SEMIGROUPS OF SINGULAR ENDOMORPHISMS OF
VECTOR SPACES

Robert J. H. Dawlings
A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1980

Full metadata for this item is available in
St Andrews Research Repository
at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13725

This item is protected by original copyright


http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13725

SEMIGROUPS OF SINGULAR ENDOMORPHISMS OF VECTOR SPACES

ROBERT J.. H. DAWLINGS

A thesis submitted for the degree of Doctor of Philosophy

of the University of St. Andrews

Department of Pure Mathematics, May 1980

University of St., Andrews.




ProQuest Numlber: 10171129

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10171129

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346



A

325§




ABSTRACT

In 1967, J. A. ErdBs showed, using a matrix theory approach, that
the semigroup Singn of singular enddmorphisms of an n-dimensional
vector space is generated by the set E of idempotent endomorphisms of
rank n - 1 , This thesis gives an alternative proof using a linear
algebfa and semigroup theory approach.. It is also shown that not all
“ the elements of E are needed to.generate Singn . Necessary conditions
for a subset of E to generate Singn are found; these conditions are
shown to be sufficient if the vector space is defined over a finite
field. In this case, the minimum order of all subsets of E that
generate Singn is found. The problem of determining the number of
subsets of E that generate Singn gnd have this minimum order is
considered; it is completely solved when the vector space is two-
dimensional.

from.the proof given by Erd8s, it could be deduced that any
element of Singn could be expressed as the product of, at most, 2n
elements of E . It is shown here that -this bound may be reduced to n ,
and that this is best possible. It is also shown that, if EY is the
set of all idempotents of Singn , then (E"-)n-1 is strictly contained
in Singn S

Finally, it is shown that ErdBs's result cannot be extended to the
semigroup Sing of continuous singular endomorphisms of a separable
Hilbert space. The subsemigroup of Sing generated by the idempotents

of Sing is determined and is, clearly, strictly contained in Sing .
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INTRODUCTION

If M is a mathematical system and End(M) is the set of endo-
morphisms of M then End(M) forms a semigroup under composition of
mappings. Since 1966 a number of papers have been written to determine
of End(M) generated by the idempotents E. of

M M
End(M) for different systems M . !

the subsemigroup §

In [8] the problem was solved when M 1is a finite set, in this
case End(M) being the full transformation semigroup T, . Here the
subsemigroup generated was found to be (TM\GM) U {Id} where Gy is
the symmetric group on M and Id is the identity mapping -on M .

In [9] M was taken to be a totally-ordered set. If M is
finite then the semigroup 0M of order-preserving mappings of M was
shown to be generated by the idempotents of 0M . If M is infinite
and has order type ® (i.e is isomorphic to W with the natural ordef)
then necessary and sufficient conditiops for certain elements of 0M
to be idempotent generated were also given in [9].

In [14] this was generalised to an arbitrary well-ordered set and
then in [17] to an arbitrary totally-ordered set.

Having ascertained the subsemigroup S, generated by the idem-

M
potents EM in these cases, various further questions arise. The most
obvious is, are all the elements of EM required to generate SM T If
not, then the question arises of how small the order of a generating

subset of EM. may be. From this the problem arises of ascertaining the
number of ways it is possible to choose subsets of EM that generate

SM and have this minimum order. 1In the case of M being a finite set,

these questions have been solved in [8] and [11].

In any semigroup of endomorphisms of M we have



i S

where E, ¢ E2 [ Ea S ++. 5 and so for each element a of S

M M there

M

is a least integer g(a) such that

e g(d)
o EM 5

The problem of ascertaining g(a) has been partially solved and the
problem of finding sup{g(a) : a € SM}‘ completely solved in [12] (and
reported in [13]) for the case of M being a finite set. Comparable
results may be deduced from [14] if M 1is a well-ordered set or a finite
totally-ordered set. -

In Chapter 1 I shall consider all these questions when M 1is an
n-dimensional vector space | over a field F . Rather than consider
the subsemigroup generated by Ev’ I have considered the subsemigroup
generated by Ev\{I} where I 1is the identity mapping. This restric-
tion is of trivial effect since <E > = <Ev\{I}> U {1} . It has already
been shown, in [7], that Ev\{I} generates Singn , the semigroup of
singular endomorphisms of an n-dimensional vector space. A more
illuminating proéf of this result is given as Theorem 1.4.9 . If f is
finite, then the minimum order of a generating set of idempotents is
found at Corollary 1.5.7 . An upper bound for the number of ways of
choosing a generating set of idempotents with this minimal order is
obtained in Lemma 1.7.7 ,Lemma 1.7.15 and Lemma 1.7.18 . The final two
questions are solved, for an arbitrary field, in Theorem 1.8.7 and
Theorem 1.8.8 .

In Chapter 2 I shall determine Sy where H is a separable
Hilbert space and End(}) is the semigroup of continuous linear

mappings of H .to itself.




Throughout this thesis the semigroup notation used shall be as in
[5] and [10]. VY will always denote an n-dimensional veCCOr~space (n
finite) over a field F and }| will denote a separable Hilbert space.
Sing  will denote the semigroup of siﬁgular endomorphisms of \ and
Sing will denote the semigroup of singular continuous endomorphisms of
H . (Note that an element of Sing may have a null-space consisting
solely of {0}, for a continuous endomorphism o of | is singular if
there does not exist a continuous endomorphism B of H such that aB
is the identity mapping on H .) PFg_l will denote the principal

factor of Singn containing those.elements of rank n =1 whereas

0

PFn_ will be the set of non-zero elements of PFn41

1 . In Chapter | E

will denote the idempotents in the set PFn , in Chapter 2 E will

~1
denote all the idempotents of Sing . If o is an element of Singn
or Sing then the null-space of a will be denoted by Na and the
range of o by Ru . At times Singn will purposely be confused with

the semigroup of singular n X n matrices. Throughout, elements of

Sing, [Sing] will be written on the right of elements of V [HJ.




CHAPTER 1

THE SEMIGROUP OF SINGULAR ENDOMORPHISMS OF A

FINITE DIMENSIONAL VECTOR SPACE




§1 PRELIMINARIES

The first eleven lemmas are probably well known and are included
here for the sake of completeness. The proofs of the first three, being

elementary, are omitted.

1.1 LEMMA Let «,8 € sing . Then Na ~ NaB and
Ryg € Rg -

1.2 LEMMA Let o,B € Sing . Then o,8 and ap all have
the same rank if and only if Na = Nas and RQB - RB i

1.3 LEMMA (Exercise 2.2.6 in [5]) Let o,8 € sing . Then:
(i) e LB 1if and only if Ru = RB
(ii) a R if and only if Na = NB
(iii) «aDg if and only if o and B have the same rank

(iv) «Dp if and only if aJB .

1.4 LEMMA If ¢ €E then NE N RE = {0} and
V=i oR .

PROOF Let x € NeﬁRE . Then 0 =3xe=x. So
NenR€= {0} . Also, for §11 x in VY, x€ N€ +Re since

'x = (xxe) + xe . So V=NE+R€ and hence V=N€eR€.

1.5 LEMMA Let o, € sing be of rank. r . Then ap is

of rank r 1if and only if Ra N N8 = {0} .

PROOF Suppose first that af is of rank r . Let




x € Ru N NB . Then there exists an element y in v
yr=x. Now xB =0 and so yoB =0, i.e. leNaB

Lemma 1.2). So x = ya =0 . Hence Rd N NB = {0} .

such that

=N, Oy

Conversel -suppose that NN, =0} . Let x€ . Then
¥ B = = af

xaB = 0 and so xa € NB . Hence xo € Ra n NB = {0} by hypothesis.

S
So x Na . Thus we have NaB c Na . But (by Lemma 1.1) Na c NGB
and so Na = NaB . Hence of is of the same rank as a , namely r .
1.6 LEMMA Every element of Sing of rank r has a

(semigroup) inverse of rank r . Consequently Singn

is regular.

PROOF Let o be an element of Singn of rank r . By

[5 , Exercise 2.2.6] there exists an endomorphism B of \ (not

necessarily singular) such that aBa = a . Now consider the element

B' = BaB . Clearly the rank of BR' 1is less than or equal to the rank

‘of o . But oB'a = a(BaB)ae = (aBa)Be = aBe = o and so the rank of o

is less than or equal to the rank of B' . Thus o and B' have the

same rank. Also B' 1is an inverse of o for BR'af' =

(BaB)o (BaB)

= B(aBa)BaB = B(aBa)B = BaB = B' . Thus R' is an inverse of o of

rank r ,
1.7 LEMMA let «,8 € PF)_ . Then:
(i) aZg if and only if .Ru‘= R8
- (ii1) «Rp if and only if N, = NB .
PROOF (i) By [10, Lemma II.4.1] oL R if and only if there

exist inverses a' and B' (of o and B respectively) in PFg_

1

such that o'a = B'8 . Now considering a,a' ,B,8' as elements of

Singn we still have that o' is an inverse of o , B'

is an inverse




of B and that a'a = B'8 . Thus (by [10, Lemma IT.4.1]) o and B
are L~eqdivalent in Singn . So (by Lemm; 1.3) Ru = RB a ‘

Conversely, if Ra = RB then (by Lemma 1.3) o and B are
L-equivalent in Singn . So (by [10, Lemma II.4.1]) there exist inverses
a' and B' (of o and B respectively) in Singn such that
a'o = B'B . By [10, Lemma II.3.5] o' and o aré D-equivalent in

Sing , and "B' and B are D-equivalent in Sing . Thus (by Lemma

1.3) rank o' = rank o and rank B' = rank B . Thus a',B' € PF?I__1 .
So (by [10, Lemma II.4.1]) o and B are L-equivalent in PFg_l »
The proof of (ii) is dual to.the proof of (i).
1.8 LEMMA PFg_l is a completely O-simple semigroup.
PROOF By [5, Lemma 2.39] PFg—l is either O-simple or null. .
PFg—l is not null since it contains the n x n idempotent matrix
5 -
1 0
1
0 T
i 1
of rank n -1 . So PFg—l is O-simple. To show that PFg_l is

completely O-simple, it will suffice to show that PFg_ contains a

I
primitive idempotent [10, Theorem III.3.1]. Let e,¢ € PFg_ be non-

1
zero idempotents with € < ¢ . Then € =¢€¢ = ¢e¢ . So Ne = N¢s and
Re = R€¢ . But (by Lemma 1.2) N¢€ = N¢ and Re¢ = R¢ . Thus Ne = N¢
and Re = R¢ . Hence (by Lemma 1.7) e€L¢ and eR¢ ,i.e. €¢H¢ . But

since each H-class contains at most one idempotent [10,Corollary IIL.2.6]

we have € = ¢ . So every non-zero idempotent of PFS_] is primitive

[




and PFg__l contains a non-zero idempotent (as already shown). Hence
PFg_1 is a completely O-simple semigroup.

1.9 LEMMA (exercise 7.7.5 in [67) Let «.8,y € PFO

n~1
Then oBy =0 if and only if aB =0 or By =0 .

1.10  LEMMA let a,p € PF0_ | . Then ap # 0 if and only if
there exists a non-zero idempotent e € PFg_] such that aZLe and
e RB .

PROOF If o # 0 then rank af is n -~ 1 , as are the

ranks of o and B . So (by Lemma 1.2 and Lemma 1.3) oBR LB and
aBRa . Thus by Green's Lemmas [10, Lemma II.2.1] "y # yB and

y » yB' (where o = (aB)B' ) are mutually inverse R-class preserving

bijections from La onto LGB and LaB onto La respectively. Thus

0
n-1

(by Lemma 1.2 and Lemma 1.3) BB'RB8 and BR'LB' . But RB‘ = R

BR' 1is a non-zero element of PF ,i.e. BR'" has rank n -1 . So

o
and so B'La . Thus BB' € La a RB . Also since y * yB'B is the
identity mapping on LaB we have B = BR'B . Hence BR' 1is idempotent
and so La n RB contains an idempotent.

Conversely if L, n RB contains a non-zero idempotent £ we have
that €B = B since an idempotent acts as a left identity within its
R-class. So by Green's Lemma vy * yB 1is a bijective R-class preserving
mapping from .Lu onto L, . Thus aB € L

B

af has the same rank as € , i.e. o # 0 .

NR ., Thus afDe and so
B o

1.11  LEMMA let o«€PFo_ . Then N nR = {0} if and

n—-1

only if there exists an idempoteht e € PFg_l such that aHe .
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PROOF Suppose first that Na N Roz

Then _:iaz =0 ,i.e.xa € Ra N Noc . Thus xo

{0} . Let x€ Na?- y

0 by hypothesis. Hence
x € Na . Consequently Naz c Na . But (Lemma 1.1) Na & Na2 and so

Nu. = Nuz . Thus (Lemma 1.3) aRa? . Also, since dim Na = dim Na2

.we have dim Ra = dim Raz . But Ruz g Ru and so Ra = Rozz . Thus (by

Lemma 1.3) aLa? . Hence aHa®? . So (by [1-0, Theorem II1.2.5]) H
is a group. Thus Ha contains an idempotent.
Conversely (by Lemma 1.4) Ne N Re = {0} . Since (by Lemma 1.3)
= = N =
No =N, and R =R, wehave N NnR ={0}.

€

1.12 THEOREM Let e,¢ € PFg_l be non-zero idempotents, and

suppose that RE N N¢ = {0} which (by Lemma 1.5) implies e¢ # 0 .

Then e¢ is idempotent if and only if either:

(i) e¢ = ¢ which happens if and only if NE = N¢ or
(ii) e = € which happens if and only if Re = R¢ "
PROOF Suppose first that e¢ is idempotent and that

Ne # N¢ . Let x € V . Then (by Lemma 1.4) for some r € Re and some

n € Ne we have

Xe$p =r +1n . (1)
So

xepe =1 .
So substituting for r in (1) we have

xe¢ = xepe + n .

Thus



. Xep = zeqbz = xe¢ed + né .

But since we have assumed that e¢ 1is idempotent this implies that
n € N¢ . But since both Ne and N¢ are one-dimensional and we have
assumed that NE # N¢ we have Ne n N¢ = {0} . Thus n =0 . Hence,

from (1), xe¢ € R6 . But this holds for all x in Y and so

R€¢ < Re . But since €¢ #.0 we have that dim R€¢ =n=1. Thus
R€¢ = RE . Also (by Lemma 1.1) R€¢ < R¢ and so R€¢ = R¢ . Thus

Re = R¢ . So if e€¢ 1is idempotent then either Ne = N¢ or Re = R¢ ;

We shall now show the equivalence in condition (i). Suppose that

€e¢ = ¢ . Then N€¢ = N¢ . But N€¢ 2 Ne and dim,NE¢ = dim NE since

e and € both have rank n — | . Thus N€¢ = N€ and so N¢ = N€ -

Conversely, suppose that N¢ = Ne . Then (by Lemma 1.3) €R¢ . But an

idempotent acts as a left identity within its own R-class and so e = ¢
The proof of the equivalence in (iis is dual.

It is immediate that if condition (i) or condition (ii) holds then

€¢ 1is idempotent.

§2 STROKE PRODUCTS

The purpose of this section is to introduce a new notation for
elements of E (i.e.the idempotents of Singn of rank n -1 or
.equivalently the non-zero idempotents of PFg-I ) and for the H-classes
of PFS_] (and so for the H-classes of the top J-class of Singn )i
This new notation will make future results much clearer.

If € €E then if we are to describe € by giving its null-
space and its range we have to give one vector for its null-space and

n - | vectors to determine its range. Similarly to denote any H-class
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in PFS‘._l by giving vectors that determine the null-space and the range

of elements in that H-class we again have to specify n vectors. This

"is somewhat cumbersome and nothing is saved from merely giving the

matrix relative to some basis of any element in that H-class.

notation to be developed will reduce the number of vectors it
' 0

ssary to state to determine a particular H-class of PFn_1

or

cular element of E to just two.

2.1 DEFINITION Let &,X be automorphisms of the

The
is nece-

a parti-

field T

such that (xg_l)2 is the identity mapping. Let a = (al,az,...,an)

and b = (bysby,eessb

) be elements of Y . The (&,x)-stroke product

of a with b is denoted by fﬂJE?(g,x)

defined by

n ,
<alb> = .2 (a;8) (b;x) .

, or simply by . {QJE? , and is

Clearly, if & 1is the identity and ¥ sends an element to its

complex conjugate, then <~|-> is the normal inner product on an n-

dimensional vector space over the field of complex numbers (or real

numbers) .

We shall regard & and X as fixed in advance and shall not

normally make explicit reference to them in definitions and statements.

2.2 DEFINITION If a-= (al,az,...,an) and b = (bl’bZ""’bn)

are elements of Y we shall say that a and b are perpendicular if

. <a|lb> = 0 . This definition is reasonable since . <a|b> = 0 if and only

if

. ;
igl(aig) (b].X) =0,
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[
L]
o
Ld

if and only if
n -1
GE (a8 (b;x)E X = 0,
i.e, if and only if
s -1
;Z;(@0(byxE x) =0,
i.e, if and only if

n
E](aiX) (big) o 0 »

e

i.e. 1f and only if
bla> = 0.

If A is a subset of Y , we shall define the perpendicular of A

to be Al = {EEV L <3{_|E>=O(VEEA)}.

It is worth noting that in general A and Al are not disjoint.
For example, if Y 4is the two-dimensional vector space over the complex
numbers and & and ¥ are both the identity mapping, then
(1;i) € <(l,i)>l where <(1,i)> denotes the space generated by the
vector (1,i) . Another simple example is obtained by taking Y as the

two—-dimensional vector space over 222, and & and ¥ as the identity
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mapping; then (1,1) € <(1,1)>" .
It should also be noted that if A 1is any subset of \ then A

is a subspace of V .

2.3 LEMMA Let Y be an n-dimensional vector space over the

field ¥ , and let || be a subspace of V. Then dim ll=n - dim [J* .

PROOF If A is an m X n matrix of rank r then
x€ xA = 0} is a subspace of F' of dimension n - r .

Now let dim |J=r and let {31""’Er} be a basis for [ ,

uf2) (n)
1

3eensty . Then :§_= (x

s u, = (u§l), (1),x(2)’...,x(n)) c UL
if and only if §§J3i> =0 for i=1, 2, ..., T, ie.if and only if
(x6)A = 0 where A = ((EIX)T,(sz)T,...,(grx)T) is an n x r matrix

(D @

and x& = (x E,...,x(n)E) . Since the r columns are linearly

independent, it follows that dim Ul =n-1r.
2.4  LEMMA Let || and || be subspaces of \ . Then
(i) WhHt =1 and

(ii) if Ucl then W-cU*.

PROOF (i) Clearly | ¢ (UJ')‘L . Since (by Lemma 2.3)

dim (D' = n - din [* = n - (o-dinl) = dim |] we have that (M* =1 .
(ii) Let _;Ee w-‘- . Then <.§iﬂ> =0 for all w c w . So
" certainly <x|u> = 0 for all u €|} since |!C W . Thus x € UL it

so Wrcyt.

2.5 NOTATION Since every element in any particular R-class

of PFg_] has the same one-dimensional null-space we can label the

R-classes of PFg—I in the obvious way with an element of V that
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generates this one-dimensional subspace of \ . Similarly, the L-classes

of PFg_ could be labelled in the obvious way with n - 1 elements of

V that generate the common range. But since if dim |J =n - 1 we have
(by Lemma 2.3) that dim UL =1, it féllows that we can label the
L-classes of PFg_l in an obvious way with an element of V that
generates the one~dimensional subspace of \ perpendicular to the
common range of the elements in that L-class. Thus if o is a non-zero

element of PFg_ such that Na = <n> and R; = <r> then we can label

1

the L-class containing o by Lr , the R-class containing o by Rn

and the H-class containing o by .H . As H is rather unwieldy
X ¢k

this will usually be denoted by (n:x] . It is clear that [n:r]
denotes exactly one H-class for any choice of n and r in V (the

0

fact that [n:r] represents at least one H-class of PF__, is a result

1
of [5, Exercise 2.2.6]). It is also clear that for any non-zero scalars
A and u we have [n:rl = [An:prl .

Having adopted this notation, it is then reasonable to introduce
the following: If [n:rl is a group H-class of PFg—I we shall denote

the idempotent in [n:r] by (m:r) . (am:r) is clearly unique since

no HA-class contains more than one idempotent.

With this notation we have a very simple way of telling if a

particular H-class of PFg_ contains an idempotent.

1

2.6 LEMMA (n:r]l 1is a group A-class of PFg_l if and only
if <o|r> # 0.

PROOF - Suppose that [n:r]l is a group H-class. Then [n:x]
contains the idempotent ¢ = (Eﬁf) . Now (by Lemma 1,4) Ne n Re = {Q}

and since n € N€ and n# 0 we have n ¢ RE = (RJE')l . But since
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L { W 3 .
r € Rs and Re is one~dimensional we have <EJ£? # 0 . Conversely,

suppose ﬁgjz? # 0 . Now there exists an element a € PFg_ such that

1

Na = <n> and Ru = gz?l (by the comments of Notation 2.5). Since

<2J£? # 0 we have An ¢ (R;)l = Ra for any non-zero scalar A in F ,

ie. Ru N Na = {0} . So (by Lemma 1.11) there exists an idempotent €

3 0 ' L L
in PF__, such that afe . Clearly Re =R, = <> and Ne = Na = <n>

(by Lemma 1.7) and so € = (n:r) , ie. [n:r] contains an idempotent and

so is a group H-class.

This alternative notation for H-classes of PFg_ enables us to

1

rewrite Lemma 1.10 as;

2.7 LEMMA Let o« and 8 be elements of PFO in

n-1
[n,:x,] and [n,:r,] respectively. Then ap # 0 if and only if

SEQ|£4> #0.

PROQF By Lemma 1.10, af # 0 if and only if there exists an

idempotent e in PFg__1 such that aLe and e€RB . Clearly

a € L. and B € R.n « Thus aB # 0 if and only if there exists an
=1 -—2

i ; A - . o i ; . ;
idempotent € in PEI 322 [32.54] ,1ie.1if and qnly TE [52.54] is
a group H-class. But (by Lemma 2.6) this happens if and only if

<EQ|£4> #0 .

83 PRODUCTS OF THREE IDEMPOTENTS OF RANK n - |

The purpose of this section is to determine when the product of
three idempotents of rank n - 1 is itself an idempotent of rank n - 1

Lemma 3.1, Lemma 3.2, Lemma 3.12 and Theorem 3.14 give necessary and
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sufficient conditions for this to happen. It is in the case of Theorem

3.14 only that the product generates a new idempotent of ranﬁ o B A
Throughout this section we shall be changing backwards and

forwards between the two notations for‘non—zero idempotents and H-classes

other than {0} of PFg_ so we shall adopt the following conventions:

and so

. c:‘. € P98 ] = .
tp ™ Bgieg = Bapmd =i,

We first dispose of a very trivial lemma which is included only
for the sake of completeness since it does give sufficient conditions

for the product of three idempotents of PFn* to be an idempotent of

1

PF, _, -
3.1 LEMMA Let €13€)3€ be idempotents of BE. 4 o If
(1) €s€,5e4 have a common null-space then €898 = €4 3 OF
(i1) €11€5€q have a common range then El€)83 = € .
PROOF This is immediate from Theorem !.12,
This is equivalent to:
3.2 LEMMA  Llet n ,n,,n,,r;,r, and r; be elements of V

such that <n.|r.> # 0 (i=1,2,3) . If

(i) <n > = §i2> = <ng> then (Ehzgh)(ga:gé)(gszga) =,(23=£3) s or
{31 Sry> = Rry> = Sr,> then (n;:x))(nyiry) (ngirg) = (ng:r)) .
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We may now concentrate on the case when the three idempotents

0 s .
€1:€9,83 of PFn—l in the product €185€4 have neither a common null

space nor a common range.

0
n-1 °

is a non-zero idempotent and 61,82;83 do not have a common

3.3 LEMMA Let €5€55Eq be non-zero idempotents of PF

618283
range then dim (N]+N2+N3) <2 .

If

PROOF Let x €V . Then, bj.r Lemma 1.4, there exists s € R1

and m, € Nl such that

€,€, =S, +m . ' (+)

2F%573

1

Again by Lemma 1.4 there exists s, € R2 and m, € N2 such that

8, =58, *m, . Thus
EESpeqtr ™ By gy =8 v
Hence Xe €648 1€8) = 8, . Thus s, = XE € €46 €, + M, . Now substitu-

- ting this for s, in (+) we obtain

1

X193 © B (Fpfatity Ty T Iy

Thus
RE.E,E =xee52=x(eee)2+(m'+m)e
- ="172"3 ='"17273 —] —=2/°3 °

17273

But we have assumed that is idempotent and so (gl_l+_1_g_2)e3 =0,

€ €984
ie.m +m, € N3 - The elements m; and m, depend of course on the
choice of the original element x . If there exists an x €\ such

that m, + m, # 0 then m, + m, generates N3 (since. N3 is one-

dimensional) and the result is immediate. If m + m, = 0 for all
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choices of x in V then we have two cases to consiaer: (1) there
exi;ts an. x € { such that m = -m, # 0 and (ii) for all choices of
x €V we have m=m, =0,

If case (i) occurs then it is elear Ehat N, = N, and so again
the result is immediate.

We shall now show that case (ii) cannot occur. Suppose that case

(ii) does occur; then

XE,E,E, = 8

1%2%3 p oy =8, €R; .

But since this holds for all x in Y and (by Lemma 1.2) the range of
€16,85 s the same as the range of €4 we have R3 = RI . Since
dim R3 = dim RI we thus have R3 = Rl . Also

Xeiep€qe; = 5, +my =5y € Ry

and so, by an argument similar to the above, R = R2 . Thus

1
Rl = R2 = R3 which contradicts the hypothesis of the lemma., So, as

claimed, case (ii) cannot occur.

Using the alternative notation for idempotents of PFn—l this

lemma may be stated as follows:

3.4 LEMMA Let n,,n,,ny,x,,x, and x, be elements of V
such that <a |ry> # 0 and <n |z;> #0 (i=1,2,3) . If
(ng:x)(ny:ry)(ngirg) = (nixry) and dim <{r;,r,,r;}> 2 2 then

dim <{31,32,33}> <

0
n—1

3.5 LEMMA Suppose € ,e,,e, are idempotents of P

Then the following are equivalent:
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; ” _ . 0
(1) €,6,€, 15 a non-zero idempotent of PF
- - : 0
(i) €,€4€, 15 a non-zero idempotent of PP,
i ; ¢ 0
(ii1) €486, 15 a non-zero idempotent of PE _, -
PROOF - Clearly if we can show that (i) implies (ii) then we

are able to modify the proof to obtain (ii) implies (iii) and (iii)

implies (i).

Suppose that 515253 is a non-zero idempotent of PFg_1 . Then
818283 has rank n -1 and so n - | = rank €182€3
rank el(eze3e])eza3 < rank €5€4€ <n - ]:. Thus €,€4€, 15 non-zero
in PI"‘g_’1 . Also since €,€4€, bas rank n - 1 then €, has rank

n - 1 . Now since the range of 5848, is contained in R] we have

that the range of e,eqe, is Rl . Now, by Lemma 1.2, € has

%553
null-space Nl and range R3 and so, by Lemma 1.4, { = N1 ® R3 i Leg
r, € R1 , then there exist r, € R3 and n, in N, such that

x; = (zg*n))e; , ie.such that r, = rje, . Hence r e, ese = ra(e e, e)e,

I38 since € €,€5 acts identically on its range. But Iz =1 and

1 1

I e,8q48, = I, for all I, € Rl . Hence ¢g,¢ €, acts identically

SO 283

on its range and so is idempotent.,

3.6 LEMMA Let |J and }/ be subspaces of \ . Then
Wnih*t = Ut + W .

PROOF c1ea£1y UnWesl and Unl cl| so, by Lemﬁa 2.4,
U' < WUnK* and W' < WnW' . Thus U' + W e Unip?: .
Also et + W and WelU*+W and so, by Lemma 2.4,
U s U = U and UMY e WO =W . Thes D s UNY .

So, again by Lemma 2.4, (Ur1W)H; ((U1+Hl)l)l = Ul + HL . Thus
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Wt = Ut + W .

3.7 LEMMA Ltet T.U,i| be subspaces of Y . Then
dim V = din (TUSY + aim (T aUnl) .

PROOF By an obvious extension of Lemma 3.6,

T ﬂUnN)l S Yl | H'L . Also, by Lemma 2.3,

dim V = dim (AU + dim (TAUAPD™' . The result is now immediate.

0

3.8 LEMMA " Let €11€5,85 be non-zero idempotents of pF__,

If €18,€4 is a non-zero idempotent and €13€9,E5 do not have a common

null-space then dim (RIDR20R3) >n-2.

PROOF Suppose the result does not hold. By Lemma 3.7, we
have dim (R]0R20R3) 2n -3 and so we have dim (R10R20R3) =n-3,
and dim (RlnRZ) = dim (R20R3) = dim (R30R1) =n-2. Let
A= {a ’—a~2’°"’-§n—3} be a basis of R1 N RZ N R3 and extend A to
bases A U {p_l} of R2 n R3 g e & {:9_2} of R3 N .Rl and A U {]13} of
R] N R2 . Clearly b, & Ri .

Now consider B = A U {El ,p_z} . Clearly <B> ¢ R3 since B ¢ R3 8
Also‘it is clear that R2 N R3 C <B> since <AU{_111 > = RZ N R3 and
p_295 RZORB . Hence n - 2 = dim (R20R3)< dim <B> < dim R3 =n-1,
Thus dim <B> = dim R3 and so B spans R3 . Since B. contains
exactly n - | = dim R3 elements, B is a basis for R3 .

Now consider C = B U {_b_3} . Clearly R3 C <C> since R3 = <B>
and 2_3 & R3 . Hence dim <C> = n . Thus C spans V and, since C
contains exactly n elements, is a basis for V . -

Let n, be a non-zero vector of Nl . Then
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3
C B Aoty ¥ AL By i By ¥ By . +)
Now, €,€,64 acts identically on its range which, by Lemma 1.2, is R3 .

So €65 acts identically on A U {E4s92} . Also acts

e
i ; ; A ;

identically on EB since 93 € Rl R2 . So acting on (+) by 618283
we obtain

n-3 :
+ A b, + A + A _b,e, .

9= g5 May n=2->1 =129 n>3%3

Subtracting this from (+) gives
By = Apby ~ Apbgey

Hence

A bagq = A baes = 0

0183 = An23%3 =353

-1

since €q is idempotent. Thus o, € N3 and so Nl c N3 . But, since
N] and N3 have the same dimension, this implies N] = N3 .
Similarly since we know (Lemma 3.5) that €,€4€ is a non-zero

idempotent, we may exXxpress a non—zero element n, of N2 as

n-3
By = 3E M8 Y Raby by tousb,

and act on this by €, €48, tO obtgln N2 = Nl .
Hence Nl = N2 = N3 which is contrary to the hypothesis. Thus

dim (RlﬂRzﬂRB) #n - 3 and so the result holds.

3.9 LEMMA Let n ,n,,n,,r;,r, and r, be elements of
such that §34|£4>,<52|£2>,<33|£3> and <n, |r,> are all non-zero. If

(n;:x)(ny:xy) (ng:xg) = (m):ry) and dim <{n;,n,,n;}> > 2 then

ST e Sl U M 30 M e ve g Betde BRI Rl (NEZ SR RIS, T 03 Nt e W R I T Wt s o i
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PROOF By virtue of Lemma 3.7, this result is identical to
Lemma 3.8 using the alternative notation for idempotents of PFg_1 .

It is now immediate from Lemma 3.3 and Lemma 3.8 that:

3.10 LEMMA Let €13E9,€5 be non-zero idempotents of PFg_l 2

If is idempotent and ¢ have neither a common range nor

616253 1332,63
a common null-space then dim ([‘|1+N2+N3) =2 and dim (RlﬂRzﬂRs) =n-2,

It is also immediate, from Lemma 3.4 and Lemma 3.9, or direct from

Lemma 3,10, that:

3.11 LEMMA Let n,,n,.n;,r,,z, and r, be elements of V

such that <n |z >,<n,|z,>,<ns|z,> and <n|ry> are all non-zero. If:

(1) (@) (n,:r,) (agizg) = (m:r3)

v

(i) dim <{r,,r,,r3}> 22 and
(ii1) dim <{n,,n,,n,}> 2 2

then

and

l
N

(1) dim <{24’BQ’23}> 2

(i1) dim <{£4,£é,£3}> =2,

The conditions given in Lemma 3.10 and Lemma 3.1! are not suffi-

0

cient conditions for the product of three non-zero idempotents in PFn_1

to be a non-zero idempotent if the three idempotents have neither a
common range nor a common null-space. To obtain sufficient conditions

it is necessary to consider two different cases. The more interesting
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case is whgre the three null—spaces.are distinct and the three ranges
are distinct (ie. where for i,j = 1,2,3 and i # j then Ni # Nj and
Ri # Rj or equivalently <n > # <ns> and <r.> # <E ). This will be
dealt with from Lemma 3.13 to the end of the section., Firstly we shall

consider the case where two of the null-spaces are the same or two of

the ranges are the same (ie. where for some i,j = 1,2,3 and i # j we
have Ni = Nj or Ri = Rj or equivalently <n.> = <Ej> or <r.> = <£j>).
3.12 LEMMA let n,,n,,ng,r;,r, and r, be elements of V

such that:
(1) <o, |z;>,<n,lz,>,<ny]r;> and <n |ry> -are all non-zero
(i1) dim <{n ,ny,n,}> > 2 and
(111) dim <{x,,r,,r3}> 2 2 .
Let o = (n:x)(ny:ry) (ng:ixg) - I%:
(iv) <n;>,<n,> and <n,> are not all distinct or
(iv') <z >,<r,> and' <rg> are not all distinct then

@ = (n;:xg) if and only if one of the following holds:

(a) <n,> = <n,> and <r,> = <ry> in which case o = (32:52)

(b) <ny,> = <ng> and <ry> = <r;> in which case o = (24:54)

(c) <ng> = <n,> and > = <x,> in which case «a = (ng:xy) .
PROOF By Lemma 3.11 we have from (ii) and (iii) that

dim <{34,32,23}> = dim <{£4,£2,£3}> =
Assume first that condition (iv) holds and that o = (24:53) .
Then we have either;

(a') <n,> = <n, >

1 2,
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(") §22> = <23> or

1 5o
(c") <ng> = <n,> .

> = <n,> implies (by Theorem 1.12) that

L T

(n,:x)) (my:x,) = (ny:xr,) . So (again by Theorem 1.12)

o = (24:53) = (22:53) if and only if <my> = <mg> Or <Iy3 = Sra>

But if <ny,>.= <ng> then dim <{34,32,53}> = 1 which is a contradic~

tion. Thus <r,> = <rg> which is result (a).

(b') <_112> = <£3

potent if and only if . €

> . Now (by Lemma 3.5), oo is a non-zero idem-

€48, is a non-zero idempotent. But,by (a'),

273

is a non-zero idempotent only if <r,> = <r >.

we have that X3 I,

€)€q8,
This is result (b).

(c") N> = <n.> ., Again (by Lemma 3.5), ¢ is a non-zero idem~

potent if and only if €3€,€, is a non-zero idempotent. But,by (a'),

we _have that €4€(€y is a non-zero idempotent only if <r > = <r >

1 =2"

-This is result (c).
If,instead,we assume that condition (iv') holds and that

o = (24:53) then.by a similar argument we again obtain (a), (b) and (c).
If (a), (b) or (c) hold, then, using.Theoreﬁ 1.12, it is obvious

that o = (31:53) i

Here again, as in Lemma 3.1, we have failed to generate a new non-

0

) The remainder of this section is concerned

zero idempotent of PF

with the case -when there are distinct null-spaces and distinct ranges

0

for the three non-zero idempotents of PFn—l

in the product. It is in

0

this case alone that the product of three non-zero idempotents of PFn_l

0
n-1

.

can produce a new non-zero idempotent of PF

3.13 LEMMA Let 5]’9—2’33’11’-22 and r

r, be elements of V
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and v, ,v,,v and p, be elements of F such that

L e

Villy ¥ Vo ® Nty = 8

and
PyZy ¥ Roky ¥ Baly ® U

then the following are all equal:

(1) <v124|p}£-> + <vin

1 1191p> + <vons[por,>

(11) <vomple,zy> = <vn;logry>
(111) <vyn,[epry> + <vym,loary> + <vynglesry>

(1v) <vynglegzy> = <vpmplex>

(v) <v 30 |p3’_'3 + <v,n Ip >+ v nllp1 1>
(Vi) <vym feyx)> = <vgngfp,z,>
PROOF We shall only show that (i) = (ii) = (iii) since the

remaining equalities follow in an identical manner.

Since p1£4'+ PoXy + Parg = 0 we have

r,>

v le > = <vn [-p,r, - P3i3

il

=<om, [epry> = <vim fpgrg> .
. Thus

<V loyzy> + <oy leyry> + <vomplepry> = =<vinyfogry> + <vpn,le x>

i.e. (1) = (ii).

Since vlgi + VZEQ + v333 = 0 we have
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<v,n = <=y

11egrs oBp = Vangpary>

= ~<vomp|egry> - <vanglogrg>
Thus

Wony|eyry> = <vinylegry> = <wonyleor,> + <oy legrg> + <vangfegra>

el (i) = (iid).

3.14 THEOREM Let €12€95E4 be idempotent endomorphism of

rank n - 1 of an n-dimensional vector space \ over an arbitrary

field ¥ . Suppose that <n,>,<n,> and '<E_> are distinct (where

1 2 3

<n.> = N_ ) and that <r.,>,<r,> and <r,> are distinct (where
—1 = —i ? =2 -3

<r,>t = Re.)' Then € €9€5 is an idempotent endomorphism of rank n - 1
13

if and only if there exist non-zero elements V),V and 04

23\)3’p 1 ,pz
of F such that:

(1) vin; + vony + vany = 0
(i) P1X; *+ Py + Parg =0 and

(1) Sgm oy <ty logly™ 4 gyleom> = U

Before starting the proof of this result, it is worth noting that
the asymmetry of condition (iii) is only apparent. As given the left
hand side does not contain an explicit reference to Dy Or Ig
however, Lemma 3.13 gives alternative forms of this which omit o,

3

and r, or n, and r, .

There are also several technical lemmas which would best be

proved now rather than in the body of the proof.
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3.15 LEMMA If we assume the conditions of the theorem and
that €,85€4 is idempotent, then there exist non-zero elements VsV,

VasP3PysP o of F such that:

(1) Wiy + gty + Wgmy = 0

(1) oz * opr, + paxy = 0 .

PROOF Since €894 is idempotent,we have (by Lemma 3.11)

that dim <{24,22,23}> = dim <{£],£2,£3}> = 2 , Since, by hypothesis,

<n,>,<n,> and <n,> are distinct and < >,<ry> and <rs> are dis~
tinct,we have the result.

3.16_ LEMMA Assuming the conditions of the theorem and that
conditions (i), (ii) and (iii1) hold, then €1€9€q has rank n - 1 and
belongs to a group A-class.

PROOF Since €q = Q53:£3) we have (by Lemma 2.6) that
{33|£3> # 0 . But,by (i) and (ii),

anglegrg> = <-vpny—vin, -p,ry-e 7>

2]p2r >+ <, le >+ <v nllpzr > + <y nI,p )

= <v232|0154> (by (iii))

Thus §22|£4> # 0 and so (by Lemma 2.7) has rank n - 1

S5y
Similarly (but using also Lemma 3,13), since €4 = (33:23) we have

5253 has rank n - 1

Thus (by Lemma 1.9), has rank n - 1|

®1%2°3
Again, by the above argument, since €y = (22:32) we have that

<vn |p3*3> # 0 ,ie. that [94:33] is a group H-class. Now (by Lemma 1.2)
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€1€y€5 has null-space Nl and range R3 (since we have already shown

that

LU S0

- e Z
€8,€5 has rank n 1 )« Thus €18,€4 [24.33] and so
€1€9€ belongs to a group H-class.

3.17 LEMMA Given the conditions of the theorem, suppose that f

there exist non-zero elements Vs

AZTLITL and Pg of F such that:

(1) vyn; * Vo0, + vangy = 0

(11) pyzy + ppx, + 0gry =0
and also that:

('l'i'!) <_r_1.2l.£3> =0

('iV) <B_II£3> =f 0

V) e.€.8 has rank n - 1
17273

Then there exist non-zero elements A of F such that

3

<A‘24|91£4> + <A323|pz£2> =0 .

is idempotenf if and only if A_v, + A, v, =0 ,

AFurthermore, €,8,.8 31 1Y3

1273

PROOF By (ii) and by the conditions of the theorem,we have
that dim (RT+R§+R§) =2 . Thus, by Lemma 3.7, dim (R;"R,MRy) = n - 2 .
So there exists a basis {EI’EQ""*En—Z} of R, N RZ N R3 . Since
<22|23> = 0, we have that n, € R3 . But n, & R1 N R2 N R3 for
otherwise we would have n, € RZ contrary to Lemma }.4. Thus
{34*32""’5n—2’22} is a basis for R3 :

Now, since N3 N R3 = {0} (by Lemma 1.4), we have that
{u;,85,.005u _,,n,,0,) is a basis for \ . Thus there exist 0,04 in
? such that QEI*EZ""’En—2’°252+0323} .is a basis for RZ . Now,if

oy = 0, then we would have n, € R2 e §23[£2> = 0 and so (by
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Lemma 2.7) €5€5 would have rank less than n - 1 . This is contrary
to (v). fhus 9, #0 . If 04 = 0, then we would have n, & R2
contrary to Lemma 1.4. Thus Oq # 0 . So,putting A3 = o;]cs, we have
that {24‘22""’2n-2*32+k333} is a basis for R2 where A, is a
non-zero element of F ,

Now, by (iv), f21|£3> # 0 . Thus (by Lemma 2.6), LE]’EgJ is a
group H-class. So (by Lemma 1.4), N] N R3 = {0} . Thus

' {54’22""’3n~2*22’24} is a basis for V . Hence there exist T, ,T

| L

in F such that {24’22""’Hn—Z’TlEJ+T252} is a basis for Rl « If
T; = 0, then we would have n, € Rl , i.e.that $§2|£4> =0 . So (by
Lemma 2.7), €8, would have rank less than n - 1 . This contradicts
(v) and so 1, #0 . If 7y =0, then we would have n € R] . This
contradicts Lemma 1.4 and so T, #0 . So, putting A] = T;lTl, we have

that £21*32""’3n—2’A124f52} is a basis for Rl where A] is a non-

zero element of F .

Now since n, + A323 € R2 we have

<n.+A.n

*hgnglzy> = 0,

Pt
]

§22|p2£2> + <A3E3|p2£2> = 0 ,
So, by (ii),
<apl=pyzyp3rs> + Agngle,ry> = 0 .
Thus
~<myle s> - <mylegry> + Agmgle,zy> = 0 .

But, by (iii), <m,|r,> =0 . So

)
4
b
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—<£1.2|pl£l>A+ <A3£1_3]p2£2> =0 , ' (A)
Also, since D, * ALEI € Rl’ we have

<mpthmy|z> =0,

<32|p]£]> + <}\]_r_1_l o £1> =0 .

1
Adding this to (A) gives

> = Q.

Amylegxy> + <Agnsle,r,

as required.

Finally, €1€9€4 is idempotent if and only if it acts identically
on a basis of its range. Now, by (v) and Lemma 1.2, €1€5€4 has range
R3 . €eyeq clearly acts identically on {31[2 ""’En—Z} so it is
idempotent if and only if it acts identically on n, .
Now, '

Virzny = Vidg(ny*Aing) - v A Aqn,

and so, since n, + A]BJ = Rl 5
ViAaayey = Vids(nytiin)

= ViAqn, + VA

]

VitaBy ~ Mphiigly T Malidam, oy D)

= Aalngihatg) & Qyighd Mg idgVo)ny

+ A,n

Thus, since n, 303 € R2 5



So, since 1, € R3,

Vi Agn € €, 8,

Thus €/E)E4 acCts identically on n, if and only if v

Hence € 18563 is idempotent if and only if v

= "Avamy .
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3.18 LEMMA Given the conditions of the theorem, suppose that

there exist non-zero elements

(1) vymy + vynp + V505 =0

(1) oyl + boy +geg = 0
and also that:
(111) <a|z,> # 0

(iv) §22]£3> #0

(v) <Eq|£3> #0

(vi) €,6,65 has rank n - 1
Then there exist non-zero elements
(A)  <wnle,ry> + <Amfegxp> =
(B) <A222|92£2> - <“124|9252> =
Furthermore, e e e, s idempotent if and only if
Azu]vl - A]AZv] - Alulvz =0.

PROOF By (ii) and by the conditions of the theorem,we have
that dim (RT+R;+R;) =2,

So there exists a basis {24,u2,..

V] 3VyaV3sP 50,50 such that:

such that:

o4 o} of R1 N R2 N R3 . Extend

Thus, by Lemma 3.7, dim (RlnRZORS) =n- 2,
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this to a‘basis {u, ,_9_2,...,_13“__2,35} of R3 -

Since, by (v), <n, |£3> # 0, we have that n, & R3 . Thus we can
extend the basis of R3 to a basis {u ,u ,...,_1_1{1_2,_)_:_,3]} of V.
Thus there exist ¢ ,0, of F such that {31’9-2""’%—2’01-’5”29—1}
is a basis of Rl . Now,if o) = 0, then we would have n, € R] which

contradicts Lemma 1.4. Hence 9, #0 . If gy = 0, then we would have

R1 = R3 which contradicts the hypothesis of the theorem that <r,>

=l
i = 999 »

* and <rg> are distinct. Thus 9y # 0 . If we now put A
then we obtain {__Lll ’32""’-1-“{1—2’35-”131} to be a basis of Rl where >‘l
is anon~zero element of F .

Since {E] ’9—2""’}—1[1-2’5’31} is a basis of V , there exist TysTy
in F such that {_1_1_1 ,_52,...,311_2,1‘15_“'211_]} is a basis for R2 . If
Ty 0, then we have n, € R2 , l.e. <p_l!£2> = 0 , But this contradicts
(iii) and so 7, #0 . If 71, =0, then R2 = R3 which again contra-
dicts the hypothesis of the theorem. Thus T, # 0 . If we now put

s : S
My = T,T, , then we obtain {_1_1_1 ’32”"’3n—2’-§+u19-1} to be a basis of
R2 where My is a non-zero element of T .

Since, by (iv), <_r_1_2|£3> # 0, we have n, ¢ R3 . So we can
extend the basis of R3 to a basis {u, ’—‘52""’511—2’5-’32} of V. So
there exist elements W)W, of F such that {_gl ,_13_2,...,_1_111__2,w1_}£+w29_2}
is a basis for R2 I . w, = 0, then we would have I, € R2 contra-
dicting Lemma |.4. So W, #0 . If w, = 0, then we would have
R2 = R3 contradicting the hypothesis of the theorem. Thus woy #0 .

-1 ;
If we now put A, = w,w, ", then we obtain {gl ’52""’211’*2’35“‘29-2} to
be a basis of R2 where >\2 is a non-zero element of F .

Since x + un, € R2 , we have

<xtin|r,> =0,

3




- <x|pzr2> + <u n
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nyleyry> =0 .

Thus, by (ii),

But, since

So

But, since

<xlpyzy> + <x[pgrg> + <ujnloyzy> + <uyn logry> = 0.

x € Ry , we have §§Jp3£3> = 0 and so

<xlejzr> + <unylogx> + <upnylogry> = 0,

<x+y nl|plrl> + <un 0 .

1, legry> =

<x+A ng+Gu-A Ong [er> + <uyn fearg> = 0,

<x+A n][p r,> + <fy-i )nllp £5 =0 .

i 11"3—3

x+ An €R, , we have <x*An |p;r;> =0 and so

<@1'A1)21|°1£1> + <uymylegrg> = 0,

<wmy ez *egrs> - <Apmylegzy> = 0 .

Thus, by (ii),

<y [ppry> + <Aimy o> = 0
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which is (A).
Now, since x + A e R and x + W n, € Rz, we have
Anp = wmy € Ry s dee.

<A2 L nl]r >=0 .,

Thus
Aony [0,1,> - <um lp,ry> = 0

which is (B).

Now,by (vi) and Lemma 1.2, the range of is R3 . Thus

e
l€l€2€3 is idempotent if and only if it acts identically on a basis of

R3 . Clearly €1€9€3 acts identically on every element of

{24252,...,3ﬁ_2} . Thus € e, e, is idempotent if and only if it acts

172

identically on x .

Now, BV x = ulvl(gfklg4) - Al“]ngl and so, since Xx + KIEJ € Rl’

Wydqsey =y leskng)

AV e pa - s

]

AV Etn) + v (u] FAPE A+ AV (0 =A R, = A,y (0 =ADr

= ApqEtgng) + v G2 ERn,) = Ay (=3 dn,
. Since (§fu!34),(§fA232) € Rz, we then have

v Xe €, = Alvl(gfplgd) + v}(ul—xl)(zfl

Wy W LY

= Wy gl gy 8 Bade (NSt v

By (i), vin, = = Vang and so

V225
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WiPiEEyes = MgVl b R iy ot~V Aok dag — A0 Vet -
Since x € R3, we now have

BiHER EoRg = VB * ol vy BV RV IBse, s

Thus €18y€ is idempotent if and only if

v =2 v =X A0 ), € N . But n, ¢ N3 since N, and N3 are
distinct and one-dimensional by hypothesis. Thus €€, is idempotent
if and only if Azu]v] - A]u]vz - A1A2v1 =0,

We are now in a position to prove Theorem 3.14 . We shall need

to consider two separate cases:
(I) At least one of <Ed|r > <n2]r > <n3|r > 1is zero
(II) All of <24|£2>,$32|r >,<ng |r > ar; non-zero.
In considering case (I) it will suffice to consider
(I') <a,lry>=0.

This is because if, instead, we had <24[£2> = 0 (and
§32|£8> # 0), then,in the forward implication,we could, by virtue of

Lemma 3.5, assume that ¢ €189 is idempotent and obtain (i), (ii) and

3

<wana|parg> + <vgnglo x> + <v 2y lpye> =0, (+)

But, by Lemma 3.13, this is equivalent to (iii).
For the reverse implication,we could (by Lemma 3.13) assume (+)

and deduce that €388, is idempotent of rank n - 1 ., Again, by

Lemma 3.5, this is equivalent to being idempotent of rank n - 1 .

€1€9€5
A similar argument holds if we have <33|£4> =0 .
(I') Suppose first that €1€5€4 is idempotent of rank n - 1 . We

shall show that €13€9:E3 satisfy all the conditions of Lemma 3.17.

OO < | Aons-, ¢ 8. 3
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By Lemma 3;15,there exist non-zero elements V 3V53V330 1305504 of

F such that:

(£} wyn, + 0, % vghiy =0

GL) pix| * pamy * egty =0 »
Condition (iii) is satisfied by the hypothesis of (I') that §32|£3> =0

By the assumption that €1€9€3 has rank :h -1 and by Lemma 1.2,

we have that e e,e; has null-space [{; and range Ry . Thus
€1€9€3 € [31:23] . But, by assumption, €1E9€q 18 idempotent and so
[n,:ry] is a group #-class. Thus, by Lemma 2.6, {&1|£3> # 0 . This
is condition (iv).

We have assumed that e

18

2€3 has rank n - 1 and so condition (v)

is satisfied.

We may thus appeal to Lemma 3.17 to obtain that there exist non-

zero elements AI’A3 of F such that

Apmyleyzy> + <Agnglepry> = 0. ()

Furthermore, since we have assumed that ¢, ¢

1 €

is idempotent,we also

4 3

have

A3v1 + AlvB s (B)

Now, multiplying (A) by v3£ gives
Kyv [oyE> + gugiglegrgr = 0
So, by (B)s

~<Agvin fogz > + <Azvgn

3V3aglepzy> = 0 .

Dividing now by A3€ (which is non-zero since A3 # 0), we have
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<vn|pr>+<v =0.

1231915 sngleory>
But, by Lemma 3.13, this is equivalent to

<vl£4[p x> + <vn ]pzr > 4 <y > =0 .

ixq e 2"’212

This is condition (iii) of the theorem. We have already shown (Lemma
3.15) that conditions (i) and (ii) of the theorem hold and.so we have
- proved the theorem one Qay for case (I').

Conversely,suppose conditions (i), (ii) and (iii) of the theorem
hold. We shall again appeal to Lemma 3.17. Conditions (i) and (ii) of
the lemma are clearly satisfied. Condition (iii) is again satisfied by

the assumption of (I') that <§2|£3> =0 . By Lemma 3.1l6, has

.

rank n - 1 and so condition (v) is fulfilled. But this also gives,

with Lemma 1.2, that €,6,€5 has null-space N] and range R3 . Thus
(S . i

€189€3 Lgl.ga] . Lemma 3.16 also gives that €1€y€3 belongs to a

group H-class. Thus, by Lemma 2.6, <34|£3> # 0 . Hence condition (iv)

of Lemma 3.17 is satisfied. We are thus justified in using this lemma.

So there exist non—-zero elements Al,ks of F such that

<A 2yle g r, > + <A

nle, angle,ry> = 0 .
Multiplying by VqE gives
Apvgnyloyz> *+ <Agvgmgle,ry> = 0. (Al

Now,by condition (iii) of the theorem and Lemma 3.13,we have

Vg lPzy? % % 6

1> 3»3"’2"’

Multiplying by ABE gives



36

1
o

Aoy [ogz> + <Agvangle,ry> =

Adding this to (A) gives

Apvaryleyz> + A logz,> = 0

<(\vgtigvm ez > = 0.

Since £y - (31:54), we have, by Lemma 2.6, that $51[31> # 0 . Thus,

since 04 # 0 by hypothesis,

Alv3 + A3v1 =0 .

Now, appealing again to Lemma 3.17, we see that €1€,83 is idempotent.

We have already shown (Lemma 3.16) that €1€,€3 has rank n - 1

completes the proof for case (I') and so also for case (I).

. This
(II) Suppose first that €1€9€3 is idempotent of rank n -1 . We
shall show that €15€9s€5 satisfy all the conditions of Lemma 3.18,

By Lemma 3.15 there exist non-zero e}ements' VisVysVgsP sPosP 0 of

F such that:

GiF Wy ¥ BBy ¥ Sgiy = 0

G et Foliy ¥ gty = 0 .

Conditions (iii) and (iv) are satisfied by the hypothesis of (II)
that none of {34|£2>,§22[£3>,{23[£4> are zero.

By the assumption that €1Eo€3 has rank n - 1 and by Lemma 1.2,
we have that e e,e; has null-space .N! and range R3 . Thus

e - ’ . 3 -
€1€€, [24.33] . But, by assumption, €1€5€4 1 idempotent and so
[24:53] is a group H-class. Thus, by Lemma 2.6, §EJ|£3> # 0 . This
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is condition (v).

We have assumed that €186, has rank n - 1 and so éondition
(vi) is also satisfied.

We may thus appeal to Lemma 3.l8lto obtain that there exist non-

zero elements AI,Az,ul of F such that

wnylepry> + <Amyleyz> = 0 (8)
and '
Dgmylepry> = <uymyleyr,> = 0. (B)
Furthermore, since we have assumed €166, to be idempotent,we
also have
Azulvl - Alkzv] - Alulvz = 0 . . (Cc)

We shall now eliminate Az from equations (B) and (C). Equation

(B$ is equivalent to
AV vy [epzy> = < vy v dm [oyr,> = 0

Thus, using (C), we have
ApHpVgnyleory> = <uy Gupvi=A v ny feyry> = 0 .

So, dividing by u]£ (which is non-zero since uy #0 ), we get
Avamplepry” = <upvimyle,ry> + <Apvim foyr> = 0. 5

We shall now eliminate Hy from equations (A) and (D). Equation

(A) is equivalent to
Uiz legry> + Apvinylogx> = 0.

Adding this to (D) gives
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. <A v2 2|p2r > 4 <A]v1n]|p2 2> + <A v nllp r.>» =0 .

Now,dividing by xrg (which is non-zero since ll # 0 ),gives

<vlnllplrl> + <0 1p2r2> + <von 2Ipzr >=0,

which is condition (iii) of the theorem.
We have already shown (Lemma 3.15) that conditioms (i) and (ii) of
the theorem hold. So we have proved the theorem one way for case (II).
Conversely, suppose conditions (ij, (ii) and (iii) of the theorem
hold. We shall again appeal to Lemma 3.18. Conditions (i) and (ii) of
the lemma are clearly satisfied. Conditions (iii) and (iv) are again
satisfied by the assumption of (II) that none of {Eq|£2>,{22|£_>,

§23|£4> are zero. By Lemma 3.16, has rank n - I and so

618283

condition (vi) is fulfilled. But this also gives, with Lemma 1.2, that

A

€1€,€4 has null—-space N1 and range R3 . Thus €1€5€5 & [24:53] .
Lemma 3.16 also gives that €168, belongs to a group H-class and so,
by Lemma 2.6, we have SE]|£3> # 0 . Hence condition (v) of Lemma 3.18

is satisfied. We are thus justified in using this lemma.

Thus there exist non-zero elements Al,kz,ul of F such that

<y loyry> + <Apnyfogr;> = 0 (A)

Agmpleyzy> = <upmyle,ry> = 0. <8

" We shall now eliminate I, from equation (A) and condition (iii) of the

theorem.

Equation (A) is equivalent to

<u,v, nl]p2 )> *+ <A vn |p1 =) (E)

and (iii) is equivalent to
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<Avn ]p >+ <A v1n1|p2r2> + <A v,n, 2|p2£2> =0 .
" Subtracting (E) from this gives
Avmylogry> + Apvomolepry> - < legry> = 0. (F)

We shall now eliminate n, from equations (B) and (F). Equation (F) is

equivalent to

> 4+ <A A.v.n

Ky Ay=upv iy le,r, 1Apvanylegry> = 0 (6)

and equation (B) is equivalent to
AAgvomyle,ry> = <wA vom foor,>
Subtracting (G) from this gives

=< A von, [p,r,> = <Ay (A mu)vin e,z = 0,

<(A, u.v

M1V M A A v)m, ey = 0

Since, by the hypothesis of (II), {2]|£2> # 0 and, by the hypo-

thesis of the theorem, 0y # 0 , we now have

Aoby¥y = A9 = Xy, = 0,

Thus, appealing to Lemma 3.18 again, we see that €1€584 is

idempotent. We have already shown (Lemma 3.16) that €, e.&e

152 has rank

3

n - 1 and so the proof of case (II) is complete.

This also completes the proof of the theorem.
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§4 GENERATING SETS OF IDEMPOTENTS 1: THE VECTOR SPACE \ DEFINED

OVER AN ARBITRARY FIELD F

In this section I shall give a new proof of a result due to
J A Erdds [7]. The proof in [7] that Sing ~ is generated by E (the
set of idempotents of Singn of rank n - 1 ),depended entirely‘on
results in matrix theory. This shed very little light on the structure

of the semigroup. In the following proof we shall consider the chain

Sing 2 PF 2EVH

n-1

where H denotes the set of elements in any A-class (other than {0} )

of PFS_1 . We shall show that each set is generated by the succeeding

set, and then that E generates all the elements of one particular

0

H-class (other than {0} ) of PFn—l

At the end of the section I shall obtain necessary conditions for

a subset of E to generate Singn =

4,1 LEMMA PF__, generates Sing .
PROOF The proof is by induction on the nullity of elements of
Singn . Suppose, as the hypothesis, that,if o € Singn and the dimen-

sion of the null-space Na of o 1is less than or equal to k, then

o € <PF__ > . Now let B € Sing, be such that dim Ny =k + 1 . Let
NB have basis {34’22""f3k+1} and extend this to a basis {34""’3n}
of V. Let v be any element of V not in RB . Now let

BB, € Sing  be given by
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and

Clearly B = 8 Now, Bl € PFn— and dim R, = dim RB + 1, i.e.

1B I 8,
. s e (S
dim N82 k . Thus B;,B, € <PF__,> and,consequently, § € <PF__,> .
The induction process may be started since any element with nullity |
belongs to PFn_l .
Before proceeding to the next step in the chain, we shall need to
know a few properties of the relation T(E') on a subset E' of E
given by:

4.2 DEFINITION Let E' be a subset of E and ¢,y € E'

Then (¢,y) € N(E') if there exist elements 81,82,-..,€q in E' such
[ =
that ¢5152 i eqy PFn—l
In this section we shall only be concerned with I(E) . It is,
however, convenient to give the more general definition here.
It is obvious that I(E') is transitive for all subsets E' of

E . Not so obvious is:

4.3 LEMMA Let E be the idempotents of rank n - 1 of

Singn . Then 1n(E) 1is the universal relation on E .

PROOF Let (24:54) and (EQ:EQ) be any two elements of E

and suppose that ((34:34),(32:52)) & M(E) . Then, certainly,

0

(51:51)(3:5_)(32££2) -0 dn B,

for all elements (n:r) of E ,
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i.e. (by Lemma 2.6) for all elements n and r of VY such that
<n|r> # 0 . Thus, by Lemma 1.9 and Lemma 2.6, either <n|r;> =0 or
' <52|£? =0 for all n,r €V such that <n|r> # 0 .

Let us suppose that the vectors-.E

o Y 2

1 and o, have co-ordinates

- P 5P

T ,...,y(n)) . Let

I, and n,
i = min {j : x(l) # 0} and define n = &; » the vector with 1 in the
ith position and zeros elsewhere. Now;for each j in {1,2,...,n}

- define
e.+s. if i # 3
if 483 .

Then §2J5F3)> =1#0 for all j and so, by the remark at the end of :

the last paragraph, we have either

<n‘r]> =0 or <22|£(j)> =0

]

0 . Moreover,

Since {2[£4> - it # 0 , this implies that <52|£FJ)>
this holds for each j in {1,2,3,...,n} . Putting j

that y(l) = 0 ; then for each j # i we obtain y(1> + y(J) =0, i.e.

1 we obtain

y(J) = 0 . Consequently n, = 0 which contradicts the assumption of

(22:52) being an idempotent.

In the terminology used by Byleen, Meakin and Pastijn in [41],
Lemma 4.3 is equivalent to saying that the non-zero idempotents of
PFg_l are connected. However, if E' is a subset of E, then saying

that @(E') is universal on E' is, in general, a weaker condition

than saying that the elements of E' are connected.
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4.4 LEMMA Let s be a completely O-simple semigroup and
let a2 €8 ,

(i) If e are non-zero idempotents in S such that e, La

1
x € Ha) 1S a

ERRRELN

and # 0, then the mapping x +* xe

elez...ek 2...ek

bijective mapping of H, onto R0 Lek .

are non-zero idempotents in s such that e Ra

x (x € H,)) is a

IRERE LN

e # 0, then the mapping x + € e p-e

(ii1) If e,e
and ekek_].;.
bijective mapping of By onto Rek ﬁ_La .

2

PROCF Both parts are immediate from the Rees representation

theorem for completely O-simple semigroups (see, eg., [10, Theorem IIT.2.5]).

The next definition, although not needed in this section, is
included now for convenience. It enables us to prove a more general
version than required here of Lemma 4.6. This will be required in

Section 5.

4,5 DEFINITION Let E' be a subset of the non-zero idem-

potents of PFg_1 . We shall say that E' covers [sparsely covers]

PF0
n

-1 if E' has non-empty intersection with [intersects in exactly

one elesent] each non~zero L-class and each non-zero R-class of

PF0 . We shall also say that E' covers PR

n-1 I

4,6 LEMMA Let E' be a subset of the non-zero idempotents

0

of PF
n—1

such that E' covers PFg_] and T(E') 1is the universal

relation on E' . Let [EO:EOJ be any H—g?ass other than {0} of
0 0

PF . Then E' U LEO‘EOJ generates PFn_

n-1 1

PROOF Let [n:r] be an arbitrary H-class in PFO_

raness n-1 °
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Since E' covers PFg_1 there exist idempotents (3}:_0),Q§H£),

(gozzf) and (EﬁEP) in E' . Since IN(E') is universal,there exist

e),...,eq € E' such that
i ",
(n':rgle; ... eq(g ir) # 0,
By Lemma 4.4(i) it follows that

o AE; ... eq(g?:s) (o €[

is a bijection from [EO:EOJ onto LEO:EJ 5
Equally, the universality of II(E') means that there exist

si,...,sé € E' such that
(gggf)s; - ei(gd:zf) #0 .
By Lemma 4.4(ii) it follows that
B = (E;Ef)eé cev €8 (8 € [ny:xD

is a bijection from LEO‘IJ onto [n:r] .

Thus

O P PP VOO TR\ 5 %> ]
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o (E;E?)eé_... e;ael o eq(gﬁzz) (a0 € [gozgol)

is a bijection from [ny:ryl onto [n:rl . It follows that every
element of [n:r] lies in <E'LJEBQ’£6]> . So E'U [20:50]
0

generates PFn_l .

4,7 EXAMPLE Let V be the two-dimensional vector space

over the field of two elements. Then PF? = singz and has structure

@0y & O o« (1)

0 0 0 0 "o o
(1,0) :

0 1 1 O 1 1

0 1 1 0 1 1
(0,1)

0 O 0 O 0O 0

0 1 1 0 1 1
(1s1)

0 1 1 0 1 1

In the notation of Lemma 4.6, let

o ol [t 11 o
E' = ’ )
o 1]]o of [1 o .
[0 0
and [n:r] = [(1,0):(1,0)] = Y . Then E' 1is a cover for PF1
0 1

(it is indeed a sparse cover).

We now show that II(E') is universal on E'

bl
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g
- - - = - - -
o ol[i ol fo o o o] [ o'J
= € PF1 so 5 | € n(E")
o 1y o fr o [Lo ] 1 o]
o olft olfi 1 0 0] : o ol [T 17
= S PF, so 5 € (')
o 1Jf1 oflo of |1 1] 0 1f |0 0]
\ J
o . e _ 1
1 1][/0 o 0 1 1 1] fo o]f
= € PFl s0 P € M(E")
0 offo 1] [0 0] 0 6] ja 1
- B
p— - - - — — ’,.. - - —-1
1 1l{o ol[t o 1 0 1 1] 1 o
= € PF1 so , € I(E")
0 offo ijp1 o] (o o] [0 o) |1 ©
\ B =)
toolft 17 117 _ 1 o] 1'1
= € PF1 so g € N(E")
1 oJlo of [1 1] L1 o o o
)
1 ollt 1ffo o 0o 1] 1 0] [o o'1
= € PFI S0 s € II(E')
1 ojlo offo 1] o 1] 1 o} [0 1]
\ J

Thus T(E') 1is universal on E'

So, by Lemma 4.6, E' U [(1,0):(1,0)] generates PFg_l . Since

0 0
[(1,0):(¢1,0)] = [; 1‘] CE' we have that E' generates PFg-I

We now verify this. We have already shown that E' generates all

b 0 O
the elements of PF0 except for L; é] and [; é] . However, since

I 0L 1
0 O 0 041 1

—

—
—

]

and

we have that <E'>

i
g
=
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4.8 LEMMA The non-zero idempotents of PFg_] generate the
H-class H = [(1,0;0,:::50):(0,1,0,0,:..,0)] s
PROOF The proof is by induction on the dimension of the

vector space. Suppose, as the induction hypothesis, that the lemma is

true for PFg_z . Then, since the non-zero idempotents of PFg_2

PFg_2 ,» we have, by Lemma 4.1, Lemma 4.3 and Lemma 4.6, that the idem—

cover

potents of rank n - 2 of Singn_l generate Singn_] .

0

Now let « L PFn—l

be an element of H . Then, relative to the

standard basis, o has matrix

0 0 0 0 i 0
8yp 0 a2,y a3y, ... a3y,
My= Jag; 0 a33 385, ... ag |.
_?nl 0 5 an4 el ang_

Now Ma = A B where

~and
1 8 0 @ ess B
0 O a23 a24 i a2n
B = 0 O 333 334 ~ a3n -
_O 0 an3 an4 s ann“
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é

o

ik

o et SR

Notice that Al is idempotent.

Now, B = E ;i where B' is an (n-1) x (n-1) sinéular
matrix. So, by the induction hypothe31s, B' AzAé SR Ai where
Ai (i=2,...,k) are 1dempot¢nt (n-1) x (n-1) .matrices. Thus the
matrices

(i=2;ss03Kk)

,ﬁ-Ilo

l
r.
l

o] —~

are idempotent n X n matrices with

l| 0
AL el %
- 0 rA‘A‘

Hence B = A2A3...Ak and so

Ma = A1A2°"Ak , a product of idempotents.

All that remains now is to anchor the hypothesis by showing that
every 2 x 2 matrix in the H-class [(1,0):(0,1)] can be expressed as
a product of idempotents. If o € [(1,0):(0,1)], then, relative to the

0 O
standard basis, o has matrix of the form Ma = [ } . But

a
0 O 1 0
M, = E]E2 where E] = [? l] and E2 = [é é] are both idempotent.
4.9 _THEOREM (J. A.Erdds [71) Let V be a finite dimensional

vector space and let Sing be the semigroup of singular endomorphisms
of V. Let E be the set of idempotents of sing ~ of rank n - 1

Then E generates singn

PROOF This is immediate from Lemma 4.1, Lemma 4.3, Lemma 4.6

and Lemma 4.8.
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We have already shown (Theorem 3.14) that E may be generated by

a proper subset of E . Thus we know now that a proper subset of E
will generate Singn . It is reasonable to ask how small a subset of
E will suffice to generate Singn . The following two lemmas are used

in Sections 5 and 6 where this problem is considered for the cases of F

being a finite field and an infinite field respectively.

4.10 LEMMA If E' 1is a subset of E and E' generates

singn then E' covers TR and T(E') is the universal relation

1
on E' .

PROOF Let B be any element of PF__ Since E'

i .

generates Singn , it certainly generates PFn Thus there exist

-1 b2
1 TR >

elements sl,sz,...,ep € E such that B slez...ep . Now,since
dim B = dim €; (i=1,2,...,p), we have, by Lemma 1.2, that NB = Ne

1
and RB=R8 . Thus, by Lemma 1.3, BRe, and BLsp. Hence both

P

RB N E' and LB N E' are non-empty. Since B was chosen arbitrarily,

it follows that E' covers PFn—l i

Now let ¢,y € E' , and let a € R¢ n LY . Since E' generates

o we have o = e]ez...ep for some sl,sz,...,sp € EY . But, by

Lemmas 1.2 and 1.3, s]Ra and epLa . Thus ¢Rel and YLsp.

Hence ¢el = € and EpY = ep . So o= ¢s]sz...spy 5 18 ¢elez...epY
0

has rank n -1 . So ¢el§2...epy £ 0 in PFn-l . Since
‘el,ez,...,sp € E' , we have that (¢,y) EN(E') . Since ¢ and Yy were
chosen arbitrarily, it follows that MN(E') is the universal relation on

E',

4,11 LEMMA There exists a sparse covering set E' for
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PROOF The proéf is by induction on the dimen;ion n of the
vector sﬁace V . For clarity we shall denote the m~dimensional vector
space by Vm %

We now define a set of represenﬁatives V; of the one-dimensional
subspaces of Vm . 8o, for all non-zero x in Vm there exists a
unique y in V; such that <x> = <y> . We shall denote by Lz [Ri]

the L-class [R-class] of PFg? containing those elements with range

1

* perpendicular [null-space] <x> .

Now suppose, as the induction hypothesis, that there exists a

sparse covering set E; of PFg-i . Then there exists exactly one
; i 1 .
element o in Lﬁ n E& for each x € LN All the elements in R,

have, by Lemma 1.3, the same null-space, generated'by a particular element

of V& « If we denote this element by y(x) , we have, in fact, defined a
mapping V; - V& by x » y(x) . This mapping is characterised by
m m 1 .
n N -
LE. gXﬁE) Em 1s non-empty.
L
Z
m
R
3 ’

This mapping is clearly a bijection. Notice that there exists an
idempotent, namely o , with null-space <y(x)> and range {ﬁ?l. Thus,
by Lemma 2.6, ﬁZ(E)lE? # 0 .

: . 1
If x= (xl,xz,...,xm) is an element of V. and a € F, then

denote by (E,a) the element of V;+ that generates the space

<(x1,x2,...,xm,a)> . We shall denote by (0,1) the element of V;+]

that generates the space <(0,0,...,0,1)> . Clearly, these are all
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distinct and every element of Vl;1+ may be denoted in this way. Notice

i
that,if y = (y,,555.+:, m+1) , then for some x € Vx'n U {0} and some
A,a € F, we have (y],...,ym) = Ax and R Aa .

We shall now set up a bijection- g : V1;1+l - Vx'n+l such that
Lix,a) " Byie,a) 15 @ 8roup H-class of PF) for all x € V' and all
a €F and also L(Q_,l) N R(_O_,I) is a'group H-class of PI"]?1 . It would
be nice if § were the identity map. In some cases this would work
‘(e.g. F = IR and the stroke product being an inmer product) but in
general we do not have <3|fi_> # 0 (see the comments following
Definition 2.2) and so we are unable to guarantee that [a:al is a
group H-class. It is logical to construct § so that for x € VI; and
a € F we have i(}i,a) = (y(x),z) for some z € F . We need to have
<§_(§,a)|(§_,'a)> # 0 and so we must have <(_}L(x),z)[ (x,a)> # 0 , i.e.
<y(x) ‘_}_<_> +(zE)(ax) # 0 . Now,by the definition of y(x), we know that
<_}:(§)|3<_> # 0. Thus,if a 74 0 , we need =z& # —<z(_:_c_)|§>(a)()"l and, if
a=0, 2z may take any value we choose. Now, all we know for
certainty about the field F 1is that it contains two elements, namely
0 and 1., Thus,if a # 0,we may put z& = 1 - <y(x) [§_>(a~1x) . This
clearly satisfies zg& # '<_Z(_}_‘_)|§> (a“lx) . Now,for a given x,the only
value that 1 - <_y_(_}_(_)l§>(a_lx) (a # 0) may not take is ! since
<y(x)|x> # 0 . So if a =0 we shall set z =1 . So we shall define

the map y : V >V by

(y(x),b(x,a)) if x€ vV

|~

P
|
s}

p—
1

0,1 if x=0, a=1

where

o
S
o

b(x,a)

]
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It is obvious that § is an injection for, if zﬂz)a) = zﬁi',a')
and x # 0, then we would have y(x) = z_(_}_{.') and b(x,a) = B(_}g_',a') A

But, since y is bijective,this implies x

x' and b(x,a) = b(x,a")
This, in turn, implies a = a' If x =0, then clearly x' =0 and

1

s - C: 1 '
so a=a' =1 since (0,a) and (0,a') GVmH ~

We shall now show that § is surjective., Let (x,a) € V;+l <
If x=0 and a=1,then §(0,1) = (x,a) . So suppose x # 0 .

Then x € Vé « Since y : V; -+ V; is bijective, zf](§) is defined
and unique. If a = 1, then jﬁzf](x),O) = (x,a) . So suppose a # 1 .
Then ax # 1 and so
<zfl(x)|x> 1 '
(—-—-—-—*“"—*‘f——l —

_l 1 .
y )E ') = (x,a) . Hence j :V +~V is sur-

m+ 1 m+ 1
jective and, consequently,is bijective.

i - is defined. Thus

5’_(_}1_1 (x),

From the definition of § we have that, for all (x,a) € V;+l 3
= A ; ;
$1Q§,a)](§,a)> # 0 . Thus L(E=a) Rzﬁa,a) contains an idempotent.

Hence the set

E oy = (@2 ¢ (x,2)) & (x,8) €V} )

is a sparse cover for PFg 5

It remains to show that we may anchor the induction at m = 2 .
Since, in this case, every one-dimensional subspace of Vz may be
generated by the vector (0,1) or a vector of the form (l,a), it is

easy to see that the set

1

{((1,<1—3§>a‘ )+ (1,2)) 1a € F\{0}} U {((1,1):(1,0)),((0,1):(0,1))}

forms a sparse.cover for PF? @
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§5 GENERATING SETS OF IDEMPOTENTS 2: THE VECTOR SPACE \/ DEFINED

OVER A FINITE FIELD F

If the field ¥ is finite then the semigroup S.ingn is also
finite. I shall show (Theorem 5.1) that in this case the necessary
conditions for a subset E' of E to generate Singn givén in Lemma
4.10 are alsé sufficient conditions. From this I shall obtain the
minimum number m such that there exists a subset E' of E that

generates Singn and has order m (Corollary 5.7).

5.1 THEOREM - Let V be an n-dimensional vector space over a

finite field 7 . Let singn be the semigroup of singular endomorphisms

of Y and let PF _, be the set of elements in singn with rank n - I

1

Let E' be a subset of the idempotents of PF__, - Then E' denerates

1
Siﬁgn if and only if m(E') 1is the universal relation on E' and E'
covers PF__, .

PROOF We already know (Lemma 4.10) that if E' generates
Singn then I(E') 1is universal on E' and that E' covers PFn—l N
To show the converse it will suffice to show that E' generates

E , the set of all idempotents in PFn— , for, by Theorem 4.9 and [7],

1
we have that E generates Singn .

Let € €E’. Since E' covers PFn—l , there exist ¢,y € E'
such that ¢I€e and yLe . Since I(E') is universal on E', we have
that (¢,y) € I(E') . Hence there exist EI’EZ"”’Ep € E' such that
a = ¢e]€2...epY has rank n - 1 . Now, by Lemma 1.2, Na = N¢ and
R()t:Ry' Thus, by Lemma 1.3, «R¢ and oLy . Hence oRe and

aLe ,le. aHe . Nowysince F 1is finite, Singn is finite and so

certainly He is finite. So & belongs to a finite group. Thus, for
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gome integer k 2 1 , ok is the identity of that group, ie. 2" = &
Since o is a product of elements of E', we have that E' generates

€ . But this holds for all elements of E and so E' generates E as

required,

If a subset E' of the idempotents E covers PF 4 it is not

true in general that T(E') is universal on E' as the next example

" shows.
5.2 EXAMPLE If F = Z, and n = 2 then the structure of
PF? is

(1,1) €

(0,1)

where the shaded boxes contain idempotents and where

0 0]
e, = ((1,0):(1,0)) =

10 1

0 1
€, = ((1,1):(1,0)) =

0 1

]
1

(€0,1):(1,1))
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and

10
e, = ((0,1):(0,1)) = .
0 0

1f E' = {61,62,83,84} then E' covers PF? . However, I(E') is

not universal on E' . To see this we shall compute <E'> and then

._ apply Theorem 5.1 .

0 1 0
o '
Now <E'> {81’82’63’€4’[; 0‘],0} . Clearly <E'> # PF, for

, we have,

((1,0):(1,1)) = [] 3:l¢ <E'> . Thus, since E' covers PF?

by Theorem 5.1, that II(E') is not universal on E' ,

The next three lemmas and Theorem 5.6 will show that if F 1is any

finite field then any sparse cover of PFg_ will generate Singn g

5.3 LEMMA If |F| = q ,then the number of non-zero L-classes

[R-classes] in PFg“] is (q"~1)/(q~1) .

PROOF By Lemma 4.11 we know that there is a bijection between

the elements of a sparse cover of PFg_ and the L-classes [R-classes]

1

of PFg-l . Thus there is a bijection between the L-classes and R-classes
of PFg_1 . Since F 1is finite it follows that PFg_l is finite and
so there are only finitely many L-classes [R-classes] in PFg_1 . Con-

0

sequently there are the same number of L-classes as R-classes in PFn_l v

By the comments following Definition 2.5,we know that there is a

bijection between the one-dimensional subspaces of Y and the non-zero

0

L-classes of PFn— Now the number of non-zero vectors in V is

1

% w1 . However, for each X in V and for all non-zero scalars A

q° -
in F we have <x> = <Ax> . Hence there are (qn~1)/(q~l) one-

dimensional subspaces in VY .
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5.4  LEMMA . If |F| = q, then the number of idempotents in any
non-zero L-class [R-class] of PFg_] i .
PROOF The number of idempotents in a given L-class L is the

number of R-classes containing an idempotent in L . If the elements in
L have range {E?l then, by Lemma 2.6, this is just
Q= |{<n> : %EJE? # 0}| where |X| denotes the order of the set X .
Since the number of one-dimensional subspaces of V is, by Lemma 5.3,
(g™=1)/(g-1), we have Q = (q"-1)/(g-1) - |[{<n> : <n|r> = 0}| . But

L

{<n> : <n|r> = 0} = {<n> : n € <r>*} . Since, by Lemma 2.3,

dim <£?l =n -1, we have, by the proof of Lemma 5.3, that

lt<o> : n € <t} = (@ -0/

Thus Q = (q"~1)/(q-1) - (qn-]—l)/(q—l) = qn_‘ as required.

5.5 LEMMA If F is a finite field and E' 1is a sparse

0

cover for PF__, ,then m(E') 1is the universal relation on E' .

PROOF Let ¢,y be any two elements of E' and suppose that
¢I(E') N ‘Y[H(E')]“l is empty. Since each L-class of PFg_l contains
qn— idempotents (Lemma 5.4) and E' 1is a sparse cover for PFg_] , we

know that there are exactly qn_l elements ei of E' such that
0 .
n-1i

n—1

¢ei # 0 in PF (Lemma 2.7). Hence |¢H(E')| = q . Similarly,

since each R-class of PFg-l contains qn ] idempotents, we have that

there exist exactly qnn1 elements ci of E' such that siy #0 in
PFg~l . Thus IY[H(E')]_II P qn_1 . Now, since we have assumed

$IM(E") N Y[H(E')]—1 is empty, we have

lencE) UyLnE DI = Jon@)| + |ymEDHT'| 2 ¢ 4 g1 = 2g™) .
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But, since, by the proof of Lemma 5.3, we have |E'| = (q"-1)/(q-1)

1

and ¢M(E') U y[N(E')] < E', we then have

4mE") UyTIEH T < &' = (@=1)/(a-D)
Thus
@-D/(a-1) = 2¢"7"
i.e.
qn -1 an _ 2qn—-l
Hence
qn _ 2qn—l + 120,
i.e

qn‘l(q—Z) < -1 . +)

But, since |F| =q and F 1is a field, we have that q = 2 . Thus (+)

is impossible. So there exists e € ¢I(E') N Y[H(E')]—l s 1.2,

(¢,e) € I(E') and (e,y) E M(E') . Thus (¢,y) € N(E")
We now have:

5.6  THEOREM Let V be an n-dimensional vector space over a

finite field F . Let Singn denote the semigroup of singular endo-

morphisms of Y and let L2 8 be the set of elements of sing with

-1
rank n - 1 . Then there exists a subset E' of the idempotents of

PF__, such that E' ds a sparse cover for PF__| and E' generates

Singn . Further, any sparse cover for PF_, generates singn ‘
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-1 °

By Lemma 5.5, M(E') is the universal relation on any sparse cover E'

PROQF By Lemma 4.11, there exists a sparse cover for PF_

and so, by Theorem 5.1, any sparse cover E' for PFn—l generates

Singn ‘

5.7 COROLLARY Let Y be an n-dimensional vector space over

a finite field |F| = q . Let Sing ~ be the semigroup of singular endo-
morphisms of 8ing and Tet E be the idempotents of sing of rank

n~-1. Then

min {[E'| : E' € B, <B'> = sing } = (¢"-1)/(q-1) .

PROOF This is immediate from Lemma 4.10, Lemma 5.3 and

Theorem 5.6 .

§6 GENERATING SETS OF IDEMPOTENTS 3: THE VECTOR SPACE V DEFINED

OVER AN INFINITE FIELD F.

In Lemma 4,10 we found necessary conditions for a subset of E to
generate Singn . When F was finite we were able to show that these
conditions were also sufficient (Theorem 5.1). Unfortunately this is
not the case when F 1is infinite,as Example 6.1 will show. Despite
_this, we shall be able to obtain a theorem (Theorem 6.7) that is similar
to Theorem 5.6, but much weaker. Before stating Theorem 6.7, we shall

need two more definitions and three simple lemmas.

6.1  EXAMPLE Let F = R , <+|+> be the stroke product

defined by x& = xx = x and let E' be the set of idempotents of the
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form (a:a) . E' cleariy covers PFn_ Also ITI(E'). is universal on

=
B fo show this we shall consider any two idempotents (a:a) and
(b:b) of E' . If (a:a)(b:b) has rank less than n - I, then we have
(by Lemma 2.7) <3|_t2_> = 0 . Hence <§_l_§+1)_> = <§|3> # 0 and

<atb|b> = <b|b> # 0 . Thus (a:a)(atb:a+b) and (atb:a+b)(b:b) have
rank n - 1 (Lemma 2.7) and so (a:a)(atb:a+b)(b:b) has rank n - 1
(Lemma i.9). Thus ((a:a),(b:b)) € H(ﬁ') . So E' covers PF__, and
- I(E') 4is universal on E',

Now let EEV and (a:a) be any element of E' . Then

x =Aa +b where A€ R and b€ <_g>'L

(by Lemma 1.4). Thus
-x(a:a) =b . So <§_|£> = <>\_:-_z_|>\_§_> + <.‘2.[E>_= <>‘3|}‘i>. + <x(a:a) ]3{_(3:3)> s

Thus, since <)\_a_[7\3> 2 0 with equality occurring if and only if Aa =0,

we have

<x|x 2 <x(ara)|x(a:a)> (+)
with equality occurring if and only if x € <3>'L ‘
Now let (n:r) be any idempotent of E not in E' and suppose

that E' generates E . Then there exist DysDgsesesly in V such

that

(@:r) = (o) (a;:n)@ymn,) ... (o) (x:x) .
Now let x € <£>'L . Then

x@i) = x . FE
But, by repeated applications of (+),

<x|%> 2 <x(n:n) |x(n:n)> 2 ... 2 <x(n:x)[x(nix)>

with equality occurring at each stage if and only if



€ <’ , x(am) € <apt, x@m) @) € <yt ...

5(_11:3_)(31 :11_1) (_r_lk:_l_'_x:k) S <_£>'L .

. . 4 L .
Since, by (++), equality does occur, we have x € <n>" , This
' 1 x i . i
holds for all x € <r>~ . Thus <r>" ¢ <n>~ . Now,since <r>" and
& . . 8 E ki ¢
<n> have the same dimension,we have <r>" = <p>~ , ie. <r> = <n> ,

But, since we assumed (n:r) ¢ E', we have <r> # <n> . Thus E' does

not generate E and so certainly does not generate Singn .

6.2 DEFINITION Let E be the set of idempotents of rank
n-—-1 of Singn and let A and B be subsets of E . Define Ao = A
i in s
and A, = A7  NE (i=1,2,...). Clearly, A = Ay S Al s A, oo . We

shall say that B 1is Ai~accessible if B ¢ Ai+l and A-obtainable if
B is Ai~accessib1e for some i € IN. Clearly,if B 1is A-obtainable,

then A generates B .

6.3 DEFINITION Let E be the set of idempotents of rank

n~-1 of Singn and let A be a subset of E . If € € E is
A-obtainable, we shall define the height of & from A to be

= 11 . (=
hA(e) min {m : Am}

The next three lemmas are trivial, but it is more convenient to
place them here than include them in the proof of Theorem 6.7 where they

will be called upon.

6.4 LEMMA If €1:85,€4 are A-obtainable, i.e.
Eafgny © L by

60
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for some subset A of E and if ¢.e.e

€265 € E, then

max
hlegearg) &4y 9.9 e dd « 1

< - max
PROOF Let h 1 3,3 {hA(ei)} . Then €15E9s€q € L
3 -
Thus €1€5€, = Ah NE = Ah+1 . So hA(€l€2€3) <h+ 1.,
6.5 LEMMA If hA(e) =m , for some subset A of E and

some e €E, €= €(€9€q > for some

o«
€ UA,

S1ePpe R T syt 2

and b,(e;) < m,then , max {h,(e)} =m -1

i=1,2,3

PROOF This is immediate from Lemma 6.4 .

6.6 LEMMA how (o ® Uik o T el w65 For all sibssis @
S j=0 i * A

of E .
PROOF This is immediate from the definition of height.

6.7 THEOREM Let V be an n-dimensional vector space over

an infinite field F . Let sSing_ denote the semigroup of singular
n

endomorphisms of \ and Tlet PF__ be the set of elements of Sing

1
‘with rank n - 1 . ‘Then there exists a subset A of the idempotents

E in PF__, such that A 1is a sparse cover for PF _, and A

1 1

generates Singn ;

PROOF The proof is by induction on m in the following
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hypothesis:

There exists a subset A(m) of the idempotents Eg in PFm

-1
(m)

such that A(m) is a sparse cover for PFm_,_l and E is A
If m= 1, then the hypothesis is clearly true since E, consists

solely of the zero map. So,putting A(l) = E, , we have that S is
(D

a sparse cover for PFg and E, is A

Now suppose the hypothesis holds for m=n - 1 . We shall show

~obtainable.

1

that it also holds for m = n . Adopting the notation of Lemma 4.11 let

A(m_l) = {(y(x):x) : x € V' _.} . As before, define the mapping

n-1

F:oV >V by

(y(x),b(x,a)) if x € A

= n-1
J(x,a) =
o, if x=0 and a = |
where
[1-<y@) |x/(a1E™)  a#o0
b(x,a) =

The inverse of § 1is given by

(l—](i),C(i,a)) i£ %€ A

=1 n-1
¥ (x,a) =
0,1 . if x=0 and a =1
where
[<35|_z"l(><)>/(l—a€)]x"1 if a¢#1
c(x,a) =

0 if a =1

From the proof of Lemma 4.11 we know that

-obtainatble

wiegtda A o

Eugh it T
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Dy = {(F(x,a):(x,a)) : (x,8) € V'}

forms a sparse cover for PF _, - We shall show that E_ = is Dy~

obtainable.

0

In listing the possible idempotents (n:r) in En we may suppose

that n and r are expressed as (x,a) with x € Vr'x-

1 and a € F or

as- (0,1) . The four main cases are: '

(A) 1= (z,c)

(B) n = (z,c)
(€©) n-=
(D) n=1xr-= (0,

and r = (x,a) where 2z,x€ v’

with z € V

1) .

(0,1) and r = (x,a) with x € Vr'l

n—1

and x = (0,1)

-1

We may subdivide case (A) into subcases as follows:

(A1) z =y ,
(A2) z = y(x) ,
(a3) z =y ,
(A4) z = y(x) ,

(A5)

N
“H~
[
—~
[
~—t

(a6) z # y(x) ,

Case (B) may be subdivided

(8l1) n = (z,¢) ,
(B2) n = (z,c) ,

In cases (Al)

c = b(x,a)
c # b(x,a)
a=0,c=1
a$0,c=1
<z|x> # 0
<z|x =0 .

into:
r=1(0,1) , c#l
re=(0,1) ,e=1.

and (D) we have that (m,r) € D0 . The remaining

elements of E_ ~ may thus be divided into eight classes as follows. The

reason for the order of the listing will become apparent as the proof

progresses.

o
]

o
H

{(((yR)se)(x,0)) rc#¢1, x€ Vt'l'-l} (case (A3))

{CC,1):(x,a)) : x €V .} (case (C))

n-1

P TRt

!
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3 {((z(x),1):(0,1)) : x €V _.} (case (B2))

-— n-1

o
il

o
n

4 = (((x(),a):(0,1)) : a#1,x€V 1 (case (BI))

o
it

5 = L@E®,D:(x,a) : a#0, xE€V _,} (case (A4))

1

o
n

6 = (Gxx),b):(x,a)) :a#0,b#1, xE€ v'

b # b(x,a)} (case (A2))

o
1

7 {((_X(E_)’b):(_}.{.’a)) : _}E’Ee V' » X # Z ,

<y(z) |x> # 0} (case (A5))

=
I

g = @@, b =) 1 x,2€V | , x4z,

fiﬁE)lE? = 0} (case (A6))

By the construction of DO""’DS we have that Di N Dj = ¢ if

i #j and that

We shall show, in eight stages, that Di is Dowobtainable (i=1;2505:58)

We show first by using Theorem 3.14 that D, .is Do—accessible.

1

More precisely we show that
((r(x),2):(x,0)) = (n;:x,)(n,:x,) (ng:x3)

where

n, = (3(),2) £ =5 (rG,a) = (x,[<y@ x>/ (1-a8) XD

]
|

22 = _y_(__(_)_)l) (_9_’1) ity e (9_,‘)

ray s wewt oy,

b

R P L e T
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Notice first that <n;>,<n,> and <n,> are all distinct, as are <r.>,

<£2> and <£3> . Now define

-1
vy =1 Py = —(1-ad)x

-1
\)2 =1 - a p2 = <.Z(§)I_}E.>X
v, = -1 0, = (1-ag)x b
3 3

—1

* Since, for D, , we have a # 1, it follows that 1 - af # 0 . Thus all

of these are non-zero. Also

Vi, *+ von, + vang = (y(x),a) + (1-a)(0,1) - (y(x),1 = (0,0) ,

P11 T PaXp T Pafy

~(1-aB)x " (x, Doy (@) [/ (1-a8) I 1)

v @], + (-ad)x H(x,00 = (0,0

and, by Lemma 3.13,

<vin |ez;> + <vin, fo,r,

L]
f

[(1-a)Ell<y () |x>1<(0, 1) | (0, 1)>

It

[(1-)gl<y(®) | x> - (1-a8)<y(x) |x>

= 0 since £ 1is an automorphism.

We now show, again using Theorem 3.14, that

We show that
((0:1):(x,3)) = (n,:r,) (my:x,) (ng:ry)

where

>+ <vom,lepry> = <ymplegry> = <vinylegry>

[1810(1-a8) I<(y(x) ,a) | (x,0)>

is Do—accessible.
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=1
B, = (0,1) 5 =5 = @0
E_z & z(_}_{.ao) = (_X(ﬁ)’l) -EZ = (_}_{__:0)
n, = y(x,a) = (1(5),[1~<;>'_(35)|3g>/(ax)3€~l) r, = (x,a)
Notice first that <n;>,<n,> and <n,> are all distinct, as are
<r >,<r,> and <rg> . Now define
=1
v = <@ |xe pp = a
v, = —axg~) =1
2 X R
V. = a g-l = -]
3 = & £
Since ((0,1):(x,a)) € E, we have, by Lemma 2.6, that
0 # <(g,l)|@§,a)> = (1&€)(ax) = ax . Thus VisVy,Vg,P 5P, and py are
non-zero. Also
-1 -1 p
Vi + Von, + vang = <y (@) [xE (0,1) - axE  (y(x),1)

Pyl " Polp  PiEy

and, by Lemma 3,13,

@y loyz;> + <oin fo,zy> + <vonyle,ry> = <vymy[e,r)>

=0 .

]

+ axg” (y(x),[1-<y(x) [x>/ (ax) 387 )

©,<y @ |xe ™! - axg™! + (ax-<y () [x)E

(0,0)

a(gsl) & (.}.{.’0) = (E’a) = (Q,O)

= <oy leyrs>

-(ax) (18) <(y(x), D | (x,0)> + <y(x) |x>(18)<(0, ) | (x,2)>

~(ax) <y(x) [x> + <y(x)|x>(ax)

...])

SR s i
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Next we show that .D3 is Do—accessible, again using Theorem 3.14.

In fact we show that

((rx),1):€0, 1)) = (n:x,)(ny:xr,) (n5:15)

3 20 sih Ly aw

where

s

o, = @, . £, =3 (e, = (x,0

n, = 51 = G@,0-<g® |l 1, = &1

I
I
i g A e sn e A

ny = 30,1 = (O, £y = (0,1)

Notice first that, since <zﬂ§)|§? #0 , <n;>,<n,>  and <n,>  are

distinct, as are SL1>,<Iy>,<Ig> . Now define

¥y = -1 pl = | :
:
v2 = 1 Py = -1
v, = < (x)[x>£“1 p, = 1
3" BRI 3

Now all these are non-zero. Also

Ving F von, + vang = =(y(x),1) + (y(x),01-<y(x) |35>]€-])

|

+ <y |7 (0, 1)

0,0 ,

PLE * P,y *+ pgry = (X,0) - (x,1) + (0,1)

(0,0) 4
and, by Lemma 3.13, 3

<V n1|p ;> +<v.n |92 >+ <v222|p2£2> = <v]24|pl£4> - <v,n ‘p

= ~(1E) (1) <(y (), 1) | (x,0)> + <y(x) |x><(0,1) | (x,1)>

= -~y@® (e + y@[x =0.
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In the next step we show that D, is (DOUDIUDS)-accessible.
Since D, and D; have been shown to be DO—accessibIe,we shall thus

have that D4 is DO-obtainable. Again we use Theorem 3.14 to show

that
((r(x),a):(0,1)) = (n;:r ) (n,y:x,)(ny:r,)

where

El = (1(_’_{_) »a)

(y(x) ,(1-a+a®) /a) r, = (x,0)

I1\:.':5
I

[}
1

(y(x), 1) Iy = (0,1

Notice that,since ((y(x),a):(0,1)) € E, we have, by Lemma 2.6, that
0 # <(y(x),a)[(0,1)> = a& . Thus a # 0 -and so the definition of n,
is meaningful., Also, since <.¥.(§.)|§> # 0 and, in D, , a # 1, we have

that <n;>,<n,> and <n,> are distinct, as are <r,>,<r,> and <r.> .

1 2 3

Now define

v =a-1 p, = ~(1-ab)x™"
v, = -a = (1-ag) -
2 P2 X

~ ~ =
vy =1 Py = <y(x)|x>x

Since <l(3‘_)|3£> # 0 and, in D, , a # 1, we have that all these are

"non-zero. Also

1

lly ¥ gty ¥ Sume S LASRAGELR B0 a(y(,(1-a+a’)/a) + 1(yG),1)

0, az—a— 1 +a—a2

+1)

0,0 ,

¥ F Ny ,a) = (5, [y %/ (1-a)Ix)

FaamEss

DN ol e
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=1

PIEy * PpIy *+ PoTg —(l-aE)x_l(gc_,[<1(5) |x>/(1-a8)1x )

+ (1-ag)x '(x,0) + <y(x)|x>(0,1)

]

(0,0)
and, by Lemma 3.13,

<vn |p, x>+ <v n]|p2r >+ <y n2|p r,> = <v n2[p r > = <v nl|p3__3

- (a€) (1-a&) <(y(x) , (1-a+a®) /a) | (x,0)>
- [(a-1)El<y (®)| x><(y(x),a)[(0,1)>

It

-(ag) [(1-a)El<y(x) |x> - [(a~1)El<y(x)|x>(aE) (1%)

= 0 .

To show that (n 2) € D we need only show that (l—a+az)/a 1.
But if (l—a+a )/a = 1, we would have a = 1 and this is excluded by
D4 . (23{53) clearly belongs to D3 .

Next we show that D5 is (DdJD;JDs)—accessible and hence DO-

obtainable. More precisely we show that

(), :(x,2)) = (n 1) (ny:x,) (ngixry)

where
B = @@, : Ly = (0,1)
n, = (z(0),Lax/(ax+<y () [x) 7 r, = (x,0)
ny = ¥(x,a) = (1(5),[1-<_z(_>5)|35>/(ax)36-]) ry = (x,3)

Now, since ((zﬂ§),l):(§,a)) € E, we have, by Lemma 2.6, that

0 # <(Z(§),l)|(§,a)> = {1(5)15? + (ayx) . Thus the definition of n, is

meaningful, Also,since {1(5)[5? # 0, we have that <24>’<225 and

.
PR T DR 232 VYU SN 10,2t PR
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<ns> are distinct, as are <X,>»<r,> and <rg> . :

Now define

v, = <y [xg™! - -

v, = —(ax+<y(x) |x>)e™! py =1

v, = axf | Py = -1 .

"3 3 ]
All of these are non-zero. Also ‘ ]

ViR + v,n, + vang = <y(x) lgz"(l(g),x)

- (ax+<y () [2)E™ (30 ,Lax/ (axt<y () [x2) 6™

+ axe” N (y ) =<y (x) [/ (ax) 38”1

(0,<y(x) l§>£"'—(axe'f)+[1—<1(5) |x>1e7")

= (0,0) ,

PIy * Py *pary = a(0,1) + (x,0) - (x,a) ‘

= (0,00 ,

and, by Lemma 3.13, i
“vn Ip Izt o o |p I, > 4+ <y n2|p2 = wvmlpr> - < 30 [pz %

- <z(x)lx> ax. <(¥(®), 1], 1)> R

~ ax.1E. <(y(x), [l—<y(X)|x>/(ax)]£ ] (x,0)>

ax. y@ |2 - ax. v |x

=0 .

Clearly (34:54) € D, and (32:32) € D, since, by Dy , a £ 0.




accessible.

where

To show that D6 is Do~obtainab1e, we show that D6 is (D&JDI)-

]

L]

In particular, we show that

((x(x),b):(x,2)) = (n;:x,)(ny:r,) (ny:15)

(y(x),b)

(y (%), [bE-T+(ax) /<(y (x) ,b) | (x,2)>T6™ 1)

F(x,a) = (y(x),[1-<y(x) [xAax) 1)

|~

lal

1

70a

fl (y(x) ,b)

(x, <y (x) | x>/ (1-b8) 1!
(x,0)

(x,a)

* > ymrre gt mSate iy

3

‘.
5
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Now in D, we have b #1 and a # 0 and so the definitions of I,

and n, are meaningful. Also,since ((y(x),b):(x,a)) € E, we have, by

Lemma 2.6, that <(1ﬂ§),b)|(§,a)> # 0 . Thus the definition of n, is

meaningful.

We now show that <n,;>,<n,> and <ng> are distinct. Since

((y(x),b):(x,a)) & D0 we have b # [lffl(f)lf?/(aX)jg_l " 'Thus <n,>

and <n,>  are distinct. Now suppose that <ny> = <ny> . Then

CbE = bE - 1 + (ax)/<(y(x),b)|(x,a)> , i.e.
<y(x) |x> + bE.ax = ax .

But this implies
bE = 1 = <y(x)|x>/(ax)

which we have already shown to be false. Thus <n,> # <n,> . Finally

we show that <n,> and <ng> are distinct. Suppose not, then

bE = 1 + (ax)/<(y(x),b) | (x,a)> = 1 - <y(x)[x>/(ax) ,

bE - 2 + <y(x)|x>/(ax) + (ax)/(<y(x)|x>+bE.ax) = 0 .

But this would imply

ax.bEsy () |2 + (ax)2(b8)? - 2(a) <y(x) |2 - 2(ax)2.bE

+ <y(x) l35>2 + ax.bEsy(x) [x> + (a)? =0,

(ax.bé-ax+<y(x) |x)% = 0 .

Thus

Y

o

st ns e ST R

TS o ue,




bE = 1 - <y(x)|x>/(ax)

which we have already shown to be false. Thus <n,> # <ng> .

We now show that LR g and - <rz> are distinct. Since

ﬁz(§)|§? # 0 and, in Dg » a # 0, it is clear <r,> # <ry> and

<ry> # <r;> . Now suppose <r;> = <r,> . Then

ax = <y(x)|x>/(1-bg) ,
i.e.

ax - ax.bf = <y(x) |x
and so

bE = 1 - <y(®) |x>/(ax)

which we have already shown to be false in Dg -

Now define

v, = Lax(bE-1)+<y (@ |x>Je! o, = ~(1-bE)x" '

v, = ~lax.bE+<y (x) |16 b, = [ax(1-bE) <y () |x>1x"!
v, = EFI —<()|>-‘l

3 = ax Pg = <YAXJ[X>X

Now v, and p, are non-zero otherwise we would have
b =1 = ﬁz(§)|§?/ax contrary to the conditions of D6 ‘
Vy = —<(1(§),b)|<§,a)>€—l is non-zero, by Lemma 2.6, since
((y(x),b):(x,a)) €E . Vg and P, are mon-zero since, by the condi-~
tions of D6 ,a#0 and b # 1. Py is non-zero, by Lemma 2.6,
since (y(x):x) 1is an idempotent in PF;I_2 "
Also

72
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Vi, hovon, + Vang = [ax(b£-1)+<1(5)|_§>]€_](x(§) »b)

- Lax.bE+<y () |x>1€ " (v (x) , [bE-1+ax/ (y 3, D) [(x,8)> 1671

+axt (), [1-<y () |x>/ (ax) 1™

= (0,[ax(b§) 2-ax.bE+<y (x) |x> .bE-ax (bE)?

~<y(x) | x>bE+ax.bE+<y (x) |x>~ax+ax-<y(x) [x>1&" )

= (_Q:O) ’

PlE; * 0Ly + pary = —(l—béz)x—la(_i_g;[<z(§) Iy/(l-bi)]x“l)
+ [ax(1-b&) <y (x) [x>1x " (x,0) + <y(@) [xx ' (x,a)
= (Q’—a<1(_)_{_) l§>+a<l(_}_{_) |X>)

P (_Q_’O) ’
and, by Lemma 3.13,

<vlnllpl£l> + <y > + <y > = <y

oy lpor,> = <vin fo,ro>

12 1Pozy 20y | LT

= ~[ax.bE+<y(x) |x>1lax(1-bE)-<y(x) |x>I<y (x) | x>

- Lax(b&-1)+<y(x) |x> 1<y (x) |x><(y(x) ,b) | (x,a)>

=0

since <(y(x),b)[(x,a)> = <y(x)|x> + bE.ax .

0
obtainable we must use induction on the height of the idempotent

To show that any element ((X(E_) sb):1(x,a)) of D7 is D.-

(y(z):x) of P‘kf"n_'2 from A(n_l) . Suppose, as the induction hypothesis,

that all elements of

:-',.'
x’}:.
":
b
R
1-?’
!
i
4
%

S T e

s

it

s

23
4
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T
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of the form ((li’b) :(_:Sj,a)) are D'O-obtainable i.f

a3
Al
4
3
i
k
I
»

hA(n_l)((yi:xj)) <k .

Now,if k = 0, we have, by Lemma 6.6, that (li:l(_j) € A(nhl) . Thus

= 1(_:_<_j) . Thus n

6 ; :
((zi,b):(z_j,a)) € tL:ODt ; E

SFgE

But we have already shown that E

¥
t=0Dt

is D -obtainable, so we may start the induction process.

0

Consider now some element ((_Z] ,b) :(_:5_3,a)) of
v
t=0 Dt 4
where 3
h (nml)((ll:—)—cs)) =k 1 . ,
A 1
Then (_}:l :3(_3) = (zl :51)(12:5.2) (13:35_3) for some idempotents (li:_)gi) )
(i=1,2,3) of En—l where E
b -1y (00500 <% o
A A
(i=1,2,3). By Theorem 1.12 and Lemma 3.12, <X,>,<%,> and <x;> are

distinct, as are > <Yp> and <¥3> . S0, by Theorem 3.14 and
Lemma 3.13, there exist non-zero elements v] Vo sVa3P 5Py and g of ‘

F such that:




(L) Wy ¥y ¥ gy = 0
G1) ey Tegy TagEs = O

(148) <y, leyx> - <vayglex)> = 0 .
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Now, we wish to find elements ¢ , d , e and £ of F such that

[(y;sb):(x,001 5 [(y,,d):(x,,e)] and [(y3,£):(x5,2)] are group

H-classes and ((zq,b):(EB,a)) = ((ZJ,b)=(§1:C))((ngd):(Egse))((Zg’f)‘

i,e., by Lemma 2.6, such that:
(1 {zlL§]> + bE.cx # O
(2) <y |x,> + dE.ex # 0

(3) {23L§3> + fg.ax # 0

and,by Theorem 3,14, Lemma 3.13 and (i), (ii) and (iii) above,

]
o

(4) vlb + vzd + v3f

(5) Pie *pye +pga=0

(6)  (v;p)E( )X = (v;E)E(p, )X = O .,

such that:

We first find two values that ¢ may not take. From (1) we see that if

b # 0 then we must choose ¢ € F such that
ex # =<y, |x,>/(bE)

Eliminating a from (5) and (6) gives

(vlb)Elo]c)x + (vsf)E&DIC)x + (v3f)£x93a)x =0 5

(v3f)£(plc+93a)x + (vlb)EKDIC)x =0,

)

i

(§3,a)Z§

it

<

ravygEeat,”
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From this and (3) we see we must choose ¢ such that
—V465¥4|X3>(p ctpa)x + axdv b)ELp e)x # O ,
i.e.
cx[ax(bv /v3) € = <y4|x:>1 # (ap,/p )x<yylxy> -
Thus if axxbvl/v3)8 - <XBl§3> # 0 we.must choose ¢ such.that
ex # (§p3/p,)x513|§3>/[ax(bv,/v3)£-§13|§3>] . (B)
It is also convenient to choose e to be non—-zero. Thus, from (5),
c # -ap,/e, . (©)

Since F is infinite we have no trouble satisfying these three

conditions.

Suppose now that we have chosen an element ¢ of F to satisfy

" conditions (A), (B), (C).

From (5) we have
Pge = =p c = paa .
So from (6) we have

fg = -(bv1/v3)€£(pIc)/(plc+o3a)3x :

(This is defined since, by (C), c¢ # —aps/p] .) Thus, from (4),

]

dg -(bvllvz)s + (bvl/vz)ﬁxp]c)x/[(p1c+p3a)x3
= -(bvl/vz)&E(p3a)/(pIC+p3a)3x X

We now show that with these values of ¢ ,d , e and £ ,

PR g A
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[Qzl,b):(gl,c)] 2 [(12,&):(§2,e)] and [(za,f):(§3,a)] are group

H-classes.

If b =0, then <(zd,b)|(§l,c)> = §24|§4> # 0 since

ZyiZy) S By

If b # 0, then

<(y;50) | (x;,0)>

Next,

<(_Z_2;d) l (£293)>

Finally,

1

<y, |x)> + bEex

#<ylxp - <y lx> by @)

<z2 L}EZ> + d&ey

-

= <y, lx> + (bv/v,)Eap,/p )X

= [<v,3,[p,%,> + (bv ) ELapg)xT/ [V, E.p,X]
= [<vlll+v}z3|p1_:gl+o3:_c_3>+(bvl)&-(aQB)x]/Dz&.ozx]
(by (i) and (ii))

= Loy logxp>4ev,y, [ogxp>+<vys o x>

+<v3z3|p3§3>+(bv1)&<ap3)x]/[vza.pzx]

= [v,3, | p x>+ (bv ) ECap ) X1/ [V, 8.0, x]
(by (iii) and Lemma 3.13)

= V8. X. <y, ,b) [ (x5,2)>/[V,€.0,X]

# 0 since ((zdsb)=(§3’a)) = By 8

T UV DU, ST AL PO 0. %,
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<(y3,£) | (x5,2)> = <y, |x;> + £E.ax

]

<yglxg> - (bv}/v3)§[0lac/(plc+p3a)]x :

If  ax(bv /v, )E - <13|§3> = 0, then

<(13,f)i(§3,a)> ax(bv,/v,)E - (bvl/vS)EIQIac/(p1c+p3a)]x
= ax{bv, /v ) EL1-(p c/(p ctp2a))x]

= ax{bv, /v3)Elpa/(p ctp4a) Ix

Now,if a = 0, then the assumption ax(bvl/v3)£ - <X3L§3> = 0 would

. = . . ” e - :
give §13|§3> 0 contradicting (13.§3) En_ . Thus a # 0 . Hence,

1
if. ax(bv /v )€ - §23[§3> = 0, then

<(y3:0) | (x5,2)> # 0 .

Now suppose ax(va/v3)E - <13|§3> # 0 . By (B) we have chosen ¢ such

that
ex # (ap5/0 Ne<yqlxg>/Tax(bv /v )E - <y [x,>] .

Thus

]

<(z3,f)l(§3,a)> [(plc+p3a)X§XB[§3>~(plac)x(bv]/v3)5]/[(plc+p3a)xj

(P e)x[<y,]x5>=(ax)(bv, /v)E] + (pya) X<y, | 24>
(p ctpqa)X

; ~(ap ) x<y,|x,> + (pya) X<y 5| %y>
(p ctpga)x

St Rar g Puibiss
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ses =% gaB

We now show, using Theorem 3.14, that with these values of ¢ , d ,

e and £
((rysb):(x3,2)) = ((y;,b):(x;,0)) ((yy,d):(x,,e)) ((y5,£):(x5,2)) .

Since AT £ te and <y3> are distinct, then also <(Xl’b)> s
<(22,d)> and <(13,f)> are distinct. Also,since <X;> o, <%y and
<Xy> are distinct, then <(x ,c)> , <(%5,e)> and <(x5,a)> are

distinct.

Now,

vl(zl’b> % vZ(ZQ’d) + v3(13,f) = (gévlb+v2d+v3f) (by (iii))

(Q,9b-bv o2/ (p 0 42) IXE '~ Lo o/ (b evo ) e ) !

(0,v bli-(pya/(p ctpya))=(p,c/(p 1c*rs)aa))bo‘:_l)

(0,v bl (p,ctp a-pja-p,c)/(p ctp,a) xe™h

I

0,0) ,

e $g A et DS g s a8 oy

©

,(514,<=) * py(%y5e) + pg(x5,a) = (0,0 ctp etpqa) (by (iii)) -

TR e

]

(_Q_’p 1 C"p l C—p 3a+p 33.)

]

(0,0)

and, by Lemma 3.13,

@ (g0 [0, (0> + < (7)0) [0, Gy re)> + <, (7, @) |0, (xy0e)> E

il

v (y5b) [0 (x),0)> = <valyg, ) [e,(x,,e)>

]

<V1_X_][D]_1_(_l> + (Vlb)ﬁ-(plc)x i <V3}_’_3Ipz_}f_2> - (V3f)i.(92e)x ;(

(¥, D)E0 )X — (v36)E(p,)x (by (iii) and Lemma 3.13) é




(v, b)ELo )X - ()&l e/ (p ctnza) Ixde  cto ga) X

(v D)ED @)X - (v, B)EL0, ©)X

n
o

So the induction step on the height of elements of

)
0 e

holds. Hence every element of D7 is Do—obtainable.

Finally we show that D8 is

UD.)- 1
(i=OD1) accessible
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and so D0~9btainab1e. Let ((X(g),b):(g,a)) € D8 . Notice first that

since ((y(z),b):(x,a)) € D8 we have, by Lemma 2.6, that

0 # <(y(2),b) | (x,2)> = <y(z)|x> + bE.ax

]

b&.ayx .

We shall find ¢,d € F , n,r € V; and non-zero elements
vl,vz,vB,p],pz,p3€F such that [(y(z),b):(z,0)] , [(n:x)] and

7
L(y(x),d):(x,a)] are group H-classes, (n:r) € iEOD7 and

v, (z(2),b) + von + va(y(x),d) = (0,0)
P1(2,0) + p,r + p,5(x,8) = (0,0)
W, (3(2),b) |p (2,00> + <v (3(2),b) [p,x> + <vyn,[p, x> = 0

We shall start by putting Py =Py = 1. If [n:rl is to be a

(D)

R R R R e T R




group H-class we must have ﬁELE? # 0 by Lemma 2.6. Thus
0 # <v, (v ,b) + v3(1(5),d)|pl(5,0) + py(x,a)>
= <, y(2)|p;2> + v, y(2)|pyx> + (v, b)ELoga)x

+ <V3X‘§)|91£? + <v3215)|p3§? + (v3d)€(p3a)x .

But,since ((y(z),b):(x,a)) € DB’ we ﬁave <1(§)|§? =0 . Also

Py =P3 = 1, so
0 # vl£<_z(g_)l£> + v, E.bE.ax + vaif_z(z)l_ZB
+ v3€§z(§)|§} + v3E.d€.ax .
If we choose d such that
(@ |z> + <y(®)|x> + dg.ax # 0 ,
i.e., such that
dg # ~[<y(®) |x> +<y(x)|z>1/(ax) ,
then this inequality will be satisfied by putting

1

]

vaE = ~[<y(®) [2> + <y (@) |x> +dE.ax]

and

@z

vIE

Also,since we require [(y(x),d):(x,a)] to be a group H-class,

we must choose d such that
<(y(x),d)|(x,a)> # 0,

i.e. such that

81
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dg # ~<y(x) x>/ (ax) by (D), ax # 0) . (H)

Since F 1is infinite,we may choose d € F to satisfy conditions

(E) and (H). If we then define vy and vy as in (F) and (G), define

Py =Py =1, <> =<v(y(2),b)+v,(y(x),d)> , <r> = <z+x,a> and

v2,02 such that

<
=
1

= =v,(x(2),b) - v4(y(x),d)

and

Por = —(ztx,a) ,

we can show that all the conditions of Theorem 3. 14 apply to the product
((y(2)sb) :(z,0)) (n:x) ((y(x),d):(x,a)) .
We first show that the null-spaces are distinct. Clearly,

<(y(z),b)> # <(y(x),d)> since z # x and x,z € V;_ From (F) and .

1

(G) it is obvious that v 3 4are non-zero, thus <n> 1is distinct

1 and v

from <(y(z),b)> and <(y(x),d)> .

The three ranges are distinct since x # z , since x,z € V; =

and neither Py mor pg are zero.
Since x and 2z are distinct elements of V;-l ard

Pox = —(z+x,a) |

it is clear that Py #0 .

Similarly, we have vy # 0 . Now
v, (2(2),b) + von + va(y(x),d) = (0,0) ,
p1(2,0) *+ por + pq(x,a) = (2,0) + p,x + (x,3) = (0,0)

and, by Lemma 3:!3;

Aan B Geen i
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<_v,(1(_2_),bl)|pl(5,0)> + <, (3(2),b) [p,r> + <v,n[p,r>

v, (y(2),b) |p, (2,0)> - <v3(1§_>5),d) lp x> :

v, &<y (2) lz> + V&< (y.(x) ,ﬁ) | (z+x,a)>

VEy(2) 2> + v El<y(x) |z> + <y(®) [x> +dE.ax]

1t

1 + (~1) (by (F) and (G))

Thus  ((y(2),b):(%,2)) = ((3(2),b):(2,0)) (n:r) ((y(x),d):(x,a)) . Clearly,

((y(z),b):(z,0)) and ((y(x),d):(x,a)) are elements of

) 5 s
i=0 Dl

Y Y et Uy

It remains to show that

7
() € 9 D;

To show this we need to consider the stroke product of the first n - 1

co-ordinates of n with the first n - 1 coordinates of r .
W, 3(2) + v,y () [z+x>

= viEsy(@) |z> + el |z +<y@|x]  (since <y(z)|x> = 0)

[

= [oy@) 2> +<y@) [21/[<y(®) | 2> + <y @ | x> +dE. ax]

(from (F) and (G))

It

dg.ax/[<y(x) | z> + <y(x) |x> +dE.ax]

#0 (by (D))

-

Thus (n:x) € D8 . But (n:r) is an idempotent and thus belongs to
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8
U
=0 Pg
Hence
e
@:x) € ;5 D5 -
So D8 is

7
UD.)- i
(i=0D1) accessible

and so Do—obtainable.

Consequently,

g
En = i=0 Di

is D -obtainable. Since D0 forms a sparse cover for PF we have,

0
by putting A(n)

n~I?
= D0 , completed the induction step.

A(m)

So, for all m & W, there exists a subset of the idem—

(m)

potents E_ in PF such that A
m m- 1

(m)*obtainable. By the comments following Definition 6.2,

(m)

1 is a sparse cover for PFm_

and E is A
m

we know that A therefore generates Em . But Em generates Singm

A(m)

(Theorem 4.9) and so generates Singm .

§7 GENERATING SETS OF IDEMPOTENTS 4: THE NUMBER OF GENERATING SETS

OF MINIMUM ORDER WHEN V IS DEFINED OVER A FINITE FIELD F

In Section 5 we found the minimum order of a subset E' of the

idempotents E of rank n - | such that E' generates Singn

B SN e s o e
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(Corollary 5.7). This section will be devoted to finding the number
W(q,n) of generating sets with this order. Theorem 7.7 will determine
W(g,n) when VY 4is a two-dimensional vector space. Lemma 7.15 and
Lemma 7.17 give upper bounds for W(q,ﬁ) when n 2 3, Lemma 7.18
(with subsidiary Lemmas 7,19 to 7.21) shows that the bound given in

Lemma 7.15 is the better of the two.

If n = 2, then it is possible to determine W(q,n) using what,in

[1],are called rook polynomials,

7.1 DEFINITIONS Define an m~board B to be an m x m

array of cells, an arbitrary number of which are coloured black and the

rest coloured white.

Define the m-complement-board B' of B to be B with the

colours of the cells interchanged.

7.2 EXAMPLE Let B be the three-board

NN
NN

The three-~complement-board of B 1is

’//

v 0.
7

7

N

N

BRG 7
<
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7.3 DEFINITION = The rook polynomial R, of an m-board B
is
_ m
RB = a, + ax + .., 4 a x

where a; is the number of ways of selecting i black squares from B
such that no two are in the same row or column (i.e. the number of ways
of placing i chess rooks on the black squares so that no two may take

each other —~ they may, as in chess, pass over the white squares).

Clearly, for all boards, a, =

7.4  EXAMPLE In Example 7.2, the rook polynomial of the

board B is RB =] + 6x + 9x2 + 2x3 and the rook polynomial of B!

is RB' =1 + 3x + 3x2 + x3 .

7.5 LEMMA (Inclusion-Exclusion Principle) Let B be an

m-board with rook polynomial
RB = a, tax b+ ax .

Let B! be the m-complement-board of B . The coefficient of x™ in

the rook polynomial of B' s
E (=% 1a
k=0 Tkt

PROOF See, for example, [1].

7.6  DEFINITION If |F| = q we shall associate with Sing

an m-board B(q,n) where m = (qn—l)/(q—l) . We shall do this as

follows:

£ .
e i DN s S e i A ke e
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Consider the egg~box of the D-class of Singn containing elements
of PFn_l . This has m rows and m columns. Colour the group

H-classes of this D-class black and the non-group H-classes white.

Clearly, W(q,n) equals the coefficient of x™ in the rook

polynomial of B(q,n)

7.7  THEOREM Let Y be a two-dimensional vector space over

a finite field |F] = q . Let Sing, "be the semigroup of singular
endomorphisms of \ and let E be the idempotents of Sing2 of rank

1 . Let wW(q,2) be the order of the set
{E' : E' CE, |E'| = (¢®~1)/(g=1) , <E'> = Sing,} .

Then

gl (=jy%
W(q,2) = (@)t oz S

PROOF By the comments following Definition 7.6, all we need
do is find the coefficient of X" in the rook polynomial of the m-board
B(q,2) where m = (qz—l)/(q—l) =q + | . By the construction of the
board B(q,2) and by Lemma 5.4, each row and each column of B(q,2)

contains precisely q black cells and | white cell, i.e. B(q,2) is

7). %
770
%%

7//%7//,f"'

of the form

PR PR LT - S S L, e TP e )
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Clearly, the rook polynomial of the m-complement-board B' of B(q,2)

Ry = () + Mx o+ P+ + (Px™ !+ (M

Thus, by Lemma 7.5, the coefficient of x" in the rook polynomial for
B(q,n) 1is
q*l k (q+1)!
L SR e SREADS
k2o 1 (¥ 1-0) i
i.e.

+1 :
W(@,2) = (arD)t 5o (Dt

If n 2 3 then the problem of determining the number of generating
sets of minimum order becomes much harder. Upper bounds may be obtained
from Theorem 4 of [3] and Theorem 10 of [16] (quoted here as Lemma 7.14
and Lemma 7.16). In.Lemma 7.18 I shall show that the bound obtained
Afrom.[3] is, in fact, better. Before quoting these results some further

definitions are needed.

7.8 DEFINITION Let A = (aij) be an n x n matrix. The
permanent of A , denoted Per(A) , is defined to be Z a where

0eGy i,i0

G, is the symmetric group on the set {1,2,...,n} .

7.9 DEFINITION A is an n square (0,1) matrix if A

is an n x n matrix with entries in {0,1} .

Clearly, if A is an n équare (0,1) matrix, then Per(4d) is

the number of ways of choosing n entries of A , each of which is 1,

n i bant

B




such that no two are from the same row or the same column of A . If we
now construct the matrix M(q,n) from the board B(q,n) by putting the

)th

(i3 entry of M(q,n) equal to | if the (i,j)th square of B(q,n)

is black and 0 otherwise, it is clear that Per(M(q,n)) = W(q,n) .

7.10 DEFINITION® The incidence matrix of a (v,k,A) con-

figuration is a v square (0,1) matrix satisfying:
(i) every row and every column of A contains exactly k entries
which are 1
(ii) any pair of columns [rows] of A both have entry | in the same

row [column] for exactly A rows [columns].

7.11 EXAMPLE The matrix

is the incidence matrix of a (3,2,1) configuration. Also Per(aA) = 2 .

7.12 DEFINITION Let A = (aij) be an n x n matrix. A is
n
doubly stochastic if iél aij =1 for all j =1,...,n and
.%' a,. =1 for all i =1,2,...,n .
=t "ij
7.13 LEMMA The matrix M(q,n) 1is the incidence matrix of a
(v,k,}) cénfiguration, where v = (¢"-1)/(q-1) , k = q’“"l and
-2
A= " % (q-1) .
PROOF By the definition of M(q,n) and B(q,n), it is

immediate that v = (qn~!)/(q-l) . The number of I's in each row of

89
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M(q,n) is precisely the number of black squares in each row of B(q,n) .

But this is precisely the number of idempotents in each R-class of

0 1 K

PFn—l , i.e. there are precisely qn— 1's. in each row of M(q,n) .

Similarly, there are precisely qn--1 1's in each column of M(q,n) .

Thus k = qn“l 5

Now consider any two rows of M(q,n) . Let these correspond to %
the R-classes of PFg_1 containing elements with null-space <x> or :
<y> . .Now consider any L-class L of PFg_] that intersects R %

and R<X? in non-group H-classes. Clearly, L contains elements with

range perpendicular in fiaZ?L » i.e. L must be labelled with any one-
dimensional subspace of <§}z?l . Since {g}z?l is of dimension n - 2
(Lemma 2.3), ﬁgaz?l contains exactly (qn~2—l)/(q~1) one-dimensional
subspaces (from the proof of Lemma 5.3). Thus,'given any two rows of
M(q,n) , there are exactly (qn—z-l)/(q—l) columns of M(q,n) that f
contain the entry 0 in both of these rows. If we let the number of ’

columns of M(q,n) that contain the entry 1| in both these rows be ¢ ,

then we have

ey T I = SR et §
g =~} & = ¢ q=1 ? é
1.e. |
e = =17 (@ 2-142g%2q" g% 1)
= " %(q-1) .

Similarly, given any two columns of M(q,n) , there are exactly qn_z(q-l)

rows of M(q,n) that contain the entry | in both of these rows. Thus

an 2 asvin oy

r = q% (-1 .

N R s

3
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7.14 LEMMA (Marcus and Newman [16]) If A 1is the incidence

matrix of a (v,k,A) configuration, then

i A 2 r
Per(A) < V!QEGEDV I (ke b

r=0 A o ;
where
) ='(1<-'>‘)1/2 : %
It is now immediate that: ?
7.15  LEMMA F & = (000 fllgsii, Fhen

" o g n/2 r
W@ < 2@ Dyt g a2 L

In the following, we shall denote this upper bound for W(g,n) by m .

7.16  LEMMA (Bregman [31) If A 1is an n square (0,1)

matrix with exactly 4ri I's 1in row i, then

Per(A) < iEl[(ri!)l/ri] A

From this it is immediate that:

!
-J
:

7.17 LEMMA

W(g,n < (qn-])!(qn—])/{qn_l(q-l)}

In the following, we shall denote this upper bound by b .




7.18 LEMMA For all q and all n > 3

, m<b .

PROOF This is mostly through a series of technical lemmas.

Eventually we shall show that (%blll <1 where 2 = (qn—l)/(q—l) R

Throughout this section, the following abbreviations will be used:

& qn—]
and
% n/2 )
Since % (E-tl-)r - < ex Lt ] hav
r=0"q-1 r! & q-12 WE RS
c(e=1) c+1 ' .
m < 2!(——EI~—) exp aj:T-.
Thus
1/% 1/% c(e-1) el 1/
m < (o) -jﬁr—-{exp(a:T)}
1/2 c(e-1) 1 c+1
= ! e G 2
(2!) ) {exp(z q—l)}
_ 1/%, ¢c(e-1) 1
= (&) ~—E§——~exp (E:T
Also
b = (et
Thus
m 1/% _ £(2) c(e-1) L3
B S g e e

where £f(x) = (x!)]/x 3
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7.19  LEMMA If x>7 and £(x) = x!'/*, then
f(x+1) " { 1 _1og(21r)}
f(x) x+1  2x(x+1)

PROOF Clearly,

: i i
£(x+1) _ [(x+1)!x xGH) gy X (RGET)

f(x) lx!(XH) x! *

But Stirling's formula (see e.g. [19]) gives

x! = (an)l/z.xx.e_x.exp {—lz—(iﬁ-)—} ’

where 6 € (0,1) . Thus

x! > (21rx)1/2.xx.e"x 5

So
-1 1
f(x+1) 2x(x+1) . (x+1)
f(X) < (2") PRl 3
where
T = e(x+1)/xl+l/(2x) .

We shall now show that T/e < 1 , i.e. that

g.(X) = (x+l)/x1 *1/(2x) 1

for: x 217 .

By logarithmic differentiation, we find

g'(x) _ x(logx~-3)+ (logx—~1)
e(x) 25> (x+1)

93
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Now, since

g(x)
2x3(x+l)

>0 for x27,
we have g'(x) 2 0 if and only if

h(x) = x(log x~ 3) + (logx'— 1) 20 .

Since h(15) < 0 and h(l6) > 0, there exists an X € (15,16) such
that h(xo) =0 .

Suppose first that x 2 Xy - Then
) _ 1
h(x)—logx-i--}—{-—Z
> logi5 -2 >0.

Thus h(x) 2 0 if x 2 Xy > i.e. g'(x) 20 if x 2 X - Consequently,

if x 2 Xg then

g(x) < 1lim g(y)
y-)oo

1im

y+1 y"l/(ZY)
o y o

= 1 .

Now suppose that 7 < x < Xg - We have: h"(x) = 1/x - l/x2 >0
since x 27 ., Thus h'(x) > h'(7) >0 if x =27 , i.e.
h(x) < h(xo) =0 for x € [7,x0) . Hence g'(x) <0 for x € [7,x0)

Consequently, if 7 £ x < X » then
g(x) <g(7) < 1.

Thus, if x 2 7 , we have that g(x) <1 . Hence T < e , i.e.

S
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£f(x+1)
f(x)

1 lbg(Z'rr)}

WP A

as required.

Now,

and

Thus

f(x) _ x-l I log(2m),
£ (y) < r=y exp {r+1 2r(r+l)}
-1 =
- axp {xz I _log(2m) % 1 1

r=y r+l 2 r=y r(r+1)

x-1 1 1
iy T Ty

£(x) x_Jlog(2m) 1 1
) < exp {logy 5 (y ‘}'{')}
1
= _;5 exp {'f("}l;_';lf) log (2m)} .

7.20 LEMMA ~  Let x> y=>7 and £(x) = xt /%,
§§§§ < %'GXP {-%(%-£Olog(2ﬂ)} .

PROOF
£ (x) - x=1 f£(r+1)
£y " iy E@

|

Then
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We return now to the proof of Lemma 7.18 ., Immediately before

Lemma 7.19 we obtained

m1/% _ £(2) c(e-1) 1
( ) ‘¥ % exp(c_l)

where f(x) = x!”x §

Now, by Lemma 7.20, if k = 7 , this gives

m1/% & c(e~1) 1 1.1 1
( L % a0 exp {c— i --i-(';-;{-)log (2r)}

e =1 1 i
- exp {-—y-7 ;-—) log (2m)} .
Now, since ¢ = qn/2 and n > 3 ,we' have q < 23 . Thus, if
k 2 7 , we have
_ 213 2
()l/2<clexp{l+c =8 show 0] .
b c-1 2,2
2c(c"=1)
7.21 LEMMA Let
x -1 x2/3— x2
g(x) = = ©XP {x—l o log (2m)} .
2x7(x"-1)
If x =2 4, then g(x) < 1
PROOF "By logarithmic differentiation,we have
g' (x) | 3% =555/ 4 9y2/3 1
g(x) 3 12 2 log (2} T
3x7(x“~1) x(x-1)
4 3
T ORRTY . N
3x7(x7-1) x(x~1)

96
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_ xzk(x)-+2 log (2 )
3x3(x2-—))2

k(x)

o v PN e
Ix(x?-1)%

where
k(x) = 3(10g(2n)-—1)x2 - éSlog(2ﬂ)-+6)x -3 ;

Now, k(x) takes a minimum value when

_ _5log(2r) +6
6(log (2m) - 1)

3.02 (to three significant figures).
Let the roots of k(x) = 0 be 3 and X, where X < Xy o Then, to

three significant figures,we have

= -0,191 and x, = 6,23 .

&5 5

" Hence k(x) 2 0 for all x 2 x, and k(x) <0 for all x in [4,x2)

Hence, since g(x) > 0 if x 2 4 , we have

g'(x) 20 if x = X,

g'(x) <0 if x € [4,22) X
Thus

g(x) < lim g(y) if x 2 x,
Yoo

g(x) < g(4) if x €& E4,x2)

Hence

RN

sl
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g(x) <1 1if x 2 4

since o
x2/3—-x2 :
——5*—§~——‘+ 0 as x + z
2x°(x7-1) 3
and

g(4) = 0.994 (to three significant figures).

We now return again to the proof of Lemma 7.18 . Immediately

prior to Lemma 7.21, we obtained

1/
GV < g
if k 2 7, where g(x) 1is as defined in Lemma 7.21 . We now have that,

if k=27 and c 2 4 , then

m,1/%

ﬁ? o) 1

i.e. we have m<b if k=27 and c¢ 2 4 . ;

Now,since q 2 2 and n 2 3 , we have

c=q¥224 if (@, # (3,2

and
n-1

k=gq 27 if (n,q) # (3,2)

Hence, if (n,q) # (3,2) , we have m < b .

A K S dvant, 55 0 X i S - =L o IR Mo

Now, if (n,q) = (3,2) , we see, by direct calculation of the

inequality immediately prior to Lemma 7.19, that
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1/ < 0.975 (to three significant figures).

m
(B)
Thus, in this case also we have m < b . This completes the proof of

Lemma 7.18 .

7.22 TABLE This table evaluates the upper bound for W(q,n)
given in Lemma 7.18 . All the values are rounded up to four figures.
- The second number in each entry indicates the power of ten by which the

first number must by multiplied.

q = 3 n=4 n=5
2 2.085 2.084 1.917
2 8 © 25

3 7.192 1.619 8.628
7 41 179

4 2.057 1.130 7.185
17 118 674

5 1.202 - 8.339 1.992
3] 260 1846

7 7.997 1.372 1.510
72 842 8254

8 3,249 4.732 6.165
101 1332 14878

9 3.621 1.580 7.740
135 1993 24969

g
;
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To give an idea of how good a bound Lemma 7.16 gives, it is worth

noting that W(2,3) = 144 whereas, in the table, we have W(2,3) < 208.5 .

§8 GRAVITY AND DEPTH

Let Tx be the full transformation semigroup on the finite set X
and let o be an element of Ty . 1In [8], the defect of a was
defined to be the order of the set X\X . It is shown in [8] that the
subsemigroup of TX generated by the idempotents E' with non-zero
defect is TX\GX , where GX is the symmgtric group on the set X . 1In
(13] the gravity of o was defined to be the least g(a) € N for which
a € Eg(u)’ where E is the set of idempotents of defect 1. The depth
of <E™> = TX\GX was defined,in [13],to be the least A € N such that

*)A = TX\GX, where E+ is the set of idempotents of non-zero defect.

(E
Formulae for g(a) and A were determined in [12] and reported in [13].
In this section, similar definitions for gravity and depth will be

given, and the gravity of any element of Singn will be determined, as

will the depth of Singn .

8.1 DEFINITIONS Let | be an n-dimensional vector space

over the field ¥ and let Singn denote the semigroup of singular endo-

morphisms of V . Let E denote the idempotents of Singn of rank
n-1 and E° denote all the idempotents of Singn ‘

Let o € Singn . Since E generates Singn (Theorem 4.9), there

k

exists an integer k such that o € E . The gravity of o is defined

to be

g(a) =min {(k € W : o € Ek} .

5
¥

L
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If there exists an integer k such that
+.k .
()" = Sing_,

then the depth of Singn is defined to be

A(Sing ) =min {k € N : (EH¥ = sing_} 3

otherwise the depth of Singn is defined to be infinite,

If F is finite, then Singn is a finite semigroup. Thus the

chain

et e @H2c@hHie ...

cannot have infinitely many inclusions. Since E generates Singn and
* . o - .
E € E , we know that this chain must become stationary at Slngn §

Thus, if F 1is finite, Singn has finite depth.

Before attempting to find the depth of Singn » or the gravity of

any element of Singn ,» it is convenient to introduce some matrix nota-—

tion and prove three technical lemmas.

8.2 NOTATION Denote by Sk the k x k matrix

0o 0 0 1 0 ... 0
0O 0 0 0 0 ‘1

ki
B
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and by Eén) the n x n matrix 2

. ; ,
n-2-1 | 0 | 0 —\
{ 0 1 |
o ! o
o 11
- - — - — -' — —
o | g 1 %,
5 I ot

where Id denotes the d x d identity matrix (n 2 2,1i € n=-2).

8.3 LEMMA Let A be the matrix ;
I
j0 0
S [ 3 5
n-2 5 :
0 0
]
11 0
______ £t om
0 0 ... D41 ®
0 0 ... 00 1], ]

_ () (n) (n)
Then A = EjE, B2 TS (02 3).

PROOF The proof is by induction on k in the formula
(n) . (n) (n) _
By Bp o wously ” =8y
" where ~:
— i -~y
T oo ! 0 0
] L
* Mo o
| | .
o 1 s | 2 3
A T I * 16 ©
| [
1 0
e i T e e e s
o ' o ' 1
D I b2 ]




(32}
o

k =

o

s

A E(n)
-1

- — — —

()
k

(n) . (n) (n) _
E)7VEy CeulE ] = AL
vl

(n)
E2

To show that the induction process may be started at
(n)

Now suppose the result is true for k - 1

notice that

Then

———y—————— -

— —— —

— — —— - — . — - —— ——— G e —

lo...o ol

— — — e . w— — —




~
o

H $ : L
i ] ©Ossee ol
o | o | } o
- ~00 O .l..—
Il'“lvlllu lllll —lll
| | |
| . o~ o~ _
I
@ 1 I & | ©
e © 0
l 1 i : )
—0 .l_ H KRR ERN o} o'}
o~
| | | = b~
— - e e - — — — — — —— — (e RS (e} —
| i | PSR G NSRS =
[ o g | | |
o (] [e]
! | |
& 0_ [ o S.K o
I I ! | !
= i g s e o = _ I
% | ! I S T T
nm_ S | o |o a1 o | o
=
= l |
L — _ T W J

Thus

(n)
T o W

2

1

- gy

n-2

But

— o — - —
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8.4 LEMMA Let A and B be the n x n matrices
e 1 8 0 0 ws B
0 0 1 0 0 2 0

awf® 2 0 1 0 . 0}

0O 0 0 0 0 I .

0 a2 a3 a4 ag an

i I I 0‘—‘

B = n—1 | —

e e g 8 § a

|”az a, a4 an | O_J R

Then
. ap(n)o(n) (n)

A = BE;VE, S ,
Notice that B and each Ein) (i=0, ..., n=2) are idempotent and
have nullity 1.

PROOF By Lemma 8.3, we have
= I 1 Yo 67 *
l te &
(M)p(m) . (n) _ | bg 2
Bg By eeeBgly =| T, O S.p (0 O %
| b1 oo :
R | | 5
o 1 by j
0 | 0 | i
L 1 0 1JL i 0 1 _| 5
;1
i 10 07 ;
Sn—Z | 3 . 5
l . » j’
0 0 |
" | )
l1 o *i
o B S
o |
0 |
L 1o 1|
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bol
b
s ¢ !¢
-
R
o _Q ]1--
It is now clear that
(n)_ (n) (n) _
BE) 'E,...E_ 10 = A .
8.5  LEMMA Let A be the (n+1) x (n+l) matrix
g
0 1 0 0 0 ... 0 *
0o 0 1 0 0 ... 0|
{ a
0 0 0 0 wy 0} ¢ ;
: b :
O 0 06 o0 o 1:
|
al 8.2 83 84 35 anl
___________ = =
[ ;| 0
Then
= (n+1)_(n+1) (n+1)
A = DE E, T
where
L.l B ,
=31 I | o
~~~~~~ n v
D = v 1| and G=_.___..._._...........:___
0 ! a, a cew: A a-1!to0
| 0 0 1 2 n-1 n i

»

Notice that D , ¢ and each E£n+l) are idempotent and have nullity I

enoa
PP LN . ) O R AR -\ LR [0 3 Rl




T I TG e e s 192 I s P TP S LV 0 7 S0V - WEPICIIIATY s R AN (B DT AOOR-BCA S AUS agBRINANIE o0 Taigiy SR~ s < RV TT= S BX S Gy (M i 703 PRSIV - A PRV A BT PR Voo SO Ry

N~
o I
= ol
1 5 1
© Qs © o ~
] =
H
o QesesD — _l. o
ill"‘lll —
1
=} | = |
! o J
i
r H ]
_.I. o o Oreeee O o — o o Oseseee O o
o | i
.ﬁl.l o o o e O — ] = o o o O —
"""""" el B i i G (G ll‘lﬂ"l — — — — v — —
D ; T I T
!
" s " I ° "
| Jd | ] l
- i I 4
o ~ 0
(ve] = —
+ - +
‘g (=3 (=3
m ~ o ~ 2
| = M=
) . .
— * .
) —~ )-
/M — —
+ +
=} o
~ N ~ N
= =]
¢ N ~
" L + +
_ o = =}
t o - N -
m o< 3] =
¥ oo =] A

Thus
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We are now in a position to find an upper bound for the depth of

Singn . This, of course, depends on n .

‘8.6 LEMMA Let V be an n-dimensional vector space and
Sing ~ the semigroup of singular endomorphisms of V. Let E be the

set of idempotents of Singn of rank n -1 and let o € Sin%l. Then

there exist €13€550005,6 € E such that o = €1Eg e € and
; MG AN L
V—R€I+REZ+ LRI ) +R8n.
PROOF Since every element o« of Singn is singular, we know

that, relative to a suitable basis, o has matrix

M, = diag {Aq’Aq—l""’AI} » where each A, is a d; x d; matrix of the

form
0 1 0 0 ... 0 ]
0 0 1 0 ... ©
A, = . )
1 -
0 0 0 0 1
831 F2 %43 %4 e did;

and A] is singular (this being the rational canonical form for a
matrix; see, for example, [15]). It is thus sufficient to prove the
theorem for matrices of the form M, . We shall do this by induction
on q .

Clearly, for all values of q, we have

q
n=.,5Ld.
i=11

and, since A is singular, a,, =0 .

11

Suppose first that q = | . Then, using the notation of Lemma 8.4,

s
- ,;.:'g

B e

T
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e @  (n)
M, = BESE ™ ..E D) .
Letting gén) denote the il standard basis element of an n-dimensional

space, notice that

L n
RB = <E(n)> ’

and, denoting the range of ES?) by R. ,

Ri=<™ > (i=0,1, .., 0-2.

Thus
VeRg+R *+Ry+ ... + R, >

so we may anchor the induction process.
Now suppose the result holds if q £ k = 1 and consider the
matrix M = diag {Ak’Ak-l""’Az’Al} . By the hypothesis,

M = diag {Ak-l’Ak—Z"‘°’A2’Al} = FIFZ"'Ft -

where ¢t = dl + d2 F ey dk—] , each F. is idempotent and
b i 1 L L
dim (RS +R. +...#R> ) =t .
o R
Thus Md = FlFZ"‘Ft where
o fa b 14 4 0
Foo=| "l __|and F, =|_kIl_ _| d=2,...,0).
o ! F| 0 1 ¥,
| |




{u,} for the null-space of F, and a bas
—1 ' 1

range of F By Lemma 1.4,

1 .

domain of F, . Relative to this basis,

1

LN
n~dk= _.—l—f—-
0 l n—-d, ~1
= k
where Ii is the i x i identity matrix.
invertible matrix P such that E, = P—II
1 =lg
Fl = Pl AkPl where
1 o] A
k | ‘
P1 R - and Ak—- ==
0 | p 0

e

- oD it D

Notice that

Bg = seige ¥ s
k k

R(.l;. _ <E(ddk+] ) S
k+1

and, denoting the range of g Gkt by R

i

Ri = <e(dk+})>
——dk—l

Thus

110

is {32,33,...,Eﬂ_dk} for the

{24’52""’En-dk} forms a basis for the

F has matrix

1

Hence there exists an

P . Thus
n‘dk
|
| 0
—1 d— — [ mad -
&
l n“dk

s
K

¥
3!
1

'i
z
3

4
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AL = HgH,...H, ,

k
where : . |
D !} 0 G L 0 |
- - - - — S
H = s Hd =
LA § O Ve k {0 ! Thq -
| l k
and
|
e o
1- o
Hi b B ":"'I". e (i = }:23""dk"l)'
0 i n~dk—l
Notice that
R}l1 (n) _ _(n)
= <e -8 >
0 ——dk dk+]

Lo (n)
Rﬂﬁsh ggdk+]>

and
L (n) .
=<e;".> (i=1,2,...,4,-1).
RHi —dk i k
LI S 1 A |
Now Fl = HOHI"‘Hdk where Hi = Pl HiPl .
We shall now find R;i (£ = Oslansvody)a
£ xX€ R;. (x # 0),then we have Hiz? = 9? . Hence
i
H{(Pile) = 9? and so <(P11§?)T> c R;z . But, since PIIE? # Q? and
i

Rﬁi is one-dimensional, we have <(PT{§T)T> = Rﬁi . Thus, denoting

p ! by (p. .)




TR ¢ L o

RHB - <Edk &1 Pyg -1+dk
~d

J-| = <n k— (n)

By iE1 Pi1 Sieq”

and

L o g B) .

RH'i B <Edk"‘1> (l 1’2""’dk_])

Now, R+ ¢ ' and so b e By .
\ RHdk Rll{d B RF]
k

Hence

n—d

k o
s é P, =5 ! R ¥ s
1=1 11 +dk Fl

Thus

<n_zdk (n—dk)> & 1

g1 Py ¢4 & RFI .
. . . n"‘dk (n"dk)

But RF is one-dimensional and igl Piy &y # 0, so
n~d —d
<ZL_F o Eﬁ; k)> = R; . Consequently, by the hypothesis,

ey (n-dy) £ .5

<E Py ey K+ <Ry oidi=2,3,...,0

<e(P_dk)

2.4 t 1= 1,2,...0,0-d,> .

k

Thus

L L . n »
Rﬂé + <RFi S I [ o {gg.) rio= dk+l,

Now, since

112
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<R[J,ig $1=0,...,4,-1>0 <_e;(in) 2 d=dp+l,...,n> = {0}
i
and .
dim <Rty : i = 0,1 d -1>=4d :
Hi - L] ’l.l’ k k ’ ‘:'
we have
o 1 . 1 r
dim (<RH'- e L= 0,1,...,dk>+<RF!‘ o 2,3,‘.‘,t>) =t + d’k
1 1
k
R I,
i=1"1 ’
Thus V = Rl' * Rl' ool F Rlv ¥ er + Rlv + oi.. + Rlv . But we also E
H H H F F F
0 1 dy 2 3 t
have
- | p | 1
Ma FIFZ"'Ft

g Gk [ | 1
= HOHI"'HdkFZFB"'Ft

and n =t + dk :

Hence the induction step holds.

From this it follows that n is an upper bound for the depth of
Singn and for the gravity of any element of Singn . In order to show
that A(Singn) =n , the following theorem (which is also interesting in

" its own right) is needed.

8.7 THEOREM Let Sing denote the semigroup of singular

endomorphisms of an n-dimensional vector space \ and let E denote
the idempotent elements of Singn of rank n-1. Let a€ Sing_ .

Then o € E® where g =dim {x €V : xa = x}* . Also, if 2<g,
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then o € g% , i.e. the gravity of o is dim {x € Vi xe = x}* .

PROOF Suppose Xa ={x€Y xa = x} has dimension d .
Let {u;,u5,...,u;} be a basis for Xa and extend this to a basis

B={u,...,u} for V| . Relative to this basis, o has matrix
—1 —n

where Id is the d x d identity matrix and M is an (n-d) x (n-d)
singular matrix.

By Lemma 8.6,
M= MIM

pn sl

l,eeoyn—d) and

fl

where each Mi is idempotent with nullity 1 (i

dim <{£i :1i=1,...40~d}> = n - d where <r,> = R-PLI (i =1,2,...,n-d).
i
1
Thus Ma = NlNl » Where .
' I
LN 0 Iy I 0
Ny == ~le | and n] = |- -l =
P : M P M!

and where I3 is the d x d identity matrix, P,=P-MP,
P'1 =P - _r_:_f_a_l for some arbitrary d-dimensional vector 2, and
1
My S MMM
i 1 '
Similarly, N1 = N2N2 where
I : 0 L : 0
1 .
N2 = | - —'—- — | and N2 = —'—'-. -'-
P2 | MZ P2 i M2




= p!

and where ‘Pz 1

dimensional vector

- MZP; s P
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4 1
& ™ Py

1
and M, = MBMA"'Mh—d .

- ngz for some arbitrary d-

2p

Continuing in this manner, we see that

M=K
o

Notice that each Ni

1ol g Moaguy,

(i=1,s..,n~d-1) is idempotent with nullity 1 and

so is an element of E . Now
Id : 0
1 —
Nn—d—l_ T e P
1
[ Peasn | Yt
LY ! 0
= |
' l
| Foma-1 | Mgea
T . . T
e = L4 . -
Thus Nn~d~l E if and only if Mn—dPn—d—l (0] , i.e. if and only if
' = HE T 5
Pn-d—l = XeaBaua for some d-dimensional vector By But
' Y SIS
End-t ™ Trmaeg ~ Eama-1Bneae
= p' = rT a = rT a
n-d-3 -n-d-2-n-d-2 -n-d-I-n-d-!
n-d-1
1 T
P17 ikp 53y
n—-d-1
=P - .I ria. .
1=] —i—i
1 . .
Thus L S € E if and only {f
n-dT
P=, Lr.a, (]
Now,we already know that dim <{_1:i :i=1,.0.,0-d}> = n~d and that
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P is an (n-d) x d matrix. Hence we may choose the vectors

EJ’EQ"'°’§n~d in such a way that (+) holds, i.e. such that
n-d

1

€E €
Nn—d—l E . Hence M € E

Thus g =n~d and so Ma € g8 .,

. But, by Lemma 2.3, dim X; =n - dim Xa -

Now suppose that & < g and o € X . Then there exist elements

€1s€psnessEy of  E such that

a=€€ ..'8 .

2 L
Since V = N€.® Re' (G = 1,2,,..,%) we may define, for each u; in B,
] J :
€ (S5
an element moy Nsl and an element Ei,l Rel such that
, = m. . § i i i . e >
Uy Eﬁ,l + 51,1 We may then define, inductively, elements m. NeJ
d = isfyi . . ,o=m, . *+s, . (J=
and elements Ei,J st satisfying 51’3_1 gi’J Ei,J (3 2 53 L)
Thus
L :
= Be = G 2 % +
51,2 i 35153,3 )
Now u, =m,, + s, and so
= —i1 —il
L€, = =m, , + :
] Ei,l El-1,2 §1,2
Thus
u.€.€, = 8, = m, + 8, .
—17172 =-i,2 —i,3 —=,3

Continuing in this way, we clearly obtain

u.0 = u,€.€
— —i

1 2...52 &= Si,ﬂ .

So, using (+), we have

u.o

£
= We = LMy 5
=
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lo&o
L
u, — u,0 = .L.m 3
—~1 =1 1=1—i,3
But each Ne~ is generated by a single element of VY , n,  say.
1
Thus, for each m, . , there exists a scalar A. . such that
=1,] Ly :
m. . = X, .n. . Thus
=1,] 1,33
R’ .
U - uo= jglxi,jgj (A= 1,25004;50)s

e

g .
Now, clearly, dim <{j§lx. n.

1,35 i=1,2,...,0}> <2 . Thus

& V525wt &%

He

dim <{ui - u.o

Now,the basis B was chosen so that

Thus

dim <{1_1_:.L - oo io=dtl,e.ml> <2l

But n~-d=g and & < g . Hence there exist scalars Mgppoe el

(not all zero) such that
Haar (a1 g ® + vor + meue = 0,

bnd
; U, — . 2 .u.0 = .
j=d+1%385 T j=deri® = 2

Thus

L u.u. €¥X .
i d+luJEj ku

[
It
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Hence there exist scalars VysVgseeesVy such that

e 0.

s
V.u, = tad

j=1%55 T j=deiMisg

But this is a contradiction since {31""’2n} forms a basis for V

and not all the uj are zero. Thus o & Ez .

8.8 THEOREM Let Singn denote the semigroup of singular

endomorphisms of an n-dimensional vector space \ and let E' denote
the set of idempotents of Singn . Then the depth of singn is n

(i.e. (E+)n =.Singn and if & < n then (E+)£ # Singn).

PROOF By Lemma 8.6, we know that E" = Sing , where E
n’

denotes the idempotents of Singn of rank n~ 1 . Since E ¢ ET , we
thus have A(Singn) <n .

By Lemma 1.1,

A(S1ngn) 2 max {g(a) : o € PFn-I} s
By Lemma 3.7, the element
1
0 0
Sk el
1
In-l lg-
of PFn—l has gravity n . Hence A(Singn) 2 n . Consequently,
'A(Singn) =n .
8.9  COROLLARY Let e,,e, : V>V be idempotent singular
endomorphisms of an n-dimensional vector space \ . If € has rank
n-k,, €y has rank n - ky and €8,y has rank n - k; -k,

(n 2 k, + kz)’ then e ¢

182 is an idempotent endomorphism.
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PROOF Since €, is idempotent of rank n - k, , it follows

that dim {x €V : xey =x} =n -k . Thus g(g)) =k . Similarly,
g(ey) =k, . Consequently, g(ee,) <k, +k, .

Now let d = dim {x € V: Xxe,€, = x} ; then g(elez) =n-d.

Thus n - d = k1 + k2 s 1.6, d2n - kl - k2 . But €€, has rank

n - kl = k2 , so,by necessity, d < n - k] -k Thus d = n - kl =k

2 - 2
i.e.
; ENE & S
dim {x € Y : xe e, = x} = dim R6182
E & = % e . = =
Also {x€V:xee, =x}¢ RElez and so {x €V : xe e, = x} R€1€2 .

Thus €8, acts identically on its range.and so is idempotent.




CHAPTER 2

THE SEMIGROUP OF SINGULAR CONTINUOUS ENDOMORPHISMS

OF A SEPARABLE HILBERT SPACE
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§1 BASIC DEFINITIONS AND RESULTS

This section gives the basic definitions and lemmas that will be
used in the final two sections. As most of these results are well

known, I have omitted many proofs and given instead suitable references.

1.1 DEFINITION A pre-Hilbert space is a complex vector

space P together with a map, called an inner product, <°[-> :PxP~+>¢

satisfying the following properties:

(1) <x|y> = <y|x Gx,y€P)
(2)  <x+y|z> = <x|z> + <y|=z> (¥x,y,z € P)
(3 <x|y> = a<x|y> Gx,y€P,Vreo)

(4) <x|x>>0 (Vx€P, x+#0)

1.2 DEFINITION A Hilbert space is a complete pre-Hilbert

space, i.,e. a pre-~Hilbert space in which every cauchy sequence is con-
vergent,
A separable Hilbert space is a Hilbert space which has a countable

basis.

1.3 DEFINITION A lipear subspace of a separable Hilbert

space H is a subset A of || such that, if x,y €H and A,u€C ,

then Ax + uy € fA .

1.4  DEFINITION A closed linear subspace of a separable

Hilbert space } is a linear subspace A of H such that, if
(x) ey 18 @ sequence of elements in A with limit x in } , then x

belongs to J, . The closure of any subset B of H , denoted by B,

is the smallest closed linear subspace of || containing JB .
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1.5 LEMMA (Theorem 11.5.1 [2]) Let <.|.> denote an inner
product on a separable Hilbert space H . Then, for each 5; in H,
the mappings. <*|x> : f ¢ and <x|:> : [].» ¢ are continuous. The
first mapping is also linear, while the second has the 'conjugate linear'

property given by <£lkx+u£> e 3\22{"123 + ;':Z.IE.) Y X,y,z € H) 200 € ).

1.6 DEFINITION Let /A be a subset of a separable Hilbert

space | . A’L will denote the set {x € H : <x|a> = 0 (Ya € )} .

1.7 LEMMA (553 [172) Let A be a subset of a separable

Hilbert space H . Then A' is a closed linear subspace of H .

1.8 LEMMA (Theorem 1I11.6.2 [2]) If A is a closed linear
subspace of a Hilbert space H , then H=pA e At and p = pH .

1.9 LEMMA (Ccrollary III.6.1 [17]) If B is any subset of

a separable Hilbert space, then A = Al“L ‘

1.10 LEMMA (Theorem 53C [27) ‘If A and B are any closed
linear subspaces of a separable Hilbert space H such that A 1 R,

then the set A ® B is also a closed linear subspace of H .

1.11 LEMMA If A and B are linear subspaces of a
separable Hilbert space H , then:

@ @Bt =A 0Bt

and

Gi) Gnp* = A+ B
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PROOF (i) Cle.arly, AsA+DB and B A +B . Thus
,Al SA+B*t and Bt 2 A+ . Hence (A+B)t e At nBt.

Now, if x € A‘L ﬂBJ‘ s then <3g|g> =0 (Va€ B and <.1_5|13> =0

(Yb € B). Thus ‘<_§|_g+_‘t_>_> =0 (Ya€& A' , Vb€ By, 1.6. 2 € B+Mt .
Hence A" NB'c A+B)', and so AP NPT = A+Bt .

(ii) From (i) we have

At o B4t = apt+ptnt,

AnB = (ALBYHt .
Thus
<A"nﬁ)L = (p..L_i_B.L)J..L

= ( A"’+B‘L)

1.12 LEMMA let A and B be closed linear subspaces of a
separable Hilbert space H such that AcB . Then B=pe BNAYH .

PROOF Since P is a closed subspace of || , it is a Hilbert
space itself. Since A 1is closed in H , it is also closed in B . So,

by Lemma 1.8,
B=Ae BnAD .

1.13 DEFINITION Let o € Sing . The adjoint o of o is

_ defined to be the unique mapping in Sing such that <x _Za*> = <_}£0L|X>

for all x,y in H.
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1.14 LEMMA If e€E then e*e€ g .

PROOF For any «,B € Sing , we have (aB)* = B*o¥* (see

Theorem 56A [17]). So, putting e = a =8 gives ¢e* = (82)* = gke* ,
1.15 LEMMA Let o € sing . Then R- =N, and NI =R, .

PROOF Let x € Ri . Then <2<_|_}10t> =0 (y¢€ H). Thus

<xo¥|y> = 0 (Vy €Y, i.e. xax € H' = {0} . Thus R;‘ = Na* «

Conversely, if x € Nu* , then <xo*|y> =0 (¥Yy €H). Thus <x|yo> = 0
; 1 L 1

My € H), i.e. x € Ra . Thus Na* c P‘a Hence [\ e Ra :

Similarly, R;'* = Nowx = Noz « Thus = R Ra* .

1.16 LEMMA Let A and B be closed linear subspaces of a
separable Hilbert space } .
(i) If dim A =dim B , then fJ is isomorphic to P
(ii) If dim A < dim B , then there exists a closed linear subspace (

of B such that A 1is isomorphic to ( .
PROOF This is immediate from Theorem II.9.1 of [2].

1.17 LEMMA  (Theorem IV.7.2 [21) Let o € Sing . Then Na

is a closed Tinear subspace of H .

1.18 LEMMA If e€E, then R is a closed linear subspace
of H.
PROOF Since € is linear, Re is clearly a linear subspace

of H . Let () e be a sequence of elements of Re with limit x
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in H . Since e 1is idempotent, X €= X (n=1,2,...). Thus, since

¢ is continuous,

xe = (lim _)_(n)s = lim (_)_{ne) = lim X

=X .
Thus x € Re i

1.19 LEMMA let e€E . Then H = Re + Ne and
R NN, = (© -

PROdF Let IE,E H . Then x = xe + (x-xe) € R€ + Ne .

Suppose x € Re N N8 . Then 0 =3xe =x . Thus Re N NE = {0} .

1.20 LEMMA Let A be a subspace of -a separable Hilbert

space . Then dim A = dim p .

PROOF Suppose first that dim fA < 8y -« Then A has finite
dimension and so is closed. Thus A=A . If dim A has infinite
dimension, then, since A c A c H , we have dim A < dim K < dim H ,

i.e. B < dim ﬁ's R

1 Thus dim A = dim } .

0

1.21 LEMMA Let A be a Tinear subspace and B a closed

linear subspace of a separable Hilbert space }| . Then

PROOF Clearly A+BO A +B , and so

A+B2A+B.

Let x be an element of A + B . Then there exists a sequence
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(—}ii)iGIN in A+ B with limit x . Hence there exist sequences

(ai)iGIN in A and (hi)iEIN in B such that X =3 +Bi . Now,

for each element 2 > there exists a sequence (iij)jGJN in B with

limit a, such that ||l a,-a.,|| < I/Zj .
—i —i —ij
Now,
| x-a;; -bsll = llx-2;-b;+a; ~a, |l
= “3‘.“:‘11'21” 2 ”.?;i -—Eii”
+0+0 as 1i->w,
Consequently, the sequence (E-ii+£i)i€1N has limit x . Thus
x € A + B .
1.22 LEMMA Let A be a subspace of a separable Hilbert

space H and let « be a linear mapping from A to [ . Then the

following are equivalent:
(i) o 1is a continuous mapping

(ii) there exists a constant M such that |[[=xa|| < M| x| for all

x in H.

PROOF This is immediate from Theorem IV.7.3 of [2].
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§2 SOME TECHNICAL RESULTS

2.1 LEMMA Let A be a linear subspace of H . If a is a
continuous linear map from A to } ,'then there exists a unique con-

tinuous linear map o from E to H that coincides with o on A ..

PROOF - Let x be any point of fA . Then there exists a

sequence (x ) o, in A with limit x . Define a' : A>H by

xa' = lim .
Xo, i (_:gnoc)

Let y be any point of f| . Then there exists a sequence

o) ey ©f A with limit y . Let A,u be any elements of € . Then

(Axtuy)a’ = lim [Ox +uy )al

1im [A(Ena)+u(zﬂa)] since o is linear

A lim (Ena) + u lim (X_na)

A(xa') + u(ya') .

Thus o' is linear.

Now let _§€ A . Then there exists a sequence (En)nE]N in A
with limit x . By Lemma 1,22, there exists an M = 0 such that
I xsll < wllxgll . Thos

lim || x of| =M lim ”3_‘,n|| )

Hxo'll = Il 1imG ) || < M| 2im x [| = ]| x|| .

Hence, by Lemma 1.22, a«' 1is continuous.

Now, suppose that o is another continuous linear map from J
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to H that coincides with o on A . If x 1is any point of A , then

i a i i imi £ T ﬁ
there exists sequence (_§_n)nenq in A with limit x hus

xa' = lim (xna) = lim (§na]) = x0; . Thus .0 =a' = a; , and so o is
unique.
2.2 LEMMA Let Al and A2 be any closed linear subspaces

of such that A NnA = {0} . If o, and «, are continuous
1 2 —

1 2
linear maps from Al and Az respectively to } , then there exists a
unique linear map (a,+a,) from A] + A2 to H that coincides with

a, on A1 and o, on Az ;

PROOF If x€f, + A, , then x = a; +a,

and some a, € A2 . Define (al+a2) Y A] + AZ > H by

for some a, € A}

Eﬁal+a2) =aoq, +a,a

171 =272 °

It is immediate that (al+a2) is continuous, linear and unique.

2.3 LEMMA Let A and B be closed linear subspaces of a
separable Hilbert space H . Then dim B = dim (ANB) + dim [AMNAR) T .

PROOF Define the mapping B : H-+H by B = @, ®a, , where

o s A ~+H is the zero mapping and o, A‘L +H is the identity
mapping. Let Bi be the restriction of B to the linear subspace B .

Clearly, 8, 1is continuous and linear, and so
dim B = dim N, + dim R
By By

Clearly, ANB ¢ NBl . Suppose x € N8 . Then x =a + p for some
i 1 =T B

a€ /] and some p € AL with p = 2B, +pB; =3x8, =0, i.e. x€ A
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But, by definition, x € B . Thus NBl cs ANB . Hence NBl =AnBRB.
Now suppose x € RB . Then there exists y € B such that
- i

y8, =x . But y =a+p for some 3€A'and some _E_EAJ'. Thus

Xx=yB, =28 +pB =p .

Also, p=y-a€B+A. Thus QEA‘LH(A-!-B). Hence
Re, s A0 (A+B) .

Conversely, suppose X € Al N (A+B) . Then x =a+b for some

!

2a€ ] and some bEB . Thus x ~a€B and

(x-a)B, = x - a8 = x .

n

Thus x € R81 v i, A'L n@A+B RB

Consequently,

. Thus RB =A'Lf'\(A+B) .
1 By

dim B = dim (ANB) + dim [A'NAR)T .

2.4 LEMMA let o« and g be continuous endomorphisms of

H. Then

g =N @ N mm s lg)

PROOF We shall first establish that /A = {x € Ni : 3w € NB}
is a closed linear subspace of || . Suppose X,y € N and A,u € ¢ .
Then Ax + u_z'E Ni since N; is a linear subspace (Lemma 1.7). Also,
(Ax+py)o = A(xe) + u(ya) € NB since NB is a linear subspace (Lemma
1.17). Thus Ax + uyy € A , and so A is a linear subspace of H .
Now let (-Ei)ielN be a sequence in f with limit X in H . Ssince N;

'is closed, x € Ni . Also, since x.a € NB , we have x.08 =0

(i=1,2,...). Thus -}-{-ieNaB (L= 1,2,,.5) Since chB is closed
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(Lemma 1.17), we have x € NaB . Thus xaB = 0 , i.e. 59.6 NB . Thus
x€ M, and so A is closed.
Now, let X be any element of NocB . Then (by Lemma 1,8 and

Lemma 1.17) x =1+ p for some n € Na and some p € N; . So
0 = xaB = (n*tp)ap = 08 + pag = pap .
Thus po € NB . Hence

g
NaBQNa‘B{EGNa:ngNB}.

Now, let yeNQQ{g_{_ENi:gc_aENB}. Then y =n + a for some

pa—

n €N, and some ie{gz_EN;:EaENB}; So

yoB = (n+ta)a = pap + aap = (a)B =0 . So N o {x€ N; :x0 € Nob e Nog -

Thus the result holds.

2.5  LEMMA Let o be a continuous endomorphism of H .

Define a N: > Ru by X, = xa . Then o, 1is a continuous linear

1
bijection.

_PM Since o 1is continuous and linear, it follows that o,
is also continuous and linear.

To show that a is injective, consider an element x of Na] 3
Then 0 = xa; = xa , i.e. x€N . But Na N Ni = {0} and o is
only defined on N; . Thus x =0 , and so o is injective.

To show that o is surjective, consider an element x of Ra A
Then there exists an element y of H such that yo = x . But (by

Lemma 2.8 and Lemma 2.17) y = n + p for some n € Na and some

pE N; . So

x =.yo = (n+pla = pa = pa, .
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2.6 LEMMA If o and g8 are continuous endomorphisms of

H , then

dim {x € N} : xa € Mg} = dim (RONg) -

PROQF Since, by Lemma 2.5, ) - a|N1 is a bijective linear
a
mapping from N; to Ra , we have

dim (R&\NB) = dim [(R&“Ns)a;ll = dim {x € N: : xo € NB} :

2.7 LEMMA Let o € Sing and e €E . If dim Na = No ’
then dim Nea =B s

PROOF If dim N€ = RO , then the result is immediate from
Lemma 2.4. So, suppose dim Ne < NO v
Define a map 0 : Na > N€ by x0 =x-~xe . 0 is clearly

linear and so

dim Na dim Ne + dim Re .

< dim Ne + dim Ne ‘

Now, since dim Na = NO and dim Ns < NO , this gives dim Ne = NO .
Thus there exist infinitely many linearly independent elements of Na
satisfying x0 = 0 , i.e. satisfying xe = x . But each of these

elements is in Na . Thus there are infinitely many linearly independent

elements satisfying xea = xa = 0 . Thus dim Nga = R0 i

o RGN
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§3 THE SUBSEMIGROUP GENERATED BY THE IDEMPOTENTS
In this section we determine the subsemigroup genmerated by the
idemi)otents E of the semigroup Sing of singular continuous endo-
morphism of a separable Hilbert space H .

We shall need onme further concept before proceeding.

3.1 DEFIMITION Let o € <E> . Define the length, %£(a) , of

o to be min {n : o € EP} .

3.2 LEMMA Let © € <B> ; then dim N_= dim R .
PROOF The proof is by induction on the length of elements of

<E> . We shall show first that the result is true for elements of <E>

of length 1, i.e. for elements of E .

Let € € E and define a mapping 0 : Ri‘ > Ne by x6 = x - xe .
6 is injective. To see this, notice that if x8 = 0 for x in R’EL 5
then x = xe € R€ ; hence x = 0 since Re N R; = {0} . Also, & is
surjective. To see this, notice that if n € Ne sy then n=71 + s for
some r € Re and some s € Ré (by Lemma 1.8 and Lemma 1.17), i.e.

ne = re + se , and hence 0 = r + se . Now, substituting for r in

n=r+s gives n=35 - se , i.e. n = 80 where EER::'. Hence ©
is a bijection. -Since © 1is also linear, we have dim Ne = dim R'EL =
So we may start the induction process.

Now, let n € <E> have length n and assume the result holds for
all elements of <E> with length less than n . Now, there exists an
e €E anda 7€ <E> of length n - 1 such that n = et1 .

Suppose first that dim N'r = NO . Then, by the hypothesis,

. uR W i L . WK
dlmRr=N0‘ Now, RETSRT,andso RTEREI" So d1mR€T=Ro.
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By Lemma 2.7, dim NT = NO implies dim NET = RO S

Now suppose that dim [\ < 8. . By Lemma 2.4,
N 0 y

so dim N = dim Ri :

NET B Ns @ {x & N: % X Nr} x
and, by Lemma 2.6,
dim {x € N : xe € N} = aim RON)

So,

dim NET = dim Ne + dim (RéWNT) .

Now, (et)* = t%e* and so, by Lemma 1.15, R:T = Rospn: Now,
again by Lemma 2.4 and Lemma 2.6,
dim N 4 4 = dim N, + dim (RT;pNS*)
< dim N'r* + dim (R.r*nNe*)
Hence, by Lemma 1.15,
dim R:T < dim RY + dim (NinRé) . - +)

Since R‘L n Nl is a closed subspace of i » we have, by Lemma
5 T e y

1.12, that
Al L d: % G L 3
= N
RE = (RENND © IREN RENND T .
So, by Lemma 1.11, Lemma 1.17 and Lemma 1.18,

Re = RZNND @ [RINR+N)3

2 RIOND @ RENR+NDT -
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Now, by Lemma 2.3, we have
. L . .
(] = - N
dim [Ro N RANDI = aim N, - aim RON) .

(This is defined since we have assumed dim NT < ¥ So

0 2
dim R* > dim (R‘éﬂNl) + dim N - dim (R_NN)

(> T sl S
* Thus, substituting for .dim (R;fWN:) in (+), gives

dim R- < dim R’ + dim R. - aim N_ + dim (R.ON) -

By the induction hypothesis, dim Ri = dim NT and dim Ri = dim NE "

and so
: L 2 -
dim ReT £ dim Ne + dim (RETWNT) 5
But, by Lemma 2.4 and Lemma 2.6,
dim N . = dim N_ + dim (R_0ON)

. L . . . 1 .
Thus, dim RET < dim NET s 1.0 dim Rn < dim Nn ‘
Similarly, we may obtain the inequality dim R;* < dim Nn* . B0

by Lemma 1.15, dim N < dim Rt . Thus, diml = dim Rﬁ :

3.3 LEMMA Let a € Sing and be such that

dimNa=dim R;=NO . Then o € <E> .

PROOQF By Lemma 1,11, Lemma !.12 and Lemma 1,21,

R: = REON) @ RENRADT
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. L s 5 ;

Since R = By » it follows that at least one of Ra N Na and

R(;L N (Ru+Na) must have infinite dimension. We must consider the two
cases separately. .

(a) dim (R;ﬂNa)‘ = NO . Since H = Noz ® N; , we may define a mapping

eIEE by e]=nl®n2,where

xn; =0 (x€ Na)
and
_ 1
x, =x (xEN) .

By Lemma 1.16, there exists an isomorphism 6 from N; to a

closed subspace A of R: n No, . Since H = Noc & N; , we may define a

mapping 526 E by €y =Y @ 8 , where

®
!
fl

x x€N) .

wn
He
B
(2}
(0]

st 0
It

Ae AJ' » we may define a mapping €3 € Sing by

= 6] @ 62 , where

x5, = 359"101 (x € 1Y)

and

x,=x xepH.

Since A ¢ Ri' n Nu = (Ka«vNé)l , it follows that R ¢ ﬁa + Nt e pt .

Thus eSGE ¥

We now show that o = €18o€q - To verify this, -consider any
element x in H . Now, Xx=mn+p for some n€ Na and some

p € N; , and so

e
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(Be)e"]a

, XE E,€q = (Bfg)e]eze3 = pPE,E, = (pe)e3

= po = pa + no = (ptn)a = X0 .

— — —

]

()  dim [R N (RN

Ry - Since H = Na ® N; , we may define a

mapping € € E by €, =1n; @n,, where
x; =0 x€N)

and
xn, = X (EGNQ) .

By Lemma 1.16, there exists an isomorphism 8 from N; to a
closed linear subspace f\ of Na . Since H = Na & N; , we may define

a mapping €y €E by €, = 0 ® vy , where

Xy =X (E'ENCL).

Again, by Lemma 1.16, there exists an isomorphism ¢ from Na to

R; N (Ra+NI) . Since

N, 0[RS N R +ND 1

It

N, R N RAND

N, "R N Gelali bl
= {0} ,

we may define (by Lemma 2.1 and Lemma 2.2) a mapping 61 from

B = Na * [Ri(‘(Ru+Na)] to H by 6] =¢ + § , where

x8=x (x€RORHN) -

Now, by Lemma 2.2, we may define a mapping &

€ E by €3 = 61 & 62 s where

3
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#H,»x @EF).

Since f¢ is a closed linear subspace of H (¢ being an iso-
morphism), we may define a mapping €4- from H to H by

€, = W @ My s where

x7le7la (x € po)

ol

and

1

xm, =x (x€ AN

. L o T TR ; pnad &
Since f¢ € Ra n (P‘a+Na) , we have that (A¢)” = Ra @ (RaﬂNa) . Thus,
ch € (Ad>)'L and so € €E .
We now show that o = €1€9€38, - To verify this, let x be any
element of |{ . Then x =n+p for some n€ N and some p€ N: ‘.

So

Xe e €58, = (_Il+_?_)8182€3€4 = PE,E4E, = (29)6384

(p84)¢™ 0™ 'a = pi

]
I

(p89)e,

= no + po = (_x_1_+£)a = X0 ,

3.4 DEFINITION Let o € Sing . Define the stable set Xa

of a tobe {x€H:xa=x}.

3.5 LEMMA Let o € sing . X, 1is a closed linear subspace
of H.
PROOF Since a is a linear mapping, on is easily seen to

. . /
be a linear subspace of H . Now, let <xi)i€]N be a sequence in )‘a
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with limit, x in H . Then
xa = (lim .’ii)o‘ = lim (Eia)

since o 1is continuous. But

lim (_:_gicx) = lim (}_i) =X

So xa =x, i.e. EEXQ.

3.6 LEMMA Let o € <E> , then either dim Na =8, or
. ik
dim Xa < NO .
PROOF The proof is by induction on the length, 2(a), of a .
We show first that the result holds for elements of length 1 , i.e.

for elements of E . If & € E , then Xu = P‘a and, by Lemma 3.2,
dim Nu = dim R; . Thus dim Na = dim X: . Either dim No. = NO or

dim Na < NO . If the latter holds, then clearly dim X; < R Thus

0 .
the result holds for elements of length 1.
Now suppose the result holds for elements of <E> with length

strictly less than n . Let n € <E> with 2%(n) =n . Then n = T¢

where T € <E> , &(t) =n-1 and € € E . Suppose dim Nn < NO ~

Let'_}SEREﬁXT. Then xT = x and xXe = x . So

xn = (X1)e = Xe = X .

in

Xn . Hence, by Lemma 1.1] and Lemma 1.18,

Thus -}-{-EXH' So RanT

X: c Ri * Xf . Thus, by Lemma 1.20,
dim X: < dim (RM+XD) = dim RE+XD)

< dim R + dim X7 . +)
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Now, Rﬂ = RTe < Re . So dim Ré < dim R# = dim Nn by Lemma 3.2. Now

we have assumed that dim Nn < 8., and so dim Ré < N Also,

0 (0
dim <dim N =dimN_ <R . So, by the induction hypothesis,
T T€E n 0

dim Xi < NO . But we have already shown (at (+)) that
dimX:]'SdimRJe“+dimXi“.

Thus dim X: < NO as required.

3.7 LEMMA let o€ sing . If dim X < ¥, and

dim N = dim R , then o € <E> .

PROOF We show first that the null-space of o is non-trivial

a8 L A % .
Xa + (Xu)a is invariant under o .

and that the closed linear subspace
Since X; is a finite dimensional linear subspace of H , we have
that (X:)a is a finite dimensional linear subspace of H . Thus
X; & (Xi)a is a finite dimensional linear subspace of H , and so is
closed.
Now,let v €& X: + ({H) Th =p+p' £ € ¥ and
ow,let v Xu WL en v=p+p or some P Xu an
some p' € (Xi)a'. Now, p' = x + y for some x € X; and some

y€ X, Thus

EEPpEESY
.Hence

39 =P 2 ¥

= (£+')£)a + (l+i) - _}_(E (X{i')a + Xi .

L < u )
Thus Xa + (X;)a is invariant under o ,

Now, let oy be the restriction'of o to the closed linear
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subspace Xi + (X;)a « Then o =oa @0, , where o, is defined by

X, =x . (x€ [Xé'*(Xé)a]L)-

Now, suppose that Na = {0} . Then,certainly, N = {0} and so a, is

ey 1

an automorphism of Xi + (X:)a . Hence there exists a (group theoretic)

inverse aIl_ of a such that o a—l = a—la and o a-l is the

171 1=+ 171
ol

identity map on X; + (X;)a . By defining o' = @ ®a, ; we see that
aa' is the identity map on H . Since this contradicts the hypotﬁesis
that o € Sing , &e have that N # {0} .

Since Na n Xa = {0} , we maﬁ define a mapping € € E by

e = (y,+y,) ® Y5 » where

1
lo

xy, = xeN)

2 ) R

!
|

x€X)

and
XYy =x (x€ (Na+Xa)“L) :

By Lemma 1.1] and Lemma 1.12,

It

DG ANST @ NI nNETY

X

It

XA @ GG ATGND

Thus we may define a map 6 € Sing by § = ¢l @ ¢2 ® ¢3 , where

xj = xa (x € IX+N,3D
X0y =0 (x & XN XD
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and

xy=x xEX) .

iy

We now show that o = ed . Let y be any element of H . Then
y=n+x+p for some n € Noi » some X € Xa and some p € (NOL~r)(0‘)‘L .

So

yed = (ntxipled = (x+p)8 = x +

=

(1=X0'.+R(!

I

since _:EEXa . So

yed = (x+p)a = na + (x+p)o = (n+x+p)a

yo

since n € Na . Thus €8 = a .

Now, let &' be the restriction of & to thé closed linear sub-
space - (X:x')oz . Since X: +. (X(Jx')u is invariant under o , we have
that &' is an endomorphism of X; 3 (X;)oz . Since Na # {0} and

Xa n Na = {0} , we have that

X, 0 XN, # 10},

N+ # 10} .

. i L i g ; ;
Since ch + (Xa)a has finite dimension, n say, we have that

-8t € Singn . Hence, by Theorem 1.4.9, &' = ¢ eé...eé where each e;.

— -

(i' = 1,2,..,,m) ig an idempotent of Singn .
Now, since H = [XJ'+(X;)cc] o [X5+(XHalt , we may define
ol o o
€, ¢ H-+H vy £y = e; @t (i=1,2,...,m), where

o=z (x& N+ .




8 =t ¢

1

where each

THEOREM

xel: xo

the set of singular continuous endomorﬁhisms of H and E the set of

idempotent elements of Sing .

)

Now, let

by Lemma 3.6, either dim Na = 30 or dim X; < 80 s L8 & ETUF ,

<E> ¢ TIUF , and so

Let H be a separable Hilbert space, Sing

If o € sing , define Xa to be the set

<E> = I UF where

= {a € Sing :

]

= {a € Sing :

By Lemma 3.3 and Lemma 3.7, we have I U F ¢ <E>

Then, by Lemma 3.2, dim Ma = dim R; . Also,
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