
MURRAY POLYGONS AS A TOOL IN IMAGE PROCESSING 

Bhuwan Pharasi 

 
A Thesis Submitted for the Degree of PhD 

at the 
University of St Andrews 

 
 

  

1990 

Full metadata for this item is available in                                                                           
St Andrews Research Repository 

at: 
http://research-repository.st-andrews.ac.uk/ 

 
 
 

Please use this identifier to cite or link to this item: 
http://hdl.handle.net/10023/13580    

 
 

 
This item is protected by original copyright 

 

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13580


Murray Polygons as a Tool in
Image Processing

thesis submitted 
in fulfilment for the requirement of 

the degree of 
DOCTOR OF PHILOSOPHY

by

Bhuwan Pharasi.

Department of Computational Sciences, 
University of St. Andrews 

St. Andrews
October 1989



ProQuest Num ber: 10166334

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10166334

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 4 81 06 - 1346





I:

To my mother Smt Sumitra Devi Pharasi 
and my father Sh. Mangla Nand Pharasi 

also to my sister-in-law Mrs. Sheela Pharasi. 
and to my brother Mr. Harsh V. Pharasi



I Bhuwan Pharasi hereby certify that this thesis has been composed by 

myself, that it is a record of my own work, and that it has not been accepted 

in partial or complete fulfilment of any other degree or professional 

qualification.

Signed.............................................................  D a te .1

I was admitted to the Faculty of Science of the University of St.Andrews under 

Ordinance General No 12 on October 10.1986 and as a candidate for the degree 

of Ph.D on October 10. 1987.

Signed.........................................................  Date..........

I hereby certify that the candidate has fulfilled the conditions of the 

Resolutions and Regulations appropriate to the degree of Ph.D.

Signature of Supervisor  ............................. Date ..............

QsmmM

In submitting this thesis to the University of St. Andrews I understand that I 

am giving permission for it to be made available for use in accordance with 

the regulations of the University Library for the time being in force, subject 

to any copyright vested in the work not being affected thereby. I also 

understand that the title and abstract will be published, and that a copy of the 

work may be made and supplied to any bona fide library or research worker.



Acknowledgements

It gives me an immence pleasure and great opportunity to express my 

profound sense of gratitude and indebtedness to Professor A. J. Cole, for 

his painstaking guidance, invaluable suggestions and constant 

encouragement throughout the research work.

I wish to express my thanks to Professor R. Morrison; Chairman, for 

providing all necessary facilities and also to Dr. J. Owczarczyk for proof­

read and helping me during this project.

I also wish to record my appreciation and feeling of gratitude to Mr. 

A. J. T. Davie, Dr. A. Brown, Dr. R. Dyckhoff, Mrs. H. Bremner, Mrs. E. Nicoll 

and Mr. B. McAndie who helped me in every possible way.

My humble regards are also due to my others family members who 

have always encouraged and assisted me to pursue higher studies.

I am also thankful to: the Committee of Vice-Chancellors and 

Principals, and St. Andrews University, for providing me the financial 

support.

( Bhuwan Pharasi )



Abstract

This thesis reports on some applications of murray polygons, which 

are a generalization of space filling curves and of Peano polygons in 

particular, to process digital image data. Murray techniques have been used on

2 -dimensional and 3-dimensional images, which are in cartesian/polar 

co-ordinates. Attempts have been made to resolve many associated aspects of 

image processing, such as connected components labelling, hidden surface 

removal, scaling, shading, set operations, smoothing, superimposition of 

images, and scan conversion.

Initially different techniques which involve quadtree, octree, and 

linear run length encoding, for processing images are reviewed. Several image 

processing problems which are solved using different techniques are described 

In detail. The steps of the development from Peano polygons via multiple radix 

arithmetic to murray polygons is described. The outline of a software 

implementation of the basic and fast algorithms are given and some hints for 

a hardware implementation are described

The application of murray polygons to scan arbitrary images is 

explained. The use of murray run length encodings to resolve some image 

processing problems is described. The problem of finding connected 

components, scaling an image, hidden surface removal, shading, set 

operations, superimposition of images, and scan conversion are discussed.

Most of the operations described in this work are on murray run lengths. Some 

operations on the images themselves are explained.

The results obtained by using murray scan techniques are compared 

with those obtained by using standard methods such as linear scans,



quadtrees, and octrees. All the algorithms obtained using murray scan 

techniques are finally presented in a menu format work bench. Algorithms are 

coded in PS-algol and the C language.
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INTRODUCTION

The use of image processing is increasing and is being widely used in 

many industries. Medicine, meteorology, mapping, industrial vision, 

publishing, and television are just few of the applications of modern image 

processing systems. In many of these cases image processing is helping to 

derive more information from the image data. For example, in meteorology 

much more information can be extracted from satellite pictures by 

processing the data as it is received. This information includes finding signs 

of mineral deposits, finding about enemy activities, weather information, 

etcetera. Further in the field of medicine image processing techniques can be 

used in extracting out information about the disease from the images which 

are obtained by the CT scanner. In industrial applications images can be used 

to identify whether a product is good or bad. In this case the images which 

are obtained by a vision capture system, usually a camera, can be compared 

with the stored image of a good component. If the image does not match with 

the one stored for a good product then it can be rejected.

Others common application areas are:

1. Animation/Graphic Arts;

2. Astronomy;

3. CAD/CAM/CAE;

4. Machine Vision;

5. Geographical/Environm ental;

6 . Storage and transmission of digital image data;

7. Simulation of various sort e.g., flight simulation., etcetera

X



INTRODUCTION

The processing time and the storage or transmission capacity 

increases with the increase in the size of an image. Hence, there must be a 

method for encoding an image, which can reduce the amount of disk storage or 

transmission capacity, so as to be able to handle exact images and also to be 

able to carry out standard transformations on whole images or sub-images 

independently of and from the bit map itself. Various methods of recording 

the information in the bit maps for raster scan or bit mapped graphics(i.e., an 

image) have been suggested, the two most popular being linear run length 

encoding[ Foley, and Van Dam(1982), Roger(19B5), Hearn, and Baker(1986)] and 

quadtree or octree encoding[Klinger, and Dyer(1976), Samet( 1984), 

Gargantini(1982) ] Some investigations have also been made into the use of 

Hilbert scans[ Hilbert(1891)] using table driven algorithms[Griffiths(1985), 

Oole{1985c)].

This thesis explains the use of murray polygons! Cole{ 1985b)] as a 

possible alternative to the above methods, in many related problems of image 

processing. Murray polygons are a generalisation of space filling curves and of 

Peano polygons! Peano(1890)] in particular. Many associated problems related 

to image processing are solved by using murray polygons and are compared 

with those already defined for linear or quadtree encoding.

The main characteristics of murray polygons are :

i. Instead of being restricted to squares, murray polygons may be 

defined in a variety of ways so as to pass through all points with integer 

coordinates in any rectangle with odd integer length sides. Murray polygons 

are not restricted to odd dimensions as the restriction on the radices being 

odd can be lifted for the first and the last radices giving even sided 

rectangles. This is discussed in the following chapters.
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il. Explicit transformation as weil as recursive or table driven 

algorithms can be defined.

iii. By slight modification the same algorithm, which is defined for 

cartesian coordinates, may be used for polar coordinates.

iv. A murray linear scan has a minor advantage over a conventional 

linear scan. In a conventional linear scan, the flyback will usually result In a 

break of run length, which may result in more run lengths than that of a 

murray scan.

V. The distribution of murray run lengths is different to that of linear 

run lengths. This distribution may be exploited in a final coding of the run 

lengths for storage or transmission.

vi. Murray polygons can scan any rectangle of sides r and s, with no 

restriction on the values of r and s, in the horizontal as well as in the 

vertical direction. It is also possible to transform directly from a horizontal 

to a vertical murray scan and vice versa. This can be used when we have to 

scale the image in both directions, horizontally as well as vertically. More 

detailed discussion will be given in the following chapters.

vii. With a minor modification, the algorithms which are defined for 

2-dimensional images can be used to scan 3-D and n-D images, with no 

restriction on the size of the images.

vili. Using a single 3D cartesian scan the whole image can be viewed in 

six possible directions{top, bottom, front, back, l-side, r-side).

ix. If an image is represented in spherical polar coordinates then it can 

be easily scanned from any given viewpoint.
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X. Murray scans, although being locally n-dimensional in nature, still 

produce a linearised scan of the corresponding 3-D image. They also have the 

advantage of giving a choice of scanning order including the possibility of 

scanning in the colour code dimension rather than plane by plane.

Chapter 1, is a survey of image processing techniques, 

illustrating the diversity of the various methods which have been proposed by 

other authors. Murray polygons for 2D, 3D and higher order images are 

explained in chapter 2 . Cartesian and polar murray scans are also explained in 

detail. Scanning and drawing images using murray polygons is explained in 

Chapter 3. Chapter 4 is about scan conversion and scaling images horizontally 

or vertically or in both directions. Chapter 5, explains about superimposition, 

and set operations on images. Chapter 6 explains about connected components 

labelling for images. Two methods are expiained for identification of 

homogeneous connected components, either directly from the bit map or from 

a run length encoding. When a run length encoding is used the results 

themselves are recorded as runlength encodings. Hidden surface problems and 

shading techniques for 3D images are discussed in chapter 7. Some smoothing 

techniques are also discussed in chapter 7. Chapter 8  is about the work bench 

design and implementation. Initially all the algorithms were coded in 

PS-Algol; later on to improve on the speed for some algorithms the C language 

is used. Some fast software algorithms and a proposal for a hardware 

implementation which should enable a real time scan of a bit map to be made, 

are discussed. At the end of each chapter concluding remarks are given.

Finally the results are summarized in the last chapter.

xtvt



Chapter 1

1 . REPRESENTATION AND EXACT COMPRESSION OF D IG ITA L IMAGES 1

1 -1 Introduction 1

1 - 2 Run-Length Encoding 3

Linear Scan 5

Space Filling Curves 6

1 - 3 Quadtree Encoding 9

Leaf Node 1 2

Traversal Of The Node Of Its Quadtree 1 5

1 - 4 Volume Data 1 6



CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

1-1 In tro d u ctio n  :

According to Rosenfeld and Kak(1976) picture processing or image 

processing by computer surrounds a wide variety of techniques and 

mathematical tools. Most of these have been developed due to three major 

problems:

/. Picture digitization and coding: conversion of picture from 

continous to discrete form (digitization) and then coding the results so as to 

reduce the amount of storage space or transmission capacity.

ii- Picture enhancement and restoration: improvement of blurred (or 

noisy) pictures.

Hr P icture segmentation and description: conversion of pictures into 

simplified sub-pictures; classification or description o f pictures in term of 

parts and properties.

Picture :

A picture is a flat object whose brightness or color may vary from 

point to point. For a black and white picture this can be mathematically 

represented by a single real-valued function, say f(x,y). The value of this 

function at a point will be called the gray level or brightness of the picture at 

that point. Further the values of this function are nonnegative and bounded,

i.e., 0 <= f(x,y) <= M for all x, y.

Pictures as Arrays:

A digitized picture or digital picture, can be regarded as an integer 

array.The elements of a digital picture array are called picture elements, 

pixels, or pels. Once a picture has been digitized, additional processing
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techniques can be applied to rearrange picture parts, to remove or process a 

large homogeneous area, to scale the picture up or down etcetera. In rest of 

this thesis we will refer to digital pictures as images.

The above definitions can now be summarised as: the term im age(or 

digital picture), refers to the original array of pixels. If its elements are 

either BLACK or W HITE then it is said to be a binary image. If shades of gray 

are possible (i.e., gray levels), then the image is said to be a g ra y s c a le  

image. A pixel is said to have four edges, each of which is of unit length.

An image represented by an N*N  square array of pixels, each of P  bits, 

would need P W W  bits to store in uncoded form. In practice, it is found that 

neighbouring pixels are often the same and by using a suitable coding scheme, 

this one-or-two dimensional spatial coherence can be exploited to write the 

image in much less than P^N*N bits. Various coding schemes have been used 

for processing the images. The two most popular coding schemes are

i. Run length encoding[Foley, and Van Dam(1982), Roger(1985), and 

Hearn, and Baker(1986)]

ii. Quadtree or octree encodlng[Klinger, and Dyer(1976), 

Gargantini(1982) and Samet(1984)]

Many associated problems such as connectivity, scaling, merging 

superimposing, hidden surface removal, shading, etcetera, have been 

implemented using these methods.

In this chapter, different image processing methods and their use in 

exactly compressing the digital images data is explained. In each section, 

references will be provided as to where more detailed explanations can be 

found.
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1 2  Run Length Encoding :

Initially the image is scanned to produce a sequence of run lengths. 

Each run can be encoded as a tuple (l|,D;), where D; is the number of pixels, 

each with intensity Ij. Dj and I; are usually stored as one byte each.

Intensity Run Length

Intensity levels or gray scales, depend upon the number of bit planes 

per pixel. For N bit planes the intensity level will lie between 0 and 

2 N -1 , where 0 (corresponds to dark) and 2^-1 (corresponds to full intensity). A 

total of 2 N intensity levels can be achieved. If only one bit plane is provided in 

the raster, on (white) and off(black) are the only possibilities for the gray 

scale. Three bit planes per pixel can accommodate eight different intensity 

levels and so on. Many packages use the range 0 to 1 to set gray scale levels. 

Intensity values specified in a program are converted to appropriate binary 

codes for storage in the raster. Figure 1-2.1 illustrates conversion of user 

specification to codes for a four-level gray scale. In this example, any 

intensity input value near 0.33 would store the binary code 01 in the frame 

buffer and result in a dark gray shading for these pixels.

For black and white images (i.e., one bit per pixel), we generally 

assume that the first run length will always correspond to white pixels. If the 

first pixel is black then the first run length will be zero. Hence in the case of 

black and white images we do not require to store the intensity of the pixels.
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The simple run length encoding scheme can easily be extended to 

Include color. For color, the intensity of each of the red, green, and blue color 

guns is given followed by the number of successive pixels for that color e.g..

Red Intensity Green Intensity Blue Intensity Run Length

Usually the color intensities are combined into a single integer, referred as 

color code, using a fixed number of bits. A simple scheme for storing color 

code selections in the frame buffer of a raster system is shown in 

Figure 1-2.2. When a particular color code is specified in an application 

program, the corresponding binary value is stored in the frame buffer for each 

component pixel in the output primitives to be displayed in that color. The 

scheme is given in figure 1-2.2 allows eight color choices with 3 bits per 

pixel of storage. Each of the three bit positions is used to control the 

intensity level (either on or off) of the corresponding electron gun in an RGB 

monitor. The leftmost bit controls the red gun, the middle bit controls the 

green gun, and the rightmost bit controls the blue gun. Adding more bits per 

pixels to the frame buffer increases the number of color choices.

Run length coding can often substantially reduce the amount of memory 

needed to store images. Its advantage is maximised, in cases where the 

images are made up of a few long runs. To produce long run lengths, very much 

depends upon the image itself and upon the scanning methods. According to 

Shannon*s[Klerer, and Korn(1967)] information theory : On average to maintain 

complete information for all images one cannot do better than the bit map.



INTENSITY STORED INTENSITY VALUES DISPLAYED
CODES IN THE FRAME BUFFER GRAY

( Binary Code ) SCALE

0.0 0 (00) Black
0.33 1 (01) Dark Gray
0.67 2 (10) Light Gray
1.0 3 (11) White

Figure 1-2.1
Conversion of intensity values to integer codes for storage in a frame buffer 
accommodating a gray scale with four levels. Two bits of storage for each pixel 
position are needed in the frame buffer.

COLOUR
CODE

STORED COLOR VALUES IN 
FRAMEBUFFER

DISPLAYED
COLOR

RED GFB3^ BLUE

0 0 0 0 Black
1 0 0 1 Blue
2 0 1 0 Green
3 0 1 1 Cyan
4 1 0 0 Red
5 1 0 1 Magenta
6 1 1 0 Yellow
7 1 1 1 White

Figure 1-2.2
Color codes stored in a frame buffer with three bits per pixels.
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Run length encoding can further be divided into two classes which are,

i. Linear scans.

ii. Space filling curves.

1-2.1 Linear Scan I Netravali and Haskell(1988)];

Linear scanning converts the two dimensional image intensity into a 

one dimensional waveform. The image is segmented into Ly adjacent horizontal 

lines, and the image is scanned one line at a time, sequentially, left to right, and 

top to bottom with fly back at the end of each scanline, see Figure 1-2.3. It is 

one dimensional in nature and takes advantage of the correlation between 

adjacent pixels on the scanline. For example, in a flying spot scanner a small 

spot of light scans across a photograph, and the reflected energy at any given 

position is a measure of the intensity at that point.

Figure 1-2.3 

— ——  Beamon.

Horizontal Retrace. 

Vertical Retrace,
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1-2.2  Space Filling Curve :

Giuseppe Peano(1890) Introduced the idea of a space filling curve in 

the sense of a continuous mapping of the line segment (0 ,1) onto the unit 

square and was closely followed by Hilbert(1891) and Sierpinski(1912).

Peano, introduced the idea of space filling curves rather than polygons and 

Hilbert and others introduced the idea of limiting sequences of polygons 

leading to space filling curves.

Peano showed how to produce a curve by moving a single point 

continuously over a square, such that it passes at least once through every 

point on the square and its boundary. The curve produced was indeed 

continuous but it was impossible to draw unique tangents, since it is 

impossible to specify the direction in which a points is moving. Two 

interesting points about the Peano curve were :

1) Its path seems to be one dimensional, yet at the limit it occupies a 

two dimensional area.

2 ) It is a continous curve, but has no derivative.

Peano based his definition of space filling curve on a base three 

representation of the points on the real line interval [0 ,1] and the points (x,y) 

of the square 0 <= x <= 1 , 0 <= y <= 1. Essentially, a point of the above 

interval was split into two real base three numbers by taking all the odd

indexed digits in their sequential order for the value of x and all the even

ordered digits in their sequential order for the value of y. It should be noted

that to maintain the uniqueness of the transformation, the ambiguity of real

number representation, where to base three, 0.2211 and 0 .221022222222 .........
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are equally valid representations, was dealt with in a more complex manner,

which need not be discussed in this report.

Hilbert generated a Peano curve with two end points, in other words,

Hilbert derived an alternative method of defining a space filling curve as the

limit of polygons enclosed in the unit square, using a fourfold repetition of 

successive polygons which corresponded to a base two number representation, 

as shown in Figure 1-2.5. At the limit Hilbert curve starts at the bottom left 

and finishes at the top left. A similar result based on the Peano technique was 

given by Moore(1900) to obtain a limiting polygon based on ninefold 

repetitions of successive polygons. These polygons are known as Peano 

Polygons. The first three Peano polygons P1,P2,P3 are shown in Figure 1-2.4.

The three steps of the illustration show how Waclaw Sierpinski 

generated a closed Peano curve (see Figure 1-2.6a). Sierpinski polygons differ 

from Hilbert and Peano polygons. The principal difference as Wirth[1976] 

pointed out is that Sierpinski curves are closed curves made up of four parts, 

which are connected by the four straight lines in the outermost four corners. 

Cole(1983) showed that S^' can be obtained from S n -i ' by suitably rotating 

and shifting 8 ^-1  ' to four new positions and joining them by three lines.

S y , S2 ', S3 ' are shown in the Figure 1-2.6b. Further S3 (see Figure 1-2.6a) is 

obtained by rotating S3 ' (see Figure 1 .2 .6 b)four times and finally closing the 

last gap. Wirth suggested that Sq is a square standing on one corner. It means 

the starting curve is the single point [1,0]. Recursive algorithms for drawing 

these and other space filling curves have been given by Wirth(1976), 

Goldschlager(1981) and Witten and Wyvill (1983). Griffiths(1985) discusses 

table driven algorithms for generating space filling curves.

Helge Von Koch[Gardner(1967)], proposed in 1904 another curve which 

is now commonly called the snow flake curve. At the limit it is infinite
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Figure 1-2.4. Peano polygons.

Figure 1-2.5. Hilbert polygons.



(a)

(
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(b)

Figure 1-2.6. Sierpinski polygons(CoieM)'
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in length. Like a Peano curve its points have no unique tangent, i.e., continous 

but no derivative. The first four orders of Helge Von Koch's snow flake are 

illustrated in Figure 1-2.7.

Griffith(1986) investigated space filling curves and described a 

method for generating new ones. He considers the space filling curve in the 

unit square defined as the limit of a sequence s*j,S2   of continuous curves

which pass through every point of the square. This can be viewed as a 

tessellation of square tiles all of which have the same pattern but with the 

orientation of the pattern varying. Firstly a tile has an n x n grid marked on it 

and the centres of each grid-square are taken as permissible points for the 

construction of a continuous open path that does not intersect. The resulting 

path must have endpoints such that n2 tiles can be fitted together and the 

individual paths joined up with standard steps as shown in Figure 1-2.8. 

Griffiths at this stage had shown how to generate new space filling curves 

which would traverse squares.

Cole(1983) has shown how Peano, Hilbert and Sierpinski polygons can 

all be obtained recursively from a single point. Cole showed explicit mappings 

between the first n non-negative integers and the n sequentially traversed 

vertices of any of the Peano polygons and also a generalisation of these 

polygons. Such polygons have been called murray polygons since they are 

derived using multiple radix or murray arithmetic. A formal definition and 

more detailed discussion of murray polygons will be given in the following 

chapters.

The advantages of using space filling polygons for this purpose arise 

from the fact that in general the curve passes through a lot of points local to

8



Figure 1-2.7. The first four orders of Helge von Koch's snowflake (Martin[6?]).

nmim

Figure 1-2.8. Three examples of basic tiles and second order polygons due to Griffithsfss])



CHAPTER 1 REPRESENTATION & EXACT COMPRESSION OF DIGITAL IMAGES.

each other in two dimensions. This pixel coherence can be exploited in many 

areas of image processing. This we will see in the following chapters. 

Moreover the Hilbert polygons include quadtree scanning as a particular, case 

with no additional computation or complex data structures required to record 

or to scan them.

1 3  Quadtree Encoding :

The term quadtree is used to describe a class of hierarchical data 

structures whose common property is that they are based on the principle of 

recursive decomposition of space. They can be differentiated on the following 

bases :

1 . the type of data that they are used to represent,

2 . the principle guiding the decomposition process,

3. the resolution ( variable or not ).

Quadtree representation can be used for point data, regions, curves, 

surfaces, and volumes.The decomposition may be into equal parts on each level 

(i.e., regular polygons and termed a regular decomposition ), or it may be 

governed by the input. The resolution of the decomposition (i.e. the number of 

times that the decomposition process is applied ) may be fixed, or it may be 

governed by properties of the input data.

Quadtrees are generated by successively dividing a two dimensional 

region into quadrants. Each node in the quadtree has four data elements, one 

for each of the quadrants in the region as Illustrated in Figure 1-3.1. If all 

pixels within a quadrant have the same color (a homogeneous quadrant), the 

corresponding data elements in the node store that color. In addition, a flag is
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Figure 1-3.1
Region of a two dimensional space divided into numbered quadrants and the 
associated quadtree node with four data elements.
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Quadtree Representation

Figure 1-3.2
Region of a two-dimensional space with two levels of quadrant 
division and the associated quadtree representation.
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set in the data element to indicate that the quadrant is homgeneous. Suppose 

all pixels in quadrant 2 of Figure 1-3.1 are found to be red. The color code for 

red is then placed in data element 2 of the node. Otherwise the quadrant is 

said to be heterogenous, and that quadrant is itself divided into quadrants 

(see Figure 1-3.2). The corresponding data element in the node now flags the 

quadrant as heterogeneous and stores the pointer to the next node in the 

quadtree. For a heterogeneous region of space, the successive subdivisions 

into quadrants continues until all quadrants are homogeneous. Figure 1-3.3 

shows a quadtree representation for a region containing one area with a solid 

color that is different from the uniform color specified for all other areas in 

the region.

Finkel and Bentley(1974) proposed another definition for a quadtree. 

Here space is partitioned into rectangular quadrants. It is primarily used to 

represent multidimensional point data and can be referred as a point quadtree. 

In two dimensions each data point is a node in a tree having four sons. These 

four sons corresponds to a quadrant labeled in order NW, NE, SW, and SE. The 

desired record is searched on the basis of its x and y coordinates. At each node 

of the tree a four way comparison operation is performed and the appropriate 

subtree is chosen for the next test. Reaching the bottom of the tree without 

finding the record means that the record which we are looking at is not 

present in the quadtree and it can now be Inserted at this position. The shape 

of the resulting tree depends on the order in which records are Inserted into 

it. A point quadtree is illustrated in Figure 1-3.4.

Point quadtree are useful in applications that involve search. They can 

also, be used to solve a measure problem like determination of all records 

within a specified distance of a given record. Search operations using point 

quadtrees are given in details by Bentley and Stanat(1975). Point quadtrees

10
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F Ig u re l - 3 . 3 .  A region, its binary array, its maximal blocks, and the corresponding quadtree.
(a) Region.
(b) Binary array.
(c) Block decomposition of the region in (a). Blocks in the region are shaded.
(d) Quadtree representation of the blocks in (c).
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are useful with two dimensional space. As cited by Samet(1984), the problem 

with a large number of dimensions is that the branching factor becomes very 

large (i.e., 2  ̂ for k dimensions). The storage for each node as well as for many 

NIL pointers for terminal nodes increases. Bentley(1975) proposed W  tree, 

which is an improvement on the point quadtree. It avoids the large branching 

factors. It is a binary search tree with the distinction that at each level of the 

tree a different coordinate is tested when determining the direction in which 

a branch is to be made. In the case of two dimensions (i.e., a 2-d tree), the 

x-coordinates will be compared at the root and at even levels, whereas the 

y -coordinates are compared at odd levels. The root is assumed to be at level 

zero. Each node has two sons. A k-d tree corresponding to the point tree of 

Figure 1-3.4 is given in Figure 1-3.5.

An alternative tree structure that uses. an analogy to the k-d  tree given 

by Bentely(1975) is the bintree proposed by Samet and Tamminen(1984). Here, 

the space is always subdived into two equal-sized parts alternating between 

the X and the y axes. The advantage is that a node requires space only for 

pointers to its two sons instead of four sons. In addition, its use generally 

leads to fewer leaf nodes. While dealing with higher dimensional data ( e.g., 

three dimensions) less space is wasted on NIL pointers for terminal nodes. A 

bintree is Illustrated in Figure 1-3.6.

The problem with the tree representation of a quadtree is that it has a 

cosiderable amount of overhead associated with it. Moreover each node 

requires additional space for the pointer to its sons. This is a problem with 

large images that cannot fit into core memory. Consequently, there has been a

considerable amount of interest in pointerless quadtree representations. They

11
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A point quadtree (b) and the records it represents (a).
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Figure 1-3.5.
A k-d tree (b) and the records it represents (a).
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Figure 1-3.6.
The bintree corresponding to fig 1-3.3 (a) Block decomposition,
(b) Bintree representation of the blocks in (a).
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can be grouped into two categories.

i. Collection of leaf nodes.

ii Traversal of the nodes of its quadtree.

1-3.1 Leaf node :

In the leaf node category, each leaf or pixel is encoded in a weighted 

quatenary code, i.e., with digit 0, 1 , 2 , 3  in base 4, where each successive 

digit represents the quadrant subdivision from which it originates. The NW 

quadrant is encoded with 0, the NE quadrant with 1, the SW with 2, and the SE 

with 3. For example, if a pixel or leaf Is encoded as 321, this means that pixel

or leaf belongs to the SE quadrant in the first subdivision, to the SW quadrant

in the. second and the NE in the third (final) subdivision (see Figure 1-3 .7 ).

While encoding an image as a collection of leaf nodes, there is no need

to include the locational code for every leaf node. Gargantini (1982) only 

retains the locational codes of the BLACK nodes and terms the resulting 

representation a linear quadtree. The codes for WHITE blocks can be obtained 

by using the ordering imposed by the sort without reconstructing the 

quadtree. All arithmetic operations on the locational code are performed by 

using base 4 numbers as explained above. An additional code, as a don't care, 

is used by Gargantini(1982), Klinger and Dyer(1976), Abel and Smith (1983), 

Oliver and Wiseman(1983) to yield an encoding where each leaf in a 2 î by 2^ 

image is n digits long. A leaf corresponding to a 2 ^ by 2^ block (k<n) will 

have n - k don’t care digits. Once all the black pixels are encoded into their 

corresponding quaternary codes, then they are sorted and stored in an array or 

list. If four pixels have the same representation except for the last digit, they 

are eliminated from the list and are replaced with a code of (n-1) quaternary

12
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Figure 1-3.7. Quadrant labeling and generation of quaternary codes{ Gargantinl(1982)).
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digits followed by some kind of marker ( don't care ), here denoted by X. For 

instance, if pixels 310, 311, 312, and 313 are all in the array, they can be 

replaced by 3 IX . Similarly, 30X, 31X, 32X, 33X can be replaced by 3XX and so 

forth, where X is the don't care digit greater than 3. Such an encoding has the 

interesting property that when the codes of the nodes are sorted in increasing 

order, the resulting sequence is the postorder traversal of the blocks of the 

quadtree. The main advantages of linear quadtrees, with respect to quadtrees 

are:

i Space and time complexity depend only on the number of black 

nodes.

ii. Pointers are eliminated.

Jones and lyenger(1984) and Raman and lyenger(1983) introduced the 

concept of a forest of quadtrees that is a decomposition of a quadtree into a 

collection of subquadtrees, each of which corresponds to the maximal square. 

The maximal square is identified by refining the concept of a nonterminal node 

to indicate some information about its subtrees. An internal node is said to be 

of type GB if at least two of its sons are BLACK otherwise the node is said to 

be of type GW.For example, in Figure 1-3.8 ,nodes 0 , E, and F are of type GB and 

nodes A, B, and D are of type GW. Each BLACK node with a label of GB is said to 

be a maximal square. A forest is the set of maximal squares that are not 

contained In other maximal squares and that span the BLACK area of the image. 

The forest corresponding to Figure 1-3.8 is { C,E,F}. The elements of the forest 

are identified by base 4 locational codes. For the path code or locational code 

the scheme is the same as defined by Gargantini. This type of representation 

can save space since W HITE items are ignored.

13
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A linear hierarchical quadtree (LHQT) ( Unnikrishnan, Venkatesh, And 

Shankar{1987)) is a modified version of a linear quadtree[Gargantini(1982)J. 

Since the level of the hierarchy indicates the size of the black nodes, the 

additional code, don't care which was used by Gargantini can be deleted. As a 

consequence, the quadtree code at level k will contain (n-k) digits only. 

Unnikrishnan called these modified codes the Linear Hierarchical Q-codes 

(LHQC). The set of all the n arrays of LHQC Is called the Linear Hierarchical 

Quadtree(LHQT). For example, if a leaf has code 3XX, where X >= 3 , then all the 

additional digits i.e., X can be replaced to give a new code which will now be 

equal to 3 (see Table 1-1).

Level

Hierarchically 
ordered q-code

Linear hierarchical 
q-codes ( LHQC )

2 244 2
1 124 12

134 13
0 300 300

301 301
302 302
320 320
322 322

Table 1-1. The LHQT for an arbitrary binary Image, (4 Is the additional digit representing X).

Anedda and Felician(1988) suggested a new compression technique, 

referred to as P-compression. Here a pixel code be divided into a prefix of P 

digits, 1 <= P < n, and a suffix of (n-P) digits. Every pixel belonging to the 

quadrant originated by the first P quadrant subdivisions that Is consequently 

of size 2(n-P ) pixels has the same prefix. Then store all distinct prefixes 

once; each of them will be followed by the number of pixels having that 

prefix ,

14
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and by the corresponding suffixes (see Figure 1-3.9a). They have compared the 

results with those obtained by Gargantini(Linear-quadtree). Two cases namely 

the best case and the worst case, are considered (see Figure 1-3.9 a,b, and c 

). In the best case Gargantini's compression algorithm is shown to be more 

efficient than P-compression, since the quadtree compression consists of a 

single pixel code with m don't care digits( where m is the size of a quadrant), 

in its rightmost positions, whereas a P-com pressed quadtree needs more 

codes, that is more storage space.lt has been pointed out that in the worst 

case P-compression is better if m<=4.

1-3.2 Traversal of the nodes of its quadtree :

The second pointerless representation Is in the form of a preorder tree 

traversal ( i.e., depth first ) of the nodes of the quadtree. The result is a 

string consisting of the symbol "(" , "B", "W" corresponding to GRAY (i.e., if all 

pixels within a quadrant are not of same color), BLACK, and WHITE nodes 

respectively. This representation is due to Kawaguchi and Endo (1980) and is 

called DF-expression. For Example, the Image of Figure 1-3.3 has 

(W(WWBB(W(WBBBWB(BB(BB(BBBWW as its DF-expression (assuming that sons 

are traversed In the order NW, NE, SW,SE). The original image can be 

reconstructed from the DF-expression by observing that the degree of each 

nonterminal I.e., GRAY node is always 4.

Oliver and Wiseman(1983) also reported a linear code which specifies 

a quadtree in depth first order. Their data Items consist of five-bit numbers, 

of which the last four bits constitute the color value. If leaf, color the square 

with value in 4 bit field, otherwise the color value refers to an average of the 

quads beneath. Figure 1-3.11(a) illustrates a simple quadtree in their 

encoding. In the above coding, the value which indicates a non-leaf quad is

15
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003230022 5
003230023 20
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003230033 31
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(b) (c)

Flgure1-3 .9 .
(a) P-compression coding to a linear quadtree

(b) Best case position of a 2 by 2 ^  region in a 2 ̂  by 2 " binary image.

(c) Worst case position of a 2 ^  by 2 ^  region.
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repeated many times. The compressed quadtree scheme was designed by 

Woodwark(1984) in order to obtain the compression of the node list resulting 

from a depth-first visit of the quadtree. This method consists in associating a 

type code with each non-terminal node in the tree. There are 52 possible type 

codes for the sons of any non-leaf quadrant { see Figure 1-3.10 ). These allow 

for any or all of the sons of that quadrant to be defined further down the tree. 

If, for example a non-leaf quadrant has dependent leaf of two colors, A and B, 

the record of representing that quadrant will consist of the appropriate type 

code, followed by the color values of A and B in the order defined by the type 

code. Any dependent non-leaf quadrants will follow in traversal order.

Figure 1-3.11(b) shows a simple quadtree represented using this compressed 

traversal code.

The quadtree is proposed as a representation for binary images 

because its hierarchical nature facilitates the performance of a large number 

of operations. Most images are traditionally represented by structures such as 

binary arrays, raster(i.e, run length), chain code(i.e., boundaries) or 

polygons(vectors), some of which are chosen for hardware reasons ( e.g., run 

lengths are particularly useful for rasterlike devices such as television) . 

Conversion from these methods to quadtrees is given in Samet(1984,1981b), 

Unnikrishnan, and Venkatesh(1984).

1-4 Volume Data

Extension of the quadtree to represent three-dimensional objects by 

use of octrees has been proposed independently by many researchers 

Hunter(1978); Jaclins and Tanimoto(1980); Meagher(1982); Reddy and 

Rubin(1978) as cited by Samet(1984). The process begins with a  

2 n by 2 n by 2n object array of unit cubes or voxels( volume elements)
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Figure 1-3.10. Type code for compressed traversal coding (Woodwark(1984)).



(a) Oliver and Wiseman's treecode

22  2Û 2Û 3 3 6 6 2 Û  3 3 6 3 6 22

6 3 6 3 3 2 2  6 2 1  6 3 6 6 6  24  6

6 6 14 26  22  3 3 6 14 2 2  3 3 14 3 14 14

Underlined numbers are average values ( +16 for identification ) 
at non-leaf quads.

(b) Compressed traversal code

a  3 fi. 14 2 a  3 14 4LB 3 14 42  3 14 6

2 6 2 2  3 6 22  3 6  22  3 6 1 6 4 J.

3 6 2 1  6 14

Underlined numbers are type codes (see Figure 1-3.10)

Figure 1-3.11.
Traversal and compressed traversal coding of a simple quadtree (Woodwark[1984] ).
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[Jaclins and Tanimoto(1980)] (also termed as obels [ Meagher(1982)]. The 

octree is an approach to object representation similar to the quadtree, and is 

based on the successive subdivision of an object array into octants. If the 

array does not consist entirely of Ts or entirely of O’s, then it is subdivided 

into octants, suboctants, etc. until cubes (possibly single voxels) are obtained 

that consist of Ts or O’s; that Is they are entirely contained In the region or 

entirely disjoint from it. This process is represented by a tree of out degree 8

in which the root node represents the entire object with octants labelled as in

Figure 1-4.1, and the leaf nodes are said to be BLACK or WHITE , depending on 

whether their corresponding cubes are entirely within or outside of the 

object, respectively. All nonleaf nodes are said to be GRAY. Figure 1-4.2 

contains an example object in the form of a staircase and its corresponding 

octree. The labels denote the octant numbers associated with each son by 

using the labelling convention of Figure 1-4.2.

Many of the algorithms obtained for the quadtree, can be extended to

the octree. Gargantini(1983) makes use of a pointerless representation termed 

a linear octree ( analogous to the linear quadtree, Gargantini(1982). He 

represented each pixel by an octal integer in a weighted system. Thus the 

digits of weight l <= h <= n identifies the largest octant to which the 

pixels belong at the hfh subdivision, in the planar case, a quadrant is 

subdivided into four squares identified by NW ,NE,SW  and SE. An additional 

notation “Forward" and "Backward" ( F and B ) has been introduced to 

distinguish between the four cubes nearer to the viewer with respect to the 

other four cubes. Here octant NWF is encoded with 0, octant NEF with 1, octant 

SW F with 2, octant SEF with 3, octant NWB with 4, octant NEB with 5, octant 

SWB with 6 , and in the last octant SEB with 7.
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Region of a Three-Dimensional Space

0 1 2 3 4 5 6 7

Data Elements in the 

Representative Octree Node

Figure 1-4.1.
Region of a three-dimensional space divided into numbered octants 
and the associated octree node with eight data elements (octant 3 
is not visible) .

0 1 2  3

(b)

Figure 1-4.2.
Example object (a) and its octree (b). 

0  = BLACK = "Full";

□  = WHITE = "VOID" (empty);

0 =  GRAY (BLACK and WHITE).
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Figure 1-4.3
Representation of an object with n=2.

Once all the black pixels are encoded, condensation can be applied as discussed 

in Gargantini(1982) i.e., the representation for the region shaded in 

Figure 1-4.3(Gargantini(1983).

{ 01 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,35 ,5 1}

will be replaced by,

{01 ,1X ,35 .51}

where X is the marker or don't care digit defined earlier, with an 

integer>7.

18
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All the algorithms, explained above for octrees, have a common 

disadvantage. The entire three-dimensional image array must be loaded into 

computer memory from the start and left there throughout a session.

Yau and Srihari(1983), proposed a general approach to construct a 

2 d-tree (or hyperoctree), representing a d-dimensional binary image from the 

2 ^ -1 -trees representing (d-l)-dimensional cross sections ( or slices) of the 

image, orthogonal to any of the axes. The word hyperoctree is defined by 

Yau and Srihari, for a d-dimensional binary image. Here a d-dimensional image 

is recursively divided into 2 ^ hyperoctants giving a 2 d-tree or hyperoctree. 

Since the work given in this thesis is based on two-dimensional and 

three-dimensional Images, we need not discuss d-dimensional images in this 

report. The quadtree to octree conversion algorithm developed by Yau and 

Srihari is established in such a way that 2^ quadtrees qo»qi» <̂2 * -̂1, of

which are generated from the array of side 2^, are sequentially loaded. Then

q i is merged with qg, qg is merged with ..................,q2 0 - i  with q2 n_2 , to

give 20-1 new trees q'o»q'i q'20-2- Repeating such merging steps n times,

we obtain the octree. The only operation at every merging is to copy the 

subtree whose root is at a certain depth onto the corresponding node of the 

other tree while traversing the two trees in parallel, this is explained in 

Figure 1-4.4. Just to explain the theory discussed above, we consider eight 

quadtrees, whose origin is not known. For more details see Xiaoyang, Tosiyasu 

,Fujishiro, and Noma(1987) and Chien and Aggarwal(1986), and Shrhari(1981).
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CHAPTER 2. MURRAY POLYGONS.

2-1 Introduction;

In this chapter the developments by Cole(1985a,1985e) from Peano's 

original concept of a space filling curve to the definition of murray polygons 

and their associated methods via multiple radix arithmetic are described. Two 

dimensional and three dimensional murray polygons for cartesian as well as 

for polar coordinates are described in detail. The formal definition of a space 

filling curve and the literature has been discussed in detail in Chapter 1.

2.2 Murray Polygons:

Cole became interested in space filling curves motivated by an 

argument with a colleague over the categorization of curves as either Hilbert 

or Peano polygons. In fact Peano, introduced the idea of an explicit space 

filling curve and Hilbert and others introduced the idea of limiting sequences 

of polygons leading to space filling curves.

After initial Investigations Cole produced neat algorithms for drawing 

the common space filling curves, all three (i.e., Peano, Hilbert, and 

Sierpinski), are obtained recursively from a single point [Cole(1983)]. The 

main procedure for the Peano polygon is given in Program 2.1, the language 

used is the Outline System of PS-algol [Carrick,Cole, and Morrison(1987), and 

Morrison(1988)]]. Some confusion arises from the polygon P  ̂ which appears to

have only six vertices rather than the nine. This problem is resolved by 

assuming that the Peano polygon has nine vertices by splitting each edge at 

its mid-point. This proved to be of significance later.
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let draw.peano = proc ( cint complexity ) 
begin

let peano = proc( epic p ; cint complexity, order, old.width, width ); 
nu ilp roc
if order = complexity then draw( p, 0, width, 0, width ) 
else

peano ( scale rotate ( p
shift scale p by 1 ,-1 by old.width + 2, width  ̂

shift p by 2 * old.width + 4, 0 ) by -90 by -1,1, 
complexity, order + 1, width, 3 * old.width + 4

)

peano( [ 0,0 ],2 * complexity, 0, 0, 0)
end

Program 2.1. Main algorithm for Peano Polygons.

Peano's original definition had taken a point on the interval [0,1] and 

split it into two real base three numbers by taking all the odd indexed digits 

in their sequential order for the value for x and all the even ordered digits in 

their sequential order for the value for y to obtain the point { x,y) of the 

square. It should be noted that to maintain the uniqueness of the 

transformation, the ambiguity of real number representation was dealt with 

in a more complex manner. Before we talk about the ambiguity problem it will 

be better to discuss the transformation which is used by Peano. Let 

T = O .aiagag be a sequence of digits each In base 3 representation. This

sequence is now split into two real sequences,

X = 0.b-|b2b3............  Y = O.C1C2C3....

where digits b; and q  are given by the relation,
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bn...... = K 33+84+...........+®2n-2 (32n-l). (A)

Cn = K 3 -1+33+............. +^2n-1 (3 2 n ), for n = 1,2,3.................. (B)

where for a digit 'a'; K(a) represents the reduced radix complement of 'a' i.e., 

K(a) is equal to 2-a. The term K'^(a) represent the operation K repeated n times 

on digit 'a', where,

K^{a) = a if n is even

K(a) or 2-a otherwise.

Surprisingly, the above result is very similar to that of the Gray code 

transformation. One can conclude that Peano invented the Gray code 

transformation before Gray did. The Gray code transformation is discussed in 

the next section.

From the above results we can say that the digit bn i.e., the nth digit 

of X is equal to agn -l which is the odd numbered digit or to its complement

according as the sum a g + a ^ f +agn-2 of digits of even rank is even or odd.

Similarly for the Y digits we will consider the sum of digits of odd rank.

Peano showed that if a sequence T  is given, then we can determine X 

and Y and if X and Y  are given then a sequence T can be determined. Peano's 

transformation gives the same values for the two sequences given as,

T  = O.aiagag an_ian222..........

where a^ is equal to 0 or 1, and the other,

T ' = O.aiagag an-ta'pOOO....

where a'n = a^ + 1.
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The value of the sequence T is given as,

t = val T = a-j/3....+ ag/S^^.............. + an /30+ ............

The correspondence between T  and (X,Y) is such that if T and T' are of 

different form, but val T  -  val T ,  and if X, Y are the sequences corresponding 

to T, and X',Y' are the sequences corresponding to T  then we have,

val X = val X ' , val Y = val Y ' .

Note that two decimal fractions of different form, such as 0.022222..... and

.0.1000.......... have the same value, but the correspondence between the two

different forms and the associated numbers X and Y do not have identical 

representations. Actually if we split the above two numbers using the Peano 

transformation then the two pairs of numbers will be (0.022.....,0.222....) and

(0.100......... 0.222.... ) , which are same in value, but have different

representations.

Cole considered the application of a similar technique to define a 

mapping from the first 32n base three integers to the vertices of the nth 

Peano polygon. He tried various alternative transformation but they all failed, 

until the idea of using Gray codes, or cyclic progressive numbers occured.

2,2.1 Gray Codes or Cyclic Progressive Numbers :

Gray(1953) discussed ways In which cyclic progressive number 

systems could be defined and Cole(1966) gave conversion rules and addition 

and multiplication tables for such systems. Cyclic progressive integers have 

the property that successive integers differ in only one digit. They are not 

restricted to binary representation but can take any number base. The 

following conversion rules from a pure number to a Gray code is given by Cole. 

Two cases should be considered; 1) odd base and 2) even base systems.
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Suppose

d = dpdn-i..........dgd-j.

is an integer in a pure number system with radix r. Then the Gray code 

transformation d' of d is defined as,

d = d nd n - i    ...d'gd-;

The value for the digits d'j depends upon the radix r.

Case 1. r is odd.

d'j = dj if the sum of all its more significant ( i.e. left hand) digits 

is even,

-  r -1 -dj o therw ise .

Case 2. r is even.

d'j = dj if dj^-j is even,

= r -1 -dj o therw ise .

Note: The term r - 1 - dj is the usual reduced  rad ix  c o m p lem en t

In both cases, the conversion rule back to ordinary integer(pure) 

number form is exactly the same as given In the odd case above. Table 2.1 

gives some simple example with different bases.
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base 3 _ base 4
Pure Gray code. Pure Gray c
0000 000 0 0000 0000
0001 0001 0001 0001
0002 0 00 2
0010 0 01 2
0011 0011 0 0 1 0 0013
0012 0 01 0 0011 0012
0020 0 02 0 0 0 1 2 0011
0021 0021
0022 0 0 2 2 0 3 3 3 030 3
0100 012 2 1 0 0 0 1333

Table 2.1. Conversion from pure integers to Gray code integers with 
different bases.

2.2.2 Direct Peano Transformations :

Cyclic progressive number system and space filling curves have a 

similarity. The successive cyclic progressive integers differ in only one digit, 

whereas in the case of Peano, Hilbert and other space filling curves, the 

consecutive vertices are only one unit apart in either x or y but not both.

After considering several possibilities for base two numbers Cole found the 

transformation for the case of Peano polygons by using base three numbers 

( further details follow in section 2.2.3.2 ). Further he realised the 

importance of the commutability of conversion to Gray codes and reduced 

radix complementation to the mapping, that is if,

a ’ is the gray code equivalent of a, and a* is the reduced radix 

complement then

( a )* = ( a* ) (1)

This result is only true for odd base numbers. For Hilbert polygons this 

result is not true, since the obvious corresponding base is even. The proofs 

and detailed explanations to cover explicit mappings from the first n^P base
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Gray code integers into the ordered vertices of the Peano polygon and vice 

versa are to be found in Cole (1985a). The result used applies to any odd based 

number system with radix r, giving a generalised Peano polygon P ^  n,r of type

r in n dimensions which passes through all r^ri points with integer 

coordinates in the r-dimensional cube of side length r^^-1 ( m = 1 ,2 ,3 ....... ).

The transformation to the pth Peano polygon is only true for the first 

n^P integers where n is odd. Soon after this Cole (1985c) produced a table 

driven mapping between the first 2^P integers and the ordered points of the 

pth Hilbert polygon. Griffith(1985) also derived a table-driven algorithm for 

the generation of Hilbert curves. These methods with minor modifications can 

be made equivalent. As with the Peano transformation the method could be 

extended to deal with Hilbert polygons in higher dimensional space.

2-2.3 Murray arithmetic :

All the techniques including quadtree methods, which have been 

discussed so far are limited to squares with a restriction on their dimensions. 

The tool to escape from the square cell was derived by Cole( 1985b) using 

multiple radix arithmetic, in short murray arithmetic.

Murray arithmetic is integer arithmetic in a number system in which 

each murray integer is defined as a sequence of digits

^ n » ^ n - 1 » ^ n - 2  • • • • •

together with a sequence,

r n J n -1 ' . .  T1 of integers
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where r; defines the radix associated with dj (for i = 1,2 n ) such that

for each i we have,

, 0 ^ dj < rj - 1.

The main operation required is the addition, which is defined as usual, 

except that carry now takes place from the ith to the (i+1)th digit when the 

sum in the ith place exceeds q - 1. Addition may only take place between

integers having an identical radix sequence. Further two successive murray 

integers will either differ in only one digit (i.e., d-j) or carry takes place from

the first to the ith digit. The reduced radix complement for murray integers is 

defined as :

d* = b = bnbn-1 b-j,

w here, bj = rj - 1 - dj ( i = 1 ,2 , --------- - n ),

and its gray code equivalent is given as :

d =: c = cp|C|̂ .*| . . . .  C"j ^

w here.

Case I .  All r; odd :

Cj -  dj if the sum of d^^dn-i, ■ . . ,dj+-| is even or if i = n 

= rj - 1 -dj o therw ise .

Cole referred to these murray integer as murray-o integers.
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Case I I .  All r; even :

Here dj is replaced by its reduced radix complement if d j+i is odd or 

i~=n, and unchanged otherwise. These murray integers were referred to as 

m urray-e  integers.

Case in .  rj even or odd :

Consider any digit dj with corresponding radix q. Let j > i be the first 

integer such that rj is even. Always assume that rp+ i is even.

Let

i
Pi,j = ( Z  rk ) rem 2. 

k—i+1

Then the cyclic progressive transform d' of d is

d = CpjCp_*j . . .  C'j,

where

Ci = dj if pij = 0

and

Cj = rj - 1 - dj if Pij = 1.

Cole referred to these murray integer as hybrid murray integers.

2-2.3.1 Murray Transformation;

Cole(1985b) proved that the murray-o integers can be transformed, 

using a similar method to that described in the section for Peano polygons,

such that all the points with integer coordinates within a rectangle m by n,
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consecutive points being not more than one. Importantly the murray 

transformation applies to each possible factorisation of p and q taken in any 

order. The resulting space filling curves he named murray polygons. He also 

extended this generalisation of the Peano polygon to higher dimensional space.

Cole realised that murray polygons are not restricted to odd 

dimensions as the restriction on the radices being odd can be lifted for the 

first and last radices giving even sided rectangles in 2 -dimensions ( see 

Figure 2.1 ). Considering the two-dimensional cases we now have an explicit 

transformation from the first m positive integers to the m points with 

integer coordinates in a rectangle containing exactly m such points. The 

stages are outlined as follows;

Express the fixed base number d as a murray integer with given murray 

radices, r| say,

d = dndn-1 . . . .  dgd-j , ( 0 < d; ^ r;-1 , i = 1,2 , . . ,n(=2 k, where k is an

integer) ).

Convert this murray integer to a Gray code integer 

d’ = CnCn_-| . . . .  cgc-j.

Split the Gray code number into parts x' and y' as below

x' = Cn_*jCn-3 . . . C3C1 y' = CnCn_2 . . . .  c^cg.

Convert Gray coded x' and y’ separately back into murray integers x" and y".

Convert the pair of murray integers (i.e., x", y") into the original fixed base 

number pair ( x,y ). The whole scheme is given in Figure 2.2.
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(a) X - radix 7 and y - radix 4. (b ) x - radices 1 3 3 and y - radices 3 3 2,

(c) X -radices 2 3 5 and y - radices 3 5 2.

Figure 2 . Î .  Murray polygons vith  even radices.



Figure 2.2. Murray Transformation from n to (x,y)
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The resulting dimensions of the bounding rectangie M by N are given by

f\A = r-j*r3 *r5  *rn--j ( product of odd radices )

N = T2 *r4 *r0  *rp ( product of even radices ).

Examples of several murray scans for different rectangles are given in 

Figure 2.3. The figure also shows how the dimensions of each sub-tile can be 

found by considering pairs of adjacent radices. The pair r-j, rg giving the x and 

the y dimensions of the smallest basic tile, r-j *rg, r2 ^r^ the next and so on. 

These examples also highlight the effect of the order of the radices. A radix 

value of 1 can be used to force movement in a particular direction. For 

instance for any tile pair r^, r^ -i if the least significant radix, namely the 'x 

radix’ r^ -i has value 1 then all steps are forced to occur in the y direction, 

we will refer to this as a linear vertical murray scan, as shown in the basic 

tile of Figure 2.3b( a,e). Similarly movement can be restricted to the x 

direction by making the 'y radix’ take value 1 as shown in Figure 2.3b(b,d) this 

is referred as a linear horizontal murray scan. Further when the dimensions of 

the bounding rectangle cannot be factorised into an equal number of factors 

then we can use a radix of value 1. The radices are packed with additional 

dummy radices of value 1. This is Illustrated in Figure 2.3b. (c,d). It should be 

noted that it Is advantageous that the fundamental algorithm works with a 

radix value of 1 .

As mentioned earlier the restriction on the radices being odd can be 

relaxed for the first (normally x) radix and the last (normally y ) radix. The 

effect of the first radix being even is to give the basic tile an even dimension, 

if the last radix is even then the number of horizontal scans of the largest tile 

is now even. For example, let us consider a rectangle whose end points are 

marked as 1,2,3, and 4 (see below). The path of the murray scan is also shown.
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Figure 2.3a. Building steps for a murray polygons with «-radices 5 5 3 and y-radices 3 3 2.
(a) represent the smallest tile  of size 5*3 .
(b) represent the smallest block having 5 tiles of size 5*3 .
(c) represent the next block having 3 smallest block of size 5 *3 *5 .
(d> represent the next consecutive block having 3 blocks of size 5 *3 *5 *3 .
(e) represent the complete polygon having 2 blocks of size 5 * 3 *5 *3 *3  or 

having 5 *3 *3 *2  tiles each of size 5*3.
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Figure 2.3b. The effect of radix value 1 on the direction of the scan.



CHAPTER 2. MURRAY POLYGONS.

Let r-| and rg be the two radices, where r-j corresponds to the x-part 

and rg corresponds to the y-part. In another way we can say that the 

x-radices represent the number of columns and the y-radices represent the 

number of rows. Now if we follow the linear murray path going from 1 to 3, 

we need an odd number of rows i.e., y-radices should be odd, whatever the 

x-radices, and to reach 4 we need an even number of rows i.e., y-radices 

should be even, whatever the x-radices. Further, if r i ,  rg,rg,r4 are the 

radices, then here r̂  and r^ can be even but rg and r$ should be odd. The radix 

rg cannot be even because the end point where we have to join the next tile is

3. In the case of rĝ  consider the tile of size r-j*rg as a one single column .

Now to reach the point 3 we need an odd number of tiles each of size r-\ *rg, 

hence the radices rg should be odd.

Note : each radices tells how many times the previous polygon has to be 

repeated.

2-2.4 Mixed Scans ;

Cole (1988a) modified the murray polygon algorithm to allow 

switching between transformations in different parts of the scan. Cole used 

murray scans to produce bilevel hardcopy from grey scale image data giving 

results similar to half-toning and found that mixed scans are useful in 

reducing the patterns caused by the standard murray scan. The main reason for
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that is the standard murray scans have only four possible orientations, 

whereas mixed scans have eight possible orientations. He also combines this 

idea with the scan patterns described by Griffiths(1986) to give mixed 

Griffiths and murray scans (see Coie(1988a)). An example of a simple switch 

between basic horizontal and vertical murray scans is given in Figure 2.4.

m m m

Ĵlfl

Figure. 2.4 Mixed scan (see Coie(1988a)).

2-2.5 Some Lemmas :

In the rest of this thesis only murray integers in which all of the 

corresponding radices are odd i.e., murray-o integers, will be considered. 

Further it has been assumed that d is the murray-o integer, d' is the gray code 

integer, the point (x', y') related to integer gray code scale axis, and the point 

(x", y") is the murray integer obtained by converting x' and y' separately. Other 

notation has been defined in Figure 2.2.

Lemma 1;

Suppose

( 1). d|4.‘j+d|+2+ ......... ......................-f-dn is even and

(2). Cj+2 +Cj+4 + ...............................+Cn(or 0^,-1 ) is also even, Then

C j  = d; if
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Case 1. i is even and

di+-|+di4.3+ ...........................+dn-i is even.

Case 2 . i is odd and

dj+i+dj+3+........................... +dn is even.

Where dj, Cj , and C j are defined in Figure 2 .2 .

Proof :

For the given conditions, we have 

Cj = dj and C j = Cj 

which implies C j = d; for i to be odd or even.

Case 1 . i is even. From (2 ) we have

Q+2+Q+4+ ..+Cn = even

given Cj = dj, this implies dj+2 +dj+4 + .................... +dn = even (3)

Equation ( 1) can be written as

( di+2+di+4 -f-............... ...+dn ) + ( di+-j+di+3+ +dn-i ) = even

using (3) we get,

even + ( d|+-j+dj+3+ ..+dn_i ) = even

or

( dj+-j+dj.^3+ ...............................) = even
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Case 2. i is odd. From (2) we have

C i + 2 + Q + 4 " ^  — G v e n

given C; = d;, this implies d|+2 +dj+4 + ....................+dn_i = even (3)

Equation (1) can be written as

( dj+2+di+4+.................+dn-i ) + ( d;+i+d|+3+.....................+dp ) = even

using (3) we get,

even + ( dj+-|+dj+3+......... ...... ..+df  ̂) -  even

or

( di+i+di+3+................. +dn ) = even

Hence proved.

Lemma 2  :

Suppose

(1). d|^.-i+di+2+................................+dn is odd and

(2). C;+2+G;+4+................................+Cn(or C p -i) is also odd. Then

C ’i = d; if

Case 1. i is even and

(n*!-2*‘*n+4+.........+*’n) + ( d j+ i+d i+3+ ...............+ d n .i)  - (n/2 - i div 2) is even.

Case 2. i is odd and

(n+2+n+4+ .........+*'n-l) + { d j+ i+d j+3 + .......... H-dp) - (n/2 - (i+1) div 2) is even.
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Where dj, Cj , and C j are defined in Figure 2.2.

Proof :

From the given conditions we have,

Cj = rj - dj -1 and C j == n - Cj -1.

Substituting Cj in latter case we get,

C j = rj - (rj - dj -1) -1 

or C j -  dj

Case 1. if i is even. Substituting C\ = r\ - d, -1 in equation (2) we get,

( n+2 - 4 + 2  -■>) + ( n+4 - 4 + 4  -1 ) + ............ +( rp - dn "1 ) = odd

(n+2'**^i+4^..... "+^n) ■ (4+ 2^ d j+ 4+ ........... +d^) - (n/2 - 1 div 2) = odd (3)

Equation (1) can be written as

( dj+2+dj+4+...................+dn ) + ( 4+ i+ d j+ 3+  +dn-i ) = odd (4)

Using equation (4), equation (3) can be written as,

(rj+2 +rj+4 + ......+rp|) - odd + (4 + 1+d|+3 +  + d n -i) - (n/2 - 1 div 2) = odd

or (rj+2 +ri+4 + ....... +rn) + (d j+i+d|+3 + ....................+dn_i) - (n/2 - i div 2) = even

Case 2. if i is odd. Here equation (3) can be written as,

(n+2 +rj+4 + .......+ rn -i) - (dj+2 +dj+4 + .......+ d n -i) - (n/2 - (i+1) div 2) = odd

Using equation (1) in the above equation we get the required result i.e.,

(n+2+n+4+ .......+ rn -i) + ( dj+-|+d|+3 +.....+dp) - (n/2 - (i+1) div 2) = even.
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Hence proved.

Lemma 3 :

Suppose

(1). dj+-j+dj+2+................................+dn is even and

(2). Cj+2+Cj+4+............................... +Cn(or C n-i) is odd then

C j  = rj - dj - 1 if

Case 1. i is even,

dj+-j+dj+3+   = odd.

Case 2. i is odd,

dj+-j+dj+3+   +dn = odd.

Where dj, Cj , and C j is defined in Figure 2.2.

Proof :

Proof is very similar to Lemma 1.

Lemma 4  : 

le t

(1). dj+-j+dj+2+ - ...................  +dn is odd and

(2). Cj+2+Cj+4+............................... +Cp(or C ^-i) is even then

C j = rj - dj -1 if

36



CHAPTER 2. MURRAY POLYGONS.

Case 1. i is even and

(n+2+n+4"**” *‘'  +fn) + ( ^i+1+^1+3**’ ....... ..+dn-i ) - (n/2 - 1 div 2) Is odd.

Case 2. I Is odd and

(n+2+n+4+.........+rn_i) + ( d j+ i+d i+3 +  ..+dn) - (n/2 - (1+1) dIv 2) is odd.

Where 6 \, Cj , and C'j are defined In Figure 2.2.

Proof :

Proof Is very similar to Lemma 2.

Theorem 1;

If d Is the murray-o Integer and the point (x'% y") are the corresponding 

murray coordinates as deffhed In Figure 2.2, then,

C'j = dj if di+*j + dj+3  + .....................+(dn-i or d^) = even,

fj - d| -1 otherwise.

Proof ;

From lemma 1 and 2 we have,

C ’i = d | if

( I) I is even,

di+-|+dj+3+ ............... +dn_i = even, and

(n+2+n+4+""+("n) +( d i+ i+d ;+3 +....+dn_i ) -(n/2 - 1 div 2) =even

( I I )  I is odd,
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d;+i+d;+3+...............+dn = even,

) +( dj+‘|+dj.|.3+...+d|<^) -{n/2 - i div 2 +1) =even.

Here the value for dj can be odd or even, and the value for r; will be 

odd for each I, this implies the value for (r; -dj -1) will be even if dj is even, 

otherwise odd, since (rj -1) is even. The above statement can be restated as,

C'j = dj if d j+ i+ d j+ 3 +   ......  + (dn -i or dp) = even   (A)

Similarly from lemma 3 and 4 we have,

C ’j = rj - dj -1 if

(I) I is even,

dj..j.‘j+dj.|.3+............... +d|̂ _") = odd

(n+2+n+4+ +Fn) + ( d j+ i+ d j+ 3+  +dn_i ) - (n/2 - i div 2) = odd.

( I I )  i is odd,

dj+i+dj+3+.............,.+dn =odd

(n+2+n+4+--+^n -l) +( d j+ i+ d |+ 3 +...+dn ) -(n/2 - i div 2 +1) = odd.

Here again we can say that the term (rj -dj -1) will be odd if dj is odd and 

using this we get,

C'j = n - dj -1 if d j+ i+ d j+ 3 +  +(dn_i or dp) = odd -------------  (B)

Hence proved from result (A) and (B).
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2-2.6 Implementation of murray scan :

The original implementation by Cole is given in I) and his fast murray scan is 

given in II). Both the programs are coded in PS-algol and C.

I) Original implementation :

Only main procedures are given. All the steps are given in 

section 2-2.3.1. The murray integer is held in an array of integers and this 

value is incremented to move from vertex to vertex on the scan. The steps for 

drawing murray curves from a point (say nth ) to (x,y) are,

{Note : The nth point is not the same as we use in murray digits)

1. Convert n to the equivalent murray integer with the given murray 

radices 2. Convert this integer to the equivalent Gray coded

in teger

3. Split this integer into x and y,

4. De-Gray code x and y parts using alternate digits for each part,

5. Convert x and y back to ordinary integers giving (x,y),

6. Increment murray integer by one,

7. Repeat steps 2 to 6 while n<= N*M-1, where N and M are the dimensions

for a given rectangle.

Conversely, to convert from (x,y) to n, the above steps are reversed,

starting from step 5. The conversion from a murray integer to n is given in

conuert.from .m urray  procedure.
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! Input parameters are an integer and an array of radices 

! Output is the corresponding array of murray digits 

let convert.to.murray = p ro c ( in t n; * in t radices > * in t ) 
beg in

le t murray.int = v e c to r  1 ;; upb ( radices ) of 0
le t i := 1
while n 0 d o

b eg in

murray.int( i ) := n rem radices( i ) 
n := n div radices( i ) 
i := i + 1

end
m urray.int

end

! Input parameters are murray integer and radices arrays 

I Output is the corresponding integer

let convert.from.murray = p ro c ( *int murray.int,radices -> * in t  ) 
beg in

le t top = upb( murray.int ) 
let n := murray.int( top ) 
for i = top - 1 to 1 by -1 d o

n := n * radices( i ) + murray.int( i )

n
end

I Input parameters are murray integer and radices arrays 

I The murray integer array is incremented by 1 
let next.murray = p ro c ( * in t  murray.int, radices ) 
beg in

le t I := 1
w hile  murray.int( i ) = radices( i ) -1 d o  
beg in

murray.int( i ) := 0 
i := i + 1

end

murray.int( i ) := murray.int( i ) + 1
end
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The following procedure gray.code may be used both for conversion to 

and from grey coded murray integers.

I input parameters are murray.int and radices arrays 

I murray.int is converted to the Gray code equivalent 
let gray.code = p ro c{ * in t murray.int, radices ) 
beg in

let top = u p b ( murray.int )
let parity :=( ( murray.int{ top ) rem 2 ) = 1 )
fo r  i = top - 1 to 1 by -1 d 0
beg in

if parity d o

murray.int( i ) := radices( I ) -1 - murray.int( i ) 
if ( murray.int{ i ) rem 2 = 1 ) d o  

parity := -parity
end

end

I This procedure takes the array of digits splits it into x and y parts.
I Input is a murray integer
I Output is a structure holding the x and y murray integer arrays
s tru c tu re  coords{ * ln t  a,b )
let split.x.y = p ro c ( * ln t  murray.int > pntr )
beg in

le t top = upb( murray.int ) 
let X = vector 1 :: top d iv  2 of 0
le t y = v e c to r  1 :: top div 2 o f 0
let i := 1
fo r  j = 1 to  top - 1 by 2 d o  

b eg in

x( i ) ;= murray.int( j )

y( i ) := murray.int( j + 1 )
i := i + 1

end
coords( x,y )

end
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Some Improvements of The Original Implementation:

Using Theorem 1, the number of steps given in the original 

implementation can be reduced, which can increase the efficiency for the 

scan.The steps of transformation will now be,

1. Convert n to the equivalent murray integer with the given murray radices

(i.e., convert.to.murray)

2. Convert this integer to the equivalent murray coordinates (x,y),

3. Convert x and y back to ordinary integers giving (x,y),

4. Increment murray integer by one,

5. Repeat steps 2 to 4 while n<= N*M-1, where N and M are the dimensions
for a given rectangle.

n) A Faster murray j^an algorithm :

The original implementations required an improvement in efficiency 

for large complete scans. The parts of the first implementation that slow the 

algorithm down are the conversion to and from murray integers to pure 

integers and the transformation using the gray-code procedure. In the 

improved case also the conversion from murray integer to murray coordinates 

and (x,y) to ordinary integers is time consuming. If we examine the murray 

curve , we see that, a point inside a rectangle has only four possible ways to 

move. Either it can go left or right or up or down. Each time only one of the 

coordinate is going to be incremented or decremented by one unit. Now the 

only problem is to find which coordinate is going to be incremented or 

decremented.
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Suppose

d = dndn-1...............dadadi.

be a murray digits with radices, r; (i = 1 n) such that 0 <= d; <= r; -1

where m is any integer and n is equal to 2m. Let p; be the parity of the sum of

the digits d|+-j, dj+g........ ,dn- That is, p; has value true if this parity is even

and false otherwise. Let Cp, Cp_i   Ci be the equivalent Gray code integer,

where Cj is equal to dj if pj is true otherwise r\ -1 -dj if pj is false. Also if 

rj is odd the parity of the new digit dj is unchanged in both cases (the parity 

of rj -1 -dj where q -1 will always be even and even - dj can be even or odd, 

dependand upon the digit dj itself), so the values of pj for j < i are unchanged. 

The back Gray code transformation on dj depends on whether I is itself odd or 

even . If i is odd then the digit dj belongs to the x coordinate otherwise it is 

part of the y coordinate. The back Gray code of dj depends on the parity of the

sum of digits dj+g, dj+4, d j+g............... d^ (where k is equal to n, if i is even

otherwise k is n-1) and is dj if this parity is true and r\ -1 -dj if it is fa lse.

Further the same result can be obtained by usingf/ieorem 1. Here the

transformed digit dj Is equal to dj if the parity of sum of digits dj+i ,dj+g...........

is true otherwise, r\ - dj -1 if it is fa lse. The rule for the total change in a 

given digit can now be summarised as follows. Define q; to have the value

true if the parity of sum of digits d|+-j,d|+3.......... is even and false otherwise.

The digit dj remains unaltered if q\ is true and is replaced by q -1 -dj if qj is 

fa ls e .

Consider now the case of a murray integer about to be increased by 

one. This will cause a change in parity of digit dj. Either dj is the first digit or

carry has taken place in one or more positions and all the digits to the right of
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dj are changed from rj -1 to 0. Now 0 and q-1 are both even hence the only

digit to change parity is dj. Thus the parities qj_i ,q|-3, .........  will have

changed. We now see that when a murray integer increases by one there is only 

one digit which changes parity and its position determines whether a change

has occurred in x or y, and also which q values to change.

The only remaining information to determine is whether the change is 

+1 or -1. The subscript T identifies the part under consideration, since all odd 

digits corresponds to the x part and all even digits corresponds to the y part.

It should be noted that the x digits are selected from among the d-digits and 

that from the general theory two successive x digits selected in this way 

differ by only 1. The only problem now is to determine out of these two digits 

which one in numerically greater, that is whether the x increment is to be 

positive or negative. It follows from the general theory that this can be 

determined by the parity digit p j+i. If Pj+1 is irue then the x increment Is 1

otherwise it is -1. Similarly for a step in the y direction.

The faster algorithm thus only requires the murray digits arrray to be 
incremented by 1 and a parity array to be maintained. The steps for the faster 
algorithm are thus ,

1. Increment the array digit by 1,

2. if the ith digit changes then change the parities of
Pi » Pi-2,» Pl-4 *

3. choose the x or y direction to be incremented according as i is odd or 
even,

4. increment the chosen direction by 1 or -1 according as pj+i has 

value true or fa lse.

Procedures to implement this algorithm are as follows.
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The procedure to give the next murray integer is same as next.murray 

procedure given above except that it returns the index of the leftmost digit to 

change in the murray integer.

1 Input parameters are murray integer (i.e. d) and radices arrays (i.e., r)
I The murray integer array is incremented by 1
! The index of the leftmost digit to change is returned
let increment := proc(*in t d,r; int i > int)
n u llp ro c
increment := proc(*int d,r; int i -> int) 
if d(i) < r(i) - 1 then { d(i) ;= d(i) + 1 ; i)

else { d(i) := 0; increment(d,r,i+1) }

The parity of the sums of alternate digits in a murray integer d to the left of

the index i is held in an array p of truth values. The following procedure

changes the truth value of p(i) and every other entry to the right of it.

I Input parameters are the boolean array of parities 
1 and the index of the leftmost digit to change 
let change.parity = proc(*bool p ; int start) 
fo r i = start to 1 by -2 do p(l) := ~p(i)

Finally the change in x or y is calculated by using the procedure step as 

defined follows.

! Input parameters are the parity array q 
I and a digit position i 
let step = proc(*bool q; Int i -> Int) 
if q(i+1) then 1 else -1

if i rem 2 = 1 then x := x+step(q,i) else y := y+step(q,i)
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Note that the counting is now in pure murray integers rather than gray 

coded murray integers.

2-2.7 Hardware Implementation :

Following on from the ideas used in the implementation of the fast 

algorithm outlined in the previous section Cole( 1988b) suggests some hints on 

hardware implementation. The basic suggestion is that the function of the 

array of integers holding the murray integer is taken over by a bank of shift 

registers. Each register would have a capacity corresponding to the radices 

selected and be initially set with value 1. If a register is cleared by a shift 

operation it then resets to zero and forces a shift in the next register. If the 

register does not clear then the parity of the register number will identify 

whether the movement is in the x or y direction. There would also be a number 

of parity bits which can be toggled appropriately and will determine if the. 

step is -1 or + 1 .

2-2.8 Three-Dimensional Cartesian Coordinate :

The three-dimensional Cartesian (rectangular) coordinate systems 

consists of a reference point, called the origin  and three mutually 

perpendicular lines passing through the origin, called the axis. These 

mutually perpendicular lines are labelled the x, y, and z coordinate axis (see 

Figure 2.5). To every point P there corresponds uniquely a set of three numbers 

[x,y,z], and conversely to every set of three numbers, positive or negative, 

there corresponds a unique point. For the n-dimensional case there will be n 

mutually perpendicular axis.
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X
Figure 2.5.

2-2.8.1 Extension To Three-Dimensional And n-Dimensional Murray Polygons :

Here we are going to extend the Idea of one dimensional and two 

dimensional murray polygons, which are described in previous_ section 2 -2 .6 , 

to three dimensional and n dimensional murray polygons. The algorithms which 

have been described in section 2-2.6 are used. The only change which will 

come to the previous algorithms is the addition of more digits to the murray 

digits. These additional digits will corresponds to the other axes. In the case 

of three dimension the additional digits will corresponds to the z-axis. The 

methods depends upon the original implementation by Cole and his fast version 

for one-dimensionai and two-dimensional murray polygons. The methods are 

discussed below.

2-2.8.1.1 Method One ;

Let d = dndn-1 . . . .  dgd-; (where n Is a multiple of 3) be a murray 

integer with radices, rj(i=1,2 ......... ,n) such that, for each i we have 0  < dj < r j-1 .
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Where,

digits d-id^dy............ -d n -2 belong to the x coordinates of the box,

d ig its  d2d5ds................ d^-i belong to the y coordinates of the box and

d ig its  dgdgdg............... dp belong to the z coordinates of the box.

The dimensions for the bounding box are assumed to be T, 'b% and 'h' and are 

given as,

I = M *r4 *ry \...............

h =........ r2*r5*ra*..........   T p - i

b = r3 *re*rg*  ..................*r„

The triple r-j, r2 ,r3 are the x, y and the z dimensions of the smallest box,

r i * r 4  , r2 *rs , r3 *rg are the x, y and the z dimensions for the next box which

has r4 *r5 *re boxes of size r-|*r2 *r3 , and so on. The dimension 'b' represents 

the number of planes each of size Th, and parallel to the XY-plane. The planes 

will range from 'O' to 'b-1' i.e. value for the z coordinate. The stages for 

drawing a 3D murray curve are outlined as follows,

Convert this murray integer to a Gray code integer

d = ^n^n-1 • • • • ^2^1 •

w here, c; = dj if the sum of all its more significant digits is even,

= r; -1 -dj otherwise.

Split the Gray code number into parts x \ y', and z' as below

X' = Cn-2............C4C1

Ÿ = Cn-1...........C5C2
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Z' = Cn............. C6C3

Convert Gray code x', y', and z* separately back into murray integers 

( x", y", z") given as

(x",y",z") = (c 'n -2  c 'i, c 'n -i c’2  , c’n c’3 ) where

c'l = c; if the sum of all its more significant digits is even,

= rj -1 -Cj otherwise.

Convert the pair of murray integers (i.e., x", y", z"") into the original fixed 

base number pair (x,y,z). The steps of transformations from n to (x,y,z) can 

now be summarised as,

1. Convert n to the equivalent murray integer with the given murray
radices

2 . Convert this integer to the equivalent Gray coded integer

3. Split this integer into x, y, and z,

4. De-Gray code x, y, and z parts using alternate digits for each part,

5. Convert x", y", and z" back to ordinary integers giving (x,y,z),

6 . Increment murray integer by one,

7. Repeat steps 2 to 6 while n<= rb *h -1, where T, 'b \ and 'h* are 
defined above.

Conversely, to convert from (x,y,z) to n, the above steps are reversed, 
starting from step 5.

Now for the faster algorithm we can define few lemmas.
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Lemma 5 :

Suppose

(1). di+-|+d|+2+................................+dn is even and

(2). Cj+3+C|+6+C|+9 +  +Cn(or 0^-2 or 0^-1 ) is even then

c'j = dj if

di+i+dj+2+ dj+4+dj+5+...................   = even.

Where dj, Cj , and c'j are defined above.

Proof:

Proof is very similar to the lemmas discussed for the two-dimensional

case.

Lemma 6 :

Suppose

(1). dj+i+dj+2+   +dn is even and

(2 ). Cj+3+Ci+0+ej+9 + +Cn(or Cn-2 or Cn-i) is odd, then

Cj = rj - dj -1 if

di+l+dj+2+ dj4.4+dj+5+.............................. = odd.

Where dj, q  , and c'j are defined above.

50



CHAPTER 2. MURRAY POLYGONS.

Proof:

Proof is very simiiar to the lemmas discussed for the two-dimensional

case.

Similarly we can define two more lemmas where in the first case the 

condition (1) is odd and (2 ) is even and in the second case the condition (1) is 

odd and (2 ) is also odd. The proof is similar to the one discussed for 

two-dimensionai case.

Theorem 2:

if d is a murray integer and the point (x",y",z") are the corresponding 

murray coordinates as defined above then,

c'j = dj if dj+1 +dj+2  +dj+4  +dj+5 + ...........    is even

rj -1 -dj otherwise.

Proof:

Using these lemmas discussed above the theorem 2 can be proved. The 

proof is similarly to Theorem  1.

Using Theorem  2  the number of steps can be reduced. The steps of 

transformation will now be,

1 . Convert n to the equivalent murray integer with the given murray

radices

2 . Convert this integer to the equivalent murray coordinates (x,y,z),

3. Convert x, y, and z back to ordinary integers giving (x,y,z).
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4. Increment murray Integer by one,

5. Repeat steps 2  to 6  while n<= i*b*h-1, where T, 'b', and 'h' are 

defined above.

2 2.8.1.2 Second Method :

This method is the extension of the fast murray scan given by Cole for 

one-dimensional and two dimensional space. Here a point inside a box has six 

possible ways to move. It can go either (up or down) or (left or right) or (front 

or back). Each time only one of the coordinate is going to be incremented or 

decremented. Which coordinate is going to be incremented or decremented can 

be determined by the parity changes. This is briefly discussed below,

The idea is similar to the one discussed in section 2-2.6(11)

Suppose

d = dndn-1-...............dgd2d i,

is a murray integer with radices, r\ (i -  1  n) such that 0  <= d; <= r; -1

where m is any integer and n is equal to 3m. Let pj be the parity of the sum of

the digits dj+*j, d;+ 2  dp. That is, p; has value true if this parity is even

and false otherwise . The digit dj remains unaltered if p; is true and is 

replaced by r; -1 -dj if pj is fa ls e .

Similarly using theorem  2, the transformed digit dj can be equal to

dj if the parity of the sum of digits dj+-j,dj^.2 , dj.t̂ 4 ,d j+ 5  is true

otherwise, rj - dj -1 if it is fa ls e . We can now define qj to take the value

tru e  if the parity of sum of digits dj+-|,dj+2 » dj+4 ,dj+ 5 ...........  is even and fa ls e

otherwise. The digit dj remains unaltered if qj is true  and is replaced by q -1 

-d j if qj is fa ls e .
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Consider now the case of a murray integer about to be Increased by

one. If the leftmost digit to change is in ith position then the parities for

qj, q;-i, q|-3 , di-4. Qi-6................ will change. The problem of determining the

direction to be incremented or decremented can be obtained from the value of

subscript i. if i belongs to 1,4,7,... then the x part, if it belongs to 2,5,8,.....

then the y part, and for others we will consider the z part to change. Now the 

steps of the transformation will be the same as given for ID  and 2D cases, 

only the parity changes will alter as discussed above.

The 3D murray polygons can be build in two different ways

1) plane by plane, 2) tile by tile, as in the case of an octree.

Both ways depends upon the value for the z radices. Plane by plane scanning

can be useful for scanning medical Images which are in the form of 

consecutive planes.

Let d6 ,d5 ,d4 ,d3 ,d2 ,d-| be the murray digits with radices, r; (I = 1....n) 
such that for each I, 0 <= d; <= r ; .

If digit r3 has value 1 then the algorithm will scan the first plane 

(i.e., z=0) and then will go to second plane and so on. A change in the digit dp 

implies the change in a plane number. The steps of the transformation are 

given in Table 2.2.

If f3 takes any other value than 1 provided it is odd then the 

algorithm will scan the smallest tile (of size r-| * r2 ) of the first rectangle

then will scan the same tile in the second rectangle and so on until! the z 

digit is less than r3~1. After that it will scan the other tiles in the same way

(see Figure 2.6). The steps of the transformation are given in Table 2.3. As 

usual the first and the last radices can be even i.e. r-j and r$ . The radix tq

simply means that the image has an even numbers of planes.
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Murray Integers 

^6^5^4 ^3^2^1

Integer Coordinates 
( X, y, z )

000000
000001
000002
000010

(0 ,0 ,0 ) —  
(1 ,0 ,0 ) 
(2 .0 ,0 ) 
(2 ,1 .0 )

firs t
plane

000022
100000
100001

( 2 , 2 , 0 )  —
( 2 .2 ,1 ) - ,
(1 .2 .1 ) seconc

plane

Third
plane

100022
200000
200001

(0 .0 .1 )J  
(0 ,0 ,2 ) - ]  
(1 .0 ,2 )

200022 (2 ,2 ,2 ) - .

Table 2.2 ;
Murray transformation from n to (x,y,z) with 
murray radices 3,1,1,1,3,3. The plane Is same 
until! digit d g changes. Here digit dg takes 
values 0,1, and 3, which is nothing but the 
plane numbers i.e., z values. Other steps i.e., 
gray code integers, murray integers etcetra 
are not given.

Murray Integers

''s «fe <̂ 4 “ 3 '*1

Integer coordinates 
(x .y .z )

000000 ( 0 , 0 . 0 ) -
000001 (1 .0 ,0 )
000002 (2 .0 ,0 ) 1 St

plane
000022 ( 2 , 2 , 0 ) -
000100 (2 ,2 ,1 ) —
000101 (1 .2 .1 ) 2nd

1 plane
000200 ( 0 .0 .2 ) ^
000201 (1 .0 .2 ) 3rd

plane
000222 (2 ,2 ,2 ) - !
001000 ( 3 .2 .2 ) - ,
001001 (4 ,2 ,2 ) 3rd

plane
001022 (5 ,0 .2 )J
001100 (5,0,1 )-n
001101 (4 ,0 ,1 ) 2nd
001102 (3 .0 ,1 ) plane

1 St

Table 2.3 :
Murray transformation from n to (x,y,z) with 
murray radices 1,1,3,3,3,3. The plane is same 
until! digit d ^changes. Here digit d 3 takes 
values 0,1, and 3, which is nothing but the 
plane numtjers i.e., z values. Other steps i.e., 
gray code integers, murray integers etcetra 
are not given. Further, if we want to increase 
the planes we can consider rg greater than one.



a  1=15
z = 1

(a)^

z = 1

(b)

Figure 2.6. Scanning patterns due to 3-dîmenslonal murray scan
(a) an Image 1s scanned In plane by plane order,
(b) an Image is scanned In tile  by tile  fashion.
(Dark colour has used to show the different planes).
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The same algorithms can also be used for n-dimensional space. The 

only change will be in the addition of the digits for additional axes and the 

parity changes. The steps for an n-dimensionai faster algorithm are,

1. Increment the array digits by 1,

2 . if the ith digit changes then change the parities of
Pi'Pi-1» »Pi~(n~2)» Pi-n*Pi-n-1 »Pi-{2n~2) ».........

3. choose the x-j ,X2 ,......... Xp.-j, or the Xp direction to be

incremented according as the value of i ,

4. increment the chosen direction by 1 or -1 according as pi+i 

has value true or fa ls e .

2-2.9 Polar Murray Scan :

2-2.9.1 Polar Coordinates! Fine(1909)I :

Let O be a given point, and Ox  a given directed line from O, where O is 

called the pole or origin and Ox is called as the polar ax is . The po lar 

coordinates of any point P, referred to O and Ox  are given as (r,&), where r is 

called as radius vector and is equal to the length of OP  and O is called the 

vectorial angle of P and is equal to the measure of the angle x O P  

(see Figure 2.7).
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Figure 2.7.

The polar coordinates of a point are not unique. This is because the 

addition or subtraction of any multiple of 2 n  to 0  describe the same ray as 

that described by 0 .

2-2.9.2 Changing Coordinate Systems : --------

if the polar axis Ox be taken as the x axis of a rectangular systems, 

and Oy  as the corresponding y axis, the relations connecting the coordinates of 

any point P in the two systems are given as 

X -  r  cos 0, 

y  = r sin 0 .

_  x^ + y2^

tan S - y / x ,  

sin 0  -  y/r, 

cos 0  = x/r.
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2-2.9 3 Graphs In  Polar Coordinates :

The graphs of points given in polar coordinates are obtained by taking 

the length r on the terminal line of the angle 0 . These lengths being measured 

on the line produced through the origin according as r is positive or negative. 

The graph of an equation in r and 0  is the collection of the points(r, e )  of all 

the solutions of the equation (see Figure 2.8).

r = 3

Figure 2.8

2-2 9 .4  3D And Higher Dimensions Polar Coordinates;

2-2.9.4.1 Cylindricai Coordinates, Spherieal Coordinates :

The only method which is not provided by Cartesian coordinates is 

associating numbers with points in space. Here two other useful coordinate
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systems are discussed,

(1) Cyiindricai coordinates,

(2) Spherical coordinates.

Cylindrical Coordinates :

Let P be a point in space, and suppose that its cartesian coordinates 

are (x,y,z). Let r and O be polar coordinates of the point (x,y,0) in the XY-plane  

(see Figure 2.9), then we say that {r,9 ,z) are cylindrical coordinates of P . 

From section 2-2.9.2, we know that x = r cos & and y -  r sin ©. Thus the 

cartesian coordinates of P are related to the cylindrical coordinates of P by 

the equations,

X =  r  cos 0 , y  = r  sin 0, z = z.

P (x,y,z) 

(r, e, z)

(x,y,o)

Figure 2.9
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A coordinate surface in a given coordinate system Is a surface that Is 

obtained by "fixing" one of the coordinates. For example, in a cartesian 

coordinate system the coordinate surface ({x,y,zj | y  = 2} is a plane. In the case 

of a cylindrical coordinate system there are two kinds of coordinate surfaces. 

The coordinate surface {(r ,9 ,z ) | z  = a} is a plane that is parallel to the 

X V - plane, and the coordinate surface {(r,9 ,z) | 0  -  b} is a plane that contains 

the Z  axis. But the coordinate surface {(r,© ,z) | r = c} is a right-circular 

cylinder; it is from this fact that the name cylindrical coordinates is derived.

Spherical Coordinates :

Again let (x,y,z) be the cartesian coordinates of a point P  and let r and 

0 , r > -  0 , be polar coordinates of the point (x,y,0) in the XY-piane. Suppose the 

angle between OP  and Z  axis is 0 , where 0<= #  <= J7, and let distance OP -  p (see 

Figure 2.10 ). Then the numbers (p, 0, 0) are called spherical coordinates oi P. 

Spherical coordinates are related to cartesian coordinates of the point P as :

X ~ p  cos 0 sin 

y  = p sin 0  sin 0 , 

z = p cos 0.
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Figure 2,10

In our spherical coordinate system, the coordinate surface 

{ I 0  = a} is a plane that contains the Z  axis. The coordinate surface 

{ {p,B ,0) 1 = b} is a cone whose vertex is the origin( unless b = 0, b -  n  or

b = n /2 ,  in which case the cone "degenerates"). The coordinate surface 

{{p,@ ,0) I p = c, where c > 0 } is a sphere; it is from this fact the name 

spherical coordinates is derived.

2-2.10 Implementation of Planar Polar Murray Scan :

Here we use the fast murray scan algorithm, which is given in section 

2-2.6 to draw a polar murray curve. The only change which will come to the 

algorithm is the Increment to the x and the y part. For simplicity we will 

replace x by r and y by © to get a polar coordinate (r,0 ). The number of sectors 

will depend upon the product of y radices and the radius of the circle will be 

given by the product of x radices. The angle between the two sectors will then
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be equal to 2n/no.of.sectors. The above two statements can now be coded as 

follows. The procedures used are given in section 2-2.6.

I The statement that determines the change in the coordinates.
! Input parameters are murray integers , radices and parities.
le t digit.change = increment(digits,radices,1)
change.parity(parities,digit.change)
let inc = if parities(i+1) then  1.0 else - 1 .0

if (digit.change rem  2 = 1 ) then r := r+inc
else © := ©+inc*angle 

! To plot the points we have to convert 
I them into cartesian coordinates.
X := r * cos ( 0  ) 
y ;= r * sin (© )

The rest will be the same. Examples of several polar murray scan for 

different radices are given in Figure 2.11. This algorithm is slow due to the 

real arithmetic used for calculating (r,©). Further we have to use (r,©) values 

to find the x and the y coordinates, which is also in reaj arithmetic. Much of 

the time is wasted in calculating cos(©) and sin(©), which makes the 

algorithm very slow. The efficiency for the polar murray scan can be 

increased if we precalculate the values for cos(©) and sin(©) and put them in 

a array, which can be examined in the programme any number of times. 

Further the increment for r and © will be in integer arithmetic. The changed 

programme is given below,
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(a) Polar murray polygon with r radices 3 3 and theta radices 5 3

(b). Polar murray polygon with r radices 3 3 5 and theta radices 5 3

Figure 2 .1 1. Polar murray polygons.



(c) Polar murray polygon with r radices 2 3 5 and theta radices 5 3 2

(d). Polar murray polygon with r  radices' 1 3 3 and theta radices 3 5

Figure 2.1 l(contd). Polar murray polygons.



(e). Polar murray scan with r radices 15 and theta radices 25.

(f) . Polar murray polygon with r radices 1 15 and theta radices 25 1 

Figure 2.1 l(c o n td ). Polar m urray polygons.



Figure
radices 

6̂ ''s 4̂ "̂ 3 ''z   ̂ 1

a 3 3 5 3
b 1 5  3 3 5 3
c 2 5 3 3 5 2
d 2 3 5 3 3 1
e 2 5  15
f 1 15 25  1

Figure 2.11 (contd). Mixed polar murray polygons.
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IThese statements will calculate the values for sine and cosine.
!The values are stored in an array.
let sine = vector 1 :: no.of.sector-1 of 0 .0

let cosine = vector 1 :: no.of.sector-1 of 0 .0

for i = 0 to no.of.sector d o
begin

sine { i +1 ) := sin (© * i )
cosine ( i +1) := cos ( © * i )

end
IThis statement will give the cartesian coordinates, 
if (digit.change rem 2 = 1 )  then r := r+inc

else © := ©+inc
X :=  r * cosine (©  ) 
y := r * sine (© )

2-2.10*1 Cylindrical Polar Murray Scan ;

This is similar to thè^ previous algorithms discussed In 

section 2-2.8 .1 .The only difference is in the coordinate systems. As defined 

above, the coordinate surface j r = c} is a right-circular cylinder. The

algorithm will scan the the first plane/tile then will go to the second 

plane/tile and so on. The coordinate z will be kept constant for a plane.

2-2.10.2 Spherical Polar Murmy Scan :

The coordinate surface { | p = c, where c > 0 } is a sphere, as

defined above. To get a spherical murray scan , p is to be kept constant. The 

increment for the angle between the two sectors is given by,

angle = Total.angle/pr'oduct.of.radices.

For © th e  increment will be anglel(say) = 2n/product.of y-radices, and for 0 ,

61



CHAPTER 2. MURRAY POLYGONS.

angle 2 (say) = n/product.of.z-radices. The rest is the same as in the algorithm 

discussed in section 2 -2 .8 .1 .

2-2.11 Applications Areas :

Murray scans can be used to process an image. Many application areas 

of image processing are covered in this work, which are dicussed later in the 

following chapter. However in this Issue we will discuss the scanning part 

using murray poiygons.The major applications are also mentioned briefly.

2-2.11.1 Scanning;

A graphics screen can be considered as a finite rectangular array of 

pixels where each pixel is addressed by integer coordinates. A picture or 

image may likewise may be considered split into a finite number of cells. 

These arrays can be scanned in total or part by an appropriate murray polygon 

(or scan). A murray scan will pass through each pixel in an image recording the 

colour information and the number of successive pixels with the same value.

It is discussed in detailed in the next chapter.

2 2.11.2 Applications

Major application areas appear to be:
1 . scaling,

2 . object identification,
3. operations on images using run lengths,
4. set operations,
5. hidden surface removal and shading,
6 . ray tracing, '

7. superimpositions of images,
8 . data compaction for storage and transmission,
9. halftoning.
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2-2.12 Remaries :

There are several expected advantages from a murray scan when 

compared to a linear scan. Firstly, as the murray scan by its nature will pass 

through many points close to each other it will be able to take advantage of any 

local correlation between pixels. This should be a considerable advantage as 

many images have a strong local correlation. Secondly, the murray scan will in 

general change direction frequently within a relatively small and compact area, 

thus may reduce the common patterning resulting from the more regular linear 

scan. Lastly, murray scans have considerable flexibility allowing change of 

basic tile pattern, scan order, scan direction and even dimension of scan.

Another common representation is by quadtrees. This is included as a 

special case of a Hilbert scan. Murray scans are also similar to quadtree 

encoding since the data is stored similar to quadtree 'scanning' based on the 

number of subdivisions of a basic tile. The only trouble with the quadtree 

encoding is that it can process only square images, whereas murray scans can 

cover a rectangular area immediately without modification.it is a major 

advantage over a quadtree representation. An important feature of the method is 

the ability, to carry out calculations and operations on the run lengths 

themselves without returning to the original image.

Disadvantages of the murray scan are :

1 . when adjacent points in an image are a long way apart on the scan 

sequence. This case is also true in the case of quadtree{ or octree) and other 

space filling curves.

2 . secondly when the dimensions of an image are prime numbers. For 

example, x-dimension is 17 and y-dimension is 31,which implies that only one
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linear murray scan can be used to scan an image; the coherence between the 

pixels will be lost. In this case one can increase or decrease the size of an 

image, to get the suitable factors. For the above example the new size for the 

image can be 15*33 etcetera.
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3-1 Introduction :

The essence of programming requires efficient algorithms for 

accessing the data both in main memory and on the secondary storage devices. 

Further the efficiency of a programme is directly linked to the structure of 

the data being processed. A data structure Is a way of organizing data that 

considers not only the items stored but also their relationship to each other.

In PS-algol[Carrick, Cole, and Morrison(1987), and Morrison(1988)] any data 

item is allowed the full range of persistence. By persistence of data we mean 

the length of time that the data exits. In this language persistence is provided 

by an extensible number of roots known as the database. It is only necessary 

for a programmer to identify which data is to persist and in which database it 

should persist. All the images which are used in this work are initially stored 

in a database. Here images are the data Information. The images which are 

stored in the database can be called anywhere in the programme and can be 

scanned using murray polygons. Scanning will reduce the storage space for an 

image by producing the sequence of runlengths with their associated colour. 

Once the runlengths are obtained then we can store them either In a file or in 

a database with a suitable data structure defined. The runlengths can be 

processed thereafter. They can either be used to draw the image again on the 

screen at any given point or to carry out any other operation.

In this chapter we will discuss briefly the data structures used for 

the images and for the runlengths to store them in the database, how to 

construct the images using PS-algol graphics facilities, and how to store and 

retrieve an image from the database has discussed in detail. Further how a 

murray scan can be used to scan the image and to draw the image back on the 

screen at any given point is discussed in detail. The language used is the
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PS-algol[Carrick, Cole, and Morrison(1987), and Morrison(1988)] .

3-2 Structures and List Processing ;

It often useful to collect together several pieces of information and 

give a name to this collection. For example, information about a person's 

name, his passport number, age, country etcetera. All this information can be 

held as one unit of data by declaring a data structure as follows,

s tru c tu re  visitors(strlng nam e; int passport.number, age; string country)

This defines the form of the structure and gives names to the items in the 

structure and aiso a name that Is visitors, to this type of structure. We can 

now set a structure by giving information about a visitor. For example,

let A := visitors{ readsQ , read iQ , readiQ , readsQ  )

If we want to refer about the visitor's name whose structure name is 'A', we 

will write

visitor's.name -  A(name)

visitor's.country = A(country)

We can also define structure with pointer members that may refer to 

the same structure type or it may be a new structure type. For example, we 

can define a structure as,

s tru ctu re  list( int data; pntr next)

This declaration of a list can be stored in two words of memory. One word 

stores the member data and the second stores the member next. The pointer 

variable next is called a link. Each structure is linked to a succeeding
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Structure by the way of the member next. This can be displayed pictorially 

with links shown as arrows.

The structure list

data next

The pointer variable next contains an address of either the location in 

memory of the successor list element or the special value NIL which is used to 

denote the end of the list.Three structures each of type list can be defined as

let a := list{ 1,NIL)

let b := list{ 2 ,NIL)

let c := list{ 3 ,NIL)

The result of this code is shown below,

Assignment

D NIL NIL

If we want to chain them together we will write,

a(next) := b
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b(next) := c

These pointer assignments result in linking a to b to c, see below,

Chaining

Now these links allow us to retrieve data from successive elements. Thus,

a(next,data) := 2

and a(next,next,data) := 3

In C we don't have the facility as in PS-algol. In C a structure with a 

pointer member points at the same structure type. If we want to point at a 

different structure type then we have to redefine its type. For example two 

structures in C and PS-algol are as follows,

C structures 

struct list {

int data;
struc list *next; 

}

PS-algot structures  

structure list( int data; pntr next)

struct points!
int X, y;

struc points *right; 

}

structure points( Int x, y; pntr right)

Both the structures have different types. If we want to link the second 

structure to the first structure then in PS-algol,we will simply write,
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list(nexî) := points(x,y, n il)

In the case of C we first define the type of that structure which we want to 

link i.e.,

list > next = ( struct list ) points ;

which is not troublesome in the case of two or three structures. But if we are 

dealing with many structures then it can be very cumbersome, since each time 

you have to redefine its type.

3-3 Linked Lists :

A structure involved in many data processing activities is the ordered 

list of data elements. A ordered list of three integers is shown in section 3-2. 

Such a data set can be represented by one dimensional array in which the jth 

subscript corresponds to the jth item in the ordered list. It has a head pointer 

addressing the first element of the list and each element points at a 

successor element. In the last element the link value is N IL  Such a list is 

referred as linked-list.

A list can also contain more than one pointer. A list with two pointers

i.e. next and left, is a doubly-linked-’list. The next link is a pointer to the next 

node in the list, whereas the left link points to the preceding node. If the left 

pointer or the next pointer is NIL, it indicates the end of the list. Once a list 

has been formed, further processing can be done onto it. For example we may 

have to add one more item to that or to delete one item out of it.
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3-4 Image Construction :

The PS-algol graphics facilities provide a method of manipulating 

images for bitmapped displays integrated with a line drawing systems. Line 

drawings have the data type p ic ture  written as pic and bitmaps have the data 

type im age written as #pixel.

An image is a 3-dimensional object made up of a rectangular grid of 

pixels. A pixel has a depth to reflect the number of planes in the image and an 

image has an X and Y dimension to reflect its size. In its most degenerate form 

a pixel is one spot which is either on or off . For example,

iet a.pixel = o f f

creates a pixel a.pixel with depth 1. If we want a pixel with depth 4 we may 

w rite ,

let a.pixel = o ff & on & off & o n

which creates a.pixel with depth 4. The simplest way of constructing an image 

with an X and Y dimension different from 1 can be achieved by writing

let an.image = Image 5 by 10 of on

which creates an.image with 5 pixels in the x-direction and 10 pixels in the y- 

direction all initially on and of depth 1. The origin of all images is (0,0).

Another way of construction of an image in the 2D case is by the 

picture drawing facilities of PS-algol, which allows the user to produce line 

drawings in an infinite two dimensional real space. Pictures may be mapped 

onto an image. Once a picture has been mapped onto an image it may be 

manipulated as an image or drawn as an image. A picture are usually built up 

of a number of sub pictures. The simplest picture is a point. For example,
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let point := [5.3 , 2.6] declares a picture with name point. Pictures may 

be joined together using the join operator For example,

iet square = [0,0]  ̂ [2,0]  ̂ [2,2]  ̂ [0,2] draws a picture, see Figure 3.1(a).

^  (2.2)(0.2) ^

(0.0)
(a)

(0.2)

(0.0)
(b)

(2.0)

Figure 3.1

To get an image we can map a picture onto an image. For example,

d ra w (s c re e n ,s q u a re ,-x ,x ,-y ,y )

will draw the section of the picture square which is bounded by -x,x,-y,y in 

its coordinate space. The standard identifier 'screen' is an image. A picture 

which has been mapped onto an image can be filled by any colour specified by

using the standard function fill. For example

fill(square, off, 1,1)

will fill the square with black, see Figure 3.1(b). In this work most of the

images are constructed using this techniques.

In case of 3-dimension an image can be written as,

let 3D.image = Im age 5 by 20 of on & on & off & off & on

which creates an image 3D .image with 5 pixels in the x-direction, 20 pixels in 

the y-direction and having depth equal to 5 (i.e., 5 planes). The planes of the
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pixel are numbered from zero . We can also use many planes to build a three- 

dimensional image; by simply putting them one after the other. Different 

three-dimensional images can be obtained by simply interchanging the 

position of the planes. In the case of the Sun 3/60 the maximum depth for a 

three-dimensional image is equal to 24 i.e. 8 bit planes per colour. The depth 

of an image can further be increased by joining two or more 

three-dimensional images each of depth 24.

Another way of constructing an image is by using the mathematical 

formula given for an object. Using a formula we can compute the points which 

will give us a picture and to get an image we can map them on an image 

( e.g., screen).

All the images can be interrogated by a standard function Pixel. For 

example,

Plxel(an./rnage, 2,3 )

will return the pixel value at position 2,3 of the image an.im age. For black and 

white images this value can be on and off only. In case of three-dimensional 

images each plane can be accessed separately by using the command given as.

let b -  S D .Im a ^ ^  1) 

start from 0th plan© consider one plane

which ask the program to start from 0th plane and consider one plane only. 

Here it yields a plane which is the first plane of the SD.image.
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All two dimensional images which are used in this work are given in 

Figure 3.2. Some of the three dimensional images are obtained using these two 

dimensional images by putting them one after the other.

3-5 Storing an Image in a Database :

All the Images which are used in this work are initially stored in the 

database . To show, how images can be generated by using line drawing 

facilities and how images can be stored and retrieved from the persistence 

store an example is given of a program. In this example, it is assumed that the 

database root is a pointer to a data structure for associative storage and 

retrieval, supported by PS-algol, called a table. Entries are placed in the table 

using the procedure s.enter which takes the associative key, the table, and 

the value to be stored. The procedure s.lookup retrieves a value from the given 

table using the given key
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(99,99) (99,99)

(0 ,0 ) (0,0)

(o) (b)

(0 ,0)

(99,99)

(0 ,0 )

(d)

(45,27)

(C)

Figure 3,2, Two-dimenslonol images which ore obtained by using the line drav 
facilities of Ps-algol,



(63,35)

(0,0) (e)

(0,0)

(1 17,1 17)

Figure 3.2 [contdl .Two-dimensional Images
Note : The rectongle enclosing en imoge îs not included in the imd(,
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I Structure used to store the image, 
s tru c tu re  image.container{c#plxel an .im age) 
let db = create, database ("an image","pass") 
if db is error.record d o  

b eg in

w rite  "unable to create database :",db(error.explain),"'n" 

a b o r t  

end

! This block will make a small window on the screen
let X = X .d im (sc re en ) d iv  2 ; let Y = Y .d im (s c re e n ) div 2

let Image = lim it screen to 100 by 100 at X,Y

I This will draw the picture using line drawing facilities, 
let a = [S0,20]^[80,20]^[80,50]^[50,50]^[50,80]^[40,80]^

[40,70]/'[10,70]/'[10,60]^[20,60]^[20,40]^  

[40,40]'^[40,30]^[30,30]'^[30,20] 
let b = [70,70]^[95,70M95,80]''[90,80]^[90,90]^[70,90]^[70,70] 
let a.pic = a & b

I To get an image we have to map a picture on an image. 
d raw (lm ag e ,a .p ic ,0 ,100 ,0 ,100)
fill( lm a g e ,o n ,5 0 ,4 0 ) I This will fill the area with value o n
flll(lm a g e ,o n ,8 0 ,8 0 )

! a structure containing an image Image
I associated with the key "Image"
s.enter("lm age",db,im age.container(lm age))
if commitO = nil do w rite "the Image entered in the database ’n"

Program 3: A program to store an Image in a database

The database called "an image" now contains a table with a key "Image" 

which has an associated value of a structure that contains the description of 

the image. This is shown in Figure 3-3.
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Image.container

Image an.image

Figure 3.3. Pictorial representation of the database "an image".

3-5.1 Retrieving an Image from a Database:

The next example retrieves an image description from the database and

places it on the screen for further processing on it.

I Structure used to store the image, 
s tru c tu re  im age.container(c#pixel an .im age) 
let db = open.database("an image","pass", "read") 
if db Is error.record d o  

b eg in
w rite  "unable to create database :",db(error.explain),"'n" 
a b o r t  

end

let get.image = s.iookup("lm age",db)(an.im age) 
copy get.image onto lim it screen at 100,100

Program 4: A simple program to retrieving an image from the database.

3-6 Scanning and Drawing of an Image:

As defined earlier an image is nothing but the collection of pixels or 

dots defining a rectangle. Since a murray scan is a space filling curve, it will 

pass through each and every pixel in an image recording the colour information 

and the number of successive pixels with the same colour. Before scanning an
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image we have to decide the murray radices. Murray radices can be obtained by 

factorising the x and the y dimensions of an image. Only point to remember is 

that the product of the x-radices must be equal to the x-dimension of the 

image and similarly for the y-radices. If the dimensions of an image cannot be 

factorised then we will use only two murray radices equal to the x and the 

y-dimensions of an image. The sequence of colour and run length are then 

coded to minimise the data required to describe the image. The image is 

usually split into bit planes and each bit plane considered separately as a 

black and white image (i.e. on or off). In the case of black and white images 

there is no need for colour information as the run lengths alternate between 

black and white. However, the first output in the sequence must obey a 

convention, usually taken as first run length is white. If the first run length is 

one of black pixels then a zero is output first. With this information an image 

can be easily described and thus reconstructed from the run lengths at any 

required position. For example, the simple rectangular image (Figure 3.4), have 

been scanned using a murray polygon with x-radix 6 and y-radix 3.

(a)

0.4,3,1.8,1,1 

Black

(b)
2,2,4,2,2,2,4

I I White

Figure 3.4. (a) Here the first runlength is zero since the 

starting point in the image belongs to the 

black cell.

(b) Here the first runlength is not zero since the 

starting point in the imagebelongs to the 

black cell.
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The collection of runlengths and the murray radices used to scan the image are

then stored in the database or in a file and can be used for further processing

which we will discuss in the following chapters.

It is assumed that the murray scan will be able to take advantage of

any inherent structure in the image. Since the murray scan is moving around in 

two dimensions a point on the murray scan will have four possible directions 

to move rather than the standard linear scan with fly back which has only one 

possible direction to move. The pixels coherence can therefore be exploited in 

the case of the murray scan than that of standard linear scan with fly back. 

Hence a murray scan with its localized scanning patterns has a better chance 

of capturing a few long runs of pixels of the same value. One could conclude 

that the murray scan will therefore produce less runlengths than that of the 

standard linear scan with fly back. But it is not always true. The explanation 

for this is as follows. Consider a large homogeneous connected color blob with 

a well defined boundary as shown in Figure 3.5.
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mm.

Figure 3.5. Boundary point possibilities in the two cases.
a) Murray scan. In case Ml the scan touches the boundary only in one 
point, whereas in the case of M2 - MS , it touches the boundary either 
in two points or more.
b) Linear scan . In case LI it touches the boundary in only one point 
i.e. tangent. In the case of L2 and L3 the bourxfary points are two or 
more.

Most linear scan run lengths will pass through two of these boundary points 

for each run corresponding to the entry and exit points of run. There will be 

exceptions to this case when a horizontal line touches only one boundary point 

and similarly when a part of the boundary is itself a horizontal line. The 

exceptions tend to cancel each other and the number of run lengths is roughly 

proportional to half the number of boundary points on the blob. In the case of 

a murray scan these exceptions will be different. Since a murray scan is 

frequently changing direction there are likely to be more instances when the 

scan either meets the color blob in just a point or several boundary points and 

other cases when an internal run meets the boundary and then turns back into 

the blob thus giving a long run length associated with a particular blob (see 

Figure 3-5a). Since boundary points are used up in a different way to that of a 

standard linear scan, the total number of runlength will be affected. Further 

in the case of a standard linear scan a break of runlength can be a minor 

advantage in favour of murray scans. Since a murray runlength passing through 

an interior of a color blob will be long, there will therefore be some long
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runlength associated with a particular color blob and consequently since the 

total number of runs Is approximately constant in comparison to linear scan 

with flyback, there will be a large number of short run lengths to compensate 

for this and thus will have a different distribution to that of a standard linear 

scan. This distribution may be exploited in a final coding of the run length for 

storage or transmission. For more detail refer Buntin{1988).

3 6.1 How to draw images using a sequence of runlengths :

Since the runlength sequences are associated with their color, the 

reconstruction from the runlengths at any required position will be very 

simple. W e will explain this with the help of an example. The color 

information, runlengths, and the murray radices corresponding to an image is 

given below,

co lo r “> w b w b w b w

runlengths -> 4, 5, 1, 1, 2, 1, 1

x-radices > 3

y-radlces > 5

We will start from the first point i.e., (0,0). Since the first runlength is 4 and 

is white, we will move four steps in accordance to the scan direction, giving 

value on (or 1) to these four points. Next runlength is 5 and it corresponds to 

the black cell, so the next 5 points will get the value o ff( or 0) and so on. The 

final image Is given in Figure 3.6
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Figure 3.6. Construction of an image from a sequence of runlengths.

The procedure which will draw the image back on the screen using the 

runlengths is given below. This procedure will take a linked list of runlengths 

and the murray radices.

I The input are the murray radices and the list of runlengths. 
let draw.image = proc(*int r; pntr LIST) 

begin
let digits = vector 1 :: upb(r)+1 of 0
let parities = vector 1 :: upb(r)+1 of true 

I X and Y can be of any size
let window = limit screen to X by Y at 1 0 0 ,1 0 0  

let X := 0 
let y := 0
while LIST -=  nil do 
begin

let pixels := LIST(run.length)
let white := If LIST(col)="w" then off else on
let B.or.W.square := Image 1 by 1 of white
for i = 1 to pixels do
begin

If LIST(next) ~= nil or (i < pixels) do  
begin

copy B.or.W.square onto limit window at x,y
let i = increment(digits,r,1)

change.parity(parities,i)
let inc := If parities(i+1) then 1 else -1
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if i rem  2 = 1 then x:= x +inc else y := y +inc
end

end
LIST:=LIST(next)

end
end

3-7 Remarks :

In comparison to the standard linear scan with fly back a murray scan 

will be slow, since it requires more calculations per step than that of a 

standard linear scan. However, hardware can be built to compensate for this. 

However a murray encoding will in general be more compact than that of 

standard linear scan (as discussed in section 3-6) .

In comparison to the murray approach the quadtree approach may take 

more time to scan an image. This is due to the extra preprocessing steps used 

in obtaining the quadtree. To form a quadtree, the very first step which is 

required is to convert the rasters (i.e., runlengths) into a quadtree 

(refer Samet( 1981)). The scanning is generally done by a standard linear 

scan.The next step is to traverse the quadtree to merge groups of four pixels 

or four blocks of a uniform color. In the case of a linear quadtree we have to 

apply condensation and sorting to the collection of codes obtained after 

transforming rasters (i.e., runlengths) into a linear quadtree (refer 

Unnikrishnan and Venkatesh(1984)). In the case of the murray approach, we do 

not need to process the runlengths, once obtained after scanning an image. 

Hence a murray approach may be less time consuming than that of forming a 

quadtree or linear quadtree.

in order to obtain the compacted codes for an image, both approaches 

(i.e., murray and linear quadtree), will be equally effective, depending upon the 

shape of an image {Note : we use a linear quadtree for comparison because it
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stores only black pixels rather than that of a general quadtree ). The reason is 

as follows. In the case of quadtrees an image is divided into four quadrants if 

it is not homogeneous ( i.e. not of the same color). A quadrant is subdivided 

into four subquadrants if it is not homogeneous and so on. These quadrants are 

then dealt separately to encode the present black pixels. In the case of murray 

polygons also an image is divided into small tiles, but these tiles are not 

considered separately as in the case of quadtrees (Note : Tiles corresponding 

to the quadrant). To get the runlengths we proceed from tile to tile gathering 

the pixels of the same color. Since in the case of murray polygons we deal 

with the whole image rather than the quadrants, hence there may be a better 

chance of capturing more pixels of the same color. The main advantage of 

linear quadtrees is to store only the black pixels, whereas in the murray 

approach we have to store both the black and the white pixels. Hence in some 

cases linear quadtrees may be more compressive than that of murray approach. 

But in the case of linear quadtree, smaller the black homogeneous quadrant 

bigger will be the code length and in the case of the murray approach, smaller 

the black homogeneous area smaller will be the code length. Hence nothing can 

be stated positively about the two approaches. Best and worst cases are 

always there. Here consider two cases (i.e. best and worst) to justify it.

(Note : Here the best case is in favour of the quadtree approach . We can 

consider simiiarly the best case for the murray approach also)
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2 3 4 5 6 7 8

(b)

Note : In the case ( b) , for the murray approach we have 

increased f/ie dimen&ons by one unit.

Figure 3.7. Two cases (a) best case and (b) worst case

In the best case (see Figure 3.7a ), a linear quadtree has only one code to 

store whereas a murray approach has at least four codes (i.e. runlength) to 

store the information about the image.

In the worst case (see Figure 3.7b ) a linear quadtree has 12 codes to 

store, which are given below,

310, 301, 300, 211, 210, 201, 132, 130, 023, 021, 12, 03

whereas in the case of murray approach we required only 7 runlengths to

store the image.The runlengths are,

29, 2, 4, 12, 2, 4, 29

In the case of linear quadtree only the black pixels are stored, whereas in the

case of the murray method white as well as black pixels are stored .

Similarly we can also consider best and worst cases for the murray approach.
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CHAPTER 4. SCAN CONVERSION AND SCALING OF IMAGES.

4"1 Introduction ;

As discussed in chapter 1, murray polygons can be used to scan 

rectangles of different, sizes. A rectangle can be scanned either by using 

horizontal murray scans or by using vertical murray scans. By a horizontal 

murray scan we mean that the displacement in the y-direction will only be of 

one unit, either increment or decrement and vice-versa. As discussed earlier, 

the basic direction of the scan from horizontal to vertical can be changed by 

making the least significant radix take value 1. Further a vertical scan can be 

obtained by changing the positions for the radices and the values, 

corresponding to the x-part and the y-part, more detail follows.

An image represented by an n*n array of pixels would need too much 

space to store it in uncoded form. The exact data compression can be achieved 

by runlength encoding. By exact data compression we mean, to restore the 

same image, without any distortion from the collection of runlengths.The 

runlength sequences and their associated colour information are produced by 

scanning an image with a murray scan.The murray scan will pass through each 

and every pixel recording the colour information and the number of 

consecutive pixels of that colour. The data can further be compressed by 

coding the runlengths. We can compress the data either to give the exact 

compression or to give an approximate compression. By approximate data 

compression we mean, once the data has been compressed we cannot restore 

the same image from the collection of runlengths. Here some of the 

information is going to be lost.The runlengths can be scaled up or down as 

required. The only point to remember is that, if we have to scale the image in 

the x-direction then we will use a horizontal murray scan to scan the image 

and for the y-direction scaling we will use a vertical murray scan. If we want 

to scale an image in the x-direction as well as in the y-direction the simplest
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way of doing it is to scale the image horizontally/vertically then draw the 

image on the screen using the compressed runlengths and then scan this scaled 

image vertically/horizontally to get the sequence of runlengths, which can be 

scaled in the vertical/horizontal direction. Drawipg and scanning part of the 

image will be time consuming, so it would be better if we only work on the 

runlengths without going back to the image, to get the runlengths for the 

another scan(i.e. vertical or horizontal). We discuss how this can be done.

In this chapter the conversion from horizontal murray scan to 

vertical murray scan, or vertical murray scan to horizontal murray scan, is 

described. We call this process scan conversion. In this chapter we will refer 

to horizontal murray scans as scan1 and to vertical murray scans as scan2. 

Scaling the images either in one direction (i.e. x or y-direction) or in both 

directions is described. All the algorithms derived use only runlengths. Finally 

the results are compared for the different images shown in chapter 3. The 

language used for the algorithms Is the Outline System of PS-algol[Carrick, 

Cole, and Morrison(1987), and Morrison(1988)j and C[Kernighan, and 

Ritchie(1978), and Kelley, and Pohl(1984)].

4-2 Scan Conveision :

Here two methods are discussed for the conversion of scant into scan2 

and vice-versa. Both the methods use the murray run length encoding and 

murray radices as input.The efficiency of both methods is compared for 

different images.The result obtained are shown in the following sections.

4-2.1 Method 1 :

Before we describe this method, we will review some of the 

definitions previously defined. As shown earlier murray scans can be forced to 

go either in the x-direction or in the y-direction by incrementing or
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decrementing the x-part or the y-part by one unit. This can be obtained simply 

by using a radix value of one. Another way of achieving this is by changing the 

x-part and the y-part. For example let r^, rp-i be the radices and dp .dp-i be 

the corresponding digits.The radix rp .i forces the scan to move rp-i steps in 

the x-direction whereas the next radix rp force the scan to repeat the 

previous step rp times in the y-direction.If we interchange the radices i.e. Rp, 

Rp_1 where, Rp = rp_i and Rp_i = rp and the digits also ( i.e. Dp = dp.-j and 

Dp_i -  dp ), then the scan will go firstly in the y-direction then in the 

x-direction, since all odd digits now corresponds to the y-part and all even 

digits corresponds to the x-part. This is discussed below.

Mathematically :

Let N be the nth point on a given scan (say scant) and,

let d = dp,dp--j  ...................d i be the equivalent murray integer with the

radices r = rp,rp_i,.............................ri  ̂ where n = 2k and k is an integer. Now our

problem is to find the corresponding mth(say) point on a second scan, i.e.,

scan2. Let c = Cp,Cp_i...................c i be the Gray coded transformation of a murray

integer d, where

G| = dj iff S dj is even, (for j = i+1, n) ------------  (A)

= rj-1-dj otherwise

Let A = Ap,Ap_i,....................................... A«j be the Gray coded integer where

Aj = C| + i iff i rem 2 is not equal to zero ---------------  (B)

= Cj_i otherwise

Since we have interchanged the Gray coded integer (i.e. A-j = C2 , A2 = c i ,

 etc), we also have to change the radices correspondingly .
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,R •} be the corresponding radices such that forLet R= Rp,Rp_“j , ............................

each i ,

0 < -  Aj < R{ where

Rj -  rj + 1 iff i rem 2 is not equal to zero ----------------- (C)

= r|_i otherwise.

The two scans may now be defined as :

Scan 1 (or Horizontal scan ) :

To get a horizontal scan we will consider our x-part and y-part to take the

values,

X' = Cn-i,Cn.i,..................   , 0-} and,

y  = ^nf^n-2>...................... *.................... ' %

Now simply de-gray code x* and y* parts and then convert back to

ordinary integers giving (x,y) as expiained in chapter 2.

Scan2 (orV ertica l sccai) :

If we simply Interchange the values of x' and y \ the two parts will be given 

as.

x ' = ^n>^n-2f .,A2 and,

y ’ = ^n-h^n-3» ..................................................

Then by simply de-gray coding x' and y ' parts and then converting back to 

ordinary integer we will get the coordinate for the verticle scan.
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To get the corresponding mth point on the second scan we can de-gray 

code the digits Aj to give the equivalent murray integer, which can be used to

determine the corresponding point in scan2.

Let d p,d'p_i............................................ d'i be the equivalent murray integer

where, for each i,

d'l = Aj iff Z Aj is even, (where ]= i+1,.......... n) ---------------  (D)

= Rj-1-A j otherwise.

The corresponding mth point in the second scan can now be given as,

= ((........... ((d'n* F^n-1+  ̂n-l)*^n-2+..................... +d'2)*R-j+d'i.

{Note : Total number of parenthesis will be equal to n-2.)

The steps of the transformation for a given point N, which is the nth point in
scan i, to the mth point in scan2 are,

1. Convert N into the equivalent murray integer with the given
radices,

2. Convert this integer into the equivalent Gray coded integer,

3. Interchange the Gray coded integer,

4. Convert back to equivalent murray integer,

5. Convert back to the mth point on scan2.

Further if a coordinate for a pixel on an image is given, the 

corresponding nth and mth points on scani and scan2 can be determined. Let 

(x,y) be the coordinate representing a pixel on an image. The first step to get 

the nth point in scani is to convert the x and the y coordinates to the 

equivalent gray coded integer as explained in chapter 2. Let the two parts be.
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(X , y ) (Cn-iCn-3 c-\ , CnCn>2 %  )

Two get the mth point in scan2 we have only to interchange the x-part and the 

y-part and the radices and the rest will be the same as for scani. The two 

parts for x and y will then be,

(x , y ) = { c*nC'n-2  c '2 , c‘n -ic 'n -3  ) where,

c'i = Cj+1 iff i rem 2 is not equal to zero

=  Cj.-j otherwise

The whole scheme is given in Figure 4.1. The steps of the transformation from 

the murray digits of scani to the corresponding murray digits of scan 2 are 

given in Table 4.1.

Nth
point

scani
Gray-code
Integer

Interchange
Gray-code

Integer

scan2

Mth
Point

r->3  5 
d -> d 2d ^

r->5  3 
d ->d2d^

d C A de-gray code A

2 02 02 20 20 6
9 14 10 01 01 1
13 23 23 32 30 9
14 24 24 42 42 14

scani
Gray-code
Integer

Interchange
Gray-code

Integer

scanZ

Nth
point r-> 1 5 3 5 3 3 r-> 5 1 5 3 3 3

Mth
Point

d C A de-flray code A

11 000102 000120 001002 001220 51
435 041310 041110 401101 401101 577 -

Table 4.1. Transformation of murray digits of scant to murray digits of scan2.



Figure 4.1. Murray Transformation from N to (x,y).

PURE 
INTEGER MURRAY

INTEGER
(d)

•-STEP 2 
GRAY CODE 
INTEGER

(d*)

scan2

scant

........... mth

STEP 
GRAY CODE 
COORDINATE

( ^,y')

STEP 3 
INTERCHANGE 
THE DIGITS

STEP 4 " -  ►  STEP 5
MURRAY ORDINARY
COORDINATE COORDINATE 

(X",W") (x,y)

"n "n-1
scant

^scan2

A „ A „ , ................ A , i p e  ^ ')n n - i i  1 ^

( ^  n ^ x \ -2 .....^  2 ' ^ n - 1 ^  n-3.......^ 1 )

I
( ^n ^n-2.... ^'2  • '^n-t '^n-3...... '̂ 't ^

(Cn.t: 'n-3'Ct,C'nC'n_2_C'2 )

( X, y )

Where
dj = N rem r  ̂ the new value of N w ill be equal to (N div  ̂ r̂ ')

Here 1 w ill start from 1 and will range upto
C. = d. If £  d 

1 1
Tj - 1 - dj

Is even.

otherwise.

Aj = C j+ j i f f  1 Is odd And R,

Cj_jOtherwise

r .  , i f f  i is odd. 
1 + 1

r, otherwise 
1-1

.SC.Q.QL;
C' = C if Cj*2 * C 1*4............. ’ .....

r  -  I -  C. otherwise 

= « ................................. "h-3>*^n-5* '^n-5’ * fn -7 * + C ')

y = ((...... ( c;
SjEfln2-.i

r„ n* c* o )*r„  4+ C\_4) *  r^_,n n-2 n -2 '  n-4 n -4 ' n-6

To get scan2 , replace C by A, C* by A" and r by R in the above expressions. The 
value for the x and y part will be given as,

« = «..... (AA *Rn-2"‘̂ n-2>*Rn-4*A'n-4’*Rn-6 *.............

W = « ........ ( V 3  n-3 )'R n -5  *^ n -5  n-7 .*A', )
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Now for a faster algorithm we will define a few lemmas :

Lemma 1 :

Suppose d is a murray integer^ c is the Gray coded integer^ A is the 

equivalent Gray coded integer obtained from c as defined above^ d' is the 

equivalent murray integer obtained from A, then for all odd I, we have,

d'i = d j+1 iff d(i) is even

= r j+ i -d|+i -1 otherwise

or

d'i = d i+1 iff I  r\ -r|+-|“di is odd

= r|^-| -di .̂-j ”1 otherwise

where n = no. of digits

Proof.

Since i is odd, then from the above equations I.e. B and C, we have 

AI = Ci+1 and

^i ~ fi+1 (1 )

Further from equation D we have

d'i = A| iff â  A| is even

-  R |-1 -A j otherwise.

Using condition (1) In the above equation we will get, 

d'i = Ci+1 iff L q + i - Ci+1 is even (2)
t r i

-  r\^-\ -c;+i -1 otherwise.
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Also by using equation (A) we can get ,

q+ 'j = dj+1 iff .^d ; is even (3)

= r j+ -|-1 -d j+ i otherwise

Now we will use equation (2) and (3) to find a equation between d and d'. We 

will consider four cases.

Case 1 : .£ d j is even and ^ q + i-C j+ 'j  is also even1-1

From equation (2) and (3) we have,

d'i = Cj+1 and q + i = d |+ i

This implies d'j = d;+i.

The above two conditions (i.e^.Zjd; is even and ^ q + i - q + i  is also even ) can 

be joined to form a single condition . let us consider,

v>—1
Z C j+ i -q + i  = even

M “1
or £  d|+i -d|+*| = even

c- »

dj +d;+i +d|+2 + .........................+dn -dj+i = even

dj +dj^.2 +........................................... +dn = even

But £dj is even, this implies, d; + even = even

I.e.; dj = even

Case 2  ; E dj Is even and ]^ C j+ i-q + i is odd
L+a. 1-1

From equation (2) and (3) we have,

d'j = q + i  and q + i = n+i -1 -d|+i
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Using the above two conditions(i.e, £  d| is even and £ 01+ 1-0 ;+-; is odd) we
ita. i - i

will get,

d'i = ri+-| -1 -dj+1 if d| is odd 

Case 3  : £ d i is odd and £C |+1-01+1 is also oddL+3. ' 1-1 '

From equation (2) and (3) we have,

d'i = r;+i -1 -Cj+1 and c;+i = q+i -1 -d ;+ i 

This implies d'j = rj+i -1 -( q+ i -1 -d ;+ i)

d'i = dj+1.

We can now find a single condition by joining the above two conditions 

( i.e^.Edj is odd and £ c j+ i-c j+ i  is also odd ). let us consider,
ci-a. c-i

,T c i+ 1-01+1 = odd

Y>-}
or Z ( n+i -1 -d j+ i)  - ( n + 1 - 1  -dj+i ) = odd

t-}

\ * r i +1 -£d j+ i - £  1 - r;+i +1 + d j+ i) = odd
L-'i

rj4-rj+i 4-.............-f-rpi -( dj+dj+i + .+d;^) - (n-i+1) -r;+i -1-1 4-dj+i = odd

n + £ n -dj -£dj -n +i = odd
t+a. ùta.

n n
r j+ ^ £ jj-d j-o d d  -n 1-i = odd (since £d; is odd)

£  r; -r;+i -dj -even +odd = odd -i-odd { n is even and i is odd, given)

£  r; -r;+i -dj = odd
L
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n V)-J
case 4  ; £ dj is odd and £ Cj+i-Cj+i is even

i-i

From equation (2) and (3) we have,

d'i = n+i -1 -q +1 and q + i = d|+i

Using the above two conditions(i.e. £ dj is even and £ Cj+-|-Cj+i is odd) we
t—I

will get,

d'j = rj+1 -1 -dj+1 if £  rj -rj+ i -dj = even

Combining all the four cases we get,

d'j = d j+1 iff d(i) is even

= rj+1 -dj+1 -1 otherwise

or

d'j = d j+1 iff £ rj -rj+1 -dj is odd
i

= rj+1 -dj+1 -1 otherwise

Hence proved.

Lemma 2 :

Suppose d is a murray integer ,c is the Gray coded integer ,A is the

equivalent Gray coded integer obtained from c as defined above ,d' is the

equivalent murray integer obtained from A ,then for all even i , we have

d'j = dj_i iff d(i) is even 

= rj_i -dj-1 -1 otherwise

or

d'j = dj_i iff £  rj +dj is even
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= rj_i -dj-1 -1 otherwise 

where n = no. of digits

Proof.

Since i is even, then from the above equations i.e.; B and C, we have

Aj = Cj_i and

Ri = n.i (4)

Further from equation D we have

TO
d'j = Aj iff £ Aj is even

1+1

= R j-1-A j otherwise.

Using condition (4) in the above equation we will get, 

d'j =  Cj.-j iff £  Cj.-j is even (5)
Ita-

= rj.-j -Cj.-j -1 otherwise.

Also by using equation (A) we can get ,

Cj.-j =  dj.-j iff £  dj is even (6 )

r j . - j - 1 -d j . - j  o th erw ise

Now we will use equation (5) and (6) to find a equation between d and d'. As 

usual we will consider four cases.

VI ,
Case 1 : £  dj IS even and £ c;.i is also even

I  C+a.

From equation (5) and (6) we have,

d'j = Cj.-j and Cj.-j = dj.-j
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This implies d'j = dj.-j.

The above two conditions (i.e. L dj is even and Y  q.-j is also even ) can be
i  i i - X

joined to form a single condition . let us consider,

•n+j
£  Cj.-j = even  

i+2.
TT4 I

or £  dj.-j -e v e n

dj+1 +dj+2 +................... +dn = even

dj -f-dj+i -f........................ ....+dn -dj -  even

But £dj is even, this implies, even - dj = even

i.e.; dj = even

n Yi+>
Case 2  : £  dj is even and £ Cj.i is odd

i  l - t x

From equation (5) and (6) we have,

d'i = Cj_i and Cj.i = rj_i -1 -d j.i

■fl v>+-t

Using the above two conditions(i.e £  dj is even and £ Cj.i is odd) we will
C 1+2-

get.

d'l = r|.i -1 -dj_i if dj is odd

Case 3  ; £  dj is odd and £  q . i  is also odd
i  i - l - x

From equation (5) and (6) we have,

d'j = q .i -1 -q_i and q_i = q .i -1 -d j. i

This implies d'j = r j.i -1 -( q_i -1 - d j . i )

d'i = d | . i .
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We can now find a single condition by joining the above two conditions 

(i.e. £  d; is odd and £ C|_i is also odd ) . let us consider,
Ylf I
. £  Cj.-j = odd

or ^£ ( rj.-j -1 -d j.- j)  =  odd

L+a.
-A+l
£  r

H-au

I '
i '
y\

or £  r

L + a- 
r»+l

£ n.-j -£dj_i - £  1 = odd

.-j -f-dj -£d j - (n-i) = odd

_1 -Fdj -odd - even -t-even = odd

_1 +dj = even

-(-dj = even
C-+I

£ C  

L-+a-
case 4  ; £  dj is odd and .£ Cj.-j is even

t » L-+5.

From equation (5) and (6) we have,

d'j = rj.-j -1 - C j . - j  and q.-j = dj.-j

Using the above two conditions(i.e £  dj is odd and £ cj.-j is even) we will get,

d'j = rj.-j -1 -dj.-j if £ n +dj = odd

Combining all the four cases we get, 

d'j = dj.-j iff d(i) is even

= rj.-j -dj.-j -1 otherwise

or

d'j = dj.-j iff £  r\ +dj is even
l-M

= rj.-j -dj.-j -1 otherwise

Hence proved.
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Using the above two lemmas, the steps of the transformation from n to m 

(where "n" is the n̂ h point on the scant and "m" is the m^h point on the scan2), 

are

1. Convert n into the equivalent murray integer with the given 

radices,

2. Convert this integer into the equivalent murray integer of scan2 .

3. Convert back to the mth point on scan2.

4-2.2 Method 2 ;

The efficiency for the method discussed above can be further improved 

for large complete scans. The first method discussed above is slow because 

there are so many operations which have to be applied such as gray code 

integer conversion, interchanging the digits etcetera. In this section we will 

present an algorithm which is usually faster than the one described above.

Let us consider a rectangle of size n*m, where n represents the 

number of columns and m represents the number of rows. The rectangle of size 

n*m can be scanned either by using scant or by using scan2, where scant and 

scan2 are described above.

Since murray polygons are space filling curves, they will pass through 

each and every point in a given space. Since each point will be visited only 

once we can mark all the points by giving them an integer number. Scant and 

scan2 will give a different numbering to the pixels (see Figure 4.2), since the 

direction is different.

The efficiency may now be improved if we deal straight with the 

numbers marked on each pixel (see Figure 4.2), to find the corresponding mth
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The efficiency may now be improved if we deal straight with the 

numbers marked on each pixel (see Figure 4.2), to find the corresponding mth 

point in the next scan. Here we do not have to find the gray code conversion, 

digits interchange, etcetera.

Now we will define two lemmas, to get the above transformation. 

Before we discuss these two lemmas we will review some definitions already 

given.

Let r n, rn-1» ^n-2............................... r-j define the radices q associated

with the digits d; (i = 1,2..... n), such that for each i, 0<= d; < q. As explained

earlier the product of the first two radices will be equal to the number of 

pixels present in a tile i.e., (no.of pixels/tile is equal to r-j*r2 ), the product of

the next two radices will be equal to the total no. of blocks. 1 (say), each of 

size r-| *r2 (i.e. size of a tile), the product of the next two radices will be 

equal to the total number of blocks.2(say), each of pixel size 3̂*̂ 4

and so on. For example:

If r-j = 3, r2 = 3, rg = 5, r^ = 7, rg = 3 and rg = 5, then no. of pixels/tile 

is 9, total no.of blocks. 1 of pixel size 9 are 35 and total no.of blocks.2 of pixel 

size 315 are 15 .

From the following two lemmas , the first one finds the corresponding 

point in an image where a murray scan moves across the full width of the 

image before a unit change in the y-direction occurs. Here the whole image is 

considered as one large complete tile, whereas the second lemma finds the 

corresponding points In an image where a murray scan partitions the whole 

image into small tiles each of size r-j *r2 and the total number of such tiles in 

an Image is equal to rg^r^* *r^ .
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Lemma 3 :

Suppose a tile of size N*M is given, and that i is the point on the

tile in scant.Then the corresponding point on the tile in scan2 is given by, 

(scant and scan2 have their usual meaning),

j = M*A +B iff A is even 

= M*A +M -1 -B otherwise 

where, A and B are the row and the column numbers respectively, and,

N = r(1) and M = r(2)

Proof:

Consider an image of size N*M i.e., n columns and m rows. All the 

pixels in an image are numbered (see Figure 4.2). The top right numbers 

belongs to scant i.e., a horizontal scan and the bottom left numbers belongs 

to scan2 i.e., a vertical scan.

Let us consider scant first. From Figure 4.2, we can see that

the start points for scant in each row are 0, N, 2 N , ..........., and (M -t)N . Each

row has N points. If we divide each point in the first row by N then the 

divisor will be zero. For the second row the divisor will be t and and so on.

If we multiply these divisors i.e., 0, t ,  2 ........... and M -t by N we will get the

starting point for each row. Let us call the divisors 0, 1, 2  ,M -t the y-

values.

Similarly if we consider scan2, the start points for scan2 in each

of the columns are 0, M, 2M, ........... ,(N -t)M . If we divide each point in the

first column by M the divisor will be zero, similarly for second column, the 

divisor will be 1 and so on. The start point for each column can be
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determined by multiplying m by these divisors i.e. 0, 1, 2 ................ ,N-1. Let us

call them the x-values.

If the ith point on scant is given to us then it is very easy to get 

the start point for a row, by simply dividing the ith point by N to get the 

divisor and then multiplying it by N. To get the starting point for that 

column, we have to find the x-value first. Two cases can be considered,

1) y-value is even

Let us consider the 2 Nth point on scant. From Figure 4.2 it can be 

seen that the number 2N is obtained by multiplying N by the 

corresponding y-value of that row and then adding this to the 

corresponding x-value of the column. Here the y-value is 2 and 

the x-value is 0 which is equal to 2N rem N. Therefore for a given 

point (say ith) the x-value will be given as i rem N.

2) y-value is odd

Let us consider the (N+1)th point of scant. The number N+t is 

obtained by multiplying n by the corresponding y-value arid then 

adding this to N-t-(x-value), since for all odd y-values the 

direction of the scan is reversed. Therefore for a given point 

(say ith) the x-value will be given as N -t- (i rem N).

So far we have discussed the case that if the ith point on scant is given 

then for an image of size N*M we have ,

y-value = i div no.of.columns

x-value = i rem no.of.columns, if y-value is even

no.of.columns -t -(i rem no.of.columns), otherwise.
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To get the corresponding jth point of scan2 we will consider two cases : 

case 1 :

'x-value* is odd :

Suppose the î h point on scant is given( see Figure 4.2). Now we 

have to show that the corresponding point on scan2 is the jth . Since the 

x-value is odd this means that the curve i.e. scan2, is going from top to 

bottom. The starting point for the scan2 in that column will be equal to 

M*x-value. The number of places we have to move further is equal to M-1- 

(y-value) . So the corresponding point in scan2 Is given by , M*(x-value) + 

M -1- (y-value) .

case2 :

'x-value'is even :

Since the x-value is even, this means that the curve is going from

bottom to top. The starting point for scan2 in that column will be M*x-

value. The displacement will be given by the y-value. So the corresponding 

point in the scan2 is, M*(x-value) + y-value.

Combining all the results together It follows that if the Ith point

on scan1 is given then the jth point on scan2 will be given by,

I = M*A +B if A is even

= M*A +m -1 -B otherwise.

Hence proved.
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Before we discuss the next lemma we define some variables to be used.

Let r n. r^ -i, rp,_2................................ r*i define the radices r, associated

with the digits d |/i = 1,2 n) and let i be the ith point in scanI.Then we

define variables a-|, 3 2 , ag,............................   ap/2  as the tile numbers where,

an /2  Is the tile number to which the ith point belongs, where the total

number of tiles is r n* ^n-i with pixel size equal to 

r r  T2* '  r n - 3 % - 2 .

an /2  -1 Is the tile number inside an/2  to which the ith point belongs,

where the total number of tiles is r n -3 * i'n-2  with pixel size equal to

r 1* r2*...............* rn_5*rn_4.

a*| is the tile number inside 82  to which the ith point belongs, where 

the total number of tiles is r 2 * with pixel size equal to 1*1.

Lemma 4 :

Let r = r n, Tn-1, Tn-2..............................  r-f be the radices r; associated with

the digits d; (i = 1,2,....n(=2k, where k is an integer)), such that for each i,

0<= dj < r; and suppose an image of size l*b (where T Is the length of the block

and b is the breath of the block) is given. If N, is the point on the image in 

scani, then the corresponding point on the image in scan2 is given by Mp 

= x-t + ri *r2 *X2 + .............+r^ *r2 * ......... "rn-4*Xn/2-1 + M *r2 *........ *rn-2 *%n/2

or Mp = I2 +I4 +Ï0 +............................+ In  (1)

where In  = r i * r 2 * ......... *rn-2*% n/2

1 0 2
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ro = 1, and

x i, X2 , xg  .................. . Xp/2  are the corresponding points on

scan2 when the corresponding points i.e., a-j, ag, ag.............a^/g on

scani are given.

Proof :

To prove this lemma for each positive even integer n, let us define P(n)

to be the proposition Mp = I2  +I4  + l6 + ..............................+ In-

Suppose n -  2.Then equation(l) gives,

LH.S = I 2

or LH.S = X1

R.H.S = Mg

which is clearly true.Since the total number of radices are two, the whole

image is considered as one large complete tile and hence for a point a-t on

scani we will get x-j the only point on scan2( refer lemma 3).

Suppose now that P(2n) is true for n <= k. In particular,

M2k = l2 +I4 +I6 +........................ .+ I2k

is true . That is P(2k) is true.

But, Mgk+2 = Mgk +l2k+2

or M2k+2 = I2  +I4  +l6 +•••••••...................+ l2k  ■*‘l2k+2

which implies that the statement P(2k+2) is true. Therefore P(2k) implies

P(2K+2). Hence since P{2) is true, the result follows by the principle of 

m athematical induction.
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4-3 Im plem entation of Scan Conversion :

4-3.1 Data Structure :

The data structure for an algorithm plays an important role, since the 

efficiency of the algorithm depends upon that. The main data structure to be 

used in the following algorithms contains five main items, 

runlength 

Sum 

Colour 

left pointer 

right pointer

we define our structure as,

structure int.list^lnt runlength,Sum; string Colour; pntr le ft,right)

w here int.list is the name for the structure and is of type pntr, runlength and  

Sum are of type integer, Colour Is of type string, and finally the items left and 

right are of type pointer. The pointer variables are called Link . Each structure 

is linked to a succeeding structure by the member rig h t.

The field runlength stores the successive runlengths which are

obtained after scanning an image.The field Sum records the number of points

used before a particular cell. The field Colour records whether the runlength 

corresponds to a BLACK area or to a WHITE area. If it corresponds to a white 

area then we put "w" otherwise "b”. The field right points at the next cell and 

the field left points at the left cell. If no cell is present to the right or to the

left side then the pointers will be set to nil. A pictorial representation for the

structure with links is shown in Figure 4.3.
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IntJist

runlength Sum Colour

.......:
0-1 w /  _ _ W s  -1 b -► -2 5  4 w - - ^ 0  |29 lb| 77 w

i  ... ...............

Figure 4.3. Pictorial representation for the structure with links. The third cell records 
that there are 25 consecutive WHITE pixels. The Sum, which Is 5, records 
that 5 pixels are used before this cell.

Note: In the first cell the item Sum is assigned value -1, since our starting

point in an image is zero (see Figure 4.2).

The field Sum plays an important role in implementing these 

algorithms. The main advantages of using this item can be summarized as :

1) It can be used to find the starting point for a particular cell. For 

example in Figure 4.3 consider the second cell. Here the runlength  is 5 and the 

Sum is -1 and the Color of that cell is "b". Since Sum = -1 i.e., the number of 

points used before this cell is zero, hence the starting point for this cell will 

be zero. Further the color is black implies that the pixel number 0,1, 2, 3, and

4 are BLACK in color. Similarly in third cell the pixel numbered from 5 to 29

are W HITE in color.

2) It can be used to draw the image back on the screen quickly. Since 

the starting point of each cell is known to us, we can find the coordinate 

values for the start point and we can easily draw the image by considering 

only the BLACK cell.

3) The number of cells in a list can be reduced by removing all the 

white cells from the list. The new list will contain only the BLACK cells. If

105



CHAPTER 4, SCAN CONVERSION AND SCALING OF IMAGES.

we have to process the list, (for example if we have to scale the image we 

need both WHITE and BLACK cells), the W HITE cells can be obtained using the 

information stored in the BLACK cells.For example in Figure 4.4, consider the 

second cell. The runlength is equal to 10(say r1) and Sum  is equal to 30(say 

s1). Suppose now we want to find the W HITE cell proceeding it. From the first 

cell the runlength is equal to 5(say r2) and Sum  is equal to 0(say s2). We use 

the first two cells to find the W HITE cell in between. The runlength  for this 

W HITE cell will be equal to s1 -s2 -r2 and the Sum  will be equal to s2 +r2. 

Similarly for other W HITE cells.

10 29 b
k

4 73 b /

Figure 4.4. New list obtained after removing 
the iist"given in Figure 4.3.

the WHITE cells from

The third item in our data structure is the colour information. This 

colour information can be removed by assuming that the first cell will always 

corresponds to the white cell. But in some cases where we need to move 

inside the list, this information will be of great help. We will see this in the 

next chapters. Since same list is used for different operations, therefore all 

the list in the database have the colour information for each cell.

The left pointer helps in increasing the mobility inside the list. For 

example consider the list given below,
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5 -1 w / 10 29 b 5 59 W > 4 64 b

1 __________

Temp. Pointer ( T )

Suppose our temporary pointer is at the second cell as shown above. If the 

colour for that cell has changed to ”w" then we need to add the two 

neighbouring W HITE cell to that to form a single cell. Using the left pointer we 

can go to the left cell. The three cells can then be merged together to form a 

single cell.The pointer can be changed thereafter, see below.

This pointer to be changed

20 59 64 b

This pointer toWchanged

Temp.Polnter ( T )
Initially the Temp.Polnter was at the 2nd cell(see above). By using the command 
T = T(left), the Temp.Polnter will now point at the 1st cell. The runlength for the 
first cell will now be equal to the sum of the runlengths of the three cells i.e., 20.
Sum for this cell will be -1. The link next will now point at the 4th cell and the left 
pointer of the cell will now point at the 1st cell (shown dark).

4-3.2 Scanning ;

Here an image Is taken, which is stored In the database and then using 

murray polygons either horizontal or vertical, we scan the whole image. The 

collection of runlengths and the murray radices used to scan the image are 

then stored in the database.The procedure to store an Image or a list in a  

database is given in chapter 3. Before the scanning is done we have to decide 

about the murray radices to be used.
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To get the murray radices, we need to know the dimensions for the 

image. Generally the dimensions for an image are known to us but if not then 

the standard function X.dim and Y.dim (see PS-algol[Carrick, Cole, and 

Morrison(1987), and Morrison(1988)], can be used to get the x and the y 

dimensions of an image. Once we know the x and the y dimensions, murray 

radices can be defined. The only point to remember is that the product of the 

x-radices should be equal to the x dimension of the image. Similarly for the 

y-radices.

4-3.3 Algorithms :

Here two algorithms, one which uses method 1 and the other which 

uses method 2, are given.The results obtained by both the algorithms on 

different images are compared and are given in the next section. The two 

procedures corresponding to two lemmas (i.e., lemma 3 and Iemma4), 

described above are given below, “

! This procedure finds the corresponding points in a tile.
I The Input is the ith point given on scant and the x and
I the y dimensions for the tile.
le t pnt.ln.scan2 = p ro c (in t l,n,m > int)
begin

le t  y := I d iv  n
le t X := If y rem  2 = 0  then i re in  n

else n-1-(i re m  n) 
le t z := if X rem 2 = 0 th en  m*x+y

e ls e  m *x+m -1-y
I '

2 I the corresponding point on the second scan is z. 
end
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I This procedure finds the corresponding points in a block having 

! smallest tile of size x-dimension * y-dimensions.
I The input is the ith point given on scant and the murray radices.
I The vector Fix are the sizes of the corresponding blocks, e.g.
I Pix(t) = r-\*T2, Pix{2) = rg^r^ and so on.

I The vector block gives the position of the point in an image.
I The vector mult.factor gives the point x-|,X2 , .... (see sec 4-2.2, Iemma2)

let scan.conversion = proc(*in t r,Pix,block,mult.factor;int i > pntr) 
beg in

le t j := 1;let C := i
fo r  i = upb(Pix) to 1 by -t do I This statement will give the

{block(j) :=i div Pix(i) I position of the point relative to the
i := i-Pix(i)*block(j) I blocks of sizes Pix(i) .

] := j+1}

j:=1
fo r  i = upb(r)-1 to  3 by -2 do I It gives the point x i,X 2 , ..........

{m u lt.fac tor(j):=p nt.in .scan2(b lock(j),r(i),r(i+1))

iH + 1 }
le t tile.start.pnt := 0; le t x:=0 

]:=1
fo r  i = upb(Pix) to 1 by -1 do I This gives value A.

{tile .s tart. p n t:= tile .s ta rt.p n t+ b lo ck (j)*P ix (i) 
x:=x+Pix(i)*m ult.factor(j)

jH + 1 }  
le t y := C-tile.start.pnt 
let z := pnt.in.scan2(y,r(1),r(2)) 
let M := x+z 

end

Theory :

The algorithm takes a list of runlengths which has been stored in the 

database.lt will deal only with the runlengths and secondly it deals only with 

the black cells. Time and space is saved by not considering the white cells.
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Let r i,rg  be the murray radices. The number of points in a image

will then be given as the product of all murray radices, i.e.,

no.of.plxels = r̂  *rg* *rn

We are interested in finding the runlengths corresponding to another scan. 

Initially we will assume that the linked list (say list.2) for scan2 has only 

one cell with the runlength equal to the number of pixels in an image. Sum

equal to zero and the color for all the pixels is white i.e.,'’w". From the linked

list which is obtained after scanning the image in the horizontal direction i.e. 

scant, we look for those cells which are black in color. Since we have the 

record for the number of pixels used before that cell i.e.. Sum, we can easily 

find the start point for that cell and the number of pixels of that color i.e., 

runlength. Using either of the two methods discussed above, depending upon 

the scan used for scanning the image, the corresponding point on the second 

scan can be determined. Lemma 3 is used when our whole image is 

represented by a single block i.e., we scan the image using a linear horizontal 

murray scan. When the image is represented by a collection of small tiles, we 

use Lemma 4. For each black point we will find the corresponding point in the 

second scan and the list.2 will be adjusted thereafter.
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3-3.4. Compaxison between the two algorithms:

Table 4.2. Comparison betweeen the two methods

An Image Radices
r r r r r r 
1 2 3 4 5 6

Number of 
Black Pixels

Number of 
White Pixels

Method 1 
(time)

Method 2 
(time)

Image a 11119 9 2875 6926 1.10 secs 0.59 secs

Image a 11 11 3 3 3 3 2875 6926 1.12 secs 1.00 secs

Image b 11 119 9 3134 6667 1.08 secs 0.55 secs

image b 3 3 3 3 11 11 3134 6667 1.30 secs 1.20 secs

Image e 7 9 5 7 608 1597 0.22 secs 0.17 secs

Image e 7 7 3 5 3 1 608 1597 0.27 secs 0.25 secs

Image c 11 11 3 3 3 3 6246 3555 2.10 secs 2.00 secs

Image f 39 39 3 3 1810 11879 3.10 secs 3.09 secs

Image f 13 13 3 3 3 3 1810 11879 3.15 secs 3.10 secs

The different images which are given in chapter 3 are considered to 

compare the two algorithms discussed above. The result obtained is shown in 

Table 4.2. Method 2 Is found to be faster than that of the method 1. The reason 

is, in the first method the conversion from murray digits to gray code integer, 

gray code conversion etcetera are more time consuming. In the case of the 

second method the algorithm deals only with the numbers marked on each 

pixels (refer section4-2.2).
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3-3.5 Compaxison between Linear murray scan and General murray scan:

An Image Radices
r r r r r r 
1 2 3 4 5 6

Number of 
Black Pixels

Number of 
White Pixels

Method 1 
(time)

Method 2 
(time)

Image a 99 99 2875 6926 1.08 secs 0.55 secs

Image a 11 11 3 3 3 3 2875 6926 1.12 secs 1.00 secs

Image b 99 99 3134 6667 1.20 secs 1.05 secs

Image b 3 3 3 3 11 11 3134 6667 1.30 secs 1.20 secs

Image c 99 99 6246 3555 2.29secs 2.17secs

Image c 11 11 3 3 3 3 6246 3555 2.10 secs 2.00 secs

Table 4.3. Comparison betweeen the Linear murray scan and the General murray scan.

As Shown in Table 4.3, the linear murray scan takes less time than the 

one which breaks an image into the small tiles. In all the cases except the last 

one (i.e image c),the result is in favour of linear murray scan.The reason for 

this is, in the case of linear murray scan the whole image is assumed to be of 

a single block whereas in the general murray scan an image is divided into 

small tiles each of size r-; *rg and hence finding a particular point of scani in

scan2 will take longer. In the case of a linear murray scan we will use only 

lemma 3 (section 4-2.2), whereas in the case of the general murray scan we 

have to use both the lemmas given in section 4-2.2, In the case of image c (see 

Table 4.3), a linear scan takes more time than that of standard murray scan. 

The reason is that the number of black runlengths obtained by the two scans 

i.e., a general murray scan and a linear murray scan. With a linear scan the 

total number of black runlengths obtained is 255, whereas with general
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murray scan this number is 154. Since a general murray scan is frequently 

changing direction, there will be some long runlengths belonging to an Image, 

whereas in the case of a linear scan these long runlengths may be broken into 

a large number of runlengths. Hence this time of processing one large black 

runlength corresponding to an area will be less than the runlengths which are 

originated from the same area.

From the above discussion we can conclude that the efficiency 

corresponding to a linear scan and the general murray scan depend upon the 

image. But as discussed above, a linear scan has only one tile (i.e. image) to 

process whereas a standard murray scan has rg^r^* *rn tiles to process,

so in most of the case a linear scan will be faster than the standard murray 

scan. But a large number of radices will have a better chances of exploiting 

the coherence between the pixels and hence may result in better compression.

4-4 Scaling :

4-4.1 Introduction :

Scaling is the process of expanding or reducing the dimensions of an 

image. The factor by which an image is enlarged or reduced is called the 

scaling factor and the operation that changes the size is called scaling. 

Positive scaling constants Sx and Sy are used to describe changes in length

with respect to the x-direction and to the y-direction.lf the scaling factor Is 

greater than one then this indicates an expansion of length, and if it is less 

than one, then a reduction of length. In the case of a picture the scaling 

effects can be obtained by multiplying the x and the y co-ordinate of every 

point in the picture by their corresponding scaling factors. Figure 4.6 shows 

scaling transformation with scaling factors Sy = 2 and Sy = 1/2.
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Y V

( 1.2 ) (2.2)

(4.1)(2 .1)
►

(2.1)

, (4.1/2)(2.1/2)

Figure 4.6. Scaling transformation with scaling factor Sx =2 and Sy = 1/2

In the case of a picture the new co-ordinate can either be an integer 

or a real number. But if we want to scale an image then our scaling factor 

should be such that it gives integer co-ordinates when multiplied by the co­

ordinates of the image. Exceptionally, a real factor may be used provided it 

gives an integer co-ordinate. For example 8% = 1/2 , Sy = 1/2 and (x,y) = (2,4).

In this case the new co-ordinate will be (1,2), which is acceptable. A scaling 

factor to be real depends very much on the images also. Consider two images 

given below.

(a) (b)

In the case of (a) the aliasing effect will be there, since in some case 

we have to truncate a real number to get an integer number. But since the
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shape of the image is very irregular, this effect will not be easily seen. 

Whereas in case of (b) this effect will be very clear since the image is very 

smooth.Since each point on an image is going to be scaled, the time of 

completion will be very large. The computer time can be reduced if we work 

only on the runlengths encoding of an image, since a large number of pixels 

belonging to a runlength will be dealt with together. Further if a runlength is 

not completely divisible by the scaling factor then the remainder term can be 

added to the next runlength, thus keeping the shape of the image. Here murray 

scan techniques are used to scale the Images. Different images are scaled up 

and down and the result corresponding to the different algorithms which uses 

murray techniques are presented. Finally the algorithm has been compared 

with those obtained from linear runlength encoding and quadtree encoding.

4-4.2 Scaling using murray polygons and its implementation :

In the next following paragraphs we will discuss an algorithm which 

uses murray techniques, to scale the images up and down. Later on some 

modifications to the algorithm are discussed in detail.

Let r-j/r'-j be the rational scaling factor which is to be applied in the 

x-direction, where r'-j is the x-dimension of initial smallest tile and r-̂  is the 

x-dimension of final smallest tile. The runlengths are obtained by using a 

murray scan, whose initial movement was in the x-direction. For scaling, each 

runlength is multiplied by the factor r-j/r'-|. The remainder term will be added 

into the next runlength. That is if r; is the runlength and Rj_i was the 

previous remainder then the new runlength Is ( r f r - i+ R j.i)  div r’-j and the

remainder term which is to be added to the next runlength is given by 

(rj*r-| + Rj.-f) rem r'-j. For example.
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let 4,3,5, be the runlength encoding for an image where r'-j= 3 and 

r-j = 5. The scaling factor is given by r '- |/r i. Let x-|, X2 , xg are the new 

runlengths for the enlarged image, where.

Remainder = 0

XI (4*5 + Remainder) div 3

6
Remainder (4*5 + Remainder) rem 3

2

X2 (3*5 + 2) div 3

= 5
Remainder (3*5 + 2) rem 3

= 2

X3 = (5*5 + 2) div 3

= 9
Remainder = 0

The changed runlengths are 6,5,9.

Note: When we reach the corner of a fife the remainder term will be zero. 

Consider an expression ,

X = a/b

Here the remainder term will be zero if the quantity 'a' is either zero or it is 

multiple of b. Let us assume that the initial length of an image is I and the 

final length is F , where F  > I. Since F  > I  this implies we are distributing F-/ 

pixels equally in I pixels thus keeping the final size to F. Further if there is a 

remainder term we add this remainder term to the next runlength, without 

loosing any information. Hence when we reach the corner of a tile the 

remainder term will be zero . A lemma has discussed later to prove this .

The procedure is given below, which takes a sequence of runlengths and then 

scales them according to the scaling factor.
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I This procedure takes two lists and returns
I a linked list with name list.
le t enter = p ro c (p n tr  list,new > pntr)
if list = nil then new e ls e
b eg in

le t temp := list 
w h ile  temp(next) ~= nil do 

temp := temp(next) 
temp(next) := new 

l i s t  

end

I The input is a file containing all the runlengths,
I The scaling factor is equal to R/r.
I The output is a list with the scaled runlengths. 
structure  in t.lis t(in t run; pntr next)  

le t scaling.1 = p r o c ( p n t r  list;file f;lnt R,r > pn tr )  

beg in
let remainder := 0 

w hile  ~eoi(f) d o  

b eg in

le t X read i(f) I This takes a integer from the file named T. 
let x.scale := (x*R+remainder) d iv  r 
list := enter(list,int.list(x.scale,nil)) 
remainder := (x*R+remainder) rem r 

end  

l i s t  

en d

With some images this approach is not very appropriate. For example if 

we consider a VLSI design as an image to scale down, then we see that the 

vertical lines are not straight after scaling. Let us consider a small example; 

an image of size 5*5 and the runlengths corresponding to that image is given 

in Figure 4.7. Let the initial x-radices be 5 and the final x-radices be 7. 

Therefore the scaling factor will be given by 7/5, which is greater than one 

i.e., an expansion.
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(a)

the image is scanned using a horizotal murray scan, the corresponding 
runlengths are given below,

w b w b w b w b w b w  
1 1  6 1 2 1 6  1 2  1 3

using the above approximation and with the scaling factor equal to 7/5 the 
new sequence of runlengths will be given as,

1*7 div 5 = 1
(2)

(1*7 +2 ) div 5 = 1 (4)

and similarly for the other runlengths . the new sequence now is ,

w b w b w b w b w b w  
1 1  9 1 3  1 9 1 3  1 5

the new dimensions for the image are now 7*5. if we draw the image back 
on the screen using the new sequence of runlengths obtained after enlarging 
the image In the x-direction we will find that the vertical line is not 
striaght.

g

(b)

Figure 4.7 , The image (a) has been scaled using the approximation 
given above, the effect can be easily seen in (b).
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The reason for that is the remainder term which we are adding to the 

next runlength. If we examine the scaling factor which is 7/5, states that we 

are replacing 5 pixels by 7 pixels. We see that each pixel out of 5 pixel is 

increased by the value equal to 7/5. If we assume that each pixel is made up 

of 5(say) parts then our remainder term will corresponds to these parts, for 

example, if the remainder term is 4(say), this means 4 parts out of 5 parts 

belongs to the previous runlength, which is very near to 5 i.e., one complete 

pixel.

The previous method may be now further improved by recording the 

nearest integer in the new runlength and passing a positive or negative carry 

to the next part of the calculation. The procedure is given below .

I The input is a file containing all the runlengths,
! The scaling factor is equal to R/r.
I The output is a list with the scaled runlengths. 
structure in t.lis t(ln t run; pntr n e x t) 
let scaling.1 = proc(pntr list;flle f;int R,r > p n tr)  
begin

let remainder := 0 

while ~eoi(f) do  
begin

let X := read 1(f) I Input is from the file named f .
let x.scale := (x*R+remainder) div r 
remainder (x*R+remalnder) rem r 
If remainder > r div 2 d o 

{ x.scale := x.scale+1; remainder := remainder-r } 
list := enter(Iist,int.list(x.scale,nil)) 

end
elose(f)
l is t

end

1 2 0
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Consider again the image given in Figure 4.7(a), the results are shown below.

Using the above approximation and the scaling factor equal to 7/5, the new 

sequence of runlengths will be given as.

1*7 div 5 = 1(2)
(1*7 + 2) div 5 = 1(4) = 2 (_ i) Since the remainder term is 4, 

which is nearer to 5 than to 0, 
hence we will add one to the new 

runlength and a negative carry to 

the next runlength.

Similarly for the other runlengths, the new sequence now is,

w b w b w b w b w b w

1 2 8  2 2  2 8 2 2 2 4

The new dimensions for the image is now 7*5. If we draw the image back on 

the screen using the new sequence of runlengths, obtained after enlarging the 

image in the x-direction, we will find that the vertical line is straight ( see 

below ).

To prove the above result a theorem is given. Before we define the theorem we 

will define few lemmas.
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Lemma 5 :

Suppose fn -i , fn be two adjacent runlengths. Then the round off error

which is passed on after scaling the two run lengths consecutively is the

same as if the two runlengths are added together i.e. { fn -i+  r^), and the same

scaling performed.

Proof :

Suppose,

n = X dimension of initial smallest tile,

P = X dimension of final smallest tile,

i.e. P/n = x-scaling factor.

R(n-2) = round off error passed on from the calculation on

rn-2  and is less than or equal to (n div 2).

The round off error which is passed on after the second runlength i.e., r^ is

given as ( P*rn + { PTn_i + R(n-2)) rem n ) rem n. (1)

The round off error which is passed on when the two runlengths are joined 

together is given as ( P*(rpj + rn_i)+ R(n-2)) rem n. (2)

We have to show now remainder term (1) is equal to remainder term (2). Which 

is true since , A rem B = (A rem B) rem B, where A, and B are integers. Hence 

the remainder term (2) can be written as,

( P*rn + P*rn-1 + R(n-2) ) rem n.

or ( P*rn + ( P*rn-1 + R(n-2)) ) rem n.

or ( P*rp + ( PTn -1 + R(n-2)) rem n ) rem n.
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Which is equal to remainder term (1). Hence proved.

Lemma 6 :

Starting at a vertex of a horizontal line, then the round off error from 

the last point of that line will be zero.

Proof :

Suppose,

n -  X dimension of initial smallest tile,

P = X dimension of final smallest tile,

i.e. P/n = x-scaling factor.

rn ,rn-l.--«............................. = the runlengths corresponding to a

horizontal line of size n.

Using lemma 5, this follows easily by considering rn ,rn -i,..............................,ri

runlengths as a single runlength of size n or, as n separate runlengths.

Theorem :

Suppose,

n = X dimension of initial smallest tile,

P = X dimension of final smallest tile,

i.e. P/n = x-scaling factor.

Rm(n-2) = round of error passed on from the calculation on 

rn-2 and is less than or equal in magnitude to (n div 2).
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let n (i = 1 to N) and sj (j = 1 to M) be the runlengths corresponding to two 

adjacent horizontal lines, where N and M are the integers.Then if, n and sj are  

the two runlengths, corresponding to two horizontal{or vertical) lines, such 

that the start point of the first runlength, and the end point of the second 

runlength, have the same x-coordinate(or y-coordinate) say x, and adjacent 

y-coordinate(or x-coordinate) in the initial scan, then they will have the same 

x-coordinate(or y-coordinate) say x', and similar adjacent y-coordinate 

(x-coordinate) in the final scaled scan.

Proof :

By Lemma 6, the accumulated round off error at the begining of an 

horizontal line segment is zero. Hence corresponding horizontal line segments 

will maintain their relative positions in the two scans. We have only 

therefore to prove the result for the x -coordinates.

Suppose the new scaled runlength corresponding to n is Rj and let Sj 

be the scaled runlength corresponding to sj. To prove that the runlength Ri and 

Sj have the same x-coordinate and similar adjacent y-coordinate, we will 

compare the round off error received by the runlength Sj and the round of 

error received by the runlength R |+1 . The new runlengths will have the same 

x-coordinate and adjacent y-coordinate if and only if the round of error 

received is the same in magnitude for both the runlengths. Using Lemma 5, and 

Lemma 6, we now have to prove that,

S j-1 * P rem n = (R; * P + Rm(i-1) ) rem n,

or R |+1 * P rem n = (R j * P + Rm(i-1) ) rem n, (see below),

or Rn+1 * P rem n = (Rn * P +Rm(n-1)) rem n (A)
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Sj Sj_i

Rj-1 — Rj  ̂ ►1-  ̂ R|+i

To prove this, for each positive integer n, let us define p(n) to be the

proposition, Rn+1 * P rem n = (Rn * P +Rm(n-1)) rem n

Suppose n = 1. Then equation(A) gives,

LH.S = 0

R.H.S = 0

which is clearly true. Suppose now that p(n) is true for n <= k. In particular ,

Rk+1 * P rem k = (Rk * P + Rm (k-I)) rem k

is true. That is p(n) is true. But,

R.H.S = (Rk+1 * P + Rm(k)) rem (k+1)

= (Rk+1 * P+(( R1+R2+.+Rk)*P+0)) rem (k+1)

(R1+R2+  +Rk+l)*P  rem (k+1)

( -Rk+2*P + ((R1+R2+ +Rk+l)*P rem (k+1)) rem (k+1)

( A rem B = ( A rem B ) rem B)

(-Rk+2*P + 0) rem (k+1) (using lemma 1)

= I LH.S I

Which implies that the statement p(k+1) is true. Therefore p(k) implies p(k+1).
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Hence since p(0) is true, the result follows by the principle of mathematical induction. 
Hence proved.

To enlarge the images the scaling factor can take any value greater 

than 1. If we have to contract an image our scaling factor should be less than 

one. The images can be contracted only upto a certain extent. If our scaling 

factor is less than one,then two cases are possible,

1) It will contract an image without distorting the image.

2) It will deform the shape of the image either,

i) by turning some of the white runlengths to zero. Here we

will assume that the image is overscaled, and there is no 

way to bring back the original shape from the new 

collection of runlengths. If we are dealing with images

... which are not very smooth, for example an image of a

tree, etcetera, then this method of contracting an image 

may be advantageous in approximately compressing an 

image and thus reducing the storage space,

(refer Buntin(1988)).

i i)  by turning some of the black runlengths to zero. Here we

may obtain the shape of the image which is very similar

to the original one, by giving a runlength of one to the 

black cell from the white cell which is a left or right 

neighbour to it.This is explained later.

In case 2(ii) the black runlength which has turned to zero can accept a 

runlength of one either from the left cell or the right cell. The question Is 

which cell to consider to give one value to the black cell. Many assumptions 

can be made, we can assume in the beginning that the black cell will always
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accept a pixel from the right cell or from the left cell or if a white cell has 

two surrounding black cells which are turned to zero, then we can give one 

value to each black cell etcetera. The above assumptions are not always true, 

since we do not know which assumption to use and when.

Now we will discuss another approach which is more satisfactory than

the previous assumptions. The theory behind this approach is same accept here 

we will discuss the cases as when to use right runlength and when to use the 

left runlength to Increase the runlength of the black cell which has zero value. 

This idea has obtained by considering the path of the murray scan.

Consider an image of size n*m. Let are the radices

corresponding to the murray digits d-td2 d3 d4 d5 de . Let r-| = 5 and r2 = 5, this

means that the size for the smallest tile is 5*5. Since T2 is equal to 5 means 

each tile will have five rows. We can assign a boolean value to each row . All 

the odd rows will have value T  and all even rows will have F as the boolean 

value i.e., the first row will have value T (i.e. true), second row will have 

value F(i.e. false) and so on. Now we can say that, if a black runlength which 

has turned to zero is in a row which has value T  then take a runlength of size 

1 from the white cell which is right to that black cell and if the value is F 

then take a value 1 from the left white cell. To explain this, we will consider 

an example. Initially the correct scaled runlengths are obtained manually and 

then the above idea is used to compare the runlengths obtained. Consider the 

same image of size 5*5 in Figure 4.7(a). If we scale the Image with the 

scaling factor to be less than 1 (say 3/5) then we will find that all the black 

runlengths are turned to zero, see Figure 4.8,
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A

h

Figure 4.8. The image (a) has scaled down (b), turning all the black pixels to zero.
The murray path has shown in (b) with the corresponding boolean value. 
**' indicates that this square should be black to restore the image.

The new sequence of runlengths will be given as, 

serial.number > 1 2 3 4 5 6  7 8 9 10 11

colour — > w b w b w b w  b w b w

runlength > 1 0 4 0 2 0 4  0 2 0 2

The 3rd runlength which is 4 is in between the two black cells which 

are turned to zero. If we want them to lie in a same column then it will be 

satisfactory to give one pixel each to the black cells from the 3rd runlength, 

thus decreasing it by two. The new runlengths will now be ,

1, 1, 2, 1, 0, 2, 0, 4, 0,2, 0, 2

If we use the idea of using boolean values for each rows as discussed above 

then the first black cell i.e., numbered 2 lies in a row which has value T ' (see 

above) and according to the above statement we will take a runlength of size 1 

from the one which is right to it, i.e 4. The new runlength will now be,

1, 1, 3, 0, 0, 2, 0, 4, 0,2, 0, 2
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The second black cell numbered 4 which has value 0 lies in the row which has 

value 'F'(see above) and hence we will accept one from the left white cell 

numbered 3. The new runlengths are,

1, 1, 2, 1, 0, 2, 0, 4, 0,2, 0, 2

which is same as above. Same assumption can be assumed for the other black 

cells also. Sometimes an error can occur when dealing with a straight 

horizontal line. Due to the scanning pattern a murray scan can divide a line 

into two parts i.e. half part of the line lies in one tile and other half lies in 

the other tile see Figure 4.9(a). It has been noticed especially, with VLSI 

images, that when we scale down an image the two parts of a horizontal line 

which are not in the same tile are not in the straight horizontal line after 

substituting value one for the zero black cells. This problem can be solved by 

considering the same assumption as used above for the Figure 4.8. Only one 

point to remember Is when we change the tiles the boolean value for the rows 

will also change i.e., if in the previous tile we are assuming that all the odd 

rows will have boolean value T ’ then in this tile they will have value 'P, same 

for even numbered rows. This is because the direction of a scan changes from 

tile to tile. For example, consider Figure 4.9(b) obtained after scaling the 

image (a), with the scaling factor less than 1( say 3/7).

F
I
F

I

F

(b)

Figure 4.9 . Image (a) has scaled down with scaling factor equal to 3/7. 
The final image is shown in (b).
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The runlength obtained for an image (a) are,

21, 1 ,2 6 , 1, 21 

The corresponding runlength for the image (b) are ,

9, 0, 12, 0, 9

If you see the image (a) the first black belongs to the row having value 'F' and
the second black cell belongs to the row having value T ,  i.e., both the cells
will take one runlength from the 3rd cell which is12. The effect of changing 

the row values with the change in tiles can easily be seen above. The 

procedure put value of one to a black cell if it is zero is given below,

I The input is a list containing the black cells which are turned to zero.
I and a vector of boolean values I.e. rows ( t ) . In case of scaling in
I vertical direction we will use a column vector. The integers r and R 
I are equal to r̂  ̂ and t2 i.e. first two murray radices. The output is a

! new list with supplied one for zero cell.

let put.I.for.O.black = proc(pntr List ;*bool t ;int r,R > pntr) 
begin

let temp := List I This is to keep the head name same as List.
le t sum := -1 I This is used to find the row .
let product := R*r
while temp - =  nil do
begin

if temp ~= nil and temp(run) = 0 and temp(col) = "w" do 
begin I to check the value for the white cells. 

w rite"******Y o u  have overscaled the im age******'n” 

w rite " ******A  white cell has turned to zero******'n" 

abort 
end
if temp(run) = 0 do 
begin

le t i ;= (sum d iv  r) +1 

temp(run) := 1

I Next statement gives a value of one to the black cell which 

I is zero according to the row value, 
if  ~t(i) then {
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temp(next,run) := temp(next,run)-1 

ternp(next,sum 1) := temp(next,sum1)+1 

}
e lse  {

temp(left,run) := temp(left,run)-1 

temp(suml) := temp{sum1)-1

end
sum := sum+temp(run)

! This statement is to change the value of the rows if 
! the tile has changed, 
if sum >= product-1 do  

begin

fo r i = 1 to R d o  

t(i) := ~t(i)
sum := sum rem product 

end
temp := temp(next) 

end  

List 
end

To scale the image in the y-direction the runs resulting from the first 

part need to be transformed into an essentially y-directional scan and a 

similar process applied. Using the scan conversion algorithms discussed above 

we can convert the runs from a horizontal murray scan to a vertical murray 

scan and the new runs can be scaled in the y-directions also.

Figure 4.10 shows a scaling up and down of the images. In the case of 

VLSI images (or any image), we will keep on scaling down an image until there 

is a dead short i.e., when few white pixels will turn to zero. At this stage the 

programme will stop giving the message '"You have overscaled the image ". The 

result of scaling up and down of different images is given in Table 4.3.
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Figure 4.10. Scaling effect on the different Images.



Figure 4.10[contdl.



(a) (b)

(d)

E H

(c)

JZZZL

(e)

□

Figure 4 .1 0  [corttd]. Scaling effect on a VLSI design image.
Figure a.b.and c are scaled exactly without losing any information, but in Figure 
d, and e, some white pixels are turned to zero i.e dead short.



( a ) (b ) ( c )

(e)

(d)

( f)

Figure 4.10Econtdl.
Figure a,b,c,and f showing the exact compression whereas in Figure d, and e there is 
dead short i.e^some of the white pixels are turned to zero.
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4-4.3 Results

An Image Initial Radices 

6

Final Radices 

6

Scaling Factor

x-factor y-factor

5 11 3 3 3 3 5/11 11/11
Image a 11 11 3 3 3 3 — 3 11 3 3 3 3

7 5 3 3 3 3 7/11 5/11

5 9 3 3 3 3 5/11 9/11
Image c 11 11 3 3 3 3 — 7 9 3 3 3 3 7/11 9/11

7 5 3 3 3 3 --- —

5 5 3 5 3 1
Image e 7 7 3 5 3 1 ------ 5 7 3 5 3 1 -- . . .

7 5 3 5 3 1 7/7 5/7
7 3 3 5 3 1 ■—

5 5 9 7
7 3 9 7

Image e 7 5 9 7 — 7 4 9 7 7/11 4/11
5 7 9 7

Image f 13 13 3 3 3 3 — 11 13 3 3 3 3
13 11 3 3 3 3

31 38 3 3
39 31 3 3

Image f 39 39 3 3 — 31 39 3 3 31/39 39/39

Table 4.4 Scaling of the Images with different scaling factors.
' line indicates that the image is overscaled

The result shown In Table 3.4 is obtained before using the procedure 
put.I.for.O.blackQ.
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An Image initial Radices 

sT 4̂  ̂ 5 6

Final Radices 

6

Scaling Factor

x-factor
y-factor

5 11 3 3 3 3 5/11 11/11
7 11 3 3 3 3 7/11 11/11

image a 11 11 3 3 3 3 __1 3 11 3 3 3 3 3/11 11/11
7 5 3 3 3 3 7/11 5/11
7 3 3 3 3 3 7/11 3/11

5 5 3 5 3 1 5/7 5/7Image e 7 7 3 5 3 1 5 3 3 5 3 1 5/7 3/7
7 4 3 5 3 1 7/7 4/7

5 5 3 5 3 1 5/7 5/5Image e 7 5 9 7 — 5 3 3 5 3 1 5/7 3/5
7 3 3 5 3 1 7/7 3/7

7 9 3 3 3 3 7/11 9/11
5 9 3 3 3 3 5/11 9/11

Image c 1 1 1 1 3 3  3 3  — 7 7 3 3 3 3 7/11 7/T1...........
9 9 3 3 3 3 9/11 9/11
9 10 3 3 3 3 9/11 10/11

11 11 3 3 3 3 11/13 11/13
Image f 13 13 3 3 3 3 — 9 11 3 3 3 3 9/13 11/13

7 11 3 3 3 3 7/13 11/13

31 31 3 3 31/39 31/39
31 30 3 3 31/39 30/39

Image f 39 39 3 3 ------- 25 35 3 3 25/39 35/39
25 31 3 3 25/39 31/39
21 35 3 3 21/39 35/39
21 31 3 3 21/39 31/39
19 37 3 3 19/39 37/39

Table 4.5 Scaling of the images with different scaling factors.
The result shown in Table 4.5 is obtained after using the procedure put. l.for.O.black.
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The results obtained by scaling down the images are shown in Table

4.4 and Table 4.5. The results shown in Table 4.4 are obtained before using the 

procedure putUor.O .blackQ. It should be noticed that if the surfaces in an 

image are wide spread from each other( e.g., chapter 3, Figure 3.2 a,b,and c) 

then the scaling factor before and after using the procedure put.I.for.O .black  

does not change very much. But in the case of wire frame images (e.g, VLSI 

design , chapter 3, Figure 3.2 e,f) there is too much variation in the x and the y 

scaling factors. The result shown in Table 3.5 is obtained after using the 

procedure put.1.for.0.black(). From the results shown in Table 4.4 and 4.5, the 

difference between the permissible x-scaling factor (or the y-scaiing factor) 

for the images e and f is large. In the case of image e with six radices (see 

Table 4.4) the minimum value for the x-scaling factor is 7/7 and for the y- 

scaling factor is 5/7, whereas as shown in Table 4.5 the same image has 5/7 

and 3/7 as the minimum x and y-scaling factors( i.e., 20 pixel less than the 

previous tile). Similarly for the image e with 4 radices. From Table 4.4 it has 

shown that the image f with six radices cannot be scaled down whereas in 

Table 4.5 the minimum scaling factors for x and y are 7/13 and 11/13 ( i.e. 92 

pixels less then the previous one).

From the above result and the discussion, we can now say that the 

procedure put.I.for.O.black  helps in approximately compressing the Images. We 

are not considering the cases of scaling up the images since turning of black 

pixels to zero is impossible. Scaling up the images works with any scaling 

factor provided the quotient for the x-factor is not even.

4-5 Remarks :

The results obtained for converting scani into scan2 using a standard 

murray scan were compared with those obtained by using linear murray scan.

In most cases a linear murray scan takes less time than that of the general
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murray scan (see Table 4.3). But as discussed earlier that the distribution of 

runs obtained by general murray scans will be different to that of standard 

linear scan with fly back, which may result in better compression.The same 

argument can be applied to show the advantage of general murray scans over 

linear murray scans.

Further in the case of quadtrees the scaling factor depends upon the 

size of the image i.e., if the initial size is 4 then the next size of the image 

can be 8 or 16 or 2 etcetera, which a disadvantage of this method. As we have 

seen in the case of murray scan the scaling factor is independent of the size 

of the image. But if the scaling factor is greater than or equal to 2 then 

quadtree methods will be more effective than that of murray scans, since in 

case of quadtrees the same codes can be used to regenerate the scaled image. 

For example, an image of size 4*4 with some black pixel is given below.

The corresponding codes in the ascending order for these black cells will be , 

30, 21, 10, 03

Now If we scale the image with a scaling factor equal to 8/4 then using the 

same codes we can generate the scaled image see below.
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8

2

From the above example we can say that the quadtree approach is efficient, 

but it depends upon the size of the image. The next scaling factor for the 

above example will be 16/8. For the quadtree approach we cannot use any 

other scaling factor between 8/8 and 16/8, whereas in the case of the murray 

scan we can have more number of scaling factors between 8/8 and 16/8 giving 

the exact scaled image, which is an advantage of the murray approach over the 

quadtree approach.
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CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES.

5-1 Introduction :

If we consider a complex image we often find that this is made up of 

many simpler sub-images, some of which may be transforms of each other. For 

example, an image of a busy intersection has cars of different sizes in 

different locations and moving in different directions. In addition there are 

people, street signs, trees, etcetera. With time there will be some changes in 

the image. The change may come to the number of cars, and people at the 

intersection. Hence we should have the capability of changing parts of an 

image, while keeping other parts fixed.

Set operations on the images can be used to merge two or more images 

together. Medical SD.images which are obtained by putting planes one after 

other can be reduced to a single plane i.e., 2-dimension, by merging all the 

planes together, thus removing the hidden surface area from a given view 

point. The hidden surface problem is discussed in detail in the following 

chapters. Also in Constructive Solid Geometry (refer Hearn, and Baker(1986)) 

sollds(such as spheres, cubes, cylinders, etcetera) can be combined by 

geometrical transformation and boolean operations such as union,intersection 

and difference. Union of the images is similar to the 'or' operator, whereas  

intersection and difference of the images is similar to 'and' and 'xor* operators  

respectively.

In this chapter, initially past and present work is categorised and 

briefly discussed. Superimposition of images and some set operations using 

murray techniques is discussed. All the operations are on the runlengths only, 

which are stored either in a file or in a list. We do not need to go back to the 

image once we have got the collection of runlengths corresponding to that 

image.
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5 2 Set Operation :

The quadtree is especially useful for performing set operations such as 

union and intersection of several images. This is described in greater detail 

by Hunter and Steiglitz(1979a), and Shneier(1981). The union of the quadtrees, 

S and T can be obtained by examining the corresponding nodes and constructing 

the resulting quadtree, say in U. If either of the two nodes is BLACK, then the 

corresponding node in U is BLACK. If one node is WHITE, say in S, then the

corresponding node in U will corresponds to the node in T. If both nodes are

GRAY, then U is set to grey and the algorithm is applied recursively to the 

sons of S and T. Once the sons have been processed, a check will be made to 

see whether a merger is to take place, since all four sons could be BLACK. For 

example, consider the union of the quadtree of Fig 5.1 and 5.2. Node B in Fig 5.1 

and node E in Fig 5.2 are both GRAY. However the union of their corresponding 

sons yields four BLACK nodes in U. Fig 5.3 shows the union of Fig 5.1 and 5.2.

Computing the intersection of two quadtrees is just as simple. The 

algorithm described above for union is applied, except that the roles of BLACK 

and W HITE are interchanged. If either of the two nodes is BLACK, then the 

corresponding node in U is BLACK. If one node is WHITE, say in S, then the

corresponding node in U is WHITE. The check for a merger is performed to

determine if all four sons are WHITE. Figure 5.4 shows the result of the

intersection of Figure 5.1 and 5.2.

Gargantini(1982) used linear quadtree for union and intersection of

images. Here for union, if two nodes are the same, then only one node is

stored. If one block covers the other one then the larger block will be stored 

in the final array, intersection can be treated similarly. For example, let

C1 = { 003, 021, 023, 03X, 122, 21X, 3XX },
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and

C2 = { 122,111, 113, 131, 133, 230, 231, 3X X } be the linear coding for the given 

two images. If we find the union of the two Images, we obtain,

C l U 02  = { 003, 021, 023, 03X, 111, 113, 122. 131, 133, 21X. 230,

231, 3XX}.

Gargantini{1983) used the same process for the linear octree .

Burton, Koliias, and Kollias(1987) defined a simple map overlay function for 

quadtrees, and showed that many common quadtree operations including union and 

intersection, can all be considered as special cases of the map overlay function. The 

process to overlay different types of site data to produce some kind of composite map is 

commonly referred to as the map overlay problem. For example, a quadtree representation 

for two maps partitioned into districts in two different ways is given. One correspond to a 

soil map and the other to political map. A district within a map may correspond to a state 

defined area (e.g., country), to a soil type (e.g., Alflsol), or to an elevation range. Here they 

use integer numbers for representing the different districts. The overlay map for each (soil 

type, political unit) pair Is obtained by multiplying the number of the first district by a factor 

(say 10), and adding the number of the second district. The new district with number 23 

(say) would be the intersection of (soil) district 2 with (political) district 3. Union , 

Intersection and Difference can apply only to 0-1 quadtrees, where 1 indicates that the (soil 

type. Political unit) pair satisfies some particular conditions. More detail can be found in 

Burton, Koliias, and Kollias[1987].

Oliver and Wiseman(1984) used a treecode representation for merging two or 

more images. Treecode representation is defined in section 1^3.2. Merging is done by 

examining the node of each input tree. If at a certain stage the next node in each tree is a 

leaf node then the leaves are combined to form an output node. If the first tree contains a 

non-terminal node and the second a leaf, then the first scan recurses until it catches up
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with the second, and vice versa. If both trees contain non-terminal nodes both scans will 

recurse.

5-3 Supeiimposition Of The Images Using Murray Polygons ;

One way of superimposing one image on top of another Is to copy the 

changed part on to the image. This expression will persist so long as it is on 

the screen. There will be no change in the runlengths. Next time to obtain this 

changed plane, we have to do the same calculations again. This is not 

convenient for an animated movie where we have to run, say 20 frames a 

second to get the moving expression. Another way of superimposing one image 

on top of another is to copy the changed part in such a way that the previous 

runlengths will change to give the sequence of runlengths for the new plane.

Here we present a algorithm which has the capability of superimposing 

one image on top of another by changing the runlengths. The only information 

which is required is the size of the image which is going to be superimposed 

and the starting point on the image where it is going to be superimposed. The 

starting point can be obtained with the help of the function lo ca to r' which 

gives the position of the mouse relative to the screen. The size of the image 

is required to decide about the x and the y-radices.

Both the images (say A and 8) are stored in the database, whereas 

image A is the initial image and image B is going to be superimposed on image 

A. Initially image A will be scanned using a murray scan and the corresponding 

sequence of runlengths will then be stored either In the database or in a file. 

The algorithm will now take image B and the runlengths corresponding to 

image A as an input. Output will be the collection of runlengths corresponding 

to image A with image B superimposed on it. We will discuss this in the next 

section. Once the desired runlengths have been obtained, the image can be
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drawn on the screen. The data structure used to store the runlengths and the 

Implementation part is discussed in the next section.

3-3.1 Implementation :

Consider two images of different sizes as shown,

(X,Y)
(xgyâ

(0,0)

(x,y)

(0,0)

where
y 2 y f  y
Xg- x^=x

where 'a' is the initial image and 'c' is the image which has to be superimposed 

on the image 'a'. The position where the image has to be superimposed has 

been marked. Let (x-j.y-j) be the starting point in an image 'a' for the image 'o'

to be superimposed. Our first step Is to scan the image ’a' to give the sequence 

of runlengths. The image ’a’ can be removed once we have obtained the 

corresponding runlengths. The image 'c' can similarly be removed once 

scanned, and the corresponding runlengths can be used to superimpose 'c' on 'a'. 

But the scanning part and the superimposition part, of 'o' on *a‘ can be done 

simultaneously, which is discussed later. Time can be saved by not rescanning 

the image ’c'. The data structure used for the list to store the runlengths is 

same as used before. We define our data structure as,

s tructu re  integer.list(int runlength, Sum ;string colour;pntr left,next)

The linked list obtained after scanning the image 'a' uses the above 

structure to store the runlengths. Each cell contains information about the
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consecutive pixels of the same colour. All the items used in the data structure 

are discussed in chapter 4 .

Let r-i, rg,  r^ be the runlengths corresponding to the

image 'a' . Each runlength corresponds to a colour. The colour information for 

each runlength is given in the item ’colour* defined in the structure. Since we 

are considering black and white images, the item ’colour’ contains either 'w'

i.e., white or 'b' i.e. black, as the two values. The linked list is as shown,

Consider the image *c' which has to be superimposed on image 'a'. We 

will scan this image using a murray scan. The first point on this image is

(x,y) = (0,0). But since the starting point for the image 'c' on the image 'a’ is

( x i , y i )  , we will shift this point by (x-j.y-j) i.e., the new values for the

x-coordinates and the y-coordinates will be given as,

x (fin a l) = X + x-j = 0 +x^ = x-j

y (fin a l) = y + y-j *  0 +y-j = yi

Using the transformation f(x,y) — > n (discussed earlier), we can find 

the corresponding nth point on the image 'a*. Now scan the list obtained for 

image 'a' and consider that cell where this nth point belongs. The colour on 

both the images will now be compared.

If the colour corresponding to the initial point (x,y) (= (0,0), say) in 

image 'c' and the colour corresponding to the final point (x,y) in an

image 'a* is black then there will be no change in the list.
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If the colour corresponding to a point in image 'c' is black and the 

colour corresponding to the point (x,y) in an image ’a' is white then we 

will change the runlengths by turning that pixel to black.

If the colour corresponding to a point in image 'c' is white then there 

is no need to consider that point.

For all the points in an image 'o', which are black we will repeat the above 

scheme. The output will be another frame (or image) with the slight change, in 

comparison to the previous one. This method is similar to finding a union 

between two images. Set operations are discussed in the next section.

5.4 Set Operations Using Mmxay Polygons :

The set operations which are considered in this section are,

i. Union,

ii. Intersection,

iii. Difference.

If A and B are two images which are black and white , then we define,

A U B = the set of all the black pixels which are In A as well as In 

image B

a Q  B = the set of all the black pixels which are common in image A 

and in image B.
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A A B = (A U B) - (A n  B),

i.e. the set of ail the black pixels which are in A and in B 

except those which are common to both the images.

The images can be merged either by using the images themself or 

by using the different sets of runlengths obtained by scanning the different 

images. In the first case, the whole image must be in the system while 

processing. This will require a large amount of memory for images having a 

few thousand surfaces(or planes). Secondly it can be time consuming, since 

we have to compare each pixel of an image to the other one. A second approach 

can be more efficient than the first one. We do not require all the planes at 

the same time. Here we scan the planes one by one to get the sequences of 

runlengths, and then merge them together to give a single sequence of 

runlengths. The points to be remembered are that the size of aH the Jrnages 

should be same. The x-radices and the y-radices can be same or different for 

all the images. This is discussed later on.

5-4.1 Union :

Let r = r*|,r2 ,............... .r^ and s = s^.sg.................s ^  be the collection of

runlengths corresponding to the two images which we have to merge. The 

radices used to scan the images should be same. Here our problem is to obtain 

the sequence t = t-) ,t2 , ,t|; such that the sequence t has black runlengths

where either the sequence r or the sequence s or the both sequences have 

black runlengths.

Now to obtain the sequence t we will traverse both the sequences r 

and s together. Three cases are possible between the two sequences r and 

s.They are,
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1. Sj = r j . Output the one I.e. S| or rj, which is black otherwise

any of the two.

2. Sj > r j . There can be two cases,
I

i. Sj is black. |

output Sj with the associated colour and then scan the i

sequence r, until the sum of the runlengths starting from I
rj is greater than or equal to Sj. ■

i
!

Define sum = rj............... ........ +r|^>= Sj. We can consider 1

two cases ,

1. sum = Sj. Compare the next runlength of the two j
sequences i.e r%+i and Sj+i. |

!
2. sum >  Sj. Since the runlength Sj has already been 1

output in the final list, we will compare the j
remaining runlength sum  - Sj, which belongs to I
the member r^ of the sequence r, with the next I
runlength of the sequence s i.e. Sj+-j . j

!
ii. Sj is white. i

I
scan the sequence r, until the sum of the runlengths |
starting from rj is greater than or equal to Sj. Define |
sum = rj +ÎJ+1+ ........ +r|  ̂>= S j . Here we will output I
rj ,^+1 ............  rk_i with their associated colour. We I
consider two cases , i

ii
1. sum = Sj. Output r^ with the associated colour |

and then compare the next runlength of the two :
sequences, i.e r%+i and Sj+-j. |

2. sum > Sj. Output rk - {sum - Sj) with the colour j
corresponding to the member r^ of the sequence r !
and then compare the remaining runlength sum  -Sj, i
which belongs to the member r^ of the sequence r, !
with the next runlength of the sequences i.e. Sj+-| . •
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3. r; > Sj. This is similar to the case 2, only change being to replace r 

by s and s by r.

5-4.2 Intersection And Difference:

Let r = r-j,r2.................r^ and s = s i,S 2 ,...............Sm be the collection of

runlengths corresponding to the two images which we have to merge in order 

to get the common pixels. The problem is to obtain the sequence 

t = t-| ,t2 ,.......   ,tx such that the sequence t has black runlengths where both

sequences r and s have black runlengths, and if either r or s is black then the 

sequence t will assume one which is white. If the radices used to scan the 

images are same, the above method discussed for the union case can be 

slightly modified to get the sequence t which will remove all the areas which 

are not common to both the images. Here instead of modifying the above 

method we will discuss another approach to this problem. Here the radices 

used to scan the images can be same or different.

Scan the sequence s = s i,S2 .................Sm and consider each member of

this sequence in order. Using the transformation (n — > f(x,y) ) explained in

chapter 2, we can find the corresponding coordinates for each point in the

sequence s. For example.

If s-j = 3 and $ 2 = 4  then the corresponding values for n, in the cell 

s-t will be 0,1, and 2 and in cell S2  they will be 3,4,5, and 6. For any 

cell Sk the corresponding values can be obtained by using the Item 

'Sum* defined in the structure above. The first point for the cell s^

will be equal to the 'Sum ' value plus one.

Once we have the co-ordinates, using the transformation (f(x,y) — > m) we 

can find the corresponding mth point in the sequence r. Now we have to

146



CHAPTER 5. SUPERIMPOSITION, AND SET OPERATIONS ON IMAGES. I

compare the colour for the nth point in the sequence s with the mth point in 

the sequence r.

If both are black or both are white then there will be no change In the 

sequence r.

If one is black and other one is white then the colour of the mth point 

in the sequence r will change to white if it is black.

The new sequence r will be the required sequence t. Similarly if we have to 

find the difference  between the two or more images then the colour 

comparison for the two points in the two sequence will be slightly different. 

Here,

If both are black or both are white then the colour of the mth point in 

the sequence r will change to white.

If one is black and other one is white then the colour of the mth point 

in the sequence r will change to black if it is white.

5-3 Remarks:

Superimposition of one image on top of other may be helpful in the 

case of an animated movie. For example, if we see two consecutive planes of 

an animated movie as shown below, the only change which we can see is the 

position of the character which has moved slightly. Therefore we need to 

change only the part which is given in the small rectangle keeping the 

surrounding objects the same.
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(a) (b)

Since the character Is moving, we have to consider the changes in with 

the character and with the background portion, which is changing with respect 

to the character('A/ofe ; we consider the background scenery as stationary). To  

get the consecutive planes we can simply modify the background plane.

Initially draw the background image and then superimpose the moving 

character at a given point.
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6.1 Introduction :

Connected component labelling [refer Rosenfeid and Kak(1976)], is one 

of the basic operations of an image processing system. It is analogous to 

finding the connected components of a graph. Let S be a finite set of pixels.

Two pixels (ij), (K,J) e S are n-connected in S if and only if there is a n-path

between (i,j) and (K,J) consisting entirely of points of S i.e., a sequence of

elements, (i,j) = (ig Jo). Ol. i i ) .    On. in) = (K,J), all in S such

that (if , ic) is a neighbour of (ir_-|, 1<= r <= n. Connectedness may be

defined in terms of the neighbours of a point (i,j). Let (i,j) be a point of the 

given image. Then (i,j) has four horizontal and vertical neighbours, namely the 

point

(i-1.j). (i,i-1). (i.i+1). (i+1.i)

These points are called the 4-neighbours of (i,j), and are said to be 4-adjacent

to (i,j). In addition, (i,j) has four diagonal neighbours namely

(i-1 ,j+1 ). ( i+ 1.i-1). (i+1 .i+ 1)

Both these and the 4-neighbours are called 8 -neighbours of (i,j), as shown.

(i.j+1) (i-1 .j+ 1) (U +1) (Î+1 .J+1)

t  V t / * '
) (i+1 , ])

-1 ) (1+1 , M )

4-polnt connectivity 8-point connectivity
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Finding connected components can be very useful in some areas of 

image processing. Consider for example a medical image which shows a 

tumour surrounded by other parts of the body (e.g. bones, lungs, etcetera). A 

doctor cannot have a better look of the tumour since it is surrounded by other 

parts. It will be better if we can extract the tumour out leaving behind the 

parts obscuring it. This we can do by finding the connectivity between 

different parts, supposing that the tumour has some physical property to 

distinguish it from the surrounding tissue. Those parts which are not 

connected to that can be removed. Similarly for a underwater picture. Here for 

example an oil pump which is surrounded by fish, algae and other materials. 

One can remove all the unwanted substances (such as algae, fish etcetera) 

from an image, leaving behind the one in which we are interested. In many 

other places also connectivity can similarly be applied.

To some extent connectivity can be helpful in compressing the data 

approximately. The initial sequence of runlengths which has been obtained 

after scanning an image will contain all the black chunks which are present in 

an image. Using connected component labelling we can find the required 

connected component in an image and can remove those components which are 

not required. The runlengths corresponding to those parts which are removed 

from the scene will be merged with the back ground color i.e., will turn to 

white, resulting in a smaller number of runlengths. For example,

w b w w

5 7 3  > 15 the black runlength has merged with the two

adjacent white.

In this chapter, initially past and present work is categorized and 

briefly discussed. Different algorithms using murray polygons are presented 

to find the connected components of an image. Different images which are
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given in chapter 3, Figure 3.2 are considered by these algorithms. Completion 

time for different images, using different algorithms which use murray 

techniques have been compared. Comparison has also been done between 

algorithms which use murray techniques and with those obtained with 

quadtree, octree, or linear encoding. All the images which are considered are 

black and white.

6.2 Connected Component Labelling :

As defined above, connected component labelling is one of the basic 

operations of an image processing system. For example, the image shown 

below has two components. Given a binary array representation of an image, 

Rosenfeid and Pfaltz(1966) suggested a "breadth-first” approach, which scans 

the image row by row from left to right and assigns the same label to the 

adjacent BLACK pixels that are found to the right and in the downward 

direction. During this process pairs of equivalences may be generated, 

resulting in two more steps. The first step is to merge the equivalences and 

the second one is to update the labels associated with the various pixels to 

reflect the merger of the equivalences.

An image with two connected blocks. Blocks in the image are 

shaded; background blocks are blank (white).
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Samet(1981a) used a quadtree method to perform the same operation. 

His algorithm is three-step process. The first step is a postorder traversal 

(in order NW,NE,SW,SE), where for each BLACK node that is encountered, say A, 

all adjacent BLACK nodes on southern and eastern sides of A are found, and 

assigned the same label. The adjacency exploration is done using the 

neighbour-finding techniques of Samet(1982). The second step merges all the 

equivalence pairs that were generated during the first step. The third step 

performs another traversal of the quadtree and updates the labels on the nodes 

to reflect the equivalences generated by the first two steps of the algorithms.

Gargantini(1982) used linear quadtrees and showed how to find the 

pixel adjacent to a given one in a specified direction. If 

K =(kn-lK n-2 . ............^0)4  be the given pixel and S = (Sn-iS n - 2  .8 0 )4  its

adjacent node in a particular direction (say southern direction ) then the 

problem is how to determine digits 8 ^-2 , ............§0- Here two case are

distinguished: in the first one, K and 8  belong to the same quadrant relative to 

the nth subdivision; in the other, K and S do not. Four different algorithms are 

required to find the adjacent nodes in four direction (N, 8 , E, W). They have 

been explained (refer Gargantini(1982)).

Unnikrishan(1987) proposed a connected components algorithm using a 

linear hierarchical quadtree (LHQT). LHQT is obtained by rearranging a linear 

quadtree into a hierarchy of arrays based on the size of the black node, as 

defined earlier. The algorithm explores adjacencies in the LHQT, assigning 

unique labels. It has shown that the use of the LHQT in connected component 

labelling results in greater computational efficiency than the algorithm given 

by Gargantini(1982).

Gargantini(1983) used a linear octree to find the adjacent pixels in a 

three-dimensional image. His algorithm produces the pixel adjacent to an
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internal one in a specific direction. A binary search can be used to determine 

whether or not the found pixel is black as in the planar case Let Q be

represented by an octal digit q n -i, qn-2,....................do- Here for each digit two

cases have been considered to find the octal code of the pixel adjacent to Q in 

the Eastern direction (say).

1. If qO is even, the adjacent node in the Eastern direction belongs to 

the same octant as Q and therefore E(qg) = qg+1, E(qj) -  qj, j = 1, 2 ...........n-1.

2. If qo is odd, Q and its adjacent node belong to two different octants. 

The adjacent octant is represented by (qg+7) rem 8. The other digits are

determined by analyzing q i,q 2  ............. , if even then we use case 1 otherwise

case 2.

For the boundary pixels, if the found value of E(Q) is such that 

Q-E(Q) = (11.....1)8 then Q is on the eastern border. If Q-S(Q) -  (22.......2)g then Q

is on he southern border. Similarly internal or boundary pixels can be 

determined for other directions also.

6.3 Connected Component Labelling using Mwrmy Polygons :

As defined above, connected component labelling is the process of 

identifying the disjoint elements of the Image. If a binary array 

representation of an image is given, the simple method of finding connectivity 

would be to scan the image row by row from left to right and assign the same 

label to the adjacent black pixels that are found to the right and the downward 

direction. This process is one dimensional and secondly all the pixels need to

be considered in order to find the connectivity to the right and in the

downward direction. Once the end point of an image has been reached the

imaga will be rescanned from top to bottom. Rescanning is continued until the
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connected component is obtained. The time required depends upon the number 

of black pixels and the shape of the component.

In the next sections we will discuss two different approaches for 

finding the connected components of an image. The efficiency for both 

methods is compared for different images. The theory behind these methods is 

very simple. Let us consider two perpendicular lines intersecting at a common 

point A (say). The common point A is connected with the four neighbour points 

of the two intersecting lines. Also we know that since the connectivity 

relation is transitive and reflexive then c R a if a R b and c R b . Since we 

have a common point and the relation is transitive it implies all the points are 

connected to each other. In the case of the murray scan this can be obtained by 

considering two different scans, one will subdivide an image array into 

horizontal tiles and the other one will divide the image into vertical tiles. For 

example, a tile of size 3*3 and the two scanning patterns corresponding to an 

image are as shown,

At any stage the two scans in a tile will be perpendicular to each other. The 

connectivity can now be obtained by using both the scans together. To find
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connectivity we can start from a tile and from this tile we can find other 

tiles and so on, more detail follows.

6.3.1 Method 1 [Using Images) :

Consider a black and white image with many connected areas as shown 

in Figure 6.1. Suppose we are interested in the blob marked T. Our problem is 

to extract this blob from the image leaving behind the other small ones.

Figure 6.1. An Image with many connected areas.

The approach is very simple. Initially scan an image horizontally and 

vertically to get the sequence of runlengths where the radices for the two 

scans can be the same or different. For the scanning part we can either use 

two scans separately which will break an image into collection of tiles 

scanned in the horizontal and in the vertical direction to give two sets of 

runlengths, or we can scan the image In the horizontal direction and then using 

the scan conversion algorithms discussed in chapter 4, the runlengths for the 

vertical scan can be obtained. The use of the scan conversion algorithm is to 

get rid of the image once scanned. The operations will then be on the 

runlengths only. But in comparison, both the methods approximately take the
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same time to get the corresponding runlengths for the other scan. Here in this 

method we use two different scans to scan an image.

The starting point should be the subset of the set containing all the 

points belonging to the blob in which we are interested. A starting point in an 

Image can either be indicated by positioning a cursor on the display or in an 

automated system choosing a long runlength of the appropriate colour only if 

the component required is large. In the later case a problem can arise when

the image has two or three blobs of the same size. The starting point may

belong to other blobs in which we are not interested. We have to repeat the 

process until we get the required blob. In this method we will choose a long 

runlength of black colour ( since the images used are black and white only) to

find a starting point. How to use cursor for finding the starting point is

discussed in the second method. The complete method for finding the 

connected components by using images is as follows.

Let ri ,f2 ............................... tn  (1)

be the sequence of runlengths obtained from the horizontal murray scan and

si ,82 ............................  Sfx) --------------------------- (2), be the sequence

of runlengths obtained from the vertical murray scan. We can start with any 

of these sequences. Consider the first sequence of runlengths and find the 

maximum black runlength for the starting point. Let the maximum black 

runlength in the first sequence be q. Convert this black runlength to white by

merging the two white neighbours with it. Now we have a new sequence of 

runlengths where the maximum black runlength has been changed to white. 

The new sequence is thus,

n .f2 ............  n-2 . f'i . n+2 ....................   fn   (A)
where r'j = n.-j + q + q + i
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Using this new sequence of runlengths an image can be drawn at any point on 

the screen. Scan this new image using a vertical murray scan.

Let S-j , $2  .....................  Sm ' —  -------------------- (3), be the new

vertical runlengths. Now we have two sequences of runlengths obtained by
I

using the vertical murray scan.The first one is obtained by scanning the I

original image and the second one Is obtained by scanning the new image. The

two vertical sequences are represented by label (2) and (3). If we compare

both the sequences we will find that some of the black runlengths are i

identical, whereas some of them are changed. The black runlength in the

sequence (2) which has changed in (3) are actually broken into several

runlengths. The reason is the black area which has changed to white. All the |

black runlengths in the sequence (2) which pass through that area will be j

affected. For example, suppose s\ is the only black which has changed. All the I

runlengths before and after it will be same , see below. |
j 
ii

w b b w b/w I
I

S1 .S2..................... Sj.Si+1 Sm I

S i,S 2 .......................... S |,S j+ i................. S|+k..........................  Sm  I
I
I

where s; = S| + S j+ i+  .....+ S ;+k, ■

Sj = Sj for i = 1 to i-1, Î

and Sj = Sj+k for I = i+1 to m. j

Here Sj has broken into k runlengths. Since Sj is black and so the runlengths i
I

Sj , S|+2 , ..  , the relation is transitive implies all these black runlengths I
i

are connected to each other. Our next step is to convert Sj to white as we did i

earlier. The new sequence of runlengths for the vertical scan is now, |
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I

w b b w b b/w

S1 ,S2 .............................   Sj.2 , s'l, Sj+2............................   Sm  (B)

where s'j = S|_i + Sj + Sj+i

Again the image can be drawn on the screen using the runlengths given in (B) .

This time we will use the horizontal murray scan to scan this new image. The 

new sequence of runlengths will now be compared with the sequence given in 

(A) and so on. When there is no change in the two sequences which we are 

comparing our program will stop. The whole scheme is given in Figure 6.2.
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Input ; Image 
Scan := True 
open.file A,B,C,D,E

Scan the image using scan1, output the runs in 
file A ( = lnitial.file.1)
Scan the image using scan2, output the runs in 
file B ( = lnitial.file.2)______________________

if Scan=True use file A 
else use file B 
Convert max.black to white 
and put the changed runlengths 
in file C (= final.file)

Scan := ~Scan
If Scan=True use scani to scan the new image, 
else use scan2 to scan the new image, 
output the runlengths in file D (= final.file)

if Scan=True then lnitial.file.1 := final.file 
else lnitial.file.2 := final.file 

Draw the image using the runs of the final 
file.

If Scan = True then compare file A with 
the final file C 

else compare file B with 
the final file D 

storing the runlengths in a file

end

Figure 6.2. Flow chart giving the scheme for method 1
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Now the final runlengths will have the blob marked T  totally removed

i.e., turned to white. To get the runlengths for the blob, we may either 

accumulate them as we find them or compare the final horizontal sequence 

with the initial sequence given in (1). Those pixels which are black in the final 

sequence will have turned to white in the sequence given in (1), resulting in 

the sequence of runlengths for the blob marked T. This is discussed below,

Let r-| ,r2 ................................ . r^ be the initial runlengths given in (1) and

le t  r'i ,r' 2 ................................. r'm be the final runlengths where n>m. To

get the runlengths for the blob we will scan both the sequences together to 

look for the black common pixels in the two sequences. A runlength r\ is said 

to be common to the runlength r'j of other sequence If,

r-j+r2 + +n>i = r'-j+r'2 + ............+r'j_-| , where r\ and r'j are both

black.

Therefore to scan both the sequences we need to store the information 

corresponding to the left sum i.e., how many pixels have been used before a 

runlength (say q). We can define sum i and sum 2  to be the initial sum for the 

two sequences, where initial values for s u m i is equal to r-j and for sum2 equal 

to r'-j. Whenever we encounter a new runlength we will add this to the 

previous sum to give the new sum value. Now the movement of each sequences 

depends upon the relation between the two sums. Two case need to be 

considered, sum 1 < sum2  or sum 1 = sum2 (Note : sum 1 cannot be greater 

than sum2 since the runlengths r )  will always be greater than or equal to ri).

If sum i < sum 2  this implies that r'j > q. Since both the sequences are

obtained by using the horizontal murray scan, we will conclude that the 

runlength r'j is obtained by adding some of the runlengths belonging to the

blob, see below,
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(a) (b)

Here (a) is the initial image and image (b) is the final image obtained 

by turning the biggest blob to white. The two sequences of runlengths obtained 

from the images (a) and (b) are,

w b w b w b w b w  b w

Ini t ial

Final

2 6 1 2  1 3  1 1  6 1 1

9 2 14

If we see the final sequence then the runlength 9 is equal to the sum of the 

first three runlengths in the initial sequence, and similarly for the runlength 

14. Therefore in these cases the first sequence will scan the consecutive 

runlengths storing them in a file, while the second sequence waits for the 

first to catch up i.e., sum 1 = sum2  .

If sum1 = sum 2  , this case will arise when the scan touches .other 

surrounding blobs which are not connected to the blob in which we are 

interested. Here in the first sequence we will change the next runlength to 

white if it is black, since the next runlength does not belong to that blob. For 

example if we consider the same sequences of runlengths given above we will 

see when both the sums are 9 then the next runlength i.e., 2 belongs to the 

other blob. Keep on repeating this until the end of the two sequences is 

reached.

161



CHAPTER 6. CONNECTED COMPONENT LABELLING.

The same idea for 2-D images can be further extended to 3-D and

n-dimensional images. But since we have to draw and scan an image whenever

a new sequence of runlengths has obtained after comparison, the time of 

completion for this process will be very high. Since scanning and drawing part 

of an image is very time consuming, methods other than murray polygons 

( i.e. linear encoding , quadtree or octree encoding ) also take a long time to 

compute by this method.

6-3.2 Method 2 :

The efficiency for the first method can be further improved. The 

previous method is slow because each time when we get a new sequence after 

comparing the two sequences, we have to draw and scan an image. Now we 

will discuss another algorithm where the homogeneous area identification is 

computed directly from the runlengths. We will discuss two methods,

1. which uses two sequences of runlengths,

2. which uses only one sequence of runlengths.

6-3.2.1 Usdng Two Sequences of Runlengths:

As usual, before we discuss the method we give the data structure

used to store the runlengths. Our data structure Is the same as defined above

except for a new entry flag. The data structure now has six major items,

1, runlength, 2. Sum, 3. Col, 4. flag, 5. left pointer, and 

6. right pointer.

we define our data structure as,

structure in teger.Iis t(in t runlength. Sum ;string Col, flag ;pntr left, right)
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The new item flag is used in finding the black cell which belongs to the blob 

in which we are interested. This item I.e.,flag may consider three different 

values,

1. Initially we will set it's value to 'w' assuming that there is only 

one big connected blob.

2. We will set it's value to 'F' if it is a part of the blob in which we

are interested.

3. We will set it's value to 'b' if we have used the cell whose flag

value was 'F' to find the connected points to it. Once flag value is

'b' we will not use that cell again to find the connected points .

Consider the same image in Figure 6.1, and let the area in which we 

are interested be the same as that considered In the previous method. Let 

list. 1 be the linked list of n list( or cell) containing r-j ,r2 ................................  r^

the sequence of runlengths obtained after scanning the image in the horizontal 

direction and let Iist.2 be the linked list of m list ( or cells) containing

S'j ,S2 ...........   Sm the sequence of runlengths obtained after scanning the

image in the vertical direction. The data structure used for both lists is the 

same. Initially we assume that all the cells have the flag value equal to 'w'. In 

other words we are assuming that all the cells initially belong to the blob in 

which we are Interested. Iist.1 and Iist.2 are shown below,
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Iist.1

X
EE
i
w w 2̂ b w rn w /b w /

' ' f  2+ n - f

llst.2

X EEEE0W
.Si -1

ETTrm W/b w /

®1^2*........

Note : In the first cell we are assuming 'Sum* equal to -1, because the curve 

starts from the 0th point (see chapter 2).

Now we have two linked lists for the same image, scanned in the 

horizontal and the vertical directions. The starting point should be a subset of 

the set containing all the points belonging to the blob in which we are 

interested. In the last method we used a long runlength to find a starting 

point. Here we will use the cursor to find the starting point. In PS-algol the 

standard function Vocafor' returns a structure containing the information 

about the status of the mouse. With the help of this function we can get the 

(x,y) co-ordinates for a point belonging to the area in which we are interested. 

Since a murray polygon, is an explicit function, i.e.,

f(x,y) i.e., if a point on the curve is given 

then the corresponding co­

ordinates of that point can be 

obtained.
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f (x,y)  ..........> n i.e., if the co-ordinates of a point is

given then the corresponding nth 

point on the curve can be obtained.

we can easily find which nth point it is on the horizontal or vertical murray 

scans. Using the item 'Sum ' defined in the structure we can easily find the 

cell in which this nth point lies. Since this point belongs to the blob, by the 

equivalence relation all the points in that cell are connected to each other. Our 

next step is to change the flag value which is V  to 'F'. Before we move ahead 

let us consider an example to discuss the theory explained so far. Consider an 

image of size 5*5 with a connected component as shown in Figure 6.3. The 

linked list which is obtained after scanning the image in the horizontal 

direction is also given in Figure 6.3.

(x.y) = (3,2) = 13th point

Iist.1

À i
5 - 1 w w / . ^ 3  4 b w 5 7 w w 5 12 b w 7 17 w w /

L
Figure 6.3. A connected Image with the runlengths.
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Suppose the co-ordinates obtained by using the standard function 

locator are (x,y) = (3,2). Using the transformation explained in chapter 2, we 

can find the nth point on the curve corresponding to the co-ordinates (3,2). 

From the image we can easily see that it is the 13th point {Note : Actually 

(3,2) is the 14th point on the curve but since the curve starts from 0th point 

i.e pixel at (0,0) , it is the 13th point on the curve) . If we see the linked 

list, this point belongs to the fourth cell. This information is obtained from 

the item 'St/m ' which tells us that 12 points have been used before that and the 

points from the 13th to the 17th belong to this cell. In the new list we will 

change theflag  value to 'F' indicating that it belongs to the blob, see below,

list.1

Now we will scan this new changed list and wherever we find a cell with the 

flag value ’F', we will use those cell points to find the corresponding points in 

the second linked list (i.e., vertical). Once we have used the points of a 

particular cell whose//ap value is 'F' we will then change this value to 'b', 

indicating that this cell belongs to the blob and has been used for finding the 

other connected points to it. Therefore in the above list theflag  value for the 

4th cell which is 'P  will turn to 'b' after use. Consider the same image given in 

Figure 6.3. The vertical linked list i.e., Iist.2, obtained by scanning an image 

(Figure 6.3) in the vertical direction is given below.
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Iist.2

23

From the new linked list i.e., Iist.1, given above we can say that from 

13th to 17th points belongs to the blob in which we are interested. But these 

points will appear in a different numeric order in the vertical murray scan. 

Using these points the corresponding points on the linked list i.e., Iist.2, can 

be obtained.

f (x .y )

f (x,y)

m, where n and m are the points on the two 

scans.

We find that the 13th point is the 17th point in the vertical scan .This 

17th point belongs to the 6th cell of the Iist.2, this implies all the points in 

that cell are connected to the points in the corresponding cell of Iist.1. The 

next step is to change the flag value to 'F'. Similarly consider the 14th, 15th 

.... points to find the corresponding cells in the second list i.e., Iist.2. Once we 

have completely scanned Iist.1, we will scan Iist.2 and if we find a cell with 

flag value 'F' we will use that cell to find the corresponding point on Iist.1. 

The flag value will change to 'b' once a cell has been used. We will keep on 

doing that until both the lists do not have any cell with the flag value equal to 

'F'. In the end we will merge those black cells whose flag value is V  with the
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two neighbourhood white ceils. The cells whose flag value Is 'b' are the 

required runlengths.

Extension to 3-D and n-D Images :
I

The method is similar to the one explained above. Here instead of two 1
i

sequences of runlengths, we will consider three sequences of runlengths. The
I

first one corresponds to the front view, the second one corresponds to the left I

view and the last one corresponds to the bottom view of a 3-dimensional
1

image. By the front view we mean that the planes are parallel to the XY-plane , |
!

by the left view we mean that the planes are parallel to the YZ-plane, and for i

the bottom view the planes are parallel to the XZ-plane. To get a murray scan

of that type depends upon the values of the radices. In chapter 2, we have j

discussed front scanning, which can be done either plane by plane or tile by

tile depending upon the values of the radices. If the planes are parallel to the

YZ-plane or to the XZ-plane a murray scan can easily be obtained by choosing

the appropriate values for the radices.

Let r-j J2  T3 T4 T5 T6 be the radices where I

r-j and r^ belong to the x-radices,
!

T2 and rg belong to the y-radices,

rg and rg belong to the z-radices,

If r-j takes the value 1 then the scan will be forced in the YZ-dlrection.

Similarly if rg takes the value 1 then the scan will be forced in the 

XZ -direction. The image can be scanned in plane by plane fashion or in tile by 

tile fashion.

Alternatively, if we interchange the position of the x-part and the 

2 -part such that radices r-j and r^ now belongs to the z-part, and radices rg 

and rg belongs to the x-part then the scan will be forced in the YZ-direction 

{Note : since we are interchanging the radices we also have to interchange the 

digits ). If we want to scan the image in plane by plane order, then the radix
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rg will take value 1 and if we want to scan the image in tile by tile fashion

then we will divide the x-dimensions which can be even, into the suitable 

factors e.g., if the x-dimension is 9 then the two factors corresponding to rg 

and rg can be 3 and 3, for the x-dimension to be 10 the two factors can be 5 

and 2 {Note : radix rg can not be even). Similarly If we interchange the 

position of the y-part and the z-part such that radices rg and rg now belongs 

to the z-part, and radices rg and rg belongs to the y-part then the scan will be 

forced in the XZ-direction {Note : since we are interchanging the radices we 

also have to interchange the digits). Now to scan the image in plane by plane 

fashion or in tile by tile fashion the radix rg will assume different values as

defined above.

Once we have three linked lists obtained after scanning a 3D-image 

from the three different directions, the problem of connectivity can be easily 

solved. The approach is similar to the one discussed above. W e will consider 

each scan one after the other and will use those cells which have flag value 

equal to 'P  and turn it to 'b' once used. When all the three lists do not have any 

cell having a flag value equal to *P, the program will stop. Then after merging 

those black cell where the flag value is V ,  we will get the runlengths for the 

connected blob. Using these three sequences of runlengths we can obtain the 

runlengths for the three remaining sides i.e., back side, left side and top side.
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6-3.2.1.1 Comparison Between Method l(uslng images) And Method 2 (using 

runlength sequences) :

An Image Number of 
Black Pixels

Number of 
White Pixels

Method 1 
(time)

Method 2 
(time)

Image a 2875 6926 5.40 secs ' 2.20 secs

Image b 3134 6667 5.48 secs 3.15 secs

Image c 6246 3555 8.10 secs 8.00 secs

Table 6.1. Comparison betweeen the two methods, where method 1 uses 
Images and method 2 uses two sequences of runlengths.

Different images which are given in chapter 3 are considered to 

compare the two above methods. The first method takes an Image as an input, 

whereas method 2 takes two sequences of runlengths to find the required 

connected component. From the result shown in Table 6.1, method 2 is found to 

be faster than method 1. The reason for that is, in the case of first method we 

have to draw and scan the image whenever we will get a new sequence of 

runlengths, which is obtained after comparing the two sequences of 

runlengths (refer section 6-2.1). In the second case we do not have to 

consider the images, since the connected component will be obtained straight 

from the two sequences of runlengths, which are the input values. Both the 

algorithm are coded in PS-algol.

6-3.2.2 Using One Sequence of Runlengths :

The above two methods discussed so far consider two sequences of 

runlengths obtained from two different murray scans to find a connected
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component. In this section we will discuss a new algorithm which will take 

only one sequence of runlengths to find the large homogeneous area.

This result was obtained by using a linear murray scan. That is, for an 

image of size n*m a murray scan which is used with with the radices rg ri

given by n m or m n {Note : in the second case we have Interchange the radices 

and the digits also , as discussed in chapter 4). This forces the scan to move 

across or up the full width of the image before a unit change in the 

y-direction or in the x-direction occurs (see chapter 2, and 4), resulting In a 

scan pattern as given below in Figure 6.4.

Figure 6.4. Linear scan simulation by murray scan with radices T2 
given by n m.

This does not have fly-back and the runs are allowed to wrap round one 

scanline to the next thus giving better results than a system with maximum 

runlength limited to a scanline length.

The data structure which has been used has seven items and is defined as, 

structure integer.Iist(rnt runlength, Sum;string Color,Lflag,Rflag;pntr left,right)

All the item are defined earlier except the Lflag and Rflag  which are used to 

find the left and the right connectivity. Both the items Lflag  and Rflag  will
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consider three different values, as discussed before for the item flag in the 

above method.

Let r-j, rg, rg,........................r^ be the sequence of runlengths obtained by

scanning the image by using a linear horizontal murray scan. Initially both the 

flags i.e., Lflag and Rflag are given value 'w' as we did in the previous method. 

The linked list is given below.

f

w/b w wm
^1+''2+............+fn-1

The starting point can be obtained by either of the two techniques 

discussed above. Once we get the starting point we will find the cell in which 

it belongs and turn the Lflag and Rflag values to 'P . Now we will start from 

this cell whose flag values is 'P. We will go left and right in the linked list to 

find the connected components. Initially we will find the connectivity to the 

right of the list turning the Rflag value to 'b' i.e., it is connected and we do not 

have to use it again to find the connectivity in the right direction. If we find a 

cell or cells which is/are connected to this cell we will change its flag va lues  

to 'F' and will consider the next cell with flag value equal to 'F', turning the 

Rflag value to 'b' and so on. Once we hit the end of a list we will go left to 

find the connected components. This time we will consider those cells whose 

Lflag values are ’F'. When we hit the left end we will go to the right of the 

linked list. When there is no cell with flag values equal to 'F' the process will 

stop. Finally to get the runlengths for the large homogeneous area we will
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merge all the black cells with the two white neighbours if Xhelrflag 

values is 'w'.

Implementation ;

Here two procedures which are used in finding the connected 

components are discussed. The first procedure i.e., pixel.before.b.cell, returns 

the number of pixels before a black cell in a row and the second procedure i.e., 

split.b.cell, splits the black cell if the runlength obtained for this cell belongs 

to two or more number of rows. The information obtained from both the 

procedures is then used to find the parameters for the next black cells to lie 

in, if they are connected. A simple example to explain this method is given at 

the end of this chapter.

Let a-j be the number of white pixels behind the black cell under 

consideration. Let the start point of a cell with a-j pixels lies in the ith row. 

To find the number of pixels behind the cell with a-j pixels, we have to find 

the start point for this cell. The start point for a cell can be obtained by using 

the information stored in the item Sum of a list. As discussed earlier, the 

item Sum records the number of pixels used before a cell, hence the starting 

point of a cell will be given as Sum+1. The row number in which this start 

point lies can be obtained by dividing the start point of a cell by the length of 

an image. The divisor term will be the required row number 

( i.e., row.number = (Sumn-1} div R , where R is the length of an image). The  

start point for a row will now be equal to row.number*R. Now the number of 

pixels( say e) behind the cell in the ith row is equal to the start point for the 

cell minus the start point of the row. Let f  = R-e be the remaining pixels in 

the row.
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ith row

K -
-  a  ------------> 1
 — ------- f---- — ------ —
R •'    ......... '  ..

We now have the number of pixels behind a-| pixels. Our next step is to 

find whether the runlength a*| corresponds to the ith row only or to some other 

rows also. This can simply be found by comparing the values for a^and f.

If a*i< f then the runlength a-] belong to the ith row only(see above

example, here ith row has been marked with these values), otherwise

it corresponds to some other rows also.

If a-\ > f then a-j will assume value equal to (a-f -f ) rem R ( ~ A , say)

and e will have the value zero. For example,

6 — A - * ;  l_ k tilh ro w  ^  . I,(l-h1)throw - -  -  .

ith row I I ith row .

  ........    I

>►1 | < .................  R-— ---------

The procedure * pixels before.b.ceir is given below.
I Input Is 'Sum* i.e.; number of pixels used,
1 the length of the image (R) and the no. of W.pixels (a1)
IThe output is the vector of integers.
le t pixel.before.b.cell = p ro c (in t Sum,R,a1 -> *ln t)
b eg in

let lst.pnt:=Sum+1

le t find.row:=lst.pnt d Iv  R
le t lst.pnt.of.row:= R*find.row  

le t e:-lst.pnt-lst.pnt.o f.row  

le t f:=R-e
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if a1>=f then @1 of int[0, (a1-f) rem R ] 
else @1 of int[e, a1]

end

Another procedure is used to split the black runlengths if necessary. 

This is because if a black runlength corresponds to two or more consecutive 

rows and we are finding connectivity in the right direction i.e., top-direction, 

then we do not have to consider those rows which are underneath the black 

rows. Only the one which is on the top should be considered. Exceptions can be 

arises when the top row partially covers the bottom row. Here we will split 

the black runlength into two parts and will separately find the connectivity 

for the two parts. Since these two parts are connected to each other, hence 

the other parts which are connected to these two parts will be connected to 

each other. The procedure splitb.cell and the different case for a black 

runlength are discussed below.

Let ag be the number of black pixels ahead of a-j. For ag two cases are 

possible,

1. ag >“ f-a-j. We have to divide ag into two parts. The first part

(say store 1) at the ith row will find connectivity with the pixels in 

the (i+1)th row and the second part (say store2) at (i+1)th row will 

find connectivity with the pixels in the (i+2)th row.
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(i+1)throw }I n il lu w _____________j__:____________m

ith row
8  I &« ......................

K- - f .......
     R ' ■ "' 'I —

f2 or

n+1tth row

Ith row

storel = R -e -a  ̂
store2 = a^- storel
■  Here a.|and e Is equal to zero

Further, if store2 > storel -1 but less than R, this implies we can 

not use storel to find the connectivity since all the pixels of 

storel are covered with the pixels of store2. Hence storel will be 

equal to zero. Also store2 starts from one end of a row indicating 

that there are no pixels behind it. The values for a-j and e will turn

to zero. If store2 > R then we will again adjust storel and store2 by 

making storel equal to R and store2 equal to, (store2 rem R).

2. If ag < f-ai then storel will be equal to ag and store2 will be zero.

The procedure 'splii.b .ceir is given below,
! Input is no. of b.pixels (a2), B = f-a1,
I the length of the image, the term A has been used for the value a1
I The output is the vector of integers.
let split.b.cell = proc(int a2,B,A,R,e > *int)
begin

let storel :=0;let store2:=0
if a2 >= B then
begin

storel :=B;store2:=a2-B  

case true of

store2>store1-1 and store2<=R : {storel :=0;A:=0;e:=0} 

store2>R : {storel :=R;A:=0;e:=0}
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default : {}
end
else{store1 :=a2;store2:=0}
@1 of int[store1 ,store2,A ,e] 

end

Now we have the information about the number of pixels behind a black 

cell in a row, the parameters at which other black cells will be connected may 

easily be calculated. Consider a simple example, an image of size 7*2 and the 

corresponding runlengths given below.

^$2

!<■
w b w b 
2 4 5 3

ai = 2 ,

the start point for this white runlength = 0 and — (1)

the start point for the row = 0,   ( 2)

the value e = (1) -(2) = 0,

the quantity f = R-e = 7 - 0  = 7. Now since a-| < f there will be no

change for the value of a i .

ag (= 4) and is less than R-a-j-e, so storel = 4 and store2 = 0. Then 

if the next black runlengths lies between R+F to R+F+ag+1, where 

F = R -ai -ag-e, i.e between 8 to 13, then it is connected otherwise not. If we 

see, the sum of the first three runlengths is 11, that is the next runlength of 

size 3 starts from the point 12, and since it is black this implies that it is 

connected.
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The same algorithm can also be extended to 3D-images. The only 

information which we need to include in the previous algorithm is the 

connectivity with the back objects. In the 2-dimensional case we consider a 

black runlength and then find the corresponding connected points in the up and 

down directions. Since in the 3D case the planes are placed one after the 

other, we need to find the connectivity in the back direction also. Similar 

argument for the 2D case can be extended for 3D-images. For example, 

consider an image of size 5*5*2 as shown ,

2 =  0

The corresponding runlength obtained after scanning an image by using 

a 3D-murray scan, which will scan the Image in plane by plane fashion, is 

given below,

number —”> 1 2 3 4 5

colour — > w b w b w

r.length — > 6 3 21 3 17

As we can see from the image given above that the black runlength numbered 

2 and 4 are connected to each other. Now for the connectivity only we have to 

find the range for the next runlength to lie in. The range can easily be 

calculated as discussed above. In the above case, if we select the 2nd 

runlength as the start point then for the back connection the range for the 

next runlength will be between 22 and 26. Since the next black runlength i.e., 

4th, lie in that range hence it's connected.
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6.3.2 3 Comparison Between Method 2( Fart 1), And Method 2( Part 2) :

An Image Number of 
Black Pixels

Number of 
White Pixels

Method 1 
(time)

Method 2 
(time)

Image a 2875 6926 2.20 secs 0.40 secs

Image a 2875 6926 1.20 secs 0.39 secs

Image b 3134 6667 3.15 secs 0.44 secs

Image b 3134 6667 1.05 secs 0.43 secs

Image c 6246 3555 S.OOsecs 0.52 secs

Image c 6246 3555 I.IOsecs 0.43secs

Table 6.2. Comparison betweeen the two methods, where method 1 uses 
two sequences of runlengths and method 2 uses one sequence of runlengths.

The processing time shown above for the two methods has obtained for 

different connected components in an image. The time difference between the 

two methods is very large specially in the case of Image c. The reason is 

discussed below.

6.4 Remarks :

Three different methods which finds the connected componentsin an 

image have been discussed above. From the results obtained by these three 

methods it has found that the method with linear murray scan is faster than 

the rest two methods( see Table 6.1, and Table 6.2). The method 2(part 1) 

which takes two sequences of runlengths, is slow because some of the pixels 

are repeated to find the connected component. For example, let the two sets of 

runlengths, obtained by scanning the image in horizontal and in the vertical 

direction are.
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r i ,  T2................................   r„ - .........................(1)

s 1 > ^2 » ............................ » (^)

Suppose the starting point lies in the cell r;. Using r; pixels we will find the

corresponding cell in the sequence (2) and then these cells in (2) which 

contain previous r; pixels will be used to find the corresponding cells in (1) . 

Here we are repeating r; pixels which are already used in finding out the

connected points. This method can be made faster if we represent each point 

separately in a sequence. For example, if a point say A lies in the cell Sj then 

we can break Sj into two or three runlengths. If pixel A is the last or the 

starting point in the cell Sj then we can write sj as (1 , sj -1) or (Sj -1 , 1), 

otherwise (sj.-j , 1, Sj^.-;) where Sj = Sj_i + 1 + S j+ i . But it is not true that the 

processing speed improves since the size of the sequence increases and so the 

time to scan the whole sequence. Therefore in speed the method 2(part 2) will 

always be faster than the other two. But since a point in a general murray 

scan has four directions to move hence the chances of capturing more pixels 

of the same colour is more than that of a point In a linear murray scan, which 

goes from left to right with no fly back. The result will be better compaction 

in the case of a general murray scan rather than that of the linear murray 

scan. The method 1 and method 2{part 1) which are slow may be more compact 

in comparison with the method 2(part 2).

The same approach as given in method 2 (part 2) can be obtained by 

using the linear scan method. Since a linear scan goes from left to right, a fly 

back will often result in a break in the runlength and hence will require more 

space to store a 3D-image. For example, for an image of size 100*100*3 we 

need 300 linear lines i.e., minimum number of runlengths, to store the whole 

image. Secondly we have to keep the record for all the scan lines in order to 

find the connected component. On the other hand a linear murray scan has no
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fly back, which can be slightly advantageous In getting the more compact 

runlengths and secondly the whole image can be represented as a single 

sequence of runlengths which can be used for further processing . The time of 

completion should be same with both the methods since only addition and 

subtraction calculations are required.

In comparison to quadtrees or octrees approaches the time 

requirement for the method 2{part 2) may approximately be same for finding 

the connected component. It depend very much upon the shape of the 

component( i.e.,image) also. Unnikrishnan, and Venkatesh(1984) has shown that 

for a 64*64 image, where 662 pixels are black, a LHQT takes 1067ms to find 

the connected areas. Their algorithm is coded in Pascal and has run on DEC 

1090. In the case of a linear murray scan it has found that for an image of 

size 100*100 , where 2875 pixels are black it takes 0.1 sec. Our algorithm is 

coded in PS-algol. However the scanning part may be time consuming in the 

case of quadtree or octrees. In case of linear quadtree[Refer 

Gargantini(1982)], to get the required codes for an image we have to apply 

condensation and sorting to the collection of codes for the black pixels, which 

we do not require in the case of a linear murray scan. In comparison to linear 

murray scan coding, the quadtrees or octrees coding may be more compact, 

especially linear quadtree or Octree encoding where only black pixels are to 

be stored. Better compaction may be obtained if we redraw the image after 

finding the connected area by method 2 (part 2) and then rescanning the image 

using a suitable general murray scan. The result may be comparable to that of 

quadtree or octree approaches and the total time may approximately be same 

for both the methods, since not much time is wasted in scanning the image 

using the murray approach
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CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

7-1 Introduction ;

If we consider a 3D-image, we will find that some of the opaque 

objects and surfaces that are closer to the eye hide other objects from view. 

The objects which are blocked must be removed in order to render a realistic 

screen image in real time. The identification and removal of these surfaces is 

called the hidden-surface problem. The solution for that is to determine the 

depth and visibility for all the surfaces in an image. Once the surface which is 

hidden has been removed then the visible surface can be shaded from a given 

light source. Shaded pictures are produced by recording the shade of gray or 

the colour of each point in a two dimensional array. Since many shades of gray 

or shades of colour may appear in an image, corresponding to a visible surface, 

it is right to call them shaded images.

In this chapter, initially past and present work is categorised and 

briefly discussed. Two different algorithms, which use murray techniques are 

discussed to remove the surfaces which are hidden. The algorithms which are 

generated accept any arbitrary image, (for example, as a CT-scanner provides 

3D-data by taking images of a large number of slices through a patient). All 

the images are black and white and the view plane is considered to be the 

XY-plane. Since all the planes are parallel to the XY-plane then the 

x-coordinates and the y-coordinates for the pixels in each plane will be the 

same but with varying z-value. Shading algorithms are discussed which use 

diffuse reflection. The results are compared with those obtained by using 

specular reflection. The algorithms are coded in PS-algol.
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7-2 Hidden-Surface Removal :

The task of deciding which parts of an object should be shown and 

which parts should be omitted was originally known as the "Hidden-Line 

Problem". Here we eliminate or dash all the lines in an output drawing which 

were hidden by other objects. Now that shaded pictures are being produced by 

computer, a different problem which is referred to as, the "Hidden-Surface 

Problem" has become important. In hidden surface problems one must include 

or omit entire surface areas rather than just the lines representing edges. 

Hidden-surface algorithms can be divided into three classes based on the 

coordinate system or space in which they are implemented[Sutherland, Sproull, 

and Shumacher(1974)]:

i. Those that compute a solution to the hidden-surface problem in

"object-space".

ii. Those that perform calculations in "image-space".

iii. Those that work partly in each, the "list-priority" algorithms.

Object-space algorithms are implemented in the physical coordinate 

system in which the objects are described. Very precise results, generally to 

the precision of the machine, are available. These results can be satisfactorily 

enlarged many times. They are particularly useful in precise engineering 

applications. Image-space algorithms are implemented in the screen 

coordinate system in which the object are viewed. Calculations are performed 

only to the precision of the screen. As shown by Roger{1985), the 

computational work for an object-space algorithm that compares every object 

in a scene with every other object in the scene is equal to the number of

objects squared (n^), and for an image-space algorithm which compares every

object in the scene with every pixel location in screen coordinates is equal to
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nN, where, n is the number of objects (i.e., volumes, planes, edges ) in the 

scene, and N is the number of pixels. For n<N, object space algorithms will 

require less work than image space algorithms. Since the resolution of the 

screen is fixed and not very large (e.g., the resolution of Sun 3/60 is 

1152*900), it would be better to implement all the algorithms in object 

space. In practice, this is not the case, image space algorithms are more 

efficient because it is easier to take advantage of coherence in a raster scan 

implementation of an image space algorithm. Secondly the cost of the object 

space algorithms grows as a function of the complexity of the environment, 

but the cost of the image space is limited because the number of screen dots 

remains constant, independent of the environment complexity. The list priority 

algorithms operate in both object and image space. In particular, the 

"list-priority" calculations are carried out in the object space and the result 

written to an image space frame buffer. The use of a frame buffer is critical 

to the algorithm, since each element of a scene is written to a frame buffer In 

turn. Those elements which are closer in a list will overwrite the contents of 

the frame buffer, thus solving the hidden surface problem.

The following section examines several object and image space 

algorithms. Each algorithm illustrates one or more fundamental ideas in the 

implementation of hidden-line/hidden-surface algorithms.

7-2.1 Object-space Algorithms :

Robert(1963) devised the first known solution to the hidden-line 

problem. His algorithm tests each relevant edge to see if it is obstructed by 

the volume occupied by some object that lies between the edge and the 

viewpoint. The algorithm thus capitalizes on the spatial coherence of objects: 

it tests edges against object volumes. This test is implemented by writing a
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parametric equation for a line from a point on the edge to the view point. The 

equation is as given,

P(t,b) = (1“t )A i + t A2 -Î- b V (1)

0 <= t <~ 1Î 0<= b

The first two terms represents the parametric equation of a point on 

the edge A-^Ag in the perspective coordinate system and the third term (i.e, v), 

is a vector pointing toward the viewpoint in the perspective space, (0,0,-«>).

The next step is to find whether the point P(t,b) lies inside a convex 

object. This can be determined by simply finding, whether the point P(t,b) lies 

"inside" of all planes that comprise the object or not. If it is inside then it lies 

inside a convex object, otherwise the object will be broken into a number of 

convex objects, which is very tedious. The condition for finding this is,

P(t,b) . Eij <= 0 for all i (2)

where Eij is the plane equation of the ith face of the object j. If for a given 

object j, values of t and b can be found that satisfy (2), the point on the edge

corresponding to t is hidden by the object. For minimum and maximum values

of t various techniques are used to solve equation(2).

This edge/object test may discover that:

i. the edge is entirely hidden by the object.

ii. no portion of the edge is obscured by the object.

iii. one part of the edge is not obscured, or

iv. two portions of the edge are not obscured. Any unobscured

portions are then tested against the remaining objects.
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t

The disadvantage of Roberts algorithm is that it restricts the 

environment, all volumes or objects in a picture should be convex. If an object 

is not convex then the algorithm will firstly represent it by a collection of 

convex ones, which is a difficult task [refer Robert(1963)].

7-2.2 Image-Space and List-Pilority :

The image-space and list-priority algorithms are designed to create 

images for a fixed resolution display, often a television monitor. Although the 

specific aims of the various algorithms are not identical, the group has been 

motivated by desires for real-time speed and for realism in the images. These 

algorithms are now used to generate quite spectacular shaded pictures in 

color.

In image-space algorithms, the visibility is decided point by point at 

each pixel position in the image. The depth of the various surfaces that would 

be penetrated by a viewing ray at a particular point in the image, is calculated 

and then the depths are compared for the visibility test. Thus, these 

algorithms can be capitalize on the lateral separation of the image to reduce 

the number of depth computations required.

The list-priority algorithms, on the other hand, precompute in object- 

space a visibility ordering or "priority" for all surfaces before generating the 

picture in image-space. The priority of a surface can be expressed as a linear- 

ordering of the surfaces such that if ever two surfaces need to be compared 

for visibility, the one with the lower or higher priority is the visible one. A 

few examples are Illustrate below.

For a simple scene, such as shown in Figure 7.1a, obtaining a definitive 

depth priority list is straightforward. Here the polygons can be sorted by 

either their maximum or minimum z-coordinate value. However for the scene
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Figure 7.1. Polygonal priority.
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Figure 7.2. Cyclical overlapping polygons.
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shown in Figure 7.1b, a depth priority list cannot be obtained by simply sorting

in z. If P and Q in Figure 7.1b are sorted by minimum z-coordinate value, then P

appears on the depth priority list before Q. The correct order in the priority 

list is obtained by interchanging P and Q. As illustrated in Figure 7.2, the 

polygons cyclically overlap each other. In Figure 7.2a, P is in front of Q which 

is in front of R which in turn is in front of P; similarly in Figure 7.2b. Here a 

definitive depth priority list cannot be immediately established. The solution 

is to cyclically split the polygons along their plane of intersection until a 

definitive priority list is obtained. This Is shown by dashed lines in Figure 7.2.

The following sections examine several image-space and list-priority 

algorithms in detail. Each algorithm illustrates one or more fundamental ideas 

in the implementation of hidden-line/ hidden-surface algorithms.

7-2.2.1 Image-space Algorithms :

The Warnock{1969) algorithm assumes that sample areas on the 

screen, called windows, can be declared to be homogeneous if ;

1) no faces fall within the sample window,

2) one face completely covers the window and is nearer the viewpoint 

than every other face that falls in the window.

If the window under consideration is not homogeneous, then it is 

divided into four smaller sample windows, and each of these is examined 

similarly. When the size of the sample windows decreases to the size of the 

raster element, the subdivision process is terminated (see Figure 7.3).
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Figure 7.3. Subdivision by Warnock’s algorithm. The object contains three intersecting bricks 
(Sutherland, Sproull, and Schumacker(1974)).

Window

( a ) (b) (c ) (d)

Figure 7.4. The relationship between a face ( or polygon) and a sample window.
a. polygon Pi surrounds the window,
b. polygon Pg intersects the window,
c. & d. polygon P3 Is disjoint from the window.
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A set of faces is compared to the window to see whether the face;

1) surrounds the window,

2) intersects the window, or

3) is completely disjoint from the window (see Figure 7.4).

An important concept of the Warnock algorithm is that the hypothesis 

test for a sample window need not test all faces in the environment. If a 

hypothesis test fails, the four sub-windows to be examined need only be 

tested against intersectors of the original window since faces disjoint from 

the large window will certainly be disjoint from the four small windows, and 

faces which surrounded the original window will surround its decendant 

windows.

The faces are grouped into two categories,

1) those that are disjoint from this window,

2) those that are relevant to this window.

The relevant faces are then passed down to sub-windows, where the faces are 

again compared with the subwindows. The process terminates when a window 

is proven to be homogenous.

There are many advantages of the Warnock algorithm; the windows do 

not need to be rectangular; we can subdivide the windows at specific points, 

such as vertex locations, rather than at thp center point.

One difficulty with the Warnock algorithm is that its output cannot 

conveniently be passed to a raster-scan device like a television. The decisions 

about windows are reached in a random order, rather than in a top-to-bottom
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left-to-right order. Cohen, Tom, and Rosenfeld(1980) have devised a scheme 

for driving a raster display from window computations, but it involves a 

massive sort of the windows by X and Y coordinates.

Warnock’s algorithm does not produce the display data in a sequential 

order as defined above. This defect can be removed if we have a procedure 

which divides the space into separate regions, such that two consecutive 

regions are in next door neighbour order. Griffith(1984) used a Hilbert curve, 

since the smallest window or region emerges naturally from the recursion one 

after the other, thus adjacent to each other. Griffith, proposed a table driven 

algorithm for the subdivision purposes. Here a window is divided into two 

parts. A window should either be divided horizontally or vertically, depending 

upon the quadrant priority(i.e., the four basic orientations). Four basic 

orientations of Hilbert polygons are given in Figure 7.5. Types A and D have 

vertical dividing lines, whereas for types B and 0  horizontal dividing lines are 

used (see Figure 7.5). Quadrant priority also determines which half should be 

dealt with first. The arrows marked in each case indicate the window priority 

after subdivision.

A — 
i

-# ^A
1

I
B

T
0

/

D

A i 1
---- D

L ■H^A

/
B 0

B D
Figure 7.5. The relation between the four basic types of window and their subdivision.

(arrows indicate window priority after subdivision).See Griffith(1984).

Weiler and Atherton(1977) tried to minimize the number of 

subdivisions in a Warnock-style algorithm by subdividing along polygon 

boundaries. This algorithm is based on the Weiler and Atherton(1977) concave
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clipping algorithm. Here the polygon to be clipped is the subject polygon and 

the clipping region is the clip polygon. The new boundaries created by clipping 

the subject polygon against the clip polygon, are identical to a portion of the 

clip polygon. No new edges are created, hence the number of resulting polygon 

is minimised. It operates in object-space. The hidden-surface algorithm has 

four steps :

1) A preliminary depth sort.

2) A clip or polygon area sort based on the polygon nearest the

eyepoint.

3) Removal of the polygons which are behind that nearest the eyepoint.

4) Recursive subdivision, if required.

The first polygon on the preliminary depth sorted list is used as the 

clip polygon and the remaining polygons including the clip polygon on the list 

are subject polygons. Each of the subject polygons is clipped against the clip 

polygon. Two lists are established: an inside list and an outside list. The 

portion of each subject polygon inside the clip polygon is placed on the inside 

list otherwise on the outside list.

Compare the depth of each vertex on the polygons which are In the 

Inside list with the minimum z-coordlnate ( Zcmln ) value for the clip polygon. 

All the subject polygons on the Inside list are said to be hidden by the clip 

polygon if none of the z-coordinate values of the polygon on the inside list is

larger than Zcmln (see Figure 7.6). These polygons are eliminated and the

inside polygons list Is displayed. Note that here the only remaining polygon on 

the Inside list is the clip polygon. The algorithm continues with the outside 

l ist .
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The subject polygons on the inside list lie at least partially in front of 

the clip polygon if the z-coordinate for any polygon in the inside polygon is 

greater than Zemin. Hence the algorithm recursively subdivides the area, using 

the offending polygon as the new clip polygon. The inside list is used as the 

subject polygon list. Since the new clip polygon is a copy of the complete 

original polygon, it minimizes the number of subdivisions.

All the algorithms thus far described are for objects defined by the 

planar polygonal faces. Objects defined by curved surfaces must first be 

approximated by many small facets before any of the algorithms can be used. 

Catmull{1974a) has developed a Warnock-style subdivision algorithm for 

curved surface display. Catmull applied the algorithm to bicubic surface 

patches. Warnock's algorithm recursively divides the image space whereas the 

Catmull algorithm recursively subdivides the surface (see. Figure 7.7 ). His 

algorithm is:

1. Recursively subdivide the surface into subpatches until a 

subpatch, transformed into image space i.e., covers at most one 

pixel center.

2. Find the intensity of the surface at this pixel and display 

the pixel.

The efficiency of the algorithm depends on the efficiency of the curved 

surface subdivision technique. The disadvantage of this method is that it does 

not present the result in scanline order, which is inconvenient for raster scan 

line order. Cohen, Lyche, and Riesenfeld (1980) suggest a more general 

technique for B-spline surfaces, as cited by Rogers(1985).
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z-Btiffer Algorithm:

The z-buffer approach was proposed by Catmu!l(1974b). It is 

implemented in image-space. It is a simple extension of the frame buffer idea. 

A frame buffer is used to store the attribute or intensity of each pixel in the 

image space. The z-buffer is a separate depth buffer used to store the 

z-coordinate or depth of every visible pixel in the image space. The initial 

value may be thought of as the z position of the background. Polygons will 

entered one by one into the frame buffer. The depth or z value of a new pixel to

be entered into the frame buffer is compared to the depth of that pixel stored

in the z-buffer. If the new pixel is in front of the pixel stored in the frame 

buffer, then the new pixel is written to the frame buffer and the z-buffer 

updated with the new z value, otherwise no action is taken.

Since image space is of fixed size, the increase in computational- work 

with the complexity of the scene is at most linear. No sorting is required, 

since elements of a picture can be stored to the frame buffer or z buffer in 

arbitrary order. Hence the computation time associated with a depth sort is 

elim inated.

The amount of storage required is the principal disadvantage of the 

algorithm. It requires a lot of memory (one entry for each pixel), and each 

entry must have a sufficient number of bits to distinguish the possible

z-values. It can also be time consuming since a decision must be made for

every pixel Instead of for the entire polygon. However it is a very simple 

method, simple enough to implement in hardware to overcome the speed 

problem. Further the time required is proportional to the number of objects in 

the scene. But since the cost of memory is dropping very fast, it makes this 

method an increasingly popular approach for the hidden-surface problem.
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7-2.2 2 Llst-Prloiity Algorithm :

The principal contribution of the Newell, Newell and Sancha(1972a) 

method is the development of a priority computer. As defined above, the 

priority list is used to determine the face that is visible at any spot. Newell 

views the list in quite a different way: if we write the images of successively 

higher priority faces successively onto a picture buffer, the picture buffer 

will have a correct hidden-surface view after we have processed the entire 

list. Faces of higher priority will overwrite the faces of lower priority.

The Newell-Newell-Sancha algorithm for polygons is :

The first step in the procedure, sorts all faces by the depth of the 

farthest vertex of each face. The first face on the list is the one which has 

the smallest value of the z-coordinate, Zmin The polygon which is farthest 

from the viewpoint is labelled as P and the next polygon_on-the list is labelled 

as Q. If faces do not overlap in depth at all, this sort successively establishes 

the priority (see Figure 7.1), otherwise we have to test whether the depth 

sorted list is indeed in priority order (see Figure 7.2) i.e., to examine the 

relationship of P and Q.

If the nearest vertex of P, Pzmax is farther from the viewpoint then 

the farthest vertex of Q, Qzmin, then P cannot hide any part of Q. Write P on 

the frame buffer (see Figure 7.1).

If Qzmin < Pzmax then P obscures not only 0  but also any face or 

polygons on the list for which Qzmin < Pzmax. These faces can be represented 

as the set {Q}. It may also be possible that P will not hide any part of any 

polygon in the set {Q}.

If P obscures some polygons in the set {Q}, then P cannot be written in 

the output buffer. Here interchange P and Q, marking the position of Q on the
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list. Repeat the tests with the rearranged list. If Q cannot be written before P 

and P cannot be written before Q, the priority computer must divide either 

face P or Q to eliminate the conflict. This conflicts is often called cyclic 

overlap. In Figure 7.2 face P has been divided by the plane of face Q into two 

faces Pa and Pb. These two faces are placed in the priority list; the priority 

computer will then determine the order of Pa, Q, Pb in the correct priority 

order.

The Newell-Newell-Sancha algorithm for the hidden-surface 

problem, process all the polygons in the scene, for each frame being presented. 

If the scene is complex and the frame rate is very high, as in real-time 

simulation systems, the investment in computing the priority list from the 

scene is quite high. However, for many real time simulation problems, e.g., 

flight simulation, where the environment rarely changes, the viewpoint 

changes quite frequently. Schumacker et al(1969) take advantage of several 

more general priority characteristics to precompute, off-line, the priority list 

for simulations of such static environments.

The Schumacker(1969) algorithm allows only convex polygons in the 

scene. These polygons are grouped into clusters of polygons that are linearly 

separable. Clusters are said to be linearly separable if a nonintersecting, 

dividing plane can be passed between them (see Figure 7.8). He refers to the 

separating planes as a and b. They divide the scene into four regions. The tree 

structure shown in Figure 7.8b establishes the cluster priority for the scene. 

Cluster priority can be precomputed. Substituting the coordinates of the 

viewpoint into the equations of the separating planes locates the appropriate 

node in the cluster priority tree. The computation of face priority requires 

computing whether face A can, from any viewpoint, hide face B. If so face A 

has priority over face B. In the case of cyclic overlap, the cluster will have to
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Figure 7.8. Cluster priority.
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Figure 7.9. Face priority. Top view of an object with face priority numbers 
assigned( the lowest number corresponds to the higher priority).



CHAPTER 7. HIDDEN-SURFACE REMOVAL AND SHADING.

be split manually into smaller clusters, then an appropriate hidden surface 

technique as described by Newell can be applied.

The notion that face priority within a cluster can be computed 

independent of the viewpoint is one of the major contributions of the 

Schumacker algorithm. It allows precomputation of the entire priority list. 

Consider the top view of an object, as shown in Figure 7.9, for which the 

individual polygonal priority can be precalculated. The priority of each polygon 

is established by considering whether a given polygon can hide any other 

polygon from the viewpoint. The more polygons that a given polygon can hide, 

the higher priority it has. To establish the polygonal priority within a cluster 

for a given viewpoint, the self-hidden polygons are first removed. The 

remaining polygons are then in priority order as shown in Figure 7.9.

7-2.3 Scan lin e  Algorithms :

The Warnock, z-buffer, and list priority algorithms process scene 

elements or polygons in arbitrary order with respect to the display. The scan 

line algorithm, as originally developed by Wylie et al(1967), Bouknight(1970) 

and Watkins(1970), process the scene in scan line order. It operates in image 

space.

Scan line algorithms take advantage of coherence between successive 

scan lines and of span coherence within a scan line. They also simplify the 

geometric calculations by reducing a three-dimensional problem to a two- 

dimensional comparison of segments in the xz plane. The performance of scan- 

line algorithms is primarily related to the complexity of the visible image. A 

scan plane is defined by the viewpoint at infinity on the positive z axis and a 

scan line, as shown in Figure 7.10). The intersection between the scan plane 

and the three-dimensional scene defines a one scan line high window. The 

hidden surface problem Is solved in this scan plane window. Figure(7.10b)
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shows the intersection of the scan plane with the polygons. The hidden surface 

problem is reduced to deciding which line segment is visible from each point 

on the scan line, as illustrated in the Figure 7.10.

Y  a

Screen

Scan plane

(a)

X

(b)

Figure 7.10. Scan plane.

7-2.3.1 Scan Line Coherence Algorithms[McwMwn, and Sproutt< 1979)] :

Scan line algorithms solve the hidden surface problem one scan line at 

a time, usually processing scan lines from top to bottom or bottom to top of 

the display. The algorithm successively examines a series of windows on the 

screen. Each window is one scan line high and as wide as the screen. Here two 

arrays, are required intensity[x] and depth[x], to hold values for a single scan 

line.
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For each scan line perform the following steps:

1) For all pixels on a scan line, set depth[x] to 1.0 and 

intensity[x] to a background value.

2) For each polygon in the scene, find all pixels on the current

scan line y that lie within the polygon.

For each of these x values :

I. Calculate the depth z of the polygons at (x,y).

ii. If z < depth[x], set depth[x] to z and lntensity[x] to the

intensity corresponding to the polygon's shading.

3) After all polygons have been considered, the values contained 

in the intensity array represent the solution, and can be 

copied into a frame buffer.

Here a depth value must be computed and compared with the value 

already recorded in the frame buffer. The algorithm concurrently scan 

converts all polygons in the scene using one scan line at a time.

7-2.4 A Visible Surfiice Ray Tracing Algorithm :

In this technique, an object is viewed by means of light from a source. 

Light rays strike the object and then reaches the observer or viewpoint. The 

light may reach the observer, by reflection from the surface, or by refraction 

through the surface. If we trace the light rays from the source, very few rays 

will reach the viewpoint. Since finding a ray which reaches the viewpoint 

after striking the object, is totally mathematical, the chances of an error is 

possible and secondly many sub rays will be generated when a ray hits an
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object. Appel(1968) suggested that the rays should start from the apposite 

end i.e., from the observer to the object.

It works in image space. The viewpoint is assumed to be at infinity, on 

the z axis. Since the viewpoint is at infinity, all the light rays will be parallel 

to the z axis. For each ray to be traced we have to find, whether a ray 

intersect the objects of the scene. If true, find the intersection points for all 

the objects, which are intersected by a ray. Compare the depth of each of the 

intersected points, and the point with minimum z value will be the visible 

point. Display the point using the intersected object's attributes. Finding the 

intersection of a ray with different objects is very time consuming. In the 

case of mathematically defined objects, the amount of work can be reduced by 

using the bounding volume for the object. A bounding volume can either be a 

bounding box or a bounding sphere, which will cover an object of the scene.

This will reduce the number of pixels to be examined.

7“2.5 Octree Methods [Hearn, and Baker(1986)j :

When an octree representation is used for viewing the three 

dimensional scenes, hidden surface removal is done by projecting octree nodes 

onto the viewing surface in a front to back order. The front face of a region of 

space i.e., the side towards the viewer, will have octants 0, 1 , 2 ,  and 3. The 

surface which is in front of these octants is visible to the viewer, whereas 

octants 4, 5, 6, and 7 may be hidden by the front surface.

Back surfaces are removed by processing data elements in the octree 

nodes in the order 0,1,2,3,4,5,6,7. Since this results in a depth first traversal 

of the octree, the nodes representing octants 0,1,2, and 3 for the entire region 

will be visited before the nodes representing octants 4,5,6 and 7. Similarly, 

the nodes for the front four suboctants of octant 0 are visited before the 

nodes for the four back suboctants.
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When a color value is found in an octree node, the pixel area in the 

frame buffer is assigned that color value, provided no value has previously 

stored at that point. Only those pixels which are visible will be loaded into the 

frame buffer. If the area is void, we will neglect it. If a node is completely 

obscured by other nodes then we will neglect that node for further processing. 

This will help in not wasting time on accessing its subtrees. Further different 

views of objects can be obtained by applying a transformation to the octree 

representation. This transformation will reorient the object according to the 

view selected. It is assumed that all the time the octants 0,1,2, and 3 of a 

region will form the front face.

The octree method for removing hidden surfaces from the scene is very 

fast. Only integer additions and subtractions are used and there is no need to 

perform any sorting or intersection calculations. Another advantage of this 

technique is that they store the entire solid region of an object. It can be 

useful for obtaining cross-sectional slices of solids.

7-3 Hidden-Siir&ce Removal Using Murray Polygons :

Here we will discuss two methods, one which scans all the planes 

using a suitable murray scan and then merges them together, and the second 

one which scans only the first plane and then merges other planes according to 

the transparent area { i.e., in the case of black and white, if a pixel is black 

then there is no need to consider other pixels which are behind of it, but if it 

is white we will consider the same pixel in the next plane ( Note: The (x,y) 

co-ordinates for a pixel in each plane will be the same since all the planes are 

parallel to the XY-plane) ), and so on until a black pixel or the last plane of an 

image is encountered. In both methods compression of data is done in two 

stages. Firstly we compress the 3D-image by reducing it into the collection of 

runlengths. This compression is exact i.e., using the runlengths the same
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3D-image can be regenerated and no information is lost. The collection of 

runlengths are then scanned to give the runlengths for a 2D-image (i.e., we 

transform a 3D-image to a 2D-image by working on the runlengths obtained by 

scanning a 3D-image. Once a 3D-image has been reduced to a 2D4mage, it can 

not be rebuilt to a 3D-image.

Before we discuss the methods, as usual we would like to discuss the 

data structure used to store the pixels with different depths. Here we use 

three different structures. The main structure 'integer.UsV, has six major 

items namely,

1. runlength 2. Sum 3. Colour 4. left pointer 5. middle pointer 

6. next pointer

All the items used in this structure have been defined earlier. The new pointer

i.e. middle, points at two different structures and is discussed below,

1. If the colour of a cell of a list is white then the middle pointer will 

point at the x and the y coordinates of the first pixel of that cell. It has been 

shown earlier that we can calculate the coordinates if the nth point on the 

curve is given to us, but since we have to calculate murray integers, gray 

coded integers, etcetera the process can be very slow. If we know the 

coordinates of the first pixel of cell the efficiency can be increased. Its use is 

explained ahead in the method 2. W e define this data structure as:

structure co.ordinates.W (lnt x,y) , see below.

integer.llst
10 12

co.ordinates.W
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2. If the colour of the cell is black then the middle pointer will point 

at the corresponding depth of the black pixels. The pixels can then be shaded 

according to the depth stored. We define the data structure as,

structure co .o rd inates .B (in t runs,z;pntr right)

For example, suppose there are 10 consecutive black pixels all are from the z-j 

plane then the whole structure for storing this will be,

integer, list

co.ordinates.B
/10

7-3.1 Method 1 :

In this method we scan all the planes one by one and then merge them 

together to give a single list. We can either use a 3D-murray scan to scan the 

image in plane by plane order or we can scan each plane separately using a 

2D-murray scan. In the second case a murray scan will use the same radices to 

scan the different planes. Once all the planes are scanned the procedure ’union' 

discussed in chapter 5 can be used to merge them together to give runlengths 

for a single plane. The only point which we have to add in the procedure'un/on' 

is the information about the z-values. In a list where the cell colour is 'w' i.e 

white, the middle pointer will get the n//value and for a 'b' i.e.,black cell the 

middle pointer will point at the corresponding depth of the pixels.
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The advantage of this method is that we do not need to store the whole 

image inside the system. The planes can be scanned one by one as discussed 

above, and the depth can be stored for each plane. Another advantage of this 

method is that the entire solid region of an object is available for display, 

which makes this method useful for obtaining cross-sectional slices of solids. 

Since all the planes are parallel to each other, to get an inside view one can 

start from the nth plane where,

0 < n < total number of planes.

The disadvantage of this method is that we have to consider all the 

points in a 3D-image. Actually there is no need to consider all the points. For 

example, if in the first plane a pixel at point (x,y) is black then there is no 

need to consider the same point in the other planes, since they are hidden by 

that pixel. The visibility is terminated till all the planes are scanned. Time 

can be saved by not considering those pixels which are hidden by other pixels. 

We will use this idea in the next method.

7-3.2 Method 2:

Here initially we will scan the first plane of a 3D-image. For scanning 

the image we can either use a horizontal murray scan or a vertical murray 

scan. The output will be the collection of runlengths with associated colour. 

The colour information can be removed in the case of biack and white images, 

by assuming that the first runlength will always corresponds to white, as 

discussed earlier.

Let r-j J2  »*’3»..................................r^ be the collection of runlengths obtained

after scanning the first plane. All the cells storing white runlengths will 

store the x and the y coordinates of the first pixel of that cell and the cell 

with black runlengths will store the corresponding depths of the pixels. In the
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first plane the depth for all the pixels is zero and it increases as we go inside 

the image. The whole structure representing the complete information iis as 

shown,

list

,+r n-1

If white If black

z = 0

Since all the planes are parallel to each other, the (x,y) coordinates for 

a particular point in all the planes will have the same value except for the 

z-coordinate.The area which is black in the first plane will hide all of the 

area behind of it, hence there is no need to process the pixels which are 

behind. But the area which is white in the first plane does not hide other black 

areas behind it. The algorithm now will proceed by considering these white 

areas to see whether other areas of a scene are visible from the view point or 

not.

The information stored in each white cell of a linked list is,

1. the number of pixels (say m pixels) i.e. runlength,

2. the number of pixels used before a cell i.e., Sum, and,

3. the X and the y coordinates of the starting point.

Since all the planes are parallel to each other, the starting point for the next 

plane will be the same as the one obtained for the previous plane. We will 

start from that point and for the m pixels obtained from the white cell we 

will check the colour in the next plane. If all the pixels in the next plane are
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white then we will consider the next white cell in the list and similarly will 

scan the next white area . But if some of the pixels are black then we will 

adjust our present linked list by turning those pixels to black. If the starting 

pixels or the end pixels of the m pixels, are turned to black then we will add 

these pixels to the left or to the right cell which is black, storing the depth 

information in the middle pointer. This can be summarised as follows.

Let the white cell under consideration have runlength R2 and let (x,y) 

be the starting point as below. We will scan the next plane (i.e., the 2nd) for 

that area starting from the point (x,y).

12+R

z = 0

There are three cases,

1. All the pixels in the 2nd plane are white. The linked list will be the same. 

Consider the next white runlength in the list, and scan this white area in the 

same plane and so on until we reach the end of the linked list. Our next step is 

to consider the 3rd plane and for each white cell in the modified linked list 

{Note : if all the white pixels In the Initial list are also white In the 2nd plane 

then the linked list will be the same otherwise we will modify It according 

to the position of the black pixels. Refer case 2  and case 3), scan the area in 

the 3rd plane and so on until the last plane is encountered.
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2. Some of the starting pixels (say a) or end pixels are black in the 2nd plane. 

If a few starting pixels are black then we will add these pixel to the black 

cell which is to the left of the white cell under consideration, see below. If 

end pixels are black then we will add that information to the right cell. The 

new linked list, assuming the few starting pixels are black will be given as,

12+F

F = Ri +a

z = 0
z = 0

Now we will consider the next white cell and we will scan the same plane and 

so on until we will reach the end of the list.

3. A few pixels ( say a) which are in the middle are black in the 2nd plane. 

Here we will divide Rg pixels into three cells i.e., we have to add two more

cells to the present linked list. The new linked list is as shown,
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MWIinWIIII  I Ml 3̂

T2+RTÎW

Once we have used a white cell, we will consider the next cell to find 

the visible area. All the planes will be scanned for a given white area in the 

previous plane. When all the planes have been processed for determining the 

visible area, we will get the collection of runlengths with hidden surface 

removed. Here a 3D.image has been transformed into a 2D-image. The middle 

pointer in each black cell will contain the depth Information corresponding to 

the pixels in a cell. A typical black cell with depth information is as shown.

Sum

—L
5ZQ

where,
r1 pixels belongs to z1 plane, 
t2 pixels belongs to z2 plane.

rn pixels belongs to zn plane, 
and,

r1 +r2 +r3 +........,..+rn = R

An example is given to explain the method discussed above.
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Let US suppose, a 3D-image is composed of three planes each of size 

5*3. The three planes with corresponding depths are given below,

z = 0

I .

1 z = 2

3 3 * * *
3

2 2 * *
2 **

1 1 1
'w

3 1 2 3 4 X ° 3 1 2 3 4 X ° 3 1 2 3 4

We will scan the first plane i.e. z=0, using a murray scan having radices rg r-| 

equal to 3, 5, where r*| belongs to x-part and rg belongs to the y-part. The 

corresponding linked list obtained is given below,

Now we will consider this list to find the visible area. Visibility is 

only possible where we have a white area. We will scan the linked list given 

above and for each white cell we will find the visible area. The first cell in 

the linked list is white with (0,0) be the start point and the runlength equal to

3. We will now consider the 2nd plane i.e., z=1, and will check whether any of 

these 3 pixels are black in this plane. The answer is no. The second cell which 

is white has a runlength of 7 and the coordinates for the starting point are
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(2,1). In the 2nd plane, out of 7 pixels (marked *) two of them are black. We 

therefore change the linked list, as below.

Since the end of the linked list is encountered we will now consider this 

modified list and the next plane i.e z=2, to find the visible area. Consider all 

the white cells in that list, the white cell which has a runlength of 4 has 3 

pixels black(marked **) in this plane.The new change in the list will now be.

We do the same with the other white cells if any. The final list will be given 
as,

3 - 1 W | 1 -

_____ >
r
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7-3.3 Comparison of Hidden-surfiEice Methods :

There are many different hidden-surface algorithms. Some use 

mathematically defined scenes and some use any arbitrary scenes. All have 

their own advantages and disadvantages. This has been discussed in detail in 

section 7-2.

The effectiveness of a hidden-surface method depends upon the 

characteristics of a particular application. If the surfaces in a scene are 

spread out in the z-direction so that there is very little overlap in depth, then 

a depth sorting method may be the best. Similarly if the surfaces are well 

separated in the x-direction, then a scan line or area subdivision method may 

be the best one. Depth sorting methods are very effective if a scene has a few 

surfaces and only a few of these are overlapping.

However if a scene has a large number of surfaces then the depth 

sorting method will require more memory than other methods. In this case 

octrees or area subdivision methods may be better. The method 2 discussed 

above is very similar to the octree approach. We do not need all the planes at 

the same time. We can process the planes one by one. The processing time 

depends upon the number of white pixels in the first plane. To obtain an inside 

view of a scene parallel to the XY-plane, we can start from any plane which is 

inslde( say nth plane) such that 0 < n < no.of.planes. The advantage over an 

octree is again the size. In the case of an octree an image Is a cube of side 2" 

but with murray scans there Is no restriction on the size of an image. Further 

as In octrees, we do not need to perform any sorting and intersection 

calculations in our method. The algorithm is the same for all the surfaces, no 

special considerations being given to the curved surfaces. Further if quadtrees 

or octrees have an advantage then this can be reproduced in murray scans.
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7-4 Shading

7-4.1 Introduction:

One aspect of computer graphics that has received much attention is 

the production of shaded images of objects. Three types of calculations must 

be performed for producing computer generated images of three dimensional 

objects.

1) The hidden surface problem, which determines the visibility of

a point from the viewpoint.This has discussed above in detailed.

2) The normal vector to the object at those points which are visible.

This normal vector is used to determine the pixel or point color,

for portraying smoothly shaded surface.

3) Intensity calculations. This takes the factors such as, the unit 

normal vector at that point, the direction of the light sources, the 

location of the observer, and the characteristics of the surfaces to 

derive a function that determines the proper intensity for the 

corresponding point on the image.

The simplest of these functions considers that the surface of the 

object has diffuse reflection i.e., the light that strikes the object from a 

particular direction will reflect off in all directions. Since the reflections 

from the surface are scattered in all directions, this implies that the location 

of the observer does not affect the intensity of a surface. The only calculation 

then is to find the angle between the light source and the normal vector to the 

surface. Usually the intensity of a pixel is directly proportional to the cosine 

of the above angle. The cosine of the angle can be determined by computing the 

dot product of the two unit vectors. If the dot product is negative, it means
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that the viewer is on the opposite side of the surface from the light source. In 

this case the intensity should be set to zero. Distances are ignored, since both 

the light source and the observer are assumed to be at infinity from the 

surface. Further simplification can be made by assuming only a single light 

and the position of the observer is on the z axis of the coordinate system. The 

intensity functions are then proportional to the z-component of the unit 

normal vector (Figure 7.11) . Gouraud(1971) used this formulation for a very 

rapid smooth shading system.

In addition, there is a small amount of light which falls on the surface 

uniformly from all directions. This is known as ambient light. This constant 

should also be added to the intensity. The net diffuse reflection for a surface 

illuminated by ambient light and one light source is:

d = max[ 0,N.L]

i = kd [ la d.lp]

where

i = Perceived intensity.

kd -  Coefficient of reflection for the surface. It

lies between 0 and 1.

la -  Incident ambient light intensity.

Ip = Intensity of the source.

d = Amount of diffuse reflection.

N = Normal vector to surface.

L -  Light direction vector.
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This model is simple to compute and quite adequate for many 

applications. The next section examines several shading models in detail.

7-4.2 Sur&ce-Shadiiig Methods :

The shading functions assume that a normal vector corresponding to 

the surface direction at the point being shaded is known.The accuracy of the 

normal vector representing the actual surface depends on the method used to 

obtain it.

The easiest way of obtaining a shaded image of a curved surface is to 

approximate it by many planar polygons. When two or more two dimensional 

images are used to obtain a three dimensional image, the surface description 

is easily available. For a mathematically defined surface, these polygons may 

be obtained directly from it. Since planar polygons are defined by a single 

surface normal, this information can be used in a simple shading function to 

determine the color for a whole polygon. This technique is limited. The 

resulting image will appear faceted although it may be possible to obtain a 

reasonable impression of the surface structure.

Gouraud attempted to improve the impression of a curved surface by 

smoothing over the polygonal mesh. His algorithm requires specification of 

the normal vector at each vertex of each polygon. This vector can either be 

obtained directly from the mathematical description or by averaging the 

normals of all the polygons adjacent to a vertex. Once a color has been 

obtained for each vertex, the color can also be obtained for any edge by 

interpolating between the endpoints color.These edge colors are linearly 

interpolated along a scan line to obtain the interior colors. Figure 7.12 

demonstrates this interpolation scheme. Here the intensity at point 4 is 

obtained by interpolating the intensity values at 1 and 3. Similarly intensity 

at point 6 is interpolated from the intensity values at the vertices 1 and 2.
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Figure 7.11. The diffuse reflection component is proportional to the cosine of the angle 
between the Incident light vector (I) and the normal (N).

scan line

Figure 7.12. For interpolation shading, the Intensity value at point 4 determined 
from the intensity values at points 1 and 3, intensity at point 6 is determined 
from values at points 2 and 1, and intensities at points(such as 5) along the 
scan line are interpolated between values at points 4 and 6.
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obtained by interpolating the intensity values at 1 and 3. Similarly intensity 

at point 6 is interpolated from the intensity values at the vertices 1 and 2. 

Once the bounding intensities are found for a scan line, an interior point (such 

as point 5) is interpolated from the bounding intensities at point 4 and 6. This 

process is repeated for each scan line passing through the polygon. The result 

is a smoothly shaded surface that appears very much like the original curved 

surface.

Phong(1975) studied the physical properties of real surfaces and 

attempted to devise a function that produce more realistics results. In 

particular, he noted that, in addition to diffuse reflection, most surfaces 

specularly reflect some light. The amount of light reflected from the surface 

depends on the location of the observer. This phenomenon can be represented 

by a function which compares the angle between the direction at which light 

reflects off a surface and the direction in which the observer is looking; 

usually along the z axis (Figure 7.13). Since such light must reflect almost 

directly at the observer in order to be seen, Phong using the cosine of the 

above angle raised to some power, insured that it is significant at only very 

small angles. The exact value of the exponent is influenced by the surface 

reflectance properties. The surfaces can then be described by some 

combination of both the diffuse and specular functions plus an additional 

constant for the background illumination.

Gouraud shading removes the intensity discontinuities associated with 

the constant shading model, but still a number of problems arose with this 

simple interpolation scheme. The most serious problem was Mach band effect. 

Mach established the following principle :
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Whenever the light-intensity curve of an illuminated surface has a 

concave or convex flection with respect to the axis of the abscissa, 

that particular place appears brighter or darker, respectively, than its 

surroundings [  E. Mach(1865)].

This effect appears whenever the slope of the light intensity curve changes 

i.e. non-continuous first derivative. Phong reduces that effect by interpolating 

the normal vectors themselves between vertices and edges and computing a 

color for each pixel. This approach provides a more consistent surface 

definition, independent of the orientation of the polygons. It provides a 

smoother interpolation across polygons, although it is still not continuous in 

the first derivative.

When rotation is applied to the images, both Gouraud and Phong shading 

shows difficulties, with the shading varying significantly from frame to 

frame. This effect is due to the shading rule which is not invariant with 

respect to rotation. Consequently as the orientation of an image change from 

frame to frame does so the color.

Torrance and Sparrow(1967) present a theoretical model for reflecting 

light. Bllnn(1977), Gook(1982), and Cook and Torrance(1982) used this model 

to produce synthetic images. The Torrance-Sparrqw model for reflection from 

a rough surface is based on the principles of geometric optics. The surface of 

an object is assumed to be composed of many mirror like microfacets. The 

specular component of the reflected light is assumed to come from those that 

are oriented in the correct direction. The diffuse component comes from 

multiple reflection between facets and from internal scattering. The specular 

reflection for Torrance-Sparrow model is :
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S = DGF/(N.E)

where,

D is the distribution fountain of the directions of the micro 

facets on the surface.

G is a geometric factor due to shadowing and masking of one 

microfacet by another.

and F is the Fresnei reflection law.

Torrance-Sparrow assume that the microfacet distribution on the 

surface Is Gaussian, given as ;

D = c iexp (-(d /m )2 )

where,

c i is an arbitrary constant

m is the root mean square slope of the microfacets.

d is the angle between the normal to the surface and the normal 

to the microfacet.

Cook and Torrance use a more theoretically founded distribution model 

proposed by Beckmann, and Spizzichino(1963). The Beckmann distribution is:

D = (l/m ^cos^d). exp(“(tand/m)2)

which gives the absolute magnitude of the distribution function without 

arbitrary constants. Corresponding to specular reflection, if m Is small then 

there is little difference between the Gaussian, Beckmann, or Phong
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Figure 7.13. The specular reflection component Is proportional to the cosine of the 
angle between the reflected vector (R) and the sight vector (S), raised to power (n).

Figure 7.14. Each scanllne has a list which contains the Informations about edges 
which first become active on the scanllne. For the above example, the list are 
as follows; list 1: AB, BC; list 2: AC; list 3; empty.
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distribution functions(refer Roger(1985)). For larger values of m the 

differences are more significant.

Blinn{1977) compares the shape of the specular highlights obtained 

using the Phong illumination model, when the object is edge-lit. Edge lighting 

occurs when the angle between the observer and the light source is 

approximately 9oO- It yields very little improvement along the edge of the 

curved surfaces. If observer and the light source are at the same location, 

then the results for both the models are nearly the same.

When dealing with a mathematical representation of a surface such as 

bi-cubic patch, a difficult problem is determining the correspondence between 

a pixel in the plane and a point on the three-dimensional surface. For this 

reason, patches are generally approximated with a polygonal mesh and for 

shading we use the methods previously described. Catmull(1974) developed an 

algorithm which handled patches directly. His method recursively subdivides 

each patch into smaller sections until each covers only one pixel center. 

Blinn(1978a) and Whitted(1978) proposed algorithms that process patches 

with a scan line approach. Griffith(1984) presented a scanllne algorithm, 

which generates a realistic picture of a solid object bounded by curved 

surfaces. Every scanline has a list of information about edges which first 

became active on the scanllne (see Figure 7.14). Color finding is the same as 

given by Gouraud. Griffith pointed out that a disadvantage of this approach is 

that it is harder to tell whether a point is visible when the problem is 2D that 

it is when the problem is ID .

7-4.3 Transparency :

Most of the illumination models and hidden surface algorithms assume 

that the object is opaque. When a transparent object is modelled then the 

intensity from the light source behind the object should be included in the
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illumination model. Light passing through a surface is called transmitted light 

or refracted light. When a light is incident upon a transparent surface e.g. 

glass, part of it is reflected and part of it is refracted (see Figure 7.15).

Since the speed of light is different in different materials, the path of 

the refracted light will be different from the incident light, according to 

Snell's law[Brown(1955)] of refraction which states that "for a given pair of 

media, the ratio of the sine of angle of incidence to the sine of angle of 

refraction is a constant, independent of the angle of incidence". This law can 

be written mathematically as:

sinQ/sinQ' = ng/n 1 

where,

n i is the index of refraction for first surface, Q is the 

angle of incidence,

' n2 is the index of refraction for the second surface and O' 

is the angle of refraction.

Finding the refracted light using Snell's law is very time consuming. The 

refraction effect can be gained by simply shifting the path of the incident 

light by a small amount.

A simpler algorithm for the transparency effect ignores refraction.

This approach assumes that there is no change in the index of refraction from 

one material to another i.e., the angle of incidence is same as the angle of 

refraction. This method can speed up the calculation of intensities.

Newell,Newell and Sancha( 1972b) proposed an algorithm for producing 

transparency effects. Here the intensity of a background objects is added to
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the Intensity of the transparent object. The intensity is then a linear 

combination of the two objects intensity given as;

I = rif -I- (1-r)lp 0 <= r <= 1

where

It = intensity of transparent object,

lb = intensity of background object.

and r = refraction coefficient just to weight the

reflected and refracted intensity contribution.

The linear combination of the two intensities is not sufficient for 

modelling curved surfaces. Since the thickness of the material reduces at the 

edges, this reduces its transparency, as pointed out by Roger. Scott(1979) 

suggested a single nonlinear approximation based on the z-component of the 

surface normal, to find the refraction coefficient. The refraction coefficient 

is:

r = rnnin ( ("max- <’m in )[1~(1-JRzOn 

where

rmin and rmax are the minimum and maximum transparencies 

for the object,

nz is the z component of the unit normal to the surface, and 

r is a transparency power factor.
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Figure 7.15. A ray of light upon a surface is partially reflected and partially refracted.
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Figure 7.16. The area covered by a single pixel in xy space is mapped to its corresponding 
area in uv space. The texture pattern is then sampled from the uv mapping.
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7-4.4 Texture Mapping :

In computer graphics, the texture Is nothing but the surface detail in 

an object. Two type of texture are generally considered :

1) The addition of a separately defined pattern to a smooth surface.

2 ) Adding the appearance of roughness to the surface.

Blinn and Newell(1976) describe an addition to the Catmull algorithm 

(1974a, and b) and simulated this by mapping images onto surface patches. 

Each patch is associated with a particular stored image corresponding to the 

patch definition in parametric space. When the area on the patch that 

corresponds to a single pixel on the display is determined, the associated area 

in the image is mapped at that point and a color is calculated for this pixel 

(see Figure 7.16) .

If we want to add the appearance of roughness to a surface, a 

photograph of a rough textured pattern could be digitised and mapped to the 

surface. As Roger pointed out the results obtained are unsatisfactory because 

they look like rough-textured pattern painted on a smooth surface. According 

to him the reason for that is, the true rough-textured surfaces have a small 

random component in the surface normal and hence in the light reflection 

direction. Blinn(1978b) noted that problem and developed a method for 

perturbing the surface normal.

7-4.5 Antialiasing :

The nature of raster scan graphics is such that a color must be 

determined for a fixed number of dots in the horizontal and vertical direction. 

This sometimes results in distortions being introduced into computer 

generated images, known as aliasing. This is purely due to the results of this
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digitization process. Here each dot or pixel is addressed by an integer pair 

(x,y). If in object space a point has been represented by a real pair then it has 

to be truncated to get an integer pair, before addressing it on the screen. 

Crow(1977) studied this problem in detail and proposed a number of solutions.

One of the most obvious problems involves straight borders that appear 

jagged. It is because the transitions between scan lines are discrete. This can 

be adjusted either by adjusting pixel positions (pixel phasing) or by setting 

the pixel intensities according to the percent of pixel area coverage at each 

point. Filtering can also be used to reduce aliasing effects.

7-4.6 Shadows :

Whenever a computer generated image of an environment is created 

such that a light source location is different from that of the observer, 

shadows appear. If the observer and the light source are at the same point 

then no shadows will appear. As Roger cited a shadow consists of two parts: 

an umbra and a penumbra. The central dense shadow area which is black is the 

umbra and the lighter area surrounding the umbra is called the penumbra.

Due to the algorithmic and computational difficulties only shadow 

umbra is included in creating computer generated images. The shadow 

calculations depend upon the location of the light source. To add shadows to a 

scene the hidden surface problem will be solved twice, once for the position 

of the light source and once for the observer's position. The object can be 

viewed from in front, above and to the right. Generally two type of shadows 

are considered: self-shadow and projected-shadows-. Self-shadows result 

when the object itself prevents light from reaching some of its plane. A 

projected-shadow results when an object prevents light from reaching 

another object in the scene. The shadows depend only on the position of light 

source and not on that of the observer.
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Atherton, Weiler, and Greenberg(1978) have extended the hidden 

surface algorithm, based on the Weiler-Atherton{1977) clipping algorithm to 

include shadows. The algorithm works in object space. Hence, the result can 

be used for accurate calculations. They employ a hidden surface process that 

produces a list of visible polygons as its output. A shadowed image is 

produced by first determining which surfaces each light source can see. The 

illuminated surfaces are then applied as lighted details to the corresponding 

polygons in the original object description. A hidden surface view can then be 

generated from any observer position. Surfaces which are shadowed from the 

light source by other objects will automatically be rendered black.

An algorithm by Williams(1978) uses a z-buffer hidden surface process 

similarly to determine curved shadows cast on curved surfaces. In this case, 

an additional z-buffer is maintained indicating which surfaces cannot see the 

light source. A point by point transformation is then performed from the 

observer’s point of view to determine which surfaces should be darkened.

7-5 Shading Using Mtmray Polygons :

As mentioned above, we need three types of calculation for producing a 

shaded image of a 3-dimensional object. They are,

1. Hidden-surface problem solution,

2 . The normal vector at the visible point,

3. Intensity calculations.

The problem of the hidden-surface, which determines the visibility of a point 

from the view point has been discussed above in detail. In the following 

sections we will discuss in detail the remaining two calculations.
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7-5.1 Detennining The Surface Normal ;

If we have the detailed description of the surface then calculation of 

the surface normal is straight forward. Generally for many surfaces only a 

polygonal approximation is known or none at all. If the plane equation for each 

polygonal facet is known then the normal for each facet can be determined 

from the coefficient of the plane equation. For example, if the given plane 

equation is,

ax +by 4-cz +d = 0

then the coefficient of x,y,and z will give us a vector that is normal to the 

plane i.e.,

N = aî +bj +ck where i,I,k are unit vectors.

In our case, we are working with any arbitrary image, whose 

description is not known to us. In this case the normal at a point can be 

obtained by finding a plane passing through it . Since we have to find a plane 

equation we need at least three points. Three points {Note : the points must 

not be in a straight line) can usually be obtained by considering the two 

adjacent points to a point for which we have to find a normal. Once three 

points are available the normal can be obtained. For example,

let A=(x-j , y i , z-j), B= (xg , yg, zg) and G= (xg , yg, zg) be the three 

points. Using these three points we can find the plane and then the normal to 

it. Alternatively the normal to a plane can be obtained by finding the cross 

product of the two adjacent vectors at one of the vertices (say C).
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i j k

(X2 - xi ) (V2 " yi ) (22 - 21)

(X3 - x i )  (V3 - y i )  (23  - 21 )

N = ll+m| +nk 

where,

I = (ya-yi ) (z3-2i )  - (Y3-yi)(z2-zi) .

m = ( Z 2 -Z1)(X3 -X1 ) - (X2 -X1 )(Z3 -z-i),

n = (X2  -X i)(y3  -y i)  - (X3 -x-|)(y2 -y i) .

If N has value equal to zero this implies the three points are in a 

straight line. ............... . .................

7-5.2 Determining The Intensity At A  Point Using Murray Polygons:

In this section we will discuss the use of murray polygons in finding 

the intensity at a given point with a given depth. The algorithm takes a linked 

list which has been obtained after removing the hidden surface area. The 

shading model which is used supposes that the surface of the object has 

diffuse reflection i.e., light reflecting in all direction after striking the 

object. Total diffuse reflection for a surface illuminated by ambient light and 

one point source is given as (refer Hearn, and Baker(1986)),

I -  K(j 1̂  + Kçj Ip (N .L )/ (d+dp)

where.

(1)
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la = uniform intensity from all directions.

Note : The Sun 3/60 has 8 bit planes per colour 

i.e. each group can generate 2^ (=256) 

shades or intensities of red, green, or blue. 

The total colours can now be equal to 

224 (2̂  corresponding to each gun). To get 

gray scale levels i.e. between white and 

black, the intensity corresponding to each 

gun should be equal i.e. we can have 256  

gray scale levels where 0 corresponds to 

dark i.e. black and 255 corresponds to full 

intensity i.e. white. We choose our ambient 

light to lie between 30 to 65. Actually !q

can take any value between 0 to 255. If 

the ambient light has too high value then 

the object will just appear very bright 

with no sign of any shading and similarly 

if it is too low.

K(H = the coefficient of reflection or reflectivity for 

the surface. It's value lie between 0 to 1, 

according to the reflecting properties of the 

surface. If the surface is very reflective then we 

can assume it to be 1.

la = The intensity of the light source, and we assume 

it to be equal to 255 (maximum intensity).

d = the distance between a point and a light source.
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dp = a constant used to prevent the denominator from 

approaching zero.

Note : Since our light source is assumed to be at 

infinity,we ignore the distance factor (d-hdg)-

N.L -  the angle between a unit normal vector N 

and the direction to the light source with a 

unit vector L (see Figure 7.1).

Figure 7.17.
Angle of Incidence Gcetween the light 
direction L and the surface normal N.

7-5.2.1 Determination Of The Angle Between N And L :

For each pixel which is black In an image, we have to find the intensity 

corresponding to the light source. Usually the intensity of a pixel is directly 

proportional to the cosine of the angle between the vector N and the vector 

L ( N and L are defined above).

Let A(x-|, y i ,  z-j) and B(Sx, Sy, 8%) be the two points, where the point 

A belongs to a black pixel in an image and point B belongs to the position of 

the light source. The unit vector L = AB can now be easily calculated.

Let V = ai +bj +ck be a vector,
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where, a = Sx - x i ,

b = Sy - y i ,

c = Sz -z-j.

The magnitude of a vector V is given by,

|V| = sqrt(a2 +b^ +c2 )

The unit vector L(say) having the direction of V can be obtained as,

L = V / | V |  = li +mj +nk

where, I = a /|V), m = b/)V|, n = c/|V| and,

1*1 +m*m +n*n = 1.

The source position B is known to us and the point A can be calculated

using the information stored in the linked list. The linked list which we are

using is obtained after removing the hidden-surface from a given view point. 

Using the item 'Sum' stored in the list we can calculate which point it is on 

the curve and then the co-ordinates i.e. n > (x,y). The corresponding depth 

can be obtained from the another structure which is linked to the list by the 

middle pointer. For example, a black cell which belongs to the linked list is 

given below,
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Since the item 'Sum' is given to be 5 and the item 'runlength' is equal 

to 10, this implies that from the 6th to 15th points will lie in this cell and 

are black. Using 4he transformation from n — > (x,y) discussed in chapter 2 

we can calculate the coordinates for all points from the 6th to 15th. For the 

z-value we will scan the middle pointer. The information stored with the 

middle pointer states that, out of 10 pixels, 3 pixels belongs to the 4th plane 

i.e. z = 3 and 7 pixels belongs to the 5th plane i.e., z = 4 {Note : z  = 0 is the 

first piane). For example for the 6 th point the co-ordinates will be given as 

(x,y,3). Now we have the source co-ordinates and the pixel coordinates , the 

unit vector L can be easily calculated using the above transformation.

The next step is to find a unit normal at a given point. The unit normal 

vector at a given point can obtained by finding the cross product of the two 

adjacent vectors at that point. The two adjacent point can easily be obtained 

directly from the murray scan. Let r-j and T2 be the first two radices i.e. the 

size of the smallest tile is ri *rg. These r-j*r2  pixels are well packed in a 

small tile and are very near to each other. This coherence between the pixels 

can be used to find the two adjacent points. As discussed in chapter 2, a 

murray scan move forward either by incrementing or decrementing the x-value 

or the y-value i.e., by calculating the next co-ordinates. Hence the x and the y 

co-ordinates for the pixels can easily be obtained straight from the murray 

scan, which will pass through each and every point in a tile. The depth z 

corresponding to these pixel can then be obtained by scanning the middle 

pointer as explained above.

One can also use 4-point connectivity or 8 -point connectivity to find 

the two neighbours, but the problem is to get the z-value. The points which we 

will get , may lie in the same tile or in different tiles. In any case, to get the 

z-value we have to find the nth point first then the cell in which it lies and 

the z-value corresponding to that point, i.e.,
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f(x,y) — >

z-va lue

It may also be possible that the two neighbours are white. In this case again 

we have to consider two arbitrary neighbourhood points. This scheme is 

definitely going to consume more time than considering the consecutive points 

of a tile.

Consider a tile of size r-| *r2 as shown,

1
""2

Ji+2 1+3 1+4
1+1 1 i-1
0 1 2

The pixel at position 0 has three neighbours, they are 1,i, and i+1. We can 

arbitrarily choose any two points out of these three neighbours. Similarly for 

the ith point which has eight neighbours, any two points can be selected. Since 

we have -three points we can easily find the normal by finding the cross 

product between the two vectors passing through that point. The algorithm 

can be made faster if we pre-assign the two neighbouring points to each point 

in a tile. Here we need three array of integers, one to store the point number 

for which we have to find the normal and the other two corresponding to the 

neighbourhood points numbers. If the tile size is large then the array size will 

also be large and also the coherence between the first and the last pixels will 

be lost. So it is better to use the smallest tile size i.e., 3*3 {Note : we can
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also use 2*3 but a problem arises If we have to convert the scan for scaling ). 

The tile of size 3*3 and the neighbourhood points to each point in a tile is 

given below.

1̂2 =  3

6 7 8

5 4 3

0 1 2

^ = 3

points
Arrays 
1 2 3

0 — — >  0 1 5
1 — > 1 2 4
2 - >  2 1 3
3 ——> 3 4 8
4 — > 4 5 7
5 — > 5 4 6 
S ——> 6 7 5
7 ——> 7 4 8
8 ——> 8 3 7

If all the pixels in a tile are black then we can easily get the two 

adjacent points as assigned above to find the normal. Problems can arise when 

some of the pixels are not black. This generally happens when we are dealing 

with the boundary points. For example, a tile where only three pixels are black 

is given below(case a),

6 7 8

5 4

0 1 2

(a) (b) (c) (d)
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In case (a) the pixel marked 3, which is black has both assigned 

neighbours pixels i.e., 4th and 8th are white. Now one way of finding a normal 

at the pixel marked 3 is to use any two arbitrarily black pixels in the tile.

Here we can use pixels marked 1 and 2 . But if either the pixel marked 1 or the

pixel marked 2 is white then there is no way to get two more black pixels in

the same tile. To obtain other black pixels we can consider another tile which 

will start from a arbitrary point which is connected to the pixel under 

consideration and will contain that pixel i.e., 3rd. We can start our tile from 

the 1st pixel (see case (b)). This we do just to get more black surrounding

pixels. Once we have three black pixels the normal can be easily calculated.

There are many cases which can be solved similarly (see above case c and d).

Using the above information a unit normal at any given point can be 

easily calculated. The problem can arise with the direction of this unit vector. 

If it is-pointing in the wrong direction then the shading corresponding to the 

point is wrong. This effect is due to the orientation of a murray scan from tile 

to tile. As we know that a murray scan has four possible orientations, which 

can effect the angle between the two adjacent vectors. For example two tiles 

of size 3*3, with two different pattern is given below. Since the polygon is 

entering from the two different sides, the numbering in both the tiles will be 

d iffe re n t.

6 7 ■B—

5 4 3

0 2 A

(a) (b)
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Consider the pixel at position zero in both cases. In case (a) the direction for 

the angle between the two vectors is anticlockwise where as in the second 

case (b) it is clockwise (see below), which will bring the change in the 

direction of the unit normal.

r ’
(a) (b)

To determine whether it is pointing in the right direction or not we can 

consider the dot product between the unit normal vector and the direction to 

the view point with unit vector V (say). If dot product is negative then the 

normal is pointing in the reverse direction. To make it point in the right 

direction we will multiply with jh e  components of the normal vector by -1

i.e., if N = (L , M , N) be the initial unit normal vector then the correct normal

vector will be given as N = ( -L , -M , -N ).

Now we have the unit normal vector at a given point(say N = (L , M, N) )

and the unit vector towards the light source (say L = ( I , m , n ) ). The dot

product will now be given as ,

cos © = N . L = TL 4- m*M + n*N

If cos(0 ) is in the interval from 0 to 1 then the surface will be illuminated by 

a point source. If cos(©) is negative, the light source is behind the surface.

Now we know the values for all the parameters in the illumination 

model, the intensity can be calculated for any given point. We have to 

calculate the angle of incidence i.e N . L, for each visible point in an image. 

The procedure for setting a colour map table is as given.
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This program sets up a vector (or color map table) of all the 

different planes
Each different set of planes will have different gray scale value. 
For example off & off & off ... & off is black and so on.

let g = vector 0::255 of off 
for I = 0 to 255 d o 

beg in

let d I
g(l) := { if d rem  2 = 0 then off else on}
d := d div 2

fo r  j = 1 to 7 d o
begin

9(0  •= 9(0  & { if d rem  2 = 0 then off e lse on} 

d := d d iv  2

end
end

Initially the shading obtained on the edges and on the surface of a 

sphere was not very smooth. By examining the shade color it was noticed that 

some of the intensity values were either very high or very low, in comparison 

to the surrounding intensities. In order to obtain reasonable shading we 

decided to use smoothing techniques. In the next section the smoothing 

technique used for the noisy data and the results obtained is discussed.

7-5.3 Smoothing [ Lanczos(1957), and Cole, and Davle(1969)] Of Data :

In this section we will discuss the smoothing of noisy data by making 

a least squares fit to a suitably chosen polynomial. The correction is made 

point by point. At each stage only a few selected points about the one 

currently under consideration are used. The expression which is presented 

here corresponds to 5 points I.e., the two neighbour on both sides plus the
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here corresponds to 5 points i.e., the two neighbour on both sides plus the 

central point. The smoothing of data by fourth differences using a parabolic 

equation of the second order is discussed below,

A parabola of the second order is given by,

y = a +bx +0x2....................  ( 1)

and the data belongs to the points x = -2 , - 1 , 0 ,1 , 2 . The aim is to combine 

every measurement with its two neighbour to the left and to the right. The 

problem is to minimise,

2  ( y - y i ) 2 ............................... (2 )

with respect to a, b, and c. Our goal is to correct the central value yg, which 

belongs to x=0. At x=0 , the central value yg = a, so we solve the normal

equations which are obtained after differentiating equation-(2 ) with respect 

to a, b, and c, to find the corrected value for yg. The corrected value obtained 

is equal to yg -3 5^ yg/35, where Ô^yg is the fourth central difference of the 

zero line. The above result is given in Lanczos(1957)

Once the central point has been smoothed we move down one step and 

then again consider 5 points for the next point to be smoothed. The corrected 

values for the first two observations and the last two observations are given 

below,

y_2 (corrected) = y_2 + 5^/5 + 3 &4 /3 5

y -1 (corrected) = y - l - 2 0^/5 - 8,4/7

y2 (corrected) = y2 - 8^/5 + 3 8 4 /3 5

y i (corrected) = y i + 28^/5 - 84 /7
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Here in each case we have to make a central difference table. We can avoid a 

central difference table by finding the coefficient to be multiplied by the data 

values selected. Consider a difference table given below,

X f(x) 6f(x) ô2 f(x) ô3f(x) ô4f(x)

1 XI
X2 X1

2 X2 xg-2 x2 +xi

X3 -X2 X4-3xg+3x2-xi

3 X3 X4-2xg+X2 X5~4x4+6xg-4x2+xi
X4 -xg xg-3x4+3xg-X2

4 X4 xg-2 x4 +xg
X5 -X4

5 X5

Now yg = yg -3 ô4 yg/35 or xg = xg -3 0^ xg/35, substituting the value for 

ô4 xg in the previous expression we will get,

xg(corrected) = ( -3x*| + 12x2 +17 xg + 12x4  -8x5 )/ 35

Now whenever we get five new points we will multiply them with the 

corresponding constants to give the smoothed value for yg (or yg ). Similarly

the corrected values for the first two observations and the last two 

observations may be obtained and are given below,

x-j (corrected) = ( 31xi +9x2 -3xg -6x4 +3x5 ) / 35

X2(corrected) = ( 9x-j + 13X2 +12 xg +6x4 5xg ) /3 5

X4(corrected) = ( -5x-j +6x2 +12 xg -22x4 +9xg )/ 35

xg(corrected) = ( 3xi 5 X2  -3 xg +0x4 +31xg ) /3 5
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Similarly results can be obtained by considering seven points or nine points 

etcetera, with any suitably chosen polynomial. We can also use a cubic 

polynomial but for n =2 m and n =2 m+1, (where n is the degree of the 

polynomial and m is an integer), the correction factor is the same. With the 

linear case and considering three points i.e., one on each side, the correction 

factor obtained for all three observations under consideration is same after 

second iteration.

7-5.4 Results ;

As discussed in section 7.2, the hidden surface algorithm transforms a 

3D image into a 2D image by removing all the pixels which are hidden from a 

given view point. Those points which are visible are obtained from different

depth planes. The depth of the pixels are numbered 0,1,2......  n-1, where n is

the total number of the planes parallel to the XY-plane. The linked list 

obtained after removing the hidden-surface is used to shade the object. Our 

algorithm for generating shaded Images accepts any arbitrary image. The 

image can be in any form, such as, a polygonal mesh, curved surface patches, 

or solid geometry construction. Since the scene is arbitrary we do not have 

any information about the object surface. If a scene happens to contain a cube 

then it is noticed that the shading on the edges is not very good. There is too 

much irregularity in the shade color. Since the scene is arbitrary we cannot 

easily detect an edge. In the case of mathematically defined objects the 

surface description is known to us and hence we can easily detect an edge . 

Since our images are arbitrary, hence we need to find a general solution which 

will give reasonably shaded Images in all the cases. In the following 

paragraph Initially we will discuss the reasons for these problems arising and 

in the end we will present some solutions to these problems
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The reason for not getting good shading at the edges concerned the 

normal value, obtained at the edges. We will explain this by consider two 

planes meeting at an edge, as shown below,

U l i

(a) (b)

W e can consider two cases,

1. if we are using one point to find the normal (see case (a) ) 

then there will be no problem at the edges. But 

theoretically it is not possible only if we

precalculate the normal at each edges and then 

interpolate them( Phong(1975)), so that the normal at the 

edge between the two plane will then be one with less 

( or more) magnitude. In our case we find the normal at 

each point by considering two other adjacent points. This 

has been discussed above.

2. If we consider two points (or more) to find a normal

(see case (b)) then at the edges some points can belong to 

one plane and others to the other plane, which will bring 

some distortion in the normals at the different edge 

points.

We consider three points to find a normal. A tile of 

size 3*3 and an edge passing through it is as given,
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1st plans

"" ^  © c Iq ©

A y
/

B

2nd plan©

For all the edge points consider one point from the first 

plane and the other two from the other plane or vice 

versa. For example, the pixel marked X will take two 

pixels I.e. pixel marked A and B, to find the normal, where 

the pixel marked A lies in plane 1 and the pixel marked B 

lies in plane 2 and pixel X is present in both the planes, 

see above. Some improvement with the edges is discussed 

la te r.

Distortion is also seen in the case of a sphere. The shading is not very 

smooth. The reason for this was that the sphere was calculated explicitly 

from the equation

(x-a)^ +(y-b)2  +(z-c)2  =

giving, z = {+/-) [sqrt(r^ -(x-a )2  -(y-b)2  )] + c

Here the x and the y values will be integers whereas the z-values can be real 

or integer. Since the planes are assigned an integer z-value, we have to 

truncate this value if it is not an integer. The result was not very pleasant
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since the intensity values were fluctuating very much. The problem would not 

have arises with an image obtained by video camera.

We tried to solve these problems by smoothing the data by using a 

parabolic equation of the second order as discussed above. The correction was 

made point by point. At each stage only a few selected points about the one 

currently under consideration were used. Initially we used 5 point smoothing 

i.e., two neighbour on both sides plus the central point. Our aim was to 

combine every measurement i.e., intensity, with its two neighbour to the left 

and to the right. The results obtained by this method were not very 

satisfactory. In the case of a sphere it appeared as if some one had pressed it 

from all sides. The edges were also jagged , see Figure 7.18. Since the points 

in a tile are very close to each other we tried to use seven point smoothing

also. The method was repeated many times. The result was as shown in

Figure 7.18. We also tried to smooth the dot.product instead of the intensity. 

We thought, since the dot product was between 0 and 1 then there was a 

chance of getting better smoothing than by using intensities which lie

between 1 and 256. The result however was the same.

In the case of the edge problem the right solution was obtained as 

fo llow s,

1. Most of the edge points will have 4 connected points, neglecting 

the diagonal points. At each point we find a normal to find the

Intensity. As we have seen the intensity at the edges is not very

smooth, and the reason lies in the normal vector. We solved this

problem by considering four different normals obtained by

considering four different pairs, and then taking the average of 

these normals to give the approximate unit normal vector. We
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Figure 7.18. Shaded picture of a cube. The 
position of the light source is changing, and the 
shading function assumes that the surface has 
diffuse reflection. The edge problem is also 
clearly shown.
Note: Cube has been obtained by putting the 
planes one after the other.

Figure 7.19. Shaded picture of a sphere. The 
position of the light source is changing, and the 
shading function assumes that the surface has 
diffuse reflection.
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could also use diagonal points to increase the number of 

normals, but this makes the algorithm very slow.

2. Finding four normals at each point of an edge can be very time 

consuming. We can alternatively find only two normals vectors 

and consider the one which is either small in magnitude or large. 

If we select the normal which is small in magnitude then in all 

the case we will consider the normal with small magnitude and 

vice versa.

3. Since the intensities at the edges will be different from the two 

adjacent planes and hence the intensity can be adjusted by 

comparing the neighbourhood intensities e.g. 113, 6 8 , 219. The 

middle one can be replaced by either 113 or by 219. If we select 

113 then from then on we will consider the one which is less 

and vice versa. But this approximation is not always 

satisfactory, for example, two planes adjacent to each other, 

having a small gap which is one pixel wide will always have

this gap black.

In case of the sphere the appropriate shading was obtained when we 

used the real z-value for all the points for which we stored the truncated 

z-values in the list( Note : In general, this Is all we have). The result are 

shown in Figure 7.19. This however is graphics rather than image processing.

Conclusion:

From the above results and discussion we have noticed that the depth 

value corresponding to pixels plays an important role in getting a reasonable 

shaded image. Hence if we are dealing with mathematically defined scenes 

then the correct z-value should be stored in order to get a reasonable shaded
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Image. But for an arbitrary image we don't have to worry about that since we 

have to use the data as presented. As long as an image is made up of curved 

surfaces a normal at each point can produce a satisfactory shaded image. But 

suppose our image Is made up of curved surfaces and solid boxes, then some 

problems may arise at the surface intersections. To get reasonable shading at 

the edges we therefore have to use two normals at each points. Since the 

scene is arbitrary, it is necessary to compute two normals at each point. The 

one whose magnitude is less (or more) can be selected to find the intensity. 

Two normals for a point can be obtained straight from the tile which is under 

consideration.

7-6 Specular Reflection :

At certain viewing angles a shiny surface reflects all incident light, 

independent of the reflectivity value of the surface. The result is a bright spot 

of reflected light. This phenomenon is known as specular reflection. In case of 

a perfect reflector e.g., mirror, the angle of incidence and the angle of 

specular reflection are same. The complete intensity model for reflection due 

to ambient light, incident diffuse reflection, Phong specular reflection and a 

single point source can be written as,(refer Hearn, and Baker(1986)),

Kd la + l p [  Kd(N.L) + w(i,A.) (V.R)n ] / (d+dg) ---------  (2)

w here,

w ( i , l )  = It gives the ratio of the specular reflected 

light to the incident light as a function of 

the incident angle i and the wave length I. 

We can simplify the intensity calculations 

by setting w(i,l) to a constant value Kg for
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V.R

the surface. Its value can lie between 0 and 

1 depending upon the surface material.

angle between the direction at which light 

reflects off a surface and the direction 

that the observer is looking (Figure 7.20).

surface
A

Figure 7.20. Angle between the direction at which light reflects 
off the surface (V) and the direction in which the 
observer (R) is looking.

n = determines the type of the surface to be

viewed. For shiny surfaces n can take a value 

equal to 200 or more and for dull surfaces it's 

value can be one.

The angle between the vector V and R can easily be calculated. If we 

consider the Figure 7.20, the direction of the normal vector N bisects the 

angle between the vectors R and L. Similarly we can define another unit vector 

B(say) which wiii bisect the angie between the vectors V and L and wiii be 

given as,

B = (V+L) /  |V+L| 

therefo re , V.R = N.B
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Figure 7.20. Two intersecting spheres with a 
plane passing through them. The position of the 
light source is changing, and the shading function 
assumes that the surface has diffuse reflection.

Figure 7.21. Two intersecting spheres with a 
plane passing through them. The position of the 

Jig ht source is changing, and the shading function 
assumes that the surface has specular reflection.
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Since the position relative to the light source (L) and to the viewer (V) is 

given, hence the vector V and vector L can easily be calculated as discussed 

above, and so the vector B.

The shading model given in equation (2) has been used to calculate the 

intensities for the black pixels in an image. In comparison to the diffuse 

reflection the specular reflection produces a bright white spot of reflected 

light. It has noticed that when the object Is edge lit both the shading 

functions produces the similar result. The appearance of white bright spot 

when the object is not edge lit generates very realistic image. The result 

obtained from the shading models is shown in Figure 7.21.

7-7 Remarks :

In comparison to the octree and linear approaches, the murray approach 

is going to be slightly advantageous. As we know the intensity at a point in an 

image depends on the angle between the unit normal vector and the vector L 

towards the light source. Finding the vector L is very easy since we have the 

coordinates for both the points i.e one belonging to the light source and the 

other one belonging to the point in an image. The problem comes with the 

normal vector N. To find a normal at a point we need at least two more points . 

In case of linear encoding or quadtree {Note : this quadtree is obtained after 

transforming an octree into a quadtree) encoding, these two points can be 

calculated either by using 4-point connectivity or by 8-point connectivity of a 

point (i,j). The corresponding z-value can then be obtained from the linked list 

which stores the z-values for each visible black point. If the two computed 

adjacent points happen to be white then we have to repeat this process again. 

But in the case of a murray scan the connected points with x, y, and z-values 

can be obtained straight from the scan. We do not have to do extra work in
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finding out the z-values corresponding to the connected points. Only at the 

boundary we have to do the calculations to get the z-value, as discussed 

above.

Phong shading will be computationally more expensive than the murray 

approach. The reason is the extra pre-processing step required. In the case of 

Phong shading, a curved surface( or any surface), initially it has to be 

approximated as a set of planar polygons and then at each vertex where 

polygons meet, a normal has to be determined. This vertex normal is then 

interpolated linearly across the polygon surface. But with the murray approach 

no special consideration needs to be given to the curved surfaces ( or any 

surface); and also the complexity is proportional to the number of pixels and 

Is independent of the number of faces. Similarly with Gouraud shading, where 

at each vertex we have to find the intensity, which is going to interpolate 

across the polygon surface, the computational time will be less in comparison 

to Phong but will be more in comparison to the murray approach.
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CHAPTER 8. IMPLEMENTATION

8-1 User Interface :

In designing a graphics package, two points should be considered

i. The graphics operations to be performed,

ii. How to present them to a user.

The interface should be designed in such a way so that it is very easy and 

efficient for the user to access basic graphics functions. The graphics package 

might be set to produce engineering design, business graphics, as an artist's 

paintbrush etcetera. A user interface generally considers the following 

components,

1. User model

2. Command language - -

3. Menu formats

4. Feedback methods

5. Output formats

The package which we made contains only the menu format (or Test 

bench). All the processing options are present in the menu format. In the 

following sections we discuss the options( or operations) which are present in 

the menu and finally the whole scheme is shown in pictorial form. We made two 

packages; one using PS-algol and other one using 0 . Both the packages have the 

same options but with a difference in the processing time, this is discuss later 

on.
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8-2 M enu Design:

Most graphics packages make use of menus. Menu design helps in 

relieving the burden of remembering input options. All the options are presented 

in the form of a menu. Menus can easily be changed to accommodate different 

applications. They can be used as an input tool for operations and parameter 

values. The selection for the operations to be performed can be made by 

positioning a cursor at a menu position. Each menu option can have submenus. A 

selection from the first menu brings up a menu at the second level and so on. 

Each menu option is connected with the task ( or algorithm) to perform. When 

we select an option, if it does not have submenus then the related programme 

will be performed asking for the input parameters if any. The menu design which 

we made is shown below. Each operation has either submenus or not.

Menu I
Murray.Scans

Scan+Draw

Scan.Converslon

Scaling

Connectivity

Set.Operatlons

Superimposition

Hldden.Surface.Rm

Shading

Now we consider each option separately and will discuss the proposal 

behind it. All the options are discussed in detail in the previous chapters. The 

first option with its submenus is shown below,
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Cartesian
Polar

Vertlcal.Scan
Linear.Scan

Murray.Scans

j Menu

Vertlcal.Scan

MIxed.Scan

Linear.Scan

This option draws murray curves with different radices. The option 

Murray.Scans has two sub-options. The first option Cartesian has three sub­

options, where the first two options draw general linear and general vertical 

murray curves and the last one draws the mixed curve i.e., vertical as well as 

linear tiles, as explained in chapter 2. The second option Polar draws polar 

murray scans. It has two options; one for the linear case and the other one for 

the vertical case. The shape of the curve depends upon the input radices. Each 

option will ask the user to input the radices.

2D-lmage
3D-lmage Vertlcal.Scan

Linear.Scan

VertlcaLScan
Linear.Scan

UsIng.Images
UsIng.Llst
UsIng.Flle

Scan.Draw.Front
Scan.Draw.Slde
Scan.Draw.Top
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The second option Scan+Draw  takes an image as an input and then scans 

it to get the collection of runlengths, which is later on used to draw the image 

anywhere on the screen. This option can also take a file or a list as an input, 

this file is containing the collection of runlengths obtained after scanning the 

image. The option Scan+Draw  has two sub-options. The first sub-option takes a 

2-dimensional image whereas the second option considers a 3-dimensional 

image. The option 3 0 .Image scans the images from the front side, left side and 

top side. The scanning pattern can either be vertical or linear depending upon 

the radices.

Menu
Scan.Converslon ---------► Method.1

Mothod.2

The option Scan.conversion (shown above) converts a horizontal scan into 

the vertical scan or vice-versa. It has two options. The first option uses murray 

arithmetic to convert one scan into another and the second option uses simple 

mathematical calculations to do the job. In both cases the input is murray 

runlengths and the murray radices. Both the methods are discussed in detail in 

chapter 4.

' Menu [
-------► X-Dlrectlon.Only

Y.DIrectlon.Only
Both.Dlrectlons

This option i.e.. Scaling, scales the images up and down as required. It 

has three sub-options, the first option scales the images in the x-direction, the

247



CHAPTER 8. IMPLEMENTATION

second one scales the images in the y-direction and the last sub-option scales 

the images in both directions i.e., x as well as y-direction. More detail can be 

obtained from chapter 4.

SD.Image
2D.lmage

SD.Image
2D.lmage

UsIng.I.LIat
UsIng.Llst#
UsIng.ImagesConnectivity

Menu

The option Connectivity, helps in extracting out a big chunk or a required 

area from a given image. It has two sub-options, in the first case it takes an 

image as an input and finds the required connected area. In the second case it 

takes either two lists of runlengths or one list of runlengths, which are 

obtained after scanning the images, to identify the homogeneous connected area. 

Refer chapter 6.

~ Menu
Set.Operatlons Union (A,B)

Intersection (A,B)
Difference (A,B)

The option SetOperations, merges two or more images together to give a 

single image. The merging of two or more images can be done to obtain the total 

black area in the images or the area which is common in the images or the area 

which is not common in the images. The input can either be the collection of 

images which has to be merged or the runlengths corresponding to the images 

which we want to merge (see chapter 5).
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The next option Superimposition, superimposes one image on top of the 

other. It has no sub-options. The input can either be the two images or the 

runlengths corresponding to these images. See chapter 5.

Menu ]

Hldden.Surface.Rm -------► Method.1
Method.2

The option Hidden.Surface.Rm, has two sub-options. Both the options 

remove the surfaces which are hidden from a given view point. The first sub­

option scans all the planes using a suitable murray scan and then merges them 

together, and the second sub-option scans only the first plane and then merges 

the other planes one by one.

Tfenu-
------ ► UsIng.Images

UsIng.Usts
Results —---------► lmage.1

lmage.2
lmage.3

This option Shading, shades the visible area which has been obtained 

after removing the hidden surface. It takes a 3D .image or a list of runlengths 

which has been obtained after removing the hidden surface as an input. In the 

first case it will remove the hidden.surface and then shade the visible surface. 

The option Results contains the result obtained after using the above algorithms 

on the different images.The complete menu format is shown in Figure 8.1. The 

time obtained in processing different options which are coded in PS-algol and C 

is shown in Table 8.1.
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M enu I
Murray.Scans

Scan+Draw

Scan.Converslon

Scaling

Connectivity __

Set.Operatlons _

Superimposition

Hldden.Surface.Rm

Shading
UsIng.Images
UsIng.Usts

IMPLEMENTATION
Cartesian
Polar

Linear.Scan
Vertlcal.Scan

MIxed.Scan

Linear.Scan
Vertlcal.Scan

2D-lmage - Linear.Scan — UsIng.Flle
3D-lmage Vertlcal.Scan — UsIng.Llst

UsIng.Images

Method.1
Method.2

X-Dlrectlon.Only
Y.DIrectlon.Only
Both.Dlrectlons

Uslng.2.Llsts
UsIng.I.LIst

Union (A,B)
Intersection (A,B)
Difference (A,B)

Method.1
Method.2

UsIng.Images
UsIng.Llsts
Results

Figure 8.1. Menu Format

1 ILinofl TaoCfln

Scan.Draw.Front
Scan.Draw.Slde

Scan.Draw.Top

2D.lmage
3D.lmage

2D.lmage
3D.lmage

lmage.1

lmage.2
lmage.3

t
Diffuse. Reflection
Specular.Reflectlon
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Time ( in  secs)
SizeO ptions

PS-algol

99*99
256*256

1.50 secs 
9.05 secs

0.05 secs 
0,2 secsMurray Scan

99*99
256*256

3.05 secs 
14.52 secs

1.45 secs 
4.20 secs

Polar Murray 
Scan

FinalInitial

99*99
117*117

153*189
189*189

0.37 secs 
0.42 secs

2.40 secs 
3.02 secsScaling

SizeNo. of Planes

99*99
99*99

3.44 secs
5.45 secs

0.5 secs 
0.13 secsIntersection

Table 8.1
Time comparison between PS-algol and C.
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CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9-1 Concltisioitô :

This thesis investigates the use of murray polygons to process 

arbitrary images e.g., satellite images, medical images, or any other image 

obtained from some device e.g., a vision capture system usually, a camera. 

Many associated problems related to image processing are solved by using the 

murray approach and are compared with those already defined for linear or 

quadtree(or octree) approaches. Initially all the methods are compared with 

each other and finally the results obtained by these methods are compared. 

Standard Linear scan )Vs (Murray Scan or Quadtree or Octree Encoding :

Since in the case of the standard linear scan with flyback we require 

fewer calculations than that of the murray and quadtree or octree approach, 

hence in most of the cases the standard linear scan will be faster than the 

other two. But the standard linear approach does not, in general, give better 

exact compression than that of the murray approach or the quadtree or octree 

approaches. The reason is, it is one dimensional in nature. The coherence 

between the pixels is exploited only in left or right directions. Further each 

flyback results in the break of runlengths thus giving more codes 

(or runlengths) than the murray approach and quadtree or octree approaches.

As remarked earlier a standard linear scan with fly-back will take 

less time to encode an image than that of the murray approach, however 

hardware can be built to compensate for this. Similarly for the quadtree or 

octree approaches also.

Murray Approachl Vs fQuadtree or Octree Approaches :

In comparison to quadtree or octree approaches the murray approach 

may take less time to encode an image. The reason is the extra preprocessing 

steps used in forming the quadtree or octree. The preprocessing steps include,

1. conversion from rasters( i.e., runlengths) into quadtree;

2. merging groups of four pixels or blocks of a uniform color.
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The scanning is generally done by a standard linear scan with flyback. In the 

case of the linear quadtree or octree, condensation and sorting has to apply to 

the collection of codes obtained after transforming rasters into a quadtree. In 

the case of the murray approach the only step to do is to encode an image using 

a murray scan, ignoring all other preprocessing steps. No processing has to be 

done once the codes have been obtained.

For obtaining exact compacted codes, the murray approach and 

quadtree or octree approaches will be equally effective, depending upon the 

shape of the images. In some cases the quadtree or octree approaches will be 

better and in some cases the murray approach will be better.The linear 

quadtree approach where only black pixels are stored, may be more 

compressive in some of the cases than that of the murray approach. But in the 

case of the linear quadtree approach the smaller the black homogeneous 

quadrant the bigger will be the code length and in the case of the murray 

approach the smaller the black area the smaller the code length, and vice 

versa. Further a murray polygon may have a better chance of capturing more 

pixels of the same color than that of the quadtree methods. The reason is, in 

the case of the quadtree or octree approaches each quadrants/octants are 

dealt separately to encode the information, whereas in the case of the murray 

approach we deal with the whole image. From the above facts we cannot say 

positively about the two approaches, as to which one Is better. The best/worst 

cases are very much dependent upon the contents of the image.

The main advantage of the murray approach over quadtree or octree 

approaches is the size of an image to be processed. The murray approach can 

process any arbitrary rectangular image with no restrictions on the size, 

whereas a quadtree or octree approach can only directly process an arbitrary 

image if it is a square /cube of side length 2".
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In the next few paragraphs the results obtained using the murray 

approach are surveyed. All the results are compared with those of the quadtree 

or octree approaches. We do not use the standard linear approach for 

comparison since in general it does not give better exact compression although 

it may be very fast for some of the operations.

Results :

In the case of scaling the images, it has been noted that the murray 

approach is slightly better than that of quadtree or octree approaches. The 

reason for this is the flexibility in the size of an image. In the case of the 

quadtree approach the scaling factor can be 2^, whereas in the case of the 

murray approach the scaling factor can be m/n, where the variables m and n 

are integers. The only restriction which we have in the case of the murray 

approach is with the x-factor(y-factor); the quotient for the 

x-factor(y-factor) should not be even. {Note : The x-factor(y-factor) depends 

upon the scan used to encode an image. If we are using a horizontal murray 

scan then the restriction will be with the x-factor otherwise with the 

y-factor). But in the case of the murray approach we have to apply scan 

conversion algorithms, if we have to scale the images in both the directions, 

whereas in the case of the quadtree or octree approaches we do not require to 

change the codes. But since the murray approach is independent of the size of 

an image hence it may be more efficient in scaling up and down the images.

In the case of connected component labelling, both the approaches may 

take the same time to process, depending upon the shape of the image. But the 

quadtree or octree approaches may be more compact, especially the linear 

quadtree approach where only black pixels are stored. The reason is the use of 

linear murray scan which does not have the coherence between the pixels. The 

algorithm which uses a general murray scan may give better exact
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compression in comparison to one with linear murray scan, but it will take 

more time to process an image. Further the exact compression can also be 

obtained, which will be comparable to that of the quadtree approach if we 

redraw the image using the runlengths obtained by linear murray scan and 

then scanning it using a general murray scan.

For hidden-surface removal both the methods are assumed to be 

equally effective. Both can process the arbitrary images plane by plane, which 

is advantageous if the image size is very large and the computer memory is 

very low. Both uses the same algorithm for all the surfaces, no special 

considerations being given to the curved surfaces.

For getting shaded images the murray approach has a slight advantage 

over the quadtree approach. As discussed earlier the intensity at a point in an 

image depends on the angle between the unit normal vector and the vector L 

towards the light source. The vector L can easily be obtained since we have the 

coordinates corresponding to the light source and to the point in an image. But 

to find a normal at a point we need at least two more points, so that we can 

find a plane passing through these three points and hence the normal. In case 

of quadtree {Note : this quadtree is obtained after transforming an octree into 

a quadtree) encoding, these two points can be calculated either by using 4- 

point connectivity or by 8-point connectivity of a point (i,j). The corresponding 

z-value can then be obtained from the linked list. But in the case of a murray 

scan the connected points with x, y, and z-values can be obtained straight 

from the scan. We do not have to do extra work in finding out the z-values 

corresponding to the connected points. Only at the boundary do we have to 

perform calculations to get the z-value.

Both the approaches are assumed to be equally effective for 

superimposition, set operations, and smoothing on the images.
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9-2 Future Work :

Future work is required on a hardware implementation to increase the 

performance of the murray method in comparison with existing methods and 

applications.

Some investigations are required to convert a linear murray scan to a 

general murray scan, and vice-versa. This will be advantageous in some 

specific areas of digital image handling.

Obtaining reflection, refraction, and shadows from the images are 

other applications, where the use of murray polygons should be investigated.

Further work, presently under investigation is to obtain reflection 

from the images.
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