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ABSTRACT

In 1967, J. A. ErdBs showed, using a matrix theory approach, that 

the semigroup Sing^ of singular endomorphisms of an n-dimensional 

vector space is generated by the set E of idempotent endomorphisms of 

rank n - 1 . This thesis gives an alternative proof using a linear 

algebra and semigroup theory approach. It is also shown that not all 

the elements of E are needed to generate Sing^ . Necessary conditions 

for a subset of E to generate Sing^ are found; these conditions are 

shown to be sufficient if the vector space is defined over a finite 

field. In this case, the minimum order of all subsets of E that 

generate Sing^ is found. The problem of determining the number of 

subsets of E that generate Sing^ and have this minimum order is 

considered; it is completely solved when the vector space is two- 

dimensional.

From the proof given by E r d B s , it could be deduced that any 

element of Sing^ could be expressed as the product of, at most, 2n 

elements of E , It is shown here that this bound may be reduced to n , 

and that this is best possible. It is also shown that, if is the

set of all idempotents of Sing^ , then (E^)^  ̂ is strictly contained 

in Sing^ .

Finally, it is shown that ErdBs's result cannot be extended to the 

semigroup Sing of continuous singular endomorphisms of a separable 

Hilbert space. The subsemigroup of Sing generated by the idempotents 

of Sing is determined and is, clearly, strictly contained in Sing .
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INTRODUCTION

If M  is a mathematical system and End(M) is the set of endo­

morphisms of M then End(M) forms a semigroup under composition of 

mappings. Since 1966 a number of papers have been written to determine 

the subsemigroup S^ of End(M) generated by the idempotents E^ of 

End(M) for different systems M  .

In [8] the problem was solved when M  is a finite set, in this 

case End(M) being the full transformation semigroup , Here the

subsemigroup generated was found to be U  {id} where is

the symmetric group on M  and Id is the identity mapping -on M  .

In [9] M wa-s taken to be a totally-ordered set. If M  is 

finite then the semigroup 0^ of order-preserving mappings of M was 

shown to be generated by the idempotents of 0^ . If M  is infinite 

and has order type w (i.e is isomorphic to IN with the natural order) 

then necessary and sufficient conditions for certain elements of 0M
to be idempotent generated were also given in [9],

In [14] this was generalised to an arbitrary well-ordered set and 

then in [17] to an arbitrary totally-ordered set.

Having ascertained the subsemigroup generated by the idem­

potents E^ in these cases, various further questions arise. The most 

obvious is, are all the elements of E^ required to generate ? If 

not, then the question arises of how small the order of a generating 

subset of E^ may be. From this the problem arises of ascertaining the 

number of ways it is possible to choose subsets of E^ that generate

and have this minimum order. In the case of M being a finite set, 

these questions have been solved in [8] and [11],

In any semigroup of endomorphisms of M  we have
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i

' ®M “ ° n=l^M

2 3 1where E—  ç E s s ... , and so for each element a of thereM M  M  M
is a least integer g (a) such that

I
a E , îM

The problem of ascertaining g(u) has been partially solved and the 4

problem of finding sup{g(a) : a E S^} completely solved in [12] (and 

reported in [13]) for the case of M  being a finite set. Comparable 

results may be deduced from [14] if M  is a well-ordered set or a finite 

totally-ordered set.

In Chapter 1 I shall consider all these questions when M  is an 

n-dimensional vector space V  over a field F . Rather than consider 

the subsemigroup generated by E^ , I have considered the subsemigroup 

generated by E^\{l) where I is the identity mapping. This restric­

tion is of trivial effect since <E^> = <E^\{I}> U  {i} . it has already 

been shown, in [7], that E^\{I} generates Sing^^ , the semigroup of 

singular endomorphisms of an n-dimensional vector space. A more 

illuminating proof of this result is given as Theorem 1.4.9 . If F is 

finite, then the minimum order of a generating set of idempotents is 

found at Corollary 1.5.7 . An upper bound for the number of ways of 

choosing a generating set of idempotents with this minimal order is 

obtained in Lemma 1.7.7 , Lemma 1.7.15 and Lemma 1.7.18 . The final two 

questions are solved, for an arbitrary field, in Theorem 1.8.7 and 

Theorem 1.8.8 .

In Chapter 2 I shall determine where H is a separable }

Hilbert space and End([j) is the semigroup of continuous linear II
mappings of H to itself. I
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1
■ . jThroughout this thesis the semigroup notation used shall be as in â

[53 and [103. V  will always denote an n-dimensional vector space (n

finite) over a field F and [] will denote a separable Hilbert space.

Sing^ will denote the semigroup of singular endomorphisms of V  and

Sing will denote the semigroup of singular continuous endomorphisms of A

W . (Note that an element of Sing may have a null-space consisting

solely of {jO} , for a continuous endomorphism a of [j is singular if

there does not exist a continuous endomorphism 3 of \\ such that a3

is the identity mapping on H •) ^^n-1 denote the principal

factor of Sing^ containing those elements of rank n - 1 whereas

PF , will be the set of non-zero elements of PF^ . In Chapter 1 E n-I n-I
will denote the idempotents in the set PF , , in Chapter 2 E willn— 1
denote all the idempotents of Sing . If a is an element of Sing^ 

or Sing then the null-space of a will be denoted by and the

range of a by . At times Sing^ will purposely be confused with

the semigroup of singular n x n matrices. Throughout, elements of 

Sing^ [Sing] will be written on the right of elements of V  [R^•



' . f . ' ' 4 • ; -••• ■ "f , •• • L / ' .

CHAPTER 1

THE SEMIGROUP OF SINGULAR ENDOMORPHISMS OF A 

FINITE DIMENSIONAL VECTOR SPACE

I
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§ I PRELIMINARIES

Ra3 ~ *

1.2 LEMMA Let a , g E  sing . Then a , 6 and ag all have"n

n
(i) a L g  if and only if

(ii) a S g  if and only if
(iii) aZ)g if and only if a and g have the same rank
(iv) a D g  if and only if a J  g .

1.4 LEMMA If e E  E then N ^ R = {0} and   ” e e —

V = N, ® R, •

1.5 LEMMA Let a,g E sing be of rank . r . Then ag is
of rank r if and only if R% ^  Ng = (jO) *

PROOF Suppose first that ag is of rank r . Let

The first eleven lemmas are probably well known and are included 

here for the sake of completeness. The proofs of the first three, being |

elementary, are omitted.

1.1 LEMMA Let a , g E  sing . Then N £ N ^ and   "n ”a *’ag

the same rank if and only if and R^^ = R^

1.3 LEMMA (Exercise 2.2.6 in [5]) Let a , g E sing . Then; If

PROOF Let X E  n  R . Then 0 = xe = x . So  —  ' *e ' 'e —  —  —
Cl R^ = {£} . Also, for all x in V  , x E  + R^ since 

X = (2c-xe) + >£e . So V  = + Rg and hence V  ~ Ng. ® Rg. • 1



X E  n * Then there exists an element in V  such that

yoc = ^  . Now xg = jO and so ^ag = jO , i.e. E {\|̂  ̂ = |\|̂ (by

Lemma 1.2). So x = ^  ^  . Hence R^ Ci [\|̂ = {^} .

Conversely suppose that R^ n = {O'} . Let 2L ^  |\|̂  ̂ . Then

xag = 0 and so xa E M . Hence xa E R^ n j\| = {0} by hypothesis.

So X E |\j . Thus we have N o £ N . But (by Lemma 1.1) |\| £ R ^—  ’’a '*ag a ‘'a ”ag
and so = R^^ . Hence ag is of the same rank as a , namely r .

1.6 LEMMA Every element of Sing^ of rank r has a 
(semigroup) inverse of rank r . Consequently Sing^ is regular.

I
PROOF Let a be an element of Sing^ of rank r . By

[5 , Exercise 2.2.6] there exists an endomorphism g of V  (not 

necessarily singular) such that aga = a '. Now consider the element %

g ’ = gag . Clearly the rank of g ' is less than or equal to the rank 

of a . But a g ’a = a(gag)a = (aga)ga = aga = a and so the rank of a 

is less than or equal to the rank of g' . Thus a and g' have the 

same rank. Also g ' is an inverse of a for g ’ag' = (gag)a(gag) 

g (aga)gag = g(aga)g = gag = g' . Thus g ’ is an inverse of a of 

rank r .

1.7 LEMMA Let a,g E ppO , . Then; ------------- n- 1

(i) a L  g if and only if . R^ = R^
(ii) ai?g if and only if R^ = R^ . !

PROOF (i) By [10, Lemma II.4.1] a L  g if and only if there {

exist inverses a ’ and g’ (of a and g respectively) in PF^_j f

such that a ’a = g ’g . Now considering a,a’ , g,g’ as elements of

Sing^ we still have that a ’ is an inverse of a , g' is an inverse

A : -i’: -i.... .



of 3 and that a'a = g'g . Thus (by [10, Lemma II.4.1]) a and 

are L-equivalent in Sing^ . So (by Lemma 1.3) .

areConversely, if R^ = R then (by Lemma 1.3) a and

I

L-equivalent in Singn So (by [10, Lemma II.4.1]) there exist inverses

a' and g' (of a and g respectively) in Sing^ such that 

a'a = g'g . By [10, Lemma II.3.5] a ’ and a are D-equivalent in 

Sing^ , and g' and g are /^-equivalent in Sing^ . Thus (by Lemma

1.3) rank a ’ = rank a and rank g ’ = rank g . Thus a' ,g' E pp0n-1 *
So (by [10, Lemma II.4.1]) a and g are L-equivalent in PF 

The proof of (ii) is dual to the proof of (i).

0
n-1 *

1.8 LEMMA PF^_| is a completely 0-simple semigroup.

PF

PROOF By [5, Lemma 2.39] PF^_| is either 0-simple or null,

is not null since it contains the n x n idempotent matrix

1 0 

1

0

of rank n - 1 . So PF^ , is 0-simple. To show that PF^ . isn - 1 n - 1
completely 0-simple, it will suffice to show that PF^_^ contains a 

primitive idempotent [10, Theorem III.3.1]. Let e,<J) E PF^_j be non­

zero idempotents with e < (|) . Then e = e<fi = <f>e . So = R^^ and

K  " Lemma 1.2) R^^ = R^ and R^^ = R^ . Thus R^ = R̂

and R = R, .■ Hence (by Lemma 1.7) e L cj) and e i? cf* , i.e, e/f (j) , But

since each #-class contains at most one idempotent [10,Corollary II.2.6]

we have e = So every non-zero idempotent of PF^_j is primitive

■4



and PF^_| contains a non-zero idempotent (as already shown). Hence 

PF^_^ is a completely 0-simple semigroup.

1.9 LEMMA (exercise 7.7.5 in [6]) Let a,g,y e  PF^_j . 
Then agy = 0 if and only if ag = 0 or gy = 0 .

1.10 LEMMA Let a,g e  PF^_^ . Then ag ^ 0 if and only if 
there exists a non-zero idempotent e e  p f ^_^ such that a L e  and 
e i? g .

PROOF If ag ^ 0 then rank ag is n - 1 , as are the

ranks of a and g . So (by Lemma 1.2 and Lemma 1.3) ag L g and

agi?a . Thus by Green's Lemmas [10, Lemma II.2., 1] y yg and

y +> yg' (where a = (ag)g' ) are mutually inverse i?-class preserving

bijections from L onto L . and L _ onto L respectively. Thusa ag ag a ^
gg ' is a non-zero element of PF^_^ , i.e. gg' has rank n - 1 , So

(by Lemma 1.2 and Lemma 1.3) gg' i?g and gg' Lg' . But , = R^

and so g' L a  . Thus gg' E n  . Also since y yg'g is the

identity mapping on L^^ we have g = gg'g . Hence gg' is idempotent

and so L^ n contains an idempotent.

Conversely if L^ Ci R^ contains a non-zero idempotent e we have

that eg = g since an idempotent acts as a left identity within its

i?-class. So by Green's Lemma y yg is a bijective L-class preserving

mapping from L onto L^ . Thus ag E L„ n  R . Thus ag L e and so a g g a
ag has the same rank as e , i.e. ag ^ 0 .

1.11 LEMMA Let a e  PF° , . Then N n  R = { 0 } if and------------- n-1 ‘̂ a 'u —
only if there exists an idempotent e e  pf^_^ such that a H e .



PROOF Suppose first that R Ci R = {0} . Let x E  R .  *’a a —  —
Then xa^ = 2  * i «6. xa ^ * Thus = 0. hypothesis. Hence

X E R^ . Consequently R^2 ^ R̂  ̂ . But (Lemma 1.1) R^ c R^2 and so

R^ = R^2 • Thus (Lemma 1.3) a i? . Also, since dim R^ = dim R^2 

we have dim R^ = dim R^2 • But R^2 - and so R^ « R^2 * Thus (by

Lemma 1.3) a L . Hence a H . So (by [10, Theorem II.2,53) H^ 

is a group. Thus H^ contains an idempotent.

Conversely (by Lemma 1.4) R^ ^  R^ = {Q̂ } . Since (by Lemma 1.3)

Rg = Ret R^ = R^ we have R^ ^ R̂  ̂ = (0} .

1.12 THEOREM Let e,(j) e  p f ^ _ j be non-zero idempotents, and
suppose that R^ n  R^ = {£} which (by Lemma 1.5) implies e* ^ 0 . 
Then e* is idempotent if and only if either;

(i) G* = * which happens if and only if R^ = R^ or
(ii) G(f) = E which happens if and only if R^ = R^ .

PROOF Suppose first that ecj) is idempotent and that

R^ ^ R^ . Let X. ̂  V  ' Then (by Lemma 1.4) for some E R^ and some

n E R we have —  ” e

x£(|> = r + n . (1)

So

xGoe = r .

So substituting for ^  in (1) we have 

Ê(j) = scefe + n. .

Thus



2, xe<|) = x£(f> = x£(f)ecj) + n(J> ,

But since we have assumed that £^ is idempotent this implies that 

n E . But since both and R^ are one-dimensional and we have

assumed that R 4̂ R. we have R n R = {0} . Thus n = 0 . Hence,'e <p "E —  —  —
from ( 1 ) , ^ £ < J ) E R ^  . But this holds for all in V  and so

£̂<t» ^ Rg * But since £(f) ĵ .O we have that dim = n - 1 . Thus

Reef) " Re • Also (by Lemma 1.1) R̂ .̂  £ R^ and so R^^ = R^ . Thus

Rg = R^ . So if £(j) is idempotent then either R^ = R^ or R^ = R^ .

We shall now show the equivalence in condition (i). Suppose that

E(J) = (j) . Then R , = R, . But R , 2 R and dim R . = dim R since£(p 9 ''£(p "e £9 ’’e
ecj) and e both have rank n - 1 . Thus R . = R and so R, = R'’£9 "E <|) e
Conversely, suppose that R^ = R^ . Then (by Lemma 1.3) ei?9 . But an

idempotent acts as a left identity within its own i?-class and so e9 = 4>

The proof of the equivalence in (ii) is dual.

It is immediate that if condition (i) or condition (ii) holds then 

e9 is idempotent.

§2 STROKE PRODUCTS

The purpose of this section is to introduce a new notation for

elements of E (i.e.the idempotents of Sing^ of rank n - I or
0equivalently the non-zero idempotents of PE^_^ ) and for the E-classes

of PF^ , (and so for the E-classes of the top «/-class of Sing ). n-1 n
This new notation will make future results much clearer.

If £ E E then if we are to describe £ by giving its null- 

space and its range we have to give one vector for its null-space and 

n - 1 vectors to- determine its range. Similarly to denote any E-class
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in PF^_| by giving vectors that determine the null-space and the range 

of elements in that E-class we again have to specify n vectors. This 

is somewhat cumbersome and nothing is saved from merely giving the 

matrix relative to some basis of any element in that E-class. The 

notation to be developed will reduce the number of vectors it is nece­

ssary to state to determine a particular E-class of PF^ , or a parti-n-1
cular element of E to just two.

2.1 DEFINITION 
K 2

Let Ç,x be automorphisms of the field F

such that (xC ) is the identity mapping. Let â  = (3^ , 3^ , . ..,a^) 

and ^  = (b J ,b2 ,... ,b^) be elements of V  . The (C»x)“"Stroke product

of £  with _b is denoted by <a|^> 

defined by
(G ,X )

or simply by . <a b> , and is

n
<a|b> = (a.Ç)(b.x) .

Clearly, if Ç is the identity and x sends an element to its 

complex conjugate, then <*j*> is the normal inner product on an n- 

dimensional vector space over the field of complex numbers (or real 

numbers).

We shall regard E and x as fixed in advance and shall not 

normally make explicit reference to them in definitions and statements.

2.2 DEFINITION If a = (a,,a„,,..,a ) and b = (b,,b^,...,b^)

are elements of V  we shall say that ^  and ^  are perpendicular if

= 0 . This definition is reasonable since . = 0  if and only

if

ii)

n
ill(^i^)(bfX) = 0 ,



lOa

i.e. if and only if

n “ 1
( . E , ( a . S ) ( b . x ) ) S  X = 0 ,

i.e, if and only if

n . - 1(a^X)(b^X? X) = 0 ,

i.e. if and only if

n
.2^(a.x)(b.S) = 0  ,

i.e. if and only if

<^!a> = 0  .

If A is a subset of V  > we shall define the perpendicular of A

to be A"*" = {x E y  <x \ a> = 0 (V G  A)} .

It is worth noting that in general A and A"̂  are not disjoint.

For example, if V  is the two-dimensional vector space over the complex

numbers and Ç and x are both the identity mapping, then

(l,i) E <(l,i)>L where <(l,i)> denotes the space generated by the

vector (l,i) . Another simple example is obtained by taking V  as the

two-dimensional vector space over 7Z^ , and Ç and x as the identity

3
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mapping; then (1,1) G <(l,l)>^ .

It should also be noted that if A is any subset of V  then A"̂

is a subspace of V  •

I2.3 LEMMA Let V  be an n-dimensiona! vector space over the |
field F , and let [| be a subspace of V  • Then dim jj = n - dim jj"̂ .

PROOF If A is an m  x n matrix of rank r then

{ E F^ : xA = 0} is a subspace of F^ of dimension n - r .

Now let dim U = r and let {üj j • • • JÜj.) be a basis for (J ,

where u^ = (uf ̂ ̂ , u P \  . . . ) . Then . x -  (x^ ̂ \ x ^ ^ \  . .. ,x^^^ ) E (J***

if and only if = 0 for i = 1, 2, ..., r , i,e. if and only if

(xÇ)A = jO where A = ( (_U| x) ) is an n x r matrix

and 3cÇ = (x^ ̂ ̂ Ç ,x^^^Ç,. .. Ç) , Since the r columns are linearly i|

independent, it follows that dim = n - r .

2.4 LEMMA Let [J and \j be subspaces of V  . Then
(i) (U^)^ = U and

(ii) if U  c  W  then t  c\}^ ,

PROOF (i) Clearly [) £ (U^)^ • Since (by Lemma 2.3)

dim (U^)^ = n - dim [j"̂ = n - (n-dim(j) = dim (J we have that (^^)^ = (j .
(ii) Let X. ̂  • Then = 0 for all w  E . So

certainly = 0 for all u_ ^ L) since (J C ^  . Thus x E {Ĵ  and

so C IjL ^

2.5 NOTATION Since every element in any particular E-class

of PF^ , has the same one-dimensional null-space we can label then-1
E-classes of ^F^__j in the obvious way with an element of V  that

 ,         ,      ....
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common range of the elements in that L-class. Thus if a is a non-zero

2.6 LEMMA [n:r] is a group E-class of , if and only   ---
if <n|£> 4 0 .

PROOF Suppose that is a group E-class. Then

contains the idempotent e = (jn:r̂ ) . Now (by Lemma 1.4) n = {jD}

and since n E  R and n 0 we have n ^ R = (R^)^ . But since“  "e —  —  —  e

%
'I 
i 
3

generates this one-dimensional subspace of V  • Similarly, the L-classes

of PF^ . could be labelled in the obvious way with n - 1 elements of n-1
V that generate the common range. But since if dim R = n - 1 we have

(by Lemma 2.3) that dim = 1 , it follows that we can label the

L-classes of PF^ , in an obvious way with an element of V  that %n-1 ' %

generates the one-dimensional subspace of V  perpendicular to the

■3

element of PF^_^ such that R^ = <n> and R^ = <r> then we can label

the L-class containing a by L^ , the E-class containing a by

and the E-class containing a by .H As H is rather unwieldy 4n.,_r n,r_ ^

this will usually be denoted by . It is clear that [jÇîE,] 4

denotes exactly one E-class for any choice of n. and jr in V  (the T

fact that [n:r] represents at least one E-class of PF^ , is a result  n-1
of [5, Exercise 2.2.6]). It is also clear that for any non-zero scalars

X and \i we have [n:_r] = [X_n:yr^] .

Having adopted this notation, it is then reasonable to introduce

the following: If Cn:r] is a group E-class of PF^ , we shall denote  n-1
the idempotent in [n:^] by (n:^) • (n:r^) is clearly unique since

no E-class contains more than one idempotent.

With this notation we have a very simple way of telling if a 4

particular E-class of PF^_| contains an idempotent.
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1 notation tor «-classes or

rewrite Lemma 1.10 as:

§3 PRODUCTS OF THREE IDEMPOTENTS OF RANK n - 1

The purpose of this section is to determine when the product of

three idempotents of rank n - 1  is itself an idempotent of rank n - I

Lemma 3.1, Lemma 3.2, Lemma 3.12 and Theorem 3.14 give necessary and

1
jc E and R^ is one-dimensional we have 4 0 . Conversely,

suppose 4 0 . Now there exists an element a E PF^_j such that %

= <n> and R^ = (by the comments of Notation 2.5). Since 4

<nlr> ^ 0 we have Xn ^ (R^)^ = R for any non-zero scalar X in F , I— ‘—  —  a ct Ï
ie. Rg ^ Rg = W }  • So (by Lemma 1.11) there exists an idempotent e |

in PF^ , such that a E e  . Clearly R^ = R^ = <r> and R = R = <n> tn-1 ‘'e ' a —  "e "a —
(by Lemma 1.7) and so e = (ti:r̂ ) , ie. contains an idempotent and .-I

so is a group E-class. 1

This alternative notation for E-classes of PF , enables us to In-1

2.7 LEMMA Let a and g be elements of PF^ , in------------- n - 1
[n^ :jrI] and [1 1 2 :^2 ] respectively. Then ag f 0 if and only if 
<2 .2 1 ^ •

PROOF By Lemma 1.10, ag ^ 0 if and only if there exists an

idempotent z in PF^_^ such that a L e  and e E g . Clearly

a E L and g E  r  , Thus ag ^ 0 if and only if there exists an- 1  5.2
idempotent e in L^ n r  = [n„:r,] , ia.if and only if [n„:r,] is

E .1 52 —  —  —  —
a group E-class. But (by Lemma 2.6) this happens if and only if

•=2 .2 h|=* * 0  .
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sufficient conditions for this to happen. It is in the case of Theorem 

3.14 only that the product generates a new idempotent of rank n - 1 .

Throughout this section we shall be changing backwards and 

forwards between the two notations for non-zero idempotents and E-classes 

other than {0} of PF^_^ so we shall adopt the following conventions:

Ii = Ng. = <üi> . Ri = “ ^^i>

and so

^i = (£.i=£i) S  Cn.:r,].= .

We first dispose of a very trivial lemma which is included only

for the sake of completeness since it does give sufficient conditions

for the product of three idempotents of PF to be an idempotent ofn— 1
PF , . n-1

3.1 LEMMA Let be idempotents of PF . . If------------- I Z J n-1
(1) e|,G2 *Gg have a common null-space then = e. ; or

(ii) G|,G 2 ,Eg have a common range then '

PROOF This is immediate from Theorem 1 . 1 2 .

This is equivalent toi

3.2 LEMMA Let ni *52 '— 3 1  ' — 2  ^^d jCg be elements of V  
such that <n^|££> 4̂ 0  (i=l,2,3) . If

( 1 ) <n^j> = <ri2 > = 5̂ 3 ^ then (5 j ) (5 2 *£2  ̂ ( 5 3  *£3 ) “ . ^ £ 3  *£3 ) » or
(ii) <rj> = <£2 > = <£3 > then (n^ :£)) (£2 :5 2 ) (5 3 :5 3 ) = (£] :£% ) •
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1We m^y now concentrate on the case when the three idempotents

of in the product Lave neither a common null- |

space nor a common range.

3.3 LEMMA Let E|,C 2 ,E3  be non-zero idempotents of PF^_| .
If TS a non-zero idempotent and ej,£ 2 , £ 3  do not have a common
range then dim (R,+N2 +N 3 ) ^ 2 . - J

PROOF Let X E y  . Then, by Lemma 1.4, there exists ^  Rj

and E |\jj such that

XE ̂ 6 2 ^^ “ Hi • (+)

Again by Lemma Î.4 there exists ^ 2  ^ R2 ^o.d m 2 G such that 

£ 1  " £ 2  H 2 * Thus

Hence 2cej£2^3^i^2 ~ — 2 * Thus. _s ̂ = 3^ ^ £ 2 Eg£ | £ 2  + m_2 . Now substitu­

ting this for in (+) we obtain

x Êj£2E^ = xeje2E2Ej£2 + H-2 Hj •

Thus

2 2 
xe j E 2 E ^  = 2C£j £2E2 = x(ejE2E^) + (Hj"^H2 ^ ^ 3

But we have assumed that e^£2 E2 is idempotent and so (Hi'*‘H 2 ^ ^ 3  “ 2  »

i.e. m^ + H 2 ^ N 3 • The elements m^ and 1^2 depend of course on the

choice of the original element 2c . If there exists an 3c E y  such

that Hi H 2 ^ £  then m^ + 1^2 generates Rg (since R^ is one­

dimensional) and the result is immediate. If m. + mu = 0 for all

i
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choices of x in V  then we have two cases to consider; (i) there 

exists an. x G y such that ^ jO and (ii) for all choices of

X ^ V  we have “ ÏÏ2 ~ ^  ”

If case (i) occurs then it is clear that |\|̂ = ^ 2  and so again 

the result is immediate.

We shall now show that case (ii) cannot occur. Suppose that case 

(ii) does occur; then

^ 3  = 5 - 1  + = S |  6  Rj .

But since this holds for all 2C in V  and (by Lemma 1.2) the range of 

is the same as the range of we have s Rj . Since

dim Rg = dim Rj we thus have R 3 “ R] • Also

= ± 2  + S 2 . Sg e Rg

and so, by an argument similar to the above, Rj = R 2 • Thus

Rj “ R2 ~ R 3  which contradicts the hypothesis of the lemma. So, as

claimed, case (ii) cannot occur.

Using the alternative notation for idempotents of PF , thisn - 1

lemma may be stated as follows:

3.4 LEMMA Let nj jn^^>£.3 >£i ^ £ 2  £ 3  be elements of V
such that <n,lrg> =f= 0  and <n.lr.> 9̂ 0  (i=l,2,3) . If— 1 — j — 1. — 1

^ £ 1  * £ p  ̂ £2 *— 2  ̂̂ ~3 *— 3  ̂ ~ ^ £ 1  *£3  ̂ ' ^ ^ £ 1  > £ 2  >£3 ^^ - ^ then
dim <{£] * £ 2  *£3 ^^ - 2 .

3.5 LEMMA Suppose Ej,e 2 J^ 3  idempotents of PF^_j . 
Then the following are equivalent:
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(i) C E  £ is a non-zero idempotent of pf® ,I / j n — 1

(ii) E.e.e, is a non-zero idempotent of p f ^

(iii) is a non-zero idempotent of PF^^^ .

PROOF Clearly if we can show that (i) implies (ii) then we

are able to modify the proof to obtain (ii) implies (iii) and (iii)

implies (i).

Suppose that is a non-zero idempotent of PF^_| . Then

E^EgEg has rank n - Î and so n - I = rank E jE^e ^

rank ^ | ^ ^2 ^ 3  “ ^2 ^3 ^ 1  ^ ^  ̂* Thus ^2 ^ 3 ^! non-zero
in PF^_| . Also since EgE^E^ has rank n - 1 then e^ has rank

n - 1 . Now since the range of e ^e ^E j is contained in Rj we have

that the range of ^2^3^] R; • Now, by Lemma 1.2, £^£^£^ has

null-space Rj and range R^ and so, by Lemma 1.4, V  " N] ® R3 • Let

£j e Rj j then there exist r^ G R^ and n^ in N] such that

^ ^£3 ‘̂ £p^l » i'G. such that £j = . Hence £ 1^2 ^3 ^ 1 ~ — 3^^1^2^3^^1

^gE^ since e^e^e^ acts identically on its range. But £ 3 ^ 1  = r^ and

so £i^ 2 ^ 3 ^ 1 “ — 1 ail £j ^  Rj • Hence ^ 2 ^3 ^ 1  &cts identically

on its range and so is idempotent.

3.6 LEMMA Let (j and l'| be subspaces of V  • Then
(U'^W)'^ = .

PROOF Clearly [J n g [J and |J n !■( c 1»| so, by Lemma 2.4,

U**" £ (U^W)'*' and £ ( U ^ W ) ’*' • Thus £ (U'^W)'^ •
Also IjT £ yT + and c y^ + |*|-̂ and so, by Lemma 2.4,

£ (L^)^ = U and dJ-^+lf)-^ £ (W^)^ = W  . Thus £ U ^ l'|

So, again by Lemma 2.4, ( ( U M ' I ' * ' ) = U'*' + Vf • Thus



18

3.7 LEMMA Let T»U»W be subspaces of V  • Then :r
dim V  = dim (T^+U^+W^) + dim (X F5(Jn|̂ |) .

*

PROOF By an obvious extension of Lemma 3.6,

(T n(JnH)T = + yT +  ̂ Also, by Lemma 2.3,

dim V  = dim (X'̂ Û 'I) + dim (X'^U'^'I). The result is now immediate.

3.8 LEMMA Let be non-zero idempotents of .

If £^£2 ^ 3  is a non-zero idempotent and G|,e ,e_ do not have a common 

null-space then dim (Rj'^R2 ^R 3 ) > n - 2 .

PROOF Suppose the result does not hold. By Lemma 3.7, we #

have dim (R|^R2 ^R 3  ̂ ^ n - 3 and so we have dim (RX^R^^Rg) = n - 3 ,

and dim (Rj^R2 > = dim (R2 'K 3 ) = dim (R^nR^) = n - 2 . Let 

A = j£2 » * • • »£n-3  ̂ be a basis of Ri ^ Rg ^ R 3 and extend A to

bases A U  {b^} of R2 ^ R3 » ^ U  of R^ n R^ and A U  of

Rj n R2 . Clearly b^ 2 R^ .

Now consider B = A U  ,^2  ̂ * Clearly <B> ç R^ since B £ R^ .

Also it is clear that Rg ^  R3 *" since <A U  {Jb ̂ }> = R^ ^ R3 and

^  ^ R2 ^ R3 • Hence n - 2 = dim (R^^Rg) < dim <B> ^ dim R^ = n - 1 . J

Thus dim <B> = dim R^ and so B spans R^ . Since B contains X

exactly n - 1 = dim R^ elements, B is a basis for R^ .

Now consider C = B U  . Clearly R^ C <c> since R^ = <B>

and ^ R3 • Hence dim <C> = n . Thus C spans V  and, since C 

contains exactly n elements, is a basis for \J .

Let be a non-zero vector of Rj . Then
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- 1  " ^n-2~l ^n- 1 - 2 '*' ^n^3 *
Î

Now, ^}^2^3 identically on its range which, by Lemma 1,2, is Rg .

So ^i^2 ^ 3  acts identically on A U  } . Also ^j^ 2  acts j

since is idempotent. Thus n.j ^ and so f̂|j s . But, since

Mj and have the same dimension, this implies N] ~ N 3 •

Similarly since we know (Lemma 3.5) that ^2^3^! a non-zero

idempotent, we may express a non-zero element rî  of M 2 as

^ 2  = ^ V a i l  \ - i h  + V i

and act on this by ^2 ^3 ^ 1  obtain M 2 “ Mj •

Hence M^ ~ M 2 ~ M 3 which is contrary to the hypothesis. Thus 

dim (Ri*^R2 ^R 3  ̂ 9̂  n - 3 and so the result holds.

3.9 LEMMA Let nj jn^,n^,£j , £ 2  ^nd be elements of V  
such that <£j |£j>,<n 2 |£2 >»<B.3 l£.3 ^ and <nj are all non-zero. If
(O) '£] ) ( £ 2  '— 2  ̂̂ — 3 '— 3  ̂ ~ (£] '£3 ) ^nd dim <{£| ,U2 *£3 ^^ - 2 then

identically on since G R^ n R^ . So acting on (+) by Î

we obtain

n-3
0 = ihh^i * V 2 i i  + V i i g  +  V a ^ 3  •

Subtracting this from (+) gives

Si “ V 3 " V 3 ^ ^ 3

Hence

S]^3 “ V 3 ^ 3  “ V 3 ^ 3  = i

I
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It is now immediate from Lemma 3.3 and Lemma 3.8 that:

3.10 LEMMA Let E^, 6 2 , 6 2  be non-zero idempotents of PF^_| . 
If idempotent and £^,£ 2 , 6 3  have neither a common range nor
a common null-space then dim (MJ+N 2 +N 3 ) = 2  and dim ) = n - 2

It is also immediate, from Lemma 3.4 and Lemma 3.9, or direct from 

Lemma 3.10, that :

3.11 LEMMA Let n| >£2 ’£-3 »— 1 ’ ~ 2  — 3  elements of V
such that <n,|r,>,<n_|r_>,<n_|r_> and <n,|ro> are all non-zero. If;— 1'— J — Z '— Z — o'— o — 1 o

(i) ( £ 1 :£i)(£2:£2)(-3%) = <£i-£3 )

(ii) dim <{£| , £ 2 *£3 ^^ > 2  and

(iii) dim <{nJ , ^ 2  ,£3 ^ 2

then
(i) dim <{£| * £ 2 >£3 ^^ “ 2  and

(ii) dim <l£j>£ 2 »£3 ^> “ 2  .

The conditions given in Lemma 3.10 and Lemma 3.11 are not suffi­

cient conditions for the product of three non-zero idempotents in PF^_|

to be a non-zero idempotent if the three idempotents have neither a 

common range nor a common null-space. To obtain sufficient conditions 

it is necessary to consider two different cases. The more interesting

I
dim <{£j ,£2 '£3 ^^ ^ 2 . 4

PROOF By virtue of Lemma 3.7, this result is identical to

Lemma 3.8 using the alternative notation for idempotents of PF^_^ .

1
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case is where the three null-spaces are distinct and the three ranges |

are distinct (he. where for i,j = 1,2,3 and i 9̂  j then 9̂  [\|j and

^ Rj nr equivalently <n.^> ^ <n.j> and 9̂  ) » This will be

dealt with from Lemma 3.13 to the end of the section. Firstly we shall *1
Iconsider the case where two of the null-spaces are the same or two of ÿ
7

the ranges are the same (he. where for some i ,j = 1,2,3 and i 9̂  j we I

have N. = N. or R. - R. or equivalently <n.> = <n.> or <r.> = <r.>).” 1 ''1 ‘'J ^ — 1 — i — 1 — j
s|

3.12 LEMMA Let u^ *£3 ' £ 1  * £ 2  £ 3  be elements of V  |
such that:

(i) <u^ >,< n ^ I )<£3 1£ 3 ^ and <nj|£ 3 > are all non-zero

(ii) dim <{£| , ^ 2  *£3 ^^ - 2  and
(iii) dim <{£] *£ 2 '£3 ^^ ̂ 2  .

Let a = (uj (n.2 ;r̂ 2 H £ 3  *£3 ) If:
(iv) <n.j>,<n2 > and <n_3 > are not all distinct or

(iv') <jÇj>,<£2 > and <£^> are not all distinct then

a - (nj:£3> if and only if one of the following holds:

(a) <n,> = <n_> and <r_> = <r_> in which case a = (n_:r.)—  1 — Z — Z — j — L — Z

(b) <n_> = <n-> and <rv> = <r,> in which case a = (n,:r,)— z — J '—Ô '— I — J — I

(c) <n 3 > = <nj> and <£j> = <^ 2 > in which case a = (1I3 :jc3 ) .

PROOF By Lemma 3.11 we have from (ii) and (iii) that

dim * £ 2 '£3!^ “ dim <{£j , £ 2  *£31^ = 2  .
Assume first that condition (iv) holds and that a = (n,irv) .

— 1 — j

Then we have either ;

(a*) <n,> = <n„>
— 1 “ Z.
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(b') <n.2> = ^£3^ or

(c’) <ri3 > = <nj> .

(a’) ^£|^ “ <2.2^ implies (by Theorem 1.12) that

(£% '£] ) ( £ 2  '£2  ̂ ~ ( £ 2  '£2  ̂ * (again by Theorem 1.12)

a = (£ 1 ‘£ 3 ) = ( £ 2  '£3 ) ff and only if <n^> = <£3 ^ or <£ 2 ^ “ "̂ £3 ^ •

But if <£2 ^ “ <£ 3 ^ then dim "^l£j »^2 ’£ 3 ^^ ~  ̂ which is a contradic­

tion. Thus <^2 ^ = <^3 > which is result (a).

(b*) <£2^ “ <n3 > . Now (by Lemma 3.5), a is a non-zero idem-

potent if and only if ^2^3^! a non-zero idempotent. But, by (a'),

we have that e„e„e, is a non-zero idempotent only if <r_> = <r,>.Z o 1 ~o —  i
This is result (b).

(c’) <n.3 > = . Again (by Lemma 3.5), a is a non-zero idem-

potent if and only if ^3 ^ ] ^ 2  ^ non-zero idempotent. But, by (a’),

we have that ^3 ^ 1 ^ 2 ^ non-zero idempotent only if <£j> = ^£ 2 ^ *

This is result (c).

If,instead,we assume that condition (iv') holds and that 

a = (rij then by a similar argument we again obtain (a) , (b) and (c)

If (a), (b) or (c) hold, then, using Theorem 1.12, it is obvious

that a = (n^ ;r̂ 3 ) .

Here again, as in Lemma 3.1, we have failed to generate a new non­

zero idempotent of PF^ , . The remainder of this section is concernedn- 1

with the case -when there are distinct null-spaces and distinct ranges 

for the three non-zero idempotents of PF^_| in the product. It is in 

this case alone that the product of three non-zero idempotents of PF^_^ 

can produce a new non-zero idempotent of PF^ j ,

3.13 LEMMA Let n j ,n ^ ,£3 ,r̂ j ,_r̂  and be elements of V
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and and be elements of f  such that

and

" A  + P2 ^ 2  + V 3  = 2

then the following are all equal:

(i) <v,n,|pjr,> + <v,n,|p2r2> + <V2n2jp2r2> ,

(ii) <^20.21 - <v,n, IpgTg)

(iii) <U2n2|P2A> + < V 2 l  V 3^ + '^''^ 1̂ 3^

(iv) " '̂'2A I p 1-1^

(v) <vÿi2lPA'" ^ ‘̂''a I'̂ 1^1^ + < \ ' A l p . A >

(vi) <V A  - '̂'’a I'^2-2^ •

PROOF We shall only show that (i) = (ii) = (iii) since the

remaining equalities follow in an identical manner.

Since P j£| + p2£.2 P3ÏI3 ~ £  have

< \ ' A i P i ^ r  = A I -" 2:^2 - P 3V

= - < ' ' a I p 2V  " ^ ^ ' a I p a ’ •

Thus

i.e. (i) = (ii).

Since v,n, + v„n^ + v_n. = 0  we have 1— J z— z o— j —

■I
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<v,n,|P3 T3 > = < - % -

= -<V2n2|p3T3> - <V3ri3|P3r3>

Thus

- <\^1£]|P3£3> = <\>2^ 2 lP2^ 2 ^ +

ie, (ii) = (iii).

3.14 THEOREM Let be idempotent endomorphism of
rank n ~ i of an n-dimensional vector space V  over an arbitrary
field F . Suppose that <n|>,<n2 > and <n3 > are distinct (where 
<n.> = N ) and that <r.>,<r»> and <r-> are distinct (where— 1 E £ '— 1 — Z — j
<r£>"^ = ). Then ^^ idempotent endomorphism of rank n - l

if and only if there exist non-zero elements ,pj ,P2  and p^
of F such that;

(i) Vjiij + ^ 2 ^ 2  + = 0

(ii) pj£j + p 2 £ 2  + P^r^ = £  and

(iii) < V j n J p ^ r j >  + < v ^ n j p 2 £ 2 > + <^ 2̂ - 2 1 ^ 2 - 2 "̂ " ° '

Before starting the proof of this result, it is worth noting that

the asymmetry of condition (iii) is only apparent. As given the left

hand side does not contain an explicit reference to 1I3 or r^ ;

however. Lemma 3.13 gives alternative forms of this which omit n, ,—i
and r̂ j or 1I2  and r^ .

There are also several technical lemmas which would best be

proved now rather than in the body of the proof.
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3.15 LEMMA If we assume the conditions of the theorem and 
that e.e.Eg is idempotent, then there exist non-zero elements ,
v 3 ,pj,P 2 ,Ps of F such that;

(1) \.,nj + 4- V 3I.3 = 0

(ii) Pj£, + + P 3 £ 3  = 0  .

PROOF since £^£2^3 is idempotent, we have (by Lemma 3.11)

that dim >£3 ^^ ” dim >£2 '— 3^^ ~ ^ * Since, by hypothesis,

<rij>,<ii2 >‘ and "<£3 ^ are distinct and and are dis­

tinct, we have the result.

3.16 LEMMA Assuming the conditions of the theorem and that 
;ions (i), (ii) and (i 

belongs to a group #-class.
conditions (i), (ii) and (iii) hold, then E^e^E^ has rank n - 1 and

PROOF since £ 3  = (1I3  ̂ £3 ) we have (by Lemma 2.6) that

"̂ £3 1£ 3 ^ 7̂  0 . But,by (i) and (ii).

= <-%-\),ii,|-P 3 r3 -P;r,>

= <V2£ 2 lP2V  + V ^ 2 lPllP + ^ ' ' a I p 2V  ^ ^ A | P  

= <^2— 21'̂1— 1̂  (iii))

Thus ^̂ £2 1£]^ ^ 0 and so (by Lemma 2.7) ^ 1̂ 2 T:ank n - 1 .

Similarly (but using also Lemma 3.13), since £ 3  = (1Ï3 :_t3 ) we have 

£ 3 6 3  has rank n - 1 .

Thus (by Lemma 1.9), Ej£2 E3 has rank n - 1 .

Again, by the above argument, since £ 3  = ( £ 3  =£2 ) we have that 

<Vj£i]p3£ 3 > ^ 0 ,ije. that i£j ̂ £3  ̂ is a group #-class. Now (by Lemma 1.2)
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EjE^e^ Has null-space Mj and range (since we have already shovm

that E^E^Eg has rank n - 1 ). Thus E^EgE^ G [rij rr̂ ]̂ and so 

^1^2^3 belongs to a group #-class.

3.17 LEMMA Given the conditions of the theorem, suppose that 
there exist non-zero elements i ’ ^ 2  Pg of f such that

(i) Vjn, + + '’3 E 3 = 0

(ii) p,r, + P2£2 + PjTj = 0 

and also that:

(iii) <u 2 |r3 > = 0  .

(iv) <£j|r 3 > 4 0

(v) EjE^e^ has rank n - 1 .

Then there exist non-zero elements A of F such that

+ < ^ 3 1 1 3 1P 2^ 2 ^ = ° '

Furthermore, E^EgE^ is idempotent if and only if = 0

PROOF By (ii) and by the conditions of the theorem,we have

that dim (RI+R2 +R3 ) = 2 . Thus, by Lemma 3.7, dim (R|‘̂ R2^R 3 ) = n - 2 . 

So there exists a basis ,£2* " ' ' n - 2^ Rj R2 R3 • Since

<n.2 |r_3 > = 0 , we have that £ 2  ^ R3 * but ^ 3  ^ R^ u  R^ n  R^ for 

otherwise we would have E R^ contrary to Lemma 1.4. Thus

l£l »£2 * * ' * »£n-2 ’~ 2  ̂ ^ basis for R^ .
Now, since M 3 ^ R3 = {_0} (by Lemma 1.4), we have that 

{jUj ,u_2> • • • > £ ^ _ 2  »£2’£3^ is a basis for V • Thus there exist 0 3 , 0 3  in 

F such that l£] >£2 ’ * * *’— n-2*'̂ 2— 2^'^3^si ^ basis for R2 . Now,if
0 3  = 0 ,  then we would have 1 I 3  E  R^ , i.e. < 0 . 3 1 r̂ 2> =  0  and so (by
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Lemma 2.7) ^2 ^ 3  would have rank less than n - 1 . This is contrary

to (v) . Thus Og ^ 0 . If O3 = 0 , then we would have E

contrary to Lemma 1.4. Thus O3 f 0 . So, putting = Og O3, we have

that Ijij >£2 » * * * »£n-2 *— 2̂ 3̂lI-3̂  is a basis for R2 where X^ is a
non-zero element of F .

• Now, by (iv) , <nj |£3> 9̂ 0 . Thus (by Lemma 2.6), Cuj **£3] is a

group #-class. So (by Lemma 1.4), N] ^ Rg = {_0} . Thus
{u,,u«,...,u „,n„,n,} is a basis for V • Hence there exist— J — / —n—2 — 2 — 1 1 2
in F such that i£j > £ 2  > • • • >£j^_2>'^ ]£l'*■'̂2— 2^ i^ a basis for Rj . If

Tj = 0, then we would have n_2 ^ R^ , i.e.that <u_21£l^ " 0 . So (by

Lemma 2.7), 6 ^ 6 2  would have rank less than n - 1 . This contradicts

(v) and so x ̂ 9̂ 0 . If ^ 2  = 0 , then we would have n^ E R^ . This

contradicts Lemma 1.4 and so X2 ^ 0 . So, putting Xj = Xg/x^ , we have

that {£| , £ 2  ) ' ' ' '£n-2 *^ 1— 1 ̂ — 2  ̂ a basis for Rj where X ̂ is a non­

zero element of F .

Now since ^2 + X3II3 E R^ we have

<£2'*'^3li3l-2^ " ° '

I.e.

So, by (il).

A " P 3 ^ 3 ^  + A 3 1'’ 2 V  “ °

Thus

<£2 l^l£l^ ■ ^£2'b3£3^ <^3£3 1^2- 2 ^ " 0

But, by (iii), <n.2 l£3 ^ “ 0 • So

Æ
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""^£2 ' 1— ]^ ^ ^^3£3l ̂ 2— 2 ^ ^ * (A)

Also, since n^ + ^j£j ^  Rj 5 we have 

<£2 +^l£l l£i> = 0 ,

1 . e.

Adding this to (A) gives

<^l£l|p}£l> + <^3£g 1^ 2- 2 ^ = 0

as required.

Finally, 6 ^ 6 2 6 3  is idempotent if and only if it acts identically 

on a basis of its range. Now, by (v) and Lemma 1.2, 6^6263 has range 

R 3 . ^|^2 ^ 3  clearly acts identically on (£j >£2 '''' so it is

idempotent if and only if it acts identically on 0.3 .

Now,

and so, since n.2 + X^n^ E R^ ,

“ V 1X3 ^ 2  “ ^ 2 ^ 1  ̂ 3 ^ 2  “ j^g£ 3  (by (i))

Thus, since 1I2 + ^g£ 3  ^ ^2 '
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So, since n^ ^ R 3 >

^ 1  ̂ 3-2^1 ̂ 2^3 ” 1̂^3lI-2 *

Thus SjE^E^ acts identically on n^ if and only if = -X^v^

Hence GiEgE^ is idempotent if and only if VjX^ + X^v^ = 0 .

3.18 LEMMA Given the conditions of the theorem, suppose that 7

I 

!
there exist non-zero elements v ^ v ^ j V ^ j P ^  of F such that;

(i) ^i£i + ^ 2 - 2  ■*■ V 3 IL3  = £

(ii) Pi£i + P 2 - 2  ^ P 3 Ï-3 = £

and also that;

(iii) <rij lz.2 ^ ^ 0

(iv) <ri2|£g> 9̂ 0  

(v) <£j |£g> + 0

(vi) CjS^Cg has rank n - 1 .
Then there exist non-zero elements x ^ jX ^ jP^ in F such that:

(A) <Pj£j 1^2— 2^ *** ®

(B) <^2— 2 1 "̂2— 2 ^ " ̂Pi£]|p2— 2 ^ ^ *

Furthermore, EjE^Eg is idempotent if and only if

^2 ^ 1 ^ 1 “ ^ 2  " ^ *

PROOF By (ii) and by the conditions of the theorem,we have

dim ( R j + R ^ + R g )  = 2 . Thus, by Lemma 3.7, dim (Rj'^R2*^Rg) = n -

So there exists a basis {£| »£ 2  » ’ * *’£-h-2^ ^ R2 ^ ^3 ' Extend
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this to a basis {u,,u„,..,,u «,%} of .
— 1 — ri“ 2 —  ‘'J

Since, by (v) , <_n j |£3 > ^ 0, we have that ri j ^ . Thus we can

extend the basis of R„ to a basis {u,,u„,.,.,u _,x,n,} of V  •J —'I — z ~ H ”Z —  — I

Thus there exist 0 ^ , 0 2  of F such that { £ 1  > £ 2 » * ’ *’£ n - 2 1— ^^2— 1 ̂

is a basis of Rj , Now ,if Oj = 0 , then we would have rij E R^ which

contradicts Lemma 1.4. Hence 0 7 ^ 0 . If O 2 = 0, then we would have

R] = R 3 which contradicts the hypothesis of the theorem that <£^>

and <£g> are distinct. Thus O2 ^ 0 . If we now put Xj = ^ 2 ^^^ ,

then we obtain {u,,u„,...,u „,x+X,n,} to be a basis of R, where X,— I — Z — n-Z —  1— 1 1

is a non-zero element of F ,

Since {u,,Ug,...,u _,x,n.} is a basis of Y  , there exist—  I — z ■—n—z —  — 'i 1 z
in F such that l£| * £ 2  > • • • » £ ^ _ 2 l — ^^2— 1 ̂  is a basis for R 2 . If

Tj = 0, then we have n.̂  E  R^ , i.e. <£ j |_£2^ ~ 0 . But this contradicts

(iii) and so % ̂ f 0 . If T 2 = 0, then R2 = Rg which again contra­

dicts the hypothesis of the theorem. Thus % 2  ^ 0 . If we now put

y , = T„x /  , then we obtain {u. ,u^ ,. .. ,u ,x+y ,n, } to be a basis of 
1 z 1 — 1 — z — n— z '—  1— I

R2 where Pj is a non-zero element of F .

Since, by (iv) , <£2 1£ 3 ^ # 0 , we have £ 2  ^ R 3 * So we can

extend the basis of R„ to a basis {u,,u„,,..,u _,x,n_} of V • Soj — 1 — Z —n — Z  Z
there exist elements of F such that {u,,Um,...,u _,w.x+w«n^}

1 z — J — z — n-z 1—  z— z
is a basis for R2 • If o)j = 0 , then we would have ÎI2 G R^ contra­

dicting Lemma 1.4. So f 0 . If = 0 , then we would have

R 2 = Rg contradicting the hypothesis of the theorem. Thus ^ 0 .

If we now put X2 = ‘̂ 2 ^ 1 ' ’ then we obtain l£j * £ 2  » • • • » £ ^ _ 2 2^ to 

be a basis of R2 where ^2 is a non-zero element of F .

Since x + y jnj G R2 , we have

<x+w,n,|£2 > = 0  ,
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I.e.

'̂ £.1^2— 2^ 1^ 2— 2 ^ ^ 0 •

Thus, by (ii),

<x|Pl£l> + <£|p3£3> + <Pi£}|p]£i> + ^PiEjp^Ea^ = 0  

But, since £  ̂  Rg , we have <iiiPg£g> = 0 and so

<£|Pj£l> + <P}£ilPi£i> + <Pi£ilp3£g> = 0 ,

I.e.

So

l£; 1 )£] IP i£j ̂  + ^Pi£ilp3£3^ = 0  ,

I.e.

<£+^l£l|pl£l> + <^r^i)£]|pi£i> + <P,£ilp3E.3> = 0 

But, since gc + X^n^ E R^ , we have <gc+X ̂ ri ̂ | p j£^ > = 0 and s

<(Pr^l)£l|Pl£l> + <P i£ilP3£3> = 0 .

1 . e.

< K i S . i l p A + P A 3 ^  " = 0

Thus, by (ii),

< W A I p 2£.2 ^ + -=^l£||PA|^ = 0
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which is (A).

Now, since x + X^n^ E and x + E R^ , we have

^2£-2 ^ 1— 1 ^ Rg » i.e.

^^2— 2 ”^I— J — 2 ^ ~ ^ '

Thus

which is (B).

Now,by (vi) and Lemma 1.2, the range of is Rg . Thus

e^egE^ is idempotent if and only if it acts identically on a basis of 

Rg . Clearly ejE2 £ 3  acts identically on every element of 

l£] >£.2 ’* * * *— n-2  ̂ * Thus is idempotent if and only if it acts
identically on £  .

Now, yjVjX = y J V J (x+X J ri p  - X^y^v^rij and so, since x + X^rî  E R^ ,

= Pl''l :

= X V (x+y,n.) + y V v X - X , v , x  
1 1 '—  1— 1 1 1—  1 1—

= XjVj(x+yjiij) + Vj(yj-X|):x + X^v j (y j-X j )n_2 - ^2^1 

= j (x+Wj£j) + Vj(yj-X^)(x+X2 ii2 ) - ^2 ^ 1  j)£.2 ' i

Since j£j ) ; (£X^2£2^ ^ R2 » we then have

yjVjXEjE2 = X^V ̂ (x+y ̂ n^ ^^ (y^-X^) (X+X2TI2)

= W + XjyjVjiij + VjX2 (y|-X|)n2

By (i), ’VjU.j = “"̂ 2— 2 ~ '^gUg and so
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UjV,xei£ 2  = u,v,x + “ h “ l V 3  '

Since gc E R we now have

"i'’A i V 3  “ + ( V i ' ' r h ‘* i V h V i > V 2

Thus ^^£2 ^ 3  is idempotent if and only if

^ Mg • But n_2 f Ng since Mg are

distinct and one-dimensional by hypothesis. Thus &|E2 E3 is idempotent 

if and only if " ^^^ 1 ^ 2 ~ ~ ^ *

We are now in a position to prove Theorem 3.14 . We shall need 

to consider two separate cases:

(I) At least one of <n,Ir„>,<n„1r„>,<no!r ,> is zero
— 1 — z — z '— 0  — j '— 1

(II) All of < £ j I£ 2 ^)^£2 1 — 3^'^— 3 I — 1 ̂  are non-zero.

In considering case (I) it will suffice to consider

(I') <£2 1£ 3 ^ = 0 .

This is because if, instead, we had <£j [£2 ^ = 0 (and 

"̂ £2 1£ 3 ^ ^ 0 ), then,in the forward implication,we could, by virtue of 

Lemma 3.5, assume that £ ^ £ ^ £ 2  is idempotent and obtain (i), (ii) and

<^g£3|p3£3> + ^Vgn^glp j£^> + <v,£]|Pi£]> = 0  . (+)

But, by Lemma 3.13, this is equivalent to (iii).

For the reverse implication,we could (by Lemma 3.13) assume (+) 

and deduce that ^3 ^ 1 ^ 2 idempotent of rank n - I . Again, by 

Lemma 3.5, this is equivalent to EjE2 E3 being idempotent of rank n - 1 

A  similar argument holds if we have <£g |£;^ = 0 .

(I') Suppose first that £^£2 ^ 3  is idempotent of rank n - 1 . We 

shall show that Ej,E2 ,E3 satisfy all the conditions of Lemma 3.17.
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By Lemma 3.15,there exist non-zero elements v j , v ^ ^ , P 2 »P3 of 

F such that :

(i) Vjllj + V2TI2 + VgUg = 0

(ii) pj£j + P2 ^ 2  + P3£g = £  •

Condition (iii) is satisfied by the hypothesis of (I') that <£2 1£ 3 ^ ~ ^ ’

By the assumption that ^j^2^3 Has rank n - 1 and by Lemma 1,2 , 

we have that has null-space fjj and range Rg . Thus

^l^2^3 ^ ^£ 1 '£3 ] * But, by assumption, £^£3 ^ 3  idempotent and so

[£j tr^] is a group #-class. Thus, by Lemma 2.6, <£j {£3^ ^ 0 . This

is condition (iv).

We have assumed that ^j^2^3 Has rank n - 1 and so condition (v) 

is satisfied.

We may thus appeal to Lemma 3.17 to obtain that there exist non­

zero elements ^ j » ^ 3 of F such that

<Xj£j|pj£j> + <À3 n 3 I P2£ 2 ^ = 0 . (A)

Furthermore, since we have assumed that E|E2 G3 is idempotent, we also 

have

X3 V 1 + = 0 . (B)

Now,multiplying (A) by V3 Ç gives

<XjVjnJp^r,> + <XjVjn2 |p2£ 2 ^ = 0 ■

So, by (B) ,

Dividing now by X3 Ç (which is non-zero since X 3 ^ 0), we have
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But, by Lemma 3.13, this is equivalent to

"''iEiIpA^ + IP2E 2 '' ̂'’22-21'’2- 2 '' " ° •

This is condition (iii) of the theorem. We have already shown (Lemma

3.15) that conditions (i) and (ii) of the theorem hold and so we have

proved the theorem one way for case (I*).

Conversely,suppose conditions (i), (ii) and (iii) of the theorem 

hold. We shall again appeal to Lemma 3.17. Conditions (i) and (ii) of

the lemma are clearly satisfied. Condition (iii) is again satisfied by

the assumption of (I') that "̂ £3 1£ 3 ^ = 0 . By Lemma 3.16, has

rank n - 1 and so condition (v) is fulfilled. But this also gives, 

with Lemma 1.2, that E jE^e ^ has null-space Mj and range . Thus

^I^2^3 ^ ^£ 1 ’£ 3  ̂ • Eemma 3.16 also gives that e^EgE^ belongs to a 

group £-class. Thus, by Lemma 2,6, <£j [£3 ^ f 0 . Hence condition (iv)

of Lemma 3.17 is satisfied. We are thus justified in using this lemma. 

So there exist non-zero elements of F such that

<Xj£jpj£^> + <X 3n.31 P 2£g^ = 0 .

Multiplying by V 3 Ç gives

<X|V3 n, |pjr,> + = 0 . (A)

Now. by condition (iii) of the theorem and Lemma 3.13,we have

<''a Ip A >  - < P A 3 l " 2 V  = ° •

Multiplying by gives
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Adding this to (A) gives

<XiVÿi| |Pir,> + <XgV^nJp,r,> = 0 ,

I.e.

<(X^V3 +X 3 Vi)nJPirj> « 0 .

Since e^ = (£j ' £ i w e  have, by Lemma 2,6, that <£j !£|> 5̂  0 . Thus,

since p ̂ f 0 by hypothesis,

^1^3 ^3'’l “ ° •

Now, appealing again to Lemma 3.17, we see that £ ^ £ ^ ^ 3  is idempotent.

We. have already shown (Lemma 3.16) that ^]^2^3 Has rank n - 1 . This

completes the proof for case (I’) and so also for case (I).

(II) Suppose first that ^j^2^3 idempotent of rank n - 1 . We 

shall show that satisfy all the conditions of Lemma 3.18.

By Lemma 3.15 there exist non-zero elements ^ j »’̂2 ’̂ 3 **̂ 1 ’*̂ 2 ’^ 3  of 

F such that:

(i) v,n, + + VgOj = 0

(ii) P A '  + P2A  '’ 3 2 3  “ â  •

Conditions (iii) and (iv) are satisfied by the hypothesis of (II)

that none of <£j ljE.2 ^ *^^£2 1 — 3 ^ '^— 3 1 — 1 ̂  zero.

By the assumption that £ ^ £ ^ ^ 3  Has rank n - 1 and by Lemma 1.2, 

we have that £^£2 ^ 3  Has null-space Xlj and range . Thus

^1^2^3 ^ ^ £ 1 *£3  ̂ * But, by assumption, £^£2 ^ 3  is idempotent and so 

I-£l’£ 3  ̂ is a group £-class. Thus, by Lemma 2.6, <£j [£3 ^ ^ 0 . This
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is condition (v).

We have assumed that has rank n - 1 and so conditi on

(vi) is also satisfied.

We may thus appeal to Lemma 3.18 to obtain that there exist non­

zero elements of F such that

^P|EiIp2E 2 ^ = 0 (A)
and

":̂ 2 2 2 lP2V  " ^ P A  ° ’ (B)

Furthermore, since we have assumed to be idempotent,we

also have

X^PiVj - XjX^Vj - X,U|V2 = 0 . (C)

We shall now eliminate A^ from equations (B) and (C). Equation

(B) is equivalent to

<X2(P,Vi - X , v , )a I p2£2^ -  <P|(P]V,-X,v,)n,|p2r2> = 0 .

Thus, using (C), we have

^^ 1^ 1^2- 2 1 ^2- 2 ^ “ <Wj(WjV^-A^v^)nJp 2£ 2 > = 0  .

So, dividing by PjÇ (which is non-zero since pj 9̂  0 ), we get

“ ":P,P|E,|P2E2> + •=S''aIp2^-2^ “ °

We shall now eliminate p^ from equations (A) and (D), Equation

(A) is equivalent to

Adding this to (D) gives
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■ + ■=^|PiE]|Pi£i=’ = 0  .

Now,dividing by Xj.Ç (which is non-zero since A 0 ), gives

'=p a IpA = ’ + P̂jEil̂ ’a V  ■'■ “ ° ’

which is condition (iii) of the theorem.

We have already shown (Lemma 3.15) that conditions (i) and (ii) of

the theorem hold. So we have proved the theorem one way for case (II).

Conversely,suppose conditions (i), (ii) and (iii) of the theorem

hold. We shall again appeal to Lemma 3.18. Conditions (i) and (ii) of

the lemma are clearly satisfied. Conditions (iii) and (iv) are again

satisfied by the assumption of (II) that none of < n ,Ir„>,<n„Iro>, a— I'— Z — — 3
are zero. By Lemma 3.16, £^£2 ^ 3  has rank n - 1 and so

condition (vi) is fulfilled. But this also gives, with Lemma 1.2, that 

£^£2 ^ 3  has null-space Mj and range R 3 . Thus £ ^ £ 2 6 3  E [n^:£3 ] .

Lemma 3.16 also gives that ^ ^ 2 2 6 3  belongs to a group 5-class and so, 

by Lemma 2.6, we have (£3 ^ f 0 . Hence condition (v) of Lemma 3.18

is satisfied. We are thus justified in using this lemma.

Thus there exist non-zero elements E such that

<PjnJp2r2> + <XiTij|Piri> = 0 (A)

^^2— 2 'b2£ 2 ^ - j£) I ̂ 2— 2 ^ = 0 . (B)

We shall now eliminate from equation (A) and condition (iii) of the

theorem.

Equation (A) is equivalent to

^Pl''lBilp2V  * ^ h ' ' A i P , 2 i> = 0  <E)

and (iii) is equivalent to



, <̂ ,'',E,|PA> + <^,'>a 1p2£ 2=’ + = ° •

Subtracting (E) from this gives

<X,V|n,lp2V + ■=hV2l'’2V - ̂Pi''lE||p2i2̂ = ° ‘
We shall now eliminate jn̂  from equations (B) and (F). Equation (F) is 

equivalent to

<X^(X^-p,)v^nJpA2> + ^ ^ , ^ 2 V 2 l " 2 V  “ ° (G)

and equation (B) is equivalent to

^̂ 1̂ 2̂2-21̂2-2̂ ” 11̂2-2̂ '

Subtracting (G) from this gives

-<U,XiV2nj|p2r2> - <X2(X,-p,)V|nj |P2l.2̂  = ° >

' T m%39 "x
i1
-3

I.e.

<(X2 P,v,-X,X2V,-X,PjV2 )n,lP2£ 2> = « •

Since, by the hypothesis of (II), ^£j I£ 2^ ^ 0 and, by the hypo­

thesis of the theorem, 9̂  0  , we now have

V i ' ’! " ^ V i  - “ ° •

Thus, appealing to Lemma 3,18 again, we see that ej£2 ^ 3  is 

idempotent. We have already shown (Lemma 3.16) that £ ^ £ ^ £ 3  has rank 

n - 1 and so the proof of case (II) is complete.

This also completes the proof of the theorem.

.P-J-S
'’7y J
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§4 GENERATING SETS OF IDEMPOTENTS 1 ; THE VECTOR SPACE V  DEFINED 

OVER AN ARBITRARY FIELD F

In this section I shall give a new proof of a result due to 

J A, ErdBs C71. The proof in [7 ] that Sing^ is generated by E (the 

set of idempotents of Sing^ of rank n - 1 ),depended entirely on 

results in matrix theory. This shed very little light on the structure 

of the semigroup. In the following proof we shall consider the chain

Sing 2  PF , 2  E U  H ^n n - 1

where H denotes the set of elements in any 5-class (other than {0} )

of PF^_^ . We shall show that each set is generated by the succeeding

set, and then that E generates all the elements of one particular

5-class (other than {0} ) of PF^ , .n- 1

At the end of the section I shall obtain necessary conditions for 

a subset of E to generate Sing^ .

4.1 LEMMA PF , generates sing ------------- n- 1  n

PROOF The proof is by induction on the nullity of elements of

Sing^ . Suppose, as the hypothesis, that,if a E Sing^ and the dimen­

sion of the null-space of a is less than or equal to k , then

a E <PF > . Now let S E Sing be such that dim NL = k + 1 . Letn - 1 n ” 3

Mg have basis jHg » * * *  ̂ extend this to a basis > • • • > £ ^ 1

of V  » Let £  be any element of \/ not in . Now let

^ 1 * ^ 2  ^ Sing^ be given by

V i “
i = k + I
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and

i
i = k + 1

Clearly 3 = 3^3^ • Now, 3j ^ PF^_| and dim = dim + 1 , i.e.

dim [\]ĝ  = k . Thus ^ and,consequently, 3 ^ <PF^_|> . J

The induction process may be started since any element with nullity 1

belongs to PF , .n - 1

Before proceeding to the next step in the chain, we shall need to 

know a few properties of the relation II(E’) on a subset E' of E 

given by:

4.2 DEFINITION Let E ' be a subset of E and #,y G E' .

Then (<j),Y) ̂  n ( E ’) if there exist elements £j,E2 ,...,e^ in E' such

that ... E y G PF
1 2  q n - 1

In this section we shall only be concerned with 11(E) . It is, 

however, convenient to give the more general definition here.

It is obvious that II(E’) is transitive for all subsets E ’ of

E . Not so obvious is ;

4.3 LEMMA Let E be the idempotents of rank n - i of 
sing^ . Then n(E) is the universal relation on e .

PROOF Let (h.i*£.P and (2 . 2  '^2  ̂ any two elements of E

and suppose that ( (a.) » (2.2'— 2^^ ^ n(E) . Then, certainly ̂

(n,:r,)(n:r) (n«:r«) = 0  in PF^ , for all elements (n:r) of E ,

' y . Al j")• j . -.'./'I -vv --
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i.e. (by Lemma 2.6) for all elements n̂  and r̂  of V  such that

<n]r^> 4̂ 0 . Thus, by Lemma 1.9 and Lemma 2.6, either ^ = 0 or

"̂5.2 ^ ~ 0 for all n,_r G  y  such that 4 0  .

Let us suppose that the vectors jtj and n^ have co-ordinates

£j = ..,%(*)) and £ 2  = (y(^),y^^),...,y(*)) . Let

i = min {j : 4 0 } and define n = e. , the vector with 1 in the
—  — 1

itk position and zeros elsewhere. Now,for each j in {1,2,...,n} 

define

r<j) =

e.. + e. if i 9̂  j
X —'J

£i if i = j

Then = 1 9̂  0 for all j and so, by the remark at the end of

the last paragraph, we have either

<n|r.> = 0  or <n«|r^^^> = 0 .

Since = x^^^ 4 0 , this implies that ~ 0 . Moreover,

this holds for each j in {1,2,3,...,n} . Putting j = i we obtain

that y^^^ = 0 ; then for each j ^ i we obtain y^^^ + y^^^ = 0  , i.e.

y(j) _ 0 , Consequently £ 2  ~ 0 which contradicts the assumption of 

( £ 2  *.£2  ̂ being an idempotent.

In the terminology used by Byleen, Meakin and Pastijn in [4], 

Lemma 4.3 is equivalent to saying that the non-zero idempotents of 

PF^_j are connected. However, if E' is a subset of E, then saying 

that II(E') is universal on E ’ is, in general, a weaker condition

than saying that the elements of E ’ are connected.
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4.4 LEMMA Let s be a completely 0 -simple semigroup and 
let a G  s .

(i) If are non-zero idempotents in s such that e ^ L a
and e^e^.. .e^ 0 , then the mapping x *  xeg-.'S, (x e h^) is a
bijective mapping of h onto R n L .a a
(ii) If 6 ^,6 2 ,...,e^ are non-zero idempotents in s such that e ^ R a

and ^ 0  , then the mapping x .. .6 2 % (x ^  h^) is
bijective mapping of onto Rg n  .

PROOF Both parts are immediate from the Rees representation

theorem for completely 0-simple semigroups (see, eg., [10, Theorem III.2,5])

The next definition, although not needed in this section, is 

included now for convenience. It enables us to prove a more general 

version than required here of Lemma 4.6. This will be required in 

Section 5.

4.5 DEFINITION Let E ’ be a subset of the non-zero idem­

potents of PF^_| . We shall say that E ’ covers [sparsely covers!

^^n-1 non-empty intersection with [intersects in exactly

one elec ent] each non-zero L-class and each non-zero E-class of

PF^ , . We shall also say that E ’ covers PF , .n - 1 n - 1

4.6 LEMMA Let E' be a subset of the non-zero idempotents 
of PF^ , such that E ’ covers p f ^ , and n ( E ’) is the universaln - 1 n-1
relation on e ' . Let [n^ir^] be any E-class other than {0} of
PF^ , . Then e ’ u  [n^:r„] generates p f ^ , .n— 1 — U n~ 1

PROOF Let [n:r] be an arbitrary E-class in PF^ , .  ----  n - 1
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n'

n

% t

#

#

# %
Since E ’ covers PF , there exist idempotents (n’:r^),(n” :r),n~ 1 —  — U —  —'

(n^:r') and (n:r") in E' , Since Il(E') is universal, there exist

€  E' such that

(n':rQ)£i ... E^Cn":£) 4 0 .

By Lemma 4.4(i) it follows that

a ae, ... s (n":r) (a e [n^:r_]) 1 q —  —  — u — u

is a bijection from Cn^:£Q] onto .

Equally, the universality of n(E’) means that there exist 

s|,...,Ep G E' such that

( n : r " ) E ’ ... E!(n_:r') 4 0 ."  '— p 1 —-u —

By Lemma 4.4(ii) it follows that

^  (n:£")E^ ... ejB (3 G  [ u g :£])

is a bijection from [£Q:£] onto [£:£] 

Thus
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a (n:r")e’ ... elae. ... e (n":r) (a G Cn^:r«]) —  — ' p . 1 1  q —  '—  —-u — u

is a bijection from Ln^:r^3 onto [£:£] •, It follows that every

element of [n:£] lies in < E ' U [ ^ : r ^ ] >  . So E- U  [ng:r^]

generates PF 0
n-1 ’

4.7 EXAMPLE Let V  be the two-dimensional vector space

over the field of two elements. Then PF^ = ging2 and has structure

(1,0) (0,1) (1,1)

(1,0)

(0 ,1)

(1,1)

0 0 
0 1

0 1 

0 0

0 1 

0 1

0 0 
1 0

1 0 

0 0

1 0 

1 0

1 1

0 0

1 1 
1 1

0 0

In the notation of Lemma 4.6, let

E'
0 0 
0 1

1 1 
0 0

1 0

1 0 
0 0 
0 1

and [n:£] = [(1,0):(1,0)] = ^

(it is indeed a sparse cover)

We now show that H(E') is universal on E ’ .

. . Then E ’ is a cover for PF

If 'J'- ' L

J

I
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0 0 
0 1

1 1

0 0

1 0  

1 0

0 0

p  1

1 o'

J 0
"i r

0 0_

0 o'

p  1_

“l o'

J 0
'i r

0 0

1 0  

j 0

1 r

p 0

0 o" 
0 1_

1 o"

j ,0_

1 r 

0 0_

b o" 

0  1

Thus n(E’) is universal on E ’ .

[(1,0):(1,0)] = "b 0

0 1

1 •n— 1 Since

C E '  we have that E ' generates

We now verify this. We have already shown that E ' generates all
0the elements of PFj except for

1 r
and b 0

0 0_ 0 q_
However, since

1 r 1 0 1 r

p 0_ p 0_ 1 I

and

b o" b 0 1 f
0 0 0 1 0 0

we have that <E'> = PF 0
n-1 '

-1^

i
i

0 o” *0 0 ”l o' 1
e PFi so 9 G n(E' ) i

_i o_ 0 1 1 Oj 1i
I

b o" b 0 1 r S
e PFi so 9 G n(E' ) b

1 1 _0 1 0 0 !- ?
> i

b 1 ‘ "l r b o" f
e PFi so 9 G n(E' ) i

0 0 0 0 0 1 i
1J'

~i o” "l r 1 (f
G PFi so 9 G n(E' )

_o o_ 0 0 1 0
'

1 ’ ”l o” 1 r r
G PFj so 9 G Î1(E’) 1

_i J 0_ p 0_

“o r "b 0 b o'
J
1

G PFi so 9 G n(E' ) î
_o L _1 q_ 0 1 r

'..iL
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4.8 LEMMA The non-zero idempotents of generate the
E-class H = [ ( 1 , 0 , 0 , . . . , 0 ) : ( 0 ,1 ,0 ,o , . . . , o ) ]  .

PROOF The proof is by induction"on the dimension of the

vector space. Suppose, as the induction hypothesis, that the lemma is

true for PF^ „ , Then, since the non-zero idempotents of PF^ _ cover n-2 ^ n-2
PF^ _ 2  , we have, by Lemma 4.1, Lemma 4.3 and Lemma 4.6, that the idem-

potent s of rank n - 2  of Sing^_j generate Sing^_j .
0Now let a G PF be an element of H . Then, relative to the * n-1

standard basis, a has matrix

0 . 0 0 0 ... 0

21 0 ^23 ^24 * * * ^2n

31 0 ^33 ^34 * *• ^3n

nl 0 ^n3 % 4 ^nn

Now M  = A.B where a 1

and

^1 =

B =

21

31

nl

0 0 0 . .. 0

1 0 0 .. . 0

0 1 0 .. . 0

0 0 0 1

0 0 ...

^23 ^24

^33 ^34 . , .

^n3 ^n4

2n

3n

nn
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Notice that Aj is idempotent. 
b » 01

Now. B where B ’ is an (n-1) x (n-1) singular

matrix. So, by the induction hypothesis, B ’ = A^A^ ... A^ where 

A^ (i«2,...,k) are idempotent (n-1) x (n-1) .matrices. Thus the 

matrices

^i =
1 I 0
~  r  ”■0 A! —  1 1

(i=2,...,k)

are idempotent n x n matrices with

A.A. = 1 J
1 I 0

” T----------
0 , A'.AÎ“  I 1 J

Hence B = A^A^...A^ and so

= AjA 2 ...Aj^ , a product of idempotents.

All that remains now is to anchor the hypothesis by showing that 

every 2 x 2  matrix in the E-class [(1,0):(0,1)] can be expressed as

a product of idempotents. If a G [(1,0):(0,1)], then, relative to the
"’O 0^

standard basis, a has matrix of the form =
1 o"
0 0

- E|E2 where Ej
0  0  

a 1 and E 2 =

. Buta 0
are both idempotent.

4.9 THEOREM (J. A. Erdos [7]) Let V  be a finite dimensional
vector space and let Sing^ be the semigroup of singular endomorphisms
of V  • Let 'E be the set of idempotents of sing^ of rank n - 1 .
Then E generates sing .

PROOF
and Lemma 4.8.

This is immediate from Lemma 4.1, Lemma 4.3, Lemma 4.6

a

%
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We have already shown (Theorem 3.14) that E may be generated by 5

a proper subset of E . Thus we know now that a proper subset of E

will generate Sing^ . It is reasonable to ask how small a subset of j

E will suffice to generate Sing^ . The following two lemmas are used 

in Sections 5 and 6 where this problem is considered for the cases of F 

being a finite field and an infinite field respectively.

4.10 LEMMA If E* is a subset of E and E' generates 
Sing^ then E ’ covers p f ^_^ and n ( E ’) is the universal relation 
on E ’ .

PROOF Let 3 be any element of PF^_^ . Since E ’

generates Sing^ , it certainly generates PF^_^ . Thus there exist

elements........ .....^p ^ ^ ' such that 3' = • Now,since

dim 3 = dim e . (i= 1 ,2,. . . ,p) , we have, by Lemma 1,2, thatr p E J
and Rg ~ Rg • Thus, by Lemma 1.3, 3i?Ej and 3 ^ 6 ^  . Hence both

Rg Cl E' and L^ n E ’ are non-empty. Since 3 was chosen arbitrarily,

it follows that E' covers PF , .n-1
Now let #,Y G E* , and let a G r ^ Pi L_̂  . Since E ’ generates

a we have a - for some Ej,e2 ,...,Ep G e' . But, by

Lemmas 1.2 and 1.3, E j E o and E^ L a . Thus <}> i? e j and .

Hence and E^y = E^ . So a = <}>ê ê . ..CpY , Le. (j)e ̂ E2 . ..e^y

has rank n - 1 . So i)E, e^ ... e y 9̂  0 in PF^ , . Since1 2 p n-1
G e' , we have that (i>,y) G n(E') . Since ({> and y were

chosen arbitrarily, it follows that n(E') is the universal relation on 

E ’ ,

4.11 LEMMA There exists a sparse covering set E' for 

■ ■

•  C.----- 1- - ■ ■  L,.j--2...X..:...:.----  1".-I:JiLi. iili:-
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PROOF The proof is by induction on the dimension n of the

vector space V  • For clarity we shall denote the m-dimensional vector 

space by Vm •

We now define a set of representatives of the one-dimensional

subspaces of V  • So. for all non-zero x in V  there exists a ’m  —  'm
unique £  in such that <x> = <£> , We shall denote by [R™]

0 . . . —' —the L-class [#-class] of PF^_^ containing those elements with range

perpendicular [null-space] <x> .

Now suppose, as the induction hypothesis, that there exists a

Then there exists exactly one 

All the elements in R

sparse covering set E' of PF^ , ^ m m - 1
element a in L™ n e ’ for each x G v'£  m  —  m a
have, by Lemma 1.3, the same null-space, generated by a particular element
of V If we denote this element by y(x) , we have, in fact, defined a
mapping by x +>" £(x) . This mapping is characterised by

^x ^ ^y(x) ^ ^m non-empty.
m

Rmy(x) a

This mapping is clearly a bijection. Notice that there exists an

idempotent, namely a , with null-space <x(x)> and range <x>"^. Thus,

by Lemma 2.6, 0 .

If X = (x,,x^,...,x ) is an element of v ’ and a G p then —  1 ’ 2 ' m  m  ’
denote by (£,a) the element of that generates the space

<(Xj,X2 >...,x^,a)> . We shall denote by (^,0 the element of 

that generates the space <(0,0,...,0,1)> . Clearly, these are all
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distinct and every element of may be denoted in this way. Notice

that, if 2  = (yj »y£ > • * * ) , then for some £  ̂  U  {£} and some

A,a G F, we have (yj,...,y^) = Ajc and y^^^ = Aa .

We shall now set up a bijection y ; V \  , ^  V V  , such that—  m + 1 m+I
L, V n  R is a group L-class of PF® for all x G v' and all(x,a) 2(x,a) o r  m  —  m
a G F and also . n  R is a group L-class of PF® . It wouldyU, 1 ) I ) m
be nice if ÿ were the identity map. In some cases this would work 

(e.g. F = ]R and the stroke product being an inner product) but in 

general we do not have 4 0 (see the comments following

Definition 2,2) and so we are unable to guarantee that [£:£] is a

group L-class. It is logical to construct y so that for x G  and

a G F we have 2(£* “ (y(x),z) for some z G F . We need to have

<2 (x,a) 1 (£,a)> 4 0 and so we must have <(^(x) ,^| (x,a)> 4 0 , i.e.

<2 (2̂ ) IjP + (zÇ) (ax) 4 0 . Now,by the definition of 2^2^)» we know that 

<2(£.) 12P 4̂ 0 . Thus, if a ^ 0 ,we need zC 4 “<y(£,) (^x)  ̂ and, if

a = 0 , z may take any value we choose. Now, all we know for

certainty about the field F is that it contains two elements, namely 

0 and 1 . Thus, if a f 0 ,we may put zC = 1 - <2 (5 ) (^ \ )  . This

clearly satisfies zÇ 4 "<%(£) (a 'x) • Now, for a given £  , the only 

value that 1 - <2(£) (^  ̂x) (a 9̂  0) may not take is 1 since

<2(£.) I x> 7̂  0 . So if a = 0 we shall set z = 1 . So we shall define

the map ÿ : -t v;^, by

y(x,a) = -

where

b(x,a) = '

(X(x),b(x,a)) if x e

(0,1) if X = 0 , a = 1

[1 -<y(x)|x>(a \ ) ] Ç   ̂ a 4 0
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It is obvious that ÿ_ is an injection for, if ÿ (£,a) = ÿ(x' ,a' )

and X f 0̂  , then we would have x(2c) = ^(x' ) and b(5c,a) = b(x' ,a') .

But, since 2  is bijective, this implies £  t and b(x,a) = b(£,a') .

This, in turn, implies a = a ’ , If x. = ^ , then clearly xj = 0 and

so a = a' = 1 since (0^,a) and (0^,a') G .

We shall now show that y_ is surjective. Let (x.,a) G .

If X = ^  and a = 1 , then 2(J^> ̂ ) “ (£,&) * So suppose x ^  .

Then x G v ’ , Since y : V ’ V' is bijective, y  ̂(x) is defined —  m —  m m  —
and unique. If a - 1 , then  ̂(x) ,0) = (£,a) . So suppose a 9  ̂ 1 .

Then ay 4 1 and so %—    is defined. Thus
-1. h! ^

2 ( 2   ̂W  , ( — ■] s b  = (x,a) . Hence y :

jective and, consequently, is bijective.
I _ a x  -  ' ' ---- -

From bhe definition of y we have that, for all (x,a) G v ’ , ,—  . —  niT* 1
<2(3c,a) I (x,a)> 4 0 . Thus L^^ n  contains an idempotent.

Hence the set

®m+l “ : <£.a)) = (3$.a) ^

is a sparse cover for PF^ ,m
It remains to show that we may anchor the induction at m  = 2 . 

Since, in this case, every one-dimensional subspace of may be

generated by the vector (0,1) or a vector of the form (l,a)  ̂ it is 

easy to see that the set

{((1,(1-— ) r ' )  : (l.a)) ;a e  F\{0}} U  {((1.1): (1,0)),((0,1): (0.1))} 

forms a sparse.cover for PF^ .

' m1

 .2._____  i__ J_y. .
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§5 GENERATING SETS OF IDEMPOTENTS 2: THE VECTOR SPACE \' DEFINED

OVER A FINITE FIELD F

If the field F is finite then the semigroup S.ing^ is also 

finite. I shall show (Theorem 5.1) that in this case the necessary 

conditions for a subset E ' of E to generate Sing^ given in Lemma 

4.10 are also sufficient conditions. From this I shall obtain the 

minimum number m  such that there exists a subset E' of E that 

generates Sing^ and has order m  (Corollary 5.7).

5.1 THEOREM Let V  be an n-dimensional vector space over a 
finite field F . Let sing^ be the semigroup of singular endomorphisms
of V  and let pf , be the set of elements in sing with rank n - ln-1 * n
Let E ’ be a subset of the idempotents of pf , . Then E ’ generatesn— 1
sing^ if and only if n(E’) is the universal relation on e ’ and e '

covers p f  , .n - 1

PROOF We already know (Lemma 4.10) that if E ’ generates

Sing^ then R(E') is universal on E ' and that E ’ covers PF^_| .

To show the converse it will suffice to show that E* generates 

E , the set of all idempotents in PF^_| , for, by Theorem 4.9 and [7], 

we have that E generates Sing^ .

Let e G E'. Since E' covers PF^_| , there exist (f>,Y ^ E'

such that ({) L  e and y L e . Since II(E’) is universal on E', we have

that (^,y) G n(E') . Hence there exist E^,E2 ,...,Ep G E ' such that 

a = (})£,£-,..£ Y has rank n - I . Now, by Lemma 1.2, N = N , and1 2  p n  Ç
. Thus, by Lemma 1,3, a R and a L y  . Hence a. L e  and

a L e , Le. a R e  , Now, since F is finite, S ing^ is finite and so

certainly H^ is finite. So a belongs to a finite group. Thus, for
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some integer k ^ 1 , is the identity of that group, he. = e .

Since a is a product of elements of E' , we have that E ’ generates 

£ . But this holds for all elements of E and so E ’ generates E as 

required.

i
i

If a subset E' of the idempotents E covers PF , it is notn-1
true in general that II(E*) is universal on E ’ as the next example 

shows.

5.2 EXAMPLE If F - and n = 2 then the structure of

PF^ is

(1,0) (1,1) (0,1)

(1,0)

(1,1) ii 0
(0,1)

/ / / / Z / S z A

where the shaded boxes contain idempotents and where

0 0  

0  1

Eg = ((1,1):(1,0))
0  1

0 1

^  = ((0,1):(!,!)) =
1 1

0 0
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and

G 4  = ((0 , 1 ):( 0 , 1 ))
1 0 

0 0

If E ’ = {E^,G2 ,Gg,E^} then E' covers PFj . However, IT(E’) is 

not universal on E ’ . To see this we shall compute <E’> and then 

apply Theorem 5,1 .

Now <E'> = {eJ

( ( 1,0) : ( 1, 1))
0 0 
1 1

0 r
0  0

,0 } . Clearly <E’> 9̂  PFj for

^ <E’> . Thus, since E' covers PF^ , we have.

by Theorem 5.1, that n(E') is not universal on E ' .

The next three lemmas and Theorem 5.6 will show that if F is any 

finite field then any sparse cover of PF^ j will generate Sing^ .

5.3 LEMMA If |f| = q ,then the number of non-zero L-classes
asses] in PF^_| is (q^-i)/(q-i) ,

PROOF By Lemma 4.11 we know that there is a bijection between

the elements of a sparse cover of PF^ , and the L-classes [Æ-classes]n - 1

of PF^_^ . Thus there is a bijection between the L-classes and i?-classes

of PF^ . . Since F is finite it follows that PF^ , is finite and n- 1 n- 1

so there are only finitely many L-classes [^-classes] in PF^_^ . Con­

sequently there are the same number of L-classes as ^-classes in PF 0
n - 1 •

By the comments following Definition 2.5,we know that there is a

bijection between the one-dimensional subspaces of V  and the non-zero

Zr-classes of PF^ , . Now the number of non-zero vectors in V is n- 1 '
q^ - 1 . However, for each 2c in Y  and for all non-zero scalars X 

in F we have <x> = <Ax> . Hence there are (q^-l)/(q-l) one­

dimensional subspaces in V  •
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5.4 LEMMA If |p| = q 4 then the number of idempotents in any

non-zero L-class [i?-c1ass] of pf  ̂ , is q*~^n - 1

PROOF The number of idempotents in a given L-class L is the

number of i?-classes containing an idempotent in L . If the elements in 

L have range then, by Lemma 2.6, this is just

Q = I 2^ 9̂ 0} I where |x |  denotes the order of the set X .

Since the number of one-dimensional subspaces of V  is, by Lemma 5.3, 

(q’̂ -O/Cq-l) , we have Q = (q^-l)/(q“ l) “ | {<n> : <n|r> = 0} | . But 

{<n> : <jn| = 0} = : _n ^ • Since, by Lemma 2.3,

dim <r>^ = n - 1 , we have, by the proof of Lemma 5.3, that

Thus Q = (q’̂ -O/Cq-l) - (q^ ^-l)/(q-l) = q^ * as requiredn-1

5.5 LEMMA 
,0

If F is a finite field and E' is a sparse
cover for pf , , then i i (e ’ ) is the universal relation on e ’ .n— 1

PROOF Let (j),Y be any two elements of E' and suppose that

contains^n(E') n y[n(E')]  ̂ is empty. Since each L-class of PF^_|

q^  ̂ idempotents (Lemma 5.4) and E ’ is a sparse cover for PF^ , , wen— I
n - 1 elements e. of E ’ such that 

1
n-1

know that there are exactly q

(|)£̂  5̂  0 in PF^_^ (Lemma 2.7). Hence |^II(E’)| S: q^ ‘ . Similarly, 

since each i?-class of PF^_| contains q^  ̂ idempotents, we have that 

there exist exactly q^  ̂ elements eî of E' such that ely ^ 0 in

PF . Thus |y[n(E')] * I > qn-1
n - 1

1 1 
Now, since we have assumed

cf)II(E’) n y[n(E')] is empty, we have

*n(E') UY[n(E')] ' I = |4>n(E')| + jyCnCE')] ‘ | > q" ' + q"-' 2qn - 1
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But, since, by the proof of Lemma 5.3, we have [e * | = (q^~l)/(q~l) 

and ((>n(E’) U  y[n(E')]  ̂ ç E', we then have

Thus

|4#(E')Uy[n(E')]"*| < |E'| = (q*-l)/(q-l)

I.e.

q" - , 2 2q" - 2q"-‘

Hence

q* - 2q* I + 1 < 0 ,

I.e.

q’̂ ^(q-2) < -1 . (+)

But, since |E| = q and F is a field, we have that q > 2 . Thus (+) 

is impossible. So there exists e ^ <j)II(E’) H yClI(E')]  ̂ , i.e.

(<}),£) E n(E’) and (e,y) E n(E’) . Thus (<f),y) E n(E’) .

We now have ;

5.6 THEOREM Let \- be an n-dimensional vector space over a
finite field f . Let sing^ denote the semigroup of singular endo­
morphisms of V snd let PF , be the set of elements of sing withn - 1 n
rank n - I . Then there exists a subset e ’ of the idempotents of 
PF , such that E' is a sparse cover for pf , and E' generatesn~I  ̂ n-1
Sing^ . Further, any sparse cover for PF^_^ generates sing .
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PROP,F By Lemma 4.11, there exists a sparse cover for PF^  ̂ .

By Lemma 5.5, H(E’) is the universal relation on any sparse cover E '

and so, by Theorem 5.1, any sparse cover E ' for PF^_j generates 

Sing^ .

5.7 COROLLARY Let V  be an n-dimensional vector space over 
a finite field |f| = q . Let Sing^ be the semigroup of singular endo­
morphisms of sing^ and let e be the idempotents of sing^ of rank 
n - 1 . Then

min {jE’l : E * £ E , < E ' > =  Sing^} = (q^-l)/(q-l) .

PROOF This is immediate from Lemma 4.10, Lemma 5.3 and
Theorem 5.6 .

§ 6 GENERATING SETS OF IDEMPOTENTS 3; THE VECTOR SPACE V  DEFINED

OVER AN INFINITE FIELD F .

In Lemma 4.10 we found necessary conditions for a subset of E to 

generate Sing^ . When F was finite we were able to show that these 

conditions were also sufficient (Theorem 5.1). Unfortunately this is 

not the case when F is infinite,as Example 6.1 will show. Despite 

this, we shall be able to obtain a theorem (Theorem 6.7) that is similar 

to Theorem 5.6, but much weaker. Before stating Theorem 6.7, we shall 

need two more definitions and three simple lemmas.

6.1 EXAMPLE Let F - IR , <*1*> be the stroke product

defined by xÇ = xy = x and let E ’ be the set of idempotents of the
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form (a;a) . E ’ clearly covers PF , . Also II(E’) is universal on•  n— 1
E ’ . To show this we shall consider any two idempotents (^:a) and 

( _ b o f  E ’ . If (£.:£.) has rank less than n - 1 , then we have

(by Lemma 2.7) = 0 . Hence ^ 0 and

<a+b|b> = <bib> 9̂  0 . Thus (a:a)(a+b:a+b) and (a+b:a+b)(b:b) have 

rank n - 1 (Lemma 2.7) and so :££b) (]b has rank n - 1

(Lemma 1.9). Thus ((a:a),(b;b)) E n(E') . So E ’ covers PF , and 

n(E’) is universal on E ’ ,

Now let X E Y  and (£,:£_) be any element of E ’ . Then 

X = Xâ  + ]b where X E IR and ^  E <_a>'̂  (by Lemma 1.4). Thus

x(a:a) = b . So <xlx> = <Xa|Xa> + <b|b> = <XalXa> + <x(a:a)|x(a:a)> .

Thus, since ^ 0 with equality occurring if and only if ^  »

we have

with equality occurring if and only if x_ E <a>"^ .

Now let (n:£,) be any idempotent of E not in E ' and suppose 

that E' generates E . Then there exist ,11 2,. . .,n^ in Y  such

that

(jn:£) = (n:n) (11 j :n̂  ̂) (rig -Ez) * • • (£_:£_)

Now let X E <r>^ . Then

2c(n:jc) = 2c . (++)

But, by repeated applications of (+),

<^|^> S: <x,(ii:ti) |2c(^:n.)> > ... > <2£(n. : 0  [x.(ri:£.)> 

with equality occurring at each stage if and only if
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3and = A__^ n  e (i=l ,2,...). Clearly, A = A q £ A^ c A^ ... . We

x E  <n>*^ , x(n;n) E <n,>^ , x(n:n) (n, ;n, ) ^ <n->^ , ...

- H i  )  ^  •

Since, by (++) , equality does occur, we have 2C E <̂ >'*' . This 

holds for all x E <r>'^ . Thus <r>^ c <ri>'̂  . Now, since <r;>'̂  and 

<n>*^ have the same dimension,we have <r>"^ = <n>‘** , ie. <r> = <^> . 

But, since we-assumed ^ E'^ we have <r> 5̂  <n> . Thus E ’ does

not generate E and so certainly does not generate Sing

6.2 DEFINITION Let E be the set of idempotents of rank

n - 1  of Sing^ and let A and B be subsets of E . Define Aq = A a

shall say that B is A.-accessible if B c A. , and A-obtainable ifX ----- — -----  1+1

B is A^-accessible for some i E in . Clearly, if B is A-obtainable, 

then A generates B .

6.3 DEFINITION Let E be the set of idempotents of rank

n - 1  of Sing^ and let A be a subset of E . If e E E is 

A-obtainable, we shall define the height of e from A to be 

h^(c) = min {m : e E A^} .

The next three lemmas are trivial, but it is more convenient to 

place them here than include them in the proof of Theorem 6.7 where they 

will be called upon.

6.4 LEMMA If £j,e 2 > ^ 3  être A-obtainable, i . e

= ,' = 2'C3 ^ i ^ i



for  some subset A of E and i f  ^  ̂$ then

~ i=?t2,3

Thus GjG^e^ ^ Aĵ  E = A^^^ . So Iia^^1^2^3^ < h + 1

6.5 LEMMA If h^(e) = m , for some subset A of E and
some e G E , e = GjĜ e  ̂ , for some

®  i V i  >

and h^(e^) < m  4 then ^ {h^(s^)} = m - l .

6.6 LEMMA A = {e e u  a. : h*(e) = 0} for all subsets A
i= 0  ^ ^

PROOF Let h = i.Ttz.S = '^l’^ 2 ’^ 3 ^ \ '
0 R = A Rn L "f

-4PROOF This is immediate from Lemma 6.4 . J

of E .

PROOF This is immediate from the definition of height.

6.7 THEOREM Let V  be an n-dimensional vector space over 
an infinite field f . Let sing^ denote the semigroup of singular ’j
endomorphisms of V  and let pf , be the set of elements of singn - 1 '̂ n
with rank n - l . Then there exists a subset A of the idempotents
E in PF , such that A is a sparse cover for pf , and A n — 1 n ~ 1

generates sing^ .

PROOF The proof is by induction on m  in the following
H■•Î

±__ -__:__________ v̂.-v0'Van.4--'-x
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hypothesis :

There exists a subset A (m) of the idempotents E in PF ,m  m~ 1
such that A^^) is a sparse cover for PF . , and E is A - o b t a i n a b l em - 1 m

If m  = I , then the hypothesis is clearly true since Ej consists 

solely of the zero map. So,putting A^^^ = Ej , we have that A^^^ is 

a sparse cover for PF^ and Ej is A^^^-obtainable.

Now suppose the hypothesis holds for m  = n - 1 , We shall show I

that it also holds for m  = n . Adopting the notation of Lemma 4.11 let

O  _ {(y^(îc);x) : X  E } . As before, define the mapping

y : V ’ v' byjL. n n

y(x,a) = -
,b(x,a) ) if X E v ’ ,

(0,1) if X  = 0 and a

where

b(x,a) = "
Cl - <y(x)|x>/(ax) 3Ç - 1

a = 0

The inverse of y is given by

y \x,a) = \
(y ^(x),c(x,a)) if X E  v * _ .

(0,1) if X - 0  and a = 1

where

c(x,a) = '
[<x|y \x)>/( 1-aÇ) ]x  ̂ if a f 1

if a

From the proof of Lemma 4.11 we know that

-I":-'.
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Dp, = { (ÿ(x,a) : (x,a) ) : (x,a) E v ’ }n

forms a sparse cover for PF^ , . We shall show that E is . În- 1 n 0  ■
obtainable.

In listing the possible idempotents in E^ we may suppose ‘j

that n and r̂  are expressed as (2c,a) with _x E V^__j and a E F or

as ' (jO, 1 ) . The four main cases are; '

(A) n = (z,c) and r = (x,a) where z,x E v ’ ,

(B) n = (z,c) with z E  v ’ and r = (0,1)

(C) n = (0,1) and r = (x,a) with x E v ’

(D) n, = _r = (0 ,̂1) .

We may subdivide case (A) into subcases as follows :

(Al) £  = %( 2C) , c = b(x,a)

(A2) £  = y(x) , c / b(x,a)

(A3) £  = £(£) , a = 0 , c = 1

(A4) £  = £(£) , a 7̂  0 , c = 1

(A5) £  ^ %(£) , <£|x> / 0

(A6 ) £  ^ £(£) , <£| X >  = 0 .

Case (B) may be subdivided into:

(Bl) n = (£,c) , £  = (0,1) , c ^ 1

(B2) £  = (£,c) , £  = ( £>0 , c = 1 .

In cases (Al) and (D) we have that (£»£.) ^ . The remaining

elements of E^ may thus be divided into eight classes as follows. The 

reason for the order of the listing will become apparent as the proof 

progresses.

D. = {( (y(x) ,c) : (x,0)) : c 9̂  1 , x E V'_,} (case (A3))

Dg ” {((0,]):Cx,a)) : £  E (case (C))
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Dq = { ((y(x),1);(0,1)) : X  E v ’ A  (case (B2))o ■“  n*" 1

D/ = {((y(x),a) ;(£,!)) : a 9̂  1 , x E v* , } (case (Bl))

D 5 = {((2 (2 )̂ » ) • a 9̂  0 , x E  (case (A4))

^ : a 9̂  0 , b 9̂  1 , x E ,

b 9̂  b(£,a)} (case (A2))

D 7 = {((%(£) ,b) : (x,a) ) : x,£ E , x 9̂  £  ,

122̂  ^ 0^ (case (A5))

 ̂ ' (22»^) ) : x,£ E v' , , X 96 z ,

<y(z)|x> = 0} (case (A6 ))

By the construction of DQ,...,Dg we have that Bu n = $ if

i 9̂  j and that

8
E = U  D. .
^ i= 0  ^

We shall show, in eight stages, that is D^-obtainable (i=l,2,...,8 ).

We show first by using Theorem 3.14 that Dj is D^-accessible.

More precisely we show that

((%(x) ,a) ; (x,0 ) ) = (nJ :£^ ) (n2 :£g) (£.3 'I3 )

where

R\ (%(2S.) £j = 2   ̂(2 (25.) * = =  (x, C<2 (x) |£>/(l-aÇ)]x )̂

£.9 = 2(£>0 = (£, 1 ) £0 = (0,1)

£.3 ^ 2 (2i»0') = (2 (25) * ̂ ) £ 3  = (x,0)

  J.-..:_=.— :    — Jss-:5a
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1,
V

Notice first that ^nj>,<n2 > and <n^> are all distinct, as are <_r , |

<r«> and <r«> . Now define — Z — o

V  J =  1

V 2 = 1 - a

V 3 = - 1

PI = -(l-aC)x

Pg = <2 <x)|x>x— 1

Pg = (l-aS)x-I

Since, for D, , we have a 9̂  Î , it follows that 1 - aÇ 9̂  0 , Thus all

of these are non-zero. Also

^ 1— 1 ^ 2— 2 ^ 3 ^ 3  ^ + (l-a)(0 ,1) - (%(£), I) = (£,0 )

P]£l + ^2— 2 P 3E.3 == •■"(l“aÇ)x ^(£.»t<y(£)|£>/(l“aÇ)]x

+ <%(£) |£>X ^ ( £ j l )  + ( l - a S ) x  ' ( x , 0 )  = ( £ ,0 )
; - 1

and, by Lemma 3.13,

<''l£L||p,£l> + <'',ailp2£2^ + < V 2 S 2 l p 2 - V  “ ^''2%! "212=" " 1^11 P3^-3^

= [(l-a)Ç][<y(x)|x>]<(£, 1) I(£, 1)> - [ 1Ç][( 1-aC)]<(y(x),a)|(x,0 )> -| 

- [( 1-a)^]<y(£) |x> - ( 1-aÇ)<£(£) Ix>

= 0 since Ç is an automorphism.

We now show, again using Theorem 3.14, that D 2 is D^-accessible.

We show that

( (£; 1 ) : (x,a) ) » (n^ ) ( £ 2  :£g) (£g :£2 >

where
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2 .] 2 ;  ̂ =" (2 *

JI2 2(35.)̂ ) = (2(3) : ̂ ) £2 ̂  (£'0)

£3 = ÿ(£'^) = (2W  , [ ̂ -<2(3) I£>/ (ax)]C S  £3 = (x,a)

Notice first that >,^— 2^ and <£3^ are all distinct, as are

<r,>,<r«> and <rv> . Now define — 1 — z —3

= <2 (£)l£>^~^ Pj = a

*— J
^2 = -axC P2 = 1

- 1V3 = axi P3 = “ 1

Since ( (0_, 1 ) : (£,a) ) G E, we have, by Lemma 2.6, that

0 9̂ <(0 ,1) I (x,a)> = (15) (ax) = ax . Thus v j , ,V3,p j ,p^ and P3 are

non-zero. Also

^l£l + ^2 - 2  ^32.3 " "̂ 2(3.) 12?^ ^) - axS  ̂(2(£)

+ axC ^(y(x),Cl-<y(x)|x>/(ax)]C” )̂

=  ̂-ax?  ̂+ (ax-<%(x) |x>)^ S

= (0,0)

P)£] + PgZg + P3E.3 = a(£, 1) + (x,0) - (x,a) = (£,0) 

and, by Lemma 3 .13,

+ <^,E,|P2i2^ + <'>2a2lP2^.2^ = < % | P 2 y  " IPjH-S^ 

= “ (ax) (U)<(x(x), 1) I (x,0)> + <2(£) IX>( 1 c)<(_0,1 ) I (j{,a)>
= "(ax)<2(£) + '̂ 2^£) l£^(^x)

= 0  •

'ivz - r - ̂
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Next we show that is Dg-accessible, again using Theorem 3,14,

In fact we show that

( (%(£) ) ̂ ' (2 * ̂ (£l :£% ) (£.2 "2 .2  ̂( £ 3

where

£| = (%(£.) * ̂ ) £ 1  = (y(£) = (x,0 )

£ 2  ==  ̂ S  £ 2  ^ (£>^)

£ 3  = 1 (0.»!) = (0 , 0  £ 3  = (0 ,1)

Notice first that, since <y(x) |£> ^ 0 , <£|>,<£2 > and are

distinct, as are <£^ >, <£2 ^, ̂ £3 ^ • Now define

V j = -1 p j = 1

"I

^ 2  = 1 P 2 = -1

V3 = <y(x)|x>ç  ̂ P3 = 1

N o h  all these are non-zero. Also

^ i £ ]  ^ 2 ^ 2  ^ 3 2 3  ^  + ( % ( £ ) , [  1 " "^y ( £ ) I £ ^ ] ^ *)

+ < y (x )  |£>S ^ ( £ , 0  

= (0,0) ,

Pj£ + p2 £ 2  + P ^ £ 3  == (£»0 ) “ (x» 0  + (£, 0  

= (0,0)

and, by Lemma 3 .1 3 ,

<'',Bl|P,£l> + <v,n,|p2 T2 > + <\'2B 2 lP2Z 2 > = ^'',B]|P,Br " I i

= - ( U )  ( I x )  < (£ (£ .) J 1) I ( x , 0 ) >  + <% (£) !£ > < (£ ,  1 ) I ( x , 1 )>  

~ ■"<£(£.) I x> + < £ (£ ) I x> = 0 .

liriiiiili ’JiLl '-J'.'—  it i
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In the next step we show that is (DqUDjUD3 )“accessible.

Since Dj and have been shown to be Dg-accessible,we shall thus

have that is D^-obtainable. Again we use Theorem 3.14 to show

that

( (£(x) , a) : (£, 1 ) ) = (n J :£j ) (n^

where

I

£l = (y W  ,a)

£.2 “ (%(£) , ( ̂ -a+a ) / a)

L\ == ÿ  ̂(%(£.) == |x>/(l'-ag) ]% •*) I-1

£ 3  == (%(£.), ̂  )

£ 2  == (x,0 )

£ 3  = ( 0 , 0

Notice that, since ((£(£.),a) : ( £ , 1 ) ) E E , we have, by Lemma 2.6, that 

0 'é (y.(£) » a) I (£, 1 ) > = aÇ . Thus a 0 ■ and so the definition of £ 3  

is meaningful. Also, since <%(£) |£> f 0 and, in , a 1 , we have

that <£j>><£2 ^ and <£^> are distinct, as are <£^ ̂ , "̂2 2 ^ and <£^> . 

Now define

V J = a - 1

V 3 = I

pj = -(l-aÇ)x —  1

- 1P2 = (l-aÇ)x 

P 3 = <£(£.) l£>X

Since <%(£) 9̂  0 and, in , a 1 , we have that all these are

non-zero. Also

^]£l '̂ 2— 2 ^ 3 ^ 3  ^ (a- 1 ) (y(x) ,a) - a(^;(x) , ( 1-a+a^)/a) + 1 (x(£) , O  :f

~ (£ja^“a— 1+a—a^+I)

= (0,0) ,

y. J,'. ̂ .. _
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P |£| + P2I.2 ^3X3 = “ (l-aÇ)x Vx,[<2(x) |x>/(l-aÇ)]x  ̂)

+ (l-aÇ)x  ̂(£jO) + ^X(£) (£, O

= (0,0)

and, by Lemma 3.13,

+ <'>,B,|p2i2^ + ^^2B.2lP2Î-2^ = '=''2% I" 2 ^ 2 ^  “  ,S.l I P3£.3>

= “ (aC) (1-aÇ) <(^(x) , (l-a+a^)/a) I (3C,0 )>

- C(a-l)Ç]<y(x)|3c>< (%(£) ,a) I (£, 1)>

= -(aC)[(l-a)^]<2(x) |x> “ C(a~l)Ç]<j(x)|x>(aÇ)(Ix)

= 0 .

o
To show that (^2 " ̂ 2^ ^ ^1 need only show that (1-a+a ) /a. 1 .

2But if (1-a+a )/a = 1 , we would have a = 1 and this is excluded by 

, ( £ 3  :£g) clearly belongs to D 3 .

Next we show that is (DJ-*D U D 3 )-accessible and hence D^-

obtainable. More precisely we show that

( (%(x) J O  : (x,a) ) = (£j :£j ) ( £ 3 :£2 ) (1I3 :£3 )

where

■

£] = (%(£), 0  . £; = ( £ , 0

£ 2  ^ (%(£) , [ax/(ax+<%(x) I x>) ]g )̂ £ 2  = (x,0 )

£ 3  = ÿ(£»a) = (y(x),Cl-<y(x)|x>/(ax)]Ç~^) £ 3  = (x,a)

Now, since ((y(jc) , 1) : (x,a) ) e e , we have, by Lemma 2.6, that

0 f <(y(x) , 1) [ (£,a)> = <X(x.) + (ax) • Thus the definition of £^ is

meaningful. Also, since <%(x) |x> 9̂  0-, we have that <£j>»<£2 ^ and

I

■'Ï

J
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<£ 3  ̂ are distinct, as are and "̂ £3 ^

Now define

V, = <y(x)|x>Ç P, = a1 I

\»2 = -(ax+<%(x) |£>)5  ̂ P 2 = 1

I
V 3 = ax^ P 3 = - 1

All of these are non-zero. Also

^|£| + ^2 - 2  ^3^3  ̂(%(£) , ̂ )

- (ax+<x(x) |£>)Ç  ̂(x(x) ,Cax/ (ax+<%(x) |x>) ]C 

+ axC '(y (x) ,[l-<£(x)|x>/(ax)]ç

= (£,<X(x) |x>g ^-(axS S  + [ l-<x(x) |x>]g  ̂)

= (0,0) ,

P)£] + P2 £ 2  P 3 I 3 = a (£, 1 ) + (x,0 ) - (x,a)

= (0,0) ,

and, by Lemma 3.13,

= *%(x) 1 x>.ax. <(%(x), 1 ) I(£, 1 )> 

•- ax. 1 C. <(x(x) ,[ l-<y(x) I x>/(ax) ]Ç S  | (£,0 )>

= ax.<y(x)|x> - ax,<£(x)|x>

= 0 .

Clearly (£jî£j) ^  D 3 and (£2 :£2 ) ^ 0^ since, by , a 9̂  0 .
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To show that is D^-obtainable, we show that is ( D ^ D  ̂ ) -

accessible. In particular, we show that

( (%(x) ,b) : (x,a) ) = (n.j :£j ) ( £ 2  =£2  ̂( £ 3  :£g)

where

£ 1  " (%(£) ,b) £j = l ‘*(£(x),b)

“ ( £ , - |x>/(]-bC)]x~ '/

£ 2  = (x(x) jCbÇ-l + (ax)/<(£(x) ,b) 1 (x,a)>]ç"'^) £^ = (x,0 )

£ 0  = y(£,a) = (£(x) ,Cl-<y(x) |x>Xax)3^"*) r_ = (x,a)
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Now in we have b 4̂ 1 and a f 0 and so the definitions of £j ,

and £ 3  are meaningful. Also, since ((z(£.) ,^) * ^ E , we have, by

Lemma 2.6, that < (£(2c) ,b) j (x,a)> 4 0 . Thus the definition of £ 3  is 

meaningful.

We now show that <£^ >, <£2 ^ and <£^> are distinct. Since 

((%(£) ^ Oq we have b 4 [ 1-<%(£) Ix^/ (a%) 3C  ̂ . Thus <£j>

and <£3 > are distinct. Now suppose that <£^> = <n^^ . Then 

bC = b 6 - 1 + (ax)/<(%(£) ,b)|(x,a)> , i.e.

<X(£) l£> + bÇ.ax = ax .

But this implies !

bÇ = 1 - <x(x)|x>/(ax)

which we have already shown to be false. Thus <£^> 4 <£2 ^ . Finally ^

we show that <£2 ^ and <£^> are distinct. Suppose not, then

bC - 1 + (ax)/<(x(x),b)1 (x,a)> = 1 - <£(x)|x>/(ax) ,

i.e.

bÇ ~ 2 + <x(x)|x>/(ax) + (ax)/(<x(£) |£>+bÇ.ax) = 0 .

But this would imply

ax.bÇ.<y(x) |x> + (ax)^(bÇ)^ - 2 (ax)<%(x) |x> - 2 (ax)^.bÇ 

+ <%(£) + ax.bCf%(x) |x> + (ax)^ = 0 ,

i.e.

(ax.bÇ-ax+<y(x) |£>)^ = 0 .

Thus

.. -1» '■ . .-til-'-J 1-; ^ 1 ___'V.-r:-‘ij'-J"-'- ■ ' a.-'.
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bç = 1 -

which we have already shown to be false. Thus <n_> 4 <n»> .— z — J
We now show that < r ,>,<r.> and - <r„> are distinct. Since— I — Z — i

<y(x)lx> 4 0 and, in , a 7̂  0 , it is clear <r„> 4 <r^> and

<£2 ^ <£l> . Now suppose <£j> = <£^> . Then

ax = <y(x)|x>/( 1-bÇ) ,

I.e.

ax “ ax.bC = <y(x) x>

and so

bÇ = I - <x(£) lx>/(ax)

which we have already shown to be false in .

Now define

Vj = [ax(bÇ“ l)+<£(x)|x>]Ç ̂ pj = -(I-bC)X ^a

\»2 = -[ax.b^+<£(x) |x>]^  ̂ P2 = [ax( l“bÇ)-<£(x) |x>]x ^

—• I 1 — 1
V 3 = ax? P 3 = < x W  IX^X

Now Vj and p^ are non-zero otherwise we would have 

b? = 1 - <x(£) 1 /^X contrary to the conditions of .

^ 2  ~ (X̂ iS.) I 2̂5.,̂ )̂ Ç  ̂ is non-zero, by Lemma 2 .6 , since

((x(x) ,b) • (£,a)) G E . V 3 and pj are non-zero since, by the condi­

tions of , a f 0 and b # 1 . P3 is non-zero, by Lemma 2.6,

since (x(£.) •£) is an idempotent in PE^_^ .

Also

.iâi
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^ 1— 1 "*"' ^2— 2 **" ^ 3 ^ 3  ^ [ax(b?-I)+<%(%) |x>]?  ̂(jCx) ,i>) _<

- [ax.b?+<£(x) lx>]? \y(x) ,Cb?-l+ax/<(£(2^,b) l(x,a)>3?  ̂),

+ ax?  ̂(%(£) ,[ Ix^/ (ax) 3? b

= (£, Cax(b?)^-ax.b?+<£(x)|x>.b?-ax(b?)^

~<X(£) |x>b?+ax.b?+<£(x) |£>-ax+ax“<x(x) 1x ^ 3? S  

= (0,0) ,

P j£| + P2X.2 ■*■ ^3^3 “ (l-i>?)X ^a(x,[<£(x) |x>/( I-b?)3x b

+ Cax( l~b?)“<£(x) |x>3x bx,0) + <x(£) Ix^X  ̂(£,a)

= (£,“a<£(x) I x>+a<£(x) [x>)

= (0 ,0 ) , !

and, by Lemma 3.13,

< ' ' l B i l P , £ , >  +  I  P z £ 2 ^  +  < ' ' 2 B 2 l P 2 H . 2 ^  =  I p S - V  i
= -[ax,b?+<£(£) |£>3[ax(l-b?)-<£(x) |x>3<x(£) |x>

- [ax(b?-l)+<2 (x)|x>3<y(x)|x><(y(x),b)|(x,a)>

= 0

I
I

since < ( x ( £ )  »^) I (X»^)^ “ <y(x)|x> + b? .ax .

To show that any element ( (£(£) ,b) : (x,a) ) of is D^-

obtainable we must use induction on the height of the idempotent
(n- 1 )(y(z) ;x) of PF ^ from A A. —  ■—  n— z

that all elements of

Suppose, as the induction hypothesis

t= 0  °t
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of the form ((y.,b):(x.,a)) are D -obtainable if 
— 1 — J u

Now^if k = 0 , we have, by Lemma 6 .6 , that :x.) G  A  . Thus

Zi = Z f e )  • Thus I

((x,-»b) Î (^4 ,a)) ^  ^  D . 1 — J t“0 t

But we have already shown that

6
t=0 ^t

is Dq“ obtainable, so we may start the induction process, 

Consider now some element ( (£j ,b) : ( £ 3  ,a) ) of

t i  °t

where

Then (x% “ (Xi-Xj ) (X2 *£2  ̂̂ ^3 *~3^ ior some idempotents (x^'Xi)
(i=l,2,3) of E^_j where

(i=l,2,3). By Theorem 1.12 and Lemma 3.12, ‘̂ Xi^,^X2 ^ and <£3 ^ are

distinct, as are <Xj^»‘̂ X2 ^ and <£ 3 > . So, by Theorem 3.14 and 

Lemma 3.13, there exist non-zero elements ^ ] , ^ 2 '^3 1 '*̂ 2 P 3 of

F such that;



(ii) PjXj + + P 3 X 3 = £
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(iii) <VjYj|PjXj> - <^ 3 X 3 1^ 2- 2 ^ = 0  . •

Now, we wish to find elements c , d , e and f of F such that *|

(Zj  ̂ ' (X2 '^^ ̂   ̂(X3 >^) • ̂ £ 3   ̂ are .group
Z^-classes and ( ,b):(x^,a)) = ((y^,b):(xj,c))((y^,d):(x^,e))((y^,!):(x^ja)Xf 

i.e., by Lemma 2.6, such that: 1
(1) <Xj |xj> + b?.cx 7̂ 0

(2 ) <X 2 iX2 ^ d?.ex 4 0

(3) <X3 1X 3 ^ **■ ^ 0

and,by Theorem 3.14, Lemma 3.13 and (i), (ii) and (iii) above, such that:

(4) Vjb + v^d + v^f = 0

(5) pjC + p^e + p^a = 0

(6 ) (Vjb)?.(pjC)x - (v3 f)C.(p^e)x = 0 ..

We first find two values that c may not take. From (1) we see that if

b 0 then we must choose c ^ F such that

cx 9̂  -<Xi IXi^/(^^) * (A)

Eliminating a from (5) and (6 ) gives

(Vjb)?.(p jC)x + (v^f)?.(p ̂ c)x + (\^gf)?.(p3 a)x = 0 ,

I.e.

(v3 f)?.(P|C+p^a)x + (Vjb)?.(p jc)x = 0
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From this and (3) we see we must choose c such that

I X3 >.(p  ̂c+p^a)X + axXVjb)?j(p^c)x 4 0 ,
I.e.

cx[ax.(bVj/v3 ) ? - <£^| X3 >] 4 (ap^/p j)x.<X3 1̂ 3 ^ *

Thus if ax.CbVj/v^)? - <£3 1 9̂  0 we must choose c such that

cx 4 (ap3 / p j ) x ^ l x 3 >/[^^X.(bVj/v3 )? - <X3 |x^>] . (B) Î

It is also convenient to choose e to be non-zero. Thus, from (5),

c 4 -ap^/pj . (C)

Since F is infinite we have no trouble satisfying these three 

conditions.

Suppose now that we have chosen an element c of F to satisfy 

conditions (A), (B), (C).

From (5) we have

p^e = -PjC - P 3 a .

So from (6 ) we have

fÇ = -(bVj/v3 )?I(pjC)/(pjC+P3 a)]x .

(This is defined since, by (C) , c 4 .) Thus, from (A),

d? = “ (bVj/v^)? + (bVj/v2 )?.(pjC)x/C(p jC+p^a)x3 

= -(bVj/v2 )?.[(P3 a)/(p jC+p3 a)]x .

We now show that with these values of c , d , e and f ,
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 ̂  ̂ ' (Xg,^) ] are group |
/^-classes.

If b = 0, then <(Xj ,b) | (x^ ,c)> = |X|> 4 0 since f

( Z r i P ^ V i -
If b 7̂  0 , then

<(Yj ,b) I (Xj ,c)> = <ZilXi^ t bCcx

^ <Z] IXi^ “ <Zi IXi^ (by (A))

= 0

Next,

< ( Z 2 ' ^ )  I ( X 2 ' ^ ) ^  =  < Z 2 1X 2̂  +  d C e x  

=  < Z 2 l X 2 ^  ^  ( b v ^ / U g ) ? . ( a p 3 / p ^ ) X

= [<̂ 2̂^ 2 !"̂ 2- 2 ^ (b\)])?<ap3 )x]/[v^?.p^X] |

= C<Vj£j+V3y3|p jXj+p^>+(bVj)?.(ap3)x]/Cv2?.p2X3 1

(by (i) and (ii)) f 

=■ C<v,x, IP ,£,>+<v|Z, IP3£3>+<''3y3|p,x,>

+<v 3X3 i P jX 3 > + (b v  J ) Ç.(ap j )  X ]  /  C «2 Ç • P 2>(^

=  I p 3 X 3 ^ +  ( b V   ̂) ?.(a p 3 )  X ]/ [ ^ 2  ̂' b 2 x ]
(by (iii) and Lemma 3.13)

= v,?,p x.<(y,,b)1 (x_,a)>/[v ?.p x]

4 0  since ((y,,b):(x ,a)) G e ~i “ J n

Finally,
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I (X.3 ,a)> = <X3|x3> + f?.ax i

= - (bVj/v3>?.[p jac/(p jC+p^a) ]x •

If axXbVj/v^)? “ <X 3 lx3 > = 0 , then

I (xc(,a)> = ax.(bv /v„)Ç - (bv /v«)?Ip ac/(p,c+p a) ]x

= axXbVj/V3)?Il-(p jc/(pjC+p3a) )x]

= ax.(bv^/v3 >^j:p3 a/(p jC+p^a) ]x 

= <^3 l2 3 :^[P3 a/(p^c+p3 a) ]x .

Now,if a = 0, then the assumption axXbv^ ̂ ^̂ 3 ) ̂  "" ^̂2 3 1 ^ 3 ^ “ 0 would

give <y« IXq> = 0 contradicting (y^tx,,) € E / . Thus a 9̂  0 . Hence, 
— J  '—o — 3  •—J n*" 1

if ax-Cbv^/v^)? - <Z3 |x3 > = 0 , then

(X3»^)^ ^ ^ •

Now suppose ax,(bVj/v3 )? - <^3 1 ^ 3 ^ 9̂  0 . By (B) we have chosen c such 

that

cx 9̂ (aP3 /p j)x.<y3 |x3 >/[^.(bVj/v3 )? - <£3 |x3 >] .

Thus

<(Z3*i)I(X3*^)^ = C ( P  Jc+p3a)x<%3 1̂ 3^ “ ( P  jac)x(bv j/V3)?]/[(p ̂ c+p^a)xl

(p^c)x[ < % 3  |x3 >-(ax).(bv^/v3 )?] + (p3a)x.<X3 1^3^
(pjC+p3 a)x

-(ap3 )x.<y3 lx3 > + (p^a)x;<Z3|x3>
^ (PjC+p3 a)x

= 0 .
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We now show, using Theorem 3.14, that with these values of c , d , 

e and f

((Zl »b):(%3 ,a)) = ((Z| »b):(x^,c))((j2 ,d):(x2 ,e))((y^,f):(x^,a)) ,

<(Z2 >*̂ )̂  and are distinct. Also, since > <£2 > and

<x_3 > are distinct, then < ( X j , c ) >  , and <(£3 ,a)> are

distinct.

Now,

^l^Zpb) + V2 (z2 »^) + ^ 3 (Z3 >f) = (£jVjb+V2 d+V3 f) (by (iii))

= (£,Vjb-bv j.[p2a/(p jC+p3a)]x? ^-bv^.Cp jc/(p j c+p3a) 3x? b  

= (£,VjbCl“ (p3 a/(pjC+p3 a))-(pjc/(p^c+p3 a))]x? b  

= (0 ,vjbl(pjC+p^a-p3 a-pjc)/(pjC+P3 a)]x? b  

= (0,0) ,

pj(Xj,c) + p2 (£2 ,e) + p 3 (%3 ,a) = (£,pjC+p2 C+p3 a) (by (iii))

= (£,p^c~pjC-p3 a+p2 a)

= (0,0)

and, by Lemma 3.13,

^^l^Zpb) lPj(xpC)> + <v^(£pb) [p2 (x2 ,e)> + <\̂ 2 (Z2 '^) 1 ^ 2

= (Zi »b) |p J (Xj ,c)> - <Vq(z.;,f) |p,)(xg,e)>3^3»^-/ IK2 V- 2

= <^lZilPiXi^ + (Vjb)?.(p jc)x - 3X 3 1 ^ 2- 2 ^ " (v3f)?,(P2e)X

= (v^b)?.(p jC)x “ (v^f ) ?Xp2 c)x (by (iii) and Lemma 3.13)

I

a

i
since 4Zi^ > 4 X 2 ^ and <X3 > are distinct, then also (X% >b)> , |

I

.Æ
T-......
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= (Vjb)?.(p jc)x - (Vjb)?.[p jc/(pjC+p3a)3x*(pjC+p3a)x

holds. Hence every element of is D^-obteinable.

Finally we show that Dg is

7
-accessible

and so Dg-obtainable. Let ( (y(£) »b) : (2c, a) ) G Dg . Notice first that 

since ((y(£) ,b):(x,a)) G Dg we have, by Lemma 2.6, that

0  4 <(x(£) ,b) I (x_,a)> = <%(£) Ix^ + b? .ax

= b?.ax . (D)

We shall find c,d G p , n.,£ G and non-zero elements

1’*^2*^3 ^ F such that [(x(x) ,b) : (£,0)] , C (£:£)] and 

[ (X(x) »^)•(X»^)^ are group g-classes, (n:r) G ^U^D^ and

(y(X) )b) + v^n + Vg(£(x),d) = (£,0 ) 

pj(£,0 ) + P^^ + pg(x,a) = (£,0 )

(X(X) >b) [p J (£,0)> + <Vj (^U) ,b) |p2£> + ^^2— 2 ^‘̂2— 2^ ^ ^

We shall start by putting pj = p^ = 1 . If [n:£] is to be a

t
(Vjb)?XPjC)x - (Vjb)?Xp|C)x f

0 .

So the induction step on the height of elements of
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group H“class we must have 4 0 by Lemma 2,6. Thus

0 4 <Vj(£U),b) + ,d) I p J (£,0 ) + pg(x,a)>

= < V |X (£ )  I p |Z> + < V j £ ( £ ) | p 3 X> + (v jb )? .(p 3 a)x

+ <^3y(x)lPjX> + I + (V3d)?.(p3a)x .

But, since ((£(£) ,b) ;(£,a) ) G Dg, we have <x(x) lx^ ~ ^ * Also 

Pi = P3  “ 1 , so

0 4 ^jÇ.<x(x)lx^ + v^?.b?.ax + ^3?.<X^x)lx^
+ V 3 ?.<£(x) |x> + Vg?.d?.ax .

If we choose d such that

^ X W  Ix^ + ^^X(X) Ix^ + d?.ax f 0 , 

i.e. such that

d? 4 ~i<X^X) Ix^ “̂ X^X) Ix^^/(^x) » (E)

then this inequality will be satisfied by putting

V 3 ? = "i'^x(X) IX^ ^^X^X) Ix^ + d g . ax]  ̂ (F)

and

Vj? = < x W  Ix^  ̂ • (G)

Also,since we require i(x^X) »^) • ̂ X»^)^ to be a group E-class, 

we must choose d such that

*^(x(x) »^) Ux»^)^ ^ 0  »

i.e. such that
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d? 4 -<y(x) |£>/(ax) (by (D), ax 0 ) . (H)

Since F is infinite,we may choose d G F to satisfy conditions 

(E) and (H). If we then define and as in (F) and (G), define

Pi = P 3 “ 1 , <n> = 1 (%(x) »^)"^^3 (X(X) » <£> = <z+£,a> and

V 2 »P2 such that

v^n = “Vj (£<£),b) - ^ 3 (%(X) ,d)

and

^2—  “ -(£t£,a) ,

we can show that all the conditions of Theorem 3.14 apply to the product

( (%(£) ,b) : (_z,0 )) (n_:£) ( (%(x) ,d) : (x,a)) .

We first show that the null-spaces are distinct. Clearly,

<(%(£) ,b)> 4 <(%(x) ,d)> since £  f x and x,£ G . From (F) and .

(G) it is obvious that Vj and V 3 are non-zero, thus <n> is distinct

from <(%(x) »b)> and <(%(x) •

The three ranges are distinct since x 9  ̂ z , since x,z G v ’ , ,

and neither pj nor P 3 are zero.

Since x and z are distinct elements of V ’ , and—  —  n - 1

^2—  ^

it is clear that p^ 0 .

Similarly, we have ^ 0 . Now

^l^X(x)>b) + v^£ + \^3(%(x) = (£>0 ) >

Pj(£,0) + p^X + P 3 (x, a) = (£,0) + pg£ + (x,a) = (£,0)

and, by Lemma 3.13,

1:

j; ' %  : ' .. .. . ' . ; ■ ■■ - ■ ' , ■__i-__;__W  r.f-.. A.vC.
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j (%(£) ,b) I p J (£,0)> + <v J (y (£) ,b) I p2£> + <^2x1 p2£>

= <Vj (y(_z) ,b) I p J (£,0 )> - <V3 (y(x) ,d) I P 2£>

= |z> + V3?.<(£(x) ,d) I (£+x,a)>
“ Ix̂  Ix^ ^Z^X) Ix̂
= 1 + (-1) (by (F) and (G))

= 0  .

Thus ((x(x) »b) : (x,a) ) = ((£(£) ,b) :(£,0) )(£;£)( (^(x) ,d) : (x,a) ) . Clearly, 

( (x(x) >b) : (£,0 )) and ( (^(x) ,d) : (£,a) ) are elements of

iWo •

It remains to show that

(£:£) ^  A  °i •

To show this we need to consider the stroke product of the first n - 1

co-ordinates of n with the first n - 1 po-ordinates of £  ,

'̂’̂ jX^X) ^ 3X(X) IX'^X^

= ’̂|?î x(x) Ix̂  + ’̂3?*̂ X̂(X) Ix̂  "̂ X(X) Ix̂  ̂ (since <x(x) Ix̂  = 0 )

= 1 - !^<x(x) Ix^ + <x^X) lx?^]/[<x(x) Ix^ + "^X^X) Ix^ + d?,ax3

(from (F) and (G))

= d?.ax/[<y(£) |z> + <x(x) IX^ + d?.ax]

4 P (by (D)) .

Thus (£:£) ^ . But (n;r) is an idempotent and thus belongs to

• . ■  - - ' - - - A;:.
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i^O °8 •

Hence

( £ : r )  ^  D£

So Dg is

7
(.UD.)-accessible 1=0 1

and so D^-obtainable.

Consequently,

8
^n " i= 0  °i

is -obtainable. Since D^ forms a sparse cover for , we have,

by putting , completed the induction step.

So, for all m G M  , there exists a subset A^™^ of the idem­

potents E in PF , such that A^^^ is a sparse cover for PF , m m - 1 m - 1

and is A^^^-obtainable . By the comments following Definition 6.2,

we know that A^™^ therefore generates E . But E generates Sing^ m m ° ^m
(Theorem 4.9) and so A^™^ generates Sing^ .

§7 GENERATING SETS OF IDEMPOTENTS 4; THE NUMBER OF GENERATING SETS

OF MINIMUM ORDER WHEN V  IS DEFINED OVER A FINITE FIELD F

In Section 5 we found the minimum order of a subset E ' of the

idempotents E of rank n - 1 such that E ’ generates Sing^

,■ .-AV. ■  '"À... .
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(Corollary 5.7). This section will be devoted to finding the number 

W(q,n) of generating sets with this order. Theorem 7.7 will determine 

W(q,n) when V  is a two-dimensional vector space. Lemma 7.15 and 

Lemma 7.17 give upper bounds for W(q,n) when n > 3 . Lemma 7.18 

(with subsidiary Lemmas 7.19 to 7.21) shows that the bound given in 

Lemma 7.15 is the better of the two.

If n = 2^ then it is possible to determine W(q,n) using what,in 

[l],are called rook polynomials.

7.1 DEFINITIONS Define an m-board B to be an m x m

array of cells, an arbitrary number of which are coloured black and the 

rest coloured white.

Define the m -complement-board B' of B to be B with the 

colours of the cells interchanged.

7.2 EXAMPLE Let B be the three-board

The three-complement-board of B is

B ’ =
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IS

7.3 DEFINITION The rook polynomial Rg of an m-board B .4

where a^ is the number of ways of selecting i black squares from B 

such that no two are in the same row or column (i.e. the number of ways 

of placing i chess rooks on the black squares so that no two may take 

each other - they may, as in chess, pass over the white squares). 

Clearly, for all boards, a^ = 1 .

7.4 EXAMPLE In Example 7.2, the rook polynomial of the
2 3board B is R„ = 1 + 6 x + 9x + 2x and the rook polynomial of B ’

is Rg, = 1 + 3x + 3x^ + x^ .

7.5 LEMMA (Inclusion-Exclusion Principle) Let B be an
m-board with rook polynomial

E-t) “ + a - X + ... + a X™ .B U I  m

Let B ’ be the m-cornplement-board of B . The coefficient of x™ in 
the rook polynomial of b ’ is

PROOF See, for example, [1].

7.6 DEFINITION If |f| = q we shall associate with Sing

an m-board B(q,n) where m  = (q^-l)/(q-I) . We shall do this as 

follows :
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Consider the egg-box of the D-class of Sing^ containing elements 

of . This has m  rows and m  columns. Colour the group

if-classes of this D-class black and the non-group E-classes white.

Clearly, W(q,n) equals the coefficient of x™ in the rook 

polynomial of B(q,n) .

7.7 THEOREM Let V  be a two-dimensional vector space over 
a finite field |f| = q . Let sing^ be the semigroup of singular 
endomorphisms of V  and let E be the idempotents of sing of rank 
1 . Let w(q,2) be the order of the set

{E» ; E' c  E , |e’| = (q^-l)/(q-l) , <E'> = Sing^} .

Then

q+l {'-1 VW(q,2 ) . (q+D!

PROOF By the comments following Definition 7.6, all we need

do is find the coefficient of x™ in the rook polynomial of the m-board
2B(q,2) where m  = (q -l)/(q-l) = q + 1 , By the construction of the 

board B(q,2) and by Lemma 5.4, each row and each column of B(q,2) 

contains precisely q black cells and I white cell, i.e. B(q,2) is

of the form
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Clearly, the rook polynomial of the m-complement-board B ’ of B(q,2) 

is

Thus, by Lemma 7.5, the coefficient of x™ in the rook polynomial for

B(q,n) is

I.e.

W(q,2 ) = (q+l)! (-1 )’"/k!

If n ^ 3 then the problem of determining the number of generating 

sets of minimum order becomes much harder. Upper bounds may be obtained 

from Theorem 4 of [3] and Theorem 10 of [16] (quoted here as Lemma 7.14 

and Lemma 7.16). In.Lemma 7.18 I shall show that the bound obtained 

from [3] is, in fact, better. Before quoting these results some further 

definitions are needed.

7.8 DEFINITION Let A = (a^^) be an n x n matrix. The

permanent of A , denoted Per(A) , is defined to be a. . where  ----  aeGn i
is the symmetric group on the set {l,2 ,...,n} .

7.9 DEFINITION A is an n square (0,1) matrix if A

is an n X n matrix with entries in {0 ,1 } .

Clearly, if A is an n square (0,1) matrix, then Per(A) is 

the number of ways of choosing n entries of A , each of which is 1 ,
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such that no two are from the same row or the same column of A . If we 

now construct the matrix M(q,n) from the board B(q,n) by putting the 

entry of M(q,n) equal to 1 if the (i,j)^^ square of B(q,n) 

is black and 0 otherwise, it is clear that Per(M(q,n)) = W(q,n) .

7.10 DEFINITION The incidence matrix of a (v,k,X) con­

figuration is a V square (0,1) matrix satisfying:

(i) every row and every column of A contains exactly k entries 

which are 1

(ii) any pair of columns [rows] of A both have entry I in the same 

row [column] for exactly A rows [columns].

7,11 EXAMPLE The matrix

A =

1 1 0 

1 0 1 

0 1 1

is the incidence matrix of a (3,2,1) configuration. Also Per(A) = 2

7.12 DEFINITION Let A = (a^j) be an n x n matrix. A is
n

doubly stochastic if a^^ = 1 for all j = l,...,n and
n.E, a.. = 1 for all i = 1 ,2 ,...,n . J = 1 ij

7.13 LEMMA The matrix M(q,n) is the incidence matrix of a
(v,k,A) configuration, where v = (q^-l)/(q-l) , k = qn - 1 and
A = q^ ^(q-l) .

PROOF By the definition of M(q,n) and B(q,n), it is

immediate that v = (q^-l)/(q-l) . The number of 1’s in each row of

I' ^
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M(q,n) is precisely the number of black squares in each row of B(q,n) , 

But this is precisely the number of idempotents in each i?~class of

» i.e. there are precisely q^  ̂ Î's. in each row of M(q,n) . 

Similarly,there are precisely q^  ̂ 1’s in each column of M(q,n) .

Thus k = q^ * .

Now consider any two rows of M(q,n) . Let these correspond to

the i?-classes of containing elements with null-space <x> or

<y> . Now consider any L-class L of PF^ , that intersects R —  n- 1 <x>
and ^<y> non-group ^-classes. Clearly, L contains elements with 

range perpendicular in , i.e. L must be labelled with any one­

dimensional subspace of . Since is of dimension n - 2

(Lemma 2.3), < ] c c o n t a i n s  exactly (q^ ^-l)/(q-l) one-dimensional

subspaces (from the proof of Lemma 5.3), Thus, given any two rows of 

M(q,n) , there are exactly (q^ ^-l)/(q-I) columns of M(q,n) that 

contain the entry 0 in both of these rows. If we let the number of 

columns of M(q,n) that contain the entry 1 in both these rows be c , 

then we have

I.e.

c = —  {q^ ^-l+2 q^-2 q^ ^-q^+1 }

= q^ ^(q~l) .

Similarly, given any two columns of M(q,n) , there are exactly q^ ^(q-1) 

rows of M(q,n) that contain the entry 1 in both of these rows. Thus 

X = q^ ^(q-1) .
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7.14 LEMMA (Marcus and Newman [16]) If A  is the incidence #
j ,

matrix of a (v,k,x) configuration, then

Per(A) < v! ^  .

where

0 = (k-x) ^ / 2  ,

It is now immediate that:

7.15 LEMMA If & = (q"-l)/(q-l), then

W(q,n) < + ,1 ) ^  _

In the following, we shall denote this upper bound for W(q,n) by m  . >

7.16 LEMMA (Bregman [3]) If A is an n square (0,1) 
matrix with exactly r^ I’s in row i, then

Per(A) < .n^[(r.!)i/^i] .

From this it is immediate that;

7.17 LEMMA

In the following, we shall denote this upper bound by b

- - i - . ■ - -T- I.-, i.-.
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7.18 LEMMA For all q and all n > 3 , m < b .

PROOF This is mostly through a series of technical lemmas

Eventually we shall show that < | where £ = (q’̂-l )/(q-1 ) .

Throughout this section, the following abbreviations will be used:

k = q"-'
and

c = q"/'

Since p p  < exp , we have

m  < £!(--^^.-^ / exp ^q£ / ^ q - 1  '

Thus

m'/* < {e x p ( ^ )

Also

Thus

where f(x) = (x!)^/* .

:



7.19 LEMMA

' m r  ■ i s T - s f S i } !  •

If X > 7 and f(x) = xl*/*, then

PROOF Clearly,

r "t 1

f(x+l) _ (x+l)!% x(x+l) (x+l)=
f (x)

I J
x!

1
x(x+l)

But Stirling’s formula (see e.g. [19]) gives

where 8 E (0,1) . Thus

So

xl > (2 nx)^/^.x*.e ^ .

f(x+I) < m(x+l)
f(x) j

where

T = e(x+l)/x^ l/(2x) ^

We shall now show that T/e < 1 , i.e. that 

g(x) = (x+I)/x^ < I

for X ^ 7 .

By logarithmic differentiation, we find

g* (x) _ x(log x - 3 )  + (log X - 1 )
g(x)

2 x (x+ 1)

93
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Now, since

g(x)
2 x^(x+l)

> 0 for X > 7 ,

we have g ’(x) â 0 if and only if

h(x) = x ( l o g x - 3 )  + (logx-1) > 0 .

Since h(15) < 0 and h(16) > 0 ,  there exists an Xq E (15,16) such 

that h(x^) = 0 .

Suppose first that x > x^ . Then

h ’ (x) = log X + - 2

> log 15 - 2 > 0 .

Thus h(x) > 0  if X > Xq , i.e. g ’(x) > 0  if x > x^ . Consequently,

if X ^ X q , then

g(x) < lim g(y) y-xx)

y-4<x) y 

= 1 .

2Now suppose that 7 < x < x^ . We have h"(x) = 1/x - 1/x > 0

since x > 7 . Thus h'(x) > h ’(7) > 0  if x > 7 , i.e.

h(x) < h(Xg) = 0 for x E [7,Xq ) . Hence g'(x) < 0 for x E C7,Xq ) .

Consequently, if 7 ^ x < Xq , then

g(x) < g(7) < 1 .

Thus, if X > 7 , we have that g(x) < 1 . Hence T < e , i.e.

' -’i-- Jkil- J



as required.

7.20 LEMMA Let x > y > 7 and f(x) = xl^^* . Then i

< I  exp {-i(i-i)log(2it)} .

PROOF

f (x) ^ f (r+1 ) 
f(y) r=y f(r)

and so, by Lemma 7.19,

f (y T  < rSy GxP "  2 r ( r + l j ^

Now,

x-l ' 1 . , X
rSy 7 T T  "= %  dz = log

jy y

and

1 1 1X - 1j; _  ̂ _ _r=y r(r+l) y x

Thus

y  exp log ( 2 tt) }  .

95
i

_
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We return now to the proof of Lemma 7.18 . Immediately before 

Lemma 7.19 we obtained

where f(x) = xî^^* .

Now, by Lemma 7.20, if k ^ 7 , this gives

0'^*^ " { ^ - i ( i - i ) l o g  (2n)}

=  -̂— -exp log (2%)} .

Now, since c = and n ^ 3 , we have q â c^^^ . Thus, if

k 2: 7 , we have

(”)'/*■ < £ ^ . e x p  { - 4 j  + - - - l o g  (211)} .
2 c^(c - 1)

7.21 LEMMA Let

x - 1  1 ,2/3 _ x 2g(x) = - — exp {— r + — 5— 5-----log (2m)}
‘ 2 x 2 (x2 - 0

If X > 4, then g(x) < l .

PROOF ■ By logarithmic differentiation,we have

S(x) 3x3(x2-,)2 x(x_,)2

> î^-log (2m ) ------- L —
3x^(x^-l)^ x(x-l)^

"^1
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_ x \ ( x )  4- 2 log ( 2 tt)
3x3(x2-|)2

3x(x^-l)^

where

k(x) = 3(log (2%) - I)x^ - (5 log (2tt) + 6 )x - 3

Now, k(x) takes a minimum value when

5 log (2t t) + 6  
6 (log (2 n)- 1)

= 3,02 (to three significant figures).

Let the roots of k(x) = 0  be Xj and x^ where Xj < x^ . Then,to 

three significant figures, we have

Xj = -0.191 and x^ = 6.23 .

Hence k(x) > 0 for all x > x_ and k(x) < 0 for all x in [4 ,X2 ) . 

Hence, since g(x) > 0  if x > 4 , we have

g' (x) > 0  if X  > X-

g ’(x) < 0  if X E [4 ,%2 ) •

Thus

g(x) < l im g(y) if X  > x„
y-̂ co ^

g(x) < g(4) if X E [4 ,X2 ) .

Hence
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g(x) < 1  if X > 4

since

, : / 3 - ,
0  as X

2 x 2 (%2 _i)

and

g(4) = 0.994 (to three significant figures).

We now return again to the proof of Lemma 7.18 . Immediately 

prior to Lemma 7.21, we obtained

if k > 7, where g(x) is as defined in Lemma 7.21 . We now have that, 

if k > 7 and c > 4 , then

i.e. we have m  < b if k ^ 7 and c > 4 . 

Now, since q ^ 2 and n ^ 3 , we have

c = q^/^ ^ 4 if (n,q) 7̂  (3,2)

and

k = q"~' k 7 if (n,q) + (3,2)

Hence, if (n,q) 4̂ (3,2) , we have m  < b .

Now, if (n,q) = (3,2) , we see, by direct calculation of the 

inequality immediately prior to Lemma 7.19, that
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^ 0.975 (to three significant figures).

Thus, in this case also we have m < b . This completes the proof of 

Lemma 7.18.

7.22 TABLE This table evaluates the upper bound for W(q,n)

given in Lemma 7.18 . All the values are rounded up to four figures.

The second number in each entry indicates the power of ten by which the 

first number must by multiplied.

q n = 3 n = 4 n = 5

2 2.085 2.084 1.917

2 8 25

3 7. 192 1.619 8.628

7 41 179

4 2.057 1.130 7.185

17 118 674

5 1 . 2 0 2 8.339 1 .992

31 260 1846

7 7.997 1.372 1.510

72 842 8254

8 3.249 4.732 6.165

101 1332 14878

9 3.621 1.580 7.740

135 1993 24969
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To give an idea of how good a bound Lemma 7.16 gives, it is worth 

noting that W(2,3) = 144 whereas, in the table, we have W(2,3) ^ 208.5 .

§ 8  GRAVITY AND DEPTH

Let be the full transformation semigroup on the finite set X

and let a be an element of . In [8 ], the defect of a was

defined to be the order of the set X\X^ . It is shown in [8 ] that the 

subsemigroup of generated by the idempotents with non-zero

defect is > where is the symmetric group on the set X . In

[13] the gravity of a was defined to be the least g(a) E ]n  for which 

a E where E is the set of idempotents of defect 1 . The depth

of <E > = was defined, in [13], to be the least A E ]N such that

(E^)^ = where E^ is the set of idempotents of non-zero defect.

Formulae for g(a) and A were determined in [12] and reported in [13].

In this section, similar definitions for gravity and depth will be 

given, and the gravity of any element of Sing will be determined, asn
will the depth of Sing^ .

8.1 DEFINITIONS Let V  be an n-dimensional vector space

over the field F and let Sing^ denote the semigroup of singular endo- 

morphisms of V  ♦ Let E denote the idempotents of Sing^ of rank 

n - I and E^ denote all the idempotents of Sing^ .

Let a E Sing^ . Since E generates Sing^ (Theorem 4.9), there 

exists an integer k such that a E . The gravity of a is defined

to be
g(a) = min {k E : a E e^} .
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If there exists an integer k such that

= Sing^ ,

then the depth of Sing^ is defined to be

A(Sing^) = min {k E  ]n ; (E*)^ = Sing^} ;

otherwise the depth of Sing^ is defined to be infinite

If F is finite, then Sing^ is a finite semigroup. Thus the

chain

e"̂  £ (E+ ) 2  Ç (E+)3 Ç ...

cannot have infinitely many inclusions. Since E generates Sing^ and 

E S E , we know that this chain must become stationary at Sing^ .

Thus, if F is finite, Sing^ has finite depth.

Before attempting to find the depth of Sing^ , or the gravity of 

any element of Sing^ , it is convenient to introduce some matrix nota­

tion and prove three technical lemmas.

8.2 NOTATION Denote by S^ the k x k matrix

0 1 0  0 0 
0 0 1 0  0 

0 0 0 1 0

0 0 0 0 0 
0 0 0 0 0 ... oj



and by the n x n matrix

i- O  *n— 2 — 1 I
I

0 1
0 ‘ ' 0

• 0 1 I

0  • o i l .
I I 1

where denotes the d x d identity matrix (n > 2 ,i 3  n - 2 )

8.3 LEMMA Let A be the matrix

102

1

I 0 1 o'"

1 0 0
s 1 : .
n—2 1' 0 1 0

1 1 0
— —  —  —  — — 1---- —

0 0 ... 0 1 1 0
_0 0 ... 0 ! 0 1 _

Then A  = (n a 3 )
1 L n— z

PROOF The proof is by induction on k in the formula

where

\

^n-2 -k j 0 1

1
0

1

1
* 0 0

0 1 1 :
1 1 0 0

1 . 1 __ jO^
0 1 0 1

I h

1
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To show that the induction process may be started at k = 1 , 

notice that

n-3 0 0

1 0 (n)

Now suppose the result is true for k - 1 , i.,

=  V i  •

Then

(n) (n) ^(n)
1 2

E, E, ...E—  = (n)

n- 2 -k

"n- 1 -k
+

0 , 0

k -1

0 0

0 0 
1 0

0 I I,

In-2-k I 0 I 0

0
n— 2 —k

I

1 0 

0 0

k-2

I 0
I

4 ----
j 0

[ •
I n
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^n-2-k 0 1 0 0
»

0 1 1 0 0 ... 0
0 1 1 0

0 0 1 1 0 0
1
1 1 ° 0

0 1 0 1 s. .1
1 k-2 ! 0 0.
i
1 1 1 0

0 ' 0 1 0— 1 1 2

I _ • 0 1 0n-2-ki 1
—» — —«• 1~ —  —

1 1? 0
t r •0 ' s. ' . •

k 1 0 0
1
1

1
1 1 0

0 ' 0 1
1 1 2

Thus

But

^n - 2
n- 2

J

= A ,

0 0

0 0
1 _ _ 0

I.,

so
4 - 1  = A
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8.4 LEMMA Lét A  and b be the n x n matrices

”o 1 0 0 0 ... o”
0 0 1 0 0 ... 0

A - 0 0 0 1 0 ... 0
• • • * • . .
0 0 6 0 0 1
0

^ 2 ^3 ^4 ^5 * • • an

B = ■ In- I |2l

/ 2 ^3 a4 « • • 3-n * 0
1 _

T h e n

U 1 n— 2

Notice that b and each E^ (i = 0 , ..., n - 2 ) are idempotent and 
have nullity i .

PROOF By Lemma 8.3, we have

g(n)j,(n) __g(n) ^ 
U 1 n - 2

1

I
1

' 0n- 2  j 
1

1________

I 0 1
0  1

1 0 1__

-
1 0

0 ~

^n- 2 1 : •

0 0

1 I 
i

0

‘ 0 1
0 1

1 0 u

I 0 0

^n-2 I °
I 1
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n-I

° 1 '

It is now clear that

U 1 n- 2

LEMMA Let A be the (n+1) x

0 1 0 0 0 ... 0
0 0 1 0 0 ... 0 •
0 0 0 1 ^ 0 1... 0 1 Q
* ‘ • 1. 16 6 6 0 0 • 1 ' 

I
^2 ^3 ^4 ^5 ' ^n 1

£
n

1

Then

where

1 2 n- 1 ’

^ n - 1
0 r-

D = 1 1 and G =
0

^ 1
0  0 .

n

*n-l *n-l I 0

Notice that d , g and each are idempotent and have nullity i
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PROOF By Leirana 8.3,

„p(n+l) (n+1) (n+1)
1 2 n- 1

Thus

j,g(n+l)E(n+l)
n- 1

1

1

V i  '
I
1

0

1

1
---- tr

I 1 1
0

' 0 0

• 0  
1

(T"

1 0 0

V i  ! : •
‘ 0  
1

0

1 1 

1 1

0

1
0 I

1 0 0 _

1 0 0 "
!
1 0 0

^n- 1 1 : .
« 6  
1

0

1 1 

1 1

0

1
0  1

L 1 0 0

V i

H J • • • *n-l
_ o  ... 0

A .
' ■ V

I
Ï
I
I

4 - .

0
0

0
1

I a - 1 + 1• n

a , a - 1  n- 1 n

- V
1

—

‘ 0 0
1 T

{:1 0 0 I
V i  1 ; ;

. ;• 70 0

• 1 0 Î
1 • Î

—
 ̂ 1 i 0 10

' 0 1 i

f
■ S
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We are now in a position to find an upper bound for the depth of 

Sing^ . This, of course, depends on n .

8.6 LEMMA Let V  bs an n-dimensional vector space and 
Sing^ the semigroup of singular endomorphisms of V  • Let e be the 
set of idempotents of sing_ of rank n - 1  and let a e s i n ^ . Thenn
there exist e e  such that a = E,E 2 ...e^ and
V =  Re, + Re, + ••• + Rs„ •

PROOF Since every element a of Sing is singular, we known
that, relative to a suitable basis, a has matrix

= diag {A^,Aq_|,...,A|}, where each A^ is a d^ x d^ matrix of the

form

^i ==

0 1 0  0 
0 0 1 0

6 6 0 0
îl ^i2 ^i3 ^i4 ^idj

and Aj is singular (this being the rational canonical form for a 

matrix; see, for example, [15]). It is thus sufficient to prove the 

theorem for matrices of the form . We shall do this by induction

on q

Clearly, for all values of q, we have

n = .E,d. 1-1 1

and, since Aj is singular, a^j = 0  .

Suppose first that q = 1 . Then, using the notation of Lemma 8.4,
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(n)Letting e)"'' denote the î ^̂  standard basis element of an n-dimensional 

space, notice that

and, denoting the range of by ,

R- = < 4 - i - r  (i = O' '. . . . n-2)
Thus

'n- 1

so we may anchor the induction process.

Now suppose the result holds if q < k - 1 and consider the 

matrix - diag  ̂,. . . jA^ ,Aj } . By the hypothesis,

M  — diag {Aĵ _̂  j > * • * *'̂ 2 ” ^i^2***^t *

where t ^ d j + d ^ + . - . + d , each is idempotent and

dim (Ri +R^ +...+Ri ) = t .

Thus M  = f ! f ! . . . f ’ where a 1 2  t

F = \  1 and F ! = V  _  “ 1
0 1 F.

_ 1 h
(i = 2 ,...,t)

%

Now, since (by the hypothesis) Fj has nullity 1, there exists a basis
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for the null-space of Fj and a basis 1^.2 > ~ 3 ’ * * * »— n-d  ̂ the

range of F, . By Lemma 1.4, {u,,u„,..,,u , } forms a basis for the1 — J .— / — n—
domain of F  ̂ . Relative to this basis, Fj has matrix

n-di
0 J  £

0 I ^n-d. - 1—  I k

where is the i x i identity matrix. Hence there exists

invertible matrix P such that F, = P , P . Thus
1 n-d%

1 - 1  IFj = Pj where

an

\  1 °
P] = and = —

0 1 P O i  l ’
1 ^ 1

Now, using the notation of Lemma 8.5, 

!\  ; û

0  1 0

= DE  ̂̂ E D.. . E  ̂ k^l  ̂ G 1 I d, -1k

Notice that

J- = <g(dk+l) _ (dk+l)>
K d, + 1  k

<e (4k+')>
k + 1

and, denoting the range of E ^ k ^ ^ )  by , 

Rt = <e^k+')> .
1 - V i

Thus
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 H
0  1 * • * d.

where

«0 =

D 1 0  " G * 0j—■ —  —  — -  t-
0 1 n—d, — 1k _

and

«i
' X-d, - 1I ^  .

(i = 1 ,2 ,...,d^-l)

Notice that

\ • ' ± X - v < "k k

and

(i l,2 ,...,d^ 1)

Now F ̂ = h 'h ’...h ’ where h I = .1 U 1 d^ 1 1 1 1

We shall now find R^, (i = 0,1,...,d^).

If ^  ^ R». £), then we have H.x
-1 T

T qT Hence 
1 Tsince Pj 3i 4 ^  and

R L  is one-dimensional, we have <(P"*xI)'^> = R^ . Thus, denoting



Rh - = - T f r  Pi.

= < T s . S i , 4 XGk K

and

1

Now, R I £ R . and so R^i c R \  .
1 \  %  I

Hence

4 i \  Pi, 4 X  - Rp; -

Thus

n-d
< if,'Pi. = R ^ . .

But Rp is one-dimensional and k p ̂ ^ ^ 0 , so

< ^k^> - . Consequently, by the hypothesis,

< Pil + <Rp^ : i = 2,3,... ,t>
i

(n-&k)= <^ k : i = 1 ,2 ,..., n-d^> .

Thus

„ 2  "^'1

Rh ’ ^Rpl ' ^ ^ 2,3,...,t> = <e^^^ : i = d^+l,...,n> 
k ^

Now, since
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<R^i  : L = 0 , . . . , d ^ - l >  n  : i  = d ^ + l , . . . , n >  = { £ }

and

dim <R^j^ : i = 0 , 1 ,.. . ,d^-l> = d^ ,

we have

dim (<R^t : i = 0 ,l,...,d^>+<R^, : i = 2,3,...,t>) = t + d^ 

k
= .Z,d. = n .

Thus V  - Ru’ + Rut + ... + R^f + Rut + Rft + ... + R X  . But we also 
X  ^ 1 %  X  ^ 3  ^t

have

and n = t + dĵ  .

Hence the induction step holds.

From this it follows that n is an upper bound for the depth of 

Sing^ and for the gravity of any element of Sing^ . In order to show 

that A(Sing^) = n , the following theorem (which is also interesting in 

its own right) is needed.

8.7 THEOREM Let sing^ denote the semigroup of singular 
endomorphisms of an n-dimensional vector space V and let e denote 
the idempotent elements of sing^ of rank n - l . Let a e  sing . 
Then a ^  E^ where g = dim (x ^  V  : ka = . Also, if £ < g ,

T4
■T

1

%

■ - '' - ' ' ' ' *• ■'     •-____ -.........................‘ ' j:»:...'.!.; ..
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then a e  E* , i.e. the gravity of a is dim {x e \/ ; xa = x}-̂  .

PROOF Suppose ~ {3c G Y  • has dimension d .

Let ,u.2 ,. .. be a basis for and extend this to a basis

B = »''' fot V  * Relative to this basis, a has matrix

M  =a
P *1 M

where is the d x d identity matrix and M  is an (n-d) x (n-d)

singular matrix.

By Lemma 8 .6 ,

where each is idempotent with nullity 1 (i

dim : i = l,...,n-d}> = n - d where

Thus = N|N| , where

1 ,,.,,n - d) and 

Rm. " 1 ,2 ,.••,n-d)

":d 0  ■ '
0  -

N J -

1 «1.
and N| =

j ;

and where is the d x d identity matrix, P^ = P - MjP ,
I TP| = P - for some arbitrary d-dimensional vector and

m ’ = M«Mo. . .M J .1 Z J n—d
Similarly, n ; = N^N' where

"Id ' 0  1 Fl, I 0 1

^ 2  ~
______ 1 _______ and N 2 = 1

11

J 2 1 ^^2 _ 1 ^ 2 _
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and where = Pj ~ M^Pj , P^ = P| - £ 2— 2 some arbitrary d-

dimensional vector a» and .
— I z 5 4 n-d

Continuing in this manner, we see that

\  ^ 1^ 2 •*'^n-d-l^n-d- 1 '

Notice that each (i = l,...,n-d-l) is idempotent with nullity 1 and

so is an element of E . Now

\ ~ d ~ l
_  n-d- 1 I M' , , n—d— 1

Id I 0

P' . , M  ,n-d-1 I n-d

Thus n ' , , e  E if and only if M .P' . , = CO] , i.e. if and only ifn-Q- 1 n—d n-d- 1 '
ButP' , , = r^ a , n-d- 1 — n-d— n-d for some d-dimensional vector a , .— n-d

P' j , = P' . » - r ,a n—d— 1 n—d— 2 — n—d— 1— n—d— 1

= P — n—d~2— n—d— 2 — n-d- 1—n-d - 1
- r

n-d- 1 rp 
^ 1  i= 2  -i-i

= P
n-d- 1 m
.S, r . a. 1=1 — 1— 1

Thus n ’ j , G E if and only if n-d- 1 *'

n-d ry
P = i S ] % (+)

Now,we already know that dim <{£^ : i = l,...,n-d}> = n - d and that
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P is an (n-d) x d matrix. Hence we may choose the vectors 

*^2 ’ ' ’ *’-^-d such a way that (+) holds, i.e. such that

N ’ , , G E . Hence hi G E^ ^ . But, by Lemma 2.3, dim = n - dim X  • .in—d— I a ' ''a
Thus g = n - d and so M  G E® .a

0
Now suppose that & < g and a G E . Then there exist elements 

E^,E2 ,...,E^ of E such that

a = = 1:2 "''=t '

Since V = No ® Ro (Î “ 1 ,2 ,...,&) we may define, for each u. in B ,Ej Ej ~i
an element m. , E N and an element s. , G R such that— 1 , 1  ■ e j — 1 , 1 ■'El
u. = m. , + s. , . We may then define, inductively, elements m. . G M— 1 — 1,1 — 1,1 — i,j

and elements _s. . G satisfying £. = m. . + _s. . (j = 2 ,3 ,.i>j j ijJ” * i>J t,j
Thus

■  j £ * , j  • (+)

Now u. = m.. + s., and so 
— 1 — 11 — 11

-i^l -i,l -i, 2 ‘*‘ - i ,2

Thus

-i^l^2 " -i,2 -i,3 ~i,3 *

Continuing in this way, we clearly obtain

So, using (+), we have

iu.a = u. - .Z,m. . , 
- 1  — 1 j = l~i,j
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I.e.

But each N is generated by a single element of Y  , n. say. |Ei 1

Thus, for each m. . , there exists a scalar X. . such that^ > j t , j
m. . = X. .n. . Thus - 1 , 1  1 ,1 - 1

Now, clearly, dim <{.E,X. .n,. : i = l,2,...,n}> < Z . Thus
1  ̂ 1 , 1 1

dim <{u_^ - jj^a : i = 1 ,2 ,... ,n}> < i .

Now,the basis B was chosen so that

u, - u.a = Ug - u„a = ... = u, - u,a = 0 — I — 1 — z — I — a — d —

Thus

dim <{_u^ - u.£a : i = d + 1 ,. . . ,n}> < & ..

But n - d = g and £ < g . Hence there exist scalars ^d+l’****^n 

(not all zero) such that

i.e.

Thus

n n
j=S+i^jüj - = 0

i=d+l**j— j ^  Xx
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Hence there exist scalars Vj,V2 ,...,v^ such that

But this is a contradiction since ,* « « forms a basis for V

and not all the Pj are zero. Thus a ^ .

8.8 THEOREM Let Sing^ denote the semigroup of singular 
endomorphisms of an n-dimensional vector space V  and let e'*' denote 
the set of idempotents of sing^ . Then the depth of sing is n 

(i.e. (E+)* = S i n ^  and if £ < n then (E+)* 4̂ Sing ).

PROOF By Lemma 8 .6 , we know that E^ = Sing^^ , where E

denotes the idempotents of Sing^ of rank n - 1 . Since E G E* , 

thus have A(Sing^) < n .

By Lemma 1.1,

we

A(Sing ) > max (g(a) : a G PF ,} . n n— 1

By Lemma 8.7, the element

0 0

^n-1 I -

of Tf’n_i has gravity n . Hence A(Sing^) ^ n . Consequently,

A(Sing^) = n .

8.9 COROLLARY Let ^^^^2 ■ V V be idempotent singular
endomorphisms of an n-dimensional vector space V  • If e, has rank 
n - kj , Eg has rank n - k^ , and has rank n - kj - k^

(n > kj + kg), then e.Sg is an idempotent endomorphism.
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PROOF Since is idempotent of rank n - kj , it follows

that dim {x G Y : xEj = xT = n - k^ . Thus g(Ej) = kj . Similarly,

g(£g) = kg . Consequently, gCe^Eg) < k, + kg .

Now let d = dim Y : » then g(£jEg) = n - d .

Thus n - d ^ k j  + k g  , i.e. d ^ n - k j  - kg . But E^Eg has rank

n - kj - kg , so,by necessity, d < n ~ kj - kg . Thus d = n - kj - k, 

i.e.

dim {x G Y : XE,E_ = x} = dim R—  —  1 2 —  ' '£ I Eg

Also {x G Y  : xe e = x} £ R and so {x G Y  : x e ,e„ = x} = R
—  —  1 2  —  ^1^2 —  —  1 2 —  EjEg

Thus E^Eg acts identically on its range and so is idempotent.

1

. . " - . y . . . .  -,x£
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§1 BASIC DEFINITIONS AND RESULTS

This section gives the basic definitions and lemmas that will be 

used in the final two sections. As most of these results are well 

known, I have omitted many proofs and given instead suitable references.

1.1 DEFINITION A pre-Hilbert space is a complex vector

space P together with a map, called an inner product, <•j•> : P x P Œ 

satisfying the following properties;

( 1) = <y_| x> (Vx,y G P)

(2) <x+^j^> = (y£>y.»£ ̂ P)
(3) (Vx , 2  ^  P , V x  G  Œ)
(4) <]c| x> > 0 (Vx G p , or

1.2 DEFINITION A Hilbert space is a complete pre-Hilbert

space, i.e. a pre-Hilbert space in which every cauchy sequence is con­

vergent. "4

A separable Hilbert space is a Hilbert space which has a countable

basis.

1.3 DEFINITION A linear subspace of a separable Hilbert

space W is a subset /\ of ]-| such that, if x,y^ G p and X,y G (C , 

then VIy. ̂  A  •

1.4 DEFINITION A closed linear subspace of a separable

Hilbert space |-j is a linear subspace A  of H such that, if

^£n^nG]N ^ sequence of elements in A  with limit x. H > then x

belongs to A  • The closure of any subset ^ of |-| , denoted by B  , 

is the smallest closed linear subspace of |-| containing B  •
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1.5 LEMMA (Theorem II.5.1 [2]) Let <.|.> denote an inner
product on a separable Hilbert space R . Then, for each x in H » 
the mappings <"|x> : H Œ and <x|»> : |].-> m are continuous. The 
first mapping is also linear, while the second has the 'conjugate linear' 
property given by <x|Xj^+yz> = x<x|y_> + 7<xl£> (V x , y ,£ e  \\) (V a,y e  œ)

1 .6 DEFINITION Let A he a subset of a separable Hilbert

space H . A^ will denote the set H : < £ | = 0 (Va G A)} .

1.7 LEMMA (§53 [17]) Let A  be a subset of a separable
Hilbert space [] . Then A'*' is a closed linear subspace of \\ .

1.8 LEMMA (Theorem III.6.2 [2]) If A  is a closed linear
subspace of a Hilbert space R , then H = A  ® A"*" and A  = A"*”  ̂ •

1.9 LEMMA (Corollary III.6.1 [17]) If A  is any subset of
a separable Hilbert space, then A  = •

1.10 LEMMA (Theorem 53C [2]) If A  and g  are any closed 
linear subspaces of a separable Hilbert space [\ such that A  i B  > 
then the set A  ® B is also a closed linear subspace of H .

1.11 LEMMA If A  and g  are linear subspaces of a 
separable Hilbert space g , then;

(i) = A^ n

and

(ii) (A^B)^ = AX + B^
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PROOF (i) Clearly, A - A B and B - A + B • Thus

A"̂  2 ( A  + B)'^ and B^ 21(A + B)^ - Hence (A+B)^ S A^ ^  .

Now, if X ^  A**" ^  B'*' » then “ 0 (Va G  and <^|b> = 0

(Vb e  jg). Thus <x|^+b> = 0  (Va S  A  > 6  g) , i.e. !c €  (A + B)^ •

Hence Â  ̂^  g^ c (A+g)"^ , and so A'̂  ^  g^ . (A+B)'^ •

(ii) From (i) we have

I.e.

cA^]^ ^ cB^]^ = (cAX]+[B^])^ .

A  n g  = (A +B )
Thus

= (A'̂ +B'̂ )

1.12 LEMMA Let A  and g  be closed linear subspaces of a
separable Hilbert space g such that A  £ B  • Then g  = A  ® (B'^A'^) •

PROOF Since g  is a closed subspace of g , it is a Hilbert

space itself. Since A is closed in g , it is also closed in g  . So, 

by Lemma 1.8,

B = A ® (B'̂ A*̂ ) •

1.13 DEFINITION Let a G  sing . The adjoint a* of a is

defined to be the unique mapping in Sing such that <5c|ya*> = <xotjj> 

for all x,y in g .

- - : ' y.
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1.14 LEMMA If e G  E then e* G e .

PROOF For any a,g G Sing , we have (a3)* = 3*a* (see

Theorem 56A [17]). So, putting e = a = 3 gives e* ~ (e^)* = e*e* ,

1.15 LEMMA Let a e  sing . Then and A *

PROOF Let X G . Then = 0 ^ H) . Thus

= 0 ( V % E  g), i.e. xa* G  g-^ = {£} . Thus R^ £ .

Conversely, if £  G  , then <xa*|y> = 0 (Vy G  g). Thus <x|ya> = 0
(Vy e H). i.e. X 6 R^ . Thus |\|̂* £ R^ ; Hence N„* = R^ .

Similarly, R^* = = N„ • Thus f]̂  = R^* = .

1.16 LEMMA Let j\ and g  be. closed linear subspaces of a
separable Hilbert space g .
(i) If dim A  = dim g  » then A  IS isomorphic to g

(ii) If dim A < dim g  , then there exists a closed linear subspace C

of g such that A is isomorphic to C •

PROOF This is immediate from Theorem 11,9.1 of [2 ],

1.17 LEMMA (Theorem I V . 7.2 [2]) Let a G  sing . Then g^ 
is a closed linear subspace of g .

1.18 LEMMA If e G  E 5 then R^ is a closed linear subspace
of g .

•k

PROOF since e is linear, R^ is clearly a linear subspace 4
is

of g . Let ( x ^ ) ^ ^  be a sequence of elements of R^ with limit £  |
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in H . Since e is idempotent, x^e = x^ (n = 1,2,...). Thus, since

e  I S  c o n t i n u o u s .

x e  =  (lim X ) e  = lim ( x  e )  •= lim x  =  x  —  — n — n — n —»

Thus X G R .e

1.19 LEMMA Let e g  e . Then g = R^ + and

PROOF Let x_ G  g . Then £  = £ e + (£“£e) ^  R^ + g^ .
Suppose X G R n g , Then 0 = xe = x . Thus R n  g = {0} —  *'e E —  —  —  e e —

1.20 LEMMA Let ft be a subspace of a separable Hilbert
space g  . Then dim (\ - dim f\ .

PROOF Suppose first that dim A < Kg . Then A has finite

dimension and so is closed. Thus A  ~ A  • If dim A  has infinite 

dimension, then, since A £ A £ H  , we have dim A  - dim A  - dim g  ,  
i.e. ^0 “ dim A  - . Thus dim f\ = dim A •

1.21 LEMMA Let A  be a linear subspace and g  a closed
linear subspace of a separable Hilbert space g  . Then

A + B = A + B •

PROOF Clearly A B 2  A B » and so

A + B 2 A + B .
Let X be an element of A B • Then there exists a sequence
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i^iG]N A  B  with limit £  . Hence there exist sequences 

i^iGlN A  and in B  such that £^ = a^ + . Now,

for each element £^ , there exists a sequence in A  with

limit £^ such that 11 II ^ 1/2^ .

Now,

=  I I  £ - £ i - h i + £ i - £ i i l l

^ 11 5  - .Ê_i ^i II ll~i~— iill

- ^ 0  + 0 as i -» 00 .

Consequently, the sequence ( a ^ h a s  limit £  . Thus

£  G  A  + B  •

1.22 LEMMA Let A  be a subspace of a separable Hilbert
space \\ and let a be a linear mapping from A  to [\ . Then the
following are equivalent:
(i) a is a continuous mapping

(ii) there exists a constant M such that 11 xa11 < M|| £|| for all
£  in g .

PROOF This is immediate from Theorem IV.7 .3 of [2 ].
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§2 SOME TECHNICAL RESULTS

2.1 LEMMA Let ft be a linear subspace of g . If a is a
continuous linear map from ft to g , then there exists a unique con­
tinuous linear map oT from A  to g that coincides with a on A  *•

PROOF Let £  be any point of A • Then there exists a

sequence A  with limit £  . Define a ’ : A  g by

£ a ’ = lim (£^a) ,

Let 2  be any point of A  • . Then there exists a sequence

( y ^ ) o f  A with limit £  . Let X,y be any elements of (E . Then

(Xx+yy)a' = lim [(Xx +yy )a]
— . — - '— n —n

= lim [X(£^a)+y(2 ^a)] since a is linear

= X lim (x a) + y lim (y a)—n —n

= X (£u ') + y (ya’) .

Thus a ’ is linear.

Now let £  G  A  . Then there exists a sequence ^ü^^nGIN A

with limit £  . By Lemma 1.22, there exists an M  > 0 such that

IliSn̂ ll - ^11 * Thus

II £^a|| < M  lim j| £^|| ,

I.e.

£ « ' 1 1  = II lim(x^a)|| < m|| lim £^|| = m|| £|

Hence, by Lemma 1.22, a ’ is continuous.

Now, suppose that is another continuous linear map from A
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to W that coincides with a on A  . If x is any point of A  > then

there exists a sequence A  with limit £  . Thus

xa’ = lim (x a) = lim (x a.) = xai . Thus a = a* = a, , and so a is—  n — n 1 —  ' I
unique.

2.2 LEMMA Let Aj and j\̂  be any closed linear subspaces
of W such that Aj ^ 1̂ 2 ^  ̂ “ i “ 2  continuous
linear maps from Aj and respectively to g , then there exists a 
unique linear map (a^+ag) from A| + A 2  to g that coincides with
ttj on Aj and on Ag -

PROOF If £ G  A| + A 2 J then £  = £| + £ 2  ^or some £j G f\̂

and some £ 2  ^ A 2 • Define (a^+a^) : A] + A 2 H by

£(aj+a2) = ajŒj + â â  .

It is immediate that (Uj+a^) is continuous, linear and unique.

2.3 LEMMA Let A  and g  be closed linear subspaces of a
separable Hilbert space g . Then dim g  = dim ( A ^ g )  + dim CA'^^CA+B)^

proof Define the mapping 3 :  g  g  by 3 = «j ® « 2 » where

«] : A ^ H  is the zero mapping and : A^ ^ H is the identity 

mapping. Let 3 j  be the restriction of 3 to the linear subspace g  .  
Clearly, 3j is continuous and linear, and so

dim g = dim + dim .

Clearly, A ^  g £ No • Suppose x G  g , Then x = a + p for somepj '— ’ pj —  —  —
£ G  A and some £  G A^ with jP = £3 j + £3 j = £3^ = 2  » i.e. £  G A .
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But, by definition, x G g  . Thus c A  Ci g  . Hence g^^ = A B •
Now suppose X G R . Then there exists y G g  such thatp J '—

2 3 1 = X . But 2  = £  + £  for some £ ^  A  and some £  ̂  A^ • Thus 

X = 23j = £3 + £3 = £  .

Also, £ ' = 2 ‘- £ ^ B  + A *  Thus £  G A^ n  (A+g) . Hence 

Rgj = A-̂  n  (A + B) .

Conversely, suppose x e  A'"' n (A+B) • Then i  ^  for some

£  G A  and some b G g , Thus x - a G g and

(x-a)3i = X - a3 = X .

Thus X e , i.e. A-̂  n  (A+B) S Rg . Thus R l\̂  n (A+R) .

Consequently,

dim g = dim (A'^g) + dim CA' '̂ (̂A+B)j .

2.4 LEMMA Let a and 3  be continuous endomorphisms of 
H » Then

L b = N„ ® {x  e : x c e  fj } .

PROOF We shall first establish that A  “ l£. ^  : xa G g^}
is a closed linear subspace of [| . Suppose £ , 2 ^  A  and X,y G @ . 

Then X£ + U2 ̂  g^ since g^ is a linear subspace (Lemma 1,7). Also, 

(Xx+y2)o^ ~ X(£a) + y(2 «) ^ gg since g^ is a linear subspace (Lemma 

1.17). Thus X£ + P2  ̂  A > and so A is a linear subspace of g .

Now let (£^)^g^ be a sequence in A  with limit £  in j-j . Since g

is closed, x G g^ , Also, since x.a G g we have x.a0 = 0
~  CX “ 1  p  “ L  -—

(i = 1,2,...). Thus £^ G g^g (i - 1,2,...). Since g^^ is closed

1
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(Lemma 1.17), we have £  G . Thus xag = jO , i.e. xa G g^ . Thus

£  G A  , and so A  is closed.

Now, let £  be any element of g^^ . Then (by Lemma 1.8 and

Lemma 1.17) x = n + p for some n G g and some p G  g^ . So—  —  ' 'a —  *’a

_0 = £ « 3  = (n+£)a3 = _03 + £C%3 = p«3 .

Thus ga G g^ . Hence

Nag E No *  ( x  E  Rf : xa e  R^} .

someNow, let y G  g^ © {x e  g^ : £a G g^} . Then y = £  + £  for

n G g and some a G {x G  g^ ; xa G g } . So—  'a —  —  ”a —  3 ■
ya3 = (n+a)a3 = na3 + aa3 = (aa)3 = 0 . So g @ {x G g^ ; xa G g } c g .
—    —  —  —  —  ”a —  ‘u  —  " 3  a 3

Thus the result holds,

2.5 LEMMA Let a be a continuous endomorphism of g .

Define a^ = ^  by xe^ = £a . Then a^ is a continuous linear

bijection.

PROOF Since a is continuous and linear, it follows that a^

is also continuous and linear.

To show that a^ is injective, consider an element £  of g^

Then 0 = xa, = xa , i.e. x G g But g n g^ = {0 } and a, is —  —  1 —  ' —  ' 'a ' ’a a —  1

only defined on g^ . Thus £  = _0 , and so a^ is injective.

To show that a^ is surjective, consider an element £  of R^ .

Then there exists an element y of g such that ya = x . But (by 

Lemma 2.8 and Lemma 2.17) %  == £  + £  for some £  G g and some 

£  G  g^ . So

£  = £« = (£+£)a = £a = pa^ .
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2.6 LEMMA If a and g are continuous endomorphisms of 
H » then

dim {x G  gT . xa G g^} = dim (Rj^gg) .

PROOF Since, by Lemma 2.5, = a|^i is a bijective linear

mapping from g^ to , we have

dim (R^Ng) = dim [(Rj^gg)a^ ̂  = dim (x G g^ ; xa G g^} .

2.7 LEMMA Let a G sing and e G e . If dim g^ = ,
then dim g = ML ."ea 0

PROOF If dim g^ = , then the result is immediate from

Lemma 2.4. So, suppose dim g^ < .

Define a map ® • Net ^7 x 8 = x - xe . 8 is clearly

linear and so

dim g^ = dim g^ + dim R^ .

^ dim g. + dim £

Now, since dim g^ = and dim g^ < , this gives dim gg = .

Thus there exist infinitely many linearly independent elements of g^ 

satisfying x 8 = £  , i.e. satisfying xe = £  . But each of these 

elements is in g^ . Thus there are infinitely many linearly independent

elements satisfying xea = xa = 0 . Thus dim g = .—  —  —  '*ea U
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§3 THE SUBSEMIGROUP GENERATED BY THE IDEMPOTENTS

In this section we determine the subsemigroup generated by the f
■■idempotents E of the semigroup Sing of singular continuous endo- '4

morphism of a separable Hilbert space g . ‘

We shall need one further concept before proceeding.

3.1 DEFINITION Let a G <e> . Define the length, &(a) , of |

a to be rain {n : a G E^} . i

3.2 LEMMA Let x g <e> ; then dim = dim .

PROOF The proof is by induction on the length of elements of

<E> . We shall show first that the result is true for elements of <E> 

of length 1, i.e. for elements of E .

Let e G  E and define a mapping 8 : ^  by £.6 = £ “" £ £  •

8 is injective. To see this, notice that if £ 8  = £  for x in R^ , 

then £ =  xe G R^ ; hence £  = £  since R^ Gi R^ = {£} . Also, 8 is 

surjective. To see this, notice that if £ G  , then £  = £  + £  for 

some £  G R^ and some £  G R^ (by Lemma 1.8 and Lemma 1.17), i.e. 

£ £ = = £ £ + £ £  , and hence jO = £  + ££ • Now, substituting for £  in 

n = r + s gives n = s - s£ , i.e. n = s 8 where s G R^ , Hence 8

is a bijection. Since 8 is also linear, we have dim g^ = dim R^ .

So we may start the induction process.

Now, let n G <E> have length n and assume the result holds for

all elements of <E> with length less than n . Now, there exists an

e G E and a x G  <E> of length n - 1 such that n = ex .

Suppose first that dim g^ = . Then, by the hypothesis, ^

dim = Kg . Now, R^^ 5 R^ , and so R^ £ R^^ . So dim R^^ = Kg .



132

By Lemma 2.7, dim implies dim g^^ = . So dim g^ = dim

Now suppose that dim g^ < . By Lemma 2.4,

Nex = Ng ® { x E  g^ : xe G g ^ } ,

and, by Lemma 2.6,

dim { x G  g^ : xe G g^} = dim (Rj^g^) .

So,

dim g^^ = dim g^ + dim (R^pg^) .

Now, (ex)* = x*e* and so, by Lemma 1.15, R^^ = g^*^* . Now,

again by Lemma 2.4 and Lemma 2.6,

dim = dim + dim (F(.*nR^^)

S dim R̂ ,j + dim (R^*nR^^) .

Hence, by Lemma 1.15,

dim RT̂ _ < dim R^ + dim (g^nR^) . (+)

Since R^ n g;J; is a closed subspace of R^ , we have, by Lemma 

1 . 1 2 , that

Rg = (Rg^Ri) e [R^n (f^nRi)J-] . 

So, by Lemma 1.11, Lemma 1.17 and Lemma 1.18,

Rg = (Rg^R:^) ® CR^n(R^+R^)3

2  ( R g ^ R h  ® C R ^ n ( R ^ + R p ]  .
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Now, by Lemma 2.3, we have

dim [R^n = dim g^ - dim (R^g^) .

(This is defined since we have assumed dim g^ < .) So

dim RT > dim (R^ng;^) + dim g^ - dim (R^ ng^)

Thus, substituting for dim (R^ng^) in (+) , gives

dim RT^ < dim R;̂  + dim R^ - dim g^ + dim (R^ng^)

By the induction hypothesis, dim R^ = dim g^ and dim R^ = dim g^ , 

and so

dim RT^ < dim g^ + dim (R^ ng^) .

But, by Lemma 2.4 and Lemma 2.6,

dim g^^ = dim g^ + dim (R^ng^) .

Thus, dim R^^ < dim g^^ , i.e. dim R^ < dim g^ .

Similarly, we may obtain the inequality dim R^^ < dim ĝ ,̂  , So, 

by Lemma 1,15, dim g^ < dim Rjjj . Thus, dim g^ = dim Rj|| .

3.3 LEMMA Let a G  sing and be such that 
dim g^ = dim R^ “ • Then a G  <e> .

PROOF By Lemma 1 . 1 1 , Lemma 1 . 1 2  and Lemma 1 .2 1 ,
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Since , it follows that at least one of n and

RT Cl (Rj^+N^) must have infinite dimension. We must consider the two

cases separately.

(a) dim (R^'^Nq̂ )' “ • Since H = ® » we may define a mapping

Ej G E by Ej = Pj @ Pg , where

xn, = 0  (x € N^)

and

xn„ = X (x G g 4a

By Lemma 1.16, there exists an isomorphism 0 from fl̂  to aa
closed sub space j\ of R^ n g , Since g = g ® g^ , we may define a

Ol 0(r (X  Ct

mapping Eg G E by Eg = y ® 6 , where

^  N%) .

Since H ~ A ® , we may define a mapping e^ G Sing by

Eg = ôj ® 6 g , where

£ 0  j = x 0  ̂a (£. ̂  A)

and

£ 6 g  = £  (£ G  A^) .

Since A S R^ ^  g^ = (R^+g^)"^ , it follows that R^ c R^ + g^ c .

Thus Eq G E . I
'i

We now show that a = EjEgEg . To verify this, consider any 1

element £  in g . Now, £  == £  + 2  for some £  G g^ and some |

p G g^ , and so 1



135

(b) dim Cl (R^+g^) ] = . Since H = ® » we may define a

mapping g ^ G e  by ® 0 2  , where

xn, = 0  (x G R^)

and

3 2  = £  (£ ̂  N^)

By Lemma 1.16, there exists an isomorphism 0 from g^ to a 

closed linear subspace l\ of g^ , Since g = g^ ® g^ , we may define

mapping Gg G E by Gg = 0 ® y , where 

£Y = £  (£ G g ) .

Again, by Lemma 1.16, there exists an isomorphism (f) from g^ to

K  ^ • Since

N . "  [R a " (R a + N « )]  = (N „ h R^) n (R^+R^)

= (N „ n R ^ ) n ( R ^ n R j

= {0 } ,

we may define (by Lemma 2.1 and Lemma 2.2) a mapping 5 from

B - Na + ^Ra H by 6j = (j) + 6 , where

£^ = £  (£ ^ Rô Fi (R^+g^)) . j

Now, by Lemma 2.2, we may define a mapping Gg G e by Gg = 6  ̂ ® 6 g , where
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and

xpg “ X (X G .

Since A* S n  (R^+g^) , we have that ^  R^ e • Thus,

R^ E (A«î>)‘̂ and so e^ G e .

We now show that a = EjGgEgC^ . To verify this, let x be any 

element of |j . Then £  - £  + £  for some n. G g^ and some p G  g^ . 

So

XE

Since A^ is a closed linear subspace of g (cj> being an iso- i’

morphism), we may define a mapping e^ from g to g by 

E^ = Pj ® Ug , where

xpj =  x<}) 0̂ (x G  A « j ) )  3

,6 2 = 3 = 4  = (5+2)EiE2=3=4 = 2=2=3=4 = (zGiegE*

= (£0 <}>)ê  = (£0 <f>)̂  ^9 P£

" + pa = (£tE.)^ " £a .

3.4 DEFINITION Let a g sing . Define the stable set Y ------------------  "-----------------   — ------  '̂a
of a to be {£ G  g : xa = £> .

3.5 LEMMA Let a G  sing . X% is a closed linear subspace |
of g .

PROOF Since a is a linear mapping, is easily seen to

be a linear subspace of g . Now, let a sequence in
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with limit- x in g . Then

£a = (lim £^)a = lim (iĉ â)

since a is continuous. But

lim (x.a) = lim (x.) = x

So xa = X , i.e. x S  .

3.6 LEMMA Let a g  <e> , then either dim N = or   *’a 0

S . Thus, by Lemma 1.20,

dim ^ dim (R^+X^) = dim (R^+X^)

< dim RT + dim Xĵ  . (+)

dim X^ < .

PROOF The proof is by induction on the length, &(a), of a

We show first that the result holds for elements of length 1 , i.e. 

for elements of E . If a G E , then X̂  ̂= R̂  ̂ and, by Lemma 3.2,

dim = dim R^ . Thus dim g^ = dim X^ . Either dim g^ = or

dim g^ < . If the latter holds, then clearly dim • Thus

the result holds for elements of length 1 .

Now suppose the result holds for elements of <E> with length

strictly less than n . Let n G <E> with £(n) = n . Then n = te

where x  G <E> , & ( x )  = n - 1 and e  G e . Suppose dim g^ < Mg .

Let £  G R^ n  X^ . Then x x  =  x  and XE =  x  . So

x n  =  ( x x ) e  =  £ E  =  £  .

Thus £  G X^ . So Rg. Cl X.̂  Ç X^ . Hence, by Lemma 1.11 and Lemma 1.18, %
/I TtX
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Now, s . So dim R^ < dim Rj*̂ = dim by Lemma 3.2. Now

we have assumed that dim g^ < , and so dim R^ < . Also,

dim g^ ^ dim g^^ = dim g^ < . So, by the induction hypothesis,

dim < Ng . But we have already shown (at (+)) that

dim Xj*j ^ dim R^ + dim .

Thus dim X^ < as required.

3.7 LEMMA Let a G sing . If dim X^ < and

dim g = dim R^ , then a G <E> .a a ■

PROOF We show first that the null-space of a is non-trivial

and that the closed linear subspace X^ + (X^)a is invariant under a .

Since X^ is a finite dimensional linear subspace of g , we have

that is a finite dimensional linear subspace of g . Thus

X^ + (X^)a is a finite dimensional linear subspace of g , and so is 

closed.

Now, let £  ̂  X^ + (X^)ot . Then £  = £  + £' for some £  G and

some £ ’ G (X^)a . Now, £ ’ = £  + £  for some x G X^ and some

2  G X^ . Thus

2  “ P + X + y .

Hence

VO, = £% + xa + y

= (£+x)a + (2 +x) - £  G (X^)a + X^ •

Thus X^ + (X^)a is invariant under a ,

Now, let Uj be the restriction of a to the closed linear
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xa.

Now, suppose that = {0} . Then, certainly, [\|̂ = {0̂ } and so is

an automorphism of * Hence there exists a (group theoretic)
• “ I -  — 1inverse of such that and is the

identity map on + (X^)ot . By defining a ’ = @ , we see that

aa

that a G Sing , we have that 7̂  {0̂ } ,

Since ^ = (jO) , we may define a mapping e G  E by

e = (YJ+Y2 ) ® Y 3 » where

XY2 = X (x 6 Xq)

and

5 Y 3 = 5  ( 5  ̂  (N(^+Xo^)^) •

By Lemma 1.11 and Lemma 1.12,

■ = [ V N . ] "  ® (Xi ̂ Ô W )  .

Thus we may define a map 6 G Sing by 5 = m # 2  ® O3 , where

x*! = xa (x S CX(j+N„]'^)

= 0 (X e x; n C V N „ ] )

subspace + (X^)ct . Then a = @ , where is defined by ÿ

^2 = 21 (x G CX^+ (X^^a]^).

’ is the identity map on H . Since this contradicts the hypothesis l|
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i'i’3 = 5  ( x E  Xa) .

We now show that a = eô . Let 2  He any element of (-] . Then

y = n + X  + p for some n G  |\| some x G Y and some p G (NI +X )’*' ■“  —  —  —  ”a ~  'a a
So

je6 - (t i + x ^ + E ^ ^  “ 21 **■ “ 21“ E“

since 3C G )(̂  . So

2 E 6  =  (3c+p^)a =  not + ( 2 t P ) “  “  !(E t21'*'2) “  “  Z “

since n G M , Thus eô = a .—- a
Now, let Ô’ be the restriction of ô to the closed linear sub-

space + (X^)ct . Since X^ + (X^)o^ is invariant under a , we have

that Ô' is an endomorphism of X^ + * Since ^ {0̂ } and

X  ^ N = {0 } , we have thata ”a —

)C ^  * m  ,

I.e.

Ng, ^ {£} .

Since X^ + (X^)ct has finite dimension, n say, we have that

Ô ’ G Sing^ . Hence, by Theorem 1.4.9, 6 ’ = ^J^2***^m '^Here each e^

(i = l,2,...,m) is an idempotent of Sing^ .

Now, since H = l-X̂  + ® CX^+(X^)«2 ‘̂ » we may define

Î H H Hy ' (i = 1 ,2 , . . .  ,m) , where

1  . /Vl\ -il.^ (x E [X^+ (X(^)a] ) .

v{



41

?Thus, . <S = e e«.,.e where each e. G e . Hence a - ee,e-...e G <e > . %
1 i ui 1 1 z m  >

3.8 THEOREM Let H be a separable Hilbert space, sing 
the set of singular continuous endomorphisms of \\ and e the set of |
idempotent elements of sing . If a g  sing , define to be the set 

1̂ : = x} • Then <E> = i u  f  where

I = {a G sing : dim N = dim R = N_}a ‘ 'a 0

and

F = {a G  Sing : dim |\|̂ = dim , dim .

PROOF By Lemma 3.3 and Lemma 3.7, we have I U  p s <E> .

Now, let a G  <E> . Then, by Lemma 3.2, dim = dim . Also 

by Lemma 3.6, either dim or dim , i.e. a G % U p .

Thus <E> c I U  p , and so <E> = I U  p .

»
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