SEMIGROUPS OF SINGULAR ENDOMORPHISMS OF VECTOR SPACES

Robert J. H. Dawlings
A Thesis Submitted for the Degree of PhD at the University of St Andrews

1980

Full metadata for this item is available in St Andrews Research Repository at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13725

This item is protected by original copyright

SEMIGROUPS OF SINGULAR ENDOMORPHISMS OF VECTOR SPACES

ROBERT J. H. DAWLINGS

A thesis submitted for the degree of Doctor of Philosophy of the University of St. Andrews

```
Department of Pure Mathematics,
    May 1980
University of St. Andrews.
```

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10171129
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Th 9355

ABSTRACT

In 1967, J. A. Erdbs showed, using a matrix theory approach, that the semigroup $\operatorname{Sing}_{\mathrm{n}}$ of singular endomorphisms of an n-dimensional vector space is generated by the set E of idempotent endomorphisms of rank $n-1$. This thesis gives an alternative proof using a linear algebra and semigroup theory approach. It is also shown that not all the elements of E are needed to generate Sing $_{n}$. Necessary conditions for a subset of E to generate Sing_{n} are found; these conditions are shown to be sufficient if the vector space is defined over a finite field. In this case, the minimum order of all subsets of E that generate Sing $_{n}$ is found. The problem of determining the number of subsets of E that generate Sing_{n} and have this minimum order is considered; it is completely solved when the vector space is twodimensional.

From the proof given by ErdBs, it could be deduced that any element of Sing $_{n}$ could be expressed as the product of, at most, $2 n$ elements of E . It is shown here that this bound may be reduced to n , and that this is best possible. It is also shown that, if E^{+}is the set of all idempotents of Sing_{n}, then $\left(E^{+}\right)^{n-1}$ is strictly contained in $\operatorname{sing}_{\mathrm{n}}$.

Finally, it is shown that ErdBs's result cannot be extended to the semigroup Sing of continuous singular endomorphisms of a separable Hilbert space. The subsemigroup of Sing generated by the idempotents of Sing is determined and is, clearly, strictly contained in Sing .

I declare that the following thesis is a record of research carried out by me, that the thesis is my own composition, and that it has not been accepted previously in application for a higher degree.

Robert J. H. Dawlings

DECLARATION

I declare that I was admitted in October 1977 under Court Ordinance General Number 12 as a full-time research student in the Department of Pure Mathematics.

Robert J. H. Dawlings

CERTIFICATE

I certify that Robert J. H. Dawlings has satisfied the conditions of the Resolution and Regulations and is thus qualified to submit the accompanying thesis in application for the degree of Doctor of Philosophy.

John M. Howie

PREFACE

I would like to thank the Science Research Council for their financial support over the past three years. Also, my thanks are due to Forrest and Grinsell Foundation for very generous grants to enable me to attend a conference at Tulane University, U.S.A., and to spend three months working at Monash University, Australia. I am very grateful to the Department of Pure Mathematics at Monash University for making my stay there so pleasant.

My thanks are also due to Miss Margaret Smith, for her rapid typing of this thesis, and to Miss Elizabeth Ewing and Miss Lynda Wright, for their help in checking the proofs.

Finally, I would like to thank all the members of the Mathematical Institute at St. Andrews University for their help and friendship: especially Dr. John 0^{\prime} Connor, who commented on an early draft of Chapter 2 of this thesis, and Professor John Howie, who not only introduced me to semigroup theory four years ago, but has also supervised, advised and inspired me over the last three years.

CONTENTS

Page
DECLARATIONS i.
CERTIFICATE ii
PREFACE iii
INTRODUCTION 1
CHAPTER 1 THE SEMIGROUP OF SINGUZAR ENDOMORPHISMS OF A FINITE DIMENSIONAL VECTOR SPACE 4
§1 Preliminaries 4
§2 Stroke Products 9
§3 Products of Idempotents of Rank n - 1 13
§4 Generating Sets of Idempotents 1: The Vector Space
V Defined over an Arbitrary Field F 40
§5 Generating Sets of Idempotents 2: The Vector Space V Defined over a Finite Field F 53
§6 Generating Sets of Idempotents 3: The Vector Space V Defined over an Infinite Field F 58
§7 Generating Sets of Idempotents 4: The Number of Generating Sets of Minimum Order when V is
Defined over a Finite Field F 84
58 Gravity and Depth 100
CHAPTER 2 THE SEMIGROUP OF CONTINUOUS SINGULAR ENDOMORPHISMS OF A SEPARABLE HILBERT SPACE 120
§1 Basic Definitions and Results 120
§2 Some Technical Results 125
§3 The Subsemigroup Generated by the Idempotents 131

INTRODUCTION

If M is a mathematical system and End M) is the set of endomorphisms of M then $\operatorname{End}(M)$ forms a semigroup under composition of mappings. Since 1966 a number of papers have been written to determine the subsemigroup S_{M} of $\operatorname{End}(M)$ generated by the idempotents E_{M} of End(M) for different systems M.

In [8] the problem was solved when M is a finite set, in this case End(M) being the full transformation semigroup T_{M}. Here the subsemigroup generated was found to be $\left(T_{M} \backslash G_{M}\right) \cup\{I d\}$ where G_{M} is the symmetric group on M and $I d$ is the identity mapping on M.

In [9] M was taken to be a totally-ordered set. If M is finite then the semigroup O_{M} of order-preserving mappings of M was shown to be generated by the idempotents of O_{M}. If M is infinite and has order type ω (i.e is isomorphic to \mathbb{N} with the natural order) then necessary and sufficient conditions for certain elements of O_{M} to be idempotent generated were also given in [9].

In [14] this was generalised to an arbitrary well-ordered set and then in [17] to an arbitrary totally-ordered set.

Having ascertained the subsemigroup S_{M} generated by the idempotents E_{M} in these cases, various further questions arise. The most obvious is, are all the elements of E_{M} required to generate S_{M} ? If . not, then the question arises of how small the order of a generating subset of E_{M} may be. From this the problem arises of ascertaining the number of ways it is possible to choose subsets of E_{M} that generate S_{M} and have this minimum order. In the case of M being a finite set, these questions have been solved in [8] and [11].

In any semigroup of endomorphisms of M we have

$$
\text { . } S_{M}=\left\langle E_{M}\right\rangle=\bigcup_{n=1}^{\infty} E_{M}^{n}
$$

where $E_{M} \subseteq E_{M}^{2} \subseteq E_{M}^{3} \subseteq \ldots$, and so for each element α of S_{M} there is a least integer $g(\alpha)$ such that

$$
\alpha \in E_{M}^{g(\alpha)}
$$

The problem of ascertaining $g(\alpha)$ has been partially solved and the problem of finding $\sup \left\{g(\alpha): \alpha \in S_{M}\right\}$ completely solved in [12] (and reported in [13]) for the case of M being a finite set. Comparable results may be deduced from [14] if M is a well-ordered set or a finite totally-ordered set.

In Chapter 1 I shall consider all these questions when M is an n-dimensional vector space V over a field F. Rather than consider the subsemigroup generated by E_{V}, I have considered the subsemigroup generated by $\mathrm{E}_{\mathrm{v}} \backslash\{\mathrm{I}\}$ where I is the identity mapping. This restriction is of trivial effect since $\left\langle E_{v}\right\rangle=\left\langle E_{v} \backslash\{I\}\right\rangle U\{I\}$. It has already been shown, in [7], that $\mathrm{E}_{\mathrm{v}} \backslash\{I\}$ generates $\operatorname{Sing}_{\mathrm{n}}$, the semigroup of singular endomorphisms of an n-dimensional vector space. A more illuminating proof of this result is given as Theorem 1.4.9. If $\dot{\mathrm{F}}$ is finite, then the minimum order of a generating set of idempotents is found at Corollary 1.5.7. An upper bound for the number of ways of choosing a generating set of idempotents with this minimal order is obtained in Lemma 1.7.7, Lemma 1.7.15 and Lemma 1.7.18. The final two questions are solved, for an arbitrary field, in Theorem 1.8.7 and Theorem 1.8.8.

In Chapter 2 I shall determine S_{H} where H is a separable Hilbert space and $\operatorname{End}(H)$ is the semigroup of continuous linear mappings of H to itself.

Throughout this thesis the semigroup notation used shall be as in [5] and [10]. V will always denote an n-dimensional vector space (n finite) over a field F and H will denote a separable Hilbert space. Sing $_{n}$ will denote the semigroup of singular endomorphisms of V and Sing will denote the semigroup of singular continuous endomorphisms of H. (Note that an element of Sing may have a null-space consisting solely of $\{\underline{0}\}$, for a continuous endomorphism α of H is singular if there does not exist a continuous endomorphism β of H such that $\alpha \beta$ is the identity mapping on H.$) \quad \mathrm{PF}_{\mathrm{n}-1}^{0}$ will denote the principal factor of Sing_{n} containing those elements of rank $n-1$ whereas $\mathrm{PF}_{\mathrm{n}-1}$ will be the set of non-zero elements of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. In Chapter 1 E will denote the idempotents in the set $\mathrm{PF}_{\mathrm{n}-1}$, in Chapter 2 E will denote all the idempotents of Sing . If α is an element of sing_{n} or Sing then the null-space of α will be denoted by N_{α} and the range of α by R_{α}. At times Sing $_{n}$ will purposely be confused with the semigroup of singular $n \times n$ matrices. Throughout, elements of Sing $_{n}$ [Sing] will be written on the right of elements of V [H].

CHAPTER 1

THE SEMIGROUP OF SINGULAR ENDOMORPHISMS OF A FINITE DIMENSIONAL VECTOR SPACE

The first eleven lemmas are probably well known and are included here for the sake of completeness. The proofs of the first three, being elementary, are omitted.
1.1 LEMMA Let $\alpha, \beta \in \operatorname{sing}_{\mathrm{n}}$. Then $\mathbb{N}_{\alpha} \subseteq N_{\alpha \beta}$ and $R_{\alpha \beta} \subseteq R_{\beta}$.
1.2 LEMMA Let $\alpha, \beta \in \operatorname{Sing}_{\mathrm{n}}$. Then α, β and $\alpha \beta$ all have the same rank if and only if $N_{\alpha}=N_{\alpha \beta}$ and $R_{\alpha \beta}=R_{\beta}$.
1.3 LEMMA (Exercise 2.2.6 in [5]) Let $\alpha, \beta \in \operatorname{sing}_{\mathrm{n}}$. Then:
(i) $\alpha L \beta$ if and only if $R_{\alpha}=R_{\beta}$
(ii) $\alpha R \beta$ if and only if $N_{\alpha}=N_{\beta}$
(iii) $\alpha D \beta$ if and only if α and β have the same rank (iv) $\alpha D \beta$ if and only if $\alpha J \beta$.
1.4 LEMMA If $\varepsilon \in E$ then $N_{\varepsilon} \cap R_{\varepsilon}=\{\underline{0}\}$ and $V=N_{\varepsilon} \oplus R_{\varepsilon}$.

PROOF Let $\underline{x} \in N_{\varepsilon} \cap R_{\varepsilon}$. Then $\underline{0}=\underline{x} \varepsilon=\underline{x}$. So
$N_{\varepsilon} \cap R_{\varepsilon}=\{\underline{0}\}$. Also, for all \underline{x} in $V, \underline{x} \in N_{\varepsilon}+R_{\varepsilon}$ since $\underline{x}=(\underline{x}-\underline{x} \varepsilon)+\underline{x} \varepsilon$. So $V=N_{\varepsilon}+R_{\varepsilon}$ and hence $V=N_{\varepsilon} \oplus R_{\varepsilon}$.
1.5 LEMMA Let $\alpha, \beta \in \operatorname{Sing}_{\mathrm{n}}$ be of rank. r. Then $\alpha \beta$ is of rank r if and only if $R_{\alpha} \cap N_{\beta}=\{\underline{0}\}$.

PROOF Suppose first that $\alpha \beta$ is of rank r. Let
$\underline{x} \in R_{\alpha} \cap N_{\beta}$. Then there exists an element y in V such that $\underline{y} \alpha=\underline{x}$. Now $\underline{x} \beta=\underline{0}$ and so $\underline{y} \alpha \beta=\underline{0}$, i.e. $\underline{y} \in N_{\alpha \beta}=N_{\alpha}$ (by Lemma 1.2). So $\underline{x}=\underline{y} \alpha=\underline{0}$. Hence $R_{\alpha} \cap N_{\beta}=\{\underline{0}\}$.

Conversely suppose that $R_{\alpha} \cap N_{\beta}=\{\underline{0}\}$. Let $\underline{x} \in N_{\alpha \beta}$. Then $\underline{x} \alpha \beta=\underline{0}$ and so $\underline{x} \alpha \in N_{\beta}$. Hence $\underline{x} \alpha \in R_{\alpha} \cap N_{\beta}=\{\underline{0}\}$ by hypothesis. So $\underline{x} \in N_{\alpha}$. Thus we have $N_{\alpha \beta} \subseteq N_{\alpha}$. But (by Lemma 1.1) $N_{\alpha} \subseteq N_{\alpha \beta}$ and so $N_{\alpha}=N_{\alpha \beta}$. Hence $\alpha \beta$ is of the same rank as α, namely r.
1.6 LEMMA Every element of Sing $_{n}$ of rank r has a (semigroup) inverse of rank r. Consequently sing_{n} is regular.

PROOF Let α be an element of $S_{i n g}^{n}$ of rank r. By [5 , Exercise 2.2.6] there exists an endomorphism β of V (not necessarily singular) such that $\alpha \beta \alpha=\alpha$: Now consider the element $\beta^{\prime}=\beta \alpha \beta$. Clearly the rank of β^{\prime} is less than or equal to the rank of α. But $\alpha \beta^{\prime} \alpha=\alpha(\beta \alpha \beta) \alpha=(\alpha \beta \alpha) \beta \alpha=\alpha \beta \alpha=\alpha$ and so the rank of α is less than or equal to the rank of β^{\prime}. Thus α and β^{\prime} have the same rank. Also β^{\prime} is an inverse of α for $\beta^{\prime} \alpha \beta^{\prime}=(\beta \alpha \beta) \alpha(\beta \alpha \beta)$ $=\beta(\alpha \beta \alpha) \beta \alpha \beta=\beta(\alpha \beta \alpha) \beta=\beta \alpha \beta=\beta^{\prime}$. Thus β^{\prime} is an inverse of α of rank r.
1.7 LEMMA Let $\alpha, \beta \in \mathrm{PF}_{\mathrm{n}-1}^{0}$. Then :
(i) $\alpha L \beta$ if and only if $R_{\alpha}=R_{\beta}$
(ii) $\alpha R \beta$ if and only if $N_{\alpha}=N_{\beta}$.

PROOF (i.) By [10, Lemma II.4.1] $\alpha L \beta$ if and only if there exist inverses α^{\prime} and β^{\prime} (of α and β respectively) in $\mathrm{PF}_{\mathrm{n}-1}^{0}$ such that $\alpha^{\prime} \alpha=\beta^{\prime} \beta$. Now considering $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}$ as elements of sing_{n} we still have that α^{\prime} is an inverse of α, β^{\prime} is an inverse
of β and that $\alpha^{\prime} \alpha=\beta^{\prime} \beta$. Thus (by [10, Lemma II.4.1]) α and β are L-equivalent in Sing_{n}. So (by Lemma 1.3) $R_{\alpha}=R_{\beta}$.

Conversely, if $R_{\alpha}=R_{\beta}$ then (by Lemma 1.3) α and β are L-equivalent in $\operatorname{Sing}_{\mathrm{n}}$. So (by [10, Lemma II.4.1]) there exist inverses α^{\prime} and β^{\prime} (of α and β respectively) in sing_{n} such that $\alpha^{\prime} \alpha=\beta^{\prime} \beta$. By [10, Lemma II.3.5] α^{\prime} and α are D-equivalent in Sing $_{\mathrm{n}}$, and ' β^{\prime} and β are D-equivalent in $\operatorname{Sing}_{\mathrm{n}}$. Thus (by Lemma 1.3) rank $\alpha^{\prime}=$ rank α and rank $\beta^{\prime}=\operatorname{rank} \beta$. Thus $\alpha^{\prime}, \beta^{\prime} \in \mathrm{PF}_{\mathrm{n}-1}^{0}$. So (by [10, Lemma II.4.1]) α and β are L-equivalent in $\mathrm{PF}_{\mathrm{n}-1}^{0}$. The proof of (ii) is dual to the proof of (i).
1.8 LEMMA $\quad \mathrm{PF}_{\mathrm{n}-1}^{0}$ is a completely 0 -simple semigroup.

PROOF By [5, Lemma 2.39] $\mathrm{PF}_{\mathrm{n}-1}^{0}$ is either 0-simple or null. $\mathrm{PF}_{\mathrm{n}-1}^{0}$ is not null since it contains the $\mathrm{n} \times \mathrm{n}$ idempotent matrix

$$
\left[\begin{array}{lllll}
0 & & & & \\
& 1 & & 0 & \\
& & 1 & & \\
& 0 & & \ddots & \\
& & & & 1
\end{array}\right]
$$

of rank $n-1$. So $\mathrm{PF}_{\mathrm{n}-1}^{0}$ is 0-simple. To show that $\mathrm{PF}_{\mathrm{n}-1}^{0}$ is completely 0-simple, it will suffice to show that $\mathrm{PF}_{\mathrm{n}-1}^{0}$ contains a primitive idempotent [10, Theorem III.3.1]. Let $\varepsilon, \phi \in \mathrm{PF}_{\mathrm{n}-1}^{0}$ be nonzero idempotents with $\varepsilon \leq \phi$. Then $\varepsilon=\varepsilon \phi=\phi \varepsilon$. So $N_{\varepsilon}=N_{\phi \varepsilon}$ and $R_{\varepsilon}=R_{\varepsilon \phi}$. But (by Lemma 1.2) $N_{\phi \varepsilon}=N_{\phi}$ and $R_{\varepsilon \phi}=R_{\phi}$. Thus $N_{\varepsilon}=N_{\phi}$ and $R_{\varepsilon}=R_{\phi}$. Hence (by Lemma 1.7) $\varepsilon L \phi$ and $\varepsilon R \phi$, i.e. $\varepsilon H \phi$. But since each H-class contains at most one idempotent [10, Corollary II. 2.6] we have $\varepsilon=\phi$. So every non-zero idempotent of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ is primitive
and $\mathrm{PF}_{\mathrm{n}-1}^{0}$ contains a non-zero idempotent (as already shown). Hence $\mathrm{PF}_{\mathrm{n}-1}^{0}$ is a completely 0 -simple semigroup.
1.9 LEMMA (exercise 7.7 .5 in [6]) Let $\alpha, \beta, \gamma \in \mathrm{PF}_{\mathrm{n}-1}^{0}$. Then $\alpha \beta \gamma=0$ if and only if $\alpha \beta=0$ or $\beta \gamma=0$.
1.10 LEMMA Let $\alpha, \beta \in \mathrm{PF}_{\mathrm{n}-1}^{0}$. Then $\alpha \beta \neq 0$ if and only if there exists a non-zero idempotent $\varepsilon \in \mathrm{PF}_{\mathrm{n}-1}^{0}$ such that $\alpha L \varepsilon$ and $\varepsilon R \beta$.

PROOF If $\alpha \beta \neq 0$ then rank $\alpha \beta$ is $n-1$, as are the ranks of α and β. So (by Lemma 1.2 and Lemma 1.3) $\alpha \beta L \beta$ and $\alpha \beta R \alpha$. Thus by Green's Lemmas [10, Lemma II.2.1] $\gamma \leftrightarrow \gamma \beta$ and $\gamma \nrightarrow \gamma \beta^{\prime}$ (where $\alpha=(\alpha \beta) \beta^{\prime}$) are mutually inverse R-class preserving bijections from L_{α} onto $L_{\alpha \beta}$ and $L_{\alpha \beta}$ onto L_{α} respectively. Thus $\beta \beta^{\prime}$ is a non-zero element of $\mathrm{PF}_{\mathrm{n}-1}^{0}$, i.e. $\beta \beta^{\prime}$ has rank $n-1$. So (by Lemma 1.2 and Lemma 1.3) $\quad \beta \beta^{\prime} R \beta$ and $\beta \beta^{\prime} L \beta^{\prime}$. But R_{β}, $=R_{\alpha}$ and so $\beta^{\prime} L \alpha$. Thus $\beta \beta^{\prime} \in L_{\alpha} \cap R_{\beta}$. Also since $\gamma \mapsto \gamma \beta^{\prime} \beta$ is the identity mapping on $L_{\alpha \beta}$ we have $\beta=\beta \beta^{\prime} \beta$. Hence $\beta \beta^{\prime}$ is idempotent and so $L_{\alpha} \cap R_{\beta}$ contains an idempotent.

Conversely if $L_{\alpha} \cap R_{\beta}$ contains a non-zero idempotent ε we have that $\varepsilon \beta=\beta$ since an idempotent acts as a left identity within its R-class. So by Green's Lemma $\gamma \nrightarrow \gamma \beta$ is a bijective R-class preserving mapping from L_{α} onto L_{β}. Thus $\alpha \beta \in \mathrm{L}_{\beta} \cap \mathrm{R}_{\alpha}$. Thus $\alpha \beta D \varepsilon$ and so $\alpha \beta$ has the same rank as ε, i.e. $\alpha \beta \neq 0$.
1.11 LEMMA Let $\alpha \in \operatorname{PF}_{n-1}^{0}$. Then $N_{\alpha} \cap R_{\alpha}=\{\underline{0}\}$ if and only if there exists an idempotent $\varepsilon \in \mathrm{PF}_{\mathrm{n}-1}^{0}$ such that $\alpha H \varepsilon$.

PROOF Suppose first that $N_{\alpha} \cap R_{\alpha}=\{\underline{0}\}$. Let $x \in N_{\alpha 2}$. Then $\underline{x} \alpha^{2}=\underline{0}$, i.e. $\underline{x} \alpha \in R_{\alpha} \cap N_{\alpha}$. Thus $\underline{x} \alpha=\underline{0}$ by hypothesis. Hence $\underline{x} \in N_{\alpha}$. Consequently $N_{\alpha 2} \subseteq N_{\alpha}$. But (Lemma 1.1) $N_{\alpha} \subseteq N_{\alpha 2}$ and so $N_{\alpha}=N_{\alpha 2}$. Thus (Lemma 1.3) $\alpha R \alpha^{2}$. A1so, since $\operatorname{dim} N_{\alpha}=\operatorname{dim} N_{\alpha 2}$ we have $\operatorname{dim} R_{\alpha}=\operatorname{dim} R_{\alpha 2}$. But $R_{\alpha 2} \subseteq R_{\alpha}$ and so $R_{\alpha}=R_{\alpha 2}$. Thus (by Lemma 1.3) $\alpha L \alpha^{2}$. Hence $\alpha H \alpha^{2}$. So (by [10, Theorem II.2.5]) H_{α} is a group. Thus H_{α} contains an idempotent.

Conversely (by Lemma 1.4) $\quad N_{\varepsilon} \cap R_{\varepsilon}=\{\underline{0}\}$. Since (by Lemma 1.3) $N_{\varepsilon}=N_{\alpha}$ and $R_{\varepsilon}=R_{\alpha}$ we have $N_{\alpha} \cap R_{\alpha}=\{\underline{0}\}$.
1.12 THEOREM Let $\varepsilon, \phi \in \mathrm{PF}_{\mathrm{n}-1}^{0}$ be non-zero idempotents, and suppose that $R_{\varepsilon} \cap N_{\phi}=\{\underline{0}\}$ which (by Lemma 1.5) implies $\varepsilon \phi \neq 0$. Then $\varepsilon \phi$ is idempotent if and only if either:
(i) $\varepsilon \phi=\phi$ which happens if and only if $N_{\varepsilon}=N_{\phi}$ or
(ii) $\varepsilon \phi=\varepsilon$ which happens if and only if $R_{\varepsilon}=R_{\phi}$.

PROOF Suppose first that $\varepsilon \phi$ is idempotent and that $N_{\varepsilon} \neq N_{\phi}$. Let $\underline{x} \in V$. Then (by Lemma 1.4) for some $\underline{r} \in R_{\varepsilon}$ and some $\underline{n} \in N_{\varepsilon}$ we have

$$
\begin{equation*}
\underline{x} \varepsilon \phi=\underline{r}+\underline{n} . \tag{1}
\end{equation*}
$$

So

$$
\underline{x} \varepsilon \phi \varepsilon=\underline{r} .
$$

So substituting for \underline{r} in (1) we have

$$
\underline{x} \varepsilon \phi=\underline{x} \varepsilon \phi \varepsilon+\underline{n} .
$$

Thus

$$
\underline{x} \varepsilon \phi=\underline{x} \varepsilon \phi^{2}=\underline{x} \varepsilon \phi \varepsilon \phi+\underline{n} \phi
$$

But since we have assumed that $\varepsilon \phi$ is idempotent this implies that $\underline{n} \in N_{\phi}$. But since both N_{ε} and N_{ϕ} are one-dimensional and we have assumed that $N_{\varepsilon} \neq N_{\phi}$ we have $N_{\varepsilon} \cap N_{\phi}=\{\underline{0}\}$. Thus $\underline{n}=\underline{0}$. Hence, from (1), $x \in \phi \in R_{\varepsilon}$. But this holds for all x in V and so $R_{\varepsilon \phi} \subseteq R_{\varepsilon}$. But since $\varepsilon \phi \neq .0$ we have that $\operatorname{dim} R_{\varepsilon \phi}=n-1$. Thus $R_{\varepsilon \phi}=R_{\varepsilon}$. Also (by Lemma 1.1) $R_{\varepsilon \phi} \subseteq R_{\phi}$ and so $R_{\varepsilon \phi}=R_{\phi}$. Thus $R_{\varepsilon}=R_{\phi}$. So if $\varepsilon \phi$ is idempotent then either $N_{\varepsilon}=N_{\phi}$ or $R_{\varepsilon}=R_{\phi}$.

We shall now show the equivalence in condition (i). Suppose that $\varepsilon \phi=\phi$. Then $N_{\varepsilon \phi}=N_{\phi}$. But $N_{\varepsilon \phi} \supseteq N_{\varepsilon}$ and $\operatorname{dim} N_{\varepsilon \phi}=\operatorname{dim} N_{\varepsilon}$ since $\varepsilon \phi$ and ε both have rank $n-1$. Thus $N_{\varepsilon \phi}=N_{\varepsilon}$ and so $N_{\phi}=N_{\varepsilon}$. Conversely, suppose that $N_{\phi}=N_{\varepsilon}$. Then (by Lemma 1.3) $\varepsilon R \phi$. But an idempotent acts as a left identity within its own R-class and so $\varepsilon \phi=\phi$. The proof of the equivalence in (ii) is dual.

It is immediate that if condition (i) or condition (ii) holds then $\varepsilon \phi$ is idempotent.

The purpose of this section is to introduce a new notation for elements of E (i.e. the idempotents of Sing_{n} of rank $n-1$ or equivalently the non-zero idempotents of PF_{n-1}^{0}) and for the $H-c l a s s e s$ of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ (and so for the $H-c l a s s e s$ of the top $J-c l a s s$ of $\operatorname{Sing}_{\mathrm{n}}$). This new notation will make future results much clearer.

If $\varepsilon \in E$ then if we are to describe ε by giving its nul1space and its range we have to give one vector for its null-space and $\mathrm{n}-1$ vectors to determine its range. Similarly to denote any $H-c l a s s$
in $\mathrm{PF}_{\mathrm{n}-1}^{0}$ by giving vectors that determine the null-space and the range of elements in that H-class we again have to specify n vectors. This is somewhat cumbersome and nothing is saved from merely giving the matrix relative to some basis of any element in that H-class. The notation to be developed will reduce the number of vectors it is necessary to state to determine a particular H-class of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ or a particular element of E to just two.
2.1 DEFINITION Let ξ, X be automorphisms of the field F such that $\left(x \xi^{-1}\right)^{2}$ is the identity mapping. Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\underline{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be elements of V. The (ξ, x)-stroke product of \underline{a} with \underline{b} is denoted by $\langle\underline{a} \mid \underline{b}\rangle(\xi, x)$, or simply by $\underline{a} \mid \underline{b}>$, and is defined by

$$
\langle\underline{a} \mid \underline{b}\rangle={ }_{i=1}^{n}\left(a_{i} \xi\right)\left(b_{i} x\right) .
$$

Clearly, if ξ is the identity and X sends an element to its complex conjugate, then $<\cdot \mid \cdot>$ is the normal inner product on an ndimensional vector space over the field of complex numbers (or real numbers).

We shall regard ξ and X as fixed in advance and shall not normally make explicit reference to them in definitions and statements.

$$
\text { 2.2 DEFINITION If } \underline{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \text { and } \underline{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$ are elements of V we shall say that \underline{a} and \underline{b} are perpendicular if $\underline{a}|\underline{b}\rangle=0$. This definition is reasonable since. $\langle\underline{a} \mid \underline{b}\rangle=0$ if and only if

$$
{ }_{i=1}^{n}\left(a_{i} \xi\right)\left(b_{i} x\right)=0,
$$

i.e. if and only if

$$
\left({ }_{i}^{\sum_{=1}^{n}}\left(a_{i} \xi\right)\left(b_{i} x\right)\right) \xi^{-1} x=0,
$$

i.e. if and only if

$$
\sum_{i=1}^{n}\left(a_{i} x\right)\left(b_{i} x \xi^{-1} x\right)=0,
$$

i.e. if and only if

$$
{ }_{i=1}^{n}\left(a_{i} x\right)\left(b_{i} \xi\right)=0
$$

i.e. if and only if

$$
\langle\underline{b} \mid \underline{a}\rangle=0 .
$$

If A is a subset of V, we shall define the perpendicular of A to be $A^{\perp}=\{\underline{x} \in V: \underline{x} \mid \underline{a}>=0(\forall \underline{a} \in A)\}$.

It is worth noting that in general A and A^{\perp} are not disjoint. For example, if V is the two-dimensional vector space over the complex numbers and ξ and X are both the identity mapping, then $(1, i) \in\langle(1, i)\rangle^{\perp}$ where $\langle(1, i)\rangle$ denotes the space generated by the vector (1,i). Another simple example is obtained by taking V as the two-dimensional vector space over \mathbb{Z}_{2}, and ξ and X as the identity
mapping; then $(1,1) \in\langle(1,1)\rangle^{\perp}$.
It should also be noted that if A is any subset of V then A^{\perp} is a subspace of V.
2.3 LEMMA Let V be an n-dimensional vector space over the field F, and let U be a subspace of V. Then $\operatorname{dim} U=n-\operatorname{dim} U^{\perp}$.

PROOF
If A is an $m \times n$ matrix of rank r then $\left\{\underline{x} \in F^{n}: \underline{x A}=0\right\}$ is a subspace of F^{n} of dimension $n-r$.

Now let $\operatorname{dim} U=r$ and let $\left\{\underline{u}_{1}, \ldots, \underline{u}_{r}\right\}$ be a basis for U, where $\underline{u}_{i}=\left(u_{i}^{(1)}, u_{i}^{(2)}, \ldots, u_{i}^{(n)}\right)$. Then $\underline{x}^{=}=\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right) \in U^{\perp}$ if and only if $\left\langle\underline{x} \mid \underline{u}_{i}\right\rangle=0$ for $i=1,2, \ldots, r$, ie. if and only if $(\underline{x} \xi) A=\underline{0}$ where $A=\left(\left(\underline{u}_{1} x\right)^{\top},\left(\underline{u}_{2} x\right)^{\top}, \ldots,\left(\underline{u}_{r} x\right)^{\top}\right)$ is an $n x$ matrix and $\underline{x} \xi=\left(x^{(1)}{ }_{\xi, x^{(2)}}^{\xi, \ldots, x^{(n)}} \xi\right.$). Since the r columns are linearly independent, it follows that $\operatorname{dim} U^{\perp}=n-r$.
2.4 LEMMA Let U^{\prime} and V be subspaces of V. Then
(i) $\left(U^{\perp}\right)^{\perp}=U$ and
(ii) if $U \subset W$ then $W^{\perp} \subset U^{\perp}$.

PROOF (i) Clearly $U \subseteq\left(U^{\perp}\right)^{\perp}$. Since (by Lemma 2.3) $\operatorname{dim}\left(U^{\perp}\right)^{\perp}=n-\operatorname{dim} U^{\perp}=n-\left(n-\operatorname{dim}(\cup)=\operatorname{dim} U\right.$ we have that $\left(U^{\perp}\right)^{\perp}=U$.
(ii) Let $\underline{x} \in W^{\perp}$. Then $\langle\underline{x}| \underline{w}=0$ for all $\underline{w} \in W$. So certainly $\langle\underline{x} \mid \underline{u}\rangle=0$ for all $\underline{u} \in U$ since $U^{\prime} \subset W$. Thus $\underline{x} \in U^{\perp}$ and so $W^{\perp} \subset U^{\perp}$.
2.5 NOTATION Since every element in any particular R-c1ass of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ has the same one-dimensional null-space we can label the R-classes of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ in the obvious way with an element of V that
generates this one-dimensional subspace of V. Similarly, the L-classes of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ could be labelled in the obvious way with $\mathrm{n}-1$ elements of V that generate the common range. But since if $\operatorname{dim} U=n-1$ we have (by Lemma 2.3) that $\operatorname{dim} U^{\perp}=1$, it follows that we can label the L-classes of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ in an obvious way with an element of V that generates the one-dimensional subspace of V perpendicular to the common range of the elements in that L-class. Thus if α is a non-zero element of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ such that $N_{\alpha}=\langle\underline{n}\rangle$ and $R_{\alpha}^{\perp}=\langle\underline{r}\rangle$ then we can 1abel the L-class containing α by $\underline{L}_{\underline{r}}$, the R-class containing α by $R_{\underline{n}}$ and the H-class containing α by $H_{\underline{n}, \underline{r}}$. As ${\underset{\underline{n}}{\underline{n}}, \underline{r} \text { is rather unwieldy }}$ this will usually be denoted by [n: $\underline{x}]$. It is clear that [n:r] denotes exactly one H-class for any choice of \underline{n} and \underline{r} in V (the fact that [n:r] represents at least one $H-c l a s s$ of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ is a result of [5, Exercise 2.2.6]). It is also clear that for any non-zero scalars λ and μ we have $[\underline{n}: \underline{r}]=[\lambda \underline{n}: \underline{r}]$.

Having adopted this notation, it is then reasonable to introduce the following: If [n: $\underline{r}]$ is a group $H-c 1$ ass of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ we shall denote the idempotent in $[\underline{n}: \underline{r}]$ by ($\underline{n}: \underline{r}$). ($\underline{n}: \underline{r}$) is clearly unique since no H-class contains more than one idempotent.

With this notation we have a very simple way of telling if a. particular H-class of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ contains an idempotent.
2.6 LEMMA [n: $\underline{x}]$ is a group H-class of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ if and only if $<\underline{n} \mid \underline{r}>0$.

PROOF Suppose that $[\underline{n}: \underline{r}]$ is a group H-class. Then [$\underline{n}: \underline{r}]$ contains the idempotent $\varepsilon=(\underline{n}: \underline{r})$. Now (by Lemma 1.4) $N_{\varepsilon} \cap R_{\varepsilon}=\{\underline{0}\}$ and since $\underline{n} \in \mathbb{N}_{\varepsilon}$ and $\underline{n} \neq \underline{0}$ we have $\underline{n} \notin R_{\varepsilon}=\left(R_{\varepsilon}^{\perp}\right)^{\perp}$. But since
$\underline{r} \in R_{\varepsilon}^{\perp}$ and R_{ε}^{\perp} is one-dimensional we have $\leq \underline{n} \mid \underline{r}>\neq 0$. Conversely, suppose $\langle\underline{n}| \underline{r}>0$. Now there exists an element $\alpha \in \mathrm{PF}_{\mathrm{n}-1}^{0}$ such that $N_{\alpha}=\langle\underline{n}\rangle$ and $R_{\alpha}=\left\langle\underline{r}^{\perp}\right.$ (by the comments of Notation 2.5). Since $\langle\underline{n}| \underline{r}>\neq 0$ we have $\lambda_{\underline{n}} \notin\left(R_{\alpha}^{\perp}\right)^{\perp}=R_{\alpha}$ for any non-zero scalar λ in F, i.e. $R_{\alpha} \cap N_{\alpha}=\{\underline{0}\}$. So (by Lemma 1.11) there exists an idempotent ε in $\mathrm{PF}_{\mathrm{n}-1}^{0}$ such that $\alpha H \varepsilon$. Clearly $\mathrm{R}_{\varepsilon}^{\perp}=\mathrm{P}_{\alpha}^{\perp}=\left\langle\underline{r}\right.$ and $N_{\varepsilon}=N_{\alpha}=\langle\underline{n}$ (by Lemma 1.7) and so $\varepsilon=(\underline{n}: \underline{x})$, ie. [n:r] contains an idempotent and so is a group H-class.

This alternative notation for $H-c l a s s e s$ of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ enables us to rewrite Lemma 1.10 as:
2.7 LEMMA Let α and β be elements of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ in $\left[\underline{n}_{1}: \underline{x}_{1}\right]$ and $\left[\underline{n}_{2}: \underline{r}_{2}\right]$ respectively. Then $\alpha \beta \neq 0$ if and only if $\underline{n}_{2} \mid \underline{\mathrm{r}}_{1}>\neq 0$.

PROOF By Lemma 1.10, $\alpha \beta \neq 0$ if and only if there exists an idempotent ε in $\mathrm{PF}_{\mathrm{n}-1}^{0}$ such that $\alpha L \varepsilon$ and $\varepsilon R \beta$. Clearly $\alpha \in \underline{L}_{\underline{r}_{1}}$ and $\beta \in{\underline{\mathbf{n}_{2}}}$. Thus $\alpha \beta \neq 0$ if and only if there exists an idempotent ε in $\underline{L}_{\underline{r}_{1}} \cap \underline{R}_{\underline{n}_{2}}=\left[\underline{n}_{2}: \underline{r}_{1}\right]$, ie. if and only if $\left[\underline{\underline{n}}_{2}: \underline{\underline{r}}_{1}\right]$ is a group H-class. But (by Lemma 2.6) this happens if and only if $<\left.\underline{n}_{2}\right|_{\underline{r}_{1}}>\neq 0$.

The purpose of this section is to determine when the product of three idempotents of rank $n-1$ is itself an idempotent of rank $n-1$. Lemma 3.1, Lemma 3.2, Lemma 3.12 and Theorem 3.14 give necessary and
sufficient conditions for this to happen. It is in the case of Theorem 3.14 only that the product generates a new idempotent of rank $n-1$. Throughout this section we shall be changing backwards and forwards between the two notations for non-zero idempotents and H-classes other than $\{0\}$ of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ so we shall adopt the following conventions:

$$
N_{i}=N_{\varepsilon_{i}}=\left\langle\underline{n}_{i}\right\rangle, \quad R_{i}^{\perp}=R_{\varepsilon_{i}}^{\perp}=\left\langle\underline{r}_{i}\right\rangle
$$

and so

$$
\varepsilon_{i}=\left(\underline{n}_{i}: \underline{\underline{r}}_{i}\right) \in\left[\underline{n}_{i}: \underline{r}_{i}\right]=H_{\varepsilon_{i}} .
$$

We first dispose of a very trivial lemma which is included only for the sake of completeness since it does give sufficient conditions for the product of three idempotents of $\mathrm{PF}_{\mathrm{n}-1}$ to be an idempotent of $\mathrm{PF}_{\mathrm{n}-1}$.
3.1 LEMMA Let $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ be idempotents of $\mathrm{PF}_{\mathrm{n}-1}$. If
(i) $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ have a common null-space then $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}=\varepsilon_{3}$; or (ii) $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ have a common range then $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}=\varepsilon_{1}$.

PROOF This is immediate from Theorem 1.12.

This is equivalent to:
3.2 LEMMA Let $\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{3}, \underline{\underline{r}}_{1}, \underline{r}_{2}$ and \underline{r}_{3} be elements of V such that $\underline{n}_{\mathrm{i}} \mid \underline{\underline{r}}_{\mathrm{i}}>\neq 0 \quad(\mathrm{i}=1,2,3)$. If
(i) $\left\langle\underline{n}_{1}\right\rangle=\left\langle\underline{\underline{n}}_{2}\right\rangle=\left\langle\underline{n}_{3}\right\rangle$ then $\left(\underline{n}_{1}: \underline{r}_{1}\right)\left(\underline{n}_{2}: \underline{\mathrm{r}}_{2}\right)\left(\underline{n}_{3}: \underline{\underline{r}}_{3}\right)=\left(\underline{\underline{n}}_{3}: \underline{\mathrm{r}}_{3}\right)$; or
(ii) $\left\langle\underline{r}_{1}\right\rangle=\left\langle\underline{r}_{2}\right\rangle=\left\langle\underline{r}_{3}\right\rangle$ then $\left(\underline{n}_{1}: \underline{r}_{1}\right)\left(\underline{n}_{2}: \underline{r}_{2}\right)\left(\underline{n}_{3}: \underline{\underline{r}}_{3}\right)=\left(\underline{n}_{1}: \underline{r}_{1}\right)$.

We may now concentrate on the case when the three idempotents $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ in the product $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ have neither a common nullspace nor a common range.
3.3 LEMMA Let $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ be non-zero idempotents of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. If $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is a non-zero idempotent and $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ do not have a common range then $\operatorname{dim}\left(\mathbb{N}_{1}+\mathbb{N}_{2}+N_{3}\right) \leq 2$.

PROOF Let $\underline{x} \in V$. Then, by Lemma 1.4, there exists $\underline{s}_{1} \in R_{1}$ and $\underline{m}_{1} \in N_{1}$ such that

$$
\begin{equation*}
\underline{x}_{1} \varepsilon_{2} \varepsilon_{3}=\underline{s}_{1}+\underline{m}_{1} . \tag{+}
\end{equation*}
$$

Again by Lemma 1.4 there exists $\underline{s}_{2} \in R_{2}$ and $m_{2} \in N_{2}$ such that $\underline{s}_{1}=\underline{s}_{2}+\underline{m}_{2}$. Thus

$$
\underline{x}_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{1}=\left(\underline{s}_{1}+\underline{m}_{1}\right) \varepsilon_{1}=\underline{s}_{1}=\underline{s}_{2}+\underline{m}_{2} .
$$

Hence $\underline{x}_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{1} \varepsilon_{2}=\underline{s}_{2}$. Thus. $\underline{s}_{1}=\underline{x}_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{1} \varepsilon_{2}+\underline{m}_{2}$. Now substituting this for \underline{s}_{1}. in (+) we obtain

$$
\underline{x} \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}=\underline{x} \varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{1} \varepsilon_{2}+\underline{m}_{2}+\underline{m}_{1} .
$$

Thus

$$
\underline{x} \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}=\underline{x}_{1} \varepsilon_{2} \varepsilon_{3}^{2}=\underline{x}\left(\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right)^{2}+\left(\underline{m}_{1}+\underline{m}_{2}\right) \varepsilon_{3} .
$$

But we have assumed that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent and so $\left(\underline{m}_{1}+\underline{m}_{2}\right) \varepsilon_{3}=\underline{0}$, i.e. $\underline{m}_{1}+\underline{m}_{2} \in N_{3}$. The elements \underline{m}_{1} and \underline{m}_{2} depend of course on the choice of the original element \underline{x}. If there exists an $\underline{x} \in V$ such that $\underline{m}_{1}+\underline{m}_{2} \neq \underline{0}$ then $\underline{m}_{1}+\underline{m}_{2}$ generates N_{3} (since. N_{3} is onedimensional) and the result is immediate. If $\underline{m}_{1}+\underline{m}_{2}=\underline{0}$ for all
choices of x in V then we have two cases to consider: (i) there exisís an $\underline{x} \in V$ such that $\underline{m}_{1}=-\underline{m}_{2} \neq \underline{0}$ and (ii) for all choices of $\underline{x} \in V$ we have $\underline{m}_{1}=\underline{m}_{2}=\underline{0}$.

If case (i) occurs then it is clear that $N_{1}=N_{2}$ and so again the result is immediate.

We shall now show that case (ii) cannot occur. Suppose that case (ii) does occur; then

$$
\underline{x}_{1} \varepsilon_{2} \varepsilon_{3}=\underline{s}_{1}+\underline{m}_{1}=\underline{s}_{1} \in R_{1} .
$$

But since this holds for all x in V and (by Lemma 1.2) the range of $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is the same as the range of ε_{3} we have $R_{3} \subseteq R_{1}$. Since $\operatorname{dim} R_{3}=\operatorname{dim} R_{1}$ we thus have $R_{3}=R_{1}$. A1so

$$
\underline{x}_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{1}=\underline{s}_{2}+\underline{m}_{2}=s_{2} \in R_{2}
$$

and so, by an argument similar to the above, $R_{1}=R_{2}$. Thus $R_{1}=R_{2}=R_{3}$ which contradicts the hypothesis of the lemma. so, as claimed, case (ii) cannot occur.

Using the alternative notation for idempotents of $\mathrm{PF}_{\mathrm{n}-1}$ this lemma may be stated as follows:
3.4 LEMMA Let $\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{3}, \underline{r}_{1}, \underline{r}_{2}$ and \underline{r}_{3} be elements of V such that $<\underline{n}_{1} \mid \underline{r}_{3}>\neq 0$ and $<\underline{n}_{i} \mid \underline{r}_{i}>\neq 0 \quad(i=1,2,3)$. If $\left(\underline{n}_{1}: \underline{r}_{1}\right)\left(\underline{n}_{2}: \underline{\underline{r}}_{2}\right)\left(\underline{n}_{3}: \underline{r}_{3}\right)=\left(\underline{n}_{1}: \underline{r}_{3}\right)$ and $\operatorname{dim}\left\langle\left\{\underline{\underline{r}}_{1}, \underline{\underline{r}}_{2}, \underline{\underline{r}}_{3}\right\}\right\rangle \geq 2$ then $\operatorname{dim}\left\langle\left\{\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{3}\right\}\right\rangle \leq 2$.
3.5 LEMMA Suppose $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ are idempotents of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. Then the following are equivalent:
(i) $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is a non-zero idempotent of ${ }_{P F}^{n-1} 0$
(ii) $\varepsilon_{2} \varepsilon_{3} \varepsilon_{1}$ is a non-zero idempotent of $\mathrm{PF}_{\mathrm{n}-1}^{0}$
(iii) $\varepsilon_{3} \varepsilon_{1} \varepsilon_{2}$ is a non-zero idempotent of $\mathrm{PF}_{\mathrm{n}-1}^{0}$.

PROOF Clearly if we can show that (i) implies (ii) then we are able to modify the proof to obtain (ii) implies (iii) and (iii) implies (i).

Suppose that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is a non-zero idempotent of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. Then $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank $n-1$ and so $n-1=$ rank $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$
$=\operatorname{rank} \varepsilon_{1}\left(\varepsilon_{2} \varepsilon_{3} \varepsilon_{1}\right) \varepsilon_{2} \varepsilon_{3} \leq \operatorname{rank} \varepsilon_{2} \varepsilon_{3} \varepsilon_{1} \leq n-1$. Thus $\varepsilon_{2} \varepsilon_{3} \varepsilon_{1}$ is non-zero in $P F_{n-1}^{0}$. A1so since $\varepsilon_{2} \varepsilon_{3} \varepsilon_{1}$ has rank $n-1$ then ε_{1} has rank n - 1. Now since the range of $\varepsilon_{2} \varepsilon_{3} \varepsilon_{1}$ is contained in R_{1} we have that the range of $\varepsilon_{2} \varepsilon_{3} \varepsilon_{1}$ is R_{1}. Now, by Lemma $1.2, \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has nul1-space N_{1} and range R_{3} and so, by Lemma $1.4, V=N_{1} \oplus R_{3}$. Let $\underline{r}_{1} \in R_{1}$, then there exist $\underline{r}_{3} \in R_{3}$ and \underline{n}_{1} in N_{1} such that $\underline{r}_{1}=\left(\underline{r}_{3}+\underline{n}_{1}\right) \varepsilon_{1}$, i.e. such that $\underline{r}_{1}=\underline{r}_{3} \varepsilon_{1}$. Hence $\underline{r}_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{1}=\underline{r}_{3}\left(\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right) \varepsilon_{1}$ $=\underline{r}_{3} \varepsilon_{1}$ since $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ acts identically on its range. But $\underline{r}_{3} \varepsilon_{1}=r_{1}$ and so $\underline{r}_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{1}=\underline{r}_{1}$ for a11 $\underline{r}_{1} \in R_{1}$. Hence $\varepsilon_{2} \varepsilon_{3} \varepsilon_{1}$ acts identically on its range and so is idempotent.
3.6 LEMMA Let U and H be subspaces of V. Then $(U \cap W)^{\perp}=U^{\perp}+W^{\perp}$.

PROOF Clearly $U \cap W \subseteq U$ and $U \cap \| \subseteq W$ so, by Lemma 2.4, $U^{\perp} \subseteq(U \cap W)^{\perp}$ and $W^{\perp} \subseteq(U \cap W)^{\perp}$. Thus $U^{\perp}+W^{\perp} \subseteq(U \cap W)^{\perp}$.

Also $U^{\perp} \subseteq U^{\perp}+W^{\perp}$ and $W^{\perp} \subseteq U^{\perp}+W^{\perp}$ and so, by Lemma 2.4, $\left(U^{\perp}+W^{\perp}\right)^{\perp} \subseteq\left(U^{\perp}\right)^{\perp}=U$ and $\left(U^{\perp}+W^{\perp}\right)^{\perp} \subseteq\left(W^{\perp}\right)^{\perp}=W$. Thus $\left(U^{\perp}+W^{\perp}\right)^{\perp} \subseteq U \cap \|$. So, again by Lemina 2.4, $\left(U \cap W^{\perp} \subseteq\left(\left(U^{\perp}+\|^{\perp}\right)^{\perp}\right)^{\perp}=U^{\perp}+\|^{\perp}\right.$. Thus
$(U \cap W)^{\perp}=U^{\perp}+W^{\perp}$.
3.7 LEMMA Let T,U,W be subspaces of V. Then $\operatorname{dim} V=\operatorname{dim}\left(T^{\perp}+U^{\perp}+W^{\perp}\right)+\operatorname{dim}(T \cap U \cap W)$.

PROOF By an obvious extension of Lemma 3.6,
$(T \cap \cup \cap W)^{\perp}=T^{\perp}+U^{\perp}+W^{\perp}$. A1so, by Lemma 2.3, $\operatorname{dim} V=\operatorname{dim}(T \cap H W)+\operatorname{dim}(T \cap U W)^{\perp}$. The result is now immediate.
3.8 LEMMA Let $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ be non-zero idempotents of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. If $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is a non-zero idempotent and $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ do not have a common null-space then $\operatorname{dim}\left(R_{1} \cap R_{2} \cap R_{3}\right) \geq n-2$.

PROOF Suppose the result does not hold. By Lemma 3.7, we have $\operatorname{dim}\left(R_{1} \cap R_{2} \cap R_{3}\right) \geq n-3$ and so we have $\operatorname{dim}\left(R_{1} \cap R_{2} \cap R_{3}\right)=n-3$, and $\operatorname{dim}\left(R_{1} \cap R_{2}\right)=\operatorname{dim}\left(R_{2} \cap R_{3}\right)=\operatorname{dim}\left(R_{3} \cap R_{1}\right)=n-2$. Let $A=\left\{\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{n-3}\right\}$ be a basis of $R_{1} \cap R_{2} \cap R_{3}$ and extend A to bases $A \cup\left\{\underline{b}_{1}\right\}$ of $R_{2} \cap R_{3}, A \cup\left\{\underline{b}_{2}\right\}$ of $R_{3} \cap R_{1}$ and $A \cup\left\{\underline{b}_{3}\right\}$ of $R_{1} \cap R_{2}$. Clearly $\underline{b}_{i} \notin R_{i}$.

Now consider $B=A \cup\left\{\underline{b}_{1}, \underline{b}_{2}\right\}$. Clearly $\langle B\rangle \subseteq R_{3}$ since $B \subseteq R_{3}$. Also it is clear that $R_{2} \cap R_{3} \subset$ since $\left\langle A \cup\left\{\underline{b}_{1}\right\}>=R_{2} \cap R_{3}\right.$ and $\underline{b}_{2} \notin R_{2} \cap R_{3}$. Hence $n-2=\operatorname{dim}\left(R_{2} \cap R_{3}\right)<\operatorname{dim}\langle B\rangle \leq \operatorname{dim} R_{3}=n-1$. Thus $\operatorname{dim}\langle B\rangle=\operatorname{dim} R_{3}$ and so B spans R_{3}. Since B. contains exactly $n-i=\operatorname{dim} R_{3}$ elements, B is a basis for R_{3}.

Now consider $C=B \cup\left\{\underline{b}_{3}\right\}$. Clearly $R_{3} C<C>$ since $R_{3}=\langle B\rangle$ and $\underline{b}_{3} \notin R_{3}$. Hence $\operatorname{dim}\langle C\rangle=n$. Thus C spans V and, since C contains exactly n elements, is a basis for V.

Let n_{1} be a non-zero vector of N_{1}. Then

Now, $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ acts identically on its range which, by Lemma 1.2 , is R_{3}. So $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ acts identically on $A \cup\left\{\underline{b}_{1}, \underline{b}_{2}\right\}$. Also $\varepsilon_{1} \varepsilon_{2}$ acts identically on \underline{b}_{3} since $\underline{b}_{3} \in R_{1} \cap R_{2}$. So acting on (+) by $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ we obtain

$$
\underline{0}={\underset{i=1}{n-3} \lambda_{i} \underline{a}_{i}}^{\text {a }}+\lambda_{n-2-\underline{b}_{1}}+\lambda_{n-1} \underline{b}_{2}+\lambda_{n-3} \dot{b}_{3} \varepsilon_{3}
$$

Subtracting this from (+) gives

$$
\underline{n}_{1}=\lambda_{n} \underline{b}_{3}-\lambda_{n} \underline{b}_{3} \varepsilon_{3}
$$

Hence

$$
\underline{n}_{1} \varepsilon_{3}=\lambda_{n} \underline{b}_{3} \varepsilon_{3}-\lambda_{n} \underline{b}_{3} \varepsilon_{3}^{2}=\underline{0}
$$

since ε_{3} is idempotent. Thus $\underline{n}_{1} \in N_{3}$ and so $N_{1} \subseteq N_{3}$. But, since N_{1} and N_{3} have the same dimension, this implies $N_{1}=N_{3}$. Similarly since we know (Lemma 3.5) that $\varepsilon_{2} \varepsilon_{3} \varepsilon_{1}$ is a non-zero idempotent, we may express a non-zero element \underline{n}_{2} of N_{2} as

$$
\underline{n}_{2}={\underset{i=1}{\underline{\Sigma_{1}}} \mu_{i} \underline{a}_{i}+\mu_{n-2} \underline{b}_{1}+\mu_{n-1} \underline{b}_{2}+\mu_{n} \underline{b}_{1}, ~}_{\text {n }}
$$

and act on this by $\varepsilon_{2} \varepsilon_{3} \varepsilon_{1}$ to obtain $N_{2}=N_{1}$.
Hence $N_{1}=N_{2}=N_{3}$ which is contrary to the hypothesis. Thus $\operatorname{dim}\left(R_{1} \cap R_{2} \cap R_{3}\right) \neq n-3$ and so the result holds.
3.9 LEMMA Let $\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{3}, \underline{r}_{1}, \underline{r}_{2}$ and \underline{r}_{3} be elements of V such that $<\underline{n}_{1}\left|\underline{r}_{1}>,<\underline{n}_{2}\right| \underline{r}_{2}>,<\underline{n}_{3} \mid \underline{r}_{3}>$ and $<\underline{n}_{1} \mid \underline{r}_{3}>$ are all non-zero. If $\left(\underline{n}_{1}: \underline{x}_{1}\right)\left(\underline{n}_{2}: \underline{r}_{2}\right)\left(\underline{n}_{3}: \underline{r}_{3}\right)=\left(\underline{n}_{1}: \underline{r}_{3}\right)$ and $\operatorname{dim}\left\langle\left\{\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{3}\right\}\right\rangle \geq 2$ then
$\operatorname{dim}\left\langle\left\{\underline{\underline{r}}_{1}, \underline{\underline{r}}_{2}, \underline{\underline{r}}_{3}\right\}\right\rangle \leq 2$.

PROOF By virtue of Lemma 3.7, this result is identical to Lemma 3.8 using the alternative notation for idempotents of $\mathrm{PF}_{\mathrm{n}-1}^{0}$.

It is now immediate from Lemma 3.3 and Lemma 3.8 that:
3. 10 LEMMA Let $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ be non-zero idempotents of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. If $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent and $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ have neither a common range nor a common null-space then $\operatorname{dim}\left(\mathbb{N}_{1}+N_{2}+N_{3}\right)=2$ and $\operatorname{dim}\left(R_{1} \cap R_{2} \cap R_{3}\right)=n-2$.

It is also immediate, from Lemma 3.4 and Lemma 3.9 , or direct from Lemma 3.10 , that:
3.11 LEMMA Let $\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{3}, \underline{\underline{r}}_{1}, \underline{r}_{2}$ and \underline{r}_{3} be elements of V such that $<\underline{n}_{1}\left|\underline{r}_{1}\right\rangle,<\underline{n}_{2}\left|\underline{r}_{2}\right\rangle,<\underline{n}_{3}\left|\underline{r}_{3}\right\rangle$ and $<\underline{n}_{1}\left|\underline{r}_{3}\right\rangle$ are all non-zero. If:
(i) $\left(\underline{n}_{1}: \underline{r}_{1}\right)\left(\underline{n}_{2}: \underline{r}_{2}\right)\left(\underline{n}_{3}: \underline{\underline{r}}_{3}\right)=\left(\underline{n}_{1}: \underline{\underline{r}}_{3}\right)$
(ii) $\operatorname{dim}\left\langle\left\{\underline{r}_{1}, \underline{r}_{2}, \underline{r}_{3}\right\}\right\rangle \geq 2$ and
(iii) $\operatorname{dim}\left\langle\left\{\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{3}\right\}\right\rangle \geq 2$
then
(i) $\operatorname{dim}\left\langle\left\{\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{3}\right\}\right\rangle=2$ and
(ii) $\operatorname{dim}\left\langle\left\{\underline{\underline{r}}_{1}, \underline{\underline{r}}_{2}, \underline{\underline{r}}_{3}\right\}\right\rangle=2$.

The conditions given in Lemma 3.10 and Lemma 3.11 are not sufficient conditions for the product of three non-zero idempotents in $\mathrm{PF}_{\mathrm{n}-1}^{0}$ to be a non-zero idempotent if the three idempotents have neither a common range nor a common null-space. To obtain sufficient conditions it is necessary to consider two different cases. The more interesting
case is where the three null-spaces are distinct and the three ranges are distinct (i.e. where for $i, j=1,2,3$ and $i \neq j$ then $N_{i} \neq N_{j}$ and $R_{i} \neq R_{j}$ or equivalently $\left\langle\underline{n}_{i}\right\rangle \neq\left\langle\underline{n}_{j}\right\rangle$ and $\left\langle\underline{r}_{i}\right\rangle \neq\left\langle\underline{r}_{j}\right\rangle$). This will be dealt with from Lemma 3.13 to the end of the section. Firstly we shall consider the case where two of the null-spaces are the same or two of the ranges are the same (i.e. where for some $i, j=1,2,3$ and $i \neq j$ we have $N_{i}=N_{j}$ or $R_{i}=R_{j}$ or equivalently $\left\langle\underline{n}_{i}\right\rangle=\left\langle\underline{n}_{j}\right\rangle$ or $\left\langle\underline{r}_{i}\right\rangle=\left\langle\underline{r}_{j}\right\rangle$).
3.12 LEMMA Let $\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{3}, \underline{r}_{1}, \underline{r}_{2}$ and \underline{r}_{3} be elements of V such that:
(i) $\left.\left\langle\underline{n}_{1} \mid \underline{\underline{r}}_{1}\right\rangle,<\underline{n}_{2}\left|\underline{\underline{r}}_{2}>,<\underline{n}_{3}\right| \underline{r}_{3}\right\rangle$ and $<\underline{n}_{1}\left|\underline{r}_{3}\right\rangle$ are all non-zero
(ii) $\operatorname{dim}\left\langle\left\{\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{3}\right\}\right\rangle \geq 2$ and
(iii) $\operatorname{dim}\left\langle\left\{\underline{x}_{1}, \underline{r}_{2}, \underline{r}_{3}\right\}\right\rangle \geq 2$.

Let $\alpha=\left(\underline{n}_{1}: \underline{r}_{1}\right)\left(\underline{n}_{2}: \underline{r}_{2}\right)\left(\underline{n}_{3}: \underline{r}_{3}\right)$. If;
(iv) $<\underline{n}_{1}>,<\underline{n}_{2}>$ and $<\underline{n}_{3}>$ are not all distinct or
(iv') $\underline{\underline{r}}_{1}>, \leq \underline{\underline{r}}_{2}>$ and $\underline{\underline{r}}_{3}>$ are not all distinct then $\alpha=\left(\underline{n}_{1}: \underline{r}_{3}\right)$ if and only if one of the following holds:
(a) $\left\langle\underline{n}_{1}\right\rangle=\left\langle\underline{n}_{2}\right\rangle$ and $\left\langle\underline{r}_{2}\right\rangle=\left\langle\underline{r}_{3}\right\rangle$ in which case $\alpha=\left(\underline{n}_{2}: \underline{r}_{2}\right)$
(b) $\left\langle\underline{n}_{2}\right\rangle=\left\langle\underline{n}_{3}\right\rangle$ and $\left\langle\underline{r}_{3}\right\rangle=\left\langle\underline{r}_{1}\right\rangle$ in which case $\alpha=\left(\underline{n}_{1}: \underline{\underline{r}}_{1}\right)$
(c) $\left\langle\underline{n}_{3}\right\rangle=\left\langle\underline{n}_{1}\right\rangle$ and $\left\langle\underline{r}_{1}\right\rangle=\left\langle\underline{r}_{2}\right\rangle$ in which case $\alpha=\left(\underline{n}_{3}: \underline{r}_{3}\right)$.

PROOF By Lemma 3.11 we have from (ii) and (iii) that $\operatorname{dim}\left\langle\left\{\underline{\mathrm{n}}_{1}, \underline{\mathrm{n}}_{2}, \underline{\mathrm{n}}_{3}\right\}\right\rangle=\operatorname{dim}\left\langle\left\{\underline{\mathrm{r}}_{1}, \underline{\underline{r}}_{2}, \underline{\mathrm{r}}_{3}\right\}\right\rangle=2$.

Assume first that condition (iv) holds and that $\alpha=\left(\underline{n}_{1}: \underline{r}_{3}\right)$.
Then we have either:
(a') $\left\langle\underline{n}_{1}\right\rangle=\left\langle\underline{n}_{2}\right\rangle$
(b') $\left.<\underline{n}_{2}\right\rangle=\left\langle\underline{n}_{3}\right\rangle$ or
(c') $\left\langle\underline{n}_{3}\right\rangle=\left\langle\underline{n}_{1}\right\rangle$.
(a') $\left.\left.\underline{n}_{1}\right\rangle=\underline{n}_{2}\right\rangle$ implies (by Theorem 1.12) that
$\left(\underline{n}_{1}: \underline{x}_{1}\right)\left(\underline{n}_{2}: \underline{r}_{2}\right)=\left(\underline{n}_{2}: \underline{\underline{r}}_{2}\right)$. So (again by Theorem 1.12)
$\alpha=\left(\underline{n}_{1}: \underline{r}_{3}\right)=\left(\underline{n}_{2}: \underline{r}_{3}\right)$ if and only if $\left\langle\underline{n}_{2}\right\rangle=\left\langle\underline{n}_{3}\right\rangle$ or $\left\langle\underline{r}_{2}\right\rangle=\left\langle\underline{r}_{3}\right\rangle$.
But if $\left\langle\underline{n}_{2}\right\rangle=\left\langle\underline{n}_{3}\right\rangle$ then $\left.\operatorname{dim}\left\langle\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{3}\right\}\right\rangle=1$ which is a contradiction. Thus $\left\langle\underline{r}_{2}\right\rangle=\left\langle\underline{r}_{3}\right\rangle$ which is result (a).
(b') $\left\langle\underline{n}_{2}\right\rangle=\left\langle\underline{n}_{3}\right\rangle$. Now (by Lemma 3.5), α is a non-zero idempotent if and only if . $\varepsilon_{2} \varepsilon_{3} \varepsilon_{1}$. is a non-zero idempotent. But, by (a'), we have that $\varepsilon_{2} \varepsilon_{3} \varepsilon_{1}$ is a non-zero idempotent only if $\left\langle\underline{r}_{3}\right\rangle=\left\langle\underline{r}_{1}\right\rangle$. This is result (b).
(c') $\left\langle\underline{n}_{3}\right\rangle=\left\langle\underline{n}_{1}\right\rangle$. Again (by Lemma 3.5), α is a non-zero idempotent if and only if $\varepsilon_{3} \varepsilon_{1} \varepsilon_{2}$ is a non-zero idempotent. But, by (a'), we have that $\varepsilon_{3} \varepsilon_{1} \varepsilon_{2}$ is a non-zero idempotent only if $\left\langle\underline{r}_{1}\right\rangle=\left\langle\underline{r}_{2}\right\rangle$. This is result (c).

If,instead, we assume that condition (iv') holds and that $\alpha=\left(\underline{n}_{1}: \underline{r}_{3}\right)$ then by a similar argument we again obtain (a), (b) and (c). If (a), (b) or (c) hold, then, using. Theorem 1.12, it is obvious that $\alpha=\left(\underline{n}_{1}: \underline{x}_{3}\right)$.

Here again, as in Lemma 3.1, we have failed to generate a new nonzero idempotent of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. The remainder of this section is concerned with the case when there are distinct null-spaces and distinct ranges for the three non-zero idempotents of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ in the product. It is in this case alone that the product of three non-zero idempotents of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ can produce a new non-zero idempotent of $\mathrm{PF}_{\mathrm{n}-1}^{0}$.
3.13 LEMMA Let $\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{3}, \underline{r}_{1}, \underline{x}_{2}$ and \underline{r}_{3} be elements of V
and $\nu_{1}, \nu_{2}, \nu_{3}, \rho_{1}, \rho_{2}$ and ρ_{3} be elements of F such that

$$
v_{1} \underline{n}_{1}+v_{2} \underline{n}_{2}+v_{3} n_{3}=\underline{0}
$$

and

$$
\rho_{1} \underline{r}_{1}+\rho_{2} \underline{r}_{2}+\rho_{3} \underline{r}_{3}=\underline{0}
$$

then the following are all equal:
(i) $\left\langle v_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle v_{1} \underline{n}_{1} \mid \rho_{2} \underline{\underline{r}}_{2}\right\rangle+\left\langle\nu_{2} \underline{\underline{n}}_{2} \mid \rho_{2} \underline{\underline{r}}_{2}\right\rangle$,
(ii) $\left\langle\nu_{2} \underline{\underline{n}}_{2} \mid \rho_{2} \underline{\underline{r}}_{2}\right\rangle-\left\langle\nu \underline{\underline{n}}_{1} \mid \rho_{3} \underline{\underline{r}}_{3}\right\rangle$
(iii) $\left\langle\nu_{2} \underline{\underline{n}}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\nu_{2} \underline{\underline{n}}_{2} \mid \rho_{3} \underline{r}_{3}\right\rangle+\left\langle\nu_{3} \underline{n}_{3} \mid \rho_{3} \underline{r}_{3}\right\rangle$
(iv) $\left\langle v_{3} \underline{n}_{3} \mid \rho_{3} \underline{r}_{3}\right\rangle-\left\langle v_{2} \underline{n}_{2} \mid \rho_{1} \underline{r}_{1}\right\rangle$
(v) $\left\langle\nu_{3} \underline{n}_{3} \mid \rho_{3} \underline{r}_{3}\right\rangle+\left\langle\nu_{3} \underline{n}_{3} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle$
(vi) $\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle-\left\langle\nu_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle$.

PROOF We shall only show that (i) $=$ (ii) $=$ (iii) since the remaining equalities follow in an identical manner.

$$
\text { Since } \begin{aligned}
\rho_{1} \underline{\underline{r}}_{1}+\rho_{2} \underline{r}_{2} & +\rho_{3} \underline{r}_{3}=\underline{0} \text { we have } \\
\left\langle\nu_{1} \underline{\underline{n}}_{1} \mid \rho_{1} \underline{\underline{r}}_{1}\right\rangle & =\left\langle\nu_{1} \underline{\underline{n}}_{1} \mid-\rho_{2} \underline{r}_{2}-\rho_{3} \underline{r}_{3}\right\rangle \\
& =-\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle-\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle .
\end{aligned}
$$

Thus

$$
\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\nu \nu_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\nu_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle=-\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle+\left\langle\nu_{2} \underline{\underline{n}}_{2} \mid \rho_{2} \underline{\underline{r}}_{2}\right\rangle,
$$

i.e. (i) $=$ (ii).

Since $v_{1} \underline{n}_{1}+v_{2} \underline{n}_{2}+v_{3} \underline{n}_{3}=\underline{0}$ we have

$$
\begin{aligned}
\left\langle v_{1} \underline{n}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle & =\left\langle-v_{2} \underline{n}_{2}-v_{3} \underline{n}_{3} \mid \rho_{3} \underline{r}_{3}\right\rangle \\
& =-\left\langle v_{2} \underline{n}_{2} \mid \rho_{3} \underline{r}_{3}\right\rangle-\left\langle v_{3} \underline{n}_{3} \mid \rho_{3} r_{3}\right\rangle
\end{aligned}
$$

Thus

$$
\left\langle\nu_{2} \underline{\underline{n}}_{2} \mid \rho_{2} \underline{\underline{r}}_{2}\right\rangle-\left\langle\nu \nu_{1} \underline{\underline{n}}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle=\left\langle\nu_{2} \underline{\underline{n}}_{2} \mid \rho_{2} \underline{\underline{r}}_{2}\right\rangle+\left\langle\nu_{2} \underline{\underline{n}}_{2} \mid \rho_{3} \underline{\underline{r}}_{3}\right\rangle+\left\langle\nu_{3} \underline{\underline{n}}_{3} \mid \rho_{3} \underline{r}_{3}\right\rangle,
$$

ie. $($ ii) $=$ (iii).
3.14 THEOREM Let $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ be idempotent endomorphism of rank $n-1$ of an n-dimensional vector space V over an arbitrary field F. Suppose that $\left.\left.<\underline{n}_{1}\right\rangle,<\underline{n}_{2}\right\rangle$ and $\left.<\underline{n}_{3}\right\rangle$ are distinct (where $\left.\underline{\underline{n}}_{i}\right\rangle=N_{\varepsilon_{i}}$) and that $\left.\left\langle\underline{r}_{i}\right\rangle, \underline{r}_{2}\right\rangle$ and $\left.<\underline{r}_{3}\right\rangle$ are distinct (where $<\underline{r}_{i}>^{\perp}=R_{\varepsilon_{i}}$). Then $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is an idempotent endomorphism of rank $n-1$ if and only if there exist non-zero elements $\nu_{1}, \nu_{2}, \nu_{3}, \rho_{1}, \rho_{2}$ and ρ_{3} of F such that:
(i) $v_{1} \underline{n}_{1}+v_{2} \underline{n}_{2}+v_{3} \underline{n}_{3}=\underline{0}$
(ii) $\rho_{1} \underline{r}_{1}+\rho_{2} \underline{r}_{2}+\rho_{3} \underline{r}_{3}=\underline{0}$ and
(iii) $\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\nu_{2} \underline{\underline{n}}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle=0$.

Before starting the proof of this result, it is worth noting that the asymmetry of condition (iii) is only apparent. As given the left hand side does not contain an explicit reference to \underline{n}_{3} or \underline{r}_{3}; however, Lemma 3.13 gives alternative forms of this which omit n_{1}, and \underline{r}_{1} or \underline{n}_{2} and \underline{r}_{2}.

There are also several technical lemmas which would best be proved now rather than in the body of the proof.
3.15 LEMMA If we assume the conditions of the theorem and that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent, then there exist non-zero elements ν_{1}, ν_{2}, $\nu_{3}, \rho_{1}, \rho_{2}, \rho_{3}$ of F such that:
(i) $v_{1} \underline{n}_{1}+v_{2} \underline{n}_{2}+v_{3} \underline{n}_{3}=\underline{0}$
(ii) $\rho_{1} \underline{r}_{1}+\rho_{2} \underline{r}_{2}+\rho_{3} \underline{r}_{3}=\underline{0}$.

PROOF Since $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent, we have (by Lenma 3.11) that $\operatorname{dim}\left\langle\left\{\underline{n}_{1}, \underline{\underline{n}}_{2}, \underline{n}_{3}\right\}\right\rangle=\operatorname{dim}\left\langle\left\{\underline{\underline{r}}_{1}, \underline{\underline{r}}_{2}, \underline{\underline{r}}_{3}\right\}\right\rangle=2$. Since, by hypothesis, $\left.\left\langle\underline{n}_{1}\right\rangle,<\underline{n}_{2}\right\rangle$ and $\left\langle\underline{n}_{3}\right\rangle$ are distinct and $\left\langle\underline{r}_{1}\right\rangle,\left\langle\underline{r}_{2}\right\rangle$ and $\left\langle\underline{r}_{3}\right\rangle$ are distinct, we have the result.
3.16 LEMMA Assuming the conditions of the theorem and that conditions (i), (ii) and (iii) hold, then $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank $n-1$ and belongs to a group H-class.

PROOF Since $\varepsilon_{3}=\left(\underline{\mathrm{n}}_{3}: \underline{\mathrm{r}}_{3}\right)$ we have (by Lemma 2.6) that $\underline{n}_{3} \mid \underline{r}_{3}>\neq 0$. But, by (i) and (ii),

$$
\begin{aligned}
\left\langle\nu_{3} \underline{n}_{3} \mid \rho_{3} \underline{r}_{3}\right\rangle & =\left\langle-v_{2} \underline{n}_{2}-v_{1} n_{1} \mid-\rho_{2} \underline{r}_{2}-\rho_{1} r_{1}\right\rangle \\
& =\left\langle\nu_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle v_{2} \underline{n}_{2} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle v_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle v_{1} \underline{n}_{1}\right| \rho_{1} \underline{r}_{1} \\
& =\left\langle v_{2} \underline{\underline{n}}_{2} \mid \rho_{1} \underline{r}_{1}\right\rangle \quad(\text { by (iii) })
\end{aligned}
$$

Thus $<\underline{n}_{2} \mid \underline{r}_{1}>\neq 0$ and so (by Lemma 2.7) $\varepsilon_{1} \varepsilon_{2}$ has rank $n-1$. Similarly (but using also Lemma 3.13), since $\varepsilon_{3}=\left(\underline{n}_{3}: \underline{\underline{r}}_{3}\right)$ we have $\varepsilon_{2} \varepsilon_{3}$ has rank $n-1$.

Thus (by Lemma 1.9), $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank $n-1$.
Again, by the above argument, since $\varepsilon_{2}=\left(\underline{n}_{2}: \underline{r}_{2}\right)$ we have that $\left\langle\nu_{1} \underline{n}_{1}\right| \rho_{3} \underline{r}_{3}>\neq 0$, ie. that $\left[\underline{n}_{1}: \underline{r}_{3}\right]$ is a group H-class. Now (by Lemma 1.2)
$\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has null-space \dot{N}_{1} and range R_{3} (since we have already shown that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank $n-1$). Thus $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \in\left[\underline{n}_{1}: \underline{x}_{3}\right]$ and so $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ belongs to a group H-class.
3.17 LEMMA Given the conditions of the theorem, suppose that there exist non-zero elements $\nu_{1}, \nu_{2}, \nu_{3}, \rho_{1}, \rho_{2}$ and ρ_{3} of F such that:
(i) $v_{1} \underline{n}_{1}+v_{2} \underline{n}_{2}+v_{3} \underline{n}_{3}=\underline{0}$
(ii) $\rho_{1} \underline{r}_{1}+\rho_{2} \underline{\underline{r}}_{2}+\rho_{3} \underline{r}_{3}=\underline{0}$
and also that:
(iii) $<\underline{n}_{2} \mid \underline{\underline{r}}_{3}>=0$
(iv) $\underline{\mathrm{n}}_{1} \mid \underline{\mathrm{r}}_{3}>\neq 0$
(v) $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank $n-1$.

Then there exist non-zero elements λ_{1}, λ_{3} of F such that

$$
\left\langle\lambda_{1} \underline{n}_{1} \mid \rho_{1} \underline{\underline{r}}_{1}\right\rangle+\left\langle\lambda_{3} \underline{n}_{3} \mid \rho_{2} \underline{\underline{r}}_{2}\right\rangle=0 .
$$

Furthermore, $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent if and only if $\lambda_{3} \nu_{1}+\lambda_{1} \nu_{3}=0$.

PROOF By (ii) and by the conditions of the theorem, we have that $\operatorname{dim}\left(R_{1}^{\perp}+R_{2}^{\perp}+R_{3}^{\perp}\right)=2$. Thus, by Lemma 3.7, $\operatorname{dim}\left(R_{1} \cap R_{2} \cap R_{3}\right)=n-2$. So there exists a basis $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}\right\}$ of $R_{1} \cap R_{2} \cap R_{3}$. Since $\left\langle\underline{\mathrm{n}}_{2} \mid \underline{\underline{r}}_{3}\right\rangle=0$, we have that $\underline{\mathrm{n}}_{2} \in \mathrm{R}_{3}$. But $\underline{\mathrm{n}}_{2} \notin \mathrm{R}_{1} \cap R_{2} \cap R_{3}$ for otherwise we would have $n_{2} \in R_{2}$ contrary to Lemma 1.4. Thus $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \underline{n}_{2}\right\}$ is a basis for R_{3}.

Now, since $N_{3} \cap R_{3}=\{\underline{0}\}$ (by Lemma 1.4), we have that $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \underline{n}_{2}, \underline{n}_{3}\right\}$ is a basis for V. Thus there exist σ_{2}, σ_{3} in F such that $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{\mathrm{n}-2}, \sigma_{2} \underline{\underline{n}}_{2}+\sigma_{3} \underline{\underline{n}}_{3}\right\}$ is a basis for F_{2}. Now,if $\sigma_{2}=0$, then we would have $\underline{n}_{3} \in R_{2}$, i.e. $\left\langle\underline{n}_{3} \mid \underline{r}_{2}\right\rangle=0$ and so (by

Lemma 2.7) $\varepsilon_{2} \varepsilon_{3}$ would have rank less than $n-1$. This is contrary to (v). Thus $\sigma_{2} \neq 0$. If $\sigma_{3}=0$, then we would have $\underline{n}_{2} \in R_{2}$ contrary to Lemma 1.4 . Thus $\sigma_{3} \neq 0$. So, putting $\lambda_{3}=\sigma_{2}^{-1} \sigma_{3}$, we have that $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \underline{n}_{2}+\lambda_{3} \underline{n}_{3}\right\}$ is a basis for R_{2} where λ_{3} is a non-zero element of F.
. Now, by (iv), $\left\langle\underline{n}_{1} \mid \underline{r}_{3}\right\rangle \neq 0$. Thus (by Lemma 2.6), $\left[\underline{n}_{1}: \underline{r}_{3}\right]$ is a group H-class. So (by Lemma 1.4), $N_{1} \cap R_{3}=\{\underline{0}\}$. Thus $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \underline{n}_{2}, \underline{n}_{1}\right\}$ is a basis for V. Hence there exist τ_{1}, τ_{2} in F such that $\left.\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \tau \underline{n}_{1}+\tau_{2} \underline{n}_{2}\right\}$ is a basis for R_{1}. If $\tau_{1}=0$, then we would have $\underline{n}_{2} \in R_{1}$, i.e.that $\left\langle\underline{n}_{2} \mid \underline{r}_{1}\right\rangle=0$. So (by Lemma 2.7), $\varepsilon_{1} \varepsilon_{2}$ would have rank less than $n-1$. This contradicts (v) and so $\tau_{1} \neq 0$. If $\tau_{2}=0$, then we would have $n_{1} \in P_{1}$. This contradicts Lemma 1.4 and so $\tau_{2} \neq 0$. So, putting $\lambda_{1}=\tau_{2}^{-1} \tau_{1}$, we have that $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \lambda_{1} \underline{n}_{1}+\underline{n}_{2}\right\}$ is a basis for R_{1} where λ_{1} is a nonzero element of F.

$$
\begin{aligned}
& \text { Now since } \underline{n}_{2}+\lambda_{3} n_{3} \in R_{2} \text { we have } \\
& <_{n_{2}}+\lambda_{3} n_{3}\left|\underline{r}_{2}\right\rangle=0,
\end{aligned}
$$

i.e.

$$
\left\langle\underline{n}_{2}\right| \rho_{2} \underline{r}_{2}>+<\lambda_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}>=0 .
$$

So, by (ii),

$$
\left\langle\underline{n}_{2} \mid-\rho_{1} \underline{r}_{1}-\rho_{3} r_{3}\right\rangle+\left\langle\lambda_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 .
$$

Thus

$$
-<\underline{n}_{2}\left|\rho_{1 \underline{r}_{1}}\right\rangle-<\underline{n}_{2}\left|\rho_{3} \underline{r}_{3}\right\rangle+\left\langle\lambda_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle=0
$$

But, by (iii), $\underline{n}_{2}\left|\underline{r}_{3}\right\rangle=0$. So

$$
\begin{equation*}
-<\underline{n}_{2}\left|\rho_{1} \underline{r}_{1}\right\rangle+\left\langle\lambda_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 . \tag{A}
\end{equation*}
$$

Also, since $\underline{n}_{2}+\lambda_{1} \underline{n}_{1} \in R_{1}$, we have

$$
\left\langle\underline{n}_{2}+\lambda \underline{n}_{1} \mid \underline{x}_{1}\right\rangle=0,
$$

i.e.

$$
\left\langle\underline{n}_{2} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\lambda \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle=0 .
$$

Adding this to (A) gives

$$
<\lambda_{1} \underline{n}_{1}\left|\rho_{1} \underline{r}_{1}\right\rangle+\left\langle\lambda_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle=0
$$

as required.
Finally, $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent if and only if it acts identically on a basis of its range. Now, by (v) and Lemma $1.2, \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has range $R_{3} . \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ clearly acts identically on $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}\right\}$ so it is idempotent if and only if it acts identically on \underline{n}_{2}.

Now,

$$
v_{1} \lambda_{3} \underline{n}_{2}=v_{1} \lambda_{3}\left(\underline{n}_{2}+\lambda_{1} \underline{n}_{1}\right)-v_{1} \lambda_{1} \lambda_{3} n_{1}
$$

and so, since $\underline{n}_{2}+\lambda_{1} n_{1} \in R_{1}$,

$$
\begin{aligned}
v_{1} \lambda_{3} \underline{n}_{2} \varepsilon_{1} & =v_{1} \lambda_{3}\left(\underline{n}_{2}+\lambda_{1} \underline{n}_{1}\right) \\
& =v_{1} \lambda_{3} \underline{n}_{2}+v_{1} \lambda_{1} \lambda_{3} \underline{n}_{1} \\
& =v_{1} \lambda_{3} \underline{n}_{2}-v_{2} \lambda_{1} \lambda_{3} \underline{n}_{2}-v_{3} \lambda_{1} \lambda_{3} \underline{n}_{3} \quad(\text { by }(i)) \\
& =-\lambda_{1} v_{3}\left(\underline{n}_{2}+\lambda_{3} \underline{n}_{3}\right)+\left(\lambda_{1} v_{3}+v_{1} \lambda_{3}-\lambda_{1} \lambda_{3} \nu_{2}\right) \underline{n}_{2} .
\end{aligned}
$$

Thus, since $\underline{n}_{2}+\lambda_{3} \underline{n}_{3} \in R_{2}$,

$$
\nu_{1} \lambda_{3} n_{2} \varepsilon_{1} \varepsilon_{2}=-\lambda_{1} \nu_{3}\left(\underline{n}_{2}+\lambda_{3} n_{3}\right) .
$$

So, since $\underline{n}_{2} \in R_{3}$,

$$
v_{1} \lambda_{3} \underline{n}_{2} \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}=-\lambda_{1} \nu_{3} n_{2} .
$$

Thus $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ acts identically on \underline{n}_{2} if and only if $\nu_{1} \lambda_{3}=-\lambda_{1} \nu_{3}$. Hence $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent if and only if $\nu_{1} \lambda_{3}+\lambda_{1} \nu_{3}=0$.
3.18 LEMMA Given the conditions of the theorem, suppose that there exist non-zero elements $v_{1}, \nu_{2}, \nu_{3}, \rho_{1}, \rho_{2}, \rho_{3}$ of F such that:
(i) $v_{1} \underline{n}_{1}+v_{2} \underline{\underline{n}}_{2}+v_{3} \underline{n}_{3}=\underline{0}$
(ii) $\rho_{1} \underline{r}_{1}+\rho_{2} \underline{r}_{2}+\rho_{3} \underline{r}_{3}=\underline{0}$
and also that:
(iii) $<\underline{n}_{1} \mid \underline{\underline{r}}_{2}>\neq 0$
(iv) $<\underline{n}_{2} \mid \underline{r}_{3}>\neq 0$
(v) $<\underline{n}_{1} \mid \underline{r}_{3}>\neq 0$
(vi) $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank n-1.

Then there exist non-zero elements $\lambda_{1}, \lambda_{2}, \mu_{1}$ in F such that:
(A) $\left\langle\mu_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\lambda_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle=0$
(B) $\quad<\lambda_{2} \underline{\underline{r}}_{2}\left|\rho_{2} \underline{r}_{2}\right\rangle-<\mu_{1} \underline{n}_{1}\left|\rho_{2} \underline{\underline{r}}_{2}\right\rangle=0$.

Furthermore, $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent if and only if $\lambda_{2} \mu_{1} \nu_{1}-\lambda_{1} \lambda_{2} \nu_{1}-\lambda_{1} \mu_{1} \nu_{2}=0$.

PROOF By (ii) and by the conditions of the theorem, we have that $\operatorname{dim}\left(R_{1}^{\perp}+R_{2}^{\perp}+R_{3}^{\perp}\right)=2$. Thus, by Lemma 3.7, $\operatorname{dim}\left(R_{1} \cap R_{2} \cap R_{3}\right)=n-2$. So there exists a basis $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{\mathrm{n}-2}\right\}$ of $R_{1} \cap R_{2} \cap R_{3}$. Extend
this to a basis $\left\{\underline{u}_{1}, \underline{u}_{2}, \cdots, \underline{u}_{n-2}, \underline{x}\right\}$ of R_{3}.
Since, by (v), $\underline{\mathrm{n}}_{1} \mid \underline{\mathrm{r}}_{3}>\neq 0$, we have that $\underline{n}_{1} \notin \mathrm{R}_{3}$. Thus we can extend the basis of R_{3} to a basis $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \underline{x}, \underline{n}_{1}\right\}$ of V. Thus there exist σ_{1}, σ_{2} of F such that $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \sigma_{1} \underline{x}+\sigma_{2} \underline{n}_{1}\right\}$ is a basis of R_{1}. Now, if $\sigma_{1}=0$, then we would have $\underline{n}_{1} \in R_{1}$ which contradicts Lemma 1.4. Hence $\sigma_{1} \neq 0$. If $\sigma_{2}=0$, then we would have $R_{1}=R_{3}$ which contradicts the hypothesis of the theorem that $\left\langle\underline{r}_{1}\right\rangle$ and $\left\langle\underline{r}_{3}\right\rangle$ are distinct. Thus $\sigma_{2} \neq 0$. If we now put $\lambda_{1}=\sigma_{2} \sigma_{1}^{-1}$, then we obtain $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \underline{x}+\lambda_{1} \underline{n}_{1}\right\}$ to be a basis of R_{1} where λ_{1} is a non-zero element of F.

Since $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \underline{x}, \underline{n}_{1}\right\}$ is a basis of V, there exist τ_{1}, τ_{2} in F such that $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \tau{ }_{1} \underline{x}+\tau_{2} \underline{n}_{1}\right\}$ is a basis for R_{2}. If $\tau_{1}=0$, then we have $\underline{n}_{1} \in R_{2}$, i.e. $\left\langle\underline{n}_{1} \mid \underline{r}_{2}\right\rangle=0$. But this contradicts (iii) and so $\tau_{1} \neq 0$. If $\tau_{2}=0$, then $R_{2}=R_{3}$ which again contradicts the hypothesis of the theorem. Thus $\tau_{2} \neq 0$. If we now put $\mu_{1}=\tau_{2} \tau_{1}^{-1}$, then we obtain $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \underline{x}+\mu_{1} \underline{n}_{1}\right\}$ to be a basis of R_{2} where μ_{1} is a non-zero element of F.

Since, by (iv), $<\underline{n}_{2} \mid \underline{r}_{3}>\neq 0$, we have $\underline{n}_{2} \notin R_{3}$. So we can extend the basis of R_{3} to a basis $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \underline{x}_{\underline{x}} \underline{n}_{2}\right\}$ of V. So there exist elements ω_{1}, ω_{2} of F such that $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}-2, \omega_{1} \underline{x}+\omega_{2} \underline{n}_{2}\right\}$ is a basis for R_{2}. If $\omega_{1}=0$, then we would have $\underline{n}_{2} \in R_{2}$ contradicting Lemma 1.4. So $\omega_{1} \neq 0$. If $\omega_{2}=0$, then we would have $R_{2}=R_{3}$ contradicting the hypothesis of the theorem. Thus $\omega_{2} \neq 0$. If we now put $\lambda_{2}=\omega_{2} \omega_{1}^{-1}$, then we obtain $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{n-2}, \underline{x}+\lambda \underline{n}_{2}\right\}$ to be a basis of R_{2} where λ_{2} is a non-zero element of F.

$$
\text { Since } \underline{x}+\mu_{1} \underline{n}_{1} \in R_{2} \text {, we have }
$$

$$
\left\langle\underline{x}+\mu_{1} \underline{n}_{1} \mid \underline{r}_{2}\right\rangle=0,
$$

i.e.

$$
\left\langle\underline{x} \mid \rho_{2} \underline{\underline{r}}_{2}\right\rangle+\left\langle\mu_{1} \underline{\underline{n}}_{1} \mid \rho_{2} \underline{\underline{r}}_{2}\right\rangle=0 .
$$

Thus, by (ii),

$$
\left\langle\underline{x} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\underline{x} \mid \rho_{3} \underline{r}_{3}\right\rangle+\left\langle\mu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\mu_{1} \underline{n}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle=0 .
$$

But, since $\underline{x} \in R_{3}$, we have $\left\langle\underline{x} \mid \rho_{3} r_{3}\right\rangle=0$ and so

$$
\left\langle\underline{x} \mid \rho_{1} \underline{\underline{r}}_{1}\right\rangle+\left\langle\mu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\mu_{1} \underline{n}_{1} \mid \rho_{3} \underline{\underline{r}}_{3}\right\rangle=0,
$$

i.e.

$$
\left\langle\underline{x}^{+} \mu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\mu \mu_{1} \underline{n}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle=0 .
$$

So

$$
\left\langle\underline{x}^{+} \lambda_{1} \underline{n}_{1}+\left(\mu_{1}-\lambda 1 \underline{n}_{1}\left|\rho_{1} \underline{r}_{1}\right\rangle+\left\langle\mu_{1} \underline{n}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle=0,\right.\right.
$$

i.e.

$$
\left\langle\underline{x}+\lambda \lambda_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\left(\mu_{1}-\lambda \lambda_{1}\right) \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\mu_{1} \underline{n}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle=0 .
$$

But, since $\underline{x}+\lambda_{1} \underline{n}_{1} \in R_{1}$, we have $\left\langle\underline{x}^{+}+\lambda_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle=0$ and so

$$
\left\langle\left(\mu_{1}-\lambda, n_{1}\right) \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\mu_{1} \underline{n}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle=0,
$$

i.e.

$$
\left\langle\mu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}+\rho_{3} \underline{r}_{3}\right\rangle-<\lambda_{1} \underline{n}_{1}\left|\rho_{1} \underline{r}_{1}\right\rangle=0 .
$$

Thus, by (ii),

$$
\left\langle\mu_{1-n_{1}} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\lambda \lambda_{1-n} \mid \rho_{1} \underline{r}_{1}\right\rangle=0
$$

which is (A).
Now, since $x+\lambda_{2} \underline{n}_{2} \in R_{2}$ and $x+\mu_{1-1} \in R_{2}$, we have $\lambda_{2 \underline{n}_{2}}-\mu_{1 \underline{n}_{1}} \in R_{2}$, i.e.

$$
<\lambda_{2} \underline{n}_{2}-\mu_{1} \underline{n}_{1} \mid \underline{r}_{2}>=0 .
$$

Thus

$$
<\lambda_{2} \underline{n}_{2}\left|\rho_{2} \underline{r}_{2}>-<\mu_{1} \underline{n}_{1}\right| \rho_{2} \underline{r}_{2}>=0
$$

which is (B).
Now, by (vi) and Lemma 1.2 , the range of $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is R_{3}. Thus $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent if and only if it acts identically on a basis of R_{3}. Clearly $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ acts identically on every element of $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{\mathrm{n}-2}\right\}$. Thus $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent if and only if it acts identically on x.

$$
\text { Now, } \begin{aligned}
& \mu_{1} \nu_{1} \underline{x}=\mu_{1} \nu_{1}\left(\underline{x}+\lambda_{1} \underline{n}_{1}\right)-\lambda_{1} \mu_{1} \nu_{1} \underline{n}_{1} \text { and so, since } \underline{x}+\lambda_{1} \underline{n}_{1} \in R_{1} \\
& \mu_{1} \nu_{1} \underline{x} \varepsilon_{1}=\mu_{1} \nu_{1}\left(\underline{x}+\lambda_{1} \underline{n}_{1}\right) \\
&=\lambda_{1} \nu_{1}\left(\underline{x}+\mu_{1} \underline{n}_{1}\right)+\mu_{1} \nu_{1} \underline{x}-\lambda_{1} \nu_{1} \underline{x} \\
&=\lambda_{1} \nu_{1}\left(\underline{x}+\mu_{1} \underline{n}_{1}\right)+\nu_{1}\left(\mu_{1}-\lambda_{1}\right) \underline{x}+\lambda_{2} \nu_{1}\left(\mu_{1}-\lambda_{1}\right) \underline{n}_{2}-\lambda_{2} \nu_{1}\left(\mu_{1}-\lambda_{1}\right) \underline{1} \\
&=\lambda_{1} \nu_{1}\left(\underline{x}+\mu_{1} \underline{n}_{1}\right)+\nu_{1}\left(\mu_{1}-\lambda_{1}\right)\left(\underline{x}+\lambda_{2} \underline{n}_{2}\right)-\lambda_{2} \nu_{1}\left(\mu_{1}-\lambda_{1}\right) n_{2}
\end{aligned}
$$

Since $\left(\underline{x}+\mu_{1} \underline{n} 1\right),\left(\underline{x}+\lambda_{2} \underline{n}_{2}\right) \in R_{2}$, we then have

$$
\begin{aligned}
\mu_{1} \nu_{1} \underline{x \varepsilon}_{1} \varepsilon_{2} & =\lambda_{1} \nu_{1}\left(\underline{x}+\mu_{1} \underline{n}_{1}\right)+\nu_{1}\left(\mu_{1}-\lambda_{1}\right)\left(\underline{x}+\lambda_{2} \underline{n}_{2}\right) \\
& =\mu_{1} \nu_{1} \underline{x}+\lambda_{1} \mu_{1} \nu_{1} \underline{n}_{1}+\nu_{1} \lambda_{2}\left(\mu_{1}-\lambda_{1}\right) \underline{n}_{2}
\end{aligned}
$$

By (i), $v_{1} \underline{n}_{1}=-v_{2} \underline{n}_{2}-v_{3} n_{3}$ and so

$$
\mu_{1} v_{1} \underline{\underline{x}} \varepsilon_{1} \varepsilon_{2}=\mu_{1} \nu_{1} \underline{\underline{x}}+\left(-\lambda_{1} \mu_{1} \nu_{2}+v_{1} \lambda_{2}{ }_{1}-v_{1} \lambda_{2} \lambda_{1}\right) \underline{\underline{n}}_{2}-\lambda_{1} \mu_{1} \nu_{3} \underline{\underline{n}}_{3} .
$$

Since $x \in R_{3}$, we now have

$$
\mu_{1} \nu_{1} \underline{x} \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}=\mu_{1} \nu_{1} \underline{x}+\left(\lambda_{2} \mu_{1} \nu_{1}-\lambda_{1} \mu_{1} \nu_{2}-\lambda_{1} \lambda_{2} \nu_{1}\right) \underline{n}_{2} \varepsilon_{2} .
$$

Thus $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent if and only if
$\left(\lambda_{2} \mu_{1} \nu_{1}-\lambda_{1} \mu_{1} \nu_{2}-\lambda_{1} \lambda_{2} \nu_{1}\right) \underline{n}_{2} \in N_{3}$. But $\underline{n}_{2} \notin N_{3}$ since N_{2} and N_{3} are distinct and one-dimensional by hypothesis. Thus $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent if and only if $\lambda_{2} \mu_{1} \nu_{1}-\lambda_{1} \mu_{1} \nu_{2}-\lambda_{1} \lambda_{2} \nu_{1}=0$.

We are now in a position to prove Theorem 3.14. We shall need to consider two separate cases:
(I) At least one of $\left\langle\underline{n}_{1} \mid \underline{r}_{2}\right\rangle,\left\langle\underline{n}_{2} \mid \underline{r}_{3}\right\rangle,\left\langle\underline{n}_{3} \mid \underline{\underline{r}}_{1}\right\rangle$ is zero
(II) A11 of $\left\langle\underline{n}_{1} \mid \underline{r}_{2}\right\rangle,\left\langle\underline{n}_{2} \mid \underline{r}_{3}\right\rangle,\left\langle\underline{n}_{3} \mid \underline{r}_{1}\right\rangle$ are non-zero.

In considering case (I) it will suffice to consider
(I') $\left\langle\underline{n}_{2} \mid \underline{r}_{3}\right\rangle=0$.
This is because if, instead, we had $\left\langle\underline{n}_{1} \mid \underline{r}_{2}\right\rangle=0$ (and $\underline{n}_{2} \mid \underline{r}_{3}>\neq 0$), then, in the forward implication, we could, by virtue of Lemma 3.5, assume that $\varepsilon_{3} \varepsilon_{1} \varepsilon_{2}$ is idempotent and obtain (i), (ii) and

$$
\begin{equation*}
\left\langle v_{3} \underline{n}_{3} \mid \rho_{3} \underline{r}_{3}\right\rangle+\left\langle\nu_{3} \underline{n}_{3} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\nu \nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle=0 . \tag{+}
\end{equation*}
$$

But, by Lemma 3.13, this is equivalent to (iii).
For the reverse implication, we could (by Lemma 3.13) assume (+)
and deduce that $\varepsilon_{3} \varepsilon_{1} \varepsilon_{2}$ is idempotent of rank $n-1$. Again, by
Lemma 3.5, this is equivalent to $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ being idempotent of rank $n-1$.
A similar argument holds if we have $\left\langle\underline{n}_{3} \mid \underline{\underline{r}}_{1}\right\rangle=0$.
(I') Suppose first that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent of rank $n-1$. We shall show that $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ satisfy all the conditions of Lemma 3.17.

By Lemma 3.15, there exist non-zero elements $\nu_{1}, \nu_{2}, \nu_{3}, \rho_{1}, \rho_{2}, \rho_{3}$ of F such that:
(i) $v_{1} \underline{n}_{1}+v_{2} \underline{n}_{2}+v_{3} n_{3}=\underline{0}$
(ii) $\rho_{1 \underline{r}_{1}}+\rho_{2} \underline{r}_{2}+\rho_{3} \underline{r}_{3}=\underline{0}$.

Condition (iii) is satisfied by the hypothesis of (I^{\prime}) that $\underline{n}_{2} \mid \underline{r}_{3}>=0$.
By the assumption that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank $n-1$ and by Lemma 1.2 , we have that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has null-space N_{1} and range R_{3}. Thus $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \in\left[\underline{n}_{1}: \underline{r}_{3}\right]$. But, by assumption, $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent and so $\left[\underline{n}_{1}: \underline{r}_{3}\right]$ is a group H-class. Thus, by Lemma $2.6, \quad \underline{n}_{1} \mid \underline{r}_{3}>\neq 0$. This is condition (iv).

We have assumed that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank $n-1$ and so condition (v) is satisfied.

We may thus appeal to Lemma 3.17 to obtain that there exist nonzero elements λ_{1}, λ_{3} of F such that

$$
\begin{equation*}
\left\langle\lambda_{1-1}\right| \rho_{1-1}>+<\lambda_{3} \underline{n}_{3}\left|\rho_{2} \underline{x}_{2}\right\rangle=0 . \tag{A}
\end{equation*}
$$

Furthermore, since we have assumed that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent, we also have

$$
\begin{equation*}
\lambda_{3} \nu_{1}+\lambda_{1} \nu_{3}=0 . \tag{B}
\end{equation*}
$$

Now, multiplying (A) by $\nu_{3} \xi$ gives

$$
\left\langle\lambda_{1} \nu_{3} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\lambda_{3} \nu_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 .
$$

So, by (B),

$$
-<\lambda_{3} \nu_{1} \underline{n}_{1}\left|\rho_{1} \underline{r}_{1}\right\rangle+\left\langle\lambda_{3} \nu_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 .
$$

Dividing now by $\lambda_{3} \xi$ (which is non-zero since $\lambda_{3} \neq 0$), we have

$$
-\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\nu_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 .
$$

But, by Lemma 3.13, this is equivalent to

$$
\left\langle\nu \nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\nu \nu_{1} \underline{n}_{1} \mid \rho_{2} \underline{\underline{r}}_{2}\right\rangle+\left\langle\nu_{2} \underline{\underline{n}}_{2} \mid \rho_{2} \underline{\underline{r}}_{2}\right\rangle=0 .
$$

This is condition (iii) of the theorem. We have already shown (Lemma 3.15) that conditions (i) and (ii) of the theorem hold and so we have proved the theorem one way for case (I^{\prime}).

Conversely, suppose conditions (i), (ii) and (iii) of the theorem hold. We shall again appeal to Lemma 3.17. Conditions (i) and (ii) of the lemma are clearly satisfied. Condition (iii) is again satisfied by the assumption of (I') that $\left\langle\underline{n}_{2} \mid \underline{\underline{r}}_{3}\right\rangle=0$. By Lemma 3.16, $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank $n-1$ and so condition (v) is fulfilled. But this also gives, with Lemma 1.2, that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has null-space N_{1} and range R_{3}. Thus $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \in\left[\underline{n}_{1}: \underline{r}_{3}\right]$. Lemma 3.16 also gives that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ belongs to a group H-class. Thus, by Lemma $2.6, \quad \underline{n}_{1} \mid \underline{r}_{3}>\neq 0$. Hence condition (iv) of Lemma 3.17 is satisfied. We are thus justified in using this 1emma. So there exist non-zero elements λ_{1}, λ_{3} of F such that

$$
\left\langle\lambda_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\lambda_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 .
$$

Multiplying by $v_{3} \xi$ gives

$$
\begin{equation*}
\left\langle\lambda_{1} \nu_{3} n_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\lambda_{3} \nu_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 . \tag{A}
\end{equation*}
$$

Now, by condition (iii) of the theorem and Lemma 3.13, we have

$$
\left\langle v_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle-<v_{3} \underline{n}_{3}\left|\rho_{2} \underline{r}_{2}\right\rangle=0 .
$$

Multiplying by $\lambda_{3} \xi$ gives

$$
\left\langle\lambda_{3} \nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\lambda_{3} \nu_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 .
$$

Adding this to (A) gives

$$
\left\langle\lambda_{1} \nu_{3} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\lambda_{3} \nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle=0,
$$

i.e.

$$
\left\langle\left(\lambda_{1} \nu_{3}+\lambda_{3} \nu_{1}\right) \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle=0 .
$$

Since $\varepsilon_{1}=\left(\underline{n}_{1}: \underline{r}_{1}\right)$, we have, by Lemma 2.6 , that $\left\langle\underline{n}_{1} \mid \underline{\underline{r}}_{1}\right\rangle \neq 0$. Thus, since $\rho_{1} \neq 0$ by hypothesis,

$$
\lambda_{1} \nu_{3}+\lambda_{3} \nu_{1}=0
$$

Now, appealing again to Lemma 3.17 , we see that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent. We have already shown (Lenma 3.16) that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank $n-1$. This completes the proof for case (I') and so also for case (I).
(II) Suppose first that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent of rank $n-1$. We shall show that $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ satisfy all the conditions of Lemma 3.18 .

By Lemma 3.15 there exist non-zero elements $\nu_{1}, \nu_{2}, \nu_{3}, \rho_{1}, \rho_{2}, \rho_{3}$ of F such that:
(i) $v_{1} \underline{n}_{1}+v_{2} \underline{n}_{2}+v_{3} \underline{n}_{3}=\underline{0}$
(ii) $\rho_{1} \underline{\underline{r}}_{1}+\rho_{2} \underline{r}_{2}+\rho_{3} \underline{r}_{3}=\underline{0}$.

Conditions (iii) and (iv) are satisfied by the hypothesis of (II) that none of $\left\langle\underline{n}_{1} \mid \underline{\underline{r}}_{2}\right\rangle,\left\langle\underline{n}_{2} \mid \underline{\underline{r}}_{3}\right\rangle,\left\langle\underline{n}_{3} \mid \underline{r}_{1}\right\rangle$ are zero.

By the assumption that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank $n-1$ and by Lemma 1.2, we have that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has null-space N_{1} and range R_{3}. Thus $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \in\left[\underline{n}_{1}: \underline{r}_{3}\right]$. But, by assumption, $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is idempotent and so $\left[\underline{n}_{1}: \underline{r}_{3}\right]$ is a group H-class. Thus, by Lemma $2.6, \quad \underline{n}_{1} \mid \underline{r}_{3}>\neq 0$. This
is condition (v).
We have assumed that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank $n-1$ and so condition (vi) is also satisfied.

We may thus appeal to Lemma 3.18 to obtain that there exist nonzero elements $\lambda_{1}, \lambda_{2}, \mu_{1}$ of F such that

$$
\begin{equation*}
\left\langle\mu_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\lambda_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle=0 \tag{A}
\end{equation*}
$$

and

$$
\begin{equation*}
<\lambda_{2} \underline{\underline{n}}_{2}\left|\rho_{2} \underline{r}_{2}\right\rangle-<\mu_{1} \underline{n}_{1}\left|\rho_{2} \underline{\underline{r}}_{2}\right\rangle=0 . \tag{B}
\end{equation*}
$$

Furthermore, since we have assumed $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ to be idempotent, we a1so have

$$
\begin{equation*}
\lambda_{2} \mu_{1} \nu_{1}-\lambda_{1} \lambda_{2} \nu_{1}-\lambda_{1} \mu_{1} \nu_{2}=0 \tag{C}
\end{equation*}
$$

We shall now eliminate λ_{2} from equations (B) and (C). Equation
(B) is equivalent to

$$
\left\langle\lambda_{2}\left(\mu_{1} v_{1}-\lambda_{1} \nu_{1}\right) \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle-\left\langle\mu_{1}\left(\mu_{1} \nu_{1}-\lambda_{1} \nu_{1}\right) \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 .
$$

Thus, using (C), we have

$$
\left\langle\lambda_{1} \mu_{1} \nu_{2} \underline{\underline{n}}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle-\left\langle\mu_{1}\left(\mu_{1} \nu_{1}-\lambda_{1} \nu_{1}\right) \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 .
$$

So, dividing by $\mu_{1} \xi$ (which is non-zero since $\mu_{1} \neq 0$), we get

$$
\begin{equation*}
\left\langle\lambda_{1} \nu_{2} \underline{\underline{n}}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle-\left\langle\mu_{1} \nu_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\lambda_{1} \nu_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 . \tag{D}
\end{equation*}
$$

We shall now eliminate μ_{1} from equations (A) and (D). Equation
(A) is equivalent to

$$
\left\langle\mu_{1} v_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\lambda_{1} \nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle=0 .
$$

Adding this to (D) gives

$$
\left\langle\lambda_{1} \nu_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\lambda_{1} \nu_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\lambda_{1} \nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle=0
$$

Now, dividing by $\lambda_{1} \xi$ (which is non-zero since $\lambda_{1} \neq 0$), gives

$$
\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{1-1}\right\rangle+\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\nu_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle=0
$$

which is condition (iii) of the theorem.
We have already shown (Lemma 3.15) that conditions (i) and (ii) of the theorem hold. So we have proved the theorem one way for case (II).

Conversely, suppose conditions (i), (ii) and (iii) of the theorem hold. We shall again appeal to Lemma 3.18. Conditions (i) and (ii) of the lemma are clearly satisfied. Conditions (iii) and (iv) are again satisfied by the assumption of (II) that none of $<\underline{n}_{1}\left|\underline{r}_{2}>, \underline{n}_{2}\right| \underline{r}_{3}>$, $\left\langle\underline{n}_{3}\right| \underline{r}_{1}>$ are zero. By Lemma 3.16, $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank $n-1$ and so condition (vi) is fulfilled. But this also gives, with Lemma 1.2, that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has nul1-space N_{1} and range R_{3}. Thus. $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \in\left[\underline{n}_{1}: \underline{r}_{3}\right]$. Lemma 3.16 also gives that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ belongs to a group $H-c l a s s$ and so, by Lemma 2.6, we have $\underline{\underline{n}}_{1}\left|\underline{r}_{3}\right\rangle \neq 0$. Hence condition (v) of Lemma 3.18 is satisfied. We are thus justified in using this lemma.

Thus there exist non-zero elements $\lambda_{1}, \lambda_{2}, \mu_{1}$ of F such that

$$
\begin{align*}
& \left\langle\mu_{1} \underline{n}_{1}\right| \rho_{2} \underline{r}_{2}>+\left\langle\lambda_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle=0 \tag{A}\\
& \left.<\lambda_{2} \underline{n}_{2}\left|\rho_{2} \underline{r}_{2}>-<\mu_{1} \underline{n}_{1}\right| \rho_{2} \underline{r}_{2}\right\rangle=0 . \tag{B}
\end{align*}
$$

We shall now eliminate ${\underset{r}{1}}^{\text {from equation (A) and condition (iii) of the }}$ theorem.

Equation (A) is equivalent to

$$
\begin{equation*}
\left\langle\mu_{1} \nu_{1-1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\lambda_{1} \nu_{1} \underline{n}_{1} \mid \rho_{1-1}\right\rangle=0 \tag{E}
\end{equation*}
$$

and (iii) is equivalent to

$$
\left\langle\lambda_{1} \nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle\lambda_{1} \nu_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\lambda_{1} \nu_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 .
$$

Subtracting (E) from this gives

$$
\begin{equation*}
\left\langle\lambda_{1} \nu_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\lambda_{1} \nu_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle-\left\langle\mu_{1} \nu_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 . \tag{F}
\end{equation*}
$$

We shall now eliminate \underline{n}_{2} from equations (B) and (F). Equation (F) is equivalent to

$$
\begin{equation*}
\left\langle\lambda_{2}\left(\lambda_{1}-\mu_{1}\right) \nu_{1} \underline{n}_{1} \mid \rho_{2} \underline{\underline{r}}_{2}\right\rangle+\left\langle\lambda_{1} \lambda_{2} \nu_{2} \underline{\underline{r}}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle=0 \tag{G}
\end{equation*}
$$

and equation (B) is equivalent to

$$
<\lambda_{1} \lambda_{2} \nu_{2} \underline{n}_{2}\left|\rho_{2} \underline{r}_{2}\right\rangle-\left\langle\mu_{1} \lambda_{1} \nu_{2} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle .
$$

Subtracting (G) from this gives

$$
-<\mu_{1} \lambda_{1} \nu_{2} \underline{n}_{1}\left|\rho_{2} \underline{r}_{2}\right\rangle-<\lambda_{2}\left(\lambda_{1}-\mu_{1}\right) \nu_{1} \underline{n}_{1}\left|\rho_{2} \underline{r}_{2}\right\rangle=0,
$$

i.e.

$$
<\left(\lambda_{2} \mu_{1} \nu_{1}-\lambda_{1} \lambda_{2} \nu_{1}-\lambda_{1} \mu_{1} \nu_{2}\right)_{n_{1}} \mid \rho_{2} \underline{r}_{2}>=0 .
$$

Since, by the hypothesis of (II), $<\underline{n}_{1} \mid \underline{r}_{2}>\neq 0$ and, by the hypothesis of the theorem, $\rho_{2} \neq 0$, we now have

$$
\lambda_{2} \mu_{1} \nu_{1}-\lambda_{1} \lambda_{2} \nu_{1}-\lambda_{1} \mu_{1} \nu_{2}=0 .
$$

Thus, appealing to Lemma 3.18 again, we see that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is
idempotent. We have already shown (Lemma 3.16) that $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ has rank n-1 and so the proof of case (II) is complete.

This also completes the proof of the theorem.

In this section I shall give a new proof of a result due to J. A. Erdbs [7]. The proof in [7] that Sing $_{n}$ is generated by E (the set of idempotents of Sing_{n} of rank $n-1$), depended entirely on results in matrix theory. This shed very little light on the structure of the semigroup. In the following proof we shall consider the chain

$$
\operatorname{Sing}_{\mathrm{n}} \supseteq \mathrm{PF}_{\mathrm{n}-1} \supseteq \mathrm{E} \cup \mathrm{H}
$$

where H denotes the set of elements in any H-class (other than $\{0\}$) of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. We shall show that each set is generated by the succeeding set, and then that E generates all the element's of one particular H-class (other than $\{0\}$) of $\mathrm{PF}_{\mathrm{n}-1}^{0}$.

At the end of the section I shall obtain necessary conditions for a subset of E to generate Sing $_{n}$.
4.1 LEMMA $\mathrm{PF}_{\mathrm{n}-1}$ generates Sing $_{\mathrm{n}}$.

PROOF The proof is by induction on the nullity of elements of Sing $_{\mathrm{n}}$. Suppose, as the hypothesis, that, if $\alpha \in \operatorname{Sing}_{\mathrm{n}}$ and the dimension of the null-space N_{α} of α is less than or equal to k, then $\alpha \in\left\langle P F_{n-1}\right\rangle$. Now let $\beta \in$ Sing $_{n}$ be such that $\operatorname{dim} N_{\beta}=k+1$. Let N_{β} have basis $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{k+1}\right\}$ and extend this to a basis $\left\{\underline{u}_{1}, \ldots, \underline{u}_{n}\right\}$ of V. Let \underline{v} be any element of V not in R_{β}. Now let $\beta_{1}, \beta_{2} \in$ Sing $_{n}$ be given by

$$
\underline{u}_{i} \beta_{1}= \begin{cases}\underline{u}_{i} & i \neq k+1 \\ \underline{0} & i=k+1\end{cases}
$$

and

$$
\underline{u}_{i} \beta_{2}= \begin{cases}\underline{u}_{i} \beta^{2} & i \neq k+1 \\ \underline{v} & i=k+1\end{cases}
$$

Clearly $\beta=\beta_{1} \beta_{2}$. Now, $\beta_{1} \in P F_{n-1}$ and $\operatorname{dim} R_{\beta_{2}}=\operatorname{dim} R_{\beta}+1$, i.e. $\operatorname{dim} N_{\beta_{2}}=k$. Thus. $\beta_{1}, \beta_{2} \in\left\langle\mathrm{PF}_{\mathrm{n}-1}\right\rangle$ and, consequently, $\beta \in\left\langle\mathrm{PF}_{\mathrm{n}-1}\right\rangle$. The induction process may be started since any element with nullity 1 belongs to $\mathrm{PF}_{\mathrm{n}-1}$.

Before proceeding to the next step in the chain, we shall need to know a few properties of the relation $\Pi\left(E^{\prime}\right)$ on a subset E^{\prime} of E given by:
4.2 DEFINITION Let E^{\prime} be a subset of E and $\phi, \gamma \in E^{\prime}$. Then $(\phi, \gamma) \in \Pi\left(E^{\prime}\right)$ if there exist elements $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{q}$ in E^{\prime} such that $\phi \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{q} \gamma \in P F_{n-1}$.

In this section we shall only be concerned with II(E) . It is, however, convenient to give the more general definition here.

It is obvious that $\Pi\left(E^{\prime}\right)$ is transitive for all subsets E^{\prime} of E . Not so obvious is:
4. 3 LEMMA Let E be the idempotents of rank $n-1$ of Sing $_{n}$. Then $\Pi(E)$ is the universal relation on E.

PROOF Let $\left(\underline{n}_{1}: \underline{r}_{1}\right)$ and $\left(\underline{n}_{2}: \underline{r}_{2}\right)$ be any two elements of E and suppose that $\left(\left(\underline{n}_{1}: \underline{r}_{1}\right),\left(\underline{n}_{2}: \underline{r}_{2}\right)\right) \notin \pi(E)$. Then, certainly, $\left(\underline{n}_{1}: \underline{\underline{r}}_{1}\right)(\underline{n}: \underline{r})\left(\underline{n}_{2}: \underline{r}_{2}\right)=0$ in $\mathrm{PF}_{\mathrm{n}-1}^{0}$ for all elements ($\underline{n}: \underline{r}$) of E ,
i.e. (by Lemma 2.6) for all elements \underline{n} and \underline{r} of V such that $\langle\underline{n} \mid \underline{r}\rangle \neq 0$. Thus, by Lemma 1.9 and Lemma 2.6, either $\left\langle\underline{n} \mid \underline{r}_{1}\right\rangle=0$ or $\left\langle\underline{n}_{2} \mid \underline{r}\right\rangle=0$ for all $\underline{n}, \underline{r} \in V$ such that $\langle\underline{n}| \underline{r}>\neq 0$.

Let us suppose that the vectors \underline{r}_{1} and \underline{n}_{2} have co-ordinates $\underline{r}_{1}=\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)$ and $\underline{n}_{2}=\left(y^{(1)}, y^{(2)}, \ldots, y^{(n)}\right)$. Let $i=\min \left\{j: x^{(j)} \neq 0\right\}$ and define $\underline{n}=e_{i}$, the vector with 1 in the $i^{\text {th }}$ position and zeros elsewhere. Now,for each j in $\{1,2, \ldots, n\}$ def̣ine

$$
\underline{\underline{r}}^{(j)}=\left\{\begin{array}{lll}
e_{i}+\underline{e}_{j} & \text { if } & i \neq j \\
\underline{e}_{i} & \text { if } & i=j
\end{array}\right.
$$

Then $\left\langle\underline{n}^{(j)} \underline{\underline{r}}^{(j)}=1 \neq 0\right.$ for all j and so, by the remark at the end of the last paragraph, we have either

$$
\left\langle\underline{n} \mid \underline{r}_{1}\right\rangle=0 \text { or }\left\langle\underline{n}_{2} \mid \underline{\underline{r}}^{(j)}\right\rangle=0 .
$$

Since $\left\langle\underline{n} \mid \underline{r}_{1}\right\rangle=x^{(i)} \neq 0$, this implies that $\left\langle\underline{n}_{2} \mid \underline{r}^{(j)}\right\rangle=0$. Moreover, this holds for each j in $\{1,2,3, \ldots, n\}$. Putting $j=i$ we obtain that $y^{(i)}=0$; then for each $j \neq i$ we obtain $y^{(i)}+y^{(j)}=0$, i.e. $y^{(j)}=0$. Consequently $\underline{n}_{2}=\underline{0}$ which contradicts the assumption of $\underline{n}_{2}: \underline{r}_{2}$) being an idempotent.

In the terminology used by Byleen, Meakin and Pastijn in [4], Lemma 4.3 is equivalent to saying that the non-zero idempotents of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ are connected. However, if E^{\prime} is a subset of E , then saying that $\Pi\left(E^{\prime}\right)$ is universal on E^{\prime} is, in general, a weaker condition than saying that the elements of E^{\prime} are connected.
4.4 LEMMA Let S be a completely 0-simple semigroup and let $a \in S$.
(i) If e_{1}, \ldots, e_{k} are non-zero idempotents in s such that $e_{1} L$ a and $e_{1} e_{2} \ldots e_{k} \neq 0$, then the mapping $x \rightarrow x_{2} \ldots e_{k}\left(x \in H_{a}\right)$ is a bijective mapping of H_{a} onto $R_{a} \cap L_{e_{k}}$.
(ii) If $e_{1}, e_{2}, \ldots, e_{k}$ are non-zero idempotents in S such that $e_{1} R a$ and $e_{k} e_{k-1} \cdots e_{1} \neq 0$, then the mapping $x \rightarrow e_{k} e_{k-1} \ldots e_{2} x \quad\left(x \in H_{a}\right)$ is a bijective mapping of H_{a} onto $R_{e_{k}} \cap L_{a}$.

PROOF Both parts are immediate from the Rees representation theorem for completely 0-simple semigroups (see, eg., [10, Theorem III.2.5]).

The next definition, although not needed in this section, is included now for convenience. It enables us to prove a more. general version than required here of Lemma 4.6. This will be required in Section 5.
4.5 DEFINITION Let E^{\prime} be a subset of the non-zero idempotents of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. We shall say that E^{\prime} covers [sparsely covers] $\mathrm{PF}_{\mathrm{n}-1}^{0}$ if E^{\prime} has non-empty intersection with [intersects in exactly one elenent] each non-zero L-class and each non-zero R-class of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. We shall also say that E^{\prime} covers $\mathrm{PF}_{\mathrm{n}-1}$.
4.6 LEMMA Let E^{\prime} be a subset of the non-zero idempotents of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ such that E^{\prime} covers $\mathrm{PF}_{\mathrm{n}-1}^{0}$ and $\Pi\left(E^{\prime}\right)$ is the universal relation on E^{\prime}. Let $\left[\underline{n}_{0}: \underline{r}_{0}\right]$ be any H-class other than $\{0\}$ of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. Then $\mathrm{E}^{\prime} \cup\left[\underline{n}_{0}: \underline{r}_{0}\right]$ generates $\mathrm{PF}_{\mathrm{n}-1}^{0}$.

PROOF Let [n프 be an arbitrary H-class in $\mathrm{PF}_{\mathrm{n}-1}^{0}$.

Since E^{\prime} covers $\mathrm{PF}_{\mathrm{n}-1}^{0}$ there exist idempotent $\left(\underline{n}^{\prime}: \underline{r}_{0}\right),\left(\underline{n}^{\prime \prime}: \underline{r}\right)$, $\left(\underline{n}_{0}: \underline{x}^{\prime}\right)$ and ($\left.\underline{n}: \underline{r}^{\prime \prime}\right)$ in E^{\prime}. Since $\Pi\left(E^{\prime}\right)$ is universal, there exist $\varepsilon_{1}, \ldots, \varepsilon_{q} \in E^{\prime}$ such that

$$
\left(\underline{n}^{\prime}: \underline{r}_{0}\right) \varepsilon_{1} \cdots \varepsilon_{q}\left(\underline{n}^{\prime \prime}: \underline{r}\right) \neq 0 .
$$

By Lemma 4.4(i) it follows that

$$
\alpha \mapsto \alpha \varepsilon_{1} \ldots \varepsilon_{q}\left(\underline{n}^{\prime \prime}: \underline{r}\right) \quad\left(\alpha \in\left[\underline{n}_{0}: \underline{r}_{0}\right]\right)
$$

is a bijection from $\left[\underline{n}_{0}: \underline{r}_{0}\right]$ onto $\left[\underline{n}_{0}: \underline{r}\right]$.
Equally, the universality of $\Pi\left(E^{\prime}\right)$ means that there exist $\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{p}^{\prime} \in E^{\prime}$ such that

$$
\left(\underline{n}: \underline{r}^{\prime \prime}\right) \varepsilon_{p}^{\prime} \ldots \varepsilon_{1}^{\prime}\left(\underline{n}_{0}: \underline{x}^{\prime}\right) \neq 0 .
$$

By Lemma 4.4(ii) it follows that

$$
\beta \rightarrow\left(\underline{n}: \underline{n^{\prime \prime}}\right) \varepsilon_{p}^{\prime} \cdots \varepsilon_{1}^{\prime} \beta \quad\left(\beta \in\left[\underline{n}_{0}: \underline{r}\right]\right)
$$

is a bijection from $\left[\underline{n}_{0}: \underline{r}\right]$ onto $[\underline{n}: \underline{x}]$.
Thus

$$
\alpha \rightarrow\left(\underline{n}: \underline{r^{\prime \prime}}\right) \varepsilon_{\mathrm{p}}^{\prime} \ldots \varepsilon_{1}^{\prime} \alpha \varepsilon_{1} \cdots \varepsilon_{q}\left(\underline{n}^{\prime \prime}: \underline{r}\right) \quad\left(\alpha \in\left[\underline{n}_{0}: \underline{x}_{0}\right]\right)
$$

is a bijection from $\left[\underline{n}_{0}: \underline{x}_{0}\right]$ onto $[\underline{n}: \underline{x}]$. It follows that every element of [n:r] lies in $\left\langle E^{\prime} \cup\left[\underline{n}_{0}: \underline{r}_{0}\right]>\right.$. So E' $\cup\left[\underline{n}_{0}: \underline{r}_{0}\right]$ generates $\mathrm{PF}_{\mathrm{n}-1}^{0}$.
4.7 EXAMPLE Let V be the two-dimensional vector space over the field of two elements. Then $\mathrm{PF}_{1}^{0}=\operatorname{Sing}_{2}$ and has structure

In the notation of Lemma 4.6, let

$$
E^{\prime}=\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\right\}
$$

and $[\underline{n}: \underline{x}]=[(1,0):(1,0)]=\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$. Then $E^{\prime} \quad$ is a cover for PF_{1}
(it is indeed a sparse cover) We now show that $\Pi\left(E^{\prime}\right)$ is universal on E^{\prime}.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \in \mathrm{PF}_{1} \quad \text { so }\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\right) \in \Pi\left(\mathrm{E}^{\prime}\right)} \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right] \in \mathrm{PF}_{1} \quad \text { so }\left[\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\right) \in \Pi\left(E^{\prime}\right)} \\
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \in \mathrm{PF}_{1} \text { so }\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right) \in \Pi\left(E^{\prime}\right)} \\
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \in \mathrm{PF}_{1} \quad \text { so }\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\right) \cdot \in \Pi\left(E^{\prime}\right)} \\
& {\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \in \mathrm{PF}_{1} \text { so }\left[\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\right) \in \Pi\left(E^{\prime}\right)} \\
& {\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] \in \mathrm{PF}_{1} \text { so }\left[\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right) \in \Pi\left(E^{\prime}\right)}
\end{aligned}
$$

Thus $\Pi\left(E^{\prime}\right)$ is universal on E^{\prime}.
So, by Lemma 4.6, E' $\cup[(1,0):(1,0)]$ generates $\mathrm{PF}_{\mathrm{n}-1}^{0}$. Since $[(1,0):(1,0)]=\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\} \subset E^{\prime}$ we have that E^{\prime} generates PF_{n-1}^{0}.

We now verify this. We have already shown that E' generates all the elements of PF_{1}^{0} except for $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. However, since

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

and

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

we have that $\left\langle\mathrm{E}^{\prime}\right\rangle=\mathrm{PF}_{\mathrm{n}-1}^{0}$.
4.8 LEMMA The non-zero idempotents of $\mathrm{PF}_{\mathrm{n}-1}^{\mathrm{O}}$ generate the H-class $H=[(1,0,0, \ldots, 0):(0,1,0,0, \ldots, 0)]$.

PROOF The proof is by induction on the dimension of the vector space. Suppose, as the induction hypothesis, that the lemma is true for $\mathrm{PF}_{\mathrm{n}-2}^{0}$. Then, since the non-zero idempotents of $\mathrm{PF}_{\mathrm{n}-2}^{0}$ cover $\mathrm{PF}_{\mathrm{n}-2}^{0}$, we have, by Lemma 4.1, Lemma 4.3 and Lemma 4.6, that the idempotents of rank $n-2$ of $\operatorname{sing}_{n-1}$ generate $\operatorname{sing}_{n-1}$.

Now, let $\alpha \in \mathrm{PF}_{\mathrm{n}-1}^{0}$ be an element of H . Then, relative to the standard basis, α has matrix

$$
M_{\alpha}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & \cdots & 0 \\
a_{21} & 0 & a_{23} & a_{24} & \cdots & a_{2 n} \\
a_{31} & 0 & a_{33} & a_{34} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
a_{n 1} & 0 & a_{n 3} & a_{n 4} & \cdots & a_{n n}
\end{array}\right]
$$

Now $M_{\alpha}=A_{1} B$ where

$$
A_{1}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & \ldots & 0 \\
a_{21} & 1 & 0 & 0 & \ldots & 0 \\
a_{31} & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & & \ddots & \ddots & \\
a_{n 1} & 0 & 0 & 0 & & 1
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & a_{23} & a_{24} & \cdots & a_{2 n} \\
0 & 0 & a_{33} & a_{34} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & a_{n 3} & a_{n 4} & \cdots & a_{n n}
\end{array}\right]
$$

Notice that A_{1} is idempotent.
Now, $B=\left[\begin{array}{cc}1 & 1 \\ -1 & \frac{0}{B^{\prime}} \\ -1\end{array}\right]$ where B^{\prime} is an $(n-1) \times(n-1)$ singular
matrix. So, by the induction hypothesis, $B^{\prime}=A_{2}^{\prime} A_{3}^{\prime} \ldots A_{k}^{\prime}$ where $A_{i}^{\prime}(i=2, \ldots, k)$ are idempotent $(n-1) \times(n-1)$ matrices. Thus the matrices

$$
\dot{A}_{i}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
\hdashline 0 & A_{i}^{\prime} \\
- & A_{i}^{\prime}
\end{array}\right] \quad(i=2, \ldots, k)
$$

are idempotent $n \times n$ matrices with

$$
A_{i} A_{j}=\left[\begin{array}{c:c}
1 & 1 \\
\hdashline 0 & 0 \\
\hdashline- & A_{i}^{A_{i}^{A}} A_{j}^{\prime}
\end{array}\right] .
$$

Hence

$$
B=A_{2} A_{3} \cdots A_{k} \text { and so }
$$

$$
M_{\alpha}=A_{1} A_{2} \ldots A_{k} \text {, a product of idempotents. }
$$

A11 that remains now is to anchor the hypothesis by showing that every 2×2 matrix in the H-class $[(1,0):(0,1)]$ can be expressed as a product of idempotents. If $\alpha \in[(1,0):(0,1)]$, then, relative to the standard basis, α has matrix of the form $M_{\alpha}=\left[\begin{array}{ll}0 & 0 \\ a & 0\end{array}\right]$. But $M_{\alpha}=E_{1} E_{2}$ where $E_{1}=\left[\begin{array}{ll}0 & 0 \\ a & 1\end{array}\right]$ and $E_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ are both idempotent.
4.9 THEOREM (J. A. Erdös [7]) Let V be a finite dimensional vector space and let $\operatorname{Sing}_{\mathrm{n}}$ be the semigroup of singular endomorphisms of V. Let E be the set of idempotents of Sing_{n} of rank $n-1$. Then E generates Sing $_{\mathrm{n}}$.

PROOF This is immediate from Lemma 4.1, Lemma 4.3, Lemma 4.6 and Lemma 4.8.

We have already shown (Theorem 3.14) that E may be generated by a proper subset of E. Thus we know now that a proper subset of E will generate $S_{i n g}$. It is reasonable to ask how small a subset of E will suffice to generate Sing $_{\mathrm{n}}$. The following two lemmas are used in Sections 5 and 6 where this problem is considered for the cases of F being a finite field and an infinite field respectively.
4.10 LEMMA If E^{\prime} is a subset of E and E^{\prime} generates Sing $_{n}$ then E^{\prime} covers $P F_{n-1}$ and $\Pi\left(E^{\prime}\right)$ is the universal relation on E^{\prime}.

PROOF Let β be any element of $\mathrm{PF}_{\mathrm{n}-1}$. Since E^{\prime} generates Sing $_{n}$, it certainly generates $\mathrm{PF}_{\mathrm{n}-1}$. Thus there exist elements $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p} \in E^{\prime}$ such that $\beta=\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{p}$. Now, since $\operatorname{dim} \beta=\operatorname{dim} \varepsilon_{i} \quad(i=1,2, \ldots, p)$, we have, by Lemma 1.2 , that $N_{\beta}=N_{\varepsilon_{1}}$ and $R_{\beta}=R_{\varepsilon_{p}}$. Thus, by Lemma 1.3, $\beta R \varepsilon_{1}$ and $\beta L \varepsilon_{p}$. Hence both $R_{\beta} \cap E^{\prime}$ and $L_{\beta} \cap E^{\prime}$ are non-empty. Since β was chosen arbitrarily, it follows that E^{\prime} covers $\mathrm{PF}_{\mathrm{n}-1}$.

Now let $\phi, \gamma \in E^{\prime}$, and let $\alpha \in R_{\phi} \cap L_{\gamma}$. Since E^{\prime} generates α we have $\alpha=\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{p}$ for some $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p} \in E^{\prime}$. But, by Lemmas 1.2 and $1.3, \varepsilon_{1} R \alpha$ and $\varepsilon_{\mathrm{p}} L \alpha$. Thus $\phi R \varepsilon_{1}$ and $\gamma L \varepsilon_{\mathrm{p}}$. Hence $\phi \varepsilon_{1}=\varepsilon_{1}$ and $\varepsilon_{p} \gamma=\varepsilon_{p}$. So $\alpha=\phi \varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{p} \gamma$, i.e. $\phi \varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{p} \gamma$ has rank $n-1$. So $\phi \varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{p} \gamma \neq 0$ in $\mathrm{PF}_{\mathrm{n}-1}^{0}$. Since $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\mathrm{p}} \in E^{\prime}$, , we have that $(\phi, \gamma) \in \Pi\left(E^{\prime}\right)$. Since ϕ and γ were chosen arbitrarily, it follows that $\Pi\left(E^{\prime}\right)$ is the universal relation on E^{\prime}.
4. 11 LEMMA There exists a sparse covering set E^{\prime} for $\mathrm{PF}_{\mathrm{n}-1}^{0}$.

PROOF The proof is by induction on the dimension n of the vector space V. For clarity we shall denote the m-dimensional vector space by V_{m}.

We now define a set of representatives $\mathrm{V}_{\mathrm{m}}^{\prime}$ of the one-dimensional subspaces of V_{m}. So, for all non-zero x in V_{m} there exists a unique \underline{y} in V_{m}^{\prime} such that $\langle\underline{x}\rangle=\langle\underline{y}\rangle$. We shall denote by $L_{\underline{x}}^{m}\left[R_{\underline{x}}^{m_{1}}\right]$ the L-class [R-class] of $\mathrm{PF}_{\mathrm{m}-1}^{0}$ containing those elements with range perpendicular [null-space] <x> .

Now suppose, as the induction hypothesis, that there exists a sparse covering set $\mathrm{E}_{\mathrm{m}}^{\prime}$ of $\mathrm{PF}_{\mathrm{m}-1}^{0}$. Then there exists exactly one element α in $L_{\underline{x}}^{m} \cap E_{m}^{\prime}$ for each $\underline{x} \in V_{m}^{\prime}$. All the elements in R_{α} have, by Lemma 1.3, the same null-space, generated by a particular element of V_{m}^{\prime}. If we denote this element by $\underline{y}(\underline{x})$, we have, in fact, defined a mapping $V_{m}^{\prime} \rightarrow V_{m}^{\prime}$ by $\underline{x} \rightarrow \underline{y}(\underline{x})$. This mapping is characterised by $L_{\underline{x}}^{m} \cap R_{\underline{y}(\underline{x})}^{m} \cap E_{m}^{\prime}$ is non-empty.

This mapping is clearly a bijection. Notice that there exists an idempotent, namely α, with nul1-space $\langle\underline{y}(\underline{x})\rangle$ and range $\langle\underline{x}\rangle^{\perp}$. Thus, by Lemma 2.6, $\langle\underline{y}(\underline{x})| \underline{x}>\neq 0$.

$$
\text { If } \underline{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \text { is an element of } v_{m}^{\prime} \text { and } a \in F \text {, then }
$$ denote by (\underline{x}, a) the element of V_{m+1}^{\prime} that generates the space $\left\langle\left(x_{1}, x_{2}, \ldots, x_{m}, a\right)\right\rangle$. We shall denote by $(\underline{0}, 1)$ the element of V_{m+1}^{\prime} that generates the space $\langle(0,0, \ldots, 0,1)\rangle$. Clearly, these are all

distinct and every element of V_{m+1}^{\prime} may be denoted in this way. Notice that, if $\underline{y}=\left(y_{1}, y_{2}, \ldots, y_{m+1}\right)$, then for some $x \in V_{m}^{\prime} \cup\{\underline{0}\}$ and some $\lambda, a \in F$, we have $\left(y_{1}, \ldots, y_{m}\right)=\lambda \underline{x}$ and $y_{m+1}=\lambda a$.

We shall now set up a bijection $\underline{\bar{y}}: V_{m+1}^{\prime} \rightarrow V_{m+1}^{\prime}$ such that $L_{(\underline{x}, a)} \cap R_{\underline{y}(\underline{x}, a)}$ is a group $H-c l a s s$ of $P F_{m}^{0}$ for all $\underline{x} \in V_{m}^{\prime}$ and all $a \in F$ and also $L_{(\underline{0}, 1)} \cap^{R}(\underline{0}, 1)$ is a group $H-c l a s s$ of $P F_{m}^{0}$. It would be nice if \bar{y} were the identity map. In some cases this would work (e.g. $F=\mathbb{R}$ and the stroke product being an inner product) but in general we do not have $<\underline{a} \mid \underline{a}>0$ (see the comments following Definition 2.2) and so we are unable to guarantee that [a:a] is a group $H-c l a s s$. It is logical to construct \bar{y} so that for $x \in V_{m}^{\prime}$ and $a \in F$ we have $\underline{y}(\underline{x}, a)=(\underline{y}(x), z)$ for some $z \in F$. We need to have $\langle\underline{y}(\underline{x}, a) \mid(\underline{x}, \bar{a})\rangle \neq 0$ and so we must have $\langle(\underline{y}(x), z) \mid(\underline{x}, \dot{a})\rangle \neq 0$, i.e. $\langle\underline{y}(x)| \underline{x}>+(z \xi)(a x) \neq 0$. Now, by the definition of $\underline{y}(\underline{x})$, we know that $\langle\underline{y}(\underline{x})| \underline{x}>\neq 0$. Thus, if $a \neq 0$, we need $z \xi \neq-<\underline{y}(\underline{x}) \mid \underline{x}>(a x)^{-1}$ and, if $a=0, z$ may take any value we choose. Now, all we know for certainty about the field F is that it contains two elements, namely 0 and 1 . Thus, if $a \neq 0$, we may put $z \xi=1-\langle\underline{y}(\underline{x})| \underline{x}>\left(a^{-1} x\right)$. This clearly satisfies $z \xi \neq-\langle\underline{y}(\underline{x})| \underline{x}>\left(a^{-1} x\right)$. Now, for a given \underline{x}, the only value that $1-\langle\underline{y}(\underline{x})| \underline{x}>\left(a^{-1} x\right) \quad(a \neq 0)$ may not take is 1 since $\langle\underline{y}(\underline{x})| \underline{x}>\neq 0$. So if $a=0$ we shall set $z=1$. So we shall define the map $\overline{\mathrm{y}}: \mathrm{V}_{\mathrm{m}+1}^{\prime} \rightarrow \mathrm{V}_{\mathrm{m}+1}^{\prime}$ by

$$
\underline{\bar{y}}(\underline{x}, a)= \begin{cases}(\underline{y}(\underline{x}), b(\underline{x}, a)) & \text { if } \underline{x} \in V_{m}^{\prime} \\ (\underline{0}, 1) & \text { if } \underline{x}=0, a=1\end{cases}
$$

where

$$
b(\underline{x}, a)= \begin{cases}{\left[1-<\underline{y}(\underline{x}) \mid \underline{x}>\left(a^{-1} x\right)\right] \xi^{-1}} & a \neq 0 \\ 1 \xi^{-1}=1 & a=0\end{cases}
$$

It is obvious that \underline{y} is an injection for, if $\underline{\bar{y}}(\underline{x}, a)=\underline{\underline{y}}\left(\underline{x}^{\prime}, a^{\prime}\right)$ and $\underline{x} \neq \underline{0}$, then we would have $\underline{y}(\underline{x})=\underline{y}\left(\underline{x}^{\prime}\right)$ and $b(\underline{x}, a)=\dot{b}\left(\underline{x}^{\prime}, a^{\prime}\right)$. But, since \underline{y} is bijective, this implies $\underline{x}=\underline{x}^{\prime}$ and $b(\underline{x}, a)=b\left(\underline{x}, a^{\prime}\right)$. This, in turn, implies $a=a^{\prime}$. If $\underline{x}=\underline{0}$, then clearly $\underline{x}^{\prime}=0$ and so $a=a^{\prime}=1$ since $(\underline{0}, a)$ and $\left(\underline{0}, a^{\prime}\right) \in V_{m+1}^{\prime}$.

We shall now show that $\overline{\mathrm{y}}$ is surjective. Let $(\underline{x}, a) \in V_{m+1}^{\prime}$. If $\underline{x}=\underline{0}$ and $a=1$, then $\underline{\underline{y}}(\underline{0}, 1)=(\underline{x}, a)$. So suppose $\underline{x} \neq \underline{0}$. Then $\underline{x} \in V_{m}^{\prime}$. Since $\underline{y}: V_{m}^{\prime} \rightarrow V_{m}^{\prime}$ is bijective, $\underline{y}^{-1}(\underline{x})$ is defined and unique. If $a=1$, then $\underline{\bar{y}}\left(\underline{y}^{-1}(x), 0\right)=(\underline{x}, a)$. So suppose $a \neq 1$. Then $a x \neq 1$ and so $\frac{1}{1-a x}$ is defined. Thus $\overline{\mathrm{y}}\left(\underline{y}^{-1}(\underline{x}),\left(\frac{\left\langle\underline{y}^{-1}(\underline{x}) \mid \underline{x}\right\rangle}{1-a x}\right) \xi^{-1}\right)=(\underline{x}, a)$. Hence $\underline{\bar{y}}: v_{m+1}^{\prime} \rightarrow \nabla_{m+1}^{\prime}$ is surjective and, consequently, is bijective.

From the definition of $\overline{\underline{y}}$ we have that, for all $(\underline{x}, a) \in V_{m+1}^{\prime}$, $\langle\underline{\bar{y}}(\underline{x}, a)|(\underline{x}, a)>\neq 0$. Thus $L_{(\underline{x}, a)} \cap R_{\underline{\bar{y}}(\underline{x}, a)}$ contains an idempotent. Hence the set

$$
E_{m+1}^{\prime}=\left\{(\underline{\bar{y}}(\underline{x}, a):(\underline{x}, a)):(\underline{x}, a) \in V_{m+1}^{\prime}\right\}
$$

is a sparse cover for $\mathrm{PF}_{\mathrm{m}}^{0}$.
It remains to show that we may anchor the induction at $\mathrm{m}=2$. Since, in this case, every one-dimensional subspace of V_{2} may be generated by the vector $(0,1)$ or a vector of the form ($1, a$), it is easy to see that the set

$$
\left\{\left(\left(1,\left(1-\frac{1}{a \chi}\right) \xi^{-1}\right):(1, a)\right) ; a \in F \backslash\{0\}\right\} \cup\{((1,1):(1,0)),((0,1):(0,1))\}
$$

forms a sparse cover for PF_{1}^{0}.

If the field F is finite then the semigroup Sing_{n} is also finite. I shall show (Theorem 5.1) that in this case the necessary conditions for a subset E^{\prime} of E to generate Sing $_{n}$ given in Lemma 4.10 are also sufficient conditions. From this I shall obtain the minimum number m such that there exists a subset E^{\prime} of E that generates Sing $_{n}$ and has order m (Corollary 5.7).
5.1 THEOREM Let V be an n-dimensional vector space over a finite field F. Let Sing $_{n}$ be the semigroup of singular endomorphisms of V and let $\mathrm{PF}_{\mathrm{n}-1}$ be the set of elements in $\operatorname{sing}_{\mathrm{n}}$ with rank $\mathrm{n}-1$. Let E^{\prime} be a subset of the idempotents of $\mathrm{PF}_{\mathrm{n}-1}$. Then E^{\prime} generates Sing $_{n}$ if and only if $\Pi\left(E^{\prime}\right)$ is the universal relation on E^{\prime} and E^{\prime} covers $\mathrm{PF}_{\mathrm{n}-1}$.

PROOF We already know (Lemma 4.10) that if E^{\prime} generates Sing n then $\pi\left(E^{\prime}\right)$ is universal on E^{\prime} and that E^{\prime} covers $P F_{n-1}$. To show the converse it will suffice to show that E^{\prime} generates E , the set of all idempotents in $\mathrm{PF}_{\mathrm{n}-1}$, for, by Theorem 4.9 and [7], we have that E generates Sing $_{n}$.

Let $\varepsilon \in E \cdot$. Since E^{\prime} covers $P F_{n-1}$, there exist $\phi, \gamma \in E^{\prime}$ such that $\phi R \varepsilon$ and $\gamma L \varepsilon$. Since $\Pi\left(E^{\prime}\right)$ is universal on E^{\prime}, we have that $(\phi, \gamma) \in \Pi\left(E^{\prime}\right)$. Hence there exist $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p} \in E^{\prime}$ such that $\alpha=\phi \varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{p} \gamma$ has rank $n-1$. Now, by Lemma 1.2, $N_{\alpha}=N_{\phi}$ and $R_{\alpha}=R_{\gamma}$. Thus, by Lemma 1.3, $\alpha R \phi$ and $\alpha L \gamma$. Hence $\alpha R \varepsilon$ and $\alpha L \varepsilon$, i.e. $\alpha H \varepsilon$. Now, since F is finite, $\operatorname{Sing}_{\mathrm{n}}$ is finite and so certainly H_{ε} is finite. So α belongs to a finite group. Thus, for
some integer $k \geq 1, \alpha^{\mathrm{k}}$ is the identity of that group, i.e. $\alpha^{k}=\varepsilon$. Since α is a product of elements of E^{\prime}, we have that E^{\prime} generates ε. But this holds for all elements of E and so E^{\prime} generates E as required.

If a subset E^{\prime} of the idempotents E covers $\mathrm{PF}_{\mathrm{n}-1}$ it is not true in general that $\Pi\left(E^{\prime}\right)$ is universal on E^{\prime} as the next example shows.
5.2 EXAMPLE If $F \approx \mathbb{Z}_{2}$ and $n=2$ then the structure of PF_{1}^{0} is

where the shaded boxes contain idempotents and where

$$
\begin{aligned}
& \varepsilon_{1}=((1,0):(1,0))=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& \varepsilon_{2}=((1,1):(1,0))=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] \\
& \varepsilon_{3}=((0,1):(1,1))=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

and

$$
\varepsilon_{4}=((0,1):(0,1))=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

If $E^{\prime}=\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right\}$ then E^{\prime} covers PF_{1}^{0}. However, $\Pi\left(E^{\prime}\right)$ is not universal on E^{\prime}. To see this we shall compute <E'> and then apply Theorem 5.1.

Now $\left\langle E^{\prime}\right\rangle=\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4},\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], 0\right\}$. Clearly $\left\langle E^{\prime}\right\rangle \neq \mathrm{PF}_{1}^{0}$ for
$(1,1))=\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right] \notin\left\langle E^{\prime}\right\rangle$. Thus, since E^{\prime} covers PF_{1}^{0}, we have, by Theorem 5.1, that $\Pi\left(E^{\prime}\right)$ is not universal on E^{\prime}.

The next three lemmas and Theorem 5.6 will show that if F is any finite field then any sparse cover of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ will generate $\operatorname{Sing}_{\mathrm{n}}$.
5.3 LEMMA If $|F|=q$, then the number of non-zero L-classes [R-classes] in $\mathrm{PF}_{\mathrm{n}-1}^{0}$ is $\left(\mathrm{q}^{\mathrm{n}}-1\right) /(\mathrm{q}-1)$.

PROOF By Lemma 4.11 we know that there is a bijection between the elements of a sparse cover of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ and the L-classes [R-classes] of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. Thus there is a bijection between the L-classes and $R-c l a s s e s$ of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. Since F is finite it follows that $\mathrm{PF}_{\mathrm{n}-1}^{0}$ is finite and so there are only finitely many L-classes [R-classes] in $\mathrm{PF}_{\mathrm{n}-1}^{0}$. Consequently there are the same number of L-classes as R-classes in $\mathrm{PF}_{\mathrm{n}-1}^{0}$.

By the comments following Definition 2.5 , we know that there is a bijection between the one-dimensional subspaces of V and the non-zero L-classes of $\mathrm{PF}_{\mathrm{n}-1}^{0}$. Now the number of non-zero vectors in V is $q^{n}-1$. However, for each x in V and for all non-zero scalars λ in F we have $\langle\underline{x}\rangle=\langle\lambda \underline{x}\rangle$. Hence there are $\left(q^{n}-1\right) /(q-1)$ onedimensional subspaces in V.
5.4 LEMMA If $|F|=q$, then the number of idempotents in any non-zero L-class [R-class] of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ is $\mathrm{q}^{\mathrm{n}-1}$.

PROOF The number of idempotents in a given L-class L is the number of R-classes containing an idempotent in L. If the elements in L have range $\left\langle>^{\perp}\right.$ then, by Lemma 2.6, this is just $Q=|\{\langle\underline{n}\rangle:\langle\underline{n} \mid \underline{r}\rangle \neq 0\}|$ where $|x|$ denotes the order of the set x. Since the number of one--dimensional subspaces of V is, by Lemma 5.3, $\left(q^{n}-1\right) /(q-1)$, we have $Q=\left(q^{n}-1\right) /(q-1)-|\{\underline{\underline{n}\rangle}:\langle\underline{n} \mid \underline{r}\rangle=0\}|$. But $\{\langle\mathrm{n}\rangle:\langle\underline{\mathrm{n}} \mid \underline{\mathrm{r}}\rangle=0\}=\left\{\langle\underline{\mathrm{n}}\rangle: \underline{\mathrm{n}} \in\langle\underline{\underline{r}}\rangle^{\perp}\right\}$. Since, by Lemma 2.3, $\operatorname{dim}\left\langle\underline{r}^{\perp}=\mathrm{n}-1\right.$, we have, by the proof of Lemma 5.3, that

$$
\mid\left\{\langle\underline{n}\rangle: \underline{n} \in\left\langle\underline{r}^{\perp}\right\} \mid=\left(q^{n-1}-1\right) /(q-1) .\right.
$$

Thus $Q=\left(q^{n}-1\right) /(q-1)-\left(q^{\mathrm{n}-1}-1\right) /(q-1)=q^{\mathrm{n}-1}$ as required.
5.5 LEMMA If F is a finite field and E^{\prime} is a sparse cover for $\mathrm{PF}_{\mathrm{n}-1}^{0}$, then $\Pi\left(\mathrm{E}^{\prime}\right)$ is the universal relation on E^{\prime}.

PR00F Let ϕ, γ be any two elements of E^{\prime} and suppose that $\phi \Pi\left(E^{\prime}\right) \cap \gamma\left[\Pi\left(E^{\prime}\right)\right]^{-1}$ is empty. Since each L-class of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ contains q^{n-1} idempotents (Lemma 5.4) and E^{\prime} is a sparse cover for $P F_{n-1}^{0}$, we know that there are exactly q^{n-1} elements ε_{i} of E^{\prime} such that $\phi \varepsilon_{i} \neq 0$ in $\mathrm{PF}_{\mathrm{n}-1}^{0}$ (Lemma 2.7). Hence $\left|\phi \Pi\left(E^{\prime}\right)\right| \geq q^{\mathrm{n}-1}$. Similarly, since each R-class of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ contains $\mathrm{q}^{\mathrm{n}-1}$ idempotents, we have that there exist exactly q^{n-1} elements ε_{i}^{\prime} of E^{\prime} such that $\varepsilon_{i}^{\prime} \gamma \neq 0$ in $\mathrm{PF}_{\mathrm{n}-1}^{0}$. Thus $\left|\gamma\left[\pi\left(E^{\prime}\right)\right]^{-1}\right| \geq \mathrm{q}^{\mathrm{n}-1}$. Now, since we have assumed $\phi \Pi\left(E^{\prime}\right) \cap \gamma\left[\Pi\left(E^{\prime}\right)\right]^{-1}$ is empty, we have

$$
\mid \phi \Pi\left(E^{\prime}\right) \cup_{\gamma\left[\Pi\left(E^{\prime}\right)\right]^{-1}\left|=\left|\phi \Pi\left(E^{\prime}\right)\right|+\left|\gamma\left[\Pi\left(E^{\prime}\right)\right]^{-1}\right| \geq q^{n-1}+q^{n-1}=2 q^{n-1} ~\right.}^{\text {n }} .
$$

But, since, by the proof of Lemma 5.3 , we have $\left|E^{\prime}\right|=\left(q^{n}-1\right) /(q-1)$ and $\phi \Pi\left(E^{\prime}\right) \cup \gamma\left[\Pi\left(E^{\prime}\right)\right]^{-1} \subseteq E^{\prime}$, we then have

$$
\left|\phi \Pi\left(E^{\prime}\right) \cup_{\gamma}\left[\Pi\left(E^{\prime}\right)\right]^{-1}\right| \leq\left|E^{\prime}\right|=\left(q^{n}-1\right) /(q-1) .
$$

Thus

$$
\left(\mathrm{q}^{\mathrm{n}}-1\right) /(\mathrm{q}-1) \geq 2 \mathrm{q}^{\mathrm{n}-1},
$$

i.e.

$$
q^{n}-1 \geq 2 q^{n}-2 q^{n-1}
$$

Hence

$$
q^{n}-2 q^{n-1}+1 \leq 0,
$$

i.e.

$$
\begin{equation*}
q^{\mathrm{n}-1}(\mathrm{q}-2) \leq-1 . \tag{+}
\end{equation*}
$$

But, since $|F|=q$ and F is a field, we have that $q \geq 2$. Thus (+) is impossible. So there exists $\varepsilon \in \phi \Pi\left(E^{\prime}\right) \cap \gamma\left[\Pi\left(E^{\prime}\right)\right]^{-1}$, i.e. $(\phi, \varepsilon) \in \Pi\left(E^{\prime}\right)$ and $(\varepsilon, \gamma) \in \Pi\left(E^{\prime}\right)$. Thus $(\phi, \gamma) \in \Pi\left(E^{\prime}\right)$.

We now have:
5.6 THEOREM Let V be an n-dimensional vector space over a finite field F. Let sing_{n} denote the semigroup of singular endomorphisms of V and let $\mathrm{PF}_{\mathrm{n}-1}$ be the set of elements of $\operatorname{Sing}_{\mathrm{n}}$ with rank $n-1$. Then there exists a subset E^{\prime} of the idempotents of $P F_{n-1}$ such that E^{\prime} is a sparse cover for $P F_{n-1}$ and E^{\prime} generates Sing $_{\mathrm{n}}$. Further, any sparse cover for $\mathrm{PF}_{\mathrm{n}-1}$ generates $\operatorname{sing}_{\mathrm{n}}$.

PROOF By Lemma 4.11, there exists a sparse cover for $\mathrm{PF}_{\mathrm{n}-1}$. By Lemma 5.5, $\Pi\left(E^{\prime}\right)$ is the universal relation on any sparse cover E^{\prime} and so, by Theorem 5.1, any sparse cover E^{\prime} for $\mathrm{PF}_{\mathrm{n}-1}$ generates $\operatorname{Sing}_{\mathrm{n}} \cdot$
5.7 COROLLARY Let V be an n-dimensional vector space over a finite field $|F|=q$. Let Sing_{n} be the semigroup of singular endomorphisms of sing_{n} and let E be the idempotents of sing_{n} of rank $\mathrm{n}-1$. Then
$\min \left\{\left|E^{\prime}\right|: E^{\prime} \subseteq E,\left\langle E^{\prime}\right\rangle=\operatorname{sing}_{n}\right\}=\left(q^{n}-1\right) /(q-1)$.

PROOF This is immediate from Lemma 4.10, Lemma 5.3 and Theorem 5.6.
§6 GENERATING SETS OF IDEMPOTENTS 3: THE VECTOR SPACE V DEFINED
OVER AN INFINITE FIELD F

In Lemma 4.10 we found necessary conditions for a subset of E to generate Sing_{n}. When F was finite we were able to show that these conditions were also sufficient (Theorem 5.1). Unfortunately this is not the case when F is infinite, as Example 6.1 will show. Despite this, we shall be able to obtain a theorem (Theorem 6.7) that is similar to Theorem 5.6, but much weaker. Before stating Theorem 6.7, we shall need two more definitions and three simple lemmas.
6.1 EXAMPLE Let $F \cong \mathbb{R},\langle\cdot \mid \cdot\rangle$ be the stroke product defined by $x \xi=x X=x$ and let E be the set of idempotents of the
form (a:a) . E^{\prime} cleariy covers $\mathrm{PF}_{\mathrm{n}-1}$. Also $\Pi\left(E^{\prime}\right)$ is universal on E^{\prime}. To show this we shall consider any two idempotents (a:a) and $(\underline{b}: \underline{b})$ of E^{\prime}. If ($\underline{a}: \underline{a}$) ($\underline{b}: \underline{b}$) has rank less than $n-1$, then we have (by Lemma 2.7) $\langle\underline{a} \mid \underline{b}\rangle=0$. Hence $\langle\underline{a} \mid \underline{a}+\underline{b}\rangle=\langle\underline{a} \mid \underline{a}\rangle \neq 0$ and $\langle\underline{a}+\underline{b} \mid \underline{b}\rangle=\langle\underline{b}| \underline{b}>\neq 0$. Thus $(\underline{a}: \underline{a})(\underline{a}+\underline{b}: \underline{a}+\underline{b})$ and $(\underline{a}+\underline{b}: \underline{a}+\underline{b})(\underline{b}: \underline{b})$ have rank $n-1$ (Lenma 2.7) and so ($\underline{a}: \underline{a})(\underline{a}+\underline{b}: \underline{a}+\underline{b})(\underline{b}: \underline{b})$ has rank $n-1$ (Lemma 1.9). Thus $(\underline{(a: a)}, \underline{(b: b)}) \in \Pi\left(E^{\prime}\right)$. So E^{\prime} covers $P F_{n-1}$ and $\Pi\left(E^{\prime}\right)$ is universal on E^{\prime}.

Now let $\underline{x} \in V$ and (a:a) be any element of E^{\prime}. Then
$\underline{x}=\lambda \underline{a}+\underline{b}$ where $\lambda \in \mathbb{R}$ and $\underline{b} \in\left\langle\underline{a}^{\perp}\right.$ (by Lemma 1.4). Thus $\underline{x}(\underline{a}: \underline{a})=\underline{b}$. So $\langle\underline{x} \mid \underline{x}\rangle=\langle\lambda \underline{a} \mid \lambda \underline{a}\rangle+\langle\underline{b} \mid \underline{b}\rangle=\langle\lambda \underline{a} \mid \lambda \underline{a}\rangle+\langle\underline{x}(\underline{a}: \underline{a}) \mid \underline{x}(\underline{a}: \underline{a})\rangle$. Thus, since $<\lambda \underline{a} \mid \lambda \underline{a}>\geq 0$ with equality occurring if and only if $\lambda \underline{a}=\underline{0}$, we have

$$
\begin{equation*}
\langle\underline{x} \mid \underline{x}\rangle \geq\langle\underline{x}(\underline{a}: \underline{a}) \mid \underline{x}(\underline{a}: \underline{a})\rangle \tag{+}
\end{equation*}
$$

with equality occurring if and only if $\underline{x} \in\langle\underline{a}\rangle^{\perp}$.
Now let ($\underline{n}: \underline{r}$) be any idempotent of E not in E^{\prime} and suppose that E^{\prime} generates E. Then there exist $\underline{n}_{1}, \underline{n}_{2}, \ldots, \underline{n}_{k}$ in V such that

$$
(\underline{n}: \underline{r})=\left(\underline{n}: \underline{n}^{n}\right)\left(\underline{n}_{1}: \underline{n}_{1}\right)\left(\underline{n}_{2}: \underline{n}_{2}\right) \ldots\left(\underline{n}_{k}: \underline{n}_{k}\right)(\underline{r}: \underline{r}) .
$$

Now let $\underline{x} \in\left\langle\underline{r}^{\perp}\right.$. Then

$$
\begin{equation*}
\underline{x}(\underline{n}: \underline{r})=\underline{x} . \tag{++}
\end{equation*}
$$

But, by repeated applications of (+),

$$
\langle\underline{x} \mid \underline{x}\rangle \geq\langle\underline{x}(\underline{n}: \underline{n}) \mid \underline{x}(\underline{n}: \underline{n})\rangle \geq \ldots \geq<\underline{x}(\underline{n}: \underline{x})|\underline{x}(\underline{n}: \underline{x})\rangle
$$

with equality occurring at each stage if and only if

$$
\begin{gathered}
\underline{x} \in\langle\underline{n}\rangle^{\perp}, x(\underline{n}: \underline{n}) \in\left\langle\underline{n}_{1}\right\rangle^{\perp}, \underline{x}(\underline{n}: \underline{n})\left(\underline{n}_{1}: \underline{n}_{1}\right) \in\left\langle\underline{n}_{2}\right\rangle^{\perp}, \ldots \\
\underline{x}(\underline{n}: \underline{n})\left(\underline{n}_{1}: \underline{n}_{1}\right) \ldots\left(\underline{n}_{k}: \underline{n}_{k}\right) \in\left\langle\underline{x}^{\perp} .\right.
\end{gathered}
$$

Since, by (++), equality does occur, we have $\underline{x} \in \underline{n}^{+}{ }^{\perp}$. This holds for all $x \in\langle\underline{r}\rangle^{\perp}$. Thus $\left\langle\underline{r}^{\perp} \subseteq\left\langle\underline{n}^{\perp}\right.\right.$. Now, since $\left\langle\underline{r}^{\perp}\right.$ and $\langle\underline{n}\rangle^{\perp}$ have the same dimension, we have $\left\langle\underline{r}^{\perp}=\langle\underline{n}\rangle^{\perp}\right.$, i.e. $\langle\underline{r}\rangle=\langle\underline{n}\rangle$. But, since we assumed $(\underline{n}: \underline{r}) \notin E^{\prime}$, we have $\langle\underline{r}\rangle \neq\left\langle\underline{n}>\right.$. Thus E^{\prime} does not generate E and so certainly does not generate Sing $_{\mathrm{n}}$.
6.2 DEFINITION Let E be the set of idempotents of rank $n-1$ of sing_{n} and let A and B be subsets of E. Define $A_{0}=A$ and $A_{i}=A_{i-1}^{3} \cap E \quad(i=1,2, \ldots)$. Clearly, $A=A_{0} \subseteq A_{1} \subseteq A_{2} \ldots$. We shall say that B is A_{i}-accessible if $B \subseteq A_{i+1}$ and A-obtainable if B is A_{i}-accessible for some $i \in \mathbb{N}$. Clearly, if B is A-obtainable, then A generates B.
6.3 DEFINITION Let E be the set of idempotents of rank $n-1$ of Sing_{n} and let A be a subset of E. If $\varepsilon \in E$ is. A-obtainable, we shall define the height of ε from A to be $h_{A}(\varepsilon)=\min \left\{m: \varepsilon \in A_{m}\right\}$.

The next three lemmas are trivial, but it is more convenient to place them here than include them in the proof of Theorem 6.7 where they will be called upon.

$$
\begin{aligned}
& \text { 6.4 LEMMA } \text { If } \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \text { are A-obtainable, i.e. } \\
& \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \in \underset{i=0}{\infty} A_{i},
\end{aligned}
$$

for some subset A of E and if $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \in E$, then

$$
h_{A}\left(\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right) \leq \max _{i=1,2,3}\left\{h_{A}\left(\varepsilon_{i}\right)\right\}+1
$$

PROOF Let $h=\max _{i=1,2,3}\left\{h_{A}\left(\varepsilon_{i}\right)\right\}$. Then $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \in A_{h}$. Thus $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \in A_{h}^{3} \cap E=A_{h+1}$. So $h_{A}\left(\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right) \leq h+1$.

$$
\text { 6.5 L.EMMA If } h_{A}(\varepsilon)=m \text {, for some subset } A \text { of } E \text { and }
$$ some $\varepsilon \in E, \varepsilon=\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$, for some

$$
\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \in \bigcup_{i=0}^{\infty} A_{i},
$$

and $h_{A}\left(\varepsilon_{i}\right)<m$, then $\max _{i=1,2,3}\left\{h_{A}\left(\varepsilon_{i}\right)\right\}=m-1$.

PROOF This is immediate from Lemma 6.4.
6.6 LEMMA $A=\left\{\varepsilon \in \bigcup_{i=0}^{\infty} A_{i}: h_{A}(\varepsilon)=0\right\}$ for all subsets A of E.

PROOF This is immediate from the definition of height.
6.7 THEOREM Let V be an n-dimensional vector space over an infinite field F. Let Sing $_{n}$ denote the semigroup of singular endomorphisms of V and let $P F_{n-1}$ be the set of elements of Sing $_{n}$ with rank $n-1$. Then there exists a subset A of the idempotents E in $P F_{n-1}$ such that A is a sparse cover for $P F_{n-1}$ and A generates $\operatorname{Sing}_{\mathrm{n}}$.
hypothesis:
There exists a subset $A^{(m)}$ of the idempotents E_{m} in $\mathrm{PF}_{\mathrm{m}-1}$ such that $A^{(m)}$ is a sparse cover for $P F_{m-1}$ and E_{m} is $A^{(m)}$-obtainable

If $m=1$, then the hypothesis is clearly true since E_{1} consists solely of the zero map. So, putting $A^{(1)}=E_{1}$, we have that $A^{(1)}$ is a sparse cover for PF_{0}^{0} and E_{1} is $A^{(1)}$-obtainable.

Now suppose the hypothesis holds for $m=n-1$. We shall show that it also holds for $m=n$. Adopting the notation of Lemma 4.11 let $A^{(m-1)}=\left\{(\underline{y} \underline{(x)}: \underline{x}): x \in V_{n-1}^{\prime}\right\}$. As before, define the mapping $\overline{\mathrm{y}}: \mathrm{V}_{\mathrm{n}}^{\prime} \rightarrow \mathrm{V}_{\mathrm{n}}^{\prime}$ by

$$
\underline{y}(\underline{x}, a)= \begin{cases}(\underline{y}(\underline{x}), b(\underline{x}, a)) & \text { if } \underline{x} \in V_{n-1}^{\prime} \\ (\underline{0}, 1) & \text { if } \underline{x}=\underline{0}, \text { and } a=1\end{cases}
$$

where

$$
b(\underline{x}, a)= \begin{cases}{[1-<\underline{y}(\underline{x}) \mid \underline{x}>/(a x)] \xi^{-1}} & a \neq 0 \\ 1 & a=0\end{cases}
$$

The inverse of \bar{y} is given by

$$
\underline{\bar{y}}^{-1}(\underline{x}, a)= \begin{cases}\left(\underline{y}^{-1}(\underline{x}), c(\underline{x}, a)\right) & \text { if } \underline{x} \in V_{n-1}^{\prime} \\ (\underline{0}, 1) & \text { if } \underline{x}=\underline{0} \text { and } a=1\end{cases}
$$

where

$$
c(x, a)= \begin{cases}{\left[\langle\underline{x}| \underline{y}^{-1}(x)>/(1-a \xi)\right] x^{-1}} & \text { if } a \neq 1 \\ 0 & \text { if } a=1\end{cases}
$$

From the proof of Lemma 4.11 we know that

$$
D_{0}=\left\{(\bar{y}(\underline{x}, a):(\underline{x}, a)):(\underline{x}, a) \in V_{n}^{\prime}\right\}
$$

forms a sparse cover for $\mathrm{PF}_{\mathrm{n}-1}^{0}$. We shall show that E_{n} is $\mathrm{D}_{0}-$ obtainable.

In listing the possible idempotents ($\mathrm{n}: \underline{\mathrm{r}}$) in E_{n} we may suppose that \underline{n} and \underline{r} are expressed as (\underline{x}, a) with $\underline{x} \in V_{n-1}^{\prime}$ and $a \in F$ or as - $(\underline{0}, 1)$. The four main cases are:
(A) $\underline{n}=(\underline{z}, c)$ and $\underline{r}=(\underline{x}, a)$ where $\underline{z}, \underline{x} \in V_{n-1}^{\prime}$
(B) $\underline{n}=(\underline{z}, c)$ with $\underline{z} \in v_{n-1}^{\prime}$ and $\underline{r}=(\underline{0}, 1)$
(C) $\underline{n}=(\underline{0}, 1)$ and $\underline{r}=(\underline{x}, a)$ with $\underline{x} \in v_{n-1}^{\prime}$
(D) $\quad \underline{n}=\underline{r}=(\underline{0}, 1)$.

We may subdivide case (A) into subcases as follows:
(A1) $\quad \underline{z}=\underline{y}(\underline{x}), c=b(\underline{x}, a)$
(A2) $\quad \underline{z}=\underline{y}(\underline{x}), c \neq b(\underline{x}, a)$
(A3) $\underline{z}=\underline{y}(\underline{x}), a=0, c=1$
(A4) $\underline{z}=\underline{y}(\underline{x}), a \neq 0, c=1$
(A5) $\quad \underline{z} \neq \underline{y}(\underline{x}), \quad\langle\underline{z} \mid \underline{x}\rangle \neq 0$

Case (B) may be subdivided into:
(B1) $\underline{n}=(\underline{z}, c), \underline{r}=(\underline{0}, 1), c \neq 1$
(B2) $\underline{n}=(\underline{z}, c), \underline{r}=(\underline{0}, 1), c=1$.
In cases (Al) and (D) we have that $(\underline{n}, \underline{r}) \in D_{0}$. The remaining elements of E_{n} may thus be divided into eight classes as follows. The reason for the order of the listing will become apparent as the proof progresses.

$$
\begin{aligned}
& D_{1}=\left\{((\underline{y}(\underline{x}), c):(\underline{x}, 0)): c \neq 1, \underline{x} \in V_{n-1}^{\prime}\right\} \text { (case (A3)) } \\
& D_{2}=\left\{(\underline{(0,1)}:(\underline{x}, a)): \underline{x} \in V_{n-1}^{\prime}\right\} \text { (case (C)) }
\end{aligned}
$$

$$
\begin{aligned}
& D_{3}=\left\{((\underline{y}(\underline{x}), 1):(\underline{0}, 1)): \underline{x} \in v_{n-1}^{\prime}\right\} \quad \text { (case (B2)) } \\
& D_{4}=\left\{((\underline{y}(\underline{x}), a):(\underline{0}, 1)): a \neq 1, \underline{x} \in v_{n-1}^{\prime}\right\} \text { (case (B1)) } \\
& D_{5}=\left\{((\underline{y}(\underline{x}), 1):(\underline{x}, a)): a \neq 0, \underline{x} \in v_{n-1}^{\prime}\right\} \quad \text { (case (A4)) } \\
& D_{6}=\{(\underline{y}(\underline{x}), b):(\underline{x}, a)): a \neq 0, b \neq 1, \underline{x} \in v_{n-1}^{\prime}, \\
& \mathrm{b} \neq \mathrm{b}(\underline{\mathrm{x}}, \mathrm{a})\} \text { (case (A2)) } \\
& D_{7}=\left\{((\underline{y}(\underline{z}), b):(\underline{x}, a)): \underline{x}, \underline{z} \in V_{n-1}^{\prime}, \underline{x} \neq \underline{z},\right. \\
& \langle\underline{y}(\underline{z})| \underline{x}>\neq 0\} \quad \text { (case (A5)) } \\
& D_{8}=\left\{((\underline{y}(\underline{z}), b):(\underline{x}, a)): \underline{x}, \underline{z} \in v_{n-1}^{\prime}, \underline{x} \neq \underline{z},\right. \\
& \langle\underline{y}(\underline{z})| \underline{x}>=0\} \text { (case (A6)) }
\end{aligned}
$$

By the construction of D_{0}, \ldots, D_{8} we have that $D_{i} \cap D_{j}=\Phi$ if $i \neq j$ and that

$$
E_{n}=\cup_{i=0}^{8} D_{i}
$$

We shall show, in eight stages, that D_{i} is D_{0}-obtainable $(i=1,2, \ldots, 8)$.

We show first by using Theorem 3.14 that D_{1} is D_{0}-accessible. More precisely we show that

$$
((\underline{y}(\underline{x}), a):(\underline{x}, 0))=\left(\underline{n}_{1}: \underline{r}_{1}\right)\left(\underline{n}_{2}: \underline{r}_{2}\right)\left(\underline{n}_{3}: \underline{r}_{3}\right)
$$

where

$$
\begin{array}{ll}
\underline{n}_{1}=(\underline{y}(\underline{x}), a) & \underline{r}_{1}=\underline{y}^{-1}(\underline{y}(\underline{x}), a)=\left(\underline{x},[<\underline{y}(\underline{x}) \mid \underline{x}>/(1-a \xi)] x^{-1}\right) \\
\underline{n}_{2}=\underline{y}(\underline{0}, 1)=(\underline{0}, 1) & \underline{r}_{2}=(\underline{0}, 1) \\
\underline{n}_{3}=\bar{y}(\underline{x}, 0)=(\underline{y}(\underline{x}), 1) & \underline{r}_{3}=(\underline{x}, 0)
\end{array}
$$

Notice first that $\left.\left\langle\underline{n}_{1}\right\rangle, \underline{n}_{2}\right\rangle$ and $\left.<\underline{n}_{3}\right\rangle$ are all distinct, as are $\left\langle\underline{r}_{1}\right\rangle$, $\underline{r}_{2}>$ and $\left\langle\underline{r}_{3}\right\rangle$. Now define

$$
\begin{array}{ll}
v_{1}=1 & \rho_{1}=-(1-a \xi) x^{-1} \\
v_{2}=1-a & \rho_{2}=\langle\underline{y}(\underline{x})| \underline{x}>x^{-1} \\
v_{3}=-1 & \rho_{3}=(1-a \xi) x^{-1}
\end{array}
$$

Since, for D_{1}, we have $a \neq 1$, it follows that $1-a \xi \neq 0$. Thus all of these are non-zero. Also

$$
\begin{aligned}
\nu_{1} \underline{n}_{1}+\nu_{2} \underline{n}_{2}+\nu_{3} \underline{n}_{3}= & (\underline{y}(\underline{x}), a)+(1-a)(\underline{0}, 1)-(\underline{y}(\underline{x}), 1)=(\underline{0}, 0) \\
\rho_{1} \underline{r}_{1}+\rho_{2} \underline{r}_{2}+\rho_{3} \underline{r}_{3}= & -(1-a \xi) x^{-1}\left(\underline{x},[<\underline{y}(\underline{x}) \mid \underline{x}>/(1-a \xi)] x^{-1}\right) \\
& +\langle\underline{y}(\underline{x})| \underline{x}>x^{-1}(\underline{0}, 1)+(1-a \xi) x^{-1}(\underline{x}, 0)=(\underline{0}, 0)
\end{aligned}
$$

and, by Lemma 3.13,

$$
\begin{aligned}
& \left\langle v_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle v_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle v_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle=\left\langle v_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle-\left\langle v_{1} \underline{n}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle \\
& \quad=[(1-a) \xi][\underline{y}(\underline{x})|\underline{x}\rangle]\langle(\underline{0}, 1) \mid(\underline{0}, 1)\rangle-[1 \xi][(1-a \xi)]<(\underline{y}(\underline{x}), a)|(\underline{x}, 0)\rangle \\
& \quad=[(1-a) \xi]\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle-(1-a \xi)\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle \\
& \quad=0 \text { since } \xi \text { is an automorphism. }
\end{aligned}
$$

We now show, again using Theorem 3.14, that D_{2} is D_{0}-accessible. We show that

$$
((\underline{0}: 1):(\underline{x}, a))=\left(\underline{n}_{1}: \underline{x}_{1}\right)\left(\underline{n}_{2}: \underline{x}_{2}\right)\left(\underline{n}_{3}: \underline{r}_{3}\right)
$$

where

$$
\begin{array}{ll}
\underline{n}_{1}=(\underline{0}, 1) & \underline{r}_{1}=\underline{\bar{y}}^{-1}(\underline{0}, 1)=(\underline{0}, 1) \\
\underline{n}_{2}=\underline{\bar{y}}(\underline{x}, 0)=(\underline{y}(\underline{x}), 1) & \underline{r}_{2}=(\underline{x}, 0) \\
\underline{n}_{3}=\bar{y}(\underline{x}, a)=\left(\underline{y}(\underline{x}),[1-<\underline{y}(\underline{x}) \mid \underline{x}>/(a x)] \xi^{-1}\right) & \underline{r}_{3}=(\underline{x}, a)
\end{array}
$$

Notice first that $<\underline{n}_{1}>,<\underline{n}_{2}>$ and $<\underline{n}_{3}>$ are all distinct, as are $\left.\left\langle\underline{r}_{1}\right\rangle, \leq \underline{r}_{2}\right\rangle$ and $\left\langle\underline{r}_{3}\right\rangle$. Now define

$$
\begin{array}{ll}
v_{1}=\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle \xi^{-1} & \rho_{1}=a \\
v_{2}=-a x \xi^{-1} & \rho_{2}=1 \\
v_{3}=a x \xi^{-1} & \rho_{3}=-1
\end{array}
$$

Since $(\underline{(0,1)}:(\underline{x}, a)) \in E$, we have, by Lemma 2.6 , that $0 \neq\langle(\underline{0}, 1) \mid(\underline{x}, a)\rangle=(1 \xi)(a x)=a x$. Thus $\nu_{1}, \nu_{2}, \nu_{3}, \rho_{1}, \rho_{2}$ and ρ_{3} are non-zero. Also

$$
\begin{aligned}
v_{1} \underline{n}_{1}+v_{2} \underline{n}_{2}+v_{3} \underline{n}_{3}= & \langle\underline{y}(\underline{x})| \underline{x}>\xi^{-1}(\underline{0}, 1)-a x \xi^{-1}(\underline{y}(\underline{x}), 1) \\
& +a x \xi^{-1}\left(\underline{y}(\underline{x}),[1-<\underline{y}(\underline{x}) \mid \underline{x}>/(a x)] \xi^{-1}\right) \\
= & \left(\underline{0},\langle\underline{y}(\underline{x})| \underline{x}>\xi^{-1}-a x \xi^{-1}+(a x-<\underline{y}(\underline{x}) \mid \underline{x}>) \xi^{-1}\right) \\
& (\underline{0}, 0) \\
\rho_{1} \underline{r}_{1}+\rho_{2} \underline{r}_{2}+\rho_{3} \underline{r}_{3}= & a(\underline{0}, 1)+(\underline{x}, 0)-(\underline{x}, a)=(\underline{0}, 0)
\end{aligned}
$$

and, by Lemma 3.13,

$$
\begin{aligned}
& \left\langle\nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle v_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle v_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle=\left\langle v_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle-\left\langle v_{1} \underline{n}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle \\
& \quad=-(a x)(1 \xi)\langle(\underline{y}(\underline{x}), 1) \mid(\underline{x}, 0)\rangle+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle(1 \xi)\langle(\underline{0}, 1) \mid(\underline{x}, a)\rangle \\
& \quad=-(a x)\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle(a x) \\
& \quad=0 .
\end{aligned}
$$

Next we show that D_{3} is D_{0}-accessible, again using Theorem 3.14. In fact we show that

$$
((\underline{y}(\underline{x}), 1):(\underline{0}, 1))=\left(\underline{n}_{1}: \underline{r}_{1}\right)\left(\underline{n}_{2}: \underline{r}_{2}\right)\left(\underline{n}_{3}: \underline{r}_{3}\right)
$$

where

$$
\begin{array}{ll}
\underline{n}_{1}=(\underline{y}(\underline{x}), 1) & \underline{r}_{1}=\underline{\bar{y}}^{-1}(\underline{y}(\underline{x}), 1)=(\underline{x}, 0) \\
\underline{n}_{2}=\underline{\bar{y}}(\underline{x}, 1)=\left(\underline{y}(x),[1-<\underline{y}(\underline{x}) \mid \underline{x}>] \xi^{-1}\right) & \underline{r}_{2}=(\underline{x}, 1) \\
\underline{n}_{3}=\bar{y}(\underline{0}, 1)=(\underline{0}, 1) & \underline{r}_{3}=(\underline{0}, 1)
\end{array}
$$

Notice first that, since $\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle \neq 0,\left\langle\underline{n}_{1}\right\rangle,\left\langle\underline{n}_{2}\right\rangle$, and $\left\langle\underline{n}_{3}\right\rangle$ are distinct, as are $\left\langle\underline{r}_{1}\right\rangle,\left\langle\underline{r}_{2}\right\rangle,\left\langle\underline{r}_{3}\right\rangle$. Now define

$$
\begin{array}{ll}
\nu_{1}=-1 & \rho_{1}=1 \\
\nu_{2}=1 & \rho_{2}=-1 \\
\nu_{3}=<\underline{y}(\underline{x}) \mid \underline{x}>\xi^{-1} & \rho_{3}=1
\end{array}
$$

Now, all these are non-zero. Also

$$
\begin{aligned}
v_{1} \underline{n}_{1}+v_{2} \underline{n}_{2}+v_{3} \underline{n}_{3}= & -(\underline{y}(\underline{x}), 1)+\left(\underline{y}(\underline{x}),[1-<\underline{y}(\underline{x}) \mid \underline{x}>] \xi^{-1}\right) \\
& +\langle\underline{y}(\underline{x})| \underline{x}>\xi^{-1}(\underline{0}, 1) \\
= & \underline{(\underline{0}, 0)}, \\
\rho_{1} \underline{x}+\rho_{2} \underline{r}_{2}+\rho_{3} \underline{r}_{3}= & (\underline{x}, 0)-(\underline{x}, 1)+(\underline{0}, 1) \\
= & (\underline{0}, 0)
\end{aligned}
$$

and, by Lemma 3.13,

$$
\begin{gathered}
\left\langle v_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle v_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\nu_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle=\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{x}_{1}\right\rangle-\left\langle\nu_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle \\
=-(1 \xi)(1 \chi)\langle(\underline{y}(\underline{x}), 1) \mid(\underline{x}, 0)\rangle+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle\langle(\underline{0}, 1) \mid(\underline{x}, 1)\rangle \\
=-\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle=0 .
\end{gathered}
$$

In the next step we show that D_{4} is ($\left.D_{0} \cup D_{1} \cup D_{3}\right)$-accessible. Since D_{1} and D_{3} have been shown to be D_{0}-accessible, we shall thus have that D_{4} is D_{0}-obtainable. Again we use Theorem 3.14 to show that

$$
((\underline{y}(\underline{x}), a):(\underline{0}, 1))=\left(\underline{n}_{1}: \underline{r}_{1}\right)\left(\underline{n}_{2}: \underline{r}_{2}\right)\left(\underline{n}_{3}: \underline{\underline{r}}_{3}\right)
$$

where

$$
\begin{array}{ll}
\underline{n}_{1}=(\underline{y}(\underline{x}), a) & \underline{r}_{1}=\underline{\bar{y}}^{-1}(\underline{y}(\underline{x}), a)=\left(\underline{x},[\underline{y}(\underline{x}) \mid \underline{x}>/(1-a \xi)] x^{-1}\right) \\
\underline{n}_{2}=\left(\underline{y}(\underline{x}),\left(1-a+a^{2}\right) / a\right) & \underline{r}_{2}=(\underline{x}, 0) \\
\underline{n}_{3}=(\underline{y}(\underline{x}), 1) & \underline{r}_{3}=(\underline{0}, 1)
\end{array}
$$

Notice that, since $(\underline{y}(\underline{x}), a):(\underline{0}, 1)) \in E$, we have, by Lemma 2.6 , that $0 \neq\langle(\underline{y}(\underline{x}), a) \mid(\underline{0}, 1)\rangle=a \xi$. Thus $a \neq 0$ and so the definition of \underline{n}_{2} is meaningful. Also, since $\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle \neq 0$ and, in $D_{4}, a \neq 1$, we have that $\left\langle\underline{n}_{1}>,<\underline{n}_{2}\right\rangle$ and $<\underline{n}_{3}>$ are distinct, as are $\left.\left\langle\underline{r}_{1}\right\rangle,<\underline{r}_{2}\right\rangle$ and $\left.<\underline{r}_{3}\right\rangle$. Now define

$$
\begin{array}{ll}
v_{1}=a-1 & \rho_{1}=-(1-a \xi) x^{-1} \\
v_{2}=-a & \rho_{2}=(1-a \xi) x^{-1} \\
v_{3}=1 & \rho_{3}=\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle x^{-1}
\end{array}
$$

Since $\langle\underline{y}(\underline{x})| \underline{x}>\neq 0$ and, in $D_{4}, a \neq 1$, we have that all these are non-zero. Also

$$
\begin{aligned}
v_{1} \underline{n}_{1}+v_{2 \underline{n}_{2}}+v_{3} \underline{n}_{3} & =(a-1)(\underline{y}(\underline{x}), a)-a\left(\underline{y}(\underline{x}),\left(1-a+a^{2}\right) / a\right)+1(\underline{y}(\underline{x}), 1) \\
& =\left(\underline{0}, a^{2}-a-1+a-a^{2}+1\right) \\
& =(\underline{0}, 0),
\end{aligned}
$$

$$
\begin{aligned}
\rho_{1} \underline{r}_{1}+\rho_{2} \underline{r}_{2}+\rho_{3} \underline{r}_{3}= & -(1-a \xi) x^{-1}\left(\underline{x},[\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle /(1-a \xi)] x^{-1}\right) \\
& +(1-a \xi) x^{-1}(\underline{x}, 0)+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle(\underline{0}, 1) \\
= & (\underline{0}, 0)
\end{aligned}
$$

and, by Lemma 3.13,

$$
\begin{aligned}
&\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle v_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle\nu_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle=\left\langle v_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle-\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle \\
&=-(a \xi)(1-a \xi)\left\langle\left(\underline{y}(\underline{x}),\left(1-a+a^{2}\right) / a\right) \mid(\underline{x}, 0)\right\rangle \\
&-[(a-1) \xi]\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle\langle(\underline{y}(\underline{x}), a) \mid(\underline{0}, 1)\rangle \\
&=-(a \xi)[(1-a) \xi]<\underline{y}(\underline{x})|\underline{x}\rangle-[(a-1) \xi]<\underline{y}(\underline{x})|\underline{x}\rangle(a \xi)(1 x) \\
&=0 .
\end{aligned}
$$

To show that $\left(n_{2}: r_{2}\right) \in D_{1}$ we need only show that $\left(1-a+a^{2}\right) / a \neq 1$. But if $\left(1-a+a^{2}\right) / a=1$, we would have $a=1$ and this is excluded by $\left.\mathrm{D}_{4} \cdot \underline{\mathrm{n}}_{3}: \underline{r}_{3}\right)$ clearly belongs to D_{3}.

Next we show that D_{5} is ($D_{0} \cup_{D} \cup_{D_{3}}$)-accessible and hence $D_{0}-$ obtainable. More precisely we show that

$$
((\underline{y}(\underline{x}), 1):(\underline{x}, a))=\left(\underline{n}_{1}: \underline{r}_{1}\right)\left(\underline{n}_{2}: \underline{r}_{2}\right)\left(\underline{n}_{3}: \underline{\underline{r}}_{3}\right)
$$

where

$$
\begin{array}{ll}
\underline{n}_{1}=(\underline{y}(\underline{x}), 1) & \underline{r}_{1}=(\underline{0}, 1) \\
\underline{n}_{2}=\left(\underline{y}(\underline{x}),[a x /(a x+<\underline{y}(\underline{x}) \mid \underline{x}>)] \xi^{-1}\right) & \underline{r}_{2}=(\underline{x}, 0) \\
\underline{n}_{3}=\underline{\bar{y}}(\underline{x}, a)=\left(\underline{y}(\underline{x}),[1-<\underline{y}(\underline{x}) \mid \underline{x}>/(a x)] \xi^{-1}\right) & \underline{r}_{3}=(\underline{x}, a)
\end{array}
$$

Now, since $((\underline{y}(\underline{x}), 1):(\underline{x}, a)) \in E$, we have, by Lemma 2.6 , that $0 \neq\langle(\underline{y}(\underline{x}), 1) \mid(\underline{x}, a)\rangle=\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle+(a x)$. Thus the definition of \underline{n}_{2} is meaningful. Also, since $\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle \neq 0$; we have that $\left\langle\underline{n}_{1}\right\rangle,\left\langle\underline{n}_{2}\right\rangle$ and
$\left.\underline{n}_{3}\right\rangle$ are distinct, as are $\left\langle\underline{r}_{1}\right\rangle,\left\langle\underline{r}_{2}\right\rangle$ and $\left\langle\underline{r}_{3}\right\rangle$. Now define

$$
\begin{array}{ll}
v_{1}=\langle\underline{y}(\underline{x})| \underline{x}>\xi^{-1} & \rho_{1}=a \\
v_{2}=-(a x+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle) \xi^{-1} & \rho_{2}=1 \\
v_{3}=a x \xi^{-1} & \rho_{3}=-1 .
\end{array}
$$

All of these are non-zero. Also

$$
\begin{aligned}
& v_{1} \underline{n}_{1}+v_{2} \underline{n}_{2}+v_{3} \underline{n}_{3}=\langle\underline{y}(\underline{x})| \underline{x}>\xi^{-1}(\underline{y}(\underline{x}), 1) \\
&-(a x+<\underline{y}(\underline{x}) \mid \underline{x}>) \xi^{-1}\left(\underline{y}(\underline{x}),\left[a x /\left(a x^{+}<\underline{y}(\underline{x}) \mid \underline{x}>\right)\right] \xi^{-1}\right) \\
&+a x \xi^{-1}\left(\underline{y}(\underline{x}),[1-<\underline{y}(\underline{x}) \mid \underline{x}>/(a x)] \xi^{-1}\right) \\
&=\left(\underline{0},<\underline{y}(\underline{x}) \mid \underline{x}>\xi^{-1}-\left(a x \xi^{-1}\right)+[1-<\underline{y}(\underline{x}) \mid \underline{x}>] \xi^{-1}\right) \\
&=(\underline{0}, 0), \\
& \rho_{1} \underline{r}_{1}+\rho_{2} \underline{r}_{2}+\rho_{3}-\underline{r}_{3}=a(\underline{0}, 1)+(\underline{x}, 0)-(\underline{x}, a) \\
&=(\underline{0}, 0),
\end{aligned}
$$

and, by Lemma 3.13,

$$
\begin{aligned}
&\left\langle v_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle v_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle v_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle=\left\langle v_{1-1} \mid \rho_{1 \underline{r}_{1}}\right\rangle-\left\langle v_{3} \underline{n}_{3} \mid \rho_{2} \underline{r}_{2}\right\rangle \\
&=\langle\underline{y}(\underline{x})| \underline{x}>\cdot a x \cdot\langle(\underline{y}(\underline{x}), 1) \mid(\underline{0}, 1)\rangle \\
&-a x \cdot 1 \xi \cdot\left\langle\left(\underline{y}(\underline{x}),[1-\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle /(a x)] \xi^{-1}\right) \mid(\underline{x}, 0)\right\rangle \\
&=a x \cdot\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle-a x \cdot\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle \\
& 00 .
\end{aligned}
$$

Clearly $\quad\left(\underline{n}_{1}: \underline{\underline{r}}_{1}\right) \in \mathrm{D}_{3}$ and $\left.\quad \underline{\mathrm{n}}_{2}: \underline{\mathrm{r}}_{2}\right) \in \mathrm{D}_{1}$ since, by D_{5}, $a \neq 0$.

To show that D_{6} is D_{0}-obtainable, we show that D_{6} is $\left(D_{0} U_{1}\right)$ accessible. In particular, we show that

$$
((\underline{y}(\underline{x}), b):(\underline{x}, a))=\left(\underline{n}_{1}: \underline{x}_{1}\right)\left(\underline{n}_{2}: \underline{r}_{2}\right)\left(\underline{n}_{3}: \underline{r}_{3}\right)
$$

where

$$
\begin{aligned}
\underline{n}_{1}=(\underline{y}(\underline{x}), b) \quad \underline{x}_{1} & =\underline{\bar{y}}^{-1}(\underline{y}(\underline{x}), b) \\
& \left.=(\underline{x}, \underline{\underline{y}} \underline{y}(\underline{x}) \mid \underline{x}>/(1-b \xi)] x^{-1}\right) \\
\underline{n}_{2}=\left(\underline{y}(\underline{x}),[b \xi-1+(a x) /<(\underline{y}(\underline{x}), b) \mid(\underline{x}, a)>] \xi^{-1}\right) \underline{r}_{2} & =(\underline{x}, 0) \\
\underline{n}_{3}=\underline{y}(\underline{x}, a)=\left(\underline{y}(\underline{x}),[1-<\underline{y}(\underline{x}) \mid \underline{x}>(a x)] \xi^{-1}\right) \quad \underline{r}_{3} & =(\underline{x}, a)
\end{aligned}
$$

Now in D_{6} we have $b \neq 1$ and $a \neq 0$ and so the definitions of \underline{r}_{1} and \underline{n}_{3} are meaningful. Also, since $((\underline{y}(\underline{x}), b):(\underline{x}, a)) \in E$, we have, by Lemma 2.6 , that $\langle(\underline{y}(\underline{x}), b) \mid(\underline{x}, a)\rangle \neq 0$. Thus the definition of \underline{n}_{2} is meaningful.

We now show that $\left\langle n_{1}\right\rangle,\left\langle\underline{n}_{2}\right\rangle$ and $\left\langle n_{3}\right\rangle$ are distinct. Since $((\underline{y}(\underline{x}), b):(\underline{x}, a)) \notin D_{0}$ we have $b \neq[1-<\underline{y}(\underline{x}) \mid \underline{x}>/(a x)] \xi^{-1}$. Thus $<n_{1}>$ and $\left\langle\underline{n}_{3}\right\rangle$ are distinct. Now suppose that $\left\langle\underline{n}_{1}\right\rangle=\left\langle\underline{n}_{2}\right\rangle$. Then $\mathrm{b} \xi=\mathrm{b} \xi-1+(\mathrm{ax}) /\langle(\underline{y}(\underline{x}), \mathrm{b}) \mid(\underline{x}, \mathrm{a})\rangle$, i.e.

$$
\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle+b \xi \cdot a x=a x .
$$

But this implies

$$
b \xi=1-<\underline{y}(\underline{x}) \mid \underline{x}>/(a x)
$$

which we have already shown to be false. Thus $\underline{n}_{1}>\neq<\underline{n}_{2}>$. Finally we show that $<\underline{n}_{2}>$ and $<\underline{n}_{3}>$ are distinct. Suppose not, then

$$
b \xi-1+(a x) /<(\underline{y}(\underline{x}), b)|(\underline{x}, a)\rangle=1-\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle /(a x),
$$

i.e.

$$
b \xi-2+\langle\underline{y}(\underline{x})| \underline{x}>/(a x)+(a x) /(\langle\underline{y}(\underline{x})| \underline{x}>+b \xi \cdot a x)=0 .
$$

But this would imply

$$
\begin{gathered}
a x \cdot b \xi \leqslant \underline{y}(\underline{x})|\underline{x}\rangle+(a x)^{2}(b \xi)^{2}-2(a x)\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle-2(a x)^{2} \cdot b \xi \\
+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle^{2}+a x \cdot b \xi \leq \underline{y}(\underline{x})|\underline{x}\rangle+(a x)^{2}=0,
\end{gathered}
$$

i.є.

$$
(a x \cdot b \xi-a x+\langle\underline{y}(\underline{x})| \underline{x}>)^{2}=0 .
$$

Thus

$$
\mathrm{b} \xi=1-\langle\underline{y}(\underline{x})| \underline{x}>/(a x)
$$

which we have already shown to be false. Thus $\left\langle\underline{n}_{2}\right\rangle \neq\left\langle\underline{n}_{3}\right\rangle$.
We now show that $\left\langle\underline{r}_{1}\right\rangle,\left\langle\underline{r}_{2}\right\rangle$ and $\left\langle\underline{r}_{3}\right\rangle$ are distinct. Since $\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle \neq 0$ and, in $D_{6}, a \neq 0$, it is clear $\left.\left\langle r_{2}\right\rangle \neq \underline{r}_{3}\right\rangle$ and $\left\langle\underline{r}_{2}\right\rangle \neq\left\langle\underline{r}_{1}\right\rangle$. Now suppose $\left\langle\underline{r}_{1}\right\rangle=\left\langle\underline{r}_{3}\right\rangle$. Then

$$
\dot{a}=<\underline{y}(\underline{x})|\underline{x}\rangle /(1-b \xi),
$$

i.e.

$$
a x-a x \cdot b \dot{\xi}=\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle
$$

and so

$$
\mathrm{b} \xi=1-\langle\underline{y}(\underline{x})| \underline{x}>/(\mathrm{ax})
$$

which we have already shown to be false in D_{6}. Now define

$$
\begin{array}{ll}
v_{1}=[a x(b \xi-1)+\langle\underline{y}(\underline{x})| \underline{x}>] \xi^{-1} & \rho_{1}=-(1-b \xi) x^{-1} a \\
v_{2}=-[a x \cdot b \xi+\langle\underline{y}(\underline{x})| \underline{x}>] \xi^{-1} & \rho_{2}=[a x(1-b \xi)-<\underline{y}(\underline{x}) \mid \underline{x}>] x^{-1} \\
v_{3}=a x \xi^{-1} & \rho_{3}=\langle\underline{y}(\underline{x})| \underline{x}>x^{-1}
\end{array}
$$

Now v_{1} and ρ_{2} are non-zero otherwise we would have $\mathrm{b} \xi=1-\langle\underline{y}(\underline{x})| \underline{x}>/ a x$ contrary to the conditions of D_{6}. $v_{2}=-\langle(\underline{y}(\underline{x}), b) \mid(\underline{x}, a)\rangle \xi^{-1}$ is non-zero, by Lemma 2.6 , since $((\underline{y}(\underline{x}), b):(\underline{x}, a)) \in E . \quad \nu_{3}$ and ρ_{1} are non-zero since, by the conditions of $D_{6}, a \neq 0$ and $b \neq 1 . \rho_{3}$ is non-zero, by Lemma 2.6, since $(\underline{y}(\underline{x}): \underline{x})$ is an idempotent in $\mathrm{PF}_{\mathrm{n}-2}$.

A1so

$$
\begin{aligned}
v_{1} \underline{n}_{1}+v_{2} \underline{n}_{2}+v_{3} \underline{n}_{3}= & {[a x(b \xi-1)+\langle\underline{y}(\underline{x})| \underline{x}>] \xi^{-1}(\underline{y}(\underline{x}), b) } \\
& -[a x \cdot b \xi+<\underline{y}(\underline{x}) \mid \underline{x}>] \xi^{-1}\left(\underline{y}(\underline{x}),\left[b \xi-1+a x \mid<(\underline{y}(\underline{x}, b) \mid(\underline{x}, a)>] \xi^{-1}\right)\right. \\
& +a x \xi^{-1}\left(\underline{y}(\underline{x}),[1-<\underline{y}(\underline{x}) \mid \underline{x}>/(a x)] \xi^{-1}\right) \\
= & \left(\underline{0},\left[a x(b \xi)^{2}-a x \cdot b \xi+<\underline{y}(\underline{x}) \mid \underline{x}>\cdot b \xi-a x(b \xi)^{2}\right.\right. \\
& -<\underline{y}(\underline{x})|\underline{x}>b \xi+a x \cdot b \xi+<\underline{y}(\underline{x})| \underline{x}>-a x+a x^{\left.-<\underline{y}(\underline{x}) \mid \underline{x}>] \xi^{-1}\right)} \\
= & (\underline{0}, 0), \\
\rho_{1} \underline{r}_{1}+\rho_{2} \underline{r_{2}}+\rho_{3} \underline{r}_{3}= & -(1-b \xi) x^{-1} a\left(\underline{x},[\underline{y}(\underline{x}) \mid \underline{x}>/(1-b \xi)] x^{-1}\right) \\
& +[a x(1-b \xi)-<\underline{y}(\underline{x}) \mid \underline{x}>] x^{-1}(\underline{x}, 0)+\langle\underline{y}(\underline{x})| \underline{x}>x^{-1}(\underline{x}, a) \\
= & (\underline{0},-a<\underline{y}(\underline{x})|\underline{x}>+a<\underline{y}(\underline{x})| x>) \\
= & (\underline{0}, 0),
\end{aligned}
$$

and, by Lemma 3.13,

$$
\begin{aligned}
&\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{1} \underline{r}_{1}\right\rangle+\left\langle v_{1} \underline{n}_{1} \mid \rho_{2} \underline{r}_{2}\right\rangle+\left\langle v_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle=\left\langle\nu_{2} \underline{n}_{2} \mid \rho_{2} \underline{r}_{2}\right\rangle-\left\langle\nu_{1} \underline{n}_{1} \mid \rho_{3} \underline{r}_{3}\right\rangle \\
&=-[a x \cdot b \xi+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle][a x(1-b \xi)-\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle]\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle \\
&-[a x(b \xi-1)+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle]\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle<(\underline{y}(\underline{x}), b)|(\underline{x}, a)\rangle \\
& 0
\end{aligned}
$$

since $\langle\underline{y}(\underline{x}), b)|(\underline{x}, a)\rangle=\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle+b \xi . a x$.

To show that any element $(\underline{y}(\underline{z}), b):(\underline{x}, a))$ of D_{7} is $D_{0}-$ obtainable we must use induction on the height of the idempotent $(\underline{y}(\underline{z}): \underline{x})$ of P_{n-2} from $A^{(n-1)}$. Suppose, as the induction hypothesis, that all elements of

$$
{\underset{t=0}{7} D_{t}, ~}_{\text {and }}
$$

of the form $\left.\left(\underline{y}_{i}, b\right):\left(\underline{x}_{j}, a\right)\right)$ are D_{0}-ortainable if

$$
h_{A}(n-1)\left(\left(y_{i}: x_{j}\right)\right) \leq k .
$$

Now, if $k=0$, we have, by Lemma 6.6 , that $\left(\underline{y}_{i}: \underline{x}_{j}\right) \in A^{(n-1)}$. Thus $\underline{y}_{\mathrm{i}}=\underline{y}\left(\underline{x}_{\mathrm{j}}\right)$. Thus

$$
\left(\left(\underline{y}_{i}, b\right):\left(\underline{x}_{j}, a\right)\right) \in \bigcup_{t=0}^{6} D_{t} .
$$

But we have already shown that

$$
{\underset{t=0}{6} D_{t}}^{u_{0}}
$$

is D_{0}^{\prime}-obtainable, so we may start the induction process. Consider now some element $\left(\left(\underline{y}_{1}, b\right):\left(\underline{x}_{3}, a\right)\right)$ of

$$
{\underset{t=0}{U} D_{t}}
$$

where

$$
\left.{ }_{A}(\mathrm{n}-1)\left(\underline{y}_{1}: \underline{x}_{3}\right)\right)=\mathrm{k}+1 .
$$

Then $\left(\underline{y}_{1}: \underline{x}_{3}\right)=\left(\underline{y}_{1}: \underline{x}_{1}\right)\left(\underline{y}_{2}: \underline{x}_{2}\right)\left(\underline{y}_{3}: \underline{x}_{3}\right)$ for some idempotents $\left(\underline{y}_{i}: \underline{x}_{i}\right)$ ($i=1,2,3$) of E_{n-1} where

$$
\left.h_{A}(n-1)\left(\underline{y}_{i}: \underline{x}_{i}\right)\right) \leq k
$$

$(i=1,2,3)$. By Theorem 1.12 and Lemma 3.12, $\left\langle\underline{x}_{1}\right\rangle,\left\langle\underline{x}_{2}\right\rangle$ and $\left\langle\underline{x}_{3}\right\rangle$ are distinct, as are $\left\langle\underline{y}_{1}\right\rangle,\left\langle\underline{y}_{2}\right\rangle$ and $\left\langle\underline{y}_{3}\right\rangle$. So, by Theorem 3.14 and Lemma 3.13, there exist non-zero elements $v_{1}, \nu_{2}, v_{3}, \rho_{1}, \rho_{2}$ and ρ_{3} of F such that:
(i) $v_{1} \underline{y}_{1}+v_{2} \underline{y}_{2}+v_{3} \underline{y}_{3}=\underline{0}$
(ii) $\rho_{1} \underline{x}_{1}+\rho_{2} \underline{x}_{2}+\rho_{3} \underline{x}_{3}=\underline{0}$
(iii) $\left\langle\nu_{1} \underline{y}_{1} \mid \rho_{1} x_{1}\right\rangle-\left\langle\nu_{3} \underline{y}_{3} \mid \rho_{2} \underline{x}_{2}\right\rangle=0$.

Now, we wish to find elements c, d, e and f of F such that $\left[\left(\underline{y}_{1}, b\right):\left(\underline{x}_{-1}, c\right)\right],\left[\left(\underline{y}_{2}, d\right):\left(\underline{x}_{2}, e\right)\right]$ and $\left[\left(\underline{y}_{3}, f\right):\left(\underline{x}_{3}, a\right)\right]$ are group H-classes and $\left(\left(\underline{y}_{1}, b\right):\left(\underline{x}_{3}, a\right)\right)=\left(\left(\underline{y}_{1}, b\right):\left(\underline{x}_{1}, c\right)\right)\left(\left(\underline{y}_{2}, d\right):\left(\underline{x}_{2}, e\right)\right)\left(\left(\underline{y}_{3}, f\right):\left(\underline{x}_{3}, a\right)\right)$ i.e., by Lemma 2.6 , such that:
(1) $\quad<\underline{y}_{1} \mid \underline{x}_{1}>+b \xi . c x \neq 0$
(2) $\quad<\underline{y}_{2} \mid \underline{x}_{2}>+d \xi \cdot e x \neq 0$
(3) $\quad<\underline{y}_{3} \mid \underline{x}_{3}>+f \xi \cdot a x \neq 0$
and, by Theorem 3.14, Lemma 3.13 and (i), (ii) and (iii) above, such that:
(4) $\quad v_{1} b+v_{2} d+v_{3} f=0$
(5) $\quad \rho_{1} c+\rho_{2} e+\rho_{3} a=0$
(6) ($\left.\nu_{1} b\right) \xi_{\cdot}\left(\rho_{1} c\right) x-\left(\nu_{3} f\right) \xi_{\cdot}\left(\rho_{2} e\right) x=0$.

We first find two values that c may not take. From (1) we see that if $b \neq 0$ then we must choose $c \in F$ such that

$$
\begin{equation*}
c \dot{c x} \neq-<\left.y_{1}\right|_{x_{1}}>/(b \xi) . \tag{A}
\end{equation*}
$$

Eliminating a from (5) and (6) gives

$$
\left(\nu_{1} b\right) \xi_{\cdot}\left(\rho_{1} c\right) x+\left(\nu_{3} f\right) \xi_{\cdot}\left(\rho_{1} c\right) x+\left(\nu_{3} f\right) \xi_{\cdot}\left(\rho_{3} a\right) x=0,
$$

i.e.

$$
\left(\nu_{3} f\right) \xi_{\cdot}\left(\rho_{1} c+\rho_{3} a\right) x+\left(\nu_{1} b\right) \xi_{\cdot}\left(\rho_{1} c\right) x=0
$$

From this and (3) we see we must choose c such that

$$
-v_{3} \xi \leqslant \underline{y}_{3} \mid \underline{x}_{3}>\left(\rho_{1} c+\rho_{3} a\right) x+a x\left(v_{1} b\right) \xi\left(\rho_{1} c\right) x \neq 0,
$$

i.e.

$$
\mathrm{cx}\left[\mathrm{ax} \cdot\left(\mathrm{~b} v_{1} / \nu_{3}\right) \xi-<\underline{y}_{3} \mid \underline{x}_{3}>\right] \neq\left(\mathrm{a} \rho_{3} / \rho_{1}\right) \mathrm{x} \leqslant \underline{y}_{3}\left|\underline{x}_{3}\right\rangle .
$$

Thus if ax. $\left(\mathrm{b} \nu_{1} / v_{3}\right) \xi-\left\langle\underline{y}_{3} \mid \underline{x}_{3}\right\rangle \neq 0$ we must choose c such that

$$
\begin{equation*}
c x \neq\left(a \rho_{3} / \rho_{1}\right) x \leqslant \underline{y}_{3} \mid \underline{x}_{3}>/\left[a x \cdot\left(b v_{1} / v_{3}\right) \xi-\left\langle\underline{y}_{3}\right| \underline{x}_{3}>\right] . \tag{B}
\end{equation*}
$$

It is also convenient to choose e to be non-zero. Thus, from (5),

$$
\begin{equation*}
\mathrm{c} \neq-\mathrm{a} \rho_{3} / \rho_{1} . \tag{C}
\end{equation*}
$$

Since F is infinite we have no trouble satisfying these three conditions.

Suppose now that we have chosen an element c of F to satisfy conditions (A), (B), (C).

From (5) we have

$$
\rho_{2} e=-\rho_{1} c-\rho_{3} a .
$$

So from (6) we have

$$
f \xi=-\left(b v_{1} / v_{3}\right) \xi\left[\left(\rho_{1} c\right) /\left(\rho_{1} c+\rho_{3} a\right)\right] x .
$$

(This is defined since, by (C), $c \neq-\mathrm{a} \rho_{3} / \rho_{1}$.) Thus, from (4),

$$
\begin{aligned}
d \xi & =-\left(b v_{1} / \nu_{2}\right) \xi+\left(b v_{1} / \nu_{2}\right) \xi \cdot\left(\rho_{1} c\right) x /\left[\left(\rho_{1} c+\rho_{3} a\right) x\right] \\
& =-\left(b v_{1} / \nu_{2}\right) \xi \cdot\left[\left(\rho_{3} a\right) /\left(\rho_{1} c+\rho_{3} a\right)\right] x .
\end{aligned}
$$

We now show that with these values of c, d, e and f,
$\left[\left(\underline{y}_{1}, b\right):\left(\underline{x}_{1}, c\right)\right],\left[\left(\underline{y}_{2}, \dot{d}\right):\left(\underline{x}_{2}, e\right)\right]$ and $\left[\left(\underline{y}_{3}, f\right):\left(\underline{x}_{3}, a\right)\right]$ are group H-classes.

If $b=0$, then $\left\langle\left(\underline{y}_{1}, b\right) \mid\left(\underline{x}_{1}, c\right)\right\rangle=\left\langle\underline{y}_{1} \mid \underline{x}_{1}\right\rangle \neq 0$ since
$\left(\underline{y}_{1}: \underline{x}_{1}\right) \in E_{m-1}$.
If $\mathrm{b} \neq 0$, then

$$
\begin{aligned}
\left\langle\left(\underline{y}_{1}, b\right) \mid\left(\underline{x}_{1}, c\right)\right\rangle & =\left\langle\underline{y}_{1} \mid \underline{x}_{1}\right\rangle+b \xi_{c} c \\
& \neq\left\langle\underline{y}_{1} \mid \underline{x}_{1}\right\rangle-\left\langle\underline{y}_{1} \mid \underline{x}_{1}\right\rangle \quad(b y \text { (A) } \\
& =0 .
\end{aligned}
$$

Next,

$$
\begin{aligned}
& \left\langle\left(\underline{y}_{2}, d\right) \mid\left(\underline{x}_{2}, e\right)\right\rangle=\left\langle\underline{y}_{2} \mid \underline{x}_{2}\right\rangle+d \xi_{e x} \\
& =\left\langle\underline{y}_{2} \mid \underline{x}_{2}\right\rangle+\left(b v_{1} / v_{2}\right) \xi_{\cdot} \cdot\left(a \rho_{3} / \rho_{2}\right) x \\
& =\left[\left\langle\nu_{2} \underline{y}_{2} \mid \rho_{2} \underline{\underline{x}}_{2}\right\rangle+\left(b v_{1}\right) \xi \cdot\left(a \rho_{3}\right) x\right] /\left[v_{2} \xi \cdot \rho_{2} x\right] \\
& =\left[<\nu v_{1} \underline{y}_{1}+v_{3} y_{3} \mid \rho_{1} x_{1}+\rho_{3} \underline{x}_{3}>+\left(b \nu_{1}\right) \xi_{\cdot}\left(a \rho_{3}\right) x\right] /\left[\nu_{2} \xi \cdot \rho_{2} x\right] \\
& \text { (by (i) and (ii)) } \\
& =\left[<\nu_{1} \underline{y}_{1} \mid \rho_{1} \underline{x}_{1}>+\left\langle v_{1} \underline{y}_{1}\right| \rho_{3} \underline{x}_{3}>+\left\langle\nu_{3} \underline{y}_{3} \mid \rho_{1 \underline{x}_{1}}\right\rangle\right. \\
& \left.+<\nu_{3} y_{3} \mid \rho_{3} x_{3}>+\left(b \nu_{1}\right) \xi \cdot\left(a \rho_{3}\right) x\right] /\left[\nu_{2} \xi_{\cdot} \rho_{2} x\right] \\
& =\left[<v_{1} y_{1} \mid \rho_{3} x_{3}>+\left(b v_{1}\right) \xi \cdot\left(a \rho_{3}\right) x\right] /\left[v_{2} \xi \cdot \rho_{2} x\right] \\
& \text { (by (iii) and Lemma 3.13) } \\
& =v_{1} \xi \cdot \rho_{3} x \cdot<\left(\underline{y}_{1}, b\right) \mid\left(\underline{x}_{3}, a\right)>/\left[\nu_{2} \xi \cdot \rho_{2} x\right] \\
& \neq 0 \text { since }\left(\left(\underline{y}_{1}, b\right):\left(\underline{x}_{3}, a\right)\right) \in E_{n} \text {. }
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\left\langle\left(\underline{y}_{3}, f\right) \mid\left(\underline{x}_{3}, a\right)\right\rangle & =\left\langle\underline{y}_{3} \mid \underline{x}_{3}\right\rangle+f \xi \cdot a x \\
& =\left\langle\underline{y}_{3} \mid \underline{x}_{3}\right\rangle-\left(b v_{1} / v_{3}\right) \xi\left[\rho_{1} \mathrm{ac} /\left(\rho_{1} \mathrm{c}+\rho_{3} \mathrm{a}\right)\right] \mathrm{x} .
\end{aligned}
$$

If $\mathrm{ax} \cdot\left(\mathrm{b} v_{1} / v_{3}\right) \xi-\left\langle\underline{y}_{3} \mid \underline{x}_{3}\right\rangle=0$, then

$$
\begin{aligned}
\left\langle\left(\underline{y}_{3}, f\right) \mid\left(\underline{x}_{3}, a\right)\right\rangle & =a x \cdot\left(b v_{1} / v_{3}\right) \xi-\left(b v_{1} / v_{3}\right) \xi\left[\rho_{1} a c /\left(\rho_{1} c+\rho_{3} a\right)\right] x \\
& =a x\left(b v_{1} / v_{3}\right) \xi\left[1-\left(\rho_{1} c /\left(\rho_{1} c+\rho_{3} a\right)\right) x\right] \\
& =a x_{3}\left(b v_{1} / v_{3}\right) \xi\left[\rho_{3} a /\left(\rho_{1} c+\rho_{3} a\right)\right] x \\
& =\left\langle\underline{x}_{3}\right| \underline{y}_{3}>\left[\rho_{3} a /\left(\rho_{1} c+\rho_{3} a\right)\right] x .
\end{aligned}
$$

Now, if $a=0$, then the assumption $a x\left(b v_{1} / \nu_{3}\right) \xi-\left\langle\underline{y}_{3} \mid \underline{x}_{3}\right\rangle=0$ would give $\left\langle\underline{y}_{3} \mid \underline{x}_{3}\right\rangle=0$ contradicting $\left(\underline{y}_{3}: \underline{x}_{3}\right) \in E_{n-1}$. Thus $a \neq 0$. Hence, if $\mathrm{ax}\left(\mathrm{bv} v_{1} / \nu_{3}\right) \xi-\left\langle\underline{y}_{3} \mid \underline{x}_{3}\right\rangle=0$, then

$$
\left\langle\left(\underline{y}_{3}, f\right) \mid\left(\underline{x}_{3}, a\right)\right\rangle \neq 0 .
$$

Now suppose $\mathrm{ax}\left(\mathrm{bv} v_{1} / \mathrm{v}_{3}\right) \xi-\left\langle\underline{y}_{3} \mid \underline{x}_{3}\right\rangle \neq 0$. By (B) we have chosen c such that

$$
c x \neq\left(\mathrm{a} \mathrm{\rho}_{3} / \rho_{1}\right) x_{x} \cdot \underline{y}_{3} \mid \underline{x}_{3}>/\left[a x \cdot\left(\mathrm{~b} v_{1} / v_{3}\right) \xi-\left\langle y_{3}\right| \underline{x}_{3}>\right] .
$$

Thus

$$
\begin{aligned}
\left\langle\left(\underline{y}_{3}, f\right) \mid\left(\underline{x}_{3}, a\right)\right\rangle & =\left[\left(\rho_{1} c+\rho_{3} a\right) x_{<}<\underline{y}_{3} \mid \underline{x}_{3}>-\left(\rho_{1} a c\right) x_{6}\left(b v_{1} / v_{3}\right) \xi\right] /\left[\left(\rho_{1} c+\rho_{3} a\right) x\right] \\
& =\frac{\left(\rho_{1} c\right) x\left[<\underline{y}_{3} \mid \underline{x}_{3}>-(a x) \cdot\left(b v_{1} / v_{3}\right) \xi\right]+\left(\rho_{3} a\right) x \leqslant \underline{y}_{3}\left|\underline{x}_{3}\right\rangle}{\left(\rho_{1}{ }^{c+\rho} \rho_{3}\right) x} \\
& \neq \frac{\left.-\left(a \rho_{3}\right) x \cdot \underline{y}_{3}\left|\underline{x}_{3}>+\left(\rho_{3} a\right) x \leqslant \underline{y}_{3}\right| \underline{x}_{3}\right\rangle}{\left(\rho_{1}^{c+\rho} 3^{a}\right) x} \\
& =0 .
\end{aligned}
$$

We now show, using Theorem 3.14, that with these values of c, d, e and f

$$
\left(\left(\underline{y}_{1}, b\right):\left(\underline{x}_{3}, a\right)\right)=\left(\left(\underline{y}_{1}, b\right):\left(\underline{x}_{1}, c\right)\right)\left(\left(\underline{y}_{2}, d\right):\left(\underline{x}_{2}, e\right)\right)\left(\left(\underline{y}_{3}, f\right):\left(\underline{x}_{3}, a\right)\right) .
$$

Since $\left\langle\underline{y}_{1}\right\rangle,\left\langle\underline{y}_{2}\right\rangle$ and $\left\langle\underline{y}_{3}\right\rangle$ are distinct, then also $\left.\left\langle\underline{y}_{1}, b\right)\right\rangle$, $\left.<\left(\underline{y}_{2}, d\right)\right\rangle$ and $\left\langle\left(\underline{y}_{3}, f\right)\right\rangle$ are distinct. A1so, since $\left\langle\underline{x}_{1}\right\rangle,\left\langle\underline{x}_{2}\right\rangle$ and $\left\langle_{3}>\right.$ are distinct, then $\left.\left\langle\left(\underline{x}_{1}, c\right)\right\rangle,<\left(\underline{x}_{2}, e\right)\right\rangle$ and $\left\langle\left(\underline{x}_{3}, a\right)\right\rangle$ are distinct.

Now,

$$
\begin{aligned}
& v_{1}\left(\underline{y}_{1}, b\right)+v_{2}\left(\underline{y}_{2}, d\right)+v_{3}\left(\underline{y}_{3}, f\right)=\left(\underline{0}, v_{1} b+v_{2} d+v_{3} f\right) \quad(b y(i i i)) \\
&=\left(\underline{0}, v_{1} b-b v_{1}\left[\rho_{3} a /\left(\rho_{1} c+\rho_{3} a\right)\right] x \xi^{-1}-b v_{1}\left[\rho_{1} c /\left(\rho_{1} c+\rho_{3} a\right)\right] x \xi^{-1}\right) \\
&=\left(\underline{0}, v_{1} b\left[1-\left(\rho_{3} a /\left(\rho_{1} c+\rho_{3} a\right)\right)-\left(\rho_{1} c /\left(\rho_{1} c+\rho_{3} a\right)\right)\right] x \xi^{-1}\right) \\
&=\left(\underline{0}, v_{1} b\left[\left(\rho_{1} c+\rho_{3} a-\rho_{3} a-\rho_{1} c\right) /\left(\rho_{1} c+\rho_{3} a\right)\right] x \xi^{-1}\right) \\
&=(\underline{0}, 0), \\
& \rho_{1}\left(\underline{x}_{1}, c\right)+\rho_{2}\left(\underline{x}_{2}, e\right)+\rho_{3}\left(\underline{x}_{3}, a\right)=\left(\underline{0}, \rho_{1} c+\rho_{2} e+\rho_{3} a\right) \quad(b y(i i i)) \\
&=\left(\underline{0}, \rho_{1} c-\rho_{1} c-\rho_{3} a+\rho_{3} a\right) \\
&=(\underline{0}, 0)
\end{aligned}
$$

and, by Lemma 3.13,

$$
\begin{aligned}
& \left\langle v_{1}\left(\underline{y}_{1}, b\right) \mid \rho_{1}\left(\underline{x}_{1}, c\right)\right\rangle+\left\langle v_{1}\left(\underline{y}_{1}, b\right) \mid \rho_{2}\left(\underline{x}_{2}, e\right)\right\rangle+\left\langle v_{2}\left(\underline{y}_{2}, d\right) \mid \rho_{2}\left(\underline{x}_{2}, e\right)\right\rangle \\
& =\left\langle v_{1}\left(\underline{y}_{1}, b\right) \mid \rho_{1}\left(\underline{x}_{1}, c\right)\right\rangle-\left\langle v_{3}\left(\underline{y}_{3}, f\right) \mid \rho_{2}\left(x_{2}, e\right)\right\rangle \\
& =\left\langle v_{1} \underline{y}_{1} \mid \rho_{1} \underline{x}_{1}\right\rangle+\left(v_{1} b\right) \xi_{1}\left(\rho_{1} c\right) x-\left\langle v_{3} \underline{y}_{3} \mid \rho_{2} \underline{x}_{2}\right\rangle-\left(\nu_{3} f\right) \xi \cdot\left(\rho_{2} e\right) x \\
& =\left(v_{1} b\right) \xi_{1}\left(\rho_{1} c\right) x-\left(v_{3} f\right) \xi_{\cdot}\left(\rho_{2} e\right) x \quad \text { (by (iii) and Lemma 3.13) }
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\nu_{1} b\right) \xi \cdot\left(\rho_{1} c\right) x-\left(\nu_{1} b\right) \xi\left[\rho_{1} c /\left(\rho_{1} c+\rho_{3} a\right)\right] x \cdot\left(\rho_{1} c+\rho_{3} a\right) x \\
& =\left(\nu_{1} b\right) \xi \cdot\left(\rho_{1} c\right) x-\left(\nu_{1} b\right) \xi \cdot\left(\rho_{1} c\right) x \\
& =0 .
\end{aligned}
$$

So the induction step on the height of elements of

$$
{\underset{t=0}{U} D_{t}, ~}_{\text {U }}
$$

holds. Hence every element of D_{7} is D_{0}-obtainable.

Finally we show that D_{8} is

$$
\left(\stackrel{7}{U}_{=0} D_{i}\right) \text {-accessible }
$$

and so D_{0}-obtainable. Let $((\underline{y}(\underline{z}), b):(\underline{x}, a)) \in D_{8}$. Notice first that since $((\underline{y}(\underline{z}), b):(\underline{x}, a)) \in D_{8}$ we have, by Lemma 2.6 , that

$$
\begin{align*}
0 \neq\langle(\underline{y}(\underline{z}), b) \mid(\underline{x}, a)\rangle & =\langle\underline{y}(\underline{z}) \mid \underline{x}\rangle+b \xi \cdot a x \\
& =b \xi \cdot a x . \tag{D}
\end{align*}
$$

We shall find $c, d \in F, \underline{n}, \underline{x} \in V_{n}^{\prime}$ and non-zero elements $\nu_{1}, \nu_{2}, \nu_{3}, \rho_{1}, \rho_{2}, \rho_{3} \in F$ such that $[(\underline{y}(\underline{z}), b):(\underline{z}, 0)],[(\underline{n}: \underline{r})]$ and $[(\underline{y}(\underline{x}), d):(\underline{x}, a)]$ are group $H-c l a s s e s, \quad(n: r) \in{\underset{i=0}{7} D_{7}}$ and

$$
\begin{aligned}
& \nu_{1}(\underline{y}(\underline{z}), b)+v_{2} \underline{n}+v_{3}(\underline{y}(\underline{x}), d)=(\underline{0}, 0) \\
& \rho_{1}(\underline{z}, 0)+\rho_{2} \underline{r}+\rho_{3}(\underline{x}, a)=(\underline{0}, 0) \\
& \left\langle v_{1}(\underline{y}(\underline{z}), b) \mid \rho_{1}(\underline{z}, 0)\right\rangle+\left\langle v_{1}(\underline{y}(\underline{z}), b) \mid \rho_{2} \underline{r}\right\rangle+\left\langle v_{2} \underline{n}_{2} \mid \rho_{2} \underline{r_{2}}\right\rangle=0
\end{aligned}
$$

group H-class we must have $\langle\underline{n} \mid \underline{r}\rangle \neq 0$ by Lemma 2.6. Thus

$$
\begin{aligned}
0 \neq & \left\langle v_{1}(\underline{y}(\underline{z}), \dot{b})+v_{3}(\underline{y}(\underline{x}), d) \mid \rho_{1}(\underline{z}, 0)+\rho_{3}(\underline{x}, a)\right\rangle \\
= & \left\langle v_{1} \underline{y}(\underline{z}) \mid \rho_{1} \underline{z}\right\rangle+\left\langle v_{1} \underline{y} \underline{z}\right)\left|\rho_{3} \underline{x}\right\rangle+\left(\nu_{1} b\right) \xi_{0}\left(\rho_{3} a\right) x \\
& +\left\langle\nu_{3} \underline{y}(\underline{x}) \mid \rho_{1} z\right\rangle+\left\langle v_{3} \underline{y}(\underline{x}) \mid \rho_{3} \underline{x}\right\rangle+\left(v_{3} d\right) \xi_{\cdot}\left(\rho_{3} a\right) x .
\end{aligned}
$$

But, since $((\underline{y}(\underline{z}), b):(\underline{x}, a)) \in D_{8}$, we have $\langle\underline{y}(\underline{z}) \mid \underline{x}\rangle=0$. A1so $\rho_{1}=\rho_{3}=1$, so

$$
\begin{aligned}
0 \neq & v_{1} \xi<\underline{y}(\underline{z})|\underline{z}\rangle+v_{1} \xi \cdot b \xi \cdot a x+v_{3} \xi \leq \underline{y}(\underline{x}) \mid \underline{z}> \\
& +v_{3} \xi \leqslant \underline{y}(\underline{x}) \mid \underline{x}>+v_{3} \xi \cdot d \xi \cdot a x
\end{aligned}
$$

If we choose d such that

$$
\langle\underline{y}(\underline{x}) \mid \underline{z}\rangle+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle+d \xi . a x \neq 0,
$$

i.e. such that

$$
\begin{equation*}
\mathrm{d} \xi \neq-[\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle+\langle\underline{y}(\underline{x}) \mid \underline{z}\rangle] /(a x), \tag{E}
\end{equation*}
$$

then this inequality will be satisfied by putting

$$
\begin{equation*}
v_{3} \xi=-[\langle\underline{y}(\underline{x}) \mid \underline{z}\rangle+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle+d \xi \cdot a x]^{-1} \tag{F}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{1} \xi=\left\langle\left.\underline{y}(\underline{z})\right|_{\underline{z}} \underline{z}^{-1} .\right. \tag{G}
\end{equation*}
$$

Also, since we require $[(\underline{y}(\underline{x}), d):(\underline{x}, a)]$ to be a group H-class, we must choose d such that

$$
\langle(\underline{y}(\underline{x}), d) \mid(\underline{x}, a)\rangle \neq 0,
$$

i.e. such that

$$
\begin{equation*}
\mathrm{d} \xi \neq-\underline{y}(\underline{x}) \mid \underline{x}>/(\mathrm{ax}) \quad(\mathrm{by}(\mathrm{D}), a x \neq 0) . \tag{H}
\end{equation*}
$$

Since F is infinite, we may choose $d \in F$ to satisfy conditions (E) and (H). If we then define v_{1} and v_{3} as in (F) and (G), define $\left.\rho_{1}=\rho_{3}=1, \quad\langle\underline{n}\rangle=\left\langle v_{1}(\underline{y}(\underline{z}), b)+v_{3}(\underline{y}(\underline{x}), d)\right\rangle, \quad \underline{r}\right\rangle=\langle\underline{z}+\underline{x}, a\rangle$ and ν_{2}, ρ_{2} such that

$$
v_{2} \underline{n}=-v_{1}(\underline{y}(\underline{z}), b)-v_{3}(\underline{y}(\underline{x}), d)
$$

and

$$
\rho_{2} \underline{\underline{r}}=-(\underline{z}+\underline{x}, a),
$$

we can show that all the conditions of Theorem 3.14 apply to the product $((\underline{y}(\underline{z}), b):(\underline{z}, 0))(\underline{n}: \underline{r})((\underline{y}(\underline{x}), d):(\underline{x}, a))$.

We first show that the null-spaces are distinct. Clearly, $\langle(\underline{y}(\underline{z}), b)\rangle \neq\langle(\underline{y}(\underline{x}), d)\rangle$ since $\underline{z} \neq \underline{x}$ and $\underline{x}, \underline{z} \in V_{n-1}^{\prime} . \quad$ From (F) and (G) it is obvious that ν_{1} and ν_{3} are non-zero, thus $\langle n>$ is distinct from $\langle\underline{y}(\underline{z}), b)\rangle$ and $\langle(\underline{y}(\underline{x}), d)\rangle$.

The three ranges are distinct since $\underline{x} \neq \underline{z}$, since $\underline{x}, \underline{z} \in V_{n-1}^{\prime}$, and neither ρ_{1} nor ρ_{3} are zero.

Since \underline{x} and \underline{z} are distinct elements of V_{n-1}^{\prime} and

$$
\rho_{2} \underline{r}=-(\underline{z}+\underline{x}, a),
$$

it is clear that $\rho_{2} \neq 0$.
Similarly, we have $v_{2} \neq 0$. Now

$$
\begin{aligned}
& v_{1}(\underline{y}(\underline{z}), b)+v_{2} \underline{n}+v_{3}(\underline{y}(\underline{x}), d)=(\underline{0}, 0), \\
& \rho_{1}(\underline{z}, 0)+\rho_{2} \underline{r}+\rho_{3}(\underline{x}, a)=(\underline{z}, 0)+\rho_{2} \underline{r}+(\underline{x}, a)=(\underline{0}, 0)
\end{aligned}
$$

and, by Lemma 3.13,

$$
\begin{aligned}
& \left\langle v_{1}(\underline{y}(\underline{z}), b) \mid \rho_{1}(\underline{z}, 0)\right\rangle+\left\langle v_{1}(\underline{y}(\underline{z}), b) \mid \rho_{2} \underline{r}\right\rangle+\left\langle v_{2} \underline{n} \mid \rho_{2} \underline{r}\right\rangle \\
& \quad=\left\langle v_{1}(\underline{y}(\underline{z}), b) \mid \rho_{1}(\underline{z}, 0)\right\rangle-\left\langle v_{3}(\underline{y}(\underline{x}), d) \mid \rho_{2} \underline{r}\right\rangle \\
& \quad=v_{1} \xi_{\xi} \underline{y} \underline{(z)}|\underline{z}\rangle+v_{3} \xi_{0}<(\underline{y}(\underline{x}), d)|(\underline{z}+\underline{x}, a)\rangle \\
& =v_{1} \xi \underline{\xi} \underline{y}(\underline{z})|\underline{z}\rangle+v_{3} \underline{\xi}[\langle\underline{y}(\underline{x}) \mid \underline{z}\rangle+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle+d \xi \cdot a x] . \\
& \quad=1+(-1) \quad(b y(F) \text { and }(G)) \\
& \quad=0 .
\end{aligned}
$$

Thus $((\underline{y}(\underline{z}), b):(\underline{x}, a))=((\underline{y}(\underline{z}), b):(\underline{z}, 0))(\underline{n}: \underline{r})(\underline{y}(\underline{x}), d):(\underline{x}, a))$. Clear1 y, $((\underline{y}(\underline{z}), b):(\underline{z}, 0))$ and $((\underline{y}(\underline{x}), d):(\underline{x}, a))$ are elements of

$$
\stackrel{6}{\cup}_{i=0} D_{i} .
$$

It remains to show that

$$
(\underline{n}: \underline{r}) \in \stackrel{7}{U}_{i=0} D_{i}
$$

To show this we need to consider the stroke product of the first $n-1$ co-ordinates of \underline{n} with the first $n-1$ coordinates of \underline{r}.

$$
\begin{aligned}
& \left\langle v_{1} \underline{y}(\underline{z})+v_{3} \underline{y}(\underline{x}) \mid \underline{z}+\underline{x}\right\rangle \\
& \left.=v_{1} \xi \underline{y}(\underline{z})|\underline{z}\rangle+v_{3} \xi \cdot[\langle\underline{y}(\underline{x}) \mid \underline{z}\rangle+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle] \quad \text { (since }\langle\underline{y}(\underline{z})| \underline{x}>=0\right) \\
& =1-[\langle\underline{y}(\underline{x}) \mid \underline{z}\rangle+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle] /[\langle\underline{y}(\underline{x}) \mid \underline{z}\rangle+\langle\underline{y}(\underline{x}) \mid \underline{x}\rangle+d \xi \cdot a x] \\
& \quad(\text { from (F) and (G)) }
\end{aligned}
$$

$$
=\mathrm{d} \xi \cdot a x /[\langle\underline{y}(\underline{x}) \mid \underline{z}\rangle+\langle\underline{y}(\underline{x})| \underline{x}>+d \xi \cdot a x]
$$

$$
\neq 0 \quad(\text { by }(D)) .
$$

Thus $(\underline{n}: \underline{r}) \notin D_{8}$. But ($\underline{n}: \underline{r}$) is an idempotent and thus belongs to

$$
\stackrel{8}{\stackrel{U}{=}} \mathrm{D}_{8} .
$$

Hence

$$
(\underline{n}: \underline{r}) \in \underset{i=0}{\underset{U}{0}} D_{i}
$$

So D_{8} is

$$
\left({\left.\underset{i=0}{7} D_{i}\right) \text {-accessible }}^{2}\right.
$$

and so D_{0}-obtainable.

Consequently,

$$
E_{n}={\stackrel{8}{U}{ }_{i=0} D_{i} .}
$$

is D_{0}-obtainable. Since D_{0} forms a sparse cover for $P F_{n-1}$, we have, by putting $A^{(n)}=D_{0}$, completed the induction step.

So, for all $m \in \mathbb{N}$, there exists a subset $A^{(m)}$ of the idempotents E_{m} in $P F_{m-1}$ such that $A^{(m)}$ is a sparse cover for $P F_{m-1}$ and E_{m} is $A^{(m)}$-obtainable. By the comments following Definition 6.2, we know that $A^{(m)}$ therefore generates E_{m}. But E_{m} generates Sing $_{m}$ (Theorem 4.9) and so $A^{(m)}$ generates Sing $_{m}$.
§7 GENERATING SETS OF IDEMPOTENTS 4: THE NUMBER OF GENERATING SETS OF MINIMUM ORDER WHEN V IS DEFINED OVER A FINITE EIELD F

In Section 5 we found the minimum order of a subset E^{\prime} of the idempotents E of rank $n-1$ such that E^{\prime} generates sing $_{n}$
(Corollary 5.7). This section will be devoted to finding the number $\mathrm{W}(\mathrm{q}, \mathrm{n})$ of generating sets with this order. Theorem 7.7 will determine $W(q, n)$ when V is a two-dimensional vector space. Lemma 7.15 and Lemma 7.17 give upper bounds for $W(q, n)$ when $n \geq 3$. Lemma 7.18 (with subsidiary Lemmas 7.19 to 7.21) shows that the bound given in Lemma 7.15 is the better of the two.

If $n=2$, then it is possible to determine $W(q, n)$ using what, in [1], are called rook polynomials.
7.1 DEFINITIONS Define an m-board B to be an $m \times m$ array of cells, an arbitrary number of which are coloured black and the rest coloured white.

Define the m-complement-board B^{\prime} of B to be B with the colours of the cells interchanged.
7.2 EXAMPLE Let B be the three-board

The three-complement-board of B is

7.3 DEFINITION The rook polynomial R_{B} of an m-board B

 is$$
R_{B}=a_{0}+a_{1} x+\ldots+a_{m} x^{m}
$$

where a_{i} is the number of ways of selecting i black squares from B such that no two are in the same row or column (i.e. the number of ways of placing i chess rooks on the black squares so that no two may take each other - they may, as in chess, pass over the white squares). Clearly, for all boards, $a_{0}=1$.
7.4 EXAMPLE In Example 7.2, the rook polynomial of the board B is $R_{B}=1+6 x+9 x^{2}+2 x^{3}$ and the rook polynomial of B^{\prime} is $R_{B^{\prime}}=1+3 x+3 x^{2}+x^{3}$.
7.5 LEMMA (Inclusion-Exclusion Principle) Let B be an m-board with rook polynomial

$$
R_{B}=a_{0}+a_{1} x+\ldots+a_{m} x^{m}
$$

Let B^{\prime} be the m-complement-board of B. The coefficient of x^{m} in the rook polynomial of B^{\prime} is

$$
\sum_{\mathrm{k}}^{\mathrm{E}} \mathrm{E}_{0}(-1)^{\mathrm{k}}(\mathrm{~m}-\mathrm{k})!\mathrm{a}_{\mathrm{k}}
$$

PROOF See, for example, [1].
7.6 DEFINITION If $|F|=q$ we shall associate with Sing $_{n}$ an m-board $B(q, n)$ where $m=\left(q^{n}-1\right) /(q-1)$. We shall do this as follows:

Consider the egg-box of the D--class of Sing $_{\mathrm{n}}$ containing elements of $\mathrm{PF}_{\mathrm{n}-1}$. This has m rows and m columns. Colour the group H-classes of this D-class black and the non-group H-classes white.

Clearly, $W(q, n)$ equals the coefficient of x^{m} in the rook polynomial of $B(q, n)$.
7.7 THEOREM Let V be a two-dimensional vector space over a finite field $|F|=q$. Let Sing_{2} be the semigroup of singular endomorphisms of V and let E be the idempotents of Sing $_{2}$ of rank 1. Let $W(q, 2)$ be the order of the set

$$
\left\{E^{\prime}: E^{\prime} \subset E,\left|E^{\prime}\right|=\left(q^{2}-1\right) /(q-1),\left\langle E^{\prime}\right\rangle=\operatorname{Sing}_{2}\right\}
$$

Then

$$
W(q, 2)=(q+1)!\sum_{k=0}^{q+1} \frac{(-1)^{k}}{k!} .
$$

PROOF By the comments following Definition 7.6, all we need do is find the coefficient of x^{m} in the rook polynomial of the m-board $B(q, 2)$ where $m=\left(q^{2}-1\right) /(q-1)=q+1$. By the construction of the board $B(q, 2)$ and by Lemma 5.4 , each row and each column of $B(q, 2)$ contains precisely q black cells and 1 white cell, i.e. $B(q, 2)$ is of the form

Clearly, the rook polynomial of the m-complement-board B^{\prime} of $B(q, 2)$ is

$$
R_{B},=\binom{m}{0}+\binom{m}{1} x+\binom{m}{2} x^{2}+\ldots+\binom{m}{m-1} x^{m-1}+\binom{m}{m} x^{m}
$$

Thus, by Lemma 7.5, the coefficient of x^{m} in the rook polynomial for $B(q, n)$ is

$$
\sum_{k=1}^{\sum_{0}^{+1}}(-1)^{k}(q+1-k)!\frac{(q+1)!}{(q+1-k)!k!}
$$

i.e.

$$
W(q, 2)=(q+1)!\sum_{k=0}^{q+1}(-1)^{k} / k!
$$

If $n \geq 3$ then the problem of determining the number of generating sets of minimum order becomes much harder. Upper bounds may be obtained from Theorem 4 of [3] and Theorem 10 of [16] (quoted here as Lemma 7.14 and Lemma 7.16). In Lemma 7.18 I shall show that the bound obtained from [3] is, in fact, better. Before quoting these results some further definitions are needed.
7.8 DEFINITION Let $A=\left(a_{i j}\right)$ be an $n x n$ matrix. The permanent of A, denoted $\operatorname{Per}(A)$, is defined to be $\sum_{\sigma \in G_{n}}{ }^{a}$ i,i σ where G_{n} is the symmetric group on the set $\{1,2, \ldots, \mathrm{n}\}$.
7.9 DEFINITION A is an n square $(0,1)$ matrix if A is an $n \times n$ matrix with entries in $\{0,1\}$.

Clearly, if A is an n square $(0,1)$ matrix, then $\operatorname{Per}(A)$ is the number of ways of choosing n entries of A, each of which is 1 ,
such that no two are from the same row or the same column of A. If we now construct the matrix $M(q, n)$ from the board $B(q, n)$ by putting the $(i, j)^{\text {th }}$ entry of $M(q, n)$ equal to 1 if the ($\left.i, j\right)^{\text {th }}$ square of $B(q, n)$ is black and 0 otherwise, it is clear that $\operatorname{Per}(M(q, n))=W(q, n)$.

7.10 DEFINITION The incidence matrix of a $(\mathrm{v}, \mathrm{k}, \lambda)$ con-

figuration is a v square (0,1) matrix satisfying:
(i) every row and every column of A contains exactly k entries which are 1
(ii) any pair of columns [rows] of A both have entry 1 in the same row [column] for exactly λ rows [columns].
7.11 EXAMPLE The matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

is the incidence matrix of $a(3,2,1)$ configuration. Also $\operatorname{Per}(A)=2$.
7. 12 DEFINITION Let $A=\left(a_{i j}\right)$ be an $n x n$ matrix. A is doubly stochastic if $i=\sum_{i=1}^{n} a_{i j}=1$ for all $j=1, \ldots, n$ and ${ }_{j} \sum_{=1}^{n} a_{i j}=1$ for all $i=1,2, \ldots, n$.
7. 13 LEMMA The matrix $\mathrm{M}(\mathrm{q}, \mathrm{n})$ is the incidence matrix of a (v, k, λ) configuration, where $v=\left(q^{n}-1\right) /(q-1), k=q^{n-1}$ and $\lambda=q^{n-2}(q-1)$.

PROOF By the definition of $M(q, n)$ and $B(q, n)$, it is immediate that $v=\left(q^{n}-1\right) /(q-1)$. The number of $1^{\prime} s$ in each row of
$M(q, n)$ is precisely the number of black squares in each row of $B(q, n)$. But this is precisely the number of idempotents in each R-class of $\mathrm{PF}_{\mathrm{n}-1}^{0}$, i.e. there are precisely $\mathrm{q}^{\mathrm{n}-1} \quad 1^{\prime} \mathrm{s}$. in each row of $\mathrm{M}(\mathrm{q}, \mathrm{n})$. Similarly, there are precisely $q^{n-1} \quad 1$'s in each column of $M(q, n)$. Thus $\mathrm{k}=\mathrm{q}^{\mathrm{n}-1}$.

Now consider any two rows of $M(q, n)$. Let these correspond to the R-classes of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ containing elements with null-space $\langle\underline{x}\rangle$ or $\left\langle\underline{y}>\right.$. Now consider any L-class L of $\mathrm{PF}_{\mathrm{n}-1}^{0}$ that intersects $R_{<\underline{x}>}$ and $R_{<y>}$ in non-group H-classes. Clearly, L contains elements with range perpendicular in $\langle\underline{x}, y\rangle^{\perp}$, i.e. L must be labelled with any onedimensional subspace of $\langle\underline{x}, \underline{y}\rangle^{\perp}$. Since $\langle\underline{x}, \underline{y}\rangle^{\perp}$ is of dimension $n-2$ (Lemma 2.3), 〈 $\underline{x}, \underline{y}\rangle^{\perp}$ contains exactly $\left(q^{n-2}-1\right) /(q-1)$ one-dimensional subspaces (from the proof of Lemma 5.3). Thus, given any two rows of $M(q, n)$, there are exactly $\left(q^{n-2}-1\right) /(q-1)$ columns of $M(q, n)$ that contain the entry 0 in both of these rows. If we let the number of columns of $M(q, n)$ that contain the entry 1 in both these rows be c, then we have

$$
\frac{q^{n-2}-1}{q-1}+q^{n-1}+q^{n-1}-c=\frac{q^{n}-1}{q-1}
$$

i.e.

$$
\begin{aligned}
c & =\frac{1}{q-1}\left\{q^{n-2}-1+2 q^{n}-2 q^{n-1}-q^{n}+1\right\} \\
& =q^{n-2}(q-1) .
\end{aligned}
$$

Similarly, given any two columns of $M(q, n)$, there are exactly $q^{n-2}(q-1)$ rows of $M(q, n)$ that contain the entry 1 in both of these rows. Thus $\lambda=q^{n-2}(q-1)$.
7.14 LEMMA (Marcus and Newman [16])

If A is the incidence matrix of a (v, k, λ) configuration, then

$$
\operatorname{Per}(A)<v!\left(\frac{k-\theta}{v}\right)^{v} \underset{r=0}{v}\left(\frac{k \theta+\theta^{2}}{\lambda}\right)^{r} \frac{1}{r!},
$$

where

$$
\theta=(k-\lambda)^{1 / 2} .
$$

It is now immediate that:
7.15 LEMMA If $\ell=\left(q^{\mathrm{n}}-1\right) /(\mathrm{q}-1)$, then

$$
W(q, n)<\ell!\left\{\left(q^{n-1}-q^{(n-2) / 2}\right) / \ell\right\}^{\ell} \sum_{\Sigma_{0}}^{\ell}\left(\frac{q^{n / 2}+1}{q-1}\right)^{r} \frac{1}{r!} .
$$

In the following, we shall denote this upper bound for $W(q, n)$ by m.
7.16 LEMMA (Bregman [3]) If A is an n square $(0,1)$ matrix with exactly $r_{i} 1^{\prime} s$ in row i, then

$$
\operatorname{Per}(A) \leq{ }_{i=1}^{n}\left[\left(r_{i}!\right)^{1 / r_{i}}\right] .
$$

From this it is immediate that:
7.17 LEMMA

$$
W(q, n) \leq\left(q^{n-1}\right)!^{\left(q^{n}-1\right) /\left\{q^{n-1}(q-1)\right\}}
$$

In the following, we shall denote this upper bound by b .

7.18 LEMMA For all q and all $\mathrm{n} \geq 3$, $\mathrm{m}<\mathrm{b}$.

PROOF This is mostly through a series of technical lemmas. Eventually we shall show that $\left(\frac{m}{b}\right)^{1 / \ell}<1$ where $\ell=\left(q^{n}-1\right) /(q-1)$. Throughout this section, the following abbreviations will be used:

$$
\mathrm{k}=\mathrm{q}^{\mathrm{n}-1}
$$

and

$$
c=q^{n / 2} .
$$

Since $\sum_{r=0}^{\ell}\left(\frac{c+1}{q-1}\right)^{r} \frac{1}{r!}<\exp \frac{c+1}{q-1}$, we have $m<\ell!\left(\frac{c(c-1)}{q \ell}\right)^{\ell} \exp \frac{c+1}{q-1}$.

Thus

$$
\begin{aligned}
\mathrm{m}^{1 / \ell} & <(\ell!)^{1 / \ell} \cdot \frac{c(c-1)}{\mathrm{q} \ell}\left\{\exp \left(\frac{c+1}{\mathrm{q}-1}\right)\right\}^{1 / \ell} \\
& =(\ell!)^{1 / \ell} \cdot \frac{c(c-1)}{\mathrm{q} \ell}\left\{\exp \left(\frac{1}{\ell} \cdot \frac{c+1}{\mathrm{q}-1}\right)\right\} \\
& =(\ell!)^{1 / \ell} \cdot \frac{c(c-1)}{\mathrm{q} \ell} \exp \left(\frac{1}{c-1}\right) .
\end{aligned}
$$

Also

$$
b=(k!)^{l / k} .
$$

Thus

$$
\left(\frac{m}{b}\right)^{1 / \ell}<\frac{f(\ell)}{f(k)} \cdot \frac{c(c-1)}{q \ell} \exp \left(\frac{1}{c-1}\right),
$$

where $f(x)=(x!)^{1 / x}$.
7. 19 LEMMA If $x \geq 7$ and $f(x)=x!^{1 / x}$, then

$$
\frac{f(x+1)}{f(x)}<\exp \left\{\frac{1}{x+1}-\frac{\log (2 \pi)}{2 x(x+1)}\right\} .
$$

PROOF Clearly,

$$
\frac{f(x+1)}{f(x)}=\left(\frac{(x+1)!^{x}}{x!(x+1)}\right)^{\frac{1}{x(x+1)}}=\left(\frac{(x+1)^{x}}{x!}\right)^{\frac{1}{x(x+1)}} .
$$

But Stirling's formula (see e.g. [19]) gives

$$
x!=(2 \pi x)^{1 / 2} \cdot x^{x} \cdot e^{-x} \cdot \exp \left\{\frac{\theta}{12(x+1)}\right\},
$$

where $\theta \in(0,1)$. Thus

$$
x!>(2 \pi x)^{1 / 2} \cdot x^{x} \cdot e^{-x}
$$

So

$$
\frac{f(x+1)}{f(x)}<(2 \pi)^{\frac{-1}{2 x(x+1)}} \cdot T^{\frac{1}{(x+1)}},
$$

where

$$
T=e(x+1) / x^{1+1 /(2 x)}
$$

We shall now show that $T / e<1$, i.e. that

$$
g(x)=(x+1) / x^{1+1 /(2 x)}<1
$$

for $x \geq 7$.
By logarithmic differentiation, we find

$$
\frac{g^{\prime}(x)}{g(x)}=\frac{x(\log x-3)+(\log x-1)}{2 x^{3}(x+1)}
$$

Now, since

$$
\frac{g(x)}{2 x^{3}(x+1)}>0 \text { for } x \geq 7
$$

we have $g^{\prime}(x) \geq 0$ if and only if

$$
h(x)=x(\log x-3)+(\log x-1) \geq 0
$$

Since $h(15)<0$ and $h(16)>0$, there exists an $x_{0} \in(15,16)$ such that $h\left(x_{0}\right)=0$.

Suppose first that $x \geq x_{0}$. Then

$$
\begin{aligned}
h^{\prime}(x) & =\log x+\frac{1}{x}-2 \\
& >\log 15-2>0
\end{aligned}
$$

Thus $h(x) \geq 0$ if $x \geq x_{0}$, i.e. $g^{\prime}(x) \geq 0$ if $x \geq x_{0}$. Consequently, if $x \geq x_{0}$, then

$$
\begin{aligned}
g(x) & <\lim _{y \rightarrow \infty} g(y) \\
& =\lim _{y \rightarrow \infty} \frac{y+1}{y} \cdot y^{-1 /(2 y)} \\
& =1
\end{aligned}
$$

Now suppose that $7 \leq x<x_{0}$. We have $h^{\prime \prime}(x)=1 / x-1 / x^{2}>0$ since $x \geq 7$. Thus $h^{\prime}(x)>h^{\prime}(7)>0$ if $x \geq 7$, i.e. $h(x)<h\left(x_{0}\right)=0$ for $x \in\left[7, x_{0}\right)$. Hence $g^{\prime}(x)<0$ for $x \in\left[7, x_{0}\right)$. Consequently, if $7 \leq x<x_{0}$, then

$$
g(x) \leq g(7)<1
$$

Thus, if $x \geq 7$, we have that $g(x)<1$. Hence $T<e$, i.e.

$$
\frac{f(x+1)}{f(x)}<\exp \left\{\frac{1}{x+1}-\frac{\log (2 \pi)}{2 x(x+1)}\right\}
$$

as required.
7.20 LEMMA Let $x>y \geq 7$ and $f(x)=x!^{1 / x}$. Then

$$
\frac{f(x)}{f(y)}<\frac{x}{y} \exp \left\{-\frac{1}{2}\left(\frac{1}{y}-\frac{1}{x}\right) \log (2 \pi)\right\} .
$$

PROOF

$$
\frac{f(x)}{f(y)}={ }_{r=1}^{x-1} \frac{f(r+1)}{f(r)}
$$

and so, by Lemma 7.19,

$$
\begin{aligned}
\frac{f(x)}{f(y)} & <\frac{x-1}{r=y} \exp \left\{\frac{1}{r+1}-\frac{\log (2 \pi)}{2 r(r+1)}\right\} \\
& =\exp \left\{\sum_{r=y}^{x-1} \frac{1}{r+1}-\frac{\log (2 \pi)}{2}{ }_{r=y}^{x-1} \frac{1}{r(r+1)}\right\} .
\end{aligned}
$$

Now,
and

$$
\frac{x-1}{\sum_{y}=} \frac{1}{r(r+1)}=\frac{1}{y}-\frac{1}{x}
$$

Thus

$$
\begin{aligned}
\frac{f(x)}{f(y)} & <\exp \left\{\log \frac{x}{y}-\frac{\log (2 \pi)}{2}\left(\frac{1}{y}-\frac{1}{x}\right)\right\} \\
& =\frac{x}{y} \exp \left\{-\frac{1}{2}\left(\frac{1}{y}-\frac{1}{x}\right) \log (2 \pi)\right\} .
\end{aligned}
$$

We return now to the proof of Lemma 7.18. Immediately before Lemma 7.19 we obtained

$$
\left(\frac{m}{b}\right)^{1 / \ell}<\frac{f(\ell)}{f(k)} \cdot \frac{c(c-1)}{q \ell} \cdot \exp \left(\frac{1}{c-1}\right)
$$

where $f(x)=x!^{1 / x}$.
Now, by Lemma 7.20 , if $k \geq 7$, this gives

$$
\begin{aligned}
\left(\frac{m}{b}\right)^{1 / \ell} & <\frac{\ell}{k} \cdot \frac{c(c-1)}{q \ell} \cdot \exp \left\{\frac{1}{c-1}-\frac{1}{2}\left(\frac{1}{y}-\frac{1}{x}\right) \log (2 \pi)\right\} \\
& =\frac{c-1}{c} \cdot \exp \left\{\frac{1}{c-1}-\frac{1}{2}\left(\frac{1}{y}-\frac{1}{x}\right) \log (2 \pi)\right\} .
\end{aligned}
$$

Now, since $c=q^{n / 2}$ and $n \geq 3$, we have $q \leq c^{2 / 3}$. Thus, if $k \geq 7$, we have

$$
\left(\frac{m}{b}\right)^{1 / \ell}<\frac{c-1}{c} \cdot \exp \left\{\frac{1}{c-1}+\frac{c^{2 / 3}-c^{2}}{2 c^{2}\left(c^{2}-1\right)} \cdot \log (2 \pi)\right\}
$$

7.21 LEMMA Let

$$
g(x)=\frac{x-1}{x} \exp \left\{\frac{1}{x-1}+\frac{x^{2 / 3}-x^{2}}{2 x^{2}\left(x^{2}-1\right)} \cdot \log (2 \pi)\right\}
$$

If $x \geq 4$, then $g(x)<1$.

PROOF By logarithmic differentiation, we have

$$
\begin{aligned}
\frac{g^{\prime}(x)}{g(x)} & =\frac{3 x^{4}-5 x^{8 / 3}+2 x^{2 / 3}}{3 x^{3}\left(x^{2}-1\right)^{2}} \cdot \log (2 \pi)-\frac{1}{x(x-1)^{2}} \\
& >\frac{3 x^{4}-5 x^{3}+2}{3 x^{3}\left(x^{2}-1\right)^{2}} \cdot \log (2 \pi)-\frac{1}{x(x-1)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x^{2} k(x)+2 \log (2 \pi)}{3 x^{3}\left(x^{2}-1\right)^{2}} \\
& >\frac{k(x)}{3 x\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

where

$$
k(x)=3(\log (2 \pi)-1) x^{2}-(5 \log (2 \pi)+6) x-3 .
$$

Now, $k(x)$ takes a minimum value when

$$
\begin{aligned}
x & =\frac{5 \log (2 \pi)+6}{6(\log (2 \pi)-1)} \\
& =3.02 \quad \text { (to three significant figures) } .
\end{aligned}
$$

Let the roots of $k(x)=0$ be x_{1} and x_{2} where $x_{1} \leq x_{2}$. Then, to three significant figures, we have

$$
x_{1}=-0.191 \text { and } x_{2}=6.23
$$

Hence $k(x) \geq 0$ for all $x \geq x_{2}$ and $k(x)<0$ for all x in $\left[4, x_{2}\right)$. Hence, since $g(x)>0$ if $x \geq 4$, we have

$$
\begin{aligned}
& g^{\prime}(x) \geq 0 \quad \text { if } \quad x \geq x_{2} \\
& g^{\prime}(x)<0 \quad \text { if } \quad x \in\left[4, x_{2}\right) .
\end{aligned}
$$

Thus

$$
\begin{array}{ll}
g(x)<\lim _{y \rightarrow \infty} g(y) & \text { if } x \geq x_{2} \\
g(x) \leq g(4) & \text { if } \quad x \in\left[4, x_{2}\right) .
\end{array}
$$

Hence

$$
g(x)<1 \text { if } x \geq 4
$$

since

$$
\frac{x^{2 / 3}-x^{2}}{2 x^{2}\left(x^{2}-1\right)} \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty
$$

and

$$
g(4)=0.994 \text { (to three significant figures). }
$$

We now return again to the proof of Lemma 7.18. Immediately prior to Lemma 7.21, we obtained

$$
\left(\frac{m}{b}\right)^{1 / \ell}<g(c)
$$

if $k \geq 7$, where $g(x)$ is as defined in Lemma 7.21. We now have that, if $k \geq 7$ and $c \geq 4$, then

$$
\left(\frac{\mathrm{m}}{\mathrm{~b}}\right)^{1 / \ell}<1,
$$

i.e. we have $m<b$ if $k \geq 7$ and $c \geq 4$. Now, since $q \geq 2$ and $n \geq 3$, we have

$$
c=q^{n / 2} \geq 4 \text { if } \quad(n, q) \neq(3,2)
$$

and

$$
\mathrm{k}=\mathrm{q}^{\mathrm{n}-1} \geq 7 \text { if } \quad(\mathrm{n}, \mathrm{q}) \neq(3,2) .
$$

Hence, if $(n, q) \neq(3,2)$, we have $m<b$.
Now, if $(n, q)=(3,2)$, we see, by direct calculation of the inequality immediately prior to Lemma 7.19, that

$$
\left(\frac{m}{b}\right)^{1 / \ell}<0.975 \text { (to three significant figures). }
$$

Thus, in this case also we have $m<b$. This completes the proof of Lemma 7.18.
7. 22 TABLE This table evaluates the upper bound for $W(q, n)$ given in Lemma 7.18. All the values are rounded up to four figures. The second number in each entry indicates the power of ten by which the first number must by multiplied.

2	$\begin{array}{r} 2.085 \\ 2 \end{array}$	$\begin{array}{r} 2.084 \\ 8 \end{array}$	$\begin{array}{r} 1.917 \\ 25 \end{array}$
3	$\begin{array}{r} 7.192 \\ 7 \end{array}$	$\begin{array}{r} 1.619 \\ 41 \end{array}$	$\begin{array}{r} 8.628 \\ 179 \end{array}$
4	$\begin{array}{r} 2.057 \\ 17 \end{array}$	$\begin{array}{r} 1.130 \\ 118 \end{array}$	$\begin{array}{r} 7.185 \\ 674 \end{array}$
5	$\begin{array}{r} 1.202 \\ 31 \end{array}$	$\begin{array}{r} 8.339 \\ 260 \end{array}$	$\begin{array}{r} 1.992 \\ 1846 \end{array}$
7	$\begin{array}{r} 7.997 \\ 72 \end{array}$	1.372 842	$\begin{array}{r} 1.510 \\ 8254 \end{array}$
8	$\begin{array}{r} 3.249 \\ 101 \end{array}$	$\begin{array}{r} 4.732 \\ 1332 \end{array}$	$\begin{aligned} & 6.165 \\ & 14878 \end{aligned}$
9	$\begin{array}{r} 3.621 \\ 135 \end{array}$	$\begin{array}{r} 1.580 \\ 1993 \end{array}$	$\begin{aligned} & 7.740 \\ & 24969 \end{aligned}$

To give an idea of how good a bound Lemma 7.16 gives, it is worth noting that $W(2,3)=144$ whereas, in the table, we have $W(2,3) \leq 208.5$.

Let T_{X} be the full transformation semigroup on the finite set X and let α be an element of T_{X}. In [8], the defect of α was defined to be the order of the set $X \backslash X_{\alpha}$. It is shown in [8] that the subsemigroup of T_{X} generated by the idempotents E^{+}with non-zero defect is ${ }^{T}{ }_{X} \backslash G_{X}$, where G_{X} is the symmetric group on the set X. In [13] the gravity of α was defined to be the least $g(\alpha) \in \mathbb{N}$ for which $\alpha \in E^{g(\alpha)}$, where E is the set of idempotents of defect 1 . The depth of $\left\langle E^{+}\right\rangle=T_{X} \backslash G_{X}$ was defined, in [13], to be the least $\Delta \in \mathbb{N}$ such that $\left(\mathrm{E}^{+}\right)^{\Delta}=T_{\mathrm{X}} \backslash G_{\mathrm{X}}$, where E^{+}is the set of idempotents of non-zero defect. Formulae for $g(\alpha)$ and Δ were determined in [12] and reported in [13].

In this section, similar definitions for gravity and depth will be given, and the gravity of any element of $\operatorname{Sing}_{\mathrm{n}}$ will be determined, as will the depth of Sing $_{n}$.

8.1 DEFINITIONS Let V be an n-dimensional vector space

 over the field F and let Sing $_{n}$ denote the semigroup of singular endo-. morphisms of V. Let E denote the idempotents of Sing_{n} of rank $n-1$ and E^{+}denote all the idempotents of Sing_{n}.Let $\alpha \in \operatorname{Sing}_{\mathrm{n}}$. Since E generates $\operatorname{Sing}_{\mathrm{n}}$ (Theorem 4.9), there exists an integer k such that $\alpha \in E^{k}$. The gravity of α is defined to be

$$
\mathrm{g}(\alpha)=\min \left\{\mathrm{k} \in \mathbb{N}: \alpha \in \mathrm{E}^{\mathrm{k}}\right\}
$$

If there exists an integer k such that

$$
\left(\mathrm{E}^{+}\right)^{\mathrm{k}}=\sin \mathrm{g}_{\mathrm{n}},
$$

then the depth of Sing $_{n}$ is defined to be

$$
\Delta\left(\text { Sing }_{n}\right)=\min \left\{k \in \mathbb{N}:\left(E^{+}\right)^{k}=\operatorname{Sing}_{n}\right\} ;
$$

otherwise the depth of $\operatorname{Sing}_{\mathrm{n}}$ is defined to be infinite.

If F is finite, then $\operatorname{Sing}_{\mathrm{n}}$ is a finite semigroup. Thus the chain

$$
\mathrm{E}^{+} \subseteq\left(\mathrm{E}^{+}\right)^{2} \subseteq\left(\mathrm{E}^{+}\right)^{3} \subseteq \ldots
$$

cannot have infinitely many inclusions. Since E generates $\operatorname{Sing}_{\mathrm{n}}$ and $E \subseteq E^{+}$, we know that this chain must become stationary at Sing_{n}. Thus, if F is finite, Sing $_{n}$ has finite depth.

Before attempting to find the depth of Sing_{n}, or the gravity of any element of $\operatorname{Sing}_{\mathrm{n}}$, it is convenient to introduce some matrix notation and prove three technical lemmas.
8.2 NOTATION Denote by S_{k} the $k \times k$ matrix

$$
\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & & \\
0 & 0 & 0 & 0 & 0 & \ddots & 1 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

and by $E_{i}^{(n)}$ the $n x n$ matrix

$$
\left.\left[\begin{array}{c:cc:c}
I_{n-2-\mathbf{i}} & 1 & 0 & : \\
\hdashline- & 1 & 0 & 1 \\
0 & 1 & 0 & - \\
0 & 0 & 1 & 0 \\
\hdashline 0 & 1 & 0 & 1
\end{array}\right) I_{\mathbf{i}}\right]
$$

where I_{d} denotes the $d x d$ identity matrix ($n \geq 2, i \leq n-2$).
8.3 LEMMA Let A be the matrix

$$
\left[\begin{array}{ccccc}
& & & 0 & 0 \\
& & & 1 & 0 \\
& & & 0 \\
& s_{n-2} & & 1 & 0 \\
& & & 0 & 0 \\
& & & 1 & 1 \\
\hdashline 0 & 0 & \ldots & 0 & 1
\end{array}\right]
$$

Then $A=E_{1}^{(n)} E_{2}^{(n)} \ldots E_{n-2}^{(n)}(n \geq 3)$.

PROOF
The proof is by induction on k in the formula

$$
E_{1}^{(n)} E_{2}^{(n)} \ldots E_{k}^{(n)}=A_{k}
$$

where

$$
A_{k}=\left[\begin{array}{c:cc:c}
I_{n-2-k} & 0 & 0 & 0 \\
\hdashline 0 & 1 & S_{k} & \vdots \\
0 & 1 & & 0 \\
\hdashline & 1 & & 0 \\
\hdashline 0 & 1 & 0 & 1 \\
\hdashline & 1 & & I_{2}
\end{array}\right] .
$$

To show that the induction process may be started at $k=1$, notice that

$$
A_{1}=\left[\begin{array}{c:c:c}
I_{n-3} & 0 & 0 \\
\hdashline 0 & 0 & 1 \\
\hdashline 0 & 0 & I_{2}
\end{array}\right]=E_{1}^{(n)} .
$$

Now suppose the result is true for $k-1$, i.e.

$$
E_{1}^{(n)} E_{2}^{(n)} \cdots E_{k-1}^{(n)}=A_{k-1} .
$$

Then

$$
\begin{aligned}
& E_{1}^{(n)} E_{2}^{(n)} \ldots E_{k}^{(n)}=A_{k-1} E_{k}^{(n)}
\end{aligned}
$$

$$
\begin{aligned}
& =A_{k} \text {. }
\end{aligned}
$$

Thus

$$
A_{n-2}=E_{1}^{(n)} E_{2}^{(n)} \ldots E_{n-2}^{(n)} .
$$

But

$$
\begin{aligned}
A_{n-2} & =\left[\begin{array}{cccc}
& 1 & 0 & 0 \\
S_{n-2} & 1 & \vdots & \vdots \\
& 1 & 0 & 0 \\
\hdashline & & 1 & 0 \\
\hdashline 0 & 1 & I_{2}
\end{array}\right] \\
& =A,
\end{aligned}
$$

so $E_{1}^{(n)} E_{2}^{(n)} \ldots E_{n-2}^{(n)}=A$.
8.4 LEMMA Let A and B be the $n x n$ matrices

$$
\begin{aligned}
& A=\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \ddots & \ddots & \\
0 & 0 & 0 & 0 & 0 & \ddots & 1 \\
0 & a_{2} & a_{3} & a_{4} & a_{5} & \ldots & a_{n}
\end{array}\right], \\
& B=\left[\begin{array}{lllll}
\\
\frac{a_{n}}{2} & -\frac{a_{3}}{a_{4}} & \ldots & a_{n} & 0
\end{array}\right] .
\end{aligned}
$$

Then

$$
A=E_{0}^{(n)} E_{1}^{(n)} \cdots E_{n-2}^{(n)}
$$

Notice that B and each $E_{i}^{(n)}(i=0, \ldots, n-2)$ are idempotent and have nullity 1.

PROOF By Lemma 8.3, we have

$$
\begin{aligned}
& E_{0}^{(n)} E_{1}^{(n)} \ldots E_{n-2}^{(n)}=\left[\begin{array}{cccc}
& 1 & \\
& 1 & \\
I_{n-2} & 1 & 0 \\
& 1 & \\
& 1 & 0 & 0 \\
& 1 & \vdots & \vdots \\
S_{n-2} & 0 & 0 \\
& 1 & 1 & 0 \\
0 & 1 & 1 \\
& 1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
& 1 & 0 \\
0 & 1 & 0 \\
& & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
& 1 & 0 & 0 \\
S_{n-2} & 1 & \vdots & \vdots \\
& 1 & 0 & 0 \\
& 1 & 1 & 0 \\
\hdashline & & 1 & - \\
\hdashline & 1 & 1 \\
& 1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{ccc}
& 1 & 0 \\
& 1 & \vdots \\
S_{n-1} & 1 & \vdots \\
& 1 & 0 \\
& 1 & 1 \\
- & 1 & - \\
0 & 1 & 1
\end{array}\right]
$$

It is now clear that

$$
\mathrm{BE}_{0}^{(\mathrm{n})} \mathrm{E}_{1}^{(\mathrm{n})} \ldots \mathrm{E}_{\mathrm{n}-2}^{(\mathrm{n})}=\mathrm{A} .
$$

8. 5 LEMMA Let A be the $(n+1) x(n+1)$ matrix

$$
\left[\begin{array}{ccccccc:c}
0 & 1 & 0 & 0 & 0 & \ldots & 0 & \\
0 & 0 & 1 & 0 & 0 & \ldots & 0 & \\
0 & 0 & 0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & & - \\
0 & 0 & 0 & 0 & 0 & \ddots & 1 & \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & \ldots & a_{n} & \\
\hdashline & - & - & - & \ldots & - & - \\
\hline
\end{array}\right]
$$

Then

$$
A=D E_{1}^{(n+1)} E_{2}^{(n+1)} \cdots E_{n-1}^{(n+1)} G,
$$

where

$$
D=\left[\begin{array}{c:cc}
I_{n-1} & 0 \\
--1 & - & - \\
\hdashline 0 & 1 & 1 \\
& 0 & 0
\end{array}\right] \text { and } G=\left[\begin{array}{cc:c}
I_{n} & & 0 \\
\hdashline a_{1} & a_{2} & \cdots \\
a_{n-1} & a_{n}-1 & 0
\end{array}\right] .
$$

Notice that D, G and each $E_{i}^{(n+1)}$ are idempotent and have nullity 1.

PROOF
By Lemmá 8.3,

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
& 1 & 0 & 0 \\
& 1 & & \\
& 1 & 0 & 0 \\
S_{n-1} & 1 & \vdots & \vdots \\
& 1 & 0 & 0 \\
& 1 & 1 & 0 \\
- & -1 & - & - \\
0 & 1 & 1 & 1 \\
0 & & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& =\left[\begin{array}{ccccc}
& & & 0 & 0 \\
& & & 0 & 0 \\
& S_{n-1} & & \vdots & \vdots \\
& & & 0 & 0 \\
& & & 1 & 0 \\
\hdashline a_{1} & \cdots & a_{n-1} & a_{n}-1+1 & 0 \\
0 & \cdots & 0 & & 0
\end{array}\right]
\end{aligned}
$$

We are now in a position to find an upper bound for the depth of Sing $_{n}$. This, of course, depends on n.
8.6 LEMMA Let V be an n-dimensional vector space and Sing $_{n}$ the semigroup of singular endomorphisms of V. Let E be the set of idempotents of $\operatorname{Sing}_{\mathrm{n}}$ of rank $\mathrm{n}-1$ and let $\alpha \in \operatorname{Sing}_{\mathrm{n}}$. Then there exist $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\mathrm{n}} \in \mathrm{E}$ such that $\alpha=\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{\mathrm{n}}$ and $V=R_{\varepsilon_{1}}^{\perp}+R_{\varepsilon_{2}}^{\perp}+\ldots+R_{\varepsilon_{\mathrm{n}}}^{\perp}$.

PROOF Since every element α of Sing $_{n}$ is singular, we know that, relative to a suitable basis, α has matrix $M_{\alpha}=\operatorname{diag}\left\{A_{q}, A_{q-1}, \ldots, A_{1}\right\}$, where each A_{i} is a $d_{i} \times d_{i}$ matrix of the form

$$
A_{i}=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & & \ddots & \ddots & \\
0 & 0 & 0 & 0 & \ddots & 1 \\
a_{i 1} & a_{i 2} & a_{i 3} & a_{i 4} & \cdots & a_{i d_{i}}
\end{array}\right]
$$

and A_{1} is singular (this being the rational canonical form for a matrix; see, for example, [15]). It is thus sufficient to prove the theorem for matrices of the form M_{α}. We shall do this by induction on q.

Clearly, for all values of q, we have

$$
n=\sum_{i=1}^{q} d_{i}
$$

and, since A_{1} is singular, $a_{11}=0$.
Suppose first that $q=1$. Then, using the notation of Lemma 8.4,

$$
\mathrm{M}_{\alpha}=\mathrm{BE}_{0}^{(\mathrm{n})} \mathrm{E}_{1}^{(\dot{\mathrm{n}})} \ldots \mathrm{E}_{\mathrm{n}-2}^{(\mathrm{n})} .
$$

Letting $e_{-}^{(n)}$ denote the $i^{\text {th }}$ standard basis element of an n-dimensional space, notice that

$$
R_{B}^{\perp}=\left\langle e_{n}^{(n)}\right\rangle,
$$

and, denoting the range of.${ }_{i}^{(n)}$ by R_{i},

$$
R_{i}^{\perp}=\left\langle e_{n-i-1}^{(n)}\right\rangle \quad(i=0,1, \ldots, n-2) .
$$

Thus

$$
V=R_{B}^{\perp}+R_{1}^{\perp}+R_{2}^{\perp}+\ldots+R_{n-1}^{\perp}
$$

so we may anchor the induction process.
Now suppose the result holds if $q \leq k-1$ and consider the matrix $M_{\alpha}=\operatorname{diag}\left\{A_{k}, A_{k-1}, \ldots, A_{2}, A_{1}\right\}$. By the hypothesis,

$$
M=\operatorname{diag}\left\{A_{k-1}, A_{k-2}, \ldots, A_{2}, A_{1}\right\}=F_{1} F_{2} \ldots F_{t},
$$

where $t=d_{1}+d_{2}+\ldots+d_{k-1}$, each F_{i} is idempotent and

$$
\operatorname{dim}\left(R_{F_{1}}^{\perp}+R_{F_{2}}^{\perp}+\ldots+R_{F_{t}}^{\perp}\right)=t
$$

Thus $M_{\alpha}=F_{1}^{\prime} F_{2}^{\prime} \ldots F_{t}^{\prime}$ where

$$
F_{1}^{\prime}=\left[\begin{array}{c:c}
A_{k} & 0 \\
\hdashline 0 & F_{1}
\end{array}\right] \text { and } \quad F_{i}^{\prime}=\left[\begin{array}{c:c}
I_{d_{k}} & 0 \\
\hdashline 0 & F_{i}
\end{array}\right] \quad(i=2, \ldots, t) .
$$

Now, since (by the hypothesis) F_{1} has nullity 1 , there exists a basis
$\left\{\underline{u}_{1}\right\}$ for the null-space of F_{1} and a basis $\left\{\underline{u}_{2}, \underline{u}_{3}, \ldots, \underline{u}_{n-d_{k}}\right\}$ for the range of F_{1}. By Lemma $\left.1.4, \quad \underline{\mathrm{u}}_{1}, \underline{\underline{u}}_{2}, \ldots, \underline{\mathrm{u}}_{\mathrm{n}-\mathrm{d}_{\mathrm{k}}}\right\}$ forms a basis for the domain of F_{1}. Relative to this basis, F_{1} has matrix

$$
I_{n-d_{k}}^{\prime}=\left[\begin{array}{cc:c}
0 & \underline{0} \\
-1 & \underline{-} & - \\
\underline{0} & I_{n-d_{k}-1}
\end{array}\right]
$$

where I_{i} is the $i x i$ identity matrix. Hence there exists an invertible matrix P such that $F_{1}=P^{-1} I_{n-d_{k}}^{\prime} P$. Thus $F_{1}^{\prime}=P_{1}^{-1} A_{k}^{\prime} P_{1} \quad$ where

$$
P_{1}=\left[\begin{array}{ccc}
I_{d_{k}} & 1 & 0 \\
\hdashline 0 & 1 & - \\
0 & & P
\end{array}\right] \text { and } \quad A_{k}^{\prime}=\left[\begin{array}{ccc}
A_{k} & 1 & 0 \\
\hdashline & -1 & - \\
0 & 1 & I_{n-d_{k}}^{\prime}
\end{array}\right] \text {. }
$$

Now, using the notation of Lemma 8.5,

$$
\left[\begin{array}{cc}
\mathrm{A}_{\mathrm{k}} & 0 \\
\hdashline \underline{0} & 0
\end{array}\right]=\mathrm{DE}_{1}^{\left(\mathrm{d}_{\mathrm{k}+1}\right)}{ }_{E}^{\left(\mathrm{d}_{\mathrm{k}}+1\right)} \ldots \mathrm{E}_{\mathrm{d}_{\mathrm{k}}-1}^{\left(\mathrm{d}_{\mathrm{k}}+1\right)}{ }_{\mathrm{G}} .
$$

Notice that

$$
\begin{aligned}
& R_{D}^{\perp}=\left\langle e^{\left(d_{k}+1\right)}\right. \\
& \left.d_{k}-e^{\left(d_{k}+1\right)}\right\rangle \\
& R_{G}^{\perp}=\left\langle e_{d}^{\left(d_{k}+1\right)}\right\rangle \\
& d_{k+1}
\end{aligned}
$$

and, denoting the range of $E \sum_{i}^{\left(d_{k}+1\right)}$ by R_{i},

$$
R_{i}^{\perp}=\left\langle\frac{e^{(}}{\left(d_{k}+1\right)} d_{k}^{-i}\right\rangle
$$

Thus

$$
A_{k}^{\prime}=H_{0} H_{1} \ldots H_{d_{k}}
$$

where

$$
H_{0}=\left[\begin{array}{c:c}
D & 0 \\
\hdashline 0 & I_{n-d_{k}-1}
\end{array}\right], H_{d_{k}}=\left[\begin{array}{c:c}
G & 0 \\
\hdashline 0 & I_{n-d_{k}-1}
\end{array}\right]
$$

and

$$
H_{i}=\left[\begin{array}{c:c}
E_{i}^{\left(d_{k}+1\right)} & 1 \\
- & 0 \\
\hdashline 0 & \\
\hdashline & I_{n-d_{k}-1}
\end{array}\right] \quad\left(i=1,2, \ldots, d_{k}-1\right)
$$

Notice that

$$
\begin{aligned}
& R_{H_{0}}^{\perp}=\left\langle e_{d_{k}}^{(n)}-e_{d_{k}+1}^{(n)}\right\rangle \\
& R_{H_{d_{k}}}^{\perp}=\left\langle e_{d_{k}+1}^{(n)}\right\rangle
\end{aligned}
$$

and

$$
R_{H_{i}}^{\perp}=\left\langle e_{-d_{k}-i}^{(n)}\right\rangle \quad\left(i=1,2, \ldots, d_{k}-1\right) .
$$

Now $\mathrm{F}_{1}^{\prime}=\mathrm{H}_{0}^{\prime} \mathrm{H}_{1}^{\prime} \ldots \mathrm{H}_{\mathrm{d}_{\mathrm{k}}}^{\prime}$ where $\mathrm{H}_{\mathrm{i}}^{\prime}=\mathrm{P}_{1}^{-1} \mathrm{H}_{\mathrm{i}} \mathrm{P}_{1}$.
We shall now find $P_{H_{i}^{1}}^{1} \quad\left(i=0,1, \ldots, d_{k}\right)$.
If $\underline{x} \in P_{H_{i}}^{1}(\underline{x} \neq \underline{0})$, then we have $H_{i} x^{T}=\underline{0}^{T}$. Hence
$H_{i}^{\prime}\left(P_{1}^{-1} \underline{x}^{T}\right)=\underline{0}^{T}$ and so $\left\langle\left(P_{1}^{-1} \underline{x}^{T}\right)^{T}\right\rangle \subseteq R_{H_{i}^{\prime}}^{1}$. But, since $P_{1}^{-1} \underline{x}^{T} \neq \underline{0}^{T}$ and $\mathrm{R}_{\mathrm{H}_{i}}^{\perp}$ is one-dimensional, we have $\left\langle\left(P_{1}^{-1} x^{T}\right)^{T}\right\rangle=R_{H_{i}}^{\perp}$. Thus, denoting P^{-1} by $\left(\mathrm{p}_{\mathrm{i}, \mathrm{j}}\right)_{1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}-\mathrm{C}_{k}}$, we have

$$
\begin{aligned}
& R_{H_{0}^{\prime}}^{\perp}=\left\langle e_{d_{k}}^{(n)}-{ }_{i=1}^{n-d_{k}} p_{i 1} e_{-i+d_{k}}^{(n)}\right\rangle \\
& R_{d_{d}^{\prime}}^{\perp}=\left\langle{ }_{i=1}^{n-d_{k}^{\prime}} p_{i 1} e_{i+d_{k}}^{(n)}\right\rangle
\end{aligned}
$$

and

$$
R_{H_{i}^{\prime}}^{\perp}=\left\langle e_{-d_{k}-i}^{(n)}\right\rangle \quad\left(i=1,2, \ldots, d_{k-1}\right)
$$

$$
\text { Now, } R_{F_{1}^{\prime}}^{\prime} \subseteq R_{H_{d_{k}}^{\prime}} \text { and so } R_{H_{d_{k}}^{\prime}}^{\perp} \subseteq R_{F_{1}}^{\perp}
$$

Hence

$$
\left\langle{ }_{i=1}^{n-d_{1}} k p_{i 1} e_{-i+d_{k}}^{(n)}\right\rangle \subseteq R_{F}^{1}
$$

Thus

$$
\left.<_{i=1}^{n-\sum_{1}^{k}} p_{i 1} e_{i}^{\left(n-d_{k}\right)}\right\rangle \subseteq R_{F_{1}}^{\perp}
$$

But R_{F}^{\perp} is one-dimensional and ${ }_{i=1}^{n-d_{1}} p_{i 1} e_{i}^{\left(n-d_{k}\right)} \neq 0$, so $\left.<{ }_{i}{ }_{i=1}^{n-d_{1}} p_{i 1} e_{i}^{\left(n-d_{k}\right)}\right\rangle=R_{F_{1}}^{1}$. Consequently, by the hypothesis,

$$
\begin{gathered}
\left\langle{ }_{i=1}^{n-d_{k}} p_{i 1} e_{i}^{\left(n-d_{k}\right)}\right\rangle+\left\langle R_{F_{i}}^{1}: i=2,3, \ldots, t\right\rangle \\
\left.=<e_{i}^{\left(n-d_{k}\right)}: i=1,2, \ldots, n-d_{k}\right\rangle
\end{gathered}
$$

Thus

$$
R_{H_{d_{k}}^{\prime}}^{\perp}+\left\langle R_{F_{i}^{\prime}}^{\perp}: i=2,3, \ldots, t\right\rangle=\left\langle{\underset{e}{i}}_{(n)}^{(n)} i=d_{k}+1, \ldots, n\right\rangle
$$

$$
\left\langle R_{H_{i}^{\prime}}^{1}: i=0, \ldots, d_{k}-1>\cap<{\underset{e}{i}}_{(n)}^{(n)}: i=d_{k}+1, \ldots, n>=\{\underline{0}\}\right.
$$

and

$$
\operatorname{dim}\left\langle R_{H_{i}^{\prime}}^{\perp}: i=0,1, \ldots, d_{k}-1\right\rangle=d_{k},
$$

we have

$$
\begin{aligned}
\operatorname{dim} & \left(<R_{H_{i}^{\prime}}^{\perp}: i=0,1, \ldots, d_{k}>+\left\langle R_{F}^{\perp} \cdot:: i=2,3, \ldots, t>\right)=t+d_{k}\right. \\
& ={ }_{i=1}^{k} \sum_{i}=n .
\end{aligned}
$$

Thus $V=R_{H_{0}^{\prime}}^{\perp}+R_{H_{1}^{\prime}}^{\perp}+\ldots+R_{H_{d_{k}}^{\prime}}^{\perp}+R_{F_{2}^{\prime}}^{\perp}+R_{F_{3}^{\prime}}^{\perp}+\ldots+R_{F_{t}^{\prime}}^{\perp}$. But we also have

$$
\begin{aligned}
M_{\alpha} & =F_{1}^{\prime} F_{2}^{\prime} \ldots F_{t}^{\prime} \\
& =H_{0}^{\prime} H_{1}^{\prime} \ldots H_{d_{k}}^{\prime} F_{2}^{\prime} F_{3}^{\prime} \ldots F_{t}^{\prime}
\end{aligned}
$$

and $\mathrm{n}=\mathrm{t}+\mathrm{d}_{\mathrm{k}}$.
Hence the induction step holds.

From this it follows that n is an upper bound for the depth of Sing $_{n}$ and for the gravity of any element of Sing $_{n}$. In order to show that $\Delta\left(\operatorname{Sing}_{\mathrm{n}}\right)=\mathrm{n}$, the following theorem (which is also interesting in its own right) is needed.
8.7 THEOREM Let sing $_{\mathrm{n}}$ denote the semigroup of singular endomorphisms of an n-dimensional vector space V and let E denote the idempotent elements of $\operatorname{Sing}_{\mathrm{n}}$ of rank $\mathrm{n}-1$. Let $\alpha \in \operatorname{Sing}_{\mathrm{n}}$. Then $\alpha \in E^{g}$ where $g=\operatorname{dim}\{\underline{x} \in V: \underline{x} \alpha=\underline{x}\}^{\perp}$. Also, if $\ell<g$,
then $\alpha \notin E^{\ell}$, i.e. the gravity of α is $\operatorname{dim}\{\underline{x} \in V: \underline{x} \alpha=\underline{x}\}^{\perp}$.

PROOF Suppose $X_{\alpha}=\{\underline{x} \in V: \underline{x} \alpha=\underline{x}\}$ has dimension d.
Let $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{d}\right\}$ be a basis for X_{α} and extend this to a basis $B=\left\{\underline{u}_{1}, \ldots, \underline{u}_{\mathrm{n}}\right\}$ for V. Relative to this basis, α has matrix

$$
M_{\alpha}=\left[\begin{array}{ccc}
I_{d} & 0 \\
\hdashline P & - & M
\end{array}\right]
$$

where I_{d} is the $d \times d$ identity matrix and M is an ($\left.n-d\right) x(n-d)$ singular matrix.

By Lemma 8.6,

$$
M=M_{1} M_{2} \ldots M_{n-d},
$$

where each M_{i} is idempotent with nullity $1(i=1, \ldots, n-d)$ and $\operatorname{dim}\left\langle\left\{\underline{r}_{i}: i=1, \ldots, n-d\right\}\right\rangle=n-d$ where $\left\langle r_{i}\right\rangle=R_{M_{i}}^{\perp}(i=1,2, \ldots, n-d)$.

Thus $M_{\alpha}=N_{1} N_{1}^{\prime}$, where

$$
N_{1}=\left[\begin{array}{c:c}
I_{d} & 0 \\
\hdashline P_{1} & M_{1}
\end{array}\right] \quad \text { and } \quad N_{1}^{\prime}=\left[\begin{array}{c:c}
I_{d} & 0 \\
\hdashline P_{1}^{\prime} & - \\
\mathrm{P}_{1}^{\prime} & M_{1}^{\prime}
\end{array}\right]
$$

and where I_{d} is the $d x d$ identity matrix, $P_{1}=P-M_{1} P$, $P_{1}^{\prime}=P-\underline{r}_{1}^{T} \underline{a}_{1}$ for some arbitrary d-dimensional vector \underline{a}_{1} and $M_{1}^{\prime}=M_{2} M_{3} \ldots M_{n-d}$.

Similarly, $N_{1}^{\prime}=N_{2} N_{2}^{\prime}$ where

$$
N_{2}=\left[\begin{array}{c:c}
\mathrm{I}_{\mathrm{d}} & 0 \\
\hdashline \mathrm{P}_{2} & \mathrm{M}_{2}
\end{array}\right] \text { and } \quad \mathrm{N}_{2}^{\prime}=\left[\begin{array}{c:c}
\mathrm{I}_{\mathrm{d}} & 0 \\
\hdashline \mathrm{P}_{2}^{\prime} & \mathrm{M}_{2}^{\prime}
\end{array}\right]
$$

and where $P_{2}=P_{1}^{\prime}-M_{2} P_{1}^{\prime}, P_{2}^{\prime}=P_{1}^{\prime}-\underline{r}_{2}^{T}{ }_{2}{ }_{2}$ for some arbitrary ddimensional vector \underline{a}_{2} and $M_{2}^{\prime}=M_{3} M_{4} \ldots M_{n-d}$.

Continuing in this manner, we see that

$$
M_{\alpha}=N_{1} N_{2} \ldots N_{n-d-1} N_{n-d-1}^{\prime} .
$$

Notice that each $N_{i}(i=1, \ldots, n-d-1)$ is idempotent with nullity 1 and so is an element of E . Now

$$
\begin{aligned}
N_{n-d-1}^{\prime} & =\left[\begin{array}{c:c}
I_{d} & 0 \\
\hdashline P_{n-d-1}^{\prime} & M_{n-d-1}^{\prime}
\end{array}\right] \\
& =\left[\begin{array}{c:c}
I_{d} & 0 \\
\hdashline P_{n-d-1}^{\prime} & M_{n-d}
\end{array}\right] .
\end{aligned}
$$

Thus $N_{n-d-1}^{\prime} \in E$ if and only if $M_{n-d^{\prime}} P_{n-d-1}^{\prime}=[0]$, i.e. if and only if $P_{n-d-1}^{\prime}={\underset{n}{r}}_{T}^{T} a_{n-d}$ for some d-dimensional vector ${\underset{n}{n-d}}$. But

$$
\begin{aligned}
P_{n-d-1}^{\prime} & =P_{n-d-2}^{\prime}-r_{n-d-1}^{T} a_{n-d-1} \\
& =P_{n-d-3}^{\prime}-r_{n-d-2}^{T}-\frac{a}{n-d-2}-r_{n-d-1}^{T}{ }_{n-d-1}^{T} \\
& =\ldots
\end{aligned}
$$

$$
=P_{1}^{\prime}-{ }_{i=2}^{n-d-1}{\underset{E}{-1}}_{T}^{T} a_{i}
$$

$$
=P-{ }_{i=1}^{n-1-1}{\underset{i}{-1}}_{T}^{T} \underline{a}_{i} .
$$

Thus $N_{n-d-1}^{\prime} \in E$ if and only if

Now, we already know that $\operatorname{dim}\left\langle\left\{\underline{r}_{\mathrm{i}}: \mathrm{i}=1, \ldots, \mathrm{n}-\mathrm{d}\right\}\right\rangle=n-\mathrm{d}$ and that
P is an ($n-d$) x d matrix. Hence we may choose the vectors $a_{1}, \underline{a}_{2}, \ldots,{ }^{n}-\mathrm{d}$ d in such a way that (+) holds, i.e. such that $N_{n-d-1}^{\prime} \in E$. Hence $M_{\alpha} \in E^{n-d}$. But, by Lemma 2.3, $\operatorname{dim} X_{\alpha}^{1}=n-\operatorname{dim} X_{\alpha}$. Thus $\mathrm{g}=\mathrm{n}-\mathrm{d}$ and so $\mathrm{M}_{\alpha} \in \mathrm{E}^{\mathrm{g}}$.

Now suppose that $\ell<g$ and $\alpha \in E^{\ell}$. Then there exist elements $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\ell}$ of E such that

$$
\alpha=\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{\ell} .
$$

Since $V=N_{\varepsilon_{j}} \oplus R_{\varepsilon_{j}}(j=1,2, \ldots, \ell)$ we may define, for each \underline{u}_{i} in B, an element ${\underset{-}{i}, 1}^{\in} \mathbb{N}_{\varepsilon_{1}}$ and an element ${\underset{-}{i}, 1}^{\in} \mathcal{R}_{\varepsilon_{1}}$ such that $\underline{u}_{i}=\underline{m}_{i, 1}+\underline{s}_{i, 1}$. We may then define, inductively, elements ${\underset{m}{i}, j}^{f} \mathbb{N}_{\varepsilon_{j}}$ and elements $\underline{s}_{i, j} \in R_{\varepsilon_{j}}$ satisfying $\underline{s}_{i, j-1}={\underset{-m}{i, j}}+\underline{s}_{i, j} \quad(j=2,3, \ldots, \ell)$. Thus

$$
\begin{gather*}
\underline{s}_{i, \ell}=\underline{u}_{i}-{ }_{j=1}^{\ell} \underline{m}_{i, j} \tag{+}\\
\text { Now } \underline{u}_{i}=\underline{m}_{i 1}+\underline{s}_{i 1} \text { and so } \\
\underline{u}_{i} \varepsilon_{1}=\underline{s}_{i, 1}=\underline{m}_{i, 2}+\underline{s}_{i, 2} .
\end{gather*}
$$

Thus

$$
\underline{u}_{\mathrm{i}} \varepsilon_{1} \varepsilon_{2}=\underline{\mathrm{s}}_{\mathrm{i}, 2}=\underline{\mathrm{m}}_{\mathrm{i}, 3}+\underline{\mathrm{s}}_{\mathrm{i}, 3} .
$$

Continuing in this way, we clearly obtain

$$
\underline{u}_{i}^{\alpha}=\underline{u}_{i} \varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{\ell}=s_{i, \ell} .
$$

So, using (+), we have

$$
\underline{u}_{i}^{\alpha}=\underline{u}_{i}-{ }_{j}{ }^{\ell}=\frac{1}{\underline{m_{i}}}{ }_{i, j},
$$

i.e.

$$
\underline{u}_{i}-\underline{u}_{i}^{\alpha}=\stackrel{\ell}{j}_{\underline{=} \underline{m}_{i}, j} .
$$

But each $N_{\varepsilon_{i}}$ is generated by a single element of V, \underline{n}_{i} say. Thus, for each ${ }^{m}{ }_{i, j}$, there exists a scalar $\lambda_{i, j}$ such that $\underline{m}_{i, j}=\lambda_{i, j} n_{j}$. Thus

$$
\underline{u}_{i}-\underline{u}_{i}^{\alpha}={ }_{j=1}^{\ell}{ }_{1} \lambda_{i}, j \underline{n}_{j} \quad(i=1,2, \ldots, n) .
$$

$$
\operatorname{dim}\left\langle\left\{\underline{u}_{i}-\underline{u}_{i} \alpha: i=1,2, \ldots, n\right\}\right\rangle \leq \ell .
$$

Now, the basis B was chosen so that

$$
\underline{u}_{1}-\underline{u}_{1}^{\alpha}=\underline{u}_{2}-\underline{u}_{2} \alpha=\ldots=\underline{u}_{d}-\underline{u}_{d}^{\alpha}=\underline{0} .
$$

Thus

$$
\operatorname{dim}\left\langle\left\{\underline{u}_{i}-\underline{u}_{i}^{\alpha}: i=d+1, \ldots, n\right\}>\leq \ell .\right.
$$

But $\mathrm{n}-\mathrm{d}=\mathrm{g}$ and $\ell<\mathrm{g}$. Hence there exist scalars $\mu_{\mathrm{d}+1}, \ldots, \mu_{\mathrm{n}}$ (not all zero) such that

$$
\mu_{d+1}\left(\underline{u}_{d+1}-\underline{u}_{d+1}^{\alpha}\right)+\ldots+\mu_{n}\left(\underline{u}_{-n}-\underline{u}_{-n} \alpha\right)=\underline{0},
$$

i.e.

$$
{ }_{j=\bar{d}+1}^{n} \mu_{j} \underline{u}_{j}-\sum_{j=\tilde{d}+1}^{\mu_{j} u_{j}^{\alpha}}=\underline{0} .
$$

Thus

$$
\underset{\mathrm{j}=\mathrm{d}+1}{\sum_{\mathrm{L}}^{\mu_{j}} \underline{u}_{\mathrm{j}} \in X_{\alpha} .}
$$

Hence there exist scalars $v_{1}, v_{2}, \ldots, v_{d}$ such that

$$
{ }_{j=1}^{\sum_{=1}} v_{j} \underline{u}_{j}=\sum_{j=d+1}^{n}{ }_{j}^{n} \underline{u}_{j} .
$$

But this is a contradiction since $\left\{\underline{u}_{1}, \ldots, \underline{u}_{n}\right\}$ forms a basis for V and not all the μ_{j} are zero. Thus $\alpha \notin E^{\ell}$.
8.8 THEOREM Let Sing $_{\mathrm{n}}$ denote the semigroup of singular endomorphisms of an n-dimensional vector space V and let E^{+}denote the set of idempotents of Sing $_{n}$. Then the depth of Sing_{n} is n (i.e. $\left(E^{+}\right)^{n}=\operatorname{Sing}_{n}$ and if $\ell<n$ then $\left(E^{+}\right)^{\ell} \neq$ Sing $\left._{n}\right)$.

PROOF By Lemma 8.6, we know that $E^{n}=\operatorname{Sing}_{n}$, where E denotes the idempotents of Sing_{n} of rank $n-1$. Since $E \subseteq E^{+}$, we thus have $\Delta\left(\right.$ Sing $\left._{n}\right) \leq n$.

By Lemma 1.1,

$$
\Delta\left(\text { Sing }_{n}\right) \geq \max \left\{g(\alpha): \alpha \in \mathrm{PF}_{\mathrm{n}-1}\right\}
$$

By Lemma 8.7, the element

$$
\left[\begin{array}{cc}
0 & -1 \\
\hdashline & 1 \\
I_{n-1} & 0
\end{array}\right]
$$

of $\mathrm{PF}_{\mathrm{n}-1}$ has gravity n . Hence $\Delta\left(\right.$ Sing $\left._{\mathrm{n}}\right) \geq \mathrm{n}$. Consequently, $\Delta\left(\right.$ Sing $\left._{\mathrm{n}}\right)=\mathrm{n}$.
8.9 COROLLARY Let $\varepsilon_{1}, \varepsilon_{2}: V \rightarrow V$ be idempotent singular endomorphisms of an n-dimensional vector space V. If ε_{1} has rank $\mathrm{n}-\mathrm{k}_{1}, \varepsilon_{2}$ has rank $\mathrm{n}-\mathrm{k}_{2}$, and $\varepsilon_{1} \varepsilon_{2}$ has rank $\mathrm{n}-\mathrm{k}_{1}-\mathrm{k}_{2}$ ($\mathrm{n} \geq \mathrm{k}_{1}+\mathrm{k}_{2}$), then $\varepsilon_{1} \varepsilon_{2}$ is an idempotent endomorphism.

PROOF Since ε_{1} is idempotent of rank $n-k_{1}$, it follows that $\operatorname{dim}\left\{\underline{x} \in V: \underline{x} \varepsilon_{1}=\underline{x}\right\}=n-k_{1}$. Thus $g\left(\varepsilon_{1}\right)=k_{1}$. Similarly, $g\left(\varepsilon_{2}\right)=k_{2}$. Consequently, $g\left(\varepsilon_{1} \varepsilon_{2}\right) \leq k_{1}+k_{2}$.

Now let $d=\operatorname{dim}\left\{\underline{x} \in V: \underline{x} \varepsilon_{1} \varepsilon_{2}=\underline{x}\right\}$; then $g\left(\varepsilon_{1} \varepsilon_{2}\right)=n-d$. Thus $n-d \leq k_{1}+k_{2}$, ie. $d \geq n-k_{1}-k_{2}$. But $\varepsilon_{1} \varepsilon_{2}$ has rank $\mathrm{n}-\mathrm{k}_{1}-\mathrm{k}_{2}$, so, by necessity, $\mathrm{d} \leq \mathrm{n}-\mathrm{k}_{1}-\mathrm{k}_{2}$. Thus $\mathrm{d}=\mathrm{n}-\mathrm{k}_{1}-\mathrm{k}_{2}$, ie.

$$
\operatorname{dim}\left\{\underline{x} \in V: \underline{x}_{1} \varepsilon_{2}=\underline{x}\right\}=\operatorname{dim} R_{\varepsilon_{1} \varepsilon_{2}} .
$$

Also $\left\{\underline{x} \in V: \underline{x} \varepsilon_{1} \varepsilon_{2}=\underline{x}\right\} \subseteq R_{\varepsilon_{1} \varepsilon_{2}}$ and so $\left\{\underline{x} \in V: \underline{x} \varepsilon_{1} \varepsilon_{2}=\underline{x}\right\}=R_{\varepsilon_{1} \varepsilon_{2}}$. Thus $\varepsilon_{1} \varepsilon_{2}$ acts identically on its range and so is idempotent.

CHAPTER 2

THE SEMIGROUP OF SINGULAR CONTINUOUS ENDOMORPHISMS OF A SEPARABLE HILBERT SPACE

This section gives the basic definitions and lemmas that will be used in the final two sections. As most of these results are well known, I have omitted many proofs and given instead suitable references.
1.1 DEFINITION A pre-Hilbert space is a complex vector space P together with a map, called an inner product, <•|•>: $P \times P \rightarrow \mathbb{C}$ satisfying the following properties:
(1) $\langle\underline{x} \mid \underline{y}\rangle=\overline{\langle\underline{y}| \underline{x}} \quad(\forall \underline{x}, \underline{y} \in P)$
(2) $\langle\underline{x}+\underline{y} \mid \underline{z}\rangle=\langle\underline{x} \mid \underline{z}\rangle+\langle\underline{y} \mid \underline{z}\rangle \quad(\forall \underline{x}, \underline{y}, \underline{z} \in P)$
(3) $\quad\langle\lambda \underline{x} \mid \underline{y}\rangle=\lambda\langle\underline{x} \mid \underline{y}\rangle \quad(\forall \underline{x}, \underline{y} \in P, \forall \lambda \in \mathbb{C})$
(4) $\quad\langle\underline{x}| \underline{x} \gg 0 \quad(\forall \underline{x} \in P, \underline{x} \neq \underline{0})$
7.2 DEFINITION A Hilbert space is a complete pre-Hilbert space, i.e. a pre-Hilbert space in which every cauchy sequence is convergent.

A separable Hilbert space is a Hilbert space which has a countable basis.

1.3 DEFINITION A linear subspace of a separable Hilbert

 space H is a subset A of H such that, if $x, y \in H$ and $\lambda, \mu \in \mathbb{C}$, then $\lambda \underline{x}+\mu \underline{y} \in A$.
1.4 DEFINITION A closed linear subspace of a separable

 Hilbert space H is a linear subspace A of H such that, if $\left(\underline{x}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of elements in A with limit x in H, then x belongs to A. The closure of any subset B of H, denoted by \bar{B}, is the smallest closed 1 inear subspace of H containing B.1.5 LEMMA (Theorem II.5.1 [2]) Let <.|.> denote an inner product on a separable hilbert space H. Then, for each x in H, the mappings. $\langle\cdot \mid \underline{x}\rangle: H \rightarrow \mathbb{C}$ and $\langle\underline{x} \mid \cdot\rangle: H \rightarrow \mathbb{C}$ are continuous. The first mapping is also linear, while the second has the 'conjugate linear' property given by $\langle\underline{x} \mid \lambda \underline{y}+\mu \underline{z}\rangle=\bar{\lambda}\langle\underline{x} \mid \underline{y}\rangle+\bar{\mu}\langle\underline{y} \mid \underline{z}\rangle \quad(\forall \underline{x}, \underline{y}, \underline{z} \in H) \quad(\forall \lambda, \mu \in \mathbb{C})$.
1.6 DEFINITION Let A be a subset of a separable Hilbert space $H . A^{\perp}$ will denote the set $\{\underline{x} \in H:\langle\underline{x} \mid \underline{a}\rangle=0(\forall \underline{a} \in A)\}$.
1.7 LEMMA (553 [17]) Let A be a subset of a separable Hilbert space H. Then A^{\perp} is a closed linear subspace of H.
1.8 LEMMA (Theorem III.6.2 [2]) If A is a closed linear subspace of a Hilbert space H, then $H=A \oplus A^{\perp}$ and $A_{1}=A^{\perp \perp}$.
1.9 LEMMA (Ccrollary III.6.1 [17]) If A is any subset of a separable Hilbert space, then $\bar{A}=A^{\perp \perp}$.
1.10 LEMMA (Theorem 53C [2]) If A and B are any closed linear subspaces of a separable Hilbert space H such that $A \perp B$, then the set $A \oplus B$ is also a closed linear subspace of H.
1.11 LEMMA If A and B are linear subspaces of a separable Hilbert space H, then:
(i) $(A+B)^{\perp}=A^{\perp} \cap B^{\perp}$
and
(ii) $(\bar{A} \cap \bar{B})^{\perp}=\overline{A^{\perp}+B^{\perp}}$.

PROOF (i) Clearly, $A \subseteq A+B$ and $B \subseteq A+B$. Thus
$A^{\perp} \supseteq(A+B)^{\perp}$ and $B^{\perp} \supseteq(A+B)^{\perp}$. Hence $(A+B)^{\perp} \subseteq A_{1}^{\perp} \cap B^{\perp}$.
Now, if $\underline{x} \in A^{\perp} \cap B^{\perp}$, then $\langle\underline{x} \mid \underline{a}\rangle=0 \quad(\forall a \in A)$ and $\langle\underline{x} \mid \underline{b}\rangle=0$
$(\forall \underline{b} \in B)$. Thus $\langle\underline{x} \mid \underline{a}+\underline{b}\rangle=0 \quad(\forall \underline{a} \in A, \forall b \in B)$, i.e. $\underline{x} \in(A+B)^{\perp}$. Hence $A^{\perp} \cap B^{\perp} \subseteq(A+B)^{\perp}$, and so $A^{\perp} \cap B^{\perp}=\left(A_{1}+B\right)^{\perp}$.
(ii) From (i) we have

$$
\left[A^{\perp}\right]^{\perp} \cap\left[B^{\perp}\right]^{\perp}=\left(\left[A^{\perp}\right]+\left[B^{\perp}\right]\right)^{\perp},
$$

i.e.

$$
\bar{A} \cap \bar{B}=\left(A^{\perp}+B^{\perp}\right)^{\perp} .
$$

Thus

$$
\begin{aligned}
(\bar{A} \cap \bar{B})^{\perp} & =\left(A^{\perp}+B^{\perp}\right)^{\perp \perp} \\
& =\overline{\left(A^{\perp}+B^{\perp}\right)}
\end{aligned}
$$

1.12 LEMMA Let A and B be closed linear subspaces of a separable Hilbert space H such that $A \subseteq B$. Then $B=A \oplus\left(B \cap f_{1}^{\perp}\right)$.

PROOF Since B is a closed subspace of H, it is a Hilbert space itself. Since A is closed in H, it is also closed in B. So, by Lemma 1.8,

$$
B=A \oplus\left(B \cap A_{1}^{-1}\right) .
$$

1.13 DEFINITION Let $\alpha \in$ Sing . The adjoint α^{*} of α is defined to be the unique mapping in sing such that $\left\langle\underline{x} \mid \underline{y} \alpha^{*}\right\rangle=\langle\underline{x} \alpha \mid \underline{y}\rangle$ for all $\underline{x}, \underline{y}$ in H.
1.14 LEMMA If $\varepsilon \in E$ then $\varepsilon^{*} \in E$.

PROOF For any $\alpha, \beta \in$ Sing, we have $(\alpha \beta) *=\beta^{*} \alpha^{*}$ (see Theorem 56A [17]). So, putting $\varepsilon=\alpha=\beta$ gives $\varepsilon^{*}=\left(\varepsilon^{2}\right) *=\varepsilon^{*} \varepsilon^{*}$.
1.15 LEMMA Let $\alpha \in$ Sing . Then $R_{\alpha}^{\perp}=N_{\alpha *}$ and $N_{\alpha}^{\perp}=\bar{R}_{\alpha *}$.

PROOF Let $\underline{x} \in R_{\alpha}^{\perp}$. Then $\langle\underline{x} \mid \underline{y} \alpha\rangle=0 \quad(\forall \underline{y} \in H)$. Thus $\langle\underline{x} \alpha * \mid \underline{y}\rangle=0 \quad(\forall y \in H)$, i.e. $\underline{x} \alpha^{*} \in H^{\perp}=\{\underline{0}\}$. Thus $R_{\alpha}^{\perp} \subseteq N_{\alpha^{*}}$. Conversely, if $\underline{x} \in N_{\alpha^{*}}$, then $\langle\underline{x} \alpha \% \mid \underline{y}\rangle=0 \quad(\forall y \in H)$. Thus $\langle\underline{x} \mid \underline{y} \alpha\rangle=0$ $(\forall y \in H)$, i.e. $x \in R_{\alpha}^{\perp}$. Thus $N_{\alpha^{*}} \subseteq R_{\alpha}^{\perp}$: Hence $N_{\alpha^{*}}=R_{\alpha}^{\perp}$. Similarly, $R_{\alpha^{*}}^{\perp}=N_{\alpha^{*} *}=N_{\alpha}$. Thus $M_{\alpha}^{\perp}=R_{\alpha^{*}}^{\perp \perp}=\bar{R}_{\alpha^{*}}$.
1.16 LEMMA Let A and B be. closed linear subspaces of a separable Hilbert space H.
(i) If $\operatorname{dim} A=\operatorname{dim} B$, then A is isomorphic to B
(ii) If $\operatorname{dim} A<\operatorname{dim} B$, then there exists a closed linear subspace C of B such that A is isomorphic to C.

PROOF This is immediate from Theorem II.9.1 of [2].
1.17 LEMMA (Theorem IV.7.2 [2]) Let $\alpha \in$ Sing. Then N_{α} is a closed linear subspace of H.

1. 18 LEMMA If $\varepsilon \in E$, then R_{ε} is a closed linear subspace of H.

PROOF Since ε is linear, R_{ε} is clearly a linear subspace of H. Let $\left(\dot{x}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of elements of R_{ε} with limit \underline{x}
in H. Since ε is idempotent, $x_{n} \varepsilon=x_{n} \quad(n=1,2, \ldots)$. Thus, since ε is continuous,

$$
\underline{x} \varepsilon=\left(\lim \underline{x}_{n}\right) \varepsilon=\lim \left(\underline{x}_{n} \varepsilon\right)=\lim \underline{x}_{n}=\underline{x} .
$$

Thus $\quad \underline{x} \in R_{\varepsilon}$.
1.19 LEMMA Let $\varepsilon \in E$. Then $H=R_{\varepsilon}+N_{\varepsilon}$ and $R_{\varepsilon} \cap N_{\varepsilon}=\{\underline{0}\}$.

PROOF Let $\underline{x} \in H$. Then $\underline{x}=\underline{x} \varepsilon+(\underline{x}-\underline{x} \varepsilon) \in R_{\varepsilon}+N_{\varepsilon}$.
Suppose $\underline{x} \in R_{\varepsilon} \cap N_{\varepsilon}$. Then $\underline{0}=\underline{x} \varepsilon=\underline{x}$. Thus $R_{\varepsilon} \cap N_{\varepsilon}=\{\underline{0}\}$.
1.20 LEMMA Let A be a subspace of a separable Hilbert space H. Then $\operatorname{dim} A=\operatorname{dim} \bar{A}$.

PROOF Suppose first that $\operatorname{dim} A<\aleph_{0}$. Then A has finite dimension and so is closed. Thus $A=\bar{A}$. If $\operatorname{dim} A$ has infinite dimension, then, since $A \subseteq \bar{A} \subseteq H$, we have $\operatorname{dim} A \leq \operatorname{dim} \bar{A} \leq \operatorname{dim} H$, i.e. $\kappa_{0} \leq \operatorname{dim} \bar{A} \leq \kappa_{0}$. Thus $\operatorname{dim} A=\operatorname{dim} \bar{A}$.
1.21 LEMMA Let A be a linear subspace and B a closed linear subspace of a separable Hilbert space H. Then

$$
\overline{\bar{A}+B}=\overline{A+B}
$$

PROOF Clearly $\bar{A}+B \supseteq A+B$, and so

$$
\overline{\bar{A}+B} \supseteq \overline{A+B}
$$

Let x be an element of $\overline{\bar{A}+B}$. Then there exists a sequence
$\left(\underline{x}_{i}\right)_{i \in \mathbb{N}}$ in $\bar{A}+B$ with 1 imit \underline{x}. Hence there exist sequences $\left(\underline{a}_{i}\right)_{i \in \mathbb{N}}$ in \bar{A} and $\quad\left(\underline{b}_{i}\right)_{i \in \mathbb{N}}$ in B such that $\underline{x}_{i}=\underline{a}_{i}+\underline{b}_{i}$. Now, for each element $\stackrel{a}{a}_{i}$, there exists a sequence $\left(\underline{a}_{i j}\right)_{j \in \mathbb{N}}$ in A with limit ${\underset{a}{i}}$ such that $\left\|\underline{a}_{i}-\underline{a}_{i j}\right\| \leq 1 / 2^{j}$.

Now,

$$
\begin{aligned}
\left\|\underline{x}-\underline{a}_{i i}-\underline{b}_{i}\right\| & =\left\|\underline{x}-\underline{a}_{i}-\underline{b}_{i}+\underline{a}_{i}-\underline{a}_{i i}\right\| \\
& \leq\left\|\underline{x}-\underline{a}_{i}-\underline{b}_{i}\right\|+\left\|\underline{a}_{i}-\underline{a}_{i i}\right\| \\
& \rightarrow 0+0 \quad \text { as } \quad i \rightarrow \infty .
\end{aligned}
$$

Consequently, the sequence $\left(\underline{a}_{i i}{ }^{+b} \underline{-b}_{i}\right)_{i \in \mathbb{N}}$ has limit x. Thus $x \in \overline{A+B}$.
1.22 LEMMA Let A be a subspace of a separable Hilbert space H and let α be a linear mapping from A to H. Then the following are equivalent:
(i) α is a continuous mapping
(ii) there exists a constant M such that $\|\underline{x} \alpha\| \leq M\|\underline{x}\|$ for all x in H.

PROOF
This is immediate from Theorem IV.7.3 of [2].
2. 1 LEMMA Let A be a linear subspace of H. If α is a continuous linear map from A to H, then there exists a unique continuous linear map $\bar{\alpha}$ from \bar{A} to H that coincides with α on A..

PROOF Let x be any point of \bar{A}. Then there exists a sequence $\left(\underline{x}_{n}\right)_{n \in \mathbb{N}}$ in A with limit \underline{x}. Define $\alpha^{\prime}: \bar{A} \rightarrow H$ by $\underline{x}^{\prime}=\lim \left(\underline{x}_{\mathrm{n}}^{\alpha}\right)$.

Let y be any point of \bar{A}. Then there exists a sequence $\left(\underline{y}_{n}\right)_{n \in \mathbb{N}}$ of f with limit \underline{y}. Let λ, μ be any elements of \mathbb{C}. Then

$$
\begin{aligned}
(\lambda \underline{x}+\mu \underline{y}) \alpha^{\prime} & =\lim \left[\left(\lambda \underline{x}_{n}+\mu \underline{y}_{n}\right) \alpha\right] \\
& =\lim \left[\lambda\left(\underline{x}_{n} \alpha\right)+\mu\left(\underline{y}_{n} \alpha\right)\right] \text { since } \alpha \text { is linear } \\
& =\lambda \lim \left(\underline{x}_{n} \alpha\right)+\mu \lim \left(\underline{y}_{n}^{\alpha}\right) \\
& =\lambda\left(\underline{x} \alpha^{\prime}\right)+\mu\left(\underline{y}^{\prime}\right) .
\end{aligned}
$$

Thus α^{\prime} is linear.
Now let $\underline{x} \in \bar{A}$. Then there exists a sequence $\left(\underline{x}_{n}\right)_{n \in \mathbb{N}}$ in A with limit x . By Lemma 1.22, there exists an $\mathrm{M} \geq 0$ such that $\left\|\underline{x}_{n} \alpha\right\| \leq m\left\|\underline{x}_{n}\right\|$. Thus

$$
\lim \left\|\underline{x}_{-n} \alpha\right\| \leq M \lim \left\|\underline{x}_{n}\right\|,
$$

i.e.

$$
\left\|\underline{x} \alpha^{\prime}\right\|=\left\|\lim \left(\underline{x}_{n} \alpha\right)\right\| \leq m\left\|\operatorname{im} \underline{x}_{n}\right\|=m\|\underline{x}\| .
$$

Hence, by Lemma 1.22, α^{\prime} is continuous.
Now, suppose that α_{1} is another continuous linear map from \bar{A}
to H that coincides with α on A. If x is any point of \bar{A}, then there exists a sequence $\left(\underline{x}_{\mathrm{n}}\right)_{\mathrm{n}} \in \mathbb{N}$ in A with limit \underline{x}. Thus $\underline{x}^{\prime}=\lim \left(x_{n} \alpha\right)=\lim \left(\underline{x}_{n} \alpha_{1}\right)=\underline{x}^{\alpha} 1$. Thus $\bar{\alpha}=\alpha^{\prime}=\alpha_{1}$, and so $\bar{\alpha}$ is unique.
2.2 LEMMA Let A_{1} and A_{2} be any closed linear subspaces of H such that $A_{1} \cap A_{2}=\{\underline{0}\}$. If α_{1} and α_{2} are continuous linear maps from A_{1} and A_{2} respectively to H, then there exists a unique linear map $\left(\alpha_{1}+\alpha_{2}\right)$ from $A_{1}+A_{2}$ to H that coincides with α_{1} on A_{1} and α_{2} on A_{2}.
$\underline{\text { PROOF }}$ If $\underline{x} \in A_{1}+A_{2}$, then $\underline{x}=\underline{a}_{1}+\underline{a}_{2}$ for some $\underline{a}_{1} \in A_{1}$ and some ${\underset{-2}{2}}^{a_{2}} A_{2}$. Define $\left(\alpha_{1}+\alpha_{2}\right): A_{1}+A_{2} \rightarrow H$ by

$$
\underline{x}\left(\alpha_{1}+\alpha_{2}\right)=\underline{a}_{1} \alpha_{1}+\underline{a}_{2} \alpha_{2} .
$$

It is immediate that $\left(\alpha_{1}+\alpha_{2}\right)$ is continuous, linear and unique.
2.3 LEMMA Let A and B be closed linear subspaces of a separable Hilbert space H. Then $\operatorname{dim} B=\operatorname{dim}(A \cap B)+\operatorname{dim}\left[A^{\perp} \cap(A+B)\right]$.

PROOF Define the mapping $\beta: H \rightarrow H$ by $\beta=\alpha_{1} \oplus \alpha_{2}$, where $\alpha_{1}: A \rightarrow H$ is the zero mapping and $\alpha_{2}: A^{\perp} \rightarrow H$ is the identity mapping. Let β_{i} be the restriction of β to the linear subspace B. Clearly, β_{1} is continuous and linear, and so

$$
\operatorname{dim} B=\operatorname{dim} N_{\beta_{1}}+\operatorname{dim} R_{\beta_{1}}
$$

Clearly, $A \cap B \subseteq N_{\beta_{1}}$. Suppose $\underline{x} \in N_{\beta_{1}}$. Then $\underline{x}=\underline{a}+\underline{p}$ for some $\underline{a} \in A$ and some $\underline{p} \in A^{\perp}$ with $\underline{p}=\underline{a}_{1} \beta_{1}+\underline{p} \beta_{1}=\underline{x} \underline{\beta}_{1}=\underline{0}$, i.e. $\underline{x} \in A$.

But, by definition, $\underline{x} \in B$. Thus $N_{\beta_{1}} \subseteq A \cap B$. Hence $N_{\beta_{1}}=A \cap B$. Now suppose $\underline{x} \in R_{\beta_{1}}$. Then there exists $\underline{y} \in B$ such that $\underline{y} \underline{\beta}_{1}=\underline{x}$. But $\underline{y}=\underline{a}+\underline{p}$ for some $\underline{a} \in A$ and some $\underline{p} \in A^{\perp}$. Thus

$$
\underline{x}=\underline{y} \beta{ }_{1}=\underline{a} \beta+\underline{p} \beta=\underline{p} .
$$

A1so, $\underline{p}=\underline{y}-\underline{a} \in B+A$. Thus $\underline{p} \in A^{\perp} \cap(A+B)$. Hence
$R_{\beta_{1}} \subseteq A^{\perp} \cap(A+B)$.
Conversely, suppose $\underline{x} \in A^{\perp} \cap(A+B)$. Then $\underline{x}=\underline{a}+\underline{b}$ for some $\underline{a} \in A$ and some $\underline{b} \in B$. Thus $\underline{x}-\underline{a} \in B$ and

$$
(\underline{x}-\underline{a}) \beta_{1}=\underline{x}-\underline{a} \beta=\underline{x} .
$$

Thus $\underline{x} \in R_{\beta_{1}}$, i.e. $A^{\perp} \cap(A+B) \subseteq R_{\beta_{1}}$. Thus $R_{\beta_{1}}=A^{\perp} \cap(A+B)$. Consequently,

$$
\operatorname{dim} B=\operatorname{dim}(A \cap B)+\operatorname{dim}\left[A_{1}^{\perp} \cap(A+B)\right] .
$$

2.4 LEMMA Let α and β be continuous endomorphisms of H. Then

$$
\left.N_{\alpha \beta}=N_{\alpha} \oplus \underline{x} \in \mathbb{N}_{\alpha}^{\perp}: \underline{x} \alpha \in N_{\beta}\right\} .
$$

PROOF We shall first establish that $A=\left\{\underline{x} \in \mathbb{N}_{\alpha}^{\perp}: \underline{x} \alpha \in N_{\beta}\right\}$ is a closed linear subspace of H. Suppose $\underline{x}, \underline{y} \in A$ and $\lambda, \mu \in \mathbb{C}$. Then $\lambda \underline{x}+\mu \underline{y} \in N_{\alpha}^{\perp}$ since N_{α}^{\perp} is a linear subspace (Lemma 1.7). A1so, $(\lambda \underline{x}+\mu \underline{y}) \alpha=\lambda(\underline{x} \alpha)+\mu(\underline{y} \alpha) \in N_{\beta}$ since N_{β} is a linear subspace (Lemma 1.17). Thus $\lambda \underline{x}+\mu \underline{y} \in A$, and so A is a linear subspace of H. Now let $\quad\left(\underline{x}_{i}\right)_{i \in \mathbb{N}}$ be a sequence in A with limit \underline{x} in H. Since $\mathbb{N}_{\alpha}^{\perp}$ is closed, $\underline{x} \in N_{\alpha}^{\perp}$. Also, since $\underline{x}_{i} \alpha \in N_{\beta}$, we have $\underline{x}_{i} \alpha \beta=\underline{0}$ $(i=1,2, \ldots)$. Thus $\underline{x}_{i} \in N_{\alpha \beta}(i=1,2, \ldots)$. Since $N_{\alpha \beta}$ is closed
(Lemma 1.17), we have $\underline{x} \in N_{\alpha \beta}$. Thus $\underline{x} \alpha \beta=0$, i.e. $\underline{x} \alpha \in N_{\beta}$. Thus $\underline{x} \in A$, and so A is closed.

Now, let x be any element of $N_{\alpha \beta}$. Then (by Lemma 1.8 and Lemma 1.17) $\underline{x}=\underline{n}+\underline{p}$ for some $\underline{n} \in N_{\alpha}$ and some $\underline{p} \in N_{\alpha}^{\perp}$. So

$$
\underline{0}=\underline{x} \alpha \beta=(\underline{n}+\underline{p}) \alpha \beta=\underline{0} \beta+\underline{p} \alpha \beta=\underline{p} \alpha \beta .
$$

Thus $\mathrm{p}^{\alpha} \in \mathbb{N}_{\beta}$. Hence

$$
N_{\alpha \beta} \subseteq N_{\alpha} \oplus\left\{\underline{x} \in N_{\alpha}^{\perp}: \underline{x} \alpha \in N_{\beta}\right\}
$$

Now, let $y \in N_{\alpha} \oplus\left\{\underline{x} \in N_{\alpha}^{\perp}: \underline{x} \alpha \in N_{\beta}\right\}$. Then $\underline{y}=\underline{n}+\underline{a}$ for some $\underline{n} \in N_{\alpha}$ and some $\underline{a} \in\left\{\underline{x} \in N_{\alpha}^{\perp}: \underline{x} \alpha \in N_{\beta}\right\}$: So $\underline{y} \alpha \beta=(\underline{n}+\underline{a}) \alpha \beta=\underline{n} \alpha \beta+\underline{a} \alpha \beta=(\underline{a} \alpha) \beta=\underline{0}$. So $N_{\alpha} \oplus\left\{\underline{x} \in N_{\alpha}^{\perp}: \underline{x} \alpha \in \mathbb{N}_{\beta}\right\} \subseteq N_{\alpha \beta}$. Thus the result holds.
2.5 LEMMA Let α be a continuous endomorphism of H. Define $\alpha_{1}: N_{\alpha}^{\perp} \rightarrow R_{\alpha}$ by $\underline{x} \alpha_{1}=\underline{x} \alpha$. Then α_{1} is a continuous linear bijection.

PROOF Since α is continuous and linear, it follows that α_{1} is also continuous and linear.

To show that α_{1} is injective, consider an element x of $N_{\alpha_{1}}$. Then $\underline{0}=\underline{x} \alpha_{1}=\underline{x} \alpha$, i.e. $\underline{x} \in N_{\alpha}$. But $N_{\alpha} \cap N_{\alpha}^{\perp}=\{\underline{0}\}$ and α_{1} is only defined on N_{α}^{\perp}. Thus $\underline{x}=\underline{0}$, and so α_{1} is injective.

To show that α_{1} is surjective, consider an element x of R_{α}. Then there exists an element \underline{y} of H such that $\underline{y} \alpha=\underline{x}$. But (by Lemma 2.8 and Lemma 2.17) $\underline{y}=\underline{n}+\underline{p}$ for some $\underline{n} \in N_{\alpha}$ and some $\underline{p} \in N_{\alpha}^{\perp}$. So

$$
\underline{x}=\underline{y} \alpha=(\underline{n}+\underline{p}) \alpha=\underline{p} \alpha=\underline{p}_{1}{ }_{1} .
$$

2.6 LEMMA If α and β are continuous endomorphisms of H, then

$$
\operatorname{dim}\left\{\underline{x} \in N_{\alpha}^{\perp}: \underline{x} \alpha \in N_{\beta}\right\}=\operatorname{dim}\left(f_{\alpha} \cap N_{\beta}\right) .
$$

PROOF Since, by Lemma 2.5, $\alpha_{1}=\left.\alpha\right|_{N_{\alpha}^{\perp}}$ is a bijective linear mapping from N_{α}^{\perp} to R_{α}, we have $\operatorname{dim}\left(R_{\alpha} \cap N_{\beta}\right)=\operatorname{dim}\left[\left(R_{\alpha} \cap N_{\beta}\right) \alpha_{1}^{-1}\right]=\operatorname{dim}\left\{\underline{x} \in N_{\alpha}^{\perp}: \underline{x} \alpha \in N_{\beta}\right\}$.
2.7 LEMMA Let $\alpha \in \operatorname{sing}$ and $\varepsilon \in E$. If $\operatorname{dim} N_{\alpha}=\kappa_{0}$, then $\operatorname{dim} N_{\varepsilon \alpha}=\aleph_{0}$.

PROOF If $\operatorname{dim} N_{\varepsilon}=\kappa_{0}$, then the result is immediate from Lemma 2.4. So, suppose $\operatorname{dim} N_{\varepsilon}<\aleph_{0}$.

Define a map $\theta: N_{\alpha} \rightarrow N_{\varepsilon}$ by $x \theta=x-x \varepsilon$. θ is clearly linear and so

$$
\begin{aligned}
\operatorname{dim} N_{\alpha} & =\operatorname{dim} N_{\theta}+\operatorname{dim} R_{\theta} . \\
& \leq \operatorname{dim} N_{\theta}+\operatorname{dim} N_{\varepsilon} .
\end{aligned}
$$

Now, since $\operatorname{dim} N_{\alpha}=\aleph_{0}$ and $\operatorname{dim} N_{\varepsilon}<\aleph_{0}$, this gives $\operatorname{dim} N_{\theta}=\aleph_{0}$. Thus there exist infinitely many linearly independent elements of N_{α} satisfying $\underline{x} \theta=\underline{0}$, i.e. satisfying $\underline{x} \varepsilon=\underline{x}$. But each of these elements is in N_{α}. Thus there are infinitely many linearly independent elements satisfying $\underline{x} \varepsilon \alpha=\underline{x} \alpha=\underline{0}$. Thus $\operatorname{dim} \mathbb{N}_{\varepsilon \alpha}=\kappa_{0}$.

In this section we determine the subsemigroup generated by the idempotents E of the semigroup Sing of singular continuous endomorphism of a separable Hilbert space H.

We shall need one further concept before proceeding.

3.1 DEFINITION Let $\alpha \in<E\rangle$. Define the length, $\ell(\alpha)$, of

 α to be $\min \left\{n: \alpha \in E^{n}\right\}$.3.2 LEMMA Let $\tau \in\langle E\rangle$; then $\operatorname{dim} N_{\tau}=\operatorname{dim} R_{\tau}^{\perp}$.

PROOF The proof is by induction on the length of elements of <E> . We shall show first that the result is true for elements of <E> of length 1 , i.e. for elements of E.

Let $\varepsilon \in E$ and define a mapping $\theta: R_{\varepsilon}^{\perp} \rightarrow N_{\varepsilon}$ by $\underline{x} \theta=\underline{x}-\underline{x} \varepsilon$. θ is injective. To see this, notice that if $\underline{x} \theta=\underline{0}$ for \underline{x} in R_{ε}^{\perp}, then $\underline{x}=\underline{x} \varepsilon \in R_{\varepsilon}$; hence $\underline{x}=\underline{0}$ since $R_{\varepsilon} \cap R_{\varepsilon}^{\perp}=\{\underline{0}\}$. Also, θ is surjective. To see this, notice that if $\underline{\underline{n}} \in N_{\varepsilon}$, then $\underline{n}=\underline{r}+\underline{s}$ for some $\underline{r} \in R_{\varepsilon}$ and some $\underline{s} \in R_{\varepsilon}^{\perp}$ (by Lenma 1.8 and Lemma 1.17), i.e. $\underline{n} \varepsilon=\underline{r} \varepsilon+\underline{s} \varepsilon$, and hence $\underline{0}=\underline{r}+\underline{s} \varepsilon$. Now, substituting for \underline{r} in $\underline{n}=\underline{r}+\underline{s}$ gives $\underline{n}=\underline{s}-\underline{s} \varepsilon$, i.e. $\underline{n}=\underline{s} \theta$ where $\underline{s} \in R_{\varepsilon}^{\perp}$. Hence θ is a bijection. Since θ is also linear, we have $\operatorname{dim} N_{\varepsilon}=\operatorname{dim} R_{\varepsilon}^{\perp}$. So we may start the induction process.

Now, let $n \in<E>$ have length n and assume the result holds for all elements of <E> with length less than n. Now, there exists an $\varepsilon \in E$ and a $\tau \in<E>$ of length $n-1$ such that $\eta=\varepsilon \tau$.

Suppose first that $\operatorname{dim} N_{\tau}=\aleph_{0}$. Then, by the hypothesis, $\operatorname{dim} R_{\tau}^{\perp}=\aleph_{0}$. Now, $R_{\varepsilon \tau} \subseteq R_{\tau}$, and so $R_{\tau}^{\perp} \subseteq R_{\varepsilon \tau}^{\perp}$. So $\operatorname{dim} R_{\varepsilon \tau}^{\perp}=\aleph_{0}$.

By Lemma 2:7, $\operatorname{dim} N_{\tau}=\kappa_{0}$ implies $\operatorname{dim} N_{\varepsilon \tau}=\kappa_{0}$. So $\operatorname{dim} N_{\eta}=\operatorname{dim} R_{\eta}^{\perp}$. Now suppose that $\operatorname{dim} N_{\tau}<\aleph_{0}$. By Lemma 2.4,

$$
N_{\varepsilon \tau}=N_{\varepsilon} \oplus\left\{\underline{x} \in N_{\varepsilon}^{\perp}: \underline{x} \varepsilon \in N_{\tau}\right\},
$$

and, by Lemma 2.6,

$$
\operatorname{dim}\left\{\underline{x} \in N_{\varepsilon}^{\perp}: \underline{x} \varepsilon \in N_{\tau}\right\}=\operatorname{dim}\left(R_{\varepsilon} \cap N_{\tau}\right)
$$

So,

$$
\operatorname{dim} N_{\varepsilon \tau}=\operatorname{dim} N_{\varepsilon}+\operatorname{dim}\left(R_{\varepsilon} \cap N_{\tau}\right)
$$

Now, $(\varepsilon \tau) *=\tau^{*} \varepsilon^{*}$ and so, by Lemma 1.15, $R_{\varepsilon \tau}^{\perp}=N_{\tau * \varepsilon^{*}}$. Now, again by Lemma 2.4 and Lemma 2.6,

$$
\begin{aligned}
\operatorname{dim} N_{\tau^{*} \varepsilon^{*}} & =\operatorname{dim} N_{\tau^{*}}+\operatorname{dim}\left(R_{\tau^{*}} \cap N_{\varepsilon^{*}}\right) \\
& \leq \operatorname{dim} N_{\tau^{*}}+\operatorname{dim}\left(\vec{R}_{\tau^{*}} \cap N_{\varepsilon^{*}}\right) .
\end{aligned}
$$

Hence, by Lemma 1.15,

$$
\begin{equation*}
\operatorname{dim} R_{\varepsilon \tau}^{\perp} \leq \operatorname{dim} R_{\tau}^{\perp}+\operatorname{dim}\left(N_{\tau}^{\perp} \cap R_{\varepsilon}^{\perp}\right) \tag{+}
\end{equation*}
$$

Since $R_{\varepsilon}^{\perp} \cap N_{\tau}^{\perp}$ is a closed subspace of R_{ε}^{\perp}, we have, by Lemma 1.12, that

$$
R_{\varepsilon}^{\perp}=\left(R_{\varepsilon}^{\perp} \cap N_{\tau}^{\perp}\right) \oplus\left[R_{\varepsilon}^{\perp} \cap\left(R_{\varepsilon}^{\perp} \cap N_{\tau}^{\perp}\right)^{\perp}\right] .
$$

So, by Lemma 1.11, Lemma 1.17 and Lemma 1.18,

$$
\begin{aligned}
R_{\varepsilon}^{\perp} & =\left(R_{\varepsilon}^{\perp} \cap N_{\tau}^{\perp}\right) \oplus\left[R_{\varepsilon}^{\perp} \cap \overline{\left(R_{\varepsilon}+N_{\tau}\right)}\right] \\
& \supseteq\left(R_{\varepsilon}^{\perp} \cap N_{\tau}^{\perp}\right) \oplus\left[R_{\varepsilon}^{\perp} \cap\left(R_{\varepsilon}+N_{\tau}\right)\right] .
\end{aligned}
$$

Now, by Lemma 2.3, we have

$$
\operatorname{dim}\left[R_{\varepsilon}^{\perp} \cap\left(R_{\varepsilon}+N_{\tau}\right)\right]=\operatorname{dim} N_{\tau}-\operatorname{dim}\left(R_{\varepsilon} \cap N_{\tau}\right)
$$

(This is defined since we have assumed $\operatorname{dim} N_{\tau}<\aleph_{0}$.) So

$$
\operatorname{dim} R_{\varepsilon}^{\perp} \geq \operatorname{dim}\left(R_{\varepsilon}^{\perp} \cap N_{\tau}^{\perp}\right)+\operatorname{dim} N_{\tau}-\operatorname{dim}\left(R_{\varepsilon} \cap N_{\tau}\right)
$$

Thus, substituting for $\operatorname{dim}\left(R_{\varepsilon}^{\perp} \cap \mathbb{N}_{\tau}^{\perp}\right)$ in (+), gives

$$
\operatorname{dim} R_{\varepsilon \tau}^{\perp} \leq \operatorname{dim} R_{\tau}^{\perp}+\operatorname{dim} R_{\varepsilon}^{\perp}-\operatorname{dim} N_{\tau}+\operatorname{dim}\left(R_{\varepsilon} \cap N_{\tau}\right)
$$

By the induction hypothesis, $\operatorname{dim} R_{\tau}^{\perp}=\operatorname{dim} N_{\tau}$ and $\operatorname{dim} R_{\varepsilon}^{\perp}=\operatorname{dim} N_{\varepsilon}$, and so

$$
\operatorname{dim} R_{\varepsilon \tau}^{\perp} \leq \operatorname{dim} N_{\varepsilon}+\operatorname{dim}\left(R_{\varepsilon} \cap N_{\tau}\right)
$$

But, by Lemma 2.4 and Lemma 2.6,

$$
\operatorname{dim} N_{\varepsilon \tau}=\operatorname{dim} N_{\varepsilon}+\operatorname{dim}\left(R_{\varepsilon} \cap N_{\tau}\right)
$$

Thus, $\operatorname{dim} R_{\varepsilon \tau}^{\perp} \leq \operatorname{dim} \mathbb{N}_{\varepsilon \tau}$, i.e. $\operatorname{dim} R_{\eta}^{\perp} \leq \operatorname{dim} N_{\eta}$.
Similarly, we may obtain the inequality $\operatorname{dim} R_{n^{*}}^{\perp} \leq \operatorname{dim} N_{n^{*}}$. So, by Lemma 1.15, $\operatorname{dim} N_{n} \leq \operatorname{dim} R_{n}^{\perp}$. Thus, $\operatorname{dim} N_{n}=\operatorname{dim} R_{\eta}^{\perp}$.
3.3 LEMMA Let $\alpha \in$ Sing and be such that $\operatorname{dim} N_{\alpha}=\operatorname{dim} R_{\alpha}^{\perp}=\aleph_{0}$. Then $\left.\alpha \in<E\right\rangle$.

PROOF By Lemma 1.11, Lemma 1.12 and Lemma 1.21,

$$
R_{\alpha}^{\perp}=\left(R_{\alpha}^{\perp} \cap N_{\alpha}\right) \oplus\left[R_{\alpha}^{\perp} \cap \overline{\left(R_{\alpha}+N_{\alpha}^{\perp}\right)}\right]
$$

Since $R_{\alpha}^{\perp}=\kappa_{0}$, it follows that at least one of $R_{\alpha}^{\perp} \cap N_{\alpha}$ and $\mathrm{R}_{\alpha}^{\perp} \cap \overline{\left(\mathrm{R}_{\alpha}+N_{\alpha}^{\perp}\right)}$ must have infinite dimension. We must consider the two cases separately.
(a) $\operatorname{dim}\left(R_{\alpha}^{\perp} \cap N_{\alpha}\right)=K_{0}$. Since $H=N_{\alpha} \oplus N_{\alpha}^{\perp}$, we may define a mapping $\varepsilon_{1} \in E$ by $\varepsilon_{1}=n_{1} \oplus n_{2}$, where

$$
\underline{x}_{1}=\underline{0} \quad\left(\underline{x} \in \mathbb{N}_{\alpha}\right)
$$

and

$$
\underline{x n}_{2}=\underline{x} \quad\left(\underline{x} \in \mathbb{N}_{\alpha}^{\perp}\right) .
$$

By Lemma 1.16, there exists an isomorphism θ from $\mathbb{N}_{\alpha}^{\perp}$ to a closed subspace A of $R_{\alpha}^{\perp} \cap N_{\alpha}$. Since $H=N_{\alpha} \oplus N_{\alpha}^{\perp}$, we may define a mapping $\varepsilon_{2} \in \mathrm{E}$ by $\varepsilon_{2}=\gamma \oplus \theta$, where

$$
\underline{x} y=\underline{x} \quad\left(\underline{x} \in \mathbb{N}_{\alpha}\right) .
$$

Since $H=A \oplus A^{\perp}$, we may define a mapping $\varepsilon_{3} \in$ sing by $\varepsilon_{3}=\delta_{1} \oplus \delta_{2}$, where

$$
\underline{x}^{\delta}{ }_{1}=\underline{x}^{-1} \alpha \quad(\underline{x} \in A)
$$

and

$$
\underline{x}_{2}=\underline{x} \quad\left(\underline{x} \in A^{\perp}\right) .
$$

Since $A \subseteq R_{\alpha}^{\perp} \cap N_{\alpha}=\left(\bar{R}_{\alpha}+N_{\alpha}^{\perp}\right)^{\perp}$, it follows that $R_{\alpha} \subseteq \bar{R}_{\alpha}+N_{\alpha}^{\perp} \subseteq A^{\perp}$. Thus $\varepsilon_{3} \in \mathrm{E}$.

We now show that $\alpha=\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$. To verify this, consider any element \underline{x} in H. Now, $\underline{x}=\underline{n}+\underline{p}$ for some $\underline{n} \in N_{\alpha}$ and some $p \in \mathbb{N}_{\alpha}^{\perp}$, and so

$$
\begin{aligned}
\underline{x} \varepsilon_{1} \varepsilon_{2} \varepsilon_{3} & =(\underline{n}+\underline{p}) \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}=\underline{p} \varepsilon_{2} \varepsilon_{3}=(p \theta) \varepsilon_{3}=(\underline{p} \theta) \theta^{-1} \alpha \\
& =\underline{p} \alpha=\underline{p} \alpha+\underline{n} \alpha=(\underline{p}+\underline{n}) \alpha=\underline{x} \alpha .
\end{aligned}
$$

(b) $\quad \operatorname{dim}\left[R_{\alpha}^{\perp} \cap \overline{\left(R_{\alpha}+N_{\alpha}^{\perp}\right)}\right]=\aleph_{0}$. Since $H=N_{\alpha} \oplus N_{\alpha}^{\perp}$, we may define a mapping $\varepsilon_{1} \in E$ by $\varepsilon_{1}=\eta_{1} \oplus \eta_{2}$, where

$$
\underline{x n}_{1}=\underline{0} \quad\left(\underline{x} \in \mathbb{N}_{\alpha}\right)
$$

and

$$
\underline{x}_{2}=\underline{x} \quad\left(\underline{x} \in \mathbb{N}_{\alpha}^{\perp}\right) .
$$

By Lemma 1.16, there exists an isomorphism θ from N_{α}^{\perp} to a closed linear subspace A of N_{α}. Since $H=N_{\alpha} \oplus N_{\alpha}^{\perp}$, we may define a mapping $\varepsilon_{2} \in \mathrm{E}$ by $\varepsilon_{2}=\theta \oplus \gamma$, where.

$$
\underline{x} \gamma=\underline{x} \quad\left(\underline{x} \in N_{\alpha}\right)
$$

Again, by Lemma 1.16, there exists an isomorphism from N_{α} to $R_{\alpha}^{\perp} \cap \overline{\left(R_{\alpha}+N_{\alpha}^{\perp}\right)}$. Since

$$
\begin{aligned}
\mathbb{N}_{\alpha} \cap\left[R_{\alpha}^{\perp} \cap \overline{\left(R_{\alpha}+N_{\alpha}^{\perp}\right)}\right] & =\left(N_{\alpha} \cap R_{\alpha}^{\perp}\right) \cap \overline{\left(R_{\alpha}+N_{\alpha}^{\perp}\right)} \\
& =\left(N_{\alpha} \cap R_{\alpha}^{\perp}\right) \cap\left(F_{\alpha}^{\perp} \cap N_{\alpha}\right)^{\perp} \\
& =\{\underline{0}\},
\end{aligned}
$$

we may define (by Lemma 2.1 and Lemma 2.2) a mapping δ_{1} from $B=\overline{N_{\alpha}+\left[R_{\alpha}^{\perp} \cap \overline{\left.\left(R_{\alpha}+N_{\alpha}^{\perp}\right)\right]}\right.}$ to H by $\delta_{1}=\overline{\phi+\delta}$, where

$$
\underline{x} \delta=\underline{x} \quad\left(\underline{x} \in R_{\alpha}^{\perp} \cap \overline{\left(R_{\alpha}+N_{\alpha}^{\perp}\right)}\right)
$$

Now, by Lemma 2.2, we may define a mapping $\varepsilon_{3} \in \mathrm{E}$ by $\varepsilon_{3}=\delta_{1} \oplus \delta_{2}$, where

$$
\underline{x}_{2}=\underline{x} \quad\left(\underline{x} \in B^{\perp}\right) .
$$

Since $A \phi$ is a closed linear subspace of H (ϕ being an isomorphism), we may define a mapping ε_{4} from H to H by $\varepsilon_{4}=\mu_{1} \oplus \mu_{2}$, where

$$
\underline{x}_{1}=\underline{x}^{-1} \theta^{-1} \alpha \quad(\underline{x} \in A \phi)
$$

and

$$
\underline{x} \mu_{2}=\underline{x} \quad\left(\underline{x} \in(A \phi)^{\perp}\right) .
$$

Since $A \phi \subseteq R_{\alpha}^{\perp} \cap \overline{\left(R_{\alpha}+N_{\alpha}^{\perp}\right)}$, we have that $(A \phi)^{\perp} \supseteq \bar{R}_{\alpha} \oplus\left(R_{\alpha}^{\perp} \cap N_{\alpha}\right)$. Thus, $R_{\alpha} \subseteq(A \phi)^{\perp}$ and so $\varepsilon_{4} \in E$.

We now show that $\alpha=\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{4}$. To verify this, let \underline{x} be any element of H. Then $\underline{x}=\underline{n}+\underline{p}$ for some $\underline{n} \in N_{\alpha}$ and some $\underline{p} \in N_{\alpha}^{\perp}$. So

$$
\begin{aligned}
\underline{x}_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{4} & =(\underline{n}+\underline{p}) \varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{4}=\underline{p} \varepsilon_{2} \varepsilon_{3} \varepsilon_{4}=(\underline{p} \theta) \varepsilon_{3} \varepsilon_{4} \\
& =(\underline{p} \theta \phi) \varepsilon_{4}=(\underline{p} \theta \phi) \phi^{-1} \theta^{-1} \alpha=\underline{p} \alpha \\
& =\underline{n} \alpha+\underline{p} \alpha=(\underline{n}+\underline{p}) \alpha=\underline{x} \alpha .
\end{aligned}
$$

3.4 DEFINITION Let $\alpha \in$ Sing. Define the stable set X_{α} of α to be $\{\underline{x} \in H: \underline{x} \alpha=\underline{x}\}$.
3.5 LEMMA Let $\alpha \in$ sing . X_{α} is a closed linear subspace of H.

PROOF Since α is a linear mapping, X_{α} is easily seen to be a linear subspace of H. Now, let $\left(x_{i}\right)_{i \in \mathbb{N}}$ be a sequence in X_{α}
with limit, \underline{x} in H. Then

$$
\underline{x} \alpha=\left(\lim \underline{x}_{i}\right) \alpha=\lim \left(\underline{x}_{i} \alpha\right)
$$

since α is continuous. But

$$
\lim \left(\underline{x}_{i}^{\alpha}\right)=\lim \left(\underline{x}_{i}\right)=\underline{x} .
$$

So $\underline{x} \alpha=\underline{x}$, i.e. $\underline{x} \in X_{\alpha}$.
3.6 LEMMA Let $\alpha \in\langle E\rangle$, then either $\operatorname{dim} N_{\alpha}=\kappa_{0}$ or $\operatorname{dim} X_{\alpha}^{\perp}<\aleph_{0}$.

PROOF The proof is by induction on the length, $\ell(\alpha)$, of α. We show first that the result holds for elements of length 1 , i.e. for elements of E. If $\alpha \in E$, then $X_{\alpha}=R_{\alpha}$ and, by Lemma 3.2, $\operatorname{dim} N_{\alpha}=\operatorname{dim} R_{\alpha}^{\perp}$. Thus $\operatorname{dim} N_{\alpha}=\operatorname{dim} X_{\alpha}^{\perp}$. Either $\operatorname{dim} N_{\alpha}=\aleph_{0}$ or $\operatorname{dim} N_{\alpha}<\aleph_{0}$. If the latter holds, then clearly $\operatorname{dim} X_{\alpha}^{\perp}<\aleph_{0}$. Thus the result holds for elements of length 1 .

Now suppose the result holds for elements of <E> with length strictly less than n. Let $\eta \in\langle E\rangle$ with $\ell(\eta)=n$. Then $\eta=\tau \varepsilon$ where $\tau \in<E\rangle, \quad \ell(\tau)=n-1$ and $\varepsilon \in E$. Suppose $\operatorname{dim} N_{n}<\kappa_{0}$. Let $\underline{x} \in R_{\varepsilon} \cap X_{\tau}$. Then $\underline{x} \tau=\underline{x}$ and $\underline{x} \varepsilon=\underline{x}$. So.

$$
\underline{x} \eta=(\underline{x} \tau) \varepsilon=\underline{x} \varepsilon=\underline{x} .
$$

Thus $\underline{x} \in X_{\eta}$. So $R_{\varepsilon} \cap X_{\tau} \subseteq X_{\eta}$. Hence, by Lemma 1.1! and Lemma 1.18, $X_{\eta}^{\perp} \subseteq \overline{R_{\varepsilon}^{\perp}+X_{\tau}^{\perp}}$. Thus, by Lemma 1.20,

$$
\begin{align*}
\operatorname{dim} X_{\Pi}^{\perp} & \leq \operatorname{dim}\left(\overline{R_{\varepsilon}^{\perp}+X_{\tau}^{\perp}}\right)=\operatorname{dim}\left(R_{\varepsilon}^{\perp}+X_{\tau}^{\perp}\right) \\
& \leq \operatorname{dim} R_{\varepsilon}^{\perp}+\operatorname{dim} X_{\tau}^{\perp} . \tag{+}
\end{align*}
$$

Now, $R_{\eta}=R_{\tau \varepsilon} \subseteq R_{\varepsilon}$. So $\operatorname{dim} R_{\varepsilon}^{\perp} \leq \operatorname{dim} R_{\eta}^{\perp}=\operatorname{dim} N_{\eta}$ by Lemma 3.2. Now we have assumed that $\operatorname{dim} N_{\eta}<\aleph_{0}$, and so $\operatorname{dim} R_{\varepsilon}^{\perp}<\kappa_{0}$. Also, $\operatorname{dim} N_{\tau} \leq \operatorname{dim} N_{\tau \varepsilon}=\operatorname{dim} N_{\eta}<K_{0}$. So, by the induction hypothesis, $\operatorname{dim} X_{t}^{\perp}<N_{0}$. But we have already shown (at (+)) that

$$
\operatorname{dim} X_{\eta}^{\perp} \leq \operatorname{dim} R_{\varepsilon}^{\perp}+\operatorname{dim} X_{\tau}^{\perp}
$$

Thus $\operatorname{dim} X_{n}^{\perp}<\aleph_{0}$ as required.
3.7 LEMMA Let $\alpha \in$ sing. If $\operatorname{dim} X_{\alpha}^{\dot{L}}<\aleph_{0}$ and $\operatorname{dim} N_{\alpha}=\operatorname{dim} R_{\alpha}^{\perp}$, then $\alpha \in\langle E\rangle$.

PROOF We show first that the null-space of α is nontrivial and that the closed linear subspace $\chi_{\alpha}^{\perp}+\left(\chi_{\alpha}^{\perp}\right)_{\alpha}$ is invariant under α.

Since X_{α}^{\perp} is a finite dimensional linear subspace of H, we have that $\left(X_{\alpha}^{\perp}\right) \alpha$ is a finite dimensional linear subspace of H. Thus $X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha$ is a finite dimensional linear subspace of H, and so is closed.

Now, let $\underline{v} \in X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha$. Then $\underline{v}=\underline{p}+\underline{p}^{\prime}$ for some $\underline{p} \in X_{\alpha}^{\perp}$ and some $\underline{p}^{\prime} \in\left(X_{\alpha}^{\perp}\right) \alpha$. Now, $\underline{p}^{\prime}=\underline{x}+\underline{y}$ for some $\underline{x} \in X_{\alpha}^{\perp}$ and some $\underline{y} \in X_{\alpha}$. Thus

$$
\underline{v}=\underline{p}+\underline{x}+\underline{y} .
$$

Hence

$$
\begin{aligned}
\underline{v} \alpha & =\underline{p} \alpha+\underline{x} \alpha+\underline{y} \\
& =(\underline{p}+\underline{x}) \alpha+(\underline{y}+\underline{x})-\underline{x} \in\left(\hat{N}_{\alpha}^{\perp}\right) \alpha+X_{\alpha}^{\perp} .
\end{aligned}
$$

Thus $X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha$ is invariant under α.
Now, let α_{1} be the restriction of α to the closed linear
subspace $X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha$. Then $\alpha=\alpha_{1} \oplus \alpha_{2}$, where α_{2} is defined by

$$
\underline{x}_{2}=\underline{x} \quad\left(\underline{x} \in\left[X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha\right]^{\perp}\right)
$$

. Now, suppose that $N_{\alpha}=\{\underline{0}\}$. Then, certainly, $N_{\alpha_{1}}=\{\underline{0}\}$ and so α_{1} is an automorphism of $X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha$. Hence there exists a (group theoretic) inverse α_{1}^{-1}. of α_{1} such that $\alpha_{1} \alpha_{1}^{-1}=\alpha_{1}^{-1} \alpha_{1}$ and $\alpha_{1} \alpha_{1}^{-1}$ is the identity map on $X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha$. By defining $\alpha^{\prime}=\alpha_{1}^{-1} \oplus \alpha_{2}$, we see that $\alpha \alpha^{\prime}$ is the identity map on H. Since this contradicts the hypothesis that $\alpha \in$ sing, we have that $N_{\alpha} \neq\{\underline{0}\}$.

Since $N_{\alpha} \cap X_{\alpha}=\{\underline{0}\}$, we may define a mapping $\varepsilon \in E$ by $\varepsilon=\overline{\left(\gamma_{1}+\gamma_{2}\right)} \oplus \gamma_{3}$, where

$$
\begin{aligned}
& \underline{x} \gamma_{1}=\underline{0} \quad\left(\underline{x} \in N_{\alpha}\right), \\
& \underline{x} \gamma_{2}=\underline{x} \quad\left(\underline{x} \in X_{\alpha}\right)
\end{aligned}
$$

and

$$
\underline{x} r_{3}=\underline{x} \quad\left(\underline{x} \in\left(N_{\alpha}+X_{\alpha}\right)^{\perp}\right) .
$$

By Lemma 1.11 and Lemma 1.12,

$$
\begin{aligned}
X_{\alpha}^{\perp} & =\left[X_{\alpha}^{\perp} \cap N_{\alpha}^{\perp}\right] \oplus\left(X_{\alpha}^{\perp} \cap\left[X_{\alpha}^{\perp} \cap N_{\alpha}^{\perp}\right]^{\perp}\right) \\
& =\left[X_{\alpha}+N_{\alpha}\right]^{\perp} \oplus\left(X_{\alpha}^{\perp} \cap \overline{\left[X_{\alpha}+N_{\alpha}\right]}\right)
\end{aligned}
$$

Thus we may define a map $\delta \in$ Sing by $\delta=\phi_{1} \oplus \phi_{2} \oplus \phi_{3}$, where

$$
\begin{aligned}
& \underline{x}_{1}=\underline{x} \alpha \quad\left(\underline{x} \in\left[X_{\alpha}+N_{\alpha}\right]^{\perp}\right) \\
& \underline{x} \phi_{2}=\underline{0} \quad\left(\underline{x} \in X_{\alpha}^{\perp} \cap \overline{\left[X_{\alpha}+N_{\alpha}\right]}\right)
\end{aligned}
$$

and

$$
\underline{x}_{3}=\underline{x} \quad\left(\underline{x} \in X_{\alpha}\right)
$$

We now show that $\alpha=\varepsilon \delta$. Let \underline{y} be any element of H. Then $\underline{y}=\underline{n}+\underline{x}+\underline{p}$ for some $\underline{n} \in \mathbb{N}_{\alpha}$, some $\underline{x} \in X_{\alpha}^{\prime}$ and some $\underline{p} \in\left(N_{\alpha}+X_{\alpha}\right)^{\perp}$. So

$$
\underline{y} \varepsilon \delta=(\underline{n}+\underline{x}+\underline{p}) \varepsilon \delta=(\underline{x}+\underline{p}) \delta=\underline{x}+\underline{p} \alpha=\underline{x} \alpha+\underline{p} \alpha
$$

since $\underline{x} \in X_{\alpha}$. So

$$
\underline{y} \varepsilon \delta=(\underline{x}+\underline{p}) \alpha=\underline{n} \alpha+(\underline{x}+\underline{p}) \alpha=(\underline{n}+\underline{x}+\underline{p}) \alpha=\underline{y} \alpha
$$

since $\underline{n} \in N_{\alpha}$. Thus $\varepsilon \delta=\alpha$.
Now, let δ^{\prime} be the restriction of δ to the closed linear subspace $X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha$. Since $X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha$ is invariant under α, we have that δ^{\prime} is an endomorphism of $X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha$. Since $N_{\alpha} \neq\{\underline{0}\}$ and $X_{\alpha} \cap N_{\alpha}=\{\underline{0}\}$, we have that

$$
X_{\alpha}^{\perp} \cap \overline{\left[X_{\alpha}+N_{\alpha}\right]} \neq\{\underline{0}\},
$$

ie.

$$
N_{\delta}, \neq\{\underline{0}\} .
$$

Since $X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha$ has finite dimension, n say, we have that $\delta^{\prime} \in \operatorname{Sing}_{\mathrm{n}}$. Hence, by Theorem 1.4.9, $\delta^{\prime}=\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \ldots \varepsilon_{\mathrm{m}}^{\prime}$ where each $\varepsilon_{\mathrm{i}}^{\prime}$ ($i=1,2, \ldots, m$) is an idempotent of Sing_{n}. Now, since $H=\left[X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha\right] \oplus\left[X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha\right]^{\perp}$, we may define $\varepsilon_{i}: H \rightarrow H$ by $\varepsilon_{i}=\varepsilon_{i}^{\prime} \oplus i \quad(i=1,2, \ldots, m)$, where

$$
\underline{x}^{2}=\underline{x} \quad\left(\underline{x} \in\left[X_{\alpha}^{\perp}+\left(X_{\alpha}^{\perp}\right) \alpha\right]^{\perp}\right) .
$$

Thus, $\delta=\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{m}$ where each $\varepsilon_{i} \in E$. Hence $\alpha=\varepsilon \varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{m} \in\langle E\rangle$.
3.8 THEOREM Let H be a separable Hilbert space, sing the set of singular continuous endomorphisms of H and E the set of idempotent elements of sing . If $\alpha \in$ Sing, define X_{α} to be the set $\{\underline{x} \in H: \underline{x} \alpha=\underline{x}\}$. Then $\langle E\rangle=I \cup F$ where

$$
I=\left\{\alpha \in \operatorname{sing}: \operatorname{dim} N_{\alpha}=\operatorname{dim} R_{\alpha}^{\perp}=\aleph_{0}\right\}
$$

and

$$
F=\left\{\alpha \in \operatorname{Sing}: \operatorname{dim} \mathbb{N}_{\alpha}=\operatorname{dim} R_{\alpha}^{\perp}, \operatorname{dim} X_{\alpha}^{\perp}<\aleph_{0}\right\} .
$$

PROOF By Lemma 3.3 and Lemma 3.7, we have $I U F \subseteq\langle E\rangle$. Now, let $\alpha \in<E\rangle$. Then, by Lemma 3.2, $\operatorname{dim} N_{\alpha}=\operatorname{dim} R_{\alpha}^{\perp}$. Also, by Lemma 3.6, either $\operatorname{dim} N_{\alpha}=\aleph_{0}$ or $\operatorname{dim} X_{\alpha}^{\perp}<\aleph_{0}$, i.e. $\alpha \in I U F$. Thus $\langle E\rangle \subseteq I \cup F$, and so $\langle E\rangle=I \cup F$.

REFERENCES

[1] I. Anderson, A First Course in Combinatorial Mathematics, Oxford, Clarendon Press, 1974.
[2] S. K. Berberian, Introduction to Hilbert Space, Oxford University Press, 1961.
[3] L. M. Bregman, "Some properties of non-negative matrices and their permanents", Dokl. Acad. Nauk. S.S.S.R. 211(1) (1973) (Russian) and Soviet Maths, 14 (1973), 945-949.
[4] K. Byleen, J. Meakin and F. Pastijn, "The fundamental four-spiral semigroup", J. of Algebra, 54 (1978), 6-26.
[5] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, vol. 1, Math. Surveys of the American Mathematical Society no. 7, 1961.
[6] —, The Algebraic Theory of Semigroups, vo1. 2, Math. Surveys of the American Mathematical Society no. 7, 1967.
[7] J. A. ErdBs, "On products of idempotent matrices", Glasgow Math. J., 8 (1967), 118-122.
[8] J. M. Howie, "The subsemigroup generated by the idempotents of a full transformation semigroup", J. London Math. Soc., 41 (1966), 707-716.
[9] —, "Products of idempotents in certain semigroups of transformations", Proc. Edinburgh Math. Soc. (II), 17 (1971), 223-236.
[10] , An Introduction to Semigroup Theory, London, Academic Press, 1976.
[11] —, "Idempotent generators in finite full transformation semigroups", Proc. Royal Soc. Edinburgh, 81 (A) (1978), 317-323.
[12] —, "Products of idempotents in finite full transformation semigroups", Proc. Royal Soc. Edinburgh (to appear).
[13] —, "Gravity, depth and homogeneity in full transformation semigroups", Proc. Monash University Conference on Semigroups, October 1979, Academic Press (to appear).
[14] J. M. Howie and B. M. Schein, "Products of idempotent orderpreserving transformations", J. London Math. Soc. (2), 7 (1973), 357-366.
[15] N. Jacobson, Basic Algebra, vo1. 1, San Francisco, W. H. Freeman, 1974.
[16] M. Marcus and M. Newman, "Inequalities for the permanent function", Annals of Maths., 75 (1), (1962), 47-62.
[17] B. M. Schein, "Products of idempotent order-preserving transformations of arbitrary chains", Semigroup Forum 11 (1975/76), 297-309.
[18] G. F. Simmons, Introduction to Topology and Moderm Analysis, New York, McGraw-Hi11, 1963.
[19] M. R. Spiege1, Advanced Calcutus, Schaum's Outline Series, New York, McGraw-Hi11, 1974.

