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1.1

1'1.1

Chapter 1

BACKGROUND, HISTORY AND GENERAL INTRODUCTION

Background and history.

Optimisation problems. The class of problems that seek to

dptimise a function of a number of varigbles (functions) subject
to cértain constraints on the varisbles (functions) are, in
general, called .optimisation problems. These have long interest-
ed and intrigued mathematiciansj; Euclid in the 3rd Century B.C.,
for example, mentioned a number of optimisation problems in his

Elements. Most of the optimisation problems, however, defied

rigorous solution until the development of such mathematical

disciplines as the calculus of variations, differential calculus

and the like. These have subsequently been applied, with

considerable success, to the solution of a wide range of

classical optimisation problems arising mainly in the fields

of engineering sciences, geometry and physical sciences. In the

past two decades or so a new class of optimisation problems,

termed "programming" problems, have been encountered - arising
mainly in the fields of economiec theory, business, military and
industrial operations. These are usually not emenable to

solution by the classical method of calculus.
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Classical methods using lagrangian multiplier techniqu.e_s1 have
however been developed (Klien 1955(50] ) for resolving the non-
ﬁegativity requiremenfs of the variables in the problems with in-
equality constraints. These are found to be most impractical
except for the solution of 'toy' problems (Charnes and Cooper,

1955 [111)+
Programming Problems:  The genefal programming problem is con-
cerned with maximising or minimising a given objective function
subject to a set of restrictions; mathematically, it may be state:
as under:

Find a vector X = (%, %, - + -« ° 3(-“) which maximises (or mini-

mises)
F = f(:><> ’
subject to
%L(X> > O ) i/::-‘,?.’-. . .’ml
I ]
k‘k(.x‘>:=o ? 'kr:l,z,...’mz (101.1)
and

X >0 -
If the functions £, {9, } and § %%’} are all linear the problem

. 3 5. .2 :
@u]u]>1s called the linear programming problem. If any of these
functions is non-linear, it is called the non-linear programming
problem; in particular, if { is a quadratic function and {W%L}

3

1. Developments to Lagrangian multiplier techniques have, however,

and {ﬁ/} are linear, then it is a quadratic programming problem,

been continued to be made to tackle both the linear and non-linea
progrémming problems (Everett 1963@3Falk, 1967 EZSD-

2. The term 'linear programming' was suggested by T.C. Koopmans

to G.B, Dantzig in 1951 as an alternative to the earlier form

'programming in a linear structure’ (Dantzig IQhBINGJ)-
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3
The linear programming problem may, further, be

classified as the general structure or special structure
programming problem depending upon whether the coefficient

matrices in {%0} and{‘?vk} have the former or the latter

~structure. This thesis is concerned with the general linear

programming structure and quadraticsprogramming problems.,
History. The famous mathematician J.B.J. Fourier ( 1826 [281)
appears to be the first to have come across a linear programming
problem while attempting to find the least maximum deviationfit
to a system of linear equationst, Interestingly his suggestion
for the solution of the above problem by vertex to vertex
descent to the minimum is also the principle behind the Simplex
Method of linear programming developed by G.B. Dantzig in 1947,
Later the well known mathematician M.Ch.J. de ‘la Vallee Poussin
(l9llﬂﬁDalso, while consideriﬁg the above problem, suggests a
similar solution.

Subsequently, the Russian mathematician L.V. Kantrovich
( 1939, 1942@imlwhile considering the application of mathematics
to production problems and in particular to transportation
problems, seems to be the first to have recognised the well

defined mathematical structure of production problems that were

ameneble to numerical solution. His joint paper with

3.The case when the function {f has a positive semidefinite
quadratic form,
4, Fourier reduced this problem to finding the lowest point of &

polyhyderal set.




N
M.K. Gavurin ( 1949@i)descrives in detail the theory of the
transshipment problem. The computational algorithm given in
this paper is, however, incomplete. During this périod
Hitchcock 19L1Mdindependently formulated and solved the'
transportation problemsand later Gs Stigler (19&5&®described the
famous 'diet problemﬁﬁ
However, despite the recognition of linear programming
problems in one form or the other, it was only in 1947 that the
general linear programming problem was formulated in precise
mathematical terms by G.B. Dantzig and others in the U.S.
department of the Air Force which then constituted a group
called project SCOOP (scientific computetion of optimal
programs). The most outstanding contribution of project SCOOP
was the Simplex technique for the solution of the generai linear
| programming problem. It was presented by G.B. Dantzig @9h9ll7n
at the historic conference (June 20 to 24,1949) held in Chicago
by the Cowles Cqmmission for Research in Economics and whose
proceedings were brought out under the direction of T.C. Koopmans
in 1951. The important results on duality based on unpublished
notes of J. Von Neuman were also, for the first time, presented

by Dantzig @951@@bnd Gale, Kuhn and Tucker (i951§@at the same

5.T.C. Koopmans (}QMYB@too independently later solved this
problem.,

6.The diet problem was, in fa;t, formulated and approximately
proposed in 1941 by Jerome Cornfield in an unpublished memorandum
and treated by George Stigler by what he calls an 'experimental

procedure!,
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conference,

Subsequently an important and, in fact, the first
symposium in Line;;mggggﬁgiigfggmgﬁd Programming was held
(June 14 to 16, 1951) in Washington under the joint auspices of
the Air Force and the National Bureau of Standards. The
proceedings of the symposium were published in 1952, under the
direction of A. Orden and L. Goldstein[éd].The proceedings of
these symposia are of significance in the history of linear
programming as they constituted for a number of years the only
general source of information and no doubt provided great
stimulus to a number of indiviéuaIStmilresearch orgenisations
for further research, developments and extensions in the field
of linear programming.

Subsequently a number{symposia in linear programming
(or covering the linear programming field) have been held and alsc
a number of journals from different computing, operational
research and allied fields sprang up all over the world. This
has mainly been due to remarkeble growth in the applications of
lineéf programming to industrial problems and the simultaneous
development of new techniques for the solution of linear
programming problems.- Of the latter, the Dual Simplex Method [5¢]
developed by Lemke in 1954, may particularly be mentioned being
concerned with those aspeéts of the general linear programming
problem that, though often peculiaf to the former, were not
covered by the Simplex Method. As a result the Composite
Simplex-Dual Simplex algorithm [1& , 591 appeared in 1954. There

are a number of 6th¢r methods which can be used for solving the




¢
linear programming problem. These include: Relaxation Method,
Motzkin and Schoenberg [5% 1 H Projection method, Tompking [ 75]
the Double Gradient and Multiplex Methods, Frisch(31,30] ; the
Hungarian Method, Kuhn [831 ; the Stepping Stone Method, Charnes
and ‘Cooper [icl and a refinement to this me’c.hod7 called the
MODI Method [263] ; the Ratio-Analysis Method , Fergusson and
Seargent [26] ; the Primal-Dual algorithm, Dantzig, Ford and
Fulkerson [20] and Ford and Fulkerson [27%] ; the Decomposition
techniques? » Dantzig and Wolfe [21] , Beale [ 71 , Balas[83%4%5]
Branch and Bounding Methodg , Land and Doig [ 5 5] etc. etc.
However, as noted by Hoffman, Mannos, Sokolowsky and Weigmann
(1953[42]]&11(1 Hoffmann (1955[4@, most of these methods have not
proved as effective in solving the general linear programming
problem as the Simplex technique or some version of the Simplex
technique - mainly‘because of the slowness in convergence and the
very large number of iterations required. The Multiplex Method
[ 30,86] though has been claimed by its author to be quite
effective compared to the Simplex Method for medium sized
problemga.' The method ﬁas, "however, not been extensively coded

on computers.

7. and also the .Transporta.tion Problem procedure developed by
A. Henderson and R. Schlaifer [39].

8. A similar method is described in Waugh & Burrows [80],

9. It may be noted "tha’c these techniques are mainly concerned

with 'special structured' linear programming problems,

Qa. whexe ¥ mumber of remsbusie vaniabls is debno 300+ 50,
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1.1.3.1 Computer Codes. The general Simplex Method was first program-

102.

med for the SEAC Computer by Alex Orden of the U.S. Air Force
and A.J., Hoffman of the National Bureau of Standards in January
1952. Later W. Orchard Hays of the Rand Corporation coded the

Simplex Method for the IBM-CPC in 1952, for the IBM-TOl in 195k

.and the IBM-TO4 in 1956. Subsequently, with the tremendous

growth in applications of linear programming to problems of
business and industry, computgr codes for the Simplex and other
methods have been written on most of the intermediate and large
genersl purpose electronic computgrs throughout the world.
Introduction. As stated earlier the Simplex Method (or its
variations é.g. Dual Simplex Me£hod ) has thus far been the most
effictive and widely used general method for the solution of
linear programming problems. The Simpléx Method in its various
forms starts initially with a basic feasible solution and
continues its moves in different iterations within the feasible
region till it finds the optimal solution. The only other
notable variation of the Simplex Method, namely the Dual Simplex
Method, on the other hand, by virtue of the special formulation
of the linear programming problem, starts with am in-feasible
solution and continues to move in the in-feasible region till
it finds the optimal solution at which it enters the feasible
region, In other respects both the Simﬁlex and the Dual Simplex
Methods follow essentially the same principle for obtaining tﬁe
optimal solution. The rigorous mathematical feastures have been
widely discussed in the literature[i1R ,19,34,35,38,68, 7% ] and

only those formal aspects of this topic which are closely related
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to the suhjecﬁ of this thesis will be outlined.

The Multiplex Method, though reported in the literature[3o0,
15,69,712932], is not so well known and has also not been widely
coded on electronic computers. It had earlier been programmed fox
the English Electric's Computer 'DEUCE' by the author[ 721 and
the Ferranti's 'MERCURY' by Ole-John Dehl in 1960 [i8] . Later
both the above mentioned computers were obsolete and the efforts
presently concentrate on coding it for UNIVAC 1100 and IBM 360.
The Multiplex Method, as such, has been included iﬂ the pfesgnt
thesis and discussed in somé detall in chapter 2. The fiow
diagram and the algorithm for the method is given in section 2.4,
chapter 2.

The main body of the thesis consists of developing a new
linear programping method which has been called the Bounding
Hyperplane Methoé? - Part I. This is explained in detail in
chapter 3. The method could initially start with either a basic
feasible or in-feasible point and in its subsequent moves it
mey either alternate between the feasible and the .in-feasible
regions or get restricted to either of them depending upon the
problem. It is applicable as a new phase which we call phase O
to the Simplex Method, particularly in situations where an
initial basic feasible poinp is not availsble. In such cases it
either results in a feasible point at the end of phase O or else
yields a 'better' in-feasible point for phase 1 operations of

the Simplex Method. Moreover, it is found that the number of

40.It is abbreviated henceforth as either B.H.P. Method or B.H.P.M,
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iterations required to reach either the former by the application
of phase O or the latter by the application of first phase O and
then phase 1 are, in general, less than those required by follow-
ing phase 1 alone. This is explained with illustrations in
chapter 6. Even when applied alone the method, in general,
yields the optimal solution in fewer iterations'as'comparéd with
the Simplex Method. This is illustrated with examples in chapter
3.

We also develop and illustrate a powerful but straight-—
forward method whereby we first find the solution to the equality
constraints and (if the former does not yield an inconsistent
solution point) then the transformations to the latter are
obtained from the equality solution tableau cofresponding to the
former. This results in reducing the iteration time appreciably
for each iteration of the method. It has been called the
B.H.P.M. - part II and is discussed in chapter k.

To estimate the time taken by the B.H.P. and the Simplex
Method, the two codes (written in Fortran) have been run on &
number of problems taken from the literature. The results have
been summarised in chapter T.

Finally, tﬁe suggestions ‘for further research towards (i)
the extensions of B.H.P.M. to the quadratic programming problem
where the function in (1.1.1) is positive semi-~definite, and
(ii) the accuracy'of computations in linear programming, in gen=
eral, are discussed in sections 8.1 and 8.2 respectively of

chapter 8.

3 ANl oty
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Chapter 2

THE GENERAL LINEAR PROGRAMMING PROBLEM

2 Formulation of the general linear programminé?problem.
2.1 Formulation 1.

Maximise the optimal function

F=0CX , {2,141}
subject to the conditions
<
A X > Po ! : (2,1.2)
and
X >0 5 (2.1.3)
where
%, B By = reevn = Qg
®, ‘aju'a‘?ﬂ.""""qﬁh
K s ! ’ A = . y (2.1.4)
- * a’mla'm:.......aam’,
1
Y2
E = ; y (2.1.5)
Vi
and_
c - I c| Ca_ ¢ * o e GP A (2a1-6)

{{ Abbreviated as 'L.P. problem' in future 'discussions.




2.2 Formuletion 2.
The above can be formulated also as follows:

Maximise the optimal function (2,1,)subject to

Y- TP 4 ) (2.2.1)

where'™
0w s ., (2.2.2)
G= ( E"’) , | (2.2.3)
A
and Q- (ﬁ ) ; | - (2.2.h)

E ., snd L, being respectively the identity submatrix ('beﬂf) and
the column vector (I X ‘Yv) consisting of some very large numbers
corresponding to the vv elements (variables) of the column vector

X (0xm). Further Y is the column vector (1 xN)

Y =( \Y/i) ; (2.2.5)

where - . : W

Y Ex)=| o |

(2.2.6)

and N = n+m i (8:.2.7)
12.The vectors (' and X comprise n elements {(1nstead of p ) in this
formulation; also the matrix A is of the order of (w xw) .
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12
The latter formulation is used in the Multiplex Method [30]

for finding the optimal solution to the general linear program-
ming problem. We shall now discuss the Multiplex Method and retu
to the former formulation for describing the B.H.P. Method and
thé related work in subsequent chap%ers.
The Multiplex Method of Linear Pfogramming.

Let'thé inequalities (2.2.2), in general, be considered as

follows

—

Y £ Y sY 5 ; ' (2.2.8)
where Y and Y denote the lower and upper boundé of ., Tet L.J
be the set of indices of the rows and columns of G (= %, ,
an Nxw matrix). Also let G, ,( « I )define the row space
of G so that
o=l %52 %] s 28L . (229
Further let Ihd‘CZ 1l 5 Id#-C: I be the set of indices of
the rows of G corresponding to the matrices E.,, and A respect-
ively. Ting @nd qu, then define the ‘independent' and
'dependent' sets (of the variables) Y" and Yz respectively.
Let Iopm < 1 be the set 6f indices 4 for which the elements
Yyr b € I 4w belong to the operation vector’ <\/ (-s Ix D, Osn),

that is
A A

Y o=l ¢ €Llopm . (2.2.10 (1))

13.Frisch .29, 30] calls this vector the operation set. Initially

N
Y is a null vector.
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The vector Y is such that
(i) the elements (variables) "%’L s b € Ign are at
their either lower or upper bounds as the case may

be and are linearly independent,

5 i A
and (ii) if %" % then /‘31‘, <0 . (2.2.10 (4i)
. - ,bqum.
or else if % ’?3' then /)b 30

where /)& s called the regression coefficients, are

the element of the regression vector

R=|Pi| »v€lopn » (2.2.11)
given by
R-M"My - (2imaz)

The moment matrix’ M and the column vector M g

are given by

M- (m,-,k) "»&le s " (2.B13)

Moha ch (2.2.114)

where

™Mot = Gy G;_ » h€ Lo (2.2.15)

i4. The moment matrix M is a symmetric matrix in view of (2.2.15)

X g . -
and so also is- the inverse moment matrix M™.




1k

and the‘superscripg'T denotes the transposition
- to a ecolumn vector.
The condition (2.2.10 (ii)) above is termed the
sign-correctness of the regression coefficients;
if the opposite is the case then the latter are
said to be sign-incorrect.
Additionally; in view of (2.2.10 (ii)) above the direction
numbers of fzz » ¥ el,,  are set to zero,’so as to ?etaln
them on their bounds. The direction numbers denoted by o ,

. - your
v €1 are given by the| vector

D = (D, D) =|dy| (2.2.16)
where
i .
o ’d’*'l 3 ])z=[d,4-,]._, (2.2.11)
and
O(; o +f§1.,“ 3’;“-,@ b €L, ; (2.2.18).
=0 , b€ (T NTp)
2 N 52”03 g +s§ f%,fm & ﬁg %kj

ds

1he Tap.  (2,2,19)
o,beCI,f,,\,ﬂIM,)

)

These direction numbers, in turn, are utilised in selecting

%f 3 ﬂ wi €& I for its entry in the operation vector by
1’

15. The sﬁperscript T would henceforth be used to denote the trans-
position of either a matrix or a row to column vector and vice-

versa, as the case may be.
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following the criterion below,

% . P _% = M:U‘Yb A"f"'
P ol:'q be I d

(2.2,20)

Nog

[ 2

where

I VIR . <o
A"zh ﬁd;& o P , (2.2.21)
= 13'4', - nj,o For. dq‘, >0

[+]

ﬁf& are the elements of the vector
o o
Y"%{,

the superscript '°' denoting the initial point which is either

(2.2.22)

. . 16 . a
readily availsble from the problem itself (for example, in many
situations it could be the lower bound values of the variables)

/
or can be found and 1 is defined by

!

il PR | (2.2.23)

'A,“mv snd %f are termed the breaking out parameter and the

variable respectlvely, the latter is included in Y’ « The

nev inverse moment matrix required for qomputlng the regression

vector R is then obtained from

/
M - _MZ . (2.2.2L)
nows T ?
Z /oy

i6. As it happens, in most of the macro-economic problems, to whict
the Multiplex Method has been mainly applied, an initial point is
generally available; however, if it is not available then it can 1

found using one of the methods discussed in [30].
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Where
!

N “M:u ~a Z‘T‘ : (2.2.25)

end the column vectors Q. 1 Z and the scalar c.J,m are given
by |
Q e M:M Moo Moo= lqu ,,b(q(wﬂe Iedm’ - (2.2.26)
T = Q/Oqn 1 Qg = vy + QM- (2.2.27)
Since the regression coefficents /)b o Iefm should
remain sign correct, after %"l has also entered the operation
vector Q it is checked that the conditions(2.2.10(ii))are satisfied.
If, therefore, one or more variables turn out to be sign-incorrect
then the one encountered last as sign~incorrect is removed from
Q . As often happens, <\( may no longer consisf of si-gn-
incorrect variables; but if this is not the case then we continue
-t0 remove, one by one, sign—incorrect variables till Q comprise:
only sign-correct varisbles. The elements of the inverse moment |
matrix are updated each time a sign-incorrect variable is removed

A : ; ] )
from Y and the new inverse moment matrix elements are obtained

(each time) from,

S P ) (2.2.28)
¢

where T is the index of the variable 'lé, i turning out to be sign-~

incorrect, _§,”, is the pivotal element of the old inverse moment

matrix and S (=,§Wl=!§'rj, 3 L,f e l'o’m)is the T

column (or row) vector of the old inverse moment matrix. C In
ol

computing me from (2.2.28) the elements of those vectors

which correspond to the ’Tﬂ’ row and column turn out to be null
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vectors and hence care is taken to squeeze the matrix

correspondingly by one dimension each time a sign—-incorrect
variable is removed from <? ] .
The new point &t the end of each iteration is given by

N Y e Ko WD (2.2:29)
and this, in turn, becomes the starting point fbr~suﬂsequent
iterations.

If, in the course of different iterations, it is found that

((vi e I')( dy=0)) (2.2.30)

then it is implied that the optimal point has been obtained. The
- general optimal criterion (which would also be satisfied if

(2.2.30) is true), however, is that the preference'direction numbel

OLo & g ‘ (2.2.31)

. where

dy = D' " (2.2.32)

and ¢ is the threshold value designed to take into consideration
the round off errors as well as errors in the data. The optimal

value when (2.230) is true is given by

F = CYi(__— C’)(), (2.2.33)

At this stage, if
D= 1 (refer 2.2.10G)) > (2.2.34) .

then the optimum point obtained is unique. If, on the other hand,

D <) y (2.2.35)

it implies that there exists at least one set of -2 linearly
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independent variables which generate a linear manifold such that

the value of the optimal function is the same at every point of

this manifoldt



2.4, The Multiplex flow diagram and

2.4.1. The flow diagram .
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the algorithm,

also the threshhold value €.
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and the regression vector.

21l the variables

sign-correct reg-— No

Find the index of the last
sign-incorrect (if more than
one) variable for its ex-—

ression coeff-
icients?

A

clusion from the operation
vector.
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The algorithm. For the prupose of describing the algorithm of

this section let M denote the section 2.4.2. The _algorithm is

iterative and detailed as follows.

M.

M.l

M.1.1

M.1l.2

" M.1l.2.1

M.1l.2.2

M.2
M.2.1

M.2.1.1

M2.1.8

M.2.2

M.2.2.1

(2:2.19) and

. Find D &nd o, from (2.2.16) to/(2.2.32) respectively.

Test d, @
if dy, < e s then print the values of all the variable
the shadow prices and the optimal functio
(2.2.41)
value given by (2.2.5)[, (2.2.33) respect~—
~ively.
if not, then
" (i) compute )\m ;M from (2.2.20),\’ from
(2.2.29) and set oL.,] =
(ii) compute the new inverse moment matrix from
(2.2.24) or (2.2.28) ~ as the case may be,

the regression vector R from (2.2.11) and

update the operation vector.

. A - 8 s
.16 /:’b >0 test W, and count 4 in gy, :
if A = is sign—-correct, go to
b- s Pu io simcomecs, &
M.3;
. otherwise f; is sign-incorrect , go to
M.2.2.3;
if not, test aa,b and count 4 in q,"
if qd, ah ; /34’ is sign correct, go

to M. 3;
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M.2.2.2 otherwise pb is sign-incorrgct;
M.2.2.3 b=7 | gdto M.1.2.2;

M.3 . test (q,+Gy):

M.3.1 if (ch—k avz) £ g0 to M.2;

M.3.2  otherwise go to M.:

4.7 is the last sign-incorrect varisble encountered in ¥.
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Chapter 3

THE BOUNDING HYPERPLANE METHOD OF LINEAR PROGRAMMING - PART I

Let the general l.p. programming be considered as formulat-
ed in section 2.1 of chapter 2. We consider the inequality
constraints of the system (2.1.1)-(2.1.3) alone in this chapter;
the equality constraints can be treated independently of the
former and hence.are treated separately as part II of the B.H.P.
Method in the ﬁext chapter,
3.1 The Inequalities. Let the inequality constraints in (2.1.2) be

converted to equations by (i) multiplying the constraints of ‘>’
type (I), if any, by =1 so as to convert them first to constraints
of ‘&£’ type (II) and then (ii) adding a positive slack variable
to each of the type (II) constraints. The resulting system of

'equations and the l.p. problem could then be rewritten as

Maximise
P o % , (3.1.1)
subject to | _ '
BX=-1 , (3.1.2)
and
B0 4 | (3.1.3)
where
*i
Xy
N : y A (3.1.4)
3
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:B::- Pl PZ d---PW'._.'— " , 2 (3-1-5)

= Cj for Jmi,2,.00p

e v e C

,C.-_,Ic,.cz.‘..c nl’ 3

=0 fﬁ' 5- PHlspia,eee ey,
(3.1.6)

T, is given by (2.1.5) with signs corresponding to type II
inequalities, if any, changed, 0 is a null véctor and

" =p+m . 3.1.6 (i)
If we consider;‘f;he slack variables in the set of equations (3.1.2)
we note that they, being a set of m linearly independent vectors
corresponding to m structural constraints in the original set
(‘2.1.2), constitute for our study an initial basis. Let

F. B aguwwsns gl

prt pea n denote this set of m linearly independ~

ent vectors so that the ipitial basis is given by

ﬁ,[a+‘|‘ P« - »-s o (3




o),

whence we have,

S"<=/3F;m4m'*5<’= N © (3.1.8)

" /5 B : | (3.1.9)

F =%
= CX
=CA P whos C =y Cppee cp] s (3.2.10)
7 ) Zy Zs oL Z,4B-1.11(i))
i Ly = Cy Zg =Cy ¥ e Zy - Cp,
| @B~ EB-& .. CB

u it
Al N
o
:_E' =9
Q
R
. N
. bl
9 9
e
N
';' :
o
e >

(3.1.11 (ii))

18. In particular the initial solution X given by (3.1.8) may thus

be either an infeasible or a feasible solution. It need not

necessarily be the latter as is prerequisite with some other

methods, for example the Simplex Method. ‘=’ sign associated with

X E,E corresponds to the current point or tableau.
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Let the general B.H.P. (method) tableau bé given by

)

LR TP PPN R oy

BN

.M = {3.1.22)

<
yA ¥

where the contents of the tableau are defined by (3.1.8) to
(3.1.11). Let I ,J be the set of indices of the rows and

columns of B . Let IiC‘ I denote the set of indices i for which

¥, <0 , L e I‘_'(if any) . (3.1.13)
Let J, « J be the set of indices § for which

- L; <0 » §e¢ J, . (3.1.1h)
and let '.4 and mod Z!,jdlrespectively denote the space spanned by

P; , 3 € J;  and the hyperplane with a1l Z; (i€ J,)
coefficients positive. Also let _EL (v e I) define the row

space of B so that,

. B"si by by, - - - bim] » b€l (3.1.15)
and let B‘l (43, ,isI ) denote the corresponding row

elements of —éb (b e I) for which (3.1.1l4) holds. Further let

I, < ] bve the set of indices A for which

©; <0 ’ (3:1.16)
20
where

0, ==2;_ Ei', Z, i € Jy 4 (8.1.0%7)

19. The general tableau M is different from the one considered
in the Simplex Method since the negative elements in P are re-
tained under X .

L2005 L” is proportional to the cosine of the angle between the

' normals to the mod 7Z j hyperplane (in the direction away from the
origin) and the LB hyperplane (z;n?’easible direction), Geometric-
ally, by considering (3.1.16) we therefore look for those hyper-

planes that have this angle less than 90 degreesj hence, the name

"hounding' for such hyperplanes.
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I o ‘then defines, what from now on will be termed as, the set
of the bdunding hyperplanes. We next define a bounding vector

A - comprising of elements A i ( i€ L,) such that,

Xy .
Ay = o sbed,. {3.1.18)
oy
Geometrically A ; may be interpreted as a scalar which is

proportional to di;, that is

Loy =Ry »2el, (3.1.19)
: &
where dv; denotes the distance from the origin of the [bounding

hyperplane in the increasing direction of the normal to the mod
Zy (3 € .TL) plane and &k is a constant (in so far as the current

solution point is concerned), given by
P
Q:(;Zﬂ> v § & T, (3.1.20)

The bounding vector A thus is & function of the distance of the
bounding hyperplanes { €I,, and the particular hyperplane M

for which

o Bp=min (A}) 1€l (3.1.21)
v

defines, therefore, the nearest bounding hyperplane in the

increasing direction of the normal to the mod Z i (j eJ 1) plane,

Clearly the of)timum point, if 3&.,' > 0 4 must either lie. |
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on or below the hyperplane ¥ given by (3.1.21), that is, in
that half space of the l hyperplane which is towards the origing
similarly, if X,]<:o s then the optimum point must either lie

on or above the hyperplane 7‘,that is, in that half space of the

n hyperplane which is away from the origin.

Utilising the above properties we select in each iteration
the Y] hyperplane out of the set.of the bounding hyperplanes as
observed from the basis point (that is the new origin) reached at
the last iteration until we arrive at the optimal solution to the
problem by following the decision rules enumerated below.
Decision rules; class R and S.

Class R. B B if
@3 €7) (z; <0)) (3.2.1)

.then the rules are defined as follows:

Rule Bl.  Select & (=n)€ I, from (3.1.21) sbove. This may
be termed the Exit Criterion for the Class R.

Rule R2. If F" denotes the value of ﬁhe.dbjecﬁive function at

the new point then, for L(r—n) €L, eand j €3“1 5

F ' aF - %, (z; /B) (3.2.2)

or IXF =F*_F=~aeb<zj/ﬁi)s(3.2.3)

where the particular § € J, is yet to be specified
AF

and/measures the change in the optimal function value

from one to the next move., Since we consider infeas-

ible solutions as well in our search for the opﬁimum,

the following two possiblities exist -




Either (i) xq S 0 | (3.2.4)

or o (ii) 96,1 <0 . 19.2:%5)
R2.1. If (3.2.4 ) is true, select T= 4§ € J, from
4 = ;
M?'* ‘ZJ/BL \ ? _BJ‘" >0; jGJ’i ,4’-::-1’] GIZ’(3‘2'6)

which gives the maximum increase to the optimal function value.

( Alternatively V= § € J, could also be selected from
v . . =, 5 ) — j
either (V) 'rv?waZj/Bj[ OT(’!)""‘?/*CZ:i :B{.,.),

where in both cases Bi >0, j€J , b =meI, ).
R2.2, If (3.2.5) is true themselect T=j e J, » for
which

-~ § 5 4 i

(3.2.7)
however, if it happens that

((vi e 3,3 BL > 8)) (3.2.8)

(so that T satisfying (3.2.7) can not be found) then select
T from
, =4 = .
P | Z; /B » B >0,i€n, (3.2.9)

{I ==‘Y" € Iz .

If a tie occurs in the selection of T then we choose any of

the § for which this tie occurs.  This is called the Entry

Criterion for class R .

In the former case the value of the optimal fungtion increas:

es as compared with its value in the last iteration but if the
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latter were to be true then the value of the optimsl function
decreases in the next iteration. (This might appear to lead to
a situation where an old basis may repeat‘itself. However, by
deciding to move in each iteration on the (nearest) bounding
hyperplane alone in the ¢14 space, we believe it is highly un-
likely that such a situation can arise. This has been confirmed
by the empirical evidence of running the computer program (for
B.H.P. method) on a number of both the small and large examples
andno case has thus far been encountered where the algorithm does
not terminate.)

The sbove decision rules thus uniquely determine +the hyper-
plane 7 to which to move and the axis T along which %o
move to the former. In particular };qq’ determines the pivotal
element on which the Gaussian eliminational transforﬁations,
according to formulae given in section 3.2.1, are performed to
obtain the new point and the tableau.

The foregoing rules will the;efdre either lead to the

- optimum point wherein

(vied)(z; >0) & (Yo e T)(%; >o)f3.2.10)
or else & point will be reached wich is consikred in class S

below .

Class S. If (refer also the Dual Simplex Method [ 5G] )

(30 €I) (<0 &(vie€T)(zy >0)) , (3.2.11)

then the rules are defined as follows.
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Rule S1. Select i(=w) € I, for which

o
A"l’ = 'rwz.,f (A'b) yb €L, 5 - (3.2.12)
where
A’iu = :f P 5:, #+0 ,i€L, 56'2'12 (1))
i

/ T <
6‘\) = ? {"{’j Zﬂ‘ 2 j€T, @€11,©.2.12 (ll)/

end 7’ denotes that hyperplane amongst the infeasible
hyperplanes which is farthest from‘ the origin in the
decreasing direction this time of the normal to the

mod Zj (i€J) hyperplane for the optimum point must now

either lie on or &bove the -v" hyperplane given by

(3.2.12). If, however, it is found that

((VL ¢ Ii)( &, = 0)) (3.2.13)

then we select the 'v]' hyperplane from

. . X / !
The geometrical interpretation of A‘.', o, and 'r]’ are

b j Ea‘ ) LGIL
(3.2.1h)

Ve
A

analagous to those of A ; ,5,and 7 discussed earlier
with the above mentioned restrictions that are peculiax
to the situation in class S. This is called the Exit
Criterion for the class S,

Rule S2. Select T = 5 € 3'2 for which

max (Z1/ k)04 €d,
| U u=m'(€L) ¢ (3.2415)




PAY AR SO 8T g DRy S Y%
B SEETCNTE o TSSO

31

where J, denotes the set of indices j € J for which

by <0 5 jeT 4 = (€1,) | (3.2.16)
This is called the Entry Criterion for the class S;and
is the same as in the Dual Simplex Method [86]. (A tie,
if any, is handled as in the case R2.2).
The optimal function value in class S decreases
in each move and must in a finite number of ‘steps yield
the optimal solution, if it exists; satisfying (3.2.10).
3.2.1 The pivotal tfansformations. .The pivotal transformations, for

obtaining the new point and the tableau for either of the above

two classes are given byao@

'{r‘vi = ("4"1' T ("’15 /I"vn'> b ""”2;]1 (3.2.17)
-y o Dy y je J+L »

%".V”‘ = ‘{?‘ni /‘(’:’]'r ) 'y,-rl

-where a prime denotes the new values of the elements in the trans-

and

formed tableau. (The new values of the objective function, the

shadow prices and the solution vector are respectively given by,

P ‘
{’H & {"mu vt = Foy
Y =/
bis = i,y Z'(='Z§),j €T (3.2.18)
14 4

3.3 The unbounded and non-feasible problems.

‘The condition

(('V"’ el)((vie 1) (% B |z 40))) (3.8:1

20¢). - M=m’ in (3.2.17),if the pivotal row (hyperplane) is
" :

selecyed following class S decision rules..
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which could also be written as

(CvieT) (vieT) (5 3 7, 30) » (3.3.1 (i)

or ((V'b el) (5; >0)), B, siven by (3.1.17), (3.3.1 (ii))

implies the unbounded probleﬁ; and the conditioh'
((FieI) (% <0) &(vieT)(byy>0) (3.3.2)

implies the non-feasible problem,

In either case there is no optimal solution to the problem.

The Unbounded Problem. Consider the spacead% spanned by

T o« 3 2% for which (3.1.1k) holds. Then if B s b eI

denotes the angle between the normals in 4){' to the mod Z; hyper-

plane (in tﬁe-direction towards the origin) and the vy hyper-

I;lane (in the feasible direction) we have
- e ‘
J

where % is a positive number given by

a Y
% -k (T (BL)) IRy (3.3.1)

‘If (3.3.1) or (3.3,1(ii)) holds for each 4 then (3.3.3) indicates
the non-existence of any bounding hyperplanes (or in other words
it indicates the existence of an open convex solution set). The
‘value Qf the optimal function can thus be increased infinitely

in the increasing direction éf the optimal function and no

finite (maximal) optimal solution to the problems exists.

The non-feesible pﬁﬁblem.' (3.3:2] imp;ies that (2.1.3) can
not belsatisfied and hence no optimal solution to the problem

exists.,
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Degeneracy and Cycling.

' Let us ‘reconsider the decision rules for the classes R and -
S. 1In following the exit criteria in either of the two classes,
if the v hyperplane happened to be the one with ¥, =0 then

D frem (3o2.92)

the new solution would be degenerate (& tie in computingmg*(&)&w
v{gﬂ, (A,) from (3.1.21), even if the current solution is
non—-degenerate, may lead to degeneracy in the new solution). It
must be significantly noted at this stage that those basic
variebles which have values equal to éero but correspond to non-
bounding hyperplanes are, in any case, excluded from further
consideration as wé select only bounding hyperplanes in sub-space
J‘f' « In effect,therefore,we are left with only such cases for
which |

; d .
X, =0, 4+ €I, (3.4.1)

b ,
where I,_ st T.z denotes the set of indices L for which

either X% ;, =0 , in degenerate cases,

{3.5.8)

or A ,=constant, i € L, in non-degenerate cases,

" In such s situation the "r] hyperplane may, in general, correspond

to any one of the ¥; for which (3.4,2) holds. We would, however,
proceed as follows.
Since A\ =0, te I:’ s _(that is, all such hyperplanes are

equidistant from the origin in the increasing direction of the
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normal t6 the mod Z ; (i e J,) plane), we determine the most

convergent hype'rplane from

9.,] ‘—“—'m:m'(ei,), i€ I: : | | (3.4.3)

If there is still a tie in computing the v ‘hyperplane uniquely

from(3.4.3)then we determine it from

/
Oy = ”}fm' (9;,) » 4 € Ii’ ; ~(3.4.0)
where
S -1 ’ ‘ Z;
Jed ., (3.1.5)
and

%{ =(§‘_Z7§)~z (§'{;"§j’-, 363- .

It is,indeed,highly improbable that a tie could still persist in
‘selecting the M hyperplane from either (3.4.3) or (3.4.4)
because if for no other reason, rounding errors are introduced

-during the computations. For this reason and consequent saving
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. in computing time we find that a simpler criterion for selecting

the Y hyperplane from
d
is efficient and expedient in resolving both the degenerate and/

or non—degenerate ties. As we shall show in illustrations given -

in section 3.7, we effectively resolve the cycling phenomenon in

- an artificially constructed example (for the Simplex Method) using

the Criterion (3.4.6). It may also be stated here that the same.

criterion has been used for resolving the cycling phenomenon in

‘another example due to Hoffman[ 4471 . The 1atter is, however,

not reported in the illustrations of section 3.7.
Geometrical Interpretation of the Method.

Let us consider the following two dimensional 1l.p. problem.

Maximise
F :-a‘-.cl!' +c.,_!€z ’ ‘ (3-5-1)
gubject to
a"!". *i + a’i’ﬂ-!’- 4 '(r.b )‘i’u"-'z,-. L 12" ’ (3-5.2)
and |
By 4 %y B0, : (3.5.3)

where A4 ,4=4,2, - -+, v are unrestricted in sign. We

presume without loss of generality that ¢, ,¢, >0 . Let the
("mv+2) constraints (3.5.2) and (3.5.3) be as shown in the graph
of Fig.3.1. The shaded region K formed by them defines the feas-
ible region as against the infeasible region surrounding K . Let

the optimal function{
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be as shown by the dotted line in the diagram., The optimum point
is obtained by moving the optimal function parallel to itself
until it reaches the point M (L) where it attains the maximum
(minimum) value.

As we see from the dia.g'ra.m in figure3l, certain half-planes
converge towards the maximal optimal point M and certain others
similarly converge towards the minimel optimsl point L . (It
may be noted that the(m)* and 1% helf-planes are 'completely!
redundant ones and although they appear to converge towards ™M
a.nd L respectively;they,in fact,are the least helpful in leading
towards the optimum point). Since as in a maximising case we
are interested in reaching the point M it will obviously be
advanta.géous to search for the former so that by moving in
different iterations on one’ or more of these half-plane we

ultimately converge at the point M . To distinguish the two

types of the half-planes, we consider the angles (denoted by
0, , v=4,2, . ... w ) between the normal in the
increasing direction'of the functional Z = —¢y % ¢, x,
and the normals to the half-planes given by@.ﬁz)in the feasible

region. The bounding half-planes that converge towards M are

those for which

0 <& 6, £ 90 ; (3.5.4)

20 This is same as the decreasing diredtion of the mod Zj plene

(that is towards the origin).
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Similarly the non-bounding half-planes that converge towards L

are the ones for which
: 90° € 93 £ 180 . (3.5.5)

From snalytical geometry we know that the cosine of the angle

A : »
(as defined above) between the ™ half-plane Oy%; + au%, < &y
¢ b =4 ,2 4 ¢ - o "m,) and the functional Z = ~c, ¥ -¢,x,

is given by

= Qg G — Ay &y

Cos 9.{, = 5

(3.5.6)
Jaiy vaf, /e
| = ’&1 (-" Qpg © = Qypn c,_) 7 (3.5.7)
where ‘k, is a positive number given by
. Yo =Ya.
Ry = (a,ii +ag,) (c:i‘ rer) - (3.5.8)

In our search for the optimum we, however, consider (refer disussims il
ing(3.1.19) ) the increasing direction of the normal to the

W
mod Zj (—.—. C, %y +C, ¥, ) plane instead so that if/may define
95& to be the angle between the former and the normal to the

b % half-plane in the feasible direction then we observe that
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95 ;, 1is related to O by
P, + 9, = 180 (3.5.9)

whence, in view of (3.5.4) , (3.5.5) and (3.5.7) , the

type of the bz& half-plane as bounding or not is determined from
—QpCy Ty, 0 <o (3.5.1(3)
or
=y O "' .%2 Cp >0 (3.5.11)

respectively. Computationally, therefore, we determine the
bounding nature of the %,5' hyperplane from the negativity of the
inner product given by the left hand side term of (3.5.10) < .
We next wish to determine the specific half-plane out of all the
bounding half~planés in the system which leads us towards the
optimum point M such that the 'completely'! redundant (@“ﬁgﬁ)
half-plane is avoided too. Let us at this stage, for simplicity
of exposition consider just v = 9 half-planes with optimal
function as shown by the dotted line. To make the figure(problem)
representative for all the types of half-planes we consider the
‘nine half-planes to comprise four - non-bounding and five
bounding half-planes. These are numbered 1,2,3,9and 4,5,6,7,8
respectively in fig.3l. Furthermore, of the former number 1 is

a redundant non-bounding half-plane and of the latter, numbers

7 and 8 are redundant bounding half-planes. (The redundant

half-planes 1, 7 and 8, as may be seen from figure3l, are such
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t.ha.t they play no part in defining the feasible region K ),

The optimal point M is defined by the intersection of two
bounding half-plane numbers 4 and 6. If we now look at the
increasing direction of the normal to the mod Z plane (indicated
by the thick line with an arrow) in figure3l then we find that
tHe 'ha.lf—plane number 4 happens to be one of these two half-
planes; in fact, it is also the nearest (out of all the bounding
half-planes) one from the origin 0 . Thus if we know the
distances of all the bounding half-planes in the increasing
direction of the normal to the mod Z. plane then by. selecting
the nearest (from the origin) half-plane we are able to deter-—
mine & plane which meets our requirements. In the present
example it, 1n fact, passes through the optimum point ‘M also.
For this purpose, we need, however, not determine the exach

distances of all the half-planes. Let us examine the 'static'

Jél, y h=dl,2, + . . ,m given by
b= b/ Coe - mye) (33
b, // Wjy + Qyp forecl (s
<) )
@) (o feos(00))

R d, ' . (3.5.13)

it

i

where R is a constant given by

b o. (of-,uc;)%' | | (3.5.14)
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and p; and o, respectively are (refer figured2) the perpendic-

ular distance and the distance in the increasing direction of the
normal to the mod %; half-;plane of the ¥ half—pl;.ne frém the
origin. It may significantly be noted that the latter is direct-
ly proportional to ad‘ given by (3.5.12), hence, in the above

example, we choose the nearest half-plane number 4 from

i (1), hehysees | (3.5.15)

The half-plane 4 is found to possess another interesting property
namely, if we consider the angle 0 given by (3.5.4) for

the four bounding half-planes then

64=mfw<ei,),6=4,5', 6, ; ' .
(3.5.16)

(aleo, P s (54;) y b w A BE ) «

It might be noticed that in determining 'Y?}'A/n -5 (or Mk %)
we considered only four bounding half-planes, that is 4,5,6 and
T. The redundant half-plane 8 had intentionally been excluded
for if it is :'Ln'c.zluded in determining m:xw 0y ( or Mmax ¢b); b=
4,5, . .-, 8 then, as could be seen from figure3l, the minimum
value now occurs for the half-plane 8, instead of 11T Obviously
we would like to guard ourselves against moving t0 a completely

- redundant half-plane and hence do not follow this latter criterior
in selecting the bounding hyperplanes for our moves in different
iterations!. (One salient feature, however, emerges from the
above discussion, namely that if a half-plane s_a.tisfies both
(3.5.15) and (3.5.16) then it must pass through the optimuzﬁ point
M).
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If we, therefore, follow the criterion given by (3.5.15)
then it adequately takes care of excluding the (completely)
redundant half-planes and also ensures a move in the relevant’
feasiblehand/or,infeasible region in our search for the optimum
point. It may also be observed here that to reach the half-plane
L, we have to move (whichever axis we might choose) into the in-
'feasible region. This, however, need not necessarily be the case
in all situations. For example if we remove the half-planes
nunbers 2 and 5 from consideration for a moment (their removal,
as we can see from the figure, does not effect the optimum point
M ) then the point R on the %X, -axis to which we move is in
the feasible region; moving on ¥, - axis (for reaching the half-
plane 4) would, however, still lead to an infeasible point P,say,
not shown in the figure3ll. .The decision whether to move to the
~point R or P is guided by consideration of the maximal increase
in the optimal function ( and not by consideration of movements
in the preselected feasible or infeasible region) so that we
would move to the (invisiblei point P in the sbove example. The
movement to a feasible or an infeasible point will, in each
iteration, however, depend on (i) the constraint system and (ii)
. the functional of the given l.p. problem. The latter perhaps
needs some elaboration.for clearer understanding. Let us con-
sider that in our example, the optimal function (3.5.1) is

changed to ,

24.This, in general, would include any such redundant bounding

_half-plene as number T in the infeasible‘region of figurell.




_hh.

F =-Cy %, +¢c, %, . (3.5.17)

instead, so that the functional Z now is
7, = Co¥y =0y (3.5.18)

The selected half-plane would then in this situation be one that
- is nearest to the origin O ir; the increasing direction of the
(mod) Z. = C, %, plane. It may be noted here that we do not
thus. (in the first iteration) consider the term -c, %,/ of
the optimal function (3.5.17) or in other words the term

€ c, x, of the functional (3.5.18) . This is because
the maximum increase (from the origin O) can, in this case,
obviously be obtained by moving along the ,-axis alone. More-
over, having thus selected the nearest bounding half-plane, we
would, in this case, move to it also by the %,-axis alone (in
general, it would be one of the mod Z; C je J’L) axes).. This is
because we restrict our moves in the sub-space &1 ,

To summarise, we move in each iteration of the B.H.P.

method from one vertex to another in the sub-space u‘% defined by
the set of those non-basic variables for which Z,‘ Ko,ied o

The decision whether the vértex, that we move to, lies in the

feasible or the 'infeasible region is governed entirely by the

sub-space ,}4 . The movements on the bounding hyperplanes in the

®

‘




3.6

3.7

L5

increasing direction of the normal to the mod Zj plane (hyper-
plane, in general) keeps us directing towards the optimum point
in each iteratién till we finally reach the latter, if it exists.
And as the initial starting point could be either feasible or.
infeasible we need also not concern ourselves with the problem
of starting the moves always from an initial basic feasible
solution point (as in the Simplex Method).
Estimation of the running time.
Excluding the bookkeeping operaxions, there will sapprox-

imately be L {5wmn+ém +Sn) ‘ multiplications and ..

%A& én~4) , additions in each iteration. If 2 and
Y  denote the multiply and add times of the Computer respectively

then the time for an iteration. is sbout

i G 'Sw D 4+ wv (Bn-) v
D | T e R £ (3.6.1)

and if L1 may denote the number of iterations required to reach
the optimal sé6lution then the total time required will be of the

order of

2 frn (59530 pm 69 -7) + 5md} ) (3.6.2)
2 . ' .

Illustrations.

We next illustrate the'methoé with examples.
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\
S.7.1 Example 1: Consider the problem of maximising

At Bl
subjeqt to the conditiops,
T
2x1 +3x2 >

X 4% 2

3 WnE

h el

o B -

5:;1 -3x2 <50
4x1 - <48

5x1 +

@ oo O B O B

»N

Nx
IA
~
L

0

o1

+
NN N

p

=2x%,  +3x, <21
-x +3x2 <27




and

i 2

12x

13x

4x

3x

0

A

2

tA

2

v

2

g =

j =

|
1

1,

Y

68
69 -

2

Rewriting the above problem in the form given by (3.L.1) -(3.1.3),"

we obtain,

maximise

X, # 1.1x2+0x3+0x4+0xs+0x6+0x

subject to.

-le- x2

-2X -3x2

1
x1-2x2

- x1-2x2

1

7

+0x_+0x +0x

8

9

1
'-_rOx1

0

6

+0x1

+0*

1

17

1

f0x12

0%, ¢

+%yg

+0x +Oi' +0k

13

+0x19+0x

* *13~ '

* Xy

20

14

fok

15

21

1
BN

]
v
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-x, + %, | fxls, = 6
~2x + 3%, : L l+xi6 = 21
iy ¥ B, R - = 27
X, +'12x2' | - X g = 168
3%, + 13x, | | | X9 = 169
X, = hka ; o +x20 = 0
X - 3x2 _ +x21 . 1
and xj 20 s J®LPy ¢« o w & 5 2l

The initial point is

(0,0,-k,-6 588,50 ,48,75,1.5,4,5,6,21,27,168,169,0,1) »

which, it should be noted, is an infeasible (basic) solution.

The value of the objective function at this point is obvicusly

.equal to O. The new point reached in iteration 1 is

(56.3,0.0,108.7,106.7,-52.3,50.3,48.3,-48.3,-231.7,-177.3,-206.7,
226.8,173.0,117.7,62.3,133.7,83.3,111.7,0.0,-~55.3,-56.3)

with the new objective function value equal to 56.33: The point

- reached is still infeasible; however, in iteration 2, we reach

the optimum ﬁoint, .

(13,10,32,50411,27,45,5,15,6,0,48.5533,21,9,17,10,35,0,18,27)

which is a feasible point with all Zj > 0 and the optimum

value equal to 24, The calculations in each iteration are shown

on the right hand side of the tables concerned with the partic-

ular iteration and are self-explanstory. Referring to the 2-

dimensional diagram in figure '3.3 on page
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S% we observe that the point reached in iteration 1 is given by L,

and that the next mo&e leads us straight to the optimum point G.

If, however, we had chosen to move along the (basic) feasible

points alone then, in the first place, we would requ;ré.at least.two
iterations to get to a feasible point, say, B in the diagram and
subsequently require at least 5 iterations to reach the optimum

point. Moreover, we would encounter the degeneracy situation in the 2
‘point C and that consumes an a@ditional iteration to get away from the theﬁé
current feasible‘point C to the next feasible point D. We would,
therefore, fequire a total of 8 iterations to reach the optimum point
in-this case, as against 2 iterations in following the bounding
hyperplane method fhat allows us tomve in either the infeasible region
alone or the feasible region alone or else both the infeasible and
feasible regions, till we reach the optimum point which of course has
to be in the feasible :egion‘only. In the present ekample, the moves
were all in the 1nfeasible reglon, till we reached the optimum point

G in the feasible region.

'37.2*Ekample 2: Consider another ekample of minimising"
---3/4x1 +.150x2 - 1/50x3 + 6x4 ¢ "

subject to the conditions,

1/43'c1 - 60x2 - 1/25x3 + 9x4 < 0
‘1/2x1,- 90x2 - 1/50x3‘+ 5x4 < 0
xs'i 1

and x.J >0 e, 234 » -

21wThe point L is the X'n of hyperplane ‘mo., 17 w1th.x axis and is not
shown in the flgure:33 : :
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The above is an unpublished example [35] of cycling in terms of
the primal (for the Simplex Method) due to Beale. Since, we
have been considering the general linear programming problem as

always consisting of & maximising objective function, we convert

the minimising function to the maximising one by multiplying the'jﬁ
former by -1} rewritiﬁg the problem in the form (1.7) to (1.9), :
’we have:
maximise
0.75x, - 150.00x, + 0.02x, - 6.00x, + 0.0x, + 0.0x, + 0.0x,

subject to the conditions,

0.25x, - 60.00x, - 0.0kx, + 9.00x, + X =0
0.50x, - 90.00x, - 0.02x, + 3.00x, + ¥, =0
X3 : e

arldx'j > O, j=l,2,tt!00’7b

The calculstions are shown in the adjoining tableaux,

which are self explanatory. | ?

‘The initisl point is (0.00,0.00,0.00,0.00,0.00,0.00,1.00)

The point remains stationary in the first iteration. In g
the next iteration, however, the optimum point given by

(0.04, 0.00,1.00,0.00,0.03, 0.00,0.00)
is reached with the optimal value of the objective function equal?ﬁ
to 1/20. | |

It may be éf interest to mention here that the above

artificially constructed example to illustrate cycling (with

seven bases) in the Simplex Method takes, even after using e-
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" Tablexd
. j |—> 1 2 3 4 5 6 7
C 0.75 ~150.00 0.02 -6.00 0.00 0.00 0.00
€ Basisy  Pp | P2 g e P % g ety
1 0.00 | P | 0.25 - 60.00 | -0.04 9.00 1.00 0.00 0.00 | 0.00
, 2 . 0.00 | P @ -90.00 -0.02 3.00 0.00 1.00 0.00 | 0.00
3 0.00 | P, | 0.00 0.00 1.00 0.00 0.00 0.00 1.00 | 1.00
i Z; -0.75 150.00 | -0.02 6.00 0.00 0.00 6.0
n . . .
 Calcilations : (3i € 7)(%4 <0)
i 8, = -0.1867; A =0.0; Since A, = A4, =0.00 (degeneracy),
o . | , " using the (Simpler)Criterion on =2 ;
i S : . 8y = - 0.3746; A, = 0.0; (3-4-6) , we choose n corresponding to _.
K . , 8, (as | 8,1>[ & ]).
§,=-0.02 ; A =50.0;
e , : . | . e | | N Since unN = Ou T =1 from ﬁU.Nmu 5
, el T | .. N . Pivot | = GNH = 0.50.
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Table3d
Iteration 1 3
1 0.00 ww 0.00 -15.00 -0.03 7.50 1.00 nﬂ.wo 0.00
2 0.75 mw 1.00 -180.00 -0.04 6.00 0.00 2.00 0.00
3 .00 wN 0.00 0.00 g 0.00 0.00 0.00 . 1.00
Nu 0.00 15.00 -0.05 Ho.mo 0.00 .50 0.00
Calculations: (34 € T) mNn.AOV‘ :
, 84 .N 0 )
mN >0 - = by = 20.00 from (3.£26); =2n=3;

3

8§, =~ 0.05; A, = 20.00

"o
i
<
o
ct
n

0, T =3 from (3.2.6) ;

b

33

= 1.00-




2z

Iteration 2

0.00 vm 0.00 -15.00 0.00 7.50 1.00 -0.50 0,03 0.03 .
0.75 wH 1.00 | -180.00 0.00 6.00 0.00 2.00 OLO# 0.04
0.02 ww 0.00 0.00 1.00 0.00 0.00 0.00 1.00 H.Od
Nu | 0.00 15.00 0.00 10.50 0.00 1.50 0.05 0.05
Calculations ” .

As the cemdilion (3.2.10) 4s

solution point is

.ZOﬂm"\H.

N.

The figure shown in the bottom extreme Hpmwﬁ cell wu<mm ﬁro value of the ovuwoﬁp<m

in each iterati

true the optimum point is reached.

0.04

= 0.00

1,00

0.00

on,.

el
il

The optimum value is 0.05 and the

0.03

0.00

0.00

The pivotal element is indicated by a circle around it.

function
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perturbation schemes for resolving degeneracy, six iterations to
reach the optimum point(ss].

3.7.3 Example 3. Let us consider Beale's [5] example (in terms of
the dusl also) that illustrates cycling in the Dual Simplex

Algorithm [56]. The problem is to

minimise
F = X 4
subject to
=1/bx, - 1/2x, +x, : : = ~3/h
' 8%, + 12x, +Xy = 20
X, o+ 1/2%, - x4 e =~1/2
=-gx, = 3%, s i = 6
and xj > 0 4 j=1,2,......,7;

The minimising function could be rewritten as a maximising funct- yf

o

ion in the form

F = w Rg

This example calls for the direct application of class S rules
alone. The calculations are shown in the adjoining tablesux. It
may be observed that the optimum point given by

(o, 3/2, 5/4, 0,20, 21/2)
is reached in two iterations. The problem otherwise cycleé with
six bases in the Dual Simplex method and can be solved only by

following one of the €~ perturbation schemes.




o Smmag e g N 30 W g vl A g P T S f s T £

cnoR g LR T e e
L
NG 1 . 2 3
3
“w " 0 0 -1
A~ . ~
c Basis Py P, Py P B (=X)
! 1 0 2 A -1/4 -1/2 0 -3/4
2 0 P 8 12 0 20
3 0 P | 1 1/2 Q -1/2
W o 4 0 ¥, -9 <3 0 0 0 o 1 6
: Z 0 0 1 0 0 0 0

o Since X4<o0y Xcoamd, 7
) 1 = 0 mot considered,

Calculations: Am 1€ 1) ..nuv & (Vvie]) (Zj Vovv .

0, (j=1, 2, .. .»7), rules of class S will apply, thus:

'v

(=]
"

O
"

-1, A

3 1/2 ;

. and T =
hence, pivot

= n' m.uu..mHHuum i

3, from@.2.15) 3 = 5 : -
b,, = -1 . s # 5

33

i




12

-1/2

L

1/2

Bk o4 Lass S atill a*thmar&ny

=~ 1/2, A

-
.

"

Calculations

zmw (-4, -1) corresponds to T
, from (3.2.18)5

hence, pivot




Table 3.9 !

Iteration 2 o @ : . .
1 0 wN 1/2 1 0 -2 0 0 0 372
2 0 wm . 2 . 0 0 24 1 0 0 2 ‘
* D =3 ww -=3/4 0 1 -1 0 -1 0 5/4
4| 0 | B | -15/2 0 0 -6 0 |.0 1 | 2172
Z, 34 0 | O T [ 0 | I | 0 |-5/4
. Calculations _”

As 8o condilion(3.2. :.u is true, the optimum point is reached.
The optimal value is - 5/4 and the solution point is

.WM =0 Xg = 2

WN,u 3/2 . Xe =0 .
X, = 5/4 x, = 21/2 .

"Xy =0 :

ZOﬁm.Hq&ompmawmmgzu;nrmwoﬁﬂos mNﬁH.muﬁ mewﬂnmﬁm:mmgo <m~cmom ogmnnpg
function in each iteration. .
2. The pivotal element is indicated by a circle around it.
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Chapter L

1

Equalities and their relationship to inequalities.

As statedlin the last chapter, we now consider the case
when the equalities occur together with the inequalities. In
this case it is essential that the former must be satisfied
exactly in the optimum point. We, therefore, solve first the

equality constraints independently of the inequality constraints

THE BOUNDING HYPERPLANE METHOD OF LINEAR PROGRAMMING -~ PART II }é

and if the 'edudlity' solution tablesu so obtained does not yield -

an inconsistent solution point then the forﬁer is utilised to
obtain the 'transformed' inequality tableau (correéponding to
the inequality constraints) for the current 'equality' solution
point. The set of the tfansformed constraints thus obtained, -
corresponding to both the equality and inequality constraints,
is now & 1l.p. problem with only ihequality constraints and is
solved by the application of the B.H.P. method discussed in
chapter 3.

| Let us reconsider the l.p. problem formulated in section
2.1, chapter 2. We, for the sake of convenience of description,
however, slightly change the notation so that the column vector

Tz is denoted by FL s and its elements which may be negative

and/or non-negative are given by

F




(_ e

oy L

R

Let us suppose the augmented matrix (A | R) { dics 5
vd
an ™ by v+i ma.trix} t0 be partitioned into two submatrices

(\/ ,R,) E: /54'.1 an M, by v+l -ma’orix} and

the inequality and the equality constraints respectively where
WV = v, TV, e _ (4%:2.2)
Let I and J be the sets of indices of the rows and columns

respectively of A= <\/\~//> and let I, end 1, be the sets of

indices of rows of \/ and W respectively so that

' IVU'[\N: 1 3 Iv - IW 1 . (hil.3)

-

(\’\/ l R«/ ) i:: K j§ an My by i ma.“brix} corresponding o

i

Further, if the submatrix W comprises of the null column vectors, .

; . . /. :
if any, numbering say n' then let J CC- J) / Ja CC J)
define the sets 6f indices of columns of W that are/are not the °

null column vectors 80 that




h.2

Ty 7. =7 .-  (ha1.b)

and
Y = 'Y\/—'W, ) (h'l'S)

where v defines the effective number of columns of W,

The equality constraints. As stated above we consider first
the submatrix W independently, for the time being, of the sub-
matrix V . Since the equality constraints must be satisfied
exactly we make the condition that an equality once selected as

s pivotal row will not be reconsidered for pivotal row selection

- in the subsequent iterations. For this purpose, we let

I; < I,, denote the set of indices 4 for which the equality
hyperplanes & (e Iw) have been cénsiﬂered and let Ii-:, & Lo
denote the set of indices ¥ for which the hyperplane i (€ lw)

are yet to be considered so that

I; U ]‘_c_:_wE '-“-‘Iw s (h.2.1)

where W (= oy 3j) denotes the transformed matrix W at the

" points reached in different iterations. (The latter may signif-

icantly vary depending upon ‘the technique deployed in the
solution of the equality constraints for, with the possibility of
sbarting with en infeasible solution point as well in the B.H.P.

method we are &b liberty to choose any one out of a number of
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techniques in the literature). Further if the row vector
Z (= Zy o j e 3‘) denotes the transformetion to the function- ':.
al ‘—~Cx’ in different iterations then let J, < J,. denote

the set of indices j for which

Zj <0 y § € j‘i ; (h.2.2)

and also if Wt , b € IW defines the .row spacé of W then
let ”\;/3 CL.G_ I, » 4 €J;y ) denote the corresponding
row elements of W{, for which (4:2:2) holds .

4.2.1. Techniques.

We now describe two techniques for the solution of equality e
constraints. Let _\;\/—qT in both the techniques denote, in
general, the pivotal element wherc—_: mM » as before, stands for
the pivotall row and ¥ the pivotal column.

(1) Téchnique 1. Tﬁe pivotal row " (_-: 4 € Ic; ) in this
appro.a‘.ch is chosen by successively considering 'ea.ch of the m, .

rows (starting from the first) in that order. Then if

(Vi € Tea) C2y30) O (h2.3)

T is chosen from

but if

(34 € Ju) (23<0) . - Jl ' (h.2.5)




then ¥ 1is chosen from

m;a,ae|"v2'/37 | ien. (1.2.6)

if it exists, otherwise it is selected from (L.2.4) ,

The new tableau is obtained by carrying out the pivotal
transformations using formulae (4.2.21) . The equality operationsf
terminate as discussed in section k4.2.3.

(ii) Technique 2. In this approach we utilise the concepts

developed for the B,H.P. method in chapter 3.‘ We first distin-

guish, as in the technique 1 above, the two situations gifen by
(k.2.5) and (%.2.3) . It mey be recalled that these two

situations are termed the Classes R and S in the last chapter;

refer (3.2.1) and (3.2.11) . To maintain analogy we rensme - i

them as classes RE and SE (E abbreviation for equality). The

pivotal element CCnTis,then determined following the rules

discussed below for the two classes.,

Cless RB.  ((34 € I, ) (2;<9) (4.2.7)
. i CE
Rule RE.l.  Select the pivotal rov v (=i e L ) as

that hyperplane which is farthest in the increasing
Idirection of the normal to the Zj <3 (= J'Eq)

plane from the origin. It is given by

mgae) bcb,m;/;&{.j'z‘i] , : (4.2.8)




or
Rule RE.2.

RE.2.1.

RE:2.24

61 v

If o 46 oceuns Ko we selaek amy o e b € Lo dbr whih T oetmne.
This igs termed the exit criterion for the class R.

Next we. examine if

(i) o %0 | (4.2.9)

M, vl

(i) .chw“ <0 . (4.2.10)

218
The entry criteria for the two cases above are as

below.
If (4.2.9) is true then T (= €.TEQ>
is chosen from
mim (24 /%q3) » Fas <023 €
_ (4.2.11)
but i % 4

((Vjéfm)<55m{ ;o)) (4.2.12)

80 that 7 cannot be selected from (L4.2.11) ‘then

we choose it from
i (zj/ocm.) , B £ 0,i€T,5
; (4.2.13)
If (4.2.10) is true then T (=j € Jee ) is

chosen from

ma % (Zj /CE"HD ,ECM- >0 ’jéJ;q
? (4.2.1h)

p1h. Yo fin oowns o we seleeh amy of the § € Jgg for hueh e i oceuns.
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but if

((VjELQ)(o_G',“- <0)) (k.2.15)

‘then we select T alternatively from

mglx(zj'/(ﬁni); va”.{:O,JEJ;Q - (h.2.16)

This is termed the entry cri‘t;.erion for the class RE.
Class SE ‘ ((vj € J‘EQ) (z; >0)) | (k.2.17)
~ Rule SE.l. Select the pivotal row ” &8 ‘any one of the hyper-
planes 4 € It.; . This is termed the exit

criterion for the class SE.

Rule SE.2.  Select T(=j € Jeq) from.

Ea 5

’VW;M” Zj /06"14' | L1 <0, €,
‘ | : *(4.2.18)

_ but if

(Vi € 8) (&g 30) | (k.2.19)

then 7V is chosen from

'mgm' (Zi/o—énj) ’ 5—0,15 +0, §€Jq (4.2.20)

(s @ haadlid G b e rodbets make "
. This is termed the entry criterion for the class SE.

4.2,2., The new tableau. This is obtained at ‘the end of each iteration
by performing the Gausian eliminational transformations on the

pivotal element E-Cn,], s from
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— .
b

Gz ot . OCon & . ‘
CC“. - OCH. - _"l;f C Ky @ *})(‘Ilw""i
j€T
o L '
Kie = i o g ; k.2,
b 7y /0(;"1T ;b= (k.2.21)

where a prime denotes the new values of the elements in the new
tableau. The new values of the optimal function F , the

functional Z and the Solution vector OC%WH » v €I, Q—..Xw)

respectively are given by

-/ ! oy
'GC . _ & ) ;
. 't’_'] " ez _mn__"'i,w"'i =F |
.6_0/ o :
% = mg_"'i ,J > 4€ ;.rEQ =L G Z{i) ’ (h.2.22)
Y ' ""'/ . et -—
OC@J T OC'{'/,YVHI. y Vel = Xw (= a’{-,nn)'

4,2.3, The final equality (W , .PW) tableau ,

CE ved,
1f I;, = 1o , that is, |
E ved,
IaVUlg =1y, (4.2,23)
where '_[:_;& i I:_: denotes the set of indices 4 ( redundaimt-_‘-"‘-;’j

3

hyﬁerplanes ) for which

(B4 € 13) ((Fimarm D (Vi€ T ) (53=9))
: " (Lh.2.24)

then the equality operations of the section 4.2 terminate. The
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tableau so obtained is termed the finsl equality tableau., If

~in this tableau it is found that

(3€15) (84 #9) & (¥ €1)0,-9))

(4.2.25)
then it implies that the solution to the problem does not exist (im- -
W%’W)‘ s 5
If (L4.2.25) is not true and

m, =0 | (k.2.26)

then the optimal solution, if it exists, is obtained as discussed !°

in section 4.4, but if

vy 50 | (h.2.27)
then we develop in section U4.3 the relations for obtaining the '
transformations to the inequality constraints ( \/, PV> fro.m the
final equality tableau.

Motivation in selecting one of the two techniques (i) and (ii).
It mey be useful to mention here the reasons that prompted us = .
for suggesting the two techniques given sbove. The technique 1
takes care of reducing the rounding errors by selecting the pivot

as that element which has the largest magnitude in the pivotal

row. This is strictly the case in the situation (bo2.3) , 3

- There is, however, a compromise attempted with situation (k.2.5)

when the pivotal element is the one which has the largest mag-
nitude corresponding to negative coefficients of the functional
(refer 4,2.2)); this is because we know that the (maximum) increase

to the optiﬁal function will occur by selecting a varigble from
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the set Jy defined by (L4.2.2). In the téchnique 2, on the
other hand, we have essentially utilised the l.p. concepts
developed for the B.H.PM.in chapter 3. If the equality con—
straints are not inconsistent we would usually result at the
end of equality operations of technique 2 in the situation
{4.2.17) | - refer class SE, aﬁd this is a considerable
advantage in reducing the number of iterations of the problem.
(In some céses the solution point obtained at the end of
technique 2 may well be the optimum point for the {complete) 1.p.
problem). If we end up with the class RE at the end of technique
2 then we have obtained the maximum increase in the optimal
function or elsé the minimum decrease (if that be the case) in
each iteration and this has been directly related to the (real)
optimal function (g.l.l) end not to an auxiliary function as

in the Simplex Method.

: . 22 ,
"The final inequality/functional tableau.

Let the constraints (2.1.2). and the functional Z be
représented as shown 1in tab1¢m1. Also let the final equality
matrix (tableau) be as shown in the middle portion of tablek2.
The transformations to the function F and the coefficieqts(ﬁ%&)
of the final inequality tableau are then obtained, using the

coefficients (55¢j) of the final equality tableau, from

22, Abreviated as I/F tableau for future reference.
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s Vo
- -y ;i - k. 3.
& /j” Zi /‘J)‘V»?r;,, Mo 4 PEageiRdl =550
s Wiy
i X k3.
/5b’w+‘ ﬁ"’WH gﬁw& fug, » vt €1y (h.3.2)
where
G ",%«;[ ,
lcsvg vy (4.3.3)

i
n
&

Tv, Cé"f') is the column rank of W and %/1-, a.ndf;“-,,

bV =4,2, .. ., are the elements of the index vectors G
-and H that record the column and row respectively of the
successive elements of the W matrix used as pivots at each

stage of the operations of section 4.2.1. The coefficients

—

@4‘, j (for the inequality part of the tableh?) computed from
(h.3.1) relate, however, tx\ only those columns in the final
equality tableau .tha.t correspond to the column nullity

Y- ngy ( Ny & 'r) in the original submatrix \W . This is
‘because the coefficients in the I/F tableau corresponding to the

null metrix, if any, in the W submatrix (or equality tableau)

remain unchanged as the terms

13 ﬁ) oC, .=0,4€Ly,5€T (h3h)
P d .

on the right hand side of (4.3.1) hence,




bl

T

—

/5»5 - /'5«;1- y 4¢3 ,uEelL, (4.3.5)

And the coefficients in the I/F tableau corresponding to the

unit matrix coefficients in the final equality tebleau are
necessarily zero (that is & null metrix).

We next consider if, in the I/F tableau,

((3“"’ e TR ﬁ&,m: <0) & (vi€7)(Bi;>9)

(4.3.6)
which implies that the optimal solution to the problem does
not exist: If (4.3.6) is not true then we ‘concern ourselves
with relevantl parts of the direction analysis discussed generally
below. .
Directional analysis. As mentioned earlier, we distinguish two

classes of situation in the given linear programming problem,

Class a: ™My, #0 , my =0 (equalities only);
' Class b: mz-.,éo 3 vy #0 (both equality and inequality
' constraints )*

The following cases may exist in both the classes:
(1) ™, > T

(i1) Y, =T o (b.b,1)

and (iii) My LT
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We consider the three cases in each class separately,

. Class a, (i)

(ii)

Class b

If it is found that o(aé- v, -7 ) hyperplanes
are redundant (that is the number of unit column
vectors is exactly equal to v ) then a unique
golution to the problem exists; proceed to U4, k.1,
However if

d > my, -7 (4.h4.2)
then an infinite number of solutions exist in
which case proceed to 4, L4,2.
If there is/are no redundant hyperplanegs then a
unique solution to the problem exists; proceed to

h.h,1. However, if there is at least one redund-

ant hyperplane (that is the number of unit column

vectors is less than v ) then an infinite number
of solutions existj; proceed to 4.4.2.
An infinite number of solutions exist; proceed to

L.oh,2,

Let J}_c: J;a denote the set of indices that

- correspond to those columns (or variables) of the

W submatrix that have column nullity *-m, and

y .
let 'J define the set given by

4

T = J-/U J'a . (4.4.3)
Then if ‘

(Vi € I,)((VieT)(B;=9)
‘ (ol k)

the considerations in class a apply exactly to




s

this situation and we follow the directions of
) the three cases as discussed therin., If @.4.4) :
| is not true then there exists an infinite nunmber
of solutions and we proceed to h.h.é.
heh,1 The unique solution: There is an optimal solution to the

problem only if

(VP €I) (Bipn 30 @(Vi€T)(Z530) -~ (k3
" where
Wyt = Piymar 4 €Ly (14.4.6)
. TRV N (bbaT)

otherwise the optimal solution does not exist.

h,h,2 An infinite number of solutions. These are c&tegorisedzin the
following three mutually exclusive and collectively exhausfive
cases which ﬁniquely direct the next move: :
(i) if (h4.h.5) is true, _ t;

then the current solution point given by

-dJ ,i/(: I (""n)-l‘o8)

x’z,,ﬂ,n e by

is the optimal point, where ab,mw are given by(4-4:6) -
C4-41) .«

(i1) 10 ((vi €3)(Z;>0) & (FVET) (Ay oy <0)) 7 (Be1e9)
then apply the class -8 decizion rules of the B.H.P'. Method
chapter 3or the Dual Simplex Method [ 561  to obtain the

optimal solution.
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(iii) 1If ((31’6:{)(23-(0)) i o (4.4.,10)

then apply the class R decision rules of the B.H.P.

Method, ch.3 to obtain the optimal solution of the
problem. 3
Estimation of running time. ‘
In Viéw of initially restricting the pivotal transformationseg
to only the equality constraints and then developing the trans-
formed inequality constraints from the former we have been able
to effectively reduce the time taken in each itération in the
'equality operations'. An estimate of the running time for the 5§

equality operations alone will be

% ™y [_‘5:)557\: (b L) =By Gy - 1) +2}+‘Y’£3n(1+3m9+ My (e-smy)-11]  (L.5.1)

This estimate for the solution of a l.p. problem that comprises
both the equality and ineéuality constraints but does not con=-
sider the former independently of the latter, is given by

L my [ 30 §5n (Mg rd) - B (M~ 1) 4 2y (20 =g +4) 42, 3

+ ‘f {b'l"\r (H‘B’W\aﬂ_).}.% Cé-sm’_) "‘3‘71;\,1(7-‘”-"77\»24-1,) "1}] (hc 5-2)
+& [Gv-me) §es 2+3¥) 4+ 5D} +m6v-v)]
vhere 2 , , vy are as defined in chapter 3. If, however,

. we followed the approsch discussed in this chapter then (4:5-2)

reduces to

£ 20050t s my ey eap e BnCBmdem Gy 1{ (1, 5.3)

4—% [Cn-’mq.)gCS‘?J-'-b'r)m+-s»} .'.m@z)_y)] 5 Obébww»‘mk&j

and an estimeted saving in computer running time to the order of
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,}Z e, mz(ﬁw*ma'*i) (22+v) (b.5.h)

is achievea. ‘
Tllustration. We illustrate the method using technique 2 in
example 1 below,

Example 1.

Consider the problem of maximising,

Fesx +x +x,

gubject to the conditions,

5%, + 2%, + 5%,& 10
3x: + 3xl + x.s = 3

2x, + 2x, + 3%, = 6

The matrix @ l PA> =(¥ ‘, IIZ::) is shown in table 4.3.

The subsequent iterations tableau are shown in tables 4.4.
to 4.6 . We may observe that using technique (ii) for the solut-
ion of the équa.lity constraints independently of the inequality
constraints in the problem we obtain in the fir_st iteration

(tableau44) the class SE situation (4.2.17) where,
Zj>0 y jg‘]‘m (.,.,J‘,MMM),
We retain this situation by considering the class SE (deécision)

rules now and obtain the new solution point as given in tableau

4.5.Next using the formulae (4.3.1)-(4.3.2) we obtain the I/‘F

N
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Tobbe &3
3 J 1 2 3 Calculations/Remarks
l'm 2.8).
1O 5.2 5. |0 | &l wme
2d) 3 3 1 3 3/7 [From (4.2.8) and (4.2.13)
6/T |M= 3 and ¥ = 1; hence
D 2
3¢ @ - 3 6 the pivotal element is
7. -3 -1 =Y 0 given by &, .
Table 4.4. ﬂ'nmiawi
3 J 1 2 3 Calculations/Remarks
10 5. 2 5 |Jo
2'() 0 0 : @ -6 clearly m , in this case,
30 1 1 3/2 3 is for ¥ = 2jusing (Lk.2.18)
T = 33 hence the pivotal
7 . 0 0 1/2 3 element is ;cz's g
Jd
Tabl 4.5 Ttonalion 2
3 J 24 2 3 Remarks
1 @)1, 5 2 5 10 All the equalities are,
e e B at this stage satisfied;
2@. O o * 12/7 the transformation to
3 3 5 & 0 34T inequality constraints, using
formulae (L4.3.1)-(k4.3.5)
% s 0 0 0 13/7 are shown in tableau L.6.
Table 4:6
j L]
3 i 2 3 L
P,q. 0 F‘3 l “ —5/7
Py 0 0 0 12/7
P, i 1 0 0 3/7
Z; 0 0 0 0 13/7




81

tableau (which is the initial tableau for BHPMas described in
chapter 3). This tableau is given in tablek.6 and as we can see
we have, by using the equality technique (ii), obtained the
point of class S (chapter 3) alone. The optimum tableau is

obtained (not shown) in the next iteration.
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Chapter 5

FLOW DIAGRAMS AND THE GENERAL ALGORITHM
Bl Flow diagrams. The flow diagram given below illustrates all three
possibilities; that is wﬁen the 1l.p. problem consists of either
inequalities alone (chapter 3) or equalities alone (chapter 4) or
both the equalities and inéqualities (chapter 4). These are
respectively indicated by the value of the trigger 'NTRIG' equal
to 'zero', 'one' or 'two'. M and N in the flow diagram below

denote the ‘number of equations+l’ and ‘number of variables (without

addition of slack variables)+l in the 1.p. problem.

start| . _
* no

|read values of the parameters

M,N and trigger NTRIG,

initialise arrays and matrices by considering

M and the total nunber of variables equal to (N+M)
J :

|read data of given l.p. problem ]
4

convert type II inequalities to type I and add

(positive) slack variables

‘.print values of optimal
function, solution pt
and shadow prices

optimal solution does
not exist

®

'@?

bounded?

distinguish two classes R & S and choose
the pivotal element accordingly
¥ : i

perform the pivotal operations

y

A

A w52
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is yes initialise arrays and matrices
NTRfiji;, > for values of M and N as read
1 5

v 3

read data of
given 1l.p.

problen
el 4

>

1. treat equalities
independently of
inequalities,

2. count ng of
equalities and set

A myequal to this
count, r

3. initialise arrays
and matrices by

yves

are
all equalities
satisfied?

no
- Jjobtain transfor-
mations to

considering M and inequality

the total ng of constraints

variables equal

to (NHf-ma). o current sol- o to @
y . <

‘ution pt obtained
inconsistent?

distinguish two clagses in either
of techniques 1 and 2 whichever we
decide to choose and determine

pivotal element accordingly ’

\
perform the pivotal transformations

4

4
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5.2 The general algorithm. Corresponding to the system of constraints (2.1.2) consisting of either (a) inequalities alone or
(b) equalities alone or (c) both equalities and inequalities, set the trigger 'NTRIG' equal to zero, one or two respectively.
AMlso set another trigger 'trig' equal to one or two according as we may wish to use either the equality solution technique
1 or 2 of chapter 4, Further let A denote the general algorithm description that follows. We are now ready to institute the :

complete algotithm.

A Test 'NTRIG' (for zero or nonzero):

4 I

Al If 'NTRIG' # O, set ctr to zero (where ctr is an abbreviation for the counter that keeps a count of the number of equalities

satisfied up to a given iteration) = :

A1l ctr+l —s ctr; test’ctr: .

A1l if ctr>m, , go to Al.2;

Al112 5 otherwise test 'trig': o :

Al1121 if .ﬁwwm.NHuJﬁn&uodﬂ.@mHﬂ ; test Zj;, § € Jea

All211 . if Z;»>o for eachj , select T from (k.2.4)

A11212 otherwise select 7 from (L4,2.6)/(4.2.4) as the case
may be. The pivotal element is & _(in technique 1),
go to A.3 3 A4

Al122. if not, test Z; , § € Jeq : -

A11.221 if Z;> O for each j then choose v as any one i€ Iy —exit criterionm, class SE;

and select T from either (4.2.1%) or (4.2.20) as the case may be-

. entry criterion, class SE. The pivstol elimend it &, (in Behmique 2),90 1o A3 5

A11222 otherwise select m from (L4.2.8)-exit criterion class RE and select 7 from
: either (4.2.11)/(4.2.13) or (4.2.14)/(L4.2.16) as the case may be-

entry criterion, class RE. The pivotal element is onq_ s (in technique 2),

' go-to A.3; )
Al2 test for the inconsistency, if any (in the equality solution point reached- refer (4.2.25)):
A121 : if inconsistent, the optimal solution does not exist. ’
A122 otherwise, test 'NTRIG' (for 1 or 2):
A)221 if NTRIG=1 then proceed as in section 4.4, class a; set NTRIG=0, go to 4;
Al222 if not, proceed according to section 4.4, class bj obtain transformastions to the

. inequality constraints, if necessary, from (4.3.1)-(L4.3.5); set NTRIG=O and go to A;

A2 if not, set 'FS'=0 (FS is a trigger abbreviated for feasible solution);
A1 test % i (= Xl e also with reference to chapter L4),ieZI :
A2311 if M..A o for some & , test F«m »i€J :
A2111 i .Mvs_.vx o for all j,non-feasible problem m.mwmw hu.w.mvv and the optimal solution does not exist.
A2440 otherwise go to A2.1.2.1; ;
A212 if not, set FS=1 (to mark for a feasible solution);
A2121 . test Nm. jeT -
A21211 if Z;>'0 for eachj , test 'FS':

A23:21:31 if FS#0, print optimal value, solution point and shadow prices — eulpdt.




A212112 . : . otherwise, find m (=#€¢I) from (3.2.12)/(3.2.14)- exit criterion, class S; _
and find 7 (=4 €7, ) from (3.2.15)- entry criterion, class S;piotad elimnti
P ) go to A.3; . g
221232 o ~ if not, test &; ,4 €¢Iy . :
A2123.21 if 5,0 for each {,imbounded problem -refer (3.3.1(i1)), the cplimum soluliow dacs mel exisl .
A212122 otherwise, find m (=4 €I, ) from (3.1.21)- exit criterion, class R;

and find 7 (=4 €7, ) from (3.2.6) or (3.2.7)/(3.2.9) as the case may be-
: entry criterion, class Rj pivelal elomerd Fm.ﬁ_.«w
A3 test 'trig': . -
A31 if 'trig'#0, the pivotal transformations are given by (L.2.21), go to A.1.1;
A32 otherwise, the pivotal transformations are given by (3.2.17)-(3.2.18), go to A.2.1;

4

25. NTRIG is set to O, 1 or 2 (as the case may be) by reading a parameter card that has the appropriate value of NTRIG punched in it.
24. The number of equalities (= m,) is counted at the time of reading the data of the given l.p. problem and is stored suitebly for

testing purposes as required subsequently by the algorithm. This and other minor details are not shown in the algorithm above.

N
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Chapter 6

APPLICATION OF THE B.H.P. TO THE SIMPLEX METHOD OF LINEAR PROGRAMMING .

6.1 The two phases. Let us consider the l.p. problem as formulated
in section 2.1 of chapter 2. As we know, the Simplex method
works in two phases. Phase 1 determines a basic feasible solu~
tion (satisfying the equaiity constrainte) and phase 2 then

leads from the solution so obtained to the optimal solution. In

v

considering the application of the B.H.P. to the Simplex method
we will, as explained.in chapter U, treat first the equalities
independently of the inequalities.'For this purpose we consider
the application of either (a) one of the two techniques of
chapter 4 or alternatively (b) the artificial varisble technique
of the Simplex method. If the latter were to be utilised then,
as stated, we restrict its application to the equality
constraints. alone. The auxiliary function, a8 in the Simplei
‘method, is constructed and the usual Simplex rules for the entry
and exit criterion are followed. At the end of the amended
phase 1 as above we obtain a feasible solution point satisfying
the equality constraints. The transformations carried out on

the inequality constraints and the functional using the

~

" formulae (h.3.1)-(h.3.2) of chapter L4 and

5oz, - 7. &
» ::Z' am_t »
Z 1~ 2 T T

)je..]. (Bs1:1)
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respectively yield us the enlarged linear programming problem
with only inequality constraints and in which all the
equalities are satisfied. This problem is in the same format
as envisaged in the I/F tebleau obtained by considering the
techniques in (a) above (refer chapter U4). |

The solution point for the enlarged problem may, however,
not necessarily be a feasible onej in fact, we would for
generality presume that it is an inféasible point. We next
proceed (as discussed in chepter 3 and 4) to convert the
type I 'y ' type constraints to type II'<£ ' constraints and
then add s positive slack variable to each constraint so as to
obtain the B.H.P. tableau of (3.1.12). We are now ready to
institute the extended algorithm for the Simplex method as
explained in the following section.
The extended algorithm. class R ((El:iEJ ) (Z3<0 )) s
Phase 0. It pertains to decision rules for the class R. It is
termed phase O so as to distinguish it from phases 1 and 2 of
the Simplex method. °
Criterion for a variable to leave the basis. This corresponds -

to the selection of the m hyperplane (=4 €1) according to

{3.1.21), chapter 3, class R.

Criterion for a variable to enter the basis. This corresponds
to the selection of the axis T (=j€J) according to either the
rule B2.1,(3.2.6) or the rule R2.2, (3.2.7)/(3.2.9) of chapter

3, as the case may be.

- New tebleau and the evaluations., Perform the usual Gaussian
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eliminational transformations, using formulae (3.2.17)-(3.2.18)
to obtain the new tableau. We then evaluate.the sign conditions
of Zj s 1€ J" and %3 ,4€I 3 the following four mutually and
collectively exhaustive cases exist which direct the next '
.move in the algorithm. These are
(1) if ((VieT) (Z;>0) & (vieI) (%4 >0))
then the optimal solution has been found;
(ii) if ((24€T).(23<0) & (FeT) (%;<0))
then, if AF (given by(3.2.3), chapter 3) is non-negative
proceed to 6.2.1, phase O. above;
otherwise proceed to 6.2.3, phase 1 below. The
infeasible point now obtained will, in general,
yield (on application of phase 1 of the Simplex
method) a feasible point which is nearer to optimum
point than the feasible point that would have been
obtained from the initially available infeasible
point. Refer example 1, section 6.3, that illustrates
this point.
(iii) if ((34eT) (Z;<0) & (VeI ) (%4, =20))then a feasible
- - point has been obtained.(this feasible point too would,
in general, be nearer to the optimim point than the one
obtained from the initially available infeasible poinﬁ.
Refer example 2 of section 6.3,.-
(iv) if ((vieJT) ('zpo) & ,(at,;i) (%, <0))

then the optimal solution is obtained by the application
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of either the class S decision rules of B.H.P. Method (refer

(3.2.11) chapter 3) or the Dual Simplex Method (Lemke [561 ).
6.2.3 Phases 1 and 2,

(i) Phase 1. Since, in considering the application of the Simplex

method, the(right hend side) elements of the vector F, must be

non-negative we first change the signs of all the elements of the

rows corresponding to the negative (basic) variables ¥ ,v€l,

@t may be noted that the positive slack variables corresponding

to the negative basis variables get thus converted to negative

surplus variebles by following the above step. Next we proceed

as in the Simplex Methody construct the auxilisry function and

choose the pivotal element according to the entry and exit

eriterid’ of phase 1,

(ii) Phase 2. The criteria for the selection of the M and T

veriables remain as in this phase of the Simplex Méthod.

It may be noted that once we enter either phase 1 or
phase 2 of the Simplex Method we would not leave the latter,
The existence of thelnon—feasible’or unbounded -solution is
checked according to Simplex criteria for these situations. The
optimal criterion of the B.H.P. and the Simplex methods are
identical.

6.2.3.1 Degeneracy. The B.H.P. method could contribute sggnificantly to

the resolution of degeneracy (or ties) in selecting the pivotal .

row in situations where the hyperplanes for which the ties

25Refer Dantzig (191 or any standard text book cited in the bibliography.

L4
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- occur have at least one bounding hyperplane smongst them, (?hen

this is not the case then though‘the degéneracy rules of B.H.P.M.
could still be used by considering (3.4.3) or (3.4.6) for non-
bounding hyperplanes (that is &;>0 ), their significance in
‘resolving degeneracy is not know@. Tﬁus, for éxamplé,

Beale‘§ cycling example no.3.1.2, chapter 3 requires, even after
taking recourse to the € - perturbation technique six iﬁerations
whereas by following the former technique (used in the B.H.P.M.)
the optimum soblution is obtained in two iterations. Moreover,

as we know, the cycling phenomenon in practical problems, never
occurs, but the ties or degenerate situations do occur in almost
every problem. It may be worth attempting to try to see the
effect on the speed of the Simplex algorithm by following the
B.H.P. technique referred to.above‘in each situation whén a tie

or degeneracy occurs (in different iterations.

Illustrations:
Example 1., . Consider the example
meximise
F = Xy +-2x2
' _subject to
X X, > 3
2xl+x2?. L
—X, ¥3%, < 12
5%, ~ %, < 10

and R *2 > 0
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Tableél

Initial tableau for phase O of example 1.

...................................

g -1 -2 0 0 0 0|0 (R

.......................
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Tableé2

Tableau after one iteration for phase 0/2 of éxample 1

J
ke 1 2 4 5 6
¢ Ji 2 0o o o o .
G| Resisihy Mg Fy fa By Kol BORL
1 |o P, | -4/3 1 1/3 1
2 |0 | B, |-73 1 Y3 0
-3 | 2 P, |-1/3 1 1/3 4
s lo| x|l s 1| W
25 -5/3 0 0 0 2/3 0] 8(=F)
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Rewriting the above problem as envisaged in the B.H.P.M.;

‘maximise
P = xl + 2x2 B 0x3 + Oxh + Ox5 + 0x6
. subject to
=X T X+ xg =) -
-2x, = x, o =~ L
- xl + 3x2 + x5 = 12
5xl - x2 +. x6 = ]0
arld xl,xe’x3.xh’x5,XG ?- 0

The B.H.P.M. tableau is then as given in Table &1,
Phase O: | |
From (Bedo2t),

Min (12/5 , 10/3)
is obtained for the hyperplene i = 7 = 3
And from (3.2.6), the axis by which to move to the bounding
hyperplane 7 is.given by 7 = 2. The pivotal element is thus
1%32 = 3 as shown by the circle around it, in the sbove tableau,
Performing the usual Gaussian eliminational transformation, the
nevw tableau is obtained as shown in tableé.2.
‘The new point obtained is the basgic feasible point A in figure 6.1.
Phase 2 of the Simplex method takes over at this point and yields

the optimal point'P (3, 5, T, 5) in one step, with the optimal

value of the objective function equal to 13. However, if

initially phase 1 of the Simplex Method was followed (instead of
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Tablet3

Initial Tableau for phase O of Example 2

j .
gl e e 1 b .. 0B . 5 . 6 7
C 1 2 0 0 0 0 0
o et o o T T . T L
1 |0 | Pgo -1 -1 1 iR
2 o | p |2 - 1 -4
3 (o | B |- ©) 1 12
4 o | P 5 . 2 10
S 4O L B NS R 1y, -9
A 4 -2 0 0 0 0 0| OFR
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‘Phase 0) then it would take 2 iterations to arrive at the first

basic feasible point L and subsequently it takes another two

iterations to reach the optimal point P. Hence, we save two

"iterations (one each from the operations of the phase 1-and

phase 2) if we follow phase O prior to the applications of the
Simplex Method. | |
Example 2. Consider again the example 1 with an additional
constraint

5%, +2% 2 9
The first two B.H.P.M. tableaux are as given in Tables&.3 an366.4.
The computations for finding the pivot are exactly the same as
in Example 1. The new point obtained is still Aj; however, it is
this time infeasible (refér figure 6.2.). If we may now for the
sake of simplicity of exposition, let phase 1 of the Simplex
Method take over’', then in one step we reach the point M which
is a basic feasible point; phase 2 of the Simplex Method next

tekes over and in one more step yields the optimal point P with

optimal value equal to 13. We thus required three iterations to

2. The tablesé..sand6.4are the same as in example 1 except for the
additional row (last one) éorresponding to the additional con~
straint in e;ample 2 above.

% If we do not let phase 1 tske over at this point then the
optimal point P is reached in this example in tﬁe very next step
of phase 0; we, therefore, let phase 1 take over so as to illust~

rate the point that a 'better' infeasible point is reached by

following phase O.




Tableéc4

Tableau after one iteration for phase 0/2 of example 2

- P T Ik LRt T FeS Al e SRR UL, WA avieNE TN GATR ey
.

2 3. 5 6 7
i
1 2 0 0 0 0
C| Basis| P; P, ‘_PS s Pg Pg Py Po'(=m
1| o P, | -4/3 1 1/3 1
2| O - Py | -7/3 1 1/3 0
31 2 P, | -1/3 1 1/3 4
4| 0| Py | 14/3 1/3 1 14
5] 0 P, |-17/3 - .2/3 1 -2
0O o0 g GF)

-5/3

0 2/3 0 0
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reach the optimal point P.

On the other hand, if we had initially applied phase 1
(instead of phase O) directly then it takes as in Example 1 two
iterations to reach the basic feasible point L and an additional
two iterations to reach the optimal point P using phase 2. Apart
from the fact that it takes more iterations, if we use the
Simplex Method alone, to reach the optimal point, the main point
to be observed here is that we arrive at a 'better' basic feas-
ible point M by following phase O prior to phase 1 of the Simplex
Method. As indicated sbove it should also be noted that if we
had continued to follow the B.H.P.M. alone then the optimal point

P would, in this example, be reached in just two iterations.
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Chapter T

COMPARATIVE STUDY OF THE SIMPLEX AND B.H.P. METHODS

In making a comparative study we have been restricted by
the number of examples available to us. Most of the examples
have been drawn from the text books, different computer
reference manuals and private sources., The study, though of a
1imited' nature, however, throws significant light on the power
of the B.H.P. method over the Simplex. We have attempted to
compare the methodsby (i) the number of iterations and (ii) the
time taken to solve the different sized problems by running the
two computer (all-core) programs on 16 examples.

Number of iterations required by the B.H.P.M. vis—a~vis Simplex.

Columns 3.and 4 of table %1 provide the detailed
information in this respect. As we observe, the B.H.P.method
tekes less iterations in most of the examples. In none of the
examples presen£ed did we find it to take more iterations as
compared to Simplex (this may however not be true generally).
Furthermore the number of iterations taken by the B.H.P. method
appear to‘rednce on comparison with Simplex method as the problem
Size.increases. It is not known if this would generally be true.
Extensive spplication of the method could only reveal the
general situation in this respect.

Time taken by the two methods.

As could be expected the time taken by the B.H.P. method

in a single-iteraiion would,in general,be more than that required

by the Simplex method. A comparison of the two 'times' given in
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colums 5 and 6 of table 7.1 also points to this fact. For the
( éingle) large problem number 16 the time taken by the B.H.P.M,
is appreciably less. Again it is not known if this would
generally be true., We need to run the method on very large
problems to investigate this aspeEP fully. In general it appears,
however, that the time taken by the B.H.P.M. in all cases
reported in table 7.4 is either less or is comparable with the
time taken by the Simplex method. It may be stated here that the
total time taken by the B.H.P. method could be reduced by (i)
improving the existing B.H.P.M. computer program and (ii)
incorporating the techniques discussed in sections 4.2 and L4.3,
" chapter 4. The single iteration time though would still generally
remain more than fhat required by the Simplex method; the
B.H.P.M. however has the advantage of detecting, in general,
the 'unbounded{/“non—feasible’ state of the given 1l.p. problem
earlier than the Simplex method. This is because we, in each
iteration, consider (i) the whole sub-space wjg’ (4§ €elycd)
and not just one column(of this sub“space)that is the one
corresponding to "mo.aelzjl 1jEJy (as with Simplex) for
unboundedness and (ii) each infeasible constraint (iel, <I)
' for non-feasibility (till we find at least one feasible solution

point). .
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Table.7.1
. s o Number of iterations Time taken by the
Serial taken by the two methods,| two methods in secs.
numbexr.|. %ﬁg&iﬁ?' — i
B.H.P. Simplex . B.H.P, Simplex.

1 2 3 L . 5 6

h b x b 2 6 3.6 3.5

2 bx 5 b b h.3 - 3.5

3 hx 5 2 L Loh h.2

L L x. 6 3 5 4.8 4.3

5 b x 6 < 2 4.6 3.5

6 >x T 3 9 5.8 5.9
T 5x T . L 12 6.0 6.k

8 Tx 6 3 h 7.2 T.l

9 Bz 5 L 10 5.6 6.1
10 8x 5 3 10 - 5+5 6.1
13 8% 3 L T 5.9 6.2
12 9x 6 1 b ‘ 6.4 6.8
13 15 x 8 3 12 ' 12.1 14.0
1k 19 x 21 18 20 18.8 19.3
15 . 20 x 3 2 51 5 © 10.1 12.5
16 54 x 69 49 79 57.0 71.6

Note 1. The size of the problem given in column 2 above does not include
the slack (and surplus in case of Simplex) variables added to the con-
strainﬁs.
2. Thé times given in column 4 are obtained by running the computer
program for the 'standard' Simplex method; both the times in columns 3
(imelusive of inud anch-outhud tmes)

and 4 are the executlon tlmegzdbtamned by using a sub-routine KLOCK[??]

on the I.B.M. 360/44 computer.
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Chapter 8

SUGGESTIONS FOR FURTHER RESEARCH

Extensions to quadratic programming. Consider the quadratic

progra.mmipg” problem given by

maximise F(X) = CX ~VY2 X DX ’ =%
J - :

subject to linear inequalities

AX < R ; {8:1:2)

and
% >0 T (8.1.3)

where the vectors C , X , P, and the matrices A and D are
respectively given by

C = ‘ci Cy, ¢« * Cw( ; ) | (8.1.4)

e (8.1.5)

Ty | ,' : (8.1.6)

ed
I

Cb.,_, OJQ_Q_ ¢« 4 a’zw ‘ (8.10 7)

>
i

Oy G ¢+ ¢ Pl

#% The quadratic programming problem will henceforth be

abbreviated as 'q.p. problem’'.
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O(’u D"l‘). . OLm.

T

' > . 3 8.1.8
S : (8.1.8)

d’hﬂ 0Lna. s ) dnw

Further IO is assumed to be a symmetric positive semi-definite
" matrix. Introducing the mv non-negative slack variables X, to
the inequalities (8.1.2) the above g.p. problem could be

rewritten as,

maxXimise ; 56 (Y) o R Ve, YTQ..'Y s 8x1.9 (i)
subject to By =% 2 8.1.9 {ii)
omds Y >0 8.1.9 (iii)

where the (nw+m) vectors Y and { and the (k& by(n+m)) matrix

B and ((rw4+m)by(rn+m)) matrix @ are respectively given by

X

Y e _ (8.1.10)
. "XS

fF = |C O (8.1.11)

B =« |A I (8.1.12)
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55 o g ' {8.31.13)

O 8]
Let us now consider the Kuhn-Tucker Theorem [90] . It states that

the vector Y is a solution to the q.p. problem (8.1.9(i)~-(iii))

if and only if Y is feasible and there exists a (nW+w) vector

,U’*'l;/v\ - ' ~ B2}
such that

0w @B w8 = § 58 (8.1.15)
and P

U Y=0 (8.1.16)

The condition (8.1.16) implies that at most (rv+m)elements out
of (Zn+2m) e;Lements are non-zero which, in turn, means that
we need to examine only basic solutions to the system
(8.1.9(i)=(iii)) in our search for the optimum to the given
q.p. problem (Barenkin and Dorfman [< ] ). Thus in moving from
one basic solution point to the next we enforce the condition
that ife Yvariable is in the basis then the corresponding U
variable is not in the basis (the tableau éorresponding to a
basie solution point, with the above condition adhered to, is
said to ﬁe in the 'standard form', Beale[ 6] ).

£, thergfore, a basic feasible solution is obtained such
that the tableau corresponding to this basic solution is in
"sta.ndard form' émdU;o , then we ha.ve found the optimum point.

Let us now recongider the optimal function(8.1;9(i)).-

Substituting for QY given by (8.1.15) we obtain[?#8]

AN =fY -1 Y (U-BwWef )
Lth BY ~4a UTY »4 BN




LU S B L 4

. :"1:05'
which after substitution for BY from(8.1.9(ii)> gives

=V EY -%ULY v BTW

" VZ({Y'*?:W) in view of (8.1.16); (8.1,27)
that iB;PreSLuning' that we consider the tableau in 'standard form'.

Thus if
CI’ = 2 ;ﬁ(y) ; (8.1.18)

we have

b =fy+Bw . (8.1.19)

Equation (8.1.15), (8.‘1.9(ii) and (8.1.19) could, in view of the

special structure of matrices @ ,B and § , be rewritten as

- DX —ATw +¢' <o - (8.1.20)
AX - g_]—’: , (8.1.21)
and cCX B W =F' (8.1.22)
where |
“ _

The system {8.1.20)-(8.1.22) is the usual l.p. problem and could

compactly be written as

maximise HE ; ~
. subject to GE <R ’ \ (8.1.2h4)
" amdb _ € >0 ’

vhere H,&, R and ¢ are given by

2 (8.1.25)
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-D ~-A" :
G = w (8.1.26)
A o
i@
'R = ! : (8.1.27)
and '
B, [ & (8.1.28)
W

The dual 1.p. problem to the (primal) system (8.1.24) is then

given by,

minimise ® € (8.1.29)
subject to G T sy (8.1.30)
and L &0 {8.2.3L)

Converting (8.1.29) to a maximising problem and the type I ( > )
inequalities in (8.1.30) to type I (<), the 'dual' could be
rewritten as |

maximise ~R g

T

subject to -G € < H (8.1.32)

torncl S 20

We are now ready to apply the B.H.P.M. with restrictions that
(i) the tableau is maintained in each iteration in the 'standard
form' and that (ii) the hyperplane (pivotal row) selected in- the
iﬁmediately pyeceding iteration is not considered for selection
in the current iteration. The latfer condition may be required
to be imposed in the d.p. algorithm for the B.H.P.M, on account
of the former condition (20 as to avoid a possible case of
cycl%ng).

Since in the primsal problem the optimal solution is

Lo
PR N A S
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‘ohtained when we reach a basic feasible solution, Fhe correspond-

ing situation in the dual case is achieved when the coefficients
of the functional Z given by 4

7 - R ‘ (8.1.33)
are non-negative.
Accuracy in linear programming.
Modifications to reinversion process. Let us consider the
optimal solution obtained by the application of the B.H.P.M.
(or the Simplex or any other techniques) to a given 1l.p. problem.
We know ‘that certain constraints in the optimal point are
satisfied exactly, and that the pivotal elements lie on these
constraintsy let these be called the pivotal constraints.
Utilising this information we reconstruct the original 1.p.
problem wherein the pivotal constraints are equalities and the
remgining inequalities. Since we also know the pivotal elements
lying on each pivotal constraint we firsf obtain the solution
to the eguality (pivotal) constraints by performing the Gaussian
eliminational transformations on these pivotgl elements. Next
we determine the transformstions to the vector T, (%:/é$nvn)
corresponding to the inequality constraints from (4.3.2) of

section 4.3, chapter 4. The coefficients of the functional

"will (in all probability) be non-negative to indicate that the

optimal point, given by

ﬁ&,rw-!

o

(8.2.1)

&, vvet ;
has been reached. The (new) optimal point, if different from

the earlier one, would satisfy the pivotal constraints 'more'
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exactly. This is on account of considerable rgdﬁctiqn in the
computations required otherwise. The (new) optimal tableau, if
desired, can be obtained from (4.3.1), chaptér 4, The above
procedure is essentially the reinversion process[63] modified
by the techniques developed in chapter 4, For further reducing
the effects of rounding errors we may consider the extensions
discussed generally in the section below.
Modifications to the equality solution techniques. Let us
reconsider the techniques of section 4.2, chapter 4. We may along
with finding the solution to the equality constraints obtain
the inverse of the matrix corresponding to the pivotal elements

and check for its accuracy by determining its product with the

'originai matrix; the discrepancy between the latter and the unit

matrix shows the extent of inaccuracy in the results.

Thus if the rank of the equality submatrix W is m, (<)
then lef ¢> denote the leading non-singular matrix of order

T, X "y obtained, as is always possible, by rearranging fhe
equations and unknowns (variables). Let S, denote the inverse
of the submatrix W obtained as above (or by any other process

of inversion) and let M, (= )\bj ) denote the discrepancy

M, = I-WS. | M| <pP<t (8.2.2)

29. The inverse could easily be obtained in the process of
obtaining solution to the equality constraints by appending
an artificial (unit) vector (as in the Simplex technique) to

each of the '1~»2 equality const:aints. The ihverse corresponds

to the transformations to the artificial vectors.
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where || M, || , considering the first matrix norm (sections 5, 13
£241), is given by

TV
max 3| Bl abetaon (8.2.3)
' |

; p ey
The accuracy of the elements of the lnverse mabtrix \f-:f

(= ©,45 80 My x Wy matrix) may then be increased to as high s
degree as desired by following the iterative process ([gd4]; also

sec, 13 in C243 )

/N
Sq,:: SG‘,—-I * Sep-[ CE . S‘T“) 3 (8-2-1*)
where
Sq= S (e +Mga) (8.2.5)
Mg, = E-W =% ;
(8.2.6)
(It can be proved [[2471 that
R
Mg = M, ) (8.2.7)
{ 8.2 .6 ) then reduces to
s 9
S =W CE-MI) (8.2.8)

q,
which shows that S% approsches W ' within the accuracy

desired.)
Having thus obtained a more accurate value for the inverse
matrix \?\I‘" » we utilise it to obtain the final equality tableau

of Section L4.2.3 by operating the former on ( @ ) those columns

30. Hotelling, however, considered the norm given by
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of the original submatrix w that have nullity y=m, and (4) the

column vector B, ; thence the elements of the final equality

tableau are given by

Fy: = Do
- gy e g Ois Fai. s bEIy sied; (8.2.9)
and - . :
—' : 8.2.10
OCC,WM'"" % 9“,. C’Q',hl,w“ s 4 € IW ( )

where J, (c:. J;%)is the set of indices 4 that correspond to
(&) above, refer Settion 4.4 of chapter 4. It is clear that
the submatrix of the final(&JIFy;)tableau corresponding to Wis
a unit matrix and hence these elements are not computed.

The elements of the I/F tableau are then obtained from
(4.3.4 - 4.3.5) as discussed in Section 4.3 of chapter 4., The
coefficients thus obtained in the final equality and I/F tables
will be more accurate than the ones obtained 5y following the

techniques of chapter k.




10

W

12

13
1h

15

111

BIBLIOGRAPHY

Ackoff, R.L., (Ed.), Progress in Operations Research, Vol 1,
ORSA No. 5, John Wiley & Sons, Inc., New York, 108~
201 pp.

Balas, E., "Un algorithme additif pour la resolution des
programmes lineaires en variables bivalents," Compt.
Rend. Acad. Sci., Vol. 258, 1964, pp. 3817-3820.

—————— , Extension de 1l'algorithme additif a la programmation
en nombres entiens et a la programmation nonlineaire,
Compt. Rend. Acad. Sci., Vol. 258, May 25, 196k,
pp. 5136-5139.

Barankin, E.W., and R. Dorfman, ‘On Quadratie Programming,”
University of California Publications in Statistics,
Vol. 2, No. 13, University of California Press,
Berkeley, California, 1958, pp. 285-318.

Beale, E.M.L., "Cycling in the Dual Simplex Algorithm,"
Naval Res. Logist. Quart., Vol. 2, No. 4, December,
1955, pp. 269-276.

—————— , "On Quadratic Programming," Naval Res. Logist. Quart.,
Vol. 6, No. 3, September, 1959, pp. 227-243.

Beale, E.M.L., P.A.B. Hughes, and R.E. Small, "Experience in
using a decomposition Program," The Computer Journal,
Vol. 8, April 1965 to Jan. 1966, pp. 13-18.

Charnes, A., "Optimality and Degeneracy in Linear Programming,”

Econometrica, Vol. 20, No. 2, April, 1952, pp. 160-1T0.
Published in Operational Res. Quart., Vol. 3, No. 3,
September, 1952, p. 54 (abstract).

Charnes, A., and W.W. Cooper, "Generalizations of the Ware-
housing Model," Operstional Res. Quart., Vol. 6, 1955,
PP« 131-172.

—————— , "The Stepping Stone Method of Explaining Linear
Programming Calculations in Transportation Problems,"
Management Sci., Vol. 1, No. 1, 1954, pp. L49-69.

------ , "Such Solutions Are Very Little Solved," Vol. 3,

No. 4, 1955, pp. 345-346.

Charnes, A., W.W. Cooper, and A. Henderson, An Introduction
to Llnear Programming, John Wiley & Sons, Ine.,
New York, 1953. Th pp.

Chung, An-Min, Linear Programming, C.E. Merrill, Columbus,
Ohio, 1963.

Curtes, H.A., "Use of Decomposition Theory in the Solution

of the State Assignment Problem of Sequential Machlnes,'

J. Assoc. Computing Mach., July, 1963, p. 386.

Dshl, Ole-John, "Linear Programming on the MERCURY Computer,
The Multiplex Method," Internal Report F~0375, Norwegian
Defense Research Establishment, KJeller, Lillestronm,
Norway, March 1959.

wh,
<

of




112

16 Dantzig, George B., 1948-1. "Programming in a Linear Structure,"
‘Comptroller, USAF, Washington, D.C., February, 1948.
16(a) » "A Proof of the Equivalence of the Programming Problem

and the Game Problem," in T.C. Koopmans (ed.), Activity
Analysis of Production and Allocation, John Wiley &
_ Sons, Inc., New York, 1951, pp. 330-335.

1T - —————=, "Maximization of a Linear Function of Variables
Subject to Linear Inequalities," in T.C. Koopmans (ed.),
Activity Analysis of Production and Allocation, John
Wiley & Sons, Inc., New York, 1951, pp. 339-347.

18 —————— , Notes on Linear Programming: Part XI, Composite
Simplex-Dusl Simplex Algorithm-I, The RAND Corporation,
Research Memorandum RM-12T4, April 26, 1954, 15 pp.
Also The RAND Corporation, Paper P-516.

19 - Cem———— , "Linear Programming and Extensions," Princeton
University Press, New Jersey, 1963, 632 pp.
20 Dantzig, George B., Lester R. Ford, Jr., and Delbert R.

Fulkerson, "A Primal-Dual Algorithm for Linear Programs,"
in H.W. Kuhn and A.W. Tucker (eds.), Linear Inequalities
and Related Systems, Annals of Mathematics Study,
No. 38, Princeton University Press, Princeton, New
Jersey, 1956, pp. 171-181.

21 Dantzig, George B., and P. Wolfe, "The Decomposition Algorithm

‘ for Linear Programming," Econometrica, Vol. 29, No. ki,

October, 1961.

22 Dorn, W.S., "On Langrange Multipliers and Inequalities,"
' Operations Research, Vol. 9, No. 1, 1961, pp. 95-10L.
23 Everett, H., "Generalized Lagrange Multiplier Method for

Solving Problems of Optimum Allocation of Resources,"
Operations Research, Vol. 11, 1963, pp. 399-417.

ol " Faddaeva, V.N., Computational Methods of linear Algebra
(translated by Curtis D. Benster), Dover Publications,
Inc., New York, 1959, 252 pp.

25 Falk, J.E., "Langrangian Multipliers and Non-Linear Program-
ming," J. Math. Anal. Appl., Vol. 19, No. 1, July 1967.
26 i Ferguson, R.0., and L.F. Sargent, Linear Programming: Funde-

mentals and Applications, MeGraw-Hill Book Company,
Mc, New York, 1958, 342 pp; (chapters 3 and 6 refer to

» the MODI and the Ratio Analysis Method respectively).

27 Ford, Lester R., Jr., and Delbert R. Fulkerson, "A Primal-
dual Algorithm for the Capacitated Hitchcock Problem,"
The RAND Corporation, Paper P~827, March 23, 1956; also .
The RAND Corporation, Research Memorandum RM-1798,
September 25, 1956. Published in Naval Res. Logist.
Quart., Vol. 4, No, 1, March 1957, pp. 47-5kh.




28

29

30

31

32

33

3k
35
36

37
38
39

4o

b1

113

Fourier, Jean Baptiste Joseph, "Solution d'une question
particuliere du calcul des inegalites," 1826, and
extracts from "Histoire de 1'Academie," 1823, 182lL,
Oeuvres II, pp. 317-328.

Frisch, Ragnar, "Multiplex Method of Iinear Programming,"
Sankhya, Vol. 18, 1955, pp. 329-362.

—————— , "Multiplex Method for Linear Programming," Memorand-
um, Institute of Economies, University of Oslo,

Norway, Sept. 1958, pp.

—————— , Principles of Linear Programming (with Particular
References to the Double Gradient Form of the Lograth— -
mic Potential Method, Memorsndum, Institute of Economics,
University of Oslo, Norway, 195k.

—————— , "Mixed Linear and Quadratic Programming by the
Multiplex Method," in Hugo Hegeland (ed.), Money,
Growth, and Methodology and other Essays in Economics,
Cwk Gleerup Lund, Sweden, March 1961, pp. 373-392.

Gale, David, H.W. Kuhn, and A.W. Tucker, "Linear Programming
and the Theory of Games," in T.C, Koopmans (ed.),
Activity Analysis of Production and Allocation, John
Wiley & Sons, Inc., New York, 1951. Also the RAND
Corporation, Report R-193, June 1951.

Garvin, Walter W., Introduction to Linear Programming,
McGraw-Hill Book Company, Inc., New York, 1960, 281 pp.

Gass, Saul I, Linear Programmings Methods and Applications,
McGraw-Hill Book Company, Inc., New York, 1958, 223 pp.

Graves, Robert L., and Philip Wolfe (eds.), Recent Advances
in Mathematical Programming, McGraw-Hill Book Company,
Inc., New York, 1963.

Hadley, G., Nonlinear and Dynamic Programming, Addison-Wesley
Publishing Co., Reading, Massachusetts, Inc., 196L.

—————— , Linear Programming, Addison-Wesley Publishing Co.,
Inc., 1962.

Henderson, A., and R. Schlaifer, "Mathematical Programming,"
Harvard Business Rev., Vol. 32, May-June, 1954, pp.T3-
100.

Hitchcock, Frank L., "Distribution of a Product from Several
Sources to Numerous Localities," J. Math. Phys., Vol.
20, 1941, pp. 224-230.

. Hoffman, A.J., "Cycling in the Simplex Algorithm," National

Bureau of Standards, Report No. 29Tk, December 16,
1953. T pp.

~~~~~~ , "How to Solve a Linear Programming Problem," in
H. Antosiewicz (ed.), Proceedings of the Second Sympos-—
ium in Linear Programming, Vols. 1, and 2, Directorate
of Management Analysis, DCS/Comptroller,; U.S. Air
Force, Washington, D.C., Jan., 1955, pp. 397-L2k.

Aikes




Lo

43

Wk
45
46
W
48
49
50
51
52

53
54

25

56 -

A5 llh\' WA Y el et Sut e

Hoffman, A.J., M. Mannos, D. Sokolowsky, and N. Wiegmann,
"Computational Experience in Solving Linear Programs,"
J. Soc. Indust. Appl. Math., Vol. 1, No. 1, 1953, pp.
17-38:

Houthakker, H.S., "The Capacity Method of Quadratic Program-
ming," in P. Wolfe (ed.), The RAND Symposium on Mathe—
matical Programming, The RAND Corporation, Report
R-351, March 16-20, 1959.

I.B.M. ‘Manuals ; I.B.M. Manual, E20-817-0, I.B.M. World Trade
Corporation, 821, United Nations Plaza, New York 10017,
PP 23=31.

—————— ,» L.B.M. 1130 Linear Programming — Mathematical Optim-
isation Sub-routine System, Program Reference Manual
H20-0345-0, pp. 3-11.

—————— , I.B.M. 360 Fortran Linear Programming System, 360
D-15.2.006, pp. 5-9.

Kantorovich, L.V., "Mathematical Methods in the Organization
and Planning of Production," Publication House of the
Leningrad State University, 1939. 68 pp. Translated in
Management Sci., Vol. 6, 1960, pp. 366-422.

—————— , 'On the Translocation of Masses," Compt. Rend. Acad.
Sci., U.R.8.S., 37, 1942, pp. 199-201.

Kantorovich, L.V., and M.K. Gavurin, "The Application of
Mathematical Methods to Problems of Freight Flow
Analysis," (translation), Akademii Nauk SSSR, 1949.

Klein, B., "Direct Use of External Principles in Solving
Certain Optimising Problems Involving Inequalities,"
Operations Research, Vol. 3, 1955, pp. 168-175.

Koopmans, T.C., "Optimum Utilization of the Transprotation
System," Prodeedings of the International Statistical
Conferences, 1947, Washington,D.C. (Vol. 5 reprinted as
Supplement to Econometrica, Vol. 17, 1949). A

—————— , (ed.) Activity Analysis of Production and Allocation,
John Wiley & Sons, Inc., New York, 1951, L4OL pp.

Kuhn, H.W., "The Hungarian Method for the Assignment Problem,"

Naval Res. Logist. Quart., Col. 2, 1955, pp. 83-97.

Kuhn, H.W., and A.W. Tucker (eds.), Linear Inequalities and
Related Systems, Annals of Mathematics Study No. 38,
Princeton University Press, Princeton, New Jersey,
1956, 322 pp.

Land, A.H., and A.G. Doig, "An Automatic Method of Solving
Descrete Programming Problems," Econometrlca, Vol. 28,
PP. 497-520.

Lemke, C.E., "The Dual Method of Solving the Linear Programm-—
ing Problem," Naval Res. Logist. Quart., Vol. 1, 195k,
Pp. 36-4T.




5T

57(a)
58

59

60

61

62
63
63(a)

6L
65
66

67
68

69

115

Markowitz, Harry M., "The Optimization of a Quadratic Function
Subject to Linear Constraints," The RAND Corporation,
Research Memorandum RM-1438, February 21, 1955; also
The RAND Corporation, Paper P-63T7, June 27, 1955.
Published in Naval Res. Logist. Quart., Vol. 3, 1956.

Mehndiratta, S.L., "General Symmetric Dual Programs,"
Operations Research, Vol. 1k, No. 1, 1966, pp. 16L-1T2.

Motzkin, T.S5., and I.J. Schoenberg, "The Relaxation Method
for Linear Inequalities," Canad. J. Math., Vol. 6,
1954, pp. 393-h40k,

Orchard-Hays, W., A Composite Simplex Algorithm - II, The
RANﬁ Corporation, Research Memorandum RM-1275, May,
1954,

Orden, Alex, and L. Goldstein (eds.), Symposium on Linear
Inequalites and Programming, Project SCOQP, No. 10,
Planning Research Division, Director of Management
Analysis Service, Comptroller, USAF, Washington, D.C.,
April 1952.

Poussin, M. Ch. J. de la Vallee, "Sur la methode de
1'approximation minimum," Ann. Soc. Sci. de Bruxelles,
35, 1911, pp. 1-16.

Perlis, S., Theory of Matrices, Addison-Wesley Press, Inc.,
Cambridge, Mass., 1952, 237 pp.

Rall, L.B., (ed.), Error in Digital Computation, Vol. II,
John Wiley & Sons, New York, 1965, pp. 271-28L.

Rosen, J.B., "Primal Partition Programming for Block Diagon-

al Matrices," Computer Science Division School of
Humanities and Sciences, Stanford University, Stanford,
California, Technical Report No. 32, November, 1963.

Saaty, T.L., "The Number of Vertices of a Polyhedron," Amer.
Math. Monthly, Vol. 65, No. 5, May, 1955, pp. 327-33l.

Simmonnard, M., Linear Programming (translated by W.S. Jewell),
Prentice-Hall, Inc., New Jersey, 1966, 430 pp.

Slater, M., "Lagrange Multipliers Revisited," Cowles Commiss-—
ion Discussion Papers, Math. 403, November, 1950; The
RAND Corporation, Research Memorandum RM-6T76, August,
1951.

Stigler, George J., "The Cost of Subsistence," J. Farm Econ.,
Vol. 27, No. 2, May, 1945, pp. 303-31kL,

Smythe, William R. (Jr.), and Lynwood A. Johnson, Introduction
t0 Linear Programming, With Applications, Prentice-
Hell, Inc., New Jersey, 1966, 221 pp.

Seksena, C.P., "Multiplex Method of Linear Programming,"
Memorandum, Institute of Economics, University of Oslo,

Norway, May 1959.




T0

Tl

T2

T3

Th

75

76

[
78

19

80
81
82

T 116

Seksena, C.P., "Frisch's Multiplex Method," Lent Term Seminar,
London School of Economics, Unlver31ty of London,

1960 -

------ , "Frisch's Multiplex Method in Linear Programming and
Electronic Computers," in J.N. Kapur, L.S. Srinath,
and Holt Ashley (eds.), Proceedings of Symposium on
Operations Research, Kanpur Institute of Technology,
1965, pp. 12h-135.

—————— , "Multiplex Method of Linear Programming," Report
(unpublished) from London Compubting Service, English
Electric Company, July, 1960, 157 pp.

Saksena, C.P., and S. Nordbotten, "Detailed Flow Chart of
the Multiplex Method of Linear Programming," Memorand-
um, Institute of Economics, University of Oslo, Norway,
April 1959.

Saksena, C.P., and A.J. Cole, "The Bounding Hyperplane Method
of Linear Programming," Operations Research; (accepted
for §Ublicatian, revised version submitted in May,
1970).

Tompkins, C.B., "Projection Methods in Calculation," in
H.A. Antosiewicz (ed.), Proceedings of the Second
Symposium in Linear Programming, Vol. 2, National
Bureau of Standards and Directorate of Management
Analysis, DCS/Comptroller, USAF, Washington, D.C.,
1955,pp. 425-448,

Tucker, A.W., "Iinear Inequalites and Convex Polyhedral Sets,"
in H.A. Antosiewicz (ed.), Proceedings of the Second
Symposium in Linear Programming, Vol. 2, National
Bureau of Standards and Directorate of Management
Analysis, DCS/ Comptroller USAF, Washington, D.C.,
1955, pp. 569-602.

Vajda, S., Mathematical Programming, Addlson—Wesley Publishing
Company, Inc., Reading, Massachusetts, 1961. 310 pp.

van de Panne, C., and Andrew Whinston, "The Simplex and
Dual Method for Quadratic Programming," International
Center for Management Science, Rotterdam, Report631h
(ICMS No. 28), April, 1963.

Wade, Thomas E., The Algebra of Vectors and Matrices, Addison-—
Wesley, Inc., Cambridge, Mass., 1951, 189 pp.

Waugh, F.V., and G.L. Burrows, "A Short Cut to Linear Program-
ming," Econometrica, Vol.23 . January, 1955, pp.8-249.

Wolfe, Philip, "The Simplex Method for Quadratic Programming,"
Econometrica, Vol. 27, No. 3, July, 1959.

Wolfe, P. and L. Cutler, "Experiments in Linear Programmlng,
in R. Graves and P, Wolfe (eds.), Recent Advances in
Mathematical Programming, McGraw-Hill Book Company ,
Inc., New York, 1963.

. R B
(Lot




83

8l

85
86

871
88
89
90

11T

ADDENDUM

Balas, Egon, "Une methode de decomposition quasi-primale-
duale pour des programmes lineaires," Comptes Rendus
de 1'Academie des Sciences (Paris), Vol. 261, 1965,
pp. 25T72-25Th.

' mem——— , "Deuxieme variante de la methode de decomposition

quasi-primale—-duasle pour des programmes lineaires,"
Comptes Rendus de 1l'Acedemie des Sciences (Paris),
Vol. 261, 1965, pp. 2809-2811.

—————— » "An Infeasibility-Pricing Decomposition Method for
Linear Programs," Vol. 14, No. 1, 1966, pp. 84T7-873.

Dahl, Ole—-John, "A Comparison Between the Simplex and
Multiplex Methods," Teknisk notat F-22, ref. 170,

June, 1959, Forsvarets Forskningsin Stikitt, Lillestrom,
Norway.

Davie, A.J.T., "KLOCK" - a subroutine for timing calculatlons
on I.B.M. 360/Llt computer.

Dorn, W.S., "A Duality Theorem for Convex Programs," I.B.M.
J. Res. Develop, Vol. Lk, 1960, pp. 60T7-413.

Hotelling, H., "Some New Methods in Matrix Calculation,"

Ann. Math. Stat., Vol. 4, 1943, pp. 1-33.

Kuhn, H.W., and A.W. Tucker, "Nonlinear Programming,"
Proceedings of the Second Berkeley Symposium of
Mathematical Statistics and Probability, J. Newmen,
University of California Press, Berkeley and Los
Angeles, 1951 pp. 481-L92,




