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A bstract

This thesis is a proof-theoretic investigation of logic programming based on hereditary Harrop 
logic (as in AProlog). After studying various proof systems for the first-order hereditary Harrop 
logic, we define the proof-theoretic semantics of a logic LFPL, intended as the basis of logic 
programming with functions, which extends higher-order hereditary Harrop logic by providing 
definition mechanisms for functionis in such a way tha t the logical specification of the function 
rather than the function may be used in proof search.

In Chap. 3, we define, for the first-order hereditary Harrop fragment of LJ, the class of 
uniform linear focused (ULF) proofs (suitable for goal-directed search with backchaining and 
unification) and show that the ULF-proofs are in 1-1 correspondence with the expanded normal 
deductions, in Prawitz’s sense. We give a system of proofAerm annotations for LJ-proofs (where 
proof-terms uniquely represent proofs). We define a rewriting system on proof-terms (where 
rules represent a subset of Kleene’s permutations in LJ) and show that: its irreducible proof- 
terms are those representing ULF-proofs; it is weakly normalising. We also show that the 
composition of Prawitz’s mappings between LJ and NJ, restricted to ULF-proofs, is the identity.

We take the view of logic programming where: a program P  is a set of formulae; a goal 
G is a formula; and the different means of achieving G  w.r.t. P  correspond to the expanded 
normal deductions of G  from the assumptions in P  (rather than the traditional view, whereby 
the different means of goal-achievement correspond to the different answer substitutions).

LFPL is defined in Chap. 4, by means of a sequent calculus. As in LeFun, it extends 
logic programming with functions and provides mechanisms for defining names for functions, 
maintaining proof search as the computation mechanism (contrary to languages such as ALF, 
Babel, Curry and Escher, based on equational logic, where the computation mechanism is some 
form of rewriting). LFPL also allows definitions for declaring logical properties of functions, 
called definitions of dependent type. Such definitions are of the form: (/, z) (A, w) : "ExirPt 
where / i s  a name for A and a; is a name for w, a proof-term witnessing that the formula [A/x]F 
holds {i.e. A meets the specification When searching for proofs, it may suffice to use
the formula [A/x]F  rather than A itself.

We present an interpretation of LFPL into a natural deduction system for hered­
itary Harrop logic with A-terms. The means of goal-achievement in LFPL are interpreted in 
j^j^Xnorm essentially by cut-elimination, followed by an interpretation of cut-free sequent cal­
culus proofs as normal deductions.

We show that the use of definitions of dependent type may speed up proof search because 
the equivalent proofs using no such definitions may be much longer and because normalisation 
may be done lazily, since not all parts of the proof need to be exhibited. We sketch two meth­
ods for implementing LFPL, based on goal-directed proof search, differing in the mechanism 
for selecting definitions of dependent type on which to backchain. We discuss techniques for 
handling the redundancy arising from the equivalence of each proof using such a definition to 
one using no such definitions.
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C h a p ter  1

Introduction

1.1 Logical Foundations

The A-calculus is a model of computation introduced by Church [Chu40]. It resulted from an 
attem pt to provide a foundation for mathematics [Chu32, Chu33], which proved to be incon­
sistent [KR36]. (For books on A-calculus, see e.g. [BarSl, HS86].) A-calculus is often regarded 
as the precursor of current practice in functional programming [Jon87, Tho91]. Section 1.2 
describes an abstract model of functional programming, based on typed A-calculus, followed in 
this thesis.

Proof theory also has its roots in foundational studies, mainly those of Hilbert and his 
followers, in the first decades of the century. Unsatisfied with axiomatic systems, Gentzen 
devoted part of his work to formalisations of logic, reflecting more closely the logical principles of 
reasoning used by mathematicians. He introduced the natural deduction and the sequent calculus 
systems for first-order classical and intuitionistic logic in [Gen35]. For this thesis, L J  means 
the cut-free fragment of Gentzen’s sequent calculus L J; LJ^"^ means the unrestricted calculus, 

using the cut rule. In [Gen35], Gentzen described how to transform each LJ^’̂ ^-derivation 
into a LJ-derivation, i.e. how to perform cut elimination. He also described a mapping from 
deductions in N J  (Gentzen’s natural deduction system for first-order intuitionistic logic) to 
LJ^"*-derivations.

Prawitz in [Pra65] revived the interest in Gentzen’s systems. He described a normalisation 
procedure for N J ,  tha t was later realised, through the Curry-Howard correspondence, to be 
a counterpart of normalisation in functional systems [Tai67]. He defined a mapping from LJ- 
derivations to normal deductions in N J  and a mapping from normal deductions in N J  to 
LJ-derivations.

Miller et al [NM88, MNPS91] and Beeson [Bee89] are amongst the proponents of using LJ~ 
based systems to give proof-theoretic characterisations of logic programming, a view tha t we 
follow in this thesis. Under this view, the concepts of program, goal and achievement of a goal



w.r.t. a program are defined by means of sequent calculi systems for intuitionistic logic.
Typed theories were introduced in the beginning of the century, motivated by foundational 

studies [RWIO]. Type theory has seen a resurgence of interest in the last 30 years or so, mainly 
for its applications to computer science, see e.g. [ML82, Hue90, NPS90, Tho91].

The view of Curry [CF58] and Howard [How69] of propositions as types motivated a suc­
cession of works following this idea, the prominent works being de Bruijn’s Automath pro­
ject [dB80] and MartinLof’s predicative type systems [ML84, NPS90]. As in other works 
[Pot77, TvD88, Min94], we follow the view of propositions as types for assigning proofAerms 
to derivations in formal systems. Section 2.3.2 defines the calculi L J p* and N J p̂  which are, 
respectively, natural deduction and sequent calculus systems for first-order intuitionistic logic 
with proof-term annotations.

Parallel investigations into type theory, based on Church’s simple theory of types, led Girard 
to his impredicative systems F  and Fw [Gir72, GLT89]; Reynolds discovered independently a 
system equivalent to system F  [Rey74]. In [CH88], Coquand and Huet presented the Calculus 
of Constructions, which combines Girard’s impredicative systems with de Bruijn’s and Martin­
Lof’s proposal for dependent types. Luo extended the Calculus of Constructions with Martin­
Lof’s predicative type universes into the Extended Calculus of Constructions [Luo94]. Church’s 
simple theory of types, systems F  and Fu, the Calculus of Constructions and some of de 
Bruijn’s systems have equivalent systems in Barendregt’s X-cube [Bar93j.

An application of type theory relevant for this thesis is the use of type theory as an integ­
rated framework for developing specifications and programs. In particular, in our proposal for 
integrating logic and functional programming, we use ideas similar to the theory of deliver­
ables [MB93], based on the Extended Calculus of Constructions, for attaching logical properties 
(specifications) to the functions defined in programs.

1.2 Functional P rogram m ing

This section describes an abstract model of functional programming, based on simply typed 
A-calculus. This simplistic view of functional programming may be described as follows. A 
program is a list of definitions of the form x =acf A : r , where: æ is a variable, the definiendum, 
tha t may be thought of as a name for a function; A is a A-term, tha t may be thought of as the 
definiens of the function; and r  (the type of the definition) is a simple type. (See Sec. 2.2.1 for 
a definition of the syntactic categories of A-terms and simple types.)

A program is required to verify some properties to be a well-formed program. Roughly: a 
definiendum may not occur in the program before it has been declared; a definiendum may 
not have different definientia; a definiendum may not occur in its definiens, i.e. no recursive 
definitions are allowed; the definiens of the definition must be of the type of the definition. (The 
rules of Sec. 2.2.1 may be used to define the well-formed A-terms of a type, where a signature



is used for gathering the types of the definienda occurring before in the program.)
Given a program P  and a A-term A of type r ,  the evaluation of A w.r.t. P  consists of the 

replacement of the occurrences of the definienda of P  in A by their definientia and normalisation.
The strategy followed for combining these two operations is irrelevant for the purposes of this 
thesis. A fundamental property of this abstract model is tha t each valid term of a type has a 
unique normal form. The result of an evaluation is the normal form of the original term.

This abstract view of functional programming may be rephrased proof-theoretically. Through 
the Curry-Howard correspondence between formulae and types, A-terms may be regarded as 
proofs in a natural deduction formulation of intuitionistic implicational logic, as in [Coq90].
Then, a program is a list of definitions of the form x =de/ 6 : P , where æ is a name for the 
proof e of formula F. The evaluation mechanism may be described as the replacement of 
defined names for proofs by their definientia together with proof-normalisation, as described in 
Prawitz’s [Pra65],

There are some other important features, usually present in functional programming lan­
guages, e.g. [Pau91, Tur86, HW90], not considered in the abstract model described above.
Usually functional languages allow richer type theories. Polymorphism is often allowed, by 
introducing type variables. (See [Rey74, Gir72], for extensions of A-calculus with polymorph­
ism.) Another form of types usually provided in functional programmming is the datatype. |
Roughly, datatypes combine primitive types, sum types and well-founded recursion for building j
new types. Datatypes induce the use of patterns as a means for performing case analysis in a i
definition involving terms whose type is a datatype. Another ubiquitous feature in functional |
programming is the use of recursive function definitions. However, the uncontrolled use of re- |
cursive definitions is a source of non-terminating computations. We intend in future work, by 
adding some of the features mentioned above to our abstract model of functional programming, 
to extend our proposal for integrating logic and functional programming.

1,3 Logic Program m ing |

Like the functional programming paradigm, the logic programming paradigm provides more 
readable and expressive languages for programming, as compared to imperative languages; in 
addition, logic programming provides search mechanisms for solutions to queries. The origins |
of logic programming and the first developments of the leading exponent in the paradigm, Prolog 
[SS86], are described in [Kow88, Coh88]. For the purposes of this thesis, we concentrate on 
pure logic programming, i.e. non-logical features, such as control strategies, are left aside, even 
though they have an important role in the semantics of a concrete implementation [And92b].

Most logic programming languages have their logical foundations in the first-order classical 
logic theory of Horn clauses [vEK76, Hod93]. A Horn clause may be written as: A f -  A i , ..., An, 
where A, A i,..., A„ are atoms, i.e. atomic formulae built up by applying predicate symbols to



first-order terms. As usual, first-order terms are built up from a set of variables and a set 
of function symbols and a first-order term is either a variable or a function symbol applied to 
first-order terms. A program is a set of Horn clauses and a goal is an atom. (See e.g. [Hod93] 
for a proof tha t the problem of whether or not a formula is a theorem of first-order classical 
logic may be encoded as the problem of whether or not a set of Horn clauses is inconsistent.)

A Horn clause A f -  A i, ..., A„ is interpreted as the formula ...Va;,„((Ai A ... A A„) D A), 
where x i , ..., x ^  is the set of variables occurring in the atomic formulae A, A i , ..., A„. The logical 

interpretation of a goal A is the formula 3 a , j w h e r e  Xi,...,Xm  is the set of variables 
occurring in A.

An atom Ai is an instance of an atom Ag iff there exists a substitution 0 s.t. ^(Ag) =  Ai, 
where: a substitution ^ is a mapping from variables to terms equal to the identity except for a 
finite set of variables x, for which x has no occurrences in 0{x); and the notation ^(Ag) represents 
the atom obtained from Ag by replacing each occurrence of x by ^(æ), for all variables. The 
ground instances of an atom A are all the instances of A that contain no variable. An atom 
is ground if it contains no variables. A set S  of ground atoms is a model for a logic program 
if for each ground instance of a clause A f -  A i , ..., A„ in the program it is the case that A is in 

if A i , ..., An are in S . The least model of a program is the intersection of all models of the 
program.

The tradition in logic programming semantics [vEK76, Llo84] has been to give an operational 
semantics, usually based on some form of resolution [Rob65], and a declarative semantics based 
on model-theory. (Sometimes [Wol93] a fixpoint semantics is used for bridging the gap between 
operational and declarative semantics.) Usually in declarative semantics [Llo84], the denotation 
of a program is the least model of the program. A goal is achievable w.r.t. the program iff some 
ground instance of it is in the least model.

More recently have appeared some studies giving proof-theoretic characterisations of logic 
programming, amongst others [NM88, Bee89, HSH90, Pym90, MNPS91, Pfe92, Ker92, And92b, 
Har94, NL95]. The proof-theoretic approach uses formal systems {calculi) for describing the 
semantics of logic programming, where computation is regarded as proof-search. As argued in 
[MNPS91, Bee89], proof-theoretic semantics presents a clear logical account of semantics which 
is closer to operational semantics than model-theoretic semantics.

We take the following proof-theoretic view of logic programming. A program is a set of 
closed formulae. A goal is a closed formula. Achieving a goal w.r.t. a program consists of a 
search for a proof of the goal w.r.t. the program in a formalisation of the logic underlying the 
language. Following Miller et al [MNPS91]’s view, we consider: the calculus to be a cut-free 
sequent calculus system for first-order intuitionistic logic; program formulae to be hereditary 
Harrop formulae and goals to be hereditary Harrop goals. (Hereditary Harrop formulae are 
obtained from Harrop formulae [Har60] by allowing no disjunctions and no existential quantifiers 
in positive subformulae. See Sec. 3.2 for a definition of the two classes of formulae.) The



theory of hereditary Harrop formulae is a conservative extension of the theory of Horn clauses, 
in the sense that any Horn clause is an hereditary Harrop formula and, for a Horn program (set 
of Horn formulae), hereditary Harrop logic does not allow any new form of deriving formulae, 
as compared to Horn logic. Languages based on hereditary Harrop logic provide important 
abstraction mechanisms, such as modules and abstract datatypes. However, for these languages 
resolution is no longer an adequate implementation method, essentially because of implicational 
goals tha t augment the program; instead, goal-directed proof-search is used.

Traditional model-theoretic semantics capture the ideas about the number of solutions to a 
query (the different means of goal-achievement) only in a restricted manner. In model-theoretic 
semantics the different means of goal-achievement correspond to the ground instances of the 
goal in the least model. In proof-theoretic semantics the different means of goal-achievement 
may be captured more conveniently, since proofs are themselves the results of computations. 
For defining what are the different means of goal-achievement, it suffices to define an equality 
relation on proofs and regard the different means of goal-achievement as the different proofs 
under such equality relation. In the language AProlog [NM88] this issue is addressed by fixing 
the means of goal-achievement as the proofs which are uniform and use backchaining for dealing 
with atomic goals.

Section 3.6 presents a proof-theoretic semantics of a logic programming language called 
FOPLP, based on the theory of first-order hereditary Harrop formulae. This language follows 
closely Miller e t  a/’s [M1190, MNPS91] proof-theoretic view of logic programming. (We give 
a detailed presentation of the proof-theoretic semantics of FOPLP not for its novelty, but 
as a foundation to our proposal for integrating logic and functional programming.) For 
describing hereditary Harrop logic, we use a sequent calculus with proof-term assignment. We 
assign distinct variables to formulae in the antecedent of a sequent and assign a proof-term to 
the succèdent formula of a derivable sequent, so tha t the proof-term determines uniquely the 
derivation. So, the result of a computation in FOPLP may be described as a proof-term, from 
which the instantiations for the existentially quantified variables of the goal may be obtained. 
Pfenning’s encoding of the Logical Framework [HHP93], Elf [Pfe89], may be regarded as a logic 
programming language where the programmer has access to the proof-terms and the result of 
a computation is a proof-term.

There are many works extending logic programming, based on Horn clauses, in various 
directions; below a few are mentioned. Several works, e.g. [Cla78, GL90], address extensions 
of Prolog tha t allow some form of negation. Some languages, such as Godel [HL94], have 
considered multi-sorted extensions of Horn logic. Some works propose extensions of logic 
programming with mechanisms for defining functions. (We analyse some of these proposals in 
Sec. 1.4.) In [GR84] Horn clauses are extended with hypothetical reasoning. Miller et al. 
considered hereditary Harrop logic and studied various higher-order versions of it, proposing 
the languages AProlog [NM88] and LA[Mil91], which provide various abstraction mechanisms.



Loveland and his colleagues have been studying disjunctive logic programming [Lov91, NL95].
In [HSH90], Horn clauses are considered as rules of a formal system and the inference schema of 
definitional reflection is allowed. Logic programming languages based on Girard’s linear logic 
[Gir87] are also flourishing [AP91, HM94, Mil94, HW95], see the survey [Mil95]. These languages 
provide a means for writing directly in the language some operations typically described in other 
languages by means of extra-logical predicates, such as resource management and concurrency.

1.4 In tegrated  Logical and Functional Program m ing

Logic programming and functional programming are two distinct approaches to declarative 
programming. From a type-theoretic perspective, these two styles of programming may be 
described as follows. In functional programming is given a terra t o î & type and the result of a 
computation is the canonical form of t. In logic programming is given a type T and the result 
of a computation is a term of type T; as opposed to functional programming, there may exist 
several terms of type T  tha t may be computed as result.

There have been many proposals for integrating logic programming and functional pro­
gramming, see pDL86, BL86, Han94] for surveys. We call the languages obtained from such 
integration integrated logical and functional languages. Often, when encoding a problem in a 
programming language we realise tha t parts of the problem are typically functional whereas 
other parts of the problem are relational in nature. Compared to functional programming, 
integrated logical and functional programming provides a more direct means of encoding a 
problem, since arbitrary relations need not be forcefully encoded as functions. So, integrated 
logical and functional programming may provide a clearer form of programming.

In integrated logical and functional programming there is no need for abstracting away from 
the functional specificity of a relation or need for imposing a functional behaviour on a relation j
by using extra-logical arguments. For example, if there is a relation in a program tha t is solely j
used in a functional form such relation could be described as a function. Then, during search |
there would be no need for attempting alternative forms of using such relation for achieving a 
goal. In [Han92] are shown examples of logic programs that when interpreted into an integrated 
logical and functional programming language acquire a better operational behaviour, becoming 
more efficient.

In our quest for a language supporting arbitrary relations as well as functions, we consider 
extensions of logic programming where functions are allowed for building predicates and a 
mechanism for defining names for functions is provided. So, according to  our views of functional 
programming and logic programming, expressed in Sec. 1.2 and 1.3, we take the following view, 
as a starting point, of integrated logical and functional programming. A program is a pair 
(A, r), where: A is a list of definitions of the form x —^ef A : r ,  with x ranging over variables,
A ranging over A-terms and r  ranging over simple types; F consists of a set of logical formulae.



(The definienda of A may be used in building up the logical formulae in F, just as any other 
variables.) A goal G  is achievable w.r.t. a program (A, F) iff [A]G is achievable w.r.t. [A]F in 
the underlying logic programming language, where [A]G stands for the formula obtained from 
G  by replacing the definienda of A by their definientia and subsequent normalisation ([A]F has 
a similar interpretation). Sec. 4.2 presents a proof-theoretic semantics for a language following 
these ideas of integrating logic and functional programming. The programming language LeFun 
[AKN89] essentially implements the ideas described above.

This thesis proposes an integration of logic and functional programming beyond the ideas 
described above. Our proposal provides a new form of definitions, definitions of dependent 
type. By using such definitions, when defining a function we may declare more properties about 
functions than merely the type of their arguments. Then, during proof-search, such properties 
may be used as lemmas for goal-achievement.

Section 4.6 describes a proof-theoretic semantics of the language LFPL that implements the 
ideas mentioned above. The language is described by means of a sequent calculus system with 
cuts for higher-order hereditary Harrop logic. Cut elimination is then the interpretation of 
LFPL into pure logic programming.

1.5 O verview  o f  th e T h esis and R elated  W ork

This thesis presents the language LFPL as a novel approach for integrating logic and func­
tional programming. This language extends ideas first presented in [Pin94, PD94]. There 
are approaches for integrating logic and functional programming, such as ALF [Han90], Babel 
[MNRA92], Curry [Han95], Escher [Llo94], which are based on equational logic, where predic­
ates and logical operations are seen as boolean functions. These languages use narrowing (ALF, 

Babel, Curry) or some other form of rewriting (Escher) as the basic computation mechanism. 
The language LFPL follows a different form of integration. As in the integrated logical and 
functional language LeFun [AKN89], LFPL maintains functions and predicates at distinct levels 
and extends logic programming by allowing a mechanism for defining names for functions and 
by allowing function names for building terms and formulae. LFPL takes this extension even 
further, by allowing a mechanism for declaring specifications of functions, which may be used 
as lemmas in goal-achievement.

Chapter 2 lays down the logical foundations required for this thesis. Section 2.2 presents a 
simply typed A-calculus, called . We recall some properties of A-calculus and review some 
properties of unification of A-terms, following the works [Hue75, NM94]. Section 2.3 presents 
two calculi, based upon Gentzen’s N J  and L J, with proof-term assignment, called respectively 
NJP*̂  and L J p .̂ The calculus N J p* essentially results by extending the correspondence between 
A-terms and natural deductions in intuitionistic implicational logic [CF58, How69, Coq90] to the 
other connectives; a similar calculus is presented in [Gal93]. (See [Laf89, Gal93] for other forms



of assigning terms to L J, motivated by applications to functional programming.) L J p* allows 
no explicit structural rules, but these rules are admissible in the calculus. In Sec. 2.3.3 is given 
an encoding of Kleene’s permutations for L J  [Kle52] by means of transformations on proof- 
terms of LJP* and is shown tha t the image of proof-terms under the mapping <f> (an encoding 
of Prawitz’s interpretation of sequent calculus proofs as natural deductions) is invariant under 

such transformations.
Chapter 3 presents two logic programming languages FOPLP and HOPLP. The semantics 

of these languages are defined by means of the cut-free sequent calculi hH  and H H , which 
are systems of first-order and higher-order^ hereditary Harrop logic, respectively. This view 
of first-order and higher-order logic programming has its roots in the works of Miller et al 
[NM88, MNPS91]. A departure point from Miller’s work is the use of proof-terms for encoding 
derivations. The use of proof-terms permits to regard them as the results of computations, an 
idea followed in type-theoretic accounts of logic programming, such as [Pfe92].

We build on Miller et a/’s idea of uniform proofs [MNPS91], Pfenning’s idea of immediate 
entailment [Pfe91, Pfe94] and Andreoli’s idea of focusing proofs, in the context of linear logic, 
arriving at the notion of uniform linear focused (ULF) derivations for first-order hereditary 
Harrop logic, in Sec. 3.3. It is shown tha t each derivation is permutable (in the sense of Sec. 
2.3.3) to a ULF derivation. The calculus h H ^^ ^  is introduced as a calculus tha t captures 
exactly ULF derivations. Section 3.5 shows a 1-1 correspondence between ULF derivations 
and expanded normal deductions [Pra65] for first-order hereditary Harrop logic. (This work 
was in collaboration with Dyckhoff, see [DP94, DP96b]. In [DP96b] the 1-1 correspondence is 
extended to full first-order intuitionistic logic.) Other proofs of essentially the same result may 
be found in [Pfe94, Min94]. The semantics of a logic programming language needs to  define 
what are the different means of goal-achievement. Traditionally [Llo84], the different means of 
goal-achievement correspond to the ground instances of the goal in the least model. In FOPLP 
the different means of goal-achievement correspond to the expanded normal deductions of the 
goal. So, FOPLP has a clear interpretation by means of Gentzen’s NJ. The language HOPLP, 
defined by means of the system H H , is obtained by extending the ideas above to higher-order 
hereditary Harrop logic. The natural deduction system higher-order hereditary
Harrop logic, is used for interpreting HOPLP.

Chapter 4 presents the integrated logical and functional language LFPL. This language is 
an extension of the language HOPLPD, defined in Sec. 4.2, which in turn is an extension of 
HOPLP with a mechanism for defining names for A-terms. (The language HOPLPD essentially 
corresponds to LeFun.) The language LFPL extends HOPLPD by allowing definitions of the 
form x  =de/ e : Yiy^rF, where z is a name for the proof-term e, which is essentially a deliverable

^The calculus H H  allows no quantification over predicates; however, it is an higher-order logic in the sei^e it 
allows quantification over A-terms. A similar calculus, /jh", except for the absence of disjunctions and existential 
quantifiers, is used in [Fel91] for encoding LF-specifications [HHP93].



[MB93], i.e. e is a pair (A, ei) where A is a A-term of type r ,  usually a function, and e\ is 
a witness for [A/y]F, i.e. a proof that A satisfies the specification The semantics of
LFPL is defined by means of , a sequent calculus system with proof-term annotations
for higher-order hereditary Harrop logic tha t allows definition mechanisms. Section 4.5 presents 
an interpretation of into H H , so there is an interpretation of LFPL into HOPLP. The
mapping from H H ^^^  into H H \s  essentially cut elimination. (See Appendix A for a summary 
of the relations amongst various calculi used throughout this thesis.)

Chapter 5 studies methods of implementing LFPL. The semantics of LFPL is redefined by 
means of the calculus HH'^^^ , a calculus where proof-search becomes more efficient. Section
5.3 describes a class of H H ^^^  -derivations complete for LFPL, i.e. a class of derivations where 
all means of goal-achievement may be found. The concept of extended uniform linear focused 
(EULF) derivations is an extension of the concept of ULF derivations to H H ^^^  , by regarding 
specifications of functions just as any other program formulae. The class of sensible derivations 
only allows the use of the specification attached to a function in case the name of the function 
occurs in the goal.

The semantics of LFPL is defined in such a way that given a goal G and a program P, 
the means of achieving G w.r.t. P  in LFPL are in a 1-1 correspondence with the means of 
achieving G' (the interpretation of G in HOPLP) w.r.t. P ' (the interpretation of P  in HOPLP) 
in HOPLP. The class of EULF derivations which are sensible is excessive for LFPL, i.e. there 
are derivations which are EULF and sensible tha t are regarded as the same means of goal- 
achievement in LFPL. So, an implementation needs to get rid of this redundancy. Our proposal 
for implementing LFPL simply collects the various means of goal-achievement and compares 
them with other means already obtained, discarding those which have the same interpretation 
in HOPLP as another found before, as described in Sec. 5.4.

Following [Pfe92], where a type-theoretic account of logic programming is given, in LFPL, 
we may think of: a program as a type assignment (context); a goal as a type; and achieving a 
goal G  w.r.t. a program F  as a search for a term of type G under type assignment P. Thus, the 
formal system underlying LFPL, H H ^^^ , may be seen as a type system and an implementation 
of LFPL may be seen as a method to search for inhabitants of types.

The fragment of H H ^^^  with no definition mechanisms (HH) and with no existential quan­
tifiers and no disjunctions in goal formulae may be seen as a sequent calculus for a fragment of 
the AH-calculus [How69, dB80, HHP87]. The implementation suggested for LFPL, when restric­
ted to such fragment, follows ideas similar to those in [Pfe91, PW91, Dow93] for proof-search in 
the AH-calculus, i.e. for non-atomic types search is determined by the structure of the type and 
for atomic types resolution is used. (It is noteworthy that the works mentioned above study 
proof-search in full AH-calculus; in fact, in [Dow93] is described a method tha t is applicable to 
all the type systems of Barendregt’s cube.) The work [PW91] has another similarity with this 
thesis, in tha t proof-search is studied by means of sequent calculi and the terms tha t may be



found in the calculus inducing the smallest search space are long Prj-noimal forms.
In [TS96] is presented an approach to proof-search in a type system allowing definitions. 

There, the problem of inhabitedness in fragments of Martin-Lof’s type system [NPS90] is en­
coded as a first-order Horn logic theory, whereby: terms in the type system are translated 
as first-order terms; implicit definitions are translated by using first-order equality; and expli­
cit definitions are not translated, instead they are used for expanding definienda, followed by 
normalisation. Under this translation, the rules for application and substitution in the type 
system are encoded by hyperresolution. The implementation we present for LFPL uses simple 
definitions for expanding definientia, as in the method above, but uses definitions of dependent 
type only for suggesting their types as lemmas in proof-search.

In Chapter 6, we present conclusions of this thesis and state unresolved problems for future 
investigations.
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C h ap ter  2

Logical Prelim inaries

2.1 Introduction

In this chapter are introduced various definitions and results used throughout this thesis.
Each formal system (calculus) presented in this thesis is defined by following LF’s method­

ology [HHP93] for encoding logics, which is based on ideas pioneered by de Bruijin [dB80] and 
Martin-Lof [ML85] for describing logics. For each calculus there is a definition of: (i) the classes 
of objects used by the calculus; (ii) the notion of equality for each class of objects; (iii) the forms 
of judgement of the calculus; (iv) the derivable judgements of the calculus. The symbol =  is 
used for equality between objects.

Section 2.2 defines the typed A-calculus A^^ and recalls some of its properties. Some aspects 
of higher-order unification, following [Hue75, NM94], are also recalled.

Section 2.3 introduces the calculi N J p*̂ and which are formalisations of first-order
intuitionistic' typed logic, where typing of first-order terms is according to A*®̂ . The cal­
culus NJP* is a sequent-style formalisation of first-order intuitionistic typed logic, based on 
Gentzen’s NJ [Gen35]. As in NJ, N J p* has introduction and elimination rules for each connect­
ive. N  JP'’ uses proof-terms to annotate logical formulae. The proof-terms used in N J p'’ are es­
sentially forms of encoding deductions in NJ; the proof-term annotation follows closely [TvD88]. 
The calculus N J p̂  may also be seen as a type system, where formulae are seen as types and 
proof-terms are the inhabitants of the types.

The calculus L J p* is a sequent calculus also formalising first-order intuitionistic typed lo­
gic, based on Gentzen’s sequent calculus LJ [Gen35]. The calculus L J p'’ uses proof-terms for 
annotating logical formulae. The calculus L J p̂  follows closely the formalisation of first-order 
intuitionistic typed logic in [Mil90], except for the use of proof-term annotations. In [Mil90] is 
shown tha t this formalisation of typed logic only coincides with traditional formalisations if all 
types are inhabited. The proof-terms used in L J p* essentially constitute a means of encoding

* Only a fragment of first-order intuitionistic logic is formalised, since absurdity and negation are not included 
in these formalisations. In fact, the logic formalised is closer to m inim al logic.
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derivations in LJ. In L J p  ̂ for each logical connective there are rules to introduce the logical 
connective in the antecedent of a sequent and rules to introduce the logical connective in the 
succèdent of a sequent.

Following Kleene’s [Kle52], a study of permutability in LJ and LK^ , we present a list of 
transformations on proof-terms, encoding permutations, used for showing completeness of some 
classes of derivations.

Another concept used in this thesis is Prawitz’s mapping (f> [Pra65], from LJ-derivations to 
NJ-deductions. This mapping is defined in Subsec. 2.3.4 by means of a transformation on 
proof-terms.

2.2 S im ply T yped  A-calculus

2 .2 .1  T h e  C alcu lus

There are two classes of objects in the calculus the class r  of (simple) types and the class 
A of X-terms. Types are used to classify terms. For defining the class r  of simple types, a fixed 
set S  of primitive types is assumed. The grammar defining simple types r  is as follows:

r  ::= s I (r  r) ,

where s G «S. Below, r , possibly indexed, is used as a meta-variable ranging over simple types.
In a type of the form (ri —> Tg), parentheses are usually omitted, in which case association is 
to the right. So, any type may be written in the form ri — r„ —> r , where each r,-, for 
1 < i < n, is an arbitrary type and r  is a primitive type.

We assume a denumerable fixed set X  of variables and use x ,y ,z ,w ,  possibly indexed, as 
meta-variables ranging over X . The grammar defining the set of A-terms A is as follows:

A ::= æ j Aæ : r.A | (AA).

As usual, terms of the form Xx : r.A  are called abstractions and terms of the form (A^Ag) are 
called applications. In an application usually parentheses are omitted, in which case association 
is to the left.

The class t of first-order terms is the subclass of A-terms of primitive type containing no 
abstractions. Sometimes, A-terms are also called higher-order terms, t and A, possibly indexed, 
are used as meta-variables ranging over first-order and higher-order terms, respectively.

The concepts of free and bound occurrences of variables and capture-avoiding substitution, 
notation [Ai/zjAg, are defined as usual, see e.g. [Bar93]. We use the notation x ^  A meaning j
tha t the variable x has no free occurrences in the A-term A. Two A-terms are called !
a-convertible iff they are the same up to renaming of bound variables, or, equivalently, iff the |

*LK is a sequent calculus formalisation of classical logic due to Gentzen [Gen35].
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A-terms have the same representation using de Bruijn’s indices [dB72]. As usual, we consider 
«-convertible terms to be equal.

Signatures S  are sets of pairs {x ,r), usually written x : r ,  where æ is a variable and r  a 
simple type. We use the notation () for the empty signature and the notation E,æ : r  for the 
signature E U {æ : r} .

The forms of judgement of the calculus A^^ are shown in Fig. 2.1.

0) h E signature (signature)

(ii) E l - A : r (term of a type)

(iii) E b A > T  A (one step reduction)
(iv) E f- At>+A (one or more steps reduction)

(V) E 1- A>* A (zero or more steps reduction)
(vi) E I- A A (conversion)

Figure 2.1: Forms of judgement of X^^.

A derivation of a judgement 5  is a tree of judgements, constructed by using instances of 
inference rules verifying the side conditions, whose root is the judgement S  and whose leaves are 
axiom judgements, i.e. instances of rules with no premises. A judgement is said to be derivable 
iff there is a derivation of that judgement. (These notions of a derivation of a judgement and 
derivable judgements are common to all the other calculi used throughout this thesis.)

The rules defining derivable signatures are shown in Fig. 2.2. The notation x ^  'L means 
tha t there is no type r  s.t. æ : r  is a member of E. Roughly, a signature is derivable if different 
types have not been assigned to the same variable.

h E signature z 0 E
}- 0  signature h S, a; : r  signature

Figure 2.2: Derivable signatures.

The rules defining derivable judgements of the form E h A : r  are shown in Fig. 2.3; they 
depend upon derivable signatures. Briefly, a derivable judgement of this form signifies tha t the 
term A is of type r  under the assignment of types to variables E. If E h A : r  is derivable, A is 
said to be well-formed (of type r)  w.r.t. E.

Observe tha t a judgement of the form E h Aæ : r.A : r  —> ri is not directly derivable in A^^, 
case æ € E. However, since Xx : r .A  is equal («-convertible) to Aæi : t .[x i / x]A,  when x\ has no 
free occurrences in A, the original judgement may be derivable in X^^ .

The rules defining derivable judgements of the forms (iii), (iv) and (v) of Fig. 2.1 are shown 
in Fig. 2.4. Derivable judgements of form (iii) capture the usual notion of the one step reduction

13



h s ,  a; : r  signature 
E, ar : r  h ar : r

E, a; : r  h A : n  ar ^  E E h A : ri -> r  E h Ai : r i
E h Aa? : r.A : r  -Y t\ E h  AAi : r

Figure 2.3: Derivable A-terms of a type.

relation on A-terms; they depend upon derivable terms of a type. In A^^ there is a notion of 
reduction for each type. Derivable judgements of form (iv) capture the transitive closure of 
the one step reduction relation and derivable judgements of form (v) capture the reflexive and 
transitive closure of the one step reduction relation.

E, a; : r  h A : ri E h Ai : r  .X ^
E h (Aar : r.A)Ai >n [Ai/ar]A 

E, ar : r  h A >n Ai
ar^EE h Aar : r.A Aar : r.Ai

E h A t>T-4n A-i E h A»j : r E h A >r Ai E h Ag : r -4 ri
E h AAg >n AiAg E h  AgA AgAi

E h A >r Ai E h A>+Ai E h Ai>+Ag
E h A>+Ai E h A>+Aa

E h A >r Ai 
E h A>* Ai

E h A : r  S h A>* Ai E h Ait>* A2
E h a>;a E h A>;Aa

Figure 2.4: Derivable reduction judgements.

It may be easily proved that: if a judgement S  h Ai^^Ag is derivable in A*̂ ,̂ then both 
E h Ai : r  and E h Ag : r  are derivable in A^^.

Judgements of the form E h A = t  A are called convertibility judgements. The rules defining 
derivable convertibility judgements are shown in Fig. 2.5. Convertibility judgements capture 
the usual notion of ^^(-convertible A-terms. The notion of convertibility corresponds to the 
transitive and symmetric closure of reduction in zero or more steps. We say that two A-terms 
Ai and Ag are convertible if the judgement E h Ai Ag is derivable, for some type r.
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s  h a>;ai
E I- A - r  Al

E h Al = r  A E h A = r  Ag E h Ag = r  Ai
E (- A =T Al E h A =T Al

Figure 2.5: Derivable convertibility judgements.

2.2.2 P roperties of

In this section are reviewed some definitions and properties of the A-calculus needed in sub­
sequent material of this thesis.

Definition 2.1 (normal forms) A \~term is called a normal form i f  it contains no subterms 
of the form  (Aæ : r.A)Ai, called /J-redexes.

Normal forms can be syntactically characterised as the A-terms of the form:

A3/1 . . 7*1̂.3/A.1...A,^,

where n, m > 0, 3; is a variable that may or may not be one of the Xi, n > i > 1, and A i,..., Am
are themselves normal forms, see e.g. [CHS72] for a proof of this result.

Theorem  2.1 (Strong Norm alisation) Let E h Ai : r  6e derivable in X^'^. Then, every 
sequence of terms Ai, Ag, A3 ,..., A „,... s.t., for every n > 1, S  h An>r An+i is derivable in A^^, 
is finite.

A proof of this result may be obtained by adapting the methods, for example, in [Tai67] or in 

[GLT89] to  A ^  .

Theorem  2.2 (Church-Rosser) Let the judgements E h A>*Ai and E f- A>*Ag be derivable 
in X^^. Then, there exists A3 s.t. the judgements E h Ait>*A3 and E h Ag>*A3 are derivable 
in X^^. I

For proving this result, by using Newman’s lemma and Theorem 2.1, it suffices to show that 
is weakly Church-Rosser, see e.g. [Bar81, Bar93].

From Theorems 2.2 and 2.1, it may be shown tha t if E h Ai : r  is derivable then there exists 
a unique normal form Ag s.t. E h Ai Ag is derivable; Ag is called the normal form  of Ai.

A term A^i : ri...æ„ : Tn.xAi...Am, well-formed w.r.t. a signature E, is an expanded normal 
form  under S  if: æ : r( —> ... —>• —)• r ,  where r  is a primitive type; x G {æ i,..., 3;%} or 3; G E,
and Ai, for 1 < * < m, are expanded normal forms under E U {«i : r i , ..., Xn : r„}.
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D efin ition 2 . 2  (T^-convertibility) Two \-term s are 77-convertible i f  they are in the congru­
ence closure of the relation: Xx.Ax =rj A, if  x has no free occurrences in A.

Every normal form is 7?-convertible to an expanded normal form, which is unique up to renaming 
of bound variables, see [CHS72, BarSl] for proofs of this result. We write Anorm(A) for the 
expanded normal form of A. We consider normal forms to be equal if they have the same 
expanded normal form. It is decidable whether or not a judgement of the form S  h Aj = t  Ag 
is derivable in X^^ . It suffices to calculate Anorm(Ai) and Anorm(Ag) and check whether or 
not they are the same.

One property used several times below is the substitution property, i.e. if x ^  xi and x% 0 A 
then

[A /x ]([A i/x i]A g ) =  [[A /x ]A i/x i]([A /x ]A g ).

See [BarSl] for a proof of this result.
We now review some aspects of unification of A-terms. As opposed to unification of first- 

order terms [Her67, Rob65, BS94], unification of A-terms is only semi-decidable and for unifiable 
A-terms there is a recursively enumerable set of unifiers which are “most general” , but, in 
contrast to the first-order case, such set may have more than one element, see [Hue75]. In 
[Hue75] is presented a semi-decision procedure for the existence of unifiers of A-terms. The 
procedure enumerates some^ unifiers, when A-terms are unifiable modulo a /377-convertibility, 
but may fail to terminate if there is no unifier. Further, this enumeration is non-redundant, i.e. 
no unifier in the enumeration may be obtained from another unifier in the enumeration.

Below we use a formula

un ify{S , 0 ,„ , Qouu Kn, Kuf"', E)

meaning that:

•  E, Vin and Vout are signatures s.t. Vin Ç and no variable is simultaneously in E and 

in Vout\

•  5  is a set of pairs (Ai, Ag) s.t. the judgements E, Vfn H Ai : r  and 12, Vin H Ag : r  are 
derivable, for some r;

•  0,n and Qout are substitutions, i.e. mappings from variables to A-terms s.t., there exists 0  

s.t. Bout ~  BoBin, where if x : r  ^  Vout then 0o«<(a:) =  x, otherwise E, Vont F 0o«<(x) : r  
is derivable;

•  for each pair (Ai, Ag) of S , Xnorm{Bout{^\)) — Xnorm{Bout{A2 )).

^Only some unifiers are enumerated; in the problem of unifying flexible-flexible pairs is acknowledged the 
existence of unifiers but there is no search for them.

■*The procedure described in [Hue75], for unification of A-terms, introduces new free variables at the im itation  

and projection  steps.
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Thus, for checking whether or not two A-terms Ai and A2 , for which the judgements S, Vi„ h Ai : r  
and S, Vin H A2 : r  are derivable, are unifiable (may be made equal by replacing free occurrences 
of variables in VJ„) it suffices to check whether or not there exists © and Vout s.t. the formula

um/s/((Ai, A2), id, ©, Vi„, Vout, S)

holds.
A procedure for finding unifiers for A-terms satisfying the predicate unify may be obtained 

by following the works [Hue75, NM94], The predicate unify is used in Secs. 3.7, 3.8.2 and 5.4 
for describing means of implementing first-order and higher-order logic programming languages.

2.3 T h e calculi and

2 .3.1 T h e ca lcu lu s N J p*

We assume the set S  of primitive types to have a special type prop, called the type of formulae. 
We assume a fixed set V  of pairs {p, r ) , usually written as p : r ,  where: r  is a type of the form 
Ti -4 ... —> r„ —> prop, where n > 0 and, for 1 < i < n, is a type with no occurrences of prop; 
jp is a symbol, called a predicate symbol. The set V  is called the set o f predicate symbols.

Atomic formulae are of the form p t \ . . . t n ,  where p is a predicate symbol and fi, ...,tn are first- 
order terms. An atomic formula p t \ . . . t n  is well-formed w.r.t. a signature S  if 
p : Ti -)■ prop € V, and for 1 < i < n, E h : r, is derivable in A^^. A, A \, A 2 , ...
are used as meta-variables ranging over atomic formulae.

The set F  of (logical) formulae is defined by the grammar:

F  ::== A I F  A F  1 F  V F  I F  D F  I 3^:rF | ^ x t̂F.

As usual, in a formula of one the forms 3x:tF, ^ x-.tF, x is called a bound variable. Two formulae 
are equal if they are the same up to renaming of bound variables.

The set of well-formed formulae w.r.t. a signature S  is inductively defined as follows.

(i) The well-formed atomic formulae w.r.t. S  are well-formed w.r.t. E.

(ii) Fi A F2 , Fi V F2 and Fi D F2 , where Fi and F2 are well-formed w.r.t. E, are well-formed
w.r.t. E;

(iii) HjcitF and \/x;tF, where £  U {x : r} is a derivable signature and F  is well-formed w.r.t. 
EU  {x : r} , are well-formed w.r.t. E.

The notation [t/x]F  stands for the result of replacing free occurrences of x by i in F .
A context is a set A of pairs (x ,F ), usually written x : F , where x is a variable and F  is 

a formula, s.t. if x : F\ and x : F2 are elements of A then F\ is equal to F2 ; in other words,

17



different formulae are annotated with different variables. A, possibly indexed, is used as a 
meta-variable ranging over contexts. The notation æ € A is used when there is a formula F  in 
A whose annotation is the variable x, i.e. x : F  is an element of A. The notation A, x : F  is 
used for the context A U {x : F}.

The set of d-proof-terms, also called N  J^^-proof-terms, is defined by the grammar: 

d ( d , d )  | i { d )  | j { d )  | Xx.d | (i, d) | X qX . d

I X  \fst{d) I snd{d) j w n{d,x.d,x.d) | app{d,d) | exists{d,x.x.d) | appg(d,t), 
where x ranges over the set X  of variables. For the purposes of this thesis, a distinction 
could have been made between simply typed variables, i.e. variables used for building terms 
of simple type and variables tha t occur at the underlined position in proof-terms of the form 
X qX .d  and exists{d ,x.x\.d), and variables of formula type, i.e. variables used for annotating 
formulae in derivations. However, we have chosen to share the set X  of variables for variables 
of both kinds.

The d-proof-term constructors fs t, snd, wn, app, exists, appq are called left constructors. 
The other d-proof-term constructors are called right constructors. (In a functional programming 
setting left constructors are usually called destructors.)

In proof-terms of one of the forms Xx.d, u;n(di, x.d,xi.da), W7t(di, Xi.dg, x.d), XqX.d,  

exists{d \,x \.x .d ), x is called a hinder whose scope is d and an occurrence of x in d is called 
hound. Also, in proof-terms of the form exists{d i,x .x \.d), x is called a hinder whose scope 
is x i.d  and an occurrence of x in d is called bound. A  non-bound occurrence of a variable x 
is called free. The notation x ^  d means that the variable x has no free occurrences in the 
proof-term d.

Two proof-terms d i, dg are equal if they are the same up to renaming of bound variables.
A sequent in NJ'^* is a quadruple (S, A, d, F ), written as S; A h  d : F , where S  is a signature, 

as defined in X^^, A is a context, d is a d-proof-term and F , the succèdent formula, is a logical 
formula. A sequent S; A h d : F  is well-formed if h  E signature is derivable and all formulae 
in A and the formula F  are well-formed w.r.t. E. The only judgement form of ATJp* is that 
of being a derivable (well-formed) sequent. The rules defining derivable sequents of iV are 
presented in Fig. 2.6.

In Fig. 2.6, rules of the form C  — In tr  are called introduction rules and rules of the form 
C  — E lim  are called elimination rules. The leftmost premiss of an elimination rule is called its 
main premiss.

In order to distinguish between derivations in and derivations in LJ^*, usually deriva­
tions in NJ^* are called deductions.

Let 7T be a deduction of E; A h d : F . tt is called a deduction for deducing F  from E; A and 
d is called the proof-term of T T .  It is noteworthy that in a NJ^^-deduction of a well-formed 
sequent all occurrences of a sequent are well-formed. The traditional eigenvariable conditions on 
3-E lim  and \/-In tr  are satisfied in a deduction, for all sequents in a deduction are well-formed.
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E ;  A ,  a? : F  j- x  : F
a x i o m

h  S  s i g n a t u r e  d e r i v a b l e ,  

( A ,  X : F )  w e l l - f o r m e d  

w . r . t .  E

E ; A h d i  : F i  E ;  A h  da : F a  

E ;A h (d i,d 2) :F iA F 2
A  — I n t r

E ; A  b  d  : F .  A  F ,  ^  __ j , , . , ,  2 ; A b d : ^ ^ ^  _  j , , . . .

E ; A h / s i ( d )  : F i

E ; A h d : F i

E ; A t - » ( d )  : F i  V F z  

E ;  A  h  d  : F 2

E ;  A  f- s n d ( d )  : F 2 

Vf — I n t r

Vr — I n t r
E ; A f - i ( d )  : F i V F 2

E ;  A  b  d  : F i  V F 2 E ;  A ,  a?i : F i  b  d i  : F  E ;  A , Z 2  : F 2 b  d2 : F  

E ;  A  b  w n { d ,  x i . d i ,  X2 -d2) : F

E ;  A ,  x  : F i  b  d  : F 2

F 2 w e l l - f o r m e d  w . r . t .  S

F i  w e l l - f o r m e d  w . r . t .  E

V  — E l i m

D  —I n t r
E ; A b  A x . d r F i  D  F 2

S ;  A  b  d i  ; F i  3  F a  E ;  A  b  da : F i  

E ;  A  b  a p p ( d i , da )  : F a

E ; A b  d : [ < / x ] F  

E;A b(<,d):B .:TF ^

E ;  A  b  d  : 3a;:rFi E ,  x  : r ;  A ,  x i  : F i  b  d i  : F  

E ;  A  b  e x i s t s { d ,  x . x i . d i )  : F

E , x  ; r ;  A  b  d  : F

D  —E l i m

3 — F/tm

E ;  A  b  A gX .d  : Vj;:t F  

E ; A b  d : V ^ : r F

E ;  A  b  a p p q { d , t )  : [ f / x ] F

V — I n t r

V — F/im

E  b  < ; r  d e r i v a b l e  

x i  ^  A ,  X 0  E  

x ^ E

E  b  f  : r  d e r i v a b l e

Figure 2.6: Rules for derivable sequents of NJ^* .
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The proof-term d and the context of a deduction’s endsequent determine uniquely the de­
duction up to the naming of bound variables of d, as shown below.

T h eo rem  2.3 Any N  -deductions o f the sequent E; A h  d : F  differ at the most up to the 
names of the bound variables of d.

P roo f: By induction on the structure of d.
Case d is a variable. Then, if E; A h d : F  is derivable, by inspection of the rules allowed for 

deriving sequents, d : F  € A and the only possible deduction of E; A h d : F  is:

E ; A b d ; F axiom.

Case d =  Xx.dy. (Recall that d =  Axi.[xi/x]di, for every Xj ^  di.) Then, if E; A h d : F  is 
derivable, by inspection of the rules allowed for deriving sequents, F  is of the form Fi 3  F2 and 
any deduction of E; A h d : F  must be of the form:

E; A, xi : Fi h [xi/x]di : F2

E; A h X xi.[xilx\d i : Fi D F2
3  —Intr,

for some variable xi, possibly x, s.t. xi ^  A. So, by I.H., any deductions of the premiss differ 
at the most up to the names of the bound variables of [xi/x]di. Thus, since x is bound in d,
any deductions of E; A h d : F  differ at the most up to the names of the bound variables of d.

The other cases follow by similar arguments. □

Proof-terms differing only up to renaming of bound variables are equal. The theorem above 
justifies our notion of equality for deductions. Given a formula F  and a pair E; A, we consider 
N  J^^-deductions for deducing F  from E; A to be equal if their proof-terms are equal. So, any 
two deductions of a sequent in are equal. It is enough to concentrate on the proof-term 

of a deduction rather than having to deal with deductions themselves.
The subclasses N  and a of d-proof-terms, whose members are respectively called normal 

proof-terms and atomic normal proof-terms, are defined as follows:

N  ::= (AT, N ) j i{N) | j{N )  | Xx.N  | {t, N ) | XqX.N \ a
a ::— X  I fst{a) | snd{a) | wn{a, x .N ,x .N )  | app{a, N) | exists{a ,x .x .N )  | appg{a,t).

A deduction whose proof-term is normal is called a normal deduction. It may be shown that 
normal deductions are deductions with no maximal segment, i.e. a branch S i, ...,Sn, with one 
or more sequents, where: all the sequents Si (1  < « < n) have the same succèdent formula. Si 
is the conclusion of an introduction rule and Sn is the main premiss of an elimination rule® .

Theorem  2.4 (norm alisation) If'E; A h  d : F  is derivable in then there exists a normal
proof-term N  s.t. E; A h iV : F  derivable in NJ^*.

’The succédant formula of a maximal segment containing only one sequent is usually called a maximal formula
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This result may be proved by adapting to the method for proving the normalisation 
theorem in [Pra65, PraVO], or, by regarding propositions as types, by adapting the methods for 
proving normalisation theorems in [Tai67, GLT89],

The normal deductions mentioned above correspond to ^-normal forms on A-terms. There 
are other kinds of normal forms on A-terms, most notably /3ï/-normal forms and long (Irj-noTmal 
forms [BarSl, HS86]. In [Pra70], the deductions corresponding to long /ÎTy-normal forms are 
called expanded normal deductions, a terminology that we adopt in this thesis. Deductions 
with no V — E lim  nor 3 — E lim  rules in expanded normal form are those normal deductions s.t. 
the succèdent formula of each sequent which is simultaneously the conclusion of an elimination 
rule and a premiss of an introduction rule is atomic. As for A-terms, from the expanded 
normal form of a deduction D  one may easily compute all the /3-normal forms /37/-equivalent to 
D  and D ’s /3?;-normal form.

2 .3 .2  T h e  ca lcu lus

The set of e-proof-terms, also called -proof-terms, is defined by the grammar:

e ::= pair{e,e) | inl{e) | inr{e) | lamhda{x.e) | pairq(t,e) | lambdaq{x.e)
I X I splitl{x,x.e) I splitr{x,x.e) | w hen{x,x.e,x.e) | apply{x, e,x.e)
I exists{x,x.x.e) | applyq{x,t,x.e).

The e-proof-term constructors spliti, splitr, when, apply, exists, applyq are called left con­
structors. The e-proof-term constructors pair, ini, inr, lambda, pairq, lambduq are called right 
constructors, e, possibly indexed, is used as a meta-variable ranging over e-proof-terms.

In proof-terms of one of the following forms: lambda{x.e), lambdaq{x.e), sp liti{xi,x .e), 1
splitr{x i,x .e), w hen{xi,x .e,X 2 .ei), w hen{xi,X 2 .ei,x,e), apply{xi, Ci,x.e), applyq{xi,t,x.e), j
exists{xi, X2 .x.e), the variable x is called a binder of scope e; an occurrence of æ in e is called |
bound. Also, in proof-terms of the form ex is ts{x i,x .x 2 .e), x is called a binder whose scope is I
X2*e; an occurrence of x in e is called bound. A non-bound occurrence of a variable is called {
free. The notation x ^  e means that the variable x has no free occurrences in the proof-term 
e. Two e-proof-terms are equal if they are the same up to renaming of bound variables.

In proof-terms of one of the following forms: sp litl{x,xi.e), sp litr{x ,x\.e), j
when{x,xi.ei,X2.e2), app ly[x,e,xi.e\), exists{x ,x i.X 2 .e), applyq{x,t,xi.e), the variable x is !
called the head variable of the proof-term.

A sequent in LJ^* is a quadruple (E, A, e, F ), written as E; A e : F , where E is a signature, j
as defined in A^^, A is a context, as defined for NJ^*, e is an e-proof-term and F  is a logical I
formula, as defined for NJ^^. In a sequent E; A => e : F , A is called the antecedent (context), |
F  is called the succèdent (formula) and e the proof-term of the sequent.

A sequent E; A e : F  is well-formed if h  E signature is derivable and all formulae in A and I

the formula F  are well-formed w.r.t. E. The only judgement form of LJP* is tha t of being a |
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derivable (well-formed) sequent. The rules defining derivable sequents of are presented 
in Fig. 2.7.

As usual, rules of the form => C are called right rules and rules of the form C  => are called 
left rules. Observe tha t the outermost constructor of the proof-term of the conclusion of a right 
(left) rule is a right (left) constructor. In the rules for deriving sequents in Fig. 2.7: each of 
the formulae F , Fj A F2 , Fi A F2 , Fi V F2 , Fi 3  F2 , B^îtFi and 'ixirFi is, respectively, the main 
formula of axiom, Aj =>, Ar =>, V =*-, 3 =>, 3 =>■ and V =>; Fi is the side formula of A{ =*-, F2 

is the side formula of Ar =>, F\ and F2 are the side formulae of V =>•, F2 is the side formula of 
3 =>, Fi is the side formula of 3 => and [t/x]Fi is the side formula of V =*-.

Let TT be a derivation of the sequent E; A e : F . tt is called a derivation for deriving F  
from E; A and e is called the proof-term of t t  and is also called a proof-term for deriving F  
w.r.t. E; A. As for NJ^*, the proof-term e and the context of the endsequent of a derivation t t  

determine uniquely, up to renaming of bound variables of e ,  the derivation t t .  So, we consider 
L J^^-derivations for deriving a formula F  from a pair E; A to be equal if their proof-terms are 
equal.

T h eo rem  2.6 (w eakening adm issib ility ) Let E; A => e  ; F  5e derivable in LJ^^, x ^  A  and 
let Fi be a well-formed formula w.r.t. E. Then, E; A, x : Fi e  : F  is also derivable in LJ^*.

P roo f: Follows easily by induction on the derivation of E; A =)> c : F . Observe tha t (A, x : Fi) 
is a well-formed context w.r.t. E, since A is well-formed w.r.t. E, x ^  A and Fi is well-formed 
w.r.t. E. □

2 .3 .3  P e r m u ta t io n s  in

Kleene introduced in [Kle52] a notion of permutation on derivations, for Gentzen’s LK and 
LJ. Roughly, permutations are transformations on derivations tha t reverse the order in which 
inference rules occur in a derivation. As shown in [Kle52, Sha92], there are cases where reversing 
the order in which inference rules occur in an LJ-derivation is not possible. In the calculus LJ^^, 
since the proof-term of a derivation determines uniquely the derivation up to renaming of bound 
variables, permutations on derivations may be captured at the level of proof-terms, as is shown 

below.
The rules on proof-terms shown in Figs. 2.8, 2.9, 2.10 and 2.11 are called permutations. 

Permutations in Fig. 2.8, called right permutations, encode a reversing of a right rule below 
a left rule. Permutations in Fig. 2.9, called left permutations, encode a reversing of left rules. 
Permutations in Fig. 2.10, called reductive permutations, are not permutations in the sense they 
encode a reversing of rules; essentially, they eliminate redundant left rules. Permutations in 
Fig. 2.11, called linearising permutations, are also not encoding a reversing of rules; essentially, 
they encode a form of reducing the number of uses of side formulae in a derivation. Reversing
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S; A, X : F  =>• X : F axiom
h E signature derivable, 

(A, X : F) well-formed 
w.r.t. E

E; A =»• Cl : Fi E; A =»- eg : Fg 
E; A => pair(ei,cg) : Fi A Fg

E; A, X : Fi A Fg, xi : Fi => e : F
E; A,x : Fi A Fg => sp/t</(x,xi.e) : F

E; A, X : Fi A Fg, xi : Fg =>• e : F 
E; A, X : Fi A Fg => splitr{x, xi.e) ; F

E; A e : Fi

A/ =>

A r

E; A => in/(e) ; Fi V Fg 

E; A e : Fg

V<

Vr
E ; A  => in r (e )  : F i V Fg

E ; A , X ; F i V Fg, x i  : F j =» e i : F  E ; A , x ; F i V Fg, xg : Fg =» eg : F  
E ; A ,x  : F i V Fg => when{x, x i.e i,x g .e g )  : F

E; A , X : F i =» e : Fg 
E ; A  => lambda{x.e) ; F i 3  Fg

E ; A , X : F i 3  Fg => e : F i E ; A , x : F i 3  Fg, x i  : Fg => ei : F

xi ^  A 

xi ^ A

Fg well-formed w.r.t. E 

Fi well-formed w.r.t. E

E; A,x : Fi 3 Fg app/j/(x,e,xi.ei) : F

E; A => e : [</x]F 
E; A =>» p a i r q { t ,  e )  : 3 j ; : t F  ^

E, X : r; A, Xj : 3r:rF i, xg : Fi e : F 
E; A ,xi : BajtrFi exists(xi,x.xg.e) : F

E, X : r; A =»• e : F 
E; A => lambdaq{x.e) : ^

E; A ,xi : Va;:rFi,X2 : [</x]Fi =» e : F 
E; A ,xi : VxjrFi =*- applyq{xi,t,X2 .e) : F

3=^

xi ^  A, xg A 

X ^ A 

xi ^ A 

E H i : r  derivable 

xg ^  A, X ^  E

X E

xg ^ A, 
E h t : r  derivable

Figure 2.7; Rules for derivable sequents of LJ^^.
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left rules below right rules is not relevant for the purpose of this thesis, although such reversing 
is possible in many cases, as shown in [Kle52, Sha92]. Note that most of the side conditions 
imposed on permutations are satisfied simply by renaming of bound variables.

(1)
(2)

(3)
(4)
(5)
(6)
(7)
(8) 

(9) 
(10 

(11 

(12 

(13 
(14 
(15 
(16 
(17 
(18 
(19 
(20 
(21 
(22 

(23 
(24

splUl{x,Xx.pair{ei , e2) )>pair {spl i t l {x ,  x i . e i ) ,  spliti{x,x 1 .6 2 ))
spl i tr {x,  x i .pai r {e i , e2) )>pa i r{ sp l i t r {x ,  x i .e i) ,  spl i tr{x,  xi.eg))
apply{x,  e, x i .pai r{e i , e2) )>pai r{app ly {x ,  e, x i . e i ) ,  apply(x,  e, xi.eg))
applyq{x, t ,  xx.pair{ex,  e2))>pair{applyq{x, t ,  x i .e i) ,  applyq{x,  t ,  Xi.eg))

splitl{x,xx.lambda{x2 .e))>lambda{x2 .splitl{x,xx.e)), xg ^  x, xx ^  xg
spl i tr{x ,xxdambda{x2.e) )> lambda{x2. spl i tr {x ,xx.e) ) ,  xg ^  x, x i  ^  xg

apply {x , e, xx Jambda{x2.ei)) t>lambda{x2.apply{x,  e, xx-cx)), xg ^  x, xi ^  xg
applyq{x, t ,  xx. lambda{x2.e))>lambda{x2Mpplyq{x, t ,  xx.e)),  xg x, x% xg
spl i t l {x,  xx. inl{e))>inl{spl i i l {x,  xi.e))

spl i tr{x,  xx. inl{e))>inl{spl i tr{x,  xi.e))

apply{x,  e, xx. inl{ex))>inl{apply{x,  e, xx.ex)}

applyq{x,t,xx.inl{ex))>inl{applyq{x,t,xx.ex))
spl i t l {x,  xx. inr {e) )> inr{ sp l i t l {x, xi.e))

splitr{x, xi .m r(e))>inr(sp/itr(x , xi .e))
apply{x,  e, x i .mr(ei))>*nr(app/T/(x, e, xi ,ei))
applyq{x, t ,xx. inr{ex))>inr{applyq{x, t ,Xx.ex))

spl i t l {x,  xxdambdaq{x2.e))>lambdaq{x2.spl i t l {x,  xx.e)),  xg ^  x, x i  ÿé xg 

s p l i t r { x , xxdambdaq{x2.e))>lambdaq{x2. spl i t r {x, xx.e)) , xg x,x\ i=^  xg 

apply{x,  e, XX .Iambdaq{x2.ex))>lambdaq{x2.apply{x, e, Xx.ex)), xg ^  x, xx xg
applyq{x, t ,  xx.lambdaq{x2.e))t>lambdaq{x2.applyq{x, t ,  xx.e)),  xg ^  x, x i  xg 

spl i t l {x,  xx.pairq{t,  e))>paivq{t,  spl i t l {x,  xi.e)) 
spl i tr {x,  x i ,pairq{ t ,e) )>pairq{ t ,  spl i tr {x,  xi.e)) 

apply{x,  e, xx .paivq{t, ex))>pairq{t,  apply{x,  e, xx.ex))

<^pplyq(x, t ,  xx .pai rq{ tx , e ))>pa irq{ tx ,app lyq{x ,  t ,  x i.e ))

Figure 2.8: Right permutations.

T h eo rem  2 . 6  For every rule of Figs. 2.8, 2.9, 2.10 and 2.11, provided the side conditions 
are satisfied, ifY i‘,A = ^ e i  : F  is derivable in then S; A eg : F  is derivable in .

P roof:
C ase ru le  (7). A derivation of S; A =>- apply{x, e, xi.lambda{x2 .ei)) : F  must be of the form:

7Ti
TTg

E; A i, X : Fx D Fg, xi : Fg, xg : F3 ei : F4
E; A i, X : Fi D Fg => e : Fi E; A%, x : F% D Fg, x% : Fg => lambda{x2.ex) : F3 D F4 

E; A i,x  : Fi D Fg => apply{x,e,xx.lambda{x2.ex)) : F3 D F4

=^3
3=^
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(25

(26

(27

(28

(29

(30

(31

(32

(33

(34

(35

(36

(37

(38

(39

(40

splitl{x, xi.splitl{x2 , xa.e))>splitl{x2 , xa.splitl{x, x i . e ) )

splitl{x, xi.splitr{x2 ,xa.e))>splitr{x2 ,X3 .splitl{x, x i . e ) )

spliU{x,  x i .app ly (x2 ,e ,  xa.ei))>apply{x2,  spl i t l {x,  xi.e), X3.spli t l{x,  Xi.ei))
spUtl{x,  xx.applyq{x2, t ,  xa.e))>applyq{x2,t ,  xa.spl i t l {x,xx.e))

splitr{x,  xx.splitl{x2, xa.e))>splitl{x2, X3.splUr{x, x i . e ) )

splHr[x,  xx.spl i tr{x2,  X3.e))>splitr{x2,  X3.splUr{x,  Xx.e))

splitr(x, xx.apply{x2, e, X3.ex))>apply{x2,splitr{x, xi.e), X3.splitr{x, xi.ei))
spl i tr {x,  XX.applyq{x2,i,  X3.e))>applyq{x2,ty X3.spli tr{x,  x i . e ) )

apply{x,  e ,  xx.splUl{x2y X3 .ex))>spli t l{x2 , X3.apply{x, e, xx.ex))
apply(x,  e, xx.spl i tr(x2,  X3.ex))>splitr(x2,  X3Mpply(x,  c ,  x i . c i ) )

apply{x,  e, xx.apply{x2,  ex, X3.e2))>apply{x2,apply{xy e ,  x i . e i ) ,  X3.apply{x,  e ,  x i . e g ) )  

apply{x,  e, xx.applyq{x2, t,  X3 .ex))>applyq{x2 , t ,  X3.apply{x, e, x i . e i ) )  

applyq{x, t ,xx.spl i t l {x2,X3.e)) t>spl i t l {x2,X3.applyq{x, t ,xx.e))  

app lyq{x, t ,  xx. splUr{x2,X3.e))>spl i tr{x2,X3.applyq{x, t ,  x i . e ) )

app lyq{x, t ,  xx.apply{x2,e,  X3.ex))>apply{x2,applyq{x, t ,  xx.e),  X3.applyq{x, t,  x i . e i ) )  

applyq{x, t ,xx.applyq{x2, tx,X3.e))>applyq{x2, tx,X3.applyq{x, t ,xx.e))

All perm utations are subject to the conditions: x i xg, x ^  xg and x i ^  X3.

Figure 2.9: Left permutations.

where A =  (A i, x : Fi D Fg) and F  =  F3 D F4 . Thus, the following derivation may be formed:

7T3 h 2
S; A i, X : F i 3  Fg,Xg : F3 =» e : F i E; A i ,x  : F i D F g ,x i ; Fg, xg : F3 =» e i : F4 

E; A i ,x  : F i 3  Fg,xg : F3 =» a pp l y {x , e , xx . ex )  : F4 
E; A i,  X : F i 3  Fg => l a m b d a { x 2 . apply{x,  e, x i .e i) )  : F3 3  F4

where Tta may be obtained from TTi by weakening.
The cases corresponding to the other rules of Fig. 2.8 are similar. These rules also correspond 

to a movement of a left rule above a right rule.
C ase ru le  (35). The last step of a derivation of the sequent

S; A =i> a p p l y { x ,  e, xi.app/y(xg, ei, xg.eg)) : F

must be a rule 3 => s.t.: its left premiss is of the form

E; A e : F i,

derivable by a derivation TTi ; its right premiss has a derivation of the form

TTg

TTg ÎT3
E; A, xi : Fg =» Cl : F3 E; A, xi : Fg, X3 : F4 => eg : F  

E; A ,x i : Fg =» apply(xg,ei, xa.eg) : F
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(41) split l{x,x\ .e)>e, x \  ^  e
(42) spli tr{x,xI.e)>e, x\ ^  e
(43) apply{x,e,xx.ei )>ei ,  xx ^  ex
(44) applyq{x,t,xx.e)>e, x x ^ e

Figure 2.10: Reductive permutations.

(45) splitl{x,xx.e)>splitl{x,xx.splitl{x, Xg.ei))

(46) splitr{x,  Xx ,e)>splitr{x, xx-splitr{x,  xg-ci))
(47) apply{x, eg, xi.e)>app/y(x, eg, xi.app/y(x, eg, xg.ei))
(48) a p p l y q { x , t , x x . e ) > a p p l y q { x , t , x x . a p p l y q { x , t , x 2 .ex))

All perm utations are subject to the conditions:

Xg ^ e, Xx occurs more than once in e

and ex is obtained from e by replacing one o f the occurrences of x i.

Figure 2.11: Linearising permutations.

where xg ^  (A ,x i : Fg); A =  (A i,x  : Fi D  Fg, xg : F3 3  F4) and xi ^  A. Thus, the derivation 
below may be formed, where 7T4 may be obtained by weakening from tti, since X3 ^  A.

7Ti TTg 7T4 7T3
S; A =» e : F i S; A, xi : Fg =» ei : F3 S; A, X3 : F4 =» e : Fi S; A ,x i : Fg, X3 : F4 =» eg : F

S; A =» apply{x, e, x i.e i) : F3__________________ S; A ,xa : F* =>• qppfy(x, e, xi.eg) : F
E; A =*- apply{x2,apply{x,e, Xx.ex), X3 .apply{x,e,xx.e2 )) : F

Note tha t xi ^  (A,xa : F4) and X3 ^  A.
The cases corresponding to the other rules of Fig. 2.9 are similar, they also correspond to a 

movement of a left rule above a left rule.
C ase ru le  (43). If a sequent S; A, x : F  ^  e : Fi is derivable in and x 0 e, then it may 
be easily proved by induction on the structure of e that the sequent E; A e : Fi is derivable 
in LJP^. Thus, from a derivation of the form:

7Ti TTg
S; A i, X : Fg 3 F3 =>• Cl : Fg S; A i,x  : Fg 3  F3 , xi : F3 =» eg : Fx 

E; A i,x  : Fg 3 F3 => apply{x, ex, xx.6 2 ) : Fx

where xi ^  eg, it follows that E; A i, x : Fg 3  F3 =4- eg : Fj is derivable.
The cases corresponding to the other rules of Fig. 2.10 are similar. These rules also cor­

respond to eliminating a left rule from a derivation if its side formulae are not used in the 
derivation.
C ase ru le  (47). First is proved the lemma: if a sequent E; A, x : F  => e : Fi is derivable in 
FJP*, then, for every x\ ^  (A, x : F ) and for every ei obtained by replacing zero or more 
occurrences of x in e by xj, the sequent E; A, x : F, xi : F  => ci : Fi is derivable in LJ^*. (This
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transformation on derivations is essentially inverse to contraction,) The proof of the lemma 
follows by induction on the structure of e.

Case e is the variable x. Then, a derivation of S; A, x : F  =>► e : Fi must be of the form:

E ; A , x : F = > x : F i

so F  is the same as F i. Thus the following derivation may be formed:

E; A, x : F, x i  : F= ^ x i  : F

since (A, x : F, xi : F ) is well-formed w.r.t. E, for: (A, x : F) is well-formed w.r.t. E, which 
implies tha t F  is well-formed w.r.t. S , and x\ 0 (A, x : F ). The case where e is a variable xg 
different of x follows by forming an axiom whose main formula is the formula annotated by xg.

Case e =  apply{x2 , eg, xg.es). Then, case xg =  x, a derivation of E; A, x : F  =4  ̂ e  : Fj must 
be of the form:

7Ti TTg
E; A, X : Fg 3  F3 => eg : Fg E; A, x : Fg D F3, xa : F3 =» 63 : Fi 

E; A, X : Fg 3 F3 => upp/y(x,eg,X3.e3) : Fi

where F  =  Fg 3  F3 . By the I.H., for every 6 4 ,6 5  obtained from eg, 63 , respectively, by replacing
some occurrences of x by xi, there exist derivations 7T3 and 7T4 of the sequents:

E; A, X : Fg 3  F3 , xj : Fg 3  F3 e4 : Fg;
E; A, X : Fg 3  F3 , X3 : F3 , xj : Fg 3  F3 es : F\.

Now the following two cases must be considered.
(a) Case ei =  apply{xi, 6 2 , X3 .es), i.e. the occurrence of x as head variable of e has been 
replaced by xi, the following derivation may be formed:

7T3 7T4
E; A ,X  : Fg 3  Fa, X i  : Fg 3 Fa 64 : Fg E; A,x : Fg 3  F3 , xi : Fg 3 F3 , xa : F3 =» es : Fi 

E; A, X : Fg 3  F3 , xi : Fg 3 F3 => apply{x\ , 64, X3 .es) : Fi

(b) Case ej =  apply{x, e2 , X3 .es), i.e. the occurrence of x as head variable of e has not been 
replaced by xi, the following derivation may be formed:

7T3 7T4
E; A, X : Fg 3  F3 , xi : Fg 3  F3 => 64 : Fg E; A, x : Fg 3  F3 , X3 : F3 , xi : Fg 3  F3 =» es : F\

E; A, X : Fg 3 Fa, xi : Fg 3 Fa => apply{x, 64 , X3 .es) : Fi

Case X g  5̂  X  the proof follows easily by the I.H..
Proofs for the other possible forms of e follow by similar arguments, concluding the proof of 

the lemma.
Now, consider a derivation of the form:

7Ti TTg
E; A, X : Fg 3 F3 =» e : Fg E; A, x : Fg 3 F3, xi : F3 =» ei : Fi 

E; A, X : Fg 3  F3 =» apply{x, e, Xi.ei) : F\
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By the lemma, for every xg ^  (A, x : Fg 3  F3 , xi : F3) and for every eg obtained by replacing 
zero or more occurrences of xi in e\ by xg, there is a derivation tts of

E; A, X : Fg 3  F3 , xi : F3 , xg : F3 eg : F i.

So, the following derivation may be formed:

7T4 7T3
7Ti S; A,a; : Fg D Fa.a?! : F3 =» e ; Fg S; A,x : Fg 3 Fs.a?! : Fa.gg ; F3 =» eg : Fi

E; A,a: : Fg D F3 =» e : P2 S; A,® ; Fg D F3,a;i : F3 app/y(a;,e,a;2.e2) : Fi ’
E; A,ar : Fg D F3 => appfy(r, e ,r  1 .appfy(a;, c, rg.cg)) : F \

where F4 may be obtained from tti by weakening.
The cases corresponding to the other rules of Fig. 2. 11 are similar. □

2 .3 .4  R e la tin g  and

The mapping (f>, from the set of LJ^*-proof-terms to the set of iVJ^’̂ -proof-terms, and the 
substitution operation of a variable x by a /VJ^^-proof-term di in a A  JP*-proof-term dg, notation 
[di/x]dg, are defined in Fig. 2.12. Essentially, the mapping </> is an encoding of Prawitz’s 
mapping (f> from LJ-derivations to normal iVJ-deductions, presented in [Pra65].

Theorems 2.7 and 2.8 state, respectively, that is sound and complete for normal deduc­
tions w.r.t. NJ'P*.

T h eo rem  2.7 ^  E; A e : F  is derivable in LJ^* then E; A h ^(e) : F  is derivable in NJ^^. 
Further, </>(c) is a normal proof-term.

P roof; The first part of the result may be proved following [Pra65]. The second part of the 
result may be easily proved by induction on the structure of e. □

T h eo rem  2 .8  Let E; A h d : F  be derivable in NJ^*, where d is a normal proof-term. Then, 
there exists e s.t. E; A => e : F  is derivable in LJ^* and 4>{e) — d.

P roo f; This result may be proved by defining a mapping p, from normal proof-terms in 
to proof-terms in LJ^^ , following Prawitz’s construction of LJ-derivations from normal 

iVd-deductions, in pp. 92-93 of [Pra65], s.t. <f>op is the identity on normal iVJ-deductions. 
(Section 3.5 presents mappings S, -ij) s.t.: i/joS is a mapping, from a subset of L JP*-proof-terms 
to a subset® of normal NJ^^-proof-terms, essentially, encoding Prawitz’s mapping p.) □

The binary relation =e on e-proof-terms is the reflexive, symmetric, transitive and compatible 
closure of the permutations in Figs. 2.8, 2.9, 2.10 and 2.11, i.e. of the relation consisting of all

®The mappings 5 and ^ may be easily extended to the full set of LJ^^-proof-terms, in such a way that ,poS is 
still a right inverse of ÿ.
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[d/x](di,d2) =d./ {[d/x]du[d/x]d2)
[d/x]i{di) i{[d/x]di)
[d/x]j{di) j{[d/x]di)
[d/x]Xxi.di \xi .{d/x]di,  x f ^ x x , x \ ^ d
[d/x]{t,dx) {t,[d/x]di)
[d/x]XqXl.dl AgXi.[cf/x]di, x x i ,x i  0 d
[d/x]x =acf d 
[d/x]xi Xi, X XI
[d/x]/si(di) fst{[d/x]di)
[d/x]snd{di) snd([d/x]di)
[d/x]ti;n(di,xi.d2,X2.d3) =3., u>n([d/x]di,xi.[d/x]d2,X2.[d/x]d3), x ^  Xi, x X2, xi ^  d,xg d 
[d/x]app(di,d2) =d«/ app([d/x]di,[d/x]d2)
[d/x]exis<s(di, X1.x2.d2) =d./ exis^s([d/x]di, xi.X2.[d/x]d2), x ^  x i, x ^  xg, x% d, Xg ^  d 
[d/x]appg(di,<) app,([d/x]di,<)

0 (paiV (ei,eg )) (0(ei),^6(eg))

0 (m /(e ))  = d ., *(<A(e))

<;i(mr(e)) =«»/ ;(<j6(e))
<ft{lambda{x.e)) =d., Ax.^(e)

^{pairq{t,e))  = d ., (t,«?̂ (e))
(f>{lambdaq{x.e)) XqX.<f>{e)

0 (x ) =de/ X

</i(sp /ii/(x ,x i.e)) =d./ [ /s i(x ) /x i]0 (e )

<f){splitr{x,xx.e)) =d., [sn d (x ) /x i]^ (e )

<^(m /*en(x,xi.ei,xg.eg)) = d ./ m n ( x ,x i .^ (e i ) ,x g .0 (e2))
0 ( a p p /y (x ,e ,x i .e i) )  [a p p (x ,0 (e ) ) /x i]0 (e i)

<^(ex*s<s(x, x i.x g .c ))  =de^ e x is is (x ,x i .X 2.^^(e))

<f){applyq{x,t,xx.e)) =d«/ [a p p g (x ,f )/x i]^ (e )

Figure 2.12: The substitution operation and the mapping (j>.
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pairs (ei, eg) s.t. ei >eg is a rule in one of the Figs. 2.8, 2.9, 2.10 and 2.11. Proof-terms which 
are =e-related are called permutable proof-terms. Permutable LJ^^-proof-terms map under (f> 
to the same normal WJ^^-proof-terms, as stated below.

T h eo rem  2.9 I f  ei =e eg, then (f>{ei) ~  < (̂eg).

P roo f: It suffices to show that, for each of the rules in Figs. 2.8, 2.9, 2.10 and 2.11, the left 
and right sides both map under (j) to the same proof-term. □

We conjecture that: if E; A => ei : F  and E; A => Cg : F  are derivable in and
(f){ei) =  < (̂eg), then ei =g eg. If this conjecture holds then is a means of deciding whether 
or not proof-terms of derivations are =g-related. (This conjecture has been shown [DP96a] to 
hold for the fragment of implicational logic. The proof of this result uses permutations (7), 
(35), (43) and (47). We believe the same arguments carry over to the general case.) The 
conjecture is of a result similar to (and we believe essentially the same as) the result proved by 
Mints, in [Min94], using different techniques and with different inference rules.

The mapping 0 is not injective, in other words, L J^^-derivations are not in 1-1 correspondence 
to normal NJ^’̂ -deductions; but ^  is onto. In Sec. 3.5 is shown a class of LJ^^-derivations 
tha t is in 1-1  correspondence to the class of expanded normal deductions, for the fragment of 
hereditary Harrop logic. ( The result may be carried over to full first-order intultionistic logic 
[DP96b].)
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C h a p ter  3

P roof Theory and Pure Logic 
Program m ing

3.1 In troduction

This chapter presents a proof-theoretic approach to semantics of logic programming languages, 
tha t is used in Chapter 4 as a foundation for integrating logic and functional programming. 
In order to define a semantics for a logic programming language it is necessary to define: (i) 
what is a program in the language; (ii) what is a goal in the language; and (iii) when is a 
goal achievable w.r.t. a program and how is a goal achievable w.r.t. a program, i.e. what are 
the different means of goal-achievement. A proof-theoretic semantics for a logic programming 
language defines these concepts by means of the proof theory of a formal system.

In this chapter two logic programming languages based on hereditary Harrop logic are 
defined. One of the languages, FOPLP, is based upon the calculus hH  (hereditary //arrop), 
which is a sequent calculus formalisation of first-order intultionistic hereditary Harrop logic. 
The calculus hH  is essentially a restriction of for hereditary Harrop logic, where the no­
tions of well-formedness are encoded by means of derivable judgements. The other language, 
HOPLP, is based upon the calculus H H  (higher-order /mreditary JTarrop), which is a sequent 
calculus formalisation of a higher-order hereditary Harrop logic (the logic obtained from first- 
order hereditary Harrop logic by replacing first-order terms by A-terms).

In order to fix the means of goal-achievement in FOPLP, the class of uniform linear focused 
derivations of hH  is introduced in 3.3. Roughly, in FOPLP: a program is a basis of hH; a 
goal is a formula of hH; the different means of achieving a goal G w.r.t. a program P  are the 
proof-terms, encoding uniform linear focused derivations, for deriving G  w.r.t. P  in hH. The 
calculus h H ^^ ^  is introduced in Sec. 3.4 to capture exactly the class of uniform linear focused 
derivations of hH. Section 3.5 shows that h/f^^^-derivations are in a 1-1 correspondence to 
expanded normal deductions. So, there is a simple interpretation of the semantics of FOPLP by
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means of natural deduction systems for first-order hereditary Harrop logic. In Sec. 3.8, these 
ideas are extended to the higher-order language HOPLP. There is given an interpretation of 
HOPLP by means of a natural deduction system for higher-order hereditary Harrop
logic.

3.2 T he C alculus h H  for First-O rder H ered itary H arrop Logic

The classes of objects of the calculus hH  are defined as follows; the class r  of simple types, 
the class t  of first-order terms, the class S  of signatures and the class A  of atomic formulae are 
defined as in LJ^^; the classes of H  and G-formulae~hoth subclasses of logical formulae—
the class A of hH-contexts—a subclass of L J^^-contexts— and the class e of hH-proof-terms—a 
subclass of LJP* -proof-terms— are defined in Fig. 3.1. JT-formulae are often called hereditary

H  A \ H A H \ G D H \ ' i ^ , r H  (H^-formulae)

G A | G A G | G V G | / / D G t  3^,rG | V,:TG (G-formulae)
A ::= {) I A ,x  : (contexts)
e ::= pair (e , e)  | inl{e)  | inr{e)  | lambda{x.e)  | pairq{t ,e)

I lambdaq{x.e)  | x | sp l i t l {x ,x .e)  | spl i t r {x ,x .e )

I apply{x , e ,x . e)  \ applyq{x, t ,x .e)  (proof-terms)

X ranges over the set X  of variables and r  ranges over simple types.

Figure 3.1: Classes of objects of hH  .

Harrop formulae or program formulae and G-formulae are called goal formulae. As for 
hH-contexts are sets and the notation (A, x : H) stands for A U {x : H}; x ^  A  means that 
there is no Lf-formula H  s.t. x : H  is an element of A. The symbol identifying a class of 
objects, possibly indexed, is used as a meta-variable ranging over such a class, e.g. G, Gi, G ] ,... 
are used as meta-variables ranging over G-formulae.

The forms of judgement of the calculus hH  are presented in Fig. 3.2. Judgements of 
the form E; A e : G are called {hH)-sequents. Sequents are the main judgements of hH; 
any other form of judgement is called an auxiliary judgement of hH . The derivable auxiliary 
judgements of forms (i) and (ii) are the same as those of the calculus defined by the rules 
in Figs. 2.2 and 2,3. The derivable auxiliary judgements of forms (iii)-(vi) are defined by the 
rules in Fig. 3.3. The derivable sequents are defined by the rules in Fig. 3.4; essentially, the 
rules defining derivable sequents are obtained by constraining the rules of to AR-sequents, 
except for axioms tha t enforce a further constraint, i.e. hH  only allows axioms whose main 
formula is atomic. Note that, in rules =>- V the eigenvariable condition is captured by the 
side conditions, since if h  S; A basis is derivable and x ^ E then x has no free occurrences in
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(i) h E signature (signatures)

(ii) E h i : r (terms of simple type)

(iii) 1- E; A basis (bases)
(iv) E h  A a / (atomic formulae)

(V) E h / / / i / (hereditary Harrop formulae)
(vi) S h G y / (goal formulae)
(vii) E; A e : G (proof-terms of a goal formula)

Figure 3.2: Judgement forms of hH  .

formulae of A. The notions of left and right rules, and the notions of main and side formulae 
of a left rule are as for LJ^*, see Sec. 2.3.2. In left rules, the rightmost sequent premiss is called 
the main premiss.

The principal part of a sequent derivation TT is the tree obtained from TT by deleting each 
subtree whose root is not a sequent. In a sequent E; A => e : G, e is called the proof-term of 
the sequent. If E; A ^  e : G has a derivation n then e is called the proof-term of w and e is 
called a proof-term for deriving G w.r.t. E; A. As for LJ^*, it may be easily shown that the 
proof-term and the context of a derivation’s endsequent determine uniquely, up to  renaming of 
bound variables, the principal part of such derivation.

The calculus hH  is used in Sec. 3.6 to define a semantics for the first-order pure logic pro­
gramming language FOPLP. In such a language a logic program is a basis of hH; a goal is a 
G-formula of hH; achieving a goal G w.r.t. a program E; A is a search for a proof-term e s.t. 
the sequent E; A => e : G is derivable in hH; any such proof-term e is called a witness for the 
achievement of G w.r.t. E; A.

In order fully to determine a semantics for FOPLP, it remains to define what counts as 
different means of goal-achievement. Given a basis E; A and a goal G there may be several 
proof-terms e s.t. the sequent E; A => e : G is derivable in hH. For example, let A be a context 
of the form (x : Ai D (A^ D A3 ), x% : Ai), where Ai, Ag and A3 are atomic formulae, and 
let E be a signature s.t. the judgement h E; A basis is derivable in hH . Let G be the formula 
Ai D (((Ag D A3) D Ag) D A3). The proof-terms in Fig. 3.5 are five possible witnesses for the 
achievement of G w.r.t. E; A. (See Appendix B for the h/f-derivation corresponding to witness 

(!).)
Should the five witnesses, for the achievement of G w.r.t. £ ; A, shown in Fig 3.5, be 

considered as different means of achieving G w.r.t. E; A in FOPLP? Or, should some of these 
witnesses be regarded as essentially the same means of goal-achievement?

Under traditional declarative semantics for logic programming, based on minimal models, 
as referred to in Sec. 1.3, all the five witnesses above for the achievement of G w.r.t. E; A are
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h S  signature h E ;A  basis T,h H h f
h E; () basis h E; A, x : i f  basis *

Rules for well-formed bases.

Rules for well-formed atomic formulae.

E I- A a /  E h H i h /  E h ifa A/
E h A A/ E h if i  A if2 A/

E h i f A /  E l - G y /  E , x : r h F A /
E h G D i f  A/ E h  V*:rif A/ ® ^

Rules for well-formed program formulae,

E h A a /  E h Gi y /  E h Ga y /
E h  A y /  E h G i A G a y /

E h Gi  y /  S h G a y /  E h G y /  E h  i f  A/
E h G i V G a y /  E h  i f  3  G y /

S, I  : r  h G g /  E , i : 7 - h G g /
E H 3 . „ G s/  ^  E (-V ,;rO g/ ^

Rules for well-formed goal formulae.

Figure 3.3: Rules for derivable auxiliary judgments.
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h E; A , X : A basi s  
E ; A , x : A = > x : A

E; A  =» e i : G i E; A  =» eg : Gg 
E; A  =*- p a i r { e i , eg) : G i A Gg

E; A, X  : i f i  A i f 2, xi : i f i  = >  e : G ,
E; A, X : if i  A ifg => sp/if/(x ,xi.e) : G *

E; A, X : if i  A Ü2, xi : ifg =» e : G A ^  A
E; A ,x  : if i  Aifg => sp/»fr(x,xi.e) : G

E ; A = » e : G i  E h Gg y /  E ; A ^ e : G z  E h Gi  y /  ,
E; A=> m/(e) : Gi V Gg ' E;A=> inr(e) : Gi VGg

E; A, x : J Ï = î . e ; G
E; A =*- lambda{x.e) : i f  3  G

E; A, X : Gi 3  i f i  =» e : Gi E; A, x : G i 3  i f i ,  xi : i f i  =» ei : G . .
E; A, X : Gi 3  if i => app/y(x,e, x i.e i) : G ’

E; A =>■ e : [t/x]G E h t : r  
E; A pairq(i,e) : 3i;;rG ^  ^

E, X  : r ; A =» e : G h E; A basis 
E; A =>■ lambdaq{x.e) : Wa-.rG ^

E; A, xi : 'ix.rH, xg : [t/x ]if =» e : G E h t : r  ^  ^ ^
E; A, x i  : V r:rif => ctpp/yqCxi.t.xg.e) : G ’ ^

Figure 3.4: Rules for derivable sequents of hH .

regarded as the same means of achieving G w.r.t. S; A. (Note that the goal has no existen- 
tially quantified variables.) The language A Prolog is defined by means of a sequent calculus 
formalisation of a higher-order hereditary Harrop logic c/[NM88]. Such sequent calculus, when 
restricted to first-order logic, essentially corresponds to hH , without proof-term annotations. 
There, the different means of achieving a goal w.r.t. a program correspond to the different 
instantiations that may be given to the existentially quantified variables in the goal. So, the 
five witnesses above are regarded as the same means of achieving G. However, if the means of 
goal-achievement are considered to be the derivations which are uniform and use the admissible 
rule of backchaining^ for deriving atomic goals, then the witnesses (i)-(iv) are regarded as the

^See Sec. 4.5 for the admissibility of a rule similar to hackchaining in a calculus that extends hH.
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(i) apply{x, xi,X4.
Iambda{x2.lambda{x3.appîy{x4, apply{x3 ,lambda{x7 .apply[x4 , ®7> Xs-Xs)), Xe-Xe), X5.X5))))

(ii) Iambda{x2.lambda{x3.appîy{x3,lambda{x‘r.apply{x, xi ,XQ.apply{xg,  xj,  xg.xg))), xe.

apply{x, xi,X4.apply{x4, xe, X 5  X 5 ) ) ) ) )

(iii) Iambda{x2.lambda{x3-apply{x, xi, X4.
apply{x4, apply{x3,lambda{xj.apply{x4, xj,  xg.xg)), xg-Xg), X5.X5))))

(iv) Iambda{x2.lambda{x3.apply{x, x i, X4.
apply{x4, apply{x3, lambda{x7.apply{x, xi,  xg.apply{xg,X7, x g . x g ) ) ) ,  x g . x g ) ,  X 5 . X 5 ) ) ) )

(v) Iambda{x2.lambda{x3.apply{x, xg, X4.
apply{x4, apply {x3,lambda{x7.apply {x, x\,xg.apply{xg,  x ? ,  x g . x g ) ) ) ,  x g . x g ) ,  X 5 . X 5 ) ) ) )

Figure 3.5: Witnesses for the achievement of G w.r.t. E; A.

same means of achieving G, but (v) constitutes a different means of achieving G. (Note that 
the proof-terms (i)-(iv) map under <f> to the same normal iVJP*-proof-term N  and N  is different 
from the image of the proof-term (v) under (f>.)

In functional programming the computation mechanism consists of evaluation of an expres­
sion to some kind of normal form, e.g. expressions of ground type (“printable values”) are 
usually evaluated to canonical forms of the type whereas expressions of non-ground type are 
only evaluated to some kind of weak normal form.

In logic programming, we take the view that the means of goal-achievement should corres­
pond to a class of derivations satisfying some normality constraint. The result of a computation, 
a witness for the achievement of a goal w.r.t. a program, does not need to satisfy such nor­
mality constraint, but a normal form should be easily computable from it, if desired. Natural 
deductions are usually seen as the archetypal forms of reasoning for intuitionistic logic. Given 
a formula and a set of assumptions there may be several deductions of the formula from the 
assumptions. Often, deductions having the same normal form are identified. We choose the dif­
ferent means of goal-achievement in FOPLP to be in 1-1 correspondence with expanded normal 
deductions of hereditary Harrop logic. Recall that from the expanded normal form of a deduc­
tion D  one may easily compute all the /1-normal forms /l^y-equivalent to D  and D ’s /?r;-normal 
form.

Section 3.5 shows tha t there is a class of AR-derivations, uniform linear focused derivations 
tha t is in 1-1 correspondence to expanded normal deductions. Uniform linear focused derivations 
may be shown to correspond precisely to Miller’s uniform derivations with backchaining for
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deriving atomic formulae.

3.3 U niform , U niform  Focused  and U niform  Linear Focused  

D erivations

This section studies three classes of derivations in hH  : (i) the class of uniform (U) derivations;
(ii) the class of uniform focused (UF) derivations; (iii) the class of uniform linear focused (ULF) 
derivations. These three classes form a hierarchy, where U LF  is a subclass of Î/F , which in turn 
is a subclass of Î7. It is shown in Section 3.5 that the FLF-derivations of a G-formula w.r.t. a 
basis S; A are in a 1-1  correspondence to the expanded normal deductions of G w.r.t. S; A in 
the natural deduction system N N ,  which is a restriction of to first-order hereditary Harrop 
logic allowing only normal deductions.

For each of the three classes of derivations U ,U F  and U LF  is described a rewriting system 
on proof-terms. The rules of these rewriting systems are taken from the permutations on LJ^^- 
proof-terms presented in Sec. 2.3.3. Each of the three classes U, UF  and U LF  is a complete 
class o f derivations for hH, i.e. for each class, if a sequent E; A e : G is derivable in hH  then 
there exists ej s.t. E; A =>■ ei : G is derivable in tha t class. This section describes, for each 

of the three classes, a procedure to obtain such ei given e, using only permutations from the 
associated rewriting system.

The first class of derivations being studied is the class of uniform derivations. The notion 
of uniform derivations was introduced in [MNPS91]. Briefly, a uniform derivation can be de­
scribed as a derivation where every occurrence of a sequent whose succèdent is non-atomic is 
the conclusion of a right rule.

D efin ition  3.1 (U n ifo rm  P roof-T erm s) The following grammar defines the sets o/uniform 
proof-terms e„ and atomic^ uniform proof-terms <!„:

Cu pair{eu,eu)  j inl{eu) \ inr(e„) | lambda{x.ey)  | pairq{t ,eu)  | lambdaq{x.e^)  |

::=  x | spl i ti {x,x.au)  | spl i tr (x,  x.a^) j apply(x,eu,x.au) \ applyq{x, t ,x.a,f) .

D efin ition  3.2 (U niform  D erivations) A derivation of a sequent is nniîoim if  its proof-term 
is uniform.

The proof-term (i) of Fig. 3.5 constitutes an example of a non-uniform proof-term. So, its 
corresponding derivation, shown in Appendix B, is an example of a non-uniform derivation. As 
shown in Lemma 3.1, the succèdent formula of a sequent having a derivation whose proof-term 

is atomic uniform is an atomic formula.
^The main constructor of an atomic uniform proof-term is a left constructor. The terminology atomic uniform 

proof-term originates from the observation, in Lemma 3.1, that a derivation whose proof-term is atomic uniform 
has an atomic formula as its endsequent’s succèdent formula.
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Lemma 3.1 Let S; A =>► : G be derivable. Then, G is an atomic formula.

P roof: The proof follows by induction on the structure of
Case ay, is a variable then the last step of a derivation of E; A => : G must be an axiom,

so G must be atomic. (Recall that the main formula of an axiom in hH  is required to be 
atomic.)

Case ay is of the form apply{x, e, xi.Uy,). Then, the last step of a derivation of E; A : G 
is of the form:

E; A i, X : Gi D Hi e : Gi Ti; A i ,x  : Gi D H i,x i  : H i => ay^ : G
E; A i, X : Gi D Hi apply{x,  e, xi.a^j) : G

where A =  (Ai ,x : Gi D H i). By the I.H., since E; Ai , x  : Gi D H i,x i  \ Hi ^  : G is
derivable, G is an atomic formula.

The other cases follow, as the latter case, easily from the I.H.. □

Recall tha t the transformations on LJ^^-proof-terms presented in Fig. 2.8 encode the re­
versing of right rules below left rules in LJ^^-derivations. The rewriting system associated to 
uniform derivations is called RSy  and is defined by means of the permutations for moving right 
rules below left rules.

I
D efin ition  3.3 ( R S y )  RSy  is the rewriting system consisting o f the rules in Fig. 2.8, where 1
proof-terms are restricted to hH  -proof-terms. The rewrite relation inducedP by RSy is called '
>«. A proof-term ei is reducible (rewrites^ by RSy to a proof-term eg if  the pair (ei, eg) is in 
the transitive closure of>y.

L em m a 3.2 For every rule ei t> eg of RSy ,  :/ E; A ei : G is derivable then E; A => eg : G is 
derivable.

P roo f: See the case corresponding to rule (7) in the proof of Theorem 2.6. Other cases are 
similar. □

Below is shown tha t the class of uniform derivations is complete for hH. It is also shown 
tha t the uniform proof-terms are the proof-terms to which no rule of R Sy  applies. Theorem 
3.1 shows tha t every non-uniform proof-term is reducible by RSy  to a uniform proof-term. The 
techniques used for proving this result are essentially the same as those used in [Mil89]. There 
is proved the slightly weaker result: if there is a derivation of a sequent there is a uniform 
derivation of tha t sequent, a result proved for a sequent calculus formalisation of hereditary 
Harrop logic, essentially corresponding to hH  with no proof-terms.

T h eo rem  3.1 Every non-uniform proof-term is reducible by RSy to a uniform proof-term.

®The rewrite relation induced by a list of rules R  is the compatible and substitutive closure of the binary 
relation {(r, s) : r t> s a rule of R ] ,  see [PIa93].
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P roof; It has to be shown tha t for every non-uniform proof-term e there is a uniform proof- 
term €y s.t. e rewrites to by using rules from RSy. The proof follows by induction on the 
structure of e.

(i) If e is of the form lambda{x.ei), then either ci is uniform (and so is c) or ci is non-uniform.
In the latter case, by the I.H., ci is reducible by R S y  to a uniform proof-term e„, and so 
l a m b d a [ x . e y , )  is a uniform proof-term to which e reduces by R S y .

(ii) The other cases where the outermost constructor of e is a right constructor follow as case
(i) easily from the I.H..

(iii) The proof-term e cannot be a variable, otherwise e is uniform.

(iv) Case e is of the form app ly{x ,e i,x i.es). We consider the case where ei and eg are non- 
uniform. (The other cases follow by similar arguments.) By the I.H., ei and eg are redu­
cible by RSy  to uniform proof-terms e^  and Cŷ . Now, the proof follows by induction on 
the structure of e^j. Case Cŷ  is an atomic uniform proof-term, then apply{x,ey,^,x\.ey^) 
is a uniform proof-term, to which app/y(x, ei, xi.eg) reduces by RSy.  Case the outer­
most constructor of Cy.̂  is a right constructor, permutations from RSy  may be used to 
rewrite apply{x,eyy,xi.ey.^) to a uniform proof-term. For example, if e^  ̂ is of the form 
lambda{x2 .ey^) then, by permutation (7), apply{x, Cŷ , xi.lambda{x2 .ey^)) is reducible to 
lambda{x2 .apply{x, €y,, xi.Cy^)), By the latter I.H., apply{x,ey,^,xi.ey^) is reducible by 
R Sy  to a uniform proof-term Thus, lambda{x2 .ey^) is a uniform proof-term to which 
apply{x,ey,,xi.lam bda[x2 .ey^)) reduces by RSy.  The cases where the outermost con­
structor of Cu2 is either pair, ini, inr, lambda^, pairq follow by similar arguments, using 
permutations (3), (11), (15), (19), (23), respectively.

(v) The other cases where the outermost constructor of e is a left constructor may be proved
by using ideas similar to those used in case (iv).

C oro llary  3.1 The class of uniform derivations is complete for hH .

P roof: It needs to be shown that: if E; A e : G is derivable in hH  then there exists ei s.t. 
E; A =>- ei : G has a uniform derivation. If e is uniform then a derivation of E; A e : G is 
uniform. Otherwise, by Theorem 3.1, e is reducible by RSy  to a uniform proof-term e„. By 
applying repeatedly Lemma 3.2, at each step of the rewriting of e into e», we may conclude 
tha t the sequent E; A => e„ : G is derivable in hH, i.e. there exists ei s.t. S; A =>■ ei : G has a 
uniform derivation. O

Proposition 3.1 below shows tha t the proof-terms irreducible under R Sy  are precisely the 

uniform proof-terms.
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P ro p o sitio n  3.1 The set of proof-terms to which no rule o f RSy applies is the set of uniform 
proof-terms.

P roof:
It needs to be shown that no rule in Fig. 2.8 is applicable to a uniform proof-term. The 

proof follows by induction on the structure of uniform proof-terms; e.g. no rule of RSy  applies 
to  apply{x, By, xi.Qy) since, by the induction hypothesis, no rule applies either to e„ or to Uy 
and the outermost constructor of ay cannot be a right constructor.

Also, it needs to be shown tha t any proof-term to which no rule of R Sy  is applicable is a 
uniform proof-term, which follows immediately from Theorem 3.1. O

Theorem 3.1 shows tha t R Sy  is weakly normalising, i.e. there is a strategy to rewrite every 
proof-term into a uniform proof-term. From a rewriting systems viewpoint a pertinent question 
to ask is whether or not RSy  is Church-Rosser and strongly normalising. We conjecture that 
the answer to both questions is positive.

Although the class of uniform derivations is a proper subclass of /i/f-derivations, there are 
still different uniform proof-terms mapping under </) to the same normal natural deduction 
proof-term. The proof-terms (ii), (iii), (iv) and (v) of Fig. 3.5 are all uniform. The proof-term
(v) maps under (f> to the AJ^^-proof-term:

Xx2 .Xx3 .app{app{x, xg), app{x3 , Xx4 .app{app{x, xi), X4))).

The proof-terms (ii), (iii) and (iv) map under <j> to the ATJPCproof-term:

Xx2 .Xx3 .app{app{x, xi), app{x3 , Xx4 ,app{app(x, xi), X4))).

So, since <j) is onto the set of normal natural deduction proof-terms, a class of derivations in 
1-1  correspondence to normal natural deductions needs to be more restrictive than the class of 
uniform derivations.

Below is studied the class of uniform focused derivations that is a subclass of uniform deriv­
ations yet complete for hH. Derivations in this class have the properties of being uniform and 
of being focused. Briefly, a derivation is focused if the side formula in the main premise 5  of a 
left rule is the main formula of the inference rule whose conclusion is S.

In [MilQO] is described the rule of hackchaining, which is shown to be admissible in the sequent 
calculus formalisation of hereditary Harrop logic there presented. This rule essentially captures 
the notion of focusing derivations. A more direct account of the notion of focusing derivations is 

described in [Pfe94] by means of the concept of immediate implication. We borrowed the name 
of focused derivations from Andreoli’s work [And92a], in the more general context of linear 
logic.

D efin ition  3.4 (U niform  Focused P roof-T erm s) The following context sensitive grammar 
defines the sets of uniform focused proof-terms e„/ and atomic uniform focused proof-terms 
of head variable x,- .*
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e„/ ::= pair{euj,euf) | inl{eyj) | m r(e„/) | lambda{x.euj)
I pairq{t ,eyf)  | lambdaq{x.eyf)  | a j ÿ ;

< >  ::= x i \  splitl{xi,xj.a'^j) \ splitr{xi,XjM ‘̂ j)
I apply{xi,  €yj ,  Xj.a^^j) | applyq{xi, t, Xj.al^j) .

In the previous definition, the superscript notation is used to represent contextual inform­
ation. The last rule defining Cyj is an abbreviation for an infinite list of rules, one for each X{ 
in A'. The first rule defining is an abbreviation for an infinite list of rules, one for each X{ 
in %. All the other rules defining are abbreviations for infinite lists of rules, one for each 
combination of x, and xj, elements of X . Sometimes, the head variable of an atomic uniform 
focused proof-term is omitted.

D efin ition  3.5 (U niform -Focused D erivations) A derivation is umform focused if  its proof- 
term is uniform focused.

The proof-term (ii) of Fig. 3.5 is an example of a uniform proof-term which is not uniform 
focused, for it contains a proof-term of the form:

apply{x3 , ..., XQ.apply{x, x%, X4 .apply{x4 , xg, X5 .X5))).

The derivation encoded by the proof-term (ii) is uniform but not uniform focused.
Figure 2.9 presents a list of transformations on proof-terms tha t represent the reversing of 

the order in which left rules occur in a LJ^^-derivation. Figure 2.10 presents a list of proof- 
term transformations that encode the elimination of redundant left rules. These two lists of 
transformations are used below in transforming non-focused derivations into focused derivations. 
The rewriting system associated to uniform focused derivations is called RSy/; it is defined as 
follows.

D efin ition  3.6 (R S y /) R Syj is the rewriting system consisting of the rules in Figs. 2.8, 2.9 
and 2.10, where the rules are restricted to hH-proof-terms. The rewrite relation induced by 
R S yf is called >„/. A proof-term ei is reducible (rewrites^ by R Sy/ to a proof-term eg if the 
pair (eijCg) is in the transitive closure of>yj.

L em m a 3.3 For every rule ei>eg of R Syj, if T \A = > e i:G  is derivable in hH  then 
E; A => eg : G is derivable in hH .

P roo f; See the cases corresponding to rules (7), (35) and (43) of Theorem 2.6. □

P ro p o sitio n  3.2 The rewriting system R Syj is not strongly normalising.
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P roof: An infinite reduction sequence may be easily constructed from a proof-term of the form

apply{x, e, xi.apply{x2 , ci, *3 -62)),

where xi ^  zg and x i ^  ei, by using rules (35) and (43). □

Although RSuf is not strongly normalising, we conjecture the existence of a rewriting system 
obtained by restricting the rules of RSuj, s.t.: (i) RS'^f is strongly normalising; and (ii) 

every proof-term which is not uniform focused is reducible by RS'^^J to a uniform focused proof- 
term.

The following lemma is used in proving Theorem 3.2, which provides a means for showing 
completeness of uniform focused derivations for hH.

L em m a 3,4 Lcf be uniform focused proof-terms. Then, every proof-term of the form

apply{x,eufi,xi.euf^)

which is not uniform focused is reducible by RSuj to a uniform focused proof-term e ^ f . Further, 
if  e^f^ is atomic uniform focused o f head variable X2  ^  x \, then e^/ is atomic uniform focused 
of head variable X2 .

P roof: The proof is by induction on the structure of

(i) If e«/2 is of the form lambda{xz^ey,f^), then permutation (7) may be applied to

apply {x,euj,,xi.e,^j^)

obtaining the proof-term

lambda{xs.apply{x, eu/i,xi.euf^)).

The proof-term apply{x,euji,xi.euf^) is either uniform focused or, by I.E., is reducible 
by RSuf to a uniform focused proof-term. Thus, in both cases apply{x,euf^,Xi.euf2 ) is 
reducible by RSuj to a uniform focused proof-term.

(ii) Proofs of the other cases where the outermost constructor of is a right constructor
may be obtained by similar arguments to those used in the case above.

(iii) If Cu/j is atomic uniform focused of head variable zg, there are the following cases.

(a) Case e^/a is the variable X2 . Then, zg ^  x \, otherwise apply{x, e^/j, Z1.Z2) is uniform
focused. So, the proof-term

app/y(z,e„/i,zi.Z 2)

is reducible by permutation (43) to zg and zg is atomic uniform focused of head 
variable Z2 .
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(b) Case is of the form appiy{x2 ,euf^,Xs.a^^j^). Then, Zg ^  z i, otherwise

apply{x, e„/i, zi.app/y(z2, e«/3 , za.aJ^J)

is uniform focused. So, apply{x,  xi.Cu/^) is reducible by permutation (35) to the
proof-term

apply{x2 , apply(x, e„/,, zi.ey/a), x^.apply{x, e„/i, zi.a^)^)).

(Note tha t x\ ^  Z2 and the other side conditions for applying permutation (35) are 
satisfied by renaming of bound variables.) The proof-term app/y(z, e^/j, zi.e^/g) is 
either uniform focused or, by the I.H., reducible to a uniform focused proof-term. 
Also by the I.H., app/y(z,Cu/j, zi.a^y^) is reducible to an atomic uniform focused 
proof-term of head variable Zg, say The proof of this case is concluded by
observing that a proof-term of the form apply{x2 , za.a®^^), where e«ŷ  is uniform 
focused, is atomic uniform focused of head variable Z2 .

(c) Similar reasoning may be used for showing the cases corresponding to the other forms 
of atomic uniform focused proof-terms.

□

T h eo re m  3.2 Every proof-term which is not uniform focused is reducible by RSuf to a uniform 
focused proof-term.

P roof; Let e be a proof-term which is not uniform focused. The proof follows by induction 
on the structure of e.

Case e is of the form lambda{x.ei). Then, ei cannot be uniform focused, otherwise e is 
uniform focused. So, by the I.H., e% is reducible by RSuf  to a uniform focused proof-term and, 
thus, e is reducible by RSuf to a uniform focused proof-term.

The other cases where the outermost constructor of e is a right constructor follow by similar 
arguments.

The proof-term e cannot be a variable, otherwise e is uniform focused.
Case e is of the form apply{x,ei,x i.e 2 ). Assume, without loss of generality, tha t both ej 

and € 2  are not uniform focused proof-terms. By the I.H., each of the proof-terms ci and 62 

is reducible by RSuf to a uniform focused proof-term, say ĉ ŷ  and e^yj, respectively. So, by 
using Lemma 3.4, e is reducible by RSuf to a uniform focused proof-term.

The cases where the outermost constructor of e is a left constructor, different from apply, 
may be shown by proving lemmas similar to Lemma 3.4. □

C oro lla ry  3.2 The class of uniform focused derivations is complete for hH.
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P roof: By using Theorem 3.2 together with Lemma 3.3. □

Although the class of uniform focused derivations is more restrictive than the class of uniform 
derivations, there are yet different uniform focused proof-terms tha t map under <f> to the same 
normal natural deduction proof-term. The proof-terms (iii) and (iv) of Fig. 3.5 are both uniform 
focused and, as mentioned above, map into the same AJ^Cppoof-term under <f>. So, the class of 
uniform focused derivations is yet too wide to be in 1-1  correspondence to the class of normal 
natural deductions. Below is defined the class of uniform linear focused derivations that is more 
restrictive than the class of uniform focused derivations. Roughly, a derivation is uniform linear 
focused if it is uniform focused and the side formula of each left rule is used exactly once as the 
main formula of a rule in the derivation.

D efin ition  3.7 (U nifo rm  L inear Focused P roof-T erm s) A proof-term is uniform linear 
focused i f  it is uniform focused and each variable x bound by a left constructor occurs exactly 
once in the scope o f x.

D efin ition  3.8 (U niform  L inear Focused D erivations) A derivation of a sequent is uni­
form linear focused if  its proof-term is uniform linear focused.

The proof-term (iii) of Fig. 3.5 is an example of a uniform focused proof-term which is not 
uniform linear focused, for the variable binder x^ has two free occurrences of X4  in its scope. 
The proof-term (iv) of Fig. 3.5 is an example of a uniform linear focused proof-term. So, the 
derivation encoded by (iii) is an example of a uniform focused derivation, which is not uniform 
linear focused, and the derivation encoded by (iv) is an example of a uniform linear focused 
derivation.

Before proving tha t every derivation in hH  can be transformed to a uniform linear focused 
derivation, some definitions and results are introduced.

D efin ition  3.9 (Affine P roo f-T erm s) A proof-term is affine if  each variable x bound by a 
left constructor occurs freely at most once in the scope of x.

Notice tha t a variable bound by a left constructor in an affine proof-term is allowed to have 
no occurrences.

L em m a 3.5 I f  e is affine and uniform focused then e is uniform linear focused.

P roof: In a uniform focused proof-term a variable bound by a left constructor occurs a t least 
once in its scope. For example, a proof-term of the form apply{x, e, xi.ei) is uniform focused 
only if Cl is atomic uniform focused of head variable xi, so x i occurs at least once in 6%. Since 
c is affine then, no variable bound by a left constructor occurs more than once in e. Then, e is 
a uniform linear focused proof-term. □
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Figure 2.11 presents a set of proof-term transformations used for linearising a proof-term, i.e. 
the permutations that allow transforming the corresponding derivation to a derivation where 
all side formulae of left rules are used at most once.

D efin ition  3.10 {RSa ) RSa is the rewriting system defined by the rules in Fig. 2.11, where 
proof-terms are restricted to hH  -proof-terms. The rewrite relation induced by RSa is called >a. 
A proof-term ey is reducible (rewrites^ by RSa to a proof-term eg if  the pair (ei, eg) is in the 
transitive closure o/Og.

L em m a 3.6 For every rule ei>eg of RSa, »/ S; A =4̂  ei : G is derivable then E; A =>• eg : G is 
derivable.

P roof; See the case corresponding to rule (47) in the proof of Theorem 2.6. Other cases are 
similar. O

The theorem below may be thought of as a transformation of the natural deduction graph 
corresponding to a sequent calculus derivation into a natural deduction tree. We hope to make 
precise this connection in future work.

T h eo rem  3.3 Every non-affine proof-term is reducible by RSa to an affine proof-term.

P roof; Let e be a non-affine proof-term. The proof is by induction on the structure of e.

(i) If e is of the form lambda[x.ei), then e\ is non-affine, otherwise e is affine. So, by the
I.H., ei is reducible by RSa to an affine proof-term eg. Thus, e is reducible by RSa to an 
affine proof-term. Analogous arguments may be used for proving the other cases where 
the outermost constructor of e is a right constructor.

(ii) The proof-term e cannot be a variable, otherwise it is affine.

(iii) Case e is of the form apply{x, ei, zi.eg). We assume, without loss of generality, that ei and 
eg are non-affine. By the I.H., e\ and eg are reducible by RSa to affine proof-terms eg, e4 , 
respectively. The only case in which app/y(z, ea, ^ 1.64) is non-affine is the case where z i 
has more than one occurrence in e4 . The proof follows by induction on the number of 
occurrences of z i in e4 .

(a) If x\ occurs at most once in e4 , then apply{x,e^,xi.e4 ) is affine.

(b) If xi occurs more than once in C4 , then the proof-term apply{x, 6 3 , Xi.e4 ) is re­
ducible by permutation (47) to apply(z, 63 , zi.app/y(z, 63, Z g . e s ) ) ,  where 65 results 
from 64 by replacing one of the occurrences of zi in 6 4  by zg. The proof-term 
app/y(z, 63, zg.es) Is affine and has fewer occurrences of Zi than 64 . So, by the I.H., 
app/y(z, es, zi.app/y(z, C3, zg.es)) is reducible by RSa to an affine proof-term.
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(iv) The other cases where the outermost constructor of e is a left constructor may be proved 
by using similar arguments.

□

L em m a 3.7 I f  e is an affine proof-term, then every proof-term ei s.t. e is reducible to e\ by 

R Suf is also an affine proof-term.

P roo f: It suffices to observe tha t for each rule of RSuf if its left side is affine then its right side 
is also affine. □

D efin ition  3.11 (RSuif)  The relation RSuif is the rewrite relation whose set of rules is the 
union of the sets of rules of RSuf and RSa> The rewrite relation induced by RSa is called >„j/.
A proof-term ei is reducible (rewrites^ by RSuif to a proof-term eg if  the pair (ei,eg) is in the 
transitive closure of>uif.

T h eo rem  3,4 Every proof-term which is not uniform linear focused is reducible by RSuif to a 
uniform linear focused proof-term.

P roof; Let e be a proof-term which is not uniform linear focused. Then, by Lemma 3.5, e 
cannot be simultaneously affine and uniform focused.

If e is affine, by Theorem 3.2, e is reducible by RSuif to a uniform focused proof-term ei 
and, since e is affine, by Lemma 3.7, ci is also affine. Then, by Lemma 3.5, ei is uniform linear 
focused.

If e is non-affine, by Theorem 3.3, e is reducible by RSuif  to an affine proof-term; an argument 
similar to tha t used for the previous case completes the proof. □

C oro lla ry  3.3 The class of uniform linear focused derivations is complete for hH.

P roo f; By using Theorem 3.4 and Lemmas 3.3 and 3.6. □

Proposition 3.3 below shows tha t the proof-terms irreducible under RSuif  are the uniform 1

linear focused proof-terms.

P ro p o sitio n  3.3 The set of proof-terms to which no rule of RSuif applies is the set of uniform |
linear focused proof-terms. {

Î
P roof;

Analogously to Proposition 3.1, it suffices to note that no rule of RSuif  Is applicable to a |
uniform linear focused proof-term and that, by Theorem 3.4, any proof-term to which no rule |

of RSuif  is applicable is a uniform linear focused proof-term. □ |
1
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In the next section we introduce the calculus that allows exactly the uniform linear
focused derivations of hH. This calculus is used in Sec. 3.5 for showing a 1-1 correspondence 
between uniform linear focused derivations and expanded normal deductions.

3.4  T h e Calculus

This section describes the calculus which may be regarded as a calculus to obtain
exactly the uniform linear focused derivations of hH. The classes of objects of h H ^ ^ ^  are the 
same as those of hH. The forms of judgement of h H ^ ^ ^  are the same as those of hH  with the 
exception of sequents. In sequents are replaced by the following two forms of judgement:

(i) E ; A - ^ e : G ;
(ii) E; A e : A.

We also call sequents these two forms of judgement. The rules defining derivable sequents are 
shown in Pig. 3.6. These two forms of sequent describe the uniform linear focused derivations 
of hH. Sequents of form (i) describe uniform derivations of compound goals. Sequents of form
(ii) describe linear focused derivations of atomic goals. The rules defining these two forms 
of sequent are mutually recursive— see the rules and choice. See also [DP96b]. Calculi 
formalised in the same fashion as are used in [Pfe94, Mil94j.

The following lemmas are used in proving the main result of this section, Theorem 3.7, which 
relates derivations in h H ^ ^ ^  with uniform linear focused derivations in hH.

L em m a 3.8 (w eakening) I f  the judgements E; A => e : G and E h ÜT fi/ are derivable in
hH then, for every x ^  A , the sequent E; A, z : Lf =>■ e : G is derivable in hH.

Proof; This result may be proved similarly to  Theorem 2.5, admissibility of weakening for 
LJpK □

L em m a 3.9

(1 ) 7/ E; A, z : jy — > e : G is derivable and x ^  e then E; A — y e : G is derivable.

(2) 7/E ; A, z : 77 a®|y : A is derivable and x ^  then E; A a‘̂ jj : A is deriv­
able.

Proof; See the case corresponding to rule (43) in the proof of Theorem 2.6 for a similar result.
□

L em m a 3.10 I f  sequent E; A ,z  : 77 : A is derivable and x occurs only once in
then E; A : A is derivable.
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S; A — y Cl :Gi  S; A — eg : Gg 
S; A — y pair{ei, eg) : Gi A Gg

E; A — y e  : G\  E h Gg g f  
E ; A — >m/(e) :G i  VGg ^

E; A — y e : Gg E h Gi g /
E; A —  ̂inr(e) : Gi V Gg ^

E; A, z : 7/  — >■ e : G 
E; A — y l ambda{ x . e )  : II  D G

E; A — y e : [ t / x ] G  E h < : r  
E; A — y pairg(t, e) : 3*;rG

E, z : r;  A — y e : G  h E; A bas i s  
E; A — > l ambdaq{x . e)  : ^ s . t G

A

V,

Vr

E ; A ^ e  : A
choice

E ;  A  — y e  : A

h  E ;  A  bas i s  E  h  A  a /  

E ; A ^ z :  A
a x i o m

x  : H  €  A

z  ^  A  o r  z  : A  €  A

E ;  A  e  : A  E  h  J /g  / t /  

E ;  A  s p l i t l { x , x i . e )  : A

A ,
z i  A  oTïd e i t he r  

z  ^  A  o r  z  : i 7 i  A i f g  6  A

E ;  A  e : A  E  h  7 / i  / i /

E ;  A  sp lUr {x ,  z i . e )  : A
z i  ^  A  and e i t he r  

x ^  A  o r  X : H i  A H 2 E A

E ;  A  — 4  e i  : G  E ; A ^ e  : A  ^ 

E ;  a p p / y ( z , e i , z i . e )  : A
z i  ^  A  a n d  e i th e r  

x q ^ A  o r  x ' . G d H e A

S K : r

j); A ii.e) : /t Z g  ^  A  a n d  e i t he r  

x i  ^  A  o r  x i  : V® :ri7  G A

Figure 3.6: Rules for derivable sequents of .
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Proof: The proof-term must either be x or of one of the forms:

splitr{x,xi.a^Jj^)\ 

app /y (z ,ew /,» i.< |/,); 
apply q{x,t,xiM^Jj^).

In no case may x occur in a^fj or in Cui/, for x occurs only once in a^jy. So, by using Lemma 
3.9, we may easily conclude this proof. □

The following theorem shows how to go from uniform linear focused derivations in h i f  to 
derivations in

Theorem  3.5 Let E; A => 6^;/ : G derivable in hH. Then, E; A — y e^ij : G is derivable in 
h H ^ ^ ^ . Further, if  Cuif is atomic uniform linear focused of head variable x then G is atomic 
and there exists an H-formula H  s.t. x : H  E A  and E; A euif : G is derivable in h H ^ ^ ^ .

Proof: Let ?r be a -derivation of E; A => : G. The proof follows by induction on the
structure of TT. Consider the following cases.

•  Case last step of n is of the form

7Ti
E; A, X : H  ^uifi •

E; A lambda{x.euifi) : H  D Gi

where x ^  A  and G ~  II  D G i. Then, by the I.H., E; A ,z  : 77 — y e^if, : Gi has a 
derivation a. Thus, the following /i/f^^^-derivation may be formed:

cr
E; A, z : II  — y euij^ : Gi

E; A — y lambda{x.euijf) : H  D G\

since z ^  A. Similar arguments may be used for the other cases where the last step of it 
is a right rule.

Case last step of TT is of the form

^1
f- E; A i, z : A basis

7-------- 1---------- 7  axiom,E; A i, X : A ^  X : A

where G =  A is an atomic formula and A =  (Ai,z  : A). Then, the following hH ^^^-  
derivation may be formed:

7Ti
h E; Ai, z : A 6asis E h  A a /  --------------------------------------- — axiom,

E; A i, z : A z : A 
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since: from ?ri we may easily find a derivation of E I- A af;  and z : A G A, thus the 
side condition of axiom  is satisfied. From the derivation above, by using rule choice, a 
derivation of E; A i, z : A — y x : A may be formed. (Note tha t z : A G (Ai, z : A) and
E; A i, z : A z : A is derivable in h H ^ ^ ^ .)

Case last step of tt is of the form

TTg ÎT3
E; A i, z : Gi D 77 =» cwA : Gi E; A i, z : Gi D 77, z i : 77 => ^

E; A i , z  : Gi D 77 a p p / y ( z , z i . a ^ l y j  : G

where A — (A i ,z  : Gi 3  77) and z% ^  A. By the I.H.: (i) there is a 777^^^-derivation 
<7 i of E; A i, z : Gi 3  77 — Cuj/j : G\\ (ii) G is atomic and there is a 777^^^-derivation 
of E; A i, z : Gj 3  77, z% : 77 : G. By Lemma 3.10, since z i occurs exactly once
in a^lyj— for app/y(z, e«//,, zi.a®|yj is uniform linear focused— there is a derivation o-g 
of the sequent

E;Ai ,a^ :G ,  3  ff ^  < i / ,  -G.

Thus, the following derivation may be formed:

E ; A i , z : G i  3  77 —i  cw/, :G i E; A i, z : Gi 3  H  :G 3,
E ; A i , z  :G i  3  77 app7y(z,e«/y,,zi.ajjy^) : G

since z% ^  (Ai,z : G\ 3  77) and z : Gi 3  77 G (A i ,z  : Gi 3  H ). For concluding the 
proof of this case, observe that, from the derivation above, by applying rule choice, for 
z : Gi 3  77 G (Ai, z : Gi 3  77), there is a /i77^^^-derivation of

E ; A i , z  :G i  3  77 — y apply{x,euifi,xi.al\j^) : G.

(Note that z : Gi 3  77 G (Ai, z : Gi 3  77) and

E; Ai,  z : Gi 3  77 apply{x, eul/i, x i .a^ fy j  •

is derivable in hH ^^^ .)

•  The other cases where the last step of TT is a left rule follow by similar arguments.

□

The following theorem shows how to transform a /i77^^^-derivation into a uniform linear 
focused derivation of hH.

Theorem  3.6

(1 ) 7/E; A — y e :G  is derivable in h H ^ ^ ^  then E; A e : G has a uniform linear focused 
derivation.
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(2 ) /(E ; A e : A  is derivable in then e is atomic uniform linear focused of head
variable x and

(a) case x : H  E A , then E; A e : A is derivable in hH;

(b) case x ^  A , then E; A, z : 77 => e : A is derivable in hH  and z occurs exactly once 
in e.

P roo f; Let TT and cr be h77^^^-derivations of the sequents E; A — > e : G  and E; A e : A, 
respectively. The proof follows by simultaneous induction on the structure of the derivations TT 

and a.

•  Case last step o f  TT is o f  the f o r m ;

O’!
S ; A ^ e : A  , . „  .
TT-%------------T choice, X : H  E A.E; A — y e : A

Then, by the I.H., e is (atomic) uniform linear focused and, since z : 77 € A, the sequent 
E; A e : A is derivable.

•  Case last step of TT is of the form

E; A, z : 77 — y e : Gi 
E; A — y lambda{x.e) : H  D Gi

where z ^  A and G = H  D G\. Then, by the I.H., E; A, z : 77 e : Gi is derivable and e 
is uniform linear focused. Thus, by using =^3 , E; A =*- lambda(x.e) : 77 3  Gi is derivable 
and clearly lambda{x.e) is uniform linear focused. (Similarly for the cases where the last 
step of 7T is of any other form.)

•  Case last step of cr is of the form

0̂ 1
h E; A basis E h A a /  

E ; A ^ z : A
axiom.

where either z A or z : A € A. If z : A G A then the following derivation may be 
formed:

h E; A basis 
E ; A = > z : A

If z ^  A then the following derivation may be formed:

h E; A, z : A basis 
E ; A , z : A = ^ > z : A

where tti may be obtained by combining ai with the derivation of E h A a f,  for z ^  A. 
Clearly z occurs exactly once in z.
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Case last step of a is of the form:

E ; A - 4 e : G i  E ; A ^ e i  : A 

E; A apply{x, c, zi.ei) : A
3

where z% 0 A and either x ^  A  or x : G\ D H  E A. Since xi ^  A, by the I.H., there are 

derivations ttj and rrg of the sequents:

E; A => e : Gi; 
E; A, z i : H  ei : A,

where e is uniform linear focused, ei is atomic uniform linear focused of head variable X\ 

and xi occurs exactly once in e\. So, apply[x,e,xi.ei] is atomic uniform linear focused 
of head variable x.

If z ^  A, then, by weakening, there are derivations tts and 7T4 of the sequents:

E; A, z : Gi D H  e : Gi;
E; A, z i  : / / ,  z : Gi 3  77 => Cl : G.

So, the following derivation may be formed:

7T3 7T4
E; A, z : Gi 3  77 =» e : Gi E; A, z : Gi 3  77, z i : 77 =» ei : G 

E; A, z : G i 3  77 => apply{x, e, Zi.ei) : G

Notice tha t z occurs exactly once in a.pply{x,e,xi.ei).

If z : Gi 3  77 € A, i.e. A is of the form (A i ,z  : Gi 3  77), then the following derivation
may be formed:

7Ti 7T2
E; A i, X : Gi D H ^  e : Gi S; A i, z : Gi 3  77, z i : 77 => ci : G

E; A i ,z  : Gi 3  77 apply(x,e,xi.€i) : G

(The other cases, resulting from the other possible forms of a, follow by similar arguments.)

□

Now the main result of this section is established.

T h eorem  3.7  E; A =>• e : G has a uniform linear focused derivation in hH iff E; A — y e : G 

is derivable in

Proof: If E; A e : G has a uniform linear focused derivation in hH, then, by Theorem 3.5, 
E; A — y e : G is derivable in

If E; A — y e : G is derivable in , then, by Theorem 3.6, E; A e : G has a uniform
linear focused derivation in hH. □

52



The next section establishes a 1-1 correspondence between derivations in and ex­
panded normal deductions in a restriction of N J ^  to hereditary Harrop logic. So, by Theorem 
3 .7  we may conclude the 1-1  correspondence between uniform linear focused derivations and 
expanded normal deductions.

3.5 On th e B ijection  b etw een  U niform  Linear F ocused  D eriva­

tion s and E xpanded N orm al D ed u ction s.

This section establishes a 1-1  correspondence between uniform linear focused derivations, i.e. 
derivations in the sequent calculus formalisation of hereditary Harrop logic and ex­
panded normal deductions, i.e. derivations in the natural deduction system for first-order 
hereditary Harrop logic N N ,  presented in this section. In order to achieve this correspond­
ence, we use an intermediate sequent calculus formalisation of hereditary Harrop logic called 
M M . M M  may be regarded as a sequent calculus very similar to , it differs only from

in how derivations are annotated with proof-terms. The form of annotating sequent 
calculus derivations used in M M  follows Herbelin’s [Her95]. Herbelin uses an alternative rep­
resentation of A-ter ms, called A-terms, for annotating sequent calculus derivations. Roughly, 
A-terms bring to the surface the head variable of a A-term. Calculi similar to M M  and N N  are 
studied in [DP96b]; in fact this work addresses full first-order intuitionistic logic. Below, the 
work [DP96b] is sometimes referred to for proofs of results relating M M  and N N .

We now define the calculus M M .  The classes of objects of M M  are the same as those of 
hjjULF -piiey are defined by the same grammars, except for proof-terms. The proof-terms of 
M M  are called M-proof-terms; they are defined as follows.

D efinition 3.12 M -Proof-Terms

M  (z; Ms) | par{M, M) | il{M) \ ir{M) | lamb{x.M) | parq{t, M)  | lambq{x.M)
M s  ::= Q | [M\Ms] {fst{Ms)  j snd{Ms) | applq{t,Ms)

Below, M,  possibly indexed, is used as a meta-variable ranging over M-proof-terms.
The forms of judgement of M M  are the same as those of except for sequents, which

are replaced by the following two forms of judgement, that we also call sequents:

(i) E ; A = ^ M : G ;
(ii) S; A ^  M s : A.

MM-judgements common to h H ^ ^ ^  are derivable iff they are derivable in The rules
defining the derivable sequents of M M  are shown in Fig. 3.7. The rules defining derivable 
sequents in M M  are very similar to the rules defining derivable sequents in the main
difference being the proof-term annotation of the rules for deriving atomic sequents.
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E ; A = > e i : G i  E; A eg : Gg —^
E; A par{ei, eg) : Gi A Gg

E ; A = » e : G i  E h Gg y /  E ; A = » e : G g  E h Gi y / ,
E; A =»- i7(e) : Gi V Gg * E; A =4> ir{e) : Gi V Gg ^

E; A, z : H = >  e : G
E; A lamh{x.e) : H D G

E; A =>■ e : \t/x]G E h < ; r  
E; A = >  parq(t, e) : 3r:rG

E, X : r; A = >  e : G h E; A 6asis 
H \ A = > l a r n b q { x . e )  : V^irG

=>D, X ^ A

V, x ^ E

E ; A = ^ M s : A  »  ^ .select, X : H E A
E; A = >  (z; Ms) : A

h E; A basis E H A a /  
E; A ==> Q : A

a x i o m

E;A A ^ M s  : A E h 77g A/ E ; A A M s :A E h Hi 7 /
E; A fst{Ms) : A E; A snd{Ms) : A

E ; A = >  M :G E; A A  Ms:  A ^
E ; A ^  [M|Ms] : A

E ; A ^ ^  M s:  A E K : r  ^
E;A W ^appfg(t,M s) : A ^

Figure 3.7: Rules for derivable sequents of M M .
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In proof-terms of the form lamh{x.M) and lambq{x.M), x is called a binder of scope M  and 
an occurrence of z in M is called bound. A non-bound occurrence of a variable is called free. 
The notation x ^  M  means tha t z has no free occurrences in M .

Below, in Definitions 3.13 and 3.14, we define mappings relating the sets of uniform linear 
focused proof-terms and M-proof-terms. These mappings are inverses of each other, as shown 
in Theorems 3.8 and 3.9, and they preserve derivability, as shown in Theorems 3.10 and 3.11.

In this subsection e is used for representing the class of uniform linear focused proof-terms 
and a for representing the class of atomic uniform linear focused proof-terms. e, possibly 
indexed, is also used for ranging over arbitrary uniform linear focused proof-terms. a, possibly 
indexed, with a variable z in superscript, is used for ranging over atomic uniform linear focused 
proof-terms of head variable z.

D efin ition  3,13 7  : e M  an d  j i  : a —y M s

J{pair{ei,e2 )) -aef par(7 (e i),7 (62)) 
j{inl{e)) i/(7 (e))
j(inr(e)) ir(j(e))
j(lambda(x.e)) lamb{x.‘y{e)) 
l{vairq{t,e)) p ar,(t, 7 (e))
^ { l a m b d a q { x . e ) )  l a m b q ( x . ' y ( e ) )  

t M  ~def (z ;7 i M )

7 i(a;) —dc/ D

yi{splitl{x,xi.a^^)) =d,/ fst{'yi{a^^)) 
7 i(sph’ir(z,z i.a^ ‘)) snd{‘ji{a^^)) 

7 i(apply(z,e,zi.a®»)) [7(e)|7i(a^‘)] 
ji{applyq{x,t,xi.a^^)) applq{t,yi{a=^^))

D efin ition  3.14 6  : M  e

S{par{Mi, M 2 )) =de/ pair{S{Ml), S{M2 ))
W (6 (M))

6 {ir{M)) =dc/ inr{S{M))
8 {lamb{x.M)) lambda{x.6 {M))
6 { p a r q { t ,  M ) )  p a i r { t , S { M ) )

6 { l a m b q { x . M ) )  = d e {  l a m b d a q { x . 6 { M ) )

D ) )  - d e f  X

S{{x]fst{Ms))) =def splitl{x,xi.5{{xi;Ms))), z i ^ M s  
<î((z; snd(iWs))) =^^7 splitr{x,xi.5{{xi; Ms))), z i ^  M s  
S{{x;[M\Ms])) -dcf apply{x,S{M),xi.5{{xi; Ms))), xy 0 M s  
8 {{x;applq{t,Ms))) =def apphjq{x,t, xi.S{{xi; Ms))), z i ^  M s
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Recall that two e-(proof-terms) are equal iff they are the same up to renaming of bound variables. 
Definition 3.14, above, requires equality of e-terms up to renaming of bound variables, otherwise 
it would be ill-formed, since a constraint of the form x ^  M s  is satisfied by infinitely many 
variables.

Theorem  3.8 For every uniform linear focused proof-term e, for every variable x and for every 
atomic uniform linear focused proof-term a!̂  of head variable x, the following identities hold:

(i) 8 oy(e) =  e;
(ii) <5((z;7i(a®))) =  a®.

Proof; By simultaneous induction on the structures of e and a®.
(i) Case e =  apply(x,ei,xi.ai^).

8 oj(apply(x, ei, zi.aj^))

=  <5((a?; [7 (ei)l7i(«!*)])) by def. of 7  and 71

=  app/y(z,<J(7 (e i) ) ,z i.J ((z i;7 i ( a i ‘)))) by def. of <5, since x i  0 71 (aj*)
=  apply(x,ei,xi.af^)  by I.H. (twice)

The other cases are similar.
(ii) Case a® =  z.

5 ( ( z ; 7 i ( z ) ) )

=  <5((z;0)) by def. of 71

=  z by def. of S

Case a® =  apply(x, ei, x im ^^).

8 ((x; 71 (apply (z, ei, zi.a®'))))

=  <5((z; [7 (^1) I71 («!*)])) by def. of 71

=  app/y(z,^(7 (ei)),zi.(5( (z i;7 i(aj*)))) by def. of 8 , since z i ^  7 i (« D
=  a p p l y ( x , e i , x i . a p )  by I.H. (twice)

The other cases are similar. □

Theorem  3.9 For every M, Ms, x, the following identities hold:

(i) 7 0 ^ (M) =  M;
(ii) 7 io^((z;M s)) =  Ms.

Proof: By simultaneous induction on the structures of M  and Ms.
(i) Case M  =  (z; [M i|M si]).

7o5((z;[M iiM si]))
=  “y(apply{x,8 (M i) ,x i . 8 {{xi',Msi)))) by def. of 8 , for every zi ^  M si 

= (æ; [7(<^(Mi))|7i(J((zi; Msi)))]) by def. of 7 and 71
=  (z;[A7i|M sij) 56 by I.H. (twice)



The other cases are similar.
(ii) Case M s  =  Q.

7 io<5((z ;0))
=  7 i(z) by def. of 5
=  [] by def. of 71

Case M s  — [Mi\Msi].

yioS{{x;[Mi\Msi]))
=  7 i{apply{x,6 {Mx),xi.S({xi; Msi))))  by def. of S, for every z i ̂  M si
=  [7 (<^(Mi))|7 i(<^((zi; M si)))] by def. of 71

=  [MilMsi] by I.H. (twice)

The other cases are similar. □

Theorem  3,10

(1 ) I fT ,;A  — >■ e : G is derivable in then E; A = >  7 (e) : G is derivable in M M .

(2 ) 7/E; A a^ : A is derivable in then E; A =A- 71 (a®) : A is derivable in M M .

Proof; By simultaneous induction on the structure of the /%77^^^-derivations tti and TTg of the 
sequents E; A — > e : G and E; A a^ : A, respectively.
Case the last step of tti is of the form:

S ;A * -i4 ' e :A   ̂ ^
S ; A - ^ e : A  H, e  A.

Then, by Theorem 3.6, c is atomic uniform linear focused of head variable z i. So, by the I.H., 
there is a MM-derivation of

E; A A '  7 i(c) : A.

Thus, the following MM-derivation may be formed:

E ; A ^ 7 i ( e ) : A
E; A ==> ( z i ; 71(e)) : A

since Zi : 77i € A . Observe that the identity 7 (e) =  (zi; 71(e)) holds, since e is atomic uniform 

linear focused of head variable z i.
The cases where the last step of tti is of any other form are similar.

Case the last step of TTg is of the form:

E ; A —7 e i  : Gi E ; A ^ '  :A  ^

E; A apply{x , ei, zi.a®*) : A
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where z i ^  A and either x :G\ D 7/i € A or z ^  A. Then, by the I.H., the following derivation 
m M M  may be formed:

S; A = »  7 (ei) : Gi E; A A > 7i(«î^) : A ^

E; A [7(ei)l7 i(aD ] : ^

Note tha t the identity 7 i(app/y(z, ei, zi.aj*)) =  [7 (ei)l7 i(a f‘)] holds, by definition of 7 1 .
The cases where the last step of TTg is of any other form are similar. □

T heorem  3,11

(1 ) 7/E; A = >  M  :G  is derivable in M M  then E; A — y S{M) : G is derivable in

(2 ) 7/ E; A =A  M s  : A is derivable in M M  then E; A ^((z; Ms))  : A is derivable in 
hffULF^ /o r every x s.t. either z : 77 € A or x ^  A .

Proof: By simultaneous induction on the structure of the MM-derivations and TTg of the
sequents E; A ==4> M  : G and E; A =A  M s : A, respectively.
Case the last step of TTi is of the form:

E ;A  A  M si : A , ^——------- ------——r— - select,
E; A = >  (zi; M s\) : A

where z i : 77i € A. Then, by the I.H., the sequent E; A M si)) : A is derivable in
hjjULF gg the following /i77^^^-derivation may be formed:

S ;A " '-i4 ‘ «((*,; M si)) : A
choice,

for z i : 77i € A. The cases where the last step of TTi is of any other form also follow easily by 

the I.H..
Case the last step of 7^2 is of the form:

h E; A basis E h A a /

E; A =A  Q : A
axiom.

Then, for every variable z s.t. z : A € A or z ^  A, the following axiom may be formed in

h E; A basis E h A a /
---------------- :--------------  axiom.

E; A ^  z : A

Note that 5((z; Q)) =  z.
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Case the last step of TTg is of the form:

S; A ==» M \  : G\ E; A M si  ; A  ^ 

E; A [M ilM si] ; A

Then, by the I.H., there is a ATf^^^-derivation of the sequent

E ; A — f <5(Mi) :G i

and, for every variable xi s.t. z j : 77i € A or z i ^  A, there is a /iJE7*^^^-derivation of the
sequent

So, for every variable z s.t. z : G% 3  77i G A or z ^  A, by choosing Zg ^  A, the following 
derivation may be formed

S; A — » S(Mi) : Gi S; A (((« :; M «i)) : A ^

S; A apply{x, S(Mi), X2 .S{{x2 i M «i))) : A

Note th a t 5((z; [M i|M si])) =  apply{x, S{Mi), X2 .S{(x2 ; M s i) ) ) , since zg ^  M si.
The cases where the last step of TTg is of any other form are similar. □

The next result establishes a 1-1 correspondence between forms of deriving a goal w.r.t. a 
basis in and M M .

Theorem  3.12 The set of proof-terms e s.t. E; A — y e : G  is derivable in h H ^^^ is  in 1 - 1  

correspondence with the set of proof-terms M  s.t. E; A M  :G  is derivable in M M .

Proof; We show tha t 7  is a bijection between these two sets of proof-terms. First, we show 
tha t for every M  s.t. E; A ==>• M  : G is derivable in M M  there exists ei s.t. E; A — y € 1  : G is 
derivable in and 7 (ei) =  M, thus showing the surjectivity of 7 .

By Theorem 3.11, if E; A M  : G is derivable in M M  then E; A — y 6 {M) : G is derivable 
in For showing tha t 6 (M) satisfies the conditions on ei above, it suffices to show that
7 (5 (M)) =  M , which holds, since yoS =  idjif, by Theorem 3.9.

Now, for concluding the proof of the theorem, we show that 7  is injective. If 7 (ei) =  7 (62) 
then 6 (7 (61)) =  6 (7 (62)) and thus, since 6 0 7  =  id^ by Theorem 3.8, 61 =  6g.

6 could also be proved to be a bijection between the two sets of proof-terms mentioned in 
this theorem, by using similar arguments to those used above and Theorem 3.10. □

Now, we turn our attention to the definition of the calculus N N .  This calculus is a restriction 
of N Jri  to hereditary Harrop logic, where only expanded normal deductions are allowed and 
the notions of well-formedness are encoded by means of derivable judgements. As for M M , 
the classes of objects of N N  are the same as those of They are defined by the same
grammars, except for proof-terms. The proof-terms of iViV are called N-proof-terms; they are 
defined as follows.
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D efinition 3.15 iV-Proof-Terms

N  ::= [N, N)  | i{N)  | i(AT) | Xx.N  | {t, N )  | XqX.N | a; 
a ::= x \fst{a) | snd{a) | app{a,N) | appq{a,t).

Note tha t the class of JViV-proof-terms is a restriction of normal proof-terms of N J ^ .
As for M M ,  the forms of judgement of N N  are the same as those of , except for

sequents, which are replaced by the following two forms of judgement, tha t we also call sequents:

(i) E ;A>>JV:G ;
(ii) E; A > a : A.

A^iV-judgements common to are derivable iff they are derivable in The rules de­
fining the derivable sequents of N N  are shown in Fig. 3.8. As compared to N N  restricts
the form of deductions allowed. Firstly, it allows only normal deductions; secondly, these nor­
mal deductions must be expanded. If the rule change would allow arbitrary 77-fbrmulae in the 
succèdent, instead of allowing only atomic formulae, then N N  would capture all normal de­
ductions and not only those which are expanded. Roughly, the restriction on expanded normal
forms reflects the restriction on the use of axioms in hH, which require the main formula to be
atomic. Derivations in N N  are called expanded normal deductions.

Definitions 3.16 and 3.17, below, define mappings between M-proof-terms and N-proof- 
terms. These mappings are inverses of each other, as shown in Theorems 3.13 and 3.14. Further, 
these mappings preserve derivability, as shown in Theorems 3.15 and 3.16.

D efin ition  3.16 0  : M  —̂ N  and 0 i  : a X M s  N

0 (par(M i,M 2)) (0 (M i),0 (M2))
0($7(M)) %(e(M))
0(^r(M )) J(8 (M ))

Q{lamb{x.M)) —def Az.0(M )
Q(parq{t,M)) =*,/ (t, 0 (M ))
B{lambq(x.M)) =def XqX.©{M)
0 ((z ; M s)) —def B i(x ,  Ms)

0 1  ( a ,  D) —def a
Bi{a, [M|Ms]) =def B i(app{a,B(M )),M s)
Bi{a,fst{M s)) —def Bi{fst{a),Ms)
B\[a,snd{Ms)) =̂ def B\{snd{a),Ms)
Bi{a,applq(t,Ms)) =def Bi{appq{a,t),Ms)
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I

Definition 3.17 ^ : N —> M and : a x Ms  -4 M '

^((N i,JV 2)) p o r($ (N i) ,$ (N 2))
n i { N ) )  =def  i l { ^ { N ) )  

n J { N ) )  tr (^ (N ))
$(A z.N ) lamb{x.'^{N))
^ i { t , N ) ) = d e f P a r q { t M N ) )

^ ( X q X . N )  =d«/ l a m b q ( x . ^ { N ) )  ]

^(a) -def ’ï ' i K D )

^ i { x ,M s )  =def (x;M s)
'^i{fst{a),Ms) =def '9i{a,fst(Ms))
"^i{snd(a),Ms) =def '^i{a, snd{Ms))
^i{app{a, N ) ,M s)  =def ^ i(a ,  [^(N )|M s])
'^i{apPq{a,t), Ms) -def "^i{a,applq(t, Ms))

Theorem  3.13 The following identities hold:

(i) 0 o\P =  idf^fi
(ii) $ o 0 i =  \Pi.

Proof: The proof follows by simultaneous induction on the structures of the argument and 
second argument, respectively. See [DP96b], for proof in the general case (not restricted to 
HH) of full intuitionistic first-order logic. □

Theorem  3.14 The following identities hold:

(i) ^ o 0  =  idMi
(ii) 0 0 ^ 1 = 0 1 .

Proof: The proof follows by simultaneous induction on the structures of the argument and 
second argument, respectively. See [DP96b], for proof in the general case of full intuitionistic 
first-order logic. □

Theorem  3.15

(1 ) 7 /E ; A => M  : G is derivable then E; A > > 0(M )  : G is derivable.

(2 ) I f  E; A =A  M s  : A is derivable and E; A > a : 77 then E; A > >0i  (a, Ms)  : A is deriv­
able.
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S ; A > > i V i : G i  E;  A  > oNg : Gg 
E ; A > > ( N i , N g )  : G i  AGg ^

E ; A > > N : G i  E  h Gg g /  E ; A > > N : G g  E h  G i g /
E ; A > w ( N )  : G i  VG g ' E;  A > > i ( N )  : G i  V Gg

H ;A ,x :H > > N :G  .

E;A>>iV : [f/z]G E t-< : r  
E; A >>((,#) :3^,rG

E, X : r; A > >N : G h E; A basis
A>>XqX.N : Wx.rG

E; A > a : A

V/, x ^ E

changeE; A>>a : A

h E; A, X : H fcasis 
E ; A , x : R > x : R

E; A > g : J7i A ifg E; A> a : ffi A 7fg
E; A>/st(g) : i7i ‘ E; A > snd(a) : Hg

E ; A > g : G 3 7 7  S ; A > > N ; G
E; A> gpp(a, iV) : 77

E; A > g : Vj;r77 E t-t : r  
E; A>gppg(g,<) : [i/x]JI

D E

VF

Figure 3.8: Rules for derivable sequents of N N .
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Proof: The proof follows by simultaneous induction on the structures of M  and Ms,  respect­
ively. See [DP96b], for proof in the general case of full intuitionistic first-order logic. □

Theorem  3.16

(1) jyS ; A >>N  : G is derivable then S; A — > ^ { N )  : G is derivable.

(2) jy E ;  A M s  : A is derivable and E ;  A > a : 77 then E ;  A — y ®i(«> Ms) : A is de­
rivable.

Proof: The proof follows by simultaneous induction on the structures of N  and a, respectively. 
See [DP96b], for proof in the general case of full intuitionistic first-order logic. □

The following result establishes a 1-1 correspondence between forms of deriving a goal w.r.t. 
a basis in M M  and N N .

Theorem  3.17 The set of proof-terms M  s.t. E ;  A M  :G  is derivable in M M  is in 1-1 
correspondence with the set of proof-terms N  s.t. E ;  A > > N  : G is derivable in N N .

Proof: We show tha t 0  is a bijection between the two sets of proof-terms. First, we show
that for every N  s.t. E ;  A >>iV : G is derivable in N N  there exists M \ s.t. E ;  A =*- M\ : G is 
derivable in M M  and 0 (M i) =  N ,  thus showing the surjectivity of 0 .

By Theorem 3.16, if E ;  A > >N : G  is derivable in N N  then E ;  A =*- ^ { N )  : G is derivable 
in M M .  For showing tha t ^ { N )  satisfies the conditions on Mi above, it suffices to show that
0(^(iV )) =  N ,  which holds, since 0 o $  =  idjg by Theorem 3.13.

Now, for concluding the proof of the theorem, we show that 0  is injective. If 0 (M i) =  0(Mg) 
then 97(0(Mi)) =  $ ( 0 (M2)) and thus, since $ o 0  =  idM by Theorem 3.14, Mi =  Mg.

$  could also be shown to be a bijection between the two sets of proof-terms of the theorem, 
by using similar arguments to those used above and Theorem 3.15. □

Now, we come to the main result of this section, i.e. uniform linear focused derivations are
in a 1-1  correspondence to expanded normal deductions.

Theorem  3.18 The set of proof-terms e s.t. E ;  A — y e :G  is derivable in is 1-1 cor­
respondence with the set of proof-terms N  s.t. E ;  A > > N  : G is derivable in N N .

Proof: By combining Theorems 3.12 and 3.17. O

We show in Proposition 3.4 below tha t the mapping (f>, restricted to uniform linear focused 
proof-terms, is the same as 0 0 7 , thus itself a bijection between uniform linear focused deriva­
tions and expanded normal deductions. So, no two distinct uniform linear focused proof-terms 

may have the same image under <j>.
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P ro p o sitio n  3.4 The following identities hold:
(i) <f){e) =  Q(7 (e))i
(ii) [a/z]<^(of) =  8 i(®j7 i(®i)); *7 ® occurs freely in af exactly once 

P roo f: By simultaneous induction on the structures of e and a f .
(i) Case e =  app/y(zi, ei, zg.af*).

<f){apply{xi,ei,X2 MŸ)) 
[app(xi, <f){ei))/x2]<i>(al̂ )
0i(app(zi,<^(ei)),7i(af2))

0 1  (app(zi,0 (7 (ei))), 7 i(« ? )) 

8i(æi,[7(ei)|7i(o2*)]) 

8((i»i;[7(ei)|7i(a2*)])) 
0 (7 (app/y(zi, ei, Zg.af^)))

by def. of (j>
by I.H., since Zg occurs freely in exactly once 
by I.H. 
by def. of 0 i 
by def. of 0  

by def. of 7

(ii) Case a f =  a p p /y (z ,e i,z i.a |‘).

[afx](^{apply(x, ei, zi.af^))
=  [o/z]([app(z, (A(ei))/æi],^(ag'))
=  ([app(a,0(ci))/zi]<?!>(af'))

=  8 1  («PP(a, <^(ei)), 7 i ( 4 '  ))

=  81 (app(a, 0(7(61))), 7i(ag^))
=  8 i(a ,[7(6 i)l7 i(af')])
=  8 i ( a ,7 (app/y(z,6i,z i.a f^ )))

by def. of ^
z ^  </>(6 i) and z ^  ^ (af  ̂ )
by I.H., since z i occurs freely in a^  ̂ exactly once 
by I.H. 
by def. of 0 1  

by def. of 7
Similar arguments apply in the other cases. □

We are now in conditions to give a simple argument for the uniqueness of a uniform linear 
focused form of a proof-term and a method for its calculation.

T h eo rem  3.19 Every proof-term e which is not uniform linear focused is reducible by RSuif to 
a unique uniform linear focused proof-term.

P roo f: Let 6 be a proof-term which is not uniform linear focused. Then, by Theorem 3.4, e is 
reducible by R S u i f  to a uniform linear focused proof-term Cuif. Now, let us suppose tha t e is 
also reducible by R S u i f  to a uniform linear focused proof-term . Thus, by Theorem 2.9,

<l>{oulf) -  <l>ie) =  0 ( 6 „ / / i ) .

So, by Proposition 3.4 and Theorems 3.9 and 3.14,

Cu// =  6 (^(</(6«//))) =  0{^{(j){eulfi))) = ^nlfi-

□

Below the notation ulf{e) is used to represent the uniform linear focused form of the proof- 
term 6 . By the theorem above, «//(e) =  6 (’$f(^(e))).
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3.6 P roof-T heoretic  Sem antics o f  FO PLP

This section defines a proof-theoretic semantics for the pure logic programming language FOPLP. 
In Sec. 3.2, we have already defined the notions of program, goal and goals achievable w.r.t. 
programs in FOPLP, which are recalled below.

•  A program in FOPLP is a pair (S, A), usually written E; A, where E is a signature and A 
is a /ii7-context; a program E; A is well-formed iff the judgement h E; A basis is derivable 
in hH.

•  A goal in FOPLP is a G-formula; a goal G is well-formed w.r.t. the program E; A iff the 
judgement E h G y /  is derivable in hH.

•  A goal G is achievable w.r.t. a program E; A in FOPLP iff there exists a proof-term e s.t. 
E; A => 6 : G is derivable in hH ; the proof-term e is called a witness for the achievement 
of G w.r.t. E; A.

So, to complete the definition of a semantics for FOPLP, as argued in Sec. 3.2, we must 
define what are the different means of goal-achievement. In Sec. 3.4 is shown tha t uniform 
linear focused derivations of hH  are in 1-1 correspondence with derivations in h H ^^^ .  The­
orem 3.18 establishes a 1-1  correspondence between derivations in hH ^^^nnd  expanded normal 
deductions. So, uniform linear focused derivations in hH  are in 1-1  correspondence to expan­
ded normal deductions. This 1-1 correspondence justifies our choice of the different means of 
achieving goals in FOPLP. We define the different means of achieving a goal G w.r.t. a program 
E; A in FOPLP as the uniform linear focused proof-terms e^if s.t. E; A =» : G is derivable
in hH. So, witnesses which have the same image under (f>, i.e. witnesses tha t correspond to the 
same expanded normal deduction, are regarded as the same means of achieving goals. This 
choice of the means of goal-achievement in FOPLP gives an immediate interpretation of FOPLP 
by means of the natural deduction system for first-order hereditary Harrop logic N N .

An implementation of FOPLP is any method that given a goal G and a program E; A 
enumerates the means for the achievement of G w.r.t. E; A. Alternatively, an implementation 
of FOPLP may be defined as a method that given a goal and a program finds all expanded 
normal deductions of the goal w.r.t. the program in N N .  Section 3.7 sketches a method for 
implementing FOPLP, by describing a method to find all derivations of a goal w.r.t, a program 
in h H ^^ ^ ,  i.e. all uniform linear focused derivations of hH.

3.7  Towards an Im plem en tation  o f  FO PLP

According to Sec. 3.6, an implementation of FOPLP is a method that, for every goal G and 
program E; A, finds every uniform linear focused proof-term e s.t. the sequent E; A => e : G is
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derivable in hH  ; or, in other words, a method tha t finds every proof-term e s.t. the sequent 
S; A — y e : G is derivable in h H ^^^ .

This section outlines a method to search for proof-terms e s.t. S; A — y c : G is derivable in 
h H ^ ^ ^ .  This procedure is described as a predicate of the form

search(G, E; A, Bin, Ooutj G, V̂ 'n, Vo-ut)»

where:

•  h E; A basis and E h G y /  are derivable in hH  ;

•  Vin and Voui are signatures s.t. Vi„ Ç Vout and there is no x s.t. z G E and z G Kut;

•  and 0 ou< are substitutions s.t.: 0 o„f =  0 o0 ,„ for some 0 ; for every z ^  Vout, 

8 oui(æ) =  X and, for every z : r  G Vout, S , Vout k Bou<(®) • t is derivable.

Validity of the predicate search is defined by means of a collection of Horn clauses, it depends 
upon validity of the auxiliary predicate searchl, which has the form:

searchi.(x : H, A, E; A, 0in, 0owt? Vout)'

The notation 0(A ) stands for the context obtained from A by replacing each element z : H  
of A by z : i7i, where Hi is the result of replacing the free occurrences of variables in H  by their 
images under 0 . The notations 0(G ) and 0(e) stand, respectively, for the result of replacing 
the free occurrences of variables in G and e by their images under 0 . The predicate search is 
such that:

•  if searc/i(G, E; A, 0,„,0ou*,e, Vi„, Vottt) holds, then the sequent

E, 00,4̂  (A)  ̂Bouf (^) : &out(^)

is derivable in h H ^^^ \

•  if the sequent E, Vi„; 0 ,„(A ) — y 0,„(e) : Bin(G) is derivable in h H ^ ^ ^  then there exists 

Vout, Bout and ei s.t. 0„u<(ei) =  0in(e) and search{G, E; A, 0 ,„, Bout, ^i, Vn, Vout), holds; 
in particular, when Vin =  0 and 0 ,„ =  identity.

Recall tha t formulae and proof-terms are equal up to renaming of bound variables. In the 
definition of search below some constraints are satisfied simply by the renaming of bound 
variables.

The definition of search is by cases on the structure of G as shown below, in other words, a 
search for a derivation of G w.r.t, a program is guided by G.

• Case G =  Gi A G2 , then a derivation of E; A — y e : G must have as last step — y A. The 
clause corresponding to this case is:
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search{Gi A G2 , S; A, 0 ,„ , Qouupair(ei, 62), Vinj Ktt*) if 
searc/i(Gi, S; A, 0 ,„, 0 , ei, Kn, and 

search{G2 ,'^\ A, 0 , 0out, ^2 , V, Ku*)-

•  Case G =  Gi V G2 , then a derivation of S; A — > e : G must have as last step either rule 
— y Vf or rule — y V .̂ This case introduces two clauses in the definition of search'.

search{Gi V G2 , S; A, 0 ,„ , 0out> *ra/(e), Kn? K>ut) if 
search{^G\^ S) A, 0inj ®outj 

search{Gi V G 2 , S ; A, 0i„,0ou<, inr(e), Vfn, K«t) if 
search(G2 j A, 0jn)

Note tha t to find all derivations of E; A — y e : Gi V G 2 both clauses must be considered, 
although there is a choice of which clause to consider first.

•  Case G — H  D Gi, then a derivation of E; A — y e : G must have as last step a rule — yD. 
The corresponding clause is:

search{H  D G i, S; A, 0 ,„ , 0ou<,/a7n 6da(a;.e), V̂ „, Fout) if 
s e a r c h { G E| (A, x : 0*n; 0ouf ; c, V̂ 'n, and
æ ^ A .

Recall tha t x ^  A  means that there exists no H  s.t. x : H  Ç A.

•  Case G =  3x-.tG i , then a derivation of S; A — y e : G must have as last step rule — y 3. 
However, there is a choice of which term t of type r  to consider. In order to find all proof- 
terms e s.t. S; A — y e : 3x:rGi is derivable, all terms t of type r  must be considered. 
This problem may be solved by using unification of first-order terms. The variable x is 
treated as a logical variable. When attempting to form an axiom, a logical variable may 
be replaced by a term having the same type to make atomic formulae equal. The clause 
corresponding to this case is:

search{3xiT^i^ A, 0tn) e), Vt’nj if
search{Gi, S; A, 0{n, Oout, e, Vin U {æ : r} , Vout) and 
x ^  Vin and æ ^  E.

Recall that, x 0 Vî„ (a: 0  E) means tha t there is no r  s.t. æ : r  is an element of Yin (S).

•  Case G =  V^itGi, then a derivation of E; A — y e : G must have as last step rule — y V. 
The corresponding clause is:
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search{^x>.rGuT>\ A, ©out» lambdaq{x.e), Vin, Vout) if 
search{Gi, E U {a; : r}; A, 0 ,„, ©out, e, Vin, Vout)  and 
X 0 Vin and z ^  E.

• Case G =  A, then a derivation of E; A — > e : G must have as last step rule a rule choice. 
The application of this rule involves the choice of a formula x : H  from the program 
E; A. The problem of finding proof-terms e s.t. E; A — y e : A is derivable depends upon 
the problem of finding proof-terms e s.t. E; A e : A is derivable. In order to find all 
proof-terms e s.t. S; A e : A is derivable, all z : I? in A must be considered. (Still, 
there is the choice of which order to follow in attempting formulae from S; A.) The clause 
of search corresponding to this case is:

search^A^ E| A, ©tn, ©out, G, Vout) if
choice{x : H, A) and
searchl{x : Jï, A, S; A, 0*^, ©out, e, K„, V'out)- 

A formula choice{x : if , A) holds iff z : i î  is an element of A.

The definition of searchl is by cases on the structure of the selected formula, in other words, 
a search for a derivation of an atomic goal is guided by the structure of the selected formula 
from the program.

•  Case H  = Hi A H 2 , the last step of a derivation of E; A e : A is either or 
There are the following two clauses associated to this case:

searchl{x : Hi A H 2 ,A ,  S; A, ©,„, ©out, splitl{x, xi.e),Vin, K>ut) if 

search\^xi . Hi^ A, Ej A, ©în, ©out, V*u, V^ut) ^nd 
xi ^  A.

searchl{x : Hi  A H2, A, E; A, ©,„, ©out, splitr{x, Zi.e), Vin, V o n t )  if 
search\{xi : H 2 , A, Sj A, ©tn, ©out, Vt’n, Vout) ^nd 
z i ^  A.

Note that to find every proof-term e, s.t.E; A e : A is derivable, both alternatives 
must be considered, but still having the choice of which alternative to consider first.

•  Case H  ~  G D Hi, then the last step of a derivation of S; A e : A  must be a rule 
Note tha t the left premise of requires the search for proof-terms ei s.t. E; A — y ei : G 
is derivable. The clause corresponding to this case is:

searchl{x : G D i / i .  A, E; A, ©,•„, ©out, apply(x, e, zi.ci), %n, Vout) if 
search{G, E; A, ©i„, 0 , e, Vin, V )  and
searchl{xi : /f i . A, E; A, 0 ,  ©out, ei, F, Fout) and z i ^  A.
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•  Case H  — "ixiirHi, then the last step of a derivation of S; A e : A  must be a rule
However, there is the choice of which term t of type r  to choose. As for the case where
the goal is existentially quantified, unification may be used to solve this problem. The 
clause corresponding to this case is:

secLTch\{x : x\'.t^ \ ,  A, E, A, ©in, ©out, ®i, V̂ n, V^ut) if
seo,Tch\(z2 : H i , A, Ej A, ©in, ©out, ^, V̂ n tJ {zi . 1")', Vout) and 
z i ^  Vin and z i ^  E.

•  Case H  = Ai,  then the last step of a derivation of E; A e : A must be an axiom.
Recall tha t for forming an axiom it suffices that Ai and A are unifiable. The clause
corresponding to this case is:

S€(lTchX(^X . A j, A, Ej ©in, ©out, ®, Vin, Vout) if 
unify{^Ai, A, ©in, ©out, V*n, V^uf, ^)*

A formula wm/i/(Ai, A2 ,©in,©out, Kn, V'out, S) holds iff A% =  pti...tn, A — pti...t'^, S  is 
the set consisting of the pairs {ti, (|), for I < i < n, and the formula

U7lify{^S, ©in, ©out, Vin, Vout, ^ ),

whose meaning is defined in Sec. 2.2, holds.

Summarising, this section describes a method to search for means of goal-achievement in 
FOPLP. If the goal is compound, the goal is broken up, according to the rule corresponding 
to the outermost connective of the goal. If the goal is atomic, a formula from the program is 
selected and the structure of the selected formula determines how the search is to proceed. In 
order to find all the means of achieving a goal G w.r.t. a program E; A in FOPLP, it suffices 
to consider exhaustively all alternative “choices” . The “choices” are as follows:

•  case G  is of the form Gi V G 2 there is a “choice” of which of the rules — > Vf, — y V̂  to 
attempt;

•  case G  is of the form 3x.tG i there is a “choice” of which term £ : r  to attempt;

•  case G is atomic there is a “choice” of which formula z : of A to select, since there 
may be several formulae in A that may lead to derivations; once a formula x : H  of A  
has been selected, there are the following “choices” :

— case H  is of the form ^ x.tH i there is a “choice” of which term t : r  to attempt.

— case H  is of the form H 1 A H 2 there is a “choice” of which of the rules — y A/, — y Ar 
to attempt.
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Thus, any means of achieving a goal w.r.t. a program in FOPLP may be found by making 
appropriate “choices” . This search procedure for FOPLP essentially corresponds to search 
procedures presented in [NM8 8 , Nad93] that are used as bases for implementing the logic pro­
gramming language AProlog.

3.8 H igher-O rder Logic P rogram m ing

This section describes a higher-order logic programming language called HOPLP. The semantics 
of this language is defined by means of the proof theory of the calculus H H . H H  is & form­
alisation of a higher-order hereditary Harrop logic; essentially, H H  is a. higher-order extension 
of hH,  obtained by replacing the underlying set of first-order terms by the set of A-terms. A 
calculus similar to H H  is presented in [M1190], except for the absence of proof-term annota­
tions. This section presents the natural deduction system which is a formalisation
of essentially the same higher-order hereditary Harrop logic formalised by H H ,  and describes 
an interpretation of HOPLP by means of

3.8.1 T he Calculus H H  for H igher-O rder H ereditary Harrop Logic

The classes of objects of H H  are the same as those of hH, except for the class t of first-order 
terms, which is replaced by the class A of A-terms. The grammars defining the classes of objects 
of H H  are shown in Fig. 3.9; roughly, they are obtained from those of hH  by replacing A for 
t. After each grammar, in parentheses, is the intended meaning of each class of objects.

r ::= s 1 (r —)■ r) (simple types)

A ::= z 1 Az : r.A | (AA) (A-terms)
E ::= 0  j E, z : r (signatures)

A  : pA...A (atomic formulae)

H  ::= A \ H A H \ G d H \ ^ x:tH (jy-formulae)

G ::= A \ G a G \ G V G \ H  d G \ 3x-.rG | \fx:rG (G-formulae)

A ::= () 1 A, z : / f (contexts)

e  ::= pair{e,e) | inl{e) | inr{e) | lambda{x.e) 
1 pairq{K,e) | lambdaq{x.e)

X I splitl{x,x.e) I splitr{x,x.e) 
apply(x,e,x.e)  | applyq{x,K,x.e) (proof-terms)

s ranges over the set S  of primitive types; x ranges over the set X  of variables and p ranges 
over the set V  of predicate symbols.

Figure 3.9: Classes of objects of H H.
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The forms of judgement of HH are presented in Fig. 3.10. Each form of judgement (i) to

(i) h  E signature (signatures)

(ii) E h - A : r (terms of simple type)

(iii) h E; A basis (bases)
(iv) E h  A a / (atomic formulae)

(v) EH  J 7 / i / (program formulae)
(vi) S H G p / (goal formulae)
(vii) E; A => 6 : G (proof-terms of a goal)
(viii) E H A >T A (one step reduction of A-terms)
(ix) E H Ai>* A (zero or more steps reduction of A-terms)

(x) E  H A =T A (convertibility of A-terms)
(xi) EH  A =  A (equivalence of atomic formulae)
(xii) EH  jH =  77 (equivalence of program formulae)
(xiii) E H G  =  G (equivalence of goal formulae)

Figure 3.10: Judgement forms of HH.

(vii) has a corresponding form of judgement in hH, the only difference being that first-order 
terms are replaced by A-terms. As in the calculus hH, judgements of the form S; A e : G 
are called sequents. Sequents are the main judgements of HH] judgements of the other forms 
are called auxiliary judgements.

Observe tha t the forms of judgement (i), (ii), (viii), (ix) and (x) are common to the calculus 
A*̂ .̂ The derivable judgements of these forms are those of A^^. The rules to  define valid 
judgements of the forms (iii)-(vi) are obtained from the rules defining derivable judgements of 
the corresponding form in hH, replacing first-order terms by A-terms. For example, the rules 
for derivable atomic formulae in H H  are of the form:

S  h Ai : n  • • • E t- An : Tn ^
E h pAi...An a f

where p : Ti —f -> prop £ V.  The rules defining derivable judgements of the forms

(xi)-(xiii) are shown in Fig. 3.11.
Convertible A-terms may be seen as alternative representations of the same object or, in 

other words, have the same denotation. So, in a logic based on A-terms, having a term or 
another term convertible to it should be irrelevant, i.e. should not interfere with derivability 
of sequents. In the calculus H H  this idea is captured by allowing the rules in Fig. 3.12 for 
deriving sequents, called conversion rules. The other rules for deriving sequents in H H  are 
obtained from the rules for deriving sequents in hH, presented in Fig. 3.4, replacing first-order 
terms by A-terms.
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S  h i7i =  i/3 E H ^2  =  ^4 s  h Gi =  Ga S  h ffi =  ffa
S  h Gi D i7i =  G2 D 7T2E h 77i  A R 2 = Hz A 7^4

E,x : r  h
E h V,:r7fi

E h G i  =  G 3 E h G 2  =  G 4
E h G i  A G 2 = G 3  A G 4

E b Hx =  H2 E h  G i  =  G 2

s  h Gi =  G3 S (~ Ga = G4 
E H G i  V G 2 H G 3 V G 4

E , x : r h G i  = G2 XE h 77i D Gi = 7/2 D G2 E h  3*:rGi =  a.^rGa

E, X : r  h Gi =  Ga , „
EhV.:TGi=V.:TG3 ^

Figure 3.11: Rules defining convertible formulae.

E;A,x :77i =^€ :G  E h 77i = 7T _
E;A,x : 77 => e : G

E;A=>e:Gi  E b Gi = G _
E; A =>• e ; G

Figure 3.12: Conversion rules of 7777.

As for fi77, the principal part of a derivation of a sequent is the tree obtained by erasing all 
derivations of auxiliary judgements.

In hH  the proof-term of the endsequent of a derivation represents uniquely the principal 
part of such derivation. However, in 7777 this is no longer the case. Notice that the proof-terms 
of the sequent premiss and conclusion of a conversion rule are the same. Thus, the information 
contained in a proof-term of a 7777-derivation is not enough to recover uniquely its principal 
part. Figure 3.13 shows two distinct derivations whose proof-terms are the same. Different 
derivations whose proof-terms are the same have a similar structure of logical rules; they differ 
at most in the places where conversion rules occur in the derivations.

Below is introduced the calculus 7777®, which may be thought of as a calculus obtained from 
7777 by constraining the use of conversion rules, so that conversion rules are only allowed to 
form axioms. For 7777®, one may easily show that: the principal part of a derivation of a sequent 
is unique, or in other words, the proof-term of a sequent represents uniquely the principal part 
of a derivation of tha t sequent. The calculus 7777® is used in Sec. 3.8.2 for defining the different
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ÎT2
S; A ei : [A/x]G2 E h A : r  E, x : r  h G2 =  Gi

=> 3E; A => pa i rq {A ,  c i)  : 3j;rG2________ S h 3«;rG2 =  ^ x . t G i  _  , .
E; A => pa irq {A ,  ei) : 3®:tGi

îT2
E ;A = > e i : [A/xjGg E h [A/x]G2 =  [A/x]Gi

E; A ei : [A/x]Gi_______________  E h A : r
E; A => pai rq (A ,  ei) : 3j,;xGi ^

Figure 3.13: Two 77TT-derivalions whose proof-terms are the same.

means of goal-achievement in HOPLP.
The calculus 7f77® is defined as 7777 except that axioms and conversion rules allowed in 

7777 are replaced by the following new form of axiom:

h E; A, z : Ai basis E h  Ai s  Ag
---------TT-r------ 1—  ------- 1 axiom — conv.E; A ,z  : Ai => z : Ag

Theorems 3.20 and 3.21 show tha t a sequent is derivable in 7777 iff it is derivable in 7777®. 

T h eo rem  3.20 Every sequent derivable in 7777® is derivable in 7777.

P roof; Note tha t axiom —conv is a derivable rule of 7777, it suffices to combine an axiom with 
the appropriate conversion rule. □

T h eo rem  3.21 Every sequent derivable in 7777 is derivable in 7777°.

P roo f: Firstly, we prove tha t every 7777-derivation tt of a sequent E; A e : G may be trans­
formed into a derivation whose conversion rules occur only immediately below axioms or other 
conversion rules. The proof follows by induction on the structure of tt. The interesting case is 
where the last step of tt is a conversion rule. (The other cases follow easily by the I.H..) Let 
7Ti be the derivation of the sequent premiss. The proof follows by induction on the maximum 
number of logical rules^ in a branch of t t i . The interesting cases are those where the last 
step of 7Ti is a logical rule. Case the last step of is =^D and the last step of tt is = r ,  the 
transformation on tt below may be applied.

' A sequent rule of H H  is called a logical rule if it is not a conversion rule.
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7T2 P i  P2
S ; A , z : 7 7 2 = J ^ e i  : G 2  ^  E  I- 77% =  77i E  H Gg  =  G i

E; A lambda^x.Gi) i H 2  D G2 E H H 2 D G2 =  77i D Gi
E; A =*- lambda{x.€i) : 77i D Gi

:
7T2 P 2

E; A, X : H 2  : G2 E h G2 =  Gi __
S ; A , z : / 7 2 = » e i  :Gi  ~  E h 77a =  ffi  _  

E; A, z : 77i ei : Gi ^

—r

E; A =>> /am6<7o(z.ei) : 77j 3  Gi

Note that, although an extra conversion step is introduced in the latter derivation of the 
endsequent, the maximum number of logical rules in a derivation of a sequent premiss of a 
conversion rule has been reduced by one. (The transformation corresponding to the case where 
the last step of TTi is => 3 corresponds to the transformation of derivation (+) into derivation 
(+♦) of Fig. 3.13.)

Other cases follow by using similar transformations on derivations, permuting conversion 
rules above logical rules.

Secondly, concluding the proof of the theorem, we show that a sequent E; A => e ; G having 
a 7777-derivation T T ,  whose conversion rules are either immediately below axioms or other con­
version rules, is derivable in 7777®. The proof follows by induction on the structure of t t . Case 
the last step of tt is a logical rule, the result follows easily by the I.H.. Case the last step of tt 

is either an axiom or a conversion rule, we show by induction on the number n of conversion 
rules in tt tha t the sequent E; A e : G is derivable by axiom — conv in 7777®. If n =  0 then 
7T is of the form:

r  E; A i, z : A basis
axiom.E; A i, z : A =>• z : A

Thus, the following 7777®-derivation may be formed:
I- E; A i, z : A basis E H A =  A 

E; A i, z : A => z : A axiom  — conv.

If 71 > 0, consider the last step of tt to be of the form:
E; A i, z i : 77i =» z : A E h 7Ti =  77 

E; A i, z i : 77 => z : A

By the I.E., E; A i,z i  : 77% => z : A is derivable by axiom  — conv. So, either (i) z i is the same 
as z and E h 77i =  A is derivable; or (ii) A i is of the form (z : Ai, A 2) and E h Ai =  A is 
derivable.

Case (i), the following 7777®-derivation may be formed: 

h E; A i, z : 77 basis E (- 77 =  A
E; Ai, z : JÏ z : A axiom  — conv.

Note that: (a) a derivation of E h 77 =  A may be easily constructed from derivations of 
E h 77i =  and E h 77i =  A; and (b) there is a derivation of h E; A i,z  : 77 basis, since
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h S; A l, X : H\ basis is derivable (for E; Ai, z i : 77i => z : A is derivable) and E h 77i =  77 is 
derivable.

Case (ii), the following 7777®-derivation may be formed:
I- E; A 2 , X ; Ai, z i : 77 basis E h Ai =  A 

S; A 2 , z : Ai, z i : H  =4̂  z : A

Note tha t a derivation of h  E; A i, z : Ai, z i : 77 basis may be constructed from derivations of 
h E; A i, z : Ai, z i : 77i basis and E h 77i =  77.

The case where the last step of ^  is follows by similar arguments. □

Although 7777° constrains the form of derivations allowed in 7777, there are still forms of 
deriving a formula G w.r.t. a basis E; A, which may be regarded as essentially the same, since 
if E; A e : G is derivable in 7777° and e\ is a proof-term only differing from e by convertible 
A-terms, then E; A =>• ei : G is also derivable in 7777°. This result is made precise with Definition 
3.18 and Theorem 3.22.

Definition 3.18 (A-convertible proof-term s) The binary relation = \ on proof-terms is the 
reflexive, symmetric, transitive and compatible closure of the relation R  defined as: e iR e 2 iff 
one of the following holds:

•  ei = pairq{Ai,e), 6 2  =  pairq{A2 ,e) and Ai and A 2 are convertible; or

•  ei =  applyq{x,Ai,xi.e), 62 — app/p,(z, A2 , zi.e) and Ai and A 2 are convertible. 

Proof-terms ^\-related are called A-convertible proof-terms.

Theorem  3.22 I f  e i= \e 2  then E; A => ei : G is derivable in 7777° A= ^ e2 :G  is derivable
in 7T77°.

P roo f; We show, by induction on the structure of ei, that if E; A 6% : G is derivable in 7777°, 
so is E; A => 62 : G. (The other implication is analogous.) Case ei =  pairg(Ai,e). Then, the 
last step of a derivation of E; A ei : G is of the form:

E; A => 6 : [Ai/z]Gi S  h Ai : r
S; A pairq{Ai, e) : 3x:rGi ^

Since 61= ^ 62 , it may be shown that 62 =  pair{A2 , 63), where A2 is convertible to Ai and e=x^3 > 
So, by the I.H., there is a 7777°-derivation of E; A =?► 63 : [Ai/z]Gi. By Theorem 3.20, there is a 
7777-derivation of E; A => 63 : [Ai/z]Gi, and by using = r, since Ai is convertible to A2 , there is 
a TT77-derivation of E; A => 63 : [A2/z]G i. Thus, by Theorem 3.21, there is a 7777°-derivation 
of E; A => 63 : [A2/z]G i. So, the following 7777°-derivation may be formed:

E; A =» 63 : [A2/z]G i E h A2 : r  ^
E, A pairq{^A2 , C3) . 3a;;xGi

The case where e\ is of the form apply{x, A, zi.e) follows by similar arguments. The other cases 
follow directly by the I.H.. □
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3.8.2 Proof-Theoretic Semantics of HOPLP

The motivation to study the calculi H H  and H H ° is to provide a proof-theoretic semantics 
for the higher-order logic programming language HOPLP. A semantics for HOPLP is defined 
below, following ideas similar to those used in Section 3.6, defining a semantics for the first-order 
language FOPLP.

Definition 3.19

•  A program in HOPLP is a pair (S, A), usually written S; A, where E is a signature 
and A is a HH-context. A program S; A is well-formed iff the judgement h  E; A basis is 
derivable in H H .

• A goal in HOPLP is a G -formula of H H ; a goal G is well-formed w.r.t. a program 
E; A iff the judgement E h G p /  is derivable in H H .

•  A goal G is achievable w.r.t. a program E; A in HOPLP iff there is a proof-term e s.t.
E; A e : G is derivable in H H ; the proof-term e is called a witness for the achievement 
of G w.r.t. E; A.

Usually, in logic programming, one is not only interested in knowing whether or not a goal is 
achievable w.r.t. a program, but also interested in knowing all the different means of achieving 
the goal w.r.t. the program.

As illustrated in Sec. 3.8.1, given a witness e for the achievement of a goal G w.r.t. a 
program E; A, there may be several 7777-derivations of the sequent S; A c : G, having dis­
tinct principal parts. However, the principal parts of any two 7777°-derivations of the sequent 
E; A =>• e : G are the same. By Theorem 3.21, the calculus 7777° is complete w.r.t. witnesses 
for HOPLP.

Theorem 3.22 shows tha t if ei is a witness, for the achievement of a goal G w.r.t. a program 
E; A, and 6 2  is a proof-term A-convertible to e\ then 6 2  is also a witness for the achievement of j

G w.r.t. E; A. Following the view that convertible A-terms denote the same object, we regard I
A-convertible proof-terms as essentially denoting the same object. So, we regard A-convertible j
witnesses as the same means of goal-achievement. !

I
A 7777°-derivation is uniform linear focused \f its proof-term is uniform linear focused, where j

uniform linear focused proof-terms of 7777° are defined as for hH , the only difference being tha t j
first-order terms are replaced by A-terms. !

Exactly the same kind of arguments used to prove Theorem 3.4 may be used to prove that {
every 7777°-derivation may be transformed into a uniform linear focused derivation. So, we 1
regard witnesses that have the same uniform linear focused form as the same means of goal- |
achievement in HOPLP. |
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D efinition 3.20 (com plete  se t o f w itnesses for H O P L P ) A  complete set S  of witnesses 
for the achievement of a goal G w.r.t. a program E; A is a maximal set w.r.t.: (i) S  consists 
of uniform linear focused proof-terms e s.t. S ;A = ^ e  :G  is derivable in H H °; (ii) no two 
members of S  are X-convertible.

D efin ition  3.21 (im p lem en ta tion  o f H O P L P ) An implementation of HOPLP is a method 
that, given a goal G well-formed w.r.t. a well-formed program E; A, finds a complete set of 
witnesses for the achievement o f G w.r.t. E; A.

A method for implementing HOPLP may be described similarly to the method described 
in Sec. 3.7 for implementing FOPLP, the main difference being tha t unification on first-order 
terms needs to be replaced by unification of A-terms. Recall the clause to deal with this case 
in FOPLP:

searchl{x : A i, A, E; A, 0,-„, z, Vf„, Vout) if

Unifyi^Ai, A, Om, Vin, Vout, L).
Contrary to the case of FOPLP, the atomic formulae A\ may have occurrences of A-terms. So, 
in the case of HOPLP, a formula um /y(A i, A2 , ©in, ©out, Kn, Kuf, L) holds iff A\ — pAi...An, 
A2 =  pAj...Aj^, S  is the set consisting of the pairs (Ai, A^), for 1 < i < n, and the formula 
unify{S,Ç>in,Qout,Vin,Vout,Tj), whose meaning is defined in Sec. 2.2, holds. Recall that, as 
opposed to unification of first-order terms, the set of most general unifiers for unifiable A-terms 
may have more than one unifier. Provided an enumeration of unifiers does not enumerate 

unifiers Boutx and Bout2 s t., for every variable z, ©outi(a?) is A-convertible to Qout^i^) (as in the 
method presented in [Hue75]), the set of witnesses found by this method does not contain A- 
convertible witnesses. However, since the enumeration of unifiers may be incomplete, it may be 
the case that not all witnesses in a complete set of witnesses are obtainable as ground instances 
of those unifiers.

Summarising, we have suggested a method for implementing HOPLP s.t.: if a goal is com­
pound it breaks up the goal; if a goal is atomic it selects a formula from the program and 
proceeds by decomposing the selected formula; higher-order unification is used to deal with the 
choice of A-terms to use in rules 3 and V =^. Again, like the search procedure presented 
for FOPLP, this search procedure follows ideas similar to search procedures used as bases for 
implementing AProlog.

The language HOPLP and the related calculus H H  constitute the basis of the integration 
of logic and functional programming suggested in the next chapter.

3 .8 .3  A  N a tu ra l D ed u ctio n  In terp reta tio n  o f  H O P L P

In this section is given an interpretation of HOPLP by means of the calculus This
calculus may be thought of as an extension of the natural deduction system N N ,  where first- 
order terms are replaced by A-terms. The logic formalised by is essentially the same
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higher-order hereditary Harrop logic formalised by H H , the difference being that, whereas in 
H H  arbitrary formulae are allowed, in formulae are required to satisfy a normality

constraint.
The classes of objects used in are the same as those of N N  except for first-order

terms which are replaced by A-terms; their definitions are obtained from those in N N  by re­
placing first-order terms by A-terms. (Notice that the definitions of the classes of objects of 
pfpfXnorm^ except for proof-terms, are the same as those of H H .)

The normal form of a formula F  in where F  is either a G or 77-formula, is the
formula, written as Anorm(F), obtained from F  by replacing each A-term A by its expanded 
normal form Anorm(A). A formula is a normal form  if all its A-terms are in expanded normal 
form.

The forms of judgement of are (i)-(vi) of Fig. 3.10, which are common to H H ,
together with sequents of the forms:

S; A > a : 77;
S ; A > > i V : G ,

where the formulae in A, as well as 77 and G, are normal forms. The derivable judgements of 
forms (i)-(vi) are the same as those of 7777. The rules for deriving iViV^”°'’”^-sequents are those 
of N N ,  shown in Fig. 3.8, with the appropriate change of objects, except for the rules V — E lim  
and 3 — In tr , which are replaced by the rules:

S; A > a : Vactr// S  f-A : r
E; A > appq(a. A) : Anorm([A/z]77)

E; A > >77 : Anorm([A/z]G) E h A : r

V -  Elim]

3 — In tr.E;A>>(A,AT);3^:xG

As for 7777, a proof-term differing only up to convertible A-terms from a proof-term of a 
derivation is also a proof-term of a derivation, as shown below.

D efin ition  3.22 (A -convertible p ro o f-te rm s) The binary relation on proof-terms is the
reflexive, symmetric, transitive and compatible closure of the relation R  defined as: N 1 R N 2 iff II
one o f the following holds: {

I

* Ai =  (Ai,iV), N 2 — (Ag, N) and k \  and A2 are convertible; or \

•  N i = appq{a,Ai), N 2 =  appq{a, A 2 ) and Ai and A 2 are convertible.

Proof-terms -related are called A-convertible proof-terms.

Theorem  3.23

(1 ) I f  N i= xN 2 then E; A > >Ni : G is derivable in A > t>N2 : G is derivable
in
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(2 ) I f  a \= \a 2 then E; Al>ai : H  is derivable in iff Yl', A  > a2 : H  is derivable in
jSjjgXnorm^

P roof; By simultaneous induction on the structure of N i and «i. Case N i — (Ai,iV). Then, 
a derivation of S; A>>ATi : G is of the form:

7Ti
E; A > > A  : Anorm([Ai/z]Gi) S  h Ai : r

E;A>>(Ai,AT):3,=^Gi ^

Since N i ^ \ N 2 , it may be shown tha t JVg =  (Ag, A3), where Ag is convertible to Ai and N —xNz. 
So, Anorm([A2/z]G i) is the same as Anorm([Ai/z]Gi) and the following deduction may be 
formed:

E; A > > A  : Anorm([A2/z]G i) E h Ag : r
E ;A t>>(A 2,A ):3,:xG i ”

The case where is of the form appq{a, Ai) is similar to the case above. The other cases 
follow directly by the I.H.. □

If one takes two deductions in whose proof-terms are A-convertible and deletes all
the proof-term annotations one is left with the same structure. So, these two deductions may be
thought of as two variants of the same deduction in the (proof-term)-free version of 
(Recall tha t proof-terms are introduced in Sec. 2.3 as a means of encoding deductions.) So, we 
regard deductions whose proof-terms are A-convertible as equal deductions.

Below is introduced the calculus , that is used as an intermediate step in the
interpretation of 7777 into Essentially, 7777^"°''”' is a restriction of 7777 where all
formulae in derivations are required to be normal forms.

The classes of objects used in and their definitions are the same as those in 7777.
The forms of judgement of 7777^"°'’”  ̂ are (i)-(vi) of Fig. 3.10, which are common to 7777 and 
to , together with sequents E; A =4̂  e : G, where the formulae in A, as well as G, are
normal forms. The derivable judgements of forms (i)-(vi) are the same as those of 7777 and 
p ĵs^Xnorm  ̂ where formulae are normal forms. The rules for deriving sequents are the same as 

those of 7777 except for conversion rules, which are not allowed, and for the rules V => and 
3, which are replaced by the rules:

S; A, z i ; 'ix-.rH, zg : \norm ([A /x]H ) e : G E f- A : r
E; A, zj : Wx-.tH  => applyq(xi, A, zg.e) : G

E; A e : Xnormi\A/x]G) E h A : r  
E; A =>- p a i r q { A ,  e) : 3 x -.t G

V , Zg ^  A;

=>3.

T h eo rem  3.24 Let G be a normal G-formula and A  be a context whose formulae are normal 
forms. Then, E; A =>• e : G is derivable in 7777 iff it is derivable in 77
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Proof; Assume S; A e ; G has a derivation wm  H H . It may be easily shown by induction on 
the structure of t t  that: the derivation obtained from t t  by replacing, in each sequent, formulae 
by their normal forms gives a derivation in . For example, assume t t  contains a rule
oftheform :

S i ;A i= i> e i :G 2  '  '

Let Ag be the context obtained from Ai by replacing all formulae by their normal forms. 
Then, by the I.H., the sequent Ei; Ag =>• ei : Xnorm{Gi) is derivable in  ̂ go is
the sequent E i; Ag ei : Anorm(Gg), for Anorm(Gg) is the same as Anorm(Gi).

Conversely, it may be easily proved tha t if a sequent is derivable in 7777^"°'’”  ̂ then it is 
derivable in 7777. The proof follows by induction on the structure of derivations in .
Notice tha t the rules V => and => 3 of 7777^"°^”* are derivable in 7777 by combining the corres­
ponding rules in H H  together with appropriate conversion rules. □

T h eo rem  3.25 The mapping (j>̂, obtained from <f>, defined in Sec. 2.3.4, by replacing first-order 
terms by X-terms, is a 1-1 correspondence between the uniform linear focused proof-terms e s.t. 
E; A =>• e : G is derivable in and the proof-terms N  s.t. E; A >>A : G is derivable in
jyppXnorm _

P roof; Similar techniques to those used in Sec. 3.5, proving tha t ^  is a 1-1 correspondence 
between the uniform linear focused proof-terms e s.t. E; A =*- e : G is derivable in hH  and the 
proof-terms N  s.t. E; A > >N : G is derivable in N N , may be used. □

For a normal G-formula G and a context A whose formulae are normal forms, E; A > >N : G 
is derivable in iff there exists a uniform linear focused proof-term e s.t. <f>̂{e) — A
and E; A => e : G is derivable in 7777, which in turn is equivalent to: E; A => e : G is derivable in 
7777°. Since we regard A  A ‘̂ ”°’"”^-dedactions with A-convertible proof-terms as equal deductions, 
we may give the following interpretation of HOPLP by means of Given a goal G
and a program E; A, an implementation of HOPLP is any method tha t finds the 
deductions of Xnorm{G) w.r.t. A i, the context obtained from A by replacing each formula by 
its normal form.

3.9 Sum m ary

In this Chapter we set up the basis for our proposal of integrated logic and functional pro- 
grammming (LFPL), described in Chapter 4. We define the logic programming language 
HOPLP, based on the intuitionistic hereditary Harrop logic with A-terms rather than first- 
order terms (a fragment of the logic underlying AProlog). This language is defined by means of
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an LJ-based formalisation of its underlying logic, where proof-terms are used for representing 
derivations. The use of proof-terms is instrumental in the definition of the semantics of HOPLP 
(and LFPL), since the result of computations are proof-terms (as in Elf) encoding derivations 
of goals from programs. We define achievements of goals in HOPLP as proof-terms of uni­
form linear focused derivations, that we show to be in 1-1  correspondence to expanded normal 
deductions in an NJ-based formulation of the logic underlying HOPLP.
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C h ap ter  4

Logical and Functional Program m ing

4.1 In troduction

The execution mechanism in the logic programming language HOPLP is defined in Sec. 3.8.2 
as a search for a derivation of a goal w.r.t. a program in the calculus H H . The calculus 
H H  uses the set of A-terms as the set of underlying terms, thus functions are already allowed 
in HOPLP in the form of A-abstractions. Usually, in functional programming names may be 
defined as abbreviations for functions [Jon87, Tho91], so that, instead of writing the entire 
expression representing a function, a name may be used to refer to a function.

Section 4.2 defines the programming language HOPLPD that extends HOPLP with an abbre­
viation mechanism for A-terms. Mappings from programs and goals in HOPLPD into programs 
and goals in HOPLP are shown in Sec. 4.2; both mappings are many to one. Further, it is 
shown that witnesses for the achievement of a goal w.r.t. a program in HOPLPD are in 1-1 
correspondence with witnesses for the achievement of the corresponding goal w.r.t. the corres­
ponding program in HOPLP. We say tha t HOPLPD is a conservative extension of HOPLP, i.e. 
if a goal is achievable in HOPLP a corresponding goal is achievable in HOPLPD (extension) 
and if a goal is achievable in HOPLPD then the corresponding goal is achievable in HOPLP 
(conservative).

Typical integrations of logic and functional programming [AKN89, Han90] may be seen as 
extensions of logic programming that allow functions in the set of underlying terms to build 
formulae, providing an abbreviation mechanism to refer to functions. We propose another step 
in the integration of logic and functional programming, relating logical properties of functions 
with the logic programming part of the language, as explained below.

Often the type of a function is regarded as a first specification for a function. However, 
there are many logical aspects of functions tha t may not be captured within a simple theory 
of types. In the context of logic and functional programming, we propose a higher interaction 
between the logic and functional parts. We suggest the use of the logic language, underlying the
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logic programming part, for describing specifications of functions, coming from the functional 
programming part. E-types are used to attach a logical specification to a term of simple type, 
in a similar fashion to tha t used in the theory of deliverables [MB93].

Consider a program P  and a goal G in a logic programming language which allows A-terms, 
e.g. HOPLP. Let /  be a function of type r . Let F  be a formula containing free occurrences of 
a variable y of type r  and let [f/y]F  be achievable w.r.t. the program F , in other words the 
function /  meets the specification Ey;xF. Consider an attem pt to achieve a goal w.r.t. P. Since 
[f/y]F  is achievable w.r.t. F , if a principle similar to Gentzen’s cut rule is used, the problem of 
achieving G w.r.t. F  may be transformed into the problem of achieving G w.r.t. the program F  
together with the formula [f/y]F . In case [f/y]F  is used in achieving G, such form of achieving 
G from F  may be shorter than alternative forms of achieving G from F  not using [f/y]F . Recall 
tha t in calculi allowing cuts, derivations with cuts may be significantly shorter than their cut- 
free variants [Boo84]. Our proposal to integrate logic and functional programming is based on 
the ideas described above, i.e. uses E-types to attach logical specifications to functions and uses 
a principle similar to the cut rule for accessing the logical content of a specification.

Section 4.6 defines a programming language that integrates logic and functional programming 
called LFPL. This language provides a mechanism for definitions of simple type as well as 
a mechanism for attaching logical specifications to terms of simple type based on the ideas 
described above. The language LFPL is defined in terms of the calculus presented
in Sec. 4.5. The language LFPL is shown to be a conservative extension of HOPLP. The 
interpretation of proofs in LFPL as (cut-free) proofs in HOPLP is essentially a process of 
cut-elimination.

4.2  Sim ple D efin itions and th e  C alculus H H ‘

Traditionally, functional programming provides an abbreviation mechanism tha t allows names 
to be introduced as abbreviations for expressions, thus making expressions more readable. In 
logic programming a similar idea may be used by introducing an abbreviation mechanism for 
terms of simple type to allow the writing of clearer logic programs. This section presents the 
calculus J777 'which can be seen as an extension of 7777 with an abbreviation mechanism for 
terms of simple type.

A simple definition is a triple (z, A,r) ,  written as z A : r ,  where z is a variable, A is 
a A-term and r  is a simple type; z is called the definiendum of the definition, A is called the 
definiens of the definition and r  is called the type of the definition.

Simple definitions are declared in the context-part of a program. Contexts in 7777' are 
lists. The following notation is used for representing lists: () represents the empty list; {E, L) 
represents the list whose head is E  and whose tail is the list L; {L, E) represents the list obtained 
from the list L by adding E  as last element; {Li, L f) represents the list obtained by appending
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the list 7/2 at the end of L\] the external parentheses are dropped when there is no danger of 
confusion. In H H ', contexts A are lists defined as follows:

A  ::= 0  I A , z : 77 I A , z A : r,

where 77 is a meta-variable ranging over the set of 77-formulae of H H . The notation z A  

means tha t there is no 77 s.t. z : 77 is an element of the list A  and there is no simple definition 
in A  whose definiendum is z. The set of all definienda of simple definitions in a context 
A  is written as definienda{A). Definienda of simple definitions may be used in building 
terms of simple type. The intended meaning for a simple definition in a context of the form 
( A i ,  z =dc/ A : r, A2) is tha t in A2 any occurrence of z may be replaced by A. Notice tha t the 
order of the components in a context is important. The other classes of objects in H H ' are the 
same as those of 7777 and they are defined as in 7777.

The forms of judgement of H H ' are presented in Fig. 4.1. After each form of judgement of

Judgements of H H ' Judgements of 7777

(i) h E signature h E signature

(») E ; A h A : r E h A : r
(iii) E; A h At>xA E 1- A>xA
(iv) E; A h A>*A E h A>* A

(v) E; A h A=xA E h A=xA
(vi) f- S; A basis }- E; A basis
(vii) E ; A h  A a / E h  A a /
(viii) E ; A h 7 7 h / E h  7 7 /1/
(ix) B ] A \ - G g f S h G f i r /

(x) E ; A i - A = A E h  A=A
(xi) E; A f- 77=77 E h  77=77
(xii) E; A h G=G E h G = G
(xiii) E; A => e : G E; A => e : G

Figure 4.1: Judgements of H H ' .

H H ' is the corresponding form of judgement of 7777 . (Recall tha t the definition of contexts A 
is different in H H ' and in 7777 .) Since definienda of simple definitions may be used in building 
terms of simple type, the definition of the terms of a simple type depends upon signatures as 
well as contexts. The notion of reduction on terms of simple type also depends on the context, 
since simple definitions may be used to replace definienda by definientia.

The derivable signatures of H H ' are the same as those of H H . The rules defining derivable
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judgements of forms (ii), (iii) and (vi) are shown in Fig. 4.2. The rules defining derivable 
judgements of forms (iv), (v) and (vii)-(xiii) in H H ' are similar to the rules defining derivable 
judgements of the corresponding form in HH] they are shown in Appendix C.

h E, X : r ;  A basis 
E, X : r; A h X : r

h E; Ai,X =je/ A : T, Ag basis 
E; A i, X =d,y A : r, Aa h X ; r

E, X : r ;  A h A : Ti h E ;A 6 as* s  E; A h A : ri -> r  E; A h Ai : n
E; A h Ax : r.A : r  -> n  ^ E; A h AAi : r

h E; A i,x  A : r, Ag basis 
E; A i, X A : r, Aa H X >x A

E, X : r; A h A : Ti E; A h Ai : r
E ; A  h  (A x  : r .A ) A i  > r , [ A i / x ] A  

E , X : r ;  A  h  A  t>n A i  h  E ;  A  b a s i s

x ^ S  

z ^ S
E ; A  h  A x : r .A  A x : r.A%

E ; A  h  A  >T-fTi A i  E ;  A  h  A a : r  E ; A  h  A  >r A i  E ; A  h  A a : r  —> r i

E ; A  h  A A a  >Ti A iA a  E ; A  h  A aA t> x i A a A i

h  E  s i g n a t u r e  h  E ; A  b a s i s  E ; A  h  77 f i /

) b a s i s  h  E ; A ,  X

h  E ; A  b a s i s  E ; A  h  A  : r

h  E ;  ( )  b a s i s  h  E ; A ,  x  : 77 b a s i s  ^  ^  A

h  E ; A ,  X A  : r  b a s i s  ® ^  ® ^

Figure 4.2: Rules for deriving judgements of forms (ii), (iii) and (vi) of H H '.

In Fig. 4.3 are defined the operations of substitution of a A-term A for a variable z in a 
proof-term e (notation [A/z]e) and in a context A (notation [A/z]A). These operations of 
substitution of a A-term for a variable in an object may be thought of as the application of the 
substitution operation to the A-terms used in forming that object. Note tha t the side conditions 
on the definitions of Fig. 4.3 may be satisfied simply by renaming of bound variables.

Let Object be either a G-formula or a 77-formula or a proof-term or a 7777'-context. The 
notation [Ai/zi][A2/z2]...[A„/z„]06iec£ stands for [Ai/zi]([A2/z2](...([Aa,/zn]06yec£)...)). Let 
A be a 7777'-context having n simple definitions, Zi =«,«/ Ai : r i , ..., z„ =dc/ A« : r«, where for 
1 < Î < i  < n the i-th definition occurs in A before the j- th  definition. The notation [A]Object
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is an abbreviation for [K\/xi]...[kn/Xri\Ohject.
The mapping fi, from lists to sets, is defined as the mapping tha t applied to a list returns the 

set consisting of the elements of the list. The mapping from TTTf'-contexts to 7777-contexts, 
is defined in Fig. 4.4. The mapping X, from 7777'-contexts to 7777-contexts, is defined as the 
composition of ^ with p.

The following lemma shows tha t in the absence of simple definitions H H ' and H H  are es­
sentially equivalent, the only difference being that 7777'-contexts are lists whereas J î77-contexts 
are sets.

L em m a 4,1 Let h S; A basis be derivable in 7777', where A has no simple definitions. Then, 
E; A =>• e : G is derivable in H H ' *jff E; //(A) => e : G is derivable in 7777.

P roof: Two implications must be proved. If there is a 7777'-derivation tt of E; A =*» e : G, 
then it may be easily proved, by induction on the structure of t t ,  tha t there exists an 7777- 
derivation of E; /^(A) => e : G, since in the absence of simple definitions each rule in 7777' has a 
corresponding rule in 7777.

If there is a 7777-derivation t t  of E;/^(A) e :G  then it may be proved, by induction on 
the structure of tt, that E; A% => e : G is derivable in 7777', for every 7777'-context A% s.t. 
p{A i) = fi{A). □

The following lemmas are used as auxiliary lemmas in proving tha t 7777' is a conservative 
extension of 7777.

L em m a 4.2 7/1- E; A i, z A : r ,  A 2 basis is derivable in 7777' then t- E; A i, [A/z]A2 basis 
is derivable in 7777'.

P roof: Let TT be a 7777'-derivation of h E; A i , z  =je/ A : r ,  A 2 basis. The proof follows by 
induction on the structure of T T . We consider only the case where TT is of the following form:

TTi 7T2
h E; Ai, z —rfe/ A : r ,  A 21 basis E; A i, z A : r , A 2 1 1~ 77 h f  

h E; A i, z =d^f A : r , A 21, z i : 77 basis

where A 2 =  (A21, z i : 77) and x\ ^  (A i ,z  =de/ A : r , A 21). (The other cases follow by similar
arguments.) Since T T i  is a subderivation of T T , by the I.H. there is a derivation of Judgement 4.1.

h E; A i, [A/z]A2i basis (4.1)

From 7T2 , we may construct a derivation of Judgement 4.2, as sketched below.

E; A i, [A/z]A21 h [A/z]77 h f  (4.2)
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[A /z](pA i...A „) =de/ p[A /z]A i...[A /z]A n  

[A /z](G  D H)  [A /z]G  3  [A/x]H 

[A/x]{Hi  A H 2 ) W x ] H i  A [A/x]H2 

[A/z](Va?j:x-77) —dcf â?j :t[A/z]77, Z ^  Xi ,Xi  ^ A

[A/z](Gi A G2) =de/ [A/z]Gi A [A/z]G2 

[A/z](Gi V G2) =.e/ [A/z]Gi V [A/z]G2 

[A/x]{H  3  G) = ,e, [A /z]// 3  [A/z]G 
[A/z](3a;j;xG) —dcf :t[A/z]G, Z ^  Zl,Zi ^  A
[A/z](Va;j;xG) —def IT [A/z]G, Z ^  ZjjZj ^  A

[A /z]pair(61 , 62) pa%r([A/z]6 i,[A /z]62)
[A/z]m/(6) =de/ m/([A/z]6)
[A/z]mr(6) —d f̂ wr([A/z]e)
[A/z]/am6da(zi.e) =def lambda{xi.[A/x]e), z 7  ̂ z i, z i ^  A 
[A/z]/am6dag(zi.6) —dcf lambdaq{xi,[A/x]é),x 7  ̂ z i , z  0 A 
[A/z]pa«rg(Ai,e) =dc/ pair,([A /z]A i, [A/z]e)
[A/z]zi Zi
[A/z]sp/i£/(zi,Z2 .e) —dcf splitl{xi,X 2 .[A/x]e),x 7  ̂Z2 ,Z 2 0 A 
[A/z]sph’£r(zi,Z 2 .e) splitr{xi, X2 .[A/x]e), x ^  »2 ,» 2  0  A 
[A/z]app/p(zi, 61 , Z2 .62) =de/ appfp(a:i, [A/z]6 i, Z2 .[A/z]62), z 76 Z2 ,Z2 ^  A 
[A/z]appfpg(zi, Ai, Z2 .e) -dcf applyq(xi, [A/z]Ai, Z2 .[A/z]e), z 76 Z2 , Z2 ^  A

[A/z](> =dcf 0
[A/z](zi : H, A) =dcf x i : [A/z]77, [A/z]A
[A/z](zi Ai : r. A) =*,, (zi =def Ai : r, A) ,z  =  zi
[A/z](zi =def Ai : r. A) =def (»i =d«/ [A/z]Ai : r, [A/z]A), z 76 z i and z i ^  A

Figure 4.3: The operations [A/z]G, [A/z]e, [A/z]A.
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( ( (»  -dcf 0

^(z =dcf A IT, A ) =dcf (([A/z] A)
((z  : 77, A) =de/ X : 77, ((A )

Figure 4.4: Mapping (.

Let 77 be an atomic formula pAi...An. (The cases where 77 is a compound formula are 
simple.) Then, TTg must be of the form:

TTii TTin
S; A i , z  =de/A : r ,  A2 1 1-Ai : ri ... E; A i, z A : r ,  A 21 H A,, : r̂ ,

E; Ax, z A : r ,  A21 H pAi...An a f
E; A i, z =de/ A : r ,  A 21 H pAi...A„ h f

where p : r i r„ prop £ V .
For each A,- : r,-, where 1 < i < n, a derivation of

E; A i, [A/z]A2i H [A/z]A,- : r,-

may be easily constructed from the derivation TTi,- of

E; A i, z =dej A : r ,  A 21 F A, : T*.

For example, consider the case where the last step of ttu has the form:

h E; A i, z =dc/ A : r ,  A21 basis 
E; Ax, z =dc{ A : r ,  A 2X H z : r

By the I.H. there is a derivation of

h E; Ax, [A/z]A2x basis.

Since h E; Ax, z —aef A : r , A 21 basis is derivable, it is easy to show tha t there is a derivation 
of E; Ax h A : r . Thus a derivation of E; Ax, [A/z]A2x l~ A : r  may be easily constructed. Note 
that [A/z]z =  A. (Cases corresponding to other forms of wu are simpler.)

From derivations of Judgements 4.1 and 4.2, the following derivation may be formed, as 
desired.

H E; Ax, [A/z]A2i basis E; Ax, [A/z]A2i H [A/z]77 h f  
(- E; A x, [A/z]A2x, : [A/z]77 basis

since zx ^  (Ax, [A/z]A2i). Note that [A/z](A2x,®i : 77) =  ([A/z]A2x , • [A/z]7T), by defini­
tion.

□
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Lemma 4.3 Let h Ai, z =dcf A : r, Ag basis be derivable in H H ', Then, i f  the judgement

E; Ai, [A/z]A2 h [A/z]Ai : n  

is derivable in H H ' then the judgement

E; A i, z =de/ A : r ,  Ag F Ai : ri

is derivable in H H '.

P roof: The proof follows by induction on the structure of Ai.
Consider Ai to be a variable. If Aj =  z then the following derivation may be formed

h E; A i, z =^e/ A : T, Ag basis 
E; A i, z -dcf A : r ,  A 2 H z : r

If Ai is a variable z% different from z then one of the following cases must hold: (i) E is of the
form EijZi  : ri; or (ii) Ai is of the form A n , z i  —^cf Ag : ri, A 12; or (iii) [A/z]Ag is of the
form Agi, z i Ag : ri, Agg. Case (i) holds, the following derivation may be formed:

h E l, z i : n ;  A i, z ~dcf A : r ,  Ag basis 
E i , z i  : n ;  A i , z  —̂ cf A : r , Ag h z i : n

Case (ii) holds, the following derivation may be formed:

H E; All,  zi  -dcf Ag : ri, Ajg, z —dcf A : r ,  Ag basis
E; All,  zi —dcf Ag : n ,  Aig, z —^cf A : r ,  Ag h z i : n

Case (iii) holds, it may be shown that Ag must be of the form A31, z i =dcf A3 : r i ,  A3g, where
[A/z]A3 i =  Agi, [A/z]A3 =  Ag and [A/z]A3g =  Agg. So, the following derivation may be

formed: , ^   ̂ ,
h E; A i, z -dcf A : r ,  A31, Zi A3 : n ,  Asg basis
E; A i , z  A : r ,  AsijZi -dcf A3 : n ,  A32 i~ : n  

The cases where Ai is not a variable follow by direct application of the I.H.. □

L em m a 4.4  Let S; A i, z = je /A  : r ,  Ag e : G be derivable in H H '. Then, the sequent
E; Ai,  [A/z]Ag [A/z]e : [A/z]G is derivable in H H '.

P roof: Let TT be a FTF-derivation of E; A i , z  =dcf A : T ,  Ag => e : G. The proof follows by 
induction on the structure of TT. Some cases are shown below.

Case last step of TT is an axiom of the form:

h E; A i, z =dcf A : r .  Agi, z i : A, Agg basis
=r—%------------ Ï------- %---------- A—I--------------- r  axiom,E; A i, z —dcf A : r .  Agi, z i : A, Agg =4̂ z i : A

where Ag =  Agi, zi  : A, Agg, e =  zi and G = A. Then, Lemma 4.2 shows that

h S; A i, [A/z]Agi, z i : [A/z]A, [A/z]Agg basis
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axiom.

3 ,

is derivable. The following derivation may be formed:

h- S; A i, [A/z]Agi, z i : [A/x]A, [A/z]Agg basis 
E; A i, [A/z]Agi, zi : [A/z]A, [A/z]Agg => z% : [A/z]A

The proof of this case is concluded by using the following identities:

[A/z]Ag =  [A /z]A gi,zi : [A/z]A, [A/z]Agg; 
[A/z]zj =  z i.

Case last step of TT is =*- 3:

S; A i, z -dcf A : r , Ag =»> ei ; [Ai/y]Gi E; A i, z —dcf A : r ,  Ag h Ai : n  
E; A%, z —def A : T, Ag paivq^A\, c%) : 3y;xiGi

where e — pa ir,(A i,e i) and G — ^y^^Gi. From a derivation of

E; A i , z  =d«/ A : r ,  Ag 1- Ai : n ,

we may construct a derivation of

E; A i, [A/z]Ag h [A/z]Ai : r i.

(A sketch of this construction is given in the proof of Lemma 4.2.) By the I.H., there is a 
derivation of

E; A i, [A/z]Ag => [A/z]ei : [A/z]([Ai/p]Gi).

Using the identity
[A /x]([A i/y ]G i) =  [[A /x]A i/y]([A /® ]G ,),

which may be shown by using the substitution property of the following derivation may 
be formed

E; A i, [A/z]Ag [A/z]ei : [[A/z]Ai/p]([A/z]Gi) E; A i, [A/z]Ag h [A/z]Ai : n  
E; A i, [A/z]Ag => pmVg([A/z]Ai, [A/z]ei) : 3y:x^[A/z]Gi

The proof of this case is concluded by observing that the following identities hold:

[A/z]pairg(Ai, ei) =  pair, ( [A/z] Ai, [A/z]ei);

[ A / z ] ( 3 y : r ,G i )  =  3 y : n [ A / z ] G i .

The case where the last step of TT is a rule V => follows by similar arguments. The other 
cases follow directly from the I.H.. □

L em m a 4.5 Let E; A i , z  —def A : r ,  Ag h G p /  and E; Ai, [A/z]Ag => [A/z]e : [A/z]G be de­
rivable in H H '. Then, E; A i, z =def A : r ,  Ag e : G is derivable in H H '.
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P roof: Let TT be a 77H'-derivation of S; A i, [A/zjAg => [A/z]e : [A/z]G. The proof follows by 
induction on the structure of TT.

Case last step of TT is an axiom of the form:
h E; A i, Agi, z i : A, Agg basis

E; A i, Agi, z i : A, Agg zi : A axiom

where [A/z]Ag =  (Agi,zi : A, Agg), [A/z]e =  z i and [A/z]G =  A. It is easy to show that: Ag 
must be of the form (A31, z i : Ai, A3g), where [A/z]A3i =  Agi, [A/z]Ai =  A, [A/z]A3g =  Agg; 
and e =  zi. By hypothesis, E; A i, z —dcj A : r ,  Ag h G p /  is derivable, then there is a derivation 
of f- E; A i, z —dcf A : r ,  Ag basis. Since [A/z]Ai =  A, a derivation of

E; A i, z =dcf A : r ,  Ag h Ai =  A 

may be constructed. Thus, the following derivation may be formed:

h E; A i, z =de/ A : r ,  Ag basis
axiomE; A i, z —dcf A : r ,  Ag => z i : Ai________ E; A i, z =dcf A : r ,  Ag h Ai =  A _

E; A i, z A : r ,  Ag =>> zi : A ‘

Case last step of TT is a rule => 3 of the form:
E; A i, [A/z]Ag =» ei : [Ai/p]Gi E; A i, [A/z]Ag h  Ai : n  ^  ^

E; A i, [A/z]Ag pctir,(Ai, 61) : 3y.xjGi

where [A/z]e =  pair,(A i, ei) and [A/z]G =  3y;x,Gi. It is easy to show that: (i) e is of the form 
pair,(Ag, eg), where [A/z]Ag =  Ai and [A/z]eg =  ei; and (ii) G is of the form 3y;x,Gg, where 
[A/z]Gg =  Gi. The identities below hold:

[Ai/p]Gi =  [[A/z]Ag/p]([A/z]Gg) =  [A/z]([Ag/p]Gg);
[A/z] eg =  Cl.

So, by the I.H., there is a derivation of

E; A i, z =dcf A : r , Ag => eg : [Ag/p]Gg.

Since h S; A i, z =dcf A : r ,  Ag basis is derivable, by using Lemma 4.3, from the derivation of

E; A i, [A/z]Ag h [A/z]Ag : n ,

we may construct a derivation of

E; A i, z —dcf A : r , Ag h Ag : ri.

Thus, the following derivation may be formed:
E; A i, z -dcf A : r ,  Ag => eg : [Ag/p]Gg E; A i, z =def A : r ,  Ag h Ag : n  

E; A i, z =dcf A : r, Ag pair,(Ag, eg) : 3y:rjGg

The case where the last step of TT is a rule V => follows by similar arguments. The other 
cases follow directly from the I.H.. □
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T h eo rem  4 .1  Let E ;A  h G g f  be derivable in H H '. Then, the sequent E;A=>-e :G  is 
derivable in H H ' iff the sequent E;H(A) => [A]e : [A]<j is derivable in H H .

P roo f: The proof follows by induction on the number of simple definitions in A.
Case A contains no simple definitions. Then, by Lemma 4.1, E; A => e : G is derivable in 

H H ' iff E; fJ>{A) => e : [A]G is derivable in H H . The proof of this case is concluded by observing 
that, for A contains no simple definitions: (i) ^(A) =  /i(^(A)) =  //(A); and (ii) [A]e =  e.

Case A contains n > 0 simple definitions, A may be written as A i ,x  A : T, Ag, where 

A 2 contains no simple definitions.
(i) By Lemma 4.4, if

E; A i, X —def A : r , A 2 e : G

is derivable in H H ' then
E; A i, [A/x]A2 => [A/x]e : [A/x]G

is derivable in H H ' .
(ii) By Lemma 4.5, for E; A h G is derivable, if

E; A i, [A/x]A2 [A/x]e : [A/x]G

is derivable in H H ' then
E; A i, X —d̂ f A : r ,  A 2 e : G

is derivable in H H '.
So, from (i) and (ii), since (Ai,[A/x]A2) has one simple definition fewer than 

(Ai,x  A : r ,  A2), by the I.H.,

E; A i, [A/x]A2 => [A/x]e : [A/x]G

is derivable in H H ' iff

E; K(Ai, [A/x]A2) => [Ai, [A/x]A2][A/x]e : [Ai, [A/x]A2][A/x]G

is derivable in H H . For concluding the proof it suffices to observe tha t the following identities 

hold:

i^(Ai, [A/x]A2) =  ^(Ai,  X —def A : r ,  A 2);
[Ai, [A/x]A2][A/x]e =  [Ai,x -d^f A : r ,  A 2]e;
[Ai, [A/x]A2][A/x]G =  [Ai, X —d̂ f A : r ,  A 2]G,

since A 2 contains no simple definitions. □

Theorem 4.1 gives a means to interpret a logic programming language based on the calculus 
i f  JT'into HOPLP. Consider the programming language HOPLPD based on i f  if'defined as 

follows.
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•  A program is a pair (S, A), usually written S ;A,  where E is a signature and A is a 
i f  if'-context; E; A is a well-formed program iff h E; A basis is derivable in i f  if '.

•  A goal is a G-formula; G is a well-formed goal w.r.t. a program E; A iff E; A h G 5 /  is 
derivable in i f  if '.

•  A goal G is achievable w.r.t. a program S; A iff there exists a proof-term e s.t. E; A => e : G 
is derivable in i f  if '; the proof-term e is called a witness for the achievement of G w.r.t 
E;A.

Theorem 4.1 guarantees tha t for every witness for the achievement of [A]G w.r.t. E; A in 
HOPLP there is a witness for the achievement of G w.r.t. E; A in HOPLPD. Now, a complete 
set S  of witnesses for the achievement of a goal G w.r.t. a program E; A in HOPLPD is 
defined as a maximal set s.t.: (i) the elements of S  are uniform linear focused proof-terms e 
s.t. E; A => e : G is derivable in if  i f '  ; (ii) no two members ej, 62 of S  are such that [Ajei and 
[A]e2 are A-convertible. Then HOPLP and HOPLPD may be regarded, in logical terms, as 
essentially the same language. The differences between the two languages are the mechanisms 
provided for writing programs and goals, e.g. HOPLPD allows an abbreviation mechanism for 
terms of simple type whereas HOPLP does not have such mechanism.

The programming language LeFun, as described in [AKN89], is a language tha t integrates 
logic and functional programming. LeFun provides a mechanism for simple definitions tha t is 
essentially the same as the mechanism for simple definitions of HOPLPD. In LeFun a program is 
essentially a list of logical formulae together with a list of definitions of the form /  =def where 
f  is an identifier and f is a A-term. The computation mechanism is called residuation, which is 
essentially a form of resolution, where not all unification problems on A-terms are solved; those 
unification problems involving function application to arguments tha t are not fully instantiated 
are left to be verified as constraints.

4.3 T he calcuU and

So far, the achievement of a goal G w.r.t. a program P  has been considered to be a search for 
a special form of derivation of a sequent P  => G in calculi having no rule similar to Gentzen’s 
cut rule [Gen35]. The cut rule in Gentzen’s L J  may be written in the form:

P = > G  r , G = > B cut,

where F is a set of formulae and JS, C  are formulae. The formula C  is called the cut formula. 
This rule may be read as follows. For proving that B is a logical consequence of F it suffices to 
prove tha t there exists a C  s.t. G is a logical consequence of F and B is a logical consequence 

o fF ,G .
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Using cuts for constructing derivations allows much shorter derivations of some judgements, 
see e.g. [WW92]. In [Boo84] are shown formulae whose shortest cut-free derivations are expo­
nentially longer than their derivations using cuts.

The problem of using a cut rule in proof-search is to decide when and how a cut rule should 
be applied; in other words, what the adequate lemmas are to use in proving a theorem and 
when they should be applied. Usually, the lemmas are established based on experience.

In logic programming lemmas should not be established during proof-search. Instead, the 
programmer should know what lemmas may be useful and define names for the proofs of those 
lemmas. Then, during the search for a proof of a formula these formulae, previously established, 
may be used several times without having to be proved. In parallel to a mathematician who 
wants to prove a theorem, in order to achieve a goal, firstly some lemmas are proved and then 
those lemmas are combined to achieve the initial goal.

In this thesis the ideas described above are realised in the integrated logical and functional 
programming language LFPL, defined in Sec. 4.6. The semantics of LFPL is described in 
terms of the proof theory of the calculus , defined in Sec. 4.5. The language LFPL may
be interpreted into HOPLP by means of an interpretation of into H H  tha t essentially
corresponds to a process of cut elimination, as shown in Sec. 4.5.

This section defines the calculi H H ^^^  and H H^^^  ; they are essentially extensions of 
H H  and H H ' , respectively, with a cut rule. These calculi are used as intermediate calculi 
in the interpretation of H H ^^^  into H H  described in Sec, 4.5. This interpretation is also used 
in relating the programming languages LFPL and HOPLP. The remainder of this section defines 
the calculi H H ^^^  and H H ^^^  and presents some results needed for interpreting H H ^'^f into 
H H .

As noted above, the calculus H H ^^^  is an extension of H H  with a cut rule. The cut rule 
may only allow cut formulae which are simultaneously iï-formulae and G-formulae, otherwise 
one or more premises of this rule would be ill-formed sequents.

All the classes of objects used in H H  are also used in H H ^^^‘, their definitions are the same 
except for the class of proof-terms e. The proof-terms e of H H ^^^  are all the proof-terms of 
H H  together with the proof-terms that may obtained by the rule: if ei,e% are proof-terms of 
H H ^^^  then let x = €\ in 6 2  is a proof-term of H H ^^^, where x is a variable. Proof-terms of the 
form let x =  ei in  eg are used to annotate cut rules. In proof-terms of the form let x =  e% in  eg, 
X is a binder of scope eg; any occurrence of x  in eg is said to be bound. As before, proof-terms 
are equal up to renaming of bound variables.

The operation [A/x]e of substitution of a variable by a term of simple type on HH'^^^ proof- 
terms is defined as for H H , with the following extra case to deal with the let constructor:

[A/x](/et xi==e in e{) =def (fcZ =  [A/x]e in  [A/x]ei), x ^  xi, x% ^  A.
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The class I  of intersection formulae is defined by the following grammar:

/ : : = A | / A / | / D / 1  Vz:T/.

The class of /-formulae is the maximal subclass s.t. it is simultaneously a subclass of H- 
formulae and a subclass of G-formulae.

The forms of judgement in are the same as those in H H . The derivable judgements
of the same as those of H H  except for sequents. For constructing derivations of
sequents in H H ^^^ all the rules of H H  are allowed, as well as the cut rule, presented in Fig.
4.5.

E;A=4>'e: /  E; A, x : /  => ei : G ,

Figure 4.5: Cut rule of H H ^^^.

The result below shows that H H ^^^  is an extension of H H  .

L em m a 4.6 / /  S; A e : G is derivable in H H  then S; A => e : G is derivable in H H ^^^ .

P roo f: The proof is by induction on the structure of the derivation of E; A =>• e : G in H H . 
Notice that all the rules allowed in H H  are also allowed in H H ^^^. □

Now a result converse to Lemma 4.6 is addressed, i.e. a mapping from derivable sequents in 
j j j jc u t  derivable sequents in H H .

Let HH*^^^ be the calculus obtained from HH^^^  by replacing the conversion rules and 
axioms by the new form of axiom, axiom  — conv, shown in Fig. 4.6.

\-Tf', A ,x  : A basis YArA  = Ai 
S ; A , x :

Figure 4.6: The rule axiom  — conv.

The following result is an analogue to Theorem 3.21 relating H H  and HH°.

T h eo rem  4.2 A sequent is derivable in H H ^^^ iff it is derivable in H H ^^^ .

P roof: If a sequent is derivable in H H^^^  then it is derivable in H H ^^^  since axiom  — conv 

is derivable in H H ^^^.
In order to prove the other implication, first is proved that: every i/i/'^^^-derivation TT of a 

sequent E; A => e : G may be transformed into a derivation whose conversion rules occur either 
immediately below axioms or other conversion rules. The proof is obtained, analogously to
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Theorem 3.21, by showing that every conversion rule may be moved above both logical rules 
and cuts. For example, consider TT to have the form below.

7Ti 7̂2
E; A => : /  E; A, x : /  => eg : Gi

E;A=> W x  =  ei in  eg :G i E h Gi =  G _
T>’, A  let X = Cl in € 2  G ^

Thus, the following derivation may be formed.

3Tg 3f3
TTi E; A, X : /  =4̂  eg : Gi E f~ Gi =  G

E; A =/► ei : /  E; A, x : /  eg : G
A  let X = ei in  eg : G

Secondly, following the proof of Theorem 3.21, it may be shown that: every sequent derivable in
by using only axioms and conversion rules, is derivable in by using axiom —

conv. □

It may be readily shown that in the proof-term of a derivation identifies uniquely
the derivation, up to renaming of bound variables.

In order to prove cut elimination first is shown the admissibility of a form of contraction in
H H . Since proof-terms are being used for representing derivations, the transformations on
derivations required for showing admissibility of contraction are captured at the level of proof- 
terms. If proof-terms are regarded as the expressions of a functional language, see [Wad93], 
then the operation of contraction on proof-terms corresponds to substitution of a variable by 
another variable inside an expression.

The operation {x/x}e of contraction on proof-terms is defined in Fig. 4.7.

Theorem  4.3 (Contraction A dm issibility) Let h H  =  H i be derivable in H H . I f
A , X : H, Xi : Hi => e : G is derivable in I I I I  then E; A, x : i f  => {x/xi}e : G is derivable in

H H .

Proof: Let ?r be a derivation of E; A, x : B, xi : i / i  e : G in H H . (By Theorem 3.21 it 
suffices to concentrate on H H°.) The proof follows by induction on the structure of w. Some 
cases are considered below.

Case last step of TT is axiom  — conv of the form:

1- S ;  A, X : H, x i  : Hi basis E h  j / i  =  JEfg
E; A, X : II, xj : Hi xi : LTg

Then, from a derivation of the judgement

t- E; A, X : B , xi : basis
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x /x x} p a i r {e i , e 2)  pair({x/x i)ei, (x /x jeg )
x / x i } i n l { e )  =j„y in /( { x /x i} e )  

x /x i} m r (e )  » n r ({x /x i} e )

x / x x ) l a m h d a { x 2 .€) l a m b d a { x 2 . { x / x i ) e ) ,  x  ^  xg, x% ^  xg 
x /x i} p a ir ,(A , e) p a ir ,(A , { x /x i } e )

x /x i} /a m 6 d a ,(x g .e )  = je / /a m 6 d a g (x g .{x /x i}e ), x ^  Xg, x i Xg

X /X i)x i X

x /x i} x g  =acf  a?g, XI ^  Xg
x/xi}sph7/(xi,xg.e) sph'ff(x,xg.{x/xi}e), x ^ xg, xi ^  xg
x/xi}sp/i</(xg,X3.e) =d„ sph’i/(xg,X3.{x/xi}e), xi ^  xg, x ^ X3, xi X3
x/xi}sp/i<r(xi,xg.e) sp/iïr(x, xg.{x/xi}e), x xg, x \  xg
x/xi}spiîïr(xg,X3,e) sp/»ïr(xg, X3.{x/xi)e), xi ^  xg, x X3, xi ^ X3
x/xi}app/y(xi,e,xg.ei) app/y(x, {x/xi}e, xg.{x/xi}ei), xi xg, x xg
x/xi}app/y(xg,e,x3.ei) opp/y(xg, { x /x je , X3.{x/xi}ei), xi 96 xg, x ̂  X3, xi 96 X3
x/xi}app/pg(xi, A,xg.e) app/pg(x, A,xg.{x/xi}e), x 91̂ xg, xi 96 xg
x/xi}app/pg(xg, A,X3.e) app/yg(xg, A, X3.{x/xi}e), x 96 xg, x 96 X3, xi 96 X3

Figure 4.7: Contraction on proof-terms.

a derivation of h S; A, x : / /  basis may be easily constructed. From the derivations of 
E f- / /  =  i / i  and E h / / i  =  /fg it is simple to construct a derivation of E h  / f  =  i/g. Thus the 
following derivation may be formed;

h E; A, X : / /  basis E h JfiT =  /fg
E; A, X ://=>■ X : //g axiom  — conv.

Note tha t {x /xi}xi =  x.
Case last step of TT is of the form:

E; A, X : H, x i : H i, xg : Bg e : G
E; A, X : H, x% : Hi =}> lambda{x2 .e) : / / g D G

where xg ^  (A, x : H ,x i : H i). By the I.H., there is a derivation of

E; A, X : // ,  xg : J/g =9» {x/x%}e : G.

Thus, the derivation below may be formed.

E; A, X : / / ,  xg : //g => {x /x i)e  : G
E; A, X : i /  /am 6da(xg.{x/xi}e) : i/g D G

Note tha t {x/xi}/am 6da(xg.e) =  /am 6da(xg.{x/xi}e), since x 9^ X g and xi 9^ xg. 
Case i / i  is of the form Gg D /fg and the last step of TT is of the form:

E; A) X : g ,  xi : Gg 3  i/g e : Gg E; A, x : H, xi : Gg D /fg, xg : JTg => ei : G 
E; A, X : / / ,  xi : Gg 3  /fg apply{xi, e, xg.ei) : G

3=^,
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where Xg ^  (A, x : AT, xj : Gg 3  /fg).
Since the judgement S  h B  =  i / i  is derivable, it must be the case that H  is of the form 

G3 3 JT3 and the judgements £  h G3 =  Gg and S h if3 s  i/g are derivable. By the I.H., there 
are derivations of the sequents:

E; A, X : G3 3  //s {z/xi}e : Gg;
E; A, X : G3 3  H3, xg : /fg => {x/xi}ei : G.

Thus, Derivations 4.3 and 4.4 may be formed.

E; A, X : G3 3 H3  =>■ {x/xi}e : Gg E h Gg =  G3 _
S; A, X : G3 3  i/3 => : G3 (4.3)

E; A, X : G3 3 B3, Xg : //g => {x/xi}ei : G E h i/g — i/3 _
E; A, X : G3 3 //s, : /fs =î" : G ' (4.4)

By using 3=>, the Derivations 4.3 and 4.4 may be put together to form a derivation of the 
sequent

E; A , X : G3 3  i/3  nppiy(z, { x /x i} e , X g.{x/x i}ei) : G.

Note that {x/xi}app/y(xi, e, xg.ei) =  apply{x, {x/xi}e, xg.{x/xi}ei), since x 96 xg and xi 9̂  xg. 
Proofs for the cases where tt is of any other form follow by similar arguments. □

In Fig. 4.8 is presented a list of rules on //i/^*'^-proof-terms; these rules encode the trans­
formations on derivations used below for proving admissibility of the cut rule.

Definition 4.1 {RScut ) RScut is the rewriting system on H - p r o o f - t e r m s  consisting of 
the rules in Fig. The rewrite relation induced by RScut is called >cut‘ A proof-term ei is
reducible by RScut to a proof-term eg if the pair (e ,̂ eg) is in the transitive closure of>cut-

T heorem  4.4 (C ut Elim ination) Let S; A e : G 6e derivable in . Then, there ex­
ists ei s.t. E; A => ei : G is derivable in H H and either e is equal to ej or e is reducible by 

RScut to e%.

Proof: The proof sketched below follows closely the proof in [DraSS], showing admissibility
of the cut rule in the system GHPC.

Let TT be a i///*^“^-derivation of E; A => e : G. Then, If tt has no cuts then it may be easily 
proved that E; A e : G is derivable in HH.

Otherwise, the proof follows by induction on the number of cuts of maximal degree in 7r, 
where the degree of a cut

7Ti 7Tg
Ei; Ai => Cl : I  E i; A i, x : /  =» eg : Gi 

Ei; Ai => let x =  ei m eg : Gi
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let X =  e in paiV(ei, eg) >pair{lei x — e in e\, le t  x — e in eg) 
let X =  e in inl{ei) > inl{let x — e in ej)
let X =  e in *'nr(ei) t> inr(let x =  e in e%)
let X =  e in lamhda{xi.ei) >lambda{xi.let  x =  e in ei), x 96 xi, x i ^  e
let X ~  e in pairq{A, e\) > pairq{A, let x =  e in ei)
le t  X =  e in l ambdaq{x i .e i )  > l ambdaq{x\ . le t  x — e in  e i), x ^  x i,  xi ^  e

let  X — x i  in e >  {x i/x}e
le t  X =  spl i t l {x\ ,X2.e)  in  e% > spl i t l {x\ ,X2. le t  x =  e i n  ei), x 9̂  xg, xg ^  ei

le t  X =  s p l i t r {x \ , X 2 .e) in  ei > spl i t r {x i ,X2 . le i  x =  e i n  ei), x 9̂  Xg, Xg ^  e%
let  X =  app/y(xi,e , Xg.ei) in eg > appiy(x i, e, Xg./e< x =  ei in eg), x 9 6  xg, xg ̂  eg
let  X =  app/yg(xi, AjXg.e) in  6% > app/?/g(xi, A ,xg./ei x =  e i n  ei), x ^  Xg, xg ̂  ei

let  X ~  e in x% > xi, x 96 xi
let  X — e in  spiif/(xi, xg.ei) > sp/ii/(x i,  xg./ei x =  e in ei), x 9 6  x i ,  x 9 6  xg, x g ^ e
let  X =: e in sp /iir (x i,  xg.ei) > s p / i i r (x i , xg./ei x =  e in  ei), x 9 6  Xi, x 9^ Xg, x g ^ e

let  X — e in app/y(xi,ei,xg.eg)>
app ly {x \ , l e t  x — e i n  ei, xg.iei x = ein  eg), x ^ xi, x 96 xg, x g ^ e  

let  X — e in app/yg(xi, A,xg.ei)>
applVqi^i,  A,  X2.let x =  e in ei), x 9̂  xi, x ^ xg, xg e

/et X =  pair(ei,eg) in &p/it/(x, Xi.es)^
/et xi =  ei in (/et x = pair(ei.eg) in 63), x 96 xi, Xi ^ ei, xi eg 

let  X =  pair(ei,eg) in sp/it7*(x,xi.es)>
/et xi =  eg in {let x =  poir(ei,eg) in es), x 9̂  xi, xi ^ ei, xi ^ eg 

/et X = Iambda{x3.e3) in app/i/(x, e i , xg.eg)>
/et Xg =  (/et xs =  (/et x = /am6c/a(x3.es) in e\)  in es) in (/et x = Iambda[x3.e3) in eg),

X 96 Xg, Xg ^ es 
le t  X = l ambdaq{x i .e)  in app/pg(x, A,xg.ei)>

let Xg =  [A/xi]e in {let x — lambdaq{x\ ,e)  in ei), x 9̂  xg, xg ^ e

Figure 4.8: Rules of the rewriting system R S cu t-
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is defined as the triple (c, hi, hg), where: c is the logical complexity of the cut formula / ,  i.e.
the number of V, A, D in I; hi is the height of tti; and Ag is the height of îrg. (The lexicographic
ordering from the left is used to compare degrees of cuts.) Let us assume tha t the cut rule above
is a cut of maximal degree in tt. We consider below some forms for tti and TTg and show how to
transform such derivations into derivations whose cuts are of lower degree.

Case TT is of the form:

h E i; Ag, x i  : H  basis E i h  B  s  /
E i; Ag, X I : g  X I : /  ~  E i ;  Ag, : i / ,  a; : /  =:^ cg  : G i

E i; Ag, xi : H  ^  let X =: x i in eg : G i '

By Theorem 4.3, for the judgements E i; Ag, xi : / / ,  x : /  => eg : Gi and Ej h i /  =  /  are deriv­
able, there is a / f  //-derivation of the sequent

S i; Ag, xi : H  ^  {xi/x}eg : Gi

and let x = x i in  eg >cut {xi/x}eg.
The cases where the last steps of tti and TTg do not both introduce the cut formula I  follow 

easily by induction. The more interesting cases are when both last steps introduce the cut 
formula. We consider the case where I  is of the form /% 3  /g, i.e. tti is of the form

7T3
S i; Ai,X3 : / i  63 : /g

Ei; Ai => lambda(x3.€3) : Ii 3  /g 

where X3 ^  A i, and TTg is of the form

7T4 7T5
Ei; Ai,X : /i  3  /g 64 : /i Ei; A i,x  : /i  3  /g, xg : /g => 65 : Gi 

Ei; Ai, X : /i  3  /g => applg(x, 64, xg.es) : Gi

where xg ^  (Ai, x : / i  3  /g). In this case t t  is of the form of Derivation 4.5.

7T i  TTg

Ei; Ai =» Iambda(x3 .e3) : / i  3  /g E i; A i, x : / i  3  /g =» apply(x, €4 , xg.es) : Gi
Ei; A i => let x =  Iambda(x3 .e3) in apply{x, €4 , xg.es) : Gi (4.5)

Derivations 4.6 and 4.7 may be formed.

^ 1 !  ^ 1 )  X 3  : / i  6 3  : / g  = > - 3  7T4

Ei; Ai I a m b d a ( x 3 . e 3 ) : /i 3 /g Ei; Ai, x : /i 3 /g => 64 : A
E i; Ai let x =  Iambda{x3 .e3 ) in e4 : / i  (4.6)

TTe
E i; A i, X 3  : / i , X g  : / g  6 3  : / g  ^ 5

E i; A i, Xg : /g /am 6d«(x3 .e3) : / i  3  /g E i; A i, x : / i  3  /g, xg : /g es : Gi
E i; Ai, Xg : /g =4>' /e t x =  lambda{x3 .e^  in es : G i (4.7)

100



Derivation ttq may be obtained from tts by weakening, since xg ^  A i, having the same height as 
7T3 .  The cut rules in Derivations 4.6 and 4.7 have degree lower than the cut rule in Derivation
4.5, since the heights of their right premises are at least one fewer than the height of TTg.

Applying the cut rule to the endsequents of Derivation 4.6 and tts one obtains Derivation 4.8.

7T3
Ei; Ai let X = lambda{x3.es) in 64 : /% E%; A%, X3 : / i  => 63 : /g

E j; Ai => let X3  =  {let x =  Iamhda{x3 .e3 ) in €4 ) in 6 3  : /g (4.8)

This cut rule has degree lower than cut rule in Derivation 4.5 since the logical complexity of /% 
is at least one fewer than the logical complexity of Ii D /g.

Applying a cut rule to the endsequents of Derivations 4.7, 4.8 one obtains a derivation of

E i; A i => let xg =  {let X3 =  {let x =  lamhda{x3.ez) in 64) in 63) in {let x =  lambda{x3.ea) in 65) : Gi.

This cut rule has degree lower than the cut rule in Derivation 4.5 since the logical complexity 
of /g is at least one fewer than the logical complexity of Ii D /g. So, by the I.H., the proof-term 
of the sequent above reduces by RScut to a proof-term ee, and so does e, s.t. E i; A i : Gi 
is derivable in H H.

□

From the proof above, we may extract an argument for weak normalisation of well-typed 
proof-terms in RScut^ * 6 . every proof-term of a derivable sequent in HH^^^  is reducible in 
R S c u t  to the proof-term of a derivable sequent in H H .  (See the Appendix A of [Dra88] for a 
strong normalisation argument of a set of rules essentially including those encoded by the rules 

of R S c u t . )

We have shown that if E; A => e : G is derivable in HH^^^  then there exists e\, possibly 
more than one, s.t. E; A => ei : G is derivable in H H .  Below, we write cut{e) meaning a ei in 
these conditions; ei may be thought of as the cut-free form of e when a particular strategy for 
choosing redexes is followed.

The remainder of this section defines the calculus HH^^^  and shows how HH^^^  is related 
to H H ^^K

The calculus H H^^^  is an extension of H H '  with a cut rule. Essentially, the process of going
from H H '  to  H H^^^  is the same as that described above to go from H H  to H H^^^.  The classes
of objects used in H H^^^  are those used in H H '  together with the class of /-formulae. The
definitions of the classes of objects used in HH^^^  are the same as for H H '  with the exception
of proof-terms e that allow the extra constructor let mentioned above. The forms of judgement
of H H^^^  are the same as those of H H'. The derivable judgements of H H^^^  are the same as
those of H H '  except for sequents. For deriving sequents in HH^^^  the cut rule shown below
is also allowed. _   ̂ _  . ,  . _

E; A i => e : /  E; A i, x : / ,  Ag =4«- ei : G
E; Ai, A 2 => let X = e in Cl : G 
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The differences between the cut rule for and the cut rule for are due to the
difference between contexts in , which are lists, and contexts in which are sets.
A result analogous to Theorem 4.1, relating H H '  and H H ,  holds between HH^^^  and HH^^^.

Theorem  4.5 Let S; A h G 5»/ 6e derivable in HH^^^  . Then, the sequent S; A e : G is 
derivable in HH^^^ iff the sequent S;i^(A) => [A]e : [A]G is derivable in H H ^^^ .

P roo f: A proof for this result may be obtained by similar arguments to those used for proving 
Theorem 4.1. □

Using Lemma 4.6 and Theorem 4.5 one may show HH^^^  to be an extension of H H.  
Combining theorems 4.5 and 4.4 one shows tha t HH^^^  is conservative w.r.t. H H .  Thus, 
H H ^ut  js a conservative extension of H H .

4.4  D efin itions in In tegrated  Logical and Functional Program ­

m ing and S -typ es

Consider logic and functional programming from a type-theoretic perspective. Traditionally, 
functional programming is based on non-dependent types; thus, the logical contents that may 
be attached to a function is fairly simple. However, in the presence of richer type theories more 
information may be attached to functions.

In the context of integrated logical and functional programming, if more elaborate types 
are attached to the functions being defined, during the search for a proof it may suffice to 
look at the information contained in a type attached to a function, rather than having to 
use the function itself. So, in the presence of a definition there may be two alternative ways of 
achieving a goal: (i) by replacing occurrences of the definiendum by its definiens; or (ii) by using 
the type attached to the definiendum. In the first case a definition is merely being used as an 
abbreviation mechanism, which corresponds to the traditional use of definitions in functional 
programming, i.e. the definition mechanism introduced in Section 4.2. In the second case the 
logical properties of the definiendum, i.e. the type attached to the definiendum, may be used 
to achieve a goal, possibly providing shorter ways of achieving the goal.

The idea above can be realised in a type theory like the Extended Calculus of Constructions 
[Luo94], where a E-type may be used to attach a logical specification to a term of simple 
type. Traditionally, in dependent type theories [ML84, CH8 8 ] terms and proofs are identified. 
However, in this thesis terms of simple type and proof-terms are kept separate. The presence 
of E-types allows us to maintain the distinction in a structured way, following [MB93].

The notation generally used for E-types is E^iTiTg, where T\, and Tg are types. Given a 
E-type Er:TiT2 , an element of this type is a pair ( 1̂ ,^2) s.t. ti is of type T\ and fg is of type
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[ii/æ jîg. In this thesis, the set D  of S-types allowed is as follows:

D  ::= /  j Ea,;7-D,

where r  is a simple type and /  is an /-formula, as defined in the previous section. (Logical 
formulae are regarded as types). The operation of substitution [A/x]J3 on D-formulae is defined 
as for B^-formulae, when D  is an /-formula, and is defined as Hy:r[A/x]Di, when D  is of the 
form Hy:rDi and y ^  x and y ^  A. (As usual, in a formula Ej,;tD, y is a binder whose scope is 
D  and occurrences of y in D are called bound', D-formulae are considered equal up to renaming 
of bound variables.)

A (elementary) definition of dependent type is of the form:

- d e / e : D,

where x is a variable, e is a proof-term and D is a D-formula. Generally, when D  is of the 
form 'B y i r l ,  e is a pair p a i r q { A ,  ei), where A is a term of simple type r  and e \  is a proof-term 
of the formula [A/y]/.

Let us consider contexts A, extending the contexts used in H H',  allowing definitions of 
dependent type. Let us consider the rule below, resembling the cut rule of HH^^^ , as a rule 
for dealing with definitions of dependent type in the context.

E; A i e : Z) E; A i, x : D, A 2 =» ei iG  , .
E; Ai, X e : D, A 2 6 i : G ^

The main difference between the def rule and the cut rule of is the presence of a
definition of dependent type in the conclusion sequent, whose type corresponds to the cut 
formula. (Note that D  occurs in the succèdent of the left premise and in the antecedent of 
the right premise. Also note tha t the proof-term of the conclusion sequent is the same as the 
proof-term of the right premiss. In the conclusion sequent, the information that x is defined 
as e is kept solely in the context.) Let us consider proof-search of a goal G w.r.t. a program 
E; A in hypothetical languages based on calculi containing the cut rule of HH^^^  and the def 
rule. The cut rule of m j o u t  applied at any point in the search, with the possibility

of choosing any well-formed formula for cut formula. The def rule may also be applied at any 
point in the search, as long as there is at least one definition of dependent type in the program, 
but the formula used as cut formula must be the type of the definition being broken up.

Having a rule such as the def rule for dealing with definitions of dependent type requires 
rules to deal with E-types, both in the succèdent and in the antecedent of sequents. A rule for 
dealing with E-types in the succèdent can be easily obtained by interpreting a E-type as an 
existentially quantified formula. A rule for dealing with E-types in the antecedent is a bit more 
problematic. One possible form of defining such rule is by enlarging the form of proof-term 
annotations allowed. Projections may be allowed both in proof-terms annotating formulae in
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the program and in formulae themselves, as used in the preliminary exposition [Pin94] of these 
ideas for an integrated logical and functional language. Another alternative, that used in this 
thesis, is the use of patterns in place of projections.

Traditionally, the first and second projections are used to access the components of a pair. 
A pattern is a simple generalisation of a variable. A pattern allows the definition of names for 
the components of a pair. The set of patterns p is defined as follows:

p : : = x \  (x,p),

where x ranges over variables. A pattern of the form (xi, (xg, ...(x„, x)...)) is usually written as 
(xi, X2 , ..., x„, x); the variables x i, xg ,..., Xn are called its simple type variables and the variable 
X is called its proof-term variable.

The definitions of dependent type allowed in this thesis are of the form:

p -def e : D.

For example, an elementary definition of the form

X —def poirq{A, e) : Sy;7-/,

may now be written as the non-elementary definition:

(xi,p) -def pairq(A,e) :

defining a name xi  for the term of simple type A.
A simple definition x =def A : r  is said to be implicit in a definition of dependent type of the 

form (xi,p) ~def pairq{Ai,e) : if either x% =  x, Ai =  A and Ti =  r  or x =def A : r  is
implicit in p c : [A\/y\D. The definienda (of simple type) of a pattern p are inductively 
defined as follows: (i) if p is a pattern of the form (x,pi) then x is a definiendum of p and any 
definiendum of pi is also a definiendum of p; (ii) if p is a variable then p has no definienda.

A rule similar to the def rule shown above to deal with definitions of dependent type is the 
following rule:

S ;A i= » e :D  S; A i,p  : D, A 2 =» ei : G 
S; A i,p  =dcf e : D, A 2 ei : G

This rule requires patterns annotating formulae in the context. This rule is not invertible, 
since there may be implicit simple definitions in the conclusion which are not available in the 
premises. For avoiding these problems, the rule to deal with definitions of dependent type 
is split into two rules, described in Fig 4.9, one for definitions of E-type, tha t keeps available 
abbreviations for terms of simple type, and the other rule for definitions of /-type, similar to 
the d e /rule shown above.

Section 4.5 defines the calculus . This calculus allows definitions of dependent type
of the form described in this section. also allows simple definitions not implicit in
definitions of dependent type. The calculus is used in Section 4.6 to define a proof-
theoretic semantics for an integrated logical and functional language.
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E; A i ,x  A : e : [x/y]£>, A 2 =» e i : G
E ;A i ,  (x ,p )  = j . /  paiVg(A,e) : EyjrD ^A a => ei ; G

de/s

E ; A i => e : /  E ; A i,  z  : J , A 2 =» c i : G 
E ; A i , z  =de/ e : A 2 => e i : G

de//

Figure 4.9: Rules for definitions of dependent type.

4.5 T h e C alculus

This section defines the calculus , which may be thought of as an extension of H H '  with
the mechanism for definitions of dependent type described in Sec. 4.4. The calculus H H ^ ^ f  is 
used in Sec. 4.6 to define a proof-theoretic semantics for the integrated logical and functional 
programming language LFPL. In this section is shown an interpretation of derivable judgements 
of H H ^^^  as derivable judgements of H H .  The converse is also shown, i.e. how to interpret 
derivable judgements of H H  as derivable judgements of H H ^ ^^ .

Figure 4.10 presents the grammars of the several classes of objects used in H H ^ ^^ . The 
judgements of the calculus H H ^^^  are presented in Fig. 4.11.

T

A
S
H
G
I
D
e

P
A

s I r  r  
X I Ax : r.A | AA
0  1 S , X : r

A \ H A H \ G d H \ V^:r//
A | G A G l G V G | i / D G |  | V̂ =TG 
A | / A / | / D / | V , : , /
1  I ^ x : r D

pair{e,e) | inl{e) | inr(e) | lambda{x.e) 
pairq{K,e) | lambdaq[x.e) | x | splitl{x,x.e) 
splitr{x, x.e) | apply{x, e, x.e) j applyq{x, A, x.e) (proof-terms) 
X j (x,p)
0  1 A, X : B  I A, X =de/ A : r  1 A, p =de/ e : D

(simple types)
(A-terms)
(signatures)
(hereditary Harrop formulae) 
(hereditary Harrop goals) 
(intersection formulae) 
(definition types)

(patterns)
(programs)

s ranges over the set S  of primitive types; x ranges over the infinitely denumerable set X  of 
variables; A  ranges over the set of atomic formulae of HH.

Figure 4.10: Classes of objects of H H ^ ^^ .

Note that although the sets of Zf/T'-contexts and Zf Zf -contexts are not the same, the nota­
tion used for meta-variables ranging over these two sets of objects is the same, i.e. A possibly 
indexed.
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(i) h E signature signatures)

(ii) h  E; A basis bases)
(iii) E; A h A : r A-terms of a type)
(iv) E; A h A >T A one step reduction on A-terms)

(v) E;Ah A>;A zero or more steps reduction on A-terms)
(vi) E; A h A =T A convertible A-terms)
(vii) E; A h A a / atomic formulae)
(viii) E ' , A h H h f hereditary Harrop formulae)
(ix) E;AhGy/ hereditary Harrop goals)

(X) E; A h A = A convertible atomic formulae)
(xi) E; A h ZZ =  ZZ convertible H-formulae)
(xii) E ;A h G  =  G convertible G-formulae)
(xiii) E; A => e : G proof-terms of a G-formula)

Figure 4.11: Judgement forms of H H ^ ^ f .

The notation x ^  A,  when A is a H - c o n t e x t ,  indicates that: (i) there is no formula H  
s.t. X : Zf is in A; (ii) there is no simple definition of the form x = 4^/ A : r  in A; (iii) there is 
no definition of dependent type in A of the form (xi, ...,x„) =def 6 : D  s.t. x =  x,-, for some 

1 ^  or ® occurs freely in e.
The rules defining derivable judgements of of the forms (i) and (v)-(xii) are ob­

tained from the rules of ZZZf'defining the corresponding forms of judgement, where contexts 
are regarded as ZfZf -contexts. The rules defining derivable judgements of of the
forms (ii)-(iv) and (xii) are the rules obtained from the rules defining derivable judgements of 
the corresponding form in H H',  by regarding contexts as HH^^^-contexts, together with the 
extra rules shown in Fig. 4.12. The rules defining derivable sequents of H H ^^^  are shown in 
Fig. 4.13.

The following meta-theoretical properties of HH^'^^ are used in various places in the re­
mainder of this thesis.

P ro p o sitio n  4.1 Let the sequent S; A e : G he derivable in H H ^ ^ ^ . Then, the judgements 
h E; A basis and E; A h G y /  are derivable in H H ^ ^^ .

P roof: Follows easily by induction on the structure of the derivation of E; A => e : G. □

P ro p o sitio n  4.2 Let the judgement h E; A i,x  =def 6 : Z, A 2 basis be derivable in H H ^ ^^ . 
Then, the sequent S; A i c : Z is derivable in H H ^ ^ ^ .
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h E; A, z A : r ,p  =  j,/  e : [x/ y]D basis 
E; A, (z ,p) pa irq(A,e) : Hy-.rD basis

h E; A basis S; A => e : /  .
h E; A, z = j . ,  e : I  basis

E; A l, z =d,y A : r, p e : [z/y]D, A g h A i :  n
E; Al, (z,p) =d./ pairg(A,e) : Ey;rD, Ag h Ai : n

E; Ai , z  =d,/ A ; r,p=a,y e : [z/p]D, Ag h AïOnAz 
E; Al, (z,p) païVg(A,e) : Ey;rD, Ag h Ai^^Az

Figure 4.12: Rules of .

P roo f: By analysis of the rules allowed for deriving bases. □

P ro p o sitio n  4.3 (W eakening) Let it be a -derivation of the sequent S; A i, A2 e : G
and let the judgement E; A i h / /  h f  be derivable in . Then, for every x s . t  x ^  (A i, A 2),
the sequent E; A i, z : H, A 2 e : G is derivable in .

P roof: The proof follows by induction on the structure of tt. Case n is an axiom a similar 
step may be taken for deriving S; A i, z : / / ,  A2 e : G, the only difference being that in the 
latter case one needs to construct a derivation of the judgement h E; A i, z : Zf, A 2 basis. Such 
a derivation may be easily obtained from the derivation of h  E; A i, A 2 basis and the derivation 
of E; A i h Zf h f ,  since x ^  (A i, A 2). The other cases follow easily by the I.H.. □

P ro p o sitio n  4.4 (C o n trac tio n ) Let n be a -derivation of the sequent

E; A i, z : Z, z : Z, A2 e : G,

where z ^  A 2 . Then, the sequent E; A i, z : / ,  A2 =i>- {z/z}e : G is derivable in .

P roo f: The proof follows by induction on the structure of TT.
Consider the case where TT is an axiom of the form: I

h E; A i,z  : Z, z : Z, A 2 . i
E ;A i ,z :Z ,z :Z ,A 2 = > z :Z  j

Since z ^  A 2 , a derivation of h E; A i,z  : / ,  A2 basis may be easily constructed. Thus, the |
following derivation may be formed: i

h E; A i, X : I,  A2 basis . j
E ;A i ,z :Z ,A 2 = > x :Z  |
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E; A  ei : G i E; A  => eg : Gg ^  ^
E; A  =*- p a i r [ e \ , eg) : G i A Gg

E ;  A  = »  e  : G i  S ;  A  h  G g  y /  S ; A = » e : G g  S ; A h G i y /  ^  ^

E ;  A  => i n / ( e )  : G i  V G g   ̂ E ;  A  => i n r ( e )  : G i  V  G g

E; A i, z  : j / ,  Ag => e : G
S; Ai, Ag => i a m b d a ( x . e )  : H  D  G

E ;  A =>• e  : [ A / z ] G  E ;  A h  A  ; r  

E ;  A =>■ p a i r q { A ,  e )  : 3jr:rG

E ,  z  : r ;  A => e  : G  h  E ;  A b a s i s

=>D, X ^  Ag

=>■ 3

E ;  A  => l a r n b d a q { x , e )  : ^ x -.rG  

h  E ;  A i , z  : A ,  A g  b a s i s

=>V ,z^E

azîomE; Ai, z : A, Ag => z : A

E; A i ,z  : Hi A J/g, z% : i / i ,  Ag => e : G 
E; Ai, z : /Zi A Bg, Ag => spliil{x, zi.e) : G

E; A i , z  : H i  A Bg, zi : //g, Ag => e : G  
E; Ai, z : A Bg, Ag => splitr{x, xi.e) : G

E; A i, z : Gi D 77, Ag ei : Gi E; Ai, z : Gi 3  Zf,zi : ZT, Ag =» e : G
E ;  A i , z  : Gi D  77, A g  app/y(z,ei, zi.e) : G

E ;  A i,z  : Vr,:r77, zi : [A/zg]77, Ag => e  : G S ,  Ai h  A : r  
E ;  A i,z : Va:a;r/7, Ag => app/yg(z, A,zi.e) : G

A; = > ,z i ^  Ag 

Af , z% 0  Ag

3 = ^ ,x i  0  Ag

V = > ,z i 0  Ag

E; Ai, z ; 77i, Ag => e : G E; Ai h 77i—77 _  E; A => e : Gi E ;A hG i= G  
E; Ai, z : 77, Ag =>'e : G * E; A => e : G

E; A i ,  z A : r,p  -g^, e : [z/y]D, A g  =»  e i  : G 
E; Aj,(z,p) p a ï > g ( A , e )  : Ey;r77, A g  => e i  : G ^

E; A i  =»  e : 7 S ;  A i ,  z : 7, A g  =» e i  : G .
E; Ai, z e : 7, Ag ei : G ^

Figure 4.13: Rules for derivable sequents of 7777^^^/.
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Note that the identity {x/z}z =  z  holds.
The other cases, except those where the last step of tt is either de/g or def j,  may be proved by 

similar arguments to those used in proving the corresponding cases in Lemma 4.3 (admissibility 
of contraction in 7777).

Case the last step of tt is a rule def i  of the form:

S; A i, X : 7, z : 7, Agi =» ei : 7i S; A i, x : I , z :  I,  Agi, xi : 7%, A 22 =» e : G , .
E; A i, X : 7, z : 7, Agi, xi =<,«/ ei : 7i, A22 ==> e : G ^

By the I.H., there are derivations of the sequents:

E; A i, X : 7, Agi {x/z}ei : 7i;
E; A i, X : 7, Agi, xi : 7i, Agg {x /z}e  : G.

Since z has no free occurrences in ci, by hypothesis, it is easy to show tha t {x /z}e i  is equal to 
ei. Thus, the following derivation may be formed:

E; Ai, X : 7, Agi =» ei ; 7/ E; A i,z  : 7, Agi, x% : 7i, Agg =» {x/z}e : G
E; Aj, X : 7, Agi, xj —def • 7%, Agg \ x j z j e  : G

The case where the last step of TT is de/jj follows directly by the I.H.. □

The remainder of this section studies relations between and 7777. These relations
are used in Sec. 4.6 to interpret the programming language LFPL, based on , by means
of the programming language HOPLP, based on 7777.

D e fin ition  4.2 The mapping 'if) from -contexts to -contexts is defined as fol­
lows:

V'(O) -def 0 ;
^ (A , X =def A : r) -def V>(A), x - je f  A : r; 
if)(A,x:  77) =def ^ (A ),x  : 77;
i){A, (x,p) =def pa*>q(A, e) : Ey;rD) =def i^{A, x -def A : r , p  -def e : [x/y]D);
"^(A, X —def G " 7) —def V (̂A).

L em m a 4.7 Let A  be a 7777' '̂^/ -context. Then:

(«) 'if){A) =  (A i, X : 77, Ag) iff A  = (A3 , x : 77, A4) and ^ (A 3) =  Ai and ^ (A 4) =  Ag;

(n) i f  (z =def A : r)  € ^(A ) then either (z —def A : r)  € A or exists {p —def e i D) Ç. A  s.t. 1
1z =dg/ A : T is implicit in p =def e : D.

Proof: By analysis of the definition of 'ip. □ ■

The lemma below shows how to interpret some derivable judgements of 7777^^ /̂ into derivable

judgements of 7777^“  ̂ , when 7 7 7 7 -contexts are interpreted into via if). |
Î
1
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L em m a 4 . 8  I f  the H I I - j u d g e m e n t s  in the left column of the table below are derivable 
in then the corresponding -judgements in the right column are derivable in

(i) h  S  signature h S  signature 
(n‘) h S; A basis h S; ^(A ) basis
{iii) S; A h A : r  E; ^(A ) h A : r
(iu) E; A h A a /  E; ^(A ) h A a f
{v) E; A I - 77 A/ E; V»(A) h 77/ i /
M  E ;A I - G y /  E ;V '(A )H G y /

P roo f: The proof is by simultaneous induction on the structure of the derivations of the 
7777^^^/-judgements on the left column. We analyse some cases below.

Case the last step of the derivation of the 7777'^^/-judgement on line (ii) is of the form:

}- E signature 
h E; 0  basis

Then, by the I.H., there is a derivation of h E signature in . (Observe that the derivable
signatures of are the same as those of 7777^^^ .) Thus, the following -derivation
may be formed:

h E signature 
h E; 0  basis

Case the last step of the derivation of the 7777^^-judgement on line (ii) is of the form:

h E; Ai basis E; Ai h A : r  
h E; A i, z =def A : r  basis

where z 0 E and z ^  A i. By the I.II., there are -derivations of judgements 4.9 and

4.10.
h E; '(p{Ai) basis (4.9)

E ;^ (A i) l-A :T  (4.10)

From derivations of 4.9 and 4.10, the following 7777̂ “̂  ̂-derivation may be formed:

h E; ■0(Ai) 6asis E ;'0(A i) h A : r  
h E; ^ (A i), z =def A : r  basis

since z ^  E and also z ^  ^(A%), which may be proved from z ^  A%. Note that

V?(Ai,z =de/ A : r)  =  (V>(Ai),z =de/ A : r).

Case the last step of the derivation of the 7 7 7 7 -judgement on line (ii) is of the form:

h E; Ai basis E; Ai h 77 h /  
h E; A i, z : 77 basis

where z ^  A i. By the I.H., there are 7777^“  ̂-derivations of the judgements:
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h- £; ip{Ai) basis;
E;'iP(Ai)h H  h f .

So, the following -derivation may be formed:

h S; V '(^i) basis S; V^(Ai) \~ H  h f  
\r E; ^ (A i), X : H basis

since, from z ^  A i, it may be easily shown tha t z ^  '0(Ai). Note that

V>(Ai,z : H) =  (V?(Ai),z : 77).

Case the last step of the derivation of the 7777'^^-^-judgement on line (ii) is of the form:

h E; Ai basis E; A i =» e : 7 
f- E; Ai, z =def e : 7 basis

where z 0 A i. Then, by the I.H., there is a -derivation of h E ;^ (A i) basis and note
that

V>(Ai,z 6 :7 )  =  'tp(Ai).

Case the last step of the derivation of the -judgement on line (ii) is of the form:

h E; Ai, z =d^f A : t , p —def 6 : [x/y]D basis 
h S; A i, (z,p) —def pairq{A,e) : T,y,rD basis

Then, by the I.H., there is a 7777^“  ̂-derivation of

h E;V»(Ai,z -def A : r,p=def e : [x/y]D) basis.

The proof of this case is concluded by observing that the following identity holds:

V>(Ai, (z,p) =de/ pa i r q {A ,e )  : SyjrT)) =  ip { A i ,x -def  A : r , p - d e f  e : [x/y]D).

The last case we consider is that where the derivation of the 7777̂ -̂/̂ -judgement on line (iii) 
is of the form:

E; A i ,z i  =de f  Ai : t i , p  =de f  6 : [zi/yJD, Ag h Ag : rg 
E; A i, (zi,p) =d e f  p a i r q { A i , e )  : Eyi^iD, Ag h Ag : rg

By the I.H., there is a 7777^^^ -derivation of

E; i){Ai, z i =def Ai : n , p =def e : [zi/y]D , Ag) h Ag : Tg; 

it is easy to show tha t the following identity holds:

■0(Ai, x \  —def A i ’. T \ , p  —def 6 : [ z i /p ] /? ,  Ag) =  '0 (A i,  ( z i ,p )  =dc/ poivqi^Ax, e) : Ey;^^77, Ag).

□
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L em m a 4.9 Let tt be a -derivation o/ S; A => e : G with no def j  rules. Then, the
sequent S ; '^{A) e iG  is derivable in .

Proof; The proof is by induction on the structure of ir. Case the last step of t t  is an axiom, 
then, by using Lemma 4.8, a similar axiom may be formed in . The cases where the
last step of TT is either a right or left rule or a conversion rule may be mimicked in .
The case where the last step of TT is defj. follows by using the I.H. and the definition of 'tp. □

Lemma 4.9 shows an interpretation of 7777^^/-sequents having derivations with no def j  rules 
into derivable sequents of 7 7 7 7 .  Theorem 4.6, below, presents an interpretation of arbitrary 
derivable sequents of into derivable sequents of 7777^“  ̂ . The mapping v, that takes a
7727^^6/-context and a 7 7 7 7 -proof-term and gives a 7777CU/ -proof-term, is defined as follows:

i^((>,e) =def e;
i/((z : 77, A), e) -def v{A, e);
i^((z -def A : r, A), e) -def f/(A, e);
f/((z =def e : 7, A), ei) —def let x — e in v{A, ei);
u{{x,p) -def p a i r q { A ,  e) : Hy.rD, A), ei) =*,, t/((p -def e : [x/y]D, A), ei).

The following lemma is used in proving Theorem 4.6.

L em m a 4.10 Let I- S; A basis be derivable in 7777'^^/. Then, ; /E ;^ (A )  e : G is derivable 
in 7777^^^ then S; ‘0(A) => f/(A, e) : G is derivable in .

Proof: The proof follows by induction on the number n of definitions of dependent type in A. 
Case n =  0  then u{A, e) — e, hence the result is trivial.
Case n > 1 then A may be written in the form (A j,p  =def 61 : D, Ag), where Ai contains

no definitions of dependent type. The proof follows by induction on the structure of p.
Case p = X then it may be easily shown that 0(A ) =  0(A i, Ag). So by the I.H., there is a

derivation of
S; 0 (A i, Ag) => i/((Ai, Ag), e) : G.

It may be shown that 0(A i,A g) =  (0(A i),0(A g)) and, for Ai contains no definitions of 
dependent type, i/((Ai, Ag), e) =  i/(Ag,e). Thus, by weakening, there is a derivation TTi of the 
sequent:

S; 0 (A i), z : D, 0(Ag) i/(Ag, e) : G.

By hypothesis, h E; A basis is derivable. So, by Proposition 4.2, there is a 7777*^ /̂-derivation 
TTg of E; A i ei : D. Since Ai contains no definitions of dependent type, TTg may contain no 
defj  rules. So, by Lemma 4.9, there is a 7 7 7 7 -derivation tts of E ;0 (A r) => ei : D. Now, the 
following 7777^“  ̂-derivation may be formed:

W3  7Ti
E; 0 (A i) ei : D E; 0(A i), z : D, 0(Ag) t^(Ag, e) : G 

E; 0 (A i), 0(Ag) ^  let X — e\ in i^(Ag, e) : G
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For concluding the proof, observe that the identity

u{{A i,x  —def ei : D, Ag),^) =  {let z =  ei in j^(Ag,e))

holds, since Ai has no definitions of dependent type.
The case where p is of the form (z i,p i) follows easily by the I.H.. □

T h eo rem  4.6 I f i r i s a  -derivation of sequent E; A e : G then E; 0(A ) =>■ v{A, e) : G
is derivable in .

P roof: The proof follows by induction on the structure of TT. Some cases are analysed below. 
Case the last step of TT is an axiom:

h E; A i, z : H, Ag basis
E; A i, z : 77, Ag => z : 77 axiom.

By Lemma 4.8, there is a 7777^^^ -derivation off- E; 0 (A i, z : 77, Ag) basis. By Lemma 4.7, the 
identity 0 (A i,z  : 77, Ag) =  (0 (A i) ,z  : 77,0(Ag)) holds. So, the following 7 7 7 7 -derivation 
may be formed:

I- E; 0 (A i), z : 77,0(Ag) basis
E; 0 (A i), z : 77,0(Ag) => z : 77 axiom.

By hypothesis, E; Ai, z : 77, Ag e : G is derivable; so, by Proposition 4.1, there is a derivation 
of h E ;A i,z  : 77, Ag basis. Thus, using Lemma 4.10, there is a 7 7 7 7 -derivation of the 
sequent:

E; 0 (A i), z : 77,0(Ag) :/((A i,z  : 77, A g),z) : 77.

Case the last step of TT is de//:

E; Ai e : 7 E; A%, z : 7, Ag => : G de//.E; Al, z =dcf e : 7, Ag => ei : G

By the I.H., and by Lemma 4.7, there are I I -derivations of the sequents: 

E ;0 (Ai) => t^(Ai,e) : 7;
E; 0 (Ai), z : 7 ,0 (Ag) i/((Ai,z : 7, Ag), ei) ; G.

Thus, by using a cut rule in , there is a derivation of

E ; 0 ( A i ) , 0 ( A g ) = ^ P r i : G ,

where PTi is the proof-term:

let X =  i/(Ai,e) in i/{{Ai,x : 7, Ag),ei).
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Note tha t 0 (A i, x =def e : I, Ag) =  (0(A i), 0(Ag)). It remains to prove tha t from a 7777̂ “̂  ̂- 
derivation of proof-term PT\,  we may construct a 7777^^^ -derivation of proof-term FTg, defined 
as:

u{{A i,x  -def e : 7, Ag),ei).

The proof is by induction on the number n of definitions of dependent type in A i.
Case n =  0 then it is easy to show tha t PTi and FTg are equal to

let X = e in %/(Ag, ei).

Case 71 > 1 then Aj may be written as (A n ,p  =def ^g : D, Aig), where A n  contains 
no definitions of dependent type. Assume without loss of generality tha t p is a variable zg. 
Proof-term PTi is equal to the proof-term

let X = (let zg =  eg in f/(Aig, e)) in (let zg =  eg in  z/((Aig, z : 7, Ag), ei)),

for A n  contains no definitions of dependent type. It is easy to show that an -derivation
with this proof-term may be permuted to a derivation with the following proof-term

let Zg =  eg in (let z  =  f/(Aig,e) in z/((Aig, z : 7, Ag), ei)).

(Figure 4.14 shows derivations corresponding to this kind of permutation.) Since Aig contains 
one definition of dependent type fewer than A i, by I.H., we may construct a derivation of proof 
term:

let Zg =  eg in  t/((Aig, z -def e : 7, Ag), ei),

which may be easily shown equal to FTg.
Proofs for the cases where the last step of tt is of any other form may be obtained by similar 

arguments to those used above; they require permutations of each rule with cut rules. □

*
S ; A i = » e 2 : / t  S; A i ,a?2 : . Ag =»• e ; /  S ; A i ,  Ag.ar ; A3 =»• eg : l i  S; A i ,  A g .z  : f , A 3 ,zg : A ,  A4 =» ei ; G

S; A i , Ag =» let  zg =  eg m  e : / _______________________ S; A i , Ag, j? ; / ,  A3, A4 =» let gg =  eg in ei ; G
S; A i , A g , A3, A4 => /ef a; =  {let azg =  eg in e) in {let xg — eg in ej ) : O

S; A i ,x g  : / i ,  Ag =»• e ; /  S; A i ,x g  ; , A g ,x  : A3, A4 =» ei : G
E; Ai => eg : S ; A i , x g  : , A g , A3, A4 let x  — e in e i )  : G

E; A ) , Ag, A3, A4 => /et Xg =  eg in {let x  =  e in e i )  : G

Figure 4.14: A permutation of cuts in 7777*̂ ^̂  .

C oro llary  4.1 7 /S ; A e : G is derivable in then

S; 1^(0(A)) => cuf([0(A)]i/(A, e)) : [0(A)]G

is derivable in 7777.
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Proof; If E; A =>■ e : G is derivable in then, by Theorem 4.6,

E ;0(A ) f/(A,e) : G

is derivable in . By Theorem 4.5,

E;i^(0(A)) => [0(A)]z/(A,e) : [0(A)]G 

is derivable in By Theorem 4.4,

E;H(0(A)) cu/([0(A)]i^(A,e)) : [0(A)]G

is derivable in H H .  □

Now a problem converse to Theorem 4.6 is addressed, roughly, how to transform derivable 
sequents of HH^^^  into derivable sequents of H H ^ ^^ .

L em m a 4.11 Let h E; A basis be derivable in H H ^ ^ ^ . Then:

(i) if E; 0(A ) h A : r  is derivable in H H^^^ then E; A h A : r  is derivable in H H ^ ^^ ;

(ii) ifYl; 0(A ) h A>tAi is derivable in HH^^^ then E; A h Ao^Ai is derivable in H H ^ ^^ .

P roof: The proof of (i) follows by induction on the structure of the H H^^^  -derivation TT of 
E; 0(A ) h A : r .  Consider the case where the last step of TT is of the form:

I- S; A i, z =de/ A : r , Ag basis 
E; A i, z A : r , Ag I- z : r

By Lemma 4.7, either A =  (A3 , z =de/ A : r , A4) or A =  {A 3 , p —def e : D,  A4) and z —def A : r
is implicit in p =def e : D.  Case A is of the first form a similar step may be used in H H ^ ^^ .
Case A is of the latter form, we assume, without loss of generality, p =def e : D to be of the 
form (z,p i) =def pairq{A,ei) : Ey;rDi. Then, the following steps in H H ^ ^ f  may be formed:

h E; A3 , z =def A : r. Pi =def Ci : [x/y]Di,  A4 basis 
E; A3 , z =def A : r , Pi =jef ei : [z/y]Di, A4 H z ; r  
E; A3 , (z, pi) =def pairg{A, ei) : I^y.rDi, A4 h z : r

where a derivation of the uppermost judgement may be obtained from the derivation of 
h  E; A basis, that exists by hypothesis.

If the last step of TT is a rule of any other form a similar step may be used in H H ^ ^ f .
A proof of (ii) may be obtained by similar arguments to those used for proving (i). □

T h eo rem  4.7 Let h S; A basis be derivable in H H ^ ^^ . Then, ifT»; 0(A ) e : G is derivable 
in H H^^^ with no cut rules then E; A =>• e : G is derivable in H H ^ ^ ^ .
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P roof: Let TT be a -derivation of E; 0(A ) e : G. The proof follows by induction on
the structure of TT. Since TT is c«/-free, the last step of TT may not be a cut rule. Some cases are
considered below.

Case the last step o f TT is of the form :

h E; A i, z : 77, Ag basis 
E; A i,z  : 77, Ag z : 77

By Lemma 4.7, the 7777'^^/-context A is of the form (A3 , z : 77, A4). By hypothesis, the 
judgement I- E; A3 , z : 77, A4 basis is derivable in 7777^^^. So, the following 7 7 7 7 -derivation 
may be formed:

h E; A3 , z : 77, A4 basis
axiom.E; A3 , z : 77, A4 =>• z : 77 

Case the last step of TT is 3:

E; 0(A ) => ei : [A/y]Gi E; 0(A ) h A : r
=> 3.E; 0(A ) pairq{A, e%) : 3y;T-Gi

By Lemma 4.11, there is a 7777'̂ ®’̂ -derivation of the judgement E; A h A : r .  By the I.H., 
there is a 7777'̂ -̂/̂ -derivation of the sequent E; A ei : [A/y]Gi. Thus, the following 7777 
derivation may be formed:

E; A => ei : [A/y]Gi E; A h A : r
E; A => pairq{A,  ei) : 3y;rGi =>3.

Case the last step of TT is =/:

E ;0 ( A ) = » e :G |  E ; 0 ( A ) h G i= G  _
E ;0 (A )= ^ e :G  '

An 7 7 7 7 -derivation of the judgement

E ;A I -G i  = G

may be constructed by induction on the structure of the 7777^^^ -derivation of

E ;0 (A )t-G i = G ,

essentially by using part (ii) of Lemma 4.11. By the I.H., there is a 7 7 7 7 -derivation of the 
sequent

E; A => e : Gi.

So, the following derivation in may be formed:

E; A e : G% E; A h* G% =  G _
E ; A = > e : G  '

The cases corresponding to the other possible forms of TT follow by similar arguments. □
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Corollary 4.2 Let h E; A basis be derivable in . Then, if  the sequent

E ;K W A ))= ^ e :[^ (A )]G

is derivable in H H  then, for every e\ s.t. [‘0(A)]ei =  e, the sequent E; A =>• ci :G  is derivable 
in

P roof: If E;H(^(A)) e : ['0(A)]G is derivable in i f  then, by Lemma 4.6, 
E ;^(^ (A )) e : [^(A)]G is derivable in Thus, by Theorem 4.5, E ;^(A ) ei : G
is derivable in , for every e\ =  [^(A)]e, since E; ^(A ) f- G is derivable in . It
may be easily shown that a -derivation whose proof-term is of the form [A]e, where A is
a -basis and e is a proof-term in H H,  has no cuts. So, by Theorem 4.7, E; A ei : G
is derivable in H H ^ ^^ , for every e\ =  ['^(A)]e. □

From Corollary 4.2 one may easily prove that: if the sequent E; A e : G is derivable in 
H H  then, for every list Ai consisting of the elements of the set A, the sequent E; A% =>- e : G 
is derivable in H H ^ ^^ . So, combining this result with Corollary 4.1, one shows that H H ^^^  is 
a conservative extension of H H .

We conclude this section by showing that the family of rules of backchaining, defined below, 
is admissible in H H ^ ^^ . The rules in this family may be thought of as instances of Miller’s rule 
of backchaining presented in [MilQO]. Backchaining is used in Sec. 4.7 for showing that some 
jy^de/-gequents are derivable.

D efin ition  4.3 The family of rules o/backchaining (BC), indexed by the natural numbers, is 
defined as follows:

Index n =  0 _   ̂ ^  ^
E; A i, æ : G D v4, Az e : G

E; A i, œ : G D A, Ag bc{x, Q, e) : A ’

BC,

Index n > \

E; A i, X : H ,A 2 =̂  e : [An/a;»]. . .  [A i/zi]G  S; Ai i- Ai : ri . . .  E; A i h An :
E, Ax, X . I I , A 2 bc{x, [Ax,. . . ,  e'j : [Ay,/®n] ♦ • • [ A x i]A

where H  — '̂ xy'.Ti ♦ • xn’.Tni,^ Z) A) and
bc{x, 0, e) =rfe/ apply{x, e, z.z), z ^  x, z  ^ e ;
bc{x, [A I As], e) applyq{x. A, z.bc(z. As, e)), z ^  x, z ^  e.

Proposition 4.5 (admissibility of BC) / / t t  is a derivation of a HH^^^-sequent constructed 
by using HH^^^-rules and BC  then tt may be transformed into a derivation of the same sequent 
using HH^^^-rules only.
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P roof; The proof follows by induction on the structure of tt. The cases where the last step of 
7T is not a B C  rule are easy. Consider the last step of TT is a B C  rule. The proof follows by 
induction on the index of the B C  rule.

(i) Case the index is zero, TT is of the form:
7Ti

E; Ai, z : G D A, Ag e : G
E; A i, a: : G D A, A% bc{x, |],e) : A

Then, by the I.E., TTi may be transformed into a jT -derivation 7T2 of
E; A i, æ : G D A, A2 => e : G. From & derivation of

h E; A i, æ : G D A, A2 basis

may be obtained, c/Proposition 4.1. From such derivation, we may derive

t- E; A i, .T : G D A, 2T : A, A2 basis,

for every z s.t. x and z ^  (A i, A 2). So, the derivation below may be formed.

h E; A i, a; : G D A, z : A, A 2 basis 
E ; A i , z : G p  A , A 2 = > e : G  E; Ai,  a; : G 3  A, z : A, Ag =» z : A 

E; Ai,  a: : G D A, A 2 apply{x, e, z.z) : A

Note tha t bc{x, Q, e) =  apply{x, e, z.z), for z ^  a: and x ^  e.
(ii) Case the index of the last step of TT is greater than zero, TT is of the form:

E; Ai,a; : iJ, A 2 =» e : [An/a;n].. .[A2/a^2][Ai/a^i]G E; Ai F Ai : n  . . .  E; A i F 
E, A i, X : H, A 2 bc(^x, [A%, A2 , . . . ,  A„], e) : [A,,/a:,,]. . .  [A2/a:2][Ai/a?i]A

where H — Va;j:T,^i and Hi — ^x-ht2 • • - D A). A derivation 7T2 of the sequent

E; Ai ,æ : // , z : [A i/a:i]//i, A2 e : [An/xn].. .[A2 / x 2][Ai/xi]G,

where z ^  x and z ^  (Ai, A 2), may be obtained by weakening from TTi. By the I.H., the 
derivation below may be transformed into a derivation with no instances of BC, since the
instance of B C  has index one smaller than n. In the derivation below TJs represents the n — 1 

judgements E; Ai h  A,- : r,- for 2 < i < n.
7T2 ,--------------

E; Ai, X : H ,z  : [Ai/œ i]//i, A 2 => e : [A„/a:„].. .[A2/æ2][Ai/a;i]G |T Js
—  BC

^ 1  > ® • H , z : [A%/a:x]JTx, A2 6c(z, [A2, • ♦ » j A„], e)) : [A„/a:,,]. . .  [A2/ 3'2][Ai/a?i] A ^ 
E; Ai,a: : i î ,  A 2 => apphjg{x, Ai, z.bc{z,[A2 , • . A„],e)) : [A„/a;„].. ,[A2 /x f\[A ilx i]A

Note that the following identities hold:

[Ai/xi]Hi  =  VararTa • • -Va;„:T„([Ai/a:i]G D [Ai/a:i]A);
6c(a;,[Ai,A2,...,A„],e) =  app/y^(a:, Ai, z.6c(z, [A2,. . . ,  A„], e)), for z ^  a: and z ^  e.

□
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4.6 P roof-T heoretic  Sem antics o f  th e In tegrated  Logical and  

Functional Program m ing Language LFPL

This section defines the semantics of a programming language tha t integrates logic and func­
tional programming called LFPL. This language may be seen as a language that extends HOPLP 
with simple definitions (i.e. abbreviations for terms of simple type) and some forms of definitions 
of dependent type, namely definitions asserting logical properties of functions.

We require the language LFPL to satisfy the following constraints:

1. goals and programs in LFPL should be interpretable as goals and programs in HOPLP;

2. the language LFPL should be conservative w.r.t. HOPLP, i.e. if a goal is achievable w.r.t. 
a program in LFPL then the interpretation of the goal into HOPLP should be achievable 
w.r.t. the interpretation of the program into HOPLP; roughly, there should be no more 
goals achievable w.r.t. a program in LFPL than there are in HOPLP;

3. the language LFPL should be complete for the means of goal-achievement in HOPLP, 
i.e., given a goal G and a program E; A in LFPL, for every means of achieving the inter­
pretation of G w.r.t. the interpretation of E; A in HOPLP, there should be a means of 
achieving G w.r.t. E; A in LFPL.

The semantics of LFPL is defined below by means of the calculus H H ^ ^ f .

D efinition 4.4 A program in LFPL is a pair (E, A), usually written S; A, where S  is a signa­
ture and A is a -context; a program E; A is well-formed iff the judgement h  E; A basis
is derivable in .

A  goal in LFPL is a G -formula; G is well-formed w.r.t, a program E; A the judgement 
E; A h G igr/ is derivable in .

A goal G is achievable w.r.t. a program E; A iff there exists a proof-term e s.t. the sequent 
E; A =r>- e : G is derivable in ; the proof-term e is called a witness for the achievement
of G w.r.t E; A.

In Section 3.2, in the context of first-order logic programming, it is argued that a semantics for 
a logic programming language needs to define what are the different means of goal-achievement. 
So, in order to complete the definition of LFPL , we must define, given a goal G and a program 
E; A, what are the different means for the achievement of G w.r.t. E; A.

First is shown tha t LFPL , as defined so far, meets some of the requirements mentioned 
above; this is shown by using results presented in Sec. 4.5 relating the calculi H H  and H H ^ ^ ^ .

T h eo rem  4.8 Let E; A o well-formed program in LFPL. Then:

(1 ) E; I^(-^(A)) is a well-formed program in HOPLP;
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(2 ) if  G is well-formed w.r.t. S; A in LFPL then [V’(A)]G is a well-formed goal w.r.t. the 
program E; N('^(A)) in HOPLP.

P roof;
(1 ) By Lemma 4.8, there is a derivation of h E; ^(A ) in H H^^^ . Using arguments similar 

to those used in proving Lemmas 4.1 and 4.2, tha t show how to transform a JEf/üT-basis into a 
HH-hsiSis, one may show tha t h E;N(^(A)) basis is derivable in H H .

(2 ) As above, by using Lemma 4.8, a HH^^^  -derivation of E; ^(A ) h G may be obtained, 
and from such derivation it may be shown that E h [^(A)]G is derivable in H H .  □

Theorem 4.8 shows an interpretation of goals and programs in LFPL as goals and programs 
in HOPLP, respectively; thus, constraint 1 imposed on the language LFPL is satisfied.

T h eo rem  4.9 Let G be achievable w.r.t. E; A in LFPL. Then, [i^(A)]G is achievable w.r.t. 
E;N(^(A)) in HOPLP.

P roo f; If G is achievable w.r.t. E; A in LFPL then there exists a proof-term e s.t. the sequent 
E; A e : G is derivable in H H ^ ^^ . So, by Corollary 4.1, the sequent

E;K(^(A)) => cwi([V>(A)]t/(A, e)) : [^(A)]G

is derivable in H H .  Thus, cu£([‘0(A)]t/(A, e)) is a witness for the achievement of [^(A)]G w.r.t. 
E;X(^(A)) in HOPLP. □

The proof of Theorem 4.9 shows how to interpret witnesses in LFPL as witnesses in HOPLP. 
Given a witness e for the achievement of G w.r.t. E; A in LFPL, cut(["^(A)]i/(A, e)) is a witness 
for the achievement of [■0(A)]G w.r.t. E;I^(^(A)) in HOPLP. For the remainder of this thesis, 
this interpretation of witnesses is taken as the standard interpretation of witnesses in LFPL as 
witnesses in HOPLP. Theorem 4.9 shows that constraint 2 imposed on the language LFPL is 
satisfied.

By Corollary 4.2, if e is a witness for the achievement of [V>(A)]G w.r.t. E; K('0(A)) in HOPLP 
then there exists a witness for the achievement of G w.r.t. E; A in LFPL; thus showing that 
constraint 3 imposed on LFPL is satisfied, i.e. LFPL is complete for witnesses w.r.t. HOPLP. 
However, constraint 3 is satisfied in an excessive way, since, under the standard interpretation, 
several witnesses in LFPL may be interpreted as the same witness of a complete set of witnesses 

in HOPLP.
Recall that a complete set of witnesses for goal-achievement in HOPLP is a maximal set 

w.r.t. the conditions: its members are uniform linear focused witnesses of the goal w.r.t. the 
program and no two members of the set are A-convertible. Recall also tha t the notation ulf{e) 
stands for the uniform linear focused form of e. Below we define the concepts of complete and 
non-redundant sets of witnesses for goal-achievement in LFPL . These concepts are such that
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any complete and non-redundant set of witnesses for the achievement of G  w.r.t. E; A in LFPL 
is in 1-1  correspondence with any complete set of witnesses for the achievement of [^(A)]G 
w.r.t. E ;R(^(A )) in HOPLP.

D efin ition  4.5 Let E; A h G <7/  be derivable in LFPL.
A set S  of witnesses for the achievement of G w.r.t. E; A is complete iff for every uniform 

linear focused proof-term s.t. E; N(^(A)) => cw/ : ['^(A)]G is derivable in H H  there exists 
a witness e in S  s.t. E; A e : G is derivable in H H ^^^  and ulf{cut{[ilj{A)]u{A, e))) =  e^if.

A set S  of witnesses for the achievement of G w.r.t. E; A is non-redundant iff there are no 
two witnesses eI, e2 in S  s.t. ui/(cut(['0(A)]i/(A, ei))) w//(cuf([^(A)]t/(A, 62))).

D efin ition  4.6 An  implementation of LFPL is any method that given a goal G well-formed 
w.r.t. a program E; A in LFPL finds a complete set of witnesses for the achievement of G w.r.t. 
E; A in LFPL; it is called excessive i f  the complete set of witnesses is redundant.

The relation between HOPLP and LFPL may be described as follows. Suppose there is a 
problem tha t may be formulated as a LFPL program and goal. Such problem could also be 
formulated in HOPLP, since there is an interpretation of LFPL by means of HOPLP. However, 
the problem in LFPL may have a more natural formulation, since there are definition mechan­
isms provided in LFPL that are not provided in HOPLP. Having the problem formulated both 
in LFPL and HOPLP the forms of achieving the goal w.r.t. the program in both languages may 
be very different. In HOPLP, only the canonical form of reasoning, corresponding to uniform 
linear focused derivations, is allowed for goal-achievement. In LFPL other forms of reasoning 
are allowed, namely those corresponding to cut rules. These forms of reasoning are interpretable 
into the canonical form of reasoning, but often the canonical forms correspond to much longer 
derivations.

4 .7  Solving P rob lem s in LFPL: an Exam ple

In this section is shown a formulation of the following problem in LFPL. Given a natural number 
n and a list of natural numbers L, find an element of L greater than or equal to n, if there is 
any. A formulation of the problem above is used to illustrate various aspects of the definition 
mechanisms allowed in LFPL, as well as some issues raised by an implementation for LFPL. 
In [Pin94] is shown a formulation of a problem in a calculus whose features are mainly present 
in H H ^ ^ ^ . This problem is based upon an example presented by Boolos, in [Boo84], to show 
tha t cut-free derivations may be hyper-exponentially longer than their counterparts using cuts. 
This problem could be formulated similarly in LFPL; it could be used to illustrate that there 
are witnesses for the achievement of a goal w.r.t. a program in LFPL representing derivations 
which are hyper-exponentially shorter than the derivations represented by the corresponding 
witnesses in HOPLP.
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Proof-search in is studied in Chap. 5, from the perspective of an implementation for
LFPL. In the example described in this section some derivations in are constructed to
show tha t certain goals are achievable w.r.t. programs. The intuition behind the construction 
of these derivations comes from goal-directed search, for compound goals, and backchaining 
together with the idea that a definition of dependent type should be used if any of its definienda 
occurs in the goal, for atomic goals.

The problem of “given a list of natural numbers and a natural number n, finding an element 
of the list greater than or equal to n” , may be formulated in LFPL as the problem of achieving 
a goal G w.r.t. a program S; A, as follows.

The types of natural numbers and lists of natural numbers are represented as primitive types 
nat and Inat. The signature E consists of the following pairs:

0  : r,
s : nat -4- nat -4 nat,
nil : Inal,
cons : nat -4 Inat -4 Inat.

The constructors OÎ primitive types are represented as variables. If polymorphism were allowed, 
the polymorphic type of lists could be defined and the type Inat obtained as a particular case 
of lists. The usual abbreviations for lists are used, i.e. Q for nil, [x|a;i] for cons x xj, and so on.

The set of predicates V  contains the following predicate symbols:

geq : nat -4 nat -4 prop,
membergeq : nat -4 Inat -4 nat -4 prop.

Intuitively, geq represents the relation greater than or equal to over the natural numbers and 
member geq represents a relation on triples (ni, ns, ng) that holds if the natural number U2 is an
element of the list ns greater than or equal to ni.

In what follows 'ixi,x2 ,...,xn;TF, where F  is either a G or a ff-formula, is used as an abbrevi­
ation for Va;i;TVa;2:T • • ‘'^x„:tF. The context A is defined as follows:

• Va;;y,af^eç(x, 0 ),

Z2 '•'^xi,x2:nat{9eq{Xi,X2) D geq{sXi, SX2 )),
( +2 , 4  -def pairq{Xx.SSX,e) : E/;„a<->natVxi,r2:na<(</eg(xi, X2) D g e q { fx i , f x 2 )),
Z3  :yxi,x2 :nai^x:lnat{geq{x2 ,x i)  D member geq {x i, [x2 \x], X2 )) ,
Z4  ' '^xi ,X2 ,X3 :na t^ x:ln a t{,'^ ^ '^ ^ ^ ^ geq(,^ lj ^  i ^ 3 } 3 meî7l6er̂ eqi(Xi, [X2 |x], X3)),

where

e = lambda{x\.lamhda{x2 .lambda{u}\.ex))), 
ex =  bc{z2, [sxi, SX2], bc{z2, [xi, X2], Wi)).
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The definition of dependent type in A defines the name -{-2 for the function Xx.ssx and 
describes one of its logical properties, monotonicity, i.e. if a natural number m  is greater than 
or equal to U2 then the result of applying + 2  to ni is greater than or equal to the result of 
applying + 2  to H2 .

Below, a context (Ai ,x  : /f, A 2) is sometimes written simply as (Ai ,x,  A 2) without ambi­
guity, since x determines uniquely H.

It may be shown that the judgement:

h S; A basis

is derivable in A derivation of this judgement requires a derivation of Sequent 4.11.

S;zi ,Z2 => e : [ Xx . s s x / XX, x 2 -.nat{9 eq{xi,X2 ) D g e q ( f x i , f x 2 )) (4.11)

A derivation of Sequent 4.11 may be uniquely recovered from the proof-term pairq{Xx.ssx,e), 
up to conversion rules.

The problem of given a natural number n and a list of natural numbers ns finding a natural 
number U2  in ns greater than or equal to nj may be formulated as the goal formula:

G  =  3x:nat'n iem bergeq{n i,ns’" ,x ) ,

where n\ is a representation of ni and ns'' is a representation of ns. A natural number « 2  in ns 
greater than or equal to ni exists iff G  is achievable w.r.t. S; A in LFPL. Values for U2 may be 
extracted from witnesses for the achievement of G w.r.t. S; A. We study below the case where 
G  is the goal formula mcmùergeg(+ 20, [sssO], x).

It may be shown that judgement H]A\~ G g f  \s derivable in . Let us attem pt to
achieve G w.r.t. S ;A,  i.e. search for a proof-term ?i s.t. there is an -derivation of
the sequent E; A =>?i : G. Following goal-directed proof-search, the goal is broken up until it 
becomes atomic, as follows:

S ;  A  = ^?2  ; m e m b e r geq{-\-'2. f̂ [ ss sO ] ,  b )  S ;  A  H i  : n a t  ^

E ;  A  =ï>?i : 3 x : n u t m e m b e r g e q { A 2 Q ,  [ sssO ],  x )

provided the indeterminate ?i is made equal to (!i,?2). Now we search for a proof-term ?2 and 
a term b of type nat. The goal is atomic; backchaining is attempted as follows:

S ;  A  =>?3 : g e q { [ s s s 0 ] , + 2 0 )

E ;  A  = ^ ? 2  : m e m b e r  geq (-{-2 O, [ sssO ],  ! i )

where ?2 =  bc(z3 , [+2O, «ssO, []], ?3) and !i =  sssO. The terms + 2O and sssO may be easily shown 
to have type nat. Now the set of indeterminates contains solely ?3 , since b is fully determined 
as the term sssO of type nat. Case there exists ?3 s.t. the sequent

E; A =>?3 : geq{sssQ, -H2O)

123



is derivable, the natural number corresponding to sssO is a possible answer to the original query.
For determining ?3 two different approaches are pursued. A first approach to find ?3 is by 

substituting the definiendum + 2  by its definiens followed by /3-reduction, through an instance 
of a conversion rule, and then performing backchaining as below.

e
h E; zi, IÜ2 : ifeç(s0,0), Z2 , • • • basis

E; zi,W2 : 0), Z2 , • • • =î  «̂ 2 : geq{sssQ, 0)
V

E; A =*- 6c(z2 , [sO, 0], applyq{z2 , ssQ, W2 .W2)) : geq{sO, 0) ____
E; A => bc{z2 , [ssO, sO], bc{z2 , [sO, 0],applyq{z2, «sO, «^2 ^ 2 ))) : ssO) C J i

S; A => bc{z2 , [ssO, sO], bc{z2 , [sO, 0], applyq{z2,ss0, W2 .W2 ))) : geq{sssQ, + 2O)

Derivations of the auxiliary judgements in rules V => and B C  may be easily constructed. De­
rivation 6  is guaranteed to exist since h E; A basis is derivable. C J i is an abbreviation for 
the judgement

E; A h geq{sssQ, ssO) =  geq{sssQ, + 2O).

A derivation for CJ\  may be obtained by substituting -j-2 by Xx.ssx, followed by /3-reduction.
This approach finds Proof-Term 4.12 for I 3 .

bc{z2 , [ssO, sO], 6c(z2, [sO, 0], applyq{z2 , ssO, W2 .W2 ))) (4.12)

This form of searching for ?3 essentially reflects the implementation suggested in Sec. 3.7 for 
HOPLP, the difference being the use of definitions of simple type to replace definienda by 
definientia.

A second approach to find ?3 is by using the definition of dependent type in the program. 
(Intuitively, we take the occurrence of + 2  in the goal as a suggestion for using the definition of 
dependent type of which + 2  is a definiendum.) An instance of de/s  is attempted, followed by 
an instance of def i ,  followed by backchaining on the type of the definition, as shown below.

E ; . . . ,  -j-2 —de/ Xx.sxx : nat -> nat, z : I \ , . . . : geq{sQ, 0)
E ; . . . ,  -j-2 =de/ Xx.sxx : nat -> nat, z : A , . . => bc{z, [sO, 0], ?4) : geq{sssQ, -j-20)

52;. ., -j-2 =de/ Xx.sxx : nat -4  nat, z e : A , . . => bc{z, [sO, 0], ?4) : geq{sssQ, -j-20)
E; . . . ,  (+2 , =de/ (Ax.sxx.e) : Di , ...  => bc{z, [s0 , 0],?4) : flfeg(sssO,-f2O)

de//
de /s

In the derivation above, the rule BC* stands for a combination of backchaining with an instance 
of a conversion rule. D\ abbreviates the D-formula

T,f,r-^r'ixuX2'Ag^q{xi,X2) D gcq{ fXi , fX2) )

and II abbreviates the /-formula

[-1-2 / f]{''^xi,x2 :r{geq{xi,X2 ) D gc q{ f x i , f x 2 ))).
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Si is an abbreviation for the sequent:

E; zi, Z2 , + 2  =de/ Xx.sxx : nat -4 nat e : A.

A derivation for Si is guaranteed to exist; it may be easily obtained from a derivation of 
Sequent 4.11. Under this approach ?3 is made equal to 6c(z, [sO, 0], ?4) and the new problem is 
determining ?4 , which may be done by using the formula annotated by zi as below.

P
HE; . . . ,  zi, wg,...=-------------------------   axiom

______ E ;z i , uj2,. .. =» W2 : ffeg(gQ,Q)______  ^
E ; z i , . . .  applyq{zi,sQ, W2 .W2 ) : geq{sO, 0)

(The existence of derivation p is guaranteed, since h E; A basis is derivable. The instance of 
V =*" requires a derivation for a judgement of the form E ; . . .  h sO : nat, which may be easily 
constructed.) So, this approach finds Proof-Term 4.13 for I 3 .

bc{z, [sO, 0 ], applyg{zi,sO, W2 .W2 )) (4.13)

The result of applying the interpretation of LFPL-witnesses into HOPLP-witnesses to Proof- 
Term 4.13 is Proof-Term 4.14.

bc{z2 , [ssO, sO], bc{z2 , [sO, 0],apply{zi, sO, W2 .W2 ))) (4.14)

The result of mapping Proof-Term 4.12 into HOPLP is Proof-Term 4.12 itself, which is equal 
to Proof-Term 4.14. So, any non-redundant set of witnesses for the achievement of G  w.r.t. 
E; A cannot contain simultaneously the Proof-Terms 4.12 and 4.13, for they map into the same 
uniform linear focused proof-term of HOPLP.

The semantics for LFPL makes no constraint on the form of the terms occurring in witnesses 
for goal-achievement. In general, we are only interested in extracting from a witness the terms 
for the variables existentially quantified in the initial goal. The example above illustrates that 
by using definitions some reductions on terms of simple type may be avoided. For example, 
the proof-term found for ?2 , which does not correspond to an existentially quantified variable 
of the goal, has an occurrence of the term + 2O.

The work involved in finding Proof-Terms 4.12 and 4.13 is essentially the same. However, 
one may formulate goals for which the use of definitions of dependent type is a means of finding 
shorter derivations.

For example, let us consider forms of achieving the goal

G i  — f̂Cç(+ 2  y+ 2  0 ,+ 2 'y+ 2  0),
n tim es m  tim es

where m  < n, w.r.t. E; A by using derivations that (i) make no use or (ii) tha t use the definition 
of dependent type in A.
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The only form, up to conversion rules, of deriving G\ from E; A making no uses of the 
definition of dependent type in A is by a derivation of the following form:

7Ti
h E; A 2 basis

axiom

where:

E; A2 =4>- in : G4 
S; Ai ^  62 ; G4

: 2m—1 tim es B C

E; A i => Cl : G3 7T2
E ; A i = » e : G 2 E ; A i l - G 2 =  Gi

G 2 = geq{^..sO,^..sO);
2n 2m

G 3 = g e q { s ^ ^ D ,

2n-l 2m—1

G a = g e q { s ^ ^ ^ ^ 0 , 0 );
2n—2m)

6 —b c { z 2 , [s^O,
2n 2m

Cl =  bc{z2, [ s ^ O ,  0], ...62 ...);
2ti—1 27)1— 1

62 =  applyq{zi,s...y.s^O, w.w).
2n —2m

Derivation tti is guaranteed to exist since |- E; A basis is derivable and 7T2 essentially corresponds 
to normalisation of the terms

+ 2 -»«+2̂ Q &nd + 2  «y+ 2̂ 0
71 m

to the terms

^ ^ ^ 0  and ^ ^^ 0 .
2n 2m

By using the definition of dependent type in A, Gi may be derived from E; A in the following 
way:

7T2
I- E; A3 basis

axiom

E ; A i =4» 63 : G3
: m —1 tim es B C

7Ti E; A i => 62 : G2
E; A2 => ei : /  E; A i => 6 : G i

E; Ai 6 : Gi , .

where:
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Gg — geg(+ 2’”+ 2̂ Q> 4~2»"+2^0)î
71— 1 771— 1

G 3  =  5f6Ç(+ 2  y + 2  0 , 0 );
71 — 771

e =  6c(z2 , [+ 2»y+ 2  0 , + 2»y+ 2  0], ^2);
n m

62 =  bc(̂ Z2, [+ 2 'y + ^ 0 , + 2«y+ 2  0], •*•63...);
n—1 m—1

63 =  applyq{zi,f f 2 - ^ + 2  0, W.w).

Both 7Ti and 7T2 are guaranteed to exist since h E; A basis is derivable.
Roughly, the first form of achieving Gi needs normalisation of the terms

+ 2  + 2  ” ' + 2  0  &nd + 2  + 2  • • • + 2  Oj
^Wliill»     y ^     I" "I:/

n m
and needs 2m times backchaining on the formula annotated by Z2 . The second form of achieving 
Gi (using the definition of dependent type), needs no normalisation and needs only m  times 
backchaining on the formula resulting from the type of the definition. (Note that in both cases 
backchaining involves the same work, i.e. two applications of V =>, one application of and 
an axiom.)
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C h ap ter  5

Im plem enting LFPL

5.1 In troduction

This chapter is concerned with studying means of implementing the integrated logical and 
functional programming language LFPL. As defined in Sec 4.6, an implementation of LFPL is a 
procedure that given a program S; A and a goal G finds a complete set of witnesses, A witness 
is a proof-term e s.t. the sequent E; A => e : G is derivable in . So, an implementation
for LFPL may be thought of as a procedure to find derivations in .

Finding a witness for the achievement of G w.r.t. E; A requires a construction of a derivation 
whose endsequent is of the form E; A =>? : G. The proof-term obtained for ? is the desired 
witness. For constructing a derivation of E; A =4>-? : G, one may attem pt rules for deriving 
sequents whose conclusion has E; A as antecedent and G as the succèdent formula. For using 
LFPL one first writes a program and then queries about the program, i.e. asks whether or not 
some goals are achievable w.r.t. the program. Given a program E; A the first step is to check 
if the judgement 1- E; A basis is derivable in . If so, some simplifications may be made
when attempting to achieve a goal G w.r.t. E; A. For example, if defj is attempted there is no 
need to find a derivation for the left premiss, since such derivation must exist for the judgement 
I- E; A basis to be derivable in , as shown in Proposition 4.2. Other simplifications may
be made when an axiom is being attempted. In this case there is no need to  prove tha t the 
antecedent is a derivable basis, since this is guaranteed from the facts tha t E; A is a derivable 
basis and the rules for deriving sequents preserve bases.

A rule de/ 2  is not very convenient for proof-search. Notice tha t such rule requires the 
replacement of a definition of dependent type by a simple definition together with a definition 
of dependent type. A rule de// has similar inconveniences. Each time defj is used, for obtaining 
the antecedent of the left premiss, a definition of dependent type needs to be deleted from the 
context and an annotated formula needs to be added to the context.

So, for studying forms of implementing LFPL, we define a new calculus called .
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This new calculus may be thought of as a calculus obtained from by replacing the rules
de/ 2  and de// by a new form of rule more suitable for proof-search.

For studying forms of implementing LFPL in terms of , the calculus must
be s.t.: (i) all derivable sequents of are interpretable into derivable sequents of ;
(ii) there are enough -derivations for producing complete sets of witnesses. Section 6.2
shows a means of interpreting derivable sequents of as derivable sequents of and
shows tha t this interpretation is surjective. Thus, criteria (i) and (ii) are verified and an 
implementation for LFPL may be defined in terms of .

Section 5.3.1 studies the class of extended uniform linear focused derivations of ,
which is complete for LFPL, i.e. extended uniform linear focused derivations are suflScient to 
find complete sets of witnesses. This class of derivations imposes constraints on the use of 
defcontr similar to the constraints on left rules, i.e. uniformity (the formula in the succèdent of 
the conclusion is atomic), focusing (the side formula is the main formula of the inference above) 
and linearity (the side formula is used exactly once).

The calculus de/'^^^^ allows exactly the extended uniform linear focused derivations of 
having different proof-terms. Thus, def"^^^^ is complete for LFPL. However, de/'®*^^  ̂is 

redundant, i.e. there are different derivations in de/'®^^^ whose interpretations into H H  a.re 
the same.

In Sec. 5.4 are sketched two search procedures for def^^^^ , Proc. 1 and Proc. 2. Both 
procedures find complete  ̂ sets of witnesses for goal-achievement in LFPL; so, they constitute 
implementations of LFPL. They differ in the use of definitions of dependent type during search, 
i.e. in when to attem pt de/<,^„/^ . For attempting to use a definition of dependent type, both 
procedures require the goal to be atomic. Proc. 2 imposes a further constraint in the use of a 
definition of dependent type: a definiendum of the definition must occur in the goal. Proc. 2 
has a search space smaller than Proc. 1; however, Proc. 1 may find some derivations which are 
shorter than their counterparts found by Proc. 2. Section 5.4 gives a characterisation of the 
derivations tha t may be found by Proc. 1 and may not be found by Proc. 2.

Procedures Proc. 1 and Proc. 2 are excessive implementations of LFPL, since they both 
find redundant sets of witnesses. Section 5.4 puts forward some ideas tha t may be integrated 
in Proc. 1 and Proc. 2 to eliminate redundancy.

5.2  T he C alculus H H ^ ^ f

This section introduces the calculus . The calculus H H ^^^  is essentially the same as
H H ^^^ , except for the rules to deal with definitions of dependent type, which are replaced by 
rules more convenient for proof-search. The calculus H H ^^^  is sound for derivable formulas 
and complete for proof-terms deriving a formula w.r.t. H H ^^^ .

 ̂Completeness is understood within the limitations of depth-first search and unification of A-terms.
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The classes of objects used in are the same as those used in . They are
defined by the same grammars except for proof-terms. In are allowed proof-terms of
the form

contr{x, x.e).

This form of proof-term is used in the new form of rule def of . In proof-terms of
the form contr{x,x\.e), the variable x\ is called a binder of scope e; any occurrence of xi in e 
is said to be bound.

The forms of judgement in are the same as those in . Except for sequents,
we want the derivable judgements in to be the same as the derivable judgements in

. However, -derivable bases depend upon derivable sequents. One method of
solving this problem is by introducing two different forms of sequents as follows:

(i) E | A ^^basis c : G;
(ii) S; A e : G.

The form of sequent (i) is used only in defining derivable bases; it corresponds to the form 
of sequents used in the non-principal part of a sequent derivation in . The derivable
sequents of form (i) are the same as those of , i.e. S; A =>basis e : G is derivable in

iff E; A => e : G is derivable in . (When there is no danger of confusion, sequents
of form (i) are simply called sequents and written with the symbol =^.) Sequents of form (ii) 
correspond to the sequents used in the principal part of sequent derivations in . Sequents
of form (ii) are simply called sequents. The rules for deriving sequents are the rules allowed in 
j j j j d e f  ̂  except rules dc/g and defj, together with the new form of rule shown in

Fig. 5.1, where Ipart is defined as follows:

Ipart{x =rfe/ e : I) =a^f ( /, x);
Ipart{{x,p) -aef pair,(A ,e) : E^^^D) =de/ Ipart(p e : [x/y]D).

In the rule defcontr Fig. 5.1, the formula /  is called the side formula and p =de/ e : D is 
called the main definition.

E; A i ,p = je ,  e : D ,x i  : / ,  A2 =?► ei : G
o®/ contr >E; A i ,p  e : D,A2 contr{x, xi.ei) : G

Ipart{p =aef e : D) — ( /,  x) and Xi ^  Ag

Figure 5.1: def ̂ ontr rule.

When searching for a proof-term ? s.t. a sequent

E; A i,p  =acf e : D, A2 =>? : G 
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is derivable, defcontr ruay be attempted. For doing so, it suffices to calculate Ipart{p =ae.f e : D), 
obtaining a pair (/, x), and add I  (the I-part of the definition), annotated by a new variable, 
to the context. Intuitively, a rule defcontr » when read from conclusion to  premises, may be 
thought of as a form of making a copy of the /-part of the type of the main definition. This 
rule leaves definitions of dependent type unchanged.

As mentioned before, in order to guarantee that an implementation for LFPL may be sought 
amongst search procedures for , the calculus must satisfy two properties. The
first property is a form of soundness result w.r.t LFPL, i.e. if a G-formula G is derivable in 

w.r.t. a basis S; A then G is achievable w.r.t. S; A in LFPL. The second property is 
a form of completeness result w.r.t LFPL, i.e. it is possible to find complete sets of witnesses, 
for the achievement of a goal G w.r.t. a program S; A in LFPL, within the set of proof-terms 
for deriving G w.r.t. E; A in .

Theorems 5.1 and 5.2, below, state the fundamental results for proving tha t the two proper­
ties above mentioned hold for . These theorems show methods of interpreting derivable
sequents of as derivable sequents of /fjf/^®/ and vice-versa.

Figure 5.2 defines the mapping d'd from -proof-terms into / f 2/^4^-proof-terms. This

d'd{pair{ei,e2 )) —def pair{d'd{ei),d'd{e2 )) 
d'd{inl{e)) —d f̂ inl{d'd{e)) 
d'd(inr{e)) —def inr{d'd{e)) 
d'd{lambda{x.e)) —def lambda{x.d'd{e)) 
d'd{pairq{K,e)) =ae.f pa.irq{K,d'd{e)) 
d'd[lambdaq[x.e)) =ae/ lambdaq{x.d'd{e)) 
d'd{x) =def X
d'd{contr{x, xi.e)) {x/xi}d*d{e) 
d'd{splitl{x,xi.e)) —def splitl{x,xi.d!d{e)) 
d'd{splitr{x,xi.e)) —aef splitr{x,x\.d'd{e)) 
d'd{apply{x,e,xi.ei)) =^cf apply{x,d'd{e), xi.d'd{ei)) 
d'd(applyq{x,k,xi.e)) =def applyq(x,K,xi.d!d{e))

Figure 5.2: Mapping d'dfrom -proof-terms to /fi/^4^-proof-terms.

mapping uses the mapping on 2/2/^^/-proof-terms associated with contraction, see Propos­
ition 4.4. Recall that contraction on proof-terms essentially replaces free occurrences of a 
variable by another variable.

Let G be a derivable formula w.r.t. E; A in . Then, by Theorem 5.1, G is derivable
w.r.t, E; A in thus G is achievable w.r.t. E; A in LFPL. The following auxiliary
lemma is used in proving Theorem 5.1; it provides a means of contracting a formula in the
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axiom.

context with the 7-part of a definition of dependent type, eliminating the definition.

Lemma 5,1 I f  there is a HII^^^-derivation of E; A i, x e : z : 7, A2 =4>- ei : G, where
z ^  A 2 , then E; A i, x : 7, A 2 => {x/z}ei : G is derivable in .

Proof: Let n be a T f T f -derivation of E; A i, x =def e : 7, z ; 7, A 2 ei : G. The proof follows 
by induction on the structure of tt.

Case TT is an axiom of the form:

h E; A i, X =def e : 7, z : 7, A 2 basis 
S; A i, X =dc/ e : 7, z : 7, A 2 => z : G

(Note tha t 7 =  G.) From a derivation of the judgement

h E; A i, X —aef e : 7, z : 7, A2 basis,

one may easily construct a derivation of the judgement

h E; A i, X : 7, z : 7, A 2 basis.

So, for z 0 A2 , there is a derivation of

h E; A i, X : 7, A 2 basis.

Thus, the following derivation may be formed:

1- E; Ai, X : 7, A 2 basis 
E; A i,x  : 7, A 2 => X : G axiom.

Note that the identity {x/z}z =  x holds.
Case the last step of tt is a rule def j  of the form:

E; Ai => e : 7 E; Ai, x : 7, z : 7, A2 =» ci ; G 
E; Ai,  X =def c : / , z  : 7, A 2 => Cl : G

defj.

Then, by Proposition 4.4, since z ^  A2 , from the derivation of the left premiss, one may 
construct a 7f7f -derivation of

E; A i, X : I , A 2 => {x/z}ei : G.

Case the last step of TT is a rule def j  o f  the form:

E; A i ,  X e : I , z  : I , A 2 1  => 62 : 7i E; A i ,  x  = d e / e : I , z :  I ,  A 2 1 , x i  : 7 i,  A 2 2  : G
E; A i, X e : 7, z : 7, A 21, xi =je/ 62 : 7i, A22 =4> ex : G 

By the I.H., there are 2777^4^-derivations of the sequents:

(i) E; Ax, X : 7, A 2X => {x/zjcg : 7i;
(ii) E; Ax, x : 7, A 2i,xx : 7x, A22 {x/z}ex : G.
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It may be shown that, since z ^  62 , the identity {x/z}e2 =  62 holds. Thus, the derivation below 
may be formed.

S; A i, X : / ,  A 21 62 : A E; A i, x : / ,  A 21, xi : A, A22 =» {x/z}ei ; G
E; A i,x  : / ,  A 2i ,x i = 4,; 62 : A, A22 =+ {x/z}ei : G

The remainder cases follow directly by the I.H.. □

Theorem 5.1 2/ E; A => e : G is derivable in then E; A => d'd{e) : G is derivable in
H H ^ f .

P roof: Let TT be a  -derivation of S; A e : G. The proof follows by induction on the
height^ (of the principal part) of ir.

Case the height o f  TT is 1, then n is an axiom, say:

I- E; A i, x : II, A 2 basis
E; A i, X : 22, A 2 => X : 2f axiom.

Then, the same sequence of inferences may be performed in 2222^^/ . (Recall that derivable 
bases of 2222^4^ are the same as derivable bases of 2222^^^.)

Case the height of tt is greater than 1 and the last step of TT is of the form:

ÎTl
E| Ax, p ~ d e f e ‘. D , X \ \  I, A 2 cx : G , .

contr »E; Ax, p —def e : 22, A2 =» contr{x, x i.ei) : G

where Ipart{p —def e : D) = {I, x) and xx ^  A2 .
It may be easily shown that there is a derivation 7T2 , whose height is smaller or equal to the

height of TTx, of the sequent

E; Ax, Xj —def Ax : t*x , ..., x^ ~def A^ • Tn, x —def ^2 • 2, xx : I , A 2 6/ : G,

where
(p =def e : D) = ((æ'i, ...(xj,,x)...) =def pair,(Ax, ...pair,,(An, 62)...) : D).

So, by the I.H., there is a 2222^4^-derivation of

E| Ax, X]̂  —def Ax : 7"x, » , ~<ief Ay, : tVi , x —def ^ 2  • 2, xx : 2, A 2 d <2(ex) : G .

Since xx A 2 , by Lemma 5.1, there is a 2 2 2 2 -derivation px of

E| Ax, Xj —def Ax : t'x, ..., x  ̂—def A„ : t„, x : 2, A 2 ^x/xx}<2 <2(ex) : G.

^The height of a derivation is 1, if it is an axiom, and is 1 -f- the maximum of the height of the premisses, for 
any other rule.
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From the derivation 7T2, by using Proposition 4.1, there is a 22A T -deriva tion  p2 of

D ;  A x ,  X j  — d e f  A x  : t x ,  •••, x „  — d e f  A n  : Tn 62  : 2 .

From Px and p2 , by using a rule defj, there is a 2222^^/-derivation of

S; Ax, Xj —def Ax : t\, ..., x,  ̂—def An ♦ in, x —def ®2 * -f, ^ 2  {x/xx}d d(cx) : G.

Now, by using n times de/^, a 2222^^/-derivation of

E; Ax,p =de/ e : D, A2 => {x/xx}d'd(ex) : G

may be formed. Note that d'd{contr{x, xi.ei)) =  {x/xx}d'd(ex).
The other cases where the height of TT is greater than 1 follow easily from the I.H.. □

Theorem 5.2 below shows that every witness for goal-achievement in LFPL may be obtained 
in 2222^^/ . Lemma 5.2 is used in proving Theorem 5.2. This lemma is proved by induction on 
the principal def j-height of a derivation, where the principal def j-height of a sequent derivation 
TT in 2222^^ is inductively defined on the structure of TT as follows:

•  case the last step of w is an axiom, the principal de//-height of w is 1;

•  case the last step of tt is defj, the principal de//-height of ?r is 1 plus the principal 
de//-height of the derivation of the principal (right) premiss;

•  otherwise, the principal de//-height of TT is 1 plus the maximum of the principal defj- 
heights of the derivations of the premisses.

L em m a 5.2 Let E; Ax e : 2 be derivable in and let tt be a 2222^^^-derivation of the
sequent

E; Ax, X : 2, A 2 =4̂  ex : G.

Then, for every xx s.t. xx ^  (Ax,x : 2, Ag), the sequent

E; Ax, X =de/ e : 2, Xx : 2, A] => {xx/x}ex : G

has a -derivation of principal def j-height equal to the principal def j-height o fn .

Proof: The proof follows by induction on the structure of t t .

Case the last step of TT is an axiom of the form:
h E; Ax, X : 2, Ag basis
E; Ax, X : 2, A2 X : 2 axiom.

Then, from a derivation of H E; Ax, x : 2, A2 b a s i s ,  a derivation of h E; Ax,  x : 2, Xx : 2, A2 b a s i s  

may be constructed, since E; Ax h 2 h f  is derivable and xx 0 (Ax, x : 2, A 2). From t t  and from 
a derivation of E; Ax => e : 2, that exists by hypothesis, a derivation of

I- E; Ax, X =def e : 2, Xx : 2, A 2 b a s i s  
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may be easily constructed. So, the following derivation may be formed.

h E; A i, X =dcf e : / ,  xi : 7, A 2 basis
E; A j, X —def c 11, X\ 11, Al2 X\ \ I axiom.

Observe tha t {xi/x}x =  xi by definition. The derivation above has principal de//-height 1, 
which is equal to the principal de//-height of TT.

Case last step of TT is an axiom of the form:

h E; A i,x  : 7, A2i,X2 : A, A 22 
S; A i , I  : A21,X2 : / i , A22 =» x;  : A

Similar arguments to those above may be used to construct a derivation of

h E; A i, X e : / ,  xi : / ,  A 21, X2 : 7i, A 22 basis.

Then, the following derivation of principal de//-height 1 may be formed.

h E; A i, X =d«/ e : / ,  xi : / ,  A 21, X2 : 7i, A 22 basis
axiom.E; A i, X =def e : 7, xi : / ,  A21, X2 : 7 i, A 22 => X2 : 7i

Note that the identity {x i/x}x2 =  X2 holds, since x /  X2 . The case where the main formula of
an axiom is in A i is similar to this case.

Case last step of TT is a de// rule of the form:

7Ti 7T2
E; A i,x  ; / ,  A 21 => 62 : 7i E; A i,x  : 7, A 2i,X2 : 7i, A 22 =» ci : G

E; Ai, X : 7, A 21, X2 =j<./ 62 : 7i, A22 => : G ^

Then, by the I.H., there is a derivation having the same principal de//-height as 7T2 , of 
sequent 5.1, for every xi ^  (A i,x  : 7, A 2i,X2 : 7i, A 22).

E; A i,x  -def e : 7 ,x i : 7, A 2i,X2 : 7i, A 22 =+ {xi/x}ei : G (5.1)

Derivation 5.2 may be formed, where ct2 exists by hypothesis and <73 may be obtained from tti 
by weakening, since xi ^  (A i,x  : 7, A 21).

0*3
E; Ai e : 7 E; A i, x : / ,  xi : 7, A21 =)> 62 : A  ,  .

E; A i,x  =ae/e : 7, xi : 7, A 21 e2 : 7i  ̂  ̂ (5.2)

Putting together Derivation 5.2 and derivation <ti of Sequent 5.1, by using de//, one constructs
a derivation of Sequent 5.3.

E; A i, X -def e : 7, xi : / ,  A21, X2 =de/ 62 : 7i, A 22 {xi/x}ei : G (5.3)

Note tha t the principal de//-height of such derivation is the same as the principal de//-height
of TT, i.e. 1 plus the principal de//-height of o-j.

The other cases follow directly by the I.H.. □
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T h eo rem  5.2 i /S ;  A e : G is derivable in then there exists e\ s.t. E; A ei : G is
derivable in and d'd(ei) =  e.

P roof; Let TT be a 2222^^/-derivation of E; A e : G. The proof follows by induction on the 
principal de/j-height of n. The cases where the last step of TT is neither de/g nor defj follow 
easily by the I.H.. Below are studied the cases where the last step of TT is either de/^ or def j. 

Case the last step of 7r is de//:
7Tl

E; A i e : 2 E; A i,x  : 2, Ag => 6% : G . 
E ;A i ,x = ,. /e :2 ,A g = i> e i :G

Let xi ^  (A i,x  : 2, Ag). Then, by Lemma 6.2, there is an 2222^^/-derivation, whose principal 
de//-height is the same as tha t of T T i , of the sequent

E; A i, X =def e : / ,  xi : 2, Ag => {xi/x}ei : G.

So, by the I.E., there exists eg s.t. d'd(eg) =  {xi/x}ei and there is a 2222^4^ -derivation of the 
sequent

Ej A j, X —fief ^ • 2, x% . 2, Ag eg : G .

Thus, the following 2222^^/ -derivation may be formed:

def contr •
E ;  A i ,  X = d e /  e  : / ,  x j  : 2 ,  A g  = >  eg  : G

E; A i, X =def e : 2, Ag contr{x, xi.eg) : G

Note that Ipart{x =^ef e : I) = (2, x). Since d'd(eg) =  {xi/x}ei, d‘d{contr{x, xi.eg)) is equal to
{x/x i}({xi/x}ei), which may be shown equal to e%, for xj may have no free occurrences in ex. 

Case the last step of tt is de/g:

E; Ax,x =de/ A : T , p = d e f  e : [a?/y] : 2>, Ag =?> ex : G 
E; Ax, (x,p) =de/ pair{h, e) : EyirD, Ag ex : G ^

By the I.H., there exists eg s.t. d'd(eg) ~  ex and the sequent

E; Ax, X =de/ A : r ,p  =  e : [x/y]D, Ag =4> eg : G

has a 2222̂ /̂ -derivation <t. Then, it may be shown by induction on the structure of <r, as
sketched below, that Sequent 5.4 is derivable in .

E; Ax, (x, p) =def pmr,(A, e) : 'Ey:rD, Ag =)► eg : G (5.4)

The most interesting case is when the last step of <r is of the form:
E ;  A i , x = f i e f  A  : T , p  =  e : [x/y]D ,xg : 2 ,  A g  = >  e g  : G  

E ;  A x,x = d e /  A  : r , p = d e f  e  : [x/p]2), Ag => conir(xx, xg.ea) : G
contr )

where Ipart[p —def e : [x /p ]2)) =  (2,xx). In this case a similar step may be used for deriving 
Sequent 5.4, since Ipart{{x,p) —def pairq{A, e) : E^iyD) =  Ipart{p —def ^ : [x/p]D), by definition 
of Ipart. □
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5.3 A  C om plete C lass o f  -derivations for LFPL

The previous section shows that an implementation for LFPL may be sought amongst search 
procedures for . This section studies a complete class of -derivations for LFPL,
i.e. a class of -derivations within which complete sets of witnesses for goal-achievement
in LFPL may be obtained.

5 .3 .1  E x ten d ed  U niform  L inear F ocu sed  D er iva tion s

The work in developing would be wasted if we were to consider implementations of
LFPL tha t search for derivations using no definitions of dependent type. (Recall that by using 
definitions of dependent type, derivations for goal-achievement may become much shorter.) In 
some sense, we want to use definitions of dependent type whenever possible, so long as they are 
relevant for achieving a goal.

Below is studied a complete class of derivations for LFPL, called the class of extended uniform 
linear focused (EULF) derivations. Roughly, this class of derivations is an extension of ULF- 
derivations, in the context of H H , tha t allows some constrained forms of def contr' The 
constraints imposed on defcontr thought of as: (i) uniformity (the formula in the
succèdent’s conclusion is atomic); (ii) focusing (in a derivation of the premiss of a def contr rule, 
the main formula of the last step is the side formula of def c o n t r ) (iii) linearity (each time 
the /-part of a definition of dependent type is required, a new copy must be made by using 
a defcontr rule). These constraints are imposed in analogy to the constraints on left rules. 
(Recall tha t uniform linear focused derivations are isomorphic to expanded normal deductions 
and there are efficient methods to search for these derivations.) Theorem 5.3 below shows 
tha t every derivation in H H ^^^  may be transformed into a EULF-derivation by means of 
permutations.

D efinition  5.1 The grammar defining the sets of extended uniform focused proof-terms e^uf 
and atomic extended uniform focused proof-terms head variable x, o f H H ^^^ is as
follows:

^ e u f  ^ c u j  I  t ^ e u f )  |  i W ( C g ^ y )  |  * % r ( e g ^ , y )

I lambda{x.eeuj) | pntrq(A, eĝ y) j lambdag(x.eeuj)i
o%y x; \ contr{xi,Xj.a‘l l j )

I splitl(xi, Xj.a^y) I splitr{xi, Xj.a^^j)
I apply{xi, Cg«y, X j.allj) j applyq{xi. A, xy.a%y).

D efin ition  5.2 A proof-term is called extended linear (extended affine/ if every variable x 
bound by a left constructor or by contr occurs exactly once (at most once) in the scope of x.
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D efin ition 5.3 A proof-term is called extended uniform linear focused i f  it is extended linear 
and extended uniform focused.

D efin ition  5.4 A derivation of a sequent is called extended uniform linear focused (extended 
uniform focused) if  its proof-term is extended uniform linear focused (extended uniform focused).

Theorem 5.3 provides a means of showing completeness of EULF-derivations; it shows that 
if a sequent E; A e : G is derivable in then there exists a sequence of proof-term
transformations, preserving derivability, for obtaining an extended uniform linear focused proof- 
term Cl s.t. E; A => Cl : G is derivable in .

D efin ition  5.5 {RS^uif) F ^eu lf rewriting system on -proof-terms consisting of

the rules in Figs. 2.8, 2.9, 2.10 and 2.11, where proof-terms are seen as -proof-terms,
together with the rules in Fig. 5.3 involving the constructor contr. The rewrite relation induced 

by RScuif is called . A proof-term e\ is reducible by RS^alf (o ® proof-term eg i f  the pair 
(ei,eg) is in the transitive closure of>cxdf'

i’) contr{x, ®i.pair(ei, eg)) > pair {contr {x, xi.ci), contr {x, xi.eg))
ii’) contr{x,xi.inl{e)) > inl{contr{x,xi.e)),
iii’) contr{x, xi.in r(e))  > tnr(confr(a!, xj.e)),
iv’) contr{x, xi.lambda{x2.e)) > lambda{x2.contr{x, xi.e)), xg x, Xg ^ xi

v’) contr{x, xi.pairq{A, e)) > pairq{A, contr{x, xi.e))

vi’) con t r {x,x i . lambdaq{x2.e) )>lambdaq{x2 Con t r{x,x\ .e)) ,X2  x, xg ^  xi
vii’) con t r {x ,x i . sp im{x2,X2 , .e ) )>  spl i i l {x2 ,X3 .con t r {x ,x i .e ) ) ,x \  ^ xg, xg x, x i ^  xg

viii’) contr(x,xi.5p/ifr(xg,X3.e))>sp/i<r{x2,X3.confr(x,xi.e)),xi ^  xg, xg ^  x, xi xa

ix’) con t r{x,  xi.apply(xg, e, xg.ei)) > app/y(xg, con tr{x,  xi.e), X3.contr{x,  x i .e i)) ,

X l  ^  X g ,  X 3 ^  X ,  X i  ^  X 3

x ’) con<r(x, xi.app/yg(xg, A, X3.ei))> app/yg(xg, A, X3.con<r(x,X i.ei)),xi Xg, X3 x, x i ^  X3

xi’) con< r(x ,x i.con< r(xg ,x3 .e))> conir(xg ,x3 .con< r(x ,x i.e)),x i ^  xg, X3 ^  x, x i 7̂  X3

xii’) splUl{x,xi.contr{x2,X3.e)) > contr{x2, xa.splitl{x, x^.e)), X\ 7̂  xg, X3 ^  x, X \ ^  X3
xiii’) splitr{x,xi.contr{x2,X3.e)) > contr{x2,X3.splitr{x,xi.e)), x i  7̂  xg, X3 ^ x , x \ ^  Xa
xiv’) apply{x, e, xi.conir(xg, Xa.ei)) > con<r(xg, X3.apply{x, e, x i.e i))  x i 76 xg, X3 7̂  x, x% 7̂= X3

XV’) app/yç(x, A,xi.con<r(xg,X3.e)) >conir(xg,X3.app/yç(x, AjXi.c)) x i 76 xg, X3 7̂  x, x i X3 

xvi’) contr{x,xi.e) > e ,x \
xvii’) conir{x,xi.e)> contr{x,xi.contr{x,X2.ei)), xg ^ e,

Cl is obtained from e by replacing one of the occurrences of x% by xg.

Figure 5.3: Permutations involving def contr-

L em m a 5.3 For every rule e% > eg of R Sc^ij, */E; A =7 e% : G is derivable then E; A =7 eg : G 
is derivable.
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Proof; By similar arguments to the proof of Theorem 2.6 □

Before proving Theorem 5.3 the following auxiliary result is shown.

Lemma 5.4 Let eeufi extended uniform focused proof-term. Then, every proof-term of
the form

contr{x,Xi.eeufi),

which is not extended uniform focused, is reducible by R Sc^lf extended uniform focused
proof-term Cgu/* Further, if  e^uji is o f the form for some xg ^  x i, then Ceuf is o f the form

^elfi *

Proof; The proof is by induction on the structure of Cgu/i.

(i) If Ceu/i is of the form lambda{x2 .eeuh)^ then rule (iv’) may be applied to contr(x,xi.eeufi)
obtaining

lambda{x2 .contr{x, xi.Ceu/a))*

If conir(x,xi.egu/a) is extended uniform focused, then lambda{x2 .eeuh) reducible by 
R Seaif to the extended uniform focused proof-term lambda{x2 .contr{x,xi.eeuf2 ))’ Oth­
erwise, by the I.H., contr{x,xi.eeuj-i) is reducible by R Sc^lj to an extended uniform 
focused proof-term Cgu/j; so, contr[x,xi.eeuSi) is reducible by R S^aif to the extended 
uniform focused proof-term lambda{x2 .Ceuh)'

(ii) The other cases where the outermost constructor of e^uji is a right constructor follow by
similar arguments to those used in (i).

(iii) Case e^uh the form

(a) It may not be the case that =  zg and zg — zi, otherwise the proof-term 

contr{x,X\.eeuji) is extended uniform focused.

(b) If =  zg and zg ^  z i then contr(x, zi.zg) is reducible, by rule (xvi’), to zg, which 
is an extended uniform focused proof-term of the form .

( c )  It may not be the case that =  a p p ly (zg, Cgu/g, a^s.Ug^y  ̂) and Zg =  Z i, otherwise 
the proof-term contr{x,x\.a^l^j) is extended uniform focused.

(d) If u%y =  app/y(z2,eeu/2,Z3.a*^yJ and zg ^  z i, then contr{x,xi.e^uh) i® reducible, 
by rule (ix’), to

app/y(z2,conir(z,zi.eguy2),Z3.contr(z,Zi.a®®yj)).

By the I.H.: con2r(z,zi.Cguyj) is equal or is reducible by RS^ulf to extended 
uniform focused proof-term CeujFt and contr{x,xi.a^^^j^) is reducible by R S^^ij to a 
uniform focused proof-term of the form o^^y .̂ Thus, the proof-term

apply{X2 , Ceuh, 3:3.0%/2 )
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is extended uniform focused of the form o%y, and contr(x^xi.e^f^) is reducible by 

^ ^ e u l f  to it.
(e) The other cases where the outermost constructor of a%y is either a left constructor 

or contr follow by similar arguments to those used in (a)-(d).

□

T h eo rem  5.3 EULF-derivations are complete for .

P roo f; The arguments used for proving this result are very similar to those used for proving 
Theorem 3.4. We give a sketch of the proof below.

(i) The first step is showing that every proof-term e, which is not extended uniform focused, 
is reducible by R S^aïf to a uniform focused proof-term. The proof follows by induction on the 
structure of e.

Case the outermost constructor of e is a right constructor, the proof follows immediately by 
the I.E..

Case e is of the form contr{x,xi.e\). Then, ei is equal or is, by the I.E., reducible by 
RSeuif to an extended uniform focused proof-term. So, contr{x,xi.ei) is extended uniform 
focused or is, by Lemma 5.4, reducible by R Sc^lf an extended uniform focused proof-term.

The cases corresponding to left constructors follow by lemmas similar to Lemma 5.4.
(ii) Secondly is shown tha t every proof-term e is reducible by R S^nif to an extended af­

fine proof-term, by induction on the structure of e. Case the outermost constructor of e is 
a right constructor, the result follows by immediate use of the I.E.. Case e is of the form 
contr{x,xi.ei), the proof follows by induction on the number of occurrences of xi in ci. Case 
there is at most one occurrence of x\ in ej, e is already an extended affine proof-term. Case 
there is more than one occurrence of z i in ej. Then, rule (xvii’) transforms contr{x,xi.ci) into 
contr{x,xi,contr{x,X 2 .e2 )), where eg results from ei by replacing one occurrence of xi by zg. 
Thus, by the I.E., proof-term contr{x, xi.contr(x, Zg.eg)) is reducible by to an extended 
affine proof-term.

From (ii) above, every proof-term e is or is reducible by R S^ulf to an extended affine proof- 
term ei. By (i) above, ci is equal or is reducible by RS^y^ij to an extended uniform focused 
proof-term eg. We claim that eg must still be extended affine, which may be shown by verifying 
tha t each rule used for proving (ii) does not increase the number of occurrences of variables 
bound by left constructors or by contr. It is easy to verify that a proof-term which is sim­
ultaneously extended uniform focused and extended affine is extended uniform linear focused 
(EULF). So, every proof-term is or is reducible by RS^alf to an EULF-proof-term.

So, if S; A e : G is derivable in , then either e is a EULF-proof-term, and the
result is trivial, or is reducible by R S^aïf to a EULF-proof-term ei and, by Lemma 5.3, one 

may easily show that S; A =7- ci : G is derivable in . □
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5.3.2 The Calculus

Now, we focus our study on methods of implementing LFPL within search procedures for EULF- 
derivations. Our first step is defining the calculus This calculus captures exactly all
EULF-derivations of having distinct proof-terms. Ideas similar are used in Sec. 3.4;
there, the calculus is introduced to capture exactly the ULF-derivations of hH.

The classes of objects of are the same as those of . The forms of judgement
of are the same as those of I I except for sequents. In , sequents are
replaced by the following two forms of sequent:

(i) E; A — j Ceuif : G;
(ii) E ; A " ^ a : ^ / : A .

Sequents of form (i) are called goal sequents and sequents of form (ii) are called program sequents. 
These two forms of sequents are similar to those used in , the difference being that
program sequents require a context, called the side context, as an extra argument. The side 
context is used for guaranteeing the well-formedness of derivable sequents. (When there is no 
danger of confusion, the side context is omitted.)

The rules defining derivable goal sequents in def‘̂ ^^^ are choiceddti in Fig. 5.4, and the rules 
for deriving goal sequents in h l i ^ ^ ^ , except choice that is replaced by the new form of rule 
choice in Fig. 5.4. The rules defining derivable program sequents are shown in Fig. 5.4.

In the replacement of a formula by a A-convertible formula is only allowed at the
axioms. A rule choiceddt selects a definition of dependent type from the program and focuses 
on its /-part.

Theorem 5.4 shows that if e is a EULF-proof-term for deriving G w.r.t. E; A in then
e is a proof-term for deriving G w.r.t. E; A in Theorem 5.5 shows the converse, i.e.
if e is a proof-term for deriving G w.r.t. E; A in def'^^^^ then e is a EULF-proof-term for
deriving G w.r.t. E; A in . Lemma 5.5, below, is used for proving Theorem 5.4.

L em m a 5.5 T/E; A i,z  : / / ,  A 2 ^  derivable in def'^^^^, where x ^  A 2, and x

occurs only once in then E; A /, A2 ^  also derivable in def'^^^^.

P roof; See the proof of Lemma 3.10 (a similar result for □

T h eo rem  5.4 Let tv be a H II^^^  -derivation 0/  E; A =7" eeulj ' G. Then, E; A — j eeuif ' G is
derivable in def'^^^^. Further, if Ce,*// is of the form then G is atomic,

A =  (Ai, x : H, A2) and E; A «%// : G is derivable.

P roof; By using similar arguments to those used for proving Theorem 3.21, it may be shown
that every I I -derivation may be transformed into a derivation where conversion rules
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S; A e : A 
S; A — e : A choice A = (Ai,x : if, Ag)

S; A — > contr{x, x\.e) : A choiceddt ri 0  A, A = (Ai,p =d«/ e : D,A2) 
and Ipart{p —dt.t e : D ) =  {I ,x)

E;A\~A i = A S ;A ih y l ia /----------------     Qg.
2 ;A  z : v 4

S jA it - g a / t /  

S; A splHl{x,xi.e) : A

2 ; A ^ '^ ' e : v 4  S ;A i t - / / i / i /  
E; A sp/îZr(a;,xi.e) : A

E ; A - ^ e i  :G i  E ; A ^ ^ ^ ^ e : v 4

E; A apply{x,6 i ,x i .e) : A

Ai,xi :[A/y]H

A ,

E ;A e : A E; Al h A : r

E; A appf2/g(æ, A, zi.e) :A

either A = (Ai, r : Ai, Ag ) or 
A = (Al, Aa) and r 0  A

ri 0  A and either 
A = (Ai,r : Hi  A ifg, Ag) 

or A = (Al, Aa) and r g! A
ri 0  A and either 

A = (Ai,r : Hi  A %, Aa) 
or A = (Al, Aa) and x  ^ A

ri 0  A and either 
A = (Ai,r : Gi Ai/, Aa) 

or A = (Al, Aa) and r 0  A

ri  ̂A and either 
A = (Ai,r : Vy:rü, Aa) 

or A = (Al, Aa) and r (g A

Figure 5.4: The rule choice and the rules for deriving program sequents of de/'

occur only below axioms or conversion rules. Let ?r be a derivation of S; A ’ G where
conversion rules occur only below axioms or conversion rules. The proof follows by induction 
on the structure of n.

Case the last step of tt is either an axiom or a conversion rule, it may be proved by in­
duction on the number of conversion rules in TT that: G is atomic, Ceuij is a variable x, 
A  =  (Ai,æ : A, Ag) and E; A i, z : A, A2 \~ A =  G is derivable. So, the following 
derivation may be formed:

Sj A i, X : A, Ag \~ A = G S; Ai i~ A a f

S; Ai,æ : A, Ag — > x : G

axiom

choice.

Case the last step of TT is of the form:

7Ti
E ;A i,p= d«/ e : D ,Xi : I , A 2 ^  «^w/i • ^  

E ;A i,p= de/ c : D, Ag => contr{x,xi.a^l^ij^) : G contr
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where Ipart{p e : D) ~  {I,x )  and Xi ^  Ag. By the T.H., G  is atomic and there is a 
derivation of

S; e : D ,x i - . I ,  A , «%,/. = G.

By Lemma 5.5, since xi ^  Ag and xi occurs only once in (coMtr(æ, is EULF),
there is a derivation of

K; A .,p  e : A , C z / ,  : G.

So, the following derivation may be formed:

E; A „ p e : D, A , : G _
chotc^dfif j

since Ipart{p —d̂ f e : Z?) =  ( / , z) and z i ^  (A i,p  =d«/ e : £>), which may be shown from the 
fact that the antecedent of the endsequent of tti is a derivable basis.

Case last step o f  TT is o f  the f o r m :

7Ti 7T2
Ej A j, x : Gi 3  Z/j, A2 ^eulji • Gi Ej Aj, x : Gi 3  /Zi, : Zfi, A 2 êul/i * ^

E; A i , x  : G i  3  Z/i, A2 app ly{x ,e^ulh iXi .a^^uJ : G

where xi ^  A 2 . By the I.H.,

E; A i,x  ; G, D I h ,x i  : / / , ,  A j = G.

is derivable; so, G is atomic. Yet by the I.H., there is a derivation TTs of

E;Ax,:r :G j 3  Hi j A2  ̂^eul/i : G j.

But, æi occurs exactly once in «eWA, for apply{x, Ceul/i, xi.aeuifi) is EULF. So, since xi ^  A 2 , 
by Lemma 5.5, there is a derivation 7T4 of

E; A i, x - . G i D  / / , ,  A j : G .

The following derivation may be formed:

7T5

''eui/iE; A i,* ; G, D gli^A; —+ e.w/, :G, E; A i,x  ; Gi 3 ffi, A j a^,,. ■ G

E; A i,X : G, 3  JÎ1 , A2 app/j/(x, x i.o fi,, ) ; G
  c/iOîCC

E; Ai,x : Gi 3  iZi, A2 — apph{x> ^euih, xi.a^^u^) : G

where tts can be easily obtained from 1 4̂ .
The other cases corresponding to other left rules follow by similar arguments. □
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Theorem  5.5

(1 ) Tj^S; A — > e I G is derivable in def'^^^^ then T i;A = ^ e :G is  derivable in and 
e is EULF.

(2 ) 7/ S; A e i  A  is derivable in d e f^ ’̂ ^^ then e is atomic extended uniform linear
focused of head variable x and either

(a) A =  (Ai, a; : 7f, Ag) and E; A =*- e : A is derivable in ; or

(b) æ ^  A, A =  (A i, A2), the sequent E; A i, æ : 77, A2 e : A *5 derivable in H H ^ ^ f and 
X occurs exactly once in e.

P roof; Let ai and 0 2  be de/'^^^^-derivations of E; A — > e : G and S; A e : A, respect­
ively. The proof follows by simultaneous induction on the structure of the derivations a\ and 

CT2 . We consider below the case where the last step of ai is choiceddt'

E; A i,p  =de/ e : D, A2 — > contr{x,xi.ei) : A

where I p a r t { p e  : D) =  (7,x) and x\ ^  (A i,p  =je/ e ; D, A 2). By the I.H., since
æi 0  (A i,p  =ae/ e : D, A 2), there is a derivation of the sequent

A [, p —((«/ 6 : D jXi I 7, A 2 ^  C\ : A,

where ei is atomic extended uniform linear focused of head variable æi and xi occurs exactly 
once in ci. Thus, for concluding the proof of this case, the following derivation may be formed:

E; A i,p  =ae/ e : D ,x i  : 7, A 2 => ei : A
E; A i, p=d^f e : D, A2 => contr{x, x i.ei) : A contr >

since Ipart{p =de/ e : D) =  (7, z) and x\ 0  A 2 . (Note that contr(æ, æi.ei) is EULF, for ei is 
atomic extended uniform linear focused of head variable and xi occurs exactly once in ei.) 

The last case we consider is that where the last step of 0 2  is of the form:

E ; A — » e i  : Gi  E ; A ^ ' ^ '  eg : A  ^

E ; A  apply{x, e\, 0:1 .6 2 ) : A

where a:i ^  A and either A =  (Ai,a: : Gi 3  77i, A 2) or A =  (Ai, A 2) and x ^  A . By the I.H., 
there is a derivation of Sequent 5.5 and 6 % is EULF.

E ; A  6 i : G i  (5 .5)

By the I.H., since ^  A, A =  (Ai, A21), Sequent 5.6 is derivable and 62 is an atomic 
extended uniform linear focused proof-term of head variable x \, where æi occurs exactly once.

E ; A i ,  x i  : 77i, A 21  6 2  : A  (5 .6 )
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If A =  (Ai,æ : Gi D  /7i, A 2), then A 21 =  (æ : Gi D 77i, A 2). Thus, from a derivation of 
Sequent 5.6, one may easily construct a derivation of the sequent:

E; A i, X : Gi D H i,x i : H i, A 2 => 62 : A.

So, the following derivation may be formed:

E; A i,æ : Gi D  77i, A 2 => ei : G%. E; A i,z  : Gi D H i,x i : £Ti, A 2 62 : A
E; Ai,a: : Gi D H i, A2 apply(x ,ei,x  1 .6 2 ) : A

Note tha t apply{x, ei, x 1 .6 2 ) is atomic extended uniform linear focused of head variable x, for 
ei is EULF and 62 is an atomic extended uniform linear focused proof-term of head variable 
X\ ,  where x i occurs exactly once.

If z ^  A and A =  (Ai, A 2) then A 21 =  A2 . From derivations of Sequents 5.5 and 5.6 one 
may easily construct derivations of the sequents:

E; A i,z  : Gi 3  7/i, A 2 => ei : Gi;
E; A i, X :G i D H i ,x i :  H i, A 2 62 : A.

So the following derivation may be formed:

E; A i, X :G i D H \, A2 => ei : G i. E; Ai,a: : Gi 3  H i,x \  : LTi, A 2 => 62 : A
E; Ai,æ : Gi 3  / / i ,  A 2 => apply{x,ei,x 1 .6 2 ) : A 3=4>

As above, apply{x,ei,x i.e 2 ) is atomic extended uniform linear focused of head variable x. 
Since x ^  A , x has no occurrences in ei and x has no occurrences in 6 2 . Thus, x occurs exactly 
once in apply(x, ei, Xi.e2 ). □

Theorems 5.4 and 5.5 guarantee that an implementation of LFPL may be described as a 
search procedure for derivations in . Procedures to search for de/'^'^^^-derivations are
described in the next section. Proof-search in has a smaller search space than proof-
search in H H ^^^  . For example, if a goal G is compound the only rule tha t may be used in 

for deriving G is the rule that introduces its main connective; in H H ^^^  the rule 
introducing the main connective of G could be used, but left rules or def contr could also be 
used for breaking up formulae or definitions of dependent type in the program.

5.4  Towards an Im plem entation  o f  LFPL

An implementation of LFPL, as defined in Sec. 4.6, is a procedure tha t given a goal G and a 
program E; A is capable of finding a complete set of witnesses for the achievement of G w.r.t. 
E; A. As argued in the previous section, an implementation of LFPL may be described as a 
search procedure for This section presents two possible approaches of implementing
LFPL.
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Let E; A — ¥ : G be a derivable sequent of Then, the sequence of transform­
ations below may be applied to obtain the interpretation of this sequent into H H . (After each 
sequent is mentioned the calculus of which the sequent is a judgement and the theorem that 
justifies its interpretation into the sequent below.)

E; A  ) ^euif • G  

E ; A  => Ceuif : G 

E; A  =>- d'd{eeuif) ■ G

E; ^ (A )  i/(A , d 'd(eeui/)) : G

E ;K (^ (A )) => [V»(A)]i/(A, d 'd(ee«//)) : [V»(A)]G

E ;R (^ (A ))  cu i([^ (A )]i/(A ,d 'd (ee„ //))) : [^(A )]G

(dgyr̂ Bt/LF)

(HH)

by Theorem 5.5 
by Theorem 5.1 
by Theorem 4.6 
by Theorem 4.5 
by Theorem 4.4 
by Corollary 3.3

E; K(V>(A)) => ulf{cut{[i/j{A)]u{A, d'd(egwy)))) : [V»(A)]G (H H)

The proof-term
ulf{cut{[i}(A)]u{A, d'd(eeuif))))

is called the u l f - f o r m  of Ceulf] d ' d ( e e u i j )  is a witness for the achievement of G w.r.t. E; A in 
LFPL. Also, by Corollary 4.2, the ulf-form e of Seuij is a witness for the achievement of G w.r.t. 
E; A in LFPL. Further, it may be easily shown that E; A =>• e : G is derivable in def'^^^^. So, 
if there is a de/'^^^^-derivation tti of G using rules c h o i c e d d t  then there exists a d e f '^ ^ ^ ^ -  

derivation 7T2 of G using no such rules s.t, the ulf-forms of tti and 7T2 are the same. Thus, any 
set containing simultaneously the proof-terms of all uniform linear focused derivations of G and 
proof-terms of derivations of G using rules c h o i c e d d t  is redundant.

Let us first concentrate on two procedures to find complete sets of witnesses for the achieve­
ment of a goal w.r.t. a program in LFPL. These procedures follow ideas similar to those 
described in Sec. 3.7 for proof-search in h ll^ ^ ^ .  In the first procedure (Proc. 1) are defined 
predicates:

Se(lVch(G, (E| A), ©jnj ©ouf» C, Pouf))
seo,rch\(x . H , A, A j, (E, A), 0 |nj ©out> C, Vtnj Pouf)>

As in Sec. 3.7, 0 ,„ and 0ouf are mappings from variables to A-terms and Vin, Pouf are signatures. 
Notice tha t searchl requires an extra argument for the side context.

The predicate search is s.t. if a sequent

E ;A  —> e : G

is derivable in then there exist 0 , V, ci s.t. the formula

search(G, (E; A), identity, 0 , ei, 0, V),

holds, where e ~  0 (e i). The definition of predicates search and searchl is the same as for 
l^jjULF ^ ith  the exceptions mentioned below. The predicate search has a new alternative form

146



of achieving atomic goals. When a goal is atomic two rules may be used: (i) a rule choice, 
for selecting a formula from the program [derivation via formula), corresponding to the case 
permitted in ; (ii) a rule choiceddt for selecting a definition of dependent type from the
program [derivation via definition), corresponding to the following clause in the definition of 
search:

search[A, (S; A), 0 ,n, 0ow, contr[x, æi.ei), Vin, Vaut) if 
choiceddt[A, I , x, A i, A 2 , p, e, D) and 
searchl[x\ : 7, A, A i, (E; A ), 0*n, 0ouf* Pouf) and
xi ^  A.

The clause defining validity of choiceddt is:

choiceddt[A, J ,x , A \, A 2 , p, e, D) if 
A =  (A i, p —def e : D, A 2) and 
Ipari[p =def e : D ) ~  [I, x).

Another clause that needs modification is that in the definition of searchl corresponding to 
the use of the axiom. Now, definitions of simple type may be used to replace definienda by 
definientia. The new clause is:

searchl[x  : Ai, A, Ai, (S; A), 0 ,„ , Qout, x, Vin, Vout) if 
u n ify [A \, A, 0,‘ti,j , 0ouft Ptn> Pouf > ^  0  E%),

where: 0,„j is the function, from variables to A-terms, s.t. if x is a variable for which there 
is a definition in A, implicit or explicit, with x —d̂ f A : r ,  then 0 ,„i (a;) =  A; otherwise 
0»ni [x) =  0tn(aî); and S i consists of all pairs x : r  s.t. x —de/ A : r ,  for some A, is either an 
implicit or explicit simple definition in Ai.

Below is described a second procedure [Proc. 2) to search for derivations in def'^^^^. This 
procedure is similar to that described above except for the use of definitions of dependent type. 
In Proc. 2, a definition of dependent type is used during search if any of its definienda occurs 
in the goal; in other words, the logical properties of a definiendum are used in achieving a 
goal only if the goal has some occurrence of tha t definiendum. The procedure, Proc. 2, for 
finding de/'^^^^-derivations, based on the criterion above for using definitions of dependent 
type, may be defined as the procedure obtained from Proc. 1 by replacing the clause to deal 
with definitions of dependent type by the following clause:

search[A, (E; A), 0 ,„ , 0o«f, contr[x, xi.ei),Vin, V'ouf) if 
choiceddtl[A, A , I, x, Ai, A 2 ,p, e, D, 0,„) and 
searchl[x\ : 7, A, A%, (E; A), 0̂ ^̂ , 0ouf* ^1 * P«u) Pouf) n-nd 
xx ^  A.

The clause defining validity of choiceddtl is:
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choiceddtX{A, A, 7, x, Ai, Ag, p, e, D, 0,„) if 

A =  [A i,p~def e : D, A2) and 
Ipart[p 6:7) )  =  (7, x) and 
xi G definienda[p) and 

G 0 ,’71(A).

Proc. 2 has the virtue, as compared to Proc. 1, of cutting down the alternative derivations 
via definitions of dependent type. Rather than attempting exhaustively all definitions of 
dependent type, a goal is used to determine which definitions of dependent type should be 
attempted. However, Proc. 2 is not capable of finding all de/'^^^^-derivations of a formula.

D efin ition  5.6 A rule choiceddt Is sensible if there is a definiendum of the main definition 
occurring in the succèdent formula of the conclusion sequent. A derivation is sensible i f  all its 
choiccddt-f'ules are sensible.

All the derivations found by Proc. 2 are sensible, however not all sensible derivations are found 
by Proc. 2. Roughly, the sensible derivations which may not be found by Proc. 2 are those 
derivations which may be found by Proc. 1 by using the clause to deal with definitions of 
dependent type in the following conditions:

(i) the proposition search{A, (S; A), 0 ,’t7, 0out, contr{x, x i.ei), Vin, Vout) holds because the fol­
lowing propositions hold;

choiceddt{A, 7, x, Ai, A 2 , p, 6 , D);
searchX[xi : 7, A, A%, (E; A), 0 ,77, Qout, ^1 > P̂ ’n> Vout) î
Xi 0  A;

(ii) no definiendum of p occurs in A;

(iii) some variable x of occurring in A is s.t. a definiendum of p occurs in Qout{x).

In the conditions above A has no occurrences of a definiendum of p. However, the corresponding
derivation uses a rule choiceddt whose formula in the conclusion’s succèdent is 0ouf(A), which
has some definienda of p occurring in it. Below is studied a sufficient condition for a rule 

choiceddt to be sensible.

D efin ition  5.7 The set 0/ strictly positive subformulae of an H-formula H  (notation sps{H)) 
w.r.t. a basis S; A is defined as follows:

Sps{A) =rfe/ {A}
sps{G D 77) sps{H)
sps{Hi A H 2 ) =def sps{Hi) U sps{H2 )
sps{^x:tH) =def sps{[A/x]H), */E; A 1- A : r  is derivable.
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D efin ition 5.8 Let S; A a^uij • ^  derivable by tt in def'^^^^. The derivation of the

main axiom and the principal strictly positive subformula of H  for  tt are inductively defined on 
the structure of n as follows:

• Case TT is of the form:

7Ti 7T2
S ; A h A i  =  A S j A i h A i a / axiom.

E ; A " ^ ^ ‘ x :A

where H  = A \ and a^^ij =  x. Then, the derivation of the main axiom for tt is tt and the 
principal strictly positive subformula of H  for ir is H .

•  Case TT is of the form:

S; A : A  S; A , h  h f
Anxj^A//. : A

A,

where H  ~  H\ A H 2 and a^^ij — splitl{x,xi.a^li^^). Then, the derivation of the main axiom  

and the principal strictly positive subformula of H  for tt are respectively the derivation o f the 
main axiom and the principal strictly positive subformula of H i for tti .

•  Case TT is of the form:

TT\

S; A a2ij, I A  S; Ai H g ,  h f

S; A splitr{x, : A

where H  = Hi A H 2 and a^^ij — sp/z7r(x, Then, the derivation of the main axiom

and the principal strictly positive subformula of H  for tt are respectively the derivation of the 
main axiom and the principal strictly positive subformula of H 2 for tti .

•  Case TT is of the form:

7Ti
S; A ceui/ : G S; A : A

2 - A app/ÿ(x,ec„i/.x,.o2//,) : ^
3

where H  = G D Hi and a^^ij =  apply{x,eeuif,xi.a^lij^). Then, the derivation of the main 

axiom and the principal strictly positive subformula of H for tt are respectively the derivation 
of the main axiom and the principal strictly positive subformula of H i for TT2 .

# Case TT is of the form:

S; A «2 ,/, : >1 S; Ai H A : r  ^
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where H  — VyjrTTi and =  app/p,(x, A, Then, the derivation of the main axiom
and the principal strictly positive subformula of H  for it are respectively the derivation of the 
main axiom and the principal strictly positive subformula of [A/y]Hi for Tt\,

It is easy to show tha t if TT is the derivation of the main axiom for a derivation it\ of 
S; A ^  then TT is of the form:

VT2 7T3
E; A f- Ai — A E; A% h  Ai a f axiom.. V ̂  r , if #

E; A ' X] : A

for some xi, A \, it^ and

D efin ition  5.9 A definition of dependent type

(xj j X77, x) —daf pair q (Aj, ...pair g (An, e),,.)) . Ey, «t-, ...Ej^„;x„7

is called reasonable i f  n > l  and for every A  G sps[I) there is 1 < i < n s.t. y{ G A.

Not all definitions of dependent type are reasonable. However, when definitions of dependent 
type are used for declaring logical properties of functions almost all definitions may be replaced 
by reasonable definitions, essentially equivalent to them. For example, definitions whose type is 
an /-formula are not reasonable. However, for declaring logical properties of functions the types 
of definitions need to be of form E^i^D. Other situation where a definition is not reasonable is 
when its type is of the form E y , a n d  y,- ^  / ,  for 1 < i < n. In this case the type of 
the definition is logically equivalent to I  and so, by the argument above, this definition is not 
useful for declaring logical properties of a function. The last situation where a definition may 
be not reasonable is when the type of the definition is of the form •••Ey„;7.„/, where I  is 
either of the form (i) 7i A I2  or of the form (ii) I\ 3  I 2 and not simultaneously yi G h  and 
yj G 72 , for 1 < i , j  < n. In case (i) the definition could be easily replaced by two definitions. 
In case (ii), if yi G I 2  the ideas above may be attempted to express the definition by means of 
reasonable definitions. For case (ii), where y, G I\, the ideas above are not sufficient to replace 
the definition by reasonable definitions.

Consider the following two forms of 77-formulae:

(i) E/;Tj->T2Va;:Ti(7i 3  72), where x G 7i and f x  occurs in I 2 ',

(ii) Eg:Ti_̂ T2_»T3Va;,:Ti(7 i 3  (Va:2:T̂ (72 3  /g))), where Xi G 7i, X2 G h  and yxiX2 occurs in h .

Types of forms (i) and (ii) correspond to the types of first and second order deliverables [MB93], 
the difference being tha t in the theory of deliverables the 7-formulae used above may be replaced 
by arbitrary formulae. A definition whose type is either of form (i) or (ii) is reasonable, for /  
occurs in I 2  and g occurs in Tg, respectively.
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D efin ition 5.10 Let S; A h Ai =,- Ag be derivable by tt. A variable x is necessary for  Ai in tt 

i f  there is a free occurrence x* of x in Aj and tt has no rules of the forms: 
h El ; A i, X A : r, A 2

Ei; A i, X A : r, A 2 f- x*i>tA 

El, xi : r ; A i I -A3 : Ti E i; A i 1- A4 : r where x* G A4 and x \ ^  A3 .
S i ;  A i  h  (A x i  : t .A 3 ) A 4 > t, [ A 4 / x i ]À3

Using no rules of the first form guarantees that, case x has a definiens, x* is not replaced by
its definiens. Use of no rules of the second form guarantees that x* may not disappear with
/^-reductions.

L em m a 5.6 Let E; A h Ai>xA2 be derivable by tt. Then, if x is necessary for Ai in tt then 
X G A2 .

P roof; Let x be a necessary variable for Ai in tt. The proof follows by induction on the
structure of tt. For example, case the last step of tt is of the form:

E, xi : n  ; A H A3 : r  E; A t- A4 : n  
E; A h (Axi : ri.A 3)A4 [A4/xi]A 3

By definition of necessary variables, there is a free occurrence x* of x in (Axi : ri.À 3)A4 , i.e. 
X* G A3 or X* G A4 . If X* G A3 then x* G [A4/xi]À 3 , since Xi ^  x. If x* G A4 then xi G A3 , 
otherwise x is not necessary for (Axi : ri.A 3)A4 in w. Thus, x* G [A4/xi]A 3 . □

D efin ition  5.11 Let E ;A  h (pAi...An) =  (pA^...A(^) be derivable by w, i.e., for 1 < i < n,
there is a derivation Tti o /E ; A I- A,- =t, AJ. Then, a variable x is necessary for pAi...An in it, 
if, for some 1 < i < n, x is necessary for Ai in iti.

L em m a 5.7 Let E; A h Ai =  A2 be derivable by it.  Then, if x is necessary for A \ in Tt then
X G A 2 .

P roof; Follows easily from Lemma 5.6. □

T h eo rem  5.6 Let Tt be a derivation using the choiceddt rule 5.7, whose main definition is 
reasonable o f the form  (x 1,..., x̂ ,̂ x) —def (A i,..., An, c) . .

Tti

E; A — X contr{x, ; A  (5.7)

Let the derivation o f the main axiom for Tti be:

Tt2
E; A h* Ai =  A E; A i 1~ Ai a f  
---------------------  axiom.

E ; A ^ ' x i : ^
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Then, for some 1 < i < n, X{ occurs in the principal strictly positive subformula A i of 
[xi/yi]...[xn/yn]I' Further, if x, is necessary for A \ in vrg then the choiceddt rule 5.7 is sensible.

P roof; Since the main definition of rule 5.7 is reasonable, every strictly positive subformula 
of I  has an occurrence of an yj, for 1 < j  < n. So, every strictly positive subformula 
of [xi/yi]...[x„/y„]/ has an occurrence of an Xj.  In particular A i has an occurrence of a 
definiendum, let us call it x. Now, assume that x is a necessary variable of Ai in TTg. Then, by 
Lemma 5.7, x occurs in A. Thus, rule 5.7 is sensible, since x occurs in A  and it is a definiendum 
of the main definition. □

Theorem 5.6 gives a sufficient condition for a rule choiceddt to be sensible, in case its main 
definition is reasonable. On one hand, an implementation of LFPL based on Proc. 2 may be 
more efficient than an implementation based on Proc. 1, since for achieving atomic goals the 
definitions of dependent type to attem pt are dictated by the occurrences of definienda in the 
goal, so there may be fewer definitions to attem pt. But, on the other hand, there are some 
derivations via definitions found by Proc. 1 tha t may be missed with Proc. 2; however, these 
are not many, as hinted by Theorem 5.6. In future work we intend to make precise the benefits 
and costs of implementations based on Proc. 1 and Proc. 2.

The two procedures sketched above to search for def'^^^^ -derivations are capable of finding 
complete sets of witnesses. However, these complete sets of witnesses may be redundant. For 
example, consider a search for a witness of an atomic goal A  w.r.t. a program E; A . Only 
two rules may be used to derive an atomic formula; they are choice and choiceddt’ Suppose 
a witness e is found by using choiceddt for a definition of dependent type p e\ : D in the 
program. Then, there must be a formula in A leading to a derivation of A, whose ulf-form is 
the same as the ulf-form of e. Below we put forward some ideas tha t may be used in eliminating 
redundancy.

Consider a search of a -derivation for an atomic formula. The only rules that may
be applied are choice and choiceddt, i.e. a derivation via a formula or a derivation via a 
definition. The procedure sketched above imposes no constraints on the order in which 
components (formulae or definitions of dependent type) in the context should be selected.

Many times in logic programming a user is only interested in knowing some of the means for 
achieving a goal, rather than knowing all of them. So, the order in which alternative derivations 
are searched becomes important. Shorter derivations should be reported first.

A motivation to introduce definitions of dependent type is that their use may introduce 
shortcuts in deriving a formula; so a derivation via a definition should be preferred to a derivation 
via a formula. Thus, we suggest that the choice of components from the context to derive an 
atomic goal should be such tha t definitions of dependent type are selected before formulae. Still 
there is a choice for the order in which to select definitions and the order in which to select 
formulae.
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Let us consider a search for a witness of an atomic goal A  w.r.t. a program S; A, where there 
is a procedure choice tha t has already selected components of A producing the non-redundant 
set Se of witnesses. Assume the next component selected by choice is C. In this setting, the 
predicate search for atomic goals could be described by the following clause:

Search[A, (Sj A), 0,n, Qout, a, Vin, V̂ out) f̂
(C =  (x : II) and
searchl[x : II, A, (E, A), Q%n, Qout, ^in, Fowt) u-ud 
not in{ulf{e),Se))

)

or
{C ~  {jp ~def • L)) and
Ipart{p ~def ai : D, I , x) and
search\[xi : / ,  A, (Ej A), 0 | t j , 62 , Virn Fo«<) n-nd
e =  contr{x,Xi.€2 ) and
not in{ulf{e),Se)) and
x i  ^  A

)

An expression ulf{e)  stands for the ulf-form of e. A proposition in{u lf(e). Se) holds iff the 
ulf-form of e is A-convertible to a proof-term in the set 5e. In practice both e and Se may 
require the use of free variables of simple type, those introduced to deal with existential goals 
and universally quantified formulae in the program. Such requirement complicates the test for 
membership of a witness in Se, demanding pattern-matching on A-terms.

In future work we intend to make precise these ideas for eliminating redundancy of complete 
sets of witnesses for the achievement of a goal w.r.t. a program in LFPL. We hope to improve on 
the ideas described above by integrating the test for redundancy with the choice of a component 
of the program to proceed search; so that, some components of the program need not be 
attempted, either because they lead to derivations whose ulf-forms are identical to other ulf- 
forms obtained before or because they fail to produce a derivation for the same reason as some 
other component of the program attempted before.

This section finishes by applying the ideas described above to find a complete and non- 
redundant set of witnesses for the example shown in Sec. 4.7. There, the problem is achieving 
the goal

G — 3x:T'meTnbergeq{+2^, x)

w.r.t. the program E; A. (See Sec. 4.7 for the definition of E; A.)
Using either Proc. 1 or Proc. 2, a proof-term e is a witness for the achievement of G w.r.t. 

E; A iff there exists 0?, e?, V? s.t. proposition (i) is valid and 0?(e?) =  e.

(i) search{3x.,rmembergeq{+2^, [sssO], x), (E; A), id, 0?, e?; 0, V?),
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where id represents the identity function on variables and 0 represents the empty signature. 
Proposition (i) is valid iff proposition (ii) is valid, where e? =  (x ,e?J.

(ii) search{membergeq{-\-2 ^, [sssO], x), (E; A), id, 0?, e?j, {x : not}, V?)

Now a component of the program must be selected. The definiendum of the unique definition 
of dependent type in the program, 4-2 , occurs in the goal, so Proc. 1 and Proc. 2 behave in 
the same way. Either the definition of dependent type or any program formula may be selected 
for showing validity of (ii). However, the only means of making (ii) valid is by selecting the 
formula annotated by Z3  in the program. So, after a few steps, for (ii) to be valid, proposition
(iii) must be valid.

(iii) searchl{zQ : H i, membergeq{-\-2 0 , [sssO], x), Ai, (E; A), id, 0?, e7^,Vi, V?),

where:

•  e?j = applyq{z4 ,x i ,Z 7 .applyq{z7 ,X 2 ,Z8 .applyq{z8 ,X3 ,ZQ.e’!^)))-,

•  H i  =  g e q { x 2 , x i )  D  m e m 6 e r ^ e ,(x i , [x2jx3], X2);

•  A i is the context consisting of the components of A that appear before the formula 
annotated by Z3 ]

•  VÎ =  {x : nat, x i : not, X2 : not, X3 : Inai).

For proposition (iii) to be valid, there must exist 0?j and Vr̂  s.t. propositions (iv) and (v) are 
valid.

(iv) searchl{zio : membergeq{xi, [X2IX3], X2),
membergeq{3 -2 ^, [sssO], x), Ai, (E; A), id, 0?i, e ? g ,  Fi,

(v) search{geq[x2 ,x i) ,  (E; A), 0?i, 0?, e? ,̂ F?,, F?),

where: e?g =  apply{zQ,e’t^, zio.ef^). Proposition (iv) may be shown valid performing the fol­
lowing instantiations:

e?3 =  ^10;
0?i =  id — {xi + 2O; X2 sssO; X3 *-> nit, x »->■ sssO};
F?, =  Fi.

(0 ?, represents the function id except for the values associated to x%, X2,X3 , x which are now 
respectively + 2 0 , sssO, nil, sssO.)

Validity of (v) may be shown either by selecting a formula or the definition of dependent 
type, since the definiendum occurs in the goal, for 0?, (xi) =  + 2O. Notice that, in case 0?, (xi) 
was still an indeterminate the definition of dependent type could not be used at this point in 
Proc. 2.

First we attem pt showing validity of (v) through the definition of dependent type. Doing so,
(v) is valid only if (vi) is valid.
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(vi) searchl{zi3  : ^ 2 ,g 6ç(x2 ,x i) , A 2, (E; A ),0 ? i,0 ?,e?5 , V^,V4),

where:

•  e ? 4  =  c o n f r ( 2 : , . 2 : i i . a p p / y ( 2 r i i , X 4 , z i 2 . a p p / y ( ^ i 2 , X 5 ,  2 : 1 3 . 6 7 5 ) ) ) ;  

m H 2  — geq{x4 , X5) 3  geq{-\-2X4, + 2X5);

•  A 2 is the subcontext of A tha t appears before the definition of dependent type, followed
by the definition of simple type + 2  —de/ Ax.ssx : nat —> nat.

•  V2 =  ^1 0  {a:4 : nat, X5 : nat}.

For proposition (vi) to be valid, there must exist 0 ? 2  and s.t. propositions (vii) and (viii) 
are valid:

(vii) searchl{zi4  : geq{+2 X4 , A-2 X5 ), geq{x2 , Xi), A 2, (E; A), 0?^, e?^, F2, VrJ;
(viii) search{geq{x4 , X5), (E; A), 0 ?2 , 0?, e?^, F?^, F?),

where: e?5 =  apply{zis, 6? ,̂ 2:14.675).
Proposition (vii) may be shown valid by performing the following instantiations:

G?c == ^14î
0?2 =  07, -  {x4 1-4 sO; X5 j-4 0};

F ?2 =  F2 .

By using Proc. 1, validity of (viii) may be shown either by selecting a formula or the definition 
of dependent type. But, by using Proc. 2, validity of (viii) may only be shown using a formula, 
since 0?2  applied either to X4 or X5 produces no occurrences of + 2 * In fact validity of (viii) may 
not be shown through the definition of dependent type. The only form of showing validity of 
(viii) is by making the following instantiations for the indeterminates:

e?7 =  a p p l y q { z i , x e , z i 5 . z i 5 ) ;

0 7  =  0?2  -  {x6 »-> sO};
F? =  F?2 0  {xe : nat}.

There is only other alternative form of showing validity of (v), which follows by selecting 
the formula annotated by 2:2 . This alternative produces the following instantiations for the 
indeterminates:

e?4 =  applyq{z2 ,X 4 , Zu.applyq{zn, x&, Zi2 .apply{zi2 , 675,^ 13.2:13)));
c ? 5  =  a p p h j q { z 2 , X 6 , Z i 4 . a p p l y q { z i 4 , X 7 , Z i s . a p p l y { z i 5 , a p p l y q { z i , x s ,  ^ l e - ) ) ,  Z 1 7 .Z 1 7 ) ) ;

0 ?  =  0 7 , — {x4 t-4 ssO, X5 H4 sO, X6 sO, X7 h4 0, xs sO};

F? =  Fi 0  {x4 : nat, X5 : nat, xq : nat, x? : nat, xg : nat}.
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The ulf-forms corresponding to the two possible instantiations of e?̂  are the same; they are 
equal to:

bc{z2 , [ssO, sO], bc{z2 , [sO, 0], applyq{zi, sQ, Z5 .Z5))).

Thus, a complete and non-redundant set of witnesses for the achievement of G  w.r.t, S; A contains 
only one witness.

Summarising, we have sketched two methods for implementing LFPL. Both methods are goal- 
directed for compound goals. For atomic goals, either a formula or a definition of dependent 
type of the program is selected and search proceeds by breaking it up. The difference between 
both methods is in the selection of definitions of dependent type. Whereas in Proc. 1 arbitrary 
definitions of dependent type may be selected, Proc. 2 allows only the selection of a definition 
of dependent type if any of its definienda occurs in the goal. So, the search space in Proc. 2  is 
much smaller than the search space of Proc. 1, but there may be derivations using definitions 
of dependent type, potentially shorter, which are not found by Proc. 2. However, as shown in 
Theorem 5.6, these derivations are not many.

Running both methods for all possible choices produces redundant sets of witnesses. In 
future work we intend to address mechanisms tha t permit to abandon search at particular 
choices tha t lead to witnesses whose ulf-form is equal to the ulf-form of another witness found 
before.
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C h ap ter  6

Conclusions and Open Problem s

6.1 C onclusions

This thesis proposes the language LFPL as a new approach for integrating logic and functional 
programming. In contrast to other approaches (such as ALF, Babel, Curry and Escher), 
LFPL keeps functions and formulae at separate levels; as in type theory, formulae are used 
for expressing logical properties (specifications) of functions. Sometimes, the specification of a 
function may suffice for achieving goals, thus obviating the necessity of replacing the function 
name by its definiens and subsequent normalisation.

Often, in programming, we write a specification and attem pt to derive an implementation 
of it. In the context of LFPL, specifications of functions are thought of as lemmas that may be 
used for goal-achievement. Firstly, it needs to be shown that functions meet their specifications. 
Secondly, those specifications may be used, as many times as desired, for goal-achievement.

We take a proof-theoretic view of logic programming, essentially following [MNPS91, Mil90], 
where a goal (formula) G is achievable w.r.t. a program (set of formulae) P  if there is a proof of 
G from assumptions P. The language FOPLP is defined by means of the sequent calculus system 
hH  for first-order hereditary Harrop logic, a fragment of the logic underlying AProlog[NM88].

When defining a semantics of a logic programming language, we must define what are the 
different means of goal-achievement. The quest for an answer to this question for an integrated 
logical and functional language led us to studying this question in the simpler setting of the 
first-order pure logic programming language FOPLP.

The different means of achieving a goal G w.r.t. a program P  in FOPLP are the proof-terms 
e of the uniform linear focused derivations of G w.r.t. P . We show tha t such derivations are in 
a 1-1  correspondence, through Prawitz’s mapping </>[Pra65], to the expanded normal deductions 
of G w.r.t. P , or, in other words, the deductions of G w.r.t. P  in the natural deduction system 
N N  for first-order hereditary Harrop logic, presented in Sec. 3.5. Further, we show how to 
transform each derivation d in hH  into a uniform linear focused derivation u, essentially by
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means of Kleene’s permutations [Kle52], so that d and u are interpreted by ^  as the same 
expanded normal deduction.

The language HOPLP is defined by means of H H , & sequent calculus for the higher-order 
hereditary Harrop logic with A-terms rather than first-order terms. This language follows ideas 
similar to FOPLP. The different means of achieving a goal G w.r.t. a program P  correspond 
to the A-normal proof-terms of the uniform linear focused derivations of G w.r.t. to P  in H H . 
This class of derivations is in 1-1 correspondence to the expanded normal deductions of G' (the 
A-normal form of G) w.r.t. P ' (the program obtained by replacing the formulae in P  by their 
A-normal forms) in a natural deduction system for higher-order hereditary Harrop
logic.

We take HOPLP as our starting point for integrating logic and functional programming, since 
we may express directly in HOPLP arbitrary relations, by means of formulae, and functions, by 
means of A-abstractions. Roughly, LFPL is obtained from HOPLP by allowing a mechanism 
for defining names for A-terms (simple definitions) and a mechanism for declaring specifications 
of functions (definitions of dependent type).

Traditionally, logic programming constructs cut-free derivations for goal-achievement. In 
LFPL, the use of a definition p e : D of dependent type for goal-achievement may be 
thought of as the use of a (constrained) cut, whose cut-formula is the specification D  declared 
in the definition and whose derivation of D  from other formulae in the program is determined 
by e, thus building a derivation with the subformula property. There are cases, as illustrated 
in Sec. 4.7, where the use of definitions of dependent type permits more efficiency in goal- 
achievement. When attempting to achieve a goal G, the occurrences of function names in G 
control the uses of cuts. If there is a definiendum occurring in G then a cut, whose cut formula 
is the specification of that definiendum, is attempted for achieving G.

Section 4.6 shows that LFPL is both sound and complete for HOPLP, in the sense that a 
goal G is achievable w.r.t. a program P  in LFPL iff G' (the interpretation of G in HOPLP) 
is achievable w.r.t. F ' (the interpretation of F  in HOPLP) in HOPLP. Further, the different 
means of goal-achievement of G w.r.t. F  in LFPL are in a 1-1 correspondence with the different 
means of goal-achievement of G' w.r.t. F ' in HOPLP. So, LFPL is interpretable by means of 
the natural deduction system programming language LFPL may be thought of
as an equivalent language to HOPLP, the difference being that LFPL allows extra mechanisms 
for writing programs, making them clearer, and uses those mechanisms for achieving goals more 
efficiently.

The means of goal-achievement in LFPL are interpreted in HOPLP essentially by cut- 
elimination. For each means of goal-achievement in LFPL using definitions of dependent type 
there is a means of goal-achievement in LFPL using no such definitions, whose interpretation 
in HOPLP is the same. Sometimes, as shown in Sec. 4.7, the use of definitions of dependent 
type provides shorter forms of goal-achievement, since the corresponding derivations using no
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such definitions are (exponentially) longer.
Computation in LFPL may be divided into two steps, as in [PW92]: the first step is proof- 

search, where, due to the use of cuts, the proofs found may be shorter than in HOPLP; and 
the second step is an extraction of the witnesses for the existentially quantified variables in the 
goal from the proof obtained in the first step. The extraction step may require normalisation of 
some parts of the proof. However, this normalisation may be done lazily, for only the witnesses 
for the existentially quantified variables in the goal need to be exhibited.

This thesis uses systems with proof-terms annotating formulae for defining logic programming 
languages. These systems permit a simple type-theoretic account of such languages. By viewing 
propositions as types, a program (set of annotated formulae) is a type assignment (context) and 
a goal (formula) is a type. Achieving a goal G w.r.t. a program P  is a search for an object 
(proof-term) of type G under type-assignment P. This view of logic programming follows 
similar ideas to the language Elf [Pfe89], based on AH-calculus (the theory of dependent types 
underlying LF), where the results of computations are objects of goal-type. The language LFPL 
may be thought of as a dependent type theory tha t provides some definition mechanisms, where 
the definitions and types allowed are restricted in such a way tha t search for objects of a type 
may be done efficiently by means of goal-directed proof-search.

6 . 2  O pen Problem s

Allowing cuts for building derivations introduces redundancy in the means of achieving goals 
w.r.t. programs. Recall that in LFPL, a derivation using def [ (cuts) and its ulf-form, essentially 
obtained by cut elimination followed by reduction to ulf-form, are regarded as the same means 
of goal-achievement, cf Sec. 4.6. The implementation of LFPL, suggested in Sec. 5.4, deals with 
this redundancy problem in a very inefficient way. Each time witnesses of goal-achievement are 
found, their ulf-forms are calculated and compared with the ulf-forms of the witnesses already 
known. An interesting question still to be resolved is whether or not, when searching for 
alternative witnesses, a set S  of witnesses may be used for pruning the search space, either 
positively, by ensuring tha t the ulf-forms tha t may be found within some branches of the search 
space are already in S, or negatively, by ensuring that there are no possible witnesses within 
some branches of the search space.

The redundancy problem mentioned above is also of interest in the wider context of know­
ledge bases. Consider a knowledge base that has redundant information and keeps control of 
how such redundant information is related. How can one use effectively the information about 
redundancy for withdrawing conclusions from the knowledge base? (In our case: a knowledge 
base is a program; the redundant information appears in the form of the formulae in the defin­
itions of dependent type; and proof-terms (definientia) of definitions of dependent type show 
how those formulae are related to other formulae in the program.)
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In Sec. 5.4 are sketched two search procedures, Proc. 1  and Proc. 2, for implementing LFPL. 
They differ only in the components (formulae or definitions of dependent type) of the program 
tha t may be selected for achieving atomic goals. Proc. 1 allows the selection of any component 
of the program and is capable of finding all EULF-derivations. Proc. 2 also permits the selection 
of any formula in the program, but reduces significantly the choice of definitions of dependent 
type, as compared to Proc. 1, since it only permits the selection of a definition of dependent 
type if some of its definienda occur in the goal, i.e. Proc. ^ finds only sensible derivations. The 
drawback is tha t some EULF-derivations may not be found with Proc. 2. Section 5.4 gives a 
characterisation of the EULF-derivations which are not sensible (Theorem 5.6) and describes 
which sensible derivations are not found by Proc. 2. We would like to  investigate other possible 
forms of characterising the derivations found by Proc. 1 which are not found by Proc. 2 that 
may help clarify the relation between advantages of using Proc. 2, by pruning the search space, 
and drawbacks of using Proc. 2, by failing to find some EULF-derivations.

Typed A-calculus is a weak type system for representing functions. (Recall that only exten­
ded polynomials may be represented in typed A-calculus, as shown in [Sch75].) In future work, 
we intend to extend LFPL with inductive datatypes and recursion and allow the programmer 
to use some induction principles for constructing derivations of properties universally quanti­
fied, over inductive types, in specifications; derivations using these induction principles should 
have induction-free counterparts, so tha t derivations using definitions of dependent type are 
interpretable as derivations using no such definitions. Within such extensions of LFPL we hope 
to able to express more complex examples than the example presented in Sec. 4.7 that benefit 
from our proposal for integrating logic and functional programming.

An interesting exercise would be to give a precise interpretation of the language LFPL by 
means of the Extended Calculus of Constructions (ECC) [Luo94]. The ECC provides the impre­
dicative type of propositions, where formulae may be interpreted, and a cumulative hierarchy 
of predicative universes, that we may use for interpreting simple types. In this setting, ECC’s 
E-types may be used to interpret directly the types of definitions of dependent type. Having 
an interpretation of LFPL into ECC, there is a precise framework for investigating relations 
between definitions of dependent type and deliverables[MB93].

By taking the view of logic programming as a means of performing meta-logical studies, 
it would be pertinent to investigate relations between the definition mechanisms allowed in 
LFPL, namely the mechanism for making definitions of dependent type, and the module system 
suggested in [HP91] for Elf.

The semantics of the logic programming language FOPLP is defined by means of hH , a 
sequent calculus for first-order hereditary Harrop logic. However, there is a clear interpretation 
of FOPLP by means of the natural deduction system N N , defined in Sec. 3.5. In order to 
achieve this interpretation the intermediate calculus M M   ̂ is used; this is essentially a version

^The calculus M M  is a fragment of the permutation-free calculus for intuitionistic first-order logic, based on
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of the calculus hH  where permutation variants of a derivation are identified, i.e. a permutation- 
free calculus. (Recall that, derivations in M M  are in 1-1 correspondence to expanded normal 
deductions.) We would like to follow a similar approach to investigate possible characterisations 
of disjunctive logic programming [NL95] by means of natural deduction systems. The study of 
permutation-free calculi is also of particular interest in the context of languages based on linear 
logic, c/[And92a, Mil94, GP94, PH94], where there are usually many permutation variants of 
a derivation. We would also like to investigate this topic.

Other problems left open throughout this thesis or motivated by this thesis, that we would 
like to  study in future work, comprehend:

•  Investigations on the conjecture: proofs in L J  are interpreted (in Prawitz’s sense) as 
the same deduction in N J  iff they are permutable (in Kleene’s sense), in other words, if 

E; A ei : F  and E; A => 62 : F  are derivable in then e\ =e ^ 2  iff ^(ci) =  <̂ (63)» 
(This result has so far been shown for the implicational fragment, cf Sec. 2.3.4.)

•  Can the rewriting systems RSuj and RSui/  be transformed into strongly normalising and 
Church-Rosser rewriting systems, within which every proof-term is reducible to a uniform 
focused and a uniform linear focused, respectively, proof-term?

• Is there a 1-1 correspondence between uniform focused derivations (notice tha t the linear­
ity constraint has been dropped) in a sequent calculus for intuitionistic logic and natural 
deduction systems that allow deductions to be directed acyclic graphs, rather than trees? 
(Recall tha t the linearity constraint in witnesses for achieving a goal, e.g. in FOPLP, 
comes from the fact tha t side formulae of left rules may be used only once. This restric­
tion is essentially motivated by implementation issues, since it would be very costly to 
add to the program all the side formulae of the left rules used in a derivation for achieving 
a goal, which would need to be retracted in case of backtracking.)

•  An interpretation (normalisation procedure) of H H^^^ -derivations as uniform linear fo­
cused derivations of H H  may be described at the level of proof-terms by means of the 
weakly normalising rewriting systems RScut and RS^ij {RSuif with A-terms rather than 
first-order terms), whose normal forms are respectively /fif-proof-terms and uniform lin­
ear focused proof-terms. (This interpretation essentially corresponds to the interpretation 
of LFPL-witnesses as means of goal-achievement in HOPLP.) We intend to study new pro­
cedures for normalising proof-terms of H H^^^  as uniform linear focused proof-terms of 
H H , by interleaving both rewriting systems. In particular, we are interested in efficient 
procedures for deciding whether or not two proof-terms have the same normal form; such 
procedures are useful for dealing with the redundancy issue in implementations of LFPL. 
Following ideas similar to those in [Wad93], we may describe functional languages whose

[Her95], presented in [DP96bj.
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execution mechanism is normalisation of proof-terms to cut-free uniform (linear) focused 
form. The study of procedures for normalising proof-terms of (and extensions
thereof) as proof-terms of H H  is also of interest for implementing such languages.
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A p p e n d ix  A

R elations am ongst the m ain calculi

HH
def

(6)

HH
cut

(5)

HH

^  (2) 
hH^

(4) korm

i ► NN

Upi (1)
-► NJpi

: mapping

-► : embedding

#  : surjection 

-► : bijection

(1) - Theorem 2.7
(2) - Corollary 3.3 and Theorem 3.7
(3) - Theorem 3.18
(4) - Theorems 3.24 and 3.25
(5) - Theorem 4.4
(6) - Theorems 4.5 and 4.6
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A p p e n d ix  B

D erivations in hH

Below is presented the h77-derivation^ corresponding to witness (i) of Fig. 3.5 for the achieve­
ment of the goal

G =  Ai 3  (((Aa 3  A3 ) 3  Aa) 3  A3 ) 

w.r.t. the basis E; A, where A =  x : Ai 3  (Aa 3  A3), xi : A\.

Consider the following abréviations.

A i = d e / A , Xa : A i , X3 : ( A a  3  A 3 )  3  A;

e — def a p p / y ( x , x i , X 4 . e i )

ei — del l a m h d a [ x ' i . e . 2)

C2 del I a m b d a ( x 3, e3)

63 —del a p p l y ( x 4 , e 4, X 5.X5)

64 =  del a p p l y { x 3, e 5, x e . x e )

65 del I a m b d a { x 7. e6)

66 — del a p p l y { x 4, X 7, X s . x s )

Let 7Ti be the /i77-derivation:

h  S ;  A i )  X4 : A a  3  A 3 ,  X7 : A a  basis . h  S ;  A i ,  X4 i A a  3  A 3 ,  x ?  : A a ,  x g  : A 3  basis  
E; Ai, X4 : A a  3  A 3 ,  x ?  : A a  => x ?  : A a  E; A i ,  X4 : A a  3  A 3 ,  x ?  : A a ,  x g  : A 3  =» x g  : A 3

E; Ai,  34 : Aa 3 A3, x? : Aa =» C6 : A3 
E; Ai, X4 : Ag 3 A3 =;► eg : Aa 3 A3

Let TTa be the /i77-derivation:

7Ti h E; A i, X4 : Aa 3 A3, xe : Ag basis
E; Ai, X4 : Aa 3 A3 =>■ 65 : Aa 3 A3 E; Ai, X4 : Aa 3 A3, xg : Aa xg : Aa 

E; A i , X4 : Ag 3 A3 => 64 ; Aa

^Recall that /»//-derivations are unique up to the name of bound variables and the derivations of auxiliary 
judgements.
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Let 7T3 be the /i7f-derivation:

7T2 h E; A i, X4 : Aa D A3 , X5 : A3
E; A i, X4 : Aa D A 3  =» 64 : Aa E; Ai, X4 : Aa D A 3 ,  xg : A 3  =» xs : A 3  

E; A, Xa : A i,xs : (Ag D A 3 )  3  Aa, ® 4 : Aa D A 3  63 : A 3

Then, the following A 77-derivation, whose proof-term is witness (i) of Fig. 3.5, may be formed.

ÎT3
E; A, X4 : Aa 3  A3 , xg : A ±, X3  : (Ag 3  A3 ) 3  Ag =*- 6 3  : A3

h E; A basis E; A, X4  : Ag 3  A3 , xg : Ai => eg : ((Ag 3  A3 ) 3  Ag) 3  A3

axiom t t h -------- ;—r~3— ;------- ;—_ 77, .—zr~7~TTrT~rz~TTE;A=>xi  : Ai E; A, X4 : Ag 3  A3  => ei : Ai 3  (((Ag 3  A3) 3  Ag) 3  A3)
E;A=>e:  Ai 3  (((Ag 3  A3) 3 Ag) 3  A3)
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A p p e n d ix  C

Derivable judgem ents of H H'

p r o p e r

Well-formed atom ic formulae.

S ; A h A a /  12,A h  H i  h f  EjA H T fg  A /
E; A h A A/  E; A h  i / i  A i/g h f

E; A h  77 A/ E; A h G g /  E, x : r ;  A h 77 A/  h E ; A 6 a s i s
E ; A h G D 77A/ E ; A h V a , ; r F  A/  ® ^

Well-formed program formulae.

E; A h  A g /  E ; A h G i f f /  E ; A h G g f f /
E; A h A g f  E; A h Gi  A Gg 5 /

E ; A h G i 5 /  E ; A h G g  g /  E ; A h G < ? /  E; A h  77 A/
E; A h Gi  V Gg g f  E; A h F  D G 5 /

E, X : T; A h G g /  h E; A bas i s  ï l , x  : t ] A h  G  g f  h E; A bas i s
E ; A I - 3. , , G s /  E ; A I - V = . , r G s /

Well-formed goal formulae.

Figure C .l: Well-formed 77//'-formulae.
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S; A h A>r Al 
E ; A h  A>;Ai

S ;A h A : r  E;AhA>*Ai E;AHAi>*A2
E;AhA>;A E;AI-A>;A2

E;AI-A>;A i 
E j A h A Al

E ; A h A i  =T A E ; A h A = r A 2  E j A H A a ^ r A i
E ; A ( - A = r A i  E ; A ( - A = t-A i

Figure C.2: Reduction in zero or more steps and conversion on üTJï'-terms.

- . p r o p e r

E ; A h / / i  =  ir3 E ; A h / / 2  =  //4 E ; A h G i  =  G2 E ; A h i f i  =  Ĵ 2
E; A h /fi  A /fa =  A fU  E; A h Gi D / fi  =  Ga D i/2

E, a; : r; A h // i  =  II2 H E; A basis , ^
E ;A h

E;AhGi  = G3 S;AhGa = Ĝ  S ; AhGi  = G3 E;AHG3 = G4
E; A h Gi A G'l =  G3 A G4 E; A h Gi V G2 =  G3 V G4

E; A h /f i  =  /fa E; A h Gi =  G2 E, x : r; A f- Gi =  Ga h E; A 6asis
E; A h / / i  D Gi =  i/a D Ga E; A h 3,=rGi =  3^:rG2

E, X : r; A h Gi =  G2 h E; A basis 
E;AI-V.:,Gi = V„rG2

Figure C.3: Convertible / / //'-formulae.
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S; A =>• ex : Gi E; A => eg : Gg ^  ^
E; A =*- pa i r {e \ , eg) : Gi A Gg

E; A=» e : Gi  E; AhGg f f /  E;A=»e:Gg E ; Ah G i f f /
E;A=^ m/(e) : Gi V Gg  ̂ E;A=> *nr(e) : Gi V Gg

E; A l ,  X : / / ,  Ag =ÿ- e ; G
E; Al, Ag => lambda{x.e) : H D G 

E; A => e : [A/x]G E ; A h A : r
E; A =>■ p a i r q { A ,  e) : 3j;:rG

E, X : r; A => e : G h E; A basis 
E; A => lambdaq{x.e) : 'ix.rG

h E; Ai , x  : A, Ag basis

=>V x ^ E

axiomS; Al, X : A, Ag => X  : A 

E; A l , X  : / / i  A //g ,x i : i / i ,  Ag => e : G
E; A l ,  X : Hx A //g , Ag =*- splitl{x, xx.e) : G 

E; A l ,  X : / / i  A / f g , x i  : /fg , Ag => e : G

A/

Ar =>•E; Al, X : / /i  A //g, Ag => splitr{x, xi .e) : G

E; Al,X : Gi D / / i ,  Ag =» e : Gi E; Ai, x : Gi D i/i ,  xi : /f i, Ag =» ei ; G 
E; Ai ,x  : Gi D / /i , Ag =>- app/î/(x, e, xi.ei) : G

E; Al, xi : 'ix.rH, xg : [A/x]/f, Ag => e : G E; Ai h A : r
E; A i ,x i  : V̂ riri/, Ag app/ÿg(xi, A,xg.e) ; G V

E; Ai , x : f f i , Ag=»e  :G E ; A i h / / i  = J/ ^  E; A=>e : Gi  E ; A h G i = G  ^
E; Al,  X : /f, Ag => e : G  ̂ E ; A= ^ e : G *'

Figure C.4: Rules for deriving JEfi/'-sequents.
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