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Abstract 

Sedimentary rocks and detrital minerals sample large areas of the continental crust, and they 

are increasingly seen as a reliable archive for its global evolution. This study presents two 

approaches to model the growth of the continental crust through the sedimentary archive. The 

first builds on the variations in U-Pb, Hf and O isotopes in global databases of detrital zircons. 

We show that uncertainty in the Hf isotope composition of the mantle reservoir from which 

new crust separated, in the 
176

Lu/
177

Hf ratio of that new crust, and in the contribution in the 

databases of zircons that experienced ancient Pb loss(es), adds some uncertainty to the 

individual Hf model ages, but not to the overall shape of the calculated continental growth 

curves. The second approach is based on the variation of Nd isotopes in 645 worldwide fine-

grained continental sedimentary rocks with different deposition ages, which requires a 

correction of the bias induced by preferential erosion of younger rocks through an erosion 

parameter referred to as K. This dimensionless parameter relates the proportions of younger to 

older source rocks in the sediment, to the proportions of younger to older source rocks present 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 2 

in the crust from which the sediment derived. We suggest that a Hadean/Archean value of K = 

1 (i.e., no preferential erosion), and that post-Archaean values of K = 4–6, may be reasonable 

for the global Earth system. Models built on the detrital zircon and the fine-grained sediment 

records independently suggest that at least 65% of the present volume of continental crust was 

established by 3 Ga. The continental crust has been generated continuously, but with a marked 

decrease in the growth rate at ~3 Ga. The period from >4 Ga to ~3 Ga is characterised by 

relatively high net rates of continental growth (2.9–3.4 km
3 

yr
-1

 on average), which are similar 

to the rates at which new crust is generated (and destroyed) at the present time. Net growth 

rates are much lower since 3 Ga (0.6–0.9 km
3
 yr

-1
 on average), which can be attributed to 

higher rates of destruction of continental crust. The change in slope in the continental growth 

curve at ~3 Ga is taken to indicate a global change in the way bulk crust was generated and 

preserved, and this change has been linked to the onset of subduction-driven plate tectonics. 

At least 100% of the present volume of the continental crust has been destroyed and recycled 

back into the mantle since ~3 Ga, and this time marks a transition in the average composition 

of new continental crust. Continental crust generated before 3 Ga was on average mafic, 

dense, relatively thin (<20 km) and therefore different from the calc-alkaline andesitic crust 

that dominates the continental record today. Continental crust that formed after 3 Ga gradually 

became more intermediate in composition, buoyant and thicker. The increase in crustal 

thickness is accompanied by increasing rates of crustal reworking and increasing input of 

sediment to the ocean. These changes may have been accommodated by a change in 

lithospheric strength at around 3 Ga, as it became strong enough to support high-relief crust. 

This time period therefore indicates when significant volumes of continental crust started to 

become emergent and were available for erosion and weathering, thus impacting on the 

composition of the atmosphere and the oceans. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 3 

Keywords 

Continental growth; Hadean/Archaean; plate tectonics; zircon; shale; U-Pb/Hf/Nd/O isotopes 

 

1. Introduction 

The continental crust has evolved over billions of years, helping to create the environment we 

live in and the resources we depend on. Understanding how and when it formed is an 

important step in unravelling the evolution of the Earth system, yet these questions remain 

matters of considerable discussion. This is because most rocks in the geological record derive 

from pre-existing crustal rocks (e.g., Hutton, 1788), and so it remains difficult to unpick from 

the present record processes of crust generation from processes of crustal destruction, 

reworking and preservation (Hawkesworth et al., 2009, 2010; Belousova et al., 2010; Condie 

et al., 2011; Voice et al., 2011; Dhuime et al., 2012; Arndt, 2013; Vervoort and Kemp, 2016; 

Iizuka et al., 2017). The present-day composition of the bulk continental crust is well 

constrained, with studies converging towards an average andesitic composition (i.e., SiO2 

~57–65%) (Taylor, 1964; Rudnick and Gao, 2003; Hacker et al., 2011). Its intermediate/felsic 

composition is widely explained by a two-stage model in which juvenile (proto)continental 

crust is extracted from the mantle, followed by differentiation through partial melting and/or 

fractional crystallization (e.g., Rudnick, 1995). The rates and timing of the net addition of new 

crust to the continental landmass, commonly referred to as 'continental growth', remain matters 

of debate. 

 

A number of studies have attempted to evaluate the volumes of continental crust through the 

evolution of the Earth, using different approaches and proxies. A summary of cumulative 

growth curves, which are all anchored by the present volume of the continental crust at 100%, 
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is presented in Fig. 1. The most extreme scenarios suggest that the volume of continental crust 

at the Archaean-Proterozoic boundary may have been less than 25%, or more than 100%, of 

the present-day volume (Fig. 1, curves 'V&J' and 'F', respectively). Some curves are relatively 

smooth (e.g., curves 'O’N' and 'Be'), and so represent continuous growth of the continental 

crust, whereas others are stepped (e.g., curves 'T&M' and 'C&A') suggesting episodic growth. 

Between such end-members a number of scenarios have been envisaged, where the locus and 

the intensity of breaks in slope in the curves are linked to changes in the timing and rates of 

continental growth. 

 

Sediments derived from continental sources (here after referred to as 'continental sediments') 

cover vast tracks of continental crust, with for instance the 15 largest rivers draining ~30% of 

the surface area of the continental crust (Goldstein et al., 1984; Milliman and Syvitski, 1992). 

Ancient sediments deposited million to billions of years ago preserve information on the 

continental crust that has been destroyed and is no longer available for sampling through 

magmatic rocks (McLennan and Taylor, 1982; O'Nions et al., 1983; Allègre and Rousseau, 

1984; Goldstein and Arndt, 1988; Goldstein and Jacobsen, 1988). As a consequence, the 

sedimentary record is increasingly seen as a reliable archive for the global evolution of the 

continental crust through time, and over the last decade there has been increasing interest in 

using the information available in the ever-growing databases of detrital zircons to model the 

growth of the continental crust (Rino et al., 2004; Condie et al., 2005; Wang et al., 2009, 

2011; Belousova et al., 2010; Iizuka et al., 2010; Condie et al., 2011; Dhuime et al., 2012; 

Parman, 2015). In parallel there has been a recent interest in exploring the processes that bias 

the sedimentary record (Dhuime et al., 2011b; Cawood et al., 2013) in order to better 

constrain growth models based on bulk sediment data (Allègre and Rousseau, 1984; Michard 

et al., 1985; Dia et al., 1990a). 
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The mineral zircon is a key minor constituent of the igneous rocks generated in the production 

of the continental crust, which together with its physiochemical resilience and the 

development of microanalytical techniques enabling the rapid determination of its isotopic 

and trace element compositions, makes zircon an important archive of the evolution of the 

continental crust. Importantly, detrital zircons remain one of the few records of geological 

processes in the first 500 million years of Earth’s history, a period for which no rocks are 

known to have been preserved (Mojzsis et al., 2001; Wilde et al., 2001; Watson and Harrison, 

2005; Blichert-Toft and Albarède, 2008; Harrison et al., 2008; Hopkins et al., 2008, 2010; 

Harrison, 2009; Kemp et al., 2010; Trail et al., 2011; Bell et al., 2015a). Initial studies of the 

continental record using zircon relied on their U-Pb age distribution in modern river 

sediments to model continental growth (Rino et al., 2004, 2008). The development of in situ 

Lu-Hf analyses in zircon by laser ablation multi-collector inductively coupled plasma mass 

spectrometry (LA-MC-ICP-MS) (Griffin et al., 2000; Iizuka et al., 2005; Kemp et al., 2005), 

rapidly followed by an explosion of the number of LA-MC-ICP-MS laboratories, has 

highlighted that 80–90% of zircons analysed have Hf isotopic compositions that are not in 

equilibrium with the composition of new continental crust extracted from the upper mantle at 

the time they crystallised (Belousova et al., 2010; Voice et al., 2011; Roberts and Spencer, 

2015). This reaffirms that most rocks of the continental crust derive—at least in part—from 

pre-existing crustal material, as was argued by Hutton in the eighteenth century (Hutton, 

1788). As a consequence, continental growth curves based solely on distributions of U-Pb 

crystallisation ages will be strongly influenced by ages that reflect the reworking of 

continental crust, and as such they can only be considered as reflecting the minimum volume 

of continental crust that was present at a particular time (Komiya, 2011; Hawkesworth et al., 

2013).  
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An initial difficulty in modelling the growth of the continental crust is how to evaluate the 

proportion of newly generated crust over that of reworked pre-existing crust at different times, 

as recorded in zircons and continental sediments – and the extent to which this proportion has 

changed through time (e.g., Belousova et al., 2010; Iizuka et al., 2010; Dhuime et al., 2012). 

In this contribution we discuss how variations in U-Pb, Hf and O isotopes in detrital zircons 

can be used to model the growth of the continental crust, and the strengths and limitations of 

this approach. We demonstrate through the combination of this approach, and an independent 

approach based on the variation of Nd isotopes in fine-grained continental sedimentary rocks 

with different deposition ages, building on the equations of Allègre and Rousseau (1984), that 

by 3 Ga the volume of the continental crust was at least 65% of the present volume. Finally 

we use these results, along with data from the literature, to develop a preliminary model for 

the evolution of the continental crust that takes into account changes in the rates at which 

crust was generated and destroyed.  

 

2. Detrital zircon record  

2.1. Continental growth models based on the combination of U-Pb, Hf (and O) isotopes 

Belousova et al. (2010) were the first to model the growth of the continental crust on the basis 

of variations in the proportion of new relative to reworked crust, using a worldwide U-Pb and 

Hf isotopes database of over 13,000 zircons, largely of detrital origin. Their database was 

broken down into 45 time slices, each of 100 Ma duration. For each 100 Ma interval, the 

proportion of juvenile crust addition (Xjuv) was calculated by counting the number of zircons 

with U-Pb ages (NU-Pb age) in that interval, and the number of zircons with Hf model ages 

(Nmodel age) that range within the limits of the same period, using the following equation: 
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Xjuv = Nmodel age / (NU-Pb age + Nmodel age). (1) 

A continental growth curve was built from the cumulative proportions of juvenile crust 

addition through time (Fig. 2, black curve), and this model suggests that ~50% of the present 

volume of continental crust was present by 3 Ga (Belousova et al., 2010). 

 

However, the Hf isotope composition of the zircons analysed may reflect mixtures of both 

juvenile and older reworked material (Kemp et al., 2007), and so individual model ages may 

be hybrid ages and hence not represent true periods of crust formation (Arndt and Goldstein, 

1987). Thus a significant uncertainty remains over the shape of continental growth curves that 

rely solely on model ages. This issue can in part be tackled by combining oxygen isotopes 

with U-Pb and Hf isotopes (Hawkesworth and Kemp, 2006b; Kemp et al., 2006). 'Mantle-like' 

zircons, i.e., zircons in high temperature equilibrium with mantle-derived magmas, have a 

narrow range of δ
18

O (typically δ
18

O = 5.3 ± 0.6‰ (2 s.d.; Valley et al., 1998)), and δ
18

O in 

zircons are higher or lower when their parent magmas contain a contribution of supracrustal 

material (e.g., sediments deriving from pre-existing crust). Periods of juvenile crust formation 

are taken to be characterised by zircons that have mantle-like δ
18

O and limited variation in 

their Hf model ages irrespective of their U-Pb ages (Kemp et al., 2006). Conversely periods 

dominated by crustal reworking produce 'supracrustal' zircons, typically with elevated δ
18

O 

values (Valley et al., 2005; Spencer et al., 2014) and a large variation of hybrid Hf model ages 

at similar U-Pb ages (Kemp et al., 2006; Vervoort and Kemp, 2016). To the extent that Hf 

isotope ratios of supracrustal zircons may represent mixtures, they will not record true periods 

of crustal growth (Kemp et al., 2006). 

 

A difficulty in developing models of continental growth based on zircons is therefore in 

evaluating the proportions of new crust formation ages and hybrid ages in large datasets 
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representative of the average continental crust, and for which O isotope data are not available 

(Belousova et al., 2010; Condie et al., 2011; Voice et al., 2011; Roberts and Spencer, 2015). 

Dhuime et al. (2012) explored the extent to which the variations between Hf model ages and 

δ
18

O in zircons for which such data are available might be parameterised in order to better 

correct for the bias induced by the presence of zircons with hybrid Hf model ages in datasets 

with no O isotope data. They found, using a global U-Pb, Hf and O isotope database of 1376 

zircons analyses, that the proportion of 'true' crust formation to hybrid Hf model ages 

calculated for every 100 Ma time slice is ~0.73 between the Hadean and 3.2 Ga. After 3.2 Ga 

this proportion gradually decreases to ~0.2 at 2 Ga, then increases to ~1 at present, following 

a second-order polynomial relationship with an R
2
 = 0.91 (Fig. 2, inset). Dhuime et al. (2012) 

used this relationship to correct for the contribution of hybrid Hf model ages in a worldwide 

database of 6972 U-Pb and Hf analyses of zircons from young sediments. They defined the 

proportion of juvenile crust addition (Xjuv) for every 100 Ma time slice of this database as: 

Xjuv = NNC ages / (NNC ages + NRC ages), (2) 

with NNC ages = number of calculated new crust ages, as: 

NNC ages = Nmodel ages * 0.73 t for t>3.2 Ga,  (3) 

NNC ages = Nmodel ages (2.894E-7 t
2
 + 1.085E-3 t + 1.243) for t0-3.2 Ga; (4) 

and NRC ages = number of reworked crust ages, calculated as the difference between the total 

number of U-Pb ages within a given time slice, and the number of zircons with similar U-Pb 

ages and Hf model ages within the same time slice.  

 

Dhuime et al. (2012) calculated the continental growth curve presented in Fig. 2, from the 

cumulative proportions of juvenile crust addition through time. This curve suggests that by 3 

Ga the volume of the continental crust was ~65% of the present volume, and that there was a 

decrease in the net rate of growth at that time. These features are not observed in growth 
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curves calculated from large U-Pb and Hf in zircon databases in the absence of O isotope data 

(Belousova et al., 2010; Roberts and Spencer, 2015). 

 

2.2. Critical parameters influencing zircon-based continental growth models 

Continental growth models that rely on zircon Hf model ages are regarded as controversial 

(Arndt, 2013; Arndt and Davaille, 2013; Guitreau and Blichert-Toft, 2014; Roberts and 

Spencer, 2015; Couzinié et al., 2016; Payne et al., 2016; Vervoort and Kemp, 2016; Iizuka et 

al., 2017; Rollinson, 2017), principally because the calculation of zircon Hf model ages may 

be influenced by a number of factors; (i) the Hf isotope composition of the reference reservoir 

from which model ages are calculated; (ii) the 
176

Lu/
177

Hf isotope ratio of the crustal source of 

the magmas from which the zircons crystallised; and (iii) underestimation of the 

crystallisation age of apparently concordant zircons that experienced ancient Pb loss(es). The 

extent to which zircon datasets preserve a representative record of the evolution of the crust 

may also play a role in continental growth models. The influence of these parameters on the 

shape of the global continental growth curves is evaluated below. 

 

2.2.1. Influence of the isotope composition of the source reservoir of the new continental crust  

Geochemical mass balance calculations indicate that about 80% of the continental crust that is 

preserved today was generated along destructive plate margins (Rudnick, 1995; Hawkesworth 

and Kemp, 2006a). This implies that subduction-related magmas should be used to constrain 

the isotope composition of the continental crust at the time of its formation, at least for the 

period of time when plate tectonics has been operating. Consequently, Dhuime et al. (2011a) 

suggested that model ages, traditionally calculated for crust derived from the depleted mantle 

(e.g., DePaolo, 1981; Goldstein et al., 1984; DePaolo et al., 1991), should be calculated using 

the isotope composition of the new continental crust generated in subduction settings. The 
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present-day isotope composition of that new crust (εHf = 13.2 ± 1.1) was determined from the 

data of modern intraoceanic magmatic arcs worldwide, and Dhuime et al. (2011a) proposed a 

linear evolution for the new crust, with a chondritic uniform reservoir (CHUR)-like isotope 

composition at the time of Earth’s formation (Fig. 3). Model ages calculated from the Hf 

isotope composition of the new crust are up to 300 Ma younger than model ages calculated 

from the depleted mantle, and all calculations for the Dhuime et al. (2012) model presented in 

Fig. 2 were done using the Dhuime et al. (2011a) new crust evolution model.  

 

In order to evaluate the extent to which the isotope composition of the source reservoir of the 

new continental crust may affect the shape of the continental growth curves calculated from 

the zircon data, continental growth curves were recalculated assuming two different models 

for the inferred source reservoir of the new continental crust: (i) a traditional depleted mantle-

like evolution, from a CHUR-like isotope composition at the time of Earth’s formation until 

εHf = 17 at present (Salters and Stracke, 2004; Workman and Hart, 2005) (Fig. 3A, green 

curve); and (ii) a CHUR-like evolution for the new crust between Earth’s formation and ~3.8 

Ga, as suggested by Vervoort et al. (2013), and followed by a linear evolution up to εHf = 13.2 

at present (Fig. 3A, orange curve). The similar shapes of the continental growth curves 

obtained with these different methods (Fig. 3B, C) and the model of Dhuime et al. (2012) 

(Fig. 2) suggest that no significant bias results from the choice of the reference curve for the 

Hf isotope ratios of new continental crust in the calculation of model ages when large datasets 

are considered. 

 

2.2.2. Influence of the 
176

Lu/
177

Hf ratio inferred for the crustal source  

There is some uncertainty over the 
176

Lu/
177

Hf ratio of the crustal source of the magmas from 

which zircons crystallised, and whether this ratio may have changed through time (Pietranik 
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et al., 2008; Harrison, 2009; Kemp et al., 2010; Guitreau et al., 2012; Payne et al., 2016; 

Vervoort and Kemp, 2016). This uncertainty propagates into the calculation of Hf model ages, 

which makes the robustness of individual model ages difficult to evaluate. A value of 

176
Lu/

177
Hf = 0.015, typical for the bulk continental crust (e.g., Taylor and McLennan, 1995; 

Rudnick and Gao, 2003; Hacker et al., 2011), was preferred in the models of Belousova et al. 

(2010) and Dhuime et al. (2012) (Fig. 2), and a graphical representation of the calculation of 

the Hf model ages with this method is shown in Fig. 4A (grey segment and grey star (0)). In 

order to test the effect of having different 
176

Lu/
177

Hf ratios, two extreme case scenarios are 

explored: (i) a crustal source that is more felsic/evolved than the bulk crust (
176

Lu/
177

Hf = 

0.009, red segment), and for which calculated model ages are represented by the red star (1) 

in Fig. 4A; and (ii) a crustal source that is more mafic than the bulk crust (
176

Lu/
177

Hf = 0.022, 

green segment), and for which calculated model ages are represented by the green star (2). 

The resulting continental growth curves are shown in Fig. 4B and 4C for 
176

Lu/
177

Hf = 0.009 

and 
176

Lu/
177

Hf = 0.022, respectively. The shapes of the continental growth curves in Figs. 2 

and 4B,C are similar, which suggests that variations in the 
176

Lu/
177

Hf of the crustal sources 

have minimal impact in the calculation of continental growth models based on large sets of 

zircon data. 

 

2.2.3. Influence of ancient Pb loss(es) on the calculation of crust formation ages 

The calculation of zircon Hf model ages of crust formation critically relies on good estimates 

of the U-Pb crystallisation age of the zircon, as well as on the Hf isotope ratio of the zircon at 

the time of crystallisation. Greater confidence in the accuracy of the crystallisation ages can in 

principle be achieved by filtering discordant U-Pb analyses (e.g., analyses with a discordancy 

greater than 5–10%) in zircon databases, however some uncertainty remains over the 

crystallisation ages of detrital zircons with ancient (typically Archaean) concordant U-Pb ages 
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if the zircons have experienced ancient Pb loss(es). The effect of ancient Pb losses in the 

calculation of initial Hf isotope ratios and model ages of crust formation has been discussed in 

a number of studies (e.g., Kemp and Whitehouse, 2010; Guitreau and Blichert-Toft, 2014; 

Claesson et al., 2015; Vervoort and Kemp, 2016), and a graphical summary is given in Fig. 

5A. The proportion of detrital zircons that have experienced ancient Pb losses remains 

difficult to address in large datasets, and the extent to which analyses affected by Pb loss(es) 

may affect the shape of continental growth curve remains unclear. One simple test is to select 

grains with Archaean ages in large U-Pb and Hf detrital zircons databases, then subtract a 

random amount of time from their crystallisation ages to simulate Pb loss, and use the 

altered/modified database to recalculate a continental growth curve. The Dhuime et al. (2012) 

dataset was selected, random amounts of time between 0–500 Ma were subtracted from the 

crystallisation ages of Archaean grains using an in-house Excel spreadsheet (the average 

reduction was ~250 Ma), and a new continental growth curve was calculated from the altered 

database (Fig. 5B). Its aspect remains similar to that of the curve obtained from the original 

dataset, which suggests that the effect of ancient Pb losses is small on the shape of continental 

growth curves based on large U-Pb and Hf datasets.  

 

2.2.4. Influence of the nature and the size of zircon databases on continental growth models 

The sampling strategy, and more specifically the extent to which specific sets of data best 

record the global evolution of the continental crust, is a key issue in continental growth 

studies. Belousova et al. (2010) used a database of over 13,000 zircons sampled worldwide. 

This database contains zircons of both magmatic and detrital origin, but it is dominated by 

detrital zircons, both from ancient and younger sediments. Dhuime et al. (2012) used a 

smaller database of ~7000 zircons for their model, containing only detrital zircons with 

deposition ages ranging from the late Palaeozoic to the present. Their choice was driven by 
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the assumption that since 'young' sediments typically contain zircons with a wide range of 

ages, they may provide records that are more representative of the entire magmatic history of 

the crust than zircons in igneous rocks or in old sediments. More recently Roberts and 

Spencer (2015) compiled the U-Pb and Hf data for magmatic and detrital zircons available in 

the literature ultimately to add nearly 30,000 analyses to the Belousova et al. (2010) database. 

In order to test the sensitivity of the Dhuime et al. (2012) continental growth model to the use 

of other databases, the equations of Dhuime et al. (2012) (see Section 2.1) were applied to 

both the Belousova et al. (2010) and the Roberts and Spencer (2015) databases to build the 

continental growth curves presented in Fig. 6A and 6B, respectively. These curves point 

towards slightly lower volume of ancient crust, as for instance the volume of >3 Ga crust is 

~60% of the present volume in Fig. 6A and 6B, compared with ~65% in Fig. 2. Despite these 

differences, these curves can be considered as similar, especially in comparison with the 

range of growth curves in Fig. 1. Lower volumes of Archaean crust obtained from the 

Belousova et al. (2010) and the Roberts and Spencer (2015) databases may also reflect an 

underestimation of the proportions of juvenile crust at that time, which can be predicted in 

datasets that include ancient rocks and sediments (see equation (1)).  

 

2.2.5. Summary 

Difficulties in establishing the initial Hf isotope ratios of new crust, the 
176

Lu/
177

Hf of that new 

crust, and in the numbers of zircons that experienced ancient Pb loss(es) in the databases, adds 

some uncertainty to the individual model ages, but not to the overall shape of the continental 

growth curves being modelled (Figs. 2–5). The shape varies slightly depending on which U-Pb 

and Hf sets of data are used in the calculations (Fig. 6), but overall the conservation of the 

global aspect of the continental growth curves is reassuring as it strengthens approaches based 

on the combination of U-Pb ages and Hf model ages in large zircon databases. 
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3. Fine-grained sediments record 

3.1. Background  

Fine-grained continental sedimentary rocks, most of which are described as 'shales' in the 

literature, have been widely used to unravel the processes of crustal differentiation, 

maturation and reworking that occurred on large spatial and temporal scales (Nance and 

Taylor, 1976, 1977; McLennan and Taylor, 1982; Hamilton et al., 1983; O'Nions et al., 1983; 

Frost and O'Nions, 1984; Davies et al., 1985; Michard et al., 1985; Miller and O'Nions, 1985; 

Taylor and McLennan, 1991; Condie, 1993; Gao and Wedepohl, 1995; Jahn and Condie, 

1995; Rudnick and Gao, 2003; Bindeman et al., 2016; Tang et al., 2016). The Rare Earth 

Elements (REE) contents of sediments have long been of particular interest (e.g., Nance and 

Taylor, 1976, 1977), because REE have a low solubility in water and so they are less subject 

to fractionation in the sedimentary cycle than many other elements. Sm and Nd are especially 

relevant because they are the parent and daughter elements of a long-lived radioactive decay 

chain, and because the 
147

Sm/
144

Nd ratios show a limited range of variation in fine-grained 

continental sedimentary rocks (e.g., mean 
147

Sm/
144

Nd = 0.116 ± 0.013 s.d., from a 

compilation of 645 samples worldwide; references are provided in Section 3.3). 

 

Allègre and Rousseau (1984) were the first to use the geochemical properties of the Sm-Nd 

system in shales to develop a model for the growth of the continental crust. More specifically, 

they used a box-model approach and the variation of Nd model ages in eight samples of 

Australian shales with deposition ages ranging 3.3–0.2 Ga to generate a continental growth 

curve. In their model the present-day continental crust was arbitrarily subdivided into seven 

segments with mean ages of 3.50, 2.75, 2.25, 1.75, 1.25, 0.75 and 0.25 Ga. These segments 
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were taken as the sources from which continental sediments were eroded, and then deposited 

every 500 Ma at t1 = 2.5 Ga, t2 = 2 Ga, t3 = 1.5 Ga, t4 = 1 Ga, t5 = 0.5 Ga and t6 = 0 Ga. These 

deposition ages constitute six consecutive steps in the box-model of Allègre and Rousseau 

(1984). For each step tn, they calculated the mass fraction of juvenile crust present in the bulk 

sediment. To do so they considered that the sources of the sediments can be considered in 

terms of two continental blocks (Fig. 7): a young block of mass fraction [x] made of juvenile 

crust (green block), and an older block of mass fraction [1-x] that represents the average of all 

the continental segments formed in previous events (brown block). A major difficulty was to 

evaluate the extent to which the proportions of different source rocks in the sediments may be 

biased through erosion processes. Allègre and Rousseau (1984) argued that young orogens 

have a higher relief than older continental segments, and that since rocks are more prone to 

erosion as the relief increases due to their greater potential energy (Ahnert, 1970; Pinet and 

Souriau, 1988; Summerfield, 1991; Milliman and Syvitski, 1992; Summerfield and Hulton, 

1994), the preferential erosion of high-relief young crust over low-relief old crust ultimately 

results in an over-representation of younger source rocks in continental sediments. It follows 

that in the two-block model of Allègre and Rousseau (1984), sediment extracted from the 

young block has a mass fraction, here termed [y], such that [y] is > [x], because relatively 

more sediment is derived from the younger source block of mass fraction [x]. Reciprocally, 

sediment derived from the old block has a mass fraction [1-y] that is < [1-x] (Fig. 7). 

 

The link between the relative proportions of source rocks of different ages in the catchment 

area, and the proportion of those source rocks present in the sediment analysed, can be 

expressed through an erosion parameter K. This parameter is dimensionless and was defined 

by Allègre and Rousseau (1984) as: 

K = ([y]/[1-y]) / ([x]/[1-x]) (5) 
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Using this parameterisation, Allègre and Rousseau (1984) calculated the mass fraction [x] of 

the juvenile crust, for every step tn of their box-model, using the following equation: 

[x] = 1 / ((K.[1-y]/[y]) + 1) (6) 

The mass fractions [y] and [1-y] in the sediment issued from the young block and the old 

block, respectively, were calculated from the mean age of the sediment Tsediment, for every step 

tn of the box-model, using the following mixing equation: 

Tsediment = [y].Tyoung + [1-y].Told (7) 

with Tsediment = Nd model age of the sediment; Tyoung = age of the young block; and Told = 

mean age of the old block made of all the continental segments formed in previous events. 

By rearranging equation (7), the mass fraction [y] becomes: 

[y] = (Tsediment - Told) / (Tyoung - Told) (8) 

Once the value of [y] is reinserted into equation (6), the only unknown parameter left to 

calculate [x] is the value of erosion parameter K. Allègre and Rousseau (1984) used assumed 

values of K = 2, 4 or 6 in their model to generate three curves (Fig. 8A, red curves). The green 

curve in Fig. 8A is the growth curve for K = 1, i.e., when [y] = [x] and no correction for the 

preferential erosion of the young crust over the older crust is applied to the model. The grey 

curves represent the effect of changing values of K, up to K = 50, on the global shape of the 

modelled growth curves. The higher the value of K, the more young crust is overrepresented 

in the sediment analysed, hence the larger the underestimation of the amount of old crust in 

the source of the sediment, and so the larger the volume of ancient continental crust that is 

actually present. These curves were established from the relative proportions of the mass 

fractions [x] of juvenile crust in the segments of ages 2.75, 2.25, 1.75, 1.25, 0.75 and 0.25 Ga 

at the last step t6 = 0 Ga of the box-model, i.e., in the present-day crust.  
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Thus the approach of Allègre and Rousseau (1984) seeks to evaluate the proportion of crustal 

segments of different formation ages in the crust at the present day, and then infers that they 

can be used as a proxy for the volumes of crust present at different times in the history of the 

crust. This is similar to the approach of Condie (1998), and more recently Condie and Aster 

(2010), who used the variation in U-Pb ages distribution of magmatic rocks with juvenile Nd 

isotope ratios as a proxy for the variation of crustal volumes through time (see Fig.1, curve 

'C&A'). On that basis the Allègre and Rousseau (1984) model suggests that both the volume 

of >3 Ga juvenile rocks in the present crust and the volume of continental crust established by 

3 Ga were ~25% of the present volume of crust for K = 2, and they increase to ~37% and 

~46% for K = 4 and K = 6, respectively. These results contrast with the model proposed by 

Dhuime et al. (2012) from the zircon record (Fig. 2), in which the volume of continental crust 

present by 3 Ga is ~65% of the present volume. In the following sections we explore ways in 

which the Allègre and Rousseau (1984) model might be reconciled with models in which 

large volumes of crust were present early in Earth’s history (e.g., Fig. 1). These include (i) 

variations in the value of the erosion parameter K; (ii) extension of the initial Nd isotope data 

of Allègre and Rousseau (1984) on eight Australian shales to a worldwide dataset of 645 fine-

grained continental sedimentary rocks considered to be more representative of the continental 

crust, and (iii) other ways in which continental growth models might be developed from the 

variations in Nd isotopes in fine-grained sediments. 

 

3.2. Uncertainty over the global value of the erosion parameter K 

Attempts to calculate the volume of crustal segments of different model ages from the Nd 

isotope ratios of continental sediments critically depend on the value of the erosion parameter 

K (Fig. 8). The value of this parameter that should be considered as representative of the 

global Earth system has been difficult to establish (Allègre and Rousseau, 1984; Jacobsen, 
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1988; Kramers and Tolstikhin, 1997; Nägler and Kramers, 1998; Kramers, 2002; Tolstikhin 

and Kramers, 2008), in part because only a few attempts have been made in measuring K in 

natural systems. Goldstein and Jacobson (1988) estimated a value of K = 2.3 from the average 

Nd isotope data of suspended loads in 31 rivers in North America, and they suggested that a 

value of K = 2–3 may have been applicable through much of Earth’s history. Allègre et al. 

(1996) used the Nd isotope data of suspended loads in four rivers from the Amazon Basin, 

and the relative proportion of high-relief rocks in the rivers’ catchment areas, to calculate a 

value of K = 5.8 for the Amazon Basin as a whole. 

 

More recently Dhuime et al. (2011b) targeted the Frankland River in southwest Australia, a 

'simple' system that only drains two continental blocks with distinctive age components 

(Cawood et al., 2003), the Archaean Yilgarn craton and the Archaean to Proterozoic Albany-

Fraser orogen, in order to measure K in situ in the same way as this parameter was originally 

defined in the two-block model of Allègre and Rousseau (1984) (see Fig. 7). Dhuime et al. 

(2011b) calculated K in three sample sites across the Frankland river, located at ~120 km, ~60 

km and 0 km, respectively from the river mouth (Fig. 9). They used three different approaches 

to determine the relative proportions of Yilgarn and Albany Fraser detritus in the sediment 

samples: (i) the distribution of U-Pb ages in zircons, (ii) the distribution of Hf model ages in 

zircons, and (iii) the Nd isotope composition of the bulk river sediments. They demonstrated 

that these three approaches give similar results, and they used these data and the proportions 

of the source rocks in the river catchment determined from a geological map to calculate K. 

They showed that K varies along the river, with values of 4–6, 9–10 and 15–17 at 120 km, 60 

km and 0 km from the river mouth, respectively (Fig. 9). Importantly the values of K increase 

with the gradient of the river’s profile, with the two samples providing the highest K values 

(i.e., 9–10 and 15–17) located below an inflection in the river’s profile. This inflection reflects 
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an escarpment at ~80 km from the coast associated with Miocene-Pliocene uplift (Cawood et 

al., 2003), and so from this period the increase in gradient of the river’s profile has resulted in 

preferential erosion of material from the younger block (i.e., the Albany-Fraser Orogen), and 

hence in higher calculated K values. Dhuime et al. (2011b) suggested that in order to avoid 

local perturbations, the stable segment of the Frankland River is best sampled above the 

escarpment, and that K values of 4–6 may be considered as better representative of mature 

river systems that sample large areas of continental crust. 

 

Cawood et al. (2013) used the variation in the running median of the Hf isotope composition 

of zircons through time (Belousova et al., 2010) to argue that crustal melting is an important 

process in the continental record. They highlighted that crustal melting is often associated 

with crustal thickening, and hence with areas of high relief. As a consequence they suggested 

that the bias in the sedimentary record might be dominated by erosion in areas of high relief 

and, if correct, they suggested that the highest values of K so far measured in natural systems 

(i.e., K = 15–17 in the Frankland River, see Fig. 9) may better account for the processes of 

erosion and deposition of the sediments that dominate the geological record. It is striking that 

for a value of K = 15, the continental growth curve of Allègre and Rousseau (1984) (Fig. 8A) 

matches the shape of the curve of Dhuime et al. (2012) (Fig. 2), although the latter is based on 

different geochemical and modelling approaches (see Section 2.1). However, it is important to 

note that since the Allègre and Rousseau (1984) model is about the relative volumes of crust 

of different ages at the present time, the K = 15 curve in Fig. 8A implies that ~65% of today’s 

continental crust is >3 Ga old. Yet such large proportions of ancient crust preserved in the 

present continental crust remain difficult to reconcile with a number of independent 

observations, as discussed below. 
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As noted in Section 3.1, the Allègre and Rousseau (1984) growth curve(s) can be usefully 

compared with that of Condie and Aster (2010) (Fig. 1, curve 'C&A'), since both, in different 

ways, provide estimates of the variation in the proportions of juvenile rocks of different ages 

within the present crust. These growth models, and any other models based on this or similar 

approaches, make the assumption that this variation preserved in the present-day crust reflects 

the changes in the rates of continental growth through time (Condie, 1998; Condie and Aster, 

2010; Arndt and Davaille, 2013; Arndt, 2013). The Allègre and Rousseau (1984) curve for K 

= 15 suggests that the bulk present-day crust would be made of ~65% of crust older than 3 

Ga, whereas the curve of Condie and Aster (2010) (Fig. 1) implies that only ~5% of that crust 

is exposed at the Earth’s surface. This could be accommodated, for instance, by the presence 

of large volumes of 'hidden' Archaean crust within the lithosphere (Begg et al., 2009; 

Belousova et al., 2010). However large volumes of Archaean rocks within the present crust 

seems unlikely when the mean age of the bulk continental crust is considered. For K = 1 (i.e., 

when no preferential erosion law is applied to the model), the model of Allègre and Rousseau 

(1984) generates a mean age of 1.8 Ga for the present-day crust (calculated from the relative 

proportions of the seven segments of ages 3.50, 2.75, 2.25, 1.75, 1.25, 0.75 and 0.25 Ga in the 

present crust; see Section 3.1). This age is within error of the estimate for the mean age of 

loess deposits of 1.82 ± 0.07 Ga recently obtained by Chauvel et al. (2014) (and see also 

Goldstein et al. (1984) and Goldstein and Jacobsen (1988)). The mean age of the present-day 

crust increases to 1.9 Ga for K = 2; then 2.2 Ga for K = 4; 2.4 Ga for K = 6; and 2.8 Ga for K 

= 15. Since mass balance calculations of the crust–mantle system of Allègre et al. (1983) have 

also constrained the mean age of the continental crust to between 2.0 and 2.4 Ga, the 

implication is that global values of K ~15 may be too high. It thus appears unlikely that 

significant volumes of old crust are hidden away somewhere at the present day, and K = 4–6 

may be better representative of the entire Earth system. 
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There is increasing evidence that continents were mostly, if not entirely, below sea level until 

3.0–2.5 Ga (Arndt, 1999; Flament et al., 2008, 2011, 2013; Dhuime et al., 2015; Tang et al., 

2016; Campbell and Davies, 2017; and see Section 4.2). This suggests that the preferential 

erosion law of Allègre and Rousseau (1984) (Fig. 7) may not have applied throughout Earth’s 

history, and that the value of the erosion parameter K may have not remained constant 

through time (Cawood et al., 2013; Hawkesworth et al., 2013). Fig. 8B summarises 

continental growth curves calculated for a two-stage evolution of the erosion parameter K, 

with K = 1 (i.e., no preferential erosion) until 2.5 Ga and variable post-Archaean values 

between 2 and 50. To avoid confusion with models that retain a uniform value of the erosion 

parameter K, as in Allègre and Rousseau (1984), we use the notation 'K2s' to indicate models 

calculated with a non-uniform, two-stage evolution of K. The differences between curves in 

Fig. 8A and 8B typically remain small, because the age differences between younger and 

older crustal sources were limited in the Archaean, and so the correction for the preferential 

erosion of young rocks had relatively little effect in the estimation of the volumes of ancient 

crust.  

 

3.3. Continental growth from the Nd isotope record of fine-grained sediments worldwide 

The original growth model developed by Allègre and Rousseau (1984) was established from 

the analysis of a restricted number of sedimentary rock samples (i.e., eight shales) from the 

Australian continent. The question remains as to whether this dataset can be taken as 

representative of the crust, or whether other sets of data should be considered (Allègre and 

Rousseau, 1984; Michard et al., 1985; Dia et al., 1990a). To address this issue, analyses of 

645 fine-grained continental sedimentary rocks sampled worldwide were compiled from the 

literature, and the variation of the Nd model age as a function of the deposition ages of these 
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sediments is plotted in Fig. 10. The variation of Nd model ages in sediments with similar 

depositional ages may be large, but it is striking that when the running median of the data is 

considered (Fig. 10, circles) the regression curve through the data has a trend very similar to 

that defined by the Australian shales data of Allègre and Rousseau (1984) (diamonds). It thus 

appears that the Australian samples can be considered as a reasonable proxy for the evolution 

of the continental crust on a global scale (and see also Hawkesworth et al., 2010), and that the 

growth curves generated by the original model of Allègre and Rousseau (1984) (Fig. 8) are 

not significantly affected by being based solely on the Australian shales data. 

 

3.4. Can the Nd in fine-grained sediments data be modelled differently? 

In the box-model of Allègre and Rousseau (1984) the continental crust was arbitrarily split 

into seven segments of ages binned at 500 Ma intervals, with the oldest segment of mean age 

= 3.5 Ga. This choice was based on the pioneer study of Hurley and Rand (1969), in order to 

simplify comparison between models. Since that time, a number of studies have provided 

compelling evidence for continental crust older than 3.5 Ga (e.g., Stern and Bleeker, 1998; 

Bowring and Williams, 1999; Wilde et al., 2001; Kemp et al., 2010), and thus for the present 

study a box-model with an age of 4.4 Ga for the oldest continental segment was adopted. The 

time-resolution of the modelling was improved by reducing the frequency of the steps from 

500 Ma to 250 Ma, and the worldwide fine-grained sediments compilation (Fig. 10) was used 

as input data.  

 

The discussion of how bulk rock (fine-grained sediment) and mineral (zircon) databases have 

been used to model the evolution of the continental crust, highlights the differences in the two 

approaches. The first approach (hereafter referred to as 'Model 1') is based on the proportions 

of segments of different model ages in the present-day continental crust, and the second 
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approach (hereafter referred to as 'Model 2') involves estimating the proportions of juvenile 

crust at different times in the history of the crust. Here, both approaches are applied to the 

worldwide compilation of Nd isotope variations in fine-grained sediments (see Fig. 10). The 

results are summarised in Fig. 11, and for the reasons discussed in Section 3.2, post-Archaean 

values of K2s = 2, 4 and 6 were considered. Model 1 curves are calculated using the same 

method as in the original study of Allègre and Rousseau (1984). These are presented as 

dashed curves in Fig. 11, and they are broadly similar to the curves in Fig. 8. The calculated 

proportion of present-day crust >3 Ga is 14% for K2s = 2, 21% for K2s = 4, and 27% for K2s = 

6 (Fig. 11). The mean age of the present-day crust is 1.9 Ga if K2s = 2, 2.0 Ga for K2s = 4, and 

2.1 Ga for K2s = 6. Model 2 curves (continuous curves in Fig. 11) are cumulative curves of the 

proportion of juvenile crust calculated at each step tn of the box-model, using equation (6) of 

Section 3.1. Importantly, these curves are very similar to the zircon curve of Dhuime et al. 

(2012) (Fig. 11), which is reassuring in that both curves were calculated in similar ways. 

These curves suggest that at least ~65% of the present volume of the continental crust was 

established by 3 Ga, and there was a sharp change in the net rates of growth of the continental 

crust at that time. 

 

These results highlight how the calculated growth curves are sensitive to the ways in which 

they are constructed, as in Model 1 or Model 2 (Fig. 11). We would argue that it is most 

unlikely that the present-day distribution of rocks of different model ages preserved in the 

continental crust (Model 1) is a plausible record of the volumes of crust of different ages that 

were present throughout Earth’s evolution. We prefer approaches that rely on estimating the 

relative proportion of juvenile and reworked crust through time (Model 2), as in the growth 

models of Belousova et al. (2010) and Dhuime et al. (2012). Applying the Model 2 approach 

to the Nd isotope variations in continental sediments reaffirms the hypothesis of Dhuime et al. 
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(2012) for a two-stage evolution of the continental crust based on inferred changes in the rates 

of continental growth. The net growth rates calculated from the different curves plotted in Fig. 

11 during Stage 1 (>4 Ga to ~3 Ga) range from 2.9–3.4 km
3
 yr

-1
, and they drop to 0.6–0.9 km

3
 

yr
-1

 on average during Stage 2 (~3 Ga to the present day). 

 

The zircon curve of Dhuime et al. (2012) was built from a database of ~7000 detrital zircons 

with 'young' deposition ages ranging from the late Palaeozoic to the present day. This curve 

gives the lowest estimate for the volume of crust present at 3 Ga (~65%). For K2s = 1, i.e., if 

no preferential erosion is applied to the Nd in continental sediments Model 2 curves, a similar 

volume of 3 Ga crust is obtained. As a consequence, the slight difference between the zircon 

curve and the K2s = 2 to 6 curves for continental sedimentary rocks may be explained by an 

overestimation of the proportion of young juvenile crust in the recent sediments from which 

zircons were separated. This hypothesis suggests that the zircon curve would at best give an 

estimate of the minimum volumes of crust that were established at different times, and the 

best approximation for the 'true' volumes of crust at these times would be given by the K2s = 

4–6 Model 2 curves in Fig. 11. Interestingly, Model 2 curves for K2s = 4–6 give ~70–75% of 

the present volume of crust established by 3 Ga, which is entirely consistent with the recent 

estimate of Pujol et al. (2013) based on the evolution of the atmospheric 
40

Ar/
36

Ar through 

time (see Fig. 1, curve 'P', and Fig. 12).   
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4. Tectonic implications 

4.1. Global onset of plate tectonics and variations in the rates of formation and 

destruction of the continental crust through time 

The timing for the global onset of plate tectonics remains debated, and it ranges from the 

Hadean to the late Proterozoic depending on which proxies are considered (Kröner and Layer, 

1992; de Wit, 1998; Komiya et al., 1999; Nutman et al., 2002; Stern, 2005; Brown, 2006; 

Cawood et al., 2006; Moyen et al., 2006; Smithies et al., 2007; Van Kranendonk et al., 2007; 

Dilek and Polat, 2008; Harrison et al., 2008; Hopkins et al., 2008; Pease et al., 2008; Shirey et 

al., 2008; Nebel-Jacobsen et al., 2010; Hamilton, 2011; Shirey and Richardson, 2011; Dhuime 

et al., 2012; Naeraa et al., 2012; Stern et al., 2013, 2016; Griffin et al., 2014; Ernst et al., 2016; 

Hastie et al., 2016); and see Fig. 12). A number of recent models of continental growth show a 

change in the average rate of growth at ~3 Ga (Fig. 12), and this was interpreted by Dhuime et 

al. (2012) as reflecting a major change in the geodynamical setting(s) in which the continental 

crust was formed and destroyed at that time (but see also Stern et al. (2016, 2017) for an 

alternate interpretation). Dhuime et al. (2012) noted that the net growth rates of ~3 km
3
 yr

-1
 

before 3 Ga (see Fig. 11) are broadly similar to recent estimates for crust generation rates 

today (Scholl and von Huene, 2007, 2009; Stern and Scholl, 2010; Stern, 2011), suggesting 

that there may have been little or no crustal destruction at that time. In contrast, the lower net 

growth rates of ~0.8 km
3
 yr

-1
 may largely reflect higher crustal destruction rates, as subduction 

zones became the major locus of crust formation and destruction after 3 Ga (e.g., Cawood et 

al., 2006). 

 

Shirey and Richardson (2011) compiled isotopic and bulk chemical data of silicate and 

sulphide inclusions in diamonds from ancient lithospheric mantle keels, and showed that 

mineral inclusions with eclogitic compositions were only present after ~3 Ga (Fig. 12). They 
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proposed that this reflects the onset of subduction and continental collision, in ways similar to 

that at the present day. The combination of both the diamond inclusions data and the latest 

continental growth models thus independently provide strong evidence for the widespread 

development of 'modern style' subduction zones, and the onset of the Wilson cycle of oceans 

opening and closing around 3 Ga. It is however important to note, as highlighted by Stern 

(2005) and Stern et al. (2013, 2016, 2017), that there are few occurrences of rocks and 

minerals that might unambiguously indicate modern-style plate tectonics processes, such as 

ophiolites, blueshists and glaucophane eclogites, and lawsonite eclogites (Fig. 12), older than 

~1 Ga. 

 

The differences observed between continental growth curves and age distribution curves for 

the juvenile crust that is preserved today (Fig. 11) can be accommodated by the destruction of 

large volumes of ancient crust through subduction after the onset of plate tectonics. Recent 

studies further suggested that ~3 Ga marked the transition between two different types of 

continental crust. Continental crust generated before 3 Ga was on average mafic, dense and 

relatively thin (<20 km) (Dhuime et al., 2015), and the upper crust sampled by sediments at 

that time was also mafic (Tang et al., 2016). In contrast, continental crust that formed after 3 

Ga gradually became more intermediate in composition, buoyant and thicker (Dhuime et al., 

2015). The rates of destruction of these two types of crust through time have been estimated at 

every 500 Ma (Fig. 13), using the Nd in worldwide fine-grained sediments K2s = 6 Model 2 

growth curve as the preferred 'best estimate' for the volume of continental crust established at 

any time (Fig. 13, inset; and see Fig. 11, Model 2 continuous curve, and Sections 3.2 and 3.3), 

and the K2s = 6 Model 1 curve for the proportions of continental segments of different ages 

which are preserved in the crust today (Fig. 13 inset; and see Fig. 11, Model 1 dashed curve). 

In this preliminary model, rates of crust formation were assumed to vary smoothly through 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 27 

time, with modelled mantle temperature (Korenaga, 2013), and rates decrease from ~4 to 3 

km
3
 yr

-1
 between the Hadean and the present. The model predicts that about 50% of the 

volume of the pre-3 Ga crust, presumably mafic and relatively dense (Dhuime et al., 2015; 

Tang et al., 2016), was destroyed and replaced by younger crust within the ~1 Ga that 

followed the onset of plate tectonics (i.e., from 3–2 Ga). Since ~2 Ga, the destruction of the 

post-3 Ga crust, which is arguably more differentiated, more buoyant and thicker than the pre-

3 Ga crust (Dhuime et al., 2015), appears to become predominant. Finally this model predicts 

that at least 100% of the present volume of the continental crust has been destroyed and 

recycled back into the mantle since the onset of plate tectonics (Dhuime et al., in prep.). These 

estimates open new perspectives for recent models of mantle evolution and crust–mantle 

interaction through time (e.g., Honing and Spohn, 2016; Kumari et al., 2016; Walzer and 

Hendel, 2017). 

 

4.2. ~3 Ga as a key transition in Earth’s history 

There is increasing evidence that ~3 Ga, and the inferred onset of plate tectonics around that 

time, constitute a key transition in the evolution of the Earth system (Cawood et al., 2006; 

Shirey and Richardson, 2011; Dhuime et al., 2012; Hawkesworth et al., 2016, 2017) (Figs. 14, 

15). The secular cooling of the Earth, and associated changes in the mantle temperature and 

rheology, allowed the transition from a regime dominated by 'vertical tectonics' to one 

dominated by 'horizontal tectonics' (van Hunen et al., 2008; Sizova et al., 2010; Van 

Kranendonk, 2010; Korenaga, 2011, 2013; van Hunen and Moyen, 2012; Debaille et al., 

2013; Gerya, 2014; Johnson et al., 2014, 2017; Gerya et al., 2015; Condie et al., 2016; Fischer 

and Gerya, 2016; Van Kranendonk and Kirkland, 2016; Rozel et al., 2017). The Archaean 

crust that is still preserved today has a bimodal silica composition (Kamber, 2015; 

Hawkesworth et al., 2016) and the proportion of tonalite–trondhjemite–granodiorite (TTG) 
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rocks that outcrops at the surface is significantly greater than that occupied by greenstone 

belts (Glikson, 1979; Condie, 1981; Kröner, 1985; Moyen and Martin, 2012). In contrast, the 

average new continental crust that was generated before 3 Ga was mafic, with Rb/Sr ~0.03 

and SiO2 ~48–50% (Fig. 14A) and the upper crust that was present at that time had an average 

mafic composition (MgO ~15%; Tang et al., 2016). This suggests that the mafic and therefore 

dense crust that was predominant before 3 Ga was preferentially destroyed and recycled back 

into the mantle after the onset of plate tectonics; whereas the TTG crust, more felsic and 

buoyant, remained preferentially preserved to ultimately dominate the preserved rock record. 

 

Dhuime et al. (2015) demonstrated a systematic relationship between the Rb/Sr ratios (or the 

SiO2 content) of rocks generated in modern-style subduction settings and crustal thickness at 

the site of sampling. They applied this relationship to estimate the evolution in thickness of 

the new continental crust that was formed since the onset of plate tectonics. The progressive 

increase in the Rb/Sr ratios of the juvenile continental crust from 3 Ga onwards (Fig. 14A) is 

taken to reflect the thickening of the continental crust through time, from ~20 km at 3 Ga to 

~30-40 km towards the present. In parallel, mafic rocks show a marked increase in La/Yb 

from ~2.7 Ga (Fig. 14B), along with a secular decrease in compatible element contents, and 

an increase in incompatible element contents, which reflect a decrease in the degrees of 

mantle melting through time (Keller and Schoene, 2012). These features in the mafic rocks 

record can be attributed to partial melting of source(s) at depths in the stability field of garnet 

rather than plagioclase, likely in response to thickening of the crust (Kemp et al., 2010; 

Kamber, 2015), the progressive development/thickening of a continental lithosphere from ~3 

Ga onwards (Griffin et al., 2014; Hawkesworth et al., 2017), and the development of 

supercontinent cycles and widespread accretionary orogens after ~2.7 Ga (Campbell and 

Allen, 2008; Cawood et al., 2009) (Fig. 15). 
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There is a striking increase in the estimated crustal thickness (Fig. 14A) and both the rates of 

crustal reworking (Dhuime et al., 2012) and the global increase of the sedimentary component 

in the magmatic record, reflected by higher δ
18

O in zircons, since the late Archaean (Valley et 

al., 2005; Spencer et al., 2014). The increase in crustal thickness is accompanied by an 

increasing contribution of the sediment input to the ocean, which is evidenced by increasing 

87
Sr/

86
Sr isotope ratios in seawater (Veizer, 1989; Shields and Veizer, 2002; Shields, 2007), as 

well as increasing 
66

Zn in banded iron formations (BIF), a proxy for continental phosphorus 

input to the ocean (Pons et al., 2013), from 3 Ga onwards (Fig. 14B). These changes may be 

accommodated by a change in the lithosphere strength at around 3 Ga, as it became strong 

enough to support high-relief crust (Rey and Coltice, 2008) (Fig. 14C). This therefore 

indicates when significant volumes of continental crust became emergent (Arndt, 1999; 

Flament et al., 2008, 2011, 2013; Campbell and Davies, 2017) (Fig. 14C) and were available 

for erosion and surficial weathering to ultimately contribute to draw down of the CO2 and the 

rise of the atmospheric oxygen at the Archaean-Proterozoic boundary (Kramers, 2002; 

Campbell and Allen, 2008; Kump, 2008; Lee et al., 2016).  

5. Future research directions 

The models outlined here predict that (i) large volumes of mafic continental crust were 

present early in Earth’s history; and (ii) the continental crust has been generated continuously, 

but with a marked decrease in the rate of growth at ~3 Ga as subduction-driven plate tectonics 

started. However, it is worth considering that these results remain model dependent and that 

the debate remains open, regarding (i) the timing and the rates of the continental growth (see 

Fig. 1 and references therein); and (ii) when plate tectonics became a dominant process on 

Earth (see Fig. 12 and references therein). 
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There is increasing evidence that the rate of destruction of the continental crust exceeds the 

rate of its formation at present (Clift et al., 2009; Stern and Scholl, 2010; Stern, 2011), and 

that the thickness of the new continental crust generated in active margins has decreased over 

the last 1 Ga (see Fig. 14A). This suggests that at around 1 Ga the volume of continental crust 

may have been greater that it is today (Dhuime et al., 2015). This feature cannot be 'seen' with 

continental growth curves based on juvenile addition of new continental crust (e.g., Model 2 

curves in Fig. 11), nor on the age distribution of rocks of different ages in the crust (e.g., 

Model 1 curves in Fig. 11), because such cumulative curves do not allow crustal volumes to 

decrease over time. This highlights the need in developing continental growth models in 

which the volume of continental crust may have exceeded its present value in the past (e.g., 

Fyfe, 1978; Stern and Scholl, 2010; Hawkesworth et al., 2016). Such models have to take into 

account the timing and rates at which continental crust is destroyed and recycled back into the 

mantle, as well as the effects of recycling process, to account for variations in the mantle 

chemistry both at present and back in time (e.g., Allègre, 1982; McCulloch and Bennett, 

1994; Nägler and Kramers, 1998; Kramers, 2002; Xie and Tackley, 2004; Delavault et al., 

2016a; Kumari et al., 2016).  

 

'Traditional' radiogenic isotope systems (i.e., Sm-Nd, Lu-Hf, U-Th-Pb, Rb-Sr) have proven 

very useful in crust–mantle interaction studies (e.g., Allègre, 2008). However, uncertainty 

over the isotope composition of the ambient mantle in the Hadean/Archaean remains 

problematic for precise mass balance calculations and the determination of model ages of 

juvenile crust formation with these systems. This highlights the need in exploring the 

information provided by 'alternate' radiogenic isotope systems. The K-Ca system, with a half-

life of ~1.3 Ga, is particularly suited for this purpose because the (low K/Ca) mantle shows 
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little variation in its 
40

Ca/
44

Ca ratio through time, whereas the (high K/Ca) continental crust 

has developed highly radiogenic 
40

Ca/
44

Ca ratios in the early stages of Earth’s evolution 

(Kreissig and Elliott, 2005). Finally the impact of the 4.1–3.8 Ga late heavy bombardment 

(LHB) on the destruction and the recycling of the Hadean crust (Marchi et al., 2014; Shibaike 

et al., 2016), and on the composition of the mantle, needs to be carefully considered when 

developing more realistic models for the continental growth. 

 

Although there is a consensus that subduction operated in the Archaean, but possibly only 

locally and in a fashion very different as today, the timing for the transition between initial 

'stagnant lid' tectonic regime, during which the Earth was dominated by vertical tectonics, to a 

'modern plate tectonics' regime with widespread seafloor spreading centres and deep 

subduction zones, remains poorly constrained (see Fig. 12). Also importantly, whether this 

transition was sharp (10’s Ma) or progressive (100’s to 1000’s Ma), and whether it was 

synchronous on a global scale yet has to be determined (see Fig. 15). The trace element 

contents of bulk rocks have been used for decades as a proxy for the geodynamical context of 

magmas generation (e.g., Pearce and Cann, 1973). However, their use in ancient (e.g., 

Achaean) mafic or felsic rocks as plate tectonics indicators has remained inconclusive (e.g., 

van Hunen and Moyen, 2012; Condie, 2015). New perspectives in bulk-rock analysis arise 

from the recent development of so-called 'non traditional' isotopes such as Ti (Millet et al., 

2016) and Mo (Freymuth et al., 2015, 2016), which fractionate differently in magmas 

generated in subduction or intraplate setting. The analysis of Ti and Mo isotopes in Archaean 

samples can be seen as an interesting perspective, although the behaviour of these isotopes in 

ancient and potentially altered/metamorphosed rocks yet has to be tested. 
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The in situ measurement of trace elements in zircon by ion probe or laser ablation techniques 

has a high potential for unravelling the nature and the geodynamical context of formation of 

the granitic magmas from which zircons crystallise (Belousova et al., 2002; Wang et al., 

2012; Yang et al., 2014; Grimes et al., 2015; Trail et al., 2015; Gao et al., 2016; Smythe and 

Brenan, 2016; Burnham and Berry, 2017). Since the large majority of zircons (80–90%, see 

Section 1) crystallise from non-juvenile sources, the trace element contents in zircon may not 

indicate the geodynamical context of the formation of the new continental crust. However, 

there is potential in developing studies in which trace elements in well-dated zircons are used 

as a proxy for the timing, rates and the geodynamical conditions of crustal reworking through 

time. 

 

Within the last few years, there has been a growing interest in developing studies based on the 

mineral inclusion record in zircon. Initial studies established a link between the mineralogy of 

the inclusions and the composition of the parent magma of the host zircon (Maas et al., 1992; 

Cavosie et al., 2004; Hopkins et al., 2008, 2010; Bell et al., 2011), and between the type and 

the chemistry of the inclusions and the presence of event(s) subsequent to the crystallisation 

of the host zircon (Bell et al., 2015b; Bell, 2016). More recently Jennings et al. (2011) and 

Bruand et al. (2016, 2017) established a strong correlation between the trace element content 

of apatite, both within the rock matrix and in inclusion within zircon, and the composition of 

the bulk rock. In parallel, Dhuime et al. (2014) and Delavault et al. (2016b) explored the 

potential of combining in situ isotopic analyses of zircons and their mineral inclusions to 

calculate the time-integrated Rb/Sr and U/Pb ratios of the juvenile continental crust at the 

time of its Hf model age. The time-integrated Rb/Sr ratio can be used as a proxy for the 

composition and the thickness of the juvenile continental crust (Dhuime et al., 2015, and see 

Fig. 14A). It is calculated from the Sr isotope composition of apatite inclusions and the U-Pb 
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ages and the Hf isotope ratios of the host zircon (Dhuime et al., 2014). The time-integrated 

U/Pb ratio can be used to unravel the tectonic setting of formation of the juvenile continental 

crust (Delavault et al., 2016b). It is calculated from the Pb isotope composition of feldspar 

inclusions and the U-Pb ages and the Hf isotope ratios of the host zircon (Delavault et al., 

2016b). Studies based on the analysis of inclusions in large collections of zircons of both 

magmatic and detrital origin therefore have significant potential for unravelling the 

composition and the tectonic setting(s) of formation of the new continental crust though time, 

in ways that have never been explored before. 

 

Finally, the recent development of increasingly more sophisticated numerical codes has 

allowed models for the dynamics of crust–mantle interaction to be developed in ways that 

were difficult to achieve until now (van Hunen and Moyen, 2012; Korenaga, 2013; Johnson et 

al., 2014, 2017; Gerya et al., 2015; Fischer and Gerya, 2016; Honing and Spohn, 2016; Rozel 

et al., 2017; Walzer and Hendel, 2017). The integration in such models of the expanding large 

geochemical databases, including those available through online platforms (e.g., GEOROC: 

http://georoc.mpch-mainz.gwdg.de/georoc/; EarthChem: http://www.earthchem.org/portal), 

should give the opportunity to initiate more accurate global models that take account of the 

inter-relationship and the linked variations between plate tectonics, magmatic activity, 

continental growth, the oxygenation of the atmosphere, and the development and the 

evolution of life on Earth (e.g., Arndt and Nisbet, 2012; Philippot et al., 2012; Cawood and 

Hawkesworth, 2014; Lee et al., 2016; Stern, 2016; Duncan and Dasgupta, 2017). 
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Figures caption 

Fig. 1. Models for the volume of the continental crust through time, taken from the literature 

data. F: Fyfe (1978); Br: Brown (1979); O’N: O'Nions et al. (1979); V&J: Veizer and Jansen 

(1979); A: Armstrong (1981); D&W: Dewey and Windley (1981); Al: Allègre (1982); M&T: 

McLennan and Taylor (1982); A&R: Allègre and Rousseau (1984); R&S: Reymer and 

Schubert (1984); P&A: Patchett and Arndt (1986); M&B: McCulloch and Bennett (1994); 

T&M: Taylor and McLennan (1995); K&T: Kramers and Tolstikhin (1997); C&K: Collerson 

and Kamber (1999); C: Campbell (2003); R: Rino et al. (2004); Be: Belousova et al. (2010); 

C&A: Condie and Aster (2010); D: Dhuime et al. (2012); P: average curve of Pujol et al. 

(2013).  

 

Fig. 2. Continental growth models based on the combination of Hf and U-Pb data from 

worldwide sets of zircon data. The black curve (Belousova et al., 2010) is calculated from a 

compilation of 13,844 zircons mostly of detrital origin, and the blue curve (Dhuime et al., 

2012) is calculated from a compilation of 6972 zircons from young sediments, in which the 

contribution of so called 'hybrid' Hf model ages was corrected from the worldwide Hf-O 

relationship evidenced by Dhuime et al. (2012) (inset). 

 

Fig. 3. Influence of using different inferred reservoirs from which new continental crust was 

extracted in (A) the calculation of crust formation ages, and (B-C) continental growth curves. 

References for these reservoirs are given in the text. Growth curves calculated from the 

depleted mantle (green curve in panel A) and an alternate reservoir (orange curve) are shown 

in panels B (green curve) and C (orange curve), respectively. The growth curve of Dhuime et 

al. (2012), calculated from the new crust reservoir (black curve in panel A), is shown in panels 

B-C for comparison (grey thick curve). 
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Fig. 4. Influence of using different inferred 
176

Lu/
177

Hf ratios for the crustal source of the 

magma from which zircons crystallised in (A) the calculation of crust formation ages, and (B-

C) continental growth curves. Growth curves calculated with 
176

Lu/
177

Hf = 0.009 (red 

evolution path in panel A) and 
176

Lu/
177

Hf = 0.022 (green evolution path) are shown in panels 

B (red curve) and C (green curve), respectively. The growth curve of Dhuime et al. (2012), 

calculated with 
176

Lu/
177

Hf = 0.015 (grey evolution path in panel A), is shown in panels B-C 

for comparison (grey thick curve). 

 

Fig. 5. Influence of ancient radiogenic Pb loss on (A) the calculation of model ages, and (B) 

the shape of the continental growth curve calculated with the equations and the database of 

Dhuime et al. (2012), in which ancient Pb losses were simulated using an in-house Excel 

spreadsheet. The original growth curve of Dhuime et al. (2012) is shown in panel B for 

comparison (grey thick curve). 

 

Fig. 6. Influence of using databases composed of zircons of both detrital and magmatic origin, 

from rocks with a range of deposition and crystallisation ages, on the shape the continental 

growth curve calculated with the equations of Dhuime et al. (2012). (A) Belousova et al. 

(2010) database (n = 13,832); (B) Roberts and Spencer (2015) database (n = 42,469). The 

growth curve calculated from the Dhuime et al. (2012) database (n = 6972) is shown in panels 

B-C for comparison (grey thick curve). 

 

Fig. 7. Schematic representation of the two-block model of Allègre and Rousseau (1984), 

which they used to evaluate the bias induced in the sedimentary record by the preferential 

erosion of young (juvenile) high-relief crust over older lower relief crust. This bias is 
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expressed through and erosion parameter K that relates the variation in the relative proportions 

of the source rocks in the sediment to those within the crust. 

 

Fig. 8. Continental growth curves calculated using the model, the equations and the data of 

Allègre and Rousseau (1984). The shape of these curves critically depends on the value of the 

erosion parameter K used in the equations, and values ranging between 2 and 50 were chosen 

for comparative purposes. (A) Continental growth curves calculated with values of K constant 

throughout Earth’s history. (B) Continental growth curves calculated for a two-stage evolution 

of K, with K = 1 (i.e., no preferential erosion) until 2.5 Ga and variable post-Archaean values 

between 2 and 50. The notation 'K2s' is used for this 2-stage erosion parameter. 

 

Fig. 9. Profile of the Frankland River, southwestern Australia, after Cawood et al. (2003), 

including sediment sample locations (stars) and boundary between Yilgarn and Albany-Fraser 

crustal segments (dashed vertical line). The values of the erosion parameter K calculated by 

Dhuime et al. (2011b) are reported for each sample. 

 

Fig. 10. Nd model age as a function of the age of deposition of worldwide fine-grained 

continental sedimentary rocks compiled from the literature data (Hamilton et al., 1983; 

O'Nions et al., 1983; Allègre and Rousseau, 1984; Frost and O'Nions, 1984; Miller and 

O'Nions, 1984, 1985; Davies et al., 1985; Hensel et al., 1985; Michard et al., 1985; Andre et 

al., 1986; Miller et al., 1986; Frost and Winston, 1987; Barovich et al., 1989; Mearns et al., 

1989; Dia et al., 1990a, 1990b; Yanez et al., 1991; Boher et al., 1992; Nägler et al., 1992, 

1995; Stevenson and Turek, 1992; Alibert and McCulloch, 1993; Turner et al., 1993; Bock et 

al., 1994; Jahn and Condie, 1995; Stevenson, 1995; Cullers et al., 1997; Henry et al., 2000; 

McLennan et al., 2000; Ugidos et al., 2003; Krogstad et al., 2004; Armendariz et al., 2008; 
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Lopez-Guijarro et al., 2008; Yu et al., 2009; Cabral et al., 2013). The running median of the 

data (circles) was calculated for every 100 Ma step, and a regression curve was calculated 

(brown curve, with R
2
 = 0.96). The Australian shales data used in the pioneer study of Allègre 

and Rousseau (1984) (diamonds) are plotted for comparison. 

 

Fig. 11. The volume of continental crust as a function of time, calculated using the variation in 

Nd isotope ratios in fine-grained sediments data plotted in Fig. 10, and (A) the original box-

model and equations of Allègre and Rousseau (1984) (Model 1 dashed curves), (B) the model 

developed in this study (Model 2 continuous curves). Values of the two-stage erosion 

parameter K2s, with post-Archaean values of 2, 4 and 6, were chosen for the calculations. The 

continental growth curve of Dhuime et al. (2012) calculated from detrital zircons data is 

plotted for comparison. 

 

Fig. 12. A summary of continental growth curves calculated from Nd in worldwide fine-

grained sediments data (this study, Model 2 curves in Fig. 11), along with models obtained 

with different geochemical approaches and recently published by Dhuime et al. (2012) and 

Pujol et al. (2013). The Os isotope data of sulphide inclusions within diamonds from the 

subcontinental mantle lithosphere are plotted on the secondary Y-axis for comparison (Shirey 

and Richardson, 2011). Eclogitic diamonds (pink diamonds) are distinguished by 
187

Os/
188

Os 

ratios higher than those of peridotitic diamonds (green diamonds) that plot along the mantle 

evolution curve (black curve). The green, blue and purple histograms on the top of the figure 

show the distribution of the 'plate tectonic and subduction indicators' of Stern et al. (2013, 

2016). The vertical arrows indicate estimates for the timing of the onset of plate tectonics, 

taken from on a number of models from the literature data. References are indicated by the 

numbers in square brackets ([1]: Harrison et al. (2008); [2]: Hopkins et al. (2008); [3]: de Wit 
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(1998); [4]: Shirey et al. (2008); [5]: Komiya (1999), Dilek and Polat (2008); [6]: Nutman et 

al. (2002); [7]: Kroner and Layer (1992); Griffin et al. (2014); [8]: Moyen et al. (2006), Van 

Kranendonk et al. (2007), Pease et al. (2008), Naeraa et al. (2012); [9]: Smithies et al. (2007); 

[10]: Cawood et al. (2006); [11]: Shirey and Richardson (2011); Dhuime et al. (2012); [12]: 

Brown (2006); [13]: Nebel-Jacobsen et al. (2010); [14]: Stern (2005); [15]: Hamilton (2011)). 

 

Fig. 13. Model for the evolution of the rates of destruction of the continental crust through 

time. Two types of crust are considered: pre-plate tectonics crust that was generated before 3 

Ga, and subduction-related crust that was formed from 3 Ga until the present day. The rates of 

crust formation were assumed to decrease gradually from 4–3 km
3
 yr

-1
 between the Hadean 

and the present. The Model 2 K2s = 6 growth curve presented in Fig. 11 was used as the best 

estimate for the volumes of continental crust that were established at any time (blue curve, 

inset), and the rates of crust destruction were adjusted at every 500 Ma in order to 

accommodate the variations in the proportions of juvenile continental segments of different 

ages preserved at present (Model 1 brown curve for K2s = 6, inset) 

 

Fig. 14. A summary of key changes that occurred throughout the history of the Earth, with an 

emphasis for the period around 3 Ga. (A) Variations in Rb/Sr, SiO2 and thickness of the 

juvenile continental crust (Dhuime et al., 2015), and in the La/Yb in mafic rocks (Keller and 

Schoene, 2012) (secondary green Y-axis and green symbols). (B) Variations in the Zn isotope 

composition in banded iron formations (BIFs) (Pons et al., 2013), and in the influence of the 

river runoff versus the mantle influence in the 
87

Sr/
86

Sr ratios in seawater (Shields, 2007) 

(secondary blue Y-axis and blue curve). IRCS: igneous rocks and clastic sediments average 

zinc isotope composition. (C) Topography (plateau elevation) that continents were able to 

sustain depending on the variation in the rheology of the lithosphere through time (Rey and 
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Coltice, 2008), and the percentage of land surface (relative to the present Earth surface) that 

was emerged through time (secondary brown Y-axis and brown envelope curve) (Flament et 

al., 2013).  

 

Fig. 15. Schematic representation of a crust–mantle cross-section of the Earth, before and after 

the onset of plate tectonics around 3 Ga.  
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