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Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied
bulk properties, while their single-layer variants have become one of the most promi-
nent examples of two-dimensional materials beyond graphene. Their disparate ground
states largely depend on transition metal d-electron-derived electronic states, on which
the vast majority of attention has been concentrated to date. Here, we focus on
the chalcogen-derived states. From density-functional theory calculations together
with spin- and angle-resolved photoemission, we find that these generically host a co-
existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders
of topological surface states and surface resonances. We demonstrate how these nat-
urally arise within a single p-orbital manifold as a general consequence of a trigonal
crystal field, and as such can be expected across a large number of compounds. Al-
ready, we demonstrate their existence in six separate TMDs, opening routes to tune,
and ultimately exploit, their topological physics.

The classification of electronic structures based on
their topological properties has opened powerful routes
for understanding solid state materials.1 The now-
familiar Z2 topological insulators are most renowned for
their spin-polarised Dirac surface states residing in in-
verted bulk band gaps.1 In systems with rotational in-
variance, a band inversion on the rotation axis can gen-
erate protected Dirac cones with a point-like Fermi sur-
face of the bulk electronic structure.2–8 If either inversion
or time-reversal symmetry is broken, a bulk Dirac point
can split into a pair of spin-polarised Weyl points.9–15

Unlike for elementary particles, Lorentz-violating Weyl
fermions can also exist in the solid state, manifested as a
tilting of the Weyl cone. If this tilt is su�ciently large,

so-called type-II Weyl points can occur, now formed at
the touching of open electron and hole pockets.15–22

Realising such phases in solid-state materials not only
o↵ers unique environments and opportunities for study-
ing the fundamental properties of fermions, but also holds
potential for applications exploiting their exotic surface
excitations and bulk electric and thermal transport prop-
erties.23–27 Consequently, there is an intense current ef-
fort focused on identifying compounds which host the
requisite band inversions. In many cases, however, this
depends sensitively on fine details of a material’s elec-
tronic or crystal structure. This is partly because almost
all known topologically non-trivial phases are stabilised
by inversions between states derived predominantly from
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FIG. 1. Hierarchy of band inversions arising from p
orbitals in a trigonal crystal field. (a) Crystal structure
of the 1T transition-metal dichalcogenides, with the transi-
tion metal at the centre of a trigonally-distorted octahedron
of chalcogen atoms (X1 and X2) which each form triangu-
lar layers above and below the transition-metal plane. The
corresponding Brillouin zone is shown in (b). (c) Schematic
illustration of the orbital energy level evolution of p-orbitals:
Bonding and anti-bonding (BA) combinations form triply-
degenerate (neglecting spin) manifolds, which are each split
by the trigonal crystal field (CFS) into a doubly-degenerate
E level (formed from p

x

and p
y

orbitals) above (bonding) or
below (anti-bonding) a single A1 (p

z

-derived) level. Including
spin-orbit coupling (SOC), the A1 level transforms into the
double representation R±

4 (|J = 1/2; |m
J

|= 1/2i) and the E
manifold further splits into an upper R⌥

5,6 (|J = 3/2; |m
J

|=
3/2i) and a lower R⌥

40 (|J=3/2; |m
J

|=1/2i) level. The super-
script ± indicates the parity of each level which can be either
+ (even parity) or � (odd parity) depending on its bonding
nature. (d,e) Evolution of these crystal field-derived levels
(anti-bonding set) as a function of out-of-plane momentum,
showing a crossing of the A1 and E-derived levels that is nat-
urally expected due to their disparate out-of-plane dispersion.
Hybridisation is neglected in (d) but included in (e), showing
the resulting formation of a protected crossing and the open-
ing of an inverted band gap with Z2 topological order at the
crossing of the R�

4 level with the R+
5,6 and R+

40 levels, respec-
tively. Hopping paths considered in our tight-binding model
shown in Fig. 4 are indicated schematically in (a).

di↵erent atomic manifolds in two- (or more) component
compounds (e.g. Bi and Se p orbitals in Bi2Se3;28 Bi
p and Na s orbitals in Na3Bi;4 Nb d and P p orbitals
in NbP29). In contrast, here we uncover a simple and
remarkably-robust mechanism for realising a hierarchy of

band inversions within a single orbital manifold. Across
the broad family of 2H- and 1T-structured transition-
metal dichalcogenides (TMDs)30–32, we observe and clas-
sify how this mediates the formation of strongly-tilted
type-I and type-II bulk Dirac cones as well as ladders of
topological surface states (TSSs) and topological surface
resonances.

Band inversions from a single orbital manifold

Figure 1 details the general principle underlying our find-
ings. As a minimal model, we consider a 2-site system
with space group C3v, with 3 ⇥ 2 p-orbitals per site in
a trigonal crystal field. Such an arrangement naturally
describes, for example, the chalcogen layers of the 1T-
TMDs (Fig. 1(a)). Fig. 1(c) summarises the splitting of
the p-orbital energy levels as a result of bonding, crys-
tal field splitting, and spin-orbit coupling. The bands
that form from these will in general be anisotropic as
the out-of-plane p

z

orbitals will have much larger hop-
ping along the out-of-plane direction than the in-plane
p
x/y

orbitals. For simplicity, we therefore initially ne-
glect inter-layer hopping of the in-plane orbitals, lead-
ing to dispersionless E- (p

x/y

)-derived levels as a func-
tion of the out-of-plane momentum, k

z

. The A1 (p
z

-
derived) bands, however, retain a strong k

z

-dispersion
(Fig. 1(d)). When the bandwidth arising due to inter-
layer hopping becomes larger than the crystal field split-
ting (CFS), the A1-derived band will cross through the
E-derived ones, creating a set of k

z

-dependent band in-
versions solely within the p-orbital derived manifold of
states. In general, anti-crossing gaps can open at these
intersections. This is indeed what should occur at the
crossings of R±

4 with R⌥
40 bands (Fig. 1(e)), as they both

share the same symmetry character and angular momen-
tum m

J

= 1/2. They have opposite parity, however,
and thus their hybridization leads to an inverted band
gap with a Z2 topological order. Accordingly, these gaps
can be expected to host topological surface states, as we
demonstrate below.
In contrast, the R±

4 and R⌥
5,6-derived bands belong to

di↵erent irreducible representations. As a result, they
behave di↵erently under the application of the rotational
operator C3v (see Supplementary Fig. S1), and their
crossing is protected against hybridization as long as it
occurs at a k-point with C3v symmetry and the host sys-
tem has both inversion and time-reversal symmetries.2,7,8

For the model considered here, this is satisfied for all k-
points along the �-A direction of the three-dimensional
Brillouin zone (k

x

= k
y

= 0, varying k
z

, see Fig. 1(b)).
Consequently, the crossing of the R±

4 and R⌥
5,6-derived

bands will lead to a single point of degeneracy (i.e., a
bulk Dirac point) located part-way along this direction.
Its location in momentum space is set both by the band-
width of the R±

4 -derived band and by the strength of the
CFS.

In the schematic shown here (Fig. 1(e)), one branch
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FIG. 2. Chalcogen-derived topological ladder in PdTe2. (a) Orbitally-resolved bulk electronic structure of PdTe2,
indicating dominantly chalcogen-derived orbital character for the states in the vicinity of the Fermi level. (b) Our ARPES
measurements (h⌫ = 80 � 132 eV, k

x

= k
y

= 0) reproduce the calculated out-of-plane dispersion when the calculations are
rescaled by a factor of 1.08 (solid lines), revealing the formation of bulk Dirac points (BDPs) and gapped crossings of the upper
p
z

and p
x,y

-derived states. The corresponding bulk Dirac cones and topological surface states located within the inverted
band gaps are clearly observed (c) in our ARPES measurements (h⌫ = 27 eV (24 eV for inset)) and (d) supercell calculations
(projected onto the first 2 unit cells, see methods) along the �-M direction. (e,f) Spin-resolved energy distribution curves
along the lines shown in (c) reveal a clear helical spin texture of the two topological surface states (TSS1 & 2), with an
up-down-down-up relative ordering, as well as an additional spin-polarised state above TSS1 which we label SS.

of the Dirac cone is highly dispersive along k
z

while the
other is completely dispersionless. This would place such
Dirac cones exactly on the boundary of a maximally-
tilted ‘conventional’ (i.e. type-I) Dirac cone and an over-
tilted one (i.e. a type-II bulk Dirac cone, in analogy to
the recent classification of type-II Weyl fermions20,21).
In reality, the R⌥

5,6-derived band will still have a finite, if
small, out-of-plane dispersion. The group velocity of this
band will determine whether a strongly titled type-I or
type-II Dirac cone is obtained.

Bulk Dirac points and topological surface states

in PdTe2

We show in Fig. 2 that this simple model can be realised
surprisingly well in the electronic structure of the TMD
superconductor33 1T-PdTe2 (space group: P3m1). The
bands near the Fermi level are almost exclusively Te-
derived (see also Supplementary Fig. S1). Along �-A
(Fig. 2(a)), two pairs of predominantly Te p

x,y

bands
are evident within the energy region E � E

F

⇠ �1 to
⇠ 2 eV (red colouring in Fig. 2(a)), which we assign as
the crystal-field and spin-orbit split bonding and anti-
bonding E bands in analogy with Fig. 1. They have
modest out-of-plane dispersion, although much more sig-
nificant dispersion can be observed along the in-plane di-
rections consistent with their in-plane orbital character.
In contrast, the p

z

- (A1)-derived states (cyan colouring in

Fig. 2(a)) have a dispersion along �-A that spans nearly
the entire valence band bandwidth, and thus crosses
through the E states as a function of k

z

.

Above the Fermi level, where the R�
4 band intersects

the anti-bonding R+
5,6 and R+

40 states, a clear type-I pro-
tected crossing (upper) and an avoided crossing (lower)
are formed, respectively. A similar phenomenology is ob-
served for the bands immediately below E

F

: the first
crossing of the p

z

-derived band with the bonding R�
5,6

states leads to another protected BDP, this time of type-
II character (see also Supplementary Fig S2). The second
crossing is again gapped. In fact, the proximity of this
final crossing to both the anti-bonding and bonding-like
branches of the p

z

-derived bands causes an additional in-
verted gap to open directly below this. The deeper one
(E � E

F

⇠�1.7 eV in Fig. 2(a,b)) is generated directly
by the anti-crossing of bonding R+

4 and R0�
4 states, evi-

dent from a small kink structure near the A-point of the
R0

4 band. The shallower band gap (E�E
F

⇠�1.1 eV in
Fig. 2(a,b)) results from the crossing of bonding R0

4 with
both anti-bonding R4 and bonding R4 states. As the lat-
ter two states have opposite parities the total parity of
the lower band at the A-point becomes opposite to that
at the �-point (see Supplementary Fig. S1 for an explicit
calculation of band parities), and hence this is also an
inverted band gap with Z2 topological order.
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These features are well reproduced by our pho-
ton energy-dependent angle-resolved-photoemission
(ARPES) measurements of the occupied electronic
structure (Fig. 2(b)). While the measured spectral
features are broadened due to the finite k

z

-resolution of
photoemission, a significant k

z

dispersion of a number
of states along �-A can still be observed. In the vicinity
of E

F

, we observe a light and more massive band which
cross leading to an enhanced spectral weight at a binding
energy of ⇠ 0.65 eV close to the bulk A-point along
k
z

. The in-plane dispersion of these same states (insets
of Fig. 2(c) and Fig. 3(c) and Supplementary Fig. S3)
reveal di↵use “filled-in” intensity (again due to finite
k
z

-resolution) forming the upper part of this Dirac cone.
Together, these observations and calculations therefore
firmly identify the presence of type-II Dirac cones in
PdTe2,34 arising due to the protected crossing of Te
p
z

- and p
x,y

-crystal field-split states as they disperse
di↵erently with out-of-plane momentum. We note that
spectroscopic signatures of the bulk Dirac cone extend
up to the Fermi level and hence these Dirac fermions
may carry signatures in transport measurements.35

Additional states which are non-dispersive in k
z

, and
thus two-dimensional, are also evident in Fig. 2(b). Most
prominent is a band visible at E�E

F

⇠�1.7 eV, an en-
ergy at which no bulk states are present along �-A. We
thus assign this as a surface state. Its in-plane disper-
sion (Fig. 2(c) and Supplementary Fig. S4) shows a clear
Dirac-like dispersion in the vicinity of �, and is well re-
produced by our supercell calculations of the surface elec-
tronic structure (Fig. 2(d) and Supplementary Fig. S5,
see Methods), confirming its surface-derived origin. This
has recently been observed by Yan et al.36 and assigned
as a topological surface state. Our measurements and
calculations fully support this assignment: we find that
it is located within the k

z

-projected band gap that arises
from the lower of the two avoided crossings below the
Fermi level, between the R+

4 and R�
40 bands identified

above. To definitively identify its topological nature, we
perform additional spin-resolved ARPES measurements
(Fig. 2(e) and Supplementary Fig. S6). These reveal that
this state is strongly spin-polarised (from fits to energy
distribution curves (EDCs), we find an in-plane spin po-
larisation of 92 ± 14% (73 ± 16%) for the upper (lower)
branch of this surface state). The spin lies almost entirely
within the surface plane and is locked perpendicular to
the in-plane momentum, thus exhibiting the helical spin
texture that is a defining characteristic of surface states
of topological insulators, as also found from our supercell
calculations (Supplementary Fig. S4(c)). We refer below
to this topological surface state as TSS2.

More subtly, our supercell calculations also reveal an
additional surface-localised state forming another two-
dimensional Dirac cone-like feature located at the energy
of the band gap opened by the crossing of the R�

4 and R�
40

bands. Unlike for TSS2, however, the band gap in the

bulk spectrum opened by this avoided crossing does not
span the entire Brillouin zone in k

z

. The spectral weight
of the surface-derived feature therefore lies within the
manifold of projected bulk states which disperse around
this avoided crossing. It is therefore better defined as a
surface resonance rather than a true surface state. Con-
sistent with this, we find that its wavefunction is more
extended below the surface than for TSS2 (Supplemen-
tary Fig. S5). Nonetheless, clear signatures of its in-plane
Dirac-like dispersion are visible in our ARPES measure-
ments at selected photon energies (Fig. 2(c)), while our
spin-resolved measurements (Fig. 2(e)) reveal that it re-
tains the spin-momentum locking characteristic of a TSS.
Excitingly, therefore, our findings reveal how the band in-
version created by the crossing of p-orbital E and A1-like
bands in PdTe2 drives the formation of a topological state
(we refer to this as TSS1) whose topological origin still
requires its existence despite the additional presence of
bulk states at the same energies and in-plane momenta,
thereby creating a topological surface resonance.
Intriguingly, we find an additional two-dimensional

state evident as a non-dispersive feature in Fig. 2(b) that
is pinned at exactly the energy of the bulk Dirac point.
Tracking this state slightly away from the Dirac point
along the ��M in-plane direction, we find that it hosts
a strong in-plane spin polarisation with the same sign as
the upper branch of TSS1 (labeled SS in Fig. 2(e,f); see
also Supplementary Fig. S6 which shows that this devel-
ops some out-of-plane spin canting along � � K). Spin-
polarised Fermi arc surface states intersecting the Dirac
point would naturally be expected for, e.g., the (100)
surface, where the bulk Dirac points project to di↵erent
surface momenta (see Supplementary Fig. S7).37,38 For
the experimental (001) cleavage plane, however, the two
bulk Dirac points project exactly on top of each other
and so such surface Fermi arcs would not naively be ex-
pected. Nonetheless, we note that topological surface
states pinned to the Dirac point have recently been re-
ported in calculations for other type-II bulk Dirac sys-
tems.39 The origin of the states observed here therefore
requires further investigation. Irrespective, the exper-
imental observation of an additional spin-polarised sur-
face state here stands as a further example of the rich sur-
face electronic structure that this compound possesses,
driven by an intricate array of band inversions within
the p-orbital manifold of its bulk electronic structure.

Ubiquitous formation of BDPs and TSSs

We show in Fig. 3 and Supplementary Fig. S8 how
such band inversions can be found in multiple other
TMDs with di↵erent local and global crystalline sym-
metries, and which exhibit widely varying bulk prop-
erties. We first consider the closely-related compound,
1T-PtSe2. This is semi-metallic, with a smaller over-
lap of chalcogen-derived bonding and anti-bonding states
than in PdTe2.41 The transition metal states again con-
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FIG. 3. Generic observation of bulk Dirac fermions and topological surface states in TMDs. (a) Orbitally-resolved
out-of-plane bulk electronic structure of (top to bottom) PdTe2, PtSe2, and WSe2, revealing the formation of bulk Dirac points
(BDPs) and inverted band gaps (IBGs) as discussed in the text. (b) Surface-projected supercell calculations (along � � K),
(c) ARPES measurements (top to bottom: h⌫ = 27 eV, p-pol; h⌫ = 64 eV, p-pol, h⌫ = 49 eV, CR+CL polarisation) and (d)
corresponding curvature analysis40 show the surface-projected electronic structure of each compound, revealing the presence
of the bulk Dirac cones as well as topological surface states located within the IBGs. The insets in (c) show the ARPES data
measured with a di↵erent photon energy (PdTe2, h⌫ = 24 eV) or shown with a di↵erent colour contrast (PtSe2 and WSe2) to
better highlight some key features of the data.

tribute relatively little near to the Fermi level, while the
p
z

-derived chalcogen band can be clearly resolved cut-
ting through the p

x,y

-derived states in the vicinity of E
F

(Fig. 3(a)). A single type-II bulk Dirac cone and a pair
of TSSs are stabilised in the occupied electronic struc-
ture just as for PdTe2. These are evident in our super-
cell calculations (Fig. 3(b)) and well matched by our ex-
perimental ARPES measurements (Fig. 3(c,d) and Sup-
plementary Fig. S9). The spin-orbit coupling of the Se
manifold is weaker than that of Te, evident from both the

smaller splitting between E-like states and from smaller
anti-crossing gaps which open in the vicinity of unpro-
tected band crossings. The local band gaps in which the
TSSs reside are therefore smaller than in PdTe2, causing
the upper branches of the TSSs to rapidly “turn over”
to maintain the surface-bulk connectivity as required by
their topological origin.

Nonetheless, in contrast to the common picture for
well-known topological insulators such as Bi2Se3, the
band inversions leading to such topological surface states,
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as well as the bulk Dirac cone formation, naturally sur-
vive this reduction in spin-orbit coupling strength. In-
deed, the relevant energy scales for stabilising the topo-
logical surface states here are the p

z

-derived bandwidth
vs. the trigonal crystal field splitting. While increased
spin-orbit coupling strength will open larger hybridisa-
tion gaps, our findings (see Fig. 3(c,d)) demonstrate how
the topological surface states survive as topological sur-
face resonances even in the limit where the hybridisation
gap opened is significantly smaller than the dispersion of
bulk electronic states around this. They should therefore
be a very robust feature of the intrinsic p-orbital band in-
versions found here. The recent observation of a type-II
BDP in PtTe242 can also be understood within the same
classification that we present here, establishing our find-
ings as generic to the group-10 TMD metals and semi-
metals.43 We further show in Supplementary Fig. S7 and
Supplementary Fig. S8(a,b) how such bulk band cross-
ings/inversions also occur for the high-temperature 1T
phase of the group-9 TMD IrTe2. In this system, the
trigonal symmetry which protects the BDP is lost upon
cooling through a structural phase transition,44,45 raising
prospects to investigate temperature-driven topological
phase transitions and mass gap opening of the type-II
Dirac fermions.

Fig. 3 shows how similar states are also stabilised for
a di↵erent TMD polymorph: the 2H structure of WSe2
(space group: P63/mmc). Our bulk band structure cal-
culations along k

z

(Fig. 3(a)), which are in good agree-
ment with previous photon energy-dependent ARPES
measurements,46 reveal a strongly dispersive band with
significant p

z

orbital character. This is intersected by
very weakly dispersing bands at around 1.5 and 1.9 eV
(2.7 and 2.9 eV) below the valence band top which we
attribute as the anti-bonding (bonding) E-like bands, re-
spectively. Unlike for PdTe2, the Fermi level lies in a
band gap of both the transition-metal (formally in a d2

configuration) and chalcogen-derived states, and so this
system is a semiconductor.30,32,47 Moreover, transition-
metal and chalcogen-derived states are no longer well sep-
arated in energy, and so the E-like bands have a strong
transition-metal d-orbital character intermixed with their
Se p

x,y

character. The more localised nature of the d vs.
p orbitals, together with an increased inter-layer sepa-
ration, leads to a significantly smaller out-of-plane dis-
persion of these E-like bands than for PdTe2. Finally,
the unit cell contains two MX2 (M=transition metal,
X=chalcogen) layers in the 2H structure, as compared
to a single such layer in the 1T structure. This results in
an e↵ective backfolding of the bands about the Brillouin
zone boundary along k

z

, doubling each of the R±
5,6 and

R±
40 bands as seen in our calculations.
The C3v-symmetry enforced degeneracy of the R4-R5,6

crossings discussed above, however, still holds. Now,
therefore, the crossing of the dispersive R4 band with
each of the back-folded R5,6 bands leads to a pair of

closely-spaced bulk Dirac cones. These are almost maxi-
mally tilted and, unlike for PdTe2, now additionally host
significant transition-metal character at the BDP. In-
triguingly, as the back-folding by definition changes the
sign of the band’s group velocity, this leads to stacked
Dirac points of opposite character (type-II and type-I
for the upper and lower crossings, respectively). We ob-
serve clear spectral signatures of the in-plane dispersion
of these Dirac cones (Fig. 3(c)), but are unable to resolve
a splitting of the two cones experimentally due to their
small energy separation and strong three-dimensional
dispersions. Both crossings of the R4 and back-folded R40
bands become gapped, and would therefore be expected
to host topological surface states/resonances as in PdTe2.
One such band gap is too small to resolve experimentally,
while for the lower branch a clear inverted band gap is
opened. Our supercell calculations (Fig. 3(b)) indeed
reveal the TSS located within this band gap, spanning
between the manifold of bulk states above and below the
band gap. Although the resulting band gap is small,
the in-plane dispersion is significant. Our ARPES and
spin-ARPES measurements (Fig. 3(c) and Supplemen-
tary Fig. S10) show clear evidence for the existence of
the resulting surface state, its band-gap crossing nature,
and its chiral spin polarisation. As shown in Supplemen-
tary Fig. S8(c-f), we find similar bulk Dirac cones and
inverted band gaps in other 2H-structured TMDs, TaSe2
and NbSe2 (space group: P63/mmc), despite them host-
ing a di↵erent layer stacking sequence as compared to
WSe2. This opens the exciting prospect to investigate
the influence of charge order, which these compounds
host48–51, and the consequent reconstruction of the elec-
tronic structure, on the topological and bulk Dirac states.

Tuneability and robustness against inversion sym-

metry breaking

The principle underlying the formation of bulk Dirac
cones and topological surface states here is very general,
and can be expected to occur across numerous materials
systems. Moreover, our demonstration of their existence
across multiple TMDs indicates that there is still sig-
nificant opportunity to tailor the properties, locations,
and nature of these states. To show this explicitly, we
construct a tight-binding model for our minimal 2-site
system considered in Fig. 1. Fig. 4 shows how varying
the inter-layer hopping both within and between neigh-
bouring unit cells, as well as adjusting the ratio of �-type
and ⇡-type inter-layer interactions, leads to a rich array
of coexisting topological states and phases. Controlling
these experimentally should be possible by varying the
degree of covalency in the system and tuning the out-
of-plane lattice parameter via atomic substitution or ap-
plied uniaxial pressure or strain along the c-axis. Such a
strain field would not a↵ect the trigonal symmetry which
protects the Dirac points within the inverted phases, but
could be used to traverse the phase boundaries, providing
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FIG. 4. Interlayer hopping-controlled topological and
Dirac phases. (a,b) E↵ective phase diagrams for a minimal
2-site p-orbital tight-binding model (see Methods), indicating
the tuneability of Dirac crossings and band inversions as a
function of intra-layer hopping (t1 = t2), inter-layer hopping
within the unit cell (t3), and inter-layer hopping between unit
cells (t4). As the inter-layer hopping is increased, the band
width of the p

z

-derived band grows rapidly such that it over-
comes the crystal field splitting and spin-orbit split-o↵ ener-
gies of the p

x/y

-derived states. (a) Considering only �-type
bonding between unit cells, this drives successive transitions
from a trivial semimetal to a type-II Dirac state to a system
supporting a type-II Dirac fermion and an inverted band gap.
(c) This is shown explicitly in example electronic structure
calculations along �-A (left three panels, calculated for the
points indicated in (a)). An additional type I Dirac cone is
found for large inter-layer hopping. (b) A richer phase dia-
gram is obtained when including non-zero ⇡-type interactions
for inter-unit cell hopping, shown as a function of increasing
t4⇡ with t3⇡ and t4� taking values along the black dashed
line indicated in (a). Such a ⇡-type hopping enhances the
interaction between the p

x,y

orbitals of neighboring cells and
accordingly can influence and even reverse the slope of the cor-
responding p

x,y

bands. Multiple band inversions and Dirac
points of both type-I and type-II character, as well as their
combination as found in e.g. PdTe2, are obtained (right four
panels in (c)).

powerful routes to tuneable topological phase transitions
and the creation or annihilation of bulk Dirac points in
TMDs.

Moreover, the insights gained here suggest strategies
for the design of Dirac and topological phases. As an
illustration of this, we consider replacing one of the Te
layers in PdTe2 by Se. In contrast to PdTe2, this struc-
ture is non-centrosymmetric. Typically, such a loss of
inversion symmetry would be assumed to lift the spin
degeneracy, splitting the Dirac point into a pair of Weyl
points. In contrast, since the PdTeSe structure we con-

sider retains trigonal symmetry, we find that both spin-
degeneracy and the protected Dirac crossing are main-
tained along the rotational axis (�-A), but spin degen-
eracy is lost elsewhere (Supplementary Fig. S11). The
Dirac point in this case can therefore be considered as
a protected degeneracy of two Weyl points that would
not typically be expected. Our study thus opens routes
to the rational design of topological materials, and indi-
cates just how wide a purview topological band structure
e↵ects can be expected to have.
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Methods

Calculations: The bulk calculations were performed
within density functional theory (DFT) using Perdew-Burke-
Ernzerhof exchange-correlation functional as implemented in
the WIEN2K program.52 Relativistic e↵ects including spin-
orbit coupling were fully taken into account. For all atoms,
the mu�n-tin radius R

MT

was chosen such that its prod-
uct with the maximum modulus of reciprocal vectors K

max

become R
MT

K
max

= 7.0. The Brillouin zone sampling of
1T (2H) structures was carried out using a 20 ⇥ 20 ⇥ 20
(20 ⇥ 20 ⇥ 10) k-mesh. For the surface calculations, a 100
unit tight binding supercell was constructed using maximally
localized Wannier functions.53–55 The p-orbitals of the the
chalcogen and the d-orbitals of the transition metal atoms
were chosen as the projection centres.

The phase diagrams and related band structures shown
in Fig. 4 were constructed using a 12-band tight-binding
model, considering nearest-neighbour p � p hoppings be-
tween the chalcogen sites in a trigonal unit cell similar to
that of 1T-TMDs, but without any transition metal element.
The basis set is accordingly composed of two sites, j = 1
and 2, and each site contains six spin-orbital components,
|p

i,j

,�i, where i = x, y, z and � =", #. The hopping inte-
grals t

ij,i0j0 = hp
ij

|H|p
i0j0i were calculated using the Salter-

Koster method by choosing the appropriate values for on-site
crystal field terms �

CFS

and the two-centre bond integrals
t
ii0� and t

ii0⇡.
56 For simplicity, the e↵ect of spin-orbit in-

teraction was approximated by only considering the on-site
contribution H

so

= �L · S, where L and S are orbital and
spin angular momentum operators, respectively. Consider-
ing the hopping paths shown in Fig 1(a), each band struc-
ture calculation required setting eight hopping parameters
t
k�

, t
k⇡

where k = 1 � 4 as well as �
CFS

and �. We fix
t1� = t1⇡ = t2� = t2⇡ = 1.0, the crystal-field splitting,
�

CFS

= 1, and the spin-orbit coupling � = 0.3. Intra-
unit inter-layer hopping is assumed to be of ⇡-type only (t3⇡
[t3� = 0]). The other parameter were varied to produce the
representative band structures shown in Fig. 4(c). Inter-unit
cell hopping is assumed to be dominated by p

z

orbitals and
is therefore predominantly of �-type (t4�), although we also
consider the e↵ect of finite ⇡-type interactions between neigh-
bouring unit cells (t4⇡ ⌧ t4�).

ARPES: ARPES measurements of PdTe2 and PtSe2 were
performed at the I05 beamline of Diamond Light Source, UK,
and most spin-integrated WSe2 measurements at the CAS-
SIOPEE beamline of Synchrotron SOLEIL, France. Addi-
tional ARPES measurements of WSe2 were taken at the APE
beamline of Elettra Syncrotrone Trieste, Italy, along with the
majority of the spin-resolved ARPES measurements. Addi-
tional spin-resolved measurements of PdTe2 were obtained
from the I3 beamline of MAX IV Laboratory, Sweden.

High-quality single crystal samples, grown by chemical
vapour transport, were cleaved in situ at temperatures rang-
ing between 9-15K. Measurements were performed using ei-
ther p-polarised (PdTe2, PtSe2, WSe2), or circularly po-
larised (WSe2) light, and using photon energies in the range
h⌫ = 24 � 132 eV. Scienta R4000 hemispherical analysers,
with a vertical entrance slit and the light incident in the hor-
izontal plane, were used at Diamond and SOLEIL.

A VG-Scienta DA30 analyser (Elettra), fitted with two very
low energy electron di↵raction (VLEED) based spin polarim-

iters, was utilised for the majority of the spin-resolved mea-

surements along three momentum directions, while additional
measurements were performed using a mini-Mott setup on a
Scienta R4000 analyser (Max IV). The finite spin-detection
e�ciency was corrected using detector-dependent Sherman
functions ranging between S = 0.17±0.03 and S = 0.43±0.03
as determined by fitting the spin-polarisation of reference
measurements of the Au(111) Rashba-split surface state for
each experimental set-up utilised. Spin-resolved EDCs were
determined according to

I",#
i

=
Itot
i

(1± P
i

)
2

, (1)

where i = {x, y, z}, Itot
i

= (I+
i

+I�
i

) and I±
i

is the measured
intensity for a positively or negatively magnetised detector,
corrected by a relative e�ciency calibration. The final spin
polarisation is defined as follows:

P
i

=
I+
i

� I�
i

S(I+
i

+ I�
i

)
, (2)

where S is the relevant Sherman function for the detector in
use.

Quantitative spin-polarisation magnitudes were deter-
mined from the relative areas of Lorentzian peak fits to en-
ergy distribution curves (EDCs) originating from oppositely
magnetised detectors. A Shirley background and Gaussian
broadening were included in this analysis.

To determine the PdTe2 k
z

dispersion from photon-energy-
dependent ARPES, we employed a free electron final state
model

k
z

=

r
2m

e

~2 (V0 + E
k

cos2 ✓)1/2 (3)

where ✓ is the in-plane emission angle and V0 is the inner po-
tential. We find best agreement to density-functional theory
calculations taking an inner potential of 16 eV and a c-axis
lattice constant of 5.13 Å.

Data availability statement: The data that un-
derpins the findings of this study are available at
http://dx.doi.org/10.17630/27a2dc90-470f-4e69-be1e-
5ebb072db739.
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transfer from Pd to Te leaves the p orbitals of Te partially unoccupied. This can be partly compensated by a covalent bonding
between adjacent Te ions through an intra-layer hopping between the p

x,y

orbitals as well as an inter-layer hopping between
the p

z

orbitals, leading to the strong k
z

dispersion of the Te-p
z

-derived bands shown here. These therefore cross through the

p
x/y

-derived states. The crossings marked BDP are protected: the rotational eigenvalue of R±
40 with m

J

=1/2 is e
2⇡i
3 mJ = e

⇡i
3

whereas it is equal to -1 for R⌥
5,6 with m

J

= 3/2. Hence, for a given Hamiltonian H(k), the hybridization matrix element
hR4|H(k)|R5,6i is zero and the crossing of these bands is protected against hybridization for k-points with C3v symmetry.
The other crossings, however, are not protected. An explicit calculation of the band parities (marked by ±) shows how the
inverted band gaps along �-A that open at these crossings (identified in the main text) host parity inversions. This indicates
non-trivial Z2 topological order. They should therefore host topological surface states when the system is cleaved along the
(001) direction. (b) Corresponding supercell calculations for the (001) surface confirm topological surface states arising from
each of these parity inversions.
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FIG. S2. k
z

dependent bulk electronic structure of PdTe2. (a-d) Evolution of the electronic structure from density-
functional theory calculations of 1T-PdTe2 as a function of out-of-plane momentum. The calculations are shown along the
M � � � K direction of the surface Brillouin zone for di↵erent values of k

z

from k
z

= 0 to k
z

= ⇡/c. The bulk Dirac point
(BDP) is located at k

x

= k
y

= 0, k
z

= 0.854⇡/c (= k
z,D

), shown in (c). Due to the tilted nature of the type-II Dirac cone, the
pair of bulk bands (labeled with *) that form the protected crossing disperse in the same direction when moving away from
k
z,D

, forming cone features in the vicinity of the BDP in constant energy surfaces. (e) Constant energy surfaces of the bands
that make up this tilted type-II Dirac cone are shown in the three-dimensional Brillouin zone at the energy of the BDP (found
in calculations to be at E � E

F

= �0.6eV ).
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FIG. S3. In-plane dispersion of the bulk Dirac cone in PdTe2. (a) Constant energy contours over the energy range of the
upper branch of the bulk Dirac cone in PdTe2 (h⌫ = 24eV ), showing a clear filled-in Dirac cone feature. These measurements
integrate over a significant portion of the Brillouin zone along k

z

for the low photon energy used, and thus the di↵use nature of
these states points to their three-dimensionality. (b-c) Dispersion along the k

y

direction (parallel to M���M) of the bulk Dirac
cone for varying k

x

. Hyperbolic (b) and parabolic (c) dispersions for a cone and paraboloid, respectively, are overlaid, with
the Fermi momentum equal to 0.172 Å�1 and a band minimum of -0.69 eV. The parabolic curves are in poor agreement with
experiment, whilst the hyperbolic curves outline the measured spectral weight well. This is a hallmark of Dirac dispersions,s2

and thus supports their assignment as three-dimensional Dirac cones. We find the apex of our observed cone to be located
⇠ 0.65 eV below E

F

, in agreement with the crossing point of the dispersive bands observed in our photon energy-dependent
measurements along �-A, as well as with our theoretical calculations.
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FIG. S4. Constant energy contours of TSS2 in PdTe2. (a) k
x

-k
y

slices over the energy range of TSS2 (h⌫ = 24eV ). The
binding energies of the constant energy contours are shown in the measured dispersion in (b). (c) A calculated k

x

-k
y

contour
of TSS2 extracted 400 meV below its Dirac point, with projected spin-angular momentum from the supercell calculations,
indicates a counterclockwise helical in-plane spin texture of the lower legs of TSS2. This is in good agreement with the spin
texture of TSS2 determined by experiment (see e.g. Supplemental Fig. S6).
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FIG. S5. Orbitally- and layer-projected supercell calculations of PdTe2. Supercell calculations of the surface electronic
structure of PdTe2, shown along the � � M direction and projected onto layers (a) 1-2, (b) 3-4, (c) 5-6, and (d) 7-8 of the
supercell below the surface. The colouring reflects the orbital character (see the false colour scale on the right side of figure). The
topological surface state TSS2, which is located within a large projected bulk band gap, has its spectral weight predominantly
located within the first two layers below the surface, with only weak extension of the wave function into deeper layers, and so is
a well defined surface state. In contrast, TSS1 has less weight in the first two layers, with greater extension of spectral weight
into deeper layers with weak signatures still visible in layers 7-8. This points to a greater spatial extent of its wave function as
compared to TSS2, and supports its classification (see main text) as a topological surface resonance.
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location (k
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) = (0,�0.094⇡
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) and (0.094⇡

a

, 0), respectively. Along � � M, the electron spin is located completely in-plane
and perpendicular to the momentum, while there is a small additional out-of-plane (hS

z

i) spin canting, in particular for TSS1,
along ��K.
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FIG. S7. Fermi arc surface states. Surface electronic structure calculated for the (100) surface of IrTe2. A constant energy
contour and an in-plane dispersion are shown in the upper and lower panels respectively, both projected onto the first two
layers of the supercell. These reveal how the surface projection of the bulk Dirac points are spanned by arc-like surface states
(labeled in the top panel). The bulk bands R4 and R5,6 that form the bulk Dirac points (BDPs) are shown by the dashed white
lines; significant k

z

(k
x,y

) dispersion of the p
z

(p
x,y

)-dominated bulk state R4 (R5,6), as also indicated in Fig. S8(a), gives rise
to the background spectral weight visible in these k(100)-projected surface calculations. A 500-layer supercell was used for these
calculations. For the lower panel, the k-range from �0.3  k

z

 0.3 has been sampled by 800 k-points. For the upper panel,
due to the expensive nature of this calculation, a slightly coarser k-point sampling of 360⇥ 300 k-points was used for the range
shown along k

z

and kk, respectively.
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FIG. S8. k
z

-dependent band inversions in IrTe2, TaSe2 and NbSe2 (a) Bulk electronic structure along k
z

and (b)
surface supercell calculation for the group IX TMD 1T-IrTe2, displaying a single type-II BDP and two TSSs. The BDP and
first TSS are in close proximity to the Fermi level (where a small amount of doping could be used to tune them to E

F

), making
our findings directly relevant to transport properties of this material. (c-f) Equivalent calculations for (c,d) 2H-NbSe2 and
(e,f) 2H-TaSe2. The bulk band structure calculations each show pairs of protected crossings forming two closely-spaced BDPs
of opposite types, as well as two gapped crossings forming inverted gaps below the Fermi level. In the larger of these, a clear
band-gap crossing TSS can be observed in our supercell calculations (d,f), similar to in 2H-WSe2 discussed in the main text.
As well as a change in Fermi level position between NbSe2 and TaSe2, there is a clear increase in the size of the inverted band
gaps and E-like level splittings due to stronger SOC in the latter.
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FIG. S9. k
z

dependence of the type-II bulk Dirac cone in PtSe2. (a,b) h⌫-dependent ARPES measurements of
PtSe2 along � � M of the surface Brillouin zone (a) with and (b) without overlayed calculated bulk dispersions. These show
significant in- and out-of-plane dispersion of the bulk Dirac features. Apart from some sharp surface states, significant additional
broadening of the measured spectra is evident due to the surface sensitivity of photoemission. This is reflected in the simulated
spectral functions included in (c,d), extracted from the three-dimensional calculated electronic structure, and incorporating
finite k

z

-resolution of ARPES assuming an inelastic mean free path of 4.5 Å (with a corresponding k
z

broadening as described
in Ref. s3). The calculations in (b-d) incorporate a scaling factor of 1.05 and an energy o↵set of -0.1 eV to best match the
experimental data.
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FIG. S10. Circular dichroism (CD) and spin-resolved ARPES of topological surface states in 2H-WSe2. (a-c)
ARPES measurements (h⌫ = 49 eV) of WSe2 measured using (a) left-handed (CL) and (c) right-handed (CR) circularly
polarised light. Insets show the region in which the TSS identified in the main text resides. The circular dichroism is shown in
(b), revealing a clear switching of the sign of CD of the two branches of the TSS. This likely implies that the two branches of
the surface state carry opposite orbital angular momentum.s4,s5 Irrespective of the origin of the circular dichroism, however, we
use it here as a tool to clearly distinguish between the two branches of the surface state dispersion. It identifies how these span
the bulk band gap, ensuring surface-bulk connectivity between the upper and lower nearby bulk bands, and revealing how the
two surface-state branches cross at k = 0. These are all characteristic features of a topological surface state. (d) Spin-resolved
momentum-distribution curves (MDCs, measuring the chiral spin component) across the surface state at the energies indicated
in the lower panel (purple lines, measured using p-polarised light, h⌫ = 25 eV). These further demonstrate that this state hosts
a strong in-plane chiral spin texture, again fully consistent with the topological nature of the in-gap surface state.
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FIG. S11. Electronic structure of PdTeSe. Calculated electronic structure of PdTeSe, formed by replacing one Te layer
in PdTe2 by Se. The dispersion along �-A (shown magnified on right) is very similar to PdTe2, retaining the bulk Dirac
points and inverted band gaps arising due to the protected and avoided crossings of in- and out-of-plane chalcogen-derived
bands. Despite the lack of inversion symmetry for this crystal structure, these bands remain spin-degenerate along �-A,
with a protected Dirac crossing pointing to a surprising ability for rotational symmetry to play an e↵ective role of inversion
symmetry along this direction. O↵ this symmetry line however, where k

x

6= 0 and/or k
y

6= 0, spin degeneracy is lost as would
generically be expected for a non-centrosymmetric system. The in-plane chiral component of the spin polarisation is shown by
the colouring. This indicates how the bands therefore become spin-split evident, e.g., as dominant Rashba-like spin polarisation
for the states crossing E

F

along the �-K and �-M directions. As discussed above, however, this spin splitting vanishes along
�-A. Our calculations therefore reveal how the combination of trigonal symmetry with time-reversal symmetry but a loss of
spatial inversion can stabilize an unconventional state where four-fold degeneracy remains protected at the Dirac point, but the
Dirac cone immediately splits into spin-polarised branches o↵ of the high-symmetry line. We note that such features, likely also
arising from this surprising mechanism, can be seen in calculations of PbTaSe2.

s6 Single crystals of this non-centrosymmetric
compound exist, raising exciting prospects to study such states experimentally.
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