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0. SUMMARY

We investigate an approach to approximating the integral

(0« 1) J wix)f(x)g(x)dx = I(£f;g),
R

where R is a region in one-dimensional Euclidean space, and

w a weight function. Since (0.1) may be regarded as a contin-

uous bi-linear functional in f and g we approximate it by a

discrete bi-linear functional, which we term an Inner Product

Quadrature Formula (I.P.Q.F.):

éFAg s

(0.2) Q(fsg)

T
where 3 (§,CE) 50,8 (£3)7

09
"

P
(To(g),...,Tn(g)) >

m n

A = (a39)520,5:=0°

m n
and a;; are real numbers, }..q zj=0|aij|>0.

T and {T.}?
i=0 J73=0

The so-called elementary functionals {Si}
are two sets of linearly independent linear functionals, acting on
f and g respectively, defined over a certain subspace of
functions to which f and g belong. The simplest example of
these functionals is function evaluation at a given point.

The matrix A is determined by requiring (0.2) to be

exact for certain classes of functions f and g, say




fed¥=z {¢gs-0050_1s v20,
(0.3) 5 ¥
ge¥ = {lpo,...,tpa}, §>0.

In Chapter 1 we introduce the concept of I.P.Q.F. in
more detalil and make some general comments about approaches
available when examining numerical integration. After ex-
plaining in some detail why we feel I.P.Q.F. are a useful
tool in §2.1, we proceed in the remainder of Chapter 2 to
investigate various conditions which may be placed on @Y,Ys

{Si}T 0,ancl {Tj}? 0,in order to guarantee the existence of
1= J=

I.P.Q.F. exact when fedYand ge‘l’6

In particular we investigate the question of maximising
y+té. In the case where ¢. and wj are the standard monomials
of degree i and j respectively, some results have already
been published in B.I.T. (1977) p. 392-408. We investigate

various choices Of-¢i and wj:

mt+1
< }
1 i=0

Tchebychev sets (§2.7),

(a) {¢ (i.e. y=m+l) and {wj}‘f‘ , (i.e. 8=m) being
:1:

+ . .
(b) {¢i}§201 (i.e. y=2m+1l) being a Tchebychev set and Wa contains

% only one function (i.e. 6=0) (§2.8),

(c) ¢iE(¢1)l, 1<0 155 re ARG PR i20,]5:: £82.8).

In Chapter 3 we consider the question of compounding
I.P.Q.F. both in the classical sense, and, briefly, by examining
spline functions, regarding them as providing a link between

, an Lo P QLE on one hand and a compoundec I.P.Q.F. on the




other. Various methods of theoretically estimating the errors
involved are considered in Chapter 4. In the fifth Chapter

we examine various ways in which the concept of I.P.Q.F. might
(or might not) be extended. Finally, we make some brief com-

ments about the possible applications of I.P.Q.F., and give a

few examples.



CHAPTER 1: INTRODUCTION

§1.1 QUADRATURE FORMULAE

The subject of Quadrature, or Numerical Integration, in
its general setting may be considered as the problem of approxi-
mating the linear functional I, the integration operator,
which for some reason we are unable to evaluate directly, by

another functional Q, which we are able to evaluate. Let
(@ B 15 J wi(x)E(x)dx = I(F)
R

where R is a region in d-dimensional Euclidean space Rd, d=1.
The weight function w is assumed to be non-trivial in R and
such that I(f) exists in a Riemann-Stieltjes sense for feT,

c . : : g
+P12R,where I is some class of functions under considera-

f:R
tion. Unless stated otherwise, we shall assume that w is non-
negative throughout R.

The functional Q, although ultimately acting on f, may be
regarded as operating on a real (mtl) vector, each of whose
elements is itself the result of the operation of a linear
functional acting on f. Throughout, m may be regarded as an
arbitrarily fixed positive integer. These latter linear
functionals we shall call 'elementary'. For example, it is
often the case that the elementary functionals are function
evaluations at specified points (usually with R). We denote

these elementary functionals by SO,...,Sm and, more conveniently,

by {S.}W . We now have
1 i=0




(1.1.2) Q™ gy = QUS_(£),...,8_(£)).

When there is no ambiguity, we will delete the superscript (m)
from Q(m).

The choice of the elementary functions {Si}rjfj:O is affected
by many factors; for example, the availability of information
about the function f (i.e. ensuring that we are actually able
to evaluate Si(f)), ease of computation, properties that we
might desire Q to possess - over and above the necessary one
that Q exists for all ferl.

We shall say that a Quadrature Formula (Q.F.) is exact for

a function f if the error functional

(s 3 E(f) = I(£)-Q(E)
is zero. If
(1l le) E(E) =0 5 Vfeb;

we say that the Q.F. is exact on the class ®.

The usual approach when obtaining a Q.F. is to choose m,
the elementary functionals {Si}?:o’ and then require Q to be
exact on some specified class of functions ¢Ycr. We shall
assume that we may write

€1, %5 o7 = {¢ ,...,¢Y}, v20,

o



and that the basis functions ¢O,...,¢Y are linearly independent.
If we wish to discuss a function ¢ which is a linear combination
of the functions ¢ i.e. ¢ is in the function space spanned by

@Y, we write

CLellsB) pespe’,

or, if no ambiguity arises, ¢e@Y. Obviously if a Q.F. is exact
on @Y it will also be exact on sp@Y when Q is a linear func-
tional. Clearly the values the number y may take depend upon m and

possibly the choice of functionals {Si}T . If anything
5

were known of the behaviour of functions in ' it would be
natural to try to choose the functions ¢Y so that they reflect
this behaviour. Having chosen m and @Y, we may sometimes in-
vestigate which choice of functionals {Si}?:0 leads to a Q.F.
which is best in some sense (see §1.2).

Since Q is approximating the linear functional I it is

natural that we require Q to be linear also. The general form

of Q is thus (see, for example, [61])

m
i=0

Elnds T3 Q(m)(f) = z a;$;(£), aieR, 1=0 5 pavsai

Thus, in determining Q we have (mt+l) linear parameters, a;
1=0,...,m, which in principle are found by solving the so called
moment equations. The moment equations are a system of simul-
taneous linear equations derived by replacing f in (1.1.7) by

each of ¢O,...,¢r, r=min(m,y). It is possible that in deter-



m
1i=0
parameters, usually nonlinear, become available in Q.

mining our choice of elementary functions {Si} further

Let

€1:1:8) B = SO(¢O),...,Sm(¢O)

So(¢1)a"'asm(¢1)

*SO(¢m),...,Sm(¢m[
The following is immediate (see, for example, [2]).

THEOREM 1.1.1 If ¢' has dimension at least m+l, and {Si}? .
s

\

are linearly independent elements of (@m)x, then
det(B)=0. L 4d
m. % m
As usual (¢ ) denotes the dual space of ¢ .
We generalize the usual idea of a polynomial in a standard

manner (see, for example, [9,971]).

DEFINITION L.l.1 A ¢-polynomial of degree r is a function of

the form

2?~0 ..

di i B

bl




If no ambiguity results we simply call a ¢-polynomial a
polynomial. If we refer to polynomials, with no obvious
reference to some specific set @Y, we mean polynomials in the

usual sense.

DEFINITION 1.1.2 An interpolatory ¢-polynomial of degree r to

a function fel at {Si}§ 0 r>s, is a ¢-polynomial & of
l'_'

degree at most 1, such that
Si(f) = Si(g), 18U 5 w48 1id
Usually we choose r=s in the above definition.

DEFINITION 1.1.3 The Q.F. (1.1.7) is called interpolatory if

it may be derived by integrating-the inter?olatory $-poly-

nomial of degree m to f at {si}?
1

0" 11/
When the matrix B has full rank it is clear that we may

cerive a Q.F. in one of two ways which are equivalent in the

sense that, although they have different representations, they

will always give the same approximation to I(f)

These methods are

I. Derive the interpolatory Q.F. by solving

{1:159) B

where b (bs+eesbp)s

[Fh
1}

(So(f),...,Sm(f)),




thus the interpolating ¢-polynomial, p, to f at {Si}?_o is

m
P = )i.q DPidi

Then integrate p.

ITI. Solve the moment equations

CIols 109 Ba = A

where al = (a a_)
< A e Ll
T

A (I(¢o),...,I(¢m)),
thus deriving the Q.F. (1.1.7) directly.

However, if the matrix B does not have full rank and thus
a solution to (1.1.9) may not exist, it is still possible that

a solution to (1.1.10) does exist. See [81].

Thus, we have

THEOREM 1.1.2 If the matrix B has full rank and Q is a Q.F.

exact on ¢, y2m, then Q is interpolatory. /17

Without any real loss in generality, unless it is stated
otherwise, we shall assume that the elementary functionals

m : ; : m, *
{8.1} are linearly independent in (o) .

1'3=0

When we seek Q.F. exact on @Y, y>m, we almost invariably

become involved in the solution of non-linear equations in=-

cluding the parameters determining the choice of {Si}? % The
5

deriviation of such Q.F. is a more difficult problem, and in
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order to guarantee the existence of such Q.F., we may be forcéd
to impose stronger conditions on either {Si}?=0 or ' (or both).
An obvious example of this is to require the functions in oY
to form a Tchebychev set on R (see §2.2).

Our approach to deriving Q.F.'s, namely requiring exact-
ness on a certain class of functions, is not the only approach
that can be utilized. There is a large body of literature
concerning Monte Carlo and other number-theoretic Q.F.'s, see
for example [10,11,79]. These methods appear to be more ef-
fective for higher dimensional regions. There are other Q.F.
which, while not integrating a large class of functions exactly,
attempt to give good approximations over many integrals. See

{7]. TFor other approaches see [80,81]1, and for other work

describing some unifying theories of Quadrature, see [73,82].

§1.2. CHOICE OF QUADRATURE FORMULA

Having obtained a Q.F. it still remains to investigate the
properties that it possesses so that we may compare its effec-
tiveness when comrpared with other Q.F.'s. Usuvally, by setting
m=0,1,2,.... we are able to obtain a family of Q.F.'s exact on
larger and larger classes of functions - y increasing as a
function of m. Thus we can investigate asymptotic properties
like convergence. It is possible that we might need to impose
conditions on the set ¢' and/or the elementary functionals Si
to ensure that we at least obtain w* convergence of the sequence

of linear operators {Q(m)};=0+1.

I+ is irportant to be able to estimate the error E(f).




1}

Often the theoretical error estimates available cannot be used

in practical situations - for example when they require the
evaluation of high order derivatives at unknown points. The
problem of estimating errors in a manner which is easy and
practical and yet reliable is by no means trivial. The behaviour

Cm will be affected by the choice of Y. TFor

of both E and Q
instance, the width of the subspace sp@Y in ', see for example
(1], or the choice of points at which we evaluate f when
Si(f)Ef(xiL i=0,...,m, bearing in mind the fact that an increase
in the number of interpolation points does not necessarily give
a better uniform approximation to a function, could be important
considerations.

Distinect from errors arising from a theoretical approxima-
tion of I, in practice, since we are almost always using com-
puters, we must also consider roundoff error. Roundoff error
is not as serious as it has been in the past as we may always

use double precision arithmetic if necessary. Clearly however,

it remains desirable, and certainly aesthetically pleasing,

that the coefficients as in (1.1.7) are all positive. Also, if
some a. are negative, it is important that the sum of the modulus
of all the ai's is reasonably small, say of the same order of mag-
nitude as their algebraic sum. Depending upon the weight function
w 1t may also be desirable that the numbers |ail are themselves
of the same order of magnitude.

When we design or choose a Q.F. there are various things
that we should take into consiceration:

{(1.2.1) The amount of time and money one has available. If



(X+2« 3)

(l.2.4)

12

we are only going to evaluate a given integral once
we may be happy using an inefficient but simple or
easily available Q.F.. On the other hanc, if we are
going to be evaluating a large number of similar
integrals it becomes important to spend time and
effort in discovering efficient (though perhaps not
so simple) Q.F. so that a computer may do its job
quickly ané cheaply.

The information available about the integrand. This
will range between the extremes of being given, a
priori, certain data (i.e. the elementary functions
o are predetermined, say, in some physical ex-

1°i=0

periment) to having the integral available in a form

{S

that allows us a free rein in our choice of {Si}?=D

In this latter case the ease and accuracy with which
we may extract the desired information becomes an
important consideration.

The way in which we choose the set of. Depencing upon
fhe role in which we want to use the Q.F. how do we
choose the functions in ¢': generally, or aimed at
the solution of one or a few specific problems? For
example, the integrand may be oscillatory or singular.
There is a school of thought which favours the latter
alternative if we are actually going to make serious
practical use of any Q.F. See [u6].

If the Q.F. 1is going to be usecd in some compounc manner

(either adaptive or not), co we wish to be able to use
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information obtained more than once? This is a more
important consicderation in the one-dimensional case
(d=1) than in the higher dimensional cases since the
amount of new information required at each stage in
the compounding procedure is of the order of the
amount required at the previous stage to the power d.
(1.2.5) When our region of integration is multi-dimensional,
(d>1), there are an infinite number of regions which
may not be transformed into one another with affine
transformations, for example, hypercubes, spheres,
simplices and so on. Consequently, different Q.F. are
reguired for different regions. It is often possible
to simplify matters considerably by taking into account
the symmetry properties of the region under consider-
ation. See, for example, [87,88,83]. The functions
¢i are almost invariably chosen to be the standard
monomials. Because of the large number of points re-
quired in multidimensional Q.F., exact even for poly-
nomials of moderate degree, much effort has been ex-
pended in the investigation of minimal point Q.F.
Compared to the one dimensional case, there remains
much work to be done in this area. See, for some
recent developments, [90,...,93].
Our choice of Q.F. above is dominated by a "trade-off"
between ease (the Q.F. is familiar, easy to programme, '"nice"
easily handled parameters perhaps already available as a sub-

routine on the computer, and so on) and efficiency in some




1u

sense (the amount of computer and/or programrmer time used,

optimal characteristics of some type, and so on).

Apart from the above considerations, we are often inter-

ested in obtaining "best" Q.F.'s in same sense usually related

to a method of estimating errors. Ior example:

(L2863

(1:2.7)

(1,2.8)

We may wish to maximise y. By far the most common
occurrence of this is an investigation where the
elementary functionals are point evaluations of the
function, namely traditional Gaussian Q.F.'s.

See, for example, [38,591].

All elementary books on numerical analysis deal
with Gaussian Q.F. in some detail for the standard
polynomial case. The derivation depends upon the
theory of orthogonal polynomials. For the one-dimen-
sional case tables of knots and weights are readily
available, e.g. [38,601.

We may seek Q.F. that are optimal in the sense of Sard,
minimizing the Peano kernel of the Q.F. See, for
example, [61,...,67].

We may seek Q.F. that give a "best" performance over

a function space or collection of test functions.

Here "best" is usually measured in some sort of sta-
tistical manner. We may choose to use the Sarma-
Eberlein estimate of goodness, see Ch. 5 of [37],
(39,u0). Alternatively we may seek some type of
"performance profile' over a set of carefully chosen

test functions. See [41].
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(1.2.9) We may examine Q.F. which minimise 2?:0|ai|2(cf.
(1.1.7)), usually called Tchebychev Q.F. . See, for
example, [68,69,70].

Once we choose a method of estimating errors, or examine a

general theory of Q.F., we obtain a theoretical means of com-

parison of Q.F.. However, most of the work done in the area of
comparison of Q.F. has been via the practical expedient of
examining the performance of various Q.F. on carefully chosen
sets of test functionsg. See [Bl,...,45].

Other approaches to the problem of estimating errors in-
clude (not necessarily mutually exclusively):

(1.2.10) The commonest approach, in the polynomial case, of
using Taylor series, and obtaining error bonds in
termsg of high order derivatives. Other truncated
series have also been used, in particular Tchebychev
series. See [78] and the consequent literature.

(1.2.11) The theory of analytic functions, in which case tech-
niques dependent on Cauchy's theorem and contour
integration are used. See, for example, [71,72,73,98].

(1.2.12) The use of functional analysis to minimize the norm of
E in some sense. See, for example, [39,67,74].

(1.2.13) The use of differences or other means to avoid the
need to estimate high order derivatives. See, for
example, [76,77,83].

(1.2.14) Special techniques for error estimates for functions
with special characteristics, say low orders of con-

tinuity. See, for example, [75,991].
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When we use a Q.F. we must remember that we only have a
finite number of pieces of information to use, namely {Si}ﬁzo
and consequently it is impossible to obtain infallible error
estimates based only on this information. The common technigue
of simply doubling m and then comparing the results obtained

(m) i Q(2m)

using Q can be easily fooled. See [5,122]. Given

a little more information about the general behaviour of the

integrand it is possible, using so called Adaptive Q.F., to

obtain fairly accurate results at a cost that is not exorbitant.

See, for example, [123,...,126]. Other approaches to the pro-

blem of practical error estimation and obtaining a desired

degree of accuracy include,

(1.2.14) Approximation, or more exactly the obtaining of upper
bounds for theoretical estimates. This tends to be a
very conservative, and thus very expensive, approach.

(1.2.15) The use of a sequence of Q.F. and some type of extra-
polation or acceleration procedure. See, for example,
[57,58], and other literature on Romberg Q.F. of
various types.

Analogous to the comment we made concerning the choice of
Q.F. when estimating errors, we always have to consider the
"trade-off" between price and reliability.

Further comments concerning the criteria for deriving,
choosing, evaluating, and estimating errors for various choices
of Q.F., can of course be found in any of the authoritative
books written on Numerical Integration, in particular [5], [37].

See also [4], [84,85,86]. There is also an extensive Russian

literature on the subject of Numerical Integration.
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§1.3 INNER PRODUCT QUADRATURE FORMULAE

An Inner Product Quadrature Formula (I.P.Q.F.) is a Q.F.

designed especially for approximating the integral
CE 86D f wix)E(x)glx)dx = I(f;g)
R

where R and w are as in §1.1. The functions f and g are assumed
to be members of classes of functions I' and A respecitvely.
In some cases it 1s advantageous to have TI'zA.

For ease of reference we list the notation that is used
throughout in Appendix 1, and the assumptions that are made
during the discussion of I.P.Q.F. are listed in Appendix II.

So far we have

(Al) feT and gel are real valued functions acting on points in
R, Rer9.
(A2) The integral (1.3.1) exists (perhaps improperly) and is

finite in a Riemann-Stieltjes sense.

(A3) The weight function w is non-negative throughout R,
For the present, we also have

(A4) d=1. That is, R is a one dimensional finite interval,
whose interior we may take, without loss of generality,

to be (-1,1).

The integration operator I in (1.3.1) is a bi-linear func-
tional. Thus it is natural, analogous to the derivation of Q

in §1.1, that we should seek a bi-linear functional Q(f;g) with
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which to approximate I. Suppose we have elementary linear
; 2 m
functionals So""’Sm and To,...,Tn, denoted {Si}i=0 and

{Tj}? 5 giving us information about f and g respectively.
3:

We also have the assumption

(A5) Each of the linear functionals Si and Tj is bounded and

therefore continuous on T' and A respectively.

With a customary abuse of notation the bi-linear functional

(m,n)

Q(f;g), written Q (f3;g) where necessary, may be regarded as

a mapping
(1.3.2) Q{mem) . RMRMR,

anc has the general form

(1.3.3) QUEse) = Ti.g 15,9 S;(Day T (8) = £ag
T .

where £ = (So(f),...,Sm(f)),
Y

g = (To(g),...,Tn(g)),

n
and A=(a..), ’, is a real (m+l) x (n+l) matrix called the
1] i=0,3=0

coefficient matrix. The numbers aij are called the coefficients
(or sometimes weights), just as in (1.1.7) the numbers a; are
known as the coefficients (or weights) of the Q.F. Q(m).

We call Q(f3g) in €1.3.3) en I.FP.0.F. To distinguish
them, we call Q.F. of the type (1.1.7) Regular (R.Q.F.). We

have used the name I.P.Q.F. instead of Product-type Q.F., see
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[12,...,21,23], to avoid confusion with other more established
meanings of the term, in particular in the context of integra-
+tion in multi-dimensional regions (i.e. d>1). See also §1.4.

We note that it can be shown by example that setting m=n, and

SiETi ,1=0,...,m, does not necessarily reduce an I.P.Q.F. to a

R.Q.F..

We proceed as in §1.1. We shall say that an I.P.Q.F. is

exact for an ordered pair (f;g), fel', geA, if the error functional
(1:3:.8) E(f;g) = I(f;g) - Q(f;g)

is zero. Hence, say that an I.P.Q.F. is exact on the product
space ¢x¥ if, for each choice of fe¢ and ge¥ we have E(f;g)=0.
After predetermining m and n, and choosing {Si}? and

1=0

{Tj}? o we seek an I.P.Q.F. exact on @YXWG, where
J:

¢1 .8 5) 3'er

WGCA

Clearly the integers y and 8§ are functions of m ané n
respectively, and may also cepend on the choice of any (usually
non-linear) parameters we may make in the selection of ﬁ&}?

i=0
and {Tj}? . We make the following assumption:

(A6) The sets ¢' and v6 are each made up of functions which

are linearly incependent over R.
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Thus, analogous to (1.1.5), we will always be able to

write

{6 _scces9 }s v20,
01 3B © Y

_/\__\
e

o =<
i

—
-
i

{¢O,...,¢6}, §20.

Obviously if an I.P.Q.F. is exact on ¢YxW6, due to bi-linearity,
it will be exact on (spe’) x (spws).

(m,n) we see that we have (m+l)(n+l)

In determining Q
linear parameters aij and possibly some non-linear parameters
at our disposal. Once the non-linear parameters have been

assigned, we may find the linear parameters as follows:

Let
(1.3.7) B = (S. ol s s Y ™ (pemin(m,y),
) ( 1(¢2))2=0,i=0 ( TLMIN (r=min(m,y)
=[8,08)5 « « « 5 Sp(8)
Lso(¢r)’ e 2 Sm(¢r),
(1.3.8) C = (T.(p. 0% ™ = (¢ )% 0 | szmin(n,s),
J Ve 2£=0,3=0 €23 2=0,3=0 o
=T )y o v s T (w)

_To(ws), S 5 ¢ Tn(wS)J



2.1

and

(1.3.9) D=C®8B

That is, D is the Xronecker product of the two matrices C

and B, having the block matrix structure

(1.3+10) e By v s v 5 o B

We now have, analogous to Theorem 1.1.1,

THEOREM 1.3.1 Assume that &' and Wé have dimensions at least

m+1l and n+l respectively, i.e. y=2m, §2n. Assume that
m

{54

1=0
n)z'e

and {Tj}? . are linearly independent in (™™ and
:]:

(y respectively. Then det(D) is non zero.

PROOF: By block row operations D may be reduced to a block
matrix in which all blocks below the main diagonal are
zero. The matrix C is non singular by Theorem 1l.1l.1.
The result follows by applying Theorem 1.1.1 to each of

the block matrices on the diagonal. Lok

We define y-polynomials and interpolating y-polynomials
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in a way completely analogous to the definition of ¢-polynomials.

Now we have

DEFINITION 1.3.1 An I.P.Q.F. will be called interpolatory if

it may be obtained by integrating pq, where (p;q)e@man,

and p(q) is an interpolating ¢-(v-)polynomial of degree

at most m(n) to f(g) at {S.}T ({T-}? ) . 1y
g = 1 5=0

As before there are at least two approaches to determining
an I.P.Q.F. exact on o Mxy™ which, although they may have dif-
ferent representations, will give the same approximation to I.

I. Derive the interpolatory I.P.Q.F. Solve

1 3411} Blp = ¢
cle = g,
where bT = Thig ke Dad's CT g . g0ty
w— o] m = e} n
T .
£ = 08 (B ynn B EE
Sl ook e

and thus obtain the interpolating ¢-(y-)polynomials

m
Li=o Pits

n

% 1y=0 o4%

€1 :8:212)

e
1

Finally, integrate the product pq.
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IT. Solve the moment equations
(1.3.13) Pa = A ,
C1s T L) at = (a’, S

T .

ii = (aoi, b] ami)) 1:0’ bl n,

T T
(1-3-15) A e (AO, . b Ag)

T . (ICé _39.) ICod_359.))

—i " e m’>* i’ ’"?

150y « » ¢ @ D

As before, it is still possible that when either B or
C does not have full rank, that there will be a solution to
(1.3.13) but not to (1.3.12). Again see [8] for further de-
tails. However we shall not consider Q.F. of this type, some-
times rather aptly referred to as "fortuitous" Q.F. See [88].

Hence we make the following assumption:

m n
. and {T.}.
1=0 : J 3j=0

are linearly independent in (a™* ana (¢yM*

(A7) The elementary linear functionals {Si}

respectively.

The comment following Th. 2.1.2 explains why, if y>m, this

might be an important assumption. Analogous to Theorem 1.1.2
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we have

THEOREM 1.3.2 Assume (A7). Assume an I.P.Q.F. is exact on

¢vaa,y2m, ézn. Then the I.P.Q.F. is interpolatory.

PROOF: (A7) tells us via Theorem 1.3.1 that B and C have full
rank. Hence a unique solution to (1.3.12) exists. The
results obtained using methods I and II must be identical

since the I.P.Q.F. is exact on oY xy?, [l

The following results are also obvious:

THEOREM 1.3.3 If (Al), (A2), (A5), (A6) and (A7) hold then

there exists an interpolatory I.P.Q.F. exact on oM xy

/17

Note that we do not necessarily require (A3), or even that

w is continuous in (-1,1).

THEOREM 1.3.4% An interpolatory I.P.Q.F. is uniquely determined by
1) & in Cl: 31D
(2) the choice of function subspaces ™ and ¥
(3) the choice of elementary functionals {Si}T_ and

i=0

{Tj}?_o. /117

The investigation of the various properties of I.P.Q.F.'s,

convergence, error estimations,effect of choice of functions and
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elementary functionals and so on, is the objective of the rest
of this thesis.

Before continuing we make the obvious comment that a R.Q.F.,
when applied to an integrand which is the product of two functions,

or even one function &, which may always be written £.1, may

always be written as an I.P.Q.F. on setting m=n, SiETi, LZ0igx 5« 5l
and

0, i=j
(L. 3:16) aij = 1=20wcovsMs T2040 0 5%

a;, i=j (see (1.1.7))

From now on, unless it is specifically stated to the contrary,

we assume that (Al-A7) hold.
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§1.4 OTHER WORK ON INTEGRATING THE PRODUCT OF SEVERAL FUNCTIONS

Before continuing, we would like to comment on the use of
the name I.P.Q.F. again. There are other approaches to the pro-
blem of integrating the product of several functions than the one
investigated here. Some, not unnaturally, are termed "product
integration" of one sort or another. It is to avoid confusion
with other approaches that we use the somewhat more descriptive
term Inner Product Quadrature Formula . For example, in [u47]
the term product integral is used: however, the subject under
investigation is that of approximating a matrix valued Riemann
product integral.

The investigation of the numerical approximation of the
integral of the product of two (or more) functions is not a new
or exhausted topic, as an examination of [47,...,56] shows. It
seems that the earlier impetus for such investigations comes from
practical questions arising in actuarial work, and much of the
later impetus, with the advent of the computer, from the area of
numerically solving integral equations.

In fact, possibly the first example of an I.P.Q.F., see [48,

48], is derived via method I of the previous section. We set

where Ty is the i-th polynomial orthogonal with respect to w on

R, and

I(E;Ti) _
(1.4.2) Sl(é;) Tl(E) = m)’ 1=0,...,m,

"
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namely the i-th generalized Fourier coefficient of the function &,

We then find that A is a diagonal matrix with elements

izj

(1.4.3) dss = L5055 « & 316
1J ‘lI(T-;T-), i=]
i ¢

1=7

This I.P.Q.F. is interpolatory and exact on oMxy™,

Of course, in practice, the evaluation of Si and Ti may not
be a straightforward procedure.

In the oft quoted paper by Young [51], and in [50], we dis-
cover the source of both the term and the technique of product

integration in its usual sense. We consider the integral
(L.4.4) J F(x)p(x) dx .
R

The function ¢ essentially plays the role of a weight function.
For the first time we encounter a more general formulation of
what is, at present, essentially the problem of finding a R.Q.F.:
matrix notation is used and the functions ¢ (of §1.1) are not
immediately assumed to be polynomials. This R.Q.F. is inter-

polatory and, in our notation, is derived as follows (cf §1.1.):
(1.4.5) Si(E) = i(xi), 2045 o & 35
and the coefficients a. in (1.1.7) are chosen (by solving the

linear system analogous to (1.1.9)) so the R.Q.F. is exact on ¢ .

When we wish to attain greater accuracy than we can with
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Q(m) as above, the usual procedure is, in principle, to compound

Q(m), as opposed to attempting to increase m. As m increases,
apart from the possible difficulty in calculating the moments of

the functions ¢i with respect to 9, namely the numbers
(1.4.6) JR ¢i(x)¢(x)dx,

convergence of the R.Q.F. is not as rapid as might be desired.
Usually, see [53]1, [56] as examples of this well known procedure,
we approximate f in (1l.4.4) by sequences of low order interpolating
piecewise ¢-polynomials, taking ¢i=xi
The term product-integration has also been used by Elliot

and Paget, [54,55], in their investigation of integrals of the

form
CL s l) j wix)E(x)K(A3x)dx = I(£f3K)
R

where w(x) and f(x) are as in §l.1 and K is a function, depend-
ing on the parameter A, which is assumed to be such that the
application of a "standard" (i.e. regular, of some sort) Q.F.
to (1.4.7) would require a large number of knots in order to
attain a modest degree of accuracy. This may also be regarded
as an example of an I.P.Q.F.

Set ¢i=xi, iz0,...,m. Then f is approximated by an inter-
polating polynomial at the knots Xso i=0,...,m, which are the
zeros of the polynomial, T of degree m+l orthogonal with

respect to w over R. Thus
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(1.4.8) 5;(8) = £(x;), i=0,...,m.

K is approximated by its truncated (generalized) Fourier Series,

and ¥° has §=0, ¥ =K. Thus

1€t ::K)

(1.4 .8) T, (0 = grrisrys  350,...,m,

where Ts is the orthogonal polynomial of degree j with respect

to w over R.

We end up with an I.P.Q.F., Q(f;K), which we may write as

(1.4.10) Q™) (£,1) (=Q(F;1)) = £UAK,

where aij = $5 200w avnslile

This Q.F. is not exact on 2™x¥° unless K can be written as a
polynomial of degree m. As remarked earlier, the determination

of Tj(K) may not be easy.
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CHAPTER 2: INNER PRODUCT QUADRATURE FORMULAS

§2.1 MOTIVATION

Most, though not all, of the work published dealing with
I.P.Q.F. deals with the standard polynomial case, i.e. ¢i=¢i=xi
Weiinclude a list of, to the best of our knowledge, all previously
published work concerning I.P.Q.F., i.e. [12,...,28, 118, 1191].

The main motivation for investigating I.P.Q.F. is that
when dealing with integrals of the type (1.3.1) it is often the
case that the two functions f and g have different characteristics.
One may be smooth and "well behaved"; +the other not, perhaps
being oscillatory, héving singularities in or near R, or having
only a low order of continuity. Thus, if we choose @' and WG to
reflect the properties that f and g possess, we might expect
more accurate approximations of (1.3.1). It is also possible
that we might have different information available for each of
the two functions, thus making it desirable to choose elementary
functionals, giving us information about one function, which we
may not apply to the other function. Thus, assuming we know
enough about the integrand to be able to implement an I.P.Q.F.,
the use of I.P.Q.F. offers two advantages, namely the divorcing
of information used and the spaces approximated over when dealing
with f and g.

Since I.P.Q.F. has more linear (and non-linear) parameters
in its construction than a R.Q.F., (m+l)(n+l) as opposed to m+l,

it is reasonable to regard I.P.Q.F. as generalizations of

R.Q.F. Clearly, we may always regard R.Q.F. as special cases of
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I.P.Q.F. exact on ¢5xwo, where Yo is almost always chosen to be
unity. See also comments following Th. 1.3.4. As always, we
have to pay a price for a gain, and to use an I.P.Q.F. we must
be able to distinguish between the functions f and g. As will
become obvious later, the way in which the integrand in (1.3.1)

is broken up into the product of two functions can be important.

With (m+1)(n+l) linear parameters available, we might expect
to be able to integrate exactly at least (m+l)(n+l1) distinct linear
independent functions when using an I.P.Q.F. (analogous in some way
to an interpolatory R.Q.F.). However, USing.an R.Q.F. with essen-
tially the same information available (i.e. forecing SiETi, m=n) ,
we might only expect to be able to integrate m+l linearly independent
functions exactly, treating the product fg as one function. This,
in essence, turns out to be the case, that is, we can always in-

tegrate exactly the potentially linearly independent functions

0 I ¢i¢j’ F20, o v saiily T20505 « s

However, an investigation of the standard polynomial case

manages to obscure completely this important fact. Set

(941 2D b, =1,

(2.1.3) L 2% . T
(2.1.14) b, =1,

(2.1.5) Ve = Cog M, §21,2,..
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Of course we require ¢;21 and P;#1. If, in addition, we

have

£2:1:8) b1 = Va1,

we find that

{(2.1.7) ¢i¢j = ¢kw1’ i+j=k+1l = constant.

Equation (2.1.7) means that the (m+1)(n+l) potentially linearly
independent functions (2.1.1) degenerate to only m+n+l linearly in-
dependent functions. This of course is the situation when we choose,

in particular,

(2.1.8) 1 = Y = X.

We shall use the following:

DEFINITION 2.1.1 - If the action of an elementary functional L

on a function, &, is the evaluation of the function at a given
point t, we call t a knot, and say that L is of class x,,

writing LeX;, and denote this functional by L(t;.)(=g(t)). ///

Obviously, we always assume that knots are in the domain of
definition of functions we are likely to evaluate, however, this
does not necessarily (though it is preferable) mean that knots
must be within the interval of integration R.

We have, see [2u4],
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THEOREM 2.1.1 Let Siexl, Tjaxl, L20i» « 6 sy T2 <= s  DeFiheé
§
¢' and v by £2+F027 = 2 LBy Then, no matter how
we choose the knots Xs i=0,...,m, and yj, j=0,...,n, it is

not possible to find an I.P.Q.F. exact on

¢Y X W6

if y>m and é>n, or if y+8622m+2 with y>m and 8<n, or if

Y+822n+2 with y<m and &>n

PROQOF: See Lemma's 3.1 and 3.2 of [2u4]. L/

Recall that, when dealing with R.Q.F., and choosing Siexl,
iz0,...,m, we cannot find a R.Q.F. exact on &' ¢i=xi,i=0,..,y,
if y>2m+l. See, for example, [4] p. 102. The comments made
earlier explain the above Theorem, which is initially perhaps
somewhat surprising.

In fact, when dealing with the polynomial case, the only
advantage an I.P.Q.F. has over a R.Q.F. is that, even when y+$§
is maximal, we do obtain some degrees of freedom in the choice
of knots. One way of employing these degrees of freedom is in
making the I.P.Q.F. exact on @YxWG for various choices of y and
§. Again see [2u4].

Whilst the choice of the elementary functionals is, in

theory, only restricted by the requirement

(‘Sief* s  1=205 85l

(2.:1.:9) N

A
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in practice the choice is usually more limited: by the information
available and the ease of access of the information. By far the
most common choice is a x; functional. Other choices of func-
tional include function derivative evaluation at a knof (see, for
example, [94, 95, 96]) and an integral over a small interval
centred on a given point, see [30, 31]. We shall define further
classes of elementary functional, analogous to x;, if and when we
need them.

For future reference, we include some basic facts concerning

the inter-relations between linear function spaces.

THEOREM 2.1.2 Let F and G be two linear function spaces, such

that FeG. Then G¥*cF¥*,

PROOF: See [2]. Fibd

We note, however, that if {Li}? 0 are linearly independent
T=

in F* , and LieG*, i=0,...,7, we are not assured that {Li}? §
i

are linearly independent in G¥*.

Example 2.1.1 Let Liexl, i1 ) —
L, = LO(O;-),
o kel
F {(x7};_g>
§ = bt d det (L, 34y, L. =0
X $20? an et 3 X f g2

Thus, when talking of linear functionals, it is essential

that we say with respect to what function space they are defined.
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DEFINITION 2.1.2 A set of functions FcG is called dense in the

normed linear space G if an arbitrary element £eG can be
approximated arbitrarily closely by a finite linear combina-

tion of elements gieF. That is, given e>0 there exist s,

G seenslos such that
s
lg - V., LE.
e Z1=O 0L:q.‘El“Q
where -} is the norm on the space G. Qs

As an example we have (see, for example, [169])

LEMMA 2.1.3

The set of all polynomials is dense in the space of

continuous real valued functions defined on [-1,1]. b4

We recall that the hierarchy of commonly used function spaces

is (see, for example, [2,1691),

'EcAch,..,ch+1chch,...,cD°CLichLipa

9

(2.5.103 CC°CBCLqCL

O<p<qsw, a<B, n a positive integer.
and the spaces are defined as follows:

£2.3. 132 L= L (R) = {f:J |f(x)|de<w},
) P R

(2+1:3.2) B = B(R)

n

{£:IM<w, |£(x) | <M, VxeR},

(2:1+13) CY(R) = {f:f has a continuous rth derivative VxeR},
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(2215 14) D'(R) = {f:f has a continuous (r-1l)st derivative,

differentiable almost everywhere in R},
(2.3.15) Lipya = Lipa = (£: | £0x)=£(x,) [<M|x,-x,|%, V& ,x,eR},

(2.1.16)  A(R) = {£:f(x) = ] _a (x-x )7, (x-x_)eh(x ) a

neighbourhood of X VerR},

(2,317 E = {f:feA, Vx, |x|<=}.

As functions become more specialized we find that more can
be said about the structure of the function spaces containing

these functions. We also have

THEOREM 2.1.4 Let R=[-1,1]1, and assume FcGeC®(R) are two of the

above mentioned spaces. Then F is dense in G.

PROOF: From Lemma 2.1.3 since the polynomials will be in the

space F. /17

Thus, given a set of functions dense in E, this set of functions
will also be dense in any of the above spaces contained in
C(R),R=[-1,1]1. This, of course, is the justification for con-
structing Q.F. of any type, exact on well behaved sets of functions.
The classic examples being the polynomials, and to a lesser extent
the trigonometric functions. The error of a Q.F. exact on certain
functions (often a basis for a subset of a set of functions dense in
E), for a particular integrand depends on the integrand and the

functions the Q.F. is exact on.
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nomials when employed on integrands that are oscillatory.

Recalling (Al), it is natural to have

(A8) reC°(R), Ac<C°(R).

§2.2 TCHEBYCHEV SETS

We begin by quoting some definitions and summarizing some
results concerning Tchebychev sets, or as we shall abbreviate
them, T-sets. See also [91].

Let * be a total order relation on a set K. If we use the
symbol < we mean the usual ordering used in the real number
system. Thus, if KcR, we may always replace * by < in what

follows (although the converse may not be valid). By

Er = {Ei}? o We mean a set of linearly independent real valued
l:

functions defined on K. To avoid trivialities, whenever we de-
}r

<o etc.), we will always
1=

fine sets of functions (e.g.@)r = {8,

assume their linear independence.

DEFINITION 2.2.1 Let K and Er defined on K be given. Then:

(a) Er is a T-set on K if and only if every EespE_, £#0, has
at most r distinct points in K at which it is zero.

(b) Er is a complete T-set (CT-set) on K if Es,s=0,...,r, are
all T-sets on K.

(c) Sr is a weak T-set (WT-set) on K if every Eespar, £20, has

at most r sign changes in K. /77

We note that if K is a point set, B being a T-set is
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equivalent to G being a unisolvent set (in the sense of uni-
solvence as defined in [2]; this is a somewhat restricted defi-
nition, not least in that it depends upon linear algebraic argu-
ments, see [117]). However, we are primarily concerned (cf. (A3),
(A8)) with the case where K is a connected set, particularly an
interval of the real line, and £; are all continuous functions

on K. In this context we have an alternative definition of

T-sets available (see [9]). Let

£2:2:1) u, = U(to""’tr) = det go(to),...,go(tr) =

Lgr(to),...,gpwr)~

tieK, 1t T

THEOREM 2.2.1 Let K and Er defined on K be given. Assume K is
an interval of the real line, and EisC°(K), L8R 5 v waylie
If, for all choices of distinct points

t <ty <t , t; ek,

(a) Ur is non zero, then Er is a T-set on K.
(b) L is of one sign, then E, is a WT-set on K.
(e) Us’ s=0,...,r, is non zero, then Er is a CT-set on K.
The converse also holds. /17

9

In a more general setting the extension of Theorem 2.2.1 (a)
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leads to the concept of an oriented T-set (0T-set) which is more
restrictive than Definition 2.2.1 (a). For completeness we in-

clude the definition of an 0T-set, see [104]:

DEFINITION 2.2.1 (d) Er is an 0T-set provided Ur’ as defined by

(2.2.1) is of one sign and non-zero for all

)

choices of to*tl*,...,“tr » tieK, im0 56003505
(As in the rest of Definition 2.2.1, Er is
defined on Kl which has the total ordering

relation * defined on it).

In the setting of Theorem 2.2.1, 0T-sets and T-sets are equi-
valent. Parts (b) and (c¢) of Theorem 2.2.1 may also be extended

to more general settings, see [35].

Observe that when considering a CT-set the ordering of the
functions Ei may well be important. For example, the set
o . ' : :
{x ,xz,x“,xl,x3} defined on, say (-1,1), is not a CT-set, whereas
( < ML y
X }i=0 is.
We now present some results concerning the relationship

between T-sets and sets of linearly independent functions. We

find from [32]

LEMMA 2.2.2 Let K and Er defined on K be given. Then there

exist distinct points toseeest in K, such that

r,)

W = s
>

PROOF: We proceed by induction on r.
The case r=0 is trivial.

Fix Tyoreent and let te (=t say) vary. Now

r-1

Ur = Mo(to,...,t (t)+...+Mr(to,...,tr_1)gr(t)

r-l)go
where Mi is the signed minor associated with Ei(t) in the

expansion of the determinant U,
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3

14y

U, imp: -s that {£.3}F

1°1i=0

unless, in particular, Mr (to""’tr—l):o for all choices

i

3, “Ehd

(9]

are linearly dependent

of distinct points to,.. in: K.

ot
This however, contradicts the inductive hypothesis. Lt

We note that, if we so desire, we may immediately assume

in Lemma 2.2.2.

LEMMA 2.2.3 Let K and Er defined on K be given. Let to,...,

tr—l be distinct points such that UP_1¢O. Then there

exists treK distinct from to,...,t such that UP¢O.

r—1

PROOF: Assume the converse. Arbitrarily fix trEK' Mr in
Lemma 2.2.2 is assumed non-zero. Thus there exist G e

> not all zero, such that

Er(ti) - 2.:0 ajzj(ti), o R - (9
If, for arbitrary tr’ G seen0 4 are independent of tr’
we contradict the assumption of linear independence. If .

depend on tr then, since Urxo, the result is demonstrated.

The above Lemma has a useful constructive aspect.

We make the following comments about the above results.
First, we have an alternative means of characterizing a set,
. of linearly independent functions, i.e. the requirement

that there exist to ® L. % o ¥R %

, t.eK, such that U_=0.
1 b i r

Second, the above results include, as a particular case, multi-
dimensional regions obtained by taking a Cartesian product of

spaces. Thus we have a useful supplementary result to the well-

/117
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known theorem of Tchakaloff, see [100,1011, stating that we
can always find an interpolatory Q.F. with positive coefficients
on a given region. Third, the requirement that Er is a T-set
means that for arbitrary (distinct) t;eK we have U #0, whereas
if E, are merely linearly independent all we are guaranteed is
the existence of at least one set of points to""’tr such that
Urio.

We would expect that only under exceptional circumstances
would the points tos-eest, Dbe unique.

We now give some results investigating the relationship
between various types of T-set. Recalling that K is a totally
ordered set, we may represent it when it is an open set by an

"interval",

(2.2 :2) (A,p) = {t:A%t and t*u,tzA,t=u}
and when it is a closed set by an "interval"

(2.2:3) [x,u] = (A,n) v (inf K) v (sup K).

The interior of a set K is the "interval" (A,u) and the

closure of K, denoted K, is given by (2.2.3).

THEOREM 2.2.4 Let Er be a WT-set of continuous functions de-

fined on a closed real interval (i.e. let K=[A,ul) . Assume
leEr. Then one and only one of the following may occur:

(a) & 1is a T-set.
r
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(b) there exists a non-trivial EespEr with £=0 on a sub-

interval of K.

PROOF: See [102, 109]. Ll

Following [106] we have

DEFINITION 2.2.2 Let Er be a T-set defined on a set K. A

function £ is called adjoint to . if the set of functions

EPU{E} is also a T-set on K. The set of functions Eru{a}

is called an adjoined T-set. /17
DEFINITION 2.2.3 If we replace "T-get" with "OT-set" in
Def. 2.2.2 we prefix adjoint with "strongly". If we

replace "T-set" with "WT-set" in Def. 2.2.2, we prefix

adjoint with "weakly". /17

Before continuing we recall the fact that if K is a real
interval and the functions Ei,a are continuous, then an OT set
is equivalent to a T-set. We also have the following inclusion

relations:

fPOT—set c¢ T-set < WT-set,
(2.2.4%)
I_CT—set c T-set.

DEFINITION 2.2.4 Let Er be a WT-set on K. The set of functions

weakly adjoint to Sr is called the convex cone of Er and
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is denoted by C{Er}'

LEMMA 2.2.5 Let Er—l be a T-set of continuous functions defined

on K. Let the interior of K be an open interval. Let
Erec{:r_l}.’ If Ur:O for some choices of points to % by ®
cm M tr’ tisK, then there exists a £-polynomial of degree

r, which is equivalently zero on [to’tr]'

PROOF: See [103]. /17

This result complements, though under more restrictive con-

ditions, Theorem 2.2.4.

THEOREM 2.2.6 Let Er be a finite dimensional WT-set of continuous

functions defined on a real interval Ki[A,u]. Assume leEr.
Assume there exists a a>0 such that if geEr, and £=0 on
CAy,uylelr,pnl, then u;-2;2a. Then there exist knots,
A=t_<t<...<t_=u, such that Erl[tj,tj+l] is & T-g6t 20,444
s-1.

PROOF: See [102]. /77

As a partial converse, generalizing the result that polynomial

splines are WT-sets, we have:

THEOREM 2.2.7 Let A:to<t1<...<ts=u be points in the real interval

[X,ul], For jsl,se.,5, Ilet 2 . be T-sets of dimension

J
nj+l on the intervals [tj—l’tj]‘ Assume lsEnj,j=l,...,s.
Let




by

n .

g = {ae00[x,u]:£|{tj_l,tj]e5 J,jzl,...,s}.

) s
Then = is a WT-set on [A,p] with dimension (ijlnj)+l.

PROOF: See [102]. P

Turning our attention to CT-sets we have the very important

results:

THEOREM 2.2.8 Let K be an open set. Then the span of every

O0T~-set on K contains a CT-set thereon.

PROOF: See [35, 10u41]. rEL

THEOREM 2.2.9 Let 2, be a set of continuous functions defined

on the real interval XK=[A,ul]. Assume Er is a CT-set on

(A,u). Then £ is a CT-set on K if and only if £,>0 on K.

PROOF: See [103]. gl

Theorem 2.2.9 does not immediately extend to the more
general situation discussed above (see [103]). Theorem 2.2.8 is
not constructive in nature, being concerned with existence, and
it appears that an algorithm for constructing a CT-set from the
span of a T-set remains to be found. It is clear that we should
not necessarily expect any CT-set so constructed to be unique
even up to multiplicative constants since, for example, both the

following are CT-sets on (0,1):
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(2 24 5) £ = x3, By = %%2; ¥s =% ;

69 .2.5) E S8y & =®E, Ey 3 %9,

We may combine the above two theorems as follows:

LEMMA 2.2.10 Let Er be a set of continuous functions defined

on the real interval [i,u]. Assume g, is a T-set on (A,u).

w
There exists a CT-set, Er’ within spEP, such that

% &
Lim £ =0 and Lim & =0
syt 8 - o

&

if and only if S., is a CT-set on [A,ul. /11

See also [106].

The condition in Lemma 2.2.10 is only trivial if r<2. This
is demonstrated by various examples of T-sets on closed inter-
vals that do not contain CT-sets in their span. See [104, 107].

The question of whether to include the end parts of a real
interval when we are considering I.P.Q.F. using x; functionals,
depends upon whether we choose to allow these end points to be
used as knots (i.e. whether we restrict ourselves to so-called
"open" Q.F. or not).

The requirement that B be a T-set on a set K is quite

restrictive as the following theorem shows:

THEOREM 2.2.11 Let K be a compact Hausdorff-space and E, an
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(r+l) dimensional T-set of continuous functions defined on

K, rzl. Then K is homeomorphic to a topological sub-space

of the unit circle.
/77

PROOF: See [104, 1081.

We note that, in particular, the closure of every bounded

subspaceiJlle, d=1l, is compact, and that IR~ is a Hausdorff

space. See [105].
on sets on which there exist non-trivial T-

Nevertheless,
sets (i.e. having dimension greater than 1) we have

THEOREM 2.2.12 Let K be an open set such that if x,yeK, there

exists z, x*z*y. Let E, be an (r+l) dimensional OT-set on
There is a function & strongly adjoint to

-
-

K, rzl.
f5f

PROOF: See [1061].

Note that the above result does not require that the set K

be a connected set. Of more immediate interest we have:

Let & be an (r+l)

Let K be a real interval.

& .

THEOREM 2.2.13
dimensional T-set of continuous functions defined on

% on K.

Then there exists a continuous function £ adjoint to
/17

PROOF: See [106, 1101.

The function & in Theorem 2.2.13 is clearly not unique and
i1f some mechanism for obtaining the function(g) were available,
we observe that we could use the above theorem recursively to

obtain infinite dimensional bases for the function space C°(K).
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From what we have said about T-sets of various types it is
apparent that, when K is a real open interval there is no restric-
tion in assuming a T-set is a CT-set. Also, if K is not an
open interval (i.e. we consider "closed" Q.F.), it is likely,
though not certain, that Theorem 2.2.9 or Lemma 2.2.10 will be appli-
cable. Note the importance of endpaeints of intervals when con-
sidering closed intervals.

This last comment leads us naturally to the question of
whether, when given a T-set E, on an interval K, there are sets
of points x such that L is a T-set on Kux. This question may
be rephrased in another way: namely, given a set of linearly
independent functions on the interval K, under what conditions
can we find a set k, k<K, such that Er is a T-set on k. Thus

we are led to an investigation of what might loosely be termed

"almost" T-sets.

DEFINITION 2.2.5 Let £, be defined on a set K. Let® ={0.}7

L 1=0
be defined on Kuk, x=z¢, knK=¢. Assume that ei|KEgi. We
say that ()Pis an extension of Er on Kuk. Conversely we say

that £ is a restriction of (:) on K.
T r
If 2 is a T-set, we call it a T-restriction of (:) .
T n

If C) is also a T-set, we call it a T-extension of =_. ///
r r

Taking a lead from [111] we have

DEFINITION 2.2.6 We call « in the above definition an expansion

set of K. If x is an expansion set and ei=0, iz=05: ¢ o33 ON
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k we call k a null set. Conversely, we call K a contrac-

tion set of Kuk. [ 1L

Note that Theorem 2.2.9 and Lemma 2.2.10 address themselves to
the question of existence of T-extensions of E We have the

following interesting result:

THEOREM 2.2.14 Let Er be an (pr+l) dimensional T-set on a set K.

Assume rzl. Then the following statements are equivalent:
(1) E, contains an r dimensional T-set on K.
(2) There is a point t#K and a T-extension of E, on Ku{t}.

PROOF: See [10u4, 107]. flt

For some further results concerning T-extensions, including
the fact that they may not exist, see [107]. For some further
results concerning particular choices of adjoint functions and
T-sets on intervals whose endpoints may be a null set, see [111].

We can easily derive some further results, based on the

fact that (see [91)

n
€2.2.7) det (exp (xi yj)i,jro)
is strictly positive whenever —®<K <. <X <@ and kg R § AR

LEMMA 2.2.15 Let & be a positive strictly increasing real valued

function defined on a set K. Let aieR 1i=054.4 3020, be

pairwise distinct. Then Er’ with
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tg)

Yy
113

is a T-set on X.

COROLLARY 2.2.16 If one of R L is zero we may replace

"positive" by "non-negative" in Lemma 2.2.15.

We now introduce the following:

DEFINITION 2.2.7 Let & be a real function defined on a set

Let t; and t, be two distinct points in K. If

glty) = E(tz)

we say that t; and t, are E-distinct points, otherwise

say t; and t, are E-equivalent points.

Thus, we obtain:

COROLLARY 2.2.17 Let £ be a real function defined on a set

Let k be a subset of K, containing at least r+l points

/17

LY

we

17

K.

on

which & is strictly positive and any two points in « are

E~-distinct. Let GsrnesO, be real, rz0. Then Er’ with

e |
gi = (E) L)

is a T-set on .

/17

We observe that Corollary 2.2.16 has an analogue following
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Corollary 2.2.17. Further, it is clear that if we denote by
St the set of points in an interval K which are &-equivalent
to t, that if teK, we may replace t with any other point in St'
Thus it is unlikely (impossible if & is continuous but not
positive and strictly increasing) that x in Corollary 2.2.17
will be unique. Clearly, in the above results any set k on
which & is a monotonic function is a T-restriction of K (see
also §2.8).

If we impose restrictions on the choice of the exponents
G e s in the above three results it is fairly obvious that
we can derive other T-sets on certain subsets k of K.

Thus, for certain sets of functions Er’ we are able to ob-
tain information about some of their T-restrictions.

An investigation of what we have termed T-restrictions would
help us obtain information about sets of functions which are
"intermediate"; not being T-sets, but not "nearly" linearly
dependent in the sense that sets of points with Ur=0 are a rare
occurrence. In this way we might be able to obtain a spectrum
of results ranging from, for example, Lemma 2.2.2, through to
results dealing with T-sets on the set X.

If we pause to consider the definition of T-sets (either
Definition 2.2.1 or Theorem 2.2.1) we observe that we make
crucial use of a linear functional - namely point evaluation of
a function. It seems obvious to ask the question of whether,
by analogy, we may use other linear functionals instead. Another

generalization of T-sets (essentially non-linear) is given in

[117], with the so-called "Property Z". See also [112].
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Often, once the form of a linear functional has been given
it will depend on one, or perhaps more, parameters. For example,
a linear functional Leyx;, depends on one parameter, namely the
point, say t, at which we evaluate a function £, and it could

be written as

€2..2::8) L(g) = L(t;E).,

More generally, if a linear functional L depends upon

several parameters, ProeeesPos and acts on a function & we could
write
(2.2.9) L{E) = L(91=~-->9855) = Llp3&).

For example, if L were an integration operator, acting on
an integrable function over an interval (A,u) we could write
it as L(A,u3E). We would expect the parameters P15..5p  TO
depend upon either the function & (in some general way) or the

set on which & is defined, and so it is not necessary that

P1ss+ssp_  are real. We shall, however, assume (cf. (Al)).
1 s

(A9) All linear functionals are real valued and, if P is a
connected set, the linear functionals are continuous

functions of peP.

We might proceed by using one of the following:

DEFINITION 2.2.8 Let By be defined on a set K. Let L(g;')e(Er)*
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for all choices peP, P being some set containing at least

r distinct elements.
Then we say that CI is a generalized T-set, GT-set,
with respect to L (and, implicitly, P) if for every Eespsr

there are at most r distinct choices peP such that
L(psg) = 0, Lk

DEFINITION 2.2.9 Let Er be a set of functions defined on a set K.

Let Li(gi;°)e(EP)*, Qiepi’ 120 ;.44 5¥. Define
(2.2,10) V. B V(go,...,gr) = det Lo(go;go),...,Lr(gr;go) ‘
_Po(gosgr)""’Lr(gr;gr)-
Then, if for all choices Biepi’ 1i=0,...,r, Wwe have

VrzO we call Er a generalized T-set, GT-set, with respect
r

to L.}
1 1=0

(and implicitly {P,}" ). /117
1 1=0

From now on when we talk of a collection of functionals

r

i F
1 31=0

Clearly we may define complete GT-sets, (WT-sets) denoted

{L we shall always assume that the functionals are distinct.
CGT-sets (WGT-sets), analogously to the way CT-sets (WT-sets)
are defined.

An alternative way of looking at Definition 2.2.9 is (cf.

Theorem 1.1.1),
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THEOREM 2.2.18 A set of functions £, is a GT-set w.r.t (L;}7 .
1=

if and only if the linear functionals Lo""Lr are
linearly independent for all possible choices of Eiepi’

L0y & v Pe /17

It is clear that Definition 2.2.9 includes Definition 2.2.8
as a special case (i.e. L=Li, i=0,...,5r). Thus there is no in-
consistency between the two definitions. If the sets Pi in

Definition 2.2.9 all consist of single points (P in Definition

2.2.8 of r+l distinct points) we say that the GT-set is degenerate,

since we are merely investigating the linear independence of a
given set of r+l linear functionals over a given r+l dimensional
function space. We note that we have not required the sets P,
to be independent of each other, since we recall the situation
when we define T-sets, where the definition of P, may be viewed

as depending on P.

se+esP . As was the case with CT-sets we
i~1 o}

note that the ordering of the functions £, may be important when
considering CGT-sets. In addition, we observe that it may

also come about that the ordering of the linear functionals Li
is important (if they are not the same). It is also clear that
the above definitions are vacuous unless £, spans a function
space of dimension r+l.

We give a simple example of a GT-set (see [1151);

B = % 5 dA=0is:ce3ps on [0:11,

&

Li(E) = : y tePy = (03] 2305 ¢ vux s

x=t
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The following are immediate generalizations of the pro-

perties of T-sets.

LEMMA 2.2.19 Let the elements of Er be continuous functions

defined on an interval, which are a GT-set with respect to

{Li}? . Then V_ is of one sign for all possible choices
1=
of [ 120 5 w ¢ w3 ¥

PROOF: Immediate consequence of continuity of gi, 12040 s o 525

/17

Generalizing Lemma 2.2.2 we have

g

LEMMA 2.2.20 Let £ be defined on a set K. Let {L.}Y e(z ) .
v 1 350 ¥

Assume that Li(gi;£)¢0, for some giePi, for every non-trivial

EespEP, i=0,...,r. Then there exist [P . such that Vr¢0.

PROOF: By induction on r (e¢f. Lemma 2.2.2). The case r=0 is

obvious.
Fix ps+..p,,_ 1 and let p,=p vary. Now
¥, © Mo(po, »30,_1) Lo(g;ao)+...+Mr(go...,pr_l) Lr(g;é),

where M., is the signed minor associated with L (p3&) in

the expansion of the determinant Vr' Thus,

x>

V= Leslyag

- Mj(go,...,gr_l)gj).
MEs 5 Vrsﬂ, it follows that, in particular,
Mr(po"'°’pr—l) =0
for all possible choices of Pgsr sl - This contradicts

the inductive hypothesis. /17
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Note that the ordering of the Li's in Lemma 2.2.20 may be im-

portant. The next result is immediate from definitions:

LEMMA 2.2.21 Let,Er be a GT-set with respect to {Li}? it
i=

any g&-polynomial, &, is specified uniquely by giving the

Then

numbers
Li(pi;i)

for given piePi, i=0,...,r. In particular, any non-trivial

g-polynomial cannot have

L. (o y58) = 0, i=0,...,r

for any choice of giePi, 1=0y 0 o 29

Conversely, if a set of functions E, is such that for
any gespEr,g has at most r isolated zeros with respect to
by
i=0

/177

Li’ i=0,...,r, then it is a GT-set with respect to {Li}

!
DEFINITION 2.2.10 Let £ be a function and L defined in (&) .

We say the £ has a zero p, with respect to L, if
L(p3§) = 0.

If P is a connected set in a space with metric d(.,.), we
say peP is an isolated zero of & if there exists @>0 such

that

L(p+v;£)=0,

for all v, 0<d (0,v)<Q .
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In addition, we say that an isolated zero p is non-nodal,

if for all v;,vy, such that 0<d(0,v;),d(0,v,)<Q,
L(p+vi3E8) L(p+tvy3&)>0

Otherwise we call an isolated zero p nodal. 11/

When no ambiguity results, we do not use the phrase "with

respect to L" in the above definition. The following is immediate

from the assumed continuity of linear functionals, in (Er)“, with

respect to both parameters and functions operated on.

\/

? 0 be elements of (Er) , r20. Assume that
1.5

Pi are connected non-trivial sets, and that there is a non-

LEMMA 2.2.22 Let {Li}

trivial 6,espZ, such that there is p.eP. and p. is a nodal
zero of 85 i=0,...,r. Then all components of the vector [

depend on only one independent parameter, i=0,...,r. L4

The above Lemma is not necessarily valid in the case where
Pi is disconnected; for example, a collection of discrete points.
The importance of the zero properties of sets of elementary
functionals is seen in the remainder of this chapter.

As a consequence of the above Lemma, when we talk of linear

functionals depending on parameters p; we have:

(A10) Elementary functionals S, and Tj will each only depend

on one parameter.

Given (Al0) we note that if, in definition 2.2.10, p is an
isolated zero on the boundary of P, then it is automatically a

non-nodal gzero.
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Generalizing results in [9] slightly, we obtain

THEOREM 2.2.23 Let Er be a GT-set of continuous functions,

. . . g &)
defined on a connected interval, with respect to {Li}_ o
1=
Assume Pi’ i=0,...,r, is connected. Then, counting every
nodal zero once and every non-nodal zero twice, (unless it

is on the boundary of Pi’ when it counts only once), no

non-trivial EespE , may have more than r zeros.

PROOF: Analogous to the proof of Theorem I.4.2 of [9]. £k

THEOREM 2.2.24 Let Sr be a GT-set of continuous functions de-

fined on a connected interval K with respect to {Li}? o
1=
Assume the interior of Pi is a connected interval, i=0,...,r.

Assume we want non-nodal zeros at PorveaPy and nodal zeros

BL Borres1)? v 3Poica] Y448 s=2(k+1)+2<r. Assume that

(a) Li = Lk+1+i

(b) Lr—l = L

350 e Ky

I‘—2’ e ,Lr_s+2 = LP—S‘*’I’P-S_]- evell.

Then there is a E-polynomial with the desired zeros and no

others.

PROOF: Analogous to Theorem I.5.1 of [9] on considering the

g-polynomial given in (2.2.12) and Lemma 2.2.25.
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(2.2.12) det Lo(poggo), R Lo(po;Er) =g (t)

Lo(po+eo;ao), « & ® Lo(po+eoggr)

Lk(pk;go), e e Lk(pk;gr)

Lok+3(Pors3s8ads « o o s Lopialegy a3E)

LS(ps;go), i 8 & g Ls(ps;ar)

Ls+1(ps+l5go)’ = % W Ls+l(ps+15£r)

Ls+l(ps+l+gs+l;go)’ ot Ls+l(ps+l+€s+l5gr)

LoaPragifpls » « » s Lr—2(pr—2;€r)

Lr—2(pr—2+er—2;€o)’ =k Lr-2(pr~2+

go(t), R gr(t) v i)

€r—2;gr)

LEMMA 2.2.25 Let Er and K be as in Theorem 2.2.24., Then

Lr(prga)xo, vprePP, where £ defined by (2.2.13). Hence ¢

is non-trivial.

PROOF: We consider

(2:2.18) dat Lo(pogao), s ¢ W s Lo(poggr) =£(t).
Lr—l(pr~13€o)’ vomoe o2 Lr—l(pr—l;gr)
go(t) N i gr(t)
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Consider LP(prgg) for some praPr. This can be evaluated
by replacing the last row of the determinant in (2.2.13)
by (Lr(prggo),...,Lr(pr;gr)). This must always be non-zero

or we contradict B being a GT-set with respect to

A

s ///
1 3=0

Theorem 2.2.24 is not as restrictive as it first appears
since we can always renumber the functionals Li if we wish., If
we are unable to fulfil requirement (b) of Theorem (2.2.24)
for those functionals not occurring in pairs it is possible that
they will each provide £ with an extra zero (clearly we may
choose this zero, if we so desire, to be "placed" somewhere con-
venient).

It is also apparent that the definitions of extensions,
adjoints, expansion sets, and equivalence points can be extended,
by analogy, to GT-sets.

Much more is known about the properties and interrelationships
of the various types of T-set than we have quoted here. We shall

quote further results if and when the need for them arises.
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§2.3 IMMEDIATE RESULTS

In this section we return to a direct investigation of I.P.Q.F.

We already have some results concerning existence and non-exis-
tence of I.P.Q.F., i.e. Theorems 1.3.1 - 1.3.4% and 2.1.1 With the
aid of information in the previous section, we can obtain some
further results.

We note (cf. Lemma 2.2.20) that if {Si}?:0 obey (A7), as
earlier assumed, then if Si cepends on a parameter set Pi’
there must exist piePi such that Si <pi;g)¢o for every gespém

(analogously for {Tj}g_o)-

THEOREM 2.3.1 Assume that{S} ;
i=

and y" respectively. Then there exists at least one choice

. {Tj}? , fulfil (A7) on o™
]:

of parameters such that an interpolatory I.P.Q.F., exact

m_.n :
on & x¥ ', exists.

PROOF: Follows from Lemma 2.2.20. &/ 4

The problem of actually finding the parameters mentioned
above does not appear to be a trivial one. The next result

demonstrates the potency of GT-sets in the context of I.P.Q.F.:

THEOREM 2.3.2 Let s be a GT-set with respect to {Si}T & Let
1=
{T.}? be such that there is a choice of parameters for

J 9=0
which det(C)z0 (recall Lemma 2.2.20 anc see (1.3.8)).

Then there is an interpolatory I.P.Q.F. exact on o xy "
for arbitrary choice of parameters of Si'
If, in addition, y {s a GT-set with respect to {Tj}? g
':]:

then the choice of parameters of {Tj}? . is arbitrary
J:




61

as well. /17
We can now extend Theorem 2.1.1 as follows:

THEOREM 2.3.3 Let @Y, y>m, and wé,.azo, be T-sets on R.

There is no choice of x; functionals (knots) such that
there is an I.P.Q.F. exact on QYXWG when y+8>2mt1l.
PROOF: Analogous to Theorem 2.1.1, using Theorem 2.2.2Y4 in

the case where all the linear functionals Ley;. /117

This is clearly a symmetric result in @' and Wﬁ, and we

consequently have:

COROLLARY 2.3.4 Let @Y, y>m, and ¥°,s>n, be T-sets on R.
There exists no I.P.Q.F. exact on @waa.
PROOF: Without loss of generality assume m>n (if m=n, see

Theorem 2.3.3). Apply the symmetric analogue of Theorem

2.3.3. /17

These results have what might be termed a "Gaussian" flavour
in that, analogous to R.Q.F. exact on polynomials, even setting
§=0 we are unable to finé an I.P.Q.F. exact on @2m+2 (this
latter result is also in [9], see §2.6).

We note that in view of what was said in the previous section
concerning T-restrictions and sc on it is possible that the above
two results hold even if @' and WG are T-sets only on a subset
& of R.

Extensions of Theorem 2.3.3 to other types of linear func-

tional are not obvious since a knowledge of the zeros (and hence
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sign changes) of a continuous function with respect to some
linear functional L does not immediately give us information
about when, and if, the function itself changes sign.

In view of Theorem 2.3.3, there is no loss in making the

following assumption.

(A11) m

v
=

§2.4 GENERAL SOLUTION

In view of Corollary 2.3.4 and what we already know of
interpolatory I.P.Q.F., we shall be primarily interested in

investigating I.P.Q.F. exact on QYXWG under the assumption
(A12) y>m, &<n.

We recall that, (see §1.3) if the required I.P.Q.F. exists,

the system of linear equations given below must have a solution:

(2 3wk} Da=A,

where

(2:8.2) D =C8® B,

€2.:14.58) £ = To(wo),.-.,Tn(wo) s

“To(wé),...,Tn(wﬁ)

-7
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(2;L:8) B = SO(¢O),...,Sm(¢O) P

‘SO(¢Y) ,...,Sm(q)\{)“

and
T
(Z2:45 5) ﬁT = (Ao""’i\-g)’
(2.14.6) AT = (TC6 30.)seeesTCo 5905 520,...,8.
“ o] YA

a is given by (1.3.1u).
To guarantee that a solution to (2.4.1) exists, the augmented
matrix (D|A) must have the same rank as D. From (A8), (A7)

and (Al10), analogous to Theorem 1.3.1, the following is obvious.

LEMMA 2.4.1 The rank of D in (2.4.1) is the product of the

ranks of B and C, namely (m+1l)x(s+1). /17

The assumptions (A6) and (A7) allow us to assume that the

first (m+l) rows of B are linearly independent, and thus there

must exist constants o __sse.450__, P=1,...,y-m=k, not all zero,
or nr
such that
U s Foarsoa 1 Q = ‘
(2.4.7) 0‘orsl(q)o) 0Lmrsl(“hm) Sl(¢m+r)
v = .1, s 2580, ,In

For the rank of (D|A) to be the same as that of D, we must

have




BU

(2:4-8) I(o‘onc~¢o+"'+°Lm1:"3’m;'1’j) - I(¢m+r;¢j)

e Jaasnals I Bawsesby
or, on rewriting,

(2.4.9) I(hysp3) = 0

where

(2.4.10) hr = aor¢o+'°’+“mr¢m_¢m+r

The requirements (2.4.7) and (2.4.9) impose more conditions
than there are parameters (air) available in general. Whether
these conditions can be satisfied depends on the choice of

¢Y,W6 and the elementary functionals Si‘

We note that the choice of the linear functionals {Tj}? 5
J:

plays no role in (2.4.7) - (2.4.10) and thus is unable to

affect the question of existence of I.P.Q.F. exact on @waa

3

y>m,8<n. Recalling Lemma 2.2.22 we see that we have at most

(m+1l) non-linear parameters to choose, namely those upon which

the functionals Si depend. Thus, since 1t may be that m+l<k(8§+1)

we might expect it to be an impossible task satisfying (2.4.9)

in all possible cases. We shall consider three special cases;

H
2
1l

2m+tl, 1.e. k=m+l; and &=0.

II- Y

mtl, i.e. k=1; and &=n.
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ITI. {¢.}Y  and {v.}° having properties akin to (2.1.2)-
1°1=0 J73=0

(2.1.6).

In cases I and II we have as many parameters available as
there are conditions to be satisfied, and we do not have to
place strong conditions on ¢; and wj’ in direct contrast with
what occurs in case III. Also, we note that we may satisfy
(m+1)2k(6+1) be either fixing n and k and choosing m sufficiently
large, or fixing m and k and choosing n (thus §) sufficiently
small.

Before continuing we recall that once we have chosen
parameters to satisfy (2.4.9) we may find the matrix A (the
vector a) by solving the linear equations requiring the I.P.Q.F.
to be exact on &"x¥™. That is, we are able to separate, and
consider independently, the linear and non-linear aspects of
the problem. We consider the solution of this set of linear
equations in §2.9.

We introduce the following definitions:

}S

= be two sets
1°i=0

DEFINITION 2.4.1 Let &,, r2szl, and (H) ={e
of functions defined on a set K. We say that Er is weakly
orthogonal (W-orthogonal) with respect to a bi-linear func-

tional L, to <§>s’ if for each j=1,...,s, we have
[2ala1) L(gj;ei) 5 By 420, vwes]=Ls

If, in addition we have
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2.4.12 LOES358.) = ¥ .20 TS0 5 aeinrgSig
( ) 5:]: i 'Y:] il 3 P

-

We say that g is orthogonal, with respect to L, to (:)S.

1f Yj=l, j=0,...,s, we say orthonormal instead of ortho-
gonal. i
Obviously, if gisei, i=0,...,8=r, then the above defini-

tion reduces to the usual one of orthogonality when L is inter-
preted as the integration operator. We note that the ordering

of the functions Ej and ei may be important, and that the con-

cepts in Definition 2.4.1 are related to that of biorthogonality.

DEFINITION 2.4.2 A function & is said to be W-orthogonal to

a set of real valued linearly independent functions <:>s’
defined on a set K, with respect to a bi-linear functional

L: 4T
(2.4.,13) L(s;ei) = 0, 1=04.:458; /17

The phrase "with respect to a linear functional L" is
deleted unless required in the interests of clarity.

We can summarize as follows:

THEOREM 2.4.2 Given {Si}w 8 a necessary and sufficient condi-
l:

tion that there exists an I.P.Q.F. exact on @wad,y>m,65n,
is that the ¢-polynomials hr’ r=1,...y-m, in (2.4.10) are

each W-orthogonal to ¥ /17

This Theorem allows us to test, when given a specific set
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of functionals {Si}?=0, whether or not the required I.P.Q.F.
exists. However, the questions of more interest are those of
discovering for what choice of parameters (if any) piePi from
non-degenerate intervals Pi’ ancd what choices of elementary
functionals Si’ the desired I.P.Q.F. do exist. Once we allow
the parameters p. to be chosen from non-degenerate intervals the
importance of GT-sets in guaranteeing that {Si}?:o remain
linearly independent in (@m)* is clear.

THEOREM 2.4.3 Let Si depend upon piaPi, i=0,...,m. For an

I.P.Q.F. exact on @wad, y>m, §<n, to exist it is sufficient

that the following conditions are fulfilled:

Let hr be defined similarly to (2.4.10).

(2.4.14) There exist o4 i=0,...,m, r=1,...,y-m, such that hr

is W-orthogonal to v® witn respect to I.
(2.4.15) There exist BiaPi such that for each i=0,...,m
Si(a‘i;hr’) = 0, r=l,| ..,Y—m.

(2.4.18) (Si(ﬁi; ))? are linearly independent in (@m)“.

=0

(2.4.17) The matrix C has maximal rank. Lfef

We observe that (2.4.14) in the above Theorem depends
upon I and the choice of the set of functions WG, whereas
(2.4.15) and (2.4.16) depend upon the choice of elementary
funcetionals {Si}?:o. The choice of the elementary functionals

{Tj}? g plays no role. The importance of GT-sets is obvious
]:

from (2.4.16).
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It is alsc important to note that the above Theorem does

not require all the assumptions (Al) - (All).

Before moving on to the next section we note that, while
the above results were obtained under the assumption that the
interior of R is (-1,1), provided the weight function w is
such that all the necessary moments exist and are finite, there
is no difficulty in extending these results to semi-infinite or
infinite intervals of IR. This comment remains equally appli-
cable to the results of future sections, although we shall not

explicitly state it at each point where it might be applicable.
See also [23].

§2.5 ORTHOGONALITY

Prompted by Theorem 2.%.3 we investigate when, given two
sets of linearly independent functions EL and C)IW they can be
made W-orthogonal or orthogonal. There is no real point in con-
sidering (:)S with s<r , since this would immediately restrict

us to ES as well, All the results obtained in this section are

derived using elementary linear algebra.

DEFINITION 2.5.1 If £ is W-orthogonal (orthogonal) to @r,
with respect to a bi-linear functional L, and (:>r is
W-orthogonal (orthogonal) to Er with respect to L, we say

that En and <:>r are mutually W-orthogonal (orthogonal)

with respect to L. Lot




Set

(248 1) mg g = L(Ei;ej)

and then define the so-callecd moment matrices, with respect to

L, by

2.5, M = .
( 2] S,t {ml] i=0, j=0 (o]e}

H
=
E

so0 st

1
=

L2 5+3) MS

S 487

for any choice s,tsr.

Throughout this section we shall employ the following

(A13) The moment matrix Mr has no row or column which is

entirely composed of zeros.

If a moment matrix does not obey Al3 we shall say that it
is degenerate, and the following results will not necessarily

be applicable. Perhaps surprisingly, degenerate moment matrices

may occur, even when one of CI and ()Iware T-sets.

50 38051 s

Example 2.5.1. Let gi

D
U

gInCivltel) s 320142 yaaw
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Since 6. is an odd function for any value of j, it is
' J
clear that as int(R)=(-1,1), the (2k+1l)st row k=0,1l,...

of the moment matrix will be equivalently zero, when the

functional L is the integration operator with w=1. 114
We seek &_ = {é.}? » such that £_ spans the same space
2 4] L 120 >
3 A . 3 - f4 4D
as 2, and = is W-orthogonal (orthogonal) to <:>r‘ CDI1_ {ei}i=0

is defined analogously. Initially we investigate W-orthogonality,
and then continue and examine orthogonality. Let
€2.:5.1) fa & gi ai . E P )
i 3=, 9 ’ >
If, for arbitrary but fixed i,éi is W-orthogonal to {ej}%_;,
J:

the following linear equations are satisfied.

T "
£2:548) M jq95 =0

where 0 is an i-vector of zeros and

= (

&} . A .
K 0‘J.,O’ s = 834

)

Clearly, there are

(2.5.6) i - rank (Mi Y » 1

,i—l

degrees of freedom in the vector o To guarantee that ér spans
the same space as Bl it is sufficient to choose “iizl' This

means we require
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£2.5.7) rank (Mi,i—l) = rank (Mi—l)'
However, by consicdering first Mr,r—l’ then Mr—l,r-Z and so on,
it is apparent that reordering the functions {Ei}? a only,

Iz

condition (2.5.7) can be guaranteed. Thus we may state the

following result:

LEMMA 2.5.1 Given CI and <g>r’ possibly after reordering the set

Er’ there exist functions Er’ each with leading coefficient

1, such that £ is W-orthogonal to (E)r.

In addition, spg, = spér. /17
COROLLARY 2.5.2 If rank (M ) = rank (M ) then we may write
r,r-1 r-1
2 A r-1
S ® B Ezzgar,xgz /14

The above argument may not then be used to obtain (E%
mutually orthogonal to ér’ since in the secondé reordering in

Mr (of columns instead of rows) may introduce the vector

or

(m ""’mrr) into the new Mr 1 and thus possibly refute the

3

above analysis. However, we may still obtain the result:

THEOREM 2.5.3 Given E, and <:>r’ possibly after reordering the

~

sets Er and <:>r’ there exist functions ?r and (:>r’ each

~

function with leading coefficient 1, such that g and 6911
are mutually W-orthogonal with respect to L.
In addition sp:E = spE  and sp@r = sp@r.
PROOF: Given the matrix M it is clearly possible using only

row operations to reduce Mr to an upper triangular matrix.
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Now using column operations M may be reduced to a matrix

M =(m. )r s such that for some ke{l,...,r} we have
L2 lj l,]"

n

mii¢0, 1203 sewsk=1s

v . o -

mij=0, 15K s ewawlly I 31y e wawla

Reordering £y (ei) according to the row (columns)
interchanges made (i.e. if row i in Mr ends up being row
i in ﬁr the reordered Ei becomes Ej) ensures that, for the

y
Ay -
new sets £ and (:)r’ the moment matrices Mij obey

rank <Mi’1-l) = rank (ﬁi_l) = rank (Mi—l,i)‘ £t
COROLLARY 2.5.4 If rank (Mr,r—l) = rank (Mr—l) = rank (Mr—l,r)
then we can write
E;r= +220r29,’
6r ) ¥ 21 0 r,L g 11

COROLLARY 2.5.5 The functions ér are unique, up to a multi-

plicative factor, if and only if M has full rank. I4f

r-1

We now consider orthogonality. This means that the require-

ment (2.5.7) is replaced by the requirement
€2:.5.8) rank (M;) = rank (M gi) 120, iaea®

where e. is an (i+l) - vector in which all elements are zero




23

except the (i+l)-st, which is unity. We have

THEOREM 2.5.6 If the matrices Mi’ 1i=0,...,r, all have full
rank then mutually orthogonal  polynomials ér and CDI‘
exist, are unique, and span the same spaces as E, and @Dx~
respectively.

PROOF: We exhibit the polynomials Ei and 5j.

& _ 4 ~ % *' t3 %
(2.5.9) Set &, = £, » and then g = gol<L(go,eo)) ,

6* _ 4 h = _ % ( ( ﬁ. *))%

o = ¢ » and then 8_ = eol L(g 38

% - ” -~ % * % %
(2.5.18) Set §; = &, - L(El;eo)go, then &, = EII(L(EI;GI)) §

oo

o A ~ ~ 3 7’€ £
o1 = 0, - L(E_361)8_, then 8, = 01| (L(£)3010)%,

and thus, for each 2=1ly... 0%

(2 5511 Set £.=£, -T2 11(g 38 )E , then £ =£ | (L(g ;8%))™
=2 SF B Rg linpthy 39 )Ry, Then £, 2R, S 3Pyl s
*_ 4-1 & = A & ﬁ. % %
eg-el-§k=0L<gk,e£)ek, then 6,20, |(L(£,36,))
By construction we have

(2.5.12) L (€ 36.) =6

where sz is the usual Kronecker delta function.
% o
We observe that it is not possible for L(gz;ez) to be
zero, since if it were zero, we have found a non-trivial

g-polynomial, namely g:, such that L(g;;ek) is zero,
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k=0,...,%, and this contradicts the assumption that Mz has

full rank. Clearly & and (E)r span the same spaces as

-

B and <:)r as in 52(62) we have gz(ez) with coefficient

unity. Last, we have to show uniqueness (up to multiplica-

and é(l)
r

PN
-

tive constants at least). Assume that are two

sets of functions orthogonal to C)I“ Let

~(2) _ 5 (1) _ LlEg 3800 .
A L AN By 6 ) e Bl
LEE = 526D
1 da i)
Clearly
~(2) = . ’
L(gi ;Bj) = Oy 35055 :4 4l

o L]

1t £5 is non-trivial, this is a contradiction as pointed

>

out above. Hence Z is unique. Similarly C)IV Ll

The procedure (2.5.9) - (2.5.12) is a generalization of
the standard Gram-Schmidt orthogonalization process, and is
clearly constructive in nature.

It has been noticed before that the ordering of the func-
tions s and Bj plays an important role in the determination of
W-orthogonal and orthogonal sets of functions. The following

is obvious:

LEMMA 2.5.7 @Given a matrix of full rank, possibly after re-

ordering rows (or columns) we may assume that all the lead-

ing minors have full rank. LLd

We now note
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LEMMA 2.5.8 1If Mr does not have full rank, then no matter how
we reorder £; and ej it is not possible to find %
orthogonal to C)I\with respect to L.

PROOF: The requirement for orthogonality is

rank (Mi) = rank (M.

llg‘i), i:O,...,I‘.

Thus the (i+l)st row of M, is linearly independent of the

the other i rows.

Letting i=r, then r-1, and so on, this implies that the

rank of Mr must maximal. LLif
This we can summarize with the next theorem:

THEOREM 2.5.9 Given B, and (:>r it is possible to find 5

r
orthogonal to <E>r (mutually orthogonal to (ﬁ)r) with res-

pect to a bilinear functional L if and only if the matrix
Mr has full rank.

In addition, possibly after reordering the functions Er and
@Drﬁ we find that %i and éj are unique up to a multipli-

cative constant, and

(2.5:13)

uy>
i

. '+ .= - e
i 220122’10’ 2F

D>
"

5 210322’

~

thus % and (H span the same spaces as % _ an
r C)r P - p g &, and CDr'

respectively. Led
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There are several comments which seem to be worth making
at this stage. First, if Mr does not have full rank then,
possibly after reordering, some submatrix MQ,ESm, will have,
and despite the fact that we cannot find %r mutually orthogonal
to <ﬁ>r we can find ér mutually W-orthogonal to (i)r, with the
additional property that %R is mutually orthogonal to <§&.
Second, we cannot use the generalized Gram-Schmidt process
(2.5.9) - (2.5.11) to obtain W-orthogonal polynomials, since we
cannot guarantee L (EZ;GZ)zo, 250y« o yPe Thivd, 1t is& Tt
immediately clear what is the best way to assign any arbitrary
constants when obtaining W-orthogonal polynomials. Fourth,
when considering two sets of functions, Er and (Dr’the re-

ordering processes which may be required are of no real conse-

quence in the context of I.P.Q.F. since the sets of functions

still span the same spaces. Fifth, if we consider g, and (:%,s>r,

there may be several reorderings of ES possible which enable us
to derive W-orthogonal or orthogonal polynomials gr' Sikth,
the results of this section so far depend merely on the rank
of the matrix Mr’ and not on the structure of the bi-linear
operator L. In particular, when dealing with the integration
operator I, we do not necessarily require (A3)., Finally, given
a functional L, and examining orthogonality the question of
what conditions we need to impose on E, and C)r,in order to
guarantee that MP has maximal rank is an interesting one, which
would appear to be closely connected with Moment Theory.

Using a slightly different approach it is possible, see,

see [9,27], to obtain the following result, now however requiring
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(A3);

LEMMA 2.5.10 Let & and @@ be CT-sets on R. Then there
r r

A
=

exist £ and (E;r mutually orthogonal with respect to I,

on R.
PROOF: We prove the result by exhibiting Ei,éi, iz0,...,r. Let
M2 be the f2-th moment matrix with respect to I. For each

choice of g=1,...,r, define gz and 6: by the following

determinental equations;

% i -
(205,20 az = det Eo(x)
Mz-l -
gz-l(X)
| By gpesially o sk (B |
£2.5.15) 8y = det .mo,z

o 1
(x),el(x)*

eo(x),...,ez_1

and then set

(2.5 «1B)

Y >

(take éo = £, 6 = 8).
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It remains to show that det M 2=0,...,r, and we

g-1%Y2

prove this in the following result. Fdd

LEMMA 2.5.11 Let g, and @r be T-sets on R. Then the moment

matrix Mr’ with respect to I, has non-zero determinant.
PROOF: Assume the contrary.

: r

Thus there exist a_,...,a , Ei=olai|>0, such that
1 ;
zi=0aimij = (0 RN (Y

This implies

r .
I(zi=0“igi58j) 2 By 3180 5 wnimntle

However, using Theorem 2.2.24, we know it is possible
to construct a non-trivial & which has zero at the same
points as z§=0aigi in (-1,1). This leads to the contra-

diction, since it is implied that

1

r : b
I();-9%;8430 ) = 0. /17

()

COROLLARY 2.5.12 The functions and @r of Lemma 2.5.10

are unique (up to multiplicative constants) and span the
same spaces as Er' and ®r'

PROOF: By construction and Lemma 2.5.11 coupled with Theorem
2.5.:9, /17

It is clear that the process used in the proof of Lemma

2.5.10 can be used for arbitrary Er’ @Dr1and L provided we can
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guarantee the matrices Mi i=l,...,r are non-singular. Ob-
viously Corollary 2.5.12 remains valid. Again summarizing,

we have

THEOREM 2.5.13 Let Er and <:>r be T-sets on R. Then there exist

~

” and CDI” mutually orthogonal with respect to I, on R.

N
-
-
-

Any extension of these results depends upon the relation
of linear functionals we might use in defining GT-sets E. and
<>r’ and the bi-linear functional L with respect to which we

are considering orthogonality.

THEQREM 2.5.14 Let . (:>r be given. Assume (A3). Let

Ev=0:3 Az3l0gweasts Then Mr has full rank.

17
PROOF: Assume the contrary. Then there exist G aeersl s
iizolai|>o, such that
r :
I(Ej;zi:oaigi) = 0, '_‘]=0,...,I‘.
However, this implies that
r v N
T520%38130120%1%:) = 0 »
and this is a contradiction. L d

We now return to our‘original motivation for the section,
Theorem 2.4.3, and direct consideration of I.P.Q.F. Noting

(All) in particular, we have,

e

T T T NI ORI oty el A [ P
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THEOREM 2.5.15 Let :éfi consist of §+1 of the functions

m
{¢i}i=0’ and set
(r) _
€6+l _ ¢m+r, I’:l,..-,’y—m.

Then condition (2.4.14) is satisfied provided,

(245 :.18) rank (Méfi’s) = rank (Mér)), ek v« s 5¥ =
where Méfi are the moment matrices with respect to I using

()

B e /11

the sets of functions and {wj}§
J

:O'
The condition (2.5.13) does not appear to be a very res-
trictive one, and can of course always be guaranteed if the

(r)

rank of MG is maximal.

§2.6 I.P.Q.F. AND T-SETS: CASE 1

Having investigated orthogonality and thus the first con-
dition of Theorem 2.4.3 we now begin our investigation of
the remaining conditions of the aforementioned theorem with
some results concerning case I. We are not, as before, able
to reduce the problem to being essentially linear. The fol-

lowing results come basically from [9], Chapter 2. Let

2 S+l .
£2.6:1) Mr:{gz(co""’cr>€R ,ci=IRgi(t)do(t),1=O,...,r}
where {Ei}? . is a T-set on [-1,1] and ¢ traverses the set
1=
of all non-decreasing right continuous functions of bounded

variation. It can be shown that Mr is a closed convex cone.
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We have the following result:

THEOREM 2.6.1 Assume we are given a measure c° and a T-set

{Ei}? g Let c® be the vector determined by the measure

38 =

a9,

(a) If r=2s+l and g°aIntMr then there is exactly one Q.F.,

using s+l distinct knots, xie(-l,l), 1204444585 such

that
Ig) - §3_42;8(%;) = 0,  Vees .

In addition, ai>0, 1205540 584
(b) If r=2s and g°eIntMr then there is exactly one Q.F.
exact on Er’ using s+l distinct knots Xs 180 5 cononicy g
xo=—l, and xie(-l,l), izl 058« In addition,; the
coefficients a; are all positive.
The analogous result holds setting xS=l.
(e¢) If c¢° is on the boundary of Mr then there is a unique
Q.F., with positive coefficients, using at most s+l

distinct knots in [~1,1], whether r=2s+l or 2s. i

Parts (a) and (b) of the above Theorem are, perhaps not un-
expectedly, analogous to the well known Gaussian and Radau Q.F.,
which deal with the case §i=xi, 120 sewwaPs Part (a) ds,; in
view of Theorem 2.3.3, the best result we could obtain. If
the Q.F. in part (c) above uses less than s+l knots, it would

seem that some type of non-linear degeneracy, dependent on the

choice of functions gi and the measure ¢°, occurs (the degeneracy
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. . n .
cannot be linear since {gi}_ 0 is a T-set). However, we have
1=

LEMMA 2,.6.2 Assume o¢° of Theorem 2.6.1 is differentiable,

i.e. we have do°(t) = w(t) dt. Then the Q.F. of part (c¢)

in the above Theorem uses exactly s+l knots.

PROOF: Else Theorem 2.3.3 is contradicted. /77

The situation in the above Lemma is that in which we are
interested. As commented earlier, we may regard the Q.F. ob-

tained when ¢ is differentiable either as a weighted R.Q.F.,

or an I.P.Q.F. exact on Erst, =0, wo=w(t).

We recall that when dealing with R.Q.F. exact on poly~

nomials, it is sometimes possible to prescribe t<s+l knots Xs

i=0,...,t, and obtain R.Q.F. exact on {Xl}i:38*t (namely
t

when the moment matrix with respect to 1T (x—xi) w(t) is non-
i=0

singular. See also Theorem 2.8.8). When dealing with arbi-

trary T-sets we can also obtain some results of this type.

THEOREM 2.6.3 Assume 0°, c® and {gi}? are as in Theorem
: 5

2,6.1. Choose fe[—l,l].

(a) Let r=2s+l,and g°eIntMr. Assume t is not one of the

knots in Theorem 2.6.1 (a).

(i) If fe(-1,1) there is a unique R.Q.F., of the form

28+l

1=0238(%3 )5

exact for EeEr. One of these knots Xs is t and

one, but not both, endpoints (-1 or 1) occur as
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a knot. In addition, a;>0, xie[—l,l], 150,
o
(11 IF t£=1 (on; analogously, ~1) there is a unique
g+2 point R.Q.F. also using -1 (1) as a knot

exact on E°. In addition, ai>0, xie[-l,l],

120, ¢ « 38+) 5 ang XO:—l, X e

s+1°
(b) Let r=2s and c®°cIntM . Assume that t is not one of
the knots of either R.Q.F. in Theorem 2.6.1 (b).

(Thus te(-1,1)). Then there exists a unique R.Q.F.,
s
1i=0218¢%3)>

i—r - "~
exact for e~ . One of the knots X, is t, and neither
endpoint, -1 or 1, is a knot. In addition, ai>0,

xie(—l,l), - /77

We note that the R.Q.F. of part (a) (ii) above is the
analogue of the well-known Lobotto Q.F. TFrom Theorem 2.1 of
Chapter 2 of [9] we have a criteria for determining whether

gosIntMr (see also Ch. 4, Cor. 1.1).

The results above do not have constructive proofs in [9]
and thus are best regarded as existence (and uniqueness) theorems.
Clearly, if we are able to determine the knots of the R.Q.F. in
some way, the coefficients a, may be determined by solving a

set of linear moment equations involving s+l or s+2 functions
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chosen from {gi}? 3 such that the matrix B has full rank.
£
t
=0

These functions need not be {¢i} t=s+l or s+2, as., for the

given knots {gi}F = need not be linearly independent on the
&=
given set of knots, however, since {gi}? 5 is a T-set, there
i=

must exist a set of t functions for which B is non-singular.
In this general case, we can obtain a partial characterization
of the required knots, as non-nodal zeros of polynomials con-
r+l

structed from {gi} (an adjoined T-set) in the form of Lemma

1=0

2.1 in Chapter 4, [9]. Of course, knowing a solution exists,
we may, in the absence of more sophisticated methods, always
solve the non-linear system of equations (cf. (1.3.7),

— s

(2.6.2)  [E (x)s0e56 ()] [a = | (&)

gr(xo),...,ar(xt)’ '} (gr)

. ws

We also note that extensions of Theorem 2.6.3 to the case

of predetermining two or more knots without being able to ar-

bitrarily choose their coefficients are not, as yet, available.

§2.7 I.P.Q.F. AND T-SETS: CASE II

As in the previous section the case II problem is non-linear.

We recall that the following conditions are in force:
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5 P O m+l, i.e. k=1

2
T}

(2.7.2) § = n

With regard to (2.7.2) we note that there is little loss
in generality in this requirement as opposed to 8sn. If &<n
we find, see [241, that we can preassign n-§ elements in each
row of the matrix A. There does not appear to be any gain in
setting these elements to be other than zero, and consequently
we may as well have (2.7.2).

We begin by imposing the additional conditions:
g T3 m = ny

(2.7:4) Siaxl, et g (IR, |

3 and ¥™ we are faced with the problem of

; mt+
Thus given @
discovering whether knots Koo siva¥y exist such that, as required

by Theorem 2.4.3,
(2-7.5) Si(xi;hl) = h]_(xi) = U) i:O,lttLl

Then we must ensure that the matrix B has full rank. We
begin an investigation of the properties of the zeros of h;
with a generalization of a well-known result dealing with the

zeros of orthogonal polynomials.

THEOREM 2.7.1 Let =™ be defined on [-1,1]. Assume L g

weakly orthogonal to (:)m with respect to I.
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(a) 1If (E)m is a CT-set on (-1,1) then £ LT oo vl
has at least i distinct nodal zeros in (-1,1). If,
in addition, ™1 is a CT-set in (-1,1) ([-1,11)

then Ei has exactly i distinct zeros, all nodal, in
(=1,1) ([-1,1D).
tb) If ()P is a CT-set on [-1,1] then Es o i=l,...,m+]
has at least i distinct nodal zeros in [-1,1].
(Here we count a zero at -1 or 1 as nodal).
If, in addition, Em+l is a CT-set in (-1,1)

([-1,11) then g; has at most (exactly) i distinct

AeVOS 4 Al nedals in (=1,1) ([=1,33).

PROOF: (a) ((b) is analogous). Assume the contrary. Arbi-

trarily fix ie{l,2,...,mt1l}. Let Troeeenty, r<i be all
the nodal zeros of Es in (-1,1). From Lemma 2.2.21 there
exists a non-trivial eé-polynomial, 6, of degree r, with
nodal zeros at t;,...,t, and no nodal zeros elsewhere in

(-1,1). However, we now have
z (gi;e)zo,

contradicting the assumption of weak orthogonality. The
+1 . ; "
results when =% 1 is a CT-set follow immediately from the

definition of CT-set. /77

Note the explicit dependence on (A3) in the above proof.

We also have
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COROLLARY 2.7.2 Replacing the phrase "CT-set" by "T-set"

is
m+ 1

W-orthogonal to (:)m, the results remain valid in the

in Theorem 2.7.1, and merely requiring that &

case i=mtl.
PROOF: As above, except Theorem 2.2.24 may be needed in place

of Lemma 2.2.22 (if rzm). BN

Recall that, in view of Theorem 2.2.8, the restriction of
m ~IEL s ; ;
() oy & to being CT-sets on open intervals is not very
restrictive. Also observe that if we only wish to use Corollary

2.7.2 we may reorder the function ej and Ei at will, since (E)m

+ ; . . .
and ™" : wlll remaln T-sets regardless of the ordering of their
constituent functions.

5 m .
If the conditions on (:) in the above results are not met
it is still possible that results remain valid, however each
individual case would have to be investigated. The importance

of (:)thaving the stated properties is seen from the following

examples:

£2.7.8) Let £ =6, =1, £, = 8; = x%, and ¢,

3
o XY.

H

Then éo(x) 2
Ep(%) = %2973,
éz(X) = X3

1s weakly orthogonal to {ej}} over R. However 52 has only

one zero on the real line (and in R) (cf (AL)).
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&

(% Tl Let &; = %7, 15041 52 5 eo(x)=l and 6,(x)=-x2
Then éo(x) = Ay
£,(x) = x2-2/3,
gz(X) = X,

is weakly orthogonal to {ej}} " over R.
]:

However, again £, does not have the required number of

zeros in R, let alone in R.

Note that @@l is not a T-set in either (2.7.6) or (2.7.7)

but in (2.7.6) %, is a T-set, and in (2.7.7) 52 is a CT-set.

2

We now examine the conditions of Theorem 2.4.3 in the cur-

rent context, and obtain:

1

THEOREM 2.7.3 Assume we are given o™ and ¥™. Assume also

m+1l

that ¥™ is a T-set on R, and that ¢ is W-orthogonal to

?m. Then

(a) The knots Xg s i=0,...,m, of an I.P.Q.F. exact on

@m+lxwm may be any set of mtl zeros of ¢m+l such that
det(B)=0.

(b) If ™1 is a T-set there is a unique choice of knots
Xs i=0,...,m, (zeros of ¢m+l) available for an
I.P.Q.F. exact on ¢m+lxym.

In both cases above, the choice of the knots ¥ e

Py is arbitrary, so long as they are distinct and lie in R.

PROOF: That Ot has sufficient zeros has been proved in
Corollary 2.7.2, thus (2.4.15) is satisfied. Conditions
(2.4.14) and (2.4.168) are implicit in the statement of

the Theorem. 11
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There are several things to note. First, the requirement

+ ; A <. ; :
that ¢ i is W-orthogonal to vy i trivial in light of Lemma

2.5.1. Second, in part (a) apart from there being possibly
more than one set of roots of ¢m+l obeying the condition, it is

possible that there may be more than one choice of ¢ This

m+l’
occurs 1f the rank of Mm is not maximal or there is more than

mt+ 1

one choice of m+l functions in & with rank Mm maximal.

Third, if there is a choice of zeros of ¢ (or parameters to

m+1
assign if rank Mm is not maximal) what is the best choice?
Fourth, the importance of the role of the functions ' being a
T-set (althéugh bearing in mind our earlier comments) although
we are interested in zeros of ¢m+l and the knots yj are arbi-
trary. Fifth, this result is the best we could hope for in
view of Theorem 2.3.3. Last, if we do not require ¥™ to be a

+ : 1
o lxwm still exist

T-set it is possible that I.P.Q.F. exact on ¢
however we must show that ¢m+l has at least mtl zeros, and then
that det(B)20. (There always exists at least one choice of
knots ¥ such that det(C)z0 by Lemma 2.2.2.)

We are able to "use" the freedom in the choice of the knots
yj as follows:

. +
THEOREM 2.7.4 Assume we are given o * and Wm+l. Assume &

+ +
and Wm are T-sets on R. Assume that @m 1 and Wm 1 are

mutually W-orthogonal.

Then there are I.P.Q.F. (unique if both ®m+l and

&
y T 1 are T-sets) exact on
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m+l m
X

+
(] ¥ and @mxwm l.

1)

PROOF: Immediate from Theorems 2.5.9 and 2.7.3 Ll

The knots x. (yj) are mtl zeros of St (¢m+

We now consider what happens if we drop (2.7.3), and allow

s - ; ; +
in m>n, while still seeking I.P.Q.F. exact on o™ 1an. Proce-

eding as before, using the analogue of Corollary 2.7.2, clearly
we can guarantee that ¢m+1 has at least ntl distinct nodal

zeros. However, if we allow ¢ 471 TO be a linear combination

3 $ 3 +
of all the basis functions in o™ l, there are m-n degrees of

freedom (at least) in the determination of ¢ Obviously we

mtl’

want to employ this freedom in ensuring that S has at least
m+l zeros. If ¥" can have functions ¢n+l""’¢m adjoined so
that the set ¥" is a T-set (see §2.2, Theorem 2.2.12 etc.) then

+
we know that I.P.Q.F. exact on @m lan

exist, using the above
results, although we now need to use mtl knots yj instead of
n+l as we might have hoped, since the I.P.Q.F. is in fact exact

m+l —m
X

on ¢ ¥" (m>n). However, we can also state the fairly obvious

result.

" +
THEOREM 2.7.5 Assume we are given o™ & and Wn, m>n. Assume

that ¥" is a T-set on R.

Let the linear system
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(2783 [& 8 59 0y o » « o3 Cgamt 1B, | 0
I (ogsyds « o« 5 T Copyqsvr) || = |8
T Cogsw)s « « s T Copyqsw ) | bryy 0
¢o(Xo)’ R =2 = P ¢m+1(xo) 0
B ¢o(xm-n—l)’ ¢m+1(xm—n-l{~ L 94
s : . _mtl
have a non-trivial solution, ¢ ., = zi:obi¢i’ then

m+1l

there exist I.P.Q.F. exact on ¢ xy™ . with prescribed

knots 2. sss 09X and n+l knots yj, if

o m-n-1~
(a) Omt1 has at least mtl distinct zeros.
(b) If ¢m+l is not a T-set, there are mt+l zeros of $m+l such
that detB#0 (If ®m+l is a T-set there are at most mtl

zeros of & and if there are mtl, detB is guaranteed

m+1l’
to be non zero).
The choice of knots yj, j=0,...,n, is arbitrary so
long as they are distinct and lie in R.

PROOF: Immediate from Theorem 2.4.3 (analogue of Theorem 2.7.3).

/177

Note that the matrix in (2.7.8) is an (m+l) x (m+2) matrix
and so there must always exist a solution to the system (2.7.8).
As before, the most difficult condition is (a) above. It is

perhaps surprising to discover that the I.P.Q.F. desired in



g2
; +
Theorem 2.7.5 may not exist, although an I.P.Q.F. exact on o™ -
xwm, where ¥" is the adjoined set mentioned in the preceding
paragraph may exist. It would seem that this is due to our

choice of preassigned knots LSRR in the above Theorem

K neti 1
(see §2.8). This is particularly striking when we require that
o™ is a T-set. Comments analogous to those following Theorem
2.7.3 again apply.

Finally, we note that the analysis of Theorem 2.7.5 can

m+lxwm

be easily adapted to situations where, dealing with ¢
again, the moment matrix Mm does not have full rank, although

perhaps with more hope, since when y™ is a T-set, condition (a)
would automatically be satisfied. Recall that if o™ is also

a T-set then the rank of Mm is guaranteed to be m (Lemma 2.5.11).

We have

. + . .
LEMMA 2.7.6 Assume we are given o™ * and ?m, with ¥™ being a

T-set on R, and Mm has rank r<m. Let @r:{@j}? be such
j:

that the moment matrix Mm+1 2 (i.e. using the functions
2
¢i and ¢j) has full rank. Predetermine knots B o § R e
& - ohtl _ Fisdso ;
Let ¢,41 zizobi¢i be a non-trivial solution of
® o i T T " _
{ 2.9 .9) (Mm+l,r) bo = 0
‘bm+l- 0
?o(xm—r-l) ¢m+l(Xm—r--l)J
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Then if there are m+l zeros of $n+l such that detB=z0,

- e ~
there is an I.P.Q.F. exact on @m 1xwm with the knots X
being these zeros, and the knots yj, j=0,...,m, being
arbitrary, distinct and within R. LEF

Some closely related but independently obtained results are

given in [26,27]. In [27] results similar to Theorem 2.7.3 and

2.7.4 are given in the case where @m+l and ¥™ are both CT-sets.
In [26] the special case
(2.7.11) v. = (g)d, 3=0,1,...,m+1,

where £ is a strictly monotonic function defined on R is inves-
; + +

tigated. Both the sets o™ L and ¥™ L are CT-sets (see Lemma

2.2.15). Clearly we could replace (2.7.10) by

(2.7.12) T (ed*, 1i=0,1,...,m+1,

where 6 is a strictly monotonic function, with analogous results.
In this case I.P.Q.F. would be very useful when I has the special

form

(2s7+13) I (f38) = I w(x)f(a(x))glg(x))dx
R

In the next section we assume0=f¢ and are thus able to drop

the requirement that ¢ is strictly monotonic.
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§2.8 I.P.Q.F. AND T-SETS: CASE III

We now consider the third of the special cases mentioned
in §2.4. In §2.1 we noted the properties of polynomials which
obscure the power of the concept of I.P.Q.F. For convenience
we restate them here before examining case III, which can be
regarded as a generalization of conventional polynomials,

They are:

(2.8.1) ¢; = b Es0,05%y no

where ¢; is not the constant function, but is at least a piece-

wise continuous function, which is not a step function, on R.

Lt

(2:8:2) ) b 12051 5 256w v

LEMMA 2.8.1 The functions @', yz20, ¢; defined by (2.8.1), are

linearly independent on R.
PROOF: Immediate from Corollary 2.2.17, as there must exist a
non-trivial interval within R on which ¢; is continuous

and monotonically increasing or decreasing. i

Since we are dealing with T-sets, we naturally assume

throughout this section
(2-8-3) Siexl’ i=0,.-.,m,

(2-8.“) TjEXl, j=0,...,1’1.
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We may now obtain the property of polynomials which is not
available when dealing with T- or GT-sets in general, that is
the ability to factor out a zero. It is this property, in
addition to the T-set properties, that allows us to obtain
results for I.P.Q.F. exact @YXWS, y+8 = 2m+l, y>m>n, when

(2.8.1) and (2.8.2) hold.

The following is fairly obvious:

THEOREM 2.8.1 Assuming (2.8.1) and €2.8.2), af £, is a

¢-polynomial of degree r, with a zero at t, there is a

unique ¢-polynomial, By of degree r-l1 such that

€2 #8457 £, = (o1=¢1(t))6 .

PROOF: Immediate by analogy with the case of standard monomials

(i.e. ¢,=x). /17

We now proceed as we did in §2.4, and analogous to (2.4.9)

and (2.4.10), obtaining the following necessary conditions,

(2.8.8) I(¢j;hr) =Py PEYLseveyy=-MmEKy 2056585
where
(2-8-7) aor¢o +-to+ amr¢m'—¢m+r = hr, I’:l,-..,k.

We now use the same argument as [24] where we examined the case
¢12x. If the required knots L SRS exist, then they must
betﬁ-distinct zeros of hr’ ralsesnsk; (thus det(B)#0): 1IF

this 1s the case, we can write, due to Lemma 2.8.1,
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(2.8-8) hr = (¢1-¢1(XO)) TR (d>1-¢1 (xm))Br)
r=l,...,k, where B.. is a ¢-polynomial of degree r-1. That is
(2.8:9) B, = Byf.c 2=lasssslesd

Thus the requirement (2.8.6) can now be written

Clearly, this is a W-orthogonality condition. From Lemma
2.5.1 we know that h, exists, (Theorem 2.3.3 forces §tksm) so
it remains to show that h; has at least m+l¢1—distinct Zeros,

in the region R. We have

THEOREM 2.8.2 Let ¢ be defined by (2.8.1) and (2.8.2). Then

the ¢-polynomial

Tp ~ Z?f;a;r) i aéiito, orthogonal to
(r)_

r+l—l

+ : i ; 5l
to o % exists, and is made unique by requiring o

Further LT3 has exactly r+l(hfdistinct zeros in R,

x(r),...,x(r). Thus we can write
o r
T+l
(28 .31) Tt = TR (¢1-¢1(xfr))).
r i=0 3

PROOF: Existence and uniqueness (up to multiplicative constant)
of P follow immediately from the usual Gram-Schmidt ortho-

gonalization process (see, for example, [2]). If there are
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less than r+l¢l—distinct zeros, (2.8.10) is contradicted,
but we know Th exists from Lemma 2.5.1. Clearly, after
repeated factorization, it is not possible for I to have

more than r+l¢1—distinct Zeros. L1

Analogous to Theorem 2.3.3 we have, despite the fact that
@P, r20, is not a T-set unless ¢; is a monotonic funection on

R (see Lemma 2.2.15 and Corollary 2.2.18),

LEMMA 2.8.3 We cannot have 6+k>m in the above analysis. That

is, under conditions (2.8.1) - (2.8.4) there cannot exist
an I.P.Q.F. exact on Y x0° if y+8>2m+l.

PROOF: If &6+k>m then, via (2.8.10), we require h; to be
W-orthogonal to itself. If h; is non-trivial this is

impossible. Ll
We state the results concerning I.P.Q.F. explicitly:

THEOREM 2.8.4 Assume y+8=2m+l, and (2.8.1) - (2.8.4) hold.

2m+1-nx n

Then there exist I.P.Q.F. exact on ¢ ¢, where the

knots RyaerenX are %fdlstlnct zeros of T (as given in
Theorem 2.8.2) and Vo2 +2Y, are arbitrarycﬁfdistinct
points. Fibi

COROLLARY 2.8.5 Let Xgs oo Xy be as in Theorem 2.8.4 and

assume (2.8.1) - (2.8.4). Given an I.P.Q.F. exact on

+1- T b
@2m = nxQn’ then it is also exact on
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+1-n+ =
¢2m +=n kx¢n k, k=0 g awssn

PROOF: The conditions on the knots X seeeyX are identical
in all cases, and once satisfied, if we obtain the co-

efficients aij’ 1205455y J2504.<447, 80 that the

I.P.Q.F. is exact on @mXQn, then it is clearly exact on

m, n-k

%0 also. il

It is not necessarily the case that an I.P.Q.F. exact on

8 §+1

'x6°, y+8=2m+1l, S<n, will be exact on 8" Ly

Similarly we have:

COROLLARY 2.8.6 Let SRR A betﬁfdistinct zeros of LI

and (2.8.1) - (2.8.4) hold. Given an I.P.Q.F. exact on

+ g s
8" xo" l, then 1t 1s also exact on

gV R g s Il

Analogous to Theorem 2.7.4,

COROLLARY 2.8.7 If, under the assumptions of Theorem 2.8.4,

the knots X, are m+l¢l—distinct zeros of T and the
knots yj are n+l¢lfdistinct zeros of T then the I.P.Q.F.

of Theorem 2.8.4 is exact on both

m+lx¢n and @ xo x Ve

®

Of course, Corollaries 2.8.5 and 2.8.6 still apply.

The I.P.Q.F. of Theorem 2.8.4 are by no means unique since

(see Theorem 2.10.8).
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we have freedom in the choice of knots yj, and Xy if ¢, is
not a monotonic function. Also, if rank Mm is r<m, there,
will be m-r degrees of freedom in T We observe that the
matrix A remains unchanged no matter which point in any set
of ¢;-equivalent points we may use. Thus there remains the
question of which (if any) point in a set of ¢;-equivalent
points is the best (in some sense) to choose.

Having considered the case y+§=2m+l we now examine
y+8<2m+l and ask whether it is possible to use any extra degrees
of freedom in preassigning knots. Analogous to Theorem 4.4

of [24] (in its corrected form) we obtain:

THEOREM 2.8.8 Assume that (2.8.1) - (2.8.4) hold, that

2mtl-y-n = s>0, y=2m, and that¢l—distinct knots Koo eveoXg g
have been preassigned. Then, if r;f; w-orthogonil to

¢m—s, with respect to I with weight function wfﬁ (¢—¢(xi)),
has m~s+l¢l—distinct Zeros, xs,...,xm such thai—go,...,xm
are ¢,~distinct, there are I.P.Q.F. exact on @Yx@n, with
knots X _,...sX (or their¢,-equivalents) and knots yj

being arbitrary but ¢;-distinct. i

Clearly, analogues of Corollaries (2.8.5), (2.8.6) and
(2.8.7) hold. We note (§2.5) that T;i; of Theorem 2.8.8
always exists, but with the weight function changing sign, it
is not certain that the %fdistinct roots Koo osX s in R, exist.

However, we may obtain (cf. Theorem 4.3 of [121]).
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THEOREM 2.8.9 Assume (2.8.1) - (2.8.4) are valid. Assume that

the weight function w of I changes sign s<m times in R,

(s) (s)

and that M and M are non-singular.
m m+1

(a) Then there exists a unique (up to multiplicative

constant) ¢-polynomial Tt

+ 3 : 5 5
to om l, with at least m+1-s<%fdlst1nct zeros in R.

(b) Denoting the¢l—distinct zeros of TéS)

éS) of degree m+l, orthogonal

by RosveesXy,

r>m-s then:
{(41) 1if "t i8¢%fdistinct from X5 iz0,... 450, there

exists a unique (up to multiplicative constants)

¢-polynomial of degree m+l, 1_15184'1)

+ ‘
to o™ & with respeet to I

orthogonal

S (I with weight

(s+1) has at

function w(¢l—¢l(t))). Further <t
least m-s $~distinct zeros in R.

(ii) If t is ¢y-~equivalent to X: 5 for some i, there

exists no Té8+l) W-orthogonal to o™ with respect
- I(s+l).
Clearly
(s)
) = ‘m
where t. are m=s of the knots X . s..ey¥ , and 8 has
1 o 54 m-1

degree m, is W-orthogonal to o™ with respect to I(S+l).

(s8)

i has full rank, and it has

PROOF: (a) TéS) exists since M
at least m-s+l zeros by an argument analogous

to the proof of Theorem 2.8.2.

(s+1)

(b) 1ii) If such a g exists, clearly
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(s), (s+1)
T )

I( % = 0.
m m
If T;S+l) is of degree mtl, we can write
T(S+1) = T(S) + 6 , 6 of degree m,
m m
|
| but this implies I(T(S); T(S)) <
m m
[ which implies I(réS);¢i) = 0y 350...4,mtL,

and this contradicts the rank of Mm being

+1
full.

(b) (i) Clearly, if =

+ y -
és 1) exlsts 1t must have the

required number of zeros (cf. (a)).

Only requiring W-orthogonality, TI;s+l)

(s)

results of §2.5, and since Mm
(s+1)

exists by the
has full rank it follows

that t is unique up to a constant and the coefficient

of ¢ ., must be non-trivial. mis)

m+1
gives I(T;S+l); T;S+l))¢0. Lifd

being of full rank

COROLLARY 2.8.10 Assume (2.8.1) - (2.8.4). Let w be as in

(A3), i.e. of one sign on R. Then the conclusion of

Theorem 2.8.9 is valid.

PROOF: The structure of ¢i ensures that Mm(EM;O)) and Mm

+1

(EMési) have full rank in this case. F1d

COROLLARY 2.8.11 Assume (2.8.1) - (2.8.4). Let w and other

notation be as in Theorem 2.8.9. Then, if

(s+l)’ m(s+Ll)
m

(a) t=zx.,, for same i, the moment matrices M
1 m+1

with respect to I(S+l) have full rank.

M(s+1)
m

(b) If t=xi, for same i, must be singular.
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PROOF: (a) follows from uniqueness of TéS+l) in (b) (ii)
of Theorem (2.8.9).

(b) follows from existence of a non-trivial solution
of a homogeneous system of m+l linear equations

in m+l unknowns. IR

We observe that if we choose points to,...,ts, s<m, and

seek ¢-polynomial's Tér) of degree m+l, orthogonal to ¢m+1
r-1
with respect to I(r) (I with weight function w (¢1—¢l(tj)),
3=0
w obeying (A3)) we may proceed as follows:
(a) Let X ,...3;% be the zeros of = (ET(O)).
o) m m m
(b) If tj are(hfdistinct from Xi(5x§0)), 120 ewaay 150 cuweesy
calculate rél>. Let the zeros of T(l) be
xél),...,x;l), rizm-1.
1
Loy 1f tj arechfdistinct from all ®y and xil), j=l,. .. 58, wWe
can calculate T;Z). Let the zeros of 1;2) be
(2) 2
XO ,o--,X;z)’ I‘z 2 m"?-
(d) For k=2,.::,82
1 (1) (k) .
i tj are<%;dlst1nct from all i X7 ey X, j=k+1,
(k+1)

o458, we calculate Tt with zeros

X(k+1) X(k+1)

o LR ]

K+ k+1

Noting that since the matrices Mr’ r=0,1,..., are non-

singular when (2.8.1) - (2.8.2) hold, the above process can
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obviously be modified to seek T;S;,

to @™ F with respect to I(r), P20y ¢ 5 ¢ 8% 15

of degree m-r+l, orthogonal

Thus, although we cannot obtain any further insight into

the zero distribution of réfg, we have gained some knowledge
concerning the existence of the polynomials Téf; and 1;8).

Returning to Theorem 2.8.8 we have:

COROLLARY 2,8.12 Assume (2.8.1) - (2.8.4). Let 2m+l -y-n=1,

y>m. Preassign a knot X If the range of ¢,(domain not
restricted to R) is IR, then Té}i is guaranteed m zeros,
and so the I.P.Q.F. in Theorem 2.8.8 (s=1) exists if all

these zeros are¢1—distinct.

PROOF: Clearly we may write

3 m-1
g B ‘H (¢1~¢1(xi))(¢l—s)
1=1
where RyseeasXy g are<ﬁfdistinct points in R. The range

of ¢; being R guarantees the existence of X such that

61(x_)=s. /17

In particular if ¢;3x, since x is a strictly monotonic
function defined on R with range R, Theorem 2.8.8 is always
valid with s=1.

We note that (cf. Lemma 4.5 of [24]), if we are given a
set of knots RyseersX s by using (2.8.10) we may decide whether
an I.P.Q.F. exact on @Yxéd, y>m, exists. Also the above

analysis is symmetric in m and n.

It is clear that (2.8.2) is a central tenet of the arguments
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presented in this section. Finally, we comment that although
our motivation for this section we originally the investigation
of the T-set h}}T:O, the results we have obtained depend much
more on the fact that, given (2.8.1) and (2.8.2), we are able
to factorize at zeros than on T-set properties, which we only
need to the extent of assuming that ¢, has at least m+l¢1—dis—
tinct points, or if we are interested in uniqueness of knots
in some I.P.Q.F.

Recalling the comments made at the end of §2.7, in view
of the analysis of this section, it is clear that given (2.7.11)
and/or (2.7.12) the requirement that the £ and 6 mentioned
there need not be strictly monotonic when we consider the case

m+lxwm and/or mevm+l. The only difference

of I.P.Q.F. exact on ¢
is that the knots X, and/or ¥ will be ¢;-distinct (wl—distinct)
and may not now be unique, though the matrix A will be unchan-
ged when any point ¢;-equivalent to a knot is used in place of
that knot.

Let us return and consider (2.8.1) - (2.8.2) for a moment.
We recall, see for example [157], that standard orthogonal
polynomials can be expressed by a three-term recurrence rela-
tionship

(2, 8,12) g

i+l = (t-ui) Ei—V.E

i3=1?

with the initial conditions
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(2.8.13) a3

0,

‘g usually being 1, the constant function,

kui and Vi being given constants, i=0,1,...

It is clearly possible to generalize (2.8.12) and derive

a set of basis functions ¢i using generalized recurrence rela-

tion. TFor example, we may use, see [166],

(2.8.14) $547 © (g—ai) d;=Bids

with the initial conditions

(2.8:158) {'¢_1 s Us

9 and & are given functions,

@y and B, are given constants, i=0,1,...

Clearly (2.8.14) is a generalization of (2.8.1l) since

we obtain (2.8.1) on choosing ai=8i=0, 1505 T s

s and &=¢,

(as defined in (2.8.1)) and b (from (2.8.15)) to be unity.

However, it is clear that the function 0541 in (2.8.14) can

be regarded as a polynomial of degree (i+l) (in the integer

powers of £) multiplied by g Consequently, we observe that

all the results of this section now hold in a more general

context; namely that obtained by defining the basic functions

¢i and wj as follows:
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(2.8.16)

11

TR T e
41 =

!
\

under the initial conditions

(2:.8:17)

1§}

a,

s and & are given functions,

S

\\ail’sil’aj2’8j2 are given scalars.

Now, provided % and wo are of one sign on R it is clear
the above results hold (since we merely regard the function

wo b, as the weight function in I in place of w).

§2.9 OBTAINING AN I.P.Q.F.

In cases II and III, we have seen that the knots, Rosenes
X » can be characterized as the zeros of a single ¢~polynomial
(even if that polynomial is not unique). In case I we know
that the required knots exist, and in the case ¢isxi, i=0,
«+ «y2mtl, the knots may also be characterized as zeros of certain
polynomials, see [9], Ch. 4. We also have several methods for
obtaining the W-orthogonal polynomial which has X seersX @S

m
zeros, given in §2.5:

(2.9.1) The solution of linear system of equations.

(2.9.2) When the moment matrix M_ has full rank we may use the

generalized Gram-Schmidt process, (2.5.9) - (2.5.12),

m+1

and this-is available if both @ and Wm are T-sets
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(Theorem 2.5.13). In fact, we observe that we only
need ¢ and ¥ being T-sets, since there is no need

to normalize E (see 2.5.11).

m+1

(2.9.3) We may define ¢ W-orthogonal to ¥™ by (2.5.14)

m+1’
(2=m+1l, and replacing £y by LI 150 eanymPl) « This

requires that rank M has to be m (else ¢m+150)

m+l, m
and a sufficient though not necessary condition for

this is that o™ and ¥™ are T-sets.

In the context of T-sets (and thus x; elementary functionals),
we can use (2.9.3) to amplify the comments made in §2.4 con-
cerning the unlikeliness of there existing I.P.Q.F. exact on
@waa, y+8=2m+l, except in cases I, II or III, in which we
eventually have no more conditions (i.e. at most m+l) to satisfy
than there are parameters (the knots xi) available. Recalling
condition (2.4.14) of Theorem 2.4.3, obvious candidates for

the functions hr are

(5,8, 4 hrzdet'I I I B I T I T A T .
T Cops0)s T Copsv s b

However, condition (2.4.15) of Theorem 2.4.3 in this con-

text requires that hr’ r=1,...,y-m, all have m+l common zeros,
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X v T and once we have determined Xgser o from examin-

02"’ m’
ing, say h;, it seems improbable that, without imposing strin-
gent conditions, even hy, will have X 5.re3X  as zeros, let

alone hs,...,h Replacing I (¢i;¢j) by ¢5 (xj), 150505 0

r-m’
m,m+r, j=0,...,m, in (2.9.4) guarantees the common zeros, but
in general we would not expect the hr so defined, r=l,...,y-m,
all to be W-orthogonal to gl

We now consider how to obtain the matrix A for an I.P.Q.F.
exact on ¢"x¥"?., We assume that the elementary functions
{Si(§i5')}?=0’ {Tj(nj;.)}?zo have been determined, and that
the matrices B and C are non-singular. As pointed out in §1.3,
there are two methods available; the use of interpolating
polynomials and the direct solution of the moment equations.

The use of interpolating polynomials is straightforward.
Since the matrices B and C are non-singular (cf. Lemma 2.2.21)
it is immediate that there exist unique ¢- and y-polynomials,
P; and qj, of degrees m and n respectively such that
£ 2.9.5) ( S (ci;ps) = Bygs Ls BEDQ ¢ wwndily

i

$

: Tj (nj;qt) 0 | SO

- bl
N 1%

Clearly, any ¢~polynomial, ¢, and y-polynomial, ¥, can be

written

{2.9:6)

-
1

li-o P35:€2530)

— n -
W =2 Zj:o quj(nj,d))

Thus it follows that we may find aij by
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(2.9.7) o 5 & E (pi;qj), E205 000 4Ty

The polynomials p; may be found either by solving the

relevant linear equations or as (see (2.2.10))

(2.9.8) P; = Vm,i/vm’ 320 4 ¢ sy

where Vi is Vm with the (i+l)-st column replaced with the
;i

vector (¢O,...,¢m)T. We may obtain qy analogously. Hence

If (2.8.1) and (2.8.2) are valid, then we may obtain P;
and qj in a format analogous to the standard Lagrange inter-
polation formula for polynomials.

Now, let us consider solving the moment equations (1.3.13)
directly. For quite small values of m and n, the matrix can
become quite large, however it is possible, see [23], and in
a general context, [31], to obtain the solution to (1.3.13)
by examining only (m+l) x (m+l) and (n+l) x (n+l) systems of
linear equations.

For each i=0,...,m solve the equations:

(2.9.10) C [ag; & I (¢i;¢o)" ;

. *

a_ s _I (¢i5¢n)
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where

- m
(2.9:32) a0y * Lic=0 35S (50

Then we obtain the elements of A as solutions of

(2.9.12) B a7 = [%50] , 3=0,...,n.

a_ . ’
mj | jm

Observe that in the process (2.9.10) - (2.9.12) we only
need to decompose the matrices B and C once, and so the deri-
vation of the matrix A can be done much more easily and ef-
ficiently than by attempting to solve (1.3.13) directly.

Of course, no matter how we obtain the matrix A, we know

that it is unique (Theorem 1.3.4).

2.10 PROPERTIES OF THE MATRIX A

We begin by noticing some fairly straightforward proper-
ties of A, Initially we examine properties which A has once
an I.P.Q.F. has been determined, and later we investigate

the effect on I.P.Q.F. of imposing certain conditions on A.

LEMMA 2.10.1 Let A be an (m+l)x(n+l) matrix. If we desire an

I.P.Q.F. to be exact on @waﬁ, n-6§=2>0, then we may ar-

bitrarily preassign %2 elements in each row of the matrix
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A, provided the rank of the matrix C (see (1.3.8)) is
not decreased after the relevant columns have been dele-
ted (i.e. in a given row of A, if we preassign the o
element, we delete the rth column of C).

An analogous result holds if m-y=k>0, when dealing with
the columns of A.

PROOF: The rank of D (1.3.9) - (1.3.10) remains unchanged.
See [2u]. Fid

COROLLARY 2.10.2 If¥° of Lewina 2.10.1 5§ & CT-g6t With pes-

pect to a bilinear functional L (so TjEL,j=O,...,n) the

rank of C in Lemma 2.10.1 remains unchanged. /17

CORQOLLARY 2.10.3 If I.P.Q.F. as described in Lemma 2.10.1 exist

i 0 3
exact on @' xy" s £>0, yz2m then, once the % elements in
each row of A have been preassigned, the matrix A is

unique. liEs

Consequently, we have the following result, which is com-

plimentary to Corollary 2.8.5.

COROLLARY 2.10.4% If we seek an I.P.Q.F. exact on &Yx¥""%, 350,

we may not arbitrarily preassign more than & elements in

each row of A. ///

We are thus able to conclude that, when seeking an I.P.Q.F.
exact on @waa, there is, in general, no real gain in consider-

ing n>§, and the usual choice would be n=¢ (cf. (2.7.2)).
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Considering the rank of A, we have (see also [13,241]).

LEMMA 2.10.5

Assume we are given an I.P.Q.F., exact on

@wan, and that the rank of MY

” is n+l. Then the rank
3

of A is maximal, i.e. n+l.

PROOF: Assume the contrary, i.e. rank of A is less than n+l.

Then there exist constants a., with y?_0|aj[>0, such that

n
y a.a. =0
23=0 =1 =7

where ij is (see (1.3.1%)) the (j+1l)-st column.of A.
However recalling that C (see (1.3.8) has maximal rank,

there exists a non-trivial ¢~-polynomial ¢ such that

Tj(¢) = B T2 ¢

ey B
Hence Q(¢i;¢) =0, i=0,...,Y, and since the I.P.Q.F. is
exact for @wan, it follows that

I(¢i;w) g Dy 3180aawvsys

Thus contradicts the assumption on the rank of MY o
3

Ebf

We also have:

LEMMA 2.10.6

Assume we are given an I.P.Q.F. exact on oY xy",

Assume ;30> i=z0,...,n. Then the rank of A is n+l
PROOF:

Again, we assume the contrary, namely that rank of A

is at most n. We show that the rank cannot be n (the
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argument is analogous for n-l,...). Assume the first n
columns of A are linearly independent. We now show that
the remaining column cannot be equivalently zero. Since
if is equally zero, we construct a non-trivial ¢-polynomial,

¢, of degree n, such that

T;(8) = 0, §=0,...,n-1,

and Tn(¢)=l. Such a polynomial exists since C has maximal

rank. However, we now find that

Q(93¢) = 0,
while
I(4;9)>0,
®
and thus have a contradiction. We now derive the polynomial
l y as done in the proof of Lemma 2.10.5, and we have a
contradiction since
QCysy) = 0,
while
E
Llpsd) > 0. Il

LEMMA 2.10.7 Assume we are given an I.P.Q.F. exact on @was,

§<n, y+822m, S;ex;, 180y « v oylly and that (2.8.31); (2.8.2)

are valid. Then the rank of A is at least 6+1.
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2
PROOF: We proceed in exactly the same way as the proof of

Lemma 2.10.6, examining rows and elementary functionals

S; and on replacing n by 6 it follows that at least one of
: the 6-th,...,m-th rows of A cannot be identically zero.

Assume the 6-th row is not identically zero. Consequently
> there exist constant G s+ es0s, NOE all zero, such that

(ao,...,aa,O,...,O) A = 0.
Set
= (x,))°
E # I (¢,-9, (x,
fsger = = 2

i 3 €(xi)=0, i=0,...,8, we are finished since I(g;1)>0
[ but Q(g3;1)=0. Assume £(x,;)#0 for same ie{0,...,8}. We

now obtain 6, of degree at most &§, such that if
; g(xi):o, 1200y » o apBiy

>
o) = Ty

The existence of such a 8 is guaranteed by the ¢~-distinc-

tions of the knots KoswwesX o However Q(£63;8)=0 by con-
@ struction, while

I(ge36) > O. P

As usual, the analogous results hold an interchanging m

and n.

We can obtain some results, concerning the symmetry of A,
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which will be of particular use when actually calculating the

elements ai..

DEFINITION 2.10.1 We say that a function & is even with respect

to a set of elementary functionals {L 154 3 iF
i=

(2,10.1) Li(E) = L i(E), i=0,...,[3].

I‘l_

NI

Similarly, & is odd with respect to {L 3 . if
i=

= oz r+1
(2:10,2) L;(E) = -L__.(8), 1i=0,...,[5= /17

As usual [s] denotes the integer part of s, i.e. the greatest

integer less than or equal to s.

THEOREM 2.10.8 Assume we are given an I.P.Q.F., exact on T xy

and the following conditions are obeyed,
+ : .
(a) [m 1] of the functions @m are even with respect to

{Si}T 53 the other m+l- [ =] being odd,
Tt
(b) [n+l] of the functions Wn are odd with respect to

{Tj}? i the other n+l—[§%i] being odd,
]:

(c) If ¢.¢v. is the product of an even and an odd function,
1]

Then the matrix A has rotational symmetry of order 2.
PROOF: The requirement that A has rotational symmetry of order

2 can be written as
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(2104 3) Ll n s es05050mu305-1 1 & ST =G

Wbl o' o gyl i 500

% —

where a is given by (1.3,14) (we insert a column of zeros

(m+1l) (n+1)-1

between the 5 'th and following column of U if

(m+1)(n+l) is odd). If an I.P.Q.F. with the desired pro-
perty exists then rank (%) is the same as rank (%H%%) ;

An examination of (%) shows that U and the matrix f;rmed
by taking all rows of D corresponding to the pairs of fun-
ctions in condition (c¢) are equivalent, and consequently

only one of them is required in the determination of A. ///

COROLLARY 2.10.9 Unless both m and n are even, the words

"even" and "odd" may be interchanged in either or both of
conditions (a) and (b) of Theorem 2.10.8. If both m and n
are even, even and odd must be interchanged in both (a)

and (b). L1d

COROLLARY 2.10.10 Condition (c¢) of Theorem 2.10.8 may require

that both ¢i and wj are either odd or even, and then A has

antisymmetry of order 2. Y d

In particular, we have the following special cases:
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COROLLARY 2.10.11 Let ¢i(¢j) be even if i(j) is even, and odd
otherwise. Let Siexl ,Tjexl, and assume the knots Xi(yj) are

symmetrically distributed about the origin. Then

(a) 1f w is even, Theorem 2.10.8 is valid.

(b) if w 1s odd, Corollary 2.10.10 holds. Fid

Again extending slightly some results in [24], we can make
the following observation. If a function is even or odd, its
zeros will be placed symmetrically about the origin. Conse-

quently the following is immediate:

COROLLARY 2.10.12 Let ¢i and wj be as in Corollary 2.10.11
1,3=0,1,... Assume Si€X1: Tj€X1- Then, if w is also an
even function, and the I.P.Q.F. is exact on @ast where
o« and B are both even or both odd, the I.P.Q.F. will also

be exact on

o+l B

8% xy BFL

and @axw
PROOF: Immediate from the structure of A determined in Theorem

2104 8. Jd

Clearly there is an analogous Corollary in the case when
w is an odd function.

We now have, following [12]:

DEFINITION 2.10.2 An I.P.Q.F. will be called symmetric if m=n,

_ . T
SizTi, i=0,...,m, and A=A".

The following results are obvious and extend results in
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(12 413 )«

LEMMA 2.10.13 An I.P.Q.F. exact on ¢™ 1xe™ (and m2n) with

SiETi, i=0,...,m, is symmetric, and the matrix A is posi-
tive definite.

PROOF: m=n follows from exactness on the product space (see
Corollary 2.3.4). The fact aij:aji is now immediate on
calculating the elements of A using interpolating poly-
nomials ((2.9.5) = (2.9,7)). Positive definiteness of
A follows since det B20, and thus for an arbitrary (m+l)

vector (ao,..,am), there is an unique non-trivial ¢-poly-

nomial ¢ such that Si(¢)=ai, iz0,...,m, and

Q(¢39) = I(o3¢) > 0. /17

LEMMA 2.10.14 Assume (2.8.1), (2.8.2) hold, SiETi, 120 gwwnBENs

and that
si(¢j)si(¢k) = Si(¢j¢k), T K20 wenlil

Then any R.Q.F. exact on @', y<2m+l, can be written as a
symmetric I.P.Q.F. with A diagonal. Conversely any sym-

; i 8
metric I.P.Q.F. with A diagonal exact on ¢Yx¢° is a RiQoF

e
exact on &f & i

LEMMA 2.10.15 Assume (2.8.1), (2.8.2) hold, SiETiexI, 120wy

’ ek Lo
m=n, and we are given an I.P.Q.F. exact on ¢ x¢.,

Then the matrix A is diagonal.

PROOF: The knots, R 5w sX oo (yo,...,ym) are, up to ﬁ-dis-

m
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tinctness, unique (see §2.8). The matrix A is unique

(Theorem 1.3.1), and may be calculated using interpola-

tery polynomials. Observe that in this case we may write
m
(2-10-"") pi ai(jgo(¢l-¢l(xj))’l=0’...,m,

f2d

where ai is some non zero constant. Observe that

u
i

ii I(Pi§Pi) >0, i=0,...,m,

and

A I(pi;pj) = I(rm;e) = 0,

where T is given by (2.8.10) and 8 is a ¢-polyncmial of

degree m-1. /17

COROLLARY 2.10.16 Assume (2.8.1) - (2.8.3) and that we are

. + . . 2
given an I.P.Q.F., exact on o™ lXQm, in which the matrix

A is diagonal. Then the knots yj must be ¢;-distinct but,

as a set, $y~equivalent to e R R Thus A is unique.
PROOF: Immediate from the proof of Lemma 2.10.15 and Lemma
2.5.15, which guarantees that T is unique (up to a multi-

plicative constant). /17

Having seen that in certain circumstances A may be a
diagonal matrix, we now reverse our stance and examine what
happens if, from the outset, we require A to be diagonal. If

m>n, by A being diagonal we shall mean that (after reordering
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rows and columns of A if necessary) we can write

(24 10%5) aij = Oy 3#J s 433 = 0 wovsls

We shall only consider I.P.Q.F. exact on ¢wan, y2m. The re-

quirement that A be diagonal may be expressed as
(2,10.6) I(pi;qj) m 0y, 2], 1,370, 200Dy

where‘pi and qj are defined as in §2.9. This gives us n(n+l)
conditions and we have m+n+2 parameters in the choice of elemen-
tary functions Si and Tj available. Thus without the aid of

some conditions on the choice of ¢i0 ¥ (évges (2:48.1) - €2.8.2),

3
¢is¢i) and perhaps S, and Tj’ we might only expect it possible
to force A to be diagonal when, seeking I.P.Q.F. exact on

mewn’
(2.50:7) n{n+l) < m+n+2.

Clearly, given n, there is always an m such that (2.10.7) is
satisfied for m>m_ . Analogous comments apply if we seek an
I.P.Q.F. exact on oY xy™ (though there are more conditions to

be satisfied now), when (2.10.7) is replaced by (see §2.4).
(2.10.8) (n+y=-m) (n+1l) < m+n+2

In the most structured case we have examined, i.e. case
ITT of §2.4 (§2.8), and using arguments similar to those in
the proof of Lemma 2.10.15 (see also [12,13]) we immediately

find
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THEOREM 2.10.17 Assume (2.8.1) - (2.8.4). Let Roswe s X be

5 5 +
@rdlstlnct zeros of O orthogonal to o™ l. Ifs San

J

3j=0,...,n, are %fdistinct and such that yje{x .,xm}

o
(up to ¢y-equivalence), then the I.P.Q.F. using these
knots is exact on @Yxén, y+n=2m+l, and A is diagonal.

The converse is also true.

PROOF: We only need comment on the converse. Assume ai.=0,
i#j,i,3j=0,...,n (by renumbering knots if necessary).
Clearly, if the yj's are not¢;-equivalent to xi's, we have
two distinct sets of functions orthogonal to each other,
with respect to the weight function w ? (pp-07(x;0).
Thus, the moment matrix with respect %;nziis new weight
function has full rank (Theorem 2.5.9). This contradicts

Corollary 2.8.11. /17

COROLLARY 2.10.18 Assume an I.P.Q.F. as postulated in Theorem

2.8.8 exists. Then, if the knots are chosen as in Theorem
2.10.17, the matrix A will be diagonal. The converse is
also true. L

The analogue of Corollary 2.8.10 obviously holds also. Having
examined this case in some detail, we can also obtain some
information for a more general situation, see [25,26,27], when

Si,Tjexl,i,j=0,l=m=n.

THEOREM 2.10.19 Assume 2 and ¥! are CT sets on R. There is

exactly one I.P.Q.F. exact on ¢2xY¥! with A being a diagonal
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matrix. The diagonal elements of A are positive.

to be the

PROOF: m=1 and exactness on 92x¥l force x, and x,

zeros of t;. Diagonality requires that I(po;ql) = I(pl;qo)=O.
If Vg2 Y1 exist such that the required I.P.Q.F. exists, s
is a zero of q; and y; a zero of qg- Let A be the ¢-poly-

nomial of degree 2 such that

i
]

A(xo)

I
o

and Axy) (a nonnodal zero).

Thus A-p is zero at x, and x; and so A=P, is proportional

to t;. Thus I(A-p_3q) = 0 for any qesp¥!l,
= T{i3q) = I(po;q), Vqesp¥!?

Thus we need q, non trivial, with a zero which we will

choose to be b such that

I(x3q,) =0 (”I(po;ql) = 0).

Let q be a y-polynormal of degree 1, with a zero in R.
L L (A;a) = 0 set q;=q. Else, since Vg is of one sign,
say positive (¥! a CT-set), thus I(x3$, ) is non-zero,

choose q1=q~awo where
I(A3Q) = «I(a39 ).

q and q; contain ¢,;, with non zero coefficient (by their
construction), thus since I(A;q;)=0,q; must have a zero
in R. We obtain y; analogously (qo and gq; are distinct

else we contradict orthogonality). We now show that aoo>0
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(a;; analogously).

B B I(po;qo) = I(A;qo).

But q_=aq;+B8y (a0 since q, has a zero in R, and B8=0

since qoqu). Thus e 7 BI(X1;¢O)>O. Lk

We observe that Theorem 2.10.18 is symmetric in m and n,
and that it is valid on preassigning X and x; (distinct)
arbitrarily, although we then have exactness on ¢!x¥! only.
Further, we note that the proof does not extend to m and/or n

larger than 1.

§2.11 I.P.Q.F. AND GT-SETS

We begin with some straightforward comments based on the
properties of linear functionals. It is elementary that, given
two r X r non-singular distinct matrices F and G that there are

unique, distinct non~singular transformation matrices W; W, such

that
(2.11.1) F = W6,
(2.11.2) F = GWy,
_ _—1
(2:313) W3F = G (WS—Wl J 5
” opaa Sl
(20T v i) FWy = G (Wq—w2 3 %
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Now let F,G be rxs (r<s) and of full rank. It follows
that W, (similarly Wj3), now sxs, always exists, has rank at
least r, and that s-r elements in each column of W, may be
preassigned. By carefully preassigning elements we may gua-
rantee that W, has rank s (or any number between r and s in-
clusive). W, is of course not unique, thus W,=W3! need not
hold. On the other hand W; if it exists will be unique, and
it will exist if and only if the following conditions are

fulfilled:

C2:11:5) Some given r columns in both F and G are linearly

independent.

. L B In both F and G all other columns are the same
linear combination of the given s linearly indepen-

dent columns.

Clearly, if W; exists, then W3=W7!. If r>s then by interchan-
ging W; and W,, r» and s, and rows for columns, the above com-
ments remain valid.

Now we examine the question of replacing one set of elemen-

tary functionals, say H%}? " by another set, {é.}? Natur-
1=

i'i=0’

ally, we assume that any replacement set of elementary func-

tionals obeys (A7) if they are not a GT-set. The comments when
n
3=0

analogous. From our initial remarks it is easy to obtain:

considering {Tj} (and we consider the case r>s above) are

THEOREM 2.11.1 Assume we are given an I.P.Q.F. exact on
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B B 4890

@waé y<m. Then we may replace {S.} ik,
1 i= 1 i=0

, 1f we
replace the coefficient matrix A by WA where W is a trans-
formation matrix such that Bzéw, where B is given by
(1.3.7), and B on replacing s; with éi in €Te3.70. IF

y=m the matrix W is of full rank and unique. A

THEOREM 2.11.2 If, in Theorem 2.11.1 y>m, the conclusion is

valid af and only if (2.11.5), (2.11.8) hold. IF “the
matrix W exists it is unique and of full rank.
(Here we have F = {Sj(¢i)}T’ M -p and

i=0,j=0 Y,Mm

- 2 Yo m =A
6 = (S50 T = B e (of (2.11.2)) /11

From §2,10 it is clear that the rank of the matrix WA
will be at least §+1 in the above results (we may be able to
say more, depending on the nature of {Si}?=0 and {éi}?zo)‘

We see that the conditions (2.11.5) and (2.11.6) in
Theorem 2.11.2 are in practice conditions on the choice of
parameters of {gi}?:o. Consequently we end up examining con-
ditions similar to (2.4.7), and the coefficients TR mentioned
are determined by linear combinations of rows in BY,m'

Returning to Theorem 2.4.3 we recall that the way in which
we arranged for conditions (2.4.1%) - (2.4.16) in §2.6 - §2.8
to be satisfied was to obtain the orthogonal (or W-orthogonal)
polynomials hr’ r=l,...,y-m, and then to see if we could
guarantee that (2.4.15) and (2.4.16) were satisfied. This
means that the coefficients a.  of hr in (2.4.10) are fixed by

orthogonality conditions which are independent of our choice
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of elementary functionals Si and Tj. In turn, this means that

the coefficients ., in (2.4.7) are determined independent of

our choice of functionals Si’ Thus it is apparent that the co-

efficients @, are independent of the method used (i.e. trying

to replace one set {Si}T 0 of elementary functionals by another
i=
{s:}" or examining the moment equations (using {S.}T )
1 i=0 L 3i=0

directly) in obtaining them. Hence, emphasizing (2.4.15), we

see that to determine whether an I.P.Q.F. exact on oY x¥" exists
m

i=0
¢-polynomials, which are W-orthogonal to v"'.  This means we have

we need only consider the action of {Si} on same special

two ways of obtaining an I.P.Q.F. using {éi}?=o’ once we have
parameters such that éi acting on the (W-) orthogonal poly-
nomials is zero, i=0,...,m, then we may either determine W as
in Theorem 2.11.2 if another I.P.Q.F. exact on oY xy" using
m

functionals {Si} is already known, or we are able to obtain

1=0
the matrix A as in §2.9. Clearly the existence of an I.P.Q.F.
. ;| r m ; :
exact on ¢ xY¥ , y>m, using {Si}- 0’ does not 1mply the exis-
=

m
i=0"
The transformation matrix W can be calculated directly

tence of an I.P.Q.F. exact on oY xy" using functionals {Si}

using discrete vector scalar products, from the square matrices

B (B ) and B, as follows:
m,m

b

(a) Find an upper triangular matrix, U, such that
€2 107 B* = BU,

where B* has columns which are orthonormal to each

other, and span the same vector space as the columns

of B. This may be done by using the discrete version
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of the Gram-Schmidt orthonormalization process (see,
Suiln g L1LE]) .

(b) Obtain the matrix W% such that
(2. 11487 B = B#*W%*,

This is straightforward now that the columns of B*%
are orthonormal, i.e. (B*)T(é*) = Im (Im is the
(m+1)x(m+1l) identity matrix).

(c) The matrix W is now given by
(2.11.9) W = U(B*)TB = UW*

A great deal of analysis in this chapter has dealt with

T-sets, and thus with x;-functionals. There are two reasons
for this. First, the most common type of elementary functional
to be used is x;. Second, using point evaluation, and thus

being interested in the zeros of functions, we are able to

make use of some known properties of integrals of functions with
certain zero properties, in particular the fact that the inte-
gral of a non-trivial function of one sign is non-zero. It is
hard to obtain similar properties when using other types of
elementary functional. However, from the comments made earlier
in this section it is c¢lear that much of the analysis depends
upon orthogonality which is independent of the choice of the
elementary functionals, and some results that have been proved
using properties of functionals can be proved for more general

cases using orthogonality properties. In particular, we can
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extend Theorem 2.3.3 (and Corollary 2.3.4). Given @', y>m,

satisfying (2.8.1), and WG, we define the moment matrices

M£+l i Pelyes « s¥=My L=(y-m)(8+)1), (cf (2.5.1), £2.5.,2)) as
2

the moment matrices, with respect to I, using the set of

functions
r‘ -
(Rndl. 20 o = o seeest st ),
(2.11.11) ®, = N PR I PERRRS L N SFRUREL W 79 £

THEOREM 2.11.3 Let ¢', vy>m, satisfy (2.8.1) and WG, §>0,
2=(y-m) (§+1)>m+l, be such that the rank of one of the
moment matrices M- sP=1y...,Y-m, 1S m+2. Then there

m+l,%

cannot exist an I.P.Q.F. exact on @waswhen Sisxl.

PROOF: Choose r such that rank M;+l % is m*2. In calculating
3

h, (see (2.4.10)), W-orthogonal to at least m+2 functions

(cf (2.8.8)-(2.8.9)) we are attempting to find a non-trivial

solution to a homogeneous system of equations, in which

the matrix has full rank. This is impossible. L

We conclude this section with a Theorem, the proof of which

emphasizes the role orthogonality plays in our considerations.

THEOREM 2.11.4 Let @m+l satisfy (2.8.1). Let v™ be a T-set.

Assume ¢1,wjeC1(R), j=0,...,m and ¢} has no zeros. Let

Kyse e X be n1¢fdistinct zeros of T W-orthogonal to ym
Assume Siexl, SiESi(xi;.), F=L, Conally Lot ZgseeesZ, be
the zeros of (Tm)'. Then for at least one ZE{ZO,...,Zr}

defining SO to be derivative evaluation at z, there is an
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+
m lx m

T.P:;0.Fs exact on ¢ ¥ (m=n).

PROOF: Examine the matrix

¢ 10 19) B = 0 T R :
¢i(z) " ¢1(x1), “ = & § ¢1(xm)
2 2
2¢1(z)¢i(z), ¢1(x1), 6 & & § ¢1(xm)
m-1, , m m
_m¢1 ¢1(z), ¢1(x1), & % 8§ ¢1(Xm)_

The matrix obtained by deleting the first column and last
row is nonsingular (Corollary 2.2.17). Let

m

1 .

14
0‘]¢1 ¢

(2.11.13) m’%

(41-01(x;)) = 3

Y
1
=S8
1_1

i
B will be singular if z is a zero of

(210 1) o = ¢5(m¢?‘l+2?;é jaj¢}‘l)

® has at most m—l¢l-distinct zeros. On the other hand

(rm)', since Ty has at least m+l nodal(%fdistinct ZEeros ,
has at least m¢l—distinct zeros. We can now choose z to
be any zero of (rm)‘ which is not also a zero of 8, thus

ensuring that B is nonsingular. Also, assuming that

oy oL m 1
Tm - ¢1 + 2i=0 qu)l ?

as required for there to be an I.P.Q.F. exact on ¢m+lxwm
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we clearly have

((m+2)nd row of B_ m)+2?=08i(i+l)st row of B )=0.

+1., +1l,m

/177

COROLLARY 2.11.5 Let everything be as in Theorem 2.11l.4

except that ¢} may now have zeros. The conclusion of
Theorem 2.11.4 remains valid provided there is a zero of

T% which is notazero of & given by (2.11.14). Il

COROLLARY 2.11.6 If in addition to the conditions of Theorem

2.11.4%, (2.8.2) holds, the conclusion of Theorem 2.11.4% is

valid for @van, y+tn=2m+1. L

Clearly the I.P.Q.F. of Theorem 2.11.4 and its Corollaries
are by no means unique, since, apart from the possible choices
of the point z, there are (;) ways of choosing the knots
ESPITRIRIPS where s>m is the number of¢l—distinct zeros that =t
possesses. We may extend Theorem 2.11.4% to deal with inter-

polatory L.B.Q.F.:

COROLLARY 2.11.7 Let 8" satisfy (2.8.1). Assume $15¥5eC' (R,

3=0,...,m. Assume Siexl,xi fixed and ¢;-distinct, i-=1,
m

veesM. Let £ = H(¢1-¢1(xi)).
1=

Let SO be derivative evaluation at z. If £'(z)=0, then

det(B)#0, B given by (2.11.12):

PROOF: See Theorem 2.11.4. £
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For Si as in Corollary 2.11.7 we see Tj are still arbi-

trary (so long as det(C)=0) and So has only a weak condition

applied to it, so the elementary functionals Si retain many

degrees of freedom in their choice.

extended further.

COROLLARY 2.11.8

except assume Siexl,xi fixed and¢l~distinct, 1= o 5 »

Corollary 2.11.7 may be

Asgume the conditions of Corollary 2.11.7,

IO

Let 3 be the ¢-polynomial determined by
o m-r  m-rt+i s _ ;
ajr¢l+-o'+ujm¢l —(bl ] 4 :O’ J_l" "r) 1=r,...,m
1
Let Zo""’zr—l be such that

L1

(2)

(3)

'
¢1(Zi)¢0 i:O,...,I‘-‘l

Z; are<ﬁ—distinct 5 2] o Ry |

T Y=l

j:l,izozg

1

Then detB=z0, B given by (2.11.15).

PROOF: Analogous to Theorem 2.1l1.4 on considering

(2411515)

B

=T 0 0, T sees

1 '

¢1(ZO) ,...,¢1(Zr_l) ¢1(Xr>..
' t

261 0102) 5-eea281810z,_ 1) #1(x)...

. .

- t o 1
me] 1¢1(zo),...,m¢T 1¢1(zr_l) ¢T(Xr)"'

.,¢1(xm)

’ l

,¢§(xm)

$1Cx)

/117
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CHAPTER 3: -COMPQUND I.P.Q.F.

§3.1 USUAL COMPOUNDING

We remember that a prime reason for investigating I.P.Q.F.
is the desire to make full use of the differing characteristics
of the functions f and g in the bilinear functional I (see
(1.3.1)). We should not forget this when we use an I.P.Q.F.
in a compound manner. When a R.Q.F. is compounded, the usual
procedure is to split the interval of integration into a number
of subintervals (usually of equal length, for simplicity),
apply the R.Q.F. to each subinterval, and sum the results. It
is likely when using an I.P.Q.F. that we will want to use dif-
ferent selections of subintervals when considering the functions
f and g. Some comments in connection with the standard poly-
nomial case are made in [12], and a more detailed investigation
is carried out in [ 201, based on evaluating the integral
(2.9.7) exactly, when it has been modified to deal with the
compound I.P.Q.F. We employ a different approach.

In order to discuss compound I.P.Q.F., we must initially
establish the criteria under which we may change the interval
of integration and yet retain exactness. Assume that we have
an interpolatory I.P.Q.F. exact on @was, with y2m, 82n. For
generality we denote the interior of R by (a,b) (not (Au)),
and the I.P.Q.F. by QR' We seek a shifted I.P.Q.F., QK’ exact
on an interval K with interior, say, (c,d). We want Qg to be
(K)QYx(K)wS {(K) (XD }6

LIS el

(i.e. "
i'i=0 i74=0

exact on ), where
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"(K), [(d-c)t+be-ad\ . .
(3-101) ¢i( b—a ) o d)i(-t)) l—O,..-,‘Y,
(K) (d=-c)t+be-ad) _ S
wj( b-a ) = l"j(t):‘ 3=0,...,8,
tekR.
. : (X) m
The elementary functions used in QK’ { Si}- 0 and
: Y=
{(K)T.}? , Will obviously be of the same form as {S.}T and
J 3=0 1 i=0
{Tj}? " but probably with a different choice of parameter.
:l"_'
Naturally, we assume
(x) (K) !
€3:0:2) Si(¢u) = Si( ¢u)’ T20sq a4 « sMy 020505 5 7%
(X) (K) .
Tj(¢v) = Tj( ¢V), F20y0n s oy VED 50w 48,

Now QK approximates IK’ the bilinear integration functional

over K with respect to weight function W, Where

¢a.1.8) WK((d_CéE;bc_ad) = w(t), teR.
Define Q. by
(3.1.4) Q(f;g) = (%55)‘K’£TA‘K)5,
where A is given by Q
s S L WL T
(T ((K)To(g),...,(K)Tn(g)).

The following Lemma is immediate (see [121]1):
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LEMMA 3.1.1 Let Q be an I.P.Q.F. exact on #Yx¥®. The shifted

I.P.Q.F. Qs defined by (3.1.4) is exact on (K)¢Yx(K)w6,

defined in (3.1.1). 8y

We note that if, assuming ¢. and y. are defined on K, we
1 ]

replace (3.1.1) by

(3.1.5) (K)¢i(s) R TI B
(K)wj(s) = wj(s) F2) e %08 5
sekK.

the conclusion of Lemma 3.1.3 is not valid in general. However,
if as in the case of standard polynomials, i.e. (2.8.1) - (2.8.2),
and ¢1Et, teR, hold, the conclusion of Lemma 3.1.1 remains
true on replacing (3.1.1) by (3.1.5).

Noting the condition (3.1.3) we see that, except in very
special circumstances, where w is periodic, there is no point
in considering compound I.P.Q.F. unless, as we shall assume for

the rest of this section, w=zl. We now need some notation:

DEFINITION 3.1.1 An r-partition of the interval R is a parti-

tion of R into r non-trivial, non-intersecting (but not

necessarily equal length) sﬁbintervals,

(-—l,Wl),(Wl,Wz),...,(W ) (W

pia g 4 8 D

r-17

(we sometimes will use -1=W_, 1zwr>. We denote this parti-
tion by

t
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(867 48) 0 T . /717

r-12

DEFINITION 3.1.2 Let M(N) be a u(v) partition of R. By o

(N?G) we mean the set of functions which are u¢—(vw)--
polynomials of degree at most y(8§) on the p-th (v-th)

subinterval of the partition ME{—l,Xl,...,Xu_l,l}

(NE{-l,Yl,...,YQ_l,l}), pelsnss 3@ vaYaugn 2« WA
In the above definition, a ucb—polynomial is a polynomial
(X 9% )

in sp M1 W4Y defined by (3.1.1) (on replacing K with (X X .

p=-12""p

We define a  y-polynomial analogously.

DEFINITION 3:.1:.3 An (M.N) copy of an I1.P.Q.F. Q is an I.P:Q.F.;

denoted (M’N)Q, with the properties
(a) If Q is exact on ¢wad, then (M’N)Q is exact on
M. ¢ N_8§ _—
¢'x ¥, where M and N denote partitions of R.

(M,N)

(b) The elementary functionals used by Q, denoted by

{“S.}T s {VT.}? , are such that (3.1.2) holds (the
1 i=0 1 j=0

interval X is now (X X ) (€Y

p=1*"u v=172
pel i 2 sulvelgaes ol & /17

Y ).
v

(M,N)

The I:P«Q:F. Q can be written

(% 1s 70 (Holldy o My T Dpelly |

(M,N)

where A is a u(m+l)xv(n+l) real matrix, and
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(3.1.8) T s T,
BeT = (Mg (£),...,%8 (), p=l,...,u,
- O m
(3.1.9) Par® & el 8%,
v T v v
g 2 DT 08 n T Cdd, wmly ... g

In the most common case, in which Si(Tj) is funection

evaluation at xi(yj), it follows that

(3.1.10) s, (E) =
i=0,

(910 “Tj(g) 5
j=0,

"
<
+

f(x“i), X5 Mo e

In [20] a third desirable property for a compound I.P.Q.F.

is given namely,

(B 9 O

When f is set equivalent to 1, both Q and

(M,N)Q

reduce to R.Q.TF., say Q(n) and Q(vn)’ where Q(vn)

is the N-copy of Q 3

g An analogous result holds

on setting g=1.

This property patently requires that lespé®’ and lesp?é,

and this may not always be the case.

Assuming that all the elementary functions uSi

exist, we need to calculate the matrix

the matrix A.

and vT.
0,

(M’N)A, preferably from

In the process of our calculations we note that
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in each subinterval of a partition of R we may use any set of
v+l (8§+1) functions which span “@Y(vwa), including, of course,
M4 ({Vw-}§ ). This is of particular interest when the
1 1=0 J j=0

functions % ¥ are monomials since then we can (if we
wish) replace u¢i(\’d)j) by ¢i(wj), ULy ¢ ¢ gl (2T o o )

It is not immediately clear that compound I.P.Q.F. even
exist, let alone how they may be derived. Using the same
approach as in §2.4 we write down the system of linear equa-

tions which the elements of the matrix (M, N)

A must satisfy.

We can do this by assuming that f(g) is equivalently zero on
all subintervals of the partition M(N) except the u-th (v-th),
on which we set f§“¢i (gsij), 1204+ s s (J=0,..¢,0n); Ffor each
p=l,...,u (v=1l,...v). TFor the present we assume y=m and §=n.

We comment on what happens if we require y>m (or $§>n) later.

From (3.1.1) and (3.1.2) it is clear that

(3.1.10) Hp

H H m ,m o s
( Si( ¢r‘))i:03r:0 e B’ u—l,...,u,

where B is given by (1.3.7); and

i

Vg . 7V v n s N -
& 0 P 1 C = ( Tj( mr)). = C

n
520, =0 (czk)z,k=0’v:1""’v’

where C is given by (1.3.8). It follows that the system of

linear equations we seek is

£ 5.0, 055 (M0 [ (MM (4,00

Some notation helps us in defining (M’N)D.
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DEFINITION 3.1.4 Given an (r+l) x (r+l) matrix F = (fij)? " ? 0
1=0,3=

by F[I]t we mean the block matrix

£ 3,028 ¥ T sesvgt T = FeTI

0 PRI S ) !

L

where It is the (t+1)x(t+l) identity matrix. By diagr
(Fo""’Fr)’ or diagr (F) when FiEFj, Lg izl o » x2% W

mean the block matrix

(3.1.14) E s0g0wes0] o
0P v 50
where 0 denotes appropriately sized zero matrices. /17
We find
€31 716) M,Np . diag _,(C 8 (diag _,B)).

We now define

(2,1.16) VAT = (I(u¢o;vwr),...,I(u¢mngr))T ,

TS Qe s eyl



C9.0.4%7) VAR G YATIT, ey e P 5YE,
(3.1.18) TR & v aThT L e
and so derive
' (81,193 L TS
Let the matrix (M’N>A have elements bij, 1050 & ¢ CRELD,

3=0,..,(n+1l)v (to avoid confusion with the elements of the
matrix A). It is possible that for certain choices of elementary
functionals (for example yx;-functionals at the endpoints of

intervals), some rows and/or columns of the matrix (M,N)

A may
be coalesced if the functions I operates on are sufficiently

smooth. Set

15 F

S 5" =B ey ety g a 0 Py inale, 517
1215 eessVa J505: 0 v EAFLY

and then

(3.1.21) R T T e T
(u,v(n+l)E)T)

The large system of equations (3.1.12) may be broken

(M,N)

down into many smaller systems. Let A be made up of uv

< v ; ’
submatrices " A, u=l,...,u, v=1,...,v, each of which is an

(m+1)x(n+l) matrix. We interpret "'A as determining the con-

X))

tribution made to I by the function f defined on (Xp 12
2o H
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and g defined on (Yv—l’Yv)' An examination of *MD shows
that we can write

(3.1 99) e = "l pEloeveans 9= lues s

where D is given by (1.3.4%), and

(3128 Wy & PR e A T

(3.1.24) pv_ . cu,(v—l)(n+l)+lETj.-.’u,v(n+l)§T)T,

¢ 3.1.25) WV m oM (VRLAMRLIRL, il

In dealing with (3.1.22) we may utilise results obtained
in the previous chapter, for instance we already know that
the rank of D is maximal (Lemma 2.4.1). Thus the following

are immediate:

LEMMA 3.1.2 1If I(“¢i;“wj) =0, 1=0,...,m, j=0,...,n, then "VA

is a matrix with all elements zero., This occurs when

(Xu—l’xu) n (Yv—l’Yv) is the empty set. /17

Thus we will not have to solve (3.1.22) for all values of

p and v.

THEOREM 3.1.3 Let Q be an I.P.Q.F. exact on o"xy¥". Let M and

N be two partitions of R. Then the (M,N) copy of Q always

exists and is unique. I
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THEOREM 3.1.4 Let Q be an I.P.Q.F.-exact on @waé, y>m. Let

M be a partition of R. Then the (M,M) copy of Q always
exists and is unique, and can be written as in (3.1.286).
PROOF: Let M = {—l,Xl,...,Xu_l,l}

Then it is clear that

=R )
-1
uvé.:]_ll—2u—_£ s M=V
\* 0 s HEV,

Where A is given by (1.3.14). Hence we obtain

MM, _

€3.1.26) '(xl-XO)A,o,...,o

0,(X2"'X1)A,ooa,0

0y 0ees0,(X X A /77

— o

This Theorem means that in determining an (M,N) copy of
an I.P.Q.F. we may as well assume that in the partitions M and
N we find
(3.1.27) X #Y 5 psl,eee,u-l, val,e..,v-l.

v

Returning to (3.1.22) we see that, on recalling (1.3.13),

and defining a square matrix F such that
03:1.88) PYs = P&,

it follows that



142

(3.1.29) Wa = §-1 Wy,
s §™1 Fh,
(3.1.30) s = p~! Fpa.

It is clear that there are many matrices F which satis-
fy (3.1.28). If "WA can be calculated from A, given the
parameters of the subintervals (i.e. Xu’xu—l’Yv’ and Y )
in the form (3.1.28) we choose F to be the required transfor-
mation matrix. However, if we are merely given “VA and A
(i.e. we are forced to evaluate them independently in some way),
we assume that F takes some convenient form, probably diagonal
or near diagonal. Instead of using (3.1.30) it is possible
that it will be more convenient to use (3.1.29), particularly
if D™! is easy to obtain and "VA cannot be obtained from A
by a transformation of the type (3.1.28). Note that solving
(3.1.29) by determining D”! also specifies a third method of
obtaining the matrix A (see §2.9).

We now explain one method of determining D™1. Analogous
to the procedure mentioned earlier (§2.11), given a (m+tl)x(mt+l)
matrix G of full rank it is possible, in a recursive manner,
to find a lower triangular matrix T such that TG has rows
which are orthonormal to each other. In particular let U and
V be lower triangular matrices such that

(3.1.31) Tuhyup = L
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(3.1.32) celyTyve = T

In passing we note that the ¢-polynomials defined by

. e T
(3.1.:38) U ¢o EO 5
_¢m _gm
are orthonormal with respect to summation over {Si}? " that is,
3=
(3.1.34) R 8 b s by = 8
iz 1°%k7 R tR ke ?

k% = 05555 5ms Ek’gk in. (3:1.:33);

An analogous result holds for y-polynomials on replacing U by V.
This generalizes the results given in [120] and it is of
interest to note it seems possible that the elements of the
matrix U may be calculated more efficiently by using a method
of partitioning given in [121].

We now find that

(3.1.35) (diagn(BTUTU))D = cl1l ,
and thus
(3.1.36) (CTVTV)[In](diagn(BTUTU)) = p-1,

Consequently the cost of obtaining D~! is that of obtain-

ing the matrices U and V, and then evaluating the expression on



g

the left hand side of (3.1.36). Apart from calculating the
matrices U and V recursively as above, the following results

are sometimes useful:

THEOREM 3.1.5 Assume Si=Tiexl, 150 g v eeyliy abitd (2.8.%) =
m+lx

(2.8.2)hold. Let Q be an I.P.Q.F. exact on ¢ g,
Assume that o7 is orthonormal to itself with resvect to I.
Then ¢© is an orthonormal set with respect to the dis-

crete inner product.

m ' m
€3.1.87) Ei:oaig(xi)e(xi), £,0ed ,
where the coefficient matrix Q=diag(ao,...,am)
m+ 1l

(Xi are zeros of dm+1 orthogonal to ¢ )
PROOF: That the coefficient matrix of Q is diagonal follows
from Lemma 2.10.14. The rest of the theorem follows

from Q being exact on o™xe™ (see [3] also). LA

Thus in some circumstances the rows of U and V depend
essentially on the coefficient of orthogonal ¢- and y-polynomials
written in terms of &™ and ¥'.

More generally, we have:

THEOREM 3.1.6 Assume that SiETi, i=0,...,m, and that o™ is

orthonormal.to &". Let Q be exact on 2™xe™. Then o™ is

orthonormal with respect to the discrete inner product de-

Pned Ty the D00, GiRend /17
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This means that we can obtain D! as follows:

(3.1.38) Let U (V) be a lower triangular matrix in which the
elements of the i-th (j-th) row are the coefficients
of the ¢-(y-) polynomial of degree i(j), in terms of

i-1

@l(wj), which is W-orthogonal to ¢ (Yj-l), whose

square is integrated to unity. Clearly, we choose
5 3 -1 2 : =1
L I(¢o,¢o) (Voo I(wo’wo,) ). From §2.5 we know

that the ¢-(p~) polynomials defined by U(Y) are

unigue.

(3.1.39) Let QS(QT) be the I.P.Q.F. exact on @mXQm(anwn) in
which TiESi(TjESj), 120 500 w3ty (5205 5 < s1i) WhHeve
Si(Tj) are given. Denote its coefficient matrix by

AS(AT).
(3.1.40) We now find that
ToyT : T T =
(3.1.u1) (c*V AT% [11  (diag (B U ASH)) = D71,

The process (3.1.38) - (3.1.40) will be useful if the
T PaQLEs QS(QT) is already known from elsewhere, since the
orthonormalization process mentioned in (3.1.37), i.e. (2.5.9) -
(2.5.12), is straightforward (see also Lemma 2.5.14).

Having obtained D™! we use either (3.1.29) or (3.1.30)
depending on how convenient it is to obtain the matrix F.

We find
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. 2t-(X +X ) 2t-(Y +Y )
(3.1.42)  MVad = FVrce. ¢ el s s i v=1y,
* ST T | J v Twv=1l

il

““I(”¢i;“wj), teR,

where "YI is I restricted to the subinterval (X A} on (Y Y .Yy
u=-1"u v=1"vy
From (3.1.42) we see that if (2.8.1) - (2.8.2) hold with
. $12x (i.e. the standard polynomial of degree 1) we have

| 1=1 b
i i r=0\r/\X -X X =X r :
E S | b ou-l

An analogous relationship between ij and ¢j holds. Let

AXU+XU AN 2
(3.1.u4) o= =, v—o— = T, u=l,...,u,
Xu—l Xu‘ u Xu Xu—l u
Yv+Yv—l _ 2 _ _
Y——_Y - n'\)’ Y_———Y o C\), \)-l,.-«,\),
. V=1 v v “v=1
(3.1.45) B, = 1, 0 s e e e 0 1 .
nli 5 Cll 5 5 0
2 A
e (l>nuzu’ ; <
m (m)m-l (m)o m
. ST G LRI R U LY )

Hv is defined as Hu, on replacing nu,gu, and m, by LUNEY S and

n, respectively. We now find
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(3.1.46) Wy

(diag (H )H [I1 A

(Hv[I]m)(diagn(Hu))A.

Note that (3.1.46) does not hold unless we assume (2.8.1) -

(2.8.2) and ¢;=x, and in this case (3.1.30) becomes
MV = = . .
G I [ 1 a=0>D (Hv[I]m)(dlagn(Hu))Dg

This completes our treatment of compound I.P.Q.F. in
the case y=m, §=n. We now consider the case y>m. Observe

that there are three distinct ways the subintervals (Xu-qu)

and (Y Y ) may intersect:

v=1"y
(3.1.48) (X, oK) e (Y, .Y ),
(3.1.49) (Y _15Y)) e (X 15X,

Y )2¢ , but neither (3.1.48) nor

(3.1.50) (X X)) n (Y .Y

(3.1.49) hold.

Recall from Theorem 2.4.3 that if an I.P.Q.F. is exact
on @wan, y>m, this imposes conditions which are quite restric-

tive on the choices of parameters for {Si}T=0' If cases
(3.1.49) or (3.1.50) occur we find we are imposing at least
twice as many conditions on {Si}?=0' In general, we would
expect that this leads to the non-existence of a solution.

As an example, we note that if S;ex;» and the I.P.Q.F. Q is

-+
m lxwm

exact on & ' (or oYxy™,y+n=2m+l, and (2.8.1) - (2.8.2) hold)

then all the roots of h; must be in the interval of integration.
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In cases (3.1.49), (3.1.50), this is not possible (as we also
have to consider (Yv—z’Yv—l) n (Xu—l’xu) and (Yv’Yv+l) n
(Xu-l’xu))' Consequently, unless the elementary functionals
have some very unusual properties, we would not expect to ob-

tain more than

LEMMA 3.1.7 Given an I.P.Q.F. exact on @wan, and two parti-

tionss; M and N; of By If (3.1:48) is true u=lss:s 504
v=l5...,v, then an (M,N) copy of the I.P.Q.F. exists and
is unique. /17

We conclude this section with some further comments about

compound I.P.Q.F.

(3.1.51) It is obvious that if the partitions M and N of R
are given, and Q is exact on o¥1xy%1l anag oY2xy2,
max (yj,Yp2)>m, then the (M,N) copy of Q will be exact
on Mo¥1:Ny%1 ang Me¥2.N4%2, A150 we observe that we
will have to require M and N are the same partition if

max (Y1,72)>m and max (61,62)>n.

(3.1.52) If we define Y&' and YWG analogous to (3.1.5), in=-
stead of (3.1.1), then in the general case we are led
to the consideration of more general "compound" I.P.Q.F.

than we have considered above. In this situation we

would be considering the sets of functions PoTana vws

as depending on u and v respectively and possibly

finding that, for example, "!¢' and "2¢", TRE ST
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are not related to each other in any way. Of course,
we could then make y(8) depend upon u(v) as well,
and we may consider not requiring (3.1.2) to hold.
This situation could be analysed in much the same
way as above: we would however find that B and “c
depencded on u and v and thus the matrix D in (3.1.22)
would depend upon p and v. However the method of
solving (3.1.22) would still remain, in principle,

the same although now somewhat more tedious.
(3.1.53) Considering (3.1.12) we have

LEMMA 3.1.8 If an I.P.Q.F. is interpolatory and lssp@Y, lespwa,

then its (M,N) copy has property (3.1.12).
PROOF: This follows immediately from the uniqueness of inter-

polatory I.P.Q.F. bl

We note that if the I.P.Q.F. is not interpolatory (for

example if §<n) then Lemma 3.1.8 need not necessarily be valid.

(3.1.54) Bearing (3.1.52) in mind we note that a compound
I.P.Q.F. as we have derived it in this section is
exact on a larger class of functions than MQYXNWS.

Let
(3.1.55) Z = {_l,zl,ooo’ZS-l,l}, SSll+V"l,

be the partition of R obtained on applying both the
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partition M and N to R. Let

(8.:).586) r¢i5u¢i, where (ZI‘-].’ZI”)C(X]J"]-’XIJ)’ pe{l, ... u},
¥ 1y uV
3= Vs, where (21220 CY _15Y,)5 vell, .. vl
=1l,...48

From the construction of our compound I.P.Q.F. it is

(M,N)

clear that Q is in fact exact on

(3.1.57) ZgY 2yl

This result combines the approach we used in this section
and, in a simplified form, the approach suggested in (3.1.52) which

is also implicitly followed.

§3.2 SPLINES AND I.P.Q.F.

In deriving compound I.P.Q.F. in the previous section we
did not impose any continuity restrictions on the integrands as
they pass from one subinterval to the next. We generalize the

usual definition of a polynomial spline as follows:

DEFINITION 3.2.1 Let {-1,w1,...,ws_ ,1} be an s partition of R.

Fp_ v Op .
Let & ~={ Ei}i=0 be defined on (wr-l’
T

z—o W =w) and let "E. be t times continuously dif-
-1 s+l i

ferentiable in (Wr_l,wr), s o IO - i=O,...,cr,cr2t.

1

Wr), 0 4 v canBFls

(W

We say that a spline &, with deficiency £=(ko,...,ksgt)
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(o) a

+
of orcder (co,...,cs+l) with respect to = O,...,E 2 l,
is a function such that
o
(a) On (W »W_), EespE ® la rgnpolynomial), =045: s 58+,
r-1°""r

(%) _ () v r _
(b) & (wr—o)-g (wr+0), £850, 4 o0 st kr’ a1 SO

We denote the class of all such splines by

g
+
Bynsa gl © l)s@%(g),

* 2

(3+2+1) Q

==
o\
t

where ‘I_g_ = {wo’wl""’ws}’

Foy

(ko,...,ksgt). /77

Clearly this definition can be extended in the case where
R is an arbitrary interval. If their meaning is clear from

the context we may delete or abbreviate w, k or (g) in 3.2.1.)

In particular if k=ki, i=0,...,s we replace k by k,t, and if

rgi is defined by (3.1.1) for all r (K replaced by (wr-l’wr))
o a

we replace (Z 0,...,5 S+l) with (£). Again note that defining

rgi by (3.1.5), except in the case where (2.8.1) (on replacing

¢ by &) and £,=t,teR hold, leads to the spaces of functions

Eoi being different from those mentioned in the above sentence.
We now observe that the compound I.P.Q.F. derived in the

previous section are I.P.Q.F. exact on

- (M) Y (M) $
(3. 2.2) Qa+1,a(° ) x QB+1,B(W ¥es

where o and B depend on how many derivatives ¢espd>Y and
WESPWG have. By setting k=ot+l, B+l, we mean that we do not

even require continuity at M. or Nj’ 1=l g ssmais 350 5 sees¥a
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In fact, from (3.1.54) we know that we may replace M and N

s
in (3.2.2) by Z ((3.1.55)), provided & ¥ in (3.2.1) are defined

by (3.1.55), and this new set of splines includes both those
mentioned in (3.2.2). Clearly the compound I.P.Q.F. will re-
main exact if the classes of splines in (3.2.2) have some
continuity conditions imposed on them.

It is easy to see that I.P.Q.F. exact on various product
spaces of splines may be regarded as completing a "spectrum”
of results between I.P.Q.F. exact product spaces of "smooth"
functions on the one hand and compound I.P.Q.F. on the other.

In addition, from §2.5, we note that, provided lespsor,

o
r=0,...,8t1l, and = T are T-sets, then Q%(g) of (3.2.1) may be

regarded as a WT-set. L

In the literature there are, as far as we can discover,
no references to splines as we defined them in Definition 3.2.1,
and the majority of research appears to deal with polynomial
splines (i.e. rEi=ti,teR). However in [9] there is a more
general definition of splines defined by means of differential
operators. Further, there appear to be few results which deal
directly with R.Q.F. exact on function spaces of splines and
those which are available depend upon the integration of inter-
polatory splines (usually cubic polynomial splines). However,
see [127,128,129]. This is perhaps a little surprising in view

of the wealth of results available dealing with "best" R.Q.F.

in the sense of Sard and the consequent investigation of the

splines which constitute the Peano kernel of the Q.F. (see §u4.2).

For some summaries of this type of investigation see, for




153

example, [130,...,135].

In restricting ourselves to considering only Xy elementary
functionals (as in almost all the literature) we notice that
when we came to consider either compound Q.F., or even Q.F. exact
on some class of splines, it is possible that a given elementary
functional may contribute to evaluating a Q.F. on more than one
subinterval of a partition, thus significantly reducing the
total numbers of function evaluations required by the Q.F. Some

work along these lines has been done, see [93].
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CHAPTER 4: ERROR ANALYSIS

§y.1 IMMEDIATE RESULTS

Many well known error estimates used for R.Q.F. can be
adapted to deal with I.P.Q.F. Some results of this type have
already been obtained, particularly when dealing with I.P.Q.F.
exact on polynomials, and having S, Tj€x1' See [12,14] and
[28] in particular. Following [12], if an I.P.Q.F. is exact

on @was, the following relationships are an obvious consequence

of the bi-linearity of both I and Q:

e g 3o E(f;g) = E(f-¢39) + E(f3g-v)
(4.1.2) E(f;g) = E(f=¢3g) + E(f3g-y) - E(£f-¢38-0)
(4.1.3) E(f;g) = E(f-¢3g-v) + E(¢3g-¢) + E(f-¢39)

where fel', geh, ¢espd', wesp\ll6 and E(f3g) is given by (1.3.4).

Let Hgﬂp denote the weighted LP norm (see (2.1.11)),

b

i.e
1
& P P
(oo i) Hg"p’w = (JRW(X)|E(X)I ax)*¥, geLp,W(R) .
where L w(R) is the set of functions for which | I W ®» and

3 3

w is of one sign in R (see (A3)), lsp<~. The discrete analogue
of (4.1.4) is dealing with g=(£o,...,ar)T,

L
(4.1.5) "sﬂp,w = (F5_o%; 185 199P, w20, i20,...,2.

Recall the generalized Cauchy-Schwarz Inequality;
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(4.1.6) JRW(X)la(x)e(x)ldx < “E"p,w"e“q,w’ q:EgI .

(The discrete version is analogous.)
Since we have assumed FCCO(R), AcC®(R) in (A8), we know
that f,geLp(R) for all p (see 2.1.10).

We now examine (4.1.2) in more detail, obtaining

Ehnds 12 E(E38) = I(B<¢38) + T(f5g-9) =~ T(F-s;g-¢)

-Q(f-¢38) - Q(f3g-v) + Q(f-¢5g-y),
which implies

(4.1.8) |ECE58)| < |I(f-¢38) + I(f;g8-¢) + I(f-¢;g-w)]
+ |QUf-¢58-¥) - Q(f-¢38) - QUfsg-9) |,

and, applying (4.1.6)

4.1.9 E(f; < | £- + £ & +
( ) |BCEg)| = I £ ¢leswﬂg"ql,w I HPZ:W"g ¢"q2w
+ 1 £- . + E.,
I ¢Hp3’wﬂq ¢"q3,w EQ
where EQ = |Q(f-¢38-9) - Q(f-¢38) - Q(f3;g-y¢)|.
D.
s .
qy & et i=1,2,3.
1 P 4.

Before pursuing (4.1.9) further, we make several comments.

With regard to E, note that we already know f and g (as we

Q
approximate I(f,g) by Q(f,g)). Consequently, if Si(¢) and Tj(w)
are readily available then it is easy to evaluate the contri-

bution to the right hand side of (4.1.9) due to EQ exactly,
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thus reducing our estimate of E(f;g). If Si(¢) and Tj(w)

are not immediately available and (as in most cases of interest)
Q is exact on o™x¥™ then we may require ¢ and ¢ to be inter-
polatory polynomials to f and g at {Si}?_o, and {Tj}?=0, respec-

tively (and thus EQ=0). In this case we would hope that we hacd
some means of approximating the various norms in (4.1.9) easily
available. Clearly, the way in which we deal with (4.1.9)
depends upon the knowledge and tools we have available. So far
we have implied that it may be useful to actually obtain ¢ and
¢. In the situation where we know a lot about f and g it may
well be possible to avoid determining ¢ and ¢ and still obtain
estimates for the quantities appearing on the right in (4.1.9),
although these estimates will be more conservative than those
obtainable if we determine ¢ and ¢. However, if we knew little

about f and g it is possible that the best approach is that of

examining the analogue of (4.1.9) derived from (4L.1.3), i.e.

4.1.10 EGEy < I £-¢l Iyl +1 ¢l I g-yl
( ) |E(Ee) ]| < L L T o L

1: 1! 23 29

+ | £-¢l I g-wl + E
¢ PgsW & lb|q3,w Q °

where Ey = |Q(E-430)+Q(o38-¥)+Q(f-¢3g-y) |

and investigating ¢ and ¥ in more detail.
It is immediate that it is computationally advantageous to

choose P,=P,=P,- Note that we also have, for l<pge,

[ T s [ HgHP w S I(1l;Dmax|g(t)| = I(1;lelh

teR > 1
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The relation (4.1.11) may also be employed in approximating
(41000 or (4.1.8).

If we have to approximate |Q(£3;6)] we proceed in an
analogous manner. From the discrete Cauchy-Schwarz Inequality

(with w taken to be unity) we have

B41l.12 3 © < Il I Asll = lell A s P
( 12y |QCeze) | gl lael 4 gl gﬂq Py
Denoting the matrix norm compatible with H.Hq by H.ﬂg we obtain
(4.1.13) Cese)] < lel HAl“1el
[QCese)| < Ll JAl lol
and
41,14 se)] < lel_talron .
( ) lQCese) | gl tal el
Also, if aij>0, i=0,...,m, j=0,...,n, we obtain the analogue of

(4.1.11), namely,

1

(4.1.15) IAel < Q(1;1)max]|e. |
qd i J

Q(l;l)"gﬂm, l<qso.

If some a;3<0, we may replace Q(1;1) in (4.1.15) by 2§=0 2?:0|aij|.
As before, when approximating the contribution to |E(f;g) |
due to EQ in (4.1.9) or (4.1.10), we may use different norms
when dealing with different components in the summation. In
addition, we note that before approximation, we may recombine

sore of those components due to the bi-linearity of Q, obtaining

(in both cases)

T Eq = |QUE-¢39) + Q(f3g-v) |,
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(4.1.17) Eq = |QC£-¢38) + QCosg-v) |-

Thus there are a large number of error estimates avail-
able and which one we use depends upon what information we have
to hand. In particular, we note that if we use the uniform
(i.e. L ) norm we may always seek to approximate the norm éf a
function in R by the norm of the function over a point set in R.

We summarise our comments so far as a Lemma (cf. [12],

[28.1),

LEMMA 4.1.1 Let Q be an I.P.Q.F. exact on ¢YXW6, and ¢esp®y,

wespws, be such that

(4.1.18) ﬂf—¢"p’w581
= o0 T, L
Il g ¢"p,ws€2’ l<pg>, (q p—l)
Then
Clil:19) |[ECE;2) | = elﬂgﬂq’w = gznfuq,w + ele2+EQ,

where EQ obtained from (4%.1.16) or (4.1.17). If p=e=

we obtain (see [12])

(h.l. 20) |[ECE38) | = elﬂgﬂl,w+32Ule,w+elsz+

+ e MAl Iyl + e 0al"IEl, . /11

In (4.1.19) we may replace lgl C(Ifl) by lel (ie¢l), and

the expression on the right hand side of (%.1.20) depends upon
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which norm we use for [Al (ef (u.1.13), (4.1.14)) and which of
(4.1.16) and (4.1.17) we use.

The derivation of the numbers ¢; and e, and the poly-
norials ¢ and ¢ in Lemma 4.1.1 is not a trivial matter. If we
want ¢ and ¢ to be interpolatery, assuming that our I.P.Q.F. is
exact on at least @man, we may obtain them either by using the
| polynomials Ps and qj of §2.9, or on slightly generalizing the

Newton interpolation scheme given in [1361].
When the functions ¢i and wj are standard polynomials, we
can obtain error estimates for interpolatory polynomials involving

derivatives of f and g (assuming f and g have sufficient deri-

vatives). See [12,13]. If an estimate of the required deriva-
(m+1)
tive of f is available, say |f(x) |sM,xeR we obtain (see also
[231)
M =
(17200 }f-(bl < (_mrl)_l j W(t).g (t—Xi)dt
R 1=0
when Si€X1= i=0,...,m. Clearly on investigation of what choice

of knots leads to a minimal norm interpolatory polynomial would
be of interest. The expression (4.1.20) can be generalized to
deal with other choices of basic functions than polynomials.

See §4.2. Under certain circumstances derivatives may be re-
placed by divided differences. See [13,137]. When dealing
with derivatives of higher order we face the additional problems
that, except for certain entire functions, ultimately deriva-
tives of a function will increase without bound, and further,

even if higher derivatives are available they are difficult to




160

approximate. This is a major reason why, in practice, high-
order (i.e. y large) R.Q.F. tend not to be used, and Compound
R.Q.F. are used instead. Further, it should be noted that as
we 1increase the degree of an interpolating polynomial to a given
continuous function, we do not necessarily obtain a better
pointwise approximation to the function, and we do not always
obtain convergence of interpolatory R.Q.F. to I. See [138].
If we assume more smoothness properties than continuity, it is
possible to guarantee both convergence of a R.Q.F. to I, and
of interpolatory polynomials to the interpolated function in
various norms. See [139,...,142]. Some work on interpolation
with basis functions other than the polynomials has also been
done. See [1u43,1luu4].

Error bounds of the type mentioned in this § may be easily

modified, in the standard manner, to deal with compound I.P.Q.F.

4.2 PEANO'S THEOREM

Let us initially assume

(4.2.1) ¢

B
ot
3
L
=)
-

i
r.*.
[

e
(W8

ki
o
-
=
i d

(4.2.2) b

We can now derive the analogue of Peano's Theorem for the bi-
linear functional E. As usual we assume our I.P.Q.F. is exact

on @waa. Assume f and g have sufficient derivatives we expand
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them in Taylor Series about -1, obtaining

(4.2.3) gy o 35 LE%%lwf( )(-1>+%TJ £ () (t-m Kar,
=R,
(4.2.4) goey = 1% iii%l- D1+t J gL ey (t-m tar,
]—0 J: R *
| where X, = R , £ec¥tL gy, gt (R,
g 5 x=0

Thus we find that, if ksy and &s<§,

1 1
E g 2!

(H.2+5) EB(E3E) E (%

f £ (o Cemmy Kars 3, [ €41 () (t-0) 2as)
R R

$ R k. e (e+1)d ()
" Et<E!fRf (03 (e-rdfar; 11 (LD (a5,

k Tl 1, - B 2
+ Et(2i= L_ITl_f(l)( g ) E'JRg( (e){t-8) ds)

i, B e

I 320731 (-137,

where Et means that the parameter t is the one which is regarded

as a variable. Consequently

(4.2:.6) ELEFip)

1]

k
J J (B (AER2+, (i,s>+w}f(k+1)<r>g(l+l)<s)drds
R‘R i

+

k 1 s
Chexda. ot  Cedd)- (7)., (k+1)

-+

k  (t+1) (1) (t- s) (e+1)
{R{Et(zi:0~*IT~— (-1) -~"-+)} (s)ds

- o s
+E (ZF Cet ) f(l)( 1)~22 {t+1) f(j)(_l)).

il TEL AL )
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and using the multi-dimensional Cauchy Schwarz Inequality, we

obtain
(4.2.7) |EC(£3)] < IE (LEmmY, Cmsdiyy (D) () (arD) ()
& = i R T W vig q
P IE, (BT L ceyyn et
tt k! ’ Vg P2 qz
2
(t-s) (2+1)
+IE G (055900 e I,
+ B (8g(8)5 ¥ (1),
where —— + == = 1, 121,2,3, and
45 94
" ok (D D)
(4.2.8) bplE) % Fiap —ar—f 1y
3 3
v ttd = I iﬁ%%l—g(3’<-1>.
We also note that
2. 1D g F D oy = 1R Dy g ey,
(4.2.9) (g (s) a1 (r) a1 g (s)lql

where the norms on the right are with respect to one variable
and that on the left is with respect to two.

Since the I.P.Q.F. integrates the monomials in @YXW5
exactly it is clear that the last term in the above error esti-
mates is zero. We also note that the choice of the elementary
functionals Si and Tj does not affect the error estimates,
provided we know the degree of exactness of the I.P.Q.F.

In the case of R.Q.F., the Peano error estimate is

1
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1]

k
(4,2.10) E(£) f Et(33i$3+)f(k+l)(r)dr
” .

IA

1, ({52 l“)ﬂn R
Py 1
Clearly, if f(g) is equivalent to unity and lespe',

(spwﬁ), (4.2.7) reduces to (4.2.10). As mentioned in §3.2,
best R.Q.F. in the sense of Sard are obtained by choosing the
functionals Si (usually Xy functionals) so that HEt(SEi§25)H is
minimized. This leads to the examination of minimal norm poly-
nomial monosplines. for some references to the large body of
literature devoted to this topic see §3.2. This approach re-
quires that we can separate the contributions made to E by the

PARELYS . T e

R.0.F. (HaBu,s HEtH ) and the function (i.e.
P
1
case of I.P.Q.F., due to the second and third terms in (4.2.7)
it is not so easy to separate the contribution to E due to f

and g from that inherently due to the I.P.Q.F. Examining the

second term in (4.2.7) we see that

k

(t-v) . " (t- r)+ ek
e R L | Et( T ,wg(t)) = IRW(t) T wg(t)dt E (r)AEg,
T (t- r) (t-r) ¥
where E"(r) = (S ( o AN - B t3),
P m I
T _ ¢m
Eg = (Lo(dlg),...,Tn(l}Jg)).
We can approximate (4.2.11) by
(t- r) (t-r) ¥
(4,2.12) ]Et T Ty (t))l_ 1 ) ,w"wg(t)ﬂqh,w +
el nal nw H

Psg Q5
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1 )
= = 1 i=4,5
P d ?

O [

and the norm of A is discussed in §4.1 ((4.1.13), (4.1.14)).
An expression analogous to (4.2.12) can be obtained for

(t- S)+|

\Et(¢f(t), in which £(r) and ig are replaced by 8(s) and

b

2 2
T - (t-s) (t-s)
6 (8) = (TO(—_ET'+)’°"’Tn( T Y ) 5

and we use norms, as determined by subscripts 6 and 7 (replacing
4 and 5).

Substituting (4.1.12) and its analogue in (4.2.7) we obtain

(4.2.13)  |EC£3p) |<lE (L2 ) + 4 S)+>u N (k+1)uqlug(ﬁ+l)uql
(t-m) % %
+ + +
Loglg w5 Ip, sulp, TSI, 1 4]
’ 3
ly 0 +lg I [ RSERR +
) wg 5 by Qg >W ! Psawupg

flg I 1Al ™Il ocs)l I +E.Coo30 ).
O P, 8(s) q, Qg4 = cbf wg)

A slightly different result, based on the use of Taylor's

formula, approximating H¢§l by

I¥ o max| £ (o) [an-?
teR

)| at

i [
JRlE((tEf)+3(t;?)

(and ng" analogously) is given in [23].
So an I.P.Q.F. could be said to be best in the sense of

Sard if some combination of
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1E, (L5 r)+

('t“S).;. |
=y M ,"Hg(r)ﬂpsﬂpz and ""g(s)ﬂq7ﬂq3 |

is minimized.
There are many different errors estimates included in

(4.2.13) depending upon the choices of ksy, 258, pPys+++5P7.

There is some advantage, from the computational point of view,

in choosing p;=p,-p3 and we would usually expect that pie{l,Z,w},

i=l1,...,7. Other approximations of |E(f;g)| can be obtained.

For example, we may apply an analysis similar to (4.2.11) -

4.2.19 o 1B r)+,(t£?)+

of the function g, be able to approximate (4.2.11) by

)| or we may, for certain choices

Lbe P)+ Il |
(4.2.18) |l ol 900 a4 gl 1Al "Iy Aol %

in which case a careful choice of Hg(r)ﬂp might substantially |
2= pe |

reduce our approximation of |E(f;

It is also observed that, even if (4.2.1) - (4.2.2) do
not hold, we may still apply the above analysis, except that now
the term Et(¢f;¢g) is non zero.

This leads us to ask the question of whether we may make
an analysis similar to that above when we deal with other
choices of function (i.e., we do not require (4.2.1) - (4.2.2))
and we use other approximations to the functions f and g (i.e.,
we do not use (4.2.3) - (4.2.4)). We see that (4.2.3) may be
regarded as deriving an interpolating ¢-polynomial of degree

k to £ at {§-}F » Where
e Bige 0

(4.2.15) 8. Bt , i=0,...,k.




166

We return, momentarily, to the case of R.Q.F. In [150]
we find that it is possible to expand a function, possessing suf-
ficient derivatives, as a power series of a function &, which
plays the same role in the Blirmann series as x does in the
Taylor series. However, following [149], we can glean a more
general approach.

Given a set of functions Er, we define its Wronskian, Wr’

by
(4.2.10) W, = det ’go e s B ]
(r) ()
| &5 s - - v s B

—_

If Wr has no zeros in R, we can define the linear operator

Lr+l by
- -1 B -
(4.2.17) Lopp (E) = W1 det & s oo e e Ef .
g(()r-) s Eér‘),f(r‘)
(r+1) (r+1) (r+1)
L& R oF A

It is clear that every solution of LP l(f)=0 is a g-polynomial

+

of degree at most r. Now define
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(4.2.18)  k(t,s) = WZl(s) det 'go(s) soo w o s Bplad
B0y 4 4o B e)
| 5, () o x oy B 6D |

_ b g
= Xi:omi(s)gi(t) 5

and it follows that

5
_ tr
(4.2.19) u o= zizouigi + J—ln(t,s)c(s)ds
satisfies
(4.2.20) Lr+l(u) =z
for arbitrary R L Conversely, given f, there exist con-

stants a, such that (4.2.19) is valid (with » replaced by f).
These constants, which we denote &i can be found by solving a
set of linear equations determined by knowing the value of f
at r+l distinct points.

Assume that we are given ¢-polynomial of degree m, which

m
interpolates f at the elementary functionals {Si}i=0’

TR £ = IT geits + R (D) = g +R (D).

og

Combining (4.2.19) and (4.2.21) we see that we can write

120 120%1% W EdAa-

_ o A m % t
(4-2.22) Rm(t) o digi . X . + f-lK(t,S)Lr‘_‘_
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On observing that we may replace -1 by 1 as a limit of integra-
tion in (4.2.19), and denoting the coefficients o determined

by f in this alternative expression for f by Ei’ we obtain
_ > - o _em ®
(4.2.23) R (1) =}, ((Ba,+(1-gla e -]  qo o, +

l(f)ds

+JRK£(t’S)Lr+

where Kg(t,s) 2 {Bn(t,s), s<t

1‘(B~l)m(t,s), axg, peld, 2]

(r=1)

The function «(t,s)eC (R), with respect to t, and satisfies

ai (O bl i=0,...,r‘—l
(4.2.21) ——i(K(t,S))] "R ,
3t t=s N
(r-1) .
henongdl (R), with respect to t.

We now apply a R.Q.F., exact on QY, y>m, to f. The expres-
P P

sion for the error is thus

1

(4.2.25) E(f) I(Rm(f)) - Q(Rm(f))

T(] .o (Bo;+(1-8)d;0E.)-Q(EY_ (8o, +(1-8)d )E,)

l(f)ds.

+ fzt(xa(t,s))LN

R

Obviously, if rsy and ¢i5gi, (4.2.25) reduces to

(4.2.26) E(f) = J Etﬂ%(t,s))Lr

(flds.
R 1

+
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DEFINITION 4.2.1 We say that an R.Q.F., Q, exact on @Y, is

r-p-% minimal if
HEt(KE(t,s))Hp

is minimal. If £;=¢, we say that Q is r-p-minimal.

If, in addition, r=y, we say Q is p-minimal. Lhf

There is some freedom in the definition of KE in the
choice of the numbers B and r, and it is not immediately clear
what their optimal choices are. In (4.2.26) the larger r is
the more functions f have E(f)=0, however it may be, if E(f)=0
for all possible choices of r, that choosing r small will give
a better estimate of E(f) in the sense that"Et(Kg(t,s))Hp in
Definition 4.2.1 may recduce. An additional advantage of using
a small value of r may be that this would facilitate approxima=-
tion of Lr+l(f) when we are seeking an error estimate for a
particular function f.

The function k(t,s) remains unchanged if we replace g by
any other set of functions spanning Er' This can be utilized
in showing that for certain choices of elementary functionals

m *

{Si}i=0’ if gi=¢i, the coefficients a. and -o, are the same,

and thus we obtain an explicit expression for Rm(f) from (4.2.22).

If either
(M. 2.2 Siexl, n H [ ||

or
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o
(L.2.28) S, = =— , aeRy i=0, .4+ ,m,

- dti s
is valid, then this is the case. The conditions (4.2.28) in-
clude those prescribing a Taylor series expansion of f as a
special case.
The extension of error estimates of the type (4.2.26), and
even (4.2.25) to deal with I.P.Q.F. is entirely analogous to that
done earlier in this section when we considered the extension of

Peano's theorem, on replacing (4.2.3) by (4.2.21) and (4.2.4) by

the analogue of (4.2.21). We note that if HLP+1H is available
| i i ma-

we may be able to replace ILr+1(f)" by “Lr+lﬂﬂfﬂ in our estima

tions (cf. 4.2.9)) where “Lr+l" is some suitable norm of the

linear functional Lr+l'

§4.3 SARMA-EBERLEIN ESTIMATES

In the previous sections of this chapter we have detailed
various methods of estimating the errors involved in approxima-
ting I by a given I.P.Q.F. Of course, once we have more then
one I.P.Q.F. available it is natural to want to compare their
performances. This is not always a straightforward procedure
as we have yet to decide on criteria for comparison. It appears
to be a common practice in the literature to compare Q.F. of
any sort by examining their performance on sets of judiciously
chosen test functions (cf §1.2). If these test functions are
chosen carefully, manifesting a wide range of behavioural
characteristics, we will be able to obtain a "performance profile"

of a Q.F. which should give us quite a strong intuition into
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how a given Q.F. will behave in various given situations. This
will be very useful if we know, in advance, quite a lot about

the integrand. However, the above procedure is somewhat
reminiscent of attempting to prove a theorem by examining some
carefully chosen examples - a practice not generally condoned.

It would be very useful, particularly when we are dealing with
integrands about which we know little, if some more general and
rigorous "measure" of the performance of a Q.F. over a specified
class of functions were available. One approach, pursued in the
previous section is to minimize the error estimate usedffor the Q.F.
in some way, using methods obtained from Functional Analysis.

Another approach, which we examine in this section, is to obtain a

measure of "goodness", the Sarma-Eberlein estimate of goodness,
SE’ of a Q.F. based on the performance of the Q.F. on each func-
tion in a given space of functions. Other approaches might, for
example, include some sort of statistical estimate of measures
of goodness. Before progressing any further, we note that the
derivation of such measures of goodness is not a straightforward
matter, and their application in practice is time consuming and
not without difficulties, which to a large extent explains their
lack of popularity and/or acceptance. In fact, the only refer-
ences we know of dealing with SE are [37]1, [39]1, [u0l and [1u48].
In any event, we will use a different approach. Although we
only consider real valued functions of one variable, the fol-
lowing analysis may clearly be generalized to higher dimensions
and other linear functionals.

Let {%}f ’ be a linearly independent set of functions which
1=
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is dense in C(R). Thus, if feC(R), we can write

4]

(4.3.1) f = Gy VteR,

zi=0 51

where the numbers o depend upon the function f, but not on the

point teR. Now let Q be an R.Q.F. Clearly
(4.3.2) EXE) = ILE) ~ QUE) = ). . eaBCE D

We observe that the contribution dependent on the function
f in the error expression (&4.3.2) is contained in the numbers
Gy and the numbers E(Ei) are independent of f and may be re-

garded as being due to the R.Q.F. There are two directions in

which we may progress from here.

(4.3.3) If the numbers E(Ei) are known, and we are dealing with
a given function f, we investigate the properties of
the numbers Gy Knowing a;, O an approximation of
¢;, We are then able to estimate (4.3.2) by a truncated
summation. In this situation it is usual (and sensible)

to require that the functions gi are orthogonal, then

oy is the generalized Fourier coefficient.

I(E.5)
CUa3elr) . = £
+ I(Ei)

i s B SR

In some special circumstances it is possible to calculate the
first few of these coefficients using summations over the
zeros of orthogonal polynormals, see [3]1. This is the basis of

the well known Clenshaw-Curtis Q.F. (see [1i45,146] and the con-
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sequent literature, eg [147]). Note that for a given R,Q.F. the
numbers E(gi) only ever need to be calculated once.

The type of error estimate obtained in this way, namely of
predicting how an infinite sequence behaves on the basis of a
few initial terms, will not lead to foolproof estimates. How-
ever, these estimates do have the great advantage of being able
to be used in practice, and unless we are dealing with patho-
logical integrands can probably be expected to give useful

error estimates.

(4.3.5) If we wish to compare two R.Q.F., instead of examining
their performance over certain test functions we may
examine the numbers E(si) due to each of the R.Q.F.

Following [39] we do this by examining the weighted sum,
w 2
(4.3.6) li-g B8;E(E1)2,

where the numbers B; are chosen in order to guarantee convergence

of the series and to accentuate desired aspects of the behaviour

of the R.Q.F. If we wish to emphasize the behaviour of the
Q.F. on certain subsets of {ai}:_o, we merely increase the corres-
ponding Bi's or decrease the residual Bi's. Thus we may compare

Q.F.'s performance over various subspaces of C(R).

The Sarma-Eberlein estimate of goodness referred to above has

(4.3.7) ‘g, 2 oy
T P
3-(i+1)
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and can be derived by defining an integral over the function
space C(R).

Obviously, having chosen the numbers B;» We may attempt
to obtain "optimal" Q.F. with respect to the error measure
characterized by B:» Dby minimizing (4.3.4) with respect to
the parameters available in the R.Q.F.

We now examine I.P.Q.F. Assume {¢i} -
1=

sets of functions dense in C(R). Clearly we may write

and { .}°° are
w] j=0

(4.3.8) i

1l

Lizo "33
<«
g = Lizo V¥

and we then have
(4.3.9) E(f38) = ]._g zj:O uivyECe 394

Obviously, comments entirely analogous to (4.3.3) and (4.3.
can be made with regard to (4.3.9), and we investigate the

weighted sum

(4.3.10) I -0 I3=0 B13ECo53¥ 0%

for various choices of Bij’
If the I.P.Q.F. we are considering is exact on QYXYG then

the summations (4.3.9) and (4.3.10) will start from i=y+1l and

j=8+1. Provided the numbers E(¢i;wj) are bounded then (4.3.10),

which can be regarded as a generalization of (4.3.9), will be

5)
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convergent provided 22:0 z?:osij is. This is not a severe res-
triction. However, if the series EZ:O 2§=Osij converges too
slowly there may be practical problems in evaluating (4.3.10).

Some numerical results are available in the case of the
Sarma-Eberlein estimates. See [37]1, [1u48]1. In [1u48] it is
reported that attempts to calculate optimal R.Q.F. (i.e. mini-
mizing (4.3.6)) were made. In all but the simplest cases (using
either two or three x; elementary functionals) these attempts
were unsuccessful due to computational difficulties.

In [148] it was pointed out that the Sarma-Eberlein esti-
mate can be regarded as the variance of the error functional.
Thus, using Chebychev's inequality we can obtain an estimate
of the probability that, choosing an integrand at random, the
error is less than a given tolerance. Clearly, randomness is
with respect to the distribution function due to the Eberlein
measure used to obtain SE in [39,40]. It would be of interest
to know whether these results can be parallelled for other
choices of distribution function, thus allowing us to obtain
useful probabilistic error estimates when using Q.F. in various
circumstances.

We also observe that extending the icdea of a Sarma-Eberlein
estimate of goodness to I.P.Q.F. is very straightforward in
comparison to the other techniques of estimating errors con-

sidered earlier in this Chapter.
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§4.4 CONVERGENCE

There are essentially two ways in which we may examine con-
vergence of a Q.F. to the integral it is approximating. We may
use compound Q.F. applied to smaller and smaller subregions of
R or we may increase the degree of exactness of the Q.F. we are
using. The first approach is clearly analogous to standard
Riemann integration, and the second leads us to investigate the
properties of families of Q.F. Although the properties of
families of Q.F. are important for theoretical reasons, due to
practical difficulties, it is unusual to find these properties
being exploited in the course of practical computation.

There is a well known result which states that, provided
it is exact for the function 1, and given a tolerance e, there is
an N such that a R.Q.F., applied to N (equal) subintervals of
R will guarantee E(f)<e. Naturally, N is dependent on the
choice of function f. Recalling (A2) in particular the follow-

ing result is immediate. See also [12].

THEOREM 4 .4.1 Let Q be an I.P.Q.F. exact on 1xl (i.e. exact

when ¢=¢9=1) at least. Let (M’N)Q be an (M,N) copy of Q.
Assume max (X -X _1)+0 as M+ and max (Y ~Y _l)+0 as
1<pu<M L 1<v<N ¥
N-o, Then
Lim (M’N)Q(f;g) = TCEsg). LLY
Mo
N

Note that the statement of Theorem 4.4.1 is independent

of the choice of elementary functionals S; and T..
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We now consider the second approach to convergence mentioned

above. We have the following theorem due to Banach (see [41):

THEOREM 4.4.2 In order that the sequence of linear operators

{Li}z_O be convergent it is necessary and sufficient that
they satisfy the two conditions:
(a) The norms of the operators "Li“ have a common bound,

(b) L;¢ is convergent for each ¢ in a set ¢, which is

everywhere dense in g G

Clearly, with slight modifications to condition (b) the
above Theorem is applicable to bi-linear operators.

At first sight the above Theorem seems to clash with the
comments made in §4.1 concerning the divergence of interpolating
polyncmials from the functions they are approximating. This
difficulty is removed when we recall that in dealing with the
convergence of Q.F. to an integral we are primarily concerned
with the weak® convergence of the (bi-)linear operators Q(m,n)
to I. This is a weaker condition than requiring strong conver-
gence (for example, requiring that the interpolating polynomials
also approximate the function under consideration). See also
[2,14]. Thus it is immediate that we obtain, analogous to the

celebrated result for R.Q.F.

THEOREM 4.4.3 Let Q(m,n) be exact on ®y(m)x?6(n). Assume that

{¢.}f and {w.}? are dense in CO(R). Then, provided the
i%i=0 17520

following are satisfied:
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(a) HQ(m’n)HSQ, 50 L ¢ & B80T 54

(b) y(m)»» as ms», and 6(n)+« as n+», we find

idien Q(m,n)

m, n-e

(f3g) = I(f;g)

for all f,geCP(R).

PROOF: See [4,1y1]. it

We note two things about Theorem 4.4,.3; first, it is inde-
pendent of the choice of elementary functionals S; and Tj’ and
second we are free to choose the norm used in part (a). The
usual, though not the only, choices would be either the least

square or absolute norm, i.e.

o« (-] 2
(k. 4. 1) 1™ ™, = (17 13-0laf ™ 1D%,
and
(4.4.2) IQ(mom)y = Z?:oz?=o|aijl’
respectively.

If we place more conditions on the functions f and g, for
example, requiring them to be holomorphic in some region con-
taining R, we can obtain stronger results.

However, we must remember that it is no easy matter to
guarantee that the required conditions for convergence of a
family of I.P.Q.F., or R.Q.F. for that matter, can be satisfied.
Some simplifying results are available in [14].

When using a Q.F. it is natural to desire that the conver-




179

gence of the error-functional to zero is as rapid as possible,
This leads us to consider the question of best choice of
elementary functionals and the functions ¢i and wj. Often, due
to circumstances beyond our control, our choice of elementary
functionals in particular, will be limited. Our choice of fun-
ctions ¢i and wj depends upon our circumstance also. If the
I.P.Q.F. is to be used for a specific problem about which we
have information available, this will be a major factor in our
choice of ¢i and wj' If, on the other hand, we are to use the
I.P.Q.F. for a variety of problems it would seem advantageous
to choose the functions of ¢i and wj from dense subspaces of
C°(R) whose n-widths are maximal or near maximal. See T S AL
...,163]. Also, much work has been done concerning best appro-
ximation of linear functionals, see for example [164, 16517,
and it seems reasonable to expect some of these results to
carry over to approximation of bi-linear functionals.

As a final remark, we note the important role of the
function 1 in Theorem 4.4.1 and recalling the Stone-Weierstraus
Theorem (see [3]) we see that, unless circumstances are excep-

tional, an excellent choice for ¢o and wo would be the function




180

CHAPTER 5: EXTENSIONS AND APPLICATIONS

§5.1 EXTENSIONS - HIGHER DIMENSIONS

There are several ways in which we might want to extend the
concept of I.P.Q.F. Some work has already been done, see [22,
119.,1%1:,1527,

An obvious question to ask is whether we can develop I.P.Q.F.
in multidimensional spaces, i.e. RCRd, d>1, and f and g are
functions mapping rY to R. Some initial work on this question
has been done in [22], under the assumptions that all the
elementary functionals are of type x;, and the functions ¢i and
wj are monomials. In deriving interpolatory I.P.Q.F. the pro-
cedure is analogous to the one dimensional case. However not
all results remain valid. For example the analogue of Theorem
l.3.2, gtating that if an I.P.0Q.F. ig &xyict o8 a™xy™ it must
be interpolatory, is false. It is clear that the second
approach to deriving I.P.Q.F. in §1.3 is much more general when
d>1. The only difficulty lies in finding interpolating sets
of points for the monomials ~ that is, sets of points such that
detB#0 and detC=#0. The problem of obtaining I.P.Q.F. exact on
@waa where, say y>m, will depend upon the properties of ortho-
gonal polynomials in more than one dimension. The study of
these properties is not as advanced as in the one dimensional
case. See [37].

Nevertheless, we can make some comments. We shall only
consider the case d=2. As is almost universal, we shall also

only consider the standard monomials, i.e. we assume that ¢
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and wj are monomials. However we note that in principle the
ensuing comments apply to higher dimensions. First, we note
that when d=2 there is an (r+l)-dimensional subspace of poly-
nomials of degree exactly r which is weakly orthogonal to the
subspace of all polynomials of degree less than r. This space

is spanned by basis functions of the form

(5.1.1) xr_iyi - Q;fi (x,y), 1800y » » sy

where Q;Ei(x,y) is a polynomial of degree at most r-1 in the
two independent variables x and y. This situation is intrinsi-
cally different from that when d=1, when there is only a one
dimensional subspace of polynomials orthogonal to polynomials
of a lower degree. Second, recalling Theorem 2.2.11l, we note
that an arbitrary set of given knots need not be an interpola-
ting set, although it is known, see [100], that such sets are
dense in regions of R?. However, the analysis of §2.4 remains
entirely applicable, and Theorem 2.4.3 (with slight modifica-
tions) remains our starting point. Even in the situation we
are discussing, conditions (2.4.15) and (2.4.16) become dif-
ficult to satisfy.

When we consider Numerical Quadrature in more than one di-
mension (sometimes known as Numerical Cubature) it is tradi-
tional to seek Q.F. exact for all polynomials up to a given
degree. This is despite the fact that in progressing from

degree r to degree r+l, in d dimensions, we have to consider

(r+d

g1’ further monomials.
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However, instead of integrating exactly all polynomials
up to a given degree, it may be preferable to consider
only sets of polynomials drawn from all polynomials up to a
given degree. It may be possible to obtain results, for
example, which integrate exactly all monomials up to degree r
and some selected monomials of degree higher than r, probably

r+l. Finally, since the total number of monomials, (rgd)

s
which we have to consider increases very rapidly with both r
and d it is desirable to reduce the number we have to consider
by, for example, appealing to properties due to symmetries,
see example, [92,93,153]. However, if we seek I.P.Q.F. exact
on @was, y=(r;2), 6=(S;2), r,s>0, this approach is invalid.
This can be demonstrated as follows:

Consider first a R.Q.F. Assume that the region of inte-

gration is RxR and
£8 la2) wix,y) = wil=x,y) = w(x,-y) =w(-%x,-y)

and so we naturally use a symmetric Q.F. which can be written

in the form (cf [93,153])

(5.1.3) Q(£)

t; "
ta
+ Ei- . ai(f(xi,0)+f(—xi,0))

- ZF3

B

It is now immediate that, letting f=x” y°, o and B being non-

negative integers, that
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(5.1.4) Ixy®) = vy = o,

if either o or g is odd. On choosing the numbers Xi’yi’tl’
t, and tg with some care it is possible to obtain many different
Q.F.'s, considering only the moment equations due to xayB,
where both o« and B are even. This reduces the number of equations
we have to deal with to the order of one quarter of the possible
total.

If we attempt to obtain I.P.Q.F. using a similar approach
(i.e., using configurations of knots for both f and g as sugges-
ted by (5.1.3) we see that I(xalyﬁl; Xazsz) is non-zero if

Bl; Xazyﬁz) will be zero

aj+ap and B +B, are even, whereas Q(x°ly

if o;,a, and/or B;,B, are odd. Note that if we restrict ¥ so

that both a; and B, are even then the required I.P.Q.F. may exist.
We might also attempt to derive I.P.Q.F. which use other

predetermined combinations of knots, in particular we might

consider using

(5.1.5) f(x,y) + f(x,-y),
or
CDadinBd f(x,y) + f(-x,-y) .

However this will require us to deal with larger systems of
equations than mentioned above. Finally, we may consider the
largest system of equations that derived by allowing each knot

to have 1ts own coefficient.
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In all the above cases if y>m, we have to investigate the
properties of common zeros of orthogonal polynomials, proper-
ties which are not well understood. For example, it is not
known if moment matrices derived on using these zeros as knots
are singular or not.

There is one special case where I.P.Q.F. can be easily
applied to functions of two variables, that is when the function
of two variables is known to be a product of two functions of
one variable. In this case, since I(f3;g) can be split into the
product of two integrals, on applying the analysis of §2.4 and
§2.7 we see that there are I.P.Q.F. exact on ¢2m—lx?2n—l.
However, since we are able to divorce the contributions of f
and g in Q(f;g) we see that the I.P.Q.F. obtained, which is

unique, is the product of two R.Q.F. Let

(5.1.7) QP 68 = L g, S, 5D,
and
(n) n
5.1.8 = 0 p.T.
( ) ;™ (8) = I5.PsT;(8),
2m-1

be exact on ¢ and §oRL respectively. Then

]

i %o & 4 P
(5.1:9) Q (f3g) £ dlag(ai)im;ndlag(bj)g

= if_TAE. )

where 1 (1 ) is a (m+1)((n+l)) vector of 1's,

fig are as in (1.3.8),
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and

0 ) @za = @abas A30,0009Ms 50, e ol

Obviously this process is valid for d>2 as well. There
does not seem to be anything to recommend further study of
I.P.Q.F. in this situation as we do not gain any advantage over
the use of two R.Q.F. and multiplying the results together.
Similarly, replacing the R.Q.F. in (5.1.7) and/or (4.1.5) with
I.P.Q.F. does not seem to offer any advantage except possibly
in the calculation of one dimensional integrals.

Another possible use of I.P.Q.F. in higher dimensional
spaces is in the evaluation of line integrals. See [151] and
the references contained therein. We consider the following

special case of an I.P.Q.F.:
- dq
€5 1. 11) I(f3R) = J f(s) (3—)ds,
q s

where s is the distance along a rectifiable curve Q in R?, and

f is a given function. The elementary functional Si are inter-
preted as information concerning the function f, and the func-
tionals Tj as information concerning the curve Q. Obviously

the most likely form of Si and Tj will be that of the values of

f and @ for given (distinct) values of s, so requiring m=n. We
note that I.P.Q.F. derived in other contexts cannot be immediately
employed in approximating (5.1.11), since (5.1.11) involves the

derivative of @ as an integrand.
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If the curve Q is given in parametric form, i.e. consi-

dering R2 as the xy-plane and @ is the set of points
Q(t) = {(g(t),6(t)), ast<b} ,

we find that, integrating in the positive direction, (5.1.11)

becomes

b
(5.1.12) ,{ FCECE),00t)) (C(EMCE))2 + (o' (t))2)%dt.
a

We observe that unless & and 9 are given and f(g,8) is
regarded as the product of a ¢-polynomial and a y-polynomial,
£Ez¢, 6=y, and (2.8.1) being valid for both ¢Y and WG, CRl.1Z)

will become a nonlinear functional of £ and 6, and so I.P.Q.F.

as developed here will be inapplicable.

§5.2 EXTENSIONS - MORE THAN TWO FUNCTIONS

When dealing with real variables, the extensions of the con-
cept of L.PyQ.F. dealing with the product of two functions
in more than one dimension and, alternatively, the
product of more than two functions in one dimension are the most
natural to investigate. We examine the second of these in this
section. See also [119].

First, we examine the interpolatory case, which is straight-
forward. We consider the case of the product of three functions.
Extension to the product of four or more functions are obvious

by analogy. We are given
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(5.241) I(fi;g3h) = J w(x)f(x)g(x)h(x)dx
R
and we approximate this by
. _ ¢ ¢n P
(5.2.2) Q(fig;h) & Xi:OZj:OZkzoaiiji(f)Tj(g)Uk(h),

where Sie(ém)“, Tje(Wn)x, and Uke(Ep)h are sets of linearly

independent elementary linear functionals defined on their res-

ym n P
1=023=0"%=0
as a "three-dimensional" matrix, abbreviated as a 3-matrix, made

pective function spaces. We may also regard Af(aijk
up of real numbers a3 5% In this context the matrix A in 1.3.3
would be called a 2-matrix. Naturally, we seek aijk such that

m 5
(m,n,p) when necessary, 1s exact on

Q, which we will denote Q

¢™xy"'xeP that is,
(5.2.8) E(f;gsh) = I(f;gsh) - Q(m’n’p)(f;g;h)

is zero when f€¢m, geYn, and heEP, We now proceed as in §1.3:

Let
= P P 5 p P
(5.2-"") F s (Uk(gz))k=032’=o = (sz)k=0’2’=0
= UO(€O), o & B Up(&o) 3
U(ED), « . . , U
| Uo Ep p(Ep)-

We now define
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(5.2.5) D=TF @8 (C®B),

and seek to solve the system of linear moment equations

(5+2+8) Da = A,
where
3 iy
£5.2.7) ET = (Eg y o % BB ép J 5
éi a (azk ’ ) égk) 3 k=0, »DP>
E'gk = (aojk’ ’ amjk)’ 1=0,...5n
and
T T JE
(5-218) _A._- = (A‘O ) . . . 5 !—\*P) 3
By 7 Chops i dints dolais sums
A;j:k = (I(‘PO;‘Pj 5§k>a--->I(¢m5¢jBEk))s 35054+ 5N,

Clearly there are direct analogues of all the Theorems and
Definitions of §1.3. The matrix A may be found by analogues of
the methods suggested in §2.9. In particular note that the
analogue of (2.9.10)-(2.9.12) requires the examination of only
one (m+l)x(mt+l), one (n+l)x(nt+l) and one (p+l)x{p+l) matfix.

We now consider the question of exactness on, say,
¢Yx?5x2l. As before (see §2.7), there is no real gain in con-

sidering y<m, &<n or 1<p. We examine the case (say) y>m, &=n,

and 1=p. Following the analysis of §2.4, it is clear that,
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defining h as in (2.4.10), we have

THEOREM 5.2.1 Let Si depend upon piePi, i=0,...,m. For an
I.P.Q.F. exact on @wanxap, y>m, to exist it is necessary

and sufficient that the following conditions are fulfilled:

(56.2.9) There exist hr’ W-orthogonal to y'x=2P, with respect to
Ty 5T gennsy=ms That 16,

I(hr;wjaak) 5 G JE0yeenutly K20 sovnabi

(5.2.10) There exist gisPi, iz0,...,my such that

ny
Si(Pi5hr) = 0y T=1lyeeeyy—M.

(5.2.11) The elementary functionsl (Si(gi; ))?=0 are linearly

independent on (&™) . /17

We have already assumed independence of Tj on (Wn)* and Uy
on (EP)* and so (5.2.11) guarantees that the matrix D in (5.2.5)
has full rank. Analogous comments to those following Theorem
2.4.3 obviously apply here.

Clearly the above result is symmetric in y,§ and 1. In
general, we would expect (5.2.9) not to be satisfied if

(n+l)(p*+1l)>m+tl. FHowever, in certain special circumstances, we

might expect more advantageous results. For example, if we find

W o) ; : 1 g R
( il By w] EJ §=0,1

(pp) 32051y ...,

e
1
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we obtain (cf §2.7),

THEOREM 5.2.2 Assume SiEX13 120 yoomwslly £8.2.11) holds and

n+p=m. If {wj}? . is a T-set on R, then there exists an
J:

I.P.Q.F. exact on

provided that there exists a set of (mtl) zeros of h; such
that detB#0. The functionals Tj and Uk may be chosen
arbitrarily provided detCz0 and detFz0. The choice of the

functionals Tj and Uy uniquely determines the I.P.Q.F. ///

mt+1

Clearly, if ¢ is a T-set on R, the knots x; are unique.

=0
the above result in effect requires that ¥; is a monotonically

We also note that the requirement that {wj}? be a T-set in

increasing or decreasing function. Further, analogous with

results in §2.8, we have

LEMMA 5.2.3 Let ¢, obey (2.8.1) with ¢;5¢;. Let (5.2.11) hold.

Assume §; is a monotonic function on R. Then there exist

I.P.Q.F. exact on

QYXWnXEp

ytn+p=2m+l, y=2m+l-n-p>m. The functionals, chosen as in
Theorem 5.2.2, uniquely determining the I.P.Q.F.
PROOF: Since 9, is monotonic, all the sets of functions under

consideration are T-sets. The Lemma is now immediate. [///
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We see that these results, which are immediate generaliza-
tions of results concerning I.P.Q.F. which deal with the pro-
duct of two functions, suffer the restriction y+n+p=2mt+l if we
seek y>m, despite the increased number of parameters (in A)

we have available. We have the following:

LEMMA 5.2.4 Let @m, m>n and Wé, §=n be T-sets on R. If there

exists a function gespEP which is of one sign throughout
R, there exists no choice of x; functionals such that

there is an I.P.Q.F. exact on
oMxy8xzP,
PROOF: Analogous to Theorem 2.1.1. /77

COROLLARY 5.2.5 Let @Y, yzm and WG, §2n be T-sets on R. Let

y+é>min(2n+l,2m+l). If there exists a function & as in Lemma

5.2.4, there exists no choice of x; functionals such that

there is an I.P.Q.F. exact on
oY xubxzP | /17

In this context, concerning functions of one sign, it is

useful to note the following result:

THEOREM 5.2.6 Let R be a closed real interval, and =P a2 T-set

on R. Then there is esspsp such that >0 on R.

PROOF: See [154,155]. /177
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If we remove the restriction that the above sets of func-
tions are T-sets, it is clear from §2.7 that we also lose our
guarantee that the relevant orthogonal polynomials have suf-
ficient zeros to act as knots of an I.P.Q.F. Of course, all
the above results are symmetric in ¢,¢ and .

Thus we see that seeking an I.P.Q.F. exact on oY xy"xgP
is a strong restriction on our choice of m, n and p, since we
can only obtain results when y+ntp22m+l. This is to be con-
trasted with the interpolatory case where there is no such res-
triction on m, n and p. Thus we conclude that when integrating
the product of two or more functions we should use inter-
polatory I.P.Q.F., perhaps assigning any spare (non-linear)
parameters in a way which improves the behaviour of the error
functional in some way.

The results concerning errors for I.P.Q.F. in Chapter 4 can
clearly be generalized to deal with the product of more than

two functions.

§5.3 EXTENSIONS - COMPLEX VARIABLES

Having dealt with the above forms of extension of I.P.Q.F.
when dealing with real variables and real valued functions, we
now propose to briefly examine the effects of allowing the vari-
ables to become complex. We note that there appears to be
dearth of results in the literature dealing exclusively with
approximate integration in the complex domain, although there

are some results investigating the connection between analytic
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functions and integration over real intervals. In fact con-
sideration of analytic functions allows us to derive yet another
class of error estimates, both for R.Q.F. and I.P.Q.F., see
[5,12,71,72]. Thus we obtain yet another way of defining a
"best" Q.F., since, with the aid of some functional analysis

we are able to separate the contributions due to the intergrand
and the Q.F. in the error estimate.

From [2] we have the following well known result:

THEOREM 5.3.1 Given n+l distinct (real or complex) points,

Zgaee B and nt+l (real or complex) values, WoseoesW

o bl

n
there exists a unique polynomial, p, of degree at most n,

such that

p(zi) W T 50 e aipllis &4

This result is immediate since the so-called Vandermonde
determinant is non-zero. If fact, see [156], this result can
be extended to ¢-polynomials, where ¢i obey (2.8.1) and the
points z; are all ¢-distinct.

Theorem 5.3.1 means that we can construct interpolatory
I.P.Q.F. which will integrate ¢- and yp-polynomials exactly,
(¢i and wj satisfying (2.8.1)), over arbitrary regions in the
complex plane, using x; functionals. The analogue of Theorem
2.4.3 also clearly holds. However, still examining x; func-
tionals, we find, see [2,157], that orthogonal polynomials on

regions in the complex plane may not possess distinct zeros, and

these zeros may not even be in the region itself. Consequently,
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except in special cases, we would not expect to be able to
obtain Q.F. which might be regarded as analogous to Gaussian
QF in the complex plane.

However, we note that the Vandermande determinant remains

we replace the (i+2)nd

non zero if, on allowing, say, Z;32:070
rows i.ev (1, = § z? T zo ), with the row (0,1,2.,3? S
i+l Bl 8 PEEHL SRRl T ’
-1 ! : G i
z? ). This procedure can be generalized in the obvious way

to deal with both higher derivatives and several groups of
numbers z4 coalescing. Thus, provided the integrands are de-
fined at the zeros of the orthogonal polynomials and the relevant
derivatives may be approximated, we can obtain I.P.Q.F. (and
R.Q.F.) in which y>m by choosing the elementary functionals Si

to be function and derivative evaluation at the zeros of the
orthogonal polynomial (if a zero z* has multiplicity r we use

the elementary functionals f(z"),...,fcr—l)ﬁzd)).

§5.4 APPLICATIONS

In a sense, all applications of I.P.Q.F. are obvious, that
is, we would consider using them in any circumstances where we
integrate the product of two (or possibly more) functions, each
of which can be distinguished. Some work has already been done.

We list various applications which come readily to mind:

(5.4.1) Solutions of Integral Equations. See [15,18].

(5.4.2) Solution of various transforms and convolution integrals.
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(5.4.3) The evaluation of (generalized) Fourier coefficients

of functions.

(5.4.4) Evaluation of the integral of the product of a large

number of relatively simply functions. See [118].

With regard to (5.4.3) we note that there are some very
good algorithms already available for the evaluation of the
Fourier sireand cosine coefficients of a function. See, for
example, [158,159]. However, we note that these methods rely
on (standard) polynomial approximations, and as remarked at the
beginning of Chapter 2, we feel that the intrinsic strength
of the concept of I.P.Q.F. lies in dealing with the situation
in which either ¢i or wj are not standard polynomials, and we
can benefit fully from not having to discover an unnecessary
amount of information about both integrands. For example, as
always, in the obvious situation where one of the functions is

badly behaved and the other is not.

§5.5 EXAMPLES

Here we propose to give a few simple examples of I.P.Q.F.

There are, of course, some examples of I1.P.Q.F. in the literature,

see [12,15,16,17,18,23,24,25,118]. However all these examples

i

deal with the special case ¢.=y.=t~, i=0,1,2,..., and although

L s
it is reported that the use of these I.P.Q.F. is more accurate

that R.Q.F., ([23]) that is,the same accuracy is achieved for
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less function evaluations, as commented in §2.1, we feel that
the main advantage in using I.P.Q.F. becomes apparent when at
least one of the sets of functions ¢i or wj are not the stan-
dard polynomials. As pointed out earlier, it is under these
circumstances that we may claim to make "full use" of all the
linear parameters (aij) available in obtaining interpolatory
I.P.Q.F.'s which can integrate exactly (m+1l)(n+l) distinct
functions as opposed to the at most 2m+l a R.Q.F. can cope with.
Examples demonétrating some of the symmetry properties
mentioned in §2.10 are given in [24]. We now proceed to give

some examples of I.P.Q.F. We shall examine the following sets

of functions:

(5.5.1) (t+1)°‘i, i=0,1,..., a#0,
(5.5.2) e PE . Bl 4. cia. BRED,
(5.5.3) cos(im(t+1)/2) i=0,1,...,
(5.5.4) sin(im (t+1)/2) i=1,...

Throughout, we recall that the interior of R is (-1,1). 1In
the interests of simplicity we assume w=l. Also, we shall only
consider using x; functionals. Once the knots have been deter-
mined we obtain the matrix A using (2.9.10) - (2.9.12). The
zeros of the relevant orthogonal polynomials are obtained using
the algorithm given in [1671 for obtaining simple real zeros

of polynomials and modifying the results obtained in the obvious
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manner. That is, given the coefficients of the orthogonal poly-
nomial, find the roots using the algorithm, obtaining for example
ai(=¢(xi)) i=zl,...,r,r being the degree of the polynomial, and
then solving ai=¢(xi), i=l,...s,r. We know that the sets of
functions (5.5.1) - (5.5.3) are T-sets on [-1,1] from, for

example, [111].

Example 5.5.1 Let ¢i be given by £ of {5.5+2)3 B=l; and ¢j
be given by Ej of (5.5.1), a=1l. Let m=n=3. We then obtain

3 3 b
the following I.P.Q.F. exact on & x¥ and & xV¥

(548 48) ﬁT 0.4697446L60 0.0505350026 ~-0.0259709689 0.0082369280] g,

~0.0206882436 0.688694786Y4 0.0706153851 -0.0179163084

0.0045573657 -0.0242395656 0.5361207742 0.0219676153

-0.0007807973 0.0034976556 ~0,0103330767 0.2459588018

where £ = (£(~0.7913959534),£(~0.1331193345),£(0.5153672678),
£(0.9069848137)),
gl = (g(~0.8154575387),g(~0.1896084753),5(0.4791128782),

g(0.8991238864)).

We note that elements of the moment matrices required in
order to calculate the parameters in (5.5.5) can be obtained in

closed form only when o above is an integer. £y

Example 5.5.2 Let s be given by §; of (5 .5.3), ang wj be given

by Ej of (5.5.1), a=1. Let m=n=3. We obtain the following

I.P.Q.F. exact on &4x¥3 and &3xyh%,
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(8. 546 £T 0.4180077850 0.0u467218887 ~-0.0095186877 0.000766468;
-0.0184376039 0.5580034832 0.00144u5871 0.0030120689

0.0030120689 0.001u44u45871 0.5580034832 ~-0.0184376038

0.0007664687 -0.0095186877 0.0467218887 0.4180077850]

where f° = (£(-0.7809256111),f(-0.2758715666),f(0.2758715666)
£(0.7809256111)),
g = (g(-0.8342341385),g(~0.2969834986),g(0.2969834986)

g(0.8342341385)).

We note that the above mentioned algorithm employed for
finding zeros of polynomials can be used when dealing with

¢, on noting that we can write

cosix = zg=o

% 3 (cosx)j,
for specified o3 (see, for example, [1681]).

We can also observe, as predicted in Theorem 2.10.8,
that the matrix A above has rotational symmetry of order 2.

From Corollary 2.10.12 it is clear that the above

I.P.Q.F. will also be exact on

§ 2 2 5
® x¥ and & xvy ., /77

Example 5.5.3 We now demonstrate the fact that we do not require

m=n.
Let 95 be given by (5.5.2), B=1, and wj by €545 :8)4
Let m=2, and n=3. We then obtain, for example, the follow-

ing I.P.Q.F. exact on &2xy3,
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(B 8572 £T 0.5986705423 0.2234366014 -0.1020851981 0.0209795908

-0.0628180635 0.3764349217 0.5484907508 -0.0492236995

0.0094644135 -0.03253905421 0.0715457235 0.3976949582

where

|Hh
|
"

(£(-0.6633426243),£(0.1587977139),f(0.8229651623)),

(g(-0.7298108309),g(-0.1709472124),g(0.3801006302),

foa
n

g(0.8292503279)).

The knots X and yj were chosen to be zeros of ¢3 and
Y , respectively, and consequently the I.P.Q.F. will also be

exact on

®3x¥2 and e2xy*t,

We note that while the knots X; are uniquely deter-
mined, it is possible, since there are degrees of freedom
in the choice of ¢, (we made the natural choice of requi-
ring ¢, orthonormal to ¢,, but this is not necessary),
that there might be some element of choice in the deter-
mination of the knots yj, while still retaining exactness
on all the above mentioned product spaces of function.

We observe that the asymmetry of the knots reflects

the asymmetry of the exponential functions ¢, . /17

In Examples (5.5.1) and (5.5.2) we see that the coefficient

matrices are diagonally dominant, those elements which are negative
have relatively small modules, and the diagonal elements are of
similar size. From the point of view of estimating errors, via

some norm of the coefficient matrix, and roundoff error, the above
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properties of the coefficient matrices are advantageous. Even
the coefficient matrix in Example (5.5.3) is almost "diagonally

dominant" in the sense that a;,»a and a are its largest

202353 34

elements. These properties are not necessarily general, par-
ticularly in the case where m#n. It is also possible that co-
efficient matrices with smaller norms can be obtained when the
knots X, and/or yj are not zeros of the relevant orthogonal

polynomials.

Tt is not yet clear under what circumstances we may obtain

a theoretical justification for these clearly desirable properties.

We now proceed to examine the following:

2
(5+5.8) J In(n(l-x)) cos(jn(x+1l))dx = =~ ;L S:{9203 5
-1 7] i

and

ol
(5.5.9) | ln(w(l—x))sin(j1r(x+l))dx=%(y+ln(2jn)—ci(2jn)),
-1

where y is Euler's constant, and Si and ci are the Sin and Cosine
integrals (see [168]). Some numerical results concerning
(5.5.9) are given in [51, p. 66, and it is apparent, even using
some R.Q.F. specifically designed to deal with oscillatory func-
tions, that (5.5.9) (and analogously (5.5.8)) is difficult to
approximate using a Q.F. This is for two reasons, first, the
oscillatory behaviour of the trigonometric functions and second,
particularly in (5.5.8), the fact that LiT Inm(l-x) = ==,

X+

We list some results in Tables 5.5.1 and 5.5.2. The

results were calculated to 18 decimal places, then rounded to 6.
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Calculations were carried out, using APL language, on the DEC-10
computers at the Universities of Toronto, Canada, and Aberdeen,
Scotland.

The notation, x1,x4, and x10 indicates how many equal sub-
intervals R was divided into when the rules were used in a com-
pound manner. The rules RGS32 and RGSY are the Gaussian 32
and Y4 point rules respectively. The rules R31B and R23A are
given by (5.5.6) and (5.5.7). The remaining rules can be des-

cribed as follows:

R23F : m=y=3, n=3, §=k. ¢, defined by (5.5.2), g=1l; wj
defined by (5.5.3). The knots Xss 1804« v « 53y anid yj’
3=0,...,3, are 0.5,0.2,0.75,0.97, and ~0.7298108039,

T0.1709472124%, 0.3801006302, 0.8292503279 respectively.

R24UA : m=y=n=6=3. ¢, defined by (5.5.2), B=1l; ¢. defined by
€1 ]

(5.5.3), The krots xi,i=0,...,3, and yj, g ) o [——

are -0.5,0.2,0.75,0.97 and -0.7,-0.2,0.3,0.8 respectively.

R24B : As R24A except that the knots X 1i=045:5%4 433, adre now

il B Dy 150 s Balia s

R211A : m=y=3, n=38=6. 65 defined by (5.5.2), B=1; ¢j defined as

(5:5:10) j’wo S
Vorsl - cos(m(k+1l)(x+1l)), k=0,1l,..,
1_w2k = sin(wrk(A+1)), o B S—

This is a T-set on R. The knots Xs 120,494 53y and
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yj,j=0,...,6, are -0.5,0.2,0.75,0.98 and -0.9,-0.6,

-0.3,0,0.3,0.6,0.9 respectively.

The choice of the knots %, and yj is heuristic and has
not been the subject of a detailed investigation. The asym-
metry (with respect to the origin) of the knots X: reflects
the asymmetry of the exponential function. In all rules except
R211A, the asymmetry of the knots yj reflects the importance of
the behaviour of the integrand near 1. We observe, in particu-
lar, how as x3+1 when dealing with (5.5.8), and x3+0.9 when
dealing with (5.5.9) (thus reflecting to an extent the position-
ing of minima of the integrands) the I.P.Q.F. give better appro-
ximationsof I. We see that in approximating (5.5.8) both R23F
and R211A slightly outperform RGS4. Also, as j increases in
value, we see that all the I.P.Q.F. used have improved perfor-
mances - particularly R24A. As might be expected since x_ieiX
is an increasing function (x>0), R31B is outperformed by R211A,
R23F and R23A. When we consider (5.5.9), as might be expected,
we find R211A and R24B performing better than the other I.P.Q.F.,
and they perform better than RGS7 for j25. Finally, we observe
that while R24A performs reasonably well on (5.5.8), R23F does
not perform so well on (5.5.8). This, and the deteriorating
results of R24A and R24B for small values of j are probably ex-
plained by the fact that Lim 1n(w(l-x)) sinjwn(x+1)=0 and so
when these rules are compﬁZnéed the interpolatery approxima-

tion of the integrand is forced toward zero in places where

this should not occur.
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We also note that, from the point of view of function
evaluations, counting f and g as separate functions, that
all rules mentioned, except R211A and RGS32, use the same
number of function evaluation; 8,32 or 80, whereas R211A uses
11,44 or 110 and RGS32 64. In general, of course, an I.P.Q.F.

uses

(5.5.11) (m+n+2) Elementary functional evaluations and
(m+2)(n+l) multiplications during the course of its

evaluation,

whereas a R.Q.F. uses, when applied to a product of two functions.

(6.5.12) (2m+2) Elementary functional evaluation and

2m+2 multiplications during the course of its evaluation.

In (5.5.12) we have in effect, written the R.Q.F. as an
I.P.Q.F., chosen m=n and then taken into account the special
structure of the coefficient matrix.

It is clear, particularly if multiplications are cheap and
elementary functional evaluation is expensive, that the use
of an I.P.Q.F. may well be cheaper than the use of an R.Q.F.
if m is noticably bigger than n.

Consequently, in the above examples, the improved perfor-
mance of I.P.Q.F. over RGS7 cannot be attributed to the fact
that we obtain more information about the integrand using an
I.P.Q.F. than the R.Q.F., though perhaps it can be attributed

to the fact that we use what information we have "more effec-

tively".
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The question of how we may realistically compare two (or more)
Q.F. with one another is not easily resolved. It is clear that
simply comparing results when the Q.F. are applied to a few care-
fully chosen "test-functions" is not really an adequate procedure.
Some work on so-called "performance profiles" of Q.F. has been
done, see [u4l1, 42, 43]. In dealing with I.P.Q.F., which are
designed as special purpose Q.F. we propose a simple method of
comparison.

Let the functions f and g depend upon parameters o and
B respectively, thus obtaining a two parameter family of in-
tegrands. Approximate these integrals using two Q.F., Ql and
Q2 and we may compare the performance of the Q.F., on this family

of functions in the following ways:
(5.5.13) Maximum modulus relative error incurred by Ql and Q2

(5.5.14) Number of times the relative error for one Q.F. is

smaller than the relative error for the other Q.F.

We notice that (5.5.14) is a very crude comparison and augment

it by calculating the following ratio for Ql (and Q2

analogously) ;
lIaB—QlaBI . number of times
(5.5.15) s _)
T OILQEI;I 4 aB” 208 ]IaB-QlaB|<|I—Q2aBl 1
aB” *1laB aB” 208 |
where IaB ’QlaB ’Q2a8 stand for I or Ql or Q2 acting on f

and g with parameters o and B8 . The ratio R2 (for Q2) is
calculated analogously. It is clear that if Rl is near 1 then,

in the cases where Ql has smaller error than Q2 , the inter-~
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pretation is that Ql and Q2 approximate I with similar
accuracy, whereas if R1 is near 0 , Ql gives a noticeably
better approximation than Q2 (on average). Thus we can obtain
some sort of measure of how much "better" Ql is when compared
to Q2 in the cases where Ql gives a better approximation to
I +than Q2

In order to be able to obtain exact sclutions easily we

examine some integrals of the form

1
(5:5:16) I(f';g) + I(f;g') = fg
-1
Example (5.5.17) Let f(x) = %% o =0,1,...,4
1 3 5 7 8
g(x> s (1+‘X)B Y B ="2‘:'§‘:§9§>§

We approximate (5.5.16) by using
RGS4 (as defined earlier in this section),
R21A (as given in Example (5.5.1)),
and R21B,
where R21B is determined by letting ¢i be given by

(5.5.2) (with 8 = 1), and $5 by (5.5.1) (with a = 1), and

m=2,n=2%4 ., The I.P.Q.F. is exact on ¢3XW2 and @zst 4
with
A = 0.3808777266 0.4048531836 0.01637874803 -0.08176517185

0.03664060927

-0.070545135584 0,1900368667 0.5433376461 0.2772342454
-0.09432447568

0.01188582114 -0.02546960111 -0.006836955378 0.1901147600

0.2269817228
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£f = (£(-0.6740553004), £(0.2073300597), £(0.8u48222766)),
g’ = (g(-0.8702937525), g(-0.4019057276), g(0.1781971340),
5(0.6549588641), g(0.9339042206)) .
We obtain the following results:
TABLE 5.5.4
I.P.Q.F. | MAX., MOD. COMPARED WITH R21A COMPARED WITH R21B
REL. ERROR| SMALLER ERROR LARGER ERROR SMALLER ERROR LARGER ERROR
NO. TIMES | RATIO |NO. TIMES | RATIO |{NO. TIMES| RATIO [NO. TIMES | RATIO

RGSH 0.0968 9 0.595 16 0.0729 3 0.960 22 0.505
R21A 0.113 9 0.0112 186 0.459
R21B 0.0941

We see that on the family of test functions chosen in this

example, both I.P.Q.F. may be claimed to perform better than

RGS4. Note the use of exponential basis functions in both R21A
and R21B, and the fact that all three Q.F. use 8 function
evaluations.

Example 5.5.18. We repeat Example (5.5.17) with g(x) now

given by

g(x) = (1+(1-x)) 8 B = 1,2,3,4 ,

and obtain the following results:
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The I.P.Q.F. RGSU4 and R21B are as before. The I.P.Q.F. R22A

is determined by letting ¢i==¢i be given by (5.5.2) (with B=1)

7-1r

and setting m=n=3 . Thus R22A is exact on & xo" § P Uo s s waad

(see section 2.8), with

A=diag(0.1847174964 , 0.6517223295 , 0.4487931752 , 0.7147669989) ,
£1 = (£(-0.7148808021), £(0.02752871693), F(0.6141299470), £(0.9284405505))

and gT is as £? (with g replacing f).

The I.P.Q.F. R22B has the same basis functions as R22A, but

we now choose m=2 ,n=4 ., Thus R22B is exact on @3XQ2 and

®2x¢5 , with

A = [ 0.5802520778 0.3611532153 -0.01666076724% -0.03874154766 )
0.01802973033

-0.1160017994  0.3183096250 0.4774214710 0,15201573u46
-0.05575714321

0.02524390504 -0.05149889088  0.01285685095 0.1755883376

0.1577886002 J
£ = (£(-0.5873716418 , £(0.32999398216) , £(0.8763713498)),
g? = (g(~0.7916367808) , g(-0.1891407712) , g(0.3699854772) , g(0.7502862223) ,

2(0.9534091960)) .

For the family of test functions used in this example, we see
that the effectiveness of both a suitable choice of nonpolynomial

basis functions (R22A as opposed to RGS4) and the use of I.P.Q.F.

(R21B and R22B) is apparent.
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We can also note that, not surprisingly, the way in which
we subdivide the interval of integration as well as the choice
of basis functions can affect the accuracy of a compound I.P.Q.F.
We can illustrate this with the following results obtained

(rounded to 6 figures) when examining (5.5.8) with n=2.

Table 5.5.6 (exact result is -~0.237485)

TP, Rl e s SR RESULT
R11A Lrdelaials1slsEslal -0.228065
6iBy63:12:1 -0.231166

10:310:10002 835241 -0.232643

2122142 3045843 0251 -0.233860

R31B b5 Wi B VI B B R T e B -0.236466
R23C 10:10:10%k: 33281 -0.236237
16:15:16:5:0: 33251 -0.,236687

2L 82U a2 ob sl 3090 F ~0.236943

As an example, to clarify any ambiguity about the subintervals
used above, we observe that if (-1,1) is subdivided with ratios

3:2:1, then we use the subintervals (—l,O),[O,%}, and [%,l].
J
The I.P.Q.F. used in the above table are describes as follows.

2 3,x3

R11A : m=3, n=2. Exact on @uXQ and 9°x¢°, where the functions

¢, are given by (5.5.1) with a=1. The knots x, and yj
are ~0.7946544723, -0.1875924741, 0.1875924741, 0.7946544L4723

and -0.7071067812, 0, 0.7071067812 respectively.
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R23C : m=n=3, ¢, are defined by (5.5.2), with B=1 and wj by
(5.5.3). The I.P.Q.F. is exact on @ 'x¥° and ¢°x¥'. The
knots X and yj are -0,7657840322, -0.1436874983,
0.4381215835, 0.8837483052 and -0.7298108309, -0.170947212u4,
0.3801006302, 0.8292503279 respectively.

R31B ¢ This 1s the I.P.0Q.F. in Example {(5.5.2):

From the above results we may make a few tentative con-

clusions:

(5.5.19) Using I.P.Q.F. it is possible in some circumstances to
obtain improved approximations to I (as opposed to
using compound low order R.Q.F. usuaily based on being

exact for standard polynomials).

(5.5.20) Not only the choice of basis functions, but the choice
of the parameters of the elementary functionals plays

a crucial role in the effectiveness of I.P.Q.F.

(5.5.21) The number of times we compound our I.P.Q.F. can be
critical, and is determined by matching the behaviour
of the integrand and known properties of the basis

functions ¢i and wj.

The best example of this last part is seen by examining the
results using R24B in Table 5.5.2. As always if we compound a
Q.F. too many times, roundoff error will affect our results,

however this is a separate issue to that raised in (5.5.21).
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We also give an example in which we use elementary functionals

other than x‘functionals. (See §2.11).

Example (5.5.22). m=4, n=3, and the functions ¢i and wj are defined

g and @qxéq.

by (5.5.1). The I.P.Q.F. is exact on QSX®

A =} -0.1286093407, 0.2435260610, -0.004436121970, -0.003852499465

vy

-0.05072803185, 0.5648462566, -0.1144333710, 0.03608058546
0.02423649750, 0.2775072614, 0.3494911888, -0.08764353983
-0.008119534830, -0.05436317277, 0.3835521890, 0.4097311628

0.001068461289, 0.005696332245, ~0.01775443549, 0.08930143472

o

and

H]i—-]
I

(f(~0.9061798459), £(-0.5384631011), f£(0), £(0.5384631011)

£'(0.7650553239))

foa,,
[

(g' (-0.6546536707), g(-0.3399810436), g(0.3399810436)
g(0.8611363118)).

It is interesting to note that the sume of the modulus of the
elements in the matrix A in Example (5.5.22) is less than that for
the corresponding I.P.Q.F. with the last element of i? replaced
with £(0.9061798459) and the first element of g? replaced with

g(~0.8611363116).
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§5.6 COMPARISON OF 1.P.Q.F. AND R.Q.F.: A SUMMARY

It is a little difficult to be able to compare I.P.Q.F.
and R.Q.F. directly. When we talk of the degree of precision
or exactness, ocnce the functions ¢i have been announced, this
has a fairly unambiguous meaning in the context of R.Q.F.

This is not the case with I.P.Q.F. since first we have to
announce both ¢i and wj and then y and ¢, and in general these
may not be interchanged. Thus more care is required when im-
plementing on I.P.Q.F.

There appear to be several criteria which we might consider:
(56.6.1) Number of elementary functional evaluations required.

(5.6.2) Total number of linearly independent functions whose

integral the Q.F. is able to evaluate exactly.

(5.6.3) Number of operations required in order to evaluate the

Q.:.F.

The criteria (5.6.1) and, to an extent, (5.6.2) are often
used to allow us to group R.Q.F. Once this has been done, we
may seek "best" R.Q.F. in some sense, for example, by minimiza-
tion of an error estimate of some sort, or obtaining maximal
degree of exactness.

We recall that I1.P.Q.F. are special purpose Q.F. in that
they are designed to integrate the product of two functions.
Thus we should only try to compare them with R.Q.F. under this
restriction. This makes the natural tendency to compare the

sum y+8 from the I.P.Q.F. with the number y from the R.Q.F. a
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little dubious when, for example, we consider (5.6.1). We can
make some comments.
The use of an I.P.Q.F. would appear to offer several

advantages:

(5.6.4) The ability to reflect known characteristics of the
behaviour of the integrand both in the choice of m and
n, the choice of the functions oy and wj’ and perhaps

in the choice of the elementary functionals Si and Tj'

(5.6.5) Consider an I.P.Q.F. exact on o™xy™, This requires
no more elementary functional evaluations than the
use of a R.Q.F. exact on i However, in general, the
I.P.Q.F. will integrate many more functions (regarding
fg as a single function temporarily) exactly than will
the R.Q.F. If we try and increase the degree of exact-
ness of the R.Q.F. (y>m) we may only do so at the
expense of using certain special elementary functionals,
while an interpolatory I.P.Q.F. retains the advantage
of using essentially arbitrary elementary functionals

(provided B and C retain full rank).

(5.6.6) An interpolatory I.P.Q.F. exact on oTxy™ is equally
easily derived, once the moments A are known,
whether ¢. (wj) are standard monomials or not. If
we seek a R.Q.F. exact on &',y>m, (cf. (5.6.5)) this

1s not the case.

These gains are obtained at a certain cost however:
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(5.6.7) An I.P.Q.F. is more costly to evaluate than a R.Q.T.

(see comments in previous §).

(5.6.8) An I.P.Q.F. is very sensitive to the way in which the
integrand is split into the appropriate product of
two functions. This is not the case when using a

R.Q.F.

Lastly we note that if we use an I.P.Q.F. exact on @wan,
y>m, although we increase the dimension of the product space
of functions integrated exactly, this is only achieved at a
marked drop in the number of elementary functionals we may
choose at will. In particular consider the case when m=n

and y=m+l, in which case all the elementary functionals Si are

prescribed.




217

APPENDIX I INDEX OF NOTATION

Equation

I(f;g) (IC(E)) (1e3:1l3 (242 1)

feT (1:351) CLalal)
geA (1:8:1)

w (1.3.1) (1.1.1)
ReRY, d2l, (see (AN)); R CLsBelY Ehokid)
85 {si}?zo; T.» {Tj};f‘:0 (1s 8:3) L1.1:2)
Q™™ (55035 a2 (@™ (£); QUEN) (1.3.3) (1.1.2)
£ig £l 8.8)

A= (23507 o520 (@) (1:858) $1elsT)
E{f:g) (EBLI)) Cdz 3] (Lads8)
A IR IR w6={wo,...,¢5} (1.3.6) (1.1.5)
pespe’; pespy’ (1.3.6) (1.1.5)
B=(S;($,)) g5 32gs T=min (m,y) Cls 357 €0l B
C=(Tj(¢£))i=0,glo, s=min (n,§) (1:8.8)

D=C@B (1.3.9)

(e® ™y 0e%" Th. 1.3.1 (Th. 1.1.1)
piq Def: 1:3:1 (Def. 1.1,2)
bsc (1,812 £i.1.6)
asa; (1.3.13) (1.1.10)
Ay Ay (1334 10:0.408)
K(xs;x) (1.4%.7)
Si(Tj)exlg SiESi(xi; ) Def. 2.1.1
RooeresXos yo,...,yn Thie "kl
E,A,Cr,DP,Lipa,B,Lp (2.0.20)
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GENERAL NOTATION

arbitrary indices ©rys,t,;i,j.l,k,u,Vv

yry >

arbitrary functions 6,5, .

arbitrary linear functionals L’Li’Li(Bi) Biepi’

‘Bisy’

arbitrary points t,ti,s,si,%

arbitrary coefficients u,ai,a..,si,e

arbitrary polynomials §&,8

arbitrary sets of functions E ={E.}?_ > <:>r_

1>

r=llo @r llO

arbitrary regions K,K[k,x]l, Klg,2), K{x,A), K[a,ul,

arbitrary function spaces F,G

arbitrary matrices F, G

2_:(917"‘

» P

KOx,u) K(a,w)
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INDEX OF ASSUMPTIONS

(AL)

(A2)

(A3)

(AY)

(AS5)
(AB)

(A7)

(A8)
(A9)
(A10)

(A11)
(A12)

(A13)

fel,geA real valued functions acting

on RCRd.

(1.3.1) exists and is finite in Riemann-
Stieltjes sense.

w(x)=20 on R.

d=13; R a finite real interval, with
interior (-1,1).

Si’Tj bounded and (therefore) continuous
(o, 37, 19}

1°4i=0" Y] 4=0
R.

linearly independent over

m n ; : ;
. T 1
l}i=0’ { J}jgo inearly independent in

* “
(a™ " and e
o)

{s
rec-, acc®,

All linear functions are real valued.

2y depends on only one independent
parameter.

mzn.

y>m, §=n.

M, has no row or column which is entirely

composed of zeros.

§1.3

§l.3

51 3

§1.3

§1.3

§1 33

§1.3

8.1
582

§2.2

§2. 8
§2.4

§2.5
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APPENDIX III POSSIBLE TOPICS FOR FURTHER INVESTIGATION

5§22 T-extensions, T-restrictions ("almost" T-sets).

§2,2 GT-sets.

§2.2 How to obtain CT-sets from T-sets.

§2 ., 2 Conjecture (after Th. 2.2.14): "Closed real interval,
(T sets # CT-set) = (no proper extensions)."

§2.2 Further criteria for . being a T-set.

§2.2 Conditions such that matrix M has full rank
(how to choose the knots).

§2.3 Th. 2.3.1: Finding the required parameters (related
to finding sets of points in Rd, dz2, such that the
determinant using monomials is non-zero (and
extensions)).

§2.4 Extension of results to semi-infinite and infinite
intervals of R (appears to be straightforward).

§2.8 Conditions under which Mr has full rank.

§2.6 Prescribing more than one knot.

§2.6 Use of GT sets instead of T-sets.

§2.8 Application of these results to integration of
periodic functions.

§2.108 Further investigation of conditions under which A can
be a diagonal matrix.

82,11 More examples dealing with GT-sets.

§3.1 Extension of (3.1.51)-particularly bearing in mind

to comments made in §5.6 of [201].




§3.2

§3.3

§4.2

§h,2

§4.2

§h.3

§5.1

B 50l
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(I.P.) Q.F. for spaces of splines (Si,Tjexl, Super-
functions, B-splines, WT-sets).

Relationship between I.P.Q.F. and "best" Q.F. (if
any) in the sense of Sard (in minimising norms).
Connection between minimal interpolation results and
minimal norm QF.

Investigation of splines and monosplines (not
necessairly polynomial) in 1-D - either directly or
as a combination of 1-D results. Application of
these results to minimal norm QF.

Connection between minimal norm one and higher
dimensional results (if any) (i.e. viewing I.P.Q.F.
as a two dimensional functionals).

Pursue investigation of various measures of function
space(s) to practice both alternative estimates
analogous to Sp and probabilistic estimates of errors
(with chosen distributions to show desired emphasis
on functions) using various QF.

Investigation of various types of symmetry we may
impose on both Q@ and I in order to reduce the number
of moment equations we need to consider,

(cf last paragraph). Other ways of expressing f as

a function of & and 6. (linear or nonlinear).
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PUBLICATIONS

"Further Properties of Inner Product Quadrature Formulas"
B.L.T. 175 No. %; (19%7),; pp. 382-408,
"Stencil Quadrature Formulas", jointly with Dr. G.M. Phillips

and Prof. P. Keast, submitted J.I.M.A., 1979.

Proposed Papers (ex Thesis)

Inner Product Quadrature Formulas for Generalized Polynomials.

A Note Concerning Generalized Polynomials.

An Extension of the Idea of Orthogonality.

Inner Product Quadrature Formulas Exact on Maximal Product
Spaces of Functions.

A Note on Non Singular Vandermonde like Matrices.

Compand Inner Product Quadrature Formulas.
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