
MURRAY POLYGONS AS A TOOL IN IMAGE PROCESSING

Bhuwan Pharasi

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1990

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13580

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13580

Murray Polygons as a Tool in
Image Processing

thesis submitted
in fulfilment for the requirement of

the degree of
DOCTOR OF PHILOSOPHY

by

Bhuwan Pharasi.

Department of Computational Sciences,
University of St. Andrews

St. Andrews
October 1989

ProQuest Num ber: 10166334

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10166334

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 4 81 06 - 1346

I:

To my mother Smt Sumitra Devi Pharasi
and my father Sh. Mangla Nand Pharasi

also to my sister-in-law Mrs. Sheela Pharasi.
and to my brother Mr. Harsh V. Pharasi

I Bhuwan Pharasi hereby certify that this thesis has been composed by

myself, that it is a record of my own work, and that it has not been accepted

in partial or complete fulfilment of any other degree or professional

qualification.

Signed... D a te .1

I was admitted to the Faculty of Science of the University of St.Andrews under

Ordinance General No 12 on October 10.1986 and as a candidate for the degree

of Ph.D on October 10. 1987.

Signed... Date..........

I hereby certify that the candidate has fulfilled the conditions of the

Resolutions and Regulations appropriate to the degree of Ph.D.

Signature of Supervisor Date

QsmmM

In submitting this thesis to the University of St. Andrews I understand that I

am giving permission for it to be made available for use in accordance with

the regulations of the University Library for the time being in force, subject

to any copyright vested in the work not being affected thereby. I also

understand that the title and abstract will be published, and that a copy of the

work may be made and supplied to any bona fide library or research worker.

Acknowledgements

It gives me an immence pleasure and great opportunity to express my

profound sense of gratitude and indebtedness to Professor A. J. Cole, for

his painstaking guidance, invaluable suggestions and constant

encouragement throughout the research work.

I wish to express my thanks to Professor R. Morrison; Chairman, for

providing all necessary facilities and also to Dr. J. Owczarczyk for proof­

read and helping me during this project.

I also wish to record my appreciation and feeling of gratitude to Mr.

A. J. T. Davie, Dr. A. Brown, Dr. R. Dyckhoff, Mrs. H. Bremner, Mrs. E. Nicoll

and Mr. B. McAndie who helped me in every possible way.

My humble regards are also due to my others family members who

have always encouraged and assisted me to pursue higher studies.

I am also thankful to: the Committee of Vice-Chancellors and

Principals, and St. Andrews University, for providing me the financial

support.

(Bhuwan Pharasi)

Abstract

This thesis reports on some applications of murray polygons, which

are a generalization of space filling curves and of Peano polygons in

particular, to process digital image data. Murray techniques have been used on

2 -dimensional and 3-dimensional images, which are in cartesian/polar

co-ordinates. Attempts have been made to resolve many associated aspects of

image processing, such as connected components labelling, hidden surface

removal, scaling, shading, set operations, smoothing, superimposition of

images, and scan conversion.

Initially different techniques which involve quadtree, octree, and

linear run length encoding, for processing images are reviewed. Several image

processing problems which are solved using different techniques are described

In detail. The steps of the development from Peano polygons via multiple radix

arithmetic to murray polygons is described. The outline of a software

implementation of the basic and fast algorithms are given and some hints for

a hardware implementation are described

The application of murray polygons to scan arbitrary images is

explained. The use of murray run length encodings to resolve some image

processing problems is described. The problem of finding connected

components, scaling an image, hidden surface removal, shading, set

operations, superimposition of images, and scan conversion are discussed.

Most of the operations described in this work are on murray run lengths. Some

operations on the images themselves are explained.

The results obtained by using murray scan techniques are compared

with those obtained by using standard methods such as linear scans,

quadtrees, and octrees. All the algorithms obtained using murray scan

techniques are finally presented in a menu format work bench. Algorithms are

coded in PS-algol and the C language.

CONTENTS

INTR O D UCTIO N X

A . REPRESENTATION AND EXACT COMPRESSION OF D IG ITA L IM AGES 1 ;

1 -1 Introduction 1

1 - 2 Run-Length Encoding 3 !
Linear Scan 5
Space Filling Curves 6

1 - 3 Quadtree Encoding 9

Leaf Node 1 2

Traversal Of The Node Of Its Quadtree 1 5

1 - 4 Volume Data 1 6

2 . M URRAY POLYGONS 2 0

2 - 1 Introdution 2 0

2 - 2 Murray Polygons 2 0
. Gray Codes or Cyclic Progressive Numbers 2 3

Direct Peano Transformations 2 5
Murray Arithmetic 2 6

Murray Transformation 2 8

Mixed Scan 3 1

Some Lemmas 3 2
Implementation Of Murray Scan 3 9

Original Implementation 3 9

A Faster Murray Scan Algorithm 4 2

Hardware Implementation 4 6

Three-Dimensional Cartesian Coordinates 4 6

Extension To 3-D And n-D Murray Polygons 4 7

Method One 4 7

Some Lemmas 5 0
Second Method 5 2 ■

Polar Murray Scan 5 4 }
Polar Coordinates 5 4 I
Changing Coordinates Systems 5 5
Graphs In Polar Coordinates 5 6 |

3D And Higher Dimensional Polar Coordinates 5 6

Cylindrical And Spherical Coordinates 5 6

Implementation Of Planar Polar Murray Scan 5 9

Cylindrical Polar Murray Scan 6 1
Spherical Polar Murray Scan 6 1

2 -2 .11 Application Areas 6 2
Scanning 6 2

2 - 2 .1 2 Remarks 6 3

3 . SCANMNG AND DRAW ING OF TH E IM AGES 6 4

3 -1 Introduction 6 4
3 - 2 Structure And List Processing 6 5
3 - 3 Linked List 6 8
3-4 Image Construction 6 9
3-5 Storing an Image in a Database 7 2

Retrieving an Image From a Database 7 4
3 - 6 Scanning And Drawing Of An Image 7 4
3 - 7 Remarks 8 o

4 . SCAN CONVERSION AND SCALING OF IM AGES 83

4 -1 Introduction 8 3
4 - 2 Scan Conversion 8 4

Method 1 8 4
Some Lemmas 8 9

Method 2 9 6

Some Lemmas 9 8

4 - 3 Implementation of Scan Conversion 104
Data Structure 104
Scanning 107

Algorithms 108
Comparison Between The Two Algorithms 1 1 2

Comparison Between Linear and General Murray Scan 1 1 3

4 - 4 Scaling 114
Introduction 1 1 4

Scaling Using Murray Polygons And Its Implementation 1 1 6

Some Lemmas 1 2 2

Theorem 1 2 3

Results 1 3 2

4 - 5 Remarks 134

5. SU PERIM PO SITIO N , AND SET OPERATIONS ON IM AG ES 1 3 7

6-1 Introduction 137
5 - 2 Set Operations 138
5-3 Superimposition of The Images Using Murray Polygons 140

Implementation 141

5 - 4 Set Operations Using Murray Polygons 143
Union 1 4 4

Intersection 1 4 6

Difference 1 4 6

5 - 4 Remarks 147

6 . CONNECTED COMPONENET LABELLING 149

6 -1 Introduction 1 49
6 - 2 Connected Component Labelling 1 51
6 - 3 Connected Component Labelling Using Murray Polygons 1 53

Method 1 (Using Images) 1 5 5

Method 2 1 6 2

Using Two Sequences of Runlengths 1 6 2

Extension To 3-Dimensional and n-D Images 1 6 8

Comparison Between Method 1 And Method 2(part 1) 1 7 0

Using One Sequences of Runlengths 1 7 0

Extension To 3-Dimensional and n-D Images 1 7 8

Comparison Between Method 2 (Two iist vs One iist) 1 7 9

6 - 3 Remarks 179

7 . H ID D EN SURFACE REM OVAL AND SHADING 1 82

7 -1 Introduction 182
7 - 2 Hidden-Surface Removal 183

Object-Space Algorithms 1 8 4

Image-Space Algorithms 18 6

List-Priority Algorithms 1 8 6

Scan Line Algorithms 19 5

Scan Line Coherence Algorithms 19 6

A Visible Surface Ray Tracing Algorithm 1 9 7

Octree Methods 19 8

7 - 3 Hidden-Surface Removal Using Murray Polygons 1 9 9

Method 1 201

Method 2 202
Comparison Of Hidden Surface Methods 209

7-4 Shading 2 1 0

Introduction 2 1 0

Surface Shading Methods 2 1 2

Transparency 216
Texture Mapping 219
Antialiasing 219
Shadows 2 2 0

7 - 5 Shading Using Murray Polygons 221

Determining The Surface Normal 222
Determining The Intensity Using Murray Polygons 223

Determination Of The Angie Between N And L 2 2 5

Smoothing Of Data 2 3 2

Results 235

Conclusion 2 3 9

7-6 Specular Reflection 240

7 -5 Remarks 2 42

8 . IM P LEM EN TA TIO N 244

8-1 User Interface 244
8-2 Menu Design 245

a CONCLUSIONS AND FUTURE W ORK 252

9 -1 Conclusions 252
9 - 2 Future Work 256

REFERENCES 257

INTRODUCTION

INTRODUCTION

The use of image processing is increasing and is being widely used in

many industries. Medicine, meteorology, mapping, industrial vision,

publishing, and television are just few of the applications of modern image

processing systems. In many of these cases image processing is helping to

derive more information from the image data. For example, in meteorology

much more information can be extracted from satellite pictures by

processing the data as it is received. This information includes finding signs

of mineral deposits, finding about enemy activities, weather information,

etcetera. Further in the field of medicine image processing techniques can be

used in extracting out information about the disease from the images which

are obtained by the CT scanner. In industrial applications images can be used

to identify whether a product is good or bad. In this case the images which

are obtained by a vision capture system, usually a camera, can be compared

with the stored image of a good component. If the image does not match with

the one stored for a good product then it can be rejected.

Others common application areas are:

1. Animation/Graphic Arts;

2. Astronomy;

3. CAD/CAM/CAE;

4. Machine Vision;

5. Geographical/Environm ental;

6 . Storage and transmission of digital image data;

7. Simulation of various sort e.g., flight simulation., etcetera

X

INTRODUCTION

The processing time and the storage or transmission capacity

increases with the increase in the size of an image. Hence, there must be a

method for encoding an image, which can reduce the amount of disk storage or

transmission capacity, so as to be able to handle exact images and also to be

able to carry out standard transformations on whole images or sub-images

independently of and from the bit map itself. Various methods of recording

the information in the bit maps for raster scan or bit mapped graphics(i.e., an

image) have been suggested, the two most popular being linear run length

encoding[Foley, and Van Dam(1982), Roger(19B5), Hearn, and Baker(1986)] and

quadtree or octree encoding[Klinger, and Dyer(1976), Samet(1984),

Gargantini(1982)] Some investigations have also been made into the use of

Hilbert scans[Hilbert(1891)] using table driven algorithms[Griffiths(1985),

Oole{1985c)].

This thesis explains the use of murray polygons! Cole{ 1985b)] as a

possible alternative to the above methods, in many related problems of image

processing. Murray polygons are a generalisation of space filling curves and of

Peano polygons! Peano(1890)] in particular. Many associated problems related

to image processing are solved by using murray polygons and are compared

with those already defined for linear or quadtree encoding.

The main characteristics of murray polygons are :

i. Instead of being restricted to squares, murray polygons may be

defined in a variety of ways so as to pass through all points with integer

coordinates in any rectangle with odd integer length sides. Murray polygons

are not restricted to odd dimensions as the restriction on the radices being

odd can be lifted for the first and the last radices giving even sided

rectangles. This is discussed in the following chapters.

INTRODUCTION

il. Explicit transformation as weil as recursive or table driven

algorithms can be defined.

iii. By slight modification the same algorithm, which is defined for

cartesian coordinates, may be used for polar coordinates.

iv. A murray linear scan has a minor advantage over a conventional

linear scan. In a conventional linear scan, the flyback will usually result In a

break of run length, which may result in more run lengths than that of a

murray scan.

V. The distribution of murray run lengths is different to that of linear

run lengths. This distribution may be exploited in a final coding of the run

lengths for storage or transmission.

vi. Murray polygons can scan any rectangle of sides r and s, with no

restriction on the values of r and s, in the horizontal as well as in the

vertical direction. It is also possible to transform directly from a horizontal

to a vertical murray scan and vice versa. This can be used when we have to

scale the image in both directions, horizontally as well as vertically. More

detailed discussion will be given in the following chapters.

vii. With a minor modification, the algorithms which are defined for

2-dimensional images can be used to scan 3-D and n-D images, with no

restriction on the size of the images.

vili. Using a single 3D cartesian scan the whole image can be viewed in

six possible directions{top, bottom, front, back, l-side, r-side).

ix. If an image is represented in spherical polar coordinates then it can

be easily scanned from any given viewpoint.

INTRODUCTION

X. Murray scans, although being locally n-dimensional in nature, still

produce a linearised scan of the corresponding 3-D image. They also have the

advantage of giving a choice of scanning order including the possibility of

scanning in the colour code dimension rather than plane by plane.

Chapter 1, is a survey of image processing techniques,

illustrating the diversity of the various methods which have been proposed by

other authors. Murray polygons for 2D, 3D and higher order images are

explained in chapter 2 . Cartesian and polar murray scans are also explained in

detail. Scanning and drawing images using murray polygons is explained in

Chapter 3. Chapter 4 is about scan conversion and scaling images horizontally

or vertically or in both directions. Chapter 5, explains about superimposition,

and set operations on images. Chapter 6 explains about connected components

labelling for images. Two methods are expiained for identification of

homogeneous connected components, either directly from the bit map or from

a run length encoding. When a run length encoding is used the results

themselves are recorded as runlength encodings. Hidden surface problems and

shading techniques for 3D images are discussed in chapter 7. Some smoothing

techniques are also discussed in chapter 7. Chapter 8 is about the work bench

design and implementation. Initially all the algorithms were coded in

PS-Algol; later on to improve on the speed for some algorithms the C language

is used. Some fast software algorithms and a proposal for a hardware

implementation which should enable a real time scan of a bit map to be made,

are discussed. At the end of each chapter concluding remarks are given.

Finally the results are summarized in the last chapter.

xtvt

Chapter 1

1 . REPRESENTATION AND EXACT COMPRESSION OF D IG ITA L IMAGES 1

1 -1 Introduction 1

1 - 2 Run-Length Encoding 3

Linear Scan 5

Space Filling Curves 6

1 - 3 Quadtree Encoding 9

Leaf Node 1 2

Traversal Of The Node Of Its Quadtree 1 5

1 - 4 Volume Data 1 6

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

1-1 In tro d u ctio n :

According to Rosenfeld and Kak(1976) picture processing or image

processing by computer surrounds a wide variety of techniques and

mathematical tools. Most of these have been developed due to three major

problems:

/. Picture digitization and coding: conversion of picture from

continous to discrete form (digitization) and then coding the results so as to

reduce the amount of storage space or transmission capacity.

ii- Picture enhancement and restoration: improvement of blurred (or

noisy) pictures.

Hr P icture segmentation and description: conversion of pictures into

simplified sub-pictures; classification or description o f pictures in term of

parts and properties.

Picture :

A picture is a flat object whose brightness or color may vary from

point to point. For a black and white picture this can be mathematically

represented by a single real-valued function, say f(x,y). The value of this

function at a point will be called the gray level or brightness of the picture at

that point. Further the values of this function are nonnegative and bounded,

i.e., 0 <= f(x,y) <= M for all x, y.

Pictures as Arrays:

A digitized picture or digital picture, can be regarded as an integer

array.The elements of a digital picture array are called picture elements,

pixels, or pels. Once a picture has been digitized, additional processing

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

techniques can be applied to rearrange picture parts, to remove or process a

large homogeneous area, to scale the picture up or down etcetera. In rest of

this thesis we will refer to digital pictures as images.

The above definitions can now be summarised as: the term im age(or

digital picture), refers to the original array of pixels. If its elements are

either BLACK or W HITE then it is said to be a binary image. If shades of gray

are possible (i.e., gray levels), then the image is said to be a g ra y s c a le

image. A pixel is said to have four edges, each of which is of unit length.

An image represented by an N*N square array of pixels, each of P bits,

would need P W W bits to store in uncoded form. In practice, it is found that

neighbouring pixels are often the same and by using a suitable coding scheme,

this one-or-two dimensional spatial coherence can be exploited to write the

image in much less than P^N*N bits. Various coding schemes have been used

for processing the images. The two most popular coding schemes are

i. Run length encoding[Foley, and Van Dam(1982), Roger(1985), and

Hearn, and Baker(1986)]

ii. Quadtree or octree encodlng[Klinger, and Dyer(1976),

Gargantini(1982) and Samet(1984)]

Many associated problems such as connectivity, scaling, merging

superimposing, hidden surface removal, shading, etcetera, have been

implemented using these methods.

In this chapter, different image processing methods and their use in

exactly compressing the digital images data is explained. In each section,

references will be provided as to where more detailed explanations can be

found.

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

1 2 Run Length Encoding :

Initially the image is scanned to produce a sequence of run lengths.

Each run can be encoded as a tuple (l|,D;), where D; is the number of pixels,

each with intensity Ij. Dj and I; are usually stored as one byte each.

Intensity Run Length

Intensity levels or gray scales, depend upon the number of bit planes

per pixel. For N bit planes the intensity level will lie between 0 and

2 N -1 , where 0 (corresponds to dark) and 2^-1 (corresponds to full intensity). A

total of 2 N intensity levels can be achieved. If only one bit plane is provided in

the raster, on (white) and off(black) are the only possibilities for the gray

scale. Three bit planes per pixel can accommodate eight different intensity

levels and so on. Many packages use the range 0 to 1 to set gray scale levels.

Intensity values specified in a program are converted to appropriate binary

codes for storage in the raster. Figure 1-2.1 illustrates conversion of user

specification to codes for a four-level gray scale. In this example, any

intensity input value near 0.33 would store the binary code 01 in the frame

buffer and result in a dark gray shading for these pixels.

For black and white images (i.e., one bit per pixel), we generally

assume that the first run length will always correspond to white pixels. If the

first pixel is black then the first run length will be zero. Hence in the case of

black and white images we do not require to store the intensity of the pixels.

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

The simple run length encoding scheme can easily be extended to

Include color. For color, the intensity of each of the red, green, and blue color

guns is given followed by the number of successive pixels for that color e.g..

Red Intensity Green Intensity Blue Intensity Run Length

Usually the color intensities are combined into a single integer, referred as

color code, using a fixed number of bits. A simple scheme for storing color

code selections in the frame buffer of a raster system is shown in

Figure 1-2.2. When a particular color code is specified in an application

program, the corresponding binary value is stored in the frame buffer for each

component pixel in the output primitives to be displayed in that color. The

scheme is given in figure 1-2.2 allows eight color choices with 3 bits per

pixel of storage. Each of the three bit positions is used to control the

intensity level (either on or off) of the corresponding electron gun in an RGB

monitor. The leftmost bit controls the red gun, the middle bit controls the

green gun, and the rightmost bit controls the blue gun. Adding more bits per

pixels to the frame buffer increases the number of color choices.

Run length coding can often substantially reduce the amount of memory

needed to store images. Its advantage is maximised, in cases where the

images are made up of a few long runs. To produce long run lengths, very much

depends upon the image itself and upon the scanning methods. According to

Shannon*s[Klerer, and Korn(1967)] information theory : On average to maintain

complete information for all images one cannot do better than the bit map.

INTENSITY STORED INTENSITY VALUES DISPLAYED
CODES IN THE FRAME BUFFER GRAY

(Binary Code) SCALE

0.0 0 (00) Black
0.33 1 (01) Dark Gray
0.67 2 (10) Light Gray
1.0 3 (11) White

Figure 1-2.1
Conversion of intensity values to integer codes for storage in a frame buffer
accommodating a gray scale with four levels. Two bits of storage for each pixel
position are needed in the frame buffer.

COLOUR
CODE

STORED COLOR VALUES IN
FRAMEBUFFER

DISPLAYED
COLOR

RED GFB3^ BLUE

0 0 0 0 Black
1 0 0 1 Blue
2 0 1 0 Green
3 0 1 1 Cyan
4 1 0 0 Red
5 1 0 1 Magenta
6 1 1 0 Yellow
7 1 1 1 White

Figure 1-2.2
Color codes stored in a frame buffer with three bits per pixels.

CHAPTER 1 REPRESENTATfON & EXACT COMPRESSION OF DIGITAL IMAGES.

Run length encoding can further be divided into two classes which are,

i. Linear scans.

ii. Space filling curves.

1-2.1 Linear Scan I Netravali and Haskell(1988)];

Linear scanning converts the two dimensional image intensity into a

one dimensional waveform. The image is segmented into Ly adjacent horizontal

lines, and the image is scanned one line at a time, sequentially, left to right, and

top to bottom with fly back at the end of each scanline, see Figure 1-2.3. It is

one dimensional in nature and takes advantage of the correlation between

adjacent pixels on the scanline. For example, in a flying spot scanner a small

spot of light scans across a photograph, and the reflected energy at any given

position is a measure of the intensity at that point.

Figure 1-2.3

— —— Beamon.

Horizontal Retrace.

Vertical Retrace,

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

1-2.2 Space Filling Curve :

Giuseppe Peano(1890) Introduced the idea of a space filling curve in

the sense of a continuous mapping of the line segment (0 ,1) onto the unit

square and was closely followed by Hilbert(1891) and Sierpinski(1912).

Peano, introduced the idea of space filling curves rather than polygons and

Hilbert and others introduced the idea of limiting sequences of polygons

leading to space filling curves.

Peano showed how to produce a curve by moving a single point

continuously over a square, such that it passes at least once through every

point on the square and its boundary. The curve produced was indeed

continuous but it was impossible to draw unique tangents, since it is

impossible to specify the direction in which a points is moving. Two

interesting points about the Peano curve were :

1) Its path seems to be one dimensional, yet at the limit it occupies a

two dimensional area.

2) It is a continous curve, but has no derivative.

Peano based his definition of space filling curve on a base three

representation of the points on the real line interval [0 ,1] and the points (x,y)

of the square 0 <= x <= 1 , 0 <= y <= 1. Essentially, a point of the above

interval was split into two real base three numbers by taking all the odd

indexed digits in their sequential order for the value of x and all the even

ordered digits in their sequential order for the value of y. It should be noted

that to maintain the uniqueness of the transformation, the ambiguity of real

number representation, where to base three, 0.2211 and 0 .221022222222

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

are equally valid representations, was dealt with in a more complex manner,

which need not be discussed in this report.

Hilbert generated a Peano curve with two end points, in other words,

Hilbert derived an alternative method of defining a space filling curve as the

limit of polygons enclosed in the unit square, using a fourfold repetition of

successive polygons which corresponded to a base two number representation,

as shown in Figure 1-2.5. At the limit Hilbert curve starts at the bottom left

and finishes at the top left. A similar result based on the Peano technique was

given by Moore(1900) to obtain a limiting polygon based on ninefold

repetitions of successive polygons. These polygons are known as Peano

Polygons. The first three Peano polygons P1,P2,P3 are shown in Figure 1-2.4.

The three steps of the illustration show how Waclaw Sierpinski

generated a closed Peano curve (see Figure 1-2.6a). Sierpinski polygons differ

from Hilbert and Peano polygons. The principal difference as Wirth[1976]

pointed out is that Sierpinski curves are closed curves made up of four parts,

which are connected by the four straight lines in the outermost four corners.

Cole(1983) showed that S^' can be obtained from S n -i ' by suitably rotating

and shifting 8 ^-1 ' to four new positions and joining them by three lines.

S y , S2 ', S3 ' are shown in the Figure 1-2.6b. Further S3 (see Figure 1-2.6a) is

obtained by rotating S3 ' (see Figure 1 .2 .6 b)four times and finally closing the

last gap. Wirth suggested that Sq is a square standing on one corner. It means

the starting curve is the single point [1,0]. Recursive algorithms for drawing

these and other space filling curves have been given by Wirth(1976),

Goldschlager(1981) and Witten and Wyvill (1983). Griffiths(1985) discusses

table driven algorithms for generating space filling curves.

Helge Von Koch[Gardner(1967)], proposed in 1904 another curve which

is now commonly called the snow flake curve. At the limit it is infinite

r—' s r— '

*~ i H

Figure 1-2.4. Peano polygons.

Figure 1-2.5. Hilbert polygons.

(a)

(

S\ sv

(b)

Figure 1-2.6. Sierpinski polygons(CoieM)'

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

in length. Like a Peano curve its points have no unique tangent, i.e., continous

but no derivative. The first four orders of Helge Von Koch's snow flake are

illustrated in Figure 1-2.7.

Griffith(1986) investigated space filling curves and described a

method for generating new ones. He considers the space filling curve in the

unit square defined as the limit of a sequence s*j,S2 of continuous curves

which pass through every point of the square. This can be viewed as a

tessellation of square tiles all of which have the same pattern but with the

orientation of the pattern varying. Firstly a tile has an n x n grid marked on it

and the centres of each grid-square are taken as permissible points for the

construction of a continuous open path that does not intersect. The resulting

path must have endpoints such that n2 tiles can be fitted together and the

individual paths joined up with standard steps as shown in Figure 1-2.8.

Griffiths at this stage had shown how to generate new space filling curves

which would traverse squares.

Cole(1983) has shown how Peano, Hilbert and Sierpinski polygons can

all be obtained recursively from a single point. Cole showed explicit mappings

between the first n non-negative integers and the n sequentially traversed

vertices of any of the Peano polygons and also a generalisation of these

polygons. Such polygons have been called murray polygons since they are

derived using multiple radix or murray arithmetic. A formal definition and

more detailed discussion of murray polygons will be given in the following

chapters.

The advantages of using space filling polygons for this purpose arise

from the fact that in general the curve passes through a lot of points local to

8

Figure 1-2.7. The first four orders of Helge von Koch's snowflake (Martin[6?]).

nmim

Figure 1-2.8. Three examples of basic tiles and second order polygons due to Griffithsfss])

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

each other in two dimensions. This pixel coherence can be exploited in many

areas of image processing. This we will see in the following chapters.

Moreover the Hilbert polygons include quadtree scanning as a particular, case

with no additional computation or complex data structures required to record

or to scan them.

1 3 Quadtree Encoding :

The term quadtree is used to describe a class of hierarchical data

structures whose common property is that they are based on the principle of

recursive decomposition of space. They can be differentiated on the following

bases :

1 . the type of data that they are used to represent,

2 . the principle guiding the decomposition process,

3. the resolution (variable or not).

Quadtree representation can be used for point data, regions, curves,

surfaces, and volumes.The decomposition may be into equal parts on each level

(i.e., regular polygons and termed a regular decomposition), or it may be

governed by the input. The resolution of the decomposition (i.e. the number of

times that the decomposition process is applied) may be fixed, or it may be

governed by properties of the input data.

Quadtrees are generated by successively dividing a two dimensional

region into quadrants. Each node in the quadtree has four data elements, one

for each of the quadrants in the region as Illustrated in Figure 1-3.1. If all

pixels within a quadrant have the same color (a homogeneous quadrant), the

corresponding data elements in the node store that color. In addition, a flag is

Quadrant

0

Quadrant

1

Quadrant

3

Quadrant

4

0 1 2 3

Figure 1-3.1
Region of a two dimensional space divided into numbered quadrants and the
associated quadtree node with four data elements.

0 1

3 ------ - 2 - ------

Region of a
Two-Dimensional

space

0 1 2 3

0 1 2 3

Quadtree Representation

Figure 1-3.2
Region of a two-dimensional space with two levels of quadrant
division and the associated quadtree representation.

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

set in the data element to indicate that the quadrant is homgeneous. Suppose

all pixels in quadrant 2 of Figure 1-3.1 are found to be red. The color code for

red is then placed in data element 2 of the node. Otherwise the quadrant is

said to be heterogenous, and that quadrant is itself divided into quadrants

(see Figure 1-3.2). The corresponding data element in the node now flags the

quadrant as heterogeneous and stores the pointer to the next node in the

quadtree. For a heterogeneous region of space, the successive subdivisions

into quadrants continues until all quadrants are homogeneous. Figure 1-3.3

shows a quadtree representation for a region containing one area with a solid

color that is different from the uniform color specified for all other areas in

the region.

Finkel and Bentley(1974) proposed another definition for a quadtree.

Here space is partitioned into rectangular quadrants. It is primarily used to

represent multidimensional point data and can be referred as a point quadtree.

In two dimensions each data point is a node in a tree having four sons. These

four sons corresponds to a quadrant labeled in order NW, NE, SW, and SE. The

desired record is searched on the basis of its x and y coordinates. At each node

of the tree a four way comparison operation is performed and the appropriate

subtree is chosen for the next test. Reaching the bottom of the tree without

finding the record means that the record which we are looking at is not

present in the quadtree and it can now be Inserted at this position. The shape

of the resulting tree depends on the order in which records are Inserted into

it. A point quadtree is illustrated in Figure 1-3.4.

Point quadtree are useful in applications that involve search. They can

also, be used to solve a measure problem like determination of all records

within a specified distance of a given record. Search operations using point

quadtrees are given in details by Bentley and Stanat(1975). Point quadtrees

10

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 0 1 1 1 1 0 0

0 0 1 1 1 0 0 0
(a) (b)

o # e #
37 38 39 40

O
57 58 59 60

(d)

F Ig u re l - 3 . 3 . A region, its binary array, its maximal blocks, and the corresponding quadtree.
(a) Region.
(b) Binary array.
(c) Block decomposition of the region in (a). Blocks in the region are shaded.
(d) Quadtree representation of the blocks in (c).

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

are useful with two dimensional space. As cited by Samet(1984), the problem

with a large number of dimensions is that the branching factor becomes very

large (i.e., 2 ̂ for k dimensions). The storage for each node as well as for many

NIL pointers for terminal nodes increases. Bentley(1975) proposed W tree,

which is an improvement on the point quadtree. It avoids the large branching

factors. It is a binary search tree with the distinction that at each level of the

tree a different coordinate is tested when determining the direction in which

a branch is to be made. In the case of two dimensions (i.e., a 2-d tree), the

x-coordinates will be compared at the root and at even levels, whereas the

y -coordinates are compared at odd levels. The root is assumed to be at level

zero. Each node has two sons. A k-d tree corresponding to the point tree of

Figure 1-3.4 is given in Figure 1-3.5.

An alternative tree structure that uses. an analogy to the k-d tree given

by Bentely(1975) is the bintree proposed by Samet and Tamminen(1984). Here,

the space is always subdived into two equal-sized parts alternating between

the X and the y axes. The advantage is that a node requires space only for

pointers to its two sons instead of four sons. In addition, its use generally

leads to fewer leaf nodes. While dealing with higher dimensional data (e.g.,

three dimensions) less space is wasted on NIL pointers for terminal nodes. A

bintree is Illustrated in Figure 1-3.6.

The problem with the tree representation of a quadtree is that it has a

cosiderable amount of overhead associated with it. Moreover each node

requires additional space for the pointer to its sons. This is a problem with

large images that cannot fit into core memory. Consequently, there has been a

considerable amount of interest in pointerless quadtree representations. They

11

(100,100)

A(60,75)

A

C(5,45)

8(35,40)

H(85,15]

G(90,5)

(0,0)

(a)

E

A A A
(b)

Figure 1-3.4

A point quadtree (b) and the records it represents (a).

(100,100)

A(60,75)

A

C(5,45)
Y

B(35,40)

E(25,35)
H(85,15)

F(50.10)

G(90,5)
(0,0)

X ”

(a)

(b)

Figure 1-3.5.
A k-d tree (b) and the records it represents (a).

60 58

Figure 1-3.6.
The bintree corresponding to fig 1-3.3 (a) Block decomposition,
(b) Bintree representation of the blocks in (a).

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

can be grouped into two categories.

i. Collection of leaf nodes.

ii Traversal of the nodes of its quadtree.

1-3.1 Leaf node :

In the leaf node category, each leaf or pixel is encoded in a weighted

quatenary code, i.e., with digit 0, 1 , 2 , 3 in base 4, where each successive

digit represents the quadrant subdivision from which it originates. The NW

quadrant is encoded with 0, the NE quadrant with 1, the SW with 2, and the SE

with 3. For example, if a pixel or leaf Is encoded as 321, this means that pixel

or leaf belongs to the SE quadrant in the first subdivision, to the SW quadrant

in the. second and the NE in the third (final) subdivision (see Figure 1-3 .7).

While encoding an image as a collection of leaf nodes, there is no need

to include the locational code for every leaf node. Gargantini (1982) only

retains the locational codes of the BLACK nodes and terms the resulting

representation a linear quadtree. The codes for WHITE blocks can be obtained

by using the ordering imposed by the sort without reconstructing the

quadtree. All arithmetic operations on the locational code are performed by

using base 4 numbers as explained above. An additional code, as a don't care,

is used by Gargantini(1982), Klinger and Dyer(1976), Abel and Smith (1983),

Oliver and Wiseman(1983) to yield an encoding where each leaf in a 2 î by 2^

image is n digits long. A leaf corresponding to a 2 ^ by 2^ block (k<n) will

have n - k don’t care digits. Once all the black pixels are encoded into their

corresponding quaternary codes, then they are sorted and stored in an array or

list. If four pixels have the same representation except for the last digit, they

are eliminated from the list and are replaced with a code of (n-1) quaternary

12

0
\

/

/

003

021 030 031

023 032 033 122

210 211 300 301 310 311

212 213 302 303 312 313

320 321 330 331

322 323 332 333

\

Figure 1-3.7. Quadrant labeling and generation of quaternary codes{ Gargantinl(1982)).

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

digits followed by some kind of marker (don't care), here denoted by X. For

instance, if pixels 310, 311, 312, and 313 are all in the array, they can be

replaced by 3 IX . Similarly, 30X, 31X, 32X, 33X can be replaced by 3XX and so

forth, where X is the don't care digit greater than 3. Such an encoding has the

interesting property that when the codes of the nodes are sorted in increasing

order, the resulting sequence is the postorder traversal of the blocks of the

quadtree. The main advantages of linear quadtrees, with respect to quadtrees

are:

i Space and time complexity depend only on the number of black

nodes.

ii. Pointers are eliminated.

Jones and lyenger(1984) and Raman and lyenger(1983) introduced the

concept of a forest of quadtrees that is a decomposition of a quadtree into a

collection of subquadtrees, each of which corresponds to the maximal square.

The maximal square is identified by refining the concept of a nonterminal node

to indicate some information about its subtrees. An internal node is said to be

of type GB if at least two of its sons are BLACK otherwise the node is said to

be of type GW.For example, in Figure 1-3.8 ,nodes 0 , E, and F are of type GB and

nodes A, B, and D are of type GW. Each BLACK node with a label of GB is said to

be a maximal square. A forest is the set of maximal squares that are not

contained In other maximal squares and that span the BLACK area of the image.

The forest corresponding to Figure 1-3.8 is { C,E,F}. The elements of the forest

are identified by base 4 locational codes. For the path code or locational code

the scheme is the same as defined by Gargantini. This type of representation

can save space since W HITE items are ignored.

13

o o
17 1810 11

e o o
13 14 15 16

Figure 1-3.8.
A sample image and its quadtree illustrating the concept of a forest.

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

A linear hierarchical quadtree (LHQT) (Unnikrishnan, Venkatesh, And

Shankar{1987)) is a modified version of a linear quadtree[Gargantini(1982)J.

Since the level of the hierarchy indicates the size of the black nodes, the

additional code, don't care which was used by Gargantini can be deleted. As a

consequence, the quadtree code at level k will contain (n-k) digits only.

Unnikrishnan called these modified codes the Linear Hierarchical Q-codes

(LHQC). The set of all the n arrays of LHQC Is called the Linear Hierarchical

Quadtree(LHQT). For example, if a leaf has code 3XX, where X >= 3 , then all the

additional digits i.e., X can be replaced to give a new code which will now be

equal to 3 (see Table 1-1).

Level

Hierarchically
ordered q-code

Linear hierarchical
q-codes (LHQC)

2 244 2
1 124 12

134 13
0 300 300

301 301
302 302
320 320
322 322

Table 1-1. The LHQT for an arbitrary binary Image, (4 Is the additional digit representing X).

Anedda and Felician(1988) suggested a new compression technique,

referred to as P-compression. Here a pixel code be divided into a prefix of P

digits, 1 <= P < n, and a suffix of (n-P) digits. Every pixel belonging to the

quadrant originated by the first P quadrant subdivisions that Is consequently

of size 2(n-P) pixels has the same prefix. Then store all distinct prefixes

once; each of them will be followed by the number of pixels having that

prefix ,

14

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

and by the corresponding suffixes (see Figure 1-3.9a). They have compared the

results with those obtained by Gargantini(Linear-quadtree). Two cases namely

the best case and the worst case, are considered (see Figure 1-3.9 a,b, and c

). In the best case Gargantini's compression algorithm is shown to be more

efficient than P-compression, since the quadtree compression consists of a

single pixel code with m don't care digits(where m is the size of a quadrant),

in its rightmost positions, whereas a P-com pressed quadtree needs more

codes, that is more storage space.lt has been pointed out that in the worst

case P-compression is better if m<=4.

1-3.2 Traversal of the nodes of its quadtree :

The second pointerless representation Is in the form of a preorder tree

traversal (i.e., depth first) of the nodes of the quadtree. The result is a

string consisting of the symbol "(" , "B", "W" corresponding to GRAY (i.e., if all

pixels within a quadrant are not of same color), BLACK, and WHITE nodes

respectively. This representation is due to Kawaguchi and Endo (1980) and is

called DF-expression. For Example, the Image of Figure 1-3.3 has

(W(WWBB(W(WBBBWB(BB(BB(BBBWW as its DF-expression (assuming that sons

are traversed In the order NW, NE, SW,SE). The original image can be

reconstructed from the DF-expression by observing that the degree of each

nonterminal I.e., GRAY node is always 4.

Oliver and Wiseman(1983) also reported a linear code which specifies

a quadtree in depth first order. Their data Items consist of five-bit numbers,

of which the last four bits constitute the color value. If leaf, color the square

with value in 4 bit field, otherwise the color value refers to an average of the

quads beneath. Figure 1-3.11(a) illustrates a simple quadtree in their

encoding. In the above coding, the value which indicates a non-leaf quad is

15

Linear Quadtree P-Compressed
Quadtree

003230020 0032300
003230022 5
003230023 20
003230031 22
003230031 23
003230033 31

33

(a)

(b) (c)

Flgure1-3 .9 .
(a) P-compression coding to a linear quadtree

(b) Best case position of a 2 by 2 ^ region in a 2 ̂ by 2 " binary image.

(c) Worst case position of a 2 ^ by 2 ^ region.

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

repeated many times. The compressed quadtree scheme was designed by

Woodwark(1984) in order to obtain the compression of the node list resulting

from a depth-first visit of the quadtree. This method consists in associating a

type code with each non-terminal node in the tree. There are 52 possible type

codes for the sons of any non-leaf quadrant { see Figure 1-3.10). These allow

for any or all of the sons of that quadrant to be defined further down the tree.

If, for example a non-leaf quadrant has dependent leaf of two colors, A and B,

the record of representing that quadrant will consist of the appropriate type

code, followed by the color values of A and B in the order defined by the type

code. Any dependent non-leaf quadrants will follow in traversal order.

Figure 1-3.11(b) shows a simple quadtree represented using this compressed

traversal code.

The quadtree is proposed as a representation for binary images

because its hierarchical nature facilitates the performance of a large number

of operations. Most images are traditionally represented by structures such as

binary arrays, raster(i.e, run length), chain code(i.e., boundaries) or

polygons(vectors), some of which are chosen for hardware reasons (e.g., run

lengths are particularly useful for rasterlike devices such as television) .

Conversion from these methods to quadtrees is given in Samet(1984,1981b),

Unnikrishnan, and Venkatesh(1984).

1-4 Volume Data

Extension of the quadtree to represent three-dimensional objects by

use of octrees has been proposed independently by many researchers

Hunter(1978); Jaclins and Tanimoto(1980); Meagher(1982); Reddy and

Rubin(1978) as cited by Samet(1984). The process begins with a

2 n by 2 n by 2n object array of unit cubes or voxels(volume elements)

16

No leaf quad*

One cdouf of leaf quad ___ ____ ___

3E3S3S3!aSèlS
1 jCZSSDlâiij) u » .«>
Two coiou's of leaf quad

Three tofou** of leaf quad

four cofourt of leaf quad

[Â1 jH) f n fP | i t 0 M # «raw ti

£ 7 \ lOkefw «•d-ImT « W * e n !' iy{m fcOEw W P n
Arevertcl

Figure 1-3.10. Type code for compressed traversal coding (Woodwark(1984)).

(a) Oliver and Wiseman's treecode

22 2Û 2Û 3 3 6 6 2 Û 3 3 6 3 6 22

6 3 6 3 3 2 2 6 2 1 6 3 6 6 6 24 6

6 6 14 26 22 3 3 6 14 2 2 3 3 14 3 14 14

Underlined numbers are average values (+16 for identification)
at non-leaf quads.

(b) Compressed traversal code

a 3 fi. 14 2 a 3 14 4LB 3 14 42 3 14 6

2 6 2 2 3 6 22 3 6 22 3 6 1 6 4 J.

3 6 2 1 6 14

Underlined numbers are type codes (see Figure 1-3.10)

Figure 1-3.11.
Traversal and compressed traversal coding of a simple quadtree (Woodwark[1984]).

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

[Jaclins and Tanimoto(1980)] (also termed as obels [Meagher(1982)]. The

octree is an approach to object representation similar to the quadtree, and is

based on the successive subdivision of an object array into octants. If the

array does not consist entirely of Ts or entirely of O’s, then it is subdivided

into octants, suboctants, etc. until cubes (possibly single voxels) are obtained

that consist of Ts or O’s; that Is they are entirely contained In the region or

entirely disjoint from it. This process is represented by a tree of out degree 8

in which the root node represents the entire object with octants labelled as in

Figure 1-4.1, and the leaf nodes are said to be BLACK or WHITE , depending on

whether their corresponding cubes are entirely within or outside of the

object, respectively. All nonleaf nodes are said to be GRAY. Figure 1-4.2

contains an example object in the form of a staircase and its corresponding

octree. The labels denote the octant numbers associated with each son by

using the labelling convention of Figure 1-4.2.

Many of the algorithms obtained for the quadtree, can be extended to

the octree. Gargantini(1983) makes use of a pointerless representation termed

a linear octree (analogous to the linear quadtree, Gargantini(1982). He

represented each pixel by an octal integer in a weighted system. Thus the

digits of weight l <= h <= n identifies the largest octant to which the

pixels belong at the hfh subdivision, in the planar case, a quadrant is

subdivided into four squares identified by NW ,NE,SW and SE. An additional

notation “Forward" and "Backward" (F and B) has been introduced to

distinguish between the four cubes nearer to the viewer with respect to the

other four cubes. Here octant NWF is encoded with 0, octant NEF with 1, octant

SW F with 2, octant SEF with 3, octant NWB with 4, octant NEB with 5, octant

SWB with 6 , and in the last octant SEB with 7.

17

Region of a Three-Dimensional Space

0 1 2 3 4 5 6 7

Data Elements in the

Representative Octree Node

Figure 1-4.1.
Region of a three-dimensional space divided into numbered octants
and the associated octree node with eight data elements (octant 3
is not visible) .

0 1 2 3

(b)

Figure 1-4.2.
Example object (a) and its octree (b).

0 = BLACK = "Full";

□ = WHITE = "VOID" (empty);

0 = GRAY (BLACK and WHITE).

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

Figure 1-4.3
Representation of an object with n=2.

Once all the black pixels are encoded, condensation can be applied as discussed

in Gargantini(1982) i.e., the representation for the region shaded in

Figure 1-4.3(Gargantini(1983).

{ 01 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,35 ,5 1}

will be replaced by,

{01 ,1X ,35 .51}

where X is the marker or don't care digit defined earlier, with an

integer>7.

18

CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

All the algorithms, explained above for octrees, have a common

disadvantage. The entire three-dimensional image array must be loaded into

computer memory from the start and left there throughout a session.

Yau and Srihari(1983), proposed a general approach to construct a

2 d-tree (or hyperoctree), representing a d-dimensional binary image from the

2 ^ -1 -trees representing (d-l)-dimensional cross sections (or slices) of the

image, orthogonal to any of the axes. The word hyperoctree is defined by

Yau and Srihari, for a d-dimensional binary image. Here a d-dimensional image

is recursively divided into 2 ^ hyperoctants giving a 2 d-tree or hyperoctree.

Since the work given in this thesis is based on two-dimensional and

three-dimensional Images, we need not discuss d-dimensional images in this

report. The quadtree to octree conversion algorithm developed by Yau and

Srihari is established in such a way that 2^ quadtrees qo»qi» <̂2 * -̂1, of

which are generated from the array of side 2^, are sequentially loaded. Then

q i is merged with qg, qg is merged with,q2 0 - i with q2 n_2 , to

give 20-1 new trees q'o»q'i q'20-2- Repeating such merging steps n times,

we obtain the octree. The only operation at every merging is to copy the

subtree whose root is at a certain depth onto the corresponding node of the

other tree while traversing the two trees in parallel, this is explained in

Figure 1-4.4. Just to explain the theory discussed above, we consider eight

quadtrees, whose origin is not known. For more details see Xiaoyang, Tosiyasu

,Fujishiro, and Noma(1987) and Chien and Aggarwal(1986), and Shrhari(1981).

19

K « 0

0 0 (0

K « 1

0 0 1 0

A
0 0 0 0

K-2

A
0 0 0 1

K » 3

K « 4

0 0 1 1

K = S

0 # 1 1
K -t

1 1

K-7

1 0 1 0

K " 0

0 0 1 0

K - 1

A
0 0 0 1

K"2

0 0 1 1

K -3

§ @ 1 1

K . 0

A
0 3 0 1

K«1

Â

Figure 1-4.4. Generation of the octree of an object using quadtree of its s l i c e s [Yau, and Srihari(1983)1

Chapter 2

2 . M URRAY POLYGONS 2 0

2 - 1 Introdution 2 0

2 - 2 Murray Polygons 2 0
Gray Codes or Cyclic Progressive Numbers 2 3

Direct Peano Transformations 2 5

Murray Arithmetic 2 6

Murray Transformation 2 8

Mixed Scan 3 1

Some Lemmas 3 2
Implementation Of Murray Scan 3 9

Original Implementation 3 9

A Faster Murray Scan Algorithm 4 2

Hardware Implementation 4 6

Three-Dimensional Cartesian Coordinates 4 6

Extension To 3-D And n-D Murray Polygons 4 7

Method One 4 7
Some Lemmas 5 0

Second Method 6 2

Polar Murray Scan 5 4

Polar Coordinates 5 4

Changing Coordinates Systems 5 5

Graphs In Polar Coordinates 5 6

3D And Higher Dimensional Polar Coordinates 5 6

Cylindrical And Spherical Coordinates 5 6

Implementation Cf Planar Polar Murray Scan 5 9

Cylindrical Polar Murray Scan 6 1
Spherical Polar Murray Scan 6 1

2 - 2.11 Application Areas 6 2
Scanning 6 2

2 - 2 . 12 Remarks 6 3

CHAPTER 2. MURRAY POLYGONS.

2-1 Introduction;

In this chapter the developments by Cole(1985a,1985e) from Peano's

original concept of a space filling curve to the definition of murray polygons

and their associated methods via multiple radix arithmetic are described. Two

dimensional and three dimensional murray polygons for cartesian as well as

for polar coordinates are described in detail. The formal definition of a space

filling curve and the literature has been discussed in detail in Chapter 1.

2.2 Murray Polygons:

Cole became interested in space filling curves motivated by an

argument with a colleague over the categorization of curves as either Hilbert

or Peano polygons. In fact Peano, introduced the idea of an explicit space

filling curve and Hilbert and others introduced the idea of limiting sequences

of polygons leading to space filling curves.

After initial Investigations Cole produced neat algorithms for drawing

the common space filling curves, all three (i.e., Peano, Hilbert, and

Sierpinski), are obtained recursively from a single point [Cole(1983)]. The

main procedure for the Peano polygon is given in Program 2.1, the language

used is the Outline System of PS-algol [Carrick,Cole, and Morrison(1987), and

Morrison(1988)]]. Some confusion arises from the polygon P ̂ which appears to

have only six vertices rather than the nine. This problem is resolved by

assuming that the Peano polygon has nine vertices by splitting each edge at

its mid-point. This proved to be of significance later.

20

CHAPTER 2. MURRAY POLYGONS.

let draw.peano = proc (cint complexity)
begin

let peano = proc(epic p ; cint complexity, order, old.width, width);
nu ilp roc
if order = complexity then draw(p, 0, width, 0, width)
else

peano (scale rotate (p
shift scale p by 1 ,-1 by old.width + 2, width ̂

shift p by 2 * old.width + 4, 0) by -90 by -1,1,
complexity, order + 1, width, 3 * old.width + 4

)

peano([0,0],2 * complexity, 0, 0, 0)
end

Program 2.1. Main algorithm for Peano Polygons.

Peano's original definition had taken a point on the interval [0,1] and

split it into two real base three numbers by taking all the odd indexed digits

in their sequential order for the value for x and all the even ordered digits in

their sequential order for the value for y to obtain the point { x,y) of the

square. It should be noted that to maintain the uniqueness of the

transformation, the ambiguity of real number representation was dealt with

in a more complex manner. Before we talk about the ambiguity problem it will

be better to discuss the transformation which is used by Peano. Let

T = O .aiagag be a sequence of digits each In base 3 representation. This

sequence is now split into two real sequences,

X = 0.b-|b2b3............ Y = O.C1C2C3....

where digits b; and q are given by the relation,

21

CHAPTER 2. MURRAY POLYGONS.

bn...... = K 33+84+...........+®2n-2 (32n-l). (A)

Cn = K 3 -1+33+............. +^2n-1 (3 2 n), for n = 1,2,3.................. (B)

where for a digit 'a'; K(a) represents the reduced radix complement of 'a' i.e.,

K(a) is equal to 2-a. The term K'^(a) represent the operation K repeated n times

on digit 'a', where,

K^{a) = a if n is even

K(a) or 2-a otherwise.

Surprisingly, the above result is very similar to that of the Gray code

transformation. One can conclude that Peano invented the Gray code

transformation before Gray did. The Gray code transformation is discussed in

the next section.

From the above results we can say that the digit bn i.e., the nth digit

of X is equal to agn -l which is the odd numbered digit or to its complement

according as the sum a g + a ^ f +agn-2 of digits of even rank is even or odd.

Similarly for the Y digits we will consider the sum of digits of odd rank.

Peano showed that if a sequence T is given, then we can determine X

and Y and if X and Y are given then a sequence T can be determined. Peano's

transformation gives the same values for the two sequences given as,

T = O.aiagag an_ian222..........

where a^ is equal to 0 or 1, and the other,

T ' = O.aiagag an-ta'pOOO....

where a'n = a^ + 1.

22

CHAPTER 2. MURRAY POLYGONS.

The value of the sequence T is given as,

t = val T = a-j/3....+ ag/S^^.............. + an /30+

The correspondence between T and (X,Y) is such that if T and T' are of

different form, but val T - val T , and if X, Y are the sequences corresponding

to T, and X',Y' are the sequences corresponding to T then we have,

val X = val X ' , val Y = val Y ' .

Note that two decimal fractions of different form, such as 0.022222..... and

.0.1000.......... have the same value, but the correspondence between the two

different forms and the associated numbers X and Y do not have identical

representations. Actually if we split the above two numbers using the Peano

transformation then the two pairs of numbers will be (0.022.....,0.222....) and

(0.100......... 0.222....) , which are same in value, but have different

representations.

Cole considered the application of a similar technique to define a

mapping from the first 32n base three integers to the vertices of the nth

Peano polygon. He tried various alternative transformation but they all failed,

until the idea of using Gray codes, or cyclic progressive numbers occured.

2,2.1 Gray Codes or Cyclic Progressive Numbers :

Gray(1953) discussed ways In which cyclic progressive number

systems could be defined and Cole(1966) gave conversion rules and addition

and multiplication tables for such systems. Cyclic progressive integers have

the property that successive integers differ in only one digit. They are not

restricted to binary representation but can take any number base. The

following conversion rules from a pure number to a Gray code is given by Cole.

Two cases should be considered; 1) odd base and 2) even base systems.

23

CHAPTER 2. MURRAY POLYGONS.

Suppose

d = dpdn-i..........dgd-j.

is an integer in a pure number system with radix r. Then the Gray code

transformation d' of d is defined as,

d = d nd n - i ...d'gd-;

The value for the digits d'j depends upon the radix r.

Case 1. r is odd.

d'j = dj if the sum of all its more significant (i.e. left hand) digits

is even,

- r -1 -dj o therw ise .

Case 2. r is even.

d'j = dj if dj^-j is even,

= r -1 -dj o therw ise .

Note: The term r - 1 - dj is the usual reduced rad ix c o m p lem en t

In both cases, the conversion rule back to ordinary integer(pure)

number form is exactly the same as given In the odd case above. Table 2.1

gives some simple example with different bases.

24

CHAPTER 2. MURRAY POLYGONS.

base 3 _ base 4
Pure Gray code. Pure Gray c
0000 000 0 0000 0000
0001 0001 0001 0001
0002 0 00 2
0010 0 01 2
0011 0011 0 0 1 0 0013
0012 0 01 0 0011 0012
0020 0 02 0 0 0 1 2 0011
0021 0021
0022 0 0 2 2 0 3 3 3 030 3
0100 012 2 1 0 0 0 1333

Table 2.1. Conversion from pure integers to Gray code integers with
different bases.

2.2.2 Direct Peano Transformations :

Cyclic progressive number system and space filling curves have a

similarity. The successive cyclic progressive integers differ in only one digit,

whereas in the case of Peano, Hilbert and other space filling curves, the

consecutive vertices are only one unit apart in either x or y but not both.

After considering several possibilities for base two numbers Cole found the

transformation for the case of Peano polygons by using base three numbers

(further details follow in section 2.2.3.2). Further he realised the

importance of the commutability of conversion to Gray codes and reduced

radix complementation to the mapping, that is if,

a ’ is the gray code equivalent of a, and a* is the reduced radix

complement then

(a)* = (a*) (1)

This result is only true for odd base numbers. For Hilbert polygons this

result is not true, since the obvious corresponding base is even. The proofs

and detailed explanations to cover explicit mappings from the first n^P base

25

CHAPTER 2. MURRAY POLYGONS.

Gray code integers into the ordered vertices of the Peano polygon and vice

versa are to be found in Cole (1985a). The result used applies to any odd based

number system with radix r, giving a generalised Peano polygon P ^ n,r of type

r in n dimensions which passes through all r^ri points with integer

coordinates in the r-dimensional cube of side length r^^-1 (m = 1 ,2 ,3).

The transformation to the pth Peano polygon is only true for the first

n^P integers where n is odd. Soon after this Cole (1985c) produced a table

driven mapping between the first 2^P integers and the ordered points of the

pth Hilbert polygon. Griffith(1985) also derived a table-driven algorithm for

the generation of Hilbert curves. These methods with minor modifications can

be made equivalent. As with the Peano transformation the method could be

extended to deal with Hilbert polygons in higher dimensional space.

2-2.3 Murray arithmetic :

All the techniques including quadtree methods, which have been

discussed so far are limited to squares with a restriction on their dimensions.

The tool to escape from the square cell was derived by Cole(1985b) using

multiple radix arithmetic, in short murray arithmetic.

Murray arithmetic is integer arithmetic in a number system in which

each murray integer is defined as a sequence of digits

^ n » ^ n - 1 » ^ n - 2 • • • • •

together with a sequence,

r n J n -1 ' . . T1 of integers

26

CHAPTER 2. MURRAY POLYGONS.

where r; defines the radix associated with dj (for i = 1,2 n) such that

for each i we have,

, 0 ^ dj < rj - 1.

The main operation required is the addition, which is defined as usual,

except that carry now takes place from the ith to the (i+1)th digit when the

sum in the ith place exceeds q - 1. Addition may only take place between

integers having an identical radix sequence. Further two successive murray

integers will either differ in only one digit (i.e., d-j) or carry takes place from

the first to the ith digit. The reduced radix complement for murray integers is

defined as :

d* = b = bnbn-1 b-j,

w here, bj = rj - 1 - dj (i = 1 ,2 , --------- - n),

and its gray code equivalent is given as :

d =: c = cp|C|̂ .*| C"j ^

w here.

Case I . All r; odd :

Cj - dj if the sum of d^^dn-i, ■ . . ,dj+-| is even or if i = n

= rj - 1 -dj o therw ise .

Cole referred to these murray integer as murray-o integers.

27

CHAPTER 2. MURRAY POLYGONS.

Case I I . All r; even :

Here dj is replaced by its reduced radix complement if d j+i is odd or

i~=n, and unchanged otherwise. These murray integers were referred to as

m urray-e integers.

Case in . rj even or odd :

Consider any digit dj with corresponding radix q. Let j > i be the first

integer such that rj is even. Always assume that rp+ i is even.

Let

i
Pi,j = (Z rk) rem 2.

k—i+1

Then the cyclic progressive transform d' of d is

d = CpjCp_*j . . . C'j,

where

Ci = dj if pij = 0

and

Cj = rj - 1 - dj if Pij = 1.

Cole referred to these murray integer as hybrid murray integers.

2-2.3.1 Murray Transformation;

Cole(1985b) proved that the murray-o integers can be transformed,

using a similar method to that described in the section for Peano polygons,

such that all the points with integer coordinates within a rectangle m by n,

28

CHAPTER 2. MURRAY POLYGONS.

consecutive points being not more than one. Importantly the murray

transformation applies to each possible factorisation of p and q taken in any

order. The resulting space filling curves he named murray polygons. He also

extended this generalisation of the Peano polygon to higher dimensional space.

Cole realised that murray polygons are not restricted to odd

dimensions as the restriction on the radices being odd can be lifted for the

first and last radices giving even sided rectangles in 2 -dimensions (see

Figure 2.1). Considering the two-dimensional cases we now have an explicit

transformation from the first m positive integers to the m points with

integer coordinates in a rectangle containing exactly m such points. The

stages are outlined as follows;

Express the fixed base number d as a murray integer with given murray

radices, r| say,

d = dndn-1 dgd-j , (0 < d; ^ r;-1 , i = 1,2 , . . ,n(=2 k, where k is an

integer)).

Convert this murray integer to a Gray code integer

d’ = CnCn_-| cgc-j.

Split the Gray code number into parts x' and y' as below

x' = Cn_*jCn-3 . . . C3C1 y' = CnCn_2 c^cg.

Convert Gray coded x' and y’ separately back into murray integers x" and y".

Convert the pair of murray integers (i.e., x", y") into the original fixed base

number pair (x,y). The whole scheme is given in Figure 2.2.

29

in

nnui
] ru ünnü

(a) X - radix 7 and y - radix 4. (b) x - radices 1 3 3 and y - radices 3 3 2,

(c) X -radices 2 3 5 and y - radices 3 5 2.

Figure 2 . Î . Murray polygons vith even radices.

Figure 2.2. Murray Transformation from n to (x,y)

PU R E -
INTEGER

► S T E P S -
GRAY CODE
COORDINATE

STEP 1”
MURRAY
INTEGER

► STEPS
ORDINARY

COORDINATE COORDINATE
(x",y")

GRAY CODE
INTEGER

MURRAY

n-1 n-3n-1

n-1 n-3

Where

n rem r. the new value of n will be equal to (n div rj)
Here I will start from 1 and will range upto n .

is even,

otherwise.

+ C. +., is eveni+2 1+4

otherwise.

n-1 n-3 n-3 n-5 n-5 n-7

and finally,

n-2 n-2 n-4 n-4 n-6

CHAPTER 2. IVSJRRAY POLYGONS.

The resulting dimensions of the bounding rectangie M by N are given by

f\A = r-j*r3 *r5 *rn--j (product of odd radices)

N = T2 *r4 *r0 *rp (product of even radices).

Examples of several murray scans for different rectangles are given in

Figure 2.3. The figure also shows how the dimensions of each sub-tile can be

found by considering pairs of adjacent radices. The pair r-j, rg giving the x and

the y dimensions of the smallest basic tile, r-j *rg, r2 ^r^ the next and so on.

These examples also highlight the effect of the order of the radices. A radix

value of 1 can be used to force movement in a particular direction. For

instance for any tile pair r^, r^ -i if the least significant radix, namely the 'x

radix’ r^ -i has value 1 then all steps are forced to occur in the y direction,

we will refer to this as a linear vertical murray scan, as shown in the basic

tile of Figure 2.3b(a,e). Similarly movement can be restricted to the x

direction by making the 'y radix’ take value 1 as shown in Figure 2.3b(b,d) this

is referred as a linear horizontal murray scan. Further when the dimensions of

the bounding rectangle cannot be factorised into an equal number of factors

then we can use a radix of value 1. The radices are packed with additional

dummy radices of value 1. This is Illustrated in Figure 2.3b. (c,d). It should be

noted that it Is advantageous that the fundamental algorithm works with a

radix value of 1 .

As mentioned earlier the restriction on the radices being odd can be

relaxed for the first (normally x) radix and the last (normally y) radix. The

effect of the first radix being even is to give the basic tile an even dimension,

if the last radix is even then the number of horizontal scans of the largest tile

is now even. For example, let us consider a rectangle whose end points are

marked as 1,2,3, and 4 (see below). The path of the murray scan is also shown.

30

(c)

Zl[

(d)

I

i r~~^ f"— î

(e)

Figure 2.3a. Building steps for a murray polygons with «-radices 5 5 3 and y-radices 3 3 2.
(a) represent the smallest tile of size 5*3 .
(b) represent the smallest block having 5 tiles of size 5*3 .
(c) represent the next block having 3 smallest block of size 5 *3 *5 .
(d> represent the next consecutive block having 3 blocks of size 5 *3 *5 *3 .
(e) represent the complete polygon having 2 blocks of size 5 * 3 *5 *3 *3 or

having 5 *3 *3 *2 tiles each of size 5*3.

!
7

i
(a)

- g

(b)

(d)

radices
Figure

(c)

(e)

Figure 2.3b. The effect of radix value 1 on the direction of the scan.

CHAPTER 2. MURRAY POLYGONS.

Let r-| and rg be the two radices, where r-j corresponds to the x-part

and rg corresponds to the y-part. In another way we can say that the

x-radices represent the number of columns and the y-radices represent the

number of rows. Now if we follow the linear murray path going from 1 to 3,

we need an odd number of rows i.e., y-radices should be odd, whatever the

x-radices, and to reach 4 we need an even number of rows i.e., y-radices

should be even, whatever the x-radices. Further, if r i , rg,rg,r4 are the

radices, then here r̂ and r^ can be even but rg and r$ should be odd. The radix

rg cannot be even because the end point where we have to join the next tile is

3. In the case of rĝ consider the tile of size r-j*rg as a one single column .

Now to reach the point 3 we need an odd number of tiles each of size r-\ *rg,

hence the radices rg should be odd.

Note : each radices tells how many times the previous polygon has to be

repeated.

2-2.4 Mixed Scans ;

Cole (1988a) modified the murray polygon algorithm to allow

switching between transformations in different parts of the scan. Cole used

murray scans to produce bilevel hardcopy from grey scale image data giving

results similar to half-toning and found that mixed scans are useful in

reducing the patterns caused by the standard murray scan. The main reason for

31

CHAPTER 2. MURRAY POLYGONS.

that is the standard murray scans have only four possible orientations,

whereas mixed scans have eight possible orientations. He also combines this

idea with the scan patterns described by Griffiths(1986) to give mixed

Griffiths and murray scans (see Coie(1988a)). An example of a simple switch

between basic horizontal and vertical murray scans is given in Figure 2.4.

m m m

Ĵlfl

Figure. 2.4 Mixed scan (see Coie(1988a)).

2-2.5 Some Lemmas :

In the rest of this thesis only murray integers in which all of the

corresponding radices are odd i.e., murray-o integers, will be considered.

Further it has been assumed that d is the murray-o integer, d' is the gray code

integer, the point (x', y') related to integer gray code scale axis, and the point

(x", y") is the murray integer obtained by converting x' and y' separately. Other

notation has been defined in Figure 2.2.

Lemma 1;

Suppose

(1). d|4.‘j+d|+2+-f-dn is even and

(2). Cj+2 +Cj+4 ++Cn(or 0^,-1) is also even, Then

C j = d; if

32

CHAPTER 2. MURRAY POLYGONS.

Case 1. i is even and

di+-|+di4.3++dn-i is even.

Case 2 . i is odd and

dj+i+dj+3+........................... +dn is even.

Where dj, Cj , and C j are defined in Figure 2 .2 .

Proof :

For the given conditions, we have

Cj = dj and C j = Cj

which implies C j = d; for i to be odd or even.

Case 1 . i is even. From (2) we have

Q+2+Q+4+ ..+Cn = even

given Cj = dj, this implies dj+2 +dj+4 + +dn = even (3)

Equation (1) can be written as

(di+2+di+4 -f-............... ...+dn) + (di+-j+di+3+ +dn-i) = even

using (3) we get,

even + (d|+-j+dj+3+ ..+dn_i) = even

or

(dj+-j+dj.^3+) = even

33

CHAPTER 2. MURRAY POLYGONS.

Case 2. i is odd. From (2) we have

C i + 2 + Q + 4 " ^ — G v e n

given C; = d;, this implies d|+2 +dj+4 ++dn_i = even (3)

Equation (1) can be written as

(dj+2+di+4+.................+dn-i) + (d;+i+d|+3+.....................+dp) = even

using (3) we get,

even + (dj+-|+dj+3+.........+df ̂) - even

or

(di+i+di+3+................. +dn) = even

Hence proved.

Lemma 2 :

Suppose

(1). d|^.-i+di+2+................................+dn is odd and

(2). C;+2+G;+4+................................+Cn(or C p -i) is also odd. Then

C ’i = d; if

Case 1. i is even and

(n*!-2*‘*n+4+.........+*’n) + (d j+ i+d i+3++ d n .i) - (n/2 - i div 2) is even.

Case 2. i is odd and

(n+2+n+4++*'n-l) + { d j+ i+d j+3 + H-dp) - (n/2 - (i+1) div 2) is even.

34

CHAPTER 2. MURRAY POLYGONS.

Where dj, Cj , and C j are defined in Figure 2.2.

Proof :

From the given conditions we have,

Cj = rj - dj -1 and C j == n - Cj -1.

Substituting Cj in latter case we get,

C j = rj - (rj - dj -1) -1

or C j - dj

Case 1. if i is even. Substituting C\ = r\ - d, -1 in equation (2) we get,

(n+2 - 4 + 2 -■>) + (n+4 - 4 + 4 -1) + +(rp - dn "1) = odd

(n+2'**^i+4^..... "+^n) ■ (4+ 2^ d j+ 4+ +d^) - (n/2 - 1 div 2) = odd (3)

Equation (1) can be written as

(dj+2+dj+4+...................+dn) + (4+ i+ d j+ 3+ +dn-i) = odd (4)

Using equation (4), equation (3) can be written as,

(rj+2 +rj+4 ++rp|) - odd + (4 + 1+d|+3 + + d n -i) - (n/2 - 1 div 2) = odd

or (rj+2 +ri+4 + +rn) + (d j+i+d|+3 ++dn_i) - (n/2 - i div 2) = even

Case 2. if i is odd. Here equation (3) can be written as,

(n+2 +rj+4 ++ rn -i) - (dj+2 +dj+4 ++ d n -i) - (n/2 - (i+1) div 2) = odd

Using equation (1) in the above equation we get the required result i.e.,

(n+2+n+4++ rn -i) + (dj+-|+d|+3 +.....+dp) - (n/2 - (i+1) div 2) = even.

35

CHAPTER 2. MURRAY POLYGONS.

Hence proved.

Lemma 3 :

Suppose

(1). dj+-j+dj+2+................................+dn is even and

(2). Cj+2+Cj+4+............................... +Cn(or C n-i) is odd then

C j = rj - dj - 1 if

Case 1. i is even,

dj+-j+dj+3+ = odd.

Case 2. i is odd,

dj+-j+dj+3+ +dn = odd.

Where dj, Cj , and C j is defined in Figure 2.2.

Proof :

Proof is very similar to Lemma 1.

Lemma 4 :

le t

(1). dj+-j+dj+2+ - +dn is odd and

(2). Cj+2+Cj+4+............................... +Cp(or C ^-i) is even then

C j = rj - dj -1 if

36

CHAPTER 2. MURRAY POLYGONS.

Case 1. i is even and

(n+2+n+4"**” *‘' +fn) + (^i+1+^1+3**’+dn-i) - (n/2 - 1 div 2) Is odd.

Case 2. I Is odd and

(n+2+n+4+.........+rn_i) + (d j+ i+d i+3 + ..+dn) - (n/2 - (1+1) dIv 2) is odd.

Where 6 \, Cj , and C'j are defined In Figure 2.2.

Proof :

Proof Is very similar to Lemma 2.

Theorem 1;

If d Is the murray-o Integer and the point (x'% y") are the corresponding

murray coordinates as deffhed In Figure 2.2, then,

C'j = dj if di+*j + dj+3 ++(dn-i or d^) = even,

fj - d| -1 otherwise.

Proof ;

From lemma 1 and 2 we have,

C ’i = d | if

(I) I is even,

di+-|+dj+3+ +dn_i = even, and

(n+2+n+4+""+("n) +(d i+ i+d ;+3 +....+dn_i) -(n/2 - 1 div 2) =even

(I I) I is odd,

37

CHAPTER 2. MURRAY POLYGONS.

d;+i+d;+3+...............+dn = even,

) +(dj+‘|+dj.|.3+...+d|<^) -{n/2 - i div 2 +1) =even.

Here the value for dj can be odd or even, and the value for r; will be

odd for each I, this implies the value for (r; -dj -1) will be even if dj is even,

otherwise odd, since (rj -1) is even. The above statement can be restated as,

C'j = dj if d j+ i+ d j+ 3 + + (dn -i or dp) = even (A)

Similarly from lemma 3 and 4 we have,

C ’j = rj - dj -1 if

(I) I is even,

dj..j.‘j+dj.|.3+............... +d|̂ _") = odd

(n+2+n+4+ +Fn) + (d j+ i+ d j+ 3+ +dn_i) - (n/2 - i div 2) = odd.

(I I) i is odd,

dj+i+dj+3+.............,.+dn =odd

(n+2+n+4+--+^n -l) +(d j+ i+ d |+ 3 +...+dn) -(n/2 - i div 2 +1) = odd.

Here again we can say that the term (rj -dj -1) will be odd if dj is odd and

using this we get,

C'j = n - dj -1 if d j+ i+ d j+ 3 + +(dn_i or dp) = odd ------------- (B)

Hence proved from result (A) and (B).

38

CHAPTER 2. MURRAY POLYGONS.

2-2.6 Implementation of murray scan :

The original implementation by Cole is given in I) and his fast murray scan is

given in II). Both the programs are coded in PS-algol and C.

I) Original implementation :

Only main procedures are given. All the steps are given in

section 2-2.3.1. The murray integer is held in an array of integers and this

value is incremented to move from vertex to vertex on the scan. The steps for

drawing murray curves from a point (say nth) to (x,y) are,

{Note : The nth point is not the same as we use in murray digits)

1. Convert n to the equivalent murray integer with the given murray

radices 2. Convert this integer to the equivalent Gray coded

in teger

3. Split this integer into x and y,

4. De-Gray code x and y parts using alternate digits for each part,

5. Convert x and y back to ordinary integers giving (x,y),

6. Increment murray integer by one,

7. Repeat steps 2 to 6 while n<= N*M-1, where N and M are the dimensions

for a given rectangle.

Conversely, to convert from (x,y) to n, the above steps are reversed,

starting from step 5. The conversion from a murray integer to n is given in

conuert.from .m urray procedure.

39

CHAPTER 2. MURRAY POLYGONS.

! Input parameters are an integer and an array of radices

! Output is the corresponding array of murray digits

let convert.to.murray = p ro c (in t n; * in t radices > * in t)
beg in

le t murray.int = v e c to r 1 ;; upb (radices) of 0
le t i := 1
while n 0 d o

b eg in

murray.int(i) := n rem radices(i)
n := n div radices(i)
i := i + 1

end
m urray.int

end

! Input parameters are murray integer and radices arrays

I Output is the corresponding integer

let convert.from.murray = p ro c (*int murray.int,radices -> * in t)
beg in

le t top = upb(murray.int)
let n := murray.int(top)
for i = top - 1 to 1 by -1 d o

n := n * radices(i) + murray.int(i)

n
end

I Input parameters are murray integer and radices arrays

I The murray integer array is incremented by 1
let next.murray = p ro c (* in t murray.int, radices)
beg in

le t I := 1
w hile murray.int(i) = radices(i) -1 d o
beg in

murray.int(i) := 0
i := i + 1

end

murray.int(i) := murray.int(i) + 1
end

40

CHAPTER 2. N/URRAY POLYGONS.

The following procedure gray.code may be used both for conversion to

and from grey coded murray integers.

I input parameters are murray.int and radices arrays

I murray.int is converted to the Gray code equivalent
let gray.code = p ro c{ * in t murray.int, radices)
beg in

let top = u p b (murray.int)
let parity :=((murray.int{ top) rem 2) = 1)
fo r i = top - 1 to 1 by -1 d 0
beg in

if parity d o

murray.int(i) := radices(I) -1 - murray.int(i)
if (murray.int{ i) rem 2 = 1) d o

parity := -parity
end

end

I This procedure takes the array of digits splits it into x and y parts.
I Input is a murray integer
I Output is a structure holding the x and y murray integer arrays
s tru c tu re coords{ * ln t a,b)
let split.x.y = p ro c (* ln t murray.int > pntr)
beg in

le t top = upb(murray.int)
let X = vector 1 :: top d iv 2 of 0
le t y = v e c to r 1 :: top div 2 o f 0
let i := 1
fo r j = 1 to top - 1 by 2 d o

b eg in

x(i) ;= murray.int(j)

y(i) := murray.int(j + 1)
i := i + 1

end
coords(x,y)

end

41

CHAPTER 2. MURRAY POLYGONS.

Some Improvements of The Original Implementation:

Using Theorem 1, the number of steps given in the original

implementation can be reduced, which can increase the efficiency for the

scan.The steps of transformation will now be,

1. Convert n to the equivalent murray integer with the given murray radices

(i.e., convert.to.murray)

2. Convert this integer to the equivalent murray coordinates (x,y),

3. Convert x and y back to ordinary integers giving (x,y),

4. Increment murray integer by one,

5. Repeat steps 2 to 4 while n<= N*M-1, where N and M are the dimensions
for a given rectangle.

n) A Faster murray j^an algorithm :

The original implementations required an improvement in efficiency

for large complete scans. The parts of the first implementation that slow the

algorithm down are the conversion to and from murray integers to pure

integers and the transformation using the gray-code procedure. In the

improved case also the conversion from murray integer to murray coordinates

and (x,y) to ordinary integers is time consuming. If we examine the murray

curve , we see that, a point inside a rectangle has only four possible ways to

move. Either it can go left or right or up or down. Each time only one of the

coordinate is going to be incremented or decremented by one unit. Now the

only problem is to find which coordinate is going to be incremented or

decremented.

42

CHAPTER 2. MURRAY POLYGONS.

Suppose

d = dndn-1...............dadadi.

be a murray digits with radices, r; (i = 1 n) such that 0 <= d; <= r; -1

where m is any integer and n is equal to 2m. Let p; be the parity of the sum of

the digits d|+-j, dj+g........ ,dn- That is, p; has value true if this parity is even

and false otherwise. Let Cp, Cp_i Ci be the equivalent Gray code integer,

where Cj is equal to dj if pj is true otherwise r\ -1 -dj if pj is false. Also if

rj is odd the parity of the new digit dj is unchanged in both cases (the parity

of rj -1 -dj where q -1 will always be even and even - dj can be even or odd,

dependand upon the digit dj itself), so the values of pj for j < i are unchanged.

The back Gray code transformation on dj depends on whether I is itself odd or

even . If i is odd then the digit dj belongs to the x coordinate otherwise it is

part of the y coordinate. The back Gray code of dj depends on the parity of the

sum of digits dj+g, dj+4, d j+g............... d^ (where k is equal to n, if i is even

otherwise k is n-1) and is dj if this parity is true and r\ -1 -dj if it is fa lse.

Further the same result can be obtained by usingf/ieorem 1. Here the

transformed digit dj Is equal to dj if the parity of sum of digits dj+i ,dj+g...........

is true otherwise, r\ - dj -1 if it is fa lse. The rule for the total change in a

given digit can now be summarised as follows. Define q; to have the value

true if the parity of sum of digits d|+-j,d|+3.......... is even and false otherwise.

The digit dj remains unaltered if q\ is true and is replaced by q -1 -dj if qj is

fa ls e .

Consider now the case of a murray integer about to be increased by

one. This will cause a change in parity of digit dj. Either dj is the first digit or

carry has taken place in one or more positions and all the digits to the right of

43

CHAPTER 2. MURRAY POLYGONS.

dj are changed from rj -1 to 0. Now 0 and q-1 are both even hence the only

digit to change parity is dj. Thus the parities qj_i ,q|-3, will have

changed. We now see that when a murray integer increases by one there is only

one digit which changes parity and its position determines whether a change

has occurred in x or y, and also which q values to change.

The only remaining information to determine is whether the change is

+1 or -1. The subscript T identifies the part under consideration, since all odd

digits corresponds to the x part and all even digits corresponds to the y part.

It should be noted that the x digits are selected from among the d-digits and

that from the general theory two successive x digits selected in this way

differ by only 1. The only problem now is to determine out of these two digits

which one in numerically greater, that is whether the x increment is to be

positive or negative. It follows from the general theory that this can be

determined by the parity digit p j+i. If Pj+1 is irue then the x increment Is 1

otherwise it is -1. Similarly for a step in the y direction.

The faster algorithm thus only requires the murray digits arrray to be
incremented by 1 and a parity array to be maintained. The steps for the faster
algorithm are thus ,

1. Increment the array digit by 1,

2. if the ith digit changes then change the parities of
Pi » Pi-2,» Pl-4 *

3. choose the x or y direction to be incremented according as i is odd or
even,

4. increment the chosen direction by 1 or -1 according as pj+i has

value true or fa lse.

Procedures to implement this algorithm are as follows.

44

CHAPTER 2. MURRAY POLYGONS.

The procedure to give the next murray integer is same as next.murray

procedure given above except that it returns the index of the leftmost digit to

change in the murray integer.

1 Input parameters are murray integer (i.e. d) and radices arrays (i.e., r)
I The murray integer array is incremented by 1
! The index of the leftmost digit to change is returned
let increment := proc(*in t d,r; int i > int)
n u llp ro c
increment := proc(*int d,r; int i -> int)
if d(i) < r(i) - 1 then { d(i) ;= d(i) + 1 ; i)

else { d(i) := 0; increment(d,r,i+1) }

The parity of the sums of alternate digits in a murray integer d to the left of

the index i is held in an array p of truth values. The following procedure

changes the truth value of p(i) and every other entry to the right of it.

I Input parameters are the boolean array of parities
1 and the index of the leftmost digit to change
let change.parity = proc(*bool p ; int start)
fo r i = start to 1 by -2 do p(l) := ~p(i)

Finally the change in x or y is calculated by using the procedure step as

defined follows.

! Input parameters are the parity array q
I and a digit position i
let step = proc(*bool q; Int i -> Int)
if q(i+1) then 1 else -1

if i rem 2 = 1 then x := x+step(q,i) else y := y+step(q,i)

45

CHAPTER 2. MURRAY POLYGONS.

Note that the counting is now in pure murray integers rather than gray

coded murray integers.

2-2.7 Hardware Implementation :

Following on from the ideas used in the implementation of the fast

algorithm outlined in the previous section Cole(1988b) suggests some hints on

hardware implementation. The basic suggestion is that the function of the

array of integers holding the murray integer is taken over by a bank of shift

registers. Each register would have a capacity corresponding to the radices

selected and be initially set with value 1. If a register is cleared by a shift

operation it then resets to zero and forces a shift in the next register. If the

register does not clear then the parity of the register number will identify

whether the movement is in the x or y direction. There would also be a number

of parity bits which can be toggled appropriately and will determine if the.

step is -1 or + 1 .

2-2.8 Three-Dimensional Cartesian Coordinate :

The three-dimensional Cartesian (rectangular) coordinate systems

consists of a reference point, called the origin and three mutually

perpendicular lines passing through the origin, called the axis. These

mutually perpendicular lines are labelled the x, y, and z coordinate axis (see

Figure 2.5). To every point P there corresponds uniquely a set of three numbers

[x,y,z], and conversely to every set of three numbers, positive or negative,

there corresponds a unique point. For the n-dimensional case there will be n

mutually perpendicular axis.

46

CHAPTER 2. MURRAY POLYGONS.

X
Figure 2.5.

2-2.8.1 Extension To Three-Dimensional And n-Dimensional Murray Polygons :

Here we are going to extend the Idea of one dimensional and two

dimensional murray polygons, which are described in previous_ section 2 -2 .6 ,

to three dimensional and n dimensional murray polygons. The algorithms which

have been described in section 2-2.6 are used. The only change which will

come to the previous algorithms is the addition of more digits to the murray

digits. These additional digits will corresponds to the other axes. In the case

of three dimension the additional digits will corresponds to the z-axis. The

methods depends upon the original implementation by Cole and his fast version

for one-dimensionai and two-dimensional murray polygons. The methods are

discussed below.

2-2.8.1.1 Method One ;

Let d = dndn-1 dgd-; (where n Is a multiple of 3) be a murray

integer with radices, rj(i=1,2 ,n) such that, for each i we have 0 < dj < r j-1 .

47

CHAPTER 2. IVKJRRAY POLYGONS.

Where,

digits d-id^dy............ -d n -2 belong to the x coordinates of the box,

d ig its d2d5ds................ d^-i belong to the y coordinates of the box and

d ig its dgdgdg............... dp belong to the z coordinates of the box.

The dimensions for the bounding box are assumed to be T, 'b% and 'h' and are

given as,

I = M *r4 *ry \...............

h =........ r2*r5*ra*.......... T p - i

b = r3 *re*rg* *r„

The triple r-j, r2 ,r3 are the x, y and the z dimensions of the smallest box,

r i * r 4 , r2 *rs , r3 *rg are the x, y and the z dimensions for the next box which

has r4 *r5 *re boxes of size r-|*r2 *r3 , and so on. The dimension 'b' represents

the number of planes each of size Th, and parallel to the XY-plane. The planes

will range from 'O' to 'b-1' i.e. value for the z coordinate. The stages for

drawing a 3D murray curve are outlined as follows,

Convert this murray integer to a Gray code integer

d = ^n^n-1 • • • • ^2^1 •

w here, c; = dj if the sum of all its more significant digits is even,

= r; -1 -dj otherwise.

Split the Gray code number into parts x \ y', and z' as below

X' = Cn-2............C4C1

Ÿ = Cn-1...........C5C2

48

CHAPTER 2. NCIRRAY POLYGONS.

Z' = Cn............. C6C3

Convert Gray code x', y', and z* separately back into murray integers

(x", y", z") given as

(x",y",z") = (c 'n -2 c 'i, c 'n -i c’2 , c’n c’3) where

c'l = c; if the sum of all its more significant digits is even,

= rj -1 -Cj otherwise.

Convert the pair of murray integers (i.e., x", y", z"") into the original fixed

base number pair (x,y,z). The steps of transformations from n to (x,y,z) can

now be summarised as,

1. Convert n to the equivalent murray integer with the given murray
radices

2 . Convert this integer to the equivalent Gray coded integer

3. Split this integer into x, y, and z,

4. De-Gray code x, y, and z parts using alternate digits for each part,

5. Convert x", y", and z" back to ordinary integers giving (x,y,z),

6 . Increment murray integer by one,

7. Repeat steps 2 to 6 while n<= rb *h -1, where T, 'b \ and 'h* are
defined above.

Conversely, to convert from (x,y,z) to n, the above steps are reversed,
starting from step 5.

Now for the faster algorithm we can define few lemmas.

49

CHAPTER 2. MURRAY POLYGONS.

Lemma 5 :

Suppose

(1). di+-|+d|+2+................................+dn is even and

(2). Cj+3+C|+6+C|+9 + +Cn(or 0^-2 or 0^-1) is even then

c'j = dj if

di+i+dj+2+ dj+4+dj+5+................... = even.

Where dj, Cj , and c'j are defined above.

Proof:

Proof is very similar to the lemmas discussed for the two-dimensional

case.

Lemma 6 :

Suppose

(1). dj+i+dj+2+ +dn is even and

(2). Cj+3+Ci+0+ej+9 + +Cn(or Cn-2 or Cn-i) is odd, then

Cj = rj - dj -1 if

di+l+dj+2+ dj4.4+dj+5+.............................. = odd.

Where dj, q , and c'j are defined above.

50

CHAPTER 2. MURRAY POLYGONS.

Proof:

Proof is very simiiar to the lemmas discussed for the two-dimensional

case.

Similarly we can define two more lemmas where in the first case the

condition (1) is odd and (2) is even and in the second case the condition (1) is

odd and (2) is also odd. The proof is similar to the one discussed for

two-dimensionai case.

Theorem 2:

if d is a murray integer and the point (x",y",z") are the corresponding

murray coordinates as defined above then,

c'j = dj if dj+1 +dj+2 +dj+4 +dj+5 + is even

rj -1 -dj otherwise.

Proof:

Using these lemmas discussed above the theorem 2 can be proved. The

proof is similarly to Theorem 1.

Using Theorem 2 the number of steps can be reduced. The steps of

transformation will now be,

1 . Convert n to the equivalent murray integer with the given murray

radices

2 . Convert this integer to the equivalent murray coordinates (x,y,z),

3. Convert x, y, and z back to ordinary integers giving (x,y,z).

51

CHAPTER 2. MURRAY POLYGONS.

4. Increment murray Integer by one,

5. Repeat steps 2 to 6 while n<= i*b*h-1, where T, 'b', and 'h' are

defined above.

2 2.8.1.2 Second Method :

This method is the extension of the fast murray scan given by Cole for

one-dimensional and two dimensional space. Here a point inside a box has six

possible ways to move. It can go either (up or down) or (left or right) or (front

or back). Each time only one of the coordinate is going to be incremented or

decremented. Which coordinate is going to be incremented or decremented can

be determined by the parity changes. This is briefly discussed below,

The idea is similar to the one discussed in section 2-2.6(11)

Suppose

d = dndn-1-...............dgd2d i,

is a murray integer with radices, r\ (i - 1 n) such that 0 <= d; <= r; -1

where m is any integer and n is equal to 3m. Let pj be the parity of the sum of

the digits dj+*j, d;+ 2 dp. That is, p; has value true if this parity is even

and false otherwise . The digit dj remains unaltered if p; is true and is

replaced by r; -1 -dj if pj is fa ls e .

Similarly using theorem 2, the transformed digit dj can be equal to

dj if the parity of the sum of digits dj+-j,dj^.2 , dj.t̂ 4 ,d j+ 5 is true

otherwise, rj - dj -1 if it is fa ls e . We can now define qj to take the value

tru e if the parity of sum of digits dj+-|,dj+2 » dj+4 ,dj+ 5 is even and fa ls e

otherwise. The digit dj remains unaltered if qj is true and is replaced by q -1

-d j if qj is fa ls e .

52

CHAPTER 2. MURRAY POLYGONS.

Consider now the case of a murray integer about to be Increased by

one. If the leftmost digit to change is in ith position then the parities for

qj, q;-i, q|-3 , di-4. Qi-6................ will change. The problem of determining the

direction to be incremented or decremented can be obtained from the value of

subscript i. if i belongs to 1,4,7,... then the x part, if it belongs to 2,5,8,.....

then the y part, and for others we will consider the z part to change. Now the

steps of the transformation will be the same as given for ID and 2D cases,

only the parity changes will alter as discussed above.

The 3D murray polygons can be build in two different ways

1) plane by plane, 2) tile by tile, as in the case of an octree.

Both ways depends upon the value for the z radices. Plane by plane scanning

can be useful for scanning medical Images which are in the form of

consecutive planes.

Let d6 ,d5 ,d4 ,d3 ,d2 ,d-| be the murray digits with radices, r; (I = 1....n)
such that for each I, 0 <= d; <= r ; .

If digit r3 has value 1 then the algorithm will scan the first plane

(i.e., z=0) and then will go to second plane and so on. A change in the digit dp

implies the change in a plane number. The steps of the transformation are

given in Table 2.2.

If f3 takes any other value than 1 provided it is odd then the

algorithm will scan the smallest tile (of size r-| * r2) of the first rectangle

then will scan the same tile in the second rectangle and so on until! the z

digit is less than r3~1. After that it will scan the other tiles in the same way

(see Figure 2.6). The steps of the transformation are given in Table 2.3. As

usual the first and the last radices can be even i.e. r-j and r$. The radix tq

simply means that the image has an even numbers of planes.

53

Murray Integers

^6^5^4 ^3^2^1

Integer Coordinates
(X, y, z)

000000
000001
000002
000010

(0 ,0 ,0) —
(1 ,0 ,0)
(2 .0 ,0)
(2 ,1 .0)

firs t
plane

000022
100000
100001

(2 , 2 , 0) —
(2 .2 ,1) - ,
(1 .2 .1) seconc

plane

Third
plane

100022
200000
200001

(0 .0 .1)J
(0 ,0 ,2) -]
(1 .0 ,2)

200022 (2 ,2 ,2) - .

Table 2.2 ;
Murray transformation from n to (x,y,z) with
murray radices 3,1,1,1,3,3. The plane Is same
until! digit d g changes. Here digit dg takes
values 0,1, and 3, which is nothing but the
plane numbers i.e., z values. Other steps i.e.,
gray code integers, murray integers etcetra
are not given.

Murray Integers

''s «fe <̂ 4 “ 3 '*1

Integer coordinates
(x .y .z)

000000 (0 , 0 . 0) -
000001 (1 .0 ,0)
000002 (2 .0 ,0) 1 St

plane
000022 (2 , 2 , 0) -
000100 (2 ,2 ,1) —
000101 (1 .2 .1) 2nd

1 plane
000200 (0 .0 .2) ^
000201 (1 .0 .2) 3rd

plane
000222 (2 ,2 ,2) - !
001000 (3 .2 .2) - ,
001001 (4 ,2 ,2) 3rd

plane
001022 (5 ,0 .2)J
001100 (5,0,1)-n
001101 (4 ,0 ,1) 2nd
001102 (3 .0 ,1) plane

1 St

Table 2.3 :
Murray transformation from n to (x,y,z) with
murray radices 1,1,3,3,3,3. The plane is same
until! digit d ^changes. Here digit d 3 takes
values 0,1, and 3, which is nothing but the
plane numtjers i.e., z values. Other steps i.e.,
gray code integers, murray integers etcetra
are not given. Further, if we want to increase
the planes we can consider rg greater than one.

a 1=15
z = 1

(a)^

z = 1

(b)

Figure 2.6. Scanning patterns due to 3-dîmenslonal murray scan
(a) an Image 1s scanned In plane by plane order,
(b) an Image is scanned In tile by tile fashion.
(Dark colour has used to show the different planes).

CHAPTER 2. MURRAY POLYGONS.

The same algorithms can also be used for n-dimensional space. The

only change will be in the addition of the digits for additional axes and the

parity changes. The steps for an n-dimensionai faster algorithm are,

1. Increment the array digits by 1,

2 . if the ith digit changes then change the parities of
Pi'Pi-1» »Pi~(n~2)» Pi-n*Pi-n-1 »Pi-{2n~2) ».........

3. choose the x-j ,X2 ,......... Xp.-j, or the Xp direction to be

incremented according as the value of i ,

4. increment the chosen direction by 1 or -1 according as pi+i

has value true or fa ls e .

2-2.9 Polar Murray Scan :

2-2.9.1 Polar Coordinates! Fine(1909)I :

Let O be a given point, and Ox a given directed line from O, where O is

called the pole or origin and Ox is called as the polar ax is . The po lar

coordinates of any point P, referred to O and Ox are given as (r,&), where r is

called as radius vector and is equal to the length of OP and O is called the

vectorial angle of P and is equal to the measure of the angle x O P

(see Figure 2.7).

54

CHAPTER 2. MURRAY POLYGONS.

Figure 2.7.

The polar coordinates of a point are not unique. This is because the

addition or subtraction of any multiple of 2 n to 0 describe the same ray as

that described by 0 .

2-2.9.2 Changing Coordinate Systems : --------

if the polar axis Ox be taken as the x axis of a rectangular systems,

and Oy as the corresponding y axis, the relations connecting the coordinates of

any point P in the two systems are given as

X - r cos 0,

y = r sin 0 .

_ x^ + y2^

tan S - y / x ,

sin 0 - y/r,

cos 0 = x/r.

55

CHAPTER 2. MURRAY POLYGONS. Î

2-2.9 3 Graphs In Polar Coordinates :

The graphs of points given in polar coordinates are obtained by taking

the length r on the terminal line of the angle 0 . These lengths being measured

on the line produced through the origin according as r is positive or negative.

The graph of an equation in r and 0 is the collection of the points(r, e) of all

the solutions of the equation (see Figure 2.8).

r = 3

Figure 2.8

2-2 9 .4 3D And Higher Dimensions Polar Coordinates;

2-2.9.4.1 Cylindricai Coordinates, Spherieal Coordinates :

The only method which is not provided by Cartesian coordinates is

associating numbers with points in space. Here two other useful coordinate

56

CHAPTER 2. MURRAY POLYGONS.

systems are discussed,

(1) Cyiindricai coordinates,

(2) Spherical coordinates.

Cylindrical Coordinates :

Let P be a point in space, and suppose that its cartesian coordinates

are (x,y,z). Let r and O be polar coordinates of the point (x,y,0) in the XY-plane

(see Figure 2.9), then we say that {r,9 ,z) are cylindrical coordinates of P .

From section 2-2.9.2, we know that x = r cos & and y - r sin ©. Thus the

cartesian coordinates of P are related to the cylindrical coordinates of P by

the equations,

X = r cos 0 , y = r sin 0, z = z.

P (x,y,z)

(r, e, z)

(x,y,o)

Figure 2.9

57

CHAPTER 2. MURRAY POLYGONS.

A coordinate surface in a given coordinate system Is a surface that Is

obtained by "fixing" one of the coordinates. For example, in a cartesian

coordinate system the coordinate surface ({x,y,zj | y = 2} is a plane. In the case

of a cylindrical coordinate system there are two kinds of coordinate surfaces.

The coordinate surface {(r ,9 ,z) | z = a} is a plane that is parallel to the

X V - plane, and the coordinate surface {(r,9 ,z) | 0 - b} is a plane that contains

the Z axis. But the coordinate surface {(r,© ,z) | r = c} is a right-circular

cylinder; it is from this fact that the name cylindrical coordinates is derived.

Spherical Coordinates :

Again let (x,y,z) be the cartesian coordinates of a point P and let r and

0 , r > - 0 , be polar coordinates of the point (x,y,0) in the XY-piane. Suppose the

angle between OP and Z axis is 0 , where 0<= # <= J7, and let distance OP - p (see

Figure 2.10). Then the numbers (p, 0, 0) are called spherical coordinates oi P.

Spherical coordinates are related to cartesian coordinates of the point P as :

X ~ p cos 0 sin

y = p sin 0 sin 0 ,

z = p cos 0.

58

CHAPTER 2. MURRAY POLYGONS.

Figure 2,10

In our spherical coordinate system, the coordinate surface

{ I 0 = a} is a plane that contains the Z axis. The coordinate surface

{ {p,B ,0) 1 = b} is a cone whose vertex is the origin(unless b = 0, b - n or

b = n /2 , in which case the cone "degenerates"). The coordinate surface

{{p,@ ,0) I p = c, where c > 0 } is a sphere; it is from this fact the name

spherical coordinates is derived.

2-2.10 Implementation of Planar Polar Murray Scan :

Here we use the fast murray scan algorithm, which is given in section

2-2.6 to draw a polar murray curve. The only change which will come to the

algorithm is the Increment to the x and the y part. For simplicity we will

replace x by r and y by © to get a polar coordinate (r,0). The number of sectors

will depend upon the product of y radices and the radius of the circle will be

given by the product of x radices. The angle between the two sectors will then

59

CHAPTER 2. MURRAY POLYGONS.

be equal to 2n/no.of.sectors. The above two statements can now be coded as

follows. The procedures used are given in section 2-2.6.

I The statement that determines the change in the coordinates.
! Input parameters are murray integers , radices and parities.
le t digit.change = increment(digits,radices,1)
change.parity(parities,digit.change)
let inc = if parities(i+1) then 1.0 else - 1 .0

if (digit.change rem 2 = 1) then r := r+inc
else © := ©+inc*angle

! To plot the points we have to convert
I them into cartesian coordinates.
X := r * cos (0)
y ;= r * sin (©)

The rest will be the same. Examples of several polar murray scan for

different radices are given in Figure 2.11. This algorithm is slow due to the

real arithmetic used for calculating (r,©). Further we have to use (r,©) values

to find the x and the y coordinates, which is also in reaj arithmetic. Much of

the time is wasted in calculating cos(©) and sin(©), which makes the

algorithm very slow. The efficiency for the polar murray scan can be

increased if we precalculate the values for cos(©) and sin(©) and put them in

a array, which can be examined in the programme any number of times.

Further the increment for r and © will be in integer arithmetic. The changed

programme is given below,

60

(a) Polar murray polygon with r radices 3 3 and theta radices 5 3

(b). Polar murray polygon with r radices 3 3 5 and theta radices 5 3

Figure 2 .1 1. Polar murray polygons.

(c) Polar murray polygon with r radices 2 3 5 and theta radices 5 3 2

(d). Polar murray polygon with r radices' 1 3 3 and theta radices 3 5

Figure 2.1 l(contd). Polar murray polygons.

(e). Polar murray scan with r radices 15 and theta radices 25.

(f) . Polar murray polygon with r radices 1 15 and theta radices 25 1

Figure 2.1 l(c o n td). Polar m urray polygons.

Figure
radices

6̂ ''s 4̂ "̂ 3 ''z ̂ 1

a 3 3 5 3
b 1 5 3 3 5 3
c 2 5 3 3 5 2
d 2 3 5 3 3 1
e 2 5 15
f 1 15 25 1

Figure 2.11 (contd). Mixed polar murray polygons.

CHAPTER 2. MURRAY POLYGONS.

IThese statements will calculate the values for sine and cosine.
!The values are stored in an array.
let sine = vector 1 :: no.of.sector-1 of 0 .0

let cosine = vector 1 :: no.of.sector-1 of 0 .0

for i = 0 to no.of.sector d o
begin

sine { i +1) := sin (© * i)
cosine (i +1) := cos (© * i)

end
IThis statement will give the cartesian coordinates,
if (digit.change rem 2 = 1) then r := r+inc

else © := ©+inc
X := r * cosine (©)
y := r * sine (©)

2-2.10*1 Cylindrical Polar Murray Scan ;

This is similar to thè^ previous algorithms discussed In

section 2-2.8 .1 .The only difference is in the coordinate systems. As defined

above, the coordinate surface j r = c} is a right-circular cylinder. The

algorithm will scan the the first plane/tile then will go to the second

plane/tile and so on. The coordinate z will be kept constant for a plane.

2-2.10.2 Spherical Polar Murmy Scan :

The coordinate surface { | p = c, where c > 0 } is a sphere, as

defined above. To get a spherical murray scan , p is to be kept constant. The

increment for the angle between the two sectors is given by,

angle = Total.angle/pr'oduct.of.radices.

For © th e increment will be anglel(say) = 2n/product.of y-radices, and for 0 ,

61

CHAPTER 2. MURRAY POLYGONS.

angle 2 (say) = n/product.of.z-radices. The rest is the same as in the algorithm

discussed in section 2 -2 .8 .1 .

2-2.11 Applications Areas :

Murray scans can be used to process an image. Many application areas

of image processing are covered in this work, which are dicussed later in the

following chapter. However in this Issue we will discuss the scanning part

using murray poiygons.The major applications are also mentioned briefly.

2-2.11.1 Scanning;

A graphics screen can be considered as a finite rectangular array of

pixels where each pixel is addressed by integer coordinates. A picture or

image may likewise may be considered split into a finite number of cells.

These arrays can be scanned in total or part by an appropriate murray polygon

(or scan). A murray scan will pass through each pixel in an image recording the

colour information and the number of successive pixels with the same value.

It is discussed in detailed in the next chapter.

2 2.11.2 Applications

Major application areas appear to be:
1 . scaling,

2 . object identification,
3. operations on images using run lengths,
4. set operations,
5. hidden surface removal and shading,
6 . ray tracing, '

7. superimpositions of images,
8 . data compaction for storage and transmission,
9. halftoning.

62

CHAPTER 2. MURRAY POLYGONS.

2-2.12 Remaries :

There are several expected advantages from a murray scan when

compared to a linear scan. Firstly, as the murray scan by its nature will pass

through many points close to each other it will be able to take advantage of any

local correlation between pixels. This should be a considerable advantage as

many images have a strong local correlation. Secondly, the murray scan will in

general change direction frequently within a relatively small and compact area,

thus may reduce the common patterning resulting from the more regular linear

scan. Lastly, murray scans have considerable flexibility allowing change of

basic tile pattern, scan order, scan direction and even dimension of scan.

Another common representation is by quadtrees. This is included as a

special case of a Hilbert scan. Murray scans are also similar to quadtree

encoding since the data is stored similar to quadtree 'scanning' based on the

number of subdivisions of a basic tile. The only trouble with the quadtree

encoding is that it can process only square images, whereas murray scans can

cover a rectangular area immediately without modification.it is a major

advantage over a quadtree representation. An important feature of the method is

the ability, to carry out calculations and operations on the run lengths

themselves without returning to the original image.

Disadvantages of the murray scan are :

1 . when adjacent points in an image are a long way apart on the scan

sequence. This case is also true in the case of quadtree{ or octree) and other

space filling curves.

2 . secondly when the dimensions of an image are prime numbers. For

example, x-dimension is 17 and y-dimension is 31,which implies that only one

63

CHAPTER 2. MURRAY POLYGONS.

linear murray scan can be used to scan an image; the coherence between the

pixels will be lost. In this case one can increase or decrease the size of an

image, to get the suitable factors. For the above example the new size for the

image can be 15*33 etcetera.

6 3

Chapter 3

3. SCANNING AND DRAWING OF TH E IMAGES 6 4

3 -1 Introduction 6 4
3 - 2 Structure And List Processing 6 5
3 - 3 Linked List 6 8
3-4 Image Construction 6 9

3-5 Storing an Image in a Database 7 2
Retrieving an Image From a Database 7 4

3 - 6 Scanning And Drawing Of An Image 7 4
3 - 7 Remarks 8 0

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

3-1 Introduction :

The essence of programming requires efficient algorithms for

accessing the data both in main memory and on the secondary storage devices.

Further the efficiency of a programme is directly linked to the structure of

the data being processed. A data structure Is a way of organizing data that

considers not only the items stored but also their relationship to each other.

In PS-algol[Carrick, Cole, and Morrison(1987), and Morrison(1988)] any data

item is allowed the full range of persistence. By persistence of data we mean

the length of time that the data exits. In this language persistence is provided

by an extensible number of roots known as the database. It is only necessary

for a programmer to identify which data is to persist and in which database it

should persist. All the images which are used in this work are initially stored

in a database. Here images are the data Information. The images which are

stored in the database can be called anywhere in the programme and can be

scanned using murray polygons. Scanning will reduce the storage space for an

image by producing the sequence of runlengths with their associated colour.

Once the runlengths are obtained then we can store them either In a file or in

a database with a suitable data structure defined. The runlengths can be

processed thereafter. They can either be used to draw the image again on the

screen at any given point or to carry out any other operation.

In this chapter we will discuss briefly the data structures used for

the images and for the runlengths to store them in the database, how to

construct the images using PS-algol graphics facilities, and how to store and

retrieve an image from the database has discussed in detail. Further how a

murray scan can be used to scan the image and to draw the image back on the

screen at any given point is discussed in detail. The language used is the

64

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

PS-algol[Carrick, Cole, and Morrison(1987), and Morrison(1988)] .

3-2 Structures and List Processing ;

It often useful to collect together several pieces of information and

give a name to this collection. For example, information about a person's

name, his passport number, age, country etcetera. All this information can be

held as one unit of data by declaring a data structure as follows,

s tru c tu re visitors(strlng nam e; int passport.number, age; string country)

This defines the form of the structure and gives names to the items in the

structure and aiso a name that Is visitors, to this type of structure. We can

now set a structure by giving information about a visitor. For example,

let A := visitors{ readsQ , read iQ , readiQ , readsQ)

If we want to refer about the visitor's name whose structure name is 'A', we

will write

visitor's.name - A(name)

visitor's.country = A(country)

We can also define structure with pointer members that may refer to

the same structure type or it may be a new structure type. For example, we

can define a structure as,

s tru ctu re list(int data; pntr next)

This declaration of a list can be stored in two words of memory. One word

stores the member data and the second stores the member next. The pointer

variable next is called a link. Each structure is linked to a succeeding

65

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

Structure by the way of the member next. This can be displayed pictorially

with links shown as arrows.

The structure list

data next

The pointer variable next contains an address of either the location in

memory of the successor list element or the special value NIL which is used to

denote the end of the list.Three structures each of type list can be defined as

let a := list{ 1,NIL)

let b := list{ 2 ,NIL)

let c := list{ 3 ,NIL)

The result of this code is shown below,

Assignment

D NIL NIL

If we want to chain them together we will write,

a(next) := b

66

CHAPTERS. SCANNING AND DRAWING OF THE IMAGES.

b(next) := c

These pointer assignments result in linking a to b to c, see below,

Chaining

Now these links allow us to retrieve data from successive elements. Thus,

a(next,data) := 2

and a(next,next,data) := 3

In C we don't have the facility as in PS-algol. In C a structure with a

pointer member points at the same structure type. If we want to point at a

different structure type then we have to redefine its type. For example two

structures in C and PS-algol are as follows,

C structures

struct list {

int data;
struc list *next;

}

PS-algot structures

structure list(int data; pntr next)

struct points!
int X, y;

struc points *right;

}

structure points(Int x, y; pntr right)

Both the structures have different types. If we want to link the second

structure to the first structure then in PS-algol,we will simply write,

67

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

list(nexî) := points(x,y, n il)

In the case of C we first define the type of that structure which we want to

link i.e.,

list > next = (struct list) points ;

which is not troublesome in the case of two or three structures. But if we are

dealing with many structures then it can be very cumbersome, since each time

you have to redefine its type.

3-3 Linked Lists :

A structure involved in many data processing activities is the ordered

list of data elements. A ordered list of three integers is shown in section 3-2.

Such a data set can be represented by one dimensional array in which the jth

subscript corresponds to the jth item in the ordered list. It has a head pointer

addressing the first element of the list and each element points at a

successor element. In the last element the link value is N IL Such a list is

referred as linked-list.

A list can also contain more than one pointer. A list with two pointers

i.e. next and left, is a doubly-linked-’list. The next link is a pointer to the next

node in the list, whereas the left link points to the preceding node. If the left

pointer or the next pointer is NIL, it indicates the end of the list. Once a list

has been formed, further processing can be done onto it. For example we may

have to add one more item to that or to delete one item out of it.

68

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

3-4 Image Construction :

The PS-algol graphics facilities provide a method of manipulating

images for bitmapped displays integrated with a line drawing systems. Line

drawings have the data type p ic ture written as pic and bitmaps have the data

type im age written as #pixel.

An image is a 3-dimensional object made up of a rectangular grid of

pixels. A pixel has a depth to reflect the number of planes in the image and an

image has an X and Y dimension to reflect its size. In its most degenerate form

a pixel is one spot which is either on or off . For example,

iet a.pixel = o f f

creates a pixel a.pixel with depth 1. If we want a pixel with depth 4 we may

w rite ,

let a.pixel = o ff & on & off & o n

which creates a.pixel with depth 4. The simplest way of constructing an image

with an X and Y dimension different from 1 can be achieved by writing

let an.image = Image 5 by 10 of on

which creates an.image with 5 pixels in the x-direction and 10 pixels in the y-

direction all initially on and of depth 1. The origin of all images is (0,0).

Another way of construction of an image in the 2D case is by the

picture drawing facilities of PS-algol, which allows the user to produce line

drawings in an infinite two dimensional real space. Pictures may be mapped

onto an image. Once a picture has been mapped onto an image it may be

manipulated as an image or drawn as an image. A picture are usually built up

of a number of sub pictures. The simplest picture is a point. For example,

69

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

let point := [5.3 , 2.6] declares a picture with name point. Pictures may

be joined together using the join operator For example,

iet square = [0,0] ̂ [2,0] ̂ [2,2] ̂ [0,2] draws a picture, see Figure 3.1(a).

^ (2.2)(0.2) ^

(0.0)
(a)

(0.2)

(0.0)
(b)

(2.0)

Figure 3.1

To get an image we can map a picture onto an image. For example,

d ra w (s c re e n ,s q u a re ,-x ,x ,-y ,y)

will draw the section of the picture square which is bounded by -x,x,-y,y in

its coordinate space. The standard identifier 'screen' is an image. A picture

which has been mapped onto an image can be filled by any colour specified by

using the standard function fill. For example

fill(square, off, 1,1)

will fill the square with black, see Figure 3.1(b). In this work most of the

images are constructed using this techniques.

In case of 3-dimension an image can be written as,

let 3D.image = Im age 5 by 20 of on & on & off & off & on

which creates an image 3D .image with 5 pixels in the x-direction, 20 pixels in

the y-direction and having depth equal to 5 (i.e., 5 planes). The planes of the

70

CHAPTER a SCANNING AND DRAWING OF THE IMAGES.

pixel are numbered from zero . We can also use many planes to build a three-

dimensional image; by simply putting them one after the other. Different

three-dimensional images can be obtained by simply interchanging the

position of the planes. In the case of the Sun 3/60 the maximum depth for a

three-dimensional image is equal to 24 i.e. 8 bit planes per colour. The depth

of an image can further be increased by joining two or more

three-dimensional images each of depth 24.

Another way of constructing an image is by using the mathematical

formula given for an object. Using a formula we can compute the points which

will give us a picture and to get an image we can map them on an image

(e.g., screen).

All the images can be interrogated by a standard function Pixel. For

example,

Plxel(an./rnage, 2,3)

will return the pixel value at position 2,3 of the image an.im age. For black and

white images this value can be on and off only. In case of three-dimensional

images each plane can be accessed separately by using the command given as.

let b - S D .Im a ^ ^ 1)

start from 0th plan© consider one plane

which ask the program to start from 0th plane and consider one plane only.

Here it yields a plane which is the first plane of the SD.image.

71

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

All two dimensional images which are used in this work are given in

Figure 3.2. Some of the three dimensional images are obtained using these two

dimensional images by putting them one after the other.

3-5 Storing an Image in a Database :

All the Images which are used in this work are initially stored in the

database . To show, how images can be generated by using line drawing

facilities and how images can be stored and retrieved from the persistence

store an example is given of a program. In this example, it is assumed that the

database root is a pointer to a data structure for associative storage and

retrieval, supported by PS-algol, called a table. Entries are placed in the table

using the procedure s.enter which takes the associative key, the table, and

the value to be stored. The procedure s.lookup retrieves a value from the given

table using the given key

72

(99,99) (99,99)

(0 ,0) (0,0)

(o) (b)

(0 ,0)

(99,99)

(0 ,0)

(d)

(45,27)

(C)

Figure 3,2, Two-dimenslonol images which ore obtained by using the line drav
facilities of Ps-algol,

(63,35)

(0,0) (e)

(0,0)

(1 17,1 17)

Figure 3.2 [contdl .Two-dimensional Images
Note : The rectongle enclosing en imoge îs not included in the imd(,

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

I Structure used to store the image,
s tru c tu re image.container{c#plxel an .im age)
let db = create, database ("an image","pass")
if db is error.record d o

b eg in

w rite "unable to create database :",db(error.explain),"'n"

a b o r t

end

! This block will make a small window on the screen
let X = X .d im (sc re en) d iv 2 ; let Y = Y .d im (s c re e n) div 2

let Image = lim it screen to 100 by 100 at X,Y

I This will draw the picture using line drawing facilities,
let a = [S0,20]^[80,20]^[80,50]^[50,50]^[50,80]^[40,80]^

[40,70]/'[10,70]/'[10,60]^[20,60]^[20,40]^

[40,40]'^[40,30]^[30,30]'^[30,20]
let b = [70,70]^[95,70M95,80]''[90,80]^[90,90]^[70,90]^[70,70]
let a.pic = a & b

I To get an image we have to map a picture on an image.
d raw (lm ag e ,a .p ic ,0 ,100 ,0 ,100)
fill(lm a g e ,o n ,5 0 ,4 0) I This will fill the area with value o n
flll(lm a g e ,o n ,8 0 ,8 0)

! a structure containing an image Image
I associated with the key "Image"
s.enter("lm age",db,im age.container(lm age))
if commitO = nil do w rite "the Image entered in the database ’n"

Program 3: A program to store an Image in a database

The database called "an image" now contains a table with a key "Image"

which has an associated value of a structure that contains the description of

the image. This is shown in Figure 3-3.

73

CHAPTER 3.

table
Image

SCANNING AND DRAWING OF THE IMAGES.

Image.container

Image an.image

Figure 3.3. Pictorial representation of the database "an image".

3-5.1 Retrieving an Image from a Database:

The next example retrieves an image description from the database and

places it on the screen for further processing on it.

I Structure used to store the image,
s tru c tu re im age.container(c#pixel an .im age)
let db = open.database("an image","pass", "read")
if db Is error.record d o

b eg in
w rite "unable to create database :",db(error.explain),"'n"
a b o r t

end

let get.image = s.iookup("lm age",db)(an.im age)
copy get.image onto lim it screen at 100,100

Program 4: A simple program to retrieving an image from the database.

3-6 Scanning and Drawing of an Image:

As defined earlier an image is nothing but the collection of pixels or

dots defining a rectangle. Since a murray scan is a space filling curve, it will

pass through each and every pixel in an image recording the colour information

and the number of successive pixels with the same colour. Before scanning an

74

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

image we have to decide the murray radices. Murray radices can be obtained by

factorising the x and the y dimensions of an image. Only point to remember is

that the product of the x-radices must be equal to the x-dimension of the

image and similarly for the y-radices. If the dimensions of an image cannot be

factorised then we will use only two murray radices equal to the x and the

y-dimensions of an image. The sequence of colour and run length are then

coded to minimise the data required to describe the image. The image is

usually split into bit planes and each bit plane considered separately as a

black and white image (i.e. on or off). In the case of black and white images

there is no need for colour information as the run lengths alternate between

black and white. However, the first output in the sequence must obey a

convention, usually taken as first run length is white. If the first run length is

one of black pixels then a zero is output first. With this information an image

can be easily described and thus reconstructed from the run lengths at any

required position. For example, the simple rectangular image (Figure 3.4), have

been scanned using a murray polygon with x-radix 6 and y-radix 3.

(a)

0.4,3,1.8,1,1

Black

(b)
2,2,4,2,2,2,4

I I White

Figure 3.4. (a) Here the first runlength is zero since the

starting point in the image belongs to the

black cell.

(b) Here the first runlength is not zero since the

starting point in the imagebelongs to the

black cell.

75

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

The collection of runlengths and the murray radices used to scan the image are

then stored in the database or in a file and can be used for further processing

which we will discuss in the following chapters.

It is assumed that the murray scan will be able to take advantage of

any inherent structure in the image. Since the murray scan is moving around in

two dimensions a point on the murray scan will have four possible directions

to move rather than the standard linear scan with fly back which has only one

possible direction to move. The pixels coherence can therefore be exploited in

the case of the murray scan than that of standard linear scan with fly back.

Hence a murray scan with its localized scanning patterns has a better chance

of capturing a few long runs of pixels of the same value. One could conclude

that the murray scan will therefore produce less runlengths than that of the

standard linear scan with fly back. But it is not always true. The explanation

for this is as follows. Consider a large homogeneous connected color blob with

a well defined boundary as shown in Figure 3.5.

76

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

mm.

Figure 3.5. Boundary point possibilities in the two cases.
a) Murray scan. In case Ml the scan touches the boundary only in one
point, whereas in the case of M2 - MS , it touches the boundary either
in two points or more.
b) Linear scan . In case LI it touches the boundary in only one point
i.e. tangent. In the case of L2 and L3 the bourxfary points are two or
more.

Most linear scan run lengths will pass through two of these boundary points

for each run corresponding to the entry and exit points of run. There will be

exceptions to this case when a horizontal line touches only one boundary point

and similarly when a part of the boundary is itself a horizontal line. The

exceptions tend to cancel each other and the number of run lengths is roughly

proportional to half the number of boundary points on the blob. In the case of

a murray scan these exceptions will be different. Since a murray scan is

frequently changing direction there are likely to be more instances when the

scan either meets the color blob in just a point or several boundary points and

other cases when an internal run meets the boundary and then turns back into

the blob thus giving a long run length associated with a particular blob (see

Figure 3-5a). Since boundary points are used up in a different way to that of a

standard linear scan, the total number of runlength will be affected. Further

in the case of a standard linear scan a break of runlength can be a minor

advantage in favour of murray scans. Since a murray runlength passing through

an interior of a color blob will be long, there will therefore be some long

77

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

runlength associated with a particular color blob and consequently since the

total number of runs Is approximately constant in comparison to linear scan

with flyback, there will be a large number of short run lengths to compensate

for this and thus will have a different distribution to that of a standard linear

scan. This distribution may be exploited in a final coding of the run length for

storage or transmission. For more detail refer Buntin{1988).

3 6.1 How to draw images using a sequence of runlengths :

Since the runlength sequences are associated with their color, the

reconstruction from the runlengths at any required position will be very

simple. W e will explain this with the help of an example. The color

information, runlengths, and the murray radices corresponding to an image is

given below,

co lo r “> w b w b w b w

runlengths -> 4, 5, 1, 1, 2, 1, 1

x-radices > 3

y-radlces > 5

We will start from the first point i.e., (0,0). Since the first runlength is 4 and

is white, we will move four steps in accordance to the scan direction, giving

value on (or 1) to these four points. Next runlength is 5 and it corresponds to

the black cell, so the next 5 points will get the value o ff(or 0) and so on. The

final image Is given in Figure 3.6

78

1

CHAPTER 3. SCANNING AND DRAWING OF 7VIE IMAGES.

Figure 3.6. Construction of an image from a sequence of runlengths.

The procedure which will draw the image back on the screen using the

runlengths is given below. This procedure will take a linked list of runlengths

and the murray radices.

I The input are the murray radices and the list of runlengths.
let draw.image = proc(*int r; pntr LIST)

begin
let digits = vector 1 :: upb(r)+1 of 0
let parities = vector 1 :: upb(r)+1 of true

I X and Y can be of any size
let window = limit screen to X by Y at 1 0 0 ,1 0 0

let X := 0
let y := 0
while LIST -= nil do
begin

let pixels := LIST(run.length)
let white := If LIST(col)="w" then off else on
let B.or.W.square := Image 1 by 1 of white
for i = 1 to pixels do
begin

If LIST(next) ~= nil or (i < pixels) do
begin

copy B.or.W.square onto limit window at x,y
let i = increment(digits,r,1)

change.parity(parities,i)
let inc := If parities(i+1) then 1 else -1

79

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

if i rem 2 = 1 then x:= x +inc else y := y +inc
end

end
LIST:=LIST(next)

end
end

3-7 Remarks :

In comparison to the standard linear scan with fly back a murray scan

will be slow, since it requires more calculations per step than that of a

standard linear scan. However, hardware can be built to compensate for this.

However a murray encoding will in general be more compact than that of

standard linear scan (as discussed in section 3-6) .

In comparison to the murray approach the quadtree approach may take

more time to scan an image. This is due to the extra preprocessing steps used

in obtaining the quadtree. To form a quadtree, the very first step which is

required is to convert the rasters (i.e., runlengths) into a quadtree

(refer Samet(1981)). The scanning is generally done by a standard linear

scan.The next step is to traverse the quadtree to merge groups of four pixels

or four blocks of a uniform color. In the case of a linear quadtree we have to

apply condensation and sorting to the collection of codes obtained after

transforming rasters (i.e., runlengths) into a linear quadtree (refer

Unnikrishnan and Venkatesh(1984)). In the case of the murray approach, we do

not need to process the runlengths, once obtained after scanning an image.

Hence a murray approach may be less time consuming than that of forming a

quadtree or linear quadtree.

in order to obtain the compacted codes for an image, both approaches

(i.e., murray and linear quadtree), will be equally effective, depending upon the

shape of an image {Note : we use a linear quadtree for comparison because it

80

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

stores only black pixels rather than that of a general quadtree). The reason is

as follows. In the case of quadtrees an image is divided into four quadrants if

it is not homogeneous (i.e. not of the same color). A quadrant is subdivided

into four subquadrants if it is not homogeneous and so on. These quadrants are

then dealt separately to encode the present black pixels. In the case of murray

polygons also an image is divided into small tiles, but these tiles are not

considered separately as in the case of quadtrees (Note : Tiles corresponding

to the quadrant). To get the runlengths we proceed from tile to tile gathering

the pixels of the same color. Since in the case of murray polygons we deal

with the whole image rather than the quadrants, hence there may be a better

chance of capturing more pixels of the same color. The main advantage of

linear quadtrees is to store only the black pixels, whereas in the murray

approach we have to store both the black and the white pixels. Hence in some

cases linear quadtrees may be more compressive than that of murray approach.

But in the case of linear quadtree, smaller the black homogeneous quadrant

bigger will be the code length and in the case of the murray approach, smaller

the black homogeneous area smaller will be the code length. Hence nothing can

be stated positively about the two approaches. Best and worst cases are

always there. Here consider two cases (i.e. best and worst) to justify it.

(Note : Here the best case is in favour of the quadtree approach . We can

consider simiiarly the best case for the murray approach also)

81

CHAPTER 3. SCANNING AND DRAWING OF THE IMAGES.

2 3 4 5 6 7 8

(b)

Note : In the case (b) , for the murray approach we have

increased f/ie dimen&ons by one unit.

Figure 3.7. Two cases (a) best case and (b) worst case

In the best case (see Figure 3.7a), a linear quadtree has only one code to

store whereas a murray approach has at least four codes (i.e. runlength) to

store the information about the image.

In the worst case (see Figure 3.7b) a linear quadtree has 12 codes to

store, which are given below,

310, 301, 300, 211, 210, 201, 132, 130, 023, 021, 12, 03

whereas in the case of murray approach we required only 7 runlengths to

store the image.The runlengths are,

29, 2, 4, 12, 2, 4, 29

In the case of linear quadtree only the black pixels are stored, whereas in the

case of the murray method white as well as black pixels are stored .

Similarly we can also consider best and worst cases for the murray approach.

82

Chapter 4

4. SCAN CONVERSION AND SCALING OF IMAGES 8 3
4 - 1 Introduction 8 3

4 - 2 Scan Conversion 8 4

Method 1 8 4

Some Lemmas 8 9

Method 2 9 6

Some Lemmas 9 8

4 - 3 Implementation of Scan Conversion 1 0 4

Data Structure 1 04

Scanning 1 0.7

Algorithms 1 08

Comparison Between The Two Algorithms 1 1 2

Comparison Between Linear and General Murray Scan 1 1 3

4 - 4 Scaling 11 4

Introduction 114

Scaling Using Murray Polygons And Its Implementation 1 1 6

Some Lemmas 1 2 2

Theorem 1 2 3

Results 1 3 2

4 - 5 Remarks 134

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

4"1 Introduction ;

As discussed in chapter 1, murray polygons can be used to scan

rectangles of different, sizes. A rectangle can be scanned either by using

horizontal murray scans or by using vertical murray scans. By a horizontal

murray scan we mean that the displacement in the y-direction will only be of

one unit, either increment or decrement and vice-versa. As discussed earlier,

the basic direction of the scan from horizontal to vertical can be changed by

making the least significant radix take value 1. Further a vertical scan can be

obtained by changing the positions for the radices and the values,

corresponding to the x-part and the y-part, more detail follows.

An image represented by an n*n array of pixels would need too much

space to store it in uncoded form. The exact data compression can be achieved

by runlength encoding. By exact data compression we mean, to restore the

same image, without any distortion from the collection of runlengths.The

runlength sequences and their associated colour information are produced by

scanning an image with a murray scan.The murray scan will pass through each

and every pixel recording the colour information and the number of

consecutive pixels of that colour. The data can further be compressed by

coding the runlengths. We can compress the data either to give the exact

compression or to give an approximate compression. By approximate data

compression we mean, once the data has been compressed we cannot restore

the same image from the collection of runlengths. Here some of the

information is going to be lost.The runlengths can be scaled up or down as

required. The only point to remember is that, if we have to scale the image in

the x-direction then we will use a horizontal murray scan to scan the image

and for the y-direction scaling we will use a vertical murray scan. If we want

to scale an image in the x-direction as well as in the y-direction the simplest

63

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

way of doing it is to scale the image horizontally/vertically then draw the

image on the screen using the compressed runlengths and then scan this scaled

image vertically/horizontally to get the sequence of runlengths, which can be

scaled in the vertical/horizontal direction. Drawipg and scanning part of the

image will be time consuming, so it would be better if we only work on the

runlengths without going back to the image, to get the runlengths for the

another scan(i.e. vertical or horizontal). We discuss how this can be done.

In this chapter the conversion from horizontal murray scan to

vertical murray scan, or vertical murray scan to horizontal murray scan, is

described. We call this process scan conversion. In this chapter we will refer

to horizontal murray scans as scan1 and to vertical murray scans as scan2.

Scaling the images either in one direction (i.e. x or y-direction) or in both

directions is described. All the algorithms derived use only runlengths. Finally

the results are compared for the different images shown in chapter 3. The

language used for the algorithms Is the Outline System of PS-algol[Carrick,

Cole, and Morrison(1987), and Morrison(1988)j and C[Kernighan, and

Ritchie(1978), and Kelley, and Pohl(1984)].

4-2 Scan Conveision :

Here two methods are discussed for the conversion of scant into scan2

and vice-versa. Both the methods use the murray run length encoding and

murray radices as input.The efficiency of both methods is compared for

different images.The result obtained are shown in the following sections.

4-2.1 Method 1 :

Before we describe this method, we will review some of the

definitions previously defined. As shown earlier murray scans can be forced to

go either in the x-direction or in the y-direction by incrementing or

84

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

decrementing the x-part or the y-part by one unit. This can be obtained simply

by using a radix value of one. Another way of achieving this is by changing the

x-part and the y-part. For example let r^, rp-i be the radices and dp .dp-i be

the corresponding digits.The radix rp .i forces the scan to move rp-i steps in

the x-direction whereas the next radix rp force the scan to repeat the

previous step rp times in the y-direction.If we interchange the radices i.e. Rp,

Rp_1 where, Rp = rp_i and Rp_i = rp and the digits also (i.e. Dp = dp.-j and

Dp_i - dp), then the scan will go firstly in the y-direction then in the

x-direction, since all odd digits now corresponds to the y-part and all even

digits corresponds to the x-part. This is discussed below.

Mathematically :

Let N be the nth point on a given scan (say scant) and,

let d = dp,dp--j d i be the equivalent murray integer with the

radices r = rp,rp_i,.............................ri ̂ where n = 2k and k is an integer. Now our

problem is to find the corresponding mth(say) point on a second scan, i.e.,

scan2. Let c = Cp,Cp_i...................c i be the Gray coded transformation of a murray

integer d, where

G| = dj iff S dj is even, (for j = i+1, n) ------------ (A)

= rj-1-dj otherwise

Let A = Ap,Ap_i,....................................... A«j be the Gray coded integer where

Aj = C| + i iff i rem 2 is not equal to zero --------------- (B)

= Cj_i otherwise

Since we have interchanged the Gray coded integer (i.e. A-j = C2 , A2 = c i ,

 etc), we also have to change the radices correspondingly .

85

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

,R •} be the corresponding radices such that forLet R= Rp,Rp_“j ,

each i ,

0 < - Aj < R{ where

Rj - rj + 1 iff i rem 2 is not equal to zero ----------------- (C)

= r|_i otherwise.

The two scans may now be defined as :

Scan 1 (or Horizontal scan) :

To get a horizontal scan we will consider our x-part and y-part to take the

values,

X' = Cn-i,Cn.i,.................. , 0-} and,

y = ^nf^n-2>...................... *.................... ' %

Now simply de-gray code x* and y* parts and then convert back to

ordinary integers giving (x,y) as expiained in chapter 2.

Scan2 (orV ertica l sccai) :

If we simply Interchange the values of x' and y \ the two parts will be given

as.

x ' = ^n>^n-2f .,A2 and,

y ’ = ^n-h^n-3» ..

Then by simply de-gray coding x' and y ' parts and then converting back to

ordinary integer we will get the coordinate for the verticle scan.

86

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

To get the corresponding mth point on the second scan we can de-gray

code the digits Aj to give the equivalent murray integer, which can be used to

determine the corresponding point in scan2.

Let d p,d'p_i.. d'i be the equivalent murray integer

where, for each i,

d'l = Aj iff Z Aj is even, (where]= i+1,.......... n) --------------- (D)

= Rj-1-A j otherwise.

The corresponding mth point in the second scan can now be given as,

= ((........... ((d'n* F^n-1+ ̂n-l)*^n-2+..................... +d'2)*R-j+d'i.

{Note : Total number of parenthesis will be equal to n-2.)

The steps of the transformation for a given point N, which is the nth point in
scan i, to the mth point in scan2 are,

1. Convert N into the equivalent murray integer with the given
radices,

2. Convert this integer into the equivalent Gray coded integer,

3. Interchange the Gray coded integer,

4. Convert back to equivalent murray integer,

5. Convert back to the mth point on scan2.

Further if a coordinate for a pixel on an image is given, the

corresponding nth and mth points on scani and scan2 can be determined. Let

(x,y) be the coordinate representing a pixel on an image. The first step to get

the nth point in scani is to convert the x and the y coordinates to the

equivalent gray coded integer as explained in chapter 2. Let the two parts be.

87

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

(X , y) (Cn-iCn-3 c-\ , CnCn>2 %)

Two get the mth point in scan2 we have only to interchange the x-part and the

y-part and the radices and the rest will be the same as for scani. The two

parts for x and y will then be,

(x , y) = { c*nC'n-2 c '2 , c‘n -ic 'n -3) where,

c'i = Cj+1 iff i rem 2 is not equal to zero

= Cj.-j otherwise

The whole scheme is given in Figure 4.1. The steps of the transformation from

the murray digits of scani to the corresponding murray digits of scan 2 are

given in Table 4.1.

Nth
point

scani
Gray-code
Integer

Interchange
Gray-code

Integer

scan2

Mth
Point

r->3 5
d -> d 2d ^

r->5 3
d ->d2d^

d C A de-gray code A

2 02 02 20 20 6
9 14 10 01 01 1
13 23 23 32 30 9
14 24 24 42 42 14

scani
Gray-code
Integer

Interchange
Gray-code

Integer

scanZ

Nth
point r-> 1 5 3 5 3 3 r-> 5 1 5 3 3 3

Mth
Point

d C A de-flray code A

11 000102 000120 001002 001220 51
435 041310 041110 401101 401101 577 -

Table 4.1. Transformation of murray digits of scant to murray digits of scan2.

Figure 4.1. Murray Transformation from N to (x,y).

PURE
INTEGER MURRAY

INTEGER
(d)

•-STEP 2
GRAY CODE
INTEGER

(d*)

scan2

scant

........... mth

STEP
GRAY CODE
COORDINATE

(^,y')

STEP 3
INTERCHANGE
THE DIGITS

STEP 4 " - ► STEP 5
MURRAY ORDINARY
COORDINATE COORDINATE

(X",W") (x,y)

"n "n-1
scant

^scan2

A „ A „ , A , i p e ^ ')n n - i i 1 ^

(^ n ^ x \ -2^ 2 ' ^ n - 1 ^ n-3.......^ 1)

I
(^n ^n-2.... ^'2 • '^n-t '^n-3...... '̂ 't ^

(Cn.t: 'n-3'Ct,C'nC'n_2_C'2)

(X, y)

Where
dj = N rem r ̂ the new value of N w ill be equal to (N div ̂ r̂ ')

Here 1 w ill start from 1 and will range upto
C. = d. If £ d

1 1
Tj - 1 - dj

Is even.

otherwise.

Aj = C j+ j i f f 1 Is odd And R,

Cj_jOtherwise

r . , i f f i is odd.
1 + 1

r, otherwise
1-1

.SC.Q.QL;
C' = C if Cj*2 * C 1*4............. ’

r - I - C. otherwise

= « "h-3>*^n-5* '^n-5’ * fn -7 * + C ')

y = ((...... (c;
SjEfln2-.i

r„ n* c* o)*r„ 4+ C_4) * r^_,n n-2 n -2 ' n-4 n -4 ' n-6

To get scan2 , replace C by A, C* by A" and r by R in the above expressions. The
value for the x and y part will be given as,

« = «..... (AA *Rn-2"‘̂ n-2>*Rn-4*A'n-4’*Rn-6 *.............

W = « (V 3 n-3)'R n -5 *^ n -5 n-7 .*A',)

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

Now for a faster algorithm we will define a few lemmas :

Lemma 1 :

Suppose d is a murray integer^ c is the Gray coded integer^ A is the

equivalent Gray coded integer obtained from c as defined above^ d' is the

equivalent murray integer obtained from A, then for all odd I, we have,

d'i = d j+1 iff d(i) is even

= r j+ i -d|+i -1 otherwise

or

d'i = d i+1 iff I r\ -r|+-|“di is odd

= r|^-| -di .̂-j ”1 otherwise

where n = no. of digits

Proof.

Since i is odd, then from the above equations I.e. B and C, we have

AI = Ci+1 and

^i ~ fi+1 (1)

Further from equation D we have

d'i = A| iff â A| is even

- R |-1 -A j otherwise.

Using condition (1) In the above equation we will get,

d'i = Ci+1 iff L q + i - Ci+1 is even (2)
t r i

- r\^-\ -c;+i -1 otherwise.

89

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

Also by using equation (A) we can get ,

q+ 'j = dj+1 iff .^d ; is even (3)

= r j+ -|-1 -d j+ i otherwise

Now we will use equation (2) and (3) to find a equation between d and d'. We

will consider four cases.

Case 1 : .£ d j is even and ^ q + i-C j+ 'j is also even1-1

From equation (2) and (3) we have,

d'i = Cj+1 and q + i = d |+ i

This implies d'j = d;+i.

The above two conditions (i.e^.Zjd; is even and ^ q + i - q + i is also even) can

be joined to form a single condition . let us consider,

v>—1
Z C j+ i -q + i = even

M “1
or £ d|+i -d|+*| = even

c- »

dj +d;+i +d|+2 ++dn -dj+i = even

dj +dj^.2 +... +dn = even

But £dj is even, this implies, d; + even = even

I.e.; dj = even

Case 2 ; E dj Is even and]^ C j+ i-q + i is odd
L+a. 1-1

From equation (2) and (3) we have,

d'j = q + i and q + i = n+i -1 -d|+i

90

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

Using the above two conditions(i.e, £ d| is even and £ 01+ 1-0 ;+-; is odd) we
ita. i - i

will get,

d'i = ri+-| -1 -dj+1 if d| is odd

Case 3 : £ d i is odd and £C |+1-01+1 is also oddL+3. ' 1-1 '

From equation (2) and (3) we have,

d'i = r;+i -1 -Cj+1 and c;+i = q+i -1 -d ;+ i

This implies d'j = rj+i -1 -(q+ i -1 -d ;+ i)

d'i = dj+1.

We can now find a single condition by joining the above two conditions

(i.e^.Edj is odd and £ c j+ i-c j+ i is also odd). let us consider,
ci-a. c-i

,T c i+ 1-01+1 = odd

Y>-}
or Z (n+i -1 -d j+ i) - (n + 1 - 1 -dj+i) = odd

t-}

\ * r i +1 -£d j+ i - £ 1 - r;+i +1 + d j+ i) = odd
L-'i

rj4-rj+i 4-.............-f-rpi -(dj+dj+i + .+d;^) - (n-i+1) -r;+i -1-1 4-dj+i = odd

n + £ n -dj -£dj -n +i = odd
t+a. ùta.

n n
r j+ ^ £ jj-d j-o d d -n 1-i = odd (since £d; is odd)

£ r; -r;+i -dj -even +odd = odd -i-odd { n is even and i is odd, given)

£ r; -r;+i -dj = odd
L

91

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

n V)-J
case 4 ; £ dj is odd and £ Cj+i-Cj+i is even

i-i

From equation (2) and (3) we have,

d'i = n+i -1 -q +1 and q + i = d|+i

Using the above two conditions(i.e. £ dj is even and £ Cj+-|-Cj+i is odd) we
t—I

will get,

d'j = rj+1 -1 -dj+1 if £ rj -rj+ i -dj = even

Combining all the four cases we get,

d'j = d j+1 iff d(i) is even

= rj+1 -dj+1 -1 otherwise

or

d'j = d j+1 iff £ rj -rj+1 -dj is odd
i

= rj+1 -dj+1 -1 otherwise

Hence proved.

Lemma 2 :

Suppose d is a murray integer ,c is the Gray coded integer ,A is the

equivalent Gray coded integer obtained from c as defined above ,d' is the

equivalent murray integer obtained from A ,then for all even i , we have

d'j = dj_i iff d(i) is even

= rj_i -dj-1 -1 otherwise

or

d'j = dj_i iff £ rj +dj is even

92

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

= rj_i -dj-1 -1 otherwise

where n = no. of digits

Proof.

Since i is even, then from the above equations i.e.; B and C, we have

Aj = Cj_i and

Ri = n.i (4)

Further from equation D we have

TO
d'j = Aj iff £ Aj is even

1+1

= R j-1-A j otherwise.

Using condition (4) in the above equation we will get,

d'j = Cj.-j iff £ Cj.-j is even (5)
Ita-

= rj.-j -Cj.-j -1 otherwise.

Also by using equation (A) we can get ,

Cj.-j = dj.-j iff £ dj is even (6)

r j . - j - 1 -d j . - j o th erw ise

Now we will use equation (5) and (6) to find a equation between d and d'. As

usual we will consider four cases.

VI ,
Case 1 : £ dj IS even and £ c;.i is also even

I C+a.

From equation (5) and (6) we have,

d'j = Cj.-j and Cj.-j = dj.-j

93

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

This implies d'j = dj.-j.

The above two conditions (i.e. L dj is even and Y q.-j is also even) can be
i i i - X

joined to form a single condition . let us consider,

•n+j
£ Cj.-j = even

i+2.
TT4 I

or £ dj.-j -e v e n

dj+1 +dj+2 +................... +dn = even

dj -f-dj+i -f........................+dn -dj - even

But £dj is even, this implies, even - dj = even

i.e.; dj = even

n Yi+>
Case 2 : £ dj is even and £ Cj.i is odd

i l - t x

From equation (5) and (6) we have,

d'i = Cj_i and Cj.i = rj_i -1 -d j.i

■fl v>+-t

Using the above two conditions(i.e £ dj is even and £ Cj.i is odd) we will
C 1+2-

get.

d'l = r|.i -1 -dj_i if dj is odd

Case 3 ; £ dj is odd and £ q . i is also odd
i i - l - x

From equation (5) and (6) we have,

d'j = q .i -1 -q_i and q_i = q .i -1 -d j. i

This implies d'j = r j.i -1 -(q_i -1 - d j . i)

d'i = d | . i .

94

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

We can now find a single condition by joining the above two conditions

(i.e. £ d; is odd and £ C|_i is also odd) . let us consider,
Ylf I
. £ Cj.-j = odd

or ^£ (rj.-j -1 -d j.- j) = odd

L+a.
-A+l
£ r

H-au

I '
i '
y\

or £ r

L + a-
r»+l

£ n.-j -£dj_i - £ 1 = odd

.-j -f-dj -£d j - (n-i) = odd

_1 -Fdj -odd - even -t-even = odd

_1 +dj = even

-(-dj = even
C-+I

£ C

L-+a-
case 4 ; £ dj is odd and .£ Cj.-j is even

t » L-+5.

From equation (5) and (6) we have,

d'j = rj.-j -1 - C j . - j and q.-j = dj.-j

Using the above two conditions(i.e £ dj is odd and £ cj.-j is even) we will get,

d'j = rj.-j -1 -dj.-j if £ n +dj = odd

Combining all the four cases we get,

d'j = dj.-j iff d(i) is even

= rj.-j -dj.-j -1 otherwise

or

d'j = dj.-j iff £ r\ +dj is even
l-M

= rj.-j -dj.-j -1 otherwise

Hence proved.

95

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

Using the above two lemmas, the steps of the transformation from n to m

(where "n" is the n̂ h point on the scant and "m" is the m^h point on the scan2),

are

1. Convert n into the equivalent murray integer with the given

radices,

2. Convert this integer into the equivalent murray integer of scan2 .

3. Convert back to the mth point on scan2.

4-2.2 Method 2 ;

The efficiency for the method discussed above can be further improved

for large complete scans. The first method discussed above is slow because

there are so many operations which have to be applied such as gray code

integer conversion, interchanging the digits etcetera. In this section we will

present an algorithm which is usually faster than the one described above.

Let us consider a rectangle of size n*m, where n represents the

number of columns and m represents the number of rows. The rectangle of size

n*m can be scanned either by using scant or by using scan2, where scant and

scan2 are described above.

Since murray polygons are space filling curves, they will pass through

each and every point in a given space. Since each point will be visited only

once we can mark all the points by giving them an integer number. Scant and

scan2 will give a different numbering to the pixels (see Figure 4.2), since the

direction is different.

The efficiency may now be improved if we deal straight with the

numbers marked on each pixel (see Figure 4.2), to find the corresponding mth

96

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

The efficiency may now be improved if we deal straight with the

numbers marked on each pixel (see Figure 4.2), to find the corresponding mth

point in the next scan. Here we do not have to find the gray code conversion,

digits interchange, etcetera.

Now we will define two lemmas, to get the above transformation.

Before we discuss these two lemmas we will review some definitions already

given.

Let r n, rn-1» ^n-2............................... r-j define the radices q associated

with the digits d; (i = 1,2..... n), such that for each i, 0<= d; < q. As explained

earlier the product of the first two radices will be equal to the number of

pixels present in a tile i.e., (no.of pixels/tile is equal to r-j*r2), the product of

the next two radices will be equal to the total no. of blocks. 1 (say), each of

size r-| *r2 (i.e. size of a tile), the product of the next two radices will be

equal to the total number of blocks.2(say), each of pixel size 3̂*̂ 4

and so on. For example:

If r-j = 3, r2 = 3, rg = 5, r^ = 7, rg = 3 and rg = 5, then no. of pixels/tile

is 9, total no.of blocks. 1 of pixel size 9 are 35 and total no.of blocks.2 of pixel

size 315 are 15 .

From the following two lemmas , the first one finds the corresponding

point in an image where a murray scan moves across the full width of the

image before a unit change in the y-direction occurs. Here the whole image is

considered as one large complete tile, whereas the second lemma finds the

corresponding points In an image where a murray scan partitions the whole

image into small tiles each of size r-j *r2 and the total number of such tiles in

an Image is equal to rg^r^* *r^ .

97

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

Lemma 3 :

Suppose a tile of size N*M is given, and that i is the point on the

tile in scant.Then the corresponding point on the tile in scan2 is given by,

(scant and scan2 have their usual meaning),

j = M*A +B iff A is even

= M*A +M -1 -B otherwise

where, A and B are the row and the column numbers respectively, and,

N = r(1) and M = r(2)

Proof:

Consider an image of size N*M i.e., n columns and m rows. All the

pixels in an image are numbered (see Figure 4.2). The top right numbers

belongs to scant i.e., a horizontal scan and the bottom left numbers belongs

to scan2 i.e., a vertical scan.

Let us consider scant first. From Figure 4.2, we can see that

the start points for scant in each row are 0, N, 2 N ,, and (M -t)N . Each

row has N points. If we divide each point in the first row by N then the

divisor will be zero. For the second row the divisor will be t and and so on.

If we multiply these divisors i.e., 0, t , 2 and M -t by N we will get the

starting point for each row. Let us call the divisors 0, 1, 2 ,M -t the y-

values.

Similarly if we consider scan2, the start points for scan2 in each

of the columns are 0, M, 2M, ,(N -t)M . If we divide each point in the

first column by M the divisor will be zero, similarly for second column, the

divisor will be 1 and so on. The start point for each column can be

98

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

determined by multiplying m by these divisors i.e. 0, 1, 2 ,N-1. Let us

call them the x-values.

If the ith point on scant is given to us then it is very easy to get

the start point for a row, by simply dividing the ith point by N to get the

divisor and then multiplying it by N. To get the starting point for that

column, we have to find the x-value first. Two cases can be considered,

1) y-value is even

Let us consider the 2 Nth point on scant. From Figure 4.2 it can be

seen that the number 2N is obtained by multiplying N by the

corresponding y-value of that row and then adding this to the

corresponding x-value of the column. Here the y-value is 2 and

the x-value is 0 which is equal to 2N rem N. Therefore for a given

point (say ith) the x-value will be given as i rem N.

2) y-value is odd

Let us consider the (N+1)th point of scant. The number N+t is

obtained by multiplying n by the corresponding y-value arid then

adding this to N-t-(x-value), since for all odd y-values the

direction of the scan is reversed. Therefore for a given point

(say ith) the x-value will be given as N -t- (i rem N).

So far we have discussed the case that if the ith point on scant is given

then for an image of size N*M we have ,

y-value = i div no.of.columns

x-value = i rem no.of.columns, if y-value is even

no.of.columns -t -(i rem no.of.columns), otherwise.

99

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

To get the corresponding jth point of scan2 we will consider two cases :

case 1 :

'x-value* is odd :

Suppose the î h point on scant is given(see Figure 4.2). Now we

have to show that the corresponding point on scan2 is the jth . Since the

x-value is odd this means that the curve i.e. scan2, is going from top to

bottom. The starting point for the scan2 in that column will be equal to

M*x-value. The number of places we have to move further is equal to M-1-

(y-value) . So the corresponding point in scan2 Is given by , M*(x-value) +

M -1- (y-value) .

case2 :

'x-value'is even :

Since the x-value is even, this means that the curve is going from

bottom to top. The starting point for scan2 in that column will be M*x-

value. The displacement will be given by the y-value. So the corresponding

point in the scan2 is, M*(x-value) + y-value.

Combining all the results together It follows that if the Ith point

on scan1 is given then the jth point on scan2 will be given by,

I = M*A +B if A is even

= M*A +m -1 -B otherwise.

Hence proved.

100

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

Before we discuss the next lemma we define some variables to be used.

Let r n. r^ -i, rp,_2................................ r*i define the radices r, associated

with the digits d |/i = 1,2 n) and let i be the ith point in scanI.Then we

define variables a-|, 3 2 , ag,............................ ap/2 as the tile numbers where,

an /2 Is the tile number to which the ith point belongs, where the total

number of tiles is r n* ^n-i with pixel size equal to

r r T2* ' r n - 3 % - 2 .

an /2 -1 Is the tile number inside an/2 to which the ith point belongs,

where the total number of tiles is r n -3 * i'n-2 with pixel size equal to

r 1* r2*...............* rn_5*rn_4.

a*| is the tile number inside 82 to which the ith point belongs, where

the total number of tiles is r 2 * with pixel size equal to 1*1.

Lemma 4 :

Let r = r n, Tn-1, Tn-2.............................. r-f be the radices r; associated with

the digits d; (i = 1,2,....n(=2k, where k is an integer)), such that for each i,

0<= dj < r; and suppose an image of size l*b (where T Is the length of the block

and b is the breath of the block) is given. If N, is the point on the image in

scani, then the corresponding point on the image in scan2 is given by Mp

= x-t + ri *r2 *X2 ++r^ *r2 * "rn-4*Xn/2-1 + M *r2 *........ *rn-2 *%n/2

or Mp = I2 +I4 +Ï0 +............................+ In (1)

where In = r i * r 2 * *rn-2*% n/2

1 0 2

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES,

ro = 1, and

x i, X2 , xg Xp/2 are the corresponding points on

scan2 when the corresponding points i.e., a-j, ag, ag.............a^/g on

scani are given.

Proof :

To prove this lemma for each positive even integer n, let us define P(n)

to be the proposition Mp = I2 +I4 + l6 ++ In-

Suppose n - 2.Then equation(l) gives,

LH.S = I 2

or LH.S = X1

R.H.S = Mg

which is clearly true.Since the total number of radices are two, the whole

image is considered as one large complete tile and hence for a point a-t on

scani we will get x-j the only point on scan2(refer lemma 3).

Suppose now that P(2n) is true for n <= k. In particular,

M2k = l2 +I4 +I6 +........................ .+ I2k

is true . That is P(2k) is true.

But, Mgk+2 = Mgk +l2k+2

or M2k+2 = I2 +I4 +l6 +•••••••...................+ l2k ■*‘l2k+2

which implies that the statement P(2k+2) is true. Therefore P(2k) implies

P(2K+2). Hence since P{2) is true, the result follows by the principle of

m athematical induction.

103

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

4-3 Im plem entation of Scan Conversion :

4-3.1 Data Structure :

The data structure for an algorithm plays an important role, since the

efficiency of the algorithm depends upon that. The main data structure to be

used in the following algorithms contains five main items,

runlength

Sum

Colour

left pointer

right pointer

we define our structure as,

structure int.list^lnt runlength,Sum; string Colour; pntr le ft,right)

w here int.list is the name for the structure and is of type pntr, runlength and

Sum are of type integer, Colour Is of type string, and finally the items left and

right are of type pointer. The pointer variables are called Link . Each structure

is linked to a succeeding structure by the member rig h t.

The field runlength stores the successive runlengths which are

obtained after scanning an image.The field Sum records the number of points

used before a particular cell. The field Colour records whether the runlength

corresponds to a BLACK area or to a WHITE area. If it corresponds to a white

area then we put "w" otherwise "b”. The field right points at the next cell and

the field left points at the left cell. If no cell is present to the right or to the

left side then the pointers will be set to nil. A pictorial representation for the

structure with links is shown in Figure 4.3.

104

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

IntJist

runlength Sum Colour

.......:
0-1 w / _ _ W s -1 b -► -2 5 4 w - - ^ 0 |29 lb| 77 w

i

Figure 4.3. Pictorial representation for the structure with links. The third cell records
that there are 25 consecutive WHITE pixels. The Sum, which Is 5, records
that 5 pixels are used before this cell.

Note: In the first cell the item Sum is assigned value -1, since our starting

point in an image is zero (see Figure 4.2).

The field Sum plays an important role in implementing these

algorithms. The main advantages of using this item can be summarized as :

1) It can be used to find the starting point for a particular cell. For

example in Figure 4.3 consider the second cell. Here the runlength is 5 and the

Sum is -1 and the Color of that cell is "b". Since Sum = -1 i.e., the number of

points used before this cell is zero, hence the starting point for this cell will

be zero. Further the color is black implies that the pixel number 0,1, 2, 3, and

4 are BLACK in color. Similarly in third cell the pixel numbered from 5 to 29

are W HITE in color.

2) It can be used to draw the image back on the screen quickly. Since

the starting point of each cell is known to us, we can find the coordinate

values for the start point and we can easily draw the image by considering

only the BLACK cell.

3) The number of cells in a list can be reduced by removing all the

white cells from the list. The new list will contain only the BLACK cells. If

105

CHAPTER 4, SCAN CONVERSION AND SCALING OF IMAGES.

we have to process the list, (for example if we have to scale the image we

need both WHITE and BLACK cells), the W HITE cells can be obtained using the

information stored in the BLACK cells.For example in Figure 4.4, consider the

second cell. The runlength is equal to 10(say r1) and Sum is equal to 30(say

s1). Suppose now we want to find the W HITE cell proceeding it. From the first

cell the runlength is equal to 5(say r2) and Sum is equal to 0(say s2). We use

the first two cells to find the W HITE cell in between. The runlength for this

W HITE cell will be equal to s1 -s2 -r2 and the Sum will be equal to s2 +r2.

Similarly for other W HITE cells.

10 29 b
k

4 73 b /

Figure 4.4. New list obtained after removing
the iist"given in Figure 4.3.

the WHITE cells from

The third item in our data structure is the colour information. This

colour information can be removed by assuming that the first cell will always

corresponds to the white cell. But in some cases where we need to move

inside the list, this information will be of great help. We will see this in the

next chapters. Since same list is used for different operations, therefore all

the list in the database have the colour information for each cell.

The left pointer helps in increasing the mobility inside the list. For

example consider the list given below,

106

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

5 -1 w / 10 29 b 5 59 W > 4 64 b

1 __________

Temp. Pointer (T)

Suppose our temporary pointer is at the second cell as shown above. If the

colour for that cell has changed to ”w" then we need to add the two

neighbouring W HITE cell to that to form a single cell. Using the left pointer we

can go to the left cell. The three cells can then be merged together to form a

single cell.The pointer can be changed thereafter, see below.

This pointer to be changed

20 59 64 b

This pointer toWchanged

Temp.Polnter (T)
Initially the Temp.Polnter was at the 2nd cell(see above). By using the command
T = T(left), the Temp.Polnter will now point at the 1st cell. The runlength for the
first cell will now be equal to the sum of the runlengths of the three cells i.e., 20.
Sum for this cell will be -1. The link next will now point at the 4th cell and the left
pointer of the cell will now point at the 1st cell (shown dark).

4-3.2 Scanning ;

Here an image Is taken, which is stored In the database and then using

murray polygons either horizontal or vertical, we scan the whole image. The

collection of runlengths and the murray radices used to scan the image are

then stored in the database.The procedure to store an Image or a list in a

database is given in chapter 3. Before the scanning is done we have to decide

about the murray radices to be used.

107

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

To get the murray radices, we need to know the dimensions for the

image. Generally the dimensions for an image are known to us but if not then

the standard function X.dim and Y.dim (see PS-algol[Carrick, Cole, and

Morrison(1987), and Morrison(1988)], can be used to get the x and the y

dimensions of an image. Once we know the x and the y dimensions, murray

radices can be defined. The only point to remember is that the product of the

x-radices should be equal to the x dimension of the image. Similarly for the

y-radices.

4-3.3 Algorithms :

Here two algorithms, one which uses method 1 and the other which

uses method 2, are given.The results obtained by both the algorithms on

different images are compared and are given in the next section. The two

procedures corresponding to two lemmas (i.e., lemma 3 and Iemma4),

described above are given below, “

! This procedure finds the corresponding points in a tile.
I The Input is the ith point given on scant and the x and
I the y dimensions for the tile.
le t pnt.ln.scan2 = p ro c (in t l,n,m > int)
begin

le t y := I d iv n
le t X := If y rem 2 = 0 then i re in n

else n-1-(i re m n)
le t z := if X rem 2 = 0 th en m*x+y

e ls e m *x+m -1-y
I '

2 I the corresponding point on the second scan is z.
end

108

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

I This procedure finds the corresponding points in a block having

! smallest tile of size x-dimension * y-dimensions.
I The input is the ith point given on scant and the murray radices.
I The vector Fix are the sizes of the corresponding blocks, e.g.
I Pix(t) = r-*T2, Pix{2) = rg^r^ and so on.

I The vector block gives the position of the point in an image.
I The vector mult.factor gives the point x-|,X2 , (see sec 4-2.2, Iemma2)

let scan.conversion = proc(*in t r,Pix,block,mult.factor;int i > pntr)
beg in

le t j := 1;let C := i
fo r i = upb(Pix) to 1 by -t do I This statement will give the

{block(j) :=i div Pix(i) I position of the point relative to the
i := i-Pix(i)*block(j) I blocks of sizes Pix(i) .

] := j+1}

j:=1
fo r i = upb(r)-1 to 3 by -2 do I It gives the point x i,X 2 ,

{m u lt.fac tor(j):=p nt.in .scan2(b lock(j),r(i),r(i+1))

iH + 1 }
le t tile.start.pnt := 0; le t x:=0

]:=1
fo r i = upb(Pix) to 1 by -1 do I This gives value A.

{tile .s tart. p n t:= tile .s ta rt.p n t+ b lo ck (j)*P ix (i)
x:=x+Pix(i)*m ult.factor(j)

jH + 1 }
le t y := C-tile.start.pnt
let z := pnt.in.scan2(y,r(1),r(2))
let M := x+z

end

Theory :

The algorithm takes a list of runlengths which has been stored in the

database.lt will deal only with the runlengths and secondly it deals only with

the black cells. Time and space is saved by not considering the white cells.

109

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

Let r i,rg be the murray radices. The number of points in a image

will then be given as the product of all murray radices, i.e.,

no.of.plxels = r̂ *rg* *rn

We are interested in finding the runlengths corresponding to another scan.

Initially we will assume that the linked list (say list.2) for scan2 has only

one cell with the runlength equal to the number of pixels in an image. Sum

equal to zero and the color for all the pixels is white i.e.,'’w". From the linked

list which is obtained after scanning the image in the horizontal direction i.e.

scant, we look for those cells which are black in color. Since we have the

record for the number of pixels used before that cell i.e.. Sum, we can easily

find the start point for that cell and the number of pixels of that color i.e.,

runlength. Using either of the two methods discussed above, depending upon

the scan used for scanning the image, the corresponding point on the second

scan can be determined. Lemma 3 is used when our whole image is

represented by a single block i.e., we scan the image using a linear horizontal

murray scan. When the image is represented by a collection of small tiles, we

use Lemma 4. For each black point we will find the corresponding point in the

second scan and the list.2 will be adjusted thereafter.

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

3-3.4. Compaxison between the two algorithms:

Table 4.2. Comparison betweeen the two methods

An Image Radices
r r r r r r
1 2 3 4 5 6

Number of
Black Pixels

Number of
White Pixels

Method 1
(time)

Method 2
(time)

Image a 11119 9 2875 6926 1.10 secs 0.59 secs

Image a 11 11 3 3 3 3 2875 6926 1.12 secs 1.00 secs

Image b 11 119 9 3134 6667 1.08 secs 0.55 secs

image b 3 3 3 3 11 11 3134 6667 1.30 secs 1.20 secs

Image e 7 9 5 7 608 1597 0.22 secs 0.17 secs

Image e 7 7 3 5 3 1 608 1597 0.27 secs 0.25 secs

Image c 11 11 3 3 3 3 6246 3555 2.10 secs 2.00 secs

Image f 39 39 3 3 1810 11879 3.10 secs 3.09 secs

Image f 13 13 3 3 3 3 1810 11879 3.15 secs 3.10 secs

The different images which are given in chapter 3 are considered to

compare the two algorithms discussed above. The result obtained is shown in

Table 4.2. Method 2 Is found to be faster than that of the method 1. The reason

is, in the first method the conversion from murray digits to gray code integer,

gray code conversion etcetera are more time consuming. In the case of the

second method the algorithm deals only with the numbers marked on each

pixels (refer section4-2.2).

112

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

3-3.5 Compaxison between Linear murray scan and General murray scan:

An Image Radices
r r r r r r
1 2 3 4 5 6

Number of
Black Pixels

Number of
White Pixels

Method 1
(time)

Method 2
(time)

Image a 99 99 2875 6926 1.08 secs 0.55 secs

Image a 11 11 3 3 3 3 2875 6926 1.12 secs 1.00 secs

Image b 99 99 3134 6667 1.20 secs 1.05 secs

Image b 3 3 3 3 11 11 3134 6667 1.30 secs 1.20 secs

Image c 99 99 6246 3555 2.29secs 2.17secs

Image c 11 11 3 3 3 3 6246 3555 2.10 secs 2.00 secs

Table 4.3. Comparison betweeen the Linear murray scan and the General murray scan.

As Shown in Table 4.3, the linear murray scan takes less time than the

one which breaks an image into the small tiles. In all the cases except the last

one (i.e image c),the result is in favour of linear murray scan.The reason for

this is, in the case of linear murray scan the whole image is assumed to be of

a single block whereas in the general murray scan an image is divided into

small tiles each of size r-; *rg and hence finding a particular point of scani in

scan2 will take longer. In the case of a linear murray scan we will use only

lemma 3 (section 4-2.2), whereas in the case of the general murray scan we

have to use both the lemmas given in section 4-2.2, In the case of image c (see

Table 4.3), a linear scan takes more time than that of standard murray scan.

The reason is that the number of black runlengths obtained by the two scans

i.e., a general murray scan and a linear murray scan. With a linear scan the

total number of black runlengths obtained is 255, whereas with general

113

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

murray scan this number is 154. Since a general murray scan is frequently

changing direction, there will be some long runlengths belonging to an Image,

whereas in the case of a linear scan these long runlengths may be broken into

a large number of runlengths. Hence this time of processing one large black

runlength corresponding to an area will be less than the runlengths which are

originated from the same area.

From the above discussion we can conclude that the efficiency

corresponding to a linear scan and the general murray scan depend upon the

image. But as discussed above, a linear scan has only one tile (i.e. image) to

process whereas a standard murray scan has rg^r^* *rn tiles to process,

so in most of the case a linear scan will be faster than the standard murray

scan. But a large number of radices will have a better chances of exploiting

the coherence between the pixels and hence may result in better compression.

4-4 Scaling :

4-4.1 Introduction :

Scaling is the process of expanding or reducing the dimensions of an

image. The factor by which an image is enlarged or reduced is called the

scaling factor and the operation that changes the size is called scaling.

Positive scaling constants Sx and Sy are used to describe changes in length

with respect to the x-direction and to the y-direction.lf the scaling factor Is

greater than one then this indicates an expansion of length, and if it is less

than one, then a reduction of length. In the case of a picture the scaling

effects can be obtained by multiplying the x and the y co-ordinate of every

point in the picture by their corresponding scaling factors. Figure 4.6 shows

scaling transformation with scaling factors Sy = 2 and Sy = 1/2.

114

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

Y V

(1.2) (2.2)

(4.1)(2 .1)
►

(2.1)

, (4.1/2)(2.1/2)

Figure 4.6. Scaling transformation with scaling factor Sx =2 and Sy = 1/2

In the case of a picture the new co-ordinate can either be an integer

or a real number. But if we want to scale an image then our scaling factor

should be such that it gives integer co-ordinates when multiplied by the co­

ordinates of the image. Exceptionally, a real factor may be used provided it

gives an integer co-ordinate. For example 8% = 1/2 , Sy = 1/2 and (x,y) = (2,4).

In this case the new co-ordinate will be (1,2), which is acceptable. A scaling

factor to be real depends very much on the images also. Consider two images

given below.

(a) (b)

In the case of (a) the aliasing effect will be there, since in some case

we have to truncate a real number to get an integer number. But since the

115

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

shape of the image is very irregular, this effect will not be easily seen.

Whereas in case of (b) this effect will be very clear since the image is very

smooth.Since each point on an image is going to be scaled, the time of

completion will be very large. The computer time can be reduced if we work

only on the runlengths encoding of an image, since a large number of pixels

belonging to a runlength will be dealt with together. Further if a runlength is

not completely divisible by the scaling factor then the remainder term can be

added to the next runlength, thus keeping the shape of the image. Here murray

scan techniques are used to scale the Images. Different images are scaled up

and down and the result corresponding to the different algorithms which uses

murray techniques are presented. Finally the algorithm has been compared

with those obtained from linear runlength encoding and quadtree encoding.

4-4.2 Scaling using murray polygons and its implementation :

In the next following paragraphs we will discuss an algorithm which

uses murray techniques, to scale the images up and down. Later on some

modifications to the algorithm are discussed in detail.

Let r-j/r'-j be the rational scaling factor which is to be applied in the

x-direction, where r'-j is the x-dimension of initial smallest tile and r-̂ is the

x-dimension of final smallest tile. The runlengths are obtained by using a

murray scan, whose initial movement was in the x-direction. For scaling, each

runlength is multiplied by the factor r-j/r'-|. The remainder term will be added

into the next runlength. That is if r; is the runlength and Rj_i was the

previous remainder then the new runlength Is (r f r - i+ R j.i) div r’-j and the

remainder term which is to be added to the next runlength is given by

(rj*r-| + Rj.-f) rem r'-j. For example.

1 1 6

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

let 4,3,5, be the runlength encoding for an image where r'-j= 3 and

r-j = 5. The scaling factor is given by r '- |/r i. Let x-|, X2 , xg are the new

runlengths for the enlarged image, where.

Remainder = 0

XI (4*5 + Remainder) div 3

6
Remainder (4*5 + Remainder) rem 3

2

X2 (3*5 + 2) div 3

= 5
Remainder (3*5 + 2) rem 3

= 2

X3 = (5*5 + 2) div 3

= 9
Remainder = 0

The changed runlengths are 6,5,9.

Note: When we reach the corner of a fife the remainder term will be zero.

Consider an expression ,

X = a/b

Here the remainder term will be zero if the quantity 'a' is either zero or it is

multiple of b. Let us assume that the initial length of an image is I and the

final length is F , where F > I. Since F > I this implies we are distributing F-/

pixels equally in I pixels thus keeping the final size to F. Further if there is a

remainder term we add this remainder term to the next runlength, without

loosing any information. Hence when we reach the corner of a tile the

remainder term will be zero . A lemma has discussed later to prove this .

The procedure is given below, which takes a sequence of runlengths and then

scales them according to the scaling factor.

117

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES,

I This procedure takes two lists and returns
I a linked list with name list.
le t enter = p ro c (p n tr list,new > pntr)
if list = nil then new e ls e
b eg in

le t temp := list
w h ile temp(next) ~= nil do

temp := temp(next)
temp(next) := new

l i s t

end

I The input is a file containing all the runlengths,
I The scaling factor is equal to R/r.
I The output is a list with the scaled runlengths.
structure in t.lis t(in t run; pntr next)

le t scaling.1 = p r o c (p n t r list;file f;lnt R,r > pn tr)

beg in
let remainder := 0

w hile ~eoi(f) d o

b eg in

le t X read i(f) I This takes a integer from the file named T.
let x.scale := (x*R+remainder) d iv r
list := enter(list,int.list(x.scale,nil))
remainder := (x*R+remainder) rem r

end

l i s t

en d

With some images this approach is not very appropriate. For example if

we consider a VLSI design as an image to scale down, then we see that the

vertical lines are not straight after scaling. Let us consider a small example;

an image of size 5*5 and the runlengths corresponding to that image is given

in Figure 4.7. Let the initial x-radices be 5 and the final x-radices be 7.

Therefore the scaling factor will be given by 7/5, which is greater than one

i.e., an expansion.

118

mA M

5
(a)

the image is scanned using a horizotal murray scan, the corresponding
runlengths are given below,

w b w b w b w b w b w
1 1 6 1 2 1 6 1 2 1 3

using the above approximation and with the scaling factor equal to 7/5 the
new sequence of runlengths will be given as,

1*7 div 5 = 1
(2)

(1*7 +2) div 5 = 1 (4)

and similarly for the other runlengths . the new sequence now is ,

w b w b w b w b w b w
1 1 9 1 3 1 9 1 3 1 5

the new dimensions for the image are now 7*5. if we draw the image back
on the screen using the new sequence of runlengths obtained after enlarging
the image In the x-direction we will find that the vertical line is not
striaght.

g

(b)

Figure 4.7 , The image (a) has been scaled using the approximation
given above, the effect can be easily seen in (b).

119

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

The reason for that is the remainder term which we are adding to the

next runlength. If we examine the scaling factor which is 7/5, states that we

are replacing 5 pixels by 7 pixels. We see that each pixel out of 5 pixel is

increased by the value equal to 7/5. If we assume that each pixel is made up

of 5(say) parts then our remainder term will corresponds to these parts, for

example, if the remainder term is 4(say), this means 4 parts out of 5 parts

belongs to the previous runlength, which is very near to 5 i.e., one complete

pixel.

The previous method may be now further improved by recording the

nearest integer in the new runlength and passing a positive or negative carry

to the next part of the calculation. The procedure is given below .

I The input is a file containing all the runlengths,
! The scaling factor is equal to R/r.
I The output is a list with the scaled runlengths.
structure in t.lis t(ln t run; pntr n e x t)
let scaling.1 = proc(pntr list;flle f;int R,r > p n tr)
begin

let remainder := 0

while ~eoi(f) do
begin

let X := read 1(f) I Input is from the file named f .
let x.scale := (x*R+remainder) div r
remainder (x*R+remalnder) rem r
If remainder > r div 2 d o

{ x.scale := x.scale+1; remainder := remainder-r }
list := enter(Iist,int.list(x.scale,nil))

end
elose(f)
l is t

end

1 2 0

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

Consider again the image given in Figure 4.7(a), the results are shown below.

Using the above approximation and the scaling factor equal to 7/5, the new

sequence of runlengths will be given as.

1*7 div 5 = 1(2)
(1*7 + 2) div 5 = 1(4) = 2 (_ i) Since the remainder term is 4,

which is nearer to 5 than to 0,
hence we will add one to the new

runlength and a negative carry to

the next runlength.

Similarly for the other runlengths, the new sequence now is,

w b w b w b w b w b w

1 2 8 2 2 2 8 2 2 2 4

The new dimensions for the image is now 7*5. If we draw the image back on

the screen using the new sequence of runlengths, obtained after enlarging the

image in the x-direction, we will find that the vertical line is straight (see

below).

To prove the above result a theorem is given. Before we define the theorem we

will define few lemmas.

121

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

Lemma 5 :

Suppose fn -i , fn be two adjacent runlengths. Then the round off error

which is passed on after scaling the two run lengths consecutively is the

same as if the two runlengths are added together i.e. { fn -i+ r^), and the same

scaling performed.

Proof :

Suppose,

n = X dimension of initial smallest tile,

P = X dimension of final smallest tile,

i.e. P/n = x-scaling factor.

R(n-2) = round off error passed on from the calculation on

rn-2 and is less than or equal to (n div 2).

The round off error which is passed on after the second runlength i.e., r^ is

given as (P*rn + { PTn_i + R(n-2)) rem n) rem n. (1)

The round off error which is passed on when the two runlengths are joined

together is given as (P*(rpj + rn_i)+ R(n-2)) rem n. (2)

We have to show now remainder term (1) is equal to remainder term (2). Which

is true since , A rem B = (A rem B) rem B, where A, and B are integers. Hence

the remainder term (2) can be written as,

(P*rn + P*rn-1 + R(n-2)) rem n.

or (P*rn + (P*rn-1 + R(n-2))) rem n.

or (P*rp + (PTn -1 + R(n-2)) rem n) rem n.

122

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

Which is equal to remainder term (1). Hence proved.

Lemma 6 :

Starting at a vertex of a horizontal line, then the round off error from

the last point of that line will be zero.

Proof :

Suppose,

n - X dimension of initial smallest tile,

P = X dimension of final smallest tile,

i.e. P/n = x-scaling factor.

rn ,rn-l.--«............................. = the runlengths corresponding to a

horizontal line of size n.

Using lemma 5, this follows easily by considering rn ,rn -i,..............................,ri

runlengths as a single runlength of size n or, as n separate runlengths.

Theorem :

Suppose,

n = X dimension of initial smallest tile,

P = X dimension of final smallest tile,

i.e. P/n = x-scaling factor.

Rm(n-2) = round of error passed on from the calculation on

rn-2 and is less than or equal in magnitude to (n div 2).

123

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

let n (i = 1 to N) and sj (j = 1 to M) be the runlengths corresponding to two

adjacent horizontal lines, where N and M are the integers.Then if, n and sj are

the two runlengths, corresponding to two horizontal{or vertical) lines, such

that the start point of the first runlength, and the end point of the second

runlength, have the same x-coordinate(or y-coordinate) say x, and adjacent

y-coordinate(or x-coordinate) in the initial scan, then they will have the same

x-coordinate(or y-coordinate) say x', and similar adjacent y-coordinate

(x-coordinate) in the final scaled scan.

Proof :

By Lemma 6, the accumulated round off error at the begining of an

horizontal line segment is zero. Hence corresponding horizontal line segments

will maintain their relative positions in the two scans. We have only

therefore to prove the result for the x -coordinates.

Suppose the new scaled runlength corresponding to n is Rj and let Sj

be the scaled runlength corresponding to sj. To prove that the runlength Ri and

Sj have the same x-coordinate and similar adjacent y-coordinate, we will

compare the round off error received by the runlength Sj and the round of

error received by the runlength R |+1 . The new runlengths will have the same

x-coordinate and adjacent y-coordinate if and only if the round of error

received is the same in magnitude for both the runlengths. Using Lemma 5, and

Lemma 6, we now have to prove that,

S j-1 * P rem n = (R; * P + Rm(i-1)) rem n,

or R |+1 * P rem n = (R j * P + Rm(i-1)) rem n, (see below),

or Rn+1 * P rem n = (Rn * P +Rm(n-1)) rem n (A)

124

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

Sj Sj_i

Rj-1 — Rj ̂ ►1- ̂ R|+i

To prove this, for each positive integer n, let us define p(n) to be the

proposition, Rn+1 * P rem n = (Rn * P +Rm(n-1)) rem n

Suppose n = 1. Then equation(A) gives,

LH.S = 0

R.H.S = 0

which is clearly true. Suppose now that p(n) is true for n <= k. In particular ,

Rk+1 * P rem k = (Rk * P + Rm (k-I)) rem k

is true. That is p(n) is true. But,

R.H.S = (Rk+1 * P + Rm(k)) rem (k+1)

= (Rk+1 * P+((R1+R2+.+Rk)*P+0)) rem (k+1)

(R1+R2+ +Rk+l)*P rem (k+1)

(-Rk+2*P + ((R1+R2+ +Rk+l)*P rem (k+1)) rem (k+1)

(A rem B = (A rem B) rem B)

(-Rk+2*P + 0) rem (k+1) (using lemma 1)

= I LH.S I

Which implies that the statement p(k+1) is true. Therefore p(k) implies p(k+1).

125

CHAPTER 4. SCAN CONVERSDN AND SCALING OF IMAGES.

Hence since p(0) is true, the result follows by the principle of mathematical induction.
Hence proved.

To enlarge the images the scaling factor can take any value greater

than 1. If we have to contract an image our scaling factor should be less than

one. The images can be contracted only upto a certain extent. If our scaling

factor is less than one,then two cases are possible,

1) It will contract an image without distorting the image.

2) It will deform the shape of the image either,

i) by turning some of the white runlengths to zero. Here we

will assume that the image is overscaled, and there is no

way to bring back the original shape from the new

collection of runlengths. If we are dealing with images

... which are not very smooth, for example an image of a

tree, etcetera, then this method of contracting an image

may be advantageous in approximately compressing an

image and thus reducing the storage space,

(refer Buntin(1988)).

i i) by turning some of the black runlengths to zero. Here we

may obtain the shape of the image which is very similar

to the original one, by giving a runlength of one to the

black cell from the white cell which is a left or right

neighbour to it.This is explained later.

In case 2(ii) the black runlength which has turned to zero can accept a

runlength of one either from the left cell or the right cell. The question Is

which cell to consider to give one value to the black cell. Many assumptions

can be made, we can assume in the beginning that the black cell will always

126

CHAPTER 4. SCAN CONVERSKDN AND SCALING OF IMAGES.

accept a pixel from the right cell or from the left cell or if a white cell has

two surrounding black cells which are turned to zero, then we can give one

value to each black cell etcetera. The above assumptions are not always true,

since we do not know which assumption to use and when.

Now we will discuss another approach which is more satisfactory than

the previous assumptions. The theory behind this approach is same accept here

we will discuss the cases as when to use right runlength and when to use the

left runlength to Increase the runlength of the black cell which has zero value.

This idea has obtained by considering the path of the murray scan.

Consider an image of size n*m. Let are the radices

corresponding to the murray digits d-td2 d3 d4 d5 de . Let r-| = 5 and r2 = 5, this

means that the size for the smallest tile is 5*5. Since T2 is equal to 5 means

each tile will have five rows. We can assign a boolean value to each row . All

the odd rows will have value T and all even rows will have F as the boolean

value i.e., the first row will have value T (i.e. true), second row will have

value F(i.e. false) and so on. Now we can say that, if a black runlength which

has turned to zero is in a row which has value T then take a runlength of size

1 from the white cell which is right to that black cell and if the value is F

then take a value 1 from the left white cell. To explain this, we will consider

an example. Initially the correct scaled runlengths are obtained manually and

then the above idea is used to compare the runlengths obtained. Consider the

same image of size 5*5 in Figure 4.7(a). If we scale the Image with the

scaling factor to be less than 1 (say 3/5) then we will find that all the black

runlengths are turned to zero, see Figure 4.8,

127

CHAPTER 4. SCAN CONVERSKDN AND SCAUNG OF IMAGES.

A

h

Figure 4.8. The image (a) has scaled down (b), turning all the black pixels to zero.
The murray path has shown in (b) with the corresponding boolean value.
**' indicates that this square should be black to restore the image.

The new sequence of runlengths will be given as,

serial.number > 1 2 3 4 5 6 7 8 9 10 11

colour — > w b w b w b w b w b w

runlength > 1 0 4 0 2 0 4 0 2 0 2

The 3rd runlength which is 4 is in between the two black cells which

are turned to zero. If we want them to lie in a same column then it will be

satisfactory to give one pixel each to the black cells from the 3rd runlength,

thus decreasing it by two. The new runlengths will now be ,

1, 1, 2, 1, 0, 2, 0, 4, 0,2, 0, 2

If we use the idea of using boolean values for each rows as discussed above

then the first black cell i.e., numbered 2 lies in a row which has value T ' (see

above) and according to the above statement we will take a runlength of size 1

from the one which is right to it, i.e 4. The new runlength will now be,

1, 1, 3, 0, 0, 2, 0, 4, 0,2, 0, 2

128

CHAPTER 4. SCAN CONVERSION AND SCAUNG OF IMAGES.

The second black cell numbered 4 which has value 0 lies in the row which has

value 'F'(see above) and hence we will accept one from the left white cell

numbered 3. The new runlengths are,

1, 1, 2, 1, 0, 2, 0, 4, 0,2, 0, 2

which is same as above. Same assumption can be assumed for the other black

cells also. Sometimes an error can occur when dealing with a straight

horizontal line. Due to the scanning pattern a murray scan can divide a line

into two parts i.e. half part of the line lies in one tile and other half lies in

the other tile see Figure 4.9(a). It has been noticed especially, with VLSI

images, that when we scale down an image the two parts of a horizontal line

which are not in the same tile are not in the straight horizontal line after

substituting value one for the zero black cells. This problem can be solved by

considering the same assumption as used above for the Figure 4.8. Only one

point to remember Is when we change the tiles the boolean value for the rows

will also change i.e., if in the previous tile we are assuming that all the odd

rows will have boolean value T ’ then in this tile they will have value 'P, same

for even numbered rows. This is because the direction of a scan changes from

tile to tile. For example, consider Figure 4.9(b) obtained after scaling the

image (a), with the scaling factor less than 1(say 3/7).

F
I
F

I

F

(b)

Figure 4.9 . Image (a) has scaled down with scaling factor equal to 3/7.
The final image is shown in (b).

129

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

The runlength obtained for an image (a) are,

21, 1 ,2 6 , 1, 21

The corresponding runlength for the image (b) are ,

9, 0, 12, 0, 9

If you see the image (a) the first black belongs to the row having value 'F' and
the second black cell belongs to the row having value T , i.e., both the cells
will take one runlength from the 3rd cell which is12. The effect of changing

the row values with the change in tiles can easily be seen above. The

procedure put value of one to a black cell if it is zero is given below,

I The input is a list containing the black cells which are turned to zero.
I and a vector of boolean values I.e. rows (t) . In case of scaling in
I vertical direction we will use a column vector. The integers r and R
I are equal to r̂ ̂ and t2 i.e. first two murray radices. The output is a

! new list with supplied one for zero cell.

let put.I.for.O.black = proc(pntr List ;*bool t ;int r,R > pntr)
begin

let temp := List I This is to keep the head name same as List.
le t sum := -1 I This is used to find the row .
let product := R*r
while temp - = nil do
begin

if temp ~= nil and temp(run) = 0 and temp(col) = "w" do
begin I to check the value for the white cells.

w rite"******Y o u have overscaled the im age******'n”

w rite " ******A white cell has turned to zero******'n"

abort
end
if temp(run) = 0 do
begin

le t i ;= (sum d iv r) +1

temp(run) := 1

I Next statement gives a value of one to the black cell which

I is zero according to the row value,
if ~t(i) then {

130

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

temp(next,run) := temp(next,run)-1

ternp(next,sum 1) := temp(next,sum1)+1

}
e lse {

temp(left,run) := temp(left,run)-1

temp(suml) := temp{sum1)-1

end
sum := sum+temp(run)

! This statement is to change the value of the rows if
! the tile has changed,
if sum >= product-1 do

begin

fo r i = 1 to R d o

t(i) := ~t(i)
sum := sum rem product

end
temp := temp(next)

end

List
end

To scale the image in the y-direction the runs resulting from the first

part need to be transformed into an essentially y-directional scan and a

similar process applied. Using the scan conversion algorithms discussed above

we can convert the runs from a horizontal murray scan to a vertical murray

scan and the new runs can be scaled in the y-directions also.

Figure 4.10 shows a scaling up and down of the images. In the case of

VLSI images (or any image), we will keep on scaling down an image until there

is a dead short i.e., when few white pixels will turn to zero. At this stage the

programme will stop giving the message '"You have overscaled the image ". The

result of scaling up and down of different images is given in Table 4.3.

131

a

&
k

Figure 4.10. Scaling effect on the different Images.

Figure 4.10[contdl.

(a) (b)

(d)

E H

(c)

JZZZL

(e)

□

Figure 4 .1 0 [corttd]. Scaling effect on a VLSI design image.
Figure a.b.and c are scaled exactly without losing any information, but in Figure
d, and e, some white pixels are turned to zero i.e dead short.

(a) (b) (c)

(e)

(d)

(f)

Figure 4.10Econtdl.
Figure a,b,c,and f showing the exact compression whereas in Figure d, and e there is
dead short i.e^some of the white pixels are turned to zero.

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

4-4.3 Results

An Image Initial Radices

6

Final Radices

6

Scaling Factor

x-factor y-factor

5 11 3 3 3 3 5/11 11/11
Image a 11 11 3 3 3 3 — 3 11 3 3 3 3

7 5 3 3 3 3 7/11 5/11

5 9 3 3 3 3 5/11 9/11
Image c 11 11 3 3 3 3 — 7 9 3 3 3 3 7/11 9/11

7 5 3 3 3 3 --- —

5 5 3 5 3 1
Image e 7 7 3 5 3 1 ------ 5 7 3 5 3 1 -- . . .

7 5 3 5 3 1 7/7 5/7
7 3 3 5 3 1 ■—

5 5 9 7
7 3 9 7

Image e 7 5 9 7 — 7 4 9 7 7/11 4/11
5 7 9 7

Image f 13 13 3 3 3 3 — 11 13 3 3 3 3
13 11 3 3 3 3

31 38 3 3
39 31 3 3

Image f 39 39 3 3 — 31 39 3 3 31/39 39/39

Table 4.4 Scaling of the Images with different scaling factors.
' line indicates that the image is overscaled

The result shown In Table 3.4 is obtained before using the procedure
put.I.for.O.blackQ.

132

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

An Image initial Radices

sT 4̂ ̂ 5 6

Final Radices

6

Scaling Factor

x-factor
y-factor

5 11 3 3 3 3 5/11 11/11
7 11 3 3 3 3 7/11 11/11

image a 11 11 3 3 3 3 __1 3 11 3 3 3 3 3/11 11/11
7 5 3 3 3 3 7/11 5/11
7 3 3 3 3 3 7/11 3/11

5 5 3 5 3 1 5/7 5/7Image e 7 7 3 5 3 1 5 3 3 5 3 1 5/7 3/7
7 4 3 5 3 1 7/7 4/7

5 5 3 5 3 1 5/7 5/5Image e 7 5 9 7 — 5 3 3 5 3 1 5/7 3/5
7 3 3 5 3 1 7/7 3/7

7 9 3 3 3 3 7/11 9/11
5 9 3 3 3 3 5/11 9/11

Image c 1 1 1 1 3 3 3 3 — 7 7 3 3 3 3 7/11 7/T1...........
9 9 3 3 3 3 9/11 9/11
9 10 3 3 3 3 9/11 10/11

11 11 3 3 3 3 11/13 11/13
Image f 13 13 3 3 3 3 — 9 11 3 3 3 3 9/13 11/13

7 11 3 3 3 3 7/13 11/13

31 31 3 3 31/39 31/39
31 30 3 3 31/39 30/39

Image f 39 39 3 3 ------- 25 35 3 3 25/39 35/39
25 31 3 3 25/39 31/39
21 35 3 3 21/39 35/39
21 31 3 3 21/39 31/39
19 37 3 3 19/39 37/39

Table 4.5 Scaling of the images with different scaling factors.
The result shown in Table 4.5 is obtained after using the procedure put. l.for.O.black.

133

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

The results obtained by scaling down the images are shown in Table

4.4 and Table 4.5. The results shown in Table 4.4 are obtained before using the

procedure putUor.O .blackQ. It should be noticed that if the surfaces in an

image are wide spread from each other(e.g., chapter 3, Figure 3.2 a,b,and c)

then the scaling factor before and after using the procedure put.I.for.O .black

does not change very much. But in the case of wire frame images (e.g, VLSI

design , chapter 3, Figure 3.2 e,f) there is too much variation in the x and the y

scaling factors. The result shown in Table 3.5 is obtained after using the

procedure put.1.for.0.black(). From the results shown in Table 4.4 and 4.5, the

difference between the permissible x-scaling factor (or the y-scaiing factor)

for the images e and f is large. In the case of image e with six radices (see

Table 4.4) the minimum value for the x-scaling factor is 7/7 and for the y-

scaling factor is 5/7, whereas as shown in Table 4.5 the same image has 5/7

and 3/7 as the minimum x and y-scaling factors(i.e., 20 pixel less than the

previous tile). Similarly for the image e with 4 radices. From Table 4.4 it has

shown that the image f with six radices cannot be scaled down whereas in

Table 4.5 the minimum scaling factors for x and y are 7/13 and 11/13 (i.e. 92

pixels less then the previous one).

From the above result and the discussion, we can now say that the

procedure put.I.for.O.black helps in approximately compressing the Images. We

are not considering the cases of scaling up the images since turning of black

pixels to zero is impossible. Scaling up the images works with any scaling

factor provided the quotient for the x-factor is not even.

4-5 Remarks :

The results obtained for converting scani into scan2 using a standard

murray scan were compared with those obtained by using linear murray scan.

In most cases a linear murray scan takes less time than that of the general

154

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

murray scan (see Table 4.3). But as discussed earlier that the distribution of

runs obtained by general murray scans will be different to that of standard

linear scan with fly back, which may result in better compression.The same

argument can be applied to show the advantage of general murray scans over

linear murray scans.

Further in the case of quadtrees the scaling factor depends upon the

size of the image i.e., if the initial size is 4 then the next size of the image

can be 8 or 16 or 2 etcetera, which a disadvantage of this method. As we have

seen in the case of murray scan the scaling factor is independent of the size

of the image. But if the scaling factor is greater than or equal to 2 then

quadtree methods will be more effective than that of murray scans, since in

case of quadtrees the same codes can be used to regenerate the scaled image.

For example, an image of size 4*4 with some black pixel is given below.

The corresponding codes in the ascending order for these black cells will be ,

30, 21, 10, 03

Now If we scale the image with a scaling factor equal to 8/4 then using the

same codes we can generate the scaled image see below.

135

CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

8

2

From the above example we can say that the quadtree approach is efficient,

but it depends upon the size of the image. The next scaling factor for the

above example will be 16/8. For the quadtree approach we cannot use any

other scaling factor between 8/8 and 16/8, whereas in the case of the murray

scan we can have more number of scaling factors between 8/8 and 16/8 giving

the exact scaled image, which is an advantage of the murray approach over the

quadtree approach.

136

Chapter 5

5. SU PER IM PO SITIO N , AND SET OPERATIONS ON IM AGES 1 37

5-1 Introduction 137
5 - 2 Set Operations 1 3 8
5-3 Superimposition of The Images Using Murray Polygons 1 4 0

Implementation 141

5 - 4 Set Operations Using Murray Polygons 14 3
Union 1 4 4

Intersection 146
Difference 146

5 - 4 Remarks 147

CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES.

5-1 Introduction :

If we consider a complex image we often find that this is made up of

many simpler sub-images, some of which may be transforms of each other. For

example, an image of a busy intersection has cars of different sizes in

different locations and moving in different directions. In addition there are

people, street signs, trees, etcetera. With time there will be some changes in

the image. The change may come to the number of cars, and people at the

intersection. Hence we should have the capability of changing parts of an

image, while keeping other parts fixed.

Set operations on the images can be used to merge two or more images

together. Medical SD.images which are obtained by putting planes one after

other can be reduced to a single plane i.e., 2-dimension, by merging all the

planes together, thus removing the hidden surface area from a given view

point. The hidden surface problem is discussed in detail in the following

chapters. Also in Constructive Solid Geometry (refer Hearn, and Baker(1986))

sollds(such as spheres, cubes, cylinders, etcetera) can be combined by

geometrical transformation and boolean operations such as union,intersection

and difference. Union of the images is similar to the 'or' operator, whereas

intersection and difference of the images is similar to 'and' and 'xor* operators

respectively.

In this chapter, initially past and present work is categorised and

briefly discussed. Superimposition of images and some set operations using

murray techniques is discussed. All the operations are on the runlengths only,

which are stored either in a file or in a list. We do not need to go back to the

image once we have got the collection of runlengths corresponding to that

image.

137

CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES.

5 2 Set Operation :

The quadtree is especially useful for performing set operations such as

union and intersection of several images. This is described in greater detail

by Hunter and Steiglitz(1979a), and Shneier(1981). The union of the quadtrees,

S and T can be obtained by examining the corresponding nodes and constructing

the resulting quadtree, say in U. If either of the two nodes is BLACK, then the

corresponding node in U is BLACK. If one node is WHITE, say in S, then the

corresponding node in U will corresponds to the node in T. If both nodes are

GRAY, then U is set to grey and the algorithm is applied recursively to the

sons of S and T. Once the sons have been processed, a check will be made to

see whether a merger is to take place, since all four sons could be BLACK. For

example, consider the union of the quadtree of Fig 5.1 and 5.2. Node B in Fig 5.1

and node E in Fig 5.2 are both GRAY. However the union of their corresponding

sons yields four BLACK nodes in U. Fig 5.3 shows the union of Fig 5.1 and 5.2.

Computing the intersection of two quadtrees is just as simple. The

algorithm described above for union is applied, except that the roles of BLACK

and W HITE are interchanged. If either of the two nodes is BLACK, then the

corresponding node in U is BLACK. If one node is WHITE, say in S, then the

corresponding node in U is WHITE. The check for a merger is performed to

determine if all four sons are WHITE. Figure 5.4 shows the result of the

intersection of Figure 5.1 and 5.2.

Gargantini(1982) used linear quadtree for union and intersection of

images. Here for union, if two nodes are the same, then only one node is

stored. If one block covers the other one then the larger block will be stored

in the final array, intersection can be treated similarly. For example, let

C1 = { 003, 021, 023, 03X, 122, 21X, 3XX },

138

D

1 2 3 4 7 8 9 10

20

1

Figure 5.1. Sample image and its quadtree. Figure 5.2. Sample image and its quadtree.

22

24 25 26 27
o o • o

29 30 31 32

Figure 5.3.Union of the images in
Figure 5.1 and 5.2.

Figure 5.4. Intersection of the images in
Figure 5.1, and Figure 5.2.

CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES,

and

C2 = { 122,111, 113, 131, 133, 230, 231, 3X X } be the linear coding for the given

two images. If we find the union of the two Images, we obtain,

C l U 02 = { 003, 021, 023, 03X, 111, 113, 122. 131, 133, 21X. 230,

231, 3XX}.

Gargantini{1983) used the same process for the linear octree .

Burton, Koliias, and Kollias(1987) defined a simple map overlay function for

quadtrees, and showed that many common quadtree operations including union and

intersection, can all be considered as special cases of the map overlay function. The

process to overlay different types of site data to produce some kind of composite map is

commonly referred to as the map overlay problem. For example, a quadtree representation

for two maps partitioned into districts in two different ways is given. One correspond to a

soil map and the other to political map. A district within a map may correspond to a state

defined area (e.g., country), to a soil type (e.g., Alflsol), or to an elevation range. Here they

use integer numbers for representing the different districts. The overlay map for each (soil

type, political unit) pair Is obtained by multiplying the number of the first district by a factor

(say 10), and adding the number of the second district. The new district with number 23

(say) would be the intersection of (soil) district 2 with (political) district 3. Union ,

Intersection and Difference can apply only to 0-1 quadtrees, where 1 indicates that the (soil

type. Political unit) pair satisfies some particular conditions. More detail can be found in

Burton, Koliias, and Kollias[1987].

Oliver and Wiseman(1984) used a treecode representation for merging two or

more images. Treecode representation is defined in section 1^3.2. Merging is done by

examining the node of each input tree. If at a certain stage the next node in each tree is a

leaf node then the leaves are combined to form an output node. If the first tree contains a

non-terminal node and the second a leaf, then the first scan recurses until it catches up

139

CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES.

with the second, and vice versa. If both trees contain non-terminal nodes both scans will

recurse.

5-3 Supeiimposition Of The Images Using Murray Polygons ;

One way of superimposing one image on top of another Is to copy the

changed part on to the image. This expression will persist so long as it is on

the screen. There will be no change in the runlengths. Next time to obtain this

changed plane, we have to do the same calculations again. This is not

convenient for an animated movie where we have to run, say 20 frames a

second to get the moving expression. Another way of superimposing one image

on top of another is to copy the changed part in such a way that the previous

runlengths will change to give the sequence of runlengths for the new plane.

Here we present a algorithm which has the capability of superimposing

one image on top of another by changing the runlengths. The only information

which is required is the size of the image which is going to be superimposed

and the starting point on the image where it is going to be superimposed. The

starting point can be obtained with the help of the function lo ca to r' which

gives the position of the mouse relative to the screen. The size of the image

is required to decide about the x and the y-radices.

Both the images (say A and 8) are stored in the database, whereas

image A is the initial image and image B is going to be superimposed on image

A. Initially image A will be scanned using a murray scan and the corresponding

sequence of runlengths will then be stored either In the database or in a file.

The algorithm will now take image B and the runlengths corresponding to

image A as an input. Output will be the collection of runlengths corresponding

to image A with image B superimposed on it. We will discuss this in the next

section. Once the desired runlengths have been obtained, the image can be

140

CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES.

drawn on the screen. The data structure used to store the runlengths and the

Implementation part is discussed in the next section.

3-3.1 Implementation :

Consider two images of different sizes as shown,

(X,Y)
(xgyâ

(0,0)

(x,y)

(0,0)

where
y 2 y f y
Xg- x^=x

where 'a' is the initial image and 'c' is the image which has to be superimposed

on the image 'a'. The position where the image has to be superimposed has

been marked. Let (x-j.y-j) be the starting point in an image 'a' for the image 'o'

to be superimposed. Our first step Is to scan the image ’a' to give the sequence

of runlengths. The image ’a’ can be removed once we have obtained the

corresponding runlengths. The image 'c' can similarly be removed once

scanned, and the corresponding runlengths can be used to superimpose 'c' on 'a'.

But the scanning part and the superimposition part, of 'o' on *a‘ can be done

simultaneously, which is discussed later. Time can be saved by not rescanning

the image ’c'. The data structure used for the list to store the runlengths is

same as used before. We define our data structure as,

s tructu re integer.list(int runlength, Sum ;string colour;pntr left,next)

The linked list obtained after scanning the image 'a' uses the above

structure to store the runlengths. Each cell contains information about the

141

CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES.

consecutive pixels of the same colour. All the items used in the data structure

are discussed in chapter 4 .

Let r-i, rg, r^ be the runlengths corresponding to the

image 'a' . Each runlength corresponds to a colour. The colour information for

each runlength is given in the item ’colour* defined in the structure. Since we

are considering black and white images, the item ’colour’ contains either 'w'

i.e., white or 'b' i.e. black, as the two values. The linked list is as shown,

Consider the image *c' which has to be superimposed on image 'a'. We

will scan this image using a murray scan. The first point on this image is

(x,y) = (0,0). But since the starting point for the image 'c' on the image 'a’ is

(x i , y i) , we will shift this point by (x-j.y-j) i.e., the new values for the

x-coordinates and the y-coordinates will be given as,

x (fin a l) = X + x-j = 0 +x^ = x-j

y (fin a l) = y + y-j * 0 +y-j = yi

Using the transformation f(x,y) — > n (discussed earlier), we can find

the corresponding nth point on the image 'a*. Now scan the list obtained for

image 'a' and consider that cell where this nth point belongs. The colour on

both the images will now be compared.

If the colour corresponding to the initial point (x,y) (= (0,0), say) in

image 'c' and the colour corresponding to the final point (x,y) in an

image 'a* is black then there will be no change in the list.

142

CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES.

If the colour corresponding to a point in image 'c' is black and the

colour corresponding to the point (x,y) in an image ’a' is white then we

will change the runlengths by turning that pixel to black.

If the colour corresponding to a point in image 'c' is white then there

is no need to consider that point.

For all the points in an image 'o', which are black we will repeat the above

scheme. The output will be another frame (or image) with the slight change, in

comparison to the previous one. This method is similar to finding a union

between two images. Set operations are discussed in the next section.

5.4 Set Operations Using Mmxay Polygons :

The set operations which are considered in this section are,

i. Union,

ii. Intersection,

iii. Difference.

If A and B are two images which are black and white , then we define,

A U B = the set of all the black pixels which are In A as well as In

image B

a Q B = the set of all the black pixels which are common in image A

and in image B.

143

CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES.

A A B = (A U B) - (A n B),

i.e. the set of ail the black pixels which are in A and in B

except those which are common to both the images.

The images can be merged either by using the images themself or

by using the different sets of runlengths obtained by scanning the different

images. In the first case, the whole image must be in the system while

processing. This will require a large amount of memory for images having a

few thousand surfaces(or planes). Secondly it can be time consuming, since

we have to compare each pixel of an image to the other one. A second approach

can be more efficient than the first one. We do not require all the planes at

the same time. Here we scan the planes one by one to get the sequences of

runlengths, and then merge them together to give a single sequence of

runlengths. The points to be remembered are that the size of aH the Jrnages

should be same. The x-radices and the y-radices can be same or different for

all the images. This is discussed later on.

5-4.1 Union :

Let r = r*|,r2 ,............... .r^ and s = s^.sg.................s ^ be the collection of

runlengths corresponding to the two images which we have to merge. The

radices used to scan the images should be same. Here our problem is to obtain

the sequence t = t-) ,t2 , ,t|; such that the sequence t has black runlengths

where either the sequence r or the sequence s or the both sequences have

black runlengths.

Now to obtain the sequence t we will traverse both the sequences r

and s together. Three cases are possible between the two sequences r and

s.They are,

144

CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES.

1. Sj = r j . Output the one I.e. S| or rj, which is black otherwise

any of the two.

2. Sj > r j . There can be two cases,
I

i. Sj is black. |

output Sj with the associated colour and then scan the i

sequence r, until the sum of the runlengths starting from I
rj is greater than or equal to Sj. ■

i
!

Define sum = rj............... +r|^>= Sj. We can consider 1

two cases ,

1. sum = Sj. Compare the next runlength of the two j
sequences i.e r%+i and Sj+i. |

!
2. sum > Sj. Since the runlength Sj has already been 1

output in the final list, we will compare the j
remaining runlength sum - Sj, which belongs to I
the member r^ of the sequence r, with the next I
runlength of the sequence s i.e. Sj+-j . j

!
ii. Sj is white. i

I
scan the sequence r, until the sum of the runlengths |
starting from rj is greater than or equal to Sj. Define |
sum = rj +ÎJ+1+ +r| ̂>= S j . Here we will output I
rj ,^+1 rk_i with their associated colour. We I
consider two cases , i

ii
1. sum = Sj. Output r^ with the associated colour |

and then compare the next runlength of the two :
sequences, i.e r%+i and Sj+-j. |

2. sum > Sj. Output rk - {sum - Sj) with the colour j
corresponding to the member r^ of the sequence r !
and then compare the remaining runlength sum -Sj, i
which belongs to the member r^ of the sequence r, !
with the next runlength of the sequences i.e. Sj+-| . •

145

CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES.

3. r; > Sj. This is similar to the case 2, only change being to replace r

by s and s by r.

5-4.2 Intersection And Difference:

Let r = r-j,r2.................r^ and s = s i,S 2 ,...............Sm be the collection of

runlengths corresponding to the two images which we have to merge in order

to get the common pixels. The problem is to obtain the sequence

t = t-| ,t2 ,....... ,tx such that the sequence t has black runlengths where both

sequences r and s have black runlengths, and if either r or s is black then the

sequence t will assume one which is white. If the radices used to scan the

images are same, the above method discussed for the union case can be

slightly modified to get the sequence t which will remove all the areas which

are not common to both the images. Here instead of modifying the above

method we will discuss another approach to this problem. Here the radices

used to scan the images can be same or different.

Scan the sequence s = s i,S2Sm and consider each member of

this sequence in order. Using the transformation (n — > f(x,y)) explained in

chapter 2, we can find the corresponding coordinates for each point in the

sequence s. For example.

If s-j = 3 and $ 2 = 4 then the corresponding values for n, in the cell

s-t will be 0,1, and 2 and in cell S2 they will be 3,4,5, and 6. For any

cell Sk the corresponding values can be obtained by using the Item

'Sum* defined in the structure above. The first point for the cell s^

will be equal to the 'Sum ' value plus one.

Once we have the co-ordinates, using the transformation (f(x,y) — > m) we

can find the corresponding mth point in the sequence r. Now we have to

146

CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES. I

compare the colour for the nth point in the sequence s with the mth point in

the sequence r.

If both are black or both are white then there will be no change In the

sequence r.

If one is black and other one is white then the colour of the mth point

in the sequence r will change to white if it is black.

The new sequence r will be the required sequence t. Similarly if we have to

find the difference between the two or more images then the colour

comparison for the two points in the two sequence will be slightly different.

Here,

If both are black or both are white then the colour of the mth point in

the sequence r will change to white.

If one is black and other one is white then the colour of the mth point

in the sequence r will change to black if it is white.

5-3 Remarks:

Superimposition of one image on top of other may be helpful in the

case of an animated movie. For example, if we see two consecutive planes of

an animated movie as shown below, the only change which we can see is the

position of the character which has moved slightly. Therefore we need to

change only the part which is given in the small rectangle keeping the

surrounding objects the same.

147

CHAPTERS. SUPERIMPOSITDN, AND SET OPERATIONS ON IMAGES.

(a) (b)

Since the character Is moving, we have to consider the changes in with

the character and with the background portion, which is changing with respect

to the character('A/ofe ; we consider the background scenery as stationary). To

get the consecutive planes we can simply modify the background plane.

Initially draw the background image and then superimpose the moving

character at a given point.

148

Chapter 6

6. CONNECTED COMPONENET LABEUJNG 149
6 - 1 Introduction 1 4 9

6 - 2 Connected Component Labelling 1 51
6 - 3 Connected Component Labelling Using Murray Polygons 1 5 3

Method 1 (Using Images) 1 5 5

Method 2 1 6 2

Using Two Sequences of Runlengths 1 6 2

Extension To 3-Dimensional and n-D Images 1 6 8

Comparison Between Method 1 And Method 2(part 1) 1 7 0

Using One Sequences of Runlengths 1 7 0

Extension To 3-Dimensional and n-D Images 1 7 8

Comparison Between Method 2 (Two list w's One list) 17 9

6 - 3 Remarks 1 7 9

CHAPTER 6. CONNECTED COMPONENT LABELLING,

6.1 Introduction :

Connected component labelling [refer Rosenfeid and Kak(1976)], is one

of the basic operations of an image processing system. It is analogous to

finding the connected components of a graph. Let S be a finite set of pixels.

Two pixels (ij), (K,J) e S are n-connected in S if and only if there is a n-path

between (i,j) and (K,J) consisting entirely of points of S i.e., a sequence of

elements, (i,j) = (ig Jo). Ol. i i) . On. in) = (K,J), all in S such

that (if , ic) is a neighbour of (ir_-|, 1<= r <= n. Connectedness may be

defined in terms of the neighbours of a point (i,j). Let (i,j) be a point of the

given image. Then (i,j) has four horizontal and vertical neighbours, namely the

point

(i-1.j). (i,i-1). (i.i+1). (i+1.i)

These points are called the 4-neighbours of (i,j), and are said to be 4-adjacent

to (i,j). In addition, (i,j) has four diagonal neighbours namely

(i-1 ,j+1). (i+ 1.i-1). (i+1 .i+ 1)

Both these and the 4-neighbours are called 8 -neighbours of (i,j), as shown.

(i.j+1) (i-1 .j+ 1) (U +1) (Î+1 .J+1)

t V t / * '
) (i+1 ,])

-1) (1+1 , M)

4-polnt connectivity 8-point connectivity

149

CHAPTER 6. CONNECTED COMPONENT LABELLING.

Finding connected components can be very useful in some areas of

image processing. Consider for example a medical image which shows a

tumour surrounded by other parts of the body (e.g. bones, lungs, etcetera). A

doctor cannot have a better look of the tumour since it is surrounded by other

parts. It will be better if we can extract the tumour out leaving behind the

parts obscuring it. This we can do by finding the connectivity between

different parts, supposing that the tumour has some physical property to

distinguish it from the surrounding tissue. Those parts which are not

connected to that can be removed. Similarly for a underwater picture. Here for

example an oil pump which is surrounded by fish, algae and other materials.

One can remove all the unwanted substances (such as algae, fish etcetera)

from an image, leaving behind the one in which we are interested. In many

other places also connectivity can similarly be applied.

To some extent connectivity can be helpful in compressing the data

approximately. The initial sequence of runlengths which has been obtained

after scanning an image will contain all the black chunks which are present in

an image. Using connected component labelling we can find the required

connected component in an image and can remove those components which are

not required. The runlengths corresponding to those parts which are removed

from the scene will be merged with the back ground color i.e., will turn to

white, resulting in a smaller number of runlengths. For example,

w b w w

5 7 3 > 15 the black runlength has merged with the two

adjacent white.

In this chapter, initially past and present work is categorized and

briefly discussed. Different algorithms using murray polygons are presented

to find the connected components of an image. Different images which are

ISO

CHAPTER 6. CONNECTED COMPONENT LABELLING.

given in chapter 3, Figure 3.2 are considered by these algorithms. Completion

time for different images, using different algorithms which use murray

techniques have been compared. Comparison has also been done between

algorithms which use murray techniques and with those obtained with

quadtree, octree, or linear encoding. All the images which are considered are

black and white.

6.2 Connected Component Labelling :

As defined above, connected component labelling is one of the basic

operations of an image processing system. For example, the image shown

below has two components. Given a binary array representation of an image,

Rosenfeid and Pfaltz(1966) suggested a "breadth-first” approach, which scans

the image row by row from left to right and assigns the same label to the

adjacent BLACK pixels that are found to the right and in the downward

direction. During this process pairs of equivalences may be generated,

resulting in two more steps. The first step is to merge the equivalences and

the second one is to update the labels associated with the various pixels to

reflect the merger of the equivalences.

An image with two connected blocks. Blocks in the image are

shaded; background blocks are blank (white).

151

CHAPTER 6. CONNECTED COMPONENT LABELLING.

Samet(1981a) used a quadtree method to perform the same operation.

His algorithm is three-step process. The first step is a postorder traversal

(in order NW,NE,SW,SE), where for each BLACK node that is encountered, say A,

all adjacent BLACK nodes on southern and eastern sides of A are found, and

assigned the same label. The adjacency exploration is done using the

neighbour-finding techniques of Samet(1982). The second step merges all the

equivalence pairs that were generated during the first step. The third step

performs another traversal of the quadtree and updates the labels on the nodes

to reflect the equivalences generated by the first two steps of the algorithms.

Gargantini(1982) used linear quadtrees and showed how to find the

pixel adjacent to a given one in a specified direction. If

K =(kn-lK n-2^0)4 be the given pixel and S = (Sn-iS n - 2 .8 0)4 its

adjacent node in a particular direction (say southern direction) then the

problem is how to determine digits 8 ^-2 ,§0- Here two case are

distinguished: in the first one, K and 8 belong to the same quadrant relative to

the nth subdivision; in the other, K and S do not. Four different algorithms are

required to find the adjacent nodes in four direction (N, 8 , E, W). They have

been explained (refer Gargantini(1982)).

Unnikrishan(1987) proposed a connected components algorithm using a

linear hierarchical quadtree (LHQT). LHQT is obtained by rearranging a linear

quadtree into a hierarchy of arrays based on the size of the black node, as

defined earlier. The algorithm explores adjacencies in the LHQT, assigning

unique labels. It has shown that the use of the LHQT in connected component

labelling results in greater computational efficiency than the algorithm given

by Gargantini(1982).

Gargantini(1983) used a linear octree to find the adjacent pixels in a

three-dimensional image. His algorithm produces the pixel adjacent to an

152

CHAPTER 6. CONNECTED COMPONENT LABELLING.

internal one in a specific direction. A binary search can be used to determine

whether or not the found pixel is black as in the planar case Let Q be

represented by an octal digit q n -i, qn-2,....................do- Here for each digit two

cases have been considered to find the octal code of the pixel adjacent to Q in

the Eastern direction (say).

1. If qO is even, the adjacent node in the Eastern direction belongs to

the same octant as Q and therefore E(qg) = qg+1, E(qj) - qj, j = 1, 2n-1.

2. If qo is odd, Q and its adjacent node belong to two different octants.

The adjacent octant is represented by (qg+7) rem 8. The other digits are

determined by analyzing q i,q 2 , if even then we use case 1 otherwise

case 2.

For the boundary pixels, if the found value of E(Q) is such that

Q-E(Q) = (11.....1)8 then Q is on the eastern border. If Q-S(Q) - (22.......2)g then Q

is on he southern border. Similarly internal or boundary pixels can be

determined for other directions also.

6.3 Connected Component Labelling using Mwrmy Polygons :

As defined above, connected component labelling is the process of

identifying the disjoint elements of the Image. If a binary array

representation of an image is given, the simple method of finding connectivity

would be to scan the image row by row from left to right and assign the same

label to the adjacent black pixels that are found to the right and the downward

direction. This process is one dimensional and secondly all the pixels need to

be considered in order to find the connectivity to the right and in the

downward direction. Once the end point of an image has been reached the

imaga will be rescanned from top to bottom. Rescanning is continued until the

153

CHAPTER 6. CONNECTED COMPONENT LABELLING.

connected component is obtained. The time required depends upon the number

of black pixels and the shape of the component.

In the next sections we will discuss two different approaches for

finding the connected components of an image. The efficiency for both

methods is compared for different images. The theory behind these methods is

very simple. Let us consider two perpendicular lines intersecting at a common

point A (say). The common point A is connected with the four neighbour points

of the two intersecting lines. Also we know that since the connectivity

relation is transitive and reflexive then c R a if a R b and c R b . Since we

have a common point and the relation is transitive it implies all the points are

connected to each other. In the case of the murray scan this can be obtained by

considering two different scans, one will subdivide an image array into

horizontal tiles and the other one will divide the image into vertical tiles. For

example, a tile of size 3*3 and the two scanning patterns corresponding to an

image are as shown,

At any stage the two scans in a tile will be perpendicular to each other. The

connectivity can now be obtained by using both the scans together. To find

154

CHAPTER 6. CONNECTED COMPONENT LABELLING.

connectivity we can start from a tile and from this tile we can find other

tiles and so on, more detail follows.

6.3.1 Method 1 [Using Images) :

Consider a black and white image with many connected areas as shown

in Figure 6.1. Suppose we are interested in the blob marked T. Our problem is

to extract this blob from the image leaving behind the other small ones.

Figure 6.1. An Image with many connected areas.

The approach is very simple. Initially scan an image horizontally and

vertically to get the sequence of runlengths where the radices for the two

scans can be the same or different. For the scanning part we can either use

two scans separately which will break an image into collection of tiles

scanned in the horizontal and in the vertical direction to give two sets of

runlengths, or we can scan the image In the horizontal direction and then using

the scan conversion algorithms discussed in chapter 4, the runlengths for the

vertical scan can be obtained. The use of the scan conversion algorithm is to

get rid of the image once scanned. The operations will then be on the

runlengths only. But in comparison, both the methods approximately take the

155

CHAPTER 6. CONNECTED COMPONENT LABELLING.

same time to get the corresponding runlengths for the other scan. Here in this

method we use two different scans to scan an image.

The starting point should be the subset of the set containing all the

points belonging to the blob in which we are interested. A starting point in an

Image can either be indicated by positioning a cursor on the display or in an

automated system choosing a long runlength of the appropriate colour only if

the component required is large. In the later case a problem can arise when

the image has two or three blobs of the same size. The starting point may

belong to other blobs in which we are not interested. We have to repeat the

process until we get the required blob. In this method we will choose a long

runlength of black colour (since the images used are black and white only) to

find a starting point. How to use cursor for finding the starting point is

discussed in the second method. The complete method for finding the

connected components by using images is as follows.

Let ri ,f2 tn (1)

be the sequence of runlengths obtained from the horizontal murray scan and

si ,82 Sfx) --------------------------- (2), be the sequence

of runlengths obtained from the vertical murray scan. We can start with any

of these sequences. Consider the first sequence of runlengths and find the

maximum black runlength for the starting point. Let the maximum black

runlength in the first sequence be q. Convert this black runlength to white by

merging the two white neighbours with it. Now we have a new sequence of

runlengths where the maximum black runlength has been changed to white.

The new sequence is thus,

n .f2 n-2 . f'i . n+2 fn (A)
where r'j = n.-j + q + q + i

156

CHAPTER 6, CONNECTED COMPONENT LABELLING.

Using this new sequence of runlengths an image can be drawn at any point on

the screen. Scan this new image using a vertical murray scan.

Let S-j , $2 Sm ' — -------------------- (3), be the new

vertical runlengths. Now we have two sequences of runlengths obtained by
I

using the vertical murray scan.The first one is obtained by scanning the I

original image and the second one Is obtained by scanning the new image. The

two vertical sequences are represented by label (2) and (3). If we compare

both the sequences we will find that some of the black runlengths are i

identical, whereas some of them are changed. The black runlength in the

sequence (2) which has changed in (3) are actually broken into several

runlengths. The reason is the black area which has changed to white. All the |

black runlengths in the sequence (2) which pass through that area will be j

affected. For example, suppose s\ is the only black which has changed. All the I

runlengths before and after it will be same , see below. |
j
ii

w b b w b/w I
I

S1 .S2..................... Sj.Si+1 Sm I

S i,S 2 S |,S j+ i................. S|+k.......................... Sm I
I
I

where s; = S| + S j+ i+ + S ;+k, ■

Sj = Sj for i = 1 to i-1, Î

and Sj = Sj+k for I = i+1 to m. j

Here Sj has broken into k runlengths. Since Sj is black and so the runlengths i
I

Sj , S|+2 , .. , the relation is transitive implies all these black runlengths I
i

are connected to each other. Our next step is to convert Sj to white as we did i

earlier. The new sequence of runlengths for the vertical scan is now, |

157

CHAPTER 6. CONNECTED COMPONENT LABELLING.

I

w b b w b b/w

S1 ,S2 Sj.2 , s'l, Sj+2............................ Sm (B)

where s'j = S|_i + Sj + Sj+i

Again the image can be drawn on the screen using the runlengths given in (B) .

This time we will use the horizontal murray scan to scan this new image. The

new sequence of runlengths will now be compared with the sequence given in

(A) and so on. When there is no change in the two sequences which we are

comparing our program will stop. The whole scheme is given in Figure 6.2.

158

CHAPTER 6. CONNECTED COMPONENT LABELLING.

Input ; Image
Scan := True
open.file A,B,C,D,E

Scan the image using scan1, output the runs in
file A (= lnitial.file.1)
Scan the image using scan2, output the runs in
file B (= lnitial.file.2)______________________

if Scan=True use file A
else use file B
Convert max.black to white
and put the changed runlengths
in file C (= final.file)

Scan := ~Scan
If Scan=True use scani to scan the new image,
else use scan2 to scan the new image,
output the runlengths in file D (= final.file)

if Scan=True then lnitial.file.1 := final.file
else lnitial.file.2 := final.file

Draw the image using the runs of the final
file.

If Scan = True then compare file A with
the final file C

else compare file B with
the final file D

storing the runlengths in a file

end

Figure 6.2. Flow chart giving the scheme for method 1

159

CHAPTER 6. CONNECTED COMPONENT LABELLING.

Now the final runlengths will have the blob marked T totally removed

i.e., turned to white. To get the runlengths for the blob, we may either

accumulate them as we find them or compare the final horizontal sequence

with the initial sequence given in (1). Those pixels which are black in the final

sequence will have turned to white in the sequence given in (1), resulting in

the sequence of runlengths for the blob marked T. This is discussed below,

Let r-| ,r2 r^ be the initial runlengths given in (1) and

le t r'i ,r' 2 r'm be the final runlengths where n>m. To

get the runlengths for the blob we will scan both the sequences together to

look for the black common pixels in the two sequences. A runlength r\ is said

to be common to the runlength r'j of other sequence If,

r-j+r2 + +n>i = r'-j+r'2 ++r'j_-| , where r\ and r'j are both

black.

Therefore to scan both the sequences we need to store the information

corresponding to the left sum i.e., how many pixels have been used before a

runlength (say q). We can define sum i and sum 2 to be the initial sum for the

two sequences, where initial values for s u m i is equal to r-j and for sum2 equal

to r'-j. Whenever we encounter a new runlength we will add this to the

previous sum to give the new sum value. Now the movement of each sequences

depends upon the relation between the two sums. Two case need to be

considered, sum 1 < sum2 or sum 1 = sum2 (Note : sum 1 cannot be greater

than sum2 since the runlengths r) will always be greater than or equal to ri).

If sum i < sum 2 this implies that r'j > q. Since both the sequences are

obtained by using the horizontal murray scan, we will conclude that the

runlength r'j is obtained by adding some of the runlengths belonging to the

blob, see below,

160

CHAPTER 6. CONNECTED COMPONENT LABELUNG.

(a) (b)

Here (a) is the initial image and image (b) is the final image obtained

by turning the biggest blob to white. The two sequences of runlengths obtained

from the images (a) and (b) are,

w b w b w b w b w b w

Ini t ial

Final

2 6 1 2 1 3 1 1 6 1 1

9 2 14

If we see the final sequence then the runlength 9 is equal to the sum of the

first three runlengths in the initial sequence, and similarly for the runlength

14. Therefore in these cases the first sequence will scan the consecutive

runlengths storing them in a file, while the second sequence waits for the

first to catch up i.e., sum 1 = sum2 .

If sum1 = sum 2 , this case will arise when the scan touches .other

surrounding blobs which are not connected to the blob in which we are

interested. Here in the first sequence we will change the next runlength to

white if it is black, since the next runlength does not belong to that blob. For

example if we consider the same sequences of runlengths given above we will

see when both the sums are 9 then the next runlength i.e., 2 belongs to the

other blob. Keep on repeating this until the end of the two sequences is

reached.

161

CHAPTER 6. CONNECTED COMPONENT LABELLING.

The same idea for 2-D images can be further extended to 3-D and

n-dimensional images. But since we have to draw and scan an image whenever

a new sequence of runlengths has obtained after comparison, the time of

completion for this process will be very high. Since scanning and drawing part

of an image is very time consuming, methods other than murray polygons

(i.e. linear encoding , quadtree or octree encoding) also take a long time to

compute by this method.

6-3.2 Method 2 :

The efficiency for the first method can be further improved. The

previous method is slow because each time when we get a new sequence after

comparing the two sequences, we have to draw and scan an image. Now we

will discuss another algorithm where the homogeneous area identification is

computed directly from the runlengths. We will discuss two methods,

1. which uses two sequences of runlengths,

2. which uses only one sequence of runlengths.

6-3.2.1 Usdng Two Sequences of Runlengths:

As usual, before we discuss the method we give the data structure

used to store the runlengths. Our data structure Is the same as defined above

except for a new entry flag. The data structure now has six major items,

1, runlength, 2. Sum, 3. Col, 4. flag, 5. left pointer, and

6. right pointer.

we define our data structure as,

structure in teger.Iis t(in t runlength. Sum ;string Col, flag ;pntr left, right)

162

CHAPTER 6. CONNECTED COMPONENT LABELLING.

The new item flag is used in finding the black cell which belongs to the blob

in which we are interested. This item I.e.,flag may consider three different

values,

1. Initially we will set it's value to 'w' assuming that there is only

one big connected blob.

2. We will set it's value to 'F' if it is a part of the blob in which we

are interested.

3. We will set it's value to 'b' if we have used the cell whose flag

value was 'F' to find the connected points to it. Once flag value is

'b' we will not use that cell again to find the connected points .

Consider the same image in Figure 6.1, and let the area in which we

are interested be the same as that considered In the previous method. Let

list. 1 be the linked list of n list(or cell) containing r-j ,r2 r^

the sequence of runlengths obtained after scanning the image in the horizontal

direction and let Iist.2 be the linked list of m list (or cells) containing

S'j ,S2 Sm the sequence of runlengths obtained after scanning the

image in the vertical direction. The data structure used for both lists is the

same. Initially we assume that all the cells have the flag value equal to 'w'. In

other words we are assuming that all the cells initially belong to the blob in

which we are Interested. Iist.1 and Iist.2 are shown below,

CHAPTER 6. CONNECTED COMPONENT LABELLING.

Iist.1

X
EE
i
w w 2̂ b w rn w /b w /

' ' f 2+ n - f

llst.2

X EEEE0W
.Si -1

ETTrm W/b w /

®1^2*........

Note : In the first cell we are assuming 'Sum* equal to -1, because the curve

starts from the 0th point (see chapter 2).

Now we have two linked lists for the same image, scanned in the

horizontal and the vertical directions. The starting point should be a subset of

the set containing all the points belonging to the blob in which we are

interested. In the last method we used a long runlength to find a starting

point. Here we will use the cursor to find the starting point. In PS-algol the

standard function Vocafor' returns a structure containing the information

about the status of the mouse. With the help of this function we can get the

(x,y) co-ordinates for a point belonging to the area in which we are interested.

Since a murray polygon, is an explicit function, i.e.,

f(x,y) i.e., if a point on the curve is given

then the corresponding co­

ordinates of that point can be

obtained.

164

CHAPTER 6. CONNECTED COMPONENT LABELLWG.

f (x,y) > n i.e., if the co-ordinates of a point is

given then the corresponding nth

point on the curve can be obtained.

we can easily find which nth point it is on the horizontal or vertical murray

scans. Using the item 'Sum ' defined in the structure we can easily find the

cell in which this nth point lies. Since this point belongs to the blob, by the

equivalence relation all the points in that cell are connected to each other. Our

next step is to change the flag value which is V to 'F'. Before we move ahead

let us consider an example to discuss the theory explained so far. Consider an

image of size 5*5 with a connected component as shown in Figure 6.3. The

linked list which is obtained after scanning the image in the horizontal

direction is also given in Figure 6.3.

(x.y) = (3,2) = 13th point

Iist.1

À i
5 - 1 w w / . ^ 3 4 b w 5 7 w w 5 12 b w 7 17 w w /

L
Figure 6.3. A connected Image with the runlengths.

165

CHAPTER 6. CONNECTED COMPONENT LABELLING.

Suppose the co-ordinates obtained by using the standard function

locator are (x,y) = (3,2). Using the transformation explained in chapter 2, we

can find the nth point on the curve corresponding to the co-ordinates (3,2).

From the image we can easily see that it is the 13th point {Note : Actually

(3,2) is the 14th point on the curve but since the curve starts from 0th point

i.e pixel at (0,0) , it is the 13th point on the curve) . If we see the linked

list, this point belongs to the fourth cell. This information is obtained from

the item 'St/m ' which tells us that 12 points have been used before that and the

points from the 13th to the 17th belong to this cell. In the new list we will

change theflag value to 'F' indicating that it belongs to the blob, see below,

list.1

Now we will scan this new changed list and wherever we find a cell with the

flag value ’F', we will use those cell points to find the corresponding points in

the second linked list (i.e., vertical). Once we have used the points of a

particular cell whose//ap value is 'F' we will then change this value to 'b',

indicating that this cell belongs to the blob and has been used for finding the

other connected points to it. Therefore in the above list theflag value for the

4th cell which is 'P will turn to 'b' after use. Consider the same image given in

Figure 6.3. The vertical linked list i.e., Iist.2, obtained by scanning an image

(Figure 6.3) in the vertical direction is given below.

166

CHAPTER 6. CONNECTED COMPONENT LABELLING.

Iist.2

23

From the new linked list i.e., Iist.1, given above we can say that from

13th to 17th points belongs to the blob in which we are interested. But these

points will appear in a different numeric order in the vertical murray scan.

Using these points the corresponding points on the linked list i.e., Iist.2, can

be obtained.

f (x .y)

f (x,y)

m, where n and m are the points on the two

scans.

We find that the 13th point is the 17th point in the vertical scan .This

17th point belongs to the 6th cell of the Iist.2, this implies all the points in

that cell are connected to the points in the corresponding cell of Iist.1. The

next step is to change the flag value to 'F'. Similarly consider the 14th, 15th

.... points to find the corresponding cells in the second list i.e., Iist.2. Once we

have completely scanned Iist.1, we will scan Iist.2 and if we find a cell with

flag value 'F' we will use that cell to find the corresponding point on Iist.1.

The flag value will change to 'b' once a cell has been used. We will keep on

doing that until both the lists do not have any cell with the flag value equal to

'F'. In the end we will merge those black cells whose flag value is V with the

167

CHAPTER 6. CONNECTED COMPONENT LABELING.

two neighbourhood white ceils. The cells whose flag value Is 'b' are the

required runlengths.

Extension to 3-D and n-D Images :
I

The method is similar to the one explained above. Here instead of two 1
i

sequences of runlengths, we will consider three sequences of runlengths. The
I

first one corresponds to the front view, the second one corresponds to the left I

view and the last one corresponds to the bottom view of a 3-dimensional
1

image. By the front view we mean that the planes are parallel to the XY-plane , |
!

by the left view we mean that the planes are parallel to the YZ-plane, and for i

the bottom view the planes are parallel to the XZ-plane. To get a murray scan

of that type depends upon the values of the radices. In chapter 2, we have j

discussed front scanning, which can be done either plane by plane or tile by

tile depending upon the values of the radices. If the planes are parallel to the

YZ-plane or to the XZ-plane a murray scan can easily be obtained by choosing

the appropriate values for the radices.

Let r-j J2 T3 T4 T5 T6 be the radices where I

r-j and r^ belong to the x-radices,
!

T2 and rg belong to the y-radices,

rg and rg belong to the z-radices,

If r-j takes the value 1 then the scan will be forced in the YZ-dlrection.

Similarly if rg takes the value 1 then the scan will be forced in the

XZ -direction. The image can be scanned in plane by plane fashion or in tile by

tile fashion.

Alternatively, if we interchange the position of the x-part and the

2 -part such that radices r-j and r^ now belongs to the z-part, and radices rg

and rg belongs to the x-part then the scan will be forced in the YZ-direction

{Note : since we are interchanging the radices we also have to interchange the

digits). If we want to scan the image in plane by plane order, then the radix

168

CHAPTER 6. CONNECTED CONPONENT LABELLING.

rg will take value 1 and if we want to scan the image in tile by tile fashion

then we will divide the x-dimensions which can be even, into the suitable

factors e.g., if the x-dimension is 9 then the two factors corresponding to rg

and rg can be 3 and 3, for the x-dimension to be 10 the two factors can be 5

and 2 {Note : radix rg can not be even). Similarly If we interchange the

position of the y-part and the z-part such that radices rg and rg now belongs

to the z-part, and radices rg and rg belongs to the y-part then the scan will be

forced in the XZ-direction {Note : since we are interchanging the radices we

also have to interchange the digits). Now to scan the image in plane by plane

fashion or in tile by tile fashion the radix rg will assume different values as

defined above.

Once we have three linked lists obtained after scanning a 3D-image

from the three different directions, the problem of connectivity can be easily

solved. The approach is similar to the one discussed above. W e will consider

each scan one after the other and will use those cells which have flag value

equal to 'P and turn it to 'b' once used. When all the three lists do not have any

cell having a flag value equal to *P, the program will stop. Then after merging

those black cell where the flag value is V , we will get the runlengths for the

connected blob. Using these three sequences of runlengths we can obtain the

runlengths for the three remaining sides i.e., back side, left side and top side.

169

CHAPTER 6. CONNECTED COMPONENT LABELLING.

6-3.2.1.1 Comparison Between Method l(uslng images) And Method 2 (using

runlength sequences) :

An Image Number of
Black Pixels

Number of
White Pixels

Method 1
(time)

Method 2
(time)

Image a 2875 6926 5.40 secs ' 2.20 secs

Image b 3134 6667 5.48 secs 3.15 secs

Image c 6246 3555 8.10 secs 8.00 secs

Table 6.1. Comparison betweeen the two methods, where method 1 uses
Images and method 2 uses two sequences of runlengths.

Different images which are given in chapter 3 are considered to

compare the two above methods. The first method takes an Image as an input,

whereas method 2 takes two sequences of runlengths to find the required

connected component. From the result shown in Table 6.1, method 2 is found to

be faster than method 1. The reason for that is, in the case of first method we

have to draw and scan the image whenever we will get a new sequence of

runlengths, which is obtained after comparing the two sequences of

runlengths (refer section 6-2.1). In the second case we do not have to

consider the images, since the connected component will be obtained straight

from the two sequences of runlengths, which are the input values. Both the

algorithm are coded in PS-algol.

6-3.2.2 Using One Sequence of Runlengths :

The above two methods discussed so far consider two sequences of

runlengths obtained from two different murray scans to find a connected

170

CHAPTER 6, CONNECTED COMPONENT LABELLING.

component. In this section we will discuss a new algorithm which will take

only one sequence of runlengths to find the large homogeneous area.

This result was obtained by using a linear murray scan. That is, for an

image of size n*m a murray scan which is used with with the radices rg ri

given by n m or m n {Note : in the second case we have Interchange the radices

and the digits also , as discussed in chapter 4). This forces the scan to move

across or up the full width of the image before a unit change in the

y-direction or in the x-direction occurs (see chapter 2, and 4), resulting In a

scan pattern as given below in Figure 6.4.

Figure 6.4. Linear scan simulation by murray scan with radices T2
given by n m.

This does not have fly-back and the runs are allowed to wrap round one

scanline to the next thus giving better results than a system with maximum

runlength limited to a scanline length.

The data structure which has been used has seven items and is defined as,

structure integer.Iist(rnt runlength, Sum;string Color,Lflag,Rflag;pntr left,right)

All the item are defined earlier except the Lflag and Rflag which are used to

find the left and the right connectivity. Both the items Lflag and Rflag will

171

CHAPTER 6. CONNECTED COIvPONENT LABELLING.

consider three different values, as discussed before for the item flag in the

above method.

Let r-j, rg, rg,........................r^ be the sequence of runlengths obtained by

scanning the image by using a linear horizontal murray scan. Initially both the

flags i.e., Lflag and Rflag are given value 'w' as we did in the previous method.

The linked list is given below.

f

w/b w wm
^1+''2+............+fn-1

The starting point can be obtained by either of the two techniques

discussed above. Once we get the starting point we will find the cell in which

it belongs and turn the Lflag and Rflag values to 'P . Now we will start from

this cell whose flag values is 'P. We will go left and right in the linked list to

find the connected components. Initially we will find the connectivity to the

right of the list turning the Rflag value to 'b' i.e., it is connected and we do not

have to use it again to find the connectivity in the right direction. If we find a

cell or cells which is/are connected to this cell we will change its flag va lues

to 'F' and will consider the next cell with flag value equal to 'F', turning the

Rflag value to 'b' and so on. Once we hit the end of a list we will go left to

find the connected components. This time we will consider those cells whose

Lflag values are ’F'. When we hit the left end we will go to the right of the

linked list. When there is no cell with flag values equal to 'F' the process will

stop. Finally to get the runlengths for the large homogeneous area we will

172

CHAPTER 6. CONNECTED COMPONENT LABELLING.

merge all the black cells with the two white neighbours if Xhelrflag

values is 'w'.

Implementation ;

Here two procedures which are used in finding the connected

components are discussed. The first procedure i.e., pixel.before.b.cell, returns

the number of pixels before a black cell in a row and the second procedure i.e.,

split.b.cell, splits the black cell if the runlength obtained for this cell belongs

to two or more number of rows. The information obtained from both the

procedures is then used to find the parameters for the next black cells to lie

in, if they are connected. A simple example to explain this method is given at

the end of this chapter.

Let a-j be the number of white pixels behind the black cell under

consideration. Let the start point of a cell with a-j pixels lies in the ith row.

To find the number of pixels behind the cell with a-j pixels, we have to find

the start point for this cell. The start point for a cell can be obtained by using

the information stored in the item Sum of a list. As discussed earlier, the

item Sum records the number of pixels used before a cell, hence the starting

point of a cell will be given as Sum+1. The row number in which this start

point lies can be obtained by dividing the start point of a cell by the length of

an image. The divisor term will be the required row number

(i.e., row.number = (Sumn-1} div R , where R is the length of an image). The

start point for a row will now be equal to row.number*R. Now the number of

pixels(say e) behind the cell in the ith row is equal to the start point for the

cell minus the start point of the row. Let f = R-e be the remaining pixels in

the row.

173

CHAPTER 6. CONNECTED COMPONENT LABELLING.

ith row

K -
- a ------------> 1
 — ------- f---- — ------ —
R •' ' ..

We now have the number of pixels behind a-| pixels. Our next step is to

find whether the runlength a*| corresponds to the ith row only or to some other

rows also. This can simply be found by comparing the values for a^and f.

If a*i< f then the runlength a-] belong to the ith row only(see above

example, here ith row has been marked with these values), otherwise

it corresponds to some other rows also.

If a-\ > f then a-j will assume value equal to (a-f -f) rem R (~ A , say)

and e will have the value zero. For example,

6 — A - * ; l_ k tilh ro w ^ . I,(l-h1)throw - - - .

ith row I I ith row .

 I

>►1 | < R-— ---------

The procedure * pixels before.b.ceir is given below.
I Input Is 'Sum* i.e.; number of pixels used,
1 the length of the image (R) and the no. of W.pixels (a1)
IThe output is the vector of integers.
le t pixel.before.b.cell = p ro c (in t Sum,R,a1 -> *ln t)
b eg in

let lst.pnt:=Sum+1

le t find.row:=lst.pnt d Iv R
le t lst.pnt.of.row:= R*find.row

le t e:-lst.pnt-lst.pnt.o f.row

le t f:=R-e

174

CHAPTER 6. CONNECTED COMPONENT LABELLING.

if a1>=f then @1 of int[0, (a1-f) rem R]
else @1 of int[e, a1]

end

Another procedure is used to split the black runlengths if necessary.

This is because if a black runlength corresponds to two or more consecutive

rows and we are finding connectivity in the right direction i.e., top-direction,

then we do not have to consider those rows which are underneath the black

rows. Only the one which is on the top should be considered. Exceptions can be

arises when the top row partially covers the bottom row. Here we will split

the black runlength into two parts and will separately find the connectivity

for the two parts. Since these two parts are connected to each other, hence

the other parts which are connected to these two parts will be connected to

each other. The procedure splitb.cell and the different case for a black

runlength are discussed below.

Let ag be the number of black pixels ahead of a-j. For ag two cases are

possible,

1. ag >“ f-a-j. We have to divide ag into two parts. The first part

(say store 1) at the ith row will find connectivity with the pixels in

the (i+1)th row and the second part (say store2) at (i+1)th row will

find connectivity with the pixels in the (i+2)th row.

175

CHAPTER 6. CONNECTED COMPONENT LABELLING.

(i+1)throw }I n il lu w _____________j__:____________m

ith row
8 I &«

K- - f
 R ' ■ "' 'I —

f2 or

n+1tth row

Ith row

storel = R -e -a ̂
store2 = a^- storel
■ Here a.|and e Is equal to zero

Further, if store2 > storel -1 but less than R, this implies we can

not use storel to find the connectivity since all the pixels of

storel are covered with the pixels of store2. Hence storel will be

equal to zero. Also store2 starts from one end of a row indicating

that there are no pixels behind it. The values for a-j and e will turn

to zero. If store2 > R then we will again adjust storel and store2 by

making storel equal to R and store2 equal to, (store2 rem R).

2. If ag < f-ai then storel will be equal to ag and store2 will be zero.

The procedure 'splii.b .ceir is given below,
! Input is no. of b.pixels (a2), B = f-a1,
I the length of the image, the term A has been used for the value a1
I The output is the vector of integers.
let split.b.cell = proc(int a2,B,A,R,e > *int)
begin

let storel :=0;let store2:=0
if a2 >= B then
begin

storel :=B;store2:=a2-B

case true of

store2>store1-1 and store2<=R : {storel :=0;A:=0;e:=0}

store2>R : {storel :=R;A:=0;e:=0}

176

CHAPTER 6. CONNECTED COMPONENT LABELLWG.

default : {}
end
else{store1 :=a2;store2:=0}
@1 of int[store1 ,store2,A ,e]

end

Now we have the information about the number of pixels behind a black

cell in a row, the parameters at which other black cells will be connected may

easily be calculated. Consider a simple example, an image of size 7*2 and the

corresponding runlengths given below.

^$2

!<■
w b w b
2 4 5 3

ai = 2 ,

the start point for this white runlength = 0 and — (1)

the start point for the row = 0, (2)

the value e = (1) -(2) = 0,

the quantity f = R-e = 7 - 0 = 7. Now since a-| < f there will be no

change for the value of a i .

ag (= 4) and is less than R-a-j-e, so storel = 4 and store2 = 0. Then

if the next black runlengths lies between R+F to R+F+ag+1, where

F = R -ai -ag-e, i.e between 8 to 13, then it is connected otherwise not. If we

see, the sum of the first three runlengths is 11, that is the next runlength of

size 3 starts from the point 12, and since it is black this implies that it is

connected.

177

CHAPTER 6. CONNECTED COMPONENT LABELLWG.

The same algorithm can also be extended to 3D-images. The only

information which we need to include in the previous algorithm is the

connectivity with the back objects. In the 2-dimensional case we consider a

black runlength and then find the corresponding connected points in the up and

down directions. Since in the 3D case the planes are placed one after the

other, we need to find the connectivity in the back direction also. Similar

argument for the 2D case can be extended for 3D-images. For example,

consider an image of size 5*5*2 as shown ,

2 = 0

The corresponding runlength obtained after scanning an image by using

a 3D-murray scan, which will scan the Image in plane by plane fashion, is

given below,

number —”> 1 2 3 4 5

colour — > w b w b w

r.length — > 6 3 21 3 17

As we can see from the image given above that the black runlength numbered

2 and 4 are connected to each other. Now for the connectivity only we have to

find the range for the next runlength to lie in. The range can easily be

calculated as discussed above. In the above case, if we select the 2nd

runlength as the start point then for the back connection the range for the

next runlength will be between 22 and 26. Since the next black runlength i.e.,

4th, lie in that range hence it's connected.

178

CHAPTER 6. CONNECTED COMPONENT LABELLING.

6.3.2 3 Comparison Between Method 2(Fart 1), And Method 2(Part 2) :

An Image Number of
Black Pixels

Number of
White Pixels

Method 1
(time)

Method 2
(time)

Image a 2875 6926 2.20 secs 0.40 secs

Image a 2875 6926 1.20 secs 0.39 secs

Image b 3134 6667 3.15 secs 0.44 secs

Image b 3134 6667 1.05 secs 0.43 secs

Image c 6246 3555 S.OOsecs 0.52 secs

Image c 6246 3555 I.IOsecs 0.43secs

Table 6.2. Comparison betweeen the two methods, where method 1 uses
two sequences of runlengths and method 2 uses one sequence of runlengths.

The processing time shown above for the two methods has obtained for

different connected components in an image. The time difference between the

two methods is very large specially in the case of Image c. The reason is

discussed below.

6.4 Remarks :

Three different methods which finds the connected componentsin an

image have been discussed above. From the results obtained by these three

methods it has found that the method with linear murray scan is faster than

the rest two methods(see Table 6.1, and Table 6.2). The method 2(part 1)

which takes two sequences of runlengths, is slow because some of the pixels

are repeated to find the connected component. For example, let the two sets of

runlengths, obtained by scanning the image in horizontal and in the vertical

direction are.

179

CHAPTER 6. CONNECTED COMPONENT LABELLING.

r i , T2................................ r„ -(1)

s 1 > ^2 » » (^)

Suppose the starting point lies in the cell r;. Using r; pixels we will find the

corresponding cell in the sequence (2) and then these cells in (2) which

contain previous r; pixels will be used to find the corresponding cells in (1) .

Here we are repeating r; pixels which are already used in finding out the

connected points. This method can be made faster if we represent each point

separately in a sequence. For example, if a point say A lies in the cell Sj then

we can break Sj into two or three runlengths. If pixel A is the last or the

starting point in the cell Sj then we can write sj as (1 , sj -1) or (Sj -1 , 1),

otherwise (sj.-j , 1, Sj^.-;) where Sj = Sj_i + 1 + S j+ i . But it is not true that the

processing speed improves since the size of the sequence increases and so the

time to scan the whole sequence. Therefore in speed the method 2(part 2) will

always be faster than the other two. But since a point in a general murray

scan has four directions to move hence the chances of capturing more pixels

of the same colour is more than that of a point In a linear murray scan, which

goes from left to right with no fly back. The result will be better compaction

in the case of a general murray scan rather than that of the linear murray

scan. The method 1 and method 2{part 1) which are slow may be more compact

in comparison with the method 2(part 2).

The same approach as given in method 2 (part 2) can be obtained by

using the linear scan method. Since a linear scan goes from left to right, a fly

back will often result in a break in the runlength and hence will require more

space to store a 3D-image. For example, for an image of size 100*100*3 we

need 300 linear lines i.e., minimum number of runlengths, to store the whole

image. Secondly we have to keep the record for all the scan lines in order to

find the connected component. On the other hand a linear murray scan has no

180

CHAPTER 6. CONNECTED COMPONENT LABELLING.

fly back, which can be slightly advantageous In getting the more compact

runlengths and secondly the whole image can be represented as a single

sequence of runlengths which can be used for further processing . The time of

completion should be same with both the methods since only addition and

subtraction calculations are required.

In comparison to quadtrees or octrees approaches the time

requirement for the method 2{part 2) may approximately be same for finding

the connected component. It depend very much upon the shape of the

component(i.e.,image) also. Unnikrishnan, and Venkatesh(1984) has shown that

for a 64*64 image, where 662 pixels are black, a LHQT takes 1067ms to find

the connected areas. Their algorithm is coded in Pascal and has run on DEC

1090. In the case of a linear murray scan it has found that for an image of

size 100*100 , where 2875 pixels are black it takes 0.1 sec. Our algorithm is

coded in PS-algol. However the scanning part may be time consuming in the

case of quadtree or octrees. In case of linear quadtree[Refer

Gargantini(1982)], to get the required codes for an image we have to apply

condensation and sorting to the collection of codes for the black pixels, which

we do not require in the case of a linear murray scan. In comparison to linear

murray scan coding, the quadtrees or octrees coding may be more compact,

especially linear quadtree or Octree encoding where only black pixels are to

be stored. Better compaction may be obtained if we redraw the image after

finding the connected area by method 2 (part 2) and then rescanning the image

using a suitable general murray scan. The result may be comparable to that of

quadtree or octree approaches and the total time may approximately be same

for both the methods, since not much time is wasted in scanning the image

using the murray approach

181

Chapter 7

HIDDEN su r fa c e REMOVAL AND SHADING 1 8 2
7 - 1 Introduction 1 8 2

7 - 2 Hidden-Surface Removal 1 8 3

Object-Space Algorithms 1 8 4

Image-Spac© Algorithms 1 8 6

List-Priority Algorithms 1 8 6

Scan Line Algorithms 1 9 5

Scan Line Coherence Algorithms 1 9 6

A Visible Surface Ray Tracing Algorithm 1 9 7

Octree Methods 1 9 8

7 - 3 Hidden-Surface Removal Using Murray Polygons 1 99

Method 1 201

Method 2 2 0 2

Comparison Of Hidden Surface Methods 2 0 9

7-4 Shading 2 1 0

Introduction 2 1 0

Surface Shading Methods 2 1 2

Transparency 2 1 6

Texture Mapping 2 1 9

Antialiasing 2 1 9

Shadows 2 2 0

7 - 5 Shading Using Murray Polygons 2 21

Determining The Surface Normal 2 2 2

Determining The Intensity Using Murray Polygons 2 2 3

Determination Of The Angie Between N And L 2 2 5

Smoothing Of Data 2 3 2

Results 2 3 5

Conclusion 2 3 9

7 -6 Specular Reflection 2 4 0

7 - 5 Remarks 2 4 2

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

7-1 Introduction ;

If we consider a 3D-image, we will find that some of the opaque

objects and surfaces that are closer to the eye hide other objects from view.

The objects which are blocked must be removed in order to render a realistic

screen image in real time. The identification and removal of these surfaces is

called the hidden-surface problem. The solution for that is to determine the

depth and visibility for all the surfaces in an image. Once the surface which is

hidden has been removed then the visible surface can be shaded from a given

light source. Shaded pictures are produced by recording the shade of gray or

the colour of each point in a two dimensional array. Since many shades of gray

or shades of colour may appear in an image, corresponding to a visible surface,

it is right to call them shaded images.

In this chapter, initially past and present work is categorised and

briefly discussed. Two different algorithms, which use murray techniques are

discussed to remove the surfaces which are hidden. The algorithms which are

generated accept any arbitrary image, (for example, as a CT-scanner provides

3D-data by taking images of a large number of slices through a patient). All

the images are black and white and the view plane is considered to be the

XY-plane. Since all the planes are parallel to the XY-plane then the

x-coordinates and the y-coordinates for the pixels in each plane will be the

same but with varying z-value. Shading algorithms are discussed which use

diffuse reflection. The results are compared with those obtained by using

specular reflection. The algorithms are coded in PS-algol.

1 8 2

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

7-2 Hidden-Surface Removal :

The task of deciding which parts of an object should be shown and

which parts should be omitted was originally known as the "Hidden-Line

Problem". Here we eliminate or dash all the lines in an output drawing which

were hidden by other objects. Now that shaded pictures are being produced by

computer, a different problem which is referred to as, the "Hidden-Surface

Problem" has become important. In hidden surface problems one must include

or omit entire surface areas rather than just the lines representing edges.

Hidden-surface algorithms can be divided into three classes based on the

coordinate system or space in which they are implemented[Sutherland, Sproull,

and Shumacher(1974)]:

i. Those that compute a solution to the hidden-surface problem in

"object-space".

ii. Those that perform calculations in "image-space".

iii. Those that work partly in each, the "list-priority" algorithms.

Object-space algorithms are implemented in the physical coordinate

system in which the objects are described. Very precise results, generally to

the precision of the machine, are available. These results can be satisfactorily

enlarged many times. They are particularly useful in precise engineering

applications. Image-space algorithms are implemented in the screen

coordinate system in which the object are viewed. Calculations are performed

only to the precision of the screen. As shown by Roger{1985), the

computational work for an object-space algorithm that compares every object

in a scene with every other object in the scene is equal to the number of

objects squared (n^), and for an image-space algorithm which compares every

object in the scene with every pixel location in screen coordinates is equal to

183

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

nN, where, n is the number of objects (i.e., volumes, planes, edges) in the

scene, and N is the number of pixels. For n<N, object space algorithms will

require less work than image space algorithms. Since the resolution of the

screen is fixed and not very large (e.g., the resolution of Sun 3/60 is

1152*900), it would be better to implement all the algorithms in object

space. In practice, this is not the case, image space algorithms are more

efficient because it is easier to take advantage of coherence in a raster scan

implementation of an image space algorithm. Secondly the cost of the object

space algorithms grows as a function of the complexity of the environment,

but the cost of the image space is limited because the number of screen dots

remains constant, independent of the environment complexity. The list priority

algorithms operate in both object and image space. In particular, the

"list-priority" calculations are carried out in the object space and the result

written to an image space frame buffer. The use of a frame buffer is critical

to the algorithm, since each element of a scene is written to a frame buffer In

turn. Those elements which are closer in a list will overwrite the contents of

the frame buffer, thus solving the hidden surface problem.

The following section examines several object and image space

algorithms. Each algorithm illustrates one or more fundamental ideas in the

implementation of hidden-line/hidden-surface algorithms.

7-2.1 Object-space Algorithms :

Robert(1963) devised the first known solution to the hidden-line

problem. His algorithm tests each relevant edge to see if it is obstructed by

the volume occupied by some object that lies between the edge and the

viewpoint. The algorithm thus capitalizes on the spatial coherence of objects:

it tests edges against object volumes. This test is implemented by writing a

184

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

parametric equation for a line from a point on the edge to the view point. The

equation is as given,

P(t,b) = (1“t)A i + t A2 -Î- b V (1)

0 <= t <~ 1Î 0<= b

The first two terms represents the parametric equation of a point on

the edge A-^Ag in the perspective coordinate system and the third term (i.e, v),

is a vector pointing toward the viewpoint in the perspective space, (0,0,-«>).

The next step is to find whether the point P(t,b) lies inside a convex

object. This can be determined by simply finding, whether the point P(t,b) lies

"inside" of all planes that comprise the object or not. If it is inside then it lies

inside a convex object, otherwise the object will be broken into a number of

convex objects, which is very tedious. The condition for finding this is,

P(t,b) . Eij <= 0 for all i (2)

where Eij is the plane equation of the ith face of the object j. If for a given

object j, values of t and b can be found that satisfy (2), the point on the edge

corresponding to t is hidden by the object. For minimum and maximum values

of t various techniques are used to solve equation(2).

This edge/object test may discover that:

i. the edge is entirely hidden by the object.

ii. no portion of the edge is obscured by the object.

iii. one part of the edge is not obscured, or

iv. two portions of the edge are not obscured. Any unobscured

portions are then tested against the remaining objects.

185

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.
t

The disadvantage of Roberts algorithm is that it restricts the

environment, all volumes or objects in a picture should be convex. If an object

is not convex then the algorithm will firstly represent it by a collection of

convex ones, which is a difficult task [refer Robert(1963)].

7-2.2 Image-Space and List-Pilority :

The image-space and list-priority algorithms are designed to create

images for a fixed resolution display, often a television monitor. Although the

specific aims of the various algorithms are not identical, the group has been

motivated by desires for real-time speed and for realism in the images. These

algorithms are now used to generate quite spectacular shaded pictures in

color.

In image-space algorithms, the visibility is decided point by point at

each pixel position in the image. The depth of the various surfaces that would

be penetrated by a viewing ray at a particular point in the image, is calculated

and then the depths are compared for the visibility test. Thus, these

algorithms can be capitalize on the lateral separation of the image to reduce

the number of depth computations required.

The list-priority algorithms, on the other hand, precompute in object-

space a visibility ordering or "priority" for all surfaces before generating the

picture in image-space. The priority of a surface can be expressed as a linear-

ordering of the surfaces such that if ever two surfaces need to be compared

for visibility, the one with the lower or higher priority is the visible one. A

few examples are Illustrate below.

For a simple scene, such as shown in Figure 7.1a, obtaining a definitive

depth priority list is straightforward. Here the polygons can be sorted by

either their maximum or minimum z-coordinate value. However for the scene

186

X

(a) (b)

Figure 7.1. Polygonal priority.

X
(b)

(a)

Figure 7.2. Cyclical overlapping polygons.

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

shown in Figure 7.1b, a depth priority list cannot be obtained by simply sorting

in z. If P and Q in Figure 7.1b are sorted by minimum z-coordinate value, then P

appears on the depth priority list before Q. The correct order in the priority

list is obtained by interchanging P and Q. As illustrated in Figure 7.2, the

polygons cyclically overlap each other. In Figure 7.2a, P is in front of Q which

is in front of R which in turn is in front of P; similarly in Figure 7.2b. Here a

definitive depth priority list cannot be immediately established. The solution

is to cyclically split the polygons along their plane of intersection until a

definitive priority list is obtained. This Is shown by dashed lines in Figure 7.2.

The following sections examine several image-space and list-priority

algorithms in detail. Each algorithm illustrates one or more fundamental ideas

in the implementation of hidden-line/ hidden-surface algorithms.

7-2.2.1 Image-space Algorithms :

The Warnock{1969) algorithm assumes that sample areas on the

screen, called windows, can be declared to be homogeneous if ;

1) no faces fall within the sample window,

2) one face completely covers the window and is nearer the viewpoint

than every other face that falls in the window.

If the window under consideration is not homogeneous, then it is

divided into four smaller sample windows, and each of these is examined

similarly. When the size of the sample windows decreases to the size of the

raster element, the subdivision process is terminated (see Figure 7.3).

187

Figure 7.3. Subdivision by Warnock’s algorithm. The object contains three intersecting bricks
(Sutherland, Sproull, and Schumacker(1974)).

Window

(a) (b) (c) (d)

Figure 7.4. The relationship between a face (or polygon) and a sample window.
a. polygon Pi surrounds the window,
b. polygon Pg intersects the window,
c. & d. polygon P3 Is disjoint from the window.

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

A set of faces is compared to the window to see whether the face;

1) surrounds the window,

2) intersects the window, or

3) is completely disjoint from the window (see Figure 7.4).

An important concept of the Warnock algorithm is that the hypothesis

test for a sample window need not test all faces in the environment. If a

hypothesis test fails, the four sub-windows to be examined need only be

tested against intersectors of the original window since faces disjoint from

the large window will certainly be disjoint from the four small windows, and

faces which surrounded the original window will surround its decendant

windows.

The faces are grouped into two categories,

1) those that are disjoint from this window,

2) those that are relevant to this window.

The relevant faces are then passed down to sub-windows, where the faces are

again compared with the subwindows. The process terminates when a window

is proven to be homogenous.

There are many advantages of the Warnock algorithm; the windows do

not need to be rectangular; we can subdivide the windows at specific points,

such as vertex locations, rather than at thp center point.

One difficulty with the Warnock algorithm is that its output cannot

conveniently be passed to a raster-scan device like a television. The decisions

about windows are reached in a random order, rather than in a top-to-bottom

1 8 8

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

left-to-right order. Cohen, Tom, and Rosenfeld(1980) have devised a scheme

for driving a raster display from window computations, but it involves a

massive sort of the windows by X and Y coordinates.

Warnock’s algorithm does not produce the display data in a sequential

order as defined above. This defect can be removed if we have a procedure

which divides the space into separate regions, such that two consecutive

regions are in next door neighbour order. Griffith(1984) used a Hilbert curve,

since the smallest window or region emerges naturally from the recursion one

after the other, thus adjacent to each other. Griffith, proposed a table driven

algorithm for the subdivision purposes. Here a window is divided into two

parts. A window should either be divided horizontally or vertically, depending

upon the quadrant priority(i.e., the four basic orientations). Four basic

orientations of Hilbert polygons are given in Figure 7.5. Types A and D have

vertical dividing lines, whereas for types B and 0 horizontal dividing lines are

used (see Figure 7.5). Quadrant priority also determines which half should be

dealt with first. The arrows marked in each case indicate the window priority

after subdivision.

A —
i

-# ^A
1

I
B

T
0

/

D

A i 1
---- D

L ■H^A

/
B 0

B D
Figure 7.5. The relation between the four basic types of window and their subdivision.

(arrows indicate window priority after subdivision).See Griffith(1984).

Weiler and Atherton(1977) tried to minimize the number of

subdivisions in a Warnock-style algorithm by subdividing along polygon

boundaries. This algorithm is based on the Weiler and Atherton(1977) concave

189

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

clipping algorithm. Here the polygon to be clipped is the subject polygon and

the clipping region is the clip polygon. The new boundaries created by clipping

the subject polygon against the clip polygon, are identical to a portion of the

clip polygon. No new edges are created, hence the number of resulting polygon

is minimised. It operates in object-space. The hidden-surface algorithm has

four steps :

1) A preliminary depth sort.

2) A clip or polygon area sort based on the polygon nearest the

eyepoint.

3) Removal of the polygons which are behind that nearest the eyepoint.

4) Recursive subdivision, if required.

The first polygon on the preliminary depth sorted list is used as the

clip polygon and the remaining polygons including the clip polygon on the list

are subject polygons. Each of the subject polygons is clipped against the clip

polygon. Two lists are established: an inside list and an outside list. The

portion of each subject polygon inside the clip polygon is placed on the inside

list otherwise on the outside list.

Compare the depth of each vertex on the polygons which are In the

Inside list with the minimum z-coordlnate (Zcmln) value for the clip polygon.

All the subject polygons on the Inside list are said to be hidden by the clip

polygon if none of the z-coordinate values of the polygon on the inside list is

larger than Zcmln (see Figure 7.6). These polygons are eliminated and the

inside polygons list Is displayed. Note that here the only remaining polygon on

the Inside list is the clip polygon. The algorithm continues with the outside

l ist .

190

80

60.

4 0 -

0

z = 2 5

z = 5 0

z= 7 5

z=10(>

0
4— J I-------- — L

(a)

40 60 80

(b)

Figure 7.6.
Priority poiygon oiipping for the Weiier-Atherton hidden surface algorithm.

Pixel
center

Projected
surface patch

Figure 7.7. Curved surface subdivision.

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

The subject polygons on the inside list lie at least partially in front of

the clip polygon if the z-coordinate for any polygon in the inside polygon is

greater than Zemin. Hence the algorithm recursively subdivides the area, using

the offending polygon as the new clip polygon. The inside list is used as the

subject polygon list. Since the new clip polygon is a copy of the complete

original polygon, it minimizes the number of subdivisions.

All the algorithms thus far described are for objects defined by the

planar polygonal faces. Objects defined by curved surfaces must first be

approximated by many small facets before any of the algorithms can be used.

Catmull{1974a) has developed a Warnock-style subdivision algorithm for

curved surface display. Catmull applied the algorithm to bicubic surface

patches. Warnock's algorithm recursively divides the image space whereas the

Catmull algorithm recursively subdivides the surface (see. Figure 7.7). His

algorithm is:

1. Recursively subdivide the surface into subpatches until a

subpatch, transformed into image space i.e., covers at most one

pixel center.

2. Find the intensity of the surface at this pixel and display

the pixel.

The efficiency of the algorithm depends on the efficiency of the curved

surface subdivision technique. The disadvantage of this method is that it does

not present the result in scanline order, which is inconvenient for raster scan

line order. Cohen, Lyche, and Riesenfeld (1980) suggest a more general

technique for B-spline surfaces, as cited by Rogers(1985).

191

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

z-Btiffer Algorithm:

The z-buffer approach was proposed by Catmu!l(1974b). It is

implemented in image-space. It is a simple extension of the frame buffer idea.

A frame buffer is used to store the attribute or intensity of each pixel in the

image space. The z-buffer is a separate depth buffer used to store the

z-coordinate or depth of every visible pixel in the image space. The initial

value may be thought of as the z position of the background. Polygons will

entered one by one into the frame buffer. The depth or z value of a new pixel to

be entered into the frame buffer is compared to the depth of that pixel stored

in the z-buffer. If the new pixel is in front of the pixel stored in the frame

buffer, then the new pixel is written to the frame buffer and the z-buffer

updated with the new z value, otherwise no action is taken.

Since image space is of fixed size, the increase in computational- work

with the complexity of the scene is at most linear. No sorting is required,

since elements of a picture can be stored to the frame buffer or z buffer in

arbitrary order. Hence the computation time associated with a depth sort is

elim inated.

The amount of storage required is the principal disadvantage of the

algorithm. It requires a lot of memory (one entry for each pixel), and each

entry must have a sufficient number of bits to distinguish the possible

z-values. It can also be time consuming since a decision must be made for

every pixel Instead of for the entire polygon. However it is a very simple

method, simple enough to implement in hardware to overcome the speed

problem. Further the time required is proportional to the number of objects in

the scene. But since the cost of memory is dropping very fast, it makes this

method an increasingly popular approach for the hidden-surface problem.

192

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

7-2.2 2 Llst-Prloiity Algorithm :

The principal contribution of the Newell, Newell and Sancha(1972a)

method is the development of a priority computer. As defined above, the

priority list is used to determine the face that is visible at any spot. Newell

views the list in quite a different way: if we write the images of successively

higher priority faces successively onto a picture buffer, the picture buffer

will have a correct hidden-surface view after we have processed the entire

list. Faces of higher priority will overwrite the faces of lower priority.

The Newell-Newell-Sancha algorithm for polygons is :

The first step in the procedure, sorts all faces by the depth of the

farthest vertex of each face. The first face on the list is the one which has

the smallest value of the z-coordinate, Zmin The polygon which is farthest

from the viewpoint is labelled as P and the next polygon_on-the list is labelled

as Q. If faces do not overlap in depth at all, this sort successively establishes

the priority (see Figure 7.1), otherwise we have to test whether the depth

sorted list is indeed in priority order (see Figure 7.2) i.e., to examine the

relationship of P and Q.

If the nearest vertex of P, Pzmax is farther from the viewpoint then

the farthest vertex of Q, Qzmin, then P cannot hide any part of Q. Write P on

the frame buffer (see Figure 7.1).

If Qzmin < Pzmax then P obscures not only 0 but also any face or

polygons on the list for which Qzmin < Pzmax. These faces can be represented

as the set {Q}. It may also be possible that P will not hide any part of any

polygon in the set {Q}.

If P obscures some polygons in the set {Q}, then P cannot be written in

the output buffer. Here interchange P and Q, marking the position of Q on the

1 9 3

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

list. Repeat the tests with the rearranged list. If Q cannot be written before P

and P cannot be written before Q, the priority computer must divide either

face P or Q to eliminate the conflict. This conflicts is often called cyclic

overlap. In Figure 7.2 face P has been divided by the plane of face Q into two

faces Pa and Pb. These two faces are placed in the priority list; the priority

computer will then determine the order of Pa, Q, Pb in the correct priority

order.

The Newell-Newell-Sancha algorithm for the hidden-surface

problem, process all the polygons in the scene, for each frame being presented.

If the scene is complex and the frame rate is very high, as in real-time

simulation systems, the investment in computing the priority list from the

scene is quite high. However, for many real time simulation problems, e.g.,

flight simulation, where the environment rarely changes, the viewpoint

changes quite frequently. Schumacker et al(1969) take advantage of several

more general priority characteristics to precompute, off-line, the priority list

for simulations of such static environments.

The Schumacker(1969) algorithm allows only convex polygons in the

scene. These polygons are grouped into clusters of polygons that are linearly

separable. Clusters are said to be linearly separable if a nonintersecting,

dividing plane can be passed between them (see Figure 7.8). He refers to the

separating planes as a and b. They divide the scene into four regions. The tree

structure shown in Figure 7.8b establishes the cluster priority for the scene.

Cluster priority can be precomputed. Substituting the coordinates of the

viewpoint into the equations of the separating planes locates the appropriate

node in the cluster priority tree. The computation of face priority requires

computing whether face A can, from any viewpoint, hide face B. If so face A

has priority over face B. In the case of cyclic overlap, the cluster will have to

194

a

P
(a)

a
3,1 ,2 3,2,1 1,2,3 2 ,1 ,3

Figure 7.8. Cluster priority.

(b)

Figure 7.9. Face priority. Top view of an object with face priority numbers
assigned(the lowest number corresponds to the higher priority).

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

be split manually into smaller clusters, then an appropriate hidden surface

technique as described by Newell can be applied.

The notion that face priority within a cluster can be computed

independent of the viewpoint is one of the major contributions of the

Schumacker algorithm. It allows precomputation of the entire priority list.

Consider the top view of an object, as shown in Figure 7.9, for which the

individual polygonal priority can be precalculated. The priority of each polygon

is established by considering whether a given polygon can hide any other

polygon from the viewpoint. The more polygons that a given polygon can hide,

the higher priority it has. To establish the polygonal priority within a cluster

for a given viewpoint, the self-hidden polygons are first removed. The

remaining polygons are then in priority order as shown in Figure 7.9.

7-2.3 Scan lin e Algorithms :

The Warnock, z-buffer, and list priority algorithms process scene

elements or polygons in arbitrary order with respect to the display. The scan

line algorithm, as originally developed by Wylie et al(1967), Bouknight(1970)

and Watkins(1970), process the scene in scan line order. It operates in image

space.

Scan line algorithms take advantage of coherence between successive

scan lines and of span coherence within a scan line. They also simplify the

geometric calculations by reducing a three-dimensional problem to a two-

dimensional comparison of segments in the xz plane. The performance of scan-

line algorithms is primarily related to the complexity of the visible image. A

scan plane is defined by the viewpoint at infinity on the positive z axis and a

scan line, as shown in Figure 7.10). The intersection between the scan plane

and the three-dimensional scene defines a one scan line high window. The

hidden surface problem Is solved in this scan plane window. Figure(7.10b)

1 9 5

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

shows the intersection of the scan plane with the polygons. The hidden surface

problem is reduced to deciding which line segment is visible from each point

on the scan line, as illustrated in the Figure 7.10.

Y a

Screen

Scan plane

(a)

X

(b)

Figure 7.10. Scan plane.

7-2.3.1 Scan Line Coherence Algorithms[McwMwn, and Sproutt< 1979)] :

Scan line algorithms solve the hidden surface problem one scan line at

a time, usually processing scan lines from top to bottom or bottom to top of

the display. The algorithm successively examines a series of windows on the

screen. Each window is one scan line high and as wide as the screen. Here two

arrays, are required intensity[x] and depth[x], to hold values for a single scan

line.

198

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

For each scan line perform the following steps:

1) For all pixels on a scan line, set depth[x] to 1.0 and

intensity[x] to a background value.

2) For each polygon in the scene, find all pixels on the current

scan line y that lie within the polygon.

For each of these x values :

I. Calculate the depth z of the polygons at (x,y).

ii. If z < depth[x], set depth[x] to z and lntensity[x] to the

intensity corresponding to the polygon's shading.

3) After all polygons have been considered, the values contained

in the intensity array represent the solution, and can be

copied into a frame buffer.

Here a depth value must be computed and compared with the value

already recorded in the frame buffer. The algorithm concurrently scan

converts all polygons in the scene using one scan line at a time.

7-2.4 A Visible Surfiice Ray Tracing Algorithm :

In this technique, an object is viewed by means of light from a source.

Light rays strike the object and then reaches the observer or viewpoint. The

light may reach the observer, by reflection from the surface, or by refraction

through the surface. If we trace the light rays from the source, very few rays

will reach the viewpoint. Since finding a ray which reaches the viewpoint

after striking the object, is totally mathematical, the chances of an error is

possible and secondly many sub rays will be generated when a ray hits an

197

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

object. Appel(1968) suggested that the rays should start from the apposite

end i.e., from the observer to the object.

It works in image space. The viewpoint is assumed to be at infinity, on

the z axis. Since the viewpoint is at infinity, all the light rays will be parallel

to the z axis. For each ray to be traced we have to find, whether a ray

intersect the objects of the scene. If true, find the intersection points for all

the objects, which are intersected by a ray. Compare the depth of each of the

intersected points, and the point with minimum z value will be the visible

point. Display the point using the intersected object's attributes. Finding the

intersection of a ray with different objects is very time consuming. In the

case of mathematically defined objects, the amount of work can be reduced by

using the bounding volume for the object. A bounding volume can either be a

bounding box or a bounding sphere, which will cover an object of the scene.

This will reduce the number of pixels to be examined.

7“2.5 Octree Methods [Hearn, and Baker(1986)j :

When an octree representation is used for viewing the three

dimensional scenes, hidden surface removal is done by projecting octree nodes

onto the viewing surface in a front to back order. The front face of a region of

space i.e., the side towards the viewer, will have octants 0, 1 , 2 , and 3. The

surface which is in front of these octants is visible to the viewer, whereas

octants 4, 5, 6, and 7 may be hidden by the front surface.

Back surfaces are removed by processing data elements in the octree

nodes in the order 0,1,2,3,4,5,6,7. Since this results in a depth first traversal

of the octree, the nodes representing octants 0,1,2, and 3 for the entire region

will be visited before the nodes representing octants 4,5,6 and 7. Similarly,

the nodes for the front four suboctants of octant 0 are visited before the

nodes for the four back suboctants.

198

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

When a color value is found in an octree node, the pixel area in the

frame buffer is assigned that color value, provided no value has previously

stored at that point. Only those pixels which are visible will be loaded into the

frame buffer. If the area is void, we will neglect it. If a node is completely

obscured by other nodes then we will neglect that node for further processing.

This will help in not wasting time on accessing its subtrees. Further different

views of objects can be obtained by applying a transformation to the octree

representation. This transformation will reorient the object according to the

view selected. It is assumed that all the time the octants 0,1,2, and 3 of a

region will form the front face.

The octree method for removing hidden surfaces from the scene is very

fast. Only integer additions and subtractions are used and there is no need to

perform any sorting or intersection calculations. Another advantage of this

technique is that they store the entire solid region of an object. It can be

useful for obtaining cross-sectional slices of solids.

7-3 Hidden-Siir&ce Removal Using Murray Polygons :

Here we will discuss two methods, one which scans all the planes

using a suitable murray scan and then merges them together, and the second

one which scans only the first plane and then merges other planes according to

the transparent area { i.e., in the case of black and white, if a pixel is black

then there is no need to consider other pixels which are behind of it, but if it

is white we will consider the same pixel in the next plane (Note: The (x,y)

co-ordinates for a pixel in each plane will be the same since all the planes are

parallel to the XY-plane)), and so on until a black pixel or the last plane of an

image is encountered. In both methods compression of data is done in two

stages. Firstly we compress the 3D-image by reducing it into the collection of

runlengths. This compression is exact i.e., using the runlengths the same

199

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

3D-image can be regenerated and no information is lost. The collection of

runlengths are then scanned to give the runlengths for a 2D-image (i.e., we

transform a 3D-image to a 2D-image by working on the runlengths obtained by

scanning a 3D-image. Once a 3D-image has been reduced to a 2D4mage, it can

not be rebuilt to a 3D-image.

Before we discuss the methods, as usual we would like to discuss the

data structure used to store the pixels with different depths. Here we use

three different structures. The main structure 'integer.UsV, has six major

items namely,

1. runlength 2. Sum 3. Colour 4. left pointer 5. middle pointer

6. next pointer

All the items used in this structure have been defined earlier. The new pointer

i.e. middle, points at two different structures and is discussed below,

1. If the colour of a cell of a list is white then the middle pointer will

point at the x and the y coordinates of the first pixel of that cell. It has been

shown earlier that we can calculate the coordinates if the nth point on the

curve is given to us, but since we have to calculate murray integers, gray

coded integers, etcetera the process can be very slow. If we know the

coordinates of the first pixel of cell the efficiency can be increased. Its use is

explained ahead in the method 2. W e define this data structure as:

structure co.ordinates.W (lnt x,y) , see below.

integer.llst
10 12

co.ordinates.W

200

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

2. If the colour of the cell is black then the middle pointer will point

at the corresponding depth of the black pixels. The pixels can then be shaded

according to the depth stored. We define the data structure as,

structure co .o rd inates .B (in t runs,z;pntr right)

For example, suppose there are 10 consecutive black pixels all are from the z-j

plane then the whole structure for storing this will be,

integer, list

co.ordinates.B
/10

7-3.1 Method 1 :

In this method we scan all the planes one by one and then merge them

together to give a single list. We can either use a 3D-murray scan to scan the

image in plane by plane order or we can scan each plane separately using a

2D-murray scan. In the second case a murray scan will use the same radices to

scan the different planes. Once all the planes are scanned the procedure ’union'

discussed in chapter 5 can be used to merge them together to give runlengths

for a single plane. The only point which we have to add in the procedure'un/on'

is the information about the z-values. In a list where the cell colour is 'w' i.e

white, the middle pointer will get the n//value and for a 'b' i.e.,black cell the

middle pointer will point at the corresponding depth of the pixels.

201

CHAPTER 7, HIDDEN-SURFACE REMOVAL AND SHADING.

The advantage of this method is that we do not need to store the whole

image inside the system. The planes can be scanned one by one as discussed

above, and the depth can be stored for each plane. Another advantage of this

method is that the entire solid region of an object is available for display,

which makes this method useful for obtaining cross-sectional slices of solids.

Since all the planes are parallel to each other, to get an inside view one can

start from the nth plane where,

0 < n < total number of planes.

The disadvantage of this method is that we have to consider all the

points in a 3D-image. Actually there is no need to consider all the points. For

example, if in the first plane a pixel at point (x,y) is black then there is no

need to consider the same point in the other planes, since they are hidden by

that pixel. The visibility is terminated till all the planes are scanned. Time

can be saved by not considering those pixels which are hidden by other pixels.

We will use this idea in the next method.

7-3.2 Method 2:

Here initially we will scan the first plane of a 3D-image. For scanning

the image we can either use a horizontal murray scan or a vertical murray

scan. The output will be the collection of runlengths with associated colour.

The colour information can be removed in the case of biack and white images,

by assuming that the first runlength will always corresponds to white, as

discussed earlier.

Let r-j J2 »*’3»..................................r^ be the collection of runlengths obtained

after scanning the first plane. All the cells storing white runlengths will

store the x and the y coordinates of the first pixel of that cell and the cell

with black runlengths will store the corresponding depths of the pixels. In the

2 0 2

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

first plane the depth for all the pixels is zero and it increases as we go inside

the image. The whole structure representing the complete information iis as

shown,

list

,+r n-1

If white If black

z = 0

Since all the planes are parallel to each other, the (x,y) coordinates for

a particular point in all the planes will have the same value except for the

z-coordinate.The area which is black in the first plane will hide all of the

area behind of it, hence there is no need to process the pixels which are

behind. But the area which is white in the first plane does not hide other black

areas behind it. The algorithm now will proceed by considering these white

areas to see whether other areas of a scene are visible from the view point or

not.

The information stored in each white cell of a linked list is,

1. the number of pixels (say m pixels) i.e. runlength,

2. the number of pixels used before a cell i.e., Sum, and,

3. the X and the y coordinates of the starting point.

Since all the planes are parallel to each other, the starting point for the next

plane will be the same as the one obtained for the previous plane. We will

start from that point and for the m pixels obtained from the white cell we

will check the colour in the next plane. If all the pixels in the next plane are

2 0 3

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

white then we will consider the next white cell in the list and similarly will

scan the next white area . But if some of the pixels are black then we will

adjust our present linked list by turning those pixels to black. If the starting

pixels or the end pixels of the m pixels, are turned to black then we will add

these pixels to the left or to the right cell which is black, storing the depth

information in the middle pointer. This can be summarised as follows.

Let the white cell under consideration have runlength R2 and let (x,y)

be the starting point as below. We will scan the next plane (i.e., the 2nd) for

that area starting from the point (x,y).

12+R

z = 0

There are three cases,

1. All the pixels in the 2nd plane are white. The linked list will be the same.

Consider the next white runlength in the list, and scan this white area in the

same plane and so on until we reach the end of the linked list. Our next step is

to consider the 3rd plane and for each white cell in the modified linked list

{Note : if all the white pixels In the Initial list are also white In the 2nd plane

then the linked list will be the same otherwise we will modify It according

to the position of the black pixels. Refer case 2 and case 3), scan the area in

the 3rd plane and so on until the last plane is encountered.

204

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

2. Some of the starting pixels (say a) or end pixels are black in the 2nd plane.

If a few starting pixels are black then we will add these pixel to the black

cell which is to the left of the white cell under consideration, see below. If

end pixels are black then we will add that information to the right cell. The

new linked list, assuming the few starting pixels are black will be given as,

12+F

F = Ri +a

z = 0
z = 0

Now we will consider the next white cell and we will scan the same plane and

so on until we will reach the end of the list.

3. A few pixels (say a) which are in the middle are black in the 2nd plane.

Here we will divide Rg pixels into three cells i.e., we have to add two more

cells to the present linked list. The new linked list is as shown,

205

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

MWIinWIIII I Ml 3̂

T2+RTÎW

Once we have used a white cell, we will consider the next cell to find

the visible area. All the planes will be scanned for a given white area in the

previous plane. When all the planes have been processed for determining the

visible area, we will get the collection of runlengths with hidden surface

removed. Here a 3D.image has been transformed into a 2D-image. The middle

pointer in each black cell will contain the depth Information corresponding to

the pixels in a cell. A typical black cell with depth information is as shown.

Sum

—L
5ZQ

where,
r1 pixels belongs to z1 plane,
t2 pixels belongs to z2 plane.

rn pixels belongs to zn plane,
and,

r1 +r2 +r3 +........,..+rn = R

An example is given to explain the method discussed above.

206

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

Let US suppose, a 3D-image is composed of three planes each of size

5*3. The three planes with corresponding depths are given below,

z = 0

I .

1 z = 2

3 3 * * *
3

2 2 * *
2 **

1 1 1
'w

3 1 2 3 4 X ° 3 1 2 3 4 X ° 3 1 2 3 4

We will scan the first plane i.e. z=0, using a murray scan having radices rg r-|

equal to 3, 5, where r*| belongs to x-part and rg belongs to the y-part. The

corresponding linked list obtained is given below,

Now we will consider this list to find the visible area. Visibility is

only possible where we have a white area. We will scan the linked list given

above and for each white cell we will find the visible area. The first cell in

the linked list is white with (0,0) be the start point and the runlength equal to

3. We will now consider the 2nd plane i.e., z=1, and will check whether any of

these 3 pixels are black in this plane. The answer is no. The second cell which

is white has a runlength of 7 and the coordinates for the starting point are

207

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

(2,1). In the 2nd plane, out of 7 pixels (marked *) two of them are black. We

therefore change the linked list, as below.

Since the end of the linked list is encountered we will now consider this

modified list and the next plane i.e z=2, to find the visible area. Consider all

the white cells in that list, the white cell which has a runlength of 4 has 3

pixels black(marked **) in this plane.The new change in the list will now be.

We do the same with the other white cells if any. The final list will be given
as,

3 - 1 W | 1 -

_____ >
r

208

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

7-3.3 Comparison of Hidden-surfiEice Methods :

There are many different hidden-surface algorithms. Some use

mathematically defined scenes and some use any arbitrary scenes. All have

their own advantages and disadvantages. This has been discussed in detail in

section 7-2.

The effectiveness of a hidden-surface method depends upon the

characteristics of a particular application. If the surfaces in a scene are

spread out in the z-direction so that there is very little overlap in depth, then

a depth sorting method may be the best. Similarly if the surfaces are well

separated in the x-direction, then a scan line or area subdivision method may

be the best one. Depth sorting methods are very effective if a scene has a few

surfaces and only a few of these are overlapping.

However if a scene has a large number of surfaces then the depth

sorting method will require more memory than other methods. In this case

octrees or area subdivision methods may be better. The method 2 discussed

above is very similar to the octree approach. We do not need all the planes at

the same time. We can process the planes one by one. The processing time

depends upon the number of white pixels in the first plane. To obtain an inside

view of a scene parallel to the XY-plane, we can start from any plane which is

inslde(say nth plane) such that 0 < n < no.of.planes. The advantage over an

octree is again the size. In the case of an octree an image Is a cube of side 2"

but with murray scans there Is no restriction on the size of an image. Further

as In octrees, we do not need to perform any sorting and intersection

calculations in our method. The algorithm is the same for all the surfaces, no

special considerations being given to the curved surfaces. Further if quadtrees

or octrees have an advantage then this can be reproduced in murray scans.

209

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

7-4 Shading

7-4.1 Introduction:

One aspect of computer graphics that has received much attention is

the production of shaded images of objects. Three types of calculations must

be performed for producing computer generated images of three dimensional

objects.

1) The hidden surface problem, which determines the visibility of

a point from the viewpoint.This has discussed above in detailed.

2) The normal vector to the object at those points which are visible.

This normal vector is used to determine the pixel or point color,

for portraying smoothly shaded surface.

3) Intensity calculations. This takes the factors such as, the unit

normal vector at that point, the direction of the light sources, the

location of the observer, and the characteristics of the surfaces to

derive a function that determines the proper intensity for the

corresponding point on the image.

The simplest of these functions considers that the surface of the

object has diffuse reflection i.e., the light that strikes the object from a

particular direction will reflect off in all directions. Since the reflections

from the surface are scattered in all directions, this implies that the location

of the observer does not affect the intensity of a surface. The only calculation

then is to find the angle between the light source and the normal vector to the

surface. Usually the intensity of a pixel is directly proportional to the cosine

of the above angle. The cosine of the angle can be determined by computing the

dot product of the two unit vectors. If the dot product is negative, it means

2 1 0

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

that the viewer is on the opposite side of the surface from the light source. In

this case the intensity should be set to zero. Distances are ignored, since both

the light source and the observer are assumed to be at infinity from the

surface. Further simplification can be made by assuming only a single light

and the position of the observer is on the z axis of the coordinate system. The

intensity functions are then proportional to the z-component of the unit

normal vector (Figure 7.11) . Gouraud(1971) used this formulation for a very

rapid smooth shading system.

In addition, there is a small amount of light which falls on the surface

uniformly from all directions. This is known as ambient light. This constant

should also be added to the intensity. The net diffuse reflection for a surface

illuminated by ambient light and one light source is:

d = max[0,N.L]

i = kd [la d.lp]

where

i = Perceived intensity.

kd - Coefficient of reflection for the surface. It

lies between 0 and 1.

la - Incident ambient light intensity.

Ip = Intensity of the source.

d = Amount of diffuse reflection.

N = Normal vector to surface.

L - Light direction vector.

211

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

This model is simple to compute and quite adequate for many

applications. The next section examines several shading models in detail.

7-4.2 Sur&ce-Shadiiig Methods :

The shading functions assume that a normal vector corresponding to

the surface direction at the point being shaded is known.The accuracy of the

normal vector representing the actual surface depends on the method used to

obtain it.

The easiest way of obtaining a shaded image of a curved surface is to

approximate it by many planar polygons. When two or more two dimensional

images are used to obtain a three dimensional image, the surface description

is easily available. For a mathematically defined surface, these polygons may

be obtained directly from it. Since planar polygons are defined by a single

surface normal, this information can be used in a simple shading function to

determine the color for a whole polygon. This technique is limited. The

resulting image will appear faceted although it may be possible to obtain a

reasonable impression of the surface structure.

Gouraud attempted to improve the impression of a curved surface by

smoothing over the polygonal mesh. His algorithm requires specification of

the normal vector at each vertex of each polygon. This vector can either be

obtained directly from the mathematical description or by averaging the

normals of all the polygons adjacent to a vertex. Once a color has been

obtained for each vertex, the color can also be obtained for any edge by

interpolating between the endpoints color.These edge colors are linearly

interpolated along a scan line to obtain the interior colors. Figure 7.12

demonstrates this interpolation scheme. Here the intensity at point 4 is

obtained by interpolating the intensity values at 1 and 3. Similarly intensity

at point 6 is interpolated from the intensity values at the vertices 1 and 2.

2 1 2

Incident Light

Intensity a cos©

Figure 7.11. The diffuse reflection component is proportional to the cosine of the angle
between the Incident light vector (I) and the normal (N).

scan line

Figure 7.12. For interpolation shading, the Intensity value at point 4 determined
from the intensity values at points 1 and 3, intensity at point 6 is determined
from values at points 2 and 1, and intensities at points(such as 5) along the
scan line are interpolated between values at points 4 and 6.

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

obtained by interpolating the intensity values at 1 and 3. Similarly intensity

at point 6 is interpolated from the intensity values at the vertices 1 and 2.

Once the bounding intensities are found for a scan line, an interior point (such

as point 5) is interpolated from the bounding intensities at point 4 and 6. This

process is repeated for each scan line passing through the polygon. The result

is a smoothly shaded surface that appears very much like the original curved

surface.

Phong(1975) studied the physical properties of real surfaces and

attempted to devise a function that produce more realistics results. In

particular, he noted that, in addition to diffuse reflection, most surfaces

specularly reflect some light. The amount of light reflected from the surface

depends on the location of the observer. This phenomenon can be represented

by a function which compares the angle between the direction at which light

reflects off a surface and the direction in which the observer is looking;

usually along the z axis (Figure 7.13). Since such light must reflect almost

directly at the observer in order to be seen, Phong using the cosine of the

above angle raised to some power, insured that it is significant at only very

small angles. The exact value of the exponent is influenced by the surface

reflectance properties. The surfaces can then be described by some

combination of both the diffuse and specular functions plus an additional

constant for the background illumination.

Gouraud shading removes the intensity discontinuities associated with

the constant shading model, but still a number of problems arose with this

simple interpolation scheme. The most serious problem was Mach band effect.

Mach established the following principle :

213

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

Whenever the light-intensity curve of an illuminated surface has a

concave or convex flection with respect to the axis of the abscissa,

that particular place appears brighter or darker, respectively, than its

surroundings [E. Mach(1865)].

This effect appears whenever the slope of the light intensity curve changes

i.e. non-continuous first derivative. Phong reduces that effect by interpolating

the normal vectors themselves between vertices and edges and computing a

color for each pixel. This approach provides a more consistent surface

definition, independent of the orientation of the polygons. It provides a

smoother interpolation across polygons, although it is still not continuous in

the first derivative.

When rotation is applied to the images, both Gouraud and Phong shading

shows difficulties, with the shading varying significantly from frame to

frame. This effect is due to the shading rule which is not invariant with

respect to rotation. Consequently as the orientation of an image change from

frame to frame does so the color.

Torrance and Sparrow(1967) present a theoretical model for reflecting

light. Bllnn(1977), Gook(1982), and Cook and Torrance(1982) used this model

to produce synthetic images. The Torrance-Sparrqw model for reflection from

a rough surface is based on the principles of geometric optics. The surface of

an object is assumed to be composed of many mirror like microfacets. The

specular component of the reflected light is assumed to come from those that

are oriented in the correct direction. The diffuse component comes from

multiple reflection between facets and from internal scattering. The specular

reflection for Torrance-Sparrow model is :

214

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

S = DGF/(N.E)

where,

D is the distribution fountain of the directions of the micro

facets on the surface.

G is a geometric factor due to shadowing and masking of one

microfacet by another.

and F is the Fresnei reflection law.

Torrance-Sparrow assume that the microfacet distribution on the

surface Is Gaussian, given as ;

D = c iexp (-(d /m)2)

where,

c i is an arbitrary constant

m is the root mean square slope of the microfacets.

d is the angle between the normal to the surface and the normal

to the microfacet.

Cook and Torrance use a more theoretically founded distribution model

proposed by Beckmann, and Spizzichino(1963). The Beckmann distribution is:

D = (l/m ^cos^d). exp(“(tand/m)2)

which gives the absolute magnitude of the distribution function without

arbitrary constants. Corresponding to specular reflection, if m Is small then

there is little difference between the Gaussian, Beckmann, or Phong

215

Incident Light

Intensity a cos le

Figure 7.13. The specular reflection component Is proportional to the cosine of the
angle between the reflected vector (R) and the sight vector (S), raised to power (n).

Figure 7.14. Each scanllne has a list which contains the Informations about edges
which first become active on the scanllne. For the above example, the list are
as follows; list 1: AB, BC; list 2: AC; list 3; empty.

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

distribution functions(refer Roger(1985)). For larger values of m the

differences are more significant.

Blinn{1977) compares the shape of the specular highlights obtained

using the Phong illumination model, when the object is edge-lit. Edge lighting

occurs when the angle between the observer and the light source is

approximately 9oO- It yields very little improvement along the edge of the

curved surfaces. If observer and the light source are at the same location,

then the results for both the models are nearly the same.

When dealing with a mathematical representation of a surface such as

bi-cubic patch, a difficult problem is determining the correspondence between

a pixel in the plane and a point on the three-dimensional surface. For this

reason, patches are generally approximated with a polygonal mesh and for

shading we use the methods previously described. Catmull(1974) developed an

algorithm which handled patches directly. His method recursively subdivides

each patch into smaller sections until each covers only one pixel center.

Blinn(1978a) and Whitted(1978) proposed algorithms that process patches

with a scan line approach. Griffith(1984) presented a scanllne algorithm,

which generates a realistic picture of a solid object bounded by curved

surfaces. Every scanline has a list of information about edges which first

became active on the scanllne (see Figure 7.14). Color finding is the same as

given by Gouraud. Griffith pointed out that a disadvantage of this approach is

that it is harder to tell whether a point is visible when the problem is 2D that

it is when the problem is ID .

7-4.3 Transparency :

Most of the illumination models and hidden surface algorithms assume

that the object is opaque. When a transparent object is modelled then the

intensity from the light source behind the object should be included in the

216

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

illumination model. Light passing through a surface is called transmitted light

or refracted light. When a light is incident upon a transparent surface e.g.

glass, part of it is reflected and part of it is refracted (see Figure 7.15).

Since the speed of light is different in different materials, the path of

the refracted light will be different from the incident light, according to

Snell's law[Brown(1955)] of refraction which states that "for a given pair of

media, the ratio of the sine of angle of incidence to the sine of angle of

refraction is a constant, independent of the angle of incidence". This law can

be written mathematically as:

sinQ/sinQ' = ng/n 1

where,

n i is the index of refraction for first surface, Q is the

angle of incidence,

' n2 is the index of refraction for the second surface and O'

is the angle of refraction.

Finding the refracted light using Snell's law is very time consuming. The

refraction effect can be gained by simply shifting the path of the incident

light by a small amount.

A simpler algorithm for the transparency effect ignores refraction.

This approach assumes that there is no change in the index of refraction from

one material to another i.e., the angle of incidence is same as the angle of

refraction. This method can speed up the calculation of intensities.

Newell,Newell and Sancha(1972b) proposed an algorithm for producing

transparency effects. Here the intensity of a background objects is added to

2 1 ?

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

the Intensity of the transparent object. The intensity is then a linear

combination of the two objects intensity given as;

I = rif -I- (1-r)lp 0 <= r <= 1

where

It = intensity of transparent object,

lb = intensity of background object.

and r = refraction coefficient just to weight the

reflected and refracted intensity contribution.

The linear combination of the two intensities is not sufficient for

modelling curved surfaces. Since the thickness of the material reduces at the

edges, this reduces its transparency, as pointed out by Roger. Scott(1979)

suggested a single nonlinear approximation based on the z-component of the

surface normal, to find the refraction coefficient. The refraction coefficient

is:

r = rnnin (("max- <’m in)[1~(1-JRzOn

where

rmin and rmax are the minimum and maximum transparencies

for the object,

nz is the z component of the unit normal to the surface, and

r is a transparency power factor.

218

Incident Light
Reflected Light

Surface

Refracted Light

Figure 7.15. A ray of light upon a surface is partially reflected and partially refracted.

V

u

/ Ky /
V

Figure 7.16. The area covered by a single pixel in xy space is mapped to its corresponding
area in uv space. The texture pattern is then sampled from the uv mapping.

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

7-4.4 Texture Mapping :

In computer graphics, the texture Is nothing but the surface detail in

an object. Two type of texture are generally considered :

1) The addition of a separately defined pattern to a smooth surface.

2) Adding the appearance of roughness to the surface.

Blinn and Newell(1976) describe an addition to the Catmull algorithm

(1974a, and b) and simulated this by mapping images onto surface patches.

Each patch is associated with a particular stored image corresponding to the

patch definition in parametric space. When the area on the patch that

corresponds to a single pixel on the display is determined, the associated area

in the image is mapped at that point and a color is calculated for this pixel

(see Figure 7.16) .

If we want to add the appearance of roughness to a surface, a

photograph of a rough textured pattern could be digitised and mapped to the

surface. As Roger pointed out the results obtained are unsatisfactory because

they look like rough-textured pattern painted on a smooth surface. According

to him the reason for that is, the true rough-textured surfaces have a small

random component in the surface normal and hence in the light reflection

direction. Blinn(1978b) noted that problem and developed a method for

perturbing the surface normal.

7-4.5 Antialiasing :

The nature of raster scan graphics is such that a color must be

determined for a fixed number of dots in the horizontal and vertical direction.

This sometimes results in distortions being introduced into computer

generated images, known as aliasing. This is purely due to the results of this

2 1 9

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

digitization process. Here each dot or pixel is addressed by an integer pair

(x,y). If in object space a point has been represented by a real pair then it has

to be truncated to get an integer pair, before addressing it on the screen.

Crow(1977) studied this problem in detail and proposed a number of solutions.

One of the most obvious problems involves straight borders that appear

jagged. It is because the transitions between scan lines are discrete. This can

be adjusted either by adjusting pixel positions (pixel phasing) or by setting

the pixel intensities according to the percent of pixel area coverage at each

point. Filtering can also be used to reduce aliasing effects.

7-4.6 Shadows :

Whenever a computer generated image of an environment is created

such that a light source location is different from that of the observer,

shadows appear. If the observer and the light source are at the same point

then no shadows will appear. As Roger cited a shadow consists of two parts:

an umbra and a penumbra. The central dense shadow area which is black is the

umbra and the lighter area surrounding the umbra is called the penumbra.

Due to the algorithmic and computational difficulties only shadow

umbra is included in creating computer generated images. The shadow

calculations depend upon the location of the light source. To add shadows to a

scene the hidden surface problem will be solved twice, once for the position

of the light source and once for the observer's position. The object can be

viewed from in front, above and to the right. Generally two type of shadows

are considered: self-shadow and projected-shadows-. Self-shadows result

when the object itself prevents light from reaching some of its plane. A

projected-shadow results when an object prevents light from reaching

another object in the scene. The shadows depend only on the position of light

source and not on that of the observer.

2 2 0

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

Atherton, Weiler, and Greenberg(1978) have extended the hidden

surface algorithm, based on the Weiler-Atherton{1977) clipping algorithm to

include shadows. The algorithm works in object space. Hence, the result can

be used for accurate calculations. They employ a hidden surface process that

produces a list of visible polygons as its output. A shadowed image is

produced by first determining which surfaces each light source can see. The

illuminated surfaces are then applied as lighted details to the corresponding

polygons in the original object description. A hidden surface view can then be

generated from any observer position. Surfaces which are shadowed from the

light source by other objects will automatically be rendered black.

An algorithm by Williams(1978) uses a z-buffer hidden surface process

similarly to determine curved shadows cast on curved surfaces. In this case,

an additional z-buffer is maintained indicating which surfaces cannot see the

light source. A point by point transformation is then performed from the

observer’s point of view to determine which surfaces should be darkened.

7-5 Shading Using Mtmray Polygons :

As mentioned above, we need three types of calculation for producing a

shaded image of a 3-dimensional object. They are,

1. Hidden-surface problem solution,

2 . The normal vector at the visible point,

3. Intensity calculations.

The problem of the hidden-surface, which determines the visibility of a point

from the view point has been discussed above in detail. In the following

sections we will discuss in detail the remaining two calculations.

2 2 1

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

7-5.1 Detennining The Surface Normal ;

If we have the detailed description of the surface then calculation of

the surface normal is straight forward. Generally for many surfaces only a

polygonal approximation is known or none at all. If the plane equation for each

polygonal facet is known then the normal for each facet can be determined

from the coefficient of the plane equation. For example, if the given plane

equation is,

ax +by 4-cz +d = 0

then the coefficient of x,y,and z will give us a vector that is normal to the

plane i.e.,

N = aî +bj +ck where i,I,k are unit vectors.

In our case, we are working with any arbitrary image, whose

description is not known to us. In this case the normal at a point can be

obtained by finding a plane passing through it . Since we have to find a plane

equation we need at least three points. Three points {Note : the points must

not be in a straight line) can usually be obtained by considering the two

adjacent points to a point for which we have to find a normal. Once three

points are available the normal can be obtained. For example,

let A=(x-j , y i , z-j), B= (xg , yg, zg) and G= (xg , yg, zg) be the three

points. Using these three points we can find the plane and then the normal to

it. Alternatively the normal to a plane can be obtained by finding the cross

product of the two adjacent vectors at one of the vertices (say C).

222

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

i j k

(X2 - xi) (V2 " yi) (22 - 21)

(X3 - x i) (V3 - y i) (23 - 21)

N = ll+m| +nk

where,

I = (ya-yi) (z3-2i) - (Y3-yi)(z2-zi) .

m = (Z 2 -Z1)(X3 -X1) - (X2 -X1)(Z3 -z-i),

n = (X2 -X i)(y3 -y i) - (X3 -x-|)(y2 -y i) .

If N has value equal to zero this implies the three points are in a

straight line.

7-5.2 Determining The Intensity At A Point Using Murray Polygons:

In this section we will discuss the use of murray polygons in finding

the intensity at a given point with a given depth. The algorithm takes a linked

list which has been obtained after removing the hidden surface area. The

shading model which is used supposes that the surface of the object has

diffuse reflection i.e., light reflecting in all direction after striking the

object. Total diffuse reflection for a surface illuminated by ambient light and

one point source is given as (refer Hearn, and Baker(1986)),

I - K(j 1̂ + Kçj Ip (N .L)/ (d+dp)

where.

(1)

2 2 3

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

la = uniform intensity from all directions.

Note : The Sun 3/60 has 8 bit planes per colour

i.e. each group can generate 2^ (=256)

shades or intensities of red, green, or blue.

The total colours can now be equal to

224 (2̂ corresponding to each gun). To get

gray scale levels i.e. between white and

black, the intensity corresponding to each

gun should be equal i.e. we can have 256

gray scale levels where 0 corresponds to

dark i.e. black and 255 corresponds to full

intensity i.e. white. We choose our ambient

light to lie between 30 to 65. Actually !q

can take any value between 0 to 255. If

the ambient light has too high value then

the object will just appear very bright

with no sign of any shading and similarly

if it is too low.

K(H = the coefficient of reflection or reflectivity for

the surface. It's value lie between 0 to 1,

according to the reflecting properties of the

surface. If the surface is very reflective then we

can assume it to be 1.

la = The intensity of the light source, and we assume

it to be equal to 255 (maximum intensity).

d = the distance between a point and a light source.

224

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

dp = a constant used to prevent the denominator from

approaching zero.

Note : Since our light source is assumed to be at

infinity,we ignore the distance factor (d-hdg)-

N.L - the angle between a unit normal vector N

and the direction to the light source with a

unit vector L (see Figure 7.1).

Figure 7.17.
Angle of Incidence Gcetween the light
direction L and the surface normal N.

7-5.2.1 Determination Of The Angle Between N And L :

For each pixel which is black In an image, we have to find the intensity

corresponding to the light source. Usually the intensity of a pixel is directly

proportional to the cosine of the angle between the vector N and the vector

L (N and L are defined above).

Let A(x-|, y i , z-j) and B(Sx, Sy, 8%) be the two points, where the point

A belongs to a black pixel in an image and point B belongs to the position of

the light source. The unit vector L = AB can now be easily calculated.

Let V = ai +bj +ck be a vector,

225

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

where, a = Sx - x i ,

b = Sy - y i ,

c = Sz -z-j.

The magnitude of a vector V is given by,

|V| = sqrt(a2 +b^ +c2)

The unit vector L(say) having the direction of V can be obtained as,

L = V / | V | = li +mj +nk

where, I = a /|V), m = b/)V|, n = c/|V| and,

1*1 +m*m +n*n = 1.

The source position B is known to us and the point A can be calculated

using the information stored in the linked list. The linked list which we are

using is obtained after removing the hidden-surface from a given view point.

Using the item 'Sum' stored in the list we can calculate which point it is on

the curve and then the co-ordinates i.e. n > (x,y). The corresponding depth

can be obtained from the another structure which is linked to the list by the

middle pointer. For example, a black cell which belongs to the linked list is

given below,

226

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

Since the item 'Sum' is given to be 5 and the item 'runlength' is equal

to 10, this implies that from the 6th to 15th points will lie in this cell and

are black. Using 4he transformation from n — > (x,y) discussed in chapter 2

we can calculate the coordinates for all points from the 6th to 15th. For the

z-value we will scan the middle pointer. The information stored with the

middle pointer states that, out of 10 pixels, 3 pixels belongs to the 4th plane

i.e. z = 3 and 7 pixels belongs to the 5th plane i.e., z = 4 {Note : z = 0 is the

first piane). For example for the 6 th point the co-ordinates will be given as

(x,y,3). Now we have the source co-ordinates and the pixel coordinates , the

unit vector L can be easily calculated using the above transformation.

The next step is to find a unit normal at a given point. The unit normal

vector at a given point can obtained by finding the cross product of the two

adjacent vectors at that point. The two adjacent point can easily be obtained

directly from the murray scan. Let r-j and T2 be the first two radices i.e. the

size of the smallest tile is ri *rg. These r-j*r2 pixels are well packed in a

small tile and are very near to each other. This coherence between the pixels

can be used to find the two adjacent points. As discussed in chapter 2, a

murray scan move forward either by incrementing or decrementing the x-value

or the y-value i.e., by calculating the next co-ordinates. Hence the x and the y

co-ordinates for the pixels can easily be obtained straight from the murray

scan, which will pass through each and every point in a tile. The depth z

corresponding to these pixel can then be obtained by scanning the middle

pointer as explained above.

One can also use 4-point connectivity or 8 -point connectivity to find

the two neighbours, but the problem is to get the z-value. The points which we

will get , may lie in the same tile or in different tiles. In any case, to get the

z-value we have to find the nth point first then the cell in which it lies and

the z-value corresponding to that point, i.e.,

227

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

f(x,y) — >

z-va lue

It may also be possible that the two neighbours are white. In this case again

we have to consider two arbitrary neighbourhood points. This scheme is

definitely going to consume more time than considering the consecutive points

of a tile.

Consider a tile of size r-| *r2 as shown,

1
""2

Ji+2 1+3 1+4
1+1 1 i-1
0 1 2

The pixel at position 0 has three neighbours, they are 1,i, and i+1. We can

arbitrarily choose any two points out of these three neighbours. Similarly for

the ith point which has eight neighbours, any two points can be selected. Since

we have -three points we can easily find the normal by finding the cross

product between the two vectors passing through that point. The algorithm

can be made faster if we pre-assign the two neighbouring points to each point

in a tile. Here we need three array of integers, one to store the point number

for which we have to find the normal and the other two corresponding to the

neighbourhood points numbers. If the tile size is large then the array size will

also be large and also the coherence between the first and the last pixels will

be lost. So it is better to use the smallest tile size i.e., 3*3 {Note : we can

228

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

also use 2*3 but a problem arises If we have to convert the scan for scaling).

The tile of size 3*3 and the neighbourhood points to each point in a tile is

given below.

1̂2 = 3

6 7 8

5 4 3

0 1 2

^ = 3

points
Arrays
1 2 3

0 — — > 0 1 5
1 — > 1 2 4
2 - > 2 1 3
3 ——> 3 4 8
4 — > 4 5 7
5 — > 5 4 6
S ——> 6 7 5
7 ——> 7 4 8
8 ——> 8 3 7

If all the pixels in a tile are black then we can easily get the two

adjacent points as assigned above to find the normal. Problems can arise when

some of the pixels are not black. This generally happens when we are dealing

with the boundary points. For example, a tile where only three pixels are black

is given below(case a),

6 7 8

5 4

0 1 2

(a) (b) (c) (d)

229

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

In case (a) the pixel marked 3, which is black has both assigned

neighbours pixels i.e., 4th and 8th are white. Now one way of finding a normal

at the pixel marked 3 is to use any two arbitrarily black pixels in the tile.

Here we can use pixels marked 1 and 2 . But if either the pixel marked 1 or the

pixel marked 2 is white then there is no way to get two more black pixels in

the same tile. To obtain other black pixels we can consider another tile which

will start from a arbitrary point which is connected to the pixel under

consideration and will contain that pixel i.e., 3rd. We can start our tile from

the 1st pixel (see case (b)). This we do just to get more black surrounding

pixels. Once we have three black pixels the normal can be easily calculated.

There are many cases which can be solved similarly (see above case c and d).

Using the above information a unit normal at any given point can be

easily calculated. The problem can arise with the direction of this unit vector.

If it is-pointing in the wrong direction then the shading corresponding to the

point is wrong. This effect is due to the orientation of a murray scan from tile

to tile. As we know that a murray scan has four possible orientations, which

can effect the angle between the two adjacent vectors. For example two tiles

of size 3*3, with two different pattern is given below. Since the polygon is

entering from the two different sides, the numbering in both the tiles will be

d iffe re n t.

6 7 ■B—

5 4 3

0 2 A

(a) (b)

230

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

Consider the pixel at position zero in both cases. In case (a) the direction for

the angle between the two vectors is anticlockwise where as in the second

case (b) it is clockwise (see below), which will bring the change in the

direction of the unit normal.

r ’
(a) (b)

To determine whether it is pointing in the right direction or not we can

consider the dot product between the unit normal vector and the direction to

the view point with unit vector V (say). If dot product is negative then the

normal is pointing in the reverse direction. To make it point in the right

direction we will multiply with jh e components of the normal vector by -1

i.e., if N = (L , M , N) be the initial unit normal vector then the correct normal

vector will be given as N = (-L , -M , -N).

Now we have the unit normal vector at a given point(say N = (L , M, N))

and the unit vector towards the light source (say L = (I , m , n)). The dot

product will now be given as ,

cos © = N . L = TL 4- m*M + n*N

If cos(0) is in the interval from 0 to 1 then the surface will be illuminated by

a point source. If cos(©) is negative, the light source is behind the surface.

Now we know the values for all the parameters in the illumination

model, the intensity can be calculated for any given point. We have to

calculate the angle of incidence i.e N . L, for each visible point in an image.

The procedure for setting a colour map table is as given.

231

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

This program sets up a vector (or color map table) of all the

different planes
Each different set of planes will have different gray scale value.
For example off & off & off ... & off is black and so on.

let g = vector 0::255 of off
for I = 0 to 255 d o

beg in

let d I
g(l) := { if d rem 2 = 0 then off else on}
d := d div 2

fo r j = 1 to 7 d o
begin

9(0 •= 9(0 & { if d rem 2 = 0 then off e lse on}

d := d d iv 2

end
end

Initially the shading obtained on the edges and on the surface of a

sphere was not very smooth. By examining the shade color it was noticed that

some of the intensity values were either very high or very low, in comparison

to the surrounding intensities. In order to obtain reasonable shading we

decided to use smoothing techniques. In the next section the smoothing

technique used for the noisy data and the results obtained is discussed.

7-5.3 Smoothing [Lanczos(1957), and Cole, and Davle(1969)] Of Data :

In this section we will discuss the smoothing of noisy data by making

a least squares fit to a suitably chosen polynomial. The correction is made

point by point. At each stage only a few selected points about the one

currently under consideration are used. The expression which is presented

here corresponds to 5 points I.e., the two neighbour on both sides plus the

232

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

here corresponds to 5 points i.e., the two neighbour on both sides plus the

central point. The smoothing of data by fourth differences using a parabolic

equation of the second order is discussed below,

A parabola of the second order is given by,

y = a +bx +0x2.................... (1)

and the data belongs to the points x = -2 , - 1 , 0 ,1 , 2 . The aim is to combine

every measurement with its two neighbour to the left and to the right. The

problem is to minimise,

2 (y - y i) 2 (2)

with respect to a, b, and c. Our goal is to correct the central value yg, which

belongs to x=0. At x=0 , the central value yg = a, so we solve the normal

equations which are obtained after differentiating equation-(2) with respect

to a, b, and c, to find the corrected value for yg. The corrected value obtained

is equal to yg -3 5^ yg/35, where Ô^yg is the fourth central difference of the

zero line. The above result is given in Lanczos(1957)

Once the central point has been smoothed we move down one step and

then again consider 5 points for the next point to be smoothed. The corrected

values for the first two observations and the last two observations are given

below,

y_2 (corrected) = y_2 + 5^/5 + 3 &4 /3 5

y -1 (corrected) = y - l - 2 0^/5 - 8,4/7

y2 (corrected) = y2 - 8^/5 + 3 8 4 /3 5

y i (corrected) = y i + 28^/5 - 84 /7

2 3 3

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

Here in each case we have to make a central difference table. We can avoid a

central difference table by finding the coefficient to be multiplied by the data

values selected. Consider a difference table given below,

X f(x) 6f(x) ô2 f(x) ô3f(x) ô4f(x)

1 XI
X2 X1

2 X2 xg-2 x2 +xi

X3 -X2 X4-3xg+3x2-xi

3 X3 X4-2xg+X2 X5~4x4+6xg-4x2+xi
X4 -xg xg-3x4+3xg-X2

4 X4 xg-2 x4 +xg
X5 -X4

5 X5

Now yg = yg -3 ô4 yg/35 or xg = xg -3 0^ xg/35, substituting the value for

ô4 xg in the previous expression we will get,

xg(corrected) = (-3x*| + 12x2 +17 xg + 12x4 -8x5)/ 35

Now whenever we get five new points we will multiply them with the

corresponding constants to give the smoothed value for yg (or yg). Similarly

the corrected values for the first two observations and the last two

observations may be obtained and are given below,

x-j (corrected) = (31xi +9x2 -3xg -6x4 +3x5) / 35

X2(corrected) = (9x-j + 13X2 +12 xg +6x4 5xg) /3 5

X4(corrected) = (-5x-j +6x2 +12 xg -22x4 +9xg)/ 35

xg(corrected) = (3xi 5 X2 -3 xg +0x4 +31xg) /3 5

234

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

Similarly results can be obtained by considering seven points or nine points

etcetera, with any suitably chosen polynomial. We can also use a cubic

polynomial but for n =2 m and n =2 m+1, (where n is the degree of the

polynomial and m is an integer), the correction factor is the same. With the

linear case and considering three points i.e., one on each side, the correction

factor obtained for all three observations under consideration is same after

second iteration.

7-5.4 Results ;

As discussed in section 7.2, the hidden surface algorithm transforms a

3D image into a 2D image by removing all the pixels which are hidden from a

given view point. Those points which are visible are obtained from different

depth planes. The depth of the pixels are numbered 0,1,2...... n-1, where n is

the total number of the planes parallel to the XY-plane. The linked list

obtained after removing the hidden-surface is used to shade the object. Our

algorithm for generating shaded Images accepts any arbitrary image. The

image can be in any form, such as, a polygonal mesh, curved surface patches,

or solid geometry construction. Since the scene is arbitrary we do not have

any information about the object surface. If a scene happens to contain a cube

then it is noticed that the shading on the edges is not very good. There is too

much irregularity in the shade color. Since the scene is arbitrary we cannot

easily detect an edge. In the case of mathematically defined objects the

surface description is known to us and hence we can easily detect an edge .

Since our images are arbitrary, hence we need to find a general solution which

will give reasonably shaded Images in all the cases. In the following

paragraph Initially we will discuss the reasons for these problems arising and

in the end we will present some solutions to these problems

235

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

The reason for not getting good shading at the edges concerned the

normal value, obtained at the edges. We will explain this by consider two

planes meeting at an edge, as shown below,

U l i

(a) (b)

W e can consider two cases,

1. if we are using one point to find the normal (see case (a))

then there will be no problem at the edges. But

theoretically it is not possible only if we

precalculate the normal at each edges and then

interpolate them(Phong(1975)), so that the normal at the

edge between the two plane will then be one with less

(or more) magnitude. In our case we find the normal at

each point by considering two other adjacent points. This

has been discussed above.

2. If we consider two points (or more) to find a normal

(see case (b)) then at the edges some points can belong to

one plane and others to the other plane, which will bring

some distortion in the normals at the different edge

points.

We consider three points to find a normal. A tile of

size 3*3 and an edge passing through it is as given,

236

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

1st plans

"" ^ © c Iq ©

A y
/

B

2nd plan©

For all the edge points consider one point from the first

plane and the other two from the other plane or vice

versa. For example, the pixel marked X will take two

pixels I.e. pixel marked A and B, to find the normal, where

the pixel marked A lies in plane 1 and the pixel marked B

lies in plane 2 and pixel X is present in both the planes,

see above. Some improvement with the edges is discussed

la te r.

Distortion is also seen in the case of a sphere. The shading is not very

smooth. The reason for this was that the sphere was calculated explicitly

from the equation

(x-a)^ +(y-b)2 +(z-c)2 =

giving, z = {+/-) [sqrt(r^ -(x-a)2 -(y-b)2)] + c

Here the x and the y values will be integers whereas the z-values can be real

or integer. Since the planes are assigned an integer z-value, we have to

truncate this value if it is not an integer. The result was not very pleasant

237

I

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

since the intensity values were fluctuating very much. The problem would not

have arises with an image obtained by video camera.

We tried to solve these problems by smoothing the data by using a

parabolic equation of the second order as discussed above. The correction was

made point by point. At each stage only a few selected points about the one

currently under consideration were used. Initially we used 5 point smoothing

i.e., two neighbour on both sides plus the central point. Our aim was to

combine every measurement i.e., intensity, with its two neighbour to the left

and to the right. The results obtained by this method were not very

satisfactory. In the case of a sphere it appeared as if some one had pressed it

from all sides. The edges were also jagged , see Figure 7.18. Since the points

in a tile are very close to each other we tried to use seven point smoothing

also. The method was repeated many times. The result was as shown in

Figure 7.18. We also tried to smooth the dot.product instead of the intensity.

We thought, since the dot product was between 0 and 1 then there was a

chance of getting better smoothing than by using intensities which lie

between 1 and 256. The result however was the same.

In the case of the edge problem the right solution was obtained as

fo llow s,

1. Most of the edge points will have 4 connected points, neglecting

the diagonal points. At each point we find a normal to find the

Intensity. As we have seen the intensity at the edges is not very

smooth, and the reason lies in the normal vector. We solved this

problem by considering four different normals obtained by

considering four different pairs, and then taking the average of

these normals to give the approximate unit normal vector. We

238

Figure 7.18. Shaded picture of a cube. The
position of the light source is changing, and the
shading function assumes that the surface has
diffuse reflection. The edge problem is also
clearly shown.
Note: Cube has been obtained by putting the
planes one after the other.

Figure 7.19. Shaded picture of a sphere. The
position of the light source is changing, and the
shading function assumes that the surface has
diffuse reflection.

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

could also use diagonal points to increase the number of

normals, but this makes the algorithm very slow.

2. Finding four normals at each point of an edge can be very time

consuming. We can alternatively find only two normals vectors

and consider the one which is either small in magnitude or large.

If we select the normal which is small in magnitude then in all

the case we will consider the normal with small magnitude and

vice versa.

3. Since the intensities at the edges will be different from the two

adjacent planes and hence the intensity can be adjusted by

comparing the neighbourhood intensities e.g. 113, 6 8 , 219. The

middle one can be replaced by either 113 or by 219. If we select

113 then from then on we will consider the one which is less

and vice versa. But this approximation is not always

satisfactory, for example, two planes adjacent to each other,

having a small gap which is one pixel wide will always have

this gap black.

In case of the sphere the appropriate shading was obtained when we

used the real z-value for all the points for which we stored the truncated

z-values in the list(Note : In general, this Is all we have). The result are

shown in Figure 7.19. This however is graphics rather than image processing.

Conclusion:

From the above results and discussion we have noticed that the depth

value corresponding to pixels plays an important role in getting a reasonable

shaded image. Hence if we are dealing with mathematically defined scenes

then the correct z-value should be stored in order to get a reasonable shaded

239

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

Image. But for an arbitrary image we don't have to worry about that since we

have to use the data as presented. As long as an image is made up of curved

surfaces a normal at each point can produce a satisfactory shaded image. But

suppose our image Is made up of curved surfaces and solid boxes, then some

problems may arise at the surface intersections. To get reasonable shading at

the edges we therefore have to use two normals at each points. Since the

scene is arbitrary, it is necessary to compute two normals at each point. The

one whose magnitude is less (or more) can be selected to find the intensity.

Two normals for a point can be obtained straight from the tile which is under

consideration.

7-6 Specular Reflection :

At certain viewing angles a shiny surface reflects all incident light,

independent of the reflectivity value of the surface. The result is a bright spot

of reflected light. This phenomenon is known as specular reflection. In case of

a perfect reflector e.g., mirror, the angle of incidence and the angle of

specular reflection are same. The complete intensity model for reflection due

to ambient light, incident diffuse reflection, Phong specular reflection and a

single point source can be written as,(refer Hearn, and Baker(1986)),

Kd la + l p [Kd(N.L) + w(i,A.) (V.R)n] / (d+dg) --------- (2)

w here,

w (i , l) = It gives the ratio of the specular reflected

light to the incident light as a function of

the incident angle i and the wave length I.

We can simplify the intensity calculations

by setting w(i,l) to a constant value Kg for

240

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

V.R

the surface. Its value can lie between 0 and

1 depending upon the surface material.

angle between the direction at which light

reflects off a surface and the direction

that the observer is looking (Figure 7.20).

surface
A

Figure 7.20. Angle between the direction at which light reflects
off the surface (V) and the direction in which the
observer (R) is looking.

n = determines the type of the surface to be

viewed. For shiny surfaces n can take a value

equal to 200 or more and for dull surfaces it's

value can be one.

The angle between the vector V and R can easily be calculated. If we

consider the Figure 7.20, the direction of the normal vector N bisects the

angle between the vectors R and L. Similarly we can define another unit vector

B(say) which wiii bisect the angie between the vectors V and L and wiii be

given as,

B = (V+L) / |V+L|

therefo re , V.R = N.B

241

Figure 7.20. Two intersecting spheres with a
plane passing through them. The position of the
light source is changing, and the shading function
assumes that the surface has diffuse reflection.

Figure 7.21. Two intersecting spheres with a
plane passing through them. The position of the

Jig ht source is changing, and the shading function
assumes that the surface has specular reflection.

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

Since the position relative to the light source (L) and to the viewer (V) is

given, hence the vector V and vector L can easily be calculated as discussed

above, and so the vector B.

The shading model given in equation (2) has been used to calculate the

intensities for the black pixels in an image. In comparison to the diffuse

reflection the specular reflection produces a bright white spot of reflected

light. It has noticed that when the object Is edge lit both the shading

functions produces the similar result. The appearance of white bright spot

when the object is not edge lit generates very realistic image. The result

obtained from the shading models is shown in Figure 7.21.

7-7 Remarks :

In comparison to the octree and linear approaches, the murray approach

is going to be slightly advantageous. As we know the intensity at a point in an

image depends on the angle between the unit normal vector and the vector L

towards the light source. Finding the vector L is very easy since we have the

coordinates for both the points i.e one belonging to the light source and the

other one belonging to the point in an image. The problem comes with the

normal vector N. To find a normal at a point we need at least two more points .

In case of linear encoding or quadtree {Note : this quadtree is obtained after

transforming an octree into a quadtree) encoding, these two points can be

calculated either by using 4-point connectivity or by 8-point connectivity of a

point (i,j). The corresponding z-value can then be obtained from the linked list

which stores the z-values for each visible black point. If the two computed

adjacent points happen to be white then we have to repeat this process again.

But in the case of a murray scan the connected points with x, y, and z-values

can be obtained straight from the scan. We do not have to do extra work in

2 4 2

CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

finding out the z-values corresponding to the connected points. Only at the

boundary we have to do the calculations to get the z-value, as discussed

above.

Phong shading will be computationally more expensive than the murray

approach. The reason is the extra pre-processing step required. In the case of

Phong shading, a curved surface(or any surface), initially it has to be

approximated as a set of planar polygons and then at each vertex where

polygons meet, a normal has to be determined. This vertex normal is then

interpolated linearly across the polygon surface. But with the murray approach

no special consideration needs to be given to the curved surfaces (or any

surface); and also the complexity is proportional to the number of pixels and

Is independent of the number of faces. Similarly with Gouraud shading, where

at each vertex we have to find the intensity, which is going to interpolate

across the polygon surface, the computational time will be less in comparison

to Phong but will be more in comparison to the murray approach.

243

Chapter 8

8 . IM PLEM EN TA TIO N 244

8-1 User Interface 244
8-2 Menu Design 24 5

CHAPTER 8. IMPLEMENTATION

8-1 User Interface :

In designing a graphics package, two points should be considered

i. The graphics operations to be performed,

ii. How to present them to a user.

The interface should be designed in such a way so that it is very easy and

efficient for the user to access basic graphics functions. The graphics package

might be set to produce engineering design, business graphics, as an artist's

paintbrush etcetera. A user interface generally considers the following

components,

1. User model

2. Command language - -

3. Menu formats

4. Feedback methods

5. Output formats

The package which we made contains only the menu format (or Test

bench). All the processing options are present in the menu format. In the

following sections we discuss the options(or operations) which are present in

the menu and finally the whole scheme is shown in pictorial form. We made two

packages; one using PS-algol and other one using 0 . Both the packages have the

same options but with a difference in the processing time, this is discuss later

on.

244

CHAPTERS. IMPLEMENTATION

8-2 M enu Design:

Most graphics packages make use of menus. Menu design helps in

relieving the burden of remembering input options. All the options are presented

in the form of a menu. Menus can easily be changed to accommodate different

applications. They can be used as an input tool for operations and parameter

values. The selection for the operations to be performed can be made by

positioning a cursor at a menu position. Each menu option can have submenus. A

selection from the first menu brings up a menu at the second level and so on.

Each menu option is connected with the task (or algorithm) to perform. When

we select an option, if it does not have submenus then the related programme

will be performed asking for the input parameters if any. The menu design which

we made is shown below. Each operation has either submenus or not.

Menu I
Murray.Scans

Scan+Draw

Scan.Converslon

Scaling

Connectivity

Set.Operatlons

Superimposition

Hldden.Surface.Rm

Shading

Now we consider each option separately and will discuss the proposal

behind it. All the options are discussed in detail in the previous chapters. The

first option with its submenus is shown below,

245

CHAPTER 8. IMPLEMENTATION

Cartesian
Polar

Vertlcal.Scan
Linear.Scan

Murray.Scans

j Menu

Vertlcal.Scan

MIxed.Scan

Linear.Scan

This option draws murray curves with different radices. The option

Murray.Scans has two sub-options. The first option Cartesian has three sub­

options, where the first two options draw general linear and general vertical

murray curves and the last one draws the mixed curve i.e., vertical as well as

linear tiles, as explained in chapter 2. The second option Polar draws polar

murray scans. It has two options; one for the linear case and the other one for

the vertical case. The shape of the curve depends upon the input radices. Each

option will ask the user to input the radices.

2D-lmage
3D-lmage Vertlcal.Scan

Linear.Scan

VertlcaLScan
Linear.Scan

UsIng.Images
UsIng.Llst
UsIng.Flle

Scan.Draw.Front
Scan.Draw.Slde
Scan.Draw.Top

246

CHAPTER 8. IMPLEMENTATION

The second option Scan+Draw takes an image as an input and then scans

it to get the collection of runlengths, which is later on used to draw the image

anywhere on the screen. This option can also take a file or a list as an input,

this file is containing the collection of runlengths obtained after scanning the

image. The option Scan+Draw has two sub-options. The first sub-option takes a

2-dimensional image whereas the second option considers a 3-dimensional

image. The option 3 0 .Image scans the images from the front side, left side and

top side. The scanning pattern can either be vertical or linear depending upon

the radices.

Menu
Scan.Converslon ---------► Method.1

Mothod.2

The option Scan.conversion (shown above) converts a horizontal scan into

the vertical scan or vice-versa. It has two options. The first option uses murray

arithmetic to convert one scan into another and the second option uses simple

mathematical calculations to do the job. In both cases the input is murray

runlengths and the murray radices. Both the methods are discussed in detail in

chapter 4.

' Menu [
-------► X-Dlrectlon.Only

Y.DIrectlon.Only
Both.Dlrectlons

This option i.e.. Scaling, scales the images up and down as required. It

has three sub-options, the first option scales the images in the x-direction, the

247

CHAPTER 8. IMPLEMENTATION

second one scales the images in the y-direction and the last sub-option scales

the images in both directions i.e., x as well as y-direction. More detail can be

obtained from chapter 4.

SD.Image
2D.lmage

SD.Image
2D.lmage

UsIng.I.LIat
UsIng.Llst#
UsIng.ImagesConnectivity

Menu

The option Connectivity, helps in extracting out a big chunk or a required

area from a given image. It has two sub-options, in the first case it takes an

image as an input and finds the required connected area. In the second case it

takes either two lists of runlengths or one list of runlengths, which are

obtained after scanning the images, to identify the homogeneous connected area.

Refer chapter 6.

~ Menu
Set.Operatlons Union (A,B)

Intersection (A,B)
Difference (A,B)

The option SetOperations, merges two or more images together to give a

single image. The merging of two or more images can be done to obtain the total

black area in the images or the area which is common in the images or the area

which is not common in the images. The input can either be the collection of

images which has to be merged or the runlengths corresponding to the images

which we want to merge (see chapter 5).

248

CHAPTER 8. IMPLEMENTATION

The next option Superimposition, superimposes one image on top of the

other. It has no sub-options. The input can either be the two images or the

runlengths corresponding to these images. See chapter 5.

Menu]

Hldden.Surface.Rm -------► Method.1
Method.2

The option Hidden.Surface.Rm, has two sub-options. Both the options

remove the surfaces which are hidden from a given view point. The first sub­

option scans all the planes using a suitable murray scan and then merges them

together, and the second sub-option scans only the first plane and then merges

the other planes one by one.

Tfenu-
------ ► UsIng.Images

UsIng.Usts
Results —---------► lmage.1

lmage.2
lmage.3

This option Shading, shades the visible area which has been obtained

after removing the hidden surface. It takes a 3D .image or a list of runlengths

which has been obtained after removing the hidden surface as an input. In the

first case it will remove the hidden.surface and then shade the visible surface.

The option Results contains the result obtained after using the above algorithms

on the different images.The complete menu format is shown in Figure 8.1. The

time obtained in processing different options which are coded in PS-algol and C

is shown in Table 8.1.

249

CHAPTER 8. 250

M enu I
Murray.Scans

Scan+Draw

Scan.Converslon

Scaling

Connectivity __

Set.Operatlons _

Superimposition

Hldden.Surface.Rm

Shading
UsIng.Images
UsIng.Usts

IMPLEMENTATION
Cartesian
Polar

Linear.Scan
Vertlcal.Scan

MIxed.Scan

Linear.Scan
Vertlcal.Scan

2D-lmage - Linear.Scan — UsIng.Flle
3D-lmage Vertlcal.Scan — UsIng.Llst

UsIng.Images

Method.1
Method.2

X-Dlrectlon.Only
Y.DIrectlon.Only
Both.Dlrectlons

Uslng.2.Llsts
UsIng.I.LIst

Union (A,B)
Intersection (A,B)
Difference (A,B)

Method.1
Method.2

UsIng.Images
UsIng.Llsts
Results

Figure 8.1. Menu Format

1 ILinofl TaoCfln

Scan.Draw.Front
Scan.Draw.Slde

Scan.Draw.Top

2D.lmage
3D.lmage

2D.lmage
3D.lmage

lmage.1

lmage.2
lmage.3

t
Diffuse. Reflection
Specular.Reflectlon

CHAPTER 8. IMPLEMENTATION

Time (in secs)
SizeO ptions

PS-algol

99*99
256*256

1.50 secs
9.05 secs

0.05 secs
0,2 secsMurray Scan

99*99
256*256

3.05 secs
14.52 secs

1.45 secs
4.20 secs

Polar Murray
Scan

FinalInitial

99*99
117*117

153*189
189*189

0.37 secs
0.42 secs

2.40 secs
3.02 secsScaling

SizeNo. of Planes

99*99
99*99

3.44 secs
5.45 secs

0.5 secs
0.13 secsIntersection

Table 8.1
Time comparison between PS-algol and C.

2 5 1

Chapter 9

a CONCLUSIONS AND FUTURE WORK 252
9 -1 Conclusions 252
9 -2 Future Work 256

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9-1 Concltisioitô :

This thesis investigates the use of murray polygons to process

arbitrary images e.g., satellite images, medical images, or any other image

obtained from some device e.g., a vision capture system usually, a camera.

Many associated problems related to image processing are solved by using the

murray approach and are compared with those already defined for linear or

quadtree(or octree) approaches. Initially all the methods are compared with

each other and finally the results obtained by these methods are compared.

Standard Linear scan)Vs (Murray Scan or Quadtree or Octree Encoding :

Since in the case of the standard linear scan with flyback we require

fewer calculations than that of the murray and quadtree or octree approach,

hence in most of the cases the standard linear scan will be faster than the

other two. But the standard linear approach does not, in general, give better

exact compression than that of the murray approach or the quadtree or octree

approaches. The reason is, it is one dimensional in nature. The coherence

between the pixels is exploited only in left or right directions. Further each

flyback results in the break of runlengths thus giving more codes

(or runlengths) than the murray approach and quadtree or octree approaches.

As remarked earlier a standard linear scan with fly-back will take

less time to encode an image than that of the murray approach, however

hardware can be built to compensate for this. Similarly for the quadtree or

octree approaches also.

Murray Approachl Vs fQuadtree or Octree Approaches :

In comparison to quadtree or octree approaches the murray approach

may take less time to encode an image. The reason is the extra preprocessing

steps used in forming the quadtree or octree. The preprocessing steps include,

1. conversion from rasters(i.e., runlengths) into quadtree;

2. merging groups of four pixels or blocks of a uniform color.

252

CHAPTER 9. CONCLUSIONS AND FUTURE WORK.

The scanning is generally done by a standard linear scan with flyback. In the

case of the linear quadtree or octree, condensation and sorting has to apply to

the collection of codes obtained after transforming rasters into a quadtree. In

the case of the murray approach the only step to do is to encode an image using

a murray scan, ignoring all other preprocessing steps. No processing has to be

done once the codes have been obtained.

For obtaining exact compacted codes, the murray approach and

quadtree or octree approaches will be equally effective, depending upon the

shape of the images. In some cases the quadtree or octree approaches will be

better and in some cases the murray approach will be better.The linear

quadtree approach where only black pixels are stored, may be more

compressive in some of the cases than that of the murray approach. But in the

case of the linear quadtree approach the smaller the black homogeneous

quadrant the bigger will be the code length and in the case of the murray

approach the smaller the black area the smaller the code length, and vice

versa. Further a murray polygon may have a better chance of capturing more

pixels of the same color than that of the quadtree methods. The reason is, in

the case of the quadtree or octree approaches each quadrants/octants are

dealt separately to encode the information, whereas in the case of the murray

approach we deal with the whole image. From the above facts we cannot say

positively about the two approaches, as to which one Is better. The best/worst

cases are very much dependent upon the contents of the image.

The main advantage of the murray approach over quadtree or octree

approaches is the size of an image to be processed. The murray approach can

process any arbitrary rectangular image with no restrictions on the size,

whereas a quadtree or octree approach can only directly process an arbitrary

image if it is a square /cube of side length 2".

253

CHAPTER 9. CONCLUSIONS AND FUTURE WORK.

In the next few paragraphs the results obtained using the murray

approach are surveyed. All the results are compared with those of the quadtree

or octree approaches. We do not use the standard linear approach for

comparison since in general it does not give better exact compression although

it may be very fast for some of the operations.

Results :

In the case of scaling the images, it has been noted that the murray

approach is slightly better than that of quadtree or octree approaches. The

reason for this is the flexibility in the size of an image. In the case of the

quadtree approach the scaling factor can be 2^, whereas in the case of the

murray approach the scaling factor can be m/n, where the variables m and n

are integers. The only restriction which we have in the case of the murray

approach is with the x-factor(y-factor); the quotient for the

x-factor(y-factor) should not be even. {Note : The x-factor(y-factor) depends

upon the scan used to encode an image. If we are using a horizontal murray

scan then the restriction will be with the x-factor otherwise with the

y-factor). But in the case of the murray approach we have to apply scan

conversion algorithms, if we have to scale the images in both the directions,

whereas in the case of the quadtree or octree approaches we do not require to

change the codes. But since the murray approach is independent of the size of

an image hence it may be more efficient in scaling up and down the images.

In the case of connected component labelling, both the approaches may

take the same time to process, depending upon the shape of the image. But the

quadtree or octree approaches may be more compact, especially the linear

quadtree approach where only black pixels are stored. The reason is the use of

linear murray scan which does not have the coherence between the pixels. The

algorithm which uses a general murray scan may give better exact

254

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

compression in comparison to one with linear murray scan, but it will take

more time to process an image. Further the exact compression can also be

obtained, which will be comparable to that of the quadtree approach if we

redraw the image using the runlengths obtained by linear murray scan and

then scanning it using a general murray scan.

For hidden-surface removal both the methods are assumed to be

equally effective. Both can process the arbitrary images plane by plane, which

is advantageous if the image size is very large and the computer memory is

very low. Both uses the same algorithm for all the surfaces, no special

considerations being given to the curved surfaces.

For getting shaded images the murray approach has a slight advantage

over the quadtree approach. As discussed earlier the intensity at a point in an

image depends on the angle between the unit normal vector and the vector L

towards the light source. The vector L can easily be obtained since we have the

coordinates corresponding to the light source and to the point in an image. But

to find a normal at a point we need at least two more points, so that we can

find a plane passing through these three points and hence the normal. In case

of quadtree {Note : this quadtree is obtained after transforming an octree into

a quadtree) encoding, these two points can be calculated either by using 4-

point connectivity or by 8-point connectivity of a point (i,j). The corresponding

z-value can then be obtained from the linked list. But in the case of a murray

scan the connected points with x, y, and z-values can be obtained straight

from the scan. We do not have to do extra work in finding out the z-values

corresponding to the connected points. Only at the boundary do we have to

perform calculations to get the z-value.

Both the approaches are assumed to be equally effective for

superimposition, set operations, and smoothing on the images.

255

CHAPTER 9. CONCLUSIONS AND FUTURE WORK.

9-2 Future Work :

Future work is required on a hardware implementation to increase the

performance of the murray method in comparison with existing methods and

applications.

Some investigations are required to convert a linear murray scan to a

general murray scan, and vice-versa. This will be advantageous in some

specific areas of digital image handling.

Obtaining reflection, refraction, and shadows from the images are

other applications, where the use of murray polygons should be investigated.

Further work, presently under investigation is to obtain reflection

from the images.

256

References

FEFEFENŒS.

Abel, D. J. and Smith J. L.(1983), 'A data structure and algorithm based on a

linear key for a rectangle retrieval problem / Computer Vision Graphics and

Image Processing 24,1,1-13.

Annedda, G. and Felician, L.(1988), ' P-compressed quadtrees for image

storing/ The Computer Journal, 31, 4, 353-357.

Appel, A.(1968), 'Some techniques for shading machine rendering of solids/
AFIPS, Spring Joint Com put. Conf., 37-45.

Atherton, P. R., Weller, K. and Greenberg, 0.(1978), 'Poiygon shadow

generation/ Compter Graphics,12, 275-281.

Becmann, P. and Spizzichino, A.(1963), 'Scattering of electromagnetic waves

from rough surfaces/ MacMillan, N .Y .,1-33,70-98.

Bentley, J. L. (1975), 'Multidimensional binary search trees used for
associative searching/ Comm. ACM 18, 9, 509-517.

Bentley, J. L and Stan at, D. F.(1975), 'Analysis of range searches in

quadtrees/ Inf. Process. Lett., 3, 6,170-173.

Blinn, J. F. and Newell, M. E.(1976), 'Texture and reflection in computer

generated im ages/ Comm. ACM,19, 542-547.

Blinn, J. F.(1977), 'Models of light reflection for computer synthesized

pictures/ Proc. SIGGRAPH, San Jose, Calif., 192-198.

Biinn, J. F.(1978), 'A scan line algorithm for the computer display of
parametrically defined surfaces,' Computer Graphics, Vol 12.

Blinn, J. F.(1978), 'Simulation of wrinkled surfaces,' Computer Graphics,12,
2 8 8 -2 9 2 .

Bouknight, W. J.(1970), 'A procedure for generation of three dimensional
half-toned computer graphic representations,' Comm. ACM, 13, 9, 527.

Brown, R. C. (1955), Longmans, Green and Co. London.

257

REFERENCES.

Buntin, I. M.(1988), 'The application of murray polygons to the compression of

digital image data / Master’s Thesis, University of St. Andrews.

Burton, F. W., Kollias, V.J. and Kollias, J.G.(1987), 'A general Pascal programme

for map overlay of quadtrees and related problem s/ The Computer Journal,

30, 4, 355-361.

Garrick, R., Cole, A. J. and Morrison, R. (1987), An Introduction to PS-algol
Programmingf 3rd edition)/ Persistent Programming Research Report,
PPRR-31.

Catmull, E.(1974a), A subdivision algorithm for computer display of curved

surfaces/ Ph.D. Thesis, University of Utah.

Catmull, E.(1974b), 'Computer display of curved surfaces,' Proc. IEEE Conf.
Comput. Gr. Pattern Recognition Data Structure , 1 1 .

Chien, C. H. and Aggarwal, J. K.(1986), 'Volume/Surface octrees for the

representation of three-dimensional objects,’ Computer Vision, Graphics,
And Image Processing, 36,100-113.

Cohen, Elaine,lyche,Tom and Riesenfeld, R. F.(1980), 'Discrete B-splines and

subdivision techniques in computer aided geometric design and computer

graphics,'Com pter Graphics, And Image Processing, 14, 87-111.

Cole, A. J. (1966), 'Cyclic Progressive Number Systems.,' Math. Gazette, vol. L,
no. 372, pp. 122-131.

Cole, A. J. and Davie, A. J. T.(1969), 'Local smoothing by polynomials in

n-dim ensions/ The Computer Journal, 12, 1, 35-41.

Cole, A. J. (1983), 'A Note on Space Filling Curves/ Software-Practice and

Experience, vol. 13, pp.1181-1189.

Cole, A. J. (1985a), 'A Note on Peano Polygons and Gray Codes,' Intern. J.

Computer Math, vol 18, pp. 3-13.

Cole, A. J. (1985b), 'Multiple Radix Arithmetic and Computer Graphics,'
Bulletin Inst, of Math, and its Applications, vol. 22, May/June, pp. 71-75.

258

REFERENCES.

Cole, A. J.(1985c), 'Direct Transformations between Sets of Integers and

Hilbert Polygons,' Intern. J, Computer Math., vol. 20, pp.115-122.

Cole, A. J. (1985d), 'Compaction Techniques for Raster Scan Graphics using

Space-filling Curves,' The Computer Journal, vol. 30, no. 1, pp. 87-92.

Cole, A. J. (1985e), 'Pure mathematics applied,' Internal publication, CS /85/5,
University of St. Andrews.

Cole, A. J.(1987), 'Data compaction using murray polygons,' Computer Graphic

Technology & Systems conference, CG87, London, pp. 185-194.

Cole, A. J. (1988a), 'Direct transformations for a class of space filling curves,'
Internal publication, CS /88/1, University of St. Andrews.

Cole, A. J. (1988b), 'Murray Polygons as a Tool in Raster Scan Graphics,' ICONCG

'88, Singapore, Sept. 88.

Cook, Robert, L.(1982), 'A reflection model for realistic image synthesis,'
Master's Thesis, Cornell University.

Cook, Robert, L. and Torrance, K. E.(1982), 'A reflectance model for computer
graphics, ' ACM trans. on Gr. 1, 7-24.

Crow, F. C.(1977), 'The aliasing problem in computer generated shaded images,'
Comm. ACM 20, 11, 799-805.

Fine, H. B. and Thompson, H. D.(1909), 'Coordinate geometry,' New York, The

Macmillan Company.

Finkel, R. A. and Bentley, J. L. (1974), 'Quadtree: A data structure for
retrieval on composite keys,' Acta Inf. 4, 1, 1-9.

Foley, J. D. and Van Dam, A.(1982), 'Fundamentals of Interactive Computer

Graphics,' Reading, Mass. : Addison-Wesley Publishing Company.

Gardner, M. (1967), 'Mathematical games,' Scientific American, March.

259

REFERENCES.

Gargantini, I. (1982), An effective way to represent quadtrees,' Comm. ACM

25,12, 905-910.

Gargantini, I. (1983), 'Linear octrees for fast processing of three dimensional
objects,' Computer Graphics, And Image Processing,20, 4, 365 -374.

Gargantini, I., Walsh, T. R. and Wu, O. L.(1983), 'Viewing transformations of
voxel-based objects via linear octrees,' IEEE CG&A.. 12-21.

Gilbert, E.N.(1958), 'Gray codes and path on the n-cube,' Bell System Technical

J., 37,1, 815-826.

Goldschlager, L. M. (1981), 'Short algorithms for space filling curve,'

Software-Practice and Experience, 1, 403-410.

Gonzalez, R. C. and Wintz, P.(1987), 'Digital Image Processing,' A66\son-\Nes\ey

Publications.

Gouraud, H.(1971), 'Continuous shading of curved surfaces,' IEEE Trans. On

Computer 20, 6, 623 -629.

Gray, F.(1953), 'Us patent 2632058.'

Griffiths, J. G. (1984), 'A depth coherence scanUne algorithm for displaying
curved surfaces,' Comp. Aided Design 13, 2, 91-101.

Griffiths, J. G. (1985), 'Table-driven algorithms for generating space-filling

curves,' Comp. Aided Design,17, no.1, 37-41.

Griffiths, J. G. (1986), 'An Algorithm for Displaying a Class of Space-Filling

Curves,' Software-Practice and Experience, vol. 16(5), pp. 403-411.

Hearn, D. and Baker., M. P. (1986), 'Computer Graphics,' USA : Prentice-Hall

International.

Hilbert, D. (1891), 'Ueber stetige Abbiidung einer Unie auf ein Fiachenstuck,'
Math. Annin, vol. 38, pp. 459 - 460.

Hummel, J. A.(1965), Vecfors, ' Addision - Wesley Publishing Co. Inc.

260

REFERENCES.

Hunter, G. M.(1978), 'Efficient computation and data structures for graphies,'
Ph.D. Dissertation, Department of Electrical Engineering and Computer

Science, Princeton University, Princeton, N. J.

Hunter, G. M. and Steiglitz, K. (1979a), 'Operations on images using quadtrees,'
IEEE Trans. on Pattern Analysis and Machine Intell,, PAMI-1(2), pp. 145-153.

Hunter, G. M. and Steiglitz, K. [1979b]. ' Linear transformation of pictures

represented by quadtrees,' Computer Graphics, And Image Processing,10,
3 ,1 8 9 -1 9 6 .

Jaclins, C. and Tanimoto, S. L.(1980), 'Oct-trees and their use in

representing three dimensional objects,' Computer Graphics, And Image

Processing,14, 3, 240-270.

Jones, L. and lyenger, S. S.(1984), 'Space and time efficient virtual quadtree,'
IEEE Trans, on Pattern Analysis and Machine Intell., 6, 2, 244-247.

Kawaguchi, E. and Endo, T.(1980), 'On a method of binary picture representation

and its applications to data compression,' IEEE Trans, on Pattern Analysis and

Machine Intell., 2, 1, 27-35.

Kelley, A. and Pohl, lra.(1984), 'A book on C,' The Benjamin/Cummings

Publishing Company Inc. California.

Kennedy, H. C.(1973), 'Selected works of Giuseppe Peano,' London, George Allen

and Unwin Ltd.

Kernighan, B. W. and Ritchie, D. M.(1978), 'The C programming language,'
Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 07632

Klerer and Korn (1967), 'Digital computer user's handbook,' New York:
McGraw- Hill.

Klinger, A. and Dyer, C. R. (1976), 'Experiments in Picture Representation

using Regular Decomposition,' Computer Graphics and Image Processing,
no.5, pp. 68-105.

26i

REFERENCES.

Lanczos, 0.(1957), Applied Analysis,' London, Sir Isaac Pitman and Sons, Ltd.

Mandelbrot, B. B. (1977), 'The Fractai Geometry of Nature,' Publisher :
W.H.Freeman and Company.

Meagher, D.(1982), 'Geometric modeling using octree encoding,'Computer

Graphics, And Image Processing 19, 2, 129-147.

Moore, E. H.(1900), 'On Certain Crinkly Curves/ Trans. Am. Maths. Soc., vol 1,
pp. 72-90.

Morrison, R.(1988), 'P$-algol reference manual,' Fourth Edition, Persistent
Programming Research Report 12.

Netravali, A. N. and Haskell, B. G.(1988), 'Digital pictures representation and

compression, ' Plenum Press, New York.

Newell, M. E., Newell, R.G. and Sancha, T. L.(1972b), 'A new approach to the

shaded picture problem,' Proc. ACM, Natl. Conf., 443-450.

Newman, W. M. and Sproull, R. F., (1979), 'Principles of Interactive Computer

G rap /r/cs /2nd ed., McGraw-Hill, New York.

Null, A. (1971), 'Space filling curves, or how to waste time with a plotter,'
Software-Practice and Experience, vol 1, pp. 403-410.

Oliver, M. A. and Wiseman, N. E. (1983a), 'Operations on Ouadtree Encoded

Images.' The Computer Journal, vol. 26, no. 1, pp. 83-91.

Oliver, M. A. and Wiseman, N. E. (1983b), 'Operations on Ouadtree Leaves and

Related Image A reas,'The Computer Journal, vol. 26, no. 4, pp. 375-380.

Peano, G. (1890), 'Sur une courbe, qui remplit toute une aire plaine,' Math.
Annin., vol 36, pp. 157-160.

Phong, Bui-Tuong.(1975), 'Illumination for computer generated images,' Comm

ACM 18, 6, 311-317.

262

REFERENCES.

Plastock, R.A. and Kalley, G. (1987), Theory and problems of computer
graphics/ McGraw-Hill, New York.

Raman, V. and lyenger, S. S. (1983), 'Properties and applications of forests

quadtrees for pictorial data representation/ BIT 23, 4, 472-486.

Reddy, D. R. and Rubin, S.(1978), 'Representation of three dimensional objects/
CM U-CS-78-113, Computer Science Dept., Carnegie-Mellon University,
Pittsburgh.

Roberts, L. G. (1963), 'Machine perception of three dimensional solids/ MIT

Lincoln Laboratory, TR 315.

Rogers, D. F.(1985), 'Procedural Elements For Computer Graphics,' New York:
M cGraw -Hill.

Rosenfeld, A. and Pfaltz, J. L.(1966), 'Sequential operations in digital image

processing/ 2nd ed. Academic Press, New York.

Rosenfeld, A. and Kak, A. C.(1976), 'Digital picture processing/ Academic

Press, New York.

Samet, H.(1981a), 'Connected component labeling using quadtrees/ J. ACM 28,
3, 487-501.

Samet, H. (1981b), 'An algorithm for converting rasters to quadtrees,' IEEE

Trans, on Pattern Analysis and Machine Intell., 3, 1, 93-95.

Samet, H.(1982), 'Neighbor finding techniques for images represented by

quadtrees,'Computer Graphics, And Image Processing, 18, 1, 37-57.

Samet, H. and Tamminen, M, (1984), 'Efficient image component labeling,'
TR-1420, Computer Science Dept., University of Maryland, College Park.

Samet, H. (1984), 'The quadtree and related hierarchical data structure,'
Computing Surveys, 16, 2, 187-260.

Samet, H. (1985), 'Data Structures for Quadtree Approximation and

Compression,' Comm. ACM, vol. 28, no. 9, pp. 973-993.

263

REFERENCES.

Schumacker, R.A., Brand, B., Gilliland and Sharp, W .(1969), 'Study for applying

computer generated images to visual simulation,' AFHRL, TR-69-14, US. Air
force. Human Resources laboratory.

Scott, K. D.{1979), 'Transparency refraction and ray tracing for computer

synthesized images,' Master's Thesis, Cornell University.

Shneier, M .(1981), 'Calculations of geometric properties using quadtrees,'
Computer Graphics, And Image Processing, 16, 3, 296-302.

Sierpinski, W. (1912), 'Sur une nouvelle courbe qui remplit toute une aire

plaine,' Bull. Acad. Sic. Cracovie, Serie A, pp. 462-478.

Srihari, N. S.(1981), 'Representation of three dimensional digital images,'
Computing Surveys, 13, 4, 399-424.

Stevens, R., et al.(1980), 'Data ordering and compression of multispectral
images using the Peano scan,' I EE International Conference of Electronic

Image Processing, no. 214.

Sutherland, I.E., Sproull, R. F. and Schumacker, R. A.(1974), 'A characterization

of ten hidden surface algorithms,' CompuWng Surveys, 16, 1-55.

Torrance, K. E. and Sparrow, E. M.(1967), 'Theory for off-specular reflection

from roughened surfaces,' Journal of the Optical Society of America, 57,
110 5 -1114 .

Unnikrishnan, A. and Venkatesh, Y. V. (1984), 'On the conversion of raster to

linear quadtrees,' Department of Electrical Engineering, Indian Institute of
Science, Bangalore, India.

Unnikrishnan, A., Venkatesh, Y. V. and Priti Shankar.(1987), 'Connected

component labelling using quadtree-A bottom-up approach',' The Computer

Journal, 30, 2, 176-182.

Warnock, J. E.(1969), 'A hidden surface algorithm for computer generated

haiftone pictures,' Computer Science Dept. University of Utah, TR 4-15.

264

REFERENCES.

Watkins, G .S.(1970), 'A real time visible surface algorithm/ Computer Science

Department, University of Utah, UTECH-CSC-70-101.

Weiier, K. and Atherton, P.(1977), 'Hidden surface removal using polygon area

sorting/ Computer Graphics, Vol II, pp 214-222.

Whitted, T.(1978), 'A scan line algorithm for computer display of curved

surfaces, Computer Graphics 12.

Williams, L.(1978), 'Casting curved shadows on curved surfaces/ Compt. Gr.
12, 270-274.

Wirth, N.(1976), 'Algorithms + Data Structures = Programs ,’ Prentice-Hall.

Witten, I. H. and Wyvill, B. (1983), 'On the generation and use of space-filling

curves/ Software - Practice and Experience, 6, 519-525.

Woodwark, J. R. (1982), 'The explicit quad tree as a structure for computer

graphics, ' The Computer Journal 25(2), pp. 235-238.

Woodwark, J. R. (1984), 'Compressed Ouad Trees,'The Computer Journal, vol.
27, no. 3, pp. 225-229.

Wylie, C., Romney, G. W., Evans, D. C. and Erdahl, A.(1967), 'Halftone

perspective drawings by computer,' Proc. AFIPSF. JCC, 31-49.

Xiaoyang, M., Tosiyasu, L. K., Fujishiro, I. and Tsukasa, N.(1987), 'Hierarchical
representation of 2D/3D gray scale images and their 2D /3D two way

conversion,' IEEE, Dec.

Yau, Mann-May, And Srihari, S. N.(1983), 'A hierarchical data structure for
multidimensional digital Images,' Comm. ACM, 26, 7, 504-515.

265

