FORUM AND ITS IMPLEMENTATION

Christian Urban

A Thesis Submitted for the Degree of MPhil
at the
University of St Andrews

1997

Full metadata for this item is available in
St Andrews Research Repository
at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/134473

This item is protected by original copyright


http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13443

ForuMm and its Implementation

Chr.istian Urban

March 13, 1997

Presented to the University of St Andrews in partial fulfilment
of the requirements for the degree of Master of Philosophy.

Supervisor: Dr Roy Dyckhoff (St Andrews)

Examiners: Prof. Ursula Martin (St Andrews)
Dr David Pym (London)

A 2 LSS S A S \F PR Lty 2 e s pe B e e ARt 2 S Sl A AN U\ MY Sl ©] 4 UMt ot PRI ¢ SR g (A a8, B -V R s A e b A T



ProQuest Numlber: 10167180

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely eventthat the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10167180

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M| 48106 - 1346



A a2 ®



Abstract

Miller presented Forum as a specification logic: Forum extends several existing logic
programming languages, for example AProlog, LO and Lolli. The crucial change in Forum is
the extension from single succedent sequents, as in intuitionistic logic, to multiple succedent
sequents, as in classical logic, with a corresponding extension of the notion of uniform proof.

Forum uses the connectives of linear logic. Languages based on linear logic offer extra
expressivity (in comparison with traditional logic languages), but also present new imple-
mentation challenges. One such challenge is that of context management, because the mul-
tiplicative linear connectives ‘®’, “®” and ‘—o’ require context splitting. Hodas and Miller
presented a solution (the IO model) to this in 1991 for the language Lolli based on minimal
linear logic. This thesis presents a technique which is an adaptation of the aforementioned
approach for the language Forum and following a suggestion of Miller that the ‘?* constant
be treated as primitive in order to avoid looping problems arising from its use as a derived
symbol. Cervesato, Hodas and Pfenning have presented a technique for managing the ‘T’
constant, dividing each input context into a “slack” part and a “strict” part; the main novel
contribution of this thesis is to modify this technique, by dividing instead the output con-
text. This leads to a proof system with fewer rules (and consequent ease of implementation)
but enhanced performance, for which we present some experimental evidence.



Declaration

I, Christian Urban, hereby certify that this thesis, which is approximately 26000 words in
length, has been written by me, that it is the record of work carried out by me, and that it
has not been submitted in any previous application for a higher degree.

date 12U /‘M/" v /f?f} signature of candidate

I was admitted as a research student in September 1995 and as a candidate for the degree
of Master of Philosophy in September 1995; the higher study of which this is a record was
carried out in the University of St Andrews between 1995 and 1996.

date 43/ LI }I{(ir m 4 ?y'} signature of candidate .

1 hereby certify that the candidate has fulfilled the conditions of the Resolution and Reg-
ulations appropriate for the degree of Master of Philosophy in the University of St Andrews
and that the candidate is qualified to submit this thesis in application for that degree.

R
date 'g HML\ ( ?‘,7:;' signature of supervisor =

In submitting this thesis to the University of St Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work
not being affected thereby. I also understand that the title and abstract will be published,
and that a copy of the work may be made and supplied to any bona fide library or research
worker.

date 45 (k /]{ 4,}’(/151 4?'? ? signature of candidate




Acknowledgements

First, and above all, I must thank Dr Roy Dyckhoff, my supervisor, who brought this project
on its way; without his guidance and help, this thesis would never have been written. I
greatly benefited from his insight and introduction to various researchers, amongst them
Prof. Philip Scott, Dr David Pym, Dr Gavin Bierman and Dr Martin Hyland with whom I
have had many interesting discussions. I am happy to thank Dr Dyckhoff for his immense
help in improving my English and my style of writing technical texts. Additionally, the
delightful personal contacts I had with him and his family provide many pleasant memories.

I am happy to thank Prof. Steffen Hélldobler, Prof. Werner Daniel and Dr Barbara
Daniel, who, in diverse ways, taught me that science is fun and that research is a lifelong
fascinating activity.

T appreciate the discussion with Dr Iliano Cervesato; I am happy to thank him for his
valuable comments on an earlier version of the box calculus. I thank Prof. Joshua Hodas
who made unpublished papers on ForRUM and Lolli available for me.

In May 1996, I was invited by Prof. Dale Miller to spend a month at the University of
Pennsylvania. I learnt much from this visit and the thesis owes many ideas to Prof. Miller.
I am happy to thank him for his kind invitation and the discussions with him on Forum.

Prof. Gopalan Nadathur and Philip Wickline gave me support that allowed me to im-
plement the calculi of this thesis in the logic programming language Terzo.

I thank Jacob Howe and Tom Kelsey for very carefully proofreading earlier versions of
this thesis.

Special thanks to Alison Craig Frantz, Mai Spurlock, Melissa McPherson, Mark Killian
Brewer, Chris King, Gabriele De Anna, and John Serrati (my friends in Deans Court) for
their tremendous help in improving my English.

Finally, I thank my parents and my brother who gave me endless support—thank you
for all they have done for me is not even close to adequate.

Tunding: I received financial support from the Chamber of Commerce in Germany, from
the University of Dresden, from the University of St Andrews and from the EU ESPRIT
Basic Research Action group 7232 “Gentzen”.



Contents

1 Imtroduction

1.1 Background on Linear Logic . . . . . ... ... ... ... ... ...
132 Maotivabion @5 %5 8% B 7 54388 500485 5 SpaeaEeis 55 h s #
1.3 Terminology and Notation . . . .. ... . ... ... ...
Td sOUIne AN BEGUIE o« 0 w5 b o o 5 % 5 5 25 8 o w0 vesmm e AR e e
2 Foundations of Logic Programming and ForuM
2.1 Single Succedent Logics and Uniform Proofs . . . . . . . ... ... ... ...
2.1.1 Horn Logicand its Formulae . .. .. ... ... .00 n.on ...
2.1.2 First-Order Hereditary Harrop Formulae . . . . . .. . ... ... ...
2.1:3 Lolliand M POFHNEE o o v o o v o wo 5 o o0 R e
2.2 Extension of Uniform Proofs for ForuMm . . . . . ... ... ..........
2.3 Miller’s Proof System F for FORUM . . . . . . .« . . i v i v i v e o
2.3.1 The Use of Contexts in Sequents . . . . . . .. ... .. ...,
2.3.2 Behaviour of the Non-Primitive Connectives . . . . . . ... .. ....
2.4 Modified Proof System F' Including an Atomic-Rule . . . . .. .. .. .. ..
2.5 An Operational Reading of the Rulesin F' . . . ... ... ..........
9.6 "The ApproacliTniEyEon « & o v @ % & v @ & @5 o 0o a8 5eE SHeHe R AR
27 Typesand Terime'in FORUM - = = ¢ &0 ¢ osa v b s & 008 oaiie sosin i
9.7.0 Kindsmand FBypes ia ¥ 5% 4 2 80 58 280089 58 & £ooe semmis
222 SimplyTyped AATerms . . . o - o oo oo s o u b e e ad dai
2.7.3 Definition of FORUM’s Syntax . . . . . . . . . . . v v v v v v v v v u
3 Efficient Context Management
3.1 Input-Output Model and the Box Calculus B . . . ... ... ... ......
O S T e e e s e e L i
3:1.2° COHMIPICTENBER « i 5 w9 % 5 % 5503 0% & # SR A B SR E O N &
8ild DEpleraentation v o v i 5 % 5w 506 % e R B A e R WA 6w an 08 5
3.2 AWew Box Calotlis B i ux e s w i s s v o w ss b 8 0 & w6 @ v s E s
321 Soundnessof Bl wrdeB: v i s i v s s ki v v e E e g E e E
392 Completencasof Blswa . B . . i h s i d b0 s aesss

10
10

12
12
15
15
16
16
19
21
23
24
25
31
32
33
35
36

38
38
41
42
44
51
52
57



CONTENTS 4
3.23 Implementation . . . . . . . . .o v ittt 64

3.3 Consideration of the Choose Rules . . . . ... .. ... ... ... ...... 71
3.4 Problems with Empty Headed Implications . . .. ... ... ... ...... 72

4 Examples 74
4.1 A SiopleObject LOGIC & « &« 4 i 5 5 & & 64 0 o aeiaeled %ah 5 %a 5% 53 74
4.2 A Conjunctive Planner in FORUM . . . . . .. .. .. v v v v v 80
4.3 A Program for Computing the Fibonacci Series . . . . ... ... ... .. .. 82
4.4 A Program for Finding Paths in Cyclic Graphs . . . .. ... ... ... ... 84

5 Related Work 85
5.1 Context Managementin Lolli . . . .. .. ... ... ... ... . ... ... 85
5.2 Hodas’ and Polakow’s Approach Towards a FORUM Emplementation . . . . . 87
5.3 Context:Management it LYEON! « « « v & 3w w & v onwieva e ens meemm 00 88

6 Conclusion, Open Problems and Further Work 90
01 (ConElusIGITN ;. ot Lo Al o) ol v o e N S A o e e o gesprte 90

RS T 2va o) Koy e e N B 90
6.3 BUREHER TVEEE s o w5t 5 5 % 0 8 Wi e b o 6 e R B R R RS 91

A Proofs 96
A 'Soundness of BwshiliiTT o & w o o 5om s 0o 5 5 5 5 besme e bl e 96
A2 ModificalionoEB BRPIOOE o o 2 v n o w & 2 5 6 5 © & 9ot S 101
A Comploteiesi Gl BWERATT « o v w0 w5 2 5 % % & 5 5 & S0 v SRR R 106
KA SotRdHess BEBIMIE B v a v wis o b w5 @A B R SR 8 AR R 110
AR Completeness oE BIWHE B « o o v v v v v % 5 v & % w8 8 aea e aa 113

B Source Code 117
Bili iMOHLE BULIROE s w0 % 56 5 % 8 8 & K& B 6 5 87 SE Kb g eI s 4TS 117
B2 Module forumlogaiod: « & » = w5 5 v 4w 5 o6 m v 8 o s e g s e men e 119
B.3 Module choosetest.mod . . . . . . .. L e 120
B4 'Module forummod (Caleulng FY i « o ¢ i s v s vssvveibv v v 121
B.5 Module forum.mod (Box Calculus B) . . . . .. ... ... . o 124
B.6 Module forum.mod (Box Calculus B') . . . ... ........ .. ....... 128

i s



Chapter 1

Introduction

1.1 Background on Linear Logic

An important problem of designing programming languages is to provide techniques for the
programmers to reason about the computation in their programs. Forum is presented as a
specification logic in [Miller, 1994], [Miller, 1995] and {Miller, 1996]. The use of specification
logics is to tell programmers precisely what they implement and also enables them to reason
about computation (e.g., in state and transition systems). Two detailed Forum specifications
can be found in [Chirimar, 1995]: in this work, Forum is employed to model computations of
programs and to encode states and transitions using formulae and proofs. For this purpose
Torum is rather convenient because it is based on linear logic which offers extra expressivity
(in comparison with traditional logics)!, and it includes a natural extension of first-order
logic to higher-order logic, as used in AProlog.

The present thesis is an approach towards an implementation of Forum. The specification
language Forum incorporates a certain amount of non-determinism, and therefore, for its
implementation, the set of proofs is restricted in such a way that the construction of proofs
can be carried out efficiently by a computer. Hence, our Forum implementation can express
only a fragment of the problems that one could specify using it as a specification logic owing
to the restrictions of the underlying proof search strategy. In order to make this difference
explicit from now on, the termm FORUM is used rather than Miller’s term Forum.

ForuM is based on linear logic; this will be introduced in the remainder of this section.
However, a detailed treatment of linear logic is beyond the scope of the thesis and the
reader is referred to [Girard, 1987], [Lincoln, 1992] or [Scedrov, 1993]. The latter includes
an extensive bibliography on the topic.

One of the main contributions of [Girard, 1987] is the presentation of linear logic as a
sequent-style calculus. Roughly speaking, linear logic is a logic that analyses resources and
resource use. For expository purposes, it is convenient to use a sequent calculus for classical
logic (CL), such as the LK“** calculus, as a point of the conceptual departure. (LK is
regarded as a cut-free calculus, and LK“* combines LK and the ‘Cut’ rule.) A three-step
modification of LK% leads to the sequent calculus for classical linear logic (CLL).

Firstly, the structural rules ‘Contraction-L/-R’ and ‘Weakening-L/-R’ are banned from

'In this context, expressivity means the ability to support useful programming constructs rather than
the expressivity in terms of, for example, Turing-completeness.




CHAPTER 1. INTRODUCTION 6

LK gince these rules are responsible for the loss of resource control in CL. The rules are
as follows:

A=T_ ~ BB Berl
=T Weakening-L A BT Contraction-L

% Weakening-R, %—ﬁ:—}r’———ﬁ Contraction-R,
The contexts A and T' are regarded as multisets since this permits the suppression of the
structural rules ‘Exchange-L/-R’ in the sequent calculus. The ‘Weakening-L/-R’ rules al-
low one to “throw away” some formulae, and the duplication of formulae is possible using
the ‘Contraction-L/-R’ rules. Without these four structural rules and an identity axiom
formulated as follows:

m Identlty,

Girard obtained a linear system where it is necessary to use each assumption exactly once.

Secondly, the lack of ‘Contraction-L/-R’ and ‘Weakening-L/-R’ causes a distinction
between two forms of conjunction; similarly for disjunction and implication. In CL, the
two formulations, for example, of the conjunction rules:

A=>B,F A=>C,PAR A1=>B,-[‘l A2:_>C‘,I‘2
A= BACT e A, Ay = B AC,T,Ts

A-Rm

are equivalent, since it is possible to simulate the ‘A-R,’ rule by liberal application of the
‘Contraction-L/-R’ rules and a subsequent use of the ¢ A-R,,’ rule as shown in the following
proof fragment:

A= B,' A=>C,T
A A= B AC,I,T

A 'Rm
Contraction-I

m Contraction-R

The vice-versa case can be achieved by using the ‘Weakening-L/-R’ rules and the ‘A-R,’
rule. However in CLL, the ‘A-R,’ rule, the ‘A-Ry,’ rule and the like become distinct,
and accordingly, the corresponding connectives of CL are divided into the multiplicative
and into the additive connectives. Observe that none of them is quite the same as the
corresponding connective in CL. The contexts A and T’ contain all passive formulae of a
rule. The rules of multiplicative and additive connectives treat these contexts in a different
manner. The multiplicative connectives forbid a sharing ol resources in a rule that branches
the proof. The contexts in the conclusion (see Section 1.3) are split into two parts. Each
premise receives a different portion from these contexts in the conclusion. In contrast, an
additive rule that branches the proof tree requires a complete sharing of the contexts in the
premises. That means both premises have the same context. Nevertheless, the quantifiers
and the corresponding inference rules of CLL correspond to those in CL.

Thirdly, two new operators are introduced into the linear system, called ezponentials.
In effect, these operators provide a “controlled” contraction and weakening, i.e., the use
of ‘Contraction-L/-R’ and ‘Weakening-L/-R’ is restricted to formulae decorated with an




CHAPTER 1. INTRODUCTION 7

exponential. Along with the introduction of the exponentials come natural mappings of all
CL’s formulae into formulae in CLL (see for instance [Troelstra, 1992]); there are similar
mappings for intuitionistic logic (IL) in [Girard, 1987], [Bierman, 1994] and [Negri, 1995].
This observation has led to the remark “Linear logic is a logic behind logics” [Lincoln, 1992].

In short, classical linear logic is based on the following connectives and logical constants:

multiplicative connectives and constants: —o, ®, %, 1, .L;

additive connectives and constants: ~, 8, D, T, 0;
exponentials: L
quantifiers: 3,V

At this point, the linear negation is left out, but will be introduced later. The multiplicative
connectives are called ‘linear implication’ or ‘lollipop’, ‘times’ and ‘par’. The corresponding
logical constants are ‘one’ and ‘bottom’. The additive connectives are ‘additive implication’?,
‘with’ and ‘plus’. The corresponding logical constants are ‘top’ and ‘zero’. The exponentials
are named ‘bang’ and ‘query’. As in CL, each quantifier is either an ‘existential quantifier’
or a ‘universal quantifier’.

Some differences between CL’s and CLL’s connectives are illustrated by an example taken
from [Perrier, 1995]. Accordingly, the fact that an identifier # has the value 5 is encoded as
the proposition (z = 5). The change of state is modelled by the intuitionistic implication.
However, an attempt to reassign a new value to the identifier 2, i.e. a change of si;e,te, fails
in CL because the following sequent is provable:

(2=:12) , ([2=2)D(2=8) => (v=2) ANlz=120)

On the other hand, it is possible to encode the reassignment in CLL using the ‘~o’ connective,
and thus represent the notion of state. In CLL, the following sequent is provable:

(2=2), (z=2)—(z=5)= (z=15),

but neither (2 =2), (2 =2)—o(z=5)= (2=2) @ (z=25)
nor (z=2), (v =2)—o(z=5)—= (z=2)&(x =5)

is provable. This is what is meant by the aforementioned extra expressivity of linear logic.
The notions of state, action and change as described above fit naturally into a linear logic
setﬁng.

In [Lincoln et al., 1992], it is shown that propositional linear logic is undecidable. By
contrast, the propositional fragment of CL is decidable. The undecidability seems to be a
discouraging result, but on the other hand, it is a symptom of the expressiveness of linear
logic which is illustrated by some examples below.

An application which fits nicely into the propositional fragment of linear logic is the
encoding of Petr: nets into formulae and proofs (for a survey see [Peterson, 1981], but our
presentation follows [Cervesato, 1995]). Petri nets consist of two kinds of static component
(places and transitions) and one kind of dynamic component (tokens). A Petri net is gen-
erally presented as a directed graph, but here a more abstract presentation is used. It is

2The ‘~+' connective is often disregarded since it lacks some properties of an implication, e.g. A ~+ A is
not provable. That is why it has no specific name.

B



CHAPTER 1. INTRODUCTION 8

assumed that places are stores for possibly infinitely many tokens. The state, when a cer-
tain place labelled with a unique name p stores three tokens, is represented as the multiset
{lp,p, p[}. The transitions, on the other hand, are the connection links between the states.
Fach transition has a premultiset and a postmultiset: each of them is a collection of place
names. A transition is enabled if it satisfies the condition that for each occurrence of a place
in the premultiset there exists a token on that place. In the following example, the transition
t is enabled:

t’s premultiset:  {p, p, ¢}

t’s postmultiset: {|q[}

in any state with at least two tokens are on p and at least one is on ¢. Each of these states
is represented as {p,p,¢,...[}. (The dots stand for an arbitrary but fixed multiset of tokens
stored in the Petri net.) When an enabled transition fires, tokens are removed from places
according to the premultiset and added to places according to the postmultiset. This can
be expressed in the example above by rewriting the multiset {|p, p,q,...[} to {l¢,...[} where
the other tokens in it are unchanged.

In linear logic, the tokens on a place are encoded as atomic formulae. The transitions
are encoded as linear implications; the transition ¢ from above is encoded as follows:

(p®@p® q—oq)

where the implicans corresponds to the premultiset and the implicatum corresponds to the
postmultiset. This implication is decorated with a bang because each time a transition is
enabled the transition should be able to fire (i.e., it is a reusable resource). The elements
of the pre- and postmultisets are connected by ‘®’ in the encoding. An empty multiset is
represented by the constant ‘1’

A Petri net is a simple system which appears to be very inexpressive. However, Petri
nets are a powerful and flexible tool for describing concurrent processes. The permitted
states of a concurrent system can be represented as the states of the Petri net that are
reachable. (‘Reachable’ here means that a multiset of tokens which represents an initial
state can by rewritten by firing transitions to a multiset of tokens which represent one of the
aforementioned permitted states.) In terms of the encoding in linear logic, the reachability
problem is represented as the following sequent:

transitiony, . .., transiliony, token,,, ..., token,, = token., @ ... Q@ token,,,.

The tokens s; (1 < i < n) encode the initial state and the tokens e; (1 < j < m) represent the
final state. The above sequent is provable if and only if there are transitions that transform
the token multiset {s1,...,s,[} into the token multiset {ley,...,en[} (ie., {e1,...,em]} is
a reachable state). These observations are well-studied in [Marti-Oliet & Meseguer, 1989],
[Brown, 1990] and [Cervesato, 1995].

1.2 Motivation

FORUM combines sequents with multiple succedents and an approach for a corresponding
notion of uniform proof. Along with the multiple succedents come a logic language which




CHAPTER 1. INTRODUCTION 9

is rather expressive. In effect, FORUM is sound and complete with respect to CLL. That
means that sequents of CLL are provable if and only if the corresponding sequent is provable
in Forum®, This observation is not obvious because the proof search in FORUM is rather
restricted. However, Miller has shown the difficult part (the completeness) via a one-to-one
conversion of FORUM proofs into a proof system developed by [Andreoli, 1992]. The proof
can be found in [Miller, 1996]. Nevertheless, Miller did not introduce FORUM as a logic
programming language. He called FORUM a “multiple conclusion specification logic”. There
are still unsolved problems (e.g., L-headed implications occurring in the classical context of
the antecedent) preventing its complete implementation as a logic programming language.

The main problem, the context splitting during proof search, is solved for other linear
languages (it does not occur in traditional languages based on fragments of CL). The multi-
plicative rules of FORUM present an implementation challenge because the context splitting
is a rather costly operation. The complication is best exemplified by the multiplicative
conjunction rule, ‘®-R’ (although, this formulation of the rule is not present in FORUM):

Ay = B,I1 Ay=C,T;
Ay, Ay = B C, T, T,

®-R

Suppose that there are n formulae in a linear context, So, there are 2" different ways
to split this context. A naive implementation of the splitting operation as a “don’t know”
choice where all possible splits are “explored” until one is found with the desired properties
is too inefficient for a non-trivial proof search. In [Hodas & Miller, 1991}, the first work
concerning this inefficiency was presented for Lolli.

This thesis attempts to provide a basis from which further problems concerning FORUM
can be investigated. Therefore, the main emphasis of this thesis is an expressive prototype
implementation which can be easily modified.

The calculus of ForRUM has been used already in the literature. Amongst the examples
of FForUM programs, Cervesato encoded Petri nets in several programming languages based
on linear logic (see [Cervesato, 1995}). He observed that ForuM with multiple succedents
is the most appropriate calculus (of those he studied) to embed Petri nets. The convenience
of FORUM in the field of concurrency can also be illustrated by a translation of Milner’s -
calculus, a powerful tool to describe concurrency. The multiple succedents in FoRUM provide
a mechanism to express concurrency on the level of sequents. As a result, in [Miller, 1992]
a preliminary report is given which encodes a fragment of Milner’s m-calculus as a ForRUM
theory. In the disjunctive translation, the non-deterministic choice operator ‘+’ is translated
into a ‘@’ and the parallel constructor ‘|’ into a “@’. The conjunctive translation is completely
dual and consists of a translation using ‘&’ and ‘®’, respectively.

Other examples are approaches towards the design of object-oriented programrning lan-
guages in FORUM. In [Delzanno & Martelli, 1995], progress was made towards a calculus of
an object-oriented programming language in a sublanguage of FORUM, called ‘Forum and
Objects’ (F&Q). In this approach, objects are represented as sets of atoms including an
additional unique identifier for each object and the methods are encoded as program formu-
lae. The classes are templates to create an object; the encapsulation of data and methods is
achieved by universal quantification as in AProlog for data abstraction. This calculus is an
interesting proposal towards an integration of object-orientation and logic programming.

3 A more detailed explanation including the non-primitive connectives can be found in Section 2.3.2.




CHAPTER 1. INTRODUCTION 10

1.3 Terminology and Notation

In the present thesis, we often refer to the various parts of sequents, formulae and inference
rules. A precise terminology is introduced in order to distinguish between them. The
structures are usually written as the following;:

premises
conclusion antecedent => succedent

implicans D implicatum

An inference rule consists of some premises and a conclusion, a sequent consists of an
antecedent and a succedent and an implication consists of an implicans and an implicatum.

The thesis mainly follows the notation generally in use. However, there are three minor
differences from the terminology introduced by Miller. FORUM was introduced as ‘multiple
conclusion logic’. To avoid clashes with our notation for inference rules and implications,
it is called a ‘multiple succedent logic’. The ‘decide’ rules are called ‘choose’ rules in the
new calculi of this thesis. The motivation for calling these rules ‘choose’ rules rather than
‘decide’ rules is that the terrn “decide” suggests a deterministic behaviour rather than a
“don’t know” action. The terminology of the ‘left’ rules in Miller’s calculus is changed into
stoup rules, following [Girard, 1991].

The variable A stands for atomic formulae; the variables B and C stand for arbitrary
formulae. The term ‘higher-order logic’ is used for a framework which uses A-terms and
permits quantification over some predicates and functions.

1.4 Outline and Results

The thesis is structured as follows:

— Chapter 2 considers the notion of ‘uniform proof’ for single succedent logics. Three
logics are briefly described for which single succedent uniform proofs are complete.
Subsequently, the extension of the notion of ‘uniform proof’ for the multiple succedent
logic FORUM is introduced. Miller’s work is described in some detail, including an
examination of FORUM’s non-primitive connectives. Miller’s calculus F is modified in
Section 2.4 for more convenience in the following soundness and completeness proofs.
Subsequently, we describe the operational reading of the modified sequent calculus
F'. Miller’s approach towards multiple succedent uniform proofs is compared and
contrasted with the principles of Lygon’s proof search strategy. Iinally, we consider
the terms and types of FORUM and introduce a concrete syntax.

— Chapter 3 presents two “box calculi”. The first, B, removes the non-determinism
of the context splitting in the “®-S’ and ‘—o-S’ rule. The second box calculus, B, is
introduced in order to reduce the non-determinism of the context splitting in the ‘T-R’
rule. The soundness and completeness proofs are given. The implementations of the
box calculi are illustrated by a partial examination of the boxes and the corresponding
Terzo code (Terzo is a derivative of the logic programming language AProlog). Finally,
the non-determinism in the ‘choose’ rules is addressed and an implementation of the
rules is described.




CHAPTER 1. INTRODUCTION 11

Chapter 4 considers two examples of FORUM programs. Firstly, an object-logic is
implemented in FORUM using three different representations. Secondly, a small plan-
ning system illustrates FORUM’s convenience in a resource sensitive domain. Finally,
two small programs are translated into FORUM and they are used for illustrating the
speed-ups of the box calculi.

Chapter 5 compares and contrasts the approaches in Lolli and Lygon on the context
management. Hodas’ and Polakow’s work on an implementation of FORUM as a logic
programming language is studied.

In Chapter 6, the thesis concludes by consideration of some open problems and sug-
gestions for further work.

Results

A sequent calculus F' based on multiset contexts in the succedent is derived from
Miller’s calculus F. Both calculi include the ‘?’ as primitive connective.

A ‘box calculus B’, so called because the contexts of sequent are formalised with lots
of components to emphasise their different purposes, is presented; it is an extension
of the IO model which deals efficiently with the context splitting. The soundness and
completeness of this box calculus is proven relative to the sequent calculus F’.

A modified box calculus is presented which deals efficiently with the context splitting
in the ‘T-R’ rule. In contrast to the earlier approaches addressing this inefliciency,
the output context is split into a strict and a slack part. In this calculus, there is no
need to introduce additional inference rules which would be forced when applying the
earlier approaches.

The sequent calculus F' and the box calculi are implemented in the logic programming
language Terzo.

An object-logic @ (suggested by Miller), which includes the classical connectives ‘A’
-? and true, is implemented into FORUM in three different ways using the connect-
ives ‘&’, ‘~o’ and ‘T’; ‘®’, ‘—o” and ‘T’ and “g’, ‘L’ and ‘—’. The soundness and
completeness for each of the three representations is proven.

A small deductive planner for conjunctive planning problems is implemented in FORUM;

this has some features that have not been addressed earlier in a representation using
linear logic.




Chapter 2

Foundations of Logic
Programming and FORUM

2.1 Single Succedent Logics and Uniform Proofs

At first, we investigate the foundation of logic programming which can be applied to lan-
guages that are based on either traditional logics or linear logics. We approach logic pro-
gram execution by regarding it as a proof search method in a sequent calculus. Other views
based on certain efficient calculi for rather restricted fragments of various logics {e.g. SLD-
refutation in Prolog) are not considered. The sequent calculi are built upon certain sets
of inference rules and grammars for formulae. The grammar serves, for example, for dis-
tinguishing program and goal formulae that appear on the left or on the right-hand side of
sequents, respectively.

Definition 1 A sequent is an expression of the form:
A=—T

where A and T' are syntactic variables for multisets of formulae called program formulae
and goal formulae, respectively. A program formula is analysed by a left rule; e goal formula
s analysed by a right rule.

Note our reverse use of Gentzen’s nomenclature [Gentzen, 1969] because A stands for a
multiset of program (“definite”) formulae and T stands for a multiset of goal formulae. In
[Miller, 1989b], a proof in a sequent system is defined as follows:

Definition 2 A proof of an arbitrary sequent A = T is a finite tree whose nodes are
labelled such that:

1. the root is labelled with the sequent A = T;
2. the inner nodes are instances of inference rules;

3. the leaf nodes are labelled with initial sequents, i.e., azioms or premise-free rules.

12




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 13

A major foundation of all logic programming languages is searching in a certain space
of proofs [Pym & Wallen, 1992]. In this thesis, the construction of a proof is carried out
beginning from the root up to the leaves. Unfortunately, this construction of proofs in-
corporates much non-determinism. Suppose one wants to prove a sequent op. Following
[Andreoli, 1992], a simple proof search could be initiated with SEARCH(o¢) where SEARCH
is defined as follows:

Procedure SEARCH(0)

1. Select an instance of an inference rule with the sequent o as the conclusion
and the sequents 7y, ...,0, (with n > 0) as the premises;

2. For each k =1,...,n start SEARCH (o).

The procedure SEARCH is a root-upward construction of proofs. It starts with an end-
sequent in the root and gradually completes the proof by proving the premises of the inference
rules.

In general, Step 1 of SEARCH is not determined and an implementation of it has to
explore all possible choices. This is a rather inefficient method for constructing proofs.
An improvement of the search strategy employs some constraints which restrict the logic
programming language to a certain fragment of the underlying logic. A key idea in logic
programming language implementations is to use a cut-free formulation of the logic. The cut-
elimination theorem ensures that the ‘Cut’ rule is admissible without a loss of expressivity.
A “‘Cut’ rule looks as follows:

A= B  BA =T
AI A” = I\I I\H

Clut.

It is noteworthy that the ‘Cut’ rule has a formula B, the cut-formula, which appears
only in the premises and not in the conclusion. An instantiation in our root-upward
construction of proofs has to guess non-deterministically at what the needed cut-formula
might be. This guessing is too inefficient and that is why only cut-free logics are of in-
terest in logic programining. However, this restriction is not serious because it is shown
for: IL, CL ([Gentzen, 1969]), intuitionistic linear logic (ILL; [Bierman, 1994]), and CLL
([Girard, 1987]) that the ‘Cut’ rule is admissible.

A further restriction on the proof search construction deals with the selection of a formula
that will be decomposed and the selection of a corresponding inference rule. For expository
purposes, we first deal with logic programming languages which are based on single succedent
logics. The sequents of a single succedent logic are constrained to have exactly one goal
formula, i.e., the multiset T' in Definition 1 consists only of one formula’,

The notion of uniform proof introduced in [Miller et al., 1991] restricts the proof con-
struction for logic programming languages based on a single succedent logic (the definition,
slightly modified, is taken from [Hodas, 1994]):

Definition 8 In a cut-free single succedent sequent calculus, a proof ¢s uniform if for every
occurrence of a sequent in the proof with a non-atomic goal formula, that occurrence is the
conclusion of a right rule.

!Note that many sequent calculi for intuitionistic logics are constrained to have at most one formula
in the succedent. However, the empty succedents can be avoided when the calculus is rephrased with an
explicit logical constant f, called absurdity.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 14

This restriction can affect the completeness of proofs with respect to the underlying logic.
In IL, for example, there exists no uniform proof for the sequent p V ¢ =>p V ¢, but a
non-uniform proof is as follows:

p—:-';;—pA:cVR r:—;EA:c
p=pVg " q=pVg

R
-L
pVg=pVyg

\
\'

(2.1)

The reason that a logic programming language becomes incomplete after the restriction
to the uniform proofs is that certain left and right rules do not permute over each other. In
the intuitionistic proof above, for example, the ¢ V-L’ rule lies under some ¢V -R’ rules and
the proof cannot be rewritten such that the right rules lay under the left rule. The ‘3-L’
rule has the same troublesome property. However in a significant fragment of the logic, the
proofs can be rewritten by permutations to uniform proofs. The following example shows
two intuitionistic proofs of the same endsequent. In the first proof, a left rule lies under a
right rule®:

=y A4z —— Az
p=—p ] =1 )
P = p Weakening-L =X Weia;g(emng-L
Dg=>pAg e A-

pAg==>pAg

T'he proof can be permuted to a uniform proof:

e A i A
p=p y q==q S
TP W:z_mlljenmg—L =X W;;az_xi(lemng—L
PAg=Pp PAG=q

PAg=>pAg A

After identification of a fragment where uniform proofs exist for every provable sequent,
the method SEARCH described above can be modified for the search for uniform proofs.
SEARCH' is as follows:

Procedure SEARCH' (o)

1. If the goal formula of o is non-atomic, then select an instance of an inference
rule, with premises o4, ...,0, (with n > 0) and conclusion o, that analyses
the outermost connective of the goal formula;

1’ otherwise, select an instance of an inference rule, with premises oy,...,0q
(with » > 0) and conclusion ¢, that analyses a program formula;

2. For each k =1,...,n start sEARCH'(0%).

sEARCH’ focuses first on the goal formula and applies right rules until a sequent with
an atomic goal formula is reached. This focusing on the goal formula, when analysing
it, is called goal-directed or goal-conducted proof search. It reduces the amount of non-
determinism during the proof construction. The procedure sEARCH’ is complete for a logic
where for every provable sequent there exists a uniform proof. The restriction to uniform
proof leads to the definition of an “abstract logic programming language” which can be
found in [Miller et al., 1991] and [Hodas, 1994]. The following definition is adapted from
the former.

2The example is taken from [Pym & Harland, 1994].

N\



CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 15

Definition 4 A logic with a single succedent sequent calculus proof system is an abstract
logic programming language if the restriction to uniform proofs does not lose completeness.

2.1.1 Horn Logic and its Formulae

The logic programming language Prolog is based on Horn logic which is a simple but inex-
pressive fragment of IL. In Horn logic, the sequents are as follows:

H]_,...,Hg:}G

where H; are Horn formulae and G is a goal formula. The Horn formulae are organised so
that a disjunction or an existential quantifier do not occur during proof search as outermost
connective of a formula on the left-hand side of sequents. The Horn restrictions on formulae
are necessary in order to maintain the completeness with uniform proofs. On the other
hand, the goal formulae of Horn logic are rather restricted as well (these restrictions can be
relaxed as seen in the following section). As a result of these restrictions, a very efficient
proof seaxch strategy is developed for Horn logic.

The division of the sequent into Horn and goal formulae offers a convenient way to
introduce a grammar for formulae of Horn logic.

Gu=T|A|GAG|GV G|IG
Hu:=A|GDH|HAH |VazH

where A ranges over atomic formulae; ¢ are called goal formulae; H are called Horn formulae
which are also called definite formulae. The problematic inference rules (i.e., ‘v -L’, ‘3-L") of
IL can be omitted because the grammar does not permit an occurrence of a disjunction or an
existential quantifier on the left-hand side of a sequent. As a result, in [Miller et al., 1991]
it is shown that uniform proofs are complete for Horn logic. Consequently, Horn logic is an
abstract logic programiming language. In the following section, it is shown that not all the
imposed constraints are necessary in order to maintain the completeness of uniform proofs.

2.1.2 First-Order Hereditary Harrop Formulae

Tirst-order Hereditary Harrop formulae are an extension of the notion of Horn formula. As
shown in Example 2.1, uniform proofs cannot be complete with IL because there does not
exist a uniform proof for every intuitionistic provable sequent. However, all right rules of
IL can be permitted in a logic programming language, and therefore, the limitation on goal
formulae in Horn logic can be weakened. This extension supports some very useful pro-
gramming constructs such as modules; see [Miller, 1989h] and [Miller, 1993]. The formulae
in first-order Hereditary Harrop logic are defined as follows:

Gu=Tl|A|GAG|GV G|3eG|V2G|DDG

Du=A|GDD|DAD|VzD

where A ranges over atomic formulae; G formulae are called goal formulae; D formulae are
called program formulae (also called definite formulae). The implicans of an implicative goal




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 16

formula is restricted to be of the form of a definite formula since it only appears on the left-
hand side of a sequent during the proof construction. On the other hand, the implicans of
an implicative definite formula can be of the form G since it only appears on the right-hand
side of a sequent.

In [Miller et al., 1991], it is shown that uniform proofs are complete with respect to
the class of first-order Héredita;ry Harrop formulae. Some further restrictions force the
unification of atomic formulae in higher-order Hereditary Harrop logic, but they will not be
discussed here®. First-order Hereditary Harrop logic is the logic underlying a sublanguage
of AProlog.

2.1.3 Lolli and its Formulae

Lolli is a language based on a fragment of ILL; it can be regarded as a linear refinement of
first-order Hereditary Harrop logic [Hodas, 1992]. The goal and program formulae, respect-
ively, in Lolli are defined as follows:

G:=T|1|A|G®G|Ga&G |G® G |G| D—G|D DG |VzG|32G
Du=T|A|D&D|YzD|G=oD |G D D

Remarks similar to those given for first-order Hereditary Harrop formulae can be made for
the formulae defined above. For example, the ‘®-L’ rule cannot be permuted over all right
rules. An example is the following proof:

= M T3 gxﬂ
A =000 .- ’
PRI=>p®q = (2.2)

Consequently, ’®’ is not used for constructing D-formulae. The g’ connective is left out in
the goal formulae because it is not meaningful in Lolli’s single succedent calculus. However,
some presentations of ILL include the “®’ conmective on the right hand-side of sequents;
for example [Hyland & de Paiva, 1993]. (Beth, Machara and Takeuti presented a similar
formulation of IL which allows multiple succedents; see for example [Beth, 1965].)

In [Hodas, 1994}, it is proven that for every provable sequent using the formulae defined
above there exists a uniform proof, i.e., this fragment of ILL is an abstract logic programming
language. It is implemented as the logic programming language “Lolli”.

2.2 Extension of Uniform Proofs for FORUM

So far, the search procedure SEARCH’ deals only with one goal formula. In the multiple
succedent logic FORUM, however, the succedent of a sequent might consist of more than one
goal formula. The thesis is restricted to an extension of uniform proofs for multiple succedent
logics based on linear logic. Nevertheless, in [Nadathur, 1995] there is an approach towards
uniform proofs in CL. It encodes a fragment of CL into a suitable system where uniform
and classical provability coincide.

®See [Miller et al., 1991] for a complete presentation of the completeness of uniform proofs of higher-order
Hereditary Harrop logic.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 17

The basic principles of uniform proofs in fragments of CLL are studied in [Andreoli, 1992]
and [Pym & Harland, 1994]. The later work explores the permutability properties of CLL’s
inference rules and focuses on an implementation of a large fragment of CLL as a logic
programming language. Accordingly, in this fragment of CLL left rules can be permuted
over right rules. Following this approach, the sEARcH’ method can be augmented for multiple
succedents as follows:

Procedure SEARCH" (o)

1. If at least one goal formula in ¢ is non-atomic, then select an instance of
an inference rule, with premises oy, ...,0, (with n > 0) and conclusion o,
that analyses the outermost connective of one non-atomic goal formula;

1’ otherwise, select an instance of an inference rule, with premises oy,...,0p
(with n > 0) and conclusion o, that analyses a program formula;

2. For each k =1,...,n start SEARCH” (o).

The search procedure above focuses first on the goal side. However, along with the
change in Step 1 comes a new source of non-determinisimn because the interpreter has to
select a goal formula. In general, there might be some interdependencies between the goals
as shown in the following proof (the analysed formula is underlined in each sequent):

P ye=g il TR A, Peopftge=q 2t T=Ea A%
PRy = 0,p p&g =>p = PR¢ = p,q  op&g=>q <
P&, PR => PR q,P & P&, PP = pR q,4 3

P&q, PR = p R q, p&y

The proof is only constructible if the second goal p&q is chosen first. The interdependencies
between goals are caused by the impermutability of certain pairs of right rules. In the case
above, the ‘&-R’ and ‘®-R’ rule are impermutable. To ensure that the sEaArcu” procedure
is complete, all possible ways of selecting a goal formula may have to be explored. This is
very inefficient and would exceed the efficiency criterion for a logic programming language.
However, there are two different approaches for a large fragment of CLL which focus on
this difficulty and on an implementation of a logic programming language for a multiple
succedent linear logic.

Firstly, the logic programming language Lygon (see [Harland & Winikoff, 1995b] and
[Harland & Winikoff, 1996b]) is presented; this is implemented as a single-sided calculus
with multiple goal formulae. In Section 2.6, this programming language will be compared
with ForuM. Secondly, Miller described an extension of the notion of uniform proof in
multiple succedent logics. This approach led to the definition of Forum (see [Miller, 1994]).
The key idea is that two proofs which differ in the order of right rule applications are
regarded as equivalent proofs. Consequently, the order of selecting the goal formulae does
not matter. The following constraints are imposed on the inference rules of FORUM in order
to implement this idea:

— all left rules have to permute over all right rules (to allow a proof search
for uniform proofs), and
~ all right rules have to permute over each other.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 18

As a result, the logic behind FORUM is rather restricted to meet all these constraints.
FORUM’s connectives, a fragment of CLL, and the corresponding inference rules come from
[Andreoli, 1992] which is an investigation of permutation properties in a single sided sequent
calculus. The first study of permutability properties of inference rules for CL appeared in
[Kleene, 1952). [Lincoln, 1991] presented first the complete permutation properties of a
single-sided linear sequent calculus which are also studied in [Galmiche & Perrier, 1994].

A permutation is an exchange of two inference rules that has only local effects on the

proof tree. A situation where two inferences are permutable is characterised by the following
general pattern:

7T, & ogeln g
e et o
oo B 00 S (2.3)
where the premises oy (& = 1,...,n) are obtained from the same endsequent o in two

different ways.

in {Andreoli, 1992], the “asynchronous” connectives meet the property that the associ-
ated right rules permute over each other. They are as follows:

1, T,%,&VYand 7.

For expository purposes the “synchronous” connectives are introduced as well. They are as
follows:

1,0,®,@®,3and !.

Miller added the implications ‘—o’ and ‘D’ to the set of “asynchronous” connectives; they
do not occur in Andreoli’s single sided calculus. In ForUM, however, their right-rules also
permute over all other right-rules. The uniform proofs for multiple succedent sequents are
defined as follows (slightly changed taken from [Miller, 1996]):

Definition 5 A cut-free proof E is uniform if and only if, for every subproof ' of E and
for every non-atomic formula occurrence B in the succedent of the endsequent of &/, there
exists a proof Z" such that:

1. the height of Z" is not higher than the height of E,

(1]

2. B is equal to Z' up to some permutations of inference rules,

3. the top-level logical connective of B is introduced by the last inference step of E”.

The first property is not included in Miller’s definition, but is important for the termination
of the inductive definition. However in this context, it follows directly from the construction
of " because both proofs differ only in the order of inference rules and have the same height.
(The permutations are carried out with respect to the pattern in Display 2.3.)

Tor the set of connectives described above and the corresponding notion of uniform
proofs, it is possible to reformulate the SEARCH” procedure as [ollows:

3
3




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 19

Procedure SEARCH"/(7)

1. If one goal formula of ¢ is non-atomic then select a non-atomic goal formula
that is analysed by an inference rule, with premises o1, ..., 0y, (with n > 0)
and conclusion ¢;

1’ otherwise, select an instance of an inference rule, with premises oy, ...,0,
(with n > 0) and conclusion o, that analyses a program formula;

2. For each k =1,...,n start SEARCH" (o).

Step 1 is only slightly changed and is still not deterministic. However, the choice of a
particular goal formula does not matter because of the permutability property. Such non-
determinism is called “don’t care” non-determinism in contrast to the “don’t know” non-
determinism in Step 1 of the procedure SEARCH”. The crucial improvement of SEARCH'"
arises from the fact that one can omit the inefficient backtracking mechanism for exploring
all possible choices in Step 1 (but not in Step 1’). The “don’t care” non-determinism causes
no inefficiency in an implementation.

2.3 Miller’s Proof System F for FORUM

This section is based mainly on work taken from Miller’s papers on ForuM; [Miller, 1994]
and [Miller, 1996]. He has presented? ForRUM with T, L, &, %, —o, D, V and 7 as primitive
connectives. All formulae of FORUM can be freely generated from this set. Thus, the
formulae of FORUM are defined as follows:

Fu=T|L|A|F&F|FgF|F—oF |F > F |VaF |?F (2.4)

where the syntactic variable A ranges over atoms; the logical constants ‘T’ and ‘L’ are
regarded as non-atomic formulae.

The rather restricted fragment of CLL using the formulae F' (2.4) satisfies the uniform
proof condition given in Definition 5. However, this does not mean that the expressiv-
ity of the language is restricted as well. The linear negation can be introduced using
the primitive connectives since, in CLL, the formulae B+ and B—o.l are equivalent. In
what follows, the implications of the form B—o.L are called ‘L-headed implications’ (see
[Hodas & Polakow, 1996]).

The ‘®’ connective, for example, is excluded from the set of primitive connectives because
its right rule does not meet the extended uniform proof condition. {An example was given
for Lolli in Section 2.1.3 where a ‘®-L’ rule must be applied at first; the same argument can
be applied in ForuM.) However, Miller reintroduces the missing connectives of CLL using

the linear negation, ‘+’. The following logical equivalences hold:

Bl =Bl 0=T—ol l=1-ol
IB=(B>l)—l BeC=(BtaCt)r B®C=(BLiwCc*+)t
Je.B = (Ve.B+)L.

This thesis uses the more recent version of the sequent calculus F for FORUM (see
[Miller, 1995, Miller, 1996]). This allows the introduction of the exponential ‘7’ as a prim-
itive connective rather than as an abbreviation. The right, decide and left rules of F are

4To be consistent with our notation we change Miller’s = into D.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 20

given in Figures 2.1, 2.2 and 2.3. The components of the sequents are described in Section
2:3.1.

BB AS AT T R

0 A = A, BT L:UA = A CT;T
T: U, A = A, BRQC, I T

D:0A = ALY R A= A,B,C,I;T R
TNA =4 LT 50 A—= A,BsC, ST °
:0A,B= A,C,IT R ¥, BiA= A,C, 1T R
S GA—DA,BoCT,T & THA—SABOGHT -
y:70: A= A Bz yl, I T A= A,T;B,T
T 0 A— AV,aB I T g T WA= A,7B,T;T R

y is not declared in ¥

Tigure 2.1: The ‘right’ rules in Miller’s proof system F.

50 A= A, B; BT
D0 A= A;B, T
T U A AT s T B, ¥ A=SA; T
LU B, A= A T % TBU;A= AT

decide?

decide!

Figure 2.2: The ‘decide’ rules in Miller’s proof systexﬂ F

—————— initial —————— initial?
D: U 05A4; T D0 0==[EA T
b3 \I';A.-L_'}»A;T
Ty el B &F &L
0 0==5[]; Y 5 ATESTAY
L el 812 [T 2.1, : \D;ABgﬂA;T i
7B * =L
LG 0=[]T A4

t is a X-term of type 7
S0 A ALY D0 A=S A T
DU AL ArZE A + A T

®-L

DU A = AL BT D0 A0S A T
T U Ay, Ad =20 + Ay T

—o-L

2: 00 = B;Y D:3;A54;T
o0 D-L
A AT

Figure 2.3: The ‘left’ rules in Miller’s proof system F.

In [Miller, 1996], the representation of sequents for FORUM is non-standard (sequents
are introduced in Definition 1). In Miller’s calculus F there are two kinds of sequents,
one of which has a stoup formula written over the arrow as in [Girard, 1991], and thus, we
distinguish them by calling them stoup sequents and non-stoup sequents. A separate part X,
which contains the type information of constants in the A-calculus, is added to the sequents.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 21

The terms in FORUM are strongly typed using a fragment from Church’s simple theory of
types (see Section 2.7.1). The X part is separated by a colon from the rest of the sequent.
The antecedent and succedent are separated, as usual, by the sequent arrow, but both of
them are divided into zones. This will be described in more detail in Section 2.3.1.

Each ‘right’ rule in F analyses a goal formula in the succedent. The ‘decide’ rules are
used when atomic goals are reached in the succedents. The ‘decide?’ rule serves for choosing
a new goal formula from the classical context of the succedent. The other two ‘decide’ rules
pick up a formula from the antecedent which goes subsequently into the stoup. These two
rules correspond to the selection of a program formula (Step 1’ in sEARcH"’). The ‘left’
rules analyse the stoup formula; it will be decomposed until atoms are reached. In effect,
the proof search in F for a stoup-sequent is focused (in the sense of [Andreoli, 1992]) on one
program formula. That means that a program formula that is selected has to lead to a proof
where all leaves match with either a ‘initial’ rules or the ‘L-R’ rule. However, three rules
are exceptions to this scheme. In the case where the stoup formula matches with 7B, the
program is augmented with B; another program formula will be chosen to go into the stoup
or the succedent can be augmented by the ‘decide?’ rule. This means that the focus of the
rather restricted stoup-sequents is lost. However, that is necessary since it maintains the
completeness with respect to CLL (an example is given in Section 2.5). The other exceptions
are the two rules that analyse an implication in the stoup. They branch the proof tree and
in one premise the implicans is added to the succedent as an additional goal formula which
will be analysed by a ‘right’ or ‘decide’ rule.

2.3.1 The Use of Contexts in Sequents

In linear logic, formulae in the antecedent with a ‘I’ as an outermost connective arve dis-
chargeable; the other formulae in the antecedent are usable exactly once (the same behaviour
in the succedent is achieved by the exponential ‘?’). That means the structural rules for
weakening and contraction are restricted to formulae with an exponential. These rules are
defined in CLL as follows:

.._A.._...___._ = :I‘ 3 §: A — T -y

AIB—T Weakening!-L A—7BT Weakening?-R.

ABIB=IL (o onl A=tBIBT
AB—T ontraction:- % 7B.T ontraction?-R,

Consequently, the formulae decorated with an exponential behave to some extent as if they
were classical formulae. In [Girard, 1993] this observation is used and a sequent calculus,
called LU, is presented in order to unify CL, IL and CLL in one calculus. The sequents are
divided into different zones——into classical and linear zones. Each zone allows a different
usage of the structural rules weakening and contraction. In the classical zones, these rules
are permitted; however, they are implemented implicitly in the inference rules. In the lineaxr
zones, both structural rules are forbidden.

A similar approach is used in the dyadic single-sided calculus of [Andreoli, 1992] in order
to normalise proofs. Given that the proof search is performed from the root upwards to
the leaves, the application of the structural rules is delayed in this calculus as long as
possible. That means the structural rules are permuted so that they occur in proofs as late
as possible. The weakening rule can be permuted until leaves are reached and is implicitly
built into the rules that terminate a proof branch. The contraction rule can be permuted




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 22

until an occurrence of certain connectives, and it is built into the corresponding inference
rules.

In logic programming languages, for example in Lolli, the implicit representation of the
structural rules is preferred because of the fact that the ‘Contraction-L’, ‘Weakening!-L’
and “7-L’ rule analysing formulae with an exponential violate the uniform proof condition.
Consider the following proof in CLL (the example is from [Pym and Harland, 1994]):

pP=p ’,‘1“‘ P=p ‘,4;’
p=>p " lp=p ™"
p=>p L

gy !

?Ip=p®p ;

———————— Contraction!-L
P=pQp

The proof can not be rewritten such that the ‘®@-R’ rule lies under all left rules. Using an
implicit formulation, the structural rules are admissible and can be simulated with the new
zones. The ‘®@-R’ rule with zones could be formulated as follows (see [Girard, 1993]):

U A = B, I';;T ¥ A, = C,Ty; T
\I’;Al,Az -:>B®C,I‘1,P2;T

®-R’

The formulae in the zones ¥ and Y are given to both premises. In case where they
are superfluous, it is permitted to “weaken” them. Miller’s calculus F, for example, is
formulated using sequents with zone; these zones are also called contexts®. An extension of
this idea is described in [Hodas, 1993] for Lolli where four contexts exist: for intuitionistic,
relevant, affine, and linear logic. These contexts differ in the usage of the structural rules.

In ForuM, each antecedent and each succedent is divided into a classical and a lin-
ear context. The classical contexts represent reusable formulae; the formulae in the linear
context are usable exactly once. Miller presented the sequents as follows:

YW A =TI:T and E:\I';A:B>A;T

where the linear contexts (A,I' and A) are grouped around the sequent arrow, and the
classical contexts (¥, T) are grouped at the edge of the sequent (the purpose of ¥ will be
described in detail in Section 2.7). The linear contexts A in the antecedent are multisets
of formulae; the classical contexts ¥ and Y are sets of formulae. The antecedent I' in the
sequents above is introduced as a list. The list starts with a part that consists only of atoms
(the variable A stands for this part) and is followed by a part that consists of atomic or
non-atomic formulae (B stands for this part). The part B of T is always empty in stoup
sequents. The stoup sequents (on the right-hand side above) have a stoup formula B written
over the sequent arrow. Omitting the type information in £, the sequents are intended to
behave like the following sequents in CLL:

WwA=T7T and W,A,B=T,7Y

where ¥ and 77 is a shorthand that stands for multisets where each formula is decorated
with a ‘I’ or a ‘7’ respectively.

5 Another reason for the usage of the contexts (i.e., zones) in linear logic programming is that they simplify
the splitting of the contexts in the multiplicative rules, Usually, formulae have to be distributed over the
two premises by an expensive operation that explores all possibilities. The formulae in the classical contexts
are excluded from this expensive operation, since they can be given safely to both branches.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 23

2.3.2 Behaviour of the Non-Primitive Connectives

The non-primitive connectives, for example the ‘®’ connective, are excluded from the set of
primitive connectives because their left rules cannot be permuted over all right rules or their
right rules do not permute over all other right rules. They are reintroduced by some logical
equivalences. Because of this fact, there are different opinions on whether Forum should
count as a logic programming language for full CLL or not. Certainly, FORUM has a more
direct relationship to CLL than logic languages, such as PROLOG, since the completeness is
achieved without the help of a theory. All connectives of FORUM including the non-primitive
ones fulfil the extended uniform proof condition (Definition 5). Consequently, FORUM can
be seen as an abstract logic programming language as given in Definition 3.

However in FORUM, only for a provable sequent using primitive connectives in the suc-
cedent does there exist a uniform proof which is goal-directed (see Step 1 in SEArcH’). That
means the corresponding formula can be decomposed efficiently using only right rules until
atomic formulae are reached. Such a proof may not exist for the non-primitive connectives.
The translation of the non-primitive connectives ensures that they fit into the scheme of uni-
form proof search. However, an occurrence of a non-primitive connective in the succedent
cannot be treated entirely with the “don’t care” non-determinism as in Step 1 of sEArRCH”.
The translation into a L-headed implication for formulae with an outermost non-primitive
connective has the effect that an analysis of such a formula adds another {formula to the ante-
cedent. Then, this additional formula in the antecedent is treated with less efficient “don’t
know” choices. Therefore, only the core of ForUM (formulae with primitive connectives)
counts as a logic programming language if one has in mind that for all provable sequents
there exists a goal directed proof.

In the following example, which is taken from page 17, a FORUM proof is given for a

formula with the non-primitive connective ‘®’ in the succedent. The proof is presented using
the calculus F of ForuM. The endsequent that will be proven is as follows:

X: 0 p&q, pRe = p&q,p® ¢; 0.

It is assumed that ¥ contains the appropriate declarations for p, ¢ and the used connectives.
With a usual formulation of the ‘®-R’ rule the goal formula p ® ¢ has to be analysed first in
order to obtain a proof. However in the sequent with the translated form of the ®-formula,
the order in which the goals appear is not significant. The sequent using the logically
equivalent formula for p ® ¢ is as follows:

%: 0; p&q, p9q => p&q, (pegt)—L; 0

where the negations can be expressed by .L-headed implications. This sequent will be proven
in ForuM by analysing the &-formula first.
E;l -:-'2
Z:0ip %, p80,p90=>pib | o T 0;pteet, &, PR = ;0
Z: §;pRgt, p&g, pRe => p, L; B T: 0 pt et p&, PR = g, L; 0
0,080, P91 = p, 0 B¢ )0 L;0  D:0;p8q, 090 => ¢, (-Be ) o Lif

S: 0; p&q, P29 = p&q, (1-9q)—oL; 6 ]

L-R

R

In the subproof Z;, the new program formula p'®¢' must be chosen in order to find
a proof for the endsequent. This is a “don’t know” choice and ForuM has to explore all




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 24

three possibilities. However, FORUM uses a simple heuristic: new program formulae, that
were added by an implication in the succedent, are considered first. In this case, it leads
immediately to the successful proof, but this is not necessarily always the case. The subproof
=1 is as follows:

T T snitial 5 o inttial —————F—— inilial
Z:ﬂ;@=>p;ﬁ&L :0;0=p; E:(d;ﬁ-—-m;(ﬁ)?L
ST BE s ’
= 0; 0220, ¢ ey E:@;Egp,q;ﬁ G
Y0 p&g = p; 0 ec; " 5 0;p9q¢ = p,¢;0 mI ne'
—0-L —O- 1
E: 0; pagd=51]; 0 : 0, p2¢=5p; 0 o

.L,s o
T B p&q, pod = p;l
: s phegt, p&a, poq => p; 0

decide!

The second premise in both ‘—o-L!* inference rules is omitted. These premises have the
logical constant ‘L’ in the stoup and empty linear contexts; they can be proven immediately
by the rule ‘.L-L’. The subproof Zj is similar to =1, and so is omitted.

In [Hodas & Polakow, 1996] and [Harland & Winikoff, 1996b}, similar remarks to those
above are made: FORUM does not have goal-directed proofs for all sequents of CILL, but only
for sequents having [ormulae with primitive connectives; the logic underlying ForuM is as
expressive as CLL because all of CLL’s sequents can be mapped into FORUM sequents via
some logical equivalences and the provability is preserved when restricting to uniform proofs
as given in Definition 5. However, the implementation of FORUM is not only restricted to a
uniform proof search but also to a depth-first proof search. Therefore, ForuM for which we
will present an implementation is not as expressive as the underlying logic. Further remarks
on this aspect will be given in Section 2.5 and 3.4.

2.4 Modified Proof System F’ Including an Atomic-
Rule

In the sequents of the calculus F, the variable I' stands for a list and the expression A + A
stands for a list obtained by interleaving .A; and A3. That means the operator ‘+’ preserves
the order of both argument lists in the resulting list. However, for the soundness and
completeness proofs, which will be given in Chapter 3, it is more convenient to use a multiset
notation instead®. Miller chose a list structure for the goal formulae because the proof search
in such a system is easier to implement. However, that is an arbitrary decision: Miller
proved in Corollary 4 of [Miller, 1996] that the order of goal formulae is not crucial for the
provability. Precisely, if for a non-stoup sequent there exists a proof, then for all sequents
consisting of a permutation of the goal list there exists a proof as well. In Lemma 2 of the
same paper, he also showed that the order of atoms in sfoup- and non-stoup sequents is not
significant for the provability of the sequent., Hence, all possible orders of goal achievements
lead to the same result. The proof can be shown by the fact that all right rules of Forum
permute over each other (its connectives are chosen so that they satisfy the extended uniform
proof definition and hence satisty this condition).

6 Thus, an interpreter has to incorporate the following operations over multisets: selection of an element,
multiset union and splitting of a multiset into two parts.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 25

Consequently, the calculus F’ (derived from Miller’s F) is used where the list structure
of T is replaced by two multisets. The multisets ease any structural inductions because one
does not have to pay attention to the new calculus preserving the list order as would be
necessary for a proof using F.

One multiset (A) contains only atomic goals, and the other one (B)” contains all other
goals which have not been analysed yet. The sequents of F:

BiWmA= DT and E:W;Aé./l;'r

are replaced in F' by the following sequents:
DU A= A4; 87T and E:‘I’;A=B>A;T.

The multiset B in stoup sequents (on the right-hand side) is always empty because of the
proof search method used in FORUM, and therefore, this part is omitted in F’. An ‘atomic-
R’ rule is newly introduced into the calculus in order to move an atomic goal formula from

B to A.

The proof of soundness and completeness of F’ with respect to F is omitted: the proof
can be achieved with the results from Miller; the additional ‘atomic-R,’ rule of 7’ is embedded
implicitly in Miller’s list notation. The use of the ‘decide’ rules in F is triggered when the
list T' consists only of atomic formulae. In the new calculus F’, a ‘choose’ rule is applied
when the multiset B is empty. The new inference rules of F’ can be found in Figures 2.4,
2.5, and 2.6.

DU A= A, ABY

PR A= ATET & T A A A Bt Dol
T:0 A= A;B,B;Y L:UA= A;C,B;,7T R
T: 0, A = A; B&C, B; T &
DA = A4;B; T R T: A= A;B,C,B;Y R
S U A=A LB T 5 U,A = A, B%C,B; T
S0 AB= A;C,B;T R T:U,B; A= A;C,B; T £
S0 A— A BoC,B;T T 0,A— A4BoCBT
y:7,2: U A =3 A; Bz =y}, ;YT v iU A = A;8,B,T ey

DU A = A;) V2B, BT
y is not declared in X

DA = A B, B; T

Figure 2.4: The modified ‘right’ rules in 7.

2.5 An Operational Reading of the Rules in F’

The proof construction using SEARCH'”, as the name implies, is not completely determined:
there is “don’t know” and “don’t care” non-determinism. Moving from the non-deterministic
proof search of SEARCH” to a deterministic proof search that can be implemented is a difficult

TNot to be confused with the B that stands for the box calculus.

oty



CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 26

DU A= A;B;B,T

FUE Al B, T o
2: U A= A; T 2 ¥: B, AZ AT —
T:0;B,A— A 0T 9% TUB,TA— A6 Y 00
Figure 2.5: The ‘choose’ rules in .
——————— initidl  ———————— initial?
iU 0==A; Y D0 0==0; A, T
D U A AT
—— 18 = &-Si
50 6==0; T 2 AT A Y

DUB=60Y o miu A=y

0 V0220, 1 . 2l AEE Ay
tis a E-term of type 7

: \II;A1=B>A1;T 2 ‘I’;Ag——q}Ag;T
B0 Ar, A ZES Ay, Ay T

-

A = A1 BT D0 Ac=5 A0 T

B—oC —o-3
LU AL A= Al,.Az;T
D00 = 0;B;T T: I;A=54;T S8

SR8
Figure 2.6: The stoup rules in F'.

task. This section is focused on the choices which have to be made during a construction of a
proof and on further constraints which have to be imposed on FOrRUM for its implementation.

When “don’t care” non-determinism occurs, an arbitrary choice can be made and the
final result is independent of this choice. On the other hand, when “don’t know” non-
determinism occurs, a specific choice has to be made out of many possibilities, and the final
result is dependent on this choice. Consequently, all possibilities must be explored in order
to find the choice that leads to the desired result. The extended uniform proof condition is
used in the proof search of FORUM in order fo minimise the non-determinism or to transform
the “don’t know” into a “don’t care” non-deferminism.

In logic programming where a sequence of choices has to be made, the exploration of the
choices is traditionally carried out with a depth-first search. Suppose, all possible choices are
represented in a tree where the nodes represent the choices and the edges represent the causal
relations between the choices. Then, a depth-first search makes a choice which is “deeper”
(i.e, the next choice is made out of the most recent choice) whenever possible. In case no
choice can be made, the search “backtracks” and considers other choices. By contrast, the
breadth-first search “discovers” every possible choice which can be made out of the most
recent one. However in the average-case, the depth-first search leads to a result faster (to
a proof) than the breadth-first search. Furthermore, the breadth-first search requires too
much space. That is why the usage of a depth-first search is usually an efficiency criterion
for a logic programming language.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 27

There are two kinds of choices, called conjunctive and disjunctive choice. A disjunctive
choice occurs when one possibility has to be chosen out of many; on the other hand, a
conjunctive choice occurs when several possibilities have to be chosen. However, the chosen
possibilities have to appear in a certain order. The disjunctive choices have to be made in
Step 1 and 1’ of SEARCH'"—the conjunctive choices in Step 2.

In Step 1, a disjunctive choice has to be made as to which goal formula will be analysed
subsequently. As mentioned eaxrlier, this choice can be made efficiently because of the ex-
tended uniform proof condition. The first major source of troublesome disjunctive choices
occur in Step 1°, when a ‘choose’ rule has to be applied. FORUM is implemented so that it
attempts to prove the corresponding sequent where the choose rules are applied in the fol-
lowing order: ‘choose’, ‘choose!’, ‘choose?. This order is due to the proviso of linear proofs
where all linear resources (i.e., formulae in the linear contexts) must be “consumed”®.

In case of the ‘choose’ and ‘choose!’ rule, a program formula has to be selected that
goes into the stoup and will be analysed subsequently. The program formulae are ordered®
and they are selected according to this order. The interplay of this method and the depth-
first search causes problems and can compromise the completeness. Consider the following
sequent where the program formulae are ordered from the left to the right (it is assumed
that ¥ contains the appropriate declarations):

Z: p—op,p; 0 = p; 6;0

The implemented proof search of FORUM fails in this case because it selects always the
formula p—op first as the following proof fragment shows:

indtial
—o-5

T:p—op,p; 0 = 0;p;0 T: p—op,p; =L>p; 0
i p-on,p; =8 L
T p—op,p; 0 = p; 6;0 0%

i ic-R, tnitial
S p—op,p; b — 0, p; 0 TN 5: p—op, p; $=Eop; 5.8

ipop,pi0=pl
X: p—op, p; 0 = p; 0;0 '

However, a proof exists in FORUM and can be constructed if the second program formula is
selected. It would lead to the rather simple proof:

—— initial
E:pop, il el choose!
X: p—op,p; B => p; ;0 i

Consequently, the implemented proof search is incomplete with respect to the proofs in
ForuwMm, and it is the responsibility of the programmer to provide the appropriate order of
the program formulae.

Also, the ‘&-S;’ rule causes a disjunctive choice in Step 1’ in a root upward search. This
rule stands essentially for two rules that have the same conclusion but different premises.

8The ‘choose? is considered as last because it introduces new formulae into the 53 context. On the other
hand, the ‘choose’ rule is applied first because it “consumes” eventually the stoup formula from the context
A and a formula from the context A if the proof branch terminates, for example, with the ‘initiel’ rule.

9 The sequentsin F’ are represented using multisets for more conveniencein the following proofs. However,
they are implemented based on a list structure,




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 28

When the ‘&-S;’ rule is applied in the proof search, a component of the stoup formula has
to be chosen that will be analysed subsequently. The implementation of FORUM attempts
at first to find a proof with the first component of the &-formula and, after failing, to find
one with the second component. (The disjunctive choice that arises when the contexts of
the conclusion must be split is addressed in Section 3.)

The conjunctive choices occur in Step 2 of SEARCH'; the inference rules of FORUM which
are selected in Steps 1 and 1’ are as follows:

01...0n
o

where:

— the premise-free rules have n = 0;
— the proof branching rules have two premises (i.e. n = 2);
— otherwise, the rules have one premise (i.e. n = 1).

In the case where n=2, a conjunctive choice must be made as to which premise is attempted
to be proven first. A naive ordering can cause problems and the proof construction fails
because of a loop that could be avoided by a different ordering of the premises. Suppose the
following sequent:

YipDp0=>p,q¢00.

The sequent is not provable, but the depth-first search and the left-to-right order of the
premises in the ‘O-S’ inference rule results in a loop rather than giving the answer: “not
provable”. In this particular case, a naive implementation of FORUM behaves as the following

proof fragment illustrates:

S:ipopl = p,;0;0 T:pOp;0tep,q;0
E:pr;ﬂgp;ﬂ
S:pDOp0=>p,¢;0;0

-5

choose!

It attempts to prove the sequent on the left-hand side and finds always a program formula
which is applicable. An attempt to prove the sequent on the right-hand side first would lead
directly to the desired result that the endsequent is not provable. In our implementation,
the order of the premises is changed such that the stoup sequent is proven at first before the
non-stoup sequent is proven because the proof search for a stoup sequent is more restricted
(focused) than the proof search for a non-stoup sequent

Proof search in the implementation is carried out in two modes. One mode deals with
non-stoup sequents and is focused on the goal formulae; the other mode deals with stoup
sequents and analyses the formula in the stoup. Therefore, the modes are called right and
left mode. The proof search starts in the right mode. The ‘choose’ and ‘choose!’ rules switch
from the right mode into the left mode. The left rules that analyse an implication switch
from the left mode into the right mode when they attempt to prove the premise that is
a non-stoup sequent. The ‘?-§’ switches from the left mode into the right mode as well,
otherwise FORUM would become incomplete. Consider the following proof [Miller, 1996]:




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 29

minitial
L:0p=>p;0;p
T:hp=0;p;p
:p=0;0;p
E:@;ﬁz—?—%@;p
50 = 0;6;p
2:0;%p = 0;7p; 0

choose

atomic

choose?
?-S

choose
7R

where ¥ contains the appropriate declarations. A lower application of the ‘choose?’ rule
does not lead to a proof because the ‘?-S’ rule is only applicable if the linear contexts are
empty.

In what follows, the formulae contain only primitive connectives (a formula which con-
tains a non-primitive connective can be replaced by its logically equivalent formula).

Right mode

Proof search while in the right mode analyses a sequent that is as follows:
2 A=ABT,
and a formula B is selected from B. In the case where B is:

A and A is atomic; the ‘atomic-R’ rule is applied which moves A from B to A;
i the ‘T-R’ rule is applied; this terminates the proof branch;

B&C the ‘&-R’ rule is applied and it is attempted to prove both sequents where the
formula B&C is replaced by B and C, respectively;

L the ‘1L-R’ rule is applied which removes the ‘L’ connective from 5;
BgC the “@-R’ rule is applied and the formula B&C is replaced by B,C in B;
B—oC the ‘~o-R’ rule is applied and the implicans B is removed to A and B—o(' is

replaced by C' in B;
B> C the ‘D-R’ rule is applied and the implicans B is removed to T and B—oC' is
replaced by C' in B;

7B the ‘?-R’ rule is applied and the formula 7B is removed to T (without the ‘7’
connective);

V,aB the ‘v-R’ rule is applied and the signature ¥ is augmented by a fresh variable y
of type T and the variable z is replaced by y in the formula B.

In case the multiset B is empty, the following three rules are applicable:

choose a formula B is chosen from A and removed into the stoup, the mode of proof
search switches into the left mode and the following sequent (A’ is the result
of removing B from A) is analysed:

DU AR AT



CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 30

choose! a formula B is chosen from ¥ and copied into the stoup, the mode of proof
search switches into the left mode and the following sequent is analysed:
20 Aéfl; T;
choose? a formula B is chosen from T and copied to B and is analysed by a ‘right’

rule.

Left Mode

Proof search in the left mode analyses a sequent that is as follows:
S0 AS 4T,

and the formula B is considered. In the case where B is:

A and A is atomic, and A is empty; the proof terminates with the “nitial’ rule if
A is just the formula 4;

A A is atomic, and A and A are empty; the proof terminates with the ‘tnitial?’
rule if A4 is contained in T;
1 the proof terminates with the ‘1-S8’ rule if A and A are both empty;

BaC the ‘&-S’ rule is applied; either B or C is chosen, and B&C' is replaced by the
chosen formula;

B if A and A are empty then the ‘?-S’ rule is applied; 7B is removed from the
stoup, and A is set to {|B[}; the mode of proof search switches into the right
mode, and the following sequent is analysed:

U B = 0;H T,

V.zB the ‘v -S’ rule is applied and the variable 2 in the stoup formula B is substituted
by a term t of the type 7;

BeC the 98-S’ rule is applied; A and A are split into the multisets Ay, Az and Aq,
Ag, respectively; both of the following sequents must be proven:

b ‘IJ; Al‘-g?Al;T
B 05 A= Ag; T

B—o(' the ‘-8’ rule is applied; A and 4 are split into the multisets .41, A2 and A,,
A,, respectively; the following sequent must be proven in the left mode:

0 Ag= Ay T
and the following in the right mode:
0 A = A; B;Y
BoC the ‘D-8’ rule is applied; the following sequent must be proven in the left mode:
2, A=C>A; 2 6
and the following in the right mode:

%0 =0;B;T.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 31

2.6 The Approach in Lygon

The logic programming language Lygon relates to FORUM in two ways; this section is focused
on one of them, the foundations of the logic and proof search in Lygon (the other, the context
management, will be compared with the present approach in Section 5.3). Lygon is based on
a systematic investigation of goal-directed proofs in CLL as given in [Pym & Harland, 1994].
The complete language is introduced first in order to illustrate its principles and working
assumptions. However in the later part of this section, the presentation is restricted to a
subset of Lygon which represents the actual implementation.

For the multiple succedents in Lygon the notion of goal-directed proof is characterised
by the set of simple locally LR proofs. This notion is slightly weaker than the notion of goal-
directed proof in intuitionistic logics where any non-atomic goal formula must be decomposed
by a right rule. The simple locally LR proofs allow certain occurrences of left rules which
lie under right rules and cannot be permuted over right rules (amongst these left rules are
the ‘—-L’, ‘®-L’, and ‘C!-L’ rules).

The two-sided sequents in Lygon are as introduced in Definition 1 (Page 12). 1t is proven
that for the following two classes, goal formulae G and program formulae D,

Gu=A|1|L|T|G&G|G®G |GG |GG |VY2G | 3G |G |?G | D—G
Du=A|1|L|D&D|D®D | D8D |VeD |!D} G—oA | G—oL

there exists for each provable sequent a simple locally LR proof (see Corollary 2.10, Lemma
2.15 and Proposition 2.14 in [Pym & Harland, 1994]).

A calculus is introduced for this fragment of CLL; the inference rules in this calculus
are designed so that a notion of goal-directed proof search is meaningful. For example,
a formula p ® ¢ occurring in the antecedent will be replaced by the components p and g¢,
and thus, a goal-directed proof exists in this calculus for the sequent of Display 2.2 (Page
16). All program formulae in the calculus are transformed into a clause form. (The reader is
referred to Definition 3.1 in [Pym & Harland, 1994] for the complete definition of the clausal
decomposition.) As a resulf of this clause form, it is possible to replace all left rules by a
single rule, called backchaining rule (it is called originally ‘resolution’ rule).

In what follows, a fragment of Lygon is considered which exists as implementation (see
[Harland & Winikoff, 1996b]). The reason for the restriction is the fact that for this imple-
mentation exists an approach on the selection of the active goal formula. This approach is
of most interest with respect to the approach in ForuM. The calculus for this fragment of
Lygon is formulated as a single-sided calculus. The sequents are defined as follows:

oW T

Negated formulae are permitted as goal formulae and a ‘backchaining’ rule is as follows:

LIA, G, T

A, AT B¢

where a program formula is of the form Vz; ...V&,(A « G). The goal formulae are defined
as follows:

Gi=A|AY |1 L|T|G1&8Gs | G1® G2 | G18G2 | G1 ® G2 | V2G | 32G |IG |G




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 32

The clauses are of the form:
Vzp...Veu (A « G).

The single-sided calculus defined above represents a multiple succedent logic. Therefore,
the proof search has to select a goal formula which will be analysed subsequently. As il-
lustrated in the proof on Page 17, there may be interdependencies between the selections.
ForuM is designed so that the selection can be done with “don’t care” non-determinism.
This yields to the rather restricted logic which is based on the formulae using ForRUM’s
primitive connectives. In Lygon, the opposite decision was made. As a result, Lygon per-
mits a larger set of primitive connectives, but the selection of a goal formula cannot be made
using “don’t care” non-determinism and may require backtracking. However, some formulae
can be analysed safely by “don’t care” non-determinism. These formulae have as outermost
connective those which are identified in [Andreoli, 1992] as ‘asynchronous’ connectives (see
Page 18). The remaining connectives of Lygon are those which Andreoli called ‘synchron-
ous’ connectives. The selection of a goal formula is illustrated by the following two Lygon
proofst?:

Az — Az
I_q'L’q |"qJ_aq

Fgt, L, q Fal,p@g
Feltwl q " Fgt,Lp@g 2
Fetel,pdg Fotel,p®q

Since *® is a asynchronous connective, there exists a proof where the corresponding formula
is decomposed first. As a result, whenever a formula with an outermost asynchronous
connective occurs, it can be selected with the efficient “don’t care” non-determinism.

To sum up the comparison of FORUM and Lygon, the main difference is that in Forum
any right rule must permute over the other right rules, and in contrast, in Lygon only some
right rules need to permute over other right rules. However, both languages can be seen
to use in essence a very similar proof search strategy. Lygon decomposes first all formulae
with an asynchronous connective as outermost connective in a sequent with “don’t care”
non-determinism. Next, Lygon decomposes all formulae with a synchronous connective
using “don’t know” non-determinism and then Lygon backtracks over all choices. FORUM,
however, decomposes the formulae in the succedent with “don’t care” non-determinism, but
it translates each formula with a synchronous connective to a logically equivalent formula
which places some components in the antecedent during proof search. The formulae in the
antecedent are analysed with “don’t know” non-determinism.

2.7 Types and Terms in FORUM

Miller founded the underlying formal system of FORUM on a typed A-calculus similar to
that used in AProlog. It is based on two syntactic components (simple types and A-terms)
and is derived from Church’s formulation of the simple theory of types [Church, 1951). The
groundwork of this system is well-studied for AProlog for which it is invaluable. Apart from
some basic principles which will be introduced below, the reader is referred to the work

10The examples come from the paper [Harland & Winikoff, 1996b]. They are slightly changed because the
originals require unification which is not yet addressed in this thesis.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 33

([Miller & Nadathur, 1986], [Miller, 1989a] and [Nadathur & Miller, 1994]) on AProlog for a
more detailed treatment. The section concludes with a presentation of the concrete syntax
employed for FORUM.

2.7.1 Kinds and Types

The terms in FORUM are built from typed constants and variables. The types that are
employed in FORUM are first-order types referred to as simple types. The first-order types
arc built from primitive types, type constructors, type vartables and functional types. The
kind declaration gives to each primitive type and type consfructor an arity. As examples,
consider the declarations:

kind o type.
kind int type.
kind list type -> type.

where the —> operator associates to the right; nested occurrences of this operator of the
form (A -> B) -> C are not permitted. In the examples above, the identifiers o and int
are names of primitive types; 1ist is the name of a type constructor. Each type is associated
with an arity which is a non-negative integer and which is one less than the occurrences of
type in the corresponding kind declaration. That means, the primitive types o and int
have the arity 0 and the type constructor 1ist has the arity 1.

Definition 6 The types in FORUM are inductively defined as:
- primitive types;

- type expressions (writlen as ¢ o1...0p (n > 1) where ¢ is a type constructor of arity
n and o; are types);

— type variables (written with a capital letter) and

— functional types (written as o — T where o and T are lypes).

The functional type constructor — is right associative; parentheses can be used in order to
avoid ambiguities. The type variables allow polymorphism in the usual way. Each type o
can be written as:

01~ ...0p =T

where 7 is either a primitive type, a type expression or a type variable. The type 7 is called
the target type of o; the types o; are called the argument types of o. As examples, consider
the types below!!:

o, int, int -> int -> int, int -> o, A -> list A -> o.

Following Church, Miller chose the primitive type o for FORUM’s formulae. A type which
has the target type o and in the argument types there is no occurrence of the type o is called
a predicate type; it is used for typing a predicate.

11 The functional operator —+ is written as ->. From the context it is always clear whether the operator
for functional types or the operator in the kind expressions is meant.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 34

The terms of FORUM (see next section) are built upon free and bound variables and
constants. A type must be given to each constant using a type declaration. (The type of
a variable is inferred from the context.) The following examples are type declarations that
declare the non-logical constants a, £, p and member:

type a int.
type £ int -> int -> int.
type p int -> o.

type member A ~> list A -> o.

ForUM’s primitive connectives are declared using the primitive type o: the type of
formulae. These connectives are represented using the following ASCII-sequences:

FoRrRuUM’s primitiveconnectivesl | | il |'9 { &| -0 [ =) |'7| A
ASCII-sequences | top | bot | | ‘ Q

The connectives (or logical constants) are declared as follows:

type top 0.

type bot 0.

type | o ->o0 -> o,

type @ o ~> o0 —-> o,

type -~0,0-~ o0 => 0 => o, (25)
type ==>,<== o -> o -> o.

type 7 o -> o.

type forall (4 -> o) -> o.

type x O, =% Olim> 0,

type neg o -> o.

The logical constants x and neg are declared in addition to the primitive connectives and
represent the non-primitive connective ® and the negation (see Page 19), respectively. (They
are used in some example programs.) The reverse implications are declared for a better
readability of FORUM programs. The logical constants |, @, --0, o~-—, ==>, <== and x are
the only constants which are written as infix symbols!?. (The constants |, & and x bind
more tightly than the implications. However, parentheses should be used in order to avoid
ambiguities.) The constants 7, forall and neg are written as prefix symbols.

Definition 7 A signature is a list of kind and type declarations and is defined inductively:

1. A list that consists of the kind declaration for the simple type o and the type declarations
for the logical constants of Display 2.5 is a signature.

2. If ¥ is a signature, k is a kind declaration that declares a type T and T ts not declared
in B, then X,k 1s a signature.

3. If % is a signature, T is declared by a kind declaration in £, t is a type declaration that
declares a constant ¢ with a type T and ¢ is not declared in X, then £, is a signature.

12The symbol for abstraction is also written as infix symbol, but it is neither a logical nor a non-logical
constant.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 35

2.7.2 Simply Typed A-Terms

The A-terms in FORUM are constructed by two operations: abstraction and application.
Following [Nadathur & Miller, 1994}, the definition of the A-terms associated with a type is
as follows:

Definition 8 A simply typed A-term (or short term) is inductively defined:

- a constant or a variable of type o is a term with the type o;

— if & is a variable of type o and F is a term of type v then (Aa.F) is a term of type
o — T this operation is called abstraction; the variable x is bound and its scope is F'
with Az as its binder;

~ if Fy is a term of type o — 7 and Fy is a term of type o then (F1F3) is a term of type
T, this operation is called application.

The term (Ae.F) constructed by an abstraction is written in an ASClI-style as: (X\F).
AProlog and FORUM use a curried syntax form for A-terms. Suppose, the constants a and b
are declared with the type o and a predicate h is declared with the functional type o — o —
o. Then, it is possible to form the A-term (h a) by applying the constant a to the term h.
This new term is of the functional type ¢ — o. A further application using the constant
b to this term leads to the term ((h a) b) with the type o. The last term can be shortly
written as (h a b) (i.e., the application is left associative). A similar term using a Prolog
convention would look as h(a, b).

The A-terms are convenient for distinguishing between occurrences of bound and free
variables. As introduced above, an occurrence of a variable x is bound if it occurs in a
scope of a term that is abstracted using the variable z; all non-bound variable occurrences
in a term arve free. Consequently, there are three syntactic categories which have to be
distinguished: constants, free variables and bound variables. By convention, the constants
are written starting with a lower-case letter; the free variables are written starting with
an upper-case letter; the bound variables can be written starting with either a lower or an
upper-case letter because they can be identified by their binders.

Definition 9 A substitution for a free variable & of type o in a term s (where term t is
substituted for a variable @ of the same type o) is written as s[z — t] where all free variables
of 1 are distinct from the bound variables in s. A substitution may be viewed as a type
preserving mapping on variables that is the identity everywhere except on the variable z
which is mapped on the term 1.

In [Miller, 1991], three conversion rules over A-terms are defined as follows:

Definition 10 Conversion rules for A-terms

1. A term Az.s a-converts to the term Ay.s[z v y] provided that ¢ i3 free in s and y is
not free in s.

2. A term (Az.s)t f-converts to the term s[z 1+ t] provided that the free variables of t are
not bound in s.

3. A term Ax.(s &) n-converts to s, provided that x is not free in s.




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 36

Two terms s and ¢ are regarded as equivalent if there is a sequence of conversions that
transforms s into ¢. The reader is referred to [Nadathur & Miller, 1994] for a detailed treat-
ment of a unification algorithm and further restrictions imposed on A-terms in order to
obtain a language where an implementation is feasible. Since we implement our calculi in
Terzo, the unification, for example, is already provided by this language.

2.7.3 Definition of FORUM’s Syntax

In the following, a BNF-style grammar is introduced for Forum. The syntactic category of
identifiers is divided into two classes: lower-case identifier (Lcid) and upper-case identifier
(ucid). The other words written using a typewriter font are the reserved words, and as
such, may not be used as identifiers.

The types are declared using kind declarations:

kind_decl ::= kind id.list arity.

1d list

lcid
lcid, sd. list

arity type

type -> arily

The constants are declared using type declarations:

type_decl type id_list type.
type = lype => lype

| type type

| Ctype)

|  1lcid | ucid

The terms ave specified as:

term = term term
| term infiv.op term
| prefiz.op tlerm
| (term)
|  top | bot
I

lcid | ucid

infiv.op = Bl el x| —o | o | =>| <==
\ (abstraction)

forall
neg
?

prefiz_op




CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAMMING AND FORUM 37

Note “®’ is written as ‘|’ in typewriter font, but appears as itself in the grammar rule to
avoid confusion with the BNF |,

The goal and program formulae are specified as:

goal_frm 1= term
| goal_frm , goal_frm

= {erm
| linear term
I

program_frm . program.frm

program._frm

In order to separate goal and program formulae, a comma is used for goal formulae and a
period for program formulae. The reserved word linear indicates which context accom-
modates the corresponding formula.

Consider the following simple example (proposed in [Grofie et al., 1992]; see also Section
4.2). 'The constants d, q and 1 stand for a dollar, a quarter and a lemonade, respectively.
The program is as follows:

type d,q,1 o.
d-—-ogqxqxqxgq
qxgqgxgq -0l
linear d.

linear c.

The intended meaning of the implications is getting four quarters for a dollar and getting a
lemonade for three quarters. The last two lines of the program mean having a dollar and
quarter. A goal could be as follows:

Lix g x4q

which stands for having a lemonade and two quarters. The program and the goal translates
into the following FOrRUM sequent!3:

T, {d,q,l:0}: d-oq®¢®@q®¢, ¢@q®q—ol;dqg=0;1®¢®q;0

In what follows, free variables which occur in a program formula are assumed to be
universal quantified. The quantifiers are omitted in order to improve the readability. The
free variables in a goal formula are essential existential quantified, i.e., the proof system
looks for an instantiation of such variables.

135} contains all declarations for the connectives.




Chapter 3

Efficient Context Management

3.1 Input-Output Model and the Box Calculus B

The multiplicative rules present an implementation challenge because the context splitting
is a rather costly operation during proof search. The first work concerning the context
splitting in Lolli appeared in [Hodas & Miller, 1991]. Let us restate the problem in terms of
the proof system F’. There, the ©9-S’ rule, for example, is presented as follows:

DA AT D0 AS Ay T
B: ;A1 A ZES A, Agy Y

-5

The rule is problematic since in the root-upward proof construction of SEARCH the con-
texts are not split, respectively, into Aj, Ay and Ay, .4s. An interpreter has to find non-
deterministically a partition of the contexts that leads to a proof, The number of partitions
grows exponentially with the number of formulae, and therefore, a naive implementation of
the splitting operation as a “don’t know” choice is too inefficient for a proof search by a
computer.

In the following, a calculus (we call it a box calculus (B) since each sequent is represented
as a box with lots of components) will be introduced to avoid the aforementioned problem
concerning the splitting of the linear contexts. The box notation is chosen because if presents
the contexts clearly separated, and it preserves the structure that the program formulae
appear on the left-hand side and the goal formulae on the right-hand side!. The non-stoup
and stoup sequents of F':

WA= ABT and X: \I!;A=B>.A;'Y

are replaced in B by boxes which are called non-stoup bozes and stoup bozes. They are as
follows:

1The sequent formalisation of [Cervesato et al., 1996] appeared to be less suitable for ForuMm with its
several contexts. The representation of the boxes is similar to the sequent formalisation that is established
in {Harland & Winikoff, 1996a] except that our input and output parts are arranged vertically instead of
written horizontally.

38




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 39

S Lt
T 7T 20 AT R0 T
MM{M A_;(;A Béxﬂ afid J\AD’M11{40,A1
5 M! Al
3

The boxes contain an antecedent and a succedent; these are separated by double, vertical
lines. The linear contexts M in the antecedent and the linear contexts A, B are multisets
of formulae (A contains only atomic formulae); the classical contexts ¥ and T are sets of
formulae. According to the two types of sequent, there are two types of box representing
a sequent. The boxes that represent non-stoup sequents have no stoup field; the boxes
representing a sequent with a stoup formula B have the formula B in the stoup. The stoup
boxes have similarly only an atomic context in the antecedent like the corresponding stoup
sequents in F',

antecedent : succedent
= Ry SO e
PO Sl 15,3

stou =

- ) eiimos || Ermemes i

I i+ |

L]
signature —

Each linear context of a sequent is represented as an input context and an output context
in the corresponding box of the new calculus. The purpose of the input-output notion is,
roughly speaking, that the resources “consumed” by a proof form the multiset difference
between the input and output context of the endbox. Each input confext is represented
using two multisets. The first multiset with the superscript ‘0’ represents the formulae that
are “consumed” in the proof branch of a box. On the other hand, the second multiset (with
superscript ‘1’) represents the formulae that are not used in the proof branch. Therefore,
this multiset forms the output context of the box.

classical contexts (¥;Y)

input context ~ F—=p=—=5 .

i S &

output context

The full system of inference rules is presented in figures 3.1, 3.2 and 3.3 (pp. 48). In order
to reduce the amount of repetition, the inference rules of the box calculus are categorised
into four groups. FEach group represents an essential operation of the box calculus. These
groups are named passing rules, returning rules, splitting rules and sharing rule according
to the operation which they perform in the box calculus. The inference rules fall into the
groups as follows:




CHAPTER 3. EBFFICIENT CONTEXT MANAGEMENT 40

passing rules: atomic-R, 1-R, ®9-R, —-R, D-R,
V-R, 7-R, choose, choose!, choose?,
&-S;, ¥-S, DO-S;

returning rules: T-R, indtial, initial?, L-S, 7-S;

splitting rules: -5, —o-S;

sharing rule: &-R.

When considering these groups, it is convenient to employ an operational point of view.
However, the rules themselves do not rely on such an interpretation: the rules presented in
figures 3.1, 3.2 and 3.3 are fully declarative.

The passing rules. Each right rule of this group picks one formula from the input
context of the conclusion. This formula will be decomposed, and the components are passed
to the input context of the premise. On the other hand, the stoup rules analyse the formula
in the stoup. The formulae of the input context in the conclusion are passed to the input
context of the premise. Subsequently, the formulae that are returned as output context of
the premise are passed to the corresponding output context of the conclusion. Some rules of
this group are discussed in more detail since they possess some features which vary from this
general scheme. The ‘choose’ and ‘choose!’ rule pass the B part of the input context directly
to the corresponding output context of the conclusion since the proof branch cannot use
any formula of it (both rules in the sequent calculus F' require an empty B context). In a
similar fashion, the ‘choose?’ rule returns the B part of input context, but it also passes the
selected formula B to the input context of the premise and expects that the corresponding
output context is empty. The ‘D-S’ inference rule requires that the implicans of the stoup
formula is proven with empty input and output contexts.

The returning rules. The ‘“initial’, initial?’ and ‘L-S’ rules of the sequent calculus
F' require some empty contexts, i.e., they do not consume any resources from them. This
behaviour is modelled by direct returning of the input context to the output context. The ‘T-
R’ rule consumes some formulae from the input context and returns the remaining formulae
to the output contexts of the conclusion. The ‘?-S’ rule also returns directly its input context,
but has a box as premise that consist of the formula B and empty input and output contexts.

The splitting rules. These rules pass the input context from the conclusion to the
left premise. The returned output context of the left premise is passed to the right premise
for use as input context. The returned formulae of the right premise are passed to the
corresponding output contexts of the conclusion. Intuitively, the premise on the left-hand
side consumes some resources from the input context and passes the remaining resources to
the premise on the right-hand side. The resources that remain from both subproofs of the
premises are given as output to the conclusion.

The sharing rule. For expository purposes, the associated sequent inference of F’ will
be presented:

D A= A4;8B,8,T L:U;A= A,CB7T
LU A = A; B&C,B; T

&R

Both premises have the same contexts A, A and B. In resemblance to the previously
presented rules and to the intended meaning of the input-output contexts, the ‘&-R’ can be
formalised as follows:




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 41

A, T v [ 4
MO, MU A AT B, B, B MO M| A® A o, B, B!
M A B! M! A’ B!
pY pH
&R
W T
MO MO AP AN |BaC,BY, B
Ml Al Bl
P

In terms of the box calculus, both premises receive the same input context (apart from
the component of the analysed formula B&C') and must produce the same output context.
However, there might be many proofs that fail because the output contexts differ. This
difference caused by consuming different formulae from the input context can only be de-
tected after both subproofs return their output contexts. An improvement of the rule for
the additive conjunction is suggested in [Cervesato et al., 1996] for Lolli. The proof of the
right-hand premise receives exactly those formulae which are consumed by the proof of the
left premise. Consequently, the formulae not used in the first proof are inaccessible for the
second proof. Thus, the output context of the premise on the right-hand side must be empty.
Accordingly, the ‘&R’ rule is stated as follows:

N i T |
M M A" AN B, B, B MO A° G, B°
M Al B! ] [} [
= ‘P
&R
T T
MO MY A% AT TBRC,B°, B
Ml Al Bl

Before proceeding further in our study, it is necessary to prove the soundness and com-
pleteness of B with respect to the proof system F’'. Both proofs are carried out by a
translation of the proofs into proofs of the other calculus.

3.1.1 Soundness

Proposition 11 (Soundness)

1. For every proof of a boz of the form: there exists a proof of the sequent:
v [T
A, XA, YB, Z o & L
A BAR; YA = A4; 57T .
s
and
2. For every proof of a box of the form: there exists a proof of the sequent:
v
2 B
A, XA Y 20 A=SA T,
X | Y
b3




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 42

The proposition is divided into two parts according to the two kinds of boxes and se-
quents. However, in a proof of the first part there might be occurrences of boxes of the second
kind and vice versa. That is why, the proof will be shown by a simultaneous induction on
the height of proofs.

Proof: Simultaneous induction on the heights of the proofs. The transformations of the
inference rules are given in Appendix A.l.

3.1.2 Completeness

For the convenience of the completeness proof, a technical result is proven first. Intuitively,
it is possible to add arbitrary multisets of formulae to both input and output context, and
this does not affect the provability in the box calculus. If necessary, the signature ¥ had
to be augmented in an appropriate way in order to type the additional formulae. However
in the translations given below, the signatures are translated in such a way that formulae
are well-typed. Therefore, we omit all aspects of the signatures wherever it does not lead to
conflicts,

Proposition 12

1. For all multisets X, Z of formulae,
and for every multiset Y of atomic formulae,

and for every proof of a box of the form: .  there ezists a proof of the box:
), B v I T
MO, MHA® A B, B! MO M XA A YIBY, B Z
M Al B! MI,X Al,y Bl,Z
Py 3]

and vice versa, and
2. For every multiset X of formulae,
and for every multiset Y of atomic formulae,

and for every proof of a boz of the form: there exists a proof of the boz:
v T ¥, T
B B
M, MHA® A MO ML XA AT Y
M? Al ML X ALY
PN PN

and vice versa.

Proof: Simultaneous induction on the heights of the proofs. The transformations are given
in Appendix A.2.

Remark: Notice that in each part of the proposition both boxes represent the same se-
quent. The variables in the sequent calculus F' stand for multisets of formulae which are
“consumed” in the corresponding proof branch. The simultaneous augmentation of both
the input and output contexts protects the consumption of an additional formula in the
modified proof branch. The corresponding sequents are:

1. Z:¥,Mg= Ag;Bp; T
2. DU Mo AT




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 43

The proof of the completeness will be shown by an induction on the height of proofs; the
corresponding endboxes will be proven starting with an empty output context. However at
the stage where a splitting rule is applied, the input and output context of the box in the
left premise must be augmented using Proposition 12 in order to construct the desired box
proof.

Proposition 13 (Completeness)

1. For every proof of a sequent of the form: there exists a proof of the box:
vl
. B AllALB
WA= A4; BT AL
P
and
2. For every proof of a sequent of the form: there exists a proof of the boz:
Tl
o B
T A=A;T Al A
019
3

Proof: Simultaneous induction on the height of the proofs. The transformations of the
trivial cases are given in Appendix A.3. The non-trivial cases are given below.

Case 1 (’8-S): The translation is as follows:

L P vl
B C
Ay, Ao A1, Az Ay |[ As
A | A [HK]
E:‘I’;A1=B>A1;T E:‘I;A2=C>.A2;T b2 Z
8-S = -5
0 AL A Ay Ay T v [ T
BeC
Ay, AsllAy, Az
9 )
b3

The difficulty in the translation step above is that the box of the left premise has a possible
non-empty output context Ay and A;. Accordingly, the given translation rules do not match
with such boxes. However, a proof can be found first with an empty output context and
then with the help of Proposition 12, this proof can be changed such that the endbox of the
proof matches with the left premise of the “@-S’ rule of the box calculus.

A proof of the box: is given by the proof of the box below and using
Proposition 12 with X = Ap and Y = Ajy:
v | ¥ viT
B
A1, AgflAr, Ao Aq |l Ay
A A, ]
= PN




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 44

The remark to proposition 12 ensures that both box proofs have the same associated sequent
proof.

Case 2 (—o-S): Similarly, the translation of the ‘—o-S’ inference rule is given as follows:

A1, Aq| Ay, Al B
As || Ay
JAVY Az | 0 71 o
pY
B0 Ay = Ay; By BT B0 8; Ag=S0 Ay T 5 by 4
BeoC o =
U A A=Ay, A T v | T
B—oC
Aly AZ AI)A2
0 0
pY
Again, the proof of the box: is given by the proof of the box below and using
Proposition 12 with X = Ay, Y = Ay and Z = §:
W | S v T
Ay, Aofl4, Al B A |l A ]| B
Aq Aa ] ] | @
pY ¥

3.1.3 Implementation

The box calculus B introduced previously is implemented in Terzo, a derivative of AProlog.
The usage of Terzo (or AProlog) provides constructs which permit an implementation of
the complete box calculus. If a logic programming language which, for example, lacks
A-abstraction, such as PROLOG, were used, only the propositional fragment could be im-
plemented because these languages have no natural representation of an object-level quan-
tification. However, the quantification over variables, functions and predicates results in a
very expressive logic programming language.

ForuM allows the goal formulae to be analysed in any order. On the other hand,
the program formulae need to be in a fixed order for the depth-first proof search. This
order should coincide with the order of the written FORUM programs. Consequently, it is
feasible to represent the used multisets of 5 by the lists provided by Terzo. However, B
incorporates several constraints and side conditions which must be expressed adequately in
the implementation.

The formulae of FORUM are implemented so that they inhabit the primitive type o.
Another choice could be made; however, this fype is appropriate for our purposes. The
representation of the connectives and formulae is described in Section 2.7.1.

The following predicates are significant for the translation of the box calculus. Their
main purpose is to check some side conditions in the implementation which are built into
the box inference rules (these predicates are implemented in an auxiliary module; see B.1).

atomic o ~> o. and non_atomic o => o,

These predicates determine whether a formula is atomic or non-atomic, The
non-atomic predicate is explicitly defined by presenting some terms with a con-




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT

nective as outermost constant. The atomic predicate succeeds if non—-atomic
fails.

memb A -> list A -> o. and member A -> list A -> o.

T'he predicate memb F L succeeds if the formula F is an element of the list L.
In contrast to member, it will succeed only once: for the first occurrence of F in
L. The predicate member F L also succeeds if F is an element of L. However, it
succeeds as often as F occurs in L.

membNrest A —> list A —> list A -> o.

This predicate owes its name from “member-and-rest”. As the name implies, it
picks up a formula from the list and returns the remaining list as an argument.

removed A -> list A -> list A -> o,

This predicate is important for maintaining the soundness of the implementation
relative to B. The components of a formula that is analysed by right rules must
not appear in the output context. Thus, the predicate serves for checking the
number of a certain formula’s occurrences in the input context which must be
no less than the number in the output context.

diff list A -> list A -> list A -> o.

The diff predicate computes the multiset difference, i.e., it deletes all elements
occurring in the smaller multiset (list) in the bigger multiset (list). In the im-
plementation, the order of the arguments is fixed (bigger list, smaller list, result
list).

split list A -> list A -> list A -> o,

The predicate split generates all possible two partitions of a context. It is
used for a subsequent test if it is a partition which leads to a proof. Therefore,
the predicate is part of a non-deterministic (and inefficient) generate-and-test
algorithm.

45

The implementation of the ‘choose’ rules will be addressed separately in Section 3.3. The
signature part of the boxes is completely embedded into the variable and quantification sys-
tem of AProlog. Therefore, the signature X vanishes in the implementation. The provability
of the two types of box are implemented with the predicates right and stoup, respectively.
These predicates have the following types:




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT

type right 1list

list
list
list
list

© 0 0 O ©

type stoup 1list o

atomic-R rule:

% atomic-R rule

-> list o ->
-> list o —>
-> list o ->

right Psi MOM1 M1 AOA1 A1 (A::BOB1) B1 Upsilom :~

atomic A,

right Psi MOM1 M1 (A::A0A1) A1 BOB1 Bl Upsilon ,

removed A (A::AO0A1) Al.

T-R rule:

% top-R rule

split MOM1 MO
split AOA1 A0
split BOB1 BO

M1,
Al,
B1.

% ¥ (classical)
% M (linear)
% A (linear)
% B (linear)
% Y (classical)

% W (classical)

list o -> list o —> % M (linear)
o -> % stoup
list o => list o -> % A (linear)
list o > o % Y (classical)
v I T
M®, MHA A A B B
M! A Bt
%
atomic-R
R X
T, M A, A" A, B, B
M! Al B!
b3
T-R
v [ T
MO, M A%, AL |T,B°, B°
M Al Bl
X

right Psi MOM1 Mi AOA1 A1 (top::BOB1) Bi Upsilon :

46




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT

47
P2-S rule:
 CA
B C
MO, M M?AC, AL A? ML MAAL A
MI,MQ AI’AZ MZ .A2
x pH
-5
T | T
BeC
MD,MI,MZ A(),Al,AQ
M2 A?
px
% Par-S rule (|-S rule)
stoup Psi MOMIM2 M2 (B | C) AOA1A2 A2 Upsilon :-
stoup Psi MOM1M2 MiM2 B AOA1A2 A1A2 Upsilon,
stoup Psi MIM2 M2 C A1A2 A2 Upsilon.
—o-8 rule:
B S e
M ,JV‘ ,M A ,A ,.A B T 3 51 P
MM }A:,A“ o T ST
& =
—o-S
U i %
B—-oC
MO, MY MAIAS, AL A2
M3 A?
b%
% Lolli-$S rule (--o-S rule)
stoup Psi MOMIM2 M2 (B --o C) AOA1A2 A2 Upsilon :-
stoup Psi MOM1iM2 MiM2 C AOA1A2 A1A2 Upsilon,
right Psi MiIM2 M2 A1A2 A2 (B::nil) nil Upsilon.
&-R rule:
v R w 4§ X
MO,MI AO,Al B’BOLBI MO An C,BD
M Al B! ] 0 [
bH b
&R
L] [ T
MO M A% AN IBaC, B, B!
M! Al B!
by

% With~R rule (@-R rule)

right Psi MOM1 M1 AOCA1 A1 ((B @ C)::BOB1) Bi Upsilon
right Psi MOM1 M1 AOA1 Ai (B::BOB1) Bl Upsilon,
removed B (B::BOB1) Bi,
diff MOM1 M1 MO,
diff AOA1 At A0,
diff BOB1 Bi BO,
right Psi MO nil A0 nil (C::BO) nil Upsilon.




CHAPTER 8. EFFICIENT CONTEXT MANAGEMENT 48
i if T
0 1 [5] 1 0 i
TR MO, MUA, A" A BB
N | T M! Al B!
MO, M A A |T,BY B b3
M Al B! = atomic-R
> N7 il T
MO, M AT AT TA, B, B!
M: Al B!
b))
v I X v [T
MO M A A B, B, B! MO A° |C, B°
M! Al B! ] [} 0
PN b
&-R
U | T
MO, M A%, A |B&C, B°, B!
M Al B!
P
v I T o 1 T
MO, M A®, AT B, BT MO, MU A%, AT[B, C, B, B
M A B! M Al B!
¥ =
1-R w-R
7 | S T | v
M01M1 .AO Al .L,Bo, Bl MO, Ml Ao,Al 3780, BO'BJ.
M Al B! M Al B!
b%, )
v I T 5 T
B, M° M A% A |, B B MO MY A% A [ B, B!
M Al B! M! At B!
= 3
—o-R, O-R
W | T [ T
MC, M A%, AT [B—oC, B, B! ME M A, A B> C, B, B
M Al B! M! Al B!
b3 %
v I T BT
MO MY A, AL | Blxeyl, BY, B A/(01:\I,Al A!!’Al b0'31
.Ml Al Bl Ml Al Bl
TR 5
- 2R
v | 3 7 I T
MO, MY A% AN V.aB,B° B MO, M AC, AL 2B, B°, B"
.I\/fl Al Bl Ml Al Bl
2 x

v is not declared in X

Figure 3.1: The right rules in the box calculus B.



CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT

Figure 3.2: The choose rules in the box calculus 5.

e ¥vB | T
MO MY A A MO M A AT
M A! M! Al
= b3
choose
v 58 1
B, M0, MA?, A Bt MO, MIAC AT Bt
M! Av | B M A | B
> b3y
v I BT
MY MUAY A B
M Al [}
>
choose?
¥ BT
MO,MIAO,AI BJ
M At |8
b

49




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT

initial

————— initial? L-S
7T 7T 7T
A A [
M4, A M A M A

M A M A MA
P3] P b
v i T v Y
B; 1Y ” A B[IJ — t]
O A, AT Blolo MO, MIA, AP
ML A GHole M! Al
3 by e 5
&~S s - v-S
T [ T ; S S v T
Br&Bs B YrzB
MO MIAC. AL M| .AL .MO,M‘ AU,.AI
M| A M A M| A
= DY by
t is a X-term of type 7
N v | &
B C
MO,MI,M2 .Ao,.Al,Az MI,MZ AI,A‘
MU ME | ALA M>_|_A2
by b
-5
0 I T
BwC
MO, MY M?[A°, AL, A?
M A2
P
¥ i T L
C
MO MI M2 AO Al .Az B T ] 1 3
3 T 2 s 51 52 M ,M A ,A
MM AE,A 1] M e
>
—o-8
N [ R
B—oC
MO, MY MEA A A®
M2 A?
b3
C
0j0\5 MO A
0 g} ‘/) Ml .Al
by
D-S
¥ T
BOoC
MO, M [A°, AL
Ml A‘l
>

Figure 3.3: The stoup rules in the box calculus B.

50




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 51

3.2 A New Box Calculus B’

While the box calculus B introduced above removes the most serious portion of the non-
determinism arising from the context splitting, the context management is not completely
deterministic. Consider the formulation of the ‘T-R’ rule:

T-R
T J. ok
MO MY AT AT B, B
M A B!
by

An interpreter has to split each input context into two parts. One part is consumed by
the ‘T-R’rule, and the other part is passed on as the output context. As may be seen in the
implementation (see Section 3.1.3), the splitting is achieved by an inefficient generate-and-
test operation. This remaining source of non-determinism is particularly problematic when
it occurs as part of a goal that fails because of another reason, In this case, the interpreter
is enforced to explore all partitions which grow exponentially with the number of formulae
in the contexts.

The key idea, for removing the aforementioned non-determinism in the ‘T-R’ rule, is
the modification of its active role in consuming formulae from the input context. That
means that other rules are permitted from now on to consume formulae which were previ-

ously consumed by the ‘T-R’ inference rule. This idea is adapted from the approaches in
[Hodas, 1994] and [Cervesato et al., 1996].

The boxes of B are replaced by the following boxes of the modified box calculus B’. The
boxes contain an additional part which is called the slack context. The name is derived from
Hodas’ term slack indicator. The counterpart of this context is called sirict context. Due
to the complete separation of the slack context from the strict context there is no need to
introduce an additional flag (as in [Hodas, 1994]) which indicates when some formulae can
be consumed from the output context.

The output context of the new boxes is divided into a strict part and a slack part as shown
below. The variables which stand for multisets containing formulae of the slack context have
the symbol ‘T’ as superscript. The multiset A7 contains only atomic formulae,

I [

IMTITAT] I8T

M AT

The modified rules can be found in figures 3.4, 3.5 and 3.6 (pp. 68). In most of the
rules, we maintain the declarative presentation with several multisets as in the previously
introduced calculus. However, we change slightly the style of presentation in the splitting and
sharing rules. Although it is possible to formalize them completely declaratively including
several multisets assigned to each different portion, a more operational view is employed
which eases the readability of the inference rules.

The passing rules. These rules have an additional component: the new slack output
context. It is passed from the output context of the premise to the corresponding output
context in the conclusion. The left premise of the ‘D-S’ rule expects an empty context.




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 52

The returning rules. Apart from the ‘T-R’ rule, these inference rules are modified so that
they pass their remaining formulae (i.e., the unused formulae) directly to the strict part of
the output context and set the slack part to the empty multiset. On the other hand, the
“T-R’ rule passes all formulae disregarding the ‘T’ connective from the input context to the
slack part of the output context. The strict part of the output context is set to the empty
multiset.

The splitting rules. The left premises of these rules receive the input context from the
input context of the conclusion. Some formulae will be consumed by the corresponding
proof branch. However, it will return a strict and a slack output context. Both parts are
given subsequently to the right premise for use as input context. This proof branch also
consumes a portion from the input context and produces a strict and a slack output context.
The strict output context of the conclusion is the multiset intersection of the strict output
contexts of both premises. The slack output context of the conclusion is the slack output
of the right premise and, additionally, the multiset intersection of the slack output of the
left premise and the strict output of the right premise. Roughly speaking, the strict output
context of the conclusion is formed by the formulae that are part of the strict output context
in both premises. On the other hand, the slack output context is formed by formulae that
appeared at least in one slack output context of the premises.

The sharing rule. The left premise of this rule receives the input context of the conclusion;
it consumes a portion from this context and produces a strict and a slack output context.
The right premise receives all formulae which are consumed by the proof branch of the left
premise and its slack output context. The right premise consumes some formulae and has
the remaining formulae as strict or slack output. Three side-conditions ensure that the right
premise consumes all formulae which are consumed in the left premise. The strict output
of the conclusion is formed by both strict output contexts of the premises. The slack part
of the conclusion is the multiset intersection of both slack cutput contexts of the premises.
That means roughly that only formulae which appear in both slack output contexts are
passed to the slack output context of the conclusion; the remaining formulae are consumed
by this inference rule. This behaviour is because the rule has to consume, apart from the
two components of the analysed formula, the same formulae in both proof branches.

3.2.1 Soundness of B’ w.r.t. B

Before we begin with the soundness proof of B’ w.r.t. B, an observation is stated which
simplifies the proof. Intuitively, a formula from the slack output context of a box can be
consumed in the corresponding proof branch. Hence, we can modify a B’-proof so that a
particular formula from the original slack output context is consumed by a ‘T-R’ rule in the
corresponding proof branch and thus does not appear in the output context. The following
proposition is used when a ‘@-R’ rule is translated since this rule passes the intersection of
each slack output context of the premises to the slack output context of the conclusion. That
means the formulae which do not appear in both slack output contexts are “consumed” by
the ‘&R’ rule.

3
E

T



CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT

Proposition 14 (Modification of a B’-proof)

1. A B'-proof of a boz of the form
(M and B are multisets of formulae,
A is a multiset of atomic formulae):

53

can be modified such that the end box

s of the form:

] If T T I T
MO, MY, M, M A, AT, A, ATB°,BY.B,BY| M, ML, M, M A, A%, A, ATB°, B, B, B
MM M A A AT B BB MO M R A ] AT B BT
) 3]

and
2. A B'-proof of a box of the form
(M is a multiset of formulae,

can be modified such that the end boz
is of the form:

A is a multiset of atomic formulae):

1] [ T
B
M, ME, M, MTTAY, AT A, A
MMM A JAAT
3

] | T
B
MO, MT, M, MTTA®, AT, A, A
M| oM™ | AT AT
)

Proof; Simultaneous induction on the height of the B’-proof. For expository purposes the
proof is given only for formulae from the slack context M, M .The other slack contexts can

be treated similarly.

This modification of a B'-proof does not change its height. The B’ proof is modified
such that the formulae M of the slack output context are consumed by the ‘T-R’ rule where
these formulae are passed to the slack output context. The translation of the trivial cases is
omitted since the corresponding inference rules do not change the slack and strict contexts.

The non-trivial cases are given below:
Case 1 (T-R):

T-R T-R
T T A R e
M, MT AT | T, B iy MM AT TT,BT
0 MM 0[AT] 0[BT 8 IMTI[0IAT{ O [BT
v ]
Case 2 (&R):
MO, ML, M, M A, AL AT BB, B, B M‘Z,Ml,M,M.A?,Al,A,fIB‘i,Bi,B,T ./;lﬂ.Ao—@
MM M| A [ AT | B | BT My (MM ALTA ] By | B, 3 -
&-R
0 Il T
MO, ME, M M AL AT AT B&C,B°, B, B
MUML MM T aMI AL AL JTAT 0 AT BYBL [BT nBY
5

U




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 54

N Il ¥ 17 I T MLAM® =0
MO, M, M, M A, AL AT 1B, BY, BL,BY| MS, ML, M, M, Aﬂ,Ai,A}|_§‘{i_§rL,_5; AL AA® =0
M| mMT AT AT B [ BT My | M; [A[AT] Bl [ B) i
&-R
0 | T
MO MY M MT A% AL AT B&C,B°, B, B
MM, M M, || AL AL AT n A, | B BL B nB,)
5

Case 3 ("-S and —o-8): For the translation of the “-S’ rule the multiset M is divided into
two parts. One part (M;) appears in the strict output context of the left premise and the
second part (M3) appears in the slack output context of the left premise. Hence, the first
part is consumed by the proof branch of the right premise and the second one is consumed

in the proof branch of the left premise. The following rule (Ma = M5, M7):
v | X ] [ X
B C
Mole)Ml)MflaM AOJAl)A Mg:M::MluMélMé’:MIAngion
My, M [ Mo MT | A | AT Mo, My My, MG, M| AL AL
PH pM
-5
T 1l T
BwC
MO)MllelM'Z)MT AO)AINAT
M M, My, Mo MO M M A0 AL AN AL AL
P

is translated as follows:

N [l T v [[ T

B C
M01M1leyM2;M AoaAer ME,M&,M],M. AgyAiuAt
MM ] MT A AT M, | M, [LA A

Py z

2-S
] I T
BgC
MoquyMlvMQrMT AO,AI,AT

MioML IMTnMIMT ATnAl JATn AL AT
b

The translation of the ‘—o-S’ rule is similar but omitted.

The soundness proof will be shown by translating a B’-proof into a B-proof which has
the consumed formulae from the B’-proof as input context. An exception is the ‘&-R’ rule
where the left-premise returns some formulae which must be consumed in order to obtain a
B-proof. Therefore, Proposition 14 is used which modifies a B’-proof such that it consumes
some additional formulae.

Proposition 15 (Soundness of B’ w.r.t. B)

1. For every B'-proof of a box of the form: there exists a B-proof of the boz:
¥ Il T T
M® M M A ATYB, B, BT MO A% B°
M M7 A [AT] B [ BT o lelo
PH PN




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 55

and
2. For every B'-proof of a bow of the form: there ezists a B-proof of the boz:
v [ T vlx
B B
M, MY, M, AT A MO[A°
M MT A [ AT 0le
pH b

Proof: Simultaneous induction on the heights of the B’-proofs. The trivial cases of the
transformations are given in Appendix A.4. The non-trivial rules that split the proof branch
are examined below:

Case 1 ("2-S): The inference rule in B’ is as follows:

] I T
| C
B MLMT AL AT
M M TR AL A e oratmr
M IMT Al I_AT MnMth AnA-nA-u
5 | MM AL TAT
p
2-S
1 il T
BwC
MO ME MY A% AL AT

MioM, MMM AnA [ATNAL A
p3)

Although the presentation is partially ambiguous, it is chosen since it improves the readab-
ility. The names of the multisets M° and .A° in the conclusion suggest that they stand for
the fragments of the input context that will be consumed. However, they stand only for the
fragments which are consumed by the proof of the left premise. The actual consumed part
C is a result of the multiset difference between the input context and the output context.
Hence?

c = MO M MT —MnME - (MT oMM
= M M MT (M MEMT MY - MT (1)
= MO ML MT - ML pMmT (2)
MO M.

Step 1 is a valid transformation since M. is a subset of M*, M. Step 2 is a valid transform-
ation because the input context of the right premise is formed by the output context of the
left premise. Hence M*, M = M% M! M and therefore M? = (M*, MT)—ML-M].
Similar equations can be stated for the other contexts; the translation is as follows:

2 A comma stands for 2 multiset union; a — stands for the multiset difference (the ¢

the ‘~*).

,' binds tighter than




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT

v

vl

[ T
B

M, M,

A, AL

MS

A3

M AL
0

0

=

v

[_xr

BeC

MO, My

] ]

A

=

56

The translated proof of the left premise can be obtained using Proposition 12 which con-
structs a B-proof where M2 and A° are added to the contexts.

Case 2 (—0-8): The inference rule is translated similarly to the case shown above:

U 1 T

T

c

A°, A A

MLMT ALAT

AT AT

B
610

z

" 40 1 T
My, My, M,

A0 AY. AT
A*)‘A‘,A‘

M. | ML

A | AL

by

¥

|

T

B—oC

MO,M1 ,MT

A0 AL AT

M ML M ML M)
b3

At n Al (ATn AL A}

is translated to:

MO, M3

MO

VIS

MOAY

=

I

MO, MY

0

Py

Case 3 (&-R): The inference rule in B’ is as follows:

v

1l

W

| X

M°, MM

AO,AI,AT

M MT

AF | AT

3

MB,MT

A%AT c,B8%8T

MINnM® =0

MO, ML, MT

A%, AL AT |, 82, By, BY

AinA° =0

ML | M,

Al A | B | By

BinB=0

)]

v

T

MO ML MT

.A",I.IAI,.AT

BaC,8°, 8, B"

M, M,

MTAmT

ALAL AT DA

BY Bl 1BTnBT

b

&R




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 57

In this case, the multiset M°, A® and B° stand only for the formulae that are consumed by
the proof of the left premise. The right premise consumes possibly some additional formulae
which are returned as slack output from the left premise. However, the corresponding 3-
proofl has to consume the same formulae. The B’-proof of the left premise using Proposition
14 is modified so that the corresponding proof consumes the additional formulae, namely
the formulae of the multisets M2 N M, A2 N AT and B2 N BT. The modification of the
endbox is as follows:

[ ] T
MO, M Mg, M T-M [ A%, AL A, AT -AJ B, B, B B, BB,
ML [ Mg MT At [ A, AT B | BJ,B"
3
4
i I T
Mj} MlJMJJMT_MO AorAL|AJIAT-A(-Jr ByBG)BI1BJaBT_BO
M MT A § A B | B
)3

where Mg = MSNMT; AT = AN AT and B] = B° N BT. Then, the translation of the
proof branch which corresponds to the left premise is obtained by translating the modified
B’-proof into a B-proof. The inference rule of B is as follows:

v I T v T
MO, M| A% AJ |B,B°, Bq| Ml As IC, B,
0 0 0 pfelo
z =
&R
] [ T
MO Mgl AT Ay |B&C, B\ By
0 0 0
>

3.2.2 Completeness of B’ w.r.t. B

The completeness proof is achieved by translating each B-proof into a B'-proof. However, we
have to identify the formulae which appear in the slack output context of the translated B’-
proof. The ‘T-part’, which is given by the following proposition, represents those formulae.
Some of these formulae come from the consumed part (i.e., M°, A° and B°) and the other
come from the returned part (i.e., M*, A and B*).

Proposition 16 (T-Part)

1. From each multiset in a box of @  a mulliset can be divided so that the endboz
B-proof with the endbox of the form: of the B-proof is of the form:

T G N I T
M MHA, AT, B! M MT, MY MEIAS AT, AT AT BT BY, BT BY
M [ A 8t MT ML AT AL BT, BL
v Yy

and




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 58

2, From each multiset in a box of a multiset can be divided so that the endbox
B-proof with the endbox of the form: of the B-proof is of the form:
v [T ] I i
B B
Mole -’401"41 MIU,MQ'_‘MU)M}I_ A’o’ 9r1AllaA!r
M Al M MY A A
% pH

Proof: The aforementioned division of each multiset is given by describing the T-part; the
remaining formulae are members of the other part.

A box in a B-proof is a conclusion of:

— a T-R rule, then all formulae of each multiset are in the T-parts;

~ a inidtial, intial?, 7-S or L1-S rule, then the T-parts are empty (the multisets B in
each choose rule are treated similarly);

— a'®-S or —o-S rule, then the T-part of each multiset consists of formulae which appear
at least in one of the corresponding T-parts of the premises;

— a &-R rule, then the T-part of each multiset consists of formulae which are in both of
the corresponding T-parts of the premises;

— a D-S rule, then the T-part of each multiset of each multiset is equal to the corres-
ponding T-part of the right premise.

In all other cases, each T-part of the conclusion is equal to the corresponding T-part of the
premise. From now on, we use a subscript ‘T’ for representing a ‘T-part’ of a multiset in a
B-proof. O

In the remaining part of this section, we consider only B-proofs where the multisets
are divided according to Proposition 16. The formulae which are members of a T-part
are distributed (in the completeness proof) across the strict and slack output context, with
the T-parts going into the latter. However, before we start with the actual translation, a
technical result is proven because we give the translation for boxes with an empty output
context. Therefore, the contexts have to be modified so that we obtain B’-proofs.

The following proposition is used for modifying contexts in B'-proofs. Intuitively, it is
possible to add arbitrary multisets of formulae to both input and output context, and these
additional formulae do not affect the provability. This addition of formulae is similar to
the modification of B-proofs using Proposition 12. However, there is one difference: the
added formulae can appear in either the strict or the slack output context. Therefore the
multisets which are added are split into two parts: one part is returned as strict output
(i.e., X}, Y! and Z! in the proposition below) and the other part is returned as slack output
(i.e., X},Y} and Z1). In the following proposition, we use a corresponding B-proof. Such
a B-proof has the same structure as the B'-proof (i.e., the order of inference steps is equal).
The proposition is used when translating a “g-S’ and a ‘—o-5’ rule in the completeness proof,




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 59

Proposition 17 (Modification of B'-proofs)
1. Let P' be a B'-proof with the endboz of the form:

T f T

Muv Ml) M.g}": JWIT

A% AT, A AT

B°.B%, BL, BY

ML ME MY

At AT AT

B' _|BT, By

b3
let P be a corresponding B-proof with the endboz of the form:

v I X
MDQM(-JI-’MIYM#YXJIX% Ao’ (.)r"ldl“'41 'YI‘Y% Boiggr‘lBl!B!r’lez‘!r
MI,M]_'[_,Xl'X_'Ii_ Al'A!r)YI'),"l— BIIB!rl‘Zl’Z-Ir
by

then there exists a B'-proof of the box:

1] I T
MOML X MY MY XA ALY AT A Y| BB, 20, BT, BY, 2
MLXY M ME X AL YT (AT ALY YT B, ZT BT, BT, 2%
b
and
2. Let P! be a B'-proof with the endbor of the form:
i 1 i
B
A T, AT, M AT AT AT
M IMT MY AT AT AT
=
e e a corresponding B-proof wi e endbox of the form:
let P b ding B f with the endb th
0 [ T
B
M, M, MO M X XTIAD, AT AT AT Y Y
MM X Xy AL ALY Y
pH
then there exists a B'-proof of the box:
I I T
B
onleyxlngriM#iX'll" AOIAI)YlvAQI"AI 1Y'|1'.'
J\AIVX! ngT)M!FIX}I" Allyl IA?I'IA!f:Y%
X

Proof Simultaneous induction on the heights of B’-proofs. The proof consists of the trans-
lations of the inference rules; we give only the non-trivial cases.

Case 1 ('9-S) The inference rule is as follows (where M*, MT = M ML MT):

R S R
B [0}

MO ME, MTAY, AT AT MO, ML MTAS, AL A
M MT A AT M, [ M, [ A [AS
o 3

3-8
1 | T
BgC
Mo,Ml,MT AO,AI,AT
MnML  IMTamML M ATnAL [ATnAL AT
b




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 60

with the corresponding proof step of the B-proof (where X% = X? and Y = Y?, but the
formulae of X% and Y? are not members of a T-part) as follows:

I T v | x

B c
MOMIMO X XD XTIV LA Y Yy, Y| (Mo, My, My, X5 XS XEAL Ay A, YIYE Y
MlyMTyf\’I:X'ler% Alx'AlelJY'l"IY'? MlnM;rrxla-X‘lI"Xz 'ALAI)),I:),‘(XHYZ
= by

T I £
BrC
MonlxMTlxlyx%'yX% " AUvAlsAT:deY'Tl'v},"?'
MOM., MTOMa, My, XY, X1 XA OAL AT QAL AL Y YT, YE
z

04

is translated as follows:

¥ ALY

|
B
MO M M X Xy XA, AT AT Y Y Y

ML XY MU X XT ALY AT VS, YR
s

¥ | T
¢
Me, My, My, X7, X7, XHAL, AL, A Y YR Y
MOXHL X2 Mo, Xy |ALY YE] A YT
)

i B"C T
5
MO, MM, X XL X2 A AL AY Y Y, YE
M AML, X! ]MTnMi,MI,X%-,EX% ATNALYY [AThAL AT VL Ve

The translation of the ‘—o-S’ rule is similar, and therefore it is omitted.

Case 2 (&R) The inference rule is as follows:

3 I T I [ T MEOM(’:@
M M, M A, AT, AT 1B, B%, B BY| WM, M, MIJAS, AL ATIC, B, BLBY 41 40 — g
= o

B
&R
T I T
MO MU MY A% AL AT B&C,B°, B, BT
MEUME IMT M AL AL [ATn ATl BLBL |BTnB]
=

with the endbox of the corresponding B-proof which is as follows:

U | T
MO MU MY XT XT A0 AL AT YL YT [B&C,B°,BY, B, 7', 7%
M MM M, X XA AL AT R AL Y YTIB BB N By, 2 2T
5

is translated as follows:




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 61

T I T
MO MO M XY X AN AT AT Y Y BB BN BT 7Y 7Y
MUXE IMUXE ALY ALY 8,7 | BY,Z0
%

o X =

AT ML M X%— A° 1”A'r Y1’- o BY BL BT Z“lr Mjinj\jz—g
*3 *3 » ) %3 L} 3 2Ty My o n —
Ml X A AL Vil B IBLEE ey

&R

¥ I T

M",MI,MT,XI,XlT AO,AI,.AT,YI,Y-% B&C’,B",B‘,BT,ZI,Z%-

MO ML X M A MI X5 AL ALY AT A AT, VA B, BL 2T BT nBL, 2%
>

The key idea behind the completeness proof is a translation of those inference steps of B
that have an empty output context. This simplifies the translation because the corresponding
inference rules of B’ also have an empty strict output context. However in some cases, the
output contexts have to comsist of some formulae in order to obtain a B’-proof. This is
achieved by a modification of B'-proofs using the proposition stated above.

A T-part is divided from the multisets which appear in the boxes of the B calculus (on
the left-hand side below) according to Proposition 16. The T-parts (i.e., M%, A% and B%)
represent formulae which are consumed by ‘T-R’ rules.

Proposition 18 {(Completeness B’ w.r.t. B)
1. For every B-proof of a box of the form: there ewists a B'~proof of the boxz:

g [ F o T
MY, MYAC, AT[BY, B M7, MY AC, AS[B°, BT
[ 0 0 g M50 [A%[ 0 [BY
4 =

and
2. For every B-proof of a boz of the form: there exists a B’ -proof of the bow:

v [T v 7
B B
M, MEA", A% M, MEAC, AT
0 [ 0 Mm% @ 1A%
¥ p¥

Proof: Simultaneous induction on the heights of the B-proofs. The trivial cases are given
in Appendix A.5 and the non-trivial cases are given below.

Case 1 (%9-8): The inference rule of B is:




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 62

R I T v oI T

B (]

M, MG, ME, MEUTAT, AL AT AL (M MR AT, AR

M, ML AL, AL 0 0

b3 b

9-S
(7 I T
BeC
M°,M%6M‘,M# A°,A°TbAzA*T (3.1)
DX,

where the input contexts of the right premise are given by M!, Mt = M®, MD and
A, AL = A AR, This inference rule is translated into the following inference rule of B':

7 Il T I il Y
B C
MO, ML, M MEJAT, AT, AT AL MO M ML M) A”,A-“r’,A;,A;
Ml IM(')I'i 'IT -Al IA(')F;'AIT Mi |MI'}')»MI A}- IATPA-
b3, p3]
9-S
% T T
BeC
0 ME, M, MHAT AT, AT, AT
9 MM 0 [AT AT
bY

where the output contexts of the left premise and the input contexts of the right premise
are given by the following equations:

MUME = MO MR AL, AL = A, AR
My =MLMT AG=AL Al

The boxes of the premises have non-empty output contexts. In order to construct the
corresponding B’-proof some modifications of the B-proof and B'-proof are necessary. The
B'-proof of the left premise in the translation is constructed as follows. First we have the
B-proof with the endbox (left premise of the inference rule of B):

v | T
B
MO, M, MY, MAJAC, AT, AT, AT (3.2)
MT T A, AL
3

However, it has non-empty output contexts; a B-proof of such a box cannot be translated
directly to a B'-proof using the given translations. Using Proposition 12, this B-proof can
be modified so that the endbox is:

v [T
B
M, MTIA, AT
0 0
by

Then, since the output contexts are empty, the corresponding proof can be translated into
the B'-proof with the endbox:




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT

¥ | T
B

M®, MEJA®, AT

]

IMTH 0 JAY

by

63

Using Proposition 17 with the B-proof of (3.2) the desired B'-proof is constructible with the
left premise as the endbox.

The B'-proof of the right premise can be obtained by translating the B-proof of the right
premise to a B'-proof with the following endbox.

Mr

r [ T
C

Ml [ Al

o _|MT o AT

2

This B'-proof can be modified using Proposition 17. The corresponding B-proof can be
obtained by the B-proof of the right premise of (3.1) with a modification using Proposition
12 and the multisets M2, M and A}, AT. The endbox of the desired B-proof is as follows:

Case 2 (-o-S): The inference rule of B is as follows (M!, ML = MO MD; A AL

i I T
c
M,uzM'{')r Mil M;r 'AI 1AT)A:1AI

ML, My

AL Ay

b))

A, AD):
T T 28 P
C
0 1) 1 1 [4] 1 1
M "JA\/‘/‘I,;\A:}F'MT A l:((-{,A}r’AT g M’O,M'_? A'O,A'.?
: 2 0 0
pH 5] :
—0-
1 | T
B—oC
MO!M%WMI!M!T ‘Aol 9['1 AI)A!I'
] b
Py
which is translated into the following inference rule of B':
T T T B | G
c
1] [}) 1 1 [4] 1 1
M’A‘/{},i-rilt;(o yﬁ;l’ ‘A‘Al T]ﬁo,j-lr m ? a M'O,M’?,Mi, MIA'D’A(}))-A& At
narl A An A LY CI LN
z
~o0-3
U | P
B—oC
MO M MY AL A AT
0 MR MI| 0 AT AT
PN

i_.,:‘
7 N



CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 64

The B'-proofs of the premises can be constructed similarly to Case 1.
Case 3 (8-R): The inference rule of B is:

i I P ¥ [ T
MO, MY AP, A% [B, B0, BY|  [MP, MR[AP, ATIC, B, BY|
[ ] 0 0 0 0
) p3)
&R
[ T
MO, MY A°, AT |B&G, B, BT
[ 0 0
iE:

where the input contexts of the right premise are given by M%, M% = M@ MT; A% A5 =
A, AT and B, B% = B, B’-,[-). This rule is translated as follows:

v [ A v | X
M, MY A, A% B, B°, BY  M™, MY A®, AT I, B®, BY
0 Mz 0 |AT] 0 [BY| [0 IMF] 0 |AT] @ |BY

5 S
&R
7 I T
MY MY AV AT B&C, B°, BY
0 MG N M2 9 |ASnAZ] 9 [BLnBY
5

where the output and the input contexts of the premises are given (as in the B-proof) by:

MO MR = MO MS
At 4D = A4 and
B, BY = B°B%

The side conditions which appear in the ‘&-R’ rule of B’ are satisfied since all strict output
contexts are empty. (O

3.2.3 Implementation

The main novelty of the calculus B’ appears in the treatment of the ‘T-R’. The generate-
and-test operation of B which determines the part that is actively consumed by this rule is
removed. The new inference rule returns all formulae (apart from the T connective) and the
other rules have permission to consume some formulae from the slack output context. In
the implementation of B, the predicate removed checked that a component of the analysed
formulae does not appear in the output contexts. On the other hand, a predicate, named
with remove, is declared in the implementation of B’ which also checks the occurrences of
a component of the analysed formula, but can consume it if it appears in the slack output
context.

remove A -> list A -> list A -> list A -> list A -> o.

This predicate succeeds in two cases. Firstly, remove F X Y Z Z succeeds if the
lists Y and Z together contain less occurrences of the formula F than the list X.
Secondly, remove F X Y Z W succeeds if the lists Y and 2 together contain the




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 65

same number of occurrences of the formula F as the list X. In this case, the list
W is instantiated with the a list that contains all elements of Z apart from one
occurrence of the formula F.

The provability of boxes of the calculus B' is implemented with the predicates right and
stoup, respectively. These predicates have the following types:

type right 1list o —> % W (classical)
list o -> list o -> list o % M (linear)
list o -> list o -> list o % A (linear)
list o => list o ~> list o % B (linear)
list o -> o. % T (classical)

type stoup 1list o ~> % ¥ (classical)
list o ~> list o -> list o % M (linear)
o -> % stoup
list o -> list o -> list o % A (linear)
list o -> o. % T (classical)

The complete implementation can be found in Appendix B.6. In the following, some imple-
mentations of the interesting rules are given together with their specification.

atomic-R rule:

W I[ T

MC, MY M A, AC, AL ATBY, BT BT
MU MT | A | AT [ B 8T
T

[ I T

MO M MTIAC AL ATIA B B B

ML MT AL AT B | BT
=

atomic-R

% atomic-R rule

right Psi MOMIMT M1 MT AOA1AT A1 AT (A::BOB1BT) Bi BT Upsilon :-—
atomic A,
right Psi MOMIMT M1 MT (A::AO0A1AT) A1 AT’ BOBiBT B1 BT Upsilon,
remove A (A::AOQA1AT) A1 AT’ AT.

T-R rule:
T-R
0 I T
% L0 I 4
O M6 l4AT[ 0[BT
bH

% top-R rule

right Psi MT nil MT AT nil AT (top::BT) nil BT Upsilon.




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 66

.S rule:

T R
C

v T

[
B
MO, MY MTAT AT A . - \
ML MT | AL LAT | (Mo, M, M AL AL AT

MEMT ALAT

B ML M T AL TAS
=
-5
o | T
BgC
M, ML, MT A% AN AT

MM, MoMi M| A A A NAL AL
3

% Par-8 rule (|~8 rule)

stoup Psi MOMIMT Mi~Mix MT M1xMTx (B | C) AOA1AT A1"A1* AT A1#AT* Upsilon :-
stoup Psi MOMIMT M1 MT B AOA1AT A1 AT Upsilon,
append M1 MT MO*M1%MT*,
append Al AT AO*A1*ATx,
stoup Psi MO*M1xMT* Mix MT* C AO*A1%AT* Aix AT* Upsilon,
inter M1 Mix M1°Mix,
inter Al Alx A17Alxk,
inter MT Mils MT Mix,
inter AT Al% AT Alx,
append MT"Mix MT* MT"M1#MT*,
append AT Alx AT* AT A1%AT*.

—0-8 rule:

17 I T
T [ T C
M M MR, AT AT B M A
MIMTATATTOTO] [0, M, MT|AS, AL AT
by ML MY | AT T AT
3
—o-S
U I T
B—oC
MO, MM A0, AL AT

MOM. MAML,MI| A NAL JATAAL AL
>

% Lolli-$S rule (--o-S rule)
stoup Psi MOMIMT M1°Mi* MT M1i*MT* (B --o C) AOAIAT A1"Alx AT A1*AT* Upsilon :-
stoup Psi MOMIMT M1 MT C ACA1AT A1 AT Upsilon,
append M1 MT MOxM1%MT*,
append Al AT AOXA1%ATx,
right Psi MO*xM1xMTx Mix MT* AO*A1*AT* Alx AT* (B::nil) nil nil Upsilon,
inter M1 Mi1x MI1"“Mix*,
inter Al Alx A1"Alx,
inter MT Mix MT "Mix,
inter AT Aix AT Alx,
append MT Mi* MT% MT M1%MT%,
append AT Alx AT AT A1*AT*.




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 67
&-R rule:
i - - L
0
MC M M A% AL AT B, B B, B f—M’tAT—\ - Ao‘f‘r ) (o C,BEBT ~ Mixn M:=0 ‘
T T A T Bl o] Mo M MT| AL, AL AT (6,82, B, BT| AN A =0 |
5 ML M7 | AT AT | BL [ BY | BunB°=0 |
b3
&R
T I T
MO M MT A AL AT B&C,B°, B, BT

MU ML MT M)

A A JAT DAy

BB, |B"'nB,

T

% With-R rule (@-R rule)
right Psi MOMINT M1M1x MT"MT# AOALAT A1A1x AT AT*

((B @ C)::BOB1BT) B1Bi* BT"BT* Upsilon :

right Psi MOMIMT M1 MT AOA1AT A1 AT (B::BOB1BT) B1 BT’ Upsilon,

remove B (B::BOB1BT) Bi BT’ BT,
diff MOM1IMT M1 MO,

diff AOAIAT A1l AO,

diff BOB1iBT B1i BO,

append MO MT MO*M1xMTx*,

append A0 AT AO*A1#ATx,

append BO BT BOxB1%BTx*,

right Psi MO*M1i*MTx Mix MT* AOxA1xAT* Alx AT*x (C

inter MO Mi* nil,
inter AQ Aix nil,
inter BO Bi* nil,
append M1 Mix MiMi1x,
append Al Alx Al1Alx,
append Bl Bi% BiBix,
inter MT MT* MT "MTx,
‘inter AT AT* AT AT*,
inter BT BT* BT BTx*.

: :BO*B1#BT#) Bix BT* Upsilon,




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT

68
U I o
T-R MO, ME MA, A% A ATIB, B BT
2 S MO MT A | AT | B BT
MT AT T,BT Y ) R
0 IMT]0JAT[ 0 |BT atomic-
5 ¥ Il ES
MO M MT[A°, AT, ATIA, B, B, B
Ml IMT Al IAT Bl l BT
>
T | T N [l T
MC, ML M, AL ATB, B BT MO, ME M A%, A48 AT B, C, B, B, B
ML p gt 1 gt gt ] Bt MM oAt ] AT [ B | BT
PN b))
1-K 2-R
T [ T z I v
MO, M, MTAC, AN AL, B, B, B MO, MM A° AL AT [BeC,B°, B, B
M I MT AT AT B | BT MM AT AT B | BT
2 b))
v I T ¥, B I 1
B, M, ML M A%, A AT [0, B°, B, B MO, MEMTTAS, AN AT ] € 8%, B 8T
Ml | MT Al IAT Bl ]BT MI IMT Al [AT Bl I BT
3, x
—o-R. J-R
v [ X T I T
MO MY MTIAC, AL, ATIB—oC, B°, B!, B IMC, M MT[A°, A, AT B S C,B°, B, B
Ml IMT Al [.AT Bl l BT M.\ IMT Al I.AT Bl i BT
b3 P
M, M? .gt A% AT .'l(TB TB" BB L I 3
'1 I ) = ,1 I, 1 [xr—l)y],] s 13 MO,MI,M A'G,AI,A BO,BI,BT
M| M A :AZ, B B MM | AL AT | B | B
Yy:7, b3,
V-R 2R
Q & ‘p 0 l" Az TO 1 i ‘II ] T '
M ,lM ,MT A ,;4. ,./2_ V-r.'l.'?,B ,B ,TB MO,MI,M A(’,Al,.AT ?B,BO,BI,B
M ]M Alg B I B MIFMT AII.AT BllBT
P
y is not declared in X
- I < ] I T
MOMT AV AT c,8%,87 MinM® =0
MO ML MONAD A A B BT B B e TR T TS AlnA° =0
ME MY || A | AT | BL | BT | (MeMe, Mull A, Ax, Ay |C, By, By, By "
> ML MT | AL T AT [ BY [ BT | BanB =0
P
&R
U i T
MO ME MY A AL AT BaC, B°, B, B"
MM M T am, |l AL AL TAT A BB (BT 0B,
by

Figure 3.4: The right rules in the modified box calculus 5.




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 69

v i T v,.B | x
B B
MO MU MTTAC AL AT MO M MTIAC, AL AT
Ml |MT Al ].AT ,:\/(1 IMT Al IAT
b3 %
choose choose!
I [ T U, B | T
B, M°, M ML AT AT B M M M AL AT B
MU MT A AT (B0 M I MT A (AT (B0
b P
i i B, T

MO, M M A% A A B
MO MT A TAT] B ]
%]

9

choose?

T [ B,T

M, MY MTA°, AL A B!

ML I MT A AT B 8
by

Figure 3.5: The choose rules in the modified box calculus B,




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT

——— initial

70

initial? 1-S
T || T T AT Wl <P
A A G
M A A ML AL M AL
M 0 146 M 0 40 M @ 4]0
b b3 by
A ¥ 1 T N
v | T p Bz = ]
B @ MO ME, M, AT, A MO, M M, AT, A
¢[o[o[o]v[0 M MmT A AT MM AT TAT
2a ?g E E
§ o, &_S.
T ¥ SR 5 i T U
B B &B> V,xB
M A’ MO, M, M AT, A A MO, M A AT A
ML O J[A] @ ML | MT || AL AT MU MT A AT
by b3 Py
t is a X-term of type T
[ [ T
| c
B MM ALAT
MMM AL AN |l
M? IMT At |AT ME,MtyM- AilAisAt
b, M M. A A
3
-5
7 [ T
BRC
MO MY MT A% A AT
MMl IMInMEM)| AAnAL AT ALA,
pH
W [ £
T i T ¢
MO ME M, AT, AT B M mT AL AT
M IMTYATATIO[0 ] a8, ML, MT|AS, AL AT
2 ML M7 | AL | AT
53,
—0-5
y [ T
B—oC
MO MY MT A2, A% AT
Minml MIaMi M AAnAl JATnAL AL
3

010 T B G oA A
@1@ (DI(D Q)lﬂ AA‘LI’T 'II)T
5 M A [ A

pX

-5
% - 1. T
BOC
MO M M AN A
Ml IMT Al ]AT
=

Figure 3.6: The stoup rules in the modified box calculus B'.

- RS




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 71

3.3 Consideration of the Choose Rules

In the previous sections, we addressed the non-determinism that arises from the context
splitting. However, there is another significant source of non-determinism which appears in
the ‘choose’ rules. Consider the following implementation of the choose rules:

% choose rule
% choose! rule
% choose? rule

right Psi BMOM1 M1 AOA1 A1 B1 Bi Upsilon :-
membNrest B BMOM1 MOM1,
stoup Psi MOM1 M1 B AOAl Al Upsilon.

right Psi MOM1 M1 AOA1 A1 B1 B1 Upsilon :-
member B Psi,
stoup Psi MOM1 M1 B AOA1 A1 Upsilom.

right Psi MOM1 M1 AOA1 Af B1 Bl Upsilon :-
menber B Upsilon,
right Psi MOM1 M1 AOA1 A1 (B::nil) nil Upsilon.

In Section 2.5, we presented an explanation why we implemented these rules using the
order as illustrated in the program code. The ‘choose’ and ‘choose!’ rule serve for choosing
a program formula which will be analysed subsequently as stoup formula; the ‘choose?’ rule
chooses a formula from the classical context T of the antecedent which will be considered
as a goal formula.

All three rules use a generate-and-test operation for choosing a formula (i.e., member,
membNrest). This strategy is particularly inefficient since the proof construction (which
follows when a choice is made) is rather expensive. In case of the ‘choose’ and ‘choose!” rule,
however, it is feasible to decide whether the chosen formula is a candidate for a proof or it
is predictable that the construction will fail.

The idea behind this choose test is the fact that a stoup formula (apart from some
exceptions) has to lead to a proof where it is focused on that particular formula. Furthermore
in these cases, the proof has to terminate with either the ‘initial’, ‘initial?’ or ‘L1-S’ rule.
Therefore, it is possible to decompose recursively the chosen stoup formula independently
from the proof search.

We can say: a formula F is a candidate for a proof if it passes the following test. By
case analysis:

— F'is an atom, then it must unify with an atom from the succedent;

— Fis ‘L’ then it passes the test;

I

F is of the the form B®C, then both components must pass the Lest;

{

F is of the form B&C, then at least one component must pass the test;

- F'ig an implication, then the implicatum must pass the test;

t
i

F is of the form Y2 B, then the formula B[x — y] must pass the test where y is a fresh
variable;




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 72

— F'is composed with an outermost non-primitive connective, then the translated form
of B must pass the test (e.g., BL then (B—o.l) is considered);

— F'is of the form 7B, then it passes the test since this formula is removed to the linear
context of the succedent and possibly another stoup formula will be chosen and

— F'is T, then the test fails.

The implementation of the ‘choose test’ is given in Appendix B.3. The modified ‘choose’
rules are as follows:

% choose rule
% choose! rule
% choose? rule

right Psi BMOM1 M1 AOA1 A1 B1 Bi Upsilon :-
membNrest B BMOM1 MOMIL,
append AOA1 Upsilon Rightside,
choosetest B Rightside,
stoup Psi MOM1 M1 B A0A1 Al Upsilon.

right Psi MOM1 M1 AOA1 A1 B1 Bi Upsilon :-
membexr B Psi,
append AOA1 Upsilon Rightside,
choosetest B Rightside,
stoup Psi MOMt M1 B AOA1 A1l Upsilon.

right Psi MOM1 M1 AOA1 A1 B1 Bl Upsilon :-
member B Upsiloen,
right Psi MOM1 M1 A0OA1 Al (B::nil) nil Upsilon.

The implementation of the ‘choose’ rules for B’ is similar to the presented implementation
for B.

3.4 Problems with Empty Headed Implications

Let us consider what is achieved so far. Miller proved for FORUM that it can be seen as
an abstract logic programming language, in the sense that uniform proofs (Definition 5) are
complete for the language. The box calculi presented here provide a deterministic method
for the context splitting which improves significantly the efficiency compared with F and
F'. However, Miller avoided calling FORUM a ‘logic prograrmming language’ and generally
referred to FORUM as a specification logic. The problem concerning an implementation of
FoRUM as a logic programming language arises from the L-headed implications which appear
to be problematic when they occur in the classical context of the antecedent. Consider,
the following proof [ragment (for expository purposes we present this fragment using the
sequent calculus F'; however, the same problem appears, thus far, in all presented calculi
for FORUM):




CHAPTER 3. EFFICIENT CONTEXT MANAGEMENT 73

L-S

—o0-5

T Aol;f= A A0 X: A—ol;0=250;0
¥ Aol 0240 1
T Aol 0= A;5;0 7% " 1-8
S:A—ol;0=> A; A;0 TN 2:14—014ﬁ:é>9;@ g
—_—
T Aol 1N A0

BiA—oLl; 0= A;0;0

choose

It is always possible to choose L-headed implication for the stoup position. However, it
does not help in proving the sequent since the right premise expects empty contexts and
does not consume any formula from the contexts. On the other hand, an elimination of
such formulae is not desired since they play an important role when proving a non-primitive
connective (see Section 2.3.2). Thus far, there is no satisfactory solution described in the
literature concerning this problem.




Chapter 4

Examples

4.1 A Simple Object Logic

FORUM’s expressivity can be illustrated by specifying and implementing object-logics (many
examples can be found in [Miller, 1996]). In the following, a very simple object logic @
based on single succedents is implemented in ForuM (suggested by Miller). The language
of formulae (£) in O is defined as follows:

L: Gu=true| A| Gy A Gy
D = A-G

where A stands for atomic formulae, G for goal formulae and D for program formulae. The
symbol -’ represents the reverse intuitionistic implication and is borrowed from the concrete
syntax of PROLOG in order to distinguish it from the implications used in ForuM. The
sequents of @ are:

A=G

where A is a multiset of program formulae and G is a goal formula. A program formula of
the form ‘A:-true’ is called a fact. (Usually, facts are written as ‘A’ in logic programming
languages. However for convenience of what follows, the facts are written as implications.)
The inference rules of O are as follows:

i A-G A= G A=>B A=C
A= true VM LG A— A TH A= BAC

A-R

In the following, three implementations of O are given which represent the connectives
and formulae of @ using the appropriate connectives of ForumM. The atomic formulae of @
are translated into atomic formulae which inhabit the type o. The variable ¥ stands for
a set of type declarations. In what follows, © (in FORUM sequents) contains all the type
declarations of atomic formulae and the used connectives,

For expository purposes, each implementation has a triple as name which represents the
corresponding FORUM connectives, It is shown in each case that the implementation is a
faithful representation of the object-logic O:

object logic O: implementations:
(true, Av:‘) (T)&)"'o)) (T:®:%) (J-x'?,_o)

74




CHAPTER 4. EXAMPLES 75

Representation (T, &, —0):

The formulae of @ are translated as follows:

true® = T,

Ao & A, where A is atomic;

(BAC)Y X pogee,
(C-B)> L po_oco.

Proposition 19 A sequent A = G of O is provable if and only if the FORUM sequent
5: A% 0 = 0; G0 is provable. (In what follows A° stands for a multiset where each
formula is translated.)

Proof: Induction on the height of proofs. The translations of the inference rules are given
below. The order of ForuM’s inference rules at the right-hand side is forced by the proof
search strategy. Therefore, the vice-versa translation follows the same scheme.

A = true Aziom & DA% =0;T;0 =R

A=B A=C :A%GH=>0;B%0 %:A%0=0,C°0

= = -T
E—BDre MR T A% 0 — 0, B°&C°; .
m initial
E:G0—oA, A% D= 0;G0 I:G°—A, A% I=A;0 S
e

A-G,A=>G $: GOod, A 09224 4; ¢
A G A A e T GO oA, A% 0 — A 00
i GO—oA, A% = 0; A;0

choose!

alomic-R

Representation (T, ®, —o):

The formulae of @ are translated using the following translation:
def
def

true®
AO
Bacy © pger
(=B % po_oce

T;

A, where A is atomic;

Proposition 20 A sequent A => G of O is provable if and only if the FoRUM sequent
2: A% = 0;G°; 0 is provable.

Proof: Induction on the height of proofs. For more convenience, a ‘®@-R’ rule is defined
which is a shorthand for the following proof fragment (the rule ‘T'rans’ stands for the
translation of a non-primitive into a primitive connective}:

DA% = 0;B%0 X:A%0=— 0;C"%0
T:A%0 = 0; B°@C°

(i

®-R




CHAPTER 4. EXAMPLES 76

A% = 0;B°%0 ¥ A°;0~—£>0;0 o TAGH = B;C%0 T: A% 0=0,0 -
£: A% 0759, 0 5 AP0
E:AO;G(B"—oL):’agC"—oJ.)@;ﬂ
2: A% (B°—ol)g(C°—ol) = 0;0;0
L: A% (B°—oLl)g(C°—ol) =>8; L;0
2: A% 0= 0;((B°—oL)®(C°—oL))—L;

-5

choose
1-R
—o-R

5 8%0 = 0, B° © C°; 0 Trans
Translations (similar to the representation (T,&,—)):
A = true Aziom & A= 0;T;0 T=h
Aeb B A=bC o ZANE=0;B%0 B:A%0=>0,C%0
A—BAaC NB A= 0;B°®C°0 o
= initial
E:G°—oA, A% = 0;G%0 I:G°—0A, A% I=A;) S
-0~
4G A=G B: G—od, A% 034 4;0 o
A-GLA= A ™ = 5 GO—0A, A% = A;0;0 € ,oos.e.
atomic-R

B: GO—0A, A% = 06; A;

Both translations described above are traditional ways to represent the object-logic ©.
The translation of the program formulae using ‘—o’ could be replaced by a translation us-
ing FORUM’s intuitionistic implication ‘D’ since the program formulae are in the classical
context,

Representation (L, %, —0):

A non-trivial embedding is described in the following. The formulae of O are translated
using the translation:

truee 4 L
Ao & A, where A is atomic;
(BACY % pogoe,
(C:-B)° df  po_oce,

Proposition 21 A sequent A = G of O is provable if and only if the FORUM sequent
A% L= 0;G°; 0 is provable.

This embedding does not preserve the structure of (-proofs and uses a ‘L’ as an addi-
tional linear program formula. Consequently, the proofs cannot be shown by a structural
induction using a mapping of inference rules. The soundness and completeness proofs use an
intermediate notation for @, which is called goal notation. Intuitively, the goal notation rep-
resents a multiset of premises that have not been proven yet. The program A is unchanged
in each inference rule of @; therefore, it is possible to treat the program A independently
from the goal formula. The multisets of the goal notation can be modified by some rewriting
rules which correspond to the inference rules of (0. The corresponding pairs are given as
follows (T' stands for a multiset of goal formulae.):




CHAPTER 4. EXAMPLES 77

A = irue sABdonh & (true,T) T

A=—B A=C

A—BAC "t o BacD~(BCD
A=G .
A= A" < (A4,T)—=(G,T)

where the program A contains a formula A:-G.

Definition 22 Let A be a multiset of program formulae of 0. A A-sequence is a sequence
of mulliset rewritings where:

1. the last member is the empty multiset;

2. each step corresponds to either a splitting of a conjunction, removal of ‘“rue’ or a
member of A.

Consider the following proof in O:

a:-true, btrue => true el atrue, bi-true —> true
a-irue,b-true =>a = a-true, bitrue =>b .
a-true,bi-true = a A b

A-R
The following two A-gsequences both correspond to this sequent proof:

(¢ A D) = (a,d) — (true,b) — (b) = (true) — @
(a A b) = (a,b) = (true, b) > (true,true) w (true) — O

Lemma 23 A sequent A =—> G of O is provable if and only if there is a A-sequence starting
with {G[}.

Proof:

Soundness: Induction on the length of goal sequences. A A-sequence of multisets that
starts with {{G[} and represents the open premises {premises that have not
been proven yet) in the proof in @. Thus, it is possible to translate the
sequence into a O-proof using the defined correspondences.

Completeness:  Structural induction on the height of O-proofs using the defined corres-
pondences.

The proof of Proposition 21 is still a difficult matter because the goal notation does not
provide a one-to-one correspondence to FORUM proofs. The difficulty is caused by Forum’s
rather restricted proof search. The particular problematic rule in a translation is the ‘—o-S’
inference rule. In the goal notation, the corresponding rewriting rule is applicable whenever
an atom occurs. On the other hand, the ‘—o-S’ inference rule is only applicable if the
succedent consists entirely of atomic formulae.

There are two ways to achieve the soundness and completeness of @ with respect to
ForuM. A normal form of A-sequences in the goal notation could be introduced so that
the normal A-sequences and FORUM proofs are in a one-to-one correspondence. In this




CHAPTER 4. EXAMPLES 78

case, an appropriate notion of permutable A-sequences must be defined, However, the proof
of Proposition 21 will be shown by translating any A-sequence into a. CLL proof (for our
purposes, we use a fragment of CLL). Subsequently, the complete proof with respect to
FF'orUM can be achieved using the soundness (Theorem 1) and completeness (Theorem 3)
theorem of FORUM relative to CLL [Miller, 1996]. These theorems provide the necessary
translation between CLL and FORUM proofs.

Proof of Proposition 21: For soundness, we use structural induction on the length of
A-sequences. For completeness, structural induction on the height of CLL proofs. (Note,
that we use a fragment of CLL. The permitted formulae are specified above.)

Translations (1(A°) stands for a multiset where each formula is decorated with a ‘I’):

LA =@ sk
rue) 58 & LUA) = L T

L,(A%) = T°
(true,T) T & LIA) = L,I° 1

‘L) !(Ao) :> Bo) Co’]"‘o
(B ACT)—(B,CT) & LI(A°) = B°%C°,T°

®-R,

LYA%) = G°,T°
(A4,T)— (G,T) & LIA)= A,T°

BC
where A° contains a formula G°—0A°. The ‘BC’ rule is a specific instance of ‘—o-L’ rule. O

Two Examples for the representations of O:

In the following, a program A and a goal G of the object-logic O will be represented in
FORUM using the translations (T, &, —o) and (L,’®, o) (the translation using (T,®, —o) is
similar to the translation (T, &, —)). The program A is as follows:

c-b A a.
b:-a.
a:-true.

The goal formula is ¢ A a; the sequent which will be proven is:
A=cAha

In what follows, the right premise of any inference that can be proven in a single step is
omitted in order to improve the readability of the given proofs. The proof of the sequent in
@ is as follows:

A = true Aa{fom A
A:»a."[: A::»true_'zifom
A=pb ™ A=—=a . ;
A=bAa L #-B A = true {fla;zom
A=sie A=u /\--Rl

A=—=cAa




CHAPTER 4. EXAMPLES 79

Representation (T, &, —o):
The translated program A°® is:  b&a—oc¢, a—ob, T—oa;
the translated goal G is: c&a.
A proof in F' is:

NG (5:>@T(0

T—o0a

DA% =a;d
Z: A% = a0 0% .
AT T el S T

S

choose!

—0-S il
B: A% 00 £ A% 0 a0
ST A°;ﬂ==> 500 choos.e! 5 A%0— a:0;0 choos.e!
DA% 0= 0,50 wemiehL 2:A%0 = B;a;0 atenielh
L A%0 = Bbaal 8B o AOQZMTQTWZ
AL ﬁb&a—Occ;@ - A" T=‘°:?a p
D: A% 0 = c;0;0 Choos_e! T A0 = a;0:0 choose!
Y A% 0= 0;c;0 atomic-R T A% 0 = 000 atof;ﬂnz&R

A% D = 0;c&a; 0

Representation (L,’®, —o):
The translated program A° is:  b'®a—o¢, a—ob, L—oa;
the translated goal G is: oga.
A possible proof in F’ is:

1-5

choose
1-R
—0-S

choose!
1-R

—0-5

A% P==0:0
D:A% L= 0;0;0
BrA% L =20 150
A% 150
T:A% L= a;0;0
S:A% L =>a; L0
Sl A% = ,a; 0
E.A°,J_=>a,a;ﬁ;ﬁ

choose!

tomic-R
Y A°: T T
A _L=>ba, a; o
D A% L5540
S i ﬂ@choose'
L-R

DA% L =>b,a; L;0
D A% L=, b, a;0
E:A°,_L=>a,b,a,9,ﬂ
A% L =>a,b;q;0
A% L= ayb,q;0
3 A% L= a;bpa; 0
o1 A% 17855 ;)
S:A% L =>c,a;0;0

A% L= a;
:A% L= 0;c,a;
S A% L= 0;09a;0

el

choose!

atomic-R
atomic-R
%-R

—o-5

choose!

atomic-R

] atomic-R
2-R




CHAPTER 4. EXAMPLES 80

To sum up, we finally compare the translations of (2. The proof search can be done
more efficiently for the representations (T,&,—0) and (L,®,—0) than for (T,®,~o) since they
use only primitive connectives. As mentioned in Section 2.3.2, the proof search for prim-
itive connectives is goal-conducted. While the first two representations (i.e., (T,&,—) and
(T,®,—0)) are straightforward representations of @ which strongly mirror @-proofs, the last
representation is to some extent very interesting. The multisets of the goal notation which
can be easily implemented by a parallel algorithm using several processes is represented by
ForuM’s multiple succedents, i.e., this translation simulates the behaviour of some inde-
pendent processes. Such a parallel behaviour is difficult to represent in a single succedent
logic because the single goal represents only one “active” process and a technique is required
in order to “suspend” and “activate” processes.

4.2 A Conjunctive Planner in FORUM

Forum can be used for implementing a deductive planning system. A detailed treatment of
planning problems and systems is far beyond this thesis (see [Weld, 1994] for a good survey);
however, some important principles are introduced.

Our approach is a small backward planner (also called regressive planner) for conjunctive
planning problems. A planning problem can be characterised by an initial situation, a goal
situation and some actions that can be performed. The present implementation is restricted
so that each situation consists of a multiset of atomic formulae. Similar to the description of
transition in Petri-nets, the actions are characterised by two sets. One of them represents the
preconditions and the other one the effects. An action may be performed in a situation only
when its preconditions are satisfied, i.e., they form a submultiset of the current situation.
Subsequently, the execution of an action replaces the preconditions by the action’s effects.

A planning problem is completely symmetric; therefore, it does not matter if we start
with the initial situation and attempt to find a plan for a goal situation or if we start with
the goal and attempt to reach the initial situation. (In fact, this method is regarded as more
efficient in the average case than the vice-versa method.) FORUM’s uniform proofs are more
appropriate for modelling a backward planner.

An early approach towards a translation of planning systems into linear logic appeared in
[Masseron et al., 1990]. They used a fragment of ILL including the ’®’ and @’ connectives
and their unit elements. The proofs are constructed using the rules for the connectives, some
axioms and a ‘Cut’ rule. On the other hand, the authors of Lygon presented two examples
of planning type problems in their logic programming language. This representation uses
the linear connectives ‘®’, ‘&’, and ‘~o’; [Harland & Winikoff, 1996¢].

However, the major source for our approach comes from a planning system (introduced in
[Holldobler & Schneeberger, 1990]) using multiset terms and equational logic programming.
This calculus is very expressive as far as planning problems are concerned. A detailed
treatment of their work is omitted here since we only want to implement some features which
can be represented in this system and which are not provided by the other approaches in
linear logic. A survey of the planning systems in equational logic programming can be found

in [Schneeberger, 1992].

For expository purposes, we introduce an example that is taken from [GroBe et al., 1992].
There, the initial situation is having a dollar note (d) and a quarter (¢); the goal situation
is getting a lemonade (I) which costs three quarters. Two actions can be performed which




CHAPTER 4. EXAMPLES 81

are called get_change and get_lemonade and may represent a cashier and a vending machine,
respectively. The initial situation, the goal situation and the actions can be formalised as
follows:

preconditions:  effects:

get_change (g): d 0,0,4,9
get_lemonade (g;): 19,9 !
initial situation: d,q

goal situation: l

Clearly, a solution to this problem is to change the dollar note into four quarters and to buy
subsequently a lemonade with three of the five quarters.

Similar to the Petri-net encoding from Section 1.1, the actions are represented by the
linear implication ‘—o’. However, we use the “8’ in order to represent a multiset of resources
because this connective is primitive and can be treated more efficiently than the ‘@’ con-
nective. This technique was briefly outlined in [Cervesato, 1995] for Petri-nets, but details
were omitted. The translation into linear logic is as follows:

get_change (g.): d—o@ReeQRq
get_lemonade (g1): ¢R¢Rq—ol

initial situation: dRq
goal situation: /&

In our translation, the goal situation is regarded as a goal formula; the initial situation and
the actions are regarded as program formulae. The initial situation and the goal situation
are translated so that they can be considered as linear resources (i.e, they go into the linear
context A and B, respectively). However, the actions might be used more than once and
therefore, have to be regarded as classical formulae which can be reused. Consequently, the
actions are formulae of the classical context W.

Nevertheless, a problem arises from the linear resources which are not necessary to
achieve the goal situation. In our example, we need only three quarters when buying a
lemonade, but have five quarters after changing the dollar note. However, the two remaining
quarters must be consumed somehow in order to construct a proof. As a first attempt, we
could encode the ‘T’ connective which would have the purpose to “consume” remaining
resources in our translation. The aforementioned features which we want to model in our
translation are the following; it should be possible to ask for a goal situation: ‘Which are the
remaining resources?’ and ‘Which resources are necessary for achieving a certain goal?’. The
desired control over the “consumption” of formulae vanishes when translating the planning
problem using the ‘T’ connective because it “consumes” the formulae somewhere inside the
proof. Therefore a different approach is described in the following,.

A variable X is introduced in the succedent which has the purpose of accommodating
all remaining formulae. Thus the example above is represented by the following FORUM
sequent (it is assumed that & contains the appropriate declarations!):

i ge, g1y d9g = 0; 12X, 0

1j.e., the atomic formulae d, q,! have the type o




CHAPTER 4. EXAMPLES 82

where the variable X can be of the form (‘L’ stands for “no remaining resources”):

X u=T|X8X
Tii=q |8 )L

ForuUM returns?, when proving this sequent, the intended term ¢’®¢ for X. On the other
hand, the following sequent represents a question: Which resources are necessary for a
certain goal situation:

L ge, g9 Y => 0;1;0

where the variable Y can be of the form:

Y u=T|YRY
T:=gq|d.

FORUM returns the desired term ¢'2¢’®¢ for Y. In cases where a planning problem is not
solvable, ForuM does not find a proof for the corresponding sequent (but a soundness and
completeness theorem is omitted).

The problematic parts in this implementation come along with the restriction of the
variables X and Y. In order to receive the desired answers, a predicate Restrict and Ground
are defined on the metalevel of Forum (which is in our case the actual implementation in
Terzo). These predicates are defined for the variable X as follows:

Ground q.

Ground d.

Ground ..

Restrict B :-Ground B.

Restrict (B’¥C) :~Restrict B, Ground C.

Clearly, our planner uses an inefficient ‘generate-and-test’ algorithm. However, it could be
replaced by a proof search which delays the substitution of the variables X and Y as long
as possible and where the substitutions can be restricted to a certain class of terms. A
similar approach to that of [Nadathur & Miller, 1990] can be applied for the fragment of
ForuM described above. Consequently, the unification can be computed efficiently, but
these facilities are not yet provided by the Terzo implementation.

To sum up, much remains to be done in order to implement a deductive planner in FORUM
which is comparable to the planner using equational logic programming. For example, a
technique must be investigated which extracts a plan (i.e., a sequence of actions) out of the
ForuM proof.

4.3 A Program for Computing the Fibonacci Series

The following two examples serve for illustrating some experimental evidence of the speed-
up that is achieved by the new box calculi. The fixrst example is taken from [Hodas, 1994]; it
implements a computation of the Fibonacci series which stores each of the computed values

2Note, FORUM also returns ¢’8¢8.L, ¢8g8.L8.L,...for X as next answers.




CHAPTER 4. EXAMPLES 83

for a later inference. Thus, the values do not have to be recomputed as in the well-known
but rather inefficient implementation of the Fibonacci series.

The implementation is accomplished in a continuation-passing style which is permitted
by a language with the support of predicate quantification. This technique has become
invaluable, for example, in AProlog and Lolli. The program uses a simple arithmetic of
integers which are defined, in the usual way, using a constant z (zero), the successor-function
s and a predicate pl (plus) The program is as follows:

% natural numbers and Fibonacci series with memoising

% based on a program which appeared in Hodas’ PhD-thesis 1994
% (rewritten in Forum) last modified 26.09.96

kind nat type.

type z nat.
type s nat -> nat.

type pl nat -> nat -> nat -> o.

pl X z X.
PLX (sY) (8Z) o——pl XY Z.

type fib nat -> nat -> o.
type fiba nat -> nat -> o -> o,
type memo nat -> nat -> o,

fib N F o=~ (memo z z -~o0 memo (s z) (s z)
~~0 memo (8 z) (s z) ——o fiba N F top).

fiba N F G o~-memo N F x G ,
fiba (s(s N)) F G o— ( fiba N F1
( fiba (s N) F2
(pL FLF2F x
(( memo (s (s N)) F x memo (s (8 N)) F) =~0 G )
)
)
).

Since the stored values are represented as linear resources which appear in the linear
program context M, the box calculi work more efficient than the calculus ’ using the naive
generate-and-test algorithm for the context splitting. The box calculus B’ is slower than B
since the former incorporates some subtle operation and tests over contexts. The results of
some tests are given in the following table (we used a Sun SPARC station 10 and the program
time in order to determine the behaviors of the calculij the format ‘minutes:seconds’ is used
to present the times):

n nth element F! B B
0: Z z 3.6 1.0 1.3
1: 57 SZ 2.3 1.0 1.2
2 887 sz 11.0 3.7 4.1
3: SS8% $8% 16.9 9.9 11.9
4: §S982 $852 49.8 19.0 23.7
5: §58582 588852 2:24.0 37.2 46.0
6: $98538% $S888SSS% 9:34.7 | 1:15.1 | 1:32.8
T:  sssssssy | sssssssssssssy 45:18:5 | 2:38.9 | 3:08.6
8: ssssssssz s?lz | 272:30.1 | 6:33.6 | 7:12.4




CHAPTER 4. EXAMPLES 84

4.4 A Program for Finding Paths in Cyclic Graphs

The following program is taken from [Harland & Winikoff, 1996¢] which is a presentation of
various programs for Lygon. A graph is represented by some points (the nodes) and some
directed edges. The predicate path S E P succeeds if there is a path between the points S
and E. The variable P is instantiated with a list that represents a path (the lists are declared
using the infix operator :: and the constant nil which are provided by Terzo).

% Graph Problems

% based on a program which appeared in the paper "Some applications

% of the linear logic programming language lygon' by Winikoff and Harland
% (rewritten in Forum) last modified 26.09.96

kind point type.

type a point.
type b point.
type ¢ point.
type d point.
type e point.
type £ point.

type edge point -> point -> o.
type path point -> point -> list point -> o.

path X Y (X::Y::nil) o-- edge X Y.
path X Y (X::P) o—— (edge X Z x path Z Y P).

LINEAR edge
LINEAR edge
LINEAR edge
LINEAR edge
LINEAR edge
LINEAR edge

o 00 0TE
o m 0T

The edges are declared as linear resources, and therefore, they are consumed during the
proof construction. Using this technique, the program can also find a path in a cyclic graph.
However, some edges are not necessary to be traversed in a certain path. In order to consume
these remaining linear resources (edges) the query contains a ‘T’ connective. The goal query
can be stated as follows (x stands for the ‘®’):

goal query 1: path a £ X x top solution: X = a::b:ric:ie::fiinil
goal query 2: top x path a £ X

This example illustrates the speed-up which is achieved by the deterministic management
of the contexts in the ‘T-R’ rule. The splitting of the contexts in the first goal query is
not serious and the calculus B is slightly better than 5’. However, if we restate the goal
query as given in the second line, the calculus B is approximately ten times slower as in the
previous goal-query. On the other hand, the calculus B’ which uses a deterministic resource
management in a ‘T-R’ inference step shows no sign to be slower as in the first case. The
results of the tests are given in the following table (we used similar condition as in the test
of Section 4.3.):

goal ¥ B B
path a £ X x top | 7:27.7 | 0:12,8 | 17,4
top x path a £ X | 6:14.3 | 2:13,1 | 17,3




Chapter 5

Related Work

5.1 Context Management in Lolli

[Hodas & Miller, 1991] presented the first solution of the problem of deterministic context
management, which they called input-output model (IO model), for the single succedent logic
programming language Lolli. In this language, the ‘®@-R’ rule appears to be critical because
it has to split the linear context of the antecedent in a root-upward proof search. In Lolli,
this rule is formalised as follows:

;A =B VU, Ay =—C
¥; A1, A= B®C

®-R

In their original work on the input-output model, Hodas and Miller used the sequent
notation I{G}O where G is a goal formula and 7 and O are the input and the outpuf context
of the corresponding proof branch, respectively. This system is specified in PROLOG; the
contexts are represented as lists where a consumed formula is replaced by a special constant
del. The 10 model deals efficiently with the context splitting in the ‘®-R’ rule; however, it
is not completely deterministic because the context in the ‘T-R’ is split with a generate-and-
test algorithm. In order to remove the remaining non-determinism from the proof system,
Hodas presented the lazy input-output model (I0T model) in [Hodas, 1994]. The sequents
in the refined system are as follows:

I[G](0, L) and  I[G](O,T)

where ‘1’ and ‘T’ represent a flag, called slack indicator. This flag records whether the
output context has to be consumed entirely (‘L’) or can contain some remaining formulae
(‘7).

In [Cervesato et al., 1996], the treatment of the additive conjunction was improved and
the initial presentation of the proof system (PROLOG specification) was changed to a system
with a more proof theoretic flavour. (The contexts are represented as multisets and sequents
are formalised with the usual notation using an arrow.)

In RMs (the final version of their proof system), they use a sequent formulation with
two input contexts. The sequents are presented as follows:

;8 ANA° = G

86




CHAPTER 5. RELATED WORK 86

where G is a goal formula; v is the slack indicator which is raised by the ‘T-R’ rule; I is the
classical context; the rest of the context is divided into the input context = and A’ and the
output context A, = contains formulae which have to be consumed in the proof branch
above. A’ contains formulae which may be consumed. A contains those formulae which
remain from the proof branch above. The separation of the input context into the parts =
and Al forces the introduction of a new inference rule that selects a formula from the new
context Z. Consequently, the corresponding rule d, (of RM; and RM5) is represented as
d},,, (for picking up a formula from ATy and d2,,, (for a formula from ) in RM3.

In [Cervesato et al., 1996], a formula decomposition judgement is introduced in order to
find a program formula that will be analysed when an atomic formula a appears as goal
formula. The judgement is as follows:

D> a\G

where D is a program formula, a is an atomic formula and G is a goal formula. This
judgement extracts from a program formula D a new goal formula G in a sense that ¢
defines a; short G—oa. The formula decomposition judgement is formalised as follows:

Ta Iy

T > a\0 a>a\d =a

D@ D> a\G&'
G-oD>a\G'®G ° GoOD>ad\GoG

Dd

Di > G\G1 Dy > G\Gz D> a\G
D1&Ds > a\G1® Gs ¢ VaD > a\3aG ' °

where @ = &' stands for the syntactic equality amongst atomic formulae. The formula
decomposition judgement replaces Miller’s and Hodas’ function || - || which transforms a
program formula into a (possible infinite) set. Our ‘choose test’ is similar to the usage of
that formula decomposition judgement, however, in our presentation of FORUM it cannot
be built into the proof search process and it appears as a separate operation which will be
carried out before continuing the proof construction.

In summary, our box calculus does not separate the input context as in Hodas’ IOT
because this involves an introduction of additional inference rules which analyse the same
type of formulae in different input contexts. Along with such a separation comes, in the case
of ForuM, an undesired significant expansion of set of inference rules. However, our ap-
proach separates the formulae of the output-context into two groups similar to the approach
in [Cervesato et al., 1996]: one must be consumed and the other one might be consumed.
This permits the omission of the slack indicator present in both approaches described above.
Thus, it simplifies the implementation for which some evidence is provided (see Section 3.1.3
and 3.2.3).

Peillon, 1991] introduced a system similar to Hodas’ IQT system for a theorem prover
Y
based on the intuitionistic fragment of MALL.




CHAPTER 5. RELATED WORK 87

5.2 Hodas’ and Polakow’s Approach Towards a FORUM
Implementation

Hodas and Polakow presented in [Hodas & Polakow, 1996] some preliminary results of their
work on ForuM. They use Miller’s calculus which does not include a classical context in the
succedent (see [Miller, 1994]). Therefore, they cannot regard the ‘?’ connective as primitive
and have to use the logical equivalence:

7B = (B-ol)> L

in order to analyse such a formula. This equivalence is problematic since its implicans B~o L.
(a L-headed implication) eventually appears in the classical context of the antecedent. This
causes problems particularly when the outlined heuristic is used (see Section 2.3.2). This
heuristic considers newly added program formulae prior to other program formulae. Con-
sequently an occurrence of a formula ?B (assume B is not an implication) in the succedent
always leads to a loop where the interpreter selects the same formula over and over. Even
if we do not make use of this heuristic, there is a significant number of cases where such
an occurrence of a ‘?’-formula results in a loop of the interpreter (i.e., it cannot decide if a
sequent is provable or not).

Hodas and Polakow introduced a ‘backchain’ rule (‘BC’) which replaces all the stoup
rules (left rules in Miller’s calculus). This inference rule depends on the functions || - || and
[[-]). Suppose D is a program formula. Then, ||D|| is defined inductively as follows:

= (ﬂ,ﬂ, {IDI}> € “D”:

—(Z,L,{L}wT) € ||D|| implies (Z,£,T) € [|D]],

~(Z,L,{B®C}wT) € ||D|| implies (Z,L,{B,C}wT) € ||D||,

—(Z,L,{B&C}WT) € ||D|| implies (Z, L, {|B[}¢,T) € ||D||and (Z, L, {{C} ¥ T) € || D},
- (Z,L,{|VaD} wT) € ||D|| implies (Z, L, {|{ D[z +— {][} wT) € ||D|| for all closed terms ¢,
—(Z,L,{|B—-C}wT) € ||D|| implies (Z,LW {|B},{C}wT) € ||D||,

-(Z,L,{B > C}wT) € ||D|| implies (ZW{B[}, L, {|CwT) € ||D||.

Then, ||D||" is defined as {(Z, £, A)|(Z, £, A) € ||D|| where A is a multiset of atoms}. Both
functions convert a program formula into a set of triples. These triples can be regarded as
program formulae defining a multiset (A) of atoms (in [Hodas & Polakow, 1996] they are
called the “true” head of clauses). However, the defined sets are generally infinite because
of the “V rule”. The formula decomposition judgement described in [Cervesato et al., 1996]
or our choose test provide a more syntactical and operational method which is easier to
implement. The ‘backchain’ rule is presented as follows:

\P,ﬂ:}h 1I’;m=>Im ‘I";A1=>L1,.A1 \I’;An‘;}Ln,An
G AL DA A An

BC

where

- A A4, ..., A, are lists of atomic formulae,
- myn>0and
= ({h..Inb {1, L}, A) € (D))




CHAPTER 5. RELATED WORK 88

In order to maintain the soundness, a side condition is introduced where ‘BC’ corresponds to
an ‘initial’ rule. In this case, Z and £ are empty in the associated triple (Z, £, A} (m,n = 0);
the rule ‘BC’ is only applicable when A represents the entire list of the succedent.

In [Hodas & Polakow, 1996], an extension of the IO model is described as used in Lolli
which does not include the improvements for the ‘T’ (as presented in a I0T model for Lolli)
and for the ‘&’ connective {as described in [Cervesato et al., 1996]). Thus, they present the
modified ‘BC’ rule as follows (the premises are written on two lines):

0= I V) = Iy
‘I';AI\Aol = LI)AI\A01 Ve W;Aon_l\AO = Lﬂ)AOn_l\AO
T; Af\Ao=2A, A\ Ao

BC

where

- A, A1, Ao, Aoy, ..., Ao, _, are lists of atomic formulae
- myn>0and {{1,..., L}, {La, ... L}, A) € || DY

In case the ‘BC’ rule corresponds to an application of an ‘initial’ rule (i.e., the associated
triple is {#, §, A)), the new ‘BC’ rule is as follows:

- BC
T AN\A=A, A\A;

In [Hodas & Polakow, 1996], it is mentioned that the actual implementation follows the
approach of [Cervesato et al., 1996]. No details are given of whether they have to introduce
new inference rules for analysing formulae in the different contexts or not.

5.3 Context Management in Lygon

Independently of the work by Hodas and Miller, [Harland & Winikoff, 1996a] introduced a
proof system for the multiple conclusion logic programming language Lygon (single-sided
calculus) dealing deterministically with the context management (the first version of the
calculus appeared as a technical report in 1994). The problematic rule in Lygon is as
follows:

5:B,F1 ch,rz
6:B®C,I‘1,1‘2

®-R

where § consists entirely of nonlinear formulae and I'; and I'; are multisets of formulae.
Harland’s and Winikoff’s approach uses the same idea as the 10 model. It gives first all
linear formulae to the left proof branch and all remaining unused formulae to the right proof
branch. However, they maintain the soundness by giving a tag ‘7’ to all formulae (apart
from the components of the analysed formula) of the left premise. Subsequently, only tagged
formulae can be passed to the right premise where one tag is removed from each formula
(nested tags are permitted for nested occurrences of the ‘®’ connective). A ‘Use’ rule is
introduced which strips off all tags from a formula in order to analyse it.

For dealing efficiently with the ‘T-R’ rule another tag (‘?’) is used. It prefixes formulae
consumed by the ‘T-R’ rule, but which can become “unconsumed” in another part of the




CHAPTER 5. RELATED WORK 89

proof. In order to maintain the soundness (i.e., protect formulae to become “unconsumed”
elsewhere in the proof when a ‘8-R’ rule is applied) a notion of “T-like” proofs is defined.
A flag is attached to the sequents which is either /true (i.e., a proof branch is T-like) or
/false (i.e., the proof is not T-like). This flag is similar to Hodas’ slack indicator.

We describe here the sequents of Harland’s and Winikoff’s approach, but omit the in-
ference rules which can be found in the Appendix of [Harland & Winikoff, 1996a]. The
sequents are as follows:

§: T, IL,1= T, N/z

where d is a multiset of nonlinear formulae, T' is a multiset of formulae which have no tag or
<T> 7 and R are multisets of formulae
with the prefix ‘?" and ‘/2’ is the aforementioned flag. The variables on the left-hand side
of the sequent arrow stand for multisets of formulae given for usage to the proof branch and
the variables on the right-hand side stand for multiset of formulae which can be consumed

elsewhere.

prefix, ¥ and II are multisets of formulae with the tag

The approach above differs from the I0 model and our box calculi by using tags and
prefixes instead of using clear separated contexts. It uses a flag similar to the slack indic-
ator in order to maintain soundness in the calculus dealing efficiently with the ‘T-R’ rule.
Furthermore, the calculus is not refined according to the improvements for the ‘&-R’ rule
as introduced in [Cervesato et al., 1996).




Chapter 6

Conclusion, Open Problems and
Further Work

6.1 Conclusion

We achieved in the second box calculus a more deterministic context management (in com-
parison with B). However, the inefficient generate-and-test algorithm for finding the desired
partition of the contexts is replaced by some subtle operations on contexts. That means
we have to pay a rather high price because the context management now includes some
costly operations (e.g., multiset intersection, multiset difference, shuffiing formulae from one
context to another one and exhaustive tests of multisets). However, the rules are completely
declarative and presented in a proof theoretical style. We adapted the existing approaches
of the IO model and developed a calculus, in our opinion more appropriate and elegant than
the established calculi for an implementation of FOrRUM. In our approach, there is no need
for an introduction of a slack indicator and for the additional inference rules which analyse
formulae from different input contexts that would be required by the previous approaches.
As shown in the implementation of the box calculi, each inference rule results in a single
unit in the source code.

However, it should be noted that this is only a first step towards an implementation of
ForuM as a logic programming language. Our approach provides not an implementation of
the complete language FORUM as a logic programming language; it rather provides a basis
for further investigations.

6.2 Open Problems

Much remains still to be done. Amongst the problems relative to FORUM as a logic pro-
gramming language are the following:

— The most serious problem, when implementing FORUM as a logic programming lan-
guage, arises from the L-headed implications occurring in the classical context of the
antecedent. Under some circumstances, these program formulae result always in a loop
(i.e., the interpreter of the language fails to answer whether a sequent is provable or
not). A solution was suggested in [I[{odas & Polakow, 1996] which delayed a selection

90




CHAPTER 6. CONCLUSION, OPEN PROBLEMS AND FURTHER WORK 91

of such a program formula as long as possible. However, this attempt will fail when
one of several l-headed implications must be chosen since then it is not clear which
formulae should be delayed and which chosen.

The problem also appears to be difficult because it is not feasible to restrict the logic
so that these .L-headed implications do not occur because they play an important
role when analysing a formula with a non-primitive connective. Thus far, there is no
satisfactory solution known for this problem.

— There is still less practical evidence whether ForRUM is a useful logic programming
language or not (the main purpose of the thesis is to provide an appropriate basis for
further investigations). The usage of FORUM’s primitive and non-primitive connect-
ives must be proven to be a fruitful and an effective framework for representing and
solving problems. In particular, the use of FORUM’s non-primitive connectives must
be defended from the criticism as an “abuse” of logical equivalences (citation from
[Harland & Winikoff, 1995a]).

— IForuM is designed so that its right rules permute over each other. It is still unclear
what is an appropriate semantics which identifies exactly these permutable proofs. A
clear notion of permutable proofs has to be achieved which can justify the liberal use
of permutations in the design of FORUM,

6.3 Further Work

There are many things for further work arising from the thesis and particularly from the
open problems. Some of them are outlined below:

— Further work is needed in order to simplify our calculus following Hodas’ and Polakow’s
description of a ‘backchain’ rule; it should determine efficiently whether a program
formula is a candidate for the further proof construction.

— In our calculus, the order of the program formulae, which enables a programmer to
predict the behaviour of the proof construction, is not completely maintained. Thus
far, linear formulae are preferred relative to the formulae in the classical contexts.
Therefore, we have to package all program contexts together and use a flag for each
formula in order to determine if it is deleted or not.

~ The field of an appropriate semantics which identifies FORUM’s permutable proofs is
fairly “unexplored”. Further work will address this issue with the focus on obtaining
some insight which proof are “necessary” in ForRUM and which fragment of it can be
implemented throughly as a logic programming language.




Bibliography

[Andreoli, 1992] Andreoli, J.-M. Logic Programming with Focusing Proofs in Linear Logic.
Journal of Logic and Computation, 2(3):297-347.

[Beth, 1965] Beth, E. " W. The foundations of Mathematics. North-Holland, Amsterdam,
2nd edition.

[Bierman, 1994] Bierman, G. On Intuitionistic Linear Logic. PhD thesis, University of
Cambridge.

[Brown, 1990] Brown, C. Linear Logic and Petri Nets: Categories, Algebra and Proof. PhD
thesis, University of Edinburgh. Technical Report ECS-LFCS-91-128.

[Cervesato, 1995] Cervesato, I. Petri Nets as Multiset Rewriting System in a Linear Frame-
work. Technical report, Dipartimento di Informatica Universita di Torino, Italy.

[Cervesato et al., 1996] Cervesato, 1., Hodas, J., and Pfenning, F. Efficient Resource Man-
agement for Linear Logic Proof Search. In Dyckhoff, R., Herre, H., and Schroder-Heister,
P., editors, Proceedings of the 5th International Workshop on Egxtensions of Logic Pro-
gramming, LNAI 1050, pages 67—81. Springer Verlag.

[Chirimax, 1995] Chirimar, J. Proof Theoretic Approach to Specification Languages. PhD
thesis, Department of Computer and Information Science, University of Pennsylvania.

[Church, 1951] Church, A. A Formulation of the Simple Theory of Types, volume G of
Annals of Mathematics Studies. Princeton University Press, Princeton, NJ.

[Delzanno & Martelli, 1995} Delzanno, G. and Martelli, M. Objects in Forum. In Pro-
ceedings of the Internalional Logic Programming Symposium, Portland, Oregon, pages
115~129. The MIT Press.

[Galmiche & Perrier, 1994] Galmiche, D. and Perrier, G. On Proof Normalisation in Linear
Logic. Theoretical Computer Science, 135(1):67-110.

[Gentzen, 1969] Gentzen, G. The collected Papers of Gerhard Gentzen. North-Holland,
Amsterdam. Ed. E. Szabo.

[Girard, 1987] Girard, J.-Y. Linear Logic. Theoretical Computer Science, 50:1-102.

[Girard, 1991] Girard, J.-Y. A New Constructive Logic: Classical Logic. Mathematical
Structures in Computer Science, 1:255—-296.

[Girard, 1993] Girard, J.-Y. On the Unity of Logic. Annals of Pure and Applied Logic,
59:201-217.

92




BIBLIOGRAPHY 93

[Grofie et al., 1992] Grofie, G., Holldobler, S., Schneeberger, J., Sigmund, U., and
Thielscher, M. Equational Logic Programming, Actions, and Change. In Apt, K., editor,
International Conference and Symposium on Logic Programming, pages 177-191. MIT
Press.

[Harland & Winikoff, 1995a] Harland, J. and Winikoff, M. Deriving Logic Programming
Languages. Technical Report 95/26, Department of Computer Science, University of
Melburne.

[Harland & Winikoft, 1995b] Harland, J. and Winikoff, M. Implementation and Develop-
ment Issues for the Linear Logic Programming Language Lygon. In Proceedings of the
18th Australasian Computer Science Conference, pages 563-572, Adelaide, Australia. Also
available as Technical Report TR 95/6, Melbourne University, Department of Computer
Science.

[Harland & Winikoff, 1996a] Harland, J. and Winikoff, M. Deterministic Resource Man-
agement for the Linear Logic Programming Language Lygon. In Proceedings of the 19th
Australasian Compuler Science Confernce, Melbourne, Australia.

[Harland & Winikoff, 1996b] Harland, J. and Winikoff, M. Programming in Lygon: An
Overview. Algebraic Methodology and Software Technology, pages 391-405.

[Harland & Winikoft, 1996¢] Harland, J. and Winikoff, M. Some Applications of the Linear
Logic Programming Language Lygon. In Proceedings of the 19th Australasian Computer
Science Conference, Melbourne, Australia.

[Holldobler & Schneeberger, 1990] Holldobler, S. and Schneeberger, J. A New Deductive
Approach to Planning. New Generation Computing, 8:225-244. A short version appeared
in the Proceedings of the German Workshop on Artificial Intelligence, Informatik Fach-
berichte 216, pages 6373, 1989.

[Hodas, 1992] Hodas, J. Lolli: An Extension of AProlog with Linear Context Management.
In Miller, D., editor, Workshop on the AProlog Programming Language, pages 159-168,
Philadelphia, Pennsylvania.

[Hodas, 1993] Hodas, J. Logic Programming with Multiple Context Management Schemes.
In Dyckhoff, R., editor, Proceedings of the fth Workshop on Extensions of Logic Program-
ming, LNAI 798, pages 171-182. Springer Verlag.

[Hodas, 1994] Hodas, J. Logic Programming in Intuitionistic Linear Logic: Theory, Design
and Implementation. PhD thesis, University of Pennsylvania, Department of Computer
and Information Science.

[Hodas & Miller, 1991] Hodas, J. and Miller, D. Logic Programming in a Fragment of
Intuitionistic Linear Logic: Extended Abstract. In Kahn, G., editor, 6th Annual
Symposium on Logic in Computer Science, pages 32-42, Amsterdam. (superseded by
[Hodas & Miller, 1994]).

[Hodas & Miller, 1994] Hodas, J. and Miller, D. Logic Programming in a Fragment of
Intuitionistic Linear Logic. Information and Computation, 110(2):327-365.




BIBLIOGRAPHY 94

[Hodas & Polakow, 1996] Hodas, J. and Polakow, J. Forum as a Logic Programming Lan-
guage: Preliminary Results and Observations. In Linear Logic 96, extended abstracts
and preliminary results, Electronic Notes in Computer Science, Tokyo. Elsevier-North
Holland.

[Hyland & de Paiva, 1993] Hyland, M. and de Paiva, V. Full Intuitionistic Linear Logic
(Extended Abstract). Annals of Pure and Applied Logic, 64(3):273-291.

[Kleene, 1952] Kleene, S. C. Permutability of Inferences in Gentzen’s calculi LK and LJ.
Memoirs of the American Mathematical Sociely, 10:1-26.

[Lincoln, 1991] Lincoln, P. (Im)Permutabilities of LL. Appeared in the ‘Linear’ mailing list
linear@cs.stanford.edu (30. November 1991).

[Lincoln, 1992] Lincoln, P. Linear Logic. ACM SIGACT Notices, 23:29-37.

[Lincoln et al., 1992] Lincoln, P., Mitchell, J., Scedrov, A., and Shankar, N. Decision Prob-
lems for Propositional Linear Logic. Annals of Pure and Applied Logic, 56:239-311.

[Marti-Oliet & Meseguer, 1989] Marti-Oliet, N. and Meseguer, J. From Petri Nets to Linear
Logic. In Dybjer, P., Pitts, A. M., Pitt, D. H., Poigné, A., and Rydeheard, D. E., editors,
Proceedings of the Conference on Category Theory and Computer Science, Springer-Verlag
LNCS 389, pages 313-340, Manchester, United Kingdom.

[Masseron et al., 1990] Masseron, M., Tollu, C., and Vaugzeilles, J. Plan Generation and
Linear Logic. In Proceedings of the Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 63-75, Bangalore, India. Springer-Verlag LNCS
472,

[Miller, 1989a] Miller, D. A Logic Programming Language with Lambda- Abstraction, Func-
tion Variables, and Simple Unification. In Schréder-Heister, P., editor, Proceedings of the
International Workshop on Proof-Theorelical Extensions of Logic Programming, number
475 in LNAI, pages 253-281, Tubingen, Germany. Springer Verlag.

[Miller, 1989b] Miller, D. A Logical Analysis of Modules in Logic Programming. Journal of
Logic Programmsing, pages 79-108.

[Miller, 1991] Miller, D. Unification of Simply Typed Lambda-Terms as Logic Program-
ming. In Furukawa, K., editor, 8th International Conference on Logic Programming,
pages 255-269, Paris, France. MIT Press.

[Miller, 1992] Miller, D. The w-Calculus as a Theory in Linear Logic: Preliminary Results.
In Lamma, E. and Mello, P., editors, Proceedings of the Workshop on Extensions of Logic
Programming, pages 242-265. Springer-Verlag LNCS 660.

[Miller, 1993] Miller, D. A Proposal for Modules in AProlog. In Dyckhoff, R., editor,
Proceedings of the jth International Workshop on Extensions of Logic Programming, pages
2006-221. Springer-Verlag LNAT 798.

[Miller, 1994] Miller, D. A Multiple-Conclusion Meta-Logic. In Abramsky, S., editor, 9th
Annual Symposium on Logic in Computer Science, pages 272-281, Paris, France. IEEE
Computer Society Press.




BIBLIOGRAPHY 95

[Miller, 1995] Miller, D. Course Material for the International Summer School (Markto-
berdorf) on Logic of Computation. An Advanced Study Institute of the NATO Science
Commitee and the Technische Universitat Miinchen.

[Miller, 1996] Miller, D. Forum: A Multiple-Conclusion Specification Logic. Theoretical
Computer Science, 165:201-232. ALP/PLILP meeting.

[Miller & Nadathur, 1986] Miller, D. and Nadathur, G. Some Uses of Higher-Order Logic in
Computational Linguistics. In 24th Annual Meeling of the Association for Computational
Linguistics, New York, pages 247-255.

[Miller et al., 1991] Miller, D., Nadathur, G., Pfenning, F., and Scedrov, A. Uniform Proofs
as a Foundation for Logic Programming. Annals of Pure Applied Logic, 51:125~157.

[Nadathur, 1995] Nadathur, G. Uniform Provability in Classical Logic. Technical Report
TR-95-12, CS Department, University of Chicago.

[Nadathur & Miller, 1990] Nadathur, G. and Miller, D. Higher-Order Horn Clauses. Journal
of ACM, 37(4):777-814.

[Nadathur & Miller, 1994] Nadathur, G. and Miller, D. Higher-Order Logic Programming.
Technical Report CS-1994-38, Department of Computer Science, Duke University.

[Negri, 1995] Negri, S. Semantical observations on the embedding of Intuitionistic Logic
into Intuitionistic Linear Logic. Mathematical Structures in Computer Science, 5:41-68.

[Peillon, 1991] Peillon, T. A Proof Editor For Linear Logic. Master thesis, University of St
Andrews.

[Perrier, 1995] Perrier, G. De la construction de preuves a la programmation paralléle en
logique linéaire. PhD thesis, L’Université Henri Poincaré — Nancy I.

[Peterson, 1981] Peterson, J. L. Petri Net Theory and The Modeling of Systems. Prentice-
Hall.

[Pym & Harland, 1994] Pym, D. and Harland, J. A Uniform Proof-Theoretic Investigation
of Linear Logic Programming. Journal of Logic and Computation, 4(2):175-207.

[Pym & Wallen, 1992] Pym, D. and Wallen, L. Logic Programming via Proof-valued Com-
putations. In Broda, K., editor, 4th UK Conference on Logic Programming, Workshop in
Computing Series, pages 253-295. Springer-Verlag.

[Scedrov, 1993] Scedrov, A. A Brief Guide to Linear Logic. In Rozenberg, G. and Salomaa,
A., editors, Current Trends in Theoretical Computer Science, pages 377-394. World Sci-

entific Publishing Company. Also in Bulletin of the European Association for Theoretical
Computer Science, volume 41, pages 154-165.

[Schneeberger, 1992] Schneeberger, J. Plan generation by linear deduction. PhD thesis,
Technische Hochschule Darmstadt, Fachbereich Informatik.

[Troelstra, 1992] Troelstra, A. S. Lectures on Linear Logic. CSLI Lecture Notes 29, Stan-
ford, California.

[Weld, 1994] Weld, D. An introduction to least commitment planning. AJ Magazine,
15(4):27-61.



Appendix A

Proofs

A.1 Soundness of B w.r.t. F’

For each rule of B, we give the translation into a rule of 7.

T-R
v T ]
A X[ AY [T.B.2 — ———— T-R
X % 7 = A= AT,BT
X
v [ 7
A XA A Y] B.Z
X Y
3] o DU A= A A BT R
= = atomic-R = ¥, U, A—> A, A BT atomic-
A, X[ A Y |A,B,Z
X & Z
o
O S T || Tﬁl
AXIAY|B B, Z|  |AIAIC,
X ¥ Z AN DU A= A,C,B;Y
% o] A= A;B,B;T i
7 I T &R = $.U;,A= A4; B&C,B; Y e
AX] AY |Ba&C,B, 7|
X ¥ Z
X
v T
AX|AY | B, Z
X Y A
N A= A4; 87T LR
e = TOASALET &
X, X[ A Y|L B, Z
XY Z
P

96




APPENDIX A. PROOFS

b7 [ E ]
AX[ AY |B,CB,
X Y 7
bY :0,A= A;B,C,B;T _—
) T 7 e s ;%A = A; B9C, BT °
AX[ AY IBRC,B,Z
X Y Z
b
v T
A X, Bl AY |C,B,Z
X Y 4
B WA B= A;C,BYT R
5 I 7 =B = T A = A, B—C,B, T
A, X{| A,Y [B—oC,B,7Z
X Y Z
P
v,B | T
AKX AY [C,B,
X Y Z
bR :0,BA= A;C,B; T

>R = A= A;BDCBTY >R

X Y

T
A X|AY |BESC,B,Z
Z

1 I T

XY Z

A, XA, Y |Bleyl, B, Z

YT, a

y:7m, 0 U A = A, B[z — y],B; T

|
AX|AY V-2B,B, Z

V-R=

T:U.A— AV.zB. BT TR

YU A= A;B;B,T

/o
R = A= ABBT &

97



~

APPENDIX A. PROOFS

LA

X

A X

AY

X

v, B

X

A, X[A,

1/

choose

choose! =

choose? =

initial

tnitial?

18

98

T U A AT

= T:0; B, A= A;6T choose

hIH B>\I’;A”——L}‘>A;T

S:B, U A — A BT choose!

2: ¥ A= A B;B,T

choose?

e it

inttial?

= D 005047




APPENDIX A. PROOFS

?-S

v-S

T

VrxB

A, XA, Y

v Y

v 7
B

c

Ay, N, X

A1, Az, Y

A

2, X||Az2, Y

AvX

Az, Y

X Y

b2

z

&-S;

v

[T

BeC

A1, Ag, X

A, Az, Y

X

)I

=

99

T U AZS AT
5.0 APED2 4.y

= &-S;

0B = 0;0;Y 5
IS RN

-S

»: ¥ ABE_-?}t]A;T

V-5
DR E szr-:ig./l; T

=

A ALY DA Ay T

: ®-S
D0 AL A S Ay, A X

-S>



APPENDIX A. PROOFS 100

T T
A AW ,\,!4{ ATY ‘lg
1y &2y { 152 B
AnX | Auv 0| Puaiie
z ¥ L DAL= A BT S0 Ag=2 Ay T
T T —o-S Sl AL AT M AT TS
B—oC
A1 Ao, XA, A2, Y
X Y
5
ST ¥ llv T
0101B| RXTAY
Olo10 % v
pM c
by, 20 =0;3T D:0A=A;T
oS = = -8
v T o AR A4
BoC
AX[AY
X /S
T




APPENDIX A. PROOFS

A.2 Modification of a B-Proof

101

For each rule of B, we give the translation into a rule of 5 which has some additional formulae
in the contexts. The variables X, Y and Z are chosen in the endbox of the corresponding

proof branch which is translated.

T-R T-R
T —_—_s5 ¥ | 1
M, M A°, AT, B°, Bt P Mo, My, X[ Ao, A1, Y |T,B0,81,2
Ml Al BI MI,X .A;,Y Bl,Z
¥ P}
W i 25 1 Il Y
Mo, My||A, Ao, As| Bo, By Mo, My, X|[A, Ao, A1, Y| Bo,B1,4
J\/fl Al Bl MhX Ally B],Z
by 3]
atomic-R& atomic-R
W | T ] I T
Mo, Myl Ao, Ai |4, Bo, By Mo, My, X|[ Ao, A1, Y [A, Bo, By, Z
M A,y By M, X A, Y By, 2
p)) P
v [ T v Y ¥ | T v T
Mo, Mi|| Ao, A1 |B, Bo, Bi| (Mo A40|C, Bo Mo, My, X[\ Ao, A1, Y|B, Bo, By, Z| (Mol A|C, Bo
My A B, Dol O M, X ALY By, 7 ool 0
P PH & PH P
T I T &R 57 I T &R
Mo, Mif| Ao, A1 |B&C, By, B1 Mo, My, X|| Ao, A1,Y |B&C,Bo,B1,2
My A, B My, X ALY Bi,Z
P b
B I T W | T
MO:MI AO’AI BDvBl MOthX AOvAhYBQ_)_Bl!Z
M A | Bi | M, X | ALY | By,
b ¥
1-R = 1-R
U I X U | T
Mo, Mi|ldo, A1 L, Bo, B1 Mo, My, X|| Ao, AL, Y L, Bo, B, &,
M, Ay Bi My, X Ay, X By, Z
b3 by
W l Rl ¥ I T
Mo, M1l| Ao, A1 |B,C, Bo, By, Mo, M1, X|| Ao, ALY |B,C By, By, 2
My Ay B1 M, X ALY By, 2
pH b
w-R<> 2-R
> [ y b5 I 0
Mo, M1 Ao, A1 |BRC, Bo, B Mo, M1, X|| Ao, A1, Y |BRC,Bo,Bi,2
M, A By My, X ALY B, 2
pH PN

MR



APPENDIX A. PROOFS

102
v I T v | X
B,J\"O,Ml AO,AI C,BO,BI B;MO:MMX AO)Ale C:BO!BlaZ
M, A By My, X ALY By, Z
b b
—o-R& —o-R
T I T ¥ [ T s
Mo, M| Ao, Ay [B—oC, By, B, Mo, M1, X|| As, A1,Y [B—oC, By, B, 7
M, Aj B, M, X ALY B1,2
P %
v, B | T v, B [ T
Mo, M4 Ao, A1 |C, Bo, By Mo, My, X|| Ao, A1, Y |C,Bo,B1,2
M, A,y B M, X ALY By, Z
b b
O-R< O-R
T It T N [ Y
Mo, M| Ao, A1 1B D C, Bo, By Mo, My, X|| Ao, A1,Y |BDC, By,Bi,Z
My A B M, X ALY B1,2
P b
I 1 T 0 I B &
MQ,M1 .Ar),.Al B[:m—-)y ,30,31 Mo,Ml,X .Ao,A],Y B[:m-}y],Bo,Bl,Z
My Ay B, Ml,X Al,Y Bl,Z
Y72 YT, 0
V-R& V-R
¥ P g I T
M0|M1 AO,AI VrmB,BD,BJ Mo,Ml,X AO,Al,Y erB,BD,31,Z
M, Ay B My, X A, Y By, 2
>, b
L W v |
Mo, Mu[[ Ao, Ai | Bo, B; | Mo, My, X|| Ao, A1, Y| Bo,B1,Z
M,y A, By My, X ALY B, 7
P bH
7R & 7R
1 1 T 3 | T
Mo, Milldo, A7 B, By, By Mo, M1, X|| Ao, A1,Y [?B,Bo,B1,2
M, Ai By My, X ALY By, 4
P PN
r [ T ] | T
B B
MO,ML AO,Al MO,M},X AO,AI,},
M, A M, X ALY
bX X
choose™ choose
b ¥ 13 I X
B, Mgy, M, AQ,A1 [2'1__ B,Mo,Ml,X Ao,Al,y Bi, Z
M, Ay | By M, X ALY 1B1,Z
3 z




APPENDIX A. PROOFS

U B X LB | T
B B
MOyMl AU)AI MolevX AO,AI;Y
M, Ay My, X ALY
bH 3]
choose! < choose!
v, B | Lo U, B [l T
MO,M1 -AO,-Al B, MU:MhX‘AO:‘Al:}, BhZ
M A | B M, X ALY |B1, 2
b7} b3
v | BT v [ BT
Mo, Mi|lAo, A1| B Mo, My, X|| Ao, AL, Y| B
My Ai [} Ml,X Al,Y 1]
pM pH
choose? < choose?
T I BT 7 BT
MD1M1 AO;-A[ Bl MO;MhX /dﬂgAl1YBl)Z
M Ay | By My, X A1,Y |B1,Z
o bH
initial inttial
v [ T v
A A
Ml fLAl & MhX AaAl)Y
Ml Al Ml:X AI)Y
pH PH
initial? initial?
v AT v [ATY
A A
M1 .Al = ML,X -AlyY
My || A My, XA, Y
= P2
L-S 1-S
v [ v [T
1 A2
My [ A & My, X|A;, Y
M, | A My, XA, Y
b3 =
¥ | T v I X
B; B
Mo, M Ao, A Mo, My, X[lAo, Ay, Y
M Ay M, X ALY
Y po
&-S; = B-5;
v | T A
B1&B> B &85
Mo, M|l Ao, Ay Mo, My, X[ Ao, A1, Y
Ml Al J\/h,X Al,Y
X 2

103



104

APPENDIX A. PROOFS
v [T L
Blopio BlLOo|D
g |pil0 Do
b >
-8 =4 ?-S
v lT v i
B B
My | Ay M, XilA;, Y
M || A My, Xi[A,Y
b3 pH
v [T v T
Blz — ¢ Blz - i
Mo,M1 Ao,A:l J\AO,MhX AO:AhY
My Ay Mi, X ALY
pH pY
Y-S L= V-§
v [T v T T
V.-aB V.x B
MOyMl -AU:-AX JMO’MMX AD)AD))
My Ay My, X ALY
3 Py
W | T T | Y 0 I T 1Y I T
B C B C
MO)M19M2 AUyAl)-A2 MlsMZ AlyA2 MO;MI;MQ)X A01AloA2vY M11M21X -AIVA21),
J\’tl:M2 -AL;AZ Mi AZ MlaMZyX -Aer2)y M21X A21Y
pH b M Py
U T P B-S T | T $-S
BwC BwC
Mo, My, Msl[ Ao, A1, As Mo, My, Mo, X[ Ao, A1, 42, Y
M- As Mo, X Az, Y
b pH
5 I T 3 (llw T T T ¥ (1[) i
JMO,MI, M2 AO,A], A2B Ml, .MQ Al, A2 MD, Ml, Mz,)x AO;»AL, A2;YB Ml, M%X A],A?,Y
My, Mo | Ay, Az |0 MM, X || A1, A2, Y [0
) Mo A, > M, X || Az, Y
P P
T T T —o-S T T T —0-S
B—oC B-—oC
Mg, My, Mol Ao, A1, A2 Mo, My, Ma, X[ Ao, A1, A2, Y|
Mo As Mo, X As, Y
b x




APPENDIX A. PROOFS

LS

T

v
X C

) MOqu

AO)AI

=
Mals

M

Ay

=

vy [T

B> C

-/\401 Ml AO) Al

-5

v T
T[T —
g g ‘g MOaMl:X A01A1:Y
My, X ALY
£ pH
D-S
14 Il T
B>l

JMO,M],,X A01A111,

My, X

ALY

z

105



APPENDIX A. PROOFS 106

A.3 Completeness of B w.r.t. F'

For each rule of F’, we give the translation into a rule of 3.

———— TR
NG T
TGA— A T,BY - [PIATE
b
& I ¥
AA Al B
0] 0@
YU A= AA BT - B
D0 A= A4;A,8;,7T atomic-R = T atomic-R
A A A,BJ
0l o100
)
FLEE |2LE
A B,ﬁ' Al A C,E|
pio] 0 6|9} 0
S WA= A;B BT Z:U,A=— A4;C,5;T x z
S 0; A = A; B&C, B; T AR T o &R
Al A |B&C,B
g o 9
by
vl
AllALB
ploio
A= A;BT pY;
A= AL B7Y 1-R = "‘"TI""}"—J.-R
AllAlL,B
Dol D
pH
Al A |B,C,B
0y 0 0
B %A= ABCBT T
A= A;BeC, BT a4 = T ¥ ®-R
Al A |B®RC,B
8] o ]
p




APPENDIX A. PROOFS 107

v [T
ABll A |CB
¢
2 WA B=> ACBY o 2
%: U;A = A; B—C,B;T i U T =
Al A |B—oC,B
0] @
b
TE ] T
Al A |CB
0 0 /]
59, BA= ACBT _ o x
LW A= A BDC,BTY iF = ¥ [ T __I H
Dl 0 0
b3,
W | T
Al A [Blz—yl, Bl
ol 0 ]
y:7, 0 A= A; Blz— 9], B; T =% gint
L0 A = A;Y,.eB,B;Y 2 v [T VR
AT A VM.zB, B
Dl @ 0
pH
¥ | B,7T
AJlA| B
HIKAK
LU A= A;B;B,T ° 2 ?
LA AT D * rwrE
AATB,B
019 @
pH
viT
B
Al A
0| 8
DU AS AT =
S U B A AGT choose = - choose
AB Al D
0 0




APPENDIX A. PROOFS 108

v, Bl T
A A
5 [] []
Y: B, A=A T ; : P
=, : 0.y choose: T e chig085€}
L.B,‘I’,A:}A,ﬂ,'r ‘I’,BH ,r
Al Al 0
DHolo
b))
v BT
All A| B
Dol
WA= A;B;B,T " N by
- 0 choose! —————————— choose?
:0,A= A4;0;B,T v [B.T
All Al 0
plolo
b
7 initial
viT
————— initial A
20 0=A;T = o1 A
o140
P
7 A inttial?
™ initial? A
D0 0=0; 4,7 = [] [}
[] [
pH
L-S
g vlT
IR e T e 1a
S =0, T = o]0
oo
bH
v
Bi
A A
B, [
S0 A=A T z
B & &-5; = e 25
U ATESAY Ul
1 & B2
Al A
[ )
3




APPENDIX A. PROOFS 109

v T
B[00
0|00
:¥;B= 00,7 z
= X el g
00 0=0; T T[T
78
)
[
T
T[T
Blz > t]
A A
¢ 0
5w APESH 4y i ) "
- = —
50 AL 4.y 7Y
rxB
A A
D0
p
T \II(HJT
0y 01B| X7
6lolo 13
500 = 0;B; T zzq:;A::%A;TDS . = 2]
2:\I!;A]3——3-§:.A;T vl
BoHC
AlA
0
5




APPENDIX A. PROOFS

A.4 Soundness of B’ w.r.t. B

110

For each B’ rule we give a B rule that has an empty output context. Each box on the right-
hand side consists of the contexts which are consumed in the corresponding proof branch of

the given box on the left-hand side.

T-R T-R
T | T v I T
MO M A% AT [T BB N TV
O M0 JAT] 0[BT 9100
Py )3,
r I P v | 7
MO, M MTIA, A% A AT|BY, B, B MO A, A B°
M T MT A | AT | B BT o e |9
= »
atomic-R = atomic-R
i I T v I T
MO, M MAC, AL ATA, B, B, B MO AC A, B°
MEAIMT A AT B ] 8T gl oo
= )3}
¥ I X v [T
MO,MI,M ALD‘AI,A BU,Bl,BT MD Aﬂ BD
ML MT A AT B | BT 0 lolo
Iy 3
1-R = 1-R
T [ T T | T
MO ME MTHAS, AT AL, B BB MOl 401, BY
MLUIMT A AT B | BT 9 o] o
o '
7 I T o |
MO M M A° AN AT B, C B B B MO A [B,C,B°
MU MV AT ] AT ] B | BT 0 0 )
B >
®-R = ®-R
by | v . =
MO ME M A, AL, AT 1BeC, B°, B, B MO A° |BgC,B°
MM A AT B BT [} 0 [
T 3]
T I T v T
B, M® M} M| A%, AL AT IC, B, B, B M° Bl A° |C,B°
MU MT AL AT B BT 0 [} 0
= by
—-R = —o-R
U i T v T
MO, M MTA, AT, ATIB—oC, B°, B! B MO A% [B—oC, B°
MEIMT A [AT] B | BT o\ e ]
% 5
v, B I T v“.B I T
MO ME M A%, AL AT ¢, B B, BT MO 4° TC, B°
MEJ MY A LAY ] B | BT 0 ] 0
b5, )5}
D-R = O-R
T I T 7 f T
M, MY, M A, AL, ATB 5 C, B°, B, B MO A4° [BDC,B°
MEAMT A AT [ B | BT ] 7]
S )




APPENDIX A. PROOFS 111

i If ¥ I | T
MO, MY, MOA®, AT, AT B[z — ], B°, B, B M® | A° |Blz—y], B
ML I MT LA AT B! BT oo [}
yiT, L YT,
Y-R= Y-R
T 1 T v | Y
MO, ME, M TAC, AT, ATV, xB, B°, BT, BT MO || L4° [V 2B, B°
MUOIAMT L AT AT B BT 0 [ o 0
p3) I3
v I B,T ¥ [ BT
M01M1!M AulAl)'A BOSBIIBT MO AO BU
ML MT A AT B | BT 0 010
) b3
R ?-R
T I T = T | T
MO, ML, M A%, AN AT]?B, B°, B2, B MO [ A°]?B, B®
MU MT A AT B | BT p el o
2 b3)
g i T ¥ || *
B B
MO MY, MTAS, AT AT MC [ A°
ML MT AL [ AT [ [
3 b
choose = choose
0 1 T v [ T
B, M°, MY MTIA® A AT B! MO B[ A] @
ML T MT A AT (B8 [} 0|0
5 )
B | T "B T
B B
MO, ME, MTAC, AT, AT M [ A°
MU M A AT [} [
T ¥,
choose! = choose!
v, B I Y ¥B Y
MO, M M A AT Bt MO A% D
MU MT AT AT (B0 0 o9
b3 %
[ I B, T v || B, T
M® M MTAC AN A B MO] A°| B
MU MT AL AT 0 | 0 o [ oo
3 > _
choose? = choose?
T | B, T v || B, Y
M°, M M AL A B! MO A @
M I MT AT TAT B ] 0 o 010
> ¥
intlial — initial
o 1 v lY
A A
M JAA = 0l A
M O JAY0 o1 e
% by




APPENDIX A. PROOFS

112
————— initial? s 0 11 111
T [ AT T A, Y
A A
MDA o ] ]
M 0 450 0 0
% 3]
1-8 — 1-§
. IS vl
M A = R
MU B |40 00
% 5
I [ T v [T
B; B;
MO, MY, MTA, AL A MO [ A°
MO MT [ A [AT [ 0
> 53
&-S; = —_—_— &S
N | I ¥l
B1&B> B18&3>
MU,MI'M AO'Al‘A MO AD
MM AL [ AT [} [
53, Pl
v T v ix
Bl 0| 0 Bl o0
olollole]elo 0 iole
% b3
?-S =  —
v i 7T T
] ?B
M Al oo
MO A0 A
by by
o I T v T
Blz — t] Blz — ]
MO MY, MTIA®, AL, A MO I A°
METMT AT AT 0 0
P b8
v-S = V-8
[, T T v [ T
Y.z B V,uB
MO M M, AT, A MO A°
ML MT A AT [ 0
5 7
S T g T T w(l;r
slotalolats| MLALMEAA itote| PRIT
= ML AT A AT < [
= % 5
D-S=> -5
b7 1 T U
BoC BSC
MO, MM AR, AL AT MO || A°
M MT AL AT g 1o
53 %




APPENDIX A. PROOFS

A.5 Completeness of B w.r.t. B

113

A translation is given converting a B rule (which has a trivial translation) into a B’ rule.
The output coutext of the B rules are empty. The multisets with and without a subscript
T correspond to multisets of formulae which are consumed by a ‘T-R’ rule or by another

inference rule, respectively.

T-R T-R
w .7 T | 25
MY A% [T, 8% i M3 A% [ T,B8%
o 0 ] ] IMT 0 A% 0 ]B%
53 3
T ] Y [ I T
M®, MSA, A°, AT] B°, BS M°, MTJA, A%, AT B, BS
) [} 9 0 ML @ AT 0 [BT
by 5
atomic-R = atomic-R
U | T ] I T
M?, MY A%, A% 1A, B®, BY MO, ME]A°, A% A, BY, BY
) 0 0 0 M 0 LAS] 0 55
b3, 5
v | T L
M®, ME] A°, A% 8P, BS M°, MY A°, A% | B°, BY
[ [ [ 0 MG o [AY%] @ [B%
5 by
1-R= 1-R
I [ T T I T
MO, ME[A°, AT TL, B7, BY MO MY AT, AT L, B, BY
0 9 0 ¢ IME] 0 [A%S] 0 [BS
% D
U | T T | T
M®, MEAY, AT [B,C, B°, B% MO, MY AY A% B, C,B°,
] [ ] 9 M5 @ IA° 0 [ B
5 )
9-R = ®-R
b3 [ ] = 1]11 ]
M, ME]AC, A% [B=C, BY, B% MO MY A%, AT [BeC, B, BY
[ [ ] o M @ 1A% 0 [ BY
5 %
v [ T 0 [ i
B, M M% A°, A% Tc, B®, B B, M, MY A°, A% IC, B°, BY,
0 [ [} 0 MG 0 IA° 9 8%
% 5
—o-R = —o-R
v [ P v f z
MO, MG A°, A% [B—oC, B, BY MO ME A AS |B—oC, B, BY
] [ ) pIME 0 T A [ 0 [ BY
by =




APPENDIX A. PROOFS 114

U, B | T T,B | T
MO, MY A° AY [C, B, BT MO, MG A°, AT C, B, BY
1] [} 1] ¢ (M5 0 [A%L 6 [ B
b3y b
O-R = O>-R
1 ! T 0 [l T
MO MSIAY, ASIBDC, B, BY M MY A",.Ag_- B> C BB
0 0 0 g MY o [A%] o | B%
PN PN
] I T v I T
M, MTI A®) AS |Blamy], B, BT M, MY A®, A Bl y], BY, BT,
[ [} ] O MT 0 AT 0 BY%
y:7,u YT, 0
V-R = V-R
U | T U &
M®, MSTA®, A%V, %8B, B°, B% MO, MOAC, AL,z B, B°, BY
[ [] [ ¢ M 0 (AT 0 | BY
¥ 3]
] - T 6 [ BT
MT, MEIAT, AT B”, BY M Ml A7, AT B By
] (] (!} 0 (MY o |A%] o[BS
5 b5
7-R = R
U I T T i T
M°, M%] A°, A% 2B, B°, B MO, MO A, AT 7B, B°, BY
[ [ 0 0 IME[ 0 A% ] 0 | BY
b3 ¥
v [ 7 v [T
B B
M?, MEIA®, AY M, MEA®, AT
[} [] o IME] 0 [4%
5 3
choose = choose
I | T 1 [ T
B, M®, MZJA", A% @ B, M°, M A", AT 0
[ [ ¢ B [MEI0 A @0
b3 b3
LB T OB T
B B
A0, MOJAC, A%, M, MOAT, A%
0 ) 0 M50 (A5
bH b))
choosel = choose!
U, B | T T, B T
MO, MEJA, AT 9 M, MIA® AT G
0 0 | 6 0 M0 [AT a0
by P

g



APPENDIX A. PROOFS 115

v [ BT ] ] BT
MO MEJA® AS] B ME, MEJAC,AS] B
¢ [ 0 6 M3 04500
by 3
choose? = choose?
' 1 BT I i BT
M°.M‘-}“_A°,A?r 0 IM®, MY AC, AST 6
/] [/} (1] ' o MY 0 A% 0 [ @
) >
initial initial
viY v [ x
A A
pyA = 1] A
ol 0 ploa]0
b3 5
instial? initial?
v AT v | A
A A
(/] ] = (1] [}
[] ] plolole
5 )
1-S 1-S
viT vy |
il
0|0 = 0
00 pJolo]e
by
| v [ T
Bi B,
M, MT[A°, AT M®, ME[A°, AT
1] 1] O [ME] 0 [A%
> b3
8-S = &-5;
v | B ||
B &B> Bi &B>
M, MYAT, A% MO, MEAT, AZ,
/] @ o M%] 0 1A
3 Y
v [T T T
BHO|D {
plolo plollolololoe
) )
—_— 7.5 = 7.S
T g [T
?B ?B
00
0o olalolae
3] 3)




APPENDIX A. PROOFS

v [T v [T
Blz > 1] Bl (]
MO, MELAC, AT AT, MO A5
] 0 o IME 0 1AS
5] 5
V-S = v-S
v | T v [T
VB VraDB
M, ME[A®, AT MO, MYA®, AY
[ @ o M| P LAY
D 5
T ¥ — G Lt
9018 0040 [ ] B 00 A0
o010 M’@MT""Q;“T AN ";,'M“:('J’;']ﬁ&
E 2 T T
3] )
58 =
v | v [ T
BoC BoC
MO METAT AT M, MG, A%
[ ] ¢ M5 0 AT
3] 5

116

-5



Appendix B

Source Code

B.1 Module aux.mod

VAN SN NN AR S YA YA Ay Y Y YA A AN A Y AN YA Ay YA AA YA A AN S A AN ANA S
% Helper Predicates

% (written in Terzo lambda-Prolog, Version 1.0b)

%

% The source code is based on an earlier version by Dale Miller

% (see http://wwu.cis.upenn.edu/"dale/forum).

% rewritten by Christian Urban last modified 07.09.96
%

VAN Y YA AAAANANNANAANN NN NSNS NN AN S NN AN AN AT AAAA

module aux.

Y A A YA YA Y A A YA YN YA YA AT A A YA YA SN YA A AN AN AN YA SN NAS
% "split L K M" succeeds if L is the result of appending K to M.
type split list A -> list A => 1list A -> o.

split nil nil nil.
split (X::L) (X::K) M :- split L K M.
split (X::L) K (X::M) :- split L K M.

YA A AN YA AN AN A NN A A AR AN SN S YA YA AN S YA AT A A AN S YA A AN A Y AT AN A YA A
% "membNrest X L M" succeeds for every occurrence of X in L,

% where M is the result of removing that occurrence from L.

type membNrest A => list A -> list A -> o.

membNrest X (X::Rest) Rest.
membNrest X (Y::Tail) (Y::Rest) :~ membNrest X Tail Rest.

YA AN AN A AN AN NN A AN S SN S YA AN S SN AN A AN SN S AN A Y YA AA NS SN S
% "memb X L" succeeds if X is a member of L; this will succeed

% at most once.

type memb A -> list A -> o.

memb X (X::Rest) :— !.
memb X (Y::Tail) :- memb X Tail.

Ul Rt Tttt ol Bt T b R L L WA A AA R DALY
% "member X L" succeeds if X is a member of L; this will succeed
% as often as X unifies with members of L.

117

P <


http://www.cis.upenn.edu/~dale/forum

APPENDIX B. SOURCE CODE 118

type member A -> list A -> o.

member X (X::Rest).
member X (Y::Tail) :- member X Tail.

EAAA NSNS AN A AA RN AN NN AN ANAN NN SN YA NN YA A NS AN ANA AN
% "append L X M" succeeds if M is the result of appending K to L.
type append list A -> list A -> list A -> o.

append nil K K.
append (X::X8) ¥YS (X::Z8) :- append XS YS ZS.

VAN AN YA AN A AN A AN AN N AN AN AN A NN AN RS AANAN AN AN AN N ANA NSNS AN YA A A YA
% "removed F X Y" succeeds if Y contains less occurrences

% of F than X

% e.g., removed 2 (1::2::3::nil) (1::3::nil).

type removed A -> list A -> list A -> o.

removed F CIn COut :- count F CIn Occln,
count F COut OccOut,
OccIn > DccOut.

VAN NSNS S AAAAANANANNANA NN AN NSNS AN YA YA TAAAAAAASAAAASAA
% "count F X Y" succeeds if Y is the number of occurrences of

% F in X.

type count A -> list A -> int b >

count F nil 0.
count F (F::Rest) Occlew :- count F Rest OccOld, DccNew is Occ0ld + 1.
count F (Y::Rest) Occ :- not (F = Y), count F Rest Occ.

NSNS A NSNS NN AN NS NA AN AN AN ANAN NS S A AN SN YA ASAAAA NN YN Y AN A AAAAAA
% "deleteone F K L" succeeds if L is the result of removing the

% first occurrence of F in K and in case F does not occur in K,

% it succeeds when K = L.

type deleteone A -> list A -> list A -> o.

deleteone X nil nil.
deleteone X (X::Tail) Tail :- !.
deleteone X (Y::Tail) (Y::Rest) :- deleteone X Tail Rest.

VAN A AN YA AN AR SN AA AN A AN S YA YA YA AN YA AANA N YA AN A AN A YA
% multiset difference

% "diff X Y Z" succeeds if Z is the result of removing all elements
% of Y from X (Y is a submultiset of X).

% e.g., diff (1::2::3::4::nil) (2::4::nil) (1::3::nil)

type diff 1list A -> list A -> list A -> o.

diff nil X nil.
diff X nil X.
diff Ti (X::T2) Rest :— deleteone X T1 TRest , diff TRest T2 Rest.

YANNA N AN RSN YN A AN AN S Y YA AN NS A AN A AN S AN AN A AN A YA SAA Y YA T AN A A S
% multiset intersection

% "inter X Y Z" succeeds if Z consists only on elements which are
% in X and Y

% e.g., inter (1::2::3::4::nil) (2::4::nil) (2::4::nil).

type inter 1list A -> list A -> list A ~> o.




APPENDIX B. SOURCE CODE 119

inter nil Y nil.
inter (X::Rest) Y (X::T) :- memb X Y, deleteone X Y U, inter Rest U T, !.
inter (X::Rest) Y T :~ intexr Rest Y T.

VYA NN AN AN S AN N AN NN AN A N A S YA A Y A AN YA YA YAy A YA A
% removes a formula from the slack output when necessary

% "remove F X Y Z Z" succeeds if Y and Z together contain less

% occurrences of F than X;

% "remove F X Y Z W" succeeds if Y and Z together contain the

% same number of occurrences of F as X, then W is the result

% of removing an occurrence of F from Z.

% e.g., remove 1 (1::2::1::1::mil) (1::2:;:nil) (1::nil) (1::nil).

% remove 1 (1::2::1::1::mil) (1::2::nil) {(1::1::nil) (1::nil).
type remove A -> list A -> list A -> list A -> list A -> o.

remove F XI X0 XS XSnew :- append X0 XS XT,
count F XI OccI,
count F XT OccO,
(( OccI > OccO, copy X8 XSnew );
( Occl = Occl, memb F XS, deleteone F XS XSnew )).

VANYANA N YAAN S AN AN S YA SN S AN S A NN NSNS YN Y YA S A S A YA A AN AAAS
% “copy X Y" succeeds if list X is equivalent to list Y
type copy list A -> list A -> o.

copy nil nil.
copy (X::R) (X::T) :- copy R T.

B.2 Module forumlog.mod

VYA NN NN AN YA YA A SN AN YA A SN N S Y VAN S S NA YA AA SN A YA XA YAA A
% Declaration of FORUM’s Connectives

% (written in Terzo lambda-Prolog, Version 1.0b)

%

% The source code is based on an earlier version by Dale Miler

% (see http://www.cis.upenn.edu/"dale/forum).

% modified by Christian Urban last modified 07.09.96

A

VA AR AN A NSNS S S S YA A SN YA YA S ANy YA S YA AT YA S YA NSV A Y S A AT YA RS

module forumlog.

YANAN AN NN AN AN NN SR AN AN A NN AN YA AN YRS AN NS S AAAA A AN AN A ST A AA YA
% The logical connectives for Forum.

%% These are divided into four groups.

%% (1) implications

type == o ->0 >0 % intuitionistic implication

type <== o=>o0=->0 % reverse intuitionistic implication
type --o o->0-"->o0 % lollipop

type o-- o=->0->o0 % reverse lollipop

infixr --o 1.
infixl o=~ 1.
infixr ==> 1.
infixl <== 1.

VYA YA AN A YA S A YA A A A A A YA A A Y A Y YA A A S AN YA AN NSNS YA S YA NS


http://www.cis.upenn.edu/%22dale/forum

APPENDIX B. SOURCE CODE 120

%% (2) unit elements

type top 0. % top (additive true)
type bot 0. % multiplicative false

AN Y AN SN YA Y Y AN A SN A Y AN A Y A AN AN A YA AN Y I AN AT YA

%% (8) connectives

type @ o => o0 => o, % with (additive or)
type | o ->o0 -> o0, % par (multiplicative or)
infixr @ 3.

infixr | 2.

WA AN A A AN AN AT AN AN AN TN A S A Y ANy S YA YA S AN Y YA YA

%% (4) quantifier and exponential

type forall (4 => o) -> 0. Y universal quantification
type 7 o -> o. % why-not modal

A A S A AN A A A A A A YA A AN A Y AN AN A YA A YA

%% (5) negation and non-primitive connectives
type neg o -> o.

type x o ~> o => o, % times
infixr x 2.

P AR AN AN AN A S AN AN AN Y N S A A YA NS AA AN A NI AN NI A VAN AN A

type atomic o —-> o.
type non_atomic o ~-> o.

non_atomic (B ==> C).
non_atomic (B <== C).
non_atomic (B --o0 C).
non_atomic (B o-- C).
non_atomic (top).
non_atomic (bot).
non_atonic (B @ C).
non_atomic (B | C).
non_atomic (7 B).
non_atomic (forall B).
non_atomic (neg B).
non_atomic (B x C).

atomic B :- not (non_atomic B).

B.3 Module choosetest.mod

VAN YA AN RN AN AR NN NS A NN NS NA AN Y S A AN NS SN AANN N YA Y YA AN A YA S
% Choose Test

% (written in Terzo lambda-Prolog, Version 1.0b)

%

% written by Christian Urban last modified 07.09.96

h
Tttt N A A DD BB ARl L AL AR RA LY

module choosetest.




APPENDIX B. SOURCE CODE 121

accunulate forumlog, aux.

Y AN A A Y YA ANy SN S Y YA A A A Y A AN AN S YA A A AN A A S YA S AN AR Y AT SA NS
% “"choosetest F X" succeeds if F is ‘bot’, of the form ‘? B’ or an
% atomic formula which is a member of X;

% in case F is a compound formula it will be decomposed recursively.
type choosetest A -> list A -> o.

choosetest (bot) X.

choosetest (7 B) X.

choosetest A X - atomic A, memb A X.

choosetest (B @ C) X :- choosetest B X ; choosetest C X.
choosetest (B | C) X :— choosetest B X , choosetest C X.
choosetest (B -~o C) X :~ choosetest C X.

choosetest (C o-- B) X :- choosetest C X.

choosetest (B ==> C) X :- choosetest C X,

choosetest (C <== B) X :- choosetest C X,

choosetest (forall B) X :- choosetest (B T) X.
choosetest (neg B) X :~ choosetest (B --o bot) X.
choosetest (B x C) X :- choosetest (neg ({(neg B) | (neg C))) X.

B.4 Module forum.mod (Calculus F’)

T O T AT A G
% Proof system F’

% (written in Terzo lambda-Prolog, Version 1.0b)

%

% The source code is based on an earlier version by Dale Miler

% (see http://www.cis.upenn.edu/~dale/forum).

% rewritten by Christian Urban last modified 07.09.96
%

YA AN YN A AN A AN A A AN A AN A AN AN A SN Y A A A A A YA A Yo
% The right predicate represents the provability of a non-stoup sequent;
% the stoup predicate represents the provability of a stoup sequent.
module forum.

accumulate forumlog, aux, choosetest.

type right list o —> % Psi (classical)
list o ~> % Delta formulae (linear)
list o -> % AC formulae (linear)
list o -> % BC formulae (linear)
list o -> o. % Upsilon (classical)
type stoup list o -> % Psi (classical)
list o => % Delt formulae (linear)
o -> % Stoup
list o ~> % AC formulae (linear)
list o -> o, % Upsilon (classical)

VYA NN YA AN AN NS AR AN NSNS SN AN VAR YA NS AN A YA SN AN YA AR YA AN YA S A S YA YA
% atomic-R rule
right Psi Delta AC (A::BC) Upsilon :-

atomic A,

right Psi Delta (A::AC) BC Upsilon.


http://www.cis.upenn.edu/~dale/forum

APPENDIX B. SOURCE CODE

VAN NN A AN AN NS AN S YA SN A YA AN A S A AN A
% With-R rule (@-R rule)
right Psi Delta AC ((B @ C)::BC) Upsilon :-

right Psi Delta AC (B::BC) Upsilon ,

right Psi Delta AC (C::BC) Upsilon.

FY YA A S Y Y Y YN S AN S YA AN AN SN A X ANN A AN Y S AN SIS A A A S YA AN YA
% bot-R rule
right Psi Delta AC (bot::BC) Upsilon :-

right Psi Delta AC BC Upsilon.

Py YA A A AN Y Y Y Y YA A YA S AN AN AN AN YA AN S AN A AN YA AN A A A S AN AN AA
% Par-R rule (|-R rule)
right Psi Delta AC ((B | C)::BC) Upsilom :-

right Psi Delta AC (B::C::BC) Upsilon.

VAN YA YA A AN Y AN AN AN AN YA Y A NN S Y YA A A AN A A AN NS AN YA RSN N AN A XA AN A AN A
% Lolli-R rule (--~o-R rule)
right Psi Delta AC ((B --o C)::BC) Upsilon :-

right Psi (B::Delta) AC (C::BC) Upsilon.

right Psi Delta AC ((C o-- B)::BC) Upsilon :-
right Psi (B::Delta) AC (C::BC) Upsilon.

VYN A NN AN SN AN A AN SN NSNS NSNS A AN YA A AN AA NSNS YA AN AN YA SN AN A
% Hook-R rule (==>-R rule)

right Psi Delta AC ((B ==> C)::BC) Upsilon :-
right (B::Psi) Delta AC (C::BC) Upsilon.

right Psi Delta AC ((C <== B)::BC) Upsilon :-
right (B::Psi) Delta AC (C::BC) Upsilon.

Tl et Tt T N AR TN U AR L L BTN ANAARA LD DA ANANRT,
% forall-R rule

right Psi Delta AC ((forall B)::BC) Upsilon :-
pi x\ (right Psi Delta AC ((B x)::BC) Upsilon).

A A A YA S A AN AN A YA Y SN NN S AN A S NN AN S AR AN S AN A S YA S YA S

% 7-R rule

right Psi Delta AC ((? B)::BC) Upsilon :=
right Psi Delta AC BC (B::Upsilon).

VAN AN AN A AN YA AR TN A A YA A A NAA N A AN YA A AN YAA N YA NN AN A YA SN YA AN
% Times-R rule (x-R)

right Psi Delta AC ((B x C)::BC) Upsilon :-
right Psi Delta AC ((neg ((neg B) | (neg C)))::BC) Upsilon.

YAANAAA RN S YA A S SN A SN AN YN AN N AN AN A AN A Y YA AN YA AN TN S SN AN YA AN A A A
% neg-R rule (neg-R)

right Psi Delta AC ((neg B)::BC) Upsilon :~
right Psi Delta AC ((B --o bot)::BC) Upsilon.

VAN NN AN A AN AN AN S Y SN A AN AN AN S SN SN NS Y YA Y YA AN S A YA AN A Y A

% initial rule

122



APPENDIX B. SOURCE CODE

stoup Psi nil A (A::nil) Upsilon.

LY Ay A A A A S AN A A SN SN A A AN AN A AN A AN A YA A AN Y YA A

% inititial?l rule

stoup Psi nil A nil Upsilon :-~
atomic A,
memb A Upsilon.

PAA A AN S AN A NS A YA AN AN AN S AN AN A AN AN AN SN AN A AN A SIS A NA N AN YA Y YA NAS
% bot-5 rule

stoup Psi nil bot nil Upsilon.

PN AN SN S AN AN AN SN AA NSNS AA A ST S AN AN Y YA A A
% With-S rule (@-S rule)

stoup Psi Delta (B @ C) AC Upsilon :~
stoup Psi Delta B AC Upsilon;
stoup Psi Delta C AC Upsilon.

YA A A A YA S Y YA A A Y A NN YA AN A YA Y AN SRS YN A YA A AN

% 7-8 rule

stoup Psi nil (7 B) nil Upsilon :-
right Psi (B::nil) nil nil Upsilon.

YANA AN NSNS AN YN AN AN SN AN NN AN AN YA S S AN AN YA YA N NS NAAN A Y S S
% Par-S rule (]-S rule)

stoup Psi Delta (B | C) AC Upsilon :-
split Delta Deltal Delta2,
split AC AC1 AC2,
stoup Psi Deltal B AC1 Upsilon ,
stoup Psi Delta2 ¢ AC2 Upsilon.

VAN NSNS AN NSNS AN NSNS AN Y S NSNS S A A ANA NS AN AN AN YA N A A A A A
% forall-S rule

stoup Psi Delta (forall B) AC Upsilon :-
stoup Psi Delta (B T) AC Upsilon.

Gttt Uttt ettt Tt e bl et e e e e A BTN A AN T,
% Lolli-8 rule (--0-S rule)

stoup Psi Delta (B --o C) AC Upsilon :-
split Delta Deltal Delta2,
split AC AC1 AC2,
stoup Psi Deltal C AC1 Upsilon,
right Psi Delta2 AC2 (B::nil) Upsilon.

stoup Psi Delta (C o~- B) AC Upsilon :~
split Delta Deltal DeltaZ2,
split AC AC1 AC2,
stoup Psi Deltal C AC1 Upsilon,
right Psi Delta2 AC2 (B::nil) Upsilon,

VAN NN YA NN N AN RSN AN SN A A SN A A SN A Y AN A AN AN AN AN A AT YA

123



APPENDIX B. SOURCE CODE

% Hook-S rule (==>-S rule)

stoup Psi Delta (B ==> C) AC Upsilon :-
stoup Psi Delta C AC Upsilon ,
right Psi nil nil (B::nil) Upsilon.

stoup Psi Delta (C <== B) AC Upsilon :-
stoup Psi Delta C AC Upsilon,
right Psi nil nil (B::nil) Upsilon.

T T T T T T AT

% Times-S rule (x-S)

stoup Psi Delta (B x ¢) AC Upsilon :-
stoup Psi Delta (neg ((neg B) |(neg C))) AC Upsilon.

A R A A AR AR AR AL
% neg-S rule (neg-S)

stoup Psi Delta (neg B) AC Upsilon :-
stoup Psi Delta (B --o bot) AC Upsilon.

VAN AN S AN NS AANA NN S E SN AN NSNS AN NN YN NAN AN YA S AN A NANA YA YA YA A AN A YA
% choose rule
% choose! rule
% choose? rule

right Psi BDelta AC nil Upsilom :-
membNrest B BDelta Delta,
append AC Upsilon Rightside,
choosetest B Rightside,
stoup Psi Delta B AC Upsilon.

right Psi Delta AC nil Upsilon :-
member C Psi,
append AC Upsilon Rightside,
choosetest C Rightside,
stoup Psi Delta C AC Upsilon.

right Psi Delta AC nil Upsilon :-
member D Upsilon,
right Psi Delta AC (D::nil) Upsilonm.

YA A YA Y NS AN A S AN A YA A AN YA AN AN AN A Y A A AT AR A
% top-R rule

right Psi Delta AC (top::BC) Upsilon.

B.5 Module forum.mod (Box Calculus B)

YA A AN AN AN AN AN AN AN SN A YA AN Sy YA A A YA S S AN A A AN NS A AR
% Proof System B

% (written in Terzo lambda-Prolog, Version 1.0b)

%

% The source code is based on an earlier version by Dale Miler

% (see http://www.cis.upenn.edu/~dale/forum).

% rewritten by Christian Urban last modified 07.09.96

124


http://www.cis.upenn.edu/~dale/forum

APPENDIX B. SOURCE CODE

%

YANAAANANNAN S Y AN ANNNN N AN YA NN AANN Y S A AN AAS AN SN SN NANA AN AAN AN YA YA YA
% The right predicate represents the provability of a non-stoup box;
% the stoup predicate represents the provability of a stoup box.
module forum.

accumulate forumlog, aux, choosetest.

type right list o -> % Psi {classical)
list o => list o => % M formulae (linear)
list o -> list o => % A formulae (linear)
list o -> list o => % B formulae (linear)
list o => o. % Upsilon (classical)
type stoup list o > % Psi (classical)
list o -> list o => % M formulae (linear)
o -> % Stoup
list o => list o => % A formulae (linear)
list o ~> o. % Upsilon (classical)

YA S A NN ANA NN YA N AN AN SN Y NS AN YA S AN YA AN AN AN AN A YA Y Y YA AN YA
% atomic-R rule
right Psi MOM1 M1 AOA1 A1 (A::BOB1) Bl Upsilon :-

atomic A,

right Psi MOM1 M1 (A::A0A1) Al BOB1 Bi Upsilon ,

removed A (A::AQAl) A1l.

YAN AN YA AN AN AR YA A AN AN YA S Y YA AA AN SN NAN S Y Y YA A A
% With~R rule (€-R rule)
right Psi MOM1 M1 AOA1 A1 ((B @ C)::BOB1) Bl Upsilon :-

right Psi MOM1 M1 AOA1 A1 (B::BOB1) Bi Upsilon,

removed B (B::B0B1) Bi,

diff MOM1 M1 MO,

diff AOA1 Al AO,

diff BOB1 B1 BO,

right Psi MO nil A0 nil (C::B0) nil Upsilon.

AN A AR AR AR AR AR LS AR e
% bot-R rule
right Psi MOM1 M1 AOA1 Al (bot::BOB1) Bi Upsilom :-

right Psi MOM1 M1 A0OA1 Al BOBi Bl Upsilon.

VAN YA AN NS AN NSNS NS A A Y YA AN Y Y AN AN A AN YA YN AN A A AN YA
% Par-R rule (|-R rule)
right Psi MOM1 M1 AOAL A1 ((B | C)::BOB1) Bi Upsilon :-

right Psi MOM1 M1 AOA1 A1l (B::C::B0B1) B1 Upsilon,

removed B (B::BOB1) B1,

removed C (C::BOB1) Bi.

VAN AN AN NN NN AN NN AN NS Y NN YA YA AN AN AN AN A
% Lolli-R rule (--o-R rule)
right Psi MOM1 M1 AOA1 Al ((B -~o0 C)::B0B1) Bi Upsilon :-

right Psi (B::MOM1) M1 AOA1 A1 (C::BOB1) Bl Upsilon,

removed C (C::BOB1) Bi,

removed B (B::MOM1) Mi.

right Psi MOM1 M1 AOA1 A1 ((C o-- B)::BOB1) Bl Upsilon :-
right Psi (B::MOM1) M1 AOA1 A1l (C::BOB1) B1 Upsilon,
removed C (C::BOB1) Bi,

125



APPENDIX B. SOURCE CODE 126

removed B (B::MOM1) Mi.

AN AN A NSNS A NS AN AN N YA NN AN Y YNNI A A Y S AN AN AN A NSNS AN Y YN A AN )
% Hook-R rule (==>-R rule)

right Psi MOM1 M1 AOA1 A1 ((B ==> C)::BOB1) Bl Upsilon :-
right (B::Psi) MOM1 M1 AOA1 A1 (C::BOB1) B1 Upsilon ,
removed C BOB1 Bil.

right Psi MOM1 M1 AOA1 A1l ((C <== B)::B0B1) B1 Upsilon :-
right (B::Psi) MOM1 M1 AOA1 A1 (C::BOB1) B1 Upsilon ,
removed C (C::BOB1) B1.

Ul Ittt Ll et Al e AR Al N el A AA AR B LR LN AIA AR RN
% forall-R rule

right Psi MOM1 M1 AOA1 Al ({forall B)::BOBi) B1 Upsilon :-
pi x\ (right Psi MOM1 M1 AOA1 A1 ((B x)::BOB1) Bl Upsilon,
removed (B x) ((B x)::B0B1) B1 ).

YA A A A Y Y YA A A YA A Y A YA YA AN A A A S YA YA AN A

% 7-R rule

right Psi MOM1 M1 AOA1 A1l ((? B)::BOB1) B1 Upsilon :-
right Psi MOM1 M1 AOA1 A1 BOB1 B1 (B::Upsilon).

VAN YA A AN AT S A NN AN NANA SN SN AN Y YA A S A S YA AN SN AR T AN YA N AR
% Times~-R rule {(x-R)

right Psi MOM1 M1 AOA1 A1 ((B x C)::BOB1) Bi Upsilon :-
right Psi MOM1 M1 AOAl A1 ((neg ((neg B) | (meg C)))::B0B1) B1 Upsilon,

VAN AN AN AN A AN A A S YA A AN NS TN NS AN A AN YA NSNS Yy YA YA
% neg-R rule {(neg-R)

right Psi MOM1 M1 AOA1 A1 ((neg B)::BOB1) Bl Upsilon :-
right Psi MOM1 M1 AOA1 A1 ((B --o bot)::BOB1) Bi Upsilon.

WY AN S AN A AN AN A S YA NN AN A A SN NS AN NSRS S SN S S AN A YA Y A S

% initial rule

stoup Psi M1 M1 A AA1 Al Upsilon :-
atomic A,
memblrest A AA1 Al.

A AR AR AR AR A A AR AN AR AR AR AAR R

% inititial! rule
stoup Psi M1 M1 A A1 A1l Upsilon :-

atomic A,
memb A Upsilon.

Rl R l Tl el e Al N Nt Nl AN A DA DA DA DAY
% bot-S rule

stoup Psi M1 M1 bot A1l Al Upsilon.

Ul e Tt Ul Rl e e R A Fe AR LT A AR DUl b Ll
% With-S rule (@-S rule)



APPENDIX B. SOURCE CODE 127

stoup Psi MOM1 M1 (B @ C) AOA1 Al Upsilon :-
stoup Psi MOM1 M1 B AOA1 Al Upsilon;
stoup Psi MOM1 M1 C AOA1 Al Upsilon.

YA AR YA A A A AN YA S A YA AN S AN SN A AN AN YA NSNS S ST A S YA NS AAA

% 7-8 rule

stoup Psi M1 M1 (7 B) A1 A1 Upsilon :-
right Psi (B::nil) nil nil nil nil nil Upsilon.

A Il T Tl et Tt Nl A A Rl AR AR L DI RU R DAL D NS
% Par-8 rule (|-8 rule)

stoup Psi MOMIM2 M2 (B | C) AOA1A2 A2 Upsilon :-
stoup Psi MOMIM2 MIM2 B AOA1A2 A1A2 Upsilon,
stoup Psi MIM2 M2 C A1A2 A2 Upsilon.

Al R Rl T et t Al T Rl A I LRI AR AR T IARAA AL
% forall-S rule

stoup Psi MOM1 M1 (forall B) AOA1 Al Upsilon :-
stoup Psi MOM1 M1 (B T) AOA1 A1 Upsilon.

YA AN NN NSNS SN NN AANN NSNS YA NN AN AN SAA Y SAAA Y NS S AN Ao YA
% Lolli-S rule (--o-S rule)

stoup Pai MOM1IM2 M2 (B --o C) AOA1A2 A2 Upsilon :-
stoup Psi MOMiM2 M1M2 C AOA1A2 A1A2 Upsilon,
right Psi MIM2 M2 A1A2 A2 (B::nil) nil Upsilon.

stoup Psi MOMiM2 M2 (C o-- B) AOA1A2 A2 Upsilon :-
stoup Psi MOMiM2 MiM2 C AOA1A2 A1A2 Upsilon,
right Psi MIM2 M2 A1A2 A2 (B::nil) nil Upsilon.

VA A AN A AN AN SN S AN AN S S A NN AA S YA AN AYAN AR AN AN S AN A
% Hook-S rule (==>-S rule)

stoup Psi MOM1 M1 (B ==> C) AOA1l Al Upsilon :-
stoup Psi MOM1 M1 C AOA1 A1 Upsilon ,
right Psi nil nil nil nil (B::nil) nil Upsilon.

stoup Psi MOM1 M1 (C <== B) AOA1 Al Upsilon :-
stoup Psi MOM1 M1 C AOA1 A1 Upsilon ,
right Psi nil nil nil nil (B::nil) nil Upsilon.

Y AN A A AN A A A AN AN A S A AN A YA YA N A AN YA N AN AN A AN

% Times=S rule (x-S)

stoup Psi MOM1 M1 (B x C) AOA1 Al Upsilon :-
stoup Psi MOM1 M1 (neg ((neg B) |(neg C))) AOA1 Al Upsilon.

YA N AN AN AN NN YA A AN AN AN S AN A AN S A AN A AN A Y YAV AN AN SN AN S S YA A YA
% neg-S rule (neg-S)

stoup Pgi MOM1 M1 (neg B) AOA1 A1 Upsilom :-
stoup Psi MOM1 M1 (B --o bot) AOA1l Al Upsilon,

YA A AN AN AN S A A AR AN A Y A AN YA AN YA YA R AN YA YA YA



APPENDIX B. SOURCE CODE

% choose rule
% choose! rule
% choose? rule

right Psi BMOM1 M1 AOA1 A1 B1 B1 Upsilen :-
nembNrest B BMOM1 MOM1,
append AOA1 Upsilon Rightside,
choosetest B Rightside,
stoup Psi MOM1 M1 B AOA1 Al Upsilon.

right Psi MOM1 M1 AOA1 A1 B1 Bi Upsilomn :-
memnber B Psi,
append AQAl1 Upsilon Rightside,
choosetest B Rightside,
stoup Psi MOM1 M1 B AOA1 A1l Upsilon.

right Psi MOM1 M1 AOA1 A1 B1 Bl Upsilonm :-
menber B Upsilon,
right Psi MOM1 M1 AOA1 Al (B::nil) nil Upsilon.

FY A AN AN SN A Y AN YA S S AS YA YA YA AN YOS YA NSNS YA AN A YA A YA A
% top-R rule

right Psi MOM1 M1 AOA1 Al (top::BOB1) Bl Upsilon :-
split MOM1 MO M1,
split AOA1 AO A1,
split BOB1 BO B1.

B.6 Module forum.mod (Box Calculus B')

VAN N AN AN A AN S AN N A NSNS A AN A S AN ANy YA SV AA S Y YA Y Y A YA AN
% Proof System B’

% (written in Terzo lambda~Prolog, Version 1.0b)

%

% The source code is based on an earlier version by Dale Miler

% (see http://www.cis.upenn.edu/~dale/forum).

% rewritten by Christian Urban last modified 07.09.86
%

EAA NS AN SN AAAA SN AN NN AN NN NN AN NN AAANA AN AN SN AN A YA A YA S AN AAAA

% The right predicate represents the provability of a non-stoup sequent;
% the stoup predicate represents the provability of a stoup sequent.

module forum.

accumulate forumlog, aux, choosetest,

type right list o -> % Psi (classical)
list o => list o -> list o -> % M formulae (linear)
list o => list o => list o => % A formulae (linear)
list o => list o => list o => % B formulae (linear)
list o -> o. % Upsilon (classical)

type stoup list o -> % Psi (classical)

list o -> list o ~> list o ~> % M formulae (linear)
o => % Stoup
list o => list o -> list o => % A formulae (linear)

list o => o. % Upsilon (classical)

128


http://www.cis.upenn.edu/~dale/forum

APPENDIX B. SOURCE CODE 129

B Rl T Tt T T e R Tt el L Tt le A L Al UL AR AR LI AN

% atomic-R rule

right Psi MOMIMT M1 MT AOA1AT A1 AT (A::BOB1iBT) B1 BT Upsilon :~
atomic A,
right Psi MOMIMT M1 MT (A::AO0A1AT) Al AT’ BOBIBT Bi BT Upsilon,
remove A (A::AQA1AT) Al AT’ AT.

UA SN A AN AN Y AN A AN SN AN A A AN A AT Y AN AN AA YA A A
% With~R rule (@-R rule)
right Psi MOMIMT MiMi1* MT"MT* AOA1AT A1Al* AT AT*

((B @ C)::BOBIBT) BiB1x BT"BT* Upsilon :-
right Psi MOMiMT M1 MT AOQA1AT A1 AT (B::BOB1BT) Bl BT’ Upsilon,
remove B (B::BOB1iBT) B1 BT’ BT,
diff MOMIMT M1 MO,
diff AQAIAT Al AO,
diff BOBiBT B1 BO,
append MO MT MO*M1xMT*,
append A0 AT AO*A1%AT*,
append BO BT BO*B1xBTx,
right Psi MO*M1xMT# M1* MT* AO*A1%AT* Alx AT# (C::BO*B1%BTx) Bix BT* Upsilon,
inter MO M1x nil,
inter A0 Alx nil,
inter BO Bilx nil,
append M1 Mix MiMix,
append Al Alx AlAlx,
append B1 Blx B1Bix,
inter MT MT% MT"MT*,
inter AT AT# AT AT*,
inter BT BT* BT BTx.

P AN AN S AN AN S A AN NN S NSNS YA AN AN AN YA AAAAANA YA A A AN AN A

% bot—~R rule

right Psi MOMIMT M1 MT AOAIAT Al AT (bot::BOB1BT) Bi BT Upsilon :-
right Psi MOMIMT M1 MT AOA1AT A1 AT BOB1BT B1 BT Upsilon.

VAN NAA N YA AN AN SRS AN NS NN N AN S S A A AN A AN NANANA N YN NANA AN YA S A YA XA NS

% Par-R rule (|-R rule)

right Psi MOMIMT M1 MT AOA1AT A1 AT ((B | C)::BOB1BT) B1 BT Upsilon :-
right Psi MOMIMT M1 MT AOA1AT A1 AT (B::C::BOB1BT) B1 BT’ Upsilonm,
remove B (B::BOB1BT) Bi BT’ BT’’,
remove ¢ (C::BOB1BT) Bi BT’’ BT.

Bt T Rl T R et A R T Lttt el el A L R AA ATl Al ht e

% Lolli-R rule (--o-R rule)

right Psi MOMIMT M1 MT AOA1AT Al AT ((B -~o C)::BOB1BT) B1 BT Upsilon :-
right Psi (B::MOM1MT) Mi MT’ AOA1AT A1 AT (C::BOBiBT) B1 BT’ Upsilonm,
remove C (C::BOB1iBT) B1i BT’ BT,
remove B (B::MOM1MT) M1 MT’> MT.

right Psi MOMIMT M1 MT AOA1AT A1l AT ((C o~~ B)::BOB1BT) B1 BT Upsilon :-
right Psi (B::MOM1MT) M1 MT® AOA1AT A1 AT (C::BOBiBT) B1 BT’ Upsilon,
remove C (C::BOB1BT) B1 BT’ BT,
remove B (B::MOMIMT) M1 MT? MT.

VAN A AN YA NN NA N YA AN AN A AAANANA NS A N Y SN NSNS AA AN YA A YA YA
% Hook~R rule (==>-R rule)

right Psi MOM1iMT M1 MT AOA1AT A1 AT ((B ==> C)::BOBIBT) B1i BT Upsilon :-



APPENDIX B. SOURCE CODE

right (B::Psi) MOMIMT Mi MT AOA1AT A1 AT (C::BOB1BT) B1 BT’ Upsilon,
remove C (C::BOB1BT) B1 BT’ BT.

right Psi MOMIMT M1 MT AOA1AT A1 AT ((C <== B)::BOB1BT) B1 BT Upsilon :-
right (B::Psi) MOMIMT M1 MT AOA1AT A1 AT (C::BOB1BT) B1 BT’ Upsilon,
remove C (C::BOBiBT) B1 BT’ BT.

AN AN AN AN S YA AN YA YA AN A AN AN S A A NS A AN AR AN YA A A
% forall-R rule

right Psi MOMIMT M1 MT AOA1AT A1 AT ((forall B)::BOB1BT) B1 BT Upsilon :-
pi x\ (right Psi MOMIMT M1 MT AOA1AT A1 AT ((B x)::BOBIBT) B1 BT’ Upsilon,
remove (B x) ((B x)::BOB1BT) B1 BT’ BT).

VAN A AN SR AN A A AN YA A YA AN AN SN AN AN A YA A A NS

% 7-R rule

right Psi MOMIMT M1 MT AOA1AT A1 AT ((7 B)::BOB1iBT) Bi BT Upsilon :-
right Psi MOMIMT M1 MT AOA1AT A1 AT BOB1BT B1 BT (B::Upsilon).

VAAA AN AR A AR AN ANANN NN ANAANA AN NN NS AN A A YA YA NN AN AN A YA S A AAAAA
% Times-R rule (x-R)

right Psi MOMIMT M1 MT AOA1AT A1 AT ((B x C)::BOBiBT) Bi BT Upsilon :-
right Psi MOMIMT M1 MT AOQA1AT Al AT
((neg ((neg B) | (neg C)))::BOBIBT) Bi BT Upsilon.

YAAAAAAA AN SN A NN Y ANAAAA S A AN A AN AN YA NSNS AAAAA S YA AA YA YA AA S NS A A
% neg-R rule (neg-R)

right Psi MOMIMT M1 MT AOA1AT A1 AT ({(neg B)::BOB1BT) B1 BT Upsilon :-
right Psi MOMIMT M1 MT AOA1AT A1 AT ((B --o bot)::BOBIBT) Bl BT Upsilon.

YA A A A Y A A A Y YA YA A A YA A A S A A AR Y A AN AN A AN A AR A
% top-R rule

right Psi MT nil MT AT nil AT (top::BT) nil BT Upsilon.

P YA A YA A A AN A YA S A YA AN A AN A Y NN YA AT YAy AN A A

% initial rule

stoup Psi M1 M1 nil A AA1 A1 nil Upsilon :~
atomic A,
nembNrest A AAl Al.

WY YA AN AN AN A Ay AN YA A AN S A S YA YA A YA A A AN A A S Y AN NS AN A A AN

% inititial! rule
stoup Psi M1 M1 nil A A1 Al nil Upsilon :~

atomic A,
menmb A Upsilon.

AN AN NN S SN NN YA AN Y YA AN AN SN AANN SN S AN AN YN SN AN A AN YA
% bot~8 rule

stoup Psi M1 M1 nil bot A1 Al nil Upsilon.

I Ul e Rl Tt Al le At T KA AL e AR AR AL AL DR AL AR AA DAY
% With-S rule (€-S rule)

130



APPENDIX B. SOURCE CODE

stoup Psi MOMIMT M1 MT (B € C) AOA1AT Al AT Upsilon :-
stoup Psi MOMIMT M1 MT B AOA1AT A1 AT Upsilon;
stoup Psi MOMIMT M1 MT C AOA1AT A1 AT Upsilon.

L A A A A AN A Y A A A AN N AN AN S AN N AR YA AN AN AN A YA A A

% 7-8 rule

stoup Psi M1 M1 nil (7 B) Al Al nil Upsilon :-
right Psi (B::nil) nil nil nil nil nil nil nil nil Upsilon.

VAN S AN S AN AN AN S A AN AN Y Y YA AN YA YAAAN N SN NN AN Y YN AN AN AN S YA A A A
% Par-S rule (|-S rule)

stoup Psi MOMIMT M1~Mix MT"M1*MT* (B | C) AOA1AT A1°Alx AT A1*AT* Upsilon :-—

stoup Psi MOMIMT M1 MT B AOA1AT A1 AT Upsilon,

append M1 MT MO*M1xMT*,

append A1 AT AO%A1%AT*,

stoup Psi MOxM1ixMT* Mix MT* C AO*A1%AT* Alx AT* Upsilon,
inter M1 Mix M1"Mix,

inter Al Als A1”Alx,

inter MT Mix MT"Mix*,

inter AT Alx AT Alx,

append MT"M1* MT* MT M1kMT*,

append AT Alx AT AT A1%AT*,

VAN S AN YA A AN AN NS AN AN Y E N AN TN S S S AN AN YN S AN S Y NS AA NS AN NN S S A A
% forall-S rule

stoup Psi MOMIMT M1 MT (forall B) AOA1AT A1 AT Upsilon :-
stoup Psi MOMIMT M1 MT (B T) AOA1AT A1 AT Upsilon.

YA YA AN AN AN AN AN A AN AN A AN NSNS NN AN YA A YA AN YA AN NN A YA YA AN YA S A A YA
% Lolli-$S rule (--o0-8 rule)

stoup Psi MOMIMT M1~M1% MT MikMT* (B --o C) AOA1AT A1"A1x AT A1*AT* Upsilon :

stoup Psi MOMIMT Mi MT C AOA1AT A1 AT Upsilon,

append M1 MT MO*M1i%MTx,

append Al AT AO*A1*AT%,

right Psi MOAM1#MT* M1x MT* AO*A1#AT% Al AT+ (B::nil) nil nil Upsilon,
inter M1 Mix M1"Mi%,

inter A1 Al% A1"Alx,

inter MT M1x MT"Mix,

inter AT Alx AT Alx,

append MT"Mix MT* MT "M1kMTx*,

append AT Al® AT* AT A1*AT*.

stoup Psi MOMIMT M1~Mix MT"M1#MT* (C o~- B) AOA1AT A1°A1k AT"A1%AT* Upsilon :

stoup Psi MOMIMT M1 MT C AOA1AT A1 AT Upsilon,

append M1 MT MOxM1xMT*,

append Al AT AOxA1%AT*,

right Pai MOxM1xMT* Mi* MT* AO¥A1xATx Alx AT* (B::nil) nil nil Upsilon,
inter M1 Mix M17Mix,

inter Al Alx A1°Alx,

inter MT Mix MT"Mix,

inter AT Alx AT Alx,

append MT"Mi% MT* MT M1*MTx,

append AT Al* ATs AT A1*AT*,

131



APPENDIX B. SOURCE CODE 132

VAN A AN YA N Y AN YA AN YA NN NN S S AN NS AN SN AN YA AN SN NS AN AN A
% Hook-S rule (==>-3 rule)

stoup Psi MOMIMT M1 MT (B ==> C) AOAIAT Ai AT Upsilon :-
stoup Psi MOMIMT M1 MT C AOA1AT Ai AT Upsilonm,
right Psi nil nil MT* nil nil AT* (B::nil) nil nil Upsilon.

stoup Psi MOMIMT M1 MT (C <== B) AOA1AT A1 AT Upsilon :-
stoup Psi MOMIMT M1 MT C AOA1AT At AT Upsilon,
right Psi nil nil MT* nil nil AT* (B::nil) nil nil Upsilon.

PN S Y YN A AN AA A S YA YA A A AN A AN A S YA A AN S A A NN AN AN YA A A S YA YA

% Times=-S rule (x~8)

stoup Psi MOMIMT M1 MT (B x C) AOAiAT Al AT Upsilon :-
stoup Psi MOMIMT M1 MT (neg ((neg B) |(neg C))) AOAIAT A1 AT Upsilon.

VAN SANANA NN AAA NN AN AN NSN AN NN AN SN AN NSNS A SN YA Y AT AAN NS YA S ANA YA
% neg~S rule (neg-S)

stoup Psi MOMIMT M1 MT (neg B) AOAIAT Al AT Upsilon :-
stoup Pgi MOMIMT M1 MT (B --o bot) AQA1AT A1 AT Upsilon.

VAN AN YA Y SN S AN AN AN AN NS AN Y Y YA A A AN AN Y SN AN
% choose rule
% choose! rule
% choose? rule

right Pei BMOMIMT M1 MT AOAI1AT A1 AT B1 Bl nil Upsilon :-
membNrest B BMOM1MT MOM1MT,
append AOA1AT Upsilon Rightside,
choosetest B Rightside,
stoup Psi MOM1IMT M1 MT B AOA1AT A1 AT Upsilon.

right Psi MOMiMT M1 MT AOA1AT A1 AT B1 B1 nil Upsilon :-
member B Psi,
append AOAIAT Upsilon Rightside,
choosetest B Rightside,
stoup Psi MOMIMT M1 MT B AOAIAT A1 AT Upsilon.

right Psi MOMIMT M1 MT ACA1AT At AT Bl Bi nil Upsilon :-
member B Upsilon,
right Psi MOMIMT M1 MT AOA1AT A1 AT (B::nil) nil nil Upsilon.



