, [l
Theorem 1.2,1

n L
If %o F :DCR —+R is G = differentiable at X € int (D)3

2. p is a down=~hill direction at x,




4.

then 3§>0 such that (¥ X €(0,8) )
F(x+cp) <F (x) (1,2:2)

Proof,

See Ortega and Rbéinboldt(1970), [1
(K)
Mny iterative method which provides a down-hill direction p s
(k) - (K)
an estimate x of the minimizer of P, and a scalar of at stage k

to satisfy (1.2.1) and (1.2.2) is referred to as a descent algorithm.

The general descent algorithm is as follows.

Algorithm 1.2,1
n i '
Suppose that F : R — R has an uncorstrained local minimizer

n {e) n '
x € R and x € R ig an initial estimate of :c)K .

step 1. Set k=0.
(K (K)T (K)
step 2 Find p >such that p g (x YL 0
(K) 1
step 3. Determine ® € R such that

(K) (K) () (X)
P (x 4+ ol P ) < F(X )u

step 4. Set

(KH)M (K) (K) (K)

« x + X P ’

k=k+ 1, and go to Step 2,
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(k). .
It is evident that, when g (x ) % 0 , then the set

n (K)
§ = _{pen : o g (x )<0}

(K) ’
is non~empty, since ~ g (x )ES « Thus, either at stage k,
(K) (K
g (x ) = 0 which indicates that x . is a critical point of T,

or otherwise, there exists a direction along which the value of the

(K)

objective function is. decreased by a suitable choice of ¢x¢
(K)

Now suppose that the sequence (x ) is generated from a descent
(K)

algorithm such that (Vk 2 0) g(x )#0. Then the following theorem

is true,

Theorem 1.2,2

‘n 1 2
If 1, P : R —»Ris a given function and FEC (D) ,

where D is an open convex setj

(o) | .
2, x € D

n {o)
3, S8CD ,whereS={x€R : P (x) €F (x )}
i
4, 3LER such that L £ F (x) (Vx€8) ;

5, 3M>0  such that M3 || G (x) || (vxes) ;

(K)
b P is chosen so that

(OT (k)
p e g = g e ™y ™ (vez0),



where Ei > 0 is givens

(K)
To the sequence (x ) is generated firom Algorithm 1.2.13

8. o 626 (o,1) such that
(K+T (K (KT {K)
| & p < gle p o [(Vk30);
9. . 53 > 0 such that

() (K1) (KY ()T (KD
F =F 2=t g P ‘e 3 0) ,

then corresponding to each &€ > 0 , there exists a positive
4

integer X such that

| & I <€ ¢ (& 5%
That is, Algorithm 1,2.71 will terminate,

VProof.

See Wolfe (1978). (O

In oxder to state a more general theorem related to the
convergence of the sequence obtained from Algorithm 1,2.1, we

follow Ortega and Rheinboldt(1970),

Definition 1.2.2
i

A mapping o~ : [0, 00 )~ [0, oo ) is a forcing function
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(or F ~ function) if and only if for any sequence (tx ) (tK € [0,°°)(\fk,> (

(1im o~ (%, ) =0)==>(lim t, =0) . [] (1.2.3)

{—~t~00 K02

The following theorem is used subsequently.

Theorem 1,2.3%

n 1 :
If 1, PFP:R—— R is G - differentiable and bounded below

(K) (K) {K)
2, the sequences (x Yo i B )y, and ( ) are

determined from Algorithm 1,2.13
3. there exists a forecing function ¢~ @ [0,“3}4>E0,°°)

such that (Vk > 0 ),

(K) (LK) (&) (K} GOT  (K) (¥
F(x J)-P(x +xp )20 "2,
(1.2.4)
then
(K)T (K) (K) )
g ©» [/ v N—#0 " (k—poo).
Proof,

(K)
Since T is bounded below, then the sequence (¥ (x ) ) is

bounded below, and by (1.2,4) it is also non~increasing, Therefore



(K)
(}? (x ) ) is a convergent sequence and thus

(K) (K1)
Fx )-7(x )= 0 (ke—pmco) ,

whence from (1,2.,4) and Definition 1.2.2,

g(x ) » /lhp» I—0 as k-—ww, . (1.2.5)

L

Corollaxry 1.2.1

If: 1, the hypotheses of Theorem 1,2,3 are validj

2, 3d¢c > 0 such that

e )'p (K;cug“”u."p“‘}, (Vk> 0) , (1.2.6)

then

(K)
lim g (x )

K=t co

i}
o
-

(1:8.7)

Proof,

By Theorem 1.2.3%, (1.2.5) holds, Thexrefore from (1,2.6),

(1.2.7) holds. [

Definition 1.2,3
(K)
The step-length obtained in Algorithm 1.,2.1 satisfies




the condition of sufficient decrease if and only if inequality (1.2.4)

is satisfied. . D

Definition 1.2.4

A direction of search p at x is said to be a steepest descent
1

n
direction for F with respect to a vector norm | + || ¢ R—R

if and only if

lets) feeule) 22 ymy » B

Theorem 1.2.,4

n 1
If 1, F$tR-—Ris G - differentiable at xj
2, B is an N¥n symmetric positive definite matrixy
n 1
5 || « || # R—=R is defined by

1
ix §= (xTBx)/2 (v:’cGRn) .

then the steepest descent direction for F at x with respect to the

norm defined by Hypothesis 3 is given by

—1
p= ~3B g(x).
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Proof,
See Ortega and Rheinboldt (1970), o
Thus, if in the descent algorithm, at stage K , we determine a

(K)
symmetric positive definite matrix B and set

(K) (KY -4 (1K) ".2.! (Z)
p == e(x ), ( ~
(K) (K)
then p is the steepest descent direction at x with respect
(K) (k) T _(K) 1Y
to the norm || . | defined by || x Il =(x B x) .

The corresponding descent method is referred to as a variable metric

method,

In the descent algorithm, having found the search direction,
the step~length °<“<)has to be determined in such a way that (x(K) )
generated from the algorithm has the critical points of F as limit

point under some reasonable conditions, The procedure for delermining

(K)
such & is called a step~length algorithm. In particular, a step=
g (K) A K)
length algorithm which determines o« so as to minimize @ (X)=F (x +olp

is referred to as a line-search, Attempts have been made by meny
research workers such as Curry (1944), Keifer (1953), Johmson (1955),
Glayzal (1959) and Crockett and Chernoff (1955), to construct efficient
line seaxrch algorithms,

Davidon (1959) has suggested that the one=~variable finction

(K) (%)
P (X)=F(x +op ) be approximated with a cubic

(K)
polynomial and o¢ determined to be the minimizer of this polynomial,
Himmeéblan (1972), Gill and Murray (1974b), and Wolfe (1978) have given
algorithms for linewsearches which involve quadratic interpolation,

Altman (1966), Goldstein (1967), and Armijo (1966) have proposed

step-length algorithms details of which are given by Ortega and
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nneinboldt (1970).

Gill and Murray (1974b) have described two algorithms, namely
the safeguarded cubic and quadratic univariate minimization algorithms,
in which the function (@ is approximated with polynomials of degrees
3 and 2 respectively. Gill and Murray have also described two stepe
length algorithms, namely the Cubic and quadratic interpolation
step~length algorithms, in which the cubic and quadratic uwnivariate

" minimization algorithms are used.

Let SC = { o(;:)} be the set of point:;.: generated by t.he
safeguarded cubic univariate minimization algorithm, and
let S()1 = icyl.“‘)} be the set of points generated by the
safeguarded quadratic univariate minimization algoxrithm,

The cﬁbic interpolation step-length algorithm of Gill and Murray

is as follows.

Algorith 1,2,2

Step 1. Compute the first member = of S ¢  such that

K)  _ (K) T (K) (Ky T (K)

lex +op ) p <= Jv , (1.2.9)

where AL E [O, 1) is a pre-assigned scalar

s (K) = (K) (K)
-‘

P (x - %P ) <P (x )

v

Note: when 4‘&: o, & is a local miniﬂlizer of F along the

(K) (K)
line x + &P o
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Step 2, If « is such that

(K) = (R) (KY T (K)
+

®xp )>=- P uwglx )p '

F (x(K))-F (x

where H‘E (o, 4 ] is another pre-assigned scalar, then
(K) —
set ® = &K . Otherwise, let W be the first member of the
] - :
set {27131} such that W x satisfies
(K) (K) - {R) - (K) T (K)
F(x )=-F(x +wxp ) > =HPwag(x ") » ‘

(k)
Set o =wa. ]

The quadratic interpolation step-length algorithm of Gill and

Murray is as follows,

Algorithm 1.2,3

Step 1. Compute the first member ® of SQ such that

- ) T }
r = )I -1 ex) g
- (1.2.10)
F(x(k) " ap(k)) < F(x(k)),

where ut is the last member of SQ for which o{ { &« 4 and "('G[O, 1)

is a pre-assigned scalar,

Step 2. If o is such that

(K) - (R) = (KY T (K)
F (x )=F (x4 x p )V =Hag(x ) p s



(K)

where [ € (0, %] is another pre-assigned scalar, then
set ot = ; . :
Otherwise let W bhe the first member of the set { é— . | 3 1 }
such that w & satisfies

(K} (K) - (K - (K) T (K)
e JaF il susn Oy> sbuxel& ) p

(«y .

Set of = woet t:l

The following theorems show that algorithms 1,2.2 and 1.2,3

satisfy the condition of sufficient decrease,

Theorem 1,2,5
n i 4
If 1. F:DCR——R and FeC (D) , vhere D is

an open sets
- (o) (0)
% FLAY (3 )) = {x:xGD and F (x) £ F (x )}
is compacts

5, 00 [A (x )]CD where 00 (M)

—

“ denotes the closed convex hull of 51-;

(K) :
4., (p ) is any sequence of down=hill direction

for P,
(K)
then the sequence ( ot ) generated from Algorithm 1,2,2 satisfies

the condition of sufficient decrease,
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Proof,

See Gill and Murray (1974b). (-1

Theorem 1.2.6

i 1 S the hypotheses of Theorem 1.2.5 are validj
(K)
2 ( = ) is the sequence generated from

Algorithm 1.2.3,
(‘)
then the sequence ( o ) satisfies the condition of sufficient

decrease,

Proof, N

See Gill and Murray (1974b). [

In practice to prevent possible overflow, we may have fo restrict
the o 6B generated from the univariate search according to E*U<£f}
for a fixed A ., Thus, the value of o obtained may be such that

= N before the conditions (1.2.9 ) or (1.2.19) met, In this

event, the following theorem is valid.

Theoren 1.2.7
i 1. the hypotheses of Theorem 1.2,5 are valids

¢ the sets SQ and S, " are such that

(K)
[ S' )\ (Vk:>'0)9

(X)
then the step-length « generated from both algorithms 1,2.2 and

1.2.% satisfies either the sufficient decrease conditions or is such

that
(K) (k) (K) (K)

F (x ) - P (x + ) D - FA & (=

(k) T (K)

) .



Proof,

See Gill and Murray (1974b). I

In subsequent sections we describe some algorithms which are
members of the class of descent methods which are obtained by choosing
a special vector as a down~hill direction,

An important concept in connection with iterative methods for
uwncongtrained optimization is the rate of convergence of the sequence

, (K) . -
(% ) of estimates of a minimizer,

Definition 1.2.5

(K)
Suppose that, in a normed linear space, the sequence (X )

# (K) ®
converges to x and x # x (Vk > K) for some K, Then the

(K
order of convergence of (x : ) with respect to the norm [| e |l

is the largest integer p (p > 1) such that, for some ¢ € (0, o ),

(K+1)
X - X

Lim "y (1.2.1)
(K *
K—oopx 0 )P O
Definition 1.2,6
(K)
Suppose that, in a normed linear space, the sequence (x )

* (K %
converges to x , and that x # x (VYk ) K) for some K,

(K)
Then (x ) converges Q =~ linearly if and only if for some C € (0, )

(k+1) ®
. x -~ x|
lam
{K) #

K~ 02
[[pd - X

=C (1.).*12)
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(K)

and (x ) converges Q = superlinearly if and only if
Ei y
X - X _
1im . = 0 . (1 - Q‘ ]33
(K) #
K=»ea || x -x | 1

Usuelly, the more efficient methods are Q-superlinearly

convergent.

For more detall about convergence rates of iterative procedures
see Ortega and Rheinboldt(1970) Chapter 9.
The following results are guoted from Demnis and More (1974)

when the direction of search is obtained as in (1.2.8).

Lemma 1,2,1
(K) n

I 1 (& ) is a sequence in R 3
(K) #*
2, (= ) converges to x Q = superlinearly,
then
iK+1) (<
. J= -x Il
lﬁm —.——(—‘-(-;—-——* by 1 -
K-bo2 {5 -x |
Proof,

See Dennis and More (1974). T

Theorem 1,2.8

Suppose that

n 1 A h
1 F i R—w=Rand FEC (D) where DC R

is an open convex sets;
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. i
P Jx € D such that the Hessian G of P is continuous

* X
at x and G {x ) is non singular;
(K)
3. (B ) is a sequence of non-singular matrices;
(0)
4, x € D

(K)
5. the sequence (x ) generated from

(K1) (K) (ky=-1 (K)
% =F wH g (kZed (1.2.14)

*
remaings in D and convergesto x .,

(K) * *
Then (x ) converges to x Q =~ superlinearly and g (x ) =0

if and only if

(K) * (k+1) (k)
” Iz "-ox)]x -x )| ’ ( ’
m 5 2 = » 1.2.15
Sy "x(mn_n;)“ .
" Proof,

See Dennis and More (1974). [

Theorem 1.2.9
Suppose that

1. hypotheses 1 -~ 4 of Theorem 1,2,8 are valid;
(K)

2. the sequence (x ) generated from
(K+4) (k) I
x =X - 3B g

*
remaing in D and converges to x

3. (1.2.15) holds.

(K) * *
Then (x ) converges to x Q = superlinearly and g (x ) =0

iy
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if and only if

{K)
lim o

i
-

k —»w

Proof,

See Dennis and More (1974). i

The following results do not appear in any source which is known

to the Authoxr,

Lemma 1.2.2
Suppose that
PP (K) i
1. the sequence ( 3 ) in R is bounded and
(K)
§ #£0 (vk»0);

; (K)
2. the sequence of non=-singular n x n matrices (B ) satisfies

(K+1) (K)
lim (B -B )=0; (1.2.16)

k =» o0

3, A ig any n X n matrix,

Then
(%) (K+1) .
1Lz -als
— TRV P (1.2.17)
if and only if
(K+1) (K+1)
. MG T —a)s W_ ¢
TS . (1.2.18)
koo n 3 ”



182.

Proof.

Because

(K+1) (K %4) (K) (K4 5) (K+4) (K) (K+1)
(B - A =(B ~A)S + (B ~ B Yy &

it follows that

(K} (K+1) (K () {K 1)
DM i I (¢ i Y
(K<) (K+4
sy  haae’
(K+1) (K1)
e |‘(B - A) § I
e (K1)
i §
(X) (K+4) (R$4)  (R) {x+41)
2 B -3 b, I T I (1.2.19)
- {k+4) (K+4)
hs "y Is ||
Butl, since
(R+8) (%) (K+4) (K+5)  (K)
lg__ =3 3§ s -3 1,
(K+4) A
hs
then by (1.2.16)
(k+4) (1K) (< +4)
_ I -3 )3 | ‘
1im = D, (1.2.20)
Kk —+ 00 s (Hi)n

If (1.2.17) holds, then by (1.2,20), the right hand side of (1.2,19)
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tends to zero as K —wea , Therefore, (1.2,18) holds, Conversely,
if (1.2.18) holds then the left hand side of (1.,2,19) tends to zero

as W -—b~ 2 and thus, by (1.2.20), (1.2.17) holds. [}

Theorem 1,210
Suppose that
1. the hypotheses of Theorem 1,2.8 holds
2, the scquence (B al ) satisfies ({.2.46)
(K)

ki
Then the sequence (x ) converges to x Q = superlinearly and

g (x ) =0 if and only if

(K+1) % (K1) (K)
L 10 -x N =x ) o (2.2)
im - .
e T X(K)“
Proof,
(K+4)  (k+4) (LK)
*
Set A=G(x )eand $ = X - X .

The result then follows from Lemma 1.2,2 and Theorem 1,2.8, [:]

Theorem 71.2.11
If 1, the hypotheses 1, and 2 of Theorem 1.,2.9 hold;
2, (1.2.21) holdss
(K)
3. the sequence (B )satisfies (1.2,16),

then the conclusion of Theorem 1.2.9 holds.

‘Proof,

From hypotheses 3, and 2 and Lemma 1.2,2, (1.2.15) holds.
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Therefore, if (x(k) ) converges to x G~ superlinearly then by

Theorem 1.2.9,

(K) ’
L ——-19’1 (k—w“‘&) L]

(K)
Conversely, if  o—s= 1 (K —— =) then, since (1.2.15)

holds, the vesult follows from Theorem 1,2.9, ||

1ad The Method of Newton.

A subclass of descent methods is the class of steepest descent

methods as described in_ Theorem 1.2,4. In this subclass, the different

: (K)
members are distinguished by different methods of choosing the B

’ (K)
in Bquation (1.2.8). One way of choosing B  is suggested by the

following three theorems.

Theorem 1.3%.1

n i 2
If 1, ¥ : DCR — =R is a given function and FEC (D) , where

D is an open convex sets

&
2, x € D 3

1*
3. egf(x )=0;
£ L]

4, 31 > 0 such that B(x ,r )CD and (vx€B (x ,r)),

G (x) is positive definite,

*
then F has a strong local minimizer at x .

Proof,

See Avriel (1976)« [:1 V/f
p=118.
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Theorem 1,3.2

If 1. Hypothesis 1 of Theorem 1.3.1 is valid;
2% x* € Dj
3 T has a local minimizer at x* 3

* *
then g (x ) =0and G (x ) is a positive semi-definite matrix.

Proof,

See Avriel (1976). [}

Theorem 1,3,3
n n %
If 1. G :DER —»L(R ) is continuous at x € D j
% =1 '
2, ¢ (x ) exists,
then

(a) 3ar > 0, and"3 M such that (vxEDnB[x* . r})

-1
G (x) is non-singular and |IG (x)]] £ ™

-e

] W
(v) G (x) is continuous in x at x

PrOOfo

See Ortega and Fheinbold#(1970). I

Theorem 1.3.4
If the hypotheses of Theorem 1,3,9 are valid, then 3T Do

semit

*
such that G (x) is positive/definite ( ¥x€B (x , r)N D).

Proof,

See Simmons (1975)- D3
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*

By Theorem 1.%.,4, if x € D is a local minimizer of
¥ :DcRn———-" Rl N whereDCRn is an open set, the Hessian G of
F 18 continucus &t % , and G (x* ) is positive-definite, then
G (x) is positive definite in a neighbourhood of X . Thus, when
x is sufficiently close to 3;6 , then we may determine B K for use in
G (x 5 ). The corresponding descent method
(K)

consists of generating (x ) from

(K)
(1.2.8) from B

]

(K+1)  (x) (KY (K)=1 (K)
x =x =% B g (k>»0) (1.3.1)

in which

B =6 ., (x » 0) {1.3.2)

Such a descent method is referred to as a modified Newton

(K) * *
Method, If x ——=x (k—»w®) , then because G is continuous at x ,
we have
(K) (K)
lim B = lim G (x )
k w3 0 K 00
*
= G‘ (X ) .

K)
Thus, if °<(_._..1 (k—») , then by Theorem. 1,2,9, or Theorem 1,2,11

(K)
the convergence of (x ) is Q = superlinear. This leads to the

(K)
conjuncture that may be set to Unity for all k (k 0) when

. » (K)
2% ig suffieiently close to x ., If in (1.3.,1), o« =1 {vk }0),

the corresponding descent method is called Newton's Method,

In both the modified Newton Method and the Newton Method, it is

necessary that x ) be sufficiently close to x* in the sense that
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(0) e
* OE B (x*,r)where r >0 is such that G (x) is positive definite

vxE€B (x% , T) In practice however, it is very difficult to decide
(0)
whether or not a given initial iterate x satisfies this condition,
Thus, if x is such that G (x) is not positive definite, then either

-1
G (x) may not exist or the direction P generated from

-1
p= ~G @& g

may not be a down-hill direction, Purthermore, in practice, we may
have to deal with objective functions for which the Hessian either

is not available analytically or is computationally expensive to
evaluate, Many authors,; including Goldstein and Price (1967),
Greenstadt (1967), Fiacco and Mccormick (1968), Mathews and Davies
(1971), Murray (1972), and Fletcher and Freeman (1977) have described
methods for guaranteeing a down~hill direction at éach iteration, To
overcome the objection tha? the Hessian is not available analytically
or is computationally expensive to evaluate, Davidon (1959) has
introduced an idea which will be surveyed in subsequent sections.

In addition, Gill and Murray (19742), in their implementation of the
idea of Murray (1972) have used a finite-difference approximation to

the Hessian.

1ede The Gauss—-Newton Method
n m
Let £ ¢t R—R be a given mapping and.

n 1
let P ¢+ R —R be defined by

m 2
Fl= T £ (x)
izl 1

]

f (x)T £ (%) ( vx:eBh ;m>n) .,
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n n w
Let A: R —>L (R , R ) be defined by

AG) = (28 ()pen E=thm =150,

Then the gradient vector g (x) of F at x is given by

-
g (x) =28 (x) £ (x),

and the Hespian matrix G (x) of P at x is given by

o (o) e olals) alx) & g_t:“_ifi () 6,(9) (1.4.1)
vhere G:L (x) = ( "% bi fl (x))hx“(l w by By s =) 4

The search direction p at x, corresponding to Newton's method

for minimizing ¥ is given by
T m ~1 T
P=-(ax) a(x) + L £ (06 (=)  A(x) £(x) (1.4.2)
=1
n m m
When f ¢ R—R is linear, orx I % fi(x)Gi (x) ]| is negligible compared with
=1

R
Ha )78 )|, then the texm in (1.4.2) containing ¢; (x)

may be negelected to give the search direction'ﬁ defined by

S (b ()R G A& £ &) .

The vector D is called the Gaugs-Newton or Gauss search direction,

The descent method corresponding to the search direction D is referred

to as the Gaugs~Newton method, When fi (hgi X m) is a linear function,
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we have P = p. Thus, in this case, the Gauss-Newton Method is
equivalent to the Newton Method,

It may well be, however, that 2A (x)TA (x) is not an adequate
approximation to ¢ (x) in (1.4.1) or that A (X)TA (x) is not
positive definite,

Levenberge (1944) and Marquardt (1963) have described methods

for determining@direction which lies between p and = g by solving

@ AEEADT=-2 @ @, (1.4.5)

where the scalar A is adjusted at each iteration., Obviously for A> 0,
P 1is uniquely determined,

In order to analyse the algorithm, we require additional nctation.
Let V be the n X (n~t) matrix the columns of which span the null space
of A (x) T (x), and is such that vTv =I, 4 whereI _. is the
unit matrix of order n - t.~ Let W be the n x t matrix the columns
of which span the range of A (x) Ta (x), and is such that Wi It "
Then A (x) V = 0 and WTV = 0, Since any vector in B Gsg b6

expressed as a linear combination of the columms of V and W, we have

L-1
]

3|
4

Lol

=

where 5 = W1 » B, =¥y , Uistx1landFis (m = t) x1,
1

Substituting in (1.4.3) for D we obtain
E G = = = T
A(x) A WU+AWR +AVy ==4 (%) £, (1.4.4)

¥
P remultiplying (1.4.4) by W we obtain
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(WTA (x)T A W A1) Wo=cy'a (x)T £

— b1
vhich uniquely defines U . Premultiplying (1.4.4) by V we obtain

y = 0,
Hence, we have p = VR = ;1 . Therefore p is in the range of
b
A(x) A(x). Now let
m
EB= ¥ £, G (x)
=3 A A

with ||Bf =1.

Then, from (1.4.2) we have

o i () 2 Y (1.4.5)

=

(a () A () + £B)p
Let

where D =Wu , and .pz = Vy. By subétituting in (1.4.5) we have
1

T y;

-
so that in general P is not in the vange of A (x) A (x). Since R4l

is not necessarily small compared with I [| the vectors D end D

will not be similar, In particular, when ¢ is a large number compared




"
with H A (x) A (x)ll . then § (or D) is not an adequate approximation

to p. This is one source of possible failure for the Gauss-Newton Method.

1.5 Quagi-Newton Methods.

When analytical formulae for the second oxrder partial derivatives
of the objective function F 3 Rn—-—val are not available, or are
computationally expensive to evaluate, quasi-Newton methods for
minimizing F are effective, The general quasi=Newton method is

contained in the following algorithm.

Algorithm 1.5.1

: (0) S G * - —
Let an estimate x of minimizer x of I and a symmetric positive
10)
definite matrix H which is an estimate of the inverse Hesgsian of F
at x ' be given,

Step 1. Set k = 0.

(K) (K)
Step 2, Compute T and g from

= (k) {(K)

F(x )

(K) (K)
g (x ):

and &

(K) (K)
where g (x ) is the gradient of ¥ at x .

(K)
Step 3. - Compute P from

(K) (K
b ==«-H“ng >.
K
Step 4. Compute d( }by using Algorithm 1.2,2,

(
Step 5. Compute x e from
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(K1) (K) (K> (K)
X =X + ® T %
(K +4) (K) (K)
Step 6. Compute g 5 8 and y from
(k+1) (K1)
g =g (x ) 2
(K) (K+4) (K)
s =X = X 9
and .
(K) (K+2)  (K)
y =8 - & ;
(K1)
Step 7. Compute H from
(K+1) (K) (K)
H =H +0C6 , {1.5.1)
LK) (K1) .
where the matrix C is such that H is symmetric positive

definite and satisfies the quasi-Newton egquation

(K+4)  (K) (K)
H y = s .. (1+5.2)

Step 8, Set k =k + 1 and go to Step 3. [}

The idea of a quasi~Newton method was originally introduced by
Davidon (1959), and has been clarified and modified by Fletcher and
Powell (1963). Since then a large amount of research has been done
in this area, In particular, Broyden (1967), (1970), Fletcher (1970),
Shanno (1970), Goldfarb (1970), Huang (1970), Bard (1968), Dixon (1972),
Gill and Murray (1972), Davidon (1975), Demnis and More (1977) and

Brodlie (1977) have made major contributions to the development of
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guasi=Newton methods,

Since Bard (1968) observed that successive approximetions of the
inverse Hessian in the implementation of Fletcher and Powell (1963)
may not remain positive definite, even if in theory they should be,

a number of alternative updating formulae and implementations have
been' suggested,

Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno
(1970) have introduced independently the BFGS formula for updating

an approximation to the Hessian matrix, This formula is

(K +2) (K) ) )T (K (K) (K} (YT _{R), (KT _(K)Y UK
B 55 T T AR QIR U B OT IR JRITCIRE: gl
( vk >/0) ’ (10503)
(o)
where B ig a given symmetric positive definite matrix as an initial

approximation to the Hessian,.

Gill and Murray (1972) have introduced & general updating formula
of the foxrm

' (K+4)T-

(K44 {K) UG, K ¥,
B = B " I:g )E g( 1 ( Y £, _E _____
; £, g T

(vE>0),  (1.5.4)

where %., yz and %3 are real numbers, which contains updating formula
(1.5.3) as a special case, Also, in the same paper, Gill and Murray
have described an implemenﬁation of quaéimNewton methods corresponding

td the updating formulae contained in class (1.5.4). In the implementa~

tion of quasi-Newton methods due to Gill and Murray, the system of

linear equations
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(k) (K) (K)
B p == * K1s5d5)

(K) (k)
where g is the gradient of the objective function T at x , must be

solved for the sedrch direction p (M, Gill and Murray have devised two
(K)
methods for updating the Cholesky factors of B so that at iteration I

(K) (k) (KY (X)T
B =L D L .,

(K) ~ (K)
where L is a unit lower triangular matrix and D is a diagonal
(K)
matrix, The vector P can be detexrmined by sclving Lirstly
(K) (K)
L = o
and then
(KYT  (K) (Ky-1
L P = - D v
so that if
(K) (K)
L =(1 )(i’j=1’ 2y eees n)’
; 1)
and
(k) (k) (K)
D =Diag (d- 9 ecey d ) ¥
ik 7T
then
- (K) '
. =m=E (1.5.6)
(K) 1-1  (K) i g,
N, == e Z’ 1,. V. (i = 2, Baoun) (1'5'7)
i L J=1 b J
(K) (K)
5 A (1.5.6)
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and
(K) (K) N (K}  (K)
P‘ ] 'V" /d’ “'-2_' R 2o P. (i =1 e 1peon¢ 1) (1‘5°9)
i 1 i Jeky, 3L J

The implementation of guasi-Newton methods due to Gill and

Murray is contained in the following algoxithm,

Algorithm 1,5,2

_ . " (0) (0Y (o) )
It is assumed that x s L and D are given.

Step 1. Set k=0,

(K} (K)

(K K)
Step 2, Compute T =F (x )y, and g

ez ),

(K)
Step 3. Compute P by solving (1.5.5) and using
(115.6) - (10509)0

(K+1) (K+4) (K14
F dg Ip

Step 4. Compute x s an Tom

(K+1) {K) (K) 1K)
x =X 4+ & ¥ >

(K+1) (K+1)
# =F (x ) 3

(4 1) (K+1)
- & =g (x )

by using Algorithm 1.2,2.



(K+1)

Step 5. Determine B in the form

(K4+4)  (K+3)  (x+4)  (K+4)Y
B =T D ki

(K) (k) (KY (KT
from (1.5.4), where B =1L D I 5

Step 6. Set k =k + 1 and go to Step 3. [T}

" The following theorem contains sufficient conditions for the

sequence (x

(K)

updating formula to converge to a critical point of F.

Theorem 1.5,.1

If 1.

3.

40.

De

n
F:R —-*»H?is twice~differentiables;

F is convexs

( | ' )
L (x o ) ={XERH:P(X)\<F'(X(O)}

is a bounded sets

(K}

the sequence (x ) is generated from Algorithm 1,5.2 with

the BFGS updating formuls, using Algorithm 1,2,23

(

)generated from a quasi-Newton Method with the BFGS

0) n
B € L (R ) is a symmetric positive definite matrix;
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Te € > 0 is any arbitrary small number,

then K such that
EPE (v¢ 2 x),
Proof,

See Powell (1976). ..[]
An implementation of Algorithm 1.5.2 with the updating formula
1,5.3 is available in the Numerical Algorithm Group (NAG) library of

programs, and will be referred to as Algorithm 1.5.3.
1.6 A Simple Procedure for Step-length Determination,

Powell {1975) has discussed the convergence of a broad class of
unconstrained optimization algorithms. The following algorithm is

contained in tHe class which Powell has considered,

Algorithm 1,.6.1
(0 3 -
Let x be an estimate of a minimizer x  of F, A > 0, £> 0,

0 <0 < 1,1¢C ,and0c, < 1be given,

i (kY (k)
Step 1. Set k = 0, AL X, and compute F =F (x )3

(K) (K)
Step 2. Compute g =g{x ).

Step 3. If ”g ” é € then stop.

(K)
Step 4. Compute an n X n symmetric positive definite matrix B



Step 5.

Step. 6

Step 7.

Step 8.

Step 9.

Step 10,

S"Gep 110

S‘bep 12.

Step 13,

Step 14.

Step 15.

(K) (K)y=12 (K)
Compute & = —5B 8 '

(K) (1K)
It 5| sg A then go to Step 8.

K)oy K %)
set § =& S /05 -

(Ky  (K) LK)
Set ¥ =x 4+ § i
LW (%)
Compute F = F (X ).
o (R) (K3 - (K) (1)
If P 2 F then set A =C | § | end
3

go to Step €.

s 1% LKD)

Compute ¢ = ¢ (% ) where
(K) Ky (K)T TO(K):
¢ (x +8) 2F +g $+%§ 3B & -
(K) — (K) (K) - K
If F =P <cl F v ) then
(K+4) (K) -
set A =J%|I S l[ and go to Step 15.
(K+1) (k)
set & =] S |-
(r+d) = CoAK+ ) o
If » > & then set A = A&
(K+14) (K) (K+4)  __ (X)
Set x w X s = I sy k=k+

and go to Step 2. []
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Steps & = 14 contain a procedure for determining the step-length,

This procedure will be referred to as Powell's step-length algorithm.

The following theorem containsg sufficient conditions Lo ensuxe

(K)

that the sequence (g )genera'l;ed from Algorithm 1.6.1 is not bounded

away from zero.

Theorem 1.6,1

if 1.

3

4,
then

Proof,

" . 4 .
P: R —»R is bounded below;

I is differentiables

" n
gt R —pR is uwniformly continuouss

(K)
the sequence (x ) is generated from Algorithm 1,6,1,

(K)
g is not bounded away from zero { VK 2 o).

See Powell (1975). .10

The following theorem contains sufficient conditions for the

Q =~ superlinear convergence of & sequence generated from Algorithm 1.6.1.

Theorem 1.6.2

It 1.

2,

Se

(K)
the sequence (x )generated from Algorithm 1,6,1 converges

*-.
to-a limit point x $
¥
IT > 0 such that the ); aj F are continuous in B[x P r] 3

¥*
G (x ) is positive definitej




(K (K) (K) (K

(K ) ) (X)
4, lex + § )=gEx )=B § |/S |0 (k—ew),

(1.6.1)

(x) (%) )
where & and B are generated from Algorithm 1.6.1, then (x )

¥
converges to x Q - superlineaxrly,

Proof.

See Powell (1975). [




Chapter 2
Iterative Methods for Solving Systems of

Nonlinear Equations.

In this chapter we discuss some iterative methods on which the
unconstrained minimization algorithms appearing in subsequent

chapters are based.

2.7 Newton's Method,
n
Let g tD&R ———= R be a continuously differventiable mapping

: #
and suppose that it is required to find X €D such that
»
2y (x ) =0 +- (2e101)

A
Let x be an egtimate of x* . If we expand g about 3? by Tayloxr's

theorem we shall have

i

e =g @l e g Gl (B, (2.1.2)

, A : A -
vhere g (x) = ( 'aj g; (x) )m\; heR  , end
Tetah . (241,3)

-

Vlhen g is a linear function, from (2,1.2), and (2.1.3) we obtain

% o Bl B ) (2.1.4)

7 B A
provided that g (x) exists, Otherwise, when x is sufficiently close

ks
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2
A
to x , by neglecting the texm 0 ( H h “ ) in (2.1.2) we obtain a

# -
new approximation to x , namely x where

. A1

Tex-g(x) g (%), (2.1.5)

This gives rise to Newton's method, which consists of generating the

(k)
sequence (x ) from

(K+14) (K) s (K) ;1 (%)
% =x =~=g(x ) g ) (k>0) (2.1.6)

(o)
with x given, The following results are due to Kentorovich (1964).

Theorem 2,1.1

n 2
= R is given mapping and g€C (8) P

n

i s [ g ¢« SCR
: (0

where;, S = B [Jr P r] for some » > 0 3

A, L

2, g (x) exists and 31{1 such that

y =1

le'G ) g

g}

3. E‘]Kl)o suoﬁ that
186) | & X (vxes)
44 3K Sosuch that
| e 7 eI K
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U
=
b

K KX £ 1/23
6. (1=J1-2k )k, /XL r,

then the Newton sequence generated from (2.1.6) converges to a solution
%
¥ of g (x) = 0 vwhich exists in § , and

K

(K) # ‘("1 2"'1
Nx == || £ (1/2) .. (2g) K3 ( vk0)

Proof,

See Rall (1969) or Kantorovich and Akilov (1964). [ ]

2,2 The Ixtended Iterative Methods

Traub (1964) and Bosarge and Falb (1969), (1970) among others
have described a higher order iterative procedure for the solution
of g (x) = 0, vwhere £ : Rn—-—oRnis a given P = differentiable mapping.
The results of Bosarge and Falb apply to g : X —Y where X is an
arbitrary Banach space, Wolfe (1978a) has considered an iterative
me thod Mo s characterized by

(K+14) (k) (0)
x =G (x ) (vk>o0), (x  preseribed) (2,2,1)

-

~for the solution of the operator equation g (x) = 0, where

G, & X—=3, and g : X~ X are given operators and X is a

Bamnach space, and has constructed a family of methods MI’ (» 21 )
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characterized by

(K+45) (K) (o)
x = G'r_f (x Y} ( Yk >0) (x prescribved) ,(2.2.2)

vhere GP ¢ X ~~—X is defined recursively Dby

fi 7 -1
C(x) =G (x)~ ¥ &{vw (x)) &G (x)) {(1gigp), (2.2.3)

; 0 =i J-1
in which w ¢ X—X is a given operator., The iterative method

MT ( » > 1) has been referred to as an extension of the iterative

method Mn ”

The convergence of the sequence generated from (2,2,2) and (2.2,3)

is guaranteed by the following theorem,

Theorem 2,2,

5 1 i P ¢ X~—X is a given operator and X is a Banach spaces

e * »
2. 3x € X such that x =P (x )3
2 %
3, PE€C (8) , where S=B[x ,r] for somer > O;
7 -3 .
4. T-"P (x)) exists ( vx € S ), and for some B > O ,

L
sup (@-2G)N" ¢ B3
X €S _

., 5 PsX—L (X, L ) ) is such that for some X>o »

Sup ”PI/(X) ” £ X3
Xe8
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8.

9.

10,

11,

41,
(0}

w2 X—X is such that for some 2 > 0O, and P 21,

e | ’4'
v (&) =xll < a [|x=-x]l , (vxeg)

wa

G : X—=X, is such that for gsome b > 0 and ¥ Z K ,
0

e G - x|l € b -Hx o jgf!v (vx€s) ;
Bir < 2/5 s
il g
ve' K1,

(K

y
then the sequence (x )} generated from (2,2,2) with GP { 2D

¥*
defined by (2,2.3) lies in S and convexrges to x  with ordexr of

convergence at least ¥ + ppr . Moxeover, the rate of convergence

is given by
(k+4) % (K) o "l?-l--}:'l’(.
Il x -x| € G Ilx -x] _ (vk30), (2.2.4)
where C‘ll’ ig defined recursively by

«Q
]
o'

y and

Vi (1= )R
B, [2a+3C = 12 L. (2.25)
4 41 %)

Q
i
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Proof.

See Wolfe (1978a). D

The existence and uniqueness of *  @isH thet % =P (x* ) is
guaranteed by a theorem given by Wolfe (1978a).

Different choices of G : X—=X in (2,2,1) and w ¢ X—X in
(2.2.3) give rise to different members of the class M? . For example,

if we define Go and W according to
¢ (x)=x-g'(x) gx) (¥xex), (2.2.6)
and . wx) =x ( vxeX), (2.2.7)

which is the Newton's method then the iterative method characterized by

(2.2.2) and (2.2.3) with p > 1, the method described by

Bosarge end Falb (1969), (1970) is obtained, By Theorem 2,2,1, the

iterative method correspondz;.ng to {2.2.2), (2:2.3)s (2.2.6) end (2.2.7)

has order of convergence P +2(vP > 1 ). The idea underlying the

Extended Newton Method has been used by Brent (1973) for solving

systems of nonlinear algebralc equations,

In particular, Wolfe (1978a) has described the iterative methods

M 2,2,1 and M 2,2,2, both of which have order of convergence 5 + 2P .,

(K)

Tterative method M 2,.2,1 consists of generating the sequence (x )

(o
from (2,2.2) and (2.2.3) with x ! given where w and Go are defined by
’ -1 - .
wx)=y-% x) @), (2.2.8)

whexre

y=xmg (x)_:t g (x) (2.2.9)
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and ¢ @) =y-& W) &6 . (2.2.10)

Iterative method M 2,2.2 corresponds to

W) =x-e() g @ (2.2.11)
and
¢ (x) =y -g (w (X))—1 &) » (2.2.12)
where ' <
’ , -1
y=x=-2( @& +eWw &) e@x.  (2213)

The following theorem contains another higher order method for

solving g (x) = 0, This method appears not to have been used previously.

Theorem 2,2,2

If 1. g:DCX——X is given operator on
* % *
a Barnach space X and 32X , such that g (x ) = O;
3 *
2, gec (s) , where S =3B [x, 2 [ &P for some r >0 3

’ -1 .
z, g (x) exists (vx€S ) and 3B)osuch that

sup €N € B
x€S




4, 4D such that

s

sup & ()| L D
xXes

5,1K such that

sup J|g () | < K
xXeS

-

6.3l . such that

sup flg. (x)}] < L
XeS

e

7. BKr <1

8. (Bkr) [eBrx* +81B +151 ¢ 13
42

{0)

(K (X)

44

) {K)
then the sequences (x ), {y } and (z ) generated from

(K) () 4, (1K) =1 Ry .

¥ =x =gf(x ) g(x ) (30);
(kY (K} ¢ tv) -2 (K)

z - =y =g(x ) (& ) (k20);
(K+1) (K) /7 (KY -4 (x)

x =y =80z ) eg(r ) (k20);

£
remain in S and converges to x and

'(2.2.14)
(2:2.95)

(2.2.16)




(X} * (1K) % 2
Ny =xll ¢ =llx =xll (x>0);
2
(K) » * 3
jfz =xil ¢ 5@ Jx =-=xll (xx0);
(K1) * (K3 Xy
)i * ~xfl e flx  ~x| (ky 0) 3

where

C

3 =~
_B (BK) | (2Lr + 15K)r + 162D] .
42 :

Proof

It is easily verified that

(o) X (o} w2
fly ==l ¢ B lix -x§ .

2

(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)

(2.2.21)

{0y
Since Bkr < 1 , then from (2,2,21), ¥ € S , Also, we have

fa -5l <uegE" {u D DA Y TP A [

e GG -8 07+ e GOl

(2.2.22)

By hypotheses 3, 5 and, the Mean-Value theorem, from (2.2.21) and

(2.2.22) we obtain

(o) 2 (o) x 3
Iz -x| ¢ 5@ |lx =xII

8

()
so that by Hypothesis 7, z € S , and then by Hypothesis 3,

(2.2,23)
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) =1

, . to
etz Il < B. (2.2.24)
(o) (@)
Let h=3g -y + Then we have
;i o) (o) ¥ (0) *
2 & mll ¢ x[flz2 =xi +fjy ==
2
2 (0Y b B 5
¢ 2 B lx  -xl] (2.2.25)
S
16
and
‘ (o) 71 ) (o) : 4
ne' Y 3" v mll<y (3xr) (2.2.26)
16 '
&
, ) 16
7 (o o (0
Let A=g(y J)+3 (y )Jn. (2.2.27)

Then, from (2,.2.25) and hypotheses 3, and 7 we have

1€ Tl €6 ) -all o ()’

16
. <1,
s0, by Banach's Lemma A exists and
A1l ¢ 16 B . (2.2.28)
7
Therefore,
(1) " -1 (o) * (0} *
Hx " =x[ < [lA]] faly  =x)=-e(y  )+ex)]
-1 ;.. GOy =q / (0) ¥
15 etz )Nl e &) ~afpyy ~-xf-

(2.2,29)

Also by (2.2.21), (2.2.23), and hypotheses 5 and 6 we obtain
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(€2

i * (o) % " 2 loy %5
s =x)-e( )+eG)l &EI[z+5K[[lx =x] ,

8 6 4
(2.2.%0)

and

“Ai“ | g/(zm 31“ I gI(Z(O) ) = all D] y - ;H\<EZBI£K3D 1] 4
7 .
(2.2.31)

Thexefore, by (2.2.28) ~ (2.2.31) we have

¢ y 3 " (o) * 4
- X) ¢ BK [(gLr + SK)r + 271)] % =%l
| 2

7

+ {
= C “ x(”._ xl[‘f \2.2.32)

Since Bkr < 1 , then by Hypcthesis 8, from (2,2,32) we have

b X
¢r’ ¢ 13‘_1(2[@[_;# $AD 45 ]
' 2

1 3

s

(2.2,33)
{1,
() (1) ’
50, |l* 7 =x || £ r whence x € S, Therefore, (2,2,17) ~ (2.2.19)
hold for ¥k = 0 , By a similar argument to that which was used in

going from k = 0 to k =1 it can be proved that (2.2.17) -~ (2.2.19)
hold for k + 1 if they hold for k, Therefore, by induction on k,

the theorem is proved,, Furthermore we have, by (2.2,19)

(k+t) # 3 K (9) *
Ix  =x|l £ @) px  ~x|,

(k) ”
Thus, by (2.2.23) the sequence (x ) converges, [_]



The following theorem is a consequence of theorems (2.2,1)

and (2,2,2),

Theorem 2,2.5

If 1. the hypotheses of Theorem 2,2.2 hold;

3
2, B (Bkr) [(20x + 15K)r + 162D] < 13
42

in (2,2,1) and (2.2.3) are defined according to

W@ ey g6 &G, (20
whexre
y=X = g‘l(x)ﬂ1 g (x) {2.2.35)
and
¢ ) =y-g @) 86, —

then the iterative method MP defined by (2.2.2) and (2.2.3) has

order of convergence 4 4+ 3 P, ( VI)ZaO).

Proof,

By Theorem 2.2,2, we have

2
k=3 V=4, a=5(BK)/8 and b=(, wvhere ¢ is determined
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-

1
by (2.2,20), Therefore, by hypotheses 1 and 2, we have ar <1 and

Vi
bx { 1, so, the conclusions of Theorem 2,2,71 hold. [j

The iterative method MP (p > 1) characterized by Taeorem 2,2.3
will be referred to as M 2,2,3,

So far we have quoted some results which show how an iterative
method Mo with ordexr of convergEnce'V can be extended in such a way
that under reasonable conditions, the order of convergence of the new
me thod is higher, Also, in evexy method vhich has been considered, it
is aésumed that the Jacobian is available analytically. Bu% often,
in practice, either the Jacobian is difficult to derive analytically
or it is expensive tihcompute. In the next section, we show that the

e

convergence rate forlextended Newton method holds even if the Jacobian

is approximated.,
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2.3 Approximated Multipoint Methods,

Let X be a Banach space and P » 1 be a fixed integer. Foxr the
given operators g ¢ X—=X and U ¢ X1 (%) , define the operator

\V: X-—+X recursively according to
7

Yx) =x (vxex),  {2.3.1)
Y@ =x=- 2L T (x)'1 g ( F (%)) (1€1igps vxeX), (2.3.2)
x j:l 3"1

g
provided that U (x) . exists,

From (2.3.2) we have

Y (x)
1+4

It

) =T 6 e (@)

]

wy
[T-v &) &) (%) (1gigm), (2.3.3).
Thus, for i = p ,
-1
= - "}’ ’ .
¥, = [I-76) e] (46D (vxex) (2.3.4)
From (2.3,1) ~ (2.3.4), by mathematical induction we obtain

-3 7P
¥, () = [1-0G) &] &) (vp21s yxEX) 5 (2@5)

Theorem 2,3,1

It 1. g 2 X—X is a given operator on a Banach space and

o




2,

e
,4'

5e

Te

9.

10.

11,

51.

o i D
Te¢ XX is given by T = I ~ g 3
W: X—nL (X) is a given approximation of T  (x) and
U s X—+L (X) is given by U (x) = I = W (x) ;
* ¥ ®
x € X is such that x =1 (x ) 5

2 *
7¢C (8) s where S =3B (X , r] for some * > O

= =1
(I - w(x)) .exists (¥x € S), and IB > O such that

-1
sup || (T~W (x))]| € B3
XES
4K such that
o
sup ||T (x) |l € K3
x€S
4L such that

W () =T @ < Lfix=xl] (vxes);
B(3K + 2L ) r<2;

Blr < 1 3

-

({0)
Xx € S 3

(K)
for a given interger p » 1, the sequence (x ) is
genexrated from
(K+4) (k)
X =% @&x ) (k»0), (2.3.6)

P
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where ‘i{? is given by (2.%.1) and (2.3,2), then

(X) +* ()

(a2) the sequence (x )} converges tox , and x € S ( vk 0)s :

(b) the rate of convergence is given by

DR P, o BT ey A RO S,

(K+4) ® (K) % Pl

IE: ~xl & 6 flx -x] (¥k20) , (2.3.7) |

where j

¢ =B (K+2m)/2, : (2.3.8)

5

¢ = B A W 2 1 265 ¥

L, = [E+Dare /2] (voy1) (2.3.9)
Proof.

By hypotheses 5, and T we have
-1 : ] %
| @=we) I I @=r @) - @-veE < m [ x-x)|
\< BLx ( vX € S)c
_ ' , =1
So, by Banach's lemma and Hypothesis 9, (I -7 (x)) exists ( VX€ 8)
and

I =26y ||.¢ %0 ~ ).

Now, by hypotheses 2, and 1 , and (2.3.5),

-1 ¥
f, ) = [(T-06)) (2-ue)] G (vxes), (2.3.10).
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Thus, by hypotheses 5, 6, 7 and 8, and (2,3,4), for p = 1,

(1) * % (o) (1 (o (o :
hx  =xf| < |lx ~@=-w") (@-ux N
(0) %, 2
<BER2+1)||x -x|
2 :
(0) *
(1) <
so that by Hypothesis 8, Clr <1 and therefore x. € S and (2.3.7)
holds for k= 0, By a similar argument to that which was used in going X

fromk = 0 %o k = 1, it can be proved thet x ‘& S( Yk 3 0) and

(2.3.7) holds., Also,. from (2,3,10) by induction on p, (2.3.7) can be
proved, Moreover, if we assume that for some i 2> 1

Cir1< 1 (2,5.12)

“then by (2,3.9) and Hypothesis 8,

it ; : 2
¢, = =BC.[K+L+KC. r1/2]r1+1
1+ 1 1

< B[K+L+K2]r

< 1%
Since (2.3.12) holds for i = 1, therefore by induction
1 ) :
G_il‘<1 (3 = Lynwe Bi)s

(K *
and thus, by (2.3.7) the sequence (x / ) converges to x . []
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Corollary 2.3.1

If 1,

3.

4.

5e

1.

8.

2 % 1
g ¢C(s) ,vhere S=B[x , r]|in vhichr>0and g (x)=0;

-1
U (x) exists on S ( vx € S ), and 3B)> 0 such that

-1
sup [0 (x) | € B3
xeS
4K > 0 such that
4
sup [le (] € X3
x €5

IL> 0 such that

lv ) -e@l ¢ ollx=x]] (vxes);

B (3K + 2L){/ 2 < 1

O

{KY
Hypothesis 11 of Theorem 2,3,1 holds,lthen the sequence (X )

converges to x  and (2,3.7) - (2,3.9) hold, [7]

n n

' n
As an application of Corollary 2,3.1, let X =R and g ¢+ R——R

be defined by

where

§ T
g(x)=4 ()£ (x),

n m
f+ R —wR (mP»n) isa given

mapping and

A(X):‘-‘( ajf‘ (X)) (i=1! 25‘ cecey m; j=1’ 2’ ceey n).

1




Therefore g (x) = A (x)T A (x) + g (X)T £ fx) .

n n ’
Now, let U t R —=sL (R ) be defined by
T .
U (x) =& (x) & (x)+ P (x) I,

n 1
where In is an n X n wit matrix, and } : R—=R ig a given functional,

Then the following theorem is a consequence of Coxollary 2.3.1. >
Theorem 2,3,2

\ @ o
If 1. £ 2 R-——R 1is a given mapping and

*® * n
f(x )=0 wherex €R ;

3 3=
2, f£eC (8) whereS:B[x s ]| for some r > 0O j
3, B(x) =C ||f (x) |[ (vxes) , where ¢ is a given scalar;
2
' -1
4, U (x) exists ( ¥x € S ), where
T
U (x) =4 (x) A& (x)+ P I (vxes)

in which A (x) = ( 3 £; (x)) 3
mxn

n n.
5% & ¢ R——=R is defined by

T
g (x) =4 (x) £(x) (vxes);
6. 3B > 0 such that

-1
sup [[U () || € B ;
x €8

s



Te

9.

10.

11,

12,.

13.

56,

4K >0 such that
sup || & ()| € X3
X€S

}] %)osuch that

o' @) e ) -8 3'e @l & B 0x~51 (vxyes);

= L;)o such that

bl R(x) = K < L lhx =yl (vx,y€8) ,

L=L1+CL1 $

B (3K + 2L) »/2 < 13

K)

{
the sequence (x ) is generated from

(K+1)

{K)
X = ‘f’P (X

Yy (kx30) (2.3.15)

where (1< ig p) is defined recursively by

-

@ ex- 5 UG A(Y. @) £( ¥ &) (1gigp)
1 J-1 . ;

j::l J-1
(2.3.14)

-

Y () = x (vx€eR ), (2.3.15)

then the conclusions (a) and (b) of Theorem 2,%.1 hold, [7)




5T

In connection with Theorem 2.%.2, the following theorem hags been

proved by Wolfe (1978b).

Theorem 2,3%.3

Ir 1. the hypotheses 1 = 10 of theorem 2,3.2 holds

{0y
2. x € S

3 3L, > 0 such that

-

o G -2 Ml < o [Ix=3ll (vx, yes)

4. HLli > 0 such that

Y

£ G =M < 5, lIx=v]] Cvx, yes)

5 13[_3K+2(L+L5 Il.l)]r/2<1;

(K}
6. the sequence (x ) is generated from

(K+1) (K)

X =\f;’(x )s (k}O),

where qll € £idy ) is defined recursively by

e

“Pi (x) =x = Z U (x)‘lA (X)T 2% X)) e (tgded)
1 J-1

Js
(2.3.96)
and
. n 3
¥ (x) = x (vx€R ) ; (2.3.17)
(K) #
then the sequence (x ) converges to x ., TFurthermore,
(K1) * (K) % Pv1l
= -x < g lx ~x] (k0) ,

WP L P « FORTrey

T P I o I T T . R D N T TIr D I Sroy Ry g



where

¢, =3B (K +2L) /2,

P-1
and 0 g [(x+1+1, Ly )+ (K/2 + 1,5, 00, = ]

(»>1) . [

The following theorem is used to construct an iterative method

for leagt squares problem in Chaptexr 5.

Theorem 2,3.4 where

I 1. g s X—=Y is a given operator,LX and Y are Bangycy, spacest

3 *
3, & €0 (S) where S=3B(x , r) for somer > 0 j

4. Jx >0 such that

" g (x) H £ X (vxes) s
5. g‘l (X)'-1 exists ( vx € 8) and JBH O
-
such that || & (x) || € B (vxes) ;

6. U-: X—»L (X, Y) is such that

v @ -d@| € vx-=| (vieB (x , r)),

where ¢
-~ A P B R
X=x~-g(x) & (x);



Te

9.:

10,

11.

2.

then

(a)
(b)
(c)

vhere

59.

T 3 XeewrY ig such that JM > 0,

lr@®-e @I < uE-F)°  (Ren ),

where p is a positive integer, and »p b4 g &

Blr <1 3
BKr £ 1 3

2 3 4~ 32 s P
BBz = 4B +oM]x ' 8 (1 - Blx) 3
(0}
x € B3

(k) (K)

the sequences ( ¥ ), and (x ) are generated from
= (K (%) 1, (K)-1 (K)
0 ax g ) e ) (vkp0)  (2.3.18)

(Kt4) (k) Yol _ ()

y mE T E T OTE ) (vk%0)  (2.3.19)

(K _ K) :
the sequences (x } ) and (X ) converge to x :

12 =5l ¢ =)= -x)" (vkp0)  (23.20)
- |

(K+4) w

' K * 'P ' .
JIx ==l < c =" = x| (viy o) (2.3.21)

= 2 .3 £ 3-P
¢c=B[B K r 448k +8M] /8 (1~ Bz).
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Proof
By hypotheses 3, 6 and 12, for =0 we have
.. (9) % (0) %, 2
[EREE TR { P i
2
_(0) %
thus, by Hypothesis 9, X € B (x ,r). By hypotheses 6, and 8 and
L) =1
Banach's lemna, U (X ) exists and
oy -1
lv ") W £ B/(1 -~ Bx) .
Therefore, by (2.3.19) for k =0 and hyﬁotheses 4, 6, and T we have 3

i

R

1x® =2 v ET L IEE ET - E) e @) e )

@) - ENE? - -G V- E NI

s =P 3P : (o) s P
< B . [BEr /8 + BKLT 2+mM]ix ~x ) .

(1 - BLx)

(1) P
so by Hypothesis 10, x € B (x ,r).

Therefore (b) and (c¢) hold for k=0 , By a similar argument to that
vhich was used in going from k =0 to k=1 , it can be proved that
(b) and (¢) hold for k + 1 if they hold for k , Therefore by induction
on k , (b) and (¢) are proved,

From (2,3.21),

- ) "
'IX(K+1)~ ;,| Cr? ! Il x(K s fi §

/AN

P
where, by hypotheses 8 = 10, Cr < 1 ., Therefore

()
x

—— X* Og—awco ) . []
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Chapter 3
Some Modificationg of the Newtonwtype

Algorithms of Gill and Murray.

- In this chapter some algorithms for unconstrained minimization

baged on the iterative methods discussed in Chapter 2 are presented,

31 The Newton=type Algorithms of Gill and Murray,
¥ . it
[ 5 i T Rt——q»R;is continuously differentiable then a minimizer x

of I satisfies

g (x)=0, (3.:%:1)

where g @ ﬁ1—~vnﬁis the gradient vector.of F.

Therefore any of the iterative methods for the solution of (3.1.1)

which are discussed in Chapter 2 may, in principle, be used to construct
an algorithm for estimating iﬁ .

Safeguaxrded algorithms which are based upon Newton's method for solving
(3.1.1) have been discussed by Goldstein and Price (1967), Greenstadt
(1967), Piacco and McCormick (1968), Dixon and Biggs (1970), Mathews

end Davies (1971), Gill and Murray (1974a), and Fletcher and Freeman
(1977); An introductory account of the principal problems which need ;
to be overcome in order to safeguard Newton's method has been given by
Wolfe (1978).

Tne Newton~type algorithm MVA  of Gill aﬂd Murray (1974&) for

#* n i
estimating an unconstrained minimizer X of F : R ——R is as follows:



Algorithm %.1.1

and a tolerance

62,

(MNA) *
X

(9) 2
Suppose that an estimate x of a strong local minimizerlof F,

€ >0, are given,

(R) (KY)
Step 1. Set k=0, and compute F =T (x ).
® , ®
Step 2. Compute g )= g ('x ).
(K) (K)
Step 3. Compute 6 =6 )
: %y
Step 4. Form the modified Cholesky factorization of & such that
- (K) Ry (R) (KD
G =1L D
(K) (K)
= G + I
()
where L is a unit lower triangular matrix,
(K) (%) () (K) : ()
= Diag (d,‘L y eeey G ), and B = Diag (E1 —
The factorization is such that G ) is positive definite,
(K e DR <AL o
and. HE l =0 if G is positive definite, For
details see Gill and Murray (1974a).
i (K) _ (k)
Step 5. If ||g “145 and ||E ||_-=0, then x  is

*
regarded as an adequate estimate of x and the algorithm
1K)

(K)
is terminated. If Il g ||2 > ¢ , then determine p( by
solving the linear system
(K)  (RY (K)T (K) (K)
L D L el [T e 2y . (301'2)

(KK}

(K)
1f |lg || €€ and [{E |l % 0 , then determine y
2 o«

T
s ) o
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by solving the linear system

L Yy = e, ) (3.103)

where e‘j is the column j of the n x n unit matrix and

1K) (x) (K) (R}
dj mEj =min (d, ~B;)-
1¢ign

{K)

If g I, =0, then set

p .=y (3:1.4)

14
If Il g( )ll 2'=r" 0 , then set

3 (OT
p = = Sign (g Y)Y (3.1.5)

(K) (K)
Step 6. Determine « such that « ¢ A\ and

< (K) (K} (K)
g @ p )JXF

F (x
by using Algorithm 1,2.2, During the implementation

(K) (K) {K)
of the Algorithm 1.2.2, both F (x + % p ) and

(K) (K) (%)
g (x ~_ + % p) are computed,

Step 7. Set k= Xk + 1 and go to Step 3. [}

Algorithm 3,1.2 (MUA DIFF) is the same as Algorithm 3,1.1 save

that Step 3 of MNADIFF is as follows,
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(v 0%
Step 3. Compute the n x n metrix ¥ with columns ys !

(3

19 2! ceeos n) defined by

(%) (K) (K) (K) (K)
vy, =(g(x +hy es ) —elx ))/hs o, (3.1.6)
J
- (K) -%t -t
where 2 “ K hj £ 2 in which 2 is the

relative machine precision, Compute the n % n matrix
(K} )
G from

{KY . (K) (OT

¢ .= +Y 2. [] (3,1.7)

The following theorems are valid, and their proofs are given

in Gill and Murray (1974a).

Theorem 3.1.%.
(%)
Let G (]c}O) be a symmetric matrix with bounded elements.

Th (K)
Then the J diagonal element of the matrix E associated with

LK)
the modified Cholesky factorization of G is bounded, [j

Theorem 3%,1.2
(KR)
T 1. (G ) is a sequence of symmetric matricess

2, 4 such that

(%)
e < F (vk >0) ;
- (K) (K) (RY (K)T (K). (K)
3, G =L D L =G +E
(KY (k) ()

where, L ~E) , and B correspond to the modified
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(K)
Cholesky factorization of G 5

thendV>e such that

sq (K 2 n
27§ ¥ ¥ bzl (vxer). [

%
3
™

Theorem 3.1.3 '

n 1 %
If 1, P : DCR ~—» R is given and FEC (D)3
2, the set S of critical points of F is finites

o () —_ (0)
3. x € D is such that Sl (F ) is compact and CO[‘Q‘ (¥ )]CD’

where_ﬁ,(t) de;qotes the closure of the level set

and €0 [ N] the closed convex hull of JU ;

Jl(t):{xED s P (%)

I~

4 38> 0such that e ) ¢ £ (vx @)

5e £ = 0,
(K)
then the sequence (x ) generated from Algorithm 3,1,1 (igiA) of

Algorithm 3,1,2 (MNADIFF) is such that

(K) %
x — x (as k—»™), 3

- s
where x € S, [7]

Theorem 3.1.4

it 1. hypotheses 1 =~ 4 of Theorem 3.1.3% are validj
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2. G (x) is not positive semi~definite at any point x € S,

(K) .
then the sequence ( X (E)) generated from Algorithm 3,1.1 is such that

(X) &
lim lim x(§) =% ,

EmQ o2
where x%is a strong local minimizer of ¥, D

If the sequence (x(K) ) generated from Algorithm 3,1.1 ultimately
lies in a set on which G is uniformly poéitive definite, then
Algorithm 3,1.1 is identical with Newtonsmethod and there is a
segquence (x(K) ) which converges to a strong local minimizer of F,
Also there exists an in’cegerl,; such that «(K)r- 1 ( Yk 2 12), and
the convergence of (x(K) ) is superlinear,

As pointed out by Gill and Murray, Algorithms 3,1.1 and 3.1,2
are particularly attractive when G is a  band matrix, In this case,
Algorithm 3.1.2 would be expected to be superior to quasi-Newton
methods., Gill and Murray claim that Algorithm 3.1.2 competes with
quasi-Newton methods when G is not sparse and n £10 , yhile if G
has a known structure such as a fixed band, then Algorithm 3,1,2 is
superior to quasi-Newton methods with respect to both function and

gradient subroutine calls, storage requirements, and work per iteration,

5.2 Extended Newton and Approximated Extended Newton Method, 4 :

n
If X=R , P=1I=g, where

o
il

.
( OFy wurs anF) ;

then the iterative methods defined by (2.2.6), (2.2.7), (2.2.2) and




67.

(2.2.3) with p = 1 and p > 2 are Newton and extended Newton methods

for locating the critical point of F, when G the Hessian of P is
available analytically., Sufficient conditions for the ccnvergence of
the sequences generated by these mefhods are contained in Theorem 2,2.1.
Also, when the Hessian G of T is not available a.nalytica.ll&, then by

Corollary 2.3.1, the approximated Newton iteration and the extended

Newton iteration generated from (2.3.1), (2.3.2), and (2.3.6) with
p=1and p > 2 respectively converge to a critical point of F with

(o)

order of convergence p + 1., Therefore, if x is sufficiently close

to a critical point x* of F and G is positive definite at all points
in a neighbourhood of x* s then the sequence (x(m ) generated by the
extended Newton and approximated extended Newton methods will converge
to x* more rapidly than the sequence generated from the Newton
(Algorithm 3.1.1) and approximated Newton methods (Algorithm 3.1,2),
respectively, Iurthermore, at points far removed from x* » 1t should
be possible to economize on the number of evaluations and inversions
of G if the extended Newton and approximated Newton methods are used,
It is clear, however, that just a Newton (or approximated Newton)
method will, in general, fail unless xm is sufficiently close to x¥,
4 Extended
and the extended Newton (or approxima.ted(Newton) method alone will

fail, There is no guarantee that, at points x far removed from X y

G (x) is positive definite; neither is there any guarantee that
(K+1) (K+2)
F (x

(X)
)IKF (x Yy if x is computed from (2.2.6), (2.2.7),
(2.2.2) and (2.2.3) (or (2.3.1), (2.3.2) and (2.3.6) ) withp 3 2.
The following algorithms, however, will be shown to 6onverge to a

critical point of F under the hypotheses of Theorem 3,1.3.




Algorithm 3,2,1
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(Extended Newton Method)

Suppose that x°’, p, and € o (i = 1, 2, 3) are given, p ) 2.

Step 1.

Step 2.

Step 3.

Step 4.

Step 59

Step 6.

Step 7.

Step 8,

Step 9.

Step 10.

Step 11.

. (K3 " Iy
Set k = 0 and compute F =T (x

).

(K) (x) : ’
Compute & =g (x ). :

(K) (XY :

I
(]
~
"
~

Compute G

(K)
Torm the modified Cholesky factorization of G as

By (K) (KY ()T (K) (K)
in Algorithm 3.1.1 (6 =L D L =G 4B )s

(K)
Ir || 8 ||2 > €& , then go to Step 8.

= (K)

If ”E n = 0, then x is regarded as an adequate
0
_ %
estimate of a strong local minimizer x of ¥, and
the algorithm is terminated,
()

Determine P by using (3.1.3) ~ (3.1.5), set j = O,

and go to Step 23.
(K)
Determine »  from (3.1.2).
(K)
If Min { d; } < &, then go to Step 23.

1€1¢n

(K) 2
If "f l' > &, , then go to Step 23.
5 3

{K) (K) ' (Ky ' (K)  (R) (K} :

Set j=1;, g =g s P )=P s X 5
(K) (K) ¢ % ¢

F =R,

4]

1l
b




Step 12,

and

Step 13.

where

Step 14.

Step 15.

Step 1 60

Step 17.

Step 18,

Step 19.

Step 20,

Step 21.

(K) (K)
Determine X, s F1 s from

(K) (K) (K)
% + P

]

X
1 9 [\

s

(K) (KY
F

i
i

~
"

SN’

If

) (KT (K)

lk € (0, 4] , then set j =0 and go to Step

(K) (x)
Compute g, =g (x. ).
J 3

If j=7P then go to Step 22,

KT (K) ’
g, P » 0 then go to Step 22,
J 0
(k) _ (=1 (k)
Compute p. == G g. ~
J 3

(K)
If . then to Step 22,
k2l > & go P

(k) (K)
Determine x. 5 A% from
J+1 J+1
(K) CK) (x)
*s =x, + P,
J¥1 J h)
(K) (K)
F. =F (x, )
J+3 J+3
(x) (K) (KT (KD
If P, >F +KHg . P
J+d 3 0 J

Set j=J+ 1 and go to Step 14.

P, , then go to Step 22,

P
<}
X
5
3"}
L
-4
£
f

MR VA Aot r AL
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(K+1) (K) {K+1) {(K¥)
Step 22, Set x = X, o B = P,
J J
(K41) (K) ;
g =g, s k=k+ 1 jJ=0, and go to Step 3.
J
(R41)  (K+2) (K+1)
Step 23, Determine x s P y and g from
(K41) i) (Ky (&)
X = X + & D ’
(K+1) (K+1)
T =T (x )
(K1) (K+1)
=g (x )1

by wsing Algorithm 1,2,2, ;
Step 24, Set k=k + 1 and go to Step 3, [7]
Algorithm 3,2,2 is the same as Algorithm 3.2.1 save that Step 3 of

Algorithm 3,2,2 is identical with Step 3 of Algorithm 3.1.2.

Steps 1 = 8 of Algorithm 3.2.1 are identical with steps 1 ~ 5 of

o ALY

Algorithm 3,1.1. Step 9 contains a test vhich prevents excessively
large steps p(K) vhich could lead to overflow, especially when the
objective function contains exponentials, Step 10 contains a moxe
direct check on the step-length. Stepgs 1Y~ 21 contain an inner
iteration which is indexed by j, where 1 <'jé P, The inmer iteration
permits the same inverse Hessian G(K)»:1 to be uged for up to P times,
The inner iteration is left either because j =P or because one of

the tests in 13, 16, 18, and 20 indicates that the inner iteration &

should be discontinued,



T1.

()
In algorithms 3,1.71 and 3.1,2 the sequence {x ) is computed

essentially from

(K41) (K) (K) (K)
X = X + o P 3 (3'201)
where
(K) = 001 (K)
D = =G g (3.2.2)
(x)
and « - is such that
(K+1) (K) (K) ¢eyr (k)
F \<. F ' o+ l“' A g P * (3.2.3)
()
In Algorithm 3.2,1, (x ) is computed essentially from
(K41) (ky _ (K)-1 Bo_wo
X =X -G s j ¢ (30204) ™
J:O .

where P g P varies from iteration to iteration, and is such that
K

T (K)

g. b < 0 (J =0, very :PK )1 (5-2.5)
J 0 . :
- and
(K+1) (K)
F = F
K
(K) UOT (K)
< F KB D ’ ‘ (3.2.6)
where @
(K) K (¥)
P = Z . ’ (3'2-7)
J'.:O J

o R T e S i L s T

G
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Therefore, in Algorithm 3,2,1, (VYk > 0 ),

()T (X) ‘Tk KT - (K)~1 {(K)
g P =2 g B g .
J=o J

]

Fe wor o

=Se: », . (3.2.8)
J=0 J

L0,

' (K)
By inspection of Algorithm 3.2.1, we see that the sequence (x

(K
is generated from (3,2,1) with P )given by (3.2.7) for some P £ P
K

(K) " ; x3
or with p determined from (3,1,%) <« (3.1.5) if & ”< ¢ and
(K) *
G is not positive definite, Furthermore, if one of the algorithms
(K)

1.2.2 or 1.2.3 is used, then (3,2.3) holds and % £ A (¥Yk»0) for
some W\ >0 5
The following theorem guarantees that under the hypotheses of
(K)

Theorem 3.1.%, the sequence (x ) generated from Algorithm 3,2,1

converges to a critical point of F,

Theorem 3.2,1
If 1. +the hypotheses of Theorem 3,1.3 holds
2, E = 51 )
(K) ;
then the sequence (x ) generated from Algorithm 3,2.1 oxr
Algorithm 3,2,2 is such that

(K) %
lim =x =X 2

kK~ 0

E 3
vhere ¥ €& S,




Proof.

(0) :
We may suppose that g # O, Then by (3.2.8)

KT (K)
g p £0 (vk 0),

(K)
with equality only if g = 0, .

By Theorem 1.2,7, either

(i) (K+1) (KT (R) {K)
F =F 0(-g » /wp )

1 1
where oo ¢ R —» R is a forcing function, or

(K) (K+1) (KT (K)
b3 - P }—ﬁ.;\g P

T3

(3.2.9)

(3.2.10)

where p € (0, % | . Whichever of (3,2.9) or (3.2.10) holds,

(K) ) - (0)
(¥ ) is monotone decreasing sequence and x e L (r ) ( vk > 0).
- (o) (K)
Sinece JL (F ) is compact, (F ) converges, whence
(K) (K+1)
lim (F  =F ) =0, (3.2.11)
K= 00

By Algorithm 3,2.1,

P
() ~ wy-1 K (%)
P = =G 2 g . ’
J=o J

and by Theorem 3,1.2, there exists ¥ such that

(KT _ RY=-1  (K)

(K) 2
g G g, > 1)"%]|(Vk>OL

(3.2.12)

(3.2.13)

sl pa sl s bie S BLEL veu
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Therefore by (3.2.12), (3.2.13) and (3.2.5),
(YT (KD P L5 L b G
~ g P = Z ) G g.
J=o0 © J
(K, 2 Px (KT (K)
Ve |IT =2 &. »
VIR =T 8 e
(K) 2
>V iy, il . (3.2.14) :
Also, by Theorem 3.1.1, and Hypothesis 4 of Theorem 3,1.3, a‘} such that é
_(K) e
6 | €7 (vk»0) .
Thexrefore
(K) - (K)
lle "Il <7 s 1] (v 0), (3.2.15)
whence by (3.2.14) and.(3.2.7), %
GIT (KD ) (K), 2 (i) ”
-g > Ay P e,/ e
"P :
(K) 2 (K) k1K)
>l | 7 Ce, |l +§.~ oy )«

If (3.2,10) holds, then by (3.2.11), and (3.2.14)

(K>
p,— O (k —==) .

Assume that (3.2,9) holds, Then by (3.2.11) and Theoren 1,2,3

we have

(KT (K)
Ma (- »  / |j» |l )=0.
I wmgs 0 (302017)

¥)

DN+ 0y | a R T S R TSl o B ek . 04 e Al Sy 4y Ko p ahalited
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By inspection of Algorithm 3.2,1,(or Algorithm 3.2,2) we see

(K) (K}

(K (0) :
'that FJ. < Fj(ij=1, 29 naoa,»?)}( ), SO X')E-Q (F ) (j=o, 1,

J

(Ky :
2y ewws P, ), Therefore pj is bounded (0 ¢ J ng) ( vk > 0).

(K)

Therefore by (3.2.17) and (3.2.16); P — 0 as k —wo, Thus, by
0

(X}
(3.2.15), ||lg {|~=0 as k —poas

Now
"xmﬂ)_xm” _ ‘X(K)“pm)”
() (K
where either X = 1 or « is determined by one of the algorithms
1.2,2 or 1,2,3. In elther case o(mz{ A ( Yk > 0) for s;ome A > 0.
Therefore
”x(l(-f-:!) ")%K) ” \< A " p(K)“

i EK {K)
AFPY e |-
J=a 9

Also by hypotheses 1, and 4 of Theorem 3.1.3

{(K)

(k) {K) -
le, =& 1l € sup |lo (x, " +ep ) )l ||x“"
1 o ] X

v£6g1
CKY )
\<ﬂ|x - X H

._t<) (K) .
<SNE 0 e, Nl

(R)

(x)
.,. xo “

(x)

(3.2.18)

Thexrefore l]gl ”—w 0 ag k —s00 . Similaerly, lle, “—%-—O as
J

k —-00 for any j (1 < j < P, ). Therefore by (3.2,18), since P, £

(K< 1) (X)

(vk 2 0), “x - X “ — 0 as k —p o, The theorem now follows

from Theorem 14.715 of Ortega and Bheinbold’c@ﬂ 7@- O

The following theorem may be proved in the same way as Theorem 3.2,1.

v
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Theorem %,2,2

If 1, the hypotheses of Theorem 3%,2.1 are validg

€= &

()
then the sequence (x (€) ) generated from Algorithm 3.2, is such that

(X)) *®
lim lim x (8) =x
Em0 K=t o2

%
where x is a strong local minimizer of F. [:]

In Algorithm 3,2.1 (or Algorithm 5,2.2), it ig necessary to
compute F;K> (=0, 1y sess ?K D | Vlc;;O) in orxder to determine
whether to accept p;x) for addition to the step which is to be taken
from x(J<). It is reasonable to conjecture that it may be more

(K)
efficient to detexrmine the total step p without requiring that

(®) (K) (KIT (K)

L F. + p g P. (e, 1y se PK )

.
J¥a > g ° J

If we still require that

(KIT  (K) e
g, P < 0 (j =0 ,1y eees D )y
J G K

(K)
then (3.2,8) still holds, and we may therefore still use P in

algorithms 1.2.2 and 1.2.3, These considerations give rise to the

algorithms %,2.3% and 3.2.4.

Algorithm 3%3,2,3

(0)
Suppose that x s . and 55 > 0 (@G =1, 2, 3) are given,

| T OO



Step 1.

Step 2.

Step 3 .

S'bep 40

Step 5.

Step 6.,

Step 7 .

Step 8.

Step 9.

Step 10,

Step 11,

Step 12.

T7e

(k) (K)
X

Set k=0 and compute P = F ( Ju
(K) (K)
Compute g =g (x )
(K) (K)
Compute G =G (x Ys
(K)
Form the modified Cholesky factorization of G as in
Algorithm 3,1,
(K)
ir e || 2 g then go to Step 8,
2
(1) (K)
If “E “ = 0, then x .  is regarded as an

adequate estimate of a strong local minimizer of F
and the algorithm is terminated,

(K)
Determine P by using (3.1.3) = (3.1.5), set j = O,

and go to Step 22,

(K)
Determine D from (3.1.2).

% (K) ;
If wan { d. .} <¢ s then go to Step 21.
agignl 2 2

()
r |? H2 > &, then go to Step 21,

(K) (K)Y . (K) (K (K) (K)
Se‘cj=0,g° =g s P =P),x° =x

(K)
e {l2 I, > 1, then go to Step 21,




Step

Step

Step
Step

Step

Step

Step

Step
Step

Step

13,

14.

15

16.

1T

18.

20,

21,

If j = P, then go to Step 24.

(K)
Determine x from
JH+4
(%) (K) (%)
X . = X +Pp . .
J+ 1 R J

Set j=3 + 1.

(K) ()

Compute g, =g (x. ).
J J
(KT (¥)
If gj ._p . > 0 then set
J-1 (k)
(K)
P = 2 P
1=0
and go to Step 21. .
(K> - U3 (ky
Compute p . =G g
J J
K
1f I pj l, > 1, then set
(x) 3L (x)
P =2 D,
i=0 1

and go to Step 21.
Go to Step 13.

Set jJ =0,

(R+1) (K+2.)
Determine x y °F s &n

(K+2) (R) () LK)
X =X + P ’

Cr+xi)

d g

78
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(K+1) (K+1)
P (x ’

S
il

and

(K+1) (iK+ 1)
g (X )’

by using algorithms 1,2,2 or 1.2.3 as in Algorithm 3.1.1,

Step 23, Set k= k 4+ 1 and go to Step 3.

C LK)
Step 24. Set P

i
Mg
e

and go to Step 21, [

Algorithm 3%,2.4 is the same aé Algorithm 3.2,3 save that Step 3
of Algorithm %,2,4 is identical with Step 3 of Algorithm 3,2,.2,

IAnalogues of theorems 3,2.1 and %.2.2 may be proved for the
algorithms 3.2.3 and 3.2.4,

A significant part of the computational labour required to
implement the algorithms 3.2,1 = 3,2.4 are that required to evaluate
G, At the points x far removed from the minimizer x*' s an accurate
estimate of G (x) is not required, and it may be conjectured that a
quasgi=Newton updating formula could be used. At the points near x 4
where é (x) is small, an accurate estimate of G (x) would be required
in order to take ad?antage of the local convergence properties of the
iteration corresponding to the extended Newton or approximated extended
Newton Method, These observations give rise to-the following modifica~
tions of Algorithm 3,2,2 to give Algorithm 3.2.5,
(a) Replace Step 1 of Algorithm 3,2.2 with

“ k
Step 1. Setk=0, n=0,and conpute F ) s F (%),
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(b) Replace Step 3 of Algorithm 3.2.2 with
4
Step 3.1. Set n, = 2
4 (K>
Step 3.2, If |&g || 2 &, and n, o= 0. then set n = y

K)

/ (
Step 3.3. If n1 = 2 <1lhen compute G'& as in Algorithm 3%.2.2,

‘ (K)

Step 3.4. If n1 = 1 ‘then compute G from (1.5.3), noting
(¥

that for k = 0, we set G ) = In , where in is an n ¥ n wnit

matrix,.

(¢) Insert steps 4’ and 4" between steps 4 and 5 of Algorithm 3,2.2,
Step 4" . Setn =0,
Siepd . If ||ﬁmlloo:/: 0 and n = 2 then setn, = 1.

(d) Insert step 8/ between steps 8 and 9 of Algorithm 3.2.2,

Step 8’ « It n1 = 1 then go to Step 23, [j

Similar reascning leads us to modify Algorithm 3.2.4 to obtain
Algoritm 3,2,6, The modifications (a), (b) and (¢) to Algorithm 3.2,4
are the same as (a), (b) and (c) in Algorithm 3.2,5, but (d) is as follows.
(d) Insert Step g between steps 8 and 9 of Algorithm 3,2.4,

Step g ., If n, = 1 then go to Step 21 of Algorithm 3.2.4, [

Moreover, in the similar way Algorithm 3.2.7 will be obtained if
we apply the modifications (a), (b) and (¢) to Algorithm 3%,2,2.

. a®
Under the conditions of Theorem 1.,5,1, 3}<‘such that
(K) A
lle || < &, (Vk 2 k) 3

(K)
that is, from any starting point, the sequence (x ) generated

from algorithms 3,2,5 = 3,2,7 enters an Ef neighbourhood of a
critical point, and ultimately one of the algorithms %,2.2, 3.2.4

and 3,1.2 will be implemented,
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3.3 Some Methods of Higher Order,

In view of the results reported by Wolfe (1978&) in connection

with the iterative methods determined by (2,2.2), (2.,2.3) and (2.2,6)

~ {2.2.7), M 2,2,1, M 2,2,2, it may be conjectured that iterative

methods M 2.2.1 and M 2,2,2 and also, in the light of Theorem 2,2,3,

M 2.2.,3, may be used with advantage in place of the extended Newton

method in modifying Algorithm 3,1.1. This can be done in a manner

gimilaxr to that which has already been discussed in Section 3.2, to

yield the following algorithms, We note that the following algorithms

are supported by convergence theorems only if the Hessian of the

objective functions are computed analytically,

Megorithm 3,3,1 (Corresponding to M 2,2,1).

Suppose that %% s Py and £ >0 (i=1, 2, 3) are given
(K) (K)
Step 1. Set k = 0 and compute F =P (x ).
(k) )
Step 2. Compute g = g (x R
. (K) tR)
Step 3, Compute G =G (x ¥
: i (K)
Step 4. TYorm the Cholesky factorization of G ag in
: _AK) (K) (KY (KT (K)
AMgorithm 3.1,1 (& =L D L = G
(K)

Step 5, If llg I > ¢ , then go to Step 8,

- 2 1 .

(K) *

Step 6, If |IBE |l _, = 0 , then x is regarded as an adequate

*%
estimate of a strong local minimizer x of F, and the

algorithn is terminated.




Step 7.

Step 8,

Step 9.
Step 10,

Step 11,

Step 12,

Step 13.

Step 14.

Step 15,

Step 16,

Step 17,

82,

{K) :
Determine p by using (3.1.3) = (3.1.5), set j = 0,

and go to Step 48,
. . (K)
Determine p from (3,1.2).

(%) .
If o Hl, > &, then go to Step 48,

Set J = 1

3

K . (K
Determine ii ! and I ) from

%) (K (K)
% =X + P

QY (K)

F P (X Yo

- (K) (K

(OT (K
it F & F

)
+Hh g D , where M € (0,27,

then go to Step 14.

Go to Step 48,

(K Y
Compute & =g (X - Ja

_ )T ) :
If 7 p <0 then go to Step 17.

(k+2)  _(K)  (k+1) . (K)
Set j=0, x =X s 8 =g ’

(K+2) o (K) .
= s Xk =k + 1 and go to Step 3,

(K)
Compute D from

(K) (K) (KT {K) _ (k)
L D L P = - ‘

;
;
L'a,‘



Step
Step
Step
Step
Step
Step

Step

Step

Step

Step

Step

Step

18.

19.

20,

21,

22,

23.

24.

25,

26,

27.

28,

29,

83,

( _
If "ﬁ K)ﬂz > 23 r then go to Step 16.

LK) (K

Set Xx = X + P 'y
A KD tK)

Compute F =7 (Q )

A ) )T (K)
If F £ F + — g P then ge to Step 23.

(K LK
Set p ) =5 ) + p(K) and go to Step 48.

(kY AlKY (K
If [(F = F )/F |)0.1 then go to 25

(K+1 (K) iK+1) ALK
+1) A - 4 )

Set x =X ’ . » =0,
(K+1
g(K”):g(x”) ), k =k + 1 and go to Step 3.
(K) (K)
Compute a =G (2 )

: A (XD
Form the modified Cholesky factorization of G ’

- K AlX) Atx) A (T
el =T D L

A K)
If min {d_L Egézthen set W= 2 5

1£igh

otherwise set u= 1,

A (KD x (K)=1 (K)
Compute p == G g .
_UOT A )
If g p £ 0 then go to Step 35.°




Step 31.

Step 32.
Step 33.
Step 34.
Step 35.
Step 36,
Step 37.
Step 38,
Step 39.
Sfép 40,
Step 41,
Step 42,

Step 43.

J =1, then go to Step 32,

(k1) = (K)
¥ = I

1y k =k + 1, and go to Step 3.
r](+1J .,‘(K) _(K‘l’ﬁ.) ? (K} i
= B G
Compute g
Set k =k + 1, and go to Step 5.
Ky
% (k) Q__(K)

Compu te ﬁ

then go to Step 30,

_ _ T, (1)
> F+ g

j=j+1¢

2, or j=7 then go to Step 45. :

84-

3
3

14

= G -

then go to Step 30, C



Step 44,

Step 45,

Step 46,

Step 47.

Step 48.

Step 49.

Steps 12,

85,

Go to Step 29,

T2 ZS I U3 N T T T D BRPRLD
Set j=1, = =X s F =R y K=k + 1,
(k) {(K)
Compute g = g {x ).
Go to Step 3.
(K+1) (K42 ) (K+4)
Determine x g T , and g from
(x+1) LK) (¥y (K)
x =X + X P s
(K1) (K+1)
F =F (x )s
(K44 (K+1)
= g (x )9

by using Algorithm 1.2,2.

Set k

i

k + 1, and go to Step 3. [:]

x)
and 13 ensure that if Newion's step with « = 1 does

not give a sufficient decrease, then Algorithm 1,2.2 is applied to

K

Y.
find ot and

the modification in this iteration is not applied, The
(%)

test in Step 15 ensures that the search direction P computed at

(K)

Step 17 is down~hill at x , since

q(K)T
g

(%) T -1 (k)
P = - G 8

T () .
= =P g (3.3.1)

Steps 9, 18, and 36 contain a check on the step length, whereby the

(K)

algorithm reverts to Newton's method with « = 1 or method M 2.2.1
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(K)

with extension pK &£ P if the length of v is too large. One

complete iteration corresponding to =3 is shown in the Figure 3.1

In Figure 3.1,

(K)
D = &8
. (K) —
r = BC
N(K) ___ES
Pi =
(R) —_—
= DE
‘-52.
) (K) LK) A (K) _ ) _(K)
X =X + P sy X =X + %D ’
_ k) (K) 8 (K) N(K) k) L)
X = X + and X = X + .
1 1 ’ 2 1 TRy

In Figure 3.1, B, D, and E are the Newton iterate, the iterate
corresponding to Method M 2,2,1 with® = 0 and ® = 1 in (2.2,2),

(2.2.3) respectively, while C represents the extended Newton iterate,

»
“
%
"
4
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By steps 25, 26, 28, 29, and 35, we are sure that at each inner iteration

1, I i ()
j (steps 29~44) P is down-hill at x °, since for all j (1< Jg¢p ),
X

(T (K) ()T % ¥ _wy
g P =g (-G g
JUOT A (k)
= g p . (3.302)

Also, if an iteration ends at B or M or C, we still have

(KT )

g 3 <o, (3.3.3)
and

()T - K)

g p» <0, (3.3.4)

and the corresponding sufficient decrease condition is satisfied,

Therefore, analogues of Theorem 3,2,1 and Theorem 3,2,2 may be proved,
By Algorithm 3.3.1, one of the requirements for the extension

from D to E is to evaluate the function at ome extra point, say E,

to test whethexr

~ () L) T _(K)
PG, ) £FE D+reGT ) 5 (3.3.5)

is satisfied, It is reasonable to determine the total step _p(K)
without requiring (3.3.,5)., That is, for P= 3, Algorithm 1,2.2 is
T o tx)

K ( S5
applied to find «x( ) alongﬁ= D 5 + P + P . This gives

rise to the following algorithm,
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Algorithm 3.%.2 (corresponding to M 2,2,1)

Steps 1 -~ 28 are the same as in Algorithm 3.3.1.

(K} (%)
Step 29, Set S =P and j = 1.

_uor LY
Step 30 If g p < O then go to Step 35.

Step 31, If Jj+ 1 then go to Step 48 of Algorithm 3.3.1.

(k+4) A (KY (k+d) 5 (KD

Step 32, Set x = X s P =T "
(K+2) (K¥d)
Step 33, Compute g = g (x Ve
_(xs1) R (K2
Step 34. Set k=k + 1, G = G and go to Step 5.
(K) — K= k)
Step 35. Compute P = - g ¢
(K) LK) LX)
Step 36, Set & =S + P .
(%)
step 37. If Il s H2 < g then go to Step 39.
o (k) (k)
Step 38, Set p = g and go to Step 48 of Algorithm 3,%.1.
(x) (K)

Step 39, Set »p = S and jJ=j + 1.

Step 40, If j=7p oru=2 then go to Step 48 of Algorithm 3,3%.1.

. (K) (X) ()
Step 41, Set x = X + P .




Step 42.

n Algorithm %,3,1 and therefore in Algorithm 3.3.2, if we set

89.

L {K) _ (k)
Compute g = g (X ) and go to Step 30. [ ]

¥ = 1, then the algorithms 3.3%.3 and 3,3.4 corresponding to

Method M 2.2,3 will be obtained,

The minimization algorithm corresponding to M 2,2.2 is as

follows,

Algorithm 3,%.5 (corresponding to M 2.2.2)

Suppose that x > 5 & >0 (i =1, 2, 3) are given.

Step 1.
Step 2.
Step 3.

Step 4.

Step 5.

Step 69

Step Te.

(01

(x) (K)

Set k =0 and compute F = F (x T
(K) (k)

Compute & = g (X )e
(X) (k)

Compute G =G (x Yo

(x)
Determine the modified Cholesky factorization of G

as in Algorithm 3,1.1.

(K) : '
It Ilg ”2 b 51 , then go to Step 8,

tx) (K)
If llE “M = 0, then x is regarded as an adequate

*. . .

estimate of a strong local minimizer x of ¥, and the
algorithm is terminated,

. (K) .
Determine p by using (3.1.3) = (3.1.5), and

go to Step 49.




Step
Step
Step
Step

Step

Step
Step
Step
Step
Step
Ste§

Step

Step

10,

11,

12,

13,

14.

15.

16,

e

18,

19.

20,

90.

tK)
Determine p from (3.1.2).

(K
1t “p )”2 P E3 then go to Step 49.
A (K) (‘() (K)
Set x 88 % + p ‘
Coa 1K) A (K)
Compute F = F (x |

A (R) (x) (OT k)
If P D P+ Mg D , where f‘*-"-(O,%_],

then go to Step 49.

(k) 4 1K) (k)
it | (F ~F ) /F | >0.1 then go to Step 17.

(ked) LK) (kra) a4 UKD
Y F = .

wn
(0]
[
b
1
»

(¥+21) {K+1)
Compute g =g (x

)

Set k=k + 1, and go to Step 3.

4 (KD 4 (K)
Compute G =G (x

A (K) {K) ALK)
Set G = G 4+ G .

(&)
A
Determine the modified Cholesky factorization of G
as in Algorithm 3,1,1.

_(K) PRLOAINES
Compute p = -G & "



Step

Step

Step

Step

Step

Step

Step

Step

Step

Step

Step

2%

22,

23,

24.

25.

26,

27.

28,

29,

30.

31.

(K)
1t |7 || € £a/2 then go to Step 25.

(K+1)

Set x

Compute

g

A
= X

(K+21)

Set k =k + 1,

as in Algorithm 3,1.1.

_ )

A A
G = Ik D
N(K)
=G 4
If min

1€1 ¢

_ Kk
Set x

Compu te

—~—

If F

A {R)
{d. }
1
A

Otherwise set u =

)

(
=X

{x)

F

{(K)
<

A L)

F

(K) (K+1)
sy ¥ £

(K+1)

)

=& (i

(k) a LK
G = G

(K) (k) (KIT
A A

L

(%)
B .

kY 'S

+ 2p ‘

=F(S’c‘£'k) 9

)
and P £

then go to Step 33.

(K+1)

Set x

Compute

g

{K+1)

A (K)
X ’

(K+1)
=g‘x

N3

F

)

That is

)e

and go to Step 4,

é EZ s then set u

(K)
lil

(K+42.) A

=T

91,

A (KD
Determine the modified Cholesky factorization of G

()T _
+2 M g

b

(1)
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Step 32, Set k=k+ 1 and go to Step 5. ‘

()= (k)
24 .

(K)
Step 3%. Compute D

>

H]
i
]

(%) (K

_ - X))
Step 34. Compute g g (x ) and set j = 1.

_UOT (KD ;
Step 35, If g p < 0 then go to Step 38,

Step 36, If j =1 then go to Step 30. :
(K1) (K) (K1) (R tK+1) _ Ak
Step 37, Set x =R s B =g . B = B 5

k=k+ 1, and go to Step 3.

(%) ' = (K)—12 (%)
Step 38, Compute P = = G g .

Step 33, If || P . > £, then go to Step 36.

Step 40, Set X =X + P .

: L (K)
Step 41, Compute ¥ =P (X )

(K} (K) (k)T (X)

Step 42, If > F o+ pE D then go to Step 36.

=

Step 43. Set j =3 + 1.

Step 44, If j=p or u=2 then go to Step 47,

Step 45. Set X =% , F =5



() (K)

Step 46, Compute § = g (% ) and go to Step 35, .
(x+1) (k) (K+1) . (K) :
Step 47. Set x & X y F =T ¢
(K+71) ' (K+1)
Step 48. Compute g =g (x ) and go to Step 3.
(K+1) (K+1) {k+1)
Step 49, Determine x P , and g from
{K+1) (K) Ly (x)
X = X o P ’
(R-+1) (K+1)
¥ = F (x ),
(K+1) (K€1)
g = g (x Js

by using Algoritim 1,2.2,

Step 50, Set k =k + 1 and go to Step 3., 1

The geometrical representation of a typical iteration corresponding

to p =3 is shown in Pigure 3,2,

K) .
AR BA(")
B> S g ¥ Iy
<
pes AR
Fo3 80
(k)
~
& g
M.gure 3.2
In Pigure 3,2 Bz 3
K —n
() Y
(k) -1 ()
= "'G(x ) g(x )7




P = AM
(x) A K) -2 (K)
= = (G (x )+ 6 (x )) e(x )s
12 R
D A (5>
A & (K)
A 1 m
= -G (x ) e (&
KD A (K) =2 LK)
p = =-G(x ) e (X
% ~fin
= DE
ALY (%) (i) _ (k) tx) - (K) ~ ()
x = X + P s X =X + 2p y X
~ (K) ~ (X) ~ (R) (k+1) (LK)
X = % + P v g EBA ¥ — - o
2 % 3 2

From Algorithm 3.3, 5 it is easily verified that at each iteration,

94.

= X

sufficient decrease of the objective function has been made, and also,

(K)

all search directions involved at each iteration are down-~hill at x

Thus, analogues of theorems 3.,2,1 and 3,2.2 may be proved for the

(K)
sequence (x

) generated from this algorithm,

The method corresponding to M 2,2.2 may be implemented in two

different ways as for M 2.2,1 , without altering the convergence

properties. The second implementation corresponding to M 2.2.2 is

as follows.

Algorithm 3,3.6 (Corresponding to M 2,2,2)

Steps 1 -

o Step 35,

Step 36,

Step 37,

Step 38,

34 are the same as in Algorithm 3.3,5.

(K & X
gat. & wieh %

)T (K)
If & ﬁ < 0 then go to Step 3%9.

If j=1 then go to Step 30,

Go to Step 49 of Algorithm 3,3.5




(K) A (K)=1 (k)

Step 39, Compute P = =~ G 2 -
() (k) (K’
Step 40, Set S = & + P .
' (K)
Step 41. If || “ { ¢, ‘then go to Step 43.
(k) (K)
Step 42, Set p & 5 and go to Step 49 of Algorithm 3,3,5.
(k
Step 43. Bet p 0 =L

Step 44. Set j=J + 1.

Step 45, If j=2 oru =2, then go to Step 49 of Algorithm 3,3.5

_ (KY {K) (x)
Step 46. Set X = x + p ’

_K) (k)
Step 47. Compute g =g (X ) and go to Step 36. ]
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Chapter 4.

On the Numerical Estimation of Hessian Matrices,

4.1 Introduction,

In order to implement Algorithm 3,1.2 when analytical formulae
. for the second partial derivatives are not available, Gill, Murray,
and Picken (1974) have used (3.1.6) and (3.1.7), in which the
analytical formulae for the first partial derivatives of the objective
function are known, The method requires n evaluations of the gradient
vector g of the objective function T : Rh — R1 at x € RH. .
Computational experience shows that usuvally, the results which are
obtained by using Algorithm 3,1.1 are identical, to a high degree of
precision, to those which are obtained by using Algorithm 3.1.2,

Gill and Murray (19740) have suggested that algorithms 3,1,1
and 3,1.2 may be used for the solution of largénscale unconstrained
optimization problems if the Hessian matrix is sparse, In particular,
they propose a method for.estimating G (x) numerically when G is
m~diagonal., This method wrequires m evaluations of g to estimate
G (x) if it is supposed that g (x) is already known. Computational
.experience shows that usually the results which are obtained by using
this method with Algorithm 3,1.2 to minimize objective functions with
m -~ diagonal Hessian matrices are identical, to a high degree of
precision, to the results which are obtained by using Algorithm 3,1.1,
in vhich G is computed analytically,

In view of the preceding remarks, it is desirable to considex
whether more efficient methods for the numerical estimation of both
full and m ~ diagonal Hessian matrices may be devised., Clearly, to

be satisfactory, any such methods should be as accurate and as reliable

i

L VTR U o S AR Y
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as those which have been proposed in the previously-mentioned
references,

In +this chapter, a number of algorithms for the numerical
estimation of the Hessian matrix G of an objective function
P e ﬁ1-4q> Rlare described, In each case it is supposed that
analytical formulae for P and for the n components of the gradient g
of I are known, It is often true that the formulae for the components
of g contain expressions in common, so that the computational labour
vhich is required in order to evaluate g is often less than n times
that which is required for the evaluation of one component of g,
Furthermore, it is often true that the formulae for F contains
ezpressions which are common to some or all of the formulae for the
components of g, In this case a considerable saving in computational

labour can be made in the simultaneous evaluation of F and g,

4,2 The Bstimation of Iull Hessians

In this section a very simple algorithm for estimating full
Hegsian matrices is described, It would appear to have a slight
advantage over the method of Gill, Murray, and Picken (1974) as
regords computing time, while giving virtually identical numerical
yesults when used with Algorithm 3.1,2.

The n x 1 gradient vector g (x) and the n x n Hessian matrix

n 1
G (x) of F: R — R at x are defined by

g, (x) = 0o, F (X) (i =1, 2, --uln)s
b 1
and
G.-(x) :aa F (1) (is Jr =1y 25 caus n);
1] J 3
where
OF (x) = L F (x) (1 =1, 2 couy n) -
1 Ox

i
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"and 9 D F(x) = ———— P (x) (i) §=15 25 eee, n).
J 2 Ix. D xj .
F

Leth > 0 be a given step length, Then the G (x) may be estimated

with truncation error O (h) according to

s 25 eeey n)r

(4.2.1)

i

G .mp (g(x+he )=g(x) @, 3
1) i J 1
where, for jJ = 1, 2 seos Ny ?jis colum Jj of the n x n wnit matrix,
Gill and Murray argue that because of truncation and rounding
errors, the estimate of G (x) which is obtained by using (4.2.1) as
it stands may not be symmetric, They therefore advocate symmetrizing
the estimate of G (x) by wsing (3.1.7). Gill and Murray have discovered,
gsomevhat surprisingly, that the value of h which should be used in
(4.2.1) is rather insensitive to F but depends upon the computing

machine precision. They suggest that a suitable value for h should
3t

- —

be between 3 >

and 2 2, wvhere t is the number of bits in the word

length of the computing machine, Their algorithm is as follows,

Algorithm 4,2.1

Tet x, g=¢ (x), n, and h be given.
Step 1. Set Jj=1.
; +

Step 2, Compute g =g (x + h%j Ys

&
Step 3, Compute G=(g.~-g. )/ h (1 =1, 2, veey n).
i i

1j

=
S .t tek ;z@.




99. :
Step 4. If j =n, then go to Step 6. :
Step 5. Set j=Jj+ 1 and go to Step 2. ;

£ sty A gp ewirq

KA Qe s T o ] S cae e ’
Suep 6. Set Gij ((‘ij-l- (‘jl) / 2 (J_ '], 2r ¢ I 1) 3 %
i=j+1’ aco,n)e i
Step 7. Stop. [ ]
Algorithm 4,2.1 leaves a symmetrized estimate of G (x) in the %
_ i
lower triangle of G, Algorithm 4,2.1 requires n evaluations of g %
if it is supposed that g (x) is known, y
;
The following algorithm requires n calls of the subprogram for ke

g as does Algorithm 4.2.1, but fewer arithmetical operations are Z
required., :
Algoxithm 4.2.2

Let x, &= g (x), n, and h be given, 3

Step 1. Set J =1, - %

Step 2. Compute g .
1]

g%(x + hg) SR Pu— 5

]

Step 3. Compute G, (g =8 YIH [E2 % cey )
3 13 13 1 :

Step 4. If j =n, then go to Step 6,

E
y
¥

Step 5., Set Jj=J+ 1 and go to Step 2.

P
TR TR
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Step 6, Stop. ]

Algorithm 4,2,2 leaves an estimate of G (x) in the lower

triangle of G,

4e3 The Estimation of m -~ diagonal Hessians

If the n x n Hessian matrix G (x) is m ~ diagonal so that
Gij (x) =0 (li=3jl > (m~1)/2), then Gill and Murray (1974c)
suggest an algorithm for the estimate of G (x), in which only m
evaluations of g are required if it is supposed that g (x) is already
known, The algorithm is based upon the fact that if yK (k = 1,

2, vesy M) are defined by

3

'K
y ={é (x+h X
K .

) - g (%) } / h, (4.3.1)

e
o Kt lm

where

1=[@=-x) /n], (4.3.2)

in which [u] is the greatest integer not greater than u, then for

i= 1, 2, escy I and k = 1, 2, ssvy Iy

1K
1K i=0

+ 0 (n), (4.3.3)

1, K4+1m

vhere

From (4.3.3) it follows that for j = 1, 2, see, N,

G.. =y +0 (n), (4.3.4)
13 1K
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where

[(5 - 1)/mjm, (4.5.5)

k

f

Ve B weny {(m % 102 % § =~ 1} (1¢3g m+1)/2)
{J - (1 = 1)/2} § 0 {J + (m - 1)/2} ((m+3)/2¢ 3<n = (mm1)/2.
{J-(m-1)/2},..,n (o= (m-3)/2 ¢3¢ n 3

' (4.3.6)

e
il

If, in (4.3.4), the 0 (h) term is neglected, then the following

algorithm is obtained.

Algorithm 4.3.1 {(a)

Let x, my n, h, and g (x) be given,

Step 1. For k = ?,_..., m, compute yk from (4.3.1) and (4.3%.2).
Step 2. BSet J =

Step 3, Compute Xk from (4.3%.5).

Step 4, If Jj  (m+ 1)/2 then go to Step T.

Step 5. If j ¢ n=~ (m~ 1)/2 then go to Step 8.

)
o

Step 6, For i = (j - {m = 1)/2), svis 0y wet G, o
: i3 /

and go to Step 9.
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Step Te For i =1, 2, ooy (J +(m=~1)/2), set G, =y,
: 13 AR

and go to Step 9.

Step 8, For i = (§= (@~ 1)/2)y veey (4 + (m = 1)/2),

t G.. =y,
et 1] y1K

Step 9. If Jj =n, then go to Step 11.

Step 10, Set j=Jj + 1 and go to Step 3.

Step 11, Stop. [ | |

If it is required to obtain a symmetrized estimate of G (x),

then Step 11 of Algorithm 4.3.1 (a) must be replaced with the

following, to give Algorithm 4.3,1 (b),

Step 11, Set 1 = 2,
Step 12, If i 4 (m + 1)/2, then go to Step 14.

Step 13, For j= (i = (m+ 1)/2), veey (i ~ 1),

set G = (G, + )/2, and to to Step 15,

GU
%3 13 33

Step 14, For J =1, 2, eouy (i =1), set G = (G + ¢ )/2.
‘ 1) 13 g1

Step 15, If 1 =n~ 1, then go to Step 17.

Step 16, Set i =41+ 1 and go to Step 12.




Step 17. Stop. D
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Steps 11 = 17 leave a symmetrized estimate of G (x) in the lower

triangle of G,

et = (m +1)/2, and for J = 1, 25 veey, T

let y. be defined by
J

1.

J
y::%(g(x-l—‘f.he. ) - g (x) )
3 7 l=o JFIF

where

1, = [ (0~ 3)/x]

Then fori=‘-'1, 2, eeosy Iy andj=1’ 2, eesy Ly

J
= G. . 4+ 0 (h) -
f T S 10 0

{4.3.7)»

(4.3.8)

(4.3.9)

If the term O (h) is neglected, then the following results may be

deduced from (4,3.9).

For i = 1, 2, seeegy Iy

(4.3,10)

(4.3.11)




104,

For J=31+4+1, eeeg i+2=1,

Vg (3 -r <)
G 6= ' (4.3.12)
1)

yi't,G'l';j""" (J”r>1)

vhere t = j ~ [(,j - 1)/r] r, (4.3.13)

If it is assumed that G, = C‘i s then the following algorithm
Jt J '
is obtained,

Algorithm 4.3.2 (a)

Let x, my, n, h, and g (x) be given,
Step 1. Set r = (m + 1)/2,

Step 2. Compute y:j ! (j 2 Ty 24 wais r) from (4}3.7),
and (4.3.8).

Step 3, Compute G.. (i =1, 2, veey n) from (4.3.10),

b -

and (4.3.11).

S’tep 4. Set i 1.

44 4,

il

Step 5. Set

Step 6, Compute t from (4.3.13).
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Step 7. If j~1r<1, thenset G, =y , and go to Step 9.
1] 1t

‘Step 8. Set G .=y =~G
1] 1t iJJ—\"
step 9. Set G =G,
J1 2

Step 10, If J=1+ r» =1, then go to Step 12,

1

Step 11, Set j=j+ 1 and go to Step 6.

Step 12, If i =n - 1, then go to Step 14.

Step 13. Set i =1+ 1 and go to Step 5.

Step 14. Stop. [ ]

The estimate of G (x) which is obtained by using Algorithm 4.3.2 (a)
is forced to be symmetric by Step 9. Another estimate of G (x) could
- be obtained by using Algorithm 4,3.2 (a) "in reverse," and the two
estimates could tﬁen be "averaged" as in Step 14 of Algorithm 4.3.1 (v).
.The suggestion is that Step 14 of Algorithm 4.3.2 (a) should be

replaced with the following, to give Algoritom 4.3.2 (b).

Step 14. Set i

n
g

i-r+1c

Step 15. Set

Step 16, Compute t from (4.%.13).
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Step 17. If j + > n, then set Eij =y, » and go to Step 19,

Step 18. Set G.. = w3 .
= 1) %t 15 Jp

il
2

Step 19. Set G, .
Ji 17
Step 20, If Jj=1~ 1, then go to Step 22,

Step 21, Set j=j+ 1 and go to Step 16,

Step 22, If i = 2, then go to Step 24,

Step 23, Set i =1~ 1 and go to Step 15,

Step 24, For i =1, 2, svesgn =1, and j =1 + 1, couy min {i + 7,

n + 1} set G . = (G.. + 6,. 2
paet 6= (0 + G5 )/

Step 25, Stop. || 3

Algorithms 4,3,2 (a) and 4.3.2 (b) each require (m + 1)/2
evaluations of g, | '

The ideas underlying Algorithm 4.3.2 (b) may be used to obtain
the following algorithm, which also requires (m + 1)/2 evaluations i

of g,

Algorithm 4,3.3 (b).

Let x, m, n, h, and g (x) be given, ) 4
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Step 1, Set r= (m + 1)/2

Step 2, Compute ¥y - (J =1, 2, waey x) from (4.3.7),; and
J
(4.3:8)s

5

Step 3, Compute G.. (i =1, 2, ceey n) from (4,3.10), and
) 11
(4.3.11).

Step 4. Set i =1,
Step 5. Compute k = min {i + 1, n + 1} o
Step 60 Set j = i 4 1.

Step 7. Compute 1

" [(i-— 1)/1']-

Step 8. Compute 1

min {[1/x1, [(3-x-1)/2]} .

Step 9. Compute 1

[ (@~ 3)/r]

Step 10, Compute 1& nTin { 13 " [ (n=zxe- i)/r_)}.
Step 11. Compute s from (4.3.11).

Step 12, Compute t from (4.3,13).

11
Step 13, Compute S = . « .
% l=o 1-r1,t

TR R e

ok p S homvy




Step

Step

Step

Step

Step

Step

Step

Step

Step

Step

14.

15.

16,

17.

18.

19,

20,

21,

22,

2%,

If 17_(0, then set 5 = 0 and go to Step 16.

Compute S2 from

12
S = Z 3 s v
2 1=0 -ri., §
Compute S3 from
13
S = E: ¥, g
3 1l=0 1+4r1,8

iR 1q< 0, then set s =0 and go to Step 19.

4

Compute S& from -

2
L = 71'20 Tisr(i+1), t

Compute G, . from

1)
G.. =(8 +8 =85 =8 p
i3 (s, ] , =8lA
Set G . = G_..
Ji 1]
If j=k~ 1, then go to Step 23.

Set j=j+ 1, and go to Step 6,

If i =n -~ 1, then go to Step 25.

108,

bt
k)
e
3




109,

Step 24, Set i=1+ 1 and go to Step 5.

Step 25, Stop. [j

This algoritim leaves a symmetrized estimate of G (x) in the
principal diagonal and in the adjacent (r - 1) diagonals of G,

If steps 9 and 10 of Algorithm 4.3.3 (b) are deleted, and if
steps 16 =19 of Algorithm 4.3.3 (b) are deleted and are replaced
wi. th

Step 16, Compute Gij from

Gij = (s1 -8 )ie
then Algorithm 4.3.3 (a), corresponding to Algorithm 4.3.2 (a) is
obtained,
The preceding algorithm is based upon a theorem which is proved
subsequently. We require the following lemmas, We note that G (x)

is an m - diagonal matrix and that r = (m + 1)/2,

- Lemma 4.3,

If 'It--i-[_-(i-1)/r']r (1 ¢igmn) then

u

Proof

By the choice of t, we have

i=xl 4+t where 1Lt », and

1= [(i-1)/r].

L o AR
Ivs Soaps s lhy Man Y .




110.

u i
Let j =11 + t, where 1" is any positive integer. Then, when
1
1". # 1', we have - (
> ' s
1wyl =17 =212 5y,

Thus, by (4.3.9) we have G, =y ‘ D

Lemma 4,%.2
Let

I<i<I+2)
t=3=[(=10/x)r (g ign)
1. If J+rgn then

G+ G, . =y,
1,7 13 4r 1t

.

2, If jJ+r>n then

Proof

1. By the definition of t, we have

4
J=2r1l + 1, vhere 1<t<r, and 3

1t [i-1idx]s

Let
,j_l = rl +t, where 1 is any integer > 0. Since j<i<j+r,
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' / i
then 11—31]2,1' (visuch that |1 = 11> 1o0or 1=1~ 1),
7’ 4
Therefore G, . =0 (Vilsuch that |1 =~1]> 1 or 1=1 - 1),
1)31

For 1=1 or 1=1 + 1 we have él= J or % =j+r

respectively, Therefore by (4.3.9), we have

G. . +G, . =y, .
1) 1,047 1,¢T

2. The proof of Statement 2 is similar to that of Statement 1

and will therefore be omitted, [:1

Lemma 4.3.3
£ 0<g=zigign (j=r,:+1,...,n)
then
Gi,j = Gi~1~,j-r+ (s;)t.-;_ty ..),. (4.3.14)
where J byvy
ts = s f.[:(s - 1)/r] re (s=1, 2y vaey ) (4.3.15)

Proof,

Since 0< j=-r<i<jgn  then by Lemma 4.3.2 and (4.3.15)

we have
G, . + G, . = y. 5 (403016)
L3-r 1,2 1,t,

and J
G + 6 = y. (4.3.17)

J“r)i =" 4y =T ﬁI'

Since G is symmetric then from (4.3.16) and (4,3.17)

Equation (4.3.14) holds, 1

g

i
%]
H

&
#
ke
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Theorem 4,3.1

If 1. Gié =0 foralli, J such that i {0 or jg O or

n<i or nJs

2, 0 foralli, J such that i <0 or jgO,

yij

3, 1¢i<jgn and J<i+r (1g jgm),

then
11
G.‘ = }"- Lol y . 4.3.18
153 %;o 1-!‘1)tj J-r(1+1),ti} ( )
where
by (1 ¢ 8) is defined by (4.3.15),
and 1 = [1/2].
Proof,

We proceed by induction on i,

1 and then by Hypothesis 1,

Let i =1, Then 1, r-.[i/r]=0, t,

A =0 because j~r i=1=0, Also by (4.3.9)
J“‘r)i
we have
¥, =G z + G . 4 saee + 0 (h)
1-8 1)J 1,J&r
=G . +0 (n).
1,
That is
; Glj =¥ " -y J
¢ 1) 3 _‘r tt
where J I N
t: =3
3 J

Therefore (4,3,18) holds for i = 1,

Assume that (4,3,18) holds for all integer < i, Then by
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Lemma 4,%.3 we have .
G. =G, . +(y =y )e (4.3.19)
1L,) 1=, Jep l,tj 3_'rit-i
Since i = r < i andi-1r < j -, then by.(4.3.18) we have
1
G . =2 {y. , =¥ %
v der dcol Merlt ey, tTp s
' ) . /
where 1 = [(.‘L - r)/r], £ = & and t =t
1 _ J-r i~y
But since ts = ts-r (1 £ s) and [(1 - 1‘)/3:'] = [i/z] -~ 1, then
1,-1 ;
¢ . = A (4.3.20)
inv, e 1=0{1~r(1+1),tj a-—r(l*g)}fi-}
where 1 = fi/0).
ThU.S, by (4:3«19)y (4-3020)
we have
11 .
G , = {y. -y, ‘ 3
LJ ?M 1—r1;fj J-rl+1) ;1‘-5_} . D _ L
Lemma 4,3.4

If 1éj<i<j+r<n then

¢, =6 +(y -y )s
13 1+, J+r 1th JHT ti

where 'ts(1 € s) is defined by (4.3,15).
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Proof.

The proof is similer to that of Lemma 4,3,3, and is therefore

omitted, [:

Theorem 4,3,2

If 1. hypotheses 1 and 2 of Theorem 4.3,1 holds

2, "1gi<iLn and 1K J+x,
then '

where ts (1 ¢ s) is defined as in (4.3%.15) and

11 = [(n - i)/r].

_ Proof,
Set k=n"'i izn, (n—1), eees 10 The pI'OOf iS by
induction on k, and it is similar to that of Theorem 4.3.1, if we

apply Lemma 4,3.,43 thus the proof is omitted, Ej

In_Algorithm-4.3.3 fhe diagonal elements of G are determined
by using Lemma 4,3,1, while theorems 4.3,1 and 4,%.2 are used to
provide the upper triangular and lower triangular part of G
respectively.,

The foilowing theorem guarantees that the elements Vs, ¢

(1 <= ¢n, 1 £t ¢ r) which are applied to compute G 5 ave different
2

from those which are used to compute Gji ( vi, j £n, i #:j e

2




Theorem 4.3%.3
If 1£i<¢ jeci+ r n then the two expressions for
approximating G. . and G , have no common elements,
J)J J.l 1
Proof.

Since i < j, then by Theorem 4.3,1 we have

1
B . = - . e3.21
1) %‘;0 yi—r‘l,tj yJ-r(l'i-i'):'ti} 2 (4.3.21)

where ts (1 £ &) is defined as (4.3.15) and 1= li/z].
/
Now set i = j and ,j’: i. Then ti/ = tj and tjl = ti . HMoreover,

’ b
gsince j < i, s and i'<j + 1, then by Theorem 4.3.2 we have

1,

—

-y (4.3.22)

i i ¥
e 1=°{ J+rl,t, 1+ r(1+1)n‘-5} A

where ?.2= [ (n - j)/r]. |
Suppose that at least one of the terms in (4,3.21) appears in
(4,3.,22), Since i ¢ j+ r and therefore ti:,é tj s then there exist
X, l,>/0 such that either
1.i-r1=i+r(1'+1),

oxr

2, j=r (@ +1)=3+21 .

Obviously both cases 1 and 2 are impossible, D

By théorems 4,3,1 and 4,3,2 it is evident ;cha.t an m -~ diagonal
Hessian matrix of a twice continuocusly differentiable functional F
can be numerically approximated and symmetrized by just (m + 1)/2

gradient evaluations at each point x at which g (x) is known, In

PRI o o
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particular, the n X n full Hessian matrix can be numerically

approximated and symmetrized with just n gradient evaluations,
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Chapter 5.
Some Variations on a Least Squares

Algorithm due to (¢Gill and Murray.

5 Introduction

Gill and Murray (1975), (1976) have described a reliable and

efficient method for the solution of the unconstrained least squares &

problem,

Min ¥ (x) = ¢ & rbd, (5.1.1)
XeRr

n m 2 . n ;
where f t R—=R (m »n) and F¢C (R ). The method consists,

eesentially of a judicious combination of the Gauss-Newton method

and Newton's method, so that the second partial derivatives of the
components fi (1 i é m) of f are required to be evaluated, A
brief description of the method will now be given in order to clarify
subsequenf sections, A complete algorithm corresponding to one
implementation of the method is given in Section 5.2.

n 1
If P ¢+ R— R is defined as in (5.1.1), then Newton's method
(K)

‘for the minimization of F consists of generating the sequence (x )
from
(K+1) (K) (K)
x = X + P (x > 0), (5:1:2)
: (KD ;
where p °~ 1s obtained by solving
() (k) (K)

G P L (5-1.3)
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(K) Y (K
in which the n X n matrix G and the n X 1 vector g ) are
defined by
' (K) (k)T () N ) (K)
G = A A + 2 f4 G. (5.1.4)
A= i -
and %
(K) KIT  (K) "
g = A f , (5.1,5)
. . . {x) (k) 3
and the m X n Jacobian matrix A of £ at x eand the n xn £
(K) (K
Hessian matrix G of fl at x are defined by ¥
tied (k) A
A T ( Dj fi (X ) ) ’ 4
mxn g
(K) (x)
G = ( % 2. f (X 7)) (1 = 1y 25 seey 1),
L AR nin
where
9 1 !
?g fi (x) = -53%jfi-(x) (L 81y 2y wann BF T 8 Ty 2 wuny Hiy
and. 2
0 . .
aj a]'_fl (x) = ‘5}3‘5’5&;‘:{‘1 (x) (l, J=1y 2y veeyny 1 = 1’2’--?111).:;
The Gauss-Newton method for the minimization of I consists of ?
b
. (k) (K) :
generating the sequence (x ) from (5.1.2) where p is obtained 3
by solving not (5.1.3) but

(K)T {KR)
A A P

()

il
H
oQ

(k)

(5.1.6)

Thus the Gauss-Newton Method is derived from the Newton Method by

(K)
neglecting the term B in (5.1.4) defined by

Ky m (K) (K)
B= Y f£. G. " {5.1.7)
i'-:l < 2

The Gauss-Newton method is suitable for those problems in which
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() KT tK) g
"B ” is small compared with IIA A ll for each k 20, i

This situation arises in those data-fitting problems for which, if x¥* is
a minimizer of F, then F (x* ) is very small in magnitude. Indeed,
if both the Newton and Gauss~Newton methods converge to x  end F (x* )=0
then usually both methods ultimately converge at the same rate,
In practice, the Newton and Gauss-Newton sequences generated
from (5.1.2) frequently fail to converge to a minimizer x* of P if

0) *
X (. ’ is a poor estimate of x , The reliability of both the Newton

(k)
and Guass-Newton methods is greatly improved if (x ) is generated
from 5
(K+1) (K) (K) (K)
x)
where is determined by using Algorithm 1.2,2,
tk) (T 13 (K)
If 1B | is small compared with IlA Al and A
KIT (K)
has rank n then A A is non-singular and the Gauss~Newton ¥
(X 4
method would be expected to be effective, If, however, A ) is :

tk) RT (K)
A

K)T (K)
rank-deficient ox if ¥/ |la A

H is large then A(
may not be an adequate approximation to G R s and the Newton method
would be expected to be effective, The Newton method involves the
solution of

T T
(A A % B) P= =A £, . (50109)

where the suffix k is suppressed for brevity., The least squares

algorithm of Gill-and Murray (1976) contains a procedure for solving

p
(5.1.9). The procedure permits (5.1.9) to be solved when A A + B
is positive definite and when A' A + B is indefinite, and yields the

Gauss-Newton wvector p which satisfies
GN
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A Ap= =g, (5.1.10)

where A is not rank-deficient, as well as the Newton vector p which
N
satisfies (5.1.9).
The procedure for solving (5.1.9) depends upon the singular

value decomposition

A=T lzs_ v - (5.1.11)

of A in which U is an m % m orthogonal matrix, V is ann X n

orthogonal matrix, and S = Diag (31 ¢ B, @ avie sn_) is the matrix

2

of singular values of 4, with's <‘s:i (=1 2 sovs n)s Por

iva =
further details see the book by Lawson and Hanson (1974).
i
Because the colummns of V provide a basis for R 4 there exists

n
Z2¢R such that

p=Vz, (5:1:12)
It follows from (5.1.9), (5.1.11) and (5.1.12) that
v T ;
(s1 +V BV)z2 = =~ [s EO]UT £, (5.113)

As explained by Gill and Murray (1976), the numerical problems

2 T
which arise when S +V BV is ill-conditioned can be avoided
by computing the solution p of (5.1.9) as the sum of two components

3
columms of V corresponding to the 'large' singvlar values of A,

. A .
p 4 and p , where p 1lies in the subspace of R  spanmned by the
2 a

and p lies in the subspace spanned by the columms of V corresponding
2

to the smaller singular values of A,

#d
e

S PRI e £
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Iet

S 0
ll

S = [~-i--=- |, (5.1.14)
B e,

where 81 = Diag (;s1 38 9 eees 8 ) eand S:’~ = Diag (er -
8y ). The integer r is referred to by Gill and Murray as the

grade of A, and it is varied in a mannexr which depends upon the
computational progress which has been made,

Let

v s [V1 ! x;] ; (5.1.15)

where V, is ann X r matrix and V, is ann x (n = r) matrix,

If the solution p of (5.1.9) is written in the form
P =V':l w +Vz Vs | (5.1.16)

where w is an r x 1 vector and y is an (n = r) X 1 vector, then by

(5¢1.13), (5.1.15) and (5.1.16), we have

2 T &

| Sw+ VB w+V B y=-5f , T . (5.1.17)
and
2 T T .
W = o le
sY +V, W, oy+V B sz_f1 ; (5.1.18)

where the r x 1 vector f, and the (n = r) x 1 vector fz are such

-~

T s
4 ] and f is an (m = n) x 1 vector,

-+
—i
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An approximation W to w may be obtained from (5.1.17) by
neglecting the second and third terms on the left~hand side to
obtain

- WO | f (5.1.19)

and a corresponding approximation y to y is then obtained from

(5-1.18) and satisfies

(s +V B )y= «~8 f£f -V B W, (5.1.20)

a

T L T
If A A + B is positive definite then S2 + V; IWé is also
& T
positive definite, and S2 4-V; BV2 is not ill~conditioned because
the "la:ge" singular values of A are in 81 e« Therefore (5.1.20)
may be solved for ¥ by determining the Cholesky factorization of
2 T
sz + Vi1 BV1 .
- .
If A A+ B is indefinite then Gill and Murray (1974) use
their modified Newton-type method, in which the vector p satisfies

T

B pm =T E (5.1.21)

.where L is unit lower-triangular, D is diagonal, and L D ﬂT is the

modified Cholesky factorization of G where
T
G=A A+ 3B (5¢1.22)
As described by Gill and Murray (1974&) L and D are such that

LDL =ls+B , (5.1.23)

:.:
-
<
W
A
Py
;-
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where B ig a diagonal matrix, the elements of which are all zero

if G is positive definite,

When G is indefinite, (5.,1.20) may be solved for ¥ by determining :

2 T )

the modified Cholesky factorization of S g V2 HV2 . This is
equivalent to determining p by solving
T *

(G+V, BV, )p= ~A f. (5.1.24) ;

This is not satisfactory for all values of r because if G has n

2 :
negative .efig'en:values then x Gx € 0 (vx+ 0), Therefore there

n
exists 4 ¢ R such thatx =V, 4 , and
Y v
x' (G+V, BV, Jx=x & <0 ,

-
whence G + Vz EV, is not positive definite, Therefore as a safe-

guard, p is recomputed with r = 0 if for a given positive number 8 ’

-g'» < ¢efe ||l |I»|l. (5.1.25)

Ifr::OthenV:L =O,81 =0’V:. =V,a.ndSl = S so by
(5.1.19) and (5.1.20), if D = Vy then D satisfies (5.1.21). As

shown by Gill and Murray (1974a) there exists 0" > O such that

7 1 ~§
~gp 2olle | {lo]l. (5.1.26) :

Therefore the safeguard ensures that the least squares algorithm of

Gill and Murray is gradient-related, and Theorem 3.1.3 is applicable.
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(T (K) LK) ()
If for some k, A f =0ad E = O vwhere E corresponds

to the modified Cholegky factorization of G Hed , then x(K) is a saddle

point of ¥, Gill and Murray (1974a) have shown that a descent

K)

(K
direction p( from x } may be obtained by solving

(KT (K)
L

Yy = e ’ (501-27)

J

whexre eJ. ig column j of the n ® n unit matrix and j is such that

(K) (K) (K) (K)

d:s —Ej < di -EJ: (i=1, 2, coey n),
in which
(R) {K) {K)
:D' =Diag ( d‘l 3 eoey n ) ’
(K) . (K ()
E nDlag (E 9 oeey B ) ]
1 n
and
K { l (K) (K
L()D”L(()TaG +E').

(K)
The descent direction p is then obtained from
(1K) (€4 ;
P =v oy, (5:1.28)

If analytical formulae for the Di' BJ. fi (x) are not available,
. |
then, as explained by Gill and Murray (1976), row j of Vz T B (k)

may be estimated by using the finite difference formula

KT (K) (T (K) t

K) (K)
Vj B =f A (x +hv3. ) - A (x

)} /n

(3 =2+ 15 eeey 1) (5.1.29)
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in which h is a finite~difference steplength., If (5.1.29) is used
R)T  (K)

to estimate V 4 B then (n = r) evaluations of A are required,

Now r is seldom very much less than n, so the use of (5.1.29) yields
a very efficient method for estimating vl(K)T B(K) :

Gill and Murray (1976) have also described a quasi-Newton method
for estiméting i B ahen analytical formulae for the Di Dj f.:‘L (x)
are not available, The updating formula foxr B(K) which Gill and

Murray propose is based upon the BFGS update and is given by

(K+1) (x) (K) '
) = B + C y (5-1030)
where
(K) (T (K) () (k)T (K)T
C(K) y y W D P W ( )
= - 010 1
2 “(K)y(K)T_ p(x) P(K)T w K Ty K) $ 2 5
in which :
(K) (K+1)T (K+1) (K)
W = A A + B (5.1.32)
and
(k) (x+1)T (k+1) ()T (K)
y  =A A -A £ (5.1.33)
5.2, The Least Squares Algorithm of Gill and Murray.

An implementation of the least squares algorithm of Gill and
Murray is available in the National Physical Laboratory Algorithms
(NPL) library of programs and this implementation constitutes the
foundation for the modifications which are described subseqizenfly
in this chapter, The algorithm corresponding to this implementation

will be referred to as Algorithm 5.2.1 and is as follows,

FE
%
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Algorithm 5.2,1

(
% e assmed: el 2 ) Ty Dy £ (1 ¢4ig 6), and n are given,

Step 1. Set k:O,nzxn,n=1,115=0,n=0,n=1,

K) K) K) (x)

(

, F y and g from

(%) LK) ()T (k)
Yy B = f -y

( (
Step 2. Compute f 5 A

(k) (K) ‘
f =f (x ),A(u--:A(x

(K) 4 (K
- A( T P )‘

s

and g

Step 3. If an = 0 then go to Step 9.

(K)
Step 4. Determine the singular value decomposition of A

accoxding to

(x) IK) (x) T
A = U S V ’

0
(k)

i1--
\

K tk
in which the singnlar values si: A of A ) are such
LK) (k)

(K) (K)
where S = Diag (s(:) & BN an(} ), V = 1:'\'

........

O

(VS o
e

tha.'t S. é S, (i = 1’ eeey I == 1).
1+1 _ 1 :
' (%)
Step 5. Determine the number j of singular values 8 (i o 1)

% (K) 5 (x) )
such that s 2 1 3 .s'l and set n3 =1+ J.

Step 6. Set ng = 0,

Step Te If n < n then set n =n .
3 2 2 3




Step 8,

Step 9.
Step 10,

Step 11.

Step 12,

Step 13.

Step 14.
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=1 - -y
If T> 10 or ( T > 10 and n = 0) then
5

go to Step 13,
Set n = 10
g

2

If T 7 10 then go to Step 13.

Ifn = 0 then determine n2 such that

s
(x) (K) (k) (k) (v} (k) (K) (k)
s 8 + 8 s £ & s. + 8. 8
1 / N, h,+1 / 2 ®'a / J J+1 / I
(j = 1y o0ey 1L = 1)
k)
where s:L is the last non zero singular value
of 4%,

If n_ =1 then determine v’ such that n < n

(k) 1+ LK) (k) L+ (K)
S, 2 10 snl , and Sn’+1<10 . sy}z , where
(k) (K)
¥ =1log = -[log S ] ”
e Na W Mg

in which Eu]is the largest integer which is not

greater than u, and set n, = 1 LR

Set'n =N
5 &

Ifn =0+thensetn =n »
5 2 3




Step 15.

or

then set n

Step 16,

Step 17.

Step

Step 19.

vhexre

and

Step 200

128, k-
If k # 0, and
k) (k=-1) . (%)
lx ==l € (& +¢ )1+ || x H2 ) and
(K) (K-1) 2 ()
|7 -7 [(g+es)(1+1~" ) and
(K 1/3 {K)
sl < 8" Ger
2
(ky 2 (xy Yo (k)
el < @& ) e e <s
= 0,
7
(K)2 (K)u
Compute ¥ from ¥ =F s, )4 i ;
If n=0 or ¥< £$ ) and n7 = 0, then stop, -
G
5 :
The iterate x(") is an adequate estimate of a 3
minimizer of F, 2
(K)
Ifn =0 orn =0 then set p = 0 and
2 7 1
go to Step 20, y
(K ( k) _(K)-1 (k)
Compute p 4 from p Wi ==V 4 S 1 x 4
1 1 1 1 1
(K) Ky s (%) X (k) Ky o
Vl = [v1 E- - ; vn:] i S1 = Diag (S:. o Sv\,. 3
: : 4
COT (k) KT wyr, ST -
U o={£ £ : b
2 2 ! ]
b
(K)
Ifn = 0 and go to Step 32. p

= 0 then set p
5 2
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Step 21, If noo= 0 then go to Step 23,

(KT _ LK)
B

(k)
Step 22, Estimate T =Y by using the fiuite-

()T (K) (K)
q =

2

difference formula (5.1.29), and compute T P, 5
(K) Ky | (K) s (), (r)
Q@ =T V.9, where V. = = [ v beeeed v J
“ (" nyt1 | ion 2
and then go to Step 26,
' (k)
Step 23, If By = 1 ox n, = 1 then compute B defined &
by (5.1.7) analytically,
Step 24. Set n9 = 2,
(KK (KT (%) LK K
Step 25, Compute T = V2 B s Q 3 = P A VZ(K) and
(kg (k) (X)
g il g

1

Step 26, Determine the modified Cholesky factorization of

(K32 (K) .
Sz_ + Q accoxding to

(1) () (KT (K)=z {K) (k) -
i D L = s2 ) + Q +8'"0

Step 27, Set n =0,
6

_ (x) '
Step 28. If |lE “JE O then setn = 1.

{
Step 29, Ifn., =0 orn = 1 then determine y <) from
7

(K €3 T (K (k) (K) K
V™ Ty = -5 f, .
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(U]

here S = Dia (sw)
where S, = Diag (s, ..

(K)

1K)
» eees S, ) and f

2
defined as in Step 19.

(¥)
Step 30. If-n6 =1andn =0 then determine y from (5.1.27).
7

(K) (K) ék) (K}
Step 31. Compute P, from p 2 . y .

i

K
Step 32, Compute p(K) from le) = P e + P LRI

1 2
Step 33. Set n‘t = e

tor ¢ (K
Step 34. If g P(K)> 0 then set p > = =p )

s (K ‘ %
Step 35. If -g o p'K) 5 asllgmll L e :
2 2 i

nl = 0, then go to Step 38.

Step 36, Ifn =0 then setn =1andn9 =1
5 5

Step 37 Setn =0,n =0, and go to Step 9.

(K) cy
Step 38. Determine « . by using Algorithm 1.2.2.

(K)
If Algorithm 1.2.2 could successfully determine «

(K+1) (K+1) (K+1)
then f , F s A are determined

(k+1) (k) (K) (K) :
by Algorithm 1,.,2.2, where x = x 4+ o P s B

(K+1 1 (K+1 (K+2)T. &
+1) £ (X(K-\» ) )’ 7 ) P £ tk+1) =

b
(K+a) ) ﬁ

L0 IR ot g e

£
K41
A(-\-)

A (x

Step 39. Compute T from




(R) (v41)

B i )/F(K)

(K)
If Algorithm 1,2,2 cannot determine & then the

value of T will be zero,
Step 40, If T 3 O then set k = k + 1 and go to Step 3.

Step 41. Set n&

H]
(@]

Step 42, Ifns_ = 0 the set n =1andn9 = 1,
5

Step 43. I.t‘"n2 > O then set k = k + 1 and go to Step 3.

]

Step 44. Stop. []

In the original implementation of Algorithm 5,2.1, Step 23 i

{4
0

as follows.

(K
Step 23, If ng = 1 then compute B ) defined by (5.1.7)

analytically,

) Also, in the originai implementation of Algorithm 5.2,1, Step 42
does nét exist, The original NPL program failed {o solve problems 27
and 28 of Appendix 2, but the program based upon Algorithm 5,2,1 in
this section decreased the sum to 1,90 from 1025 .

In the original implementation of Algorithﬁ 52,1, the test in
Step3 5 is missing although Gill and Murray (1976) mention it in
that report,

The significance of the integers n - n9 is as follows,
1 .
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If n, = O then B ! is computed by using analytical formulae for

ai Bj fl (x) 4 &L n1 = 1 the finite-difference formula (5.1.29)
is used, The integers ni and n3 are the grade of AKK) and the
current number of 'large' elements of S(K) respectively, If ny = 0
then the steplength algorithm (Step 38) has not been successful, If
n5 = 0 then a Gauss-Newton step has been taken, while if n5 = 1
then a graded Gauss-Newton step or a Newton step has been taken,
If n6 = 0 then S;K)Z +-V2“Q1.B(K) :K)T: is positive definite,
while if nG = 1 then it is not positive~definite, If n_ = 0 then

tK) % (
x is 'close! to x in the sense that x 54

satisfies the
convergence criteria in Step 15, If n8 = 0 then a Gauss-Newton
step must be taken, while if ng = 1 then a graded Gauss-Newton step
must be taken, If n, = 1 then ffﬁust be calculated, while if ng ==
then ifieed not be calculated,

HeD An Alternative Graded Gauss-~Newbton Search Direction,

The modified Gauss~lNewton search direction p used by Gill and
Murray is approximated by using (5.1.16), (5.1.19), and (5.1.20).
In order to find a more accurate approximation to p, Gill and Murray

apply the following algorithm,

Algorithm 5,3.1

(o)

Step 1- Set ij = Oo
(3+1) (3+1)
Step 2. For =0, 1, oo compute W and ¥
such that ) ')
T (3%1) T _(3
W = =B E =T RP {5s3:1)

1

%
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2 % _(J+1) T _ ()%1)
and (S +V B )Yy =S f ~V BV W ]
2 2 2 2 2 2 1
(5.3.2)
_ (3+1) 3 _ 1J+1)
Step 3. Set P =V, 7 il +V 7 s 5

The vectors w and ¥ defined by (5.1.19) end (5.1.20) are

determined from Algorithm 5.3.1 according to

- ) _ (1)

ey LA
.ﬁl‘l) =7, 7 0 . )
=V W+V F (543.3)
as the first approximation to p,
. (K)
The following theorem indicates that the sequence p generated
.from Algorithm 5.3,1 will converge.
Theorem 5e3:1
. t3n - Las1) o
If and p are two approximations to p obtained by

using Algorithm 5.3%.1, then their relative errors satisfy the inequality

1p-5 9 7 e oG er) =50 / ip ||

where

s 2 T -1
g= |[B] 5, o= ||sf“ yend = |[(s, +7V, sz)H

Gl h by
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Proof,
See Gill and Murray (1976). U
In practice, usually, the first iteration of Algorithm 5.3.1

will suffice, Therefore, the approximated search direction will be

- e AN
given by p =P (1).

Therefore by (5.3.3)

P=V W+T, ¥ (5.3.4)
where

- —1 '

W= -8 £, (5.3.5)
and

o " G5 ]

M= =8 £, -V, BV W, (5.3.6)
in which

?._ A T
M=8§- +V, B, (503.7)

is an (n = r) X (n =~ r) symmetric matrix, and r is the grade of A
as explained in section (5.1.1).
When » =n, thenv, =0, sl,'=0, 5 =87V =V

and therefore

- g Sl R,
p= =(a A) A f

is the Gauss~Newton direction,

Similarly, when r = 0, p is the Newton direction obtained
from (5.1.9).

Bat vhen r# O and r ¢ n, then § = P Y e dlied e 695

and Murray (1976), the graded Gauss-Newton search direction,

The following theorem will be used to construct a method for

determining an alternative graded Gauss-Newton search direction.

51 e, s

fat e
RS o

NG s N




Theorem 5,3,2

Let p be defined by (5.3.4) = (5.3.7). -Then

135.

~1
p= ~G g (543.8)
vhere
T
g=4A 1,
and
o T
G=V |S i.o v (5.3.9)
N : M
=
in which N=V, B, ,V, andV, aredefined as in (5.1.15).
Proof,

Without loss of generality, we assume that M is positive definite,

since otherwise, to solve (5.3.6), Gill and Murray apply the modified

Cholesky factorization and M is replaced with a positive definite

1

matrix 1, Now it can be shown that G is non-singular and G = H,

where

-2 T
Be T 8 . 101% 4
-MONST M
. a

because, by orthogonality of V, we have

9 XX
Ve

s T
HG V[Ir'o}v =1
wivelia B, n
1> .
and
CH = I_.

n
By (5.1.11), (5.1.15), we have

(5.3.10)
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I

<
w
o

L
IS
.’;

'.4,

=V[s £
S £ i .
2 %

P=V 5 f =~V N (5 £ =-NS £) |
o X | E ) ;

= «V [8 ol v v [s £
"-;i RS e et I (5.3.11) £

M ONS, | M S f

1 % g

Corollary 5.3.1

Suppose that the hypotheses of Theorem 5.3,2 are valid,

- T :
(a) Ifr=n then G=A A
(b) If r=0 then G=4 A+ B

) ; = _ AT % S
(¢) If O<r<n then G = A A+ef1\[2‘;:5.
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Proof,

I[J‘.‘r:n,thems1 =8y8 =0,V =2V, V =0,

Therefore, N = 0, 'and M

i
(@]
-
o
0

i

@

N’

7o
(o]
]—J
o
17

If » = 0, then Vl

L}
o
v
i
o
w
1
1)
-
|

= V, N = 0,
z T
and M=8S 4V BV, Therefore (b) holds.

Suppose that 0 < r < n, Then, by (5.3.9), (5.1.15), and orthogonality

of V, we have

— e e [ - -

o
i
s
ot
—
P
o
| R i
<
e o
1

$
= A A+V,VB, U]

The following theorem gives an alternative graded Gauss~Newton

‘search direction,

Theorem 5,3%,3

If 1, M is defined by (5.3.7) and is positive definite;

2, ¥ is defined by (5,3.5);

. ==V“ T :=—'“
5. P 1w+V2 ¥, where y M Szfz’

aggim Al i
Ny R e

o R T

R
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then
v s =-1
P= -G &8s (503014)
where g=A f, and
= 2 | T
G= v s,V o |V | {5.3.15)
o I'wm
!
Proof

Since S;d is a positive definite diagonal matrix and M is a

positive definite matrix, then E defined by (5.3.15) is positive

¢ =-.'1
definite and therefore, G exists, Moreover, it is easily verified
that
P ~2 T
¢ =v s, o v oo, (5.3.16)
0o + M*
Now by (5.3.14) and Hypothesis 3 we have
= - -1
P= -V181 L, =% i sz
; _ e )
[v1 {5 _33_1 E-
tMT 8, £
v lvlls* ol v v £.1 (5.3.17)
® el s 8 L d _?%~ 1) 5¢3.17
0 , M s, T
, T

By (5.3.16) (5.3.14) we have

3
T R e
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= =G €
T
gince A f:—-_ v ..~S’=L £ D
s f
2 2

Corollary 5.3.2

Suppose that the hypotheses of Theorem 5,3.2 are valid,

a If » = n then G = AT A,
(a)

(b) If r =0 then G = A A + B,

I

(¢) If0 < = 4 n then G = AA + V,V] BT, V] .
Proof,

If » =n, then M = 0, and therefore (a) holds,

Suppose that r < n, Then by (5.%.15) we have

Q4
]
=
T T |
o HR%
I (ad
- -
:3: o
bt
<
ﬂ

. 2 T T
=V 8 ¥ +V MV
11 1 T

T T
A A+ VUTBLV, .

il

If » = 0 then, V,= V. Thus (b) holds;otherwise (c) holds., []

It would appear that ;zdetermined by Theorem 5.3.3 is a more

satisfactory choice of p than p given by (5.3.4)-(5.3.7), because if
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M is positive definite, then G defined by (5.3.15) is positive definite,

while G defined by (5.3.9) is merely non-singular.

Algorithm 5,%.2 corresponds to the search direction Ei
Algorithm 5.3.2 is the same as Algorithm 5.2.1 save that Step 29

is replaced with Step 29' s, which is as follows,

(K)

/ .
Step 29 . If n6 =0 or n =1 then determine y from
7
(K) (Y _L)T L) k) (Kr)
L D L y = - Sl f #
2,

¥ .
Also, the computation of q( . at steps 22 and 25 has to be omitted,
Moreover, Algorithm 5,3.3 is defined to be the same as Algorithm 5.3.2,
save that ni = 1, That is, B is numerically approximated by using

finite~differences,

5.4 The First Modification of Algorithm 5,.3.2
* n 1
A minimizer x of ¥ : R—— R defined by (5.1.1) is a solution

of the equation

g (x) 0, (5-4.1)

where

g (x) =& (x')T £ (x). (5.4.2)

/

The application of Newton's method for the solution of the

(K)
nonlinear equations (5.4.1) yields the sequence (x ) defined
by (2.1.6) with :
(%) Ky T :
/ () (K) () 5
g (x " J)=a(x ") Al T)+B 7, (5.4.3) ¥
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(X)
where B is as in (5.1.7).

In Chapter 2, some of the iterative methods for the solution of
(5.4.1) which have higher ultimate rate of convergence than Newton's
method have been discussed, in addition to Newton's method,

Wolfe (1976) applied the iterative procedures (2.3.13), (2.3.14),
(2.3.15), and (2.3.13), (2.3.16) and (2,%.17) with p = 2 to solve
(5.4.1) to improve the performances of a least squares algorithm

due to Meyer and Roth (1972)., In this case, he set U (x) required

in (2.3.1Y) and (2.3.16) to be

Ul md &) 46 ¢d 5 (Veed' )y ()

where D (x)

Diag (d1 53 P dn(x))’ ( 5.4.5)

b

e
in vhich d (x) = (A4 (x) A (x)).. (1gign)

b B i 8
and A is a scalar which varies from iteration to iteration. Also,
Wolfe (1976) observed that the iterative method defined by (2.3,13)

(2,3,16), and (2,3,17) is more computationally efficient than the

one defined by (2.3.13) = (2.3.15). These observations and

‘Theorem 2,3,3 give riée to the_conjectufe that the rate of convergence
and the ;omputational efficiency of Algorithm 5.3.2 may be improved
by replacing the Newton method, upon which it is based, with the .
iterative procedure (2.3.13), (2.3.16) and (2,3.17) in which U (x)

is defined by

F) e Bl GxiEd )
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where E:(x) is defined as in Theorenm (5.3.3)3 thus Algorithm 5,4.1

is obtained from Algorithm 5.%.2 by modifying Step 35 according to

’ (KT k) ) (k)
Step 35 . If (~& » ) elle | e |l
i g 2 2
or
n = 0, then go to Step 2.1,
2

and appending the following steps,

(K}
Step 2.1, Ifn =0or (»n . =1andn =0) or P &
\ : , 12, > e
then go to Step 38,
_ 1K) (k) LK)
Step 2.2, Set x e +p and J =1,
w LK) L (K) o (8D « +K)
Step 2.3, Compute f = f (X and ¥ =7F (x Yo
- (K) - (k) K
Step 2,4, IEF £ F 44 2T 2" 4nen go to Step 2:6.
- (K%) -~ LK)
Step 2.5. Go to Step 38, making use of f and F in the

Algorithm 1,2,2 if required,

Step 2,6, Ifn =0 or n7 = 0 then go to6 Step 2.9,
. z )

(K)
Step 2.7. Compute P from
%

o R) (k)  (x)-1_ (K)

-V S f
pl 1 4 8 1

- (K
Step 2.8, Set p L = 0 and go to Step 2.10.
2

¢
£,
)
2
3
.
Py

s el o s S S

by’
%
E:
n

< P RO ST

1
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(k)

Step 2.9 Set 51 =0,

Step 20100

Step 2.11.

Step 2,12,

and

Step 2.13.

Step 2014-

Step 20150

Step 2.16.

Step 20170

Step 2,18,

Step 2,19.

If nS_ = 0 then go to Step 2,13,

(x) — (K)
Compute g WY - T . p:L
_ tK)
Determine p from
2
K) (k) _KOT () (W) k)  _ (K)
L D L y = - 32 f; - q

LK) (K) _
o i )y(z()

P2 2
_KY k) - (K)
Set p =D + D
1 X
LK)
UOT o (K s
It & p( )< 0 and 13 "Zé 66 and, (nZ =0
(KT -~ (k) -(K)
or =g @ 3" eflel P ) then go to
5 2 2
Step 2,18,
{(K+1) | _ &) (K} (K+1) k)
Set p =X - X y X = X ’
(K+4) (v (K+1) - (k)
=P y 5 = f s and compute
: (R) (K+1) (K)
€E=(F =F )/ ¥®
(K+1). (R+1 (K+21)T K+1)
Compute A o d B Y aa ™ w T
Set k =k + 1 and go to Step 3.

ey () (k)
Set ¥ s +7

’_’(K) (k) (k) ()T ﬁ(K)
Compute f =f (% )and F = f £

RoBs  cala SR asn,
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oK) COT ()
Step 2,20, IfF & F +fg D  then go to Step 2.22,

Step 2.21, Go to Step 2.15.

_(x) 5, 50 (X) (®R) _ty _(K)
Step 2,22, Set j=j+ 1, F =F ,Xx =% L,f =f .

Step 2,23, If j=p then go to Step 2.15,.

Step 2,24, Go to Step 2.6. O

In order to determine sufficient conditiongfor the convergence of

e g o e

Algorithm 5,4.,1 the following lemma is required, The sequences appearing

in the following lemma are generated by Algorithm 5.4.1.

Lemma 5.4.1
() (K)
If 1., sequences (A ), (B ) are bounded;

Y S S e 1

2, 3 o > 0 such that

(K) 2

(vi, if s gk O 0);
sl_ 20-1 Vl,lfsi % 0, ¥k 20)3

_ (K)
3, M is obtained from modified Cholesky factorization of

(K) )
M as in Step 26, where

(X) (K)2 ()T (K) (®) -
M =8 +V B v $
2 2 2
26 B)
4, G is defined by

onl
0
<
%)
JEN
i
=0
=
N
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i

then 39 > 0 such that

T = (K) 7 8 n,
x 6 x> 9PNI =) (vx€R ) . ;
2 oY
4
Proof
(%) (K) 1 (k)
By Hypothesis 1 and orthogonality of V = [Vl v ] ’
VL
() .
the sequence (M ) is bounded, Therefore by Theorem 3,1,2, 4]
4
Ao; > O such that 3
T . (%) Z ’ n—r ‘
yE vy 2ol v (vyeRr )= (5.4.6) 4
"
Now, for all x ¢R , from Hypotheses 4 we have e
T B LK) T r, )2
x G x=y [S1 10 }y (5.4.7)
AT TSR » ;
o
\K) (KT
vhere Yy =V ! X . E
Let <)
(x) b ‘
R B ~
y :
kN 5
(K) o] (K) n=r
where % ¢ R andy € R .

_Therefore, from (5.4.6) and (5.4.7) and Hypothesis 2 we have 5

xT (.——_;l(x) < = ix)-rslw\)zyl(x\ - yu<)'r T (x) y(k)
®) g * ®y, %

29 " A " 2 ” ”

> v (5.4.8)

2 :
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where
'v - min (6‘1 2 wi ) Py
() * () -
Since V is orthogonal then I x| =y \]2 s thus from
2

(5.4.8) the proof is completed. [

Theorem 5,4.1

n m
If 1, £ : DCR —R is twice continuously differentiable (vxeD);
T
2, the set SCD of critical points of F (= f f) is finite;

(0) .. - O] (»)
3, x € D is such that the closure SL(F ) of N(F ') is

compact, where

n _(Fw)) - {xGD s T (x) & F(O)} ;

-~

co [ﬁ (F“) )] < D, where CO [fh (Fm)] is the

closed convex hull of JL (¥ (O));
4. 3 ,ﬁ;,f;‘> 0 such tﬁat
P (0)
sl <8 > (v eU(F ));

Il A (X) I \< fz p) | (VXQ.E{—(F (O)))v

2%
S0 L AN

3

A M ARG S A
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where
L =(38 ),
B (x) = z £f 6 (=)
Tag & 1
in which ¢ x)=(3 o £ (x)) (1€ 1&g m)s
% 1 J % nxp.

(K)
then the sequence (x ) generated from Algorithm 5,4,1 with

()
Step 15 omitted is such that x — x* (as k—so0 ); where x¥€ S,

Proof,

The proof, in which Lemma 5.4.1 may be used, is similar to
that of Theorem 3,2,1 and will therefore be omitted, Ej
NOTE :

If the direction of search defined by Gill and Murray is used then
Theorem 5.4.1 is not valid because G defined by (5.3.9) is not positive
definite even if M is replaced with M where

M=1pL
= M+ E
as in step 26 of Algorithm 5.2.1. Thus Lemma 5.4.1 would not be valid,

and therefore cannot be used to prove Theorem S5.k4.1.

5e5. The Secon@ Modification of Algorithm 5,3.2.

Theorem 2:3.4 with X = Rﬁ , and Y = Rn may be used to construct
a least squares algorithm in order to economize on the evaluations of
f, A and B, The following observations give rise to a modification

{3
of Algorithm 5,%,2 which generates a sequence (x ‘)), the convergence
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of which is guaranteed by Theorem 2.3,4,

The Jacobian matrix A (x) of f at x is such that

26 =fa, () Jon 2,01 (5.5.1)
where ‘

. k5
al(x) = (’alf]_(x)’ ceny gﬂf]_ (x)) (1 = Ty 25 eeey m)
(5:5.2)

n =
For each x, X€R , let the m X n matrix A be defined by

B i

i =[§1 g.. --i gﬁ], (5.5.3)
where

51 = a,1 (x) + Gl x) F=x) (A =1, 2, veey m),

(5¢5.4)

—- W
end let £€R  be defined by

? = (x) + a (X)T E-x)+32E~- X)T G (x) (% -x) (1= 1929"0.111)‘%
1 1 1 1

(5.5.5). i

' ' .n n ‘J
TetU s R—>»1L (R ) be defined by :
7 > : ":

U(E =% A+ 2 I G (x), (5.5.6) j

123 =+ @ . 4

where .
= =1 .

F =x=0(x) g(x) (5.5.7) !

n n
in which g : R—=#R is defined by (5.4.2) and A
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T ™
CE=AG A@+ T L6 G (5.5.8)
A=1
Let T 2 R —& R be defined by
e *'-r‘-
T (X) = A E g (50509')

3 # =3 %
Suppose that £¢C¢ (B (x , r) ), and that G (x) exists in B (x , r),
where ik is a solution of (5.1.1). ‘Then by Taylor's theorem,

AM, N > O such that

It @ ~c@®I ¢ ¥ [jx-%|l (vxeBE 52 ),

where X is given by (5.5.7), and
flr@e-e@ < v llx=-x | (vxen(= ,2))

in vhich p=2if F (X)% O and p=3 if F (x ) = 0,

Therefore if r > 0 is sufficiently sﬁall, Theorem 2.%.4 guarantees
that the sequence (x(K) ) generated from (2.%,18) and (2,3.19) with
T and U defined by (5.5.9) and. (5.5.6) converges to the solution if
of (5.1.1) and that (2.3.21).holds with-p =2 if F (x% )# 0 and
p=3if F (x* } = 0, In practice the procedure defined by (2.3.18),
(2.3.19), (5.5.6) and (5.5,9) cannot be used as it stands because of
the high probability of failure, It may, however, be incorporated
into Algorithm 5.3.2 to give Algorithm 5.5.1 if Step 35 of
Algorithm 5,3,2 is replaced with Step 35’ s, which is defined as

follows.




i
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’ u'c (K) (K> {K)
Step 35 . If ~g po > e lle il ffp || oxn_ =0,

\
N
o
~

N

then go to Step 3.1, and the following steps are

appended to Algorithm 5,3.2.

Step 3.1 Ifn =0 orn =0 or (n =1 andn =0) or
5 y ¢
(K (K (K
4 P >0 or I|p )“2 o> E{ then go to Step 38.
_ (K) (x)
Step 3.2 Compute X = d + p(\()
(k) _(K)  _ (k) () )

Step 3.3 Compute A y L y B , G s 2nd g from

_K) (®) (R) (k) Bt
a = a + G P (1 = 1, 2’ veoy m) ‘
1 1 1
_(K)T —(K)l i___('(
A 28 e e ¥ B
P ]
.89 (x) T (K KT (K) (K
f = f + a D )+%p G pJ(1glgm),
1 ) 1 1
X) ™ kY k) . ‘
F =2 f @ i 3
l=12 1 1
_ k) _(R)T _(K) _{x)
C = A A + B ,
_ ) T L)
g = A f .

LR
Step 3.4 Determine the modified Cholesky factors of C

accoxrding to

L 2 L) (K)
Lm) s <) L(K)r - + )




151

(k)

Step 3.5 Determine p from

(k) (K) (T _ K (k)
L D L P

I
1
o3\

T el KD
Step 3.6 If g P > O then go to Step 38.

(%) L) e
Step 3.7 Set p = P + P » and go to Stzp 38. [J

(K)
Clearly the sequence (x ) generated from Algorithm 5,5,1
with Step 15 omitted converges to a critical point of F under the

hypotheses of Theorem 2,3.4.

5.6 The Third Modification of Algorithm 5.3.2
As explained in section 5,1, if analytical formulae for 9, . f (x)
)T (K) 20 1
are not available, then A B may be estimated by using the

(K
finite~difference formula (5,1.29), or B may be estimated by

using a quasi-Newton updating formula such as {5.1.30)., Gill and
Muxrxray (1976) observe that the quasi=Newton algorithm and the finite=
difference algorithm require similar numbers of function and

Jacobian evaluatioﬁs tut that the finite~difference algorithm will
voccasionglly succeed where the quasi-Newton algorithm fails, Gill
and Murray (1976) also observe that with large-residual problems a
linear rate of convergence only is achieved near the solution when
using quasi~-Newton methods, in contrast with the superlinear rate
which is often obtained for quasi~Newton methéds for general

unconstrained minimization., It would therefore appear that, if

analytical formulae for o, Q, f (x) are not available, then the
10 1

finite-difference method corresponding to (5.1.29) should be used
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in preference to the quasi-Newton method corresponding to (5.1.50)

b (501033)0

As shown in Table 6.4.4 the number of evaluations of A can be

" quite high compared with the number of evaluations of f, in spite

of the fact that only n = r evaluations of A are required each time

(5.1.29) is used, Therefore it is desirable to construct a method

for estimating B which requires fewer evaluations of A than does the
finite~difference method, and which is at least as efficient in

other respects,

rr5 POT, [a(KJ Pl }a“‘)] (x > 0) (5.6.1)

i 1 ™

(X) (K
where a_ is colum i of the n x m matrix A s then for k > O
¥ o

— (k) (<)
an estimate Gi of Gi is given by
(%) (K~2 (K) (K~1) T
_® (el map )@ -xH)
G, - T3 (K=23T 7 (R) (K—1) (1 ¢4 gm). :
(x 7 =x ) (x -x ) (5.6.2)
5.6,2
(x) (x) tk~1.)

This is a '"good' estimate of Gi along the direction x - X
2
in that if £¢C  then
(%) (K) (%) (%) (=2} (X) (K) ()4 1
- X 3“*

i F _ {K~1) - » - C
I (&, G, ) (x x )l oy =,  (x

~1) 2

(<) (K
4 sup |G (tx ~+b-t)x
ogtg1r L

X)) K
e = =%

(5.6.3)
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K

(K) 3
so if the sequence (x ) converges then

LY i<y (K) (k=1)
“(Gi - Gi ) (x 7 - x )
lim =0, (566'4)
K (K-1)
K00 . "x - ”

If k = O then (5.6.2) is not applicable. Therefore if, in

Algorithm 5.3.2, the Gauss-Newton step, which is always attempted

initially when k = 0, is not adequate, then an alternative to (5.6.2)

(o)
is required, If the singular value decomposition of A is given

l$15n

by
o) - (o7
A w I o) _s(o) v .
0
(0) . (o) 10) .
where S = Diag (:s1 9 eeey S ), then the diagonal elements of
)T {0) "
A A are bounded according to
)T 10)2 ;
(AO) A(°‘) )‘ i é_ Max {S . j (i = 1, '1' veey n)u i
11 ® ;
1£J<n '
(5.6.5)
Therefore a down-hill direction from x(o) may be determined by using
Algorithm 5.3,2 with i
(o) (o E
B = (Max {s\ )2} ] X (5.6.56)
2 n ) ) {

" where I, is the n X n wnit matrix, when for k = 0, the Gauss~Newton
direction from xm) is inadequate,

The preceding ideas may be incoxrporated into Algorithm 5,3,2 to
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p ’ y
give Algorithm 5,6,1 by replacing Step 23 with Step 23 and Step 23 “

which are defined as follows.,

(K

Step 231 e « IE (n9 =1 or nft = 1) and ks 0 then Compute B- :
from - ;
(x) (K) (K) (K=1) (k) (k-2) T (%) (xeqy. b
B .—:Zfi (a. =a. )  =x Vo llx - x 1"
1.31 z A %

i 5 (K
Step 23 , If (n9 =1 or n =1)and k = 0 then compute B )
*

from (5.6.6). D

The following theorem contains sufficient conditions for the
(K)Y
sequence (x ) generated from Algorithm 5,6.1 to converge to a
*
unique solution x of g (x) = 0, and for the rate of convergence

to be at least linear,

Theorem 5,6.1

n M
If 1, f ¢+ SLCR—=>=R is twice continuously differentiable and

(D] n (
x € R and r >0 are such that SCSL, where S = B (x e sT)3

2, forall xé¢S and for i =1, 2, ..., m,
”fi (=) Il <=y

e G W <p,

b
and

o
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B H N (x) " éﬂ. (vxe S), where
T
N (x) =A (x)A (x) , in which
A= (5@

in

(o) 71
4. fiv )Y m;

5 M < 1, where
m
M= Ar»+ .Zdi “ s
1=1 "x
6. | ‘Z > © such that "3
(0} n 2 A
“g (£ ) || é 7 , where g:Q ~ R 1s defined
by
&
gx J)=a(x ) £(x );
7. 98 > O such that i
\05 ;
e (x) =g (y) -G (x) (x=) |l <Pllx =y (vx, yes),
where G (x) =N (x) + T foo C6.(x) , E
=130 1
in which
¢ ()=( 3 3 £ () A=1,2 wo,n);
1 i3 1 3




8. T=A(R +8& )« 1, vhere

m
E:.—Ar+2zr\'i£’i ; and
iz1

A=M/(1~-MT);
9. T=M7y/(1-7)

£ T

(k)
then the sequence (x ) generated from

(¥) (x)-1 (K}

(K41}
x =X - T gx ) (xk20),
(4D)]
where p =N (xko) i
(x) (X) @
and = (x o, x) (vkp1),

in which
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(5.6.8)

(5.6.9)

(5.6.10)

n T 2
T (x, y) =N (x) + %_f«:(x) (a; ) =2 G)) x=-v) /llx-v ![z,

(vxy yedlo and x £ y) (5.6.11)

vhere a, (x) =¥ f:i (x) , is well~defined and converges to the unique
i

solution x* of g (x) =0 in B (x'°,F). Furthermore,

(K) * 113
2™ w2 l] & % ¥ {¥ez0).
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Proofl.

By Hypothesis 2, for i =1, 2, ...; n we have

o, G) = I < & llx =5 Il (v, ye8)  (5.6.12)

and

”.N (x) - X (xm) | <A Hox o :Lco)” (vxes), (5.6.13)

and therefore by (5.6,11)and Hypothesis 5,

(o) ' n
Nhll/ jhjjgr (vx , yeS, x# yandVheRr )..

(5.6.14)

(T (x, y) =N (x

.
Therefore, by h.ypothesasq,g)and Banach's lemma, T (x, y) exists

(Vx, ye8 5 "xz#y)and
-1
l2 G ) & ®/ (G =-ur)
= A P (5.6.15)

where A is as in Hypothesis 8,

Now by (5.6.11), and hyptheses 7, 2, and 8 we have

e G y) =6 GO Nl / |Infl €& (v, yeS, xf v, heR).

Thexefore,

e G, 9) =6 ) €& (vx, yes, x£y). (5.6.16)




SRR
AR

Now, by (5.6.8) and hypotheses 6, 3, 8 and 9 we have

1 a2 a1 )

(5.6.17)

A
-

so that xL n%

Se

Also, by hypotheses 7, and 2 and (5.6,8) and (5.,6.9) we have

& G0 g e 6) - 6 () - & OEY- M+ 1 (@) - T £

PP == e ) =w N1 2Dy
m I

i e 1) = )1 ¢ 3 1g 1T
".1:::1 >

<s

-

where £ is defined in Hypothesis 8,

Terefore | g (x V) ¢ (B+e) I 8 «x) . (5.6.18)

Now for k = 1 in (5,6,8) we have

]

- 1
X(z) xm - T(l) 1g (x()) ,

1
where T() =T (x(i), xw}), end -1 oxigts




1
X()

(
because x a i ¢ 8, and by (5.6.15)

@)-1
I

<A

%
Ho.x" A yelledefined su vy (5.6.18),

e ax®) ¢ & (Bre) I x" oz (5.6.19)

By (5.6.19) and Hypothesis 8, x .- € 8,

Suppose that for some 1 ) 1, we have for e 15250005 1,

” x(K) X(O)

i é T, (5.6.20)
" w0 ¢ x e 0, (5.6.21)
le G (Bre) =™ =x% ,  (5.6.22)

which by (5.6.17 ) and (5.6.18) a.re true for k = 1,

Then

T(l‘) : p el Ay
vhence because x (0 ’ x( 53 €8, it follows that T YE) - exists,
ail, BTN s B By (56D

“ x(]— +1) - (1) (L )) ”

I é\ ‘>\ Hg X ’ (5-6.23)
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whence (5.6,21) holds for k = 1 + 1, Therefore, from (5.6.23) and

(5.6.22),
oSt x(l))\lgv\( B+e) \\x(l‘) - x(l =0y

1 4
(1) _ x('.l_ 1)“.

=Tlx

Also by (5.6.21), (5.6.22) for k= 1, 2, seey (1 = 1)

(k+1) ( ( o
“ " & 5 K)Hé‘t“x K) "XK 1)“ .
So
(k+1) ™
I + LK)H <z ”xm _ ol “U (k=1 2, veus 1 )5
So
TR S <’cKﬁxm -x Yk =0, 1, veer ] -
(5.6.24)
So
1 31
“ x( ;1'1)- (O)” SE_ il (I(+1)- (K)“
K=0
i
¢ ™M - s
K=g

N M ‘(/ (1=1).

(1_'0 1)

Thus, by Hypothesis 92, x €S, and (5.6,20) holds for k=1 + 1.

By (5.6.9.), (5.6.16) and Hypothesis 7, it follows that

(0) (1rl) X_.q)' )1

1 g e O el . S

(1 g B
it o' Ytk
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(1 +1) !
<A x(l ¥1) xtl o I g/(x(eq ) - T('l) T 1) x(] )”

CLpney I Maatiy,

go that (5.6.22) holds for k = 14 1, Therefore, by induction

(5.6,20)~ (5.6.22) hold (¥ k3 1). So by (5.6.20), x'"Ves (v 0).

Now for any ¥ > 0, by (5.6.24),

Ak K. . : <
x( * )_x(l,)” ng]x(1+1)~x(l +i~2)

i=1

I
1
e /=7,

Thus, by Hypothesis 9,

1+ K) g
< By ¢ A5 (v, k o

' LK
So because T<L 1, (x 1 ) is a Cauchy sequence which has a limit

¥l
X € R , with

_“ 7 s i \<'ZK1-

(vkyo0) - =~ (5.6.25),

Therefore by continuity of g

o R
g (x)==0.

X% *® %
e % is eny other solution of g (x) = 0, such that x ¢ 8,
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then

g = xop = g7t O) 200 G — o0)y
< 1r(0 Mg (am) - glxn) - 20O (v - o

»®

<AMpre)lx” -x |

:'{'“ x** -x“

® *

< “ X -~ X “ ’
»*
This is impossible, so x € S is unigue, L_:l

Lemma 5,6.1

If 1. the hypotheses of Theorem 5.6.1 holds
2, 3% >0 and 3R > 1 such that

¢
I o G)=a )l ol x-vl s

K )
3, the sequence (x( ) ) is generated from (5.6.8) - (5.6,10),

(K)
then T —» N (x ) (as k—>e0),

Proof,

From (5.,6.11) and (5.6.10) we have

Y P BRI P ey

]

A (K (K~-1 { o T (k) '(r‘,'_..
Tl g &) - g & TNE LR S
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Therefore, by hypotheses % and 2 we will have

i T(K)—N (x* Y| ~—=0 (as k—=a), [1

Theorem 5,6.2

If the hypotheses 1 = 3 of Lemma 5,6,1 hold then the convergence

oK)
of (x )is-superlinear,

Proof,

By Theorem 1,2,10, the truth of Theorem 5.6.2 follows if we

prove that

“ (T(K . (x ))( U<) (K =1) )” / " x(K) ~ X(K"'J_?

|~ 0 as k- oo,

By Lemma 5,6.1 we have

TUQ- 'I'“( 11—«»0 (as k- =) »
Now h
1 @™ e ) s | VAT
i —ey o ”u /N s+
le™ - 6 ) & ”uz/n s“““n2 ; (5.6.27)
(K~1) (K) (K-1) {K) (k)

where s =X =X and G~ =G (x ) is

ORI 2 LY.

S
>

AR vk gt w s e h oy




164,

defined as in Hypothesis 7 of Theorem 5,6,1.

But

(K=1) 1)

e -t s

/00, <™= e
2 2

and therefore the second term of the right hand side of (5.6.27)

tends to zero as k-moo, Also, by (5.6.11) we have

(K) (i) (K-1)

f(r =-c¢ )= k/ns

(K~1)

I

2

£ %\_ Q(K)\f (x(‘c) ) “al(x(KJ ) - ei(x“-i)) -G (xwﬂi)) s (K—i)"

1=1 1 1 A
o (k) (k) (¥-1)
¢ Tl (") e Y, (5.6.28)
where q(K3= 1 /1 s(K"i)nz

When k — e, the right hand side of (5,6.28) will tend to zero, and

thus the theorem holds. i

It seems that Hypothesis 2 of Lemma 5.6,1 is stronger than it
need be, since, as Table 6,4.4 shows, the sequence (x(K)) generated
from Algorithm 5,6,1 appears to!oe{Q~superlineariy convergent forx
problems 2,13 and 2,16, while none of these functions satisfies

the condition of Hypothesis 2 of Lemma 5.6,1.
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Chapter 6.

Computational Results and Conclusions,

6.1 Introduction

The algorithms which are presented in chapters 3 -~ 5 have been
used to solve a group of test problemsg which are listed in appendices
1 and 2, The algorithms have been implemented on the IEI 360/44
Computer at St, Andrews with double precision arithmetic to obtain
the computational results which are presented in this chapter,

In this chapter tc is the CPU time, in seconds, rounded to

the nearest 0,02 sec,, required for the execution of a given algorithm,

and is independent of operator intervention time and of the time
required by other tasks which may be simultaneously executed by

the computer,

6,2 Comparison of the Aigorithms from Chapter 3.

In order to compare the efficiencies of the algorithms which
have been described in Chapter 3, they have been used to solve all
of the test problems which are listed in Appendix 1,

Algorithms 3.,2,5 = 5.2;7 have also been compared with Algorithm
1.5.3. _Furthermofe, the Cholesky factorization, steplength‘algorith
(Algorithm 1.2,2), and convergence criteria sub=programs which are
used in the implementations of all algorithms to obtain the numerical
results in sections 6,2 and 6.3 are identical with those which are
used in the Numerical Algorithms Group (NAG) imilementation of
Algorithm %3,1.1, and it is reasonable to,sufpose that the differences
in the computational results which are obtained are due solely to

the algorithmic differences, and not to variations in programming

;

A - PO R
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efficiency,

The values of the parsmeters which have been used with the
algorithms in this section are ¢ = é—ls 5 € = 1510 s & = 20,

4 -y & : :
g=1 ", =09, f£=10 , and A = 1, where A is a bound

for the steplength, and this bound has been recommended in the NAG
Monual by Gill and Murray., Also, ? = 3 gives almost optimal
efficiency for all of the test problems of Appendix 1. In each
case, it is supposed that analytical formulae for F and for the
n components of the gradient g of ¥ are known, It is often true
that the formulae for the components of g contain expressions in
common, so that the computational labour which is required in order
to evaluate g is often less than n times that which is required for
the evaluation of one component of g, Furthermore, it is often
true that the formula for I contains expressions which are common
to some or all of the formulae foxr the componentg of g. In this
case considerable saving in computational labour can be made in
the simultaneous evaluation of F and g.

It is difficult; for the reasons which have been given in the
preceding paragraph, to allocate an appropriate weighting factor
to an evaluation of g relative to an evaluation of F when attempting
" to compare the computational labour required to evaluate g with
that réquired to evaluate F, If such a factor could be found then
it could be used to estimate the relative computational efficiencies
of the algorithms for the numerical estimation of the Hessian G of
P which afé described in Chapter 4, »

Let the number of arithmetical operations required to compute

P and g be mF and. %g respectively., Then
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m,oo=m. +nv, (6.2,1)

where v is the average number of arithmetical operations which are
reguired to evaluate each component of g, in addition to m, e
According to Fletcher (1972) a typical value for nvy /mF is about

2, Therefore, if we regard one evaluation of P as requiring one unit
of computational labour, the number of units of computational labour
reqguired for one evaluation of g is about 3,

If in implementation of any algorithm discussed in chapters 3
and 4, the number of evaluations of F is n. the number of evalua~
tions of g, excluding those which are reguired to estimate G, is ng‘ »
and the number of evaluations of G is n. o then an index nof
computational labour for algorithms 3.1.2, 3.2.2, 3.2.4, and 3,2,5 =
%2¢2.7, excluding all arifhmetical operations save those which are

required to evaluate ¥, g, and G, is given by
n =n_ +3n +1 n (6.2.2)

in which 1. is the number of units of computational labour which are

required for one evaluation of G,

In general, the value of lG deperids upon the value of B =n9 / mF =

In practice, the value of * varies widely, In some cases M = 0,
while in others K = n - 1, Therefore the index of computational
labour given by (6.2.2) is not always realistic. Consequently it is
necessary‘to use an additional index of'computational labour, namely
the CPU time t  , which is defined in Section 6.1,

Every attempt has been made, when obtaining the numerical results

which are presented in this section, to economize on computational

b
¢
3

‘.

i

~7
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labour when computing g. Thus, any expression which isg common to
gome or zall of the components of g is evaluated before evaluating
g end is used as many times as required in the computation of g
itself; this results in F = 2 being rather an ovem-estimate for
the set of test problems which are used in this section,

Moreover, in algorithms 3.1.,2, 3.2,2, and 3,2.4 = 3,2,7; g must
be calculated at several points distinct from those at which F and
G are calculated, Therefore no allowance has been made in (6.2,2)
for the fact that at least once in each iteration, ¥ and g are
evaluated at the same point. Therefore we set 1G = 3%n for‘the
algorithms %,1.2, 3.2.2 and 3,2.4 - 3.2,7, while lG = 0 for
Algorithm 1.5.3; Algorithms 3,1.2, 3.2.2, 3.2.4 =~ 3,2.7 and 1.5.3
have been used to solve all of the test problems listed in Appendix 1.

Tables 6.2.7, 6,2.2, 6.2,3 and 6,2.4 show the values of s
n8 5 ra ,zt and tc obtained by solving all of the test problems
in Appendix 1 which do not have a sparse Hessian by using the
algorithms 3.1.2, 3,2.2, 3:2.4 = 3,2,7 and 1,5.3, Table 6,2,5 (d)
contains the total numbex N, of units of computational labour and
the total computing timéﬁgver all of the test problems. Table 6.2,6
éontains the iteration numbers which each algorithm requires to solve
each of the test problems,

If the algorithms are compared in terms of n then from tables

6,2,1 = 6,2,4 the following conclusions may be drawn,

1. Algorithm 3.,2.2 is superior to'Algorithm 3¢7.2 for all
problems save problems 1,1 and 1,21,
2. Algorithm 3.2.2 is superior to Algorithm 3%,2.4 for all

problems savye problems 1.1, 1.5, 1.21 and 1,22,
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4.

Te

8.

9.

10,

1.

12,

Algorithm 3e2¢4 is superior to Algorithm 3,1.2 for all
problems save problems 1.1, 1.2, 1.8 and 1.9,

Algorithm 3.2.5 is superior to algorithms 3%.2,2 and 3,2.4

for all problems save problems 1,21 and 1,223 Algoxrithm

RV W L < T

3.2.5 is also superior to Algorithm 3.,1,2 for all problems

Y T T

save problem 1,21 and 1.22.

Algorithm 3,2,6 is superior to-Algorithm 3.,2.5 for all problems
gsave problem 1,17 «

Algorithm 3,2.6 is superior to Algorithm 3%,2,4 for.all

problems save problems 1,21 and 1,223 it is also superior

to Algorithm 3,2.2 for all problems save problems 1,17,

1.21 and 1,22, Also Algorithm 3,2,6 is superior to

Algorithm 3,1.2 for all problems save problem 1,21 and 1.,22.

Algorithm 1.,5.3 is superior to algorithms 3,1.2 and 3,2.4
for all problems, but it is inferior to Algorithm 3,2,2

for Problem 1.9,

Algorithm 1,5.3 is superior to Algorithm 3,2,5 for all
problems save problems 1.2, 1.6, 1.8, 1.9, 1.17 and 1.20.
Algorithm 1.5.3 is superior to Algorithm 3,2,6 for all
problems save problems 1.2, 1.6, 1.8, 1,9, 1.19 and 1.20.
Algorithm 3,2,7 is inferior to Algorithm 1;5.3 for all
problems save problems 1.6, 1.9, 1.20 and algorithms 3.2.7 i

and 1.5.3% are equally efficient for Problem 1.8.

Algorithm 3,2.7 is superior to Algorithm 3,2,6 for problems

3
i
3
2
b
7

1¢2%and 1.173 Algorithm 3.2.7 is superior to Algorithm 3,2.5

L 1

for problems 1,1, 1.9, 1.21 and 1.22.

Algorithm 3,2,7 is superior to Algorithm 3.2.4 for all

o AR FRA A Bor A0S Sesig

problems save problems 1,21 and 1,22, Also, Algorithm 3,2.7
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is superior to Algorithm$3.1.2 and 3.2.2 for all problems

save problems 1.21° and 1.22.

If we were to.solve those test problems of Appendix 1 which do

not haves sparse Hessians, then from the values of N, in Table 6.2.5 (a),

it can be concluded that Algorithm 1.5.3 is the best algorithm and the

second best is Algorithm 3.2.2, for functions which are expensive to compute.

If we compare the algorithms in terms of CPU time tc s then

from tables 6,2.1 = 6.2.4 the following conclusions-may be drawn.

1. Algorithm 3.2.2 is superior to algorithms 3.1.2 and 3.2.4
for all problems save problems 1.5, 1,21 and 1.2 2, Also,
Algorithm 3,2.2 is as efficient as Algorithm 3,1,2 for
Problem 1,1,

2, Algorithm 3,2,2 is superior to Algorithm 3,2,5 for all
problems save problems 1,6, 1,16, 1,17 and 1,18, Algorithm
3.,2,2 is also superior to Algorithm 3,2,6 for all problems
save problems 1.6, 1.8, 1.16 and 1,18,

3, Algorithm 3,2.7 is superior to Algorithm 3.2.2 for problems
1.6, 1.16, and 1.18.

4, Algorithm 1,5.3 is superior to Algorith 3,2.5 for problems 1.16,
1.18, 1.2t and 1.22. Also, Algorithm t1.5.3 is superior to
Algorithm 3,2,6 for problems 1,16,1.17, 1.18, 1.21 and 1.22.

" 5. Algorithm-1.5.3 is superior to Algorithm 3.2.7 for problems
1385 1Ty 1418, 1,21 mod 1,22,
6. Algorithm 3.2,5 is superior to Algorithm 3,2,6 for all

problems save problems 1,7, 1.8, 1,9, 1.16,1.21, and 1.22 and
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algorithms 3.2,5 and 3,2.6 are equally efficient for
problems 1.1, 1.2.

7. Algorithm 3%.2.7 is superior to Algorithm 3,2,5 for problems
1616, 1,21 and 1,22, Also, Algorithm 3,2,7 is superior to

Algorithm 3.2,6 for problems 1,17 and 1.21.

If we were to solve problems 1.7, 1.2, 144 = 1.9 and 1,16 = 1,22

by algorithms 3,1.2, 3.2.2, %.2.4 -~ 3,2,7 and 1.5.3, then from

Table 6,2.5 (2) it may be concluded that Algorithm 3,2,5 is the best
algorithm and Algorithm 1.5,3 ig superior tc all algorithms save
Algorithm 3,2.5, Also, Algorithm 3,2,2 is significantly more efficient
than algorithms 3,1.2 and 3.2.4.

As is shown in tables 6,2,1 =~ §,2.4, algorithms 3,2.5 =~ 3,2,7
and 1.5.3 are inefficient for problems 1.21 and 1.22. In particular,
algorithms 3,2,5 - 3.2,7 require more evaluations of the Hessian
than if these problems were solved by using algorithms 3.2.2, 3.2.4
and 3,1.2 respectively, Thus, if we omit problems 1.21 and 1,22 from
the comparison then from Table 6.2.5 (b) can be concluded that in
terms of the total CPU time required to solve problems 1.1,

1.9, 1.4 - 1.9, a.nd 1._16 - 1,20, Algorithm 3,2.5 is significantly
ﬁore‘eff;cient than algorithns. 3.1.2, 3.2.2, 3.2.4, 3.2.6, 3.2.7
and 1.5,%; while in texrms of computational labour, Algorithm 1.5,3
is more efficient than the others. The inferiority of algorithms
'3.2.6 and_3.2.7 in terms of EL is inherited from algorithms 3,1.2

and 3.2,4 vhich are inferior to Algorithm 3%,2,2.

In Algorithm 3,2,5, (1.5.3) is used to estimate the Hessian
(K
until for some Xk, ” g ke gs’g. Then x )is used as a starting
4

point for the Newton=-tiype algorithm 3,2,2,
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(K)
One would expect that for small values of ﬁf, ¥ would be

»
close to a minimizer x and therefore would be a good starting
point for Algorithm 3,2,2.

For problems 1.1, 1.2, 1.4 = 1,9, and 1,16 = 1,20 computational

experience shows this conjecture to be valid, Tor problems 1,21,

-k (K)
% i

and 1,22, however, it is found that with Eti = 10 ., s a
pooi starting point for Algorithm %,2,2,
=3 K
Yoxr % = 10 ’ x( ).is found to be a gatisfactory gtarting

point for Algorithm 3,2.2 when applied to problems 1.271 and 1.22,
but for Problem 1,22, the additional number of iterations corresm

ﬁonding to the use of updating formula (1.5.3) for estimating the

Hessian give rise to large overall values of tc . See Table 6,2.5 (c),

For problems 1.1, 1;2, 1e4 = 1,9 and 1,16 = 1,22 computational
experiencg1éhows that the value of Tc corresponding to the Newton=—
type algorithm 3.1.2 of Gill and Murray is 717 Sec., while for the
qugsi-Newton algorithm 1.5;3 TL is 318 Sec,. For Algorithm 3,2,5,
Tk is 978 Sec.,. It would therefore appear that Algorithm 3.2.5 is
significantly better than Algorithm 3,2,2 and is also better than
Algorithm 1.5.3 at least for the test problems which were used,

Algorithms 3,1.1, 3.2.1, 3.2.3 and 3,3.1 = 3.3.6 have been used
fo solve the test problems of Appendix 1, using analytical forxmulae
for the Hessians, It has been observed that, p = 2 gives almost
optimal efficiency for algorithms 3,2.,71, %.2.3 and 3.3.1 = 3,3,6,
which suggests that higher order methods are not applied often,
This is verified from a detailed print-out of the computaticnal
results, This is because either the search directions after an

extension were not down~hill or because the sufficient decrease

(1) see Table 6.2.5(a)

o
i
5
P
@
E
b




173

condition regquired for allowing the extensions is not satisfied,
However, smong algorithms 3,2.1, 3.2.% and 3,3.1 = 3,3,6, algorithms
342¢1y 34341y 3.3.3, and 3.,3,5 are the best on problems 1.1 - 1,10,
vhen p = 2, The tables 6.2,7 and 6,2,8 show the CPU times t

which have been obtained in solving problems 1.7 -~ 1.4D+« From

Table 6,2,7 the following conclusions may be drawn.

1, Algorithm 3,2,1 is superior to Algorithm 3%,1,71 for all ten
test problems, and is as efficient as Algorithm 3,3.3 for
problems 1,1 and 1.8,

2. Algorithm 3,3.3 is superior to Algorithm 3,1.1 for all ten

problems save problems 1.6 and 1.9.

3. Algorithm 3.3.3 is inferior to Algorithm 3,2.1 for problems
1.6, 1.9 and 1.10.

4, Algorithm 3,3,5 is inferior to Algorithm 3.2.1 for all problems
save problem 1.9

5. Algorithm 3,3%,1 i; superior to Algorithm 3.2.1 for seven
problems and is equally efficient to Algorithm 3,2,1 for

Problem 1.1,

From Table 6,.2.,8, which shows the total CPU time T. over the
problems 1,1 = 1,10, it may be concluded that Algorithms 3,3,% is
superior to algorithms 3.1.1, and 3.3.5 and requires over 5 % less

computing time than is required by Algorithm 3,3.1.



Algorithm 3,1,2

PROBLEM
1:4
1.2
Tt
1.5
1.6
1.7
1.8

1.9

n
£

24
53
21
15
20
12
13
15
60
28
13
55
30
157
37

n
g

24
53
21
15
20
12
13
15
60
28
13
55
30
157
37

21
45
21
14
19

12

13
15
47
28

48
30
1o
30

222
752
336
186
194
120
159
240
1086
868
276
1660

1020

1948
508

0,38
1.76
0.80
0.66
2,28
1.54
2,28
3.76

28,94
564,22
75.82
8.00
5.10
17.08

4,44

Table 6,2,1

Algorithm 3,2,2

275
60

241

29

10

34

25
12

94
22

174,

904
308
236
1023
497
2126

501

0,38
1,42
0.62
0.74
1,66

1,04

1.54
3.14
24.90

202.74

60,36
5,14
2,66

18.92
4,68



Algorithm 3,2,4

PROBLEM
1.1

1.2

1.20
1.21

1.22

n
F

22
52
14
12

18

10

12
15
50
24
10
47
27

143
30

n

2 -

44
88
38
20
22
14
16
20
T8
32
22
77
43

243

58

G c
16 250 0,42
37 760 1.82
14 096 0,78
11 171 0,64
17 186 2,06
10 112 1,36
12 168 2.26
14 243 3,76
38 968 25,64 -
24 768 502,32

9 238 63,28
39 1448 T.44
26 936 4,78
83 1868 16,34
21 456 4,12

Table 6,2,2

Algorithm 3,2,5

n

43
86
42
30
20
17
20
36

51
32
80
43
275
132

n

&

41

o

42
29
19
16
20
33
78
31
31
19
42
529
123

175,
nG nc
2 178
2 362
8 264
1 126

o 89
2 M
2 98
5 995

27 805
3 205
2 161

18 857
6 349

189 4430
43 1017

R
R A A AL e 2 W Ve

o

S i A

R P .
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Algorithm 3,2,6 Algorithm 1,5.3
PROBLEM % ﬁé IE rz tc nF ié n.c '&
el . 35 40 1 161 0.52 39 39 156 0.74
1.2 81 83 1 352 2,60 93 93 372 3.04
1.4 25 41 8 244 1.10 50 50 200 1.96
1.5 27 29 1 123 0.94 29 29 116 1.46
1.6 15 19 & 84 1.22 26 26 104 2.34
1.7 14 16 2 74 1.06 18 18 72 1.68
1.8 15 19 2 90 1452 26 26 104 2,30
1.9 28 32 5 184 3¢40 59 58 232 5.06
1.16 62 T8 27 782 22,38 128 128 512 17.58
1.17 33 34 9 318 244,08 71 71 284  174.82
1.18 27 | 31 2 156 - 42,28 35 35 140 38,94

1.19 57 79 18 834 8.16 233 233 932 23432
1.20 35 43 | 6 344 5.62 108 108 432 12,04
1.21 397 619 181 4426 38.86 441 441 1764 27.12
1.22 7T 127 39 926 8,46 95 95 380 6.08

Table 6.2.3




PROBLEM
“To1
T2
1.4

1.5
1.6

Algorithm 3,2,7

352
87

n

&

39
90
30
28
17
15
17
29
62
31
28
60
38
352
87

N

13

N B~ W B

31

24

228

52

Table 6.,2.4

168
384
276

92

78
104
188
806
340
166

960 -

392
4144
972

S P U £ I R P Y
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Algorithm 3.1.2 3e2.2 3,244 34245 3:2.6 3e2e7 1e543

N 9575 7510 6868 9413 9248 9200 5800
Re 717.06 329.94 637,02 278.44 382,20 369,38 318.48

(The values of Nc and Tc for those test problems in Appendix 1 for
which the Hessian is not sparse.)

Table 6.2.5 (a)

Algorithm 3.1.2  3,2.2 3,2.4 3,2.5 3,2.6 3,2.7 14543
N 7119 4883 6544 3966 3896 4084 3676

C

T 695.54 306,34 616,56 229,38 334,88 324,02 285,29

C

(The values of Nc and Tc for those test problems in Appendix 1 for

which the Hessian is sparse, but excluding problems 1.21 and 1.22.)

Table 6.2.5 (b)

&
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PROBLEM n n n n t n Iteration Number
F & G ¢ c T
1+6 152 152 1 626 20,96 138
1.19 160 160 2 700 20,10 130
1.21 487 485 8 2038 27.50 359
1.22 197 196 2 809 11.40 156

Table 6,2.5 (c)

w ’
(Oomputationa.l Results corresponding to E‘}. = 10 in Algorithm 3.2.5)
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Iteration Number n1

Algorithm 3.1.2 5e2.2 3,204 3¢2¢5 3e2eb 1.5.3

PROBLEM

4.4 21 16 16 30 . 29 32

1.2 45 29 37 69 68 75

1.4 21 12 14 23 23 49 ‘
1.5 14 11 11 26 26 29
1.6 19 9 17 15 15 22
1.7 12 5 10 14 14 18
1.8 13 7 12 13 13 24
1.9 15 10 14 23 23 36
1.16 47 - 34 38 45 45 112
{47 28 8 24 21 27 69 :
1,18 13 8 9 24 24 34

1419 48 25 39 47 47 195

1.20 30 12 26 35 35 102

1.21 110 94 83 201 192 332

1,22 30 22 21 54 50 76

Table 6,2.6
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4
Algorithm 3,1,1 3.2, 3,3,1 3,543 %5k ?
PROBLEM
1.1 0,34 0,30 0.30 0.30 0.34 }
1.2 1,28 1.08 1,06 1,04 1.28
1.3 0.84 0,76 0,70 0,62 0.84 |
b
1.4 0,60 0,50 0.48 0.42 0.60 i
1.5 0,54 0.50 0.48 0.44 0.60 :
1.6 1494 1434 1.30  1.96 1.40
141 1,28 0.88 0.82 0.86 1,00
1.8 1.76 1.18 1.16 1.18 1,48
1.9 2.98 2.66 3.26 3.60 2.16
Table 6,2,7 {values of t: sec, ) :‘
Algoritm 30101 3-201 3'301 30303 3030-5
T Sec, 14.04 11,20 11.80 11,00 13.98
Table 6,2,8 ' :
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6.5 Comparison of the Methods for Estimating the Hessian Numerically,

The numerical methods for estimating the Hessian matrix which are
described in Chapter 4 have been incorporated into Algorithm 3.1.2 to
solve the test problems in Appendix 1, and the numerical resuvlts are
shown in tables 6.3.1 = 6.3.4.

For the reasons given in Section 6.2, the value of n given by
(6.2.2) has been used as well as the CPU time t. as a measure of
computational labour, The values of 1G in (6.2,2) for the different
algorithms in this section are as follows,

For Algorithm 4,2,1 which is identical to Algorithm 3.1.2,
1G = %n. For Algorithm 4.2.2, 1G = 2n + 1 because by assuming
that one evaluation of g is equivalent to about 3 units of computational
labour, the evaluation of k (k P 1) components of g will be equivalent
to about 1 + 2k/n units., Therefore, for Algorithm 4.2.2, we shall
have

n
1 =n+(2h) T 1 =2n+1.
& " i=1

For algorithms 4.3.,1 (a) and 4,%.1 (b) lG = 3m, vhere m is the
number of non~zero diagonals of the Hessian, For algorithms 4.3.2 (a),
4,3.2 (b), 4.3.3 (a), 4.3.3 (b) 1., =3 (m+1)/2,
Moreover, in the implementation of Algorithm 3;1.1, %.= é—ig i
71=0.9, F= R L T T
difference steplength h is given by h = é-zz as in Section 6,2,
Table 6.3.1 contains the results which are obtained when
algorithms 4,2.,1 and 4.2.2.are used to ésﬁimate G,
From Table 6.3,1, it would appear that Algorithm 4.2.2 is slightly
superior to Algorithm 4,2,1 with regard to both function evaluations

and computing time, Algorithms 4.2.1 and 4.2.2 were, in fact used to




solve all 28 test problems in Appendix 1 with similar results to
those in Table 6.3%.1.

From tables $.3.2 and 6,3.3, it would appear that algorithms
4.%,2 (a) and 4.,3.2 (b) are slightly superior to algorithms 4.3.1 (a)
and 4,%,1 (b) respectively. Moreover, Algorithm 4.3.2 (b) requires
more storage locations than algorithms 4.3.1, 4.3.2 (a) and 4.3.3.

From Table 6.3.4 it would appear that algorithms 4.3.3 (a) and
4.3.% (b) are slightly supérior to algorithms 4.3.1 (a) and 4.3.1 (D)
respectively, Comparing the results for algorithms 4.3.2 (a) and
4,3.2 (b), with those for algorithms 4.3.3 (a) and 4.3.3 (b), it
would appear that Algorithm 4.3,2 (a) is to be preferred to algorithms
4,3.2 (b), 4.3.3 (a) and 4.3.3 (b) on grounds of computing time,
Furthermore, Algorithm 3.1.,2 fails to solve Problem 1,27 when
algorithms 4.3.1 (a) and 4.3,1 (b) are used, but is successful when
algorithms 4.3.2 (a), 4.3.2 (b), 4.3.3 (a) and 4.3.3 (b) are used,
Aigorithm 3.1,2 fails to splve Problemi.28 when any of the algorithms
4,3,1 4.3.2 and 4.3,% are used., Also, Algorithm 1,5.3 fails to
solve this problem,

Clearly, the preceding conclusions rest upon results which have
been obtained with a limited number, albeit quite large, of tést
problems, It may well be that there exist problems for which some
or all of algorithms 4.2.2, 4.3.2 and 4,3.3 would fail to produce
satisfactory estimates of G, while algorithms 4.2.1 and 4.3.1 are
successful, The author has not yet found any such problems,

I{ should be noted that although iﬁ Table 6,3.1, Algorithm 4.2.2
requires three more evaluations of f and g and two more evaluations
of G than does if Algorithm 4,2,1 to solve Problem 1,17, there is a

very real saving in computing time if Algorithm 4.2.2 is used,

5
,’35
3

-
¥
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because in this case n = 9 and none of the components of g have any
expressions in common, A similar situation exists in Table 6.3.2

for problems 1.% and 1,13 which have related objective functions,

save that in these cases, the components of g do have some common
expressions, so that the saving in computing time is not so pronounced.

Algorithms 4.2.,1 and 4.2,2 for the numerical estimation of the
Heésian have been used with the minimization algorithms 3.1.2, 3.2.2
and 3,2,4, on test problems 1.1, 1.2, 1.4 = 1,9 and 1,16 = 1,22, I%
is found that Algorithm 4,2,2 is better than Algorithm 4,2.1 when
used with Algoxithm 3.1.2. Similar statements are valid wheﬁ
Aléorithm 3.1.2 is replaced with Algorithm 3,2.2 and Algorithm 3.2.4
respectively, The relative performance of algorithms 3,1.2, 3.2.2, and
3.2.4 is unchanged by the substitution of Algorithm 4.2.2 in place of
Algorithm 4.2.1.

Table 6,3.6 contains computational results corresponding to
Algorithm 3,2,2 with p = 3, where Algorithm 4.2,2 is used to estimate
the Hessian of the functio%s 1ely 1.2y 1.4 = 1,9 and 1,16 - 1,22,

From tables 6,2.,3 and 6.3.6 it may be concluded that, in terms
of computing time, Algorithm 3,2.2 is superior to Algorithm 1,5.3 for
.all test problems save problems 1,76 and 1,18, Also, Algorithm 3,2,2
is significantly inferior to Algorithm 1.5.3 for prbblems 1.16 and
1.18, Also, from tables 6,2,4 and 6.3.6 it may be concluded that
Algorithm 3,2.2 is more efficient than Algorithm 1.,5.3 over fifteen
test problems if we choose tc as an index of computational labour,
but when n is used as an index of combutational labour, Algorithm
1¢5.3 is still superior to Algorithm 3,2,2,

Algorithmyd.3.1, 4.%.2 and 4.3.% for the numerical estimation

of sparse Hessians have been used with the minimization algoxrithms




3,162y 3.2.2, and 3.2,4 on test problems 1.3, 1.10, 1,11 = 1,15 and
123 = 1,28, It is found that Algorithm 4,3.2 is better than
algorithms 4.3%.1 and 4.3.3 when used with Algorithm 3,1,2, Similar
statements are valid when Algorithm 3,1,2 is replaced with Algoxrithm
3,2.,2 and with Algorithm 3,2.4 respectively, .The relative performance
of algorithms 3.71.2, 3.2.2, and 3,2.4 is independent of the algorithm
which is used to estimate the Hessian if this algorithm is chosen
from algorithms 4.3%3.1 -« 4,3,3.

"Algorithm 1.5,3 has been used to solve the problems of Appendix 1
which have sparse Hessians and Table 6,3.5 contains the corresponding
computational results,

From tables 6,3.2 = 6.3,5, it ma& be concluded that for all test
problems Algorithm 1.5.3 is significantly inferior to Algorithm 3.,1.2
when any of the algorithms 4,3.1 = 4.3.3 are used to estimate the

Hesgsian in Algorithm 3,1.2.



PROBLEM
1.1
1.2
1.4
1.5

Algorithm 4,2,1

n
F

24
53
21
15
20
12
13
15
60
28
13
55
30
157
37

n
8
24

. 53

21
15
20
12
13
15
60
28
13
55
30

157
37

n
21
45
21
14
19
12
13
15
47
28
13
48
30
110

30

222
752
336
186
194
120
159
240
1086
868
276
1660
1020
1948
1048

0,38
" 1.76
0,80
0,66
2,28
1.54
2,28
3,76
28,94
564,22
75.82
8,00
5.10
17.08

4.44

Table 6.3.1

Algorithm 4,2,2

n
F

24
53
21
15
20
12
13
15
60
31
13
55
30

157
37

n
8
24

53

21
15
20
12
13
15

60

31
13
5
30
o7
37

n
G
21
45

21

110
30

186,

201
617
2713
158
175

© 108

133
195
851
694
211
1228
750
1618
778

0,40 '

1,58

0.75 :
0.64 °

1,40

2,10

3.30

26.84

373,58
50,22 -

T.42
4.58 f
13,90
3,60 |



PROBLEM

1.3

1,10
1.11
1.12

1.13

1.14.

1.15
1,23
1.24
1.25
1.26
1.27
1.28

Algorithm 4,3,1 (a)

n

F

20
32
22
23
22
24
21
5
5
15
154

n
8
20
32

22

23

22

24

21

p)

5

15

153
Failed

Failed

n
G

20
26
17
20
22
21
19
5
>
14
238

n b
260 1,26
362 3.12
241 1,10
272 1,76
286 2,02
411 3.24
483 3.30
95 0.97
25 0.43
270 1,32

3155 10,18

Table 6,3,2
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Algorithm 4,3,2 (a)

n

F

28
32
22
23
29
24
21
5
4
15
55
108

Failed

n

&

28
32
22
23
29
24
21
+5
5
15
54
107

n

G

21
26

17

20

23
21
19

5

5
14
43
82

238
284
190
212
254
285

312 :

65
g
186
475
921

i
PN v-'..s.»‘f:';'?-’:

L

1,08 |
2,74
0,93
1,54
1.88 .

2,66
0,38 f
1.0k
2,00 f

5,96
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Algorithm 4,3.1 (b) Algorithm 4.3.2 (b)
PROBLEM n n n n t n n n n %
F o R c c F & 6 c _
1.3 20 20 20 260 1,26 28 28 21 238 1,08

1,90 32 - 32 26 362 3,16 32 32 26 184 2,82

1.1 22 22 17 241 1,08 22 22 17 190 0.96
1.12 23 23 20 171 1.78 23 23 20 212 1.60:
1,13 22 22 22 286 1,98 28 28 22 244 1.82
1,14 24 ‘ 24 21 411 3,22 24 24 21- 285 B 2.80
1.15 21 21 19 483 3.28 21 21 19 312 2,82
1,23 5 5 5 95 1,02 5 5 5 65 0.86
1.24 5 5 5 95 0.44 5 5 5 65 0.38

1.25 15 15 14 270 1,38 15 15 14 186 1,06 .
1.26 254 253 238 3155 10,26 55 54 43 475 2,04
1.27 Failed 113 112 83 947 6,26

1.28 Tailed Failed

Table 6,3,3



PROBLEM
1.3
1.10
1.1

1.12

Algorithm 4.3.3% (a)

n
F

28
32
22
23
29
24
21

b

5
15
55
108

Failed

n
&

28

. 52

22
23
29
24
21
5

5
15
54
107

TR
21 238
26 284
17 190
20 212
23 254
21 285
19 312
5 65
5 65
14 186
43 475
82 921

Table 6.304

nc‘i‘

1,10

2.84
0.98
1.56
1,88
2,80
2.75
0.85
0.35
1,08
2.04
6.12

189.

Algorithm 4,3,3 (b)

1
28
32
22
23
28
24
21
3
5
15
55

113

Failed

n
&
28

g

22
23
28
24
21
2
5
15
54
112

I(l;
21
26
17
20
22
21
19

5

5
14
43
83

238
284
190
212
244

- 285

312

65
-
186
475
947
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PROBLEM n n n t Iteration
F 3 c c
1.3 47 47 188 2.36 46
1.10 25 95 380 9.98 83
te11 38 38 152 2,28 34
1.12 57 57 228 4,96 51
1.13 88 88 352 6.32 88
1.14 T4 T4 296 8.84 68
1.15 T2 T2 188 8,14" 66
1.23 26 26 104 2.54 18
i.24 15 19 60 0.76 11
1.25 35 35 140 11,52 31
1.26 89 88 353 3.54 71
1.21 229 229 916 12.92 183
1.28 Failed
Table 6,3.5

Algorithm 1,5.3
(Computational results due to A for the functions with sparse Hessian,)



PROBLEM n n n n t
F 8 G c ‘o

1.3 44 42 16 248 0.42
1.2 85 73 30 574 1.52
1.4 37 37 12 256 0,62
1.5 23 21 11 163 0,64.
V4B 23 20 9 128 1.50
1.7 14 13 5 T8 1.00
1.8 14 12 7 99 1,46
19 25 19 10 172 _2.90
1.16 79 71 34 734 23,80
1.17 23 23 8 244 136,86
1,18 23 22 8 193 44,30
1.19 69 68 25 798 4.90
1.20 35 34 12 389 2.46
1.21 275 241 94 1844 16,20
1.22 60 59 22 435 3,84
Total - 6355 242,42

Table 6.,3.6
Ser pa 171

(Computation results due to Algorithm 3,2.2 with p = 3 when the

Hessian is approximated by Algorithm 4,

2.2.)
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6.4 Computational Results for the Least Squares Algorithms,

In this section, computational results corresponding to the
algorithms contained in Chapter 5 are reported. Algorithm 1,2,2
has been used as the steplength algorithm, The bound A for the
steplength required in Theorem 1.2.7 is taken .to be 105- for all
test problems, save that A = 10 for the problems 2,10, 2,16, 2,18

and 2,19 as recommended by Gill and Murray (1976). The values of

si(1 ¢ 1 6) required in the algorithms of Chapter 5 are ¢ = 2
-28 -6 -3 -G
E=2 , g£=1 , g=1 , &t=10 , E=N .

Also in Algorithm 1.2.2, { = 0.9 and M = 0

Prom Section 6,2 and 6,3 we may conclude that the CPU time may
be a more realigtic measure of computational labour, Therefore, the
comparison in this section is based upon T

Table 6.4.1 contains the numerical results for algorithms 5261
and 5,3.2 corresponding to those test problems of Appendix 2 for
vhich the evaluation of B is regquired, Table 6.4,2 contains the
.numerical results for Algorithm 5,3,2 corresponding to the test
problems for which results are not given in Table 6.4.1,

From Table 6.4.1 it may be concluded that for all of the test
problems in Appendix 2, there is no significant difference in
foiciency between algorithms 5.2.1 and 5,3,2 save for probiems
2,2 7 and 2,2 8, This is probabiy because graded-Gauss-Newton steps
have been taken seldom oxr not at all, The slight differences in
_efficiency are, however, noticeable in the solution of problems 2.4
and 2,12, -When Algorithm 5,2,1 is used to solve Problem 2,4, for
example, 37 iterations are required, The first 5 of these are
Gauss-Newton iterations, iterations 6 and 7 are graded Gauss-Newton

iterations, and iterations 8 -~ 16 are Newton iterationsj the remainder
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are Gauss=Newlton iterationg, When Algorithm 5.3%.2 is used instead

of Algorithm 5.2.1’ 36 iterations are required, The first 5 of these
are Gauss-Newton iterations, iterations 6 and 7 are graded Gauss—
Newton iterations, and iterations 8 -~ 17 are Newton iterationss

the remainder are Gauss~Newton iterations, Thus, for Problem 2,4
Algorithm 5.3%.2 is more efficient than Algorithm 5.2,1 in texms of
iteration number, time and evaluation of the function and the Jacobian,
while for Problem 2,12, Algorithm 5.2.1 is more efficient with regard
to computing time and number of evaluations of the function and the
Jacobian, Moreover, Algorithm 5,2,1 fails to solve problems 2,27

and 2.28, but Algorithm 5,3.2 is successful on these problems, which
suggests the superiority of Algorithm 5,.3.2 over Algorithm 5.2.1.

For Algorithm 5,4.,1, p = 3 gives almost optimal efficigncy for
all of the test problems of Appendix 2, The computational results
corresponding to Algorithm 5.4.1 are contained in Table 6.4.3.

Algorithms 5.3.3, 5.5.1, and 5.6,1 give results which are
distinct from those coxrresponding to Algorithm 5,%.2 only when the
second dgrivative matrix B must be computed., For some problems of
Appendix 2, B need never be computed,

Tables 6.4.4 and 6,4,5 contain the numerical results corresponding
Eo algorithms 5,3.3, 5.5.1, and 5.6,1 respectively, for those problems,
in whiéh B is computed,

From tables 6,4.,1, 6.4.2, and 6.4,%, it may be concluded that
_Algorithm 5¢4.7 is superior to Algorithm 5.,3.2 for 20 problems out
of %32, TFor problems 2,27 and 2,28, Algorithm 5;4.1 failed, but
Algorithm 5,%.2 was successful, Algorithms 5,4.,1 and 5,3%.2 are
equally efficient on Problem 2,2,

From Table 6,4,4 the following conclusions may be drawn,
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1. Tor 6 out of %2 test problems, Algorithm 5.,3.,3 is superior
to Algorithm 5.6,1,

2. TFor problems 2,14 and 2.31, Algorithm 5,3.3 is significantly
superior to Algorithm 5,.6.1.

3, TFor problems 2,27, and 2,28, Algorithm 5,3.3 failed to find
any solution, while Algorithm 5,6,1 found a local minimizer,

From tables 6.4.3% and 6,4.5 the following conclusions may be
drawn,

1, Algorithm 5.4.71 is superior to Algorithm 5.,5.1 for 21 problems

out of 32,

2. Tor problems 2,27 and 2,28 Algorithm 5.4.1 could decrease
the function substantially, but Algorithm 5,5.1 failed at
en early stage.

From tables 6.4.1 and 6,4.5 the following conclusions may be

drawn.

1. TYor 6 out of 32 problems, Algorithm 5.5.,1 is superior to
Algorithm 5.3.2,

2, Tor problems 2,27 and 2,28 Algorithm 5,5.1 failed, while
Algorithm 5,3,2 did not,

As has been mentioned previously, algorithms 5.%.2, 5.5.7, and
5.6.,1 are equally efficient for those problems for ﬁhich B is not
computed,

The total computing time obtained by using algorithms 5.3,2,
5.5.,1 and 5.6.1 to solve the problems indicated in Table 6,4.4 with
the exception of problems 2,14, 2.27, 2;28 and 2.31, is contained in
Table 6,4.6,

From Table 6,4,6 it may be concluded that Algorithm 5.,4.1 is the

best over 13 test problems and Algorithm 5,5.1 is the second best.
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Since Algorithm 5.5.1 requires m arrays each of size n (n + 1)/2 to
evaluate the Hessians of the components of f in addition to the storage
space required, then Algorithm 5,3.2 may be preferred for large n,
Algorithm 5,6,1 is superior to Algorithm 5.3%.3% and the saving in.

computing time is about 8%.



PROBLIM
2.4
2.6

2,12

Algorithm 5,2,1

n
79
24
18
10
46

6 .

35
11
12
19
12

11

20
10

26

n
J

79

. 24

18
10

46

-

35
11
12
19
12

11

20
10

26

n
8
11

1

4
4
Failed
Failed
6
2

3

Table 6,4,1

9.80
1.52
0.58
12,94
16,70
1,40
1.88
2,94
10,24
121,04
0,60

1.42

4,36
2,70

4.52

37
12

22

10

3

10
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Algorithm 5.3%.2

n

§

73
24
24
10
46

6
35
11
12
19
12
11

229

232
20
10
26

n

J

13

: o4

24
10
46

6
35
j1
12
19
12
11

229

232
20
10

26

n, 1%
12 9.44
1 1,34
4 0.64
3 12,74
T 16,56
1 -+ 1,32 "
6  1.96
3 2,90
1 10,32
3 121,66
4 0,62
4 1.38
101 32,58
104 32.82
6 4,18
2 2.68
3 4,56

n

36

12

22

10

11

10

139

‘138

12



PROBLEM
2e1
2,2
2.3

2.5

2.8

2.9

2,10
2.1
2,21
2:25
2,24
2,25
2.26

2.32

Algorithm 5,3,2

n
¢

32
15
18
6
6
14
18
8

5
6

34

NN O\

Table 6.4.2

- AN
es] 1 Muﬁ

n

14
18

34

AN O\

wP

o o O o © o o o

o O

o

o o©oO O O

0,68
1.10
3.06
0.26
0.18
0.42
3.16
1456
1.20
17,02
0.68
0.82
1.34
1,28
24,30

13
10

17

13

(S RS e L

v1.

PO
)



PROBLEM n n
£ J

2.1 34 31
2.2 A17 13
2,3 31 11
2,4 90 70
2.5 4 2
2,6 2% 13
2,7 7 4
2.8 15 11
29 30 12
2,10 11 7
2,11 T 5
2,12 41 34
2,13 14 7
2,14 53 46
2,15 10 5
2,16 31 25
29 B 12
2,18 16 10
2,19 24 19
2,20 23 13

(%)

Algorithm 5.4,1

o © O

15

~ W v o © O

N

N

p=3

T n PROBLEM n

C i
0.62 12
1,10 10
1,98 10

10,20 36
0,12 1
1,10 7
0,16 3
0,40 6
2,20 10
1.36
1,26 2
0.74 10

12,60 6

17,16 22
1,22 4
1.48 8
3,02 8
9.52 T

114,22 10
0,60 9

Table 6,4.3

2,21
2,22
2,23
2,24
2425
2,26
2,27
2.28
2,29
2,30
2,31

2,32

convergence criteria not satisfied-

L
11

g

9P

10
7
8

14

13

32

11

18

10

12
12

26
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Algorithm 5.3.3

PROBLEM nf nJ n
2.4 13 116
2.6 24 29
2,12 24 30
2,13 10 23
2,14 46 67
2,15 6 7
2,16 35 43
2,17 11 21
2,18 12 13
2,19 18 32
g0 g 19
2.22 9 20
2,27 Failed
2,28 Failed
2,29 20 38
2,30 10 15
2,31 26 34

(1.

()

10,30
1,42
0.62

16.74

19.54
1,42
1.94
3.42

10,32

135,50

0.60

1.68

5.34
.18

5,20

10

10

12

Table 6.4.4

Algorithm 5,6,1

n

F
T

24
31
9
253

4%
12
12
20
15
10

21
14
58

_253

43
12
12
20
15
10

21
14
58
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The sum of squares obtained at iteration 15, agrees with the

sum at the minimum with 5 decimal places, but, the convergence

criteria were not satisfied.

local minimum has been found.

37

12

14

116(1

13

12

13

4 %X

13

18



PROBLEM
2.4 .
2.6
2,12
2.13
2.14
2,15
2.16
2.7
2,18
2.19
2,20
2,22
2.21
2,28
2,29
2,30

. 2a31

Algorithm 5.5,1

n

n n

J B
84 84 5
24 24 1
24 24 4
4 + 2
46 46 7
6 6 1
35 35 5
13 13 9
12 12 1
18 18 2
12 12 4
7 £3 2
Failed
Failed
16 16 2
10 10 2
9 9 2

Table 6.4.5

8,64
146
0.64
12.28
18,02
1.46
2,02
4,24
10,66
117.96
0.64
1416

3.06
3.00
2.64

200,
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Al gori thm
Algorithm 503-2 503.3 5.4.1 5.5.1 5.6.1
TC 171,18 197.68 164,14 167.22 181,06

Table 6.4.6

(Total computing time over the problems 2.4, 2.5, 2.12, 2.13, 2,15 =

2.20, 2,22, 2,29 end 2,30)
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6.5 Computational Results Corresponding to the Use of
Powell's Steplength Algorithm,

In Section 1.6, the general minimization algorithm due to Powell
has been given. This contains a simple procedure for finding the
steplength “(K)in such a way that the sequence generated from the
algorithm converges to a critical point of the objective function,
The efficiency of Powell's steplength algorithm may be compared with
that of Algorithm 1.2.2 by using Powell's steplength algorithm in
algorithms 3,1.2 and 5.3.2 in place of Algorithm 1.2.2 to solve the
test problems listed in appendices 1 and 2 respectively, The
computational results contained in tables 6,5.1 end 6.5.2 correspond
0 A =\ (where \ is as in Algorithm 1.2,2), C1 = 15 * ;

cz.—. 2and C, = 1/2.

From tables 6,2,1 and 6.5,1 it may be concluded that Powell's
steplength algorithm increases the efficiency of Algorithm 3,1,2 for
6 out of 15 test problems, Also, from Table 6,5.3 it may be concluded
that Powell's steplength algorithm requires more computing time than
Algorithm 1.2,2 when used with Algorithm 3.1.2,

From tables 6.5.2, 6.,4.1 and 6.4.,2, the saving in computing
time obtained by using Powell!s steplength algorithm is not significant
- qpmparéd‘with that obtainéd by using Algorithm 1,2,2 as steﬁlength
algorithm, Moreover, Algorithm 5,3,2 fails for problems 2,27 and
2;28 and a large number of iterations are required for problems 2.16,
2.29 and 2,%1 when Powell's steplength algorithm is used, This
suggests that Powell's stéplength algoxrithm maylbe no more effective

than Algorithm 1,2,2, in general,
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PROBLEM n n n t
F 8 G c

11 21 21 21 0,%6
142 45 45 45 1.82
1.4 21 21 21 0,88

1.5 14 14 14 0.70
1.6 19 19 19 2.22
1.7 12 12 12 1.48
1.8 13 13 13 2.34
1.9 15 15 15 3.80
1.16 48 45 45 19.22
117 29 29 29 587.16
1.18 13 13 13 T6.14
1.19 48 48 48 9.94
1,20 31 51 31 6.46
1.21 108 108 108 1512

1.22 31 31 31 4,38

Table 6,5.1

(Computgtional Results corresponding to Algorithm 3%,1,2 with

Powell's Steplength Algorithm)
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PROBLEM n n n + n PROBLEM n n n t n
f J B c I f J B c X

2,4 22 22 0 0,56 11 2,21 8 8 0 23,90 7

2,2 12 12 0 1,10 10 2,22 11 11 4 1.56 8

2.3 18 18 0 3,40 17 2.23 24 24 0 0.60 12

2.4 9% 55 16 11,02 40 2,24 v T | 0.82 5

2.5 4 4 0 0.32 3 2,25 5 5 0 1.32 4
2,6 14 14 0 1.40 10 2,26 6 6 O 408 5
2.7 4 4 0 0,20 3 2,27 Failed
2.8 14 14 0 0,46 8 2,28 Tailed

2,9 18 18 O 338 16 2.29 1015 1015 - 99 102,60 103
2,10 7 7 0 1.54 6 2,30 8 8 1 2,42 6
2,11 24 24 0 2.52 2 2,31 1015 1015 50 118,60 54
2,12 16 16 4 0,56 9 2,32 9 9 0 38,92 8
2.13 9 9 3 13.88 7
2.14 50 50 9  19.32 25
2.5 6 6 1 1.40 5
2,16 232 232 103 1%.22 114
2T A% 93 2 %36 .9
2,18 12 12 2 10,62 8
2,19 16 16 3 111,64 10

2,20 12 12 0.60 10

b

Table 6,5.2

(Computational Results corresponding to Algorithm 5,%.2 with

Powell's Steplength Algoxithm)



Tc Sec.

Algorithm 1,2.2

717.06

Table 6.5.3

Powell's steplength
Algorithm

732,02

205,
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6.6 Comparison of Algorithms 3,1.71 and 3.1.2 with the Algoxrithm
| of Fletcher and Freeman,

Fletcher and Freeman (1977) have described a Newton=iype method
for unconstrained optimization which they claim may be more efficient
than Algorithm 3,1,1 of Gill and Murray, Therefore it would seem to
be desirable to compare the algorithms of Fletcher and Freeman and
Gill and Murray, Table 6.,6,1 contains the results which were obtained
by using an implementation of the algorithm of Pletcher and Freeman
which was provided by Fletcher, The Hessian has been estimated
numerically as in Algorithm 3,1.2, Also, Table 6,6,2 contains the
computing time corresponding to the algorithm of Fletcher and Freeman
when the Hesslan is computed analytically,

From tables 6,2,1, 6.2,7, 6.6.1 and 6.6,2, it may be concluded
that the Newton=type algorithm of Gill and Murray is more reliable
and efficient than the Newton-type algorithm of Fletcher and Freeman

(1977), at least for the problems indicated,



PROBLEM

1.1
1.2
1.4
1.5
1.6
1.7
1.8
1.9
1,16
117
1,18
119
1.20
1.21

1.22

»

n
35
66
41
33

34
22

22
36
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n n t

I3 H ¢
55 14 0,30
66 24 1.16
41 20 0,86
33 11 0,78
34 10 2,16
22 8 1,62
22 9 2,352
36 13 4,56

Failed (overflow)

After 15 minutes the solution had not been found,

10
1000
1000

224

141

10 1 16,20

1000 173 39.48 Failed

1000 166 37.76

244 21 9.58 25 Convergence criteria

141 14 6,12 not satisfied.

Table 6,6,.1

(Computational Results corresponding to the modified Newton method

of Fletcher and Freeman)



207,

PROBLEM 4,
1e1 0.30
142 0.82
1.3 1.28
1.4 0,66
1.5 0.64
1,6 2,10
1.7 1.54
1.8 1.94
149 3.98
1,10 3,28

Table 6,6,2

(Computing time corresponding to the algorithm of Fletcher and

Freeman (1977), when analytic Hessian is available,)
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6.7 Comparison of Algorithms 5,2,1 and 5,3%,2 with Fletcher's
Leagt Squares Algorithm,

Fletcher (1971) has described an efficient implementation of
Marquardt's method for the least squares problem, Therefore, it
would seem to be desirable to compare algorithms 5.2,1 and 5.3.2
vith Fletcher's least squares algorithm, Table 6.7.,1 contains the
results vhich were obtained by using an implementation of the
algorithm of Fletcher which is available in the NAG libraxry,

From tables 6,4.1, 6.4.2 and 6,7.1, it may be concluded that
Fletcher's algorithm is more efficient than algorithms 5.2.71 and
5.3.2 for small residual problems, while Algorithm 5.3%,2 is more
reliable then Fletcher's algorithm for large residUal problems,

This can be seen by comparing these algorithms for problems 2,14,
2,18, 2,20 and 2,29 = 2,31, (See tables 6.4.1 and 6.7.1)

From tables 6,7.1 and 6,4,4, it may be concluded that Algorithm

5.6.1 is more reliable but less efficient, than Fletcher's implementa~

tion of the Levenberg-tarquardt algoxrithm,



FPROLEM n,
2.1 18
2,2 12
2.3 29
2.4 71
2.5 3
2.6 19
2.7 3
2.8 15
2.9 44
2,10 7
2,11 3
2,12 21
2.13 12
2,14 478
2,15 8
2,16 20
2,17 23
2.18 168
2,19 17
2,20 43

(Computational Results corresponding to Fletcher's Least Squares

algorithm, )

f)

14

28

64
15

12

43

18
10
411

12
20
118
15
41

n PROBLEM n

tC 1
0.32 14
. 0,46 9
1.46 28
3.92 64
0.08 2
0,66 15
0,04 2
0.26 12
2,64 43
0.64 6
0.26 2
0,40 18
5.32 10
99.14 411
0.50 7
0,80 12
1.86 20
47,30 118
29,08 15
0.96 41
Table 6,71

2,21
2,22
2,23
2,24
2,25
2,26
2.27
2,28
2.29
2.30
2.31

2,52

convergence criteria not satisfied.

f
7

28
20
18
6

7
88
87
174
109

120

23
15
13

58
o7
133
108
119
6

5.58
1.42
0,36
0.78
0.54
0.50
5.26
5.26
17.68
15.02
16,52
T.64
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23
15
13

58
57
133
108

119%



6.8 Conclusions

If analytical formulae for the components of the gradient of an
objective function are available, then from sections 6.2, 6.3 and
6.6 the following conclusions may be drawn,

1. If analytic formulae for the Hessian of the objective

function are not known then

(a) Algorithm 3,2,2 with p = 3 would appear to be the best
of algorithms 3.1,2, 3.2.2, 3.2.4 = 3,2,7 and 1.5.3
when the Hessian matrix is full and Algorithm 4.2.2'
ig used to estimate its value,

(b) When the Hessian matrix is full and the gradient of
the objective function is computationally expensive
then Algorithm 3.2.5 with p =3, &= 6" weuta
appear to be the best of algorithms 3.7.2, 3.2.2, 3.2,4 =
53e2.T9 and %.5.5:

(¢) If the Hessian is an m diagonal matrix, then Algorithm
3.2,2 with p = 3 is the most efficient of algorithms
361425 342,25 34244 = 3,2.7, and 1.5.,3 if Algorithm
4.3,2 is used to estimate the Hessian matrix, |

2, When the Hessian of the objective function is computed

enalytically, Algorithm 3.3.3 with p = 2 would appear to

be the most efficient and reliable of algorithms 3.t1.1,

and 3,3.1 = 3.,3.6,

For both the general minimization and least squares algorithms,
Algorithm 1.2.2 appéars to be preferable to Powell's steplength
algorithm,

For the least squares algorithms discussed in sections 6.4, and

6,7, the following conclusions may be drawn,
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When B is computed analytically, Algorithm 5.4.,1 is most
efficient, while Algorithm 5,3.2 is more reliable algorithm
than algorithms 5.2,1, and 5.4.1,

If B is not available analytically then Algorithm 5.6.1 is
more reliable than the least squares algorithms 5,3.3, and
Pletcher's algorithm. Algorithm 5.6,1 often requires more
computing time than does Fletcher's algorithm; however,
this is because singular value decomposition is a time=
consuming procedure., Therefore, in this case, the most
reliable of the three least squares algorithms would appear
to be Algorithm 5.3.2, while the most efficient would appear

to be Fletcher's algorithm.
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Test Problems Used in Sections 6.2 and 6,3,

- Problem 1,1,

Problem 1,2,

F(x):

o)

"
i

Problem 1,3,

F (x)

(9)

»
]

Problem 1.4.

* (%)

i

(0)

e
1

Appendix 1

Rosenbrock (1960)-

P (x)

(o)
X

T
(= 1.2, 1)

Wood (see Pearson (1969) ).

2

2 2 2
100 (x, -xl) +(1-x1).

2 2 % 2
100(xl -xz) +(x1-1) +(x3-1) +9O(x3_~x4’)

+ 10,1 {j(xz - 1)2 + (ﬁ' - 1)2} + 19,8 (xi'- 1) (x.‘i - 1),

’ T
( ‘"'37 "'13 "'3’ ”'1) .

Miele and Cantrell (1969).

(exp (xl) =i )‘JE + 100 (x2 % )6 + ('tazzl (x3 -x ))& X

e
(1’2,292) 9 m=3 ,

Powell (1962),

2 2
(x +10x ) +5(x =x )
1 2 3 -

T
(3’ =1, 07 1) .

4
+(x =2x )+ 10 (x
2 3 1

L]

4
- % ) i
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Problem 1,5, Fletcher and Powell (1963).

9 2 2
F(x)=100((x3-109) +(.-e-1))+x3 >

where

T = |(xi +x: )' , and
| {% wn (x, /x, ) (x,>0)
6 = ' ' )

Bmtan (x, /x )43 (x40).
i1
(o) . ™
x = (~1,0, 0.0, 0,0).

Problem 1,6 Box (1966),

F(x) = Z: [(exp (10:1/10) ~- exp (-kxz/‘10)) ~ (exp (=k/10) =~ exp (-k))),
=1

(o) T
X = (59 O) \

Problem 1,7  Biggs (1971),

1.0 :
F ()= L [(exp (o /10) ='5 exp (=kex, /10)) = (exp (=i/10)
1.5,

~ 5 exp (-k)ﬂ).- '

(o) T
X = (1, 2) .

Problem 1.8  Biggs (1971).

10
Fx)= 2 [(exp (=kx /10) = x exp (~kx/10) = (exp (~k/10) -
1=1 1 3 2

5 exp (--k))]f



222,

(0) T
x =112, 1)

Problem 1.9. Biggs (1971).

F (x) = ?o 1[(xgexp (1o /10) - x exp (-kx /10)) ~ (exp (-k/10) -

i=
5 exp (=k) )] l.

(o) T
¥ 4 = (1, 2, 1, 1) .

Problem 1,10 Dixon (1973a).

2 2 4 2 2
Px)=(01-x) +(1-%2 ) + 2 (= -x ).
' 10 5.-.:1 I 1+14
{0) T
X = (-2’ oo -2) '3 m = 3 »,
Problem 1,11,
2 2 5 2 2
PE)=(1=x) +(1=x) + 3 (x. ~x. ) o
1 6 juqp * 141

(0) =
X = ("2s eces "‘2) y m = 3,

Problem 1,12 .

2 2 7 2 : 2

P)=(1=x) +(1=-x) + 2 (x =-x )
A 3 1=1 1 1+1

0)

-
X ("‘2’ ceey "2) sy m =3,
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Problem 1,13.

' Y 6
g
F(x)= %X +(exp (x)~x + 100 (x ~x ) +
(x) . (ep(i) 2) (z b

¥ 5 3

[ta:nl(xa-x&)] +(1-x5) *(i=x]) #

Q

3 2 2
x =x) +(x =x)+
5 5 G
(0) T
x = (1, 2,2, 2,2, =2), n=3,
Problem 1,14,
2 2 8 s B 2
F(x):(?-x)+(1-x)+2((x,—ag ) o+ (x -x, ))
1 10 1=4 1 1+l 1 141
2 - 2
+(x =-x ).
9 10
(0) T
X = ("'2, vseey '-2) ’ m = 5'
Problen 1,15,
' 2 2 2 2. 2%
= (1 = - + (x =x +(x ~=x )+(x =-x )
F (x) = (1 xi) + (1 ’io) (8 9) (8 < 2
A 2 2 2 3
+ > ((x, =x ) +(x =-x )+(x-xn))-
Tl 3 i+1 1 1 i 3

(0) &
X == (""2, "‘21 'XEER) "'2) y m = 70
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Problem 1,16  Biges (1971).

13 2
F(x):Z(xexp(-xt)_xexp(--xt)+xexp(-xt)—y) .
iz1 1 € g 4 1
vhere
y = exp (=t ) = 5 exp (=10t ) + exp (=4t )} (i =1, .0, 13),
1 1 4 1
in which tl. =&M0 (gt £13)
(o) T
X = (1, 2, 1, 1, 1, 1) .

Problem 1,17  Brent (1971).

5 30 5-2.
P (x) = X+(x --:5l -1) + 1Z=z );253-1) [(1-1)/29] =
h j"lz
(2 % [(1-—-1)/29] Y -1,
=1
(0} T
X = (0, 05 eres O) s N = 9-

Problem 1,18, Brent (1971).
F is as in Problem 1I.17 with n = 6,
Problem 1.19. Gill, Murray, and Pitfield (1972).

n n .2
F (x) =3 _2 (=, --'1)z + b {in -1/4} , where

1=1 1 l=14

T
X = (1, 2, te 09 n) 5 n= 10.
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Problem 1,20, Gill, Murray, and Pitfield (1972),

F is as in Problem 1,19 with a = 10 %
Problem 1,21, Gill, Murray, and Pitfield (1972).

F(x) =a [i (exp (%/10) + exp (53%_;1/10) ~ B 3 +
L .

(exp (xi /10) = exp (~1/io))2 :l

where

Ci= éxp (xi /10) + exp ((L = 1)/10) (i =2, .usy n)

-5
a = 10 , and b =1,

) T
¥ = (1/2; /2 wisi-V/2) 3 1= 4,

Problem 1,22, Gill, Murray and Pitfield (1972),

-3
F is as in Problem 1.21with a = 10 &
Problem 1,23, Wolfe (1976a).,
2 2 3 2 &
Fx)=(=3x +x /2+2x =1) + 3 (x =3x +x /2+2x =1)
4 1 1 Teg 114 1 1 L4
2 2
+(x =3x +x [f2-1)°
9 1o 10

(o) T
X = ("'1, YRR _1) , m =5,
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Problem 1,24, Wolfe (1978a).

i 2 4 2 2
Fx)=(-3x +x /10+2x =1) + 9 (x, =3x +x /10+2x =1)
* ' 2 fomy Tk i B 1+1

2 ; 2
+(x =3x +x /10 = 1) o
4 5 5

(0)

T
p.d = (—1, -1, eooy -1) y = 5

Problem 1,25,

2 2 2 2
F(x)=100 (x ~108) +(r=1) +(x +10x) +5(x =-x )
g 2 Y 3 [

4 by 2
+(x =2x ) +10(x =x ) +x ;
3 g Y 5 S

where r and @ are the same as in Problem 1.3.

(o) T
x = ("‘1’ 0, 3, =1, 0) , m=5,

Problem 1,26,

2 s 3 n-1 Zf.b . 2
FE)e(l=x ) +(1=x ) + 32 (x, - X Y s
i n Jeg 4 141
(o) T™
= =("2_’ eees =2) , N=4,p=3 n=3,

Problem 1,27,

P is ag in Problem 1.%with n = 6,
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Problem 1,28,

F is as in Problemi26, with n = 10, end p = 5,

Note: the values of m in problems 1.3, 1.10, 1,11 = 1,15 and 1,23 =
1.28 show that the Hessian corresponding to the function is

m ~ diagonal,




Appendix 2,

Test Problems Used with the Least Squares Algorithms,

* Problenm
Problem
Problem
Problem

Problem

Problem

where

2,1

2¢2,

244,

2.5
F (%)
(o

2.6,
F (x)
f;(%)
£ ()
f3 {x)

£ (x)
4

¥ is as in Problem 1,1,
F is as in Problem 1,5.
F is as in Problem 1.4,
F is as in Problem 1.2,
Zangwill (1967).

2
=(x ~x +x ) + (=x
1 2 3 3

) : ) T
= (100, -1, 2.5).

Engwall (1966).

5 %
= Z f. (X) 9
1=1 i
2 2 2
= X +X + X =1,
& 2 3
2 2
=x +x 4+ (x =2) =1,
i 2

i
»
+
]

H
e
-+
—

228,
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» 3 3 2
1‘5(:c)=x1 + 3% +(5x3 - % + 1) = 36,

(o) o
X = (1, 2’ O) v

Problem 2.7, Branin (1971).

F (x) = [4 (x1 X )]1+

[4 (x1 +x )+(x1 -x )(xi - 2) +'x: -—1]?

(o) T
x = (2, 0) .

Problem 2,8, Beale (1958), Betts (1976).

()= 3 (1-x")
Fx)= 2 . =x (1~x
- ki 1 s
where e = 1.5 ¢ =2,85, e = 2,605,
1 2 3
(0) %
x = (0,15 0.1) .
Problem 2,9, F is as in Problem 1,3,
Problem 2,10 Box (1966), Betts (1976).
10
F(x)= 2 [(e'xp (=x t.) ~exp (=x t )) -
i=1 A & 2 1

x3 (exp (-131) - exp (-10ti ))] ; |




where £
1

(0}

Problem 2,11,

0.14,

(i = 1, 2, ecey 10)0

"
= (0, 10, 20) .

Davidon (1976).

Mol Joq o2 2
F(x) = z Zi x] +(x =-1),
i=1bj=1 .
where m=15, n =5,
~-(°) T
x = (0, 0,0,0,0).

Problem 2,12,

P (x)

It

where

]

F (x)
b

.‘f'z (x) =

)
g

it

Problem 2,13,

F(x)=

where S.
11

Freudenstein and Roth (1963).

P e,
1 2

- 2 3

=13 +x =2 FHE =% ,
1 2 2 2
2 3

=29 +x = 14x +x +x .,
2

1

(159 ""2)T .

Watson (see Brent (1971)).




2357,

n

5,= = % (i=1/29) -

(0)

) T
m=31, n=6’ X ’-2(0, O, O, O, 0, 0) .

Problem 2,14, Davidon (1976):

m 2
F(x) = ngi +x, t; - exp (ti)) + (x3 + x, Sin ('E;i)
2 2
-~ cos (t )) :I ;
170
wvhere t, = 0,21, m=20, n =4,

3 i
x(° = (25: 5s =5, "1) '

Problem 2,15, Bard (1970).

is : ' *
F (x) = %:51[3;_1 - (x1 +ui/ (xl v X )] p

u, =i, v. =16 ~4i, w, =min (u, , w. ) and y.is given in Table 1.
1 i i i 1 1

. 4o T

21,1, 1) .

Problem 2,16, Jennrich and Sampson (1968),

10 : 2
P =1 vy - o ) e )]
where

y;=2+2i, i=1' 2’ ceeey 1O(
1




232,

(o) T
x = (0,3, 0.4) -~
Problem 2,17. Kowalik and Osborne (1968),

=% [t )/ ]
B () —(x (u, +x u. . +xX u, 4+ %
( i_:_.l[yl(l(‘l. X A 1 3 1 i 2

whexe % and u.are given in Table 2,

(0)
X i o (0025! 00399 004159 0039)T'

Problem 2,18, Osborne (1972).

33 2
F(x) = . Lol + X - ‘b‘ + - B ]
(x) §i:.-_1[y1 (x1 . exp ( x b ) X, €Xp ( %t )) ,
where ti =10 (i=1), i=1, 2, vus, 33 and ¥;

is given in Table 3.

{9) -+
x = (0.5, 1.5, =1, 0,01, 0,02) ,

Problem 2,19,  Osborne (1972).

65 )
F(x)= Z (y =4) , where
i=1
A (x_ t,) xp (=, (4, = ) )
i :c1 exp --xs_ 3 * X exp --x6 i oo 3;

VN

)s

2
+xexp (=x (t, =x ) ) +x exp (~=x (t. =-x
3 7 1 10 ¢ 8 1
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in which t, =0,1(i~1) i=1, 2, ..., 65 and
s X

3 is given in Table L.

(o) - P il
x o (1.5 0,65y 065, 0.7 0.65 3, 55 Te 25 4.5, 5.5) .

Problem 2,20, Madsen (1973).

2 2 % 2 2
Fx)=(x +x +x x) +Sinx +cosx.
1 2 1 2 i 2
(6) T
X = (3, 1) .

Problem 2,21 ¥ is as in Problem 2,13 withn = 9 .

Problem 2,22, Hartley (1961).

6 2 -
Fx) = x + X ex x %, -,
®= 3 & +x el )5,

3

where t. , y. are given in Table 5,
1

(0) : T
x = (580, ~180,. =0,16) .

Problem 2,23, Meyer and Roth (1972).
F is as in Problem 1,71 with

{ T
o e (-0.86, 1.14) .
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Problem 2,24, Meyer and Roth (1972).

2

2

s.
F(x) = Zi[xlxzui/(‘l +x u +x21.ri )-yi]

18
vhere u, ,v. yandy. (i =1, 2, ..., 6) are given in Table 6,
g 5

{0

b) T
x = (10,39, 48,83, 0,74) -

Problem 2.25. Pereyra (1967),

15 2
F (x) = 2 [Xz Sin (x1 t )+ By o yi:| %
1=1
where
I = Sin (ti Y (L Uy 2y wwas 13) An vhich t; are

given by the following,

i 1 2 3 4 5 6 7 8 9 10 11 12
ti 0,105 0,25 0,4 0.55 0,7 0.9 1.1 1625 1235 1445 1.55 1,57

Pereyra used the values of y. correct to 3D,
i

(0) T
x = (0,9, 0.9, 0,1) .

Problem 2,26 Pereyra (1967).

10 2
P (x) = Z [xzexp (ti x1)+x3-—yi:l >

1=1

where y = 0,1 exp (ti ) =50 (=1, 2, 400y 10) in which
1

13
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t, =~2,0 (0.5) 2.5.

(o) Y
(0.8, 0.2, ~4.5) .

»
]

Problem 2,27, Meyer and Roth (1972).

2

io
F (x) 2‘;32_1 [xi + X, exXp (ti X, ) - yi:l ;

where the data are generated correct to 4D with

x = (15.5, 1, 2, 0,02) , and are given by Meyer and Roth,

(0} T
x = (20, 2, 0,5) .

Problem 2,28 Meyer and Roth (1972).

F is as in Problem 2,27 and the data are obitained by rounding

the data of Problem 2,27 to 1D,

L9)

-
x = (20, 2, 0,5) .
Problem 2,29, Meyer and Roth (1972),
16 5
F (x) = iz;g[xi exp (x2 /(ti + X, ))-—-yi] ,

where the data are given by Meyer and Roth.

%) = (0.02,4000,250).

Problem 2.30. Meyer and Roth (1972).




23 )
F (x) = i}::[lxa(exp (—x‘l us ) + exp (--.x2 A )) - yi]

"
where the data are generated with x = (31.5, 1.5, 20.1)

and are given by Meyer and Roth,
(o) T
x = (12, 1, 25)

Problem 2,31 Meyer and Roth (1972).

F is as in Problem 2,30 and the data are given by Meyer and Roth,

Problem 2,32,

F is gg in Problem 2,13 with n = 134
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TABLE 1

Iy

0,14

0.18

0,22

0.25

0.29

0,32

0.35

0.39

0.37

0,58

0,73

0.96

1434

2,10

4.39
TABLE 2

A By
00,1957 4.0000
0.1947 2,0000
0.1735 1,0000
0., 1600 0, 5000

0.0844 0,2500
0,0627 0,1670
0.0456 0.1250
0,0342 0,1000
0,0323 0,0833
0,0235 0,0714
0,0246 0,0625




e

-
OOV C~T AN =

—
-

P AP e e S Y S
T OUtEBWN

0.844
0,908
0,932
0,936
0.925
0,908
0,881
0,850
0.818

- 0,784

0,751
0,718
0,685
0,658
0.628
0,603
0.580

TABLE 3

18
19
20
21
22
25
24
25
26
27
28
29
30
31

33

0,558
0,538
0,522
0,506
0.490
0.478
0,467
0.457
0.448
0,438
0.431
0.424
0.420
0.414

0.411
0.406
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e

NN MNONDNNDNND NN - =3 -t a3 s
NOX~TAVIBDRWWNN =00 OIAUTRWUWN=OWOIAVT NN -

AN AN AN AN
W= O

14366
1.191
1+192
1,013
0.991
0.885
0.831
0.847
0,786
0.725
0.745
0.679
0,608
0,655
0.616
0,606
0,602
0.626
0,651
0.724
0.649
0.649
0,694
0.644
0.624
0.661
0,612
0.558
0.533
0.495
0,500
0.423
0.395

34
35
36
37
38
39
40
41
42
43

44

46
47
A8
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65

0,375
0,372
0.391
0.396
0,405
0.428
0.429

0.523

0,562
0,607
0,653

0.672

0,708
0,633
0,668
0,645
0,632
0.591
0.559
0,597
0,625
0,739
0,710
0,729
0.720
0,636
0.581
0,428
0.292
0,162
0,098
0,054
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Fow

2

TABLE 5
b
=5
-3
-1

1
3
>

TABLE 6

i Yi

0 1.0

0 1.0

0 2.0

.0 2.0

1 0.0

127
151
379
421
460
426

0.126
0.219
0.076
0.126

0.186
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