
FORUM AND ITS IMPLEMENTATION 

Christian Urban 

 
A Thesis Submitted for the Degree of MPhil 

at the 
University of St Andrews 

 
 

  

1997 

Full metadata for this item is available in                                                                           
St Andrews Research Repository 

at: 
http://research-repository.st-andrews.ac.uk/ 

 
 
 

Please use this identifier to cite or link to this item: 
http://hdl.handle.net/10023/13443  

 
 
 

This item is protected by original copyright 

 
 

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13443


F o r u m  an d  its  Im p lem en ta tio n

Christian Urban 

March 13, 1997

Presented to the University of St Andrews in partial fuliilment 
of the requirements for the degree of Master of Philosophy.

Supervisor; Dr Roy Dyckhoff (St Andrews)

Examiners: Prof. Ursula Martin (St Andrews)
Dr David Pym (London)

Oi?EAN

L.



ProQuest Number: 10167180

All rights reserved

INFORMATION TO ALL USERS 
The qua lity  of this reproduction  is d e p e n d e n t upon the qua lity  of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te  m anuscrip t 
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te  will ind ica te  the de le tion .

uest
ProQuest 10167180

Published by ProQuest LLO (2017). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform  Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 4 81 06 - 1346



%



A bstract

Miller presented Forum as a specification logic: Forum extends several existing logic 
programming languages, for example AProlog, LO and Lolli. The crucial change in Forum is 
the extension from single succèdent sequents, as in intuitionistic logic, to multiple succèdent 
sequents, as in classical logic, with a corresponding extension of the notion of uniform proof.

Forum uses the connectives of linear logic. Languages based on linear logic offer extra 
expressivity (in comparison with traditional logic languages), but also present new imple
mentation challenges. One such challenge is that of context management, because the mul
tiplicative linear connectives ‘’P ’ and ‘-o ’ require context splitting. Hodas and Miller 
presented a solution (the 10 model) to this in 1991 for the language Lolli based on minimal 
linear logic. This thesis presents a technique which is an adaptation of the aforementioned 
approach for the language Forum and following a suggestion of Miller that the ‘?’ constant 
be treated as primitive in order to avoid looping problems arising from its use as a derived 
symbol. Cervesato, Hodas and Pfenning have presented a technique for managing the ‘T ’ 
constant, dividing each input context into a “slack” part and a “strict” part; the main novel 
contribution of this thesis is to modify this technique, by dividing instead the output con
text. This leads to a proof system with fewer rules (and consequent ease of implementation) 
but enhanced performance, for which we present some experimental evidence.
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C hapter 1

Introduction

1.1 B ackground on Linear Logic

An im portant problem of designing programming languages is to provide techniques for the 
programmers to reason about the computation in their programs. Forum is presented as a 
specification logic in [Miller, 1994], [Miller, 1995] and [Miller, 1996]. The use of specification 
logics is to tell programmers precisely what they implement and also enables them to reason 
about computation (e.g., in state and transition systems). Two detailed Forum specifications 
can be found in [Chiriraar, 1995]: in this work. Forum is employed to model computations of 
programs and to encode states and transitions using formulae and proofs. For this purpose 
Forum is rather convenient because it is based on linear logic which offers extra expressivity 
(in comparison with traditional logics)^, and it includes a natural extension of first-order 
logic to higher-order logic, as used in AProlog.

The present thesis is an approach towards an implementation of Forum. The specification 
language Forum incorporates a certain amount of non-determinism, and therefore, for its 
implementation, the set of proofs is restricted in such a way that the construction of proofs 
can be carried out efficiently by a computer. Hence, our Forum implementation can express 
only a fragment of the problems that one could specify using it as a specification logic owing 
to the restrictions of the underlying proof search strategy. In order to make this difference 
explicit from now on, the term FORUM is used rather than Miller’s term Forum.

F o r u m  is based on linear logic; this will be introduced in the remainder of this section. 
However, a detailed treatment of linear logic is beyond the scope of the thesis and the 
reader is referred to [Girard, 1987], [Lincoln, 1992] or [Scedrov, 1993]. The latter includes 
an extensive bibliography on the topic.

One of the main contributions of [Girard, 1987] is the presentation of linear logic as a 
sequent-style calculus. Roughly speaking, linear logic is a logic that analyses resources and 
resource use. For expository purposes, it is convenient to use a sequent calculus for classical 
logic (CL), such as the calculus, as a point of the conceptual departure. {LK  is
regarded as a cut-free calculus, and combines L K  and the ‘C ut’ rule.) A three-step
modification of leads to the sequent calculus for classical linear logic (CLL).

Firstly, the structural rules ‘Contraction-L/-R’ and ‘Weakening-L/-R’ are banned from

^In this context, expressivity means the ability to support useful programming constructs rather than  
the expressivity in terms of, for example, Turing-completeness.
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since these rules are responsible for the loss of resource control in CL. The rules are 
as follows;

^  Weakening-L —r — Contract ion-LA , B = > r  ^ A ,B

^  ^  Weakening-R  ̂ . U..k .. Contraction-Rr ,R  ^  A = ^ r , R

The contexts A and F are regarded as multisets since this permits the suppression of the 
structural rules ‘Exchange-L/-R’ in the sequent calculus. The ‘Weakening-L/-R’ rules al
low one to “throw awa.y” some formulae, and the duplication of formulae is possible using 
the ‘Contraction-L/-R’ rules. W ithout these four structural rules and an identity axiom 
formulated as follows:

Identity,B  B

Girard obtained a linear system where it is necessary to use each assumption exactly once.

Secondly, the lack of ‘Contraction-L/-R' and ‘Weakening-L/-R’ causes a distinction 
between two forms of conjunction; similarly for disjunction and implication. In CL, the 
two formulations, for example, of the conjunction rules:

A = ^ B , T  A = >  C, F  ̂ ^  A i = >  R, Fi Ag = >  C, F g 
A = > R A C , F  A i , A 2 = > R A C , F i , F 2

are equivalent, since it is possible to simulate the ‘ A-R^’ rule by liberal application of the 
‘Contraction-L/-R’ rules and a subsequent use of the ‘ A-Rm’ rule as shown in the following 
proof fragment:

A = > B ,T  A = > C ,F
A , A = ^ B  A C , F , F  _  ,

O o u t r etc 11011- L

Contraction-RA J5 A G, F

The vice-versa case can be achieved by using the ‘Weakening-L/-R’ rules and the ‘ A-Ra’ 
rule. However in CLL, the ‘ A-Rg’ rule, the ‘ A -R ^’ rule and the like become distinct, 
and accordingly, the corresponding connectives of CL are divided into the multiplicative 
and into the additive connectives. Observe that none of them is quite the same as the 
corresponding connective in CL. The contexts A and F contain all passive formulae of a 
rule. The rules of multiplicative and additive connectives treat these contexts in a different 
manner. The multiplicative connectives forbid a sharing of resources in a rule that branches 
the proof. The contexts in the conclusion (see Section 1.3) are split into two parts. Each 
premise receives a different portion from these contexts in the conclusion. In contrast, an 
additive rule that branches the proof tree requires a complete sharing of the contexts in the 
premises. That means both premises have the same context. Nevertheless, the quantifiers 
and the corresponding inference rules of CLL correspond to those in CL.

Thirdly, two new operators are introduced into the linear system, called exponentials. 
In effect, these operators provide a “controlled” contraction and weakening, i.e., the use 
of ‘Contraction-L/-R’ and ‘Weakening-L/-R’ is restricted to formulae decorated with an
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exponential. Along with the introduction of the exponentials come natural mappings of all 
C l ’s formulae into formulae in CLL (see for instance [Troelstra, 1992]); there are similar 
mappings for intuitionistic logic (IL) in [Girard, 1987], [Bierman, 1994] and [Negri, 1995]. 
This observation has led to the remark “Linear logic is a logic behind logics” [Lincoln, 1992]. 

In short, classical linear logic is based on the following connectives and logical constants:

multiplicative connectives and constants: -o , 0 , 1 , J_;
additive connectives and constants: &, 0 , T, 0;
exponentials: !, ?;
quantifiers: 3, V.

At this point, the linear negation is left out, but will be introduced later. The multiplicative 
connectives are called ‘linear implication’ or ‘lollipop’, ‘times’ and ‘par’. The corresponding 
logical constants are ‘one’ and ‘bottom ’. The additive connectives are ‘additive implication’̂ , 
‘with’ and ‘plus’. The corresponding logical constants are ‘top’ and ‘zero’. The exponentials 
are named ‘bang’ and ‘query’. As in CL, each quantifier is either an ‘existential quantifier’ 
or a ‘universal quantifier’.

Some differences between CL’s and CLL’s connectives are illustrated by an example taken 
from [Perrier, 1995]. Accordingly, the fact that an identifier x has the value 5 is encoded as 
the proposition (æ =  5). The change of state is modelled by the intuitionistic implication. 
However, an attem pt to reassign a new value to the identifier x, i.e. a change of state, fails 
in CL because the following sequent is provable:

(æ =  2) , (z =  2) D (æ =  5) => (x =  2) A (æ =  5)

On the other hand, it is possible to encode the reassignment in CLL using the ‘- o ’ connective, 
and thus represent the notion of state. In CLL, the following sequent is provable:

(x = 2) , (x = 2)-o(x ~  5) =>  (z =  5),

but neither (x =  2) , (x = 2)—o(æ =  5) = >  {x =  2) ® (z =  5)
nor (æ =  2) , (x ~  2)—o(x =  5) ==> (x = 2) & (x = 5)

is provable. This is what is meant by the aforementioned extra expressivity of linear logic.
The notions of state, action and change as described above fit naturally into a linear logic 
setting.

In [Lincoln et al., 1992], it is shown that propositional linear logic is undecidable. By 
contrast, the propositional fragment of CL is decidable. The undecidability seems to be a 
discouraging result, but on the other hand, it is a symptom of the expressiveness of linear 
logic which is illustrated by some examples below.

An application which fits nicely into the propositional fragment of linear logic is the 
encoding of Petri nets into formulae and proofs (for a survey see [Peterson, 1981], but our 
presentation follows [Cervesato, 1995]). Petri nets consist of two kinds of static component 
(places and transitions) and one kind of dynamic component (tokens). A Petri net is gen
erally presented as a directed graph, but here a more abstract presentation is used. It is

^The connective is often disregarded since it lacks some properties of an implication, e.g. A A \ s  
not provable. That is why it has no specific name.



CHAPTER 1. INTRODUCTION  8

assumed that places are stores for possibly infinitely many tokens. The state, when a cer
tain place labelled with a unique name p stores three tokens, is represented as the multiset 
{|p,p,p|}. The transitions, on the other hand, are the connection links between the states. 
Each transition has a premultiset and a postmultiset: each of them is a collection of place 
names. A transition is enabled if it satisfies the condition that for each occurrence of a place 
in the premultiset there exists a token on that place. In the following example, the transition 
t is enabled:

t ’s premultiset: {|p, p, q |}

t ’s postmultiset: {|g|}

in any state with at least two tokens are on p and at least one is on q. Each of these states
is represented as {|p,p, 9, . . .  |}. (The dots stand for an arbitrary but fixed multiset of tokens
stored in the Petri net.) When an enabled transition fires, tokens are removed from places 
according to the premultiset and added to places according to the postmultiset. This can 
be expressed in the example above by rewriting the multiset {|p,p, g , . . .  |} to {|g,. . .  |} where 
the other tokens in it are unchanged.

In linear logic, the tokens on a place are encoded as atomic formulae. The transitions 
are encoded as linear implications; the transition t from above is encoded as follows:

\{p® p®  q-oq)

where the implicans corresponds to the premultiset and the implicatum corresponds to the 
postmultiset. This implication is decorated with a bang because each time a transition is 
enabled the transition should be able to fire (i.e., it is a reusable resource). The elements 
of the pre- and postmultisets are connected by ‘0 ’ in the encoding. An empty multiset is 
represented by the constant ‘1’.

A Petri net is a simple system which appears to be very inexpressive. However, Petri 
nets are a powerful and flexible tool for describing concurrent processes. The permitted 
states of a concurrent system can be represented as the states of the Petri net that are 
reachable. (‘Reachable’ here means that a multiset of tokens which represents an initial 
state can by rewritten by firing transitions to a multiset of tokens which represent one of the 
aforementioned permitted states.) In terms of the encoding in linear logic, the reachability 
problem is represented as the following sequent:

tra n s itio n i, . . .  ,tra n sitio n k ,to ken si,. . tokens,^ = >  token^^ 0  .. . 0  tokeUe^.

The tokens s* (1 < * < u) encode the initial state and the tokens Cj (1 < ji < m) represent the 
final state. The above sequent is provable if and only if there are transitions that transform 
the token multiset { |s i,. . . ,  s„|} into the token multiset {|ei, . . . , 6̂ 1} (i.e., { jei,. . . ,  em[} is 
a reachable state). These observations are well-studied in [Marti'-Oliet & Meseguer, 1989], 
[Brown, 1990] and [Cervesato, 1995].

1.2 M o tivation

F orum combines sequents with multiple succedents and an approach for a corresponding 
notion of uniform proof. Along with the multiple succedents come a logic language which
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is rather expressive. In effect, F o r u m  is sound and complete with respect to CLL. T hat 
means that sequents of CLL are provable if and only if the corresponding sequent is provable 
in F o r u m ®. This observation is not obvious because the proof search in F o r u m  is rather 
restricted. However, Miller has shown the difficult part (the completeness) via a one-to-one 
conversion of FORUM proofs into a proof system developed by [Andreoli, 1992]. The proof 
can be found in [Miller, 1996]. Nevertheless, Miller did not introduce F o r u m  as a logic 
programming language. He called FoRUM a “multiple conclusion specification logic” . There 
are still unsolved problems (e.g., _L-headed implications occurring in the classical context of 
the antecedent) preventing its complete implementation as a logic programming language.

The main problem, the context splitting during proof search, is solved for other linear 
languages (it does not occur in traditional languages based on fragments of CL). The multi
plicative rules of F o r u m  present an implementation challenge because the context splitting 
is a rather costly operation. The complication is best exemplified by the multiplicative 
conjunction rule, ‘0 -R ’ (although, this formulation of the rule is not present in F o r u m ):

A i = >  B, Li As = >  G, Lg
0 -RA i , Ag R 0  G, F i , Fs

Suppose that there are n formulae in a linear context. So, there are 2”' different ways 
to split this context. A naïve implementation of the splitting operation as a “don’t know” 
choice where all possible splits are “explored” until one is found with the desired properties 
is too inefficient for a non-trivial proof search. In [Hodas & Miller, 1991], the first work 
concerning this inefficiency was presented for Lolli.

This thesis attem pts to provide a basis from which further problems concerning F o r u m  
can be investigated. Therefore, the main emphasis of this thesis is an expressive prototype 
implementation which can be easily modified.

The calculus of F o r u m  has been used already in the literature. Amongst the examples 
of F o r u m  programs, Cervesato encoded Petri nets in several programming languages based 
on linear logic (see [Cervesato, 1995]). He observed that F o r u m  with multiple succedents 
is the most appropriate calculus (of those he studied) to embed Petri nets. The convenience 
of F o r u m  in the field of concurrency can also be illustrated by a translation of Milner’s tt- 
calculus, a powerful tool to describe concurrency. The multiple succedents in F o r u m  provide 
a mechanism to express concurrency on the level of sequents. As a result, in [Miller, 1992] 
a preliminary report is given which encodes a fragment of Milner’s 7r-calculus as a F o r u m  
theory. In the disjunctive translation, the non-deterministic choice operator ‘-f-’ is translated 
into a ‘0 ’ and the parallel constructor ‘ |’ into a The conjunctive translation is completely 
dual and consists of a translation using and ‘0 ’, respectively.

Other examples are approaches towards the design of object-oriented programming lan
guages in F o r u m . In [Delzanno & Martelli, 1995], progress was made towards a calculus of 
an object-oriented programming language in a sublanguage of F o r u m , called ‘Forum and 
Objects’ (F&O). In this approach, objects are represented as sets of atoms including an 
additional unique identifier for each object and the methods are encoded as program formu
lae. The classes are templates to create an object; the encapsulation of data  and methods is 
achieved by universal quantification as in AProlog for data abstraction. This calculus is an 
interesting proposal towards an integration of object-orientation and logic programming.

 ̂A more detailed explanation including the non-primitive connectives can be found in Section 2.3.2.
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1.3 T erm inology and N o ta tio n

In the present thesis, we often refer to the various parts of sequents, formulae and inference 
rules. A precise terminology is introduced in order to distinguish between them. The 
structures are usually written as the following:

premises
conclusion antecedent succèdent

implicans D implicatum

An inference rule consists of some premises and a conclusion, a sequent consists of an 
antecedent and a succèdent and an implication consists of an implicans and an implicatum.

The thesis mainly follows the notation generally in use. However, there are three minor 
differences from the terminology introduced by Miller. F o r u m  was introduced as ‘multiple 
conclusion logic’. To avoid clashes with our notation for inference rules and implications, 
it is called a ‘multiple succèdent logic’. The ‘decide’ rules are called ‘choose’ rules in the 
new calculi of this thesis. The motivation for calling these rules ‘choose’ rules rather than 
‘decide’ rules is that the term “decide” suggests a deterministic behaviour rather than a 
“don’t know” action. The terminology of the ‘left’ rules in Miller’s calculus is changed into 
stoup rules, following [Girard, 1991].

The variable A  stands for atomic formulae; the variables B  and C  stand for arbitrary 
formulae. The term ^higher-order logic  ̂ is used for a framework which uses A-terms and 
permits quantification over some predicates and functions.

1.4 O utline and R esu lts

The thesis is structured as follows:

-  Chapter 2 considers the notion of ‘uniform proof’ for single succèdent logics. Three 
logics are briefly described for which single succèdent uniform proofs are complete. 
Subsequently, the extension of the notion of ‘uniform proof’ for the multiple succèdent 
logic F o r u m  is introduced. Miller’s work is described in some detail, including an 
examination of F o r u m ’s non-primitive connectives. Miller’s calculus F  is modified in 
Section 2.4 for more convenience in the following soundness and completeness proofs. 
Subsequently, we describe the operational reading of the modified sequent calculus 
F \  Miller’s approach towards multiple succèdent uniform proofs is compared and 
contrasted with the principles of Lygon’s proof search strategy. Finally, we consider 
the terms and types of F o r u m  and introduce a concrete syntax.

-  Chapter 3 presents two “box calculi” . The first, B, removes the non-determinism 
of the context splitting in the ‘’S’-S’ and ‘-o-S’ rule. The second box calculus, B ', is 
introduced in order to reduce the non-determinism of the context splitting in the ‘T -R ’ 
rule. The soundness and completeness proofs are given. The implementations of the 
box calculi are illustrated by a partial examination of the boxes and the corresponding 
Terzo code (Terzo is a derivative of the logic programming language AProlog). Finally, 
the non-determinism in the ‘choose’ rules is addressed and an implementation of the 
rules is described.
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-  Chapter 4 considers two examples of F o r u m  programs. Firstly, an object-logic is 
implemented in FoRUM using three different representations. Secondly, a small plan
ning system illustrates F o r u m ’s convenience in a resource sensitive domain. Finally, 
two small programs are translated into FORUM and they are used for illustrating the 
speed-ups of the box calculi.

-  Chapter 5 compares and contrasts the approaches in Lolli and Lygon on the context 
management. Hodas’ and Polakow’s work on an implementation of FoRUM as a logic 
programming language is studied.

-  In Chapter 6, the thesis concludes by consideration of some open problems and sug
gestions for further work.

R esu lts

-  A sequent calculus F ' based on multiset contexts in the succèdent is derived from 
Miller’s calculus F . Both calculi include the ‘?’ as primitive connective.

-  A ‘box calculus B \  so called because the contexts of sequent are formalised with lots 
of components to emphasise their different purposes, is presented; it is an extension 
of the 10 model which deals efficiently with the context splitting. The soundness and 
completeness of this box calculus is proven relative to the sequent calculus F \

-  A modified box calculus is presented which deals efficiently with the context splitting 
in the ‘T -R ’ rule. In contrast to the earlier approaches addressing this inefficiency, 
the output context is split into a strict and a slack part. In this calculus, there is no 
need to introduce additional inference rules which would be forced when applying the 
earlier approaches.

-  The sequent calculus F ' and the box calculi are implemented in the logic programming ?
language Terzo.

-  An object-logic O (suggested by Miller), which includes the classical connectives ‘ A ’, j
and true, is implemented into F o r u m  in three different ways using the connect- j

ives ‘&’, ‘- o ’ and ‘T ’; ‘0 ’, ‘-o ’ and ‘T ’ and ‘>g’, ‘_L’ and ‘- o ’. The soundness and i
completeness for each of the three representations is proven. j

-  A small deductive planner for conjunctive planning problems is implemented in F o r u m ; j

this has some features that have not been addressed earlier in a representation using 1
linear logic. i



C hapter 2

Foundations o f Logic 
Program m ing and F o r u m

2.1 Single Succèdent Logics and U niform  P roofs

At first, we investigate the foundation of logic programming which can be applied to lan
guages that are based on either traditional logics or linear logics. We approach logic pro
gram execution by regarding it as a proof search method in a sequent calculus. Other views 
based on certain efficient calculi for rather restricted fragments of various logics (e.g. SLD- 
refutation in Prolog) are not considered. The sequent calculi are built upon certain sets 
of inference rules and grammars for formulae. The grammar serves, for example, for dis
tinguishing program and goal formulae that appear on the left or on the right-hand side of 
sequents, respectively.

D e fin itio n  1 A sequent is an expression o f the form:

A r

where A and P are syntactic variables for multisets of formulae called program formulae 
and goal formulae, respectively. A program formula is analysed by a left rule; a goal formula 
is analysed by a right rule.

Note our reverse use of Gentzen’s nomenclature [Gentzen, 1969] because A stands for a 
multiset of program (“definite”) formulae and T stands for a multiset of goal formulae. In 
[Miller, 1989b], a proof in a sequent system is defined as follows:

D efin itio n  2 A proof of an arbitrary sequent A => T is a finite tree whose nodes are 
labelled such that:

1. the root is labelled with the sequent A =>  P;

2. the inner nodes are instances o f inference rules;

3. the leaf nodes are labelled with initial sequents, i.e., axioms or premise-free rules.

12
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A major foundation of all logic programming languages is searching in a certain space 
of proofs [Pym & Wallen, 1992]. In this thesis, the construction of a proof is carried out 
beginning from the root up to the leaves. Unfortunately, this construction of proofs in
corporates much non-determinism. Suppose one wants to prove a sequent o-q. Following 
[Andreoli, 1992], a simple proof search could be initiated with SEARCH(cro) where SEARCH 

is defined as follows:

P ro c e d u re  s e a r c h (o*)

1. Select an instance of an inference rule with the sequent a as the conclusion 
and the sequents cri,. . . ,  (with n > 0) as the premises;

2. For each k — 1 , . . .  ,n  start SEARCH((jfc).

The procedure s e a r c h  is a root-upward construction of proofs. It starts with an  end- 
sequent in the root and gradually completes the proof by proving the premises of the inference 
rules.

In general. Step 1 of SEARCH is not determined and an implementation of it has to 
explore all possible choices. This is a rather inefficient method for constructing proofs. 
An improvement of the search strategy employs some constraints which restrict the logic 
programming language to a certain fragment of the underlying logic. A key idea in logic 
programming language implementations is to use a cut-free formulation of the logic. The cut- 
elimination theorem ensures that the ‘C ut’ rule is admissible without a loss of expressivity. 
A ‘C ut’ rule looks as follows:

A ', A " =:> r , F '
Cut.

It is noteworthy that the ‘C ut’ rule has a formula B, the cut-formula, which appears 
only in the premises and not in the conclusion. An instantiation in our root-upward 
construction of proofs has to guess non-deterministically at what the needed cut-formula 
might be. This guessing is too inefficient and that is why only cut-free logics are of in
terest in logic programming. However, this restriction is not serious because it is shown 
for: IL, CL ([Gentzen, 1969]), intuitionistic linear logic (ILL; [Bierman, 1994]), and CLL 
([Girard, 1987]) that the ‘C ut’ rule is admissible.

A further restriction on the proof search construction deals with the selection of a formula 
that will be decomposed and the selection of a corresponding inference rule. For expository 
purposes, we first deal with logic programming languages which are based on single succèdent 
logics. The sequents of a single succèdent logic are constrained to have exactly one goal 
formula, i.e., the multiset F in Definition 1 consists only of one formula^.

The notion of uniform proof introduced in [Miller et al., 1991] restricts the proof con
struction for logic programming languages based on a single succèdent logic (the definition, 
slightly modified, is taken from [Hodas, 1994]):

D e fin itio n  3 In a cut-free single succèdent sequent calculus, a proof is uniform i f  for every 
occurrence o f a sequent in the proof with a non-atomic goal formula, that occurrence is the 
conclusion of a right rule.

 ̂Note that many sequent calculi for intuitionistic logics are constrained to have at most one formula 
in the succèdent. However, the empty succedents can be avoided when the calculus is rephrased with an 
explicit logical constant / ,  called absurdity.
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This restriction can affect the completeness of proofs with respect to the underlying logic. 
In IL, for example, there exists no uniform proof for the sequent p V g = >  p V g, but a 
non-uniform proof is as follows:

P = > P  V q_______ g V g
p \J q = = ^ p \ /q  (2.1)

The reason that a logic programming language becomes incomplete after the restriction 
to the uniform proofs is that certain left and right rules do not permute over each other. In 
the intuitionistic proof above, for example, the ‘ V-L’ rule lies under some ‘ V-R’ rules and 
the proof cannot be rewritten such that the right rules lay under the left rule. The ‘3-L’ 
rule has the same troublesome property. However in a significant fragment of the logic, the 
proofs can be rewritten by permutations to uniform proofs. The following example shows 
two intuitionistic proofs of the same endsequent. In the first proof, a left rule lies under a 
right rule^:

A x n '.zzjL:' X Ax
p g — Kp Weakening-L Weakening-L

p , q = ^ p  iCq
A-Lp /\ q = >  p A q 

The proof can be permuted to a uniform proof:

A x n « Ax2? -»*»*/ 0  »'iiiiiiii^y ^
Weakening-L -  Weakening-Lp , q = ^ p  p , q

p A g = > p  __________ p  A q = ^ q
p  A q P A q

After identification of a fragment where uniform proofs exist for every provable sequent, 
the method s e a r c h  described above can be modified for the search for uniform proofs. 
s e a r c h ' is as follows:

P rocedure s e a r c h ' ( o-)

1. If the goal formula of cr is non-atomic, then select an instance of an inference 
rule, with premises an (with n > 0) and conclusion a, that analyses
the outermost connective of the goal formula;

1’ otherwise, select an instance of an inference rule, with premises a \ , a n  
(with n > 0) and conclusion a, that analyses a program formula;

2. For each k = 1 , . . .  ,n  start s e a r c h ' (cr^).

s e a r c h ' focuses first on the goal formula and applies right rules until a sequent with 
an atomic goal formula is reached. This focusing on the goal formula, when analysing 
it, is called goal-directed or goal-conducted proof search. It reduces the amount of non
determinism during the proof construction. The procedure s e a r c h ' is complete for a logic 
where for every provable sequent there exists a uniform proof. The restriction to uniform 
proof leads to the definition of an “abstract logic programming language” which can be 
found in [Miller et al., 1991] and [Hodas, 1994]. The following definition is adapted from 
the former.

^The example is taken from [Pym & Harland, 1994].
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D efin itio n  4 A logic with a single succèdent sequent calculus proof system, is an abstract 
logic programming language i f  the restriction to uniform proofs does not lose completeness.

2.1.1 H orn Logic and its  Formulae

The logic programming language Prolog is based on Horn logic which is a simple but inex
pressive fragment of IL. In Horn logic, the sequents are as follows:

H iy . . .  ,H2 ==> G

where Hi are Horn formulae and G is a goal formula. The Horn formulae are organised so 
that a disjunction or an existential quantifier do not occur during proof search as outermost 
connective of a formula on the left-hand side of sequents. The Horn restrictions on formulae 
are necessary in order to maintain the completeness with uniform proofs. On the other 
hand, the goal formulae of Horn logic are rather restricted as well (these restrictions can be 
relaxed as seen in the following section). As a result of these restrictions, a very efficient 
proof search strategy is developed for Horn logic.

The division of the sequent into Horn and goal formulae offers a convenient way to
introduce a grammar for formulae of Horn logic.

G : : = T | A | G A G | G V G j  3xG  

H  ■.-.= A \ G  D H  \ H  A H \ \/xH

where A  ranges over atomic formulae; G are called goal formulae; H  are called Horn formulae 
which are also called definite formulae. The problematic inference rules (i.e., ‘ V-L’, ‘3-L’) of 
IL can be omitted because the grammar does not permit an occurrence of a disjunction or an 
existential quantifier on the left-hand side of a sequent. As a result, in [Miller et al., 1991] 
it is shown that uniform proofs are complete for Horn logic. Consequently, Horn logic is an 
abstract logic programming language. In the following section, it is shown that not all the 
imposed constraints are necessary in order to maintain the completeness of uniform proofs.

2.1.2 First-O rder H ereditary Harrop Formulae

First-order Hereditary Harrop formulae are an extension of the notion of Horn formula. As 
shown in Example 2,1, uniform proofs cannot be complete with IL because there does not 
exist a uniform proof for every intuitionistic provable sequent. However, all right rules of 
IL can be permitted in a logic programming language, and therefore, the limitation on goal 
formulae in Horn logic can be weakened. This extension supports some very useful pro
gramming constructs such as modules; see [Miller, 1989b] and [Miller, 1993]. The formulae 
in first-order Hereditary Harrop logic are defined as follows:

G ::= T  I A I G A G I G V G I 3zG I VzG \ D d G 

D : — A \ G d D \ D A D \  VzD

where A  ranges over atomic formulae; G formulae are called goal formulae; D  formulae are 
called program formulae (also called definite formulae). The implicans of an implicative goal
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formula is restricted to be of the form of a definite formula since it only appears on the left- 
hand side of a sequent during the proof construction. On the other hand, the implicans of 
an implicative definite formula can be of the form G since it only appears on the right-hand 
side of a sequent.

In [Miller et al., 1991],  ̂ it is shown that uniform proofs are complete with respect to 
the class of first-order Hereditary Harrop formulae. Some further restrictions force the 
unification of atomic formulae in higher-order Hereditary Harrop logic, but they will not be 
discussed here®. First-order Hereditary Harrop logic is the logic underlying a sublanguage 
of AProlog.

2.1 .3  Lolli and its Formulae

Lolli is a language based on a fragment of ILL; it can be regarded as a linear refinement of 
first-order Hereditary Harrop logic [Hodas, 1992]. The goal and program formulae, respect
ively, in Lolli are defined as follows;

G T 11 1 A i G 0  G I G&G | G ©  G |!G | D -oG  \ D d G\  VzG | 3xG  

D ::= T  I A I D&D | Væ£> | G -oD  | G D D

Remarks similar to those given for first-order Hereditary Harrop formulae can be made for 
the formulae defined above. For example, the ‘0 -L’ rule cannot be permuted over all right 
rules. An example is the following proof:

Ax AxP = > P  q = > q

p 0  g p 0  g (2.2)

Consequently, ’0 ’ is not used for constructing D-formulae. The ‘’S” connective is left out in 
the goal formulae because it is not meaningful in Lolli’s single succèdent calculus. However, 
some presentations of ILL include the connective on the right hand-side of sequents; 
for example [Hyland & de Paiva, 1993]. (Beth, Maehara and Takeuti presented a similar 
formulation of IL which allows multiple succedents; see for example [Beth, 1965].)

In [Hodas, 1994], it is proven that for every provable sequent using the formulae defined 
above there exists a uniform proof, i.e., this fragment of ILL is an abstract logic programming 
language. It is implemented as the logic programming language “Lolli” .

2.2  E xten sion  o f U niform  P roofs for Forum

So far, the search procedure SEARCH' deals only with one goal formula. In the multiple 
succèdent logic FoRUM, however, the succèdent of a sequent might consist of more than one 
goal formula. The thesis is restricted to an extension of uniform proofs for multiple succèdent 
logics based on linear logic. Nevertheless, in [Nadathur, 1995] there is an approach towards 
uniform proofs in CL. It encodes a fragment of CL into a suitable system where uniform 
and classical provability coincide.

® See [Miller et al., 1991] for a complete presentation of the completeness of uniform proofs of higher-order 
Hereditary Harrop logic.
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The basic principles of uniform proofs in fragments of CLL are studied in [Andreoli, 1992] 
and [Pym & Harland, 1994]. The later work explores the permutability properties of CLL’s 
inference rules and focuses on an implementation of a large fragment of CLL as a logic 
programming language. Accordingly, in this fragment of CLL left rules can be permuted 
over right rules. Following this approach, the s e a r c h ' method can be augmented for multiple 
succedents as follows:

Procedure s e a r c h " (cr)

1. If at least one goal formula in a is non-atomic, then select an instance of 
an inference rule, with premises a i , . . .  ,an (with n > 0) and conclusion cr, 
that analyses the outermost connective of one non-atomic goal formula;

1’ otherwise, select an instance of an inference rule, with premises cri,. . . ,  <r„
(with n > 0) and conclusion cr, that analyses a program formula;

2. For each k — 1, . . .  ,n  start s e a r c h " (c r /; ) .

The search procedure above focuses first on the goal side. However, along with the 
change in Step 1 comes a new source of non-determinism because the interpreter has to
select a goal formula. In general, there might be some interdependencies between the goals
as shown in the following proof (the analysed formula is underlined in each sequent):

-n ■ —V n A x n A x p ' - . n n —v p A x q q A x q ——̂ q A x
’S’-L  J r ,  : „  &-L J. V... .. ’P -L  -77——T— &-Lp ^q  = »  q,p pS^q = »  p _ p ^q  = »  p, q p&q = >  q ^

p&q̂p̂q ==> p0q,p p&q,p̂q => P®q,q
p & q , p ^ q  = >  p  ®  q , P&q  ^  ^

The proof is only constructible if the second goal p&q is chosen first. The interdependencies 
between goals are caused by the impermutability of certain pairs of right rules. In the case 
above, the ‘&-R’ and ‘0 -R ’ rule are impermutable. To ensure that the s e a r c h " procedure 
is complete, all possible ways of selecting a goal formula may have to be explored. This is 
very inefficient and would exceed the efficiency criterion for a logic programming language. 
However, there are two different approaches for a large fragment of CLL which focus on 
this difficulty and on an implementation of a logic programming language for a multiple 
succèdent linear logic.

Firstly, the logic programming language Lygon (see [Harland & Winikoff, 1995b] and 
[Harland & Winikoff, 1996b]) is presented; this is implemented as a single-sided calculus 
with multiple goal formulae. In Section 2.6, this programming language will be compared 
with F o r u m . Secondly, Miller described an extension of the notion of uniform proof in 
multiple succèdent logics. This approach led to the definition of F o r u m  (see [Miller, 1994]). 
The key idea is that two proofs which differ in the order of right rule applications are 
regarded as equivalent proofs. Consequently, the order of selecting the goal formulae does 
not matter. The following constraints are imposed on the inference rules of FORUM in order 
to implement this idea:

all left rules have to permute over all right rules (to allow a proof search 
for uniform proofs), and 

-  all right rules have to permute over each other.
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As a result, the logic behind F o r u m  is rather restricted to meet all these constraints. 
F o r u m ’s connectives, a fragment of CLL, and the corresponding inference rules come from 
[Andreoli, 1992] which is an investigation of permutation properties in a single sided sequent 
calculus. The first study of permutability properties of inference rules for CL appeared in 
[Kleene, 1952]. [Lincoln, 1991] presented first the complete permutation properties of a 
single-sided linear sequent calculus which are also studied in [Galmiche & Perrier, 1994].

A permutation is an exchange of two inference rules that has only local effects on the 
proof tree. A situation where two inferences are permutable is characterised by the following 
general pattern:

(7-1 0-» _ . . 4  R • • • -T- R
 F -T : ^  ^

^  5̂  ̂ S  (2.3)

where the premises cr/. [k — 1, . . . ,  ?%) are obtained from the same endsequent ctq in two 
different ways.

In [Andreoli, 1992], the “asynchronous” connectives meet the property that the associ
ated right rules permute over each other. They are as follows:

J_ ,T ,'9 ,& ,V and ?.

For expository purposes the “synchronous” connectives are introduced as well. They are as 
follows:

1, 0 , 0 , 0 ,3  and !.

Miller added the implications ‘—o’ and ‘D’ to the set of “asynchronous” connectives; they 
do not occur in Andreoli’s single sided calculus. In F o r u m , however, their right-rules also 
permute over all other right-rules. The uniform proofs for multiple succèdent sequents are 
defined as follows (slightly changed taken from [Miller, 1996]):

D efin itio n  5 A cut-free proof S  is uniform i f  and only i f  for every subproof E' o fE  and 
for every non-atomic formula occurrence B  in the succèdent o f the endsequent ofE' ,  there 
exists a proof E" such that:

1. the height o f E"  is not higher than the height ofE' ,

2. E" is equal to E' up to some permutations o f inference rules,

3. the top-level logical connective of B  is introduced by the last inference step ofE".

The first property is not included in Miller’s definition, but is important for the termination 
of the inductive definition. However in this context, it follows directly from the construction 
of S" because both proofs differ only in the order of inference rules and have the same height. 
(The permutations are carried out with respect to the pattern in Display 2.3.)

For the set of connectives described above and the corresponding notion of uniform 
proofs, it is possible to reformulate the s e a r c h " procedure as follows:



CHAPTER 2. FOUNDATIONS OF LOGIC PROGRAM M ING AND  FORUM 19

P ro c e d u re  SEARCH"'(ct)

1. If one goal formula of a is non-atomic then select a non-atomic goal formula 
that is analysed by an inference rule, with premises cti , . . . ,  cr„ (with n > 0) 
and conclusion a;

V  otherwise, select an instance of an inference rule, with premises «ti, . . . ,  cr„
(with n > 0) and conclusion a, that analyses a program formula;

2. For each k = 1, . . .  , n  start s e a r c h '"(<7̂ ).

Step 1 is only slightly changed and is still not deterministic. However, the choice of a 
particular goal formula does not m atter because of the permutability property. Such non
determinism is called “don’t care” non-determinism in contrast to the “don’t know” non
determinism in Step 1 of the procedure s e a r c h ". The crucial improvement of s e a r c h '" 
arises from the fact that one can omit the inefficient backtracking mechanism for exploring 
all possible choices in Step 1 (but not in Step 1’). The “don’t care” non-determinism causes 
no inefficiency in an implementation.

2.3 M iller’s P ro o f S ystem  T  for Forum

This section is based mainly on work taken from Miller’s papers on F o ru m ; [Miller, 1994] 
and [Miller, 1996]. He has presented'^ F o r u m  with T , ±, &, %», - o ,  D, V and ? as primitive 
connectives. All formulae of FoRUM can be freely generated from this set. Thus, the 
formulae of FoRUM are defined as follows:

F  ::= T  I J_ I A I F&F  | F '^F  \ F -o F  \ F  D F \ \ / xF \?F (2.4)

where the syntactic variable A ranges over atoms; the logical constants ‘T ’ and ‘J_’ are 
regarded as non-atomic formulae.

The rather restricted fragment of CLL using the formulae F  (2.4) satisfies the uniform 
proof condition given in Definition 5. However, this does not mean that the expressiv
ity of the language is restricted as well. The linear negation can be introduced using 
the primitive connectives since, in CLL, the formulae and R-oJ_ are equivalent. In 
what follows, the implications of the form R —oJ_ are called ‘X-headed implications’ (see 
[Hodas &; Polalcow, 1996]).

The ‘0 ’ connective, for example, is excluded from the set of primitive connectives because 
its right rule does not meet the extended uniform proof condition. (An example was given 
for Lolli in Section 2.1.3 where a ‘0 -L’ rule must be applied at first; the same argument can 
be applied in FoRUM.) However, Miller reintroduces the missing connectives of CLL using 
the linear negation, The following logical equivalences hold:

r -L =  R_oj_ 0 =  T -oX  1 =  X—oX
!R =  (R 3  X ) ^ X  R 0  C  =  (R-L&G-L)-^ R 0  G =  {B-^>?C^)^ 

3 x . B = { V x . B ^ ) ^ .

This thesis uses the more recent version of the sequent calculus F  for FoRUM (see 
[Miller, 1995, Miller, 1996]). This allows the introduction of the exponential ‘?’ as a prim
itive connective rather than as an abbreviation. The right, decide and left rules of F  are

'^To be consistent with our notation we change Miller’s => into 3 .

...X
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given in Figures 2.1, 2.2 and 2.3. The components of the sequents are described in Section 
2.3.1.

T -RE : $ ; A = 4 >  A , T , F ; T

E : A , R , r ; T  E : # ; A = > A , C , r ; T
E : 9 ; A  ==> A , R & C , r ; T &-R

E :  A  A , F; T  E :  4̂ ; A A, R, C, F; T
X-R V-. .T. A------ :— À ’S*-RE :  $ ; A = >  A , X , F ; T  E : $ ; A = >  A , R 'g C , F ; T

E : A , R  = >  A , C , F ; T  E :  4 / ,R ; A A ,C ' ,F ; T
—o-R = —TT—7----- -—1— D- RE : $ ; A  A , B - o C , F ; T  ^  E : # ; A = > X , B 3 C , F ; T

y : r , E : ’$’; A = 4 ^ A , R [ r c H - ? / ] , r ; T  E :  t ;  A  A ,F ;  R , T
E :  W ;A = i>  A ,V ra , 'R ,F ;T  E :  t ;  A A, ?R , F; T

y is not declared in E

Figure 2.1: The ‘right’ rules in Miller’s proof system T .

E : # ; A = 4 >  A , R ; R , T
E :  $ ;A==4^ A ; R , T decide'?

E : # ; A = ^ A ; T  ^ E : R , # ; A = & A ; T  ^ ,
E :  W ; R , A = ^  A ; T  E :  R , # ;  A  A ; T

Figure 2.2: The ‘decide’ rules in Miller’s proof system F .

initial -----------:-----------  initial?
E : # ; 0 = & A ; T  E :  $ ; 0 = 4 . [ ] ; A , T

E : ^ ; 0 = 4 [ ] ; T  E : # ; A ^ 1 ^ " A ; T

E : $ ; R = > [ ] ; T  E :  W ; A ^ # * U ; T

E : ’F ; 0 = ^ [ ] ; T  E : ’ÿ; A '^=^^A;T

t is a  E -term  of type r  

E : ’F; A i =4>-Ai ; T  E :  4̂ ; A 2 = 4 A 2 ; T

E : W ; A i , A 2 ^ A i  X A a i T

E :  A i  = >  A i ,  R; T  E :  4/; A2=4>A2j T  ^  ^

E :  $ ; A i , A 2 ^ A i  X A z ^ T

E : $ ; 0 = > R ; T  E : # ; A = ^ A ; T

E : 4 r ; A ^ A ; T  ^

Figure 2.3: The ‘left’ rules in Miller’s proof system F .

In [Miller, 1996], the representation of sequents for F o r u m  is non-standard (sequents 
are introduced in Definition 1). In Miller’s calculus F  there are two kinds of sequents, 
one of which has a stoup formula written over the arrow as in [Girard, 1991], and thus, we 
distinguish them by calling them stoup sequents and non-stoup sequents. A separate part S, 
which contains the type information of constants in the A-calculus, is added to the sequents.
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The terms in FoRUM are strongly typed using a fragment from Church’s simple theory of 
types (see Section 2.7.1). The S  part is separated by a colon from the rest of the sequent. 
The antecedent and succèdent are separated, as usual, by the sequent arrow, but both of 
them are divided into zones. This will be described in more detail in Section 2.3.1.

Each ‘right’ rule in T  analyses a goal formula in the succèdent. The ‘decide’ rules are 
used when atomic goals are reached in the succedents. The ‘decide?’ rule serves for choosing 
a new goal formula from the classical context of the succèdent. The other two ‘decide’ rules 
pick up a formula from the antecedent which goes subsequently into the stoup. These two 
rules correspond to the selection of a program formula (Step 1’ in s e a r c h '" ). The ‘left’ 
rules analyse the stoup formula; it will be decomposed until atoms are reached. In effect, 
the proof search in F  for a sioup-sequent is focused (in the sense of [Andreoli, 1992]) on one 
program formula. That means that a program formula that is selected has to lead to a proof 
where all leaves match with either a ‘initial’ rules or the ‘X-R’ rule. However, three rules 
are exceptions to this scheme. In the case where the stoup formula matches with ?R, the 
program is augmented with B] another program formula will be chosen to go into the stoup 
or the succèdent can be augmented by the ‘decide?’ rule. This means that the focus of the 
rather restricted sitoi/p-sequents is lost. However, that is necessary since it maintains the 
completeness with respect to CLL (an example is given in Section 2.5). The other exceptions 
are the two rules that analyse an implication in the stoup. They branch the proof tree and 
in one premise the implicans is added to the succèdent as an additional goal formula which 
will be analysed by a ‘right’ or ‘decide’ rule.

2.3.1 T he U se of C ontexts in Sequents

In linear logic, formulae in the antecedent with a ‘!’ as an outermost connective are dis
chargeable; the other formulae in the antecedent are usable exactly once (the same behaviour 
in the succèdent is achieved by the exponential ‘?’). That means the structural rules for 
weakening and contraction are restricted to formulae with an exponential. These rules are 
defined in CLL as follows;

A , ! R = > r  
A ,!R ,!R  =

Weakening !-L

> r

A

A,!R Contraction !-L

A = > ? R ,r  
A = > ? R ,? R ,r

A = > ? R ,r

Weakening?-R

Contraction?-R

Consequently, the formulae decorated with an exponential behave to some extent as if they 
were classical formulae. In [Girard, 1993] this observation is used and a sequent calculus, 
called LU, is presented in order to unify CL, IL and CLL in one calculus. The sequents are 
divided into different zones—into classical and linear zones. Each zone allows a different 
usage of the structural rules weakening and contraction. In the classical zones, these rules 
are permitted; however, they are implemented implicitly in the inference rules. In the linear 
zones, both structural rules are forbidden.

A similar approach is used in the dyadic single-sided calculus of [Andreoli, 1992] in order 
to normalise proofs. Given that the proof search is performed from the root upwards to 
the leaves, the application of the structural rules is delayed in this calculus as long as 
possible. That means the structural rules are permuted so that they occur in proofs as late 
as possible. The weakening rule can be permuted until leaves are reached and is implicitly 
built into the rules that terminate a proof branch. The contraction rule can be permuted
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until an occurrence of certain connectives, and it is built into the corresponding inference 
rules.

In logic programming languages, for example in Lolli, the implicit representation of the 
structural rules is preferred because of the fact that the ‘Contractionl-L’, ‘Weakening!-L’ 
and ‘?-L’ rule analysing formulae with an exponential violate the uniform proof condition. 
Consider the following proof in CLL (the example is from [Pym and Harland, 1994]):

p  \  p A x p y p Ax
!-L r --- —  !-L

P-  (»-R\p, \p p ® p  
Ip = >  p 0  p Contraction!-L

The proof can not be rewritten such that the ‘0 -R ’ rule lies under all left rules. Using an 
implicit formulation, the structural rules are admissible and can be simulated with the new 
zones. The ‘0 -R ’ rule with zones could be formulated as follows (see [Girard, 1993]):

Ÿ ; A i = > R , r i ; T  Aa C, Fa ; T  _
A i , Aa B 0  C, T i, Fa ; T

The formulae in the zones Ÿ and T are given to both premises. In case where they 
are superfluous, it is permitted to “weaken” them. Miller’s calculus .F, for example, is 
formulated using sequents with zone; these zones are also called contexts^. An extension of 
this idea is described in [Hodas, 1993] for Lolli where four contexts exist: for intuitionistic, 
relevant, afSne, and linear logic. These contexts differ in the usage of the structural rules.

In F orum , each antecedent and each succèdent is divided into a classical and a lin
ear context. The classical contexts represent reusable formulae; the formulae in the linear 
context are usable exactly once. Miller presented the sequents as follows:

2: Ÿ; A F;T and 2 :  4/; A=&yl;T

where the linear contexts (A, F and A) are grouped around the sequent arrow, and the 
classical contexts (^ ,T )  are grouped at the edge of the sequent (the purpose of 2  will be 
described in detail in Section 2.7). The linear contexts A in the antecedent are multisets 
of formulae; the classical contexts ^  and T are sets of formulae. The antecedent F in the 
sequents above is introduced as a list. The list starts with a part that consists only of atoms 
(the variable A  stands for this part) and is followed by a part that consists of atomic or 
non-atomic formulae {B stands for this part). The part 5  of F is always empty in stoup 
sequents. The stoup sequents (on the right-hand side above) have a stoup formula B  written 
over the sequent arrow. Omitting the type information in 2 , the sequents are intended to 
behave like the following sequents in CLL:

!x L ,A = ^ F ,? T  and ! ^ ,A ,5 = > F .? T

where and ?T is a shorthand that stands for multisets where each formula is decorated 
with a '!’ or a respectively.

® Another reason for the usage of the contexts (i.e., zones) in linear logic programming is that they simplify 
the splitting of the contexts in the multiplicative rules. Usually, formulae have to be distributed over the 
two premises by an expensive operation that explores all possibilities. The formulae in the classical contexts 
are excluded from this expensive operation, since they can be given safely to both branches.
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2,3.2 B ehaviour of th e  N on -P rim itive C onnectives

The non-primitive connectives, for example the ‘0 ’ connective, are excluded from the set of 
primitive connectives because their left rules cannot be permuted over all right rules or their 
right rules do not permute over all other right rules. They are reintroduced by some logical 
equivalences. Because of this fact, there are different opinions on whether FoRUM should 
count as a logic programming language for full CLL or not. Certainly, FORUM has a more 
direct relationship to CLL than logic languages, such as PROLOG, since the completeness is 
achieved without the help of a theory. All connectives of F o r u m  including the non-primitive 
ones fulfil the extended uniform proof condition (Definition 5 ). Consequently, F o r u m  can 
be seen as an abstract logic programming language as given in Definition 3.

However in F o r u m , only for a provable sequent using primitive connectives in the suc
cèdent does there exist a uniform proof which is goal-directed (see Step 1 in s e a r c h ' ) . T hat 
means the corresponding formula can be decomposed efficiently using only right rules until 
atomic formulae are reached. Such a proof may not exist for the non-primitive connectives. 
The translation of the non-primitive connectives ensures that they fit into the scheme of uni
form proof search. However, an occurrence of a non-primitive connective in the succèdent 
cannot be treated entirely with the “don’t care” non-determinism as in Step 1 of s e a r c h '". 

The translation into a _L-headed implication for formulae with an outermost non-primitive 
connective has the effect that an analysis of such a formula adds another formula to the ante
cedent. Then, this additional formula in the antecedent is treated with less efficient “don’t 
know” choices. Therefore, only the core of F o r u m  (formulae with primitive connectives) 
counts as a logic programming language if one has in mind that for all provable sequents 
there exists a goal directed proof.

In the following example, which is taken from page 17, a F o r u m  proof is given for a 
formula with the non-primitive connective ‘0 ’ in the succèdent. The proof is presented using 
the calculus F  of F o r u m . The endsequent that will be proven is as follows:

S : p& g,p0  g ;0.

It is assumed that S  contains the appropriate declarations for p, q and the used connectives. 
W ith a usual formulation of the ‘0 -R ’ rule the goal form ulap® q  has to be analysed first in 
order to obtain a proof. However in the sequent with the translated form of the 0 -fbrmula, 
the order in which the goals appear is not significant. The sequent using the logically 
equivalent formula for p 0  g is as follows:

2 : 0 ;p & g ,p ’9 g = >  p& q, (p-‘- ’S’g-^ )-oX ; 0

w h ere  th e  n e g a t io n s  ca n  b e  ex p ressed  b y  L -h e a d e d  im p lic a t io n s . T h is  se q u en t w ill b e  p ro v en  

in  F o r u m  b y  a n a ly s in g  th e  ^ - fo r m u la  first.

2 ; 0;p-^»Çg-^,P&g,p’S’g =A -p ;0 , _  2 : 0;p-^'9g-^,p&g,p)9g g;0 , _
JL-R „  I I _ . ^ -L-R

2 :  0;p-^>S’g-‘- ,p & g ,p ’S’g P, JL;0 _  2 :  0 ;p -^ '9 g -^ ,p & g ,p '9 g  g ,T ;  u _
-o-R  ——----------------------- -—I--- r.------:—r  -o-R

2 : 0;p&g,p’9g = >  p, (p-‘->gg )-o-L; 0 2 :  0;p&g,p%’g ==> g, (p-*->$’g-*-)-oX;

2 :  0;p&g,p’S’g = >  p&g, (p-‘-’S’g-‘-)-oL;i
&-R

In the subproof S i, the new program formula p-^^q-^ must be chosen in order to find 
a proof for the endsequent. This is a “don’t know” choice and FORUM has to explore all

J
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three possibilities. However, F o r u m  uses a simple heuristic: new program formulae, that 
were added by an implication in the succèdent, are considered first. In this case, it leads 
immediately to the successful proof, but this is not necessarily always the case. The subproof 
S i is as follows:

---------------   initial     initial     initial
2 : 0; 0= > p; 0 ^  2 : 0; 0= > p;_0________ 2 : 0; 0= » g ; 0 ^  ^

S : 0 ; 0 ^ p ; 0  S : 0 ; 0 ^ p , } ; 0  . . . .
dectdei ——z—  -------------- ^ dectdei2 : 0;p&g p ;0 , ' 2 : 0;p»9g = >  p, g; „
-o-L"  T------- -o-L

2 : 0;p& g^^^[]; 0 2 : 0;p'9 g '^ ^ p ; 0

2 : 0;p&g,p’Çg^'=S p ;0
decidel

'g-L

2 : 0;p-^’S’g-^,p&g,p’S’g p;

The second premise in both ‘-o-Ll*’ inference rules is omitted. These premises have the 
logical constant ‘± ’ in the stoup and empty linear contexts; they can be proven immediately 
by the rule ‘T-L’. The subproof S 2 is similar to S i, and so is omitted.

In [Hodas & Polakow, 1996] and [Harland & Winikoff, 1996b], similar remarks to those 
above are made: F o r u m  does not have goal-directed proofs for all sequents of CLL, but only 
for sequents having formulae with primitive connectives; the logic underlying FoRUM  is as 
expressive as CLL because all of CLL’s sequents can be mapped into F o r u m  sequents via 
some logical equivalences and the provability is preserved when restricting to uniform proofs 
as given in Definition 5. However, the implementation of F o r u m  is not only restricted to a 
uniform proof search but also to a depth-first proof search. Therefore, F o r u m  for which we 
will present an implementation is not as expressive as the underlying logic. Further remarks 
on this aspect will be given in Section 2.5 and 3.4.

2 .4  M odified  P ro o f S ystem  JF' Including an A tom ic- 
R ule

In the sequents of the calculus F , the variable F stands for a list and the expression -{-./Ig 
stands for a list obtained by interleaving A i  and /Ig. That means the operator ‘-f’ preserves 
the order of both argument lists in the resulting list. However, for the soundness and 
completeness proofs, which will be given in Chapter 3, it is more convenient to use a multiset 
notation instead^. Miller chose a list structure for the goal formulae because the proof search 
in such a system is easier to implement. However, that is an arbitrary decision: Miller 
proved in Corollary 4 of [Miller, 1996] that the order of goal formulae is not crucial for the 
provability. Precisely, if for a non-stoup sequent there exists a proof, then for all sequents 
consisting of a permutation of the goal list there exists a proof as well. In Lemma 2 of the 
same paper, he also showed that the order of atoms in stoup- and non-stoup sequents is not 
significant for the provability of the sequent. Hence, all possible orders of goal achievements 
lead to the same result. The proof can be shown by the fact that all right rules of FoRUM  

permute over each other (its connectives are chosen so that they satisfy the extended uniform 
proof definition and hence satisfy this condition).

®Thus, an interpreter has to incorporate the following operations over multisets: selection of an element, 
m ultiset union and splitting of a multiset into two parts.
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Consequently, the calculus F ' (derived from Miller’s F ) is used where the list structure 
of r  is replaced by two multisets. The multisets ease any structural inductions because one 
does not have to pay attention to the new calculus preserving the list order as would be 
necessary for a proof using F .

One multiset (A) contains only atomic goals, and the other one (B)^ contains all other 
goals which have not been analysed yet. The sequents of F ;

2 : # ; A = >  F ;T  and 2 :  ^f;A =& yl;T

are replaced in F ' by the following sequents:

2 : W; A ==> y l;B ;T  and 2 : A=A>./1; T.

The multiset B  in stoup sequents (on the right-hand side) is always empty because of the 
proof search method used in F o r u m , and therefore, this part is omitted in F ' .  An ^atomic- 
R ’ rule is newly introduced into the calculus in order to move an atomic goal formula from 
B to A.

The proof of soundness and completeness of F ' with respect to F  is omitted: the proof 
can be achieved with the results from Miller; the additional ‘atomic-W  rule of F ' is embedded 
implicitly in Miller’s list notation. The use of the ‘decide’ rules in F  is triggered when the 
list r  consists only of atomic formulae. In the new calculus F ',  a ‘choose’ rule is applied 
when the multiset B is empty. The new inference rules of F^ can be found in Figures 2.4, 
2.5, and 2.6.

_  p, 2 : W; A =^> A, A; S; T .
T -R  „  A :—Â—. M ry.' o tou iic-R2: A A; T, R; T 2 : A A; A, 5; T

2 : W ;A => A ;R ,B ;T  2 : A A; C, 5; T
2 : A A; R&C, B] T &-R

2: $ ;A  A ;5 ;T  2 : $;A=#> A; B ,C ,R ;T
-L-R------------ ------------ .— » AA' ’S’-R2: A = >  A; _L, T 2 : W; A = >  A; R'gC, R; T

2 : $ ;A ,R == ^ A ;C,B;T _ 2 : $ ,R ;A = >  A ;C ,5 ;T
-o-R u  VT. ' A-:—À "n D-R2 : $ ; A = ^  A ;R-oC,B;T 2 : # ;A = ^  A;R D C ,g ;T

!/:T ,2:$;A ==>A ;R [zk^% /],g;T   ̂ 2 : W ;A => A ;B ;B ,T
2 : $ ;A = ^  A;VTa;B,e;T 2 : W;A = 4> A ;?B ,5 ;T

y is not declared in 2

Figure 2.4: The modified ‘right’ rules in F '.

2.5 A n  O perational R ead ing o f th e  R ules in

The proof construction using SEARCH'", as the name implies, is not completely determined: 
there is “don’t know” and “don’t care” non-determinism. Moving from the non-deterministic 
proof search of SEARCH'" to a deterministic proof search that can be implemented is a difficult

^Not to be confused with the B that stands for the box calculus.
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2: A = >  A; R; B, T
2: W; A ==4> A ;0 ;S ,T choose!

2: ^ ;A =4A ;T , 2 :R ,$ ;A = ^ A ;T  ,
choose —— —:--------7~JT~z: choose]2: R, A A;0; T 2 : R ,# ; A = >  A;0;T

Figure 2.5; The ‘choose’ rules in F '

------------    in itia l     in itia l!
2: W;0=A>A;T 2 : ^;0=A^0;A,T

2: 0=40; T 2 : #; A^^Af^A; T

2: 4^ ;R = » 0 ;0 ;T   ̂  ̂ 2 : A ^ k $ 'U ;T
E : « ;0iS -0;T  "

t  is a 2-term of type r 

2 : W ; A i = 4 A i ; T  2 : ^ ; A 2 = 4 A a ; T  ^  ^

2 : # ; A i , A 2 # 4 ' A i , A 2 ; T

2: 4̂ ; Ai = »  A i;R ;T  2 : W; A2==4A2;T ^  ^ 

2 : # ; A i , A 2 ^ A i , A 2 ; T

E :# ;0 = ^ 0 ;R ;T  2 : $;A=% A ;T ^
2 : A ^ A ; T

Figure 2.6: The stoup rules in F '.

task. This section is focused on the choices which have to be made during a construction of a 
proof and on further constraints which have to be imposed on F o r u m  for its implementation.

When “don’t care” non-determinism occurs, an arbitrary choice can be made and the 
final result is independent of this choice. On the other hand, when “don’t know” non
determinism occurs, a specific choice has to be made out of many possibilities, and the final 
result is dependent on this choice. Consequently, all possibilities must be explored in order 
to find the choice that leads to the desired result. The extended uniform proof condition is 
used in the proof search of FoRUM  in order to minimise the non-determinism or to transform 
the “don’t know” into a “don’t care” non-determinism.

In logic programming where a sequence of choices has to be made, the exploration of the 
choices is traditionally carried out with a depth-first search. Suppose, all possible choices are 
represented in a tree where the nodes represent the choices and the edges represent the causal 
relations between the choices. Then, a depth-first search makes a choice which is “deeper” 
(i.e, the next choice is made out of the most recent choice) whenever possible. In case no 
choice can be made, the search “backtracks” and considers other choices. By contrast, the 
breadth-first search “discovers” every possible choice which can be made out of the most 
recent one. However in the average-case, the depth-first search leads to a result faster (to 
a proof) than the breadth-first search. Furthermore, the breadth-first search requires too 
much space. That is why the usage of a depth-first search is usually an efficiency criterion 
for a logic programming language.
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There are two kinds of choices, called conjunctive and disjunctive choice. A disjunctive 
choice occurs when one possibility has to be chosen out of many; on the other hand, a 
conjunctive choice occurs when several possibilities have to be chosen. However, the chosen 
possibilities have to appear in a certain order. The disjunctive choices have to be made in 
Step 1 and 1’ of SEARCl-l'"—the conjunctive choices in Step 2.

In Step 1, a disjunctive choice has to be made as to which goal formula will be analysed 
subsequently. As mentioned earlier, this choice can be made efficiently because of the ex
tended uniform proof condition. The first major source of troublesome disjunctive choices 
occur in Step 1% when a ‘choose’ rule has to be applied. F o r u m  is implemented so that it 
attem pts to prove the corresponding sequent where the choose rules are applied in the fol
lowing order: ‘choose\ ‘chooseV, ‘choose!. This order is due to the proviso of linear proofs 
where all linear resources (i.e., formulae in the linear contexts) must be “consumed”®.

In case of the ‘choose^ and ‘chooseV rule, a program formula has to be selected that 
goes into the stoup and will be analysed subsequently. The program formulae are ordered® 
and they are selected according to this order. The interplay of this method and the depth- 
first search causes problems and can compromise the completeness. Consider the following 
sequent where the program formulae are ordered from the left to the right (it is assumed 
that E contains the appropriate declarations);

S : p-op, p\ 0 = >  p; 0; 0

T h e  im p le m e n te d  p r o o f  sea rch  o f  F o r u m  fa ils  in  th is  ca se  b e c a u se  i t  s e le c ts  a lw a y s  th e  

fo r m u la  p —op first a s th e  fo llo w in g  p r o o f  fr a g m e n t sh ow s:

S : p-op,p; 0 = »  0;p; 0 E : p—op, p; 0=*-p; 0 

£ :  p -o p ,p ;0? ^ p ;0
choose]

initial 
—o-S

E: p-o p ,p ;0  ^ p ; 0 ; u __________________ _________________  . ... .
rt atom ic-R  „  ..jo  ̂ in itia lE: p -op ,p ;0  =>■ 0;p;0 E : p-op,p; 0==>p; 0

— 0-0

E: p -o p ,p ;0 ^ ^ p ;0
S  : p-op, p; 0 =#> p; 0; choose\

However, a proof exists in FoRUM and can be constructed if the second program formula is 
selected. It would lead to the rather simple proof:

initial
S  : p-op, p; 0= 4p ; 0 

S  : p-op, p; 0 = >  p; 0; 0 ^

Consequently, the implemented proof search is incomplete with respect to the proofs in 
F o r u m , and it is the responsibility of the programmer to provide the appropriate order of 
the program formulae.

Also, the ‘&-Si’ rule causes a disjunctive choice in Step 1’ in a root upward search. This 
rule stands essentially for two rules that have the same conclusion but different premises.

®The ‘choose? is considered as last because it introduces new formulae into the B context. On the other 
hand, the ‘choose' rule is applied fii'st because it “consumes” eventually the stoup formula from the context 
A and a formula from the context A  if the proof branch terminates, for example, with the ‘in itia l’ rule.

® The sequents in T '  are represented using m ultisets for more convenience in the following proofs. However, 
they are implemented based on a list structure.
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When the ‘& -S/ rule is applied in the proof search, a component of the stoup formula has 
to be chosen that will be analysed subsequently. The implementation of F o r u m  attem pts 
at first to find a proof with the first component of the &-formula and, after failing, to find 
one with the second component. (The disjunctive choice that arises when the contexts of 
the conclusion must be split is addressed in Section 3.)

The conjunctive choices occur in Step 2 of s e a r c h '"; the inference rules of F o r u m  which 
are selected in Steps 1 and T are as follows:

O'l . . .

where:

-  the premise-free rules have n =  0;
-  the proof branching rules have two premises (i.e. n = 2);
-  otherwise, the rules have one premise (i.e. n — 1).

In the case where n=2, a conjunctive choice must be made as to which premise is attem pted 
to be proven first. A naïve ordering can cause problems and the proof construction fails 
because of a loop that could be avoided by a different ordering of the premises. Suppose the 
following sequent:

S :p  D p ;0 = :> p ,g ;0; 0.

The sequent is not provable, but the depth-first search and the left-to-right order of the 
premises in the ‘D-S’ inference rule results in a loop rather than giving the answer: “not 
provable” . In this particular case, a naïve implementation of FoRUM behaves as the following 
proof fragment illustrates:

E: p D p ;0 = »  p, g ;0;0 E : p D p; 0=4p,g ; 0 ^  ^ 

E : p D p; 0 ^ p ;  0
choose]E: p D p;0 = >  p, g;0;

It attem pts to prove the sequent on the left-hand side and finds always a program formula 
which is applicable. An attem pt to prove the sequent on the right-hand side first would lead 
directly to the desired result that the endsequent is not provable. In our implementation, 
the order of the premises is changed such that the stoup sequent is proven at first before the 
non-stoup sequent is proven because the proof search for a stoup sequent is more restricted 
(focused) than the proof search for a non-sioup sequent

Proof search in the implementation is carried out in two modes. One mode deals with 
non-stoup sequents and is focused on the goal formulae; the other mode deals with stoup 
sequents and analyses the formula in the stoup. Therefore, the modes are called right and 
left mode. The proof search starts in the right mode. The ‘choose^ and ‘chooseV rules switch 
from the right mode into the left mode. The left rules that analyse an implication switch 
from the left mode into the right mode when they attem pt to prove the premise that is 
a non-stoup sequent. The ‘?-S’ switches from the left mode into the right mode as well, 
otherwise FoRUM would become incomplete. Consider the following proof [Miller, 1996]:
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initial
E :0 ;0 = 4 > p ; p

choose0 ;p= 4> p;0 ;p
atomic0; p = > 0;p ;p  
choosef0 ;p = >  0;0;p ^
f-b

E :0 ;0 = 4 0 ;p
chooseS : 0;?p =>- 0; 0;p  ̂ ^

E: 0; ?p = >  0; ?p;

where E contains the appropriate declarations. A lower application of the ‘choose!^ rule 
does not lead to a proof because the ‘?-S’ rule is only applicable if the linear contexts are 
empty.

In what follows, the formulae contain only primitive connectives (a formula which con
tains a non-primitive connective can be replaced by its logically equivalent formula).

R ight m ode

Proof search while in the right mode analyses a sequent that is as follows:

E : ’F ; A ^ A ; R ; T ,  

and a formula B  is selected from B. In the case where B  is:

A  and A  is atomic; the ‘atomic-W  rule is applied which moves A  from B to A\

T the ‘T -R ’ rule is applied; this terminates the proof branch;

J3&C the ‘&-R’ rule is applied and it is attempted to prove both sequents where the
formula H&C is replaced by B  and C, respectively;

_L the ‘_L-R’ rule is applied which removes the ‘_L’ connective from B]

B '^C  the ‘̂ -R ’ rule is applied and the formula B&C  is replaced by R, C  in B]

B -o C  the ‘- 0-R ’ rule is applied and the implicans B  is removed to A and B~oC  is 
replaced by C in R;

B  D C  the ‘D-R’ rule is applied and the implicans B  is removed to T  and B —oC  is 
replaced by C in R;

IB  the ‘?-R’ rule is applied and the formula ?R is removed to T (without the ‘?’
connective) ;

MrxB the ‘V-R’ rule is applied and the signature E is augmented by a fresh variable y
of type r  and the variable x is replaced by y in the formula B.

In case the multiset R is empty, the following three rules are applicable:

choose a formula B  is chosen from A and removed into the stoup^ the mode of proof
search switches into the left mode and the following sequent (A' is the result 
of removing B  from A) is analysed:

E: W;A'=&>A;T;
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choosel a formula B  is chosen from ^  and copied into the stoup, the mode of proof
search switches into the left mode and the following sequent is analysed:

E : $ ; A ^ A ; T ;

choose! a formula B  is chosen from T  and copied to B and is analysed by a ‘right’
rule.

Left M ode

Proof search in the left mode analyses a sequent that is as follows:

2 :Ÿ ;A = ^ A ;T ,

and the formula B  is considered. In the case where B  is:

A  and A  is atomic, and A is empty; the proof terminates with the HnitiaP rule if
A  is just the formula A;

A  A is atomic, and A and A  are empty; the proof terminates with the ‘in itia l!’
rule if A  is contained in T ;

_L the proof terminates with the ‘J_-S’ rule if A  and A are both empty;
B&C  the ‘&-S’ rule is applied; either B  or C  is chosen, and B&C  is replaced by the

chosen formula;
!B  if A  and A are empty then the ‘?-S’ rule is applied; !B  is removed from the

stoup, and A is set to {|R|}; the mode of proof search switches into the right 
mode, and the following sequent is analysed:

2 : W ;R = > 0 ;0 ;T ;

\/rxB  the ‘V -S’ rule is applied and the variable x in the stoup formula B  is substituted
by a term t of the type r;

B '^C  the ‘>P-S’ rule is applied; A and A  are split into the multisets A i,  Ag and A i,
Ag, respectively; both of the following sequents must be proven;

2 : ^ ;A i= 4 A i ;T

2 : A g^^A g;T ;

B -o C  the ‘- 0-S’ rule is applied; A and A are split into the multisets A i, Ag and A i,
Ag, respectively; the following sequent must be proven in the left mode:

2 : W ;A g ^ A g ;T ; 

and the following in the right mode:

2:Ÿ;Ai = >  Ai;R;T

B D C  the ‘D-S’ rule is applied; the following sequent must be proven in the left mode:

2 : Ÿ;A=4 A ;T ; 

and the following in the right mode:

2 : # ;0 = > 0 ;R ;T .
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2.6 T h e A pproach in Lygon

The logic programming language Lygon relates to F o r u m  in two ways; this section is focused 
on one of them, the foundations of the logic and proof search in Lygon (the other, the context 
management, will be compared with the present approach in Section 5.3). Lygon is based on 
a systematic investigation of goal-directed proofs in CLL as given in [Pym &; Harland, 1994]. 
The complete language is introduced first in order to illustrate its principles and working 
assumptions. However in the later part of this section, the presentation is restricted to a 
subset of Lygon which represents the actual implementation.

For the multiple succedents in Lygon the notion of goal-directed proof is characterised 
by the set of simple locally LR proofs. This notion is slightly weaker than the notion of goal- 
directed proof in intuitionistic logics where any non-atomic goal formula must be decomposed 
by a right rule. The simple locally LR proofs allow certain occurrences of left rules which 
lie under right rules and cannot be permuted over right rules (amongst these left rules are 
the o-L’, ‘(g)-L’, and ‘C!-L’ rules).

The two-sided sequents in Lygon are as introduced in Definition 1 (Page 12). It is proven 
th a t for the following two classes, goal formulae G and program formulae D,

G ::= A 11 11 .1 T I G&G | G® G | G'S’G | G eG  | VæG | 3zG |!G |?G | D-oG

D ::= A I 1 I J_ I D&D \ D 0  D \ D>?D | VzD \\D | G -oA | G-oJ_

there exists for each provable sequent a simple locally LR proof (see Corollary 2.10, Lemma 
2.15 and Proposition 2.14 in [Pym & Harland, 1994]).

A calculus is introduced for this fragment of CLL; the inference rules in this calculus 
are designed so that a notion of goal-directed proof search is meaningful. For example, 
a formula p <S> ? occurring in the antecedent will be replaced by the components p and q, 
and thus, a goal-directed proof exists in this calculus for the sequent of Display 2.2 (Page 
16). All program formulae in the calculus are transformed into a clause form. (The reader is 
referred to Definition 3.1 in [Pym &; Harland, 1994] for the complete definition of the clausal 
decomposition.) As a result of this clause form, it is possible to replace all left rules by a 
single rule, called backchaining rule (it is called originally ‘resolution’ rule).

In what follows, a fragment of Lygon is considered which exists as implementation (see 
[Harland & Winikoff, 1996b]). The reason for the restriction is the fact that for this imple
mentation exists an approach on the selection of the active goal formula. This approach is 
of most interest with respect to the approach in F o r u m . The calculus for this fragment of 
Lygon is formulated as a single-sided calculus. The sequents are defined as follows:

)- F i ,  . . . F n

Negated formulae are permitted as goal formulae and a ‘backchaining’ rule is as follows:

h ? A ,G ,r
h?A ,A ,F B C

where a program formula is of the form Væi.. .Væn(A <r- G). The goal formulae are defined 
as follows:

G ::=  A I A-  ̂ I 1 I _L I T I Gi&Gg | Gi ® Gg | Gi^pGg | Gi 0  Gg | VzG | 3xG  |!G |?G
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The clauses are of the form:

Vâ i .. N xn^A  f— G).

The single-sided calculus defined above represents a multiple succèdent logic. Therefore, 
the proof search has to select a goal formula which will be analysed subsequently. As il
lustrated in the proof on Page 17, there may be interdependencies between the selections. 
F o r u m  is designed so that the selection can be done with “don’t care” non-determinism. 
This yields to the rather restricted logic which is based on the formulae using F o r u m ’s 

primitive connectives. In Lygon, the opposite decision was made. As a result, Lygon per
mits a larger set of primitive connectives, but the selection of a goal formula cannot be made 
using “don’t care” non-determinism and may require backtracking. However, some formulae 
can be analysed safely by “don’t care” non-determinism. These formulae have as outermost 
connective those which are identified in [Andreoli, 1992] as ‘asynchronous’ connectives (see 
Page 18). The remaining connectives of Lygon are those which Andreoli called ‘synchron
ous’ connectives. The selection of a goal formula is illustrated by the following two Lygon 
proofs^®:

A x :---- ;—  Ax

b ^  b g-^,p0g ^
b g- ’̂9-L,g _  b g- ,̂ JL,p0g

b g-^)p_L,p0 g bg-^’P L ,p 0 g

Since ’S’ is a asynchronous connective, there exists a proof where the corresponding formula 
is decomposed first. As a result, whenever a formula with an outermost asynchronous 
connective occurs, it can be selected with the efficient “don’t care” non-determinism.

To sum up the comparison of F o r u m  and Lygon, the main difference is that in F o r u m  

any right rule must permute over the other right rules, and in contrast, in Lygon only some 
right rules need to permute over other right rules. However, both languages can be seen 
to use in essence a very similar proof search strategy. Lygon decomposes first all formulae 
with an asynchronous connective as outermost connective in a sequent with “don’t care” 
non-determinism. Next, Lygon decomposes all formulae with a synchronous connective 
using “don’t know” non-determinism and then Lygon backtracks over all choices. F o r u m , 

however, decomposes the formulae in the succèdent with “don’t care” non-determinism, but 
it translates each formula with a synchronous connective to a logically equivalent formula 
which places some components in the antecedent during proof search. The formulae in the 
antecedent are analysed with “don’t know” non-determinism.

2.7  T yp es and Term s in F o r u m

Miller founded the underlying formal system of F o r u m  on a typed A-calculus similar to 
that used in AProlog. It is based on two syntactic components (simple types and A-terms) 
and is derived from Church’s formulation of the simple theory of types [Church, 1951]. The 
groundwork of this system is well-studied for AProlog for which it is invaluable. Apart from 
some basic principles which will be introduced below, the reader is referred to the work

^°Tlie examples come from the paper [Harland & Winikoff, 1996b]. They are slightly changed because the 
originals require unification which is not yet addressed in this thesis.
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([Miller & Nadathur, 1986], [Miller, 1989a] and [Nadatliur & Miller, 1994]) on AProlog for a 
more detailed treatment. The section concludes with a presentation of the concrete syntax 
employed for FoRUM .

2.7.1 K inds and T ypes

The terms in FoRUM  are built from typed constants and variables. The types that are 
employed in FoRUM  are first-order types referred to as simple types. The first-order types
are built from primitive types, type constructors, type variables and functional types. The
kind declaration gives to each primitive type and type constructor an arity. As examples, 
consider the declarations:

k ind  o ty p e .
k ind  in t  ty p e .
k ind  l i s t  type -> ty p e .

where the -> operator associates to the right; nested occurrences of this operator of the 
form (A -> B) -> C are not permitted. In the examples above, the identifiers o and in t  
are names of primitive types; l i s t  is the name of a type constructor. Each type is associated 
with an arity which is a non-negative integer and which is one less than the occurrences of 
type  in the corresponding kind declaration. That means, the primitive types o and in t  
have the arity 0 and the type constructor l i s t  has the arity 1.

D efin ition  6 The types in FORUM are inductively defined as:

-  primitive types;

-  type expressions (written as c a i .. .an (n > I) where c is a type constructor o f arity 
n and a  ̂ are types);

-  type variables (written with a capital letter) and

-  functional types (written as a r  where a and r  are types).

The functional type constructor — is right associative; parentheses can be used in order to 
avoid ambiguities. The type variables allow polymorphism in the usual way. Each type a 
can be written as:

a\ . .an r

where r  is either a primitive type, a type expression or a type variable. The type r  is called 
the target type of cr; the types a; are called the argument types of a. As examples, consider 
the types below^^:

o, i n t ,  in t  -> in t  -> i n t ,  i n t  -> o, A -> l i s t  A -> o.

Following Church, Miller chose the primitive type o for Forum’s formulae. A type which 
has the target type o and in the argument types there is no occurrence of the type o is called 
a predicate type\ it is used for typing a predicate.

^^The functional operator is written as ->. From the context it is always clear whether the operator 
for functional types or the operator in the kind expressions is meant.
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The terms of FoRUM (see next section) are built upon free and bound variables and 
constants. A type must be given to each constant using a type declaration. (The type of 
a variable is inferred from the context.) The following examples are type declarations that 
declare the non-logical constants a , f , p and member;

type a i n t .
type f  in t  -> in t  -> i n t .
type p in t  -> o.
type member A -> l i s t  A -> o.

F o r u m ’s primitive connectives are declared using the primitive type o: the type of 
formulae. These connectives are represented using the following ASCII-sequences;

F o r u m ’s primitive connectives T J- ’S’ & —o D ? V
ASCII-sequences top bot 1 Q ---0 ? forall

The connectives (or logical constants) are declared as follows;

type top o .

type bot o .
type 1 o —> o —> 0 .
type 0 -> o -> 0 .
type —o , o— o -> o -> 0 .
type 0  o —> o .
type ? 0 -> o.
type f o r a l l (A -> o) --> 0
type X 0 -> 0 -> 0 .
type neg 0 -> 0 .

(2.5)

The logical constants x and n e g  are declared in addition to the primitive connectives and 
represent the non-primitive connective (g) and the negation (see Page 19), respectively. (They 
are used in some example programs.) The reverse implications are declared for a better 
readability of F o r u m  programs. The logical constants I , Q, —o, o— , ==>, <== and x  are 
the only constants which are written as infix sy m b o ls^ (T h e  constants I , & and x  bind 
more tightly than the implications. However, parentheses should be used in order to avoid 
ambiguities.) The constants ?, f o r a l l  and n e g  are written as prefix symbols.

D efin itio n  7 A signature is a list of kind and type declarations and is defined inductively:

1. A list that consists of the kind declaration for the simple type o and the type declarations 
for the logical constants o f Display 2.5 is a signature.

2. I f  S is a signature, k is a kind declaration that declares a type r  and r  is not declared 
in 2 , then 2 , k is a signature.

3. I f  E is a signature, r  is declared by a kind declaration in E, t is a type declaration that 
declares a constant a with a type r  and c is not declared in E, then E ,t  is a signature.

^^The symbol for abstraction is also written as infix symbol, but it is neither a logical nor a non-logical 
constant.
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2.7.2 S im ply T yped A-Terms

The A-terms in F o r u m  are constructed by two operations: abstraction and application. 
Following [Nadathur & Miller, 1994], the definition of the A-terms associated with a type is 
as follows:

D efin itio n  8 A simply typed A-term (or short term^ is inductively defined:

-  a constant or a variable of type cr is a term with the type cr;

“ i f  X is a variable of type cr and F is a term of type r  then {Xx.F) is a term of type 
a - 4- r: this operation is called abstraction; the variable x is bound and its scope is F  
with Xx as its binder;

-  i f  Fi is a term of type a r  and F2 is a term of type a then (F1F2) is a term o f type 
r; this operation is called application.

The term (Aæ.F) constructed by an abstraction is written in an ASCII-style as: ( X \F ) .  

AProlog and F o r u m  use a curried syntax form for A-terms. Suppose, the constants a  and b  

are declared with the type cr and a predicate h is declared with the functional type o' —> cr —>
o. Then, it is possible to form the A-term (h a) by applying the constant a to the term h. 
This new term is of the functional type <r —> o. A further application using the constant 
b to this term leads to the term ((h  a) b )  with the type o. The last term can be shortly 
written as (h a b )  (i.e., the application is left associative). A similar term using a Prolog 
convention would look as h{a,h).

The A-terms are convenient for distinguishing between occurrences of bound and free 
variables. As introduced above, an occurrence of a variable x is bound if it occurs in a 
scope of a term that is abstracted using the variable x; all non-bound variable occurrences 
in a term are free. Consequently, there are three syntactic categories which have to be 
distinguished: constants, free variables and bound variables. By convention, the constants 
are written starting with a lower-case letter; the free variables are written starting with 
an upper-case letter; the bound variables can be written starting with either a lower or an 
upper-case letter because they can be identified by their binders.

D e fin itio n  9 A substitution for a free variable x of type cr in a term s (where term t is 
substituted for a variable x of the same type cr)  is written as s[æ i-f t] where all free variables 
of t are distinct from the bound variables in s. A substitution may be viewed as a type 
preserving mapping on variables that is the identity everywhere except on the variable x 
which is mapped on the term t.

In [Miller, 1991], three conversion rules over A-terms are defined as follows:

D e fin itio n  10 Conversion rules for X-terms

1. A term Xx.s a-converts to the term  Aj/.s[æ y] provided that x is free in s and y is 
not free in s.

2. A term (Xx.s)t fi-converts to the term  s[æ i-)-1] provided that the free variables o f t  are 
not bound in s.

3. A term Xx.{s x) rj-converts to s, provided that x is not fi^ee in s.
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Two terms s and i are regarded as equivalent if there is a sequence of conversions that 
transforms s into t. The reader is referred to [Nadathur & Miller, 1994] for a detailed treat
ment of a unification algorithm and further restrictions imposed on A-terms in order to 
obtain a language where an implementation is feasible. Since we implement our calculi in 
Terzo, the unification, for example, is already provided by this language.

2.7.3 D efin ition  o f F o r u m ’s Syntax

In the following, a BNF-style grammar is introduced for F o r u m . The syntactic category of 
identifiers is divided into two classes: lower-case identifier (Ic id ) and upper-case identifier 
(ucid). The other words written using a ty p e w rite r  fo n t are the reserved words, and as 
such, may not be used as identifiers.

T he types are declared using kind declarations:

kind-decl : : = k ind  idJist arity.

idJist : := Ic id
I I c id ,  idJist

arity : := type
I type -> aidty

T he constants are declared using typ e declarations:

type..decl : := type  idJist type.

type : : = type -> type
I type type
I ( type )
I I c id  I ucid

T he term s are specified as:

term : := term term
I term infix-op term 
I prefix-op term 
I ( term )
I top  I bot
I I c id  I ucid

infix-op : ’F I Q 1 x I —o I o— I ==> I <=
I \  (abstraction)

prefix.op ::=  f o r a l l
1 neg
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Note ‘’S’’ is written as ‘|’ in typewriter font, but appears as itself in the grammar rule to 
avoid confusion with the BNF ‘|’.

T he goal and program  form ulae are specified as;

goaLfrm : term
I goaLfrm , goaLfrm

program.frm : := term
I l in e a r  term 
I program-frm . programjrm

In order to separate goal and program formulae, a comma is used for goal formulae and a 
period for program formulae. The reserved word l in e a r  indicates which context accom
modates the corresponding formula.

Consider the following simple example (proposed in [Grofie et al., 1992]; see also Section 
4.2). The constants d, q and 1 stand for a dollar, a quarter and a lemonade, respectively. 
The program is as follows:

type d ,q , l  o. 
d —o q X q X q X q
q X q X q —o 1
l in e a r  d. 
l in e a r  c.

The intended meaning of the implications is getting four quarters for a dollar and getting a 
lemonade for three quarters. The last two lines of the program mean having a dollar and 
quarter. A goal could be as follows:

1 X q  X q

w h ic h  s ta n d s  for  h a v in g  a  le m o n a d e  a n d  tw o  q u a rters. T h e  p ro g ra m  a n d  th e  g o a l tr a n s la te s  

in to  th e  fo llo w in g  F o r u m  sequent^®:

S, {d,  q,l : o}: d-oq ® g (g) g (g) g, g (g) g (g) q-ol ; d, q 0; / (gi g (g) g ; 0

In what follows, free variables which occur in a program formula are assumed to be 
universal quantified. The quantifiers are omitted in order to improve the readability. The 
free variables in a goal formula are essential existential quantified, i.e., the proof system 
looks for an instantiation of such variables.

S  contains all declarations for the connectives.
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Efficient C ontext M anagem ent

3.1 Inpu t-O u tpu t M od el and th e B ox C alculus B

The multiplicative rules present an implementation challenge because the context splitting 
is a rather costly operation during proof search. The first work concerning the context 
splitting in Lolli appeared in [Hodas h  Miller, 1991]. Let us restate the problem in terms of 
the proof system T ' . There, the rule, for example, is presented as follows:

E : ’F ;A i= 4> A i;T  E :Ÿ ;A 2=& A g;T ^

E: A i, A g ^ ^ A i ,  A 2)T

The rule is problematic since in the root-upward proof construction of s e a r c h '" the con
texts are not split, respectively, into A i, A2 and A i, A2. An interpreter has to find non- 
deterministically a partition of the contexts that leads to a proof. The number of partitions 
grows exponentially with the number of formulae, and therefore, a naïve implementation of 
the splitting operation as a “don’t know” choice is too inefficient for a proof search by a 
computer.

In the following, a calculus (we call it a box calculus (B) since each sequent is represented 
as a box with lots of components) will be introduced to avoid the aforementioned problem 
concerning the splitting of the linear contexts. The box notation is chosen because it presents 
the contexts clearly separated, and it preserves the structure that the program formulae 
appear on the left-hand side and the goal formulae on the right-hand side^. The non-stoup 
and stoup sequents of F':

E : A = >  A; R; T  and E : # ; A = 4 A ; T

are replaced in R by boxes which are called non-stoup boxes and stoup boxes. They are as 
follows:

^The sequent formalisation of [Cervesato et al., 1996] appeared to be less suitable for FoRUM with its 
several contexts. The representation of the boxes is similar to the sequent formalisation that is established 
in [Harland & Winikoff, 1996a] except that our input and output parts are arranged vertically instead of 
written horizontally.

38
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T
A ,A^

A' B̂
2

and

^  I t T
B

A",A '
A '

2

The boxes contain an antecedent and a succèdent; these are separated by double, vertical 
lines. The linear contexts A i in the antecedent and the linear contexts A , B  are multisets 
of formulae {A contains only atomic formulae) ; the classical contexts and T  are sets of 
formulae. According to the two types of sequent, there are two types of box representing 
a sequent. The boxes that represent non-stoup sequents have no stoup field; the boxes 
representing a sequent with a stoup formula B  have the formula B  in the stoup. The stoup 
boxes have similarly only an atomic context in the antecedent like the corresponding stoup 
sequents in !F'.

antecedent j succèdent

stoup

signature
.

Each linear context of a sequent is represented as an input context and an output context 
in the corresponding box of the new calculus. The purpose of the input-output notion is, 
roughly speaking, that the resources “consumed” by a proof form the multiset difference 
between the input and output context of the endbox. Each input context is represented 
using two multisets. The first multiset with the superscript ‘0’ represents the formulae that 
are “consumed” in the proof branch of a box. On the other hand, the second multiset (with 
superscript T ’) represents the formulae that are not used in the proof branch. Therefore, 
this multiset forms the output context of the box.

classical contexts (#; T) 
I

input context

output context

The full system of inference rules is presented in figures 3.1, 3.2 and 3.3 (pp. 48). In order 
to reduce the amount of repetition, the inference rules of the box calculus are categorised 
into four groups. Each group represents an essential operation of the box calculus. These 
groups are named passing rules, returning rules, splitting rules and sharing rule according 
to the operation which they perform in the box calculus. The inference rules fall into the 
groups as follows:
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passing rules: atomic-R, _L-R, ’S’-R, -o-R, D-R,
V-R, ?-R, choose, choosel, choosel,
&-Sf, V-S, D-S; 

returning rules: T-R, initial, initial!, _L-S, ?-S;
splitting rules: ’S’-S, -o-S;
sharing rule: &-R.

When considering these groups, it is convenient to employ an operational point of view. 
However, the rules themselves do not rely on such an interpretation: the rules presented in 
figures 3.1, 3.2 and 3.3 are fully declarative.

T h e  p assin g  ru le s . Each right rule of this group picks one formula from the input 
context of the conclusion. This formula will be decomposed, and the components are passed 
to the input context of the premise. On the other hand, the stoup rules analyse the formula 
in the stoup. The formulae of the input context in the conclusion are passed to the input 
context of the premise. Subsequently, the formulae that are returned as output context of 
the premise are passed to the corresponding output context of the conclusion. Some rules of 
this group are discussed in more detail since they possess some features which vary from this 
general scheme. The ‘choose’ and ‘choosel’ rule pass the B part of the input context directly 
to the corresponding output context of the conclusion since the proof branch cannot use 
any formula of it (both rules in the sequent calculus F ' require an empty B  context). In a 
similar fashion, the ‘choose!’ rule returns the B part of input context, but it also passes the 
selected formula B  to the input context of the premise and expects that the corresponding 
output context is empty. The ‘D-S’ inference rule requires that the implicans of the stoup 
formula is proven with empty input and output contexts.

T h e  re tu rn in g  ru les . The ‘in itia l’, in itia l!’ and ‘_L-S’ rules of the sequent calculus 
T '  require some empty contexts, i.e., they do not consume any resources from them. This 
behaviour is modelled by direct returning of the input context to the output context. The ‘T- 
R ’ rule consumes some formulae from the input context and returns the remaining formulae 
to the output contexts of the conclusion. The ‘?-S’ rule also returns directly its input context, 
but has a box as premise that consist of the formula B  and empty input and output contexts.

T h e  sp li tt in g  ru les . These rules pass the input context from the conclusion to the 
left premise. The returned output context of the left premise is passed to the right premise 
for use as input context. The returned formulae of the right premise are passed to the 
corresponding output contexts of the conclusion. Intuitively, the premise on the left-hand 
side consumes some resources from the input context and passes the remaining resources to 
the premise on the right-hand side. The resources that remain from both subproofs of the 
premises are given as output to the conclusion.

T h e  sh a rin g  ru le . For expository purposes, the associated sequent inference of T '  will 
be presented:

2: Ÿ ;A = >  A;R,5;T 2 : ’̂ ;A = >  A;C,R;T
2: #;A=4^ A;B&C,B;T ^

Both premises have the same contexts A, A  and B. In resemblance to the previously 
presented rules and to the intended meaning of the input-output contexts, the ‘&-R’ can be 
formalised as follows:
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4/ 11 T
Af", Aff A \A ^

A^ B^
E

j| ^ T
Af",AP A", A ' C,

Af^ A" B^
E

11 T
A (\A P A", A' b &c ,b \ b ^

A' B̂
E

&-R

In terms of the box calculus, both premises receive the same input context (apart from 
the component of the analysed formula B&C) and must produce the same output context. 
However, there might be many proofs that fail because the output contexts differ. This 
difference caused by consuming different formulae from the input context can only be de
tected after both subproofs return their output contexts. An improvement of the rule for 
the additive conjunction is suggested in [Cervesato et al., 1996] for Lolli. The proof of the 
right-hand premise receives exactly those formulae which are consumed by the proof of the 
left premise. Consequently, the formulae not used in the first proof are inaccessible for the 
second proof. Thus, the output context of the premise on the right-hand side must be empty. 
Accordingly, the rule is stated as follows:

4r 11 T
M° , M^ A \A ' B ,B \B ^

A^ B^
E

II T
A°

0 0 0
E

w 11 T
AF,AU A", A'

Af^ A ' B̂
E

&-R

Before proceeding further in our study, it is necessary to prove the soundness and com
pleteness of B with respect to the proof system F ' . Both proofs are carried out by a 
translation of the proofs into proofs of the other calculus.

3.1.1 Soundness

P ro p o s itio n  11 (S o undness)

1. For every proof o f a box of the form:

4/ II T
A, A A, y B,Z

X y Z
S

and
2. For every proof of a box of the form:

4r X
B

A, A A, y
A y

E

there exists a proof o f the sequent:

E: $;A => A;R;T

there exists a proof of the sequent:

E: Ÿ ;A = 4 A ;T  ,
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The proposition is divided into two parts according to the two kinds of boxes and se
quents. However, in a proof of the first part there might be occurrences of boxes of the second 
kind and vice versa. That is why, the proof will be shown by a simultaneous induction on 
the height of proofs.

P ro o f: Simultaneous induction on the heights of the proofs. The transformations of the 
inference rules are given in Appendix A.I.

3.1.2 C om pleteness

For the convenience of the completeness proof, a technical result is proven first. Intuitively, 
it is possible to add arbitrary multisets of formulae to both input and output context, and 
this does not affect the provability in the box calculus. If necessary, the signature S  had 
to be augmented in an appropriate way in order to type the additional formulae. However 
in the translations given below, the signatures are translated in such a way that formulae 
are well-typed. Therefore, we omit all aspects of the signatures wherever it does not lead to 
conflicts.

P ro p o s itio n  12
1. For all multisets X , Z  o f formulae, 
and for every multiset Y  o f atomic formulae,
and for every proof o f a box of the form: ■ there exists a proof of the box:

II T

A'
S

4r II T
M \ M \ X A",A\y B \ B \ Z

A \ y B \ Z
E

and vice versa, and
2. For every multiset X  o f formulae,
and for every multiset Y  of atomic formulae,
and for every proof o f a box o f the form: there exists a proof of the box:

w II T
B

A \A ^
A'

E

^  II T
B

X F , M \ X A \ A \ y
A \ Y

E
and vice versa.

P ro o f; Simultaneous induction on the heights of the proofs. The transformations are given 
in Appendix A.2.

R em ark ; Notice that in each part of the proposition both boxes represent the same se
quent. The variables in the sequent calculus F'  stand for multisets of formulae which are 
“consumed” in the corresponding proof branch. The simultaneous augmentation of both 
the input and output contexts protects the consumption of an additional formula in the 
modified proof branch. The corresponding sequents are:

1. E : Ÿ; Afo Ao;Ro;T
2. E: W ;A fo ^ A o ;T
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The proof of the completeness will be shown by an induction on the height of proofs; the 
corresponding endboxes will be proven starting with an empty output context. However at 
the stage where a splitting rule is applied, the input and output context of the box in the 
left premise must be augmented using Proposition 12 in order to construct the desired box 
proof.

P ro p o s itio n  13 (C o m p le ten ess)

1. For every proof o f a sequent o f the form:

E: Ÿ ;A = >  A ;R ;T

and
2. For every proof of a sequent of the form:

E: 4/; A = 4 A ; T

there exists a proof o f the box:

T
A A B
0 0 0

E

there exists a proof o f the box:

$  T
B

P ro o f; Simultaneous induction on the height of the proofs. The transformations of the 
trivial cases are given in Appendix A.3. The non-trivial cases are given below.

C ase 1 (’S’-S): The translation is as follows:

E :4 ;;A i=A >A i;T  E :W ;A 2=& A 2;T

E : ’F ;A i,A 211? A i,A 2;T
’S’-S

W  II T II T
B C

A i, Ag A i, Ag Ag Ag
Ag Ag 0 0

E E

#  1 T

Ai, Ag A i, Ag
0 0

E

’S’-S

The difficulty in the translation step above is that the box of the left premise has a possible 
non-empty output context Ag and Ag. Accordingly, the given translation rules do not match 
with such boxes. However, a proof can be found first with an empty output context and 
then with the help of Proposition 12, this proof can be changed such that the endbox of the 
proof matches with the left premise of the ‘’S’-S’ rule of the box calculus.

A proof of the box:

B
A i, Ag A i, Ag

Ag

is given by the proof of the box below and using 
Proposition 12 with X  = A 2 and Y  =  Ag:

T
B

Ai Ai
0 0

E
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The remark to proposition 12 ensures that both box proofs have the same associated sequent 
proof.
C ase 2 (-o -S ): Similarly, the translation of the ‘-o-S’ inference rule is given as follows:

S : A i = >  A i;R ;0 T  S : #; A 2=>A g; T

E : ’$ r;A i,A g % fA i,A g ;T
-o-S

t II T
Ai, A2 Ai, A2 B

A2 A2 0
E

4r T
C

Ag Ag
0 0

E

^  1 T
B -oC

A i , Ag A i , Ag
0 0

E

-o-S

Again, the proof of the box: is given by the proof of the box below and using 
Proposition 12 with X  = A^, Y  = A 2 and Z =  0

W II T
A i, A 2 A i, Ag B

Ag Ag 0
E

#  II T
Ai Ai B
0 0 0

E

3.1 .3  Im plem entation

The box calculus B  introduced previously is implemented in Terzo, a derivative of AProlog. 
The usage of Terzo (or AProlog) provides constructs which permit an implementation of 
the complete box calculus. If a logic programming language which, for example, lacks 
A-abstraction, such as PROLOG, were used, only the propositional fragment could be im
plemented because these languages have no natural representation of an object-level quan
tification. However, the quantification over variables, functions and predicates results in a 
very expressive logic programming language.

F o r u m  allows the goal formulae to be analysed in any order. On the other hand, 
the program formulae need to be in a fixed order for the depth-first proof search. This 
order should coincide with the order of the written FoRUM programs. Consequently, it is 
feasible to represent the used multisets of B  by the lists provided by Terzo. However, B 
incorporates several constraints and side conditions which must be expressed adequately in 
the implementation.

The formulae of F o r u m  are implemented so that they inhabit the primitive type o. 
Another choice could be made; however, this type is appropriate for our purposes. The 
representation of the connectives and formulae is described in Section 2.7.1.

The following predicates are significant for the translation of the box calculus. Their 
main purpose is to check some side conditions in the implementation which are built into 
the box inference rules (these predicates are implemented in an auxiliary module; see B .l).

a to m ic  o ->  o . and n on _atom ic  o ->  o .

These predicates determine whether a formula is atomic or non-atomic. The 
non-atom ic predicate is explicitly defined by presenting some terms with a con-
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nective as outermost constant. The atom ic predicate succeeds if non-atom ic 
fails.

memb A -> l i s t  A -> o. and member A -> l i s t  A -> o.

The predicate memb F L succeeds if the formula F is an element of the list L. 
In contrast to member, it will succeed only once: for the first occurrence of F in 
L. The predicate member F L also succeeds if F is an element of L. However, it 
succeeds as often as F occurs in L.

membNrest A -> l i s t  A -> l i s t  A -> o.

This predicate owes its name from “member-and-rest” . As the name implies, it 
picks up a formula from the list and returns the remaining list as an argument.

removed A -> l i s t  A -> l i s t  A -> o.

This predicate is important for maintaining the soundness of the implementation 
relative to R. The components of a formula that is analysed by right rules must 
not appear in the output context. Thus, the predicate serves for checking the 
number of a certain formula’s occurrences in the input context which must be 
no less than the number in the output context.

d i f f  l i s t  A -> l i s t  A -> l i s t  A -> o.

The d i f f  predicate computes the multiset difference, i.e., it deletes all elements 
occurring in the smaller multiset (list) in the bigger multiset (list). In the im
plementation, the order of the arguments is fixed (bigger list, smaller list, result 
list).

s p l i t  l i s t  A -> l i s t  A -> l i s t  A -> o.

The predicate s p l i t  generates all possible two partitions of a context. It is 
used for a subsequent test if it is a partition which leads to a proof. Therefore, 
the predicate is part of a non-deterministic (and inefficient) generate-and-test 
algorithm.

The implementation of the ‘choose’ rules will be addressed separately in Section 3.3. The 
signature part of the boxes is completely embedded into the variable and quantification sys
tem of AProlog. Therefore, the signature S  vanishes in the implementation. The provability 
of the two types of box are implemented with the predicates right and stoup, respectively. 
These predicates have the following types:
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type  r ig h t l i s t  o -> % (classical)
l i s t  o -> l i s t  0  - > % M  (linear)
l i s t  o -> l i s t  0  - > % A  (linear)
l i s t  o -> l i s t  o -> % B (linear)
l i s t  o -> o. % T (classical)

type stoup l i s t  0  - > % (classical)
l i s t  o -> l i s t  o -> % M  (linear)
o -> % stoup
l i s t  o -> l i s t  0  - > % A  (linear)
l i s t  o -> o. % T (classical)

a to m ic -R . ru le :

1 T
M \ M ^ A, A^ ,A '

A ' B^
S

#  II  T
A", A '

A ' B̂
E

atomic-R

% atom ic-R  r u le
r ig h t  P s i  HOHl Ml AOAl AI (A;:B0B1) B1 U p silon  

atom ic A,
r ig h t  P s i  MOHl Ml (A ::AOAl) AI BOBl B1 U p silo n  , 
removed A (A:;A0A1) AI.

T -R  ru le :

II T
A \A '

A ' B^
E

T-R

% top-R  r u le
r ig h t  P s i  HOHl Ml AOAl AI (top::B 0B 1) B1 U p silo n  : 

s p l i t  MOMl MO Ml, 
s p l i t  AOAl AO AI, 
s p l i t  BOBl BO B l.
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>S>-S ru le ;

T
B

$

#  II T
c

m \ m ^ A \A ^
A^

s

 _______
m \ m \ m \̂\a \ a Kà ^

'g-S

% Par-S r u le  ( l - S  r u le )
stou p  F s i M0M1M2 M2 (B I C) A0A1A2 A2 U p silo n  : -  

stou p  P s i M0M1M2 M1H2 B A0A1A2 A1A2 U p silo n , 
stou p  P s i M1M2 M2 C A1A2 A2 U p silo n .

—o-S ru le :

^  II T
A °,A \A ^ B

A \A ^ 0
E

^  II T
C

A^
E

^  II T
B -oC

A \ A \A ^
A^

E

3-S

% L o l l i - S  r u le  (— o-S r u le )
stou p  P s i H0H1M2 M2 (B — o C) A0A1A2 A2 U p silon  

stou p  P s i M0M1M2 M1M2 G A0A1A2 A1A2 U p silo n , 
r ig h t  P s i  M1H2 M2 A1A2 A2 (B : : n i l )  n i l  U p silo n .

& -R ru le :

II T
M °,M ^

A^ B̂
S

$  II T
.4° C, 6°

0 0 0
E

^  II T
M^,M^ A'^,A^ b &c ,b \ b ^

A^ B̂
E

7, With-R r u le  (6-R r u le )
r ig h t  P s i  MOHl Ml AOAl At ((B @ C ): :B0B1) B1 U p silon  

r ig h t  P s i MOHl Ml AOAl A1 (B::B0B1) B1 U p silo n , 
removed B (B::B0B1) B l,  
d i f f  MOMl Ml MO, 
d i f f  AOAl A1 AO, 
d i f f  BOBl Bl BO,
r ig h t  P s i  MO n i l  AO n i l  (C::BO) n i l  U p silo n .
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w II  , T
m \ m ^

/I ' B̂
E

T-R
1 T

M^, M^ B \B ^
B^

E

4' II , T
Ai", A4' A \A ^ a ,b \ b ^

A4' 5 '
E

atomic-R

#  II T
A4", A4' R ,5",R '

A4' X ' 5 '
E

II T
A4" /I" C,g"

0 0 0
E

#  II T
A4", A4' Al",.4' B & C,a",5 '

A4' X'
E

&-R

w II T
A4", A4' 6", 6 '

A4' Al' 8 '
E

$ II T
A4", A4' X",X '

A4' X ' 5 '
E

_L-R

W II T
A4",A4' X",X ' B ,C ,5 " ,g '

A4' X ' 8 '
E

E II
A4", A4' Al",X' a e c ,  R",B'

A4' X' 5 '
E

>9-R

W II T
g , A4", A4' C, g",B '

A4' Al' g '
E

4r II T
A4",A4^ a \ a ^ g-oC , g " ,g '

A4' A^ 5 '
E

—o-R

4/, g  II T
A4",A4' .4". .4' C, B°,B^

A4' Al' g '
E

4/ II T
A4", A4' Al",X' g  DC, g " ,g '

A4' X ' g '
E

D-R

w  II T
A4", A4' g[r.->yl,g",g'

A4' Al' g '
y : r,E

V-R

y is not declared in E

g ,T
A4", A4' .4̂ g " ,g '

A4' Al' g '
E

4̂ II T 4r II T
A4", A4' V^æg,g",g' A4", Ail ? g ,g " ,g '

A4' X ' g ' Ai' X ' g '
E E

?-R

Figure 3.1: The right rules in the box calculus R.
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W II T
B

A4", AF
A4' X '

E

II T
g,A4",A4' A \A ^ g '

A4' A^ g '
E

choose

# ,g  II T
B

A4", A4' .4",aI'
A4' At'

E

T
A4", A4' ,Ali g '

A4' X ' g '
E

choosel

$ 1 B ,r
A4", A4' X",X' B

A4' At' 0
E

1 B ,T
A4", A4' g '

A4' X ' g '
E

choose?

Figure 3.2: The choose rules in the box calculus B.

I
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4r II T
A

AF A,A^
AF AF

E

initial
W II A, T

A
AF
AF

A

initial?

Ai'
AF /F

X-S

w II T
Bi

Ai", Aï' X",AF
A i' AF

E

4r II T
B 1 &B2

Aï",AF Al", Al'
A i' Al'

£

&“Si

w II T
B 0 0
0 0 0

E

T
?B

AF Al'
A i' Al'

E

?-s

$  Il T
B\x t]

Aï", A ï' A l" ,X '
Ai' Al'

E

^  Il T

Ai", A ï' Al", Al'
Aï' Al'

E

v-s

t is a E-term of type r

«  Il T
B

Aï", A i', Aï'" A l",A l',A l"
A i', Ai'" A l',A l^

E

^  Il T
C

A i', Ai" Al',Al^
Aï" Al"

E

t  II T

Ai", A ï', Ai" Al", A l', Al"
Aï" Al"

E

$  Il T 4/ Il T

A ï",A ï',A ï" A l",A l',A l" g 0
i r "

Aï',AÏ^ Al'.X'' 0 A i', Ai^ Al , Al

E Aï" Al"

4- Il T
B-oC

Aï", A ï', Aï" Al", A l', Al"
Aï" Al"

E

-o-S

xEr II T 4r II T
0 0 P C
0 0 0

Aï", Ai' A l",Al'

V A ï' Al'
E

4r II T
b d c

Aï", Ai' Al", Al'
Ai' Al'

E

D-S

Figure 3.3: The stoup rules in the box calculus B.
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3.2  A  N ew  B ox C alculus B'

While the box calculus B introduced above removes the most serious portion of the non
determinism arising from the context splitting, the context management is not completely 
deterministic. Consider the formulation of the ‘T -R ’ rule:

4 r II T
A 4 " ,  A F a \ a ^

A 4 ' A F
E

T-R

An interpreter has to split each input context into two parts. One part is consumed by 
the ‘T -R ’ rule, and the other part is passed on as the output context. As may be seen in the 
implementation (see Section 3.1.3), the splitting is achieved by an inefficient generate-and- 
test operation. This remaining source of non-determinism is particularly problematic when 
it occurs as part of a goal that fails because of another reason. In this case, the interpreter 
is enforced to explore all partitions which grow exponentially with the number of formulae 
in the contexts.

The key idea, for removing the aforementioned non-determinism in the ‘T -R ’ rule, is 
the modification of its active role in consuming formulae from the input context. T hat 
means that other rules are permitted from now on to consume formulae which were previ
ously consumed by the ‘T -R ’ inference rule. This idea is adapted from the approaches in 
[Hodas, 1994] and [Cervesato et al., 1996].

The boxes of B  are replaced by the following boxes of the modified box calculus B '. The 
boxes contain an additional part which is called the slack context. The name is derived from 
Hodas’ term slack indicator. The counterpart of this context is called strict context. Due 
to the complete separation of the slack context from the strict context there is no need to 
introduce an additional flag (as in [Hodas, 1994]) which indicates when some formulae can 
be consumed from the output context.

The output context of the new boxes is divided into a strict part and a slack part as shown 
below. The variables which stand for multisets containing formulae of the slack context have 
the symbol as superscript. The multiset aI^ contains only atomic formulae.

II

l A 4 ^ I a F - j g " ' '

The modified rules can be found in figures 3.4, 3.5 and 3.6 (pp. 68). In most of the 
rules, we maintain the declarative presentation with several multisets as in the previously 
introduced calculus. However, we change slightly the style of presentation in the splitting and 
sharing rules. Although it is possible to formalize them completely declaratively including 
several multisets assigned to each different portion, a more operational view is employed 
which eases the readability of the inference rules.
T h e  p assin g  ru le s . These rules have an additional component: the new slack output 
context. It is passed from the output context of the premise to the corresponding output 
context in the conclusion. The left premise of the ‘D-S’ rule expects an empty context.



CH APTER 3. EFFICIENT C O N TEXT M ANAGEM ENT  52

T h e  re tu rn in g  ru le s . Apart from the ‘T -R ’ rule, these inference rules are modified so that 
they pass their remaining formulae (i.e., the unused formulae) directly to the strict part of 
the output context and set the slack part to the empty multiset. On the other hand, the 
‘T -R ’ rule passes all formulae disregarding the ‘T ’ connective from the input context to the 
slack part of the output context. The strict part of the output context is set to the empty 
m ultiset.

T h e  sp li tt in g  ru les . The left premises of these rules receive the input context from the 
input context of the conclusion. Some formulae will be consumed by the corresponding 
proof branch. However, it will return a strict and a slack output context. Both parts are 
given subsequently to the right premise for use as input context. This proof branch also 
consumes a portion from the input context and produces a strict and a slack output context. 
The strict output context of the conclusion is the multiset intersection of the strict output 
contexts of both premises. The slack output context of the conclusion is the slack output 
of the right premise and, additionally, the multiset intersection of the slack output of the 
left premise and the strict output of the right premise. Roughly speaking, the strict output 
context of the conclusion is formed by the formulae that are part of the strict output context 
in both premises. On the other hand, the slack output context is formed by formulae that 
appeared at least in one slack output context of the premises.

T h e  sh a rin g  ru le . The left premise of this rule receives the input context of the conclusion; 
it consumes a portion from this context and produces a strict and a slack output context. 
The right premise receives all formulae which are consumed by the proof branch of the left 
premise and its slack output context. The right premise consumes some formulae and has 
the remaining formulae as strict or slack output. Three side-conditions ensure that the right 
premise consumes all formulae which are consumed in the left premise. The strict output 
of the conclusion is formed by both strict output contexts of the premises. The slack part 
of the conclusion is the multiset intersection of both slack output contexts of the premises. 
That means roughly that only formulae which appear in both slack output contexts are 
passed to the slack output context of the conclusion; the remaining formulae are consumed 
by this inference rule. This behaviour is because the rule has to consume, apart from the 
two components of the analysed formula, the same formulae in both proof branches.

3.2.1 Soundness of B' w .r .t. B

Before we begin with the soundness proof of B' w.r.t. g, an observation is stated which 
simplifies the proof. Intuitively, a formula from the slack output context of a box can be 
consumed in the corresponding proof branch. Hence, we can modify a B'~piooi so that a 
particular formula from the original slack output context is consumed by a ‘T -R ’ rule in the 
corresponding proof branch and thus does not appear in the output context. The following 
proposition is used when a ‘&-R’ rule is translated since this rule passes the intersection of 
each slack output context of the premises to the slack output context of the conclusion. T hat 
means the formulae which do not appear in both slack output contexts are “consumed” by 
the ‘&-R’ rule.
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P ro p o s itio n  14 (M o d ifica tio n  o f a  B^-proof)
1. A B'-proof of a box o f the form  can be modified such that the end box
(M. and B are multisets o f formulae, is of the form:
A  is a multiset o f atomic formulae):

II T
A4", A4' A4,Af^ g,gT

A4' m ,m '̂ X' U a ^ g' g,g"'"
E

and
2. A B'-proof of a box of the form  
(A4 is a multiset of formulae,
A  is a multiset o f atomic formulae):

^  II T
B

A4", At', A4, A4 ■■A \ A \ A , A ^
A4' Al' U.Al'

E

..... II...... T
A4",AF,A4,A4TAl",Al',A(,E g",g ',g ,gT

A4' 1 A4^ Al' AfT g ' gT
E

can be modified such that the end box 
is o f the form:

$ II T
B

A4", AF A4, A4^ 4",Al',Al,Al''
A4' I AfT At' AT"

E

P ro o f: Simultaneous induction on the height of the B'-proof. For expository purposes the 
proof is given only for formulae from the slack context Ai, A 4 The other slack contexts can 
be treated similarly.

This modification of a B'-proof does not change its height. The B' proof is modified 
such that the formulae Af of the slack output context are consumed by the ‘T -R ’ rule where 
these formulae are passed to the slack output context. The translation of the trivial cases is 
omitted since the corresponding inference rules do not change the slack and strict contexts. 
The non-trivial cases are given below:

C ase 1 (T -R ):

# 1 T
A4, AC' T g '

0 |A4,A4 '̂ 0 IaF" 0 IgT
E

T-R
#  II T

A4,AC" AF" T g '
0 IaF" 0 lAfT 0 IgT

E

T-R

C ase 2 (& -R) :

W II T Ÿ II T A4in A 4 " - 0  
Ali riAl" =0  
gi n g° = 0

_  _ ... o T)

A4",A4'. A4, AF Al",Al',AF g ,g " ,g ' ,g ^ A4", A4i, A4, A4 J 42,aR,aF g"..gi,gJ
A4' Ia4,A4 ' At' 1 aF* g' 1 gT A4i |A4,A4j A ü i x ; Bi 1 Bt

E E

II X
A4", A4', A4, A4"'' Al",AF,AF g&c, g " ,g ' ,g '

A4' , A4l |A4.A4 ^ n A 4j Al'.Ali IaF ' haIJ B \ B i  I g ^ n g l
E

•u-
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II T
A4", AF. A4,A4' A l A l A '^ B ,g " ,g \g '

AF I A4^ aF I A ^ g ' 1 B'^
E

t  II T
m i m i m ,m : 4", Ai, At*

M l  1 A4: Ai 1 A ï Bi 1 B l
E

M ln M °  

Bl n g"

^  II T
A4°,AF.A4,AF' A",A ',AT B&C, g",g',gT^

A4', Afi |A4 ' n A4: A ' , A i lA ^ n A l g '.B i | g ^ n g :
E

C ase 3 (>g-S a n d  -o-S): For the translation of the ‘’S’-S’ rule the multiset M. is divided into 
two parts. One part (A ii) appears in the strict output context of the left premise and the 
second part (A42) appears in the slack output context of the left premise. Hence, the first 
part is consumed by the proof branch of the right premise and the second one is consumed 
in the proof branch of the left premise. The following rule (A42 =  Ai^, Ai^):

^  II T
B

A 4",A 4',A 4 i ,A 42,A4+ A",A ',A^
A4i, A4' 1 A4z, A4 ̂ A' 1 A-^

E

C
, A ii, A4i , A44b A4IIK , A l , A l

M l  Ml, |A4i,A4^,A4lll A j | A j  
E

^  . II............... T

A4",A4',A4i ,A42,A4‘ A ",A ',A '
A4' n A4i |A4i, A42, A4^nA4i, A4* A' n Ai lA '̂n Ai, A :

E

is translated as follows:

$  II T
B

A4",A4',A4i,A4a,A4T A " ,A ' ,A ^
A4i, A4' Ai'^ A' 1 A^

E

$

M l M l M u M l U l A l A l
M l M j  A l I A J

E

#  II T
B'gC

A4", A 4',A4i,A42,A4^ A", A ', A^
A4' n A4i |A4"^nA4i, A4: A ' n Ai lÂ n̂ Ai, A :

E

'g-S

The translation of the ‘-o-S’ rule is similar but omitted.

The soundness proof will be shown by translating a B^proof into a B-proof which has 
the consumed formulae from the B'-proof as input context. An exception is the ‘&-R,’ rule 
where the left-premise returns some formulae which must be consumed in order to obtain a 
B-proof. Therefore, Proposition 14 is used which modifies a B'-proof such that it consumes 
some additional formulae.

P ro p o s itio n  15 (S oundness o f B' w .r .t. B)
1. For every B^-proof o f a box of the form:

W II T
A4", A4', A4 ' A ",A ',A '' g " ,g ',g '

A4' 1 A4’'' A' 1 A"'" g ' 1 gT
E

there exists a B-proof o f the box:

W II T
A4" A" g"

0 0 0
E
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and
2. For every 13'-proof o f a box of the form: there exists a 13-proof o f the box:

^  II T
B

A4",A4',A4"' A",A ',A^
A4' 1 A4''' A ' 1 A-'-

E

#  II T
B

A4" A"
0 0

E

P ro o f: Simultaneous induction on the heights of the B'-proofs. The trivial cases of the 
transformations are given in Appendix A.4. The non-trivial rules that split the proof branch 
are examined below:

C ase 1 (’S’-S): The inference rule in B' is as follows:

^  II T
B

A4",A4',A4 A",A',A'^
A4' 1 A4''' A ' 1 A'''

E

w II T
C

A4^,A4l,A4: A S.A l.A :
A4i 1 A4: A l 1 A :

E

II T

A4",A4',A4T A ",A ',A ^
A4' n A4l |A4'^n A4i,A4: A  ̂n Al E n A i . A Ï

E

Although the presentation is partially ambiguous, it is chosen since it improves the readab
ility. The names of the multisets A/P and in the conclusion suggest that they stand for 
the fragments of the input context that will be consumed. However, they stand only for the 
fragments which are consumed by the proof of the left premise. The actual consumed part 
B is a result of the multiset difference between the input context and the output context. 
Hence^

C =  A 4\A A ^,A A ^ - j A r \ A A l ~ { A 4 '^  0 A 4 l,A A l)
=  A A ^,A A \A 4 ^-~ {A A ^0 A 4 l,A A ^ O A 4 l) - -A 4 l  (1)
=  A 4 ° ,A 4 \A 4 T - A 4 ;- A 4 l  (2)
=  A4^,A4^.

Step 1 is a valid transformation since A4* is a subset of A4', A4^. Step 2 is a valid transform
ation because the input context of the right premise is formed by the output context of the 
left premise. Hence A4', A4^ =  A4*, A4*, AAJ and therefore A4* =  (A4', A4^) — A4* — J  •
Similar equations can be stated for the other contexts; the translation is as follows:

 ̂A comma stands for a m ultiset union; a — stands for the multiset difference (the binds tighter than 
the
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$  II T
B

A4",A4S /l^AO
A4: A"*

E

W II T
C

A4"*, A"*,
0 0

E

II T
B ^C

A4", A4!: A",AÜ
0 0

E

The translated proof of the left premise can be obtained using Proposition 12 which con
structs a B-proof where A4* and A* are added to the contexts.

C ase 2 (-o -S ): The inference rule is translated similarly to the case shown above:

II T
A4",A4',A4 a ° , a ' , a 1  B

A4' 1 A4''' A ' 1 A''' I 0 1 0
E

$ II X
C

M l  M l  M l “4*, Ai, A J
M i  1 A4: Ai 1 A l

E
)-S

Ÿ II X
B-oC

A4", A4', A4̂ ^ A ",A ',A ''
A4' n A4i lAf' '̂n A4i, A4Ï A ' n Ai lA^n Ai, A :

E

is translated to:

X
A4", A4"* A' ,A"* B

A4S A"* 0
E

^ | X
c

A4: A"*
0 0

E

#  II X
B-oC

A4", A4: A", A:
0 0

E

-o-S

C ase 3 (& -R): The inference rule in B' is as follows:

II X
A4", A4', A4' A ',A ’'* S ,g " ,g ',g T

A4' 1 A4T A' 1 A^ g ' 1 g^
E

^  II X
c,b°,b '̂

A4"*,A4i,A4j A :,A i,A : c , g : , g i , g :
A4i I A4: Ai 1 A l Bi 1 B l

E

A4Ü, n A4" 
Ai nA" 
B in g "

w II X
A4", A4', A4■* A ",A ',A “'‘ S & C ,g ",g ',g ''

A4', A4i |A4^ n A4: A ',Ai lA'' n A : g '.B i |g ' '" n g :
E
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In this case, the multiset M ^, A° and stand only for the formulae that are consumed by 
the proof of the left premise. The right premise consumes possibly some additional formulae 
which are returned as slack output from the left premise. However, the corresponding B- 
proof has to consume the same formulae. The B'-proof of the left premise using Proposition 
14 is modified so that the corresponding proof consumes the additional formulae, namely 
the formulae of the multisets A4* Pi A 4 A* n  and B* H B^. The modification of the 
endbox is as follows:

9  II T
A4", A4',A4n', A4‘-A4: A", A ', a : .  A '- a :

A4' 1 A4(f,AF' A ' 1 An‘ ,A ‘ g ' 1
E

iÿ II T
A4", A4', A4:, A4'■-A4: A " ,A ',A :,A ‘-A :

A4' 1 A4^ A ' A^ g ' 1 B'^
E

where A4q =  A4* PI A4^; A J =  A* Pi A^ and B J =  B* PlB^. Then, the translation of the 
proof branch which corresponds to the left premise is obtained by translating the modified 
B'-proof into a B-proof. The inference rule of B is as follows:

W I I  , T
A4",A4l A", A : B ,B \B f

0 0 0
E

$ II T
A4: A: c,g:

0 0 0
E

$ n i T
A4", A4: A " .  A n ' B & c,g " .g :

0 0 0
E

3.2 .2  C om pleteness o f B' w .r .t. B

The completeness proof is achieved by translating each B-proof into a B'-proof. However, we 
have to identify the formulae which appear in the slack output context of the translated B'- 
proof. The ‘T-part’, which is given by the following proposition, represents those formulae. 
Some of these formulae come from the consumed part (i.e., A4°, A^ and B^) and the other 
come from the returned part (i.e., A4'', A^ and B^).

P ro p o s itio n  16 (T -P a r t)

1. From each multiset in a box of a 
B-proof with the endbox o f the form:

a multiset can be divided so that the endbox 
of the B-proof is of the form:

and

1 T
A4", A4' A\ A ' g " ,g '

A4' A ' g '
E

1 T
A4': A4"t , A4fi A4't a ' : a "t , a ' U t g ':g ^ ,g '(g 'r

A4'',A4V A",A 'r g '',g 'r
E
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2. From each multiset in a box of a multiset can be divided so that the endbox
B-proof with the endbox o f the form: o f the B-proof is of the form:

W II T
B

A4", A4' A", A '
A4' A'

E

^  II T
B

A4'", A4"t , A4'', A4V A'" A"t ,A",A't
A4", A4 4- A ", Air

E

P ro o f: The aforementioned division of each multiset is given by describing the T-part; the 
remaining formulae are members of the other part.

A box in a B-proof is a conclusion of:

-  a T-R  rule, then all formulae of each multiset are in the T-parts;

-  a initial, initial?, ?-S or T-S rule, then the T-parts are empty (the multisets B^ in 
each choose rule are treated similarly);

-  a ’S’-S or -o-S rule, then the T-part of each multiset consists of formulae which appear 
at least in one of the corresponding T-parts of the premises;

-  a &-R rule, then the T-part of each multiset consists of formulae which are in both of 
the corresponding T-parts of the premises;

-  a D-S rule, then the T-part of each multiset of each multiset is equal to the corres
ponding T-part of the right premise.

In all other cases, each T-part of the conclusion is equal to the corresponding T-part of the 
premise. From now on, we use a subscript ‘T ’ for representing a ‘T -part’ of a multiset in a 
B-proof. □

111 the remaining part of this section, we consider only B-proofs where the multisets 
are divided according to Proposition 16. The formulae which are members of a T-part 
are distributed (in the completeness proof) across the strict and slack output context, with 
the T-parts going into the latter. However, before we start with the actual translation, a 
technical result is proven because we give the translation for boxes with an empty output 
context. Therefore, the contexts have to be modified so that we obtain B'-proofs.

The following proposition is used for modifying contexts in B'-proofs. Intuitively, it is 
possible to add arbitrary multisets of formulae to both input and output context, and these 
additional formulae do not affect the provability. This addition of formulae is similar to 
the modification of B-proofs using Proposition 12. However, there is one difference: the 
added formulae can appear in either the strict or the slack output context. Therefore the 
multisets which are added are split into two parts: one part is returned as strict output 
(i.e., A ' , y '  and in the proposition below) and the other part is returned as slack output 
(i.e., A j ,y y  and Z \) .  In the following proposition, we use a corresponding B-proof. Such 
a B-proof has the same structure as the B'-pro of (i.e., the order of inference steps is equal). 
The proposition is used when translating a ‘̂ -S ’ and a ‘-o-S’ rule in the completeness proof.
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P ro p o s itio n  17 (M o d ifica tio n  o f  B^-proofs)

1. Let P ' he a B'-proof with the endbox o f the form:

1 T
a \ a \ a %,a \

A' IA"t , a V g ' lg^T,g'r
E

let P  be a corresponding B-proof with the endbox of the form:

W II T
A 4 \A ïL A F ,A F r,% ',% i. A " ,A L A \A ir ,y \y ^ g " ,g L g ',g L % \ z 4

m \ m I , x I x ^ A ^ ,A V .y V : B lB ^r,Z \Z ^r
E

then there exists a B'-proof o f the box:

II T
M l M \ X \ M % , M \ , x i A ",A ',y ,A "T .A V ,y : b \ b I z I b { , b { , z \-

A F ,X ' lA ï^ .A ïk x i- A ',y '  |A i,A t- ,y ï g \ z '  |gi^,gir,z4.
E

and

2. Let P ' be a B'-proof with the endbox of the form:

11 T
B

A ",A ',A ^,A ir
AF |Af^,A4lr A ' K ,A ! r

E
let P  be a corresponding B-proof with the endbox of the form:

W II T
B

A(",A4i;-,A4\AFr,X',X4- A ",A "T ,A ',A V ,y '.y:
M \ M i r , X \ X \ - A \ A i r , y \ y :

E
then there exists a B'-proof o f the box:

w II T
B

m \ m I x I m \ , m \ , x \ a"  , a '  , y  ',  A t , A t , y \
A4', A ' |A4^-,A4V,a : A ',y  iA"T,A'r.y:

E

P ro o f  Simultaneous induction on the heights of B^proofs. The proof consists of the trans
lations of the inference rules; we give only the non-trivial cases.

C ase 1 ('S’-S) The inference rule is as follows (where — M l  M l ) :

4/ II T ^  II T
B C

A4",A4',A4' A " ,A ',A ' A4:, A4i, A4: A:,A1,AJ
A4' 1 A4^ A ' 1 A*'" A4i 1 A4: Ai 1 A :

E E

II T
B ^ C

A4",A4',A4 A", A ', A^
A4'nA4i |AF^nA4i,A4: A 'n A i |A'‘'n A i ,A :

E

'g-S
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with the corresponding proof step of the B-proof (where X j = X ^  and Yy =  but the 
formulae of and Y^ are not members of a T-part) as follows:

II T
B

- 4 % Æ ^ _ ' , Y ^ Y ^ , Y ^
M \ M \ x K x \ - . X ' i

E

«  II T
c

^ , A i , A l  ,Y\Y-^,Y-^
A l l ,

s

B ^ C
. . . , .

 ̂ r \ M l M L x : \ X ^ t , X ^ \ W n A l  A'^nAi  a 1 , Y '. Yî , Y-? 
S

is translated as follows:

w  II T
B

M ° , M \ M \ X \ X \ , X \ A^ ,A \A ^,Y \Y -^ ,Y ^
M \ X ^  \ M \ X l - , X l A \ Y ^  \ A \ Y i , Y ^

E

^  I I T
C

M l , M l , M l , X \ X ^ r , X ^ y A l , A l A l , Y \ Y i , Y ^
M l , X \ X ' ^ \  Mt,X^r >tLY\y^| A : , Y i

E

m ° m \ ,m ^ ,x \ x \ - 7M
M^nMi,X^ \M'^nMi,MlX\;X^\\ A^nAlY^ \A’̂ nAj,AUG,Y4

A \ A \ A ^ .Y \ Y - ^ ,Y ^

The translation of the ‘-o-S’ rule is similar, and therefore it is omitted. 

C ase 2 (& -R) The inference rule is as follows:

W I I  T Ÿ I I T
A \ A \ A ^ A l M l A l C.B1B1,BJ

1 A  ̂ 1 A^ B̂  1 M l  1 M l Al  1 Al Bl 1
E E

M i n M ^  
Al  n A °  
B l n B °

&-R
II ........ T

M ° , M \ M ' A \ A \ A ^ ~ B&C, B \B \B ^
M \ M l  \ M ' ^ n M j A^,Al \A^ n A j B \B l  iB’̂ n B j

E

with the endbox of the corresponding B-proof which is as follows:

# II . . . . . . . . . . . . T
M ° , M \ M ^ \ x \ X ^ r A \ A \ A ^ , Y \ Y i B8iC, B \ B \ B ^ , Z \ Z \ -

M \ M l ,  M ^  r \ M L x \ X k A \ A l , A ^  n A l , Y \ Y i B \ B l B  ' n B ^ Z \ Z l -
E

is translated as follows:
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........ ......II,............. T
m \ m \ m '^,x \ x \

M \ X ^  1 A \ Y ^  1 A ^ , Y f B \ Z ^  1 B^,Zl-
s

II . T
.4*,^!,.4* , Yt c .b I ,b 1.b L z \

M l  I a iJ .x ^ XI iX j.Y i Bl \ B j , Z k
E

M l  n = 0  
Xl n =  0 
Bl nB° =  0

&~R
w II T

a \ a ‘ ,a \ y \ y^ B & C ,B " ,B \B \Z \Z i.
M \ M l , X ^  \M'  n M F X l - A ' .A i .Y '  \A' B \ B l , Z ^  IB' nBl ,Z^r

E

□

The key idea behind the completeness proof is a translation of those inference steps of B 
tha t have an empty output context. This simplifies the translation because the corresponding 
inference rules of B'  also have an empty strict output context. However in some cases, the 
output contexts have to consist of some formulae in order to obtain a B^-proof. This is 
achieved by a modification of B'-proofs using the proposition stated above.

A T-part is divided from the multisets which appear in the boxes of the B calculus (on 
the left-hand side below) according to Proposition 16. The T-parts (i.e., A fy, A \  and By) 
represent formulae which are consumed by ‘T -R ’ rules.

P ro p o s itio n  18 (C o m p le ten ess  B' w .r .t. B)
1. For every B-proof o f a box o f the form: there exists a B'-proof o f the box:

1 , T
m \ m %A \ A \ B^B%.

0 0 0
E

W ,1 , T
m \ m % B \ B }

0 lAi^ 0 |X^ 0 |B^
E

and
2. For every B-proof of a box o f the form: there exists a B'-proof of the box:

$  I I T
B

M \ M \ A \ A \
0 0

E

$  I I T
B

m \ m \
0 \M% 0 |X"y

E

P ro o f: Simultaneous induction on the heights of the B-proofs. The trivial cases are given 
in Appendix A.5 and the non-trivial cases are given below.

C ase 1 (>P-S): The inference rule of B is:
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^  II T
B

X ^ X ^ , X \ X 4-
M \M k x \ x v

E

t  II T
c

X " * , X T
0 0

E
Ÿ  II X

B^C
x " , x H - , x \ x v

0 0
E

'g-S

(3.1)

where the input contexts of the right premise are given hy M ^ , M j  — and
= A'^^ A y .  This inference rule is translated into the following inference rule of B'\

#  II X
B

x ° . x « T . x u x v
A U  | A l ^ , A f ^ x ^  | X t , X t

E
$  II X

B^C
X » , X ^ , X \ X ! r

0 l A l f . A f : 0 L4^ , X J
E

w  II X
c

A ( ' ° , A U ^ , A ( 1, A 1J X ' ^ . X ^ P . X i . X j
Ml  l A f T . A l J X l  | X t  , Al

E

where the output contexts of the left premise and the input contexts of the right premise 
are given by the following equations;

A \ A \  = A!^,A '^
Xy — X*, X^

The boxes of the premises have non-empty output contexts. In order to construct the 
corresponding B^-proof some modifications of the B-proof and B'-proof are necessary. The 
B'-proof of the left premise in the translation is constructed as follows. First we have the 
B-proof with the endbox (left premise of the inference rule of B) :

Ÿ  II X
B

A l " ,  A l y ,  A i \  A f y
A ( \  A l y X U  X V

E

(3.2)

However, it has non-empty output contexts; a B-proof of such a box cannot be translated 
directly to a B'-proof using the given translations. Using Proposition 12, this B-proof can 
be modified so that the endbox is:

^  n X
B

m \ m%X ^ x ^
0 0

E

Then, since the output contexts are empty, the corresponding proof can be translated into 
the B'-proof with the endbox:
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^  I I T
B

0  l A f V 0  \A%
E

Using Proposition 17 with the B-proof of (3,2) the desired B'-proof is constructible with the 
left premise as the endbox.

The B'-proof of the right premise can be obtained by translating the B-proof of the right 
premise to a B'-proof with the following endbox.

^  I I T
C

A '\A '^
0 \M'^ 0 |X'f

E

This B'-proof can be modified using Proposition 17. The corresponding B-proof can be 
obtained by the B-proof of the right premise of (3.1) with a modification using Proposition 
12 and the multisets and X*, X J . The endbox of the desired B-proof is as follows;

. . . . . . . . . . . ^ . . . . . . . . . . J l . . _ T
C

X ' " X t ,  x i , x j
M l, M l x l ,  x j

E

C ase 2 (-o -S ): The inference rule of B is as follows [ M ^ X^,X y 
X '°,X % :

#  1 T
M \ M \ , M \ M \ x " ,x "t .x u x v B

M^ ,m \- XU XV 0
E

w II T
c

X'",X'f
0 0

E

$  II T
B —oC

M \ M ^ , M \ M \ X",X"r,XUXV
0 0

E

—o-S

which is translated into the following inference rule of B'  :

^  1 T
M f , M % , M \ M \ X",XV,XUXV B

\ M%, M\ x^ |Xt >Xt 0 1 0
E

^  II T
C

M ' \ M ' ^ , M l , M l X'",XTX1,XJ
M l  \M'^,Ml XI W ,X j

E

^  II T
B-oC

M \ M \ M ' _ .x " ,x u .x .’ ,
0  \M'^,m J 0  I X ' f . X j

E
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The B'-pioofs of the premises can be constructed similarly to Case 1. 

C ase 3 (& -R): The inference rule of B is:

W II T W II T
M \ M \ X " , X ^ x , \ x ?

0 0 0 0 0 0
S E

$  II T
A l " , A 4 " y X " , X " t

0 0 0
E

where the input contexts of the right premise are given by M j \  A ^ , A j
, Xy and B°,By =  B '°,B y. This rule is translated as follows:

II T
M \ M % xU xV b ,b \ b%

0 \M \ 0 IXV 0  | B ( | .
E

W II T
X ' " , X ?

0 0 Ix ? 0 I b 'V
E

" 1  a T
m \ m % B&C, B\B%

0  \M% n  M'^ 0  | X V  n  X ' - ? 0  \B%n  B ' - ?
E

&-R

where the output and the input contexts of the premises are given (as in the B-proof) by:

=  M \M ° t
X '^ X ?  =  A \ A \  and
B'®,B'-f =  B°,B^

The side conditions which appear in the ‘&-R’ rule of B' are satisfied since all strict output 
contexts are empty. □

3.2 .3  Im plem entation

The main novelty of the calculus B' appears in the treatment of the ‘T -R ’. The generate- 
and-test operation of B which determines the part that is actively consumed by this rule is 
removed. The new inference rule returns all formulae (apart from the T connective) and the 
other rules have permission to consume some formulae from the slack output context. In 
the implementation of B, the predicate rem oved checked that a component of the analysed 
formulae does not appear in the output contexts. On the other hand, a predicate, named 
with rem ove, is declared in the implementation of B' which also checks the occurrences of 
a component of the analysed formula, but can consume it if it appears in the slack output 
context.

rem ove A ->  l i s t  A ->  l i s t  A ->  l i s t  A ->  l i s t  A ->  o .

This predicate succeeds in two cases. Firstly, rem ove F X Y Z Z succeeds if the 
lists Y and Z together contain less occurrences of the formula F than the list X. 

Secondly, rem ove F X Y Z W succeeds if the lists Y and Z together contain the
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same number of occurrences of the formula F as the list X. In this case, the list 
W is instantiated with the a list that contains all elements of Z apart from one 
occurrence of the formula F.

The provability of boxes of the calculus B' is implemented with the predicates right and 
stoup, respectively. These predicates have the following types:

type r ig h t

type stoup

l i s t  o  “> % Ÿ (classical)
l i s t  o  -> l i s t 0  ~> l i s t o % A4 (linear)
l i s t  0  - > l i s t 0  -> l i s t o % A  (linear)
l i s t  o  ~ > l i s t 0  ~> l i s t 0 % B (linear)
l i s t  o  -> o . % T (classical)

l i s t  o  ~> % 91 (classical)
l i s t  o  - > l i s t o -> l i s t 0 % A4 (linear)
0 - > % stoup
l i s t  o -> l i s t o  -> l i s t o % A  (linear)
l i s t  o  - > o . % T (classical)

The complete implementation can be found in Appendix B.6. In the following, some imple
mentations of the interesting rules are given together with their specification.

a to m ic -H  ru le :

1 T
A 4 \A 4 \A 4 ^ A ,A \ A \ A ^

A4^ 1 X ' 1 X^ B  ̂ 1
S

W 11 T
x^.xuxT " A, B° , B\ B^

I M'^ X ' I x ^ B̂  j B'̂ '
E

atomic-K

% atom ic-R  r u le
r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT (A::B0B1BT) Bl BT U p silon  

atom ic A,
r ig h t  P s i  MOMIMT Ml MT (A::A0A1AT) Al AT’ BOBIBT Bl BT U p silo n , 
remove A (A::AOAIAT) Al AT’ AT.

T -R  ru le :

W II T
A'^ T.B^

0 \M^ 0 IXT 0 Ib "''
E

T-R

% top-R  r u le

r ig h t  P s i  MT n i l  MT AT n i l  AT (top::B T ) n i l  BT U p silo n .
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’g - S  r u le ;

ÿ  I I T
B

Â \ A \ A ^
1 X ' IX T

E

W  II T
C

x l x i . x l
M l  1 M j X i 1 A I

E

$  Il T
B ’gC

M ^ , M \ M ^ x u x u x ^
M ^ n M i  i M ^ n M l M l X ^ n X i I X ^ n X i,X l

E

% Par-S r u le  ( l -S  r u le )

stou p  P s i MOMIMT M1~M1* MT“H1*MT* (B j C) AOAIAT A1"A1* AT~A1*AT* U p silo n  
stou p  P s i  MOMIMT Ml MT B AOAIAT Al AT U p silo n , 
append Ml MT M0*M1*MT*, 
append Al AT A0*A1*AT*,
stoup  P s i M0*M1*MT* Ml* MT* C A0*A1*AT* Al* AT* U p silo n ,
in t e r  Ml Ml* Ml'Ml*,
in t e r  Al Al* A1"A1*,
in t e r  MT Ml* MT'-Ml*,
in t e r  AT Al* AT"A1*,
append MT'Ml* MT* MT~M1*MT*,
append AT"A1* AT* AT"A1*AT*.

—o -S  r u le :

II r
m \ m \ m "̂ X °,X U X T B

M^ 1 M ^ X '  I x T 0  1 0
E

^  Il T
C

M l ,  Ml ,  M l x : , x i , x l
M l  1 M l X i 1 A I

E

^  I l T
B —oC

M \ M \ M ^ X " ,X \X '
M ^ n M l  \ M ' ^ n M l , Ml X ^ n X i |X '^ n X i,X j

E

— o-S r u le )

-o-S

stou p  P s i MOMIMT Ml^Ml* MT~M1*MT* (B — o C) AOAIAT A1~A1* AT"A1*AT* U p silo n  
stou p  P s i MOMIMT Ml MT C AOAIAT Al AT U p silo n , 
append Ml MT M0*M1*MT*, 
append Al AT A0*A1*AT*,
r ig h t  P s i  M0*M1*MT* Ml* MT* A0*A1*AT* Al* AT* (B : : n i l )  n i l  n i l  U p s ilo n ,
in t e r  Ml Ml* M1"M1*,
in t e r  Al Al* A1~A1*,
in t e r  MT Ml* MT"M1*,
in t e r  AT Al* AT"A1*,
append MT"M1* MT* MT"'M1*MT*,
append AT”A1* AT* AT"A1*AT*.
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&-R rule:

67

w  II T
x ° , x u x ^

1 X '  1 x ^ B̂  1
E

^  II T
M°,M^ A°,A^

X#, xi, x j
M i  1 M l Xi 1 XI 51 1 51

E

II T
M ° , M ^ , M ^ X",X\X' B&C,5°,5\5T

M^^,Mi \M'^ n M j XUXl IX'^nXl 5 \5 l  |gTn5l
E

= 0
x i  nX " =0  
B in B " = 0

&-R

% With-R r u le  (@-R r u le )
r ig h t  P s i MOMIMT MlMl* MT'MT* AOAIAT AlAl* AT~AT*

((B 6 C)::BOBIBT) B lB l* BT^BT* U p silo n  
r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT (B ::BOBIBT) Bl BT’ U p silo n , 
remove B (B ::BOBIBT) Bl BT’ BT, 
d i f f  MOMIMT Ml MO, 
d i f f  AOAIAT Al AO, 
d i f f  BOBIBT Bl BO, 
append MO MT M0*M1*MT*, 
append AO AT A0*A1*AT*, 
append BO BT B0*B1*BT*,
r ig h t  P s i M0*M1*MT* Ml* MT* A0*A1*AT* Al* AT* (C::B0*B1*BT*) B l* BT* U p silo n ,
in t e r  MO Ml* n i l ,
in t e r  AO Al* n i l ,
in t e r  BO Bl* n i l ,
append Ml Ml* MlMl*,
append Al Al* A lA l*,
append Bl Bl* B lB l* ,
in t e r  MT MT* MT'MT*,
in t e r  AT AT* AT‘'AT*,
in t e r  BT BT* BT“BT*.
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#  II T

0 \ M ' ^ 0 ix"^ 0 I5 T
s

T-R
$ .......i ......... T

A, X", XU XT"B \ B \ B ^
1 M ' ^ X̂  1 XT' B̂  1 BT"

E

W II T
A4", A4U Â T" X", XU XT' A,B",BT,BT"

A4^ ! A4^ XT 1 XT' B‘ 1 BT"
E

atomic-K

9̂  II T

1 r*—

9r II T
A4°,A4t, A 4 ‘ X",XUX' B " ,B T ,B ' A4°,A4t,AAT' X".XT,X' 0 , C ,  B " ,B T ,B '

A4 T 1 A4 T' XT IXT- BT 1 b T" A4T 1 A4^ XT 1 .at- BT 1 B'^
E E

i T
A4", A4t, A 4 t X °,X T ,X ^ i , b " , b t , b '*'

A4 1 A4^ XT 1 .AT" BT 1 B'T'
E

E II „
A4°,A4t,A4T' X " ,X T ,X ^ B ^ C , B \ B \ B ^

A4 T 1 A4^ XT 1 XT' BT 1 b T "
E

’g-R

^  II T
B , M \ M \ M ' X",XT,XT' C,B",BT,BT

A4 T 1 A4 T' XT I >1^ BT 1 B'T'
E

II T
A4",A4t,A 4 ' X " ,X T ,X ' B -o C ,  B*T BT,B^

A4 T A4T' XT 1 ^T' BT I b T-
E

-o-R

II T
A4",A4t,A 4^ X",XT,X'T C,B",BT,BT

A4T 1 A 4 T - XT 1 .A^ BT 1 BT"
E

9 ....... 1 '  , T
A4",A4T,A4't X " ,X T ,X ^ B d C ,  B°,BT,BT

A%T A4 T' XT 1 XT' BT 1 B'T'
E

■D-R

9̂
0  J I t

T

-  V-R,

vp II B . T
A4",A4T,A4' X " ,X T ,X ^ S [rH -y l ,B " ,B T ,B ^ A4", A4t,A4 ' A " ,X T ,X ' B°,BT,BT'

A4 T 1 A4 T' XT 1 XT' BT 1 B't' A4 T 1 A4 T' XT I XT'
— :—^ ----

BT I B^
y : T, E E

$ T #  II T
A4",A4T,A4T . 0  , V^®B,B",BT,b ‘ A4", A4 T, AA'T' X " ,X T ,X ^ ? S ,B °  BT,B^

A4T 1 A4 T' XT I XT^ BT 1 b T* A4 T 1 A4^ XT 1 XT' BT I B'T'
E E

y is not declared in S

?-R

II T
A4",A4T,A4^ X",XT,XT^ B ,B " ,B T ,b '̂

AfT 1 A4 T' XT 1 A ^ BT 1 bT*
E

$  II T

x ° , x l , x l C,B2,Bl,Bl
M i  1 A 4 j XI 1 XJ Bl  1 Bj

E

n A4" 
A lr \A °  
B i n B °

&-R
W fl T

A4°.A4T,A4' X",XT,XT B&C, B",BT,B^
A4T,A4i |A4 ' n A4] X T ,X I IX' n X j B \B l  iB T 'nB j

E

Figure 3.4: The right rules in the modified box calculus B '.
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^  I I T
B

X°,XT,XT
A4' 1 AfT" XT 1 XT'

E
w I t  T

B,Af", AfT, Af"̂ X", XT, XT' BT
AfT 1 AfT" XT 1 at- bt| 0

E

choose

W,B II T
B

X",XT,X'
AfT I AfT" XT IxT-

E
1 T

Al", AlT,A1̂ X",XT,XT' BT
A I T  I A I T - X T  I X T - B t |  0

E

choosel

II
Al",AlT,Af'' X",XT,X' B
AfT 1 Al̂ XT 1 XT' 0 1 0

E
W I I  B,T

A4°,A1t,A1'>X",XT,XT BT
AlT 1AfT- XT 1 XT' BT I 0

E

choose?

Figure 3.5; The choose rules in the modified box calculus B'.
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^  II T
A

AfT A,XT
AfT| 0 XT|0

E

initial
W II X,T

A
AfT XT

AfTj 0 XT|0
E

initial?
t  II T

AfT XT
AfT| 0 XT|0

E

JL-S

Î/ II T
B 0 0

0 |0 0 | 0 0 1 0
E

9̂  II T
IB

AfT XT
AfT 1 0 XT| 0

E

?-S

9̂  II T w II T
Bi B[x t]

Af°,AfT,Af^ X",XT,X^ Af",AfT,AfT^ X",XT,X^
AfT 1 AfT" XT 1 XT AfT 1 AfT XT Ix""

E E

W II T 9  II T
B1&B2 S/rXB

Af",AfT,Af^ X",XT,X^ Af", AfT, Af XU XT, XT
AfT 1 AfT- XT 1 XT' AfT 1 AfT- XT I x T -

E E

-V-S

t is a E-term of type r

T
B

Af",AfT,Af^ X",XT,X^'
AfT 1 AfT- XT IxT-

E

^  II T
c

x U x l ,x J
Afl 1 AfT A'. 1 X l

E

9 II T
B^C

Af",AfT,AfT X°,XT, X^
AfT n Afl lAfTnAfUAfJ XT n X l iXTfiXUXj

E

9T II T
Af",AfT,AfT X",XT,X' B

AfT 1 AfT XT Ix T 0 1 0
E

t  II T
c

m \ m '̂

A fU A fl.A fl x U x l , x J
Afl 1 Af J XI IX I

E
)-S

#  II T
B-oC

Af", AfT, AfT X",XT,XT
AfT n Afl lAfTn Afl, A fl XT n X l iXT'nXi.Xl

E

W II T
0 0 B

0 |0 0 |0 0 |0
E

$  II T
C

Af", AfT.AfT X°,XT,X'‘'
AfT 1 AfT XT IxT

E

$  II T
B D C

Af", AfT, AfT X",XT,XT
AfT 1 AfT XT 1 XT

E

D-S

Figure 3.6: The stoup rules in the modified box calculus B '.



CHAPTER 3. EFFICIENT C O N TEXT M ANAGEM ENT  71

3.3 C onsideration  o f  th e  C hoose R ules

In the previous sections, we addressed the non-determinism that arises from the context 
splitting. However, there is another significant source of non-determinism which appears in 
the ‘choose’ rules. Consider the following implementation of the choose rules:

% ch oose r u le  
% ch oose! r u le  
% choose? r u le

r ig h t  P s i  BMOHl Ml AOAl Al Bl Bl U p silon  
membNrest B BHOMl MOMl, 
stou p  P s i MOMl Ml B AOAl Al U p silo n .

r ig h t  P s i  MOMl Ml AOAl Al Bl Bl U p silon  
member B P s i ,
stou p  P s i MOMl Ml B AOAl Al U p silo n .

r ig h t  P s i  MOMl Ml AOAl Al Bl Bl U p silon
member B U p silo n ,
r ig h t  P s i  MOMl Ml AOAl Al (B : : n i l )  n i l  U p silo n .

In Section 2.5, we presented an explanation why we implemented these rules using the 
order as illustrated in the program code. The ‘choose’ and ‘choose!’ rule serve for choosing 
a program formula which will be analysed subsequently as stoup formula; the ‘choose?’ rule 
chooses a formula from the classical context T  of the antecedent which will be considered 
as a goal formula.

All three rules use a generate-and-test operation for choosing a formula (i.e., member,
membNrest). This strategy is particularly inefficient since the proof construction (which
follows when a choice is made) is rather expensive. In case of the ‘choose’ and ‘choose!’ rule, 
however, it is feasible to decide whether the chosen formula is a candidate for a proof or it 
is predictable that the construction will fail.

The idea behind this choose test is the fact that a stoup formula (apart from some 
exceptions) has to lead to a proof where it is focused on that particular formula. Furthermore 
in these cases, the proof has to terminate with either the ‘initial’, ‘initial?’ or ‘_L-S’ rule. 
Therefore, it is possible to decompose recursively the chosen stoup formula independently 
from the proof search.

We can say: a formula F  is a candidate for a proof if it passes the following test. By 
case analysis:

-  F  is an atom, then it must unify with an atom from the succèdent;

-  F  is ‘J_’, then it passes the test;

-  F  is of the the form F ’gC , then both components must pass the test;

-  F  is of the form B&C, then at least one component must pass the test;

-  F  is an implication, then the implicatum must pass the test;

-  F  is of the form YxB,  then the formula B[.r i-> y] must pass the test where y is a fresh 
variable;
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-  F  is composed with an outermost non-primitive connective, then the translated form 
of B  must pass the test (e.g., then {B~o±)  is considered);

-  jF is of the form ?J3, then it passes the test since this formula is removed to the linear 
context of the succèdent and possibly another stoup formula will be chosen and

-  F  is T, then the test fails.

The implementation of the ‘choose test' is given in Appendix B.3. The modified ‘choose’
rules are as follows:

% choose r u le
7, choose ! r u le
% choose? r u le

r ig h t  P s i  BMOHl Ml AOAl A1 B1 B1 U p silo n  : -  
luembNrest B BMOMl MOMl, 

append AOAl U p silo n  R ig h ts id e ,  
c h o o se te s t  B R ig h ts id e , 

stou p  P s i MOMl Ml B AOAl A1 U p silo n .

r ig h t  P s i  MOMl Ml AOAl A1 B1 B1 U p silo n  :~ 
member B P s i ,  

append AOAl U p silon  R ig h ts id e ,  
c h o o se te s t  B R ig h ts id e , 

stou p  P s i MOMl Ml B AOAl A1 U p silo n .

r ig h t  P s i  MOMl Ml AOAl A1 B1 B1 U p silon  
member B U p silo n ,
r ig h t  P s i MOMl Ml AOAl A1 (B : : n i l )  n i l  U p silo n .

The implementation of the ‘choose’ rules for B'  is similar to the presented implementation |
for B, I1

3.4 P rob lem s w ith  E m pty H eaded Im plications

Let us consider what is achieved so far. Miller proved for FoRUM that it can be seen as 
an abstract logic programming language, in the sense that uniform proofs (Definition 5) are 
complete for the language. The box calculi presented here provide a deterministic method 
for the context splitting which improves significantly the efficiency compared with F  and 

However, Miller avoided calling F orum a ‘logic programming language’ and generally 
referred to Forum as a specification logic. The problem concerning an implementation of 
Forum as a logic programming language arises from the J_-headed implications which appear J
to be problematic when they occur in the classical context of the antecedent. Consider, |
the following proof fragment (for expository purposes we present this fragment using the j
sequent calculus F'] however, the same problem appears, thus far, in all presented calculi |
for F orum):
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S : A -o ± ;0  = »  A; A;0 S : A-o-L; 0==^0; 0 

S : A—o±; 0"=^>^A; 0
choose

±-S

-O-S

2 :  A - o _ L ; 0 = ^  A ; 0 ; 0  .   j__g
E : A - o X ; 0 = > A ; A ; 0  S : 0 = 4 0 ; f

S  : A—oX; 0 " = ^ A; 0 
S  : A -oX ; 0 = X  A; 0; 0

-S

choose

It is always possible to choose X-headed implication for the stoup position. However, it 
does not help in proving the sequent since the right premise expects empty contexts and 
does not consume any formula from the contexts. On the other hand, an elimination of 
such formulae is not desired since they play an important role when proving a non-primitive 
connective (see Section 2.3.2). Thus far, there is no satisfactory solution described in the 
literature concerning this problem.
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Exam ples

4.1 A  Sim ple O bject Logic

F orum’s expressivity can be illustrated by specifying and implementing object-logics (many 
examples can be found in [Miller, 1996]). In the following, a very simple object logic O 
based on single succedents is implemented in F orum (suggested by Miller). The language 
of formulae (£) in O is defined as follows:

£: G ::= true  | A | Gi A Gg
D  ::= A:-G

where A stands for atomic formulae, G for goal formulae and D for program formulae. The 
symbol represents the reverse intuitionistic implication and is borrowed from the concrete 
syntax of PROLOG in order to distinguish it from the implications used in F orum . The 
sequents of O are:

A = > G

where A is a multiset of program formulae and G is a goal formula. A program formula of 
the form ‘A :-true’ is called a fact. (Usually, facts are written as ‘A’ in logic programming 
languages. However for convenience of what follows, the facts are written as implications.) 
The inference rules of O are as follows:

 ̂ . A:-G, A = >  G  ̂ A  B A = ^ C  . ^
Axiom  -z— -----:—j  :—L ---- %-----........ ...7^—  A-RA ==> true  ‘ A'.-G, A = >  A A ==A- R A G

In the following, three implementations of O are given which represent the connectives 
and formulae of O using the appropriate connectives of F o r u m . The atomic formulae of O 
are translated into atomic formulae which inhabit the type o . The variable S  stands for 
a set of type declarations. In what follows, S  (in F o r u m  sequents) contains all the type 
declarations of atomic formulae and the used connectives.

For expository purposes, each implementation has a triple as name which represents the 
corresponding F o r u m  connectives. It is shown in each case that the implementation is a 
faithful representation of the object-logic O'.

object logic O'. implementations:
[true, A , :-) (T, &, -o), (T, ~o) (1 , >9, -o)

74
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R e p r e s e n ta t io n  ( T ,  &, —o);

The formulae of O  are translated  as follows:

true'* T  ;

A° A, where A is atomic;

(R  A G)'’

{C :-B Y  R » -o G ^

P r o p o s i t io n  19 A sequent A  =*- G  o f O  is provable if  and only if  the FoRUM sequent 
S : A °;0  = >  0 ;G °;0  is provable. (In what follow s A ° stands fo r  a m ultiset where each 
form ula is translated.)

P ro o f : Induction on the height of proofs. The translations of the inference rules are given 
below. The order of F o r u m ’s  inference rules a t the right-hand side is forced by the proof 
search strategy. Therefore, the vice-versa translation follows the same scheme.

A x io m  .. . n -r- n T -RA  tru e  <=> E : A  ; 0 = ^ 0 ; T ;

A = ^ B  A = » C  . „  _  S :A ° ;0 = > B ; f l« ;0  S : A °;0  = >  0 ;C ° ;0
A = > B A C  S ; A “ i 0 = ^ 0 ; B “& C “;0

-------------------------   in itia l
E : G ‘’-o A ,A ° ;0 = :>  0 ;G °;0  S : G ° -o A ,A " ;0 = 4 A ;0  ^

A :- G ,A = > G  E : G ° - oA ,A ^ 0 ^ 4 ^ -^ A ;0
A:-G, A ==> A E : G °-oA , A°; 0 = >  A ;0;0 ^

E :G (’^ A ,A " ; 0 = > 0 ; A ; 0

R e p r e s e n ta t io n  (T ,(g), —o):

The formulae of O  are translated  using the following translation:

tru e°  T  ;

A° A, where A is atomic;

( R A G ) '' R °® G ";

(G:-R)(’ R ° - o G \

P r o p o s i t io n  20 A sequent A  = >  G  of O  is provable if  and only if  the PoR U M  sequent 
E : A° ; 0 0; G° ; 0 is provable.

P ro o f : Induction on the height of proofs. For more convenience, a ‘® -R’ rule is defined 
which is a  shorthand for the following proof fragm ent (the rule 'Trans*  stands for the 
translation  of a non-prim itive into a prim itive connective) :

E : A " ;0 = >  0 ;R '’;0 E : A°; 0 ^  0; G°; 0 
E : A ''; 0 = 4 .0 ;R ° ® G '’;0

$
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-------------   J__S     x-s
E : A ° ;0 = > 0 ;R '> ;0  E : A " ;0 = 4 0 ;0  ^ S : A ° ;0 0 ;G ";0 E : A ^ 0 = 4 0 ;0

-0-0 —O-S
E : A” ; 0 E : A” ;

— ’S'-S

choose
E : A°;(R<’- o X M G '’-oX ) =#> 0 ;0 ; .
S : A ^(R °^ X )> 9 (G ‘’-o X ) = » 0 ;X ;0

E : A" ; 0 = >  0; ((R<>-oX )'9(G ''-oX ))-oX ; 0
  T ra n s

E : A"’; 0 = > 0 ; R ‘> 0 G ‘';

Translations (similar to the representation (T,& ,-o)):

A x io m  .. %—Tô~n--- . rt -r- X T-RA ==*- tru e  ‘ ^  S  ; A

A = s . f l  A ^ C  ^  E: A ° ;0 = » 0 ;B « ;0  S : A»; 0 =► 0; C»; 0 „  „
A = »  B A C E: A “; 0 ^ 0 ; B “ ® C »;0 ®

------------------------- -------- in itia l
S : O'*- o A ,A ° ;0 = > 0 ;G ^ 0  E :G ° -o A ,A ° ; 0 = 4 A ;0 ^  ^

A :-G ,A = X > G  S : G - o A ,A ^ 0 ^ :^ ^ A ;0  ,
A : - G ,A = ^  A ^  E :G " -o A , A ° ;0 = > A ;0 ;0  ^

E :G '’- c A ,A " ;0 = i> 0 ;A ;0

B oth translations described above are traditional ways to represent the object-logic O . 
The translation of the program  formulae using ‘- o ’ could be replaced by a translation  us
ing F o r u m ’s intuitionistic im plication ‘D ’ since the program  formulae are in the classical 
context.

R e p re se n ta tio n  ( X ,’9, —o);

A non-trivial embedding is described in the following. The formulae of O  are translated  
using the translation:

true'* X;

A'* A, where A is atomic;

(R A G)*» R ‘’)gG<’;

(G:-R)(’ R *-oG °.

P ro p o s itio n  21 A sequent A G  o f O  is provable if  and only i f  the F o r u m  sequent 
E : A° ; X ==> 0 ; G® ; 0 is provable.

This embedding does not preserve the structure of G-proofs and uses a ‘X ’ as an addi
tional linear program  formula. Consequently, the proofs cannot be shown by a structural 
induction using a m apping of inference rules. The soundness and completeness proofs use an 
interm ediate notation for G, which is called goal notation. Intuitively, the goal notation rep
resents a m ultiset of premises th a t have not been proven yet. The program  A is unchanged 
in each inference rule of G; therefore, it is possible to treat the program  A independently
from  the goal formula. The m ultisets of the goal notation can be modified by some rewriting
rules which correspond to  the inference rules of G. The corresponding pairs are given as 
follows ( r  stands for a m ultiset of goal formulae.):
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A x io mA  tru e  (tî’ue, r )  !->■ r

A B  A  = »  C  . n
A = ^ B A C  ^  (R A G ,r )  (R ,C ,r )

A  =*- G  J
A = > a '-~  ̂ ^  { A , T ) ^ { G , T )

where the program  A contains a form ula A:-G.

D e f in it io n  22 Let A  be a m ultiset of program form ulae of O . A A-sequence is a sequence 
of m u ltiset rewritings where:

1. the last m em ber is the em pty m ultiset;

2. each step  corresponds to either a splitting o f a conjunction, rem oval o f 'true * or a 
m em ber o f A .

Consider the following proof in G:

a\~true, h\-true = >  tru e  ' a:-true, h'.-true = >  tru e  
a:-true,h :-true = >  a ' a:~true,b'Arue ==^ b

a \-tru e ,b \-tru e  = >  a A b A R

The following two A-sequences bo th  correspond to this sequent proof:

(a A 6) 1-4 (a, b) i-4- {true, b) 1-4 (6) 1-4 {true) 1-4 0 

(a A 6) 1-4 (a, b) t-4 {tru e , b) t-4 {true, tru e)  1-4 {true) 1-4 0

L e m m a  23 A sequent A  = >  G  o f O  is provable i f  and only if  there is a A-sequence starting  
with  {|G|}.

P ro o f ;

Soundness: Induction on the length of goal sequences. A A-sequence of m ultisets th a t
starts  with {|G|} and represents the open premises (premises th a t have not 
been proven yet) in the proof in G. Thus, it is possible to  translate  the 
sequence into a G-proof using the defined correspondences.

Completeness: S tructural induction on the height of G-proofs using the defined corres
pondences.

The proof of Proposition 21 is still a  difficult m atter because the goal no tation  does not 
provide a one-to-one correspondence to  FoRUM  proofs. The difficulty is caused by F o r u m ’s  

ra ther restricted proof search. The particular problem atic rule in a translation  is the o-S’ 
inference rule. In the goal notation, the  corresponding rewriting rule is applicable whenever 
an atom  occurs. On the other hand, the ‘-o -S ’ inference rule is only applicable if the 
succèdent consists entirely of atom ic formulae.

There are two ways to  achieve the soundness and completeness of G w ith respect to 
F o r u m . A  norm al form of A-sequences in the goal notation could be introduced so th a t 
the norm al A-sequences and F o r u m  proofs are in a one-to-one correspondence. In this
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case, an appropriate notion of perm utable A-sequences m ust be defined. However, the proof 
of Proposition 21 will be shown by translating  any A-sequence into a CLL proof (for our 
purposes, we use a fragm ent of CLL). Subsequently, the complete proof w ith respect to 
F o r u m  can be achieved using the soundness (Theorem 1) and completeness (Theorem 3)  

theorem  of F o r u m  relative to CLL [Miller, 1996]. These theorem s provide the necessary 
translation  between CLL and F o r u m  proofs.

P r o o f  o f  P r o p o s i t io n  21: For soundness, we use structural induction on the length of 
A-sequences. For completeness, structural induction on the height of CLL proofs. (Note, 
th a t we use a fragm ent of CLL. The perm itted  formulae are specified above.)

Translations (!(A®) stands for a m ultiset where each form ula is decorated w ith a M’):

X,!(A®) = >  0 
(tru e)  t-4 0 T , !(A®) = >  X R

X ,! ( A ^ ) = > r
(tru e, F) H4 r  X, !(A®) = >  X,F® ^

X,!(A®)
(R A C ,F ) (R ,G ,F ) X,!(A®) = >  R®'pG®,F®

X,!(A®) =>G®,F®—LX '----------- i----  o p
(A ,F ) t^ (G ,F )  4^ X,!(A®)=x> A,F®

where A® contains a form ula G®—oA®. The ‘BC ’ rule is a specific instance of ‘-o -L ’ rule. □

T w o  E x a m p le s  fo r  t h e  r e p r e s e n ta t io n s  o f  O:

In the following, a  program  A and a goal G of the object-logic O  will be represented in 
F o r u m  using the translations ( T , & , - o )  and (X ,)? ,  -o) (the translation using (T ,® ,-o )  is 
sim ilar to the translation (T , &, —o)). The program  A is as follows:

c:-b A a.
b\-a.
a'.-true.

The goal form ula is c A a; the sequent which will be proven is:

A = >  c A a

In w hat follows, the right premise of any inference th a t can be proven in a single step is 
om itted  in order to improve the readability of the given proofs. The proof of the sequent in 
O  is as follows:

A xiom

--------------------------  A -R ----------  —-----  A xiomA = >  b A a J A = »  tru e  ,
A c ___________________ A ==#> a ' p

A = > c A o
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Representation ( T ,& ,—o):
The translated  program  A® is: b& a-oc, a -ob , T -o a ;  
the translated  goal G  is: c&n.
A proof in T '  is:

T -R  
—o-S

E : A"; );T ;

E: A ° ;0 W a ;0  
E : A®; 0 = >  a; 0; 0 
E : A ® ; 0 = » 0 i M  

E : A ® ;0 ^ 6 ;0  
E : A ® ;0 = i> 6 ;0
E : A ® ;0 = > 0 ;6

choosel
a tom ic-R
-o-S

choosel
a tom ic-R

E : A®;0 = > 0 ; T ; 0

E : A®; 0W " o ;0
E : A®;0 = >  a ;0 ;0
E : A®; ): a;

A®; 0 = >  0; b&a; 0

T -R  
—o-S

choosel
a tom ic-R
<&-R

E : A®;0^%âÿ®c;
-o-S

E : A 0. c;i
E : A® 5 ; c ;

choosel
a tom ic-R

E : A®; l;T ;

E: A‘ iT —oa

E : A®;

E : A® ; 0 = >  0; c&a; 0

Representation (± ,> 9 ,-o ):
The translated  program  A® is: b ^ a -o c , a -ob , X -oa; 
the translated  goal G  is: c*9a.
A possible proof in T '  is:

E : A®; 0 ==> 0; a; i

T -R
— o - S

choosel
a tom ic-R
&-R

E : A ® ;0=40;0
X-S

E : A®;X
E : A®;X );X ;'

E : A® ; X=4^ci; *
E : A®;X a; 0; 0
E : A®;X a\ X;

S : A ° ; X ^ ° a , g ; 0
E : A®; X = >  a, «; 0; 0 

E : A®; X = >  a; a; 0

E : A ® ;X ^ 6 ,g ;0  
E : A®; X = >  b, a; 0; 0

E : A®; X b, a; X; 0

E: A®; X = ^ ^ a , 6, a; 0 
E  : A® ; X = >  a, b, a; 0; 0

E : A®;X a, b\a:
E : A®:X a ;6 ,a ;0
E: A®;X a; b^a; 0

E : A ® ; X " ^ c ,g ;
E : A®:X c, a;

E : A®; X c; a;
E : A®;X he, o;
E : A®; X = >  0;

choose
X-R
-o-S

choosel
X-R
-o-S

choosel
atom ic-R

-o-S

choosel

X-R
-o-S

choosel 
atom ic-R  

atom ic-R  
>9-R 
-o-S

choosel
atom ic-R
atom ic-R
^ -R
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To sum up, we finally compare the translations of O. The proof search can be done 
more efficiently for the representations (T,&,-o) and (X ,’S’,-o )  than for (T,®,~o) since they 
use only primitive connectives. As mentioned in Section 2.3.2, the proof search for prim
itive connectives is goal-conducted. While the first two representations (i.e., (T,& ,-o) and 
(T,® ,—o)) are straightforward representations of O which strongly mirror G-proofs, the last 
representation is to some extent very interesting. The multisets of the goal notation which 
can be easily implemented by a parallel algorithm using several processes is represented by 
F o r u m ’s  multiple succedents, i.e., this translation simulates the behaviour of some inde
pendent processes. Such a parallel behaviour is difficult to represent in a single succèdent 
logic because the single goal represents only one “active” process and a technique is required 
in order to “suspend” and “activate” processes.

4.2  A  C onjunctive P lanner in Forum

F o r u m  c a n  b e  u sed  for  im p le m e n tin g  a  deductive planning system. A  d e ta ile d  tr e a tm e n t  o f  

p la n n in g  p r o b le m s an d  sy s te m s  is  far b e y o n d  th is  th e s is  (see  [W eld , 1994] for a  g o o d  su rv e y );  

h o w ev er , so m e  im p o r ta n t  p r in c ip le s  are in tr o d u c e d .

Our approach is a small backward planner (also called regressive planner) for conjunctive 
planning problems. A planning problem can be characterised by an initial situation, a goal 
situation and some actions tha t can be performed. The present implementation is restricted 
so that each situation consists of a multiset of atomic formulae. Similar to the description of 
transition in Petri-nets, the actions are characterised by two sets. One of them represents the 
preconditions and the other one the effects. An action may be performed in a situation only 
when its preconditions are satisfied, i.e., they form a submultiset of the current situation. 
Subsequently, the execution of an action replaces the preconditions by the action’s effects.

A planning problem is completely symmetric; therefore, it does not m atter if we start 
with the initial situation and attem pt to find a plan for a goal situation or if we start with 
the goal and attem pt to reach the initial situation. (In fact, this method is regarded as more 
efficient in the average case than the vice-versa method.) F o r u m ’s uniform proofs are more 
appropriate for modelling a backward planner.

An early approach towards a translation of planning systems into linear logic appeared in 
[Masseron et al., 1990]. They used a fragment of ILL including the ’®’ and ’®’ connectives 
and their unit elements. The proofs are constructed using the rules for the connectives, some 
axioms and a ‘C ut’ rule. On the other hand, the authors of Lygon presented two examples 
of planning type problems in their logic programming language. This representation uses 
the linear connectives ‘®’, and ‘- o ’; [Harland & Winikoff, 1996c].

However, the major source for our approach comes from a planning system (introduced in 
[Holldobler & Schneeberger, 1990]) using multiset terms and equational logic programming. 
This calculus is very expressive as far as planning problems are concerned. A detailed 
treatm ent of their work is omitted here since we only want to implement some features which 
can be represented in this system and which are not provided by the other approaches in 
linear logic. A survey of the planning systems in equational logic programming can be found 
in [Schneeberger, 1992].

For expository purposes, we introduce an example that is taken from [GroBe et al., 1992]. 
There, the initial situation is having a dollar note (d) and a quarter (g) ; the goal situation 
is getting a lemonade (1) which costs three quarters. Two actions can be performed which
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are called get-change and getJem onade  and may represent a cashier and a vending machine, 
respectively. The initial situation, the goal situation and the actions can be formalised as 
follows:

preconditions: effects:
get_change {gc): d q>q,Q,<l
getJemonade (̂ r/): g, g, g I

initial situation: d, q
goal situation: I

Clearly, a solution to this problem is to change the dollar note into four quarters and to buy 
subsequently a lemonade with three of the five quarters.

Similar to the Petri-net encoding from Section 1.1, the actions are represented by the 
linear implication ‘- o ’. However, we use the in order to represent a multiset of resources 
because this connective is primitive and can be treated more efficiently than the ‘®’ con
nective. This technique was briefly outlined in [Cervesato, 1995] for Petri-nets, but details 
were omitted. The translation into linear logic is as follows:

get_change [gc)\ d -o q ^q ^q ^q
getJemonade (gi): q ^ q ^ q -o l

initial situation: d^ q
goal situation: I.

In our translation, the goal situation is regarded as a goal formula; the initial situation and
the actions are regarded as program formulae. The initial situation and the goal situation
are translated so that they can be considered as linear resources (i.e, they go into the linear 
context A and B, respectively). However, the actions might be used more than once and 
therefore, have to be regarded as classical formulae which can be reused. Consequently, the 
actions are formulae of the classical context # .

Nevertheless, a problem arises from the linear resources which are not necessary to 
achieve the goal situation. In our example, we need only three quarters when buying a 
lemonade, but have five quarters after changing the dollar note. However, the two remaining 
quarters must be consumed somehow in order to construct a proof. As a first attem pt, we 
could encode the ‘T ’ connective which would have the purpose to “consume” remaining 
resources in our translation. The aforementioned features which we want to model in our 
translation are the following; it should be possible to ask for a goal situation: ‘Which are the 
remaining resources?’ and ‘Which resources are necessary for achieving a certain goal?’. The 
desired control over the “consumption” of formulae vanishes when translating the planning 
problem using the ‘T ’ connective because it “consumes” the formulae somewhere inside the 
proof. Therefore a different approach is described in the following.

A variable X  is introduced in the succèdent which has the purpose of accommodating 
all remaining formulae. Thus the example above is represented by the following FORUM 
sequent (it is assumed that E contains the appropriate declarations^):

S: £Tc,(7/;d’9ç 0;ZM;0
^i.e., the atomic formulae d, q, l  have the type o
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where the variable X  can be of the form (‘X ’ stands for “no remaining resources”);

X : := T |X )9 X
T  g I d I X.

F orum returns^, when proving this sequent, the intended term g’S’g for X .  On the other 
hand, the following sequent represents a question: Which resources are necessary for a 
certain goal situation:

U: gc,gr,y => 0 ; / ; 0  

where the variable Y  can be of the form:

y  ::= T I Y ^ Y  
T  ::= q | d.

Forum  returns the desired term q ^q ^q  for Y . In cases where a planning problem is not 
solvable, FoRUM  does not find a proof for the corresponding sequent (but a soundness and 
completeness theorem is omitted).

The problematic parts in this implementation come along with the restriction of the 
variables X  and Y . In order to receive the desired answers, a predicate R e s tr ic t  and Ground 
are defined on the metalevel of Forum (which is in our case the actual implementation in 
Terzo). These predicates are defined for the variable X  as follows:

Ground q.
Ground d.
Ground X.
R e s tr ic t  B :-Ground B.
R e s tr ic t  (B’S’C) :-R e s tr ic t  B, Ground C.

Clearly, our planner uses an inefficient ‘generate-and-test’ algorithm. However, it could be 
replaced by a proof search which delays the substitution of the variables X  and Y  as long 
as possible and where the substitutions can be restricted to a certain class of terms. A 
similar approach to that of [Nadathur & Miller, 1990] can be applied for the fragment of 
Forum described above. Consequently, the unification can be computed efficiently, but 
these facilities are not yet provided by the Terzo implementation.

To sum up, much remains to be done in order to implement a deductive planner in Forum 
which is comparable to the planner using equational logic programming. For example, a 
technique must be investigated which extracts a plan (i.e., a sequence of actions) out of the 
F orum proof.

4.3 A  P rogram  for C om puting th e F ibonacci Series

The following two examples serve for illustrating some experimental evidence of the speed
up that is achieved by the new box calculi. The first example is taken from [Hodas, 1994]; it 
implements a computation of the Fibonacci series which stores each of the computed values

^Note, Forum also returns g’Sg'g’X’S’JL,.. .for X  as next answers.
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for a later inference. Thus, the values do not have to be recomputed as in the well-known 
but rather inefficient implementation of the Fibonacci series.

The implementation is accomplished in a continuation-passing style which is permitted 
by a language with the support of predicate quantification. This technique has become 
invaluable, for example, in AProlog and Lolli. The program uses a simple arithmetic of 
integers which are defined, in the usual way, using a constant z (zero), the successor-function 
s and a predicate p i  (plus) The program is as follows;

% n a tu r a l numbers and F ib o n a cc i s e r i e s  w ith  memoising 
% based  on a program which appeared in  Hodas’ P h D -th esis 1994 
% (r e w r it te n  in  Forum) l a s t  m od ified  2 6 .0 9 .9 6

k ind  n at ty p e .

typ e  z n a t .  
typ e  s  n at ->  n a t.

typ e  p i  n at ->  nat ->  n at ->  o .

p i  X z X.
p i  X (s  Y) (s  Z) o— p i  X Y Z.

ty p e  f i b  n at ->  nat ->  o .
ty p e  f ib a  n at ->  nat ->  o ->  o.
ty p e  memo n at ->  n at ->  o .

f i b  IS F 0 — (memo z z — o memo (s  z) (s  z)
— o memo (s  z )  ( s  z) — o f ib a  N F t o p ) .

f ib a  K F G o— memo IS F x G .
f ib a  ( s ( s  N)) F G o— ( f ib a  N FI

( f ib a  (s  N) F2 
( p i FI F2 F X

( (  memo (s  (s  H)) F x memo (s  (s  M)) F) — o G )
)

)
) .

Since the stored values are represented as linear resources which appear in the linear 
program  context A4 , the box calculi work more efficient than the calculus T '  using the naïve 
generate-and-test algorithm  for the context splitting. The box calculus B ' is slower than  B 
since the former incorporates some subtle operation and tests over contexts. The results of 
some tests are given in the following table (we used a Sun SPARC station 10 and the program  
tim e  in order to determ ine the behaviors of the calculi; the form at ‘minutes:seconds’ is used 
to present the times):

n nth element T ' B B'
0: z z 3.6 1.0 1.3
1: sz sz 2.3 1.0 1.2
2: ssz sz 11.0 3.7 4.1
3: sssz ssz 16.9 9.9 11.9
4: ssssz sssz 49.8 19.0 23.7
5: sssssz sssssz 2:24.0 37.2 46.0
6: ssssssz ssssssssz 9:34.7 1:15.1 1:32.8
7: sssssssz sssssssssssssz 45:18:5 2:38.9 3:08.6
8: ssssssssz s^^z 272:30.1 6:33.6 7:12.4
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4.4  A  Program  for F inding P ath s in C yclic G raphs

The following program is taken from [Harland & Winikoff, 1996c] which is a presentation of 
various programs for Lygon. A graph is represented by some p o in ts  (the nodes) and some 
directed edges. The predicate p a th  S E P  succeeds if there is a path between the points S 
and E. The variable P is instantiated with a list that represents a path (the lists are declared 
using the infix operator : : and the constant n i l  which are provided by Terzo).

% Graph Problems
% b ased  on a program which appeared in  th e  paper "Some a p p lic a t io n s  
% o f th e  l in e a r  lo g i c  programming language lygon" by W inikoff and Harland 
% (r e w r it te n  in  Forum) l a s t  m od ified  2 6 .0 9 .9 6

k in d  p o in t  ty p e .

typ e  a p o in t ,  
typ e  b p o in t . 
typ e  c p o in t ,  
typ e  d p o in t ,  
typ e  e p o in t ,  
typ e  f  p o in t .

typ e  edge p o in t  ->  p o in t  ->  o .

ty p e  p ath  p o in t ->  p o in t  ->  l i s t  p o in t  ->  o.

p ath  X Y (X ::Y ::n il)  o— edge X Y.
p ath  X Y (X ::F) o— (edge X Z x p ath  Z Y P ) .

LINEAR edge a b .
LINEAR edge b c .
LINEAR edge c a .
LINEAR edge c d .
LINEAR edge c e .
LINEAR edge e f .

The edges are declared as linear resources, and therefore, they are consumed during the 
proof construction. Using this technique, the program can also find a path in a cyclic graph. 
However, some edges are not necessary to be traversed in a certain path. In order to consume 
these remaining linear resources (edges) the query contains a ‘T ’ connective. The goal query 
can be stated as follows (x stands for the ‘®’):

goal query 1 : 
goal query 2:

p a th  a f  X X top  
top  X p a th  a f  X

solution: X = a: :b: : c: :e : : f  : m i l

This example illustrates the speed-up which is achieved by the deterministic management 
of the contexts in the ‘T -R ’ rule. The splitting of the contexts in the first goal query is 
not serious and the calculus B is slightly better than B '. However, if we restate the goal 
query as given in the second line, the calculus B  is approximately ten times slower as in the 
previous goal-query. On the other hand, the calculus B' which uses a deterministic resource 
management in a ‘T -R ’ inference step shows no sign to be slower as in the first case. The 
results of the tests are given in the following table (we used similar condition as in the test 
of Section 4.3.):

goal T ' B B'
p ath  a f  X X top 7:27.7 0:12,8 17,4
top  X path  a f  X 6:14.3 2:13,1 17,3
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R elated  Work

5.1 C ontext M anagem ent in Lolli

[Hodas & Miller, 1991] presented the first solution of the problem of deterministic context 
management, which they called input-output model (10  model), for the single succèdent logic 
programming language Lolli. In this language, the ‘®-R’ rule appears to be critical because 
it has to split the linear context of the antecedent in a root-upward proof search. In Lolli, 
this rule is formalised as follows;

Ai = >  R As = >  C 
^  ; A i , Ag = >  B ® G ^

In their original work on the input-output model, Hodas and Miller used the sequent 
notation I{ G } 0  where G is a goal formula and I  and O are the input and the output context 
of the corresponding proof branch, respectively. This system is specified in PROLOG; the 
contexts are represented as lists where a consumed formula is replaced by a special constant 
d e l. The 10 model deals efficiently with the context splitting in the ‘®-R’ rule; however, it 
is not completely deterministic because the context in the ‘T-R ’ is split with a generate-and- 
test algorithm. In order to remove the remaining non-determinism from the proof system, 
Hodas presented the lazy input-output model (10^  model) in [Hodas, 1994]. The sequents 
in the refined system are as follows:

I[G ]{0 ,± ) and 7[G ](0,T)

where ‘J_’ and ‘T ’ represent a flag, called slack indicator. This flag records whether the 
output context has to be consumed entirely (‘X ’) or can contain some remaining formulae 
C T ’).

In [Cervesato et al., 1996], the treatment of the additive conjunction was improved and 
the initial presentation of the proof system (PROLOG specification) was changed to a system 
with a more proof theoretic flavour. (The contexts are represented as multisets and sequents 
are formalised with the usual notation using an arrow.)

In 7I M 3  (the final version of their proof system), they use a sequent formulation with 
two input contexts. The sequents are presented as follows:

P;S;A^\A° =>«G

86
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where G is a goal formula; v is the slack indicator which is raised by the ‘T-R ’ rule; F is the 
classical context; the rest of the context is divided into the input context S and and the 
output context . E contains formulae which have to be consumed in the proof branch 
above. A^ contains formulae which may be consumed. A*̂  contains those formulae which 
remain from the proof branch above. The separation of the input context into the parts H 
and A^ forces the introduction of a new inference rule that selects a formula from the new 
context H. Consequently, the corresponding rule d,. (of 77.A41 and 77A4 2) is represented as 

(Ri" picking up a formula from A^) and (for a formula from H) in 77Ads.

In [Cervesato et al., 1996], a formula decomposition judgement is introduced in order to 
find a program formula that will be analysed when an atomic formula a appears as goal 
formula. The judgement is as follows:

D » a \ G

where D is a program formula, a is an atomic formula and G is a goal formula. This 
judgement extracts from a program formula D  a new goal formula G in a sense that G 
defines a; short G~oa. The formula decomposition judgement is formalised as follows:

T  a \0  a' ^  a\a' A a

D »  g \G ' D »  g \G '
~^d ^  3dG —oD ^  a\G* ® G G D 7) )$> a\G^®!G

Di a \G i D 2 g \G 2 D  }$> a\G
D i& D 2 » o \G ie G 2  V z D » g \3 æ G Vd

where a A a' stands for the syntactic equality amongst atomic formulae. The formula 
decomposition judgement replaces Miller’s and Hodas’ function || - || which transforms a 
program formula into a (possible infinite) set. Our ‘choose test’ is similar to the usage of 
that formula decomposition judgement, however, in our presentation of FoRUM it cannot 
be built into the proof search process and it appears as a separate operation which will be 
carried out before continuing the proof construction.

In summary, our box calculus does not separate the input context as in Hodas’ 10^ 
because this involves an introduction of additional inference rules which analyse the same 
type of formulae in different input contexts. Along with such a separation comes, in the case 
of F orum , an undesired significant expansion of set of inference rules. However, our ap
proach separates the formulae of the output-context into two groups similar to the approach 
in [Cervesato et al., 1996]: one must be consumed and the other one might be consumed. 
This permits the omission of the slack indicator present in both approaches described above. 
Thus, it simplifies the implementation for which some evidence is provided (see Section 3.1.3 
and 3.2.3).

[Peillon, 1991] introduced a system similar to Hodas’ 10^ system for a theorem prover 
based on the intuitionistic fragment of MALL.
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5.2 H o d a s’ and P olakow ’s A pproach Towards a F orum 
Im plem entation

Hodas and Polakow presented in [Hodas & Polakow, 1996] some preliminary results of their 
work on F orum . They use Miller’s calculus which does not include a classical context in the 
succèdent (see [Miller, 1994]). Therefore, they cannot regard the ‘?’ connective as primitive 
and have to use the logical equivalence:

?B =  (B-oX ) D X

in order to analyse such a formula. This equivalence is problematic since its implicans B -oX  
(a X-headed implication) eventually appears in the classical context of the antecedent. This 
causes problems particularly when the outlined heuristic is used (see Section 2.3.2). This 
heuristic considers newly added program formulae prior to other program formulae. Con
sequently an occurrence of a formula ?B (assume B is not an implication) in the succèdent 
always leads to a loop where the interpreter selects the same formula over and over. Even 
if we do not make use of this heuristic, there is a significant number of cases where such 
an occurrence of a ‘?’-formula results in a loop of the interpreter (i.e., it cannot decide if a 
sequent is provable or not).

Hodas and Polakow introduced a ‘hackchain* rule (‘BC’) which replaces all the stoup 
rules (left rules in Miller’s calculus). This inference rule depends on the functions |j ■ || and 
II | | \  Suppose B  is a program formula. Then, ||B || is defined inductively as follows:

- ( 0 , 0 , { P I } ) E | | B | | ,
- ( I , / : ,{ |- L |} w r ) e | |B | |  implies { X , C , T ) e \ \ D \ l  
- { X , C , { \ B W \ ) ^ T ) e \\D\\ implies (2,X,{|B,Gl}t±lP) 6 ||B ||,
-  (%,/:, {|B&G|}wr> e  ||B || implies (I ,r ,{ |B |} W ,r) G ||B ||an d (Z ,A { |G ^ t± ir)  G ||B ||,
-  {X, C, {|VæB[[ l±l P) G ||B || implies (I ,  C, {|B[æ i-4 f]|) W P) G ||B || for all closed terms t, 
- (% ,A  { |B -oC |}W P )G ||B || implies (X, £  ® {|B|}, {|C|} l±) P) G ||B ||,

{ |B D G |} W P > G ||B || implies (X l±) {|B^, £, {|C|} l±) P) G ||B ||.

Then, | |B || ' is defined as {(X,X, A )|(X ,£ ,yl) G ||B || where A is a multiset of atoms}. Both 
functions convert a program formula into a set of triples. These triples can be regarded as 
program formulae defining a multiset (A) of atoms (in [Hodas & Polakow, 1996] they are 
called the “true” head of clauses). Plowever, the defined sets are generally infinite because 
of the “V rule” . The formula decomposition judgement described in [Cervesato et al., 1996] 
or our choose test provide a more syntactical and operational method which is easier to 
implement. The ‘backchain’ rule is presented as follows:

^  ; 0 7̂  . . .  131; 0 ^  7m W; A i  = >  B i , A i  . . .  4/; A» = »  7/», An

where

A i , . . . ,  A»=&>A, A i , . . . ,  A,

-  A, A i , . . . ,  An  are lists of atomic formulae,
-  m, n > 0 and
"  ({7iÎ • •. ) 7m}, { L i , . . .  ; Xn}, A) G ||X )| | \
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In order to maintain the soundness, a side condition is introduced where ‘BC’ corresponds to 
an ‘initial’ rule. In this case, I  and £  are empty in the associated triple (Z, £ , A|} (m, n =  0); 
the rule ‘BC’ is only applicable when A  represents the entire list of the succèdent.

In [Hodas & Polakow, 1996], an extension of the 10 model is described as used in Lolli
which does not include the improvements for the ‘T ’ (as presented in a 10^ model for Lolli)
and for the connective (as described in [Cervesato et al,, 1996]). Thus, they present the 
modified ‘BC’ rule as follows (the premises are written on two lines):

W;0 = >  7i . . .  41 ;0 = >  7^

A j\A o t =)> X i,A j \A qi . . .  A q^_^\Aq = >  X»,A q„_i \>'4o ^

41; A /\A o = ^ A , A i \A o

where

-  A , A i,  A o ,A o i  >■ ■ - , Ao„_i are lists of atomic formulae
-  m, n > 0  and ({7%,..., 7^}, {Xi, . . . ,  X,J, A) € ||B ||'

In case the ‘BC’ rule corresponds to an application of an ‘initial’ rule (i.e., the associated 
triple is (0,0, A)), the new ‘BC’ rule is as follows:

A / \ A / = ^ A ,  A / \ A /
B C

In [Hodas & Polakow, 1996], it is mentioned that the actual implementation follows the 
approach of [Cervesato et al., 1996]. No details are given of whether they have to introduce 
new inference rules for analysing formulae in the different contexts or not.

5.3  C ontext M anagem ent in Lygon

Independently of the work by Hodas and Miller, [Harland & Winikoff, 1996a] introduced a 
proof system for the multiple conclusion logic programming language Lygon (single-sided 
calculus) dealing deterministically with the context management (the first version of the 
calculus appeared as a technical report in 1994). The problematic rule in Lygon is as 
follows:

S : B , T i  S : C , F 2 ^
: B ® C , P i , P s

where ô consists entirely of nonlinear formulae and Pi and Pg are multisets of formulae. 
Harland’s and Winikoff’s approach uses the same idea as the 10 model. It gives first all 
linear formulae to the left proof branch and all remaining unused formulae to the right proof 
branch. However, they maintain the soundness by giving a tag to all formulae (apart 
from the components of the analysed formula) of the left premise. Subsequently, only tagged 
formulae can be passed to the right premise where one tag is removed from each formula 
(nested tags are permitted for nested occurrences of the ‘®’ connective). A ‘Use* rule is 
introduced which strips off all tags from a formula in order to analyse it.

For dealing efficiently with the ‘T -R ’ rule another tag (‘?’) is used. It prefixes formulae 
consumed by the ‘T -R ’ rule, but which can become “unconsumed” in another part of the
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proof. In order to maintain the soundness (i.e., protect formulae to become “unconsumed” 
elsewhere in the proof when a rule is applied) a notion of “T-like” proofs is defined.
A flag is attached to the sequents which is either /tru e  (i.e., a proof branch is T-like) or 
I  false (i.e., the proof is not T-like). This flag is similar to Hodas’ slack indicator.

We describe here the sequents of Harland’s and Winikoff’s approach, but omit the in
ference rules which can be found in the Appendix of [Harland & Winikoff, 1996a]. The 
sequents are as follows:

S : r ,  H, ] S, K/.1’

where ^ is a multiset of nonlinear formulae, F is a multiset of formulae which have no tag or 
prefix, E and H are multisets of formulae with the tag ] and N are multisets of formulae 
with the prefix ‘?’ and ‘fx* is the aforementioned flag. The variables on the left-hand side 
of the sequent arrow stand for multisets of formulae given for usage to the proof branch and 
the variables on the right-hand side stand for multiset of formulae which can be consumed 
elsewhere.

The approach above differs from the 10 model and our box calculi by using tags and 
prefixes instead of using clear separated contexts. It uses a flag similar to the slack indic
ator in order to maintain soundness in the calculus dealing efficiently with the ‘T -R ’ rule. 
Furthermore, the calculus is not refined according to the improvements for the ‘&-R’ rule 
as introduced in [Cervesato et al., 1996].



C hapter 6

C onclusion, Open Problem s and  
Further Work

6.1 C onclusion

We achieved in the second box calculus a more deterministic context management (in com
parison with B). However, the inefficient generate-and-test algorithm for finding the desired 
partition of the contexts is replaced by some subtle operations on contexts. That means 
we have to pay a rather high price because the context management now includes some 
costly operations (e.g., multiset intersection, multiset difference, shuffling formulae from one 
context to another one and exhaustive tests of multisets). However, the rules are completely 
declarative and presented in a proof theoretical style. We adapted the existing approaches 
of the 10 model and developed a calculus, in our opinion more appropriate and elegant than 
the established calculi for an implementation of FoRUM. In our approach, there is no need 
for an introduction of a slack indicator and for the additional inference rules which analyse 
formulae from different input contexts that would be required by the previous approaches. 
As shown in the implementation of the box calculi, each inference rule results in a single 
unit in the source code.

However, it should be noted that this is only a first step towards an implementation of 
Forum as a logic programming language. Our approach provides not an implementation of 
the complete language F orum as a logic programming language; it rather provides a basis 
for further investigations.

6.2 O pen P rob lem s

Much remains still to be done. Amongst the problems relative to Forum as a logic pro
gramming language are the following;

-  The most serious problem, when implementing Forum as a logic programming lan
guage, arises from the X-headed implications occurring in the classical context of the 
antecedent. Under some circumstances, these program formulae result always in a loop 
(i.e., the interpreter of the language fails to answer whether a sequent is provable or 
not). A solution was suggested in [Hodas & Polakow, 1996] which delayed a selection
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of such a program formula as long as possible. However, this attem pt will fail when 
one of several X-headed implications must be chosen since then it is not clear which 
formulae should be delayed and which chosen.

The problem also appears to be difficult because it is not feasible to restrict the logic 
so that these X-headed implications do not occur because they play an im portant 
role when analysing a formula with a non-primitive connective. Thus far, there is no 
satisfactory solution known for this problem.

-  There is still less practical evidence whether FoRUM is a useful logic programming 
language or not (the main purpose of the thesis is to provide an appropriate basis for 
further investigations). The usage of F orum’s primitive and non-primitive connect
ives must be proven to be a fruitful and an effective framework for representing and 
solving problems. In particular, the use of F orum’s non-primitive connectives must 
be defended from the criticism as an “abuse” of logical equivalences (citation from 
[Harland & Winikoff, 1995a]).

-  F orum is designed so that its right rules permute over each other. It is still unclear 
what is an appropriate semantics which identifies exactly these permutable proofs. A 
clear notion of permutable proofs has to be achieved which can justify the liberal use 
of permutations in the design of F orum .

6.3 Further W ork

There are many things for further work arising from the thesis and particularly from the 
open problems. Some of them are outlined below:

-  Further work is needed in order to simplify our calculus following Hodas’ and Polakow’s 
description of a ‘backchain’ rule; it should determine efficiently whether a program 
formula is a candidate for the further proof construction.

-  In our calculus, the order of the program formulae, which enables a programmer to 
predict the behaviour of the proof construction, is not completely maintained. Thus 
far, linear formulae are preferred relative to the formulae in the classical contexts. 
Therefore, we have to package all program contexts together and use a flag for each 
formula in order to determine if it is deleted or not.

-  The field of an appropriate semantics which identifies F orum’s permutable proofs is 
fairly “unexplored” . Further work will address this issue with the focus on obtaining 
some insight which proof are “necessary” in F orum and which fragment of it can be 
implemented throughly as a logic programming language.
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A p pendix  A

Proofs

A .l  Soundness o f  B w .r .t. JF’

For each rule of B, we give the translation into a rule of T ' .

T-R
^  II T

A, A A, y T,B, Z
A y Z

E

=> E: A ;T ,B ;T T-R

^  Il T
A, A A, A, y

A y z
E

#  Il T
A, A A, y A ,B ,^

A y Z
E

E : # ; A = > A,A;B;T . ^
g^omic-R => A ;A ,B ;T

$  Il T
A,A A, y B, B, Z

A y z
E

^  Il T
A A C,B
0 0 0 E: Ÿ ;A = >  A ;G ,B ;T

E E: W; A = >  A ;B ,B ;T

^  Il T
A, A A, y B&C,B,Z

A y Z
E

E :$ ;A = i .A ;B & C ,B ;T &-R

^  Il T
A, A A, y B,Z

A y z
E

II T
A,A A, y X,B,Z

A y Z
E

E :^ ;A = = » A ;B ;T  
J--R E:$;A=>A;X,B;T
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^  II T
A ,X A Y B, C, B, Z

X y Z
E

E II
A,X A y B^C,  8, Z

X y z
E

II T
A,X,B A y C,8,Z

X y Z
E

^  II T
A,X A y B-oC, 8, Z

X y Z
E

-o-R  =>
2 :W ;A ,B = >  A; C, B\ T

E: W ;A ==^X ;B -oC ,)G ;T
-o-R

^ ,B  11 T
A,% A y C,8,Z

X y z
E

#  1 T
A ,X A y B 3 (7 ,8 ,  Z

X y Z
E

E: W ,B ;A = > ^ ;C ,5 ;T  
D-R => E : i p ; A = ^ ^ ; g D C , 5 ; T

W T
A,X x , y B[a,’H>y], 8, Z

X y Z
y r,E

^  I I T
A ,X A y Vra;B, 8, Z

X y Z
E

y-R=>
2/: T, E : W; A = >  .4; R[rc i-4 ^ |,B ;T  

T ; : ^ ; A = ^ A ; \ / r x B , B ; T V-R

I t  R , y
A,X A y 8,Z

X y z
E

II T
A,X A y ?B,8,Z

X y Z
E
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w 1 T
B

A ,X A , Y
X Y

E

^  I I  T
A , B , X A, Y Z

X Y Z
S

choose
E: Ÿ ;A = ^ ^ ;T  

E : $ ; B ,A = > y l ; 0 ; T choose

1 T
B

A,X A, Y
X Y

E

II T
A ,X x , y z

X y z
E

choose] => £ : S , $ ; A = > ^ ; 0 ; T

$ Il g ,T
A,X A  y B

X y 0
E E: W ;A = > y l;B ;B ,T

t Il B ,T
A,X A  y z

X y z
E

choose?

I l  T
A

X A, Y
X Y

E

initial

=> E :$ ;0= 4> A ;T
initial

A ,r
/I

X Y
X Y

E

initial?

=> E: W;0=4>0;A,T
initial?

W II T
±

A II y
X y

± -s

=> E :$ ; i );T
±-S
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2 :

S: = >  0 ;0 ;T
?-S?-S

?B

B\x I—>■ t]
K Ÿ

V-SV-S
E: ^ ; A ^ ^ ; T

E: $ ; A i z ^ X i ; T  E: # ; A 2 = ^ ^ ; T

E : ^ ; A i , A 2 ^ X i , Æ ; T
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» I I  T
Ai, A2 , A A i, A 2 , Y B

A2,% 0
E

T
C

Aa.X ^ 2,  y
X y

E

1 T
B-cC

Ai, A2 , A A i , A 2 1 Y
X Y

E

-O-S
S : Aj = »  >4i; .5; T E: A2=:>v42;T

2  : #  ; A1, A g ^ y l i , ̂ 2  ; T

A, Y

, B ] T  2 :Ÿ ;A = ^ X ;T
D-SD-S
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A .2 M odification  o f a B-Pvoof

For each rule of B, we give the translation into a rule of B which has some additional formulae 
in the contexts. The variables X , Y  and Z  are chosen in the endbox of the corresponding 
proof branch which is translated.

I I  T
M \ M ^

B̂
E

T-R
$  II T

Aio, VWi, X Ao,Ai ,  Y

E

T-R

I I T
A f  0 , Ail y l , . 4 o , . 4 i Bo,5i

M l Ai Bi
E

W II T
Mo, M i , X A,Aq, A i , Y

x ^ y
E

$  I I  T
Mo, M l Ao,Ai A, Bo, Bi

M l Ai Bi
E

atomic-R4^-
$ T

Mo, M i , X A q, A i , Y A, Bo, Bi, Z
vWi.X x ^ y 8 ^ 2

E

atomic-K

W  II  T #  I I  T
Mo, M l Ao, Ai B,Bo,Bi Aio Ao C,Bo

M l Ai Bi 0 0 0
E E

i r - T
M q, M l Ao, Ai B&C, Bo,Bi

M l Ai Bi
E

&-R

iÿ 11 T ^  I I  T
Mo,  Adi, X dlo) A i , Y R,Bo,Bi,2 Mo Ao C,Bo

Adi,X x ^ y 8 ^ 2 0 0 0
E E

II T
Mo, M l ,  X «do, <di, y B & C ,5 o ,5 i ,2

/ d ^ X dll,y Bi ,Z
E

&-R

. I I  T
Ado, Adi dlo,dll Bo,Bi

M l dll Bi
E

II T
Ado, Adi Ao,Ai _L,8o,5i

Adi Ai Bi
E

T-R

1 T
Ado, A4i, X .do, «di, y 8o, Bi ,Z

Adi,X x ^ y Bi ,Z
E

II T
Ado, Adi, X dio, >di, y J _ , B o , 5 i , 2

Adi,X x ^ x 8 ^ 2
E

-L-R

$  II  T
Ado, .Adi «do, «di B,C,Bo,Bi,

M l «di Bi
E

E II w
Ado, Adi •do, «di 6o,5i

Adi dll 8i
E

'S '-R ^

$  II  T
«Ado, .Ad 1, X dlo,v4l, y B,C,  Bo,Bi,Z

Adi, X dll ,y 8 ^ 2
E

E II W
Ado, M l,  X dio,dii,y B#C,5o,B i ,2

Adi,X «di.y 8 T 2
E

’F-R
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^ II T
B, Ado, Adi •do, dll C,Bo,Br

Adi dll Bi
E

$  I I  T
Ado, Adi dlo, dll B—oC, Bo, Bi

Adi dll Bi
E

t  I I  T
B, Ado, A d i, X «do, «di, Y C , a o , B i , 2

A d i .X Ai,Y Bi,Z
E

^  II  T
•Ado, Ail, X •do, «di, Y B—oC, Bo, Bi, Z

A d i .X Ai,Y Bi,Z
E

—o-R

^,B II T
Ado, Adij .do,dll C, Bo,Bi

Adi 1 •di Bi
E

$  I I  T
•Ado, Adi •do, dll B d C , B o, B i

Adi dll Bi
E

D-R'^"

w , g  I I  X
A do,A di,X •do, «di, y C , B o , B i , 2

•Adi, X d l l , y 8 ^ 2
E

w I I  X
■Ado, A di, X •do, d l l ,  y B  D C,Bo,Bi , Z

A d i ,X « d i , y 5 ^ 2
E

D -R

^  I I  X
•Ado, «Adi •do, .dl B[x\- ŷ],Bo,Bi

Adi •di Bi
y : x S

$  I I  X
•Ado, .Adi •do, «dl 'irxB,Bo,Bi

•Adi •dl Bi
E

V-R<

W 1 X
•Ado, .Adi, X «do, «dl, y B[xh- ŷ],Bo,Bi,Z

A d i ,X x ^ y Bi,Z
y -r,Y,

#  I I  T
Ado, .Adi, X •do, Ai , y 'irx:B,Bo,Bi,Z

A d i ,X • d i , y 8 ^ 2
E

V-R

$ II b , t W B , X
•Ado, .Adi •do, «dl 8 o , g i Ado, .Adi, X •do, Ai, Y Bo,Bi,Z

Ml dll Bi Adi, X Ai,Y Bi,Z
E E

t  II X $  II X
Ado, Ml do,«di lB,Bo,Bi «Ado, Ml, X • d o , « d i , y ? B , B o , B i , 2

Ml «dl Bi A d ^ X 8 ^ 2
E E

?-R

w II X
B

Mo, Ml •do, .dl
Adi «dl

E

X
B, Ado, Adi •do, «dl 8 i

Adi «dl 8 i
E

ch o o se^ '

II X
B

•Ado, .Adi, X •do, .d l, y
A d i ,X x ^ y

E

$ I I  T
B, Ado, .Adi, X •do, dll, y 8 ^ 2

A d i ,X x ^ y 8 i , 2
E

choose



APPEND IX A. PROOFS 103

II T
B

Ado, Adi dlo, dll
Adi dll

E

11 1
Ado, Adi dlo , dll 8 i

Adi dll 8 i
E

choosel

<H,B 11 T
B

Ado, Adi, X dlo, dll , Y
A d i ,X dll, y

E

I I  T
Ado, Adi, X dlo,dll, y 8 ^ 2

A d i ,X x ^ y 8 ^ 2
E

choosel

w II  B , T
Ado, Adi Xo, X i B

Adi X i 0
E

choosel

1 B , T
Ado, Adi, X dlio,Xi,y B

A d i .X X i,y 0
E

9/ II T W II b:r
Ado, Adi Xo, X i Bi Ado, Adi, X Xo, X i, y B ^ 2

Adi X i Bi A d i ,X X i , y B i , 2
E E

choosel

initial
T $ I I  T

A
Adi dl, X l A d i ,X x ,X i,y
Adi X i Adi, X x ^ y

E E

initial

in itia ll
t  l |A ,T ^  II X ,T

A A
Adi X l <4̂ A d i .X X i , y
Adi X l A d i ,X X i , y

E E

in itia ll

T-S
$ T  ̂ II T

_L
Adi X l 4#̂ Adi,X x ^ y
Adi X l A d i ,X X i , y

E E

J--S

^  I I T
B.

Ado, Adi Xo, X l
Adi Xl

E

#  I I T
Bi&Bg

Ado, Adi Xo, X l
Adi X l

E

&-S(

^  II T
B.

Ado, Adi, X Xo, X l , y
A d n X X i , y

E

^  I I T
B 1 &B2

Ado, Adi, X X o, X l , Y
A X uX X i , y

E
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II T
B 0 0
0 0 0

E

^  I! T
IB

M l Xl
M l Xl

E

?-S

^  II T
B 0 0
0 0 0

E

T
?B

A d i,X x ^ y
A d i.X X i , y

E

? - s

w II T
S[a; 1—)■ t]

Ado, Adi Xo, X l
Adi X l

E

#  I I T
'irXB

Ado, Adi X o, X l
A il X l

E

V-S

$  I I T
B [ x  M- i]

Ado, A d i,X X o, X l , y
A d i,X x ^ y

E

^  I I T
'irXB

Ado, A d i, X X o ,  X l ,  y
A d i,X X i , y

E

V-S

w II  T #  II T W II T W II T
B C B C

Ado, A d i, Ads X o ,X i ,X s Ml ,  Ads X i ,X s Ado, Adi, Ads, X Xo, X i ,X s ,  y Ml ,  A d s,X X i , X s ,  y
A d i, Ads X i , X s Adi Xs Adi, Ads, X X 1, X s , y Ads,X X s,y

E E E E

® II T II T ’p-
B>SC B ^C

Ado, Adi, Ads «/4o, X l , Xs Ado, Adi, A ds,X 4 o ,X i ,X s ,  y
Ads Xs A ds,X x ^ y

E E

w 1 T n 1 T * II
n

Ado, Adi, Ads Xo, X l, Xs B Ado, Adi, Ads, X Xo, X l, Xs, y B Adi, Ads, X Xl, Xs, yA d i, Ads X l, Xs 0 Xs
Adi Ads, X X l , Xs, y 0 A d s,X X s,y

E y E
—m

«' II r .... -o-S W  II  T —o-,‘

B —oC B —o C
Ado, A d i, Ads X o ,X i,X s Ado, Adi, Ads, X X o, X l , X s , y

Ads X s A ds,X X s,y
E E
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^  I I  T
0 0 B

0 0 0
E

^  I I T
c

M o ,  Adi Xo, X l
Adi X l

E

W II T
B d C

Ado, Adi Xo, X l
Adi X l

E

D-S<

#  I I  T
0 0 B
0 0 0

E

W II T
C

Ado, A d i , X X o , X i , y
A d i ,X X i , y

E

i  II T
B  D C

Ado, Adi, X Xo, X l , y
A d i ,X Xi,y

E

D-S
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A .3 C om p leten ess o f  B w .r .t.

For each rule of we give the translation into a rule of 13.

T-R
^  II T

A A T,B
0 0 0

E

T-R

106

S : A  A , A,

I I T
A A, A 5
0 0 0

E : W; A A , A; B\ T
..............- ....- ............................. ... -.....  .̂.....  —1------- - A

E

^  II T
A A A, 6
0 0 0

E

atomic-R

E : Ÿ ; A = > ^ ; B , ^ ; T  E: $ ; A = > y l ; C ,^ ; T

W II T T
A A B,g A A C,B
0 0 0 0 0 0

E E
E: W ;A = ^ ^ ;B & C ,B ;T  &-R " II T

A B&C,8
0 0 0

E

&-R

S :
E: W; A ==#> _L-R

$  II T
A X g
0 0 0

E

W II T
A A J_,5
0 0 0

E

-L-R

E: W ;A = ^  X ;g ,C ,5 ;T  
E : ^ ] A = ^  A]B>9C,B;T ’Ç-R

^  II T
A A R,C,B
0 0 0

E

S  II W
A A
0 0 0

E

'g-R
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E : A, 5  ==> A] C, 5; T
E : # ; A  A^B-oC,B]T -o-R  =>

^  II T
A, g A C,B

0 0 0
S

#  1 T
A A g -o C ,g
0 0 0

E

—o-R

E :  W , B ; A = > X ; C , 5 ; T  

E : ^ - A = ^ A ; B d C, B, T D-R =>

# ,g  II T
A
0 0 0

S

1 T
A g  D C ,5
0 0 0

E

D-R

2/ : T ,E : Ÿ; A = >  A]B[x y],B;T
E : ^ ;  A = >  A] \/rxB, B] T V-R =>

$ II T
A X g[æi-)-y], ;B
0 0 0

y : r,E

w 1 T
A Vr«g, 5
0 0 0

E

V-R

# II B , r
A A g
0 0 0

E : $ ; A = i > y l ; g ; g , T E
E: W ;A = > ^ ; ? g ,g ; T W II T

A ? g , 6
0 0 0

E

?-R

E :Ÿ ;A = ^ /1 ;T  
E: Ÿ ;B ,A = = > X ;0;T

choose

B
A

#  1 T
A, g 0

0 0 0
E

choose
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choose] =>

W,B|| T
B

A

T
A X 0
0 0 0

S

choosel

E :  W ; A = > ^ ; B ; B , T  

E : Ÿ ; A = > / ; 0 ; B , T choosel #-

II A T
A B
0 0 0

E

$ a t
A X 0
0 0 0

E

choosel

E:Ÿ;0=A^A;T
initial

E

initial

E: W A T
initiall

9 A T
A

0 0
0 0

E

initiall

E: W;0=A>0;T
±-S

$  T
±

±-S

E: W ;A A ^X ;T  

E: $;A ^A É #"A T
&-S,

W T
Bi

A
0 0

E

W 1 T
B iS(B2
A A
0 0

E

&-Si
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E: Ÿ ;B = > 0 ;0 ;T  

E :Ÿ ; 0 : ^ 0 ; T
?-S

#  II T
B 0 0
0 0 0

E

IB

?-S

E : ^ ; A ^ ^ 'U ; T  

E: W ; A ^ ^ ; T
V-S

B[x i-f t] 
A  II A

t  T
S/txB

A

E

V-S

E: # : 5;B ;T E :Ÿ ;A = E > ^ ;T
D-S =>

W It T
0 0 B
0 0 0

E

» T
C

A
0 0

E

b d c
AT T

D-S
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A .4 Soundness o f  B' w .r .t. B

For each B' rule we give a B  rule that has an empty output context. Each box on the right- 
hand side consists of the contexts which are consumed in the corresponding proof branch of 
the given box on the left-hand side.

ÿ  II T
T ,A ,5 '

0 \M^ 0 0 I^T
S

T-R

=>
^  II T

A° T ,A
0 0 0

E

T-R

iÿ II T
A , A \ A \ A ' ^

1 A '  1 B' 1 S'"
E

II T
A \ A \ A ^

1 M'^ yF 1 A-^ A  1 5"̂
E

aiomic-R

^  I I  T
A A ^ 5°

0 0 0
E

W II T
A°

0 0 0
E

atomic-K

II T
B \ B \ B ^

1 M ’̂ A  U T B^ 1 5^
E

»  II T
A , A , . 4 '

M.̂  1 Â  1 5 :  1 B^
E

JL-R

W II T
M° A B°

0 0 0
E

#  II T
4° X ,A

0 0 0
E

_L-R

#  II  T
A ° , A \ A ^

1 Ad’̂ 4 ‘ 1 4 T A  1 5"̂
E

E II #
M°,AdFAd"^ A \ A \ A ^ B ^ C ,B \ B \ B ^

Ad̂  1 Ad"̂ 4 '  1 4 “̂ B  ̂ 1
E

«9-R

^  II T
Ad° 4" S, C, A

0 0 0
E

E II W
A<° 4» B^C,B°

0 0 0
E

^  I I  T
B,Ad\Ad\AdT 4\4\4T^ C, B^B^B'^

Ad' 1 Ad̂ 4' 1 4^ A  1 8^
E

^  I I  T
Ad\Ad\Ad^ 4 ° ,4 ',4 " " B-oC, 5", ^ ',5 ^

Ad' I  A d ^ 4 '  1 4 T 1
E

-—o-R ^

'g-R

1 T
A d\R 4° C, A'

0 0 0
E

w  II T
Ad° 4° B-oC, B°

0 0 0
E

-o-R

# ,R  II T II T
Ad\Ad',Ad^ 4 ”, 4 ' , 4 ' ' C ,B ° ,B \B ^ Ad” 4 ” C, A

Ad' 1 Ad''" 4 '  1 4-r 5 ' 1 0 0 0
E E

#  I I  T
D-R _

^  II T
Ad”, Ad', Ad ' 4 ”, 4 ' , 4 ' BDC, g”, 8 ' , 0 ' Ad” 4 ” b d c , b

Ad' 1 Ad^ 4 '  1 4 -̂ IS' 1 1ST 0 0 0
E E

D-R
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T  ■ T

1 JWT 1 1
y : r,E

13? II T
A \ A \ A ^ "

a P  I a D X ' 1 A-^ B^ 1
s

V-R=>

1 T
BkH4yl,g"

0 0 0
y : r, E

$  II T
a p V r æ S ,  g"

0 0 0
E

V-R

W II g ,T
g°,g\gT^

1 \ a ^ g ' 1 g""
E

It T
A \ A \ A ^ ?S,g° g \g T

1 vW^ A^ 1 A-^ gi g"̂
E

?-R

I I  R , T
g°

0 0 0
E

II T
vw° A° ? g , #

0 0 0
E

?-R

W II T
B

Ai°,Al\Ai'^ '\ A \ A \ A ~ ^
Al^ 1 Al~  ̂ 1 A^ 1

E

I I  T
g,VW\A^\vW' g^

VŴ 1 gM 0
E

choose

1̂1 T
B

AP
0 0

E

$  1 T
M \ B 0

0 0 0
E

choose

$ ,B  II T
B

AP^M ^Ai"^
Ai^ 1 vW"̂ yl' I>1^

E

w , g I I  :
A P . A l \ A i ^ g ^

Al^ 1 g M  0
E

choose\ ^

T
B

AP
0 0

E

W , g  I I  T
A/(° v 4 ° 0
0 0 0

E

choose\

II  B , T
A P . A i \ A l ^ B

Ai^ 1 Ai'^ A^ 1 0 1 0
E

II g ,T
AP.AW Ai"^ A \A \A '^

At^  1 A/fT" g^ 1 0
E

choosef ^

I I  S , T
B

0 0 0
E

M ^ T
A^ 0

0 0 0
E

choose?

initial
^  I I T $ T

A A
Ai^ A,A^ 0 A

AP\ 0 x 4 0 0 0
E E

initial
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w  II A,T
/i

A^
M^\ 0 X^0

2

in i t ia l l
A T

A
0 0
0 0

E

in i t ia l l

$  II T
JL

•4'
m H 0 X l0

E

±-S

_L

±-S

T

XP  I A

#  II T
B 1&B2

1 M'^ A^ 1 A""
E

■ &-S;

Ÿ II T
Bi

M° A°
0 0

E

Ÿ II T
B 1&B2

M° A°
0 0

E

&-S(

W II T
g 0 0

0 |0 0 | 0 0 |0
E

^  II T
IB

A^
1 0 A 'l 0

E

? - s

W II T
S 0 0
0 0 0

E
? - s

^  I I T
B[x (-> t]

A \A \A ^
1 A' I a "̂

E

t  II T
'irXB

M \ M \ M ' A \ A \ A ^
1 M'^ A' 1 A"̂

E

V-S

$  II T
g[æ 1-4 i]
//f" A“

0 0
E

T
VrXB

M° A"
0 0

E

V-S

$  II T
0 0 B

0 |0 0 1 0 0 | 0
E

^  II T
C

A °,A \A ^
1 A' 1 AT

E

W  II T
B d c

M ° ,M ^ ,M  '
1 AfT A ' 1 AT

E

3-S=

#  II T
0 0 B
0 0 0

E

C
M° A°

T
B d C

A<° A°
0 0

E

D-S
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A .5 C om pleteness o f  B' w .r .t. B

A translation is given converting a B  rule (which has a trivial translation) into a B* rule. 
The output context of the B rules are empty. The multisets with and without a subscript 
T correspond to multisets of formulae which are consumed by a ‘T -R ’ rule or by another 
inference rule, respectively.

1 ^

M% A T T,S"t
0 0 0

E

T-R

=>
w II T

M%
0 \M°t 0 U°T 0

S

T-R

^  1 T
M ^ , M \ A, A

0 0 0
E

II , T
m \ m % A,B\B%

0 0 0
E

atomic-K =>

W II T
M \ M \

0 I M 0 0 I^T
E

^ II T
M \M ^ r

0 0 u i 0 |B^
E

atomic-K

W II , T
M \M %

0 0 0
E

II T
m \ m % -L,B",B4

0 0 0
E

T-R =4̂

all a T
m \ m %^  ’, 4 B \B t

0 |A1“t 0 Û T 0 \B%
E

II T
M \ M A

0 0 u i 0 IB!;
E

T-R

$ a lia T
g ,C , B \B ^

0 0 0
E

E a 11 $
A\A% B e e ,  B^B^

0 0 0
E

^-R =>

$ , l!,__. T
M \M % B,C,B\B%

0 lAf!; 0 \A% 0 1 B%
E

E II W
B^C ,B \B%

0 |a i“t 0 \A% 0 1 B“t
E

'S’-R

$  1 T
A\A^r C, B",B!;

0 0 0
E

T
M \M ^ t a B-oC, B",B%.

0 0 0
E

-o-R  ^

’O/ 1 T
e,B\BS^

0 I M 0 M"t 0 Ib t̂
E

w 1 T
X" X!; B-oC,B\B%

0 |M “t 0 1 0 1 B^
E

-R

..
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. . . . ,  II. . X
m \ m % e , b \ b \

0 0 0
E

$  1 X
[)
T B d c , b^b"t

0 0 0
E

D-R ^

W X
M \M % e, B\B!;

0 lAf!; 0 ui 0 | b°t
E

$  1 X
M^,M% A\A^-r b d c ,b \ b%

0 |A4°t 0 U t 0 1 B°t
E

D-R

II X

0 0 0
y : T, E

a I X
M \M % \/rXB,B\B%

0 0 0
E

V-R ^

W II  T
M \M % X "U T

0 ivw!; 0 U^T 0 1  B%
y : 7-,E

^  II X
M \M % S/rXB,B\B%

0 |À4^ 0 U ? 0 1 Bt
E

V-R

1 B,X
M ^ , M \ B",B°t

0 0 0
E

W II X
M \ M % 1B,B^,B%

0 0 0
E

?-R=4^

$

"Z TjO"

B,X
B \B ^
A 1 ttOl£l |A^t

E
W 1

4/ II X
M \ M \ 1 B ,B \B \

0 0 U^T 0 1 B!;
E

?-R

B
M \ M \

t II X
0

0 0 0
E

choose ^

w II X
B

m \ m \
0 0 Mt

E

II , X
0

0 |A4%. 0 u i 0 1 0
E

choose

4r,B II X
B

^ " U !;
0 0

E

II , X
A4“,A(!; 0

0 0 0
E

choosel ^

$ ,B  II X
B

M \M %
0 IA4!; 0 U t

E

#, B II X
0

0 |Af^ 0 U t 0 1 0
E

choosel
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W
,4“, B

0 0 0
S

$ 1 B ,T
0

0 0 0
E

choosel ^

II a ,T
B

0 IVŴI 0 U°T 0 1 0
E

9/ I I  S ,T
M^,M% 0

0 Ia^t 0 1^^ 0 1 0
E

choosel

initial
1 T Ÿ 1 T

A A
0 A 0 A
0 0 0 1 0 0 1 0

E E

initial

initiall
4/ | U , T W 1 A,T

A A
0 0 0 0
0 0 0 1 0 0 1 0

E E

initiall

_L-S
^ | | T #  1 T

± 1
0 0 0 0
0 0 0 1 0 0 1 0

E E

1-S

^  II T
Bi

M \ M \
0 0

E

Ÿ  II T
B i&B2

M ^ , M \ A \A %
0 0

E

&-Si =>

w  II T

m \ m \
0 |Â °t 0 |A“t

E

$  II T
BiSiBz

0 0
E

^  II T
B 0 0
0 0 0

E

IB

1 - S ^

$ I I X
B 0  I 0

0  1 0 0  1 0  1 0  1 0
E

#  1 T
IB

0 0
0 ! 0 0 1 0

E

1-S
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A ppendix  B

Source Code

B .l  M odule a u x .m od

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% H elper P r e d ic a te s
% (w r it te n  in  Terzo lam bda-P rolog, V ersion  1 .0b)
%

% The sou rce  code i s  based  on an e a r l i e r  v e r s io n  by D ale M ille r  
% (s e e  h ttp ://w w w .c is .u p en n .ed u /~ d a le /fo ru m ) .
% r e w r it te n  by C h r is t ia n  Urban l a s t  m od ified  0 7 .0 9 .9 6
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

module aux.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% " s p l i t  L K M" su cceed s i f  L i s  th e  r e s u l t  o f  appending K to  M.
ty p e  s p l i t  l i s t  A ->  l i s t  A ->  l i s t  A ->  o .

s p l i t  n i l  n i l  n i l .
s p l i t  (X::L) (X::K) M : -  s p l i t  L K H.
s p l i t  (X::L) K (X::M) s p l i t  L K H.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% "membWrest X L M" su cceed s fo r  every  occurren ce of X in  L,
% where M i s  th e  r e s u l t  o f  removing th a t occurren ce from L.
typ e  membNrest A ->  l i s t  A ->  l i s t  A ->  o .

membWrest X (X ::R est) R est.
membNrest X (Y ::T a il)  (Y ::R est) membNrest X T a il  R est.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
7, "memb X L" su cceed s i f  X i s  a member o f L; t h i s  w i l l  su cceed  
% at most o n c e .
ty p e  memb A ->  l i s t  A ->  o.

memb X (X ::R est) ! .
memb X (Y ::T a il)  memb X T a il .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% "member X L" su cceed s i f  X i s  a member o f L; t h i s  w i l l  su cceed
% as o f t e n  as X u n i f i e s  w ith  members o f L.

117
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typ e  member A ->  l i s t  A ->  o .

member X (X : : R est) .
member X (Y: : T a il)  : -  member X T a i l .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% "append L K M" su cceed s i f  H i s  th e  r e s u l t  o f appending K to  L. 
typ e  append l i s t  A ->  l i s t  A ->  l i s t  A ->  o.

append n i l  K K.
append (X::XS) YS (X::ZS) append XS YS ZS.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% "removed F X Y" su cceed s i f  Y c o n ta in s  l e s s  occu rrences  
% o f F than X
% e . g . ,  removed 2 ( 1 : : 2 ; ; 3 : : n i l )  ( l : : 3 : : n i l ) .  
ty p e  removed A ->  l i s t  A -> l i s t  A ->  o .

removed F CIn COut count F CIn O ccin,
count F COut GccOut,
Gccin > GccGut.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% "count F X Y" su cceed s i f  Y i s  th e  number o f occu rrences o f  
% F in  X.
ty p e  count A ->  l i s t  A ->  in t  ~> o. 

count F n i l  0 .
count F (F :;R est)  GccNew count F R est GccGld, GccMew i s  GccGld + 1, 
count F (Y ::R est) Dec : -  n ot (F = Y ), count F R est Gcc.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% " d e le teo n e  F K L" su cceed s i f  L i s  th e  r e s u l t  o f removing th e  
% f i r s t  occu rrence o f F in  K and in  ca se  F does n ot occur in  K,
% i t  su cceed s when K = L.
typ e  d e le te o n e  A -> l i s t  A ->  l i s t  A ->  o.

d e le te o n e  X n i l  n i l .  
d e le te o n e  X (X ::T a il)  T a il  ! .
d e le te o n e  X (Y ::T a il)  (Y ::R est) d e le te o n e  X T a il R est.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% m u lt is e t  d if fe r e n c e
% " d if f  X Y Z" su cceed s i f  Z i s  th e  r e s u l t  o f removing a l l  e lem en ts  
% o f Y from X (Y i s  a su b m u ltise t o f X ).
% e . g . ,  d i f f  ( 1 : : 2 : : 3 : : 4 : : n i l )  ( 2 ; : 4 : : n i l )  ( l : : 3 : : n i l )  
ty p e  d i f f  l i s t  A ->  l i s t  A ->  l i s t  A ->  o.

d i f f  n i l  X n i l .  
d i f f  X n i l  X.
d i f f  T1 (X::T2) R est d e le te o n e  X T1 TRest , d i f f  TRest T2 R est.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% m u lt is e t  in t e r s e c t io n
% " in te r  X Y Z" su cceed s i f  Z c o n s i s t s  o n ly  on elem ents which are  
7. in  X and Y
7. e . g . ,  in t e r  (1; ;2: :3: :4: m i l )  ( 2 : : 4 : : n i l )  (2: :4: m i l ) . 
ty p e  in t e r  l i s t  A -> l i s t  A ->  l i s t  A ~> o .
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in t e r  n i l  Y n i l .
in t e r  (X ::R est) Y (X::T) memb X Y, d e le te o n e  X Y U, in t e r  R est U T, ! .  
in t e r  (X ::R est) Y T in t e r  R est Y T.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% removes a form ula from th e  s la c k  output when n ecessa ry  
% "remove F X Y Z Z" su cceed s i f  Y and Z to g e th e r  co n ta in  l e s s  
% occu rren ces o f F than X;
% "remove F X Y Z W" su cceed s i f  Y and Z to g e th e r  co n ta in  th e  
% same number o f occu rren ces o f F as X, th en  W i s  th e  r e s u l t  
% o f rem oving an occurrence o f F from Z.
% e . g . ,  remove 1 ( 1 : : 2 : : 1:: 1 ; ; n i l )  ( l : : 2 ; : n i l )  ( l : : n i l )  ( l : : n i l ) .
% remove 1 (1: :2: : 1: : 1 : m i l )  (1: :2: m i l )  (1 : : 1 : m i l )  (1 : m i l )  .
ty p e  remove A -> l i s t  A ->  l i s t  A ->  l i s t  A ->  l i s t  A ->  o .

remove F XI XO XS XSnew append XO XS XT,
count F XI O ccI, 
count F XT OccO,
( (  OccI > OccO, copy XS XSnew );
( OccI = OccO, memb F XS, d e le te o n e  F XS XSnew ))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% "copy X Y" su cceed s i f  l i s t  X i s  e q u iv a le n t to  l i s t  Y
typ e  copy l i s t  A -> l i s t  A ->  o .

copy n i l  n i l .
copy (X;:R) (X::T) copy R T.

B .2  M odule forum log.m od

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% D e c la r a tio n  o f FORUM' s  C on n ectives  
% (w r it te n  in  Terzo lam bda-P rolog, V ersion  1 .0b )
%

% The sou rce  code i s  based  on an e a r l i e r  v e r s io n  by D ale M iler  
% (s e e  h ttp  : / / www. c i s . upenn .edu/"dale/forum ) .
% m o d ified  by C h r is t ia n  Urban l a s t  m od ified  0 7 .0 9 .9 6
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
module forum log.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The lo g i c a l  c o n n e c tiv e s  fo r  Forum.
*/,'/, These are d iv id e d  in to  fo u r  groups.
*/,*/, ( 1 ) im p lic a t io n s

typ e  ==> o ->  o ->  o . 7, i n t u i t i o n i s t i c  im p lic a t io n
typ e  <== o ->  o ->  o . % r e v e r se  i n t u i t i o n i s t i c  im p lic a t io n
typ e  — o o ->  o -> o . % lo l l ip o p
typ e 0 — 0  ->  o -> o . % r e v e r se  lo l l ip o p
in f ix r  — o 1.
i n f i x l  o— 1.
in f ix r  =-> 1.
i n f i x l  <== 1.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%% (2) u n it  e lem en ts

typ e top  o . % top  (a d d it iv e  tru e)
typ e b ot o . % m u lt ip l ic a t iv e  f a l s e

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% (3) c o n n e c tiv e s

typ e  @ o -> o ->  o . % w ith  (a d d it iv e  or)
typ e  1 0  ->  o ->  o . % par (m u lt ip l ic a t iv e  or)
in f  ix r  @ 3 .
in f ix r  I 2 .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% (4) q u a n t if ie r  and ex p o n en tia l

typ e  f o r a l l  (A ->  o) ->  o . % u n iv e r s a l q u a n t if ic a t io n
typ e  ? o ->  o . % why-not modal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% (5) n e g a tio n  and n o n -p r im it iv e  c o n n e c tiv e s

typ e  neg o ->  o.

typ e  X o -> o ->  o . % tim es
in f ix r  x 2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ty p e  atom ic o ->  o .
ty p e  non^atom ic o ->  o .

non_atom ic (B — > C ). 
non_atom ic (B <== C ). 
non_atom ic (B —o C ). 
non_atom ic (B o— C ). 
non_atom ic (top ) . 
non_atom ic ( b o t ) . 
non_atom ic (B 6 G ). 
non_atom ic (B I C ). 
non_atom ic (? B). 
non_atom ic ( f o r a l l  B). 
non_atom ic (n eg  B). 
non_atom ic (B x C ).

atom ic B : -  n ot (non_atom ic B)

B .3  M odule ch oosetest.m od

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Choose T est
% (w r it te n  in  Terzo lam bda-P rolog, V ersion  1 .0b )
%

% w r itte n  by C h r is t ia n  Urban l a s t  m od ified  0 7 .0 9 .9 6
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
module c h o o s e te s t .
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accum ulate forum log, aux.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% " c h o o se te s t F X" su cceed s i f  F i s  ‘b o t ’ , o f th e  form ‘? B’ or an 
% atom ic form ula which i s  a member o f  X;
% in  c a se  F i s  a compound form ula i t  w i l l  be decomposed r e c u r s iv e ly ,  
typ e  c h o o se te s t  A ->  l i s t  A ->  o .

c h o o s e te s t  (b o t) X. 
c h o o s e te s t  (? B) X.
c h o o s e te s t  A X : -  atom ic A, memb A X.
c h o o s e te s t  (B 6 G) X : -  c h o o se te s t  B X ; c h o o se te s t  C X.
c h o o s e te s t  (B I C) X : -  c h o o se te s t  B X , c h o o se te s t  C X.
c h o o s e te s t  (B — o C) X : -  c h o o s e te s t  0 X.
c h o o s e te s t  (C o— B) X : -  c h o o se te s t  G X.
c h o o s e te s t  (B ==> G) X : -  c h o o s e te s t  G X.
c h o o s e te s t  (G <— B) X : -  c h o o s e te s t  G X.
c h o o s e te s t  ( f o r a l l  B) X : -  c h o o se te s t  (B T) X.
c h o o s e te s t  (neg B) X : -  c h o o se te s t  (B — o b o t) X.
c h o o s e te s t  (B x C) X : -  c h o o se te s t  (neg ((n eg  B) I (neg G)) )  X.

B .4  M odule forum .m od (C alculus

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P roof system  F ’
% (w r it te n  in  Terzo lam bda-P rolog, V ersion  1 .0b )
%

% The sou rce  code i s  based  on an e a r l i e r  v e r s io n  by D ale M iler  
% (s e e  h ttp ://w w w .c is .u p en n .ed u /~ d a le /fo ru m ) .
% r e w r it te n  by G h r is tia n  Urban l a s t  m od ified  0 7 .0 9 .9 6
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The r ig h t  p r e d ic a te  r e p r e se n ts  th e  p r o v a b il i t y  o f a n on -stou p  seq u en t;  
% th e  stou p  p r e d ic a te  r e p r e se n ts  th e  p r o v a b il i t y  o f a stoup  seq u en t, 
module forum.

accum ulate forum log , aux, c h o o s e te s t .

l i s t o -> % P s i ( c l a s s i c a l )
l i s t o -> % D e lta  form ulae ( l in e a r )
l i s t 0 -> % AG form ulae ( l in e a r )
l i s t 0 -> % BG form ulae ( l in e a r )
l i s t 0 -> 0 . % U p silo n  ( c la s s i c a l )

l i s t o -> % P s i ( c la s s i c a l )
l i s t o -> % D e lt form ulae (l in e a r )
o -> % Stoup
l i s t o -> % AG form ulae ( l in e a r )
l i s t O ->  0. */, U p silon ( c l a s s i c a l )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% atom ic-R  r u le
r ig h t  P s i  D e lta  AG (A::BG) U p silo n  : -  

atom ic A,
r ig h t  P s i  D e lta  (A :: AG) BG U p silo n .
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% W ith-R r u le  (6-R r u le )  
r ig h t  P s i  D e lta  AG ((B € C ): :BC) U p silon  

r ig h t  P s i  D e lta  AC (B;;BC) U p silon  , 
r ig h t  P s i  D e lta  AC (C::BC) U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% bot-R  r u le
r ig h t  P s i D e lta  AC (bot::B C ) U p silon  

r ig h t  P s i  D e lta  AC BC U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Par-R r u le  ( |-R  r u le )  
r ig h t  P s i  D e lta  AC ((B I C ): ;BC) U p silon  

r ig h t  P s i  D e lta  AC (B::C::BC) U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% L o ll i-R  r u le  (— o-R r u le )  
r ig h t  P s i  D e lta  AC ( (B — o C ): :BC) U p silon  

r ig h t  P s i  (B : : D e lta ) AC (C::BC) U p silo n .

r ig h t  P s i  D e lta  AC ( (C o— B ): :BC) U p silon  
r ig h t  P s i  (B: : D elta ) AC (C::BC) U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Hook-R r u le  (==>-R r u le )

r ig h t  P s i  D e lta  AC ( (B ==> C):;BC) U p silon  
r ig h t  (B ::P s i)  D e lta  AC (C::BC) U p silo n .

r ig h t  P s i  D e lta  AC ( (C <== B)::BC) U p silon  
r ig h t  (B :;P s i)  D e lta  AC (C::BC) U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% fo r a l l - R  r u le

r ig h t  P s i  D e lta  AC ( ( f o r a l l  B)::BC) U p silon
p i  x \  (r ig h t  P s i D e lta  AC ((B x)::B C ) U p s ilo n ) .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ?~R r u le

r ig h t  P s i D e lta  AC ((?  B ) : :BC) U p silon  
r ig h t  P s i D e lta  AC BC (B : : U p s ilo n ) .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tiraes-R r u le  (x-R)

r ig h t  P s i D e lta  AC ((B x C);;BC) U p silon
r ig h t  P s i  D e lta  AC ( (neg ((n eg  B) I (neg C )))::B C ) U p silon .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% neg-R r u le  (neg-R)

r ig h t  P s i  D e lta  AC ( (neg B);:BC) U p silon
r ig h t  P s i  D e lta  AC ( (B — o h o t ) : :BC) U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% i n i t i a l  r u le
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stou p  P s i  n i l  A (A : :n i l)  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% i n i t i t i a l !  r u le

stou p  P s i n i l  A n i l  U p silon  
atom ic A,
Kiemb A U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% b o t-S  r u le

stou p  P s i n i l  b ot n i l  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% W ith-S r u le  (6 -S  r u le )

stou p  P s i D e lta  (B @ C) AC U p silo n  : -  
stou p  P s i D e lta  B AC U p silon ;  
stou p  P s i D e lta  C AC U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ?“S r u le

stou p  P s i  n i l  (? B) n i l  U p silon
r ig h t  P s i  (B : : n i l )  n i l  n i l  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Par-S r u le  ( |-S  r u le )

stou p  P s i D e lta  (B I C) AC U p silon  
s p l i t  D e lta  D e lta l  D e lta 2 , 
s p l i t  AC ACl AC2, 
stou p  P s i D e lta l  B ACl U p silo n  , 
stou p  P s i D elta 2  C AC2 U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% f o r a l l - S  r u le

stou p  P s i  D e lta  ( f o r a l l  B) AC U p silon  
stoup  P s i D e lta  (B T) AC U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% L o l l i - S  r u le  (— o-S r u le )

stou p  P s i  D e lta  (B — o C) AC U p silo n  
s p l i t  D e lta  D e lta l  D e lta 2 , 
s p l i t  AC AGI AC2, 
stou p  P s i D e lta l C ACl U p silo n , 
r ig h t  P s i  D elta2  AC2 ( B : : n i l )  U p silo n .

stou p  P s i D e lta  (C o— B) AC U p silo n  : -  
s p l i t  D e lta  D e lta l  D e lta 2 , 
s p l i t  AC ACl AC2, 
stou p  P s i D e lta l C ACl U p silo n , 
r ig h t  P s i D elta2  AC2 (B : : n i l )  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Hook-S r u le  (==>-S r u le )

stou p  P s i D e lta  (B ==> C) AC U p silon  
stou p  P s i D e lta  C AC U p silo n  , 
r ig h t  P s i  n i l  n i l  (B : : n i l )  U p silo n .

stou p  P s i D e lta  (C <== B) AC U p silon  : -  
stou p  P s i D e lta  C AC U p silo n , 
r ig h t  P s i  n i l  n i l  (B : : n i l )  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Tim es-S r u le  (x -S )

stou p  P s i D e lta  (B x C) AC U p silon
stou p  P s i D e lta  (neg ((n eg  B) I(neg C )))  AC U p silon .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% n eg-S  r u le  (neg-S)

stou p  P s i D e lta  (neg B) AC U p silo n  : -  
stou p  P s i D e lta  (B — o b o t) AC U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% choose r u le  
% choose ! r u le  
% choose? r u le

r ig h t  P s i  B D elta AC n i l  U p silon  
membNrest B B D elta  D e lta ,  

append AC U p silo n  R ig h ts id e ,  
c h o o se te s t  B R ig h ts id e ,  

stou p  P s i  D e lta  B AC U p silo n .

r ig h t  P s i D e lta  AC n i l  U p silon  
member C P s i ,  

append AC U p silo n  R ig h ts id e ,  
c h o o se te s t  C R ig h ts id e ,  

stou p  P s i D e lta  C AC U p silo n .

r ig h t  P s i D e lta  AC n i l  U p silo n  
member D U p silo n ,
r ig h t  P s i  D e lta  AC (D : :n i l)  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% top-R  r u le

r ig h t  P s i  D e lta  AC (top::B C ) U p silo n .

B .5  M odule forum .m od (B ox Calculus B)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Proof System B
% (w r it te n  in  Terzo lam bda-P rolog, V ersion  1 .0b )
%

% The sou rce  code i s  based  on an e a r l i e r  v e r s io n  by Dale M iler  
% (s e e  h ttp ://w w w .c is .u p en n .ed u /~ d a le /fo ru m ) .
% r e w r it te n  by C h r is t ia n  Urban l a s t  m od ified  0 7 .0 9 .9 6
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%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The r ig h t  p r e d ic a te  r e p r e se n ts  th e  p r o v a b il i t y  o f a n on -stoup  box; 
% th e  stou p  p r e d ic a te  r e p r e se n ts  th e  p r o v a b il i t y  o f a stoup  box. 
module forum.

accum ulate forum log , aux, c h o o s e te s t .

typ e  r ig h t  l i s t  o ->  % P s i ( c l a s s i c a l )
l i s t  o ->  l i s t  o “> % M form ulae ( l in e a r )
l i s t  o ->  l i s t  o ->  % A form ulae ( l in e a r )
l i s t  0  ->  l i s t  o ->  % B form ulae ( l in e a r )
l i s t  o ->  o . % U p silo n  ( c la s s i c a l )

typ e  stou p  l i s t  o ->  % P s i ( c l a s s i c a l )
l i s t  o ->  l i s t  o ->  % M form ulae ( l in e a r )
o ->  % Stoup
l i s t  o ->  l i s t  o ->  % A form ulae ( l in e a r )
l i s t  o -> o. % U p silo n  ( c l a s s i c a l )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% atom ic-R  r u le
r ig h t  P s i  MOHl Ml AOAl A1 (A::B0B1) B1 U p silon  

atom ic A,
r ig h t  P s i  MOMl Ml (A ::AOAl) A1 BOBl B1 U p silo n  , 
removed A (A ::AOAl) A l.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% With-R r u le  (@-R r u le )
r ig h t  P s i  MOMl Ml AOAl Al ((B 6 C ): :B0B1) B1 U p silon  

r ig h t  P s i  MOMl Ml AOAl Al (B::B0B1) B1 U p silo n , 
removed B (B: :B0B1) B l,  
d i f f  MOMl Ml MO, 
d i f f  AOAl Al AO, 
d i f f  BOBl Bl BO,
r ig h t  P s i  HO n i l  AO n i l  (C;:BO) n i l  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% bot-R  r u le
r ig h t  P s i  MOMl Ml AOAl Al ( b o t : :BOBl) Bl U p silo n  : -  

r ig h t  P s i  MOMl Ml AOAl Al BOBl Bl U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Par-R r u le  ( I-R r u le )
r ig h t  P s i  MOMl Ml AOAl Al ((B I C ): :B0B1) Bl U p silon  : -  

r ig h t  P s i  MOMl Ml AOAl Al (B::C::B0B1) Bl U p silo n , 
removed B (B::B0B1) B l,  
removed C (C::B0B1) B l.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% L o ll i-R  r u le  (— o-R r u le )
r ig h t  P s i  MOMl Ml AOAl Al ((B — o G ): :B0B1) Bl U p silon  : -  

r ig h t  P s i  (B::M0M1) Ml AOAl Al (C::B0B1) Bl U p silo n , 
removed G (C::B0B1) B l,  
removed B (B::M0M1) Ml.

r ig h t  P s i  MOMl Ml AOAl Al ((C o— B) : :B0B1) Bl U p silon  : -  
r ig h t  P s i  (B::M0M1) Ml AOAl Al (C::B0B1) Bl U p silo n , 
removed 0 (C::B0B1) B l,
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removed B (B::M0H1) Ml.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Hook-R r u le  (==>-R r u le )

r ig h t  P s i  MOMl Ml AOAl Al ( (B ==> C)::B0B1) Bl U p silon  : -  
r ig h t  (B ::P s i)  MOMl Ml AOAl Al (C::B0B1) Bl U p silon  , 
removed C BOBl B l.

r ig h t  P s i  MOMl Ml AOAl Al ( (C <== B);;B0B1) Bl U p silon  : -  
r ig h t  (B :;P s i)  MOMl Ml AOAl Al (C;:B0B1) Bl U p silon  , 
removed C (G::B0B1) B l.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% fo r a l l - R  r u le

r ig h t  P s i MOMl Ml AOAl Al ( ( f o r a l l  B ) : :B0B1) Bl U p silon  : -  
p i  x \  (r ig h t  P s i  MOMl Ml AOAl Al ((B x ) : :B0B1) Bl U p silo n , 

removed (B x) ( (B x ) ; ;B0B1) Bl ) .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
'/, ?-R r u le

r ig h t  P s i  MOMl Ml AOAl Al ((?  B)::B0B1) Bl U p silon  
r ig h t  P s i MOMl Ml AOAl Al BOBl Bl (B :: U p s ilo n ) .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Times-R r u le  (x-R)

r ig h t  P s i  MOMl Ml AOAl Al ((B x G ): ;B0B1) Bl U p silon  : -
r ig h t  P s i  MOMl Ml AOAl Al ( (neg ((n eg  B) | (neg G )))::B 0B 1) Bl U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% neg-R r u le  (neg-R)

r ig h t  P s i  MOMl Ml AOAl Al ((n eg  B);:B0B1) Bl U p silon
r ig h t  P s i  MOMl Ml AOAl Al ((B — o b ot)::B O B l) Bl U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% i n i t i a l  r u le

stou p  P s i Ml Ml A AAl Al U p silo n  ; -  
atom ic A,
membNrest A AAl A l.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% i n i t i t i a l !  r u le

stou p  P s i Ml Ml A Al Al U p silo n  : -  
atom ic A, 
memb A U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% b o t-S  r u le

stou p  P s i Ml Ml b ot Al Al U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% W ith-S r u le  (@-S r u le )
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stou p  P s i MOHl Ml (B @ C) AOAl Al U p silon  
stou p  P s i MOMl Ml B AOAl Al U p silon ;  
stou p  P s i MOMl Ml G AOAl Al U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ?-S  r u le

stoup  P s i Ml Ml (? B) Al Al U p silon
r ig h t  P s i  (B : : n i l )  n i l  n i l  n i l  n i l  n i l  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Par-S r u le  ( | - S  r u le )

stou p  P s i M0M1M2 M2 (B I G) A0A1A2 A2 U p silo n  : -  
stou p  P s i M0M1M2 M1M2 B A0A1A2 A1A2 U p silo n , 
stou p  P s i M1M2 M2 G A1A2 A2 U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% f o r a l l - S  r u le

stou p  P s i MOHl Ml ( f o r a l l  B) AOAl Al U p silon  : -  
stou p  P s i MOMl Ml (B T) AOAl Al U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% L o ll i - S  r u le  (— o-S  r u le )

stou p  P s i  M0M1M2 M2 (B — o C) A0A1A2 A2 U p silo n  : -  
stou p  P s i H0M1M2 M1M2 G A0A1A2 A1A2 U p silo n , 
r ig h t  P s i  M1M2 M2 A1A2 A2 (B : : n i l )  n i l  U p silo n .

stou p  P s i M0M1M2 M2 (G o— B) A0A1A2 A2 U p silo n  : -  
stou p  P s i M0M1M2 M1M2 G A0A1A2 A1A2 U p silo n , 
r ig h t  P s i  M1M2 M2 A1A2 A2 (B ; : n i l )  n i l  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Hook-S r u le  (==>-S r u le )

stou p  P s i  MOMl Ml (B ==> G) AOAl Al U p silon  
stou p  P s i MOMl Ml G AOAl Al U p silon  , 
r ig h t  P s i  n i l  n i l  n i l  n i l  (B : : n i l )  n i l  U p silo n .

stou p  P s i  MOMl Ml (G <== B) AOAl Al U p silon  
stou p  P s i MOMl Ml G AOAl Al U p silo n  , 
r ig h t  P s i n i l  n i l  n i l  n i l  ( B : : n i l )  n i l  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Tim es-S r u le  (x -S )

stou p  P s i MOMl Ml (B x G) AOAl Al U p silo n  : -
stou p  P s i MOMl Ml (neg ((n eg  B) I(neg G)))  AOAl Al U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% neg-S  r u le  (neg-S)

stou p  P s i MOMl Ml (neg B) AOAl Al U p silon
stou p  P s i MOMl Ml (B — o b o t) AOAl Al U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% ch oose r u le  
% choose ! r u le  
% choose?  r u le

r ig h t  P s i  BMOMl Ml AOAl Al Bl Bl U p silon  
membNrest B BMOMl MOMl, 

append AOAl U p silo n  R ig h ts id e ,  
c h o o se te s t  B R ig h ts id e , 

stou p  P s i MOMl Ml B AOAl Al U p silo n .

r ig h t  P s i  MOMl Ml AOAl Al Bl Bl U p silon  
member B P s i ,  

append AOAl U p silo n  R ig h ts id e ,  
c h o o se te s t  B R ig h ts id e ,  

stou p  P s i MOMl Ml B AOAl Al U p silo n .

r ig h t  P s i MOMl Ml AOAl Al Bl Bl U p silon  
member B U p silo n ,
r ig h t  P s i  MOMl Ml AOAl Al (B : : n i l )  n i l  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% top-R  r u le

r ig h t  P s i MOMl Ml AOAl Al ( t o p : :BOBl) Bl U p silo n  : -  
s p l i t  MOMl MO Ml, 
s p l i t  AOAl AO A l, 
s p l i t  BOBl BO B l.

B .6  M odule forum .m od (B ox C alculus B')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Proof System B’
% (w r it te n  in  Terzo lam bda-P rolog, V ersion  1 .0b )
%

% The sou rce  code i s  b ased  on an e a r l i e r  v e r s io n  by Dale M iler  
% (s e e  h ttp ://w w w .c is .u p en n .ed u /~ d a le /fo ru m ) .
% r e w r it te n  by C h r is t ia n  Urban l a s t  m od ified  0 7 .0 9 .9 5
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The r ig h t  p r e d ic a te  r e p r e se n ts  th e  p r o v a b il i t y  o f a n on -stoup  sequent; 
% th e  stou p  p r e d ic a te  r e p r e se n ts  th e  p r o v a b il i t y  o f a stoup  seq u en t.

module forum.

accum ulate forum log, aux, c h o o s e te s t .  

typ e  r ig h t

ty p e  stoup

l i s t 0 -> 7. P s i ( c l a s s i c a l )
l i s t o -> l i s t o —> l i s t o -> % M form ulae ( l in e a r )
l i s t o -> l i s t 0 -> l i s t 0 -> % A form ulae ( l in e a r )
l i s t o -> l i s t o -> l i s t o -> % B form ulae ( l in e a r )
l i s t o -> o . % U p silon ( c l a s s i c a l )

l i s t o -> % P s i ( c l a s s i c a l )
l i s t o -> l i s t 0 -> l i s t o -> % M form ulae ( l in e a r )
o -> % Stoup
l i s t o -> l i s t o -> l i s t o -> % A form ulae ( l in e a r )
l i s t 0 -> o . % U p silon ( c l a s s i c a l )

http://www.cis.upenn.edu/~dale/forum
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% atom ic-R  r u le
r ig h t  P s i  MOMIMT Ml MT AOAlAT Al AT (A::B0B1BT) Bl BT U p silon  : -  

atom ic A,
r ig h t  P s i MOMIMT Ml MT (A :;AOAlAT) Al AT' BOBIBT Bl BT U p silo n , 
remove A (A;:A0A1AT) Al AT’ AT.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% With-R r u le  (6-R r u le )
r ig h t  P s i  MOMIMT MlMl* MT~MT* AOAIAT AlAl* AT~AT*

((B e C ): iBOBlBT) B lB l* BT"BT* U p silo n  : -  
r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT (B::B0B1BT) Bl BT’ U p silo n , 
remove B (B ::BOBIBT) Bl BT’ BT, 
d i f f  MOMIMT Ml MO, 
d i f f  AOAIAT Al AO, 
d i f f  BOBIBT Bl BO, 
append MO MT M0*M1*MT*, 
append AO AT A0*A1*AT*, 
append BO BT B0*B1*BT*,
r ig h t  P s i  M0*M1*MT* Ml* MT* A0*A1*AT* Al* AT* (C::B0*B1*BT*) B l* BT* U p silo n ,
in t e r  MO Ml* n i l ,
in t e r  AO Al* n i l ,
in t e r  BO Bl* n i l ,
append Ml Ml* MlMl*,
append Al Al* A lA l* ,
append Bl Bl* B lB l* ,
in t e r  MT MT* MT~MT*,
in t e r  AT AT* AT"AT*,
in t e r  BT BT* BT"BT*.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% bot-R  r u le
r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT ( b o t : :BOBIBT) Bl BT U p silon  : -  

r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT BOBIBT Bl BT U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Par-R r u le  ( |-R  r u le )
r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT ((B I C ): :B0B1BT) Bl BT U p silo n  : -

r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT (B ::C ::BOBIBT) Bl BT’ U p silo n ,
remove B (B: : BOBIBT) Bl BT’ BT” ,
remove C (C;:B0B1BT) Bl BT”  BT.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% L o ll i-R  r u le  (— o-R r u le )
r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT ((B — o C ): :BOBIBT) Bl BT U p silo n  : -  

r ig h t  P s i (B ::MOMIMT) Ml MT’ AOAIAT Al AT (C ::BOBIBT) Bl BT’ U p silo n , 
remove C (C;:B0B1BT) Bl BT’ BT,
remove B (B : :MOMIMT) Ml MT’ MT.

r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT ((C o— B ): :B0B1BT) Bl BT U p silo n  : -  
r ig h t  P s i  (B ::MOMIMT) Ml MT’ AOAIAT Al AT (C ::BOBIBT) Bl BT’ U p silo n ,  
remove C (C::B0B1BT) Bl BT’ BT,
remove B (B ::MOMIMT) Ml MT’ MT.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Hook-R r u le  (==>-R r u le )

r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT ((B ==> C)::B0B1BT) Bl BT U p silo n  : -
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r ig h t  (B ::P s i)  MOMIMT Ml MT AOAIAT Al AT (C::B0B1BT) Bl BT' U p silo n , 
remove C (C::B0B1BT) Bl BT' BT.

r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT ((C <== B)::B0B1BT) Bl BT U p silon  
r ig h t  (B :;P s i)  MOMIMT Ml MT AOAIAT Al AT (C::B0B1BT) Bl BT’ U p silo n , 
remove C (C::B0B1BT) Bl BT’ BT.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% fo r a l l - R  r u le

r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT ( ( f o r a l l  B)::B0B1BT) Bl BT U p silo n  : -  
p i  x \  (r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT ( (B x) : -.BOBIBT) B l BT’ U p silo n ,  

remove (B x) ((B x);;BOBlBT) Bl BT’ BT).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ?-R r u le

r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT ((?  B ) : ;B0B1BT) Bl BT U p silo n  : -  
r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT BOBIBT Bl BT (B ::U p s ilo n ) .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Times-R r u le  (x-R)

r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT ( (B x C ): ;B0B1BT) Bl BT U p silo n  : -  
r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT

((n eg  ( (neg B) I (neg C) ) ) :  ;BOBIBT) Bl BT U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7, neg-R  r u le  (neg-R)

r ig h t  P s i MOMIMT Ml MT AOAIAT Al AT ((n eg  B)::B0B1BT) Bl BT U p silo n  ; -  
r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT ((B — o b o t ) : ;B0B1BT) Bl BT U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% top-R  r u le

r ig h t  P s i  MT n i l  MT AT n i l  AT (top::B T ) n i l  BT U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% i n i t i a l  r u le

stou p  P s i  Ml Ml n i l  A AAl Al n i l  U p silo n  : -  
atom ic A,
membNrest A AAl A l.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7. i n i t i t i a l !  r u le

stou p  P s i Ml Ml n i l  A Al Al n i l  U p silon  : -  
atom ic A, 
memb A U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% b o t-S  r u le

stou p  P s i  Ml Ml n i l  bot Al Al n i l  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% W ith-S r u le  (6-S  r u le )

. . .A
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stou p  P s i MOMIMT Ml MT (B @ C) AOAIAT Al AT U p silon  
stou p  P s i MOMIMT Ml MT B AOAIAT Al AT U p silon ; 
stou p  P s i  MOMIMT Ml MT C AOAIAT Al AT U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ?-S  r u le

stou p  P s i Ml Ml n i l  (? B) Al Al n i l  U p silon
r ig h t  P s i  ( B : : n i l )  n i l  n i l  n i l  n i l  n i l  n i l  n i l  n i l  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Par-S r u le  ( | - S  r u le )

stou p  P s i MOMIMT H1"M1* MT"M1*MT* (B | C) AOAIAT A1"A1* AT"A1*AT* U p silo n  
stou p  P s i MOMIMT Ml MT B AOAIAT Al AT U p silo n , 
append Ml MT M0*M1*MT*, 
append Al AT A0*A1*AT*,
stou p  P s i  M0*M1*MT* Ml* MT* G A0*A1*AT* Al* AT* U p silo n ,
in t e r  Ml Ml* M1"M1*,
in t e r  Al Al* A1~A1*,
in t e r  MT Ml* MT"M1*,
in t e r  AT Al* AT"A1*,
append MT"M1* MT* MT"M1*MT*,
append AT"A1* AT* AT"A1*AT*.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% f o r a l l - S  r u le

stou p  P s i MOMIMT Ml MT ( f o r a l l  B) AOAIAT Al AT U p silon  ; -  
stoup  P s i MOMIMT Ml MT (B T) AOAIAT Al AT U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% L o l l i - S  r u le  (— o-S  r u le )

stou p  P s i MOMIMT M1"M1* MT“M1*MT* (B — o C) AOAIAT A l'A l*  AT"A1*AT* U p silon  
stou p  P s i MOMIMT Ml MT C AOAIAT Al AT U p silo n , 
append Ml MT M0*M1*MT*, 
append Al AT A0*A1*AT*,
r ig h t  P s i  M0*M1*MT* Ml* MT* A0*A1*AT* Al* AT* (B : : n il)  n i l  n i l  U p s ilo n ,
in t e r  Ml Ml* M1"M1*,
in t e r  Al Al* A1"A1*,
in t e r  MT Ml* MT“M1*,
in t e r  AT Al* AT"A1*,
append MT"M1* MT* MT"M1*MT*,
append AT"A1* AT* AT"A1*AT*.

stou p  P s i MOMIMT M1"M1* MT"M1*MT* (C o— B) AOAIAT A1"A1* AT"A1*AT* U p silo n  
stou p  P s i MOMIMT Ml MT C AOAIAT Al AT U p silo n , 
append Ml MT M0*M1*MT*, 
append Al AT A0*A1*AT*,
r ig h t  P s i  M0*M1*MT* Ml* MT* A0*A1*AT* Al* AT* (B : : n il)  n i l  n i l  U p s ilo n ,
in t e r  Ml Ml* M1"M1*,
in t e r  Al Al* A1"A1*,
in t e r  MT Ml* MT"M1*,
in t e r  AT Al* AT"A1*,
append HT"M1* MT* MT"M1*MT*,
append AT"A1* AT* AT"A1*AT*.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Hook-S r u le  (==>-S r u le )

stou p  P s i MOMIMT Ml MT (B ==> C) AOAIAT Al AT U p silon  
stou p  P s i MOMIMT Ml MT C AOAIAT Al AT U p silo n , 
r ig h t  P s i  n i l  n i l  MT* n i l  n i l  AT* (B : : n i l )  n i l  n i l  U p silo n .

stou p  P s i MOMIMT Ml MT (G <== B) AOAIAT Al AT U p silon  
stou p  P s i MOMIMT Ml MT G AOAIAT Al AT U p silo n , 
r ig h t  P s i  n i l  n i l  MT* n i l  n i l  AT* (B : : n i l )  n i l  n i l  U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tim es-S r u le  (x-S)

stou p  P s i MOMIMT Ml MT (B x G) AOAIAT Al AT U p silon  : -
stou p  P s i MOMIMT Ml MT (neg ((n eg  B) I(neg  G)))  AOAIAT Al AT U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% neg-S  r u le  (neg-S)

stou p  P s i MOMIMT Ml MT (neg B) AOAIAT Al AT U p silon  : -  
stou p  P s i MOMIMT Ml MT (B — o b o t) AOAIAT Al AT U p silo n .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% choose r u le
% choose! r u le
% choose? r u le

r ig h t  P s i  BMOMIMT Ml MT AOAIAT Al AT Bl Bl n i l  U p silon  : -  
membNrest B BMOMIMT MOMIMT, 

append AOAIAT U p silo n  R ig h ts id e ,  
c h o o se te s t  B R ig h ts id e ,  

stou p  P s i MOMIMT Ml MT B AOAIAT Al AT U p silo n .

r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT Bl Bl n i l  U p silon  : -  
member B P s i ,  

append AOAIAT U p silo n  R ig h ts id e ,  
c h o o se te s t  B R ig h ts id e , 

stoup  P s i MOMIMT Ml MT B AOAIAT Al AT U p silo n .

r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT Bl Bl n i l  U p silon  : -  
member B U p silo n ,
r ig h t  P s i  MOMIMT Ml MT AOAIAT Al AT ( B : : n i l )  n i l  n i l  U p silo n .


