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0. SUMMARY

We investigate an approach to approximating the integral

(0.1) w(x)f(x)g(x)dx = I(f;g),
JR

where R is a region in one-dimensional Euclidean space, and 
w a weight function. Since (0.1) may be regarded as a contin­
uous bi-linear functional in f and g we approximate it by a 
discrete bi-linear functional, which we term an Inner Product 
Quadrature Formula (I.P.Q.F.):

(0,2) Q(f;g) 2 f^Ag ,

where f^ = (S^(f),...,S^(f))^ ,

^  = (Tg(g),...,T^(g))^ ,

A n
^ - ^^ij^i=0,j=0’

and a^j are real numbers, %^_Q|a^j|>0.

The so-called elementary functionals {S.}^ and {T.}^ ̂ 1=0 ] j=0
are two sets of linearly independent linear functionals, acting on 
f and g respectively, defined over a certain subspace of 
functions to which f and g belong. The simplest example of 
these functionals is function evaluation at a given point.

The matrix A is determined by requiring (0.2) to be 
exact for certain classes of functions f and g, say



f£$I- { ( f ) Q 5 . . . j ( j )  } 5  yàO,
(0.3) a 7

ge'i' = 6>0.

In Chapter 1 we introduce the concept of I.P.Q.F. in 
more detail and make some general comments about approaches 
available when examining numerical integration. After ex­
plaining in some detail why we feel I.P.Q.F. are a useful 
tool in §2.1, we proceed in the remainder of Chapter 2 to 
investigate various conditions which may be placed on
{S.}^ , and {T.}^ , in order to guarantee the existence of1 i=0 ] j=0
I.P.Q.F. exact when fe$^and gcY^ .

In particular we investigate the question of maximising
Y+Ô. In the case where and  ̂ are the standard monomials
of degree i and j respectively, some results have already
been published in B.I.T. (1977) p. 392-408. We investigate
various choices of ^. and ij;. :• 1 ]

(a) (i.e. y=m+l) and (i.e. 6=m) being1 i=Q 1 3=0
Tchebychev sets (§2.7),

(b) (i.e. y=2m+l) being a Tchebychev set and contains 
only one function (i.e. 8=0) (§2.6),

(c) t|)̂ s(̂ j)̂ , i = 0,l,... and = i = 0,l,... (§2.8).

In Chapter 3 we consider the question of compounding 
I.P.Q.F. both in the classical sense, and, briefly, by examining 
spline functions, regarding them as providing a link between 
an I.P.Q.F on one hand and a compounded I.P.Q.F. on the



!
other. Various methods of theoretically estimating the errors 
involved are considered in Chapter 4. In the fifth Chapter 
we examine various ways in which the concept of I.P.Q.F. might 
(or might not) be extended. Finally, we make some brief com­
ments about the possible applications of I.P.Q.F., and give a 
few examples.



CHAPTER 1: INTRODUCTION

§1.1 QUADRATURE FORMULAE

The subject of Quadrature, or Numerical Integration, in 
its general setting may be considered as the problem of approxi­
mating the linear functional I, the integration operator, 
which for some reason we are unable to evaluate directly, by 
another functional Q, which we are able to evaluate. Let

(1 .1.1) w(x)f(x)dx E 1(f)
R

where R is a region in d-dimensional Euclidean space R^, d>l.
The weight function w is assumed to be non-trivial in R and
such that 1(f) exists in a Riemann-Stieltjes sense for fcF, 

d 1f;R^^R eR, where r is some class of functions under considera­
tion. Unless stated otherwise, we shall assume that w is non­
negative throughout R.

The functional Q, although ultimately acting on f, may be 
regarded as operating on a real (m+1) vector, each of whose 
elements is itself the result of the operation of a linear 
functional acting on f. Throughout, m may be regarded as an 
arbitrarily fixed positive integer. These latter linear 
functionals we shall call 'elementary'. For example, it is 
often the case that the elementary functionals are function 
evaluations at specified points (usually with R). We denote 
these elementary functionals by S^,...,S^ and, more conveniently
by {S.}^ . We now have ̂ i=0



When there is no ambiguity, we will delete the superscript (m) 
from

The choice of the elementary functions {S.}^ is affected1 1 = 0
by many factors; for example, the availability of information 
about the function f (i.e. ensuring that we are actually able 
to evaluate S^(f)), ease of computation, properties that we 
might desire Q to possess - over and above the necessary one 
that Q exists for all fcP.

We shall say that a Quadrature Formula (Q.F.) is exact for 
a function f if the error functional

(1.1.3) E(f) E I(f)-Q(f) 

is zero. If

(1.1.4) E(f) = 0 , Vfe*,

we say that the Q.F. is exact on the class <î>.
The usual approach when obtaining a Q.F. is to choose m,

the elementary functionals {S.}^ , and then require Q to be
1 1 = 0

exact on some specified class of functions 0^cr. We shall 
assume that we may write

(1.1.5) , . . . , (j)̂ } , Y-0 ,



and that the basis functions (j)̂, . . . , <j)̂ are linearly independent. 
If we wish to discuss a function ^ which is a linear combination 
of the functions i.e. ({) is in the function space spanned by 
0^, we write

(1.1.6) 4^sp0^,

or, if no ambiguity arises, Obviously if a Q.F. is exact
on 0̂  it will also be exact on spo^ when Q is a linear func­
tional. Clearly the values the number y may take depend upon m and
possibly the choice of functionals {S.}^ . If anything ̂i = 0
were known of the behaviour of functions in r it would be 
natural to try to choose the functions so that they reflect 
this behaviour. Having chosen m and , we may sometimes in­
vestigate which choice of functionals {S.}^ leads to a Q.F. ̂i = 0
which is best in some sense (see §1.2).

Since Q is approximating the linear functional I it is 
natural that we require Q to be linear also. The general form 
of Q is thus (see, for example, [6])

Thus, in determining Q we have (m+1) linear parameters, a^ 
i=0,...,m, which in principle are found by solving the so called 
moment equations. The moment equations are a system of simul­
taneous linear equations derived by replacing f in (1.1.7) by 
each of , . . . , , r=min(m,y). It is possible that in deter-



mmining our choice of elementary functions {S.}. further
^ 1 = 0

parameters, usually nonlinear, become available in Q.
Let

(1 .1.8)

The following is immediate (see, for example, [2])

THEOREM 1.1.1 If # has dimension at least m+1, and {S.}.m
m.*are linearly independent elements of (0 ) , then

det(B)zD. I l l

As usual ($™1 denotes the dual space of 0̂ .
We generalize the usual idea of a polynomial in a standard 

manner (see, for example, [9,97]).

DEFINITION 1.1.1 A (f>-polynomial of degree r is a function of 
the form

%i=0 “i h

where a^cR, , i=0,...,r I I I



If no ambiguity results we simply call a ^-polynomial a 
polynomial. If we refer to polynomials, with no obvious 
reference to some specific set , we mean polynomials in the 
usual sense.

DEFINITION 1.1.2 An interpolatory ({>-polynomial of degree r to
a function feT at {S.}^ r>s, is a ^-polynomial Ç of1 1 = 0
degree at most r, such that

S^(f) = S^Cç), i=0,...,s III

Usually we choose r=s in the above definition.

DEFINITION 1.1.3 The Q.F. (1.1.7) is called interpolatory if 
it may be derived by integrating the interpolatory (|)-poly-
nomial of degree m to f at (S.}T . Ill1 1 = 0

When the matrix B has full rank it is clear that we may 
derive a Q.F. in one of two ways which are equivalent in the 
sense that, although they have different representations, they 
will always give the same approximation to 1(f) .
These methods are
I. Derive the interpolatory Q.F. by solving

(1.1.9) s'̂ b = f
Twhere b = (b^,...,b^),— o m
A  = (s^(f),... ,s^^f)),



thus the interpolating ^-polynomial, p, to f at {S.}^ is

T-m
P = Ai=0 •

Then integrate p.
II. Solve the moment equations

(1.1.10) Ba = A
Twhere a = (a ,...,a ),— o m

^ = ( I ( ),..., I ( (j)̂) ) , 
thus deriving the Q.F. (1.1.7) directly.

However, if the matrix B does not have full rank and thus 
a solution to (1.1.9) may not exist, it is still possible that 
a solution to (1.1.10) does exist. See [8].

Thus, we have

THEOREM 1.1.2 If the matrix B has full rank and Q is a Q.F. 
exact on , y>m, then Q is interpolatory. I l l

Without any real loss in generality, unless it is stated
otherwise, we shall assume that the elementary functionals
{S.}^ are linearly independent in (0^0 . ̂i = 0

When we seek Q.F. exact on 0^, y>m, we almost invariably 
become involved in the solution of non-linear equations in­
cluding the parameters determining the choice of {S.}^ . The1 i = 0
deriviation of such Q.F. is a more difficult problem, and in
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order to guarantee the existence of such Q.F., we may be forced
to impose stronger conditions on either {S.}^ or 0̂  (or both). ̂ i = 0
An obvious example of this is to require the functions in 0̂  
to form a Tchebychev set on R (see §2.2).

Our approach to deriving Q.F.'s, namely requiring exact­
ness on a certain class of functions, is not the only approach 
that can be utilized. There is a large body of literature 
concerning Monte Carlo and other number-theoretic Q.F.'s, see 
for example [10,11,79]. These methods appear to be more ef­
fective for higher dimensional regions. There are other Q.F. 
which, while not integrating a large class of functions exactly, 
attempt to give good approximations over many integrals. See 
[7]. For other approaches see [80,81], and for other work 
describing some unifying theories of Quadrature, see [73,82].

§1.2. CHOICE OF QUADRATURE FORMULA
Having obtained a Q.F. it still remains to investigate the 

properties that it possesses so that we may compare its effec­
tiveness when compared with other Q.F.’s. Usually, by setting 
m=0,l,2,.... we are able to obtain a family of Q.F.’s exact on 
larger and larger classes of functions - y increasing as a 
function of m. Thus we can investigate asymptotic properties 
like convergence. It is possible that we might need to impose
conditions on the set 0^ and/or the elementary functionals

Ato ensure that we at least obtain w convergence of the sequence 
of linear operators {Q^^^}™_Q^I.

It is important to be able to estimate the error E(f).
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Often the theoretical error estimates available cannot be used 
in practical situations - for example when they require the 
evaluation of high order derivatives at unknown points. The 
problem of estimating errors in a manner which is easy and 
practical and yet reliable is by no means trivial. The behaviour
of both E and will be affected by the choice of 0 .̂ For
instance, the width of the subspace sp0^ in F, see for example
[1], or the choice of points at which we evaluate f when 
S^(f)=f(x^), i = 0,...,m, bearing in mind the fact that an increase 
in the number of interpolation points does not necessarily give 
a better uniform approximation to a function, could be important 
considerations.

Distinct from errors arising from a theoretical approxima­
tion of I, in practice, since we are almost always using com­
puters, we must also consider roundoff error. Roundoff error 
is not as serious as it has been in the past as we may always 
use double precision arithmetic if necessary. Clearly however, 
it remains desirable, and certainly aesthetically pleasing,

that the coefficients a^ in (1.1.7) are all positive. Also, if 
some a^ are negative, it is important that the sum of the modulus 
of all the a^'s is reasonably small, say of the same order of mag­
nitude as their algebraic sum. Depending upon the weight function 
w it may also be desirable that the numbers |â | are themselves 
of the same order of magnitude.

When we design or choose a Q.F. there are various things 
that we should take into consideration:
(1.2.1) The amount of time and money one has available. If
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we are only going to evaluate a given integral once 
we may be happy using an inefficient but simple or 
easily available Q.F.. On the other hand, if we are 
going to be evaluating a large number of similar 
integrals it becomes important to spend time and 
effort in discovering efficient (though perhaps not 
so simple) Q.F. so that a computer may do its job 
quickly and cheaply.

(1.2.2) The information available about the integrand. This
will range between the extremes of being given, a
priori, certain data (i.e. the elementary functions
{S.}^ are predetermined, say, in some physical ex- 

^ 1 = 0
périment) to having the integral available in a form 
that allows us a free rein in our choice of 1 i = 0
In this latter case the ease and accuracy with which 
we may extract the desired information becomes an 
important consideration.

(1.2.3) The way in which we choose the set 0̂ . Depending upon 
the role in which we want to use the Q.F. how do we 
choose the functions in 0̂ : generally, or aimed at 
the solution of one or a few specific problems? For 
example, the integrand may be oscillatory or singular. 
There is a school of thought which favours the latter 
alternative if we are actually going to make serious 
practical use of any Q.F. See [46].

(1.2.4) If the Q.F. is going to be used in some compound manner 
(either adaptive or not), do we wish to be able to use
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information obtained more than once? This is a more 
important consideration in the one-dimensional case 
(d=l) than in the higher dimensional cases since the 
amount of new information required at each stage in 
the compounding procedure is of the order of the 
amount required at the previous stage to the power d.

(1.2.5) When our region of integration is multi-dimensional, 
(d>l), there are an infinite number of regions which 
may not be transformed into one another with affine 
transformations, for example, hypercubes, spheres, 
simplices and so on. Consequently, different Q.F. are 
required for different regions. It is often possible 
to simplify matters considerably by taking into account 
the symmetry properties of the region under consider­
ation. See, for example, [87,88,89]. The functions 
(|>̂ are almost invariably chosen to be the standard 
monomials. Because of the large number of points re­
quired in multidimensional Q.F., exact even for poly­
nomials of moderate degree, much effort has been ex­
pended in the investigation of minimal point Q.F. 
Compared to the one dimensional case, there remains 
much work to be done in this area. See, for some 
recent developments, [90,..., 93].

Our choice of Q.F. above is dominated by a "trade-off" 
between ease (the Q.F. is familiar, easy to programme, "nice" 
easily handled parameters perhaps already available as a sub­
routine on the computer, and so on) and efficiency in some
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sense (the amount of computer and/or programmer time used, 
optimal characteristics of some type, and so on).

Apart from the above considerations, we are often inter­
ested in obtaining "best" Q.F.'s in same sense usually related 
to a method of estimating errors. For example:
(1.2.6) We may wish to maximise y. By far the most common 

occurrence of this is an investigation where the 
elementary functionals are point evaluations of the 
function, namely traditional Gaussian Q.F.'s.
See, for example, [38,59].

All elementary books on numerical analysis deal 
with Gaussian Q.F. in some detail for the standard 
polynomial case. The derivation depends upon the 
theory of orthogonal polynomials. For the one-dimen­
sional case tables of knots and weights are readily 
available, e.g. [38,60].

(1.2.7) We may seek Q.F. that are optimal in the sense of Sard 
minimizing the Peano kernel of the Q.F. See, for 
example, [61,...,67].

(1.2.8) We may seek Q.F. that give a "best" performance over 
a function space or collection of test functions.
Here "best" is usually measured in some sort of sta­
tistical manner. We may choose to use the Sarma- 
Eberlein estimate of goodness, see Ch. 5 of [37], 
[39,40]. Alternatively we may seek some type of 
"performance profile" over a set of carefully chosen 
test functions. See [41].
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(1.2.9) We may examine Q.F. which minimise %?_Q|a^^(cf.
(1.1.7)), usually called Tchebychev Q.F. . See, for 
example, [68,69,70].

Once we choose a method of estimating errors, or examine a 
general theory of Q.F., we obtain a theoretical means of com­
parison of Q.F.. However, most of the work done in the area of 
comparison of Q.F. has been via the practical expedient of 
examining the performance of various Q.F. on carefully chosen 
sets of test functions. See [41,...,45].

Other approaches to the problem of estimating errors in­
clude (not necessarily mutually exclusively):
(1.2.10) The commonest approach, in the polynomial case, of 

using Taylor series, and obtaining error bonds in 
terms of high order derivatives. Other truncated 
series have also been used, in particular Tchebychev 
series. See [78] and the consequent literature.

(1.2.11) The theory of analytic functions, in which case tech­
niques dependent on Cauchy's theorem and contour 
integration are used. See, for example, [71,72,73,98]

(1.2.12) The use of functional analysis to minimize the norm of 
E in some sense. See, for example, [39,67,74].

(1.2.13) The use of differences or other means to avoid the 
need to estimate high order derivatives. See, for 
example, [76,77,83].

(1.2.14) Special techniques for error estimates for functions 
with special characteristics, say low orders of con­
tinuity. See, for example, [7 5,99].
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When we use a Q.F. we must remember that we only have a
finite number of pieces of information to use, namely {S.1 1 = 0
and consequently it is impossible to obtain infallible error 
estimates based only on this information. The common technique 
of simply doubling m and then comparing the results obtained 
using Q^™^ and Q^^^^ can be easily fooled. See [5,122]. Given 
a little more information about the general behaviour of the 
integrand it is possible, using so called Adaptive Q.F., to 
obtain fairly accurate results at a cost that is not exorbitant. 
See, for example, [123,...,126]. Other approaches to the pro­
blem of practical error estimation and obtaining a desired 
degree of accuracy include,
(1.2.14) Approximation, or more exactly the obtaining of upper

bounds for theoretical estimates. This tends to be a
very conservative, and thus very expensive, approach,

(1.2.15) The use of a sequence of Q.F. and some type of extra­
polation or acceleration procedure. See, for example, 
[57,58], and other literature on Romberg Q.F. of 
various types.

Analogous to the comment we made concerning the choice of 
Q.F. when estimating errors, we always have to consider the 
"trade-off" between price and reliability.

Further comments concerning the criteria for deriving, 
choosing, evaluating, and estimating errors for various choices 
of Q.F., can of course be found in any of the authoritative 
books written on Numerical Integration, in particular [5], [37]. 
See also [4], [84,85,86]. There is also an extensive Russian 
literature on the subject of Numerical Integration.
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§1.3 INNER PRODUCT QUADRATURE FORMULAE

An Inner Product Quadrature Formula (I.P.Q.F.) is a Q.F 
designed especially for approximating the integral

f(1.3.1) w(x)f(x)g(x)dx E I(f;g)
JR

where R and w are as in §1.1. The functions f and g are assumed 
to be members of classes of functions r and A respecitvely.
In some cases it is advantageous to have T e a .

For ease of reference we list the notation that is used 
throughout in Appendix 1, and the assumptions that are made 
during the discussion of I.P.Q.F. are listed in Appendix II.
So far we have

(Al) fsr and g e V  are real valued functions acting on points in 
R, RcR^.

(A2) The integral (1.3.1) exists (perhaps improperly) and is 
finite in a Riemann-Stieltjes sense.

(A3) The weight function w is non-negative throughout R ,

For the present, we also have

(A4) d=l. That is, R is a one dimensional finite interval, 
whose interior we may take, without loss of generality, 
to be (-1,1).

The integration operator I in (1.3.1) is a bi-linear func­
tional. Thus it is natural, analogous to the derivation of Q 
in §1.1, that we should seek a bi-linear functional Q(f;g) with



which to approximate I. Suppose we have elementary linear
functionals S ,.,.,S and T ,...,T , denoted {S.}“ and o m o n = 0
{T.}^ , giving us information about f and g respectively.3 j =0
We also have the assumption

(A5) Each of the linear functionals and is bounded and 
therefore continuous on F and A respectively.

With a customary abuse of notation the bi-linear functional 
Q(f;g), written Q̂ "̂ ’̂ \f;g) where necessary, may be regarded as 
a mapping

(1.3.2) q(m,n) .

and has the general form

(1.3.3) Q(f;g) = S.(f)a..T.(g) = f^Ag

where f^ = (S^(f),...,S^(f)),

^  = (Tg(g),...,T^(g)), 

m ,nand A=(a..) is a real (mil) x (n+1) matrix called the13 i=0,j=0
coefficient matrix. The numbers a^^ are called the coefficients 
(or sometimes weights), just as in (1.1.7) the numbers a^ are 
known as the coefficients (or weights) of the Q.F.

We call Q(f;g) in (1.3.3) an I.P.Q.F. To distinguish 
them, we call Q.F. of the type (1.1.7) Regular (R.Q.F.). We 
have used the name I.P.Q.F. instead of Product-type Q.F., see
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[12,...,21,23], to avoid confusion with other more established 
meanings of the term, in particular in the context of integra­
tion in multi-dimensional regions (i.e. d>l) • See also § 1. M-.

We note that it can be shown by example that setting m=n, and 
Si=Ti , i=0,...,m, does not necessarily reduce an I.P.Q.F, to a 
R.Q.F..

We proceed as in §1.1. We shall say that an I. P. Q.F. is 
exact for an ordered pair (f;g), feP, geA, if the error functional

(1.3.4) E(f;g) = I(f;g) - Q(f;g)

is zero. Hence, say that an I.P.Q.F. is exact on the product 
space if, for each choice of fe^ and gcT we have E(f;g)=0.

After predetermining m and n, and choosing {S.}^ and
1 i = 0

{T.} , we seek an I.P.Q.F. exact on , where3 j =0

(1.3.5) f cr

Clearly the integers y and 6 are functions of m and n
respectively, and may also depend on the choice of any (usually
non-linear) parameters we may make in the selection of {S.1 i = 0
and {T.} . We make the following assumption:] j=0

(A6) The sets and are each made up of functions which 
are linearly independent over R.
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Thus, analogous to (1.1.5), we will always be able to
write

(1.3.6)
<5 — 0

Obviously if an I.P.Q.F. is exact on due to bi-linearity,
it will be exact on (sp0^) x (sp'F̂ ).

In determining we see that we have (m+l)(n + l)
linear parameters a^^ and possibly some non-linear parameters 
at our disposal. Once the non-linear parameters have been 
assigned, we may find the linear parameters as follows :

Let
(1.3.7) B = (S.(4,))^ “ = (b,,)^ , (r=min(m,Y),

1  ̂ «. = 0,1 = 0 « = 0,1 = 0

(1.3.8) C = (T.(^.))S 5 (c..)S , s=min(n,6),
] « « = 0,j=0 S,=o,j=D
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and

(1.3.9)

That is, D is the Kronecker product of the two matrices C 
and B, having the block matrix structure

(1.3.10)

5so^’ • • • > Csnl

We now have, analogous to Theorem 1.1.1,

THEOREM 1.3.1 Assume that and have dimensions at least
m+1 and n+1 respectively, i.e. y>m, 6>n. Assume that
{S.}^ and {T.}^ are linearly independent in (#^0" and 1 i=0 3 j=0
(\|f̂)'‘ respectively. Then det(D) is non zero.

PROOF : By block row operations D may be reduced to a block
matrix in which all blocks below the main diagonal are 
zero. The matrix C is non singular by Theorem 1.1.1.
The result follows by applying Theorem 1.1.1 to each of 
the block matrices on the diagonal. I l l

We define i|;-polynomials and interpolating ^-polynomials
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in a way completely analogous to the definition of ^^polynomials. 
Now we have

DEFINITION 1.3.1 An I.P.Q.F. will be called interpolatory if
it may be obtained by integrating pq, where Cp ;q) e ,
and p(q) is an interpolating ({)--( i|;-) polynomial of degree
at most m(n) to f(g) at ( { T . ). /// ̂ i=0 3 jro

As before there are at least two approaches to determining 
an I.P.Q.F. exact on which, although they may have dif­
ferent representations, will give the same approximation to I.
I. Derive the interpolatory I.P.Q.F. Solve

TC Ç = g ,

T Twhere b = (b^^...,b^), c = (c^,...,c^),
P  = (Sg(f) , . . .

^  - (Tg(g) > ■ • ■ ,T^(g) ) ,

and thus obtain the interpolating g-(g-)poIynomials

(1.3.12) P = Ii=o h h  

q = Ij;o •

Finally, integrate the product pq.
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II. Solve the moment equations

(1.3.13) Da = A ,

m m  rn
(1.3.14) a = ( a , . . . , a )— —o —n

T  ̂*̂ o i ’ ’ * * ’ ^mi )) i=0, * • * jn.

(1.3.15) I = (A^\ . . . , Â )—o —n
- (I((j)̂ 5i|)̂ )5 . . « J I(g^5g^))j

i~0, . . . 3 n .

As before, it is still possible that when either B or 
C does not have full rank, that there will be a solution to 
(i.3.13) but not to (1.3.12). Again see [8] for further de­
tails. However we shall not consider Q.F. of this type, some- 
times rather aptly referred to as "fortuitous" Q.F. See [88] 
Hence we make the following assumption:

(A7) The elementary linear functionals {S.}^ and {T.}^1 1=0 ] ]=0
are linearly independent in (g^)“ and (T^)" 
respectively.

The comment following Th. 2.1.2 explains why, if y>m, this 
might be an important assumption. Analogous to Theorem 1.1.2
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we have

THEOREM 1.3.2 Assume (A7). Assume an I.P.Q.F. is exact on 
Y (Sg XY , Y>m, 6>n. Then the I.P.Q.F. is interpolatory.

PROOF: (A7) tells us via Theorem 1.3.1 that B and C have full
rank. Hence a unique solution to (1.3.12) exists. The 
results obtained using methods I and II must be identical 
since the I.P.Q.F. is exact on g^xY^. ///

The following results are also obvious:

THEOREM 1.3.3 If (Al), (A2), (AS), (A6) and (A7) hold then 
there exists an interpolatory I,P.Q.F. exact on g^xY^.

///

Note that we do not necessarily require (A3), or even that 
w is continuous in (-1,1).

THEOREM 1.3.4 An interpolatory I.P.Q.F. is uniquely determined by
(1) w in (1.3.1)
(2) the choice of function subspaces g^ and Y^
(3) the choice of elementary functionals {S.}^ and1 i = 0

The investigation of the various properties of I.P.Q.F.'s, 
convergence, error estimations,effect of choice of functions and



25

elementary functionals and so on, is the objective of the rest 
of this thesis.

Before continuing we make the obvious comment that a R.Q.F., 
when applied to an integrand which is the product of two functions, 
or even one function C, which may always be written ^.1, may 
always be written as an I.P.Q.F. on setting m=n, i=0,...,m,
and

0, i*j
(1.3.16) a^j =  ̂ i=0,...,m, j=0,...,n.

a^ 5 i=j (see (1.1.7))

From now on, unless it is specifically stated to the contrary, 
we assume that (A1-A7) hold.
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§1.4 OTHER WORK ON INTEGRATING THE PRODUCT OF SEVERAL FUNCTIONS

Before continuing, we would like to comment on the use of 
the name I,P.Q.F. again. There are other approaches to the pro­
blem of integrating the product of several functions than the one 
investigated here. Some, not unnaturally, are termed "product 
integration" of one sort or another. It is to avoid confusion 
with other approaches that we use the somewhat more descriptive 
term Inner Product Quadrature Formula . For example, in [47] 
the term product integral is used: however, the subject under
investigation is that of approximating a matrix valued Riemann 
product integral.

The investigation of the numerical approximation of the 
integral of the product of two (or more) functions is not a new 
or exhausted topic, as an examination of [47,...,56] shows. It 
seems that the earlier impetus for such investigations comes from 
practical questions arising in actuarial work, and much of the 
later impetus, with the advent of the computer, from the area of 
numerically solving integral equations.

In fact, possibly the first example of an I.P.Q.F., see [48, 
49], is derived via method I of the previous section. We set

(1.4.1) ^i " ^i " T:) i = 0,...,m.

where is the i-th polynomial orthogonal with respect to w on 
R, and

I ( Ç ; T . )
(1.4.2) S.(5) = T. (Ç) = Y?----- \ , i = 0,...,m,1 1 ^i'^i
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namely the i-th generalized Fourier coefficient of the function Ç 
We then find that A is a diagonal matrix with elements

fo , if]
(1.4-.3) a.. = / i,j=0,...,m.

|i(Ti;Ti), i=j

This I.P.Q.F. is interpolatory and exact on
Of course, in practice, the evaluation of and T^ may not 

be a straightforward procedure.
In the oft quoted paper by Young [51], and in [50], we dis­

cover the source of both the term and the technique of product 
integration in its usual sense. We consider the integral

(1.4.4) I f(x)^(x) dx .
R

The function g essentially plays the role of a weight function. 
For the first time we encounter a more general formulation of 
what is, at present, essentially the problem of finding a R.Q.F 
matrix notation is used and the functions (of §1.1) are not 
immediately assumed to be polynomials. This R.Q.F. is inter­
polatory and, in our notation, is derived as follows (cf §1.1.)

(1.4.5) S.(S) = S(x^), i=0,...,m,

and the coefficients a^ in (1.1.7) are chosen (by solving the 
linear system analogous to (1.1.9)) so the R.Q.F. is exact on 

When we wish to attain greater accuracy than we can with

m
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as above, the usual procedure is, in principle, to compound 
as opposed to attempting to increase m. As m increases, 

apart from the possible difficulty in calculating the moments of 
the functions with respect to g, namely the numbers

(1.4.6) g^(x)g(x)dx.

convergence of the R.Q.F. is not as rapid as might be desired. 
Usually, see [53], [56] as examples of this well known procedure, 
we approximate f in (1.4.4) by sequences of low order interpolating 
piecewise g-polynomials, taking g^=x^.

The term product-integration has also been used by Elliot 
and Paget, [54,55], in their investigation of integrals of the 
form

(1.4.7) w(x)f(x)K(X;x)dx = I(f;K)
R

where w(x) and f(x) are as in §1.1 and K is a function, depend­
ing on the parameter X, which is assumed to be such that the 
application of a "standard" (i.e. regular, of some sort) Q.F. 
to (1.4,7) would require a large number of knots in order to 
attain a modest degree of accuracy. This may also be regarded 
as an example of an I.P.Q.F.

Set g^=x^, i=0,...,m. Then f is approximated by an inter­
polating polynomial at the knots x^, i=0,...,m, which are the 
zeros of the polynomial, x^, of degree m+1 orthogonal with 
respect to w over R. Thus
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(1.4.8) S^(t) = ç(x^), i=0,...,m.

K is approximated by its truncated (generalized) Fourier Series,
and has 6=0, g =K. Thuso

I(t .;K)
(1.4.9) T. (K) = y 7— ^ \  ) j=0,...,m,] Kxj^Tj) J

where is the orthogonal polynomial of degree j with respect 
to w over R.

We end up with an I.P.Q.F., Q(f;K), which we may write as

(1.4.10) Q^™’"kf;K)( = Q(f;X)) = f^AK,

> I':]
where a^^ = ^ i,j=0,...,m.

i = j

This Q.F. is not exact on 0^xY° unless K can be written as a 
polynomial of degree m. As remarked earlier, the determination 
of Tj(K) may not be easy.
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CHAPTER 2 : INNER PRODUCT QUADRATURE FORMULAS

§2.1 MOTIVATION

Most, though not all, of the work published dealing with 
I.P.Q.F. deals with the standard polynomial case, i.e.
We include a list of, to the best of our knowledge, all previously 
published work concerning I.P.Q.F., i.e. [12,...,28, 118, 119].

The main motivation for investigating I.P.Q.F. is that 
when dealing with integrals of the type (1.3.1) it is often the 
case that the two functions f and g have different characteristics 
One may be smooth and "well behaved"; the other not, perhaps 
being oscillatory, having singularities in or near R, or having 
only a low order of continuity. Thus, if we choose 0̂  and to 
reflect the properties that f and g possess, we might expect 
more accurate approximations of (1.3.1). It is also possible 
that we might have different information available for each of 
the two functions, thus making it desirable to choose elementary 
functionals, giving us information about one function, which we 
may not apply to the other function. Thus, assuming we know 
enough about the integrand to be able to implement an I.P.Q.F., 
the use of I.P.Q.F. offers two advantages, namely the divorcing 
of information used and the spaces approximated over when dealing 
with f and g.

Since I.P.Q.F. has more linear (and non-linear) parameters 
in its construction than a R.Q.F., (m+1)(n+1) as opposed to m+1, 
it is reasonable to regard I.P.Q.F. as generalizations of 
R.Q.F. Clearly, we may always regard R.Q.F. as special cases of
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I,P.Q.F. exact on where is almost always chosen to be
unity. See also comments following Th. 1.3.4. As always, we 
have to pay a price for a gain, and to use an I.P.Q.F. we must 
be able to distinguish between the functions f and g. As will 
become obvious later, the way in which the integrand in (1.3.1) 
is broken up into the product of two functions can be important.

With (m+1)(n+1) linear parameters available, we might expect 
to be able to integrate exactly at least (m+1)(n+1) distinct linear 
independent functions when using an I.P.Q.F. (analogous in some way 
to an interpolatory R.Q.F.). However, using an R.Q.F. with essen­
tially the same information available (i.e. forcing S^=T^, m=n), 
we might only expect to be able to integrate m+1 linearly independent 
functions exactly, treating the product fg as one function. This, 
in essence, turns out to be the case, that is, we can always in­
tegrate exactly the potentially linearly independent functions

(2.1.1) ĝ ĝ j 5 i=0,...,m, j=0,...,n.

However, an investigation of the standard polynomial case 
manages to obscure completely this important fact. Set

(2.1.2) ĝ = 1,o
(2.1.3) ^i “ ( g 1

(2.1.4) ^o - i )

(2.1.5) gj = (̂  1
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Of course we require and gi^l. If, in addition, we
have

(2.1.6) g% = gi,

we find that

(2.1.7) g^g^ E i+j=k+l = constant.

Equation (2.1.7) means that the (m+1)(n+1) potentially linearly 
independent functions (2.1.1) degenerate to only m+n+1 linearly in­
dependent functions. This of course is the situation when we choose, 
in particular,

(2.1.8) g% = gi = X.

We shall use the following:

DEFINITION 2.1.1 - If the action of an elementary functional L
on a function, 5, is the evaluation of the function at a given
point t, we call t a knot, and say that L is of class %i,
writing Lex^s and denote this functional by L(t;.)(=Ç(t)). I l l

Obviously, we always assume that knots are in the domain of 
definition of functions we are likely to evaluate, however, this 
does not necessarily (though it is preferable) mean that knots 
must be within the interval of integration R.

We have, see [24],
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THEORjlM 2.1.1 Let S^exis T^exi? j = 0,...,n. Define
and Y by (2.1.2) - (2.1.6) . Then, no matter how

we choose the knots , i = 0 , . .. ,m, and y . , j = 0 , . . . ,n , it is
not possible to find an I.P.Q.F. exact on

if Y>m and 6>n, or if y+6>2m+2 with y>m and 6^n, or if 
Y+6^2n+2 with y < m  and 6>n .

PROOF: See Lemma’s 3.1 and 3.2 of [24]. I l l

Recall that, when dealing with R.Q.F., and choosing S^exi, 
i=0,...,m, we cannot find a R.Q.F. exact on ĝ  g^=x^,i=0,..,y, 
if y>2m+l. See, for example, [4] p. 10 2. The comments made 
earlier explain the above Theorem, which is initially perhaps 
somewhat surprising.

In fact, when dealing with the polynomial case, the only 
advantage an I.P.Q.F. has over a R.Q.F. is that, even when y+6 
is maximal, we do obtain some degrees of freedom in the choice 
of knots. One way of employing these degrees of freedom is in 
making the I.P.Q.F. exact on g^xY^ for various choices of y and 
<S . Again see [24].

Whilst the choice of the elementary functionals is, in 
theory, only restricted by the requirement

['" S^eF* , i=0 , . . . ,m
(2.1.9) ^

Tj.eA“ , j-0,,..,n,
s ^
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in practice the choice is usually more limited: by the information
available and the ease of access of the information. By far the 
most common choice is a xi functional. Other choices of func­
tional include function derivative evaluation at a knot (see, for 
example, [94, 95, 96]) and an integral over a small interval 
centred on a given point, see [30, 31]. We shall define further 
classes of elementary functional, analogous to x%, if and when we 
need them.

For future reference, we include some basic facts concerning 
the inter-relations between linear function spaces.

THEOREM 2.1.2 Let F and G be two linear function spaces, such 
that FcG. Then G*cF*.

PROOF; See [2], ///

We note, however, that if {L^}Y_^ are linearly independent
in F* , and L.eG*, i=0,...,r, we are not assured that {L.}^ ̂ 1 i = G
are linearly independent in G*.

Example 2.1.1 Let L^exi? i=0,...,r,

F =

n r+1 A +1 rG = {x }._n, and det (L.(x3 )). ._n=0.l-U 1 1 ,]-U

Thus, when talking of linear functionals, it is essential 
that we say with respect to what function space they are defined.
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DEFINITION 2.1.2 A set of functions FcQ is called dense in the 
normed linear space G if an arbitrary element ÇeG can be 
approximated arbitrarily closely by a finite linear combina­
tion of elements C^eF. That is, given e>0 there exist s, 

such that

k  - Ii=o “^5J <e

where it • 11 is the norm- on the space G. I l l

As an example we have (see, for example, [169])

LEMMA 2.1.3 The set of all polynomials is dense in the space of
continuous real valued functions defined on [-1,1]. I l l

We recall that the hierarchy of commonly used function spaces 
is (see, for example, [2,169]),

EcAcc”, . . , cC^’*'^cD^cC^, , , , ,cD°cLip^cLip^ 
(2.1.10) I cC°cBcL cL ,

0<p<qS®, a<6, n a positive integer.

and the spaces are defined as follows:

(2.1.11) L = L (R) = (f: |f(x)|Pdx<®>,P P J R

(2.1.12) B E B(R) E {f:3M<®,If(x)I<M, VxeR},

(2.1.13) C^(R) = (f;f has a continuous r^^ derivative VxeR}
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(2.1.14) D^(R) = {f:f has a continuous (r-l)st derivative,
differentiable almost everywhere in R},

(2.1.15) Lipĵ a E Lipa e {f : | f (x  ̂)-f (x  ̂) 1 <M| x ^-x  ̂| ̂  , VXj,x^eR},

CO(2.1.16) A(R) E (f:f(x) = T (x-x ) , (x-x )eh(x ) a^n=0 n o ' o o
neighbourhood of x^, Vx eR},

(2.1.17) E E {f:feA, Vx, |x|<®}.

As functions become more specialized we find that more can 
be said about the structure of the function spaces containing 
these functions. We also have

THEOREM 2.1.4 Let R = [-1,1], and assume FcGcC^(R) are two of the 
above mentioned spaces. Then F is dense in G .

PROOF: From Lemma 2.1.3 since the polynomials will be in the
space F. I f f

Thus, given a set of functions dense in E, this set of functions 
will also be dense in any of the above spaces contained in 
C(R),R=[-1,1]. This, of course, is the justification for con­
structing Q.F. of any type, exact on well behaved sets of functions. 
The classic examples being the polynomials, and to a lesser extent 
the trigonometric functions. The error of a Q.F. exact on certain 
functions (often a basis for a subset of a set of functions dense in 
E), for a particular integrand depends on the integrand and the 
functions the Q.F. is exact on.
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nomials when employed on integrands that are oscillatory. 
Recalling (Al), it is natural to have

(A8) rcC°(R), AcC°(R).

§2.2 TCHEBYCHEV SETS

We begin by quoting some definitions and summarizing some - 
results concerning Tchebychev sets, or as we shall abbreviate 
them, T-sets. See also [9].

Let * be a total order relation on a set K. If we use the
symbol < we mean the usual ordering used in the real number
system. Thus, if KcR, we may always replace * by < in what 
follows (although the converse may not be valid). By 
5^ = Q we mean a set of linearly independent real valued
functions defined on K. To avoid trivialities, whenever we de­
fine sets of functions (e.g.  ̂ etc.), we will always
assume their linear independence.

DEFINITION 2.2.1 Let K and defined on K be given. Then:

(a) 2^ is a T-set on K if and only if every ÇespH^, has 
at most r distinct points in K at which it is zero.

(b) 5^ is a complete T-set (CT-set) on K if ,s=0,...,r, are 
all T-sets on K.

(c) 2^ is a weak T-set (WT-set) on K if every ÇespH^, has
at most r sign changes in K. ///

We note that if K is a point set, being a T-set is
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equivalent to 5̂ , being a unisolvent set (in the sense of uni- 
solvence as defined in [2]; this is a somewhat restricted defi­
nition, not least in that it depends upon linear algebraic argu­
ments, see [117]). However, we are primarily concerned (cf. (A3), 
(A8)) with the case where K is a connected set, particularly an 
interval of the real line, and are all continuous functions 
on K. In this context we have an alternative definition of 
T-sets available (see [9]). Let

(2 .2.1) U =U(t ,...,t ) = det r o r

t^eK, i=0,...,r.

THEOREM 2.2.1 Let K and 2^ defined on K be given. Assume K is
an interval of the real line, and C.eC°(K), i=0,...,r
If, for all choices of distinct points

t^eK,

(a) is non zero, then 2^ is a T-set on K,
(b) is of one sign, then 2^ is a WT-set on K.
(c) U , s=0,,..,r, is non zero, then 2 is a CT-set on K.s r

The converse also holds. ///

In a more general setting the extension of Theorem 2.2.1 (a)
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leads to the concept of an oriented T-set (OT-set) which is more 
restrictive than Definition 2.2.1 (a). For completeness we in­
clude the definition of an OT-set, see [10 4];

DEFINITION 2.2.1 (d) is an OT-set provided U^, as defined by
(2.2.1) is of one sign and non-zero for all
choices of t̂, *t, *t , t.eK, i=Q,...,r.0 1 r 1

(As in the rest of Definition 2.2.1, is 
defined on which has the total ordering 
relation * defined on it).

In the setting of Theorem 2.2.1, OT-sets and T-sets are equi­
valent. Parts (b) and (c) of Theorem 2.2.1 may also be extended 
to more general settings, see [35].

Observe that when considering a CT-set the ordering of the 
functions may well be important. For example, the set 
{x°,x2,x4,%l,%3j defined on, say (-1,1), is not a CT-set, whereas 
{x IS.

We now present some results concerning the relationship 
between T-sets and sets of linearly independent functions. We 
find from [32]

LEMMA 2.2.2 Let K and 5^ defined on K be given. Then there 
exist distinct points t^,...,t^, in K, such that

U 0 . r

PROOF: We proceed by induction on r.
The case r=0 is trivial.

Fix t^,...,t^  ̂and let t^ (=t say) vary. Now
"  Mo(tQ,...,tr-i)So(t)+...+Mr(t̂ ,...,t̂ _i)Sy(t)

where is the signed minor associated with Ç̂ (̂t) in the 
expansion of the determinant U .
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this impj. -8 that are linearlv dependenti. 1 1 = 0 " ^
unless, in particular, (t^,. . . = 0  for all choices 
of distinct points t^,...,t^_ in K.
This however, contradicts the inductive hypothesis. /// 

We note that, if we so desire, we may immediately assume

k  " ti* ...

in Lemma 2.2.2.

LEMMA 2.2.3 Let K and defined on K be given. Let t^,...,
t^_^ be distinct points such that ^#0. Then there
exists t e K distinct from t ,...,t . such that U ^ 0 .r o ' r-1 r

PROOF: Assume the converse. Arbitrarily fix t^^K. in
Lemma 2.2.2 is assumed non-zero. Thus there exist ao
a , not all zero, such that r

r-1
0 .5 .(t^), i=0,...,r-l.

If, for arbitrary t , a , . . . ,a , are independent of t ,r o r-1 r
we contradict the assumption of linear independence. If 
depend on t^ then, since U^zO, the result is demonstrated. ///

The above Lemma has a useful constructive aspect.
We make the following comments about the above results.

First, we have an alternative means of characterizing a set,
Ĥ , of linearly independent functions, i.e. the requirement
that there exist t * t. * ... * t , t.sK, such that Uo 1 r 1 r
Second, the above results include, as a particular case, multi­
dimensional regions obtained by taking a Cartesian product of 
spaces. Thus we have a useful supplementary result to the well-
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known theorem of Tchakaloff, see [100,101], stating that we
can always find an interpolatory Q.F. with positive coefficients
on a given region. Third, the requirement that is a T-set
means that for arbitrary (distinct) t^eK we have U^zO, whereas
if 2^ are merely linearly independent all we are guaranteed is
the existence of at least one set of points t ,...,t such that^ o’ ’ r
Ur

We would expect that only under exceptional circumstances 
would the points t^,...,t^ be unique.

We now give some results investigating the relationship 
between various types of T-set. Recalling that K is a totally 
ordered set, we may represent it when it is an open set by an 
"interval"

(2.2.2) (A,y)={t:A*t and t*p,t2A,tzp} 

and when it is a closed set by an "interval"

(2.2.3) [A,]i] e (A,]i) u (inf K) u (sup K).

The interior of a set K is the "interval" (A,y) and the 
closure of K, denoted K, is given by (2.2.3).

THEOREM 2.2.4 Let 2̂  be a WT-set of continuous functions de­
fined on a closed real interval (i.e. let K=[A,p]) . Assume 
le2^. Then one and only one of the following may occur:
(a) 2^ is a T-set.
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(b) there exists a non-trivial 5espH^ with 5=0 on a sub­
interval of K.

PROOF: See [102, 109], ///

Following [106] we have

DEFINITION 2.2.2 Let 2^ be a T-set defined on a set K. A
function 5 is called adjoint to 2^ if the set of functions 
2^u{5) is also a T-set on K. The set of functions 2^u{5) 
is called an adjoined T-set. ///

DEFINITION 2.2.3 If we replace "T-set" with "OT-set" in
Def. 2.2.2 we prefix adjoint with "strongly". If we 
replace "T-set" with "WT-set" in Def. 2.2.2, we prefix 
adjoint with "weakly". ///

Before continuing we recall the fact that if K is a real 
interval and the functions 5^,5 are continuous, then an OT set 
is equivalent to a T-set. We also have the following inclusion 
relations :

( OT-set c T-set c WT-set,
(2.2.4) V

CT-set c T-set.

DEFINITION 2.2.4 Let be a WT-set on K. The set of functions
weakly adjoint to 2 is called the convex cone of 2 andr r
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is denoted by C{H }.r

LEMMA 2.2.5 Let H  ̂ be a T-set of continuous functions defined
— —    p — i

on K. Let the interior of K be an open interval. Let
If U^=0 for some choices of points t * t i * 

... " t^j t^eK, then there exists a ^-polynomial of degree 
r, which is equivalently zero on

PROOF: See [103]. ///

This result complements, though under more restrictive con­
ditions, Theorem 2.2.4.

THEOREM 2.2.6 Let 5^ be a finite dimensional WT-set of continuous
functions defined on a real interval K=[A,p]. Assume leS^.
Assume there exists a a>0 such that if and ç=0 on
[ A 1 , y 1 ]c C A , P ] , then pj-A^^Sa. Then there exist knots,
X=t <ti<...<t =p, such that H |[t.,t.,T] is a T-set j=0,..., o  ̂ s r ' j j + 1
s —1.

PROOF: See [102]. ///

As a partial converse, generalizing the result that polynomial 
splines are WT-sets, we have:

THEOREM 2.2.7 Let A = t^<t ̂̂ <. . . <t^ = p be points in the real interval 
[A,p]. For j=l,...,s, let H _ be T-sets of dimension

^ j
n.+l on the intervals [t. -,,t.]. Assume leH ,j=l,...,s.] 3-1 3
Let
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5 = {ÇeC°[A,y]:CI Ct . ,t . ]e5J Uj

Then H is a WT-set on [A,y] with dimension (^j_^nj)+l.

PROOF: See [102]. ///

Turning our attention to CT-sets we have the very important 
results :

THEOREM 2.2.8 Let K be an open set. Then the span of every 
OT-set on K contains a CT-set thereon.

PROOF: See [35, 104]. ///

THEOREM 2.2.9 Let 5̂  be a set of continuous functions defined 
on the real interval K=[A,y], Assume 5^ is a CT-set on 
(X,u). Then is a CT-set on K if and only if % >0 on K.

PROOF: See [103]. ///

Theorem 2,2.9 does not immediately extend to the more 
general situation discussed above (see [103]). Theorem 2.2.8 is 
not constructive in nature, being concerned with existence, and 
it appears that an algorithm for constructing a CT-set from the 
span of a T-set remains to be found. It is clear that we should 
not necessarily expect any CT-set so constructed to be unique 
even up to multiplicative constants since, for example, both the 
following are CT-sets on (0,1):



45

(2.2.5) = x3, Si = S2 = X

(2.2.6) = X , Si = x ^ , S2 =

We may combine the above two theorems as follows

LEMMA 2.2.10 Let 5 be a set of continuous functions defined ------------r
on the real interval [X,p]. Assume 5^ is a T-set on (X,p) 
There exists a CT-set, 5^, within sp5^, such that

Lim S^zO and Lim S *0 
t^A^ t->p“ ^

Aif and only if 5^ is a CT-set on [A,p]. ///

See also [106].
The condition in Lemma 2.2.10 is only trivial if r<2. This 

is demonstrated by various examples of T-sets on closed inter­
vals that do not contain CT-sets in their span. See [104, 10 7] 

The question of whether to include the end parts of a real 
interval when we are considering I.P.Q.F. using x1 functionals, 
depends upon whether we choose to allow these end points to be 
used as knots (i.e. whether we restrict ourselves to so-called 
"open" Q.F. or not).

The requirement that be a T-set on a set K is quite 
restrictive as the following theorem shows:

THEOREM 2.2.11 Let K be a compact Hausdorff-space and an
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(r+1) dimensional T-set of continuous functions defined on 
K, r>l. Then K is homeomorphic to a topological sub-space 
of the unit circle.

PROOF: See [104, 108]. ///

We note that, in particular, the closure of every bounded 
subspace in IR^, d>l, is compact, and that IR*̂  is a Hausdorff 
space. See [105],

Nevertheless, on sets on which there exist non-trivial T- 
sets (i.e. having dimension greater than 1) we have

THEOREM 2.2.12 Let K be an open set such that if x,yeK, there 
exists z, x*z*y. Let be an (r+1) dimensional OT-set on 
K, r^l. There is a function S strongly adjoint to H^. 

PROOF: See [106]. ///

Note that the above result does not require that the set K 
be a connected set. Of more immediate interest we have:

THEOREM 2.2.13 Let K be a real interval. Let 5 be an (r+1) -------------------------------  r
dimensional T-set of continuous functions defined on 5 .r
Then there exists a continuous function Ç adjoint to H on K 

PROOF: See [106, 110]. ///

The function ç in Theorem 2.2.13 is clearly not unique and 
if some mechanism for obtaining the function(s) were available, 
we observe that we could use the above theorem recursively to 
obtain infinite dimensional bases for the function space C°(K).
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From what we have said about T-sets of various types it is 
apparent that, when K is a real open interval there is no restric­
tion in assuming a T-set is a CT-set. Also, if K is not an 
open interval (i.e. we consider "closed" Q.F.), it is likely, 
though not certain, that Theorem 2.2.9 or Lemma 2.2.10 will be appli­
cable* Note the importance of endpoints of intervals when con­
sidering closed intervals.

This last comment leads us naturally to the question of 
whether, when given a T-set on an interval K, there are sets 
of points K such that is a T-set on Ku k. This question may 
be rephrased in another way: namely, given a set of linearly 
independent functions on the interval K, under what conditions 
can we find a set k , c^K, such that E^ is a T-set on x. Thus 
we are led to an investigation of what might loosely be termed 
"almost" T-sets.

DEFINITION 2.2.5 Let E be defined on a set K. Let (h) ----------------  r ^  r 1 1 = 0
be defined on Kux, xnK=&. Assume that We
say that is an extension of 5^ on Kux. Conversely we say
that E^ is a restriction of (§)r> ^ '

If E^ is a T-set, we call it a T-restriction of ^.
If ^ is also a T-set, we call it a T-extension of 5 . ///

Taking a lead from [111] we have

DEFINITION 2.2.6 We call x in the above definition an expansion 
set of K. If X is an expansion set and 6^=0, i=0,...,r on
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K we call K a null set. Conversely, we call K a contrac­
tion set of Kux. ///

Note that Theorem 2.2.9 and Lemma 2.2.10 address themselves to 
the question of existence of T-extensions of 5̂ . We have the 
following interesting result:

THEOREM 2.2.14 Let 5^ be an (r+1) dimensional T-set on a set K 
Assume r>l. Then the following statements are equivalent:
(1) S contains an r dimensional T-set on K.r
(2) There is a point tî K and a T-extension of on Ku{t} 

PROOF: See [104, 107]. ///

For some further results concerning T-extensions, including 
the fact that they may not exist, see [107]. For some further 
results concerning particular choices of adjoint functions and 
T-sets on intervals whose endpoints may be a null set, see [111].

We can easily derive some further results, based on the 
fact that (see [9])

(2.2,7) det (exp (x. y.)? . „)
1 3  1,3=0

is strictly positive whenever -«°<x̂ < . . . <x̂ <«» and --“<yQ< . . . <y^<“

LEMMA 2.2.15 Let Ç be a positive strictly increasing real valued 
function defined on a set K. Let a^eR i=0,...,r>0, be 
pairwise distinct. Then E^, with



49

a.
Ci = (c)

is a T-set on K. ///

COROLLARY 2.2.16 If one of is zero we may replace
"positive" by "non-negative" in Lemma 2.2.15. I l l

We now introduce the following:

DEFINITION 2.2.7 Let S be a real function defined on a set K. 
Let t 1 and t2 be two distinct points in K. If

Ç (t 1 ) Ç (t£ )

we say that t̂  and t2 are ^-distinct points, otherwise we
say t 1 and t2 are ^-equivalent points. I l l

Thus, we obtain:

COROLLARY 2.2.17 Let C be a real function defined on a set K.
Let K be a subset of K, containing at least r+1 points on
which Ç is strictly positive and any two points in x are
^-distinct. Let a ,...,a be real, r>0. Then H , witho r r

ai
C^ = (O ,

is a T-set on x. I l l

We observe that Corollary 2.2.16 has an analogue following
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Corollary 2.2.17. Further, it is clear that if we denote by 
the set of points in an interval K which are ^-equivalent 

to t, that if teK, we may replace t with any other point in Ŝ . 
Thus it is unlikely (impossible if ç is continuous but not 
positive and strictly increasing) that x in Corollary 2.2.17 
will be unique. Clearly, in the above results any set x on 
which C is a monotonie function is a T-restriction of K (see 
also §2.8).

If we impose restrictions on the choice of the exponents 
a^,...,a^ in the above three results it is fairly obvious that 
we can derive other T-sets on certain subsets x of K.

Thus, for certain sets of functions 5^, we are able to ob­
tain information about some of their T-restrictions.

An investigation of what we have termed T-restrictions would 
help us obtain information about sets of functions which are 
"intermediate"; not being T-sets, but not "nearly" linearly 
dependent in the sense that sets of points with are a rare
occurrence. In this way we might be able to obtain a spectrum 
of results ranging from, for example. Lemma 2.2.2, through to 
results dealing with T-sets on the set K.

If we pause to consider the definition of T-sets (either 
Definition 2.2.1 or Theorem 2.2.1) we observe that we make 
crucial use of a linear functional - namely point evaluation of 
a function. It seems obvious to ask the question of whether, 
by analogy, we may use other linear functionals instead. Another 
generalization of T-sets (essentially non-linear) is given in 
[117], with the so-called "Property Z". See also [112].
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Often, once the form of a linear functional has been given 
it will depend on one, or perhaps more, parameters. For example 
a linear functional Lexi? depends on one parameter, namely the 
point, say t, at which we evaluate a function C, and it could 
be written as

(2.2.8) L(5) = L(t;S).

More generally, if a linear functional L depends upon 
several parameters, pi,...,p^, and acts on a function  ̂ we could 
write

(2.2.9) L(g) = L( p 1 , . . . , p ̂ Ç ) = L(p_;Ç).

For example, if L were an integration operator, acting on 
an integrable function over an interval (A,y) we could write 
it as L(A,y;Ç). We would expect the parameters pi,...,p^ to 
depend upon either the function Ç (in some general way) or the 
set on which Ç is defined, and so it is not necessary that 
p 1 , . . . , p^ are real. We shall, however, assume (cf. (AD).

(A9) All linear functionals are real valued and, if P is a 
connected set, the linear functionals are continuous 
functions of p_eP.

We might proceed by using one of the following:

DEFINITION 2.2.8 Let 5^ be defined on a set K. Let L(p_; • ) e ( E )̂ *
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for all choices P_eP, P being some set containing at least 
r distinct elements.

Then we say that is a generalized T-set, GT-set, 
with respect to L (and, implicitly, P) if for every SsspE^ 
there are at most r distinct choices peP such that

///

DEFINITION 2.2.9 Let E^ be a set of functions defined on a set K 
Let L^(£^;•)e(E^)*, RpcP^, i=0,...,r. Define

(2.2.10) Vp = V(p^,...,2 y) = det

Then, if for all choices P.j_sPĵ , i = 0,..,,r, we have 
we call a generalized T-set, GT-set, with respect

to {L.}^ (and implicitly {P.}^ ).1 1=0 1 i=0 ///

From now on when we talk of a collection of functionals
IL.}, we shall always assume that the functionals are distinct 1 1 = 0

Clearly we may define complete GT-sets, (WT-sets) denoted 
CGT-sets (WGT-sets), analogously to the way CT-sets (WT-sets) 
are defined.

An alternative way of looking at Definition 2.2.9 is (cf. 
Theorem 1.1.1),
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THEOREM 2.2.18 A set of functions 5 is a GT-set w.r.t {L.}^r  ̂i = 0
if and only if the linear functionals L ,...L areo r
linearly independent for all possible choices of 
i = 0 5. ..,r. ///

It is clear that Definition 2.2.9 includes Definition 2.2.8 
as a special case (i.e. L=L^, i=0,.,.,r). Thus there is no in­
consistency between the two definitions. If the sets in 
Definition 2.2.9 all consist of single points (P in Definition 
2.2.8 of r+1 distinct points) we say that the GT-set is degenerate, 
since we are merely investigating the linear independence of a 
given set of r+1 linear functionals over a given r+1 dimensional 
function space. We note that we have not required the sets P^ 
to be independent of each other, since we recall the situation 
when we define T-sets, where the definition of P^ may be viewed 
as depending on As was the case with CT-sets we
note that the ordering of the functions 5^ may be important when 
considering CGT-sets. In addition, we observe that it may 
also come about that the ordering of the linear functionals 
is important (if they are not the same). It is also clear that 
the above definitions are vacuous unless spans a function 
space of dimension r+1.

We give a simple example of a GT-set (see [115]);

(2.2.11)
= x^, i=0,...,r, on [0,1]

, teP^ = [0,1], i=0,...,r.
x=t
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The following are immediate generalizations of the pro­
perties of T-sets.

LEMMA 2.2.19 Let the elements of 5^ be continuous functions
defined on an interval, which are a GT-set with respect to
{L.}^_ . Then V is of one sign for all possible choices i — 0 ^
of , i = 0 , . . .,r .

PROOF: Immediate consequence of continuity of i=0,...,r.
///

Generalizing Lemma 2.2.2 we have

LEMMA 2.2.20 Let 5 be defined on a set K. Let {L.}f e(H ) .------------ r 1 1 = 0  r
Assume that L^(2^;C)^0, for some for every non-trivial
^espH^, i=0,...,r. Then there exist such that V^zO.

PROOF: By induction on r (cf. Lemma 2.2.2). The case r=0 is
obvious.
Fix p_,...p , and let p =p vary. Now—r-1 —r ^

^r " ^o^^o’* ‘ *’^r-1^ ’ ̂ o^ ’ "^^r ‘ ’ ̂ r-1^
where M^ is the signed minor associated with L^Cg;^) in
the expansion of the determinant V̂ . Thus,

^r ~ ‘ ’’̂ r-l^^j^ *
If V^sO, it follows that, in particular,

Mp(po'* *‘’̂ r-1^ "  ̂
for all possible choices of Pq 5 • • • s Pp_]_ * This contradicts 
the inductive hypothesis. ///
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Note that the ordering of the L^'s in Lemma 2.2.2 0 may be im­
portant. The next result is immediate from definitions:

LEMMA 2.2.21 Let 5 be a GT-set with respect to {L.}^ . Thenr 1 i=0
any ^-polynomial, Ç, is specified uniquely by giving the 
numbers

for given i=0,...,r. In particular, any non-trivial
^-polynomial cannot have

Li^Pi U) = 0 , i = 0 , ...,r

for any choice of i=0,...,r.
Conversely, if a set of functions is such that for

any ÇespE^,Ç has at most r isolated zeros with respect to
L . 5 i=0,...,r, then it is a GT-set with respect to {L.}^ ̂ 1 i=0

///

DEFINITION 2.2.10 Let Ç be a function and L defined in (Ç) . 
We say the ç has a zero £, with respect to L, if

L ( 2 ; ̂ ) = 0 .

If P is a connected set in a space with metric d(.,.), we 
say 2^P is an isolated zero of Ç if there exists Q>0 such 
that

L(2'̂ 23 0^0, 

for all V, 0<d (0,v)<Q .
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In addition, we say that an isolated zero £ is non-nodal, 

if for all y_iî£2 î such that 0 <d( 0 ) , d( 0 , £ 2  ̂ 5

L(£+£i;C) L(£+£2)S)>0 .

Otherwise we call an isolated zero jp nodal. ///

When no ambiguity results, we do not use the phrase "with 
respect to L" in the above definition. The following is immediate 
from the assumed continuity of linear functionals, in (5̂ )̂ , with
respect to both parameters and functions operated on.

LEMMA 2.2.2 2 Let {L_. be elements of (5 ) , r>0. Assume that
_  ]_ i = o n

are connected non-trivial sets, and that there is a non­
trivial 0.espH such that there is p.eP. and p. is a nodal 1 r — 1 1 — 1

zero of 0 ,̂ i=0,...,r. Then all components of the vector 
depend on only one independent parameter, i=0,...,r. ///

The above Lemma is not necessarily valid in the case where 
P^ is disconnected; for example, a collection of discrete points.
The importance of the zero properties of sets of elementary j
functionals is seen in the remainder of this chapter. j

-IAs a consequence of the above Lemma, when we talk of linear j
• ^ 1functionals depending on parameters we have: |

I
(AlO) Elementary functionals and T^ will each only depend j

on one parameter.

Given (AlO) we note that if, in definition 2.2.10, p is an 
isolated zero on the boundary of P , then it is automatically a 
non-nodal zero.
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Generalizing results in [9] slightly, we obtain

THEOREM 2.2.2 3 Let be a GT-set of continuous functions,
defined on a connected interval, with respect to {L.}^ ̂ i = 0
Assume P^, i=0,...,r, is connected. Then, counting every 
nodal zero once and every non-nodal zero twice, (unless it 
is on the boundary of P^, when it counts only once), no 
non-trivial ÇespE^ may have more than r zeros.

PROOF: Analogous to the proof of Theorem 1.4.2 of [9]. ///

THEOREM 2.2.24 Let be a GT-set of continuous functions de­
fined on a connected interval K with respect to {L-}^1 i = 0
Assume the interior of P^ is a connected interval, i=0,...,r 
Assume we want non-nodal zeros at p^,...,p^ and nodal zeros 

at P2 (k+1) ’ ■ * ’ ’ *̂ 2(k+l) + £ ’ s = 2 (k+1 )+£<r. Assume that 
( a ) Lĵ = L^+l + i i-0,...,k,

^r-1 ~ ^r-2’* * *’̂ r-s + 2 ~ + even.
Then there is a Ç-polynomial with the desired zeros and no 
others.

PROOF: Analogous to Theorem 1.5.1 of [9] on considering the
Ç-polynomial given in (2.2.12) and Lemma 2.2.25.
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(2.2.12) det

5 • • • 5 (p̂  +E,̂  ; C^)k k k ’ r
^ 2 k + 3 2 k + 3 ’ ’ • • • 5 L^^^g(p2k+3'^2k+3'Sr)

^s^Ps'^o)' • • • 5 ^s^Ps'Sp)
^s+l^Ps+l'^o), • • • Î Lg+iCPg+iiCp)
L (p + £s+1 s+1 s+1’ o + e

= C(t)

s+1 s+1 s + l rS_)

^r-2^^r-2^^r-2
r-2 r-2’

r-2 ̂ ^r-2'̂ r-2
///

LEMMA 2.2.2 5 Let 5^ and K be as in Theorem 2.2.24. Then
L^(p^;C)20, VppCPy, where  ̂ defined by (2.2.13), Hence Ç 
is non-trivial.

PROOF: We consider

(2.2.13) det

^r-l^Pr-l'^o), • • • , ^r-l^Pr-l'^r^r-1 r-1’ o
Sc/t) %r(t)

Ec(t).
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Consider L (p ;ç) for some p eP . This can be evaluated r r r r
by replacing the last row of the determinant in (2.2.13)
by (L (p ;Ç^),...,L (p ;C ))• This must always be non-zero r r  o r r r
or we contradict 5^ being a GT-set with respect to

“ ■I'Lo-

Theorem 2,2.24 is not as restrictive as it first appears 
since we can always renumber the functionals if we wish. If 
we are unable to fulfil requirement (b) of Theorem (2.2,24) 
for those functionals not occurring in pairs it is possible that 
they will each provide Ç with an extra zero (clearly we may 
choose this zero, if we so desire, to be "placed" somewhere con­
venient) .

It is also apparent that the definitions of extensions, 
adjoints, expansion sets, and equivalence points can be extended, 
by analogy, to GT-sets.

Much more is known about the properties and interrelationships 
of the various types of T-set than we have quoted here. We shall 
quote further results if and when the need for them arises.
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§2.3 IMMEDIATE RESULTS

In this section we return to a direct investigation of I.P.Q.F 
We already have some results concerning existence and non-exis­
tence of I.P.Q.F., i.e. Theorems 1.3.1 - 1.3.4 and 2.1.1 With the 
aid of information in the previous section, we can obtain some 
further results.

We note (cf. Lemma 2.2.20) that if {S.}^ obey (A7), as1 i = o
earlier assumed, then if depends on a parameter set P^,
there must exist p^^P^ such that (p^;ç)?;G for every Sesp$^
(analogously for {T.}? ).] ]=0

THEOREM 2.3.1 Assume that{S.}* , {T.}^ fulfil (A7) on ------------- 1 i=0 ] 3=0
and respectively. Then there exists at least one choice
of parameters such that an interpolatory I.P.Q.F., exact 
on exists.

PROOF : Follows from Lemma 2.2.20. ///

The problem of actually finding the parameters mentioned 
above does not appear to be a trivial one. The next result 
demonstrates the potency of GT-sets in the context of I.P.Q.F.:

THEOREM 2.3.2 Let be a GT-set with respect to {S^}^ . Letg

{T.}^ be such that there is a choice of parameters for 3 3=0
which det(C)zO (recall Lemma 2.2.20 and see (1.3.8)).
Then there is an interpolatory I.P.Q.F. exact on 
for arbitrary choice of parameters of Ŝ .

If, in addition, is a GT-set with respect to {T.}^
then the choice of parameters of {1%}^  ̂ is arbitrary

3 3=0
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as well. I l l

We can now extend Theorem 2.1.1 as follows:

THEOREM 2.3.3 Let 0^, y>m, and Y^,ô>0, be T-sets on R.
There is no choice of functionals (knots) such that 
there is an I.P.Q.F. exact on when y+6>2mtl.

PROOF: Analogous to Theorem 2.1.1, using Theorem 2.2.2 4 in
the case where all the linear functionals Lexi* ///

This is clearly a symmetric result in 0̂  and , and we 
consequently have:

COROLLARY 2.3.4 Let 0^, y>m, and Y^,8>n, be T-sets on R.
There exists no I.P.Q.F. exact on 

PROOF: Without loss of generality assume m>n (if m=n, see
Theorem 2.3.3). Apply the symmetric analogue of Theorem 
2.3.3. ///

These results have what might be termed a "Gaussian" flavour 
in that, analogous to R.Q.F. exact on polynomials, even setting 
6=0 we are unable to find an I.P.Q.F. exact on (this
latter result is also in [9], see §2.6).

We note that in view of what was said in the previous section
concerning T-restrictions and so on it is possible that the above 
two results hold even if 0̂  and Y*̂ are T-sets only on a subset 
X of R.

Extensions of Theorem 2.3.3 to other types of linear func­
tional are not obvious since a knowledge of the zeros (and hence
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sign changes) of a continuous function with respect to some 
linear functional L does not immediately give us information 
about when, and if, the function itself changes sign.

In view of Theorem 2.3.3, there is no loss in making the 
following assumption.

(All) m > n.

§2.4 GENERAL SOLUTION

In view of Corollary 2.3.4 and what we already know of 
interpolatory I.P.Q.F., we shall be primarily interested in 
investigating I.P.Q.F. exact on 0^%^^ under the assumption

(A12) Y>m, 6<n.

We recall that, (see §1.3) if the required I.P.Q.F. exists, 
the system of linear equations given below must have a solution:

(2.4.1)

where

D a = A

(2.4.2) D = C 8 B,

(2.4.3) C =



(2.4.4)

and

B =
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Sq C

(2.4.5) A = <Ao>-'-’Ap>

(2.4.6) A. = (1(0 ;^.),...,!(*;$.), j=0,...,6“3 o 3 Y 3

a is given by (1.3.14).
To guarantee that a solution to (2.4.1) exists, the augmented 

matrix (D|A) must have the same rank as D. From (A6), (A7) 
and (AlO), analogous to Theorem 1.3.1, the following is obvious.

LEMMA 2.4.1 The rank of D in (2.4.1) is the product of the
ranks of B and C, namely (m+l)x(6+l). ///

The assumptions (A6) and (A7) allow us to assume that the 
first (m+1) rows of B are linearly independent, and thus there 

must exist constants <̂ or’ * * ‘ ’"̂ mr’ r=i,''')Y-m=k, not all zero, 
such that

(2.4.7)

r = 1,...,k, i=0,...,m.

For the rank of (D|A) to be the same as that of D, we must
have
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(2.4.8)  ̂̂ <l>m+r ’'f'j ̂"or^o ^mr^m
r — 3""0, « « « )6,

or, on rewriting.

(2.4,9) iChySYj) = 0

where

(2.4.10) = «or*o+-''+*mr*m-*m+r

r — l,...,k*

The requirements (2.4.7) and (2.4.9) impose more conditions 
than there are parameters (â ,̂) available in general. Whether 
these conditions can be satisfied depends on the choice of 
0^,Y^ and the elementary functionals

We note that the choice of the linear functionals {T.] 3 = 0
plays no role in (2.4.7) - (2.4.10) and thus is unable to 
affect the question of existence of I.P.Q.F. exact on 
y>m,6<n. Recalling Lemma 2.2.2 2 we see that we have at most 
(m+1) non-linear parameters to choose, namely those upon which 
the functionals depend. Thus, since it may be that m+l<k(6+l) 
we might expect it to be an impossible task satisfying (2.4.9) 
in all possible cases. We shall consider three special cases;

I. y ~ 2m+l, i.e. k=m+l; and 6=0.

II. y = m+1, i.e. k=l; and 6=n.
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III. and having properties akin to (2.1.2)- ̂ i=0 '] i=0
(2.1.6).

In cases I and II we have as many parameters available as 
there are conditions to be satisfied, and we do not have to 
place strong conditions on cj) • and Yj; î in direct contrast with1 J
what occurs in case III. Also, we note that we may satisfy 
(m+l)>k(6+l) be either fixing n and k and choosing m sufficiently 
large, or fixing m and k and choosing n (thus 6) sufficiently 
small.

Before continuing we recall that once we have chosen 
parameters to satisfy (2.4.9) we may find the matrix A (the 
vector a) by solving the linear equations requiring the I.P.Q.F. 
to be exact on That is, we are able to separate, and
consider independently, the linear and non-linear aspects of 
the problem. We consider the solution of this set of linear 
equations in §2.9.

We introduce the following definitions :

DEFINITION 2.4.1 Let H , r>s>l, and (H) ={0.}^ be two setsr s 1 i = 0
of functions defined on a set K. We say that 5^ is weakly 
orthogonal (W-orthogonal) with respect to a bi-linear func­
tional L, to g J if for each j=l,...,s, we have

(2.4.11) L(C.se^) = 0, i=0,...,j-l

If, in addition we have
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(2.4.12) L(gj;8j) = YjZO j=0,...,s,

We say that 5^ is orthogonal, with respect to L, to 
If Yj=l, j=0,...,s, we say orthonormal instead of ortho­
gonal. ///

Obviously, if i=0,...,s=r, then the above defini­
tion reduces to the usual one of orthogonality when L is inter­
preted as the integration operator. We note that the ordering 
of the functions ^̂  and may be important, and that the con­
cepts in Definition 2.4.1 are related to that of biorthogonality

DEFINITION 2.4.2 A function Ç is said to be W-orthogonal to 
a set of real valued linearly independent functions 
defined on a set K, with respect to a bi-linear functional 
L if

(2.4.13) L(ç;0^) = 0, i=0,...,s. ///

The phrase "with respect to a linear functional L" is 
deleted unless required in the interests of clarity.

We can summarize as follows:

THEOREM 2.4.2 Given {S.}^ , a necessary and sufficient condi- 
tion that there exists an I.P.Q.F. exact on 0^xY^,y>m,5<n, 
is that the ^-polynomials h^, r=l,...y-m, in (2.4.10) are 
each W-orthogonal to Ŷ . ///

This Theorem allows us to test, when given a specific set
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of functionals {S.}^ , whether or not the required I.P.Q.F.1 i=0
exists. However, the questions of more interest are those of
discovering for what choice of parameters (if any) p^^P^ from
non-degenerate intervals P^, and what choices of elementary
functionals , the desired I.P.Q.F. do exist. Once we allow
the parameters p^ to be chosen from non-degenerate intervals the
importance of GT-sets in guaranteeing that {S.}^ remain^ 1  = 0

• HI ^ •linearly independent in (0 ) is clear.

THEOREM 2.4.3 Let depend upon p^eP^, i=0,...,m. For an
I.P.Q.F. exact on 0^^Y^, y>m, 6<n, to exist it is sufficient 
that the following conditions are fulfilled;

Let h^ be defined similarly to (2.4.10).

(2.4.14) There exist i=0,...,m, r=l,...,y-m, such that h^
is W-orthogonal to Y  ̂with respect to I.

(2.4.15) There exist p^cP^ such that for each i = 0 , . . . ,m

SfC^iih^) = 0, r=l,,..,y-m.

(2.4.16) (S.(p. *3 ))?_ are linearly independent in (0^1 .
(2.4.17) The matrix C has maximal rank. /// 

VJe observe that (2.4.14) in the above Theorem depends
upon I and the choice of the set of functions Y*̂ , whereas
(2.4.15) and (2.4.16) depend upon the choice of elementary
functionals { S . . The choice of the elementary functionals 

^ 1 = 0
{T.}^ plays no role. The importance of GT-sets is obvious 3 j = 0
from (2.4.16).
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It is also important to note that the above Theorem does 
not require all the assumptions (Al) - (All).

Before moving on to the next section we note that, while 
the above results were obtained under the assumption that the 
interior of R is (-1,1), provided the weight function w is 
such that all the necessary moments exist and are finite, there 
is no difficulty in extending these results to semi-infinite or 
infinite intervals of IR. This comment remains equally appli­
cable to the results of future sections , although we shall not 
explicitly state it at each point where it might be applicable. 
See also [23].

§2.5 ORTHOGONALITY
Prompted by Theorem 2.^.3 we investigate when, given two

sets of linearly independent functions 5^ and they can be
made W-orthogonal or orthogonal. There is no real point in con­
sidering (^g with s<r , since this would immediately restrict
us to 5 as well. All the results obtained in this section are s
derived using elementary linear algebra.

DEFINITION 2.5.1 If is W-orthogonal (orthogonal) to
with respect to a bi-linear functional L, and ^ is
W-orthogonal (orthogonal) to 5^ with respect to L, we say 
that 5^ and are mutually W-orthogonal (orthogonal)
with respect to L. I l l
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Set

(2.5.1)

and then define the so-called moment matrices, with respect to 
L, by

“oo’•■■’“ot

so St

(2.5.3) M = MS S 5 s

for any choice s,t<r.
Throughout this section we shall employ the following

(A13) The moment matrix M has no row or column which is
entirely composed of zeros.

If a moment matrix does not obey A13 we shall say that it 
is degenerate, and the following results will not necessarily 
be applicable. Perhaps surprisingly, degenerate moment matrices 
may occur, even when one of and (S)^ are T-sets.

Example 2.5.1. Let = t , i=0,l,....

. = sin( jir(t+l) ) 5 i = l,2,... .
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Since 8  ̂ is an odd function for any value of j, it is 
clear that as intCR)=(-1,1)? the (2k+l)st row k=0,l,... 
of the moment matrix will be equivalently zero, when the 
functional L is the integration operator with wEl. ///

We seek 5^ = ̂ , such that spans the same space
as 5̂ , and 5^ is W-orthogonal (orthogonal) to ® r  ^
is defined analogously. Initially we investigate W-orthogonality, 
and then continue and examine orthogonality. Let

5 . . . 5 r . I

If, for arbitrary but fixed i,%. is W-orthogonal to {e.}^ ^,1 ] i=0
the following linear equations are satisfied.

(2.5.5) M? . = 01 5 1 -1 — 1 —

where 0 is an i-vector of zeros and

Clearly, there are

(2,5.6) i - rank (M. . ,) > 11 ,1-1

degrees of freedom in the vector a^. To guarantee that spans 
the same space as it is sufficient to choose a^^=l. This
means we require
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(2.5.7) rank (M . . ,) = rank (M . ,).1,1-1 1-1

However, by considering first M ,, then M . „ and so on,r,r-l r-l,r-2 ’
it is apparent that reordering the functions {Ç.}^ only,

1 1 = 0
condition (2.5.7) can be guaranteed. Thus we may state the 
following result :

LEMMA 2.5.1 Given 5^ and (H)possibly after reordering the set 
5̂ 5 there exist functions 5 ,̂ each with leading coefficient 
1, such that 5^ is W-orthogonal to ^.

In addition, spE^ = spH^. I l l

COROLLARY 2.5.2 If rank (M )̂ = rank ( M ) then we may write---------------  r, r-1 r-1

The above argument may not then be used to obtain (B) 
mutually orthogonal to 5̂ , since in the second reordering in 

(of columns instead of rows) may introduce the vector 
(m^^5 ...,m^^) into the new and thus possibly refute the
above analysis. However, we may still obtain the result:

THEOREM 2.5.3 Given and Qy^s possibly after reordering the 
sets and there exist functions and ^ , each
function with leading coefficient 1, such that and
are mutually W-orthogonal with respect to L.

In addition spH^ = spH^ and sp(^^ = sp(J)^.
PROOF: Given the matrix M^ it is clearly possible using only

row operations to reduce M to an upper triangular matrix
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Now using column operations may be reduced to a matrix 
% =(m..)Y . such that for some ke{l,...,r} we have^ i,j=0

m..zO, i=0,...sk-1,1 1  5 3 5

m. .=0, i=k,...,r, j=i,...,r.
1 ^

Reordering (6^^ according to the row (columns) 
interchanges made (i.e. if row i in ends up being row 
j in the reordered becomes ) ensures that, for the 
new sets and the moment matrices  ̂ obey

rank (A.,. ^) = rank (ft. .) = rank (ft. . .). ///
1  1 — 1 1 — 1 1 — 1 , 1

COROLLARY 2.5.4 If rank (M -, ) = rank (M  ̂) = rank (M -, )---------------  r,r-l r-1 r-l,r
then we can write

^r ^r  ̂ ’

êr = Gy + ■ H I

COROLLARY 2.5.5 The functions are unique, up to a multi­
plicative factor, if and only if has full rank. ///

We now consider orthogonality. This means that the require­
ment (2.5.7) is replaced by the requirement

(2.5.8) rank (M.) = rank (M.le.) i=0,..,,r1 i(—1

where e . is an (i+1) - vector in which all elements are zero —1
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except the (i+l)-st, which is unity. We have

THEOREM 2.5.6 If the matrices M^, i=0,...,r, all have full
rank then mutually orthogonal- polynomials 5^ and @ p  
exist, are unique, and span the same spaces as and 
respectively.

PROOF: We exhibit the polynomials and 6̂ ,

(2.5.9) Set Ç = , and then E = 1(L( "))\o o o o ' o ’ o
Ae = 0 , and then 0 = 9 1( L( c" *5 0o o o o ‘ o ’ o

(2.5.10) * 1 A WSet Ç 2 - L(Ç]^;0^)i^, then |1 = Cl 1 
* ,

(L(Si
&
;8i))=,

* k0 1 = 9i - L(Ç^;9i)0^, then 01 = Gil (L(Si ;0l)) %
and thus, for 1each Z =1)...,r;

(2.5.11) Set -I,J.h(ç,;e\)? , then Ç (L( F'; 01 )** ,I ^k = 0 k ^k' z' Z ^  z

then §j, = 9;|(L(s;;8;

By construction we have

(2.5.12) L (q;êj^) -

where 5^ is the usual Kronecker delta function.
We observe that it is not possible for to be

zero, since if it were zero, we have found a non-trivial
A î'îç-polynomial, namely such that L(Ç^;0^) is zero,
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k=0,...,£, and this contradicts the assumption that M has 
full rank. Clearly and (J) ̂  span the same spaces as
H and (H) as in Ç (G ) we have Ç (0 ) with coefficientX X X/ Kf Xr X#
unity. Last, we have to show uniqueness (up to multiplies-

'̂ ( 1 )tive constants at least). Assume that E and E are twor r
sets of functions orthogonal to (H)p* Let

"(2) '' ■'(1) L(ç.;0.)S; = â. =  rfïT̂ ^- 5 i = l,...,r.1 1 1 1  1 L(Si ;0̂ )

Clearly

L(i ̂ ^^;9.) = 0, j=0,...,i.

 ̂(2 ) .If is non-trivial, this is a contradiction as pointed
out above. Hence E^ is unique. Similarly (H) I I I

The procedure (2.5.9) - (2.5.12) is a generalization of 
the standard Gram-Schmidt orthogonalization process, and is 
clearly constructive in nature.

It has been noticed before that the ordering of the func­
tions ^^ and 0j plays an important role in the determination of
W-orthogonal and orthogonal sets of functions. The following j
is obvious : !I
LEMMA 2.5.7 Given a matrix of full rank, possibly after re- II

ordering rows (or columns) we may assume that all the lead- !
ing minors have full rank. I l l j

j
We now note I



75

LEMMA 2.5.8 If M^ does not have full rank, then no matter how
we reorder ç. and 8. it is not possible to find 5 1 ] r
orthogonal to with respect to L.

PROOF: The requirement for orthogonality is

rank (M^) = rank (M^|e^), i=0,...,r.

Thus the (i+l)st row of M^ is linearly independent of the 
the other i rows.
Letting i=r, then r-1, and so on, this implies that the 
rank of must maximal. ///

This we can summarize with the next theorem:

THEOREM 2.5.9 Given and Lt is possible to find 5^
orthogonal to (mutually orthogonal to ) with res­
pect to a bilinear functional L if and only if the matrix 
M^ has full rank.
In addition, possibly after reordering the functions and 

we find that and 9  ̂ are unique up to a multipli­
cative constant, and

ü = 0“i, 4̂ 8,’

„e„ , j=0,...,r.

  , span the same spaces as 5 andr / r  ̂ r
respectively. ///

C- = c. +1 1

9 . = 0 . +1 ]

and © r
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There are several comments which seem to be worth making 
at this stage. First, if does not have full rank then, 
possibly after reordering, some submatrix M^,£^m, will have, 
and despite the fact that we cannot find 5^ mutually orthogonal 
to (H)^ we can find 5^ mutually W-orthogonal to , with the
additional property that 5̂  is mutually orthogonal to .
Second, we cannot use the generalized Gram-Schmidt process
(2.5.9) - (2.5.11) to obtain W-orthogonal polynomials, since we

A Acannot guarantee L £=0,..,,r. Third, it is not
immediately clear what is the best way to assign any arbitrary 
constants when obtaining W-orthogonal polynomials. Fourth,
when considering two sets of functions, 5^ and (H)^ the re­
ordering processes which may be required are of no real conse­
quence in the context of l.P.Q.F. since the sets of functions
still span the same spaces. Fifth, if we consider and s>r,
there may be several reorderings of possible which enable us 
to derive W-orthogonal or orthogonal polynomials 5̂ . Sixth, 
the results of this section so far depend merely on the rank 
of the matrix M^, and not on the structure of the bi-linear 
operator L. In particular, when dealing with the integration 
operator 1, we do not necessarily require (A3). Finally, given 
a functional L, and examining orthogonality the question of
what conditions we need to impose on 5^ and (H)^ in order to 
guarantee that has maximal rank is an interesting one, which 
would appear to be closely connected with Moment Theory.

Using a slightly different approach it is possible, see, 
see [9,27], to obtain the following result, now however requiring
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(A3)

LEMMA 2.5.10 Let 5 and (H) be CT-sets on R. Then there ---------------  r r
exist 5^ and (̂ , ̂  mutually orthogonal with respect to I, 
on R.

PROOF: We prove the result by exhibiting i=0,...,r. Let
M^ be the &-th moment matrix with respect to 1. For each

ÎÎ Achoice of £=l,...,r, define  ̂ and 8 by the following 
determinental equations;

(2,5.14)

M

Çq Cx )

il — 1

(2.5.15) = det m0 ,Z

Mil- 1

m.

o
1 ,&

(x), . . . , 6 ,(x)

and then set

(2.5.16)

(take Ç

det Mil— 1



It remains to show that det &=0,...,r, and we
prove this in the following result. ///

LEMMA 2.5.11 Let 5 and ,Hj be T-sets on R. Then the moment ------------ r ^  r
matrix M^, with respect to 1 , has non-zero determinant.

PROOF: Assume the contrary.
Thus there exist a , . . . ,a , Yf p,|a.|>0, such thato r ^1 =0 ' i' )

^i=0 “i^ij " j=0 ,...,r.

This implies

I(I^_0'^i^i’® j ̂ = 0 , j=0 ,...,r.

However, using Theorem 2.2.24, we know it is possible
Ato construct a non-trivial 0 which has zero at the same 

points as in (-1,1). This leads to the contra­
diction, since it is implied that

= 0 . ///

COROLLARY 2.5.12 The functions 5 and (§) of Lemma 2.5.10 ----------------  r p
are unique (up to multiplicative constants) and span the
same spaces as H and  ̂, ̂ r w  p

PROOF: By construction and Lemma 2.5.11 coupled with Theorem
2.5.9. ///

It is clear that the process used in the proof of Lemma
2.5.10 can be used for arbitrary 5^, (H)^ and L provided we can
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guarantee the matrices i = l,...,r are non-singular. Ob­
viously Corollary 2,5.12 remains valid. Again summarizing, 
we have

THEOREM 2.5.13 Let 5^ and Qy^ be T-sets on R. Then there exist
and mutually orthogonal with respect to 1, on R. ///

Any extension of these results depends upon the relation 
of linear functionals we might use in defining GT-sets 5^ and 

and the bi-linear functional L with respect to which we 
are considering orthogonality.

THEOREM 2.5.14 Let 5^, (H)^ be given. Assume (A3). Let
i=0,...,r. Then M^ has full rank. |

PROOF: Assume the contrary. Then there exist a ,...,ct ,

5

and this is a contradiction. ///

We now return to our original motivation for the section, 
Theorem 2.4.3, and direct consideration of l.P.Q.F. Noting 
(All) in particular, we have.

o ' r i
such that j

- 0 , j-0 ,...,r.

However, this implies that
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THEOREM 2.5.15 Let consist of 6 + 1  of the functions
_ 5 and set

1 i = o

(r) _ _
Ô+ 1 “ *m+r' ^-1 » * •• ,Y-m.

Then condition (2.4.14) is satisfied provided,

(2.5.13) rank (Mg^^ ^) = rank (M^^^), r=l,...,y-m,

where M^^^ are the moment matrices with respect to I using 
the sets of functions and I I I6 + 1  j A - Q

The condition (2.5.13) does not appear to be a very res­
trictive one, and can of course always be guaranteed if the 

C )rank of M, is maximal.0

§2 . 6  l.P.Q.F. AND T-SETS: CASE I
Having investigated orthogonality and thus the first con­

dition of Theorem 2.4.3 we now begin our investigation of 
the remaining conditions of the aforementioned theorem with 
some results concerning case I. We are not, as before, able 
to reduce the problem to being essentially linear. The fol­
lowing results come basically from [9], Chapter 2. Let

(2 .6 .1 ) {c= (c^ , . . . ,ĉ ) , c^= I Ç^( t) da (t ) , i= 0 , . . . ,r }

where is a T-set on [-1,1] and a traverses the set ̂ 1 = 0
of all non-decreasing right continuous functions of bounded
variation. It can be shown that M is a closed convex cone.r
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We have the following result:

THEOREM 2.6.1 Assume we are given a measure a° and a T-set
{C-}T_ • Let c ° be the vector determined by the measure 

1 i- 0
.

(a) If r=2s+l and £°eIntM^ then there is exactly one Q.F., 
using s+ 1  distinct knots, x^e(-l,l), i=0 ,...,s, such 
that

In addition, a^>0, i=0,...,s.
(b) If r=2s and c°eIntM^ then there is exactly one Q.F, 

exact on 5̂ , using s+ 1 distinct knots x^, i=0 ,...,s, 
x^=-l, and x^e(-l,l), i=l,...,s. In addition, the 
coefficients a^ are all positive.

The analogous result holds setting x^=l.
(c) If £° is on the boundary of then there is a unique 

Q.F., with positive coefficients, using at most s+1 
distinct knots in [-1 ,1 ], whether r=2 s+l or 2 s. ///

Parts (a) and (b) of the above Theorem are, perhaps not un­
expectedly, analogous to the well known Gaussian and Radau Q.F., 
which deal with the case Ç^=x^, i=0,...,r. Part (a) is, in 
view of Theorem 2.3.3, the best result we could obtain. If 
the Q.F. in part (c) above uses less than s+1 knots, it would 
seem that some type of non-linear degeneracy, dependent on the 
choice of functions and the measure a°, occurs (the degeneracy
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cannot be linear since {Ç.}^ is a T-set). However, we have1 1=0

LEMMA 2.6.2 Assume a° of Theorem 2,6,1 is differentiable,
i.e. we have da°(t) = w(t) dt. Then the Q.F. of part (c) 
in the above Theorem uses exactly s+1 knots.

PROOF: Else Theorem 2.3.3 is contradicted. ///

The situation in the above Lemma is that in which we are 
interested. As commented earlier, we may regard the Q.F. ob­
tained when G is differentiable either as a weighted R.Q.F., 
or an l.P.Q.F. exact on 5̂ x4'̂ , 6 = 0, ij;̂ =w(t).

We recall that when dealing with R.Q.F, exact on poly­
nomials, it is sometimes possible to prescribe t<s+l knots x^,
i=0,...,t, and obtain R.Q.F. exact on ^ (namely

t
when the moment matrix with respect to n (x-x.) w(t) is non-

i= 0 ^
singular. See also Theorem 2.8.8). When dealing with arbi­
trary T-sets we can also obtain some results of this type.

THEOREM 2.5.3 Assume g °, c° and {Ç.}^ are as in Theorem -------------  - • 1 i= 0
2 .6 .1 . Choose te[-l,l].
(a) Let r=2s+l,and c°eIntM^. Assume t is not one of the 

knots in Theorem 2.6.1 (a).
(i) If te(-l,l) there is a unique R.Q.F., of the form

I4ja.s(xp,

exact for ÇeH^. One of these knots x^ is t and 
one, but not both, endpoints ( - 1 or 1 ) occur as
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a knot. In addition, a^>0, x^e[-l,l], i=0,
.. . ,s+ 1 .

(ii) If t=l (or, analogously, -1) there is a unique 
s+2 point R.Q.F. also using -1 (1 ) as a knot 
exact on In addition, a^>0, x^eC-1,1],
i=0 ,...,s+l, and x^=-l, x^^^=l.

(b) Let r=2s and c°eIntM^. Assume that t is not one of 
the knots of either R.Q.F. in Theorem 2.6.1 (b). 
(Thus te(-1,1)). Then there exists a unique R.Q.F.,

exact for One of the knots x^ is t, and neither
endpoint, -1 or 1, is a knot. In addition, a.>0, 
x^e(-l,l), i=0 ,...,s. ///

We note that the R.Q.F. of part (a) (ii) above is the
analogue of the well-known Lobotto Q.F. From Theorem 2.1 of
Chapter 2 of [9] we have a criteria for determining whether
c'^elntM (see also Ch. 4, Cor. 1 .1 ).— r

The results above do not have constructive proofs in [9] 
and thus are best regarded as existence (and uniqueness) theorems. 
Clearly, if we are able to determine the knots of the R.Q.F. in 
some way, the coefficients a^ may be determined by solving a 
set of linear moment equations involving s+ 1  or s+ 2 functions
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chosen from {^ } , such that the matrix B has full rank. ̂ i = 0
These functions need not be t=s+l or s+2, as, for the

*t • ,given knots  ̂ need not be linearly independent on the
given set of knots, however, since {ç.}^ is a T-set, there ̂ i = 0
must exist a set of t functions for which B is non-singular.
In this general case, we can obtain a partial characterization
of the required knots , as non-nodal zeros of polynomials con-

r+ 1structed from {Ç.}. (an adjoined T-set) in the form of Lemma
1 1 = 0

2.1 in Chapter 4, [9]. Of course, knowing a solution exists, 
we may, in the absence of more sophisticated methods, always 
solve the non-linear system of equations (cf. (1.3.7)),

(2 .6 .2 ) Ç ( X ),..., S (x. ) ' a ZZ I (Ç )"C O  o t o o

•
a^

•

t

We also note that extensions of Theorem 2.6.3 to the case 
of predetermining two or more knots without being able to ar­
bitrarily choose their coefficients are not, as yet, available

§2.7 l.P.Q.F. AND T-SETS: CASE II
As in the previous section the case II problem is non-linear 

We recall that the following conditions are in force:
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(2.7.1) y = m+1, i.e. k=l

(2.7.2) a = n

With regard to (2.7.2) we note that there is little loss 
in generality in this requirement as opposed to 6 <n. If 6 <n 
we find, see [24], that we can preassign n-6 elements in each 
row of the matrix A. There does not appear to be any gain in 
setting these elements to be other than zero, and consequently 
we may as well have (2.7.2).

We begin by imposing the additional conditions :

(2.7.3) m = n .

(2.7.4) i — 0,...,m.

Thus given and we are faced with the problem of
discovering whether knots x^,...,x^ exist such that, as required 
by Theorem 2.4.3,

(2.7.5) S^(x^;hx) = hi(x^) = 0, i=0,...m.

Then we must ensure that the matrix B has full rank. We 
begin an investigation of the properties of the zeros of ĥ  
with a generalization of a well-known result dealing with the 
zeros of orthogonal polynomials.

THEOREMEM 2.7.1 Let be defined on [-1,1]. Assume is
weakly orthogonal to (jy^ with respect to I
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(a) If is a CT-set on (-1,1) then i=l, . . . ,ni+l
has at least i distinct nodal zeros in (-1 ,1 ). If, 
in addition, 5^^^ is a CT-set in (-1,1) ([-1,1]) 
then has exactly i distinct zeros, all nodal, in 
(-1,1) ([-1,1]).

(b) If is a CT-set on [-1,1] then i = l,...,m+l
has at least i distinct nodal zeros in [-1 ,1 ].
(Here we count a zero at -1 or 1 as nodal).

If, in addition, is a CT-set in (-1,1)
([-1 ,1 ]) then C h a s  at most (exactly) i distinct 
zeros, all nodal, in (-1 ,1 ) ([-1 ,1 ]).

PROOF: (a) ((b) is analogous). Assume the contrary. Arbi­
trarily fix ie{1,2,...,m+l}. Let ti,...,t^ r<i be all 
the nodal zeros of in (-1,1). From Lemma 2.2.21 there 
exists a non-trivial 8 -polynomial, 9 , of degree r, with 
nodal zeros at tĵ , . . . ,t^ and no nodal zeros elsewhere in 
(-1,1). However, we now have

I (Çj^;0)?iO5

contradicting the assumption of weak orthogonality. The 
results when is a CT-set follow immediately from the
definition of CT-set. ///

Note the explicit dependence on (A3) in the above proof. 
We also have



COROLLARY 2.7.2 Replacing the phrase ”CT-set” by "T-set” 
in Theorem 2.7.1, and merely requiring that 
W-orthogonal to the results remain valid in the
case i=m+l.

PROOF: As above, except Theorem 2.2.24 may be needed in place
of Lemma 2.2.2 2 (if rzm). I l l

Recall that, in view of Theorem 2.2.8, the restriction of 
or to being CT-sets on open intervals is not very

restrictive. Also observe that if we only wish to use Corollary
2.7.2 we may reorder the function 8  ̂ and at will, since 
and 5̂"*”̂  will remain T-sets regardless of the ordering of their 
constituent functions.

If the conditions on in the above results are not met
it is still possible that results remain valid, however each 
individual case would have to be investigated. The importance 
of ^ having the stated properties is seen from the following 
examples :

(2.7.6) Let = 1, Ç1 = 01 = x^, and gg =

Then = 1,
il(x) = x^-2/3,

C z C x )  =

is weakly orthogonal to {0 .}^y over R. However Çg has onlyJ j - 0
one zero on the real line (and in R) (cf (A4 )).



(2.7.7) Let %. = X , i=0,l,2, 8 (x)=l and 9i(x)=-x^

Then S (x) = 1,
C1 (x) = x^-2 /3 5 

S2(x) = X,

is weakly orthogonal to {8 .}  ̂ , over R.3 j=0
However, again Çg does not have the required number of 

zeros in R , let alone in R.

Note that is not a T-set in either (2.7.6) or (2.7.7)
but in (2.7.6) 5^ is a T-set, and in (2.7.7) 5̂  is a CT-set.

We now examine the conditions of Theorem 2.4.3 in the cur­
rent context, and obtain :

THEOREM 2.7.3 Assume we are given and . Assume also
that is a T-set on R, and that is W-orthogonal to
Y^. Then
(a) The knots x ., i=0,...,m, of an l.P.Q.F. exact on 

n̂i+l̂ ,̂ m be any set of m+ 1  zeros of such that
det(B)zO.

(b) If is a T-set there is a unique choice of knots
X . , i = 0 ,...,m, (zeros of (()̂_̂ )̂ available for an 
l.P.Q.F. exact on 0 ^^^xY^.
In both cases above, the choice of the knots y^,..., 

y^ is arbitrary, so long as they are distinct and lie in R 
PROOF: That has sufficient zeros has been proved in

Corollary 2.7.2, thus (2.4.15) is satisfied. Conditions
(2.4.14) and (2.4.16) are implicit in the statement of 
the Theorem. ///
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There are several things to note. First, the requirement
that 0^^^ is W-orthogonal to is trivial in light of Lemma
2.5.1. Second, in part (a) apart from there being possibly
more than one set of roots of obeying the condition, it is
possible that there may be more than one choice of This
occurs if the rank of M is not maximal or there is more thanm
one choice of m+1 functions in 0^^^ with rank M maximal.m
Third, if there is a choice of zeros of (or parameters to
assign if rank is not maximal) what is the best choice?
Fourth, the importance of the role of the functions Y^ being a
T-set (although bearing in mind our earlier comments) although
we are interested in zeros of 0 ,. and the knots y. are arbi-^m+ 1  j
trary. Fifth, this result is the best we could hope for in
view of Theorem 2.3.3. Last, if we do not require Y^ to be a
T-set it is possible that l.P.Q.F. exact on 0 ^^^xY^^ still exist
however we must show that has at least m+ 1  zeros, and then
that det(B)zO. (There always exists at least one choice of
knots Yj such that det(C)zO by Lemma 2.2.2.)

We are able to "use" the freedom in the choice of the knots
y . as follows :]

THEOREM 2.7.4 Assume we are given 0 ™^^ and Y^^^. Assume 0^ 
and Y^ are T-sets on R. Assume that 0 ^^^ and Y^^^ are 
mutually W-orthogonal.

Then there are l.P.Q.F. (unique if both 0 ^^^ and 
^m+1 T-sets) exact on
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and

The knots (yy) are m+1 zeros of ^^m+l^‘
PROOF: Immediate from Theorems 2.5.9 and 2.7.3 I I I

We now consider what happens if we drop (2.7.3), and allow 
in m>n, while still seeking l.P.Q.F. exact on 0^^^ x . Proce­
eding as before, using the analogue of Corollary 2.7.2, clearly 
we can guarantee that has at least n+ 1  distinct nodal
zeros. However, if we allow to be a linear combination
of all the basis functions in 0^^^, there are m-n degrees of 
freedom (at least) in the determination of Obviously we
want to employ this freedom in ensuring that has at least
m+ 1  zeros. If Y^ can have functions + adjoined so
that the set is a T-set (see §2.2, Theorem 2.2.12 etc.) then 
we know that l.P.Q.F. exact on 0 ^^^xY^ exist, using the above 
results, although we now need to use m+ 1  knots y  ̂ instead of 
n+1 as we might have hoped, since the l.P.Q.F. is in fact exact 
on 0 "̂**̂ xŶ ' (m>n) . However, we can also state the fairly obvious 
result.

THEOREM 2.7.5 Assume we are given 0 ^^^ and Y^, m>n. Assume 
that Y^ is a T-set on R.
Let the linear system
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( 2 . 7 . 8 ) I (^Q) ) 5 • • ’  ̂ (*m+l'*o) ' h  '
" 0 '

1 (^q 3^i)j ) L ( i|)  ̂ip 1 )
•

0

■ '  ̂ *■ ^m+1 0
0

^o^^m-n-1^’ 0

have a non-trivial solution, $m+ 1
^m+ 1

= then
there exist l.P.Q.F. exact on t with prescribed
knots ., and n+ 1  knots y ., ifo m-n- 1  1

m+ 1

]
has at least m+ 1  distinct zeros.
m+ 1 is not a T-set, there are m+1 zeros of $ , suchm+ 1

m+ 1

(b) If
that detBzO (If 0 '̂" is a T-set there are at most m+1 
zeros of 3^^^, and if there are m+1, detB is guaranteed 
to be non zero).
The choice of knots y^, j=0,...,n, is arbitrary so 

long as they are distinct and lie in R.
PROOF: Immediate from Theorem 2.4.3 (analogue of Theorem 2.7.3).

///

Note that the matrix in (2.7.8) is an (m+1) x (m+2) matrix 
and so there must always exist a solution to the system (2.7.8). 
As before, the most difficult condition is (a) above. It is 
perhaps surprising to discover that the l.P.Q.F. desired in
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Theorem 2.7.5 may not exist, although an l.P.Q.F. exact on m+1

xY^, where Ŷ “ is the adjoined set mentioned in the preceding,m .

paragraph may exist. It would seem that this is due to our
choice of preassigned knots x , . . . ,x -, in the above Theorem  ̂ o m-n-l
(see §2.8). This is particularly striking when we require that 
0^ is a T-set. Comments analogous to those following Theorem
2.7.3 again apply.

Finally, we note that the analysis of Theorem 2.7.5 can 
be easily adapted to situations where, dealing with
again, the moment matrix does not have full rank, although

m .perhaps with more hope, since when Y is a T-set, condition (a)
would automatically be satisfied. Recall that if m is also
a T-set then the rank of is guaranteed to be m (Lemma 2.5.11) 

We have

LEMMA 2.7.6 Assume we are given 0 ^^^ and Ŷ ,̂ with Y^ being a
T-set on R, and M has rank r<m. Let Ŷ ={it).}̂  be suchm 3̂ j= 0
that the moment matrix ^ (i.e. using the functions
. and ipj) has full rank. Predetermine knots x^,' 1  

Let ({)
'm-r- 1

_ yM+1 ^^  ̂ be a non-trivial solution ofm+ 1  ^i=o

( 2 . 7 , 9 ) T "b - - 0 "o

^^m+y 0
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Then if there are m+l zeros of such that detBzO,
there is an I.P.Q.F. exact on with the knots x.
being these zeros, and the knots , j=0 ,...,m, being 
arbitrary, distinct and within R. ///

Some closely related but independently obtained results are 
given in [26,27]. In [2 7] results similar to Theorem 2.7.3 and
2.7.4 are given in the case where and are both CT-sets.
In [26] the special case

(2.7.10) (f)ĵ = x^, i = 0,l,...,m+l.

(2.7.11) ijjj = (s) , j =0 ,1, . . . ,m+l,

where % is a strictly monotonie function defined on R is inves 
tigated. Both the sets 0^^^ and are CT-sets (see Lemma
2.2.15). Clearly we could replace (2.7.10) by

(2.7.12) <i>̂ = (0)^, i = 0 ,1 , , . . ,m+l,

where 0 is a strictly monotonie function, with analogous results. 
In this case I.P.Q.F. would be very useful when I has the special 
form

(2.7.13) I (f;g) = w(x)f(0(x))g(S(x))dx
R

In the next section we assume 0 = % and are thus able to drop 
the requirement that C is strictly monotonie.
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§2.8 I.P.Q.F. AND T-SETS: CASE III

We now consider the third of the special cases mentioned 
in §2.4. In §2.1 we noted the properties of polynomials which 
obscure the power of the concept of I.P.Q.F. For convenience 
we restate them here before examining case III, which can be 
regarded as a generalization of conventional polynomials.
They are :

(2 .8 .1 ) = (*i)^ i = 0 ,l,2 ,

where ]_ is not the constant function, but is at least a piece- 
wise continuous function, which is not a step function, on R.

(2 .8 .2 ) <j)̂ E i = 0 ,l,2 ,...

LEMMA 2.8.1 The functions 0  ̂, y>0, <j)̂ defined by (2.8.1), are
linearly independent on R.

PROOF: Immediate from Corollary 2.2.17, as there must exist a
non-trivial interval within R on which is continuous
and monotonically increasing or decreasing. ///

Since we are dealing with T-sets, we naturally assume 
throughout this section

(2.8.3) S^EXi, i=0,...,m,

(2.8.4) TjEXi, j=0,...,n.



95

We may now obtain the property of polynomials which is not 
available when dealing with T- or GT-sets in general, that is 
the ability to factor out a zero. It is this property, in 
addition to the T-set properties, that allows us to obtain 
results for I.P.Q.F. exact 6 = 2m+l, y>m>n, when
(2 .8 ,1 ) and (2 .8 .2 ) hold.

The following is fairly obvious :

THEOREM 2.8.1 Assuming (2.8.1) and (2.8.2), if is a
(f)-polynomial of degree r, with a zero at t, there is a 
unique ({i-polynomial, of degree r- 1  such that

(2.8.5) Sp =

PROOF: Immediate by analogy with the case of standard monomials
(i.e. 4^Ex). I l l

We now proceed as we did in §2.4, and analogous to (2.4.9) 
and (2.4.10), obtaining the following necessary conditions,

(2 .8 .6 ) I(^jih^) = 0 , r=l,...,y-m=k, ]=0 ,...,6 ,

where

(2.8.7) “or‘f’o “m r W + r  =

We now use the same argument as [24] where we examined the case 
^lEx. If the required knots x^,...,x^ exist, then they must 
be (^-distinct zeros of h^, r=l,...,k, (thus detCB)#0). If 
this is the case, we can write, due to Lemma 2.8.1,
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(2.8.8) - (^i-^i(Xg))

r = l,...,k, where 6^ is a <j)-polynomial of degree r-1. That is

(2.8.9) h^ = hiG^, r=l,...,k-l

Thus the requirement (2.8.5) can now be written

(2.8.10) I (4y;h^) = 0, j=0 ,...,ô+k.

Clearly 5 this is a W-orthogonality condition. From Lemma
2.5.1 we know that hj exists, (Theorem 2.3.3 forces 6 +k<m) so
it remains to show that h% has at least m+ 1  (|>̂ -distinct zeros,
in the region R. We have

THEOREM 2.8.2 Let be defined by (2.8.1) and (2.8.2). Then 
the ^-polynomial

T = ^r+1 ^^’ orthogonal to

to 0^^^ exists, and is made unique by requiring a^^^=l

Further t has exactly r+ 1  ̂ -distinct zeros in R, r 1
( I? ) ( 3? )X , . . . ,x . Thus we can write o r

r'+l (r)(2.8.11) T = n (*i-*i(x. ^)).
 ̂ i = 0 ^

PROOF: Existence and uniqueness (up to multiplicative constant)
of follow immediately from the usual Gram-Schmidt ortho- 
gonalization process (see, for example, [2]). If there are
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less than r+l^^-distinct zeros, (2 .8 .1 0 ) is contradicted, 
but we know exists from Lemma 2.5.1. Clearly, after 
repeated factorization, it is not possible for to have 
more than r+l^y-distinct zeros. ///

Analogous to Theorem 2,3.3 we have, despite the fact that 
, r>Q, is not a T-set unless 4^ is a monotonie function on 

R (see Lemma 2.2.15 and Corollary 2.2.16),

LEMMA 2.8.3 We cannot have 6 +k>m in the above analysis. That
is, under conditions (2.8.1) - (2.8.4) there cannot exist
an I.P.Q.F. exact on 0 ^x0  ̂ if y+6>2m+l.

PROOF: If 6 +k>m then, via (2.8.10), we require hi to be
W-orthogonal to itself. If hi is non-trivial this is 
impossible. ///

We state the results concerning I.P.Q.F. explicitly:

THEOREM 2.8.4 Assume y+6=2m+l, and (2.8.1) - (2.8.4) hold.
Then there exist I.P.Q.F. exact on where the
knots X ,...,x are ^-distinct zeros of x (as given in o’ ’ m tl m ^
Theorem 2.8,2) and yQ,..,y^ are arbitrary cj)̂ -distinct 
points. ///

COROLLARY 2.8.5 Let x^,...,x^be as in Theorem 2.8,4 and 
assume (2.8,1) - (2.8.4). Given an I.P.Q.F. exact on 
^2m+l n^^n^ then it is also exact on
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*2m+l-n+k,*n-k^ k=0,...,n.

PROOF: The conditions on the knots x ,...,x are identicalo m
in all cases, and once satisfied, if we obtain the co­
efficients a^j, i=0 ,...,m, j=0 ,...,n, so that the
I.P.Q.F. is exact on 0^x0^, then it is clearly exact on 
0^x0^ ^ also. ///

It is not necessarily the case that an I.P.Q.F. exact on 
>̂ x0 *̂, y + 6=2m+l, 6 <n, will be exact on 0  ̂ ^x0 ^^^ (see Theorem 2.10.8). 

Similarly we have:

COROLLARY 2.8.6 Let y ,...,y , be cf)̂ -distinct zeros of t , ------------------  o n ^ 1 n
and (2.8.1) - (2.8.4) hold. Given an I.P.Q.F. exact on 
0^x0 *̂̂ ,̂ then it is also exact on

k^^n+l+k^ k=0,...,n. Ill

Analogous to Theorem 2.7,4,

COROLLARY 2.8.7 If, under the assumptions of Theorem 2.8.4, 
the knots x^ are m+ 1  (j)̂ -distinct zeros of t^, and the 
knots y . are n+1 ({>̂ -distinct zeros of t^, then the I.P.Q.F, 
of Theorem 2.8.4 is exact on both

and 0^x0^+l. ///

Of course. Corollaries 2.8.5 and 2,8.6 still apply.

The I.P.Q.F. of Theorem 2.8.4 are by no means unique since
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we have freedom in the choice of knots y ., and x . if is] 1 ^
not a monotonie function. Also, if rank M is r<m, there,m ’
will be m-r degrees of freedom in t .̂ We observe that the
matrix A remains unchanged no matter which point in any set 
of 4^-equivalent points we may use. Thus there remains the 
question of which (if any) point in a set of (f)̂ -equivalent 
points is the best (in some sense) to choose.

Having considered the case y+6=2m+l we now examine 
Y + <5<2m+l and ask whether it is possible to use any extra degrees 
of freedom in preassigning knots. Analogous to Theorem 4.4 
of [24] (in its corrected form) we obtain:

THEOREM 2.8.8 Assume that (2.8.1) - (2.8.4) hold, that
2m+l-Y-n = s>0, y^m, and that (j)^-distinct knots x^,...,x^ ^
have been preassigned. Then, if W-orthogonal to
m-s . m-s *s_i
0 ; with respect to I with weight function w ÎI (^-^(x.)),

i = 0 ^
has m-s + 1 (f)-,-distinct zeros, x , .. ,x such that x ,...,xs m o m
are (^-distinct, there are I.P.Q.F. exact on with
knots x^,...,x^ (or their<})^-equivalents) and knots y  ̂
being arbitrary but(^-distinct, ///

Clearly, analogues of Corollaries (2.8.5), (2.8.6) and
(2.8.7) hold. We note (§2.5) that of Theorem 2.8.8m-s
always exists, but with the weight function changing sign, it
is not certain that the ^-distinct roots x ,...,x , in R, exist.IL s m
However, we may obtain (cf. Theorem 4.3 of [12]).
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THEOREM 2.8.9 Assume (2.8.1) - (2.8.4) are valid. Assume that
the weight function w of I changes sign s<m times in R,

( s ) ( s )and that M and M , are non-singular, m m+ 1  ^
(a) Then there exists a unique (up to multiplicative

C s )constant) ^-polynomial of degree m+1 , orthogonal
to 0^^^, with at least m+l-s 0^-distinct zeros in R.

( s )(b) Denoting the ̂ -distinct zeros of x by x , . . . ,x1 m o r
r>m-s then:
(i) if t is ({)̂ -distinct from x^, i = 0 ,...,r, there 

exists a unique (up to multiplicative constants) 
^-polynomial of degree m+1 , orthogonal
to 0^^^ with respect to (I with weight
function w(^^-^^(t))). Further has at
least m-s (^-distinct zeros in R.

(ii) If t is ({)2"equivalent to x^, for some i, there 
exists no W-orthogonal to 0^ with respect
to I 

Clearly

m
(s+1 )

m-l ~ ( (j)̂-({>2̂ (x̂  ̂) )

haswhere t. are m-s of the knots x ,...,x , and e ,1 o ’ r m-l
degree m, is W-orthogonal to 0^ with respect to %(s+T)^

PROOF: (a) xi^^ exists since has full rank, and it hasm m ’
at least m-s+ 1 zeros by an argument analogous
to the proof of Theorem 2.8.2.

(b) ii) If such a exists, clearlym ’ ^
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If is of degree m+1, we can write

Ca+i) r c ̂T = at + 9 , 9  of degree m,m m & 3

but this implies = 0 ,m m
* « C s )which implies l(x^ - 0 , i=0 ,...,m+l,

and this contradicts the rank of being
full.

(b) (i) Clearly, if exists it must have the
required number of zeros (of. (a)).

Only requiring W-orthogonality, exists by the
( s )results of §2.5, and since M has full rank it followsm

( s + 1 )that X is unique up to a constant and the coefficientm
( s )of must be non-trivial. being of full rank

gives ^(s+l))^g^ ///^ m m

COROLLARY 2.8.10 Assume (2.8.1) - (2.8.4). Let w be as in
(A3), i.e. of one sign on R. Then the conclusion of
Theorem 2.8.9 is valid.

PROOF: The structure of c() - ensures that M (sM^^^) and M1 m m  m+ 1

(=M^^^) have full rank in this case. I l l

COROLLARY 2.8.11 Assume (2.8.1) - (2.8.4). Let w and other 
notation be as in Theorem 2.8.9. Then, if
(a) tzx. for same i, the moment matrices1 m ’ m+ 1

with respect to have full rank.
(b) If t = x., for same i, must be singular.1 m ^
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PROOF: (a) follows from uniqueness of in (b) (ii)
of Theorem (2.8.9).

(b) follows from existence of a non-trivial solution 
of a homogeneous system of m+ 1 linear equations 
in m+ 1  unknowns. ///

We observe that if we choose points t^,...,t^, s<m, and
seek ^^polynomial's of degree m+1 , orthogonal to 0^^^

(r) ^with respect to I (I with weight function w n ( cj)-,-<f>T (t . ) ) ,
j= 0 ^

w obeying (A3)) we may proceed as follows:
(a) Let X ,...,x be the zeros of x (e x^^^).o m m m
(b) If t j are (^-distinct from X2^(ex^^^), i = 0,...,m, j=0,...,s,

calculate x^^\ Let the zeros of x^^^ be m m

ri>m-l.o r̂

(c) If t j are (j)̂ -distinct from all x̂  ̂and x^^^, j=l,...,s, we
C 2) (2 )can calculate x . Let the zeros of x bem m

(2 ) (2 )X ,...,x , r 2  ̂m-2 .u ^2

If t. are cj)-,-distinct from all x . , x^^\...,x^^\ j=k+l1 1 i’ 1 ’ ’ 1 ’ ^
...,s, we calculate  ̂ with zeros

^^k+1 )^^^^^^^k+1 )̂   ̂m-(k+l).
^k+ 1 ^

Noting that since the matrices r=0,l,..., are non­
singular when (2 .8 .1 ) - (2 .8 .2 ) hold, the above process can
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obviously be modified to seek of degree m-r+l, orthogonal
TTl — T* , f T* )to 0 with respect to I , r=0,...,s+l.
Thus, although we cannot obtain any further insight into

the zero distribution of x^^^, we have gained some knowledge
concerning the existence of the polynomials x^^^ and x^^\m-s m
Returning to Theorem 2.8.8 we have:

COROLLARY 2.8.12 Assume (2.8.1) - (2.8.4). Let 2m+l -Y~n=l,
Y>m. Preassign a knot x . If the range of {j>2^(domain not 
restricted to R) is TR, then x^^^ is guaranteed m zeros, 
and so the I.P.Q.F. in Theorem 2.8.8 (s=l) exists if all 
these zeros aredistinct.

PROOF : Clearly we may write

m-l
^m-1 " . ̂  1 - <j) 1 (Xĵ ) ) ( ̂ ^-s )

where Xi,...,x^ _ 2  are cj)̂ -distinct points in R. The range 
of (f) 1 being R guarantees the existence of x^ such that 
{j)i(x̂ )=s. I l l

In particular if (f)i=x, since x is a strictly monotonie 
function defined on R with range 'R, Theorem 2.8,8 is always 
valid with s=l.

We note that (cf. Lemma 4.5 of [24]), if we are given a 
set of knots x^,...,x^, by using (2 .8 .1 0 ) we may decide whether 
an I.P.Q.F. exact on 0 ^%0 ,̂ y>m, exists. Also the above 
analysis is symmetric in m and n.

It is clear that (2.8.2) is a central tenet of the arguments
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presented in this section. Finally, we comment that although 
our motivation for this section we originally the investigation 
of the T-set ^1 = o ̂ the results we have obtained depend much 
more on the fact that, given (2 .8 .1 ) and (2 .8 .2 ), we are able 
to factorize at zeros than on T-set properties, which we only 
need to the extent of assuming that (j> ̂ has at least m+ 1  dis­
tinct points, or if we are interested in uniqueness of knots 
in some I.P.Q.F.

Recalling the comments made at the end of §2.7, in view 
of the analysis of this section, it is clear that given (2.7.11) 
and/or (2.7.12) the requirement that the Ç and 0 mentioned 
there need not be strictly monotonie when we consider the case 
of I.P.Q.F. exact on and/or The only difference
is that the knots x̂  ̂ and/or y^ will be#^-distinct (^^-distinct) 
and may not now be unique, though the matrix A will be unchan­
ged when any point ({)2̂ -equivalent to a knot is used in place of 
that knot.

Let us return and consider (2.8.1) - (2.8.2) for a moment.
We recall, see for example [157], that standard orthogonal 
polynomials can be expressed by a three-term recurrence rela­
tionship

(2 .8 .1 2 ) Si+l -

with the initial conditions
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(2.8.13) [ = 0,
^ usually being 1 , the constant function

and being given constants, i=0 ,l,...

It is clearly possible to generalize (2.8.12) and derive 
a set of basis functions using generalized recurrence rela­
tion. For example, we may use, see [166],

(2.8.14) ^i+l " ^i“̂ i^i-l

with the initial conditions

(2.8.15) = 0 ,

<j) and Ç are given functions, 

a a n d  are given constants, i = Q,l,...

Clearly (2.8.14) is a generalization of (2.8.1) since
we obtain (2 .8 .1 ) on choosing i=0 ,l,..., and
(as defined in (2.8.1)) and (j)̂ (from (2.8.15)) to be unity.
However, it is clear that the function in (2.8.14) can
be regarded as a polynomial of degree (i+1 ) (in the integer
powers of Ç) multiplied by <J>̂. Consequently, we observe that
all the results of this section now hold in a more general
context; namely that obtained by defining the basic functions
é. and . as follows:
1 ]
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(2.8.16) ‘̂i + i "

1 = (G-aj2)*j-gj2*i_l

under the initial conditions

(2.8,17) /(}) Eij; EÜ,j —X JLI
''  ̂are given functions,

ail 5 3ii, a j 2 J 3 j 2 are given scalars.

Now, provided <{)̂ and are of one sign on R it is clear 
the above results hold (since we merely regard the function 
W(j>^}p^ as the weight function in I in place of w) .

§2.9 OBTAINING AN I.P.Q.F.
In cases II and III, we have seen that the knots, xo

x^, can be characterized as the zeros of a single <j>-polynomial 
(even if that polynomial is not unique). In case I we know 
that the required knots exist, and in the case ^^=x^, i=0 , 
...,2m+l, the knots may also be characterized as zeros of certain 
polynomials, see [9], Ch. 4. We also have several methods for 
obtaining the W-orthogonal polynomial which has x^,...,x^ as 
zeros, given in §2.5;

(2.9.1) The solution of linear system of equations.

(2.9,2) When the moment matrix M has full rank we may use them
generalized Gram-Schmidt process, (2.5.9) - (2.5.12), 
and this -is available if both 0^^^ and are T-sets
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(Theorem 2.5.13). In fact, we observe that we only 
need 0^ and being T-sets, since there is no need 
to normalize (see 2,5,11).

(2.9.3) We may define W-orthogonal to by (2,5.14)
(£=m+l, and replacing by i=0 , , . , ,m+l) . This
requires that rank M ,. has to be m (else (j) ,t = 0)m+1 , m ^m+ 1

and a sufficient though not necessary condition for 
this is that 0^ and are T-sets.

In the context of T-sets (and thus xi elementary functionals), 
we can use (2.9,3) to amplify the comments made in §2.4 con­
cerning the unlikeliness of there existing I.P.Q.F. exact on 
0^xY^, Y+G=2m+1, except in cases I, II or III, in which we 
eventually have no more conditions (i.e. at most m+1 ) to satisfy 
than there are parameters (the knots x^) available. Recalling 
condition (2.4.14) of Theorem 2.4.3, obvious candidates for
the functions h arer

(2.9.4) h^=det I •• • > I '•’o

However, condition (2.4.15) of Theorem 2.4.3 in this con­
text requires that h^, r=l,...,Y-m, all have m+1 common zeros.
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X. , and once we have determined x , . . . ,x from examin­er m o ’ m
ing, say hi, it seems improbable that, without imposing strin­
gent conditions, even ho will have x ,...,x as zeros, let ̂ o m
alone h 3 ,...,h^_^. Replacing I by c|)̂ (x. ), i = 0,..,,
m,m+r, j=0,...,m, in (2.9.4) guarantees the common zeros, but
in general we would not expect the h^ so defined, r=l,...,y-m,
all to be W-orthogonal to

We now consider how to obtain the matrix A for an I.P.Q.F.
exact on We assume that the elementary functions
{S.(%.;.)}?__, {T.(n.;.)}^_n have been determined, and that1 1  i-u ] ] ]-u
the matrices B and C are non-singular. As pointed out in §1.3, 
there are two methods available; the use of interpolating 
polynomials and the direct solution of the moment equations.

The use of interpolating polynomials is straightforward. 
Since the matrices B and C are non-singular (cf. Lemma 2.2.21) 
it is immediate that there exist unique (j>- and ^-polynomials, 
p^ and q^, of degrees m and n respectively such that

(2.9.5) / i,s=0,,..,m,
j
I T. (r|.;q.) = 6 .., j,t = 0,...,n.
V. ] t ]t

Clearly, any ^-polynomial, <{>, and ^-polynomial, Tp ̂ can be 
written

(2.9.5) f  = I?_Q p̂ Ŝ (ç̂ ;(f)) ,

- I j - Q  Q.jTj ( n j ; (j) ) .

Thus it follows that we may find a^^ by
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The polynomials p^ may be found either by solving the 
relevant linear equations or as (see (2 .2 ,1 0 ))

( 2 . 9 . 8 )

where  ̂ is with the (i+l)-st column replaced with the
Tvector ( (j>̂ 5 . . . 5 <j)̂) . We may obtain q̂  analogously. Hence

( 2 . 9 . 9 ) "ii = :

If (2.8.1) and (2.8.2) are valid, then we may obtain p^ 
and q̂  in a format analogous to the standard Lagrange inter­
polation formula for polynomials.

Now, let us consider solving the moment equations (1.3.13) 
directly. For quite small values of m and n, the matrix can 
become quite large, however it is possible, see [23], and in 
a general context, [31], to obtain the solution to (1.3.13) 
by examining only (m+1 ) x (m+1 ) and (n+1 ) x (n+1 ) systems of 
linear equations.

For each i=0,...,m solve the equations:

(2.9.10) C oi

ni I
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where

(2 .9.11) “ji = ^k=o

Then we obtain the elements of A as solutions of

( 2 . 9 . 1 2 ) ■ " o k a .]0

a .:m

Observe that in the process (2.9.10) - (2,9.12) we only 
need to decompose the matrices B and C once, and so the deri­
vation of the matrix A can be done much more easily and ef­
ficiently than by attempting to solve (1.3.13) directly.

Of course, no matter how we obtain the matrix A, we know 
that it is unique (Theorem 1.3.4).

2.10 PROPERTIES OF THE MATRIX A
We begin by noticing some fairly straightforward proper­

ties of A. Initially we examine properties which A has once 
an I.P.Q.F. has been determined, and later we investigate 
the effect on I.P.Q.F. of imposing certain conditions on A.

LEMMA 2.10.1 Let A be an (m+l)x(n+l) matrix. If we desire an 
I.P.Q.F. to be exact on n-6=&>0, then we may ar­
bitrarily preassign 2 elements in each row of the matrix
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A, provided the rank of the matrix C (see (1.3.8)) is 
not decreased after the relevant columns have been dele­
ted (i.e. in a given row of A, if we preassign the r^^ 
element; we delete the r^^ column of C).
An analogous result holds if m-Y=k>0, when dealing with 
the columns of A.

PROOF: The rank of D (1.3,9) - (1.3.10) remains unchanged.
See [24]. ///

COROLLARY 2.10.2 If of Lemma 2.10.1 is a GT-set with res­
pect to a bilinear functional L (so T^eL,j=0,...,n) the 
rank of C in Lemma 2.10.1 remains unchanged. ///

COROLLARY 2.10.3 If I.P.Q.F. as described in Lemma 2.10.1 exist 
exact on 0^%Y^ ^, &>0 , y-™- then, once the I elements in 
each row of A have been preassigned, the matrix A is 
unique. ///

Consequently, we have the following result, which is com­
plimentary to Corollary 2.8.5.

COROLLARY 2.10.4 If we seek an I.P.Q.F. exact on ^, &>0,
we may not arbitrarily preassign more than Z elements in 
each row of A. I l l

We are thus able to conclude that, when seeking an I.P.Q.F. 
exact on ç^xY^, there is, in general, no real gain in consider­
ing n>6 , and the usual choice would be n= 6 (cf. (2.7.2)).
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Considering the rank of A, we have (see also [13,24]).

LEMMA 2.10.5 Assume we are given an I.P.Q.F., exact on
and that the rank of M is n+1. Then the rankY ,n

of A is maximal, i.e. n+1.
PROOF: Assume the contrary, i.e. rank of A is less than n+1.

Then there exist constants a^, with y.j_Q|aj|>0, such that

Ij=o “j-j " - ’

where a. is (see (1.3.14)) the (j+l)-st column.of A.
-]

However recalling that C (see (1.3.8) has maximal rank, 
there exists a non-trivial ijj-polynomial ij; such that

Tj(^) = aj, j = 0 , . . .,n.

Hence Q(^^;^) = 0, i=0,...,Y, and since the I.P.Q.F. is 
exact for 0^xy^, it follows that

Thus contradicts the assumption on the rank of M . I l lY

We also have :

LEMMA 2.10.6 Assume we are given an I.P.Q.F. exact on
Assume i = 0,...,n. Then the rank of A is n + 1

PROOF: Again, we assume the contrary, namely that rank of A
is at most n. We show that the rank cannot be n (the
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argument is analogous for n-1,...). Assume the first n 
columns of A are linearly independent. We now show that 
the remaining column cannot be equivalently zero. Since 
if is equally zero, we construct a non-trivial ^-polynomial, 
(j), of degree n, such that

Tj(^) = 0 , j=0 ,...,n-l,

and T̂ ((f))=l. Such a polynomial exists since C has maximal 
rank. However, we now find that

Q((j);<j)) = 0,

while
I( ; (j)) > 0 ,

and thus have a contradiction. We now derive the polynomial 
ip as done in the proof of Lemma 2.10.5, and we have a 
contradiction since

Q(\p;jp) = 0,

while

> 0 . ///

LEMMA 2.10.7 Assume we are given an I.P.Q.F. exact on
6 <n, y+6 >2 m, S^exi, i=0 ,...,m, and that (2 .8 .1 ), (2 .8 .2 ) 
are valid. Then the rank of A is at least 5+1.
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PROOF : We proceed in exactly the same way as the proof of
Lemma 2.10.6, examining rows and elementary functionals 

and on replacing n by 5 it follows that at least one of 
the 6 -th,..,,m-th rows of A cannot be identically zero. 
Assume the 6 -th row is not identically zero. Consequently 
there exist constant a^,...,a^, not all zero, such that

Set

m
n (4u-*.(x.)) 

i=5+l

If ç(x^)=0, i=0 ,...,6 , we are finished since I(ç;l)>0 
but Q(Ç;1)=0. Assume 5 (x^)zO for same ie{0,...,5}. We 
now obtain 6 , of degree at most 6 , such that if 
Ç(x^)#0 , i = 0 ,... , 6 ,

«i
0 (x.) =i/ - '

The existence of such a 0 is guaranteed by the ^-distinc­
tions of the knots x^,...,x^. However Q(C8 ;0 )=O by con­
struction, while

I(Ç0 ;0 ) > 0. I l l

As usual, the analogous results hold an interchanging m 
and n.

We can obtain some results, concerning the symmetry of A,
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which will be of particular use when actually calculating the 
elements a^^.

DEFINITION 2.10.1 We say that a function ç is even with respect
to a set of elementary functionals { L . i f1 1 = 0

(2 .1 0 .1 ) L^(Ç) = Ly_^(E), i=0 ,...,[|].

Similarly, Ç is odd with respect to {L.}^ if ̂ i = 0

(2 .1 0 .2 ) L^(C) = -L^_^(ç), i=0 ,...,[Z±l]. ///

As usual [s] denotes the integer part of s, i.e. the greatest
integer less than or equal to s.

THEOREM 2.10.8 Assume we are given an I.P.Q.F., exact on 
and the following conditions are obeyed,
(a) of the functions 0^ are even with respect to

{S.}^ , the other m+1 -Ĉ ^̂ Ü̂ ] being odd,
1 1 = 0 I

(b) [-|— ] of the functions are odd with respect to
{T.}^ , the other n+l-[^^i] being odd,3 j = 0 ^

(c) If is the product of an even and an odd function,
= 0 .

Then the matrix A has rotational symmetry of order 2.
PROOF : The requirement that A has rotational symmetry of order

2 can be written as
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(2.10.3) 1 ,0,...,0 ,0 ,...,0,-1 
0 ,1 ,. .. ,0 ,0 ,... , — 1,0

0,0,...,1 ,-1 ,...,0,0

3. = Uâ — 0

where a is given by (1.3,14) (we insert a column of zeros 
between the » th and following column of U if
(m+1)(n+1) is odd). If an I.P.Q.F. with the desired pro-

D| A
ÜTÔperty exists then rank (̂ ) is the same as rank 

An examination of (̂ ) shows that U and the matrix formed 
by taking all rows of D corresponding to the pairs of fun­
ctions in condition (c) are equivalent, and consequently 
only one of them is required in the determination of A. I l l

COROLLARY 2.10.9 Unless both m and n are even, the words
"even" and "odd" may be interchanged in either or both of 
conditions (a) and (b) of Theorem 2.10.8. If both m and n 
are even, even and odd must be interchanged in both (a) 
and (b). I l l

COROLLARY 2.10.10 Condition (c) of Theorem 2.10.8 may require
that both (j). and . are either odd or even, and then A has  ̂ ]
antisymmetry of order 2 . I l l

In particular, we have the following special cases:
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COROLLARY 2.10.11 Let be even if i(j) is even, and odd
otherwise. Let Ŝ £X]_ ? assume the knots x^Cy^) are
symmetrically distributed about the origin. Then

(a) if w is even, Theorem 2.10.8 is valid.
(b) if w is odd. Corollary 2.10.10 holds. ///

Again extending slightly some results in [24], we can make 
the following observation. If a function is even or odd, its 
zeros will be placed symmetrically about the origin. Conse­
quently the following is immediate:

COROLLARY 2.10.12 Let cj)̂ and tp̂ be as in Corollary 2.10.11
i,i=0,l,... Assume S.exi, T.exi* Then, if w is also an 
even function, and the I.P.Q.F. is exact on where
a and 3 are both even or both odd, the I.P.Q.F. will also 
be exact on

oO+lxyG and o^x^G+l^

PROOF: Immediate from the structure of A determined in Theorem
2 .10.8 . ///

Clearly there is an analogous Corollary in the case when 
CO is an odd function.

We now have, following [12]:

DEFINITION 2.10.2 An I.P.Q.F. will be called symmetric if m=n,
TSi=Ti, i=0,...,m, and A=A .

Hie following results are obvious and extend results in
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[12,13].

LEMMA 2.10.13 An I.P.Q.F. exact on (and in>n) with
is symmetric, and the matrix A is posi­

tive definite.
PROOF: m=n follows from exactness on the product space (see

Corollary 2.3.4). The fact a..=a,. is now immediate on ̂] 3 ̂
calculating the elements of A using interpolating poly­
nomials ((2.9.5) = (2.9,7)). Positive definiteness of 
A follows since det B#0, and thus for an arbitrary (m+1) 
vector (a^,..,a^), there is an unique non-trivial ^-poly­
nomial ({) such that Ŝ ((j))=â , i = 0 ,...,m, and

Q(*;4 ) = !(*;*) > 0 . ///

LEMMA 2.10.14 Assume (2.8.1), (2.8.2) hold, S^=T\, i=0,...,m=n, 
and that

^i^^i ̂ ^i^ “ Ŝ (c{)j(f)̂ ), i)3 )k-0 , . . . ,m.

Then any R.Q.F. exact on 0 ^, y^2m+l, can be written as a
symmetric I.P.Q.F. with A diagonal. Conversely any sym­
metric I.P.Q.F. with A diagonal exact on is a R.Q.F
exact on I l l

LEMMA 2.10.15 Assume (2.8.1), (2.8.2) hold, S^sTLexi, i=0,...,
m=n, and we are given an I.P.Q.F. exact on 0^ ^*0^1
Then the matrix A is diagonal.

PROOF: The knots, x ,...,x , (y ,...,y ) are, up to d -dis-in m -L
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tinctness, unique (see §2 .8 ). The matrix A is unique 
(Theorem 1.3.1), and may be calculated using interpola- 
tery polynomials. Observe that in this case we may write

m
(2.10.4) p^ = a^( j ip ( (Xj ) ) ,i = 0 , . . . ,m,

where is some non zero constant. Observe that

= I(p^;p^) > 0 , i=0 ,...,m.

and

where is given by (2 .8 .1 0 ) and 0 is a <j>-polyncmial of 
degree m-1 . ///

COROLLARY 2.10.16 Assume (2.8.1) - (2,8.3) and that we are
given an I.P.Q.F., exact on in which the matrix
A is diagonal. Then the knots y  ̂ must be distinct but, 

as a set, (^-equivalent to x^,...,x̂ . Thus A is unique. 
PROOF: Immediate from the proof of Lemma 2,10.15 and Lemma

2.5,15, which guarantees that is unique (up to a multi­
plicative constant). ///

Having seen that in certain circumstances A may be a 
diagonal matrix, we now reverse our stance and examine what 
happens if, from the outset, we require A to be diagonal. If 
m>n, by A being diagonal we shall mean that (after reordering
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rows and columns of A if necessary) we can write

(2.10.5) a^j = 0, iz], i,j = 0,...,n.

We shall only consider I.P.Q.F. exact on y>m. The re
quirement that A be diagonal may be expressed as

(2 .1 0 .6 ) I(p.;q.) = 0 , i*], i,j=0 ,...,n,-L j

where p^ and q̂  are defined as in §2.9. This gives us n(n+l) 
conditions and we have m+n+ 2 parameters in the choice of elemen­
tary functions S. and T. available. Thus without the aid of
some conditions on the choice of <{)., \{) , (e.g., (2 .8 .1 ) - (2 .8 .2 ),

1 0

^i“^i^ and perhaps and T^, we might only expect it possible 
to force A to be diagonal when, seeking I.P.Q.F. exact on

(2.10.7) n(n+l)  ̂m+n+2.

Clearly, given n, there is always an m^ such that (2.10.7) is 
satisfied for m>m^. Analogous comments apply if we seek an 
I.P.Q.F. exact on 0 ^xy^ (though there are more conditions to 
be satisfied now), when (2.10.7) is replaced by (see §2.4).

(2 .1 0 .8 ) (n+Y-m)(n+1 )  ̂m+n+ 2

In the most structured case we have examined, i.e. case 
III of §2.4 (§2.8), and using arguments similar to those in 
the proof of Lemma 2.10.15 (see also [12,13]) we immediately 
find
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THEOREM 2.10.17 Assume (2.8.1) - (2.8.4). Let x  x be------------------  Q m
distinct zeros of orthogonal to 0™^^. If, ,

j = 0 ,...,n, are distinct and such that y ̂ e {x^, . . . ,x^>
(up to (j)^-equivalence) , then the I.P.Q.F. using these
knots is exact on 0 ^x9 ,̂ y+n=2m+l, and A is diagonal.
The converse is also true.

PROOF: We only need comment on the converse. Assume a..=0,
1 ]

i?i j , i, j = 0 , . . . ,n (by renumbering knots if necessary).
Clearly, if the y^'s are not^^-^quivalent to x^'s, we have
two distinct sets of functions orthogonal to each other,

m
with respect to the weight function w IÎ ( (x^ ) ) .

i=n+l
Thus, the moment matrix with respect to this new weight 
function has full rank (Theorem 2.5.9). This contradicts 
Corollary 2 .8 .1 1 . ///

COROLLARY 2.10.18 Assume an I.P.Q.F. as postulated in Theorem 
2.8.8 exists. Then, if the knots are chosen as in Theorem 
2.10.17, the matrix A will be diagonal. The converse is 
also true. ///

The analogue of Corollary 2.8.10 obviously holds also. Having 
examined this case in some detail, we can also obtain some 
information for a more general situation, see [25,26,27], when 
S^,Tj exisi,j = 0 ,l=m=n.

THEOREM 2.10.19 Assume 0  ̂ and Y ̂ are CT sets on R. There is
exactly one I.P.Q.F. exact on 9^xY^ with A being a diagonal
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matrix. The diagonal elements of A are positive.
PROOF: m=l and exactness on force x and x. to be theo 1

zeros of xj. Diagonality requires that I(p^;qi) = l(pi;q^)=0 
If y^sYi exist such that the required I.P.Q.F. exists, y 
is a zero of q% and y  ̂ a zero of q . Let A be the ^-poly­
nomial of degree 2 such that

A(x ) = 1 o
and A(xq) = 0 (a nonnodal zero).

Thus A-p^ is zero at x^ and x^ and so A-p is proportional 
to X1 . Thus I(A-p^;q) = 0 for any qespY^,

I(A;q) = I(p^;q), VqespY^ .

Thus we need q, non trivial, with a zero which we will
choose to be y , such that o

I ( A ; q ^  = 0 (^TXpgSqi) = 0) «

Let q be a i{;-polynormal of degree 1, with a zero in R.
If I (A;q) = 0 set qi=q. Else, since is of one sign, 
say positive ( Y ̂ a CT-set), thus I(A;i|ĵ ) is non-zero, 
choose qi=q~ai|ĵ  where

I(A;q) = aI(A;^^).

q and q^ contain  ̂, with non zero coefficient (by their 
construction), thus since I (A ; qĵ ) = 0 , q̂  must have a zero 
in R. We obtain y ̂ analogously (q^ and q^ are distinct 
else we contradict orthogonality). We now show that a^^>0
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(ail analogously).

But q =aqi + 6  ̂ (a^O since q^ has a zero in R, and g9=0 ^o ^  o o
since q zqi). Thus a = gI(Ai;^ )>0. ///^o oo i o

We observe that Theorem 2.10.18 is symmetric in m and n, 
and that it is valid on preassigning x and xi (distinct) 
arbitrarily, although we then have exactness on only.
Further, we note that the proof does not extend to m and/or n 
larger than 1 .

§2.11 I.P.Q.F. AND GT-SETS
We begin with some straightforward comments based on the 

properties of linear functionals. It is elementary that, given 
two r X r non-singular distinct matrices F and G that there are 
unique, distinct non-singular transformation matrices Wi W2 such 
that

(2.11.1) F = WiG,

(2.11.2) F = GW2 ,

(2.113) W 3 F = G (W3 =W‘^),

(2.11.4) FWij = G (W^=Wg^).
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Now let F,G be rxg (r<s) and of full rank. It follows 
that VI2 (similarly W 3 ), now sxg, always exists, has rank at 
least r, and that s-r elements in each column of VI2 niay be 
preassigned. By carefully preassigning elements we may gua­
rantee that VI2 has rank s (or any number between r and s in­
clusive) . W 2 is of course not unique, thus W\=W2  ̂ need not 
hold. On the other hand W 1 if it exists will be unique, and 
it will exist if and only if the following conditions are 
fulfilled :

(2.11.5) Some given r columns in both F and G are linearly 
independent.

(2.11.6) In both F and G all other columns are the same 
linear combination of the given s linearly indepen­
dent columns.

Clearly, if exists, then Vl^-Vlj'^. If r>s then by interchan­
ging VII and VI2 i r and s, and rows for columns, the above com­
ments remain valid.

Now we examine the question of replacing one set of elemen­
tary functionals, say {S. , by another set, {S.}^ . Natur-

1 i= 0  ̂i= 0
ally, we assume that any replacement set of elementary func­
tionals obeys (A7) if they are not a GT-set. The comments when
considering {T.}^ (and we consider the case r>s above) are 3 j =0
analogous. From our initial remarks it is easy to obtain: 

THEOREM 2.11.1 Assume we are given an I.P.Q.F. exact on
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*Y Ô m TTl
0 xY Y^m. Then we may replace {S.} by {S.} , if we

1 i= 0 1 i= 0
replace the coefficient matrix A by WA where W is a trans­
formation matrix such that B=BW, where B is given by
(1.3.7), and B on replacing with in (1.3.7). If 
Y = m  the matrix W is of full rank and unique. I l l

THEOREM 2.11.2 If, in Theorem 2.11.1 y > m ,  the conclusion is
valid if and only if (2.11.5), (2.11.6) hold. If the
matrix W exists it is unique and of full rank.
(Here we have F = {S . ( (f>. ) ^ =B and3  ̂ i= 0 , j = 0 Y
G = {S.(.(,.)}T’ “ „ = B (cf (2.11.2))) ///3 1 1=0,3=0 Y

From §2.10 it is clear that the rank of the matrix WA
will be at least 6 + 1  in the above results (we may be able to
say more, depending on the nature of {S.}^ and {S.}^ ).

1 i= 0 1 i= 0
We see that the conditions (2.11.5) and (2.11.6) in 

Theorem 2.11.2 are in practice conditions on the choice of
/s lYtparameters of {S.} . Consequently we end up examining con-
1 i = 0

ditions similar to (2.4.7), and the coefficients a. mentionedir
are determined by linear combinations of rows in BY

Returning to Theorem 2.4.3 we recall that the way in which 
we arranged for conditions (2.4.14) - (2.4.16) in §2.6 - §2.8 
to be satisfied was to obtain the orthogonal (or W-orthogonal) 
polynomials h^, r=l,...,Y-m, and then to see if we could 
guarantee that (2.4.15) and (2.4.16) were satisfied. This 
means that the coefficients of h^ in (2.4.10) are fixed by
orthogonality conditions which are independent of our choice
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of elementary functionals and . In turn, this means that 
the coefficients in (2.4.7) are determined independent of
our choice of functionals S^. Thus it is apparent that the co­
efficients are independent of the method used (i.e. trying
to replace one set {S^}^  ̂ of elementary functionals by another
{S.}^ or examining the moment equations (using {S.}^ )

1 i= 0 1 i= 0
directly) in obtaining them. Hence, emphasizing (2.4.15), we
see that to determine whether an I.P.Q.F. exact on exists
we need only consider the action of {S.}^ on same special

1 i = 0
(j)-polynomials, which are W-orthogonal to Ŷ . This means we have
two ways of obtaining an I.P.Q.F. using {S.} , once we have

1 i = 0
parameters such that acting on the (W-) orthogonal poly­
nomials is zero, i=0,...,m, then we may either determine W as 
in Theorem 2.11,2 if another I.P.Q.F. exact on 0^xY^ using
functionals {S.}^ is already known, or we are able to obtain 1 1 = 0
the matrix A as in §2.9. Clearly the existence of an I.P.Q.F.
exact on 0 ^xY^, y>m, using {S.}^ , does not imply the exis-i = 0
tence of an I.P.Q.F. exact on 0^xY^ using functionals {S.}^1 i = o

The transformation matrix W can be calculated directly
using discrete vector scalar products, from the square matrices
B (B ) and B, as follows; m,m

(a) Find an upper triangular matrix, U, such that

(2.11.7) B* = BU,

where B* has columns which are orthonormal to each 
other, and span the same vector space as the columns 
of B. This may be done by using the discrete version
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of the Gram-Schmidt orthonormalization process (see, 
e.g., [116 ] ).

(b) Obtain the matrix W* such that

(2.11.8) B = B&W*.

This is straightforward now that the columns of B*
are orthonormal, i.e. (B*)'^(B*) = I (I is them m
(m+l)x(m+l) identity matrix).

(c) The matrix W is now given by

(2.11.9) W = U(B*)^B = UW*

A great deal of analysis in this chapter has dealt with 
T-sets, and thus with xi-functionals. There are two reasons 
for this. First, the most common type of elementary functional 
to be used is Xi* Second, using point evaluation, and thus 
being interested in the zeros of functions, we are able to 
make use of some known properties of integrals of functions with 
certain zero properties, in particular the fact that the inte­
gral of a non-trivial function of one sign is non-zero. It is 
hard to obtain similar properties when using other types of 
elementary functional. However, from the comments made earlier 
in this section it is clear that much of the analysis depends 
upon orthogonality which is independent of the choice of the 
elementary functionals, and some results that have been proved 
using properties of functionals can be proved for more general 
cases using orthogonality properties. In particular, we can
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extend Theorem 2.3.3 (and Corollary 2.3.4). Given 9 ,̂ y > m .  
satisfying (2 .8 .1 ), and , we define the moment matrices 
^m+1 £ r=l,...,Y~m, £=(y-m)(ô+1), (cf (2.5.1), (2.5.2)) as 
the moment matrices, with respect to I, using the set of 
functions

(2.11.10) 0 ^ =  {*o'''''*m'*m+r}'

(2.11.11) ©  £ ■ t4Q*o'''')*o^6'''')*y_m^o'''''*y-m^6^'

THEOREM 2.11.3 Let 0 ,̂ y>m, satisfy (2.8.1) and Y*̂ , 6>0,
£=(y-m)(Ô+1 )>m+l, be such that the rank of one of the 
moment matrices ^,r=l,...,y-m, is m+2. Then there
cannot exist an I.P.Q.F. exact on 0^xY^when S^exi«

PROOF: Choose r such that rank  ̂ is m+2. In calculating
h^ (see (2.4.10)), W-orthogonal to at least m+2 functions 
(cf (2.8.8)-(2.8.9)) we are attempting to find a non-trivial 
solution to a homogeneous system of equations, in which 
the matrix has full rank. This is impossible. ///

We conclude this section with a Theorem, the proof of which 
emphasizes the role orthogonality plays in our considerations.

THEOREM 2.11.4 Let 0^^^ satisfy (2.8.1). Let Ŷ  ̂be a T-set.
Assume  ̂,i/; ̂ eC^ (R) , j = 0,...,m and (j> has no zeros. Let
x^,...,x^ be m 4) j-distinct zeros of W-orthogonal to Y^.
Assume S^^Xi, =S^(x^;.), i=l,...,m. Let z^,..,,z^ be
the zeros of (t )' . Then for at least one ze{z ,. . .,z }m o r
defining S to be derivative evaluation at z, there is an
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I.P.Q.F. exact on (m=n) .
PROOF: Examine the matrix

(2.11.12) 0 1 

*l(z) , cf)̂ (Xi),
2*^(z)4|(z), *2 (x^),

1

>

The matrix obtained by deleting the first column and last 
row is nonsingular (Corollary 2.2.17). Let

(2.11.13)
m

Ç = n (^l-^l(x^)) =
i=l J " J

B will be singular if z is a zero of

(2.11.14)

0 has at most m-1 distinct zeros. On the other hand 
(t^)', since has at least m+ 1  nodal 4̂ -distinct zeros, 
has at least m(j)^-distinct zeros. We can now choose z to 
be any zero of Ct^)’ which is not also a zero of 8 , thus 
ensuring that B is nonsingular. Also, assuming that

+ i L o  Sid

as required for there to be an I.P.Q.F. exact on
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we clearly have

C(m+2)nd row of B ,. ^ )+ 7 . 6 . (i+1 )st row of B ,. )̂ = 0.m+l,m ^i=Oi m+l,m
///

COROLLARY 2.11.5 Let everything be as in Theorem 2.11.4
except that (j) \ may now have zeros. The conclusion of
Theorem 2.11.4 remains valid provided there is a zero of

which is not a zero of 0 given by (2.11.14). ///

COROLLARY 2.11.6 If in addition to the conditions of Theorem
2.11.4, (2.8.2) holds, the conclusion of Theorem 2.11.4 is 
valid for y+n=2m+l. I l l

Clearly the I.P.Q.F. of Theorem 2.11.4 and its Corollaries
are by no means unique, since, apart from the possible choices
of the point z, there are ways of choosing the knots
xi,...,x , where s>m is the number of 4b-distinct zeros that x 1 m/ 1 m
possesses. We may extend Theorem 2.11.4 to deal with inter- 
polatory I.P.Q.F.:

COROLLARY 2.11.7 Let 0^ satisfy (2.8.1). Assume 4d)^jcC'(R),
j=0,...,m. Assume S.exijX. fixed and 4^-distinct, i=l,

m  ̂ ^
. , . ,m. Let Ç = IT (4^-$i(x.)).

i = l ^
Let S be derivative evaluation at z. If S'(z)zO, then 
det(B)zO, B given by (2.11.12):

PROOF: See Theorem 2.11.4. ///
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For S. as in Corollary 2.11.7 we see T. are still arbi-  ̂ 3
trary (so long as det(C)zQ) and has only a weak condition 
applied to it, so the elementary functionals retain many 
degrees of freedom in their choice. Corollary 2,11.7 may be 
extended further.

COROLLARY 2.11.8 Assume the conditions of Corollary 2.11.7
except assume S^ex , fixed and 4>^-distinct, i 
Let Çj be the ^-polynomial determined by

m.

]r

Let z Î.

,o ,m-r ,m-r+j- + 1

r- 1

3 m

be such that

= 0 , 3 = 1 ,...,r, i = r.
X .1

(1 ) 4) 1 ( z . ) 7=0 i = 0 ,...,r-l

,m

(2 ) z^ are 4>^-distinct i = 0 ,
r ,r-l

,r-l

(3) det(Ç.(z.))._i'._ zO
3 1 3 , i-u

Then detBzO, B given by (2.11.15).
PROOF: Analogous to Theorem 2.11.4 on considering

(2.11.15) B =

I

m- 1 m,

(x_)m

*i(Xp). •d<xp

III
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CHAPTER 3: COMPOUND I.P.Q.F.

§3.1 USUAL COMPOUNDING

We remember that a prime reason for investigating I.P.Q.F. 
is the desire to make full use of the differing characteristics 
of the functions f and g in the bilinear functional I (see
(1.3.1)). We should not forget this when we use an I.P.Q.F. 
in a compound manner. When a R.Q.F. is compounded, the usual 
procedure is to split the interval of integration into a number 
of subintervals (usually of equal length, for simplicity), 
apply the R.Q.F. to each subinterval, and sum the results. It 
is likely when using an I.P.Q.F. that we will want to use dif­
ferent selections of subintervals when considering the functions 
f and g. Some comments in connection with the standard poly­
nomial case are made in [1 2 ], and a more detailed investigation 
is carried out in [ 2 0 ], based on evaluating the integral
(2.9.7) exactly, when it has been modified to deal with the 
compound I.P.Q.F. We employ a different approach.

In order to discuss compound I.P.Q.F., we must initially
establish the criteria under which we may change the interval
of integration and yet retain exactness. Assume that we have
an interpolatory I.P.Q.F. exact on 0 ^xY^, with y>m, 6 >n. For
generality we denote the interior of R by (a,b) (not (A4)),
and the I.P.Q.F. by Q^. We seek a shifted I.P.Q.F., Q^, exact
on an interval K with interior, say, (c,d). We want Q^ to be
exact on (i.e. ), where1 i=0 3 j =0
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(3.1.1) / (K), /(d~c)t+bc-ad
h   bZI---

/ (K) /(d-c)t+bc-ad
b—a

(|)̂ (t) , i = 0 , ...,y,

4y(t), j = 0 , . . . ,ô ,

Q t eR

The elementary functions used in Q , and^ 1 j_-Q
will obviously be of the same form as {S.}^ and ] j=0  ̂ 1 i=0

{Tj}^_Q but probably with a different choice of parameter. 
Naturally, we assume

(3.1.2) f S.(.^ ) = (K)g.((K)^ ) i=0,...,m, u = 0,...,Y,I p 1 P

T.(^ ) = (K)^ ^(K)^ ) i=0,...,n, v=0,...,6.] V 3 V

Now approximates I^, the bilinear integration functional 
over K with respect to weight function w^, where

(3.1.3)

Define Qj, by

(3.1.4)

where A is given by Q

(K)jT ,

'"f . c«>Vg) <>'>vs»-
The following Lemma is immediate (see [12]):
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LEMMA 3.1.1 Let Q be an I.P.Q.F. exact on 0 ^xY^. The shifted 
I.P.Q.F. Q^, defined by (3.1.4) is exact on 
defined in (3.1.1). ///

We note that if, assuming 4>. and 4,. are defined on K, we
1 3

replace (3.1.1) by

^(K)(3.1.5) s) = s) i = 0 ,. . . , Y ,

\ ^^^^j(s) = 4y(s) 3 =0 ,...,5 ,

 ̂seK.

the conclusion of Lemma 3.1.3 is not valid in general. However, 
if as in the case of standard polynomials, i.e. (2 .8 .1 ) ~ (2 .8 .2 ), 

and teR, hold, the conclusion of Lemma 3.1.1 remains
true on replacing (3.1.1) by (3.1.5).

Noting the condition (3.1.3) we see that, except in very 
special circumstances, where w is periodic, there is no point 
in considering compound I.P.Q.F. unless, as we shall assume for 
the rest of this section, wsl. We now need some notation:

DEFINITION 3.1.1 An r-partition of the interval R is a parti­
tion of R into r non-trivial, non-intersecting (but not 
necessarily equal length) subintervals,

(-l,Wi),(Wi,W2),...,(Wy_2,Wy_^),(Wy_i,l)

(we sometimes will use -1=W^, IsW^). We denote this parti­
tion by
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(3.1.6) {—l , W i , . . . , ^ ,1} . ///

M VDEFINITION 3.1.2 Let M(N) be a u(v) partition of R. By 0 

(^Y^) we mean the set of functions which are ^^-(^^)- 
polynomials of degree at most y(6 ) on the y-th (v-th) 
subinterval of the partition {-1 , , .  . . , ,  1 }
(N={-1,Yj,...,Y^_^,1> )5 y=l,...,u (v=l,...,v). ///

In the above definition, a ^{j>-polynomial is a polynomial 
(x ,,x )

in sp  ̂0  ̂ defined by (3.1.1) (on replacing K with (X^_^, )).

We define a ^^t-polynomial analogously.

DEFINITION 3.1.3 An (M,N) copy of an I.P.Q.F, Q is an I.P.Q.F.,
(M N)denoted ’ Q , with the properties

(a) If Q is exact on 0^xY^, then is exact on
^ 0 ^x^Y^, where M and N denote partitions of R.

(M N)(b) The elementary functionals used by ’ Q? denoted by
, {^T.}^ , are such that (3.1.2) holds (the1 i=0 J 3=0

interval K is now (X -,,X)((Y  ̂, Y ) ) ) .y- 1  y v- 1  V
y=l,...,u(v=l,...,v). ///

( M N)The I.P.Q.F. ’ Q can be written

(3.1.7) (M.N)q = (M^^T(M,N)^(N^) ^

where is a u(m+l)xv(n+l) real matrix, and
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(3.1.8)

(3.1.9) (N^)T ^

''T = ("To^g) > • • • ) ) v=l,...,v

In the most common case, in which S A T ^ )  is function
evaluation at x.(y.), it follows that1 3

(3.1.10) ''s.(f) E f(x^p, x^. = +

1 — 0 ,,,.,m, y — l,...,u

(3.1.11)

3 = 0 , . ..,n, v = l,... ,v.

In [2 0] a third desirable property for a compound I.P.Q.F 
is given namely,

(3.1.12) When f is set equivalent to 1, both Q and
reduce to R.Q.F., say Q^^^ and where Q^^^^
is the N-copy of Q^^^. An analogous result holds 
on setting gsl.

This property patently requires that lesp0  ̂ and lespY^, 
and this may not always be the case.

Assuming that all the elementary functions and ^T^
exist, we need to calculate the matrix preferably from
the matrix A. In the process of our calculations we note that
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in each subinterval of a partition of R we may use any set of
Y + 1 (<S+1) functions which span including, of course,

 ̂ )• This is of particular interest when the1 1=0 J j=0
functions are monomials since then we can (if we
wish) replace ^4>-( 4̂'ji) by tj) • ( 0 . ) , y = l,...,u (v = l,...,v).1 J 1 3

It is not immediately clear that compound I.P.Q.F. even 
exist, let alone how they may be derived. Using the same 
approach as in §2.4 we write down the system of linear equa­
tions which the elements of the matrix must satisfy.
We can do this by assuming that f(g) is equivalently zero on 
all subintervals of the partition M(N) except the y-th (v-th), 
on which we set fs^^^ (g=^^j), i=0 ,...,m (j=0 ,...,n), for each 
y = l,...,u (v = l,...v). For the present we assume and 6 =n.
We comment on what happens if we require (or 6 >n) later.

From (3.1.1) and (3.1.2) it is clear that

(3.1.10) E ("s.(%^))?^Q’®^g = B, y = l,...,u,

where B is given by (1.3.7); and

(3.1.11) C = ( Tj( ^r))j=o[r=0 "  ̂̂ £,k=0’̂ ‘ ^

where C is given by (1.3.8). It follows that the system of
linear equations we seek is

(3.1.12) (M,N)jp(M,N)^ _ (M,N)^ ,

Some notation helps us in defining
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DEFINITION 3.1.4 Given an (r+1) x (r+1) matrix F = (f..)̂  ^-----------------------------------  1 3 i=0,j=0
by FCI]^ we mean the block matrix

(3.1.13) F G 1^,

where I^ is the (t+l)x(t+l) identity matrix. By diaĝ  
(F^,...,Fy), or diag^ (F) when FlsF^, i,j=0,...,r, we 
mean the block matrix

(3.1.14) 3 0 5 • • • 5 0 
0 5 F 1 5 . . . 5 0

0 5 ... 5 0 ,Fr

where 0 denotes appropriately sized zero matrices. ///

We find

(3.1.15) = diagy_^(C 0 (diag^_^B))

We now define

(3.1.15) m r
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(3.1.17) = ( ('''a '̂ )̂ , . . . , (“ '̂a ’̂ )̂ )'̂ ,

(3.1.18) ^A = ((^A°)^\...,(^A")^)^, v=l,...,v,

and so derive

(3.1.19) = (IaL . . . , V ) T

(M N)Let the matrix ’ A have elements b .. i=0,...,(m+1)u,
s

j=0 5 ..,(n+1 )V (to avoid confusion with the elements of the 
matrix A). It is possible that for certain choices of elementary 
functionals (for example xi-functionals at the endpoints of 
intervals), some rows and/or columns of the matrix may
be coalesced if the functions I operates on are sufficiently 
smooth. Set

*̂’(m+l) (y-l) , j-l’• • •+y(m+l)-l, j-l^ ’ 

y = l,...,v, j=0 , . . .,v(n+l),

and then

(3.1.21) (M,N)^T _ j. (11̂ ) . ..(Ulb)T;... . . . . ,

(U,v(n+1)^^T) _

The large system of equations (3,1.12) may be broken 
down into many smaller systems. Let be made up of uv
submatrices ^^A, y=l,...,u, v=l,...,v, each of which is an 
(m+1)X(n+1) matrix. We interpret ^^A as determining the con­
tribution made to I by the function f defined on (X ,,X )y-1 y
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( M N )and g defined on An examination of ’ D shows
that we can write

(3.1.22) D^^a = y=l,...,u, v=l,...,v,

where D is given by (1.3.4), and

(3.1.23) = ((^^A°)^\...,(^^A")T)T ,

(3.1.24) = (4,(v-l)(n+l)+lbT^__ ^y,v(n+l)^T)T^

(3.1.25) = (U,(v-l)(n+l)+l^^_ _^y,v(n+l)^j_

In dealing with (3.1.22) we may utilise results obtained
in the previous chapter, for instance we already know that 
the rank of D is maximal (Lemma 2.4.1). Thus the following 
are immediate :

LEMMA 3.1.2 If I( t ̂ ;''if'. ) = 0, i=0,...,m, j = 0,...,n, then ’̂''a
is a matrix with all elements zero. This occurs when
(X T,X ) n (Y .,Y ) is the empty set. ///y-1 y v-lf V ^

Thus we will not have to solve (3.1.22) for all values of 
y and V .

THEOREM 3.1.3 Let Q be an I.P.Q.F. exact on 0^xY^. Let M and 
N be two partitions of R. Then the (M,N) copy of Q always 
exists and is unique. ///
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THEOREM 3.1.4 Let Q be an I.P.Q.F. exact on y>m.. Let
M be a partition of R. Then the (M,M) copy of Q always 
exists and is unique, and can be written as in (3.1.26). 

PROOF: Let M = {-l,Xi,...,X _^,1} .
Then it is clear that

yvA = 2

0

Where A is given by (1.3.14). Hence we obtain

(3.1.26) (M,M)A = (Xi-XQ)A,0,...,0
0,(X2 —X%)A,...,0

///

This Theorem means that in determining an (M,N) copy of 
an I.P.Q.F. we may as well assume that in the partitions M and 
N we find

(3.1.27) X y=l,...,u-l, v=l,...,v-l.

Returning to (3.1.22) we see that, on recalling (1.3.13), 
and defining a square matrix F such that

(3.1.28) y VA = FA,

it follows that



142

(3.1.29) = D"l

= D-l FA,

(3.1.30) ^^a = D”l FDa.

It is clear that there are many matrices F which satis­
fy (3.1.28). If can be calculated from _A, given the
parameters of the subintervals (i.e. X ,X .,Y , and Y ^)^ y y-1 V v-1
in the form (3,1.28) we choose F to be the required transfor­
mation matrix. However, if we are merely given and ^
(i.e. we are forced to evaluate them independently in some way) 
we assume that F takes some convenient form, probably diagonal 
or near diagonal. Instead of using (3.1.30) it is possible 
that it will be more convenient to use (3.1.29), particularly 
if is easy to obtain and cannot be obtained from
by a transformation of the type (3.1.28). Note that solving
(3.1.29) by determining D”  ̂ also specifies a third method of 
obtaining the matrix A (see §2.9).

We now explain one method of determining D“ .̂ Analogous 
to the procedure mentioned earlier (§2.11), given a (m+l)x(m+1) 
matrix G of full rank it is possible, in a recursive manner, 
to find a lower triangular matrix T such that TG has rows 
which are orthonormal to each other. In particular let U and 
V be lower triangular matrices such that

(3.1.31) (bV ) U B  = 1^,
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(3.1.32) T T(C V^)VC = I .n

In passing we note that the ^-polynomials defined by

(3.1.33) U

p m

are orthonormal with respect to summation over {S.}^ , that is, ̂ i = 0

(3.1.34) ) - Ô ,i=0 i'^k' i'^A kA

k ,A = 0,...,m; in (3.1.33).

An analogous result holds for ^-polynomials on replacing U by V 
This generalizes the results given in [120] and it is of 
interest to note it seems possible that the elements of the 
matrix U may be calculated more efficiently by using a method 
of partitioning given in [121].

We now find that

(3.1.35) (diag^(BVu))D = C[I]^,

and thus

(3.1.36) (cFv^V)[I ](diag^(B^U^U)) = D"^.

Consequently the cost of obtaining D  ̂ is that of obtain­
ing the matrices U and V, and then evaluating the expression on
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the left hand side of (3.1.36). Apart from calculating the 
matrices U and V recursively as above, the following results 
are sometimes useful:

THEOREM 3.1.5 Assume S^^T^exi, i=0,...,m, and (2.8.1) -
(2.8.2) hold. Let Q be an I.P.Q.F. exact on 
Assume that 0 ^ is orthonormal to itself with respect to I 
Then is an orthonormal set with respect to the dis­
crete inner product.

(3.1.37) I“_ga^ç(x^)e(x^), S.eet” ,

where the coefficient matrix Q=diag(a^,...,a^)
(x^ are zeros of orthogonal to 0^^^) .

PROOF; That the coefficient matrix of Q is diagonal follows 
from Lemma 2.10.14. The rest of the theorem follows 
from Q being exact on (see [3] also). ///

Thus in some circumstances the rows of U and V depend 
essentially on the coefficient of orthogonal and ^-polynomials 
written in terms of 0 ^ and

More generally, we have:

THEOREM 3.1.6 Assume that S^eT^, i=0,...,m, and that 0 ^ is
orthonormal. to 0 .̂ Let Q be exact on 0^x0^. Then 0 ^ is 
orthonormal with respect to the discrete inner product de- 
fined by the I.P.Q.F. q(”>«L I I I
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This means that we can obtain as follows:

(3.1.38) Let Û (V) be a lower triangular matrix in which the
elements of the i-th (j-th) row are the coefficients
of the 4^(^-) polynomial of degree i(j), in terms of
0 ^(y^), which is W-orthogonal to 0  ̂ ^(1  ̂ ^), whose
square is integrated to unity. Clearly, we choose
u =I((j) (v =I(ip )"i). From §2.5 we knowoo ô o oo ^o o,
that the cf)-(ip-) polynomials defined by Û(^) are 
unique.

(3.1.39) Let Qg(Qrp) be the I.P.Q.F. exact on 0^x0 ^1 y^xy^) in 
which ^i=S^(Tj=Sj), i=0 ,...,m, (j=0 ,...,n) where 
S^(T.) are given. Denote its coefficient matrix by
Ag (Arp) .

(3.1.40) We now find that

(3.1.41) (C^V^AmV) [I] (diag (b '̂0'̂ A„&)) = D" l .

The process (3.1.38) - (3.1.40) will be useful if the 
I.P.Q.F. Qg(Q^) is already known from elsewhere, since the 
orthonormalization process mentioned in (3.1.37), i.e. (2.5.9)
(2.5.12), is straightforward (see also Lemma 2.5.14).

Having obtained D”  ̂ we use either (3.1.29) or (3.1.30) 
depending on how convenient it is to obtain the matrix F.

We find
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2t-(X +X ,) 2t-(Y +Y ,)
(3.1.42) = ^I($.( :" ^ ) ; ♦ j ( - ÿ - r ^ - ^ ) )

tcR,-L J

where I is I restricted to the subinterval (X ) n (Y -, Y )y - P y V - r V
From (3.1.42) we see that if (2.8.1) - (2.8.2) hold with
(j)i=x (i.e. the standard polynomial of degree 1) we have

'X +X
(3.1.43) y i^t) = y y-l

1 -r

& - L - 1
*p(t).

An analogous relationship between i|/. and $  ̂ holds. Let

(3.1.44) . . 2

Y 4Y ,V v - 1  _
Y -YV v-1

“ Çy5 y -1,...)u ,

“  ̂, V-I5 ...5V

(3.1.45) H

y \17 y y

m / m \ m-1
" .• i)% ■ .0 o^m

^y^y

H,, is defined as , on replacing , and m, by n ,G , andy y
n, respectively. We now find
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(3.1.46) '̂''a = (diag (H ))H [I]„A— n y V m—
= (H Cl]^)(diag^(H ))A,V m  y —

Note that C3.1.46) does not hold unless we assume (2.8.1) -
(2.8.2) and and in this case (3.1.30) becomes

(3.1.47) ’"''a = D"1(H [I] )(diag (H ))Da.— V m n y —

This completes our treatment of compound I.P.Q.F. in
the case y=m, 6 =n. We now consider the case y>m. Observe
that there are three distinct ways the subintervals (X )y-l y
and (Y .Y ) may intersect: v-1’ V

(3.1.48) (X T,X ) c (Y T,Y ),y — 1 y V — 1 V

(3.1.49) (Y ,,Y ) c (X ,,X ),V-1 V y-l y

(3.1.50) (X _X ) n (Y .Y )z$ , but neither (3.1.48) nory-l’ y v-l’ v
(3.1.49) hold.

Recall from Theorem 2.4.3 that if an I.P.Q.F. is exact 
on Y>m, this imposes conditions which are quite restric­
tive on the choices of parameters for . If cases

1 1 = 0
(3.1.49) or (3.1.50) occur we find we are imposing at least
twice as many conditions on {S.}^ . In general, we would

1 i = 0
expect that this leads to the non-existence of a solution.
As an example, we note that if and the I.P.Q.F. Q is
exact on 0 ^^^xy^ (or 0 ^xy^qy+n=2 m+l, and (2 .8 .1 ) - (2 .8 .2 ) hold) 
then all the roots of h^ must be in the interval of integration.
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In cases (3.1.49), (3.1.50), this is not possible (as we also
have to consider (Y ,Y ) n (X -, ,X ) and (Y ,Y ^  ) nv - z  v-1 y-l y V v + i
(X _,X )). Consequently, unless the elementary functionals y — 1 y
have some very unusual properties, we would not expect to ob­
tain more than

LEMMA 3.1.7 Given an I.P.Q.F. exact on and two parti­
tions, M and N, of R. If (3.1.48) is true y=l,...,u, 
v=l,...,v, then an (M,N) copy of the I.P.Q.F. exists and 
is unique. ///

We conclude this section with some further comments about 
compound I.P.Q.F.

(3.1.51) It is obvious that if the partitions M and N of R
are given, and Q is exact on g^ixy^l and
max .(yi5Y2 7>^‘5 then the (M,N) copy of Q will be exact
on and Also we observe that we
will have to require M and N are the same partition if 
max (y^îÏ2 )^^ and max (ô^,ô^)>n.

(3.1.52) If we define ^0^ and analogous to (3.1.5), in­
stead of (3.1.1), then in the general case we are led 
to the consideration of more general "compound" I.P.Q.F 
than we have considered above. In this situation we 
would be considering the sets of functions ^0^and
as depending on y and v respectively and possibly 
finding that, for example, ^^0^ and ^^0 ^, y.zy.
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are not related to each other in any way. Of course, 
we could then make y(ô) depend upon y(v) as well, 
and we may consider not requiring (3.1.2) to hold.
This situation could be analysed in much the same 
way as above : we would however find that and
depended on y and v and thus the matrix D in (3.1.22) 
would depend upon y and v . However the method of 
solving (3.1.22) would still remain, in principle, 
the same although now somewhat more tedious.

(3.1.5 3) Considering (3.1.12) we have

LEMMA 3.1.8 If an I.P.Q.F. is interpolatory and lespO^, lespT^, 
then its (M,N) copy has property (3.1.12).

PROOF: This follows immediately from the uniqueness of inter­
polatory I.P.Q.F. ///

We note that if the I.P.Q.F. is not interpolatory (for 
example if 6<n) then Lemma 3.1.8 need not necessarily be valid.

(3.1.54) Bearing (3.1.5 2) in mind we note that a compound 
I.P.Q.F. as we have derived it in this section is 
exact on a larger class of functions than
Let

(3.1.55) Z = {-l,Zi,...,Zg_^,l}, s<u+v-l,

be the partition of R obtained on applying both the
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partition M and N to R. Let

(3.1.56) f  ((). = ̂ (j). , where ( Z _ -, ,Z )^(X ,X) , y s {1, . * » ,u} ,

where (Zp^^,Z^)c(Y^_^,Y^), ve{l,...,v}, 

r=l 5 . . . ,s .

From the construction of our compound I.P.Q.F. it is 
clear that is in fact exact on

(3.1.57)

This result combines the approach we used in this section 
and, in a simplified form, the approach suggested in (3.1.52) which 
is also implicitly followed.

§3.2 SPLINES AND I.P.Q.F.

In deriving compound I.P.Q.F. in the previous section we 
did not impose any continuity restrictions on the integrands as 
they pass from one subinterval to the next. We generalize the 
usual definition of a polynomial spline as follows :

DEFINITION 3.2.1 Let {-l,W^,...,Wg_^,l} be an s partition of R 
Let 5 be defined on (W^_^,W^), r=0,...,s+l,
(W_̂ =-«*,Ŵ _j_̂  = “) and let be t times continuously dif­
ferentiable in (W^_^,W^), r=l,...,s, i=0, . . . , , a^>t.
We say that a spline S , with deficiency k=(k , . . . ,k *,t)
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°s+lof order with respect to H ,
is a function such that

a
(a) On (W ,,W ), ÇespE ^ (a ^Ç-polynomial), r=0,...,s+lr — J- r
(b) Ç'■‘̂ hw^-0) = hw^+0 ) , s. = 0 , . . . ,t-k^, r=0,...,s.
We denote the class of all such splines by

(3.2.1) °,...,E

where W = , . ..,W^},
k = (k ,...,k ;t). ///—  ̂o s

Clearly this definition can be extended in the case where
R is an arbitrary interval. If their meaning is clear from
the context we may delete or abbreviate w, k or (̂ ) in (3.2.1.)
In particular if k=k^, i=0,...,s we replace k by k,t, and if

is defined by (3.1.1) for all r (K replaced by (W -, ,W ) )
 ̂ a awe replace (E ,...,E ) with (e). Again note that defining
by (3.1.5), except in the case where (2.8.1) (on replacing

0 by C) and Ç^^stjteR hold, leads to the spaces of functions 
a .
E  ̂being different from those mentioned in the above sentence.

We now observe that the compound I.P.Q.F. derived in the 
previous section are I.P.Q.F. exact on

(3.2.2)

where a and 8 depend on how many derivatives 4^sp0^ and 
i|)£Sp'i'̂ have. By setting k=a + l , 8 + 1, we mean that we do not 
even require continuity at or Nj, i=0,...,u, j=0,...,v.
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In fact, from (3.1,54) we know that we may replace M and N
s

in (3.2.2) by Z ((3.1.55)), provided H ^ in (3.2.1) are defined 
by (3.1.55), and this new set of splines includes both those 
mentioned in (3.2.2). Clearly the compound I.P.Q.F. will re­
main exact if the classes of splines in (3.2.2) have some 
continuity conditions imposed on them.

It is easy to see that I.P.Q.F. exact on various product 
spaces of splines may be regarded as completing a "spectrum" 
of results between I.P.Q.F. exact product spaces of "smooth" 
functions on the one hand and compound I.P.Q.F. on the other.

In addition, from §2.5, we note that, provided lespH , 
a ^

r=0,...,s+l, and 5 ^ are T-sets, then f2ĵ (̂ ) of (3.2.1) may be
regarded as a WT-set.

In the literature there are, as far as we can discover, 
no references to splines as we defined them in Definition 3.2.1, 
and the majority of research appears to deal with polynomial 
splines (i.e. ^ç^ = t^,teR). However in [9]' there is a more 
general definition of splines defined by means of differential 
operators. Further, there appear to be few results which deal 
directly with R.Q.F. exact on function spaces of splines and 
those which are available depend upon the integration of inter­
polatory splines (usually cubic polynomial splines). However, 
see [127,128,129]. This is perhaps a little surprising in view 
of the wealth of results available dealing with "best" R.Q.F. 
in the sense of Sard and the consequent investigation of the 
splines which constitute the Peano kernel of the Q.F. (see §4.2) 
For some summaries of this type of investigation see, for
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example, [130,...,135].
In restricting ourselves to considering only x̂  elementary 

functionals (as in almost all the literature) we notice that 
when we came to consider either compound Q.F., or even Q.F. exact 
on some class of splines, it is possible that a given elementary 
functional may contribute to evaluating a Q.F. on more than one 
subinterval of a partition, thus significantly reducing the 
total numbers of function evaluations required by the Q.F. Some 
work along these lines has been done, see [9 3],
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CHAPTER 4; ERROR ANALYSIS

§4.1 IMMEDIATE RESULTS
Many well known error estimates used for R.Q.F. can be 

adapted to deal with I.P.Q.F. Some results of this type have 
already been obtained, particularly when dealing with I.P.Q.F. 
exact on polynomials, and having S^, T^ey^• See [12,14] and 
[28] in particular. Following [12], if an I.P.Q.F. is exact 
on ; the following relationships are an obvious consequence
of the bi-linearity of both I and Q:

(4.1.1) E(f;g) = E(f-cj);i|j) + E(f;g-^)

(4.1.2) E(f*,g) = E(f-(j);g) + E(f;g~ij;) - E(f-^;g-^)

(4.1.3) E(f;g) = E( f-(j) ;g-i|> ) + E(^;g-^) + E(f-^;^)

where feP, geA , (jiesp0̂ , ^espW^ and E(f;g) is given by (1.3.4).
Let ilçll denote the weighted L norm (see (2.1.11)),P } P

I.e.
1

w(x)|G(x)|^dx)P, ScLp ^(R) ,

where L (R) is the set of functions for which II •!! , , andp,w p,w
w is of one sign in R (see (A3)), l<p<™. The discrete analogue 
of (4.1.4) is dealing with ^=(5^,. ..jÇ̂ )"̂ ,

1
(4,1.5) w^>0, i=0,...,r.

Recall the generalized Cauchy-Schwarz Inequality;
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(4.1.6) f w(x) I ̂ (x) 8(x) I dx < Il Çll Hell , q=— .j ̂  P,w q,w  ̂p-1

(The discrete version is analogous.)
Since we have assumed rcC^(R), AcC°(R) in (A8), we know 

that f,gsLp(R) for all p (see 2.1.10).
We now examine (4.1.2) in more detail, obtaining

(4.1.7) E(f;g) = I(f-(j);g) + I(f;g-^) - 1 ( f-<{> )
-Q(f-$;g) - Q(iig”0) + Q(f-^;g-^),

which implies

(4.1.8) |E(f;g)| < |l(f-^;g) + I(f;g-^) + I(f-^;g-^)|
+ |Q(f-*;g-^) - Q(f-*;g) - Q(f;g-*)|,

and, applying (4.1.6)

(4.1.9) |E(f;g)| < llf-,Dl|p̂ ^̂ ||g|q̂ ^̂ +||f|p̂ ^̂ llg-4,iq̂  ̂+

where E^ = |Q(f-$;g-^) - Q(f-*;g) - Q(f;g-*)|.

P-: i=l,2,3.-i Pi-1

Before pursuing (4.1.9) further, we make several comments. 
With regard to Eq note that we already know f and g (as we 
approximate l(f,g) by Q(f,g)). Consequently, if Ŝ ((f>) and Tj(^) 
are readily available then it is easy to evaluate the contri­
bution to the right hand side of (4.1.9) due to Eg exactly,
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thus reducing our estimate of E(f;g). If S^(^) and Tj(^) 
are not immediately available and (as in most cases of interest) 
Q is exact on then we may require and if; to be inter­
polatory polynomials to f and g at , and {T.}^ , respec- ̂ 1=0 J j=0
tively (and thus Eg=0). In this case we would hope that we had 
some means of approximating the various norms in (4.1.9) easily 
available. Clearly, the way in which we deal with (4.1.9) 
depends upon the knowledge and tools we have available. So far 
we have implied that it may be useful to actually obtain and 
if;. In the situation where we know a lot about f and g it may 
well be possible to avoid determining (f) and if; and still obtain 
estimates for the quantities appearing on the right in (4.1.9), 
although these estimates will be more conservative than those 
obtainable if we determine and if;. However, if we knew little 
about f and g it is possible that the best approach is that of 
examining the analogue of (4.1.9) derived from (4.1.3), i.e.

(4.1.10) |E(f;g)| .

where Eg = |Q(f-*;^)+Q(*;g-^)+Q(f-*;g-^)|

and investigating (j> and if; in more detail.
It is immediate that it is computationally advantageous to 

choose Pj"P2 "P3 ’ Note that we also have, for l<p<#.

(4.1.11) mil < I(l;l)max|s(t)| s I(1;1)1U1!
P , w  t e R
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The relation (4.1.11) may also be employed in approximating
(4.1.10) or (4.1.9).

If we have to approximate |Q(Ç;0)| we proceed in an 
analogous manner. From the discrete Cauchy-Schwarz Inequality 
(with w taken to be unity) we have

(4.1.12) |Q(C;8)| < II CÎ1 JiAell -, E II çll llAell q=—^  .— p,l — q,l — p — q p-1

Denoting the matrix norm compatible with II .11 ̂  by II .11̂  we obtain

(4.1.13) |Q(^;6) I < lUil II All ”ii 8II ,' 1 p q —  q ’

and

(4.1.14) |Q(G;8)| < lU H AHHI el! ̂  .

Also, if a..>0, i=0,...,m, j=0,...,n, we obtain the analogue of
(4.1.11), namely,

(4.1.15) llABlI < Q(l;l)max| a. I e Q ( 1 ; 1 ) 11 g!l ̂  , l<q<«>.q j 3

If some a^j<0, we may replace Q(l;l) in (4.1.15) by Iq_Q Ij-gla-j 
As before, when approximating the contribution to |E(f;g)| 
due to Eg in (4.1.9) or (4.1.10), we may use different norms 
when dealing with different components in the summation. In 
addition, we note that before approximation, we may recombine 
some of those components due to the bi-linearity of Q, obtaining 
(in both cases)

(4.1.16) Eg = |Q(f-*;*) + Q(f;g-*)|,
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(4 .1 .17) Eg = |Q(f-*;g) + Q( (j) ;g-i{j) I .

Thus there are a large number of error estimates avail­
able and which one we use depends upon what information we have 
to hand. In particular, we note that if we use the uniform 
(i.e. L^) norm we may always seek to approximate the norm of a 
function in R by the norm of the function over a point set in R 

We summarise our comments so far as a Lemma (cf. [12],
[2 8]).

LEMMA 4.1.1 Let Q be an I.P.Q.F. exact on , and (j>esp0̂ .
ifiESpy , be such that

(4.1.18) II f- (f) II < e 1P,w 1

Then

(4.1.19) E(f;g)| < Eiilgll + ezilflln w + E 1G2 +E ,q,w q,w

where Eg obtained from (4.1.18) or (4.1.17). If p=' 
we obtain (see [12])

(4.1.20) |E(f;g)| < EiHgM^^^+E2HfOq^^+EiE2+

+ £ 2̂ II All II ̂11 I + £ 2 II All II ̂11 I . ///

In (4.1.19) we may replace II gII ( II fII ) by HipII (ll<pll), and 
the expression on the right hand side of (4.1.20) depends upon
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which norm we use for II All (of (4.1.13), (4.1.14)) and which of
(4.1.16) and (4.1.17) we use.

The derivation of the numbers and e 2 .̂nd the poly­
nomials (f> and ip in Lemma 4.1.1 is not a trivial matter. If we 
want (p and ip to be interpolatery, assuming that our I.P.Q.F. is 
exact on at least we may obtain them either by using the
polynomials p^ and q̂  of §2.9, or on slightly generalizing the 
Newton interpolation scheme given in [136].

When the functions (p. and ip. are standard polynomials, we
1 3

can obtain error estimates for interpolatory polynomials involving 
derivatives of f and g (assuming f and g have sufficient deri­
vatives). See [12,13]. If an estimate of the required deriva-

(m+1)
tive of f is available, say |f(x) l<M,xeR we obtain (see also
[23])

(4.1.20) |f-4 M ^w(t) n (t-x.)dt(m+1)! R i = 0

when S^exis i=0,...,m. Clearly on investigation of what choice 
of knots leads to a minimal norm interpolatory polynomial would 
be of interest. The expression (4.1.20) can be generalized to 
deal with other choices of basic functions than polynomials.
See §4.2. Under certain circumstances derivatives may be re­
placed by divided differences. See [13,137]. When dealing 
with derivatives of higher order we face the additional problems 
that, except for certain entire functions, ultimately deriva­
tives of a function will increase without bound, and further, 
even if higher derivatives are available they are difficult to
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approximate. This is a major reason why, in practice, high­
er der (i.e. Y large) R.Q.F. tend not to be used, and Compound 
R.Q.F. are used instead. Further, it should be noted that as 
we increase the degree of an interpolating polynomial to a given 
continuous function, we do not necessarily obtain a better 
pointwise approximation to the function, and we do not always 
obtain convergence of interpolatory R.Q.F. to I. See [138].
If we assume more smoothness properties than continuity, it is 
possible to guarantee both convergence of a R.Q.F. to I, and 
of interpolatory polynomials to the interpolated function in 
various norms. See [139,...,142]. Some work on interpolation 
with basis functions other than the polynomials has also been 
done. See [143,144].

Error bounds of the type mentioned in this § may be easily 
modified, in the standard manner, to deal with compound I.P.Q.F.

4.2 PEANO’S THEOREM
Let us initially assume

(4.2.1) *. = t^, i = 0,1

(4.2.2) = t^, j = 0,1,...

We can now derive the analogue of Peano's Theorem for the bi­
linear functional E. As usual we assume our I.P.Q.F. is exact 

Y 6on 0 xy . Assume f and g have sufficient derivatives we expand
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”  Li J L  • ♦ I -ps ̂K
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them in Taylor Series about -1, obtaining

^'(r)(t-r)^dr,

(4.2.4) g(t) = g(i)(-l)+Y,j^g(*^^)(r)(t-r)*dr,

where x^, x>0 , fcC^^^^^(R), gcC^^^^^(R).

0 5 x<0

Thus we find that, if k^y and A<5 ,

(4.2.5) E(f;g) = E^(^j f(k+l)(r)(t„r)^dr; j  
R +

g^^^^^(s)(t-s)^ds)
R

R

where E_̂ means that the parameter t is the one which is regarded 
as a variable. Consequently

(4.2.6) E(f;g) = f f {E.((t;r) + , + 1 } f ^4 r ) g ' 4  s ) drds
RJR  ̂ *■

R
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and using the multi-dimensional Cauchy Schwarz Inequality, we 
obtain

(4.2.7) |E(f;g)l < llE + ; +

+ E^(0^(t); Vg(t)),

where —  + —  = 1, i=l,2,3, and 
%i Si

(4.2.8) A^(t) = ■■■— t-f̂ -f*'^4-l),

We also note that

(4.2.9) Wf(k+l)(r)g(& + l)(s)W = II f‘̂^'^^4r) II II g*'*''̂ 4̂ s) IIqi qi qi )

where the norms on the right are with respect to one variable 
and that on the left is with respect to two.

Since the I.P.Q.F. integrates the monomials in 
exactly it is clear that the last term in the above error esti­
mates is zero. We also note that the choice of the elementary 
functionals 8^ and does not affect the error estimates, 
provided we know the degree of exactness of the I.P.Q.F.

In the case of R.Q.F., the Peano error estimate is
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(4.2.10) E(f) =
R

(r)dr

E^(A£^.n)||^ II f(k+l)

Clearly 5 if f(g) is equivalent to unity and lcsp0^, 
(spy^), (4.2.7) reduces to (4.2.10). As mentioned in §3.2, 
best R.Q.F. in the sense of Sard are obtained by choosing the 
functionals (usually %  ̂ functionals) so that IIE^(-— — ■■ '*') II is 
minimized. This leads to the examination of minimal norm poly­
nomial monosplines. for some references to the large body of 
literature devoted to this topic see §3.2. This approach re­
quires that we can separate the contributions made to E by the
R.Q.F. (i.e., IIE . II ) and the function (i.e. p(k+l)^^ Pn the

 ̂Picase of I.P.Q.F., due to the second and third terms in (4.2.7) 
it is not so easy to separate the contribution to E due to f 
and g from that inherently due to the I.P.Q.F. Examining the 
second term in (4.2.7) we see that

(4.2.11) + (t)) =

where

w(t) —  (t)dt-S^(r)AyR k. g

iir) = ( s q ^ > +),...,S „ ( ^ V )m k!

ig = (Tg(*g),...,T^(^g)).

We can approximate (4.2.11) by

(4.2.12) | E / % ^  n  ,g(t) ) y iiiï^+11 ĵi ,g(t)ii +

+ II 5(r)ll II All lU J   Ps -g qj
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i + I = 1, i=4,5

and the norm of A is discussed in §4.1 ((4.1.13), (4.1.14)).
An expression analogous to (4.2.12) can be obtained for 

\A
|Ê ((f)̂ (t) ;   - + I , in which g(r) and are replaced by 9 ( s) and

if’

e4s) =

and we use norms, as determined by subscripts 6 and 7 (replacing 
4 and 5) .

Substituting (4.1.12) and its analogue in (4.2.7) we obtain

(4.2.13) |E(f;g) +

' " ̂  g“ q, ,w" II % ^  + il p, ,w« P p  II II M ^ l l  P 3 II p Jl All '
xiq II +114, J  iiiilzsiii II +g qg f qg >w £ ! pg ,w pj

+ 11 i j  II All "11 II e(s)ll II +E.((j>-;i|; ).f P 7 ----q? qj t f g

A slightly different result, based on the use of Taylor's 
formula, approximating 11 (j>̂f by

i , . X A

(and II i(;g II analogously) is given in [2 3].
So an I.P.Q.F. could be said to be best in the sense of 

Sard if some combination of
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k i ,l|IU(r)IL II and III ((s) Il IIt k. A. Pi  Ps P2  q? qs

is minimized.
There are many different errors estimates included in

(4.2.13) depending upon the choices of k<y, A<6, pi)...,p?.
There is some advantage, from the computational point of view,
in choosing Pi=P2 =P3 and we would usually expect that p^c{l,2,«}
i=l,...,7. Other approximations of |E(f;g)| can be obtained.
For example, we may apply an analysis similar to (4.2.11) -

/ , \ k , . \ A
(4.2.12) to 1E^(— — IT" I may, for certain choices
of the function g, be able to approximate (4.2.11) by

(,.2 .1 ,) |ll%^+llp^,JYt)llq ,^llWllp^lAl"liyqj,
1+

in which case a careful choice of li ̂ (r ) II ̂  might substantially 
reduce our approximation of |E(f;g)|.

It is also observed that, even if (4.2.1) - (4.2.2) do 
not hold, we may still apply the above analysis, except that now 
the term E (^^s^ ) is non zero.T i g

This leads us to ask the question of whether we may make
an analysis similar to that above when we deal with other
choices of function (i.e., we do not require (4.2.1) - (4.2.2))
and we use other approximations to the functions f and g (i.e.,
we do not use (4.2.3) - (4.2.4)). We see that (4.2.3) may be
regarded as deriving an interpolating ^^polynomial of degree
k to f at {S.}^ , whereT 1 = 0

 ̂ dt^
, 1—0,...,k.

t = — 1
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We return, momentarily, to the case of R.Q.F. In [150] 
we find that it is possible to expand a function, possessing suf­
ficient derivatives, as a power series of a function ^, which 
plays the same role in the Bürmann series as x does in the 
Taylor series. However, following [149], we can glean a more 
general approach.

Given a set of functions we define its Wronskian, W^,
by

(4.2.10) W = det r

( r )

r

(r)

If W^ has no zeros in R, we can define the linear operator

L+i by

(4.2.17) o

. (r )
'o
.(r+1)

.(r) rhr) 
o ’
(r+1) f(r+l)• 3 4^ îl

It is clear that every solution of L^^^(f)=0 is a Ç-polynomial
of degree at most r. Now define
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(4.2.18) fc(t,s) = W^i(s) det Sq Cs ) . . , Ç ̂  ( S )

(r-1)
o
So(t)

(s) ,

and it follows that

(4.2.19) ]i - I^=o°^i^i  ̂ I K(t,s)c(s)ds

satisfies

■ , 5,C t >

(4.2.20)

for arbitrary a^,...,â . Conversely, given f, there exist con­
stants such that (4,2.19) is valid (with y replaced by f). 
These constants, which we denote can be found by solving a 
set of linear equations determined by knowing the value of f 
at r+1 distinct points.

Assume that we are given ^-polynomial of degree m, which 
interpolates f at the elementary functionals {Sq}̂ _.Q,

(4.2.21) f = l L o “h i  + b)

Combining (4.2.19) and (4.2.21) we see that we can write

(4.2.22) R^(t) = i L o h q  - Ii = 0“i 4  + K(t,s)L^,pf) ds
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On observing that we may replace -1 by 1 as a limit of integra­
tion in (M-.2.19), and denoting the coefficients a . determined1
by f in this alternative expression for f by , we obtain

(4 .2.23) R^(t) = + +

R
K^(t,s)Ly+^(f)ds

where K^(t,s) = j'3ic(t,s), s<t

(3“1)k (t, s) , s>t, BeCO,l],

The function K(t,s)eC^^^ with respect to t, and satisfies

(4.2.24) (k (t,s ) )
9f

I 0 , i-O,...,r—1
t = s "

hence ^^(R), with respect to t.
We now apply a R.Q.F., exact on , y>m, to f. The expres­

sion for the error is thus

(4.2.25) E(f) = I(R (f)) - Q(R (f))m m

= I(%i:0(Ga^+(l-$)ai)C^)-Q(%t^Q(Ba^+(l_6)a^)S^) 

+ I Ej3^(t,s))Lp+^(f)ds.

Obviously, if r^y and (4.2,25) reduces to

(4.2.26) E(f) =
R
E, (X. (t,s))L (f)dst  (p r+1
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DEFINITION 4.2.1 We say that an R.Q.F., Q, exact on 9 '̂ , is
r-p-5 minimal if

E^(K ( t ,s) ) II p

is minimal. If we say that Q is r-p-minimal.
If, in addition, r=y, we say Q is p-minimal. ///

There is some freedom in the definition of K in the 
choice of the numbers B and r , and it is not immediately clear 
what their optimal choices are. In (4.2.26) the larger r is 
the more functions f have E(f)=0, however it may be, if E(f)zO 
for all possible choices of r, that choosing r small will give 
a better estimate of E(f) in the sense that He^(K^ ( t , s ) ) II ̂  in 
Definition 4.2.1 may reduce. An additional advantage of using 
a small value of r may be that this would facilitate approxima­
tion of L^^^(f) when we are seeking an error estimate for a 
particular function f.

The function <(t,s) remains unchanged if we replace 5^ by 
any other set of functions spanning This can be utilized
in showing that for certain choices of elementary functionals 

, if ç.=^. , the coefficients a. and - a . are the same, 
and thus we obtain an explicit expression for R^^f) from (4.2.22) 
If either

(4.2.27) S^eXj5 i=0,...,m,

or
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(4.2.28) S. H Al. 
 ̂ dt^

5 aeR, i = 0 , . . .,m,
t = a

is valid, then this is the case. The conditions (4.2.28) in­
clude those prescribing a Taylor series expansion of f as a 
special case.

The extension of error estimates of the type (4.2.26), and 
even (4.2.25) to deal with I.P.Q.F. is entirely analogous to that 
done earlier in this section when we considered the extension of 
Peano’s theorem, on replacing (4.2.3) by (4.2.21) and (4.2.4) by 
the analogue of (4.2.21). We note that if is available
we may be able to replace llL̂ _̂ (̂f)H by H II fII in our estima­
tions (of. 4.2.9)) where II L̂ .̂ 1̂1 is some suitable norm of the
linear functional Lr+1*

§4.3 SARMA-EBERLEIN ESTIMATES
In the previous sections of this chapter we have detailed 

various methods of estimating the errors involved in approxima­
ting I by a given I.P.Q.F. Of course, once we have more then 
one I.P.Q.F. available it is natural to want to compare their 
performances. This is not always a straightforward procedure 
as we have yet to decide on criteria for comparison. It appears 
to be a common practice in the literature to compare Q.F. of 
any sort by examining their performance on sets of judiciously 
chosen test functions (of §1.2). If these test functions are 
chosen carefully, manifesting a wide range of behavioural 
characteristics, we will be able to obtain a "performance profile" 
of a Q.F. which should give us quite a strong intuition into
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how a given Q.F. will behave in various given situations. This 
will be very useful if we know, in advance, quite a lot about 
the integrand. However, the above procedure is somewhat 
reminiscent of attempting to prove a theorem by examining some 
carefully chosen examples - a practice not generally condoned.
It would be very useful, particularly when we are dealing with 
integrands about which we know little, if some more general and 
rigorous "measure" of the performance of a Q.F. over a specified 
class of functions were available. One approach, pursued in the 
previous section is to minimize the error estimate usedffor the Q.F 

in some way, using methods obtained from Functional Analysis. 
Another approach, which we examine in this section, is to obtain a 
measure of "goodness", the Sarma-Eberlein estimate of goodness,
Sg, of a Q.F. based on the performance of the Q.F. on each func­
tion in a given space of functions. Other approaches might, for 
example, include some sort of statistical estimate of measures 
of goodness. Before progressing any further, we note that the 
derivation of such measures of goodness is not a straightforward 
matter, and their application in practice is time consuming and 
not without difficulties, which to a large extent explains their 
lack of popularity and/or acceptance. In fact, the only refer­
ences we know of dealing with are [37], [39], [40] and [148].
In any event, we will use a different approach. Although we 
only consider real valued functions of one variable, the fol­
lowing analysis may clearly be generalized to higher dimensions 
and other linear functionals.

Let {  ̂ be a linearly independent set of functions which
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is dense in C(R). Thus, if feC(R), we can write

(4.3.1) f = I^-g VteR

where the numbers depend upon the function f, but not on the 
point tsR. Now let Q be an R.Q.F. Clearly

(4.3.2) E(f) = 1(f) - Q(f) = I%=o«iE(S^).

We observe that the contribution dependent on the function 
f in the error expression (4-. 3.2) is contained in the numbers 
a^, and the numbers E(g^) are independent of f and may be re­
garded as being due to the R.Q.F. There are two directions in 
which we may progress from here.

(4-. 3.3) If the numbers E(Ç^) are known, and we are dealing with 
a given function f, we investigate the properties of 
the numbers a^. Knowing or an approximation of
a^, we are then able to estimate ( 4-. 3 .2 ) by a truncated 
summation. In this situation it is usual (and sensible) 
to require that the functions are orthogonal, then 

is the generalized Fourier coefficient.

I(S.f)
(4.3.4) a. = ---—  i = 0,l,2,...

 ̂ Kï?)

In some special circumstances it is possible to calculate the 
first few of these coefficients using summations over the 
zeros of orthogonal polynormals, see [3]. This is the basis of 
the well known Clenshaw-Curtis Q.F. (see [145,146] and the con­
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sequent literature, eg [147]). Note that for a given R.Q.F. the 
numbers E(ç^) only ever need to be calculated once.

The type of error estimate obtained in this way, namely of 
predicting how an infinite sequence behaves on the basis of a 
few initial terms, will not lead to foolproof estimates. How­
ever, these estimates do have the great advantage of being able 
to be used in practice, and unless we are dealing with patho­
logical integrands can probably be expected to give useful 
error estimates.

(4.3.5) If we wish to compare two R.Q.F., instead of examining 
their performance over certain test functions we may 
examine the numbers E(C^) due to each of the R.Q.F. 
Following [39] we do this by examining the weighted sum,

(4.3.B)

where the numbers 3^ are chosen in order to guarantee convergence
of the series and to accentuate desired aspects of the behaviour
of the R.Q.F. If we wish to emphasize the behaviour of the
Q.F. on certain subsets of {%.}. ^, we merely increase the corres-1 1 = 0
ponding 3^'s or decrease the residual 3^'s. Thus we may compare 
Q.F.’s performance over various subspaces of C(R).

The Sarma-Eberlein estimate of goodness referred to above has

(4.3.7) ^
i=0,1,2,...
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and can be derived by defining an integral over the function 
space C(R).

Obviously, having chosen the numbers we may attempt
to obtain "optimal" Q.F. with respect to the error measure
characterized by B^, by minimizing (4.3.4) with respect to
the parameters available in the R.Q.F.

We now examine I.P.Q.F. Assume {A.}* and {A.}'” are ̂ i=0 j j=0
sets of functions dense in C(R). Clearly we may write

(4.3.8) |-f = p.4,.

l̂ g = %i=o >

and we then have

(4.3.9) E(f;g) = 4iVjE(*^;*j).

Obviously, comments entirely analogous to (4.3.3) and (4.3.5) 
can be made with regard to (4.3.9), and we investigate the 
weighted sum

(4.3.10) ^i=Q Ij=o ’

for various choices of B^^.
If the I.P.Q.F. we are considering is exact on then

the summations (4.3.9) and (4.3.10) will start from i=y+l and 
j=6+l. Provided the numbers E(^^;^j) are bounded then (4.3.10), 
which can be regarded as a generalization of (4.3.9), will be
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convergent provided Ij__Q rs. This is not a severe res­
triction. However, if the series %T_g converges too
slowly there may be practical problems in evaluating (4,3.10).

Some numerical results are available in the case of the 
Sarma-Eberlein estimates. See [37], [148]. In [148] it is 
reported that attempts to calculate optimal R.Q.F. (i.e. mini­
mizing (4.3.6)) were made. In all but the simplest cases (using 
either two or three xi elementary functionals) these attempts 
were unsuccessful due to computational difficulties.

In [14 8] it was pointed out that the Sarma-Eberlein esti­
mate can be regarded as the variance of the error functional. 
Thus 5 using Chebychev's inequality we can obtain an estimate 
of the probability that, choosing an integrand at random, the 
error is less than a given tolerance. Clearly, randomness is 
with respect to the distribution function due to the Eberlein 
measure used to obtain S^ in [39,40]. It would be of interest 
to know whether these results can be parallelled for other 
choices of distribution function, thus allowing us to obtain 
useful probabilistic error estimates when using Q.F. in various 
circumstances.

We also observe that extending the idea of a Sarma-Eberlein 
estimate of goodness to I.P.Q.F. is very straightforward in 
comparison to the other techniques of estimating errors con­
sidered earlier in this Chapter.
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§4.4 CONVERGENCE
There are essentially two ways in which we may examine con­

vergence of a Q.F. to the integral it is approximating. We may 
use compound Q.F. applied to smaller and smaller subregions of 
R or we may increase the degree of exactness of the Q.F. we are 
using. The first approach is clearly analogous to standard 
Riemann integration, and the second leads us to investigate the 
properties of families of Q.F. Although the properties of 
families of Q.F. are important for theoretical reasons, due to 
practical difficulties, it is unusual to find these properties 
being exploited in the course of practical computation.

There is a well known result which states that, provided 
it is exact for the function 1, and given a tolerance e, there is 
an N such that a R.Q.F. , applied to N (equal) subintervals of 
R will guarantee E(f)^e. Naturally, N is dependent on the 
choice of function f. Recalling (A2) in particular the follow­
ing result is immediate. See also [12].

THEOREM 4.4.1 Let Q be an I.P.Q.F. exact on 1x1 (i.e. exact
when (j)E\|;El) at least. Let be an (M,N) copy of Q.
Assume max (X -X -, )^0 as and max (Y -Y - )^0 as

 ̂ l<v<N ''-1
N-><». Then

Lim ^^’̂ ^Q(f;g) = I(f;g). ///
M-»<o
N-X»

Note that the statement of Theorem 4.4.1 is independent
of the choice of elementary functionals S. and T..1 ]
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We now consider the second approach to convergence mentioned 
above. We have the following theorem due to Banach (see [4]):

THEOREM 4.4.2 In order that the sequence of linear operators
{L.}. be convergent it is necessary and sufficient that 1 1*0
they satisfy the two conditions:
(a) The norms of the operators II Lĵll have a common bound,
(b) L̂(j) is convergent for each  ̂ in a set A, which is

everywhere dense in C^(R). ///

Clearly, with slight modifications to condition (b) the 
above Theorem is applicable to bi-linear operators.

At first sight the above Theorem seems to clash with the 
comments made in §4.1 concerning the divergence of interpolating 
polynomials from the functions they are approximating. This 
difficulty is removed when we recall that in dealing with the 
convergence of Q.F. to an integral we are primarily concerned 
with the weak* convergence of the (bi-)linear operators 
to I. This is a weaker condition than requiring strong conver­
gence (for example, requiring that the interpolating polynomials 
also approximate the function under consideration). See also 
[2,14]. Thus it is immediate that we obtain, analogous to the 
celebrated result for R.Q.F.

THEOREM 4.4.3 Let be exact on Assume that
{(f).}*” and are dense in C°(R). Then, provided the1 1 = 0 ] i =0
following are satisfied:
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(a) Il Q (m,n) Il  ̂ m=0 ,1, . . . ,n=0 ,1, . . .

(b) as and ô(n)-n» as n-x», we find

Lim Q^^’̂ \f;g) = I(f*,g) 
m, n-x»

for all f,geC^(R),
PROOF: See [4,14]. ///

We note two things about Theorem 4.4,3; first, it is inde­
pendent of the choice of elementary functionals 8^ and T^, and 
second we are free to choose the norm used in part (a). The 
usual, though not the only, choices would be either the least 
square or absolute norm, i.e.

(4.4.1) = (I%,o =

and

(4.4.2) =

respectively.
If we place more conditions on the functions f and g, for 

example, requiring them to be holomorphic in some region con­
taining R, we can obtain stronger results.

However, we must remember that it is no easy matter to 
guarantee that the required conditions for convergence of a 
family of I.P.Q.F., or R.Q.F. for that matter, can be satisfied 
Some simplifying results are available in [14].

When using a Q.F. it is natural to desire that the conver-
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gence of the error-functional to zero is as rapid as possible.
This leads us to consider the question of best choice of 
elementary functionals and the functions and . Often, due 
to circumstances beyond our control, our choice of elementary 
functionals in particular, will be limited. Our choice of fun­
ctions <f). and . depends upon our circumstance also. If the 
I.P.Q.F, is to be used for a specific problem about which we 
have information available, this will be a major factor in our 
choice of and 1];̂ . If, on the other hand, we are to use the 
I.P.Q.F. for a variety of problems it would seem advantageous 
to choose the functions of (j)̂ and ip̂ from dense subspaces of 
C^(R) whose n-widths are maximal or near maximal. See [1,160,
...,16 3]. Also, much work has been done concerning best appro­
ximation of linear functionals, see for example [164, 165], 
and it seems reasonable to expect some of these results to |I
carry over to approximation of bi-linear functionals. i

As a final remark, we note the important role of the |
function 1 in Theorem 4.4.1 and recalling the Stone-Weierstraus |
Theorem (see [3]) we see that, unless circumstances are excep- |
tional, an excellent choice for and would be the function 1. I

I

I
!i
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CHAPTER 5: EXTENSIONS AND APPLICATIONS

§5.1 EXTENSIONS - HIGHER DIMENSIONS
There are several ways in which we might want to extend the 

concept of I.P.Q.F. Some work has already been done, see [22, 
119,141,152] .

An obvious question to ask is whether we can develop I.P.Q.F 
in multidimensional spaces, i.e. Rc|R̂ , d>l, and f and g are 
functions mapping to IR. Some initial work on this question 
has been done in [22], under the assumptions that all the 
elementary functionals are of type xi , and the functions (j>̂ and 
ifi j are monomials. In deriving interpolatory I.P.Q.F. the pro­
cedure is analogous to the one dimensional case. However not 
all results remain valid. For example the analogue of Theorem 
1.3.2, stating that if an I.P.Q.F. is exact on it must
be interpolatory, is false. It is clear that the second 
approach to deriving I.P.Q.F. in §1.3 is much more general when 
d>l. The only difficulty lies in finding interpolating sets 
of points for the monomials - that is, sets of points such that 
detBzO and detCzO. The problem of obtaining I.P.Q.F. exact on 

where, say y>m, will depend upon the properties of ortho­
gonal polynomials in more than one dimension. The study of 
these properties is not as advanced as in the one dimensional 
case. See [37].

Nevertheless, we can make some comments. We shall only 
consider the case d=2. As is almost universal, we shall also 
only consider the standard monomials, i.e. we assume that (f>̂
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and j are monomials. However we note that in principle the 
ensuing comments apply to higher dimensions. First, we note 
that when d=2 there is an (r+1)-dimensional subspace of poly­
nomials of degree exactly r which is weakly orthogonal to the 
subspace of all polynomials of degree less than r . This space 
is spanned by basis functions of the form

(5,1.1) x^"^y^ + (x,y), i=0,...,r,

where Q^^^(x,y) is a polynomial of degree at most r-1 in the 
two independent variables x and y. This situation is intrinsi­
cally different from that when d=l, when there is only a one 
dimensional subspace of polynomials orthogonal to polynomials 
of a lower degree. Second, recalling Theorem 2.2.11, we note 
that an arbitrary set of given knots need not be an interpola­
ting set, although it is known, see [100], that such sets are 
dense in regions of (R̂ . However, the analysis of §2,4 remains 
entirely applicable, and Theorem 2.4.3 (with slight modifica­
tions) remains our starting point. Even in the situation we |
are discussing, conditions (2,4.15) and (2.4.16) become dif- |
ficult to satisfy. |

When we consider Numerical Quadrature in more than one di- j
mansion (sometimes known as Numerical Cubature) it is tradi- |
tional to seek Q.F. exact for all polynomials up to a given I
degree. This is despite the fact that in progressing from |
degree r to degree r+1, in d dimensions, we have to consider j
^d-1^ further monomials. j
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However, instead of integrating exactly all polynomials 
up to a given degree, it may be preferable to consider
only sets of polynomials drawn from all polynomials up to a 
given degree. It may be possible to obtain results, for 
example, which integrate exactly all monomials up to degree r 
and some selected monomials of degree higher than r, probably 
r+1. Finally, since the total number of monomials, 
which we have to consider increases very rapidly with both r 
and d it is desirable to reduce the number we have to consider 
by, for example, appealing to properties due to symmetries, 
see example, [92,9 3,15 3]. However, if we seek I.P.Q.F. exact 
on y=C^2 ^), 6=(^2 ^), r,s>0, this approach is invalid.
This can be demonstrated as follows :

Consider first a R.Q.F. Assume that the region of inte­
gration is RxR and

(5.1.2) w(x,y) = w(-x,y) = w(x,-y)=w(-x,-y)

and so we naturally use a symmetric Q.F. which can be written 
in the form (cf [93,153])

(5.1.3) Q(f) = ^Î^Qa^(f(x^,y^)+f(x^,-y^)+f(-x^,y^)+f(-x^;-y^))

It is now immediate that, letting f=x^ y^, a and 3 being non­
negative integers, that
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(5.1.4) I(x“y®) = Q(x“y®) = 0,

if either a or 6 is odd. On choosing the numbers x^,y^,ti, 
t2 and 1 3 with some care it is possible to obtain many different 
Q.F.'Sj considering only the moment equations due to x^y^, 
where both a and B are even. This reduces the number of equations 
we have to deal with to the order of one quarter of the possible 
total.

If we attempt to obtain I.P.Q.F. using a similar approach 
(i.e., using configurations of knots for both f and g as sugges­
ted by (5.1.3) we see that I(x^iy^l; x'̂ ŷ̂ a) pg non-zero if
ai+a2 and B1+B2 even, whereas Q(x^iy^l; will be zero
if ai,a2 and/or Bi,32 are odd. Note that if we restrict f̂  so
that both a2 and B2 are even then the required I.P.Q.F. may exist.

We might also attempt to derive I.P.Q.F, which use other
predetermined combinations of knots, in particular we might
consider using

(5.1.5) f(x,y) + f(x,-y),

or

(5.1.6) f(x,y) + f(-x,-y) .

However this will require us to deal with larger systems of 
equations than mentioned above. Finally, we may consider the 
largest system of equations that derived by allowing each knot 
to have its own coefficient.
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In all the above cases if y>m, we have to investigate the 
properties of common zeros of orthogonal polynomials, proper­
ties which are not well understood. For example, it is not 
known if moment matrices derived on using these zeros as knots 
are singular or not.

There is one special case where I.P.Q.F. can be easily 
applied to functions of two variables, that is when the function 
of two variables is known to be a product of two functions of 
one variable. In this case, since I(f;g) can be split into the 
product of two integrals, on applying the analysis of §2.4 and 
§2.7 we see that there are I.P.Q.F. exact on $2m-l^y2n-l^ 

However, since we are able to divorce the contributions of f 
and g in Q(f;g) we see that the I.P.Q.F, obtained, which is 
unique, is the product of two R.Q.F. Let

(5,1.7) Qi^^(f) = lizO^iSpCf),

and

( 5 . 1 . 8 )  Q z ^ ^ ( g )  = % ^ A g b j T j ( g ) ,

be exact on  ̂and  ̂respectively. Then

(5.1.9) q(m,n)(^,^) _ f"^diag(a^)l^]^^diag(b ̂ )^
T= f Ag ,

where 1 (1 ) is a (m+l)((n+D) vector of I ’s, —m —n ^
f a r e  as in (1.3.3),
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and

(5.1.10) a.. = a.b-3 i=0,.,,,in, j=0,...,n,1 3 1 ] ’ 5 5 J ■> 5

Obviously this process is valid for d>2 as well. There 
does not seem to be anything to recommend further study of 
I.P.Q.F. in this situation as we do not gain any advantage over 
the use of two R.Q.F. and multiplying the results together. 
Similarly, replacing the R.Q.F. in (5.1.7) and/or (4.1.5) with 
I.P.Q.F. does not seem to offer any advantage except possibly 
in the calculation of one dimensional integrals.

Another possible use of I.P.Q.F. in higher dimensional 
spaces is in the evaluation of line integrals. See [151] and 
the references contained therein. We consider the following 
special case of an I.P.Q.F.:

(5.1.11) I(f;G) = [ f(s) (^)ds,

where s is the distance along a rectifiable curve ü in iR̂ , and 
f is a given function. The elementary functional Ŝ  ̂are inter­
preted as information concerning the function f, and the func­
tionals Tj as information concerning the curve 0. Obviously 
the most likely form of S^ and T̂  will be that of the values of 
f and for given (distinct) values of s, so requiring m=n. We 
note that I.P.Q.F. derived in other contexts cannot be immediately 
employed in approximating (5.1.11), since (5.1.11) involves the 
derivative of (1 as an integrand.
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If the curve Q. is given in parametric form, i.e. consi­
dering as the xy-plane and Q, is the set of points

0(t) = {(Ç(t),0(t)), a^t<b} ,

we find that, integrating in the positive direction, (5.1.11) 
becomes

fb 1
(5.1.12) I f(G(t),G(t))((S'(t))2 + (e'(t))2)^dt.

 ̂a

We observe that unless  ̂ and 0 are given and f(ç,0) is 
regarded as the product of a (j>-polynomial and a ^-polynomial, 
ÇE(j), BEif), and (2.8.1) being valid for both 0̂  and , (5.1.12) 
will become a nonlinear functional of ç and 0, and so I.P.Q.F. 
as developed here will be inapplicable.

§5.2 EXTENSIONS - MORE THAN TWO FUNCTIONS
When dealing with real variables, the extensions of the con­

cept of I.P.Q.F. dealing with the product of two functions 
in more than one dimension and, alternatively, the 
product of more than two functions in one dimension are the most 
natural to investigate. We examine the second of these in this 
section. See also [119].

First, we examine the interpolatory case, which is straight­
forward. We consider the case of the product of three functions. 
Extension to the product of four or more functions are obvious 
by analogy. We are given
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(5.2.1) I(f;g;h) = w(x)f(x)g(x)h(x)dx
R

and we approximate this by

(5.2.2) Q(f;g;h) = 1 ^ 0  ̂ j = 0  ̂̂  ̂® ̂ ’

where S^e(A^) , ThE(Y^) , and U^E(5^) are sets of linearly 
independent elementary linear functionals defined on their res­
pective function spaces. We may also regard Aâ(a^j^)?_g,?_g,^_g 
as a "three-dimensional" matrix, abbreviated as a 3-matrix, made 
up of real numbers a^^^. In this context the matrix A in 1.3.3 
would be called a 2-matrix. Naturally, we seek a^^^ such that 
Q, which we will denote when necessary, is exact on
^m^Y^xEP that is,

(5.2.3) E(f;g;h) : I(f;g;h) - Q t f ;g;h)

is zero when fc$^, gcV^, and hcsP. We now proceed as in §1.3: 
Let

(5.2.4) F = (U (E ))P P - ( e 'jP P  ̂ k & k=0'&=0 - k& k=0'A=0

U„(çp, . . . , Up(ç^)

• • • > Up(Sp)

We now define



188

(5.2.5) D = F ® (C @ B),

and seek to solve the system of linear moment equations

( 5 . 2 . 6 ) Da = A 5

where

(5.2.7)

and

(A: ,

= (ao]k'

-P

’ Ank) ’ k=0 5

(5.2.8)

A:
( A : ,
T

-ok(A.,.,

> Ap) ,

, Ank), k=0 ,

A J. = (I((|)̂ ;i|ĵ ;ç.|̂ )j...5l((j)̂ j\|;j;Çĵ ) ) 5 j - 0 , . . . , n-]k

Clearly there are direct analogues of all the Theorems and 
Definitions of §1.3. The matrix A may be found by analogues of 
the methods suggested in §2.9. In particular note that the 
analogue of (2.9.10)-(2.9.12) requires the examination of only 
one (m+l)x(m+l), one (n+l)%(n+l) and one (p+l)x(p+l) matrix.

We now consider the question of exactness on, say, 
A^xY^xE^. As before (see §2.7), there is no real gain in con­
sidering Y<m, 6 <n or i<p. We examine the case (say) y>m, 6=n, 
and I=p. Following the analysis of §2.4, it is clear that,
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defining as in (2.4.10), we have

THEOREM 5.2.1 Let depend upon p^eP^, i=0,...,m. For an
I.P.Q.F. exact on y>m, to exist it is necessary
and sufficient that the following conditions are fulfilled;

(5.2.9) There exist h^, W-orthogonal to V^x=P, with respect to 
I, r=l,...,y-m. That is,

IChpS*.;C%) = 0, j=0,...,n, k=0,,..,p.

(5.2.10) There exist PpcP^) i = 0 , . . ,,m, such that
S^(p^;h^) = 0, r=l,...,y-m.

(5.2.11) The elementary functionsl (S^(p^; ))^_g are linearly
independent on (0^0 . I l l

n ^We have already assumed independence of Tj on (Y ) and
Don (5^) and so (5.2.11) guarantees that the matrix D in (5.2.5) 

has full rank. Analogous comments to those following Theorem 
2.4.3 obviously apply here.

Clearly the above result is symmetric in y ,8 and t. In 
general, we would expect (5.2.9) not to be satisfied if 
(n+1) (p+1) >m.+ l . However, in certain special circumstances, we 
might expect more advantageous results. For example, if we find

(5.2.11) f = Çj j=0,l,...

= (^l)^ j=0 ,1, . . .
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we obtain (cf §2.7),

THEOREM 5.2.2 Assume S^exiJ i=0,...,m, (5.2.11) holds and
n+p=m. If is a T-set on R, then there exists an] ]=0
I.P.Q.F. exact on

.“ ■'I X  X ç P

provided that there exists a set of (m+1) zeros of hj such
that detB^O. The functionals T̂  and may be chosen
arbitrarily provided detCzO and detFzO. The choice of the
functionals T. and U, uniquely determines the I.P.Q.F. ///] -K

Clearly, if is a T-set on R, the knots x^ are unique.
We also note that the requirement that be a T-set in] i - 0
the above result in effect requires that is a monotonically 
increasing or decreasing function. Further, analogous with 
results in §2.8, we have

LEMMA 5.2.3 Let (j)̂ obey (2.8.1) with = Let (5.2.11) hold.
Assume is a monotonie function on R. Then there exist 
I.P.Q.F, exact on

Y+n+p=2m+l, Y=2m+l-n-p>m. The functionals, chosen as in 
Theorem 5,2.2, uniquely determining the I.P.Q.F.

PROOF: Since  ̂ is monotonie, all the sets of functions under
consideration are T-sets. The Lemma is now immediate. ///
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We see that these results, which are immediate generaliza­
tions of results concerning I.P.Q.F. which deal with the pro­
duct of two functions, suffer the restriction y+n+p=2m+l if we 
seek y>m, despite the increased number of parameters (in A) 
we have available. We have the following:

LEMMA 5.2.4 Let m>n and , 6>n be T-sets on R. If there
exists a function ÇespH^ which is of one sign throughout 
R, there exists no choice of %i functionals such that 
there is an I.P.Q.F. exact on

PROOF: Analogous to Theorem 2.1.1. ///

COROLLARY 5.2.5 Let , y>m and , 6>n be T-sets on R. Let
y+6>min(2n+l,2m+l). If there exists a function ç as in Lemma 
5.2.4, there exists no choice of xi functionals such that 
there is an I.P.Q.F. exact on

. ///

In this context, concerning functions of one sign, it is 
useful to note the following result:

THEOREM 5.2.6 Let R be a closed real interval, and 5^ a T-set
on R. Then there is OespH^ such that 8>0 on R .

PROOF: See [154,155]. ///
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If we remove the restriction that the above sets of func­
tions are T-sets, it is clear from §2.7 that we also lose our 
guarantee that the relevant orthogonal polynomials have suf­
ficient zeros to act as knots of an I.P.Q.F. Of course, all 
the above results are symmetric in ((), ip and Ç.

Thus we see that seeking an I.P.Q.F. exact on 
is a strong restriction on our choice of m, n and p, since we 
can only obtain results when ytn+p>2m+l. This is to be con­
trasted with the interpolatory case where there is no such res­
triction on m, n and p. Thus we conclude that when integrating 
the product of two or more functions we should use inter­
polatory I.P.Q.F., perhaps assigning any spare (non-linear) 
parameters in a way which improves the behaviour of the error 
functional in some way.

The results concerning errors for I.P.Q.F. in Chapter 4 can 
clearly be generalized to deal with the product of more than 
two functions.

§5.3 EXTENSIONS - COMPLEX VARIABLES
Having dealt with the above forms of extension of I.P.Q.F. 

when dealing with real variables and real valued functions, we 
now propose to briefly examine the effects of allowing the vari­
ables to become complex. We note that there appears to be 
dearth of results in the literature dealing exclusively with 
approximate integration in the complex domain, although there 
are some results investigating the connection between analytic
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functions and integration over real intervals. In fact con­
sideration of analytic functions allows us to derive yet another 
class of error estimates, both for R.Q.F. and I.P.Q.F., see 
[5,12,71,72]. Thus we obtain yet another way of defining a 
"best" Q.F., since, with the aid of some functional analysis 
we are able to separate the contributions due to the intergrand 
and the Q.F. in the error estimate.

From [2] we have the following well known result:

THEOREM 5.3.1 Given n+1 distinct (real or complex) points, 
^o’’*‘̂ n’ n+1 (real or complex) values, w^,...,w^,
there exists a unique polynomial, p , of degree at most n, 
such that

p(z^) = w^ i=0,...,n. ///

This result is immediate since the so-called Vandermonde 
determinant is non-zero. If fact, see [156], this result can 
be extended to ^-polynomials, where cj)̂ obey (2.8.1) and the 
points z^ are all c|)-distinct.

Theorem 5.3.1 means that we can construct interpolatory 
I. P. Q.F. which will integrate (f)- and ^i-polynomials exactly,
((f)̂ and ipj satisfying (2.8.1)), over arbitrary regions in the 
complex plane, using xi functionals. The analogue of Theorem 
2 . M-. 3 also clearly holds. However, still examining xi func­
tionals, we find, see [2,157], that orthogonal polynomials on 
regions in the complex plane may not possess distinct zeros, and 
these zeros may not even be in the region itself. Consequently,
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except in special cases, we would not expect to be able to 
obtain Q.F. which might be regarded as analogous to Gaussian 
QF in the complex plane.

However, we note that the Vandermande determinant remains
non zero if, on allowing, say, z^=z^^^, we replace the (i+2)^^

*  ̂ ri 2row, i.e. (1, z^^^, , . . . , , with the row ( 0 ,1, z^ , z^ , . . . ,
z^ . This procedure can be generalized in the obvious way 
to deal with both higher derivatives and several groups of 
numbers z^ coalescing. Thus, provided the integrands are de­
fined at the zeros of the orthogonal polynomials and the relevant 
derivatives may be approximated, we can obtain I.P.Q.F. (and 
R.Q.F.) in which y>m by choosing the elementary functionals 
to be function and derivative evaluation at the zeros of the 
orthogonal polynomial (if a zero z* has multiplicity r we use 
the elementary functionals f(z ) , . . . (.z ) ) .

§5.4 APPLICATIONS
In a sense, all applications of I.P.Q.F. are obvious, that 

is, we would consider using them in any circumstances where we 
integrate the product of two (or possibly more) functions, each 
of which can be distinguished. Some work has already been done.
We list various applications which come readily to mind:

(5.4.1) Solutions of Integral Equations. See [15,18].

(5.4.2) Solution of various transforms and convolution integrals.
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(5.4.3) The evaluation of (generalized) Fourier coefficients 
of functions.

(5.4.4) Evaluation of the integral of the product of a large 
number of relatively simply functions. See [118].

With regard to (5.4.3) we note that there are some very 
good algorithms already available for the evaluation of the 
Fourier sine and cosine coefficients of a function. See, for 
example, [15 8,159]. However, we note that these methods rely 
on (standard) polynomial approximations, and as remarked at the 
beginning of Chapter 2, we feel that the intrinsic strength 
of the concept of I.P.Q.F. lies in dealing with the situation 
in which either ({>. or ij;. are not standard polynomials, and we 
can benefit fully from not having to discover an unnecessary 
amount of information about both integrands. For example, as 
always, in the obvious situation where one of the functions is 
badly behaved and the other is not.

§5.5 EXAMPLES
Here we propose to give a few simple examples of I.P.Q.F. 

There are, of course, some examples of I.P.Q.F. in the literature, 
see [12,15,16,17,18,23,24,25,118]. However all these examples 
deal with the special case i=0,l,2,..., and although
it is reported that the use of these I.P.Q.F. is more accurate 
that R.Q.F., ([2 3]) that is,the same accuracy is achieved for
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less function evaluations, as commented in §2.1, we feel that 
the main advantage in using I.P.Q.F. becomes apparent when at 
least one of the sets of functions or are not the stan­
dard polynomials. As pointed out earlier, it is under these 
circumstances that we may claim to make "full use" of all the 
linear parameters (a^^) available in obtaining interpolatory 
I.P.Q.P.’s which can integrate exactly (m+l)(n+l) distinct 
functions as opposed to the at most 2m+l a R.Q.F. can cope with 

Examples demonstrating some of the symmetry properties 
mentioned in §2.10 are given in [24]. We now proceed to give 
some examples of I.P.Q.F. We shall examine the following sets 
of functions :

(5.5.1) (t+1)*^, i=0,l,..., a*0.

(5.5.2) e^^^ , i=0,l,..., gzO,

(5.5.3) cos (iir Ct+l)-/2 )- i = 0,l,...,

(5.5.4) sindiT Ct+1) / 2) i = l,...

Throughout, we recall that the interior of R is (-1,1). In 
the interests of simplicity we assume w=l. Also, we shall only 
consider using Xi functionals. Once the knots have been deter­
mined we obtain the matrix A using (2.9.10) - (2.9.12). The 
zeros of the relevant orthogonal polynomials are obtained using 
the algorithm given in [16 7] for obtaining simple real zeros 
of polynomials and modifying the results obtained in the obvious
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manner. That is, given the coefficients of the orthogonal poly­
nomial, find the roots using the algorithm, obtaining for example 
a^( = (fi(x̂ )) i = l,...,r,r being the degree of the polynomial, and 
then solving a^ = (f>(x̂ ), i = l,...,r. We know that the sets of 
functions (5.5,1) - (5.5.3) are T-sets on [-1,1] from, for 
example, [111].

Example 5.5.1 Let <f> . be given by Ç. of (5.5.2), 6 = 1, and ip.1 1  3
be given by C- of (5.5.1), a=l. Let m=n=3. We then obtain

 ̂ 4 3 3 4the following I.P.Q.F. exact on $ xY and $ xY .

(5.5.5) fl" 0.4697446460 0.0505 35 0026 -0.0259709689 0.00823692 80
-0.0206882436 0.6886947864 0.0706153851 -0.017 916 3084
0.004557 36 57 -0.0242 395656 0.5361207 742 0.0219 67515 3

-0.000 7807973 0.0034976556 -0.0103330767 0.2459588018

where f = (f(-0.79139595 34),f(-0.1331193345),f(0.5153672678),
f(0.9069848137)),

= (g(-0. 8154575387) ,g(-0 .1896084753) ,g(0 .4791128782) ,
g(0.89912 38864)).

We note that elements of the moment matrices required in 
order to calculate the parameters in (5.5.5) can be obtained in 
closed form only when a above is an integer. ///

Example 5.5.2 Let <{), be given by ^. of (5.5.3), and . be given1 1  ]
by ĵ of (5.5.1), a=l. Let m=n=3. We obtain the following
I.P.Q.F. exact on and
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(5.5.6) f 0,4180077850 
■0. 0184376039 
0.0030120689 
0.0007664687

0.0467218887 
0.5580034932 
0.0014445871 
0.0095186877

0.0095186877 
0.0014445871 
0.55800349 32 
0.0467218887

0.0007664687
0.0030120689
0.0184376039
0.4180077850

where f = (f(-0.7809256111),f(-0.2758715666),f(0.2758715666)
f(0.7809256111)),

= (g(-0. 8342341385) ,g(-0 . 2969834986) ,g(0 . 2969834986)
g(0.8342341385)).

We note that the above mentioned algorithm employed for 
finding zeros of polynomials can be used when dealing with 
(|)̂ on noting that we can write

cosix = y  ̂ (cosx)],^̂ j=0 ij ’
for specified (see, for example, [168]).

We can also observe, as predicted in Theorem 2.10.8,
that the matrix A above has rotational symmetry of order 2.

From Corollary 2.10.12 it is clear that the above
I.P.Q.F, will also be exact on

5 2 2 5$ XY and 0 XY . ///

Example 5.5.3 We now demonstrate the fact that we do not require 
m=n.

Let <})̂ be given by (5.5.2), 3 = 1, and  ̂ by (5.5.3).
Let m=2, and n=3. We then obtain, for example, the follow­
ing I.P.Q.F. exact on O^xY^.
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(5.5.7) 0.5986705423 0.2234366014 -0.1020851981 0. 0209795908
■0 .062 8180635 0.3764 349217 0.5484907508 -0.0492236995

^ 0 .009 4644135 -0 . 0325905421 0.0715457235 0 . 39769 49 592

where = (f(-0.6633426243),f(0.1587977139),f (0.8229651623)),
= (g(-0.7298108309),g(-0.1709472124),g(0.3801006302),

g(0.8292503279)).

The knots and y  ̂were chosen to be zeros of <|>3 and 
respectively, and consequently the I.P.Q.F. will also be 

exact on
$ 3 X and X Y

We note that while the knots x^ are uniquely deter­
mined, it is possible, since there are degrees of freedom
in the choice of (we made the natural choice of requi­
ring orthonormal to 0̂  ̂, but this is not necessary), 
that there might be some element of choice in the deter­
mination of the knots y^, while still retaining exactness 
on all the above mentioned product spaces of function.

We observe that the asymmetry of the knots reflects 
the asymmetry of the exponential functions (j>̂. ///

In Examples (5.5.1) and (5.5.2) we see that the coefficient 
matrices are diagonally dominant, those elements which are negative 
have relatively small modules, and the diagonal elements are of 
similar size. From the point of view of estimating errors, via 
some norm of the coefficient matrix, and roundoff error, the above
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properties of the coefficient matrices are advantageous. Even 
the coefficient matrix in Example (5.5.3) is almost "diagonally 

dominant" in the sense that ^ n ' > ^ 2 2 ^ ^ 2 3  ^ 3 4  its largest
elements. These properties are not necessarily general, par­
ticularly in the case where mzn. It is also possible that co­
efficient matrices with smaller norms can be obtained when the 
knots x^ and/or y  ̂ are not zeros of the relevant orthogonal 
polynomials.

It is not yet clear under what circumstances we may obtain 
a theoretical justification for these clearly desirable properties 

We now proceed to examine the following:

rl(5.5.8)

and

ln(n(l-x)) cos ( j-ir (x+1 ) )dx = - — - S.(j2w),
1

(5.5.9) J ln( ÏÏ ( 1-x) ) sin( j TT (x+1 ) ) dx=y^( Y+ln( 2 j TT )-ci ( 2 j IT ) ) ,

where y is Euler’s constant, and Si and ci are the Sin and Cosine 
integrals (see [168]). Some numerical results concerning
(5.5.9) are given in [5], p. 66, and it is apparent, even using 
some R.Q.F. specifically designed to deal with oscillatory func­
tions, that (5.5.9) (and analogously (5.5.8)) is difficult to 
approximate using a Q.F. This is for two reasons, first, the 
oscillatory behaviour of the trigonometric functions and second,
particularly in (5.5.8), the fact that Lim Imr(l-x) = -«>.

x->l
We list some results in Tables 5.5.1 and 5.5.2. The 

results were calculated to 18 decimal places, then rounded to 6.
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Calculations were carried o u t , using APL language, on the DEC-10 
computers at the Universities of Toronto, Canada, and Aberdeen, 
Scotland.

The notation, xl,x4, and xlO indicates how many equal sub- 
intervals R was divided into when the rules were used in a com­
pound manner. The rules RGS32 and RGS4 are the Gaussian 32 
and 4 point rules respectively. The rules R31B and R2 3A are 
given by (5.5.6) and (5.5.7). The remaining rules can be des­
cribed as follows :

R23F ; m=y = 3, n=3, 6 = 4. (j>̂ defined by (5.5.2), 3 = 1;
defined by (5.5.3). The knots x^, i=0,...,3, and y^,
3 = 0,... ,3, are 0.5 ,0,2 , 0 . 75 ,0.97 , and 0. 7298108039 , 
“0.1709472124, 0,3801006 302, 0.8292503279 respectively.

R24A : m=Y=n = ô = S. cj). defined by (5.5.2), 3 = 1; 4». defined by1 3
(5.5,3). The knots x^,i=0,...,3, and y^, j=0,...,3,
are -0.5,0.2,0.75,0.97 and -0.7,-0.2,0.3,0.8 respectively

R24B : As R2 4A except that the knots x^, i=0,...,3, are now
— 0.6,0.1,0.6,0.9,

R211A : m=Y = 3, n = 6=6. <j)̂ defined by (5.5.2), 3=1; (p̂ defined as

(5.5.10) = 1 ,
 ̂ i|̂ 2k+l " cos ( TT (k+1 ) ( x+1 ) ) , k=0,l,..,
 ̂î 2k “ sin(irk( X + 1 ) ) , k = l,2,...

This is a T-set on R. The knots x^, i=0,...,3, and
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yj,i = 0,.. .,6, are -0.5,0.2,0.75,0.98 and -0.9,-0.6, 
-0.3,0,0.3,0.6,0.9 respectively.

The choice of the knots and y  ̂ is heuristic and has 
not been the subject of a detailed investigation. The asym­
metry (with respect to the origin) of the knots x^ reflects 
the asymmetry of the exponential function. In all rules except 
R211A, the asymmetry of the knots y  ̂ reflects the importance of 
the behaviour of the integrand near 1, We observe, in particu­
lar, how as Xg^l when dealing with (5.5.8), and xg^O.O when 
dealing with (5.5.9) (thus reflecting to an extent the position­
ing of minima of the integrands) the I.P.Q.F, give better appro­
ximations of I. We see that in approximating (5.5.8) both R23F 
and R211A slightly outperform RGS4. Also, as j increases in 
value, we see that all the I.P.Q.F. used have improved perfor­
mances - particularly R24A. As might be expected since x ^e^^ 
is an increasing function (x>0), R31B is outperformed by R211A,
R2 3F and R2 3A. When we consider (5.5.9), as might be expected, 
we find R211A and R24B performing better than the other I.P.Q.F., 
and they perform better than RGS7 for j^5. Finally, we observe 
that while R2 4A performs reasonably well on (5.5.8), R2 3F does 
not perform so well on (5.5.9). This, and the deteriorating 
results of R24A and R2 4B for small values of j are probably ex­
plained by the fact that Lim ln(n(l-x)) sinjtt (x+1) =0 and so

x->- 1
when these rules are compounded the interpolatery approxima­
tion of the integrand is forced toward zero in places where 
this should not occur.
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We also note that, from the point of view of function 
evaluations, counting f and g as separate functions, that 
all rules mentioned, except R211A and RGS32, use the same 
number of function evaluation; 8,32 or 80, whereas R211A uses 
11,44 or 110 and RGS32 64. In general, of course, an I.P.Q.F. 
uses

(5.5.11) (m+n+2) Elementary functional evaluations and
(m+2)(n+l) multiplications during the course of its 
evaluation,

whereas a R.Q.F. uses, when applied to a product of two functions.

(5.5.12) (2m+2) Elementary functional evaluation and
2m+2 multiplications during the course of its evaluation

In (5.5.12) we have in effect, written the R.Q.F. as an
I.P.Q.F., chosen m=n and then taken into account the special 
structure of the coefficient matrix.

It is clear, particularly if multiplications are cheap and 
elementary functional evaluation is expensive, that the use 
of an I.P.Q.F. may well be cheaper than the use of an R.Q.F. 
if m is noticably bigger than n.

Consequently, in the above examples, the improved perfor­
mance of I.P.Q.F. over RGS7 cannot be attributed to the fact 
that we obtain more information about the integrand using an
I.P.Q.F, than the R.Q.F., though perhaps it can be attributed 
to the fact that we use what information we have "more effec­
tively" .
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The question of how we may realistically compare two (or more) 
Q.F. with one another is not easily resolved. It is clear that 
simply comparing results when the Q.F. are applied to a few care­
fully chosen "test-functions" is not really an adequate procedure. 
Some work on so-called "performance profiles" of Q.F. has been 
done, see [41, 42, 43 3. In dealing with I.P.Q.F., which are 
designed as special purpose Q.F. we propose a simple method of 
comparison.

Let the functions f and g depend upon parameters a and 
3 respectively, thus obtaining a two parameter family of in­
tegrands. Approximate these integrals using two Q.F,, Q^ and 
Q^ and we may compare the performance of the Q.F., on this family 
of functions in the following ways:

(5.5.13) Maximum modulus relative error incurred by Q^ and Q^

(5.5.14) Number of times the relative error for one Q.F. is 
smaller than the relative error for the other Q.F.

We notice that (5.5.14) is a very crude comparison and augment 
calcul 

analogously)
it by calculating the following ratio for Q^ (and Q^

(5.5.15)
ct, 3

a3 2a3

^a3“^la3
^o3 ^2a3

number of times

I ̂ a3"^la3 ̂ ̂ ^^“^2a3 ̂
= R.

where , Q^^g , Q^^g stand for or Q^ or Qg acting on f
and g with parameters a and 3 . The ratio Rg (for Q^) is 
calculated analogously. It is clear that if R^ is near 1 then, 
in the cases where Q^ has smaller error than Q^ , the inter-



207

pretation is that and approximate I with similar
accuracy, whereas if is near 0 , gives a noticeably
better approximation than (on average). Thus we can obtain
some sort of measure of how much "better" is when compared
to Qg in the cases where gives a better approximation to
I than Qg .

In order to be able to obtain exact solutions easily we 
examine some integrals of the form

(5.5.16) I(f';g) + I(f;g') = fg
1
-1

Example (5.5.17) Let f(x) = eax , a = 0,1,...,4

 ̂= 2 ’ 2 ’ 2 ’ 2 ’ 2
x3 o 1 3 5 7 9  g(x) = (1 +x) , 3 = - 5 75- , — , - ,

We approximate (5.5.16) by using 
RGS4 (as defined earlier in this section),
R21A (as given in Example (5.5.1)), 

and R21B,
where R21B is determined by letting be given by

(5.5.2) (with 3 = 1 ) 5 and by (5.5.1) (with a = 1), and
m = 2 , n = 4 . The I.P.Q.F. is exact on and ,
with

A = 0.3808777266 0.4048531936 0.01637874803 -0.08176517185
0.03664060927

-0.07054513554 0.1900368667 0.5439376461 0.2772342454
-0.09432447568

0.01188582114 -0.02546960111 -0.006836955378 0.1901147600
0.2269817228
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f = (f (-0.6740553004), f (0 . 2073300597), f (0 .8448222766 )),
^  = [g(-0.8702937525), g(-0.4019057276 ) , g(0 .1781971940),

g(0.6549588641), g(0.9339042206)) .

We obtain the following results:

TABLE 5.5.4

I.P.Q.F. MAX. MOD. 
REL. ERROR

CO
SMALLER E 
NO. TIMES

MPARED
RROR
RATIO

ÆTH R21A 
LARGER E 

NO. TIMES
RROR
RATIO

CC
SMALLER I 
NO. TIMES

)MPARED V 
]RROR 
RATIO

JITH R21B 
LARGER E 

NO. TIMES
RROR
RATIO

RGS4 0.0968 9 0.595 16 0,0729 3 0.960 22 0.505

R21A 0.113 ---- ----
9 0.0112 16 0.459

R21B 0.0941
_______ ______ — -----

We see that on the family of test functions chosen in this 
example, both I.P.Q.F. may be claimed to perform better than 
RGS4. Note the use of exponential basis functions in both R21A 
and R21B, and the fact that all three Q.F. use 8 function 
evaluations.

Example 5.5.18. We repeat Example (5.5.17) with g(x) now 
given by

g(x) = (l+d-x))  ̂ S = 1,2,3,4 ,
and obtain the following results:
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The I,P.Q.F. RGSM- and R21B are as before. The I,P.Q.F. R22A 
is determined by letting c|)̂ == be given by (5.5.2) (with 3 = 1) 
and setting m = n = 3 . Thus R22A is exact on ,r=0,l,...,7
(see section 2.8), with

A = diag(0.18471749614 , 0.6517223295 , 0.4487931752 , 0.7147669989) ,

(f(-0.7148808021), f(0.02752871693), f(0.6141299470), f(0.9284405505))
T Tand g is as f (with g replacing f).

The I.P.Q.F. R22B has the same basis functions as R22A, but
3 2we now choose m = 2 , n = 4 . Thus R22B is exact on 0 and

0^x0^ , with

A = 0.5802520778 0.3611532159 -0.01666076724 -0.03874154766
0.01802973033

-0.1160017994 0.318 3096 250 0.4774214710 0.1520157346
-0.05575714321

0,02524390504 -0.05149889088 0.01285685095 0.1755889376
0.1577886002

f̂  = [f(-0.5873716418 , f(0.32999398216) , f(0.8763713498)),

ĝ  = [g(-0.7916367808) , g(-0.1891407712) , g(0.3699854772) , g(0.7502862223) ,
g(0.9534091960)).

For the family of test functions used in this example, we see 
that the effectiveness of both a suitable choice of nonpolynomial 
basis functions (R22A as opposed to RGS4) and the use of I.P.Q.F. 
(R21B and R22B) is apparent.
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We can also note that, not surprisingly, the way in which 
we subdivide the interval of integration as well as the choice 
of basis functions can affect the accuracy of a compound I.P.Q.F 
We can illustrate this with the following results obtained 
(rounded to 6 figures) when examining (5.5.8) with n=2.

Table 5.5,6 (exact result is -0.237485)

I.P.Q.F. RATIO OF SUBINTERVAL 
LENGTHS RESULT

RllA 1:1:1:1:111:1:1:1:1 -0 . 228065
6:6:6:3:2:1 -0.231166
10:10:10:4:3:2:1 -0 . 232643
21:21:21:6:5:4:3:2:1 -0.233860

R31B 21:21:21:6:5:4:3:2:1 -0.236466
R23C 10:10:10:4:3:2:1 -0 .236237

15:15:15:5:4:3:2:1 -0 . 236687
21:21:21:5:4:3:2:1 -0 . 236943

As an example, to clarify any ambiguity about the subintervals 
used above, we observe that if (-1,1) is subdivided with ratios
3:2:1, then we use the subintervals (-1,0), 0 and !— ,1

The I.P.Q.F. used in the above table are describes as follows.
4 2 3 3RllA : m=3, n=2. Exact on $ and 0 x0 , where the functions

(f). are given by (5.5.1) with C4=l. The knots x. and y .1 1 j
are -0.7946 5447 23, -0.18 759 24741, 0.18759 24741, 0.7946544723 
and -0.7071067812, 0, 0.7071067812 respectively.
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R2 3C : m=n=3, (}). are defined by (5.5.2), with 3-1 and ifj. by1. ]
(5.5.3). The I.P.Q.F. is exact on and The
knots x^ and ŷ  are -0.76 57840 322, -0.14 368 749 8 3, 
0.4381215835, 0.8837483052 and -0.7298108309, -0.1709472124 
0.3801006302, 0.8292503279 respectively.

R31B : This is the I.P.Q.F. in Example (5.5.2).

From the above results we may make a few tentative con­
clusions :

(5.5.19) Using I.P.Q.F. it is possible in some circumstances to 
obtain improved approximations to I (as opposed to 
using compound low order R.Q.F. usually based on being
exact for standard polynomials).

(5.5.20) Not only the choice of basis functions, but the choice 
of the parameters of the elementary functionals plays
a crucial role in the effectiveness of I.P.Q.F.

(5.5.21) The number of times we compound our I.P.Q.F. can be 
critical, and is determined by matching the behaviour 
of the integrand and known properties of the basis 
functions à. and ib, .

The best example of this last part is seen by examining the
results using R24B in Table 5.5.2. As always if we compound a
Q.F. too many times, roundoff error will affect our results, 
however this is a separate issue to that raised in (5.5.21).
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We also give an example in which we use elementary functionals 
other than y functionals. (See §2.11).I

Example (5.5.22) . m=H, n=3, and the functions (j)̂̂ and are defined 
by (5.5.1). The I.P.Q.F. is exact on and 0^x0^.

A -0.1286093407, 0.2435260610, -0.004436121970, -0.003852499465 
-0.05072803185, 0.5648462566, -0,1144333710, 0.03608058546 
0.02423649750, 0.2775072614, 0.3494911888, -0.08764953983 
-0.008119534890, -0.05436317277, 0.3835521890, 0.4097311628
0.001068461289, 0.005696332245, -0.01775443549, 0.08930149472

and

^  = (f(-0.9061798459), f(-0.5384631011), f(0), f(0.5384631011) 
f (0.7650553239)]

= (g’(-0.6546536707), g(-0.3399810436), g(0.3399810436) 
g(0.8611363116)).

It is interesting to note that the sume of the modulus of the
elements in the matrix A in Example (5.5.22) is less than that for

Tthe corresponding I.P.Q.F. with the last element of f replaced 
with f(0.9061798459) and the first element of replaced with 
g(-0.8611363116 ) .
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§5.6 COMPARISON OF I.P.Q.F. AND R.Q.F.: A SUMMARY

It is a little difficult to be able to compare I.P.Q.F.
and R.Q.F. directly. When we talk of the degree of precision
or exactness, once the functions cj)̂ have been announced, this
has a fairly unambiguous meaning in the context of R.Q.F.
This is not the case with I.P.Q.F. since first we have to
announce both and 0. and then y and 6, and in general these1 3
may not be interchanged. Thus more care is required when im­
plementing on I.P.Q.F.

There appear to be several criteria which we might consider

(5.6.1) Number of elementary functional evaluations required.

(5.6.2) Total number of linearly independent functions whose 
integral the Q.F. is able to evaluate exactly.

(5.6.3) Number of operations required in order to evaluate the 
Q.F.

The criteria (5.6.1) and, to an extent, (5.6.2) are often 
used to allow us to group R.Q.F. Once this has been done, we 
may seek "best" R.Q.F. in some sense, for example, by minimiza­
tion of an error estimate of some sort, or obtaining maximal 
degree of exactness.

We recall that I.P.Q.F. are special purpose Q.F. in that 
they are designed to integrate the product of two functions.
Thus we should only try to compare them with R.Q.F. under this 
restriction. This makes the natural tendency to compare the 
sum Y+Ô from the I.P.Q.F. with the number y from the R.Q.F. a
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little dubious when, for example, we consider (5.6.1). We can 
make some comments.

The use of an I,P.Q.F. would appear to offer several 
advantages :

(5.6.4) The ability to reflect known characteristics of the 
behaviour of the integrand both in the choice of m and 
n, the choice of the functions and 0^, and perhaps
in the choice of the elementary functionals S. and T..I 3

(5.6.5) Consider an I.P.Q.F. exact on This requires
no more elementary functional evaluations than the 
use of a R.Q.F. exact on 0^. However, in general, the
I.P.Q.F. will integrate many more functions (regarding 
fg as a single function temporarily) exactly than will 
the R.Q.F. If we try and increase the degree of exact­
ness of the R.Q.F. (y>m) we may only do so at the 
expense of using certain special elementary functionals, 
while an interpolatory I.P.Q.F. retains the advantage
of using essentially arbitrary elementary functionals 
(provided B and C retain full rank).

(5.6-6) An interpolatory I.P.Q.F. exact on is equally
easily derived, once the moments are known,
whether (0^) are standard monomials or not. If 
we seek a R.Q.F. exact on 0^,y>m, (cf. (5.6.5)) this 
is not the case.

These gains are obtained at a certain cost however:
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(5.6.7) An I.P.Q.F. is more costly to evaluate than a R.Q.F. 
(see comments in previous §).

(5.6.8) An I.P.Q.F. is very sensitive to the way in which the 
integrand is split into the appropriate product of 
two functions. This is not the case when using a 
R.Q.F.

Lastly we note that if we use an I.P.Q.F. exact on 
Y>m, although we increase the dimension of the product space 
of functions integrated exactly, this is only achieved at a 
marked drop in the number of elementary functionals we may 
choose at will. In particular consider the case when m=n 
and Y=m+1, in which case all the elementary functionals are 
prescribed.
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APPENDIX I INDEX OF NOTATION

I(f;g) (1 (f)) 
fer
geA
w

RclR , d>l, (see (A4)); (R

Q(a,n)(f.g). Q(f.g) Q(f))

n ( )

0 ={*o’ • • • ’’*’y ̂ ' U q !
Y Ô(j)£sp0 ; 0espT

r IT
B=(S^((j>^)) ^ 0 ’j = o ’ r’=mln (m,y)
C=(Tj(0^)) s = min (n,6 )
D=C@B

(Y^)

p;q
b ;c

— i 
K(A;x)
Si(Tj)GXi; S.ES.(x.; )1 1 1  

,yn
E,A,C^,D^,Lipa,B,L

Equation
(1.3.1) (1.1.1)
(1.3.1) (1.1.1)
(1.3.1)
(1.3.1) (1.1.1)
(1.3.1) (1.1,1)
(1.3.3) (1.1.2)
(1.3.3) (1.1.2)
(1.3.3)
(1.3.3) (1.1.7)
(1.3.4) (1.1.3)
(1.3.6) (1.1.5)
(1.3.6) (1.1.6)
(1.3.7) (1.1.8)
(1.3.8)
(1.3.9)
Th. 1.3.1 (Th. 1.1.1) 
Def. 1.3.1 (Def. 1.1.2)
(1.3.12) (1,1.9)
(1.3.13) (1.1.10)
(1.3.14) (1.1.10)
(1.4.7)
Def. 2.1.1 
Th. 2.1.1
(2.1 .10)
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e .— 1

M o o
m "  — • 

r
(s)

Sĵ Cç̂ ; ); TjCriji )
Pi 5

W , Wj , . . . , Wq.

^ h ^ t = o

B

m
(K)^Y.(K)^«(^(K)^^jY^^.^(K)^ ,6

(K) . (K)
^i’ ĵ 
(K)^ (K)

'K f;

PI
{ Wq 5 W ̂ j . . . 5 W y _ 2  ’ ̂ - p  ̂

V ; S S % - p l ” ; % -  
(M,N)q ^(M,N) (m,n))

^B;Vc
(M,N)
(M,N)
(M,N)

Equation
(2.2.1)
(2.2.9)
(2.4.10)
(2.4.15)
(2.5.1) - (2.5.3)
(2.5.8)
(2.6.1)
(2 .8 .10)
Th. 2.8.8
(2.9.5)
(2.9.7)
(2.9.8)
(2.11.1) - (2.11.4) 
Th. 2.11.1
Th. 2.11.1
(2.11,10)
(3.1.1)
(3.1.2)
(3.1,4)
(3.1.6)
Def. 3.1.2 
Def. 3.1.3 
Def. 3.1.3
(3.1.10),(3.1.11)
(3.1.15)
(3.1.16) - (3.1.19)
(3.1.20) - (3.1.21)
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Equation
(3.1.23) - (3.1.25)

U,V (3.1.31) - (3.1.32)
( 3 . 1 . 3 8 )

(3.1.55)
( 3 . 2 . 1 )

(4.1.4),(4.1.5)
(4.1.9)
(4.1.10)
( 4 . 2 . 4 )

( 4 . 2 . 5 )

(4.2.8 ),(4.2.21)
(4.2.16)
(4.2.17)
(4.2.18)
( 4 . 2 . 2  3)

(4.3.6) - (4.3.7)
( 5 . 2 . 2 )

( 5 . 2 . 5 )  -  ( 5 . 2 . 8 )

p,w

r + 1  ' 
K(t,s)

k k= 0  

D,a, A
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GENERAL NOTATION

arbitrary indices r,s,t ,i,j,1 ,k ,y,v 
arbitrary functions 8,9,i,Ç
arbitrary linear functionals L,L^,L^(_p^) ( pi, . . . , p̂ )

0 (i))
arbitrary points t,t^,s,s^,t
arbitrary coefficients a ,a.,a ..,3 .,3 •.’ 1 ' 1 3 ’ 1 ’ 1 3

arbitrary polynomials ^ , 0

arbitrary sets of functions E ={ç.}^ , (H) ={0 .}^ ,r 1 i ~ Q ^  r 1 1 = 0

arbitrary regions K,K[c,A], KCk,1 ), K(k,A), K[A,y], K[A,y) K(A,y) 
arbitrary function spaces F,G 
arbitrary matrices F, G
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APPENDIX II INDEX OF ASSUMPTIONS

(Al) fer,g£A real valued functions acting §1.3
on RcR^.

(A2) (1.3.1) exists and is finite in Riemann- §1.3
Stieltjes sense.

(A3) w(x)>0 on R. §1.3
(A4) d=l; R a finite real interval, with §1.3

interior (-1 ,1 ).
(A5) S.,T. bounded and (therefore) continuous §1.3
(A6 ) linearly independent over §1.3

1 r=U j 3 = 0
R.

(A7) {S.}T „3 { T . l i n e a r l y  independent in §1.31 1=0 3 3=0
($^^* and

(A8 ) rcC°, Acc°. §2.1
(A9) All linear functions are real valued. §2.2
(AlO) depends on only one independent §2.2

parameter.
(All) m>n. §2.3
(A12) y>m, 6 <n. §2.4
(A13) has no row or column which is entirely §2.5

composed of zeros.
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APPENDIX III POSSIBLE TOPICS FOR FURTHER INVESTIGATION

§2.2 T-extensions, T-restrictions ("almost" T-sets).
§2.2 GT-sets.
§2.2 How to obtain CT-sets from T-sets.
§2.2 Conjecture (after Th. 2.2.14): "Closed real interval,

(T sets 7  ̂CT-set) (no proper extensions)."
§2.2 Further criteria for 5^ being a T-set.
§2.2 Conditions such that matrix M has full rank

(how to choose the knots).
§2.3 Th. 2.3.1: Finding the required parameters (related

to finding sets of points in d^2 , such that the
determinant using monomials is non-zero (and 
extensions)).

§2.4 Extension of results to semi-infinite and infinite
intervals of IR (appears to be straightforward) .

§2.5 Conditions under which has full rank.
§2 . 6  Prescribing more than one knot.
§2.6 Use of GT sets instead of T-sets.
§2.8 Application of these results to integration of

periodic functions.
§2.10 Further investigation of conditions under which A can

be a diagonal matrix.
§2.11 More examples dealing with GT-sets.
§3.1 Extension of (3.1.51)-particularly bearing in mind

to comments made in §5.6 of [20].
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§3.2 (I.P.) Q.F. for spaces of splines Super-
functions, B-splines, WT-sets).

§3.3 Relationship between I.P.Q.F. and "best" Q.F. (if
any) in the sense of Sard (in minimising norms).

§4.2 Connection between minimal interpolation results and
minimal norm QF.

§4.2 Investigation of splines and monosplines (not
necessairly polynomial) in 1-D - either directly or
as a combination of 1-D results. Application of 
these results to minimal norm QF.

§4,2 Connection between minimal norm one and higher
dimensional results (if any) (i.e. viewing I.P.Q.F. 
as a two dimensional functionals).

§4.3 Pursue investigation of various measures of function
space(s) to practice both alternative estimates 
analogous to and probabilistic estimates of errors 
(with chosen distributions to show desired emphasis 
on functions) using various QF.

§5.1 Investigation of various types of symmetry we may
impose on both Q and I in order to reduce the number 
of moment equations we need to consider.

§5.1 (of last paragraph). Other ways of expressing f as
a function of ç and 9. (linear or nonlinear).
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PUBLICATIONS

1. "Further Properties of Inner Product Quadrature Formulas"
B.I.T. 17, No. 4, (1977), pp. 392-408.

2. "Stencil Quadrature Formulas", jointly with Dr. G.M. Phillips
and Prof. P. Keast, submitted J.I.M.A., 1979.

Proposed Papers (ex Thesis)

1. Inner Product Quadrature Formulas for Generalized Polynomials.
2. A Note Concerning Generalized Polynomials.
3. An Extension of the Idea of Orthogonality.
4. Inner Product Quadrature Formulas Exact on Maximal Product

Spaces of Functions.
5. A Note on Non Singular Vandermonde like Matrices.
6 . Compand Inner Product Quadrature Formulas.
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