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Abstract

We propose a framework for the evaluation of implicitly 

parallel functional programs on message passing multi­

processors with special emphasis on the issue of load 

bounding. The model is based on a new encoding of the 

X-calculus in Milner's 7u-calculus and combines lazy 

evaluation and eager (parallel) evaluation in the same 

framework. The jt-calculus encoding serves as the 

specification of a more concrete compilation scheme 

mapping a simple functional language into a message 

passing, parallel program. We show how and under 

which conditions we can guarantee successful load 

bounding based on this compilation scheme. Finally we 

discuss the architectural requirements for a machine to 

support our model efficiently and we present a simple 

RISC-style processor architecture which meets those 

criteria.
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Chapter 1 — Introduction

1.1 Parallel computing and functional programming

Fifteen years after John Backus' clarion call to break the von Neumann 

bottleneck by adopting a functional programming style [Ba78], commercial 

multiprocessors are now available whose degree of parallelism is limited 

only by the size of a customer's wallet. Yet, there is little agreement on how 

best to program those machines and functional programming is not even 

among the leading contenders. While real speedups have been achieved for 

parallel functional programs on shared-memory multiprocessors with a 

limited degree of parallelism [AJ89], an effective scalahly parallel solution is 

still outstanding. We hope that the work presented here will be an 

important step towards the goal of scalable parallel functional computing.

We begin this introductory chapter by summarising our main results. We 

then state our perspective of the role and the historical development of 

parallel functional computing and show how our work ties in with 

previous developments. We conclude the chapter with a 'road map' to the 

rest of the thesis.

1.2 Contribution of this thesis

Central to this thesis is a framework for the evaluation of implicitly parallel 

functional programs on message-passing multicomputers. Our model is 

based on a new encoding of the X-calculus in Milner's Tc-calculus. Milner has 

given two such encodings in [Mi92], a sequential one with call-by-name 

parameter passing semantics and a parallel one with call-by-value 

parameter passing semantics. Ours combines the advantages of both in the 

same framework. We can choose individually for each function application 

between eager and lazy evaluation based on the results of strictness analysis. 3



We are thus able to preserve non-strict semantics and at the same time 

exploit parallelism where safely possible. Our ji-calculus encoding serves as 

the specification of a more concrete compilation scheme mapping a simple 

functional language into a message passing, parallel program by exploiting 

the implicit parallelism of functional programs. Since implicit parallelism 

gives rise to the problem of the parallelism explosion we give special 

emphasis to the issue of automatic load bounding. Without load bounding, 

the space requirements of some programs can change from linear to 

exponential. Our simple adaptive algorithm is integrated into the 

compilation scheme. We give an informal proof for the effectiveness of this 

algorithm, based on the structure of the compilation scheme, and discuss 

the limitations of our method. We discuss the architectural requirements 

for a machine to support our model efficiently and present the STAR:DUST 

architecture, short for 'St. Andrews RISC: Dataflow Using Sequential 

Threads', designed to meet those criteria. A STAR:DUST node is a simple 

RISC processor with two new instructions supporting message passing and 

task switching. We have simulated a multiprocessor STARDUST machine 

on a Meiko Computing Surface and have obtained experimental results 

based on this simulator.

1.3 Why functional programming matters

The virtues of programming in a functional style have been addressed often 

and eloquently enough for us not to dwell too long on this subject. In short, 

functional languages lend themselves to a declarative style of 

programming, often permitting a literal translation of a mathematical 

specification into a functional program. Many algorithms can be expressed 

in a succinct and intuitive manner unmatched by the prevalent imperative 

languages (see Hughes [Hu89]). This is due mostly to non-strict semantics 

which guarantees the termination of a larger class of programs. There is an



'algebra of functional programs' in the sense of Backus [Ba78] with a range of 

correctness-preserving transformations that facilitates correctness proofs 

and the derivation of efficient programs from specifications. The interested 

reader is referred to work by Darlington [Da82] and Bird [BiS9] for a more 

comprehensive exposition of these features. Of special interest for our work 

is the fact that functional languages do not force the programmer to impose 

a total order on program execution. Referential transparency ensures that 

only data dependencies constrain the order of evaluation. The resulting 

freedom can be exploited by systems like ours to extract parallelism from 

programs not necessarily written with parallel execution in mind. This is 

not to say, however, that writing parallel functional programs is a trivial 

task. While a compiler can easily extract parallelism from a particular  

functional program, different algorithms for the same problem may exhibit 

different amounts of parallelism, so good parallel programs will still require 

a special effort on the part of the programmer.

1.4 What is holding us back?

Only in relatively few cases—certainly when compared to the size of the 

present-day software industry—has functional programming had any 

impact on the practical solution of real world problems. This fact can not 

just be blamed on the inertia of practitioners who haven't been exposed to 

functional programming during the course of their training. Functional 

programming languages have long been suffering from a number of 

deficiencies. Chief among them is the difficulty of expressing non-trivial 

forms of I/O  and, more generally, expressing many algorithms that are 

intuitively based on the notion of state. The nondeterminism of functional 

languages with respect to execution order, which is so beneficial to us for the 

purpose of parallélisation, also has its downside. Visualising the evaluation 

of a non-trivial functional program under a lazy or a parallel execution



regime is exceedingly hard. Convential debugging techniques fail. In 

particular, the notion of 'stepping through a program' has little meaning in 

a functional context. For similar reasons, classical complexity analysis does 

not readily apply to functional programs. Finally, despite impressive 

progress that has been made with 'compiled graph reduction' originating 

with Johnsson [Jo84], functional programming systems are still behind their 

imperative cousins in terms of efficiency when measured on real-world 

algorithms. We will not enter into a discussion of the various reasons for 

this handicap. Let it suffice to say that one of the requirements for the design 

of Fortran, generally considered to be the first 'high-level' programming 

language, was to map to machine languages with minimal loss of efficiency. 

Recently this close relationship has been reinforced with the design of RISC 

microprocessors as 'C' machines, as described by Patterson and Sequin in 

[PS81].

1.5 'Functional' architectures

Since the earliest days of functional programming languages, their potential 

for parallelism has been recognised [Bu75]. At times, their inherent 

parallelism was presented as a means to catch up with imperative languages 

in the benchmark race. This expectation is, of course, to be taken with a large 

grain of salt. The competition for a parallel functional program is a parallel 

imperative one, thus moving the goalposts. However, there is some hope 

that parallel functional programming will indeed one day gather a larger 

following. The primary reason for this expectation is the enormous 

complexity of any but the most simple-minded imperative models for 

parallel programming. Reasoning about the correctness of a message- 

passing program, i.e., comprehending it, involves demonstrating its 

freedom of deadlock and starvation. See, for example Brookes and Roscoe 

[BR91]. Non-determinism is also a serious problem, especially when it



comes to debugging. Functional programs, on the other hand, are 

deterministic by definition and have no need for special new 'parallel 

constructs' which could affect correctness.

Most of the initial work on parallel functional programming centered 

around various proposals for computer architectures specially designed to 

support functional programming, e.g., the FFP machine [Ma79], the 

Manchester dataflow machine [GW78], the MIT tagged token data flow 

machine [AK80] and ALICE [DR81]. A comprehensive survey can be found 

in [Ve84]. The reason for this focus on computer architecture was twofold. 

In the first place there simply were no parallel architectures available 

commercially at the time. The first research multiprocessor, the liliac IV had 

only become fully operational in 1975 [Fa76], while the first commercial 

multiprocessor built according to scalable design principles, the Denelcor 

HEP, did not arrive until 1981 [Sm81, HB84]. But there was a second reason. 

Since imperative languages were seen as being wedded to von Neumann 

machines, the search was on for a 'non-von Neumann' machine which 

would execute functional programs in a kind of 'native mode'. With the 

benefit of hindsight, this search can safely be said to have failed. While 

some of the architectural projects did produce very interesting results 

(among them the hardware mechanism for load bounding by Ruggiero and 

Sargeant [RS87] inspiring our software solution, see Chapter 2), few of the 

proposed architectures were constructed and none of them was 

commercially successful. To our knowledge only the MIT project is still 

continuing as an architectural effort after undergoing a major 

transformation back towards a modified von Neumann model (see below). 

Several factors contributed to thwart the early hopes for 'functional 

architectures'. Principal among them is the problem of excessively fine 

granularity. The necessary overhead for managing and synchronizing a



large number of small tasks often dwarfed any benefit that could be obtained 

from parallelism. Secondly, mainstream computer architecture did not 

stand still. Speed improvements for sequential microprocessors have 

continued at an enormous rate even to the present day. High-bandwidth, 

low latency networks were developed for connecting large numbers of 

conventional von Neumann microprocessors [DS87, Le92]. Interface 

technology has been advanced tying processors closely to networks, e.g., for 

the transputer [Wh85], the J-Machine [DC89], the CM-5 [Le92]. See also [Hf92] 

for a recent proposal. Finally, it has now been recognized that economies of 

scale will favour, for the forseeable future, parallel machines made out of 

large numbers of cheap von Neumann style microprocessors over special- 

purpose parallel processor designs.

1.6 Current work

Work on parallel functional programming has not stopped, however. 

Current activities can be broadly divided into two classes. On the 

architectural side efforts have been directed towards a rapprochement with 

von Neumann microprocessor technology. In the case of the MIT dataflow 

project this was a gradual process: from the fine-grain, tagged-token 

dataflow architecture Monsoon [PC90], via lannucci's hybrid architecture 

[Ia88] and F-RISC [AN88], the MIT work has now progressed to the design of 

a coprocessor for the Motorola 88100, the *T (pronounced 'Start') project 

[NP92]. The GRIP project [PC87] at Glasgow ('Graph Reduction in Parallel') 

has been designed from the outset around a commercial microprocessor, the 

Motorola 68020.

The bulk of ongoing work, however, now concentrates its efforts on 

attempts to support the various forms of parallel architectures that have 

been developed for different programming models. Shared-memory 

machines are the target of work that has been done at Chalmers by

10



Augustsson and Johnsson [AJ89]. The FAST project at Imperial College and 

Southampton [GH90] supports networks of communicating processes such 

as those constructed with transputers. Hudak and his colleagues have 

implemented parallel graph reduction on an Intel hypercube as part of their 

work on the Alfalfa project [GH87]. Work by Cole at Glasgow [Co90] and 

Darlington at Imperial College on algorithmic skeletons is somewhat 

broader in scope. They propose writing parallel functional programs in 

terms of generic functions which would be implemented efficiently on a 

host of different architectures, spanning parallel models from SIMD to 

MIMD. For all their diversity, these projects share certain characteristics. In 

order to take advantage of parallelism, programmers need to use 

annotations of some sort to specify where parallelism is to be obtained. 

Consequently programmers are also responsible for bounding parallelism to 

sustainable levels. Furthermore, only coarse-grain parallelism can typically 

be exploited with any efficiency. The resulting programs often become non­

portable and non-scalable. We will discuss some of these projects in more 

detail in Chapter 2.

1.7 Where we fit in

Our fundamental interest is in implicit parallelism for scalable computers. 

In this section we will state the problems we set out to address and discuss 

the motivations behind our research. We will indicate how those 

motivations arose from previous work in the field.

1.7.1 Concurrency in functional programming systems and the 7c-calculus

David Turner's popularisation of combinators [Tu79] provided the 

functional programming community with a beautiful theory for defining 

the semantics of program execution in terms of combinator reduction. At 

the same time his work resulted in an implementation technique which

11



has since been refined to compiled graph reduction, now universally 

considered the most efficient method of evaluating functional programs on 

off-the-shelf sequential machines. Many researchers have now undertaken 

to apply the basic model of graph reduction to parallel evaluation as well. 

This is possible since the graph reduction model preserves the parallelism 

implicit in functional languages. Obviously the implicit parallelism needs 

be made explicit at some stage, either during compilation or during 

evaluation. This is typically done in an ad-hoc manner suitable to the kind 

of parallel machine supported by a particular project. It is our contention 

that it is both useful and possible to elevate the process of 'making 

parallelism explicit' to a higher level in the design of a parallel functional 

language system. What is needed is a proper theory of concurrency in 

parallel functional programming. In the %-calculus [Mi92] Robin Milner 

provides us with the necessary tools for such a theory, demonstrated by his 

two encodings of the ^.-calculus in the Ji-calculus. We extend his work to 

modelling a functional programming system which exploits parallelism 

and preserves non-strictness, taking up a theme from [Mi92].

Thus, strategies which appear natural in the presence of textual 

substitution may not seem so natural in a model involving 

autonomous agents. The former have clearly been most deeply 

studied in research on the X-calculus; one effect of providing 

n-calculus as a substrate may be to intensify the study of other 

strategies, such as those with shared reductions. (Emphasis 

ours)

We would like to note that we approached the problem strictly from an 

implementation point of view and have been made aware of the Jt-calculus 

only at a late stage of the work described here. In particular, our compilation 

scheme for message-passing multicomputers predates our 71-calculus

12



encoding for the X-calculus which is best viewed as a crystallisation of the 

main ideas.

1,7.2 Automatic load bounding

Consider the 'nfib' program, a program so trivial that it is now almost 

considered bad taste to publish performance figures based on it:

nfib 0 = 1

nfib 1 = 1

nfib n = 1 + nfib (n~l) + nfib (n-2)

'nfib' is strict throughout, contains neither fancy data structures nor higher 

order functions and offers vast amounts of parallelism of a very simple 

kind. Any functional implementation, so the reasoning goes, should do 

well on it. Yet in the context of implicit parallelism 'nfib' poses a difficult 

problem. Sequential execution of 'nfib' corresponds to a depth-first traversal 

of the tree-structured program graph. Therefore sequential 'nfib' requires 

space proportional to the maximum depth of recursion, i.e., it runs in linear 

space. Maximally parallel evaluation of 'nfib', however, corresponds to 

breadth first traversal and worst case space requirements are proportional to 

the size of the program graph, i.e., we now require exponential space. Even 

relatively small instances of parallel 'nfib' can exceed machine resources. At 

the same time we obtain no benefit from exploiting parallelism far in excess 

of the hardware parallelism at our disposal. So clearly we are interested in 

bounding the amount of parallelism we will uncover. This problem was 

anticipated by Burton and Sleep in [BS81] where the basic idea for an 

adaptive solution is also outlined: follow a breadth-first evaluation strategy 

while the machine is underloaded, perform depth-first evaluation while 

the machine is saturated.

13
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The 'parallelism explosion' was observed experimentally in the 

dataflow community and reported in [RS87, CA88]. Our work is closely 

related to that of Ruggiero and Sargeant who have implemented a hardware 

load throttle as part of their work on the Manchester dataflow machine. We 

are picking up an idea proposed in [RS87]

Another idea for dynamic software throttling is to plant two

types of code for any parallel program: one serial and the other

parallel. The machine switches from one style of code to the 

other at run time, according to how busy it is.

However, they go on to add

Although this method could be useful in the future, achieving 

a complete solution in this way is well beyond the state of the 

art. The conclusion is that despite being useful, software 

techniques are not enough to implement a general and 

effective throttle. We need some help from the hardware.

In this paper we present a software only solution with little overhead—in 

particular, we do not require expensive scheduling hardware. In addition, 

our work is novel in the following ways:

• We integrate our load bounding method into a simple compilation

scheme for lazy functional languages.

• We present an informal proof of the effectiveness of our scheme based 

on the structure of the generated code.

• We identify sharing as a possible source of problems for load bounding.

14
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1.7.3 Granularity

Consider the following simple functional program

let X = a*b;

y - 4*c 

in (x+y) * (x-y)
and its dataflow graph (Figure 1.1), This example has been taken (in slightly 

simplified form) from [AC86] where it is used to demonstrate the 

instruction level parallelism implicit in many functional programs (or 

dataflow programs). In the example, x and y  can be computed concurrently, 

and so can the addition and the subtraction.

a b c

Figure 1.1: Instruction level parallelism

The original dataflow machine designs attempted to exploit instruction- 

level parallelism of this form as a special case of the general method. 

Experience with completed dataflow hardware has demonstrated, however, 

that the overheads of dispatching tiny parcels of work and synchronizing 

their results easily outweighs any benefits to be obtained from such 

parallelism. In fact, recent designs for superscalar (sequential) 

microprocessors have managed to exploit instruction-level parallelism 

much more effectively, see for example [DA92, MW92]. For this reason.

15



much of the recent work on parallel functional programming has focussed 

on restricting the exploitation of functional parallelism to the coarse-grain 

type.

Since the 'right' level of granularity depends largely on architectural 

parameters, it is hard to identify while parallel computer architecture is a 

quickly moving target. We consider the trend to coarse-grain parallelism 

within the functional community to be an overcompensation for the 

previous focus on excessively fine-grain parallelism. Our working 

hypothesis is that it will be possible to support parallelism efficiently on the 

inter-function level (we do not attempt to exploit parallelism within 

function bodies). The trend towards closer integration of network interfaces 

and high-bandwidth networks [EC92, HJ92] permits more efficient 

synchronisation than previously considered feasible. In Chapter 6 we 

present a model RISC architecture with a tightly integrated network 

interface [Os91]. STAR:DUST was heavily influenced by NikhiTs P-RISC 

architecture [AN88] described in the next chapter.

We restrict ourselves to distributed memory, message passing machines 

as those now appear set to prevail among massively parallel architectures. 

This trend is exemplified by the development history of the Connection 

Machine, originally a pioneering SIMD architecture, which was recently 

reborn in MIMD form [Le92].

1.8 Thesis outline

In this chapter we have outlined the main contributions of this thesis and 

the developments which preceded and motivated our work. In Chapter 2 

we will have a closer look at some previous work important to ours. 

Chapter 3 contains a simulation of the X-calculus in Milner's 7c-calculus 

which serves as a specification for the compilation scheme presented in 

Chapters 4 and 5. The former contains the basic set of compilation rules
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required for lazy functional programming with alternative 'eager' rules for 

exploiting parallelism where safely possible. In the latter we adapt the eager 

rules to tie in with an efficient distributed load bounding algorithm in order 

to limit the resource requirements of the resulting programs and we give an 

informal proof of the effectiveness of the resulting scheme. In Chapter 6 we 

detail our proposal for STAR:DUST, a model RISC architecture for fine- 

grain parallel computing. In Chapter 7 we describe our simulation of this 

architecture on a commercial multiprocessor and present some 

experimental results obtained from the simulator. We conclude in Chapter 

8 with a brief summary and suggestions for further work.
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Chapter 2 — Previous and Related Work

2.1 Contents

In this chapter we will give a summary of previous work of which we make 

use, previous work that we improve on, as well as current related work 

moving in different directions. Parallel functional programming is a large 

field and we necessarily have to restrict our attention to those contributions 

that we deem most relevant to our work. In outline, we will give some 

details about Milner's 71-calculus as well as his encodings of the X-calculus. 

We will discuss some aspects of the Manchester dataflow project, in 

particular their achievements on load bounding. We review the 

development of the MIT dataflow work and discuss the design of the P-RISC 

architecture that grew out of it. We include a section on the first parallel 

graph reduction machine, ALICE, and its successor. Flagship. We discuss the 

design of the GRIP architecture, a major project in parallel functional 

programming which includes a strong architectural component. We 

conclude with a comparison of our load bounding approach to that of 'lazy 

task creation'.

2.2 Functional processes: simulating the X-calculus in the 7c-calculus

The 7C-calculus is the result of a search for a algebraic framework which 

would capture the essence of the notion of concurrent processes. It is 

particularly suitable for the description of systems which can change their 

configuration dynamically. The 7U-calculus improves on Milner's previous 

work on CCS, the calculus of communicating systems [Mi80], in that the 

former needs no recourse to a universe of values outside its own scope. In 

terms of internal completeness and conciseness it is comparable to the X- 

calculus which was a guiding paradigm in the design of the 7r-calculus. See 

Milner's Turing Award Lecture [Mi93] for an excellent discussion of the
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motivations that lead to the jr-calculus. This section will be important to the 

rest of the thesis in two ways: we will require an understanding of the 

operational behaviour of the 7c-calculus in Chapter 3, where we use it to 

specify a non-strict parallel simulator for the X-calculus. Secondly we will 

present a brief outline of two such simulations given by Milner in [Mi92], 

one of them non-strict but sequential, the other parallel but strict.

2.2.1 The 7c-calculus: a simple example

Rather than getting immediately bogged down in notation and detail, let us 

start by presenting a simple Tt-calculus term, the simplest term which admits 

reduction:

xz  I x(y)

This term is to be read as follows: write z i o x  and, in parallel, read y from x. 

Reduction is possible since there is a reader and a writer ready to 

communicate via the same channel, namely x. Communication takes place 

by cancelling read- and write-actions and substituting the value to be written 

{z in the example) for any free occurrence in the reading process of the 

variable to be read (y in the example). As y does not occur free anywhere, 

reduction yields

0 I 0

which is equivalent to 0, the empty process. A slightly more useful example 

is the term

x z  I x{y).xy

Here the read-action x(y) is followed by a write-action xy. Reduction yields

0 I x z

after cancelling matching read/write-actions and substituting z for the single 

free occurrence of y.
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2.2.2 The 7c-calculus; syntax and reduction behaviour

We are now ready for a more systematic presentation of the 7c-calculus, 

adhering to the form given in [Mi92]. The 7c~calculus consists of a set of 

terms which intuitively stand for processes. The names of the 7c-calculus {x, 

y,  z...) denote channels through which processes communicate. Channel 

names are also the only subject of communication. The syntax for %-calculus 

terms is summarised in Figure 2.1.

p ::= xy.P write-action: write y to x and then P

p ::= x(y).P read-action: read y from x and then P

p ::= 0 empty process

p ::= P i 1P2 composition

p ::= (y) P restriction

p ::= !P replication

Figure 2.1: Syntax of the it-calculus

The terms of the jc-calculus exhibit a simple block structure with two forms 

of name binding, namely read-action and restriction. In the following we 

will discuss each of the constructs in some more detail.

Write-action. A  term of the form P = xz.Q represents a synchronous send- 

operation of a value z along a channel x. The process P cannot proceed 

until another process is ready to receive z on the same channel and will 

then continue with Q,

Read-action. Counterpart to a write-action. A process of the form x(y).Q 

cannot proceed until another process is ready to send some value v along 

the channel x. The value v is then substituted for all free occurrences of y 

inside Q. The read-action is one of two ways of binding names, i.e., the 

scope of y is Q.
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x(y).P (y) xy .P  write a new channel y to x

x(y)(z).P x(y).x(z).P multiple reads from x

xyz.P x y .xz .P  multiple writes to x

Note in the first rule how private names {y above) can be exported out of 

the scope of restriction via explicit communication. Note, finally, that all
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Empty process. We write 0 to represent the empty process which is necessary 

to ground our syntactic rules. We will always abbreviate action terms of 

the form xz.Q to x z  (similarly for read-actions).

Composition. We write Pi IP2 to denote two processes P\  and P2 operating 

concurrently. Note that there is no separate construct for sequential 

composition. This can be modelled using parallel composition and 

suitable synchronisation via interaction.

Restriction. We write {x)P to obtain a new channel name x which is private

to P. The term xz  I (%) x(y) has no reduction, as the sending process and f
the receiving process operate on different channels. Restriction is the 

second form of name binding, with P as the scope of x.

Replication. A  term of the form IP stands for the parallel composition of as 

many instances of the term P 'as necessary'. Replication can be 

'unwound' according to the structural equivalence IP sP I  IP. Unwinding 

is unnecessary when there are existing copies of P which have not 

participated in any interactions. Note that unwinding does not represent 

reduction but is a structural equivalence relation like, for example, a- 

conversion.

In addition to these basic constructs we will also use a number of

shorthands as defined below:



occurrences of (%) signify bindings for the channel name x with simple static 

scoping rules.

The basic reduction rule, already hinted at in our explanation of read- and 

write-actions, is the following: for a pair of processes

Qi -  xz.Pj and Q2 = x(y). P2

w e  get the reduction

Gi 162 f  11P2 (z/y).

Put in words, if Qi is ready to send a name z along the channel x and Q2 is 

ready to receive a name along the same channel then they can interact. 

Interaction results in cancelling each of the two send/receive actions and 

substituting z for all occurrences of y inside P 2 * The complete set of 

reduction rules describes in detail the distribution of reduction over 

restriction and replication constructs, omitted here for sake of brevity. They 

can be found in [Mi92] along with a complete definition of structural 

equivalence for terms.

2.2.3 A comparison of the 7c-calculus to the X-calculus

It will be useful to compare the ;i-calculus with the X-calculus both to gain 

further understanding of the 7c-calculus itself and to appreciate the task 

before us of simulating the latter with the former. At the most elementary 

level, both calculi are term rewriting systems with a simple basic reduction 

rule. Both have simple static scoping rules for names. Neither provides any 

computational 'sugar' but both of them are computationally complete (for 

the -calculus this will follow from the fact that it can simulate the X- 

calculus). In the 1-calculus, the basic concept is that of a function: terms 

represent functions and names denote functions. Functions are first-class 

objects. In the je-calculus, there are two basic entities, processes and 

channels. Terms represent processes, but processes are not first-class in that
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the names of the 7c-calculus stand for channels only and channels are the 

only subject of of communication. There is a superficial correspondence 

between p-reduction in the 1 -calculus and communication in the Tt-calculus 

in that both involve the substitution of an 'actual parameter' for a 'formal 

parameter'. However, while the term providing the actual parameter in a p- 

reduction becomes merged with the abstraction term, both reader and writer 

processes engaging in a Tt-calculus communication continue as independent 

agents after interacting. Studying the two reduction mechanisms closely we 

observe that p-reduction is the more complex of the two, involving as it 

does terms as actual parameters rather than 'atomic' channel names. On the 

other hand, identifying a redex in the 1 -calculus is a simple 'local' syntactic 

operation whereas reduction in the jc-calculus involves identifying two 

matching redexes, a reader and a writer, which can occur anywhere within a 

term (see the example below). A final and fundamental difference between 

the two calculi is that normal forms for 1 -calculus terms are unique, 

whereas the 7ï-calculus is nondeterministic. Consider for example the two 

reductions

%(y) I xzi  I XZ2 “> 0  1 0  1 XZ2 = XZ2

%(y) I xzi  I XZ2 0  I xzi  I 0  = xzi

Each yields a different normal form, depending on which send-action 

succeeds.

2.2.4 Simulating the normal-order 1-calculus

The motivation behind simulating the 1-calculus in the 7c-calculus is 

twofold. Firstly, it serves to demonstrates the power of the latter by relating 

it to its better-established cousin. Secondly, simulation of the 1-calculus is a 

useful application for the -calculus, demonstrating its capability for 

expressing concurrency in 1-calculus reduction. In the first of two encodings
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for 1-caiculus reduction, Milner presents a scheme for the normal-order 

(sequential) 1-calculus in [Mi92] from which the following is largely quoted. 

Note that even without any explicit sequencing combinator, the jc-calculus 

is capable of expressing sequentiality by suitable synchronisation.

Each 1-calculus term M is encoded as [[Af]], a function which maps 

names to Ti-calculus terms. So [[Af]] m is a term of the Jt-calculus with the 

intuition that the name u is the link along which [[Af ]] 'receives' its 

arguments. Now, suppose that Af will itself be used in place of an argument 

represented by the variable x, i.e., x is bound to Af. Each time Af is 'called', via 

X, it must be told by the caller where to receive its own arguments. (In more 

familiar terminology, it must be given a pointer to its arguments). Thus the 

'environment entry' binding % to Af is a Ti-term defined as follows, with w 

representing the argument pointer(s).

Note the use of the replicator ! to allow for multiple references to the same 

environment entry*.

How does [IXx Af]] u receive its arguments? Along u it receives (as x) the 

name of its first argument, and also the name of a link where the rest will 

be transmitted. This explains the first line of Milner's encoding, which we 

now give in full:
[[Xa:JW]]« 4# »W(v). [[M]] V

M ] u  #  XU

[[MM] u #  (v) ([[Mj] VI Vix). vu. [[% := M] )

Let us look, with Milner, at an example. We assume x is not free in N.

[[(!%.%) N]]u s  (v) {v{x){w). [[%]] w I V(x). vu. [[% := N\] ) (1)

In using the notation [[x := M\] for environment entries we follow [M192] but point out that it 
is distinct from the encoding function [[Af]] u
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-> (v)(x) (v(w). [[x]] w I VM. [[x :-N]] ) (2)

-> (% )#]]»! [[%:=A0]) (3)

= (x) (XM 1 !x(w). [[iV]] w) (4)

[M ]m I (x)[[x:-M] (5)

~ m ] u  (6)

The following remarks help us read the above calculation:

— In (1), we have expanded the definitions for lambda abstraction and 

function application

— In (2), we have communicated a new channel x along v. Since x now |

occurs in both parallel subprocesses, the restriction (x) has been moved ^

outwards to cover both occurrences.

— In (3), the restriction (v) has been dropped because v no longer occurs

— The step to (4) represents the expansion of the definitions for identifier 

reference and environment entry

— In (5), (x) has been moved inwards as x now only occurs in the right 

subterm

— The last step, to (6), goes beyond simple equivalence and represents the 

garbage-collection of an environment entry [[x := N]] which cannot be 

used further (since the subject x of the first action is restricted).

Milner also provides a proof that the reduction of [[Af]] in the Tc-calculus 

simulates that of Af in the X-calculus 'very closely'.

Reexamining the definition for environment entries [[x := Af]] we 

observe that Af is evaluated completely for each new set of arguments w. So 

while the scheme outlined above faithfully simulates normal-order 

reduction in the A,-calculus, it takes no account of sharing and thus does not 

model graph reduction as first defined by Wadsworth in [Wa71].
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2.2.5 Simulating the call-by-value X-calculus

Since the Tt-calculus is suitable for expressing concurrency, we would expect 

it to be able to express the parallelism implicit in the X-calculus. Milner does 

so in his second encoding which simulates the call-by-value X-calculus. 

Under call-by-value semantics we completely reduce an argument term 

before passing its value to a function. In the new encoding [[M]] p, the name 

p  will have a different significance. The reason is that two 'events' which 

coincided for the normal-order calculus must now be separated, namely

— the signal at p  that M  has reduced to a value (needed when M is the 

argument of an application);

— the receipt of arguments by an abstraction M (needed when M is applied).

Dealing with a call-by-value reduction strategy we will not need to pass 

'apply nodes' as arguments, so our environment entries will now contain 

only values, i.e. abstractions and variables. So we begin by defining [{y := V]] 

where V is either a lambda abstraction or a variable.

[ly := Xx.M\] !y(v). v(x)(p). [[M]] p

[Ij/:=x]] ly{v), XV

An environment entry for an abstraction keeps reading new sets of 

arguments v to which the abstraction is to be applied. For each set thus 

received, we pick up the first argument, x, and the rest of the arguments, p. 

We instantiate a new copy of M to which we pass the arguments p. The first 

argument x is bound to the free variable x in M implicitly. An environment 

entry for a variable simple passes on any sets of arguments to that variable.

The first action of a (translated) value, [[V]] p, is to signal its reduction to 

a value. The channel y representing the signal provides access to an 

'environment entry'. Note that [[y := V]] is here a subterm of [[V]] p,  whereas 

the opposite was true in the normal-order encoding. In the most important
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difference, however, to the normal-order encoding, the new translation [[M 

N]] p  allows M  and N  to 'run' in parallel. The auxiliary definition ap(p, <7, r) 

provides the necessary glue for relating functions to arguments: we pick up 

the value of M  from q in the shape of an environment entry y  and apply it 

to a new set of arguments v, which is constructed by extending the list of 

arguments p by the argument z computed by [[N]] r.

[[V\] P p(y). [[y := V]] (y not free in V)

[[M N]] p iq){r) (ap(p, q, r) I [[M]] q I [[N]] r)

^p(p,q,r) g(y)-yW-''(z)-v2p

The example reduction sequence below for the k-term {Xx.M)V demonstrates 

the simulation of p-reduction.

l[{Xz.M)V\]p s  {q){r) (ap(y, q, r) I q(y). [[y:=Xz.M]] I r (z). [[z:= V]])

(r)(y)iÿ{v).r(z).vzp I [[y:=Xz.M]] I r(z). [[z:= V]]) (1)

-> {r){y)(v)(r{z).vzp \ l\y:==Xz.M\] \v(z)(p).[[M]]p I (2 )

r(z).[[z:=V]])

-> (y)W(z) (vzy I [|y:=Az.M]] \ v{z)(p),l[M\] p I [[z:=V]]) (3)

(y)(z)([|i/:=AzJyq] l ump  l [[z:=m (4)

~ (z)[[M]]y I [[z:-V]]) (5)

Each of the four reduction steps consumes one of the actions defined by ap.

The first step to (1) communicates the environment entry y for the functor 

Xz.M. Reduction (2) communicates the name v by which the functor can 

access its arguments. In step (3) we pick up the environment entry z for the 

argument V. Finally we make the extended argument set zp available via v.

The call-by-value nature of this scheme is apparent in the third and 

fourth actions of ap. The activation of a function call, performed by the 

action vzp, cannot proceed until the argument to the function call signals 

its reduction to a value, detected by r(z). While this simulation exhibits
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(some) parallelism in that for an application of the form M N  both subterms 

can be evaluated in parallel, the application itself cannot proceed until the 

argument has been computed. Thus the parallelism implicit in a non-strict 

constructor function like cons which could return a result even before its 

argument values are available is not exploited by this scheme. More 

seriously, Milner's call-by-value scheme obviously has strict semantics and I

will thus fail to terminate for many terms which have a normal form.

We shall give a third encoding, combining the advantages of 

parallelism and non-strictness, in the next chapter.

2.3 The Manchester dataflow project

Making somewhat of a conceptual jump, we move from the theoretical 

domain of the E-calculus to computer architecture related research. The 

connection will be established in Chapters 3 to 6 , where we develop a n- 

calculus specification of parallel graph reduction into a practical compiler 

for a novel parallel architecture.

Work on the Manchester dataflow machine is interesting to us mainly 

for their results on load bounding. In order to put these results into context, 

however, it will be useful to present a brief overview of the architectural 

side of the Manchester dataflow research. The architecture in itself is 

interesting as a major early example of a non-von Neumann machine that 

has been successfully implemented in hardware. While the similarities of 

the Manchester dataflow machine to our STARiDUST architecture may not 

be immediately obvious, the latter can trace back its origins to the former in 

a direct line. This lineage will be illustrated in detail in Section 2.4.
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Figure 2.2: Structure of the Manchester dataflow system 

2.3.1 Architectural overview

We will present the Manchester dataflow architecture by relating it to 

modern von Neumann processor designs. In Figure 2.2 we show a single 

ring-structured dataflow processor connected via an I/O  switch to a host 

computer as implemented by Gurd and his colleagues [GK85]. The system 

can be extended to a multiprocessor computer by widening the I/O  switch to 

accommodate more processor rings. A good way to start thinking about an 

individual ring is as a processor pipeline, such as is commonly found in 

modern microprocessors. An important task in the design of such pipelines 

is to prevent instructions from being scheduled for execution when their 

operands have yet to be computed by instructions still in the pipeline. The 

Manchester pipeline provides an extremely clever conflict resolution 

mechanism which guarantees that an instruction cannot enter the pipeline 

before all its operand values are available. Other than in von Neumann 

microprocessors, however, instruction scheduling is governed solely by data 

dependencies of this kind. There is no concept of a program counter. Since 

the result produced by one instruction can satisfy the dependencies of more
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than one successor instruction, multiple instructions can be ready for 

scheduling at the same time.

Let us follow the path of an imaginary token inserted by the host 

computer. The I/O switch which is responsible for directing the token to the 

appropriate dataflow processor (of which our system contains only one) 

sends it on to the token queue. This queue is a circular buffer that smoothes 

out uneven rates of generation and consumption of tokens in the ring. 

When reaching the head of the queue, the token is passed on to the 

matching unit, arguably the most unconventional component of the 

processor ring. The matching unit's prime responsibility is resolving 

instruction dependencies and scheduling instructions for execution. An 

incoming token carrying the first operand of a dyadic operation remains in 

the matching unit awaiting the arrival of its partner. The unit derives its 

name from this matching of partners. An incoming token that completes a 

match or is heading for a monadic operation is passed on to the instruction 

store which contains the program code. There the appropriate instruction is 

fetched and passed on along with the operands to the processing unit. 

Typically the processing unit is made up of several function units (akin to 

the multiple function units of a modern von Neumann processor), one of 

which will perform the required operation and generate one or two output 

tokens.

Note that the mechanism described above is readily expandable to 

multiple processing elements as the basic instruction scheduling 

mechanism is easily extended to work across processors. Note also that on 

our journey through the pipeline we did not encounter a stage which 

would obviously correspond to 'main memory access'. The matching unit 

implicitly provides the storage needed for data which would be kept in stack 

frames in a more conventional runtime model. For this reason the size of
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the matching unit exceeds 1 M-words and is unsuitable for complete VLSI 

integration even with present-day technology. Furthermore the structure of 

the matching unit is relatively complex as it requires associative access to 

waiting tokens. In the Manchester machine this is implemented via a 

hardware hash-function. Some of the data storage functions were later 

moved from the matching unit to a dedicated structure store,

2.3.2 Load bounding in the Manchester dataflow machine

When the Manchester project was started, it had not yet become clear that 

many typical programs would provide sufficient parallelism to keep a large 

parallel machine busy. So it came originally as a surprise when it was 

observed that the amount of parallelism exhibited by some programs could 

get so large that the design of a throttle mechanism was crucially important 

in order to limit the resource requirements of such programs (see Section 

1.7.2). The throttle designed by Ruggiero and Sargeant and described in 

[RS87] is a hardware device which operates roughly according to the 

following principles. On receiving a request for starting a new process their 

throttle decides, based on the level of parallel activity in the machine, 

whether to grant a new activation name or not. Parallel activity is measured 

in terms of the length of the token queue. If the machine is too busy, the 

process is suspended and is reactivated only when the level of activity has 

dropped. In order to promote depth-first execution, the first child of a 

process is never suspended. Given several suspended subprocesses for one 

process, the leftmost one is the first candidate for unsuspension. This order 

is guaranteed by a queueing strategy. They impose a small delay between 

individual unsuspensions since processes take a while to start up and have 

no immediate effect on the length of the token queues.

The Manchester throttle is responsible not just for load bounding but 

generally for resource management. Its functions include allocation of
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activation names, suspending and unsuspending of processes, activity level 

reports and termination signals. From a hardware point of view, the 

throttle is a message processor with an attached store and was implemented 

using the same design as for the structure store, with different microcode.

2.4 The MIT dataflow project

While work on the Manchester machine has now ceased, research into 

dataflow machines and languages is still actively being pursued at the 

Computation Structures Group at MIT. Originating with Jack Dennis's early 

work on a static dataflow machine [De75] which appeared radically different 

from any architecture known at the time, the MIT work has progressed in 

several stages, as outlined below, to a system designed around a commercial 

microprocessor. One of the results of their long and productive work was 

the P-RISC architecture which became a major influence for the design of 

STARiDUST (Chapter 6 ). One purpose of this section is to illustrate that our 

STARiDUST architecture, and thus the computational model underlying 

our compilation scheme, is not just a 'wild stab in the dark' but rather a 

combination of the core features of dataflow machines with the sequential 

efficiency of modern von Neumann architectures.

2.4.1 From static dataflow to Monsoon

Jack Dennis early work on static dataflow machines modelled the flow of 

streams of data through a static dataflow graph. The nodes of the graph 

represented operations which could 'fire' as soon as a complete set of inputs 

was available. While providing ample opportunity for parallelism, static 

dataflow graphs do not support a very general programming model. In 

particular, they do not allow for recursion. Dennis' 1973 paper [De73] is 

generally regarded as the seminal work inspiring dynamic dataflow which is 

capable of modelling graphs that are expanding and contracting
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dynamically. Dynamic dataflow is thus suitable for modern recursive 

programming languages. The MIT work on dynamic dataflow machines 

was lead by Arvind, whose proposal for a dataflow architecture with tagged 

tokens [AK80] is substantially similar to the Manchester dataflow machine 

(but developed independently). Therefore we will not discuss it in detail 

here except for pointing out that it includes a waiting-matching unit 

requiring the same expensive fully associative matching capabilities for data 

sets. In contrast to the Manchester machine, the TTDA (tagged-token 

dataflow architecture) was never built in hardware.

The first dataflow hardware at MIT became operational in 1988 in the 

form of the Monsoon machine [Pa8 8 ] which represents a substantial 

redesign of the original TTDA proposals. In Figure 2.3 we show the 

structure of a Monsoon processing element as presented in [PC90], redrawn 

to highlight the key differences from the Manchester architecture.

Network
Interface

Token Q ueuesg
Instruction Fetch 4— ► %-Mem6iy

Effective Address 

♦
Presence Bits PreeenoeBits 

"Memory

Frame Store 
Operation

f ♦
Compute

Tag ALU

Form Token
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4— >

Figure 23: Structure of a Monsoon processing element
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The fundamental improvement is the elimination of the waiting-matching 

unit which was achieved by making the token store explicit. Rather than 

relying on the storage of tokens to be performed implicitly and individually 

by hardware in the waiting-matching unit, storage allocation on Monsoon is 

performed by software and in units of procedure frames. An individual 

procedure frame is mapped wholly to a contiguous memory area within a 

frame store.

To understand the resulting changes in the operation of the processor 

pipeline consider the processing of a two-input operator (the following is 

largely quoted from [PC90]). The first token to be processed enters the 

pipeline and fetches the instruction specified in its tag field. During the 

effective address stage the location in the frame store where the match will 

take place is computed. The associated set of presence bits are examined and 

found to be in the 'empty' state. The presence state is thus set to 'fulT and 

the incoming value is written into the frame store location during the 

frame store stage. Further processing of the token is suppressed because the 

other operand has yet to arrive. This 'bubbles' the pipeline for the 

remaining ALU stages; no tokens are produced during form-token,  

permitting a token to be removed from one of the token queues for 

processing. The second token to be processed enters the pipeline and fetches 

the same instruction. It therefore computes the same effective address. This 

time, however, the presence state is found to be 'full', so the frame store 

location (which now contains the value of the first token) is read and both 

values are processed by the ALU. Finally, one or two result tokens are 

created during the form-token stage.

Note that the pipeline of a Monsoon processing element is rather more 

similar to a conventional processor pipeline than that of the Manchester 

machine. An instruction fetch stage is followed by the computation of an
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effective address, a load /store stage interacting with local memory, and an 

ALU stage. There is even direct support for sequential execution by allowing 

successor instructions to bypass the token queue and re-enter the pipeline 

immediately. The differences to conventional pipelines are still significant, 

however: instructions can have multiple successors, all but one of which 

are stored in a token queue. The resulting parallelism is used to good effect 

to avoid bubbles in the pipeline. And finally, the stage responsible for 

'presence bits' provides efficient hardware support for 'join' 

synchronisation.

2.4.2 Dataflow/von Neumann hybrid processors

The analogies between Monsoon and conventional processors were not lost 

on the MIT team. In [Ia8 8 ], lannucci proposed the idea of dataflow machines 

and von Neumann machines sitting at opposite ends of a spectrum of 

architectures. The hybrid processor proposed in his paper travels another 

step towards von Neumann architectures by re-introducing registers as a 

very efficient means of communication for sequentially related instructions. 

(By constrast. Monsoon instructions can only send a single value to their 

successor in the form of a token. Where this is not sufficient, data have to be 

deposited in the frame store, i.e., in local memory.) By providing registers 

and dedicated instructions for testing and manipulating presence bits, 

lannucci's hybrid processor can dispense with the idea of 'tagged tokens' for 

communication within a procedure frame.

The next step in this process of evolution resulted from approaching the 

architectural spectrum from the opposite end by asking the question: how 

do we need to modify a von Neumann processor to make it suitable for 

efficiently executing dataflow programs? The design of the P-RISC 

architecture [AN8 8 ] which is shown in Figure 2.4 is an attempt to answer 

this question. P-RISC, short for 'parallel RISC', has at its core a plain
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sequential RISC processor, i.e., three-address instructions, a load/store 

architecture, simple instruction formats, a program counter, conventional 

jump and branch instructions, etc. Addressing of operands is relative to a 

frame, which is best viewed as a fixed-size window providing fast access to 

local memory. The frame pointer along with the program counter make up 

the current continuation. Each of the conventional instructions has a single 

successor continuation which shares the frame pointer of its predecessor. 

All continuations operating within the same frame are considered to belong 

to the same thread.

Token Queue

Instruction Fetcti

E

local memory

Code

Operand Fetcti

FunctKxi Un ts

Operand Store

Load/Store

network
communication

Start

Figure 2.4: A P-RISC processing element

The parallel extensions to the sequential RISC paradigm come in the shape 

of several simple new instructions which create, control and terminate 

threads.

• fork produces an additional continuation which is placed in the 

token queue along with the natural successor
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• jo in  conditional termination of the current thread, i.e.,

depending on a condition, j o i n  has either one or zero 

continuations

• load reads a value from global memory; lo a d  has no immediate

successor which allows other threads to keep the CPU busy 

during long-latency operations; the thread is restarted only 

on arrival of the value to be loaded

• s to r e  writes a value to global memory and continues with the

next instruction; no synchronisation is performed

• loadc version of lo a d  with an implicit fo rk

• s t a r t  sends a s t a r t  message to a remote processing element; in­

coming s t a r t  messages deposit a value into the local frame 

and place a continuation into the token queue (the arrival 

of values lo a d e d  from global memory is in the form of 

s t a r t  messages)

A P-RISC system is made up of processing elements as discussed above as 

well as structure store elements which satisfy global read/write requests and 

perform low level synchronisation tasks and memory management 

functions. Comparing P-RISC with Monsoon we observe that the 'complex' 

dataflow instructions have been split into separate synchronisation, 

arithmetic and fork/control instructions, eliminating the necessity of 

presence bits in the frame memory.

The (so far) final step in the MIT effort towards finding the optimal 

balance between dataflow and von Neumann processors is the *̂ T 

architecture [NP92], pronounced 'start', which is currently actively pursued 

in terms of hardware design (both lannucci's hybrid architecture and P-RISC 

are 'paper architectures'). We show a block diagram of *̂ T in Figure 2.5.

I

"■Ï.

37

J



from network

to network

Message QueueMessage Queue Continuation Queue

Network
Interface

Message
Formatter

Remote
Memory
Request

Coprocessor

Synchronisation
Coprocessor

Data
Processor

Figure 2.5: The *T architecture

The data processor in this diagram is a slightly enhanced version of the 

Motorola 88100, i.e., a commercial RISC microprocessor. The enhancements 

permit it to send messages to the network and to pick up new continuations 

(in the form of one word each for the program counter and a frame pointer). 

The data processor is responsible for the computational aspects of program 

execution. Two coprocessors sharing the same local memory are responsible 

for satisfying remote memory requests and synchronisation, respectively, 

without having to interfere with the data processor. Having a coprocessor 

for memory requests enables *T to avoid the complications of providing 

dedicated structure store units. The synchronisation coprocessor (SP) 

handles returning loads by storing any returning value into its destination 

location. If the original l o a d  instruction is followed by a j o i n  

synchronisation, the SP executes it and, if successful, places its continuation
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on the continuation queue. Thus the data processor does not have to 

execute disruptive j o in  instructions.

Being based on a standard microprocessor allows "̂T to provide 

competitive performance for existing sequential code (which would execute 

wholly on the data processor) as well as for sequential portions of parallel 

code. It also permits *T to 'ride the technology curve' by exploiting any 

advances in microprocessor design.

2.4.3 Load bounding for the MIT dataflow machines

Supporting an implicitly parallel programming model, the MIT dataflow 

work needs to address the problem of excessive parallelism. In [CA8 8 ] 

Arvind and Culler propose the technique of loop bounding which controls 

parallelism resulting from those portions of loop iterations which are not 

constrained by dependencies on previous iterations. Their approach is, quite 

simply, to restrict for each loop the number of concurrently active iterations 

to some constant k, i.e., iteration n+k can begin only after iteration n has 

terminated. This solution appears to provide satisfactory results for many 

programs. Their compiler, as described in [TR8 6 ], generates parameterized 

code which allows the setting of loop bounds prior to execution, i.e., the 

choice of loop bounds is under user control and will typically depend on 

machine size, program type, and problem size.

Arvind and Culler critisise the Manchester approach of load bounding 

by deferring activations. They argue that loops can go on requesting 

activations, each of which would get deferred but would still require a small 

amount of resources. Therefore the Manchester technique is not a solution 

for the general case and they consider load bounding for general recursive 

programs an unsolved problem.

We would like to point out that the problem of loop parallelism is 

specific to dataflow programming languages. In pure functional languages.
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loops' are defined in terms of function application and do not behave in 

any special way. We would further point out that imposing loop bounds can 

in certain cases alter program semantics. It is possible to write programs 

where iteration n+k produces a value and makes it available to iteration n 

via side effect. In single-assignment languages computations block on 

unavailable values and therefore a loop bound of k will lead to deadlock in 

the case described. In addition, putting the responsibility for loop bounding 

on the user significantly weakens their claim to support implicit 

parallelism.

2.5 ALICE/Flagship

ALICE [DR81] was the first implementation of a parallel architecture 

dedicated to performing graph reduction in parallel. While the original 

design called for an implementation in customised VLSI, only a transputer- 

based hardware emulator was built. Predating the development of compiled 

graph reduction, ALICE suffered from severe interpretative overheads. 

While relative speedups were observed, absolute performance remained 

poor.

The Flagship project [WW8 8 ] grew out of and drew on the experiences 

with ALICE. While still a reduction architecture, it was designed to support 

a host of practical concerns such as distributed virtual addressing, a 

distributed I/O  subsystem, a priority mechanism, caching, support for a 

multi-user environment and resilience to node failure. Like the 

architectural model underlying our work. Flagship is based on a distributed 

memory model with closely coupled processor-memory pairs. The much 

less ambitious STARiDUST architecture presented in Chapter 6 represents a 

less radical departure from the von Neumann model and we expect to be 

better positioned to take advantage of progress in sequential microprocessor 

technology. Our implementation of parallel functional languages shares
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with that described by Watson and Watson in [WW87a] a relatively fine­

grained outlook. While in their system 'packets' are the unit of parallelism 

and load distribution, this role is played by function activations in ours. 

However, our approach to load balancing and load bounding differs 

significantly. In both cases we take the 'RISC' approach of doing it in 

software. Whereas load balancing on Flagship is performed by a system 

service, our approach is incorporated into the compilation scheme of 

Chapter 4 by means of randomly distributing function applications. 

Whereas load bounding on Flagship is performed by hardware controlled 

scheduling of the 'active packet queue', our load bounding system is again 

integrated into the compilation scheme, supported by a cheap runtime 

system, as described in Chapter 5.

2 .6  GRIP

The GRIP project at Glasgow, short for 'Graph Reduction In Parallel', is 

notable for its success in carrying over to parallel functional programming 

the significant advances that have been made for sequential 

implementations of functional languages. They achieve significant real 

speedups [HP90], as measured against sequential implementations, on 

largely conventional hardware: GRIP is based on up to 80 conventional 

Motorola 68020 microprocessors, each with a small local memory of 1 

Mbyte, and up to 20 microprogrammable intelligent memory units (IMUs). 

The latter are the major architectural innovation, providing efficient 

hardware support for a global memory abstraction. GRIP is a bus-based 

design (which accounts for the limits on machine size) and was intended 

from the outset to provide cost-effective parallelism in the short term. 

Scalability was not a design criterion.

Their combination of efficient shared-memory support and 

conventional microprocessor technology provides the backdrop for any
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comparison of our work with that of GRIP. Their underlying architectural 

parameters imply that communication is cheap while task switching and, 

even more so, task creation is expensive. A crucial optimisation on GRIP is 

therefore to achieve long-running tasks. Their evaluation strategy is, in a 

nutshell, to make a single task responsible for evaluating the whole spine of 

the part of the program graph allocated to it. Other subtasks are put into a 

'global task pool' from where they can be picked up by idle processors. On a 

heavily loaded system, a parent may return to a subtask to find that it is still 

unevaluated. In this case the parent will decide to evaluate it itself and the 

extra task is discarded. This technique, called the 'evaluate-and-die model' 

by Peyton Jones in [Pe89], was first described, to our knowledge, in [CP8 8 ] and 

has the effect of increasing the size of tasks still further. The technique is 

very similar to and predates that of Mohr et al. [MK90] described in Section 

2.7. The inbuilt preference for depth-first execution also addresses the load 

bounding problem.

GRIP'S non-scalability manifests itself in several aspects of its design, the 

choice of a bus as the main communications medium being the most 

obvious one. The decision to block the processor during long-latency access 

to global memory is entirely reasonable on a relatively small machine built 

from stock sequential components but would incur increasing performance 

penalties if attempts were made to build larger GRIPs.

In contrast to GRIP, the work reported in this thesis was performed with 

concerns of scalability in mind throughout. In order to be able to tolerate the 

high latencies of global communication we employ thread switching. Our 

approach to load-bounding (itself implemented in a scalable fashion) 

provides each PE with a sufficient number of threads for this purpose. We 

require no special hardware other than a general-purpose message-passing 

processor.
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2.7 Lazy Task Creation

The problem of load bounding is closely related to that of granularity in the 

following way: rather than creating a large number of small tasks in excess 

of what can be exploited by machine parallelism, one could group them into 

larger tasks, limiting resource requirements at the same time as avoiding 

some overhead for task switching. On machines based on conventional 

sequential microprocessors where the cost of context switching is high, the 

latter effect is particularly desirable. In their paper on 'Lazy Task Creation' 

[MK90], Mohr et al. describe a technique for increasing the granularity of 

programs which performs load bounding as a side-effect. Their work was 

done in the context of implementing a strict imperative language with a 

pure functional subset on shared-memory architectures. Only one task per 

processor is active at one time. Here are the key ideas:

• programs identify sources of potential parallelism explicitly, using the 

'future' construct

• a running task puts each into a 'lazy future queue'

• idle processors can 'steal' them and execute them, exploiting parallelism

• on returning to an 'unstolen' lazy future, tasks execute them directly, 

thus increasing granularity

Their method is virtually identical to the 'evaluate-and-die model' 

described in Section 2.6 on GRIP with similar implications for (lack of) 

scalability. By running only a single task per processor, high latencies cannot 

be masked using task switching. Mohr et al. do not describe any distribution 

strategy for their 'lazy future queue', so question marks must be put on the 

scalability of this concept as well. While their design efficiently supports 

conventional shared-memory machines unsuitable for fine-grain parallel 

computation, their 'task stealing' operation further enforces the need for
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large granularity even if an underlying machine were intrinsically fine­

grained. This is due to the fact that processors are blocked while a new task 

is being fetched and the cost of this operation needs to be amortised. Even 

so, however, short tasks cannot be completely avoided as the amount of 

work implied by a 'stolen future' is not generally known.

2.8 Other previous work

In this chapter we have reviewed details of previous work which we 

considered most relevant to this thesis. In conclusion we would like to 

make mention of other related work not discussed here in detail. Traub 

investigates generating multithreaded code from non-strict functional 

programming languages in [TR91], focussing on producing long threads by 

analysing data dependencies. Nikhil outlines a compiler for Id to stock 

parallel hardware via dataflow graphs and P-RISC as an abstract machine 

[Ni89]. The FAST project, based on Kelly's work on process annotations for 

functional languages [Ke89] intends to exploit parallelism on a network of 

nodes each running a sequential implementations of Haskell. Darlington's 

work on 'skeletons' [Da91], higher-order functions for which efficient 

implementations exist on particular parallel machines, is an ambitious 

attempt of providing a unifying framework for exploiting parallelism on a 

wide range of parallel architectures. Daily's J-Machine [DC89] resembles our 

STAR:DUST architecture in that communication is data-driven, i.e., 

messages start handler threads, but their architecture is less RISC-like. Von 

Eicken et al. propose the concept of 'active messages' as a general purpose 

communications paradigm [EC92] suitable even for existing message passing 

multiprocessors.
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Chapter 3 — A Simulation of the 1-Calculus in the jc-Calculus

3.1 Contents

In this chapter we present a concise model for parallel graph reduction in 

the form of a translation scheme mapping a term of the 1-calculus to a n- 

calculus term. The latter is constructed in such a way that its reduction 

according to the rules of the %-calculus will result in a normal form which is 

equivalent to the weak head-normal form (WHNF) of the original 1- 

calculus term, provided there is such a normal form. We will use the n- 

calculus in the form presented in Section 2.2.

3.2 Motivation

The practical motivation for simulating the 1-calculus in the %-calculus is 

the capacity of the latter for expressing parallelism. As detailed in Section 

2.2, Milner has given two different encodings for the X-calculus. The first 

simulation follows normal order reduction rules and does not exhibit any 

concurrency—at any point in the ii-calculus reduction sequence there is 

only one reduction that can take place. Furthermore, this solution takes no 

account of sharing. If the value of a function argument is required more 

than once, it is recomputed each time. His second simulation performs 

eager, call-by-value reduction. Both subterms of an application are reduced 

in parallel and the application is performed once the value of the argument 

term is available. This solution has two disadvantages. Firstly, it may not 

terminate for some X-terms which have a normal form. Secondly, there is 

scope for additional parallelism by starting the reduction of a function body 

before the value of the argument is available. The encoding we give below 

has the following features:

— applications can be performed lazily to maintain termination properties
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— applications can be performed eagerly where strictness analysis 

guarantees termination

— sharing is preserved, avoiding unnecessary duplication of reductions

— the body of a function can be reduced as soon as it is applied to an 

argument (and before the argument value is available)

Our solution also leaves scope for deciding dynamically in favour of lazy 

evaluation, even when termination is no problem, in order to limit 

parallelism to a desired level. We can easily extend our scheme by adding 

ground values other than functions, e.g., integers, and 'built-in' functions 

operating upon them.

3,3 Overview

While our scheme is concise, we consider it worthwhile to prepare the 

ground by giving an overview of the underlying principles. As in the two 

Milner schemes outlined in Section 2.2, we encode a ^-calculus term M  as 

[[Af]], a map from 7c-calculus names to TT-calculus terms, i.e., [[M]] o is a term 

of the 71-calculus. The intuition behind our scheme is fundamentally 

different, however. While in Milner's schemes the argument channel o was 

the link along which [[M]] received its arguments, we will use it as a link 

where [[M]] is to deposit its value. The difference was phrased poignantly by 

our colleague Peter Burgess: "Milner's scheme has no output—this scheme 

has no input".

Our intuition of a value is a scalar, e.g., an integer or a pointer. The 

following two rules will not be part of our X-calculus scheme, but they will 

easily tie into it and are given here to provide a first intuition.

rr  ̂tt def _[[ const ]] <? = o const
def

[[ M+N ]]o  = (m)(n) ([[A/]] m I [[N]] n I m(a). n(b). a (a+b) )
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The first rule is obvious. To deposit the value of a constant into a channel, 

we simple put it there via a send-operation. The rule for addition first 

introduces two new channels for the intermediate results for M and N, 

respectively. Of the three concurrent processes governed by the restriction, 

two are responsible for computing M and N. The third waits for value of M 

to arrive on m and reads it into a. It then waits for the value of N  which 

will eventually appear in n and is read into h. Assuming a primitive 

addition operator, the result of the addition can now be written into the 

designated output channel.

The key to the complete translation scheme is an understanding of the 

two underlying protocols it adheres to. The first protocol governs the 

simulation of X-calculus variables, i.e., the interaction of identifier reference 

and function application. The second governs function activations, i.e., the 

interaction of function application and abstraction.

Protocol 1 (Variables)

A X-calculus variable x is simulated by a Tc-calculus variable of 

the same name by interpreting it as a request channel. Each 

time a computation requires the value of %, it sends a request r 

(the destination channel) along the channel x. The 

computation at the other end, i.e., the process simulating 

function application, will then send back its value along r.

Protocol 2 (Abstractions)

The value of a function expression F -  Xx.M is represented by a 

channel /  in the following way: to apply F to an argument x, we 

send it a pair of channels along /  consisting of a request 

channel for x, as described in Protocol 1, and a destination 

channel y where we require the result. We will call this pair an
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activation. The simulation of an abstraction is responsible for 

handling activations of the form (%, y) by setting up an instance 

of M relating x and y.

3.4 The translation scheme

Having thus laid the foundations, we are now ready for the compilation 

scheme itself. We will provide five rules in total. Besides an auxiliary 

definition for environment entries there is one rule each for ^-abstraction 

and variable reference and two rules for function application. The reason 

for providing two rules in the latter case is our goal of representing both 

lazy (sequential) and eager (parallel) function application within the same 

framework. The obvious way for resolving the resulting ambiguity is to 

apply the lazy rule by default, reserving the eager rule for the application of 

functions that can be shown to be strict in their argument. Here is the 

complete set of translation rules, discussed individually below.

def , / \ _X <=v — !x(r). r v (Environment entry)
def _

[[x]] o “  xo  (Name reference)

[[Xx.M\] a = if) of. \ f(x,y). [[M]] y (Abstraction)

[[M N]] 0  (w)(«)(x) ([[Afj] m I [[N]] n I m(f). f(x,o). n(v). x <=v )

(Eager application)

[[M N]] a (m)(n)(x) ([[M]] m I (w(/). /(x,o).x(r).([[iV]] « ■ «(v). r v.x *=v )))

(Lazy application)

3.4.1 Environment entry

We make a variable x refer to a value v by writing v onto any destination 

channel r that we can pick up on x. This is merely Protocol 1 codified in the 

7t-calculus. We will repeat the complete rule again for future reference:

X 4#:̂  !x(r). r v  (Environment entry)
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3.4.2 Name reference

The fact that this rule is identical to the corresponding one in Milner's lazy 

scheme is coincidental and the meaning here is substantially different as 

explained previously. Our rule is an abbreviation for

[[x]]o (r) xr. r{v). o v

We define a channel r which forms the request that we send to x according 

to Protocol 1 which also provides for the return of the value v of x along r. 

We then send this value to the designated output channel o. Looking at this 

term more closely we find that the intermediary channel r is unnecessary. 

According to Protocol 1 we can send o directly to x and expect the value of x 

to be written to o, as desired, resulting in the slightly counterintuitive 

abbreviation given above,

[[x]] o ^  xo  (Name reference)

3.4.3 Abstraction

According to Protocol 2, the value of an abstraction is a channel which 

interfaces to an activation handler. The abstraction rule therefore defines a 

new channel /  which is written to a, followed by such a handler. For any 

activation request (x, y) picked up on /, the handler provides a new instance 

of M. The complete rule again:

[[Xx.M]]o (/) 0 / !/(x,y). [[M]] y (Abstraction)

The binding of the free variable x in M is mapped to the binding mechanism 

provided for the receive-action in the 7i-calculus. The transmission of pairs 

of channels transcends the pure Tc-calculus presented in Section 2.2, but is 

readily defined as in [Mi91]

/(x , y) f (w) .  w(x). w(y)

/  (x, y) (w) fw .  wx. w y
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3.4.4 Eager application

As eager function application is slightly simpler than its lazy counterpart, 

we will discuss it first. Here, again, the rule given above:

l[M AG] o '*= (m){n)(x) ([[Mj] m I [[iV]] n I m(f). n(y). x «=v )

(Eager application)

When applying M to N, we require three new channels, m, n and x. The first 

two are set up to receive the values of M  and N, respectively, the latter to 

serve as the request channel for the argument according to Protocol 1. The 

body of this rule consists of three concurrent processes. The first two 

compute Af and N, respectively (since we are performing eager function 

application, the computation of N can proceed before its value is requested 

from within Af). The third process, of the form

mif). fix, o). n(v). X <=v

is responsible for establishing the functional relationship between m, n and 

o according to Protocol 2. We pick up the function value, i.e., the activation 

handler /. We request a new activation (x, o) for the request channel x 

previously defined. After establishing this activation, we pick up the value v 

of N  and bind it to x by an appropriate environment entry.

3.4.5 Lazy application

Let us start again by restating the rule in question:

[[Af N]] o (m)(n)(x) ([[Af]] m I (m(/). /(x,o).x(r).([[iV]] n I «(v). r v.x <=v )))

(Lazy application)

As for eager function application, we define three new channels, m, n and x 

serving the same purpose as before. This time the body of the rule contains 

only two concurrent processes on the top level. The first computes the 

value of Af, as before. The second has the following shape:
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m(f).fix,o). x{r). ([[iV]] n I n(y).rv. x <=v )

This time we want to delay any evaluation of N until we know that its 

value will be required. We therefore pick up the function activation 

handler /  and establish an activation of M between x and o. We do not 

proceed with any other reduction until we have received an initial request r 

for the value of x. Only after receiving r we start the evaluation of N. When 

its value arrives we read it into v and satisfy the original request by writing 

it to r. As there may be further requests, we then set up an environment 

entry as before.

3.5 Sample reductions

To get an intuition for the behaviour of the Tr-calculus terms produced by 

our translation scheme, let us step through a few simple examples. The first 

example will serve us to familiarise ourselves with the behaviour of (eager) 

function application and identifier reference. The second, slightly more 

involved, demonstrates sharing under in the context of the rule for eager 

function application. The third example will be identical to the second 

except for following lazy evaluation. In all three cases we will make use of 

the extended set of rules including those for integer constants and addition 

given in Section 3.3. We will unwind the definition of [[•]] only as far as 

necessary to make progress with the reduction. The transformation steps are 

marked by one of four symbols: denotes equality by the definition of [[•]],

denotes equivalence according to the rules of the 7t-calculus, denotes 

reduction in the jc-calculus and denotes a special case of 'strong 

bisimilarity' [Mi92] of which we will only need to know that it allows us to |

'garbage collect' useless processes, i.e., those which can not participate in any 

further interactions.
?
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3.5.1 Simple function application

For our first example, the reduction of [[(Xx.x) 1]] o, we will avoid any leaps' 

in the transformation process in order to aid understanding. Note, 

however, that in the resulting lengthy sequence only four steps represent n- 

calculus reductions. A discussion of each step follows below.

[[(Aj:.*) 1]] 0 (1)

(m)(n)(x) ([[Ax.*]] m 1 [[!]] n 1 m(/). f{x,o). n(v). x <=ü) (2)

(m)(n)(x) ((/) mf. \f(x,y). [[*]] y  1 [[!]] n mif). f(x,o). n{v). X <=ü) (3)

(m){n){x)(f) (lfix,y). [[*]] y  1 [[!]] n 1 f(xfi). n(v). x <=v) (4)

(n)(x)(f) (tf(x,y). [[*]] y  1 [[!]] n 1 f(x,o). n(v). x *=v) (5)

(n)(x)(fi ((f(x,y). [[*]] y  1 \f(x,y). [[*]] y) 1 [[!]] n 1 f(x,o). n(v). x <=v) (6)

-> (n)(x)(f) (([[*]] 0  1 lf(x,y). [[*]] y) 1 [[!]] n 1 n(o). x<=ü) (7)

(n)(x)(/) ([[*]] 0  1 [[!]] » 1 n{p).x<=v) (8)

(M)(x) ([[*]] 0  1 [[!]] n 1 n(v). x  <=p) (9)

= (»)(*) ([[*]] 0 1 n 1 1 n{v). X f=v) (10)

(n)(x) ([[*]] 0 \x<=l) (11)

(x) ([[*]] 0 1 X<=1) (12)

= (x)(xo 1 X<=1) (13)

= (x)(xo 1 !x(r). r l ) (14)

= (x)(xo 1 (x(r). f l  1 !x(r). r l)) (15)

(x )(ô î 1 !x(r). r l ) (16)

(x )0 l (17)

o l (18)
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The whole transformation from (1) to (18) represents the application of the 

identity function to the constant 1 with output channel o. In the first step to 

(2) we apply the definition of the rule for eager function application. Since 

there is no obvious scope for any reduction yet we apply another translation 

rule, this time that for abstraction to obtain (3). The step to (4) represents the 

first TT-calculus reduction, modelling the communication of the function 

value /  along m. Since m now does not occur in the body of the resulting 

term, we can drop the restriction on m (5). Before applying the function we 

need to unwind an instance of its activation handler in (6). The second 

communication (of the pair (x, o) along f) represents the activation of the 

identity function, linking input x to output o (7). Since there is no possibility 

of requesting another activation of / , we can garbage collect the activation 

handler (8) and drop the restriction o n / (9). In step (10) we apply the rule for 

integer constants. Communicating the argument value 1 along n results in 

(11) which can be simplified to (12) by dropping the now useless restriction 

on n. Applying the rule for referencing the value of x in the function body 

we obtain (13). The last instance of applying our translation rules, this time 

for the environment entry x<=l, results in (14). Before communicating a 

request for the value of x in step (16) we need to unwind an instance of the 

request handler (15). The request handler can not become active again and is 

garbage collected (17). Dropping the useless restriction on the non-existing 

name x we obtain the desired result, o l .

3.5.2 Sharing of computation (1)

To gain a better understanding of the way sharing is modelled in our 

scheme, let us study the reduction of [[(Xx.x+x) (1+1)]] o. Although x is 

referenced twice inside the abstraction, we want to perform the evaluation 

of (1+1) only once. For the transformation sequence below, we will omit any 

steps involving dropping of unused names and garbage collection of
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handlers which cannot participate in any further interactions. We will 

further assume the reduction of [[1+1]] o to o2  which would make a useful 

exercise for the reader.

[[(Xx.x+%) (1+1)]] 0 (1)

= (m)(n)(x) ([[Xx.x+%]] m I [[1+1]] n I m(f). f(x, o), n{v). x <=%? ) (2)

-> (m)(n)(x) ([[̂ %.x+%]] m I n2 I m(J). f{x, o). n{v). x <^v ) (3)

= (m)(«)(x) ((/) mf. ! f{x,y) .  [[%+%]] y  \ n l  \ m(f). f{x, o). n(v). x <^v ) (4)

-+ {n)(x)if) (I f ix ,  y). [[x+x]] y  \ n 2 \  f ix ,  o). niv). x <^v ) (5)

in)ix)(f) (fix, y). [[%+%]] y I 712 I f ix ,  o). niv). x ) (6)

-+ in)ix) ([[x+x]] 0 I «2 1 niv). x <=ü ) (7)

(%) ([[%+%]] 0 I X 4=2 ) (8)

= (x) ( (m)(n) ([[x]] m I [[x]] n I m(a). nib), ô ia+b) ) I x <=2 ) (9)

= (x) ( (m)(n) (x/n I x« I mia).nib). oia+b)) I x<=2) (10)

(x) ( (m)(n) (x/n \ xn \ mia).nib). oia+b)) I x(r). 72 I x(r). r l )  (11)

im)in) imia). nib), oia+b)  I m2 I «2 ) (12)

-+ in ) in ib ) .ô i2 + b ) \ ï ï2 )  (13)

-+ 0(2+2) (14)

-> ô4 (15)

Let us again discuss each step in some more detail. Going from (1) to (2) 

represents expansion according to the rule for eager application, which 

enables us to perform reduction of the argument (1+1) immediately, 

obtaining (3). In step (4) we apply the abstraction rule to the term (Ix.x+x).

We can now communicate the function value /  along m to obtain (5), 

dropping the restriction on m. We unwind one instance of the activation 

handler and garbage collect all others, arriving at (6). The activation takes
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place in (7) followed by the communication of the argument value 2 along n 

in (8), Applying the translation rule for addition we get (9) which is 

transformed to (10) by applying the identifier reference rule. In (11) we have 

unwound two instances of the request handler for x and have garbage 

collected the rest. We now communicate the two requests, m and n, 

obtaining (12). We satisfy the first request in (13) and the second in (14). 

Performing the primitive addition we obtain the final result in (15).

3.5.3 Sharing of computation (2)

In the previous example we observed the behaviour of [[(^x.x+x) (1+1)]] o 

when translated according to the eager reduction rule. The reduction of the 

argument could be performed early on, before its value was requested from 

within the function body. Let us now study the reduction behaviour of the 

same term under the lazy scheme:

[[(Ax.x+x) (1+1)]] 0 (1)

= (m)(n)(x) ([[ÀX.X+X]] m I (m(f). f(x,o). x(r). ([[1+1]] n I n(v). r v. x <=v ))) (2)

= (m)(«)(x) ([[^x.x+x]] m I m(f). f{x,o). x{r). P) (3)

= (m)(n)(x) ((f) mf. ! f ix ,  y). [[x+x]] y  I mif).fix,o). x(r). P) (4)

in)ix)(f) (I f ix ,  y). [[x+x]] y  I f(x,o). x(r). P) (5)

n)(x)(f) (f(x,y). [[x+x]] y  1 f(x,o). x(r). P) (6)

(n)ix) i[[x+x]] 0 1 x(r). P) (7)

= in)(x) i ip)iq) ([[%]] p I [[X]] q I p(a). q(b). ô(a+b) ) I x(r). P) (8)

= in)ix)ip)iq) (xp  \ xq \ p(a). q(b). ô(a+b) I x(r).P) (9)

= in)ix)ip)iq) (xp  I xq \p ia) .q ib) .ô ia+b)\x ir ) . i [ [ l+ l]]n \n iv) . fv .x^v))  (10)

-+ in)ix)ip)iq) (xq  I p(a). q(b). ô (a+b) I [[1+1]] n I n(v).pv. x <=v )) (11)

-+ in)ix)ip)iq) (xq  \ p(a). q(b). ô(a+b) \ n2\n(v) .pv.  x <=v)) (12)
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-» (x)(p)(q)(xq \ p(a).qib). ô{a+b) \ p2. x<=2)) (13)

-> {x)(q)(xq I q(b). ô (2+6) I x<=2 )) (14)

-  (x)(q) (xq  I q(b). 0(2+6) I x(r). r2 )) (15)

(4) (9(6). Zr(2-Hb) I 4,2 )) (16)

0(2+2) (17)

-+ Ô4 (18)

The rule for lazy application is applied immediately to obtain (2) from (1). 

This time, the computation of the argument (1+1) is guarded by a request 

handler in the form of x(r). Since the argument computation ([[1+1]] n I 

n(v).rv. X <=v ) will not proceed for several steps yet, we abbreviate it to P in 

step (3). In (4) we have applied the abstraction rule, followed by the 

communication of the function value (5), unwinding of a single activation 

handler (6) and function activation (7), as before. Expanding the definition 

of [[%+%]] o completely, we obtain (8) and (9), again in complete analogy to 

the eager case. Since we now have two requests for the value of x, in the 

form oi  xp  and xq, we re-expand the argument computation P in (10). We 

choose p as the first request to communicate along x, obtaining (11). The 

guard in front of the argument computation has now disappeared, and we 

can reduce the argument to obtain (12). The argument value 2 is 

communicated to the environment entry in (13). Before establishing the 

environment entry, however, we first need to satisfy the original request, 

which is performed in the step to (14). As we require the value of x only one 

more time, we unwind only a single instance of the request handler for x, 

garbage collecting the rest (15). After communicating the single request in 

(16), the rest of the computation proceeds as in the eager case.
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3.6 Discussion

In this chapter we have presented a translation scheme mapping the X- 

calculus into Milner's %-calculus. Reduction of the resulting term modelled 

the parallel graph reduction of the original X-calculus term. Our scheme 

improves on two such schemes given by Milner in that we are able to 

preserve non-strict semantics and sharing while exploiting parallelism 

wherever safely possible. While we will not use our scheme directly for a 

distributed implementation of functional programming languages, its 

conciseness makes it extremely valuable for comprehending the more 

practical compilation scheme described in the next chapter and from which 

the 7c-calculus scheme was abstracted.
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Chapter 4 — A Practical Compilation Scheme

4.1 Introduction

The 7i-calculus simulation of the X-calculus which we presented in the 

previous chapter shows a clear path to a possible distributed 

implementation of modern functional programming languages. It is well- 

known that the latter can be viewed as 'sugared' versions of the %-calculus 

and the techniques for translating them into the X-calculus are textbook 

knowledge [Pe87, Da92]. The missing link for a complete distributed 

implementation of parallel functional languages is 'merely' an 

implementation of the it-calculus for a suitable distributed architecture. 

While such an approach is feasible, we do not advocate it. Since the n- 

calculus is not close to any specific parallel architecture, an implementation 

based directly on our Tt-calculus scheme would take roughly the following 

shape:

functional programming language

X-calculus
4.

7i-calculus
4.

abstract parallel machine model 

concrete parallel machine

Such a multi-level implementation is liable to result in very inefficient 

code. Instead, we view our %-calculus model as a specification for a more 

direct compilation scheme which will be the subject of this chapter. Rather 

than going from the X-calculus to the 7c-calculus, this compilation scheme 

will map a more conventional functional language directly to an abstract 

parallel machine model, resulting in a system with the following structure:
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functional programming language 

abstract parallel machine model 

concrete parallel machine

We will focus on the compilation scheme performing the transformation 

marked with '41'. This scheme displays profound similarities to the n- 

calculus model of the previous chapter and the latter will greatly aid 

understanding of this chapter. We will point out correspondences along the 

way.

We begin our exposition by establishing a framework for the message- 

passing multi-threaded architectures underlying our work. Armed with this 

architectural background we then specify the runtime framework that will 

make up the abstract model representing the target of our compilation 

scheme. Following a section on the source language, the bulk of this chapter 

is concerned with the compilation rules.

4.2 Source language

The simple first order source language for which we will present our 

compilation rules is shown below. We omitted higher order functions for 

clarity. They can easily be added in the fashion described by Nikhil in [Ni89] |

without changing the reasoning underlying our arguments*. In the absence 

of higher order functions all our function applications are saturated 

supercombinator calls.

* Their method is based on the representation of a higher-order function (closure) as a pair 
consisting of a first-order function and a partial argument list. Function definitions are 
expanded into a series of functions of two arguments, each extending a partial argument list by 
an extra argument with the final one performing the application proper. Higher order 
applications are expanded into applying the first component of a closure value (the function) 
to two arguments: the second component of the closure (the partial argument list) and the 
argument to the higher-order application.
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Prog D efi... DefnExp

Def f id i ... idn = Exp

Exp const

Exp id

Exp apply f Expi... Expn

Exp let idi = Expi,..., idn = Expn In Exp

Exp if Expi then Exp2 else Expg

Exp cons Expi Pxp2

Exp Expi + Exp2

The last two are representative of construction and primitive operations, 

respectively. Several types of expressions will have both lazy and eager rules 

associated with them, as was the case for function application in our n- 

calculus scheme. As we did for our zc-calculus simulation, we will assume 

the presence of a strictness analyser to resolve any resulting ambiguities in 

the compilation scheme.

4.3 Architectural framework

The machine model underlying our compilation scheme is that of a 

message-passing multicomputer made up of multithreaded processing 

elements (PEs), each with their own local memory, such as the F-RISC 

model of Arvind and Nikhil [AN88] outlined in Section 2.4.2, or our own 

STARDUST architecture [Os91] described in Chapter 6 which we will briefly 

summarise here. We assume that of the multiple threads that may be able 

to proceed only one thread per CPU executes at any one time. Threads 

execute to completion and cannot preempt each other. A thread in our 

sense is best described as an ordinary von Neumann program, operating on 

registers, exchanging data with local memory, sending messages to other
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nodes and eventually terminating. Upon termination of a thread, the next 

incoming message is consumed, i.e., its contents are transferred to registers 

and the handler thread specified by the message is inititated. A similar 

model, 'active messages', was described by von Eicken and Culler et al. in 

[EC92]. Threads communicate in one of two ways: a thread can start other 

threads ('dataflow style') or it can exchange data with another via the local 

store. In the latter case both threads need to reside on the same PE. Several 

threads will often run within the context of a single frame, i.e., a range of 

memory in the local store of one PE. We will find it convenient to call such 

a collection of threads a process. While the STAR:DUST architecture 

provides direct support only for the simpler concept of threads, processes in 

this sense are easily modelled.

4.4 Runtime framework

Our framework for graph reduction on multithreaded architectures is based 

on the following principles:

• The whole program code resides on each node in the same relative 

location in order not to waste communications bandwidth on feeding 

the instruction units.

• There are three classes of memory objects, namely function frames, 

constructed cells and suspension cells. Each object resides on a single PE 

and can be referenced by a global pointer comprised of PE identifier and 

an address local to that PE.

• Each function invocation is associated with a unique function frame 

which holds the arguments plus space for any necessary temporary local 

data.

• Function invocations are allocated randomly to PEs and all of the code 

associated with the invocation executes on the PE which holds its frame.
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In order to give some structure to our compilation scheme, we will 

distinguish the three types of message-send operations listed below. Each 

can be interpreted as a macro which will construct a message from a number 

of scalar arguments, inject it into the network and continue execution 

asynchronously.

• app ly ( f ,  XI, . . .  , Xn/ o)

Send a message to a random PE to start the execution of the specified 

function. The function argument f  is the address of the entry point of a 

function. By convention the function will allocate a frame in which to 

store the arguments x i  and a pointer o to the node in which to place the 

result. The Xi represent pointers to the nodes where the argument 

values can be obtained, if and when necessary. Before terminating, the 

function will cause the result node to be overwritten with a value in 

WHNF. An ap p ly  message corresponds very directly to the ^-calculus 

action f{x,o) in the rule for function application (Section 3.4.4 and 3.4.5), 

extended to deal with multiple arguments.

• e v a l (x, la b e l)

Send a message to the PE holding the suspension node x to initiate its 

evaluation, if not previously initiated. Recall that suspension pointers 

are machine global and therefore x is sufficient to specify the destination 

PE. The handler for e v a l registers the current process as a consumer of 

the suspension's value when it becomes available, using a linked-list 

data structure. The current process is specified as a continuation 

consisting of a global pointer to the caller's frame (an implicit parameter 

to ev a l) and a label in the caller's code. An e v a l message corresponds to 

our 7C-calculus rule for name reference (Section 3.4.2), the major 

difference being that the target 'channel' is mapped into the caller's 

frame rather than being an independent object.
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• update (O/ va lu e)

Send a message to the PE holding the suspension node o. There is a 

single update handler on each PE which overwrites a suspension with 

its value and restarts any waiting processes. Restarting involves sending 

further messages (not explicitly described here) which carry the value to 

each requester. Update messages correspond to occurrences o£ ox  in our 

jr-calculus rules of the form [[M]] o, e.g., the rule for name reference 

(Section 3.4.2), and are used for depositing constant values, and the 

results of primitive computations like + and cons.

It is worth pointing out that the suspension nodes of our runtime model 

play the dual role of request channels along which consumers can request 

the value of a computation (via an e v a l message) and value channels along 

which producers deliver their results (via an update message).

4.5 Overview of the compilation scheme

There are three compilation functions, "P for compiling programs, f )  for 

definitions and “C  for expressions, each mapping a piece of abstract syntax 

into our message passing abstract model. We will present the resulting code 

in a C-like notation that we hope will appeal better to the reader's intuition 

than the short sequence of RISC instructions to which each line 

corresponds. In this code, all communication is explicit and takes the form 

of one of the message types outlined in the previous section (app ly , e v a l  

and u p d ate).

The P  scheme applies to the main program only and provides the 

packaging for top-level definitions and the main program expression. The f)  

scheme compiles top level function definitions (supercombinators) and is 

again mostly packaging for the code generated for the function body. All the 

interesting work is done by the ifT scheme which generates code for
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expressions. Entering the scheme code for an expression amounts to 

initiating its evaluation. The ifT scheme takes as an additional parameter a 

(pointer to) the suspension node which is to be overwritten with the result 

of the expression. The resemblance to computation in continuation passing 

style is not coincidental, with the target suspension pointer taking the place 

of the 'rest of the program'. Our scheme is not equivalent to CPS 

computation, however, since we continue executing the thread into which 

the iT scheme code is embedded, often in parallel with new threads that 

were spawned by this code.

Let us have a closer look, starting with the P  scheme: We allocate a 

suspension node for the main program expression, initiate its evaluation 

via an e v a l message and terminate (denoted by a horizontal bar). The result 

will eventually arrive, restarting the main process at L. The resulting v a lu e  

is accessible via the message passing interface and does not involve any 

additional communication—it is mapped to a register in our STAR:DUST 

architecture. Upon arrival of the result we can print it (assuming the result 

is a printable scalar value for simplicity) and terminate the program. If the 

result of the main program is a list, further e v a l  messages are required for 

the head and the tail, respectively, until the end of the list is reached. In the 

general case, the structure of the p r in t  operation depends on the type of the 

result. The main program code is followed by that for the supercombinator 

definitions and for the main program expression resulting in the following 

compilation rule:
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p [[ Defi ... Defn Exp ]] =
s = suspended_node (M) 
e v a l (s, L)

L: print (msg.value)

%) [[ Defi ]]

[[ Defn ]]
M: lET [[ Exp ]] -» s

Note that since s has been allocated locally we could in this case replace the 

eval message by a construct not involving communication, an option not 

exploited here in order to maintain consistency of presentation with the 

compilation rules to follow.

The f)  scheme translates a supercombinator into a handler which is 

activated by corresponding apply messages. For each activation the handler 

allocates sufficient space to hold (pointers to) the arguments, a pointer to the 

destination node for the result and any private temporary space required 

during evaluation. Before entering the code for the supercombinator body, 

the function handler needs to save the message parameters into the newly 

allocated frame.

f) [[ f idi ••• idn = Exp]] = 
f : allocate_frame

idi = msg.idi

idn = msg.idn
result = msg.result 

[[ Exp ]] -> result
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The handler so produced corresponds directly to the handler in our n- 

calculus rule for abstraction (Section 3.4.3). In the latter case the handler had 

the form !/(x,y). [[M]] y, i.e., the handler was represented as the parallel 

composition of an unspecified number of processes, each responsible for a 

single activation. Note how the idea of 'infinite composition' is mapped 

into a passive handler which does not require any resources until activated. 

Note also that whereas the 7c-calculus scheme can rely on an abstract notion 

of environments we have to introduce explicit frames in which to deposit 

the values we want to bind.

4.6 Translating non-strict expressions

Having had a taste of the kind of code produced by our scheme, we are now 

ready for the ifT scheme which handles expressions. In this section we will 

provide the rules for lazy function application, the lazy let construct and 

the lazy version of cons. We will start, however, with the rules for numeric 

constants and identifier reference which are transparent to issues of 

strictness. All our rules will be of the general form

ifT [[ Exp ]] result = 
code

where Exp is the expression to be evaluated and result is the name of the 

suspension node which is to receive the result. In other words, ifT is a 

function of two arguments, a piece of abstract syntax and a name. Note that 

the structure of this scheme is identical to that of our jc-calculus scheme of 

Chapter 3. There we had a compilation function of the form [[M]] o where M 

was a term of the X-calculus and o was a name of the 7c-calculus.

4.6.1 Constants

The rule for constants is easy enough. We simply send the value of the 

constant to the result node. Note that the update message is not followed by
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termination, so we continue executing the code into which the code for the 

constant is embedded.

[[ const ]] —> result =
update (result, const)

This rule corresponds directly to the rule for constants (Section 3..3) in our 

7c-calculus scheme which had the form

[[ const ]] o 4̂  ̂ Ô const

4.6.2 Identifier reference

Before we can update the result node for an identifier reference, we need to 

make sure via an eval message that the value is available in WHNF. We 

transmit the label L to specify where execution is to continue once the value 

arrives and then terminate. On arrival of the value, we update the result as 

before.

ifT [[ id ]] -> result = 

e v a l (id, L)

L: update (result, msg.value)

At this point the reader is likely to notice that there is a substantial amount 

of communication going on even for the simplest kinds of expressions. We 

therefore hasten to point out that the compilation rules given here are only 

meant to cover the general case as concisely as possible. For many of the 

messages produced here source PE and destination PE coincide. More spe­

cialised rules can be given to avoid message-passing overhead altogether for 

important special cases.

Comparing the rule for identifier reference with the corresponding one 

in the 7c-calculus scheme (Section 3.4.2) we find that we have not made use
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of the shortcut described there which would cut out one communication 

step. Such a shorthand is perfectly possible and would involve the 

definition of a second kind of eval message which would take the address 

of a target suspension node as a parameter. We abstained from this 

optimisation to simplify our presentation.

4.6.3 Lazy function application

The code generated for a lazy function application starts by allocating 

suspension nodes for each of the parameters, marking them 'suspended' to 

indicate they are as yet unevaluated, and storing within it the continuations 

of the computations that can determine the parameter values if and when 

required. The code for the individual expressions is then bypassed and the

function is activated, with pointers to the suspension and result nodes

passed as parameters.

ifT [[ apply f Expi ... Expn ]] —> result =
Si = suspended_node (Li)

Sn = suspended_node (Ln)
goto Ln+i

Li; C  [[ Expi ]] Si

L n :  [ [  E x P n  ] ]  - >  S n

■*n+l : ap p ly  (f, Si,..., result)

This rule does not appear to correspond very closely to the rule for lazy 

application in our xc-calculus scheme (Section 3.4.5) for two reasons. Firstly, 

the rule above only implements first-order function application, i.e., f is a 

code label rather than an expression. Secondly, as pointed out in Section 4.4
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on the runtime model, suspension nodes play a dual rule as both request 

channels and value channels. Thus some of the functionality of the original 

jT-calculus application rule is here performed by the handlers for suspension 

nodes, in particular the waiting for and servicing of requests.

4.6.4 Lazy l e t

This rule is structurally sufficiently similar the rule for lazy function 

application above for us to restrict ourselves to pointing out the two 

differences: instead of introducing anonymous suspension nodes for the 

arguments to a function application, we will use the names provided by the 

let construct. Instead of sending an apply message, we simply evaluate the 

body of the let expression in line.

[[ l e t  idi = Expi, ... , idn = Expn in  Exp ]] -> result = 
idi = suspended_node (Li)

idn = suspended_node (Ln) 
goto Ln+i 

Li: C  [[ Expi ]] -> idi

L n :  E x p n  ] ]  i d n

L n + i :  “ëT [[ Exp ]] -4 result

4.6.5 Lazy co n s

Again the similarities to lazy function application are striking. Obviously 

we only have two arguments to deal with. The pointers to suspension 

nodes allocated for them are stored into a locally allocated frame for the 

cons-cell. The result node is updated with a pointer to this cell.
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ifT [[ cons Expi Exp2 ]] —> result
51 = suspended_node (Li)
52 = suspended_node (L2 ) 
goto L3

Li: C  [[ Expi ]] -> Si

L2 : ^  [[ Exp2 ]] S2

L3 : c = cons (si, S2 )
u p d a te  (result, c)

4.6.6 Conditional

Given that we are dealing with a lazy functional language we could map the 

conditional construct to an appropriate built-in function

cond (test, then, else)

which will return the value of either its second or its third argument 

depending on the value of the first. Nonetheless we give a direct 

compilation rule here.

[[ i f  Expi th en  Exp2 e l s e  Exp3 ]] -» result =
s = busy_node ()
C [[ Expi ]] -> S
e v a l  (s, Li)

Li: if (Imsg.value) goto L2  

[[ Exp2 ]] result
goto L3  

L2 : '̂  [[ Exp3 ]] result
L3 :

70



While we do not suspend the computation for Expi, we still allocate a graph 

node s for its value and mark it 'busy', i.e., currently undergoing eval­

uation. As evaluation of Expi has already begun by the time we send the 

eval message, this message here only serves the purpose of synchronisation. 

When the value of Expi becomes available in s, we restart the current 

process at Li, evaluating either Exp2 or Expa based on the result.

4.7 Translating strict expressions

While the rules presented in the previous section employ message-passing 

and distribute function applications across processing elements, they do not 

provide us with any opportunities for parallelism as any instance of thread 

creation is swiftly followed by the termination of the original thread. To 

verify this claim note that in the scheme presented so far all recursive 

invocations of are immediately followed by a termination. In order to 

obtain parallelism we need to take advantage of the known strictness of 

built-in operations like addition, or we have to perform strictness analysis 

on the rest of the program and translate selected expressions according to 

the rules presented in this section. To simplify the presentation we will only 

show the code generated for expressions that are strict throughout, e.g., 

function applications that are strict in all the arguments. Hybrid rules, such 

as the one for the conditional construct, would have to be employed for a 

more complete implementation. The rules given below are 'naive' in that 

they exploit maximal parallelism. They will be adapted in the next chapter 

to guarantee load bounding.

4.7.1 Eager function application

As in the code for lazy function application we allocate a suspension node 

for each of the parameters. Rather than actually suspending the 

computations in question, we immediately enter the code for each of the
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arguments. Parallelism comes about if any of the argument expressions 

itself involves a function application which results in starting a new thread 

on a (generally) remote processing element.

^  [[ apply f Expi ... Expn ]] —> r e s u l t  =

Si = busy__node {)

C  [[ Expi ]] -> S i

Sn = busy_node ()

C  [[ ExPn ]] ->  Sn

ap p ly  ( f ,  S i , .../ Sn/ r e s u l t )

Note that under a parallel execution regime strictness information can 

generally not be used to avoid 'boxing', i.e., the allocation of graph nodes for 

subexpressions. To avoid such graph nodes we would have to evaluate the 

argument expressions before entering the function code, thus limiting 

parallelism. Such a strategy may still be interesting in special cases, for 

example if the function invoked will immediately require the argument 

values.

4.7.2 Eager l e t

Again, as in the lazy case, the code generated for the l e t  construct is almost 

identical to function application. Again the only difference is that we use 

the identifier names supplied by the programmer and we enter the body of 

the expression directly rather than sending an apply message.
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ifT [[ l e t  id i  = Expi, ... / idn = Expn in  Exp ]] -> result
idi = busy_node 0 

TT [[ Expi ]] -> idi

idn = busy_node ()
C  [[ ExPn ]] ->  id n  

ifT [[ Exp ]] -*> r e s u l t

4.7.3 Eager co n s

The eager version of cons is constructed completely analogously and is 

given for the sake of completeness.

ifT [[ cons Expi Exp2 ]] -> re su lt  =

51 = busy_node 0 

C  [[ Expi ]] -> Si

52 = busy_node () 
tT [[ EXP2 ]] S2

c = cons (si, S2) 

u p d a te  (resu lt ,  c)
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I t
4

4.7.4 Addition

Finally we provide the compilation rule for addition.

tfT [[ Expi + Exp2 ]] -> result =
Si = busy_node ()
C  [[ Expi ]] -> Si
8 2  = busy_node ()
^  [[ Exp2 ]] -> 82  

e v a l  ( s i ,  Li)

Li: VI = msg. value
e v a l  (S2/ L2)

L2 : V2  = msg. value
u p d ate (result, V 1 +V2 )

This rule will require a short explanation. After initiating the evaluation of 

both arguments in parallel, like we did for any of the other strict constructs, 

this time we require their actual value for addition to complete its task. 

Therefore we perform synchronisation via eval messages to obtain the 

numeric values of the arguments. As the evaluation of both arguments has 

already started, the eval message will merely serve to request their values to 

be reported back to the current process. As given, the rule requests first the 

value of the left subexpression and then the value of the right 

subexpression. This does not impose any sequentiality on the order in 

which the arguments are evaluated, only on the order in which their values 

are reported. As  both graph nodes are managed by the local processing 

element anyway, we have nothing to gain from eliminating this admittedly 

artifical order.
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As the rule for addition has a counterpart in the Ji-calculus scheme of 

the previous chapter it w ill be useful to compare the two. The 

correspondence here is a very natural one. Our jc-calculus addition rule 

(Section 3.3) started by introducing two names corresponding to the 

allocation of two graph nodes. We had one parallel process responsible for 

computing the value of either of the subexpressions. Like in the above rule, 

our TT-calculus code reads first the value of the left subexpression, then the 

right, before writing the value of their sum to the output channel.

4,8 Summary

In this chapter we have made more concrete the abstract simulation in the 

ir-calculus of graph reduction in the X-calculus, as presented in Chapter 3. 

This was done in the form of a practical compilation scheme for message- 

passing multicomputers. Our rules were divided into two sets. The group of 

rules dealing with instances of language constructs not known to be strict 

did not create any parallelism. All parallelism to be obtained was provided 

by rules that applied to expressions that were strict throughout. We have 

pointed out along the way the multiple close correspondences between the 

compilation scheme and the Tc-calculus simulation of the previous chapter.
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Chapter 5 — Load Bounding

5.1 Introduction

Compilation rules like those of the previous chapter allow us, in principle, 

to exploit the maximal parallelism implicit in a functional program, starting 

new threads whenever the opportunity arises. As pointed out in Section 

1.7.2, however, maximal parallelism may be rather more than we desire. 

We argued there that without a prudent strategy for bounding parallelism 

many programs, in particular those of the divide-and-conquer type, can 

exhibit vastly increased resource requirements. In this chapter we will 

present a simple automatic technique for bounding the parallelism of 

executing programs dynamically and adaptively, based on the changing 

workload of the underlying parallel system. Our technique will be 

integrated in a cheap and simple manner into the compilation scheme of 

Chapter 4. We present an informal proof of the effectiveness of our method 

based on the structure of the compilation scheme. Determining the 

workload of a large parallel computer is not a trivial task, involving as it 

does a form of global synchronisation. We have to ensure that its compu­

tational cost does not have undue impact on the runtime of the user 

program. We present a simple and cheap load computation algorithm with 

the required properties. Finally we point out why the sharing of 

subcomputations can have a detrimental impact on the effectiveness of load 

bounding.

5.2 Pitfalls and dangers

Given that the compilation scheme presented in the previous chapter 

provides distinct rules for parallel and sequential execution of some of the 

same program constructs, the first idea that comes to mind is to apply the 

parallel rule when additional parallelism is required and the sequential rule
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when the machine is already saturated with work. More specifically, we 

could extend the definition for the eager case to revert to the lazy case if a 

dynamic test determines that the current workload already exceeds a fixed 

limit, as in the following scheme

[[ Exp ]] result =
if (workload > limit) goto P 
l̂azy [[ Exp ]]—> result
goto E

P: "Keagerh Exp ]]-» result
E:

Provided we can implement the computation of the current workload 

cheaply (see Section 5.6), this scheme provides an effective means of 

bounding parallelism. It has, however, an obvious and severe drawback in 

that we generate duplicate (if slightly different) instances of code for the 

same expression. Both the code for the eager case and the code for the lazy 

case can in turn contain more strict subexpressions which would again 

result in code duplication, and so on. In the worst case the size of code 

generated by such a scheme would be exponential in the length of the 

original code—an unacceptable proposition. A second, less obvious 

disadvantage of this method is the fact that it is not adaptive. On entering 

the code for an expression Exp with subexpressions Expi ... Expn we may 

decide, based on the current workload, that the subexpressions ought to be 

computed serially. If the workload has dropped after computation of Expi is 

complete and additional parallelism is desirable, there is no opportunity for 

evaluating the remaining subexpressions Exp2 ... Expn in parallel with each 

other. The scheme presented below avoids the code explosion as well as 

being more adaptive in situations of changing workload.
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5.3 A workable solution

Before going into the details of our extended compilation scheme we will 

introduce the invariant on which our informal proof of the effectiveness of 

our load bounding method will be based:

While the workload is high, no thread will start more than one new 

thread. After creating a new thread, the current thread terminates 

im m ediately.

This invariant will apply, in particular, to the thread which starts the 

evaluation of a complex expression, i.e., it will only be able to start one 

successor thread during situations of high workload. The same applies to 

the thread thus started and its descendants. It is therefore not possible for 

complex expressions to enter two subexpressions simultaneously as long as 

the workload remains high, thus guaranteeing the effect of depth-first 

execution we desire (see Section 1.7.2).

When analysing a compilation rule for the preservation of the 

invariant we have to keep in mind that the code generated for most 

expressions consists of multiple threads. Each of these threads must be 

analysed separately. Furthermore, threads transcend the boundaries of the 

code generated by our compilation rules, i.e., one thread will go into the 

code generated for an expression and another will leave it at the end. In 

designing our scheme we have stuck to the convention that no thread 

creates other threads prior to entering the code generated by the iT scheme. 

However, threads often use up their allotment of one extra thread just prior 

to leaving the code for an expression.

Let us consider the lazy compilation rules given in Section 4.6. We will 

repeat them here for easy reference, starting with the rule for constants.
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“ÈT [[ const ]] —> result =
u p d a t e  (result, const)

This rule consists of a single thread sending a single message. By our 

convention, we will not have started a thread prior to entering this code, 

thus satisfying the invariant*. Next we will consider the rule for identifier 

reference, repeated below.

^  [[ id ]] -» result = 
e v a l  (id, L)

L: update (result, msg.value)

This code consists of two threads. The thread entering here has not yet 

started any new threads by our convention. It sends a single message and 

terminates immediately. The outgoing thread sends a single message, again 

preserving the invariant. Now for a slightly more involved example, the 

rule for lazy function application.

^  11 apply f Expi ... Expn ]] result =
Si = suspended_node (Li)

Sn = suspended_node (Ln) 
goto Ln+i

Li; C  11 Expi ]] Si

Ln: 11 ExPn ]] ->  Sn

Ln+i: apply (f, Si,..., Sn, result)

but see the restriction on sharing detailed in Section 5.7
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Here the main thread extends through the code generated (circumventing 

the suspended argument expressions by means of a goto), producing only a 

single message before leaving. Each of the threads responsible for 

computing the value of one of the suspended argument expressions directly 

enters the code for the corresponding subexpression. This code can generate 

only a single thread (by a simple inductive argument). In order to maintain 

the invariant we have to terminate immediately, and we do.

Identical arguments can be made for the rules applying to the lazy l e t  

construct and the lazy cons operator. Thus we can see that all our lazy rules 

satisfy the invariant irrespective of the current load situtation. This was of 

course only to be expected: as mentioned before, there is no parallelism in 

purely lazy evaluation. For the eager rules of Section 4.7, however, the 

inductive argument would quickly break down. In the following section we 

will therefore adapt those rules to comply with our invariant.

5.4 Eager compilation rules modified for load bounding

For the eager rules that follow, we will assume the existence of a boolean 

test operation p a r a l l e l  which will determine, at any instant during the 

execution of a program, whether the current load status of the machine 

permits the creation of new parallel threads. We will discuss in Section 5.6 

how such a test can be implemented efficiently.

5.4.1 Eager function application

The adapted rule for eager function application which incorporates the core 

idea of our scheme is given below. We immediately observe that we 

generate code for each subexpression only once.
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[[ apply f Expi ... Expn ]] —> result
Li : Si = busy_node ()

'€ [[ Expi ]] -> Si 
if (parallel) goto L2 
eval (si, L2)

Ln : Sn = busy_node ()
C  [[ Expn ]] ->  Sn

if (parallel) goto Ln+i 
eval (Sn, Ln+i)

Ln+i: apply (f, Si, ... , Sn, result)

Let us first verify that the modified eager rule still performs the required 

operation. Assuming that each of the tests for additional parallelism 

succeeds, it is readily apparent that but for the testing overhead the sequence 

of operations is identical to that for the naive eager rule of Section 4.7.1. 

Now what happens if the first test for extra parallelism fails? Instead of 

immediately entering the code for the second subexpression, we send an 

eval message to the suspension node for the first subexpression and 

terminate. Since the evaluation of si has already started (we have just 

initiated the code for Expi), the eval message will merely register the 

current process as a consumer of the resulting value, once available. Only 

when this value has been computed is the current process restarted at L2. 

The eval message therefore merely has the effect of synchronising the start 

of the second sub computation with the arrival of the result of the first, 

leaving the course of the computation otherwise unchanged. The same 

argument applies to each of the subcomputations in turn. The arrival of the
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result for the last subexpression is synchronised with the activation of the 

function to be called.

Knowing that the above rule implements function application correctly, 

independently of the load situation, what can we say about its effect on 

system load? In order to preserve the invariant of the previous section we 

again need to verify that each thread of the code generated by the modified 

rule has at most a single successor thread while the workload is high. So let 

us assume the system is already saturated with parallelism on entering the 

code generated by the above rule. We start evaluation of the first 

subexpression which will, in general, create a new thread. We now have to 

guarantee that more threads are not created. The test for more parallelism 

will fail so we send an e v a l message and terminate. At first sight, it would 

appear this e v a l message should initiate a new thread. However, as pointed 

out in the previous paragraph, this message has the sole effect of registering 

the current process with the suspension node s i. Since s i  has been allocated 

locally, the obvious way to implement this 'message' is to change the 

contents of the suspension node without starting an extra thread, thus 

preserving the invariant for the initial thread. Again the same argument 

applies to each of the subsequent threads. If the workload remains high 

throughout, each thread will initiate one more sub computation and 

terminate after changing the contents of the corresponding suspension 

node. Finally the last thread will start a single new thread via the a p p ly  

message, again complying with the invariant.

5.4.2 Eager l e t

After having dealt successfully with the rule for eager function application, 

the rest of our rules follow swiftly along the same lines. Here is the adapted 

eager rule for the l e t  construct:
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ifT [[ let idi = E x p i, ... , idn = Expn in Exp ]] -> result 
Li: idi = busy_node ( )

C  [[ Expi ]] -» idi 
if (parallel) goto Lg 
eval (idi, L2)

Ln: idn = busy_node ( )
C  [ [  E x P n  ] ]  i d n  

i f  (parallel) goto L n + i  

eval ( i d n ,  L n + i )

Ln+i: ^  [[ Exp ]] -> result

The eager let construct differs from eager function application merely in 

the naming of the suspension nodes and in the inline expansion of the body 

of the let. The argument for the invariant is precisely the same as above.

5.4.3 Eager co n s

Neither does the eager version of cons produce any difficulties, as the reader 

will immediately verify. Here is our modified rule:
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[[ cons Expi Exp2 ]] result 
Li: Si = busY_node {)

C  [[ Expi ]] -4- Si 
if (parallel) goto L2 
eval (si, L2)

L2*. S2 = busy_node ()
^  [[ Exp2 ]] —> S 2 

if (parallel) goto L3 
eval (S2, L3)

L3: c = cons (si, S2)
update (result, c)

5.4.4 Eager addition

In conclusion, we present the modified rule for addition, explained below.

84



[[ Expi + Exp2 ]] -> result
Li: Si = busy_node 0

C  [[ Expi ]] -> Si

if (parallel) goto L2

eval ( s i ,  L2)

L2: 82 = busy_.no de 0
iT [[ Exp2 ]] 82
eval ( s i ,  L3)

L3: VI = m s g .value
eval (S2, L4)

L41 V2 = m s g .value
update (result, V1+V2)

Here we note that the original version already needed to synchronise the 

arrival of both argument values with the computation of their sum. Our 

modification to the original rule therefore consists of adding one additional 

synchronisation to make sure that evaluation of the second argument is not 

started until evaluation of the first has completed if the workload is high. 

The second e v a l  message to s i  in the load bounded case could be avoided 

at the expense of duplicating the code for Exp2.

5.5 Adapting to changes in the workload

The compilation rules provided in the previous section implement a load 

bounding regime which adaptively responds to changes in the workload. 

This adaptivity can come about in two ways. The first and more obvious 

results from the fact that we perform a test of the current workload on each 

occasion where we have the option of exploiting parallelism. Imagine for 

example an instance of an eager function application of the form
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f  expi exp2

where both of the subexpressions themselves provide opportunities for 

parallelism. Even if we decide to perform exp i and exp 2 in series, we will 

be able to exploit any inner parallelism inherent to either e x p i or e x p 2 

should the system workload have dropped in the meantime.

Less obvious is the fact that even after choosing the sequential option 

for the function application, a drop in workload may result in evaluating 

some remaining parts of exp i and exp2 in parallel. Consider for example an 

expression of the form

f (cons expi exp2) exps

where both the application of f  and the evaluation of c o n s  can be 

performed eagerly in parallel. Consider the case where we decide, based on 

the current workload, to wait for the result of con s before evaluating the 

second argument to f . Imagine that immediately after taking this decision 

the workload drops to a level where we could again make effective use of 

additional parallelism. The code generated for cons (see previous section) 

would now opt for eager parallelism, start the evaluation of both exp i and 

exp 2 and return a newly-allocated cons-cell immediately. The computation 

of exp3 could therefore start before the evaluation of the first argument has 

completed. This second form of adaptivity is restricted, however, to cases 

where the first expression in a series involves a non-strict constructor of 

which cons is out archetypical example.

5.6 Efficient load computation and load testing

The efficiency of the scheme presented in the previous section relies heavily 

on the ability to test the global workload quickly and cheaply. On a scalable 

parallel system, however, the local workload on each PE, and thus the 

average global workload is subject to sudden change. We cannot expect to be
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able to present an accurate and instantaneous picture of the average global 

workload to each PE. The situation is somewhat simplified by the fact that 

we are not ultimately interested in the precise figure for the global workload 

itself. We only need to know: is the global workload 'too high' or is it 'too 

low'? Put differently: should we attempt to expand parallelism or reduce it*. 

Two approaches came to our mind to allow PEs to make this decision 

quickly and on the fly.

5.6.1 Probabilistic load estimation

Our first intuition was to use the local workload as an estimate for the 

global workload. We adopt as a measure of the local workload the number 

of waiting messages at a PE which corresponds to the length of the token 

queue in a dataflow architecture. Due to our strategy of randomly allocating 

function applications to processors, we can expect decisions based on this 

estimate to be reliable with high probability in situations of high workloads 

and low workloads. However, even when the global workload is very high, 

there remains a finite probability of taking a wrong decision: an individual 

PE which is temporarily underutilised may start new parallel 

sub computations and thus increase the global workload further. In a 

situation where all computations are very long-lived, i.e., when there are 

no matching reductions in parallelism in the form of completing threads, 

the global workload may exceed any given bound. This is the case, for 

example, for n f ib . Simply replacing load computation by probabilistic load 

estimation is unsatisfactory.

5.6.2 Cyclic load determination

Our second attempt was based on the following idea: rather than relying on 

an inaccurate estimate that is instantly  available everywhere, we could

* Strictly speaking we don't actively reduce parallelism but rather we wait for threads to die
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periodically compute an accurate value for the global workload and rely on 

this value for the whole period. As long as the overhead of the load 

computation is small relative to the intervening user computation, the 

necessary global synchronisation can be efficient. Due to the multithreading 

nature of our underlying architecture, we can interleave the load 

computation w ith the user computation, which simplifies matters 

considerably. In particular, we have no need for any special hardware 

support. The load computation can be driven by a busily waiting timer 

process on a dedicated root node. At the start of each new period, the timer 

process initiates requests to every PE to report their local workloads. 

Requests are distributed down a logical tree which is superimposed on the 

system network. Local workloads are accumulated as they are reported back 

up the tree so that the value that reaches the root node will be the total 

workload. The root computes the average workload per PE and proceeds to 

distribute this value back down the tree. Upon receipt of acknowledgement 

from every PE, the root node restarts the original timer process. 

Experiments with this scheme showed that we successfully solved the 

problem of ever-increasing workloads. However, the combination of two 

problems makes this method impractical as well. Firstly, the period of the 

load determination cycle has to be fairly large ( '- 1 0 0 0 0  processor cycles) to 

dominate the fixed overhead per node ( - 1 0 0  processor cycles per load 

computation). Secondly, since load computation messages compete for 

bandwidth with user messages, the load computation can be seriously 

delayed when parallelism is expanding quickly within one phase. By the 

time one phase of the load computation is complete, parallelism can already 

be unacceptably high.
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5.6.3 A hybrid solution and its cost

The solution we eventually adopted with some success, as evidenced in 

Chapter 6 , is a hybrid of the two approaches above. We do cyclic load 

computation to be able to put a cap on parallelism, but we also decide in 

favour of sequential execution on any node whose local load is unacceptably 

high. Improvements to this scheme are possible by adding hardware 

support, for example in the form of a hierarchical control network which is 

separate from the data network and is suitable for fast global 

synchronisation. Such a control network has been implemented in the 

CM-5 [Le92] and is valuable for various other functions, e.g., for 

synchronising distributed garbage collection not discussed in this thesis.

The computational cost of our scheme has two components, the cost of 

the actual workload computation and the cost of the test operations that we 

need to integrate into our compilation scheme. Our implementation of the 

distributed workload computation has the structure described in the 

previous section. In Figure 5.1 we show the protocol followed by each node 

in the tree. The four handlers were implemented in STAR:DUST machine 

code (see Chapter 6 for details of STARiDUST) and amount to a total of 

about 100 RISC instructions. While message latency has a significant effect 

on the time from initial request to final acknowledgement, it does not affect 

the computational cost in a well-designed multi-threaded architecture, as 

processors can quickly switch to user threads instead of blocking and waiting 

for an immediate response. The cost per node per load computation is 

therefore of the order of 100 processor cycles on a single-issue RISC 

processor.
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Figure 5.1: Node protocol of distributed load computation

If we set the timer process to initiate a load computation every 10000 cycles, 

the cost of load computation will amount to about 1% of total runtime.

The second part of the total load bounding cost is incurred by the test 

operations embedded in the scheme of Section 5.4. In our implementation 

on STAR:DUST, each such test is performed with extremely little overhead. 

Each test of the form

if (parallel) goto L

is mapped to a sequence of four RISC instructions as follows: we load the 

length of the local message queue into a register, add to that the the average 

global workload as determined by the last global load computation, compare 

the result to a constant, called the target load value, and branch to L if the 

sum was smaller.

5.7 The problem of sharing

There is one important exception for which our scheme is not guaranteed to 

succeed in load bounding. The source of this problem lies with the handler 

for update messages which overwrites nodes of the graph with values in 

WHNF. While an update message itself will only start a single new thread, 

namely the update handler, the handler in turn needs to restart any threads 

that have become suspended as a result of that value being previously
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unavailable, independently of the current system workload. Therefore, a 

single update message has the potential to restart an unbounded number of 

processes that were created while parallelism was low, thus defeating our 

load-bounding strategy. Multiple computations can only be waiting for the 

same suspension in the presence of sharing. Obviously sharing is an non­

expendable part of functional programming languages, so this deficiency is 

somewhat disheartening. In practice many programs which exhibit sharing 

will be successfully load-bounded by our scheme as well, but we have no 

doubt that worst-case programs can be constructed that will provoke 

arbitrarily high workloads. We would not expect to be able to solve the 

sharing problem completely, since it is well-known that the space 

complexity of many lazy programs exceeds that of corresponding eager 

programs. Nonetheless we are investigating several approaches towards at 

least a partial solution and we will quickly sketch two of them.

In the case where the program is strict in a shared expression E, we can 

insist on reducing E to WHNF before initiating any computations which 

share e. In this way, no computation could become suspended as a result of 

waiting for E to complete. This solution has obviously limited scope and 

also restricts opportunities for parallelism.

Part of the sharing problem is the fact that processes suspended while 

waiting for an 'eval' to complete represent 'sleeping parallelism' which does 

not enter into our load computation. We could change the load 

computation method to count such processes as active. This approach will 

obviously restrict parallelism as well and there is the danger that 

pathological examples may exist which produce so much 'sleeping 

parallelism' that actual parallelism is starved out. Nonetheless we consider 

this idea sufficiently interesting to warrant further study and 

experimentation. I
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5.8 Summary

We have presented a simple and efficient software method of bounding the 

parallelism generated by parallel functional programs. This was achieved by 

modifying the naive compilation rules of the previous chapter to take into 

account the current workload. We have given an informal proof for the 

effectiveness of our algorithm based on the structure of the compilation 

scheme. The efficiency of our method was guaranteed by a hybrid strategy of 

computing the average global workload at fixed intervals and using the 

local workload as a rough estimate. Finally we have pointed out how 

sharing can disturb load bounding.
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Chapter 6 — The STAR;DUST Architecture

6.1 Introduction

This chapter plays a dual role in the structure of our thesis on parallel 

functional programming. On the one hand we perceive a need for 

presenting the idea of multithreaded architectures in some more detail in 

order to give greater credibility to a compilation scheme and runtime 

system targeted at such architectures. To further this aim, our STAR:DUST 

architecture* will serve to illustrate that individual multithreaded 

microprocessors can be competitive with modern high-performance von 

Neumann microprocessors while at the same time providing the efficient 

support for communication and synchronisation which is necessary for 

practical parallel computing. Secondly we present STAR:DUST as an 

architectural contribution in its own right, interesting for the fact that its 

support for multithreading is reduced to two simple machine instructions, 

in line with the RISC principles underlying the rest of its design.

We begin this chapter by stating the architectural requirements that 

arise from the work presented in the earlier chapters. We will introduce 

STAR:DUST as an ordinary RISC microprocessor architecture before 

introducing the two simple extensions to the instruction set that are 

required to support a multithreaded model of parallel programming. After 

addressing some important questions regarding the resulting architecture, 

we conclude with a section comparing STAR:DUST to the P-RISC 

architecture from which it was derived.

STAR:DUST is short for "St Andrews RISC: Dataflow Using Sequential Threads'
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6 .2  Architectural requirements for scalable, parallel programs

STAR:DUST is not an 'abstract' machine in the sense that it is not meant as 

an interface between a high-level language and concrete parallel hardware, 

such as the <v, G> machine of Augustsson and Johnsson [AJ89]. Rather, one 

of the major design goals was that it should be implementable in modern 

VLSI technology. Given that STAR:DUST exists only in form of a software 

simulation the reader may regard claims of 'efficient implementability' with 

caution. Our case rests largely on the fact that key aspects of our architecture 

have already been efficiently implemented individually. In particular, our 

architecture is only an evolutionary step from conventional RISC 

microprocessors and is well-positioned to take advantage of any advances in 

sequential RISC technology. In the following we w ill outline the 

architectural principles that guided our design.

6 .2 .1  Scalability

We have taken great pains not to introduce any ideas into either our 

compilation scheme or the load bounding system which would restrict our 

ability to scale up the size of the machine. In particular, we avoided 

introducing artifical bottlenecks not present in the user program or making 

assumptions about the underlying architecture which would not easily scale 

to large numbers of processors. Clearly scalability must now also be a major 

concern of the architecture. An unavoidable consequence of scaling up 

parallel machines is the fact that communication latencies between nodes 

will grow relative to access times for local memory and processor cycle time. 

An architecture must be able to tolerate such latencies without loss of 

efficiency by using what is called 'parallel slackness' by Valiant in [Va90], i.e., 

trading parallelism for communications latency. The key idea, which goes 

back at least to Sullivan and Bashkow [SB77], is to switch to another thread 

of control whenever the original thread would otherwise block while
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waiting for a communication to complete. See also Arvind and lannucci 

[AI87] for an excellent discussion of this issue.

6.2.2 Topology independence

We require a complete connectivity abstraction, most likely implemented by 

packet routing in a relatively sparsely connected physical topology. A 

processor architecture should not make assumptions about particular 

network topologies so that the implementation of the network can proceed 

independently from that of the processing element and can be optimised for 

maximum bandwidth and minimum latency without interfering with 

architectural principles. The technology for building such networks has 

matured to commercial applicability and we will not discuss it here. See, for 

example, the discussion by Leiserson et al. of the network architecture of the 

CM-5 [Le92].

For us, topology independence also implies that we do not aim to 

exploit 'near-neighbour' properties among processing elements, distin­

guishing only between local and global data. In the terminology of Cole 

[Co90] we only take advantage of 'partial locality'.

6.2.3 Asynchronous, message passing communications

While continuous streams among concurrent sequential processes are a 

highly efficient and often conceptually simple means of communication 

and can be put to good use in parallel functional programming as described 

by Paul Kelly in [Ke89], they do not fit the bill for the compilation scheme 

presented in this thesis. A message passing model is more suitable for 

operations such as function invocation, parameter passing or dereferencing 

of global pointers. Due to our usage of message passing for basic language 

constructs we require a high sustained communications bandwidth.
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6.2.4 Fast context switching and process synchronisation

Fast context switching and process synchronisation are the principal factors 

determining the granularity of parallelism which can be supported 

effectively. While excessively fine-grain parallelism has proven impractical, 

reducing hardware constraints on granularity remains not just a valid but a 

crucial goal. We need to be able to switch quickly among multiple quasi­

concurrent threads on a single processing element to mask high-latency 

remote accesses.

6.2.5 Sequential efficiency

A suitable architecture must be able to execute strictly sequential programs 

on a single processing element with an efficiency comparable to that of a 

sequential processor. We do not want to pay the price for fine-grain 

synchronisation where it is not required. Locality is a crucial issue in this 

context. We require high-speed access to local data. This includes the 

relatively small but extremely fast on-processor state in the form of on-chip 

caches and registers on which modern RISC processor rely for their 

impressive performance.

6.3 STAR:DUST as a RISC processor

STARtDUST is so close to a modern RISC design that it is best understood in 

terms of the basic RISC processor at its core, depicted in Figure 6.1. This 

processor is modelled after the Sun SPARC [Ga8 8 ] to facilitate comparison. 

Where we committed ourselves to concrete architectural parameters, like 

the number of directly addressable registers, we did so to comply with 

equivalent commitments in the SPARC. Like on the SPARC we have an 

ordinary sequential program counter, a set of 32 directly addressable registers 

and a status register. Instructions are executed sequentially. There are only 

two instruction formats compared to the SPARC's three: we fit the call
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instruction into the branch format. All memory access is via explicit 

load/store instructions. A memory manager can provide a cache to speed up 

memory access. The ALU operates on registers only (three-address 

operations). Sequential instruction streams are amenable to pipelined 

execution. By remaining close to a conventional architecture for the 

sequential part of our design we can justify our claim being able, in 

principle, to provide comparable sequential efficiency.

Register File

PC! rO... r31

Local Memory

Figure 6.1: The RISC core of a STAR:DUST processor (data paths only)

6.4 STARiDUST as a building block for multiprocessor systems

While at any time there is only a single active sequential thread per 

processing element, STAR:DUST supports multithreading by allowing for 

further dormant threads, i.e., threads ready for execution. Each dormant 

thread is represented by a context in the context store which is organized as a 

queue as shown in Figure 6.2. A context consists of a program counter 

value, plus a set of eight values for the context registers r0-r7. The program 

counter and the context registers together will be called the active context. 

Contexts also form the basis of our communications model. Our 

understanding of a message is a context in transit. Support for cross­

processor parallelism is centered around two parallel control instructions:
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An instruction of the form s t a r t  pc initiates a new thread, generally 

on a remote PE, via the following mechanism: the s t a r t  instruction 

constructs a message from the pc operand and the values in registers 

r2 4 - r 3 1  which we will also refer to as the communications registers 

c O - c l .  Execution of the current thread continues immediately and 

asynchronously. A network manager ensures delivery of this message 

to the processor specified in cO, where the message contents are queued 

in the context store. In other words: the values in registers c O - c l  of the 

sending processor end up in registers r O - r l  of the receiving processor, 

representing a dormant thread.

The term instruction terminates the active thread by taking the next 

context from the context store and making it the active context.

Context

Register Rle

r0..r7 r8..r23 C0..C7

AZ
Network Local Memory

Figure 6.2: A STAR:DUST processing element (data paths only)
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6.5 Discussion

Before demonstrating how one goes about writing parallel programs in 

terms of these primitive instructions, we will address a number of questions 

which are bound to arise.

6.5.1 Is STARrDUST still a RISC architecture?

The two parallel control instructions might be seen to violate RISC 

principles by 'operating' on eight registers at a time. However, both 

instructions can be implemented using register windowing techniques 

comparable to those used in the SPARC for high-speed parameter passing to 

subroutines. The network manager can operate largely asynchronously 

from the RISC core.

6.5.2 Does STAR:DUST require infinite buffers?

As the context store is to reside in high-speed memory on-chip, its size is 

necessarily limited. In order to avoid the possibility of deadlock—or undue 

restrictions to the programming model that can be supported—STARDUST 

needs to provide an abstraction of an unlimited context store. The obvious 

solution is to overflow the context store into main memory when  

necessary. Again there is a correspondence to the SPARC register 

windowing mechanism which overflows the call stack (kept in register 

windows) into main memory. Since our context store is organized as a 

queue, however, the penalty for overflow in the form of thrashing 

behaviour is more severe. Therefore, the overflow mechanism is only to be 

seen as dealing with a 'worst case'. The programming model will have to 

avoid context buffer overflow to guarantee maximum performance. The 

load bounding scheme presented in the previous chapter provides the 

necessary guarantees for parallel functional programming.
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6.5.3 What network bandwidth can we reasonably assume?

A crucial parameter in a VLSI implementation of STARDUST is the 

bandwidth of the network interface, the major factor limiting the 

minimum granularity we can support efficiently. For the following 

argument we will measure bandwidth relative to the processor cycle time. 

For comparison, the figure for the T800 transputer [Gr90] is 4 bit/cycle (4 

channels of 1 bit/cycle each). Assuming similar specifications for a hardware 

implementation of STAR:DUST we would be able to sustain outgoing 

network traffic of the order of one message every 72 cycles (our messages 

contain 9 words of 32 bits each). Such a figure may not be completely 

sufficient to support the generous use of message passing in our simple 

compilation scheme of Chapter 4. Any effort to turn this scheme into a 

'production quality' compiler would therefore have to include measures to 

eliminate unnecessary message passing.

6.6 Sample Programs

In the following we will present two STARDUST program fragments to 

illustrate our basic model of parallelism and, at the same time, to 

demonstrate that STARrDUST is in no way specific to functional 

programming. The first fragment is a purely sequential subroutine which 

computes whether the point (x+iy) is in the Mandelbrot set and terminates 

after at most n iterations. It expects its parameters in the context registers 

( r 0 - r 7 )  and is designed to return its result to a remote caller. The latter 

identifies itself by a 'continuation' consisting of a frame pointer fp  and a 

code pointer cp specifying the return address.
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define cp = rO, fp = rl, off = r2 return ‘ address'
define n = r3. X  = r4, Y = r5 parameters
define i = r6. tl = r7, t2 = r8 temporary workspace

M move 0 -> i set up loop counter
N fmult X X -> tl next iteration

fmult y y -> t2
fmult X  y -> y
fmult y 2.0 -> y
fsub tl t2 -> X

fadd tl t2 -> tl
fcmp tl 4.0 ; termination condition
bgt T
add 1 i -> i
cmp n i ; max loop count reached?
bgt N

T move fp -> cO ; prepare return
move off -> cl
move i -> c2 ; result value
start cp ; restart caller
term

The main point of this example is to demonstrate the fact that sequential 

segments of STAR: DUST code can be executed with the efficiency of a purely 

sequential processor.

The second program fragment shows how to invoke two Mandelbrot 

computations in parallel. Let us first outline the basic mechanism for 

achieving cross-processor parallelism, illustrated in Figure 6.3. The active 

thread on the first PE starts two new threads (asynchronously) on two 

remote PEs. Each subthread computes its result and returns it by restarting a 

thread in the caller. The two 'return threads' in the calling program 

synchronize through a location in a 'frame' in local memory. The caller 

resumes its computation when both results are available.
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Figure 6.3: Basic scheme for cross-processor parallelism

Now for the program: We assume a frame pointer in register rl pointing to 

an activation frame in local memory. The two subthreads are synchronized 

through a location syn c in this frame. 'Free variables' are to be treated as 

registers which have been preloaded with suitable values.

define fp = rO, off = rl 

P st #2 -> fp[sync] ; prepare two threads
move fp -> cl ; pass frame pointer
move offl -> c2 ; pass offset for result
move n -> c3 ; pass parameters
move xl > c4
move yl -> c5
move #J -> cO ; pass return address
sethi #1 -> cO ; pick PE 1 for thread 1
start M ; and start it
sethi #2 -> cO ; pick PE 2 for thread 2
move off2 -> c2 ; pass different offset
move x2 -> c4 ; pass parameters
move y2 -> c5
start M ; start second thread
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term
st val -> fp[off] 
Id fp[sync] -> r2 
sub r2 1 -> r2 
st r2 > fp[sync] 
beq K 
term

; and terminate 
; reentry point ; store result 
; join the two threads 
; by decrementing fp[sync]

K ; process results

6.7 Origins of the STARDUST Architecture

Our design owes much to Nikhil's P-RISC [AN88], itself based on lannucci's 

hybrid machine [Ian88]. These architectures show a successively stronger 

influence of modern von Neumann designs (see Figure 6.4). See Chapter 2 

for a detailed discussion of this development.

modern
von Neumann
Architectures

TTDA
(Arvind)

lannucci's
Hybrid

Architecture

P-RISC
(Nikhll)

Monsoon
(Papadopoulos)

S T A R :D U S T

Figure 6.4: Dataflow/von Neumann hybrid architectures

P-RISC was a milestone in unifying dataflow architectures with modern 

von Neumann machines, reintroducing the idea of efficient sequential 

threads into a dataflow context. By separating issues of synchronisation and 

instruction scheduling from those of local memory access, dataflow
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instructions were simplified to RISC level. STARrDUST carries the move 

towards RISC architectures a step further by acknowledging a memory 

hierarchy, i.e., registers vs. local memory. P-RISC has a notion of 'frames' 

which combine the speed of one with the size of the other at an unclear cost. 

We subsumed all of P-RISC's communications instructions into the s t a r t  

instruction by widening tokens into 'contexts' (our context store corresponds 

to P-RISC's token queue), giving us more flexibility in the types of messages 

we can support. We further simplified the design by dispensing with 

independent memory elements. In the STARrDUST architecture, all 

memory is local to some processing element, permitting us to perform 

memory management in software, again more in keeping with the RISC 

spirit. Finally, communication in STARrDUST is register-to-register rather 

than memory to memory,

6.8 Summary

In this chapter we have outlined the architectural requirements resulting 

from the compilation scheme and the load bounding system of the previous 

chapters. We have presented the STARrDUST architecture which extends 

the principles of RISC-based computing to communication and 

synchronisation in massively parallel architectures. An important design 

consideration for STARrDUST was to enable it to make efficient use of 

sequential microprocessor technology. We have discussed some of the 

questions bound to arise regarding the extensions to the sequential core of 

STARrDUST. We have given example programs illustrating the sequential 

and parallel aspects, respectively, of STARrDUST programming. Finally we 

have compared our architecture to that of Nikhil's P-RISC from which it 

STARrDUST was developed by following RISC-principles more faithfully, 

resulting in a much simplified design.
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Chapter 7 — Distributed Implementation of a STARrDUST 

Emulator

7.1 Introduction

In the previous chapter we have emphasised the fact that the STARrDUST 

architecture is suitable for hardware implementation in VLSI. Obviously, 

such an implementation is beyond the scope of an individual PhD thesis. 

Instead we have chosen to prove the concept by means of a distributed 

implementation of a multiprocessor STARrDUST emulator on a commer­

cial multicomputer. The machine at our disposal was a Meiko Computing 

Surface with 24 transputers of type T800. This chapter begins by discussing 

some details of both the machine and the programming system used for the 

implementation. We give a structural overview of our distributed 

STARrDUST emulator and discuss some issues of deadlock-free routing in a 

sparse network that we had to confront. Next we focus on the process 

structure of individual transputer nodes. Each transputer is responsible for 

emulating one STARrDUST processing element as well as for through- 

routing incoming messages destined for other STARrDUST nodes. We 

conclude with some experimental results obtained from running 

STARrDUST implementations of two parallel functional programs, n f i b  

and q u ick sort.

7.2 The Meiko Computing Surface and CSTools

The Meiko Computing Surface on which our emulator was implemented is 

a 24-node configuration of T800 transputers [MT90] on two VME boards 

hosted by a Sun 4/370, depicted schematically in Figure 7.1.
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Figure 7.1: Schematic view of a 24-node Meiko Computing Surface

Each transputer has four links by which it can be connected to other trans­

puters in the system. The Computing Surface provides a large degree of 

flexibility in the configuration of these connections by means of a 

programmable network. The network configuration depicted in Figure 7.1 is 

therefore only one of the many that are possible. Nonetheless, the 

fundamental limitation of transputers in the form of four hardware links 

per node must be respected. Complete connectivity via hardware links can 

only be achieved for system partitions made up of four transputers or 

fewer*.

For our programming environment we chose Meiko's CSTools system 

for its flexibility and its integration into a standard Unix environment. 

Under CSTools all program development is performed on the Sun host. 

CSTools programs run in two stages. In the first stage, the network 

description and process configuration is loaded onto the Computing 

Surface. In the second stage, the distributed processes are activated, 

communicating with each other and with the host. Program development 

reflects the two stages of program execution. The loader program is

* one link must be reserved for tiie connection to the host
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compiled by a standard C compiler producing SPARC code, interfacing to 

the Computing Surface by means of calls to the CSBuild library. The code for 

the processes to be run on the Computing Surface itself is produced by 

Meiko's own C compiler. Processes communicate via calls to another Meiko 

supplied library which provides standard CSP style synchronous read- and 

write-operations to named channels. CSTools provides a convenient 

interface to most of the standard Unix system calls directly from transputers, 

including, in particular, the standard 1 /O operations.

PE
PE PE

PE PE

PE PE

NetworkPE PE

PE PE

PE PE

PEPE
PE

Figure 7.2: Emulator with generic network

7.3 System structure, routing and deadlock avoidance

The hardest problem we had to confront in the design of the distributed 

emulator is due to our need for a logically completely connected network as 

shown in Figure 7.2. Topology independence requires that any STAR:DUST 

node must be able to send messages to any other STARrDUST node without 

regard to physical network topology. Given that the network of the 

Computing Surface is programmable, two design decisions have to be made 

in order to provide complete connectivity. Firstly, we need to decide upon a
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sparse physical network satisfying the constraints of the Computing Surface. 

Secondly, we need to decide upon a routing strategy within this network. 

The approach we chose in order to retain maximal flexibility was to 

parameterise the emulator by a routing table that simultaneously serves to 

define routing strategy and physical network topology.

Destination^^ 0 1 2 3

0 0 0 0 2
1 1 1 3 1
2 2 0 2 2
3 2 3 3 3

Figure 7.3: Sample routing table

We show such a table in Figure 7.3, with entries to be interpreted as in the 

following example: to get from (source) node 0 to (destination) node 3, we 

go via the intermediate node 2. This obviously implies that there must be a 

physical link between nodes 0 and 2. Thus the routing table of Figure 7.3 

defines an underlying physical network which is shown in Figure 7.4.

(Ô)

®  ®

Figure 7.4: Corresponding underlying network

Valid routing tables are those where the degree of each node does not exceed 

four (due to the connectivity restrictions of individual transputers 

mentioned previously) and where all paths starting at node x with 

destination y  eventually terminate at y. These properties, however, are not 

completely sufficient for guaranteeing successful routing. It is well-known
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that certain routing strategies can lead to deadlock for specific message 

patterns. See for example [NM93]. Efficient algorithms are also known for 

testing routing tables such as the above for the possibility of deadlock. For 

our implementation we restricted ourselves to hypercube networks and the 

well-known deadlock-free E-cube routing algorithm [SB77]. Hypercube 

networks were attractive to us also for their relatively short average path- 

lengths (logarithmic in the number of processors) and their inherent 

symmetry. Hypercubes up to dimension four, i.e., with up to 16 nodes, can 

be directly implemented on transputer systems. A four-dimensional hyper­

cube topology is shown in Figure 7.5.

Network

Figure 7.5: Emulator as a 4D hypercube

7.4 Node structure

From the above diagram we can now quickly derive the process structure of 

individual transputer nodes. Each transputer is responsible for one "slice' of 

the network, as shown in Figure 7.6. Each such slice consists of a router
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process and a PE process which communicate via a transputer-internal link. 

The links to other router processes in the network represent the physical 

links of the transputer. The reader will quickly verify that for each node 

there are precisely four such links.

Figure 7.6: Process structure for a single transputer

The two processes in the above diagram can be further divided into sub­

processes as shown in Figure 7.7. There we have split the bi-directional links 

of Figure 7.6 into two unidirectional channels each. The router process is 

implemented by the crossbar to the right. Each pair of input channels and 

output channels is served by associated receiver and sender processes and 

corresponds to one physical transputer link. The router is organised as a 

crossbar to avoid overlapping paths inside the router which might 

invalidate the deadlock freedom of the E-cube algorithm. The structure of 

our router is similar to that described by Burgess et al. in [BL93] to whom we 

are grateful for valuable suggestions.
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Figure 7.7: Detailed process structure for a single node

The pair of receiver and sender processes shown in black is provided for the 

link to the process which models the STARrDUST processing element. This 

process in turn is split up into two subprocesses. One is responsible for the 

context store and is little more than a FIFO buffer, corresponding closely to 

the token queue of a dataflow machine. The other process models the 

activity of the STARrDUST CPU, performing functions like switching to the 

next context, decoding instructions, reading and writing the local memory, 

changing register values and injecting messages into the network.

Note that the process structure on the nodes is independent of the 

structure of the network connecting them. This enables us to carry over the 

topology independence of the simulated STARrDUST machine to the 

implementation of the emulator, evidenced by our ability to parametrise it 

with a network description.

7.5 Experimental results

We have performed several measurements on the emulator described 

above. Measurements were made running the emulator on a 16-processor 

STARrDUST configuration. The measured load values are those reported by 

the global load computation scheme described in Section 5.6.3. Since we 

don't have a global clock, each processor keeps its own local time in the
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form of an instruction count. Messages carry the local time of the sender 

and advance the clock of the receiving PE, if necessary. Thus our 

measurements are slightly pessimistic as messages arriving out of order 

(with respect to local simulated time) can advance clocks further than 

necessary.

Our first test was the naive Fibonacci program which represents a kind 

of worst case for any load bounding scheme, as parallelism is growing 

extremely fast. The experiment was repeated with various target load values 

(Figure 7.8), i.e., target values for the average number of active threads per 

processor, as described in Section 5.6.3.

target load = 5

—  target load = 10

! target load = 20

i
1x:

I
—V \ / \ /

o s s 8 oU) 8oo s 8
Time [In 1000 cycles]

Fig. 7.8: Load bounding for parallel Fibonacci

In all cases we could observe an initial load spike, which is checked by the 

completion of the first load computation cycle, followed by a phase of more 

or less steady load reduction to the target value range. The computation 

then enters a phase where parallelism oscillates around the target value.
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dropping off gradually as opportunities for parallelism are steadily 

exhausted.

The q u ic k so r t  experiment below shows the effects of the parallelism 

explosion in the absence of load bounding. Even though q u ic k so r t  offers 

little opportunity for parallelism (see discussion below), we can observe two 

load spikes, one each at the start and at the end of the computation, as 

shown in Figure 7.9 (note the logarithmic scale).

I«a .

I

10000

'parallelism explosion' for 
unbounded quicksort 
(1000 random Integers)

1000

100

10

1
o I 8I 0

1 I
CD

Time [In 1000 cycles]

Figure 7.9: Unbounded parallel Quicksort

The initial load spike represents the divide-and-conquer style computation 

of a random 1000 element list. The final spike came initially as a surprise to 

us but is readily explained. While Quicksort is a typical divide-and-conquer 

algorithm, its parallelism is limited because of the bottleneck represented by 

the traversal of the original list. When this list is completely traversed, the 

bottleneck is replaced by a pair of bottlenecks, one each for the partitions of
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the original list. At this stage, the bottlenecks are successively broken up to 

give a final burst of divide-and-conquer parallelism. While this burst comes 

too late to have any significant effect on the runtime of parallel Quicksort, it 

may well result in crashing the machine at the very instant it is about to 

deliver its result. So load bounding can be important even for problems 

with low average parallelism. This example also clearly demonstrates the 

need for an adaptive solution: programs will often enter different phases 

during their execution, requiring different responses from the load 

bounding system.

7.6 Summary

In this chapter we have outlined our distributed emulation of a 

multiprocessor STARrDUST system on a commercial multicomputer. We 

have reviewed those details of both the multicomputer and the 

accompanying programming environment that were relevant to our 

implementation. Due to restrictions in the connectivity of the underlying 

machine an important aspect of the resulting implementation was the 

provision of an abstraction for complete connectivity. The emulator we 

have implemented can be parameterised by both the underlying physical 

network and the routing algorithm within this network. The networks we 

have adopted for our experiments were hypercubes up to dimension four. 

We have shown the process structure both of the overall emulator system 

and of individual nodes. Finally we have presented and discussed the 

results of two experiments which show the effectiveness of the load 

bounding scheme of Chapter 5 and the consequences of unbounded 

parallelism, respectively.
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Chapter 8 — Conclusion

8.1 What we have accomplished

We have attempted a compact treatment of the process of implementing 

parallel functional programming languages, ranging from a concise formal 

specification of parallel graph reduction to the presentation of a simple 

RISC-style multithreaded architecture and its simulation on a commercial 

multicomputer. Due to the breadth of the subject covered we have 

encountered many opportunies to probe more deeply and we will devote 

this chapter to pointing out some of the more obvious ones. The structure 

of this chapter resembles the structure of the thesis as a whole. For each of 

the main chapters we will summarise our main results before pointing out 

opportunities for improvement and further work.

8.2 Specifying parallel graph reduction in the ir-calculus

We have given a new encoding of the A,-calculus in the tc-calculus which 

models parallel graph reduction with shared reductions. Improving on two 

encodings by Robin Milner, ours preserves non-strictness by permitting a 

choice between lazy evaluation and eager parallel evaluation on a case-by- 

case basis for each static instance of function application.

To round off the work presented in Chapter 3 it would be highly 

desirable to provide a correctness proof for our encoding. Milner gives such 

proofs for each of his encodings in [Mi92]. In order to provide a proof of 

faithful simulation we need to define a suitable notion of equivalence 

between terms of the %-calculus and the it-calculus terms produced by our 

scheme. Ideally we might expect for a term M of the X-calculus with normal 

form Mq the relation

[[Ml] o [[Mo]] o
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to hold for their 7r-calculus encodings. Unfortunately this simple relation­

ship cannot be established, as reductions of encoded terms preserve sharing 

information that may have been lost in computing the normal form Mq in 

the X-calculus. For example, the Tc-calculus term obtained by reducing 

[[(Xx.xx)(yy)]] o is different from [[(yy)(yy)]] o. Both of these terms will 

'compute the same value' when embedded in the same context, differing 

only in their reduction behaviour. In particular, the second term will 

perform the application (yy) twice, after suitable instantiation of y, while the 

first only needs to compute (yy) once. Similar problems arise in Milner's 

encoding of the call-by-value ^.-calculus and Milner's proof for his encoding 

may provide useful intuitions for a proof of our scheme.

8.3 Compilation scheme

Using our jt-calculus model of parallel graph reduction as a guide, we have 

given a more easily applicable set of compilation rules for a simplified 

functional language. The target of the compilation scheme was multi­

threaded parallel code which required no special mechanisms for 

communication and synchronisation other than thread creation and thread 

termination. As in the it-calculus encoding, we could decide for static 

instances of certain programming language constructs whether to evaluate 

them eagerly or lazily, thus combining the advantages of lazy evaluation 

with those of safe parallelism.

The compilation scheme presented in Chapter 4, while being concise, is 

also relatively simple-minded. In order to obtain an efficient compiler from 

this scheme, much work needs to be invested into optimisations. One 

important goal, certainly, is to achieve longer threads. Given that we do not 

attempt to exploit parallelism within function bodies, it is sometimes 

possible to combine several threads into one, producing longer threads with 

less communication overhead. A useful starting point for such analysis is
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work by Ken Traub on 'compilation by partitioning' [Tr91], Another obvious 

source of improvement is direct support for higher order functions. Further 

optimisations can be considered to remove some of the 'boxing', i.e., the 

construction of graph nodes, which is being performed for every value in 

the program. See, for example, work by Peyton Jones and Launchbury [FL91]. 

Note, however, that strictness information alone is not sufficient to avoid 

'boxing'. Consider for example the simple expression

nfib (n-1) + nfib (n-2)
Even though addition is obviously strict, we will generally want to allocate 

graph nodes for the two subterms for purposes of synchronisation. On the 

other hand, we can benefit from passing the argument to nfib as an 

unboxed integer without giving up any useful parallelism.

A final suggestion for further work, motivated by the work presented in 

Chapter 4, is a formal specification of an abstract model for the kind of 

multithreaded code produced by our compilation scheme. At the time of 

writing we have a fairly clear idea of how to specify such a model very 

succinctly and we hope to present it soon.

8.4 Load bounding and runtime system

The simplicity of the compilation scheme of Chapter 4 bore fruit in our 

work on automatic load bounding. We have presented a simple and 

efficient adaptive load bounding method which was integrated into the 

compilation scheme. We have given an informal proof for the effectiveness 

of our method, based on the structure of the compilation scheme. The 

method was based on considering an estimate of the current global 

workload before exploiting any new parallelism.

The main weakness of our approach was the fact that load bounding 

could not be guaranteed in the presence of sharing, as the reduction of a 

shared value to weak head-normal form may require a large number of
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waiting computations to be restarted. In Section 5.7 we suggested two partial 

solutions that warrant further investigation: reduction of shared expres­

sions before sharing is established and inclusion of waiting computations in 

the workload computation.

Crucially important for the success of our approach is also an efficient 

solution to the problem of distributed garbage collection, not covered in this 

thesis. An often favoured technique for distributed architectures, due to its 

ability to proceed concurrently with the computation, is weighted reference 

counting, first suggested by Weng in [We79]. Simple reference counting 

suffers, however, from not being able to reclaim cyclic structures. While 

extensions have been proposed to address this issue [Hu84] they have not 

been, to our knowledge, adopted in practice due to their computational cost. 

A common approach, then, is to use a two-level garbage collector, a real­

time reference counting scheme backed up by a mark-scan collector. See, for 

example, Watson and Watson [WW87b]. As a backup collector will be 

required in any case, we have turned our thoughts to a distributed copying 

collector first. Sequential copying collectors work by traversing all active 

data starting from the evaluation stack, copying any structures encountered 

from a 'from-space' to a 'to-space'. After traversal is complete, the whole 

'from-space' can be reclaimed. In the next round of garbage collection, 'from- 

space' and 'to-space' switch their roles. It is not clear at first sight how a 

similar technique could be applied in a distributed environment, as the 

constantly changing pattern of messages in transit would seem to rule out 

any concept of a 'root' of reachable structures. We envisage a solution 

roughly along the following lines: global garbage collection is initiated by 

any PE which runs out of local space. The 'root' of reachable structures is 

represented precisely by the messages in transit. The compilation scheme 

could prefix every message handler by a test for garbage collection. A
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handler discovering that garbage collection is in progress would use its 

knowledge about the structure of the target context to initiate copying of 

active data referred to from within this context. The message handler would 

then be suspended until global garbage collection is complete. Copying of 

sub-structures can be performed in parallel or sequentially, again using the 

load bounding scheme of Chapter 5. Further work is clearly required.

8.5 The STAR:DUST machine

In Chapter 6 we have presented a simple concrete architecture, STAR:DUST, 

which provides efficient support for the compilation scheme of the 

previous two chapters. Rather than being designed as a dedicated architec­

ture for functional programming, STAR: DUST follows RISC design prin­

ciples. Relative to a conventional RISC processor, our architecture adds 

multi-threading capabilities in the form of two instructions, one each for 

thread creation and termination, respectively.

We have claimed that STAR:DUST can be implemented efficiently 

using modern VLSI technology and we have put forward strong arguments 

in support of our case. A convincing proof in the form of an 

implementation in silicon could in itself form the basis of a PhD level 

research project. We intend to conduct further work in this area in the form 

of a more detailed simulation which can observe the performance of a 

STAR:DUST system taking into account system parameters such as the 

following

— size of the context store

— cost of context store overflow

— cost of a context switch (term instruction)

— (local) caching behaviour of multithreaded programs

— message latency
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— communications bandwith

Obtaining meaningful results for the effects of such design parameters on 

system performance also requires the implementation of substantial test 

programs.

8.6 Implementation and experimentation

We have described the implementation of a distributed emulator of a 

multiprocessor STARrDUST system on a Meiko Computing Surface. We 

have focussed in particular on the issue of deadlock-free routing. While this 

work was crucial for us to obtain a truly distributed implementation on 

which to perform experiments, network-related issues are not at the heart of 

our work and had to be confronted only because of the limitations of the 

system available to us. The routing overhead imposed on us by the Meiko 

Computing Surface practically rules out competitive speedups for our 

programs on large networks.

An interesting line of further research would be to implement 

STAR:DUST more directly on a system which performs message routing in 

hardware, such as a CM-5, a J-Machine, or a system based on a more modern 

version of the transputer. Such an implementation could be prototyped on 

a small, completely connected T800 system, i.e., one of four nodes or fewer.

8.7 Epilogue

The success of parallel functional programming as a useful tool to the 

^working programmer' is dependent on concurrent progress in diverse areas 

such as computer architecture, runtime systems, compiler technology, 

language design, and software engineering, with sound theoretical under­

pinnings required to relate them all. We have attempted in this thesis to 

preserve a holistic view of the field, relating many of the subject areas 

relevant to it. If we had to favour, on occasion, completeness of the whole
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over completeness of the parts, we hope the reader will agree with the 

wisdom of our choice.
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