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Abstract

This thesis is a proof-theoretic investigation of logic programming based on hereditary Harrop
logic (as in AProlog). After studying various proof systems for the first-order hereditary Harrop
logic, we define the proof-theoretic semantics of a logic LFPL, intended as the basis of logic
programming with functions, which extends higher-order hereditary Harrop logic by providing
definition mechanisms for functions in such a way that the logical specification of the function
rather than the function may be used in proof search.

In Chap. 3, we define, for the first-order hereditary Harrop fragment of LJ, the class of
uniform linear focused (ULF) proofs (suitable for goal-directed search with backchaining and
unification) and show that the ULF-proofs are in 1-1 correspondence with the expanded normal
deductions, in Prawitz’s sense. We give a system of proof-term annotations for LJ-proofs (where
proof-terms uniquely represent proofs). We define a rewriting system on proof-terms (where
rules represent a subset of Kleene’s permutations in LJ) and show that: its irreducible proof-
terms are those representing ULF-proofs; it is weakly normalising. We also show that the
composition of Prawitz’s mappings between LJ and NJ, restricted to ULF-proofs, is the identity.

We take the view of logic programming where: a program P is a set of formulae; a goal
G is a formula; and the different means of achieving G w.r.t. P correspond to the expanded
normal deductions of G from the assumptions in P (rather than the traditional view, whereby
the different means of goal-achievement correspond to the different answer substitutions).

LFPL is defined in Chap. 4, by means of a sequent calculus. As in LeFun, it extends
logic programming with functions and provides mechanisms for defining names for functions,
maintaining proof search as the computation mechanism (contrary to languages such as ALF,
Babel, Curry and Escher, based on equational logic, where the computation mechanism is some
form of rewriting). LFPL also allows definitions for declaring logical properties of functions,
called definitions of dependent type. Such definitions are of the form: (f, ) =45 (A, w) : Tpir F,
where f is a name for A and z is a name for w, a proof-term witnessing that the formula [A/z]F
holds (i.e. A meets the specification X, F). When searching for proofs, it may suffice to use
the formula [A/z]F rather than A itself.

We present an interpretation of LFPL into NN*7°"™ a natural deduction system for hered-
itary Harrop logic with A-terms. The means of goal-achievement in LFPL are interpreted in
NN norm oggentially by cut-elimination, followed by an interpretation of cut-free sequent cal-
culus proofs as normal deductions.

We show that the use of definitions of dependent type may speed up proof search because
the equivalent proofs using no such definitions may be much longer and because normalisation
may be done lazily, since not all parts of the proof need to be exhibited. We sketch two meth-
ods for implementing L¥PL, based on goal-directed proof search, differing in the mechanism
for selecting definitions of dependent type on which to backchain. We discuss techniques for
handling the redundancy arising from the equivalence of each proof using such a definition to

one using no such definitions.
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Chapter 1

Introduction

1.1 Logical Foundations

The A-calculus is a model of computation introduced by Church [Chu40]. It resulted from an
attempt to provide a foundation for mathematics [Chu32, Chu33], which proved to be incon-
sistent [KR36]. (For books on A-calculus, see e.g. [Bar81, HS86].) A-calculus is often regarded
as the precursor of current practice in functional programming [Jon87, Tho91]. Section 1.2
describes an abstract model of functional programming, based on typed A-calculus, followed in
this thesis.

Proof theory also has its roots in foundational studies, mainly those of Hilbert and his
followers, in the first decades of the century. Unsatisfied with aziomatic systems, Gentzen
devoted part of his work to formalisations of logic, reflecting more closely the logical principles of
reasoning used by mathematicians. He introduced the natural deduction and the sequent calculus
systems for first-order classical and intuitionistic logic in [Gen35].  For this thesis, LJ means
the cut-free fragment of Gentzen'’s sequent calculus LJ; LJ* means the unrestricted calculus,
using the cut rule. In [Gen35], Gentzen described how to transform each LJ°“-derivation
into a LJ-derivation, i.e. how to perform cut elimination. He also described a mapping from
deductions in NJ (Gentzen’s natural deduction system for first-order intuitionistic logic) to
LJ®-derivations.

Prawitz in [Pra65] revived the interest in Gentzen’s systems. He described a normalisation
procedure for NJ, that was later realised, through the Curry-Howard correspondence, to be
a counterpart of normalisation in functional systems [Tai67]. He defined a mapping from LJ-
derivations to normal deductions in NJ and a mapping from normal deductions in NJ to
LJ-derivations.

Miller et al [NM88, MNPS91] and Beeson [Bee89] are amongst the proponents of using LJ-
based systems to give proof-theoretic characterisations of logic programming, a view that we

follow in this thesis. Under this view, the concepts of program, goal and achievement of a goal




w.r.t. a program are defined by means of sequent calculi systems for intuitionistic logic.

Typed theories were introduced in the beginning of the century, motivated by foundational
studies [RW10]. Type theory has seen a resurgence of interest in the last 30 years or so, mainly
for its applications to computer science, see e.g. [ML82, Hue90, NPS90, Tho91].

The view of Curry [CF58] and Howard [How69)] of propositions as types motivated a suc-
cession of works following this idea, the prominent works being de Bruijn’s Automath pro-
ject [dB80] and MartinLof’s predicative type systems [ML84, NPS90]. As in other works
[Pot77, TvD88, Min94], we follow the view of propositions as types for assigning proof-terms
to derivations in formal systems. Section 2.3.2 defines the calculi LJ?* and NJP* which are,
respectively, natural deduction and sequent calculus systems for first-order intuitionistic logic
with proof-term annotations.

Parallel investigations into type theory, based on Church’s simple theory of types, led Girard
to his impredicative systems F' and Fw [Gir72, GLT89]; Reynolds discovered independently a
system equivalent to system F [Rey74]. In [CH88], Coquand and Huet presented the Calculus
of Constructions, which combines Girard’s impredicative systems with de Bruijn’s and Martin-
Lof’s proposal for dependent types. Luo extended the Calculus of Constructions with Martin-
Lof’s predicative type universes into the Eztended Calculus of Constructions [Luo94]. Church’s
simple theory of types, systems F and Fw, the Calculus of Constructions and some of de
Bruijn’s systems have equivalent systems in Barendregt’s A-cube [Bar93].

An application of type theory relevant for this thesis is the use of type theory as an integ-
rated framework for developing specifications and programs. In particular, in our proposal for
integrating logic and functional programming, we use ideas similar to the theory of deliver-
ables [MB93], based on the Extended Calculus of Constructions, for attaching logical properties

(specifications) to the functions defined in programs.

1.2 Functional Programming

This section describes an abstract model of functional programming, based on simply typed
A-calculus. This simplistic view of functional programming may be described as follows. A
program is a list of definitions of the form » =,,; A : 7, where: z is a variable, the definiendum,
that may be thought of as a name for a function; A is a A-term, that may be thought of as the
definiens of the function; and 7 (the type of the definition) is a simple type. (See Sec. 2.2.1 for
a definition of the syntactic categories of A-terms and simple types.)

A program is required to verify some properties to be a well-formed program. Roughly: a
definiendum may not occur in the program before it has been declared; a definiendum may
not have different definientia; a definiendum may not occur in its definiens, i.e. no recursive
definitions are allowed; the definiens of the definition must be of the type of the definition. (The

rules of Sec. 2.2.1 may be used to define the well-formed A-terms of a type, where a signature




is used for gathering the types of the definienda occurring before in the program.)

Given a program P and a A-term A of type 7, the evaluation of A w.r.t. P consists of the
replacement of the occurrences of the definienda of P in A by their definientia and normalisation.
The strategy followed for combining these two operations is irrelevant for the purposes of this
thesis. A fundamental property of this abstract model is that each valid term of a type has a
unique normal form. The result of an evaluation is the normal form of the original term.

This abstract view of functional programming may be rephrased proof-theoretically. Through
the Curry-Howard correspondence between formulae and types, A-terms may be regarded as
proofs in a natural deduction formulation of intuitionistic implicational logic, as in [Coq90].
Then, a program is a list of definitions of the form z =,.; e : F, where z is a name for the
proof e of formula F. The evaluation mechanism may be described as the replacement of
defined names for proofs by their definientia together with proof-normalisation, as described in
Prawitz’s [Pra65].

There are some other important features, usually present in functional programming lan-
guages, e.g. [Pau9l, Tur86, HW90], not considered in the abstract model described above.
Usually functional languages allow richer type theories. Polymorphism is often allowed, by
introducing type variables. (See [Rey74, Gir72], for extensions of A-calculus with polymorph-
ism.) Another form of types usually provided in functional programmming is the datatype.
Roughly, datatypes combine primitive types, sum types and well-founded recursion for building
new types. Datatypes induce the use of patterns as a means for performing case analysis in a
definition involving terms whose type is a datatype. Another ubiquitous feature in functional
programming is the use of recursive function definitions. However, the uncontrolled use of re-
cursive definitions is a source of non-terminating computations. We intend in future work, by
adding some of the features mentioned above to our abstract model of functional programming,

to extend our proposal for integrating logic and functional programming.

1.3 Logic Programming

Like the functional programming paradigm, the logic programming paradigm provides more
readable and expressive languages for programming, as compared to imperative languages; in
addition, logic programming provides search mechanisms for solutions to queries. The origins
of logic programming and the first developments of the leading exponent in the paradigm, Prolog
[SS86], are described in [Kow88, Coh88]. For the purposes of this thesis, we concentrate on
pure logic programming, i.e. non-logical features, such as control strategies, are left aside, even
though they have an important role in the semantics of a concrete implementation [And92b)].
Most logic programming languages have their logical foundations in the first-order classical
logic theory of Horn clauses [VEK76, Hod93]. A Horn clause may be written as: A + Ay, ..., Ag,
where A, Ay, ..., A, are atoms, i.e. atomic formulae built up by applying predicate symbols to
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first-order terms. As usual, first-order terms are built up from a set of variables and a set
of function symbols and a first-order term is either a variable or a function symbol applied to
first-order terms. A program is a set of Horn clauses and a goal is an atom. (See e.g. [Hod93]
for a proof that the problem of whether or not a formula is a theorem of first-order classical
logic may be encoded as the problem of whether or not a set of Horn clauses is inconsistent.)

A Horn clause A « Ay, ..., A, is interpreted as the formula V,, ...V, ((A1 A ... A 4,) D A),
where 21, ..., T, is the set of variables occurring in the atomic formulae A, A4y, ..., A,. The logical
interpretation of a goal A is the formula 3,,...3;,, A, where z4,...,2,, is the set of variables
occurring in A.

An atom A; is an instance of an atom A; iff there exists a substitution 8 s.t. 8(A43) = A4,
where: a substitution @ is a mapping from variables to terms equal to the identity except for a
finite set of variables z, for which # has no occurrences in #(z); and the notation 6(A3) represents
the atom obtained from A, by replacing each occurrence of z by 6(z), for all variables. The
ground instances of an atom A are all the instances of A that contain no variable. An atom
is ground if it contains no variables. A set § of ground atoms is a model for a logic program
if for each ground instance of a clause A + Ay, ..., A, in the program it is the case that A is in
S if Ay, ...,A, are in S. The least model of a program is the intersection of all models of the
program.

The tradition in logic programming semantics [VEK76, Llo84] has been to give an operational
semantics, usually based on some form of resolution [Rob65], and a declarative semantics based
on model-theory. (Sometimes [Wol93] a fizpoint semantics is used for bridging the gap between
operational and declarative semantics.) Usually in declarative semantics [Llo84], the denotation
of a program is the least model of the program. A goal is achievable w.r.t. the program iff some
ground instance of it is in the least model.

More recently have appeared some studies giving proof-theoretic characterisations of logic
programming, amongst others [NM88, Bee89, HSH90, Pym90, MNPS91, Pfe92, Ker92, And92b,
Har94, NL95]. The proof-theoretic approach uses formal systems (calculi) for describing the
semantics of logic programming, where computation is regarded as proof-search. As argued in
[MNPS91, Bee89], proof-theoretic semantics presents a clear logical account of semantics which
is closer to operational semantics than model-theoretic semantics.

We take the following proof-theoretic view of logic programming. A program is a set of
closed formulae. A goal is a closed formula. Achieving a goal w.r.t. a program consists of a
search for a proof of the goal w.r.t. the program in a formalisation of the logic underlying the
language. Following Miller et al [MNPS91]’s view, we consider: the calculus to be a cut-free
sequent calculus system for first-order intuitionistic logic; program formulae to be hereditary
Harrop formulae and goals to be hereditary Harrop goals. (Hereditary Harrop formulae are
obtained from Harrop formulae [Har60] by allowing no disjunctions and no existential quantifiers

in positive subformulae. See Sec. 3.2 for a definition of the two classes of formulae.) The




theory of hereditary Harrop formulae is a conservative extension of the theory of Horn clauses,
in the sense that any Horn clause is an hereditary Harrop formula and, for a Horn program (set
of Horn formulae), hereditary Harrop logic does not allow any new form of deriving formulae,
as compared to Horn logic. Languages based on hereditary Harrop logic provide important
abstraction mechanisms, such as modules and abstract datatypes. However, for these languages
resolution is no longer an adequate implementation method, essentially because of implicational
goals that augment the program; instead, goal-directed proof-search is used.

Traditional model-theoretic semantics capture the ideas about the number of solutions to a
query (the different means of goal-achievement) only in a restricted manner. In model-theoretic
semantics the different means of goal-achievement correspond to the ground instances of the
goal in the least model. In proof-theoretic semantics the different means of goal-achievement
may be captured more conveniently, since proofs are themselves the results of computations.
For defining what are the different means of goal-achievement, it suffices to define an equality

relation on proofs and regard the different means of goal-achievement as the different proofs

under such equality relation. In the language AProlog [NM88] this issue is addressed by fixing:-

the means of goal-achievement as the proofs which are uniform and use backchaining for dealing
with atomic goals.

Section 3.6 presents a proof-theoretic semantics of a logic programming language called
FOPLP, based on the theory of first-order hereditary Harrop formulae. This language follows
closely Miller et. al’s [Mil90, MNPS91] proof-theoretic view of logic programming. (We give
a detailed presentation of the proof-theoretic semantics of FOPLP not for its novelty, but
as a foundation to our proposal for integrating logic and functional programming.)  For
describing hereditary Harrop logic, we use a sequent calculus with proof-term assignment. We
assign distinct variables to formulae in the antecedent of a sequent and assign a proof-term to
the succedent formula of a derivable sequent, so that the proof-term determines uniquely the
derivation. So, the result of a computation in FOPLP may be described as a proof-term, from
which the instantiations for the existentially quantified variables of the goal may be obtained.
Pfenning’s encoding of the Logical Framework [HHP93], EIf [Pfe89], may be regarded as a logic
programming language where the programmer has access to the proof-terms and the result of
a computation is a proof-term.

There are many works extending logic programming, based on Horn clauses, in various
directions; below a few are mentioned. Several works, e.g. [Cla78, GL90], address extensions
of Prolog that allow some form of negation. Some languages, such as Gédel [HL94], have
considered multi-sorted extensions of Horn logic. Some works propose extensions of logic
programming with mechanisms for defining functions. (We analyse some of these proposals in
Sec. 1.4.) In [GR84] Horn clauses are extended with hypothetical reasoning. Miller et al.
considered hereditary Harrop logic and studied various higher-order versions of it, proposing

the languages AProlog [NM88] and L;[Mil91], which provide various abstraction mechanisms.
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Loveland and his colleagues have been studying disjunctive logic programming [Lov91, NL95].
In [HSH90], Horn clauses are considered as rules of a formal system and the inference schema of
definitional reflection is allowed. Logic programming languages based on Girard’s linear logic
[Gir87] are also flourishing [AP91, HM94, Mil94, HW95], see the survey [Mil95]. These languages
provide a means for writing directly in the language some operations typically described in other

languages by means of extra-logical predicates, such as resource management and concurrency.

1.4 Integrated Logical and Functional Programming

Logic programming and functional programming are two distinct approaches to declarative
programming. From a type-theoretic perspective, these two styles of programming may be
described as follows. In functional programming is given a term ¢ of a type and the result of a
computation is the canonical form of £. In logic programming is given a type T' and the result
of a computation is a term of type T'; as opposed to functional programming, there may exist
several terms of type 7" that may be computed as result.

There have been many proposals for integrating logic programming and functional pro-
gramming, see [DL86, BL86, Han94] for surveys. We call the languages obtained from such
integration integrated logical and functional languages. Often, when encoding a problem in a
programming language we realise that.parts of the problem are typically functional whereas
other parts of the problem are relational in nature. Compared to functional programming,
integrated logical and functional programming provides a more direct means of encoding a
problem, since arbitrary relations need not be forcefully encoded as functions. So, integrated
logical and functional programming may provide a clearer form of programming,.

In integrated logical and functional programming there is no need for abstracting away from
the functional specificity of a relation or need for imposing a functional behaviour on a relation
by using extra-logical arguments. For example, if there is a relation in a program that is solely
used in a functional form such relation could be described as a function. Then, during search
there would be no need for attempting alternative forms of using such relation for achieving a
goal. In [Han92) are shown examples of logic programs that when interpreted into an integrated
logical and functional programming language acquire a better operational behaviour, becoming
more efficient.

In our quest for a language supporting arbitrary relations as well as functions, we consider
extensions of logic programming where functions are allowed for building predicates and a
mechanism for defining names for functions is provided. So, according to our views of functional
programming and logic programming, expressed in Sec. 1.2 and 1.3, we take the following view,
as a starting point, of integrated logical and functional programming. A program is a pair
(A, T), where: A is a list of definitions of the form z =,.; A : 7, with 2 ranging over variables,

A ranging over A-terms and 7 ranging over simple types; I consists of a set of logical formulae.

e T
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(The definienda of A may be used in building up the logical formulae in T', just as any other
variables.) A goal G is achievable w.r.t. a program (A,T) iff [A]G is achievable w.r.t. [A]l in
the underlying logic programming language, where [A]G stands for the formula obtained from
G by replacing the definienda of A by their definientia and subsequent normalisation ([A]I" has
a similar interpretation). Sec. 4.2 presents a proof-theoretic semantics for a language following
these ideas of integrating logic and functional programming. The programming language LeFun
[AKN89] essentially implements the ideas described above.

This thesis proposes an integration of logic and functional programming beyond the ideas
described above.  Our proposal provides a new form of definitions, definitions of dependent
type. By using such definitions, when defining a function we may declare more properties about
functions than merely the type of their arguments. Then, during proof-search, such properties
may be used as lemmas for goal-achievement.

Section 4.6 describes a proof-theoretic semantics of the language LFPL that implements the
ideas mentioned above. The language is described by means of a sequent calculus system with
cuts for higher-order hereditary Harrop logic. Cut elimination is then the interpretation of

LFPL into pure logic programming.

1.5 Overview of the Thesis and Related Work

This thesis presents the language LFPL as a novel approach for integrating logic and func-
tional programming. This language extends ideas first presented in [Pin94, PD94]. There
are approaches for integrating logic and functional programming, such as ALF [Han90], Babel
[MNRA92], Curry [Han95], Escher [Llo94], which are based on equational logic, where predic-
ates and logical operations are seen as boolean functions. These languages use narrowing (ALF,
Babel, Curry) or some other form of rewriting (Escher) as the basic computation mechanism.
The language LFPL follows a different form of integration. As in the integrated logical and
functional language LeFun [AKN89], LFPL maintains functions and predicates at distinct levels
and extends logic programming by allowing a mechanism for defining names for functions and
by allowing function names for building terms and formulae. LFPL takes this extension even
further, by allowing a mechanism for declaring specifications of functions, which may be used
as lemmas in goal-achievement.

Chapter 2 lays down the logical foundations required for this thesis. Section 2.2 presents a
simply typed A-calculus, called A5T. We recall some properties of A-calculus and review some
properties of unification of A-terms, following the works [Hue75, NM94]. Section 2.3 presents
two calculi, based upon Gentzen’s NJ and LJ, with proof-term assignment, called respectively
NJP* and LJ?'. The calculus N JP* essentially results by extending the correspondence between
A-terms and natural deductions in intuitionistic implicational logic [CF58, How69, Coq90] to the
other connectives; a similar calculus is presented in [Gal93]. (See [Laf89, Gal93] for other forms




of assigning terms to LJ, motivated by applications to functional programming.) LJ?* allows
no explicit structural rules, but these rules are admissible in the calculus. In Sec. 2.3.3 is given
an encoding of Kleene’s permutations for LJ [Kle52] by means of transformations on proof-
terms of LJ?® and is shown that the image of proof-terms under the mapping ¢ (an encoding
of Prawitz’s interpretation of sequent calculus proofs as natural deductions) is invariant under
such transformations.

Chapter 3 presents two logic programming languages FOPLP and HOPLP. The semantics
of these languages are defined by means of the cut-free sequent calculi hH and HH, which
are systems of first-order and higher-order! hereditary Harrop logic, respectively. This view
of first-order and higher-order logic programming has its roots in the works of Miller et al
[NM88, MNPS91]. A departure point from Miller’s work is the use of proof-terms for encoding
derivations. The use of proof-terms permits to regard them as the results of computations, an
idea followed in type-theoretic accounts of logic programming, such as [Pfe92].

We build on Miller et al's idea of uniform proofs [MNPS91], Pfenning’s idea of immediate
entailment [Pfe91, Pfe94] and Andreoli’s idea of focusing proofs, in the context of linear logic,
arriving at the notion of uniform linear focused (ULF) derivations for first-order hereditary
Harrop logic, in Sec. 3.3. It is shown that each derivation is permutable (in the sense of Sec.
2.3.3) to a ULF derivation. The calculus AHYLF is introduced as a calculus that captures
exactly ULF derivations. Section 3.5 shows a 1-1 correspondence between ULF derivations
and ezpanded normal deductions [Pra65)] for first-order hereditary Harrop logic. (This work
was in collaboration with Dyckhoff, see [DP94, DP96b]. In [DP96b] the 1-1 correspondence is
extended to full first-order intuitionistic logic.) Other proofs of essentially the same result may
be found in [Pfe94, Min94]. The semantics of a logic programming language needs to define
what are the different means of goal-achievement. Traditionally [Llo84], the different means of
goal-achievement correspond to the ground instances of the goal in the least model. In FOPLP
the different means of goal-achievement correspond to the expanded normal deductions of the
goal. So, FOPLP has a clear interpretation by means of Gentzen’s NJ. The language HOPLP,
defined by means of the system HH, is obtained by extending the ideas above to higher-order
hereditary Harrop logic. The natural deduction system NN***"™ for higher-order hereditary
Harrop logic, is used for interpreting HOPLP.

Chapter 4 presents the integrated logical and functional language LFPL. This language is
an extension of the language HOPLPD, defined in Sec. 4.2, which in turn is an extension of
HOPLP with a mechanism for defining names for A-terms. (The language HOPLPD essentially
corresponds to LeFun.) The language LFPL extends HOPLPD by allowing definitions of the

form & =4 € : Ly, F, where z is a name for the proof-term e, which is essentially a deliverable

!The calculus H H allows no quantification over predicates; however, it is an higher-order logic in the sense it
allows quantification over A-terms. A similar calculus, i, except for the absence of disjunctions and existential
quantifiers, is used in [Fel91] for encoding LF-specifications [HHP93].




[MB93], i.e. e is a pair (A,e;) where A is a A-term of type 7, usually a function, and e; is
a witness for [A/y]F, i.e. a proof that A satisfies the specification Xy, F. The semantics of
LFPL is defined by means of HH def , a sequent calculus system with proof-term annotations
for higher-order hereditary Harrop logic that allows definition mechanisms. Section 4.5 presents
an interpretation of HH def into HH , so there is an interpretation of LFPL into HOPLP. The
mapping from HH 9/ into HH is essentially cut elimination. (See Appendix A for a summary
of the relations amongst various calculi used throughout this thesis.)

Chapter 5 studies methods of implementing LFPL. The semantics of LFPL is redefined by
means of the calculus H H%f ', a calculus where proof-search becomes more efficient. Section
5.3 describes a class of H H 9/ _derivations complete for LFPL, i.e. a class of derivations where
all means of goal-achievement may be found. The concept of extended uniform linear focused
(EULF) derivations is an extension of the concept of ULF derivations to HH def ‘, by regarding
specifications of functions just as any other program formulae. The class of sensible derivations
only allows the use of the specification attached to a function in case the name of the function
occurs in the goal.

The semantics of LFPL is defined in such a way that given a goal G' and a program P,
the means of achieving G w.r.t. P in LFPL are in a 1-1 correspondence with the means of
achieving G’ (the interpretation of G in HOPLP) w.r.t. P’ (the interpretation of P in HOPLP)
in HOPLP. The class of EULF derivations which are sensible is excessive for LFPL, i.e. there
are derivations which are EULF and sensible that are regarded as the same means of goal-
achievement in LFPL. So, an implementation needs to get rid of this redundancy. Qur proposal
for implementing LFPL simply collects the various means of goal-achievement and compares
them with other means already obtained, discarding those which have the same interpretation
in HOPLP as another found before, as described in Sec. 5.4.

Following [Pfe92], where a type-theoretic account of logic programming is given, in LFPL,
we may think of: a program as a type assignment (context); a goal as a type; and achieving a
goal G w.r.t. a program P as a search for a term of type G under type assignment P. Thus, the
formal system underlying LFPL, HH def , may be seen as a type system and an implementation
of LFPL may be seen as a method to search for inhabitants of types.

The fragment of HH %€/ with no definition mechanisms (HH) and with no existential quan-
tifiers and no disjunctions in goal formulae may be seen as a sequent calculus for a fragment of
the All-calculus [How69, dB80, HHP87]. The implementation suggested for LFPL, when restric-
ted to such fragment, follows ideas similar to those in [Pfe91, PW91, Dow93] for proof-search in
the All-calculus, ¢.e. for non-atomic types search is determined by the structure of the type and
for atomic types resolution is used. (It is noteworthy that the works mentioned above study
proof-search in full All-calculus; in fact, in [Dow93] is described a method that is applicable to
all the type systems of Barendregt’s cube.) The work [PW91] has another similarity with this

thesis, in that proof-search is studied by means of sequent calculi and the terms that may be

AN




found in the calculus inducing the smallest search space are long #n-normal forms.

In [TS96] is presented an approach to proof-search in a type system allowing definitions.

nunz,

There, the problem of inhabitedness in fragments of Martin-L6f’s type system [NPS90] is en-
coded as a first-order Horn logic theory, whereby: terms in the type system are translated
as first-order terms; implicit definitions are translated by using first-order equality; and expli-
cit definitions are not translated, instead they are used for expanding definienda, followed by
normalisation. Under this translation, the rules for application and substitution in the type

system are encoded by hyperresolution. The implementation we present for LFPL uses simple

definitions for expanding definientia, as in the method above, but uses definitions of dependent
type only for suggesting their types as lemmas in proof-search.
In Chapter 6, we present conclusions of this thesis and state unresolved problems for future

investigations.
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Chapter 2

Logical Preliminaries

2.1 Introduction

In this chapter are introduced various definitions and results used throughout this thesis.

Each formal system (calculus) presented in this thesis is defined by following LF’s method-
ology [HHP93] for encoding logics, which is based on ideas pioneered by de Bruijin [dB80] and
Martin-Lof [ML85] for describing logics. For each calculus there is a definition of: (i) the classes
of objects used by the calculus; (ii) the notion of equality for each class of objects; (iii) the forms
of judgement of the calculus; (iv) the derivable judgements of the calculus. The symbol = is
used for equality between objects.

Section 2.2 defines the typed A-calculus AST and recalls some of its properties. Some aspects
of higher-order unification, following [Hue75, NM94], are also recalled.

Section 2.3 introduces the calculi NJ?* and LJP*, which are formalisations of first-order
intuitionistic! typed logic, where typing of first-order terms is according to AST. The cal-
culus NJP!is a sequent-style formalisation of first-order intuitionistic typed logic, based on
Gentzen’s NJ [Gen35]. Asin NJ, NJP* has introduction and elimination rules for each connect~
ive. NJP* uses proof-terms to annotate logical formulae. The proof-terms used in NJ?* are es-
sentially forms of encoding deductions in NJ; the proof-term annotation follows closely [TvD88].
The calculus NJ?* may also be seen as a type system, where formulae are seen as types and
proof-terms are the inhabitants of the types.

The calculus LJ? is a sequent calculus also formalising first-order intuitionistic typed lo-
gic, based on Gentzen’s sequent calculus LJ [Gen35]. The calculus LJ?* uses proof-terms for
annotating logical formulae. The calculus LJP* follows closely the formalisation of first-order
intuitionistic typed logic in [Mil90], except for the use of proof-term annotations. In [Mil90] is
shown that this formalisation of typed logic only coincides with traditional formalisations if all

types are inhabited. The proof-terms used in LJ?* essentially constitute a means of encoding

!Only a fragment of first-order intuitionistic logic is formalised, since absurdity and negation are not included

in these formalisations. In fact, the logic formalised is closer to minimal logic.
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derivations in LJ. In LJP! for each logical connective there are rules to introduce the logical
connective in the antecedent of a sequent and rules to introduce the logical connective in the
succedent of a sequent.

Following Kleene’s [Kle52], a study of permutability in LJ and LK? , we present a list of
transformations on proof-terms, encoding permutations, used for showing completeness of some
classes of derivations.

Another concept used in this thesis is Prawitz’s mapping ¢ [Pra65], from LJ-derivations to
NJ-deductions. This mapping is defined in Subsec. 2.3.4 by means of a transformation on

proof-terms.

2.2 Simply Typed A-calculus

2.2.1 The Calculus X\*7

There are two classes of objects in the calculus AS7: the class 7 of (simple) types and the class
A of A-terms. Types are used to classify terms. For defining the class 7 of simple types, a fixed

set S of primitive types is assumed. The grammar defining simple types 7 is as follows:
re=¢|{r—$7),

where s € S. Below, 7, possibly indexed, is used as a meta-variable ranging over simple types.

In a type of the form (73 — 72), parentheses are usually omitted, in which case association is -

to the right. So, any type may be written in the form r, — ... = 7, — 7, where each 7;, for
1 < i < m, is an arbitrary type and 7 is a primitive type.
We assume a denumerable fixed set A’ of variables and use z,y, z, w, possibly indexed, as

meta-variables ranging over X'. The grammar defining the set of A-terms A is as follows:
A=z |dz:7.A| (AA).

As usual, terms of the form Az : 7.A are called abstractions and terms of the form (A;Az) are
called applications. In an application usually parentheses are omitted, in which case association
is to the left.

The class ¢ of first-order terms is the subclass of A-terms of primitive type containing no
abstractions. Sometimes, A-terms are also called higher-order terms. ¢t and A, possibly indexed,
are used as meta-variables ranging over first-order and higher-order terms, respectively.

The concepts of free and bound occurrences of variables and capture-avoiding substitution,
notation [A;/z]A,, are defined as usual, see e.g. [Bar93]. We use the notation z ¢ A meaning
that the variable # has no free occurrences in the A-term A. Two A-terms are called

a-convertible iff they are the same up to renaming of bound variables, or, equivalently, iff the

21K is a sequent calculus formalisation of classical logic due to Gentzen [Gen35).
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A-terms have the same representation using de Bruijn’s indices [dB72]. As usual, we consider
a-convertible terms to be equal.

Signatures ¥ are sets of pairs (z,7), usually written z : 7, where # is a variable and 7 a
simple type. We use the notation () for the empty signature and the notation X,z : 7 for the
signature S U {z : 7}.

The forms of judgement of the calculus AST are shown in Fig. 2.1.

(i) F X signature (signature)

(@i XFA:T (term of a type)

(iil) TFAp,A (one step reduction)

(iv) ZFAbFA (one or more steps reduction)
(v) XZFApIA (zero or more steps reduction)

(vi) ZFA=A (conversion)

Figure 2.1: Forms of judgement of A57,

A derivation of a judgement S is a tree of judgements, constructed by using instances of
inference rules verifying the side conditions, whose root is the judgement S and whose leaves are
axiom judgements, i.e. instances of rules with no premises. A judgement is said to be derivable
iff there is a derivation of that judgement. (These notions of a derivation of a judgement and
derivable judgements are common to all the other calculi used throughout this thesis.)

The rules defining derivable signatures are shown in Fig. 2.2. The notation z ¢ ¥ means
that there is no type 7 s.t. = : 7 is a member of XJ. Roughly, a signature is derivable if different

types have not been assigned to the same variable,

I X signature z ¢ X
() signature F X,z : T signature

Figure 2.2: Derivable signatures.

The rules defining derivable judgements of the form X A : 7 are shown in Fig. 2.3; they
depend upon derivable signatures. Briefly, a derivable judgement of this form signifies that the
term A is of type 7 under the assignment of types to variables X. If 3 - A : 7 is derivable, A is
said to be well-formed (of type 7) w.r.t. L.

Observe that a judgement of the form X F Az : 7.A : 7 — 7y is not directly derivable in AST,
case ¢ € X. However, since Az : T.A is equal (a-convertible) to Az, : 7.[z1/z]A, when 2, has no
free occurrences in A, the original judgement may be derivable in AST .

The rules defining derivable judgements of the forms (iii), (iv) and (v) of Fig. 2.1 are shown

in Fig. 2.4. Derivable judgements of form (jii) capture the usual notion of the one step reduction
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F X,z : T signature
Y,z:1hzx:T

,z:7FA:T - YFA:mm =71 EFA T
YFXz:rAir—on HAA T

Figure 2.3: Derivable A-terms of a type.

relation on A-terms; they depend upon derivable terms of a type. In AST there is a notion of
reduction for each type. Derivable judgements of form (iv) capture the transitive closure of
the one step reduction relation and derivable judgements of form (v) capture the reflexive and

transitive closure of the one step reduction relation.

Be:7tHFA:n TFA T >
P o ().:c : T.A)Al b7 [A1/(L']A

Yz:tk Ao, Ay

YAz Avryqy Az A agx
ZFAbryn Ay ZFAy:T LA, Ay ZShAy:Ton
b3 o AAz bry AlAg Xk AzA Pry A2A1
TEAb, Ay LHAsFA; ZEApFA,

T AstA Tk AvFA,
TFAb, A
Tk AviA,
SFA:T YEFAIAL D EAPIA,
L FAA L AbiA,

Figure 2.4: Derivable reduction judgements.

It may be easily proved that: if a judgement ¥  Ajb,A; is derivable in AST, then both
L F Ay :7 and &+ Ay : 7 are derivable in AST,

Judgements of the form £t A =, A are called convertibility judgements. The rules defining
derivable convertibility judgements are shown in Fig. 2.5. Convertibility judgements capture
the usual notion of f-convertible A-terms. The notion of convertibility corresponds to the
transitive and symmetric closure of reduction in zero or more steps. We say that two A-terms

A and A, are convertible if the judgement ¥ - A; =, Aj is derivable, for some type 7.

14
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T AvtA

YFA= A\
YA =A YFA= Ay EFA = Ay
A= A YFA= A

Figure 2.5: Derivable convertibility judgements.

2.2.2 Properties of \5T

In this section are reviewed some definitions and properties of the A-calculus needed in sub-

sequent material of this thesis.

Definition 2.1 (normal forms) A A-term is called a normal form if it contains no subterms
of the form (Az : T.A)A,, called B-redexes.

Normal forms can be syntactically characterised as the A-terms of the form:
AZL § TLoeABy 2 TnBA7... A,

where n,m > 0, z is a variable that may or may not be one of the z;, »n > ¢ > 1, and A4, ..., Ay,

are themselves normal forms, see e.g. [CHS72] for a proof of this result.

Theorem 2.1 (Strong Normalisation) Let & = A; : 7 be derivable in AST, Then, every
sequence of terms Ay, Az, Az, ..., Ap, ... 5.t., for everyn > 1, £ Ay by Apyy is derivable in XST,

is finite.

A proof of this result may be obtained by adapting the methods, for example, in [Tai67] or in
[GLT89] to AST .

Theorem 2.2 (Church-Rosser) Let the judgements ¥ AbfAy and ¥ Av}A; be derivable
in AST, Then, there exists A3 s.t. the judgements ¥ A1pXA3 and £ F Agp*Aj are derivable

in AT,

For proving this result, by using Newman’s lemma and Theorem 2.1, it suffices to show that o,
is weakly Church-Rosser, see e.g. [Bar81, Bar93].

From Theorems 2.2 and 2.1, it may be shown that if X - A, : 7 is derivable then there exists
a unique normal form Aj s.t. £ I Ay >, Ag is derivable; A; is called the normal form of A;.

A term Az : T1...%Tp : Tn.ZAy.. Ay, well-formed w.r.t. a signature X, is an ezpanded normal
form under X if: z : 7{ = ... = 7}, = 7, where 7 is a primitive type; x € {1,...,2,} or ¢ € I,

and A;, for 1 < ¢ < m, are expanded normal forms under ZU {z; : 714...,Zp : T }.
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Definition 2.2 (n-convertibility) Two A-terms are n-convertible if they are in the congru-

ence closure of the relation: Az Az =, A, if © has no free occurrences in A.

Every normal form is 7-convertible to an expanded normal form, which is unique up to renaming
of bound variables, see [CHS72, Bar81] for proofs of this result. We write Anorm(A) for the
expanded normal form of A. We consider normal forms to be equal if they have the same
expanded normal form. It is decidable whether or not a judgement of the form X - A; =, Ay
is derivable in AST . It suffices to calculate Anorm(A;) and Anorm(A2) and check whether or
not they are the same.

One property used several times below is the substitution property, i.e. if ¢ # z; and z; € A
then

[A/2]([A1/1]A2) = [[A/a]Ar/21)([A/]As).

See [Bar81] for a proof of this result.

We now review some aspects of unification of A-terms. As opposed to unification of first-
order terms [Her67, Rob65, BS94], unification of A-terms is only semi-decidable and for unifiable
A-terms there is a recursively enumerable set of unifiers which are “most general”, but, in
contrast to the first-order case, such set may have more than one element, see [Hue75). In
[Hue75] is presented a semi-decision procedure for the existence of unifiers of A-terms. The

procedure enumerates some>

unifiers, when A-terms are unifiable modulo af7n-convertibility,

but may fail to terminate if there is no unifier. Further, this enumeration is non-redundant, i.e.

no unifier in the enumeration may be obtained from another unifier in the enumeration.
Below we use a formula

unif‘y(S, eim eouh Vim Vout4a E)

meaning that:

e X, Vip and V,,; are signatures s.t. Vi, C Vo and no variable is simultaneously in ¥ and

in Vout;

e S is a set of pairs (A;, Ag) s.t. the judgements X, Vi, - Ay : 7 and X,V Ay : 7 are

derivable, for some 7;

e O;, and O,y are substitutions, i.e. mappings from variables to A-terms s.t., there exists ©
s.t. Ogut = ©00;n, where if z : 7 ¢ Vour then O,yi(z) = 2, otherwise X, Vouu - Opue () 1 7
is derivable;

e for each pair (A1, Ag) of S, Anorm(Oout(A1)) = Anorm(Oeui(A2)).

30nly some unifiers are enumerated; in the problem of unifying flezible-flezible pairs is acknowledged the

existence of unifiers but there is no search for them.
*The procedure described in [Hue75), for unification of A-terms, introduces new free variables at the imitation

and projection steps.
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Thus, for checking whether or not two A-terms A; and A, for which the judgements X, Vi, - Ay : 7
and I, V;, F Ay : 7 are derivable, are unifiable (may be made equal by replacing free occurrences

of variables in V;;) it suffices to check whether or not there exists © and V,y s.t. the formula
“nify((Ah A2>9 Zdy ev ‘/im Voutv Z:)

holds.
A procedure for finding unifiers for A-terms satisfying the predicate unify may be obtained
by following the works [Hue75, NM94]. The predicate unify is used in Secs. 3.7, 3.8.2 and 5.4

for describing means of implementing first-order and higher-order logic programming languages.

2.3 The calculi NJ? and LJ"

2.3.1 The calculus NJ?

We assume the set S of primitive types to have a special type prop, called the type of formulae.
We assume a fixed set P of pairs (p, T), usually written as p : 7, where: 7 is a type of the form
Ti = ... = Tn — prop, where n > 0 and, for 1 < 7 < n, 7; is a type with no occurrences of prop;
p is a symbol, called a predicate symbol. The set P is called the set of predicate symbols.

Atomic formulae are of the form pt,...t,, where p is a predicate symbol and ¢;, ..., %, are first-
order terms. An atomic formula pt,...t, is well-formed w.r.t. a signature X if
PiTi—+ .. =Ty —+prop€P,and for 1 < i< n, Tkt :7is derivable in AST. A, A, Ay, ...
are used as meta-variables ranging over atomic formulae.

The set F of (logical) formulae is defined by the grammar:
Pu=A|PAF | FPVE|FITF| sl | NP

As usual, in a formula of one the forms 3,.. F, V.. F', z is called a bound variable. Two formulae
are equal if they are the same up to renaming of bound variables.

The set of well-formed formulae w.r.t. a signature ¥ is inductively defined as follows.
(1) The well-formed atomic formulae w.r.t. ¥ are well-formed w.r.t. X.

(i) Fy A Fp, Fi V F3 and Fy D F;,, where F; and F; are well-formed w.r.t. £, are well-formed
w.r.t. X

(iii) Iz, F and Vg F, where ZU {z : 7} is a derivable signature and F is well-formed w.r.t.
YU {z : 7}, are well-formed w.r.t. .

The notation [t/z]F stands for the result of replacing free occurrences of z by ¢ in F.
A context is a set A of pairs (z, F'), usually written z : F', where  is a variable and F is

a formula, s.t. if z : F} and z : F; are elements of A then F; is equal to F3; in other words,
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different formulae are annotated with different variables. A, possibly indexed, is used as a
meta-variable ranging over contexts. The notation ¢ € A is used when there is a formula F in
A whose annotation is the variable z, i.e. = : F' is an element of A. The notation A,z : F is
used for the context AU {z : F}.

The set of d-proof-terms, also called N J?*-proof-terms, is defined by the grammar:

d = (d,d)|i(d)]|j(d)|Az.d] (t,d) ]| Aqz.d
| x| fst(d) | snd(d) | wn(d, z.d, z.d) | app(d, d) | exists(d, z.z.d) | app,(d,t),

where 2 ranges over the set A of variables. = For the purposes of this thesis, a distinction
could have been made between simply typed variables, i.e. variables used for building terms
of simple type and variables that occur at the underlined position in proof-terms of the form
Agz.d and ewists(d,z.z;.d), and variables of formula type, i.e. variables used for annotating
formulae in derivations. However, we have chosen to share the set A" of variables for variables
of both kinds.

The d-proof-term constructors fst, snd, wn, app, exists, app, are called left constructors.
The other d-proof-term constructors are called right constructors. (In a functional programming
setting left constructors are usually called destructors.)

In proof-terms of one of the forms Az.d, wn(dy,z.d,21.d3), wn(dy,z;.dy,2.d), Ajz.d,
exists(dy,y.2.d), z is called a binder whose scope is d and an occurrence of z in d is called
bound. Also, in proof-terms of the form ezists(d;,z.z;.d), z is called a binder whose scope
is ;.d and an occurrence of z in d is called bound. A non-bound occurrence of a variable z
is called free. The notation z ¢ d means that the variable  has no free occurrences in the
proof-term d.

Two proof-terms dj, ds are equal if they are the same up to renaming of bound variables.

A sequentin NJP is a quadruple (¥, A, d, F), written as ©; A - d : F', where I is a signature,
as defined in AST, A is a context, d is a d-proof-term and F, the succedent formula, is a logical
formula. A sequent X; Al d: F is well-formed if & X signature is derivable and all formulae
in A and the formula F' are well-formed w.r.t. X. The only judgement form of NJ?! is that
of being a derivable (well-formed) sequent. The rules defining derivable sequents of NJ?* are
presented in Fig. 2.6.

In Fig. 2.6, rules of the form C — Intr are called introduction rules and rules of the form
C — Elim are called elimination rules. The leftmost premiss of an elimination rule is called its
main premiss.

In order to distinguish between derivations in NJ?* and derivations in LJ?*, usually deriva-
tions in NJ?! are called deductions.

Let 7w be a deduction of ;A - d: F. 7 is called a deduction for deducing F' from X; A and
d is called the proof-term of . It is noteworthy that in a NJ?!-deduction of a well-formed
sequent all occurrences of a sequent are well-formed. The traditional eigenvariable conditions on

3-Elim and V-Intr are satisfied in a deduction, for all sequents in a deduction are well-formed.
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M AF (d1,d2) cFy A\ Fy

A~ Intr
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LA+ fst(d) : Fy

Y AFd:FyAFy
T; At snd(d) : Fy

N — Blimn Ar — Elim

AR id): PV,

Vi — Inir Fy well-formed w.r.t. X

E;Al"‘d:Fz
;A Fj(d) : FyV Iy

Vi — Intr Fy well-formed w.r.t. &

S;AFd:FVE, LAz :FRbd i F B0 x:MREdy: F

V — Elim

E;A F wn(d,xl.dl, Iz.dg) . F T ¢ A,:Cg ¢ A
;A z:Fid: Py i
S AFAzd: R o Fp o sd A
;Abdy  Fy D Fy AR dy [y Eli
E; Al app(dy,ds) : Fo ~Ta i i
BARd:R/eF
SRR & i Bh - ¥ k¢ : 7 derivable
S;AFd: 3, Sizin Az i P Ed G F :
: 3 - Blim
3; At exists(d, z.z1.dy) : F 1 gA gl
S,e:r;AFd: F Y — Int ‘
D AF Az d: Vo F T g x
S;ARd VY F v — Eli ;
% Ak appg(d,t) : [t/z]F o ¥ -t : 7 derivable '

Figure 2.6: Rules for derivable sequents of NJ?! .
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The proof-term d and the context of a deduction’s endsequent determine uniquely the de-

duction up to the naming of bound variables of d, as shown below.

Theorem 2.3 Any NJP'-deductions of the sequent L; At d : F differ at the most up to the

names of the bound variables of d.

Proof: By induction on the structure of d.
Case d is a variable. Then, if £; A I~ d : F is derivable, by inspection of the rules allowed for
deriving sequents, d : F' € A and the only possible deduction of Z;A - d : F is:

T AFd: F ootom

Case d = Az.d;. (Recall that d = Azy.[z1/z]d;, for every 1 & d;.) Then, if Z;Atd: Fis
derivable, by inspection of the rules allowed for deriving sequents, F is of the form F; > F; and
any deduction of ;A d : F must be of the form:

E; A,.‘E] . F] + [x;/z]dl H F2
LA F Azy.[zy/z]dy : Fy D Fy

D —Intr,

for some variable z,, possibly z, s.t. 23 € A, So, by I.H., any deductions of the premiss differ
at the most up to the names of the bound variables of [z;/z]d;. Thus, since z is bound in d,
any deductions of £; A d : F differ at the most up to the names of the bound variables of d.

The other cases follow by similar arguments. a

Proof-terms differing only up to renaming of bound variables are equal. The theorem above
justifies our notion of equality for deductions. Given a formula F' and a pair X; A, we consider
N JP'-deductions for deducing F from X; A to be equal if their proof-terms are equal. So, any
two deductions of a sequent in NJ?* are equal. It is enough to concentrate on the proof-term
of a deduction rather than having to deal with deductions themselves.

The subclasses N and @ of d-proof-terms, whose members are respectively called normal

proof-terms and atomic normal proof-terms, are defined as follows:

N u= (N,N)|i(N)|i(N)|Az.N | (& N) | AN |a

a u= z|fst(a)|snd(a) | wn(a,z.N,z.N)| app(a, N) | exists(a,z.2.N) | appy(a,t).
A deduction whose proof-term is normal is called a normal deduction. It may be shown that
normal deductions are deductions with no mazimal segment, i.e. a branch Sy,...,.S,, with one
or more sequents, where: all the sequents S; (1 < ¢ < n) have the same succedent formula, S;

is the conclusion of an introduction rule and S, is the main premiss of an elimination rule® .

Theorem 2.4 (normalisation) IfX; A& d: F is derivable in NJP* then there exists a normal
proof-term N s.t. L; A N : F is derivable in NJP*,

5The succedent formula of a maximal seginent containing only one sequent is usually called a mazimal formula
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This result may be proved by adapting to NJP* the method for proving the normalisation
theorem in [Pra65, Pra70), or, by regarding propositions as types, by adapting the methods for
proving normalisation theorems in [Tai67, GLT89].

The normal deductions mentioned above correspond to §-normal forms on A-terms. There
are other kinds of normal forms on A-terms, most notably 87-normal forms and long fn-normal
forms [Bar81, HS86]. In [Pra70], the deductions corresponding to long An-normal forms are
called expanded normal deductions, a terminology that we adopt in this thesis. = Deductions
with no V — Elim nor 3 — Elim rules in expanded normal form are those normal deductions s.t.
the succedent formula of each sequent which is simultaneously the conclusion of an elimination
rule and a premiss of an introduction rule is atomic. As for A-terms, from the expanded
normal form of a deduction D one may easily compute all the f-normal forms $7-equivalent to

D and D’s fn-normal form.

2.3.2 The calculus LJ*
The set of e-proof-terms, also called LJ?'-proof-terms, is defined by the grammar:

e u= pair(e,e)|inl(e) | inr(e) | lambda(z.e) | pairy(t,e) | lambda,(x.€)
| =z | splitl(z, z.€) | splitr(z,z.€) | when(z,z.e,z.€) | apply(z, e, z.¢)

|  exists(z,z.z.€) | apply,(z,t, x.e).

The e-proof-term constructors split;, split,, when, apply, exists, apply, are called left con-
structors. The e-proof-term constructors pair, inl, inr, lambda, pairy, lambda, are called right
constructors. e, possibly indexed, is used as a meta-variable ranging over e-proof-terms.

In proof-terms of one of the following forms: lambda(z.e), lambda,(z.€), splitl(zy,z.€),
splitr(z1,z.€), when(z;,z.e,x2.€1), when(zy,x2.61,7.€), apply(zy, ey, z.€), apply,(z1,t,z.e),
exists(zy, ©3.2.€), the variable z is called a binder of scope e; an occurrence of z in e is called
bound. Also, in proof-terms of the form ezists(z;,z.z;.€), z is called a binder whose scope is
Zq.€; an occurrence of z in e is called bound. A non-bound occurrence of a variable is called
free. The notation ¢ e means that the variable z has no free occurrences in the proof-term
e. Two e-proof-terms are equal if they are the same up to renaming of bound variables.

In proof-terms of one of the following forms:  splitl(z,z;.€), splitr(z,x.€),
when(z, z1.e1, T2.€2), apply(z, e, z1.€1), exists(z,x.x2.€), apply,(z,t,z;.€), the variable z is
called the head variable of the proof-term.

A sequentin LJP! is a quadruple (3, A, e, F'), written as 5; A = e : F, where L is a signature,
as defined in AST, A is a context, as defined for NJ?, e is an e-proof-term and F is a logical
formula, as defined for NJ?'. In a sequent B; A => e: F, Ais called the antecedent (context),
F is called the succedent (formula) and e the proof-term of the sequent.

A sequent X; A = e : F'is well-formed if - X signature is derivable and all formulae in A and
the formula F' are well-formed w.r.t. £. The only judgement form of LJ?* is that of being a
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derivable (well-formed) sequent. The rules defining derivable sequents of LJ?* are presented
in Fig. 2.7.

As usual, rules of the form = C are called right rules and rules of the form C' = are called
left rules. Observe that the outermost constructor of the proof-term of the conclusion of a right
(left) rule is a right (left) constructor. In the rules for deriving sequents in Fig. 2.7: each of
the formulae F, Fi A Fy, Fi AFy, ,V F3, Fy D F3, 3;.,F; and V.. F is, respectively, the main
formula of aziom, A\ =, A, =, V =, D=, 1 = and VY =>; F} is the side formula of A} =, F;
is the side formula of A, =, F; and F; are the side formulae of V =, F; is the side formula of
D=>, F} is the side formula of 3 = and [t/z]F] is the side formula of V =.

Let 7 be a derivation of the sequent ¥;A = e: F. 7 is called a derivation for deriving F
from ;A and e is called the proof-term of 7w and is also called a proof-term for deriving F
w.r.t. 3; A. As for NJP¢, the proof-term e and the context of the endsequent of a derivation 7
determine uniquely, up to renaming of bound variables of e, the derivation 7. So, we consider
LJP-derivations for deriving a formula F from a pair I; A to be equal if their proof-terms are

equal.

Theorem 2.5 (weakening admissibility) Let Z; A = e : F be derivable in LJ?*, ¢ A and
let Fy be a well-formed formula w.r.t. ©. Then, ; A,z : F} => e : F' is also derivable in LJP,

Proof: Follows easily by induction on the derivation of £; A = e : F. Observe that (A, z : F})
is a well-formed context w.r.t. ¥, since A is well-formed w.r.t. X, z ¢ A and F; is well-formed
w.r.t. 2. a

2.3.3 Permutations in LJ?

Kleene introduced in [Kle52] a notion of permutation on derivations, for Gentzen’s LK and
LJ. Roughly, permutations are transformations on derivations that reverse the order in which
inference rules occur in a derivation. Asshown in [Kle52, Sha92], there are cases where reversing
the order in which inference rules occur in an LJ-derivation is not possible. In the calculus LJ?t,
since the proof-term of a derivation determines uniquely the derivation up to renaming of bound
variables, permutations on derivations may be captured at the level of proof-terms, as is shown
below.

The rules on proof-terms shown in Figs. 2.8, 2.9, 2.10 and 2.11 are called permutations.
Permutations in Fig. 2.8, called right permutations, encode a reversing of a right rule below
a left rule. Permutations in Fig. 2.9, called left permutations, encode a reversing of left rules.
Permutations in Fig. 2.10, called reductive permutations, are not permutations in the sense they
encode a reversing of rules; essentially, they eliminate redundant left rules. Permutations in
Fig. 2.11, called linearising permutations, are also not encoding a reversing of rules; essentially,

they encode a form of reducing the number of uses of side formulae in a derivation. Reversing
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. I X signature derivable,
DA x; F=>ax: F eEn (A, z : F) well-formed
w.r.t. X

SiA=e : 1 L;A=er: By
A #rpair(el,eg) T APy

=>A

TiA s iy ANFyz i Fi=>e: F

ANt =
;0,2 FLAF, = splitl(z,z.€) : F 21 € A
;A z: MAFyz Fo=>e: F Kinl:
A,z Fy A Fy = splite(z,z1.) 1 F § 1 €A
;A= e By %
A= inl(e) : LVE Fy well-formed w.r.t. ©
Y;A=>e: Py i

;A= inr(e) : LV, F, well-formed w.r.t. £

S, Az Fy V2 Fy=>e  F E;A,z:FIVFz,:Bz:Fz:?egZF

ST, TR e SN NS pdA e EA
WAz Fi=>e: Fy £ 5
;A = lambda(z.€) : Fy D Fy z g A .
Az 1D =e: Py E;A;31F13F2,313F2=>31:F3¢ .
A,z Fy D Fp = apply(z,e,zy.€1) : F T3 €A
Y;A=e:[t/z]F 3
;A = pairg(t,e) : g F 4 ¥ |-t : T derivable
Yoo Az dp 20 ) e F 5 {
T A,z Ao Fy = exists(zy, z.22.€) : F = zo @ Az gL :
Ye:1iA=>e: F v
;A = lambday(z.€) Vo F PS>
: - - {t/z|F  F I
EIA’xl V:c.‘r 1,E2 {/I] 15> € V:} $2¢A, i

A Ve F = 1t: b4 3 ;
Yy, By L Vg £ “Pplyq(xl Z2 e) X -t : r derivable

Figure 2.7: Rules for derivable sequents of LJP*.
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left rules below right rules is not relevant for the purpose of this thesis, although such reversing

is possible in many cases, as shown in [Kle52, Sha92]. Note that most of the side conditions

imposed on permutations are satisfied simply by renaming of bound variables.

0
(2)
3)
(4)
(5)
(6)
()
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(29)

splitl(z, z1.pair(e1, e3))opair(splitl(z, z1.e1), splitl(z, z1.€2))

splitr(z, z,.pair(ey, e2))opair(splitr(z, x1.e1), splitr(z, z1.€3))

apply(z, e, 1.pair(ey, e2))opair(apply(z, €, z1.e1), apply(z, e, £1.€2))
applyy(z,t, z1.pair(ey, ez))opair(applyy (z,t, 1.€1), applyy(z,t, 21.€2))
splitl(z, 2, lambda(zy.e))plambda(z2.8plitl(z, 1 .€)), 2 # @, T1 # x2
splitr(z, z, .lambda(zy.€))plambda(zy.splitr(z, ©1.€)), &2 # &, ©1 # T2
apply(z, e, z1.lambda(zy.€1))plambda(zz.apply(z, €, z1.€1)), 22 # &, 21 # =2
applyq(z, t, z1.lambda(zy.¢))olambda(zs.apply, (z,1, z1.€)), 2 # =, 1 # T2
splitl(z, z1.inl(e) )oinl(splitl(z, 1 .€))

splitr(z, z1.inl(e))vinl(splitr(z, z; .€))

apply(z, e, z1.inl{e;))>inl(apply(z, e, z1.€1))

apply,(z, 1, z1.inl(e1))oinl (applyy(z,t, z1.€1))

splitl(z, zy .inr(e))>inr(splitl(z, z1.€))

splitr(z, z1.inr(e))oinr(splitr(z, z; .€))

apply(z, e, ,.inr(e1))vinr(apply(z, e, z1.€1))

applyg(z, 1, z1.inr(er))pinr(applyy(z, 1, ©1.€1))

splitl(z, &1 Jambdag(zy.€))plambdag (z3.5plitl(z, T1.€)), 2 # %, T1 # T2
splitr(z, z1 lambdag(z3.€))plambdagy(z2.splitr(z, x1.€)), T2 # &, 1 # 23
apply(z, e, 1 lambdag(zy.e,))plambdag (zq.apply(z, e, z1.€1)), T2 # @, Ty # 2
applyy(z,t, z1.lambday(z3.€))plambdag (z2.apply,(z,t, 21.€)), 22 # 2, z1 # =2
splitl(z, z1.pairy(t, e))opairy (i, splitl(z, z;.€))

splitr(z, 1.pairy(l, €))opairy (i, splitr(z, z1.€))

apply(z, e, x1.pairg(t, e1))opairg(t, apply(z, €, z1.€1))

apply, (=, 1, 21.pairy(ty, €))opairy (i1, applyy(z, 1, 21.€))

Figure 2.8: Right permutations.

Theorem 2.6 For every rule e;bey of Figs. 2.8, 2.9, 2.10 and 2.11, provided the side conditions
are satisfied, if L; A => e; : F is derivable in LJP* then ¥; A => €5 : F is derivable in LJPt.

Proof:

Case rule (7). A derivation of X; A = apply(z, e, z1.lambda(z,.e1)) : F must be of the form:

my
YAz Fy D Fy,xy i Fo,20:Fg =6y 1 Fy

=2

m
LAz 1Dy =e: Fy XA, Fy D Fy,x: Fy = lambda(zg.e1) : F3 D Fy oy

LAy, z: Fy D Fy = apply(z, e,z lambda(zg.e,)) : F3 D Fy

24

Eii.h‘«:__._..‘...._- s



(25) splitl(z, 1 .splitl(z2, x3.€))psplitl(z3, z3.5plitl(z, z1.€))

(26) splitl(z, x1.splitr(zy, x3.€))psplitr(zz, z3.splitl(z, x5 .€))

(27) splitl(z, z1.apply(xs, e, z3.€1))papply(zs, splitl(z, z1.€), z3.5plitl(z, z1.€1))

(28) splitl(z, z1.applyy(z2,t, z3.€))>apply, (2, t, z3.5plitl(z, 1.€))

(29) splitr(z, zy.splitl(z2, z3.€))osplitl(zy, z3.5plitr(z, £1.¢))

(30) splitr(z, zy.splitr(zs, z3.€))bsplitr(zy, z3.splitr(z, z1.€))

(31) splitr(z, zy.apply(z2, e, 23.€1))papply(za, splitr(z, z1.€), z3.splitr(z, z1.€1))

(32) splitr(z, zy.applyg(x2,t, z3.€))papply(z2, 1, z3.5plitr(z, z;1.€))

(33) apply(z,e,zy.8plitl(z3, z3.€1))>splitl(zq, z3.apply(z, e, xy.€1))

(34) apply(z, e, z1.5plitr(z2, z5.1))osplitr(za, z3.apply(z, €, z1.€1))

(35) apply(z,e, z1.apply(zz, 1, xa.ex))oapply(zz, apply(z, e, 1.€1), zs.apply(z, e, 21 .2))
(36) apply(z,e, z1.applyy(x2,t, z3.€1))bapplys(za, 1, x3.apply(z, e, z1.€1))

(37) applyy(=,t, zy.splitl(z2, x3.€))osplitl(z2, z3.applyy (=, t, z1.€))

(38) applyy(z,t, zy.splitr(zy, z3.e))osplitr(zg, za.applyy(z, 1, z1.€))

(39) applyg(z,t, z1.apply(z2, €, z3.e1))vapply(za, apply,(z,t, 21.€), z3.applyy (2,1, £1.€1))
(40) applyg(z,t, z1.applyy(z2,t1, z3.€))vapplyy(x2,t1, z3.applyy(z,t, 1.€))

All permutations are subject to the conditions: z1 # z2, z # z3 and z; # z3.

Figure 2.9: Left permutations.

where A = (Ay,z: F; D F3) and F = F3 D Fy. Thus, the following derivation may be formed:
3 e
A2 Py D P,z Fs=>e: Py L;A1,2:F) D Fo,xy: Fo,20: Fyg=>e;: Fy -
;A2 Fy D Fp,xq: F3 = apply(z, e, z1.e1) : Fy i
A,z Fy D Fy = lambda(zz.apply(z, e, z1.€1)) : F3 D Fy '

where w3 may be obtained from m; by weakening.
The cases corresponding to the other rules of Fig. 2.8 are similar. These rules also correspond
to a movement of a left rule above a right rule.

Case rule (35). The last step of a derivation of the sequent
T A = apply(, e, z1.apply(z2, €1, 23.€2)) : F
must be a rule D= s.t.: its left premiss is of the form
NiA=e: R,
derivable by a derivation m;; its right premiss has a derivation of the form

m 3
;A i Fa=>e i F3 YAz Fo,z3: Fy=>ey: F

A,z 2 Fy = apply(za,e1,z3.62) 1 F

o=
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(41) splitl(z,z1.e)pe, z; & €

(42) splitr(z,z,.e)pe, 21 € e

(43) apply(z,e,z1.e1)per, o1 € €1
(44) applyy(z,t,z1.€)pe, 21 E &

Figure 2.10: Reductive permutations.

(45) splitl(z, z1.e)osplitl(z, z, .splitl(z, 23.€1))
(46) splitr(z, z1.€)psplitr(z, 2y .splitr(z, £3.€1))
(47) apply(z, ez, z1.€)oapply(z, 2, z1.apply(z, €2, T2.€1))
(48) applyq(z,t, z1.e)papplyy(z,t, z1.applyy(z,t, z2.€1))
All permutations are subject to the conditions:
z9 & €, z; occurs more than once in e

and e; is obtained from e by replacing one of the occurrences of z;.
Figure 2.11: Linearising permutations.

where z3 € (A, 21 : F3); A = (Ay,z: F} D Fa,z5: F3 D Fy) and z; ¢ A. Thus, the derivation
below may be formed, where 74 may be obtained by weakening from =y, since 23 ¢ A.

™ w2 4 3
Y, A= e By 2;A,z1:F3=>el:F33 ;A x3: Fy=>e: Fy ZJ;A,:z:l:Fg,:::;;:F.;=>eg:FD‘__>
;A = apply(z,e,z1.€1) : F3 T; A, x5 : Fy = apply(z, e, z1.€2) : F

o=
Z; A = apply(zz, apply(z, e, z1.1), z3.apply(z, e, z1.€3)) : F

Note that z; ¢ (A, z3: Fy) and z3 € A.

The cases corresponding to the other rules of Fig. 2.9 are similar, they also correspond to a
movement of a left rule above a left rule.
Case rule (43). If a sequent 2; A,z : F => e : Fj is derivable in LJ? and = ¢ e, then it may
be easily proved by induction on the structure of e that the sequent ¥; A = e : F; is derivable
in LJP. Thus, from a derivation of the form:

™ w2
SiAnx s D Fs=e 1y YA, FyD Fa,zy: Fas=pep: By

YAy, Fy D F3 = apply(z, e1,z1.€2) 1 Fy

o=,

where z; ¢ e, it follows that X; Ay, 2 : F D F3 = e : Fy is derivable.

The cases corresponding to the other rules of Fig. 2.10 are similar. These rules also cor-
respond to eliminating a left rule from a derivation if its side formulae are not used in the
derivation.

Case rule (47). First is proved the lemma: if a sequent 3; A,z : F = e : Fy is derivable in
LJPt, then, for every z; ¢ (A,z : F) and for every e; obtained by replacing zero or more

occurrences of z in e by z1, the sequent $; A,z : F,z, : F = e, : F; is derivable in LJ?*. (This
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transformation on derivations is essentially inverse to contraction.) The proof of the lemma

follows by induction on the structure of e.
Case e is the variable . Then, a derivation of ¥; A,z : F = e : F]} must be of the form:

aziom,

Y;Az: F=x: F

so F is the same as F. Thus the following derivation may be formed:

Az Fxy: F=>a2: F SRi,
since (A, z : F,z; : F) is well-formed w.r.t. X, for: (A,z : F) is well-formed w.r.t. X, which
implies that F is well-formed w.r.t. X, and z; ¢ (A, 2z : F). The case where e is a variable

different of z follows by forming an axiom whose main formula is the formula annotated by z,.
Case e = apply(z,, e3,23.€3). Then, case z3 = z, a derivation of L; A,z : F = e : F; must
be of the form:

m m2
;A 2 Fy D F3=>ep: Fy L;A,2:FyD Fs,x3: F3=>e3: 4
A,z : Fp D F3 = apply(z, ez, z3.€3) : Fy

=2

where F' = F3 D F3. By the I.LH., for every ey, es obtained from eg, e3, respectively, by replacing

some occurrences of ¢ by z,, there exist derivations n3 and 74 of the sequents:

XN;A,z: Fy D Fa,3y : Fy D F3 = e4 1 Fy;
;A x: Fy D F3,23: F3,2y: Fy D F3 = e5: Fy.

Now the following two cases must be considered.
(a) Case ey = apply(z1,eq,x3.€3), i.e. the occurrence of z as head variable of e has been
replaced by z;, the following derivation may be formed:
T3 T4
Y;Az:Fo D F3,z1:Fo D Fs=peq: Fo LA z:FyD Fa,z1:Fa D F3,23: Fs=>e5:F =
LA,z Fy D F3,zy : F D F3 => apply(z, e4,x3.€5) :

=,

(b) Case e; = apply(z, ez, z3.€3), i.e. the occurrence of ¢ as head variable of e has not been
replaced by 1, the following derivation may be formed:
T3 T4
;A Fy DF3,21: Fo D Fs=3eq:Fy XA Fy D F3,23:F3,21:Fo D F3=e5:1
;A x: Fy D F3,zy : Fy D F3 = apply(z, es, z3.€5) : Fy

o=.

Case z; # = the proof follows easily by the I.H..
Proofs for the other possible forms of e follow by similar arguments, concluding the proof of

the lemma.
Now, consider a derivation of the form:

m w2
E;A,z:F23F3=>e:Fg E;A,E:FzDFa,zliFséellFl
;A x: Fy D F3 = apply(z,e,zy.€1) : Fy

J=.
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By the lemma, for every z; ¢ (A,z : Fy D F3,z; : F3) and for every ez obtained by replacing

zero or more occurrences of z; in e; by 22, there is a derivation 73 of

A,z :Fy, D F3,21: F3,29: F3 = eg : Fj.
So, the following derivation may be formed:
T4 m3
LiAz:F DF,zy:Fya=e:Fp L;Az:F D Fs,zy:F3,z0:F3 = e3: Fy

m
A z: B D FR=e: B 5;A,z: Fp D Fa,z; : F3 = apply(z,e,z2.62) : Fy
LA,z F D F3 = apply(z, e,z1.apply(z,e,22.€2)) : Fy

o=,

o=

where 74 may be obtained from m; by weakening.

The cases corresponding to the other rules of Fig. 2.11 are similar. a

2.3.4 Relating LJ?* and NJ?

The mapping ¢, from the set of LJP'-proof-terms to the set of NJP*-proof-terms, and the
substitution operation of a variable z by a N JP:-proof-term d; in a N JP*-proof-term d3, notation
[di/z]dy, are defined in Fig. 2.12. Essentially, the mapping ¢ is an encoding of Prawitz’s
mapping ¢ from LJ-derivations to normal NJ-deductions, presented in [Pra65].

Theorems 2.7 and 2.8 state, respectively, that LJ? is sound and complete for normal deduc-
tions w.r.t. NJP:.

Theorem 2.7 If ©;A = e: F is derivable in LJP then 3; A & ¢(e) : F is derivable in NJP,

Further, ¢(e) is a normal proof-term.

Proof: The first part of the result may be proved following [Pra65]. The second part of the

result may be easily proved by induction on the structure of e. (]

Theorem 2.8 Let 3; At d: F be derivable in NJP, where d is a normal proof-term. Then,
there ezists e s.t. ;A = e : F is derivable in LJP* and ¢(e) = d.

Proof: This result may be proved by defining a mapping p, from normal proof-terms in
NJP! to proof-terms in LJ?! | following Prawitz’s construction of LJ-derivations from normal
NJ-deductions, in pp. 92-93 of [Pra65], s.t. ¢op is the identity on normal N.J-deductions.
(Section 3.5 presents mappings 8,1 s.t.: ¥od is a mapping, from a subset of L.J?*-proof-terms

to a subset® of normal NJP*-proof-terms, essentially, encoding Prawitz’s mapping p.) o

The binary relation 2, on e-proof-terms is the reflezive, symmetric, transitive and compatible

closure of the permutations in Figs. 2.8, 2.9, 2.10 and 2.11, i.e. of the relation consisting of all

$The mappings § and ¢ may be easily extended to the full set of LJP*-proof-terms, in such a way that 1oé is
still a right inverse of ¢.
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[d/)(d1, d2) =aes ([¢/x]dy, [d/z]d2)

[d/2]i(d1) =aue; i([d/=]d1)

[/213(ds) =aes (1d/21d1)

[d/z)Ae1.d1 =uy Az [dfz])dy, 2 # 21,21 € d

[@/2)(t, d1) =uc; (¢, [d/=]d1)

{d/z)Aqzy.dy =up Aqr.[dfx)dy, & # 21,21 € d

[d/z]z =4y d

[d/z]21 =ues 21, 2 # 21

[d/=]fst(d1) =aes fot([d/z]d)

[d/x]snd(d1) =a., snd([d/z]d,)

[d/z]wn(d1, z1.d2, ®2.ds) =4, wn([d/z)dy, #1.[d/z]d2, z2.[d/z]d3), * # 21,0 # z3, 21 ¢ d, 22 € d
[d/z]app(dy, d2) =.., app([d/=]ds, [d/z]d>)

[d/z]exists(di, x1.22.d2) =4, exists([d/z]dy, z1.22.[d/z]d2), 2 # 1,2 F 22,21 Ed, 22 & d
[d/x]appq(dy,t) =a.; appe([d/x]ds, 1)

¢(pair(e1, e2)) =acs (¢(e1), ¢(e2))

¢(inl(e)) =, i{d(e))

d(inr(e)) =uws 7(¢(e))

¢(lambda(z.€)) =.., Az.¢é(e)

d(pairg(t, €)) =u., (¢, ¢(e))

d(lambday(z.€)) =u; Agz.0(€)

¢(x) =4y T

o (splitl(z, z1.€)) =acs [fst(z)/z1)¢(€)
o(splitr(z, 21.€)) =4y [snd(z)/z1]d(e)
d(when(z, z1.e1,T2.€2)) =uc; wn(z, z1.¢(e1), z2.6(€2))
¢(apply(z, €, z1.€1)) =acs [app(, $(€))/z1]d(e1)
d(ewists(z, xy.20.€)) =,.; exists(z, z1.23.0(e))
é(applyy(z,t,z1.€)) =a.; [appy(z,t)/=1)d(e)

Figure 2.12: The substitution operation and the mapping ¢.
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pairs (e, e2) s.t. e;>ey is a rule in one of the Figs. 2.8, 2.9, 2.10 and 2.11. Proof-terms which
are = -related are called permutable proof-terms. Permutable LJ?'-proof-terms map under ¢

to the same normal NJP:-proof-terms, as stated below. ;
Theorem 2.9 If e; =, eq, then ¢{e1) = P(ez).

Proof: It suffices to show that, for each of the rules in Figs. 2.8, 2.9, 2.10 and 2.11, the left
and right sides both map under ¢ to the same NJP! proof-term. a

We conjecture that: if ;A =>e;:F and I;A =>ey: F are derivable in LJP* and
¢(e1) = ¢(ez), then e; =, e;. If this conjecture holds then ¢ is a means of deciding whether
or not proof-terms of derivations are 2,-related. (This conjecture has been shown [DP96a) to
hold for the fragment of implicational logic.  The proof of this result uses permutations (7),
(35), (43) and (47). We believe the same arguments carry over to the general case.)  The
conjecture is of a result similar to (and we believe essentially the same as) the result proved by
Mints, in [Min94), using different techniques and with different inference rules.

The mapping ¢ is not injective, in other words, LJ?*-derivations are not in 1-1 correspondence
to normal NJP*-deductions; but ¢ is onto. In Sec. 3.5 is shown a class of LJP?!-derivations
that is in 1-1 correspondence to the class of expanded normal deductions, for the fragment of

hereditary Harrop logic. ( The result may be carried over to full first-order intuitionistic logic

[DP96b).)
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Chapter 3

Proof Theory and Pure Logic

Programming

3.1 Introduction

This chapter presents a proof-theoretic approach to semantics of logic programming languages,
that is used in Chapter 4 as a foundation for integrating logic and functional programming.
In order to define a semantics for a logic programming language it is necessary to define: (i)
what is a program in the language; (ii) what is a goal in the language; and (iii) when is a
goal achievable w.r.t. a program and how is a goal achievable w.r.t. a program, i.e. what are
the different means of goal-achievement. A proof-theoretic semantics for a logic programming
language defines these concepts by means of the proof theory of a formal system.

In this chapter two logic programming languages based on hereditary Harrop logic are
defined. One of the languages, FOPLP, is based upon the calculus hH (hereditary Harrop),
which is a sequent calculus formalisation of first-order intuitionistic hereditary Harrop logic.
The calculus hH is essentially a restriction of LJP! for hereditary Harrop logic, where the no-
tions of well-formedness are encoded by means of derivable judgements. The other language,
HOPLP, is based upon the calculus HH (higher-order hereditary Harrop), which is a sequent
calculus formalisation of a higher-order hereditary Harrop logic (the logic obtained from first-
order hereditary Harrop logic by replacing first-order terms by A-terms).

In order to fix the means of goal-achievement in FOPLP, the class of uniform linear focused
derivations of AH is introduced in 3.3. Roughly, in FOPLP: a program is a basis of hH; a
goal is a formula of AH; the different means of achieving a goal G w.r.t. a program P are the
proof-terms, encoding uniform linear focused derivations, for deriving G w.r.t. P in hH. The
calculus AHYLF is introduced in Sec. 3.4 to capture exactly the class of uniform linear focused
derivations of hH. Section 3.5 shows that hHYLF derivations are in a 1-1 correspondence to

expanded normal deductions. So, there is a simple interpretation of the semantics of FOPLP by
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means of natural deduction systems for first-order hereditary Harrop logic. In Sec. 3.8, these
ideas are extended to the higher-order language HOPLP. There is given an interpretation of
HOPLP by means of NN a natural deduction system for higher-order hereditary Harrop

logic.

3.2 The Calculus hH for First-Order Hereditary Harrop Logic

The classes of objects of the calculus hH are defined as follows: the class 7 of simple types,
the class t of first-order terms, the class ¥ of signatures and the class A of atomic formulae are
defined as in LJP*; the classes of H and G-formulae—both subclasses of LJ?! logical formulae—
the class A of hH-contexts—a subclass of LJP!*-contexts— and the class e of hH-proof-terms—a
subclass of LJP! -proof-terms— are defined in Fig. 3.1. H-formulae are often called hereditary

H A|HANH|GDH |V H (H-formulae)
G == A|GAG|GVG|HDG|3G|YerrG (G-formulae)
A = 0O|&z:H (contexts)

e pair(e,e) | inl(e) | inr(e) | lambda(z.€) | pairy(t,e)

..
s

lambda,y(z.€) | z | splitl(z, z.e) | splitr(z, z.€)
| apply(z,e,z.€) | apply,(z,t, z.e) (proof-terms)

z ranges over the set X’ of variables and 7 ranges over simple types.

Figure 3.1: Classes of objects of hH .

Harrop formulae or program formulae and G-formulae are called goal formulae. As for LJP!,
hH-contexts are sets and the notation (A, z : H) stands for AU{z : H}; = ¢ A means that
there is no H-formula H s.t. z : H is an element of A. The symbol identifying a class of
objects, possibly indexed, is used as a meta-variable ranging over such a class, e.g. G,G1,Gs, ...
are used as meta-variables ranging over G-formulae.

The forms of judgement of the calculus hH are presented in Fig. 3.2. Judgements of
the form X;A = e : G are called (hH)-sequents. Sequents are the main judgements of hH;
any other form of judgement is called an auwiliary judgement of hH. The derivable auxiliary
judgements of forms (i) and (ii) are the same as those of the calculus A5, defined by the rules
in Figs. 2.2 and 2.3. The derivable auxiliary judgements of forms (iii)-(vi) are defined by the
rules in Fig. 3.3. The derivable sequents are defined by the rules in Fig. 3.4; essentially, the
rules defining derivable sequents are obtained by constraining the rules of LJ?* to hH-sequents,
except for azioms that enforce a further constraint, i.e. hH only allows azioms whose main
formula is atomic. Note that, in rules = V the eigenvariable condition is captured by the

side conditions, since if - X; A basis is derivable and z ¢ ¥ then z has no free occurrences in
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(i) F X signature (signatures)

) Zkter (terms of simple type)

(i) F Z; A basis (bases)

(ivy XTFAaf (atomic formulae)

(v XFHHAKf (hereditary Harrop formulae)
(vi) 2+Ggf (goal formulae)

(vii) X;A=e:G (proof-terms of a goal formula)

Figure 3.2: Judgement forms of hH .

formulae of A. The notions of left and right rules, and the notions of main and side formulae
of a left rule are as for LJ**, see Sec. 2.3.2. In left rules, the rightmost sequent premiss is called
the main premiss.

The principal part of a sequent derivation n is the tree obtained from # by deleting each
subtree whose root is not a sequent. In a sequent X;A = e : G, e is called the proof-term of
the sequent. If £; A = e : G has a derivation 7 then e is called the proof-term of m and e is
called a proof-term for deriving G w.r.t. $;A. As for LJ?, it may be easily shown that the
proof-term and the context of a derivation’s endsequent determine uniquely, up to renaming of
bound variables, the principal part of such derivation.

The calculus hH is used in Sec. 3.6 to define a semantics for the first-order pure logic pro-
gramming language FOPLP. In such a language a logic program is a basis of hH; a goal is a
G-formula of hH; achieving a goal G w.r.t. a program X; A is a search for a proof-term e s.t.
the sequent ;A = e : G is derivable in AH; any such proof-term e is called a witness for the
achievement of G w.r.t. ; A.

In order fully to determine a semantics for FOPLP, it remains to define what counts as
different means of goal-achievement. Given a basis £; A and a goal G there may be several
proof-terms e 8.t. the sequent X; A = ¢ : G is derivable in hH. For example, let A be a context
of the form (z : A1 D (A2 D As),z; : A;), where A;, A; and A3 are atomic formulae, and
let 3 be a signature s.t. the judgement F X; A basis is derivable in hH. Let G be the formula
A; D (((A2 D As) D Az) D A3). The proof-terms in Fig. 3.5 are five possible witnesses for the
achievement of G w.r.t. 2; A, (See Appendix B for the hH-derivation corresponding to witness
(i).)

Should the five witnesses, for the achievement of G w.r.t. X;A, shown in Fig 3.5, be
considered as different means of achieving G w.r.t. ;A in FOPLP? Or, should some of these
witnesses be regarded as essentially the same means of goal-achievement?

Under traditional declarative semantics for logic programming, based on minimal models,

as referred to in Sec. 1.3, all the five witnesses above for the achievement of G w.r.t. X; A are
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I X signature FX;Abasis T+ HAf ¢ A
F X;{) basis F XA,z : H basis -

Rules for well-formed bases.

Yhtyim---Xkt, im0
Yk pti.dnaf

PiTL = .= Typ =2 propEP

Rules for well-formed atomic formulae.

Sk Aaf S+ Hyhf L& Hyhf
SF Ahf SF H AHyhf
i
Y+rHAf NFHGgf N,x:7F HAf ¢x
LFGDH hf SF Vo  HAf

Rules for well-formed program formulae.

Tk Aaf SFGigf TFGagf

SHAgf YFG1AGagf
SkGLgf SkGaagf SFGgf TFHAf

SFGIVGaaf SFHOGgf
L,z:TFGgf Lz:7HGgf '
Sto.0af TLY S F Vour G gf A 22 i

Rules for well-formed goal formulae.

Figure 3.3: Rules for derivable auxiliary judgments.
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F ;A z: A basis
LAz A=z A

aziom

WADe: G D;A=er:Go
;A = pair(er,e2) : G1 A G2

= A

S; Az Hi\AHyzy : Hi=>e: G
;A,z: Hy A Hy = splitl(z,z1.€) : G

/\4=>,a:1¢A

Az HiANHyzy Hy=>e: G
A,z Hy A Hy = splitr(z,z1.€) : G

A,-=>, 31¢A

3 A=e: Gy )3?‘G2_¢7f=>vl YiA=e:Gy XFGygf

Vr
;A= inl(e) : G1V Gy A = inr(e) 1 GV Ga =

;A z:H=e:G
¥; A => lambda(z.¢) : HD G

=D, z¢g A

A z:GiDHy=e: Gy ;A z:GiDHy,z Hi=e : G
T:A,z: Gy D Hy = apply(z,e,z1.€1) : G

D=, éA

A= e [t/2]G BFt:T
B, A = pairg(t,e) : 35, G

Ye:;A=>e: G +X;Abasis
T, A = lambdag(z.€) : ¥;.. G

=>VYzgX

LAz Vo Hyzp: [t/o]H=>e: G ThHt:r
A, 21 Vo H = applyy(z1,t,22.) : G

V=, 23 ¢ A

Figure 3.4: Rules for derivable sequents of hH.

regarded as the same means of achieving G w.r.t. £;A. (Note that the goal has no existen-
tially quantified variables.) The language AProlog is defined by means of a sequent calculus
formalisation of a higher-order hereditary Harrop logic c¢f [NM88]. Such sequent calculus, when
restricted to first-order logic, essentially corresponds to hH, without proof-term annotations.
There, the different means of achieving a goal w.r.t. a program correspond to the different
instantiations that may be given to the existentially quantified variables in the goal. So, the
five witnesses above are regarded as the same means of achieving G. However, if the means of
goal-achievement are considered to be the derivations which are uniform and use the admissible

rule of backchaining' for deriving atomic goals, then the witnesses (i)-(iv) are regarded as the

!See Sec. 4.5 for the admissibility of a rule similar to backchainingin a calculus that extends hH.
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(i) apply(z, =1, x4.
lambda(zy.lambda(zs.apply(z4, apply(zs, lambda(z7.apply(za, z7, £8.28)), T6.T6), £5.25))))

(i) lambda(zy.lambda(zs.apply(za, lambda(zr.apply(z, ¢4, ze.apply(zs, 7, £8.28))), T6.
apply(z, T1, 34'017?13/(34' 6, 2:55"7"5)))))

(iil) lambda(zy.lambda(zs.apply(z, #1, T4.
apply(za, apply(zs, lambda(z7.apply(z4, ©7, £8.28)), T6.%6), €5.25))))

(iv) lambda(z2.lambda(zs.apply(z, x1, 24.
apply(z4, apply(zs, lambda(z7.apply(z, 1, T9.apply(ze, 27, T5.28))), T6.T6), ¥5.25))))

(v) lambda(z g lambda(zs.apply(z, 2, 4.
apply(z4, apply(zs, lambda(z7.apply(z, 21, ze.apply(xs, x7, ©a.28))), T6.%6), T5.%5))))

Figure 3.5: Witnesses for the achievement of G w.r.t. I; A.

same means of achieving G, but (v) constitutes a different means of achieving G. (Note that
the proof-terms (i)-(iv) map under ¢ to the same normal N J?*-proof-term N and N is different
from the image of the proof-term (v) under ¢.)

In functional programming the computation mechanism consists of evaluation of an expres-
sion to some kind of normal form, e.g. expressions of ground type (“printable values”) are
usually evaluated to canonical forms of the type whereas expressions of non-ground type are
only evaluated to some kind of weak normal form.

In logic programming, we take the view that the means of goal-achievement should corres-
pond to a class of derivations satisfying some normality constraint. The result of a computation,
a witness for the achievement of a goal w.r.t. a program, does not need to satisfy such nor-
mality constraint, but a normal form should be easily computable from it, if desired. Natural
deductions are usually seen as the archetypal forms of reasoning for intuitionistic logic. Given
a formula and a set of assumptions there may be several deductions of the formula from the
assumptions. Often, deductions having the same normal form are identified. We choose the dif-
ferent means of goal-achievement in FOPLP to be in 1-1 correspondence with expanded normal
deductions of hereditary Harrop logic. Recall that from the expanded normal form of a deduc-
tion D one may easily compute all the S-normal forms fn-equivalent to D and D’s fn-normal
form.

Section 3.5 shows that there is a class of hH-derivations, uniform linear focused derivations
that is in 1-1 correspondence to expanded normal deductions. Uniform linear focused derivations

may be shown to correspond precisely to Miller’s uniform derivations with backchaining for
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deriving atomic formulae.

3.3 Uniform, Uniform Focused and Uniform Linear Focused

Derivations

This section studies three classes of derivations in hH: (i) the class of uniform (U) derivations;
(ii) the class of uniform focused (UF') derivations; (iii) the class of uniform linear focused (ULF’)
derivations. These three classes form a hierarchy, where ULF is a subclass of UF, which in turn
is a subclass of U. It is shown in Section 3.5 that the ULF-derivations of a G-formula w.r.t. a
basis ¥; A are in a 1-1 correspondence to the expanded normal deductions of G w.r.t. £;Ain
the natural deduction system NN, which is a restriction of NJ?* to first-order hereditary Harrop
logic allowing only normal deductions.

For each of the three classes of derivations U, UF and ULF is described a rewriting system
on proof-terms. The rules of these rewriting systems are taken from the permutations on LJ?t-
proof-terms presented in Sec. 2.3.3. Each of the three classes U, UF and ULF is a complete
class of derivations for hH , i.e. for each class, if a sequent X; A = e : G is derivable in hH then
there exists e; s.t. £;A => e; : G is derivable in that class. This section describes, for each
of the three classes, a procedure to obtain such e; given e, using only permutations from the
associated rewriting system.

The first class of derivations being studied is the class of uniform derivations. The notion
of uniform derivations was introduced in [MNPS91]. Briefly, a uniform derivation can be de-
scribed as a derivation where every occurrence of a sequent whose succedent is non-atomic is

the conclusion of a right rule.

Definition 3.1 (Uniform Proof-Terms) The following grammar defines the sets of uniform

proof-terms e, and atomic?

ew u= pair(ey,ey) | inl(ey) | inr(ey) | lambda(z.e,) | pairy(t, e,) | lambday(z.e,) | ay;

uniform proof-terms a,:

a, u= z|splitl(z,z.a,) | splitr(z,z.a,) | apply(z, ey, x.ay) | apply,(z,t, z.ay).

Definition 3.2 (Uniform Derivations) A derivation of a sequent is uniform if its proof-term

is uniform.

The proof-term (i) of Fig. 3.5 constitutes an example of a non-uniform proof-term. So, its
corresponding derivation, shown in Appendix B, is an example of a non-uniform derivation. As
shown in Lemma 3.1, the succedent formula of a sequent having a derivation whose proof-term

is atomic uniform is an atomic formula.

?The main constructor of an atomic uniform proof-term is a left constructor. The terminology atomic uniform
proof-term originates from the obscrvation, in Lemma 3.1, that a derivation whose proof-term is atomic uniform

has an atomic formula as its endsequent’s succedent formula.
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Lemma 3.1 Let ;A = a, : G be derivable. Then, G is an atomic formula.

Proof: The proof follows by induction on the structure of a,.
Case a, is a variable then the last step of a derivation of X; A = a, : G must be an axiom,
so G must be atomic. (Recall that the main formula of an axiom in hH is required to be
atomic.)
Case a, is of the form apply(z, e, z1.ay, ). Then, the last step of a derivation of 3;A = a, : G
is of the form:
S:Ane:GiOHi=>e: Gy TiAy2:G1 D Hyyzg:Hyshay, : G
I Az Gy D Hy = apply(z, e, z1.ay,) : G

o=

where A = (Ay,z : Gy D Hp). By the LH,, since T;Ay,2: Gy D Hy,21: Hy = ay, : G is
derivable, G is an atomic formula.

The other cases follow, as the latter case, easily from the I.H.. (|

Recall that the transformations on LJP!-proof-terms presented in Fig. 2.8 encode the re-
versing of right rules below left rules in LJP*-derivations. The rewriting system associated to
uniform derivations is called RS, and is defined by means of the permutations for moving right

rules below left rules.

Definition 3.3 (RS,) RS, is the rewriting system consisting of the rules in Fig. 2.8, where
proof-terms are restricted to hH-proof-terms. The rewrite relation induced® by RS, is called
By. A proof-term ey is reducible (rewrites) by RS\, to a proof-term ey if the pair (eq,e3) is in

the transitive closure of p,.

Lemma 3.2 For every rule e; > ey of RSy, if B; A = e; : G is derivable then ;A => e3: G is

derivable.

Proof: See the case corresponding to rule (7) in the proof of Theorem 2.6. Other cases are

similar. O

Below is shown that the class of uniform derivations is complete for hH. It is also shown
that the uniform proof-terms are the proof-terms to which no rule of RS, applies. Theorem
3.1 shows that every non-uniform proof-term is reducible by RS, to a uniform proof-term. The
techniques used for proving this result are essentially the same as those used in [Mil89]. There
is proved the slightly weaker result: if there is a derivation of a sequent there is a uniform
derivation of that sequent, a result proved for a sequent calculus formalisation of hereditary

Harrop logic, essentially corresponding to AH with no proof-terms.

Theorem 3.1 FEvery non-uniform proof-term is reducible by RS, to a uniform proof-term.

3The rewrite relation induced by a list of rules R is the compatible and substitutive closure of the binary
relation {(r, ) : r> s is a rule of R}, see [Pla93].
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Proof: It has to be shown that for every non-uniform proof-term e there is a uniform proof-
term e, s.t. e rewrites to e, by using rules from RS,. The proof follows by induction on the

structure of e.

(i) If e is of the form lambda(z.e;), then either e; is uniform (and so is €) or e; is non-uniform.
In the latter case, by the I.H., e; is reducible by RS, to a uniform proof-term e,, and so

lambda(z.e,,) is a uniform proof-term to which e reduces by RS.

(ii) The other cases where the outermost constructor of e is a right constructor follow as case
(i) easily from the I.H..

(iii) The proof-term e cannot be a variable, otherwise e is uniform.

(iv) Case e is of the form apply(z,e;, z1.e2). We consider the case where e; and e; are non-
uniform. (The other cases follow by similar arguments.) By the L.H., e; and e; are redu-
cible by RS, to uniform proof-terms e,, and e,,. Now, the proof follows by induction on
the structure of e,,. Case e,, is an atomic uniform proof-term, then apply(z, ey, €1.€y,)
is a uniform proof-term, to which apply(z,e1, z1.e2) reduces by RS,. Case the outer-
most constructor of e,, is a right constructor, permutations from RS, may be used to
rewrite apply(z, ey, , Z1.€y,) to a uniform proof-term. For example, if e,, is of the form
lambda(z2.e,,) then, by permutation (7), apply(z, ey,, 21 lambda(zz.e,,)) is reducible to
lambda(zz.apply(z, ey, , z1.4,)). By the latter LH., apply(z, ey, , z1.€,,) is reducible by
RSy to a uniform proof-term e,,. Thus, lambda(z,.e,,) is a uniform proof-term to which
apply(z, ey, , z1.lambda(zs.e,,)) reduces by RS,. The cases where the outermost con-
structor of e,, is either pair, inl, inr, lambda,, pair, follow by similar arguments, using
permutations (3), (11), (15), (19), (23), respectively.

(v) The other cases where the outermost constructor of e is a left constructor may be proved

by using ideas similar to those used in case (iv).

Corollary 3.1 The class of uniform derivations is complete for hH.

Proof: It needs to be shown that: if £; A = e : G is derivable in hH then there exists e; s.t.
3; A =€) : G has a uniform derivation. If e is uniform then a derivation of T; A = e: G is
uniform. Otherwise, by Theorem 3.1, e is reducible by RS, to a uniform proof-term e,. By
applying repeatedly Lemma 3.2, at each step of the rewriting of e into e,, we may conclude
that the sequent X; A = e, : G is derivable in hH, i.e. there exists ey s.t. £; A =>e¢; : G has a

uniform derivation. O

Proposition 3.1 below shows that the proof-terms irreducible under RS, are precisely the

uniform proof-terms.
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Proposition 3.1 The set of proof-terms to which no rule of RS, applies is the set of uniform

proof-terms.

Proof:

It needs to be shown that no rule in Fig. 2.8 is applicable to a uniform proof-term. The
proof follows by induction on the structure of uniform proof-terms; e.g. no rule of RS, applies
to apply(z, ey, ©1.a,) since, by the induction hypothesis, no rule applies either to e, or to a,
and the outermost constructor of a, cannot be a right constructor.

Also, it needs to be shown that any proof-term to which no rule of RS, is applicable is a

uniform proof-term, which follows immediately from Theorem 3.1. a

Theorem 3.1 shows that RS, is weakly normalising, i.e. there is a strategy to rewrite every
proof-term'into a uniform proof-term. From a rewriting systems viewpoint a pertinent question
to ask is whether or not RS, is Church-Rosser and strongly normalising. We conjecture that
the answer to both questions is positive.

Although the class of uniform derivations is a proper subclass of hH-derivations, there are
still different uniform proof-terms mapping under ¢ to the same normal natural deduction
proof-term. The proof-terms (ii), (iii), (iv) and (v) of Fig. 3.5 are all uniform. The proof-term
(v) maps under ¢ to the NJP*-proof-term:

Azy.Az3.app(app(z, T3), app(zs, Azq.app(app(z, 1), 24))).

The proof-terms (ii), (iii) and (iv) map under ¢ to the NJP!-proof-term:

Azg.Az3.app(app(x, z1), app(zs, Azq.app(app(z, ©1), T4))).

So, since ¢ is onto the set of normal natural deduction proof-terms, a class of derivations in
1-1 correspondence to normal natural deductions needs to be more restrictive than the class of
uniform derivations.

Below is studied the class of uniform focused derivations that is a subclass of uniform deriv-
ations yet complete for hH. Derivations in this class have the properties of being uniform and
of being focused. Briefly, a derivation is focused if the side formula in the main premise S of a
left rule is the main formula of the inference rule whose conclusion is S,

In [Mil90] is described the rule of backchaining, which is shown to be admissible in the sequent
calculus formalisation of hereditary Harrop logic there presented. This rule essentially captures
the notion of focusing derivations. A more direct account of the notion of focusing derivations is
described in [Pfe94] by means of the concept of immediate implication. We borrowed the name
of focused derivations from Andreoli’s work [And92a], in the more general context of linear

logic.

Definition 3.4 (Uniform Focused Proof-Terms) The following context sensitive grammar
defines the sets of uniform focused proof-terms e,y and atomic uniform focused proof-terms aﬁ}
of head variable z;:
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euf u= pair(eyp, eur) | inl(eyy) | inr(eus) | lambda(z.eyy)
| pairy(t, eyy) | lambdag(z.eyy) | aﬁ};
ayy u= x| splitl(zi, 5.05;) | splitr(z;, z5.0%)

| apply(z;, euy, mj.ai}) | applyy (=i, t, :z:_,-.a:j,).

In the previous definition, the superscript notation ay} is used to represent contextual inform-
ation. The last rule defining e,y is an abbreviation for an infinite list of rules, one for each z;
in X. The first rule defining a,f’;‘! is an abbreviation for an infinite list of rules, one for each z;
in A'. All the other rules defining aﬁ} are abbreviations for infinite lists of rules, one for each
combination of z; and z;, elements of &'. Sometimes, the head variable of an atomic uniform

focused proof-term is omitted.

Definition 3.5 (Uniform-Focused Derivations) A derivation is uniform focused if its proof-

term is uniform focused.

The proof-term (ii) of Fig. 3.5 is an example of a uniform proof-term which is not uniform

focused, for it contains a proof-term of the form:

apply(z3, ..., zg.apply(z, 1, z4.apply(z4, ve, ©5.75))).

The derivation encoded by the proof-term (ii) is uniform but not uniform focused.

Figure 2.9 presents a list of transformations on proof-terms that represent the reversing of
the order in which left rules occur in a LJP!-derivation. Figure 2.10 presents a list of proof-
term transformations that encode the elimination of redundant left rules. These two lists of
transformations are used below in transforming non-focused derivations into focused derivations.
The rewriting system associated to uniform focused derivations is called RSyy; it is defined as

follows.

Definition 3.6 (RSys) RS.j is the rewriling system consisting of the rules in Figs. 2.8, 2.9
and 2.10, where the rules are restricted to hH-proof-terms. The rewrite relation induced by
RSy is called byg. A proof-term e, is reducible (rewrites) by RS,y to a proof-term ey if the

pair (e1, ez) is in the transitive closure of by;y.

Lemma 3.3 For every rule eipey of RSyuy, if L;A = e G ts derivable in hH then
Y A = e : G is derivable in hH.

Proof: See the cases corresponding to rules (7), (35) and (43) of Theorem 2.6. o

Proposition 3.2 The rewriting system RS,y is not strongly normalising.
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Proof: An infinite reduction sequence may be easily constructed from a proof-term of the form
apply(z) €, xl'apply(zih €1, 33-32))!
where z1 # z; and z; ¢ €3, by using rules (35) and (43). w}

Although RS,y is not strongly normalising, we conjecture the existence of a rewriting system
RS',;, obtained by restricting the rules of RSyy, s.t.: (i) RS’ is strongly normalising; and (ii)
every proof-term which is not uniform focused is reducible by RS, to a uniform focused proof-
term.

The following lemma is used in proving Theorem 3.2, which provides a means for showing

completeness of uniform focused derivations for hH.
Lemma 3.4 Let ey, .y, be uniform focused proof-terms. Then, every proof-term of the form
apply(@, eufis T1.€up;)

which is not uniform focused is reducible by RS,y to a uniform focused proof-term e,y. Further,
if eus, s atomic uniform focused of head variable x4 # z;, then ey is atomic uniform focused

of head variable 2.
Proof: The proof is by induction on the structure of ey, .
(i) If eyy, is of the form lambda(2a.e.y,), then permutation (7) may be applied to
apply (@, euf,; T1-€us,)
obtaining the proof-term
lambda(zz.apply(z, ey, T1.€u5)).

The proof-term apply(z, €.y, , 21.€us,) is either uniform focused or, by L.H., is reducible
by RSy to a uniform focused proof-term. Thus, in both cases apply(z, eup,, z1.€up,) is

reducible by RS,y to a uniform focused proof-term.

(ii) Proofs of the other cases where the outermost constructor of ey, is a right constructor

may be obtained by similar arguments to those used in the case above.
(iii) If e,y, is atomic uniform focused of head variable x5, there are the following cases.

(a) Case ey, is the variable z2. Then, z2 # z1, otherwise apply(z, eyy,, ©1.22) is uniform

focused. So, the proof-term

apply(z, eyf,, 21.22)

is reducible by permutation (43) to z; and z; is atomic uniform focused of head

variable zs.
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(b) Case eyy, is of the form apply(z2, eusy, ¥3.a5} ). Then, z3 # =1, otherwise

apply(x, euf,, 1.0pply (22, €ysyr T3.057, )

is uniform focused. So, apply(z, e.y,, Z1.€uy,) is reducible by permutation (35) to the

proof-term

apply(zq, apply(z, eufy, T1.€us, ), z3.apply(z, €uyy, wl.a:‘}l)).

(Note that z; # z2 and the other side conditions for applying permutation (35) are
satisfied by renaming of bound variables.) The proof-term apply(z, euy,, 21-€uy,) is
either uniform focused or, by the I.H., reducible to a uniform focused proof-term.
Also by the I.H., apply(m,cuh,ml.aﬁ}x) is reducible to an atomic uniform focused
proof-term of head variable z3, say a7} . The proof of this case is concluded by
observing that a proof-term of the form apply(=2, eus,, #3.a3%,), where ey, is uniform

focused, is atomic uniform focused of head variable z,.

(c) Similar reasoning may be used for showing the cases corresponding to the other forms

of atomic uniform focused proof-terms.

Theorem 3.2 Every proof-term which is not uniform focused is reducible by RS,y to a uniform

focused proof-term.

Proof: Let e be a proof-term which is not uniform focused. The proof follows by induction
on the structure of e.

Case e is of the form lambda(z.e;). Then, e; cannot be uniform focused, otherwise e is
uniform focused. So, by the 1.H., e; is reducible by RS, to a uniform focused proof-term and,
thus, e is reducible by RS,y to a uniform focused proof-term.

The other cases where the outermost constructor of e is a right constructor follow by similar
arguments.

The proof-term e cannot be a variable, otherwise e is uniform focused.

Case e is of the form apply(z, e, x1.e2). Assume, without loss of generality, that both e;
and eg are not uniform focused proof-terms. By the L.H., each of the proof-terms e; and e;
is reducible by RS,y to a uniform focused proof-term, say e,s, and e,y,, respectively. So, by
using Lemma 3.4, e is reducible by RS, to a uniform focused proof-term.

The cases where the outermost constructor of e is a left constructor, different from apply,

may be shown by proving lemmas similar to Lemma 3.4, a

Corollary 3.2 The class of uniform focused derivations is complete for hH.
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Proof: By using Theorem 3.2 together with Lemma 3.3. o

Although the class of uniform focused derivations is more restrictive than the class of uniform
derivations, there are yet different uniform focused proof-terms that map under ¢ to the same
normal natural deduction proof-term. The proof-terms (iii) and (iv) of Fig. 3.5 are both uniform
focused and, as mentioned above, map into the same N J?*-proof-term under ¢. So, the class of
uniform focused derivations is yet too wide to be in 1-1 correspondence to the class of normal
natural deductions. Below is defined the class of uniform linear focused derivations that is more
restrictive than the class of uniform focused derivations. Roughly, a derivation is uniform linear
focused if it is uniform focused and the side formula of each left rule is used exactly once as the

main formula of a rule in the derivation.

Definition 3.7 (Uniform Linear Focused Proof-Terms) A proof-term is uniform linear
focused if it is uniform focused and each variable x bound by a left constructor occurs exactly

once in the scope of z.

Definition 3.8 (Uniform Linear Focused Derivations) A derivation of a sequent is uni-

form linear focused if its proof-term is uniform linear focused,

The proof-term (iii) of Fig. 3.5 is an example of a uniform focused proof-term which is not
uniform linear focused, for the variable binder z4 has two free occurrences of z4 in its scope.
The proof-term (iv) of Fig. 3.5 is an example of a uniform linear focused proof-term. So, the
derivation encoded by (iii) is an example of a uniform focused derivation, which is not uniform
linear focused, and the derivation encoded by (iv) is an example of a uniform linear focused
derivation.

Before proving that every derivation in A can be transformed to a uniform linear focused

derivation, some definitions and results are introduced.

Definition 3.9 (Affine Proof-Terms) A proof-term is affine if each variable z bound by a

left constructor occurs freely at most once in the scope of x.

Notice that a variable bound by a left constructor in an affine proof-term is allowed to have

N0 occurrences.
Lemma 3.5 If e is affine and uniform focused then e is uniform linear focused.

Proof: In a uniform focused proof-term a variable bound by a left constructor occurs at least
once in its scope. For example, a proof-term of the form apply(z, e, zi.e;) is uniform focused
only if e; is atomic uniform focused of head variable z,, so z; occurs at least once in e;. Since
e is affine then, no variable bound by a left constructor occurs more than once in e. Then, e is

a uniform linear focused proof-term. O
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Figure 2.11 presents a set of proof-term transformations used for linearising a proof-term, i.e.
the permutations that allow transforming the corresponding derivation to a derivation where

all side formulae of left rules are used at most once.

Definition 3.10 (RS, ) RS, is the rewriting system defined by the rules in Fig. 2.11, where
proof-terms are restricted to hH -proof-terms, The rewrite relation induced by RS, is called i>,.
A proof-term e, is reducible (rewrites) by RS, to a proof-term ey if the pair (e1,e;) is in the

transitive closure of b,.

Lemma 3.6 For every rule e;pe; of RS,, if L3 A = e : G is derivable then XA => e : G is

derivable.

Proof: See the case corresponding to rule (47) in the proof of Theorem 2.6. Other cases are

similar. |

The theorem below may be thought of as a transformation of the natural deduction graph
corresponding to a sequent calculus derivation into a natural deduction tree. We hope to make

precise this connection in future work.
Theorem 8.3 FEvery non-affine proof-term is reducible by RS, to an affine proof-term.

Proof: Let e be a non-affine proof-term. The proof is by induction on the structure of e.

(i) If e is of the form lambda(z.e;), then e; is non-affine, otherwise e is affine. So, by the
I.H., e; is reducible by RS, to an affine proof-term e;. Thus, e is reducible by RS, to an
affine proof-term. Analogous arguments may be used for proving the other cases where

the outermost constructor of e is a right constructor.
(ii) The proof-term e cannot be a variable, otherwise it is affine.

(iii) Case e is of the form apply(z, e;, z1.e2). We assume, without loss of generality, that e; and
eg are non-affine. By the I.LH., e; and ey are reducible by RS, to affine proof-terms ez, e4,
respectively. The only case in which apply(z, e3, z1.€4) is non-affine is the case where z;
has more than one occurrence in e4q. The proof follows by induction on the number of

occurrences of x; in e4.

(a) If z; occurs at most once in ey, then apply(z, 3, z1.€4) is affine.

(b) If z; occurs more than once in e4, then the proof-term apply(z,es, z;.e4) is re-
ducible by permutation (47) to apply(z, es, z1.apply(z, e3, 3.€5)), where e5 results
from e4 by replacing one of the occurrences of x; in e4 by z,. The proof-term
apply(z, e, ;.e5) is afline and has fewer occurrences of z; than e4. So, by the L.H.,

apply(z, es, z1.apply(z, €3, T;.€5)) is reducible by RS, to an affine proof-term.
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(iv) The other cases where the outermost constructor of e is a left constructor may be proved

by using similar arguments.

Lemma 3.7 If e is an affine proof-term, then every proof-term e; s.t. e is reducible to e; by

RSy is also an affine proof-term.

Proof: It suffices to observe that for each rule of RS,y if its left side is affine then its right side

is also affine. (|

Definition 8.11 (RSyy) The relation RS,y is the rewrite relation whose set of rules is the
union of the sets of rules of RS,y and RS,. The rewrite relation induced by RS, is called byiy.
A proof-term e; is reducible (rewrites) by RSy to a proof-term ey if the pair (ey, e3) is in the

transitive closure of byy.

Theorem 3.4 Every proof-term which is nol uniform linear focused is reducible by RSz to a

uniform linear focused proof-term.

Proof: Let e be a proof-term which is not uniform linear focused. Then, by Lemma 3.5, e
cannot be simultaneously affine and uniform focused.

If e is affine, by Theorem 3.2, e is reducible by RS, to a uniform focused proof-term €;
and, since e is affine, by Lemma 3.7, e; is also affine. Then, by Lemma 3.5, e; is uniform linear
focused.

If e is non-affine, by Theorem 3.3, e is reducible by RS;; to an affine proof-term; an argument

similar to that used for the previous case completes the proof. o

Corollary 3.3 The class of uniform linear focused derivations is complete for hH.

Proof: By using Theorem 3.4 and Lemmas 3.3 and 3.6. (m)

Proposition 3.3 below shows that the proof-terms irreducible under BRS¢ are the uniform

linear focused proof-terms.

Proposition 3.3 The set of proof-terms to which no rule of RS,y applies is the set of uniform

linear focused proof-terms.

Proof:
Analogously to Proposition 3.1, it suffices to note that no rule of RS,y is applicable to a
uniform linear focused proof-term and that, by Theorem 3.4, any proof-term to which no rule

of RSy is applicable is a uniform linear focused proof-term. |
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In the next section we introduce the calculus AHYLF that allows exactly the uniform linear
focused derivations of hH. This calculus is used in Sec. 3.5 for showing a 1-1 correspondence

between uniform linear focused derivations and expanded normal deductions.

3.4 The Calculus hHVEF

HULF  which may be regarded as a calculus to obtain

This section describes the calculus &
exactly the uniform linear focused derivations of AH. The classes of objects of RHVLF are the
same as those of AH. The forms of judgement of hHVLF are the same as those of hH with the

exception of sequents. In hHULF gequents are replaced by the following two forms of judgement:
&

(i) Z;A—e:G;
() ZazBe:a

We also call sequents these two forms of judgement. The rules defining derivable sequents are
shown in Fig. 3.6. These two forms of sequent describe the uniform linear focused derivations
of hH. Sequents of form (i) describe uniform derivations of compound goals. Sequents of form
(ii) describe linear focused derivations of atomic goals. The rules defining these two forms
of sequent are mutually recursive— see the rules —3 and choice. See also [DP96b]. Calculi
formalised in the same fashion as hHYLT are used in [Pfe94, Mil94].

The following lemmas are used in proving the main result of this section, Theorem 3.7, which

HULF

relates derivations in A with uniform linear focused derivations in hH.

Lemma 3.8 (weakening) If the judgements ;A = e:G and & - H hf are derivable in
hH then, for every x g A, the sequent ;A2 : H = ¢ : G is derivable in hH.

Proof: This result may be proved similarly to Theorem 2.5, admissibility of weakening for

LJrt, o

Lemma 3.9
(1) If S;A,2: H — e : G is derivable and « & e then ;A — e : G is derivable.

2) If A,z : H2EE 4% ¢ A is derivable and @ ¢ a®, then 53 A 25 o1+ A is deriv-
ul f ul f ul f
able.

Proof: See the case corresponding to rule (43) in the proof of Theorem 2.6 for a similar result.
O

Lemma 3.10 If sequent L; A,z : H il gy 1 A is derivable and x occurs only once in agis
then X; A it agy : A is derivable.
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LiA—re1: G ;A —rex:Ge
;A — pair(ey, e2) : Gy A Gy

U A—>e: Gy LFGagf
E;A—-—-}inl(e):leaz

— Vi

Y;A—e:Gy XFHGygf
;A —+rinr(e) : G1 VG,

— Vy

LAz H-—e:G %
;A — lambda(z.e): H D G z g A

YA —e:[t/a]G TFt:T
B, A — pairg(t,e) : ;.. G

Y,z:1;A—e:G FXI;A basis v
T; A — lambdag(z.€) : Var G D>

A% e 4 A
E;A-—-)e:Acwwe z:He A

FX;Abasis Tt Aaf

aztom

TAZA LA cgAorz:AEA

5AMR e A SEHRf

= . — A and either
;A TN splitl(z,21.¢) - A M AT R
z¢Aorz:HiAHy€ A

DA% A SEH B,
: -~y ;
oA *EAh splitr(z,z1.€) : A 21 & A and either
zgADorz  H\ANHyEA

YA —e: G E;Aﬂe:A 3
. .._._+ .
;A ©:GOH ——r z1 & A and either
z¢Aorz:GDHEA

LATEST A Sreir

TV - i
A Mg B applyg(z1,t,21.€) 1 A oy D ind citlpr
z1€Aoray Ve HEA

Figure 3.6: Rules for derivable sequents of hHVLF
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Proof: The proof-term a;, must either be z or of one of the forms:

splitl(z, z1.a3}; );
splitr(z, z1.ag}y, );
apply(z, eus, T1.5}; );
applyq(z,t,:vl.azt‘h).
In no case may z occur in a"'}f or in eyiy, for z occurs only once in ay,. So, by using Lemma

U

3.9, we may easily conclude this proof. o

The following theorem shows how to go from uniform linear focused derivations in hH to
derivations in RHYLF,

Theorem 3.5 Let X;A => euy : G be derivable in hH. Then, 3; A — eyif : G is derivable in
hHYLE | Further, if ey is atomic uniform linear focused of head variable z then G is atomic
and there ezists an H-formula H s.t. x: H € A and I; A i euy : G is derivable in hHULF,

Proof: Let m be a hH-derivation of X; A = ey : G. The proof follows by induction on the

structure of 7. Consider the following cases.

e Case last step of 7 is of the form

T
Uizt H = ey 1 Gh 5y
2 A = lambda(z.eqyp,) : H D Gy ’

where z ¢ A and G = H D G,. Then, by the LH., X;A,z2: H — ey : G1 has a
derivation ¢. Thus, the following hHYLF derivation may be formed:

o
TiA 2 H — ey, 1 Gy
X A — lambda(z.ewy,) : H D Gy

_>'31

since # ¢ A. Similar arguments may be used for the other cases where the last step of

is a right rule.

e Case last step of 7 is of the form

T
XA, 2 A basis G
ALz A= A L

where G = A is an atomic formula and A = (A, : A). Then, the following hHVLF.

derivation may be formed:

m
FX;AL,z:Abasis Y- Aaf

E;Al,a::Aﬂw:A

aziom,
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since: from m; we may easily find a derivation of ¥ - A af; and = : A € A, thus the
side condition of aziom is satisfied. From the derivation above, by using rule choice, a
derivation of I; Ay,z: A — z : A may be formed. (Note that z : A € (A;,z : A) and
A1,z A Z4 ¢ : Ais derivable in RHULF )

e Case last step of 7 is of the form

m2 3
5;A12:G1 O H=euy, :Gr 5;41,2:G DH,w1=H=>aZ?h :G

Ay, 2 : Gy D H = apply(z, eup,, 21.05), ) : G

o=,

where A = (A;,z: Gy D H) and z; ¢ A. By the LH.: (i) there is a AHYIF_derivation
o1 of B;A1,2: Gy D H — ewy, : Gy; (ii) G is atomic and there is a hHYLF derivation
of 5;0,2:Gy D Hyz,: H ol af‘;h : G. By Lemma 3.10, since z; occurs exactly once
in aj}, — for apply(z, eus,, z1.a3};,) is uniform linear focused— there is a derivation o
of the sequent

3 A4L,2:G1D Hz‘—:f{a‘”}h Gl

u
Thus, the following derivation may be formed:
a2

oy Z1:
NAh2:G1DH —veyy :Gy 5;0,2:G1DH Lf{“x;f, :G

Ui

'G1JH
%A1, : Gy D H ™23 apply(a, eup,, 1.0%); ) : G

)

]

since z; € (A,z: Gy D H)and 2 : G; D H € (A1,z: G; D H). For concluding the
proof of this case, observe that, from the derivation above, by applying rule choice, for
z:G1 D H € (Ay,2: Gy D H), there is a RHYEF derivation of

;An2: Gy D H — apply(z, eury,, z1.05};,) : G.
(Note that z : Gy D H € (A1,2: Gy D H) and
3 T et apply(z, eu s, 1.a5}, ) : G
is derivable in hRHVLF )

e The other cases where the last step of 7 is a left rule follow by similar arguments.

a

The following theorem shows how to transform a AHUL¥_derivation into a uniform linear

focused derivation of hH.

Theorem 3.6

(1) IfS;A — e : G is derivable in hRHVLF then ©; A = e : G has a uniform linear focused

derivation.
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(2) If5; A =K ¢ . A is derivable in hHYLF then e is atomic uniform linear focused of head

variable x and

(a) case x: H € A, then ;A => e : A is derivable in hH;

(b) case z & A, then L;A,x: H => e: A is derivable in hH and = occurs exactly once
in e.

Proof: Let 7 and o be REHULF derivations of the sequents $; A —» e : G and ;A Z8 ¢ 4,
respectively. The proof follows by simultaneous induction on the structure of the derivations 7

and o.
e Case last step of 7 is of the form:

oy
mAZR .4

m ChO'b.CC, x:HE€ A.
H :

Then, by the I.H., e is (atomic) uniform linear focused and, since z : H € A, the sequent
;A = e: Ais derivable.

e Case last step of 7 is of the form

a1
A2 H —e:Gy
;A — lambda(z.€) : H D Gy

—D

where ¢ ¢ A and G = H D G. Then, by the LH., X; A,z : H = e : G; is derivable and e
is uniform linear focused. Thus, by using =D, X; A = lambda(z.e) : H D G, is derivable
and clearly lambda(z.¢) is uniform linear focused. (Similarly for the cases where the last

step of 7 is of any other form.)

e Case last step of o is of the form

(3]
F3;Abasis L Aaf
WA ZEA A

azriom,

where either z ¢ Aorz : A€ A. If z: A € A then the following derivation may be
formed:
01
35 A basis
YAz ax: A R

If ¢ A then the following derivation may be formed:

1
FX; A,z A basis
S Az:A= 2 A

aziom,

where m; may be obtained by combining o; with the derivation of ¥ - A af, for 2 ¢ A.

Clearly  occurs exactly once in z.
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o Case last step of o is of the form:
o1 -
DA —e: Gy T;AT G e A
oA moigh apply(z,e,z1.6;) : A

1]

where z; ¢ A and either z € A or z: Gy D H € A. Since z; € A, by the I.LH., there are

derivations m; and m of the sequents:
A= e Gy
YA,z H=e A,

where e is uniform linear focused, e; is atomic uniform linear focused of head variable z;
and z; occurs exactly once in e;. So, apply(z, e, z;.€;) is atomic uniform linear focused

of head variable z.

If = ¢ A, then, by weakening, there are derivations w3 and 74 of the sequents:

¥ A,2:G1 D H=e:Ghy;
YAz i H,z:GiyDH=e :G.

So, the following derivation may be formed:

w3 T4
S:Ac:GiDoDH=e:Gy 0;02:GiDH,z:H=e;:G
5,A,z:Gy D H = apply(z,e,z1.€1) : G

o=.

Notice that z occurs exactly once in apply(z, e, zy.e1).

Ifz:Gy DHEA,ie Aisof the form (A;,z : Gy D H), then the following derivation

may be formed:

m m2
S A,e:GiDH=e:Gy T;A5,2:GiDOH,zy: H=>e:G
;A2 : Gy D H= apply(z,e,21.61) : G

D= .

(The other cases, resulting from the other possible forms of ¢, follow by similar arguments.)

a

Now the main result of this section is established.

Theorem 3.7 I; A = e : G has a uniform linear focused derivation in hH iff 5;A — e: G
is derivable in RHYLF,

Proof: If ¥; A = e: G has a uniform linear focused derivation in 2H, then, by Theorem 3.5,
;A — e : G is derivable in RHULT,
If $;A — e: G is derivable in RHVLF | then, by Theorem 3.6, ¥; A = e : G has a uniform

linear focused derivation in hH. 0
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The next section establishes a 1-1 correspondence between derivations in RHYLF and ex-
panded normal deductions in a restriction of NJ?* to hereditary Harrop logic. So, by Theorem
3.7 we may conclude the 1-1 correspondence between uniform linear focused derivations and

expanded normal deductions.

3.5 On the Bijection between Uniform Linear Focused Deriva-

tions and Expanded Normal Deductions.

This section establishes a 1-1 correspondence between uniform linear focused derivations, i.e.
derivations in the sequent calculus formalisation of hereditary Harrop logic AHUVLF and ex-
panded normal deductions, i.e. derivations in the natural deduction system for first-order
hereditary Harrop logic VN, presented in this section. In order to achieve this correspond-
ence, we use an intermediate sequent calculus formalisation of hereditary Harrop logic called
MM. MM may be regarded as a sequent calculus very similar to ARHULF it differs only from
RHYELF in how derivations are annotated with proof-terms. The form of annotating sequent
calculus derivations used in MM follows Herbelin’s [Her95]. Herbelin uses an alternative rep-
resentation of A-terms, called A-terms, for annotating sequent calculus derivations. Roughly,
A-terms bring to the surface the head variable of a A-term. Calculi similar to MM and NN are
studied in [DP96b]; in fact this work addresses full first-order intuitionistic logic. Below, the
work [DP96b] is sometimes referred to for proofs of results relating MM and NN.

We now define the calculus M M. The classes of objects of MM are the same as those of
hHVLF They are defined by the same grammars, except for proof-terms. The proof-terms of
MM are called M-proof-terms; they are defined as follows.

Definition 3.12 M-Proof-Terms

M u= (2;Ms)|par(M, M) | il(M) | ir(M) | lamb(z.M) | par,(t, M) | lamby(z.M)
Ms u= [||[M|Ms]| fst(Ms) | snd(Ms) | apply(t, Ms)

Below, M, possibly indexed, is used as a meta-variable ranging over M-proof-terms.

quLr

The forms of judgement of M M are the same as those of 4 , except for sequents, which

are replaced by the following two forms of judgement, that we also call sequents:

) BA=M:G:

(i) 354 Ms: A
M M-judgements common to hHYLF are derivable iff they are derivable in AHULT, The rules
defining the derivable sequents of MM are shown in Fig. 3.7. The rules defining derivable

sequents in MM are very similar to the rules defining derivable sequents in AHYVLE; the main

difference being the proof-term annotation of the rules for deriving atomic sequents.
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Y A=e;:G1 L) A=>e3:Gy
;A = par(e;,e2) : G1 AG2

= A

T A=e: G ZFGagf
;A =>ille) : G1 VG2

L A=e:Gy EFGigf

= Vi A= i?'(e) tGLV Gy

=V,

Az H=e:G
;A = lamb(z.e): HD G

=D, z ¢ A

L;A==e:[t/z]G Ttt:r
T; A = parg(t,€) : 3., G

Yyo:1;A=e:G F ;A basis
¥; A = lamby(z.€) : V5. G

=V, z¢X

A Ms: A
A= (z; Ms): A

select, z: H € A

FX;Abasis LFHAaf
SAS 4

aziom

SAEL Ms:A SRHahf , S AZBMs:A SEHAf
A A ro(Ms) - A ;A 88 snd(Ms) : A

A= M:G E;AéMs:A
A L2 (M|Ms): A

)

A MsA SRi:r
55 A 22 apply(t, Ms) : A

=

Figure 3.7: Rules for derivable sequents of M M.
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In proof-terms of the form lamb(z.M) and lamb,(z.M), z is called a binder of scope M and
an occurrence of z in M is called bound. A non-bound occurrence of a variable is called free.
The notation z ¢ M means that z has no free occurrences in M.

Below, in Definitions 3.13 and 3.14, we define mappings relating the sets of uniform linear
focused proof-terms and M-proof-terms. These mappings are inverses of each other, as shown
in Theorems 3.8 and 3.9, and they preserve derivability, as shown in Theorems 3.10 and 3.11.

In this subsection e is used for representing the class of uniform linear focused proof-terms
and e for representing the class of atomic uniform linear focused proof-terms. e, possibly
indexed, is also used for ranging over arbitrary uniform linear focused proof-terms. a, possibly
indexed, with a variable z in superscript, is used for ranging over atomic uniform linear focused

proof-terms of head variable z.
Definition 3.13 y:e— M and 71 : a = Ms

v(pair(ey, €2)) =a.; par(y(e1),7(e2))
v(inl(e)) =aes il(v{€))

v(inr(e)) =aey ir(v(e))
v(lambda(z.€)) =q.; lamb(z.v(e))

v (pairg(t, €)) =a.; parq(t,y(e))
y(lambday(z.€)) =45 lamby(z.7(e))
7(a”) =ues (2;71(a%))

71(2) =aes (]

y1(splitl(z, z1.a"')) =45 fot(y1(a™))
msplitr(z, z1.a™1)) =45 snd(y1(e*))
n(apply(z, e, 21.0™')) =aes [7{€)|71(a™)]
71(apply,(z,t, 21.6™')) =acs apply(t, 11(a™))

Definition 3.14 § : M — e

8(par(My, M3)) =aey pair(§(My), §(My))

$(il(M)) =aey inl(6(M))

8(ir(M)) =4e; inr(8(M))

S(lamb(z.M)) =44 lambda(z.6(M))

d(parq(t, M)) =q.s pair(t,s(M))

d(lambg(z.M)) =4y lambday(z.6(M))

5((23 1)) =aes 2

8((z; fst(Ms))) =gcs splitl(z,z1.6((z1; Ms))), z1 € Ms

3((z; snd(Ms))) =4y splitr(z, 1.6((z1; Ms))), 21 € Ms
O((z; [M|Ms))) =ue; apply(z, (M), z,1.6((z1; Ms))), ©1 € Ms
8((z; apply(t, Ms))) =uey applygém,t,xl.é((xl;Ms))), z, € Ms




Recall that two e-(proof-terms) are equal iff they are the same up to renaming of bound variables.
Definition 3.14, above, requires equality of e-terms up to renaming of bound variables, otherwise
it would be ill-formed, since a constraint of the form z ¢ Ms is satisfied by infinitely many

variables.

Theorem 3.8 For every uniform linear focused proof-term e, for every variable x and for every

atomic uniform linear focused proof-term a® of head variable x, the following identities hold:

(i) doy(e)=e;
(i) d((z;71(a%))) = a®.

Proof: By simultaneous induction on the structures of e and a®.

(i) Case e = apply(z, €1, z1.a7").

doy(apply(z, e, 1.07"))

8((z; [y(en)|m(a")])) by def. of v and 7
= apply(z,d(y(e1)), z1.0((z1;71(a7")))) Dby def. of 4, since 2y & 71(a7")
= apply(z,ey,z1.a7") by LH. (twice)

The other cases are similar.

(ii) Case a® = 2.

§((z3m()))
= §((=; ) by def. of 11
= @ by def. of §

Case a” = apply(z, €1, 21.a7").

§((z; 1(apply(z, €1, 21.a7"))))

(a3 [r(en)lm (a2)]) by def. of 7
apply(z,d(y(e1)), z1.6((x1;71(a7’)))) Dby def. of 4, since zy ¢ v1(al?)
apply(z, eq, z1.a7") by L.H. (twice)
The other cases are similar. O

Theorem 3.9 For every M, M s, z, the following identities hold:

(i) yod(M) = M;
(i) vi08((z; Ms)) = Ms.

Proof: By simultaneous induction on the structures of M and Ms.
(i) Case M = (=; [M1|Ms,]).

vod((z; [M1|M s,]))

y(apply(z, (M), z1.6((z1; Ms1)))) by def. of 8, for every =, € Ms;
(z; [y (6(M1)) |71 (6((z1; M's1)))]) by def. of v and ¥,

(z; [My| M sy1]) 56 by LH. (twice)
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The other cases are similar.
(ii) Case Ms=[].

1106((2; 1)
= (z) by def. of é

= B by def. of 74
Case Ms = [M;|Ms].

mod((z; [My|Ms4]))
= v (apply(z,§(M1),z1.6((x1; Ms1)))) by def. of 4, for every z; & Ms;

= [y(8(M))|71(6{(z1; M s1)))] by def. of 7,
= [M;|Ms] by LH. (twice)
The other cases are similar. ' ]

Theorem 3.10
(1) IfZ; A — ¢ : G is derivable in hHYEF then $; A = y(e) : G is derivable in MM.

(2) If5; A =8 47 . A is derivable in RHVLF then ;A =2 v1(a”®) : A is derivable in MM.

Proof: By simultaneous induction on the structure of the hRHULF derivations 7; and 7 of the
sequents ;A — e: G and T; A 2l 4 A, respectively.

Case the last step of m is of the form:

A TuHy
%’_%—j—-;—_—'i{l- choice, z; : Hy € A.

Then, by Theorem 3.6, e is atomic uniform linear focused of head variable z;. So, by the I.H.,
there is a M M-derivation of
;A ELN 71(e) : A.

Thus, the following M M-derivation may be formed:

SA L y(e): A
Ty A = (z1;71(e)) : A

select,

since zj : H; € A. Observe that the identity y(e) = (£1;71(e)) holds, since e is atomic uniform
linear focused of head variable z;.
The cases where the last step of m; is of any other form are similar.

Case the last step of m is of the form:

A — e : Gy E;Ax—‘i;-l)l ap' : A

oA =0 apply(z, e, 21.a7") 1 A

3D

7
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where z; € A and either z : Gy D H; € A or z ¢ A. Then, by the L.H., the following derivation
in MM may be formed:
A =>y(e) : Gi ;4<% p(ad): 4
G DH
558 “2L [y(en) I (af)] : A

Note that the identity v1(apply(z, €1, x1.a7")) = [v(e1)|11(a]')] holds, by definition of ;.

The cases where the last step of 7, is of any other form are similar. O

Theorem 3.11
(1) IfS; A= M : G is derivable in MM then S; A —s §(M) : G is derivable in RHULE,
(2) IF ;A =2 Ms: A is derivable in MM then 550 Z5 §((z; Ms)) : A is derivable in

RHULF | for every z s.i. eitherz: H € A orz & A.

Proof: By simultaneous induction on the structure of the M M-derivations m; and m; of the
sequents ;A = M : G and £; A 2 Ms A, respectively.
Case the last step of m; is of the form:

A Ms, A
A= (a:l;Msl) A

select,

where z; : H; € A. Then, by the I.H., the sequent X; A =i 6((z1; Msy1)) : A is derivable in
RHULF  So, the following h HULF derivation may be formed:

5 A 2 5((zy; Msy)) : A
A — §{(z1; Ms1)): A

choice,

for zy : H; € A. The cases where the last step of m; is of any other form also follow easily by
the L.H..
Case the last step of my is of the form:
3;Abasis LHAaf
SAS[:A

axiom.

Then, for every variable z s.t. z : A € A or ¢ ¢ A, the following aziom may be formed in
hHULF,

;A basis LFHAaf
SAZA A

aziom.

Note that §((z;[])) = =.
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Case the last step of 75 is of the form:
A= M;:G; T;ATE Ms;: A
;A 28 (A | Msy]: A

=,

Then, by the LH., there is a hHULF_derivation of the sequent
2; A — J(Ml) : G1

and, for every variable z; s.t. z; : Hy € A or z; ¢ A, there is a hRHULF _derivation of the
sequent
5 A 2 5((zy; Msy)) 1 A
So, for every variable z s.t.  : G; D Hy € A or z ¢ A, by choosing 23 € A, the following
derivation may be formed
A — (M) G 5 A 225 5((29; Ms1)) : A
s A T pnly(z, 5(My), z2.6((22; Msy))): A

]

Note that §((z; [M1|Ms1])) = apply(z, §(M)), 2.6((x2; Ms;))), since z3 € Ms;.

The cases where the last step of m is of any other form are similar. =}

The next result establishes a 1-1 correspondence between forms of deriving a goal w.r.t. a
basis in hRHVEF and MM.

Theorem 3.12 The set of proof-terms e s.t. L;A — e: G is derivable in hRHYEF{s in 1-1
correspondence with the set of proof-terms M s.t. ;A => M : G is derivable in M M.

Proof: We show that + is a bijection between these two sets of proof-terms. First, we show
that for every M s.t. 3; A => M : G is derivable in MM there exists e; s.t. X;A —r €1 : G is
derivable in AHYLF and y(e;) = M, thus showing the surjectivity of .

By Theorem 3.11, if ;A => M : G is derivable in MM then X; A — §(M) : G is derivable
in hRHVLF | For showing that 6(M) satisfies the conditions on e; above, it suffices to show that
v(6(M)) = M, which holds, since yod = idps, by Theorem 3.9.

Now, for concluding the proof of the theorem, we show that 7 is injective. If y(e;) = y(e3)
then 6(y(e1)) = &(y(e2)) and thus, since doy = id. by Theorem 3.8, e; = e;.

6 could also be proved to be a bijection between the two sets of proof-terms mentioned in

this theorem, by using similar arguments to those used above and Theorem 3.10. ]

Now, we turn our attention to the definition of the calculus NN. This calculus is a restriction
of NJ?! to hereditary Harrop logic, where only expanded normal deductions are allowed and
the notions of well-formedness are encoded by means of derivable judgements. As for MM,
the classes of objects of NN are the same as those of RHULF, They are defined by the same
grammars, except for proof-terms. The proof-terms of NN are called N-proof-terms; they are

defined as follows.
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Definition 3.15 N-Proof-Terms

N == (N,N)|iN)|j(N)|ra.N|(tN)]|r2.N|a;
a u= z|/fst(a)|snd(a) | app(a, N) | appy(a,t).

Note that the class of N N-proof-terms is a restriction of normal proof-terms of N JP'.
As for MM, the forms of judgement of NN are the same as those of hRHVLF | except for
sequents, which are replaced by the following two forms of judgement, that we also call sequents:

(i) XZ;AppN:G;
(i) X;Apa:A.

N N-judgements common to hRHVLF are derivable iff they are derivable in ARHYEF. The rules de-
fining the derivable sequents of NV are shown in Fig. 3.8. As compared to NJP*, NN restricts
the form of deductions allowed. Firstly, it allows only normal deductions; secondly, these nor-
mal deductions must be expanded. If the rule change would allow arbitrary H-formulae in the
succedent, instead of allowing only atomic formulae, then NN would capture all normal de-
ductions and not only those which are expanded. Roughly, the restriction on expanded normal
forms reflects the restriction on the use of axioms in hH, which require the main formula to be
atomic. Derivations in VN are called ezpanded normal deductions.

Definitions 3.16 and 3.17, below, define mappings between M-proof-terms and N-proof-
terms. These mappings are inverses of each other, as shown in Theorems 3.13 and 3.14. Further,

these mappings preserve derivability, as shown in Theorems 3.15 and 3.16.

Definition 3.16 © : M - N and ©1 :a X Ms— N

O(par(My, M3)) =aes (©(M,), ©(Mz))
O(il(M)) =4 1(O(M))

O(ir(M)) =us 1(O(M))
O(lamb(z.M)) =4c; Az.O(M)

O (parq (t, M)) = (t,0(M))
O(lamby(z.M)) =45 Agz.O(M)

O((z; Ms)) =4y ©1(z, M)

01(a,[]) =aes @

©1(a, [M|Ms]) =4; ©1(app(a, ©(M)), Ms)
O (a, fst(Ms)) =4e; O1(fst(a), Ms)

O1(a, snd(Ms)) =4; ©1(snd(a), Ms)

©1(a, apply(t, Ms)) =a.; O1(appy(a,t), Ms)
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Definition 3.17 Y : N - M and ¥; ;e X Ms -+ M

W ((N1, N2)) =aes par(¥(Ny), ¥(N2))
W(i(N)) =aes il (¥(N))

U(§(N)) =ues ir(¥(N))

U (Az.N) =45 lamb(z.W(N))

W((t, N)) =aes parq(t, ¥(N))
U(Agz.N) =45 lamby(z.W(N))

¥(a) =aer Y1(a,[])

Uy (z, Ms) =4y (z; Ms)

U, (fst(a), Ms) =4; ¥1(a, fst(Ms))

U,y (snd(a), M8) =45 ¥1(a, snd(Ms))

¥y (app(a, N), Ms) =ae; ¥1(a, [¥(N)|Ms])
Uy (appy(a,t), Ms) =4, Wi(a, apply(t, Ms))

Theorem 38.13 The following identities hold:

(l) OoV¥ = idN,‘
(i) PoO, =V¥,.

Proof: The proof follows by simultaneous induction on the structures of the argument and
second argument, respectively. See [DP96b], for proof in the general case (not restricted to
hH) of full intuitionistic first-order logic. (u]

Theorem 3.14 The following identities hold:

(i) WoO =idpy
Gi), @l =6

Proof: The proof follows by simultaneous induction on the structures of the argument and
second argument, respectively. See [DP96b], for proof in the general case of full intuitionistic

first-order logic. a

Theorem 3.15
(1) If ;A = M : G is derivable then X; A>bO(M) : G is derivable.

(2) If ;A 2L Ms: A is derivable and Y;Apa: H then $; AppOy(a, Ms) : A is deriv-
able.
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2;ApbN; : Gy L; ANy 1 G
T;App(Ny, N) : G1 AGy

AT

;AN : Gy EFGagf ;AN : Gy TFGygf

SiArei(N) GivGa W T Ab6j(N): GV Gy

;A,z: HooN: G
S;Avpdz. N: HDG

DI,z¢ A

S;AvoN :[t/2]G Zht:T
E;App(t,N): 3,:,G

Y,z:7;ApbN : G F I; A basis

T A oAz N : Vo G VI, ag X

W Ava: A h
Y;Avpa: A change
FX; A,z : H basis
Y Az:Hox: H

aziom

Y;Ava:HyAHy
;Ao fst(a) : Hq

YiAva:Hi AHy
X; Av snd(a) : Hy

NE A E

L;Ava:GDH L;ApoN:G
Y;Avapp(a,N): H

DFE

Y;Ava:Vy, H DHEt:T
X; Avappg(a,t) : [t/z]H

VE

Figure 3.8: Rules for derivable sequents of NV,
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Proof: The proof follows by simultaneous induction on the structures of M and Ms, respect-
ively. See [DP96b], for proof in the general case of full intuitionistic first-order logic. O

Theorem 3.16
(1) If Z; AbpN : G is derivable then 3; A — W(N) : G is derivable.

(2) If 2;A=—}£> Ms : A is derivable and X;Ap>a: H then ;A — V;i(a,Ms): A is de-

rivable.

Proof: The proof follows by simultaneous induction on the structures of N and @, respectively.

See [DP96b], for proof in the general case of full intuitionistic first-order logic. (]

The following result establishes a 1-1 correspondence between forms of deriving a goal w.r.t.
a basis in MM and NN.

Theorem 3.17 The set of proof-terms M s.t. ;A => M : G is derivable in MM is in 1-1
correspondence with the set of proof-terms N s.t. L; AobN : G is derivable in NN.

Proof: We show that © is a bijection between the two sets of proof-terms. First, we show
that for every N s.t. X; ApbN : G is derivable in NN there exists M; s.t. Z;A=> M; : G is
derivable in MM and ©(M;) = N, thus showing the surjectivity of O.

By Theorem 3.16, if Z; ApbN : G is derivable in NN then X; A = W(N) : G is derivable
in MM. For showing that W(N) satisfies the conditions on M; above, it suffices to show that
©(¥(N)) = N, which holds, since ©o¥ = idy by Theorem 3.13.

Now, for concluding the proof of the theorem, we show that © is injective. If ©(M;) = ©(M3)
then W(©(M;)) = ¥(O(M;)) and thus, since Yo = idps by Theorem 3.14, M; = Mj.

¥ could also be shown to be a bijection between the two sets of proof-terms of the theorem,

by using similar arguments to those used above and Theorem 3.15. a

Now, we come to the main result of this section, i.e. uniform linear focused derivations are

in a 1-1 correspondence to expanded normal deductions.

Theorem 3.18 The set of proof-terms e s.t. T; A — e : G is derivable in hHYLF is 1-1 cor-
respondence with the set of proof-terms N s.t. £; AbbN : G is derivable in NN.

Proof: By combining Theorems 3.12 and 3.17. o

We show in Proposition 3.4 below that the mapping ¢, restricted to uniform linear focused
proof-terms, is the same as ©oy, thus itself a bijection between uniform linear focused deriva-
tions and expanded normal deductions. So, no two distinct uniform linear focused proof-terms

may have the same image under ¢.

63




Proposition 3.4 The following identities hold:

(i) () =O(y(e));

(i) [a/z]d(aT) = ©1(a,71(aT)), if ¢ occurs freely in a] exactly once
Proof: By simultaneous induction on the structures of e and af.
(i) Case e = apply(z1, €1, z2.03%).

d(apply(z1, €1, T2.03))

[app(21, (1)) /2] ¢(a3? by def. of ¢
= Oy(app(z1,P(e1)),71(a3?)) by L.H., since 2, occurs freely in a3* exactly once
= ©1(app(z1,0(7(e1))), 71(e3?)) by LH.
= O1(en[y(er)|m(az?)]) by def. of ©;
= O((z1; [v(e1)|11(a3?)]) by def. of ©

= O(y(apply(=1, €1, 22.03%))) by def. of v

(ii) Case af = apply(z, e1,21.a3").
[a/z]¢(apply(z, €1, z1.a3"))
= [a/2)([app(z, $(e1))/z1]B(a3")) by def. of ¢
= (lapp(a, ¢(e1))/z1]¢(a3")) @ ¢ ¢(e1) and = ¢ ¢(a3")

= Oi(app(a,d(er)), 11(az')) by L.H., since z; occurs freely in a3 exactly once
= O(app(a,©(7(e1))); m(az')) by LH.
= ©1(a [y(e1)Im(a3")]) by def. of ©;
©1(a, y(apply(z, ey, z1.63"))) by def. of y
Similar arguments apply in the other cases. a

We are now in conditions to give a simple argument for the uniqueness of a uniform linear

focused form of a proof-term and a method for its calculation.

Theorem 3.19 Every proof-term e which is not uniform linear focused is reducible by RS.is to

a unique uniform linear focused proof-term.

Proof: Let e be a proof-term which is not uniform linear focused. Then, by Theorem 3.4, e is
reducible by RSy to a uniform linear focused proof-term e,;y. Now, let us suppose that e is

also reducible by RSy to a uniform linear focused proof-term eyf,. Thus, by Theorem 2.9,
Pleury) = d(e) = d(ew,)-
So, by Proposition 3.4 and Theorems 3.9 and 3.14,
euf = 6(¥(S(euy))) = 8(¥(¢(ews))) = eutsr-

a

Below the notation ulf (e) is used to represent the uniform linear focused form of the proof-
term e. By the theorem above, ulf(e) = §(¥(H(e€))).
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3.6 Proof-Theoretic Semantics of FOPLP

This section defines a proof-theoretic semantics for the pure logic programming language FOPLP.
In Sec. 3.2, we have already defined the notions of program, goal and goals achievable w.r.t.
programs in FOPLP, which are recalled below.

e A program in FOPLP is a pair (£, A), usually written X; A, where ¥ is a signature and A
is a hH-context; a program X; A is well-formed iff the judgement - X; A basis is derivable
in hH.

e A goalin FOPLP is a G-formula; a goal G is well-formed w.r.t. the program X; A iff the
judgement X - G gf is derivable in hH.

e A goal G is achievable w.r.t. a program X; A in FOPLP iff there exists a proof-term e s.t.
3; A = e: G is derivable in hH; the proof-term e is called a witness for the achievement
of G w.r.t. I; A.

So, to complete the definition of a semantics for FOPLP, as argued in Sec. 3.2, we must
define what are the different means of goal-achievement. In Sec. 3.4 is shown that uniform
linear focused derivations of hH are in 1-1 correspondence with derivations in AHYZF, The-
orem 3.18 establishes a 1-1 correspondence between derivations in AHYZFand expanded normal
deductions. So, uniform linear focused derivations in hH are in 1-1 correspondence to expan-
ded normal deductions. This 1-1 correspondence justifies our choice of the different means of
achieving goals in FOPLP. We define the different means of achieving a goal G w.r.t. a program
3 A in FOPLP as the uniform linear focused proof-terms eyiy s.t. £; A = ey : G is derivable
in hH. So, witnesses which have the same image under ¢, i.e. witnesses that correspond to the
same expanded normal deduction, are regarded as the same means of achieving goals. This
choice of the means of goal-achievement in FOPLP gives an immediate interpretation of FOPLP
by means of the natural deduction system for first-order hereditary Harrop logic NN.

An implementation of FOPLP is any method that given a goal G and a program X;A
enumerates the means for the achievement of G w.r.t. £; A,  Alternatively, an implementation
of FOPLP may be defined as a method that given a goal and a program finds all expanded
normal deductions of the goal w.r.t. the program in NN. Section 3.7 sketches a method for
implementing FOPLP, by describing a method to find all derivations of a goal w.r.t. a program

in hRHULF je. all uniform linear focused derivations of hH.

3.7 Towards an Implementation of FOPLP

According to Sec. 3.6, an implementation of FOPLP is a method that, for every goal G' and

program X; A, finds every uniform linear focused proof-term e s.t. the sequent ;A =>e: G is
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derivable in AH ; or, in other words, a method that finds every proof-term e s.t. the sequent
$; A — e : G is derivable in AHULF,
This section outlines a method to search for proof-terms e s.t. 3; A — e : G is derivable in

hHVLF  This procedure is described as a predicate of the form
search(G,Z; A, Oiny Oout, €, Viny Vout),
where:
e I 3; A basis and £ - G gf are derivable in hH;

e Vi, and V,,; are signatures s.t. V;, C Vot and there is no z s.t. z € ¥ and = € V43

e ©;, and O,,; are substitutions s.t.: Gy = ©00;, for some ©; for every ¢ & Vour,

Oout(z) = = and, for every z : 7 € Vout, 2, Vout F Oous () : 7 is derivable.

Validity of the predicate search is defined by means of a collection of Horn clauses, it depends

upon validity of the auxiliary predicate searchl, which has the form:
searchl(z : H, A, 5; A, Oin, Oputy €, Vin, Vout)-

The notation ©(A) stands for the context obtained from A by replacing each element z : H
of A by z : Hy, where H; is the result of replacing the free occurrences of variables in H by their
images under ©. The notations ©(G) and ©(e) stand, respectively, for the result of replacing
the free occurrences of variables in G and e by their images under ©. The predicate search is
such that:

o if search(G, X; A, Oin, Osut, €, Vin, Vout) holds, then the sequent
3, Vouts Oout (A) — Oout (e) 1 Ooui (G)
is derivable in hHULF,

o if the sequent X, Vip; ©in(A) — Oin(e) : Oin(G) is derivable in hH ULF then there exists
Vouty Oout and €1 8.t. Opyi(€1) = O;,(€) and search(G, L; A, Oin, Oout, €1, Vin, Vout), holds;

in particular, when V;, = 0 and ©;, = identity.

Recall that formulae and proof-terms are equal up to renaming of bound variables. In the
definition of search below some constraints are satisfied simply by the renaming of bound
variables.

The definition of search is by cases on the structure of G as shown below, in other words, a

search for a derivation of G w.r.t. a program is guided by G.

e Case G = G; AGy, then a derivation of ; A — e : G must have as last step — A. The

clause corresponding to this case is:
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search(Gy A Ga,5; A, Oin, Oy, pair(ey, €2), Vin, Vour) if
search(Gy,Z; A, ©,,0, €1, Vin, V) and
search(Gg, 2; A, 9, Gom, €z, V, Vaug).

e Case G = G V G, then a derivation of X; A — e : G must have as last step either rule

— V; or rule —» V,.. This case introduces two clauses in the definition of search:

search(Gy V Ga, Z; A, Oin, Opu, inl(e), Vin, Vour) if
search(G1,X; A, ©in,y Oouty €, Viny Vout);

search(Gy V G2, 5; A, ©in, Oput, inr(e), Vin, Vour) if
search(Gz, X; A, Oin, Oout, €, Vin, Vout).

Note that to find all derivations of X; A — e : G; V G'; both clauses must be considered,

although there is a choice of which clause to consider first.

e Case G = H D G4, then a derivation of £; A — e : G must have as last step a rule —D.

The corresponding clause is:

search(H D G4, Z; A, Oin,y Oouty lambda(z.€), Vin, Vour) if
searCh(Gh % (A’ T H)a ©Oiny Oout, €, Vin, V'out) and
z & A,

Recall that ¢ A means that there exists no H s.t. z : H € A.

e Case G = 3,,,G4, then a derivation of ;A — e : G must have as last step rule — 3.
However, there is a choice of which term ¢ of type 7 to consider. In order to find all proof-
terms e s.t. ;A — e : 3;.,G4 is derivable, all terms ¢ of type 7 must be considered.
This problem may be solved by using unification of first-order terms. The variable z is
treated as a logical variable. When attempting to form an axiom, a logical variable may
be replaced by a term having the same type to make atomic formulae equal. The clause §

corresponding to this case is:

search(3z:rG1, B; A, Oin,y Oout, pairy(z, €), Vin, Vour) if
search(G1,2; A, Oin, Oput, €, Vin U {z : 7}, Vour) and !
z ¢ Vipand z ¢ 2.

Recall that, 2 € V;, (z ¢ ¥) means that there is no 7 s.t. 2 : 7 is an element of V;, ().

e Case G = VY..;G1, then a derivation of £; A —» e : G must have as last step rule — V. i

The corresponding clause is:
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search(¥z:+G1, Z; A, Oin, Oout, lambday(z.€), Vin, Vout) if
search(G, 2 U {2 : 7} A, Oiny Oouts €, Viny Vout) and
z ¢ Vip and z ¢ Z.

e Case G = A, then a derivation of £; A — e : G must have as last step rule a rule choice.
The application of this rule involves the choice of a formula = : H from the program
3; A. The problem of finding proof-terms e s.t. 3; A — e : A is derivable depends upon
the problem of finding proof-terms e s.t. ;A ZH ¢ . A is derivable. In order to find all
proof-terms e s.t. X; A ZH e Ais derivable, all z : H in A must be considered. (Still,
there is the choice of which order to follow in attempting formulae from £; A.) The clause

of search corresponding to this case is:

search(A, X; A, ©in, Oout, €, Vin, Vout) if
choice(z : H,A) and
searchl(z : H,A,3; A, Oipn, Oput, €, Vin, Vout).

A formula choice(z : H, A) holds iff z : H is an element of A.

The definition of searchl is by cases on the structure of the selected formula, in other words,
a search for a derivation of an atomic goal is guided by the structure of the selected formula

from the program.

e Case H = H; A Hj, the last step of a derivation of ¥; A =R ¢ : A is either 2% or 25,

There are the following two clauses associated to this case:

searchl(z : Hy A Ha, A, 5; A, iy Opus, splitl(z, z1.€), Vin, Vour) if
searchl(zy : Hy, A, Z; A, ©in, Oout, €, Vin, Vour) and
Z1 ¢ A.

searchl(z : Hy A Ha, A, 5; A, @i, Oout, splitr(z, 21.€), Vin, Vour) if
searchl(a:l : Hg, A, 8; A, eim eouh €, Vt’m %ut) and
T ¢ A.

Note that to find every proof-term e, s.t.3; A ZH e Ais derivable, both alternatives

must be considered, but still having the choice of which alternative to consider first.

o Case H = G D H,, then the last step of a derivation of X; A ZH ¢ . A must be a rule 2.
Note that the left premise of =, requires the search for proof-terms e; s.t. 3;A — e; : G

is derivable. The clause corresponding to this case is:

searchl(z : G D Hy, A, 5; A, Oin,y Oout,y apply(z, e, z1.€1), Vin, Vour) if
search(G,%; A, Oy, 0, €, Vi, V) and
searchl(zy : Hi, A, Z; A, 0,004, €1, V, Vour) and z; € A.
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e Case H = Vy,., Hy, then the last step of a derivation of ; A ﬂ e : A must be a rule -,
However, there is the choice of which term & of type 7 to choose. As for the case where
the goal is existentially quantified, unification may be used to solve this problem. The

clause corresponding to this case is:

Sea"Chl(z : V:r:;:'rHl: A, 35 A, O, Oput, applyq(z, L1, x2-e)1 Vin, Vout) if
searchl(zs : Hi, A, 25 A, Oin, Oput, €, Vin U {z1 : 7}, Vour) and
zy € Vin and 2y ¢ 2.

e Case H = A, then the last step of a derivation of £; A ZH ¢: A must be an axiom.
Recall that for forming an axiom it suffices that A; and A are unifiable. The clause

corresponding to this case is:

searchl (1) . Al, A, E, A, Oin; G')outv T, ‘/t'm Vout) if
unify(Ah A, Oin, Oout, Vin, Vout, E)

A formula unify(Ai, A2, Oiny Oouty Viny Vout, ©) holds iff 41 = pti.tn, A =pt]..1,, S is

the set consisting of the pairs (;,t!), for 1 < i < n, and the formula
um'fy(S, ei'm eouh ‘/in: ‘/outa 2)a
whose meaning is defined in Sec. 2.2, holds.

Summarising, this section describes a method to search for means of goal-achievement in
FOPLP. If the goal is compound, the goal is broken up, according to the rule corresponding
to the outermost connective of the goal. If the goal is atomic, a formula from the program is
selected and the structure of the selected formula determines how the search is to proceed. In
order to find all the means of achieving a goal G w.r.t. a program X; A in FOPLP, it suffices

to consider exhaustively all alternative “choices”. The “choices” are as follows:

e case (G is of the form G V G there is a “choice” of which of the rules — Vi, — V,. to
attempt;

e case (3 is of the form 3;.,G) there is a “choice” of which term ¢ : 7 to attempt;

e case (7 is atomic there is a “choice” of which formula z : H of A to select, since there
may be several formulae in A that may lead to derivations; once a formula = : H of A

has been selected, there are the following “choices”:

— case H is of the form V., H; there is a “choice” of which term ¢ : 7 to attempt.

— case H is of the form H; A Hy there is a “choice” of which of the rules — A;, — A,
to attempt.
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Thus, any means of achieving a goal w.r.t. a program in FOPLP may be found by making
appropriate “choices”. This search procedure for FOPLP essentially corresponds to search
procedures presented in [NM88, Nad93] that are used as bases for implementing the logic pro-
gramming language AProlog.

3.8 Higher-Order Logic Programming

This section describes a higher-order logic programming language called HOPLP. The semantics
of this language is defined by means of the proof theory of the calculus HH. HH is a form-
alisation of a higher-order hereditary Harrop logic; essentially, H H is a higher-order extension
of hH, obtained by replacing the underlying set of first-order terms by the set of A-terms. A
calculus similar to HH is presented in [Mil90], except for the absence of proof-term annota-
tions. This section presents the natural deduction system NN*"r™  which is a formalisation
of essentially the same higher-order hereditary Harrop logic formalised by HH, and describes
an interpretation of HOPLP by means of N NAnorm,

3.8.1 The Calculus HH for Higher-Order Hereditary Harrop Logic

The classes of objects of HH are the same as those of hiH, except for the class t of first-order
terms, which is replaced by the class A of A-terms. The grammars defining the classes of objects
of HH are shown in Fig. 3.9; roughly, they are obtained from those of hH by replacing A for

t. After each grammar, in parentheses, is the intended meaning of each class of objects.

T u= s|(r—=71) (simple types)

A = x|z vrh) (AD) (A-terms)

E o= (| Bewr (signatures)

A == pA.lA (atomic formulae)
H 2= A|HAH|GDH |V H (H-formulae)

G u= A|GAG|GVG|HDG|3;:,G|Vs:rG (G-formulae)

A = O|N2:H (contexts)

e == pair(e,e)|inl(e) | inr(e) | lambda(z.€)

| pairg(A,e) | lambday(z.€)
| x| splitl(z, x.€) | splitr(z, z.€)
| apply(z,e,z.e) | apply,(z, A, z.€) (proof-terms)

s ranges over the set § of primitive types; z ranges over the set X’ of variables and p ranges

over the set P of predicate symbols.

Figure 3.9: Classes of objects of HH.
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The forms of judgement of H H are presented in Fig. 3.10. Each form of judgement (i) to

(i) - L signature (signatures)

(i) XZFA:7 (terms of simple type)

(i) +X;Abasis  (bases)

(ivy XFAaf (atomic formulae)

(v) X+-HRS (program formulae)

(vij XFGgf (goal formulae)

(vi) X;A=>e:G (proof-terms of a goal)

(viii) EFADbA (one step reduction of A-terms)

(ix) X FApJA (zero or more steps reduction of A-terms)
(x) A=A (convertibility of A-terms)

(xi) XHA=A (equivalence of atomic formulae)

(xii) L+-H=H (equivalence of program formulae)
(xii) XFG=G (equivalence of goal formulae)

Figure 3.10: Judgement forms of HH.

(vii) has a corresponding form of judgement in AH, the only difference being that first-order
terms are replaced by A-terms. As in the calculus AH, judgements of the form Z;A = e: G
are called sequents. Sequents are the main judgements of H H; judgements of the other forms
are called auwiliary judgements.

Observe that the forms of judgement (i), (ii), (viii), (ix) and (x) are common to the calculus
AST_ The derivable judgements of these forms are those of AT, 'The rules to define valid
judgements of the forms (iii)-(vi) are obtained from the rules defining derivable judgements of
the corresponding form in RH, replacing first-order terms by A-terms. For example, the rules
for derivable atomic formulae in H H are of the form:

kA BEA T,
S F pAr..An af

where p : 7 = ... = 7, = prop € P. The rules defining derivable judgements of the forms
(xi)-(xiii) are shown in Fig. 3.11.

Convertible A-terms may be seen as alternative representations of the same object or, in
other words, have the same denotation. So, in a logic based on A-terms, having a term or
another term convertible to it should be irrelevant, i.e. should not interfere with derivability
of sequents. In the calculus H H this idea is captured by allowing the rules in Fig. 3.12 for
deriving sequents, called conversion rules. The other rules for deriving sequents in HH are
obtained from the rules for deriving sequents in AH, presented in Fig. 3.4, replacing first-order

terms by A-terms.
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LA =, AL . DFEA= A
EF pAs..An = pAiLAL

P:TL .. Tn S propEP

YFHy=H; XF Hy=H, YFGi1=G: Yk Hy=Hy
L+-H AH;=HazAHg YFG1DH1 =Gy D Hy

E,a::rl-H1EH2

El—v.t:rlfl EV::TH2 % gz
YHG=G3 E"GzEG,; YFG1=Gs LFG =Gy
YFGIAG =G3AGy YFGiIVG=GasV Gy
LHFHy DG =HyD Gy Yk 3G =30, Ga

E,.’B o ol o G] = Gn
b2l o V.r:‘rGl = Vz:‘rG2

z¢gX

Figure 3.11: Rules defining convertible formulae.

L;Az:Hy=2e:G TFrHi=H _
YAz H=>e: G

Y2 A=>e: Gy EFGI =G _

Y, A=>e: G P

Figure 3.12: Conversion rules of HH.

As for hH, the principal part of a derivation of a sequent is the tree obtained by erasing all
derivations of auxiliary judgements.

In hH the proof-term of the endsequent of a derivation represents uniquely the principal
part of such derivation. However, in HH this is no longer the case. Notice that the proof-terms
of the sequent premiss and conclusion of a conversion rule are the same. Thus, the information
contained in a proof-term of a H H-derivation is not enough to recover uniquely its principal
part. Figure 3.13 shows two distinct derivations whose proof-terms are the same. Different
derivations whose proof-terms are the same have a similar structure of logical rules; they differ
at most in the places where conversion rules occur in the derivations.

Below is introduced the calculus # H°, which may be thought of as a calculus obtained from
HH by constraining the use of conversion rules, so that conversion rules are only allowed to
form axioms. For H H®, one may easily show that: the principal part of a derivation of a sequent
is unique, or in other words, the proof-term of a sequent represents uniquely the principal part
of a derivation of that sequent. The calculus H H® is used in Sec. 3.8.2 for defining the different
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2
T;A=e: [A/z]G2: EFRA:T 3 Sx:tkGr=Gy
;A = pairg(A,e1) : 3ewGz_ - BF 35,G1 = 35xG1 _ )
E; A = pairq(A, 61) . 33:1- Gl =

m2
T;A=>e i [A/z]G2 EF([A/2]Ga =[A/7]Gr _
LA = e [A/T]Gy T BFA:T
X A= pairq(A,el) 1 322Gy

=3 (¥x)

Figure 3.13: Two H H-derivations whose proof-terms are the same.

means of goal-achievement in HOPLP.
The calculus HH?is defined as HH except that axioms and conversion rules allowed in
H H are replaced by the following new form of axiom:

FX;Az: Ay basis LA = A,
S5, 0)z: Ay =z Ay

aziom — conv.

Theorems 3.20 and 3.21 show that a sequent is derivable in H H iff it is derivable in H H°.
Theorem 8.20 FEvery sequent derivable in HH® is derivable in HH.

Proof: Note that aziom — conv is a derivable rule of H H, it suffices to combine an axiom with

the appropriate conversion rule. m]

Theorem 3.21 FEvery sequent derivable in HH is derivable in HH®.

Proof: Firstly, we prove that every H H-derivation 7 of a sequent X; A = e : G may be trans-
formed into a derivation whose conversion rules occur only immediately below axioms or other
conversion rules. The proof follows by induction on the structure of 7. The interesting case is
where the last step of 7 is a conversion rule. (The other cases follow easily by the I.LH..) Let
w1 be the derivation of the sequent premiss. The proof follows by induction on the maximum
number of logical rules* in a branch of m;. The interesting cases are those where the last
step of 7y is a logical rule. Case the last step of m; is =D and the last step of 7 is =,, the
transformation on 7w below may be applied.

4 A sequent rule of HH is called a logical rule if it is not a conversion rule.
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P1 P2
E‘_HQEHI EFGzEGl
YFHyDGy=H, DGy =

=r

w2
YA,z Hy = e : Gy
;A = lambda(z.e1) : H2 D G2
;A = lambda(z.e1) : H; D Gy

l
o P2
E;A,x:H2=>el:G2 EI"GQEGl_

= P1
oAz Hy= e : Gy T YvrHy=H
0,z Hy = e :Gy

3; A = lambda(z.e1) : Hy D Gy

Note that, although an extra conversion step is introduced in the latter derivation of the

=D

it

{

=2

endsequent, the maximum number of logical rules in a derivation of a sequent premiss of a
conversion rule has been reduced by one. (The transformation corresponding to the case where
the last step of #; is = 3 corresponds to the transformation of derivation (%) into derivation
(x*) of Fig. 3.13.)

Other cases follow by using similar transformations on derivations, permuting conversion
rules above logical rules.

Secondly, concluding the proof of the theorem, we show that a sequent £; A = e : G having
a H H-derivation m, whose conversion rules are either immediately below axioms or other con-
version rules, is derivable in HH®. The proof follows by induction on the structure of . Case
the last step of 7 is a logical rule, the result follows easily by the I.LH.. Case the last step of 7
is either an axiom or a conversion rule, we show by induction on the number n of conversion
rules in 7 that the sequent £; A = e : G is derivable by aziom — conv in HH®. If n = 0 then

7 is of the form:
FX; Ay, : A basis

ALz A= 2 A

azriom.

Thus, the following H H°-derivation may be formed:

XA,z Abasis A=A

DALz A=z A azriom — conv.

If » > 0, consider the last step of = to be of the form:

SiAna :Hyax:A YFHi =H _
ALz cH=2:A ak

By the L.H., X; Ay, z; : H; = z : A is derivable by aziom — conv. So, either (i) z; is the same
as z and ¥ F H; = A is derivable; or (ii) Ay is of the form (z : A;,Az) and T+ 4; = A is
derivable.

Case (i), the following H H°-derivation may be formed:

FX;A,z:Hbasis TFH=A
Y. Anye:H=x: A

ariom — conv.

Note that: (a) a derivation of ¥ - H = A may be easily constructed from derivations of
Y+ Hy = H and £ + Hy = A; and (b) there is a derivation of - X; Ay, 2 : H basis, since

74

7+ § PO,



- 3; Ay, : Hy basis is derivable (for £; Ay, : Hy = @ : A is derivable) and 2+ Hy = H is
derivable.

Case (ii), the following H H°-derivation may be formed:
F3X;Ag,2: A,z : Hbasis LHAI=A
YAz Az H=>2:0 A

azriom — Conv.

Note that a derivation of - X; Ay, z : A,z : H basis may be constructed from derivations of
XA,z Ay, Hy basis and ¥+ Hy = H.

The case where the last step of 7 is =, follows by similar arguments. |

Although H HP° constrains the form of derivations allowed in HH, there are still forms of
deriving a formula G w.r.t. a basis X; A, which may be regarded as essentially the same, since
if ;A = e: G is derivable in HH® and e; is a proof-term only differing from e by convertible
A-terms, then £; A => e; : G is also derivable in H H°. This result is made precise with Definition
3.18 and Theorem 3.22.

Definition 3.18 (A-convertible proof-terms) The binary relation =) on proof-terms is the
reflexive, symmetric, transitive and compatible closure of the relation R defined as: e; Res iff

one of the following holds:

e e; = pairg(Ay,€), ez = pairy(Aq,e) and A, and A, are convertible; or

o e; = apply,(z, A1, z1.€), €2 = apply,(z, A2, x1.€) and Ay and A3 are convertible.
Proof-terms =) -related are called A-convertible proof-terms.

Theorem 3.22 Ife;=)e; then X; A => e : G is derivable in HH?® iff 32; A = e3 : G is derivable
in HH®.

Proof: We show, by induction on the structure of ey, that if 2J; A = e; : GG is derivable in HH®,
so is ;A => e : G. (The other implication is analogous.) Case e; = pairg(A1,€). Then, the
last si‘,ep of a derivation of ¥; A = e; : G is of the form:
;A= e:[A/2]Gy THA T
T, A = pairg(Ay, €) : 35:xGy

=3

Since e;=)egz, it may be shown that e; = pair(Asz, e3), where Az is convertible to A; and e=)es.
So, by the L.H., there is a H H°-derivation of £; A = e3 : [A;/2]G;. By Theorem 3.20, there is a
H H-derivation of £; A = ez : [A1/z]G4, and by using =,, since A; is convertible to Az, there is
a H H-derivation of ©; A = e3 : [A2/z]G1. Thus, by Theorem 3.21, there is a H H°-derivation
of X; A = e3 : [A2/z]G;. So, the following H H°-derivation may be formed:
;A= e3:[A2/z]Gy TFAz:T
;A = pairg(Az, e3) : 35.:Gy

=% 5

The case where e; is of the form apply(z, A, z1.€) follows by similar arguments. The other cases
follow directly by the I.H.. m]
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3.8.2 Proof-Theoretic Semantics of HOPLP

The motivation to study the calculi HH and HH" is to provide a proof-theoretic semantics
for the higher-order logic programming language HOPLP. A semantics for HOPLP is defined
below, following ideas similar to those used in Section 3.6, defining a semantics for the first-order
language FOPLP.

Definition 3.19

e A program in HOPLP is a pair (L,A), usually written X; A, where X is a signature
and A is a H H-context. A program X; A is well-formed iff the judgement - X; A basis is
derivable in HH.

e A goal in HOPLP is a G-formula of HH; a goal G is well-formed w.r.t. a program
X A iff the judgement £+ G g f is derivable in HH.

e A goal G is achievable w.r.t. a program ;A in HOPLP iff there is a proof-term e s.t.
3 A = e: G is derivable in HH; the proof-term e is called a witness for the achievement
of G w.r.t. T;A.

Usually, in logic programming, one is not only interested in knowing whether or not a goal is
achievable w.r.t. a program, but also interested in knowing all the different means of achieving
the goal w.r.t. the program.

As illustrated in Sec. 3.8.1, given a witness e for the achievement of a goal G w.r.t. a
program X; A, there may be several H H-derivations of the sequent X; A = e : G, having dis-
tinct principal parts. However, the principal parts of any two H H°-derivations of the sequent
3; A= e:G are the same. By Theorem 3.21, the calculus H H° is complete w.r.t. witnesses
for HOPLP.

Theorem 3.22 shows that if e; is a witness, for the achievement of a goal G w.r.t. a program
Y; A, and ej is a proof-term A-convertible to e; then e; is also a witness for the achievement of
G w.r.t. ¥; A. Following the view that convertible A-terms denote the same object, we regard
A-convertible proof-terms as essentially denoting the same object. So, we regard A-convertible
witnesses as the same means of goal-achievement.

A H H°-derivation is uniform linear focused if its proof-term is uniform linear focused, where
uniform linear focused proof-terms of H H® are defined as for hH, the only difference being that
first-order terms are replaced by A-terms.

Exactly the same kind of arguments used to prove Theorem 3.4 may be used to prove that
every H H°-derivation may be transformed into a uniform linear focused derivation. So, we
regard witnesses that have the same uniform linear focused form as the same means of goal-
achievement in HOPLP.
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Definition 3.20 (complete set of witnesses for HOPLP) A complete set S of witnesses
for the achievement of a goal G w.r.t. a program %; A is a mazimal set w.r.t.: (i) S consists
of uniform linear focused proof-terms e s.t. L;A =>e:G is derivable in HH®; (ii) no two

members of S are A-convertible.

Definition 3.21 (implementation of HOPLP) Animplementation of HOPLP is a method
that, given a goal G well-formed w.r.t. a well-formed program X; A, finds a complete set of

witnesses for the achievement of G w.r.t. L; A.

A method for implementing HOPLP may be described similarly to the method described
in Sec. 3.7 for implementing FOPLP, the main difference being that unification on first-order
terms needs to be replaced by unification of A-terms. Recall the clause to deal with this case
in FOPLP:

searchl(z : Ay, A, Z; A, Oin, Oouty T, Vin, Vour) if

uni fy(Ai, A, Oin, Oouty Vin, Vout, X).
Contrary to the case of FOPLP, the atomic formulae A; may have occurrences of A-terms. So,
in the case of HOPLP, a formula unify(A1, A2, Oin, Oout, Vin, Vout, X) holds iff A3 = pA;...A,,
Az = pAl...AL, S is the set consisting of the pairs (A;, Al), for 1 < ¢ < n, and the formula
unt fy(S, Oin, Qouty Vin, Vout, &), whose meaning is defined in Sec. 2.2, holds. Recall that, as
opposed to unification of first-order terms, the set of most general unifiers for unifiable A-terms
may have more than one unifier. Provided an enumeration of unifiers does not enumerate
unifiers Ooyut, and O,yy, s.t., for every variable z, Oy, () is A-convertible to Ouuy, (z) (as in the
method presented in [Hue75]), the set of witnesses found by this method does not contain A-
convertible witnesses. However, since the enumeration of unifiers may be incomplete, it may be
the case that not all witnesses in a complete set of witnesses are obtainable as ground instances
of those unifiers.

Summarising, we have suggested a method for implementing HOPLP s.t.: if a goal is com-
pound it breaks up the goal; if a goal is atomic it selects a formula from the program and
proceeds by decomposing the selected formula; higher-order unification is used to deal with the
choice of A-terms to use in rules = 3 and V =>. Again, like the search procedure presented
for FOPLP, this search procedure follows ideas similar to search procedures used as bases for
implementing AProlog.

The language HOPLP and the related calculus H H constitute the basis of the integration

of logic and functional programming suggested in the next chapter.

3.8.3 A Natural Deduction Interpretation of HOPLP

In this section is given an interpretation of HOPLP by means of the calculus N NA"°r™_  This
calculus may be thought of as an extension of the natural deduction system NN, where first-

order terms are replaced by A-terms. The logic formalised by N N"*"™ ig essentially the same
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higher-order hereditary Harrop logic formalised by HH, the difference being that, whereas in
HH arbitrary formulae are allowed, in N N2 formulae are required to satisfy a normality
constraint.

The classes of objects used in NN*""™ are the same as those of NN except for first-order
terms which are replaced by A-terms; their definitions are obtained from those in NN by re-
placing first-order terms by A-terms. (Notice that the definitions of the classes of objects of
N NAnorm  except for proof-terms, are the same as those of HH.)

The normal form of a formula F in NN Anorm  where F is either a G or H-formula, is the
formula, written as Anorm(F), obtained from F by replacing each A-term A by its expanded
normal form Anorm(A). A formula is a normal form if all its A-terms are in expanded normal
form.

The forms of judgement of N N*"r™ are (i)-(vi) of Fig. 3.10, which are common to HH,
together with sequents of the forms:

Y;Apea: H;

S AbpN G,
where the formulae in A, as well as H and G, are normal forms. The derivable judgements of
forms (i)-(vi) are the same as those of H H. The rules for deriving N NA""™_gequents are those
of NN, shown in Fig. 3.8, with the appropriate change of objects, except for the rules V— Elim
and 3 — Intr, which are replaced by the rules:

Ava Ve H SHEA:T
¥ Avapp,(a,A) : Anorm({A/z]H)

VY — Elim;

S;AppN /\norm([A/m]G) kAT
;Ao p(A,N): 3;.,G

3 — Intr.

As for HH, a proof-term differing only up to convertible A-terms from a proof-term of a

derivation is also a proof-term of a derivation, as shown below.

Definition 3.22 (A-convertible proof-terms) The binary relation =) on proof-terms is the
reflexive, symmetric, transitive and compatible closure of the relation R defined as: NyRN; iff
one of the following holds:

e Ny = (A1, N), N2 = (A2, N) and Ay and Ay are convertible; or

e N1 = appy(a, A1), N2 = appy(a,A;) and Ay and A, are convertible.
Proof-terms =)-related are called A-convertible proof-terms.
Theorem 3.23

(1) If Ny=)N, then B; A> >N : G is derivable in NN ™™ iff 53: Ap >N, : G is derivable
in N NAnorm,
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(2) If ax=raz then L; Av ay : H is derivable in NNAnorm i 53 Ab ag : H is derivable in
NN)‘""""‘.

Proof: By simultaneous induction on the structure of Ny and a;. Case Nj = (A3, N). Then,

a derivation of 3; AbpN; : G is of the form:

™
T AvpN : Anorm([A/2]G) ZFAp:T

U;Ab>(A, N) : Tor Gy 3 — Inir.

Since N;=) N3, it may be shown that Ny = (Ag, N3), where Aj is convertible to A; and N=,N3.
So, Anorm([Az/z]G,) is the same as Anorm([A1/z]G:1) and the following deduction may be
formed:
T
L; ApbN : Anorm([Ag/x]Gh) Tk Az:T

3 AD D(Ag, N) H H_WGI S ~=ilntn.

The case where @, is of the form app,(a, A1) is similar to the case above. The other cases
follow directly by the I.H.. O

If one takes two deductions in N N*"°"™ whose proof-terms are A-convertible and deletes all
the proof-term annotations one is left with the same structure. So, these two deductions may be
thought of as two variants of the same deduction in the (proof-term)-free version of N N norm,
(Recall that proof-terms are introduced in Sec. 2.3 as a means of encoding deductions.) So, we
regard deductions whose proof-terms are A-convertible as equal deductions.

Below is introduced the calculus HH*'™  that is used as an intermediate step in the
interpretation of HH into NNA"r™  Essentially, HH> ™ is a restriction of HH where all
formulae in derivations are required to be normal forms.

The classes of objects used in HH*""™ and their definitions are the same as those in HH.
The forms of judgement of HH>"°"™ are (i)-(vi) of Fig. 3.10, which are common to HH and
to NNAorm  together with sequents $; A = e : G, where the formulae in A, as well as G, are
normal forms. The derivable judgements of forms (i)-(vi) are the same as those of HH and
NN?norm  where formulae are normal forms. The rules for deriving sequents are the same as
those of H H except for conversion rules, which are not allowed, and for the rules V = and
= 3, which are replaced by the rules:

Az i Vo Hy2g s Anorm([A/z]H) = e:G ZHA:T
T A 2 i Vo H = apply,(z1, A, 22.€) : G

V=>1 $2¢A;

;A= e: Anorm([A/z]G) EHA:T
;A = pairg(A, e) : 35.,G

Theorem 3.24 Let G be a normal G-formula and A be a context whose formulae are normal
forms. Then, X; A => e : G is derivable in HH iff it is derivable in HH ™ .
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Proof: Assume ;A = e: G has a derivation 7 in H H. It may be easily shown by induction on
the structure of = that: the derivation obtained from 7 by replacing, in each sequent, formulae
by their normal forms gives a derivation in HH*""™ . For example, assume 7 contains a rule

of the form:
AR 21;A1=>8]:G1 E"GzEG}

YA =e e

==, .

Let A, be the context obtained from A; by replacing all formulae by their normal forms.
Then, by the LH., the sequent X;; Az = e; : Anorm(G)) is derivable in HH*™™™ | and so is
the sequent X1; Az => €1 : Anorm(Gy), for Anorm(Gy) is the same as Anorm(G4).

Conversely, it may be easily proved that if a sequent is derivable in HH>"°r™ then it is
derivable in HH. The proof follows by induction on the structure of derivations in H H>"°™™
Notice that the rules V = and = 3 of HH"°"™ are derivable in HH by combining the corres-

ponding rules in H H together with appropriate conversion rules. o

Theorem 3.25 The mapping ¢*, obtained from ¢, defined in Sec. 2.3.4, by replacing first-order
terms by A-terms, is a 1-1 correspondence between the uniform linear focused proof-terms e s.t.
¥; A = e: G is derivable in HH°™™ and the proof-terms N s.t. $; AboN : G is derivable in
N N/\'narm 3

Proof: Similar techniques to those used in Sec. 3.5, proving that ¢ is a 1-1 correspondence
between the uniform linear focused proof-terms e s.t. ¥; A = e : G is derivable in hH and the
proof-terms N s.t. £; AbpN : G is derivable in NN, may be used. (]

For a normal G-formula G and a context A whose formulae are normal forms, ;AN : G
is derivable in N NA"r™ iff there exists a uniform linear focused proof-term e s.t. ¢*(e) = N
and 2; A = e : G is derivable in H H, which in turn is equivalent to: 3; A = e : G is derivable in
HH®. Since we regard N N*"™_deductions with A-convertible proof-terms as equal deductions,
we may give the following interpretation of HOPLP by means of NN*"™  Given a goal G
and a program X; A, an implementation of HOPLP is any method that finds the N NAnerm.
deductions of Anorm(G) w.r.t. A;, the context obtained from A by replacing each formula by

its normal form.

3.9 Summary

In this Chapter we set up the basis for our proposal of integrated logic and functional pro-
grammming (LFPL), described in Chapter 4. We define the logic programming language
HOPLP, based on the intuitionistic hereditary Harrop logic with A-terms rather than first-
order terms (a fragment of the logic underlying AProlog). This language is defined by means of
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an LJ-based formalisation of its underlying logic, where proof-terms are used for representing
derivations. The use of proof-terms is instrumental in the definition of the semantics of HOPLP
(and LFPL), since the result of computations are proof-terms (as in EIf) encoding derivations
of goals from programs. We define achievements of goals in HOPLP as proof-terms of uni-
form linear focused derivations, that we show to be in 1-1 correspondence to expanded normal
deductions in an NJ-based formulation of the logic underlying HOPLP.
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Chapter 4

Logical and Functional Programming

4.1 Introduction

The execution mechanism in the logic programming language HOPLP is defined in Sec. 3.8.2
as a search for a derivation of a goal w.r.t. a program in the calculus HH. The calculus
H H uses the set of A-terms as the set of underlying terms, thus functions are already allowed
in HOPLP in the form of A-abstractions. Usually, in functional programming names may be
defined as abbreviations for functions [Jon87, Tho91], so that, instead of writing the entire
expression representing a function, a name may be used to refer to a function.

Section 4.2 defines the programming language HOPLPD that extends HOPLP with an abbre-
viation mechanism for A-terms. Mappings from programs and goals in HOPLPD into programs
and goals in HOPLP are shown in Sec. 4.2; both mappings are many to one. Further, it is
shown that witnesses for the achievement of a goal w.r.t. a program in HOPLPD are in 1-1
correspondence with witnesses for the achievement of the corresponding goal w.r.t. the corres-
ponding program in HOPLP. We say that HOPLPD is a conservative eztension of HOPLP, i.e.
if a goal is achievable in HOPLP a corresponding goal is achievable in HOPLPD (extension)
and if a goal is achievable in HOPLPD then the corresponding goal is achievable in HOPLP
(conservative).

Typical integrations of logic and functional programming [AKN89, Han90] may be seen as
extensions of logic programming that allow functions in the set of underlying terms to build
formulae, providing an abbreviation mechanism to refer to functions. We propose another step
in the integration of logic and functional programming, relating logical properties of functions
with the logic programming part of the language, as explained below.

Often the type of a function is regarded as a first specification for a function. However,
there are many logical aspects of functions that may not be captured within a simple theory
of types. In the context of logic and functional programming, we propose a higher interaction

between the logic and functional parts. We suggest the use of the logic language, underlying the
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logic programming part, for describing specifications of functions, coming from the functional
programming part. 3-types are used to attach a logical specification to a term of simple type,
in a similar fashion to that used in the theory of deliverables [MB93].

Consider a program P and a goal G in a logic programming language which allows A-terms,
e.g. HOPLP. Let f be a function of type 7. Let ¥ be a formula containing free occurrences of
a variable y of type T and let [f/y]F be achievable w.r.t. the program P, in other words the
function f meets the specification .. F'. Consider an attempt to achieve a goal w.r.t. P. Since
[f/y]F is achievable w.r.t. P, if a principle similar to Gentzen’s cut rule is used, the problem of
achieving G w.r.t. P may be transformed into the problem of achieving G w.r.t. the program P
together with the formula [f/y]F. In case [f/y]F is used in achieving G, such form of achieving
G from P may be shorter than alternative forms of achieving G from P not using [f/y]F. Recall
that in calculi allowing cuts, derivations with cuts may be significantly shorter than their cut-
free variants [Boo84]. Qur proposal to integrate logic and functional programming is based on
the ideas described above, i.e. uses X-types to attach logical specifications to functions and uses
a principle similar to the cut rule for accessing the logical content of a specification.

Section 4.6 defines a programming language that integrates logic and functional programming
called LFPL. This language provides a mechanism for definitions of simple type as well as
a mechanism for attaching logical specifications to terms of simple type based on the ideas
described above. The language LFPL is defined in terms of the calculus HH def presented
in Sec. 4.5. The language LFPL is shown to be a conservative extension of HOPLP. The
interpretation of proofs in LFPL as (cut-free) proofs in HOPLP is essentially a process of

cut-elimination.

4.2 Simple Definitions and the Calculus HH'

Traditionally, functional programming provides an abbreviation mechanism that allows names
to be introduced as abbreviations for expressions, thus making expressions more readable. In
logic programming a similar idea may be used by introducing an abbreviation mechanism for
terms of simple type to allow the writing of clearer logic programs. This section presents the
calculus H H' which can be seen as an extension of HH with an abbreviation mechanism for
terms of simple type.

A simple definition is a triple (z, A, 7), written as & =4; A : 7, where 2 is a variable, A is
a A-term and 7 is a simple type; z is called the definiendum of the definition, A is called the
definiens of the definition and 7 is called the type of the definition.

Simple definitions are declared in the context-part of a program. Contezrts in HH' are
lists. The following notation is used for representing lists: () represents the empty list; (£, L)
represents the list whose head is E and whose tail is the list L; (L, E') represents the list obtained
from the list L by adding F as last element; (L3, L) represents the list obtained by appending
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the list Ly at the end of Ly; the external parentheses are dropped when there is no danger of

confusion. In HH', contexts A are lists defined as follows:
Al | Aymis H' | 8@ =4, AT,

where H is a meta-variable ranging over the set of H-formulae of HH. The notation 2 ¢ A
means that there is no H s.t.  : H is an element of the list A and there is no simple definition
in A whose definiendum is z.  The set of all definienda of simple definitions in a context
A is written as definienda(A). Definienda of simple definitions may be used in building
terms of simple type. The intended meaning for a simple definition in a context of the form
(A1, =4y A:7,A) is that in A; any occurrence of # may be replaced by A. Notice that the
order of the components in a context is important. The other classes of objects in H H' are the
same as those of HH and they are defined as in HH.

The forms of judgement of H H' are presented in Fig. 4.1. After each form of judgement of

Judgements of HH' Judgements of HH

(i) - X signature 3 signature
(i) XEAFAr ZFA:T
(iii) XE;AFAbA ZFAb A
(iv) Z;AFApZA Tk AvrA
(v) S;AFA=sA A=A
(vi) FXZ;A basis - 3; A basis
(vii) X;AFAeaf E-Aaf
(viii) X;A+HAf ZF-HbAf
(ix) Z;AFGgf SFGgf
(x) ;AR A=A Lk A=A
(xi) X;A+-H=H Y+ H=H
(xii) X;AFG=G LFG=G
(xiii) T;A=>e:G S A=ze:G

Figure 4.1: Judgements of HH' .

HH' is the corresponding form of judgement of HH . (Recall that the definition of contexts A
is different in HH' and in HH .) Since definienda of simple definitions may be used in building
terms of simple type, the definition of the terms of a simple type depends upon signatures as
well as contexts. The notion of reduction on terms of simple type also depends on the context,
since simple definitions may be used to replace definienda by definientia.

The derivable signatures of H H' are the same as those of HH. The rules defining derivable
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judgements of forms (ii), (iii) and (vi) are shown in Fig. 4.2. The rules defining derivable
judgements of forms (iv), (v) and (vii)-(xiii) in HH' are similar to the rules defining derivable

judgements of the corresponding form in H H; they are shown in Appendix C.

FX,z:7; A basis
NooniAbasr

FE AL =4, AT, A basis
YA,z =4, Al Mgl T

To:m;AFA:1m + XA basis ¢ S AFA:mn =971 DARA T
S AFA Az TA:ToTn SiAFAA; i 7T

F XA x =4y AT, A basis
AL = AT, Az A

Yo AFA:n D AFA T

S AT Dainhh b hfalh, " F 0

Tz:1;AF A, Ay F I A basis

;AR Az i Avrog, AT A z¢X
YiAFADbsL, Ay AR A T B AFAp, A DA A TN
E; A AAy &7, A1A» E; Al AzA by AzAl
I X signature F 2;Abasis X;AFHhAf A
F 350 basie FO Rl s R
F ¥ A basi : :
Y;Abasis Y;AFA:T sl Vad A

F XA,z =4, A:Tbasis

Figure 4.2;: Rules for deriving judgements of forms (ii), (iii) and (vi) of HH'.

In Fig. 4.3 are defined the operations of substitution of a A-term A for a variable z in a
proof-term e (notation [A/z]e) and in a context A (notation {A/z]A). These operations of
substitution of a A-term for a variable in an object may be thought of as the application of the
substitution operation to the A-terms used in forming that object. Note that the side conditions
on the definitions of Fig. 4.3 may be satisfied simply by renaming of bound variables.

Let Object be either a G-formula or a H-formula or a proof-term or a H H'-context. The
notation [A;/z1][Ag/%2]...[An/Ta]Object stands for [Ay/z1]([A2/z2])(...([Az/2n]Object)...)). Let
A be a H H'-context having = simple definitions, 1 =u; A1 : 71, vy Tn =des An @ Tn, Where for
1 < i < j € n the i-th definition occurs in A before the j-th definition. The notation [A]Object
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is an abbreviation for [A;/z1]...[An/z,]Object.

The mapping u, from lists to sets, is defined as the mapping that applied to a list returns the
set consisting of the elements of the list. The mapping &, from H H'-contexts to H H-contexts,
is defined in Fig. 4.4. The mapping R, from H H'-contexts to H H-contexts, is defined as the
composition of £ with p.

The following lemma shows that in the absence of simple definitions HH' and HH are es-
sentially equivalent, the only difference being that H H’-contexts are lists whereas H H-contexts

are sets.

Lemma 4.1 Let - X; A basis be derivable in HH', where A has no simple definitions. Then,
2; A = e: G is derivable in ITH' iff X; u(A) = e : G is derivable in HH.

Proof: Two implications must be proved. If there is a H H’-derivation 7 of £;A = e: G,
then it may be easily proved, by induction on the structure of m, that there exists an HH-
derivation of X; u(A) = e : G, since in the absence of simple definitions each rule in HH' has a
corresponding rule in HH,

If there is a H H-derivation 7 of X; u(A) = e : G then it may be proved, by induction on
the structure of =, that ;A = e : G is derivable in HH', for every H H'-context A; s.t.

1(B1) = p(A). W

The following lemmas are used as auxiliary lemmas in proving that HH'is a conservative

extension of HH.

Lemma 4.2 Ift 3;A;,2 =4, A :7,A; basis is derivable in HH' then - 5; Ay, [A/2]A; basis
is derivable in HH'.

Proof: Let « be a HH'-derivation of - X; Ay, 2 =,4; A:7,Ay basis. The proof follows by

induction on the structure of 7. We consider only the case where 7 is of the following form:

US| 2
X ALT =gy AT, Ag basis DAz =4 AT, An - HAf
- E;Al,a: def A: T,Azl,ml : H basis

where Ay = (Azy, 21 : H) and =y ¢ (A, % =4ey A:7,A21). (The other cases follow by similar

arguments.) Since m; is a subderivation of m, by the I.H. there is a derivation of Judgement 4.1.
F 35 Aq, [A/2)Ag; basis (4.1)
From m,, we may construct a derivation of Judgement 4.2, as sketched below.

LAy [A/z]Ag & [A/z]H hf (4.2)
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[A/z](PAi...An) =acs P[A/Z)A1.[A/Z]AL
[A/2)(G D H) =4y [A/2])G D [A/z]H
[A/z)(H1 A Hp) =4y [A/z]H1 A[A /2] Hy
[A/2](Voyer H) =acs Voo [A/z]H, 2 # 21,21 € A

[A/2](G1 A G2) =aes [A/2]G1 A [A/2]Go
[A/2)(G1V G2) =uey [A/Z]G1 V [A/2]G2
[A/z)(H D G) =us [A/=]H D [A/2]G
[A/2])(32,:+G) =dey Fuy:r[A/2]G 2 # @1, 21 € A
[A/2)(V21:rG) =des Vau:r [A/2]G 2 # 21,21 € A

[A/z]pair(ey, €2) =aey pair([A/z]ey, [A/z]es)

[A/z)inl(e) =4e; inl([A/z]e)

[A/z)inr(e) =4e; inr([A/z]e)

[A/z]lambda(z;.€) =, lambda(z1.[A/z]e),z # 21,21 € A
[A/z)lambday(zy.€) =4 s lambday(zy.[A/z]e), z # 1,2 € A

[A/alpairy(Asy €) =aey pairg([A/2)Ar, [A/]e)

[A/z]z) =aes 1

[A/z]splitl(zy, 2.€) =4c; splitl(zy, z2.[A/T]E), T # 22,22 € A
[A/z)splitr(z1, x2.€) =45 splitr(z1, z2.[A/2Z]€), 2 # 22,22 € A
[A/z)apply(z1, €1, T2.€2) =4y apply(z1, [A/z]e1, 23.[A/T]E2), ® # T2, 22 € A
[A/z)applyy(z1, A1, T2-€) =acs applyy(21, [A/2]A1, z2.[A/2]€), = # T2y 22 € A

[A/2])() =aes )

[A/2](zy : H,A) =4ey =1 2 [A/]H, [A/2]A

[A/z)(21 =say A1 2 73 A) =usp (81 =aep A1 2T, 8),2 =24

[A/z])(21 =aes A1 2 T, D) =aey (21 =aey [A/2]A 7, [A/2]A), 2 # 21 and 2 € A

Figure 4.3: The operations [A/z]G, [A/z]e, [A/z]A.
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E(Q) =aer O
€(z =aey A 11, A) =4y £([A/]A)
E(z: H,A) =4y z: H,E(A)

Figure 4.4: Mapping &.

Let H be an atomic formula pA;...A,. (The cases where H is a compound formula are

simple.) Then, m must be of the form:

w11 Tin
LN =, AT B FB T s BB =0 AT 001 s T,
;AL =g ATy A1 FpArLAnaf
;A =4y AT, An FpAyL AL RS

where p: 7 — ... > T, = prop € P.

For each A; : 7;, where 1 < ¢ < n, a derivation of
B Ay, [A/z]Ag A /z]A; i
may be easily constructed from the derivation my; of
LA =g Air, B F Kein.

For example, consider the case where the last step of 7y; has the form:

F ;AL 2 =45 A:T,As basis
A=y, A, AnEatr '

By the I.H. there is a derivation of
335 Ay, [A/z]Agy basis.

Since F X; Ay, 2 =45 A : T, Az basis is derivable, it is easy to show that there is a derivation
of ;A1 F A : 7. Thus a derivation of ¥; Ay, [A/z)A21 F A : 7 may be easily constructed. Note
that [A/z]z = A. (Cases corresponding to other forms of my; are simpler.)

From derivations of Judgements 4.1 and 4.2, the following derivation may be formed, as

desired.

F X5 Ay, [A/z]A2) basis X5 Ay, [A/z]Az b [A/z]H hf
3 Ay, [A/z]Ag, 21 ¢ [A/z] H basis

since z1 & (A1, [A/z]Aq;). Note that [A/z](Az21, 1 : H) = ([A/z]A21,21 : [A/z]H), by defini-
tion.
O
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Lemma 4.3 Lett Ay, z =4, A: 7,7 basis be derivable in HH'. Then, if the judgement
AL [A/z]Az b [A/z]Ay i T
is derivable in HH' then the judgement
Bihne =g NiT,82F Ay iy
is derivable in HH'.

Proof: The proof follows by induction on the structure of A;.
Consider A; to be a variable. If Aj = z then the following derivation may be formed

F XA, % =4 A:T,A basis
DA =ghp Nt Do

If A, is a variable z; different from = then one of the following cases must hold: (i) X is of the
form £y, : 71; or (ii) A, is of the form Ay, 2y =4y A2 : 71, Ar2; or (iii) [A/z]Ag is of the
form Agj, ®1 =4y Az : 71, Agq. Case (i) holds, the following derivation may be formed:

FXg, 21T AL T =gy AT, A basis
Yuhrzpim Ay e =, AT, Aoyt

Case (ii) holds, the following derivation may be formed:

35 A1y @1 =aey A2 2 71y D12, T =49 A1 T, A3 basis
3 Ay By =ger Mo D12, 2 =gp Ai T, 8 F 2y i1y

Case (iii) holds, it may be shown that A; must be of the form Agsy, 21 =4.5 Az : 71, Aaz, where
[A/z]A31 = Agy, [A/7]As = Ap and [A/x]A32 = Ajg. So, the following derivation may be

formed:
F 25 A1, 2 =45 A:T,Azy,®1 =405 A3 1 T1, Asg basis

UiAL,Z =45 A7, A31,%1 =gy A3 i 11, D322 iy

The cases where A; is not a variable follow by direct application of the [.H.. ]

Lemma 4.4 Let 5;A1,2 =4, A:7,A; = €: G be derivable in HH'. Then, the sequent
; Aq, [A/z]A2 = [A/z]e: [A/z]G is derivable in HH'.

Proof: Let m be a H H'-derivation of X; A,z =4, A:7,A7=>e:G. The proof follows by
induction on the structure of #. Some cases are shown below.
Case last step of 7 is an axiom of the form:

F35A1,% =45 A:T,001,%; ¢ A, Ay basis
E;A;,x ey A: T,A2,2; : A,Azg =z A

axiom,

where Ay = Ag1, 71 : A, Agg, e = 21 and G = A. Then, Lemma 4.2 shows that
FX; Ay, [A/z]Az, 2 : [A/T]A, [A/x]Ag2 basis
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is derivable. The following derivation may be formed:

F X5 Ay, [A/z]Ag, 2y [A/z]A, [A/z]Agg basis
35 Ay, [A/(C]Az],.’l?] $ [A/.’E]A, [A/x]Azg = 23 [A/:L‘]A

azriom.

The proof of this case is concluded by using the following identities:
[A/x]Az = [A/I]Azl, Ty s [A/:L‘]A, [A/E]Azz;
[A/z]zy = 2.
Case last step of 7 is = 3:

TiAn =gy AT, Ag=> e : [A1/y]G1 B;Anz =4y AT, Ak A :my

51,8 =4y A: 7,83 = pairg(Ay,e1) 2 Jyn G =3

where e = pairy(A1, €1) and G = 3., G;. From a derivation of
2ol =g Az Ty A Ay 2Ty
we may construct a derivation of
T Aq, [A/z]Az - [A/z]A 2 Ty

(A sketch of this construction is given in the proof of Lemma 4.2.) By the I.H., there is a

derivation of
T A1, [A/2)Az = [A/z]es : [A/2])([A1/Y]Gh).
Using the identity
[A/z)([A1/¥]Gh) = [[A/]A1/y]([A/2]G),
which may be shown by using the substitution property of AST, the following derivation may
be formed

I Ar, [A/z]Ag = [A/z)er : [[A/2]A /Y] ([A/2]G1) Z; AL [A/2z]Ag b [A/z]A 71 3
5 Ay, [A/z)Dz = pairg((A/=]A1, [A/Z]er) : By [A/2]Ca =

The proof of this case is concluded by observing that the following identities hold:

[A/z]pairy(Ay, e1) = pairy([A/z]Ay, [A/z]e1);
[A/2)(3y:ir, G1) = Fyery [A/2] G-

The case where the last step of w is a rule V = follows by similar arguments. The other

cases follow directly from the I.H.. a

Lemma 4.5 Let 3;A1,2 =4, A:7,A2 F G gf and T; A4, [A/2]A2 = [A/z]e : [A/2]G be de-
rivable in HH'. Then, ¥;A1,2 =4y A: 7,A3 = € : G is derivable in HH'.
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Proof: Let m be a H H'-derivation of X; Ay, [A/z]A2 = [A/z]e : [A/z]G. The proof follows by
induction on the structure of .

Case last step of 7 is an axiom of the form:
(o E, Al, AZI, Xy : A, Azz basis
A1, 082,21 1 A D =z A

aziom,

where [A/z]Az = (A21, 21 : A, A22), [A/z]e = 21 and [A/2]G = A. It is easy to show that: A,
must be of the form (Asy, z; : Ay, Azg), where [A/z]Az = Agy, [A/z]A1 = A, [A/z)A32 = Agg;
and e = z1. By hypothesis, £; Ay, 2 =4.; A : 7,A2 F G gf is derivable, then there is a derivation
of F Z; Ay, @ =45 A : T, Az basis. Since [A/z]A; = A, a derivation of

;A e =4 AT, M2 A=A
may be constructed. Thus, the following derivation may be formed:
FXAL T =4 AT, basts

5 81,8 mag AT, Bz = 71 A O™ AL mmag AT, Ak A= A _
SiAnT=ag AT, A>3yt A i

{ -

Case last step of 7 is a rule = 3 of the form:
25 A, [A/Z]Ag = €;: [Al/y]G] Ay, [A/:B]Ag AT
; Ay, [A/z]Ag = pairg(Ay, e1) : 3y, Gh

=3,

where [A/z]e = pairy(A1, e;) and [A/z]G = 3,.,,G1. It is easy to show that: (i) e is of the form
pairy(Az, e2), where [A/z]A2 = Ay and [A/z]e; = e;; and (ii) G is of the form 3,.,, G2, where
[A/z]G2 = Gy. The identities below hold:

[A1/y]G1 = [[A/2]A2/y)([A/=]G2) = [A/=]([A2/Y]G2);

[A/z]es = €.
So, by the I.H., there is a derivation of

E; Al, T =gy A T Az = €3 : [Az/y]Gz.
Since F X; A1, @ =44 A : 7,3 basis is derivable, by using Lemma 4.3, from the derivation of
Z; Ar, [A/z]Ag F[A/z]Ag 2 Ty,
we may construct a derivation of
S50, =4 AT, F ATy

Thus, the following derivation may be formed:
2; A],m =ges A: T, Ag = eg ! [Ag/y]Gz E;AI,.’D =def A T,Ag o A2 T
T A1, % =gy A: 7,09 = pairg(Ag, €3) : 34, G2

=3

The case where the last step of = is a rule V = follows by similar arguments. The other

cases follow directly from the L.H.. o
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Theorem 4.1 Let 3;A - G gf be derivable in HH'. Then, the sequent ;A = e:G is
derivable in HH' iff the sequent £; R(A) = [Ale : [A]G is derivable in HH.

Proof: The proof follows by induction on the number of simple definitions in A.

Case A contains no simple definitions. Then, by Lemma 4.1, £; A = e : G is derivable in
HH'iff ©; p(A) = e : [A]G is derivable in HH. The proof of this case is concluded by observing
that, for A contains no simple definitions: (i) R(A) = p(€(A)) = p(A); and (i) [Ale =e.

Case A contains n > 0 simple definitions, A may be written as A;,z =,4; A : 7, Ay, where
A, contains no simple definitions.

(i) By Lemma 4.4, if

I TR W O R £
is derivable in HH' then
L Ay, [A/z]Ar = [A/z]e : [A/2]G

is derivable in HH' .
(ii) By Lemma 4.5, for 3; A - G gf is derivable, if
; Ay, [A/z]Ag = [A/z]e: [A/2]G
is derivable in H H' then
A z=4,A:1,A3=>e:G

is derivable in HH'.
So, from (i) and (ii), since (A1,[A/z]A;) has one simple definition fewer than
(A1, =4ey A:T,A2), by the L.H.,

I Ay [A/z]Ar = [A/z]e: [A/2]G
is derivable in HH' iff
I R(Ay, [A/2]A2) = [Ar, [A/2]As)[A/z]e : [Ar, [A/]A)[A/2]G

is derivable in H H. For concluding the proof it suffices to observe that the following identities
hold:

N(Ah [A/x]AZ) e N(Aly T Zdef A: T, A2);

[A1, [A/z]AZ)[A/z]e = [A1, 2 =4y A 2 T, Ag]e;

(A1, [A/2]AR)[A/2]G = [Ar, @ =4y A7, AS]G,

since Ag contains no simple definitions. a

Theorem 4.1 gives a means to interpret a logic programming language based on the calculus
HH' into HOPLP. Consider the programming language HOPLPD based on HH' defined as

follows.
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e A program is a pair (X, A), usually written X; A, where ¥ is a signature and A is a
H H'-context; X; A is a well-formed program iff - I; A basis is derivable in HH'.

e A goalis a G-formula; G is a well-formed goal w.r.t. a program S;Aiff ;A G gf is
derivable in HH'.

e A goal G is achievable w.r.t. a program I; A iff there exists a proof-term es.t. 5;A = e: G
is derivable in H H'; the proof-term e is called a witness for the achievement of G w.r.t
3 A

Theorem 4.1 guarantees that for every witness for the achievement of [A]G w.r.t. X;A in
HOPLP there is a witness for the achievement of G w.r.t. X; A in HOPLPD. Now, a complete
set S of witnesses for the achievement of a goal G w.r.t. a program X; A in HOPLPD is
defined as a maximal set s.t.: (i) the elements of S are uniform linear focused proof-terms e
s.t. 3; A => e : G is derivable in HH'; (ii) no two members €;, e; of S are such that [Ale; and
[Ales are A-convertible. Then HOPLP and HOPLPD may be regarded, in logical terms, as
essentially the same language. The differences between the two languages are the mechanisms
provided for writing programs and goals, e.g. HOPLPD allows an abbreviation mechanism for
terms of simple type whereas HOPLP does not have such mechanism.

The programming language LeFun, as described in [AKN89)], is a language that integrates
logic and functional programming. LeFun provides a mechanism for simple definitions that is
essentially the same as the mechanism for simple definitions of HOPLPD. In LeFun a program is
essentially a list of logical formulae together with a list of definitions of the form f =, ¢, where
f is an identifier and ¢ is a A-term. The computation mechanism is called residuation, which is
essentially a form of resolution, where not all unification problems on A-terms are solved; those
unification problems involving function application to arguments that are not fully instantiated

are left to be verified as constraints.

4.3 The calculi HH% and HHCW

So far, the achievement of a goal G w.r.t. a program P has been considered to be a search for
a special form of derivation of a sequent P = G in calculi having no rule similar to Gentzen’s
cut rule [Gen35). The cut rule in Gentzen’s LJ may be written in the form:

'=sC IC=18B
I'= B

cut,

where T is a set of formulae and B,C are formulae. The formula C is called the cut formula.
This rule may be read as follows. For proving that B is a logical consequence of I it suffices to
prove that there exists a C s.t. C is a logical consequence of I" and B is a logical consequence

of T,C.
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Using cuts for constructing derivations allows much shorter derivations of some judgements,
see e.g. [WW92]. In [Boo84] are shown formulae whose shortest cut-free derivations are expo-
nentially longer than their derivations using cuts.

The problem of using a cut rule in proof-search is to decide when and how a cut rule should
be applied; in other words, what the adequate lemmas are to use in proving a theorem and
when they should be applied. Usually, the lemmas are established based on experience.

In logic programming lemmas should not be established during proof-search. Instead, the
programmer should know what lemmas may be useful and define names for the proofs of those
lemmas. Then, during the search for a proof of a formula these formulae, previously established,
may be used several times without having to be proved. In parallel to a mathematician who
wants to prove a theorem, in order to achieve a goal, firstly some lemmas are proved and then
those lemmas are combined to achieve the initial goal.

In this thesis the ideas described above are realised in the integrated logical and functional
programming language LFPL, defined in Sec. 4.6. The semantics of LFPL is described in
terms of the proof theory of the calculus HH def , defined in Sec. 4.5. The language LFPL may
be interpreted into HOPLP by means of an interpretation of HH def into HH that essentially
corresponds to a process of cut elimination, as shown in Sec. 4.5.

This section defines the calculi HH S and HHC%'; they are essentially extensions of
HH and HH', respectively, with a cut rule. These calculi are used as intermediate calculi
in the interpretation of HH def into HH described in Sec. 4.5. This interpretation is also used
in relating the programming languages LFPL and HOPLP. The remainder of this section defines
the calculi HH % and HH%' and presents some results needed for interpreting HH def into
HH.

As noted above, the calculus HHC% is an extension of HH with a cut rule. The cut rule
may only allow cut formulae which are simultaneously H-formulae and G-formulae, otherwise
one or more premises of this rule would be ill-formed sequents.

All the classes of objects used in H H are also used in HH ¢%; their definitions are the same
except for the class of proof-terms e. The proof-terms e of HH cul are all the proof-terms of
H H together with the proof-terms that may obtained by the rule: if e;,e; are proof-terms of
HHC% then let © = e; in ey is a proof-term of HH ¥ where z is a variable. Proof-terms of the
form let x = e; in ey are used to annotate cut rules. In proof-terms of the form let 2 = e; in ey,
2 is a binder of scope e3; any occurrence of  in eg is said to be bound. As before, proof-terms
are equal up to renaming of bound variables.

The operation [A/z]e of substitution of a variable by a term of simple type on HH cul broof-

terms is defined as for H H, with the following extra case to deal with the let constructor:

[A/z](let z1 = e in ;) =4; (let 1 = [A/z]ein [A/z]e1), © # 71, 21 € A.
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The class I of intersection formulae is defined by the following grammar:
Lo A LIAT] I D FiVenl.

The class of I-formulae is the maximal subclass s.t. it is simultaneously a subclass of H-
formulae and a subclass of G-formulae.

The forms of judgement in HH cul 5re the same as those in HH. The derivable judgements
of HHCY% are the same as those of HH except for sequents. For constructing derivations of
sequents in HHC% all the rules of HH are allowed, as well as the cut rule, presented in Fig.
4.5.

Y;A=e:] D;Ax:I=>e:G
Y;A=>letz=¢eine; : G

cut, z ¢ A

Figure 4.5: Cut rule of HHCUL,

The result below shows that H H% is an extension of HH .
Lemma 4.6 If5;A = e: G is derivable in HH then ©;A = e : G is derivable in HHCY¥,

Proof: The proof is by induction on the structure of the derivation of ;A = e: G in HH.
Notice that all the rules allowed in HH are also allowed in HH€¥¢, a

Now a result converse to Lemma 4.6 is addressed, i.e. a mapping from derivable sequents in
H HC¥% jnto derivable sequents in HH.

Let HHC¥ be the calculus obtained from HHC% by replacing the conversion rules and

axioms by the new form of axiom, aziom — conv, shown in Fig. 4.6.

FX;A,z: Abasts LHA=A;

) - v
S Az:A= 3 A SISV ot

Figure 4.6: The rule aziom — conv.
The following result is an analogue to Theorem 3.21 relating HH and HH®.
Theorem 4.2 A sequent is derivable in H HCU iff it is derivable in H HCU",

Proof: If a sequent is derivable in HHC%" then it is derivable in HHC% since aziom — conv
is derivable in HH ¥, ;

In order to prove the other implication, first is proved that: every HH cut_derivation 7 of a

sequent £; A = e : G may be transformed into a derivation whose conversion rules occur either

immediately below axioms or other conversion rules. The proof is obtained, analogously to
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Theorem 3.21, by showing that every conversion rule may be moved above both logical rules

and cuts. For example, consider 7 to have the form below.

T m2
SiA= el ;A z:I=e:Gh ; T3
Y;A=pletx =e;inez: Gy o skGi 2@ _
YiA=letz=e1ine: G

e

Thus, the following derivation may be formed.

m2 3
o E;A,ZHI:}eg:Gl E"G15G=
S;A=e I S;Az:1=>e:G -
SiA=zletz=€61iney: G RH

Secondly, following the proof of Theorem 3.21, it may be shown that: every sequent derivable in
HHC% by using only axioms and conversion rules, is derivable in HHC% by using aziom —

conv. a

It may be readily shown that in H H %"’ the proof-term of a derivation identifies uniquely
the derivation, up to renaming of bound variables.

In order to prove cut elimination first is shown the admissibility of a form of contraction in
HH. Since proof-terms are being used for representing derivations, the transformations on
derivations required for showing admissibility of contraction are captured at the level of proof-
terms. If proof-terms are regarded as the expressions of a functional language, see [Wad93],
then the operation of contraction on proof-terms corresponds to substitution of a variable by
another variable inside an expression.

The operation {z/z}e of contraction on proof-terms is defined in Fig. 4.7.

Theorem 4.3 (Contraction Admissibility) Let ¥ - H = H; be derivable in HH. If
A,z :H,2y: Hy = e: G is derivable in HH then $; A,z : H = {z/z1}e : G is derivable in
HH.

Proof: Let 7 be a derivation of ¥;A,z: H,z;: Hy = e:G in HH. (By Theorem 3.21 it
suffices to concentrate on HH°.) The proof follows by induction on the structure of 7. Some
cases are considered below.

Case last step of 7 is axziom — conv of the form:

3 A,z Hyxy: Hy basis 2+ Hy = Hy
S5AxH,zy:Hy=x: Hy

ariom — Conv.

Then, from a derivation of the judgement

F3; A,z H 2,y : Hy basis

96




{z/z1}pair(e1, e2) =4, pair({z/z1}e1, {z/z1}e2)

{z/z1}inl(e) =4, inl({z/z1}e€)

{z/=1}inr(e) =4, inr({z/z1}e)

{z/z1Hambda(zy.€) =,., lambda(zs.{z/z,}€), = # @3, 1 # 22

{z/z1}pairg(A, ) =a., pairg(A, {z/z1}e)

{z/z1Hambday(z2.€) =.., lambday(z3.{z/z1}€), = # z2, 71 # 22

{3/31}31 Zdez T

{z/z1}22 =4; 22, 1 # 22

{z/z1}splitl(zy, z2.€) =, splitl(z,z2.{z/z1}e), = # T2, 21 # 22
{z/z}splitl(za, x3.€) =, splitl(z2, z3.{z/x1}e), 1 # T2, © # 23, T1 # =3
{z/z1}splitr(z1, x2.€) =4, splilr(z,z2.{z/z1}€), = # 23, T1 # z2
{z/z1}splitr(z2, z3.€) =4, splitr(za, z3.{z/z1}e€), T1 # 22, = # T3, 1 # ¥3
{z/z1}apply(z1, e, z2.€1) =ucy apply(z, {z/z1}e,z2.{x/z1}€1), T1 # 22, T # z2
{z/z1}apply(z2, e, x3.61) =ac; apply(zs, {z/z1)e, 23.{x/z1}€1), &1 # 2, ® # 23, 71 # 23
{z/z1}applys(=1, A, v2.€) =u; applyg(z, A, z2.{x/z1}€), T # T2, 71 # =2
{z/z1}apply,(z2, A, x3.€) =40y applyg(z2, A, z3.{x/21}€), = # 22, z # 33, 21 # 23

Figure 4.7: Contraction on proof-terms.

a derivation of  X; A,z : H basis may be easily constructed. From the derivations of
3+ H = H; and X+ Hy = H, it is simple to construct a derivation of X - H = Hj. Thus the
following derivation may be formed:

F3X;A,2: Hbasis L H=H,
S0,z H=z:Hy

azTiom — conv.

Note that {z/z;}z;, = =.
Case last step of 7 is of the form:

S;Ax:H,zy: H,z9: Hy=> e: G -
A,z : Hyzy : Hy = lambda(zq.€) : H, D G

2,

where z3 ¢ (A, 2 : H,zy : Hy). By the L.LH., there is a derivation of
TiAz: Hyzg: Hy = {z/z1}e: G.

Thus, the derivation below may be formed.

Az Hyaq: Hy= {z/z1}e: G
LA,z H = lambda(zg.{z/z1}e) : H, D G

=2

Note that {z/z, Hambda(zs.€) = lambda(z,.{z/z,}e), since z # z, and z; # z3.
Case H; is of the form G2 O H, and the last step of m is of the form:

;A z:Hy2y:GaDHy=>e: Gy L;Ax:H,zy:G2D Hyyz9: Hy = ey : G

o=
A,z Hyzy : Gy D Hy = apply(zy,e,22.6;) : G .
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where 22 & (A,z: H,zy : G3 D Hy).
Since the judgement ¥ - H = H, is derivable, it must be the case that H is of the form
G3 D Hj and the judgements ¥ - G3 = G and X\ H3 = Hj are derivable. By the I.H., there

are derivations of the sequents:
L;A,2:G3 D Hs = {z/z1}e: Gy
T;A,2:Gs D Hsyze: Hy = {z/z1}e1 : G.
Thus, Derivations 4.3 and 4.4 may be formed.
L;A2:Gs D Hz= {z/z1}e: Gy LFGa=Gs _

=yt

I;A,2:G3 D Hy= {z/z1}e:Gs (4.3)
Y;A,2:G3 D H3,z9: Hy = {z/z1}e1:G LFHy=H; _
L;A,z:G3 D Ha,zq: H3 = {z/z1}e; : G - (4.4)

By using D=>, the Derivations 4.3 and 4.4 may be put together to form a derivation of the

sequent
LAz Gy D Ha = apply(z, {z/z1}e, z2.{z/z1}e1) : G.

Note that {z/z;}apply(z1, e, z2.€1) = apply(z, {z/z1}e, z2.{x/z1}e1), since  # z; and z; # 2.

Proofs for the cases where 7 is of any other form follow by similar arguments. (m|

In Fig. 4.8 is presented a list of rules on H H % -proof-terms; these rules encode the trans-

formations on derivations used below for proving admissibility of the cut rule.

Definition 4.1 (RScu: ) RSeu is the rewriting system on HH c“t~proof-terms consisting of
the rules in Fig. 4.8. The rewrite relation induced by RS,y is called bgyi. A proof-term e; is

reducible by RScyt to a proof-term eq if the pair (eq,e3) is in the transitive closure of deys.

Theorem 4.4 (Cut Elimination) Let Z;A = e : G be derivable in HH%, Then, there ex-
ists e1 s.t. ;A => ey : G is derivable in HH and either e is equal to e; or e is reducible by
RS,y to e;.

Proof: The proof sketched below follows closely the proof in [Dra88], showing admissibility
of the cut rule in the system GHPC.

Let 7 be a H H %! _derivation of ;A = ¢ : G. Then, If 7 has no cuts then it may be easily
proved that ;A = e : G is derivable in HH.

Otherwise, the proof follows by induction on the number of cufs of maximal degree in =,

where the degree of a cut

m1 T2
Yuldi=e:l DAz l=e:Gy
Y A= letx =€ iney: Gy

cut
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let z = e in pair(ey, e2) > pair(let z = ¢ in e;,let z = e in e3)

let z = e ininl(ey) pinl(let z = e in e;)

let z = eininr(e) binr(let z = e in e;)

let 2 = e in lambda(z;.¢;) > lambda(z 1 let z =einey), z £ @1, #1 € e

let z = e in pairg(A, e1) b pairg(A,let z = e in ¢;)

let ¢ = e in lambdagy(zy.€1) > lambda,(z  let z =einey), z #21, x1 Ee
let z =z inep {z;/z}e

let © = splitl(zy,z2.€) in ) b splitl{zy,zolet x=cine)), s # 22, za € €1
let z = splitr(zy,x2.€) in e b splitr(x),zzlet z=ceine), c# T2, T2 € &1

let © = apply(z1,e,xz.€1) in e b apply(z1, e, x2.let x = €1 ine3), T £ xa, T2 € €3
let z = apply,(z1, A, z3.€) in e; bapplyy(z1, A, z2let z = einey), z £ za2, T2 E €1
letz=cinzbwy, o # o

let z = e in splitl(zy,x2.e1) b splitl(zy, o let z=ciney), s £ 21,z F z2, 22 ¢ e
let © = e in splitr(zy, z2.€1) b splitr(zy,zelet z=cine), s £ 21, s # g, 22 ¢ e
let x = e in apply(z), ey, zs.ea)>

apply(z1,let z =einey, zaletx =einey), s # 21, # 23, 22 e
let z = e in applyy(z1, A, z2.1)>

applyg(z1, A, zzlet z =einey), s #z, s F 32, T2 ¢ €

let = = pair(ey, e2) in splitl(z, z;.e3)>
let 2y = e; in (let © = pair(e1,ez) ines), z £z, 21 € e, 21 € €2
let ¢ = pair(ey, e2) in splitr(z, z1.e3)>
let z; = eq in (let © = pair(ey,ez) ines), z # z1, ¢1 € e1, 21 & €2
let » = lambda(zg.e3) in apply(z, ey, z2.e9)>
let zp = (let z3 = (let z = lambda(z3.e3) in e1) in e3) in (let ¢ = lambda(xa.es) in e3),
T # zy, 29 € e3
let z = lambdag(x;.€) in applyy(z, A, 22.€1)>
let x3 = [A/z1]e in (let * = lambdag(xy.€) ine1), T # xa, 2 E €

Figure 4.8: Rules of the rewriting system RScy;:.
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is defined as the triple (c, hy, h3), where: ¢ is the logical complexity of the cut formula I, i.e.
the number of ¥, A, D in I; h; is the height of 7;; and h; is the height of w2. (The lexicographic
ordering from the left is used to compare degrees of cuts.) Let us assume that the cut rule above
is a cut of maximal degree in w. We consider below some forms for #; and 72 and show how to
transform such derivations into derivations whose cuts are of lower degree.

Case 7 is of the form:

S Ay 2y Holisiy TiFHal .
S50z i H=> 2y 0 T GEIOTR = CONY sy - Ag.zy: H,z: T=>es: Gy
Y1380,z H=>letz=xz1itney : Gy

cut.

By Theorem 4.3, for the judgements ¥1;Ag, 21 : Hyz : I => e : Gy and Xy - H = I are deriv-
able, there is a H H-derivation of the sequent

L1300,z : H= {z1/2}es : Gy

and let z = z; in €3 Deut {Z1/2} €.
The cases where the last steps of m; and 72 do not both introduce the cut formula I follow
easily by induction. The more interesting cases are when both last steps introduce the cut

formula. We consider the case where I is of the form I) D Iy, i.e. m; is of the form

3
YAz = es: I =5
181 = lambda(ms.ea) DI !

where z3 ¢ A;, and 3 is of the form
5

T4
YAz hDlh=es:h YA n,x: 1) DIz I =650 Gy 5=
Ei;An2: 5y O I = apply(z, eq, 2.€5) : Gy '

where 22 & (Ay1,z : I} D I3). In this case 7 is of the form of Derivation 4.5.

m 2
213 A1 = lambda(zs.e3) : [; D Iy 1301,z : 11 D I = apply(z, eq, z2.€5) : Gy i
T1; Ay = let z = lambda(zz.e3) in apply(z, eq, z2.€5) : Gy e (4.5)
Derivations 4.6 and 4.7 may be formed.
3
2i3An23:h = e I =5 T4
21;A1=>lambda(a:3.e3):I1 > I Yl e hDIlo=eq: Ih :
213, = let © = lambda(zs.e3) ines: I £ (4.6)
Te
Yi;Anzs:i i, I = es: Iy =% s
Y13 Ay, g Ip = lambda(zs.e3) : [; D Ip S8z 1 D Ihyze: I = e5: Gy ;

L1 A, zg 1 Iy = let z = lambda(z3.e3) in es : Gy o (4.7)
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Derivation mg may be obtained from 73 by weakening, since zg &€ Ay, having the same height as

#3. The cut rules in Derivations 4.6 and 4.7 have degree lower than the cut rule in Derivation

4.5, since the heights of their right premises are at least one fewer than the height of m,.
Applying the cut rule to the endsequents of Derivation 4.6 and 73 one obtains Derivation 4.8.

w3
Yi1; Ay = let z = lambda(zs.es) ineg: Iy Ti;A1,z3:0 =>e3: ]y
Ti; Ay = let z3 = (let z = lambda(zs.e3) in e4) in ez : Iy

e (4.8)
This cut rule has degree lower than cut rule in Derivation 4.5 since the logical complexity of I;

is at least one fewer than the logical complexity of I; D I,.
Applying a cut rule to the endsequents of Derivations 4.7, 4.8 one obtains a derivation of

%y; A1 = let z3 = (let z3 = (let z = lambda(z3.e3) in e4) in e3) in (let z = lambda(zs.e3) in e5) : Gy.

This cut rule has degree lower than the cut rule in Derivation 4.5 since the logical complexity
of I is at least one fewer than the logical complexity of I; D I2. So, by the I.H., the proof-term
of the sequent above reduces by RSyt to a proof-term eg, and so does e, s.t. £1; A1 = eg : G
is derivable in HH.

a

From the proof above, we may extract an argument for weak normalisation of well-typed
proof-terms in RSy, i.e. every proof-term of a derivable sequent in HH % is reducible in
RSyt to the proof-term of a derivable sequent in HH. (See the Appendix A of [Dra88] for a
strong normalisation argument of a set of rules essentially including those encoded by the rules
of RScut.)

We have shown that if $;A = e : G is derivable in HHCY then there exists e;, possibly
more than one, s.t. X; A = e; : G is derivable in HH. Below, we write cut(e) meaning a e; in
these conditions; e; may be thought of as the cut-free form of e when a particular strategy for
choosing redexes is followed.

The remainder of this section defines the calculus HH %' and shows how HH %' is related
to HHCYW,

The calculus HH U is an extension of HH' with a cut rule. Essentially, the process of going
from HH' to HHCUY is the same as that described above to go from HH to HH %, The classes
of objects used in HHC' are those used in HH' together with the class of /-formulae. The
definitions of the classes of objects used in HHC%' are the same as for H H’ with the exception
of proof-terms e that allow the extra constructor /et mentioned above. The forms of judgement
of HHC¥' are the same as those of HH'. The derivable judgements of HH%' are the same as

cht'

those of HH' except for sequents. For deriving sequents in H the cut rule shown below

is also allowed.
is also allowe TiAi=e:] D;ALz: [, A= e : G

AL, A letz=¢€eine : G

cut
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The differences between the cut rule for HH %' and the cut rule for HHC% are due to the
difference between contexts in HH %' which are lists, and contexts in H H %!, which are sets.
A result analogous to Theorem 4.1, relating H H' and H H, holds between HH cut’ und HHCU,

Theorem 4.5 Let ;A + G gf be derivable in HHCUW Then, the sequent L;A =>e:G is
derivable in HHCUY' iff the sequent 3;R(A) = [Ale : [A]G is derivable in HHCU,

Proof: A proof for this result may be obtained by similar arguments to those used for proving
Theorem 4.1. a

Using Lemma 4.6 and Theorem 4.5 one may show HH cut' t5 be an extension of HH.
Combining theorems 4.5 and 4.4 one shows that HH cut’ is conservative w.r.t. HH. Thus,

'
HHC% is a conservative extension of HH.

4.4 Definitions in Integrated Logical and Functional Program-

ming and X-types

Consider logic and functional programming from a type-theoretic perspective. Traditionally,
functional programming is based on non-dependent types; thus, the logical contents that may
be attached to a function is fairly simple. However, in the presence of richer type theories more
information may be attached to functions.

In the context of integrated logical and functional programming, if more elaborate types
are attached to the functions being defined, during the search for a proof it may suffice to
look at the information contained in a type attached to a function, rather than having to
use the function itself. So, in the presence of a definition there may be two alternative ways of
achieving a goal: (i) by replacing occurrences of the definiendum by its definiens; or (ii) by using
the type attached to the definiendum. In the first case a definition is merely being used as an
abbreviation mechanism, which corresponds to the traditional use of definitions in functional
programming, i.e. the definition mechanism introduced in Section 4.2. In the second case the
logical properties of the definiendum, i.e. the type attached to the definiendum, may be used
to achieve a goal, possibly providing shorter ways of achieving the goal.

The idea above can be realised in a type theory like the Extended Calculus of Constructions
[Luo94], where a X-type may be used to attach a logical specification to a term of simple
type. Traditionally, in dependent type theories [ML84, CH88] terms and proofs are identified.
However, in this thesis terms of simple type and proof-terms are kept separate. The presence
of X-types allows us to maintain the distinction in a structured way, following [MB93].

The notation generally used for X-types is Xz, T2, where Ty, and T3 are types. Given a
L-type X1, T2, an element of this type is a pair (t1,%2) s.t. ¢, is of type T and ¢, is of type
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[t1/2]T%. In this thesis, the set D of Z-types allowed is as follows:
Ds=1]2.:D,

where 7 is a simple type and I is an I-formula, as defined in the previous section. (Logical
formulae are regarded as types). The operation of substitution [A/z]D on D-formulae is defined
as for H-formulae, when D is an I-formula, and is defined as E,..[A/2]D;, when D is of the
form X, D; and y # 2 and y ¢ A. (As usual, in a formula .. D, y is a binder whose scope is
D and occurrences of y in D are called bound; D-formulae are considered equal up to renaming
of bound variables.)

A (elementary) definition of dependent type is of the form:
p=ypesD,

where = is a variable, e is a proof-term and D is a D-formula. Generally, when D is of the
form X.,1, e is a pair pairy(A,e;), where A is a term of simple type T and e; is a proof-term
of the formula [A/y]l.

Let us consider contexts A, extending the contexts used in HH', allowing definitions of
dependent type. Let us consider the rule below, resembling the cut rule of HH %', as a rule

for dealing with definitions of dependent type in the context.

YAy =e:D L;AL,z:D, A= e : G def
iAn =g e: DAyt G

The main difference between the def rule and the cut rule of HH cut' is the presence of a
definition of dependent type in the conclusion sequent, whose type corresponds to the cut
formula. (Note that D occurs in the succedent of the left premise and in the antecedent of
the right premise. Also note that the proof-term of the conclusion sequent is the same as the
proof-term of the right premiss. In the conclusion sequent, the information that « is defined
as e is kept solely in the context.) Let us consider proof-search of a goal G w.r.t. a program
3; A in hypothetical languages based on calculi containing the cut rule of HH cut’ and the def
rule. The cut rule of HHC4 may be applied at any point in the search, with the possibility
of choosing any well-formed formula for cut formula. The def rule may also be applied at any
point in the search, as long as there is at least one definition of dependent type in the program,
but the formula used as cut formula must be the type of the definition being broken up.
Having a rule such as the def rule for dealing with definitions of dependent type requires
rules to deal with X-types, both in the succedent and in the antecedent of sequents. A rule for
dealing with X-types in the succedent can be easily obtained by interpreting a X-type as an
existentially quantified formula. A rule for dealing with X-types in the antecedent is a bit more
problematic. One possible form of defining such rule is by enlarging the form of proof-term

annotations allowed. Projections may be allowed both in proof-terms annotating formulae in
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the program and in formulae themselves, as used in the preliminary exposition [Pin94] of these
ideas for an integrated logical and functional language. Another alternative, that used in this
thesis, is the use of patterns in place of projections.

Traditionally, the first and second projections are used to access the components of a pair.
A pattern is a simple generalisation of a variable. A pattern allows the definition of names for

the components of a pair. The set of patterns p is defined as follows:

g is=0] (e, p)s
where z ranges over variables. A pattern of the form (z, (z2,...(Zn, )...)) is usually written as
(1,22, +eey Tny ©); the variables 21, 22, ..., 2, are called its simple type variables and the variable
z is called its proof-term variable.

The definitions of dependent type allowed in this thesis are of the form:
p =dc! e.: D.
For example, an elementary definition of the form
T =4y pairg(A,€) : Ty, 1,
may now be written as the non-elementary definition:
(21, P) =aes pairg(A,e) : 3y 1,
defining a name z; for the term of simple type A.

A simple definition z =,4.; A : 7 is said to be implicit in a definition of dependent type of the
form (z1,p) =aes Pairg(A1,€) : Byr, D if either zy =2z, Ay =Aand p =Toraz =4, A:Tis
implicit in p =4, e : [A1/y]D. The definienda (of simple type) of a pattern p are inductively
defined as follows: (i) if p is a pattern of the form (z,p;) then z is a definiendum of p and any
definiendum of p; is also a definiendum of p; (ii) if p is a variable then p has no definienda.

A rule similar to the def rule shown above to deal with definitions of dependent type is the

following rule:
YiAr=e:D S ALp:D,Ar=e: G )
LiAup=uwse: DAy =6 :G

This rule requires patterns annotating formulae in the context, This rule is not invertible,
since there may be implicit simple definitions in the conclusion which are not available in the
premises. For avoiding these problems, the rule to deal with definitions of dependent type
is split into two rules, described in Fig 4.9, one for definitions of X-type, that keeps available
abbreviations for terms of simple type, and the other rule for definitions of I-type, similar to
the def rule shown above.

Section 4.5 defines the calculus HH %/, This calculus allows definitions of dependent type
of the form described in this section. HHY¢/ also allows simple definitions not implicit in
definitions of dependent type. The calculus HH def is used in Section 4.6 to define a proof-

theoretic semantics for an integrated logical and functional language.
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4.5 The Calculus HH def

This section defines the calculus H H %€/ , which may be thought of as an extension of H H' with ;
the mechanism for definitions of dependent type described in Sec. 4.4, The calculus HH def 4 :
used in Sec. 4.6 to define a proof-theoretic semantics for the integrated logical and functional :
programming language LFPL. In this section is shown an interpretation of derivable judgements
of HHY/[ as derivable judgements of HH. The converse is also shown, i.e. how to interpret
derivable judgements of H H as derivable judgements of HH def |

Figure 4.10 presents the grammars of the several classes of objects used in HH def  The

judgements of the calculus HH def are presented in Fig. 4.11.

-

!
|

L o L T 7
[T

?
X E

s ranges over the set § of primitive types; z ranges over the infinitely denumerable set A’ of

variables; A ranges over the set of atomic formulae of HH.

Note that although the sets of H H'-contexts and HH def contexts are not the same, the nota-

tion used for meta-variables ranging over these two sets of objects is the same, i.e. A possibly

indexed.

ALz =0, Ay p=ag e [2/y]lD,As=> e 1 G
T; Ay, (=, p) =uy pairg(A,e) 1 Byr D, Ay =61 : G

defz

A =me: ] ALz, A2 G def
Az =4 e: A= e : G '

Figure 4.9: Rules for definitions of dependent type.

s|lr—=r7 (simple types) 4
z|Az:r.A|AA {A-terms) ]
O | Bzir (signatures) .
A|HANH|G>H |V H (hereditary Harrop formulae) §
A|GAG|GVG|HDG| 3G | VurG (hereditary Harrop goals)
AVIANT|IDT Vg (intersection formulae)

¥ | 3D (definition types)

pair(e, ) | inl(e) | inr(e) | lambda(z.€)

pairg(A, ) | lambda,(z.€) | z | splitl(z, z.e)

splitr(z,z.¢) | apply(z, e, z.€) | apply,(z,A,z.e) (proof-terms)
z | (z,p) (patterns)

O | &gt B | B8 =g AT | B p=pesD (programs)

Figure 4.10: Classes of objects of HH%S, |
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(i) b X signature  (signatures)

(i) FX;A basis (bases)

(i) X;AFA:T (A-terms of a type)

(iv) X;AFAp;A (one step reduction on A-terms)
(v) Z;AFApGA (zero or more steps reduction on A-terms)
(vi) X;AFA=;A (convertible A\-terms)

(vii) X;AFAaf (atomic formulae)

(viii) X;AFHAf (hereditary Harrop formulae)
(ix) X;AFGgf (hereditary Harrop goals)

(x) X;AFA=A (convertible atomic formulae)
(xi) X;AFH=H (convertible H-formulae)

(xii) X;AFG=G  (convertible G-formulae)

(xiii) X;A=e:G  (proof-terms of a G-formula)

Figure 4.11: Judgement forms of HH%S

The notation @ ¢ A, when Aisa HH def -context, indicates that: (i) there is no formula H
s.t. @ : H is in A; (ii) there is no simple definition of the form & =,4.; A : 7 in A; (iii) there is
no definition of dependent type in A of the form (zy,...,2,) =4, € : D s.t. & = z;, for some
1 < i < n, or z occurs freely in e.

The rules defining derivable judgements of HHY/ of the forms (i) and (v)-(xii) are ob-
tained from the rules of H H’ defining the corresponding forms of judgement, where contexts
are regarded as HH def _contexts. The rules defining derivable judgements of HH def of the
forms (ii)-(iv) and (xii) are the rules obtained from the rules defining derivable judgements of
the corresponding form in H H’, by regarding contexts as HH def -contexts, together with the
extra rules shown in Fig. 4.12. The rules defining derivable sequents of HH def are shown in
Fig. 4.13.

The following meta-theoretical properties of HH def are used in various places in the re-

mainder of this thesis.

Proposition 4.1 Let the sequent ;A = e : G be derivable in HH def Then, the judgements
- 3: A basis and $; A+ G gf are derivable in HHYS

Proof: Follows easily by induction on the structure of the derivation of ;A = e : G. ]

Proposition 4.2 Let the judgement - L; Ay, @ =45 € : I,y basis be derivable in HHY%S,
Then, the sequent £; Ay = e : I is derivable in HH def |
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FX;A 2 =4y AT, p =y, e:[z/y]D basis
b 5 A, (2, ) =uy pairg(A,€) : By.r D basis

F3;Abasis T;A=>e: ] ¢
FX;A 2 =4, ¢:]basis *

T A1, =gy A 7,p=ay € [2/y]D, Aa kAL
T Ay, (3, P) =aep pairg(A,e) : Byr D, Aok Ay iy

DAL =gy AT p=y4y e [2/Y]D, A2 F Aypr As
; Ay, (2,0) =uey pairg(Ay€) : Zyir D, Ag - Ayor Az

Figure 4.12: Rules of HH Y/,

Proof: By analysis of the rules allowed for deriving bases. a

Proposition 4.3 (Weakening) Letn be a o HY%S _derivation of the sequent 3; Ay, A = e: G
and let the judgement $; Ay - H hf be derivable in Hudef, Then, for every z s.t. © € (Aq,Ag),
the sequent 3; A1,z : Hy Ay => e : G is derivable in HHYeS

Proof: The proof follows by induction on the structure of 7. Case w is an axiom a similar
step may be taken for deriving X; Ay, z : H, Ay = e : G, the only difference being that in the
latter case one needs to construct a derivation of the judgement - X; Ay, 2 : H, A, basis. Such
a derivation may be easily obtained from the derivation of - £; Ay, A, basis and the derivation
of ;A - H hf, since z ¢ (A1, Az). The other cases follow easily by the I.H.. a

Proposition 4.4 (Contraction) Leli 7 be a HH def _derivation of the sequent
SiAnziIz: A= e: G,
where z € Ag. Then, the sequent T; Ay, x : I,Aq9 = {z/z}e: G is derivable in HHYS

Proof: The proof follows by induction on the structure of .
Consider the case where 7 is an axiom of the form:

XA,z 0,z I,Aq basis
IHFASTE B S-S WAUE - | RS

Since z ¢ Az, a derivation of - X;A;,x : I, Ay basis may be easily constructed. Thus, the
following derivation may be formed:

F XA, 1, A, basts
S;Apa: A=

aziom.
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VA= e Gy ;A =>eg: Gy

;A = pair(er,e2) : Gy AGa =N
T A=e: Gy E;AI-Gggf:’V TA=>e: Gy E;AI—-G’;gfév
;A = inl(e) : G1 V Ga ) T, A = inr(e) : G1 V Gy r
ALz H Ayg=>e: G 25,7 ¢ Asg

T; A1, Ay = lambda(z.e) : H DG

L, A=e:[A/z]G T;AFA:T
;A = pairg(A,€) : 32, G

T,z:1;A=>e:G | ;A basis
;A = lambdag(z.e) : V5:r G

=>V,z¢ L

F ;A2 A, Ap basis
;AL Al A

aziom

AL,z HiAHy,zy : Hy,Ap=>e: G
ALz HyANHy Ag = splitl(a:,:cl.e) G

No=>,z1 & Ag

;A e HiANHy, 2yt HyyAg > e: G
T A,z Hy A HayAg = splitr(z,z1.€) : G

Ar =, 21 ¢ Ag

Y;AL,2:GyDH, Ay = e : Gy Y, A,2:Gh DH,z1: HAs=>e: G
E;A1,x: Gy D H,Ay = apply(z,e1,z1.6) : G

D=, T ¢ AZ

Ti AT Ve Hyzy t[Afzo]H, Ag = e: G B, A FA:T
T A1, 7 Vour H, Ay = applyy(z, A, z1.€) : G

Va2 & A

L; A N, Aa=e: G DA FH\=H _ Y A=e: Gy D;AEGIECG
A,z HAy=>e: G e T A=z e G "

I

Az =g Aimp=ug e fafylD, Ar= e 1 G
T; Ay (2,p) =u; pairg(A,e) 1 Byr D, Ay =01 : G

defy

A 1=>e:] D)A:Ar=>e:G
Y AL Zaey e:l,As = e G

defr

Figure 4.13: Rules for derivable sequents of HH%,
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Note that the identity {z/z}z = z holds.

The other cases, except those where the last step of 7 is either def 5, or def ;, may be proved by
similar arguments to those used in proving the corresponding cases in Lemma 4.3 (admissibility
of contraction in HH).

Case the last step of 7 is a rule def of the form:

SiAnz: L z: [, Ay ey S;AnLx:1,2:1,A0,2y: 1,Ap=>€e: G
SiAnw 2 1, z2: 1,001,881 =49 €1 : 11, A92=>e: G

dEfI.

By the I.H., there are derivations of the sequents:

A I, A0 = {z/z}e; : I;

E;Al,.’ﬂ . I,A21,a:1 - I),Azz = {a:/z}e 1 G.
Since z has no free occurrences in e;, by hypothesis, it is easy to show that {z/z}e; is equal to
e1. Thus, the following derivation may be formed:

SiAnz: LAy =et, LAz [, Agyyzy i I, Apy = {:n/z}e ' G
ALz I, A0y Ty =4y €1 2 11, A0 = {z/2}e: G

def;.

The case where the last step of 7 is defy, follows directly by the I.H.. (w}

The remainder of this section studies relations between HH %/ and HH. These relations
are used in Sec. 4.6 to interpret the programming language LFPL, based on HH def , by means
of the programming language HOPLP, based on HH.

Definition 4.2 The mapping ¢ from HH%S contexts to HHCU -contests is defined as fol-

lows:

P(0) =acs (5

V(A 2 =gy A:T) =4y P(A)y2 =gy A 7}

P(A,z: H) =45 Y(D),z: H;

P(A, (2, p) =aes pairg(A, €) : Byr D) =405 Y(A, 2 =goy A : 7, p =4 € : [2/y]D);
YA, T =45y €: 1) =4e; P(A).

Lemma 4.7 Let A be a HH% _contest. Then:
(@) P(A) = (Ay,z: H,Ap) iff A = (As,z: H,Ay) and P(A3) = Ay and P(A4) = Ay;

(52) if (& =4y A : 7) € Y(A) then either (x =4y A:T) € A or exists (p =45 €: D) € A s.t.

T =gy AT is implicit in p=4.;e: D,
Proof: By analysis of the definition of 3. O

The lemma below shows how to interpret some derivable judgements of H H def into derivable
judgements of HH cul' when HH def contexts are interpreted into H H%' via 9.
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Lemma 4.8 If the HH def -judgements in the left column of the table below are derivable
in HHY then the corresponding HH c“t'-judgements in the right column are derivable in
Jid:

(i) X signature I X signature

(¢2) FZ;Abasis F X;9(A) basis

(#0) L;AFA:T iY(A)FA:T

(iv) Z;AFAaf EiYp(A)FAaf

(v) Z;AVHAf D9(A)FHAS

(vi) ET;ARGgf Tigp(A)FGgf

Proof: The proof is by simultaneous induction on the structure of the derivations of the
HHdef -judgements on the left column. We analyse some cases below.

Case the last step of the derivation of the HH def -judgement on line (ii) is of the form:

- ¥ signature
F X; () basis

Then, by the .H., there is a derivation of - & signature in HH cut’, (Observe that the derivable
signatures of H H %/ are the same as those of HH%'.) Thus, the following H H°%'-derivation

may be formed:
F X signature

F 35 () basis
Case the last step of the derivation of the HH def -judgement on line (ii) is of the form:

F ;A basis D30 FA:T ,
FX;AL T =4 AT basis

where z ¢ X and = ¢ A;. By the L1, there are HH% derivations of judgements 4.9 and
4.10.
F 254 (Ay) basis (4.9)
Lip(A)FA:T (4.10)
From derivations of 4.9 and 4.10, the following H H €%’ -derivation may be formed:

F3;9(Ay) basis I;9(A) AT ,
FX;9(A1), =45 A : T basis

since z ¢ X and also = & ¥(A;), which may be proved from z ¢ A;. Note that
(A1 =0y A1 1) = (A1) =0 AT)

Case the last step of the derivation of the HH def -judgement on line (ii) is of the form:

FX;A basis L; A HAS ,
F ;A2 H basis

where x ¢ A;. By the L.H., there are HH cut’_derivations of the judgements:
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F 3; ¥ (Ay) basis;
Yi(A) F HAS.

So, the following HH ¢ut’_derivation may be formed:

3 9(Ay) basis T;¢(A) F H Af
F5;9(Ay), z : H basis '

since, from x ¢ A;, it may be easily shown that z ¢ ¥(A;). Note that
P(Ay,z: H) = (¥(A1),2: H).

Case the last step of the derivation of the HH def -judgement on line (ii) is of the form:

F XA basis ;A= el .
A, 8 =y €t ] basis

where z ¢ A;. Then, by the LH., there is a H HCU _derivation of F X;9¥(A;) basis and note
that
Tp(A],ﬂ: ey €1 I) = ¢(A1).
Case the last step of the derivation of the HH def -judgement on line (ii) is of the form:

FX;A1,2 =4 A:T,p=ay €:[z/y]D basis
F3; Aq, (=, p) =acy pairg(A,e) : By D basis

Then, by the LH., there is a H H% _derivation of
F 2 9(AL T =4y At Typ =4y €: [2/y]D) basis.
The proof of this case is concluded by observing that the following identity holds:
$(A1, (2,5) Zaes pairg(A,€) s By D) = $(A1,8 =ay A1 7,p=u0y 2 [2/41D).
The last case we consider is that where the derivation of the H H %€/ -judgement on line (iii)

is of the form:
3;A1,2) =gy Ay i1, p=aep €t [21/y]D, Mg A i .

35 Ay, (xlvp) =dej pairq(Ahe) : 2‘y:'r; D, A, FAy:m

By the LH., there is a HH ! derivation of
I 9(Ar 21 =aep A1 2 T, P =aep €3 [21/Y]D, Ag) F Ag & Ty
it is easy to show that the following identity holds:

P(A1, 21 =aep M1 2 T, P =uey €1 [21/Y]D, Ag) = (A1, (21, P) =aes pairg(Ar,€) : By, D, Ag).

(|
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Lemma 4.9 Let = be a HH%/ derivation of ;A = e: G with no def; rules. Then, the
sequent ;9 (A) = e : G is derivable in HHC,

Proof: The proof is by induction on the structure of . Case the last step of 7 is an axiom,
then, by using Lemma 4.8, a similar axiom may be formed in HH cut’  The cases where the
last step of « is either a right or left rule or a conversion rule may be mimicked in HH cut’,

The case where the last step of 7 is def s, follows by using the .H. and the definition of . O

Lemma 4.9 shows an interpretation of H H def -sequents having derivations with no def; rules
into derivable sequents of H H cut’ Theorem 4.6, below, presents an interpretation of arbitrary
derivable sequents of HH def into derivable sequents of HH cut’, The mapping v, that takes a
HHY%S context and a HH c"tl—proof-term and gives a HH C“tl-prooflterrn, is defined as follows:

v(Q)€) =aes €

v((z : H,A),e) =4y v(A,e€);

v((z =aes A:T,A),€) =4y ¥(A, €);

V((2 =4y e:I,A),€1) =4 let 2 = e inv(A, ey);

v{((z,p) =aes pairg(A, €) : By:r D, A), €1) =aes v((p =aes € : [¢/y]D, A), €1).

The following lemma is used in proving Theorem 4.6.

Lemma 4.10 Let - X; A basis be derivable in HHY/ . Then, if £;9%(A) = e : G is derivable
in HHCU' then $;9(A) = v(A, e) : G is derivable in HHC%',

Proof: The proof follows by induction on the number n of definitions of dependent type in A.

Case n = 0 then ¥(A, e) = e, hence the result is trivial.

Case n > 1 then A may be written in the form (A,p =4, €1 : D,A3), where A; contains
no definitions of dependent type. The proof follows by induction on the structure of p.

Case p = z then it may be easily shown that ¥(A) = ¥(Ay, Az). So by the .H., there is a
derivation of

T (A1, Az) = v((A1,A9),€) : G.
It may be shown that (A1, A2) = (¥(A1),¥(A2)) and, for A; contains no definitions of
dependent type, v((A1, Az),e) = v(Ag,e). Thus, by weakening, there is a derivation m; of the
sequent:
S (Ar), 2 Dy P(Ag) = v(Ag,e) : G.

By hypothesis, - %; A basis is derivable. So, by Proposition 4.2, there is a HH def _derivation
7 of ;A1 = e; : D. Since A; contains no definitions of dependent type, 72 may contain no
def ; rules. So, by Lemma 4.9, there is a H HCU _derivation 73 of X;%(A1) = e; : D. Now, the

following HH cut’_derivation may be formed:

g w
;9(Ag) 3=> er: D I;9(Ay),z: D, d)(Lllg) = v(Ag,e): G
h3% ‘!/)(Aﬂ, ’lﬁ(Az) S letz=e;in U(Az, e) : G

cut.
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For concluding the proof, observe that the identity
v((A1,7 =45 €1 : D, Ag),€) = (let z = e in v(Ag,€))

holds, since A; has no definitions of dependent type.
The case where p is of the form (z,p;) follows easily by the LH.. a

Theorem 4.6 Ifrisa HHY%S _derivation of sequent L; A = e : G then T;9(A) = v(A,e) : G

is derivable in HHCU

Proof: The proof follows by induction on the structure of 7. Some cases are analysed below.
Case the last step of 7 is an axiom:

F3; Ay, 2 HyAj basts )
YAy H A= a: H BEHON

By Lemma 4.8, there is a H HC% _derivation of - T (Ar, z : H)Aj) basis. By Lemma 4.7, the
identity %(Aq, 2 : H,Ag) = (¥(A1),z : H,$(Az)) holds. So, the following H H %' _derivation

may be formed:
F X 9(Ar),z : H,¥(Ay) basis

S 9(Ar),z: H,p(Ag) = z: H aziom.

By hypothesis, X; Ay, z : H, A2 = e : G is derivable; so, by Proposition 4.1, there is a derivation
of b £;A1,z : H,A, basis. Thus, using Lemma 4.10, there is a HH% derivation of the
sequent:

(AL, 2 Hyp(Ag) = v((Ar,x: HyAg),z) : H.

Case the last step of 7 is def:

S A =ze:] DALz, Ay e G def
SiAn2=gyeil,Ag=>e1:G I

By the L.LH., and by Lemma 4.7, there are HH cut’_derivations of the sequents:

Zi9(A) = v(Arye) : I
2;'(])(A1),:D : I,'t/)(Az) = V((Al,m $ I,A;),el) 1 G.

Thus, by using a cut rule in HH cul' there is a derivation of
Iy (A1), ¥(Az) = PTh : G,
where PT; is the proof-term:

let x = v(Ay,e) inv((A1,2z:1,A),e1).
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Note that (A1, & =4y €: I, A2) = (P(A1),¥(A2)). It remains to prove that from a HHCU'
derivation of proof-term PT}, we may construct a HH cut’_derivation of proof-term PTy, defined
as:
V(A2 =gy €2 1,42),€1).
The proof is by induction on the number n of definitions of dependent type in Aj.
Case n = 0 then it is easy to show that PT) and PT; are equal to

let z = e in v(Ag, €1).

Case n > 1 then A; may be written as (A11,p =4y €2 : D,A;z), where Ayy contains
no definitions of dependent type. Assume without loss of generality that p is a variable z,.

Proof-term PT) is equal to the proof-term
let z = (let x3 = ez in v(A12,€)) in (let 2 = e in v((A12, 2 : 1, Ag),€1)),

for A;; contains no definitions of dependent type. It is easy to show that an HH cut'_derivation

with this proof-term may be permuted to a derivation with the following proof-term
let z3 = eg in (let © = v(A1g,€) in v((A12,2: 1,A3),e1)).

(Figure 4.14 shows derivations corresponding to this kind of permutation.) Since A;; contains
one definition of dependent type fewer than A, by I.LH., we may construct a derivation of proof
term:

let zg = eg in v((A12,2 =4y €: 1,A2),€1),

which may be easily shown equal to PT%.
Proofs for the cases where the last step of 7 is of any other form may be obtained by similar

arguments to those used above; they require permutations of each rule with cut rules. m)

»
YAy =e:) LAz Ay el i 0,82, z: [,As = ex: ) I;01,A2,2:1,A3,22: 11,04 =1 : G
YUiA, Ao D letzg =ezine: ! Y U;A1, 80, 2: 1,A3,83 => letxy =exine : G ¢
TiA1,82,83, A > leixz=(letzg =epine)in(letza =ezine}): G

cut

4

iAn i h,As = el B0,z 0h,02,2: 1,483,084 =>e: G
DAy 2D e ) TiAy,x0 1 11, A2,83,Ay D letn=cine): G
T;A1,82,83,Ay 2 letzy =epin(letz=cine): G

cut

cut

Figure 4.14: A permutation of cuts in HHC%',

Corollary 4.1 If ;A = e : G is derivable in HHY then
I R($(A)) = cut([p(A)]v(A,e)) : [$(A)G
is derivable in HH.
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Proof: If ;A = e : G is derivable in H [ def then, by Theorem 4.6,
i9(A) = v(Ae): G
is derivable in HHCU"', By Theorem 4.5,
DiR@(A) = [HAN(A, ¢) : H(A)G
is derivable in HHC%¢. By Theorem 4.4,
I; R($(A)) = cut([$(A)v(4,¢) : [$(A)IG
is derivable in HH. a

Now a problem converse to Theorem 4.6 is addressed, roughly, how to transform derivable
sequents of HHC into derivable sequents of HHS,

Lemma 4.11 Let - 3; A basis be derivable in HHY | Then:
(1) if S;9(A) - A : 7 is derivable in HHCY then ;A& A : 7 is derivable in HHYS
(i1) if 2;9(A) - Av,A, is derivable in HHCU' then ;A & Ab,A; is derivable in HH Y/
Proof: The proof of (i) follows by induction on the structure of the HH ut’_derivation 7 of
Z;9(A) F A: . Consider the case where the last step of 7 is of the form:

FEALZ =4 AT, A basis
YA e =g, AT AT i

By Lemma 4.7, either A = (Ag, 2 =4y A:T,A4) or A= (Asz,p=ss€: D, Ag)and z =4, A: 7
is implicit in p =,4.; e : D. Case A is of the first form a similar step may be used in HHYS,
Case A is of the latter form, we assume, without loss of generality, p =..; e : D to be of the
form (z,p1) =aes pairg(A, e1) : By:r Dy, Then, the following steps in H g def may be formed:

F X5 A3, % =4y AT, p1 =ues €1 [x/y]l D1, Ay basis
B;A3,% =gy A1 Ty 01 =aep €1 : [2/y]D1, A4 2 T
E; Az, (2, p1) =uey pairg(A,e1) : Byr Dy, Ay -z 0 7

where a derivation of the uppermost judgement may be obtained from the derivation of
F 33; A basis, that exists by hypothesis.
If the last step of 7 is a rule of any other form a similar step may be used in HH%S

A proof of (ii) may be obtained by similar arguments to those used for proving (i). a

Theorem 4.7 Let b X; A basis be derivable in HH . Then, if 5;9(A) = e : G is derivable
in HHCY' with no cut rules then $;A = e : G is derivable in HHudef
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Proof: Let m be a HHC4 derivation of 3;%(A) = e : G. The proof follows by induction on
the structure of 7, Since 7 is cut-free, the last step of # may not be a cut rule. Some cases are
considered below.

Case the last step of 7 is of the form:

F XAy, H)As basis
;A H Ag =2 H

By Lemma 4.7, the HH% context A is of the form (As,z : H,A4). By hypothesis, the
judgement - 3; As, z : H, A4 basis is derivable in HH def 3o, the following HH def _derivation

may be formed:
35 Ag,z : H, A4 basis

TilAs,z: H, Ay = z: 0 o™

Case the last step of 7 is = 3:

SiPA)=> e [A/y)Gr Eip(A)FA:T
E;9(A) = pairg(A, e1) : 3y, Gy

By Lemma 4.11, there is a HHY/ _derivation of the judgement ;A F A : 7. By the L.H.,
there is a H H 9%/ _derivation of the sequent X; A = e : [A/y]G1. Thus, the following HH def_
derivation may be formed:
iA=>e:[A/ylGh T;AFA:T
Z; A = pairg(A, eq) : 3., Gy

Case the last step of 7 is =;:

Dip(A)=e: Gy Liv(A)HG =G
iv(A)=>e:G

An HH%f derivation of the judgement
Y, ARG =G
may be constructed by induction on the structure of the HH €% derivation of
S9(A) -Gy =G,

essentially by using part (ii) of Lemma 4.11. By the L.H., there is a HH def _gerivation of the
sequent
A = e Gy.

So, the following derivation in HH def may be formed:

L A=e:Gy ;ARG =G
S A=e:G

The cases corresponding to the other possible forms of 7 follow by similar arguments. O
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Corollary 4.2 Let - 5; A basis be derivable in HHYf, Then, if the sequent
LiR(%(A)) = e: [$(A)G

is derivable in H H then, for every e; s.l. [¢¥(A)]e; = e, the sequent ;A = e1 : G is derivable
in HEHY/,

Proof: If X;R(¥(A)) = e:[¥(A)G is derivable in HH then, by Lemma 4.6,
L R(»(A)) = e : [¥(A))G is derivable in HHC®%, Thus, by Theorem 4.5, Z:9%(A) = €, : G
is derivable in HHCU' for every e; = [$h(A)]e, since ;%(A) F G is derivable in HHCU', It
may be easily shown that a HH cut’_derivation whose proof-term is of the form [Ale, where A is
a HHC basis and e is a proof-term in H H, has no cuts. So, by Theorem 4.7, ;A = ¢; : G
is derivable in HH Y/ | for every e; = [¢(A)]e. a

From Corollary 4.2 one may easily prove that: if the sequent £; A = e : G is derivable in
H H then, for every list A; consisting of the elements of the set A, the sequent £;A; = e: G
is derivable in HH Y/ So, combining this result with Corollary 4.1, one shows that HH def s
a conservative extension of H H.

We conclude this section by showing that the family of rules of backchaining, defined below,
is admissible in HH 9%/, The rules in this family may be thought of as instances of Miller’s rule
of backchaining presented in [Mil90]. Backchaining is used in Sec. 4.7 for showing that some
HH%/ sequents are derivable.

Definition 4.3 The family of rules of backchaining (BC), indezed by the natural numbers, is
defined as follows:

Indezn =0
S5A,2:GDA A =e:G

L;A1,2:GD A Az = be(z,[le): A

BC,

Indexn > 1

L:Anx i H Ag= e [An/zn] oo [Mfe1]G EiAiE AT oo TiAgF AL 7y
SiAnz o HyAg = be(z, [Ayy ..., An)y€) : [An/2n]) .. . [A1/z1]A

BC,

where H = Vg :r, + . Ny ir, (G D A) and
be(z, [], €) =aey apply(z,e,2.2), 2 £ z, z ¢ €;
be(z, [A|As), €) =4y applyq(z, A, 2.bc(2,As,€)), z# z, z ¢ e.

Proposition 4.5 (admissibility of BC) If« is a derivation of a HH def -sequent constructed
by using HH def _ryles and BC then may be transformed into a derivation of the same sequent
using HH def _rules only.
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Proof: The proof follows by induction on the structure of 7. The cases where the last step of
7 is not a BC rule are easy. Consider the last step of 7 is a BC rule. The proof follows by
induction on the index of the BC' rule.

(i) Case the index is zero, 7 is of the form:

m1
2 A,2:GD A A =e:G
TiALz:G D A A = be(z,[]e): A

BC.

Then, by the LH., m; may be transformed into a HH def _gerivation my of
Y A,z2:GD A, A2 = e:G. From 7y a derivation of

FX;AL,2:G D A A basts
may be obtained, c¢f Proposition 4.1. FFrom such derivation, we may derive
FX; AL GD Az A Ag basis,

for every z s.t. 2 # z and z € (A1, Az2). So, the derivation below may be formed.
FX;A,,2:GD A z: A, Ag basts
S5 Ay, @ GDA Ay=>e:G T;81,2:GDA,z: A A =>z2: A ‘;:m
SiA,2:G D A, A = apply(z,e,2.2): A

Note that be(z, [], €) = apply(z, e, z.2),for z # z and z ¢ e.

(i) Case the index of the last step of = is greater than zero, 7 is of the form:

m
Z;Al,m:H,A2=>e:[An/:z:,._]...[Az/zg][AI/zl]G E;All"AllTl Vaie E;A1l"’An:Tn

BC,
ALz H A= bc(:v, [Al, Az, cony An], 6) : [A,,/a:n] s .[Az/ﬂ)z][Al/:Dl]A

where H = V.., Hy and Hy = V.1, .. V2,0, (G D A). A derivation 73 of the sequent
Z];Al,:c : H,Z : [A]/ﬂ?l]l‘h, Ag=>e: [An/:z:n] o .[Az/(Ez][Al/ml]G,

where 2 # z and z ¢ (A;,A2), may be obtained by weakening from m;. By the LH., the
derivation below may be transformed into a derivation with no instances of BC, since the
instance of BC has index one smaller than n. In the derivation below represents the n—1
judgements L; A1 FA; i for2<i< m.

DAy Hyz: [A/2i)Hy, A ;f:e t [An/2n]. . [Az/z2][A1/2:]G
E; Al: ! Hr Z: [Al/xl]Hh A2 = bC(za [A2) . '7An]s e)) : [A.,./:Bn] 8020 [AZ/xz][Al/xl]A
LAz Hy Ay = applyy (2, Ay, z.be(2,[Ag, .. ., Anly €) : [An/zn] . . . [A2/z2][A1/21]A

BC

Note that the following identities hold:

[Al/ml]Hl = Vi"z!'fb i .Vz":T"([Al/C!Jl]G ) [A1/$U1]A),
be(z, [Ar, Az, ..., A, €) = applyy(z, Av, 2.be(2,[Ag, ..., Ay)€)), for z# z and z ¢ e.
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4.6 Proof-Theoretic Semantics of the Integrated Logical and
Functional Programming Language LFPL

This section defines the semantics of a programming language that integrates logic and func-
tional programming called LFFPL. This language may be seen as a language that extends HOPLP
with simple definitions (i.e. abbreviations for terms of simple type) and some forms of definitions
of dependent type, namely definitions asserting logical properties of functions.

We require the language LFPL to satisfy the following constraints:
1. goals and programs in LFPL should be interpretable as goals and programs in HOPLP;

2. the language LFPL should be conservative w.r.t. HOPLP, i.e. if a goal is achievable w.r.t.
a program in LFPL then the interpretation of the goal into HOPLP should be achievable
w.r.t. the interpretation of the program into HOPLP; roughly, there should be no more
goals achievable w.r.t. a program in LFPL than there are in HOPLP;

3. the language LFPL should be complete for the means of goal-achievement in HOPLP,
i.e., given a goal G and a program X; A in LFPL, for every means of achieving the inter-
pretation of G w.r.t. the interpretation of X; A in HOPLP, there should be a means of
achieving G w.r.t. £; A in LFPL.

The semantics of LFPL is defined below by means of the calculus HH def

Definition 4.4 A program in LFPL is a pair (£, A), usually written ; A, where %3 is a signa-
ture and A is a HHYef -context; a program X; A is well-formed iff the judgement - 3; A basis
is derivable in HHY%/

A goal in LFPL is a G-formula; G is well-formed w.r.t. a program X; A iff the judgement
i A G gf is derivable in HH %/

A goal G is achievable w.r.t. a program X; A iff there exists a proof-term e s.t. the sequent
Y;A=e:G is derivable in HH def ; the proof-term e is called a witness for the achievement
of G w.rit Z; A,

In Section 3.2, in the context of first-order logic programming, it is argued that a semantics for
a logic programming language needs to define what are the different means of goal-achievement.
So, in order to complete the definition of LFPL , we must define, given a goal G and a program
323 A, what are the different means for the achievement of G w.r.t. 3; A.

First is shown that LFPL , as defined so far, meets some of the requirements mentioned

above; this is shown by using results presented in Sec. 4.5 relating the calculi HH and HH def

Theorem 4.8 Let I; A be a well-formed program in LFPL. Then:

(1) Z;R(¥(A)) is @ well-formed program in HOPLP;
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(2) if G is well-formed w.r.t. £; A in LFPL then [{(A)]G is a well-formed goal w.r.t. the
program £; R((A)) in HOPLP.

Proof:

(1) By Lemma 4.8, there is a derivation of - X;9(A) in HH cut'  Using arguments similar
to those used in proving Lemmas 4.1 and 4.2, that show how to transform a H H'-basis into a
H H-basis, one may show that - X;R(3(A)) basis is derivable in HH.

(2) As above, by using Lemma 4.8, a H H €% _derivation of 2;9(A) F G may be obtained,
and from such derivation it may be shown that X I [(A)]G is derivable in HH. O

Theorem 4.8 shows an interpretation of goals and programs in LFPL as goals and programs

in HOPLP, respectively; thus, constraint 1 imposed on the language LFPL is satisfied.

Theorem 4.9 Let G be achievable w.r.t. X;A in LFPL. Then, [$(A)]G is achievable w.r.t.
% R((A)) in HOPLP.

Proof: If G is achievable w.r.t. 2; A in LIFPL then there exists a proof-term e s.t. the sequent
T: A = e : G is derivable in HH9/, So, by Corollary 4.1, the sequent

TiR($(A)) = cut([$(A)Jv(A, €)) : [$(A)IG

is derivable in H H. Thus, cut([(A)]v(A,e)) is a witness for the achievement of [¢(A)]G w.r.t.
; R(¥(A)) in HOPLP. o

The proof of Theorem 4.9 shows how to interpret witnesses in LFPL as witnesses in HOPLP.
Given a witness e for the achievement of G w.r.t. £; A in LFPL, cut({4(A)]v(A, e)) is a witness
for the achievement of [¢(A)]G w.r.t. T;R(¥(A)) in HOPLP. For the remainder of this thesis,
this interpretation of witnesses is taken as the standard interpretation of witnesses in LFPL as
witnesses in HOPLP. Theorem 4.9 shows that constraint 2 imposed on the language LFPL is
satisfied.

By Corollary 4.2, if e is a witness for the achievement of [ (A)]G w.r.t. X; R(¥(A)) in HOPLP
then there exists a witness for the achievement of G' w.r.t. I; A in LFPL; thus showing that
constraint 3 imposed on LFPL is satisfied, i.e. LFPL is complete for witnesses w.r.t. HOPLP.
However, constraint 3 is satisfied in an excessive way, since, under the standard interpretation,
several witnesses in LFPL may be interpreted as the same witness of a complete set of witnesses
in HOPLP.

Recall that a complete set of witnesses for goal-achievement in HOPLP is a maximal set
w.r.t. the conditions: its members are uniform linear focused witnesses of the goal w.r.t. the
program and no two members of the set are A-convertible. Recall also that the notation ulf (e)
stands for the uniform linear focused form of e. Below we define the concepts of complete and

non-redundant sets of witnesses for goal-achievement in LFPL . These concepts are such that
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any complete and non-redundant set of witnesses for the achievement of G w.r.t. £; A in LFPL
is in 1-1 correspondence with any complete set of witnesses for the achievement of [¢(A)]G
w.r.t. I; R((A)) in HOPLP.

Definition 4.5 Let ;A F G gf be derivable in LFPL.

A set S of witnesses for the achievement of G w.r.t. ;A is complete iff for every uniform
linear focused proof-term eyy s.t. 3 R(P(A)) = ewiy : [¥(A)]G is derivable in HH there ezists
a witness e in S s.t. ;A = e : G is derivable in HHY and ul f(cut([P(A)r(A, e))) = ewy.

A set S of witnesses for the achievement of G w.r.t. X; A is non-redundant iff there are no
two witnesses ey, ey in S s.t. ul f{cut([Y(A)w(A, e1))) = ulf(cut([P(A)v(A, e2))).

Definition 4.6 An implementation of LFPL is any method that given a goal G well-formed
w.r.t. a program X; A in LFPL finds a complete set of witnesses for the achievement of G w.r.t.

X; A in LFPL; it is called excessive if the complete set of witnesses is redundant.

The relation between HOPLP and LFPL may be described as follows. Suppose there is a
problem that may be formulated as a LFPL program and goal. Such problem could also be
formulated in HOPLP, since there is an interpretation of LFPL by means of HOPLP. However,
the problem in LFPL may have a more natural formulation, since there are definition mechan-
isms provided in LFPL that are not provided in HOPLP. Having the problem formulated both
in LFPL and HOPLP the forms of achieving the goal w.r.t. the program in both languages may
be very different. In HOPLP, only the canonical form of reasoning, corresponding to uniform
linear focused derivations, is allowed for goal-achievement. In LFPL other forms of reasoning
are allowed, namely those corresponding to cut rules. These forms of reasoning are interpretable
into the canonical form of reasoning, but often the canonical forms correspond to much longer

derivations.

4.7 Solving Problems in LFPL: an Example

In this section is shown a formulation of the following problem in LFPL. Given a natural number
n and a list of natural numbers L, find an element of L greater than or equal to n, if there is
any. A formulation of the problem above is used to illustrate various aspects of the definition
mechanisms allowed in LFPL, as well as some issues raised by an implementation for LFPL.
In [Pin94] is shown a formulation of a problem in a calculus whose features are mainly present
in HHYS, This problem is based upon an example presented by Boolos, in [Boo84], to show
that cut-free derivations may be hyper-exponentially longer than their counterparts using cuts.
This problem could be formulated similarly in LFPL; it could be used to illustrate that there
are witnesses for the achievement of a goal w.r.t. a program in LFPL representing derivations
which are hyper-exponentially shorter than the derivations represented by the corresponding
witnesses in HOPLP.
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Proof-search in HH %/ is studied in Chap. 5, from the perspective of an implementation for
LFPL. In the example described in this section some derivations in HH def are constructed to
show that certain goals are achievable w.r.t. programs. The intuition behind the construction
of these derivations comes from goal-directed search, for compound goals, and backchaining
together with the idea that a definition of dependent type should be used if any of its definienda
occurs in the goal, for atomic goals.

The problem of “given a list of natural numbers and a natural number n, finding an element
of the list greater than or equal to »”, may be formulated in LFPL as the problem of achieving
a goal G w.r.t. a program X; A, as follows.

The types of natural numbers and lists of natural numbers are represented as primitive types

nat and Inat. The signature X consists of the following pairs:

0:7,

8 : nat — nat — nat,

nil : Inat,

cons : nat — lnat — lnat.
The constructors of primitive types are represented as variables. If polymorphism were allowed,
the polymorphic type of lists could be defined and the type Inat obtained as a particular case
of lists. The usual abbreviations for lists are used, i.e. [] for nil, [z|z,] for cons « z;, and so on.

The set of predicates P contains the following predicate symbols:

geq : nat — natl — prop,
memberge, : nat — lnat — nat — prop.

Intuitively, geq represents the relation greater than or equal to over the natural numbers and
memberge, represents a relation on triples (n;,ns, ng) that holds if the natural number n; is an
element of the list ns greater than or equal to n;.

In what follows Vg, z,,...2,.:r £, Where F' is either a G or a H-formula, is used as an abbrevi-

ation for Vy,:rVayir . . . Va,:r I. The context A is defined as follows:

21 : Vomargeq(z, 0),

23 : Vzy myimat(geq(z1, 72) D geq(szy, 573)),

(42, 2) =aey pairg(Az.s552,€) : Einat-snatVay zymat(9€9(z1, ¥2) D geq(fz1, f22)),
23 : Yz, zamatVainat (9€q(22, 1) D membergeq (1, [22|2], 22)),

24 1 V:r:l ,zg,zs:natvz:lnat(membergcq (ml, z, x3) 2 membergeq (131, [372]27]’ m3))1

where

e = lambda(z.lambda(zz lambda(w,.e1))),

€1 = bc(z21 [S(B], 33’2]) bc(z‘b [zh xZ]s wl))~
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The definition of dependent type in A defines the name 4 for the function Az.ssz and
describes one of its logical properties, monotonicity, i.e. if a natural number n4 is greater than
or equal to ny then the result of applying +2 to n; is greater than or equal to the result of
applying +2 to nga.

Below, a context (A;,z : H,A;) is sometimes written simply as (Ay, z, A;) without ambi-
guity, since # determines uniquely H.

It may be shown that the judgement:

- 3; A basis
is derivable in HH%/. A derivation of this judgement requires a derivation of Sequent 4.11.

L2, 22 = e : [Axw.ssz/ fIVy, oy mat(geq (@1, 22) D geq(fzy, fz2)) (4.11)

A derivation of Sequent 4.11 may be uniquely recovered from the proof-term pair,(Az.ssz,e),
up to conversion rules.
The problem of given a natural number » and a list of natural numbers ns finding a natural

number ny in ns greater than or equal to n; may be formulated as the goal formula:
G = Jpimaymembergeq(ny, ns”, x),

where nj is a representation of n; and ns" is a representation of ns. A natural number n; in ns
greater than or equal to n; exists iff G is achievable w.r.t. ¥; A in LFPL. Values for n; may be
extracted from witnesses for the achievement of G w.r.t. ¥; A. We study below the case where
G is the goal formula 3., member e, (420, [ss50], z).

It may be shown that judgement 3; A - G gf is derivable in HH def | Let us attempt to
achieve G w.r.t. X; A, i.e. search for a proof-term ?7; s.t. there is an HH def _derivation of
the sequent X; A =7; : G. Iollowing goal-directed proof-search, the goal is broken up until it

becomes atomic, as follows:

X; A =73 membergeq (420, [sss0], 1) X;AFl :nat
LA =27 Jocnamembergeq (420, [ss50], z)

= 3,
provided the indeterminate ?; is made equal to (!1,72). Now we search for a proof-term 72 and
a term !; of type nat. The goal is atomic; backchaining is attempted as follows:

;A =73 : geq([sss0], 420) BC
I; A =75 : membergeq (420, [ss50], 1) !

where 75 = be(zs, [+20, 5850, []], 73) and !y = ss50. The terms 420 and sss0 may be easily shown
to have type nat. Now the set of indeterminates contains solely 73, since !; is fully determined

as the term sss0 of type nat. Case there exists 73 s.t. the sequent
;A =73 : geg(sss0,+20)
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is derivable, the natural number corresponding to sss0 is a possible answer to the original query.

For determining ?3 two different approaches are pursued. A first approach to find ?3 is by
substituting the definiendum +-; by its definiens followed by B-reduction, through an instance
of a conversion rule, and then performing backchaining as below.

X 21, ws :geq(f0,0),zz, ... basis
% z1, ws : geq(s0,0), z2,...=> ws : geq(sss0,0)
5 A = applyy(z3, 550, wa.w3) : geq(s0,0)
5 A = be(zz, [0, 0], applyy(z2, 850, wa.ws)) : geq(s0,0) ac
Z; A = be(2, [550, 50], be(z2, [0, 0], apply,(22, 850, we.w2))) : geg(sss0, 850) 20 _
T; A => be(zz, [s50, 80, be(z2, [50, 0], applyq(22, 880, wa.wy))) : geg(sss0, +20) =r

aziom

Derivations of the auxiliary judgements in rules V = and BC may be easily constructed. De-
rivation 6 is guaranteed to exist since F X; A basis is derivable. is an abbreviation for
the judgement

Y At geq(sss0, ss0) = geq(sss0,4-20).

A derivation for may be obtained by substituting 43 by Az.ssz, followed by B-reduction.
This approach finds Proof-Term 4.12 for 73.

be( 2z, [s50, s0], be(2g, [$0, 0], applyy(z2, 550, wa.ws))) (4.12)

This form of searching for 73 essentially reflects the implementation suggested in Sec. 3.7 for
HOPLP, the difference being the use of definitions of simple type to replace definienda by
definientia.

A second approach to find 73 is by using the definition of dependent type in the program.
(Intuitively, we take the occurrence of + in the goal as a suggestion for using the definition of
dependent type of which +3 is a definiendum.) An instance of defy, is attempted, followed by

an instance of defj, followed by backchaining on the type of the definition, as shown below.

T, +2 =4y Az.szZ im0t = nat,z: Iy, ... =74 : geq(s0,0)
..o, 42 =u Az.szz i nat — nat, z: I1,... => be(2,[s0,0], 74) : geg(ss50,+20)
X, +2 =4y Az.szT 1 NGt — nat, z =4, €: Iy, ... => be(z,[s0,0], 74) : geq(s550,+20)
.o, (42, 2) =ay (Azoszzye) i Dy, ... => be(z,[s0,0], 74) : geg(sss0, +20)

BC*

efr
defs

In the derivation above, the rule BC* stands for a combination of backchaining with an instance

of a conversion rule. D; abbreviates the D-formula

2,f:'r—)'rv:r:l,.7:2:'r (9611(3?1, 172) ] QEQ(fZ'l, fmZ))

and I; abbreviates the I-formula

[+2/ f1(Va, zq: (geq(21, 22) D geq(fz1, f2))).
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is an abbreviation for the sequent:

3 21, 22, +2 =a4ey AZ.82T : nat — nat => e : I7.

A derivation for is guaranteed to exist; it may be easily obtained from a derivation of
Sequent 4.11. Under this approach 73 is made equal to be(z, [s0, 0], 74) and the new problem is
determining 74, which may be done by using the formula annotated by z; as below,

FX;...,2z3,ws,... basis
i z1, Wy, ... => wy : geq(s0,0)
¥ 21, ... = applyg(21, 50, wa.wy) : geq(s0,0)

aziom

V=

(The existence of derivation p is guaranteed, since - X; A basis is derivable. The instance of
VY = requires a derivation for a judgement of the form 3;...+ s0 : nat, which may be easily

constructed.) So, this approach finds Proof-Term 4.13 for 7.
be(z, [0, 0], applyy(z1, s0, wa.wy)) (4.13)

The result of applying the interpretation of LFPL-witnesses into HOPLP-witnesses to Proof-
Term 4.13 is Proof-Term 4.14.

be(zg, [550, 50, be(2g, [50, 0], apply(z1, 80, wa.w3))) (4.14)

The result of mapping Proof-Term 4.12 into HOPLP is Proof-Term 4.12 itself, which is equal
to Proof-Term 4.14. So, any non-redundant set of witnesses for the achievement of G' w.r.t.
3; A cannot contain simultaneously the Proof-Terms 4.12 and 4.13, for they map into the same
uniform linear focused proof-term of HOPLP.

The semantics for LFPL makes no constraint on the form of the terms occurring in witnesses
for goal-achievement. In general, we are only interested in extracting from a witness the terms
for the variables existentially quantified in the initial goal. The example above illustrates that
by using definitions some reductions on terms of simple type may be avoided. For example,
the proof-term found for 73, which does not correspond to an existentially quantified variable
of the goal, has an occurrence of the term +20.

The work involved in finding Proof-Terms 4.12 and 4.13 is essentially the same. However,
one may formulate goals for which the use of definitions of dependent type is a means of finding
shorter derivations.

For example, let us consider forms of achieving the goal

Gl = yeq(+2...+g 0, +2...+2 0),

n times m times

where m < n, w.r.t. £; A by using derivations that (i) make no use or (ii) that use the definition

of dependent type in A.
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The only form, up to conversion rules, of deriving G; from X;A making no uses of the

definition of dependent type in A is by a derivation of the following form:

LB
F 33; Ag basis .
YiAr = w:Gy ket

YA =D ep:Gy L
2m—1 tines BC
A= e :Gs BC s
oA = e: Gy i FGy=6y
2;A1=>e:G1d -

Y;A=ze: Gy oz
where:

G = geq(s...s0,s...80);
2n 2m

Gs3 = geq(s...s0, s...s 0);
-1 2m-1
G4 = geq(s......s 0,0);
2n—2m)
e = be(zy, [s...50, 5...80], 1);
2n 2m
ey = be(2g,[s...80, s...5 0], ...€2...);
2n—-1 2Zm-—1
ez = apply,(z1, §......80, w.w).

Derivation m is guaranteed to exist since i X; A basis is derivable and m; essentially corresponds

to normalisation of the terms

+2...+20 and 43...420
s S it

n m

to the terms

s...s0 and s...50.

2n 2m
By using the definition of dependent type in A, G; may be derived from 3; A in the following
way:

T2

F 2; As basis y
5 As = w:Ga Lrom

Y A1 = e3:Gs =
Em—ltimesBC

1 E;Alﬁez 2G2 BC
iAo eI T;A1=e:Gy def
;A= e Gy def I
A= e:Gy =

where:
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G3 = geq(F2..+420, +2...+20);
n—1 m-—1
Gs3 = geq(+2..-+20,0);

e = be(zg, [+2...+2 0, +2...42 0], e2);

n m

€y = bc(zg, +2...t20, +2..42 0], ...83...);
n-—-1 m—1

ez = apply,(21,+2...+2 0, w.w).

n—m
Both m; and m are guaranteed to exist since - I; A basis is derivable.

Roughly, the first form of achieving G| needs normalisation of the terms

+2 +2 ...+20 and 43 +2 ...42 0,
N Samiis? N i st 5o

n m
and needs 2m times backchaining on the formula annotated by z;. The second form of achieving
G (using the definition of dependent type), needs no normalisation and needs only m times
backchaining on the formula resulting from the type of the definition. (Note that in both cases
backchaining involves the same work, i.e. two applications of V =, one application of D=> and

an axiom.)
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Chapter 5

Implementing LFPL

5.1 Introduction

This chapter is concerned with studying means of implementing the integrated logical and
functional programming language LFPL. As defined in Sec 4.6, an implementation of LFPL is a
procedure that given a program ;A and a goal G finds a complete set of witnesses. A witness
is a proof-term e s.t. the sequent X; A = e : G is derivable in HH def , So, an implementation
for LFPL may be thought of as a procedure to find derivations in HH def

Finding a witness for the achievement of G w.r.t. X; A requires a construction of a derivation
whose endsequent is of the form ;A =7 : G. The proof-term obtained for ? is the desired
witness. For constructing a derivation of X;A =7 : G, one may attempt rules for deriving
sequents whose conclusion has ¥J; A as antecedent and G as the succedent formula. For using
LFPL one first writes a program and then queries about the program, i.e. asks whether or not
some goals are achievable w.r.t. the program. Given a program X; A the first step is to check
if the judgement - X; A basis is derivable in HH def  1f so, some simplifications may be made
when attempting to achieve a goal G w.r.t. I; A. For example, if def is attempted there is no
need to find a derivation for the left premiss, since such derivation must exist for the judgement
- X; A basts to be derivable in HH def , as shown in Proposition 4.2. Other simplifications may
be made when an axiom is being attempted. In this case there is no need to prove that the
antecedent is a derivable basis, since this is guaranteed from the facts that ¥; A is a derivable
basis and the rules for deriving sequents preserve bases.

A rule defy is not very convenient for proof-search. Notice that such rule requires the
replacement of a definition of dependent type by a simple definition together with a definition
of dependent type. A rule def; has similar inconveniences. Each time def is used, for obtaining
the antecedent of the left premiss, a delinition of dependent type needs to be deleted from the
context and an annotated formula needs to be added to the context.

So, for studying forms of implementing LFPL, we define a new calculus called HH def",
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This new calculus may be thought of as a calculus obtained from HH def by replacing the rules
def s, and def; by a new form of rule def oonir, more suitable for proof-search.

For studying forms of implementing LFPL in terms of HH def ', the calculus HH %/ must
be s.t.: (i) all derivable sequents of H H def’ are interpretable into derivable sequents of HH def ,
(ii) there are enough HH def’_gerivations for producing complete sets of witnesses. Section 5.2
shows a means of interpreting derivable sequents of HH def’ 35 derivable sequents of HH def and
shows that this interpretation is surjective. Thus, criteria (i) and (ii) are verified and an
implementation for LFPL may be defined in terms of HH%€/",

Section 5.3.1 studies the class of ertended uniform linear focused derivations of HH def ',
which is complete for LFPL, i.e. extended uniform linear focused derivations are sufficient to
find complete sets of witnesses. This class of derivations imposes constraints on the use of
def contr similar to the constraints on left rules, i.e. uniformity (the formula in the succedent of
the conclusion is atomic), focusing (the side formula is the main formula of the inference above)
and linearity (the side formula is used exactly once).

The calculus def'®”*” allows exactly the extended uniform linear focused derivations of
HHdef’ha.ving different proof-terms. Thus, def'®"“* is complete for LFPL. However, def'®’*" is

redundant, i.e. there are different derivations in def'®’*"

whose interpretations into HH are
the same.

In Sec. 5.4 are sketched two search procedures for def’*V“", Proc. 1 and Proc. 2. Both
procedures find complete ! sets of witnesses for goal-achievement in LFPL; so, they constitute
implementations of LFPL. They differ in the use of definitions of dependent type during search,
i.e. in when to attempt def ,onsy - For attempting to use a definition of dependent type, both
procedures require the goal to be atomic. Proc. 2 imposes a further constraint in the use of a
definition of dependent type: a definiendum of the definition must occur in the goal. Proc. 2
has a search space smaller than Proc. 1; however, Proc. 1 may find some derivations which are
shorter than their counterparts found by Prec. 2. Section 5.4 gives a characterisation of the
derivations that may be found by Proc. 1 and may not be found by Proc. 2.

Procedures Proc. 1 and Proc. 2 are excessive implementations of LFPL, since they both
find redundant sets of witnesses. Section 5.4 puts forward some ideas that may be integrated

in Proc. 1 and Proc. 2 to eliminate redundancy.

5.2 The Calculus HH def’

This section introduces the calculus HH%/ . The calculus HH %/ i essentially the same as
HHdS , except for the rules to deal with definitions of dependent type, which are replaced by
rules more convenient for proof-search. The calculus HH def’ s sound for derivable formulas

and complete for proof-terms deriving a formula w.r.t. HH

! Completeness is understood within the limitalions of depth-first search and unification of A-terms.
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The classes of objects used in HHYef " are the same as those used in HH%/. They are
defined by the same grammars except for proof-terms. In HH def' are allowed proof-terms of
the form

contr(z,x.e).

This form of proof-term is used in the new form of rule def ooniy of HH def' | In proof-terms of
the form conir(z,zy.e), the variable z, is called a binder of scope e; any occurrence of z; in e
is said to be bound.

The forms of judgement in HH def’ are the same as those in HHY/, Except for sequents,
we want the derivable judgements in HH def’ to be the same as the derivable Jjudgements in
Jig: L However, HH def_derivable bases depend upon derivable sequents. One method of

solving this problem is by introducing two different forms of sequents as follows:

(1) 55 A pasis € : G
(1) Z;A=e:G.

The form of sequent (i) is used only in defining derivable bases; it corresponds to the form
of sequents used in the non-principal part of a sequent derivation in HH def  The derivable
sequents of form (i) are the same as those of HH def , t.e. X3 A =pasis € G is derivable in
HH i ;A => e : Gisderivable in HH def (When there is no danger of confusion, sequents
of form (i) are simply called sequents and written with the symbol =.) Sequents of form (ii)
correspond to the sequents used in the principal part of sequent derivations in HH def Sequents
of form (ii) are simply called sequents. The rules for deriving sequents are the rules allowed in
HH%f , except rules defy, and def, t.ogét.her with the new form of rule def oopyp, shown in
Fig. 5.1, where Ipart is defined as follows:

Ipart(z =45 €1 1) =4y (I,2);
Ipart((z, p) =aes pairg(A,e) : Byy D) =4y Ipart(p =44 € : [z/y]D).
In the rule def conip of Fig. 5.1, the formula I is called the side formula and p =,.; e : D is

called the main definition.

;A nLp=uye:Dz: [,Ay=e G
BA1,p =uey €: D, Ay => contr(z,z1.61) : G

def contr »

Ipart(p =4, €: D) = {I,z) and z; & Ag

Figure 5.1: def poniy rule.
When searching for a proof-term ? s.t. a sequent
S Anp=use: D, A =37:G
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is derivable, def ;on¢r may be attempted. For doing so, it suffices to calculate Ipart(p =, € : D),
obtaining a pair (I, z), and add I (the I-part of the definition), annotated by a new variable,
to the context. Intuitively, a rule def ;pnyr , Wwhen read from conclusion to premises, may be
thought of as a form of making a copy of the I-part of the type of the main definition. This
rule leaves definitions of dependent type unchanged.

As mentioned before, in order to guarantee that an implementation for LFPL may be sought
amongst search procedures for HH def ', the calculus H HY%S must satisfy two properties. The
first property is a form of soundness result w.r.t LFPL, i.e. if a G-formula G is derivable in
HH% wrt. abasis 3; A then G is achievable w.r.t. X; A in LFPL. The second property is
a form of completeness result w.r.t LFPL, i.e. it is possible to find complete sets of witnesses,
for the achievement of a goal G w.r.t. a program X; A in LFPL, within the set of proof-terms
for deriving G w.r.t. ;A in HHS

Theorems 5.1 and 5.2, below, state the fundamental results for proving that the two proper-
ties above mentioned hold for H H 9%/ . These theorems show methods of interpreting derivable
sequents of HH def’ a5 derivable sequents of HH def and vice-versa.

Figure 5.2 defines the mapping d'd from HH def '~proof—terms into H H %¢f -proof-terms. This

d'd(pair(ey, e2)) =4 pair(d'd(e1),d'd(es))
d'd(inl(e)) =gy inl(d'd(e))

d'd(inr(e)) =4, inr(d'd(e))

d'd(lambda(z .€)) =4, lambda(z.d'd(e))
d'd(pairg(A, €)) =g4.; pairg(A,d'd(e))
d'd(lambday(z.e)) =4, lambda,(z.d'd(e))

d'd(z) =4y =

d'd(contr(z, xy.€)) =40y {z/z1}d'd(e)
d'd(splitl(z, zy.€)) =g, splitl(zx, z,.d'd(e))
d'd(splitr(z, 21.€)) =4, splitr(z, z,.d'd(e))
d'd(apply(z, e, z1.€1)) =qc; apply(z, d'd(e), z1.d'd(e;))
d'd(apply,(z, A, 21.€)) =45 applyy(z, A, 2;.d'd(e))

Figure 5.2: Mapping d'd from HH def '-ptoof-t.erms to HHYe -proof-terms.

mapping uses the mapping on HH def -proof-terms associated with contraction, see Propos-
ition 4.4. Recall that contraction on proof-terms essentially replaces free occurrences of a
variable by another variable.

Let G be a derivable formula w.r.t. 3; A in HH%/". Then, by Theorem 5.1, G is derivable
wrt. D Ain HH% | thus G is achievable w.r.t. ;A in LFPL. The following auxiliary

lemma is used in proving Theorem 5.1; it provides a means of contracting a formula in the
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context with the I-part of a definition of dependent type, eliminating the definition.

Lemma 5.1 If there is a HHY%S _derivation of B; A1, 2=yse:1,2: I,A3 =% e : G, where
2 @& Ay, then B3 A1,z : I, Ay = {z/z}e; : G is derivable in HHdef

Proof: Let 7 be a HH%/ _derivation of A, =4 e:1,2:1,Ay = €1 : G. The proof follows
by induction on the structure of .
Case 7 is an axiom of the form:

FE;AI,“’:“,(B:I,Z:I,Azbasis :
E;Al’a:='“l e:Ii‘Z:I‘IA2=>z:G QL3O

(Note that I = G.) From a derivation of the judgement
FX AL =4 e I, 21, A, basis,
one may easily construct a derivation of the judgement
3 AL,z T,z 1, A, basts.
So, for z ¢ A, there is a derivation of
F3; A2 1,A; basts.

Thus, the following derivation may be formed:

F XAy, 2 : I, A, basis )
SiAn e LAg= 21 G et

Note that the identity {z/z}z = = holds.

Case the last step of 7 is a rule def; of the form:

iA1= e ] E;Al,z:I,z:I,Agﬁel:Gdf
A=y e:lz:I,Ag%¢;: G i1

Then, by Proposition 4.4, since z ¢ Ay, from the derivation of the left premiss, one may
construct a I H %€/ derivation of

TiAnax I, A= {z/2}e; : G.

Case the last step of 7 is a rule def of the form:

NiAne=upe: Lz I, An=bes: iy S;A1,¢=4,e:1,2:1,A0,21: 5, An=e:G
LiAnz =g e:1,z2:1,02,%) =4y €2: 1, A2 € :G

defr.

By the LH., there are HH def_derivations of the sequents:
() B An,2: 1, A0 = {z/2}es : Iy
(i) B;A1,2:1,A0,21 : I1, Agg = {z/2}e; : G.
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It may be shown that, since z ¢ ez, the identity {z/z}e; = e; holds. Thus, the derivation below
may be formed.

YA, Ay = ey TiAnz:i I, A0,z [, A= {:c/z}el G
YAy x I, Mgy, 2y =ges €2 i1, Agg = {m/z}el :G

defr.

The remainder cases follow directly by the I.H.. (]

Theorem 5.1 If S;A = e : G is derivable in HHl' then $; A = d'd(e) : G is derivable in
HHYS .

Proof: Let 7 be a HH%/ derivation of £;A = e : G. The proof follows by induction on the
height? (of the principal part) of .
Case the height of 7 is 1, then 7 is an axiom, say:

FX A2 HyAg basis
2; AI,Z : H,Az =z:H ariom.

Then, the same sequence of inferences may be performed in HH def’, (Recall that derivable
bases of HH%/" are the same as derivable bases of HH %/ )
Case the height of 7 is greater than 1 and the last step of # is of the form:

Ty
AL p=upse:D,zy: I, A= e : G
Di A1, P =gy €: D, Ay = contr(z,z1.€1) : G

def contr »

where Ipart(p =45 € : D) = (I,z) and z; ¢ As.
It may be easily shown that there is a derivation 72, whose height is smaller or equal to the

height of my, of the sequent
2; A], xll =def A] : Tl,...,ﬂ::‘ def A" T, o =def €2 1 I,wl . I, Az = € :G,

where
(2 =ass €2 D) = ({21 (&l £)oo.) =aay pairy(Ayy«i.pairg(An, €3)...) : D).
So, by the LH., there is a HHY€/ _derivation of

N Ay, & =g Ky T e Bl =gy Ry STy B Sty o153 0 1 Ny =5 dld{e;) VG
Since z; ¢ Ay, by Lemma 5.1, there is a H H Y% _derivation py of

B Aqi 2l =aap Ar s Ty B =ueg Da ST 1 T A= {afa}dd(ey): G-

2The height of a dexivation is 1, if it is an axiom, and is 1 -+ the maximum of the height of the premisses, for
any other rule.
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From the derivation m, by using Proposition 4.1, there is a HH def_derivation p2 of
Y S D S By oveg B, Saay Bp 2T 55005 2.
From p; and pg, by using a rule defy, there is a HH def _derivation of
B Ay, 2L =uap AL Tyeis 8 =asy Myt Ty @ =usp €22 I, Mg => {z/21}d'd(ey) : G.
Now, by using n times defy, a HH def _derivation of
T;A1,p =ay €: D, Ay = {z/21}dd(ey) : G

may be formed. Note that d'd(contr(z, z1.e;)) = {z/z,}d'd(e;).
The other cases where the height of 7 is greater than 1 follow easily from the I.H.. a

Theorem 5.2 below shows that every witness for goal-achievement in LFPL may be obtained
in HHY%S'. Lemma 5.2 is used in proving Theorem 5.2. This lemma is proved by induction on
the principal def ;-height of a derivation, where the principal def ;-height of a sequent derivation

rin HHY9S is inductively defined on the structure of 7 as follows:
e case the last step of 7 is an axiom, the principal def-height of 7 is 1;

e case the last step of 7 is def;, the principal def;-height of m is 1 plus the principal
def ;-height of the derivation of the principal (right) premiss;

e otherwise, the principal def ;-height of 7 is 1 plus the maximum of the principal def ;-

heights of the derivations of the premisses.

Lemma 5.2 Let ;A = e : I be derivable in HH def and let = be a HHYS _derivation of the
sequent
YAz I, A= e : G,

Then, for every z1 s.t. 1 & (A1, : I,A3), the sequent
NiAyz=apei Lz I, Ay = {z1/a}e; : G
has a HHY%S _derivation of principal def ;-height equal to the principal def ;-height of m.

Proof: The proof follows by induction on the structure of =.
Case the last step of 7 is an axiom of the form:

FX; A,z 1, Ay basis
YA, Ag= i T o g

Then, from a derivation of - 3; Ay, x : I, A, basts, a derivation of - X5 Ay, 2 : I, 2 : I, Ag basis
may be constructed, since X; Ay - I Af is derivable and z; € (Ay,z : I, Ag). From 7 and from
a derivation of ¥; A; => e : I, that exists by hypothesis, a derivation of

3 AL,% =g e:I,21:1,A basis
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may be easily constructed. So, the following derivation may be formed.

FE AL =g e ] 20, Ag basis |
S;Ana =g eihyey: [LAg=> 21 1 aziom.

Observe that {z,/z}z = 21 by definition. The derivation above has principal def ;-height 1,
which is equal to the principal def ;-height of 7.
Case last step of 7 is an axiom of the form:

F3 AL T, Agy, 20t Iy, Agg basis
E; Alyx : I, A211 Zg IliA22 = 2q: II ariom.

Similar arguments to those above may be used to construct a derivation of
Y AL, =4 e I,xy I, Agy, 39 1 I, Aoy basis.

Then, the following derivation of principal def;-height 1 may be formed.

= E;AI,:L‘ =gef € ¢ 1,2:1 :I,Azl,wg . Il,Azz basis
E;AI,.’B ey €1 I,:lt; :I,A21,$2:I1,A22=>$2 :Il

aziom.

Note that the identity {z1/z}z2 = 2, holds, since & # z,. The case where the main formula of

an axiom is in A; is similar to this case.

Case last step of 7 is a def rule of the form:

my m2
Az [, Ay = e Iy B;A,z I, A, 200 1,A0 = € e
LA 1,801,%2 =aey €2 11, D22 = €1 : G

defr.

Then, by the I.H., there is a derivation oy, having the same principal def-height as w3, of
sequent 5.1, for every 2y ¢ (A1, z: 1, A1, 22 I1, Ags).

TiALT =4y e Lyxy i 1, Ag1, 20 2 11, Aoy => {z1/2}e1: G (6.1)

Derivation 5.2 may be formed, where o3 exists by hypothesis and o3 may be obtained from m;
by weakening, since xy ¢ (Aq,z : I, Agy).
a2 g3
YAy =>e:d YiAy el zy i I, Agp = et
Y;Apz=yge: 1,z : 1, A= ex: Iy

Iy
deft (5.2)

Putting together Derivation 5.2 and derivation oy of Sequent 5.1, by using def, one constructs
a derivation of Sequent 5.3.

E; Al,:c gey €1 I,Jtl ? I,Azl,wz =gy €3 ! Il, Agg = {:cl/:c}el G (53) !

Note that the principal def ;-height of such derivation is the same as the principal def ;-height
of m, i.e. 1 plus the principal def;-height of o;.
The other cases follow directly by the I.H.. O
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Theorem 5.2 If3;A = e : G is derivable in HHYS then there exists e1 s.t. L3A=>e:Gis
derivable in HHYS and d'd(e;) = e.

Proof: Let 7 be a H H 9/ derivation of ¥; A = e : G. The proof follows by induction on the
principal def ;-height of w. The cases where the last step of m is neither defy nor defy follow
easily by the L.H.. Below are studied the cases where the last step of m is either defy, or def;.

Case the last step of 7 is def: : '

1
iA1= e:d E;Al,x:I,Agzt'el:Gdf
Eiljye=ppesl,Ag=>e; 1@ elr.

Let =1 € (A1,2 : I, Ag). Then, by Lemma 5.2, there is an HHdef—derivation, whose principal
def ;-height is the same as that of my, of the sequent

1AL T =gy e:1,21: 1,02 = {21/2}e; : G.

So, by the L.H., there exists e s.t. d'd(e3) = {x1/z}e; and there is a HHY%S" _derivation of the
sequent
Ay, e =get lyzy 1,49 = €3 : G,

Thus, the following HH def’_derivation may be formed:
YiAnhz =gy el i I, A= e0: G
;AT =4y e:1,A = contr(z,z1.62) : G

def conlir -

Note that Ipari(z =45 € : I) = (I, z). Since d'd(e3) = {z1/z}e;, d’d(contr(:c', zj.ep)) is equal to
{z/z1}({z1/x}e;), which may be shown equal to e;, for ; may have no free occurrences in e;.
Case the last step of 7 is defy:
TiAnt =4y AT, p=age:[zfyl: D,Ar=e1: G
T Ay, (=, p) =4y pair(A,e) : gy D, Ay => 1 : G

defy.

By the I.H., there exists ez s.t. d'd(ez) = e; and the sequent
TiAL T =gy ATy p=us€:[zfy]D,As=>e2: G

has a HHdefl-derivation o. Then, it may be shown by induction on the structure of o, as
sketched below, that Sequent 5.4 is derivable in HHYS

L Ay, (2, p) =aey pairg(A,€) 1 BNyr D, Ay => €2 : G (5.4)

The most interesting case is when the last step of o is of the form:
E;Ahx def A TP =dey €1 ["B/y]D)wz : I,A2 = €3 G
iDL, T =gy A 1Ty p=ueq €: [2/y]D, Ay = contr(z;, zs.€3) : G

def contr »

where Ipart(p =u; €:[z/y]D) = (I,z;). In this case a similar step may be used for deriving
Sequent 5.4, since Ipart((z, p) =a.; pairg(A, €) : By.r D) = Ipart(p =4 € : [ /y]D), by definition
of Ipart. a
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5.3 A Complete Class of HH def'_derivations for LFPL

The previous section shows that an implementation for LFPL may be sought amongst search
procedures for HH def’ | This section studies a complete class of HH def'_gerivations for LFPL,
i.e. a class of HH9/ derivations within which complete sets of witnesses for goal-achievement
in LFPL may be obtained.

5.3.1 Extended Uniform Linear Focused Derivations

The work in developing HH def would be wasted if we were to consider implementations of
LFPL that search for derivations using no definitions of dependent type. (Recall that by using
definitions of dependent type, derivations for goal-achievement may become much shorter.) In
some sense, we want to use definitions of dependent type whenever possible, so long as they are
relevant for achieving a goal.

Below is studied a complete class of derivations for LFPL, called the class of extended uniform
linear focused (EULF) derivations. Roughly, this class of derivations is an extension of ULF-
derivations, in the context of HH, that allows some constrained forms of def oonsr.  The
constraints imposed on def oonir may be thought of as: (i) uniformity (the formula in the
succedent’s conclusion is atomic); (ii) focusing (in a derivation of the premiss of a def ;on;y rule,
the main formula of the last step is the side formula of def oonsp); (iii) linearity (each time
the I-part of a definition of dependent type is required, a new copy must be made by using
a def sontr Tule). These constraints are imposed in analogy to the constraints on left rules.
(Recall that uniform linear focused derivations are isomorphic to expanded normal deductions
and there are efflicient methods to search for these derivations.) Theorem 5.3 below shows
that every derivation in HH def’ may be transformed into a EULF-derivation by means of

permutations.

Definition 5.1 The grammar defining the sets of extended uniform focused proof-terms ey

and atomic extended uniform focused proof-terms aj} s of head variable z; of HH def’ is as

follows:
douf N2 af;;j | pair(ecus, €cuy) | inl(€cuy) | inr(ecus)
|  lambda(z.ecuy) | pairg(A, ecuf) | lambdag(z.ecuf);
i s g
Gyy = @i | contr(x;, 5., ;)

| splitl(z;, -’tj-a:ij) | splitr(z:, -"J'-a::;f)

| apply(=;, ecug, z:j.a:;f) | applyq(z;,A,wj.a:;’;f).

Definition 5.2 A proof-term is called extended linear (extended affine) if every variable =

bound by a left constructor or by contr occurs ezactly once (at most once) in the scope of z.
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Definition 5.3 A proof-term is called extended uniform linear focused if it is extended linear

and extended uniform focused.

Definition 5.4 A derivation of a sequent is called extended uniform linear focused (eztended

uniform focused) if its proof-term is extended uniform linear focused (extended uniform focused).

Theorem 5.3 provides a means of showing completeness of EULF-derivations; it shows that
if a sequent X;A = e: (G is derivable in HH def’ then there exists a sequence of proof-term
transformations, preserving derivability, for obtaining an extended uniform linear focused proof-
term e; s.t. ;A => e; : G is derivable in HHYS

Definition 5.5 (RS eulf) RS eulf is the rewriting system on HH def’ -proof-terms consisting of
the rules in Figs. 2.8, 2.9, 2.10 and 2.11, where proof-terms are seen as HH def’ -proof-terms,
together with the rules in Fig. 5.3 involving the constructor contr. The rewrite relation induced
by RS eulf is called D eulf - A proof-term e is reducible by RS eulf to a proof-term ey if the pair

(e1, e2) is in the transitive closure of Peulf -

i) contr(z, z1.pair(ey, €3)) & pair(contr(z, z1.e1), conir(z, z;.€2))

(ii’) contr(z, x1.inl(e)) b inl(conir(z, z,.¢€)),

({ii’)  contr(z, zy.inr(e)) o inr(contr(z, z;.€)),

(iv’) contr(z, x1.lambda(zy.€)) o lambda(xa.contr(z, z1.€)), 22 # x, 2 # o1

(v contr(z, z1.pairg(A, €)) > pairg(A, contr(z, z;.€))
(vi’) conir(z, z).lambday(z3.¢)) o lambda,(zy.contr(z, z1.e)), 22 # 2, z2 # 21
(vii')  contr(z, z).splitl(z2, 3.€)) b splitl(zy, z3.contr(z, x1.€)), x| # ©2, T3 # &, 1 F 23
(viii’)  contr(z, zy.splitr(za, z3.€)) o splitr(zy, z3.contr(z, z1.€)), 1 # T2, T3 # =, T1 # 23
(ix’) contr(z, z1.apply(z2, €, 3.€1)) b apply(z2, contr(z, z,.€), z3.contr(z, x1.1)),

2y # Ty, T3 £ T, T1 F# T3
(x’) contr(z, z1.applys(xa, A, z3.€1)) > applyy(z2, A, x3.contr(x, z1.€1)), 1 # %2, T3 # &, T1 # 23
(xi%) contr(z, v1.contr(zz, z3.€)) > contr(zy, x3.contr(x, z1.€)), 21 # ®2, T3 # =, &1 # 23
(xii’)  splitl(z, zy.contr(za, z3.€)) b contr(zy, z3.5plitl(z, z1.€)), 21 # 2, 3 # 2, 21 # 23
(xiii’)  splitr(z, z1.contr(z2, z3.€)) > contr(zy, z3.5plitr(z, z1.€)), ¢1 # 2, T3 # =, ) # 3
(xiv’)  apply(z, e, zy.conir(zy, z3.€1)) b contr(zz, za.apply(z, e, z1.€1)) T1 # T3, T3 # , T1 # 23
(xv’ applyq(z, A, x1.contr(zz, £3.€)) > contr(za, z3.apply,(z, A, z1.€)) &1 # 3, 3 # =, £ # 23
(xvi’)  contr(z,zi.€)be,z; Ee
(xvii’) contr(z,z1.€) > contr(z,z1.conir(z,z3.61)), z2 € €,

e is obtained from e by replacing one of the occurrences of z; by z».
Figure 5.3: Permutations involving def oontp-

Lemma 5.3 For every rule e; > eg of RSeulf' if 33; A = e1 : G is dertvable then 5;A = e3 : G

is derivable.
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Proof: By similar arguments to the proof of Theorem 2.6 a

Before proving Theorem 5.3 the following auxiliary result is shown.

Lemma 5.4 Let €.y, be an extended uniform focused proof-term. Then, every proof-term of
the form

contr(z, T1.€euf, ),

which is not extended uniform focused, is reducible by RSeulf to an extended uniform focused

proof-term eeyy. Further, if ecyy, is of the form a2 7 for some z, # 21, then eqyy is of the form

2
awh .

Proof: The proof is by induction on the structure of ecyy, .

(i) If ecuy, is of the form lambda(zs.ecyyp,), then rule (iv’) may be applied to contr(z, z1.€cuy,)
obtaining

lambda(zq.contr(z, T1.€cuf,))-

If contr(z,®1.€cuf,) is extended uniform focused, then lambda(zz.€cuy,) is reducible by
Rseulf to the extended uniform focused proof-term lambda(zs.contr(z, z1.€cyyp,)). Oth-
erwise, by the L.H., contr(z,z,.ec.y,) is reducible by Rseulf to an extended uniform
focused proof-term ecyf,; so, contr(x,Ty.ecys,) is reducible by RS eulf to the extended

uniform focused proof-term lambda(zy.€pyy, ).

(ii) The other cases where the outermost constructor of e..y, is a right constructor follow by

similar arguments to those used in (i).
(iii) Case ecuy, is of the form a7 .

(a) It may not be the case that ai}, = =2 and z; = =z;, otherwise the proof-term
contr(z,1.€euf, ) is extended uniform focused.

(b) If afij = z, and 23 # z; then contr(z, z1.22) is reducible, by rule (xvi’), to x5, which

)
eufy*

is an extended uniform focused proof-term of the form a
(¢) It may not be the case that ag;, = apply(z2, eeus,, ¥3.05,;, ) and @2 = w1, otherwise
the proof-term contr(z,z1.¢;; ) is extended uniform focused.
(d) If afﬁj = apply(xg,ewh,x;;.ajzh) and zp # x, then contr(z, x1.ec.y, ) is reducible,

by rule (ix’), to
apply(za, contr(z, T1.€eup, ), Ta.contr(z, T1.a5, ;).

By the LH.: contr(z,2.€cuf,) is equal or is reducible by Rseulf to an extended

uniform focused proof-term ecuyy; and contr(z, 1.ag; ) is reducible by RS ¢ to a

T3

uniform focused proof-term of the form a_}

,+ Thus, the proof-term
apply(z2, eeuss) T3.05,,)
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is extended uniform focused of the form a2, and contr(z,;.eys,) is reducible by
RSeulf to it.

(e) The other cases where the outermost constructor of a}, is either a left constructor

or conir follow by similar arguments to those used in (a)-(d).

Theorem 5.3 EULF-derivations are complete for HH def’,

Proof: The arguments used for proving this result are very similar to those used for proving
Theorem 3.4. We give a sketch of the proof below.

(i) The first step is showing that every proof-term e, which is not extended uniform focused,
is reducible by RS eulf t0a uniform focused proof-term. The proof follows by induction on the
structure of e.

Case the outermost constructor of e is a right constructor, the proof follows immediately by
the L.H..

Case e is of the form contr(z,z,.e;). Then, e; is equal or is, by the I.H., reducible by
RSe,qu to an extended uniform focused proof-term. So, contr(z,zi.e;) is extended uniform
focused or is, by Lemma 5.4, reducible by RSculf to an extended uniform focused proof-term.

The cases corresponding to left constructors follow by lemmas similar to Lemma 5.4.

(ii) Secondly is shown that every proof-term e is reducible by RS gyjf to an extended af-
fine proof-term, by induction on the structure of e. Case the outermost constructor of e is
a right constructor, the result follows by immediate use of the I.LH.. Case e is of the form
contr(z, x.€;1), the proof follows by induction on the number of occurrences of z; in e;. Case
there is at most one occurrence of z; in e;, e is already an extended affine proof-term. Case
there is more than one occurrence of z; in e;. Then, rule (xvii’) transforms contr(z, z;.e;) into
conir(z,zy.contr(z, z2.€2)), where e results from e; by replacing one occurrence of z; by z,.
Thus, by the LH., proof-term contr(z, z,.contr(z, z2.€2)) is reducible by RSeulf to an extended
affine proof-term.

From (ii) above, every proof-term e is or is reducible by RS eulf to an extended affine proof-
term e;. By (i) above, e, is equal or is reducible by RSeulf to an extended uniform focused
proof-term ez. We claim that ez must still be extended affine, which may be shown by verifying
that each rule used for proving (ii) does not increase the number of occurrences of variables
bound by left constructors or by contr. It is easy to verify that a proof-term which is sim-
ultaneously extended uniform focused and extended affine is extended uniform linear focused
(EULF). So, every proof-term is or is reducible by RS eulf 10 an EULF-proof-term.

So, if ;A = e: G is derivable in i Hdef’ , then either e is a EULF-proof-term, and the
result is trivial, or is reducible by RSculf to a EULF-proof-term e; and, by Lemma 5.3, one
may easily show that ;A => €, : G is derivable in HH €/, O
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5.3.2 The Calculus def'”"*"

Now, we focus our study on methods of implementing LFPL within search procedures for EULF-
derivations. Our first step is defining the calculus def'®Y*¥. This calculus captures exactly all
EULF-derivations of H Hd€f 'having distinct proof-terms. Ideas similar are used in Sec. 3.4;
there, the calculus ARHYEF is introduced to capture exactly the ULF-derivations of hH.

The classes of objects of def"®"*“F are the same as those of HH %€f '. The forms of judgement
of def'®" are the same as those of HH4¢f : except for sequents. In def'””"", sequents are

replaced by the following two forms of sequent:

(i) 54— ey :G;
@ A ar, 4

Sequents of form (i) are called goal sequents and sequents of form (ii) are called program sequents.
These two forms of sequents are similar to those used in AHVLF | the difference being that
program sequents require a context, called the side contexzt, as an extra argument. The side
context is used for guaranteeing the well-formedness of derivable sequents. (When there is no
danger of confusion, the side context is omitted.)

The rules defining derivable goal sequents in def'®’*"

are choiceqqs, in Fig. 5.4, and the rules
for deriving goal sequents in hHULF  except choice that is replaced by the new form of rule
choice in Fig. 5.4. The rules defining derivable program sequents are shown in Fig. 5.4,

In def'®"“* the replacement of a formula by a A-convertible formula is only allowed at the
axioms. A rule choicegy; selects a definition of dependent type from the program and focuses
on its I-part.

Theorem 5.4 shows that if e is a EULF-proof-term for deriving G w.r.t. ;A in HH%S then
e is a proof-term for deriving G w.r.t. ;A in def'®”“*. Theorem 5.5 shows the converse, i.e.
if e is a proof-term for deriving G w.r.t. ;A in def'*"*" then e is a EULF-proof-term for

deriving G w.r.t. 3; A in HHdef'. Lemma 5.5, below, is used for proving Theorem 5.4.

Lemma 5.5 If 8; A,z : H, A, Slmlt agyy A is derivable in def'®U*", where x € A, and z

Ayvie:H 4

occurs only once in ag,;;, then ;04,03 = agy ¢ A is also derivable in def'™""",

Proof: See the proof of Lemma 3.10 (a similar result for ARHVLT), a

Theorem 5.4 Letm be a HHYS _derivation of X3 A = ecyty 1 G, Then, ;A — €euty : G 38
derivable in def'""*".  Further, if ecuy is of the form aZ,, then G is atomic,
A= (By,a: H Ag) and 530 Y55 gz - @ is derivable.

Proof: By using similar arguments to those used for proving Theorem 3.21, it may be shown

’
that every HH def _gerivation may be transformed into a derivation where conversion rules
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L4 A-—-)H AeH. A ZAi & H, bf _’_‘_‘_) x) € A and either
)3 et S splitl(z,z1.€) : A A= (Ay,z: Hy AHz,Ap)
or A= (Ay,Az}andz g A

A BuEiHL 2
A TS * A A FHELA s A and eibhier

Ao HVAH ; et
A g <ol e splitr(z,z1.€) : A A = (Ay,x: Hy A Hp,Ap)
or A= (A;,A2)andz g A

; . = Ayl
A —e : G D;ATES B'A_D_) ) & A and either

Ayz:GyDH
;A ekl o apply(z,e;,x1.e) 1 A A= (A1,7: Gy AH,Az)
or A= (A;,Az)andz g A

E;AA‘;rl:_[i\;/y]H e:A DA FA:T v
z1 € A and either

Aye ¥y H T’
AT iy applyg(z, A, z1.€) 1 A A= (A1, Vy:rH, A2)
or A =(A),Az)andz € A

Figure 5.4: The rule choice and the rules for deriving program sequents of def'*"*".

occur only below axioms or conversion rules. Let « be a derivation of X; A = e.yi¢ : G where
conversion rules occur only below axioms or conversion rules. The proof follows by induction
on the structure of #.

Case the last step of 7 is either an axiom or a conversion rule, it may be proved by in-
duction on the number of conversion rules in 7 that: G is atomic, ec4y is a variable z,
A= (Az: A Az) and 5545,z ¢ A, Az - A = G is derivable. So, the following def'”’""-
derivation may be formed:

AL, AMFA=G S;AFAaf

Az A
DALz A A 2E g

ALz A0 —r2: G e

aziom

Case the last step of 7 is of the form:

m
LA p=es e Dz i 1,0 > a::djl :G
):G def conr »

;A1 P =uy €t D, As = contr(z, z1.a0y,
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where Ipart(p =.;e: D) = (I,z) and z; € A;. By the LH., G is atomic and there is a
derivation of
Ayp=defe:Diz:l 5,

N A p=uze:Dyzy: 1,8 — Ceulf, 1 G
By Lemma 5.5, since z; € A and z, occurs only once in al}, e (contr(z, z4.a2, 5,) 18 EULF),
there is a derivation of

Ay, p=gese:Dizy:l
<Ly

Dy AL, p=qye: D, Ay a:"“,jl :G.

So, the following derivation may be formed:

Ay ,p=de,e:D;z‘|!I
;A1 p=as€: D, - aguy, G

;A1 p =4y €1 Dy Ay — contr(z, 21,05, ) : G

choiceqys,

since Ipart(p =4y €: D) = (I,z) and 21 ¢ (A1,p =4y € : D), which may be shown from the
fact that the antecedent of the endsequent of my is a derivable basis.

Case last step of 7 is of the form:

m Ly}
2;481,2:G1 D Hy, A= eeutyy, 1 G1 X301, : Gy D Hy, 21 : Hy, As =>af,"m G

Y A1,2:Gy D Hy,A=> apply(:n,eeuul,zl.a:'&m) ' G

D=,

where 21 € Aq. By the LH.,

E;Al,m : G] =) I-Il,a:l : fIl,Az A"E:GI—D—)H“M:H‘ af}‘,fl :G.

is derivable; so, G is atomic. Yet by the I.H., there is a derivation 73 of
A4,z :Gy D Hy,Ayg — €eul f, : Gi.
But, z; occurs exactly once in @y, , for apply(z, ecuif,, 1.@cuys, ) is EULF. So, since z; ¢ Ag,

by Lemma 5.5, there is a derivation m4 of

Ay, a:GyDHy jzy:H;
TiAn 3Gy D Hy, Ay TR gt G

The following derivation may be formed:

75
3 Aoy H,
Y A,2:Gy D H,Ay — €eulfy :Gy B;A1nh,z:Gy D Hy,Ag (Lt 102&”‘ e

Ay Gy O H,
T AnLe: Gy D Hy, A "N apply(z, eeutyy, w1.054 ) : G

choice
;A e : Gy D Hy, Ay — apply(, eeutsy, 21.05y4, ) 1 G ’
where 75 can be easily obtained from n4.
The other cases corresponding to other left rules follow by similar arguments. {m)
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Theorem 5.5

(1) IfS;A — e : G is derivable in def'*’“" then ;A = e : G is derivable in HHS and
e is EULF.

(2) If 5;A A—'ﬁ-:)H e: A is derivable in def'®""" then e is atomic exiended uniform linear

focused of head variable = and either

{(a) A= (A,z:H,A3) and ;A = e : A is derivable in HHdef'; or
(b) z € A, A =(Ay,Ay), the sequent E; Ay, z : H, Ay = e : A is derivable in HHY and

x occurs exactly once in e.

; % s Ay H
Proof: Let oy and o3 be def'®”*"_derivations of ;A —+ e : G and ;A “257 ¢ : A, respect-
ively. The proof follows by simultaneous induction on the structure of the derivations o, and
o2. We consider below the case where the last step of oy is choicegq;:

Ay p=gese:Dizy:l

i ALp=q4se:D,A; — ep: A
D5A1, P =4y €: D, Ay — contr(z,z1.61) : A

choiceqqy,

where Ipart(p =4 €e:D) = (I,z) and z; ¢ (D1, p =4y € : D,A3). By the LH., since
21 € (A1, P =aey € : D, Az), there is a derivation of the sequent

Ay p=sp e Dmi s T Nasrei v A,

where e; is atomic extended uniform linear focused of head variable z; and 2, occurs exactly
once in e;. Thus, for concluding the proof of this case, the following derivation may be formed:

NsAip=grerDzis ], Bg=> e A
LA, p=uge: D, Ay = contr(z,z;.€1) : A

def contr »

since Ipart(p =45 e: D) = (I,z) and =y &€ A;. (Note that contr(z,2z;.€;) is EULF, for e; is
atomic extended uniform linear focused of head variable #; and x; occurs exactly once in e;.)

The last case we consider is that where the last step of o5 is of the form:

A —re : Gy E;AA'—;—T'-L:}H' ea: A
A Sapmbi iy apply(z,e;, xy.e2) : A

1
where 2; € A and either A = (Ag,2: Gy D Hy,Ag) or A = (A1,4A3) and z ¢ A. By the LH,,
there is a derivation of Sequent 5.5 and e; is EULF,

;A= e Gy (5.5)

By the LH., since z; ¢ A, A = (A1,A31), Sequent 5.6 is derivable and e; is an atomic

extended uniform linear focused proof-term of head variable z;, where #; occurs exactly once.
oA,z i Hy, Ay = et A (5.6)

144




If A =(A,z: Gy D Hy,Ap), then Agy = (z : G; D Hy,Ag). Thus, from a derivation of

Sequent 5.6, one may easily construct a derivation of the sequent:
AL, 2:Gy D Hy,zy: HyyAq = eg: Al

So, the following derivation may be formed:

i AL,2:G1 D Hy,Ay=>e1:Gy. T;AL,2:Gy D Hy,zy: HjyAp=>e3: A
YA1,2: Gy D HyyAg = apply(z, e1,z1.€2) 1 A

o=.

Note that apply(z, ey, z;1.€3) is atomic extended uniform linear focused of head variable z, for
e; is EULF and e; is an atomic extended uniform linear focused proof-term of head variable
z1, where z; occurs exactly once.

If z ¢ A and A = (A,A3) then Ag; = Az. From derivations of Sequents 5.5 and 5.6 one

may easily construct derivations of the sequents:
X A4L,2:G1 D Hy,Ay=> e : Gy
33A,L,2:Gy D Hy,zqy: Hi,Aq = eg: A
So the following derivation may be formed:

ALz Gy D Hy, A= e :Gy. E;A,2:Gy D Hy,op: Hy,Ag=>e3: A
;A2 : Gy D Hy,Ap = apply(z,e1,xy.€2) : A

o=

As above, apply(z, e;, 1.€3) is atomic extended uniform linear focused of head variable z.
Since z € A, z has no occurrences in e; and z has no occurrences in e;. Thus, & occurs exactly

once in apply(z, ey, z1.€2). m]

Theorems 5.4 and 5.5 guarantee that an implementation of LFPL may be described as a
search procedure for derivations in def'®"*", Procedures to search for def'®"“"-derivations are
described in the next section. Proof-search in def'”"“* has a smaller search space than proof-
search in HH %/ . For example, if a goal G is compound the only rule that may be used in
def'®U"F for deriving G is the rule that introduces its main connective; in HH def’ the rule
introducing the main connective of G' could be used, but left rules or def ;5p¢r could also be

used for breaking up formulae or definitions of dependent type in the program.

5.4 Towards an Implementation of LFPL

An implementation of LFPL, as defined in Sec. 4.6, is a procedure that given a goal G and a
program X; A is capable of finding a complete set of witnesses for the achievement of G w.r.t.
3; A.  As argued in the previous section, an implementation of LFPL may be described as a
search procedure for def'®”“". This section presents two possible approaches of implementing
LFPL.
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Let ;A — eeyif : G be a derivable sequent of def'*"“". Then, the sequence of transform-
ations below may be applied to obtain the interpretation of this sequent into HH. (After each
sequent is mentioned the calculus of which the sequent is a judgement and the theorem that

justifies its interpretation into the sequent below.)

DA — eeuif : G (def'"U“*) by Theorem 5.5
T; A = eguy : G (HHY%S") by Theorem 5.1
A = d'd(ecuy) : G (HHdef) by Theorem 4.6
25 9(A) = v(A, dd(ecuy)) : G (HHC%') by Theorem 4.5
T R($(A)) = [Y(A)(A, d'd(ecuty)) : [$(A)G (HH®¥) by Theorem 4.4
5 R($B(A)) = cut([P(ANv(A, d'd(ecus))) : [$(A)G (HH) by Corollary 3.3

I R($(A)) = ulf (cut([Y(A)w(A, d'd(ecuy)))) : [¥(A)G  (HH)
The proof-term
ulf (cut([$(A)]v(A, d'd(ecuiy))))

is called the ulf-form of e.uy; d'd(ecury) is a witness for the achievement of G w.r.t. ;A in
LFPL. Also, by Corollary 4.2, the ulf-form e of ey is a witness for the achievement of G w.r.t.
¥; A in LFPL. Further, it may be easily shown that £; A = e : G is derivable in def’*V“", So,
if there is a def'*“"-derivation m; of G using rules choicegqy then there exists a def'Z’%"-
derivation 73 of G using no such rules s.t. the ulf-forms of 7y and m; are the same. Thus, any
set containing simultaneously the proof-terms of all uniform linear focused derivations of G and
proof-terms of derivations of G using rules choicegq; is redundant.

Let us first concentrate on two procedures to find complete sets of witnesses for the achieve-
ment of a goal w.r.t. a program in LFPL. These procedures follow ideas similar to those
described in Sec. 3.7 for proof-search in RHYLF, In the first procedure (Proc. 1) are defined

predicates:

search(G, (21 A): ein; enut) €, 1/'ina Vout);
searchl(z : H, A, Ay, (Z; A), Oiny Oout, €, Viny Vout),

Asin Sec. 3.7, ©;,, and O, are mappings from variables to A-terms and V;y,, Vo are signatures.
Notice that searchl requires an extra argument for the side context.

The predicate search is s.t. if a sequent
A —e:G
is derivable in def'®Y%" then there exist ©,V, ¢; s.t. the formula
search(G, (3; A), identity, ©, 1,9, V),

holds, where e = ©(e;). The definition of predicates search and searchl is the same as for

RHYLF with the exceptions mentioned below. The predicate search has a new alternative form
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of achieving atomic goals. When a goal is atomic two rules may be used: (i) a rule choice,
for selecting a formula from the program (derivation via formula), corresponding to the case
permitted in ARHYLF ; (i) a rule choiceyq; for selecting a definition of dependent type from the
program (derivation via definition), corresponding to the following clause in the definition of

search:

search(A, (X; A), O;n, Oout, contr(z, z1.€1), Vin, Vour) if
choiceddt(A, I,z,Ay, Ag, p, e, D) and
searchl(zy : I, A, Ay, (£; A), Oin, Oput, €1, Vin, Vour) and
z, & A.

The clause defining validity of choiceddt is:

choiceddt(A, I, z,Aq, A, p,e, D) if
A= (A1, p=4ye:D,A;) and
Ipart(p =45 € : D) = (I, z).
Another clause that needs modification is that in the definition of searchl corresponding to

the use of the axiom. Now, definitions of simple type may be used to replace definienda by

definientia. The new clause is:

searchl(m : Al: Av Aly (Er A)» ei'm eouh T, V;'m Vout) if
u'"'ify(Al’ A, eim y Oouty Vin, Vouh zuU 21)1

where: ©j;y,, is the function, from variables to A-terms, s.t. if 2 is a variable for which there
is a definition in A, implicit or explicit, with * =,.; A : 7, then O, (z) = A; otherwise
©in, (z) = Oin(z); and X, consists of all pairs ¢ : 7 s.t. =4, A : 7, for some A, is either an
implicit or explicit simple definition in A;.

Below is described a second procedure (Proc. 2) to search for derivations in def'*"*". This
procedure is similar to that described above except for the use of definitions of dependent type.
In Proc. 2, a definition of dependent type is used during search if any of its definienda occurs
in the goal; in other words, the logical properties of a definiendum are used in achieving a
goal only if the goal has some occurrence of that definiendum. The procedure, Proc. 2, for
finding def'®”“"-derivations, based on the criterion above for using definitions of dependent
type, may be defined as the procedure obtained from Proc. 1 by replacing the clause to deal
with definitions of dependent type by the following clause:

search(A, (£; A), Oin, Oout, contr(z, x1.€1), Vin, Vour) if
choiceddt1(A, A, Iz, Ay, Az, p,e,D,0;,;) and
searchl(zy : I, A, Ay, (X;A), Oin, Oout, €1y Vin,y Vour) and
z; € A,

The clause defining validity of choiceddt] is:
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choiceddil(A, A, I,z, Ay, Ay, p, e, D,0;,) if
A = (A1,p=aey €:D,As) and
Ipart(p =4y € : D) = (I, z) and
zy € definienda(p) and
zy € ©;,(A).

Proc. 2 has the virtue, as compared to Proc. 1, of cutting down the alternative derivations
via definitions of dependent type.  Rather than attempting exhaustively all definitions of
dependent type, a goal is used to determine which definitions of dependent type should be

attempted. However, Proc. 2 is not capable of finding all def'®Y“"-derivations of a formula.

Definition 5.6 A rule choicegq; is sensible if there is a definiendum of the main definition
occurring in the succedent formula of the conclusion sequent. A derivation is sensible if all its

choicegqi-rules are sensible.

All the derivations found by Proc. 2 are sensible, however not all sensible derivations are found
by Proc. 2. Roughly, the sensible derivations which may not be found by Proc. 2 are those
derivations which may be found by Proe. 1 by using the clause to deal with definitions of

dependent type in the following conditions:

(i) the proposition search(A, (Z; A), Oin, Oout, contr(z, zy.€1), Vin, Vour) holds because the fol-
lowing propositions hold:

choiceddt(A, I,z, Ay, Az, p, e, D);
searchl(xl 1, A, Ay, (E; A)) ©in, Oout, €1, Vin, Vout);
z1 € &

(i) no definiendum of p occurs in A;
(ili) some variable z of V;, occurring in A is s.t. a definiendum of p occurs in Oy (z).

In the conditions above A has no occurrences of a definiendum of p. However, the corresponding
derivation uses a rule choicegq whose formula in the conclusion’s succedent is ©,y;(A), which
has some definienda of p occurring in it. Below is studied a sufficient condition for a rule

choicegq; to be sensible.

Definition 5.7 The set of strictly positive subformulae of an H-formula H (notation sps(H))
w.r.t. a basis 1; A is defined as follows:

sps(A) =ae; {A}

sps(G D H) =g4.; sps(H)

sps(Hy A Hg) =45 sps(H1) U sps(Ha)

sps(Vor H) =4ep sps{{A/z}H), if B; A& At 7 48 derivable.
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Definition 5.8 Let 55 A “57 a2 : A be derivable by m in def™**. The derivation of the

main axiom and the principal strictly positive subformula of H for 7 are inductively defined on
the structure of w as follows:

e Case 7 is of the form:

Ty 2
E;A*-Al"A S'Alf‘Al af

aziom,
A.A
3.7, Qe o L R |

where H = A, and aZ,; = z. Then, the derivation of the main axiom for m is m and the
principal strictly positive subformula of H for 7 is H.

e Case w is of the form:

m

DA SEYgm A i

¥ A AvzHyAH; splitl(z,z1.ay ) : A

where H = Hy A Hy and ag,;; = splitl(z, z1.a3}, h). Then, the derivation of the main axiom
and the principal strictly positive subformula of H for 7 are respectively the derivation of the
main aziom and the principal strictly posilive subformula of Hy for m,.

e Case 7 is of the form:

my

AN R n A B A FHy b

%A Skl phity spl-itr(z,wl-“:&m) =

where H = Hy A Hy and af,;; = splitr(z,z1.azy;, ). Then, the derivation of the main axiom
and the principal strictly positive subformula of H for m are respectively the derivation of the
main aziom and the principal strictly positive subformula of Hy for my.

e Case 7 is of the form:

2

. ol . . 1521 a, .
E,A'—‘)ecu[f.G E,A _‘} eulf;‘A

Ay;z:GDOH
55 A SR apply(z, eeutyr.allyy,) 1 A

==

where H = G D H; and al,;; = apply(z, ecu £y T1. 850 fl)‘ Then, the derivation of the main
axiom and the principal strictly positive subformula of H for © are respectively the derivation
of the main aziom and the principal strictly positive subformula of Hy for m,.

e Case n is of the form:

1
— m2
ma M a4 AR AGT

ArizVyr S
BA TR la;opl,/,,(:z: A, z;. aeum) A ’
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where H = Vy.. Hy and ag,;, = apply,(z, A, 1.0z, ). Then, the derivation of the main axiom
and the principal strictly positive subformula of H for n are respectively the derivation of the

main aziom and the principal strictly positive subformula of [A/y|H; for my.

It is easy to show that if 7 is the derivation of the main axiom for a derivation m; of

oA i agyy : A then 7 is of the form:

(P} m3
E,AF‘A]EA E;Ali-Alaf
A Ay z1: A

aziom,

for some z1, A, 72 and 3.
Definition 5.9 A definition of dependent lype
(25, oy By ) Sitsy PO G (AT o 00805 (A (8) 0t} ) % By o Bhgpam L
is called reasonable if n > 1 and for every A € sps(I) there is1 < i < n s.t. y; € A.

Not all definitions of dependent type are reasonable. However, when definitions of dependent
type are used for declaring logical properties of functions almost all definitions may be replaced
by reasonable definitions, essentially equivalent to them. For example, definitions whose type is
an I-formula are not reasonable. However, for declaring logical properties of functions the types
of definitions need to be of form X, D. Other situation where a definition is not reasonable is
when its type is of the form Xy,.r,...2y,.r, f and y; € I, for 1 < ¢ < n. In this case the type of
the definition is logically equivalent to I and so, by the argument above, this definition is not
useful for declaring logical properties of a function. The last situation where a definition may
be not reasonable is when the type of the definition is of the form Xy, .7, ..., ;7. I, where I is
either of the form (i) I A I; or of the form (ii) I; D Iz and not simultaneously y; € I; and
y; € I, for 1 < ¢,5 < n. In case (i) the definition could be easily replaced by two definitions.
In case (ii), if y; € I the ideas above may be attempted to express the definition by means of
reasonable definitions. For case (ii), where y; € Iy, the ideas above are not sufficient to replace
the definition by reasonable definitions.

Consider the following two forms of D-formulae:
(1) Zfirym7 Vour, (11 D 1), where z € I and fz occurs in Iy;
(i) Zgeri—rpmms Vayim (It O (Vapur, (T2 D 13))), where z € Iy, 22 € I and gz122 occurs in I3.

Types of forms (i) and (ii) correspond to the types of first and second order deliverables [MB93],
the difference being that in the theory of deliverables the I-formulae used above may be replaced
by arbitrary formulae. A definition whose type is either of form (i) or (ii) is reasonable, for f

occurs in I3 and g occurs in I3, respectively.
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Definition 5.10 Let ;A F Ay =, Ay be derivable by w. A variable z is necessary for A; inw
if there is a free occurrence z* of © in Ay and w has no rules of the forms:

F21; AT =gy A 7,A2 basis

T13A1,% =gy AT, A 2%, A ]

Yoz imAiFAziy YA FAgT
21; Al [ (/\a:l . T.A3)A4 Py [A4/2:1]A3

where z* € A4 and z1 & Agz.

Using no rules of the first form guarantees that, case « has a definiens, z* is not replaced by
its definiens. Use of no rules of the second form guarantees that z* may not disappear with

B-reductions.

Lemma 5.6 Let ;A F Aib,Ag be derivable by w. Then, if x is necessary for Ay in 7 then
z € As.

Proof: Let z be a necessary variable for A; in w. The proof follows by induction on the
structure of w. For example, case the last step of 7 is of the form:

Yoy AFAsiT D;ARA T

;A F (Azy : 71.A3)Aq by [Ag/z1]As

By definition of necessary variables, there is a free occurrence z* of z in (Azy : 11.A3)Ay, t.e.
z* € Az or * € A4, If 2* € A3 then z* € [Ay/z1]A3, since z; # z. If z* € A4 then z; € A3,
otherwise z is not necessary for (Az; : 71.A3)A4 in 7. Thus, z* € [Ay/z1]As. [}

Definition 5.11 Let &; A t (pAy...A,) = (pAl...AL) be derivable by =, i.e., for 1 < i < n,
there is a derivation m; of B; A & A; =,; Al. Then, a variable z is necessary for pAi...A, inx,

if, for some 1 < i < n, x is necessary for A; in w;.

Lemma 5.7 Let ;A F Ay = A be derivable by w. Then, if x is necessary for Ay in w then
T € Az.

Proof: Follows easily from Lemma 5.6. O

Theorem 5.6 Let w be a derivation using the choiceqq; rule 5.7, whose main definition is

reasonable of the form (zy,...,Tn, &) =acy (A1y.eey Any€) 1 Bypiry oo Bypira 1

1
R TR T
X; A — contr(z, z.al,;,) : A

choicegy; 5.7)

Let the derivation of the main aziom for m, be:

w2
E,A"AIEA E;All‘Al af
SATA L A

ariom.
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Then, for some 1 < 1 < n, z; occurs in the principal strictly positive subformula A; of

[z1/n1)...[#n/yn)]. Further, if z; is necessary for A, in w, then the choiceqq; rule 5.7 is sensible.

Proof: Since the main definition of rule 5.7 is reasonable, every strictly positive subformula
of I has an occurrence of an y;, for 1 < j < n. So, every strictly positive subformula
of [z1/41]...[zn/yn]] has an occurrence of an z;. In particular A; has an occurrence of a
definiendum, let us call it . Now, assume that z is a necessary variable of A; in 73. Then, by
Lemma 5.7,  occurs in A. Thus, rule 5.7 is sensible, since z occurs in A and it is a definiendum

of the main definition. (|

Theorem 5.6 gives a sufficient condition for a rule choiceqq; to be sensible, in case its main
definition is reasonable. On one hand, an implementation of LFPL based on Proc. 2 may be
more efficient than an implementation based on Proc. 1, since for achieving atomic goals the
definitions of dependent type to attempt are dictated by the occurrences of definienda in the
goal, so there may be fewer definitions to attempt. But, on the other hand, there are some
derivations via definitions found by Proe. I that may be missed with Proc. 2; however, these
are not many, as hinted by Theorem 5.6. In future work we intend to make precise the benefits
and costs of implementations based on Proc. 1 and Proc. 2.

The two procedures sketched above to search for def'®Y“" -derivations are capable of finding
complete sets of witnesses. However, these complete sets of witnesses may be redundant. For
example, consider a search for a witness of an atomic goal A w.r.t. a program ;A . Only
two rules may be used to derive an atomic formula; they are choice and choicegq:. Suppose
a witness e is found by using choiceqq, for a definition of dependent type p =, e; : D in the
program. Then, there must be a formula in A leading to a derivation of A, whose ulf-form is
the same as the ulf-form of e. Below we put forward some ideas that may be used in eliminating
redundancy.

Consider a search of a HH%/ _derivation for an atomic formula. The only rules that may
be applied are choice and choiceyqy, i.e. a derivation via a formula or a derivation via a
definition. The procedure sketched above imposes no constraints on the order in which
components (formulae or definitions of dependent type) in the context should be selected.

Many times in logic programming a user is only interested in knowing some of the means for
achieving a goal, rather than knowing all of them. So, the order in which alternative derivations
are searched becomes important. Shorter derivations should be reported first.

A motivation to introduce definitions of dependent type is that their use may introduce
shortcuts in deriving a formula; so a derivation via a definition should be preferred to a derivation
via a formula. Thus, we suggest that the choice of components from the context to derive an
atomic goal should be such that definitions of dependent type are selected before formulae. Still
there is a choice for the order in which to select definitions and the order in which to select

formulae.
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Let us consider a search for a witness of an atomic goal A w.r.t. a program X; A, where there
is a procedure choice that has already selected components of A producing the non-redundant
set S, of witnesses. Assume the next component selected by choice is C. In this setting, the

predicate search for atomic goals could be described by the following clause:

search(A, (; A), Oin, Oout, €, Vin, Vour) if
(C=(z:H)and
searchl(z : H, A, (X; A), Oin, Oout, €, Vin, Vout) and
not in(ul f(e), Sc))
)
or
(C = (p=acs €1 : D) and
Ipart(p =4 €1 : D, I,z) and
searchl(z; : 1, A, (3; A), Oin, Oout, €2, Vin, Vour) and
e = contr(x,z;.e3) and
not in{ul f(e), Se)) and
T, &€ A
)

An expression ulf(e) stands for the ulf-form of e. A proposition in(ulf(e),S.) holds iff the
ulf-form of e is A-convertible to a proof-term in the set S.. In practice both e and S, may
require the use of free variables of simple type, those introduced to deal with existential goals
and universally quantified formulae in the program. Such requirement complicates the test for
membership of a witness in S,, demanding pattern-matching on A-terms.

In future work we intend to make precise these ideas for eliminating redundancy of complete
sets of witnesses for the achievement of a goal w.r.t. a program in LFPL. We hope to improve on
the ideas described above by integrating the test for redundancy with the choice of a component
of the program to proceed search; so that, some components of the program need not be
attempted, either because they lead to derivations whose ulf-forms are identical to other ulf-
forms obtained before or because they fail to produce a derivation for the same reason as some
other component of the program attempted before.

This section finishes by applying the ideas described above to find a complete and non-
redundant set of witnesses for the example shown in Sec. 4.7. There, the problem is achieving
the goal

G = Jy.,membergeq(+20, [sss0], z)

w.r.t. the program X; A. (See Sec. 4.7 for the definition of X;A.)
Using either Proc. 1 or Proc. 2, a proof-term e is a witness for the achievement of G w.r.t.

%; A iff there exists O1, ez, V7 s.t. proposition (i) is valid and ©+(e?) = e.

(i) search(3g.,membergeq(+20, [s550], %), (5; A), id, Os, €2, 0, V2),
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where id represents the identity function on variables and () represents the empty signature.

Proposition (i) is valid iff proposition (ii) is valid, where e; = (z, €2,).
(i) search(memberge,(+20, [ss50], ), (X; A), id, Oy, €, {z : nat}, V2)

Now a component of the program must be selected. The definiendum of the unique definition
of dependent type in the program, +2, occurs in the goal, so Proc. 1 and Proc. 2 behave in
the same way. Either the definition of dependent type or any program formula may be selected
for showing validity of (ii). However, the only means of making (ii) valid is by selecting the
formula annotated by 23 in the program. So, after a few steps, for (ii) to be valid, proposition

(ili) must be valid.
(i) searchl(zg : Hy, memberyey(+20, [sss0], z), Ay, (X A), ¢d, ©2, e7,, V1, V2),
where:
o e7, = apply,(24, 1, 27.apply, (27, T2, 28.applyy (2, ©3, 29-€2,)));
o H; = geq(x2,21) D memberye (1, [z2]|2za], 22);

e A; is the context consisting of the components of A that appear before the formula

annotated by zs;
e Vi = {z : nat,z, : nat, z, : nat, z3 : lnat}.

For proposition (iii) to be valid, there must exist ©7, and V2, s.t. propositions (iv) and (v) are

valid.

(iv) searchl(zio: membergeq(z1, [®2]23], 22),
membergeq (420, [s850], 2), Ay, (Z; A), id, ©2,, €2, V1, V2,);
(V) searCh(gCQ(mZ, Z]), (21 A)) e?l + O1, €74 V.'n V?)1

where: e2, = apply(zg, €2,, z10.€7,). Proposition (iv) may be shown valid performing the fol-
lowing instantiations:

€7, = 2103

©9, = id — {x1 > +20; x2 — 5550; 23 > nil;z > sssO};

Vo, =W
(©2, represents the function id except for the values associated to zy, 23, 23,z which are now
respectively 420, sss0, nil, sss0.)

Validity of (v) may be shown either by selecting a formula or the definition of dependent
type, since the definiendum occurs in the goal, for ©7, (1) = +20. Notice that, in case O, (z1)
was still an indeterminate the definition of dependent type could not be used at this point in
Proc. 2.

First we attempt showing validity of (v) through the definition of dependent type. Doing so,

(v) is valid only if (vi) is valid.
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(vi) searchl(zs: Ha,geq(z2, 21), Az, (5 4), 09,01, e7,, V2, V2),
where:
o ey, = contr(z, z11.apply (211, T4, 212.apply (212, T5, 213.€25)));
e H; = geq(z4,25) D geq(+224, +225);

e /A, is the subcontext of A that appears before the definition of dependent type, followed
by the definition of simple type +2 =4, Az.582 : nat — nat.

e Vo = ViU ({z4: nat,zs : nat}.

For proposition (vi) to be valid, there must exist ©2, and V3, s.t. propositions (vii) and (viii)
are valid:

(vii) searchl(zi4 : geq(+224, +22s5), geq(z2, 1), A2, (£; A), ©7,,01,, €75, Vo, V1,);
(viii) search(geg(z4,s), (X;A), O1,, O, €, V1,, V1),

where: e7, = apply(z13, €1,, 214.€74)-

Proposition (vii) may be shown valid by performing the following instantiations:

€7 = 2143
©1, = ©7, — {z4 > 50; 25 — 0};
Vi, = Va.

By using Proc. I, validity of (viii) may be shown either by selecting a formula or the definition
of dependent type. But, by using Proc. 2, validity of (viii) may only be shown using a formula,
since ©9, applied either to z4 or z5 produces no occurrences of +3. In fact validity of (viii) may
not be shown through the definition of dependent type. The only form of showing validity of

(viii) is by making the following instantiations for the indeterminates:

ez, = apply,y(21, Ts, 215.215);
©7 = O, — {26 > s0};
V2 = Va, U {zg : nat}.

There is only other alternative form of showing validity of (v), which follows by selecting
the formula annotated by z;. This alternative produces the following instantiations for the

indeterminates:

er, = applyy(z2, 24, 211.applyy (211, Ts, 212.apply (212, €7, 213.213)));
€75 = applyq(zg, Tg, 214-applyq(zl4, T7, Z1s-apply(215, GPP‘yq(Zl, T8, 216-)), 217-217));
©7 = O7, — {z4 > s50, 25 = s0, zg —+ 80,27 — 0,25 — s0};

Va = Vi U {z4 : nat, zs : nat, x¢ : nat, z7 : nat, zg : nat}.
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The ulf-forms corresponding to the two possible instantiations of es, are the same; they are
equal to:

be(z2, [s50, 50], be(z, [s0,0], a'pplyq(zla 50, 25.25))).

Thus, a complete and non-redundant set of witnesses for the achievement of G w.r.t. X; A contains
only one witness.

Summarising, we have sketched two methods for implementing LFPL. Both methods are goal-
directed for compound goals. For atomic goals, either a formula or a definition of dependent
type of the program is selected and search proceeds by breaking it up. The difference between
both methods is in the selection of definitions of dependent type. Whereas in Proc. 1 arbitrary
definitions of dependent type may be selected, Proc. 2 allows only the selection of a definition
of dependent type if any of its definienda occurs in the goal. So, the search space in Proc. 2 is
much smaller than the search space of Proc. 1, but there may be derivations using definitions
of dependent type, potentially shorter, which are not found by Proc. 2. However, as shown in
Theorem 5.6, these derivations are not many.

Running both methods for all possible choices produces redundant sets of witnesses. In
future work we intend to address mechanisms that permit to abandon search at particular
choices that lead to witnesses whose ulf-form is equal to the ulf-form of another witness found

before.
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Chapter 6

Conclusions and Open Problems

6.1 Conclusions

This thesis proposes the language LFPL as a new approach for integrating logic and functional
programming. In contrast to other approaches (such as ALF, Babel, Curry and Escher),
LFPL keeps functions and formulae at separate levels; as in type theory, formulae are used
for expressing logical properties (specifications) of functions. Sometimes, the specification of a
function may suffice for achieving goals, thus obviating the necessity of replacing the function
name by its definiens and subsequent normalisation.

Often, in programming, we write a specification and attempt to derive an implementation
of it. In the context of LFPL, specifications of functions are thought of as lemmas that may be
used for goal-achievement. Firstly, it needs to be shown that functions meet their specifications.
Secondly, those specifications may be used, as many times as desired, for goal-achievement.

We take a proof-theoretic view of logic programming, essentially following [MNPS91, Mil90],
where a goal (formula) G is achievable w.r.t. a program (set of formulae) P if there is a proof of
G from assumptions P. The language FOPLP is defined by means of the sequent calculus system
hH for first-order hereditary Harrop logic, a fragment of the logic underlying AProlog[NM88].

When defining a semantics of a logic programming language, we must define what are the
different means of goal-achievement. The quest for an answer to this question for an integrated
logical and functional language led us to studying this question in the simpler setting of the
first-order pure logic programming language FOPLP.

The different means of achieving a goal G w.r.t. a program P in FOPLP are the proof-terms
e of the uniform linear focused derivations of G w.r.t. P. We show that such derivations are in
a 1-1 correspondence, through Prawitz’s mapping ¢[Pra65], to the expanded normal deductions
of G w.r.t. P, or, in other words, the deductions of G w.r.t. P in the natural deduction system
NN for first-order hereditary Harrop logic, presented in Sec. 3.5. Further, we show how to

transform each derivation d in R H into a uniform linear focused derivation u, essentially by
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means of Kleene’s permutations [Kle52], so that d and u are interpreted by ¢ as the same
expanded normal deduction.

The language HOPLP is defined by means of HH, a sequent calculus for the higher-order
hereditary Harrop logic with A-terms rather than first-order terms. This language follows ideas
similar to FOPLP. The different means of achieving a goal G w.r.t. a program P correspond
to the A-normal proof-terms of the uniform linear focused derivations of G' w.r.t. to P in HH.
This class of derivations is in 1-1 correspondence to the expanded normal deductions of G’ (the
A-normal form of G) w.r.t. P’ (the program obtained by replacing the formulae in P by their
A-normal forms) in NN*™™  a natural deduction system for higher-order hereditary Harrop
logic.

We take HOPLP as our starting point for integrating logic and functional programming, since
we may express directly in HOPLP arbitrary relations, by means of formulae, and functions, by
means of A-abstractions. Roughly, LFPL is obtained from HOPLP by allowing a mechanism
for defining names for A-terms (simple definitions) and a mechanism for declaring specifications
of functions (definitions of dependent type).

Traditionally, logic programming constructs cut-free derivations for goal-achievement. In
LFPL, the use of a definition p =, e : D of dependent type for goal-achievement may be
thought of as the use of a (constrained) cut, whose cut-formula is the specification D declared
in the definition and whose derivation of D from other formulae in the program is determined
by e, thus building a derivation with the subformula property. There are cases, as illustrated
in Sec. 4.7, where the use of definitions of dependent type permits more efficiency in goal-
achievement. When attempting to achieve a goal G, the occurrences of function names in G
control the uses of cuts. If there is a definiendum occurring in G then a cut, whose cut formula
is the specification of that definiendum, is attempted for achieving G.

Section 4.6 shows that LFPL is both sound and complete for HOPLP, in the sense that a
goal G is achievable w.r.t. a program P in LFPL iff G’ (the interpretation of G in HOPLP)
is achievable w.r.t. P’ (the interpretation of P in HOPLP) in HOPLP. Further, the different
means of goal-achievement of G w.r.t. P in LFPL are in a 1-1 correspondence with the different
means of goal-achievement of G’ w.r.t. P' in HOPLP. So, LFPL is interpretable by means of
the natural deduction system NN*"""" The programming language LFPL may be thought of
as an equivalent language to HOPLP, the difference being that LFPL allows extra mechanisms
for writing programs, making them clearer, and uses those mechanisms for achieving goals more
efficiently.

The means of goal-achievement in LFPL are interpreted in HOPLP essentially by cut-
elimination. For each means of goal-achievement in LFPL using definitions of dependent type
there is a means of goal-achievement in LFPL using no such definitions, whose interpretation
in HOPLP is the same. Sometimes, as shown in Sec. 4.7, the use of definitions of dependent

type provides shorter forms of goal-achievement, since the corresponding derivations using no
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such definitions are (exponentially) longer.

Computation in LFPL may be divided into two steps, as in [PW92]: the first step is proof-
search, where, due to the use of cuts, the proofs found may be shorter than in HOPLP; and
the second step is an extraction of the witnesses for the existentially quantified variables in the
goal from the proof obtained in the first step. The extraction step may require normalisation of
some parts of the proof. However, this normalisation may be done lazily, for only the witnesses
for the existentially quantified variables in the goal need to be exhibited.

This thesis uses systems with proof-terms annotating formulae for defining logic programming
languages. These systems permit a simple type-theoretic account of such languages. By viewing
propositions as types, a program (set of annotated formulae) is a type assignment (context) and
a goal (formula) is a type. Achieving a goal G w.r.t. a program P is a search for an object
(proof-term) of type G' under type-assignment P. This view of logic programming follows
similar ideas to the language EIf [Pfe89], based on All-calculus (the theory of dependent types
underlying LF), where the results of computations are objects of goal-type. The language LFPL
may be thought of as a dependent type theory that provides some definition mechanisms, where
the definitions and types allowed are restricted in such a way that search for objects of a type

may be done efficiently by means of goal-directed proof-search.

6.2 Open Problems

Allowing cuts for building derivations introduces redundancy in the means of achieving goals
w.r.t. programs. Recall that in LFPL, a derivation using def ; (cuts) and its ulf-form, essentially
obtained by cut elimination followed by reduction to ulf-form, are regarded as the same means
of goal-achievement, c¢f Sec. 4.6. The implementation of LFPL, suggested in Sec. 5.4, deals with
this redundancy problem in a very inefficient way. Each time witnesses of goal-achievement are
found, their ulf-forms are calculated and compared with the ulf-forms of the witnesses already
known.  An interesting question still to be resolved is whether or not, when searching for
alternative witnesses, a set S of witnesses may be used for pruning the search space, either
positively, by ensuring that the ulf-forms that may be found within some branches of the search
space are already in S, or negatively, by ensuring that there are no possible witnesses within
some branches of the search space.

The redundancy problem mentioned above is also of interest in the wider context of know-
ledge bases. Consider a knowledge base that has redundant information and keeps control of
how such redundant information is related. How can one use effectively the information about
redundancy for withdrawing conclusions from the knowledge base? (In our case: a knowledge
base is a program; the redundant information appears in the form of the formulae in the defin-
itions of dependent type; and proof-terms (definientia) of definitions of dependent type show

how those formulae are related to other formulae in the program.)
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In Sec. 5.4 are sketched two search procedures, Proc. I and Proc. 2, for implementing LFPL.
They differ only in the components (formulae or definitions of dependent type) of the program
that may be selected for achieving atomic goals. Proc. 1 allows the selection of any component
of the program and is capable of finding all EULF-derivations. Proc. 2 also permits the selection
of any formula in the program, but reduces significantly the choice of definitions of dependent
type, as compared to Proc. I, since it only permits the selection of a definition of dependent
type if some of its definienda occur in the goal, ¢.e. Proc. 2finds only sensible derivations. The
drawback is that some EULF-derivations may not be found with Proc. 2. Section 5.4 gives a
characterisation of the EULF-derivations which are not sensible (Theorem 5.6) and describes
which sensible derivations are not found by Proc. 2. We would like to investigate other possible
forms of characterising the derivations found by Proc. 1 which are not found by Proe. 2 that
may help clarify the relation between advantages of using Proc. 2, by pruning the search space,
and drawbacks of using Proc. 2, by failing to find some EULF-derivations.

Typed A-calculus is a weak type system for representing functions. (Recall that only exten-
ded polynomials may be represented in typed A-calculus, as shown in [Sch75].) In future work,
we intend to extend LFPL with inductive datatypes and recursion and allow the programmer
to use some induction principles for constructing derivations of properties universally quanti-
fied, over inductive types, in specifications; derivations using these induction principles should
have induction-free counterparts, so that derivations using definitions of dependent type are
interpretable as derivations using no such definitions. Within such extensions of LFPL we hope
to able to express more complex examples than the example presented in Sec. 4.7 that benefit
from our proposal for integrating logic and functional programming.

An interesting exercise would be to give a precise interpretation of the language LFPL by
means of the Extended Calculus of Constructions (ECC) [Luo94]. The ECC provides the impre-
dicative type of propositions, where formulae may be interpreted, and a cumulative hierarchy
of predicative universes, that we may use for interpreting simple types. In this setting, ECC’s
Y-types may be used to interpret directly the types of definitions of dependent type. Having
an interpretation of LFPL into ECC, there is a precise framework for investigating relations
between definitions of dependent type and deliverablesfMB93].

By taking the view of logic programming as a means of performing meta-logical studies,
it would be pertinent to investigate relations between the definition mechanisms allowed in
LFPL, namely the mechanism for making definitions of dependent type, and the module system
suggested in [HP91] for EIf.

The semantics of the logic programming language FOPLP is defined by means of hH, a
sequent calculus for first-order hereditary Harrop logic. However, there is a clear interpretation
of FOPLP by means of the natural deduction system NN, defined in Sec. 3.5. In order to

achieve this interpretation the intermediate calculus MM ! is used; this is essentially a version

1The calculus MM is a fragment of the permutation-free calculus for intuitionistic first-order logic, based on
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of the calculus hH where permutation variants of a derivation are identified, ¢.e. a permutation-
free calculus. (Recall that, derivations in M M are in 1-1 correspondence to expanded normal
deductions.) We would like to follow a similar approach to investigate possible characterisations
of disjunctive logic programming [NL95] by means of natural deduction systems. The study of
permutation-free calculi is also of particular interest in the context of languages based on linear
logic, ¢f {And92a, Mil94, GP94, PH94], where there are usually many permutation variants of
a derivation. We would also like to investigate this topic.

Other problems left open throughout this thesis or motivated by this thesis, that we would

like to study in future work, comprehend:

e Investigations on the conjecture: proofs in LJ are interpreted (in Prawitz’s sense) as
the same deduction in NJ iff they are permutable (in Kleene’s sense), in other words, if
;A =>e;: F and T;A = ey : F are derivable in LJP!, then e; =2, e iff ¢(e1) = ¢(e2).

(This result has so far been shown for the implicational fragment, cf Sec. 2.3.4.)

e Can the rewriting systems RS,y and RSy be transformed into strongly normalising and ;
Church-Rosser rewriting systems, within which every proof-term is reducible to a uniform

focused and a uniform linear focused, respectively, proof-term?

o Is there a 1-1 correspondence between uniform focused derivations (notice that the linear-
ity constraint has been dropped) in a sequent calculus for intuitionistic logic and natural
deduction systems that allow deductions to be directed acyclic graphs, rather than trees?
(Recall that the linearity constraint in witnesses for achieving a goal, e.g. in FOPLP,
comes from the fact that side formulae of left rules may be used only once. This restric-
tion is essentially motivated by implementation issues, since it would be very costly to
add to the program all the side formulae of the left rules used in a derivation for achieving

a goal, which would need to be retracted in case of backtracking.)

e An interpretation (normalisation procedure) of HH cul _derivations as uniform linear fo-
cused derivations of H H may be described at the level of proof-terms by means of the
weakly normalising rewriting systems RSy and RS ¢ (RSuiy with A-terms rather than
first-order terms), whose normal forms are respectively H H-proof-terms and uniform lin-
ear focused proof-terms. (This interpretation essentially corresponds to the interpretation
of LFPL-witnesses as means of goal-achievement in HOPLP.) We intend to study new pro-
cedures for normalising proof-terms of HH %% as uniform linear focused proof-terms of
HH, by interleaving both rewriting systems. In particular, we are interested in efficient
procedures for deciding whether or not two proof-terms have the same normal form; such
procedures are useful for dealing with the redundancy issue in implementations of LFPL.

Following ideas similar to those in [Wad93], we may describe functional languages whose

[Her95], presented in [DP96b].
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execution mechanism is normalisation of proof-terms to cut-free uniform (linear) focused
form. The study of procedures for normalising proof-terms of HH cut (and extensions

thereof) as proof-terms of HH is also of interest for implementing such languages.
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Appendix A

Relations amongst the main calculi

HHdcf

(6)

cut

H

(&)
HH 4) > NNAnorm
V' S ]
S @ uF,
hH ¢ hH 44— NN
mn

v
L i y NP

——) : mapping (1) - Theorem 2.7

. (2) - Corollary 3.3 and Theorem 3.7
;-P : embedding (3) - Theorem 3.18
= o (4) - Theorems 3.24 and 3.25
— W sufjection  (5)_ Theorem 44

4— : bijection (6) - Theorems 4.5 and 4.6
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Appendix B

Derivations in hH

Below is presented the hH-derivation! corresponding to witness (i) of Fig. 3.5 for the achieve-

ment of the goal

G = A1 D (((A2 D As) D A2) D 4s)

w.r.t. the basis £; A, where A =z : A; D (A2 D As), 21 : Az

Consider the following abreviations.

Ay
€
€]
€2
€3
€4
€5

(=3

Let m; be the h H-derivation:

deg
=det
=dey
dey
=dey
dey
=deyt

=d=l

(o 2;A1,-’L‘4 :A3 D As,z'( : Ag basis

Y A1,zq: Ay D As,x7: Ay => z7: Ag REAOH} YAy, x4: A2 D As,x7: Ag,xz8: Az => 18 : A3

A,zy: Ay, zs: (A2 D As) D Az
apply(z, €1, z4.€1)
lambda(zy.e3)

larmbda(zz.¢3)

apply(z4, €4, T5.25)

apply(zs, es, T6.25)
lambda(z7.e¢)

apply(za, z7, Z’s-rs)

FX;A,z4: A2 D A3,$7 3 Az,wg : Az basis

aziom

YAy, 24 Ay D Az, x7: Ag =>eg 1 Ag

=2

UiA,z4: A2 D Aa=>e5: A3 D As

Let w3 be the hH-derivation:

m
YA, z4: Ay DAz =>eg: Az D Az L;A1,z4: Ay D As,Te: Az = x5 : Ag 5

=2

XA, 24 Ay D Ag, 26 1 Ap basis

aziom

YA, z4: A2 DAz = eq i Ag

=P

1Recall that hH-derivations are unique up to the name of bound variables and the derivations of auxiliary

judgements.
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Let w3 be the hH-derivation:

T2 FX; Ay, x4 : Ap D Ag, x5 : Az basis .
YiA,z4: Ay DAz = eq: Ay D;A 1,24 : A2 D Az, z5: Az = 25 1 As g:c:t:m
YiA,xe: Ay, 23 (Az DAs) DAz, 24: A2 D Ag=>e3: As

Then, the following hH-derivation, whose proof-term is witness (i) of Fig. 3.5, may be formed.

3
WA x4 Ay D Az, 20 Ay, 23 (Az DAa) DA = e3: As =

I X; A basis . T;A,z4: Ay D A3, 23 A1 = ez : ((A2 D A3) D A3) D A3 Soes
A=z Ay ansem T A,z4: A2 D Az = e; 1 A1 D (((A2 3A3) :)Az) D As) ~=s
E;A e A D (((A2 D Az) D A2) D A3)
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Appendix C

Derivable judgements of HH’

SAFA i - SAF A T,
Y;AFpA LAy af

P:Ti = ...~ T —>propeP

Well-formed atomic formulae.

AR Aaf S:AFHi hf A Hyhf
S AFARS :AF H AHg hf
S AFHAM BARGgf Y,e:r;AFHAMf I A basis 5
T AFGOHM Y AFV, Hhf z ¢

Well-formed program formulae.

T:AF Aaf S AFGisf TAF Gigf
T AFAaf T.AFGLAG: of
AFGrgf E;AFGagf L;AFGgf T;AFHAS
S AFG VG af SAFHOGaf

Ye:1;AFGgf F I;Abasis ¢y Ye:1;AFGgf FX;Abasis 5
T;AF3...Ggf # LAFYGyf =%

Well-formed goal formulae,

Figure C.1: Well-formed H H'-formulae.
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AFAv, Ay

T AR AvTA
S AFA:T ;AR AIA; ;AR ApiAg
AR AREA ;A F AcTAg

AR AbTA;

TAF A=, A
T;AF A =, A TAFAS Ay BAF A=, Ay
SAF A=, A AFAS, Ay

TFigure C.2: Reduction in zero or more steps and conversion on H H'-terms.

;A F Ay =, AL AF A, =, A

. e AT 4 -
T, AF pAr..A, = pA,. AL Bt Tn b prop€P

2;A|“H1"="H3 E;A*“‘H-zEH‘; E,AI“GHEGz E;A"HlEHz
;A HiAHy = Ha A Hy Y AFGLDHy =Gy D Hy
Y,e:1m A Hy=Hy F ;A basis ¢x
T;AF Voo Hy = Vaur Ha -~
LAFGI =Gy L AFGy=Gy Y, AFGI=Gs ARG =Gy
L AFGIAGe =G NGy DAFGI VG =G3V Gy
S AFH =H, ;ARG =Gy Y,z:1AF Gy =Gy XA basis ¢
Y, AFH DG = H; DGy Y AF Je:rG1 = 35:r Ga “
Trz:AFGL =Gy XA basis 2 g S

LiAF Y Gl = Ver Gy

Figure C.3: Convertible H H'-formulae.
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TiA=>e:G) T; A= e: Gy
;A = pair(e;, e2) : G1 A Gy

=A

DiA=ze: Gy E;AI—Gggf___:’v T;A=pe: Gy T;AFGygf
T;A = inl(e) : G1 V Ga ¢ T;A = inr(e) : Gy V G2

=V,

ALz HAy=>e: G %
Z; A1, A = lambda(ze) : HD G

D

TiA=e:[A/z]G T;AFA:T
;A = pairg(Ae) : 3., G

=13

Yz:1;A=>e: G F ;A basis
I; A = lambday(z.€) : Yz.r. G

>Vegd

s E',A[,:B : A,A2 basis
A,z A M=z A

aziom

YA,z HyAHy,zy: Hy,As=>e: G
YA,z Hy /\Hg,Az = splitl(z,zl.e) e

Nt =

AL,z HiAHyzy: Hy,Ag=e: G s 2
Ay, z: Hy A Hpy Ay = splitr(z,zy.€) : G "

ALz Gi D Hy,Aa=e: Gy, L;A,L,2:G1 D Hy,z:HyyAr=e: G
5;A1,z: Gy D Hy, Ay = apply(z,e,z1.€1) : G

o=

LA,z i Ve Hyzot [Af2]H, As=>e: G L;A1FA:T
I A1,z Vo H, Ay = applyg(z1, A, z2.€) : G

V=

LAz Hy,Ay=e: G S0 FH =H LA=z>e:Gr BAFGI =G _
YA,z H A, =e: G

Figure C.4: Rules for deriving H H'-sequents.
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