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Abstract

This thesis presents research into the construction of persistent programming systems.

Much of the thesis is concerned with the design and implementation of persistent 

programming languages, in particular PS-algol and Napier. Both languages support 

machine independent vector and raster graphics data types. Napier provides an environment 

mechanism that enables the incremental construction and binding of programs. Napier has a 

powerful type system featuring parametric polymorphism and abstract data types. T
I

The machine supporting Napier, the Persistent Abstract Machine, is investigated. The 

machine supports an efficient implementation of parametric polymorphism and abstract data 

types.The Persistent Abstract Machine has a layered architecture in which permits ÿ 

experimentation into language implementation and store design.

The construction of compilers in a persistent environment is explored. A flexible compiler 

architecture is developed. With it, a family of compilers may be constructed at relatively little 

cost. One such compiler is the callable compiler; this is a first class data object in the 

persistent environment. The uses of such a compiler are explored, in particular in the 

construction of an object browser.

The persistent object browser introduces a new software architecture that permits adaptive 

programs to be constructed incrementally. This is achieved by writing, compiling and 

linking new procedures into an executing program. The architecture has been sucessfully 

applied to the construction of adaptive databases and bootstrap compilers.
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1 Introduction

The constant decrease in the cost of hardware components has given rise to a proliferation of 

computer systems in every aspect of everyday life. Kettles, toys, aircraft, libraries, banks 

and nuclear power stations are all affected by the so called computer revolution. The 

dramatic reduction in the cost of hardware is unparalleled in the industrial revolution. In no 

other area have production costs halved and power doubled in an unerring four year cycle 

[bro87]. Consequently, it should be of no surprise that the software industry has failed to 

match this explosive growth.

The software crisis of the 1960's [bux69] brought into focus the fact that hardware 

development was advancing faster than the ability to produce software. The crisis was 

catalysed by the availability of the newly available third generation computer hardware. It 

was capable of providing hardware support for sophisticated systems at moderate costs. 

However, the production of software systems could not match the demand caused by the 

arrival of these systems.

Since the 1960's the problem has not diminished, in fact, software production costs have 

increased in the intervening period. This is largely due to the labour intensive nature of 

software production. Software cannot be mass produced like cars[weg84]. Unlike cars, no 

two pieces of software are identical, since if they are, they are merged into a single 

abstraction.

The real costs of software production are now astronomical. It has been estimated [joe83] 

that, in America, software production and maintenance now costs 2% of the gross national 

product. Therefore even small savings made to the software life cycle will result in a vast 

reduction in economic expenditure.

.1



,1
Boehm [boe86] gives four strategies for improving software productivity:

• I
Jj

1. Write less code t

2. Get the best from people

3. Avoid re-work -|

4. Develop and use integrated project support environments

Getting the best from people is the domain of managers. The other three topics provide the 

thrust for the work documented in this thesis. This view point is retrospective since Boehm 

had not given his address when the work was started.

1.1 Writing Less Code

A program satisfying some specification may be produced in less fewer of code if written in %

a high level language rather than a low level one. For example, a ten line program written in #

Ada may be equivalent to a few hundred lines of assembly code. An IBM survey [ibm78] *1

found that programmers produce approximately the same number of lines of code per day i

no matter what languages are used. This in turn means that the cost of program is directly |

proportional to its size. Therefore if a high level language is used to produce a product fewer 

programmer days are required to produce it - resulting in lower costs.

The provision of programming languages with a high degree of compile time type checking 

allows errors in programs to be detected early in the software life cycle. Systems written in 

languages with strong type systems take longer to write but contain fewer semantic errors 

[boe87]. This leads to less time being needed in the testing and debugging phase of software 

development and, perhaps most importantly, the resulting code requires less maintenance. ^

The production of a piece of software is highly labour intensive and its cost is directly 

proportional to the amount of programmer time that is required to produce it. It is therefore ?i

essential to find ways of reducing the amount of programmer time required to produce 

software. The use of strong type systems is costly in terms of machine time. Machines must

 ............................................................. i________     - . _



perform more checks to ensure a program is well typed but this results in less time being 

spent by the programmer during the potentially expensive debugging cycle.

The advantages of using very high level languages motivated the U.S. Department of 

Defense to adopt Ada [ada83] as a standard language. One of the design aims of Ada was to 

provide a language in which the specification of programs was indistinguishable from their 

implementation. This has also been the aim of researchers designing so called executable 

specification languages [gog82,kre80].

The use of prototyping has been compared with specification techniques in experiments 

[boe87]. In these experiments it was found that the use of prototyping resulted in 40% less 

code being produced with 40% less effort. Furthermore, the resulting products were easier 

to understand and therefore maintain.

Balzer [bal87] stresses the need to be able to evolve prototypes into an operational system 

rather than discarding prototypes. This result suggests that the programming systems we 

develop should support a smooth transition between prototypes and products.Therefore, an 

incremental development facility is required to support prototyping Prototypes are highly 

complex, structured objects requiring more sophisticated support tools than a mere text 

editor. In general, such incremental development requires an integrated project support 

environment ( IPSE ).

The production of software is an expensive labour intensive activity. Consequently, any 

technology that allows a given problem to be solved by writing less code than other methods 

will lead to the production of cheaper software. Good candidate technologies are: strong 

type systems, high level languages and integrated project support environments.



1. command languages

2. filing systems

3. compilers

4. interpreters

5. linkers

6. symbolic debuggers

7. DBMS sublanguages

8. graphics libraries

The diversity of these mechanisms increases the cost of maintaining even the simplest 

software systems. The approach taken in designing PS-algol [ps87] and its successor, 

Napier [mor88b] is to attempt to provide a language capable of supporting all of the needs of 

the application programmer. The resulting simplification should result in an overall saving 

throughout the life cycle of the program [atk83].

1.1.1 Language Design

The provision of high level languages leads to a reduction in programmer time spent on a 

given problem. A high level programming language should be capable of supporting the l |

development of a broad spectrum of applications, %%

I
1. development of data models |

2. generic toolsets

3. object based systems

4. adaptive systems

5. user interfaces

In order to perform these tasks most programming systems depend on a plethora of different 

mechanisms, these include:



4
0

Simplicity is the cornerstone of programming language design. The addition of new features 

without integrating them into an overall framework merely increases the complexity of the 

system. This complexity often overloads the programmer beyond his or her capability. In #

contrast, a simple language allows the programmer to concentrate on the inherent problems 

of the task and not on the mapping between the solution and the programming vehicle. This 

view was epitomised by van Wijngarden [vw69] who states.

I

In order that a language be powerful and elegant it should not contain many 

concepts.

This message is restated by van Wijngarden as,

power through simplicity, simplicity though generality %

He argues that languages are too complex and that complexity is due, at least in part, to 

languages being too restrictive. The PISA [atk86b] languages are designed using three %

principles attributed to Landin [lan66], Strachey [stra67], Tennant [ten77] and Morrison 

[mor73].

The Principle o f Correspondence: the use of names should be consistent within a 

system. In particular there should be a one to one correspondence between the 

method of introducing names in declarations and parameter lists

The Principle o f Abstraction: all major syntactic categories should have abstractions 

defined over them. For example, functions are abstractions over expressions.

The Principle o f Data Type Completeness: all data types should be first class 

without arbitrary restriction on their use.

The power is derived from the generality of these three principles, the simplicity from the 

lack of deviation from them. The ultimate goal is to produce a totally integrated environment 

capable of supporting the needs outlined above. In such an environment the user never has

J
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to step outside it for any computational task. Central to this ideology is the provision of 

orthogonal persistence, which is discussed below.

1.2 Avoiding Rework

Parnas cites information hiding as one of the most effective ways of avoiding rework 

[par79]. If implementation decisions are hidden inside module interfaces, ripple-through 

effects may be avoided when changes are made to one part of a system. This approach has 

proved extremely effective in eliminating rework during system evolution.

The concept information hiding is central to the object-oriented methodology which is based 

on ideas originally developed in Simula [nyg70]. In this paradigm, methods may produce or 

modify members of a class of objects. Wegner [weg87] defines object-oriented languages as 

having three essential features:

1. the ability to define objects as a set of operations and a state that remembers '& 

the effect of operations;

2. objects may be categorised by type; and

3. there is an inheritance mechanism for defining superclasses and subclasses.

The support of objects, which contain both methods ( procedures ) and instances ( data ) is 

in contrast with the traditional separation of code and data.

1.2.1 Uniform Treatment ofProgram and Data

In many programming languages such as Algol 60 and Pascal [wir73] procedures may only 

be declared, passed as parameters or executed. As Zilles [zil73] and Morris [mor73] point 

out, in order to exploit the device to its full potential it is necessary to promote procedures to 

fuU first class data objects. That is, to give them the same civil rights as any other data object 

in the language such as being assignable, the result of expressions, procedures and blocks 

and being elements of data structures. This is in accordance with the principle of data type 

completeness.



The main advantage of providing first class procedures as data objects is that there is a 

simple and well understood mechanism for system construction. Therefore no special 

provision needs to be made for the provision of libraries and loaders. Separate compilation 

may also be achieved by running procedures ( a compiler ) that introduce procedures into the 

environment. This technique is discussed fully in chapter 6. The power that may be 

extracted from first class functions is fully discussed in [atk84] and [mor85].

The implementation of languages with first class functions provides some problems not 

otherwise encountered. Solutions to these problems are fully discussed in chapter 4

1.2.2 Software Reuse

The cheapest way of obtaining software is to reuse code that has already been produced. 

The most extreme form of this reuse is purchasing "off the shelf packages. If software is to 

be reused successfully, it is important that mechanisms are provided in the environment to 

support reuse. Several questions arise over how this support may be provided, some of 

these are:

1. How do you write programs that may be reused?

2. How do you store reusable programs?

3. How do you catalogue reusable programs?

4. How do you find a program to reuse?

The provision of a polymoiphic type system may be used to facilitate the writing reusable 

software [mor87a]. To support the reuse of software the system must be capable of storing

The power of first class functions has long been known to lisp [mcc62] programmers, Lisp 4

was the first programming language to have first class procedures. The technique of

applicative programming depends on the ability to have procedures as first class data
■|objects.

j

&
the polymorphic and other functions that are produced. It is important that the storage of i
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Systems vary considerably in the amount and nature of integration that they support. 

Consider the Macintosh toolset [mac86] and the Unix programming environment [ker79].

The Macintosh toolset has regular sub-systems with well documented interfaces and 

conventions. For example, a set of facilities are provided for managing graphics data and 

another for managing system events. The application developer may combine these facilities 

to produce complex applications with ease. The toolbox functions interface most sthoothly 

with Pascal programs although they may be used from programs written in other languages 

with a little more trouble.

:>

I
]

code preserves the type information associated with it or many of the advantages of using a ’ 

strong type system may be lost.

Storing a potentially reuseable piece of code is of little use unless someone else may find it 

and reuse it. One of the most effective ways of discovering what code is available to reuse is 

by browsing over it. This technique has been used successfully in the design of the 

Smalltalk-80 [gold83] system and much its success may be attributed to it. Browsing has 

proved to be of utility in browsing strongly typed objects in PS-algol. The PS-algol object 

browser is discussed in chapter 7.

1.3 Using Integrated Project Support Environments

If IPSE's make software cheaper to produce it must be ascertained that the definition of an 

IPSE is clear. Boehm distinguishes an IPSE from a collection of ad-hoc tools by the amount 

of gross integration available [boe86]. The tools available in toolkits such as Unix work in 

isolation. Tools operate in isolation with no knowledge of other tools or of any special data 

structures being used. On the other hand in an IPSE the tools share common schemata. Each 

has specialised knowledge of the data being manipulated and tools may even use other tools 

in the system. The IPSE operates as a central depository where objects being manipulated 

may be found and where schema information is stored.
f

I



The Unix environment lacks the fine grain system integration of the Macintosh. Libraries of 

functions are provided to support various programming activities but do not have the 

coherent structure of the Macintosh toolkit. However, Unix provides much more global 

integration than the Macintosh, Tools are provided for a variety of tasks, for example,

C specific tools: cc, dbx, lint

documentation tools: spell, troff, wc

configuration management tools: make,SCCS

help tools: apropos,man

These tools may be combined by the extremely powerful mechanism of the pipe. Pipes 

allow the output of one process to be connected to the input of another. Programmers may 

chain tools together to provide yet more powerful ones.

Unix does provide libraries of functions, typically these libraries provide mechanisms to 

support tasks such as mathematical functions and 1/0. When a programmer wishes to use 

these libraries a linker is employed to resolve addresses. The linker produces a new program 

with copies of the library functions bound into the program. This means that if a function is 

heavily used many copies of it exist in the system resulting in large modules of executable |  

code. Furthermore, if a library function is changed for any reason all the code that uses that 

function must be relinked. This is an expensive mechanism for supporting software reuse.

The success of Unix is largely due to the uniform I/O structure of which pipes are a part. 

However, with this 1/0 structure comes one of the weaknesses of Unix. That is the fact that 

the data supported by the I/O system is not structured. The character stream is an extremely 

low level communication medium. If two tools are to operate on the same structured data the 

data must be linearised, passed down a pipe and then reconstructed. This process is 

expensive in both CPU time and programmer time since the mappings involved are often 

complex. The restrictions imposed by this architecture are one of the major motivations in 

moving towards object stores.
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1
The need to map structured data to flat data and vice versa is aggravated in Unix by the lack 

of any ability to share data in primary memory. In most Unix systems it is impossible to 

share data structures in RAM between different processes. The first level of sharing data is 

therefore at the file system level which requires data to be mapped via the I/O system.

Due to the relative expense of process invocation in Unix, tools tend to be large objects. The 

tools are generally written in the language C and invoked from the command language 

known as the shell [bou78]. This results in many useful pieces of code being trapped within 

tools. Reuse in Unix is therefore good at the global level but poor at the subsystem level.

1.3.1 Public Common Tools Interface

The Public Common Tools Interface ( PCTE ) is an architecture designed to provide several 

important facilities to application developers, these include:

1. Reduce development costs of tools.

2. Facilitate the exchange of software tools.

3. Allow integration of tools in comprehensive, uniform and homogeneous 

Software Engineering Environments

The above considerations lead the designers naturally to the realization that a unified 

framework is required to support such an architecture. Furthermore, this architecture needs i

to be based on powerful mechanisms, especially in the area of object management. 

However, one of the criteria placed upon the designers of PCTE was that a smooth 

transition must be possible between current programming practices and the use of PCTE. %

Therefore, the system had the limitation that initially tools had to operate in the Unix

I

environment. The limitations of this design decision have already been discussed. 

Nevertheless, the realisation that a comprehensive, uniform and homogeneous environment *1 

is needed to support IPSE's is important.

10
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1.3.2 Ada Programming Support Environment

The developers of Ada recognised that in addition to a high level language a programming 

support environment was also necessary. Without such an environment, programs written 

in a high level language must depend on operating system facilities. This in turn reduces the 

portability advantages of using a high level programming language.

Another strong motivation for the provision of a common support environment was the 

observation that the size and complexity of support software often exceeds the size of the 

embedded system being supported. If the environment is shared between many developers 

this high support cost may also be shared resulting in a reduction of the total software cost.

A number of constraints were placed on the design of the APSE Architecture [dod83].

These constraints are similar to the constraints placed upon the design of the Persistent S

Abstract Machine although the motivations were slightly different. To achieve portability the 

following constraints were made upon the APSE design: |

1. All tools must be written in Ada

2. The APSE must be structured in layers, each layer being dependent on only ÿ  

the subsidiary layer.

3. One layer, the kernel layer, must provide access to a system database and 

facilitate communications

1.4 Object Storage

Boehm cites the provision of a project master data base or persistent object base as one of 

the important features distinguishing an IPSE from a collection of ad-hoc tools. The need 

for a uniform, homogeneous object storage facility is also identified by the PCTE and the 

ADA Apse designers.

Programming languages normally have little support for the maintenance of long term data.

The only concession made to this requirement is usually the provision of a file data type.

11
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Therefore, the programmer is faced with the task of mapping data onto long term storage; f

this is usually provided by the file system or DBMS. The mapping of data between long and

However, if data falls into the second category it is managed by a file system or a database 

management system. Curiously, a completely different set of modelling techniques have 

developed to structure long term data. In this category, the methods adopted include 

relational [cod70], hierarchical [loc78], network [tay76] and functional data models [shiSl].

short term storage is expensive, both in terms of programmer design time and program run |  

time. In 1978, Atkinson [atk78] recognised this problem and isolated a property of data
:s

known as persistence. S

Persistence is defined to be the length of time for which data exists and is usable [atk83]. It 

is therefore an abstraction over a physical property of data; the length of time it is kept. 

Traditionally, programming languages partition data into two categories:

«1. data whose lifetime does not exceed program invocation

2. data whose lifetime does exceed program invocation

If data falls into the first category, it is managed entirely by the programming language. 

Programming language designers have developed many different methods of structuring this 

data, these vary from relatively simple objects such as arrays to more complex ones such as f
■ fabstract data types.

These two views of data have certain disadvantages. Firstly, there is usually a considerable 

amount of code, typically 30% of the total [ibm78] concerned with transferring data to and . |

from files or DBMS. A large amount of space and time is taken up by code to perform 

translations between the program’s form of data and that used for the long term storage of 

data. For example, programmers normally have to flatten and rebuild graphs or trees 

modelled in the programming language in order to write them out or read them in from a file 

system or DBMS. The time inefficiency incurred includes both programmer design time and 

the run-time efficiency of the program.
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A second more serions disadvantage of maintaining two forms of data is that data type 

protection is lost across the mapping. A structure used to aid comprehension in the 

programming language domain may not be available in the DBMS or file system.

In persistent programming languages the issue of what data structuring techniques are 

required is separated from a concept known as persistence. For example, in a persistent 

system, relations could be used as a logical structuring technique without concern with their 

long term storage.

In accordance with the rules of Strachey, Landin and Tennant given above, three new rules 

for persistent data have been given in [atk83]. They are:

The Principle o f Persistence Independence: The persistence of a data object is 

independent of how the program manipulates that data object and conversely a 

fragment of program is expressed independently of the persistence of data it 

manipulates. For exanple, it should be possible to call a procedure with its 

parameters sometimes objects with long term persistence and at other times only 

transient.

The Principle of Persistent Data Type Completeness: In line with the principle of 

data type completeness all data objects should be allowed the full range of 

persistence.

In a persistent system the use of all data is independent of its persistence. This notion of 

persistence may be extended to abstract over all the physical properties of data, for example, 

where it is kept, how long it is kept and in what form it is kept [mor87b]. The use of the 

persistence abstraction removes the need to explicitly program for the differences in the use 

of long and short term data.

Thus, a programming language that supports persistent data objects provides the 

homogeneous object storage facility required in order to construct integrated project
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environments. Indeed, the ability of a persistent store to transparently manage the long term 

storage of complex data objects makes it an ideal vehicle for building many applications and 

indeed, Atkinson's original motivation for investigating persistence was to support 

computer aided design ( CAD ) systems.

The problems in CAD systems are similar to the ones facing the designer of an IPSE. The 

most obvious similarity is the need to share potentially large amounts of structured 

information which may persist over arbitrary periods of time. This ability of a persistent 

store is in marked contrast to the unstructured byte streams supported by Unix. Another 

similarity is the inherent complexity of the problem domain. In such systems the 

management of long term data often makes a clean design, with the corresponding lower 

software maintenance costs, extremely difficult.

The problems associated with scale are often overlooked. Both CAD systems and IPSE's 

are large, complex pieces of software. If a system is small it is easy to maintain and 

understand. Systems such as those discussed are so large and complex that it is almost 

impossible to understand all of them except at the highest levels of abstraction. A persistent 

system must therefore provide support for programming in the large as well as 

programming in the small.

The persistent store serves as a unified repository of the entities created during the software 

development process. A persistent store is therefore an ideal vehicle for the construction of 

IPSE's [mor85] and other large systems.

In order to provide the necessary savings in software costs the programming languages used 

must be as high level as possible. Persistence should, therefore be an orthogonal property of 

data. The language must support the reuse of code. This may be achieved by the provision 

of procedures as first class data objects that may be stored in the persistent store combined 

with a type system that includes parametric polymorphism. The language should also 

provide mechanisms such as abstract data types to allow information hiding. Incremental
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system construction and mechanisms to control change must also be supported if the 

language is to be used for the construction of large software systems.

Two programming language systems have been used as vehicles to explore the problems 

outlined above. Both languages, PS-algol and Napier, treat persistence as an orthogonal 

property of data. The following sections introduce the research areas addressed in this 

thesis.

1.4.1 Identification of Persistence

There are three main methods for identifying this persistent data:

1. All data persists.

2. Only data explicitly marked persists.

3. All data reachable from one or more roots will persist.

The languages PS-algol [ps87] and Napier [mor88b] both use the third method of :

identifying persistent data, the reasons for tliis are discussed in [bro88]. The implementation j
mechanisms behind this are discussed in chapter 4. How persistence appears at a language 

level is discussed below.

1.4.2 Persistence in PS-algol

In the language PS-algol, persistence is provided by an extendible number of roots known 

as databases. Every object reachable from the transitive closure of a database is persistent.

A named database may be opened for reading or writing by a function called open.database.

It is defined as follows

let open.database = proc( string name, password, mode -> pntr )

This says that the procedure open.database takes three parameters of type string. The first is 

the name of the database which is to be opened, the scond is the database password. The
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third is the mode in which it is to be opened. Acceptable modes are "read" or "write". The 

procedure returns a pointer. In PS-algol the datatype pntr is comprised of the infinite union 

of all labelled cross product types. By convention databases always point to an associative |  

structure, implemented within the language, known as a table.

In PS-algol a primitive transaction mechanism is provided called commit. Commit makes all 

changes made to the persistent store permanent. If a user operates against the persistent store 

and does not call commit no permanent changes are made to the store. Therefore not calling 

commit from within a program is equivalent to aborting a transaction. Commit is an atomic %
■i

action - that is it either happens or it does not. Commit is defined as follows, 4

let commit = proc( -> pntr )

The pointer returned by commit is nil if the commit is successful or a pointer to a structure

class, called error.record, containing error information. The class error.record is defined in

PS-algol by writing down the following structure class definition.

structure error.record( string error.fault;
error.explain ;
error.reason ) I

X
:tIn practice, this is predefined by PS-algol's prelude code. If a commit fails the fields of this 

structure contain the reason for the failure. This includes trying to write to a database opened %

in read mode, databases being locked by other users and various system errors such as 

running out of disk space.

1.5 The Napier System

The persistent system is itself a large piece of software. The methodologies that apply to 

systems constructed within the persistent environment also apply to the construction of that 

environment. During the development of the PS-algol system boundaries between different 

parts of the system became blurred. This was mostly due to the fact that the system was a
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research vehicle and grew in an uncontrolled manner. Development and research using the 

PS-algol system eventually became difficult due to this.

Much of the Napier system is similar to the PS-algol system, however, the system has been 

re-engineered breaking it into individual modules. Each of the modules in the system 

presents a functional interface to other modules in the system and uses the functions 

presented at the functional int^ace of other modules.

For example, in the PS-algol system all the modules in the system knew about the structure 

of objects. The compiler needed to know about them in order to plant code, the interpreter to 

execute instructions, the garbage collector so it could reclaim space and the persistent object 

manager so that objects could be saved. This meant that in order to add a new data structure 

to the system all the modules had to be changed. This task was aggravated by the inherent 

complexity of some modules, in particular, the persistent object manager.

If the observations of Boehm and Parnas are correct, the modularisation of the persistent 

system will result in reduced maintenance costs throughout the software life cycle. 

However, this re-engineering process was not performed purely as an exercise in software 

cost saving. The Napier system is an experimental one, it is not intended as a complete 

commercial implementation. The Napier system must therefore act as a research test bench 

on which various experiments may be performed. The modularisation of the system allows 

experiments to be carried out in language design, type systems, programming 

environments, abstract machine design, garbage collection, compiler design, optimisation 

techniques and object management to be performed concurrently.

The Napier system achieves this by providing a framework of plug compatible coherent 

subsystems. Each layer in the system is insulated from each other layer in the system by the 

functional interface it presents. Components may therefore be freely substituted for each 

other provided that the functional interface is met. The experimenter may therefore set up 

any mixture of the components that are available. Thus, not only facilitating experimentation
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in each of the fields individually but also allowing assessment of the interaction of different 

strategies. This architecture may be viewed diagrammatically below.

Stable Storage

Persistent Abstract machine

Code generator

P.A.I.L.

Heap of Persistent Objects

High level languages

figure 1 
layers in the Napier system

1.6 Persistent Information Space Architecture

The PISA architecture may be viewed as being divided into four domains [atk86b]:

1. The Store domain

2. The Language Domain

3. The System Building Domain

4. The Application Domain

The Store Domain is at the lowest level in the architecture. The storage architecture in PISA 

is stable, that is it is resilient to faults such as hardware failure and power loss. The store is 

object oriented in that it supports the storage of autonomous objects. Objects may reference 

other objects and in general the store will form a graph stmcture. It may be implemented on

i
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disparate computing engines, therefore the store domain implements a distributed stable 

object store.

The language domain provides the facilities to construct applications in the applications 

domain. The languages must support all programming activity including the control of the 

programming environment. The major research issues in persistent languages are: finding 

type systems rich enough to capture all uses of data, discovering binding mechanisms 

suitable for modelling adaptive long lived data and discovering ways of overcoming the 

complexity inherent in large systems.

The system building domain supports the construction of the persistent language 

environment. The tools currently available in this domain are:

1. Compiler Components

2. Support for compilation and execution merging

3. Support for abstract program graphs

4. Persistent Abstract Machine

5. Demand driven optimisation

The top level in the architecture is the applications domain. The applications domain 

provides support for the construction of application programs. This domain includes generic 

tools which operate over a range of different types and data. It also provides adaptive 

programs that may modify their behaviour to suit data that had not been constructed when 

the component was implemented. These adaptive components are considered to be of 

importance for large scale data manipulation.

1.7 Thesis Browsing

The thesis is broadly divided into three sections corresponding to the language domain, the 

system building domain and the application domain. Chapters two and three discuss the
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1.7.1 Language Domain

I
language domain, four, five, and six discuss the system building domain and chapter seven 

discusses an experiment in the application domain.

■5
The Persistent Information Space Architecture ( PISA ) languages are strongly typed |  

languages with a high degree of compile time type checking. They are also required to 

support their own environment. The requirements for such a class of languages are 

investigated in chapters 2 and 3.

The PISA languages provide machine independent raster and vector graphics. Chapter two 

describes the support for graphical operations in the PISA languages and discusses the data 

types provided and the operations that may be performed on them.

One of the aims of the PISA project was to provide better control of complexity in large 

systems, in particular, to support evolution of programs and data. One important aspect of 

this is the control of names and bindings within the system. Chapter three addresses these 

problems showing how they have been tackled in the past and proposing a new method of 

tackling the problem.

1.7.2 System Building Domain

Chapter four introduces the system building domain. This thesis concentrates on three areas 

within that domain they are: abstract machine design, intermediate code requirements and 

compilation system architecture. These are discussed in Chapters four, five and six 

respectively.

Chapter four concentrates on the design of the Persistent Abstract Machine ( PAM ). The 

design decisions incorporated in the machine are outlined. Of particular importance is the 

modular design of the machine allowing concurrent experiments in several areas without 

major reconstruction. For example, the languages supported are independent of the 

machine, as is the storage architecture discussed in [bro88]. PAM supports languages with
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block level retention. This style of architecture is ideal for supporting object oriented 

languages.

Chapter five introduces the Persistent Architecture Intermediate Language ( PAIL ). The 

provision of such a language is an engineering decision in order to support many activities 

carried out within PISA. It is shown how PAIL may be used as a protection mechanism, as

an optimisation tool and as a debugging aid. |
1

The architecture is based upon the persistent languages. These languages are supported by |

compilers resident in the persistent information space and are therefore written in the 

persistent languages. The implementation of this reflexive system is discussed in chapter 

six. In it, compilers that may be called as functions from within the persistent environment 

are discussed.

'iX1.7.3 Applications Domain |

The applications domain comprises all the programs written within the persistent J

environment. For example, the compilation architecture discussed in the system building 

domain may be considered to be an application program. Another architecture that hovers J

between the application domain and the system building domain is the browsing architecture 

[dea88] which is discussed in chapter seven. The browser uses the compilation toolset to 

incrementally construct programs that operate against arbitrary data taken from infinite type 

space of the persistent languages.

I

1.8 Conclusions

The Napier system is still incomplete, the techniques discussed in this thesis provide the 

framework for the construction of a totally integrated environment. The lessons learned 

from building the PS-algol system are now being put to good use in this task. The final 

chapter provides a slightly speculative view of how these components may be combined to 

provide a fully integrated environment.
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2 Environments

2.1 Introduction

The primary objective of the research of the Persistent Information Space Architecture 

(PISA) project is stated, in [atk86b], as:

the exploitation of the opportunity provided by the dramatic shift in the cost of 

hardware relative to software, the removal of the incoherence between the various 

programming mechanisms and thus, the provision of a better environment for 

exploiting new computer systems. Specific technical objectives thus include:

1, Controlling complexity by establishing consistent rules which apply 

throughout the design and system, and, by introducing new concepts into 

the architecture only very parsimoniously, preferring those new concepts 

which encapsulate or abstract existing concepts.

2, Introducing persistent data and separating the issue of what data structures 

are best for a program from the issues of identifying and preserving the data; 

thereby allowing most file and database data to be processed using the same 

language constructs as those used for a program's local data.

3, Controlling system evolution even though the nature of data including 

program is that it's uses are neither parochial nor predictable. In particular, 

persistent systems of data and program are to be partially reconstructable and 

thus incrementally enhanceable.

In this chapter the language construct, environment, written env will be introduced. Objects 

of type env are collections of bindings that have first class data rights. As such they provide 

the programmer with a mechanism to control bindings in the system. Such a mechanism
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provides a conceptually simple framework for manipulating bindings thus controlling 

complexity and system evolution from within a unified language framework.

2.2 Contextual naming

The persistent store is a conceptually unbounded space populated by objects. In such a 

space the naming of objects becomes a problem. This may be observed in programming 

systems which adopt a simple, flat object naming strategy such as Smalltalk-80 [gold83]. 

These systems have a single name space in which names may be introduced, resulting in the 

use of names being highly restricted by the names that have been previously used.

This problem may be overcome if contextual naming is used. In a contextual naming scheme 

names are introduced within some context. Names may be used many times within a 

system, one name denoting different things in different contexts. Contexts are used in 

everyday life to overcome naming problems, for example, when I say Ron has a beard to 

one of my colleagues they know by context to whom I am referring. The same sentence may 

mean something different or be meaningless to someone else. For example, to someone 

who knows a beardless person called Ron the sentence could be untrue. To a non-English 

speaking alien the sentence could contain no meaningful information at all.

Many different contextual naming strategies may be found in the computer systems of the 

present day. Some examples of these strategies are:

1. block stmcture in programming languages;

2. file directories in filing systems; and

3. segments in operating systems.

Usually these contextual naming schemes impose a tree structure on naming. For example, 

in a block stractured programming language the programmer may write.
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begin
let a = 7 
write a 
begin

let a = "hello" 
write a 
begin

let a =1.23 
write a

end
end
begin

let a = "hi" 
write a

end
end

example 1 
block structures contexts

This static piece of program may be represented by the following tree:

a = "hello'

a = 7

a="hi’a = 1.23

figure 2 
A graph of 

block structures contexts

Notice that each instance of the clause "write a", displays a different value due to the 

imposition of the context tree.

Clearly, this is a special case of the more general case, that of a graph. In general the 

persistent object space comprises a graph of objects. The environments which are discussed 

in this chapter provide extensible contextual naming on that graph. The understanding of
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binding mechanisms and their significance in the persistent environment is an important 

consideration in the provision of such contextual naming strategies. Binding mechanisms 

are discussed below.

2.3 Bindings

Bindings are comprised of a four-tuple [atk85a,mor86a] consisting of:

1. name

2. value

3. type

4. constancy

Thus the constant binding 

let a = 7 

may be written,

{a,7,int,true} 

and the variable binding

let b := "hello mum" 

may be written,

{b, "hello mum",string,false}

Bindings may be categorised by the following four properties.
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1. whether the binding is to location or value;

2. when the binding is performed;

3. when is type checking performed ( if at all ); and

4. what scoping is performed.

These categories are examined below.

Bindings may be made either to locations or values. When a binding is made to a location, it 

is traditionally known as an L value binding [stra67]. In this kind of binding, the location 

does not change although different values may be stored in it. Sometimes, bindings are 

made to values which are immutable, this type of binding is known as an R value binding. 

Applicative languages such as SASL [tur79] only have this kind of binding.

Bindings may be instantiated statically by the compiler or dynamically by the run time 

system. If systems are bound statically many errors may be detected early ( at compile 

time ). Some languages designers consider this safety element so important that their 

languages only contain static binding.

However, in order for a dynamic system to evolve a measure of dynamic binding must exist 

in the system. If a program is entirely statically bound any change to the program or data 

requires the entire system to be recompiled to establish new bindings. This cost is 

prohibitively high for large systems. The system must, therefore, accommodate some 

dynamic binding in order to accommodate change.

There is a delicate balance between static binding for safety and dynamic binding to provide 

for evolution. Both methods of binding are necessary for large scale system construction 

and evolution. Consequently, the system must provide for both static and dynamic binding. 

In general, one would expect small objects to be statically bound and large objects to be 

bound dynamically.
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Type checking, like the instantiation of bindings, may be performed statically by the 

compiler or dynamically by the run time system. Static type checking is generally performed 

for one of two reasons; firstly, as an optimisation, checks may be factored out and types are 

known, and more efficient code may be produced; secondly, and perhaps more importantly, 

as a safety measure. Early type checking detects many erroneous programs which may 

cause damage to a system. However, in order to accommodate change, systems must 

provide some dynamic typing, in particular, all projections from union types require a 

dynamic check.

2.4 Programming in the large

The size of applications that may be constructed using any methodology is limited by the 

size of programs we can debug and maintain. When any program reaches a certain size it is 

extremely difficult for anyone to understand it. At that point, if not before, the system must 

be broken down into separate components, the idea being that each of the components is of 

a manageable complexity. Hopefully, someone will be capable of understanding how these 

components may be fitted together in order to construct the required system. This task has 

become known as "programming in the large".

If programming systems are to be used to support the construction of large systems, they 

must provide modular construction facilities. Furthermore, these systems must also provide 

easily understood mechanisms for binding modules together. These mechanisms must be 

capable of accommodating change.

Software systems are constantly subject to pressures of change. Erroneous systems need to 

accommodate change because they require maintenance. Successful software products are 

used by people for tasks they were not originally intended to support. Users who like the 

basic functionality of a product often bring pressure to bear on designers to support new 

tasks which lie outwith the original product specification. Advances or change in hardware 

functionality also require change to software products. Often software is ported to a machine
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other than the one for which it was first written. It is imperative that software systems, 

especially large ones, support incremental change.

2.5 Static Contexts

The block structured tree shown in example 1 is static in nature. That is, the contextual 

structure is assembled by the compiler at compile time. Block structure hides information 

contained within a block from objects external to that block. Uses of an identifier are bound 

to the innermost textually enclosing definition of that identifier. This is known as static 

scoping and is in contrast to the dynamic scoping found in Lisp systems [mcc62].

The block structuring paradigm imposes visibility conditions on identifiers. In many 

languages, principally in the algol family, block stmcture and procedural abstraction are the 

only mechanisms provided for program structuring. This static imposition of structure is not 

sufficiently powerful to support the incremental construction of systems or incremental 

change.

The environments of Napier support programming in the large by providing incremental 

program construction mechanisms and contextual naming facilities. This problem is 

currently being tackled by other researchers. Some of the approaches taken, in the field of 

databases and programming languages are discussed below.

2.6 Language Approaches

In the specification language Clear [bur84a], Burstall and Goguen identify the three main 

operations on environments as:

1. create an empty environment;

2. extend an environment with a name value pair; and

3. find the value associated with a given name.
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The operation of adding a new name value pair to an environment is extended to the addition

of a binding quadruple by Atkinson and Morrison in [atk85a]. These operations may be

illustrated by the block structure of the algols. The following examples are in Napier. A new

environment is created in a block structured language by the introduction of a new block as

follows,

begin
end

This is the empty environment containing no bindings. A binding may be introduced into the 

environment, 

begin
let a = 7

end

The environment now contains the single binding,

(a,7,int,true }

The value associated with a given name is found by looking up that name in the 

environment. In Napier, this is achieved by writing down the name of the identifier to yield 

the value. In this example, the programmer may write, 

begin
let a = 7 
a

end

which would yield 7 as the value of the block, the value being determined by the static scope 

of the block.

In a later language. Pebble [bur84b,bur84c], Burstall states that programming in the large 

will become merely typed functional ( applicative ) programming. In Pebble, bindings are 

treated as first class data objects, where a binding is defined as either a name bound to a 

value or a tuple of bindings. However, it is not obvious how applicative languages may help 

in the field of incremental system construction since by their very nature they must be
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statically bound. For this reason, there will be no further discussion of applicative 

languages.

2.6.1 Galileo

The language Galileo [alb85] recognises the need for control of names and values in a 

database context. In Galileo, a run time environment is defined to be a mapping from 

identifiers to denotable values. Such an environment is obtained by evaluating an 

environment expression. For example,

use a := 3 and b := 4 in a + b

yields the value 7. Here, the expression

a := 3 and b := 4

is an environment expression that yields an environment containing the bindings, 

{a,3,num,true} and (b,4,num,true) 

in which the expression a + b may be evaluated.

The above example introduces two of the environment operations provided by Galileo, 

namely the introduction of new bindings using and the combination of environments 

using and. Galileo provides other mechanisms that allow the programmer to select single 

bindings from environments, recursively introduce names and values and to remove names 

from environments.

Galileo provides persistence by having an environment called the global environment that 

always persists. The global environment may contain bindings including other 

environments. Galilieo is in an interactive system in which every expression entered by the 

user is evaluated with respect to an environment, initially the global one. The user may 

evaluate expressions with respect to another environment using the command enter. This
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command allows the user to traverse the tree of environments that may be found in the 

global environment. For example, in Galilieo the following dialogue may be carried out,

use anenv :-  ( a := 3 and b :=4 )

! this defines an environment called anenv in the global environment 

enter anenv:

Î now the current environment is anenv 

a + b

! yields 7 as before

The designers of Galileo suggest that environments help the user to develop and test 

database schemata incrementally or to express the overall structure in terms of smaller 

related parts. They also suggest that they may be used as a modularisation mechanism in a 

manner similar to that suggested by Burstall and Goguen in Clear.

2.6.2 Name Spaces

In [atk85a] Atkinson and Morrison introduce name spaces. Name spaces are an environment 

mechanism that permit the following:

1. the storage of bindings in a name space;

2. the dynamic use of names from a name space;

3. the static use of names from a name space;

4. the evolution of names available in a name space; and

5. safe exchange of arbitrary data between parts of the system.

A name space is created by the following expression,

ns < identifier list> from
<sequence>
end from

This is best illustrated with an example.
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let new = ns a,b from 
let a = 7 
let aa := a * a 
let b := proc( > int ) ; aa 

end from

example 2 
namespace instantiation

Here new has as its value the set of bindings ( name space ), in the notation used earlier;

{ { a,7,int,true },{ aa,49,int,false },{ b,(proc( > int ) ; aa),proc(-> int ),false } }

Notice that unlike the environment expressions of Galileo, namespace is a first class data

object. In order to accommodate change, namespaces provide a mechanism to add new

bindings and to remove old bindings. A new binding may be added to a namespace using

following construct:

extend <namespace expression> with ^Identifier list> from
<sequence>
end from

This is similar to the instantiation of a name space. Bindings may be dropped from name 

spaces by the use of the drop construct,

drop <ddentifier list> from <namespace expression>

In order to use a name space the user may write,

using <namespace expression> with <signature> compile
<sequence>
end compile

This notation is used to denote dynamic binding to a name space. The expression yields a 

value of type namespace. The type of the name space is checked dynamically to ensure that 

it satisfies the interface specified in the signature. If the type checking is successful, the 

sequence is evaluated in the new environment which is formed by enriching the static 

environment with the bindings in the namespace.
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Thus, the signature specifies a formal store and the namespace expression provides an actual 

store each time the statement is executed. The dynamic binding is thus localised to the scope 

of the using.. compile construct.

Namespaces may also be used statically, the notation for this is,

with <namespace> do
<sequence>
end

Here the sequence is statically bound to the namespace. However, despite the static nature 

of the binding, the namespace must still be checked to ensure that it contains the bindings 

required of it. The reason for this is that the bindings may have been removed from the 

namespace using drop. Indeed, an error condition or exception may arise at run time due to 

a required binding not being present in the namespace. This is shown in the following 

example,

let new = ns a from ! define a namespace containing
let a = 7 ! one binding a~7

end from

let useNew = procQ ! define a procedure which
begin  ̂ ! uses new by binding to it

with new do ! statically and writes out the
write a ! value of a

end
end

drop a from new ! drop the binding from the
useNewO ! namespace, calling the

! procedure will cause an 
! exception when a is checked.

example 3 
using a namespace

This seems to contradict the idea that the binding is a static one. Careful analysis of the 

situation reveals that the problem is in the nature of the binding. The static bind is made to 

the namespace itself and not to the bindings contained in the namespace.
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2.6.3 Program Editors

Namespaces influenced the work of Buhr and Zarnke [buh87]. They describe a 

programming system that allows the manipulation of bindings. However the environments 

in their system are not first class data objects and therefore may not be manipulated by the 

language. Instead, the user may change environments using a program editor which is 

essentially a symbol table browser. The system suffers from the same binding problems as 

those encountered with namespaces. Datestamps are used to maintain integrity and preserve 

static type checking. When datestamps are found to be in an incorrect time order the 

compiler is called to automatically correct the situation.

2.7 Environmæts

The programming language Napier introduces the concept of an environment in order to 

provide support for the control of names and to allow incremental system construction. This 

is achieved by providing an extensible mechanism that permits the storage of bindings. The 

environments provided in Napier satisfy the three main operations defined in Clear with the 

addition of one new operation. The operations on Napier environments are:

1. create an empty environment;

2. extend an environment with a name value pair;

3. find the value associated with a given name; and

4. remove a binding from an environment.

Environments, written env, are introduced using a predefined function called environment. 

It has the following form,

let environment = proc( > env )
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The function environment returns a new empty environment. That is an environment 

containing no bindings. In Napier, bindings are always introduced with the word let. When 

bindings are declared within a block the programmer may write something like, 

begin
let a = 7
let b = proc(-> int ) ;a

end

example 4 
block structure

Similarly, bindings are introduced to environments using the word let. The user must also 

specify the environment in which the binding is to be made. The syntax of binding 

introduction is therefore,

in <environment-clause> <declaration>

The environment in the environment clause may be statically or dynamically determined.

The programmer may therefore write,

let e = environmentO 
in e let a = 7

examples 
static use of environments

The environment e contains one binding,

{ a,7,int,true )

In this example, the first let declaration introduces the name e into the static environment of 

the program. In the second line the environment to which e is bound is enriched with the 

new binding,

( a,7,int,true )

The static environment of the program remains unchanged. An exception is generated if a 

name is added that has already been used to identify another binding in the environment.
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The in .. let construct therefore serves the same purpose as the extend and the name space

instantiation of namespaces. The example shown in example 2 above would be written in

Napier as,

let new = environment() 
in new let a = 7 
use new as a : int in 
in new let aa := a * a

example 6 
instantiation of mvironments

Bindings in environments may be manipulated with the use clause. It has the following 

syntax,

use <environment clause> as <signature> in <clause>

for example to use the environment defined in example 6 and write out the values associated 

with a and aa the programmer would write.

1

use new as a,aa : int in 
begin

wiiteint( a )
writeint( aa) ^

end

example 7 
using values stored in environments

I
The signature need only specify a partial match on the bindings stored in the environment. 4

The environment may therefore contain bindings other than the ones specified but must 

contain at least the bindings denoted in the signature. If any of the bindings are not present 

an exception is raised.

Values may be exported from an environment by returning a value from the clause bound to

the use statement. For example, if the programmer wished to extract the value associated =

with a value from the environment the following could be written,

let valueOfa = use new as a : int in a
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Bindings may be removed from an environment using the drop construct. This has both the 

same same syntax and semantics as namespaces, namely,

drop <identifier> from < environment clause>

This expression removes the binding containing the identifier from the environment

specified in the environment clause. Note that the binding is not deleted, merely removed

from the environment. This distinction is important as will shown below. Another example,

clarifies this,

let new = environment()
! new is an empty environment 
in new let a = 7
! new now contains the binding a ~ 7 
use new with a : int in 
in new let aa := a * a
! new now contains the bindings a - 7  and aa ~ 47 
drop a from new
! new now contains only the binding aa ~ 49

examples 
dropping values from environments

2,7.1 Type checking

All environments are of type env, this is regardless of what is stored in them. This is in 

sharp contrast to the structure type of Napier. Structures are type checked using structural 

equivalence. In order to pass them as parameters the user must specify the names and types 

of the fields of the structure. Thus, the programmer is provided with a choice of whether to 

model using environments which allow flexibility but delay type checking or structures 

which are statically strongly type checked.

The type environment is the infinite union of all labelled cross products. The use statement 

projects bindings out of the infinite union. The flexible binding mechanism provided by 

environments in no way weakens the type system. The program is still strongly typed, 

however, it is no longer statically typed. Furthermore, the programmer must specify the 

types associated with the bindings that are to be used in an environment. This specification
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allows the segment of code within the use clause to be statically type checked with respect to 

the projection.

The provision of environments and the other infinite union type provided in Napier, any, 

allow the programmer to choose to delay some type checking until execution time. Such a 

mechanism is extremely important in an otherwise strongly typed persistent environment. If 

a point of dynamic type checking is not provided in a statically typed persistent 

environment, the user would have to specify the type of the entire persistent store every time 

he or she wanted to interact with it. Furthermore, the type of the store is constantly changing 

as users add or remove objects of different types from it. The types env and any allow the 

user to partially specify the type of the store.

It is expected that programmers will statically bind data structures used within "programs" 

and use the environments to structure the information space in the manner that files and 

directories are used to structure the stores provided in today's operating systems.

The code within the use clause is statically bound to the bindings projected from the

environment. The following occurs when a use is executed:

1. the bindings are looked up in the environment;

2. the type of the bindings are checked against the signature;

3. if either the types do not match or the bindings are not present an exception is 

raised;

4. if an exception is not raised the bindings are introduced into the environment - 

this constitutes dynamic binding; and

5. the clause associated with the use is executed with the bindings already 
instantiated in the environment. All further uses of the projected values or 
locations are statically bound.

Notice that since the projection is from an infinite union, it is always necessary to specify 

the types of the bindings that are to be used. The use of a unification algorithm, such as the
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Recall that in example 3, a difficulty arose concerning the use of using and drop with 

namespaces. The problem with namespaces was that the binding was always to the 

namespace and not to the bindings stored in the namespace. The example shown below is 

semantically equivalent to example 3. As in example 3, it will cause an exception to occur 

on the last hue.
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one used in ML [har86], will not help here since we must specify all the necessary type |  

information. This is necessary if strong static type checking is to be retained everywhere 

apart from at the time of projection. The mechanism provides the maximum amount of static 

type checking whilst retaining the flexibility required for incremental system evolution.

The need to specify potentially large amounts of type information in order to use an 

environment is worrying. Although not visible to the user, type information must be 

encoded into the environments so that type checking may be performed at the time of 

projection. This information is stored in the implementation of the environment, this allows 

a reversal from traditional type checking to be made.

In traditional type checking systems, the user writes down a program associated with type 

definitions. The program is then submitted to the compiler which tells the user whether the 

program is correct or not. In the system described above, the user may traverse the 

information space using a browser, similar to the one described in chapter 7. This browser 

may report the types of the objects stored in the environments. If it were used in conjunction 

with a callable compiler, like the one described in chapter 6, the user could interactively 

construct programs to operate against data held in the information space. In such an 

environment the distinction between browsing and compiling becomes blurred, since 

different tools in the support system are being combined transparently to provide a high 

degree of programmer support.

2.7.2 Binding to environments



let new = environment() 
in new let a = 7

let useNew =
procO ; use new as a : int in

write a

drop a from new
useNewO

! define an environment containing 
! one binding a~7

! define a procedure which writes 
! out the value of a

! drop the binding from the 
1 namespace, calhng the 
! procedure will cause an 
1 exception when a is checked.

example 9 
example 3 revisited

However, using environments this example may be rewritten as.

let new = environmentQ 
in new let a = 7

let useNew = 
use new as a : int in 

procQ ; write a

drop a from new
useNewQ

! define an environment containing 
! one binding a~7

! define a procedure 
! writes out the 
! value of a

! drop the binding from the namespace 
! calling the procedure will cause 
! 7 to be written out.

example 10 
example 3 with desired semantics

This example will write out the value 7 rather than raising an exception. The difference 

between the two examples is in the following lines, 

let useNew =
procO; use new as a : int in 

write a

and,

let useNew = 
use new as a : int in 

proc() ; write a

In example 10, the use clause is within the procedure body. This means that every time the 

procedure is called, the use clause is executed. It then dynamically performs type checking 

and checks to ensure that the desired binding is in the environment. When the procedure is 

called the binding is no longer in the environment and an exception will be raised.
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In the second example, the projection out of the environment to yield the binding is 

performed only once - before the procedure closure is formed. The binding, {a,7,int,true} 

yielded by projection from the environment is then bound into the closure of the procedure. 

The value ( the binding itself ) is never again looked up in the environment, so the drop 

operation has no effect on the procedure. It will be shown in the next section that 

environments exhibit the same semantics as block structure.

2.7.3 Simulation of scope

The semantics of composition of environments is equivalent to the more familiar block

structure in programming languages, for example in a block structured programming

language such as PS-algol the programmer may write,

let a := 7 
begin

let a := 6
write a ! writes out 6
a :=4

€9ld
write a ! writes out 7
a ;= 32
write a ! writes out 32

example 11 
scope and block structure in algol

Similarly, in Napier the programmer may write.
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let envi = environment() 
in envi let a := 7 
let env2 -  environmentQ 
in env2 let a := 6

use envl as a : int in 
begin

use env2 as a : int in 
begin

writei( a ) 
a :=4 
wiitei( a )

end
writei( a ) 
a := 32 
writei( a )

! writes out 6 

! writes out 4 

! writes out 7 

! writes out 32
end

example 12
scope and block structure using environments

This use of environments in this way will be familiar to programmers who have 

programmed in block stmctured programming languages. It is no accident that environments 

should exhibit the same semantics as block structure, it is a consequence of the language 

design principle of only introducing a few powerful concepts.

The binding mechanism used in environments is also the same as that used in the block 

structure of Napier. In Napier, variable binding is by L-value and constant values are by R- 

value. The bindings stored in an environment exhibit the same behaviour - all variable 

bindings are to locations and all constant bindings are to values.

2.7.4 Binding to the persistent store

The root of persistence in Napier, called ps, is of type env. Any data that is reachable from 

ps is persistent. Making any data stmcture persistent is then simply a matter of binding that 

data structure to something reachable from ps. For example, suppose that in a program a 

binary tree, for simplicity over integers, has been defined. An instance of such a tree is then 

to be made persistent. This may be performed as follows.
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rec type Tree is variant( tip : null ;
node : structure( val : int ;left,right : Tree ) )

let twig = Tree(tip : nil )
let atree = Tree( node : structure( val = 7,

left = twig, 
light = twig ) )

in ps let savetree = atree

example 13 
binding to the persistent store 

using environments

The final line of this program binds data stmcture, bound to atree in the local environment,

to savetree in the persistent environment ps. In order to use this data structure in another

program the user may write,

rec type Tree is variant( tip : null ;
node : structure( val : int ;left,right : Tree ) )

use ps as savetree : Tree in 
if savetree is node then 
begin

writes( "it as a node with value : " ) 
writei( savetree'node( val ) )

end
else wiites( "it was a tip" )

example 14 
binding to the persistent store 

using environments

Notice how the type definition of Tree serves to unify the types across the persistent store 

and allows type checking to be performed statically and separately in each of the programs. 

The check that the type in the persistent store is the expected one is performed in the use 

statement.

In general, the persistent store will form a graph consisting of environments and data bound 

to those environments. Such a graph may be viewed as.
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env

env env
sin tancos exp

figure! 
the persistent store 

as a graph of environments

The graph of environments subsumes the function of traditional file storage replacing it with 

a strongly typed data structuring mechanism. This mechanism unlike files, may be used to 

store structured data of arbitrary complexity. This ability is stated by Balzer in [bal86] as 

being one of the most important features required of new generation operating systems.

2.7.5 Supporting incremental construction

The use of environments to support incremental system construction has been strongly 

stated in this chapter. The way in which this is achieved is examined below. Suppose that 

the persistent store is arranged at some time in the manner shown graphically in figure 2. 

The user may then carry out the following dialogue through an interactive compiler.
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! only ps is in scope at the beginning of the session 
! first introduce the environment trig into the local environment

let trig = use ps as trig: env in trig

! next declare square in the local environment 
Î square uses exp from the environment trig.

let square = use trig as exp:proc( intent > int ) in 
proc( a : int > int ) ; exp( a,2 )

writei( square( 7 ) ) ! test out square

49
! system writes out 49 - satisfied so save it in environment

use ps as al : env in
in al let square := square

example 15 
incremental construction of 

a program

After the completion of the dialogue the persistent store will be arranged as follows,

tng al

square

closure for exp
closure for: 
proc( a : int -> int ) ; 
exp( a,2 )

figure 3 
persistent store 
after interaction
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Notice that the procedure called square has the location of the procedure exp bound into its 

closure. Thus, if the programmer assigned another value to the location exp the function 

square would also change. Sometimes this behaviour is undesirable and the programmer 

may wish to ensure that future changes to the system cannot affect the program he or she 

has constructed. In such a case, the programmer would project out of the environment to 

yield a value rather than a location. This would allow a static R-value binding to be made. In 

such a case example 15 could be rewritten as,

let trig = use ps as trig: env in trig
let exp = use trig as exp:proc( int,int > int ) in exp

let square = proc( a : int > int ) ; exp( a,2 )

u sepsasa l’.envin
in al let square := square

example 16 
incremental construction of 

a program

Here the value stored in the location associated with exp is first projected out of the 

environment and is then bound into the closure of the procedure square. If R-value bindings 

are used in this way, the procedure closure cannot be affected by changes to the 

environment. This style of binding is therefore safer than the L-value binding shown earlier 

but the hidden cost is that it cannot be maintained incrementally and rebinding is necessary 

to accommodate change.

The store shown in example 3 not only exhibits graph structure in terms of data structures 

and environments but also in code. Procedures in a persistent environment, such as the one 

described here, also form a graph structure. One procedure may be bound to many 

programs. This kind of architecture allows for a higher degree of software reuse [mor87a] 

than conventional software architectures.

Example 15 shows that by a short interaction with the system, new definitions may be 

incrementally added to it. Similarly, if the programmer wished to change a definition this
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could be achieved by assigning to a location within an environment. For example the

programmer may wish to change the implementation of square, defined in example 15. This

may be achieved by the following interaction,

use ps as al : env in
use al as square : proc( int > int ) in

square := proc( a : int -> int ) ; a * a

example 17 
incremental changing of 

a program

2.7.6 An Implementation of Environments

The Persistent Abstract Machine does not support the extension and reduction in the size of 

an instance of any data structure. Consequently, environments are not directly supported by 

the machine. Instead, environments are constructed within the Napier system. The 

implementation of environments is, of course, hidden to the user by the compiler.

Environments are an infinite union of labelled cross products. The machine provides 

support for another union - the data type any. A value of any type may be injected into the 

type any which results in an object of type any. For example, the user may write the 

following,

let anint = 4 ! of type int
let anany := any( anint ) ! of type any
anany any( "a string" ) ! of type any
anany := any( proc( -> int ) ; 3 ) ! of type any

A value of type any may be projected from to yield a value of the type that was originally 

injected into it. For example, if the user had declared anany in the example above, the 

following expression would project the value out of the union, 

project anany onto
int : writes( "it was an integer" )
string : wiites( "it was a string" )
proc( -> int ) : writes( "it was a proc( > int )" )
default : writes( "it was something else" )
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Details of the implementation of the type any may be found in the Persistent Abstract 

Machine Manual which appears as Appendix 1, Notice that the type rules of the language 

may not be broken, but, like the projection out of environments, type checking must be 

delayed until run time.

The data type any may be used to provide an implementation of environments. This is 

achieved by implementing a mapping from strings to the type any. The way in which this 

mapping is implemented is unimportant, for example, it may be implemented by a balanced 

binary tree, by a vector or by hash tables. The most efficient implementation will depend on 

how users utilise the environment facility, in particular, with respect to the number of 

bindings in an environment. This has yet to be measured. The implementation must provide 

( at least ) the following functional interface,

insert : proc( string, any )

remove : proc( string )

lookup : proc( string > any )

An implementation of such a system is ( almost ) already provided within the compilation

environment. The symbol tables supported by PAIL ( see chapter 5 ) are defined as follows,

rec type symbolTable is variant( Empty : null ;
Table : symTab )

&
SymTab[ t ] is structure( lookupLocal( string -> t )

lookupRec( string •*> t )
InsertEntry( string,t )
EnclosingScope( > symbolTable )
EnterScope( symbolTable- > symbolTable )
ScanScope( proc( t ) )

This interface may be parameterised by the type any and extended with the remove operation 

to provide the necessary support.
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Whenever the user creates a new binding in an environment the value is injected into the 

type any. This value may be associated with the appropriate name represented as a string 

using the procedure insert.

The remove procedure merely removes the string from the index associated with the 

implementation. The location in which the value is stored may be reclaimed by the garbage 

collector only if it is rendered inaccessible by the remove operation.

When a use clause is executed two different operations take place. Firstly, the name 

specified in the use clause must be looked up in the implementation of the environment. If 

the name is not present an exception will be raised. If this is successful the value associated 

with that name will be returned by the lookup function wrapped in an any.

In order to use a binding in an environment, the user must specify the type of the value that 

is being projected. This type may be used to project the value from the any in which it is 

stored. If this projection is unsuccessful an exception will be raised, if not the value may be 

placed on the stack.

2.8 Conclusions

At the beginning of this chapter, the control of complexity was stated to be one of the aims 

of the PISA project. The difficulty in the control of names and the need for controlled 

system evolution was cited as a particular area of difficulty.

The introduction of context was demonstrated to be one method of managing complexity. In 

particular, block structure in programming languages was a typical method of controlling the 

use of names. This technique, and others used to control complexity have been explored.

The data type environment has been shown to be a flexible method of controlling system 

evolution by allowing large systems to be incrementally developed in an interactive 

environment. The parallels between block structure and environments have been shown.
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This is in line with the principle of parsimoniously introducing new concepts and only 

introducing concepts that encapsulate or abstract existing concepts. Finally, a possible 

implementation of environments was suggested and shown how it could operate.



3 Graphics

3.1 Introduction

A total persistent environment is required to support all programming activity. The 

advantages of such an environment is that it relieves the programmer from the burden of 

managing the mapping of data from one environment to another. One of the potentially most 

expensive activities in this area is in the field of man machine interaction ( mmi ). The 

programming of user interfaces is an inherently complex task. This complexity is often 

greatly magnified by having an alien toolset with which to program mmi.

Packages of library functions such as those provided by Ghost [cal77], Suntools [sun86] 

and GKS [gks82] often do not interface smoothly with the programming language being 

used to program an application. This creates a situation in which the programmer is 

manipulating two languages, the application language and the graphics sub system 

language. This increases the complexity of the task presented to the programmer. 

Complexity is also increased if the graphics objects may not be stored in the same manner as 

the objects in the programming language.

Often, graphics systems such as those mentioned above are imperative in nature. That is, it 

is only possible to express commands such as,

do this, then this, then this

which may draw a picture. If the picture has to be stored, the programmer must create a data 

structure representing the picture and then traverse the structure calling the appropriate 

graphics language commands during the traversal. Many applications are required to run on 

more than one machine, say an Apple Macintosh and Sun workstation. In this case, the 

programmer must repeat this complex task - mapping one onto the Macintosh graphics 

toolbox [mac86] and once onto the Sun library, Suntools. This is made more complex by 

the number of different pieces of hardware available today - all offering different facilities.
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If the picture is to be saved on backing store, as is often required in CAD packages, a 

further representation of it will be required. This is the long term data structure and will 

typically either be a byte or record stream in a file system or some relational structure in a 

database management system.

Libraries of functions provided by graphics sub systems are often ad-hoc in nature. Some 

libraries provide output devices such as windows, others have more complex features such 

as the canvases of Suntools. The facilities provided also vary, ranging from simple line 

drawings to the esoteric functions such as polyline facility of GKS. Some systems allow the 

creation of picture libraries. However, if these libraries of pictures are expressed in a 

different language to the application language, it is difficult for the programmer to 

manipulate these pictures.

Clearly, what is required is a language for manipulating graphics entities which is integrated 

with the application programming language. It must contain simple building blocks that 

provide the ability to build abstraction level upon abstraction level in order to provide the 

complex user interactions required. It must also be machine independent and provide the 

same power for manipulating graphics objects as the other data types. In other words, 

graphical objects must have the same civil rights as other data types - that is the graphical 

data types must be able to be stored, passed as parameters and have full rights to 

persistence.

The graphics facilities of PS-algol were designed on these grounds. It provides orthogonal 

persistence and two graphics data types one for manipulating line drawings, the other for 

manipulating raster graphics. Using these basic building blocks complex event driven 

systems [cut86] and graphics database systems with inheritance [ben86] have been 

constructed.
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3.2 Pictures

The picture drawing facilities in PS-algol are a particular implementation of the Outline 

system [mor82b] which allows line drawing in an effectively infinite two dimensional real 

space. The Outline system was originally designed and implemented by Professor Ron 

Morrison of St Andrews University as an extension to the language S-algol [mor82a]. 

Outline is itself derived from GPL/1 [smi71]. Some of the original outline facilities provided 

in this system have since been abandoned - but the spirit of the original system lives on. The 

integration of Outline into a persistent language provides the programmer with more power 

than was available in the original. Altering the relationship between different parts of a 

picture is performed by mathematical transformations which means that pictures are usually 

constructed from a number of sub-pictures.

In the Outline system, picture description and picture drawing are separated. Picture 

description is supported by the programming language and picture drawing by mapping the 

picture to an image or output device. In this manner, pictures are described in a device 

independent manner.

In PS-algol, the picture descriptions are represented by the data type picture, written in 

language as pic. The simplest picture is a point. For example,

let point -  [ 0.1,2.0 ]

represents the point with x-coordinate 0.1 and y-coordinate 2.0 in two-space. All the 

operations on pictures return a picture as their result. Therefore, arbitrarily complex pictures 

may be described by the application of the operations described below.

There are two binary operators on pictures, join and combine The effect of the join 

operator is to yield a picture that is made up of its two operands with a line from the last 

point of the first operand to the first point of the second operand. Combine operates in a 

similar way without adding the joining line. For example,
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l e t t o  = [ l , l ] ' ^ [ 2 , l ] A [ 2 , 2 ] ^ [ l , 2 ] A [ i , i ]

will produce a unit square with its bottom left hand corner positioned at the point [ 1,1 ]. 

This is illustrated in figure 1.

Points in pictures are implicitly ordered. Join and combine operate on the last point of the 

first picture and the first point of the second picture. In the resulting picture, the first point 

of the first picture is the first point and the last point of the second picture is the last point.

( note that the axes are put in for reference and are not part of the picture )

the box 
figure 1

In addition to the binary operators, pictures may also be transformed by shifting, rotating 

and scaling.

shift p by x.shifuy.shift

will produce a new picture by adding x.shift to every x-coordinate and y.shift to every y- 

coordinate in the picture p. For example,

let new = shift box by -1.5,-1.5
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Will initialise the value of the identifier new to be the picture shown in figure 2.

the shifted box 
figure 2

Rotation can be achieved by

rotate p by no.of.degrees

which will produce a new picture by rotating the picture p no.of,degrees degrees clockwise 

about the origin For example,

rotate new by 45

will produce the picture given in figure 3
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the rotated box 
figure 3

Finally scaling can be obtained by

scale p hy x.scalingyy.scaling

which will produce a new picture by multiplying the x and y-coordinates of every point in 

the picturep  by x.scaling mdy.scaling respectively. For example,

scale box by 2,1

yields figure 4

the scaled box 
figure 4

56



Text can be included in pictures using the text statement. This takes a string of characters 

and a base line and constructs the picture of those characters along the base line. For 

example,

text "hello !" from 1,1 to 2,1

yields figure 5.

h o llo  I

some text 
figures

The characters will always be drawn from the first to last point of the base line. 

Consequently, text can be inverted by ending the base line on the left of its starting position.

Colour may also be specified in a picture but, unlike the other picture operations, the effect 

of this will depend on the physical output device used.

3.2.1 Storing a Picture in a Database

To show how pictures may be stored and retrieved from the persistent store an example is 

given of a program to calculate the unit circle at the origin and store it in the database. In this 

example, it is assumed that the database root is a pointer to a data structure for associative 

storage and retrieval, supported by PS-algol, called a table. Entries are placed in the table
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using the procedure s.enter which takes the associative key, the table, and the value to be

stored. The procedure s.lookup retrieves a value from the given table using the given key.

structure pic.container( pic a.pic ) Î used to store the picture

let db = open.database( "a pic","pass","write" ) 
if db is error.record do
begin ! if db points to an error.record the open failed

write "Unable to open database because: ", 
db( error.explain ),"'n" 
abort

end

let circle = ! this block yields a picture describing a unit circle
begin

let no.of.sectors = 10 
let angle = 90/ no.of.sectors 
let quadrant := [0,1]
let segment := [0,1] a rotate [0,1] by angle
for i = 1 to no.of.sectors do
begin

quadrant := quadrant & segment 
segment := rotate segment by angle

end
let semi = quadrant & scale quadrant by-1,1 
! below is the value of this block expression 
semi & scale semi by 1,-1

end

! a structure containing the circle picture is 
! associated with the key "circle" 
s.enter( "circle",db,pic.container( circle ) )

! the database "a pic" is now updated
if commitO = nil do write "Circle entered in the data base'n"

A program to store a picture of a unit circle in a database.
example 1

The database called "a pic" now contains a table with a key "circle" which has an associated 

value of a structure that contains the description of the circle picture. This is shown 

pictorially below.
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c irc le pic.containertable
a.piccircle

Pictorial representation of the database "a pic" after the 
transaction is committed 

figure 6

3.2.2 Retrieving a Picture From a Database

The next example retrieves the picture description from the database and uses it to define

another picture which is the Olympic Games logo.

! this stmcture will be used to hold pictures kept in this database

structure pic.container( pic a.pic )

let db = open.database( "a pic","pass","read" )
if db is error.record do
begin

write "Unable to open database because: ",
db( error.explain ),"'n"
abort

end

let circle = s.lookup( "circle",db )( a.pic )

let Olympics = circle &
shift circle by 2.2,0 &
shift circle by -2.2,0 &
shift circle by 1.1,-1 &
shift circle by-1.1,-1 &
text "OLYMPICS" from -1.5,-2 to 1.5,-2

A program to retrieve the drde from 
the database and define 

an Olympic Games logo, 
example 2

The picture Olympics now contains the following.
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OLYMPICS

The Olympic games logo 
figure?

These are the basic support facilities for line drawing. Particular applications packages built 

on these facilities, for example, curve fitting or 3-D modelling, may be stored in and 

retrieved from the persistent store as pictures themselves or procedures that produce or 

manipulate pictures. The choice is made according to the requirements of the application.

3.3 Raster Graphics

In addition to the Outline line drawing system PS-algol also supports raster graphics. The 

facilities described in this section were designed and implemented by Professor Ron 

Morrsion, Fred Brown and myself in consultation with Professor Malcolm Atkinson 

[mor86b]. Two data types are provided for this purpose, a base type pixel and a type image 

constructed from pixels.

3.3.1 Pixels

Two pixel literals on and off are provided by the system. In their most degenerate form, a 

pixel is one spot which is either on or off. Thus,

let a = on

creates a pixel a with a depth of 1. To form pixels of greater depth, pixels may be 

concatenated using the operator To create a pixel of depth 4, called 6, the user could 

write,

let b = on & off & off & on
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which creates a pixel b with depth 4. Arbitrary pixels expressions are permitted, therefore 

expressions such as

b & on & a

are permissible, and would yield a pixel of depth nine.

3.3.2 Images

Images are rectangular objects comprising of pixels with an X and Y dimension to reflect 

their size. Images also have depth which determines the number of planes they have. The 

depth of an image is determined by the depth of the pixel used in the initialising expression. 

To form an image the user could write,

let c = imagelO by 5 of on

which creates c with 10 pixels in the X direction and 5 in the Y direction all initially on. All 

images, have an origin at the bottom left hand comer which has coordinates 0,0. The image 

c is represented pictorially below.

0,4

9,4

c
9,0

0,0 ( origin )

an image 
figures

Full 3 dimensional images may be formed by expressions Hke the following, 

let d = image 64 by 32 of on & off & on & off 
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which would create an image d of depth 4 with 64 pixelis in the X direction and 32 in the Y 

direction all initialised to the pixel value on & off & on & off. This is illustrated in figure 8.

An image with 4 planes 
figure 9

In order to introduce the concept of and operations on images gently, the following 

discussion will be restricted to images with a pixel depth of 1. Everything that is stated is 

true for images of greater depth.

Images are first class data objects and may be assigned, passed as parameters or returned as 

results., for example,

let b = a

will assign the image a to the identifier b. In order to map the operations usual on bitmapped 

screens, the assignment does not make a new copy of a but merely copies the pointer to it. 

In other words images exhibit pointer semantics.

Three standard functions are provided to interrogate an image to discover its size; they are 

X.dim, Y.dim and depth each being of the following type,

proc( image->int)

These functions return the x  dimension, the y dimension and the depth of the image 

respectively.
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3.3.3 Raster-op

PS-algol supports 8 raster operations which may be used as described in the following 

BNF.

<void-clause> <raster.opximage-clause>onto<image-clause>

<raster.op> rorlrandlxorlcopylnandlnorlnotlxnor

The semantics of these operations may be expressed by representing on and off as true and 

false respectively and the following set of rules for combining pixels. The source, the first 

operand is represented by S, the destination, the second operand is represented by D. The 

symbol ~ represents logical negation.

ror D := S or D

rand D :=S andD

xor D := ( S and -  D ) or ( '-S andD)

copy D:=S

nand D := -  ( S and D )

nor D := ~ ( S or D )

not D : = - S

xnor D := ( S or ~ D ) and ( '-SorD)

Thus,

xor b onto a

performs a raster operation of bitwise combining b and a using the xor rule above and 

assigning the result to a. It should be noted that a is altered in situ as would be expected on a 

raster device. Both images have origin 0,0 and automatic clipping at the extremities of the 

destination image is performed.
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3.3.4 Aliasing

The limit operation allows the user to set up windows in images. For example,

let c = limit a to 2 by 3 at 3,1

sets c to be that part of a which starts at 3,1 and has size 2 by 3. c has an origin of 0,0 in 

itself and is therefore a window on a. This is illustrated in figure 10 below.

#  # #  #  #  #  #c
a

0,0 ( origin of a ) 0,0 in coordinate space of c ( origin of c )
3,1 in coordinate space of a

A limited region of an image 
figure 10

Once a limit been taken, the resulting image is indistinguishable from any other in the 

system. It may therefore be passed as a parameter or stored. However, when operations 

such as raster-op are performed on that image changes will also be propagated to the image 

from which the image was limited.

Rastering sections of images onto sections of other images can be performed by expressions 

like the following,

xor limit a to 1 by 4 at 6,5 onto 

limit b to 3 by 4 at 9,10

Automatic clipping on the edges of the limited regions is performed. If the starting point of 

the limited region is omitted, 0,0 is used and if the size of the region omitted, then it is taken 

as the maximum possible.Limited regions of limited regions may also be defined
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A vertical slice of pixels from an image may also be extracted. This operations is 

semantically equivalent to the limit operation but in the third dimension. That is like limit it 

yields an alias to part of an image not a new one. For example,

letb = a(ll2)

yields b which is that part of a which has the two depth planes 1 and 2. The depth origin, 

like the (x,y) origin in images is normalised to zero.

3.3.5 Colour Mapping

The PS-algol system provides two functions for manipulating the colour map of the device. 

The first is,

colour.map( pixel p ; int i )

This functions sets the integer produced by the colour map when pixel p is displayed to be i. 

The second function allows the uiser to interrogate the colour map 

and is,

colour.of( pixel p > int )

This function returns the integer corresponding to the pixel pin the colour map.

An example of the use of images may be seen from the program to draw a chess board and 

store it in a database in example 3.
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ÎThis structure will be used to hold images in this database

structure image.container( cimage the.image )

write "Please input the basic size of the squares "

let size = readi()

let black = off ; let white = on

! define a black square
let black, square = image size by size of black

let size.8 = size * 8 ; let size.2 = size * 2

(define the chess board image
let chess.board = image size.8 by size.8 of white
for i = 0 to size.8 -1 by size do
for j = 0 to size.8 -1 by size do

if i rem size.2 = 0 and j rem size.2 = 0 or 
i rem size.2 0 and j rem size.2 0 do

copy black.square onto limit chess.board at i,j

let source = open.database( "raster.demo","ffiend","write" )
if source is error.record do
begin

write "Error opening database : ",source( error,fault ),'"nbye'n" 
abort

end

!a structure containing the chess board image is associated 
(with the key "chess"
s.enter( "chess",source,image.container( chess.(x>ard ) )

let done = commitO 
if done is error.record do

write "Sorry - commit failed: ",done( error.fault ),"'n"

A program to store a chess board image in a database 
example 3

The pictorial representation of the database after the transaction has committed is given in 

figure 11.
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s o urce ^ table
chess

image.container
the.image

Pictorial representation of the chessboard in the database
figure 11

Images may be stored in and retrieved from databases in the same manner as pictures and 

thus provide the same facilities for providing libraries of images or procedures that 

manipulate images.

3.3.6 Mapping Pictures and Images to Output Devices

The standard identifier screen is an image representing the output screen. Performing a 

raster operation onto the image screen alters what is viewed by the user. For example,

xor a onto limit screen to 4 by 5 at 4,7

will raster a onto the defined section of the screen. This will be visible to the user.

The standard identifier cursor is also bound to an image which is mapped to the cursor. 

When the user moves the mouse or pointing device this image moves accordingly. The 

cursor may be altered in the same manner as any other image. For example, we may say,

copy b onto cursor

The resulting change in the cursor will be visible to the user.

Line drawings may be mapped onto an image using the standard function draw. For 

example,

draw( a«.image,a.p/c,0.0,3.2,1.5,3.9 )
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will draw the section of the picture a.pic on the image an.image. The picture is clipped by 

the region specified by the points (0.0,1.5) and (3.2,3.9) in the picture coordinate space. 

Clipping may be performed on the image by specifying a limited area of the image in the 

usual manner. Automatic clipping of the line drawing is performed to make it fit the image.

Drawings may also be mapped onto other devices. A standard function is provided by the 

system that allows a draw function for a particular device to be obtained from the database. 

The technique of storing abstract data types for devices was first used in an earler version of 

PS-algol [mor86c]. Draw functions are provided for tektronix compatible devices, plotters 

and various laser printers.

Pictures may be drawn directly onto an image or any part of it. Once the line drawing has 

been mapped onto an image, the image may be manipulated by any of the image operations. 

Notice that both pictures and images may be mapped onto a screen, allowing the 

programmer to choose which paradigm or combination of paradigms is appropriate for the 

application.

3.3.7 Fonts and menus

From the building blocks many useful functions may be built. One example of this is the 

ability of the language to manipulate fonts. Fonts are stored in a database which may be 

freely interrogated by the programmer. The layout of the font database is given in figure 12.
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fonts table
COU20

can40

symbo
f lx13

...

height
20

descender
5

info
"20 point"

chars

vector 1.. 128 of image

The font database 
figure 12

The programmer may not want to have to deal with the fonts database directly so a standard 

function written in PS-algol is provided by the system. It is called string.to.tile and is 

defined as following,

let string.to.tile = proc( string source,font -> image )

The procedure returns an image containing a representation of the string source in the font 

specified by the parameter font. These images can then be used for putting messages on the 

screen, on the cursor or as part of pictures being built up.

This facility proved to be so heavily used that it warrented syntactic support in the language. 

To support the manipulation of text and images the print statement was added to the i/o 

facilities by Livingston fliv87]

Images containing text are often used in conjunction with the pop up menu mechanism 

which is also provided by the language. Like string.to.tile, the menu function is not a 

primitive feature but is written using the features we have already seen and another function
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which allows the programmer to interrogate the pointing device. The menu function has the

following definition,

l e t = proc( image title ;
♦image entries, ! vector of images
bool vertical ;
*proc( image,int ) actions, ! vector of procedures 
> proc( int,int > bool ) ) ! returns a procedure

The menu which the user sees will have a title corresponding to the image title and will have 

entries corresponding to the vector of images, entries. The function menu returns a function 

which when called will put a menu on the screen at the specified position and allow the user 

to make a selection from it. If an entry is selected the corresponding procedure from the 

vector actions is executed, the entry and position of the entry used to select it is passed to it 

as a parameter. If the user does make a selection the procedure will return true otherwise it 

will return false. In this way, many of the costly calculations that need to be made by the 

menu function need only be done once. This may be prior to the execution of the main 

program if the function returned by menu is stored in the persistent store.

3.4 User Interaction

In order to write a function like the menu function shown above, it is necessary to interact 

with the pointing device and cursor.

As the pointing device ( usually a mouse ) is moved around, the cursor follows it ( unless 

the standard function which switches off tracking has been called ). In order to find out the 

position of the cursor, the system provides a standard function called locator, locator has the 

following form,

let locator = proc( > pntr ) 

it returns a structure of the following type,

structure mouse( int X.posJ.pos ; *booI the.buttons )
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The fields X.pos and Y.pos give the position of the mouse relative to the standard identifier 

screen. The vector of booleans show the current status of the mouse buttons. One of these 

structures is returned every time locator is called.

One problem in writing code which interacts with the user via a pointing device and the 

keyboard is that it is often necessary to know if the user has typed something or not. In 

order to discover this, the system provides a standard function called input.pending. This 

function returns a boolean which indicates if there is any input waiting to be read from the 

keyboard. This function allows applications to be written in which the user may non 

deterministically type or perform a mouse event. A good example of such a program is the 

Macintosh editor Macwrite.

If the cursor is to be used as a pointing device the programmer must be able to specify 

which pixel in the cursor is the pointing tip. In PS-algol the function cursor.tip provides 

this, it has the following type,

let cursor.tip -  proc( pntr new.tip > pntr )

In order that the old tip may be reinstated, this function returns the old cursor tip. In this 

way, cursors which look like arrows and cross hairs may be used with the appropriate 

pointing tip.

3.5 Implementation

The implementation of such a system is highly dependent on the facilities provided by the 

hardware [bro86] and therefore has not been discussed here. However, the abstract machine 

must provide support for the graphical objects being manipulated, this support is described 

in Appendix 1 and in [ps85].
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3.6 Conclusions

This chapter has presented the graphics facilities available in one persistent language, PS- 

algol. These graphics facilities have proven so successful that thay have included, 

unchanged, in the language Napier. The way in which graphics objects may be manipulated 

like any other object in the system has been shown. In particular, it is shown how graphical 

objects may interact with the persistent store. Such an integration provides a powerful 

vehicle with which applications with sophisticated mmi may be provided.
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4 The System Building Domain

4.1 Introduction

The PISA system building domain supports the construction of the persistent languages and 

environment. The major system construction tools in this domain are:

1. The Abstract machine

2. Abstract program graphs

3. Compiler componentry

4. Support for compilation and execution merging

5. Support for optimisations

Much of the support is provided by tools that are constructed within the persistent 

environment and therefore supported by the system building domain. At one level, these 

tools may be viewed as applications making requirements on the system building domain, at 

another level, these tools will be regarded as part of that domain. A good illustration of this 

is in the compilation systems, these are written in the persistent languages and, therefore, 

use the language and environment support provided by the architecture. However, at the 

same time they provide support for other applications using the architecture.

4.2 History

The abstract machine that supports the language Napier is a refinement of the PS-algol 

abstract machine. This machine is, in turn, a modification of the machine that supported the 

language S-algol. Some historical perspective helps understand the structure of the 

Persistent Abstract Machine.
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4.2.1 The S-algol abstract machine

The language S-algol is the predecessor of PS-algol. Although the language is not persistent 

some important features of the current Persistent Abstract Machine have their roots in the S- 

algol Abstract Machine [mor79,dea85].

The language S-algol may be implemented using conventional stack techniques. However, 

the language allows the construction of objects whose size is not known at compile time. 

The extent of these objects is different from their scope. Consequently, a heap is used in 

addition to a stack to store objects. Pointers to these objects are stored on the execution 

stack.

During garbage collection it is necessary to distinguish pointers from scalars. In order to 

simplify this process the S-algol abstract machine implements two stacks - one for pointer 

items and one for scalars. Stack frames have a pointer from the main stack to the pointer 

stack in the mark stack control word to keep the pointer stack frame and the main stack 

frames logically together. This is necessary to implement return from procedure calls and 

intermediate free variable access.

4.2.1.1 Object management

Heap objects in S-algol abstract machine are all typed - that is the type of the object is 

encoded in the headers of objects. Consequently, object management routines in the 

machine have to check what type the object is before it can be manipulated. For example, the 

machine needs to know that strings contain no pointers and that their length field is in bytes.

The garbage collector in the S-algol machine keeps a free list of unused space and uses a 

first fit algorithm for the allocation of space to new objects.
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4.2.2 The PS-algol abstract machine

The PS-algol abstract machine is a refinement of the S-algol machine. It needed major 

revisions in order to implement first class procedures and persistence.

PS-algol is a block structured language that is well suited to a stack implementation

technique. However the language has procedures that are first class citizens and store

semantics. Therefore, objects in the scope of a block may still be accessed after that block

has returned. This is easily illustrated in a small PS-algol example,

let counter = 
begin

let count := 0

proc( -> int ) 
begin

count := count + 1 
count

end
end

example 1 
block retention in PS-algol

In this example, the procedure returned as the value of the block yields unique integers, each 

the successor of the previous one. In order to do this it uses an encapsulated value, count. 

When the block returns, the value of the block, the procedure, is assigned to counter. This 

procedure will access count when it is called, consequently the location to which count is 

bound must be retained. The class of languages in which this phenomenon may occur are 

known as block retention languages.

A conventional stack architecture is not rich enough to support block retention languages. A 

stack architecture known as a cactus stack is necessary. Since most programs do not require 

block retention it is tempting to use a stack for efficiency and only do something special 

when retention occurs. Such a strategy is sometimes called a mixed mode strategy. The 

something special could be to allocation of space for frames with retention on a heap.

75



If a mixed mode strategy is used it is possible for the system to run out of space in two 

ways - by running out of heap space and by running out of stack space. Thus the system 

can run out of space in one partition whilst unused space exists in the other.

One of the aims of the PISA project is to provide a robust system with stable storage. A 

persistent store presents the user with a stable, conceptually infinite object space. Thus, it is 

undesirable for a system to stop working by running out of space when free space exists in 

the system. Ideally, the system will only stop when all the free space in the system has been 

used up - this includes both RAM and disk space.

The solution is to have only one dynamic storage system - the heap. All data objects have 

space allocated for them on the heap. In this way, the system will run out of space only 

when the heap is full. The PS-algol system does not entirely satisfy this desire as the heap 

may become saturated with persistent objects. Persistent objects are not written back to disk 

unless a commit occurs. This problem is corrected in the Napier system.

4.2.2.1 Frames

A stack of procedure frames is simulated in the heap with each frame being a separate heap 

object. Within each frame two stacks are simulated - one for pointers the other for scalar 

items. The scalar objects, integers; pixels; reals and booleans, all reside on the main stack, 

whereas pointers to images, strings, vectors, structures, closures and files reside on the 

pointer stack.

Each frame has a display that points at the static environment of the procedure. The display 

may be considered as comprising the bottom of the pointer stack. The display and dynamic 

links to other frames are also implemented by pointers to other frames also on the heap.

In each frame the main stack grows up memory, the pointer stack grows down memory. 

This allows all stack addresses to be assigned statically in one pass by the code generator as 

an offset from one of two machine registers - the local main stack base and the local pointer
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stack base. The compiler must calculate the maximum stack sizes in order to ensure that the 

stacks will not collide at execution time.

4.2.2.2 Addressing

The S-algol abstract machine uses procedure level addressing, whereas the PS-algol

machine uses block level addressing. This is a requirement if a language with first class

functions and store semantics is to be supported. This requirement is illustrated in the

following PS-algol example,

let avec = vector 1:: 10 of proc( -> int ) ; 1 ! a vector of procedures 
for i = 1 to 10 do

avec( i)  := proc( -> int ) ; i

example 2 
a vector of procedures

In this example, a vector of procedures called avec is declared. The procedures in the vector 

are all of the type

proc( -> int ),

the vector initially has the procedure that returns one assigned to each location in it. In the 

for loop, a procedure is assigned to each location in the vector. Each of these procedures 

encapsulates one of the values of the control variable i. Thus, the procedure which is 

assigned to location i in the vector will also return i when called. The control variables in 

each invocation of the loop body must therefore have a different location.

4.2.2.3 Objects

Like the S-algol machine all objects have their type encoded in the format of the object. The 

object coding is known by all modules in the system; the garbage collector needs to have 

knowledge of the encodings to garbage collect objects, the persistent object manager to 

move objects in and out of RAM and even the compiler so that it may plant code for object 

literals. This breech of modularity makes it difficult to maintain thb system and perform 

experiments.
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This problem made it difficult to do experiments with the PS-algol system. If a new data 

type was introduced into the language, many modules in the system had to be changed 

consistently. The code that needed to be changed was written in different, languages - the 

compilers in PS-algol and the run time system in the implementation language. The volume 

of code, constructed in different technologies, that needed modification made change 

difficult and error prone.

The PS-algol machine allocates space for frames and graphics objects ( bitmaps ) on the 

heap. This extra utilisation of the heap led to performance problems with the free list method 

of space allocation used in S-algol. For this reason, the garbage collection technique was 

changed to a compacting garbage collector [mor78] and the free list discarded. This change 

improved performance dramatically.

4 2.2.4 The Standard Frame

The PS-algol machine supports a standard frame. There is only one standard frame in any 

PS-algol system. It provides an environment for all predeclared identifiers in the language 

such as cos and sin and literals like pi and maxint.

The compiler is provided with a description of this frame in the form of a file of declarations 

known as the standard declarations file. The run time system is responsible for filling in the 

locations in the standard frame with the correct values. A set of instructions is provided in 

the machine which loads objects from the standard frame onto the frame of the currently 

executing procedure.

The standard frame proved to be another difficulty in providing an experimental framework. 

The main problem is that different experiments required the addition of different standard 

functions - functions written in the implementation language. If a change is made to the 

standard declarations file without the correct change being made to the standard frame, 

corruption of the whole system is possible.
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4.2.2.5 The J/0 system

The PS-algol system supports a complex set of I/O instructions which support the buffered 

I/O in the language. A large part of the underlying support system is devoted to 

implementing buffered I/O. This is partly due to the I/O system of 

PS-algol being typed It is also due to instructions that could be written in PS-algol being 

written in the implementation language for performance gains.

4.2.2.6 Persistent Object Support

Persistent Object Management in the PS-algol system is provided by a module in the 

interpreter called the POMS ( Persistent Object Management System ). This module is 

responsible for implementing a transactionally secure persistent object store.

Originally it was thought that the programmer would use the POMS to support CAD/CAM 

style of applications. That is they would read in some data, do some processing on it and 

then either save the changes or discard them. To support this the POMS operates on large 

disjoint units known as databases. Databases provide a mechanism for identifying persistent 

data. Each database has a root. Any data object reachable from the root will also persist.

The POMS is part of the run time support system, so there may be multiple invocations of it 

running on a computer at any time - one for every PS-algol process. Databases are passive 

objects on which invocations of the POMS operate. In order to ensure that PS-algol 

programs do not interfere with each other a multiple reader/single writer protocol is imposed 

on databases. Therefore, a database may only be open for one writer at a time or many 

readers ( but not both ).

In order to ensure that data held in the persistent store is updated in a self consistent manner 

it is necessary to impose a protocol for the update of changes. The PS-algol system provides 

this by a function called commit. A copy of data touched by a program is loaded into the 

programs local heap. When a commit is invoked by the program, data that has been changed
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is written back to the databases. The commit algorithm guarantees that either all of the 

changed objects are written back or none of them. In addition, no objects are copied back to 

a database unless it has been opened for writing.

Three functions are provided by PS-algol to interface with the persistent store. The 

functions create.database, open.database and commit allow a program to create a new 

database, open a database in either read or write mode and invoke the commit algorithm 

respectively.

4.2.2.7 Hds and Lons

A persistent object is identified by a persistent identifier known as a pid. A pid is the same 

size as a pointer and may be distinguished from a pointer by having its most significant bit 

set. A heap pointer is known as a local object number or a Ion.

Persistent objects are identified as such by being pointed at by a pid rather than a Ion. The 

abstract machine cannot process pids therefore pointers must be checked before their use. If 

the pointer is a pid, then the POMS must be called upon to translate the pointer into a Ion. 

Once this translation has been performed the pid is overwritten by the Ion

When the POMS is called upon to translate a pid it looks up the appropriate database to find 

the object to which the pid points. This object is then copied into local memory and the local 

object number returned. In order to prevent pid translation from being repeated many times a 

table is kept of all the pids translated during the current interpreter invocation. This table is 

known as the PIDLAM ( pid - local address map ). When a pid is first used and translated to 

a Ion an entry is put in this table to memorise the address of the object in local memory. All 

pid-lon address translations check this table first and only if a Ion is not found does the 

translation take place.
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4.3 The Persistent Abstract Machine

The Persistent Abstract Machine ( PAM ) supports the execution of programs that are 

written in the Persistent Architecture Intermediate Language ( PAIL ). These programs are 

translated from PAIL code into PAM code by the code generation module of the compilation 

system. The abstract machine relies on the store domain to provide a persistent heap of 

objects.

4.3.1 Design Principles

Module independence has been the guiding principle in designing the system building 

domain. Whenever possible the design of one part of the system has been decoupled from 

the design of other parts. This lesson has been learned from experiments using the PS-algol 

system. In this system, information escapes from one module into another, making change 

and maintenance difficult.

This problem is best illustrated in the interface between the language and the persistent store. 

In the PS-algol system type information is encoded in the abstract machine representations 

of objects. This means, that to introduce a new type into the system, changes have to be 

made to the compiler, the abstract machine, the garbage collectors and the persistent object 

manager.

The separation of the system into layers or modules is essential for several reasons. Firstly, 

the construction of any system is aided when clear boundaries are formed. These boundaries 

enforce the demarcation of responsibilities in the system both between programs and 

programmers. This modularity leads to a benefit in system maintenance. If errors or even 

design flaws can be localised the volume and complexity of code that has to be changed may 

be minimised. Secondly, and most importantly in the research field modularity aids 

experimentation. The Napier system has been constructed in such a way as to allow 

experimentation in any of the system construction areas. It is possible to experiment with
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persistent object managers, abstract machines, code generators, compilers, languages and 

type systems independently.

The system may be viewed diagrammatically as,

high level languages

Compiler

A PAIL

Code generator

A PAM code

Persistent Abstract machine

PAM objects

Heap of Persistent Objects

Heap Objects

Stable Storage

figure 1 
The layerà Architecture

In this system any of the modules may be replaced by another implementation with the same 

interface, allowing experiments to continue in parallel on all the areas of interest to the PISA 

project. The architecture provides the experimental testbed for future experiments in the 

PISA project. These experiments will include distributed secure object stores and 

concurrency experiments in both the language and system buUding domains.

It is our task as system designers to find the correct levels of abstraction so that fire walls 

are protected; whilst ensuring that these barriers do not adversely effect efficiency. Much of
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the design effort in the system building domain has focused on finding these correct levels 

of abstraction.

4.3.2 Heap Objects

The heap is the only dynamic storage system supported by the system. All objects in the 

system reside on the heap; simple data objects such as integers, pixels or reals reside within 

objects; complex data objects such as images, vectors and frames are single heap objects.

All heap objects have the same format (a word is a 32 bit integer) 

word 0 header
word 1 the size in words of the object
word 2..n the pointer fields
word n+1.. the non pointer fields

Word 0 has the following interpretation

bits 8-31 the number of pointer fields in the object 
bit 7 if set first byte in a short integer is least significant
bit 6 if set first short in an integer is least significant
bit 5 remote address object flag
bit 4 translated bit - if set a field has been changed to a pid
bit 3 written bit for persistent object manager
bit 2 mark bit for garbage collection
bit 1 constancy bit for validating updates in vectors or

trace bit for use by special return instructions in frames 
bit 0 header bit - header or ram address

where bit 0 is the most significant bit of the word.

Thus, all objects are partitioned into pointer and non-pointer fields with the pointer fields 

preceding the non-pointer ( scalar ) fields. This minimises the potentially high cost of 

garbage collection and persistent object management in the system. By separating the pointer 

and scalar fields, garbage collectors may easily find the number of pointers in an object and 

then iteratively process them. This decision has serious implications in the rest of the 

machine design. However, this cost is justified by the simplification in object management 

which is one of the most expensive tasks performed by the machine. [lob87]
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In order to simplify garbage collection, pointers in the architecture only ever point at the 

beginning of objects - never into them. This has the effect on the instruction set that the 

addresses of many objects are given as an object address and an offset with the object. This 

technique is common in segmentation systems.

The object management modules in the system all conform to the basic object convention. 

Furthermore, they may only manipulate objects in accordance with the information 

contained in their headers. The high level information described below may not be used by 

the store level object manipulation code.

4.3.3 PAM Object Formats

The Persistent Abstract Machine imposes higher level conventions on objects. These are not 

part of the primitive object format. The store level system utilities do not know or care about 

these higher level conventions since they are only concerned with the basic object format. 

This allows experimentation in the field of garbage collection, persistent object management 

and abstract machine design to be carried out independently.

In order to support infinite unions every object has an associated type description. This is 

pointed to by the object's first pointer field and will be in a canonical form constructed by 

the compiler. The abstract machine does not have knowledge of how this field is laid out. 

Type representations are created by the type checker which is part of the high level language 

implementation. The abstract machine merely treats this field as a pointer. How this pointer 

is used is discussed later.

Each type of object in the machine is laid out differently, but in accordance with the basic 

object format. That is that they carry a header and that pointers come before non-pointers. 

Only the instructions that deal with a particular type have knowledge of how that type is 

arranged internally. For example, unlike the garbage collector, the equal string operation 

needs to know the layout of a string.
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Each PAM object class will now be discussed.

4.3.3.1 Strings

word 2 a pointer to the type descriptor for a string
word 3 number of characters in the string
word 4.. the characters 1 per byte padded with zeros up to a 4 byte boundary.

4.3.3.2 Files

There are 5 kinds of files that are supported by the Napier abstract machine; disk files, 

terminals, mice, tablets and raster displays. Each file kind is represented differently. In all 

the file types, the internal file number and associated flag bits are represented as follows:

if raster file 
if tablet 
if mouse 
if terminal 
if disk file 
if closed 
if writable 
if readable 
fUe number

bits 
bit 9 
bit 10 
bit 11 
bit 12 
bit 13 
bit 14 
bit 15 
bits 16-31

Disk Files

word 2 
word 3 
word 4 
word 5

a pointer to the type descriptor for a file
a pointer to the file's name
an internal file number and associated flag bits
the current position in the disk file ( byte offset from the start )

Terminal Files

word 2 
word 3 
word 4 
word 5

a pointer to the type descriptor for a file 
a pointer to the file's name 
an internal file number and associated flag bits 
the terminal modes currently selected

Mouse and Tablet Files

word 2 a pointer to the type descriptor for a file
word 3 a pointer to the file’s name
word 4 an internal file number and associated flag bits
word 5 the X dimension of the tablet, 0 for a mouse
word 6 the Y dimension of the tablet, 0 for a mouse
word 7 the X position, absolute for a tablet, relative for a mouse
word 8 the Y position, absolute for a tablet, relative for a mouse
word 9 + n state of the nth button, numbered from 0
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Raster Files

word 2 a pointer to the descriptor for a file 
word 3 a pointer to the file's name
word 4 an image representing the raster device's screen
word 5 an image representing the screen's cursor
word 6 an internal file number and associated flag bits
word 7 the X position of the cursor on the screen
word 8 the Y position of the cursor on the screen
word 9 the raster rule used to display the cursor on the screen

( see rasterop )

4.3.3.3 Vectors

word 2 a pointer to the type descriptor for the vector and its elements
word 3..n the elements
word n+1 lower bound
word n+2 upper bound

4.3.3.4 Images

H X- Y- D-
E S T O O O X Y D
A I Y F F F E
D Z P Bitmap File F F F D D P
E E E Vector Descriptor S S S I I T
R E E E M M H

T T T
word 2 
word 3 
word 4

word 5 
word 6 
word? 
word 8 
word 9 
word 10

a pointer to the type descriptor for an image 
pointer to the vector of bitmap vectors
pointer to the file descriptor ( if a cursor or screen of a raster device 
otherwise nil )
X offset into the bitmap vector
Y offset into the bitmap vector 
depth offset into the bitmap vector 
X dimension of the image
Y dimension of the image 
depth of the image

The bitmap vector for an image is laid out as follows:

word 2 a pointer to the type descriptor for a vector of integers
word 3 X dimension of the bitmap
word 4 Y dimension of the bitmap
word 5 depth of the bitmap
word 6 number of bits per pixel
word 7 number of pixels per scan line
word 8 offset to start of the image from the start of the object.
word 9..n bits
word n+1 lower bound
word n+2 upper bound
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4.3.3.5 Structures

word 2 a pointer to the type descriptor for the structure
word 3..n the pointer fields
word n+1.. the non-pointer fields and constancy bitmap

Every structure is assumed to contain a constancy bitmap of one bit per word. It should be 

checked whenever a word in a structure is to be updated. However updates to the words 

containing the bitmap are not checked to allow the constancy of fields to be altered. For 

structure fields of two words only the bit for the first word is used. For a structure of length 

L the starting word ( S ) of the bitmap can be calculated as follows:

S = L - ( L  + 30)div32

The word ( W ) within the bitmap containing the bit for a given field index ( I ) and the 

field's bit ( B ) within that word can be calculated as follows:

W = Idiv32 

B = 3 1 - ( I rem 3 2)

To test if a field is constant bit B in word S + W of the structure is tested. The field is 

constant if the bit is set. Note that the bits are numbered in decreasing significance from bit 0 

to bit 31.

4.3.3.6 Code Vectors

H F A C F F
F S T P

PointerA I Y A T C Code T wS MD z P T Y V Literals Y I
E E E I, P E P Z S
R E C E E B

word 2 a pointer to the tyj^ descriptor for this code vector ( TYPE )
word 3 a pointer to the pail tree for the code vector's procedure ( PAIL )
word 4 a pointer to the type descriptor for the frame created when the code

vector's procedure is applied ( F TYPE ) 
word 5 a pointer to an alternative code vector ( A CVEC ), this has the

same functionality but contains different code, the code may be a 
different type
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word 6..m any pointers to objects that are used by the code vector's procedure 
word m+1. .n the code to be executed
word n+1 the type of code, 0 if the code is Napier code ( C TYPE )
word n+2 the size of the frame ( in words ) to be created when the code

vector's procedure is applied ( F SIZE ) 
word n+3 the offset to the main stack ( in words ) for the frame ( F MSB )

Code vectors are used to store object code for procedures and blocks. They must contain all 

the information necessary to execute the procedure or block that they represent. The 

information includes the size of the frame needed and the main stack offset. Debugging 

information is included in the code vector in the form of the type of the code the vector 

implements. This is held as a symbol table holding all the address information for the 

declarations made in the procedure or block. An abstract form of the source code is also held 

in the code vector in the form of an abstract syntax tree, allowing the source code to be 

reproduced at run time.

PAM code vectors provide an alternative code vector field. This field may have a code 

vector of native machine code assigned to it. The assignment may be performed at compile 

time or at some later time as an optimisation. It is possible to perform the assignment lazily 

[car87] since code vectors reside in the persistent store and because PAM code vectors 

contain a pointer to the source of the block or procedure in the form of a PAIL tree.

PAM code must be preserved in this optimisation since code vectors may be executed on 

different processors in a heterogeneous environment. The abstract machine code definition 

provides a machine independent program representation. This code may be viewed as an 

optimised version of the PAIL code.

Code vectors in PAM contain pointer literals. These pointers reference the compile time type 

representations of objects that may be created at run time. These may be used by the type 

checking procedure found in the root object. The pointers also store the PAIL source code 

for the procedure. In this way the source code is bound to the executable code, allowing 

better diagnostic information to be produced.
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4.3.3.7 Stack Frames

Each procedure and block activation is implemented on the heap by a stack frame. In 

addition to house keeping information, each frame contains two stacks, a pointer stack and a 

scalar stack shown below,

H D C s C D
E I
A S T L V I, P S Pointer Main L R M
D 1 Y I E I A P L A S
E Z P N C N I L -----► ---- ► P
R E E K K I, A Stack Stack

Y

word 2 a pointer to the type descriptor for this frame, it includes a symbol table
for this frame ( TYPE ) 

word 3 the dynamic link ( D LINK )
word 4 a pointer to the code vector for the frame’s procedure ( C VEC )
word 5 the static link for the frame's procedure ( S LINK )
word 6 a pointer to the pail currently being executed ( C PAIL )
word 7..1 the display for tiie frame's procedure ( DISPLAY )
word 1+ I..m the pointer stack frame's procedure
word m+1..n the main stack frame's procedure
word n+1 the frame's lexical level ( LL ), the number of entries in the

display
word n+2 the return address for the frame's procedure ( RA ), an offset ( in

bytes ) from the start of the procedure's code vector 
word n+3 the saved offset ( in words ) of the LMSP from the LFB ( MSP )

Frames are allocated on the heap and therefore must conform to the basic heap format which 

dictates that pointer and scalar fields must be partitioned. The machine, like the PS-algol 

machine, simulates two stacks - a pointer stack and a scalar ( main ) stack. However, in this 

machine the pointer fields must precede the scalar fields. The code generators calculate the 

maximum sizes of these stacks allowing space for all intermediate values in addition to 

locations which have identifiers bound to them. This information is contained in the code 

vector. Scalar objects all reside on the main stack; these are integers, pixels, reals and 

booleans. Pointers to heap objects exist on the pointer stack; they are images, strings, 

vectors, structures, closures, files, abstract data types, variants and unions. The bottom of 

the pointer stack implements a display of pointers to the environment.
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In PAM, both stacks both grow in the same direction. All addressing is base and offset 

addressing relative to one register - the local frame base. This scheme makes addressing 

simpler at the expense of complexity in the code generator. In the code generator no scaler 

stack addresses may be allocated until the number of pointers in the frame is known. This 

requires either the code generator to back patch main stack addresses at the end of a block or 

do another pass allocating addresses.

The technique of making the machine simple at the expense of the code generators has been 

followed whereever practical. Calculations made in the code generator are made once - at 

code generation time rather than many times during procedure invocation. Therefore, there 

is good reason for making the machine as simple as possible from a performance point of 

view. Another reason for shifting complexity from the machine to the code generators, is 

that the code generators are implemented in a high level language, whereas the machine is 

implemented in a low level language or even silicon. This upward movement makes 

maintenance much more manageable.

4.3.3.S Abstract data types

word 2 a pointer to the type descriptor
word 3. .n the remaining pointer fields
word n+1 .m the nonpointer fields
word m.. the type keys for the witness types and constancy bitmap

Note that all fields of witness types are implemented as polymorphic objects. Therefore each 

is assigned space for a double length scalar and double length pointer object. This allows the 

calculation of field addresses to be performed statically. The dynamic type information of 

the witness types is stored in the last scalar fields of the object. The implementation of 

A.D.T. S is described fully in section 5.3.10.
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4.3.3 9 The Root Object

In the PS-algol machine the standard frame became a major obstacle to change. Revisions of 

the standard frame meant that programs compiled with the old version were no longer 

executable because offsets into the old frame had been hard wired into the code.

Many of the functions in the PS-algol standard frame were not primitive machine 

instructions. One example of this is the Iwb function which returns the lower bound of a 

vector. This function is implemented in the machine implementation language in the PS- 

algol system.

In PAM, most of the functions which were implemented in implementation language in the 

PS-algol machine have been replaced with short sequences of abstract machine code These 

functions are known as primitive instructions. Functions, like Iwb, may easily be 

implemented in this way, resulting in a simpler underlying machine.

Not all functions may be implemented in this way. Some functions like sin are true primitive 

machine operations. These have been implemented as abstract machine instructions in the 

Persistent Abstract Machine. Using these techniques we have removed the need for a 

standard frame. A fixed point is still needed in the machine -this is provided by the root 

object. The root object provides a set of known addresses in PAM. There is one root object 

per machine invocation. It contains literal values such as nil, pi, nullimage and maxint.

A pointer to a vector of single character strings is included in the root object. This was an 

optimisation first used in the S-algol abstract machine to lessen heap fragmentation and 

speed up string manipulation.

The root object also contains some procedures used by the machine. These include the 

startup procedure which is run when the machine is invoked. A type checking procedure 

that checks if two type representations are the same is also stored here.
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A pointer to a vector of error processing procedures that are called when hard errors occur in

the machine and a pointer to the vector of event handlers are also included in the root object.

These procedures are ordinary procedures written in Napier. A set of special functions,

written in PAIL, are provided for assigning values and retrieving values from these

locations.

word 2 the pointer literal nil
word 3 the code vector for the startup procedure
word 4 the static link for the startup procedure
word 5 the logical root of persistence
word 6 the file literal nullfile
word 7 the string literal ""
word 8 a pointer to the vector of all 128 single character strings
word 9 the image literal nullimage
word 10 the code vector for the error processing procedure
word 11 the static link for the error processing procedure
word 12 a pointer to the vector of event handling procedures
word 13 a pointer to the vector of error handling procedures
word 14 a pointer to the vector of open files
word 15 a pointer to the frame of the currently executing procedure
word 16 the code vector for the type checking procedure
word 17 the static link for the type checking procedure
word 18 a pointer location for use in comparing variants, nil if not in use
word 19 a pointer location for use in comparing variants, nil if not in use
word 20 a pointer location for use in comparing variants, nil if not in use
word 21 a pointer location for use in coniparing variants, nil if not in use
word 22 the error number for the last 1/0 instmction executed
word 23 the integer literal maxint
word 24,25 the real literal maxreal
word 26,27 the real literal pi
word 28,29 the real literal epsilon

4.3.4 Stable Storage

Stable storage in the persistent abstract machine is provided by the object management 

module. This module is a module within the abstract machine and implements the heap. The 

heap is the top layer of a hierarchy of levels that implements the persistent store. The heap 

interface consists of eight functions. These are the only functions which deal with object 

management and operate on basic object formats. That is, they can only determine the size 

of objects and how many pointers they have.

The interface functions to the heap are:
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1. Initialise_Heap

2. Shutdown_Heap

3. Create_Object

4. Destroy_Object

5. Hlegal„Address

6. Root_Object

7. Stabilise_Heap

8. Garbage_Collect

The functions Initialise_Heap and Shutdown_Heap are used to initialise and shutdown the 

persistent store.

Create_Object is the only mechanism provided in the system for object creation. All high 

level functions that create objects therefore use this function.

The function Root_Object returns a pointer to the root object. Illegal_Address is the function 

that translates pids into Ions, both these functions have already been discussed.

The function Destroy_Object is provided as an optimisation tool. In certain cases the code 

generator can detect statically when an object is no longer reachable. This system may be 

used to release space used by these objects. This function is particularly useful for 

optimising recursive function calls. The usual way of reclaiming space is by calling the 

garbage collector. This is usually called when a Create_Object fails.

The function Stabilise_Heap causes all new and changed objects to be copied to stable 

storage. This also causes the store to checkpoint itself causing the store to move into a stable 

state. A fatal failure in the system such as power loss causes any data changed or modified 

since the last stabilise to be lost, but data changed or modified before the last stabilise will be 

retained. Stabilise_Heap is an atomic operation.
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4.3.5 The Instruction Set

PAM code is a byte-code instruction set comprising of instructions with between zero and 

four parameters which may be either bytes, short integers, words or double words.

Objects are represented on stacks by different numbers of stack elements. Therefore, some 

instructions need to be parameterised by stack size. However, some instructions need to 

perform different code depending on the object type. Therefore, instructions have two styles 

of instmction modes, being parameterised either by stack size or by type.

For example, the load instruction performs the operation of loading an object onto one of the

stacks. There are six modes of this instmction. These are:

wload - main stack 1 word
dwload - main stack 2 words
pload - pointer stack 1 word
dpload - pointer stack 2 words
wpload - main stack 1 word & pointer stack 1 word
dwdpload - main stack 2 words & pointer stack 2 words

Although the abstract machine does not have any knowledge of the languages' type system,

some instmctions do need to be parameterised by implementation type. For example, the

less than instmction has three typed modes:

lt.i less than integer
lt.r less than real
lt.s less than string

These instmctions operate on the top of either the main stack or the pointer stack depending 

on the type of the arguments.

4.3.6 Types

The Persistent Abstract Machine has no knowledge of the type systems of the languages that 

it supports. This allows system building domain to be decoupled from the language domain, 

and illustrates another example of the modularity of the system. However, the machine does
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store type representations supplied by the high level system and call functions that 

manipulate these representations.

For the purpose of the discussion below, it is necessary to know that the compilation system 

builds graph structures representing high level types. The building of graphs rather than 

having a simpler representation is necessary in order to support the recursive and 

unbounded nature of the languages supported by the machine - in particular the Napier type 

system.

4.3.7 Support for Infinite Unions

The languages supported by PAM have infinite unions in their type systems. In the case of

Napier, two infinite unions are supported; env and any. For the purpose of this discussion,

only any is discussed here. A value of any type may be injected into the type any in Napier.

The result of the injection has type any. This is shown by an example,

let astring = "a string " ! has type string
let anany := any( astring ) ! has type any
let aproc = proc( x : int -> int ) ; x Î has type proc( int > int )
anany := any( aproc ) ! still has type any

example 3 
use of any

Here, the identifier anany has type any, furthermore the value stored in anany may take any 

value. Values of type any are stored on the pointer stack. If the value is a scalar or a double 

length object, it must be wrapped in a container. In other words, a pointer ( or the value in 

the scalar case ) must be stored in a heap object. This container has the type of the original 

object as its type in the object type field. This technique insures that the type of an any may 

always be found in the type field of the object which represents it.

When a value is projected out of an any, the expected type of the projection must be 

specified. This is best illustrated by an example. Suppose that the above lines of code have 

been executed. The projection in Napier is as follows
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project anany as this onto
string : writes( "It was a string" )
int : writes( "It was an integer" )
proc( int -> int ) : writes( "It was a proc( int > int )" )
default : writes( "Don't know what it is" )

example 4 
projection from any

Unions require that some type checking be done at the time of projection i.e. at run time. 

This is a particular problem for infinite unions since we are forced to check the graph 

representations of the types dynamically since the members of the union cannot be 

enumerated.

A solution to this problem has been known for some time. It involves ensuring that all type 

representations used are identical. That is, they are the same instance of the same graph. 

This could be achieved by having a type server in the persistent store that hands out unique 

type representations. Doing this allows the run time type check to be simply pointer 

equality. However, this solution was not considered to be a good one, since major problems 

may arise in a distributed environment.

Another solution would be to write the graph checker in the implementation language i.e. 

have the checker as an abstract machine op-code. This solution requires unbounded space, 

since a stack is needed to check graph structures. This solution has no intrinsic problems, 

however, simultaneously maintaining both a low and high level implementation is expensive 

in terms of software engineering costs.

The best solution is to use the same type checker ( written in Napier ) that the compiler uses 

to check the graphs. The problems which arise here are the linking of the Napier code into 

the machine and the writing of the type checker.

The Napier type checker must be written in a subset of Napier without the use of infinite 

unions, this establishes a fixed point in the type checking system. Given that this may be 

achieved, the code needs to be located somewhere that the run time system can find it.
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A set of fixed locations exist in the system in the form of the root object. A special function, 

written in pail, is provided which will take the type equality function as a parameter and put 

it into the root object. When the runtime system needs to check the equality of two types, it

may call this function with the type representation graphs as parameters. Since the type

checking system is itself written in Napier, the use of unbounded space does not present a 

problem because space may be allocated from the heap.

4.3.8 Implementation of Variants

The Napier language supports a tagged variant type. Any object may be a member of a

variant and any object may be a member of more than one variant at a time. This is a more

general variant type than is provided in other languages [har86,mat85] and causes some

implementation problems. These problems will be illustrated by example ( in Napier )

type air is variante balloon : structure( speed : int ) ;
plane : stmcture( speed : int) )

type transport is variante train : structurée speed : int ) ;
plane : structurée speed : int ) )

let concorde = structurée speed = 5000 ) ! of type structureespeeddnt )
let anair = aire plane : concorde ) Î of type air
let atransport = transporte plane : concorde ) ! of type transport

example 5 
use of variants

Here the object bound to the identifier concorde is injected into two variant types; air and 

transport. This means that the tag information needed for projection may not be stored with 

the object. Instead, it must be stored with the location associated with the variant, in other 

words with reference to the object.

The second example is illustrates that any type may be in a variant.
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type afewshapes is variant( aproc : proc( int ) ;
anint : int ; 
astring : string ; 
areal : real)

example 6 
a difficult variant 

to implement

In this second example, the type described is a variant of four different types. The types of 

the objects in this variant are all implemented in PAM by objects of different sizes. To make 

matters worse, the objects may also reside on different stacks as in this case.

Equality is the final problem with variants, suppose we have the above type defined and we 

have two objects of type afewshapes. The desired semantics for variant equality is that the 

objects must be in the same branch of the variant and they must be equal. Since equality is a 

type dependent operation, the real type must be stored with the object.

In PAM variants are implemented as a double word object consisting of one scalar and one 

pointer. The scalar field contains an encoding of the type and the variant branch. This allows 

projection to be performed by comparing this word with a supplied tag. Variant branches are 

sorted into name order and enumerated. The type encoding is a five bit code which indicates 

the type of the variant branch. In order to do this, the machine only needs to be able to 

differentiate between double and single length objects and strings. Thus, encoding removes 

the need for the potentially expensive graph checking needed in the infinite union case.

4.3.9 Polymorphism

A function is said to be polymorphic if it can accept arguments of more than one type; for 

example, the identity function, shown in example 7 accepts parameters of any data type. 

Two forms of polymorphism exist, known as universal polymorphism and ad-hoc 

polymorphism.

let id = proc[ t ]( x : t -> t ) ; x

example 7 
the identity function
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When ad-hoc polymorphism is employed the type of code that is executed depends on the 

type of the argument. For example, in PS-algol,

write "hello"

involves different code from

write 5.

In contrast, the essence of universal polymorphism is that the same code is executed 

regardless of the types of the arguments. Two different forms of universal polymorphism 

exist, parametric polymorphism and inclusion polymorphism [card85]. In parametric 

polymorphism a polymorphic function has an implicit or explicit type parameter, which 

determines the type of the argument for each application of that function. In inclusion 

polymorphism an object may be viewed as belonging to many different classes which need 

not be disjoint. Cardelli and Wegner point out that the two forms of universal polymorphism 

are not disjoint but are sufficiently different to deserve different names.

The function shown in example 7 is said to be quantified by the type f. In the language 

Napier, procedures may be quantified by any number of types, giving the programmer 

power to abstract over many types.

The parametric polymorphism provided in Napier is explicit. That is, quantifiers must 

always be specified when a polymorphic function is defined. Similarly, functions must be 

specialised to some concrete type before they are applied. No type inferencing is performed 

by the type checker. For example, the identity function shown in example 7 may be 

specialised to the integer identity function by writing,

id[int]

or to the string identity function, by writing, 

id[string].
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Each specialisation of a polymorphic function creates a new procedure closure instance. The 

closure comprises the code for the polymorphic function and the new environment. A single 

instance of a polymorphic procedure may be specialised to many different non polymorphic 

procedure instances. This is important in a persistent environment where many users may 

wish to use a single polymorphic procedure.

In Napier, polymorphic procedures have full civil rights in both their specialised and 

unspecialised form. Therefore the integer identity function, shown above, may be passed as 

a pararneter or returned by a function. If it is assigned to a location, as follows,

let idint = id[int]

he function bound to idint indistinguishable from the function

let idint = proc( x : int -> int ) ; x

Before examining possible implementation strategies, some of the potential problem areas 

wül be examined, they are:

1. first class procedures;

2. passing parameters;

3. returning values; and

4. structure creation.

4.3.9.1 First Class procedures

If procedures are first class citizens in a programming language, on application it is 

generally impossible to statically determine which closure is being used. Consequently, 

polymorphic procedures must be indistinguishable from ordinary procedures.
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4.3.9 2 Parameter Passing

Parameters passed to procedures must behave normally whether they have been declared as 

polymorphic or not. Four different cases must be considered, they are:

1. ordinary values passed to ordinary procedures;

2. polymorphic values passed to ordinary procedures;

3 . polymorphic values passed to polymorphic procedures; and

4. ordinary values passed to polymorphic procedures.

Examples of each of these cases are given below.

let id = proc( x : int > int ) ; x 
id(3)

example 8 
ordinaiy parameters with 

ordinary procedure

Example 8 shows a normal procedure definition and call. The formal parameter x is of 

concrete type ( integer ) as is the actual parameter, 3. In example 9, the identity function 

shown above is passed to procedure p as a parameter. In the body of function p, y is called 

with the quantified object, x, as a parameter. The call shown in the second line results in the 

procedure id being called. P is supplied with a concrete instance ( 3 ) of the formal

quantified parameter, x.

let p = proc[ t ]( X : t ; y : proc( t -> t ) -> t ) ; y( x ) 
p[int](3,id)

example 9 
a polymorphic type 

as a parameter 
to a non polymorphic procedure

Example 10 shows a polymorphic procedure that has another procedure defined within its 

scope. Notice that the function r is a polymorphic procedure but is not explicitly quantified 

by any type. The type of r depends on the type to which q is specialised. Furthermore, the
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formal parameter of r, z, is defined as being of the quantified type t and the procedure is

always applied with a value, x, of the same type.

let q = proc[ t ]( x : t -> t ) 
begin

let r = proc( z : t -> t ) ; z 
r (x )

end

example 10 
a polymorphic type 

as a parameter 
to a polymorphic procedure

The case illustrated in example 11 has already been seen in the other examples but is

included for completeness. Here, a polymorphic procedure, j, is applied with a actual

parameter of a concrete type.

let s = proc[ t ]( X : t-> t ) ; X 
s[ int](3)

example 11 
ordinaiy parameters with 

ordinary procedure

4.3.9.3 Returning values

Values returned by polymorphic procedures must also be carefully considered. Polymorphic 

procedures may return:

1. ordinary values;

2. polymorphic values; or

3. objects which encapsulate polymorphic values.

The first two cases are straight forward. Polymorphic procedures that return polymorphic 

values have already been seen. The function s shown in example 11 is of this kind. Example 

12 shows an equality function.It returns a non polymorphic value ( a boolean ) indicating if 

the two objects are identical.
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let identical = proc[ t ]( a,b : t > bool ) ; a = b

example 12 
I^lymorphic function 

returning non polymorphic value

Objects that encapsulate polymorphic values must be treated with caution, the potentially 

most difficult area is in returning structured objects. These are discussed below.

4.3.9.4 Structure Creation

Consider the following procedure,

let p = proc[ t ]( X : t -> structure( y : t ; z : string ) ; struct( x,"hello" )

example 13 
polymorphic function 

returning a structured object

it returns a structure containing an object of polymoiphic type t and a string. If structure 

classes are normalised, as they are in the Persistent Abstract Machine, some special action 

must be taken, since the offsets of y and z are not known statically.

4.3.9 5 Implementation Approaches

Burstall and Lampson in the language Pebble [bur84b] define universal polymorphic 

languages to be ones in which the same code is executed regardless of the type of the 

argument, and that different types of data have uniform representation. In their paper they 

excuse this operational definition on the grounds that a sound mathematical basis is lacking, 

although they refer to a mathematical definition by Reynolds [rey83]. It is not clear from the 

dialogue, if uniform representation is intended to apply to the conceptual or implementation 

level.

At the implementation level uniform representation is a restrictive and highly inefficient form 

of parametric polymorphism. The potential problem areas outlined above present no 

problems if uniformly sized objects are used. However, this restriction makes it impossible
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to implement double length objects such as real numbers. This explains the lack of floating 

point objects from the language ML [har86], which uses this implementation method.

Recall that in order to simplify garbage collection, the Persistent Abstract Machine separates 

pointers from non-pointers. This design decision conflicts with the uniform object strategy 

proposed by Burstall and Lampson. In order to satisfy the requirement of having uniform 

objects either all objects would have to be implemented as references or another object 

management strategy would have to be developed. Neither of these options are acceptable in 

terms of machine efficiency.

Another method of implementing polymorphic languages is to used a tagged architecture 

[org73] The provision of tagged objects allows the same code to be executed irrespective of 

object types. Type dependent operations may interrogate object tags to determine the types 

on which they operate. However, objects of different sizes still present a problem. 

Hardware implementations of tagged architectures are relatively rare and software 

simulations of them are inefficient.

4.3.9.6 P.A.M. Implementation of Polymorphism

The implementation of polymorphism utilises the block retention architecture of the 

Persistent Abstract Machine. The technique used is a hybrid solution. In order to gain high 

performance, tagging is only performed when necessary. Instead of tagging individual 

objects, tags are held in procedure closures at known addresses.

The compiler cannot statically determine which procedure is being specialised. However, it

can plant code to perform some operation on whatever closure is on the stack at

specialisation time. Therefore, when the identity function shown in example 7 is compiled

the code produced by the code generator is for the following function,

let idgen = proc( key : int -> proc( x : poly -> poly ) ) 
proc( X : poly > poly ) ; x
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It is this function that is applied when the procedure is specialised. An integer encoding of 

the type is supplied as a parameter. This encoding is encapsulated in the frame of the 

function bound to idgen.

The integer key that is planted is known as the dynamic tag of the polymorphic objects. 

When the specialised function is executed, the encapsulated values in the static environment 

may be interrogated to discover the dynamic tag of the polymorphic objects being 

manipulated.

A distinction is drawn between language level and machine level types. The type checker in 

the Napier compiler represents types as graphs. These graphs may not be checked quickly 

enough to produce an efficient abstract machine. This is because the information contained 

in them is too general. Therefore, the notion of dynamic tag is introduced into the abstract 

machine. The dynamic tag of objects is the only notion of type in the Persistent Abstract 

Machine. It allows pointers to be distinguished from non-pointers, the size of the stack 

object and whether the object is a string to be determined.

This information is sufficient to ensure that the same code run is for polymorphic 

procedures irrespective of the specialised type, without having to enforce the restriction of 

uniform object sizes.

A five bit encoding is used for dynamic tags, the bits have the following significance:

bit 0 set if the object is a single word scalar object
bit 1 set if the object is a double word scalar object
bit 2 set if the object is a string
bit 3 set if the object is a single word pointer object
bit 4 set if the object is a double word pointer object

This results in the following encoding for the dynamic tags of Napier objects:
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object bit pattern integer code

integer,pixel or boolean 00001 1
real 00010 2
string 01100 12
vector, structure, 
abstract data type,
file, image 01000 8
procedure 10000 16
variant 01001 9

In the Persistent Abstract Machine all polymorphic operations take the address of dynamic 

tag as a parameter. The address of the dynamic tag may always be determined statically even 

although the polymorphic type may not. The dynamic tag is held in the frame of the 

generating function, within the static scope of the polymorphic function.

The Persistent Abstract Machine does not enforce uniform object sizes. However, in order 

to ensure an efficient implementation it is necessary to statically calculate the stack addresses 

of objects. This allows base and offset addressing to be performed. In order to achieve this 

within polymorphic procedures all objects of quantified type are allocated two words on the 

scalar stack and two words on the pointer stack. At most, two words of this space will be 

used, the rest being filled in with dummy values. At first, this strategy may appear 

expensive, but, space is only allocated on stacks and extra heap objects are never created.

The Persistent Abstract Machine supports operations that manipulate these double length 

objects. These operations are given in the Persistent Abstract Machine reference manual 

which is supplied as Appendix 1.

Since polymorphic procedures are indistinguishable from ordinary procedures all parameter 

passing and return must manipulate ordinary objects. That is, the double scalar, double 

pointer objects are never passed as parameters or returned as results. Consequently, 

polymorphic procedures must perform house keeping operations when they are called, 

when they call other procedures, when they return values and when structures are created. 

Each of these cases is dealt with below.
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When a polymorphic procedure is applied the calling procedure will have initialised the 

parameters in the polymorphic procedures frame. Each of the parameters that have been 

declared as being of quantified type in the polymorphic procedure must be turned into a 

double length scalar and pointer stack object. An instruction called expandPoly performs 

this operation. Like all the polymorphic operations in the Persistent Abstract Machine, this 

operation refers to the dynamic tag information to determine its course of action. Once this 

has been performed, all polymorphic values are treated as double length objects within the 

scope of the procedure.

When a polymorphic procedure calls another procedure the reverse of the above process 

must be performed. Parameters must be passed in there concrete form. Therefore, an 

operation called contractPoly retracts the objects on the stack frame. This operation 

essentially removes the dummy values from the stack. Some optimisation is possible when 

polymorphic procedures call other polymorphic procedures as in example 10 above. 

However, analysis of these situations is sometimes complex. Consequently these 

optimisations are not currently performed.

Values are always returned by polymorphic procedures in their concrete form. Therefore, if 

a polymorphic value is being returned by a procedure, the contractPoly instruction is used to 

translate a double stack object into its concrete representation.

Structure creation is perhaps the most difficult of the polymorphic operations to deal with.

The procedure shown in example 14,

let p = proof t ]( X : t -> stmcture( a : int ; b : string ; c : t )
struct( 3,"hello",x )

example 14 
polymorphic function 
creating a structure

creates a structure containing three values, a string, an integer and a polymorphic object x  

This presents special problems in the Persistent Abstract Machine because structures are 

normalised into alphabetical order with pointers proceeding non pointer objects. If the
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procedure p is specialised so that the quantified type t is an integer then the field c will 

precede field b, however, if t is another string then field b will precede field c. 

Consequently, it is impossible to statically determine the address of fields b and c.

The abstract machine must therefore calculate the addresses of these fields at run time. This 

calculation could be implemented by a sequence of instructions, but, since the abstract 

machine is interpreted, it is implemented by a single PAM instruction called 

polystmctaddress which takes the number of fields in the structure as a parameter.

The statically known size of the structure is loaded onto the main stack followed by the 

known number of pointers and two words for each field in the structure. Each pair of words 

is initialised to contain 0 and the dynamic tag of the field. Executing polystmctaddress 

replaces these values with the pointer and non-pointer address of the fields respectively. The 

algorithm used during this calculation may be found in Appendix 1.

4.3.10 Abstract Data Types

Napier has a powerful abstract data type ( adt ) constmct based on the existential types of 

Plotkin and Mitchell [mit85]. It allows an adt. to be manipulated without being able to find 

out its implementation or representation. The problems that arise in implementing adts are 

similar to those encountered implementing parametric polymorphism. Before examining the 

solutions to these problems some examples are given to illuminate them.

In Napier, adts are described by type. For example, an abstract type may be defined as 

follows,

type number is abstypef i ]( value : i;
increment : proc( i -> i ) ; 
display : proc( i ) )

example 14 
the definition of an 
abstract data type
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The type i is known as the witness type. Once an abstract type has been created, it is |

impossible to discover what this type is in reality. The type defined has three fields: a value 

field of the witness type z; an increment field which is a function from i to z; and a display 

field which is a procedure that takes an z as a parameter.

In an analagous manner to the creation of structures, the name of the type is used to create f

an instance of an abstract data type. Example 15 shows the creation of an instance of the %

type number, in this case the witness type is integer.

let adtl = numberf int ]( 1 ;
proc( X : int-> int ) ; x + 1 ; 
proc( X : int ) ; writei( x ) )

example 15 
the creation of 

an abstract object

Similarly, another instance of the same type, number, could be created, with string as the

witness type. The implementation shown in example 16 uses tabular ( base 1 ) arithmetic.

let adt2 = numberf string ]( "1 " ;
proc( X :string-> string ) ; x ++ "1" ; 
proc( X : string ) ; writei( length( x ) ) )

example 16
the creation of ,

another abstract object |

The two objects denoted by adtl and adt2 both have the same type, that is,

abstypef i ]( value : i ;
increment : proc( i *•> i ) ; 
display : proc( i )

or number for short. They are assignment compatable, may be passed as parameters in place 

of each other and so on. Furthermore, the two implementations are indistinguishable since |  

they exhibit the same operational semantics.

The types described are truly abstract, they exhibit the same semantics yet have totally 

different implementations. Obviously, disaster would ensue if a witness types from one 

implementation were supplied to a function from another. Consequently, Napier utilises a *
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scoping mechanism to ensure that this may never happen. Witness types may roam free of 

abstract data types only within a restricted scope.

In example 17, below, a function called useabs is defined. It takes an instance of the abstract

data type number as a parameter. In the body of the function, a value of witness type is

extracted from the abstract type, as is the display and increment proedures. These are

extracted to avoid repeated dereferencing of the object. The function display is called to

show the value of anumber. The value anumber is then incremented using the increment

function. The value of the function is again displayed before the value incremented is finally

assigned to the loaction value in the abstract type.

let useabs = proc( anum : number )
use anum as this in
begin

let anumber = this( value ) 
let display = this( display ) 
let increment = this( increment ) 
display( anumber )
let incremented = increment( anumber ) 
displayC incremented ) 
this( value ) := incremented

end

example 17 
a procedure that uses 

an abstract object

The function defined in example 17 may be supplied with the objects adtl or adt2 as 

parameters since these are both of type number. The fact that the implementations of adtl 

and adt2 are different does not matter; it is this implementation that has been abstracted over. 

In both cases, the first call of display will write "1" and the second call will write "2". In 

both cases, the abstract value "2" is assigned to the field value in the abstract type.

The key to the protection mechanism is the renaming that is performed.The object bound to 

the identifier adt2 is bound to the identifier this. The location denoted by this is constant. 

Furthermore, the scope of this is limited to the block associated with the use clause.This is 

the only way in which abstract objects may be dereferenced ensuring safety.
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This mechanism may seem unnecessarily restrictive. However, it is necessary if static type 

checking is to performed on abstract data types.

4.3.10.1 Potential Problem Areas

The first potential problem area is in abstract data type creation. In order to produce an 

efficient implementation it is desirable for addresses to be calculated statically whenever 

possible. When the fields of objects may be of different sizes, as is the case with abstract 

types, this is clearly a problem.

The use of abstract data types also creates problems. Notice that in example 17 the compiler 

can not determine statically which implementation of the abstract type is being used. The 

objects referred to anumber and incremented may be of different sizes and reside on 

different stacks. This is the same problem as that encountered with parametric 

polymorphism.

4.3.10.2 P.A.M. Implementation of abstract data types

The mechanisms used to implement parametric polymorphism may also serve to implement 

abstract data types. Since abstract data types are first class data objects in Napier, they may 

be passed around freely and placed in the persistent store. Therefore, the technique of 

holding dynamic tag information in procedure closures is not sufficient to implement 

abstract data types. However, the tags may be carried around in the object that implements 

the abstact type. Furthermore, it is possible to calculate the addresses of the tags statically.

It is desirable to be able to calculate not just the addresses of the tags, but the addresses of 

all the fields of an abstract data type. Clearly, since the objects may be of differenrt sizes, 

and may be pointer or non pointer types this creates a problem. The solution is to use the 

double scalar, double pointer technique discussed in the previous section in connection with 

polymorphic objects.
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Abstract data types in Napier are implemented as structures with each field of witness type 

being allocated two addresses, one for the pointer type and one for the non-pointer type.

The last fields in the structure contain the dynamic tags for the witnesses followed by the 

constancy bitmap found in all structures. This technique allows all the addresses to be 

calculated statically.

When a use clause is executed the dynamic tags are extracted from the abstract data type.

These are placed on the execution stack and the block associated with the use clause 

executed. Once the dynamic tags have been placed on the stack the situation is 

implementationally identical to the situation found in polymorphic procedures. The fields in 

the abstract type may be dereferenced in order to extract or assign values using the poly 

subscript instructions already provided to support parametric polymorphism.

4.3.11 Debugging Support

The predecessors of PAM, the S-algol and PS-algol abstract machines both have an 

instruction called line number. This instruction takes as a parameter an integer representing 

the line number of the current instruction sequence. When this instruction is executed the 

parameter is saved in a register. Thus, the line on which an error occurs may be displayed.

This scheme may be extended so that when a procedure call is executed the line number of 

the current line is saved in the calling frame and a new line number stored in the register. 

Therefore, a complete calling sequence may be reported by traversing the dynamic chain.

In an environment where only one source program is running, this technique works well. 

However, in PS-algol, the use of first class functions and separate compilation means that 

line numbers do not uniquely identify lines of source code. Consequently, a more 

sophisticated mechanism is required, and the Persistent Abstract Machine is designed 

accordingly. ^
I

When PAIL code is generated a literal pointer instruction is planted in the code stream. This i
i

instruction operates in a similar manner to the new line instruction but places a pointer to ]

.1
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some abstract source from the code stream into a location in the currently active frame. This 

links the source code with the currently running procedure. When an error occurs it is 

possible to display thé source code of where the error has occurred to the user.

Since the source is stored in the currently active frame the dynamic call chain may be 

displayed to the user. The abstract code PAIL contains context information so that the static 

environment may also be shown.

PAIL code is decorated by the compiler with address information of the identifiers in the 

current procedure. This information is all that is required to allow the user to browse over f

the name-value bindings stored in the frame. When and how this may be done remains 

unresolved.
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If a programmer has encapsulated information within an abstract data type it is safe to # 

assume that data was intended to be hidden. If a fault occurs in that abstract data type, 

should a debugging system be allowed to examine the contents of that abstract data type? It 

is not clear what the answer to this question is. On one hand there is a practical argument 

that says if data which may have been expensive to gather is held in an erroneous program 

there should be some mechanism to retrieve that data. On the other hand there is the purist 

view that says that if data has been encapsulated any discovery of hidden types is a breach 

of type security and hence modularity.

4.4 Conclusions

This chapter has described the important features of the Persistent Abstract Machine. The 

predecessors of the current machine have been examined briefly. The good parts of 

machines predecessors have been retained or modified in the new machine and the bad parts 

discarded. It is only through implementations that it is possible to make this distinction 

between good and bad.



The Persistent Abstract Machine is an implementation vehicle for language and system 

experimentation. As such it has been designed with modularity in mind arid therefore does 

not contain any language specific support. Instead, it supports a wide range of typed 

algorithmic languages. Most importantly, the machine is independent of the type system of 

the languages which it supports. It is also independent of the persistent object management 

system that supports it, allowing experimentation in this field to continue independent of 

abstract machine design. This decoupling will aid our future experiments.

Perhaps the most important part of the machine is the way in which it implements 

polymorphism. The machine implements universal polymorphism over objects of different 

sizes in an efficient manner. The scheme used to support polymorphism may be extended 

without modification to support a powerful notion of abstract types. It is thought that this 

mechanism may also be used to support inclusion polymorphism. This will be the subject of 

further investigation.
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5 Abstract Program Graphs

5.1 Introduction

During the compilation process a compiler collects and collates a vast amount of information 

about a program. This information is gleaned from the program source and from a few rules 

that have been programmed into the compiler itself. All the information gathered by the 

compiler is therefore contained in the original source program. The internal form of the 

information created by the compiler is a convenient form for the compiler to manipulate. The 

program source has been designed for use by human beings.

The information gathered by compilers is varied in nature. Much of the information is 

concerned with the use of names: such as where is a name introduced; where is it used; what 

type is associated with a name; what values are associated with a name and so on. The 

compiler also holds context sensitive information, that is, information that cannot be 

extracted from the source without knowledge of the semantics of the programming 

language. The use of names is context sensitive since it is only by context that the compiler 

or human reader can tell which name is being referred to.

The traditional view of the compilation process is that compilers are gathering information 

so that a semantically equivalent form of the source may be created by the compiler. This 

form is usually represented in a lower level language such as assembly language or abstract 

machine code.

5.2 Traditional Compilation Systems

Once the compiler has achieved its goal and created another form of the program all the 

information that has been gathered by the compiler is usually discarded. The reason for this 

is probably due to technological problems such as efficiency considerations. For example, 

in a traditional system the compiler reads in a source file and produces another file usually 

containing assembly language. Both the source and the result of the qompilation are linear 

streams of information suitable for storage in a file.
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This is in sharp contrast to the highly structured information created within the compiler. 

Generally, this information may be a graph structure containing symbol tables of name 

information, perhaps lexicographically scoped and abstract syntax graphs denoting 

operations on data.

Traditional architectures provide support for manipulating complex data structures in RAM 

but do not provide support for saving these data structures on disk. In such a system it is 

cheaper to reconstruct information from the source file rather than attempting the saving and 

restoration of structured abstract information.

Most operating systems do not provide any binding mechanism between files. This makes it 

almost impossible to bind the source to the executable version of a program. Thus, when 

presented with an executable program the user has to trust that it will do what he or she 

expects. Preferably, the source would be tightly bound to the executable program so that a 

user could check that the procedure source corresponded to the program intended.

A number of consequences arise from this. Perhaps the worst is the poor diagnostic 

information given by these systems. A typical Unix error message is:

segmentation violation - core dumped 

The user may examine the core file produced by the system but this is of little help unless 

the program has been compiled with the debugging options set on the compiler and the user 

has the source of the program. Often the user is left to guess what the error was and where it 

occurred.

Another problem with discarding information gathered by the compiler is that some 

optimisations are not possible. A class of optimisations, known as peephole optimisations, 

may be performed on executable code. To do these optimisations no knowledge is needed of 

the source code. A much larger class of optimisations require information contained in the 

source program. A convenient form of this information is contained in the data structure 

created and discarded by the compiler.
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5.3 Persistent Systems

In persistent systems any data may persist for as long as it is reachable. This data may 

include structured data such as the abstract program graphs constructed by the compiler. In a 

persistent system, it is possible to save the abstract program graphs created by a compiler. 

This is also possible in a conventional architecture it is, however, neither practical nor 

convenient. The abstract representation of the program may be bound to the executable form 

produced by the compiler tying a representation of the program source to the executable 

code.

Since the information stored in a persistent system is potentially long lived a canonical form 

of the abstract data graphs is required. This form may then be manipulated not just by the 

compilers in the system but by the optimisers and the diagnostic and utility programs in the 

system, for example, by syntax directed editors. In the Persistent Information Space 

Architecture ( PISA ) this canonical form is provided by the Persistent Architecture 

Intermediate Language, known as PAIL.

5.4 Persistent Architecture Intermediate Language

Abstract program graphs are not a fundamental requirement of system construction. It is 

possible to compile languages directly, perhaps using multiple passes, into a lower level 

code. Diagnostic information may be provided from the source rather than structured 

information. However, the provision of an abstract form of programs is an efficient and 

convenient way of representing programs more suited to manipulation by a program than by 

human being. The decision to have PAIL in the system is therefore an engineering decision 

and not a necessity.

The compilation system uses PAIL to store structured information about a program. PAIL 

graphs are much more structured than source code programs. This allows information to be 

gleaned from them much more readily. For example, it is easy to find where objects are 

declared and where they are used from the PAIL graph. It is essential that this kind of 

information is easily obtainable if good optimisers are to be written.
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This is in sharp contrast to the highly structured information created within the compiler. 

Generally, this information may be a graph structure containing symbol tables of name 

information, perhaps lexicographically scoped and abstract syntax graphs denoting 

operations on data.

Traditional architectures provide support for manipulating complex data structures in RAM 

but do not provide support for saving these data structures on disk. In such a system it is f  

cheaper to reconstruct information from the source file rather than attempting the saving and 

restoration of structured abstract information.
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Most operating systems do not provide any binding mechanism between files. This makes it 

almost impossible to bind the source to the executable version of a program. Thus, when 

presented with an executable program the user has to trust that it will do what he or she 

expects. Preferably, the source would be tightly bound to the executable program so that a % 

user could check that the procedure source corresponded to the program intended.

A number of consequences arise from this. Perhaps the worst is the poor diagnostic 

information given by these systems. A typical Unix error message is:

segmentation violation - core dumped 

The user may examine the core file produced by the system but this is of little help unless 

the program has been compiled with the debugging options set on the compiler and the user 

has the source of the program. Often the user is left to guess what the error was and where it 

occurred.

Another problem with discarding information gathered by the compiler is that some 

optimisations are not possible. A class of optimisations, known as peephole optimisations, 

may be performed on executable code. To do these optimisations no knowledge is needed of 

the source code. A much larger class of optimisations require information contained in the 

source program. A convenient form of this information is contained in the data structure 

created and discarded by the compiler.
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5.3 Persistent Systems

In persistent systems any data may persist for as long as it is reachable. This data may 

include structured data such as the abstract program graphs constructed by the compiler. In a 

persistent system, it is possible to save the abstract program graphs created by a compiler.

This is also possible in a conventional architecture it is, however, neither practical nor 

convenient. The abstract representation of the program may be bound to the executable form 

produced by the compiler tying a representation of the program source to the executable 

code.

Since the information stored in a persistent system is potentially long lived a canonical form 

of the abstract data graphs is required. This form may then be manipulated not just by the 

compilers in the system but by the optimisers and the diagnostic and utility programs in the 

system, for example, by syntax directed editors. In the Persistent Information Space 

Architecture ( PISA ) this canonical form is provided by the Persistent Architecture 

Intermediate Language, known as PAIL.

5.4 Persistent Architecture Intermediate Language

Abstract program graphs are not a fundamental requirement of system construction. It is 

possible to compile languages directly, perhaps using multiple passes, into a lower level 

code. Diagnostic information may be provided from the source rather than structured 

information. However, the provision of an abstract form of programs is an efficient and 

convenient way of representing programs more suited to manipulation by a program than by 

human being. The decision to have PAIL in the system is therefore an engineering decision I 
and not a necessity.

The compilation system uses PAIL to store structured information about a program. PAIL 

graphs are much more structured than source code programs. This allows information to be 

gleaned from them much more readily. For example, it is easy to find where objects are -I

declared and where they are used from the PAIL graph. It is essential that this kind of 

information is easily obtainable if good optimisers are to be written.
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If diagnostics are to be produced by a compiler or run time system, complete information is 

required. However, only the source of the original program has any meaning to the user. 

Therefore the original source must be reproducible from the intermediate form. This is an 

important consideration when performing optimisations. Poor diagnostic information in 

systems often results when an optimising compiler is used. Thus, the source program is J

always reproducible from a PAIL program.

5.4.1 PAIL graphs

PAIL is not a textual language, that is, it does not have a concrete textual linear syntax.

PAIL consists of a number of structure classes or types. A valid PAIL program comprises a 

collection of instances of these classes linked together to form a graph structure. Any valid 

PS-algol or Napier program may be represented by a PAIL graph.

PAIL comprises of thirteen semantic classes, described below. These classes support all 

aspects of computation supported by PISA.

1. Basic tree structure

2. Symbol table entries

3. Control

4. Assignment

5. Store Allocation

6. Indexing i

7. Aliasing

8. Scoping 1

9. Store to Store operations

10. Literals

11. Application
1

12. Comments
»

13. Optimisations ■2
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These classes are described fully elsewhere [dear87]. To give the reader a flavour of PAIL 

some of the more important PAIL classes are described below using the Napier type system. |

5.4.1.1 Basic tree structure

The basic unit node in a PAIL tree is a node of type tree:

rectype tree[t] isstructure( Type : TYPE,
Code : t.
Parent : Parent[t ] )

&
paient[t]isvariant( Empty : null;

Tree : tree[ t ] )

I

-■s

This structure class is used to hold type information, abstract code and context information 

together. The field Type holds an encoding of the type of the subgraph referred to by Code,

Types are represented by abstract types that are created by the type checker. The typing of 

graphs is crucial to the integrity of the system and to the production of efficient code. The 

field Code refers to an arbitrary piece of PAIL code. Since PAIL is a graph structure, a 

PAIL program may share common sub structures. However, PAIL may also have tree 

structure imposed on it. By following the Code fields of tree nodes from the root, a tree f

will be traversed that includes every tree node in the PAIL graph. The field Parent is a l |

reference to the node immediately above the current node in this tree. This allows an entire --4

PAIL graph to be reached from a leaf node in the tree providing contextual information.

5.4.1.2 Symbol tables

The class link below is used to hold information on names that have been declared. The 

fields manifest, retained and primitive are used by code optimisers. Manifest is set if the 

value is constant and known at compile time. Retained is set if the value is referred to by a 

value that escapes the current scope, that is if block retention is required. The field Primitive 

is true if the value is implemented by the architecture.



type link is structurée Name : string;
Type : TYPE ;
Initial : PAIL ;
Manifest,
Retained,
Primitive :
Constant : bool 
Addr : location )

&
location is variante New : null ;

Stack : StackPos )
&

StackPos is structurée Frame,MSoffset,PSoffset : int )

Links are stored in symbol tables. Symbol tables are implemented as structures with the

following type description:

rec type symbolTable is variante Empty : null ;
Table : symTab )

&
SymTab is structurée lookupLocaie string > link ) 

lookupRece string > link )
InsertEntrye string,link )
EnclosingScopee > symbolTable )
EnterScopee symbolTable- > symbolTable )
ScanScopee proce link ) )

All contextual information is stored in symbol tables. The lookup functions allow names to

be looked up in the current scope or in lexicographically nested scopes. Declarations are

made in a scope level using the insertEntry procedure. The EnterScope procedure allows

new scopes to be created at any scope level. The enclosing scope may be retrieved using the

EnclosingScope procedure. A final procedure ScanScope is provided which applies the

function supplied as a parameter to every link in a symbol table,

5.4.1.3 Control

The PAIL classes in this section all influence program flow control. There are constructs 

here that allow sequencing, choice, repetition and exceptions to be expressed, and and or are 

also included in this section since they are not strict in their second argument and thus, also 

affect flow control.
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5.4.1.4 Assignment

type assign is structure( Lhs : link ; Rhs : tree[PAIL] )

This class denotes assignment. All assignments in the system are represented using this 

class. The field Lhs is a link denoting a location in the system.

source:

PAIL code:

El :=E2

assign
RhsLhs

link
^  ElName tree

Type CodeType Parent
Initial
Manifest
Retained
Primitive

type of E2 code for E2Const
Addr

figure 1 
PAIL for an assignment

5.4.1.5 Store Allocation

PAIL provides mechanisms to construct all the higher order objects in the system. This 

includes structures, vectors, abstract data types and images. One class is provided that 

represents the construction of each of these types.

Also included here is the class that denotes declarations. The example below shows how the 

PAIL code forms a graph allowing important information to be reached by more than one 

route. In general, the declaration will be part of the body of some scope level. That scope 

level will be represented by a symbolTable described above. The link for the declaration will 

be inserted in the symbol table using an InsertEntry procedure and will therefore be 

reachable from both the symbol table representing the current scope and the declaration.
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Thus, from a symbol table it is possible to find all the declarations made in that scope.

Although this kind of information is contained in the source code it is tedious to extract.

type Decl is yariant( simple : SimpleDecl ;
recursive : RecDecl )

&
SimpleDecl is structure( Exp : PAIL ; Symbol : link )

&
RecDecl is list[ Decl ] 

source: let I -  E

PAIL code:

SimpleDecl link
SymbolExp Name

^  type of I
Initial
Manifest

code for E Retained
Primitive
Const
Addr

figure 2
PAIL representing a declaration

5.4.1.6 Indexing

The classes in this section allow objects to be indexed. Many different objects may be 

indexed in PAIL including structure, vectors, images, pixels and strings. Two indexing 

operations are provided these denote the indexing of objects to produce values and 

locations. Locations are yielded when a value is assigned to part of an object,

5.4.1.7 Scoping

Two mechanisms exist in PISA to introduce a new scope level, these are by the introduction

of a new block or procedure literal. These are echoed in PAIL by the two classes, block and

ProcDesc. The first of these modeling block entry and exit the second procedure

declarations. Examples of these classes are shown below:

type block is structure( Symbols : symbolTable ;
Blockbody : PAIL )

source: begin E end

PAIL code:
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block
SymlK)IS Blockbc>dy

link
Name
Type
Initial
Manifest
Retained
Primitive
Const
Addr

SymbolTable

figures 
block structure

type ProcDesc is structure( Resultype : TYPE
Parameters : cons[ link ]
Body : tree
Symbols : symbolTable )

source: proc( E1,E2 -> E3 ) ; E4

PAJL code:

123
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ProcDesc
SymbolsResultype Parameters Body

E3
tree

CodeType Parent

Type of E4 Code for E4
cons cons

SymbolTable

link
#-E2ElName Name

Type Type
Initial Initial
Manifest Manifest
Retained Retained
Primitive Primitive
Const Const
Addr Addr

figure 4 
procedure definition in PAIL

5.4.2 Support for system building

Since PAIL code is part of a persistent system it is potentially persistent. This means that 

rather than merely be an intermediate form used in the compilation system it may support 

many activities performed within the PISA system building domain. PAIL provides support 

in the following categories:

1. Code generation

2. Debugging

3. Optimisation

4. Syntax Directed Editing

1

I
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5. Distribution

6. Protection

Each of these are discussed below.
* ‘Ï

5.4.2.1 Code Generation

Code generators in PISA take as a parameter PAIL code and produce executable code in

some lower level language. During this process code generators may decorate PAIL trees

with additional information. For example» during code generation the run time stacks are

simulated allowing the address of identifiers to be calculated. This information is added to

the address.info field of links whenever a declaration is encountered in the PAIL graph.

PAIL aids the code generation process where multiple passes are required over data. An

example of this is in the rec let construct of Napier,

rec let a = proc( > string ) ; b() & 
let b := proc( > string ) ; c & 
let c := ’’heUo"

In order to generate code for such a construct, it is necessary first to traverse that PAIL 

graph calculating the addresses of all the declarations. Once this has been achieved the code 

for the constructs may be generated. This code will, in general, involve the use of the 

locations whose addresses have been calculated during the first pass.

The provision of PAIL also aids the generation of efficient code. An example of where this

is useful is in the code generation of polymorphic functions with type declarations in them.

The following Napier example illustrates this,

let aproc = proc[ t ]( x : t -> structure( a : int ; b : t ) ) 
begin

type tricky is structure( a : int ; b : t) 
tricky( 3,x )

end

This program declares a procedure, called aproc, quantified by a type t. Within the 

procedure body a structure class called tricky is declared. This structure has two fields, a 

and b, being of type integer the quantified type t respectively. The procedure creates a 

structure of type tricky. This structure contains the literal 3 and the polymorphic value x that 

is supplied as a parameter to the procedure. The structure created is returned by the
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procedure. In Napier polymorphic procedures are always specialised before they are used, 

for example writing,

aprocf string ] 

specialises the procedure to a procedure of type,

proc( string > struchire( a : int ; b : string ) ) 

and writing,

aproc[real] 

specialises the procedure to one of type,

proc( real > structure( a : int ; b : real ) )

In each one of these cases the addresses of the fields a and b are different ( see chapter on 

PAM ). As a consequence, code must be planted to dynamically calculate the addresses of a 

and b. This calculation would normally be planted in the code at the position corresponding 

to the position of the type declaration. However, this is not the most efficient place to 

perform the calculations. All the information necessary is known when the procedure is 

being specialised. The calculations could therefore be performed at specialisation time, once, 

rather than potentially many times during each call of the procedure. This technique is 

sometimes known as hoisting and is commonly practiced by writers of applicative systems.

The provision of PAIL allows the necessary PAIL code to be referenced at a position in the 

code corresponding to specialisation. The code generator will calculate address information 

when it first traverses the type declaration in the specialisation code. When the code is 

reached a second time, in the procedure body, the address fields of the link structures will 

have already been decorated and no further code will be generated.

S.4.2.2 Debugging

Good diagnostic information is extremely important in any system. When an error occurs 

the user wants to know what happened and why. In order to do this several pieces of 

information are required. The first of these is what piece of code was running when the 

error occurred. This is especially important in a persistent system where it is possible to
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write seamless systems [mor85] in which the flow of control may transparently move from 

one compilation unit to another.

The second piece of information the user will require is the state of the machine when the 

error occurred. The state of the machine includes the values in locations and the dynamic call 

sequence leading up to the error. ÿ
i-

In many systems, when an error occurs, the user is provided with a symbolic debugger |

which allows debris to be examined. Sometimes, even this is not possible unless the 

program has been compiled with flags set on the compiler. Newer systems recently 

appearing on the Apple Macintosh [thi86a,thi86b] provide an integrated environment that 

allows the writing, development and testing of programs. However, these systems only 

allow relatively small programs to be developed. In the Napier system we wish to provide ;

good diagnostic information all the time - not just whilst the program is an experimental 

phase.

Diagnostic information is supported in the Napier system by PAIL. PAIL code contains all 

the information contained in the original source program. This information is augmented by 

the code generators which decorate PAIL code with address information. Thus, once the 

PAIL code has been code generated it contains all the information required by a diagnostic 

program.

References to the PAIL code are planted in code vectors containing the abstract machine 

code ( see chapter 4 ). This binds the PAIL code and the abstract machine code together.

When the code is executed a reference to the PAIL code is loaded into the currently active 

frame. This PAIL code includes the symbol tables discussed above and therefore contains 

the address information for the frame. When an error occurs it is possible to reconstruct the 

source code from the PAIL code allowing the user to examine what code was running when 

the error occurred. The symbol tables provide the necessary address information so that the 

diagnostic program may display the values bound to locations in the frame.
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The frames on the dynamic call chain also contain pointers to the PAIL code for their 

source. This allows the diagnostic program to display the calling sequence to the user. 

Values in the static scope of procedures may be accessed via the display held in each frame. 

The address of these values may also be determined by the address information bound to the 

PAIL code.

S.4.2.3 Optimisation

PAIL may be used to assist program optimisation at various times throughout the program

life cycle. The first of these is compile time. Many programmers add extra declarations to

programs for clarity of reading. These declarations do not necessarily map onto a location at

run time. The best example of this is manifest constants. The programmer may write

something like the following program segment,

let debug = false

if debug 
then something 
else somethingelse

The pail for this construct is as follows,

Sequence linkSimpleDecl
this ^  "debug' 

^  bool
NameExp Symbol
Type
Initialnext

^  trueManifestliteral
Retainedfalse
Primitive

^  trueConst
Addr

Sequence
this

ElseCond Then

next

something something else

I

figures 
unoptimised PAIL
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Here, the result of the test for debug being true is always known statically i.e. at compile 

time. There is no reason to compile the code for the something else clause since it can never ^

be reached. Likewise, the code for the test does not have to be planted at compile time nor 

executed at run time. Finally, no location associated with debug needs to be created. This 

technique is known as constant folding.

The detection of manifest constants may be performed statically in a single pass over the 

data. However if the code is compiled into the following program segment.

Sequence

 ^  something

fi^ re6  
optimised code

and an error occurs, the user cannot be shown the original code that he or she wrote. This

leads to poor diagnostic messages being produced by the system. Poor diagnostic messages

are often associated with optimising compilers and is a symptom of compilers discarding

information. PAIL provides an optimisation node of the following type, '%

type optimised is structure( Optimised,NonOptimised : PAIL
Info : string )

The field Optimised contains optimised code semantically equivalent to the original PAIL 

code contained in the NonOptimised branch. This class allows the original information 

contained in the program to be retained whilst providing improved code sequences that the 

code generators may follow.

The optimised PAIL for the above clause is as follows.

I
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Optimised
Optimised InfoNonOptimised

Sequence linkSimpleDecl
"debug' 

^  bool
this NameExp Symbol

Type
Initialnext

^  trueManifestliteral
Retainedfalse
Primitive

^  tmeConst
Addr

Sequence
this

ElseCcmd Then

next

something else
something

figure? 
optimised PAIL code

Some compile time optimisations cannot be performed in a single pass. In these cases, PAIL 

provides a framework on which to hang optimised sequences of code. One example of this 

is the hoisting technique discussed above.

PAIL code also provides support for late optimisation. PAIL code is referenced by 

Persistent Abstract Machine code. This allows optimisations to be made to the machine code 

very late. It has been suggested by Garrick and Munro in [car87] that this optimisation could 

be performed lazily by the system during quiescent periods. Late code optimisation could 

also be performed by a background process with the optimisation only being performed on 

frequently used pieces of code. In this way, the system could tune itself dynamically 

depending on usage. This technique is only practical if complete source information is 

available at run time.

I
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S.4.2.4 Syntax Directed Editing

PAIL is the abstract syntax for the languages supported by the Persistent Abstract Machine. 

The discussion above has centred on traditional compilers transforming source code into 

PAIL code. However, PAIL may be produced by programs other than compilers. In 

particular, it may be produced by syntax directed editors.

I

f

Syntax directed editors are tools which assist programmers to construct valid syntactic 

programs. They do this by providing the user with templates. Each template corresponds to 

one construct in the abstract syntax of the language. For example the user may be presented 

with the following template,

if <clause:bool> then <clause:T> else <clause:T> 

representing an if clause in the language. The parts in italics are known as stubs and may be § 

selected by the user and expanded into some concrete syntax. The syntax directed editor 

ensures that the user many only assign valid clauses to these stubs. In some syntax directed 

editors this is limited only to syntax checking in others such as the Cornell Program 

Synthesiser [teiSl] type checking is also performed on the clauses substituted for stubs.

Templates like the one shown above may be mapped directly onto the abstract syntax of a 

language. For example, the construct above maps directly onto the PAIL choice construct, 

type If is structurée Choice : PAIL ; Then,Else : tree[PAIL] )

The following PAIL data structure may be constructed by a syntax directed editor for the 

program,

if El then E2 else E3

;
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Cond

Code for El

tree

tree
Then Else Type Code Parent

r
Type of E3 Code for E3

Type Code Parent

f ^ r
Type of E2 Code for E2

figures 
i f .. then .. else 

represented in PAIL

Similarly, all the constructs in the Napier language may be mapped onto PAIL constructs. 

PAIL forms the ideal data structure on which to base a syntax directed editor for the PISA 

languages. This is expected to be the subject of future research.

54.2.5 Distribution

In a distributed persistent environment objects may be transparently moved from one 

machine to another. The principle of orthogonal persistence implies that users do not know 

where or how their data is stored. In other words, data is manipulated independently of the 

storage mechanism. In a distributed network of non-homogeneous machines this has 

serious consequences for the design of the architecture. Since the architecture supports 

procedures as first class data objects one of the objects that may be moved from machine to 

machine is code. This code must be capable of being executed on any of the machines in the 

network. If native code on one machine is moved to a different machine this clearly is not 

possible.

There is a need for a machine independent network language that describes procedures. 

PISA provides two of these. The first of these is Persistent Abstract Machine code. This 

code may be executed on any machine that has a PAM implementation. This code is not 

optimal since, in general, it wiU need to be interpreted. For this reason, a location exists
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within a PAM code vector to which alternative code vectors may be assigned. As an 

optimisation, native code vectors for any of the machines in the network may be assigned 

here. This location may be a reference to a vector of alternative code vectors if more than 

one alternative is required. In order to compile optimal native code for a machine, a second 

higher level representation of the procedure is required. PAIL provides a high level, 

machine independent description of procedures.

S.4.2.6 Protection

Protection of data from corruption and misuse is important in any system, however, it is 

especially important in a persistent system. The data on which a persistent program operates 

is not merely local data loaded into RAM. It may be long lived data that has been expensive 

to collect, this data is equivalent to data stored in a conventional database. It is essential that 

this data may not be corrupted by erroneous programs or malice.

The most common method employed to protect data, is the use of capabilities 

[nee74,wul74]. A capability gives a program the ability to perforai some operations on a 

collection of data. The data may be viewed as a segment or object. The capability may then 

be considered as an access mechanism for a particular object. That is, it gives the program 

the ability to operate on data within a particular segment or object. The kind of operation the 

program may perform on the segment depends on the type of the capability. Capabilities 

come in different flavours such as read or write capabilities, A program cannot read some 

data within an object without a read capability for that object.

In capability based systems the protection of capabilities themselves becomes crucial. Some 

protection must exist in the system to ensure that capabilities are not forged either 

accidentally or deliberately by programs. The results in the protection mechanism having to 

be protected, resulting in considerable complexity in the architecture.

When a program attempts to perform some operation on an object the capability that the 

program has must be checked. The more complicated the protection regime provided by the 

system, the more complicated and therefore expensive this checking will be. This expense is
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I
extremely costly in terms of program execution time. Research performed on the Cambridge 

Capability Machine [nee74] estimated that 1000 operations were necessary between 

capability checks to obtain acceptable performance. This is required in order to keep the cost 

of context switching small in comparison with the amount of computation that is performed 

in a context.

In order to achieve this efficiency target, compilers are required to compile checks away by 

that coalescing small objects into larger ones. In this way, one capability may protect many 

small objects. If this is possible many objects may be accessed with only one capability 

check. However, this may only be achieved if objects can be grouped statically. Whilst this 

is true for some objects such as code vectors, it is not generally true, many objects are 

bound dynamically and must therefore have separate capabilities. This is an intrinsic 

problem of capability systems and cannot be overcome.

Another common solution to the protection problem is for each process within the system to 

have its own address space. Each process may only access data within this address space.

The machine architecture prevents processes from accessing any data outside their own 

address space, protecting other data from misuse or corruption. This solution is common in 

modern operating systems like Unix.

The problems with each process having its own address space is twofold. Firstly, process 

creation is an extremely expensive operation. This expense has lead to the name 

heavyweight processes being adopted for this solution. Secondly, and more seriously, this 

solution complicates the sharing of objects between processes.

The protection of data from corruption is only necessary if the executing code cannot be 

guaranteed to operate safely. Code that has been produced by low level languages such as C 

or assembler may violate data. A simple example of this is shown in the following segment j  

of C code.

'■’î
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disasterO

*int a = 0 ;
while( ++a ) *a = (int) a;

}

This procedure will overwrite all the addresses in the address space with their own address.

If such programs are prevented from occurring the protection mechanisms described above I
may be discarded. This allows processes to share one address space without fear of objects 

being corrupted by rogue processes.
1

In PISA, the protection of data is achieved by a high level protection mechanism, this is |

provided by PAIL. All programs that wish to access the persistent store must be compiled 

into PAIL. PAIL is the lowest level at which access to the store is provided. The integrity of 

a PAIL program is checked by the code generator. If the program attempts some illegal |

operation on data the program will not be accepted by the code generator.

Not all languages may be mapped into PAIL, for example, languages that are not typed such 

as C or assembly language. The restriction of only allowing languages that may be compiled 

into PAIL into the architecture may seem restrictive but this is more than compensated for by

the simplification of the underlying architecture. -
4

5.5 Conclusions

PAIL is not an intrinsic requirement of the system, it is provided for engineering reasons. It 

has been shown how the provision of PAIL may support many different activities within the 

persistent architecture. These activities are wide ranging and include code generation, | l

debugging, optimisation, syntax directed editing, distribution and protection.
• I
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6 The Compilation Environment

6.1 Introduction

The languages in PISA are supported by the system building domain. In turn, this domain is 

largely written in the PISA languages. This chapter will describe the most reflexive layer in 

the architecture - the compilation environment. The compilers in the system are written in 

and compile the PISA languages. Their construction heavily utilises the facilities available 

within the persistent environment;

The compilation system described consists of a number of different modules each of which 

are specified by a type signature. Many different instances of particular modules may exist 

side by side in the persistent store. Each implementation of a module may present a different 

user interface to the outside world. An instance of a compiler may be constructed by 

composing instances of the different components. Compilers that appear to the user to be 

quite different, for example, that compile different languages, may share much of the same 

code.

The system is a complete software architecture for the creation and construction of 

compilers. The paradigm used is that of a tool set comprising of many different components 

each satisfying an interface specification. The components are all plug-compatible with the 

architecture framework. That is any instance of a module may be replaced by any other 

satisfying the same interface. Components may be mixed and matched to build a compiler of 

any flavour required.

Components are all inwardly compatible, that is they present the same interface to the 

compiler architecture. However, they may present completely different interfaces to 

components outside the compiler architecture. This is achieved by wrapping all components 

in generator functions.

S
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6.2 Advantages of using a persistent environment

The decomposition of a compiler into different sub-tasks has been well known for many 

years. Typically, compilers are described to undergraduate students as consisting of a lexical 

analyser, a syntax analyser, a code generator and so on [dav81]. However, these theoretical 

methods of constructing a compiler are often not strictly followed in order to gain improved 

performance. It will be shown that using a persistent store no significant overhead is 

incurred in space or time in building a flexible, modular system.

The space arguments will be examined first. Many programming languages [wir73,ker78] 

allow libraries of functions to be constructed. These are fragments of code that have been 

separately compiled and are thought of as being useful to a community of programmers. 

When an individual wishes to use one of these functions a binder is employed to copy the 

code in the library and bind it into a new program. Thus, if a compiler is constructed by 

building library functions every compiler constructed will have its own copy of the code. 

This is a crude form of software reuse. In such a system only copies of code are being 

shared and not instances of modules as in a persistent system.

In a persistent system, such as PS-algol [ps87], procedures may be stored in a type secure 

manner. Programs may link dynamically or statically to code in the database simply by 

indexing a stmcture class. In this way different programs may share instances of code rather 

than merely own a copy of the code. This method of building large systems is much more 

persistent space efficient than building libraries of functions and using a linker to obtain 

copies of the code. Furthermore, as the usage of a library function increases the greater the 

benefit firom using the persistent store, since in a library system more and more copies will 

exist in the system but in the persistent system only one version of the code will ever exist. 

Clearly, the persistent store subsumes the role of a conventional procedure library 

[atk85b,mor85]. The time overheads of using such a system will now be explored.

■'1
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Since PS-algol supports first class procedures, closures may be stored in the persistent 

information space. The user finds a procedure by navigating the persistent graph from a root |

of persistence. Once a procedure has been found in the persistent store it is indistinguishable 

from one declared in the main program. In other words, there is no difference between a 

closure retrieved from the persistent store and one declared locally. This implies that by 

using the persistent store no penalty is paid for decomposing large programs into modules - 

provided that a functional interface is used.

One time penalty that may be incurred in using the persistent store is the time taken to 

navigate the store to find the appropriate procedure. This operation is equivalent to linking in 

a conventional system. The navigation of the persistent graph may be performed at many 

different times. If the navigation is performed at a time earlier time than call time, the user 

does not have to pay this time penalty every time the code is used. The time at which 

binding is performed is discussed later.

The previous paragraphs compare the persistent store to conventional technology but other 

benefits may be gained by using a persistent information space.

Complex data structures may be created without concern of how to map them onto a linear 

secondary storage medium. A good example of this, is the symbol table package discussed 

in the chapter on PAIL. The symbol tables model lexicographical scope and contain both 

complex type information and initialising code for declarations. All this information 

automatically persists because it is reachable fi*om the executable code. If such a system was 

constructed using conventional software technology it would be extremely complex. A 

further benefit of using a persistent system, is the ability to control the way modules are 

bound together. This is discussed fully later.



6.3 Architecture Composition Rules

During the construction of the compiler tool kit a set of rules evolved. These rules may be 

considered to be a paradigm for constructing systems in a persistent environment. The rules 

are:

1. I/O independence

2. plug compatibility

3. binding independence

4. information hiding

5. encapsulation.

Each of these is examined below.

6.3.1 1/0 independence

The rule of 1/0 independence states that only one module should directly perform I/O. The 

input and output of information should be routed via single input and output modules. If this 

rule is followed, modules constructed will have a much higher degree of usability. To 

demonstrate this, imagine a lexical procedure to parse a real number. Such a procedure may 

be found in most compilers. Typically, if the procedure encounters an error it will display an 

error message. The use of the procedure is therefore limited to applications where the 

displaying of an error message is permissable. The procedure could not, for example, be 

used in a desk top calculator since it would destroy the display. If the procedure takes an 

error displaying procedure as a parameter it will be of greater utility, since an appropriate 

error procedure may be supplied by each application using the procedure. Careful control of 

the hidden interface of a module, not just the published apparent interface creates an 

environment in which more reuse is possible and therefore one in which software is cheaper 

to produce.

1
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1
6.3,2 Plug Compatibility

The second rule of plug compatibility states that each module should have a well defined 

interface and that modules with the same interface may be freely substituted for each other.

It is this rule that allows us to create a whole family of compilers by specifying interfaces 

and by having a number of different instances which conform to those interfaces.
4

Generators for the various compiler modules are placed in the persistent store 

independently. Typically, more than one instance of each module can be found in the 

persistent store. In order to construct a particular compiler, these components need to be 

joined together. A good analogy is haviiig several jigsaws all cut using the same pattern. A 

new jigsaw may be constructed by selecting pieces from different jigsaws. Provided that the 

pieces are placed in thé correct positions, a jigsaw displaying a new picture may be created.

One configuration of the architecture may be viewed pictorially in figure 1.
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The compiler tool set consists of many components. The interface of each component is well 

defined so that new versions of any of the components may be easily created and used in a 

compiler. The modules that comprise the components of the Napier compiler discussed 1

below.

■ I
The modules provided within the architectural framework include: input and output 4  

modules; error handlers, lexical analysers, syntax analysers, type checkers, code generators 

and symbol table packages.

The input and output modules are responsible for providing an abstraction over the file 

system or persistent storage facility. These modules essentially implement a functional {

interface to input and output streams. Thus, by substituting the input and output modules, 

one compiler may operate against the file system whilst an otherwise identical compiler may 

operate within the persistent environment.

This is a good example of how, using functional abstraction a module may exhibit different 

interfaces. The procedures supplied to the compiler tool kit must be of a certain type to 

satisfy the interface requirements. However, here we require one procedure to take a file as 

a parameter and the other to take say a string as a parameter. This may be achieved by 

encapsulating the required procedure in a generator function and partially applying it. For 

example, in this case we may have two generators hat return functions of the required type 

which have either a filename or the string bound into their environments. The generators are 

of different types, but that is not important since it is only the generated functions that must 

satisfy the architectural requirements The technique of using generator functions is 

discussed later in this chapter.

A single module is responsible for noting and reporting all compilation errors. This module 

interfaces with the output module which displays all ouQ)ut to the user.

The lexical analyser interacts with the input module to deliver a stream of tokens to the 

syntax analyser. The lexical analyser is parameterised by the terminal symbols of the
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grammar, the syntax analyser is parsing. This ensures that efficiency is preserved whilst 

maintaining module independence.

The syntax analyser does not interface with the primitive input or output systems. Instead, 

the most basic input is provided by the lexical analyser The interface between the syntax 

analysis module and the code generation module is provided by the Persistent Architecture 

Intermediate Language, PAIL [dea87]. Thus, the syntax analyser does not interface with the 

output system.

A type module is responsible for creating representations of programming language data 

types. A set of constructors and selectors are provided to create and decompose complex 

data types. The ability to perform type checking is also provided by this modules. To do 

this, the module provides predicates to test things, such as, equality of types. The 

implementation of the type system is completely contained within this module. Outside this 

module, nothing has knowledge of how types are implemented.

The code generators in the system accept PAIL from syntax analysers or other tools such as 

syntax directed editors. The provision of PAIL makes it possible to write language 

independent code generators. It also allows experiments in language design and language 

implementation to be carried out independently and in parallel. This is only possible because 

the machine has been decoupled from the language. The code generator does not output its 

results directly to the file system or persistent store. Instead, is produces a vector of integers 

containing PAM code. The PAM code is processed by one of two modules. The first of 

these is a code planter which outputs the code to the file system. The other, called magic, 

turns code into a closure within the system. This is the fixed point in the system and has to 

be written in a lower level of language, it is discussed later.

The compilation components, described above, are viewed as aids to the construction of a 

total compiler. Of course, they do not have to be used as such, being applicable in a number 

of other applications including spreadsheets ( parsers and lexical analysers ) and word
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processors ( lexical analysers ). Partial compilers may also be constructed, for example, 

merely as syntax checkers. Such tools have proved highly useful in the development of new 

language processors and type checkers.

6.3.3 Binding Independence

The third rule of system construction, binding independence, is not commonly practised by

programmers in persistent systems. In order for us to understand this rule let us consider

two procedures, written in PS-algol.

let examplel = procQ 
begin

structure container( procQ somethingUseful ) 
let aContainer = s.lookup( "usedByExamplel","database" ) 
let usedByA = aContainer( sometMngUseful ) 
usedByAQ

end

example 1

In this example the procedure first declares a structure type. This introduces a class along 

with some selectors and a constructor. In the second line of the procedure an object is 

looked up, using the key "usedByExamplel ", from a database called "database". Databases 

in PS-algol provide a persistent root. They have an associative lookup table attached to them 

by convention. The s.lookup function returns a pointer to the object associated with the 

named parameter. In the procedure, we are assuming that aContainer points to an object of 

class container defined in the first line. The procedure stored in the object is retrieved by 

indexing the structure. Lastly the procedure is applied. Notice that this procedure 

dynamically looks up the database to retrieve the procedure every time it is called. Such an 

action may be required in a development system where the most recent version of a 

procedure from a library is required. This code is typical of code written by PS-algol 

programmers.

1
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Ilet examplel = proc( pntr aContainer ) 
begin

structure container( proc() somethingUseful ) 
let usedByA = aContainer( somethingUseful ) 
usedByAQ

end

example 2

example2 is similar to examplel, it also applies a procedure obtained by dereferencing a $ 

structure of class container. There are a number of important differences between examplel 

and example2. These are examined below.

examplel has the strings "usedByExamplel" and "database" bound into it - leaving the user

with no option but to use the procedure stored in the appropriate table. It also leaves the user

of the procedure, with no option other than to bind dynamically to the data every time it is

executed. In the second procedure no information, apart from the structure class, has been

bound into the procedures* closure. This allows the procedure to be used in a number of

different ways which will now be examined. If the semantics of the first example were

required the user could write,

let synthsiseExamplel = procQ 
begin

let aContainer = s.lookup( "usedByExample 1 ", "database** ) 
example2( aContainer )

end

example 3

As in examplel, this procedure looks up the database every time, thus retrieving the most 

recent version of the procedure.

A user may, however, wish a static system with which to experiment without having 

possible changes to other modules affect the experiment. In such a case a static bind is 

required. This may also be written using example2 by producing a new procedure with the I

original function bound into its closure. This is illustrated in example 4, I



let staticExample = 
begin

let aContainer = s.lookup( "usedByExampler’,"database" ) 

procO ; example2( aContainer ) 1 this is the result
end

example 4

In this example, the container is looked up only once.The procedure in the final line is 

exported as the result of the block and bound to the identifier staticExample, The object 

pointed at by aContainer is statically encapsulated in the scope of the procedure. This is 

another example of the power of block retention.

The procedure synthsiseExamplel looks up the database every time - giving us a dynamic 

bind whereas the procedure staticExample has the structure instance aContainer in its 

closure, giving a static bind. In the compiler architecture all the modules have been written 

in the style of examplel giving the user the option of composing programs statically or 

dynamically. This is illustrated with examples later

6.3.4 Information Hiding

let saver = proc( int this > int ) 
begin

let temp = saved 
saved := this 
temp

end

examples
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The fourth rule, is that of information hiding. This has been known for many years and is ijJ

commonly practiced by users of abstract data types [lis74]. |

The rule that modules should be totally encapsulated is best understood by example. 

Consider the following program segment, once again in PS-algol. The procedure saves an 

integer and returns the last integer saved, 

let saved := 0

I



If two processes were to use such a procedure concurrently, the outcome would be

nondeterministic. This potential problem may be overcome by encapsulation. One way of

doing this is by wrapping the procedure in a generator as in example 6.

let saverGen = proc( > proc( int > int ) ) 
begin

let saved := 0 ! this is encapsulated

proc( int this > int ) 
begin

let temp = saved 
saved := this 
temp

end

! this is the procedure returned

end

example 6

As a result of this mechanism every procedure wishing to use saver, may do so safely by 

calling saverGen to obtain a saver with its own store. In this way, procedures may share 

code without having to share state. Notice that every saver produced has its own copy of the 

variable saved. Although this technique has been well known to researchers in persistent 

languages for some time it is, unfortunately, not commonly practiced. In the compiler tool 

set all of the modules are encapsulated in a generator so that each instance of a module 

operates entirely within its piece of store.

The rules of I/O independence, plug compatibility, binding independence, information 

hiding and encapsulation have proved to be invaluable in constructing the compiler tool kit. 

In the following sections we will see how these rules have been applied in practice.

6 .4 Compiler Composition

Below a compiler constructed from components is shown. The components are provided as 

parameters. The compiler is a conventional file based compiler, it reads input from one file 

and produces another file containing executable code, providing that the compilation was 

successful. It reports the compilation errors if it was not.
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let compiler = proc( input ! the types of these

errors 1 parameters are not given
types I for brevity v
lex ! these are i l  the generator |
syntaxGen ! functions.
codeGen 
planter 
environment 
filename )

begin
let source = input( filename ) ! get an input pack |
let syntax = syntaxGen( optionsQ, ! compiler options |

source, ! the input pack
errors, ! error reporting module
types, ! the type checker
lex ) ! lexici ananyser

let locahenv = environment( Create.scope )( environment )

let this.code = syntax( locaLenv ) 1 syntax analysis
! this code is either an error.pack or PAIL 
If this.code is error.pack ! check errors
then write "**** Compilation fails

"No of errors = ",this.code( No.errors )(),"'n"
else
begin |

write "***** Compilation Succeeds
let c.file = codeGen( this.code,global.env ) ! code generation
planter( code.f.name( file.name ),c.file ) 1 output code to file

end
end

example?

The compiler, shown above, is a typical compiler that may be found in the PISA system.

The simplicity of this complete compiler, is due to the fact that it operates by taking as 

parameters the plug in components provided by the architecture. First - an input module is |

generated by applying a generator function with a filename as a parameter. This is in turn ;|

supplied as a parameter with other generator functions to the syntax analyser generator. The 

syntax analyser generator is applied to provide a syntax analyser, with the components 

supplied as parameters to the generator bound into it. When this function is applied with an 

environment, the program is parsed and some output is generated. This is then tested to find 

out if the compilation was successful. If it was unsuccessful an error message is displayed 4

and the compilation is terminated. If not, code is generated by the code generator, which is 

then passed to the planter which outputs the code to the file system.
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Compiler components may be bound together statically or dynamically depending on the 

choice of the programmer. In some cases, for example when a new language system is still 

being developed, the user may want the most recent version of a particular module to be 

used. In this case, the programmer would use dynamic binding to combine the components 

as follows.

let dynamiccompiler = proc( string filename ) 
begin

let input = s.lookup( "input",comp.db ,)( Input,gen )
let errors = s.lookup( "error",comp.db )( Error.gen )()
let types = s.lookup("types",conip.db )( Type.gen )()
let lex = s.lookup( "lex",comp.db )
let sa = s.lookupC "sa",comp.db )
let cgen = s.lookup( "cgen",comp.db )
let planter = s.lookup( "planter",comp.db )( Planter.gen )()
let global.env = s.lookup( "global.symbol.table",comp.db )

end

compiler( input,errors,types,lex,sa
cgen,planter,global.env,filename ) ! call compiler in fig 7

example 9

I

example 8

At other times, a static system is required. This may be achieved by statically combining

components into a compiler. This is shown in example 9,

let staticcompiler = 
begin

let input = s.lookup( "input",comp.db )( Input.gen ) 
let errors = s.lookup( "error",comp;db )( Error.gen )() 
let types = s.lookup( "types",comp.db )( Type.gen )() 
let lex = s.lookup( "lex",comp.db ) 
let sa -  S.lookupC "sa",comp.db ) }
let cgen = s.lookup( "cgen",comp.db ) |
let planter = s.lookup( "planter",comp.db )( Planter.gen )() , |l
let global.env = s.lookup( "global.symbol.table",comp.db ) |

proc( string filename ) ! this is the result of the block
begin

compiler( input,errors,types,lex,s ! call the #
cgen,planter,global.env,filename ) ! compiler above É

end #
end '4
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Often, both of the binding mechanisms shown above are required in the same system. An 

example of this is when a compiler under development is released for others to use. A 

release compiler would consist of the modules bound statically together, as shown in 

example 9. Changes made to database modules cannot affect this release version, since it 

has a copy of the code bound into its closure. In the same system a development compiler #

like the one in example 8 may exist. In this compiler changes made to the persistent store %

will affect the compilers execution immediately.

The need for control over binding is of major importance in a persistent environment. The 

insight gained here, provided the motivation for the design and implementation of 

environments discussed in chapter 2.

6.5 First Class Compilers

The compilers we have seen so far aU accept input from and return output to the file system.

The PISA architecture, is totally self contained with no reliance on the external operating 

system. It must, therefore, support all programming activities. To this end, a mechanism is |

required to introduce compiled programs into the current environment. Doing this introduces 

a new set of problems to type checMng and machine design.
a

The first problem which must be overcome with compilers that introduce new programs into 

the system is assigning a type to the compiler. Since there are an infinite number of valid 

programs, the compiler must produce a value that is a member of an infinite union. The 

bindings to members of unions are dynamic bindings, this fits well with our requirements 

for typing the compiler. PS-algol contains one infinite union called pntr. It is the infinite 

union of all labelled cross products. The newer language, Napier, provides two infinite 

unions any, the infinite union of all types, and env the infinite union of labelled cross 

products. These allow a type to be prescribed to a compiler of this kind.

A compiler that introduces the compiled code into the environment is provided in the PS- 

algol system as a standard function. It is defined as follows,
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let compiler = proc( cstring filename, 
cpntr proc.holder 
->pntr)

This compiler, takes as a parameter, the name of a file containing source code. Using the 

compiler tool set, the source could be contained in a string or any other data type. The 

compiler is also supplied with a pointer to a structure. The class of this structure indicates 

the expected type of the compiled code. If the code contained in the file rs of this type and 

the compilation is successful the compiler will place the result of the compilation in a field of 

the structure and return a pointer to it. Otherwise an error structure is returned. An example 

clarifies this,

Suppose that the file XXX contains the following string,

"let aprocedure = proc() ; write "hello" ?"

The user may call the compiler, from another program, as follows,

structure procontainer( procO aprocedure )

let dummy = proc() ; {} 
let holder = procontainer( dummy ) 
let compiled = compiler( "XXX",holder ) 
if compiled is procontainer do 

compiled( aprocedure )()

example 10

The first line of the program declares a structure class capable of storing a void procedure. A 

structure of this class is passed to the compiler as a parameter. If the compilation of the 

program in file XXX is successful; a procedure containing the code described in the file 

XXX will be assigned to the field aprocedure of the structure. The success of the 

compilation is tested using the is predicate in the fifth line. If it is, the procedure is extracted 

from the structure and applied. This example will therefore write "heUo".

During a compilation the compiler, written in one of the PISA languages must turn a 

sequence of bytes representing a code vector into a procedure in the language. In the
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compiler tool set a module called magic turns a vector of op-codes into a procedure. This

capability must be carefully protected in the system. The magic module has the following

type in the PS-algol compiler,

structure PScode( *int Code.vec;
♦string String.vec ;
♦pntr Proc.vec ; 
int Ms.size,Ps.size )

let magic = proc( pntr PScode -> procQ )

This procedure takes as parameters, a vector of integers containing byte codes and some 

house keeping information, produced by the code generator and returns a procedure.

In order to coerce the function produced by magic into a procedure of any type a function

called coerce.proc is used. It has the following type,

let coerce.proc = proc( proc() Proc ;
cpntr result 
->pntr)

Once the compiler has checked the integrity of the source code produced and created a 

closure using magic it uses this procedure to put the closure into the structure provided. The 

two functions, magic and coerce proc implement the functionality described in example 10. 

Both these functions are written in low level code since they cannot be written in PS-algol. 

The compiler provided as a standard function in PS-algol system only compiles procedures. 

A better system would compile code to produce objects of any type. This ability is provided 

in the Napier system.

The more sophisticated type system provided in Napier makes it easier to type the compiler. 

There is no need to declare a structure type in order to introduce a new type into the system, 

instead the type any is used. The Napier compiler with the same functionality as the PS- 

algol compiler described above has the following definition,

let compiler = proc( source : file -> any )

■1
5

152

: i ÿ c A  À)-"-:-:' - 'i-s% î  ■ .



A Callable Compiler which reads from the users console and immediately executes the code 

produced is known as a compile and go compiler. Such a compiler may be used in a way 

which resembles a shell [bou78,joy80]. This shell is of much greater power due to the 

support of a full programming language. Compile and go environments have beep provided 

for applicative languages, like SASL, and so called A.I. languages such as LISP, for a 

number of years. These environments allow programs to be developed only using one 

language without the need for a command language. A compile and go environment to 

support the PISA languages introduces new problems discussed below.

The user may project from the any using a project clause. The example above with the same

file XXX would be written,

let compiled = compiler( "XXX",holder ) 
project compiled as choice onto 
procQ : choice( aprocedure )() 
default : {}

example 11

This example is less cumbersome than the corresponding PS-algol example. The project 

statement does case analysis on the type that has been injected into the any. The renaming of 

the value being projected is a mechanism to provide a constant binding on which to project.

A file or any other source medium containing the source of any data type may be compiled 

using this compiler. 5

Compilers that introduce values into the system are known as callable compilers, since they 5

may be called from within the persistent environment. Such compilers have proved to be of 

great utility in providing a richer programming environment; whilst maintaining a strict type 

regime. Callable compilers have been used to provide an object browser [dea88b] discussed

in the next chapter and an adaptive relational database implementation [coop87]. 'I
s

6.6 friteractive Compilers I
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To clarify, the aim is to provide a system in which the following dialogue is possible 

interactively.

user>
system>
user>
system>
user>
system>

let a -  3 
<nothing> 
let b = 7 
<nothing> 
write( a ♦ b ) 
21

example 12

The global naming of data is one of the problems originally intended to be tackled by PISA. 

Global naming is provided in PS-algol by the named databases in the system, and in Napier, 

by the provision of a persistent root. Only the Napier case will be considered here for 

simplicity. The persistent root, called ps, is the only global name provided in the system.

The compiler must be called every time the user enters a clause. In practice the user must

specify a terminator to indicate to the system that he or she wishes the entered text to be

processed by the system. If the terminator was a full stop character the interaction above

would look as follows,

user> let a = 3.
system> <nothing>
user> let b = 7.
system> <nothing>
user> write( a * b.)
system> 21

example 13

In such a system, every clause entered by the user is a separate compilation. Therefore, no 

global naming is available on a compilation unit basis. The only global naming is via the 

persistent root ps. It would be extremely tedious for the user to always have to specify the 

full path to the data. Such a system is shown below.

1
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user>

system>
user>

system>
user>

system>

let new = environment() 
in new let a = 3 
in ps let new = new. 
<nothing>
use ps as new : env in 
in new let b -  7. 
<nothing>
use ps as new : env in 
use new as a,b : int in 
write( a ♦ b.)
21

! create an environment 
! put binding <a:3> in it 
! put environment in ps

! specify where the env is 
Î add binding <b:7> to it

! specify where the env is 
I project bindings ffom env 
! write out the added value

I

example 14

This kind of interaction with a system would persuade the user that interactive systems were 

not for him or her. However, the interactive system may transparently perform the activities 

shown above. An environment is used to support top level bindings in the interactive 

system. It serves the same purpose as the environment called new above. Whenever a user 

makes a top level declaration in the system, it is transformed into a declaration in this 

environment. All other declarations, for example declarations within blocks or procedures 

are unchanged. This environment provides us, with the unbounded space we require to 

support declarations in an interactive system.

The interactive system must record all declarations made in the top level environment. When 

an unresolved name is found in the interactive compilation system, the name is checked in 

the outermost environment. If the name is in the environment and has the appropriate type, 

the value associated with that name is used in the code produced. In this way, the top level 

declarations are transparently simulated using environments. This allows dialogues like the 

one shown in example 13 to be supported.

There is a small time cost associated with looking up values in environments and performing 

type checking. However, the time cost is small in comparison to the real time domain of the 

user. The retrieval of values from environments, and the addition of bindings to 

environments is only required for top level user definitions. All other declarations, including 

those made within top level definitions, will have space allocated for them in the usual 

manner
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6.7 Conclusions

By combining instances of modules with slightly different functionality a rich set of tools 

may be provided. These modules may be bound together in different ways to provide an g

environment suitable for experimentation or production.

The compiler toolset has been implemented in PS-algol. The current tools available built 

from the components include callable compilers, batch compilers, interactive compilers and 

persistent information compilers. Currently, syntax analysers exist for PS-algol, Napier and 

Hope+ [per87,mcn87].
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7 Browsing

7.1 Introduction

A mechanism to display data structures is often required in database and programming 

language systems. Usually this requirement is satisfied by a tool known as a browser. 

Browsers are used extensively to traverse through the data structures found in database 

systems, often to gain insight into the behaviour of a complex and highly dynamic system.

They are also of great use in debugging and, if powerful enough, can be used to repair 

erroneous data stractures which may contain valuable information.

Browsers which operate on programming language data stmctures are equally useful for the 

same reasons. Unfortunately, they are seldom provided as programming language support 

tools. In a persistent environment, the data structures of the programming language and the |

long term data structures are the same. In such an environment, browsing tools have been 

observed to be especially useful. The chapter describes one method of constructing of such 

a tool.

I

IIn most powerful programming and database systems there are a potentially infinite number 

of types which may occur in the system. This presents a problem when writing a program to :|

browse over them. In general, one cannot write a static program to anticipate all of the types #

that may occur without resorting to some magic or a second level of interpretation. Object- 

oriented programming languages [gold83,bob81] with a few exceptions [sch85] avoid this 

problem by resorting to a combination of conventions and dynamic typing. For example, 

one solution to this problem would be for every instance of a class to have a print method.

This is not a safe solution to the problem since a print method may be overwritten by a 

method which performs a completely different function.

In a persistent programming language PS-algol [ps87], it is possible to write a browsing 

program which displays the language's own data structures. This may be achieved without 

resorting to conventions, having built-in functions or using second level interpretation.
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Using a mechanism in the language, the program is, however, allowed to discover the types 

of objects. The technique demonstrated utilises a compiler which is a, first class citizen in the 

language environment. This kind of compiler is discussed in the chapter 6.

PS-algol has powerful raster and vector graphics facilities which are an integral part of the 

language, these are discussed chapter 3. Only one graphics procedure, the menu function is 

used in the browser, this is discussed below for completeness.

7.2 Graphics

The menu function, like many of the predefined functions, is written in PS-algol. The 

procedure menu generates another procedure which interacts with the user by displaying a 

menu on a bit mapped screen at the coordinates supplied as a parameter. This menu will 

have title title and entries taken from the vector of strings called entries. When the user 

makes a selection from the menu the corresponding procedure from the vector of procedures 

actions will be called, menu is defined as follows:

let menu = proc( string title ;
♦string entries ;
♦proc() actions 
> proc( int,int ) )

7.3 A Simple Browser

When presented with a pointer to an instance of a stmcture class such as:

structure jc( int a ; string b ; pntr c )

the browser will present the user with a menu like the one in Figure 1 which allows the user 

to examine the values of a and b and allow the pointer c to be browsed. The entry with the 

stars allows the user to return to the previously examined data stmcture ( if any ).
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a:int

b:strlng

c:pntr

figure 1

A PS-algol program to draw the menu shown in Figure 1 may look like the program below:

let traversex ~ proc( pntr p ) 
begin

structure jc( int a ; string b ; pntr c )

let return = proc() ; {}

! declare the structure class 
! which this proc displays

! a do nothing procedure

let strings = @ 1 of string [ "a:int", Î declare a vector of strings
"b:string", ! with lower bound 1 
"ctpntr" , ! for the menu entries
" * * * * " j

! Next declare a vector of procedures - the menu actions

let procs = @ 1 of procQ [ proc() ; write p{ a ),
procQ ; write p( b ), 
procQ ; Trav{p{ c ) ) 
return

1

! display the int a 
! display the string b 
Î browse the pntr c 
! retum-do nothing

end

let thismenu -  menu( "x",
strings, 
procs )

if p is %
then this.menu( 20,20 ) 
else ErrorQ

! the title
! the entries - a vector of strings 
! the actions - a vector of procs

1 display menu at 20,20 
! take some error action

example 1

The procedure traversex will display any structure of class :

I

i

I

x( int a ; string b ; pntr c ) 

but will fail with any other structure class. If % is a member of some finite union , this 

procedure could be generalised to handle any of the members of that union. However, if%is 

a member of an infinite union, such as the PS-algol type pntr, all the structure classes that
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the procedure may encounter can never be statically anticipated. The procedure Trav which 

is called from the menu is faced with this problem since the member of the infinite union to 

which c refers is unknown.

If a mechanism existed to discover what class a pointer is pointing at then a procedure of the 

appropriate type could be selected and called in order to display that instance. One way of 

engineering this in PS-algol would be to maintain a table containing procedures indexed by 

the appropriate class. This table could be indexed by the structure class that the procedure 

could display. Notice that although the procedures in this table operate on different classes 

their interface is the same; that is they are all of type:

proc(pntr)

In PS-algol a predefined function class.identifier is provided which allows the structure 

class that a pointer is pointing at to be discovered. It returns a string representation of the 

class and is defined as follows:

let class.identifier = proc( pntr p -> string )

For example, if the following program is executed.

structure X int a ; string b ; pntr c )
let /? - x (  7,"abc",m/ ) 
write class.identifierip )

the string,

x( int a 
string b 
pntrc 
)

would be written out.

Suppose that a table called trav.table has been created which contains associations between 

class identifier strings and pointers to structures of class,

structure trav.pack{ proc( pntr ) trav )
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which contain a procedure to display an instance of the appropriate class. This may be 

viewed pictorially in figure 2.

trav.procs

\
etc...

complex( real i,j )

x( int a ;
string b ;

table
procedure to traverse 
objects of class 
complex( real i j  )

procedure to traverse 
objects of class x( int a ...

"I

!

■'I

J

figure 2

A generic Trav procedure capable of traversing any data structure may be written using the 

technique described above like so,

let Trav ~ proc( pntr p ) 
begin

structure travpack( proc( pntr ) trav )

end

let class -  class identifierip ) 
let look = siookupi class,trav.table ) 
if look is trav.pack then look{ trav )( p ) 

else ErrorQ

example 2

This browsing procedure can now display and browse over any class whose display 

procedure is contained in the table. The procedures in the table look like the procedure 

shown in example 1. Notice that new procedures may be added to this table without altering 

this program.

It would be preferable if the traverser program could do better than simply report an error 

when a new structure class is found - but what options are open to it? The procedure could 

prompt the user of the browser to write a procedure which traverses the new structure class. 

If the procedure displayed the structure class of the new structure to the user, all the
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information needed to write such a procedure would be available. This procedure would 

need to be edited, compiled, debugged and entered into the trav.table table ( equivalent of

linking ) by the user. This process is tedious and repetitive since the same procedure must %
'§

be written each time with small variations. If the user were traversing a graph in a f  

development environment this problem would be heightened since the user may be changing 

the structure classes frequently as a design was refined.

7.4 A First Class Compiler

A better solution to the problem is for the traversal procedure to write the procedure to 

traverse over the new class. It has all the information necessary to construct a procedure to 'à

display the new class. However, it must be able to compile and link the new code into the 

running program. In order do this another function is required in persistent environment - 

the compiler. The callable compiler is discussed in the previous chapter.

In order to simplify the following discussion it is assumed that the PS-algol callable 

compiler is of the following form,

let compiler = proc( string source; pntr p-> pntr )

The compiler is passed the source code to be compiled. It is also passed a pointer to a 

structure class which should have a field of the same type as the compiled code. If the 

procedure is type compatible with the structure class, and the compilation is successful, the 

compiler will put the compiled procedure into that structure instance and return a pointer to 

it, otherwise it will return a pointer to an error structure.

7.5 Binding

The traverser procedure traversex needs to access the generic pointer traversing program 

Trav, in order that the pointer fields in the structure may be traversed. This may be achieved 

without resorting to the use of globals by wrapping up the procedure inside a generator 

procedure. This would take the procedure Trav as a parameter like so:
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let traverser.gen -  proc( proc( pntr ) Trav > proc( pntr ) ) 
begin

proc(pntrp)
! procedure body as traversex in example 1 above

end

example 3

Therefore a procedure of the following type must be compiled,

proc( proc( pntr ) > proc( pntr ) ), 

like that in example 3 which returns a procedure capable of displaying a structure of a 

particular class.

Using a first class compiler, it is possible to write a procedure, mk.trav.proc, that generates 

a traversal procedure for a class when supplied with a representation of that class. This 

procedure returns a pointer to a structure class that contains a procedure like traverser.gen 

described above,

I

let mk.trav.proc ~ proc( string class > pntr ) 
begin

let last := "" 
let pos := 0

let next.ch = proc( > string ) 
begin

pos := pos + 1 
classiposW)

end

let lex = proc( > string ) 
begin

let str := "" 
repeat

last next.chO 
while last~="C asid 

last'-='Ÿ m d  
last “ *' 

do str := str ++ last 
str

end

let strings := "let strings = @ 1 of string [ 
let procs := "let procs = @1 of procQ [ " 
let title I- lexQ
let name "structure " ++ title ++ "("

repeat
b^in

! last character read 
1 index into class string

! takes a sub string length 1 
! from string class at position pos

! gets next lexeme fiem 
Î 3ie class identifier string

! ++ is concatenation 
! return str

! build string vector 
! build procs vector 
I build menu title 
! build class name I
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let type = lexQ 1 '”n" is the newline character
\ e t  field -  lex()
name := name ++ type ++ " " ++field ++ " ; " 
strings := strings ++field++ ++ type ++ ",'n" 
procs := procs ++ if type ="pntr"

then "procQ ; Trav(p( "++//e/rf++") ),'n" 
else "proc() ; write p( " ++//e/£/++ "),'n"

end
while last -=  ")"

name := name ++ ")'n" ! list part of structure n ^ e
strings := strings ++ "*"****'" ]'n" ! last entry of strings vector
procs := procs ++ "procQ ; {} ]’n" ! last entry of procedures vector
! next create string containing program representation

let prog := "proc( proc( pntr ) Trav > proc( pntr ) )’n" ++
"proc( pntr p )’nbegin'n" ++ 
name ++ strings ++ procs ++
"let this.menu = menu( strings,procs )’n" ++
"if p is " ++ title ++ " then this.menu( 20,20 ) else ErrorQ'n" ++ 
end’n"

structure gen{ proc( proc( pntr ) > proc( pntr ) ) maker ) 
let S = gen{ proc( proc( pntr ) t > proc( pntr ) ) ; nullproc )

end
compiler(prog,S ) ! return the result of compilation that is 

! S containing the requir&l procedure

example 4

The procedure Trav can now be refined to use this procedure. Whenever a class is found for 

which no traversal procedure exists in the trav.procs table mk.trav.proc will be called to 

create a traversal procedure. The generator procedure is then extracted from the structure and 

called with the generic pointer traverser ( Trav itself ) as a parameter. The resulting 

procedure can then be stored in the table and finally called to traverse the structure that 

caused the procedure to be generated. The Trav procedure will therefore look something like 

this.

■Ï
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end

1
let Trav -  proc( pntr/? ) 1
begin

structure gen{ proc( proc( pntr ) ->proc( pntr ) ) maker ) 
structure trav.pack{ proc( pntr ) trav )

let key ~ class.identifier{ p )  ! get class of instance
let traverser. := s.lookupl key,trav,procs ) ! look for display procedure
if traverser is trav.pack ! found one so Ï
then traverser  ̂trav ){p)  ! call it with p as a parameter
else 
begin

let package -  mk.trav.proc{ key ) 1 create a display package
let T -  package^ maker ) ! get generator from package |
let bound = T( Trav ) ! generate a display proc
traverser := trav.pack{ bound ) Î re-package display procedure
s.enter( key,trav.procs,traverser ) ! and put it into the table
boundi p  ) ! finally call it

end

I

examples

The browser is now complete. The traversal procedure Trav maintains and uses the 

trav.procs table which is used to store the procedures that display particular classes. 

Whenever a display procedure cannot be found by Trav, the procedure mk.trav.proc is 

called to generate the necessary compiled code. This code may need to have access to the f
3

Trav procedure, therefore, the mktrav.proc procedure returns a display generating procedure #  

which is passed to Trav as a parameter. This step is equivalent to linking in a conventional 

system. The newly generated procedure is then put into the table so that it can be called to 

display subsequent instances of that structure class.

7.6 Firewalls

The language type rules have not broken in the browsing program. However, the discovery 

of the structure class types using the class.identifier procedure has been permitted. The 

procedure closure has remained sacrosanct and has provided a fire-wall through which this 

program cannot penetrate. Nevertheless, the need to see inside a closure or, indeed, an 

activation does arise, for example, when a symbolic debugger is used. The need to see 

inside such objects also arises when a system is in need of repair. This is seen as being 

equivalent to the hardware engineer placing probes on a board to identify faults within it.

The scheme described does not handle such cases which are clearly in need of more
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investigation. It is thought that different levels of object interpretation may be needed in this r| 

case.

7.7 Perfbmiance I
■I

The alternatives approaches to the above scheme will now be considered. The |irst is to halt 

the system with an error message when a structure class for which no traversal procedure 

exists is found. The user would then have to write,compile,debug and enter into the table a 

procedure to traverse the object. The solution outlined in above is several orders of 

magnitude faster than this. The second alternative would be to write the browser in a lower 

level language - not a viable compromise in terms of software engineering costs.

The procedure shown in example 1 to traverse the class,

structure ;c( int a ; string b ; pntr c )

takes the browser 4.5 seconds of user time to write, compile, enter into the trav.procs table 

and display the menu on a SUN 3/260.If the procedure is already in the table, the combined 

time required for look up and display time takes less than a sixtieth of a second.

7.8 Persistence

In a conventional programming system the scheme described would be very expensive. The 

traversal program would have to recreate the traversal procedures in every invocation. In a 

persistent programming language the table trav.procs may reside in the persistent store and 

therefore any changes made to the tables will exist as long as they are accessible. 

Consequently the traverser program never has to recompile traversal procedures. The 

program in effect learns about new data structures. It does so in a lazy manner, as it only 

learns how to display the classes that it is actually required to display. This may be viewed 

pictorially in figure 3.
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7.9 Browser Software Architecture

As the browser evolved it became apparent that it was more important than merely a method 

of traversing data structures. What had evolved was a new software architecture. The 

important features of the architecture are:

1. strong ( static ) type checking

2 . late ( dynamic ) demand driven binding

3. dynamically linking of code

4. adaptive in nature.

These features are discussed below.

The browser is built entirely using the mechanisms provided by the PS-algol language. The 

language is statically type checked, apart from the projection out of the infinite union pntr, 

where dynamic type checking is employed. The procedures written by the browser are type
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checked by the callable compiler and only syntactically correct programs are admitted into 

the architecture.

The system is adaptive in nature. The browser can traverse any data structure composed 

from any of the infinite number of types in the system. These types do not have to have 

been declared at the time the browser was written. The system adapts itself to operate on 

new data structures as required.

The binding of procedures to the architecture is performed extremely late. Indeed, 

procedures that traverse a particular class are not even written unless required. The storage 

of procedures in an extensible data structure with dynamic lookup on class is necessary in %
Îorder to permit the flexibility required. The kind of binding performed here is the weakest %

possible in a strongly typed system.

The procedures written by the browser and compiled by the callable compiler are 

dynamically linked into running code. The linking is performed when the procedure which 

is returned from the callable compiler is entered into the table.

Two brief examples, showing how this architecture has been exploited in the fields of $

bootstrapping and databases, are discussed below. f

7.10 Browsers as a bootstrapping tool

Code files for the Persistent Abstract Machine consist of a heap of objects prefixed by five |

words of header information. In order to bootstrap the system, such a file must be created 

by the bootstrap compiler. The problem is the mapping of the complex graph structure, |

which comprises a Persistent Abstract Machine heap, onto the file system. This task is 3?

normally carried out by the POMS, but in the bootstrap system the compiler is written in 3

PS-algol and no Persistent Abstract Machine code is running.

The problem may be solved by a similar solution to that used in the browser. A set of rules 

exists for the creation of valid objects. The object management system must keep maintain
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not one but two tables. The first is similar to the one maintained by the browser - that is a 

table of output procedures for each object class encountered. The second maintains an 

address mapping table. This maps object pointers in the address space of the bootstrap 

compiler to addresses within the code file. The first table may be persistent but the second 

table is recreated with the production of every heap.

This solution allows the object formats to be easily changed since they are controlled by the |  

browsing program. No programmer time is required in the production of a heap containing a 

different set of object classes. Therefore, the decision of which objects are in the heap is 

inexpensive. The production of a virtual image using this technique is much cheaper than 

hand building a virtual image or even writing a program to produce a custom made one.

7.11 Adaptive Databases

The technology used in the browser has also been used in the production of a relational 

database system [coop87]. Traditionally, databases are implemented by creating a canonical 

relation structure [cod70]. Relations introduced by the programmer of the system are then 

mapped onto this canonical representation. Relations then require a level of secondary 

interpretation at run time.

The database system constructed by Cooper uses the techniques first invented in the PS- 

algol object browser. When a user of the database system defines a new class of relation the 

system generates a set of creation and selector functions for a data structure. The programs 

are compiled using the callable compiler and entered into a table. Whenever the relation is 

accessed the appropriate selector functions are used. In this way each data structure is stored 

in the most appropriate manner for that relation without the need for secondary interpretation 

of the data structures. Furthermore the expensive task of programming the movement of 

objects to and from backing store is performed by the POMS.
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7.12 Conclusions

It has been illustrated how a browser may be written in a closed strongly typed 

environment. This has been achieved without having to use dynamic typing, or make the 

requirement that every data stmcture has to have a printString method as in the Smalltalk-80
%system. In the system described the programmer may still write a display procedure 

manually thus specializing the programs default action as in the Smalltalk case. It is also 

possible to have different display formats for objects by having more than one display table.

The program is allowed to discover the type of objects, even when the type of an object may 

have been deliberately hidden by the programmer. This raises the issue of who should be 

able to break these fire walls? The browser needs to be able to see inside objects if it is to be 

used as a debugger but the programmer may not want the contents of say, an abstract type 

discovered.

The architecture developed in the browser has been explored and two further examples of 

how the architecture may be exploited have been given.
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8 Conclusions

This thesis presents research into the design and construction of persistent programming 

systems. This work has been performed as part of the Persistent Information Space 

Architecture ( PISA ) project [ack86b].

The main areas in which research has been performed are :

171

1 . programming language design ;

2 . programming language implementation ;

3. compiler construction ;

4. abstract program graphs ; and |

5. adaptive object browsers. JI
8.1 Programming Language Design

The importance of good programming language notations cannot be overstated. The 

provision of a good notation permits the programmer to concentrate on the complexities of a 

given task rather than the mapping of that task onto a particular language. Research into 

programming languages has been explored using the persistent languages PS-algol and 

Napier.

The main areas explored in the language domain are:

i
1. machine independent graphics ; |

2 . environments ; and

3. polymorphism.

8.1.1 Graphics

When the work documented in this thesis was started, PS-algol had no raster graphics. It 

did not therefore provide any means of utilising the power of the graphics facilities provided 

on the then new ICL Perq computers [icl83]. Several experimental language
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implementations [mor86c,mor86b] were constructed in order to discover how graphics ï 

facilities could be integrated with a high level language.

This kind of problem lead to the conclusion by myself and others [atk85a] that control over 

binding mechanisms is extremely important in large persistent information spaces. The 

datatype environment was introduced in order to provide a mechanism that would allow 

incremental system construction and change within a large system.
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The integration of graphics facilities into a high level language permits sophisticated machine 

independent user interfaces to be constructed. Graphics objects are language objects with 

full civil rights, this means that they may be be stored in the persistent store and manipulated 

by procedures. For example, the persistent object browser makes use of the menus provided 4

by the graphics facilities. Menus are held within procedure closures in the persistent store, 

allowing them to be rapidly displayed when required.

The PS-algol graphics facilities have been used to build the front ends to a number of M
. ^sophisticated applications including a windowing system [cut87] and an object oriented

I
database with inheritance [ben87].

8.1.2 Environments

Much of the work has involved discovering what special problems arise in persistent 

systems. One of thé problems that emerged early during the research was the need to control 

complexity in large systems. Indeed, the problems of building large systems have been 

known for many years.

The way in which objects are bound together in a large system is especially important.

During the development of the browser a design flaw was discovered and the knowledge ^

that the browser had gained had to be discarded. This was necessary because of the way that ]

the system had been bound together. In this case, too much static binding had been used j

which did not permit enough change.
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IThe environment datatype is a simple mechanism with clean semantics that are easy to -i
■f

understand. Environments provide a way of smoothly integrating the programming f
jlanguage with the programming environment. They also provide a structuring mechanism l

over the name space which is similar to the structure imposed by directories on a file 

system. Problems still remain in this area, in particular, how functions like Is in Unix may 

be expressed in a strongly typed system [atk87].

8.1.3 Polymorphism

The cheapest way to build a software system is to construct from components already 

written [brk86]. In order to achieve this, a type system is required that is powerful enough 

to describe all the objects in a system. Polymorphism provides the mechanism for 

abstracting over types. However, the search for an all powerful type system is not an end in 

itself. One mechanism, the type system, may be used for checking the legal composition of 

objects makes the system simpler with the attendant cost benefits.

8,2 Abstract Machine Design

To design programming languages and not implement them is pointless, yet this often 

happens. It is only through implementations that engineering lessons are learned. 

Sometimes paper designs cannot be realised by current implementation technologies and the 

design has to be revised - this is part of the design process. Much has been learned from 

implementing PS-algol, the first persistent programming language. Without the 

implementations of PS-algol, the language Napier would not have evolved. Many 

important, though small, advances have been made during the research into machine 

support :

1. modularisation ;

2 . uniform object formats ; and

3. efficient implementation of non uniform parametric polymorphism.

i
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8.2.1 Modularisation

The Persistent Abstract Machine, like all the components of the Napier system, is 

constructed in a modular fashion. Each layer in the machine presents a well defined 

interface. This has two main benefits: the first is in maintenance costs, the second is as a 

research vehicle.

Parnas cites information hiding as one of the most effective ways of avoiding rework 

[par79]. The PS-algol machine has proven expensive to maintain. This is partly due to its 

size and partly due to its complexity. Much of this complexity has arisen in this machine due 

to its nature - that of a research vehicle.

The Napier support environment is also a large, complex piece of software, as such requires 

maintenance. It is hoped, that the modular design of the architecture will result in lower 

costs in the future. More importantly the modular design of the architecture allows 

experimentation into language implementations to be performed independently. For 

example, it is possible to change the persistent object management strategy without changing 

the Persistent Abstract Machine. This will allow the interactions between different parts of 

the system to be explored.

8.2.2 Uniform Object Format

One of the biggest advances in the Persistent Abstract Machine is a simple one. The abstract 

machine has no knowledge of the type systems of the languages that it implements. One 

result of this is that the machine has a uniform object format. The heap is the only dynamic 

storage system supported by the system. Objects are partitioned into pointer and non-pointer 

fields, minimising the potentially high cost of garbage collection and persistent object 

management.
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8.2.3 Parametric Polymorphism

The parametric polymorphism provided by Napier has a large impact on the machine design.

One consequence of polymorphism is that the compiler cannot tell statically how big a 

polymorphic object is or whether it is a pointer type or not.

An efficient implementation of first class polymorphic procedures has been achieved without 

adversely affecting the performance of non-polymorphic ones. The implementation is novel 

in that it implements parametric polymorphism for non-uniformly sized objects. The 

technique makes use of the block retention architecture provided by the Persistent Abstract Ij

Machine. The technique may be extended without modification to support a powerful notion 

of abstract types. It is thought that this mechanism may also be used to support inclusion 

polymorphism.

8.3 Compiler construction

During the development of the Napier language many benefits have emerged from using the 

persistent store as a compiler construction vehicle. The most obvious benefits are: ^

I1. modularisation ;

2. provision of PAIL ; ; |

3. optimisation ; and

4. callable compilers.

8.3.1 Modularisation

The compilation system comprises many different modules. Like much of the persistent 

system it is written using the persistent languages that it supports. The modules provided in 

the compilation system provide the language implementor with a toolset. Using this toolset 

many different compilers may be constructed cheaply. These compilers may compile 

different languages or provide different interfaces to a compiler for a single language. The
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compiler toolset therefore provides an architecture that is highly flexible and given to 4  

software reuse.

8.3.2 PAIL

Much of the language implementation depends on the Persistent Architecture Intermediate 

Language - PAIL. The provision of this level in the system is not an intrinsic requirement a

but rather an engineering decision. PAIL provides support for many of the activities

performed within the persistent architecture. In particular, PAIL acts as a protection

mechanism, an optimisation aid and a debugging aid. PAIL also provides an abstraction 

level between layers in the compilation system.

8.3.3 Optimisations

The provision of PAIL permits a certain class of code optimisations to be made. Some of the
I

optimisations performed are common; these include optimisations such as manifest I

elimination and constant folding. A complex optimisation strategy is used to produce an 

efficient implementation of parametric polymorphism. During the compilation of 

polymorphic functions, code is hoisted to lexicographically previous blocks.

8.3.4 Callable Compilers

One class of compiler that may be constructed using the compiler toolset is the so called 

callable compiler. A callable compiler may be passed program source in some form and 

returns an executable version of it. In order that this kind of compiler is useful it has to be a 

first class data object in the persistent universe. The dynamic introduction of code into a 

running system introduces problems in a strongly typed environment, however, these are 

easily overcome. This mechanism is extremely important if the persistent information space 

is required to be a self-contained closed universe. The provision of a callable compiler 

means that no linker or loader is required in the system. There is also no need to provide an 

explicit language mechanism for separate compilation.



Users of the Napier programming environment will never have to use the facilities provided 

by an operating system, file system or database management system. The programming 

environment is a self-contained world containing all the facilities necessary to support
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Many classes of applications can benefit from the provision compiler that is a first class data ?

object. One of these applications is the persistent object browser. The object browser 

[dearSSb] uses most of the facilities provided by the architecture including the graphics and 4

a callable compiler.

3
8.4 Adaptive Object Browsers

■I
The persistent object browser introduces a new software architecture that permits adaptive 

programs to be constructed incrementally. This is achieved by constructing new programs, 

compiling them and calling them from a running process. Constructed programs are 

memorised by storing them in the closure of the browser. This is only a viable prospect due 

to the provision of the persistent store. The architecture has been successfully applied to the 

construction of adaptive databases and bootstrap compilers.

8.5 Future Research

At the time of writing the total Napier system is incomplete. The design of the language and 

the machine to support it is finished and an implementation of the compilation system, the K 

Persistent Abstract Machine and the persistent storage manager is complete. The 

implementation of processes has only just begun therefore the system may only be used by a 

single user at any time. Currently, the Persistent Abstract Machine does not support 

distributed object stores although provision for this has been made in the store design 

[bro88j.

Much of the thrust of this thesis has been concerned with the constmction of an integrated 

programming environment. To conclude, let us examine how the parts of the system 

discussed in this document may be unified and utilised. This is the only part of the work 

discussed that has not been implemented, as such it is partly speculative.

   .  .........................
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application development. The environment will be provided by applications written in ^

Napier. It will therefore be tailorable by applications programmers. It is important that some |

facilities should be judiciously protected from misuse in order to protect the environment.

The most important example of this is the ability of the compiler to turn a byte stream into a 

closure.

8.5.1 Windows

When the user sits down at a workstation to interact with the Napier system he or she will 

be faced with a window based environment. A prototype window-based environment for 

the persistent information space has been implemented by Cutts and Kirby [cut87]. The |

implementation of this system relies heavily on the graphics facilities provided by the 

language.

It is important that the windowing system should preserve the user dialogue. In other 

words, a window should provide an approximation to an infinite buffer that contains 

everything written on the screen by both the user and the system. This may support complex $

dialogues.when combined with the cut and paste facility epitomised by editors available on . 

the Apple Macintosh.

The Napier environment is required to support the development of applications. For this to 

be successful the system must allow the user to gain access to all the information stored 

about applications. It should not be necessary for program developers to remember 

information about applications. For example, the system must be capable of showing the 

user what types are being used to model aspects of applications. If this is displayed on the 

users screen there is no reason why the user should have to type the information back into 

the system and the system re-parse it. Instead, the user should be able to select displayed 

information and say "yes that is correct I want to use it".
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8.5.2 Browsing Information Graphs

-J.The persistent information space forms a graph structure emanating from a single root called 

ps, which has type env. The graph comprises of environments and objects constructed 

using Napier. This graph structure may be examined using a browser similar to that |

described in chapter 7. The use of a browser allows the user to discover what objects f
populate the information space. In particular, the application writer may wish to locate 

procedures stored in environments that may be reused in the application he or she is 

developing.

The system will not provide a command language other than the Napier language. Of 

course, other languages will be provided, for example the window dialogue interaction I

language. However, these are not supported by a syntactic form. Instead they rely on the ‘ |  

use of a mouse and interaction with light buttons and dialogue boxes.

In some of the windows in the system an interactive compiler that will execute instructions |

immediately will be available. Such a compiler may also be used to browse the persistent |

information space by executing statements that operate against environments and perhaps 

calling a browser. In such an environment there is little distinction between browsing and 

interactive compilation. 3

Browsing a complex information space is equivalent to browsing a hypertext graph. It is 

expected that techniques developed to traverse hypertext graphs may be of utility in 

traversing the information space and program graphs.

It is expected that the unit of change in the system will be very small. The provision of 

interactive compilers and environments will encourage the incremental development of 

systems from prototype through to complete applications.
r

In a truly integrated environment the use of the word "program" and the word "procedure" 

are indistinguishable. Procedures may be viewed at one level as complete programs, may be 

viewed at another as tools contributing to a larger application. This is in marked contrast to
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traditional systems such as the Unix environment where a program is a markedly different 

entity from a procedure. Procedures may use other procedures in the information base. The 

provision of environments and the binding mechanisms over them will encourage the reuse 4

of code. %

1
In the Napier system the value of a procedure will always have its source code bound into it.

This will result in simpler management of code since there will be no need to remember Sf

which source belongs with which executable code. A polymorphic function, called source 

will be provided to yield the source of any procedure.

Once a programmer has obtained the source of a procedure it may be edited using tools

provided by the windowing environment. It may then be recompiled, using a callable |k
■5

compiler. If the resulting code is of the same type it may be assigned to the location in the #

environment from where it came. If it is not, it may have a new location created for it. W

The source code that is bound into the executable version is in the form of a PAIL graph.

The information contained in the PAIL graph will allow sophisticated tools to be developed 

that operate against program source. For example, program editors may be constructed that 

provide the user with much better facilities than found in simple text editors.

8.5.3 Debugging

The Napier system has had debugging support built into its design from the first stages.

This is essential if good debugging information is to be provided. Attempting to retro-fit 

debugging support to the PS-algol system proved to be almost impossible. The integration 

of source and executable code is the key to good debugging information. The machine keeps 

a note of the source code being executed in a manner similar to the maintenance of a code 

pointer. The source position information is stored in closures when procedure calls are 

made so that an activation record may be displayed.

The debugging system will be constructed as a self contained module in a similar manner to 

the compiler. Entry points to this module will be placed in the exception handlers so that

180

,1,



when an error occurs the debugging system will be called interactively. The debugger may 

then call an editor and the compiler in order to present the user with a smooth transition from 

one tool to another.

8.6 Finally

This thesis presents research into the world of persistent programming systems. Hopefully, 

orthogonal persistence will become common in the computer systems of the future. If not, 

so be it, the lessons learned in constructing the PS-algol and Napier programming systems 

will live on in systems as yet figments of the imagination.

f
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Appendix 1
The Persistent Abstract Machine I
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A l l  Introduction

The Persistent Abstract Machine is designed to support PAIL [dea87]. The machine is a 

refinement of the PS-algol abstract machine [ps85] but differs from it in a number of 

important ways. The main differences are;

1 Rearrangement of all data formats ;

2 Simplified I/O with only read_bytes and write_bytes supported by 

machine instructions ;

3 No standard frame ;

4 An association with the PAIL tree for all procedures ; and

5 A stable store mechanism.

Firstly, and the main difference, is that the Persistent Abstract Machine has one object 

format and it does not have any language specific type information built into it. This allows 

the utility programs such as garbage collectors and persistent object managers to be built in a 

manner that is independent of the programming language data types. This is an advantage 

that we will exploit when experimenting with different versions of these utility programs. 

Any budding implementor should take note of this fact and ensure that their code does not 

exploit data formats.

One of the difficulties in implementing the PS-algol machine was in the complexity of the 

I/O system. The Persistent Abstract Machine will only support the reading and writing of 

bytes from files and the raster graphics operations. All other I/O will be written in the 

language itself and be available to the programmer in an environment.

The is no standard frame in the Persistent Abstract Machine. This became one of the 

obstacles to change in the PS-algol machine and has been removed from the Napier
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language [mor88b] by an environment which the programmer can use to achieve the same 

effect. The compiler knows about this environment but the run time system does not.

The Persistent Abstract Machine is implemented on a stable store but takes no account of it, 

merely assuming that it is available. This was influenced by the style of persistence 

supported by Napier, the essence of it being that any concurrency and transaction 

mechanism is supported by very few primitives at the machine level with layers of 

abstraction in the language providing the necessary facilities [bro88,kra85].

The machine described in this manual is sufficent to support PAIL. However the compiler 

code sequences described are those generated by the most naive code generator. It is our 

intention to produce optimised code sequences particularly in relation to block retention and 

procedure calling. Indeed, it is possible to do code improvement, in the background, in the 

persistent store during quiescent periods.
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A1.2 Abstract Machine Registers

The registers of the Napier machine are used to identify the local frame on the heap, the top 

of the local main and pointer stacks and the code pointer. The registers are:

ROP root object pointer

LFB local frame base

LMSP local frame main stack top

LPS P local frame pointer stack top

CP code pointer

1

s
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A1.3 Heap Formats

All data objects are kept on the heap. This includes code for procedures and therefore the 1

only dynamic storage system that need be supported is a heap system with a garbage I

collector. Napier is a block structured language that is well suited to a stack implementation 

technique. The action of the stack is simulated within the heap to implement the block 

structure.

The system uses object level addressing and therefore we must be careful that pointers in the 

system point to objects only and not to sub components of an object such as a field of a 

structure. Thus parts of an object always have a two part address. |

To support polymorphism every object has an associated type description. This is pointed to

by an object's first pointer field and will be in a canonical form.

Al.3.1 Headers

Word 0 has the following interpretation

bits 8-31 the number of pointer fields in the object
bit 7 constancy bit for validating updates in vectors or

trace bit for use by special return instructions in frames 
bit 0-6 reserved for implementation experiments

where bit Ô is the most significant bit of the word.

A l.3.2 Strings

word 2 a pointer to the type descriptor for a string
word 3 number of characters in the string
word 4.. the characters 1 per byte padded with zeros up to a 4 byte boundary.
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All heap objects are laid out in a consistent manner in order that the system utilities may 

operate on them irrespective of their type. Thus all heap objects have the same format (a : f

word is a 32 bit integer) 

word 0 header
word 1 the size in words of the object 
word 2..n the pointer fields 
word n+1.. the non pointer fields



A l.3.3 Files

There are 5 kinds of files that are supported by the Persistent abstract machine, disk files, y
■I

terminals, mice, tablets and raster displays. Each file kind is represented differently. |

if raster file bit 8
if tablet bit 9
if mouse bit 10
if terminal bit 11
if disk file bit 12
if closed bit 13
if writable bit 14
if readable bit 15
file number bits 16-31

In all the file types the internal file number and associated flag bits are represented as 

follows:

Al.3.3.1 Disk Files

word 2 a pointer to the type descriptor for a file
word 3 a pointer to the file’s name
word 4 an internal file number and associated flag bits
word 5 the current position in the disk file ( byte offset firom the start ) I

■5
Al.3.3,2 Terminal Files |

word 2 a pointer to the type descriptor for a file
word 3 a pointer to the file's name
word 4 an internal file number and associated flag bits
word 5 the terminal modes currently selected

Al.3.3,3 Mouse and Tablet Files

word 2 a pointer to the type descriptor for a file
word 3 a pointer to the file’s name
word 4 an internal file number and associated flag bits 
word 5 the X dimension of the tablet, 0 for a mouse
word 6 the Y dimension of the tablet, 0 for a mouse
word 7 the X position, absolute for a tablet, relative for a mouse
word 8 the Y position, absolute for a tablet, relative for a mouse
word 9 + n state of the nth button, numbered from 0

Al.3.3.4 Raster Files

word 2 a pointer to the type descriptor for a file
word 3 a pointer to the file’s name
word 4 an image representing the raster device's screen 
word 5 an image representing the screen’s cursor
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word 6 an internal file number and associated flag bits
word 7 the X position of the cursor on the screen
word 8 the Y position of the cursor on the screen
word 9 the raster rule used to display the cursor on the screen

( see rasterop )

Al.3.4 Vectors

word 2 a pointer to the type descriptor for the vector and its elements 
word 3..n the elements 
word n+1 lower bound 
word n+2 upper bound

Al.3.5 Images

H X- Y- D-
E S T O O O X Y D
A I Y @ F F F E
D Z P Bitmap File F F F D D P
E E E Vector Descriptor S S S I I TR E E E M M H

T T T

word 2 a pointer to the type descriptor for an image
word 3 pointer to the vector of bitmap vectors
word 4 pointer to the file descriptor ( if a cursor or screen of a raster device

otherwise nil ) 
word 5 X offset into the bitmap vector
word 6 Y offset into the bitmap vector
word 7 Z offset into the bitmap vector
word 8 X dimension of the image
word 9 Y dimension of the image
word 10 Z dimension of the image

I

There are 3 kinds of raster image supported by the Persistent abstract machine, raster

displays, cursors of raster displays and memory raster images. Each bitmap vector contains

a flag to indicate which kind of raster it represents. This enables the abstract machine to

propagate changes to displayed images to the corresponding physical devices. The flags

have the following values:

if a raster display bit 31
if a cursor bit 30
if a memory raster bit 29
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To support colour raster displays a bitmap vector for a raster display includes a colour map.

The size of the colour map is implementation dependent but should include an entry for each 

pixel value that can be displayed. Therefore a colour map should contain 2 to the power of 

the Z dimension entries, e.g. an image of depth 8 would contain 256 entries in its colour if

map.The bitmap vector for an image is laid out as follows:

word 2 a pointer to the type descriptor for a vector of integers
word 3 X dimension of die bitmap
word 4 Y dimension of the bitmap
word 5 Z dimension of the bitmap
word 6 length of a scan line in 32 bit words
word 7 tj^e flags for the bitmap
word 8..n-1 bits that represent the image's pixels
word n. .m the colour map if the raster image is for a raster display
word m+1 lower bound ?
word m+2 upper bound

The pixels of an image are layed out as follows. The image is separated out into its planes.

The first plane in the representation is plane 0 of the image, the second plane is plane 1 of j  

the image and so on. Each plane is separated into scan lines. The first scan line in a plane is 

the top scan line of the image and the last scan line is the bottom scan line of the image.

Each scanline is separated into 1 bit pixels since a plane is only 1 bit deep. A scanline 

consists of an integral number of 32bit words with the first 32 pixels in the first word, the 

second 32 pixels in the second word and so on. Within a 32bit word the first pixel is iS 

represented by bit 0 and the last pixel by bit 31.

■Si

Al.3.6 Structures

word 2 a pointer to the type descriptor for the structure
word 3..n the pointer fields
word n+1.. the nonpointer fields and constancy bitmap

Every structure is assumed to contain a constancy bitmap of one bit per word. It should be 

checked whenever a word in a structure is to be updated. However updates to the words 

containing the bitmap are not checked to allow the constancy of fields to be altered. For
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structure fields of two words only the bit for the first word is used. For a structure of length 

L the starting word ( S ) of the bitmap can be calculated as follows:

S = L - ( L  + 30)div32

The word ( W ) within the bitmap containing the bit for a given field index ( I ) and the

field's bit ( B ) within that word can be calculated as follows:

W = Idiv32 
B = 31 - ( I rem32)

To test if a field is constant bit B in word S + W of the structure is tested. The field is 

constant if the bit is set. Note that the bits are numbered in decreasing significance from bit 

0 to bit 31.

Al.3.7 Code Vectors

word 2 
word 3 
word 4

word 5

word 6..m 
word m+l..n 
word n+1 
word n+2

word n+3

a pointer to the type descriptor for this code vector ( TYPE ) 
a pointer to the pail tree for the code vector's procedure ( PAIL ) 
a pointer to the type descriptor for the frame created when the code 
vector's procedure is applied ( F TYPE )
a pointer to an alternative code vector ( A CVEC ), this has the same 
functionality but contains different code, the code may be a different 
type
any pointers to objects that are used by the code vector's procedure 
the code to be executed
the type of code, 0 if the code is Napier code ( C TYPE )
the size of the frame ( in words ) to be created when the code vector's
procedure is applied ( F SIZE )
the offset to the main stack ( in words ) for the frame ( F MSB )
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A l.3.8 Frames

H D C S C D
E I
A S T L V L P S Pointer Main L R M
D I Y I E I A P L A S
E z P N C N I L ------^ ---- ► P
R E E K K L A

Y
Stack Stack

word 2 a pointer to the type descriptor for this frame, it includes a symbol
table for this frame ( TYPE ) 

word 3 the dynamic link ( D LINK )
word 4 a pointer to the code vector for the frame's procedure ( C VEC )
word 5 the static link for the frame's procedure ( S LINK )
word 6 a pointer to the pail currently being executed ( C PAIL )
word 7..1 the display for die frame's procedure ( DISPLAY )
word 1+L.m the pointer stack frame's procedure
word m+L.n the main stack frame's procedure
word n+1 the frame's lexical level ( LL ), the number of entries in the

display
word n+2 the return address for the frame's procedure ( RA ), an offset ( in

bytes ) from the start of the procedure's code vector 
word n+3 the saved offset ( in words ) of the LMSP from the LFB ( MSP )

Al.3.9 Abstract data types

word 2 a pointer to the type descriptor 
word 3..n the remaining pointer fields 
word n+1.m the nonpointer fields
word m.. the type keys for the witness types and constancy bitmap

Note that all fields of witness types are implemented as polymorphic objects. That is they

are implemented as double word double pointer objects. The dynamic type information of

the witness types is stored in the last scalar fields of the object.

Al.3.10 Root Object

word 2 the pointer literal nil
word 3 the code vector for the startup procedure
word 4 the static link for the startup procedure
word 5 the logical root of persistence
word 6 the file literal nullfile
word 7 the string literal ""
word 8 a pointer to the vector of all 128 single character strings
word 9 the image literal nullimage
word 10 the code vector for the error processing procedure
word 11 the static link for the error processing procedure
word 12 a pointer to the vector of event handling procedures
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word 13 a pointer to the vector of error handling procedures
word 14 a pointer to the vector of open files
word 15 a pointer to the frame of the currently executing procedure
word 16 the code vector for the type checking procedure
word 17 the static link for the type checking procedure 
word 18 a temporary pointer location for use by instructions, nil if not in use
word 19 a temporary pointer location for use by instructions, nil if not in use
word 20 a temporary pointer location for use by instructions, nil if not in use
word 21 a temporary pointer location for use by instructions, nil if not in use
word 22 the error number for the last I/O instruction executed 
word 23 the integer literal maxint 
word 24,25 the real literal maxreal 
word 26,27 the real literal pi
word 28,29 the real literal epsilon . n
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A1.4 Persistent Abstract Machine Code

The Persistent abstract machine code, PAM-code, is designed to support languages that map 

into PAIL. Here the individual instructions are described. They fall naturally into groups. ?

To ease the problems of garbage collection the frame models two stacks. The main stack

contains space for integers, reals and booleans while the pointer stack contains space for all

the pointer objects. The pointer stack is used as the base for marking the heap. Objects on

the pointer stack may be strings, vectors, structures, abstract data types, unions,

polymorphic objects, files, images, frames and code vectors. Reals take two stack elements

each on the main stack as do procedures ( closures ) on the pointer stack. A closure is made

up of the code vector address and the static link. Typed instructions have an encoded name

with the following convention.

ib integer,pixel or boolean
r real
s string
p vector, structure, abstract data type, union, file, image
pr procedure
var varient
poly polymorphic object

Non type dependant instructions are encoded according to the size of the objects on which

they operate and on which stack they reside. These instructions are encoded using the

following convention.

w word on main stack
dw double word on main stack
p word on pointer stack
dp double word on pointer stack
wp word on main stack and word on pointer stack
dwdp double word on main stack and double word on pointer stack

The Persistent abstract machine supports polymorphic operations. These operations consult 

a word on the main stack with encoded information about the concrete type on which they 

operate. This information allows polymorphic operations to delay the decision about which 'f#
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The length of instruction parameters are in the following units:

byte 8 bits
short 2 bytes
word 4 bytes
double 8 bytes

The interpretation of instruction parameters is as the follows:

byte an 8 bit integer, unsigned unless used with the literal integer
instruction

short an unsigned 16 bit integer, the first byte is most significant
word a si^ed  32 bit integer, the bytes are in decreasing order of

significance
double a 64 bit floating point number conforming to the IEEE 754 standard,

bit 0 of word 0 contains the sign bit, 
bits 1-11 of word 0 contain the signed exponent, 
the remaining 52 bits form the fraction,
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instructions to perform until runtime. The polymorphic instructions use the following type 

encoding. Note that these types are referred to as the dynamic tag in the instruction 

descriptions.

A five bit encoding is used for dynamic tags, the bits have the following significance:

bit 0 set if the object is a single word scalar object
bit 1 set if the object is a double word scalar object
bit 2 set if the object is a string
bit 3 set if the object is a single word pointer object
bit 4 set if the object is a double word pointer object

This results in the following encoding for the dynamic tags of Napier objects:

object bit pattern integer code

integer,pixel or boolean 00001 1
real 00010 2
string 01100 12
vector, structure, 
abstract data type,
file, image 01000 8
procedure 10000 16
variant 01001 9

Some instructions have special forms that allow for cases which deserve optimisation.

These instructions are appended with the letter S. 4

1
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the lower numbered bits are more significant than higher numbered, 
the bits of wordl are less significant than the bits in word 0.

AU instruction codes are one byte long.

Al.4.1 Jumps I

All the jump offsets are relative to the location foUowing the jump offset. The jump offset is 

measured in bytes. 

fjump(l : short)

Op-Code 0

Description

Jump forwards 1 bytes. 

jumpf(l ; short)

Op-Code 128

Description

if the top main stack element is false 
do jump forwards 1 bytes.
Pop the main stack.

bjump( I : short )

Op-Code 1

Description

Jump backwards 1 bytes.

bjumpt(l: short) |

Opcode 129

Description

if the top main stack element is true 
do jump backwards 1 bytes.
Pop the main stack. y



jumpff( I : short )

Op-Code 2

Description

if the top stack element is false 
then jump forwards 1 bytes 
else pop the main stack.

jumptt(l: short)

195

i
IOp-Code 130 I

Description

if the top element is true 
then jump forwards 1 bytes 
else pop the main stack.

fortest( fe ; short, msb : short, ftype : short, 1 : short ) ;|

Op-Code 3 I

Description

The for loop increment is on top of the main stack.
The for loop limit is below the increment on the main stack and 
The control constant is below the limit on the main stack, 
if the increment is negative and the control constant is less than the limit 
or the increment is positive and the control constant is greater than the limit 
then pop the top 3 stack elements and jump forwards 1 bytes, 
else

Perform a block enter instruction with parameters fs, msb and ftype. §
Push a copy of the control constant onto the new frame's main stack.

fbrtestS( 1 : short )

Op-Code 131

Description

The for loop increment is on top of the main stack.
The for loop limit is below the increment on the main stack and 
The control constant is below the limit on the main stack, 
if the increment is negative and the control constant is less than the limit 
or the increment is positive and the control constant is greater than the limit 
do pop the top 3 stack elements and jump forwards 1 bytes.



forstep( 1 : short )

Op-Code 4

Description

Perform a block.exit.v.
Add the for loop increment to the for loop control constant.
Jump backwards 1 bytes, ( to the fortest instruction ).

forstepS(l : short)

Op-Code 132

Description

Add the for loop increment to the for loop control constant.
Jump backwards 1 bytes, ( to the fortestS instruction ).

cjump.ib,r,s,p,pr( 1 : short )

Op-Codes

cjump.ib 5 cjump.r 133
cjump.s 6 cjump.p 134
cjump.pr 7 cjump.var 135

Description

if the top two stack elements of the relevent stack are equal 
then pop both elements and jump forwards 1 bytes 
else pop the top stack element.
Note that a real or procedure stack element consists of two words and a variant stack 
element is a word on each stack.
The rules for comparing two stack elements are described in section 4.15. 

cjump.polyC f : short, t : short, I : short )

Op-Code 

cjump.poly 8

Description

The dynamic tag being tested is found at word t of the object pointed to by word f of the 
local frame.
This type determines which equality function to perform on the top stack elements.
if the top two stack elements of the relevent stack are equal
then pop 2 stack elements from each stack and jump forwards 1 bytes
else pop the top stack element from each stack.
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A l.4.2 Stack Load and Assignment

Stack Load

197
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These instructions are used to push the field of an object onto the top of a stack. The object 

may be the root object, local frame or any object with a pointer on the local frame's pointer | |

stack. A separate instruction exists for each form. Different instructions are also used for the 

separate stacks. These instructions have a parameter ( d ) which is the displacement ( in 

words ) of the field from the base of its object. If the field is in separate pointer and non 

pointer parts then there are two displacements ( d l  and d2 ) which are the displacements ( in 

words ) of each part of the field from the base of its object.The root form of these 

instructions uses the root object. The local form of these instructions uses the local frame.

The load form of the instruction has an additional parameter ( f ) which is the offset ( in 

words ) from the local frame base to the pointer to the object.

Stack Assignment

These instructions are used to assign to the field of an object. The value being assigned is 

always on the top of the appropriate stack and is always popped after the assignment. The 4

object assigned to may be the root object, local frame or any object with a pointer on the 

local frame's pointer stack. The addressing modes are the same as the stack load instructions 

described above. 

wroot( d : short )

Op-Code 9

Description

Push word d of the root object onto the main stack.
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dwroot( d : short )

Op-Code

Description

137

Push word d of the root object onto the main stack.
Push word d + 1 of the root object onto the main stack,

proot(d: short)

Op-Code 10

Description

Push word d of the root object onto the pointer stack. 

dproot( d : short )

Op-Code 138

Description

Push word d of the root object onto the pointer stack.
Push word d + 1 of the root object onto the pointer stack.

wroot.ass( d : short )

Op-Code 12

Description

Copy the word on top of the main stack to word d of the root object.
Pop the word from the main stack.

dwroot.ass( d : short )

Op-Code 140

Description

Copy the word on top of the main stack to word d + 1 of the root object. 
Pop the word from the main stack.
Copy the word on top of the main stack to word d of the root object.
Pop the word from the main stack.
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proot.ass( d : short )

Op-Code 13

Description

Copy the word on top of the pointer stack to word d of the root object.
Pop the word from the pointer stack.

dprootass( d : short )

Op-Code 141

Description

Copy the word on top of the pointer stack to word d + 1 of the root object. 
Pop the word from the pointer stack.
Copy the word on top of the pointer stack to word d of the root object.
Pop the word from the pointer stack.

wlocal( d : short )

Op-Code 15

Description

Push word d of the local frame onto the main stack. 

dwlocal( d : short ) |

Op-Code 143

Description

Push word d of the local frame onto the main stack.
Push word d + 1 of the local frame onto the main stack.

plocal( d : short )

Op-Code 16

Description

Push word d of the local frame onto the pointer stack. 

dpIocal( d : short )

Op-Code 144

Description

Push word d of the local frame onto the pointer stack.
Push word d + 1 of the local frame onto the pointer stack.
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wplocal( d l : short, d2 : short )

Op-Code 17

Description

Push word dl of the local frame onto the main stack. 5
Push word d2 of the local frame onto the pointer stack.

200

dwdplocal( d l : short, d2 : short )

Op-Code 145 I

Description

I
Push word dl of the local frame onto the main stack.
Push word dl + 1 of the local frame onto the main stack.
Push word d2 of the local frame onto the pointer stack.
Push word d2 + 1 of the local frame onto the pointer stack. |

wlocal.ass( d : short )

Op-Code 18 I

Description

Copy the word on top of the main stack to word d of the local frame.
Pop the word from the main stack.

dwlocalass( d : short )

Op-Code 146

Description

Copy the word on top of the main stack to word d + 1 of the local frame.
Pop the word from the main stack.
Copy the word on top of the main stack to word d of the local frame.
Pop the word from the main stack.

pIocal.ass( d : short )

Op-Code 19

Description

Copy the word on top of the pointer stack to word d of the local frame.
Pop the word from the pointer stack.

1
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dplocal.ass( d : short )

Op-Code 147

Description

Copy the word on top of the pointer stack to word d + 1 of the local frame.
Pop the word from the pointer stack, ?
Copy the word on top of the pointer stack to word d of the local frame.
Pop the word from the pointer stack.

wplocal.ass( d l : short, d2 : short )

Op-Code 20

Description

Copy the word on top of the main stack to word dl of the local frame.
Pop the word from the main stack.
Copy the word on top of the pointer stack to word d2 of the local frame.
Pop the word from the pointer stack.

dwdplocal.ass( d l : short, d2 : short )

Op-Code 148

Description

Copy the word on top of the main stack to word dl + 1 of the local frame. 
Pop the word from the main stack.
Copy the word on top of the pointer stack to word d2 + 1 of the local frame. 
Pop the word from the pointer stack.
Copy the word on top of the main stack to word dl of the local frame.
Pop the word from the main stack.
Copy the word on top of the pointer stack to word d2 of the local frame.
Pop the word from the pointer stack.

wload( f : short, d : short )

Op-Code 21

Description

The source object is pointed to by word f of the local frame.
Push word d of the source object onto the main stack.
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dwload( f : short, d : short )

Op-Code

Description

149

The source object is pointed to by word f of the local frame. 
Push word d of the source object onto the main stack.
Push word d + 1 of the source object onto the main stack.

pload( f : short, d : short )

Op-Code

Description

22

The source object is pointed to by word f of the local frame. 
Push word d of the source object onto the pointer stack.

dpload( f : short, d : short )

Op-Code 150

Description

The source object is pointed to by word f of the local frame. 
Push word d of the source object onto the pointer stack. 
Push word d + 1 of the source object onto the pointer stack.

wpload( f  : short, d l : short, d2 : short )

Op-Code

Description

23

The source object is pointed to by word f of the local frame. 
Push word dl of the source object onto the main stack. 
Push word d2 of the source object onto the pointer stack.

dwdpload( f : short, dl : short, d2 : short )

Op-Code

Description

151

The source object is pointed to by word f of the local frame. 
Push word dl of the source object onto the main stack.
Push word dl + 1 of the source object onto the main stack. 
Push word d2 of the source object onto the pointer stack. 
Push word d2 + 1 of the source object onto the pointer stack.
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wassign( f  ; short, d : short )

Op-Code 24

Description

The destination object is pointed to by word f of the local frame.
Copy the word on top of the main stack to word d of the destination object.
Pop the word from the main stack.

dwassign( f : short, d : short )

Op-Code 152

Description

The destination object is pointed to by word f of the local frame.
Copy the word on top of the main stack to word d + 1 of the destination object. 
Pop the word from the main stack.
Copy the word on top of the main stack to word d of the destination object.
Pop the word from the main stack

passign( f : short, d : short )

Op-Code 25

Description

The destination object is pointed to by word f of the local frame.
Copy the word on top of the pointer stack to word d of the destination object.
Pop the word from the pointer stack.

dpassign( f : short, d ; short )

Op-Code 153

Description

The destination object is pointed to by word f of the local frame.
Copy the word on top of the pointer stack to word d + 1 of the destination object. 
Pop the word from the pointer stack.
Copy the word on top of the pointer stack to word d of the destination object.
Pop the word from the pointer stack.

wpassign( f : short, d l : short, d2 short )

Op-Code 26

Description

The destination object is pointed to by word f of the local frame.
Copy the word on top of the main stack to word dl of the destination object.
Pop the word from the main stack,
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Copy the word on top of the pointer stack to word d2 of the destination object.
Pop the word from the pointer stack.

dwdpassign( f : short, d l : short, d2 : short )

Op-Code 154

Description

The destination object is pointed to by word f of the local frame.
Copy the word on top of the main stack to word dl + 1 of the destination object.
Pop the word from the main stack.
Copy the word on top of the pointer stack to word d2 + 1 of the destination object.
Pop the word from the pointer stack.
Copy the word on top of the main stack to word dl of the destination object.
Pop the word from the main stack.
Copy the word on top of the pointer stack to word d2 of the destination object.
Pop the word from the pointer stack.

A l.4.3 Polymorphic Operations

contract.poly( f : short, d : short )

Op-Code 27

Description

The dynamic tag of the object being contracted is found at word d of the object pointed 
to by word f of the local frame.
From the type, calculate where the padding words reside on both stack tops.
Remove them by resetting the stack pointers accordingly.

expand.poly( f : short, d : short, ms ; short, ps : short )

Op-Code 155

Description

The dynamic tag being expanded is found at word d of the object pointed to by word f of 
the local frame.
The polymorphic value is at either word ms or ps of the local frame, according to its 
type.
Word offset ps is for the pointer stack and word offset ms is for the main stack. 
Calculate where the padding words should be in both stacks.
Slide the rest of the contents of the stacks upwards to make room for them.
Insert the padding - padding nils on the pointer stack and anything on the main stack 
Reset the stack pointers.

A l.4.4 Stack Duplicate Operations

These are used for the element on top of a stack.

1
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Op-Codes

wdup 28 dwdup 156
pdup.s 29 dpdup 157
wpdup 30 dwdpdup 158

Description

Push a copy of the value at the top of the appropriate stack onto the same stack.
Note that in the wp and dwdp cases this involves copying both stack tops. ^

Al.4.5 Stack Retract Operations

These are used for non-retentive block exits and stack erases. 

retract( ms : short, ps : short )

Op-Codes

wretract 31 dwretract 159
pretract 32 dpretract 160
wpretract 33 dwdpretract 161 < |
retract 34 S

Description

If non-void copy and then pop the item on top of the appropriate stack.
Pop ms words from the main stack.
Pop ps words from the pointer stack.
If non-void push the copied value onto the appropriate stack.
Note that in the wp and dwdp cases this involves copying both stack tops.

Al.4.6 Block Entry and Exit

block.enter( fs ; short, msb ; short, ftype ; short )

Op-Code 35

Description

Save the offset ( in words ) of LMSP from LFB m the current frame.
Set the number of pointers in the current frame to be LPSP - LFB - 2 (in words )
Create an object of size fs ( in words ), this is the new frame.
Set LMSP to the main stack base of the new frame, msb is the offset to the start of main 
stack ( in words ) from the base of the new frame.
Set LPSP to word following size field.
Push the frame's type onto new pointer stack. The type is pointed to by word ftype of 
the current code vector.
Push the dynamic link ( the current frame LFB ) onto the new pointer stack.
Push the pointer to the current code vector onto the pointer stack.
Push the static link ( the current frame ) onto the new pointer stack.
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Push the pointer to the current pail code onto the new pointer stack. I
Set the lexical level count for the new frame to be that of the current frame + 1.
Push the current frame's display onto the new pointer stack.
Push the static link ( the current frame ) onto the new pointer stack. x
Set LFB to point to the new frame. f

block.exit

Op-Codes

wblock.exit 36 dwblock.exit 164
pblock.exit 37 dpblock.exit 165
wpblock.exit 38 dwdpblock.exit 166
block.exit 39

Description

Copy and pop the result of the block at the top of the appropriate stack.
Set the number of pointers in the current frame to be LPSP - LFB - 2 ( in words ).
If the trace bit is set, set the trace bit in the frame pointed to by the dynamic link.
Set LFB to the dynamic link of the current frame, the new current frame.
Set LMSP to be LFB + the saved offset for LMSP held in the current frame.
Set LPSP so that the last pointer in the current frame is at the top of the pointer stack ( 
LFB + #pntrs + 2)
Push the result of die block onto the appropriate stack.
Note that in the dwdp case this involves copying both stack tops.

Al.4.7 Procedure Entry and Exit

The instruction sequence to call a procedure is:

1. load closure
2. evaluate the parameters
3. apply

apply( ms : short, ps : short )

Op-Code 40

Description

Save the offset ( in bytes ) of CP from the start of the current code vector, in the current 
frame ( the return address ).
Save the offset ( in words ) of LMSP from LFB in the current frame.
Set the number of pointers in the current frame to be LPSP - LFB - 2 ( in words ).
On top of the main stack there are ms words of main stack parameters.
On top of the pointer stack there are ps words of pointer stack parameters.
Below the pointer stack parameters there is the static link for the procedure being 
applied, the new static link.
Below the new static link there is the code vector for the procedure being applied, the 
new code vector.
Create an object to be the frame for the procedure being applied, its size is held in the 
new code vector ( in words ), this is the new frame.
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Set LMSP to the main stack base of the new frame, the offset to the start of main stack ( 
in words ) from the base of the new frame is held in the new code vector.
Set LPSP to word following size field.
Push the frame's type onto new pointer stack, a pointer to the type is held in the new 
code vector.
Push the dynamic link ( the current frame ) onto the new pointer stack.
Push the pointer to the new code vector onto the pointer stack.
Push the new static link onto the new pointer stack.
Push the pail tree pointer held in the new code vector onto the new pointer stack, 
if the new static link is nil
then Set the lexical level count for the new frame to be 0. 
else

Set the lexical level count for the new frame to be that of the new static link + 1.
Push the new static link's display onto the new pointer stack.
Push the new static link onto the new pointer stack.

Push the main stack parameters onto the new main stack.
Decrement the saved offset of LMSP from LFB by ms words, it will then not include the 
main stack parameters.
Push the pointer stack parameters onto the new pointer stack.
Decrement the number of pointers in the current frame by ps + 2, it will then not include 
the pointer stack parameters or the 2 word procedure closure being applied.
Set LFB to point to the new frame.
Set CP to the start of the abstract machine code in the current code vector, 

apply.poly

Op-Code 168

Description

As for apply except that the two parameters are on the top of the main stack.
The pointer stack size is on the top of the main stack 
The main stack size is on the main stack below PS.

return

Op-Codes

wretum 41 dwretum 169
preturn 42 dpreturn 170
wpretum ' 43
return 44

Description

if the instruction is return and the dynamic link is nil
then halt the abstract machine.
else

Copy and pop the result of the procedure at the top of the appropriate stack.
Set the num te of pointers in the current frame to be LPSP - LFB - 2 (in 
words ).
if the trace bit is set
do set the trace bit in the frame pointed to by the dynamic link.
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Set LFB to the dynamic link of the current frame, the new current frame.
Set LMSP to be LFB + the saved offset for LMSP held in the current frame.
Set LPSP so that the last pointer in the current frame is top of the pointer stack.
Set the dynamic link in the returning procedure's frame to be nil.
Push the result of the procedure onto the appropriate stack.
Set CP to be the start of the current code vector + the saved offset for CP held 
in the current frame.

retum.poly( f : short, t : short )

Op-Code 171

Description

The dynamic tag being returned is found at word t of the object pointed to by word f of 
the local frame.
Contract the value on the top of the stacks depending on the dynamic tag 
Perform the appropriate return operation above.

returns

Op-Codes

wretumS 45 dwreturnS 173
pretumS 46 dpreturnS 174
wpretumS 47
returns 48

Description

Perform the appropriate return instraction as above
If the trace bit is not set free the heap space allocated to the returning procedure's frame. 

returnS.poIy( f : short, t : short )

Op-Code 175

Description

Perform the retumS.poly operation above.
If the trace bit is not set free the heap space allocated to the returning procedure's frame, 

currentframe

Op-Code 49

Description

Push a pointer to the current frame ( LFB ) onto the pointer stack. I
I
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A l.4.8 Image operations

makeimage

Op-Code 50

Description

Pop the initialising pixel for the image from the main stack.
Lookup the depth of the pixel, Z.
Pop the Y dimension of die image from the main stack.
Pop the X dimension of the image from the main stack.
Create an image descriptor for an image with dimensions X by Y by Z.
Create a vector of integers to hold the images pixels.
Initialise the vector of integers by replicating the intialising pixel.
Place a pointer to the vector of integers in the image descriptor.
Push a pointer to the image descriptor onto the pointer stack.

makepixel( n : byte )

Op-Code 178

Description

Sum the depths of the n pixels on top of the main stack.
Create a new pixel of the combined depth.
Copy the planes of the pixels on the main stack into the new pixel.
The lowest pixel on the main stack represents the first planes of the new pixel.
The pixel on top of the main stack represents the last planes of the new pixel.
Pop the n pixels from the main stack.
Push the new pixel onto the main stack.

subimage j

Op-Code 51

Description

The image descriptor being subscripted is on the the pointer stack.
Pop the number of planes from the main stack.
Pop the start plane of the new image ( numbered from 0 ) from the main stack. 
Compare the start plane and depth with the bounds of the subscripted image, 
if the bounds are iUegal 
then raise an erron 
else

if the bounds are a subset of the subscripted descriptor 
do Create a copy of the subscripted descriptor.

Pop the subscripted descriptor from the pointer stack.
Push the created copy onto the pointer stack.
Increment the copy's depth offset by the start plane.
Set the copy’s depth to be the number of planes.
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1subpixel

Op-Code 179

Description

Pop the depth of the new pixel from main stack 
Pop the start plane of the new pixel from the main stack.
The subscripted pixel is now on top of the main stack.
Compare the start plane and depth of the new pixel with the subscripted pixel, 
if the bounds are illegal 
then raise an error 
else

if the depth of the new pixel is less than the depth of the subscripted pixel 
do Create the new pixel and set its depth.

Copy the selected planes from the subscripted pixel to the new pixel. t ̂
Pop the subscripted pikel form the main stack. |
Push the new pbcel onto the main stack. 1$

limAt

Op-Code 52

Description

Pop the new X offset from the main stack.
Pop the new Y offset from the main stack.
The subscripted image descriptor is on top of the pointer stack.
Compare the new X and Y offsets with the dimensions of the subscripted image, 
if the new X and Y offsets are outwith the dimensions of the subscripted image 
then raise an error
else Create a copy of the subscripted image descriptor.

Pop the subscripted image descriptor from the pointer stack.
Push the copy onto the pointer stack.
Decrement the X dimension Of the copy by the new X offset 
Add the new X offset to the copy's X offset.
Decrement the Y dimension of thé copy by the new Y offset 
Add the new Y offset to the copy's Y offset.

limAtBy

Op-Code 180

Description

Pop the new X offset from the main stack.
Pop the new Y offset from the rhain stack.
Pop the new X dimension from the main stack.
Pop the new Y dimension from the main stack.
The subscripted image descriptor is on top of the pointer stack.
Compare the new offsets and dimensions with the dimensions of the subscripted image, 
if the new offsets and dimensions are outwith the dimensions of the subscripted image 
then raise an error
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else Create a copy of the subscripted image descriptor.
Pop the subscripted image desccriptor from the pointer stack. 
Push the copy onto the pointer stack.
Set the X dimension of the copy to be the new X dimension 
Add the new X offset to the copy’s X offset.
Set the Y dimension of the copy to be the new Y dimension 
Add the new Y offset to the copy's Y offset.

rasterOp

Op-Code

Description

53

Pop the destination image descriptor from the top of the pointer stack.
Pop the source image descriptor from the top of the pointer stack.
Pop the rasterop rule to be used from the top of the main stack.
The size of the destination image dictates the clipping area for the source image. 
Perform the raster.op from source onto destination using the specified rule.
Notice that the image may be a cursor or screen to which any operations must be 
propagated. Such an image contains a valid file descriptor in its image descriptor.

The interpretation of the raster rules is as follows: the rules are encoded as integers:

0 S and -S 8 SandD
1 K S o rD ) 9 -S xor D
2 andD 10 D
3 -S 11 -S orD
4 S and -D 12 S
5 -D 13 S or-D
6 S xorD 14 S orD
7 -(S an d D ) 15 S or ~S

rastenline

Op-Code

Description

181

Pop destination image descriptor from the top of the pointer stack.
Pop rasterop rule to be used from the top of the main stack.
Pop the pixel value to be used to draw the line from the top of the main stack.
Pop the Y coordinate of the last point of the line from the top of the main stack..
Pop the X coordinate of the last point of the line from the top of the main stack..
Pop the Y coordinate of the first point of the line from the top of the main stack..
Pop the X coordinate of the first point of the line from the top of the main stack.. 
Raster the supplied pixel onto the pixels forming the specified line using the specified 
rasterop rule.
Notice that the image may be a cursor or screen to which any operations must be 
propogated. Such an image contains a valid file descriptor in its image descriptor.
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get^screen

Op-Code

get.screen

Description

54

Pop the file descriptor from the pointer stack.
Lookup the type of the file descriptor.
if the file descriptor is for a raster device
then Push the screen field of the descriptor onto the pointer stack.
else Push a pointer to the nullimage onto the pointer stack.

locator

Op-Code

Description

182

Pop the pointer to the destination vector from the pointer stack.
Pop the file descriptor from the top of the pointer stack.
Lookup the type of the file descriptor.
if the file descriptor is for a mouse or tablet file
do Copy the locator information for the file into the vector.

The elements of the vector are filled in as follows:
element 1: if the file is a tablet the X dimension of the tablet, otherwise 0,
element 2: if the file is a tablet the Y dimension of the tablet, otherwise 0,
element 3: the locator X position,
element 4: the locator Y position,
element 5: the state of button 1,
element n: the state of button n-4,
if the vector has more elements than the information available the extra are ignored, 
if it has too few elements only the ones supplied are filled in,
if the locator is a mouse the X and Y positions are relative to the last locator instraction, 
if the locator is a tablet the X and Y positions are absolute.

colouninap

Op-Code

Description

55

Pop the colour map entry from the top of the main stack.
Pop the pixel from the top of the main stack.
Pop the file descriptor from the top of the pointer stack.
Lookup the type of the file descriptor, 
if the file is a raster device
do Set the colour map entry for the specified pixel to be the specified entry.
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colour.of

Op-Code 183

Description

Pop the pixel from the top of the main stack.
Pop the file descriptor from the top of the pointer stack.
Lookup the type of the file descriptor.
if the file is a raster device ‘ i|
then Push the colour map entry for the specified pixel onto the main stack, 
else Push the integer value -1 onto the main stack.

The elements of the vector are filled in as follows:
element 1: the cursor's X .position,
element 2: the cursor’s Y position,
element 3: the rasterop mle used to display the cursor
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getcursor

Op-Code 56

Description

Lookup the type of the file descriptor on top of the pointer stack.
Pop the file descriptor from the pointer stack, 
if tile file descriptor is for a raster device 
then Push the cursor field of the descriptor onto the pointer stack, 
else Push a pointer to the nullimage Onto the pointer stack.

setxursor

Op-Code 184

Description

Pop the image descriptor from the pointer stack.
Pop the file descriptor from the pointer stack.
Lookup the type of the file descriptor, 
if the file descriptor is for a raster device
do Set the cursor field of the descriptor to be the specified image descriptor. 

get.cursor.info

Op-Code 57

Description

Pop the pointer to the destination vector from the pointer stack.
Pop the file descriptor from the top of the pointer stack.
Lookup the type of the file descriptor, 
if the file descriptor is for a raster device 
do Copy the cursor information for the device into the vector.
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if the vector has more than 3 elements the extra are ignored, 
if the vector has less than 3 only the ones supplied are filled in.

setcursoninfo

Op-Code 185

Description

Pop the pointer to the source vector from the pointer stack.
Pop the file descriptor from the top of the pointer stack.
Lookup the typp of the file descriptor, 
if the file descriptor is for a raster device 3̂
do Copy the cursor information for the device from the vector.

The elements of the vector are used as follows:
element 1: specifies the cursor’s X position,
element 2: specifies the cursor's Y position,
element 3: specifies the rasterop mle used to display the cursor.
if the vector has more than 3 elements the extra are ignored,
if the vector has less than 3 only the ones supplied are used.

get.pixel

Op-Code 58

Description

Pop the image descriptor from the pointer stack.
Pop the X position of the pixel being looked up.
Pop the Y position of the pixel being looked up.
Compare the pixel's position with the dimensions of the image descriptor, 
if the pixel is outwith the dimensions of the image descriptor 
then raise an error.
else Push the pixel at position X,Y in image onto the main stack, 

set.pixel

Op-Code 186

Description

Pop the image descriptor from the pointer stack.
Pop the new value for the pixel being set.
Pop the X position of the pixel being set.
Pop the Y position of the pixel being set.
Compare the pixel’s position with the dimensions of the image descriptor, 
if the pixel is outwith the dimensions of the image descriptor 
then raise an error.
else Set the pixel value at position X,Y to be the pixel value specified.
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A l.4.9 Vector and Structure Creatî<m Instructions

These instructions take information off the stacks and create heap objects. The objects are 

then initialised and the pointer to them left on the top of the pointer stack, 

subconst 

Op-Ccxies

wsubconst 60 dwsubconst 188
psubconst 61 dpsubconst 189

Description

Pop the word offset, W, to the field to be made constant from the main stack.
Pop the pointer to the structure from the pointer stack.
Set the constancy bit for word W in the structure, 
if the instruction is dwsubconst or dpsubconst 
do Set the constancy bit for word W + 1 in the structure.

wpsubconst

Op-Code 62

Description

Pop the word offset, Wl, to the pointer field to be made constant from the main stack.
Pop the pointer to the structure from the pointer stack.
Set the constancy bit for word Wl in the structure.
Pop the word offset, W2, to the non pointer field to be made constant fi"om the main 
stack.
Set the constancy bit for word W2 in the structure. 

subconst.poly( f : short, t : short )

Op-Code 190

Description

The dynamic tag being loaded is found at word t of the object pointed to by word f of the 
local frame.
The top of the main stack is the offset to use if the field to be made constant is a pointer.
Below this offset is the offset to use if the field to be made constant is a non pointer.
Both offsets are used if the field to be made constant is a variant.
Contract the main stack to eliminate the unnecessary field offset. . f
Perform the appropriate subconst instruction.



makeobject( m : short, n : short )

Op-Code

Description

63

Create an object of size m (in words ) with n pointer fields. 
Initialise the n pointer fields to the value nil.
Initialise the remaining m - n - 2 words with the integer value 0. 
Push the pointer to the new object onto the pointer stack.

makeobjectpoly

Op-Code

Description

191

Pop the number of pointer fields n from the main stack.
Pop the size m of the object from the main stack.
Create an object of size m ( in words ) with n pointer fields. 
Initialise the n pointer fields to the value nil.
Initialise the remaining m - n - 2  words with the integer value 0. 
Push the pointer to the new object onto the pointer stack.

makestruct( m : short, n : short )

Op-Code

Description

64

Create an object of size m ( in words ) with n pointer fields.
Copy n words from the top of the pointer stack to the object, preserving their order.
Pop n words from the pointer stack.
Copy ( m - n - 2  ) words from the top of the main stack to the object, preserving their 
order.
Pop ( m - n - 2  ) words from the main stack.
Push the pointer to the new object onto the pointer stack.

polystructaddress( nfields : short )

Op-Code 192

Description

This instruction is used to calculate the field addresses and size information for a 
structure whose specialised type is not known at compile time.
The main stack contains a word for the size of the structure.
Above the size is a word for the number of pointers in the structure.
Above the number of pointers is a pair of words for each field of the structure, the fields 
are ordered alphabetically with the last field at the top of the main stack.
Each pair of words consists of an offset to the non pointer part of the field and an offset 
to the pointer part of the field.
The non pointer offset is initialised to 0.
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makev

Op-Codes

wmakev 65 dwmakev 193
pmakev 66 dpmakev 194
wpmakev 67

Description

Pop the vector's type from the top of the pointer stack.
Pop the initialising value from the top of the appropriate stack.
Pop the upper bound from the top of the main stack.
Pop the lower bound from the top of the main stack, 
if the lower bound is greater than the upper bound 
then raise an error
else Create a vector of the appropriate size.

Set the vector's type.
Initialise the vector's elements with the initial value.
Push a pointer to the vector onto the pointer stack.

makev.poly( f : short, t : short )

Op-Code 195

Description

The dynamic tag of the vector's elements is found at word t of the object pointed to by 
word f of the local frame.
Contract the initialising value.

217

The pointer offset is initialised to the field’s dynamic tag.
The parameter nfields is the number of fields in the structure to allow the size word to be 4
found. ’
The algorithm for calculating the correct field offsets is as follows:

1. create a variable to hold the pointer offset for the next field, initially 3 - this is to 
allow for the 2 word header and the pointer to the type.

2 create a variable to hold the non pointer offset for the next field, initially 0 - the non 
pointer offsets are patched later since they must allow for all the pointer fields.

3. foreach field of the stmcture in ^phabetic order of field name:
1 lookup the pointer offset, the field's dynamic tag
2. overwrite the pointer offset with the next pointer offset.
3. increment the next pointer offset by the pointer size in the dynamic tag.
4. overwrite the non poiritef offset with the next non pointer offset
5. increment the next non pointer offset by the non pointer size in the dynamic 

type.
4. for each field of the stmcture increment the non pointer offset by the next pointer 

offset, the non pointer fields come after the pointer fields in a stmcture.
5. overwrite the number of pointers in the stmcture by the next poi hter field offset - 2, 

the 2 allows for the 2 word header on the stmcture.
6. overwrite the size of the stmcturewith the next pointer offset + the next non pointer 

offset + the size of the constancy bitmap required.
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Note that the vectors type should be on top of the pointer stack.
From the dynamic tag, decide which of the above makev operations to perform.

Al.4.10 Vector and Structure Accessing Instructions

These instructions are generated by the compiler to index a vector or a structure. Note that 

the index of the vector must be checked against the bounds before the indexing is done, 

subs

Op-Codes

wsubs 68 dwsubs 198
psubs 69 dpsubs 199

Description

Pop the word offset, W, to the field being looked up from the main stack.
Pop the pointer to the stmcture from the pointer stack.
Push word W of the structure onto the appropriate stack, 
if the instmction is dwsubs or dpsubs
do Push word W + 1 of the structure onto the appropriate stack, 

wpsubs 

Op-Code

wpsubs 70

Description

Pop the word offset, Wl, to the pointer being looked up from the main stack.
Pop the pointer to the stmcture from the pointer stack.
Push word Wl of the stmcture onto the pointer stack.
Pop the word offset, W2, to the non pointer being looked up from the main stack.
Push word W2 of the stmcture onto the main stack.

subs.poly( f : short, t : short )

Op-Code 198

Description

The dynamic tag being loaded is found at word t of the object pointed to by word f of the 
local frame.
The top of the main stack is the offset to use if the value being indexed is a pointer value. 
Below this offset is the offset to use if the value to be assigned is a non pointer value.
Both offsets are used if the value to be assigned is a variant.
Contract the main stack to eliminate the unnecessary field offset.
Perform the appropriate subs instmction.
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Expand the value on the top of the stack 
Remember pointer stack must be padded with nil.

subv

Op-Codes

wsubv 71 dwsubv 199
psubv 72 dp subv 200

Description

Pop vector index from the main stack.
Pop the pointer to the vector from the pointer stack.
Compare the index with the lower and upper bounds of the vector, 
if index is outwith the bounds 
then raise an eiror
else Modify the index to be the word offset to the indexed element.

Push the first word of the indexed element onto the appropriate stack, 
if the instruction is subv.r or subv.pr
do Push the second word of the indexed element onto the appropriate stack, 

wpsubv

Op-Code 73

Description

Pop vector index from the main stack. j
Pop the pointer to the vector from the pointer stack.
Compare the index with the lower and upper bounds of the vector, 
if index is outwith the bounds 
then raise an error
else Modify the index to be the word offset to the indexed pointer element.

Push the indexed pointer element onto the pointer stack.
Modify the index to be the word offset to the indexed non pointer element.
Push the indexed non pointer element onto the pointer stack.

subv*poly( f : short, t : short )

Op-Code 201

Description

The dynamic tag being loaded is found at word t of the object pointed to by word f of the 
local frame.
Perform the appropriate subv instruction.
Expand the value on the top of the stack 
Remember pointer stack must be padded with nil.
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subsass

Op-Codes

wsubsass 74 dwsubsass 202
psubsass 75 dpsubsass 203

Description

Pop the value to be assigned from the appropriate stack.
Pop the word offset, W, to the field being assigned from the main stack.
Pop the pointer to the stmcture from the pointer stack, 
if the instmction is psubsass or dpsubsass or

the word offset is not part of tiie constancy bitmap 
do Test the bit for the word offset in the constancy bitmap, 

if the offset's bit is set 
do raise an error.

Copy the first word of the value to be assigned to word W of the stmcture. 
if the instruction is subs.r or subs.pr
do Copy the second word of the value to be assigned to word W + 1 of the 

stmcture.

wpsubsass

Op-Codes

wpsubsass 76

Description

Pop the value to be assigned from the appropriate stack.
Pop the word offset, W l, to the pointer being assigned from the main stack.
Pop the word offset, W2, to the non pointer being assigned from the main stack.
Pop the pointer to the stmcture from the pointer stack.
Test the bit for the word offset Wl in the constancy bitmap, 
if the bit is set 
do raise an error.
Copy the pointer value to be assigned to word Wl of the stmcture.
Copy the non pointer value to be assigned to word W2 of the stmcture.

subsass.poIy( f ; short, t : short )

Op-Code 204 

Description

The dynamic tag being assigned is found at word t of the object pointed to by word f of 
the local frame.
Below the two words on top of the main stack there are two field offsets.
The top offset is the offset to use if the value to be assigned is a pointer value.
The bottom offset is the offset to use if the value to be assigned is a non pointer value. 
Both offsets are used if the value to be assigned is a variant.
Contract the main stack to eliminate the unnecessary field offset.
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Contract the value on the top of the stack i
Perform the appropriate subsass instmction.

wpsubvass

Op-Codes

wpsubvass 79

Description

Pop the value to be assigned from the appropriate stack.
Pop the vector index from the main stack.
Pop the pointer to the vector from the pointer stack.
Compare the index with the lower and upper bounds of the vector, 
if index is outwith the bounds 
then raise an error
else if the vector’s constancy bit is set 

do raise an error.
Modify the index to be the word offset to the indexed pointer element.
Copy die pointer value being asrigned to the indexed pointer element 
Modify the index to be the word offset to the indexed non pointer element. 
Copy the non pointer value being assigned to the indexed non pointer element
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subvass 

Op-Codes

wsubvass 77 dwsubvass 205
psubvass 78 dpsubvass 206

Description

Pop the value to be assigned from the appropriate stack.
Pop the vector index from the main stack.
Pop the pointer to the vector from the pointer stack.
Compare the index with the lower and upper bounds of the vector, 
if index is outwith the bounds 
then raise an error I
else if the vector's constancy bit is set 

do raise an error.
Modify the index to be the word offset to the indexed element.
Copy the first word of the value being assigned to the first word of the indexed 
element.
if the instmction is subv.r or subv.pr
do Copy the second word of the value being assigned to the second word of the 
indexed element.

i
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subvass.poly( f : short, t : short )

Op-Code 207 

Description

The dynamic tag being assigned is found at word t of the object pointed to by word f of 
the local frame.
Perform the appropriate subvass instruction.
Expand the value on the top of the stack 
Remember pointer stack must be padded with nil.

makeconst

Op-Code 80

Description

Set the constancy bit in the object whose pointer is on top of the pointer stack, 

makevar

Op-Code 208

Description

Clear the constancy bit in the object whose pointer is on top of the pointer stack.

A1.4.11 String Operations

concat.op

Op-Code 81

Description

Pop the second string from the pointer stack.
Pop the first string from the pointer stack.
Push a new string which is the characters of the first string immediately followed by the 
character of the second string.

substr.op

Op-Code 209

Description

Pop the length of the new string from the main stack.
Pop the starting position of the new string from the main sack.
The subscripted string is on the top of the pointer stack.
Compare the new string's start and length with the length of the subscripted string, 
if the new string is not a substring of the subscripted string 
then raise an error.

t
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else if the new string is shorter than the subscripted string 5
do Create the new string.

Copy the new string's characters from the subscripted string, starting at 
the start position.

ll.int( n : byte ) 
ll.intL( n ; word )

Op-Codes

U.int 82 U.intL 210

Description

Push the integer value n onto the main stack. 

ll.char(n : byte)

Op-Code 83

Description

Lookup the vector of single character strings in the root object. 
Use n as an index into the vector.
Push the indexed string element onto the pointer stack.

Al.4.12 Load Literal Instructions I

These are used to load the value of a literal onto the appropriate stack. v|

ll.real( n : double )

Op-Code 211 j
Description f

Push the real value n onto the main stack.

A1,4.I3 Primitive 1/0 interface ;|

create.file

Op-Code 85

Description
I

Pop the file name from the pointer stack.
Pop the file's protection mask from the main stack.
Create a file in the underlying system with the specified name and protection mask, 
if the file was created
then Discover the type of file that was created, a disk file, terminal file, mouse file, I

tablet file or raster file.
Create a file descriptor for the type of file created.
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Perform any initialisation necessary to use the created file.
Push the file descriptor onto the pointer stack.
Enter the file descriptor in the open file table.
Set the I/O error number in the root object to 0. 

else Push the value nullfile onto the pointer stack.
Set the I/O error number in the root object to indicate why the create failed.

open

Op-Code 213

Description

Pop the file name from the pointer stack.
Pop the file's access mode from the main stack, the mode can be 0 for read only, 1 for 
write only or 2 for read and write.
Open a file in the underlying system with the specified name and access mode, 
if the file was opened
then Discover the type of file that was opened, a disk file, terminal file, mouse file, 

tablet file or raster file.
Create a file descriptor for the type of file opened.
Perform any initialisation necessary to use the opened file.
Push the file descriptor onto the pointer stack.
Enter the file descriptor in the open file table.
Set the VO error number in the root object to 0. 

else Push the value nullfile onto the pointer stack.
Set the VO error number in the root object to indicate why the open failed.

close

Op-Code 86

Description

Pop the file descriptor from the pointer stack. 5
if the file descriptor is for a closed file 
then Push the integer value -1 onto the main stack.

Set the VO error number in the root object to indicate an attempt to close a 
closed file, 

else Close the open file, 
if the file was closed
then Push the integer value 0 onto the main stack.

Set the VO error number in the root object to 0. 
else Push the integer value -1 onto the main stack.

Set the VO error number in the root object to indicate why the close 
failed. i

Ï
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seek

Op-Code 214

Description

Pop the seek key from the main stack, 0 seek from the start of file, 1 seek from the 
current file position or 2 seek from the end of the file.
Pop the byte offset that the file position should be modified by.
Pop the file descriptor from the pointer stack, 
if the file descriptor is for a closed file 
then Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate an attempt to seek within a 
closed file, 

else if the file is not a disk file
then Push the integer value -1 onto the main stack.

Set the I/O error number to indicate an attempt to seek on a non disk file, 
else Set the current file position as indicated by the byte offset and seek key. 

if the file position was set
then Push the integer value 0 onto the main stack.

Set the I/O error number in the root object to 0. 
else Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate why the 
seek failed.

ioctl

Op-Code 87

Description

Pop the ioctl command number to be performed from the main stack.
Pop the the vector of integers holding the command's data from the pointer stack.
Pop the file descriptor from the pointer stack, 
if &e file descriptor is for a closed file 
then Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate ioctl was passed a closed file, 
else if the file is not a terminal file

then Push the integer value -1 onto the main stack.
Set the I/O error number to indicate ioctl was not passed a terminal file, 

else execute the specified ioctl command using the data vector, 
if the command was successful 
then Push the integer value 0 onto the main stack.

Set the I/O error number in the root object to 0. 
else Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate why the 
requested ioctl command failed.



readLbytes

Op-Code 88

Description

Pop the number of bytes to be read from the main stack.
Pop the byte offset into the vector of integers from the main stack.
Pop the vector of integers into which the bytes will be read from the pointer stack.
Pop the file descriptor from the pointer stack.
if tiie file descriptor is for a closed file
then Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate read.bytes was passed a 
closed file,

else if the file is not a disk file or a terminal file
then Push the integer value -1 onto the main stack.

Set the VO error number to indicate read.bytes was not passed a disk file or 
a terminal file.

else Read at most the number of bytes specified into the vector of integers 
starting from the specified byte offset from the file, 
if no error occurred
then Push the number of bytes read onto the main stack.

Set the VO error number in the root object to 0. 
else Push the integer value -1 onto the main stack.

Set the VO error number in the root object to indicate why read.bytes 
failed.

write.bytes

Op-Code 216

Description

Pop the number of bytes to be written from the main stack.
Pop the byte offset into the vector of integers from the main stack.
Pop the vector of integers from which the bytes will be written from the pointer stack. 
Pop the file descriptor from the pointer stack, 
if tiie file descriptor is for a closW file 
then Push the integer value -1 onto the main stack.

Set the VO error number in the root object to indicate write.bytes was passed a 
closed file.

else if the file is not a disk file or a terminal file
then Push the integer value -1 onto the main stack.

Set the VO error number to indicate write.bytes was not passed a disk file or 
a terminal file.

else Write at most the number of bytes specified from the vector of integers 
starting from the specified byte offset to the file, 
if no error occurred
thai Push the number of bytes written onto the main stack.

Set the VO error number in the root object to 0. 
else Push the integer value -1 onto the main stack.

Set the VO error number in the root object to indicate why 
write.bytes failed.
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get.byte

Op-Code 89

Description

A1.4.14 Comparison Operations

The comparison operations act on the the top two elements of the appropriate stack. They 

are compared and removed. The boolean result true or false is left on the main stack. 

eq.ib,r,s,p,pr 

Op-Codes

eq.ib 94 eq.r 222
eq.s 95 eq.p 223
eq.pr 96 eq.var 224

Description

Compare the two elements at the top of the appropriate stack.
Pop tiie two elements off the appropriate stack.
if the two elements were equal
then Push the boolean value true onto the main stack.
else Push the boolean value false onto the main stack.

227

IPop the byte offset to the desired byte in the word to be indexed.
Pop the word to be modified from the main stack, 
if tiie byte offset is less than 0 or greater than 3 / |
then raise an error 
else

Push the unsigned integer value of the indexed byte onto the main stack. 

set.byte

Op-Code 217

Description

Pop the integer value of the byte to be assigned to.
Pop the byte offset to the desired byte in the word to be indexed. 3
Pop the word to be modified from the main stack, 
if tiie byte offset is less than 0 or greater than 3 §
then raise an error ?
else

Set the value of the indexed byte to be the least significant byte of the specified 
value.
Push the modified word value onto the main stack.
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Equality of the stack elements is defined as follows: |
eq.ib: the elements are single words on the main stack, they must have the '

same integer value. 
eq.r the elements are pairs of words on the main stack, they must be

compared by the floating point implementation, 
eq. s the elements are pointers to strings on the pointer stack, they must be the

same pointer or they must have exactly the same characters, 
eq.p the elements are single words on the pointer stack, they must have the

same integer value.
eq.pr the elements are pairs of words on the pointer stack, their first words

must have the same integer values, their second words must have the 
same integer values, 

eq.var the elements are a single label word on the main stack and a single
pointer on the pointer stack, they must have the same label value, if the 
labels are equal the least significant byte of the label identifies the type of 
object pointed to by the pointer values, the values used to identify the 
type are the same as those used by the poly insfoictions, if the type to be 
compared is a pointer value perform the appropriate comparison 
otherwise the pointers point to objects containing the values to be 
compared, in tiiat case the values start immediately after the first pointer 
field.

eq.polyf f : short, t : short )

Op-Code 97

Description

The dynamic tag being tested is found at word t of the object pointed to by word f of the 
local frame.
Perform the appropriate comparison, pop four words from each stack and push the 1
result onto the main stack.

neq.:b,r,s,p,pr

Op-Codes

neq.ib 98 neq.r 226 Î
neq.s 99 neq.p 227
neq.pr 100 neq.var 228

Description

Compare the two elements at the top of the appropriate stack.
Pop the two elements off the appropriate stack, 
if the two elements were equal 
then Push the boolean value false onto the main stack, 
else Push the boolean value true onto the main stack.

ÏÎ
1
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neq.poly( f  : short, t : short )

Op-Code 101 

Description

The dynamic tag being tested is found at word t of the object pointed to by word f of the 
local frame.
Perform the appropriate comparison, pop four words from each stack and push the 
result onto the main stack.

lt.i,r,s

Op-Codes

lt.i 102 lt.r 230
lt.s 103

Description

Compare the two elements at the top of the appropriate stack.
Pop the element, B, off the appropriate stack.
Pop the element. A, off the appropriate stack, 
if the element A was less than the element B 
then Push the boolean value true onto the main stack, 
else Push the boolean value false onto the main stack.

Less than between two stack elements A and B is defined as follows: 
lt.ib: the elements A and B are single words on the main stack, element A

must have a smaller integer value than element B 
lt.r the elements A and B are pairs of words on the main stack, element A

must have a smaller floating point value than element B.
It. s the elements A and B are pointers to strings on the pointer stack, the

characters in A’s string are compared with the characters at the same 
position in B's string until either all the characters in one string have 
been compared or two characters being compared differ, if all of a 
string's characters have been compared A's string must be shorter than 
B's string, if two characters differ the character from A's string must 
have a smaller ascii code than the character from B's string.

le.i,r,s

Op-Codes

le.i 104 le.r 232
le.s 105

Description

Compare the two elements at the top of the appropriate stack.
Pop the element, B, off the appropriate stack.
Pop the element, A, off the appropriate stack.
if the element A was less than or equal to the element B
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then Push the boolean value true onto the main stack, 
else Push the boolean value false onto the main stack.

gt.i,r,s

Op-Codes

gt.i 106 gt.r 234
gt.s 107

Description

Compare the two elements at the top of the appropriate stack.
Pop die element, B, off the appropriate stack.
Pop the element, A, off the appropriate stack, 
if the element A was less than or equal to the element B 
then Push the boolean value false onto the main stack, 
else Push the boolean value true onto the main stack.

ge.i,r,s

Op-Codes

ge.i 108 ge.r 236
ge.s 109

Description

Compare the two elements at the top of the appropriate stack.
Pop the element, B, off the appropriate stack.
Pop the element, A, off the appropriate stack, 
if the element A was less than the element B 
then Push the boolean value false onto the main stack, 
else Push the boolean value true onto the main stack.

A1.4.15 Arithmetic and Boolean Operators

These instructions operate on the data types real and integer. The top two elements of the 

stack are replaced by the result. The real ( floating-point ) operations are preceded with the 

letter f. Remember that each real number is two stack elements long.
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plus,fplus

Op-Codes

plus 110 fplus 238

Description

Pop the value B from the top of the main stack.
Pop the value A from the top of the main stack.
Push the value of A added to B onto the main stack.

Description

Pop the value B from the top of the main stack.
Pop the value A from the top of the main stack.
Push the value of A times to B onto the main stack.

minus,fminus

Op-Codes

minus 112 fminus 240

Description

Pop the value B from the top of the main stack.
Pop the value A from the top of the main stack.
Push the value of A minus B onto the main stack.

div

Op-Code 113

Description

Pop the integer value B from the top of the main stack. 
Pop the integer value A from the top of the main stack. 
Push the quotient of A divided by B onto the main stack.
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times,ftimes

Op-Codes

times 111 ftimes 239 I



fdivide

Op-Code 241

Description

Pop the floating point value B from the top of the main stack. 
Pop the floating point value A from the top of the main stack. 
Push the floating point value of A divided B onto the main stack.

negjfneg

Op-Codes

neg 114 fneg 242

Description

Pop the value A from the top of the main stack.

I
rop me vaiue a  irom me top or me mam siacK. |
Push the negated value of A onto the main stack. %

rem

not

Op-Code 243

Description

sin

Op-Code 116

Description

Pop the floating point value R from the main stack, R is an angle in radians. 
Push the value of the sine of R onto the main stack.
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Op-Code 115 4

Description

Pop the integer value B from the top of the main stack.
Pop the integer value A from the top of the main stack.
Push the remainder of A divided by B onto the main stack.

Pop the boolean value A from the top of the main stack. 
if A is true
then Push the boolean value false onto the main stack, 
else Push the boolean value true onto the main stack.

• 4



Pop the floating point value R from the main stack.
Push the value of the integer part of R onto the main stack.
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cos

Op-Code 244

Description

Pop the floating point value R from the main stack, R is an angle in radians.
Push the value of the cosine of R onto the main stack.

exp

Op-Code 117

Description

Pop the floating point value R from the main stack.
Push the value of e raised to the power of R onto the main stack.

In

Op-Code 245

Description

Pop the floating point value R from the main stack. 5
Push the value of the natural logarithm of R onto the main stack. J

sqrt

Op-Code 118

Description

Pop the floating point value R from the main stack.
Push the value of the square root of R onto the main stack.

atan

Op-Code 246

Description

I•• X
I 
j

Pop the floating point value R from the main stack, R is an angle in radians. j
Push the value of the arctangent of R onto the main stack.

truncate

Op-Code 119 I
"A

Description



float

Op-Code 247

Description

Pop the integer value I from the main stack.
Push the floating point number with the same value as I onto the main stack. %

shift.r #
4

Op-Code 120

Description

Pop the number of bits, S, to shift from the main stack 
Pop the integer value to be shifted from the main stack.
Shift the bits of integer value so that bit at position B is at position B - S, the least 
significant S bit positions are ignored, the most significant S bit positions are cleared.
Push the shifted integer value onto the main stack.

shiftl

Op-Code 248

Description

Pop the number of bits, S, to shift from the main stack.
Pop the integer value to be shifted from the main stack.
Shift the bits of integer value so that bit at position B is at position B + S, the most 
significant S bit positions are ignored, the least significant S bit positions are cleared. f
Push the shifted integer value onto the main stack.

b^uid

Op-Code 121

Description

Pop the integer value, B, from the main stack.
Pop the integer value. A, from the main stack.
Construct a new integer value whose bits are set only if the corresponding bits in A and 
B are both set.
Push the new integer value onto the main stack, 

b.or

Op-Code 249

Description

Pop the integer value, B, from the main stack.
Pop the integer value. A, from the main stack.
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Al.4.16 Miscellaneous 

date

Op-Code 125

Description

Push a pointer to a string containing the current date and time in the form : 
"Thu Apr 23 17:16:11 1987" 
onto the pointer stack.

stabilise

Op-Code 126

Description

Perform the checkpoint_heap operation provided by the stable store interface, 

diskgc

Op-Code 254

Description

Perform the garbage„coUect operation provided by the stable store interface.
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Construct a new integer value whose bits are set only if either of the corresponding bits 
in A and B are set.
Push the new integer value onto the main stack.

b.not I
'X'-

Op-Code 122 1

Description

Pop the integer value from the main stack.
Set all the bits in the integer value that are clear and clear all the bits that are set.
Push the not'd integer value onto the main stack.

time

Op-Code 253

Description |

Push the number of one sixtieth second ticks since the Napier system started onto the 4
main stack. I
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A1.5 Persistence Hooks 

A l.5.1 Interpreter Interface to the Stable Store

A program module within the interpreter implements the heap. The heap is in fact the top

layer of the stable store. It is interfaced to by means of 8 interface functions that will now be |

described. A full description of the layers within the stable store can be found in [bro88]. It 

is assumed that the heap is implemented in a byte addressed RAM.

Al.5.2 Interface Functions to the Heap

Al.5.2.1 initialise heap

This function will cause the underlying stable store system to be initialised. As a part of this 

initialisation the disk store to be used will be locked to prevent interference. In addition the 

particular performance contraints of the underlying stable store layers will be used to 

configure the heap interfaces.

■i
A l.5.2.2. shutdown heap |

"4
This function causes the underlying stable store system to be shutdown and so release any 4 

system resources it may be using. This is the converse of initialise_heap.

A l.5.2.3. createjobject

This function is used to create a new object in the heap. It is parameterised by the size of the 

new object in words. When the object is created it is initialised as an object of the required 

size but with no pointer fields. The act of inserting pointers into the object and setting the 

count of the number of pointers is left to the interpreter. Once the object has been created the 

function will return its address. The address will be a byte address in RAM. If for some 

reason the object cannot be created the address returned will be 0.

A l.5.2.4. destroy object
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This function is used to destroy an object and release the store allocated to it. It is 

parameterised by the RAM byte address of the object to be destroyed.

Al.5.2.5. illegal address

This function is used to move objects from the underlying stable store into the heap. It is 

parameterised by the byte address of the object in the stable store and returns the byte |

address it was copied to in RAM. When illegal address is called the stable store address is 

looked up in a mapping table. The mapping table records all stable store objects that 

currently have a copy in RAM. If the stable store address is present then the corresponding 

RAM address is returned. However if the stable store address is not present the object being ^

addressed must first be copied into RAM and then its RAM address returned. An object is 

copied into RAM in four steps:

a. create_object is called to create an object in the heap the same size as the 

addressed object.

b. the addressed object is then copied from the stable store onto the newly created 

heap object.

c. all the pointers held within the copied object are negated since they are stable 

store addresses and must be distinguished from RAM addresses.

d. finally the address of the newly created object is entered in the mapping table 

together with the stable store address.

All stable store addresses are distinguished from RAM addresses by being negative values 

and hence invalid RAM addresses. Therefore it is necessary to translate these addresses #  

before using them. To minimise the number of translations the following rules should be 

applied. Once a stable store address has been translated it is overwritten by its RAM 

address. Note this overwriting is most effective if it is done at the source of the address, that 

is in the field of a structure rather than on the pointer stack. Whenever a pointer value is 

placed on the pointer stack it is translated into a RAM address. Whenever a pointer value is
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found in an object other than the current frame it must be translated into a RAM address. 

The pointer to the code vector for the current frame must be a RAM address. The display 

entries, dynamic and static links of the current frame may be stable store addresses and 

hence must be checked before being used. Finally whenever control is transferred the new 

current frame must have its code vector pointer and pointer stack elements above the display 

translated into RAM addresses.

To support these rules every object is tagged to indicate if it may contain a stable store 

address. This tag is set when an object is first copied into the heap and subsequently when a 

RAM address it contains is overwritten by a stable store address.

These rules are sufficient to guarantee no stable store addresses are encountered by 

instructions that operate solely on the current frame. Hence they need never deal with stable 

store addresses.

A l.5.2.6, firstjobject

This function returns the RAM address of the first object in the heap. The first object in the 

heap will be the root object of the stable store.

A l.5.2.7. checkpoint heap

This function causes all the new or changed objects within the heap to be copied to the stable 

store. The stable store then performs its own checkpoint operation so that the stable store 

moves to a new stable state. Note, this function does not remove any objects from the heap.

The act of copying any heap object to the stable store is done in two steps. First any RAM 

addresses it contains must be given stable store addresses they can be mapped to. A RAM 

address is given a stable store address by creating a new object in the stable store the same 

size as the object it addresses and then adding this new mapping to the mapping table. The 

object is then copied to the stable store translating any RAM addresses as it is copied.
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A l.5.2.8. garbage collect

This function performs a garbage collection on the heap destroying any unreachable objects 

that were not copied from the stable store. In addition it calculates how full the heap is, the 

heap loading. If the heap loading is above a threshold it will attempt to remove objects 

copied from the stable store.
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A1.6 Persistent Abstract Machine Operation Codes 

Jumps

fjump( short ) 0 jumpf( short ) 128
bjump( short ) 1 bjumpt( short ) 129
jumpff( short ) 2 jumptt( short ) 130
fortest( short,short,short,short ) 3 fortestS( short ) 131
forstep( short ) 4 forstepS( short ) 132
cjump.ib( short ) 5 cjump.r( short ) 133
cjump,s( short ) 6 cjump.p( short ) 134
cjump.pr( short ) 7 cjump.var( short ) 135
cjump.poly( short,short,short ) 8

Stack Load and Assignment

wroot( short ) 9 dwroot( short ) 137
proot( short ) 10 dproot( short ) 138

wroot.ass( short ) 12 dwroot.ass( short ) 140
proot.ass( short ) 13 dproot.ass( short ) 141

wlocal( short ) 15 dwlocal( short ) 143
pIocal( short ) 16 dplocal( short ) 144
wplocal( short,short ) 17 dwdplocal( short,short ) 145

wlocal.ass( short ) 18 dwlocal.ass( short ) 146
plocal,ass( short ) 19 dplocal.ass( short ) 147
wplocal.ass( short,short ) 20 dwdplocal.ass( short,short ) 148

wIoad( short,short ) 21 dwload( short,short ) 149
pload( short,short ) 22 dpload( short,short ) 150
wpload( short,short,short ) 23 dwdpload( sh6it,short,short ) 151

wassign( short,short ) 24 dwassign( short,short ) 152
passign( short,short ) 25 dpassign( short,short ) 153
wpassign( short,short,short ) 26 dwdpassign( short,short,short ) 154

contract.poly( short,short ) 27 expand.poly(
short,short.

short, short ) 155

ick Duplicate

wdup 28 dwdup 156
pdup 29 dpdup 157
wpdup 30 dwdpdup 158
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Stack Retract

wretract( short,short ) 
pretract( short,short ) 
wpretract( short,short ) 
retract( short,short )

Block Entry and Exit

31 dwretract( short,short )
32 dpretract( short,short )
33 dwdpretract( short,short )
34

159
160 
161

block.enter( short,short,short ) 35
wblock.exit 36 dwblock.exit 164
pblock.exit 37 dpblock.exit 165
wpblock.exit 38 dwdpblock.exit 166
block.exit 39

Procedure Entry and Exit

apply( short,short ) 40 apply.poly 168
wretum 41 dwretum 169
pretum 42 dpretum 170
wpretum 43 return.poly( short,short ) 171
return 44
wretumS 45 dwretumS 173
pretumS 46 dpretumS 174
wpretumS 47 returns.poly( short,short ) 175
returns 48
current.ffame 49

Image Operations

makeimage 50 makepixel( byte ) 178
subimage 51 subpixel 179
lim_at 52 lim_at_by 180
rastenop 53 raster.line 181
get.screen 54 locator 182
colour.map 55 colour.of 183
get.cursor 56 set.cursor 184
get.cursor.info 57 set.cursor.info 185
get.pixel 58 set.pixel 186

Vector and Structure Creation Bistructions

wsubconst 60 dwsubconst 188
psubconst 61 dpsubconst 189
wpsubconst 62 subconst.poly( short,short ) 190
makeobject( short,short ) 63 makeobject.poly 191
makestruct( short,short ) 64 polystructaddress( short ) 192
wmakev 65 dwmakev 193
pmakev 66 dpmakev 194
wpmakev 67 makev.poly( short,short ) 195

I

1

$

241

y



Vector and Structure Accessing Instructions
1

wsubs 68 dwsubs 196
psubs 69 dpsubs 197
wpsubs 70 subs.poly( short,short ) 198
wsubv 71 dwsubv 199
psubv 72 dpsubv 200
wpsubsv 73 subv,poly( short,short ) 201
wsubsass 74 dwsubsass 202
psubsass 75 dpsubsass 203
wpsubsass 76 subsass.poly( short,short ) 204
wsubvass 77 dwsubvass 205
psubvass 78 dpsubvass 206
wpsubvass 79 subvass.polyC short,short ) 207

Constancy Instructions

makeconst 80 makevar 208

String Operations

concat 81 substr 209

Load Literal Instructions

ll.int( byte ) 82 ll.intL( word ) 210
U,char( byte ) 83 ll.real( double ) 211

Primitive PO Instructions

create 85 open 213
close 86 seek 214
ioctl 87
read.bytes 88 write.bytes 216
get. byte 89 set.byte 217

Comparison Operations

eq.ib 94 eq.r 222
eq.s 95 eq.p 223
eq.pr 96 eq.var 224
eq.polyC short,short ) 97
neq.ib 98 neq.r 226
neq.s 99 neq.p 227
neq.pr 100 neq.var 228
neq.poly( short,short ) 101
lt.i 102 lt.r 230
It.s 103
le.i 104 le.r 232
le.s 105
gt.i 106 gt.r 234
gt.s 107
gei 108 ge.r 236
ge.s 109

Arithmetic and Boolean Operators
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plus 110 Q)lus 238 i
times 111 fdmes 239 |
minus 112 fminus 240 I
div 113 fdivide 241
neg 114 fneg 242
lem 115 not 243
sin 116 cos 244
exp 117 In 245
sqrt 118 atan 246
truncate 119 float 247
shiftr 120 shift.1 248
b.and 121 b.or 249
b.not 122

Miscellaneous

date 125 time 253
stabilise . 126 diskgc 254
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A1.7 Code file format

PAM Code files consist entirely of valid PAM objects except for the file header. This 

contains the following pieces of information necessary to bootstrap a PAM system.

1. PAM Magic Number

2. Size of the File ( bytes )

3. Number of Objects in the File

4. Address of the Root Object

5. PAM Magic Number

The size of the file is relative to the end of the header information. The header information is 

followed by PAM objects each of which are prefixed by a single word containing 0. This 

word is used during execution by the heap manager. All addresses in code files are byte 

offsets from the end of the header information. The PAM magic number is 256.

244



&

&

&

&

&

&

Appendix 2 ^
Persistent Architecture Intermediate Languge 

Napier Definition

rec type list[ t]  is variant( tip : null ;
cons : cell[ t ] )

&
cell[ t]  is structure( hd : t ; tl : Hst[t ] ) 4

type pair[ t ] is structure( fst,snd : t )

rec type PAIL is
variant( Empty : null ;

Control : Control ;
Assign : structure( Lhs : Typed[ index ] ; Rhs : tree ) ;
Alias : structure^ Subject,Qrigin,Length : PAIL ) ;
Overwrite : structure^ Rule : string ; Source,Destination : PAIL ) ; |
Application : structure( Function : PAIL ;

Arguments : list[ PAIL ] ) ;
Comment : structure( Code : PAIL ; Comment : string ) ;
Optimisation : structure^ Optimised,NonOptimised : PAR. ;

Info : string ) ;
NamedAddress : link ;
Literal : lit ;
Cons : Constructor ;
Indx : Index ;
Scoping : Scope ;
Exception : Exception )

&
I************************* Basic Tree Structure ************************** 

tree[ t ] is structure( Type : TYPE ; Code : t ; Parent : Parent[ t ] )
&

Parent[ t] is variant( Empty : nuU ;
Tree : tree[ t ] )

&
t * * * * * * * * * * * * * * * * * * ^ : { c * H c * * * * * * * * *  ' P y p e s  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

J

Typed[ t] is variant( Link : link ;
Tree : tree[ t ] )

TypeDescriptor is structure( TheT^^e : TYPE ;
Descriptor : TypeConstructor )

TypeConsParam is structure( Type : TypeDescriptor ;
ParameterList : list[ TypeDescriptor ] )

TypeConsVec is structure( Elements : TypeDescriptor )

TypeConsStruct is structure( Fields : list[ link ] ;
total,pntrs : Offset ; bitmap : *int )

TypeConsProc is structure( quantifiers,parameters,result : TypeDescriptor )
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&

&

&

&

&

&

&

TypeConsAbstract is structure( Witnesses : list[ TypeDescriptor ] ;
Abstype : TypeDescriptor )

TypeConstructor is variant( Parameterised : TypeConsParam ;
Vector : TypeConsVec ;
Structure : TypeConsStruct ;
Proc : TypeConsProc ;
Abstract : TypeConsAbstract )

baseTypeContainer is structure( BaseType : string )

StoredType is structure( Type : TYPE )

TypeDecl is structure( Type : TYPE )

TypeRecDecl is structure( Types : list[ TypeDecl ] )

Parameterise is structure( Parameterised : TypeDescriptor ;
TypeParameters : list[ TypeDescriptor ] )

Specialise is structure( Source : PAIL ;
TypeList : Ust[ TypeDescriptor ] )

I*************************** Symbol Table ***************************** 

&

&

&

&

&

&

&

stackUse is structure( Cvec.indirect : structure( Cvec : *int ) ; Caddr : int )

stackPos is structure( Frame,MSoffsetjPSoffset : int ; Uses : list[ stackUse ] )

heapPos is stmcture( MSoffset,PSoffset : int )

location is variant( New : null
Stack : stackPos ;
Env : stackPos ;
Heap : heapPos )

Offset is variante static : int ; dynamic : Hnk )

link is structure( Name 
Type
Initial
Manifest,
Retained,
Primitive,
Const
Addr

string;
TYPE;
PAIL;

: bool;
: location )

SymbolTable is 
variante Empty 

Table
InsertEntry
LookupLoc
LookupRec
Enclosing
Scan

&

null;
structurée Create : proce SymbolTable > SymbolTable ) ;
proce string,link ) ;
proce string > link ) ;
procè string > link ) ;
proce > SymbolTable ) ;
procè proce string,link ) ) ) )

.̂ 1
f

I

".Vfi y i -V
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I ******************************* literals *********************************

lit is variante Boolean : bool ;
File : file ;
Int : int ;
Real : real ;
Pixel : pixel ;
String : string )

I * * * * * * * * * * * * * * * * * * * * * * * * * * *  C o n t r o l  * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
&

CaseChoice is structurée Patterns : list[ PAIL ] ; Action : PAIL )
&

&

Control is
variante And : structurée Andl,And2 : PAIL ) ;

Or : structurée Orl,Or2 : PAIL ) ;
Sequence : structurée This,Next : PAIL ) ;
If : structurée Cond : PAIL ; Then,Else : tree ) ;
Loop : structurée Repeat,Cond,Do : PAIL ) ;
For : structurée Symbols : SymbolTable ;

Iterator,Start,Stop,Step,Do : PAIL ) ;
Case : structurée Switch : PAIL ;

Branches : list[ CaseChoice ] ; Default : PAIL ) )

assign is structurée Lhs : link ; Rhs : tree )

I * * * * * * * * * * * * * * * * * * * * * * * * * *  Constructors ***************************** 
&

initialiser is structurée field : link ; value : PAIL )
&

&

&

&

&

SimpleDecl is structurée Exp : PAIL ; Symbol : link )

RecDecl is structurée Decls : list[ Decl ] )

Decl is variante simple : SimpleDecl ;
recursive : RecDecl )

Constructor is
variante MakeVector : structurée Start : PAIL ; Elements : list[ PAIL ] ) ;

MakeStmcture : structurée T ] ^  : TYPE ;
initial : listf initialiser ] ;

Constructor : TypeDescriptor ) ;
Declaration : Decl ;
Makeimage : structurée XDim,YDim,Initial : PAIL ) ;
EnvExtend : structurée Source : PAIL ; Decl : Decl ) ;
MakeAbstract : structurée Decl : link ;

speclist : listf TypeDescriptor ] ) ;
Constructor : PAIL ) )
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j * * * * * * * * * * * * * * * * * * * * * * * * * * * *  Indexing * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Index is
variante Subs : variante value : structurée Subject,

Origin,
Length : tree[ PAIL ) ; 

address : structurée Subject,
Origin,
Length : tree[ PAIL ] ) ) ; 

EnvProject : structurée Source : PAIL ; H;
Signature : listf link ] ; Body : PAIL ) ;

Use Abstract : structurée Source : PAIL ; Signature : link ;
Body : PAIL ) )

I *************************** Scoping *****************************  ̂4;
&

Scope is variante Block : structurée Symbols : SymbolTable ;
Block.body : PAIL ) ;

ProcDesc : structurée Resultype : TYPE ; 4
Parameters : listf link ] ) ; "3

Body : PAIL ; "
Symbols : SymbolTable ) )

jH<**************************** Exceptions ******************************
&

Exception is variante Catch : structurée Handler : PAIL ; Code : PAIL ) ;
Raise : structurée Event : PAIL ) )

%Àv;
I
I

248

■'Ji ÜI *' ’- ' ' Z i -  isZ i   1 J  .  _ ..1  .Z  . . . .  . _. . 1 . . L . . , Ï . . . i . ...  ̂ . 1 ..... , , , A.. "v...... ^ . .. y n



References

[ada83] The Programming Language Ada Reference Manual. ANSI/MIL-std-1815a- 

1983. Lecture notes in Computer Science, Springer Verlag (1983).

[atk83] Atkinson M.P. Bailey P.J., Chisholm K.J. Cockshott W.P. & Morrison R. An 

Approach to Persistent Programming. The Computer Journal (1983). 26,4 pp 

360-365 (1983).

I
■#

[alb85] Albano A., Cardelli L. & Orsini R. Galilieo: A Strongly Typed, Interactive f  

Conceptual Language. ACM TODS 10,2 pp 230-260 (1985). %

[atk78] Atkinson M.P. Programming Languages and Databases. Proc VLDB pp 408- |

419 (1978).
»,i

[atk84] Atkinson M.P. & Morrison R. First class functions are enough. Foundations os #

Software Technology and Theoretical Computer Science. Lecture Notes in 

Computer Science 181, Springer Verlag (1984).

[atk85a] Atkinson M.P. & Morrison R. Types, bindings and parameters. Proceedings of 

the 1st Appin workshop on persistent object systems. Universities of Glasgow 

and St Andrews PPRR-16 (1985).

[atk85b] Atkinson M.P. and Morrison R. Procedures as persistent data objects. #

ACM.TOPLAS 7,4 (1985 ).

[atk86a] Atkinson M.P. & Morrsion R. Integrated Persistent Programming Systems.

Proc. Hawaii International Conference on System Sciences. (1986).

[atk86b] Atkinson M.P., Lucking J., Morrsion R. & Pratten G. Persistent Information 4
%

Space Architecture Club Rules, Universities of Glasgow and St Andrews PPRR 

47 (1986).

249 .



[atk87] Atkinson M.P. & Morrison R. Polymorphism, Type checking and Lables in a 

Persistent Object Store. Proceedings of the 2nd Appin workshop on persistent 

object systems. Universities of Glasgow and St Andrews PPRR-44 (1987).

[bal86] Baltzer R. Living in the next generation operating systems. Proceedings of the

IFIP 10th World Computer Congress, pp 283-291 (1986).

[ben87] Benson P.J., D'Souza E.B., Rennie I.J. & Waddell S.J. An Implementation of

multiple inheritence in a persistent environment. Universities of Glasgow and St 

Andrews PPRR 49 (1987).

[bobSl] Bobrow D. G. and Stefik M. The Loops manual. Tech Rep.KB-VLSI-81-13,

Knowledge Systems Area. Xerox Palo Alto Research Centre (1981).

[boe84] Boehm B., Gray T.E & Seewaldt T. Prototypings vs. specification: A multi­

project Experiment. IEEE Transactions on Software Engineering. May, 1984 pp 

133-145 (1984).

[boe86] Boehm B. Understanding and Controlling Software Costs. Proceedings of the

IFIP 10th World Computer Congress, pp 703-714 (1986)

[bou78] Bourne S.R. An Introduction to the Unix Shell. Bell Laboratories, (1978).

[brk86] Brooks P.P. No Silver Bullet - Essence and Accidents of Sorftware

Engineering. Proceedings of the IFIP 10th World Computer Congress, pp 

1069-1076 (1986).

[bro86] Brown A.L. & Dearie A. Implementation issues in Persistent Graphics.

University Computing 8,2 (1986).

[bro88] Brown A.L. Ph.D. Thesis - Persistent Object Stores. University of St Andrews

(1988)

250



[bur84a] Burstall and Goguen J.A. The Semantics of Clear, A specification language. 

Springer-Verlag 86, pp 292-332 (1984).

[bur84b] Burstall R. & Lampson B. A Kernal Language for Abstract Data Types and 

Modules. Proc. International Symposium on Semantics of Datatypes. Springer- 

Verlag (1984).

[bur84c] Burstall R. Programming with Modules as Typed Functional Programming.

Proc. International Conference on 5th Generation Computer Systems. Tokyo.

(1984).

[buh87] Buhr P.A. & Zarnke C.R. Persistence in an Environment for a Statically-Typed 

Programming language. Proc. International Conference on Persistent Object 

Systems. Universities of Glasgow & St Andrews PPRR 44, pp 317-336 

(1987).

[bux69] Buxton J. & Randell B. (eds.) Software Engineering Techniques. Proc. Nata 

Conference. Rome (1969).

[cal77] Calderbank V.J & Prior A.L The Ghost graphical output system. Culham 

Laboratory Report (1977).

[car85] Cardelli L. & Wegner P. On Understanding Types, Data Anstraction and 

Polymorphism. Technical Report CS-85-14, Brown University (1985).

[car87] Carrick R. & Munro D. Execution Strategies in Persistent Systems. Proc 

Workshop on Persistent Object Systems: There Design Implementation and Use, 

Appin Scotland, (1987).

[cod70] Codd E.F. A relational model for large shared databases. Comm. ACM 13,6 pp 

377-387 (1970).

251



#

I
,'![coop87] Cooper R.L.,Atkinson M.P., Dearie A. & Abderrahamane A. Constructing |

Database Systems in a Persistent Environment. Proc VLDB 1987, Brighton 4

England, (1987). I

I
[cut87] Cutts Q. & Kirby K. An Event Driven Software Architecture. Universities of |  

Glasgow and St Andrews PPRR 48 (1987).

[dev81] Davie A.J.T & Morrsion R. Recursive Descent Compiling. Ellis Horwood 

(1981).

[dea85] Dearie A. A new abstract machine for S-algol. University of St. Andrews cs/85/1
I

(1985). I

[dea87] Dearie A. A Persistent Architecture Intermediate Language. Universities of 

Glasgow and St.Andrews PPRR-35 (1987).
'i'î

[dea88a] Dearie A. ( ed ). The Persistent Abstract Machine. University of St. Andrews, In «

preparation.

. i
[dea88b] Dearie A„ Brown A.L. Safe Browsing in a Strongly Typed Persistent

Environment, to appear in The Computer Journal (1988). %

[dav81] Davie A.J.T. & Morrison R. Recursive Descent Compiling. Ellis Horwood,

(1981).

[dod83] KIT/KITIA CAIS Working Group for the Ada Joint Program Office. Common 

APSE Interface Set. Version 1.1, Ada Joint Program Office (1983).

[gog82] Goguen J.A. Rapid Prototyping in the OBJ Executable Specification Language.

Proc. Rapid Prototyping Workshop, Colombia, Maryland (1982).

[gold83] Goldberg A. & Robson D. Smalltalk-80: The language and its Implementation. 1=

Addison Wesley (1983).

252



[gks82] Information Processing - Graphical Kernel System - Function Description: GKS 

version I X  ISO/TC97/SC5/WG2 N 163. (1982).

[hoa74] Hoare C.A.R. Monitors : an operating system structuring concept. Comm. 

ACM 17,10 pp 549-557 (1974).

3

-I
I

[har86] Harper R., MacQueen D. and Milner R. Standard ML. Edinburgh University ^  

Technical Report ECS-LFCS-86-2 University of Edinburgh (1986).

[hoa78] Hoare C.A.R. Communicating Sequential Processes. Comm ACM 21,8 (1978). %

[ibm78] IBM Report on the contents of a sample of programs surveyed. IBM Research

Centre San Jose, California (1978).

[icl83] Introduction to PERQ. International Computers Ltd. RP10103 (1983)
-1
I

[joe83] Jones T.C. Demographic and Technical Trends in the Computing Industry. g

Software Productivity Research Inc. (1983). |
3

[joy80] Joy W., "An Introduction to the C Shell", University of California, Berkeley,
''k

(1980). 1

[ker78] Kernighan B.W. & Ritchie D.M., "The C programming language", Prentice-

Hall, (1978). I

[ker79] Kerighan B.W. & Marshey J.R., The Unix programming environment.

Software Practice and experience. 9,1 (1979).

[kra85] Krablin G.L. Building Flexible Multilevel Transactions in a Distributed

Persistent Environment. Proceedings Appin Workshop August 1985. PPRR 16 

Universities of Glasgow and St.Andrews.

[kre80] Kreig-Bruckner B.& Luckham D.C. Anna: Towards a language for annotating 

Ada programs. ACM Sigplan Notices 15,11 pp 128-138 (1980 ).

253

L?*.-"' L  V ' ■ -.t   I  _ -  .f    , . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, _ Z



[lan66] Landin PJ. The next 700 programming languages. Comm ACM 9,3 pp157-403

(1966).

[Iis74] Liskov B.H. & Zilles S.N., "Programming with abstract data types", ACM

SIGPLAN Notices 9,4 (1974).

[Iis77] Listkov B.H. et al. Absraction Mechanisms in CLU. Comm. ACM 20,8 pp

564-576 (1977).

[Iis83] Liskov B.H. et al. The Argus manual. Techical Report Memo 39 (1983 ) M.I.T.

[liv87] Livingstone J. Graphical Manipulation in Programming Languages: Some

Experiments. M.Sc. Thesis. University of Glasgow (1987).

[lob87] Loboz Z. PS-algol Abstract Machine Monitoring Universities of Glasgow and

St Andrews PPRR 37 (1987).

[loc78] Lochovsky F.H. & Tsichritizis. Hierarchical database management systems,

ACM Computer Surveys 8,1 pp 105-123 (1978).

[mac86] Inside Macintosh. Apple Computer Inc. Addison Wesley, (1986).

[mat85] Matthews D. The Poly Manual. Technical Report 63. University of Cambridge

Computer Laboratory (1985).

[mcc62] McCarthy J. et al. Lisp Programmers manual. MIT press, Cambridge Mass

(1962).

[mcn87] McNally D.J. Implementation in the Staple Project. University of St.Andrews

cs/87/2 (1987).

[mit85] Mitchell J.C. & Plotkin G.D. Abstract Types have Existential type. Proceedings

POPL (1985).

3
' I

4
i
4-r

I
'3

$

I

254



[mor73] Moms J.H. Protection in programming languages. Comm. ACM 16,1 pp 15-21 

(1973).

[mor78] Morris F.L. A time and space efficient garbage collection algorithm. CACM 

21,8 pp 662-665 (1978).

[mor79] Morrison R. Ph.D. Thesis - On the development of algol. University of St 

Andrews (1979)

[mor82a] Morrison R.,"S-algol: a simple algol". Computer Bulletin 11/31 (1982),

[mor82b] Morrison, R. Low cost computer graphics for micro computers. Software, 

Practice & Experience 12,8 (1982), pp 767-776.

[mor85] Morrison R., Bailey P.J., Brown A.L., Dearie A. & Atkinson M.P. The 

Persistent Store as an enabling technology for Integrated Support Environments, 

Proc. 8th International Conference on Software Engineering, pp 166-172

(1985).

[mor86a] Morrison R., Dearie A. & Atkinson M.P., Flexible Incremental Bindings in a 

Persistent Object Store, Universities of Glasgow and St Andrews PPRR 38

(1986).

[mor86b] Morrison R., Brown A.L., Dearie A. & Atkinson M.P. An Integrated Graphics 

Programming Environment. Computer Graphics Forum 5,2 (1986).

255

>7 - ' J  J ; -.■‘.■....-.■.■..à ■■■■■ - t -  ... .  t,,, , ,  r

[mor86c] Morrison R., Brown A.L., Bailey P.J., Davie A.J.T. & Dearie A. A persistent }|

graphics facility for the ICL Perq. Software Practice and Experience 14,3

(1986).

I
[mor87a] Morrison R., Brown A.L., Connor R. & Dearie A. Polymorphism, Persistence |

and Software Reuse in a Strongly Typed Object Oriented Environment. 

Universities of Glasgow & St Andrews PPRR 32, (1987) i;
'4



[mor87b] Morrison R., Brown A.L., Carrick R., Connor R. & Dearie A. Polymorphic 

Persistent Processes. Universities of Glasgow and St Andrews PPRR 39

(1987).

[mor88a] Morrsion R., Process Implementation in Napier. Private Communication, Feb 

1988.

[mor88b] Morrison R., Brown A.L., Carrick R., Connor R. & Dearie A., "The Napier 

Reference Manual", Universities of St.Andrews, In preparation.

[mor88c] Morrison R., Brown A.L., Carrick R., Connor R. & Dearie A. On the 

integration of Object-Oriented and Process-Oriented compuitation in Persistent 

Environments. Universities of Glasgow and St Andrews PPRR 57 (1988).

[naur63] Naur P. et al. Revised report on the algorithmic language Algol 60. Comm. 

ACM 6,1 ppl-17 (1963).

[nee74] Needham R.M. & Walker R.D., "Protection and Process Management in the 

CAP Computer", International Workshop on Protection in Operating Systems, 

INRIA, Rocquencourt, (1974).

[nyg70] Nygaard, K., The Simula-67 Common Base Language. Norwegan Computer 

Centre, Oslo. S-22, (1970).

[org73] Organick E.I., Computer System Organisation: The B5700/B6700 Series, 

Academic Press, New York (1973).

[par79] Pamas D.L. Designing Software for Ease of Extension and Contraction. IEEE 

Transactions on Software Engineering. March, 1979 pp 128-137 (1979)

[per87] Perry N. "Hope+", Imperial College Internal Report IC/FPR/LANG/2.5.1/7

(1987).

J
■S

256



[ps85] PS-algol Abstract Machine Manual. University of Glasgow and St Andrews

PPRRll-85 (1985).

[ps87] ‘The PS-algol Reference Manual fourth edition". Universities of Glasgow and

StAndrews PPRR-12 (1987).

[rey83] Reynolds J. Types abstraction and Polymorphism. Information Processing. 

North Holland (1983).

[sch85] Schaffert C.,Cooper T. and Wilpolt C. Trellis Object Based Environment. DEC 

TR-372, Digital Eastern Research Lab (1985).

[shi81] Shipman D.W. The functional Data Model and the data language DAPLEX. 

ACM TODS 2,3 pp 247-261 (1981).

[smi71] Smith, D.N. GPL/1 - A PL/1 extension for computer graphics. AFIPS SJCC 

(1971), pp 511-528.

[stra67] Strachey C. Fundamental concepts in programming languages, Oxford 

University Press, Oxford (1967).

[sun86] Sunview Programmers Guide. Sun microsystems Inc. (1986).

[tay76] Taylor R.C. & Frank R.L. CODASYL database management systems. ACM

Computing Surveys 8,1 pp 67-103 (1976).

[tei81] Teitelbaum T. & Reps T. The Cornell Program Synthesiser: A Syntax Directed 

Programming Environment. Comm ACM 24,9 pp 563 - 573 (1981).

[ten77] Tennant R.D. Language Design Methods based on semantic principles. Acta 

Informatica 8 pp 97-112 (1977).

[thi86a] Lightspeed C Users Manual, Think Technology (1986).

[thi86b] Lightspeed Pascal Users Manual. Think Technology (1986).

257

I

■I

I

I
y

. - •‘*34



[tui79] Turner, D.A. SASL language manual. University of St.Andrews CS/79/3 

(1979).

[vw69] van Wijngarden, A. et al. Report on the algorithmic language Algol 68. 

Numerische Mathematik 14,1 pp 79-218 (1969).

[weg84] Wegner P. Capital Intensive Software Technology. IEEE Software 1,3 pp 7 - 46 

(1984).

[weg87] Wegner P. Dimensions of object-based language design. Proc. Object-Oriented 

Programming Systems Languages and Applications,.pp 168-182 (1987).

[wir73] Wirth N. The programming language Pascal. Acta Informatica 1,1 pp 35-63 

(1973).

[wul74] Wulf W.A. et al., '‘Hydra: The Kernel of a Multiprocessor Operating System", 

CACM 17,6 (1974).

[ZÜ73] Zilles S.N. Procedural Encapsulation: a linguistic protection technique. ACM 

Sigplan Notices 8,9 (1973).

.>

i
■1

258

£ li. "’■"I'- A.'lî'V''-’'  ̂ '-i''l'-* ■-' ' i^ l ' L LA '"r > V-s- A-"-'. V. \ 3 ■'îi’-'îL. : .n Z', ' A;.:.:


