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ABSTRACT.

The theory of Logs Functions ig a fundamental part of Sta-
tistical Decislion Theory and of Pattern Recognition. However
it 1s a subject which few have studied in detail. This thesis
is an attempt to develop a simple characfer recognition proc-
~ess In which losses may be impleﬁented when and where necess-
ary.

After a brief account of the history of Loss Functions
and an introduction to elementary Decision Theory, some exam~-
ples have been constructed to demonstrate how various decision
boundaries approximate to the optimal boundary and what incr-
ease In loss would be assoclated with these sub-optimal bound-
aries. The results show that the Euclidean and Hamming dist-
ance discriminants can be sufficilently close approximations
that the decision process may be legitimately simplified by
the use of these linear boundaries.

Geometric moments were adopted for the computer simula-
tion of the recognition process because each moment ig clogely
related to the symmetry and structure of a character, unlike
many other features. The theory of Moments is discussed, in
particular their geometrical properties. A brief description
of the programs used in the simulation follows.

Two different data sets were investigated, the firsgt be-
ing hand-drawn capltals and the second machine-scanned lower
case type script. This latter set was in the form of a mess~-

age, which presented interesting programming problems in it-
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self. The results from the application of different discrim-
inants to these sets under conditions of gimple loss are ana~

lysed and the recognition efficiencies are found to vary bet-

ween about 30% and 99% depending on the number of moments be-

ing used and the type of discriminant.

Next certain theoretical problems are studied. The re-
lations between the rejection rate, the error rate and the re-
jection threshold are discussed both theoretically and pract-
ically. Also an attempt is made to predict theoretically the
variation of efficlency with the number of moments used in the
discrimination. This hypothesis is then tested on the data
already calculated and shown to be true within reasonable lim-
its. A discussion of moment ordering by defining thelr re-
solving powers 1s undertaken and it seems llkely that the mom-
-ents normally used unordered are among the most satisfactory.

Finally, some time 1s devoted towards methods of improv-
ing recognition efficiency. Information content is dilscuss-~
¢d along with the possibilities inherent in the use of digraph
and trigraph probabilitiles. A breakdown of the errors in the
recognition system adopted here is presented along with sugg-
estlons to improve the technique. The execution time of the
different decision mechanisms is then inspected and a refined
2~-stage method is produced. Lastly the various methods by
which a dscision mechanism might be improved are united under
a common loss matrix, formed by a product of matrices sach of
which represents a particular facet of the recognition prob-

lem.
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INTRODUCTION

Frequent reference has been made in the literature to
certain loss functions and thelr applications to Decigion
Theory. In most cases, however, little regard has been paid
to whether the approximations made during the course of a
theoretical analysis are valid or whether more sophisticated
loss functions ought to be implemented.

In the present work, the author has attempted to outline
some of the knowledge already accumulated and to suggest new
lines of approach for our understanding of loss functions.

To do this 1t has proved necessary to reconsider the defini-
tions, so that loss functions may be utilised in decision
problems as opposed to the normal practice of simplifying
them to abstraction. A certaln amount of work has been
completed on the use of Geometrical Moments in Character
Recognition. This has provided a stable basis from which
to develop the computer simulations which have revealed the
relative efficliencles of a variety of methods available,
including the effect of the introduction of an elementary

re jection threshold. Finally a number of allied problems
have been investigated in order to answer some of the quest-

ions that arose during the main body of the research.




The thesls falls naturally into three parts, one of
which has been further divided to lmprove clarity of display.
Also a number of appendices have been added in order to
remove definitions and lengthy tables from the body of the
work. A few of the more interesting computer programs have
been included, as well as the hand drawn letter set and a few
examples of the tape data set. Some of the results on Geo-
metric Moments are soon to be published in a paper by F.C.
Evans and the author entitled: 'The Development of a Two-
Step Strategy for Character Recognition by Geometrical

Moments.!




CHAPTER 1

THE DEVELOPMENT OF THE LOSS FUNCTION CONCEPT.

Before any detalled discussion of loss functions can bse
undertaken, a summary of past work must be made; Also a
certain amount of elementary Declslion Theory has to be inc-
Juded in a thesis of this kind to provide a basis from which
the ideas suggested herein may develop with some continulty.
It must be sxpected, however, that any review of general Dec-
ision Theory will fall short of the accumulation of knowledge
that has been continuing over the last thirty years. Hence

only the most relevant topies will be covered in this chapter.

g R The Historical Development of Loss Functions.

Much of our undsrstanding of loss functions has
dsveloped within the sphere of Statistical Decision Theory.
This has lead to a wealth of knowledge about the theoretical
aspects of loss functions and their importance in relation to
Dgcision Thsory. The application of this theory to fislds
unknown at the time of its development has led to a deepsr
undsrstanding in many channels. However, it seems that
bscause of the intractability of loss functions to analysis
and because of thelr dependence upon the particular problem
being studied, they have often been neglected in the trans-

formation from theory to practice.




In 1936, the Neyman-Pearson Theory of Hypothesis Testing'ﬂ
was published and it was here that the first notions of stat-
istical risk were formulated. Two types of risk were consid-
ered which they called the Power and Size of the Critical

Region - that region of observation space throughout which

the Hypothesls was rejected (for definitions of Power and
Slze and their relationship to Statistical Decislon Theory,
see Appendix 1). This theory was generalized in 1947 when
a sequential method for testing Hypotheses was developed by
Abraham Wald? the pioneer of much Decision Theory, which re-
moved the restriction that the experiment was to be carried
out in a single stage. However, certain assumptions had to
be imposed:

(1) Each stage of the experiment consists of a single

observation,

(1i1) The chance variable Xi 1s observed in the ith. stage.
wald ¥ explains that there 1s no loss of generality in the first
restriction if it 1s assumed that the cost of experimentation
depends on the total number of observations but not on the
number of stages in which the experiment is carried out.

The second restriction, he continues, ls more serious since
1t does not leave freedom of cholce for the selection of the
chance variable to be observed at any stage of the experiment.
In the special case when the N chance variables are independ-
ently and ldentically distributed, there is no loss of gener-
ality in the second restriction either.

The concept of a loss function was further developed by

Wald who considered that part of the problem of choosing a




particular decision functlion involved stating the relative
degree of preference gilven to the various elesments of the
terminal decision space when the true distribution of the
random variable is known; the cost of experimentation was

also important in determining the decision function. The
degree of preference given to the various elements of the
terminal decision space can be expressed by a non-negative
function called a weight function which is defined over the
whole decislon space and the whole range of possible probab-
ility distributions. Also the cost of experimentation may
depend upon the chance variables selected for obgservation, on
the actual observed values obtained and on the stages in which
the experiment is carried out. This then gives a clear com-
parison between the 'Weight Function' and the 'Cost Function!,
which may be considered collectively as the loss function in
the problem of Pattern Recognition.

In 1951, T.W.Anderson published the first of his papers
on Multivariate Analysis, wherein he gave a clear description
and summary of the properties of the loss function, and the
way in which it is related to the calculation of optimum
strategies. This work 1s discussed in a later chapter.

After this paper, the study of statistical utility, of which
loss 1is only the negative, developed properly both in 1ts

role in statistical decision theory and axliomatically in its
own right. This study 1s summarised in several books, e.g.
Luce and Raliffa and De Groot7. Further development in the
statistical field has been carried out by Railffa and Schlaifer

who discuss a theory of non-additlive utility in part of their




book.

The use of loss functions in Pattern Recognition is
widely mentioned, not least in Highleyman's 9 excellent article
on 'Linear Declsion Functions with applications to Pattern
Recognition.' and in his doctoral thesis1o. In general, how-
ever, it is found that losgss functlons have been regarded as
'simple' and hence could be ignored for lack of evidence to
the contrary. The validity of thilsg assumption is analysed in

later sections.

1.2 The Development of Definitilion.

Throughout the growth of Decision Theory, there has been
little agreement as to the precise meaning to be attached to
such words as 'Loss Functlon' and 'Cost Function!'. In this
thegis these words will be defined, and used in different
contexts.

The problem of interchangeability arises in the field of
statistics since loss and cost are different words for the
same phenomenon; that is, the statistician, wishing to solve
a broblem of point estimation, might talk of the 'ooét' or
‘penalty' imposed for not achileving correct identification

11). If the true value of a

N
parameter to be identified were 8 and a value & wers assumed,

(sse for example Sage and Melsa

~ L
then a suitable cost function might be k(€ -86). Other func-

tions besides the quadratic form can be used in different

12).

cilreumstances (see Hays and Winkler However, this typs

of loss is formulated purely to allow the point estimation to




be carried out. Certainly this 1is decision making under un-
certainty, but of a different form from that which we shall
be mainly studying.

In Pattern Recognition, the problem reduces to deciding
which of a number of cholces is correct. The exlstence of a
correct choice within the set of those available is generally
agssumed; otherwise rejection occurs. Here again the loss 1is
the penalty imposed for not achieving correct recognition,
but 1t can be formulated independently of the parameters © and
g. Instead loss becomes tled to whether or not the recogn-
ition has occurred correctly. Suppose measurements are made
to determine the state of a system which could be in any one
of n possible states (9,,02,....,0,), and as a result of these
measurements, a choice @ is made. Then, because of our under-
standing of the nature of loss, we can say that if the re-
cognition is correct, the loss is zero,

L(elo)=0 1ir ©=0; 1s 2%
where Qi is the actual state of the system. Furthermore,
all misrecognitions have losses associated with them that are
greater than zero,

L(0163)>0 for all ¥ %t JN- A
This formulation is the same as that described by Anderson ®
and Fukunaga'3. it is intuitively clear, and will become
mathematically clear below, that an absolute definition of
misrecognition loss 1s unnecessary and only the ratio between
different losses 1s of importance. Hence there is no loss
of generality in defining an upper bound to L(@16;) of unity,

max [ L(0103)]=1 1.2.49,




There is another customary inclusion to the definition
and that is one of rejection loss. If the sample measurement
is rejected when the sample actually belongs to 8y, then the
loss associated with that rejection is L{ole;), the rejection
loss and

0 & L(oloy) € 1 1.2
are the bounds imposed on such a rejection loss.

In future this notation will be simplified so that O,
wlll be represented by ¥ etc., for example the rejection loss
L(010y) will be written as L(0I¥). The formulation of
detaliled loss functlons from the above definitlons 1s dealt

with in the last chapter.

g [ The Definition of Expected Loss, Error and Risk.

Before going further into the theory of loss functions,
it 1s necessary to define the concepts of loss, error and
risk. These elementary definitlons serve as an introduction
to Decision Statistics.

Let m,Ty....;y be m populations with probability den-

3
sity functions pi{%|)...,Xp)) s+« ‘)PM<X')"'JXP) respectively.

EAs

We wish to divlde the space of observations into m mutually
exclusive and exhaustive regions Ryy...,R.. If an observa-
tion falls into Rg, we shall say that it comes from ry. Let
the loss due to an observation, actually belonging to-ns,
being classified as if from 1, be L(klg). Then the probab-
ility of this misclassification is

P(k\g,k)= £ Pa (xl,...,xp) dx, . s dxp 1.3.17.
#* after Anderson b ¥




If the observatlon is fromﬂﬂb, the expected risk is

Py R)—ZL(klg)p(klg,R) T B
Suppoge we have a priori probabilities of the populations
G5 9 DQ”%Nthen the expected loss 1s

L= T quriuR)s z 9 {): LG1E) pGili,R)} 1.3.3.
If we do not know the a priori probabllities, we cannot de-
fine an unconditional expected loss for a classification pro-
cedurs. Then we consider the maximum of the risk l‘(g, R)
over all values of q and the declsion problem becomes the N
choice of R,...,Rn which minimizes this maximum expected losst
Fortunately in Character Recognition we nearly always know the
a priorl probabilities so that the Bayes strategy can be used.

To summarlse, the average loss,

Z Z qLL(aiu)P(xl-—, R) 1ol
The error ratic i.e. the average rate of misclassification is
E ~§§Z_ qi p(5ii,R) T35

and the average risk
B o 2, r(,R) '".,gl g LC31E) p(yl1e,R) 1.3.6.

As 1s immediately apparent, if the losses are sesgqgual,
L(L[})=L for all ¢ and ¥ then the difference between the error
EFand the average loss L becomes only an academic one; simil-
arly if the a prioril probabilities are consldered equal, then

the difference between the loss L and the risk E becomes also

academic.

1.4  Additive and Non-additive Losses.

In statistical decision problems, there are times when a

sampling cost has to be assoclated with the observation of a
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random variable X. This cost has to be considered when the
risk of using any decision function based on X is calculated.
This cost 1is particularly important where a choice between
different random variables has to be made or whether it is
better not to include a particular observation.

Once the value of the costs in appropriate units has been
assigned, the expected cost of observation may be calculated.
The total risk is defined to be the sum of the risk of using
the declsion function and the expected cost of observation.
Normally all work in statistical decision ‘theory uses this
additive form for the total risk (De Groot‘s7'words), but
Raiffa and Schlaifer8 discuss this assumption in some detail.
They point out that even in problems in which the cost cannot
be dimectly related to monetary cost, the decomposition of
the risk infto additive terms can occur when;

(1) the consequence of each action, (i.e. the perform-
ance of an experiment resulting in a particular
consequence) and the cost of taking an action when
the prevalling state 1s specified, is measureable
in some common unit such that the total consequence
is the sum of the two partial consequences,

(11) the cost of this common unit is linear over the
entire range of consequences Involved in the given
problem.

This common unit can, in many cases, be found even though

the two actions have no éommon factor. This can be accom-
plished by an estimation on the part of the decision maker of

how much of one action is equivalent to the other. Raiffa
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and Schlaifer gquote the example of a sclentist, wishing to
estimate some physical constant @, who may feel that whatever
the error (a-0) of his estimate a may be, he would be willing
to make 10k more observations if he could be sure that by so
doing, he would reduce (6'*"'9)"L by k units. If so, the cost
of the consequence of a given action can be measured by the
sum of the actual number of observations plus 10(“"9)1. The
reference continues in some detall upon the theme of additive
and non-additive losses and the author recommends it as a

succinct account of the subject.

1.5 The Bayes Solution.

If R is the rule of classification, then this implies
the division of a p-dimensional observation space into two
regions R, and R;. Also, i1f the observation is drawn from
set v, the probabillity of correct classification P(LlL,R) is
the probablility of the sample point falling in R, and the
probability of misclassification p(3l1,R) is the probability
of the sample point falling in R,. If we assign the sample
point to the region which gives the lower expected loss (as
defineq above), then

R‘:L(}\L)%Lp;(x”.n,xP)>l_(i|})13p>(x“...,xp) 1.5.1.
and

Ryt LCHL) g pe(xyyee,xp) < L(1Y) 43 Py (Xiy+- ) Xp) 1.8.2.
We could also write

Ry: PelXieyxe): y LLELR) 4y 1.5.3.
Py (Xi5-00)xp) L(¥lL) g

Rt PLlxi, -~ %) Z LCeld) a4y, |
P (%) 2 0)%p) L) %1 1.5.8%
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This is the so-called 'Bayes solution' and shows the mathe-
matlical reasoning behind the intultive approach of believing
that loss functions are only important in ratio-form and so
are strictly relative.
Note: A distinctlon 1s made between two types of error
occurring in 2-state systems.
(1) When a measurement belonging to the first category
18 classified by the decision maker as belonging to
the second.
(11) When a measurement belonging to the second category
is classified as belonging to the first. These errors, al-
though less definitive in a multi-category system, are called

respectively errors of the first and second kinds.

1.6 The Relation between Rejectlon and Loss.

The above simple method of classification is a compar-
ison of the conditional probabilities that a given measurement

belongs to a given class. This conditional probability

B(mli) = %géﬂ.l 1.6.1.
(xIR)
ksﬂ'kp
can be shown to lead to an optimal strategy. Chow ''tshowed

that the error rate can be minimized for a given rejection
rate by utilizing the followling strategy:
(i)- Select the class for which the conditional probab-
ility is greatest.
(11} Reject the measurement 1f this conditional probab-
11ity is below a given probablility threshold.

I-Iighleyman'5 later showed that this same strategy led to the
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minimization of the expected loss glven a constant loss func-
tion of the form
Lii=0 for all classes &
Liy3=1 for all classes L% 1.6.2.
Loy=B for the rejection loss when the actual
class was ¥ .
This is perhaps the simplest useful form of loss functlon and

will be discussed in some applications later.
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CHAPTER 2
THE OPTIMAL DECISION BOUNDARY.

In this section, an attempt 1s made to extend the pre-
viously~-discussed preparatory concepts to the field of Dec-
ision Theory. It is a chapter containing ideas and suggest-
ions put forward with the aim, not of producing a comprehen-
sive treatise on the subject of decision boundaries, but of
stimulating criticism and further thought in the hope that
the understanding of these concepts is increased in some meas-
ure.

The chapter opens with an ordered comparison of several
discriminants in common usage and continues with attempts to
calculate, theoretically or by example, certain decision
boundaries and the losses assoclated with them. Examples
have been used fairly widely to illﬁstrate the theoretical
mechanlisms as and where 1t seemed important to emphasize the

extent of the approximation dealt with in a typical problem.

2.1 The Selection of the Decision Maker.

The cholce between the different decision discriminants
available rests on the twin criteria of theory and expediency.
However what 1s optimal in theory is rarely best in practice.
Hence the gulf between the two has wldened to such an extent
as to allow well over a dozen discriminants into the applica-

tions field, many with the flimsiest theoretical backing, but
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of use because they work in the particular cases to which they
have been applied.

Suppose we have a set of readings which make up the n
components of the pattern vector X =(X,Xz,...,X,) and we are
asked to compare these readings with two standard normal sets
with means ,_J_..l'—‘(’a")/lm_,...)/,q,\) and Mo = (m,),m_,..,,,m) !
and covariance matrices X, and R, respectively. If we are
asked to compare the value X with g, and g, with no other de-
mands to be satisfied, 1t is clearly best to calculate the
probability that the reading x belongs firstly to p,, P0<UH)
and secondly tops , p(x1ma) . We can then assign x to the
distribution for which p(xlﬁt),i.=1,2, has a higher value.
This can obviously be extended to an arbitrary number of normal
sets. However this calculation, for practical purposes, has
two difficulties:

(1) 1t 1s long and complicated,

(ii) it assumes a complete knowledge of all the distribu-

tions involved.
These problems have been recognized for a long time and much
work has been done to avoid these difficulties. However,
allowing for these drawbacks, this 1s clearly the best calcu-
lation that can be undertaken.

Suppose, on the other hand, we are asked to compare x
with m, and p,, but we do not know the covariances and we wish
to use the simplest possible calculating procedure. The
difficulties increase immediately because the concept of sim-
plest procedures is obviously intimately related to the effi-

clency of the recognition technique. We might expect the
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efficiency to vary in much the same way as is shown in figure 2.1.
% As the simplicity of the decislion mechanism increases,
the efficiency tends to zero; as the simplicity decreases, the
efficiency tends to 100%. Points representing recognition
procedures that lie below the curve are less useful than those
lying on the curve, so that the curve is a measure of all
those procedures that have the highest effilicilency for a given
simplicity of execution.

A simple technique commonly used 1s the calculation of
the Euclidean distance. For each of the distributions

d(x) =f(x~p). (x-p) 24 A
and the distribution which ylelds the lowest value of 4 (X)is

chosen. It is not difficult to show that the decision bound-

ary, the plane of which represents the discontinuity of choice,

1s a flat surface. Conslider the boundary surface between

n,(&.’ﬁ‘) and Al(&z)ﬁz). This is defined by
dy(x)=djzx)

or (X =g (X =p) = (X-p2). ()_S_-tz.)

which contracts to
X (py-pi ) = '4(/5,,-)5,_-)5.,.}‘\..) - s

This is the linear equation of a plane, with a perpendicular
vector (kz—)ﬁ|), the vectorlal line Joining the means of the
two distributions.

A calculation of this sort is very simple to undertake.
The sign of the function (&-X—€) where a=(pi-p,) and c=}’¢(ﬁ7«T)
gives the slde of the plane on which X lies, hence the cal-
culation of this linear function determines to which region X

will be assigned.
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A similar discriminant is the Hamming distance
&(g)zlﬁ-ﬁl 251 53%
Here again the calculation is simple, though slightly diff-
erent, and the decision boundary consists of a set of planes,
the main one of which 1is the same as the Euclidean boundary
plane. The main plane is so designated because 1t cuts the
line joining the two means B and.»abetween these means, and
so discriminates those points, or values of x, that are most
difficult to separate.
A systematic degradation of decision boundaries can be
carried out from the probability function mentioned first
to the Euclidean dilstance. The decision boundary between
two normal multivariate probability distributions 1\(P,,Z,)and
t\(kz,i'z_) is given by
pCxipd = pUxXlpa) 2.1.1.
Given that for a normal distribution
plxip) = m oxp ‘-;:[(¥~p_)lzﬁl(>_<-/§)}
Then taking Logs., esquation 2.1.l . simplifies to
bl 2 [+ Cep )8 Cem= 1 Zal+ () 8} (xopaa) 2.1.5.
This has a quadratic form, and in two dimensions 1s a conic.
If the assumption of equal covariance matrices ls made, equa-
tion 2.1.5. reduces to the well-known discriminant functlon
4(x) = ‘7—5/{'([‘5‘*&1)*’;3(2-}3.*}:{ % 2.1.6.
This approacﬁ is treated in numerous text books and does not
need any further comment (see for instance S.S.Viglione paper|b).

If, on the other hand, the less sweeping approximation is made

that 18] = [ %ol or that (A‘Z'T', <44 ()5-/5()/2"—‘()5—/,_“)
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for all x within the normal fleld of variation, and similarly
for :

‘J\ IZ;'I £ < (E‘)}_z)lzz (>_§~}_§2>
Then the declsion boundary becomes

(X-p) 5y (3=p1) = (4—,,51)'2{' (x=pa) 2T
This is another quadratic form whose boundary has a slight
disﬁlacemeﬁt in space from that of equation 2.1.5.

If the assumption is now made that all the xi's are in-
dependent, that is that X, and %, are diagonal matrices, then
the decislion boundary sim?lifies to a modiflied form of the
Euclidean boundary in that it céntains the standard deviations.
If the dlagonal elements of X are la.belled Z), then the sime

plified boundary 1s

S (x"f"l); S (X"’L“?-) Zl) 2.1.8.

over 3
where § denotes the summationa

i

1 s

The last simplifying step 1s to assume all the 23‘5 are equal
or unity and the boundary becomes the Euclidean boundary (equa-
tion 2.1.2.). It 1s clear from this process of degradation
that the most simple boundary is a result of some drastic
assumptions, the maln one being that the two normal distribu-
tions have covariant matfioes that aré diagonal with equal

elements.

2.2, Mn Elementary Approach to the Problem of Simplification.

During the stages of simplification in paragraph 2.1,
1t is theoretically often possible to state an assumption that
leads to a simplifying step as: |

If x<¢<d , them I — I ' 2.2.1.




)

where x 1s some positive variable, and o 1s a positive thres-

hold linked to the more complex of the two stages (Labelled 1),

and I and T are the two decision makers.

If the assumpbions can be formulated in this manner, phé
officioncy of discrimination can be ‘linked by a factor f(X[g)

off.y = eoffiy . f(*/a) 2.2 g
where f(*/dq) has the following properties:

(1) 1>f(*/a

f(xja)=1 as *[a=0

(111) f(*/a)—0 as *[a-—> o0
An elementary function’ of this form is _

f(*la) = exp(-K.%[a) ' 2.2:3.
The parameter K 1is inserted to adjust the rate of fall-off of
efficiency as the approximation becomes worse. However the
form of the equation 2.2.3. certainly obeys conditions (i) and
(11i) forK > 0. For K (*f/a) small, equation 2.2.3. may be
expamd@d in a Taylor series |

f!"/ol* 1~k o+ Ky (*/ar) = (O)(x/fﬁ-a)

~ 1=K (¥a) 2.2.0).

that is, the drop in efficlency becomes pr0portional to the
degree of approximation involved in the siﬁplifying step.

This step can be cast into a more rigorous form Sy the
ugse of information theory (see for example ref. !7 p. LL5)
But at present 1t 1s enouph to note this relationship and

observe in later work whether this approach obeys the harsh

crltorlion of worklng In practlco.
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2.3 A Comparison of the Different Systems of'DiscriMination

by Example.

Suppose we take the two-dimensional case as an example,

with
pelf) el <<[3)
-y Si Y
2.:"I =(‘; g) N Zz? ((33 ?P)
Then the equl-probability decilsion boundary is
J20 exp-12 (X =g’ By (X - = fiZ exp-112 (X -pd' 55 (X4 5 BB

We must expect that, slnce the diagonal elements in the
matrices are failrly iarge-with respect to unity, the dilstribu-
tions are mostly concentrated within circles radius 1, centres
poand M, sg.that the decision boundary will occur at a value
of

pIXIMy) = pXIpa
_that is falrly small. Taking Logs. of equation 2.3.1 and
simplifying we obtain .

x2+(y19)2 = P2

where r_a = 80+1ln 5/ 2.3:24
hence the probability ﬁbundary is a circle radius 8.97,
centre (g). In this case the Euclidean.boundary is given by
x2+(y-1)? = x2+(y+1)2 |
or y. = 0 - the x-axis (see figure 2.3.1). These tw§ bound-
aries are 6bviously very simllar throughout the important
reglon around the origin, and in this example, an approxima-
tlon to the Euclidean distance discriminant would not ser-
jously impair the efficlency of recognition, yet would in-
crease the calculation speed. ‘
From the abové example, 1t becomes apparent that it is

important to know what loss in efficiencﬁ is to be ekpected
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when choosing a simplifying procedure. The significance of
this will be studied in paragraph 2.5. Before leaving this
example, it might be noted that where the probability decis-
ion boundary crosses the y-axis, at y = 0.03, the probability
?(X|#) is about 0.067, whereas at y = O (the interse¢gt formed
by the Euclidean boundary and the y-axis), p(Xip;) = 0.0585
and p{xip,) = 0.0748. The relevance of these figures is
discussed in the latter sectlon of paragraph 2.l.

2.4 The Degree of Approximation of the Bayes Rule to_the

Equi-probability Boundary.

As shown elsewhere, the Bayes decision boundary, which
minimizes the expected loss, 1s of the form:

PulXiyer ) xp) L(FI%)%l 2.1,

Py (X100, %p) L(¥li) g
The equi-probability boundary (equation 2.1.l) is clearly a
speclal case of equation 2.L.1, where

L(il¥) 95 = L) 94 2.0.2.
It is vitally important to consider the justification of this
approximation. If it is valid, exact values of L and q do
not have to be calculated. Alternatively, 'simple' loss
functions can be instituted of the form

L) =1 o txy y LGy =0 ¥ t=j} 24143,
which reduces equation 2.4.1 to one involving a priori prob-
abilities only.

The calculation of this boundary, the Bayes boundary,
simplifies from equation 2.4.,71 to

hp —lpy = b { LGN - {LG1) 43 201

To justify the approximation of equating the right hand silde
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to zero, we might limit the deviation of p; from pzat the
boundary to 10% i.e

0.9p1 < p2 £ 1.1p;4 at the boundary. 2.4.5,
Then 1n Pv/p, = 1nl.1 = 0.0953. In the work set out in the
next chapter, the values of the exponents are in general very
much greater than 10°, so that 0.095 in 10° is small enough
to warrant the approximation in at least that particular case.
But if sample polnts very close to the decision boundary were
given some special importance, then such a minute shift in the
boundary radically alters the decision structure.

The size of the modification involved may be seen from
the last example. If a=q,L(112) and b = 42L(211), then the
Bayesian boundary is a circle with radius

r = B80+ln (347/3¢) 2.1.6.
rather than the previous value

r = 80+1n(5/3) 2ol T
In general, in Character Recognition, the maximum ratioa: v
might be 100:1. Then the circle radius could vary as

r=8.94 #0.53
Now In this case, a brief look at the figure below will show
that this has made an important difference to the decision
bouﬁdary. The intersect at the y-axis could vary between
0.56 and -0.50, a full 50% of the difference between the means
(see figure 2.1..1).

It 1s suggested, then, that for so simple a case as this,
the Euclidean dlstance measure is completely adequate to re-
gsolve the two sets, and that if losses could be associated

with misrecognition, the Bayes decislion boundary would be so
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affected that an adaptation to the Euclidean boundary could
be made that would include some measure of the loss functions

and the a priori probabilities.

2.5 The Loss associated with Different Boundaries.

Calculations of the expécted loss in two and higher dim-
ensions for optimal boundaries and two multivariate distribu-
tlons have been successfully attempted. But what it is im-
portant to clarify is how close the loss associated with other
decislon boundaries approaches the minimum expected loss.

In the example cilted here, it is possible to calculate the ex-
pected loss for the Euclidean boundary.

If the equlprobability boundary is given by TL and the
Euclidean boundary by I (see figure 2.5.1), then the minimum

expected loss

10 00
L o= §f pxtpds +§f pexipa) 45 2.5.1.
- 0 Fa
and the expected loss associated with the Euclidean boundary
T“ =)
ts“(,o?e = §f p(XIrl)dS & ﬂP(Xl}q_)olS 2.5,.2.
— ot n

If the first peart of equation 2.5.2. is called L'mmrt and the

second part UﬁﬂmPe , we have

\3=0 0
[ : 2%
Usrope™ § 1 G e = (b 5. 0y=1)") dxdly 2.5.3.
— -0

which is easily evaluated as the terms in ® and Yy are separable
to give

Llsufmpl: = 0159
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Similarly
(<)
' 2 e JiZ .
La;u&-cpls =‘{_° ;fw 11';' xp -5 (3% *4(3'*')7—) dxdl’ 2.5,
= 01596

Hence

tSu(rapb = 0159 (a+b)

If the integral 1s terminated at the P = 153 level i.e. at
X=4 15k, then the area of integration becomes ~I+5¥ <X <& |5k,
-—#<{Yy<L+00 , and the value of tsub-apt: is reduced to 0.876 of
its extended valuse.

To compare these values with the optimal expected loss,
this second term must be calculated. Fukunaga and Krile’8“|%1o
give an accurate method for this calculation or an estimate
may be made as follows:
the area A bounded by the Euclidean boundary y = 0, the optim-
al boundary ¥, and thke lines x = + 1.5, is about 0.2. The
probability density on the optimal boundary varies between
0.001 and 0.0675 and hence has an average of 0.03l. At (x,y)

= (0,0), the value of P, is 0.0585 and P, is 0.0748; hence an

1
average over the whole area might be

Il

P1 average 0.032

P2 average = 0.040
o LUB) = L subopts + 0°03L A= 0040 A where A=0-2
= L subops — 0- 0016
= 0.316,
a reduction of about +% (evaluated for a and b unity).

Hence there is in this example only a marginal improvement in

using the optimal boundary as opposed to the Euclidean boundary.
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2.6 The Geometric Form of the Optimal Boundary.

As previously stated and as 1s well known, the form of

the Bayesian decision boundary can be written

(35"}.:52), V;.l ("5"&1) - (?S'"fﬁ')l Vl" (55'"}5‘) =& 2.6.1.
where
" L"Pﬁi] 4 b Tl
o ZM{L(””"W 1 Vil 2.6.2.

This may, with a little manipulation, be converted into a

perfect square of the form

(x-4)' (Vi =V ) (X- &) = ¢’ 2.6.3.
where

d= (Ve=V) VT =V )
and

¢

Gl € { H_;_ (V;'I—V;‘)}_{i “M((Vr'-’v;i )/‘f_zg

+ i k}{z. V;lVNJ-‘t}_A_z. = ;_51 VF|V:».V1_{)‘:,(}
Equation 2.6.3 is a general quadratic form in n-dimensional
space, and a conic in two dimensions. What 1s of interest
1s that as ¢ varies, the quadratic form remains confocal and
hence the family of equations of the form 2.6.3 given by the

variation of ¢ is locally parallel. Thus if L(1}2)> L (112)

and LC211) > L/(z11) (see Appendix 3)
then
'» L’C?—H-)} - 7 [L(Q-H)
c/= c+ ZLnL-———-—-—-, ) 2 NZIDS) 6. lix
or

o = e+ 2 L (LC21) -Z{A{L'“m] 2.6.5.

L G2 1) L 112

Thus the distance shifted, (e¢’-c), is proportional to U\L':AL')

~ ‘EE: where (L+4L) is either one of the new L/ 's.
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2.7 The Piece-wise Linear Boundary.

Owing to the computational difficulties implicit in the
quadratic form of the normal probability distribution, it is
important to investigate alternative forms or approximations
to such non-linear boundaries. Without resorting to the el~
ementary ones already discussed, squared Euclidean etc., a
good case can be made for piece-wise linear boundaries (see
for instance Helstrom ¥ or J.R.Ullmann.»*).

A recent article by Chhikara and Odellq£.suggests that
computer algorithms or calculations involving normal probab-
ility integrals may be unnecessary in real Pattern Recognition.
They are concerned with the use of discriminant analysis of
complex images with many resolution elements. By generating
a set of 'normed' exponential densities, of which the normal
distribution is a special case, a good argument develops
that the assumption of normality, which never was adopted un~
conditionally, can be 1lifted and the new form of decision
boundary confidently expected to perform as well in practice
as the old one, but with substantiglly faster implementation

time.
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CHAPTER

GEOMETRICAL MOMENTS IN DECISION MAKING.

il Introduction.

Having summarised the theory of decision strategies and
loss functions, a study of thelr effect upon the efficiency
of different decision mechanisms has to be conducted. But
before this can be donse, a working model needs to be adopted
by which to test the theoretlical reasoning. To arrive at
such a model, the different features that have been used be-

fore in Character Recognition were considered:-

(1) Spatial features Z\»%*%

(o Selected n—tupleszB

(111) Random n-tuples = F

(iv) Spatial Fourier transformsas)26

(v) Temporal Fourier transformsl7
28,2.9

(vi) Statistical Moments
(vii) Geometrical Moments e
31, 32,33
(viii) Whole Character recognition
As a system of features was required that would generate
in a relatively simple manner sets of numbers that were link-
ed preferably to the geometric structure of the characters,
it was decided that Geometrical Moments should be used. A
model could be then established based on these features, with

the aim of improving as much as possible the recognition effi-

clency and other variables assoclated with the minimization
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of loss. Franz Alt's workgojprovided a good basis from which

to start. A letter written by Minskys*

criticises this app-
roach as being by no means the only method for producing in-
varlants. However the method is simple and hence has that
much to commend it.

Ming-Kuei Hu, who has performed much research into Stat-
istical/Geometric Moments mentions an optical method for Mom-
ent calculationssaeveloped by E.Kletsky. A mask was formed
with an optical density that varied according to the power of
the Moment. Then, when the focussed image was transmitted
through the mask onto a photoelectric cell, the resulting cur-
rent was proportional to the Moment for that particular image.
This method seems to be a very quick and inexpensive way of
calculating the Moments. Unfortunately it was found that the
accuracy was limited to around 1% and this, combined with the
usual alignment difficulties, was enough for the project to
be abandoned. However, the fact that such an approach is
possible probably warrants further study, especially since

Moments seem to be so rewarding in recognition efficiency.

a2 The Theory of Geometric Moments.

Any pattern can be quantized into a matrix of numbers,
each number referring to the greyness level at that coordinate
point. The pattern can then be regarded as a set S of coord-
inate positions and greyness levels:

S = {%,y,f(x,ya
Normally the greyness f(x,y) is taken as an integer value, and

in the subset considered here, f(x,y) is O or 1, an elementary
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black/white system.  The Moment Mii is defined by the relation

Mij = 24 1’.‘()(.,3]‘)}(""'3#J ' : e P

ovelr S

where the sum over S iz taken over all black points on the

matrix in the specilal case being considered. Hence
My = 1 T BB

over all
black points

Altgo extended Lhe définition by successlive translormatlions
to normalize the following variables:

(1) Posibion ol the Character

(i1) Sizo (number of black bits)

(iti) =x and y spread
and (iv) Slant;

the total transformation beilng

My, = XX xtyd 3525
J
over S
= - 2
where X = [(x-%)/o - P(Y‘y)/0§1/11“F
nnd Y = (y-i)/qy
g. = standard deviation of the character about the x-axis

- = standard deviation of the character about the y-axis
P the correlation coefficient

= {8 RO em s D 02,

over S over S

Note: the normallizing procedure does nhot necessarily have to
be carried out on each coordinate point befére the Moments are
calculated. They may be calculated ﬁnnormalized first and
then the appropriate algebraic manipulation dorne on the final

numbers.
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Pifteen Moments were calculated per character, that is, all
those up to i+j = 5, in all 21, less those used in the normal-

izing procedure (see table 1).

159
o M,
1 M* M*
01 10
ki3 3¢ 3
2 My, My My,
30 Myg My, My Mg,

o My, My My, My M,
M, M

Ul

=
O
Ut

#* Moments used in normalization.

TABLE 1

343 The Geometrical Propertieg of Moments.

The Moment Mij reveals information about two properties
of a oharécter,

(1) The presence of an axis of symmetry,

(11) The spread of a character about a given axis.
Consider letters that have been orientated for zero slant.
Then, for Moments with either 1 br j odd, for instance MBO’
if a character possesses symmetry about the y-axis (in this
case), then the Moment contribution from those parts of the
character, for which the x-coordinate ig positive, is equal
but opposite to the Moment contribution of the parts for which
the x-coordinate is negative. Hence the Moment M30 for an A
would be small, or zero 1f the A possessed complete symmetry

about the y-axils.
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Secondly, the spread of the character about a glven axls
may be revealed as follows: -
Consider the Moment
iz i.J
My, = 20X
S
and substitute for x and y the polar coordinates
X =1 cos®
303-10
y = r sin®
respectively. This is taking the centre of gravity of the
character at the origin.
” A Ja
Then Mij = ZZ. r cos 9 sinvo 33w
over S

In order to determine the values of 6 for which Mij is a max-

lmum or minimum, equation 3.3.2 is differentiated with respect

to B.

M, . - } _

—§z%i = EE: rl+3(j cos*t19 sind 1@ - 1 cost 19 sinj+16 )
over S

= Z ri+j(j c0s°8 - 1 s1n®Q) sind 1@ cos? 1

over S 35 B 5

M,

563 = @ when sin & = 0, when cos & = 0,

or when tan© = + ’j/i.

For further calculation, specific cases are best calculated

individually.
E.g. for My, 1 =2 and § = 1.
Also
oM 51 3 2 2
Se % rcos® (cos“Q - 2sinB) o T T

over S
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Now 3-%21 = 0 when c0s®= 0 or when tan® = + 1/V2
In order to find for which values of© M21 is a maximum or
minimum, we calculate the sign of
oM
565'1 = Z —r3sin9(7 00s%0 + 2 sin29) 2385
over S
M,
So for cos®= 0, -W->O Q= (2n + 1T M2.] min.
<0 © = 2ntm M,, max.
tan® = +1/JZ, abeiJ' >0 TR 3T/2 M,, min.
2 £0 0« 0LT/2 M21nmx.
tan® = —1/f§, 36%:[ >0 TM/2<4Q<r M21 min.
<0 3M/ 240421 M21 max.

This is shown more clearly in the graph (figure 3.3.1).

Hence if a character 1s concentrated about the axis
0=+ tan” ' 1N2,

and has parts lying in the quadrants 040@<T/2, 37/2<0<2T,

such as the letter K, then M21 will be large and positive.
If, on the other hand, the letter was concentrated in the

other two guadrants, M2,] would be large and negative.
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Figure 3.3.1

Graph of Variation of Moment Intensity with

angle for M

21—
being measured with respect to the absolute frame of

reference of the character already normalized for zero

slant.

o

Lo
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Bl The Decision Mechanism.

A) Moments . Alt found experimentally that ten of
the moments worked better than the others, namely:
M13, M12, My s M3O’ Mou, M31, MAO’ Mqu, MO3 and MSO'
It was these that he used In a Decision Tree form of recognlzer.
However, we attempted to use all the moments equally at
the beginning of our research and to devise a resolution tech-
nique later to assess the individual value of each moment.

B) Discriminants. In relation to the discriminants

discussed in paragraph 2.1, we used five main methods:

(1) The squared Buclidean distance

n

2
PIEE AR
1=1

where the subscript i refers to one of the n
moments Xi to the calculated ith moment of the
unknown character and,ki to the ith moment of the
mean of the distribution with which X is being
compared.

(11) The Hamming distance

n

2. Vg -p

=9
(1iii) The modified squared Euclidean distance

n

2 2
i=1

0& being the standard deviation of the distribu-




k- |

tion for which)ki is the mean.
(iv) The modifled Hamming distance

n
> by -1/
1=1

(v) The exponent distance
I
-1 7 iy
V being the variance/covariance matrix of which
2 R
the 6" are the diagonal elements, m = (/u1, Mo

X R

cees M) and X = (X or wees Ko

JI’

In the case of moments, recognition efficiency may be expect-

ed to be low for (i) and (1i) since each individual moment may

be
in

be

far larger than M

of a different order of magnitude e.g. M50 contains terms

x5

, Whereas M30 contains only terms in X3, so that MSO will

o
Few discussions in print mention any need to divide by

the deviations since, if they are comparable, the normal

Hamming distance method ig quite adequate. However, when

using Geometric Moments, i1t is clear that such a simplifica-

tion should not be undertaken (see table 2). The difference

in the efficiency of the Hamming and modified Hamming methods

reveals the experimental backing for this argument (see table

3'in the following section).

Mg W My MWy By Mg My

)kA -11.8 12.4. 150 -21.p -12.5 =3.72 ~9.38

o k48  3.92 324 7.8 5.98 2.90 .30
TABLE 2

Comparison of#} and g-for letter A of the Tape Data.
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3.5 The Calculation of the Moments.

Moment data for the decision mechanlsms were obtained
from a set of hand-drawn capital letters, containing eight
widely varying types to each alphabetic character. The quant-
lzation of each character was carried out by drawing 1t as a
series of points on a 20 x 20 matrix (see figure 3.5.1). The
moments were then calculated and normalized on an IBM 360 comp-
uter. From the eight types, the means and standard deviationsg
were found for each alphabetic letter. Using the decision
techniques outlined above, the learning set was then tested
against itself, so that the resolution and efficiency of the
methods could be measured (see figure 3.5.2). Letters were
then constructed on the computer's remote access units (RAX
Terminals) as a test set and the Modified Hamming Distance
technique used for recognition. Finally the same methods wers
applied to an IBM tape of some 4000 characters in the form of
a message. The first 500 characters were used as a learning

set and the whole L0000 letters as a test set.

Number of moments used 3 6 9 12 15
Hamming distance efficiency 4 50.9 70.2 63.5 75.0 77.9
Modified Hamming efficiency 4 L49.5 70.2 85.6 88.0 87.0

TABLE 3

Construction of the Data Set: For each letter of the alpha-

bet, eight types of letter were hand-drawn onto 20 x 20 sqguared

graph paper. These were encoded into flve cards per character

in the following way :-

b st Ao
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o /, \\ 20
p £

Figure 3.5.1.

Bach 80-column computer card was agsigned one of the oblong
areas shown in figure 3.5.1%1. Starting at the bottom left-
hand corner and working from left to right up the drawing, 1's
were printed in the appropriate column if part of the letter
crossed that particular square. In practice, x's were used
to draw the character rather than continuous lines, so that
there was no confusion as to how much of a line there needed
to be before a 1 was punched. This method was used as oppos=-
ed to one in which the actual Cartesian Coordinates of each
point are measured and recorded. This was because the num-
ber of x's, used on average, took up fewer recorded columns,
and the way in which the letters were drawn made this technique
gimpler to implement. Furthermore the method gave a fixed

number of cards per character.




Lo

% Efficiency

N ' /x £ X > e i i
X
O v ©
/// ~ \\\cnn—mmw—o-
3 AT A A
BN ~0 - e N T

' A
x ° &
75~ é/ s tl‘* /

50 ' % 4 Hamming distance

4  Modified Hamming distance
&
® FEuclidean distance

Pl B

0 Modified Euclidean distance

X Exponent distance

x P

1 T | i 1 ) 1 { +

1 s . | - 5 b 7 3 9 10 11 2 43 iy 45
Fipure 3.5.2

Graph of Variation of Efficiency with Number

of Moments used, with different decision mechanisms.




1A

The different types of letter in this hand-drawn letter
gset were all capitals, but varied as much as possible within
the limited grid spacing. Little variation in size and pos-
ition on the grid was written into the set as these variables
are accounted for In the normalization procedure in the pro-
gram. The entire hand-drawn letter set is displayed in App-

endix | for reference.

3.6 Program Description.

It was decided as general practice, to calculate the fif-
teen moments of each character and store them in some tangible
form, either on cards, as in the case of the hand-drawn letter
set, or on magnetic tape, as In the much longer IBM message.
This meant that during most tests, the moments did not need to
be recalculated for each run. The principle exception to
this was the calculation of execution time with various decl-
sion mechanisms and different numbers of moments (see Section
5.3).

The first program shows the technique used on the ana::
lysis of the tape characters with subroutine CHANGE and sub-
routine MOMENT. Subroutine CHANGE was especlally written in
Assembler language to convert the rather unusual coding of the
tape letter scan'into a conventlonal matrix. The IBMiscanner
read each character in two halvés and scanned in vertical
lines, feeding the digitized information straight onto the
magnetic tape in the form of half-words of l. bytes each.

’This needed to be converted to a matrix of loglcal elements,

representing a black section by True (1) and a white section
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by False.(O). This accomplished, subroutine MOMENT was called
to calculate the moment invariants. The entire process from
scanning to the generétion of moment numbers could have been
accomplished électronically using integrated circuit multipl-
1efs at a considerable saving in expenditure and calculation
'time, but for the purposes of the simulation and having an IBM
360 avallable, the adopted system was the most flexible one
available.

Having generated and stored the moments, together with a
code to ldentify to which character the moments belong, a pro-
gram was developed to calculate the means and standard devia-
tions ofleach character setiassuming a normal distribution
about that mean. With the small size of sample sets used,
it may be presumed that the normality assumption is accept-
able. Again the tape message presented certain difficulties
as the letter sequence had to be ordered alphabetically, natur-
ally, and the punctﬁation mafks removed, since In general these
were df too limited.a setb. Also capltal letters had to be
noted and three ietters omltted entirely because in the learn-
ihg set df the first 500 tape characters, they either appeared
only once or not at all. The presence of capitals caused the
most trouble, as 1t was not until after many of the experiments
had been performed that a proper listing of the message with
spaces and punctuation (see Appendix 5) was obtained. It
was.only then that capitals could be identified and noted.

In general these letters were recognized incorrectly by any
decision mechanism, and these letter errors have been omitted

from the efficiency figures except where stated.
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Finally, once both the character moments and the letter
set moment means and standard deviations were available, re-~
cognition tests could be carried out on the different mechan-
lsms referred to.elsewhere. The only decision method that
cauged trouble was the exponent mechanism because not only the
standara deviations but the entire covariance matrix needs to
bé calculated for each letter set. This matrix then has to
be inverted. Because the moments are generally numerically
large, ovérflow and underflow problems were encountered when
the matrix determinants were belng calculated. This diff-
icuity, however, was bypassed by inserting a suitable power
of ten before and after inversion, before to allow the comput-
er to infért the matrix, and after to restore the matrix el-
ements to their proper form. Bven then 1t was found that the
subroutine supplied for matrix inversion consistently generated
the wrong sign for the determinant, so that calculations of
(X - p) Ty = (X - M) would be correct except for a spurious
minus sign (this expression must be positive for a positive
definite symmetric matrik:V ) ' That this was the only fault
of the-subrﬁutine was proved by.caiculating the product of the
in&erted and non—inverted matrix énd for each letter set this
was found'to generate the identity matrix as expected. This
slight anomaly was easlly corrected, once found, by taking the
modulus of the scalar terms (X —,\j_t_)" a (X - M.  This re-
stored the recognition efficiency from chance to over the 90%
level.

The last program listed in the appendix calculates not

only the recognltlon efficiency with different rejection
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thresholds, tut also under no-rejection conditions. This

was used extensively as described in Chapter l.

3.7 The Bfficiency of the Decision Mechanism.

(4) Learning set on the learning set: Figure 3.5.2

éhdwé the variation of efficiency of the different decision
mechanisms as the number of ﬁoments involved in the calcula-
tion changes. The exponent method performs better than the
other mechanisms as it contains the cross-correlation factors
between different moments. Although thils method 1s undoubt-
edly more complicated than the others, it is of interest as

it shows the sort of improvement that can be galned by using
the entire covariance matrix. Both the modified methods are
more  efficient than their unmodified forms, but only the ex-
ponent method efficiency increases monotonically with the num-
ber of moments used. This suggests that the cross-correla-
tions play an important part in reducing the error rate. The
pesk performance occurs at 7 or 8 moments. The precise reason
why the efficiency tails with the addition of more moments to
the discriminant suggests some other process, such as the in-
troduction of noisge, that increases wlth moment number until
1t becomes a more Ilmportant factor to the change in recogni-
tion efficiency than the sheer increase of the number of mom-
ents.

Figure 3.7.1 shows the resolution of the exponent method
applied to a typical letter J. It identifies the letter as
the only possible character within six orders of magnitude.
The modified Hamming and Euclidean methods also identify it

successfully, but with a greatly reduced recognition thresghold.
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ABCDEFGH ITKLMNOPQRSTUVWX Y Z

Figure 3.7.1

Recognition of the Letter J.

X

ABCOERGH I TRLMNOPQRSTUVWXY x

Figure 3.7.2

Recognition of the Letter I.

B X o W WS Y
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Figure 3.7.2 shows the resolution of the exponent method
applied to the far more difficult 1letter I, on which the
other methods fail. 0 and X both score fairly low, but the
I is still adequately resolved. The reason why 0 and X are
regarded by the computer as belng simlilar to I is because the
letter widths are normalized to a standard sigze. Hence a
very narrow letter is expanded into a solid block which then
has Geometrlc Moments very similar to those of 0 and X. This
breadth normalization can be suppressed but was left in for
the purposes of thls investigation.

(B) Test set on the learning set: 0f the 52 hand-

drawn letters typed onto the RAX terminal screens, 36 were
correctly recognised, an efficiency of 69.4%. Thers were two
of each alphabetlic character and the modified Hamming distance
using 15 moments was the method chosen. This was Jjudged to

be quite a good result although the small size of test set pre-
vents any important conclusions from belng drawn.

The use of the IBM tape proved more difficult, as it was
in the form of a message, hence the letters had to be categor-
ized by the computer. Also the letter scan had to be trans~-
lated into a matrix form using a special subroutine. However,
once these difficulties had been overcome, the results were
very rewarding. In the first 500 characters on the tape there
were 38l letters in a 23 letter alphabet (Q,X,Z did not appear).
These were processed using a similar moment generating program
to the previous one and the means and standard deviations of
the letter sets calculated. The combination of the learning

set and the decision mechanisms resulted in the sfficiencies
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shown in Table .

First Next First Next

500 2000 500 2000
Eff. of Hamming 81.88 85.34 69.0, 63.82
Eff. of Euclidean 81.42 83.88 67.43 63.98
Eff. of Mod. Hamming 95.6L, 91.13 95.64 92.32

Eff. of Mod. Euclidean 96.33 92.75 95.87 92.86

using 15 using 8
moments moments
TABLE L

The first 500 characters constitute the learning set, whereas
the next 2000 constitute the test set. Due to a misunder-
standing, it was not until later that it was dlscovered that
the tape message contained 1j000 characters, and not 2500, so
later results are refrred to a larger test set.

The general standard of the efficiencies reflects the
quality of the type characters. A breakdown of the forms
of error that occurred in this analysis revealed that the larg-
est source of error was a few recurring mistakes such as 0 for
S rather than a general scattering of misrecognitions. Again
no attempt was made to apply a threshold of rejection, al-
though this will be considefed later.

Finally, figure 3.7.3 shows the results of a test to dem-
ongstrate the precise change-over points of tpe recognition
system as a letter was transformed stepwise into other letters.
This was done by a) reducing the central arm of the letter E
towards the C shape; b) then reducing the upper arm towards

the L shape; c¢) and lastly reducing the lower arm towards the
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Figure 3.7.3

Stepwlse Variation of Letter Shape.
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i The effect on the character recognized is shown, the
values of the different discriminants being plotted against
the length of arm. The cross-over polnts are clearly defin-
ed and also reglons are apparent where no character is rec-
ognizable with that discriminant at less than two standard
deviations.

The best recognition system is one that combines speed

of operation with high efficiency. The Modified Hamming me-
thod using 8 moments was 87% efficient and fast. However the
exponent method wag far more efficient but much slower. TE
is suggested, therefore, that a two layer machine be used,

8- 6] With the Modified Hamming method to find the three
lowest discriminants, or all thosé lying below a
given threshold, say two standard deviations from
the mean,

(11) then using the exponent method to declde between
those three characters.

Since only a few ﬁharacters would be involved in such a cal-
culation, the slower method could be used.to advantage. This
2-step process ylelds 100% recognition in the hand-drawn learn-
ing set discussed above. This promising result deserves

further study and is the subject of a paper soon to be print-

ed.
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CHAPTER |,
THE APPLICATION OF MOMENTS DATA TO

CERTAIN THEORETICAL PROBLEMS.

Reference has been made to a number of related variables
in Character Recognition; these are efficilency of recognition,
error rate, rejection threshold and others. In this chapter
an attempt will be made to show the relations that exist bet-
ween ﬁhese variables, both at the theoretical and at the ex-
perimentél level. Thlis latter is accomplished using the
moment techniques developed in the last chapter. Finally
individual attention 1s pald to certain isolated problems

that have occurred in the use of moments.

i Introduction.

In a recognition strategy involving thresholds, such as
that mentioned in paragraph 1.6, a certain amount of theoret-
ical work.can reveal the relations that exist between those
variables most commoniy used:

(1) the error rate E which 1s the probability that a
character will be wrongly recognized, after the
re jection of those possibilities that lie beyond
the rejection threshold has occurred,

g v ) the rejection rate R which is the probability
that a sample character will be rejected given a

particular rejection threshold,
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(11i) the probabilistic rejection threshold (1 - &X)
which is that value of the probability of a sample
character belonging to a given character set be-
low which rejection occurs,

and (iv) the rejection threshold t which is a simple func-
tion of that geometrical distance, between the
sample character vector X and the mean of the gilven
character set P beyond which rejection occurs.

In 1957, C.K.Chow published the first 36 of a number of
articles 3‘,’3.7’'l*‘discuss:i.ng 'the functional relationship of
recognition error and rejection trade-off!'. He pointed out
that part of the optimum recognition rule which minimizeg the
error rate E for a specific rejection rate R is to reject the
pattern if the maximum of the & posteriorl probabilities is
less than the threshold (1 -« ), (0%4x<£1). Hence the const-
ant & provides a control over the E - R trade-off. He showed
that the two are related by the integral

R(0)
B o= o (R)dr i B [
R ()
whilch, although surprising, is a very useful way of measuring
the actual recognitlion errors which can be otherwise unidenti-

fiable.

4.2 The Relation between the Rejection Rate and the

Threshold Function.

Suppose the threshold function t is defined as

£2 = (W —,pk)‘ \/'1 (k{-p.) TPE 0% o
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for a given normal distribution, n@g,V) and sample vector W,

such that rejection occurs for all vslues of the exponent dig-

tance greater than the scalar t2. Then the rejection rate
may be defined to be
o0
R =k - ye"qz/g dq y.2.2.
b

where k 1s a normalizing constant chosen such that the reject-
ion rate tends to unity as t tends to zero. As is well known,
k =J2/wm and the integral can be written in terms of the error

function, erf(x) where

2 -
erf(x) =\ﬁr— "4 aq 2. 8.
0
and erfe(x) =1 - erf(x) Yoo 2 e
Th = 7
en R = erfcef 2) I+2:5;

This is the theoretical relation between the rejection rate

and the threshold function.

h.3 The Relation between Error Rate and Rejection Rate.

As can be seen from equation L.71.1, the differential

ratio dE/dR is given by

4dE _
F=1-o 9 N I

(see figures l;.3.1 and l.3.2).

If is hypothesised as being
o = AR" h.3.2.

where A and n are constants, then equation L.3.1 ig integrable.
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Flguve N4.3.1.

Knowing that R = O when E = E

T the result of integration

becomes

_ n + 1
E+ R - Emax = A/(n+1). R

How B B

which may be tested graphically (see figure L.3.3). Straight
lines were obtained from the data provided, indicating the

validity of the hypothesis.

This hypothesis can be put on a more substantial level

by a little mathematics. The differentlal form of equation

22 18
aR _ _ T 4 1T
at P
since o and t have been defined so that o = ke~ ° /2.
~ 4R dx
Or “X = XL
dR _ at
Hence i -l ax h.3.5.
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But from equation L.3.1.

. a8 _

; a il
i dE _ dE dR _ dt
. =0 BR— aRaw - TN Tl gg Yo 355
II . Hence, from equation l.3.5
" [r] = J-o(dt L.3.7a

and from equation L.3.6
¢ [E] = Jo((’l - o/} dt
: = -[R] —jo{adt I.3.7b
A
i When t = 0 R=1, E= 0 and
> when t =e@ R =0, B = E and

max

” when t = t R=R1,E=E1
E B o0

Y. [E]® s [R]O - J % Zat lio a8
= E,] R1 t,]
- oo
> _ 2

or Emath’I—R’f“"‘(OCdt
X ol

or (E+R-E ) = f“zdt T
X max

" ;
B
B omitting the subscripts.
00

; 2 L -2 1
. Now \(o{ at = \[2_“_6 dt =‘I1—r erfe(t)
) t £

and R = erfo(t/J2) from equation l.2.5.
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It so happens that AR™ is a fair approximation to 145 ~erfolt)
within the range in which we are interested i.e. 0.4 &t g 2.0
(see figure L.3.l), and so the hypothesis has some strong

theoretical backing.

I The Variation of Efficiency with Number of Moments Used.

The graphs of efficiency variatlion using different dec-~
1sion mechanisms (see figure 3.5.2) seem to require some
theoretical explanation..  Sampling and informsation theoriss
being both highly sophisticatedf7it seems reasonable to attempt
applying them to this problem of efficiency variation. In fact
Bowman and McVe’y38 suggest a similar approach as an ad hoc hy-
pothesis.

Suppose we have a block of data out of which samples are
drawn, measured and replaced (see figure L.l.1). How much
information 1s probably withdrawn after n draws? Suppose an
equal amount of information is drawn every time, containing m
bits of data. The set containing all the information with-

drawn at the nth draw is An. Then if g is the amount of

n+
data withdrawn at the (n + 1)th. draw, then
An+1 u An(} En+1 oL,
prA(An) i1s the volume of data in An’ it follows from equation
4.4h.1 that
PlA L) = (A U g 4)

=p(a) +plgy ) - p(a N gy,y) bl 2.
Iff the expectation of,k(An) averaged over n is X it follows

that

Kppq = Xy T m = @ o <Anﬂ 81 >’I e 20 nd lgalia 3
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M e <t

N

Pigure L.l.1

Set Diagram for Calculation of A Ag ...

N Total Number of Bits of Data.
Ah Information withdrawn aftef nth. Draw.
v  Average Volume of ﬁata 1 An.
&1 Tnformation withdrawn at (n+1}th. Draw.

m Volume of Data in gn+1.
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The last term of equation L.l .3 is the sum over all intersect-

ions of An and 81t
m
S N-
PN ¥y o
g - =t e Tl
Ng
m

(see appendix 8), where y = X3 N = total number of bits of

data in the block. Now, remembering that

m
Ja N-¥ - N
L L ¢, BB
r=0
(see appendix 9). We can write r as y - (y - r) in equation

L.h.ly to obtain

m m
> Yo N-y > ) .Ye M-y
‘S _ r=0 I Cr Cpp _ r=0 (y r). Cr' Cop
N N
o Cr
L.l.6
m
= v-1, [N-1) - (y-1]
S = r=0 J° Cp- Cp-p
C
m
Thus § = y.m/N Jisdho T e
Hence equation lL.l4.3 simplifies to
Rppq = X, + - xn.m/N
Eoiq & xn(1 - n/N) +nm boodieBa

Using the method of induction, we know:

Xy = 0 3 x1 =m
and 1f we write xn

iy Axn + B where A =1 - m/N, B=m
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Then
n
Epn = An”xo +B > A" L.l.9.
r=0
U & NN Sk WO PO & NETE Y ) il
n+7] 5 1 = A) & mn/N
Thus x ., = N(1 - (1 - m/N)™) Ll 10

.5 The Experimental Valldity of the Hypothesig of

Efficlency Variation.

Having outlined the hypothesis that the volume of inform-
ation gained on the (n+1)th. draw is (1 - a") times the total
amount of information avallable in Section L.l, it is a short
step to equating the efficlency of a decigion process with
that fraction of information extracted from the total avail-
able; that is, that the efficiency 1is
. 100% b B

where a 1s some constant equal to 1~ that fraction of the

Q= (1 -a"
total information avallable contained in one moment. The
assumption is made here, it must be remembered, that each mom-
ent contains an equal amount of information.

Straight line graphs of Log(100 - Q) against n will test
the hypothesis. The tables 5 and 6 below show the results

of this analysis (see also figure L.5.1).
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Calculation for first 8 moments.

Lt

» m o 1=a C Gb 2-m

» Euclidean -.0864 .0040 .180 1.979 .020 2.086
» Hamming -.0869 .00L7 .181 1.980 .024 2.087
i Mod. Euclidean =-.1237 .0097 .248 =2.005 .0L9 =2.124

Mod. Hamming .1119 .0085 .227 2.033 .043 2.112

et

Exponent .228 .0109 .Lh08 2.21 055 2,23

TABLE

Least Mean Squares* Fit to Moments Data.

Calculation for 15 moments.

)
’

3
s m 0 1=-a C Gb 2-m
! Buclidean -.026l. .0073 .059 1.753 .066 2.026
. Hamming ~.0328 .0067 .073 1.772 .061 2.033
" Mod. Euclidean =-.0701 .0086 .149 1.826 .078 2.070
A Mod. Hamming -.0571 .0078 .123 1.803 .071 2.057
; Exponent’ -.294  .0077 .492 2.387 .070 2.29L
3 TABLE 6

Least Mean Squares% Fit to Moments Data.

3* see Appendix 10

it see equation L.5.L

#¥#%  Exponent figures refer to 6 and 7 moments, as opposed
to 8 and 15, as these were the maximum efficiencies

which were stlll relevant to this calculation.

C and m are the intercept and gradient respectively of the
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theoretically straight line graph Log(100 - Q) = mx + C, where
x is the number of moments used. Theoretically C ~ 2.00 and
m = Log(a).

To find the theoretical value of C, we inspect equation

Idi.10.

X
—l- - (-
By letting 1 - m/N = a and 100.°n+1 = Q, we obtain
N
_ n
Queq = 100(1 - a”) L.5.2.
Log(100 - Q) = Log 2?1 4+ Log 100
=2+ (n - 1)Log a
or Log(100 - Qh) = (2 - Log a) + nLog a I.5.3.
Hence the intercept C = 2 - Log a
L.5.0.
and m = Log a

Theoretically, then C = 2 - m.

The graphs drawn show that the assumption of equal inform-
ation content per moment was not very valid. The best strai-
ght line came from the exponent mechanism as expected, and
the gradient displays the most information extracted per mom-
ent, and the intercept agrees closely with that predicted.
From the standard deviations of C and m, it can be stated that
the Hamming and Euclidean methods seem about equal in perform-
ance, whereas the modified methods are themselves equivalent
though reliably better than the unmodified forms.

The form of the graphs suggests that at least for small
numbers of moments, the approximation assumed holds good but

breaks down the more moments used. Some reasons why this
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breakdown might occur are suggested in the next Section.

.6 The Resolving Power of Moments.

Throughout the work on Character Recognition covered in
Chaptsr 3, no attempt was made to use any special set of mom-
ents, even though Franz Alt in his researdhgb selected partic-
ular moments for a decision tree. Since it was not clear

that the mechanisms that were being used here demanded special

moments, no such ordering was investigated. Indeed the pro-
blem of ordering is by no means simple. There is a criterion
attributed to R.A.Fisher that defines the resolutlion Rk bet~
o e 2
ween two normal distributions n(y1, GH ) and n(rxg,d"2 )y OFf
the kth. element of the pattern vector so that
2 _ 2 2 2
This is easily extended to n distributlons
n = 2
B8 3 P - bpd” 4.6.2.
k 6. 2 n(n - 1)
i,j=1 ik

The calculation of the Rk is shown below (table 7) for the
learning set of the tape data taken over 23 alphabetic chara-
cter sets.

The larger the value of Rﬁ the better the moment is at
resolving the 23 letter sets. However the emphasis is on
the letters that the moment resolves well, since equation
}.6.1 has a large value for two well-separated sets. In or-

der to emphaslse those letter set pairg which do not resolve

well, a root mean square reciprocal can be Implemented




Moment

Ry,

Moment
Ri

Moment

Rk

ZZ n(in - 1)

si=1

30
6.51

13
6.30

22
L..09

66

Table 8 glves the values for Rk.

Moment
]
Rk

Moment

30
1,08

13

(Rig - Fﬁk
Moy M0
8.27 3.2
M2 Y53
6.86 7.9
8.35  10.58
TABLE 7
Mo M0
8.6  8.98
My o Mo3
3.59 5:16
Mo M,
7.32  2.02

TABLE 8

h.12

5.22

Moy,
.71

15.6

TR

7.07

31
L.05

My,
3.56

23
Yol
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1
The smaller the wvalue of Rk’ the better the moment is at re-
' 1
solving the 23 letter sets. An ordered comparison of %? Rk

and RéAlt) displays the best moments (see table 9).

_} R(ALY)| My Moy | Mg | Moy, | My | 20y |20y, | Mg, | agg | 20y,
| Ry, M Yee | Mo | Yoa | Yoo | Ma3 [ M2 N1 | Maa | Y
1
.. i Mo My | M Mg ] M | a0 | You [ o3 | Y50 | o5
: 1l egzigdntetbtelrlalagilim
Ry, Mag | M3a | Moy | Mo | My0
I 1
Ry, Mor | Mg | Moz | Mpp | M3,
11 |12 {13 |1} 18
TABLE 9
Considering the best ten in each set, only M23 and.M21 oceur

in the 1list of R, and not in that of R;, and only MoLL and M31
occur in the list of Ré and not in that of 3€ So the two
ways of deciding which moments resolve best favourably agree.
Also most of the moments in the first ten in each set are con-
talned in the first ten of R{Alt).

These methods are only two of many possible ways of as-
sessing the resolving power of different moments. As such,
they represent only an introductory comparison. However,

without more statistical evidence, it 1s probably not worth-

while going any deeper into the problems of resolution.
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CHAPTER 5

THE TMPROVEMENT OF RECOGNITION EFFICIENCY

AND THE MINIMIZATION OF LOSS.

The basic theory of decision analysis and loss functions
hag been outlined in Chapters 1‘and 2, and a method for Chara-
cter Recognition is suggested in Chapter 3. Some thought
will now be devoted towards combining the twd to observe what
effect, if any, the introduction of loss functions has on the

recognition efficlency.

5.1 Recognition with Minimum Expected Loss.

It should be made clear that the ﬁaximum recognition eff-
~liclency of a one-step categorizer is not improved by the intro-
duction of loss functions as defined herein. Neither is the
addition of a priori probabilities to the decision meohanism.
of any use when the characters presented to the categorizer
themselves do not obey such probabilities. If however the
sample characters are in fact taken from a standard English
text, for example, then the presence of a priori probabilities
may be expected to improve the recognition efficiency. But
the use of loss functions is a totally different affair.

Their introduction only becomes valid when one character or
decision 1s more important than another in terms of informa-
tion content or value or whichever utility the operator cares

to adopt.
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One elementary example of minimum expected losgs is the
cage of optimizing the rate of transmission of information
through a channel. A 1ot of work has been done in the field
because of its industrial applications, but it suffices to men-
tion here that the information loss due to the mlsrecognition
of the jth. letter as the ith. letter is

I= - .'1.nwj 5:1 s
where uﬁ is the a priori probability of the jth. letter occur-
ring. Then, in the author's opinion, the Information loss
may be adopted as the loss function L(i]j), and the calcula-
tion of the:minimum expected loss becomes equlvalent to that
of the maximum information transmission rate.

The improvement on efficlency by using not just the a
priori probablilities but also digraph and even trigraph prob-
abilities should be quite considerable, especially nowadays
when large storage memory banks have become available with
very fast access times. This reduces substantially the cost
of maintalning large matrices in core storage. A.Wood Edwards
and Robert L. Chambersquioneered this work, although they did
not have a first class recognition system on which to apply
their ideas. Indeed recognition efficiencies may be improved
by a number of totally independent methods, and the use of di-
graphs 1n a nolsy or otherwise suboptimal categorizer may be
regarded as probably one of the best, glven the required vol-

ume of computer memory.




70

5.2 The Forms of Error in a System.

In the type of recognition apparatus used by the author,
it was a fairly simple procedure to analyse the errors produced,
to determine exactly how a particular error occurred, and what
could be done to redesign the categorizer to prevent that srror
from recurring. This analysis was carried out on the exponent
method, as this gave a clearer picture of the underlying faults

of the recognizer. Tables 10 and 11 show the results.

i
PO R S Kt

Act Rec D; D d(1) In<2¢|comments |d(Act)
1.38 | 2.30 | L.39] o
1.95 1.95 | 0.47 >5 | similar | 0.65

1.35 1+35 0.52 >5 similar 0.61
1.75: |'$2.32 2.19
5.52 | 5.52 | 0.20
1.50: § 1.0 | 2.97
116 | 25960 | ))i8

similar 0.52

1.18. [ .62 2.80
1.5 |»2.22 2.09

o o o o o &= o

Y313 | 1518 | 287
hL.69 | L.69 | 0.25 >5 | similar | 0.54
159 1 #1 .61 2.19
1406 ¥ 68 2:79
1.79 2.10 3.0

< K S =5 H K = 9 K ®H @ £ 2 +H K
®w BH » o ¢ H o w +#H =H =2 B®H @9 H 4o

o oo O O

1.22 [$1.65 2.76

TABLE 10
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Explanatory notes to Table 10:
Act - Actual TLetter

Rec - Recognized Letter

s

¢ D2 is defined as d(2)/d4(1); and D1

e d 1s .the exponent distance between the sample char-

as d(actual)/d(1)

acter and the mean of a given letter set. Since
these were ordered, d(1) is the smallest exponent
distance and applies to the chosen letter set.
d(actual) is the exponent distance to the actual
correct distribution mean. Units are standard de-
viations

1/05(X - pIV(X - p)

Il

d
n = number of dimensions in pattern vector
% nk2esignifies the number of letter sets with ex-

ponent distances less than 2.

Out of 500 characters on the IBM tape, thére were [ 36 alphabetic
characters of which 15 were recognized incorrectly by this me-
thod. Only L of these would have been misrecognized if a 2¢

. threshold had been imposed, whereas only 2 correctly recogniz-
ed letters would have been rsjected. Hence with a 26 rejsct-
ion threshold, the recognition efficiency would rise from 96.56
to 99.08% with a 2.98% rejection rate. Thus the introduction
of a rejection threshold, if not expensive to implement, pro-
duces a considerable increase In efflciency in this method.
Furthermore, from the table above, it is apparent that such a
re jection threshold is not critical, and the graph 5.2.71 shows

how slowly the efficiency changes as the threshold varies.
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The characters incorrectly recognized which are more than 2o
from the nearest mean are Y,K,V and W, the covariant matrices
and means of which have been calculated on only about l sam-
ples, so that this reason alone may be sufficient to explain
the frequency with which they have been misrecognized.

The characters incorrectly recognized which are not more
than 2¢ from the nearest mean are more interesting. The two
I's which were recognized as L's can be dismissed (see figure
5.2.2), leaving the N - B and R - M as the only two real err-
ors in the whole of the learning set. As these two letters
display in no obvious way whatsoever any real difference from
any of the other N's or R's that occur in the message, they

must be regarded as computing errors or dus to the presence

of excess noise on the tape (which was otherwise singularly

free from noise), and probably do not reflsct upon the deci-

gion mechanism.

Total |M-N" |M-E | L-I | F-I | I-L| 0-E | ¢-E | Tape errors

162 13 16 13 8 T 11 (i 17
#  M-N signifies M recognized as N
TABLE 11

Breakdown of main errors in 1000 character set

with a 2o rejection threshold.

A number of errors occurring in both learning and test sets
can be attributed to capitals, which should be rejected in most
cases. Also the check agalnst which the computer-recognized

letters were 1ldentified, that was a built-in part of the




Tk

tape data, was not always correct; this is the reason behind
the 17 tape errors. The lack of better defined distributions
for letters like M,C and F are emphasised in Table 11. Two
confusion matrices (figures 5.2.3 and 5.2.4) have been inclu-
ded to present the error display for the whole test set. The
first of these was calculated without any threshold whereas
the second contained a recognition threshold of 2¢.

By far the most useful possibllity that can solve these
assorted problems 1s to introduce a two-stage decision process.
The first stage of this can be a simple modified Hamming dis-
tance type recognizer with a bullt-in rejector of either (i)
letters more than a gilven distance from any letter mean, or
(i1) letters in which the choice between the nearest and next
nearest mean is insuffilciently distinct. The second stage
can then be the more complex though far more accurate exponent
mechanism., More will be sald about the virtues of a two-
stage method in the following section.

It 1s clear that the errors are not randomly distributed
throughout the test set, but heavily concentrated about part-
icular letter pairs. Such pailrs, once identified, can be
weighted within the strucure of the loss function to correct
those particular faults that occur due to the nature of the
categorizer. Discrimination between similar letters, such
as I -~ L, is less amenable to this treatment, but probably

still of some value.
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5.3 The Relation between Execution Time and Efficiency.

Whereas no absolute measure of execution time can be used
to determine the cost of a particular technique in decision mak-
ing, the difference between various mechanisms can be restrict-
ed in computer simulation to 1little more than the altering of
a line or two in the entire program. In this way all the
mechanisms which have been applied by the author can be comp-
ared, not only in recognition efficiency but also in execution
time.

This time, for the exponent mechanism, was proportional
to the square of the number of moments used, as expected.

This makes 1t considerably slower to use although its greatly
increased efficlency counteracts this drawback to a certain
extent. From the graphs of efficiency against moment number,
it can be seen that the maximum efficiency is reached when
around eight moments are being used and that further moments
alter the recognition efficiency little.

One possible two-step procedure is to reject characters
further than 2¢ from a mean as measured on the Hamming dist-
ance and recalculate these distances according to the exponent
mschanism. Another more acceptable two-step procedure is to
order, in increasing distance, the letter set means using the
Hamming distance as before; then to select the three or four
with the smallest distances and calculate the exponent dist-
ances to those means. This reduces the number of letter sets
over which the exponent measure has to be applied.

It is interesting to plot a graph of execution time ag-

ainst percentage efficiency with the number of moments used




78

as the variable parameter and to superimpose lines of the fam-
ily (see figure 5.3.1)

(100 - E)t = constant (C) B %
Naturally this family is chosen rather arbitrarily, being

after all only the first term in the general expansion
o0
4 g "i
(100 -E) = ). 8t B.3.2.
i=1

However it dozs weight the error rate equally with the execu-
tion time. From the graph it is possible to declde on the
decision mechanism one wishes to use by implementing a given
error/execution time measure (C in equation 5.3.1). The
cholce of C is, of course, related to the time equivalent to

a given error rate, and hence to an estimate of how much extra
time one incorrect letter will introduce. This is something

only the designer can decide.

5.4 Forms of Loss Matrix.

It was mentioned in Section 5.1 that the operator could
define a utility function by which certain characters could
be assigned relatively more importance than average. It is
suggested that, for a machine categorizer which rejects alpha-
betic characters to be subsequently deciphered by a human being,
it 1s possible to weight the decision mechanism in such a way
as to optimise this two-stage system. For instance, certain
letters are geometrically similar, for example R and K. If
the loss involved in a misrecognition of a character as another
geometrically similar one 1s increased, then this is equival-

ent to reducing the rejection threshold in this particular
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discrimination, and so the probabllity of rejection is increas-

ed. This is simple theoretically, but lmplementation is more
complex. A quantitative measure of similarity (elther geo-
metrically or whatever the particular method of discrimination
finds similar) needs to be introduced. The Mahalanobis dis-
tance*o is a likely choice for this, although others may be

suitable 4“‘HL.

Also if letters are misrecognized as being
rare letters, S as Z for exampls, then these will be relative-
iy more obvious to the checker, who relies more upon the con-
Atext and meaning of entire words rather than upon individual
characters as does the machine.

Combining these two suggestions for optimisation with
the information losgs suggested 1n Section 5.1, a loss matrix
L may be formed which is related to the features mentioned
above by the equation

L = IMS AT

where (1) I is a loss matrix based on the higher costing of
rarer letters because of information loss; (ii) M is a loss
matrix based on the lower costing of the rarer mlsrecognition
letters, i.e. those that the categorizer chooses which are in-
correct, due to the fact that they are more obvious to a check-
er or reader; (1i1i) S is a loss matrix based on the higher
costing of similar letter pairs so that the probability of re-
Jection of this choice 1s Increased.

This latter part is symmetric, whereas the first two are
asymmetric matrices. It can be suggested, then, to break up

the loss matrix into a product of three parts (i) an informa-

tion loss; (11) a misrecognition loss and (iii) a similarity
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loss. The first part may be omitted if the type of problem
does not warrant its inclusion, for example non-textual mat-

erial.
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CONCLUSION.

An introduction to elementary Decision Theory has been
given to explain the concept and definition of loss functions
and to relate them to Bayes Theory and Optimal Boundaries.
This also served to collate data and papers on the properties
of losses. A few simple examples followed to show that in
some cases loss functions can become important in decision
analysis. An attempt was then made to compare the minimum
expected loss with the loss using a suboptimal decision bound-
ary. In the simple case chosen, the expected losses differed
by only 0.5%, indicating favourably the implementation of the

Buclidean distance mechanism as an alternative to the optimal

method.
The work on Geémetric Moments has covered recognitlon of
hand-drawn capitals with error rates varying from 88% for very
poor, elesmentary methods to <1% for very good methods. Also
an IBM message tape was employed for character recognition
using the first 500 characters as a learning set, and the whole
1,000 characters as a test set. The results from these con-
firmed the difference in guality between the different mech-
anisms. These can now be ordered in increasing resolution:
(1) The Hamming and Euclidean distances (equivalent

within the margin of error)

11} The Modified Hamming and Euclidean distances
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(equivalent within the margin of error)

(1ii) The exponent distance.

The modification involved has the effect of normalizing diff-
serent moments, with the result that they become equally weigh-
ted in the distance measure. Error rates on the tape varied
between 9.5% and 3.6% for methods (11) and (1ii) mentioned
above. Various minor improvements could have been made on
these figures, in particular to have thrown out all capital
letters in the learning and test sets and to have increased
the size of tést set so that the more uncommon letters would
have had better defined distributions.

The study of the moments has led to the development of
the two-stage categorizer: the first stage utilizing a fast
discriminator and the second stage utilizing a slower but more
efficient mechanlism operating either on characters not reject-
2d by the first or on characters that the first was unable to
discriminate. The type-letter set was used extenslvely in
testing these various mechanisms due to the difflculty in ob-
taining a large test set for the hand-drawn characters. The
tape produced a number of problems related to extracting in-
formation from a message as opposed to a selected list of
alphabetic characters. However the problems were solved
from a practical viewpoint and a fairly efficlent discrimin-
ator was found. If anything, the tape data set was too ele-
mentary a set for the recognition system used because no real
normalization in size was necessgary for it. Removal of this
facet of the recognizer would have led to a better definition

of I's and L's. However, the general nature of the program
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would have been reduced and comparisons with the hand-drawn

letter set less wvalid.

Various offshoots of this work have been investigated in-
cluding a comparative study of the calculation times of the
discriminants, and the effect of a rejection threshold on the
efficiency of the mechanisms. This was inspected in detail,
demonstrating the theoretically predicted relations between
the error rate, the rejection rate and the rejection threshold.
The relations appear to hold within the bounds set by the app-
roximations. Also the discriminatory ability of the various
moments has been measured and by this means the efficiency of
recognition can be increased by using only the more discrimin-
ating moments.

An interesting theory has been developed to show that,
given certain assumptions, the efficlency of any discriminator
could be related to the number of dimensions of the pattern
vector. It was shown that these agsumptions are justified
when the dimensionality 1s not too great, and reasons for the
ultimate breakdown of the theory have been suggested.

The relation between loss functions and rejection thres-
hold has been investigated in some detail. The author feels
that thresholds are easgier to utilize than loss functions, al-
though conceptually farther from the truth. Some mention
has been made of complete loss functions, thelr applications
and their relation to information loss through a nolseless
channel..

Summing up, the author believes that

(1) A useful decision mechanism can be forged out of




(11)

(i11)

(iv)
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Geometric Moments and a two-stage categorizer.
The exponent mechanism, although of a quadratic
nature, is sufficiently good to be considered as
a worthwhile categorizer.

That loss functions should be calculated and app-
lied in specific cases of closed discriminant sy-
stems i.e. those in which the operator or checker
is inecluded. Only after such loss functions
have been considered can 1t be stated for certain
whether or not they should be involved in the
categorization process.

If this is to be done, it should be first asked
if 1t is not easier to use a trainable classifier
which is taught to minimize the losses. This
bypasses an understanding of the basic theory in-
volved but may well be economically preferable.
The limits of the cost optimization process might
have to be extended to the actual task of decid-

ing whether or not to use losses at all.
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APPENDIX 1.

Power and Size in the Neyman-Pearson Theory.

In this theory, experimentation is carried out in a single
stage by observing the values of the filrst N chance variables
of the sequencs {Xi} . Suppose H 1s an hypothesis about the
{Xﬁ} to be tested. Then the set of all sample polints x = (xq,

X XN) for which H is rejected 1s called the Critical Re-

YRR
gion. Let the hypothesis H under test be the hypothesis that
F € w where F is the distribution of sample polnts and W is
the set of distributions over which H 1s true. Then the con-
cept of the Power of the Critical Region is defined as the
probabllity that H will be rejected when some F, not an ele-
ment of w, 1s true. The Power is thus a function of F defin-
ed for all F not inw, Also the Size of the Critical Region
is defined as the probability that H will be rejected when
some F is true that 1s an element ofw. Thus the Size is a
function of F defined for all F inw. These concepts relate
to general Decision Theory since the choice of the Critical
Region 1s equivalent to the choice of a decision function and
the notions of Size and Power are special cases of the notion

of Risk.

In fact let W(F,d) be defined as follows

W(F,d,l) = 0 when F €w
and W(F,d,l) = 1 when F k\w
WFJQ = when F € w
and W(F,d,) =0 when F ¥ w

where d, and d_, are the two possible terminal decisions.

1 2
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Thus W(F,d) 1s a 'simple' Weight Function. We can disregard
the cost of experimentation here if we restrict the choice of
the experimenter to decision functions for which the expected
cost of experimentation is the same constant amount. Then
the simple risk corresponding to the above simple weight func-
tion 1s equal to the size of the critical region when F &w and
to (1 - Power) when Fk{w'
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APPENDIX 2.

A priori Probabilities and Information Content of the Alpha-

betic Characters.

w -1lnw -Wlnw wtape
A .0788 2.5 .200 O7h
B .0156 li..26 . 066 .016
C .0268 3.62 .097 .oL3
D .0389 3.25 126 .0L0
E .1268 2.06 . 261 136
F .0256 3.67 .09l .018
G .0187 3.98 .07L .020
H .0573 2.86 .16l .05
I .0707 2.65 . 187 .08
J .0010 6.91 .007 .002
K 0060 5.12 .031 .00l
L 039 3.23 127 045
M .02hl 3.71 .090 .023
N .0706 2.65 A87 .071
0 .0776 2.56 .199 .076
P .0186 3.98 .07h .026
Q .0009 T .006 .002
R .059l,. 2.82 67 .059
S .0631 2.76 RN .063
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w -1ln -wlnt u%ape
44 .0978 .2.32 . 227 .088
U .0280 3.58 .100 027
v .0102 159 047 .010
W .021) 3.8} .082 .011
X .0016 6. Ll .010 .005
b 4 .0202 3.90 .079 013
Z .0006 7.2 .00l .0005

Total 2.887

w - the a prlori probablility of a letter occurring in an
English text (Dewey Classification of English Language.)
-lnW - the relative information content of each letter
Wpape ~ the probabllity of a glven letter occurring on the IBM
tape message.

Wy
Largest ratio of information contents = 1n o= 5.36
Z




90

APPENDIX 3,

A Normality Theorem.

' -
Theorem: The family of curves (X - M) Vlﬁ —kL):z C has the
property that a line normal to the surface of one of the fam-

ily is normal to the whole of that familiy.

Proof: The family is of the form f(r) = C

Then a line normal to the surface f(r) = Co is

(r - go)>< Vf = 0 1
where r, lies on f(p) = Co
Similarly a line normal to f(r) = C, is

(r - r,) x Ve =0 2

But if we define r, to lie on line 1 then
(I'.'] "20)" Ve = 9
Ty lies on line 2
Hence r, and ny both lie on lines 1 and 2.
Bquation 1 and equation 2 reppresent the same line, which

is normal to each of the two surfaces.
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APPENDIX L.

Hand-Drawn Letter Set.
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APPENDIX 5.

Computer Tape Message.

CONDENSED CO#PUTEP NNCYCLOFNDTA, CO., INC., 330 W
. U2 ST., NIV YORK, N.Y¥. 10036, 1969; 618 T[CAGIS, I
LLUS., £14.5C. THE AVOWED PUR I"OS"l OF TURIS “ALYCLO
PECTA IS ''TO DEFINE COMPUTER TERMS CLZARLY AXD NHE
ANIXNGFULLY TOR THRE NONSPECIALIST." IT IS TATENDED

TO BRIDGE THE GAP BILTUWEEN CONCISE DIC~ TICNARY PE
FINITTIONS AND CCHEFUTER MANUALS AND TEXTS, AND DOES

A GOOD JOB OF MEZTING ITS CBJBCTIVES. THERE ARE A
BOUT 1000 TZERNMS CE-~ FINEL OR CROSS~-REFERTNCED IN T
iIE 574 PAGLUS I¥ TUE BODY OF THIS BOOKA THIS IS AN
AVERAGE OF ARCUT CNE-HALF PAGE PER TERM, ALTEOUGE
THE LONGER POR- TIONS ARE SZEVERAL PAGES IN LINiHH,
COMEUTER LANGUAGES (AROUT 20 ARE INCLUDED) G3INERAL
LY REQUIRE THQRZE TO FOUR PAGES SINCE A WORKED-QUT
EX- AMDPLE IS GTIVEN FOR IEACH. THE LONGEST NONLANGUA .
GE ITEM TS ''EDP CENTER!'! . FOR WHICIH SIX PAGES ARE

DEVOTED TO A MANAGER'S OVERVIEW OF THIS TOPIC. TH
IS ENCYCLOPEDIA IS UP TO DATIE, PLACES THT EMEHASIS

OF TI} MORE IM- FCHANT ASPECTS OF MODERN COMPUTER

TECINOLOGY, AWD PRESENTS A FRESH (AND SONETINES ®
ETRESHING) APCHACIH TO DESCRIBING COMPUTER TERES AN
D CON- CEPTS. ONLY SOMEONT WHO HAS SUF- FERED A MA
JOR CARD JANM MOGRE THAN ONCE COULD IAVE WRITTEN THE

YYJAMYY TTEM WITH SUCH FEZSLING. A COEMEND- ARLE B
FOF HAS BUEEN MALE TG EXPLAIN ''COMPUTERESE'' IN LA
Y TERMS. #0 EX- AMPLES ARE THE CITING OF RCBT#,S R
ULES OTF ORDER TC EXPLAIN PA# OT THE CONCEPT OF RiC
URSTHION, AND THE DESCRIP- TION OF THE CDC 6600 MUL
TIFROCESS0R AS A ''V-10 CATA-DPROCESSING ENGINE.'!
THE THPHASIS TS ON SOfWARE, AL- TIHOUGH SCMNEWHAT WNC
RE THAN 100 FSSENTIAL GFENIDRAL COMPUTZR HARDWAR® T2
RMS ARE INCLUDED. TN ADDTTICY, THE HARDWARE AND CT
HER ASHECTS CF OCR {OPTICAL CHARACTER RECOGNITION)
ARE TIOROUGHLY COVIERZED, BUT LITTLE ELSE IS CCNSICE
RED IN THE SOURCE CATA AUTOMA- TION AR®A. THE BOOK

ASLO TINCLUDES A BTBLT#- RAPHY AND AN INDEX. THE B
IBLIOGHENY IS LIMITED TO MATERIAL REACILY A#%- PUT
ERS. THE INDEX (PRECEDZD BY THE FO#RAN ERCGRAM USE
D TC PRCDUCE IT) IS INTENLEL FOR USE IN LOCATING T
ERMS NOT READTLY TOUND IN THE ALPHABETIC EC#ICN CT
. THE BOCK. HOWEVER, ONLY ABOUT ONE THIRD OF THE IN
DEX ITEMS SERVE THTS PURDPOSE#HE OTHERS ARE A REPEA
T Cr THE ALPHABETIC ARE NOTEL. THESE TINCLUDE THZ I
NADEQUACY OF SOME OF THE INDEX CROSS- R"F RENCING
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SUCH AS ''CNEIYS CONMBLIEMNENTY' (WHEREZ VIRADTX=KINUS-
ONE COMPLZMENT'! TS NOT REFEPTNCED) ;3 THE TCC BRUUFT
PDISCUSSION OF ''EMULATOR'' (BETTER DISCUSSED UNDN

2 Y1COS'Y BUT KOT RIEFTRIRCED TO IT) ; AND S¥ALL ITH *.

#S SUCH AS GROSCH'S WAME BEING MISSPELLED OR ®IY O
KLY DABBA#, HOLLZRITH, LATBNITZ, VON NoUZAN#E, #5C
AL, TURING, AND WEINER RATE DIOGRAPHIZS. THIS HNCY
CLOPEDIA I5 NTIGHLY RECOM- MINDED AS A BLUADLYE REFZ
RENCE FCR EVERYCNE IY THE COMPUTER FIFLD. DESPITE

¢HE INTENT OF THZ AUTHOR, IT WILL DPROBABLY BT CF M
ORE USE TO THT ECROFESSIONAL THAN# TO THE NONSPECTA
LIST. SOMEONE WHOSE ONLY BACKGROUND IN COMEUTERS I
S A THAE-DAY EXECUTIVE COURST WILL NOT BE ABLE TO

TAKE FULL ADVANTAGFE OF THE THMFORMATION IW THTS B#K
. IT IS AN EXCELLENT CONTRIBUTION TO THE LITRRATUR
§ OF THZ FIELD. 2VEN THOSE WHO HAVE WORKED WITH CC
M- TFUTERS KR SOME TIME WILL FIND IT A GOOD RETEREY
CE FORTERMS AND COMCEPTS THAT #HER SCURCES CCNSIDE
R ETTHZR TOO SCANTILY OR TOO THOROUGHLY. BETH#E, X
D, INTR###CIRCUITS,A B ASICA CQURSE FOR ENGIHE# AN
D HCHNICIANS, R®. G. HILC- BERLC-KCG#W-HILL BOOK B.,

INC., 330 W. 42 ST., ¥EW #RK, N.Y. 10036, 1969; 18
3 EFAGES, ILLUS., £9.95. THIS BOOK, A SHUSL TO THS

AUTHOR'S SOLTD ETATE ZTLMTENICS, TS DIH#CT=2d TO THI

NONELECTRONICS EHWGINEEZR AWD THE TECH~- NICAL INBRITU
TE STUDENT. THZ APPROACH TS #STH#LLY CUALITATIVZ, =
SSENTIAL#LY A SUIEY OF A#TLABLE INTEGRATED CIRCUIT
TH#HNOLO# . ALTHOUGH THIS RZVIEWER IS FZIRPLEXED (B:S
LIEVING THAT A SUBSTANTIALLY MORT QUANTITATIVE APRY
RCACH TS RIEQUTRED) , THE BOOK WAS FOUND TG READ StC
OTHLY AND TELL ITS5 STORY IN A READILY COMNPRE- HENS
IBLE FASHION. WITH ITS MERE 172 PAGES, IT CCULD B

READ AS AN EVEXN- ING'S #VTEW. THIS REVIEWER FOUXD

IC APPLTICATTONS IN THE LAST CHA#ARS THAT WIRE RZIV

" CALTNGLY DESCRI#D TN AN IN- TUITIVELYAPH#ALING MANY

ER. THT EARLY CHAPTHRS INDICATE THE IM- PACT CF IN
TEGRATED CIRCUITS ON TH#AY'S ELECTRONICS AND REVIZY
THE SOLTD-STATE TECHWOLOGY. DIGTTAL AND LINEAR CIT
#UITS AND THEIR AFPLICATIONS ARE REVIEWED TN THE ¥
EXT SCVERAL CHA#EZRS. APPLICA- TIONS ##ING T#M VCLT
AGE STABILIZERS TO TELEVISIOY STAGEZS ARE INCLUDED.
THE INTENDED PURPOSE # TIE TEXT IS TO GIVZ THE NC
NELECTRCNICS EXH#F- THT MNECHANICAL ANDE SYSTEMS ING
INEER AS HKLL AS THUZ TRCHNTCAL TNSTUTUTE GHDUATTH#IUT
CABBILITY Or UNCER- STANLING THE IC LANGUAR AND T
ECH- NOLOGY. T AM SURE THAT TT WTLL SUCCE8&D TN THI
S CHEH#T#. WHAT THE ##K WILL WOT DO IS GIV3 ANY DES
IGN EXPERTSE, IN SPTTE QF TTS CLEAR DESCRIPTICN CTF
THE CAEABILITIES OF '"'STANLARD CATALOG IN- TEGHETZE
D CI#UITS.'' RALPH W, KENHUM, JR. BELL TH#FHCNE LABC
#TORIES HOLMDEL, N.J. THE H##L ENCFLOKH#IA # FILM. A
ND TELEVISION #CHNIQUES, R

B § e e e e b e —————————— e+ e e e e 8 — D e W
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APPENDIX 6.

\

Comparison of Tape Letters I and L.

X X

¢ X XX

X XX

AX

XX

X b X4

X X XA

%R XXX

AN ‘ RN

XXX X X%
XXX XAX
XX X%
e AN
XXX XXX
KX X : XXX
XX 'y
XX KX

XA XXX




(&2

10

g £5)

60
70
75

80
90

100
101
102
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APPENDIX 7.

Computer Programs used in Character Recognition.

DI MBUSTON A(TJ),ILCUNT(SO),.MU(JO 15) ,S1G{50,15)
LOGICAL=#1 L (2),4(2) ,LETT (50)/50%" '/,L2(2),m2(m
EQUIVALENCE (L(1),LL),(L2(1),LN)

DO 5 I=1,50

TCOUNT (I) =0

po 5 J=1,15

XHU (I,J) =0

STG (T ,J)=0.

N=1

IT0T=1

READ (5, 1C) MTOT

FORMAT (I5)

LO 75 N=1,NTOT

BIAD (3,15) L(2).,%

FORMAT (9X,A1,7E10.3/8E10.3)

DO 20 I=1,ITOT

L2(2) =LETT(I)

1P (LL«BEGsLN) GO TO 30

CONTINUE .

IF (N.EC.1) GO TO 50

ITOT=ITOT+1

LETT (ITOT)=L (2)

T=T+1

DO 40 J=1,15

XMU (I,J) =XMU(I,Jd) +X(J) .

SIG (I,J)=SIG (I, J)+X(J)*R(J)

ICOUNT (I)=ICOUNT(I) +1

GO TO 60

ITOT=0

I1=0

GO TO 25

IFT (ITOT.EG.50) WRITE (6,70)

FORMAT (' ITOT IS TOO LARGE?)

CONTINUE

DO 80 I=1,ITOT

DO 80 J= 1 1.)

XMU (I, J)—"MU(I J) /JICOUNT (TI)

SIG (T ,J)=SQRT (STG (T,J) /ICOUNT (T) =XMU (I,J) *XMU(I,J))
PUNCH 90, ( (XmMU(I,J) ,J=1,15) ,1=1,I1T0T), ((SIG(L,d) ,J=1,15) ,1I=1,ITCT)
FORMAT (8E10.3/7E10.3)

WRITE (6,100) {(LETT(T) ,I=1,1TOT)

WRTTE (6,101) (ICOUNT(I),T=1,ITOT) .

WRITE (6, 102) ITOT

FORMAT (10A10) — o 5 7 e TR % RO
FORHMAT (10I10) ' .
FORMAT (' ITCT IS ',I10)

STOD

END




@]

25

10

15
20

35

CALCULATION OF CHARACTER SET
DLMENSTON LETTER (32,67),X{15)
LOGICAL%1 LOG(292)

DO 20 I=1,4000

TI=(I/100) +100-1

TP (IT«RC.0) RRTTE: (6,25} T
FORMAT (I5) .

RZAD (4,10) LCG

FORMAT (146A1, 1464 1)

CALL CHANGY (LCG,LZTTER)

CALL MOMENT(LETTER,67,32,X)
WRITE (3,15) LOG (9),X

FORMAT (9X,A1,7E10.3/8E10.3)
CONTI NUE '

STOP

T\ND

SUBROUTINE MOMENT(LET,HM,N,X)
DI MENSTON LET (N,M),X (15)

Lo 25 J=1,N

IF (LKT(J,I).EQ.0) GO TO 25
A=A+1.

B=B+I

C=C#dJ

D=D+T &I

E=E+J #J

CONTINUE

IF (A.LE.0.001) RETURN
XBAR=B/A

YBAR=C/A

SIGMAX=1./SCRT (D/A-XEAR«XBAR)
STGMAY=1./SQRT (E/A-YBARYBAR)
DO 35 L=1,15

LU =D

DO 40 I=1,H

10l

MOMENTS 2500*1? AND KEYWCRDS
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£o 40 J=1,N
IF (LET(J,I)-3¢.0) 6C TO 40
XX=(I-XBAR) «SIGMAX :
YY= (J-YDBAR)# STGHAY
XSQ=XX#X%
YCUBE=XSGx XX
XFOUR=X CUBR#XX
XFIVE=XFOUR= XX
YSQ=YYnuYY
YCUBE=YSQxYY
YFOUR=YCUBE=xYY
YFIVE=YFOURx YY
X (1) =X (1) +XCUBE
X(2)=X(2) +XSC#YY
X (3) =X (3) +XFOUR
X(4)=X(4)+YFOUR
¥ (5) =X (5) +XCUBE#YY
X(6)=X (6)+YCUBEx XX
X (7) =X (7) +YSQ=XX
¥ (8)=X(8)+YCUBE
X (9) =X (9) +XFIVE
X(10)=X(10)+YFOU Re XX
K11 =X (11) +XSQ«YSQ
X(12)=X{12)+YFIVE
X (13)=X{13) +XFOUR%YY
X(14)=X (14) +XCUBE»YS¢
X (15) =X ( 15) +XSQ*YCUBE

40 CONTINUE
RETURN
END
REAL MU
DIKENSION XSUM(23),XMU(23,8),SIG(23,64),X(15) ,EFF(12) ,RCJIR (12)
LIMENSION REJT(12) ,ERR(12) ,0U(8) ,SI (64) ,NUN (41) -
LOGICAL#1 LETR (23),LETER(23),L1(4) /4x* Y/, L2(4) /Ust v/, L3(H4) bx?
1/,LET
ECUIVALENCE (L1 (4),LET), (L2(4),LETR(D),(L1{1D,P),(L2{1) ,Q),(L3(1) "
1,R) ,
®READ (5,5) (LETER(I),I=1,23)

5 TORMAT (80A1)
READ (5,6) NUY
6 FORMAT (20(I2,2X))

DO 14 T=1,41
READ {4, 10) MU

10 FORMAT (8E10.3)
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13
14

110

112
113
114

212

16

17

.20

25
26
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J=NUH (1)

IF (NUM(I).LT.24) GO TO 12
GO TO 14

po 13 ¥=1,8

XHU (J,K) =MU (K)

CONTI MUE

CO 114 I=1,41

READ (4,110) SI

FORMAT (8E10.3)

J=NUN (T)

IF (NUM(I) .LT.2U) GO TO 112
GO TO 114

LO 113 K=1, 68

SIG (J,K)=SI (X)

CONTINUE

po 212 I=1,92

REJT(I) =0.

ERR (I)=0.

EFF(T) =0.

T'TOT=0

ICOUNT=0

N1i=8

RN=0,0UsNN NN

DO 102 N=1,4000

READ (3,15) LET,(X(J),3=1,15)
FORMAT (9%X,A71,7E10.3/8E10. 3)
PO 16 IL=1T, 23

L3 (4)=LETER (IL)

IF (P.EQ.R) GO TO 17

CONTT NUE

GO TO 102

ITOT=ITOT+

Lo 20 “I=1,23

LZTR (I)=LETER (I)
Xsun (1) =0.

DO 26 I=Y,23

Do 25 J=1,8

DO 25 JJ=1,8
JJJ=8«(J~1) +JJ

XSUM (T)=XSUM (T} + (X (J) ~XHU (T,J)) # (X (JJ) =XMU (T,JJ)) «SIG(I,Jdd)
XSUM (I) =ABS(XSUM (1))

CALL ORDER (XSUM,LETR,23)
IF (P.NE.Q) GO TO 45
ICOUNT=ICOUNT+1
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pO 40 IR=1,12
TL=13-1R
R2J=RN # [L« IL
IF (XSUM(1).GT.REJ) GC TO 100
EFT(TL) =EFF (IL) +1
40 CONTINUEZ
GO TO 100
45 WRITE (6,46)
46 TORMAT (10X, "ERROR')
Do 50 1w=1,12
TL=13-1IR
NoJ=RH+TL*IL
IF (XSUM(1) .GT.REJ) GO TO 100
50 ERR(IL)=ERR(IL)+1
100 CONTINUZ
ROTTSE {6,101) LET, (LETR(I).I=1,5), (XSOH(L),I=1,5) ,DIFF
101 FORMAT (1X,6A4,5810.3,F8.3)
102 CONTINUS
DO 105 IR=1, 12
RZJT (LR)= (ITOT-ERR (IR) -EFF (IR) )« 100./ITOT
ERR (IR) =ERR{IR) #100.,/ITOT
EFF (IR)=EFF (IR)%100./ITOT
105 REJR(IR) =0.2%IR
EFFMAX=TCOUNT#100. /ITOT
WRITE (6,35 REJR,EFF,EFFMAX,ERR,REJT
35 FORMAT (7%,'REJECTICN RATE'/7X,12(F3.1,5X) /11X, EFF',1X,12(F5.1,3%)
1/7X,'MAX EFF=',F7.1/1X,'ERR',1X,12 (F5.1,3X) /1X,'REJ",1X,12 (F5. 1, 3%
1))
STOP
RND )
SUBROUTINE ORDER (A,B,LONG)
ASCENDING ORDER SCRTER FOR VECTOR A, WITH LABEL B
CTHENSION A (LONG)
LOGICAL#1 B{LCUG),BB,TEST
II=LONG-1 :
T3ST=.TRUE.
PO 15 I=1,II
IF (A(T).LE.A(I+1)) GO TO 10
TEST=.TFALSE.
AA=A (T)
A(I)=A(I+1)
A(I+1)=ARA
BB=B(T) ; ,
B(T)=B(T+1) A ‘ ; — E=——
B(I+1) =BB e
10 CONTINUE
15 CONTINUFE
IF (.NOT. TEST) GO TO 5
RETURN
END
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LIMIT
COLBASE
RO
COUNT
FOSIT TON
REUCORD

1

o

3
1
i+

INIT

3%
&
L1

NEXTWORD

SUBROU

[

ESHETD
ECU
EeU
=CG
QU
ey

FQU

S0u
ECU
3GU
USTNG
STH

FETCH

L
IJ

FETCH

LH
C
ENH
LA

INITIA

LR
XR
AR

LA
SXPAND

CR
BHMNL
L

AR
SRIL
OR
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TINE CHANGD

FoR - L AR R

O JOWn & wiv

10
CIIANGY, 1S

T, 1212 [13)
EARAELTERS
RECCRD,0 (1) . TINPUT
START, 4(1) OUTPUT

T1TH HALFWORD INTO LTIMIT

LIMTT, 20 (RECORD)
LIMIT,=F'1341 IS IT LEGAL

INTIT YES

LINIT,134 NO, PUT TIN MAX POSS LEGAL VALUE ANYWAY
LIZE

CCLBASE,START COLUMN EASE REGTSTER

ROW,ROW FIRST ROW

CCUNT ,COUNT NUMBER OT HALFWORDS EXPANDED.
POSITION, 24 DISPLACEMENT FOR 13TI HALFWCREL.

NEXT WORD.

COUWT,LINIT HAVE WE DONE ENOUGH YET?

ZERC :

WORD1, 0 (RECORD,POSITION)

WCED2 ,WORD2  FOR SHIFTING LOW 16 BITS INTO.
WORD1, 16
WORD1,WORD2

REASSEMELE WORLEL IN CORRECT ORDER.




109

\

3 BEBARK BITS CI'F.
3
NEXIRIT C ROW,=1*124¢ ENE OF CURRENT COLUHMN?T
PH INC YB S 3
SRDL WCRD1,1 GET N BIT
: SRL HORD2, 31 MAKE IT A 1 OR A O
! ST WGCRD2 ,0 (CCLEASE, ROW) STORE 1IT.
; LA ROV, 4 (ROW) NEX1 ROW DOWN.
! B NEXTRTT
! 3
4 THCREMENT T3 VARTCUS CCUNTERS
' 3
INC LA CCLBASE,128 (CCLRASE) NEW COLUUN
R RO¥,ROWU FIRST ROR,
| LA CCUNT ,2 (CCUNT) 2 MORE HALFWORDS DONE
'g LA QOSITION,Q(POSITION) NEXT PAIR CN INLFUT EECCREL.
i B NEXTWORD AND CARRY ON.
} 2
' 3 SET REMAINDER OF CUTEUT AREA TO ZERO
3%
; AR H SLL CQOUNT ,6 NUMRBER CF BYTES GENERATED,
! KR WORD1,WORD A ZERO T0 STORE.
! L LIMIT,=F'8572" ADCR OF LAST WORD IN OUT2UT ARE
: STORE CR COUNT,LINIT IS ALL THE REST ZERC? ;
DI oXIT YES. :
ST WORD1,0(START,COUNT) STORE ANOTHER ONE.
; LA CCUNT , U {(CCUNT) POINT TO NEXT WORD.
; B STORE,
! 3t
: # RETURN TO MAIN PROGRAMME.
3* :
SXIT LM 14,12,12(13)
BR 14

END
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APPENDIX 8.

Calculation of the Expected Overlap of (Ar(\ 841

Probability of overlap of 1 = P1

i
o

Probabllity of overlap of 2

il
g

Probability of overlap of 3

m
Expected volume of overlap = E: r.Pr
r=0

The probability of overlap of r bits 1s (the number of ways
(m - r) bits can be taken from (N - y)) . (the number of ways
r bits can be taken from An)/(the total number of ways m bits

can be taken from N)
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APPENDIX 9.

m
- Yy N-y e N
Proof of :E: Cr 5 Cm—r Cm
r=0
By the binomial expansion
N & I N N
v -y _ T ¥\ ruyer Z(—y) s, N-y-s
(a + ) (a + D) > (P)ab ) a%
r=0 8=0
- EZ (y) (F-y) gts N-(r+s)
r s

r,s

Putting m = r + s and summlng over r

(a + )V = i (ﬂ) gyl

(0= L e

APPENDIX 10,

Best straight line fit of a set of points {xi,yiz to y =nmx + ¢

is given by
{fo— Zyi - in inyi}/{n in - (3 Xi)2
(n Sry, - Bxg S v/ 82 - (% %2

O"_y!n/(n pud x:‘:f - (3 Xi)2) and ¢ = \/Z(Syi)z/(n - 2)

Q
il

Il

and m

Il

Om
where §y, = i - (mxi + b); oy is the standard deviation of
vhe points from the expected y values; and.ah is the stand-

ard deviation of m about the mean.
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