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ABSTRACT.

The theory of Loss Functions is a fundamental part of Sta­
tistical Decision Theory and of Pattern Recognition. However 
it is a subject which few have studied in detail. This thesis 
is an attempt to develop a simple character recognition proc­
ess in which losses may be implemented when and where necess­
ary.

After a brief account of the history of Loss Functions 
and an introduction to elementary Decision Theory, some exam­
ples have been constructed to demonstrate how various decision 
boundaries approximate to the optimal boundary and what incr­
ease in loss would be associated with these sub-optimal bound­
aries. The results show that the Euclidean and Hamming dist­
ance discriminants can be sufficiently close approximations 
that the decision process may be legitimately simplified by 
the use of these linear boundaries.

Geometric moments were adopted for the computer simula­
tion of the recognition process because each moment is closely 
related to the symmetry and structure of a character, unlike 
many other features. The theory of Moments is discussed, in 
particular their geometrical properties. A brief description 
of the programs used in the simulation follows.

Two different data sets were investigated, the first be­
ing hand-drawn capitals and the second machine-scanned lower 
case type script. This latter set was in the form of a mess­
age, which presented interesting programming problems in it-
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self. The results from the application of different discrim­
inants to these sets under conditions of simple loss are ana­
lysed and the recognition efficiencies are found to vary bet­
ween about 30^ and depending on the number of moments be­
ing used and the type of discriminant.

Next certain theoretical problems are studied. The re­
lations between the rejection rate, the error rate and the re­
jection threshold are discussed both theoretically and pract­
ically. Also an attempt is made to predict theoretically the 
variation of efficiency with the number of moments used in the 
discrimination. This hypothesis is then tested on the data 
already calculated and shown to be true within reasonable lim­
its. A discussion of moment ordering by defining their re­
solving powers is undertaken and it seems likely that the mom­
ents normally used unordered are among the most satisfactory.

Finally, some time is devoted towards methods of improv­
ing recognition efficiency. Information content is discuss­
ed along with the possibilities inherent in the use of digraph 
and trigraph probabilities. A breakdown of the errors in the 
recognition system adopted here is presented along with sugg­
estions to improve the technique. The execution time of the 
different decision mechanisms is then inspected and a refined 
2-stage method is produced. Lastly the various methods by 
which a decision mechanism might be improved are united under 
a common loss matrix, formed by a product of matrices each of 
which represents a particular facet of the recognition prob­
lem.
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INTRODUCTION

Frequent reference has been made in the literature to 
certain loss functions and their applications to Decision 
Theory. In most cases, however, little regard has been paid 
to whether the approximations made during the course of a 
theoretical analysis are valid or whether more sophisticated 
loss functions ought to be implemented.

In the present work, the author has attempted to outline 
some of the knowledge already accumulated and to suggest new 
lines of approach for our understanding of loss functions.
To do this it has proved necessary to reconsider the defini­
tions, so that loss functions may be utilised in decision 
problems as opposed to the normal practice of simplifying 
them to abstraction. A certain amount of work has been 
completed on the use of Geometrical Moments in Character 
Recognition. This has provided a stable basis from which 
to develop the computer simulations which have revealed the 
relative efficiencies of a variety of methods available, 
including the effect of the introduction of an elementary 
rejection threshold. Finally a number of allied problems 
have been investigated in order to answer some of the quest­
ions that arose during the main body of the research.



The thesis falls naturally into three parts, one of 
which has been further divided to Improve clarity of display. 
Also a number of appendices have been added in order to 
remove definitions and lengthy tables from the body of the 
work. A few of the more interesting computer programs have 
been Included, as well as the hand drawn letter set and a few 
examples of the tape data set. Some of the results on Geo­
metric Moments are soon to be published In a paper by P.O. 
Evans and the author entitled: 'The Development of a Two- 
Step Strategy for Character Recognition by Geometrical 
Moments.'



CHAPTER 1
THE DEVELOPMENT OF THE LOSS FUNCTION CONCEPT.

Before any detailed discussion of loss functions can be 
undertaken, a summary of past work must be made. Also a 
certain amount of elementary Decision Theory has to be inc­
luded in a thesis of this kind to provide a basis from which 
the idea.s suggested herein may develop with some continuity. 
It must be expected, however, that any review of general Dec­
ision Theory will fall short of the accumulation of knowledge 
that has been continuing over the last thirty years. Hence 
only the most relevant topics will be covered in this chapter

1.1 The Historical Development of Loss Functions.
Much of our understanding of loss functions has 

developed within the sphere of Statistical Decision Theory. 
This has lead to a wealth of knowledge about the theoretical 
aspects of loss functions and their importance in relation to 
Decision Theory. The application of this theory to fields 
unknown at the time of its development has led to a deeper 
understanding in many channels. However, it seems that 
because of the Intractability of loss functions to analysis 
and because of their dependence upon the particular problem 
being studied, they have often been neglected in the trans­
formation from theory to practice.



In 1936, the Neyman-Pear son Theory of Hypothesis Testing 
was published and it was here that the first notions of stat­
istical risk were formulated. Two types of risk were consid­
ered which they called the Power and Size of the Critical 
Region - that region of observation space throughout which 
the Hypothesis was rejected (for definitions of Power and 
Size and their relationship to Statistical Decision Theory, 
see Appendix 1). This theory was generalized in 1947 when 
a sequential method for testing Hypotheses was developed by 
Abraham ¥aldf the pioneer of much Decision Theory, which re­
moved the restriction that the experiment was to be carried 
out in a single stage. However, certain assumptions had to 
be imposed;

(i) Each stage of the experiment consists of a single 
observation,

(li) The chance variable is observed in the ith. stage. 
Wald ̂  explains that there is no loss of generality in the first 
restriction if it is assumed that the cost of experimentation 
depends on the total number of observations but not on the 
number of stages in which the experiment is carried out.
The second restriction, he continues, is more serious since 
it does not leave freedom of choice for the selection of the 
chance variable to be observed at any stage of the experiment.
In the special case when the N chance variables are independ­
ently and Identically distributed, there is no loss of gener­
ality in the second restriction either.

The concept of a. loss function was further developed by 
Wald who considered that part of the problem of choosing a



5

particular decision function involved stating the relative 
degree of preference given to the various elements of the 
terminal decision space when the true distribution of the 
random variable is known; the cost of experimentation was 
also important in determining the decision function. The 
degree of preference given to the various elements of the 
terminal decision space can be expressed by a non-negative 
function called a weight function which is defined over the 
whole decision space and the whole range of possible probab­
ility distributions. Also the cost of experimentation may 
depend upon the chance variables selected for observation, on 
the actual observed values obtained and on the stages in which 
the experiment is carried out. This then gives a clear com­
parison between the 'Weight Function' and the 'Cost Function', 
which may be considered collectively as the loss function in 
the problem of Pattern Recognition.

5In 1951, T.W.Anderson published the first of his papers 
on Multivariate Analysis, wherein he gave a clear description 
and summary of the properties of the loss function, and the 
way in which it is related to the calculation of optimum 
strategies. This work is discussed in a later chapter.
After this paper, the study of statistical utility, of which 
loss is only the negative, developed properly both in its 
role in statistical decision theory and axiomatically in its 
own right. This study is summarised in several books, e.g. ;

6 7 ILuce and Raiffa and De Groot . Further development in the i

8 •statistical field has been carried out by Raiffa and Schlaifer |
who discuss a theory of non-additive utility in part of their _!



book.
The use of loss functions in Pattern Recognition is

widely mentioned, not least in Highleyman’ s  ̂excellent article
on 'Linear Decision Functions with applications to Pattern

10Recognition.' and in his doctoral thesis . In general, how­
ever, it is found that loss functions have been regarded as 
'simple' and hence could be ignored for lack of evidence to 
the contrary. The validity of this assumption is analysed in 
later sections.

1.2 The Development of Definition.
Throughout the growth of Decision Theory, there has been 

little agreement as to the precise meaning to be attached to 
such words as 'Loss Function' and 'Oost Function'. In this 
thesis these words will be defined, and used in different 
contexts.

The problem of interchangeability arises in the field of 
statistics since loss and cost are different words for the 
same phenomenon; that is, the statistician, wishing to solve 
a problem of point estimation, might talk of the 'cost' or 
'penalty' Imposed for not achieving correct identification 
(see for example Sage and Melsa ). If the true value of a

Aparameter to be identified were 0 and a value 6 were assumed,
1.than a suitable cost function might be K(6 - 9 ). Other func­

tions besides the quadratic form can be used in different
1 2circumstances (see Hays and Winkler ). However, this type 

of loss is formulated purely to allow the point estimation to



be carried out. Certainly this is decision making under un­
certainty, but of a different form from that which we shall 
be mainly studying.

In Pattern Recognition, the problem reduces to deciding 
which of a number of choices is correct. The existence of a 
correct choice within the set of those available is generally 
assumed; otherwise rejection occurs. Here again the loss is 
the penalty imposed for not achieving correct recognition, 
but it can be formulated independently of the parameters 9 and
A0. Instead loss becomes tied to whether or not the recogn­
ition has occurred correctly. Suppose measurements are made 
to determine the state of a system which could be in any one 
of n possible states i >9a» • * • • j0f\), and as a result of these 
measurements, a choice 0 is made. Then, because of our under­
standing of the nature of loss, we can say that if the re­
cognition is correct, the loss is zero,

L(9l 9 l)=0 If © = 0L 1.2.1.
where G i  is the actual state of the system. Furthermore, 
all misrecognitions have losses associated with them that are 
greater than zero,

L(QIQ*^)>0 for all > ̂  t- 1.2.2.
This formulation is the same as that described by Anderson^ 
and Pukunaga*^. It is intuitively clear, and will become 
mathematically clear below, that an absolute definition of 
misreoognition loss is unnecessary and only the ratio between 
different losses is of importance. Hence there is no loss 
of generality in defining an upper bound to L(g I0̂ ) of unity, 

max [L (919^)] = 1 1.2.3.



There is another customary inclusion to the definition 
and that is one of rejection loss. If the sample measurement 
is rejected when the sample actually belongs to 0*̂, then the 
loss associated with that rejection is the rejection
loss and

0 4 L(O10>) < 1 1.2.4.
are the bounds imposed on such a rejection loss.

In future this notation will be simplified so that @ y 
will be represented by V etc., for example the rejection loss 
L(0 will be written as L(o IV). The formulation of 
detailed loss functions from the above definitions is dealt 
with in the last chapter.

1.3 The Definition of Expected Loss, Error and Risk.
Before going further into the theory of loss functions, 

it is necessary to define the concepts of loss, error and 
risk. These elementary definitions serve as an introduction 
to Decision Statistics.

Let TT,, tT2_> ,. .. ^ be m populations with probability den- 
sity functions pj (>̂i ;. - . _ > X p . ' ) pm (̂ 1 ) * * * respectively.
We wish to divide the space of observations into m mutually 
exclusive and exhaustive regions If an observa­
tion falls into R ̂ , we shall say that it comes from *rr̂ . Let 
the loss due to an observation, actually belonging toir^, 
being classified as if from TT̂ , be L(kl^). Then the probab­
ility of this mlsclassification is

I. ., ilx p 1.3 • 1 ■
after Anderson  ̂^



If the observation Is from TTn, the expected risk Is
rt\
%  L ( k ( ^ ) p ( K I ^ ) R )  1.3.2.
k= ISuppose we have a priori probabilities of the populations

Cij j then the expected loss is
L = 1.3*3*

' 1 = 1 * “
If we do not &now the a priori probabilities, we cannot de­
fine an unconditional expected loss for a classification pro­
cedure. Then we consider the maximum of the risk r(^> R) 
over all values of  ̂ and the decision problem becomes the 
choice of Rj) * * *>Rm which minimizes this maximum expected loss 
Fortunately in Character Recognition we nearly always know the 
a priori probabilities so that the Bayes strategy can be used. 

To summarise, the average loss,
L =  ̂ 11) p (> 1 Pv) 1.3.4*

The error rate, i.e. the average rate of mlsclassification is m m
£ = S  2  0̂ 1 p( > i L ; R) 1.3.5*

and the average riskm m mR =  S  r ( w R ) = I S  L ( à l O  p ( > U , R , )  1.3.6.L- f i®‘i V")
As is immediately apparent, if the losses are equal,

L(UV)-L for all I and V then the difference between the error
^ /V-£■ and the average loss L becomes only an academic one; simil­
arly if the a priori probabilities are considered equal, then 
the difference between the loss L and the risk R becomes also 
academic.

1.4 Additive and Non-additive Losses.
In statistical decision problems, there are times when a 

sampling oost has to be associated with the observation of a
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random variable X. This cost has to be considered when the 
risk of using any decision function based on X is calculated. 
This cost is particularly important where a choice between 
different random variables has to be made or whether it is 
better not to include a particular observation.

Once the value of the costs in appropriate units has been
assigned, the expected cost of observation may be calculated.
The total risk is defined to be the sum of the risk of using
the decision function and the expected cost of observation.
Normally all work in statistical decision theory uses this
additive form for the total risk (De Groot * s words ) , but

8Raiffa and Schlaifer discuss this assumption in some detail. 
They point out that even in problems in which the cost cannot 
be dinectly related to monetary cost, the decomposition of 
the risk into additive terms can occur when;

(i) the consequence of each action, (i.e. the perform.- 
ance of an experiment resulting in a particular 
consequence) and the cost of taking an action when 
the prevailing state is specified, is measureable 
in some common unit such that the total consequence 
is the sum of the two partial consequences,

(ii) the cost of this common unit is linear over the 
entire range of consequences involved in the given 
problem.

This common unit can, in many cases, be found even though 
the two actions have no common factor. This can be accom­
plished by an estimation on the part of the decision maker of 
how much of one action is equivalent to the other. Raiffa
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and Schlaifer quote the example of a scientist, wishing to 
estimate some physical constant 0, who may feel that whatever 
the error of his estimate a. may be, he would be willing
to make 10k more observations if he could be sure that by so 
doing, he would reduce by k units. If so, the cost
of the consequence of a given action can be measured by the 
sum of the actual number of observations plus 10(û'"*9)̂ . The 
reference continues in some detail upon the theme of'additive 
and non-additive losses and the author recommends it as a 
succinct account of the subject.

1.5 The Bayes Solution.
If R is the rule of classification, then this implies 

the division of a p-dimensional observation space into two 
regions and . Also, if the observation is drawn from 
set L , the probability of correct classification is
the probability of the sample point falling in , and the 
probability of mlsclassification is the probability
of the sample point falling in R %. If we assign the sample 
point to the region which gives the lower expected loss (as 
defined above), then

R,LC»!'-) Y L .pU xi,- .- ;X p ) >L(i p , . x p )  1.5.1.
and

Ra.” PtCxir")Xp) < V) 1 . 5 . 2 ,

We could also write
R( I  pL L C Ût V) 1 . 5 . 3 .

P  ̂Cx, ). , \>Xp) L I L) (y;.

^ L(il>)
e> ‘ -,Xp) L 01 1 ) Y   ̂ ^ *
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This is the so-called 'Bayes solution’ and shows the mathe­
matical reasoning behind the intuitive approach of believing 
that loss functions are only important in ratio-form and so 
are strictly relative.
Note; A distinction is made between two types of error 
occurring in 2-state systems.

(i) When a measurement belonging to the first category 
is classified by the decision maker as belonging to 
the second.

(ii) When a measurement belonging to the second category 
is classified as belonging to thQ first. These errors, al­
though less definitive in a multi-category system, are called 
respectively errors of the first and second kinds.

1.6 The Relation between Rejection and Loss.
The above simple method of classification is a compar­

ison of the conditional probabilities that a given measurement 
belongs to a given class. This conditional probability

p ( m U ) = - V Û i i h  1 . 6 .1 .

I

can be shown to lead to an optimal strategy. Ghow'^showed 
that the error rate can be minimized for a given rejection 
rate by utilizing the following strategy;

(i) Select the class for which the conditional probab­
ility is greatest.

(ii) Reject the measurement if this conditional probab­
ility is below a given probability threshold.

Highleyman later showed that this same strategy led to the
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minimization of the expected loss given a constant loss func­
tion of the form

L i i - 0  for all classes L
LLÂ=1 for all classes 1.6.2.

for the rejection loss when the actual 
class was V .

This Is perhaps the simplest useful form of loss function and
will be discussed In some applications later.
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CHAPTBR 2 
THE OPTIMAL DECISION BOTODARY.

In this section, an attempt Is made to extend the pre­
viously-discussed preparatory concepts to the field of Dec­
ision Theory. It is a chapter containing ideas and suggest­
ions put forward with the aim, not of producing a comprehen­
sive treatise on the subject of decision boundaries, but of 
stimulating criticism and further thought in the hope that 
the understanding of these concepts is Increased in some meaa 
ure.

The chapter opens with an ordered comparison of several 
discriminants in common usage and continues with attempts to 
calculate, theoretically or by example, certain decision 
boundaries and the losses associated with them. Examples 
have been used fairly widely to illustrate the theoretical 
mechanisms as and where it seemed important to emphasize the 
extent of the approximation dealt with in a typical problem.

2.1 The Selection of the Decision Maker.
The choice between the different decision discriminants 

available rests on the twin criteria of theory and expediency. 
However what Is optimal in theory is rarely best in practice. 
Hence the gulf between the two has widened to such an extent 
as to allow well over a dozen discriminants into the applica­
tions field, many with the flimsiest theoretical backing, but
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of use because they work In the particular cases to which they 
have been applied.

Suppose we have a set of readings which make up the n 
components of the pattern vector X = Cx’üXz.3 ) and we are 
asked to compare these readings with two standard normal sets 
with means  ̂ 1%) .... 3 yijfv ) and ^ 7. ~ ‘ ^ ia ) ?
and covariance matrices and ^^respectively. If we are 
asked to compare the value X with and with no other de­
mands to be satisfied, it is clearly best to calculate the 
probability that the reading # belongs firstly to , p(xl^|) 
and secondly to ĵ2. j pCxl̂ a.) . We can then assign x to the 
distribution for which pCxl̂ w.̂ .), 1=1,2, has a higher value.
This can obviously be extended to an arbitrary number of normal 
sets. However this calculation, for practical purposes, has 
two difficulties:

(I) it is long and complicated,
(II) it assumes a complete knowledge of all the distribu­

tions involved.
These problems have been recognized for a long time and much 
work has been done to avoid these difficulties. However, 
allowing for these drawbacks, this is clearly the best calcu­
lation that can be undertaken.

Suppose, on the other hand, we are asked to compare X 
with and we do not know the covariances and we wish
to use the simplest possible calculating procedure. The 
difficulties Increase Immediately because the concept of sim­
plest procedures is obviously intimately related to the effi­
ciency of the recognition technique. We might expect the
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efficiency to vary in much the same way as Is shown In figure 2*1 
1, As the simplicity of the decision mechanism increases, 
the efficiency tends to zero; as the simplicity decreases, the 
efficiency tends to 100^. Points representing recognition 
procedures that lie helow the curve are less useful than those 
lying on the curve, so that the curve is a measure of all 
those procedures that have the highest efficiency for a given 
simplicity of execution.

A simple technique commonly used is the calculation of 
the Euclidean distance. For each of the distributions

and the distribution which yields the lowest value of cLCx) is 
chosen. It is not difficult to show that the decision bound­
ary, the plane of which represents the discontinuity of choice, 
is a flat surface. Consider the boundary surface between 

and • This is defined by
*̂1 Cx") - d x

which contracts to
2̂ ’( h i ' "  ̂~ 2.1 . 2.

This is the linear equation of a plane, with a perpendicular 
vector the vectorial line joining the means of the
two distributions.

A calculation of this sort is very simple to undertake.
The sign of the function  ̂- c) where and
gives the side of the plane on which x lies, hence the cal­
culation of this linear function determines to which region x 
will be assigned.
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Efficiency Figure 2.1.1
■ "T 

100-

Simpllcity
Sketch of Variation of Efficiency with 

Simplicity of decision mechanism.
/\

-3

Figure 2.3.1 
Example of Euclidean Boundary.
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A similar discriminant is the Hamming distance
Cx) = I 2.1.3-

Here again the calculation is simple, though slightly diff­
erent, and the decision boundary consists of a set of planes, 
the main one of which is the same as the Euclidean boundary 
plane. The main plane is so designated because it cuts the 
line joining the two means ji\, and juij. between these means, and 
so discriminates those points, or values of x , that are most 
difficult to separate.

A systematic degradation of decision boundaries can be 
carried out from the probability function mentioned first 
to the Euclidean distance. The decision boundary between 
two normal multivariate probability distributions f\(^i,2()and 

is given by
p Cx - P /iî) 2.1 .Ij,.

Given that for a normal distribution

Then taking Logs., equation 2.1.if. simplifies to
(a. 1 2  11+- 2, (a I %zl (̂ -̂ 2,) 2.1.5.

This has a quadratic form, and in two dimensions is a conic.
If the assumption of equal covariance matrices is made, equa­
tion 2.1.5* reduces to the well-known discriminant function

^(x) = - 2 X % ^ ft:Z ^  2.1.6,
This approach is treated in numerous text books and does not 
need any further comment (see for instance S.S.Vigllone paper 
If, on the other hand, the less sweeping approximation is made 
that I I  - I or that UlSj I Cx-^,)
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for all X within the normal field of variation, and similarly 
for

( a  1  I  L 2 1 % .  )

Then the decision boundary becomes
^  ^ 2.1.7»

This is another quadratic form whose boundary has a slight 
displacement in space from that of equation 2.1.5*

If the assumption is now made that all the x i * s  are in­
dependent, that is that S, and %% are diagonal matrices, then
the decision boundary simplifies to a modified form of the
Euclidean boundary in that it contains the standard deviations.
If the diagonal elements of 2 are labelled 2^, then the sim­
plified boundary is

S 2 . 1 . 8 .oVe-r ̂ over )
where 0  denotes the summation> =1,n.
The last simplifying step is to assume all the 2^ 's are equal
or unity and the boundary becomes the Euclidean boundary (equa­
tion 2.1.2.). It is clear from this process of degradation 
that the most simple boundary Is a result of some drastic 
assumptions, the main one being that the two normal distribu­
tions have covariant matrices that are diagonal with equal 
elements.

2.2. An Elementary Approach to the Problem of Simplification.
During the stages of simplification in paragraph 2.1, 

it is theoretically often possible to state an assumption that 
leads to a simplifying step as:

If X  4. <  0 ^ , then I — > JI 2.2.1.
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wlioi'o X. is some positive variable, and CL is a positive thres­
hold linked to the more complex of the two stages (labelled i), 
and I a]id % are the two decision makers.

If the assumptions can be formulated in this manner, the 
efficiency of discrimination can be linked by a factor f(̂ /cj)

off. % = eff.i , j ( ^ l d )  2.2.2.
where has the following properties:

(1) 1>f(*/d)> 0
(ii) f(̂ /d)*~>1 as
(iii) f(^/a)-^0 as ^  / ü

An elementary function of this form is
f(^/d) = exp(-K. 2.2.3.

The parameter K is inserted to adjust the rate of fall-off of
efficiency as the approximation becomes worse. However the 
form of the equation 2.2,3. certainly obeys conditions (i) and
(iii) for K > 0. ForKC^/o) small, equation 2.2.3* may be 
expanded in a Taylor series

j:,l7al= 1 -K (v.).+

~l-K(Vp 2.2.i|,. ,
that is, the drop in efficiency becomes proportional to the 
degree of approximation involved in the simplifying step.

This step can be cast into a more rigorous form by the 
uso of information theory (see for example ref. 17 p. li-I|-5) .
Bub at present it is enough to note this relationship and 
observe in later work whether this approach obeys the harsh 
crIberion of working in practice.
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2.3 A Comparison of the Different Systems of Discrimination 
by Example.
Suppose we take the two-dimensional case as an example,

with

( Î  t) . [Î

Then the equi-probability decision boundary is 
/ 2 Ô e x p - 1 / 2  = J Î 2 e x p - 1 / 2 l X . y ü ' 2 Ï ' l ^ - W  2 . 3 - 1 .

We must expect that, since the diagonal elements in the 
matrices are fairly large - with respect to unity, the distribu­
tions are mostly concentrated within circles radius 1, centres 
/A, and jULi, so .that the decision boundary will o.ccur at a value 
of

p(Xl[A, ) := pfXifli)
that is fairly small. Taking Logs, of equation 2.3.1 and 
simplifying we Obtain

x^+(y“9)̂  = r^ where r^ = 80+ln S/3 2.3*2.
hence the probability boundary is a circle radius 8.97, 
centre (®). In this case the Euclidean-boundary is given by 

x ^ + ( y - 1 = x^+(y+1)  ̂ •
or y.= 0 - the x-axis (see figure 2.3*1)* These two bound­
aries are obviously very similar throughout the important 
region around the origin, and in this example, an approxima­
tion to the Euclidean distance discriminant would not ser­
iously Impair the efficiency of recognition, yet would in­
crease the calculation speed.

Prom the above example. It becomes apparent that it is 
Important to know what loss in efficiency is to be expected
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when choosing a simplifying procedure. The significance of
this will be studied in paragraph 2.5* Before leaving this
example, it might be noted that where the probability decis­
ion boundary crosses the y-axis, at y = 0.03, the probability 
p(xl^) is about 0.067, whereas at y = 0 (the intersept formed 
by the Euclidean boundary and the y-axis), = 0.0585
and p(xlju,2_)= O.O7I4-8. The relevance of these figures is 
discussed in the latter section of paragraph 2.1}..

2.1}. The Degree of Approximation of the Bayes Rule to the 
Equi-probability Boundary.
As shown elsewhere, the Bayes decision boundary, which 

minimizes the expected loss, is of the form;

The equi-probability boundary (equation 2.1.[j,) is clearly a 
special case of equation 2.^^1, where

L(tlV) «V-;. = L O U )  <VL 2.4.2.
It is vitally important to consider the justification of this 
approximation. If it is valid, exact values of L and do
not have to be calculated. Alternatively, ’simple’ loss 
functions can be instituted of the form

l C - U ) » !  ùf LéfV i L C U > )  = Û If- i-=j- 2.L.3.
which reduces equation 2.^.1 to one involving a priori prob­
abilities only.

The calculation of this boundary, the Bayes boundary, 
simplifies from equation 2.1}.. 1 to

Uf>i-Up2. - ^  ̂  2.1}..I}..
To justify the approximation of equating the right hand side
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to zero, we might limit the deviation of p, from pz at the 
boundary to 10^ i.e

0.9 pj < pi < 1*1 pj at the boundary. 2.^.5*
Then In P*/ps. = In1 .1 = 0.0953* In the work set out in the
next chapter, the values of the exponents are in general very

o 3much greater than 10 , so that 0.095 in. 10 is small enough 
to warrant the approximation in at least that particular case. 
But if sample points very close to the decision boundary were 
given some special Importance, then such a minute shift in the 
boundary radically alters the decision structure.

The size of the modification Involved may be seen from 
the last example. If o-ty, L (l 12.) and (r =: , then the
Bayesian boundary is a circle with radius

r = 80+ln ( /s(7) 2.[j,.6.
rather than the previous value

r = 80+ln(5/3) 2.^.7.
In general, in Character Recognition, the maximum ratio (L : Lr 
might be 100:1. Then the circle radius could vary as 

r = 8.94 ^  0.53
Now in this case, a brief look at the figure below will show 
that this has made an important difference to the decision 
boundary. The intersect at the y-axis could vary between 
O.5& and -O.50, a full 50^ of the difference between the means 
(see figure 2.4*1)*

It is suggested, then, that for so simple a case as this, 
the Euclidean distance measure is completely adequate to re­
solve the two sets, and that if losses could be associated 
with misrecognition, the Bayes decision boundary would be so
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Figure
Example of Bayes rule boundary with

if'

different a priori probabilities»

4 /

Figure 2.^,1 
Example of difference between equiprobability

boundary and Euclidean boundary.
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affected that an adaptation to the Euclidean boundary could 
be made that would include some measure of the loss functions 
and the a priori probabilities.

2.5 The Loss associated with Different Boundaries,
Calculations of the expected loss in two and higher dim­

ensions for optimal boundaries and two multivariate distribu­
tions have been successfully attempted. But what it Is im­
portant to clarify is how close the loss associated with other 
decision boundaries approaches the minimum expected loss.
In the example cited here, it is possible to calculate the ex­
pected loss for the Euclidean boundary.

If the equiprobability boundary is given by Po and the 
Euclidean boundary by (see figure 2.5.1), then the minimum
expected loss

n& 00

L = f f  f ( x l | A , ) o l S  + If p Cx I i^z) ( is 2 . 5 . 1 .
- To

and the expected loss associated with the Euclidean boundary
 ̂I 00

+ ff pCx:|uj.)iS 2.5-2.— OÔ r,
If the first part of equation 2.5*2. is called and the
second part j we have

L'ŝ t.pb® i 2.5 .3.' ™ 00 —t»

which is easily evaluated as the terms in y. and ̂  are separable 
to give

- 0’ 15̂  CC
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Similarly
(rjiï

Lhiropb = I  - T F - ^ p  ■ ' i ( 3 ^ ‘'+4-C<j4-tf)dxd^ 2.5 .4 .= O —oO
=: D* 15^ t*

Hence
Us^Upfe- 0. ,54 (^bt-)

— QIf the integral is terminated at the P = 10 level i.e. at
X = ± i'5̂4-, then the area of integration becomes -cy I*54-̂

- < ^ < ' ^ < • ^  00 j and the value of Lŝ ô-opb is reduced to O.876 of 
its extended value.

To compare these values with the optimal expected loss, 
this second term must be calculated. Pukunaga and Krile 
give an accurate method for this calculation or an estimate 
may be made as follows:
the area A bounded by the Euclidean boundary y = 0, the optim­
al boundary and the lines x = + 1.54-; Is about 0.2. The 
probability density on the optimal boundary varies between 
0.001 and 0.0675 and hence has an average of 0.03^. At (x,y)
= (0,0), the value of is 0.0585 and P^ is 0.07^8; hence an
average over the whole area might be 

P,j average = O.O32 
P^ average = 0.0^0

L(S)=  + 0-031 A - 04-0 A UiUre, A^O«a
zr L  ÿu-üûpb 0* 0 (J I {?

= 0.316,
a reduction of about (evaluated for a and b unity).
Hence there Is in this example only a marginal improvement in
using the optimal boundary as opposed to the Euclidean boundary.
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2.6 The Geometric Form of the Optimal Boundary.
As previously stated and as Is well known, the form of 

the Bayesian decision boundary can be written
“• c 2.6.1

where

This may, with a little manipulation, be converted Into a 
perfect square of the form

Vf') (x - 2.6.3
where

d  - (V3,-V;)(V^'^2- V|
and

C C  {  ^ 2 .  ( V ,  ‘ -  V z .  ) ^ ,  -  (  V ,  - V i , '  ) / A 2 ]

{ ^2. Vz. V»Vz. ^2. -- Vi j

Equation 2.6.3 Is a general quadratic form In n-dlmensional 
space, and a conic In two dimensions. What in of Interest 
Is that as c  varies, the quadratic form remains confocal and 
hence the family of equations of the form 2.6.3 given by the 
variation of c  is locally parallel. Thus if L(l|2-)">" L̂ Ĉllz) 
and LCX11 ) -̂  (see Appendix 3)
then

2.6 .̂

or

c ' '  -  c -f 2 . 6 . 5

Thus the distance shifted, (ĉ — c), is proportional to 
^ ̂  where ( is either one of the new L^'s.
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2.7 The Piece-wise Linear Boundary.
Owing to the computational difficulties implicit in the 

quadratic form of the normal probability distribution, it is 
important to investigate alternative forms or approximations 
to such non-linear boundaries. Without resorting to the el­
ementary ones already discussed, squared Euclidean etc., a 
good case can be made for piece-wise linear boundaries (see 
for instance Helstrom or J.R.Ullmann ̂  ) .

A recent article by Chhlkara and Odell suggests that 
computer algorithms or calculations Involving normal probab­
ility Integrals may be unnecessary in real Pattern Recognition. 
They are concerned with the use of discriminant analysis of 
complex images with many resolution elements. By generating 
a set of ?normed' exponential densities, of which the normal 
distribution is a special case, a good argument develops 
that the assumption of normality, which never was adopted un­
conditionally, can be lifted and the new form of decision 
boundary confidently expected to perform as well In practice 
as the old one, but with substantially faster implementation 
time.
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CHAPTER .3
GEOMETRICAL MOMENTS IN DECISION MAEIHG-.

3.1 Introduction.
Having summarised the theory of decision strategies and 

loss functions, a study of their effect upon the efficiency 
of different decision mechanisms has to be conducted. But 
before this can be done, a working model needs to be adopted 
by which to test the theoretical reasoning. To arrive at 
such a model, the different features that have been used be­
fore in Character Recognition were considered:-

(i) Spatial features ^
(ii) Selected n-tuples
(iii) Random n-tuples
(iv) Spatial Fourier transforms
(v) Temporal Fourier transforms
(vi) Statistical Moments
(vli) Geometrical Moments

3 », 3a., 33(vlil) Whole Character recognition
As a system of features was required that would generate 

In a relatively simple manner sets of numbers that were link­
ed preferably to the geometric structure of the characters, 
it was decided that Geometrical Moments should be used. A
model could be then established based on these features, with
the aim of improving as much as possible the recognition effl- 
ciency and other variables associated with the minimization
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of loss. Franz Alt’s work provided a good basis from which
30-to start. A letter written by Minsky criticises this app­

roach as being by no means the only method for producing in­
variants. However the method is simple and hence has that 
much to commend it.

Ming-Kuei Hu, who has performed much research into Stat­
istical/Geometric Moments mentions an optical method for Mom- 
ent calculation developed by E.Eletsky. A mask was formed 
with an optical density that varied according to the power of 
the Moment. Then, when the focussed image was transmitted 
through the mask onto a photoelectric cell, the resulting cur­
rent was proportional to the Moment for that particular image. 
This method seems to be a very quick and inexpensive way of 
calculating the Moments. Unfortunately it was found that the 
accuracy was limited to around 1^ and this, combined with the 
usual alignment difficulties, was enough for the project to 
be abandoned. However, the fact that such an approach is 
possible probably warrants further study, especially since 
Moments seem to be so rewarding in recognition efficiency.

3.2 The Theory of Geometric Moments.
Any pattern can be quantized into a matrix of numbers, 

each number referring to the greyness level at that coordinate 
point. The pattern can then be regarded as a set S of coord­
inate positions and greyness levels;

S = -{x,y,f (x,yjj
Normally the greyness f(x,y) Is taken as an integer value, and 
in the subset considered here, f(x,y) Is 0 or 1, an elementary
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black/whitG sysbom. The Moment M-. .. is defined by blie relation ̂J
M. . == 2  f(x,y)x^yj ' 3.2.1.

ovoi* S

where the sum over S is taken over all black points on the 
matrix in the special case being considered. Hence

M, . = 2  x"'y'̂  3.2.2.
ovoi* all 
black points

Alt ex bended bhe definition by successive brans forniati oris 
to normalize bhe following variables:

(1) Poslblon of the Character
(ii) Size (number of black bits)
(ill) X and y spread

and (iv) Slant;
the total transformation being

2. 3M., = E  . 3
over S

where X = [(x-x)/<r̂  - f(y-y) /(r ]/ 
and y = (y-y)/r
rr ” sbandard deviation of the character about the x-axls 

X

cr = standard deviation of the character about the y-axisy
^  -  the correlation coefficient

= { C  (x-x) (y-ÿ)/(T^oÿ} / 2  (x-x)2/r^%
over S over S

Note: idle normalizing procedure does not necessarily have to 
be carried out on each coordinate point before the Moments are 
calculated. They may be calculated unnoimialized first and 
then the appropriate algebraic manipulation done on the final 
numbers.
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Fifteen Moments were calculated per
those up to i+j = in all, 21, less
izing procedure (see table 1 ) =

i+j
0 ”oo
1 ^01 ^10
2 Mq2 ”20
3 Mo3 M̂  2 2̂1 ^30
4 Ôlp 3 2̂2 M31 ”40
5 ^05 1̂ Ip 2̂3 M32 ”41 ”50
Moments used In normalization.

TABLE 1

3=3 The Geometrical Properties of Moments.
The Moment M^ ̂ reveals information about two properties 
of a character,

(i) The presence of an axis of symmetry,
(ii) The spread of a character about a given axis. 

Consider letters that have been orientated for zero slant. 
Then, for Moments with either i or j odd, for instance M^q , 
if a character possesses symmetry about the y-axis (in this 
case), then the Moment contribution from those parts of the 
character, for which the %-coordlnate is positive, is equal 
but opposite to the Moment contribution of the parts for which 
the x-coordinate is negative. Hence the Moment M^^ for an A 
would be small, or zero if the A possessed complete symmetry 
about the y-axls.
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Secondly, the spread of the character about a given axis 
may be revealed as follows:- 
Consider the Moment

”ij =
s

and substitute for x and y the polar coordinates 
X = r cos B

3.3.1.y = r sln6
respectively. This is taking the centre of gravity of the 
character at the origin.
Then M^^ = J Z ,  r^^^cos^a sln^G 3.3*2.

over S
In order to determine the values of 0 for which M^j Is a max­
imum or minimum, equation 3*3*2 Is differentiated with respect 
to 0 .

\ M
coŝ "''̂  0 sln^'^O - i cos^“"*0 sin^^^G )

over 8
= cos^Ô - i sln^G ) sin^"^Gcos^"^0

over 8 3.3.3.

 ---1. = 0 when sin 0 = 0, when cos 0 = 0,b 6
or when tan 0 = + J j/1.

For further calculation, specific cases are best calculated 
individually.
E.g. for Mg^, i =2 and j = 1.
Also

= S  r^cosôCoos^e - 2sin%) 3 - 3 - k -

over 8
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Now ||21 0 when cos 0 = 0 or when tan0 = + \  /  J z

In order to find for which values of0 is a maximum or
minimum, we calculate the sign of

^  ~r-^sin0(7 cos^G + 2 sln%)be'
over S

So for cos 0 = 0,

tan 0 = +1 / s [ Z >  

tan 0 = -I/-/2,

21
be'"

^21
be=

21
be'

3.3.5

> 0 0 = ( 2n + 1 )ir “21 min.
< 0 © = 2mr ”21 max.
> 0 ir<0<3ir/2 ”21 min.
<0 O<0<TT/2 ”21 max.
> 0 T/2<0<tr ”21 min.
< 0 3TT/2<9%2rr ”21 max.

This is shown more clearly in the graph (figure 3*3.1). 
Hence If a character is concentrated about the axis 

0 = + tan""' 1/v/?, 
and has parts lying in the quadrants O<0<'n/2, 3'ir/2<0<2TT, 
such as the letter K, then will be large and positive.
If, on the other hand, the letter was concentrated In the 
other two quadrants, would be large and negative.
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190

r= 1+ CTOS ô 5Ia O

210

Figure 3.3.1 
Graph of Variation of Moment Intensity with 

angle for . 
being measured with respect to the absolute frame of 

reference of the character already normalized for zero 
slant.
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3  • h - The Decision Hechanlsig.
A) Moments. Alt found experimentally that ten of 

the moments worked better than the others, namely:

^13" ^12' ^2V ^30^ ^3V ^03 ^50*
It was these that he used in a Decision Tree form of recognizer

However, we attempted to use all the moments equally at 
the beginning of our research and to devise a resolution tech­
nique later to assess the individual value of each moment.

B) Discriminants. In relation to the discriminants 
discussed in paragraph 2.1, we used five main methods:

(i) The squared Euclidean distance

n

where the subscript i refers to one of the n 
moments I to the calculated ith moment of the 
unknown character and to the ith moment of the 
mean of the distribution with which X Is being 
compared.

(ii) The Hamming distance

n
S  '^i il

1=1

(Iii) The modified squared Euclidean distance

S. (̂ i ~ i ̂ /^i ' 
1=1

<n being the standard deviation of the distribu-
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tion for whloh is the mean.
(iv) The modified Hamming distance

n
Ix̂  - I /oi.

1=1

(v) The exponent distance
(X -

V being the variance/covariance matrix of which 
2the (T\ are the diagonal elements, ^  = (̂  ̂,

. . . , Â ĵ ) and X = (Xyj , X^, « . , X^ ) .
In the case of moments, recognition efficiency may be expect­
ed to be low for (i) and (ii) since each Individual moment may
be of a different order of magnitude e.g. contains terms

d oin X"̂ , whereas contains only terms in X-̂ , so that will
be far larger than

Pew discussions in print mention any need to divide by 
the deviations since, if they are comparable, the normal 
Hamming distance method is quite adequate. However, when 
using Geometric Moments, it is clear that such a simplifica­
tion should not be undertaken (see table 2), The difference 
in the efficiency of the Hamming and modified Hamming methods 
reveals the experimental backing for this argument (see table 
3 'in the following section).

M^3
-11.8 12.ij. IgO -21.^ -12.5 -3.72 -9.38

oq ij-.il-S 3.92 32.Ij- 7-81|. 5.98 2.90 ij..30
TABLE 2

Comparison of ̂  and cr for letter A of the Tape Data.



38

3•5 The Calculation of the Moments.
Moment data for the decision mechanisms were obtained 

from a set of hand-drawn capital letters, containing eight 
widely varying types to each alphabetic character. The quant­
ization of each character was carried out by drawing it as a 
series of points on a 20 x 20 matrix (see figure 3*5*̂ l)> The 
moments were then calculated and normalized on an IBM 360 comp­
uter. From the eight types, the means and standard deviations 
were found for each alphabetic letter. Using the decision 
techniques outlined above, the learning set was then tested 
against itself, so that the resolution and efficiency of the 
methods could be measured (see figure 3*5*2). Letters were 
then constructed on the computer’s remote access units (RAX 
Terminals) as a test set and the Modified Hamming Distance 
technique used for recognition. Finally the same methods were 
applied to an IBM tape of some ^000 characters in the form of 
a message. The first 500 characters were used as a learning 
set and the whole liOOO letters as a test set.

Humber of moments used 3 6 9 12 15
Hamming distance efficiency % 5 0 . 9 70.2 6 3 * 5 7 5 * 0  7 7 * 9

Modified Hamming efficiency % 4 9 * 5 70.2 8 5 * 6 88.0 87.0
TABLE 3

Construction of the Data Set: For each letter of the alpha­
bet, eight types of letter were hand-drawn onto 20 x 20 squared 
graph paper. These were encoded into five cards per character 
in the following way : -
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2.0

Figure 3.^.1.

Each 80--column computer card was assigned one of the oblong 
areas shown in figure 3.5*1• Starting at the bottom left- 
hand corner and working from left to right up the drawing, 1 »s 
were printed in the appropriate column if part of the letter 
crossed that particular square. In practice, x»s were used 
to draw the character rather than continuous lines, so that 
there was no confusion as to how much of a line there needed 
to be before a 1 was punched. This method was used as oppos­
ed to one in which the actual Cartesian Coordinates of each 
point are measured and recorded. This was because the num­
ber of x?s, used on average, took up fewer recorded columns, 
and the wa.y in which the letters were drawn made this technique 
simpler to Implement. Furthermore the method gave a fixed 
number of cards per character.
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%  Efficiency
loo - X.
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6. ««

5 0 - Hamming distance
Modified Hamming distance
Euclidean distance
Modified Euclidean distance
Exponent distance

G-raph of Variation of Efficiency with Humber 
of Moments used, with different decision mechanisms



The different types of letter in this hand-drawn letter 
set were all capitals, but varied as much as possible within 
the limited grid spacing. Little variation in size and pos­
ition on the grid was written into the set as these variables 
are accounted for in the normalization procedure in the pro­
gram. The entire hand-drawn letter set is displayed in App­
endix 1+ for reference.

3.6 Program Description.
It was decided as general practice, to calculate the fif­

teen moments of each character and store them in some tangible 
form, either on cards, as in the case of the hand-drawn letter 
set, or on magnetic tape, as in the much longer IBM message. 
This meant that during most tests, the moments did not need to 
be recalculated for each run. The principle exception to 
this was the calculation of execution time with various deci­
sion mechanisms and different numbers of moments (see Section
5.3).

The first program shows the technique used on the anal-- 
lysis of the tape characters with subroutine CHANGE and sub­
routine MOMENT. Subroutine CHANGE was especially written in 
Assembler language to convert the rather unusual coding of the 
tape letter scan into a conventional matrix. The IBMiscanner 
read each character in two halves and scanned in vertical 
lines, feeding the digitized information straight onto the 
magnetic tape in the form of half-words of i+ bytes each.
This needed to be converted to a matrix of logical elements, 
representing a black section by True (1) and a white section
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by False (0). This accomplished, subroutine MOMENT was called 
to calculate the moment invariants. The entire process from 
scanning to the generation of moment numbers could have been 
accomplished electronically using integrated circuit multipl­
iers at a considerable saving in expenditure and calculation 
time, but for the purposes of the simulation and having an IBM 
360 available, the adopted system was the most flexible one 
available.

Having generated and stored the moments, together with a 
code to identify to which character the moments belong, a pro­
gram was developed to calculate the means and standard devia­
tions of each character set assuming a normal distribution 
about that mean. With the small size of sample sets used, 
it may be presumed that the normality assumption is accept­
able. Again the tape message presented certain difficulties 
as the letter sequence had to be ordered alphabetically, natur­
ally, and the punctuation marks removed, since in general these 
were of too limited a set. Also capital letters had to be 
noted and three letters omitted entirely because in the learn­
ing set of the first ^00 tape characters, they either appeared 
only once or not at all. The presence of capitals caused the 
most trouble, as it was not until after many of the experiments 
had been performed that a proper listing of the message with 
spaces and punctuation (see Appendix 5) was obtained. It 
was only then that capitals could be identified and noted.
In general these letters were recognized incorrectly by any 
decision mechanism, and these letter errors have been omitted 
from the efficiency figures except where stated.
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Finally, once both the character moments and the letter 
set moment means and standard deviations were available, re­
cognition tests could be carried out on the different mechan­
isms referred to elsewhere. The only decision method that 
caused trouble was the exponent mechanism because not only the 
standard deviations but the entire covariance matrix needs to 
be calculated for each letter set. This matrix then has to 
be Inverted. Because the moments are generally numerically 
large, overflow and underflow problems were encountered when 
the matrix determinants were being calculated. This diff­
iculty, however, was bypassed by inserting a suitable power 
of ten before and after inversion, before to allow the comput­
er to invert the matrix, and after to restore the matrix el­
ements to their proper form. Even then it was found that the 
subroutine supplied for matrix inversion consistently generated 
the wrong sign for the determinant, so that calculations of 
(X ” V (X - would be correct except for a spurious 
minus sign (this expression must be positive for a positive 
definite symmetric matrix V ). That this was the only fault 
of the subroutine was proved by calculating the product of the 
inverted and non-inverted matrix and for each letter set this 
was found to generate the identity matrix as expected. This 
slight anomaly was easily corrected, once found, by taking the

Î  ̂imodulus of the scalar terms (X - V ” ~ ) • This re­
stored the recognition efficiency from chance to over the 30%  

level.
The last program listed in the appendix calculates not 

only the recognition efficiency with different rejection



thresholds, but also under no-rejection conditions. This 
was used extensively as described in Chapter I4..

3.7 The Efficiency of the Decision Mechanism.
(A) Learning set on the learning set; Figure 3*^*2 

shows the variation of efficiency of the different decision 
mechanisms as the number of moments involved in the calcula­
tion changes. The exponent method performs better than the 
other mechanisms as it contains the cross-correlation factors 
between different moments. Although this method is undoubt­
edly more complicated than the others, it is of interest as 
it shows the sort of Improvement that can be gained by using 
the entire covariance matrix. Both the modified methods are
more'efficient than their unmodified forms, but only the ex­
ponent method efficiency increases monotonically with the num­
ber of moments used. This suggests that the cross-correla­
tions play an important part in reducing the error rate. The 
peak performance occurs at 7 or 8 moments. The precise reason 
why the efficiency tails with the addition of more moments to 
the discriminant suggests some other process, such as the in­
troduction of noise, that Increases with moment number until 
it becomes a more Important factor to the change in recogni­
tion efficiency than the sheer increase of the number of mom­
ents.

Figure 3'7'1 shows the resolution of the exponent method 
applied to a typical letter J. It identifies the letter as 
the only possible character within Six orders of magnitude.
The modified Hamming and Euclidean methods also identify it 
successfully, but with a greatly reduced recognition threshold.
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A -

Z -

Figure.
Recognition of the Letter J.

10

Figure 3.7.2 
Recognition of the Letter I. '
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Figure 3.7.2 shows the resolution of the exponent method 
applied to the far more difficult letter I, on which the 
other methods fail. 0 and X both score fairly low, but the 
I is still adequately resolved. The reason why 0 and X are 
regarded by the computer as being similar to I is because the 
letter widths are normalized to a standard size. Hence a 
very narrow letter is expanded into a solid block which then ’ 
has Geometric Moments very similar to those of 0 and X. This 
breadth normalization can be suppressed but was left in for 
the purposes of this investigation,

(B) Test set on the learning set; Of the 52 hand- 
drawn letters typed onto the RAX terminal screens, 36 were 
correctly recognised, an efficiency of 69.4 *̂ There were two 
of each alphabetic character and the modified Hamming distance 
using 15 moments was the method chosen. This was judged to 
be quite a good result although the small size of test set pre­
vents any important conclusions from being drawn.

The use of the IBM tape proved more difficult, as it was 
in the form of a message, hence the letters had to be categor­
ized by the computer. Also the letter scan had to be trans­
lated into a matrix form using a special subroutine. However, 
once these difficulties had been overcome, the results were 
very rewarding. In the first 500 characters on the tape there 
were 38I1- letters in a 23 letter alphabet (Q,X,Z did not appear) 
These were processed using a similar moment generating program 
to the previous one and the means and standard deviations of 
the letter sets calculated. The combination of the learning 
set and the decision mechanisms resulted in the efficiencies
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First
500

Next
2000

First
500

Next
2000

Eff. of Hamming 81.88 85.34 69.0^ 63.82
Eff. of Euclidean 81 . U -2 83.88 67.43 63.98
Eff. of Mod. Hamming 95-61̂ . 91.13 95.64 92.32
Eff. of Mod. Euclidean 96.33 92.75 95.87 92.86

using 15 using 8
moments moment s

TABLE L

The first 500 characters constitute the learning set, whereas 
the next 2000 constitute the test set. Due to a misunder­
standing, it was not until later that it was discovered that 
the tape message contained 1̂ .000 characters, and not 2500, so 
later results are re&’re'd to a larger test set.

The general standard of the efficiencies reflects the 
quality of the type characters, A breakdown of the forms 
of error that occurred in this analysis revealed that the larg­
est source of error was a few recurring mistakes such as 0 for 
S rather than a general scattering of misrecognitions. Again 
no attempt was made to apply a threshold of rejection, al-.; 
though this will be considered later.

Finally, figure 3.7*3 shows the results of a test to dem­
onstrate the precise change-over points of the recognition 
system as a letter was transformed stepwise into other letters, 
This was done by a) reducing the central arm of the letter E 
towards the C shape; b) then reducing the upper arm towards 
the L shape; c) and lastly reducing the lower arm towards the
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• Value of modified
Hamming discriminant

Central BarUpper BarLower Bar

2.-

10
 Length of bar of letter--

X. Discriminant. value;, for - choice-L.
4- Discriminant value for choice C.
0 Discriminant value for choice E. •

Figure 3*7-3
Stepwise Variation of Letter Shape.
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I. The effect on the character recognized Is shown, the 
values of the different discriminants being plotted against 
the length of arm. The cross-over points are clearly defin­
ed and also regions are apparent where no character is rec­
ognizable with that discriminant at less than two standard 
deviations.

The best recognition system is one that combines speed 
of operation with high efficiency. The Modified Hamming me­
thod using 8 moments was 87^ efficient and fast. However the 
exponent method was far more efficient but much slower. It 
is suggested, therefore, that a two layer machine be used,

(i) With the Modified Hamming method to find the three 
lowest discriminants, or all those lying below a 
given threshold, say two standard deviations from 
the mean,

(ii) then using the exponent method to decide between 
those three characters.

Since only a few characters would be involved in such a cal­
culation, the slower method could be used to advantage. This 
2-step process yields 100^ recognition in the hand-drawn learn­
ing set discussed above. This promising result deserves 
further study and is the subject of a paper soon to be print­
ed.
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CHAPTER U.
THE APPLICATION OF MOMENTS DATA TO 

CERTAIN THEORETICAL PROBLEMS.

Reference has been made to a number of related variables 
in Character Recognition; these are efficiency of recognition, 
error rate, rejection threshold and others. In this chapter 
an attempt will be made to show the relations that exist bet­
ween these variables, both at the theoretical and at the ex­
perimental level. This latter is accomplished using the 
moment techniques developed in the last chapter. Finally 
individual attention is paid to certain isolated problems 
that have occurred in the use of moments.

4 • Introduction.
In a recognition strategy involving thresholds, such as 

that mentioned in paragraph 1.6, a certain amount of theoret­
ical work can reveal the relations that exist between those 
variables most commonly used;

(i) the error rate E which is the probability that a
character will be wrongly recognized, after the
rejection of those possibilities that lie beyond
the rejection threshold has occurred,

(ii) the rejection rate R which is the probability 
that a sample character will be rejected given a 
particular rejection threshold,
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(ill) the probabilistic rejection threshold (1 - P<)
which is that value of the probability of a sample 
character belonging to a given character set be­
low which rejection occurs, 

and (iv) the rejection threshold t which is a simple func­
tion of that geometrical distance, between the 
sample character vector X and the mean of the given 
character set beyond which rejection occurs.

In 1957, C.K.Ghow published the first of a number of 
,37)14-articles discussing * the functional relationship of

recognition error and rejection trade-off'. He pointed out 
that part of the optimum recognition rule which minimizes the
error rate E for a specific rejection rate R is to reject the
pattern if the maximum of the a posteriori probabilities is 
less than the threshold (1 - Hence the const­
ant (X provides a control over the E - R trade-off. He showed
that the two are related by the integral

R(0)
E = \ cX(R)dr 4.1.1.

R(d)
which, although surprising, is a very useful way of measuring 
the actual recognition errors which can be otherwise unidenti­
fiable .

4* 2 The Relation between the Rejection Rate and the 
Threshold Function.
Suppose the threshold function t is defined as

= (w -,jK) * V Cw - k) .̂2.1 .
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for a given normal distribution, n(ĵ , y ) ançL sample vector W,
such that rejection occurs for all values of the exponent dis-

2tance greater than the scalar t . Then the rejection rate 
may be defined to be

eO

R = k - ^ e ^ dq 4-2.2.
t

where k is a normalizing constant chosen such that the reject­
ion rate tends to unity as t tends to zero. As is well known, 
k = s / 2/tT, and the integral can be written in terms of the error 
function, erf(x) where

f X

2erf(x) =
2

e“  ̂dq 4 .2.3.
0

and erfc(x) = 1 - erf(x) i|.2,4*

Then R = erfc(̂ '̂ 2') ^.2.5.
This is the theoretical relation between the rejection rate 
and the threshold function.

4* 3 The Relation between Error Rate and Rejection Rate.
As can be seen from equation 4-1-1, the differential 

ratio dE/dR is given by

-  = 1 -  o i k - 3 - 1 .

(see figures 4-3.1 and 4-3.2).
If o< is hypothesised as being 

o {  =
where A and n are constants, then equation [(..3.I is integrable.

k - 3 - 2 .
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E

Flp;ure ij. 3 » 1 »

Knowing that R = 0 when E = the result of Integration
becomes

E + R - Emax A/(n + 1). ^ 1 4-3.3.

which may be tested graphically (see figure I}..3*3)* Straight 
lines were obtained from the data provided, indicating the 
validity of the hypothesis.

This hypothesis can be put on a more substantial level
by a little mathematics. The differential form of equation 
Ip.2.2 is

4 .3.4.
since 0/ and t have been defined so that = ke' 

dR dc<
t^/g

Or

Hence

0<

dR 
d o(

dw'dt

dt
do: 4 .3.5
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Figure 1̂ .3. 2 
G-raph of Variation of Error Rate 

with Rejection Rate. 
o Modified Hamming distance measure on ij.000 letters,

8 moment s.
A Modified Euclidean distance measure on I4.OOO letters,
_8 TnnrnQYi t.Q



Log R against Log R

! = 9.5; Modified Hammingmax
8 moments on Test set.

I = 8.R; Modified Euclid- max
ean, 15 moments on 
Test set.

Figure L.3.3 
Graph of Log ( E t R - ) against Log R.
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But from equation ^.3.1.

■ I f  "
f  = M =  " ‘"(1 -0^) fè ^-3.6.

Hence, from equation i|.3.5

[n] = J" - 0̂ dt ^.3'7a

and from equation i|.3*6

[eJ = j 0̂ (1 - o/)dt

= -[r ] -J <  ̂ dt l)-.3.7b

When t = 0  R = 1, E = 0 and
when t=cO R = 0, B = E andmax
when t = t R = R̂  ,E =

E ^[E] ma% ^ _ TrJO _ f  ^ 2^^ 4 .3.8.
Ê  R̂  Jt^

00
r

oC^dt

00
or (E + R - 4-3.9.

t
omitting the subscripts.

.00 r

How I oĈ dt =
00

2
^ 6  ̂dt = cr erfc(t)at

" t t
and R = erf c( t/Jg) from equation Ij..2.5
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Log (erfc t )

1 2 -

2 8 -

If Log [erfo t] = n Log [ e r f ]
+ Log a 

[erfc t] = a(erfc ̂
= aR^.

Then

2.4 0-0

Figure i4-.3.l4- 
Test for theoretical relation between
Rejection Threshold .and Rejection Rate
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It so happens that AR^ Is a fair approximation to 1 / ^ ’erfc(t) 
within the range in which we are interested i.e.
(see figure and so the hypothesis has some strong
theoretical backing.

The Variation of Efficiency with Number of Moments Used. 
The graphs of efficiency variation using different dec­

ision mechanisms (see figure 3.5*2) seem to require some
theoretical explanation.. Sampling and information theories

l lbeing both highly sophisticated, it seems reasonable to attempt
applying them to this problem of efficiency variation. In fact

38Bowman and McVey suggest a similar approach as an ad hoc hy­
pothesis .

Suppose we have a block of data out of which samples are 
drawn, measured and replaced (see figure , How much
information is probably withdrawn after n draws? Suppose an 
equal amount of information is drawn every time, containing m 
bits of data. The set containing all the information with­
drawn at the nth draw is A^. Then if is the amount of
data withdrawn at the (n + 1)th, draw, then

^n+1 ^ n ^  ®n+1 If.il-.l*
If f̂ (Â ) is the volume of data in A , it follows from equation
. I4.. 1 that

®n+1^
+ X-(gn+l) 4-4-2.

If the expectation of^(A^) averaged over n is x , it follows 
that

^n+1 <A^n >1 • • * >n> n+1 ^•^•3*
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N

Figure
Set Diagram for Calculation of

Total Nixmber of Bits of Data.
Information withdrawn after nth. Draw, 

y Average Volume of Data in A^. 
gn̂ jj Information withdrawn at (n+1)th. Draw, 
m Volume of Data in g^^^ .
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The last term of equation is the sum over all intersect-
ions of and :

m

r ?0Ç := r=0 r̂' V-r
m

(see appendix 8), where j  = x^; N = total number of bits of 
data in the block. Now, remembering that 

m
' 3cr m-r mZ  - 'c.

r=0
(see appendix 9). We can write r as y - (y - r) in equation 

to obtain
m m

5

m
„ y-u G n-1) - (y-i)LC „ r=0 y- °r- °m-r0 _ y ---------------------------------------

m
Thus ~ y.m/N i|,.jL}..7.
Hence equation simplifies to

^n+1 = m

^n+1 ^ II-. 1̂ .8.

Using the method of induction, we know:
Xq = 0 ; x.̂ = m
and if we write x̂ _̂  ̂ = Ax^ + B where A = 1 - m/N, B = m
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Then
n

 ̂ — û̂'*' ̂ -V 4-. nn+1X _ . „ = * Xq + B ^  A^ I4.. il. 9 •
r=0

(1 -  1 - (1 -
^n+1 - (1 - A) - ” •  57n

Thus x̂ v̂j = N(1 - (1 - m/N)^) ^.^.10.

i|.5 The Experimental Validity of the Hypothesis of 
Efficiency Variation.
Having outlined the hypothesis that the volume of inform­

ation gained on the (n+1)th. draw is (1 -- â ) times the total 
amount of Information available in Section ip.ii, it is a short 
step to equating the efficiency of a decision process with 
that fraction of information extracted from the total avail­
able; that is, that the efficiency is

Q =-- (1 -  a^) . 100^ I+ .5 . I  .

where a is some constant equal to 1- that fraction of the 
total information available contained in one moment. The
assumption is made here, it must be remembered, that each mom­
ent contains an equal amount of information.

Straight line graphs of Log(100 - Q) against n will test 
the hypothesis. The tables 5 and 6 below show the results 
of this analysis (see also figure ij..5»1)'
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Best flt-Best flt-Best flt-
Mod. Hamming HammingExponent distance 

(first 6 points) distance distance

0-Z

. n
Figure L.5.1 

G-raph of Log (100 - Q.) against n to show 
Cumulative Information Variation with number of moments used
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Calculation for first 8 moments.

- m 1 -a C ^C 2~m̂ ‘“"‘
Euclidean - .086[{. .0040 .180 1.979 .020 2.086
Hamming -.0869 .0047 . 181 1 .980 .024 2.087

X Mod. Euclidean -.1237 .0097 .248 2.005 .049 2.124
r Mod. Hamming -.1119 .0085 .227 2.033 .043 2.112

-V __Exponent -.228 .0109 .408 2.21 .055 2.23
TABLE g

Least Mean Square8^ Fit to Moments Data.
y

f
Calculation for 15 moments.

m 1-a C 2-m**
r Euclidean -.026^ .0073 .0^9 1.753 . 066 2.026
- Hamming -.0328 .0067 .073 1 .772 .061 2.033

Mod. Euclidean -.0701 .0086 .149 1 .826 .078 2,070
* Mod. Hamming -.0^71 .0078 .123 1 ,803 .071 2.057
r Exponent" " -.294 .0077 .492 2.387 .070 2.294

TABLE 6
Least Mean Squares" Fit to Moment s Data.

see Appendix 10 
see equation
Exponent figures refer to 6 and 7 moments, as opposed 
to 8 and 1̂ , as these were the maximum efficiencies 
which were still relevant to this calculation.

C and m are the intercept and gradient respectively of the



theoretically straight line graph Log(100 - Q) = mx + C, where 
X is the number of moments used. Theoretically C ^  2.00 and 
m = Log(a).

To find the theoretical value of C, we Inspect equation
4 .4 .10.

= 1 - (1 - m/N)^N
By letting 1 - m/N = a and 100.̂ n+1 = Q, we obtain

N
= 100(1 - a") 4 .5.2.

LogdOO - Q̂ ) = Log a^  ̂ + Log 100

= 2 + (n - 1)Log a
or Log (100 - Q̂ ) = (2 - Log a) 4- nLog a 4*5.3*

4-5.4 .
Hence the intercept 0 = 2 -  Log a

and m = Log a 
Theoretically, then G = 2 - m.

The graphs drawn show that the assumption of equal inform- 
ation content per moment was not very valid. The best strai­
ght line came from the exponent mechanism as expected, and 
the gradient displays the most information extracted per mom­
ent, and the intercept agrees closely with that predicted.
From the standard deviations of C and m, it can be stated that 
the Hamming and Euclidean methods seem about equal in perform­
ance, whereas the modified methods are themselves equivalent 
though reliably better than the unmodified forms.

The form of the graphs suggests that at least for small 
numbers of moments, the approximation assumed holds good but 
breaks down the more moments used. Some reasons why this
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breakdown might occur are suggested in the next Section.

4.6 The Resolving Power of Moments.
Throughout the work on Character Recognition covered in 

Chapter 3, no attempt was made to use any special set of mom- 
ents, even though Franz Alt in his research selected partic­
ular moments for a decision tree. Since it was not clear 
that the mechanisms that were being used here demanded special 
moments, no such ordering was investigated. Indeed the pro­
blem of ordering is by no means simple. There is a criterion
attributed to R.A.Fisher that defines the resolution R^ bet-

2 2 ween two normal distributions n(jiÂ , ) and < r ^  ) , of
the kth. element of the pattern vector so that

2 f . \2 , 2 . . , 2R

This is easily extended to n distributions

^ h . k  ' . 1 ^.6.2.
k Z_\ 2 n(n - 1 )

l,j=1 Ik
The calculation of the R^ is shown below (table 7) for the 
learning set of the tape data taken over 23 alphabetic chara­
cter sets.

The larger the value of R̂, the better the moment is at 
resolving the 23 letter sets. However the emphasis is on 
the letters that the moment resolves well, since equation 
4-6.1 has a large value for two well-separated sets. In or­
der to emphasise those letter set pairs which do not resolve 
well, a root mean square reciprocal can be implemented
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^  ^   ^  4*6.3
\  '/ \2

7lk " Mjk)

Moment M^q «oî. “3I

Rk 6.51 8.27 3.21 4.12 5.77

Moment M̂  ̂  Mq  ̂ M^q

R|( 6.30 6.86 7.91 7.29 6.83

Moment M^g M^g M^2 ^23

Rk 4-09 8.35 10.58 5.;# 7.01

TABLE 7

Table 8 gives the values for R

Moment M^^ M̂ ĵ ^04 ^31

r [  4.08 8.46 8.98 4.71 4.05

Moment M̂  ̂  M.̂ ̂  Mq  ̂ M^q

Rk 3*62 3.59 5.16 5.27 3.56

Moment M^^ M^g M|̂  ̂ M^^

Rk 14*6 7.32 2.02 15.6 12.4

TABLE 8



67

The smaller the value of R^, the better the moment is at re-
Îsolving the 23 letter sets. An ordered comparison of R̂, R^ 

and R̂ (Alt) displays the best moments (see table 9).

>5
R,(Alt) “30 «21 \ o “31 “13 “12 W03

h - “21 “03 “23 “12 ^̂ 30 “13

* M.J 2 “13 “31 “30 ’̂01). “03 «50 “05
1 2 3 i]- 5 6 7 8 9 10

^ 3 1 M32 ^ 0 4 M 2 2 ^ 4 0
;

^21 V M 2 3 M 2 2 ^ 3 2

11 1 2 1 3 1 4 15

TABLE 9

Considering the best ten in each set, only and. occur
in the list of R̂  and not in that of R̂  , and only and
occur in the list of R^ and not in that of R̂, So the two 
ways of deciding which moments resolve best favourably agree. 
Also most of the moments in the first ten in each set are con­
tained in the first ten of R̂ j[Alt) .

These methods are only two of many possible ways of as­
sessing the resolving power of different moments. As such, 
they represent only an introductory comparison. However, 
without more statistical evidence, it is probably not worth­
while going any deeper into the problems of resolution.
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CHAPTER 5
THE IMPROVEMENT OF RECOGNITION EFFICIENCY 

AND THE MINIMIZATION OF LOSS.

The haslo theory of decision analysis and loss functions 
has been outlined in Chapters 1 and 2, and a method for Chara­
cter Recognition is suggested in Chapter 3* Some thought 
will now be devoted towards combining" the t w - c ^ to observe what 
effect, if any, the introduction of loss functions has on the 
recognition efficiency.

5•1 Recognition with Minimum Expected Loss.
It should be made clear that the maximum recognition eff­

iciency of a one-step categorizer is not improved by the intro­
duction of loss functions as defined herein. Neither is the 
addition of a priori probabilities to the decision mechanism 
of any use when the characters presented to the categorizer 
themselves do not obey such probabilities. If however the 
sample characters are in fact taken from a standard English 
text, for example, then the presence of a priori probabilities 
may be expected to improve the recognition efficiency. But 
the use of loss functions is a totally different affair.
Their introduction only becomes valid when one character or 
decision is more important than another in terms of informa­
tion content or value or whichever utility the operator cares 
to adopt.
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One elementary example of minimum expected loss is the 
case of optimizing the rate of transmission of information 
through a channel. A lot of work has been done in the field 
because of its industrial applications, but it suffices to men­
tion here that the information loss due to the misrecognition 
of the jth. letter as the ith. letter is

I = “ InttL 5*1 *1 .
where OLb is the a priori probability of the jth. letter occur­
ring. Then, in the author’s opinion, the information loss 
may be adopted as the loss function L(i|j), and the calcula­
tion of the'minimum expected loss becomes equivalent to that 
of the maximum information transmission rate.

The improvement on efficiency by using not just the a 
priori probabilities but also digraph and even trigraph prob­
abilities should be quite considerable, especially nowadays 
when large storage memory banks have become available with 
very fast access times. This reduces substantially the cost
of maintaining large matrices in core storage. A.Wood Edwards

3sand Robert L. Chambers pioneered this work, although they did 
not have a first class recognition system on which to apply 
their ideas. Indeed recognition efficiencies may be improved 
by a number of totally independent methods, and the use of di­
graphs in a noisy or otherwise suboptimal categorizer may be 
regarded as probably one of the best, given the required vol­
ume of computer memory.
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5 * 2 The Forms of Error In a System.
In the type of recognition apparatus used by the author, 

it was a fairly simple procedure to analyse the errors produced, 
to determine exactly how a particular error occurred, and what 
could be done to redesign the categorizer to prevent that error 
from recurring. This analysis was carried out on the exponent 
method, as this gave a clearer picture of the underlying faults 
of the recognizer. Tables 10 and 11 show the results.

Act Rec ■̂2 d(1 ) n<2<r comments d(Act)

Y E 1 .38 2.30 4 . 3 9 0
I L 1 .95 1.95 0.47 >5 similar 0.65
N B 1 .35 1.35 0.52 >5 similar 0.61
W E 1 .75 >2.32 2.19 0
R M 5-52 5 . 5 2 0.20 4 similar 0.52
K E 1.1:0 1.1|_0 2.97 0
Y T 1.16 2.16 4.48 0
V S 1.18 >1.62 2.80 0
¥ 0 1 - S k >2.22 2.09 0
Y E 1.13 1.13 2.87 0
I L 4.69 4.69 0.25 >5 similar 0.54
¥ 0 1.19 >1 .61 2.19 0
V S 1.06 >1 .62 2 .7 9 0
Y E 1.79 2.10 3 .1 0 0
V S 1.22 >1 .65 2 .7 6 0

TABLE 10
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Explanatory notes to Table 10:
Act - Actual Letter 
Rec - Recognized Letter
-X- is defined as d(2)/d(1); and as d(actual)/d(1 )

d is the exponent distance between the sample char­
acter and the mean of a given letter set. Since 
these were ordered, d(1) is the smallest exponent 
distance and applies to the chosen letter set. 
d(actual) is the exponent distance to the actual 
correct distribution mean. Units are standard de­
viations

d = 1/n^(X -/i)V~('x -  / a )

n = number of dimensions in pattern vector 
•5HHC- n<2o*signifies the number of letter sets with ex­

ponent distances less than 2

Out of 500 characters on the IBM tape, there were 436 alphabetic 
characters of which 15 were recognized incorrectly by this me­
thod. Only 4 of these would have been misrecognized if a 2 cr 

threshold had been imposed, whereas only 2 correctly recogniz­
ed letters would have been rejected. Hence with a 2 or reject­
ion threshold, the recognition efficiency would rise from 96.56 
to 99.08^ with a 2.98^ rejection rate. Thus the introduction 
of a rejection threshold, if not expensive to implement, pro­
duces a considerable increase in efficiency in this method. 
Furthermore, from the table above, it is apparent that such a 
rejection threshold is not critical, and the graph 5-2.1 shows 
how slowly the efficiency changes as the threshold varies.
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i o Error

t
Figure ^.2.1 

Variation of Error and Re.leot Rate with, t.
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X X
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X X
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X X
X X
X X

X X X
X X X
X X X
X X X
X X X
X X
X X

X X X
X X X
X X X
X X X
X X X

Figure 5.2.2 
Comparison of Tape Set I and L.
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The characters incorrectly recognized which are more than 2 cr 
from the nearest mean are and ¥, the covariant matrices
and means of which have been calculated on only about I4. sam­
ples, so that this reason alone may be sufficient to explain 
the frequency with which they have been misrecognized.

The characters incorrectly recognized which are not more 
than 2<rfrom the nearest mean are more interesting. The two 
I’s which were recognized as L ’s can be dismissed (see figure 
5.2.2), leaving the N - B and R - M as the only two real err­
ors in the whole of the learning set. As these two letters 
display in no obvious way whatsoever any real difference from 
any of the other N ’s or R’s that occur in the message, they 
must be regarded as computing errors or due to the presence 
of excess noise on the tape (which was otherwise singularly 
free from noise), and probably do not reflect upon the deci­
sion mechanism.

Total M-N* M-E L-I P-I I-L 0-E C-E Tape errors
162 13 16 13 8 7 11 % 17

M-N signifies M recognized as ÏÏ
TABLE 11

Breakdown of main errors in IrOOQ character set 
with a 2 o~re.1ection threshold.

A number of errors occurring in both learning and test sets 
can be attributed to capitals, which should be rejected in most 
cases. Also the check against which the computer-recognized 
letters were identified, that was a built-in part of the
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tape data, was not always correct; this is the reason behind 
the 17 tape errors. The lack of better defined distributions 
for letters like M,C and P are emphasised in Table 11. Two 
confusion matrices (figures 5 *2.3 and 5* 2.It) have been inclu­
ded to present the error display for the whole test set. The 
first of these was calculated without any threshold whereas 
the second contained a recognition threshold of 2(T.

By far the most useful possibility that can solve these 
assorted problems is to introduce a two-stage decision process 
The first stage of this can be a simple modified Hamming dis­
tance type recognizer with a built-in rejector of either (i) 
letters more than a given distance from any letter mean, or 
(ii) letters in which the choice between the nearest and next 
nearest mean is insufficiently distinct. The second stage 
can then be the more complex though far more accurate exponent 
mechanism. More will be said about the virtues of a two- 
stage method in the following section.

It is clear that the errors are not randomly distributed 
throughout the test set, but heavily concentrated about part­
icular letter pairs. Such pairs, once identified, can be 
weighted within the strucure of the loss function to correct 
those particular faults that occur due to the nature of the 
categorizer. Discrimination between similar letters, such 
as I - L, is less amenable to this treatment, but probably 
still of some value.
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A B C D E

A

F G H 1 J K L M N 0 P R S T U V W . Y

A 2 6 0 1 1 1 j 1 ■
B 2 7 21 5 1

C 138 7 1
------ I

D 138 2 1 j i

" " nE A68 2 3

F 1 5 6 2 6 ' i

G 1 7 2 1 ;

H 2 156
i

1 7 2 7 6

J 2 i
K 1 12 1 1 1

L 1 13 1 37 2 2 7 : r

M 2 2 6
------

2 7 2 6 :

N 1 256 1

0 2 11 26C 1 -- ! ! 

i tP 9 6

2 2 7

R 1 201 6 5 . .  j

j____1S ’ 1
------

T 319 ' ï
U 2 1 9 6

V 1 1 3 0 1 i î
W 7

------
2 7 1 !

Y 3 8 8 f

Figure 5.2.3 
Confusion Matrix for Test Set Errors 

with, no Rejection Threshold.
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b I c D E F G H 1 J K L M 0 P R s
----

1
--- U V W Y :

A 2 6 0 1
• 1

8 2 7 1 1
.

1

C
- r  ■ 

i 13 8 7 1 i ! 1

D 138
1

; E

J
4 8 ^ I I r 3

j

: F 5 6 1 a
1

: G |  , n
r

1 7 2 ! -
)

H 1 1 56 --- i 1

; ( 5 i 2 7 6
.

J 1 2

K i 1 1
!

L 1 1
1 13 1 3 7 1 1 5 ! 1 !

M 1 15 2 7 10
! 1 

....- j-------

N 1 25e 1
1
; !

0 2 11 1
! 2 6 0 1 1 i

P 9 6
1
t
!----

R
I----

1 201 6 L  . —

S
— I----

1 1 I2 2 7

T ! 1
!
■ 319

U 1 ■- ---- 9 6

V ! 1

W 1 1 L .
1

! M __ [__

Figure 5.2.L 
Confusion Matrix for Test Set Errors

with 2 c r  Re.leotion Threshold.
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5.3 The Relation between Execution Time and Efficiency.
Whereas no absolute measure of execution time can be used 

to determine the cost of a particular technique in decision mak­
ing, the difference between various mechanisms can be restrict­
ed In computer simulation to little more than the altering of 
a line or two in the entire program. In this way all the 
mechanisms which have been applied by the author can be comp­
ared, not only in recognition efficiency but also in execution 
time.

This time, for the exponent mechanism, was proportional 
to the square of the number of moments used, as expected.
This makes it considerably slower to use although its greatly 
increased efficiency counteracts this drawback to a certain 
extent. Prom the graphs of efficiency against moment number, 
it can be seen that the maximum efficiency is reached when 
around eight moments are being used and that further moments 
alter the recognition efficiency little.

One possible two-step procedure is to reject characters 
further than 2 (T from a mean as measured on the Hamming dist­
ance and recalculate these distances according to the exponent 
mechanism. Another more acceptable two-step procedure is to 
order, in increasing distance, the letter set means using the 
Hamming distance as before; then to select the three or four 
with the smallest distances and calculate the exponent dist­
ances to those means. This reduces the number of letter sets 
over which the exponent measure has to be applied.

It is interesting to plot a graph of execution time ag­
ainst percentage efficiency with the number of moments used
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as the variable parameter and to superimpose lines of the fam­
ily (see figure 5*3*1)

(100 - E)t ~ constant (G) 5*3-1*
Naturally this family is chosen rather arbitrarily, being 
after all only the first term in the general expansion

où

(100 -E) = 5.3-2.
1=1

However it does weight the error rate equally with the execu­
tion time. From the graph it is possible to decide on the
decision mechanism one wishes to use by implementing a given 
error/execution time measure (C in equation 5*3*1)« The 
choice of C is, of course, related to the time equivalent to 
a given error rate, and hence to an estimate of how much extra 
time one incorrect letter will introduce. This is something 
only the designer can decide.

5• 4- Forms of Loss Matrix.
It was mentioned in Section 5-1 that the operator could

define a utility function by which certain characters could 
be assigned relatively more importance than average. It is 
suggested that, for a machine categorizer which rejects alpha­
betic characters to be subsequently deciphered by a human being, 
it is possible to weight the decision mechanism in such a way 
as to optimise this two-stage system. For instance, certain 
letters are geometrically similar, for example R and K. If 
the loss involved in a misrecognition of a character as another 
geometrically similar one is Increased, then this is equival­
ent to reducing the rejection threshold in this particular
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seconds
The straight line represents 
equal losses for a change 
in Error Rate and 0.1 second
change In execution time.

2 —

experimental

80 100

fo Efficiency
Figure ^.3.1 

Variation of Execution Time with
R0c ognl11on Eff1c1ency.
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dl3crimination, and so the probability of rejection Is Increas­
ed. This Is simple theoretically, but Implementation Is more 
complex. A quantitative measure of similarity (either geo­
metrically or whatever the particular method of discrimination 
finds similar) needs to be Introduced. The Mahalanobls dls- 
tance Is a likely choice for this, although others may be 
suitable . Also If letters are misrecognized as being
rare letters, S as Z for example, then these will be relative­
ly more obvious to the checker, who relies more upon the con­
text and meaning of entire words rather than upon Individual 
characters as does the machine.

Combining these two suggestions for optimisation with 
the Information loss suggested In Section ^,1, a loss matrix 
L may be formed which Is related to the features mentioned 
above by the equation

L = IMS .
where (1) I Is a loss matrix based on the higher costing of 
rarer letters because of Information loss; (11) M Is a loss 
matrix based on the lower costing of the rarer misrecognition 
letters, I.e. those that the categorizer chooses which are In­
correct, due to the fact that they are more obvious to a check­
er or reader; (111) 8 Is a loss matrix based on the higher 
costing of similar letter pairs so that the probability of re­
jection of this choice Is Increased.

This latter part Is symmetric, whereas the first two are 
asymmetric matrices. It can be suggested, then, to break up 
the loss matrix Into a product of three parts (1) an Informa­
tion loss; (11) a misrecognition loss and (111) a similarity
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loss. The first part may be omitted If the type of problem 
does not warrant Its Inclusion, for example non-textual mat­
erial .
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CONCLUSION.

An Introduction to elementary Decision Theory has been 
given to explain the concept and definition of loss functions 
and to relate them to Bayes Theory and Optimal Boundaries.
This also served to collate data and papers on the properties 
of losses. A few simple examples followed to show that In 
some cases loss functions can become Important In decision 
analysis. An attempt was then made to compare the minimum 
expected loss with the loss using a suboptimal decision bound­
ary. In the simple case chosen, the expected losses differed 
by only 0,̂ %, Indicating favourably the Implementation of the 
Euclidean distance mechanism as an alternative to the optimal 
method.

The work on Geometric Moments has covered recognition of 
hand-drawn capitals with error rates varying from 88^ for very 
poor, elementary methods to <1^ for very good methods. Also 
an IBM message tape was employed for character recognition 
using the first ^00 characters as a learning set, and the whole 
ipOOO characters as a test set. The results from these con­
firmed the difference In quality between the different mech­
anisms. These can now be ordered In Increasing resolution:

(I) The Hamming and Euclidean distances (equivalent
within the margin of error)

(II) The Modified Hamming and Euclidean distances
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(equivalent within the margin of error)
(111) The exponent distance.

The modification involved has the effect of normalizing diff­
erent moments, with the result that they become equally weigh­
ted in the distance measure. Error rates on the tape varied 
between 9*5^ and 3.6^ for methods (11) and (ill) mentioned 
above. Various minor Improvements could have been made on 
these figures, In particular to have thrown out all capital 
letters In the learning and test sets and to have Increased 
the size of test set so that the more uncommon letters would 
have had better defined distributions.

The study of the moments has led to the development of 
the two-stage categorizer: the first stage utilizing a fast 
discriminator and the second stage utilizing a slower but more 
efficient mechanism operating either on characters not reject­
ed by the first or on characters that the first was unable to 
discriminate. The type-letter set was used extensively In 
testing these various mechanisms due to the difficulty In ob­
taining a large test set for the hand-drawn characters. The 
tape produced a number of problems related to extracting In­
formation from a message as opposed to a selected list of 
alphabetic characters. However the problems were solved 
from a practical viewpoint and a fairly efficient discrimin­
ator was found. If anything, the tape data set was too ele­
mentary a set for the recognition system used because no real 
normalization In size was necessary for It. Removal of this
facet of the recognizer would have led to a better definition 
of I’s and L*s. However, the general nature of the program



would have been reduced and comparisons with, the hand-drawn 
letter set less valid.

Various offshoots of this work have been Investigated In­
cluding a comparative study of the calculation times of the 
discriminants, and the effect of a rejection threshold on the 
efficiency of the mechanisms. This was Inspected In detail, 
demonstrating the theoretically predicted relations between 
the error rate, the rejection rate and the rejection threshold, 
The relations appear to hold within the bounds set by the app­
roximations. Also the discriminatory ability of the various 
moments has been measured and by this means the efficiency of 
recognition can be increased by using only the more discrimin­
ating moments.

An Interesting theory has been developed to show that, 
given certain assumptions, the efficiency of any discriminator 
could be related to the number of dimensions of the pattern 
vector. It was shown that these assumptions are justified 
when the dimensionality Is not too great, and reasons for the 
ultimate breakdown of the theory have been suggested.

The relation between loss functions and rejection thres­
hold has been investigated In some detail. The author feels 
that thresholds are easier to utilize than loss functions, al­
though conceptually farther from the truth. Some mention 
has been made of complete loss functions, their applications 
and their relation to Information loss through a noiseless 
channel.

Summing up, the author believes that
(1) A useful decision mechanism can be forged out of
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Geometric Moments and a two-stage categorizer.
(II) The exponent mechanism, although of a quadratic 

nature. Is sufficiently good to be considered as 
a worthwhile categorizer.

(III) That loss functions should be calculated and app­
lied In specific cases of closed discriminant sy­
stems I.e. those In which the operator or checker 
Is Included. Only after such loss functions 
have been considered can It be stated for certain 
whether or not they should be Involved In the 
categorization process.

(iv) If this Is to be done. It should be first asked
If It Is not easier to use a trainable classifier 
which Is taught to minimize the losses. This 
bypasses an understanding of the basic theory In­
volved but may well be economically preferable. 
The limits of the cost optimization process might 
have to be extended to the actual task of decid­
ing whether or not to use losses at all.
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APPENDIX 1.

Power and Size In the Neyman-Pearson Theory.
In this theory, experimentation Is carried out In a single 

stage by observing the values of the first N chance variables 
of the sequence . Suppose H Is an hypothesis about the
^X^ to be tested. Then the set of all sample points x = (x̂  , 
Xg, . . . Xĵ ) for which H Is rejected Is called the Critical Re­
gion. Let the hypothesis H under test be the hypothesis that 
P ̂  where P is the distribution of sample points and (u Is 
the set of distributions over which H Is true. Then the con­
cept of the Power of the Critical Region Is defined as the 
probability that H will be rejected when some P, not an ele-. 
ment of w , Is true. The Power Is thus a function of P defin­
ed for all P not Into. Also the Size of the Critical Region 
Is defined as the probability that H will be rejected when 
some P Is true that is an element o f W . Thus the Size Is a 
function of P defined for all P I n W . These concepts relate
to general Decision Theory slpce the choice of the Critical 
Region Is equivalent to the choice of a decision function and 
the notions of Size and Power are special cases of the notion 
of Risk.

In fact let W(P,d) be defined as follows

and
W(P,d^) = 0 when P € w
W(P,d^) = 1 when P
W(P,dg) = 1 when P e w

and W(P,d2) = 0 when P 
where d.̂ and d are the two possible terminal decisions
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Thus ¥(P,d) Is a 'simple’ Weight Function. We can disregard 
the cost of experimentation here If we restrict the choice of 
the experimenter to decision functions for which the expected 
cost of experimentation Is the same constant amount. Then 
the simple risk corresponding to the above simple weight func­
tion Is equal to the size of the critical region when F 6 W and 
to (1 - Power) when F^ w  .
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APPENDIX 2.

A priori Probabilities and Information Content of the Alpha- 
betlo Characters.

CO -InCV -U3lnu> tape
A .0788 2.24 .200 • oyl t -

B . 0 1 5 6 4.26 . 0 6 6 . 0 1 6

G .0268 3.62 .097 .043
D ,0389 3.22 .126 .040
E . 1 2 6 8 2.06 .261 .136
P .02^6 3.67 .094 .018

G- . 0 1 8 7 3.98 .074 .020
H .0273 2.86 .164 . 0 4 2

I . 0 7 0 7 2.62 . 1 8 7 .081
J .0010 6.91 . 0 0 7 .002
K .0060 2.12 .031 .004
L .0394 3.23 .127 .042
M .02141). 3 . 7 1 .090 .023
N .0706 2.62 . 1 8 7 .071
0 .0776 2.26 .199 .076
P .0186 3.98 .074 .026
Q .0009 7.01 . 0 0 6 .002
R .0294 2.82 .167 .029
S .0631 2.76 . 1 7 4 .063
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U) -InOo winCu ^tape
T .0978 . 2 . 3 2 .227 .088

U .0280 3.28 .100 .027

V .0102 4 . 2 9 .047 .010

¥ .0 2 1 4 3 .8 4 .082 .011

X .0016 6 .4 4 .010 .002

Y .0202 3 .9 0 .079 .013

Z .0006 7 . 4 2 .004 .0002

Total 2.887

Lo - the a priori probability of a letter occurring In an
English text (Dewey Classification of English Language.) 

-InCO- the relative Information content of each letter 
iO{3ape ” probability of a given letter occurring on the IBM 

tape message.
00 ■p’Largest ratio of Information contents = In —  = 2-36
'•“z
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APPENDIX 3.

A Normality Theorem.
Theorem: The family of curves ~ 0 has the
property that a line normal to the surface of one of the fam­
ily is normal to the whole of that familiy.

Proof: The family is of the form f(_r) - C
Then a line normal to the surface f(r̂  = Gq is

(r - rg) X Vf = 0 1
where lies on f(^) = Cq
Similarly a line normal to f(r.) = Ĝ  is

(r - = 0 2
But if we define r̂  to lie on line 1 then

(̂ 1 -  I f  =  0
r^ lies on line 2  

Hence r_̂ and r^ both lie on lines 1 and 2.
Equation 1 and equation 2 represent the same line, which 

is normal to each of the two surfaces.
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APPENDIX 4.
Hand-Drawn Letter Set.

A l  [ AZ

/  %  'XX XX,Xa XXxXX'x»  x'Xxa'» X XX XXXXXXX AX
. y  ■

XX

X  X
y X
X X XXXXX XX
 ̂ ! X

L
C L - ?

A3 X
x <  Nc
XX <

XX I X
X X  XXXXxXXXXKX̂  XX X,

A4- X X
/ y

X  X

XX

xX 3¥ . 'XX
/)£7 X

X >
X  X

VX
X  K <

y

X !

A6 A? AS
X X

$   ’X
3 5üTh

XXX-XX X 
>'< XX

* 2* .  ■"■'I% I ■ V 
X  x x x ^ x x x k  xx-^

^ ' ÿ
4̂3 !

x>»x XX

X  I X
66

t i
yXxXXXXX<

S
X IX XXXXXX/XX

ii
! !

- . r :

' )Ç^fCtCXX>tX.
Cr

<

Sc
L.l

X>VCXXXXX

CS A . y y 3 < Ayj 
X I

I'
X x» X  *xxxxx*

X vXX*
X X
X X

ix
X A
X V x  X  X <

■y y  y  K x  X K y x<
X K X

j‘ 4% 5X «
X V  . M

*x*X
;5

, g  'ï
xx<>xxxy>'I' r
XXXAXX

. M '

: %  :
!

Ü2 1

%

X AX : !
X I X v":
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> - 1 /
X - X  y --

y I : I
' /iXxXXXX .

X x x X

V. <
X

x x < y &9>oc

Y y»
XX

 ̂ ) AAX)ÔC.X

X

X

X
K  X  XX >jc

X' X

^ Xxx 'xyryx̂o*.
"x
X  XXXXXXXxf

cz
xxyxxjcxxx

&

-  XxxxxxXxXKxxxxx:

' C6
X X

_ X

xa^xî09< C3 C*̂

X >̂1'' 
s vxxxxy

C/ V
X
XX
X

X
y

XX X

[-

5̂tlXXII
yxxxyxx

X̂ XXXAX
-r

X  X  X  X  X
:__   .L -• . . ' '
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1

AA' x>;

A A X X x

xxAxxxyyyxXxx

<  XXxA WXAXXX XKXXAXX

XKxyyxxAXXXAXX AXXAXAX 1

xxxxy>x%X X
X Ixyy xv>
r
iXaxavXxvaaxa

yxxAxyx
L.XXx>XKxX\

xyxxyy
X

AyxxxxAxxyXjOCXXXXX 
X

xxxxyx>AJXX X XXa X X XXXX

XNAxxy>y XyxxxxxAAXXAyXXX
%2
a xX >.
X XX xyxrxxAVx -. .'  ̂X

.- 6

iWah
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G- l

y
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X

X ax

XXX
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X X
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yVAAXXXX̂
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#  ::
X X X X X  XXX X>x X5Ï ,

I i
X X  I .  I X X

j X X  y X x X  XXX XXA X  
} XaV  A X«
:5% %
r% )  S Ï

% %
^XXXA XV^.

<  >
\  y''

AXXXXXA XXXXXxX X^

- / I  /
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X a X
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Vk V 
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XX <
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X A A 
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X x y > c > > ' > y > ^ x

>r>’->Or

xxy

•XXAXKx-

A>vVKyKXX

A XK KfXXXXXXXAK
V  -«ex’
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APPENDIX g

Computer Tape MessaRo.

CONDENSED COMPUTE? ENCYCLOPEDIA, CO., INC., 330 U 
. ^2 ST., NEW YOHK, If.Y. 10 036 , 1 969; 610 PAGES, I 
LLUS. , £14.50. THE AVOUEE PUEPOSE OF TH#IS ENCYCLO 
PEC TA IS ''TO define COMPUTE? TERMS CLEARLY AND ME 
A NT NOFULLY FOR THE NONSPECIALIST. ' ' IT IS INTENDED 
TO BRIDGE THE GAP BETWEEN CONCISE DIG- TICNARY DE 

FINITIONS AND CCKIUTER MANUALS AND TEXTS, AND DOES 
A GOOD JOB OF MEETING ITS OBJECTIVES. THERE ARE A 

BOUT 1000 TERMS DF- FINED OR CROSS-REFERENCED IN T 
HE 574 PAGES IN THE BODY OF THIS BOOKA THIS IS AN 
AVERAGE OF ABOUT ONE-HALF PAGE PER TERM, ALTHOUGH 
THE LONGER FOR- TIONS ARE SEVERAL PAGES IN LEN#H, 
COMPUTER LANGUAGES (ABOUT 20 ARE INCLUDED) GENERAL 
LY REQUIRE THREE TO FOUR. PAGES SINCE A WORKED-QUT 
EX- AMPLE IS GIVEN FOR EACH, THE LONGEST NONLANGUA 
GE ITEM IS " E D P  CENTE& ' ' , FOR WHICH SIX PAGES ARE 
DEVOTED TO A MANAGER'S OVERVIEW OF THIS TOPIC. TH 

IS ENCYCLOPEDIA IS UP TO DATE, PLACES THE EMPHASIS 
ON THE MORE IM- PC# ANT ASPECTS OF MODERN COMPUTER 
TECHNOLOGY, AND PRESENTS A FRESH (AND SOMETIMES R 

EFRKSHING) APIfiACH TO DESCRIBING COMPUTER TERMS AN 
D CON- CEPTS. ONLY SOMEONE WHO HAS SUE- FERED A MA 
JOR CARD JAM MORE THAN ONCE COULD HAVE WRITTEN THE 
'•JAM'» ITEM WITH SUCH FEELING. A COMMEND- ABLE E 

FOff HAS BEEN MADE TO EXPLAIN ' ' COMPUTERESE' ' IN LA 
Y TERMS. #0 EX- AMPLES ARE THE CITING OF ROBE#,S R 
ÜLES OF ORDER TC EXPLAIN PA# OF THE CONCEPT OF REC 
U R S I K O N , AND THE DESCRIP- TION OF THE CDC 6600 MUL 
TIPROCESSOR AS A ''V-10 CATA-PROCESSING E N G I N E . '' 
THE EMPHASIS IS ON SO#WARE, AL- THOUGH SOMEWHAT MG 
RE THAN 100 ESSENTIAL GENERAL COMPUTER HARDWARE TE 
RMS ARE INCLUDED. IN ADDITION, THE HARDWARE AND OT 
HER AS#CTS OF OCR (OPTICAL CHARACTER RECOGNITION) 
ARE THOROUGHLY COVERED, BUT LITTLE ELSE IS CCNSICE 
RED IN THE SOURCE DATA AUTOHA- TION AREA. THE BOOK 
ASLO INCLUDES A BTBLI#- RAPHY AND AN INDEX. THE B 

IBLIGG# DHY IS LIMITED TO MATERIAL READILY A##- PUT 
DBS. THE INDEX (PRECEDED BY THE FO#RAN PROGRAM'USE 
D TO PRODUCE IT) IS INTENDED FOR USE IN LOCATING T 
ERMS NOT READILY FOUND IN THE ALPHABETIC FC#ICN OF 
.THE BOCK. HOWEVER, ONLY ABOUT ONE THIRD OF THE IN 
DEX ITEMS SERVE THIS .PURPOSE#HE OTHERS ARE A REPEA 
T OF THE A L P H ABETIC ARE NOTED. THESE INCLUDE THE I 
^ADEQUACY OF SOME OF THE INDEX CROSS-REFERENCING,
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SUCH AS » ’ONE'S C O M P L E M E N T ’ ' (W HER E ’ ’RADTX-MIN US- 
ONE COMPLEMENT' ’ IS NOT REFET'ENCED) ; THE TOG BRIEF 
DISCUSSION OF ’’E M U L A T O R ' ' (BETTER DISCUSSED UNDE 

E ’ ’C O S "  BUT NOT REFERENCED TO IT) ; AND SMALL ITE 
MS SUCH AS G R O S C H ’S NAME BEING MISSPELLED OR WHY 0 
NLY BABBA#, H O L L E R I T H , LEIBNITZ, VON NEUMAN#u, IfSC 
AL, TURING, AND WEINER RATE BIOGRAPHIES. THIS ENCY 
CLOPEDIA IS HIGHLY RECOM- MENDED AS A ilLUABLE REFE 
RSNCE FOR EVERYCNE IN THE COMPUTER FIELD. DESPITE 
THE INTENT OF THE AUTHOR, IT WILL PROBABLY BE OF M 
ORE USE TO THE PROFESSIONAL THAN# TO THE NONSPECIA 
LIST. SOMEONE WHOSE ONLY BACKGROUND IN COMPUTERS I 
S A TH#E-DAY EXECUTIVE COURSE WILL NOT BE ABLE TO 
TAKE FULL ADVANTAGE OF THE INFORMATION IN THIS B#K 
. IT IS AN EXCELLENT CONTRIBUTION TO THE LITERATUR 
E OF THE FIELD. EVEN THOSE WHO HAVE WORKED WITH CO 
M- PUTER5 #R SOME TIME WILL FIND IT A GOOD REFER EN 
CE PORTER MS AND CONCEPTS THAT #HER SOURCES CCNSIDE 
R EITHER TOO SCANTILY OR TOO THOROUGHLY. BETH##, M 
D. INTE###CIRCUIT5,A B A SICA COURSE FOR ENGIN## AN 
D jjCHNICIANS, R. G. HIE- BER E-K CG# W-H ILL BOOK #., 
INC., 330 W. 42 ST., NEW #RK, N.Y. 10036 , 196% : 18 
3 PAGES, I L L U S . , £9,95. THIS BOOK, A S#UEL TO THE 
.AUTHOR'S SOLID STATE EL#T#NICS, IS DI#.CTED TO THE 
NONELECTRONICS ENGINEER AND THE TECH- NICAL IN#ITU 
TE STUDENT. THE APPROACH IS #5I#LLY QUALITATIVE, E 
SSENTIALfrLY A SUJÎEY OF AlflLABLE INTEGRATED CIRCUIT 
T # H N O L O # . ALTHOUGH THIS REVIEWER IS PERPLEXED (BE 

LIEVING THAT A SUBSTANTIALLY MORE QUANTITATIVE APP 
ROACH IS .REQUIRED) , THE BOOK WAS FOUND TO READ SMC 
OTHLY AND TELL ITS STORY IN A READILY C O M P R 2- HENS 
IBLE FASHION. WITH ITS MERE 172 PAGES, IT COULD BE 
READ AS AN EVEN- I N G ’S #VIFW. THIS REVIEWER FOUND 
IC APPLICATIONS IN THE LAST CHA#ERS THAT WERE REV 

EALINGLY DESCRI#D IN AN IN- TU IT IV E L Y A P #A L I N G MANN 
ER. THE EARLY CHAPTERS INDICATE THE IM- PACT OF IN 
TEGRAT ED CIRCUITS ON T#AY'S ELECTRONICS AND REVIEW 
THE SOLID-STATE TECHNOLOGY. D I G ITAL AND LINEAR Cl 

#UITS AND THEIR APPLICATIONS ARE REVIEWED IN THE N 
EXT SEVERAL CHAïlERS. APPLTCA- TIONS ##ING ?#M VOLT 
AGE STABILIZERS TO TELEVISION STAGES ARE INCLUDED.
THE INTENDED PURPOSE # THE TEXT IS TO GIVE THE NO 

NELF.CTRCNICS E X # # -  T HE MECHANICAL AND# SYSTEMS ENG 
INFER AS #LL AS THE TECHNICAL INSTITUTE G #DUATE#HE 
CA#DILITY OF UNDER- STANDING THE IC LANGUA# AND T 

ECU- NOLOGY. I AM SURE THAT IT WILL SUCCEED IN THI 
S ClfE#!#. WHAT THE ##K WILL NOT DO IS GIVE ANY DES 
IGN EXP.E# ISE, IN SPITE OF ITS CLEAR DESCRIPTION OF 
THE CAPABILITIES OF » 'STANDARD CATALOG IN- T2G#TE 

D Cl# U I T S .' ' RALPH W. #N#UM, JR. BELL T#PHCNS LABC 
^TORIES HOLMDEL, N.J. THE ##L ENC#LO##IA # FILM. A 
ND TELEVISION # C H NIQUES, R
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APPENDIX 6

Comparison of Tape Letters I and L,

X X
X XX
X XX

XX
XX
XX

XXX
XXX
XXX
XXX
XXX
XX
XX

XXX
XXX
XXX
XXX
XXX

XX
XX
XX
XXX
XXX
XXX
XXX
XXX
XXX
XX
XX



103

APPENDIX 7.

Computer Programs used In Character Récognition.

Dr ni": USTON X (15) , I COUNT (50) , XN U (5 0 , 1 5 ) , SIG (5 0 ,1 5 )
LOGICAL*! L (2) (2) ,LETT (50)/50** */,L2(2) , M 2 ( 2)
EQUIVALENCE (L ( 1) ,LL) , (L2 (1) ,LN)
DO 5 1=1,50 
ICOUNT ( I) =0 
DO 5 J = 1 ,15 
XMU (I,J) =0.

5 SIG (I , J ) =0,
N= 1
IT0T=1
READ (5,10) NTOT 

10 FORMAT (15)
DO 75 N=1,NT0T 
READ (3,15) L(2),X

15 FORMAT (9X, A1,7E10.3/8E10.3)
DO 20 1 = 1 ,ITOT 
L2(2) =LETT(I)
IF (LL. EQ. LN) GO TO 30 

20 CONTINUE
IF (N.EQ.1) GO TO 50 

25 IT0T=IT0T+1
LETT (ITOT) = L (2)
1= 1+1 

30 DO 40 J = 1 ,15
XMU (I, J) =XMU (I, J) +X(J)

40 SIG (I ,0)=SIG (I , J)+-X (J)*X (J)
ICOUNT(I) =ICOUNT(I) +1 
GO TO 60 

50 ITOT=0 
1=0
GO TO 2 5 

60 IF (ITOT.Eg,50) WRITE (6,70)
70 FORMAT (» ITOT IS TOO LARGE»)
75 CONTINUE

DO 80 1=1, ITOT 
DO 80 0=1 ,15
XMU (I, J) =XMU (I,J) /ICOUNT (I)

80 SIG (I , J)=SQRT (SIG (I, J)/ICOUNT (I) - X M U  (I, J) *XMU(I,J) )
PUNCH 90, ( (XMU(I,J) ,J = 1 , 15) ,1 = 1 ,ITOT) , { (SIG (I,J) ,0=1 ,15) ,1=1 ,ITCT)

90 FORMAT (8E10 . 3/7S10. 3)
WRITE (6,100) (LSTT(I) ,1=1 ,ITOT)
WRITE (6,101) (ICOUNT (I) , 1=1,ITOT) .
WRITE (6,102) ITOT

100 FORMAT (10A10J ........................................... ..............
101 FORMAT (10110)
102 FORMAT (» ITOT IS » ,110)

STOP
END
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CALCULATION OF CHARACTER SET MOMENTS 2500*15 AND KEYWORDS 
D IMENSION LETTER (32 ,67) ,X (15)
LOGICAL* 1 LOG (292)
DO 20 1=1,4000 
I E= (1/10 0) *100-1 
IF (II.KC.O) WRITE (6,25) I 

25 FORMAT (15)
READ (4,10) LOG 

10 FORMAT ( 14 6A 1, 1 4 6A 1)
CALL CHANGE (ICG, LETTER)
CALL MOMENT (LETTER, 67, 32, X)
WRITE (3,15) LOG (9) ,X 

15 FORMAT (9X,A1,7E10,3/8E10.3)
20 CONTINUE 

STOP 
END
SUBROUTINE MOMENT (LET, M ,N , X)
DIMENSION LET (N, M) ,X (15)
A=0.
D = 0.
C=0.
D = 0.
E=0.
DO 25 I=r,M 
DO 2 5 J=1,N
IF (LET (0,1) . EQ. 0) GO TO 25 
A= A + 1.
B = B+I 
C=C+J 
D=D+I*I 
E= E+J *J 

25 CONTINUE
IF (A.LE. 0.001) RETURN
XBAR=D/A
YBAR=C/A
SIGMAX=1 ./SORT (D/A-XDAR*XBAR)
SIGMAY=1./SQRT(E/A-YEAR*YEAR)
DO 35 L = 1 ,15 

35 X ( L ) =0.
DO 40 1 = 1 ,M
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DO 4 0 J=1,N
IF (LET (.0,1) .EQ.O) GO TO 40 
X:<= (I-XI3AR) *SIGMAX 
YY= (J-YDAn)*SIGNAY 
XSQ=XX*XX 
XCl]BE=XSQ* XX 
XFOUR = XCUBF,*XX 
XFI VE=XFOUR«-XX 
YSQ=YY «YY 

. YCUDE=YSQ*YY 
YFOUR=YCUnS*YY 
YFIVE=YFOUR*YY 
X ( 1) =X ( 1) +XCUBE 
X(2)=X(2)+XSg*YY 
X ( 3) =X ( 3) +XFOUR 
X (4) = X (4) + YFOUR 
X (5) =X ( 5) +XCUBE*YY 
X (6)=X (6)+YCUDF*XX 
X (7) =X (7) +YSQ*XX 
X (8) = X (8) +YCUBE 
X (9) =X (9) +XFIVE 
X (1 0) = X (10) + YFOUR*XX 
X { 11) =X ( 1 1) +XSQ*YSQ 
X (12)=X (12)+YFIVE 
X ( 13) =X ( 13) +XFOUR*YY 
X (14)=X (14) +XCUBE*YSC 
X ( 15) =X ( 15) +XSQ*YCUBE 

4 0 CONTINUE 
RETURN 
END
REAL MU
DIMENSION XSUM (23) ,XMU (23,8) ,SIG(23, 64) , X { 1 5) ,EFF(12) ,REJR (12)
DIMENSION REJT (12) ,SRR (12) ,MU (8) , SI (64) ,NUK (41 )
LOGICAL* 1 LETR (23) ,LET.ER (23) ,L1 (4)/4** • / , L 2 ( 4 ) / 4 * ‘ */,L3(4)/4*' »

1/,LET
EQUIVALENCE (LI (4) ,LET) , (L2 (4) ,LETR( 1) ) , (L 1 ( 1) ,P) , (L2( 1) ,Q) , (L3 (1)

1,5)
READ (5,5) (LETER (I) ,1=1,23)

5 FORMAT (80A1)
READ (5,6) NUM

6 FORMAT (20 (12, 2X) )
DO 14 1=1,41
READ (4,10) MU 

10 FORMAT (8E 10 .3 )
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J = NUM ( I)
IF (NUM {I) . LT. 24) GO TO 12 
GO TO 1

12 DO 13 K=1 ,8
13 XMU (J,K) =FiU{K)
14 CONTINUE

CO 114 1=1,41 
HEAD (4,110) SI 

110 FORMAT (Bin 0.3)
J=NUM (I)
IF (NUM (I) ,LT. 2 4) GO TO 112 
GO TO 114

112 CO 1 13 K= 1, 64
113 SIG (J,K)=SI (K)
114 CONTINUE

DO 212 1=1,12 
REJT ( I) =0.
ERR (I) =0.

212 EFF(I) =0.
ITOT=0 
ICOUNT=0 
NU = 8
RN=0.0 4*NN*NN
DO 102 N=1 ,4000
READ (3,15) LET, (X(J) ,J=1,15)

15 FORMAT (9X,A1 ,7E10.3/8E10. 3)
DO 16 IL=1,23
L3 (4) = LETER (IL)
IF (P.EQ.R) GO TO 17

16 CONTINUE 
GO TO 102

17 IT0T=IT0T+1 
DO 20 1=1,23 
LETR (I ) = LETER (I)

20 XSUM (I) =0.
DO 26 1=1,23 
DO 25 J=1, 8 
DO 25 J J = 1 ,8 
JJ J = 8* (J- 1) +JJ

25 XSUM (I) = XSUM (I) + (X (J) -XMU (I, J) ) * (X (JJ) -XMU (I, JJ) ) *SIG(I, JJJ)
26 XSUM (I) =ABS (XSUM (I) )

CALL ORDER (XSUM,LETR,23)
IF (P.NS.Q) GO TO 45 
IC0UNT=IC0UNT+1
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DO 40 ,IR= 1, 1 2 
T L=13 - 1 R

= [L« IL
IF (XSUM (1 ) . GT. REv7) GC TO 100 
EI'T(TL) -=EFP(XL) +1 

4 0 CONTINUE 
GO TO 100 

4 5 WRITE (6,4 6)
46 FORMAT ( 10 X , »E R R O S ’)

DO 50 IR=1 ,12
10=13-15
UE J=RN*IL*IL
IF (XSUM ( 1) .GT.REJ) GO TO 100 

50 ERR (IL)=SRR (IL) +1
100 CONTINUE

W'lTE (6,101) LET , (LETR (I) , 1= 1,5) , (XSUM (I) , 1=1, 5) ,D IFF
101 FORMAT (IX,6A4,5 E 10.3,F 8.3)
102 CONTINUE

DO 10 5 15=1,12
REJT (15) = (IT0T-E5R (15) -EFF (15) ) * 100./ITOT 
ERR (15) = ERR(IE) *100./ITOT 
EFF (IR)=EFF (I 5) * 10 0 . / IT OT 

105 REJ5 (IR) =0. 2*15
E F F M A X = I C O U N T * 100./ITOT 
WRITE (6,35) 5 EJ 5 , EFF, EFF MAX,ERR ,REJT

35 FORMAT (7X, » REJECTION R AT E »/7X , 12 ( F3. 1, 5X) / IX, » EFF » , 1X, 1 2 (F 5 . 1 , 3 X) 
1/7X, ’ MAX EFF = » , F 7. 1/1X, *ERR ' , 1 X , 1 2 (F5. 1 ,3 X) /I X , »REJ ’ ,1X, 12 (F5. 1 , 3X
D)
STOP
END
S UBROUTINE ORDER(A,B,LONG)
ASCENDING ORDER SORTER FOR VECTOR A, WITH LABEL B 
DIMENSION A (LONG)
L O G I C A L * 1 B (LONG) ,BB,TEST 
II=L0NG-1 

5 TEST=.TRUE.
DO 15 1=1,11
IF (A (I) . LE. A (1+1) ) GO TO 10 
TEST=.FALSE.
AA = A (I)
A (I) =A (1+1)
A (1 + 1 ) =AA 
I3B=B(I)
B (I)=B (1 + 1) ____  __
'D(I+1)‘=BB^

10 CONTINUE 
15 CONTINUE

IF {.NOT. TEST) GO TO 5
RETURN
END



108

s u m o  UT IN E CHANGE
•Si a K K * * * * * * * * * 4f * « *

CHANGE CSnCT
KO EDI EQU 2
K0RD2 EQU 3
STA')T ECU 4
LIN IT ÏÏOU 5
C O DBASE E C U 6
BOW ECU 7
COUNT ECU 8
r o s IT TON ECU 9
RECORD ECU 10

USING C H A N G E , 15
STM 14,12,12 (13)

FETCH PARAMETERS

L RECORD,0 (1) INPUT
L START, 4 ( 1) OUTPUT

* FETCH 11 TIT HALFWORD INTO LIMIT

LIT L I M I T , 2 0 (RECORD)
C L I M I T , = F * 134' IS IT LEGAL
ENH IN IT YES
LA L I M I T , 134 NO,PUT IN MAX POSS LEGAL VALUE A

INITIALIZE

IN IT LR CCLBASE,START COLUMN EASE REGISTER
XR ROW,RON FIRST ROW
XK COUNT,COUNT NUMBER OF HALFWORDS EXPANDED.
LA P O S I T I O N , 2 4 DISPLACEMENT FOR 13TH flALFWCRE.

*- EXPAND NEXT WORD.

KEXTWORD CR COUNT,LIMIT HAVE WE DONE ENOUGH YET?
DNL ZERO
L H0RD1, 0 (RECORD ,POSITION)
XR W C R D 2 ,W0RD2 FOB SHIFTING LOW 16 BITS INTO.
SRDL W0RD1, 16
OR WGRD1,W0RD2 REASSEMBLE WORD IN CORRECT ORDER

WAY



109

KF.X'1DIÏ

4i-
4!-
4:
INC

45-

4t
Zi-FîO

STORE

;xiT

BREAK BITS OFF.

C
RH
SRDL
SRL
ST
LA
B

R O M , = F ' 1 2 4 ’ 
INC
WCRD1 ,1 
W O R D 2, 3 1

END OF CURRENT COLUMN 7 
YES.
GET A BIT
MAKE XT A 1 OR A 0 

WCRD2 ,0 (CCLEASE, ROW) STORE IT, 
ROW, 4 (ROW) NEXT ROW DOWN.
NEXTI3IT

INCREMENT THE VARIOUS COUNTERS

LA CCLDASE,120 (CCLBASE) NEW COLUMN
XR ROW,ROW FIRST ROW.
LA COUN T , 2 (COUNT) 2 MORE HALFWORDS DONE
LA P O S I T I O N , 4 (POSITION) NEXT PAIR ON INIUT RECCED.
B NEXTWORD AND CARRY ON.

SET REMAINDER OF OUTPUT AREA TO ZERO

SLL C O U N T , 6 NUMBER OF BYTES GENERATED,
XR W0RD1,WORD 1 A ZERO TO STORE.
L LIMIT,=F»8572' ADCR OF LAST WORD IN OUTPUT ARE
CR COUNT,LIMIT IS ALL THE REST ZERO?
Bil EXIT YES.
ST W 0 R D 1 , 0 (START,COUNT) STORE ANOTHER ONE.
LA C O U N T , 4 (COUNT) POINT TO NEXT WORD.
B STORE

RETURN TO MAIN PROGRAMME.

LM
BR
END

14, 12, 12(13) 
14
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APPENDIX 8.

Cal oui at ion of the Expected Overlap of A   ̂J_
Probability of overlap of 1 = P̂
Probability of overlap of 2 = P^
Probability of overlap of 3 = P^

m
Expected volume of overlap = ^  r.P^

r=0
The probability of overlap of r bits is (the number of ways 
(m - r) bits can be taken from (N - y)) . (the number of ways 
r bits can be taken from A^)/(the total number of ways m bits 
can be taken from N)

Hence the expected volume of the overlap is
m
2  - • " - % _ r  •
r=0
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APPENDIX 9.

m
Proof of V  = ^0—̂ -— - r m-r m

r=0
By the 'binomial expansion

y , . N-y , .
(a + b)y(a + b)®-y = %  ^  (“/)

r=0 s=0

I  (fl C ? ) r+8 ^N-(r+s)
r,s

Putting m = r + s and summing over r
N

Ca + b)“ = 2  C) a”
m=0

m
■ • ■ a  - 1  i t \ ( t i )

r~0

APPENDIX 10.

Best straight line fit of a set of points f7̂ ] to y = mx +■ o 
is given by

°
and m [n 2  X  yJ/{" Z - ( X

= T jn/(n 2 ^  x^)^) and <r = yX(Sy^)^/(n - 2)(Tĵ y

where ~ ̂ i ” + b) ; < r ^  is the standard deviation of
the points from the expected y values; and is the stand­
ard deviation of m about the mean.
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