
PARALLEL FUNCTIONAL PROGRAMMING FOR MESSAGE-
PASSING MULTIPROCESSORS

Gerald Ostheimer

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1993

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13426

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13426

Parallel Functional Programming
for

M essage-Passing M ultiprocessors

Thesis submitted for the degree of Doctor of Philosophy at the

University of St. Andrews

by

Gerald Ostheimer

Division of Computational Science

Department of Mathematical and Computational Sciences

University of St. Andrews

St. Andrews, Fife, KY16 9SS

March 1993

ProQuest Number: 10167176

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is d e p e n d e n t upon the quality of the copy subm itted.

In the unlikely e v e n t that the author did not send a c o m p le te manuscript
and there are missing p a g e s , these will be n oted . Also, if material had to be rem oved,

a n o te will ind icate the deletion .

uest
ProQuest 10167176

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C o d e

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 4 8 1 0 6 - 1346

Declaration

I, Gerald Kuno Ostheimer, hereby certify that this thesis has been

composed by myself, that it is a record of my own work, and that it has

not been accepted in partial or complete fulfilment of any other degree or

professional qualification.

Signed Date Kc&dL

I was admitted to the Faculty of Science of the University of St. Andrews

under Ordinance General No 12 on 1st October, 1988 and as a candidate

for the degree of Ph.D. on 1st October, 1989

Signed Date HgG.c£c 1 ^ 3

I hereby certify that the candidate has fulfilled the conditions of the

Resolution and Regulations appropriate to the Degree of Ph.D.

Signature of Supervisor . Date 2)1 /2 > /^ 3

Copyright

In submitting this thesis to the University of St.Andrews I understand

that I am giving permission for it to be made available for use in

accordance with the regulations of the University Library for the time

being in force, subject to any copyright vested in the work not being

affected thereby. I also understand that the title and abstract will be

published, and that a copy of the work may be made and supplied to any

bona fide library or research worker.

-a

Abstract

We propose a framework for the evaluation of implicitly

parallel functional programs on message passing multi­

processors with special emphasis on the issue of load

bounding. The model is based on a new encoding of the

X-calculus in Milner's 7u-calculus and combines lazy

evaluation and eager (parallel) evaluation in the same

framework. The jt-calculus encoding serves as the

specification of a more concrete compilation scheme

mapping a simple functional language into a message

passing, parallel program. We show how and under

which conditions we can guarantee successful load

bounding based on this compilation scheme. Finally we

discuss the architectural requirements for a machine to

support our model efficiently and we present a simple

RISC-style processor architecture which meets those

criteria.

Acknowledgments

Many people have had profound influence on this thesis and I want to

pay tribute to some of them here.

To my supervisor, Tony Davie, for his willingness to supervise what

started out as a thesis on computer architecture, for always being

available for a quick word, and for giving me the freedom to follow

my own way, however twisted.

To Peter Burgess, for putting up with my quirks during two years of

sharing an office, for sharing his experience on distributed systems,

for his willingness to listen to half-baked ideas and for talking me out

of the more silly ones.

To Ron Morrison, for his encouragement of my work when he could see

it taking shape.

To Arvind, for instilling in me a fascination with non-strictness and par­

allel architectures.

To David Gifford, for introducing me to the beauty of functional pro­

gramming, and for demonstrating that lectures can be at once fun

and challenge.

To John Glauert, for pointing out the 7t-calculus to me at just the right

moment.

To Bill Campbell, for guiding my life's journey to the beautiful town of

St. Andrews.

To Kathy Hargreaves, whose competent editing advice on my MSc thesis

helped me no end with this larger undertaking.

To my many friends, whose confidence in me always seemed greater

than my own.

Finally, to my parents for their unquestioning love and support, and

especially to my father, for his living example of the spirit behind

that old saying, "a job worth doing is a job worth doing well."

Table of Contents

Chapter 1 — Introduction... 5
1.1 Parallel computing and functional programming................... 5
1.2 Contribution of this thesis.. 5
1.3 Why functional programming matters.............................. 6
1.4 What is holding us back?.. 7
1.5 'Functional' architectures.. 8
1.6 Current work.. 10
1.7 Where we fit in... 11

1.7.1 Concurrency in functional programming
systems and the 7r-calculus.. 11

1.7.2 Automatic load bounding.. 13
1.7.3 Granularity.. 15 |

1.8 Thesis outline... 16
Chapter 2 — Previous and Related Work.. 18

2.1 Contents... 18
2.2 Functional processes: simulating the X-calculus in the

TT-calculus........................ 18
2.2.1 The 7c-calculus: a simple example................................... 19
2.2.2 The TT-calculus: syntax and reduction behaviour 20
2.2.3 A comparison of the Tc-calculus to the X-calculus 22
2.2.4 Simulating the normal-order X-calculus..................... 23
2.2.5 Simulating the call-by-value X-calculus........................ 26

2.3 The Manchester dataflow project.. 28
2.3.1 Architectural overview.. 29
2.3.2 Load bounding in the Manchester dataflow

machine.. 31
2.4 The MIT dataflow project.. 32

2.4.1 From static dataflow to Monsoon................................... 32
2.4.2 Dataflow/von Neumann hybrid processors............... 35
2.4.3 Load bounding for the MIT dataflow machines 39

2.5 ALICE/Flagship... 40
2.6 GRIP.. 41
2.7 Lazy Task Creation.. 43
2.8 Other previous work... 44

Chapter 3 — A Simulation of the X-Calculus in the 7C-Calculus.................. 45

3.1
3.2
3.3

3.4

3.5

3.6
Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8
Chapter 5

5.1
5.2

Contents.. 45
Motivation.. 45
Overview.... 46
Protocol 1 (Variables)... 47
Protocol 2 (Abstractions)... 47
The translation scheme... 48
3.4.1 Environment entry... 48
3.4.2 Name reference.. 49
3.4.3 Abstraction... 49
3.4.4 Eager application.. 50
3.4.5 Lazy application.. 50
Sample reductions.. 51
3.5.1 Simple function application.. 52
3.5.2 Sharing of computation (1).. 53
3.5.3 Sharing of computation (2).. 55
Discussion... 57

• A Practical Compilation Scheme.. 58
Introduction......................... 58
Source language.. 59
Architectural framework... 60
Runtime framework... 61
Overview of the compilation scheme....................................... 63
Translating non-strict expressions... 66
4.6.1 Constants.. 66
4.6.2 Identifier reference.. 67
4.6.3 Lazy function application... 68
4.6.4 Lazy let... 69
4.6.5 Lazy cons.. 69
4.6.6 Conditional... 70
Translating strict expressions... 71
4.7.1 Eager function application... 71
4.7.2 Eager let................ 72
4.7.3 Eager cons... 73
4.7.4 Addition.. 74
Summary.. 75
Load Bounding.. 76
Introduction... 76
Pitfalls and dangers.. 76

a

1
-r

5.3 A workable solution...
5.4 Eager compilation rules modified for load bounding.

5.4.1 Eager function application...............................
5.4.2 Eager let...
5.4.3 Eager cons..
5.4.4 Eager addition..

5.5 Adapting to changes in the workload............................
5.6 Efficient load computation and load testing................

5.6.1 Probabilistic load estimation.............................
5.6.2 Cyclic load determination................................
5.6.3 A hybrid solution and its cost...........................

5.7 The problem of sharing...
5.8 Summary...

Chapter 6 — The STARDUST Architecture..
6.1 Introduction..
6.2 Architectural requirements for scalable, parallel

programs..
6.2.1 Scalability..
6.2.2 Topology independence......................................
6.2.3 Asynchronous, message passing

communications..
6.2.4 Fast context switching and process

synchronisation..
6.2.5 Sequential efficiency...........................

6.3 STARDUST as a RISC processor....................................
6.4 STARDUST as a building block for multiprocessor

6.5

6.6
6.7
6.8
er 7
7.1
7.2

6.5.1 Is STARDUST still a RISC architecture?........
6.5.2 Does STARDUST require infinite buffers?....
6.5.3 What network bandwidth can we reasonably

... 78 f

... 80 ■'

... 80 ■I

... 82

... 83

... 84 1

... 85

... 86 y

... 87 ■i

... 87 t

... 89 I

... 90 ?
%

... 92

... 93 ■5

... 93

... 94

... 94
t

... 95

... 95

... 96

... 96

... 96

... 97

... 99

... 99 I

... 99 %

y:-

... 100 !

... 100 ■t

... 103 I;

... 104

... 105 '1

... 105

... 105

IIÂI " r ' ‘ -

7.3 System structure, routing and deadlock avoidance........... 107 ■Ï
7.4 Node structure........................... 109
7.5 Experimental results... I l l ■1
7.6 Summary.. 114 1

Chapter 8 — Conclusion... 115 ■i
8.1 What we have accomplished.. 115 ÿ
8.2 Specifying parallel graph reduction in the 7c-calculus....... 115
8.3 Compilation scheme... 116
8.4 Load bounding and runtime system.... 117
8.5 The STARDUST machine... 119
8.6 Implementation and experimentation............................... 120
8.7 Epilogue... 120 '<

Bibliography... 122 r

Chapter 1 — Introduction

1.1 Parallel computing and functional programming

Fifteen years after John Backus' clarion call to break the von Neumann

bottleneck by adopting a functional programming style [Ba78], commercial

multiprocessors are now available whose degree of parallelism is limited

only by the size of a customer's wallet. Yet, there is little agreement on how

best to program those machines and functional programming is not even

among the leading contenders. While real speedups have been achieved for

parallel functional programs on shared-memory multiprocessors with a

limited degree of parallelism [AJ89], an effective scalahly parallel solution is

still outstanding. We hope that the work presented here will be an

important step towards the goal of scalable parallel functional computing.

We begin this introductory chapter by summarising our main results. We

then state our perspective of the role and the historical development of

parallel functional computing and show how our work ties in with

previous developments. We conclude the chapter with a 'road map' to the

rest of the thesis.

1.2 Contribution of this thesis

Central to this thesis is a framework for the evaluation of implicitly parallel

functional programs on message-passing multicomputers. Our model is

based on a new encoding of the X-calculus in Milner's Tc-calculus. Milner has

given two such encodings in [Mi92], a sequential one with call-by-name

parameter passing semantics and a parallel one with call-by-value

parameter passing semantics. Ours combines the advantages of both in the

same framework. We can choose individually for each function application

between eager and lazy evaluation based on the results of strictness analysis. 3

We are thus able to preserve non-strict semantics and at the same time

exploit parallelism where safely possible. Our ji-calculus encoding serves as

the specification of a more concrete compilation scheme mapping a simple

functional language into a message passing, parallel program by exploiting

the implicit parallelism of functional programs. Since implicit parallelism

gives rise to the problem of the parallelism explosion we give special

emphasis to the issue of automatic load bounding. Without load bounding,

the space requirements of some programs can change from linear to

exponential. Our simple adaptive algorithm is integrated into the

compilation scheme. We give an informal proof for the effectiveness of this

algorithm, based on the structure of the compilation scheme, and discuss

the limitations of our method. We discuss the architectural requirements

for a machine to support our model efficiently and present the STAR:DUST

architecture, short for 'St. Andrews RISC: Dataflow Using Sequential

Threads', designed to meet those criteria. A STAR:DUST node is a simple

RISC processor with two new instructions supporting message passing and

task switching. We have simulated a multiprocessor STARDUST machine

on a Meiko Computing Surface and have obtained experimental results

based on this simulator.

1.3 Why functional programming matters

The virtues of programming in a functional style have been addressed often

and eloquently enough for us not to dwell too long on this subject. In short,

functional languages lend themselves to a declarative style of

programming, often permitting a literal translation of a mathematical

specification into a functional program. Many algorithms can be expressed

in a succinct and intuitive manner unmatched by the prevalent imperative

languages (see Hughes [Hu89]). This is due mostly to non-strict semantics

which guarantees the termination of a larger class of programs. There is an

'algebra of functional programs' in the sense of Backus [Ba78] with a range of

correctness-preserving transformations that facilitates correctness proofs

and the derivation of efficient programs from specifications. The interested

reader is referred to work by Darlington [Da82] and Bird [BiS9] for a more

comprehensive exposition of these features. Of special interest for our work

is the fact that functional languages do not force the programmer to impose

a total order on program execution. Referential transparency ensures that

only data dependencies constrain the order of evaluation. The resulting

freedom can be exploited by systems like ours to extract parallelism from

programs not necessarily written with parallel execution in mind. This is

not to say, however, that writing parallel functional programs is a trivial

task. While a compiler can easily extract parallelism from a particular

functional program, different algorithms for the same problem may exhibit

different amounts of parallelism, so good parallel programs will still require

a special effort on the part of the programmer.

1.4 What is holding us back?

Only in relatively few cases—certainly when compared to the size of the

present-day software industry—has functional programming had any

impact on the practical solution of real world problems. This fact can not

just be blamed on the inertia of practitioners who haven't been exposed to

functional programming during the course of their training. Functional

programming languages have long been suffering from a number of

deficiencies. Chief among them is the difficulty of expressing non-trivial

forms of I/O and, more generally, expressing many algorithms that are

intuitively based on the notion of state. The nondeterminism of functional

languages with respect to execution order, which is so beneficial to us for the

purpose of parallélisation, also has its downside. Visualising the evaluation

of a non-trivial functional program under a lazy or a parallel execution

regime is exceedingly hard. Convential debugging techniques fail. In

particular, the notion of 'stepping through a program' has little meaning in

a functional context. For similar reasons, classical complexity analysis does

not readily apply to functional programs. Finally, despite impressive

progress that has been made with 'compiled graph reduction' originating

with Johnsson [Jo84], functional programming systems are still behind their

imperative cousins in terms of efficiency when measured on real-world

algorithms. We will not enter into a discussion of the various reasons for

this handicap. Let it suffice to say that one of the requirements for the design

of Fortran, generally considered to be the first 'high-level' programming

language, was to map to machine languages with minimal loss of efficiency.

Recently this close relationship has been reinforced with the design of RISC

microprocessors as 'C' machines, as described by Patterson and Sequin in

[PS81].

1.5 'Functional' architectures

Since the earliest days of functional programming languages, their potential

for parallelism has been recognised [Bu75]. At times, their inherent

parallelism was presented as a means to catch up with imperative languages

in the benchmark race. This expectation is, of course, to be taken with a large

grain of salt. The competition for a parallel functional program is a parallel

imperative one, thus moving the goalposts. However, there is some hope

that parallel functional programming will indeed one day gather a larger

following. The primary reason for this expectation is the enormous

complexity of any but the most simple-minded imperative models for

parallel programming. Reasoning about the correctness of a message-

passing program, i.e., comprehending it, involves demonstrating its

freedom of deadlock and starvation. See, for example Brookes and Roscoe

[BR91]. Non-determinism is also a serious problem, especially when it

comes to debugging. Functional programs, on the other hand, are

deterministic by definition and have no need for special new 'parallel

constructs' which could affect correctness.

Most of the initial work on parallel functional programming centered

around various proposals for computer architectures specially designed to

support functional programming, e.g., the FFP machine [Ma79], the

Manchester dataflow machine [GW78], the MIT tagged token data flow

machine [AK80] and ALICE [DR81]. A comprehensive survey can be found

in [Ve84]. The reason for this focus on computer architecture was twofold.

In the first place there simply were no parallel architectures available

commercially at the time. The first research multiprocessor, the liliac IV had

only become fully operational in 1975 [Fa76], while the first commercial

multiprocessor built according to scalable design principles, the Denelcor

HEP, did not arrive until 1981 [Sm81, HB84]. But there was a second reason.

Since imperative languages were seen as being wedded to von Neumann

machines, the search was on for a 'non-von Neumann' machine which

would execute functional programs in a kind of 'native mode'. With the

benefit of hindsight, this search can safely be said to have failed. While

some of the architectural projects did produce very interesting results

(among them the hardware mechanism for load bounding by Ruggiero and

Sargeant [RS87] inspiring our software solution, see Chapter 2), few of the

proposed architectures were constructed and none of them was

commercially successful. To our knowledge only the MIT project is still

continuing as an architectural effort after undergoing a major

transformation back towards a modified von Neumann model (see below).

Several factors contributed to thwart the early hopes for 'functional

architectures'. Principal among them is the problem of excessively fine

granularity. The necessary overhead for managing and synchronizing a

large number of small tasks often dwarfed any benefit that could be obtained

from parallelism. Secondly, mainstream computer architecture did not

stand still. Speed improvements for sequential microprocessors have

continued at an enormous rate even to the present day. High-bandwidth,

low latency networks were developed for connecting large numbers of

conventional von Neumann microprocessors [DS87, Le92]. Interface

technology has been advanced tying processors closely to networks, e.g., for

the transputer [Wh85], the J-Machine [DC89], the CM-5 [Le92]. See also [Hf92]

for a recent proposal. Finally, it has now been recognized that economies of

scale will favour, for the forseeable future, parallel machines made out of

large numbers of cheap von Neumann style microprocessors over special-

purpose parallel processor designs.

1.6 Current work

Work on parallel functional programming has not stopped, however.

Current activities can be broadly divided into two classes. On the

architectural side efforts have been directed towards a rapprochement with

von Neumann microprocessor technology. In the case of the MIT dataflow

project this was a gradual process: from the fine-grain, tagged-token

dataflow architecture Monsoon [PC90], via lannucci's hybrid architecture

[Ia88] and F-RISC [AN88], the MIT work has now progressed to the design of

a coprocessor for the Motorola 88100, the *T (pronounced 'Start') project

[NP92]. The GRIP project [PC87] at Glasgow ('Graph Reduction in Parallel')

has been designed from the outset around a commercial microprocessor, the

Motorola 68020.

The bulk of ongoing work, however, now concentrates its efforts on

attempts to support the various forms of parallel architectures that have

been developed for different programming models. Shared-memory

machines are the target of work that has been done at Chalmers by

10

Augustsson and Johnsson [AJ89]. The FAST project at Imperial College and

Southampton [GH90] supports networks of communicating processes such

as those constructed with transputers. Hudak and his colleagues have

implemented parallel graph reduction on an Intel hypercube as part of their

work on the Alfalfa project [GH87]. Work by Cole at Glasgow [Co90] and

Darlington at Imperial College on algorithmic skeletons is somewhat

broader in scope. They propose writing parallel functional programs in

terms of generic functions which would be implemented efficiently on a

host of different architectures, spanning parallel models from SIMD to

MIMD. For all their diversity, these projects share certain characteristics. In

order to take advantage of parallelism, programmers need to use

annotations of some sort to specify where parallelism is to be obtained.

Consequently programmers are also responsible for bounding parallelism to

sustainable levels. Furthermore, only coarse-grain parallelism can typically

be exploited with any efficiency. The resulting programs often become non­

portable and non-scalable. We will discuss some of these projects in more

detail in Chapter 2.

1.7 Where we fit in

Our fundamental interest is in implicit parallelism for scalable computers.

In this section we will state the problems we set out to address and discuss

the motivations behind our research. We will indicate how those

motivations arose from previous work in the field.

1.7.1 Concurrency in functional programming systems and the 7c-calculus

David Turner's popularisation of combinators [Tu79] provided the

functional programming community with a beautiful theory for defining

the semantics of program execution in terms of combinator reduction. At

the same time his work resulted in an implementation technique which

11

has since been refined to compiled graph reduction, now universally

considered the most efficient method of evaluating functional programs on

off-the-shelf sequential machines. Many researchers have now undertaken

to apply the basic model of graph reduction to parallel evaluation as well.

This is possible since the graph reduction model preserves the parallelism

implicit in functional languages. Obviously the implicit parallelism needs

be made explicit at some stage, either during compilation or during

evaluation. This is typically done in an ad-hoc manner suitable to the kind

of parallel machine supported by a particular project. It is our contention

that it is both useful and possible to elevate the process of 'making

parallelism explicit' to a higher level in the design of a parallel functional

language system. What is needed is a proper theory of concurrency in

parallel functional programming. In the %-calculus [Mi92] Robin Milner

provides us with the necessary tools for such a theory, demonstrated by his

two encodings of the ^.-calculus in the Ji-calculus. We extend his work to

modelling a functional programming system which exploits parallelism

and preserves non-strictness, taking up a theme from [Mi92].

Thus, strategies which appear natural in the presence of textual

substitution may not seem so natural in a model involving

autonomous agents. The former have clearly been most deeply

studied in research on the X-calculus; one effect of providing

n-calculus as a substrate may be to intensify the study of other

strategies, such as those with shared reductions. (Emphasis

ours)

We would like to note that we approached the problem strictly from an

implementation point of view and have been made aware of the Jt-calculus

only at a late stage of the work described here. In particular, our compilation

scheme for message-passing multicomputers predates our 71-calculus

12

encoding for the X-calculus which is best viewed as a crystallisation of the

main ideas.

1,7.2 Automatic load bounding

Consider the 'nfib' program, a program so trivial that it is now almost

considered bad taste to publish performance figures based on it:

nfib 0 = 1

nfib 1 = 1

nfib n = 1 + nfib (n~l) + nfib (n-2)

'nfib' is strict throughout, contains neither fancy data structures nor higher

order functions and offers vast amounts of parallelism of a very simple

kind. Any functional implementation, so the reasoning goes, should do

well on it. Yet in the context of implicit parallelism 'nfib' poses a difficult

problem. Sequential execution of 'nfib' corresponds to a depth-first traversal

of the tree-structured program graph. Therefore sequential 'nfib' requires

space proportional to the maximum depth of recursion, i.e., it runs in linear

space. Maximally parallel evaluation of 'nfib', however, corresponds to

breadth first traversal and worst case space requirements are proportional to

the size of the program graph, i.e., we now require exponential space. Even

relatively small instances of parallel 'nfib' can exceed machine resources. At

the same time we obtain no benefit from exploiting parallelism far in excess

of the hardware parallelism at our disposal. So clearly we are interested in

bounding the amount of parallelism we will uncover. This problem was

anticipated by Burton and Sleep in [BS81] where the basic idea for an

adaptive solution is also outlined: follow a breadth-first evaluation strategy

while the machine is underloaded, perform depth-first evaluation while

the machine is saturated.

13

-

The 'parallelism explosion' was observed experimentally in the

dataflow community and reported in [RS87, CA88]. Our work is closely

related to that of Ruggiero and Sargeant who have implemented a hardware

load throttle as part of their work on the Manchester dataflow machine. We

are picking up an idea proposed in [RS87]

Another idea for dynamic software throttling is to plant two

types of code for any parallel program: one serial and the other

parallel. The machine switches from one style of code to the

other at run time, according to how busy it is.

However, they go on to add

Although this method could be useful in the future, achieving

a complete solution in this way is well beyond the state of the

art. The conclusion is that despite being useful, software

techniques are not enough to implement a general and

effective throttle. We need some help from the hardware.

In this paper we present a software only solution with little overhead—in

particular, we do not require expensive scheduling hardware. In addition,

our work is novel in the following ways:

• We integrate our load bounding method into a simple compilation

scheme for lazy functional languages.

• We present an informal proof of the effectiveness of our scheme based

on the structure of the generated code.

• We identify sharing as a possible source of problems for load bounding.

14

 ^ ------------------------^'4

1.7.3 Granularity

Consider the following simple functional program

let X = a*b;

y - 4*c

in (x+y) * (x-y)
and its dataflow graph (Figure 1.1), This example has been taken (in slightly

simplified form) from [AC86] where it is used to demonstrate the

instruction level parallelism implicit in many functional programs (or

dataflow programs). In the example, x and y can be computed concurrently,

and so can the addition and the subtraction.

a b c

Figure 1.1: Instruction level parallelism

The original dataflow machine designs attempted to exploit instruction-

level parallelism of this form as a special case of the general method.

Experience with completed dataflow hardware has demonstrated, however,

that the overheads of dispatching tiny parcels of work and synchronizing

their results easily outweighs any benefits to be obtained from such

parallelism. In fact, recent designs for superscalar (sequential)

microprocessors have managed to exploit instruction-level parallelism

much more effectively, see for example [DA92, MW92]. For this reason.

15

much of the recent work on parallel functional programming has focussed

on restricting the exploitation of functional parallelism to the coarse-grain

type.

Since the 'right' level of granularity depends largely on architectural

parameters, it is hard to identify while parallel computer architecture is a

quickly moving target. We consider the trend to coarse-grain parallelism

within the functional community to be an overcompensation for the

previous focus on excessively fine-grain parallelism. Our working

hypothesis is that it will be possible to support parallelism efficiently on the

inter-function level (we do not attempt to exploit parallelism within

function bodies). The trend towards closer integration of network interfaces

and high-bandwidth networks [EC92, HJ92] permits more efficient

synchronisation than previously considered feasible. In Chapter 6 we

present a model RISC architecture with a tightly integrated network

interface [Os91]. STAR:DUST was heavily influenced by NikhiTs P-RISC

architecture [AN88] described in the next chapter.

We restrict ourselves to distributed memory, message passing machines

as those now appear set to prevail among massively parallel architectures.

This trend is exemplified by the development history of the Connection

Machine, originally a pioneering SIMD architecture, which was recently

reborn in MIMD form [Le92].

1.8 Thesis outline

In this chapter we have outlined the main contributions of this thesis and

the developments which preceded and motivated our work. In Chapter 2

we will have a closer look at some previous work important to ours.

Chapter 3 contains a simulation of the X-calculus in Milner's 7c-calculus

which serves as a specification for the compilation scheme presented in

Chapters 4 and 5. The former contains the basic set of compilation rules

16

required for lazy functional programming with alternative 'eager' rules for

exploiting parallelism where safely possible. In the latter we adapt the eager

rules to tie in with an efficient distributed load bounding algorithm in order

to limit the resource requirements of the resulting programs and we give an

informal proof of the effectiveness of the resulting scheme. In Chapter 6 we

detail our proposal for STAR:DUST, a model RISC architecture for fine-

grain parallel computing. In Chapter 7 we describe our simulation of this

architecture on a commercial multiprocessor and present some

experimental results obtained from the simulator. We conclude in Chapter

8 with a brief summary and suggestions for further work.

17

Chapter 2 — Previous and Related Work

2.1 Contents

In this chapter we will give a summary of previous work of which we make

use, previous work that we improve on, as well as current related work

moving in different directions. Parallel functional programming is a large

field and we necessarily have to restrict our attention to those contributions

that we deem most relevant to our work. In outline, we will give some

details about Milner's 71-calculus as well as his encodings of the X-calculus.

We will discuss some aspects of the Manchester dataflow project, in

particular their achievements on load bounding. We review the

development of the MIT dataflow work and discuss the design of the P-RISC

architecture that grew out of it. We include a section on the first parallel

graph reduction machine, ALICE, and its successor. Flagship. We discuss the

design of the GRIP architecture, a major project in parallel functional

programming which includes a strong architectural component. We

conclude with a comparison of our load bounding approach to that of 'lazy

task creation'.

2.2 Functional processes: simulating the X-calculus in the 7c-calculus

The 7C-calculus is the result of a search for a algebraic framework which

would capture the essence of the notion of concurrent processes. It is

particularly suitable for the description of systems which can change their

configuration dynamically. The 7U-calculus improves on Milner's previous

work on CCS, the calculus of communicating systems [Mi80], in that the

former needs no recourse to a universe of values outside its own scope. In

terms of internal completeness and conciseness it is comparable to the X-

calculus which was a guiding paradigm in the design of the 7r-calculus. See

Milner's Turing Award Lecture [Mi93] for an excellent discussion of the

18

motivations that lead to the jr-calculus. This section will be important to the

rest of the thesis in two ways: we will require an understanding of the

operational behaviour of the 7c-calculus in Chapter 3, where we use it to

specify a non-strict parallel simulator for the X-calculus. Secondly we will

present a brief outline of two such simulations given by Milner in [Mi92],

one of them non-strict but sequential, the other parallel but strict.

2.2.1 The 7c-calculus: a simple example

Rather than getting immediately bogged down in notation and detail, let us

start by presenting a simple Tt-calculus term, the simplest term which admits

reduction:

xz I x(y)

This term is to be read as follows: write z i o x and, in parallel, read y from x.

Reduction is possible since there is a reader and a writer ready to

communicate via the same channel, namely x. Communication takes place

by cancelling read- and write-actions and substituting the value to be written

{z in the example) for any free occurrence in the reading process of the

variable to be read (y in the example). As y does not occur free anywhere,

reduction yields

0 I 0

which is equivalent to 0, the empty process. A slightly more useful example

is the term

x z I x{y).xy

Here the read-action x(y) is followed by a write-action xy. Reduction yields

0 I x z

after cancelling matching read/write-actions and substituting z for the single

free occurrence of y.

19

2.2.2 The 7c-calculus; syntax and reduction behaviour

We are now ready for a more systematic presentation of the 7c-calculus,

adhering to the form given in [Mi92]. The 7c~calculus consists of a set of

terms which intuitively stand for processes. The names of the 7c-calculus {x,

y, z...) denote channels through which processes communicate. Channel

names are also the only subject of communication. The syntax for %-calculus

terms is summarised in Figure 2.1.

p ::= xy.P write-action: write y to x and then P

p ::= x(y).P read-action: read y from x and then P

p ::= 0 empty process

p ::= P i 1P2 composition

p ::= (y) P restriction

p ::= !P replication

Figure 2.1: Syntax of the it-calculus

The terms of the jc-calculus exhibit a simple block structure with two forms

of name binding, namely read-action and restriction. In the following we

will discuss each of the constructs in some more detail.

Write-action. A term of the form P = xz.Q represents a synchronous send-

operation of a value z along a channel x. The process P cannot proceed

until another process is ready to receive z on the same channel and will

then continue with Q,

Read-action. Counterpart to a write-action. A process of the form x(y).Q

cannot proceed until another process is ready to send some value v along

the channel x. The value v is then substituted for all free occurrences of y

inside Q. The read-action is one of two ways of binding names, i.e., the

scope of y is Q.

20

x(y).P (y) xy .P write a new channel y to x

x(y)(z).P x(y).x(z).P multiple reads from x

xyz.P x y .xz .P multiple writes to x

Note in the first rule how private names {y above) can be exported out of

the scope of restriction via explicit communication. Note, finally, that all

21

S
3'i
-■>

Empty process. We write 0 to represent the empty process which is necessary

to ground our syntactic rules. We will always abbreviate action terms of

the form xz.Q to x z (similarly for read-actions).

Composition. We write Pi IP2 to denote two processes P\ and P2 operating

concurrently. Note that there is no separate construct for sequential

composition. This can be modelled using parallel composition and

suitable synchronisation via interaction.

Restriction. We write {x)P to obtain a new channel name x which is private

to P. The term xz I (%) x(y) has no reduction, as the sending process and f
the receiving process operate on different channels. Restriction is the

second form of name binding, with P as the scope of x.

Replication. A term of the form IP stands for the parallel composition of as

many instances of the term P 'as necessary'. Replication can be

'unwound' according to the structural equivalence IP sP I IP. Unwinding

is unnecessary when there are existing copies of P which have not

participated in any interactions. Note that unwinding does not represent

reduction but is a structural equivalence relation like, for example, a-

conversion.

In addition to these basic constructs we will also use a number of

shorthands as defined below:

occurrences of (%) signify bindings for the channel name x with simple static

scoping rules.

The basic reduction rule, already hinted at in our explanation of read- and

write-actions, is the following: for a pair of processes

Qi - xz.Pj and Q2 = x(y). P2

w e get the reduction

Gi 162 f 11P2 (z/y).

Put in words, if Qi is ready to send a name z along the channel x and Q2 is

ready to receive a name along the same channel then they can interact.

Interaction results in cancelling each of the two send/receive actions and

substituting z for all occurrences of y inside P 2 * The complete set of

reduction rules describes in detail the distribution of reduction over

restriction and replication constructs, omitted here for sake of brevity. They

can be found in [Mi92] along with a complete definition of structural

equivalence for terms.

2.2.3 A comparison of the 7c-calculus to the X-calculus

It will be useful to compare the ;i-calculus with the X-calculus both to gain

further understanding of the 7c-calculus itself and to appreciate the task

before us of simulating the latter with the former. At the most elementary

level, both calculi are term rewriting systems with a simple basic reduction

rule. Both have simple static scoping rules for names. Neither provides any

computational 'sugar' but both of them are computationally complete (for

the -calculus this will follow from the fact that it can simulate the X-

calculus). In the 1-calculus, the basic concept is that of a function: terms

represent functions and names denote functions. Functions are first-class

objects. In the je-calculus, there are two basic entities, processes and

channels. Terms represent processes, but processes are not first-class in that

22

the names of the 7c-calculus stand for channels only and channels are the

only subject of of communication. There is a superficial correspondence

between p-reduction in the 1 -calculus and communication in the Tt-calculus

in that both involve the substitution of an 'actual parameter' for a 'formal

parameter'. However, while the term providing the actual parameter in a p-

reduction becomes merged with the abstraction term, both reader and writer

processes engaging in a Tt-calculus communication continue as independent

agents after interacting. Studying the two reduction mechanisms closely we

observe that p-reduction is the more complex of the two, involving as it

does terms as actual parameters rather than 'atomic' channel names. On the

other hand, identifying a redex in the 1 -calculus is a simple 'local' syntactic

operation whereas reduction in the jc-calculus involves identifying two

matching redexes, a reader and a writer, which can occur anywhere within a

term (see the example below). A final and fundamental difference between

the two calculi is that normal forms for 1 -calculus terms are unique,

whereas the 7ï-calculus is nondeterministic. Consider for example the two

reductions

%(y) I xzi I XZ2 “> 0 1 0 1 XZ2 = XZ2

%(y) I xzi I XZ2 0 I xzi I 0 = xzi

Each yields a different normal form, depending on which send-action

succeeds.

2.2.4 Simulating the normal-order 1-calculus

The motivation behind simulating the 1-calculus in the 7c-calculus is

twofold. Firstly, it serves to demonstrates the power of the latter by relating

it to its better-established cousin. Secondly, simulation of the 1-calculus is a

useful application for the -calculus, demonstrating its capability for

expressing concurrency in 1-calculus reduction. In the first of two encodings

23

for 1-caiculus reduction, Milner presents a scheme for the normal-order

(sequential) 1-calculus in [Mi92] from which the following is largely quoted.

Note that even without any explicit sequencing combinator, the jc-calculus

is capable of expressing sequentiality by suitable synchronisation.

Each 1-calculus term M is encoded as [[Af]], a function which maps

names to Ti-calculus terms. So [[Af]] m is a term of the Jt-calculus with the

intuition that the name u is the link along which [[Af]] 'receives' its

arguments. Now, suppose that Af will itself be used in place of an argument

represented by the variable x, i.e., x is bound to Af. Each time Af is 'called', via

X, it must be told by the caller where to receive its own arguments. (In more

familiar terminology, it must be given a pointer to its arguments). Thus the

'environment entry' binding % to Af is a Ti-term defined as follows, with w

representing the argument pointer(s).

Note the use of the replicator ! to allow for multiple references to the same

environment entry*.

How does [IXx Af]] u receive its arguments? Along u it receives (as x) the

name of its first argument, and also the name of a link where the rest will

be transmitted. This explains the first line of Milner's encoding, which we

now give in full:
[[Xa:JW]]« 4# »W(v). [[M]] V

M] u # XU

[[MM] u # (v) ([[Mj] VI Vix). vu. [[% := M])

Let us look, with Milner, at an example. We assume x is not free in N.

[[(!%.%) N]]u s (v) {v{x){w). [[%]] w I V(x). vu. [[% := N\]) (1)

In using the notation [[x := M\] for environment entries we follow [M192] but point out that it
is distinct from the encoding function [[Af]] u

24

-> (v)(x) (v(w). [[x]] w I VM. [[x :-N]]) (2)

-> (%)#]]»! [[%:=A0]) (3)

= (x) (XM 1 !x(w). [[iV]] w) (4)

[M]m I (x)[[x:-M] (5)

~ m] u (6)

The following remarks help us read the above calculation:

— In (1), we have expanded the definitions for lambda abstraction and

function application

— In (2), we have communicated a new channel x along v. Since x now |

occurs in both parallel subprocesses, the restriction (x) has been moved ^

outwards to cover both occurrences.

— In (3), the restriction (v) has been dropped because v no longer occurs

— The step to (4) represents the expansion of the definitions for identifier

reference and environment entry

— In (5), (x) has been moved inwards as x now only occurs in the right

subterm

— The last step, to (6), goes beyond simple equivalence and represents the

garbage-collection of an environment entry [[x := N]] which cannot be

used further (since the subject x of the first action is restricted).

Milner also provides a proof that the reduction of [[Af]] in the Tc-calculus

simulates that of Af in the X-calculus 'very closely'.

Reexamining the definition for environment entries [[x := Af]] we

observe that Af is evaluated completely for each new set of arguments w. So

while the scheme outlined above faithfully simulates normal-order

reduction in the A,-calculus, it takes no account of sharing and thus does not

model graph reduction as first defined by Wadsworth in [Wa71].

25

' I?-

2.2.5 Simulating the call-by-value X-calculus

Since the Tt-calculus is suitable for expressing concurrency, we would expect

it to be able to express the parallelism implicit in the X-calculus. Milner does

so in his second encoding which simulates the call-by-value X-calculus.

Under call-by-value semantics we completely reduce an argument term

before passing its value to a function. In the new encoding [[M]] p, the name

p will have a different significance. The reason is that two 'events' which

coincided for the normal-order calculus must now be separated, namely

— the signal at p that M has reduced to a value (needed when M is the

argument of an application);

— the receipt of arguments by an abstraction M (needed when M is applied).

Dealing with a call-by-value reduction strategy we will not need to pass

'apply nodes' as arguments, so our environment entries will now contain

only values, i.e. abstractions and variables. So we begin by defining [{y := V]]

where V is either a lambda abstraction or a variable.

[ly := Xx.M\] !y(v). v(x)(p). [[M]] p

[Ij/:=x]] ly{v), XV

An environment entry for an abstraction keeps reading new sets of

arguments v to which the abstraction is to be applied. For each set thus

received, we pick up the first argument, x, and the rest of the arguments, p.

We instantiate a new copy of M to which we pass the arguments p. The first

argument x is bound to the free variable x in M implicitly. An environment

entry for a variable simple passes on any sets of arguments to that variable.

The first action of a (translated) value, [[V]] p, is to signal its reduction to

a value. The channel y representing the signal provides access to an

'environment entry'. Note that [[y := V]] is here a subterm of [[V]] p, whereas

the opposite was true in the normal-order encoding. In the most important

26

difference, however, to the normal-order encoding, the new translation [[M

N]] p allows M and N to 'run' in parallel. The auxiliary definition ap(p, <7, r)

provides the necessary glue for relating functions to arguments: we pick up

the value of M from q in the shape of an environment entry y and apply it

to a new set of arguments v, which is constructed by extending the list of

arguments p by the argument z computed by [[N]] r.

[[V\] P p(y). [[y := V]] (y not free in V)

[[M N]] p iq){r) (ap(p, q, r) I [[M]] q I [[N]] r)

^p(p,q,r) g(y)-yW-''(z)-v2p

The example reduction sequence below for the k-term {Xx.M)V demonstrates

the simulation of p-reduction.

l[{Xz.M)V\]p s {q){r) (ap(y, q, r) I q(y). [[y:=Xz.M]] I r (z). [[z:= V]])

(r)(y)iÿ{v).r(z).vzp I [[y:=Xz.M]] I r(z). [[z:= V]]) (1)

-> {r){y)(v)(r{z).vzp \ l\y:==Xz.M\] \v(z)(p).[[M]]p I (2)

r(z).[[z:=V]])

-> (y)W(z) (vzy I [|y:=Az.M]] \ v{z)(p),l[M\] p I [[z:=V]]) (3)

(y)(z)([|i/:=AzJyq] l ump l [[z:=m (4)

~ (z)[[M]]y I [[z:-V]]) (5)

Each of the four reduction steps consumes one of the actions defined by ap.

The first step to (1) communicates the environment entry y for the functor

Xz.M. Reduction (2) communicates the name v by which the functor can

access its arguments. In step (3) we pick up the environment entry z for the

argument V. Finally we make the extended argument set zp available via v.

The call-by-value nature of this scheme is apparent in the third and

fourth actions of ap. The activation of a function call, performed by the

action vzp, cannot proceed until the argument to the function call signals

its reduction to a value, detected by r(z). While this simulation exhibits

27

(some) parallelism in that for an application of the form M N both subterms

can be evaluated in parallel, the application itself cannot proceed until the

argument has been computed. Thus the parallelism implicit in a non-strict

constructor function like cons which could return a result even before its

argument values are available is not exploited by this scheme. More

seriously, Milner's call-by-value scheme obviously has strict semantics and I

will thus fail to terminate for many terms which have a normal form.

We shall give a third encoding, combining the advantages of

parallelism and non-strictness, in the next chapter.

2.3 The Manchester dataflow project

Making somewhat of a conceptual jump, we move from the theoretical

domain of the E-calculus to computer architecture related research. The

connection will be established in Chapters 3 to 6 , where we develop a n-

calculus specification of parallel graph reduction into a practical compiler

for a novel parallel architecture.

Work on the Manchester dataflow machine is interesting to us mainly

for their results on load bounding. In order to put these results into context,

however, it will be useful to present a brief overview of the architectural

side of the Manchester dataflow research. The architecture in itself is

interesting as a major early example of a non-von Neumann machine that

has been successfully implemented in hardware. While the similarities of

the Manchester dataflow machine to our STARiDUST architecture may not

be immediately obvious, the latter can trace back its origins to the former in

a direct line. This lineage will be illustrated in detail in Section 2.4.

28

■■ -I' •- « ■. '_________________’■ ' ü . - L f & A

to host tokenpackets

token
packets

token-pair
packets ,

executable
packets

Processing Unit

Token Q ueue

Matching Unit

Instruction Store

Overflow Unit

I/O Switch

from host tokenpackets

Figure 2.2: Structure of the Manchester dataflow system

2.3.1 Architectural overview

We will present the Manchester dataflow architecture by relating it to

modern von Neumann processor designs. In Figure 2.2 we show a single

ring-structured dataflow processor connected via an I/O switch to a host

computer as implemented by Gurd and his colleagues [GK85]. The system

can be extended to a multiprocessor computer by widening the I/O switch to

accommodate more processor rings. A good way to start thinking about an

individual ring is as a processor pipeline, such as is commonly found in

modern microprocessors. An important task in the design of such pipelines

is to prevent instructions from being scheduled for execution when their

operands have yet to be computed by instructions still in the pipeline. The

Manchester pipeline provides an extremely clever conflict resolution

mechanism which guarantees that an instruction cannot enter the pipeline

before all its operand values are available. Other than in von Neumann

microprocessors, however, instruction scheduling is governed solely by data

dependencies of this kind. There is no concept of a program counter. Since

the result produced by one instruction can satisfy the dependencies of more

29

than one successor instruction, multiple instructions can be ready for

scheduling at the same time.

Let us follow the path of an imaginary token inserted by the host

computer. The I/O switch which is responsible for directing the token to the

appropriate dataflow processor (of which our system contains only one)

sends it on to the token queue. This queue is a circular buffer that smoothes

out uneven rates of generation and consumption of tokens in the ring.

When reaching the head of the queue, the token is passed on to the

matching unit, arguably the most unconventional component of the

processor ring. The matching unit's prime responsibility is resolving

instruction dependencies and scheduling instructions for execution. An

incoming token carrying the first operand of a dyadic operation remains in

the matching unit awaiting the arrival of its partner. The unit derives its

name from this matching of partners. An incoming token that completes a

match or is heading for a monadic operation is passed on to the instruction

store which contains the program code. There the appropriate instruction is

fetched and passed on along with the operands to the processing unit.

Typically the processing unit is made up of several function units (akin to

the multiple function units of a modern von Neumann processor), one of

which will perform the required operation and generate one or two output

tokens.

Note that the mechanism described above is readily expandable to

multiple processing elements as the basic instruction scheduling

mechanism is easily extended to work across processors. Note also that on

our journey through the pipeline we did not encounter a stage which

would obviously correspond to 'main memory access'. The matching unit

implicitly provides the storage needed for data which would be kept in stack

frames in a more conventional runtime model. For this reason the size of

30

i

the matching unit exceeds 1 M-words and is unsuitable for complete VLSI

integration even with present-day technology. Furthermore the structure of

the matching unit is relatively complex as it requires associative access to

waiting tokens. In the Manchester machine this is implemented via a

hardware hash-function. Some of the data storage functions were later

moved from the matching unit to a dedicated structure store,

2.3.2 Load bounding in the Manchester dataflow machine

When the Manchester project was started, it had not yet become clear that

many typical programs would provide sufficient parallelism to keep a large

parallel machine busy. So it came originally as a surprise when it was

observed that the amount of parallelism exhibited by some programs could

get so large that the design of a throttle mechanism was crucially important

in order to limit the resource requirements of such programs (see Section

1.7.2). The throttle designed by Ruggiero and Sargeant and described in

[RS87] is a hardware device which operates roughly according to the

following principles. On receiving a request for starting a new process their

throttle decides, based on the level of parallel activity in the machine,

whether to grant a new activation name or not. Parallel activity is measured

in terms of the length of the token queue. If the machine is too busy, the

process is suspended and is reactivated only when the level of activity has

dropped. In order to promote depth-first execution, the first child of a

process is never suspended. Given several suspended subprocesses for one

process, the leftmost one is the first candidate for unsuspension. This order

is guaranteed by a queueing strategy. They impose a small delay between

individual unsuspensions since processes take a while to start up and have

no immediate effect on the length of the token queues.

The Manchester throttle is responsible not just for load bounding but

generally for resource management. Its functions include allocation of

31

activation names, suspending and unsuspending of processes, activity level

reports and termination signals. From a hardware point of view, the

throttle is a message processor with an attached store and was implemented

using the same design as for the structure store, with different microcode.

2.4 The MIT dataflow project

While work on the Manchester machine has now ceased, research into

dataflow machines and languages is still actively being pursued at the

Computation Structures Group at MIT. Originating with Jack Dennis's early

work on a static dataflow machine [De75] which appeared radically different

from any architecture known at the time, the MIT work has progressed in

several stages, as outlined below, to a system designed around a commercial

microprocessor. One of the results of their long and productive work was

the P-RISC architecture which became a major influence for the design of

STARiDUST (Chapter 6). One purpose of this section is to illustrate that our

STARiDUST architecture, and thus the computational model underlying

our compilation scheme, is not just a 'wild stab in the dark' but rather a

combination of the core features of dataflow machines with the sequential

efficiency of modern von Neumann architectures.

2.4.1 From static dataflow to Monsoon

Jack Dennis early work on static dataflow machines modelled the flow of

streams of data through a static dataflow graph. The nodes of the graph

represented operations which could 'fire' as soon as a complete set of inputs

was available. While providing ample opportunity for parallelism, static

dataflow graphs do not support a very general programming model. In

particular, they do not allow for recursion. Dennis' 1973 paper [De73] is

generally regarded as the seminal work inspiring dynamic dataflow which is

capable of modelling graphs that are expanding and contracting

32

dynamically. Dynamic dataflow is thus suitable for modern recursive

programming languages. The MIT work on dynamic dataflow machines

was lead by Arvind, whose proposal for a dataflow architecture with tagged

tokens [AK80] is substantially similar to the Manchester dataflow machine

(but developed independently). Therefore we will not discuss it in detail

here except for pointing out that it includes a waiting-matching unit

requiring the same expensive fully associative matching capabilities for data

sets. In contrast to the Manchester machine, the TTDA (tagged-token

dataflow architecture) was never built in hardware.

The first dataflow hardware at MIT became operational in 1988 in the

form of the Monsoon machine [Pa8 8] which represents a substantial

redesign of the original TTDA proposals. In Figure 2.3 we show the

structure of a Monsoon processing element as presented in [PC90], redrawn

to highlight the key differences from the Manchester architecture.

Network
Interface

Token Q ueuesg
Instruction Fetch 4— ► %-Mem6iy

Effective Address

♦
Presence Bits PreeenoeBits

"Memory

Frame Store
Operation

f ♦
Compute

Tag ALU

Form Token

j!

4— >

Figure 23: Structure of a Monsoon processing element

33

The fundamental improvement is the elimination of the waiting-matching

unit which was achieved by making the token store explicit. Rather than

relying on the storage of tokens to be performed implicitly and individually

by hardware in the waiting-matching unit, storage allocation on Monsoon is

performed by software and in units of procedure frames. An individual

procedure frame is mapped wholly to a contiguous memory area within a

frame store.

To understand the resulting changes in the operation of the processor

pipeline consider the processing of a two-input operator (the following is

largely quoted from [PC90]). The first token to be processed enters the

pipeline and fetches the instruction specified in its tag field. During the

effective address stage the location in the frame store where the match will

take place is computed. The associated set of presence bits are examined and

found to be in the 'empty' state. The presence state is thus set to 'fulT and

the incoming value is written into the frame store location during the

frame store stage. Further processing of the token is suppressed because the

other operand has yet to arrive. This 'bubbles' the pipeline for the

remaining ALU stages; no tokens are produced during form-token,

permitting a token to be removed from one of the token queues for

processing. The second token to be processed enters the pipeline and fetches

the same instruction. It therefore computes the same effective address. This

time, however, the presence state is found to be 'full', so the frame store

location (which now contains the value of the first token) is read and both

values are processed by the ALU. Finally, one or two result tokens are

created during the form-token stage.

Note that the pipeline of a Monsoon processing element is rather more

similar to a conventional processor pipeline than that of the Manchester

machine. An instruction fetch stage is followed by the computation of an

34

effective address, a load /store stage interacting with local memory, and an

ALU stage. There is even direct support for sequential execution by allowing

successor instructions to bypass the token queue and re-enter the pipeline

immediately. The differences to conventional pipelines are still significant,

however: instructions can have multiple successors, all but one of which

are stored in a token queue. The resulting parallelism is used to good effect

to avoid bubbles in the pipeline. And finally, the stage responsible for

'presence bits' provides efficient hardware support for 'join'

synchronisation.

2.4.2 Dataflow/von Neumann hybrid processors

The analogies between Monsoon and conventional processors were not lost

on the MIT team. In [Ia8 8], lannucci proposed the idea of dataflow machines

and von Neumann machines sitting at opposite ends of a spectrum of

architectures. The hybrid processor proposed in his paper travels another

step towards von Neumann architectures by re-introducing registers as a

very efficient means of communication for sequentially related instructions.

(By constrast. Monsoon instructions can only send a single value to their

successor in the form of a token. Where this is not sufficient, data have to be

deposited in the frame store, i.e., in local memory.) By providing registers

and dedicated instructions for testing and manipulating presence bits,

lannucci's hybrid processor can dispense with the idea of 'tagged tokens' for

communication within a procedure frame.

The next step in this process of evolution resulted from approaching the

architectural spectrum from the opposite end by asking the question: how

do we need to modify a von Neumann processor to make it suitable for

efficiently executing dataflow programs? The design of the P-RISC

architecture [AN8 8] which is shown in Figure 2.4 is an attempt to answer

this question. P-RISC, short for 'parallel RISC', has at its core a plain

35

sequential RISC processor, i.e., three-address instructions, a load/store

architecture, simple instruction formats, a program counter, conventional

jump and branch instructions, etc. Addressing of operands is relative to a

frame, which is best viewed as a fixed-size window providing fast access to

local memory. The frame pointer along with the program counter make up

the current continuation. Each of the conventional instructions has a single

successor continuation which shares the frame pointer of its predecessor.

All continuations operating within the same frame are considered to belong

to the same thread.

Token Queue

Instruction Fetcti

E

local memory

Code

Operand Fetcti

FunctKxi Un ts

Operand Store

Load/Store

network
communication

Start

Figure 2.4: A P-RISC processing element

The parallel extensions to the sequential RISC paradigm come in the shape

of several simple new instructions which create, control and terminate

threads.

• fork produces an additional continuation which is placed in the

token queue along with the natural successor

36

• jo in conditional termination of the current thread, i.e.,

depending on a condition, j o i n has either one or zero

continuations

• load reads a value from global memory; lo a d has no immediate

successor which allows other threads to keep the CPU busy

during long-latency operations; the thread is restarted only

on arrival of the value to be loaded

• s to r e writes a value to global memory and continues with the

next instruction; no synchronisation is performed

• loadc version of lo a d with an implicit fo rk

• s t a r t sends a s t a r t message to a remote processing element; in­

coming s t a r t messages deposit a value into the local frame

and place a continuation into the token queue (the arrival

of values lo a d e d from global memory is in the form of

s t a r t messages)

A P-RISC system is made up of processing elements as discussed above as

well as structure store elements which satisfy global read/write requests and

perform low level synchronisation tasks and memory management

functions. Comparing P-RISC with Monsoon we observe that the 'complex'

dataflow instructions have been split into separate synchronisation,

arithmetic and fork/control instructions, eliminating the necessity of

presence bits in the frame memory.

The (so far) final step in the MIT effort towards finding the optimal

balance between dataflow and von Neumann processors is the *̂ T

architecture [NP92], pronounced 'start', which is currently actively pursued

in terms of hardware design (both lannucci's hybrid architecture and P-RISC

are 'paper architectures'). We show a block diagram of *̂ T in Figure 2.5.

I

"■Ï.

37

J

from network

to network

Message QueueMessage Queue Continuation Queue

Network
Interface

Message
Formatter

Remote
Memory
Request

Coprocessor

Synchronisation
Coprocessor

Data
Processor

Figure 2.5: The *T architecture

The data processor in this diagram is a slightly enhanced version of the

Motorola 88100, i.e., a commercial RISC microprocessor. The enhancements

permit it to send messages to the network and to pick up new continuations

(in the form of one word each for the program counter and a frame pointer).

The data processor is responsible for the computational aspects of program

execution. Two coprocessors sharing the same local memory are responsible

for satisfying remote memory requests and synchronisation, respectively,

without having to interfere with the data processor. Having a coprocessor

for memory requests enables *T to avoid the complications of providing

dedicated structure store units. The synchronisation coprocessor (SP)

handles returning loads by storing any returning value into its destination

location. If the original l o a d instruction is followed by a j o i n

synchronisation, the SP executes it and, if successful, places its continuation

38

on the continuation queue. Thus the data processor does not have to

execute disruptive j o in instructions.

Being based on a standard microprocessor allows "̂T to provide

competitive performance for existing sequential code (which would execute

wholly on the data processor) as well as for sequential portions of parallel

code. It also permits *T to 'ride the technology curve' by exploiting any

advances in microprocessor design.

2.4.3 Load bounding for the MIT dataflow machines

Supporting an implicitly parallel programming model, the MIT dataflow

work needs to address the problem of excessive parallelism. In [CA8 8]

Arvind and Culler propose the technique of loop bounding which controls

parallelism resulting from those portions of loop iterations which are not

constrained by dependencies on previous iterations. Their approach is, quite

simply, to restrict for each loop the number of concurrently active iterations

to some constant k, i.e., iteration n+k can begin only after iteration n has

terminated. This solution appears to provide satisfactory results for many

programs. Their compiler, as described in [TR8 6], generates parameterized

code which allows the setting of loop bounds prior to execution, i.e., the

choice of loop bounds is under user control and will typically depend on

machine size, program type, and problem size.

Arvind and Culler critisise the Manchester approach of load bounding

by deferring activations. They argue that loops can go on requesting

activations, each of which would get deferred but would still require a small

amount of resources. Therefore the Manchester technique is not a solution

for the general case and they consider load bounding for general recursive

programs an unsolved problem.

We would like to point out that the problem of loop parallelism is

specific to dataflow programming languages. In pure functional languages.

39

i

%

loops' are defined in terms of function application and do not behave in

any special way. We would further point out that imposing loop bounds can

in certain cases alter program semantics. It is possible to write programs

where iteration n+k produces a value and makes it available to iteration n

via side effect. In single-assignment languages computations block on

unavailable values and therefore a loop bound of k will lead to deadlock in

the case described. In addition, putting the responsibility for loop bounding

on the user significantly weakens their claim to support implicit

parallelism.

2.5 ALICE/Flagship

ALICE [DR81] was the first implementation of a parallel architecture

dedicated to performing graph reduction in parallel. While the original

design called for an implementation in customised VLSI, only a transputer-

based hardware emulator was built. Predating the development of compiled

graph reduction, ALICE suffered from severe interpretative overheads.

While relative speedups were observed, absolute performance remained

poor.

The Flagship project [WW8 8] grew out of and drew on the experiences

with ALICE. While still a reduction architecture, it was designed to support

a host of practical concerns such as distributed virtual addressing, a

distributed I/O subsystem, a priority mechanism, caching, support for a

multi-user environment and resilience to node failure. Like the

architectural model underlying our work. Flagship is based on a distributed

memory model with closely coupled processor-memory pairs. The much

less ambitious STARiDUST architecture presented in Chapter 6 represents a

less radical departure from the von Neumann model and we expect to be

better positioned to take advantage of progress in sequential microprocessor

technology. Our implementation of parallel functional languages shares

40

with that described by Watson and Watson in [WW87a] a relatively fine­

grained outlook. While in their system 'packets' are the unit of parallelism

and load distribution, this role is played by function activations in ours.

However, our approach to load balancing and load bounding differs

significantly. In both cases we take the 'RISC' approach of doing it in

software. Whereas load balancing on Flagship is performed by a system

service, our approach is incorporated into the compilation scheme of

Chapter 4 by means of randomly distributing function applications.

Whereas load bounding on Flagship is performed by hardware controlled

scheduling of the 'active packet queue', our load bounding system is again

integrated into the compilation scheme, supported by a cheap runtime

system, as described in Chapter 5.

2 .6 GRIP

The GRIP project at Glasgow, short for 'Graph Reduction In Parallel', is

notable for its success in carrying over to parallel functional programming

the significant advances that have been made for sequential

implementations of functional languages. They achieve significant real

speedups [HP90], as measured against sequential implementations, on

largely conventional hardware: GRIP is based on up to 80 conventional

Motorola 68020 microprocessors, each with a small local memory of 1

Mbyte, and up to 20 microprogrammable intelligent memory units (IMUs).

The latter are the major architectural innovation, providing efficient

hardware support for a global memory abstraction. GRIP is a bus-based

design (which accounts for the limits on machine size) and was intended

from the outset to provide cost-effective parallelism in the short term.

Scalability was not a design criterion.

Their combination of efficient shared-memory support and

conventional microprocessor technology provides the backdrop for any

41

comparison of our work with that of GRIP. Their underlying architectural

parameters imply that communication is cheap while task switching and,

even more so, task creation is expensive. A crucial optimisation on GRIP is

therefore to achieve long-running tasks. Their evaluation strategy is, in a

nutshell, to make a single task responsible for evaluating the whole spine of

the part of the program graph allocated to it. Other subtasks are put into a

'global task pool' from where they can be picked up by idle processors. On a

heavily loaded system, a parent may return to a subtask to find that it is still

unevaluated. In this case the parent will decide to evaluate it itself and the

extra task is discarded. This technique, called the 'evaluate-and-die model'

by Peyton Jones in [Pe89], was first described, to our knowledge, in [CP8 8] and

has the effect of increasing the size of tasks still further. The technique is

very similar to and predates that of Mohr et al. [MK90] described in Section

2.7. The inbuilt preference for depth-first execution also addresses the load

bounding problem.

GRIP'S non-scalability manifests itself in several aspects of its design, the

choice of a bus as the main communications medium being the most

obvious one. The decision to block the processor during long-latency access

to global memory is entirely reasonable on a relatively small machine built

from stock sequential components but would incur increasing performance

penalties if attempts were made to build larger GRIPs.

In contrast to GRIP, the work reported in this thesis was performed with

concerns of scalability in mind throughout. In order to be able to tolerate the

high latencies of global communication we employ thread switching. Our

approach to load-bounding (itself implemented in a scalable fashion)

provides each PE with a sufficient number of threads for this purpose. We

require no special hardware other than a general-purpose message-passing

processor.

42

2.7 Lazy Task Creation

The problem of load bounding is closely related to that of granularity in the

following way: rather than creating a large number of small tasks in excess

of what can be exploited by machine parallelism, one could group them into

larger tasks, limiting resource requirements at the same time as avoiding

some overhead for task switching. On machines based on conventional

sequential microprocessors where the cost of context switching is high, the

latter effect is particularly desirable. In their paper on 'Lazy Task Creation'

[MK90], Mohr et al. describe a technique for increasing the granularity of

programs which performs load bounding as a side-effect. Their work was

done in the context of implementing a strict imperative language with a

pure functional subset on shared-memory architectures. Only one task per

processor is active at one time. Here are the key ideas:

• programs identify sources of potential parallelism explicitly, using the

'future' construct

• a running task puts each into a 'lazy future queue'

• idle processors can 'steal' them and execute them, exploiting parallelism

• on returning to an 'unstolen' lazy future, tasks execute them directly,

thus increasing granularity

Their method is virtually identical to the 'evaluate-and-die model'

described in Section 2.6 on GRIP with similar implications for (lack of)

scalability. By running only a single task per processor, high latencies cannot

be masked using task switching. Mohr et al. do not describe any distribution

strategy for their 'lazy future queue', so question marks must be put on the

scalability of this concept as well. While their design efficiently supports

conventional shared-memory machines unsuitable for fine-grain parallel

computation, their 'task stealing' operation further enforces the need for

43

large granularity even if an underlying machine were intrinsically fine­

grained. This is due to the fact that processors are blocked while a new task

is being fetched and the cost of this operation needs to be amortised. Even

so, however, short tasks cannot be completely avoided as the amount of

work implied by a 'stolen future' is not generally known.

2.8 Other previous work

In this chapter we have reviewed details of previous work which we

considered most relevant to this thesis. In conclusion we would like to

make mention of other related work not discussed here in detail. Traub

investigates generating multithreaded code from non-strict functional

programming languages in [TR91], focussing on producing long threads by

analysing data dependencies. Nikhil outlines a compiler for Id to stock

parallel hardware via dataflow graphs and P-RISC as an abstract machine

[Ni89]. The FAST project, based on Kelly's work on process annotations for

functional languages [Ke89] intends to exploit parallelism on a network of

nodes each running a sequential implementations of Haskell. Darlington's

work on 'skeletons' [Da91], higher-order functions for which efficient

implementations exist on particular parallel machines, is an ambitious

attempt of providing a unifying framework for exploiting parallelism on a

wide range of parallel architectures. Daily's J-Machine [DC89] resembles our

STAR:DUST architecture in that communication is data-driven, i.e.,

messages start handler threads, but their architecture is less RISC-like. Von

Eicken et al. propose the concept of 'active messages' as a general purpose

communications paradigm [EC92] suitable even for existing message passing

multiprocessors.

44

Chapter 3 — A Simulation of the 1-Calculus in the jc-Calculus

3.1 Contents

In this chapter we present a concise model for parallel graph reduction in

the form of a translation scheme mapping a term of the 1-calculus to a n-

calculus term. The latter is constructed in such a way that its reduction

according to the rules of the %-calculus will result in a normal form which is

equivalent to the weak head-normal form (WHNF) of the original 1-

calculus term, provided there is such a normal form. We will use the n-

calculus in the form presented in Section 2.2.

3.2 Motivation

The practical motivation for simulating the 1-calculus in the %-calculus is

the capacity of the latter for expressing parallelism. As detailed in Section

2.2, Milner has given two different encodings for the X-calculus. The first

simulation follows normal order reduction rules and does not exhibit any

concurrency—at any point in the ii-calculus reduction sequence there is

only one reduction that can take place. Furthermore, this solution takes no

account of sharing. If the value of a function argument is required more

than once, it is recomputed each time. His second simulation performs

eager, call-by-value reduction. Both subterms of an application are reduced

in parallel and the application is performed once the value of the argument

term is available. This solution has two disadvantages. Firstly, it may not

terminate for some X-terms which have a normal form. Secondly, there is

scope for additional parallelism by starting the reduction of a function body

before the value of the argument is available. The encoding we give below

has the following features:

— applications can be performed lazily to maintain termination properties

45

— applications can be performed eagerly where strictness analysis

guarantees termination

— sharing is preserved, avoiding unnecessary duplication of reductions

— the body of a function can be reduced as soon as it is applied to an

argument (and before the argument value is available)

Our solution also leaves scope for deciding dynamically in favour of lazy

evaluation, even when termination is no problem, in order to limit

parallelism to a desired level. We can easily extend our scheme by adding

ground values other than functions, e.g., integers, and 'built-in' functions

operating upon them.

3,3 Overview

While our scheme is concise, we consider it worthwhile to prepare the

ground by giving an overview of the underlying principles. As in the two

Milner schemes outlined in Section 2.2, we encode a ^-calculus term M as

[[Af]], a map from 7c-calculus names to TT-calculus terms, i.e., [[M]] o is a term

of the 71-calculus. The intuition behind our scheme is fundamentally

different, however. While in Milner's schemes the argument channel o was

the link along which [[M]] received its arguments, we will use it as a link

where [[M]] is to deposit its value. The difference was phrased poignantly by

our colleague Peter Burgess: "Milner's scheme has no output—this scheme

has no input".

Our intuition of a value is a scalar, e.g., an integer or a pointer. The

following two rules will not be part of our X-calculus scheme, but they will

easily tie into it and are given here to provide a first intuition.

rr ̂tt def _[[const]] <? = o const
def

[[M+N]]o = (m)(n) ([[A/]] m I [[N]] n I m(a). n(b). a (a+b))

46

The first rule is obvious. To deposit the value of a constant into a channel,

we simple put it there via a send-operation. The rule for addition first

introduces two new channels for the intermediate results for M and N,

respectively. Of the three concurrent processes governed by the restriction,

two are responsible for computing M and N. The third waits for value of M

to arrive on m and reads it into a. It then waits for the value of N which

will eventually appear in n and is read into h. Assuming a primitive

addition operator, the result of the addition can now be written into the

designated output channel.

The key to the complete translation scheme is an understanding of the

two underlying protocols it adheres to. The first protocol governs the

simulation of X-calculus variables, i.e., the interaction of identifier reference

and function application. The second governs function activations, i.e., the

interaction of function application and abstraction.

Protocol 1 (Variables)

A X-calculus variable x is simulated by a Tc-calculus variable of

the same name by interpreting it as a request channel. Each

time a computation requires the value of %, it sends a request r

(the destination channel) along the channel x. The

computation at the other end, i.e., the process simulating

function application, will then send back its value along r.

Protocol 2 (Abstractions)

The value of a function expression F - Xx.M is represented by a

channel / in the following way: to apply F to an argument x, we

send it a pair of channels along / consisting of a request

channel for x, as described in Protocol 1, and a destination

channel y where we require the result. We will call this pair an

47

activation. The simulation of an abstraction is responsible for

handling activations of the form (%, y) by setting up an instance

of M relating x and y.

3.4 The translation scheme

Having thus laid the foundations, we are now ready for the compilation

scheme itself. We will provide five rules in total. Besides an auxiliary

definition for environment entries there is one rule each for ^-abstraction

and variable reference and two rules for function application. The reason

for providing two rules in the latter case is our goal of representing both

lazy (sequential) and eager (parallel) function application within the same

framework. The obvious way for resolving the resulting ambiguity is to

apply the lazy rule by default, reserving the eager rule for the application of

functions that can be shown to be strict in their argument. Here is the

complete set of translation rules, discussed individually below.

def , / \ _X <=v — !x(r). r v (Environment entry)
def _

[[x]] o “ xo (Name reference)

[[Xx.M\] a = if) of. \ f(x,y). [[M]] y (Abstraction)

[[M N]] 0 (w)(«)(x) ([[Afj] m I [[N]] n I m(f). f(x,o). n(v). x <=v)

(Eager application)

[[M N]] a (m)(n)(x) ([[M]] m I (w(/). /(x,o).x(r).([[iV]] « ■ «(v). r v.x *=v)))

(Lazy application)

3.4.1 Environment entry

We make a variable x refer to a value v by writing v onto any destination

channel r that we can pick up on x. This is merely Protocol 1 codified in the

7t-calculus. We will repeat the complete rule again for future reference:

X 4#:̂ !x(r). r v (Environment entry)

48

3.4.2 Name reference

The fact that this rule is identical to the corresponding one in Milner's lazy

scheme is coincidental and the meaning here is substantially different as

explained previously. Our rule is an abbreviation for

[[x]]o (r) xr. r{v). o v

We define a channel r which forms the request that we send to x according

to Protocol 1 which also provides for the return of the value v of x along r.

We then send this value to the designated output channel o. Looking at this

term more closely we find that the intermediary channel r is unnecessary.

According to Protocol 1 we can send o directly to x and expect the value of x

to be written to o, as desired, resulting in the slightly counterintuitive

abbreviation given above,

[[x]] o ^ xo (Name reference)

3.4.3 Abstraction

According to Protocol 2, the value of an abstraction is a channel which

interfaces to an activation handler. The abstraction rule therefore defines a

new channel / which is written to a, followed by such a handler. For any

activation request (x, y) picked up on /, the handler provides a new instance

of M. The complete rule again:

[[Xx.M]]o (/) 0 / !/(x,y). [[M]] y (Abstraction)

The binding of the free variable x in M is mapped to the binding mechanism

provided for the receive-action in the 7i-calculus. The transmission of pairs

of channels transcends the pure Tc-calculus presented in Section 2.2, but is

readily defined as in [Mi91]

/(x , y) f (w) . w(x). w(y)

/ (x, y) (w) fw . wx. w y

49

"31

3.4.4 Eager application

As eager function application is slightly simpler than its lazy counterpart,

we will discuss it first. Here, again, the rule given above:

l[M AG] o '*= (m){n)(x) ([[Mj] m I [[iV]] n I m(f). n(y). x «=v)

(Eager application)

When applying M to N, we require three new channels, m, n and x. The first

two are set up to receive the values of M and N, respectively, the latter to

serve as the request channel for the argument according to Protocol 1. The

body of this rule consists of three concurrent processes. The first two

compute Af and N, respectively (since we are performing eager function

application, the computation of N can proceed before its value is requested

from within Af). The third process, of the form

mif). fix, o). n(v). X <=v

is responsible for establishing the functional relationship between m, n and

o according to Protocol 2. We pick up the function value, i.e., the activation

handler /. We request a new activation (x, o) for the request channel x

previously defined. After establishing this activation, we pick up the value v

of N and bind it to x by an appropriate environment entry.

3.4.5 Lazy application

Let us start again by restating the rule in question:

[[Af N]] o (m)(n)(x) ([[Af]] m I (m(/). /(x,o).x(r).([[iV]] n I «(v). r v.x <=v)))

(Lazy application)

As for eager function application, we define three new channels, m, n and x

serving the same purpose as before. This time the body of the rule contains

only two concurrent processes on the top level. The first computes the

value of Af, as before. The second has the following shape:

50

m(f).fix,o). x{r). ([[iV]] n I n(y).rv. x <=v)

This time we want to delay any evaluation of N until we know that its

value will be required. We therefore pick up the function activation

handler / and establish an activation of M between x and o. We do not

proceed with any other reduction until we have received an initial request r

for the value of x. Only after receiving r we start the evaluation of N. When

its value arrives we read it into v and satisfy the original request by writing

it to r. As there may be further requests, we then set up an environment

entry as before.

3.5 Sample reductions

To get an intuition for the behaviour of the Tr-calculus terms produced by

our translation scheme, let us step through a few simple examples. The first

example will serve us to familiarise ourselves with the behaviour of (eager)

function application and identifier reference. The second, slightly more

involved, demonstrates sharing under in the context of the rule for eager

function application. The third example will be identical to the second

except for following lazy evaluation. In all three cases we will make use of

the extended set of rules including those for integer constants and addition

given in Section 3.3. We will unwind the definition of [[•]] only as far as

necessary to make progress with the reduction. The transformation steps are

marked by one of four symbols: denotes equality by the definition of [[•]],

denotes equivalence according to the rules of the 7t-calculus, denotes

reduction in the jc-calculus and denotes a special case of 'strong

bisimilarity' [Mi92] of which we will only need to know that it allows us to |

'garbage collect' useless processes, i.e., those which can not participate in any

further interactions.
?

51

3.5.1 Simple function application

For our first example, the reduction of [[(Xx.x) 1]] o, we will avoid any leaps'

in the transformation process in order to aid understanding. Note,

however, that in the resulting lengthy sequence only four steps represent n-

calculus reductions. A discussion of each step follows below.

[[(Aj:.*) 1]] 0 (1)

(m)(n)(x) ([[Ax.*]] m 1 [[!]] n 1 m(/). f{x,o). n(v). x <=ü) (2)

(m)(n)(x) ((/) mf. \f(x,y). [[*]] y 1 [[!]] n mif). f(x,o). n{v). X <=ü) (3)

(m){n){x)(f) (lfix,y). [[*]] y 1 [[!]] n 1 f(xfi). n(v). x <=v) (4)

(n)(x)(f) (tf(x,y). [[*]] y 1 [[!]] n 1 f(x,o). n(v). x *=v) (5)

(n)(x)(fi ((f(x,y). [[*]] y 1 \f(x,y). [[*]] y) 1 [[!]] n 1 f(x,o). n(v). x <=v) (6)

-> (n)(x)(f) (([[*]] 0 1 lf(x,y). [[*]] y) 1 [[!]] n 1 n(o). x<=ü) (7)

(n)(x)(/) ([[*]] 0 1 [[!]] » 1 n{p).x<=v) (8)

(M)(x) ([[*]] 0 1 [[!]] n 1 n(v). x <=p) (9)

= (»)(*) ([[*]] 0 1 n 1 1 n{v). X f=v) (10)

(n)(x) ([[*]] 0 \x<=l) (11)

(x) ([[*]] 0 1 X<=1) (12)

= (x)(xo 1 X<=1) (13)

= (x)(xo 1 !x(r). r l) (14)

= (x)(xo 1 (x(r). f l 1 !x(r). r l)) (15)

(x)(ô î 1 !x(r). r l) (16)

(x)0 l (17)

o l (18)

52

The whole transformation from (1) to (18) represents the application of the

identity function to the constant 1 with output channel o. In the first step to

(2) we apply the definition of the rule for eager function application. Since

there is no obvious scope for any reduction yet we apply another translation

rule, this time that for abstraction to obtain (3). The step to (4) represents the

first TT-calculus reduction, modelling the communication of the function

value / along m. Since m now does not occur in the body of the resulting

term, we can drop the restriction on m (5). Before applying the function we

need to unwind an instance of its activation handler in (6). The second

communication (of the pair (x, o) along f) represents the activation of the

identity function, linking input x to output o (7). Since there is no possibility

of requesting another activation of / , we can garbage collect the activation

handler (8) and drop the restriction o n / (9). In step (10) we apply the rule for

integer constants. Communicating the argument value 1 along n results in

(11) which can be simplified to (12) by dropping the now useless restriction

on n. Applying the rule for referencing the value of x in the function body

we obtain (13). The last instance of applying our translation rules, this time

for the environment entry x<=l, results in (14). Before communicating a

request for the value of x in step (16) we need to unwind an instance of the

request handler (15). The request handler can not become active again and is

garbage collected (17). Dropping the useless restriction on the non-existing

name x we obtain the desired result, o l .

3.5.2 Sharing of computation (1)

To gain a better understanding of the way sharing is modelled in our

scheme, let us study the reduction of [[(Xx.x+x) (1+1)]] o. Although x is

referenced twice inside the abstraction, we want to perform the evaluation

of (1+1) only once. For the transformation sequence below, we will omit any

steps involving dropping of unused names and garbage collection of

53

1

handlers which cannot participate in any further interactions. We will

further assume the reduction of [[1+1]] o to o2 which would make a useful

exercise for the reader.

[[(Xx.x+%) (1+1)]] 0 (1)

= (m)(n)(x) ([[Xx.x+%]] m I [[1+1]] n I m(f). f(x, o), n{v). x <=%?) (2)

-> (m)(n)(x) ([[̂ %.x+%]] m I n2 I m(J). f{x, o). n{v). x <^v) (3)

= (m)(«)(x) ((/) mf. ! f{x,y) . [[%+%]] y \ n l \ m(f). f{x, o). n(v). x <^v) (4)

-+ {n)(x)if) (I f ix , y). [[x+x]] y \ n 2 \ f ix , o). niv). x <^v) (5)

in)ix)(f) (fix, y). [[%+%]] y I 712 I f ix , o). niv). x) (6)

-+ in)ix) ([[x+x]] 0 I «2 1 niv). x <=ü) (7)

(%) ([[%+%]] 0 I X 4=2) (8)

= (x) ((m)(n) ([[x]] m I [[x]] n I m(a). nib), ô ia+b)) I x <=2) (9)

= (x) ((m)(n) (x/n I x« I mia).nib). oia+b)) I x<=2) (10)

(x) ((m)(n) (x/n \ xn \ mia).nib). oia+b)) I x(r). 72 I x(r). r l) (11)

im)in) imia). nib), oia+b) I m2 I «2) (12)

-+ in) in ib) .ô i2 + b) \ ï ï2) (13)

-+ 0(2+2) (14)

-> ô4 (15)

Let us again discuss each step in some more detail. Going from (1) to (2)

represents expansion according to the rule for eager application, which

enables us to perform reduction of the argument (1+1) immediately,

obtaining (3). In step (4) we apply the abstraction rule to the term (Ix.x+x).

We can now communicate the function value / along m to obtain (5),

dropping the restriction on m. We unwind one instance of the activation

handler and garbage collect all others, arriving at (6). The activation takes

54

" ;

place in (7) followed by the communication of the argument value 2 along n

in (8), Applying the translation rule for addition we get (9) which is

transformed to (10) by applying the identifier reference rule. In (11) we have

unwound two instances of the request handler for x and have garbage

collected the rest. We now communicate the two requests, m and n,

obtaining (12). We satisfy the first request in (13) and the second in (14).

Performing the primitive addition we obtain the final result in (15).

3.5.3 Sharing of computation (2)

In the previous example we observed the behaviour of [[(^x.x+x) (1+1)]] o

when translated according to the eager reduction rule. The reduction of the

argument could be performed early on, before its value was requested from

within the function body. Let us now study the reduction behaviour of the

same term under the lazy scheme:

[[(Ax.x+x) (1+1)]] 0 (1)

= (m)(n)(x) ([[ÀX.X+X]] m I (m(f). f(x,o). x(r). ([[1+1]] n I n(v). r v. x <=v))) (2)

= (m)(«)(x) ([[^x.x+x]] m I m(f). f{x,o). x{r). P) (3)

= (m)(n)(x) ((f) mf. ! f ix , y). [[x+x]] y I mif).fix,o). x(r). P) (4)

in)ix)(f) (I f ix , y). [[x+x]] y I f(x,o). x(r). P) (5)

n)(x)(f) (f(x,y). [[x+x]] y 1 f(x,o). x(r). P) (6)

(n)ix) i[[x+x]] 0 1 x(r). P) (7)

= in)(x) i ip)iq) ([[%]] p I [[X]] q I p(a). q(b). ô(a+b)) I x(r). P) (8)

= in)ix)ip)iq) (xp \ xq \ p(a). q(b). ô(a+b) I x(r).P) (9)

= in)ix)ip)iq) (xp I xq \p ia) .q ib) .ô ia+b)\x ir) . i [[l+ l]]n \n iv) . fv .x^v)) (10)

-+ in)ix)ip)iq) (xq I p(a). q(b). ô (a+b) I [[1+1]] n I n(v).pv. x <=v)) (11)

-+ in)ix)ip)iq) (xq \ p(a). q(b). ô(a+b) \ n2\n(v) .pv. x <=v)) (12)

55

-» (x)(p)(q)(xq \ p(a).qib). ô{a+b) \ p2. x<=2)) (13)

-> {x)(q)(xq I q(b). ô (2+6) I x<=2)) (14)

- (x)(q) (xq I q(b). 0(2+6) I x(r). r2)) (15)

(4) (9(6). Zr(2-Hb) I 4,2)) (16)

0(2+2) (17)

-+ Ô4 (18)

The rule for lazy application is applied immediately to obtain (2) from (1).

This time, the computation of the argument (1+1) is guarded by a request

handler in the form of x(r). Since the argument computation ([[1+1]] n I

n(v).rv. X <=v) will not proceed for several steps yet, we abbreviate it to P in

step (3). In (4) we have applied the abstraction rule, followed by the

communication of the function value (5), unwinding of a single activation

handler (6) and function activation (7), as before. Expanding the definition

of [[%+%]] o completely, we obtain (8) and (9), again in complete analogy to

the eager case. Since we now have two requests for the value of x, in the

form oi xp and xq, we re-expand the argument computation P in (10). We

choose p as the first request to communicate along x, obtaining (11). The

guard in front of the argument computation has now disappeared, and we

can reduce the argument to obtain (12). The argument value 2 is

communicated to the environment entry in (13). Before establishing the

environment entry, however, we first need to satisfy the original request,

which is performed in the step to (14). As we require the value of x only one

more time, we unwind only a single instance of the request handler for x,

garbage collecting the rest (15). After communicating the single request in

(16), the rest of the computation proceeds as in the eager case.

56

3.6 Discussion

In this chapter we have presented a translation scheme mapping the X-

calculus into Milner's %-calculus. Reduction of the resulting term modelled

the parallel graph reduction of the original X-calculus term. Our scheme

improves on two such schemes given by Milner in that we are able to

preserve non-strict semantics and sharing while exploiting parallelism

wherever safely possible. While we will not use our scheme directly for a

distributed implementation of functional programming languages, its

conciseness makes it extremely valuable for comprehending the more

practical compilation scheme described in the next chapter and from which

the 7c-calculus scheme was abstracted.

57

Chapter 4 — A Practical Compilation Scheme

4.1 Introduction

The 7i-calculus simulation of the X-calculus which we presented in the

previous chapter shows a clear path to a possible distributed

implementation of modern functional programming languages. It is well-

known that the latter can be viewed as 'sugared' versions of the %-calculus

and the techniques for translating them into the X-calculus are textbook

knowledge [Pe87, Da92]. The missing link for a complete distributed

implementation of parallel functional languages is 'merely' an

implementation of the it-calculus for a suitable distributed architecture.

While such an approach is feasible, we do not advocate it. Since the n-

calculus is not close to any specific parallel architecture, an implementation

based directly on our Tt-calculus scheme would take roughly the following

shape:

functional programming language

X-calculus
4.

7i-calculus
4.

abstract parallel machine model

concrete parallel machine

Such a multi-level implementation is liable to result in very inefficient

code. Instead, we view our %-calculus model as a specification for a more

direct compilation scheme which will be the subject of this chapter. Rather

than going from the X-calculus to the 7c-calculus, this compilation scheme

will map a more conventional functional language directly to an abstract

parallel machine model, resulting in a system with the following structure:

58

functional programming language

abstract parallel machine model

concrete parallel machine

We will focus on the compilation scheme performing the transformation

marked with '41'. This scheme displays profound similarities to the n-

calculus model of the previous chapter and the latter will greatly aid

understanding of this chapter. We will point out correspondences along the

way.

We begin our exposition by establishing a framework for the message-

passing multi-threaded architectures underlying our work. Armed with this

architectural background we then specify the runtime framework that will

make up the abstract model representing the target of our compilation

scheme. Following a section on the source language, the bulk of this chapter

is concerned with the compilation rules.

4.2 Source language

The simple first order source language for which we will present our

compilation rules is shown below. We omitted higher order functions for

clarity. They can easily be added in the fashion described by Nikhil in [Ni89] |

without changing the reasoning underlying our arguments*. In the absence

of higher order functions all our function applications are saturated

supercombinator calls.

* Their method is based on the representation of a higher-order function (closure) as a pair
consisting of a first-order function and a partial argument list. Function definitions are
expanded into a series of functions of two arguments, each extending a partial argument list by
an extra argument with the final one performing the application proper. Higher order
applications are expanded into applying the first component of a closure value (the function)
to two arguments: the second component of the closure (the partial argument list) and the
argument to the higher-order application.

59

Prog D efi... DefnExp

Def f id i ... idn = Exp

Exp const

Exp id

Exp apply f Expi... Expn

Exp let idi = Expi,..., idn = Expn In Exp

Exp if Expi then Exp2 else Expg

Exp cons Expi Pxp2

Exp Expi + Exp2

The last two are representative of construction and primitive operations,

respectively. Several types of expressions will have both lazy and eager rules

associated with them, as was the case for function application in our n-

calculus scheme. As we did for our zc-calculus simulation, we will assume

the presence of a strictness analyser to resolve any resulting ambiguities in

the compilation scheme.

4.3 Architectural framework

The machine model underlying our compilation scheme is that of a

message-passing multicomputer made up of multithreaded processing

elements (PEs), each with their own local memory, such as the F-RISC

model of Arvind and Nikhil [AN88] outlined in Section 2.4.2, or our own

STARDUST architecture [Os91] described in Chapter 6 which we will briefly

summarise here. We assume that of the multiple threads that may be able

to proceed only one thread per CPU executes at any one time. Threads

execute to completion and cannot preempt each other. A thread in our

sense is best described as an ordinary von Neumann program, operating on

registers, exchanging data with local memory, sending messages to other

60

nodes and eventually terminating. Upon termination of a thread, the next

incoming message is consumed, i.e., its contents are transferred to registers

and the handler thread specified by the message is inititated. A similar

model, 'active messages', was described by von Eicken and Culler et al. in

[EC92]. Threads communicate in one of two ways: a thread can start other

threads ('dataflow style') or it can exchange data with another via the local

store. In the latter case both threads need to reside on the same PE. Several

threads will often run within the context of a single frame, i.e., a range of

memory in the local store of one PE. We will find it convenient to call such

a collection of threads a process. While the STAR:DUST architecture

provides direct support only for the simpler concept of threads, processes in

this sense are easily modelled.

4.4 Runtime framework

Our framework for graph reduction on multithreaded architectures is based

on the following principles:

• The whole program code resides on each node in the same relative

location in order not to waste communications bandwidth on feeding

the instruction units.

• There are three classes of memory objects, namely function frames,

constructed cells and suspension cells. Each object resides on a single PE

and can be referenced by a global pointer comprised of PE identifier and

an address local to that PE.

• Each function invocation is associated with a unique function frame

which holds the arguments plus space for any necessary temporary local

data.

• Function invocations are allocated randomly to PEs and all of the code

associated with the invocation executes on the PE which holds its frame.

61

In order to give some structure to our compilation scheme, we will

distinguish the three types of message-send operations listed below. Each

can be interpreted as a macro which will construct a message from a number

of scalar arguments, inject it into the network and continue execution

asynchronously.

• app ly (f , XI, . . . , Xn/ o)

Send a message to a random PE to start the execution of the specified

function. The function argument f is the address of the entry point of a

function. By convention the function will allocate a frame in which to

store the arguments x i and a pointer o to the node in which to place the

result. The Xi represent pointers to the nodes where the argument

values can be obtained, if and when necessary. Before terminating, the

function will cause the result node to be overwritten with a value in

WHNF. An ap p ly message corresponds very directly to the ^-calculus

action f{x,o) in the rule for function application (Section 3.4.4 and 3.4.5),

extended to deal with multiple arguments.

• e v a l (x, la b e l)

Send a message to the PE holding the suspension node x to initiate its

evaluation, if not previously initiated. Recall that suspension pointers

are machine global and therefore x is sufficient to specify the destination

PE. The handler for e v a l registers the current process as a consumer of

the suspension's value when it becomes available, using a linked-list

data structure. The current process is specified as a continuation

consisting of a global pointer to the caller's frame (an implicit parameter

to ev a l) and a label in the caller's code. An e v a l message corresponds to

our 7C-calculus rule for name reference (Section 3.4.2), the major

difference being that the target 'channel' is mapped into the caller's

frame rather than being an independent object.

62

• update (O/ va lu e)

Send a message to the PE holding the suspension node o. There is a

single update handler on each PE which overwrites a suspension with

its value and restarts any waiting processes. Restarting involves sending

further messages (not explicitly described here) which carry the value to

each requester. Update messages correspond to occurrences o£ ox in our

jr-calculus rules of the form [[M]] o, e.g., the rule for name reference

(Section 3.4.2), and are used for depositing constant values, and the

results of primitive computations like + and cons.

It is worth pointing out that the suspension nodes of our runtime model

play the dual role of request channels along which consumers can request

the value of a computation (via an e v a l message) and value channels along

which producers deliver their results (via an update message).

4.5 Overview of the compilation scheme

There are three compilation functions, "P for compiling programs, f) for

definitions and “C for expressions, each mapping a piece of abstract syntax

into our message passing abstract model. We will present the resulting code

in a C-like notation that we hope will appeal better to the reader's intuition

than the short sequence of RISC instructions to which each line

corresponds. In this code, all communication is explicit and takes the form

of one of the message types outlined in the previous section (app ly , e v a l

and u p d ate).

The P scheme applies to the main program only and provides the

packaging for top-level definitions and the main program expression. The f)

scheme compiles top level function definitions (supercombinators) and is

again mostly packaging for the code generated for the function body. All the

interesting work is done by the ifT scheme which generates code for

63

expressions. Entering the scheme code for an expression amounts to

initiating its evaluation. The ifT scheme takes as an additional parameter a

(pointer to) the suspension node which is to be overwritten with the result

of the expression. The resemblance to computation in continuation passing

style is not coincidental, with the target suspension pointer taking the place

of the 'rest of the program'. Our scheme is not equivalent to CPS

computation, however, since we continue executing the thread into which

the iT scheme code is embedded, often in parallel with new threads that

were spawned by this code.

Let us have a closer look, starting with the P scheme: We allocate a

suspension node for the main program expression, initiate its evaluation

via an e v a l message and terminate (denoted by a horizontal bar). The result

will eventually arrive, restarting the main process at L. The resulting v a lu e

is accessible via the message passing interface and does not involve any

additional communication—it is mapped to a register in our STAR:DUST

architecture. Upon arrival of the result we can print it (assuming the result

is a printable scalar value for simplicity) and terminate the program. If the

result of the main program is a list, further e v a l messages are required for

the head and the tail, respectively, until the end of the list is reached. In the

general case, the structure of the p r in t operation depends on the type of the

result. The main program code is followed by that for the supercombinator

definitions and for the main program expression resulting in the following

compilation rule:

64

p [[Defi ... Defn Exp]] =
s = suspended_node (M)
e v a l (s, L)

L: print (msg.value)

%) [[Defi]]

[[Defn]]
M: lET [[Exp]] -» s

Note that since s has been allocated locally we could in this case replace the

eval message by a construct not involving communication, an option not

exploited here in order to maintain consistency of presentation with the

compilation rules to follow.

The f) scheme translates a supercombinator into a handler which is

activated by corresponding apply messages. For each activation the handler

allocates sufficient space to hold (pointers to) the arguments, a pointer to the

destination node for the result and any private temporary space required

during evaluation. Before entering the code for the supercombinator body,

the function handler needs to save the message parameters into the newly

allocated frame.

f) [[f idi ••• idn = Exp]] =
f : allocate_frame

idi = msg.idi

idn = msg.idn
result = msg.result

[[Exp]] -> result

65 -j

The handler so produced corresponds directly to the handler in our n-

calculus rule for abstraction (Section 3.4.3). In the latter case the handler had

the form !/(x,y). [[M]] y, i.e., the handler was represented as the parallel

composition of an unspecified number of processes, each responsible for a

single activation. Note how the idea of 'infinite composition' is mapped

into a passive handler which does not require any resources until activated.

Note also that whereas the 7c-calculus scheme can rely on an abstract notion

of environments we have to introduce explicit frames in which to deposit

the values we want to bind.

4.6 Translating non-strict expressions

Having had a taste of the kind of code produced by our scheme, we are now

ready for the ifT scheme which handles expressions. In this section we will

provide the rules for lazy function application, the lazy let construct and

the lazy version of cons. We will start, however, with the rules for numeric

constants and identifier reference which are transparent to issues of

strictness. All our rules will be of the general form

ifT [[Exp]] result =
code

where Exp is the expression to be evaluated and result is the name of the

suspension node which is to receive the result. In other words, ifT is a

function of two arguments, a piece of abstract syntax and a name. Note that

the structure of this scheme is identical to that of our jc-calculus scheme of

Chapter 3. There we had a compilation function of the form [[M]] o where M

was a term of the X-calculus and o was a name of the 7c-calculus.

4.6.1 Constants

The rule for constants is easy enough. We simply send the value of the

constant to the result node. Note that the update message is not followed by

66

termination, so we continue executing the code into which the code for the

constant is embedded.

[[const]] —> result =
update (result, const)

This rule corresponds directly to the rule for constants (Section 3..3) in our

7c-calculus scheme which had the form

[[const]] o 4̂ ̂ Ô const

4.6.2 Identifier reference

Before we can update the result node for an identifier reference, we need to

make sure via an eval message that the value is available in WHNF. We

transmit the label L to specify where execution is to continue once the value

arrives and then terminate. On arrival of the value, we update the result as

before.

ifT [[id]] -> result =

e v a l (id, L)

L: update (result, msg.value)

At this point the reader is likely to notice that there is a substantial amount

of communication going on even for the simplest kinds of expressions. We

therefore hasten to point out that the compilation rules given here are only

meant to cover the general case as concisely as possible. For many of the

messages produced here source PE and destination PE coincide. More spe­

cialised rules can be given to avoid message-passing overhead altogether for

important special cases.

Comparing the rule for identifier reference with the corresponding one

in the 7c-calculus scheme (Section 3.4.2) we find that we have not made use

67

of the shortcut described there which would cut out one communication

step. Such a shorthand is perfectly possible and would involve the

definition of a second kind of eval message which would take the address

of a target suspension node as a parameter. We abstained from this

optimisation to simplify our presentation.

4.6.3 Lazy function application

The code generated for a lazy function application starts by allocating

suspension nodes for each of the parameters, marking them 'suspended' to

indicate they are as yet unevaluated, and storing within it the continuations

of the computations that can determine the parameter values if and when

required. The code for the individual expressions is then bypassed and the

function is activated, with pointers to the suspension and result nodes

passed as parameters.

ifT [[apply f Expi ... Expn]] —> result =
Si = suspended_node (Li)

Sn = suspended_node (Ln)
goto Ln+i

Li; C [[Expi]] Si

L n : [[E x P n]] - > S n

■*n+l : ap p ly (f, Si,..., result)

This rule does not appear to correspond very closely to the rule for lazy

application in our xc-calculus scheme (Section 3.4.5) for two reasons. Firstly,

the rule above only implements first-order function application, i.e., f is a

code label rather than an expression. Secondly, as pointed out in Section 4.4

68

,i

on the runtime model, suspension nodes play a dual rule as both request

channels and value channels. Thus some of the functionality of the original

jT-calculus application rule is here performed by the handlers for suspension

nodes, in particular the waiting for and servicing of requests.

4.6.4 Lazy l e t

This rule is structurally sufficiently similar the rule for lazy function

application above for us to restrict ourselves to pointing out the two

differences: instead of introducing anonymous suspension nodes for the

arguments to a function application, we will use the names provided by the

let construct. Instead of sending an apply message, we simply evaluate the

body of the let expression in line.

[[l e t idi = Expi, ... , idn = Expn in Exp]] -> result =
idi = suspended_node (Li)

idn = suspended_node (Ln)
goto Ln+i

Li: C [[Expi]] -> idi

L n : E x p n]] i d n

L n + i : “ëT [[Exp]] -4 result

4.6.5 Lazy co n s

Again the similarities to lazy function application are striking. Obviously

we only have two arguments to deal with. The pointers to suspension

nodes allocated for them are stored into a locally allocated frame for the

cons-cell. The result node is updated with a pointer to this cell.

69

%

ifT [[cons Expi Exp2]] —> result
51 = suspended_node (Li)
52 = suspended_node (L2)
goto L3

Li: C [[Expi]] -> Si

L2 : ^ [[Exp2]] S2

L3 : c = cons (si, S2)
u p d a te (result, c)

4.6.6 Conditional

Given that we are dealing with a lazy functional language we could map the

conditional construct to an appropriate built-in function

cond (test, then, else)

which will return the value of either its second or its third argument

depending on the value of the first. Nonetheless we give a direct

compilation rule here.

[[i f Expi th en Exp2 e l s e Exp3]] -» result =
s = busy_node ()
C [[Expi]] -> S
e v a l (s, Li)

Li: if (Imsg.value) goto L2

[[Exp2]] result
goto L3

L2 : '̂ [[Exp3]] result
L3 :

70

While we do not suspend the computation for Expi, we still allocate a graph

node s for its value and mark it 'busy', i.e., currently undergoing eval­

uation. As evaluation of Expi has already begun by the time we send the

eval message, this message here only serves the purpose of synchronisation.

When the value of Expi becomes available in s, we restart the current

process at Li, evaluating either Exp2 or Expa based on the result.

4.7 Translating strict expressions

While the rules presented in the previous section employ message-passing

and distribute function applications across processing elements, they do not

provide us with any opportunities for parallelism as any instance of thread

creation is swiftly followed by the termination of the original thread. To

verify this claim note that in the scheme presented so far all recursive

invocations of are immediately followed by a termination. In order to

obtain parallelism we need to take advantage of the known strictness of

built-in operations like addition, or we have to perform strictness analysis

on the rest of the program and translate selected expressions according to

the rules presented in this section. To simplify the presentation we will only

show the code generated for expressions that are strict throughout, e.g.,

function applications that are strict in all the arguments. Hybrid rules, such

as the one for the conditional construct, would have to be employed for a

more complete implementation. The rules given below are 'naive' in that

they exploit maximal parallelism. They will be adapted in the next chapter

to guarantee load bounding.

4.7.1 Eager function application

As in the code for lazy function application we allocate a suspension node

for each of the parameters. Rather than actually suspending the

computations in question, we immediately enter the code for each of the

71

arguments. Parallelism comes about if any of the argument expressions

itself involves a function application which results in starting a new thread

on a (generally) remote processing element.

^ [[apply f Expi ... Expn]] —> r e s u l t =

Si = busy__node {)

C [[Expi]] -> S i

Sn = busy_node ()

C [[ExPn]] -> Sn

ap p ly (f , S i , .../ Sn/ r e s u l t)

Note that under a parallel execution regime strictness information can

generally not be used to avoid 'boxing', i.e., the allocation of graph nodes for

subexpressions. To avoid such graph nodes we would have to evaluate the

argument expressions before entering the function code, thus limiting

parallelism. Such a strategy may still be interesting in special cases, for

example if the function invoked will immediately require the argument

values.

4.7.2 Eager l e t

Again, as in the lazy case, the code generated for the l e t construct is almost

identical to function application. Again the only difference is that we use

the identifier names supplied by the programmer and we enter the body of

the expression directly rather than sending an apply message.

72

ifT [[l e t id i = Expi, ... / idn = Expn in Exp]] -> result
idi = busy_node 0

TT [[Expi]] -> idi

idn = busy_node ()
C [[ExPn]] -> id n

ifT [[Exp]] -*> r e s u l t

4.7.3 Eager co n s

The eager version of cons is constructed completely analogously and is

given for the sake of completeness.

ifT [[cons Expi Exp2]] -> re su lt =

51 = busy_node 0

C [[Expi]] -> Si

52 = busy_node ()
tT [[EXP2]] S2

c = cons (si, S2)

u p d a te (resu lt , c)

73

I t
4

4.7.4 Addition

Finally we provide the compilation rule for addition.

tfT [[Expi + Exp2]] -> result =
Si = busy_node ()
C [[Expi]] -> Si
8 2 = busy_node ()
^ [[Exp2]] -> 82

e v a l (s i , Li)

Li: VI = msg. value
e v a l (S2/ L2)

L2 : V2 = msg. value
u p d ate (result, V 1 +V2)

This rule will require a short explanation. After initiating the evaluation of

both arguments in parallel, like we did for any of the other strict constructs,

this time we require their actual value for addition to complete its task.

Therefore we perform synchronisation via eval messages to obtain the

numeric values of the arguments. As the evaluation of both arguments has

already started, the eval message will merely serve to request their values to

be reported back to the current process. As given, the rule requests first the

value of the left subexpression and then the value of the right

subexpression. This does not impose any sequentiality on the order in

which the arguments are evaluated, only on the order in which their values

are reported. As both graph nodes are managed by the local processing

element anyway, we have nothing to gain from eliminating this admittedly

artifical order.

74

As the rule for addition has a counterpart in the Ji-calculus scheme of

the previous chapter it w ill be useful to compare the two. The

correspondence here is a very natural one. Our jc-calculus addition rule

(Section 3.3) started by introducing two names corresponding to the

allocation of two graph nodes. We had one parallel process responsible for

computing the value of either of the subexpressions. Like in the above rule,

our TT-calculus code reads first the value of the left subexpression, then the

right, before writing the value of their sum to the output channel.

4,8 Summary

In this chapter we have made more concrete the abstract simulation in the

ir-calculus of graph reduction in the X-calculus, as presented in Chapter 3.

This was done in the form of a practical compilation scheme for message-

passing multicomputers. Our rules were divided into two sets. The group of

rules dealing with instances of language constructs not known to be strict

did not create any parallelism. All parallelism to be obtained was provided

by rules that applied to expressions that were strict throughout. We have

pointed out along the way the multiple close correspondences between the

compilation scheme and the Tc-calculus simulation of the previous chapter.

75

Chapter 5 — Load Bounding

5.1 Introduction

Compilation rules like those of the previous chapter allow us, in principle,

to exploit the maximal parallelism implicit in a functional program, starting

new threads whenever the opportunity arises. As pointed out in Section

1.7.2, however, maximal parallelism may be rather more than we desire.

We argued there that without a prudent strategy for bounding parallelism

many programs, in particular those of the divide-and-conquer type, can

exhibit vastly increased resource requirements. In this chapter we will

present a simple automatic technique for bounding the parallelism of

executing programs dynamically and adaptively, based on the changing

workload of the underlying parallel system. Our technique will be

integrated in a cheap and simple manner into the compilation scheme of

Chapter 4. We present an informal proof of the effectiveness of our method

based on the structure of the compilation scheme. Determining the

workload of a large parallel computer is not a trivial task, involving as it

does a form of global synchronisation. We have to ensure that its compu­

tational cost does not have undue impact on the runtime of the user

program. We present a simple and cheap load computation algorithm with

the required properties. Finally we point out why the sharing of

subcomputations can have a detrimental impact on the effectiveness of load

bounding.

5.2 Pitfalls and dangers

Given that the compilation scheme presented in the previous chapter

provides distinct rules for parallel and sequential execution of some of the

same program constructs, the first idea that comes to mind is to apply the

parallel rule when additional parallelism is required and the sequential rule

76

when the machine is already saturated with work. More specifically, we

could extend the definition for the eager case to revert to the lazy case if a

dynamic test determines that the current workload already exceeds a fixed

limit, as in the following scheme

[[Exp]] result =
if (workload > limit) goto P
l̂azy [[Exp]]—> result
goto E

P: "Keagerh Exp]]-» result
E:

Provided we can implement the computation of the current workload

cheaply (see Section 5.6), this scheme provides an effective means of

bounding parallelism. It has, however, an obvious and severe drawback in

that we generate duplicate (if slightly different) instances of code for the

same expression. Both the code for the eager case and the code for the lazy

case can in turn contain more strict subexpressions which would again

result in code duplication, and so on. In the worst case the size of code

generated by such a scheme would be exponential in the length of the

original code—an unacceptable proposition. A second, less obvious

disadvantage of this method is the fact that it is not adaptive. On entering

the code for an expression Exp with subexpressions Expi ... Expn we may

decide, based on the current workload, that the subexpressions ought to be

computed serially. If the workload has dropped after computation of Expi is

complete and additional parallelism is desirable, there is no opportunity for

evaluating the remaining subexpressions Exp2 ... Expn in parallel with each

other. The scheme presented below avoids the code explosion as well as

being more adaptive in situations of changing workload.

77

5.3 A workable solution

Before going into the details of our extended compilation scheme we will

introduce the invariant on which our informal proof of the effectiveness of

our load bounding method will be based:

While the workload is high, no thread will start more than one new

thread. After creating a new thread, the current thread terminates

im m ediately.

This invariant will apply, in particular, to the thread which starts the

evaluation of a complex expression, i.e., it will only be able to start one

successor thread during situations of high workload. The same applies to

the thread thus started and its descendants. It is therefore not possible for

complex expressions to enter two subexpressions simultaneously as long as

the workload remains high, thus guaranteeing the effect of depth-first

execution we desire (see Section 1.7.2).

When analysing a compilation rule for the preservation of the

invariant we have to keep in mind that the code generated for most

expressions consists of multiple threads. Each of these threads must be

analysed separately. Furthermore, threads transcend the boundaries of the

code generated by our compilation rules, i.e., one thread will go into the

code generated for an expression and another will leave it at the end. In

designing our scheme we have stuck to the convention that no thread

creates other threads prior to entering the code generated by the iT scheme.

However, threads often use up their allotment of one extra thread just prior

to leaving the code for an expression.

Let us consider the lazy compilation rules given in Section 4.6. We will

repeat them here for easy reference, starting with the rule for constants.

78

“ÈT [[const]] —> result =
u p d a t e (result, const)

This rule consists of a single thread sending a single message. By our

convention, we will not have started a thread prior to entering this code,

thus satisfying the invariant*. Next we will consider the rule for identifier

reference, repeated below.

^ [[id]] -» result =
e v a l (id, L)

L: update (result, msg.value)

This code consists of two threads. The thread entering here has not yet

started any new threads by our convention. It sends a single message and

terminates immediately. The outgoing thread sends a single message, again

preserving the invariant. Now for a slightly more involved example, the

rule for lazy function application.

^ 11 apply f Expi ... Expn]] result =
Si = suspended_node (Li)

Sn = suspended_node (Ln)
goto Ln+i

Li; C 11 Expi]] Si

Ln: 11 ExPn]] -> Sn

Ln+i: apply (f, Si,..., Sn, result)

but see the restriction on sharing detailed in Section 5.7

79

Here the main thread extends through the code generated (circumventing

the suspended argument expressions by means of a goto), producing only a

single message before leaving. Each of the threads responsible for

computing the value of one of the suspended argument expressions directly

enters the code for the corresponding subexpression. This code can generate

only a single thread (by a simple inductive argument). In order to maintain

the invariant we have to terminate immediately, and we do.

Identical arguments can be made for the rules applying to the lazy l e t

construct and the lazy cons operator. Thus we can see that all our lazy rules

satisfy the invariant irrespective of the current load situtation. This was of

course only to be expected: as mentioned before, there is no parallelism in

purely lazy evaluation. For the eager rules of Section 4.7, however, the

inductive argument would quickly break down. In the following section we

will therefore adapt those rules to comply with our invariant.

5.4 Eager compilation rules modified for load bounding

For the eager rules that follow, we will assume the existence of a boolean

test operation p a r a l l e l which will determine, at any instant during the

execution of a program, whether the current load status of the machine

permits the creation of new parallel threads. We will discuss in Section 5.6

how such a test can be implemented efficiently.

5.4.1 Eager function application

The adapted rule for eager function application which incorporates the core

idea of our scheme is given below. We immediately observe that we

generate code for each subexpression only once.

80

[[apply f Expi ... Expn]] —> result
Li : Si = busy_node ()

'€ [[Expi]] -> Si
if (parallel) goto L2
eval (si, L2)

Ln : Sn = busy_node ()
C [[Expn]] -> Sn

if (parallel) goto Ln+i
eval (Sn, Ln+i)

Ln+i: apply (f, Si, ... , Sn, result)

Let us first verify that the modified eager rule still performs the required

operation. Assuming that each of the tests for additional parallelism

succeeds, it is readily apparent that but for the testing overhead the sequence

of operations is identical to that for the naive eager rule of Section 4.7.1.

Now what happens if the first test for extra parallelism fails? Instead of

immediately entering the code for the second subexpression, we send an

eval message to the suspension node for the first subexpression and

terminate. Since the evaluation of si has already started (we have just

initiated the code for Expi), the eval message will merely register the

current process as a consumer of the resulting value, once available. Only

when this value has been computed is the current process restarted at L2.

The eval message therefore merely has the effect of synchronising the start

of the second sub computation with the arrival of the result of the first,

leaving the course of the computation otherwise unchanged. The same

argument applies to each of the subcomputations in turn. The arrival of the

81

result for the last subexpression is synchronised with the activation of the

function to be called.

Knowing that the above rule implements function application correctly,

independently of the load situation, what can we say about its effect on

system load? In order to preserve the invariant of the previous section we

again need to verify that each thread of the code generated by the modified

rule has at most a single successor thread while the workload is high. So let

us assume the system is already saturated with parallelism on entering the

code generated by the above rule. We start evaluation of the first

subexpression which will, in general, create a new thread. We now have to

guarantee that more threads are not created. The test for more parallelism

will fail so we send an e v a l message and terminate. At first sight, it would

appear this e v a l message should initiate a new thread. However, as pointed

out in the previous paragraph, this message has the sole effect of registering

the current process with the suspension node s i. Since s i has been allocated

locally, the obvious way to implement this 'message' is to change the

contents of the suspension node without starting an extra thread, thus

preserving the invariant for the initial thread. Again the same argument

applies to each of the subsequent threads. If the workload remains high

throughout, each thread will initiate one more sub computation and

terminate after changing the contents of the corresponding suspension

node. Finally the last thread will start a single new thread via the a p p ly

message, again complying with the invariant.

5.4.2 Eager l e t

After having dealt successfully with the rule for eager function application,

the rest of our rules follow swiftly along the same lines. Here is the adapted

eager rule for the l e t construct:

82

ifT [[let idi = E x p i, ... , idn = Expn in Exp]] -> result
Li: idi = busy_node ()

C [[Expi]] -» idi
if (parallel) goto Lg
eval (idi, L2)

Ln: idn = busy_node ()
C [[E x P n]] i d n

i f (parallel) goto L n + i

eval (i d n , L n + i)

Ln+i: ^ [[Exp]] -> result

The eager let construct differs from eager function application merely in

the naming of the suspension nodes and in the inline expansion of the body

of the let. The argument for the invariant is precisely the same as above.

5.4.3 Eager co n s

Neither does the eager version of cons produce any difficulties, as the reader

will immediately verify. Here is our modified rule:

83

[[cons Expi Exp2]] result
Li: Si = busY_node {)

C [[Expi]] -4- Si
if (parallel) goto L2
eval (si, L2)

L2*. S2 = busy_node ()
^ [[Exp2]] —> S 2

if (parallel) goto L3
eval (S2, L3)

L3: c = cons (si, S2)
update (result, c)

5.4.4 Eager addition

In conclusion, we present the modified rule for addition, explained below.

84

[[Expi + Exp2]] -> result
Li: Si = busy_node 0

C [[Expi]] -> Si

if (parallel) goto L2

eval (s i , L2)

L2: 82 = busy_.no de 0
iT [[Exp2]] 82
eval (s i , L3)

L3: VI = m s g .value
eval (S2, L4)

L41 V2 = m s g .value
update (result, V1+V2)

Here we note that the original version already needed to synchronise the

arrival of both argument values with the computation of their sum. Our

modification to the original rule therefore consists of adding one additional

synchronisation to make sure that evaluation of the second argument is not

started until evaluation of the first has completed if the workload is high.

The second e v a l message to s i in the load bounded case could be avoided

at the expense of duplicating the code for Exp2.

5.5 Adapting to changes in the workload

The compilation rules provided in the previous section implement a load

bounding regime which adaptively responds to changes in the workload.

This adaptivity can come about in two ways. The first and more obvious

results from the fact that we perform a test of the current workload on each

occasion where we have the option of exploiting parallelism. Imagine for

example an instance of an eager function application of the form

85

f expi exp2

where both of the subexpressions themselves provide opportunities for

parallelism. Even if we decide to perform exp i and exp 2 in series, we will

be able to exploit any inner parallelism inherent to either e x p i or e x p 2

should the system workload have dropped in the meantime.

Less obvious is the fact that even after choosing the sequential option

for the function application, a drop in workload may result in evaluating

some remaining parts of exp i and exp2 in parallel. Consider for example an

expression of the form

f (cons expi exp2) exps

where both the application of f and the evaluation of c o n s can be

performed eagerly in parallel. Consider the case where we decide, based on

the current workload, to wait for the result of con s before evaluating the

second argument to f . Imagine that immediately after taking this decision

the workload drops to a level where we could again make effective use of

additional parallelism. The code generated for cons (see previous section)

would now opt for eager parallelism, start the evaluation of both exp i and

exp 2 and return a newly-allocated cons-cell immediately. The computation

of exp3 could therefore start before the evaluation of the first argument has

completed. This second form of adaptivity is restricted, however, to cases

where the first expression in a series involves a non-strict constructor of

which cons is out archetypical example.

5.6 Efficient load computation and load testing

The efficiency of the scheme presented in the previous section relies heavily

on the ability to test the global workload quickly and cheaply. On a scalable

parallel system, however, the local workload on each PE, and thus the

average global workload is subject to sudden change. We cannot expect to be

86

I

able to present an accurate and instantaneous picture of the average global

workload to each PE. The situation is somewhat simplified by the fact that

we are not ultimately interested in the precise figure for the global workload

itself. We only need to know: is the global workload 'too high' or is it 'too

low'? Put differently: should we attempt to expand parallelism or reduce it*.

Two approaches came to our mind to allow PEs to make this decision

quickly and on the fly.

5.6.1 Probabilistic load estimation

Our first intuition was to use the local workload as an estimate for the

global workload. We adopt as a measure of the local workload the number

of waiting messages at a PE which corresponds to the length of the token

queue in a dataflow architecture. Due to our strategy of randomly allocating

function applications to processors, we can expect decisions based on this

estimate to be reliable with high probability in situations of high workloads

and low workloads. However, even when the global workload is very high,

there remains a finite probability of taking a wrong decision: an individual

PE which is temporarily underutilised may start new parallel

sub computations and thus increase the global workload further. In a

situation where all computations are very long-lived, i.e., when there are

no matching reductions in parallelism in the form of completing threads,

the global workload may exceed any given bound. This is the case, for

example, for n f ib . Simply replacing load computation by probabilistic load

estimation is unsatisfactory.

5.6.2 Cyclic load determination

Our second attempt was based on the following idea: rather than relying on

an inaccurate estimate that is instantly available everywhere, we could

* Strictly speaking we don't actively reduce parallelism but rather we wait for threads to die

87

periodically compute an accurate value for the global workload and rely on

this value for the whole period. As long as the overhead of the load

computation is small relative to the intervening user computation, the

necessary global synchronisation can be efficient. Due to the multithreading

nature of our underlying architecture, we can interleave the load

computation w ith the user computation, which simplifies matters

considerably. In particular, we have no need for any special hardware

support. The load computation can be driven by a busily waiting timer

process on a dedicated root node. At the start of each new period, the timer

process initiates requests to every PE to report their local workloads.

Requests are distributed down a logical tree which is superimposed on the

system network. Local workloads are accumulated as they are reported back

up the tree so that the value that reaches the root node will be the total

workload. The root computes the average workload per PE and proceeds to

distribute this value back down the tree. Upon receipt of acknowledgement

from every PE, the root node restarts the original timer process.

Experiments with this scheme showed that we successfully solved the

problem of ever-increasing workloads. However, the combination of two

problems makes this method impractical as well. Firstly, the period of the

load determination cycle has to be fairly large ('- 1 0 0 0 0 processor cycles) to

dominate the fixed overhead per node (- 1 0 0 processor cycles per load

computation). Secondly, since load computation messages compete for

bandwidth with user messages, the load computation can be seriously

delayed when parallelism is expanding quickly within one phase. By the

time one phase of the load computation is complete, parallelism can already

be unacceptably high.

88

5.6.3 A hybrid solution and its cost

The solution we eventually adopted with some success, as evidenced in

Chapter 6 , is a hybrid of the two approaches above. We do cyclic load

computation to be able to put a cap on parallelism, but we also decide in

favour of sequential execution on any node whose local load is unacceptably

high. Improvements to this scheme are possible by adding hardware

support, for example in the form of a hierarchical control network which is

separate from the data network and is suitable for fast global

synchronisation. Such a control network has been implemented in the

CM-5 [Le92] and is valuable for various other functions, e.g., for

synchronising distributed garbage collection not discussed in this thesis.

The computational cost of our scheme has two components, the cost of

the actual workload computation and the cost of the test operations that we

need to integrate into our compilation scheme. Our implementation of the

distributed workload computation has the structure described in the

previous section. In Figure 5.1 we show the protocol followed by each node

in the tree. The four handlers were implemented in STAR:DUST machine

code (see Chapter 6 for details of STARiDUST) and amount to a total of

about 100 RISC instructions. While message latency has a significant effect

on the time from initial request to final acknowledgement, it does not affect

the computational cost in a well-designed multi-threaded architecture, as

processors can quickly switch to user threads instead of blocking and waiting

for an immediate response. The cost per node per load computation is

therefore of the order of 100 processor cycles on a single-issue RISC

processor.

89

to parent

' R e q u e s t

A v e r a g e a n d R eport ^

D istribute

A ck n o w led g e

to chiidren

Figure 5.1: Node protocol of distributed load computation

If we set the timer process to initiate a load computation every 10000 cycles,

the cost of load computation will amount to about 1% of total runtime.

The second part of the total load bounding cost is incurred by the test

operations embedded in the scheme of Section 5.4. In our implementation

on STAR:DUST, each such test is performed with extremely little overhead.

Each test of the form

if (parallel) goto L

is mapped to a sequence of four RISC instructions as follows: we load the

length of the local message queue into a register, add to that the the average

global workload as determined by the last global load computation, compare

the result to a constant, called the target load value, and branch to L if the

sum was smaller.

5.7 The problem of sharing

There is one important exception for which our scheme is not guaranteed to

succeed in load bounding. The source of this problem lies with the handler

for update messages which overwrites nodes of the graph with values in

WHNF. While an update message itself will only start a single new thread,

namely the update handler, the handler in turn needs to restart any threads

that have become suspended as a result of that value being previously

90

unavailable, independently of the current system workload. Therefore, a

single update message has the potential to restart an unbounded number of

processes that were created while parallelism was low, thus defeating our

load-bounding strategy. Multiple computations can only be waiting for the

same suspension in the presence of sharing. Obviously sharing is an non­

expendable part of functional programming languages, so this deficiency is

somewhat disheartening. In practice many programs which exhibit sharing

will be successfully load-bounded by our scheme as well, but we have no

doubt that worst-case programs can be constructed that will provoke

arbitrarily high workloads. We would not expect to be able to solve the

sharing problem completely, since it is well-known that the space

complexity of many lazy programs exceeds that of corresponding eager

programs. Nonetheless we are investigating several approaches towards at

least a partial solution and we will quickly sketch two of them.

In the case where the program is strict in a shared expression E, we can

insist on reducing E to WHNF before initiating any computations which

share e. In this way, no computation could become suspended as a result of

waiting for E to complete. This solution has obviously limited scope and

also restricts opportunities for parallelism.

Part of the sharing problem is the fact that processes suspended while

waiting for an 'eval' to complete represent 'sleeping parallelism' which does

not enter into our load computation. We could change the load

computation method to count such processes as active. This approach will

obviously restrict parallelism as well and there is the danger that

pathological examples may exist which produce so much 'sleeping

parallelism' that actual parallelism is starved out. Nonetheless we consider

this idea sufficiently interesting to warrant further study and

experimentation. I

91 i
y

J

5.8 Summary

We have presented a simple and efficient software method of bounding the

parallelism generated by parallel functional programs. This was achieved by

modifying the naive compilation rules of the previous chapter to take into

account the current workload. We have given an informal proof for the

effectiveness of our algorithm based on the structure of the compilation

scheme. The efficiency of our method was guaranteed by a hybrid strategy of

computing the average global workload at fixed intervals and using the

local workload as a rough estimate. Finally we have pointed out how

sharing can disturb load bounding.

92

Chapter 6 — The STAR;DUST Architecture

6.1 Introduction

This chapter plays a dual role in the structure of our thesis on parallel

functional programming. On the one hand we perceive a need for

presenting the idea of multithreaded architectures in some more detail in

order to give greater credibility to a compilation scheme and runtime

system targeted at such architectures. To further this aim, our STAR:DUST

architecture* will serve to illustrate that individual multithreaded

microprocessors can be competitive with modern high-performance von

Neumann microprocessors while at the same time providing the efficient

support for communication and synchronisation which is necessary for

practical parallel computing. Secondly we present STAR:DUST as an

architectural contribution in its own right, interesting for the fact that its

support for multithreading is reduced to two simple machine instructions,

in line with the RISC principles underlying the rest of its design.

We begin this chapter by stating the architectural requirements that

arise from the work presented in the earlier chapters. We will introduce

STAR:DUST as an ordinary RISC microprocessor architecture before

introducing the two simple extensions to the instruction set that are

required to support a multithreaded model of parallel programming. After

addressing some important questions regarding the resulting architecture,

we conclude with a section comparing STAR:DUST to the P-RISC

architecture from which it was derived.

STAR:DUST is short for "St Andrews RISC: Dataflow Using Sequential Threads'

93

6 .2 Architectural requirements for scalable, parallel programs

STAR:DUST is not an 'abstract' machine in the sense that it is not meant as

an interface between a high-level language and concrete parallel hardware,

such as the <v, G> machine of Augustsson and Johnsson [AJ89]. Rather, one

of the major design goals was that it should be implementable in modern

VLSI technology. Given that STAR:DUST exists only in form of a software

simulation the reader may regard claims of 'efficient implementability' with

caution. Our case rests largely on the fact that key aspects of our architecture

have already been efficiently implemented individually. In particular, our

architecture is only an evolutionary step from conventional RISC

microprocessors and is well-positioned to take advantage of any advances in

sequential RISC technology. In the following we w ill outline the

architectural principles that guided our design.

6 .2 .1 Scalability

We have taken great pains not to introduce any ideas into either our

compilation scheme or the load bounding system which would restrict our

ability to scale up the size of the machine. In particular, we avoided

introducing artifical bottlenecks not present in the user program or making

assumptions about the underlying architecture which would not easily scale

to large numbers of processors. Clearly scalability must now also be a major

concern of the architecture. An unavoidable consequence of scaling up

parallel machines is the fact that communication latencies between nodes

will grow relative to access times for local memory and processor cycle time.

An architecture must be able to tolerate such latencies without loss of

efficiency by using what is called 'parallel slackness' by Valiant in [Va90], i.e.,

trading parallelism for communications latency. The key idea, which goes

back at least to Sullivan and Bashkow [SB77], is to switch to another thread

of control whenever the original thread would otherwise block while

94

waiting for a communication to complete. See also Arvind and lannucci

[AI87] for an excellent discussion of this issue.

6.2.2 Topology independence

We require a complete connectivity abstraction, most likely implemented by

packet routing in a relatively sparsely connected physical topology. A

processor architecture should not make assumptions about particular

network topologies so that the implementation of the network can proceed

independently from that of the processing element and can be optimised for

maximum bandwidth and minimum latency without interfering with

architectural principles. The technology for building such networks has

matured to commercial applicability and we will not discuss it here. See, for

example, the discussion by Leiserson et al. of the network architecture of the

CM-5 [Le92].

For us, topology independence also implies that we do not aim to

exploit 'near-neighbour' properties among processing elements, distin­

guishing only between local and global data. In the terminology of Cole

[Co90] we only take advantage of 'partial locality'.

6.2.3 Asynchronous, message passing communications

While continuous streams among concurrent sequential processes are a

highly efficient and often conceptually simple means of communication

and can be put to good use in parallel functional programming as described

by Paul Kelly in [Ke89], they do not fit the bill for the compilation scheme

presented in this thesis. A message passing model is more suitable for

operations such as function invocation, parameter passing or dereferencing

of global pointers. Due to our usage of message passing for basic language

constructs we require a high sustained communications bandwidth.

95

1Î ÎÎ iSsfiîS'Ç'

6.2.4 Fast context switching and process synchronisation

Fast context switching and process synchronisation are the principal factors

determining the granularity of parallelism which can be supported

effectively. While excessively fine-grain parallelism has proven impractical,

reducing hardware constraints on granularity remains not just a valid but a

crucial goal. We need to be able to switch quickly among multiple quasi­

concurrent threads on a single processing element to mask high-latency

remote accesses.

6.2.5 Sequential efficiency

A suitable architecture must be able to execute strictly sequential programs

on a single processing element with an efficiency comparable to that of a

sequential processor. We do not want to pay the price for fine-grain

synchronisation where it is not required. Locality is a crucial issue in this

context. We require high-speed access to local data. This includes the

relatively small but extremely fast on-processor state in the form of on-chip

caches and registers on which modern RISC processor rely for their

impressive performance.

6.3 STAR:DUST as a RISC processor

STARtDUST is so close to a modern RISC design that it is best understood in

terms of the basic RISC processor at its core, depicted in Figure 6.1. This

processor is modelled after the Sun SPARC [Ga8 8] to facilitate comparison.

Where we committed ourselves to concrete architectural parameters, like

the number of directly addressable registers, we did so to comply with

equivalent commitments in the SPARC. Like on the SPARC we have an

ordinary sequential program counter, a set of 32 directly addressable registers

and a status register. Instructions are executed sequentially. There are only

two instruction formats compared to the SPARC's three: we fit the call

96

instruction into the branch format. All memory access is via explicit

load/store instructions. A memory manager can provide a cache to speed up

memory access. The ALU operates on registers only (three-address

operations). Sequential instruction streams are amenable to pipelined

execution. By remaining close to a conventional architecture for the

sequential part of our design we can justify our claim being able, in

principle, to provide comparable sequential efficiency.

Register File

PC! rO... r31

Local Memory

Figure 6.1: The RISC core of a STAR:DUST processor (data paths only)

6.4 STARiDUST as a building block for multiprocessor systems

While at any time there is only a single active sequential thread per

processing element, STAR:DUST supports multithreading by allowing for

further dormant threads, i.e., threads ready for execution. Each dormant

thread is represented by a context in the context store which is organized as a

queue as shown in Figure 6.2. A context consists of a program counter

value, plus a set of eight values for the context registers r0-r7. The program

counter and the context registers together will be called the active context.

Contexts also form the basis of our communications model. Our

understanding of a message is a context in transit. Support for cross­

processor parallelism is centered around two parallel control instructions:

97

An instruction of the form s t a r t pc initiates a new thread, generally

on a remote PE, via the following mechanism: the s t a r t instruction

constructs a message from the pc operand and the values in registers

r2 4 - r 3 1 which we will also refer to as the communications registers

c O - c l . Execution of the current thread continues immediately and

asynchronously. A network manager ensures delivery of this message

to the processor specified in cO, where the message contents are queued

in the context store. In other words: the values in registers c O - c l of the

sending processor end up in registers r O - r l of the receiving processor,

representing a dormant thread.

The term instruction terminates the active thread by taking the next

context from the context store and making it the active context.

Context

Register Rle

r0..r7 r8..r23 C0..C7

AZ
Network Local Memory

Figure 6.2: A STAR:DUST processing element (data paths only)

98

6.5 Discussion

Before demonstrating how one goes about writing parallel programs in

terms of these primitive instructions, we will address a number of questions

which are bound to arise.

6.5.1 Is STARrDUST still a RISC architecture?

The two parallel control instructions might be seen to violate RISC

principles by 'operating' on eight registers at a time. However, both

instructions can be implemented using register windowing techniques

comparable to those used in the SPARC for high-speed parameter passing to

subroutines. The network manager can operate largely asynchronously

from the RISC core.

6.5.2 Does STAR:DUST require infinite buffers?

As the context store is to reside in high-speed memory on-chip, its size is

necessarily limited. In order to avoid the possibility of deadlock—or undue

restrictions to the programming model that can be supported—STARDUST

needs to provide an abstraction of an unlimited context store. The obvious

solution is to overflow the context store into main memory when

necessary. Again there is a correspondence to the SPARC register

windowing mechanism which overflows the call stack (kept in register

windows) into main memory. Since our context store is organized as a

queue, however, the penalty for overflow in the form of thrashing

behaviour is more severe. Therefore, the overflow mechanism is only to be

seen as dealing with a 'worst case'. The programming model will have to

avoid context buffer overflow to guarantee maximum performance. The

load bounding scheme presented in the previous chapter provides the

necessary guarantees for parallel functional programming.

99

6.5.3 What network bandwidth can we reasonably assume?

A crucial parameter in a VLSI implementation of STARDUST is the

bandwidth of the network interface, the major factor limiting the

minimum granularity we can support efficiently. For the following

argument we will measure bandwidth relative to the processor cycle time.

For comparison, the figure for the T800 transputer [Gr90] is 4 bit/cycle (4

channels of 1 bit/cycle each). Assuming similar specifications for a hardware

implementation of STAR:DUST we would be able to sustain outgoing

network traffic of the order of one message every 72 cycles (our messages

contain 9 words of 32 bits each). Such a figure may not be completely

sufficient to support the generous use of message passing in our simple

compilation scheme of Chapter 4. Any effort to turn this scheme into a

'production quality' compiler would therefore have to include measures to

eliminate unnecessary message passing.

6.6 Sample Programs

In the following we will present two STARDUST program fragments to

illustrate our basic model of parallelism and, at the same time, to

demonstrate that STARrDUST is in no way specific to functional

programming. The first fragment is a purely sequential subroutine which

computes whether the point (x+iy) is in the Mandelbrot set and terminates

after at most n iterations. It expects its parameters in the context registers

(r 0 - r 7) and is designed to return its result to a remote caller. The latter

identifies itself by a 'continuation' consisting of a frame pointer fp and a

code pointer cp specifying the return address.

100

define cp = rO, fp = rl, off = r2 return ‘ address'
define n = r3. X = r4, Y = r5 parameters
define i = r6. tl = r7, t2 = r8 temporary workspace

M move 0 -> i set up loop counter
N fmult X X -> tl next iteration

fmult y y -> t2
fmult X y -> y
fmult y 2.0 -> y
fsub tl t2 -> X

fadd tl t2 -> tl
fcmp tl 4.0 ; termination condition
bgt T
add 1 i -> i
cmp n i ; max loop count reached?
bgt N

T move fp -> cO ; prepare return
move off -> cl
move i -> c2 ; result value
start cp ; restart caller
term

The main point of this example is to demonstrate the fact that sequential

segments of STAR: DUST code can be executed with the efficiency of a purely

sequential processor.

The second program fragment shows how to invoke two Mandelbrot

computations in parallel. Let us first outline the basic mechanism for

achieving cross-processor parallelism, illustrated in Figure 6.3. The active

thread on the first PE starts two new threads (asynchronously) on two

remote PEs. Each subthread computes its result and returns it by restarting a

thread in the caller. The two 'return threads' in the calling program

synchronize through a location in a 'frame' in local memory. The caller

resumes its computation when both results are available.

101

"'4
'i-
%

Instruction Stream s for
PEI PE2 PE3

I I

synchronise

'start'
instruction

Figure 6.3: Basic scheme for cross-processor parallelism

Now for the program: We assume a frame pointer in register rl pointing to

an activation frame in local memory. The two subthreads are synchronized

through a location syn c in this frame. 'Free variables' are to be treated as

registers which have been preloaded with suitable values.

define fp = rO, off = rl

P st #2 -> fp[sync] ; prepare two threads
move fp -> cl ; pass frame pointer
move offl -> c2 ; pass offset for result
move n -> c3 ; pass parameters
move xl > c4
move yl -> c5
move #J -> cO ; pass return address
sethi #1 -> cO ; pick PE 1 for thread 1
start M ; and start it
sethi #2 -> cO ; pick PE 2 for thread 2
move off2 -> c2 ; pass different offset
move x2 -> c4 ; pass parameters
move y2 -> c5
start M ; start second thread

102

term
st val -> fp[off]
Id fp[sync] -> r2
sub r2 1 -> r2
st r2 > fp[sync]
beq K
term

; and terminate
; reentry point ; store result
; join the two threads
; by decrementing fp[sync]

K ; process results

6.7 Origins of the STARDUST Architecture

Our design owes much to Nikhil's P-RISC [AN88], itself based on lannucci's

hybrid machine [Ian88]. These architectures show a successively stronger

influence of modern von Neumann designs (see Figure 6.4). See Chapter 2

for a detailed discussion of this development.

modern
von Neumann
Architectures

TTDA
(Arvind)

lannucci's
Hybrid

Architecture

P-RISC
(Nikhll)

Monsoon
(Papadopoulos)

S T A R :D U S T

Figure 6.4: Dataflow/von Neumann hybrid architectures

P-RISC was a milestone in unifying dataflow architectures with modern

von Neumann machines, reintroducing the idea of efficient sequential

threads into a dataflow context. By separating issues of synchronisation and

instruction scheduling from those of local memory access, dataflow

103

instructions were simplified to RISC level. STARrDUST carries the move

towards RISC architectures a step further by acknowledging a memory

hierarchy, i.e., registers vs. local memory. P-RISC has a notion of 'frames'

which combine the speed of one with the size of the other at an unclear cost.

We subsumed all of P-RISC's communications instructions into the s t a r t

instruction by widening tokens into 'contexts' (our context store corresponds

to P-RISC's token queue), giving us more flexibility in the types of messages

we can support. We further simplified the design by dispensing with

independent memory elements. In the STARrDUST architecture, all

memory is local to some processing element, permitting us to perform

memory management in software, again more in keeping with the RISC

spirit. Finally, communication in STARrDUST is register-to-register rather

than memory to memory,

6.8 Summary

In this chapter we have outlined the architectural requirements resulting

from the compilation scheme and the load bounding system of the previous

chapters. We have presented the STARrDUST architecture which extends

the principles of RISC-based computing to communication and

synchronisation in massively parallel architectures. An important design

consideration for STARrDUST was to enable it to make efficient use of

sequential microprocessor technology. We have discussed some of the

questions bound to arise regarding the extensions to the sequential core of

STARrDUST. We have given example programs illustrating the sequential

and parallel aspects, respectively, of STARrDUST programming. Finally we

have compared our architecture to that of Nikhil's P-RISC from which it

STARrDUST was developed by following RISC-principles more faithfully,

resulting in a much simplified design.

104

Chapter 7 — Distributed Implementation of a STARrDUST

Emulator

7.1 Introduction

In the previous chapter we have emphasised the fact that the STARrDUST

architecture is suitable for hardware implementation in VLSI. Obviously,

such an implementation is beyond the scope of an individual PhD thesis.

Instead we have chosen to prove the concept by means of a distributed

implementation of a multiprocessor STARrDUST emulator on a commer­

cial multicomputer. The machine at our disposal was a Meiko Computing

Surface with 24 transputers of type T800. This chapter begins by discussing

some details of both the machine and the programming system used for the

implementation. We give a structural overview of our distributed

STARrDUST emulator and discuss some issues of deadlock-free routing in a

sparse network that we had to confront. Next we focus on the process

structure of individual transputer nodes. Each transputer is responsible for

emulating one STARrDUST processing element as well as for through-

routing incoming messages destined for other STARrDUST nodes. We

conclude with some experimental results obtained from running

STARrDUST implementations of two parallel functional programs, n f i b

and q u ick sort.

7.2 The Meiko Computing Surface and CSTools

The Meiko Computing Surface on which our emulator was implemented is

a 24-node configuration of T800 transputers [MT90] on two VME boards

hosted by a Sun 4/370, depicted schematically in Figure 7.1.

105

Sun
4/370

Host Machine O Host Processor (T800)

User Processors (T800)

Figure 7.1: Schematic view of a 24-node Meiko Computing Surface

Each transputer has four links by which it can be connected to other trans­

puters in the system. The Computing Surface provides a large degree of

flexibility in the configuration of these connections by means of a

programmable network. The network configuration depicted in Figure 7.1 is

therefore only one of the many that are possible. Nonetheless, the

fundamental limitation of transputers in the form of four hardware links

per node must be respected. Complete connectivity via hardware links can

only be achieved for system partitions made up of four transputers or

fewer*.

For our programming environment we chose Meiko's CSTools system

for its flexibility and its integration into a standard Unix environment.

Under CSTools all program development is performed on the Sun host.

CSTools programs run in two stages. In the first stage, the network

description and process configuration is loaded onto the Computing

Surface. In the second stage, the distributed processes are activated,

communicating with each other and with the host. Program development

reflects the two stages of program execution. The loader program is

* one link must be reserved for tiie connection to the host

106

compiled by a standard C compiler producing SPARC code, interfacing to

the Computing Surface by means of calls to the CSBuild library. The code for

the processes to be run on the Computing Surface itself is produced by

Meiko's own C compiler. Processes communicate via calls to another Meiko

supplied library which provides standard CSP style synchronous read- and

write-operations to named channels. CSTools provides a convenient

interface to most of the standard Unix system calls directly from transputers,

including, in particular, the standard 1 /O operations.

PE
PE PE

PE PE

PE PE

NetworkPE PE

PE PE

PE PE

PEPE
PE

Figure 7.2: Emulator with generic network

7.3 System structure, routing and deadlock avoidance

The hardest problem we had to confront in the design of the distributed

emulator is due to our need for a logically completely connected network as

shown in Figure 7.2. Topology independence requires that any STAR:DUST

node must be able to send messages to any other STARrDUST node without

regard to physical network topology. Given that the network of the

Computing Surface is programmable, two design decisions have to be made

in order to provide complete connectivity. Firstly, we need to decide upon a

107

•I,

sparse physical network satisfying the constraints of the Computing Surface.

Secondly, we need to decide upon a routing strategy within this network.

The approach we chose in order to retain maximal flexibility was to

parameterise the emulator by a routing table that simultaneously serves to

define routing strategy and physical network topology.

Destination^^ 0 1 2 3

0 0 0 0 2
1 1 1 3 1
2 2 0 2 2
3 2 3 3 3

Figure 7.3: Sample routing table

We show such a table in Figure 7.3, with entries to be interpreted as in the

following example: to get from (source) node 0 to (destination) node 3, we

go via the intermediate node 2. This obviously implies that there must be a

physical link between nodes 0 and 2. Thus the routing table of Figure 7.3

defines an underlying physical network which is shown in Figure 7.4.

(Ô)

® ®

Figure 7.4: Corresponding underlying network

Valid routing tables are those where the degree of each node does not exceed

four (due to the connectivity restrictions of individual transputers

mentioned previously) and where all paths starting at node x with

destination y eventually terminate at y. These properties, however, are not

completely sufficient for guaranteeing successful routing. It is well-known

108

that certain routing strategies can lead to deadlock for specific message

patterns. See for example [NM93]. Efficient algorithms are also known for

testing routing tables such as the above for the possibility of deadlock. For

our implementation we restricted ourselves to hypercube networks and the

well-known deadlock-free E-cube routing algorithm [SB77]. Hypercube

networks were attractive to us also for their relatively short average path-

lengths (logarithmic in the number of processors) and their inherent

symmetry. Hypercubes up to dimension four, i.e., with up to 16 nodes, can

be directly implemented on transputer systems. A four-dimensional hyper­

cube topology is shown in Figure 7.5.

Network

Figure 7.5: Emulator as a 4D hypercube

7.4 Node structure

From the above diagram we can now quickly derive the process structure of

individual transputer nodes. Each transputer is responsible for one "slice' of

the network, as shown in Figure 7.6. Each such slice consists of a router

109

process and a PE process which communicate via a transputer-internal link.

The links to other router processes in the network represent the physical

links of the transputer. The reader will quickly verify that for each node

there are precisely four such links.

Figure 7.6: Process structure for a single transputer

The two processes in the above diagram can be further divided into sub­

processes as shown in Figure 7.7. There we have split the bi-directional links

of Figure 7.6 into two unidirectional channels each. The router process is

implemented by the crossbar to the right. Each pair of input channels and

output channels is served by associated receiver and sender processes and

corresponds to one physical transputer link. The router is organised as a

crossbar to avoid overlapping paths inside the router which might

invalidate the deadlock freedom of the E-cube algorithm. The structure of

our router is similar to that described by Burgess et al. in [BL93] to whom we

are grateful for valuable suggestions.

110

input channels

STARrDUST
CPU

context
store

router
(crossbar)

t t ▼ t
output channels

Figure 7.7: Detailed process structure for a single node

The pair of receiver and sender processes shown in black is provided for the

link to the process which models the STARrDUST processing element. This

process in turn is split up into two subprocesses. One is responsible for the

context store and is little more than a FIFO buffer, corresponding closely to

the token queue of a dataflow machine. The other process models the

activity of the STARrDUST CPU, performing functions like switching to the

next context, decoding instructions, reading and writing the local memory,

changing register values and injecting messages into the network.

Note that the process structure on the nodes is independent of the

structure of the network connecting them. This enables us to carry over the

topology independence of the simulated STARrDUST machine to the

implementation of the emulator, evidenced by our ability to parametrise it

with a network description.

7.5 Experimental results

We have performed several measurements on the emulator described

above. Measurements were made running the emulator on a 16-processor

STARrDUST configuration. The measured load values are those reported by

the global load computation scheme described in Section 5.6.3. Since we

don't have a global clock, each processor keeps its own local time in the

111

form of an instruction count. Messages carry the local time of the sender

and advance the clock of the receiving PE, if necessary. Thus our

measurements are slightly pessimistic as messages arriving out of order

(with respect to local simulated time) can advance clocks further than

necessary.

Our first test was the naive Fibonacci program which represents a kind

of worst case for any load bounding scheme, as parallelism is growing

extremely fast. The experiment was repeated with various target load values

(Figure 7.8), i.e., target values for the average number of active threads per

processor, as described in Section 5.6.3.

target load = 5

— target load = 10

! target load = 20

i
1x:

I
—V \ / \ /

o s s 8 oU) 8oo s 8
Time [In 1000 cycles]

Fig. 7.8: Load bounding for parallel Fibonacci

In all cases we could observe an initial load spike, which is checked by the

completion of the first load computation cycle, followed by a phase of more

or less steady load reduction to the target value range. The computation

then enters a phase where parallelism oscillates around the target value.

112

dropping off gradually as opportunities for parallelism are steadily

exhausted.

The q u ic k so r t experiment below shows the effects of the parallelism

explosion in the absence of load bounding. Even though q u ic k so r t offers

little opportunity for parallelism (see discussion below), we can observe two

load spikes, one each at the start and at the end of the computation, as

shown in Figure 7.9 (note the logarithmic scale).

I«a .

I

10000

'parallelism explosion' for
unbounded quicksort
(1000 random Integers)

1000

100

10

1
o I 8I 0

1 I
CD

Time [In 1000 cycles]

Figure 7.9: Unbounded parallel Quicksort

The initial load spike represents the divide-and-conquer style computation

of a random 1000 element list. The final spike came initially as a surprise to

us but is readily explained. While Quicksort is a typical divide-and-conquer

algorithm, its parallelism is limited because of the bottleneck represented by

the traversal of the original list. When this list is completely traversed, the

bottleneck is replaced by a pair of bottlenecks, one each for the partitions of

113

..■•y

the original list. At this stage, the bottlenecks are successively broken up to

give a final burst of divide-and-conquer parallelism. While this burst comes

too late to have any significant effect on the runtime of parallel Quicksort, it

may well result in crashing the machine at the very instant it is about to

deliver its result. So load bounding can be important even for problems

with low average parallelism. This example also clearly demonstrates the

need for an adaptive solution: programs will often enter different phases

during their execution, requiring different responses from the load

bounding system.

7.6 Summary

In this chapter we have outlined our distributed emulation of a

multiprocessor STARrDUST system on a commercial multicomputer. We

have reviewed those details of both the multicomputer and the

accompanying programming environment that were relevant to our

implementation. Due to restrictions in the connectivity of the underlying

machine an important aspect of the resulting implementation was the

provision of an abstraction for complete connectivity. The emulator we

have implemented can be parameterised by both the underlying physical

network and the routing algorithm within this network. The networks we

have adopted for our experiments were hypercubes up to dimension four.

We have shown the process structure both of the overall emulator system

and of individual nodes. Finally we have presented and discussed the

results of two experiments which show the effectiveness of the load

bounding scheme of Chapter 5 and the consequences of unbounded

parallelism, respectively.

114

1

Chapter 8 — Conclusion

8.1 What we have accomplished

We have attempted a compact treatment of the process of implementing

parallel functional programming languages, ranging from a concise formal

specification of parallel graph reduction to the presentation of a simple

RISC-style multithreaded architecture and its simulation on a commercial

multicomputer. Due to the breadth of the subject covered we have

encountered many opportunies to probe more deeply and we will devote

this chapter to pointing out some of the more obvious ones. The structure

of this chapter resembles the structure of the thesis as a whole. For each of

the main chapters we will summarise our main results before pointing out

opportunities for improvement and further work.

8.2 Specifying parallel graph reduction in the ir-calculus

We have given a new encoding of the A,-calculus in the tc-calculus which

models parallel graph reduction with shared reductions. Improving on two

encodings by Robin Milner, ours preserves non-strictness by permitting a

choice between lazy evaluation and eager parallel evaluation on a case-by-

case basis for each static instance of function application.

To round off the work presented in Chapter 3 it would be highly

desirable to provide a correctness proof for our encoding. Milner gives such

proofs for each of his encodings in [Mi92]. In order to provide a proof of

faithful simulation we need to define a suitable notion of equivalence

between terms of the %-calculus and the it-calculus terms produced by our

scheme. Ideally we might expect for a term M of the X-calculus with normal

form Mq the relation

[[Ml] o [[Mo]] o

115

to hold for their 7r-calculus encodings. Unfortunately this simple relation­

ship cannot be established, as reductions of encoded terms preserve sharing

information that may have been lost in computing the normal form Mq in

the X-calculus. For example, the Tc-calculus term obtained by reducing

[[(Xx.xx)(yy)]] o is different from [[(yy)(yy)]] o. Both of these terms will

'compute the same value' when embedded in the same context, differing

only in their reduction behaviour. In particular, the second term will

perform the application (yy) twice, after suitable instantiation of y, while the

first only needs to compute (yy) once. Similar problems arise in Milner's

encoding of the call-by-value ^.-calculus and Milner's proof for his encoding

may provide useful intuitions for a proof of our scheme.

8.3 Compilation scheme

Using our jt-calculus model of parallel graph reduction as a guide, we have

given a more easily applicable set of compilation rules for a simplified

functional language. The target of the compilation scheme was multi­

threaded parallel code which required no special mechanisms for

communication and synchronisation other than thread creation and thread

termination. As in the it-calculus encoding, we could decide for static

instances of certain programming language constructs whether to evaluate

them eagerly or lazily, thus combining the advantages of lazy evaluation

with those of safe parallelism.

The compilation scheme presented in Chapter 4, while being concise, is

also relatively simple-minded. In order to obtain an efficient compiler from

this scheme, much work needs to be invested into optimisations. One

important goal, certainly, is to achieve longer threads. Given that we do not

attempt to exploit parallelism within function bodies, it is sometimes

possible to combine several threads into one, producing longer threads with

less communication overhead. A useful starting point for such analysis is

116

work by Ken Traub on 'compilation by partitioning' [Tr91], Another obvious

source of improvement is direct support for higher order functions. Further

optimisations can be considered to remove some of the 'boxing', i.e., the

construction of graph nodes, which is being performed for every value in

the program. See, for example, work by Peyton Jones and Launchbury [FL91].

Note, however, that strictness information alone is not sufficient to avoid

'boxing'. Consider for example the simple expression

nfib (n-1) + nfib (n-2)
Even though addition is obviously strict, we will generally want to allocate

graph nodes for the two subterms for purposes of synchronisation. On the

other hand, we can benefit from passing the argument to nfib as an

unboxed integer without giving up any useful parallelism.

A final suggestion for further work, motivated by the work presented in

Chapter 4, is a formal specification of an abstract model for the kind of

multithreaded code produced by our compilation scheme. At the time of

writing we have a fairly clear idea of how to specify such a model very

succinctly and we hope to present it soon.

8.4 Load bounding and runtime system

The simplicity of the compilation scheme of Chapter 4 bore fruit in our

work on automatic load bounding. We have presented a simple and

efficient adaptive load bounding method which was integrated into the

compilation scheme. We have given an informal proof for the effectiveness

of our method, based on the structure of the compilation scheme. The

method was based on considering an estimate of the current global

workload before exploiting any new parallelism.

The main weakness of our approach was the fact that load bounding

could not be guaranteed in the presence of sharing, as the reduction of a

shared value to weak head-normal form may require a large number of

117

waiting computations to be restarted. In Section 5.7 we suggested two partial

solutions that warrant further investigation: reduction of shared expres­

sions before sharing is established and inclusion of waiting computations in

the workload computation.

Crucially important for the success of our approach is also an efficient

solution to the problem of distributed garbage collection, not covered in this

thesis. An often favoured technique for distributed architectures, due to its

ability to proceed concurrently with the computation, is weighted reference

counting, first suggested by Weng in [We79]. Simple reference counting

suffers, however, from not being able to reclaim cyclic structures. While

extensions have been proposed to address this issue [Hu84] they have not

been, to our knowledge, adopted in practice due to their computational cost.

A common approach, then, is to use a two-level garbage collector, a real­

time reference counting scheme backed up by a mark-scan collector. See, for

example, Watson and Watson [WW87b]. As a backup collector will be

required in any case, we have turned our thoughts to a distributed copying

collector first. Sequential copying collectors work by traversing all active

data starting from the evaluation stack, copying any structures encountered

from a 'from-space' to a 'to-space'. After traversal is complete, the whole

'from-space' can be reclaimed. In the next round of garbage collection, 'from-

space' and 'to-space' switch their roles. It is not clear at first sight how a

similar technique could be applied in a distributed environment, as the

constantly changing pattern of messages in transit would seem to rule out

any concept of a 'root' of reachable structures. We envisage a solution

roughly along the following lines: global garbage collection is initiated by

any PE which runs out of local space. The 'root' of reachable structures is

represented precisely by the messages in transit. The compilation scheme

could prefix every message handler by a test for garbage collection. A

118

 :L

handler discovering that garbage collection is in progress would use its

knowledge about the structure of the target context to initiate copying of

active data referred to from within this context. The message handler would

then be suspended until global garbage collection is complete. Copying of

sub-structures can be performed in parallel or sequentially, again using the

load bounding scheme of Chapter 5. Further work is clearly required.

8.5 The STAR:DUST machine

In Chapter 6 we have presented a simple concrete architecture, STAR:DUST,

which provides efficient support for the compilation scheme of the

previous two chapters. Rather than being designed as a dedicated architec­

ture for functional programming, STAR: DUST follows RISC design prin­

ciples. Relative to a conventional RISC processor, our architecture adds

multi-threading capabilities in the form of two instructions, one each for

thread creation and termination, respectively.

We have claimed that STAR:DUST can be implemented efficiently

using modern VLSI technology and we have put forward strong arguments

in support of our case. A convincing proof in the form of an

implementation in silicon could in itself form the basis of a PhD level

research project. We intend to conduct further work in this area in the form

of a more detailed simulation which can observe the performance of a

STAR:DUST system taking into account system parameters such as the

following

— size of the context store

— cost of context store overflow

— cost of a context switch (term instruction)

— (local) caching behaviour of multithreaded programs

— message latency

119

— communications bandwith

Obtaining meaningful results for the effects of such design parameters on

system performance also requires the implementation of substantial test

programs.

8.6 Implementation and experimentation

We have described the implementation of a distributed emulator of a

multiprocessor STARrDUST system on a Meiko Computing Surface. We

have focussed in particular on the issue of deadlock-free routing. While this

work was crucial for us to obtain a truly distributed implementation on

which to perform experiments, network-related issues are not at the heart of

our work and had to be confronted only because of the limitations of the

system available to us. The routing overhead imposed on us by the Meiko

Computing Surface practically rules out competitive speedups for our

programs on large networks.

An interesting line of further research would be to implement

STAR:DUST more directly on a system which performs message routing in

hardware, such as a CM-5, a J-Machine, or a system based on a more modern

version of the transputer. Such an implementation could be prototyped on

a small, completely connected T800 system, i.e., one of four nodes or fewer.

8.7 Epilogue

The success of parallel functional programming as a useful tool to the

^working programmer' is dependent on concurrent progress in diverse areas

such as computer architecture, runtime systems, compiler technology,

language design, and software engineering, with sound theoretical under­

pinnings required to relate them all. We have attempted in this thesis to

preserve a holistic view of the field, relating many of the subject areas

relevant to it. If we had to favour, on occasion, completeness of the whole

120

over completeness of the parts, we hope the reader will agree with the

wisdom of our choice.

121

Bibliography

For brevity we will make use of the following acronyms:

ASPLOS: International Conference on Architectural Support for
Programming Languages and Operating Systems

CACM: Communications of the ACM
FPCA: International Conference on Functional Programming and

Computer Architecture
ISCA: Annual International Symposium on Computer Archi­

tecture
LFP: ACM Conference on Lisp and Functional Programming
LNCS: Lecture Notes in Computer Science, Springer Verlag
PARLE: Parallel Architectures and Languages, Europe
PIFL: Workshop on the Parallel Implementation of Functional

Languages
POPL: Principles of Programming Languages

[AC86] Arvind, David E. Culler — D ataflow A rch itectu res —
MIT/LCS/TM-294,1986

[AI87] Arvind, lannucci, R.A. — Two Fundamental Issues in M ulti­
processing — Proc. DFVLR Conf. in Parallel Processing in Science
and Engineering, Bonn-Bad Godesberg, 1987

[AJ89] Lennart Augustsson, Thomas Johnsson — Parallel Graph
Reduction with the <v, G>-Machine — Proc. FPCA 1989, Imperial
College, London, pp. 202-213

[AK80] Arvind, Vinod Kathail, Keshav K. Pingali — A Dataflow
Architecture with Tagged Tokens — MIT LCS TM-174, 1980

[AN88] Arvind, Rishiyur S. Nikhil — Can Dataflow Subsume von
Neumann Computing? — MIT CSG Memo 292, November 15
1988

[Ba78] John W. Backus — Can Programming Be Liberated from the von
Neumann Style? — CACM, August 1978

[Bi89] Richard S. Bird — Algebraic Identities for Program Calculation —
Computer Journal, Special Issue on Lazy Functional
Programming, 32(2), pp. 122-126

122

[BL93] Peter Burgess, Mike Livesey, Colin Allison — An Execution
Harness for Transputer-Based Embedded Systems — Proc.
WoTUG-16, 28-31 March 1993, Sheffield (to appear)

[BR91] S. D. Brookes, A. W. Roscoe — Deadlock Analysis in Networks of
Communicating Processes — Distributed Computing, vol. 4, 1991,
pp. 209-230

[BS81] F. Warren Burton, M. Ronan Sleep — Executing Functional
Programs on a Virtual Tree of Processors — Proc. FPCA 1981,
Portsmouth, New Hampshire, pp. 187-194

[Bu75] W. H. Burge — Recursive Programming Techniques — Addison-
Wesley, 1975

[CA88] David E. Culler, Arvind — Resource Requirements of Dataflow
Programs — Proc. 15th ISCA, Honolulu, Hawaii, 1988, p. 141

[Co90] Murray Cole — Towards Fully Local M ulticom puter
Implementations of Functional Programs — Technical Report
CSC 90/R7, University of Glasgow, January 1990

[CP88] Chris Clack, Simon L. Peyton Jones, Jon Salkild — Efficient
Parallel Graph Reduction on GRIP — University College London,
Research Note RN/88/29

[Da82] John Darlington — Program Transformation — in "Functional
Programming and its Applications", eds. J. Darlington, P.
Henderson, D. A. Turner, Cambridge University Press, 1982

[Da91] John Darlington et al. — Structured Parallel Functional
Programming — Proc. PIFL 1991, Southampton, appeared as
technical report, CSTR 91-07, University of Southampton, 1991,
pp. 31-52

[Da92] Antony J. T. Davie — An Introduction to Functional
Programming Systems Using Haskell — Cambridge Texts in
Computer Science, Cambridge University Press 1992

[DA92] Keith Diefendorff, Michael Allen — Organization of the
Motorola 88110 Superscalar RISC Microprocessor — IEEE Micro,
April 1992, pp. 40-63

[DC89] William J. Dally, Paul Carrick, et al. — The J-Machine: A Fine-
Grain Concurrent Computer — Information Processing 89, G. X.
Ritter (ed), Elsevier Science Publishers B.V. (North-Holland), 1989

[De73] Jack B. Dennis — First Version of a Data Flow Procedure
Language — MIT CSG Memo 93, 1973

123

[De75] Jack B. Dennis, D. P. Misunas — A Preliminary Architecture for a
Basic Dataflow Processor — Proc. 2nd ISCA, 1975, p. 126

[DR81] John Darlington, Mike Reeve — ALICE—A M ulti-Processor
Reduction Machine for the Parallel Evaluation of Applicative
Languages — Proc. FPCA 1981, pp. 65-75

[DS87] William J. Dally, Charles L. Seitz — Deadlock-Free Message
Routing in Multiprocessor Interconnection Networks — IEEE
Trans, on Computers, Vol. C-36, No. 5, May 1987, pp. 547-553

[EC92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein,
Klaus Erik Schauser — Active Messages: a Mechanism for
Integrated Communication and Computation — Proc. 19th ISCA,
1992, pp. 256-266

[Fa76] Howard Falk — Reaching for a Gigaflop — IEEE Spectrum,
October 1976, pp. 65-69

[Ga88] R. B. Garner, et al. — The Scalable Processor Architecture
(SPARC) — Proc. Compcon 88, IEEE CS Press, 1988, p. 278

[GH87] Benjamin Goldberg, Paul Hudak — Alfalfa: Distributed Graph
Reduction on a Hypercube M ultiprocessor — Proc. of the
Workshop on Graph Reduction, Santa Fe, 1987, LNCS 279,
pp. 94-113

[GH90] Hugh Glaser, Pieter Hartel, John Wild — A Pragmatic Approach
to the Analysis and Compilation of Lazy Functional Languages —
Proc. PIFL 1990, pp. 203-221

[GBC85] John R. Gurd, C. C. Kirkham, Ian Watson — The Manchester
Prototype Dataflow Computer — CACM, January 1985, pp. 34-52

[Gr90] Graham, I., King, T. — The Transputer Handbook — Prentice
Hall, 1990

[GW78] John R. Gurd, Ian Watson, John Glauert — A Multilayered Data
Flow Computer Architecture — Internal Report, Dept, of
Computer Science, University of Manchester, 1978.

[HB84] Kai Hwang, Payé A. Briggs — Computer Architecture and Parallel
Processing — McGraw-Hill Computer Science Series, 1984

[HJ92] Dana S. Henry, Christopher F. Joerg — A Tightly-Coupled
Processor-Network Interface — Proc. ASPLOS-V, Boston,
Massachusetts, pp. 111-122,1992.

[HP90] Kevin Hammond, Simon L. Peyton Jones — Some Early
Experiments on the GRIP Parallel Reducer — Proc. PIFL 1990,
pp. 51-71

124

[Hu84] R. J. M. Hughes — Reference Counting with Circular Structures
in Virtual Memory Applicative Systems — Programming
Research Group, Oxford University, 1984

[Hu89] R. J. M. Hughes — W/iy Functional Programming Matters — The
Computer Journal, Vol. 32, No. 2, 1989, p. 98

|Ta88] Robert A. lannucci — Toward a Dataflow/von Neumann Hybrid
Architecture — Proc. 15th ISCA, Honolulu, Hawaii, 1988, p. 131

[Jo84] Thomas Johnsson — Efficient Compilation of Lazy Evaluation —
1984 ACM SIGPLAN Symposium on Compiler Construction,
SIGPLAN Notices, June 1984, pp. 58-69

[Ke89] Paul Kelly — Functional Programming fo r Loosely-coupled
M u ltiprocessors — Research Monographs in Parallel and
Distributed Computing, Pitman/The MIT Press, 1989

[Le92] Charles E, Leiserson, et al. — The Network Architecture of the
Connection Machine CM-5 — Proc. 1992 ACM Symposium on
Parallel Algorithms and Architectures, pp. 272-85

[Ma79] Gyula Mago — A Network of Microprocessors to Execute
Reduction Languages — Int. Journal of Computer and
Information Sciences, 1979, part 1 in (8) 5, pp. 349-385, part 2 in
(8) 6, pp. 435-471

[Mi80] Robin Milner — A Calculus of Communicating Systems —
LCNS 92, Springer Verlag, New York, 1980.

[MÎ91] Robin Milner — The Polyadic iz~Calculus: A Tutorial —
University of Edinburgh Technical Report, ECS-LFCS-91-180,
October 1991

[MÎ92] Robin Milner — Functions as Processes — Mathematical
Structures of Computer Science, vol. 2, pp. 119-141,1992

[Mi93] Robin Milner — Elements of Interaction — CACM, January 1993,
pp. 78-89

[MK90] Eric Mohr, David A. Kranz, Robert H. Halstead — Lazy Task
Creation: A Technique for Increasing the Granularity of Parallel
Programs — Proc. LFP 1990, Nice, France, pp. 185-197

[MT90] D. A. P. Mitchell, J. A. Thompson, G. A. Manson, G. R. Brookes —
Inside the Transputer — Blackwell Scientific Publications,
Computer Science Texts, 1990

[MW92] Sunil Mirapuri, Michael Woodacre, Nader Vasseghi — The Mips
R4000 Processor — IEEE Micro, April 1992, pp. 10-22

125

[Ni89] Rishiyur S. Nikhil — The Parallel Programming Language Id and
its Compilation for Parallel Machines — Proc. Workshop on
Massive Parallelism: Hardware, Programming and Applications,
Amalfi, Italy, October 1989, Academic Press

[NM93] Lionel M. Ni, Philip K. McKinley — A Survey of Wormhole
Routing Techniques in Direct Networks — IEEE Computer,
February 1993, pp. 62-76

[NP92] Rishiyur S. Nikhil, Gregory M. Papadopoulos, Arvind — *T: A
Multithreaded M assively Parallel Architecture — 19th ISCA,
1992, pp. 156-167

[Os91] Gerald Ostheimer — Parallel Functional Computation on
STA R:D U ST — Proc. PIFL 1991, Southampton, appeared as
technical report CSTR 91-07, University of Southampton, 1991,
pp. 393-408.

[Pa88] Gregory M. Papadopoulos — Implementation of a General
Purpose Dataflow Multiprocessor — MIT LCS TR-432, August
1988 (PhD Thesis)

[PC87] Simon L. Peyton Jones, Chris Clack et al. — GRIP—A High-
Performance Architecture for Parallel Graph Reduction — Proc.
FPCA 1987, LCNS 274, p. 98

[PC90] Gregory M. Papadopoulos, David E. Culler — Monsoon: An
Explicit Token-Store Architecture — Proc. 17th ISCA, 1990,
pp. 82-91

[Pe87] Simon L. Peyton Jones — The Implementation of Functional Pro­
gramming Languages — Prentice-Hall International Series in
Computer Science, Prentice-Hall 1987

pPe89] Simon L. Peyton Jones — Parallel Implementations of Functional
Programming Languages — The Computer Journal, Vol. 32,
No. 2,1989, p. 175

[PL91] Simon L. Peyton Jones, John Launchbury — Unboxed Values as
First Class Citizens in a Non-Strict Functional Language — Proc.
FPCA '91, Cambridge, Massachusetts, 1991, pp. 636-666

[PS81] David A. Patterson, Carlo H. Sequin — RISC I: A Reduced
Instruction Set Computer — Proc. 8th ISCA, pp. 443-457, 1981

[RS87] Carlos A. Ruggiero, John Sargeant — Control of Parallelism in
the Manchester Dataflow Machine — LCNS 274, p. 1, Proc. FPCA
1987

126

[SB77] Herbert Sullivan, T. R. Bashkow — A Large Scale, Homogeneous,
Fully Distributed Parallel Machine, I — Proc. 4th ISCA, 1977,
pp. 105-117

[Sm81] B. J. Smith — Architecture and Applications of the HEP M ulti­
processor Computer System — Real Time Signal Processing IV,
vol. 298, August 1981

[Tr86] Kenneth R. Traub — A Compiler for the MIT Tagged-Token
Dataflow Architecture — MIT LCS TR-370, 1986 (Master's Thesis)

[Tr91] Kenneth R. Traub — Implementation of Non-Strict Functional
Programming Languages — Research Monographs in Parallel
and Distributed Computing, Pitman, London, 1991

[Tu79] David A. Turner — A New Implementation Technique for
Applicative Languages — Software—Practice and Experience,
1979, p. 31

[Va90] Leslie G. Valiant — A Bridging Model for Parallel Computation
— Communications of the ACM (CACM), Vol. 33, Nr. 8, August
1990, p. 103

[Ve84] Steven Vegdahl — A Survey of Proposed Architectures for the
Execution of Functional Languages — IEEE Trans, on Computers,
Dec. 1984, pp. 1050-1071

[Wa71] C. P. Wadsworth — Semantics and Pragmatics of the Lambda
Calculus — Oxford University D.Phil. Thesis, 1971

[We79] K-S. Weng — An Abstract Implementation for a Generalized
Dataflow Language — MIT Laboratory for Computer Science,
MIT/LCS/TR-228

[Wh85] Colin Whitby-Strevens — The Transputer — Proc. 12th ISCA, pp.
292-300, June 1985

[WW87a] Paul Watson, Ian Watson — Evaluating Functional Programs on
the FLAGSHIP Machine — Proc. FPCA 1987, LCNS 274, pp. 80-97

[WW87b] Paul Watson, Ian Watson — An Efficient Garbage Collection
Scheme for Parallel Computer Architectures — Proc. PARLE '87,
LCNS 259, pp. 432-443

[WW88] Ian Watson, Viv Woods, Paul Watson, Richard Banach, Mark
Greenberg, John Sargeant — Flagship: A Parallel Architecture for
Declarative Programming — Proc. 15th ISCA, Honolulu, Hawaii,
1988, p. 124

127

