
AN EXTENSIBLE SYSTEM FOR THE AUTOMATIC
TRANSMISSION OF A CLASS OF PROGRAMMING

LANGUAGES

Najam Perwaiz

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1975

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13413

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13413

N. Perwaiz

1
V!

i

1

An Extensible System |
for

The Automatic Translation j
?

of a
Class of Programming Languages

ProQuest Number: 10167248

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10167248

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

j%I I
?
I

I

■j
This thesis is dedicated

to
my parents,

and to.
my teachers

for their training enabled me
to produce this work.

:
Î

I

J

% L-V

r ' ̂ ABSTRACT
' ri' '

*.:• This thesis deals with the topic of programming
linguistics. A survey of the current techniques in the
fields of syntax analysis and semantic synthesis is given.

V. .■ An extensible automatic translator has been described which
can be used for the automatic translation of a class of

' programming languages.
A, , The automatic translator consists of two major parts :
' the syntax analyser and the semantic synthesizer. The syntax
f ^
;> V 'if ',' analyser is a generalised version of LL(K) parsers, the

theoretical study of which has already been published by Lewis
Tr and Stearns and also by Rosenkrantz and Stearns. It accepts
• ’ f y 'Î

t : :

Y Ir" \
■■

,.>■ • • -1'■ Y ■ ‘■n. ' ̂ ;

grammar of a given language in a modified version of the
Backus Normal Form (MBNF) and parses the source language

:---statements in a top down, left to right process without ever

J

backing up. \
The semantic synthesizer is a table driven system which

is called by the parser and performs semantic synthesis as
. the parsing proceeds. The semantics of a programming language

V is specified in the form of semantic productions. These are
", • used by the translator to construct semantic tables.

The system is implemented in SN0B0L4 (SPITBOL version 2.0)
on an Il^M 360/44 and its description is supported by various
examples. The automatic translator is an extensible system

J and SN0B0L4, the implementation language appears as its subset.
It can be used to introduce look ahead in the parser, so that
backup can be avoided. It can also be used to introduce new

r .facilities in the semantic synthesizer.

‘ ‘ ■

I hereby declare that the conditions
of the Ordinance and regulations for
the degree of Doctor of Philosophy
(Ph.D.) at the University of St.
Andrews have been fulfilled by the
candidate, Najam Perwaiz.

I hereby declare that this thesis has been composed
by myself; that the work of which it is a record has
been done by myself; and, that it has not been accepted
in any previous application for any higher degree#
This research was undertaken on 1st October, 1971, the
date of my admission as a research student.

ACKNOWLEDGEMENTS

I should like to thank Professor A,J, Cole, head of the
department of Computational Science, University of
St# Andrews for providing me the opportunity to do
this work and his guidance throughout this project*

I think I will be foregoing the most pleasant duty of
my postgraduate years, if I do not thank my supervisor
Michael Weatherill for his help and support throughout
this project* Without his encouragement, excellent
supervision, advice and healthy criticism this work would
not have been possible* I would particularly like to
thank him for his many weekends spent on reading early
drafts of this thesis*

I also thank Prof* J,W*P* Mulder, head of the department of
linguistics. University of St* Andrews for his useful
critical comments, and I thank Mr. U.A* Turner and Dr* R. Fisher
for their valuable comments. I also acknowledge the help
given to me by Dr. R* Erskine, the computing manager by
allowing my "hands on the machine"* j

I
Finally I thank Mrs* Alice Murray for typing this thesis.

ABSTRACT

This thesis deals with the topic of programming
linguistics. A survey of the current techniques in the
fields of syntax analysis and semantic synthesis is given.
An extensible automatic translator has been described which
can be used for the automatic translation of a class of
programming languages.

The automatic translator consists of two major parts ;
the syntax analyser and the semantic synthesizer. The syntax
analyser is a generalised version of LL(K) parsers, the
theoretical study of which has already been published by Lewis
and Stearns and also by Rosenkrantz and Stearns. It accepts
grammar of a given language in a modified version of the
Backus Normal Form (MBNF) and parses the source language
statements in a top down, left to right process without ever
backing up.

The semantic synthesizer is a table driven system which
is called by the parser and performs semantic synthesis as
the parsing proceeds. The semantics of a programming language
is specified in the form of semantic productions. These are
used by the translator to construct semantic tables.

The system is implemented in SN0B0L4 (SPITBOL version 2.0)
on an IBM 360/44 and its description is supported by various
examples. The automatic translator is an extensible system
and SN0B0L4, the implementation language appears as its subset.
It can be used to introduce look ahead in the parser, so that
backup can be avoided. It can also be used to introduce new
facilities in the semantic synthesizer.

TABLE OP CONTENTS

■1* INTRODUCTION *.......... 1
1.1 PROJECT SURVEY......... 1
1.2 SYNOPTIC V m f OP TRESIS 8

1.3 CONDITIONAL EXPRESSIONS AND OTHER NOTATION .. 11

2. ON THE SYNTACTIC DESCRIPTION AND PARSING
PROGRAIITING LANGUAGES 19
2.1 INTRODUCTION 19
2.2 PHRASE STRUCTURE GRAMMARS...... 22
2.5 PARSING TECHNIQUES 50
2*4 BOTTOM-UP TECHNIQUES 51
2.5 TOP DOWN TECHNIQUES 57
2*6 COMMENTS ABOUT PARSING TECHNIQUES......... 59

5. GENERALISED LL(k) PARSERS 44
5.1 INTRODUCTION............................... 44
5.2 RECOGNITION OP LL(k) GRAATÎARS........... 44
5.5 DESCRIPTION OP THE PUSHDOWN MACHINE 47
5.4 GENERALIZED LL(k) GRAMMARS................. 52
5.5 ON THE PRACTICAL ALGORITHM OF

GENERALISED LL(k) GRAM^TARS 55
3.6 KETASYNTACTIC LANGUAGE....... 54
5.7 EFFICIENCY CONSIDERATION 58
5.8 LEFT RECURSIVE GRA2M A R S 6l

4. BÎPLEMEKTATION OP TES GENERALISED LL(k) PARSERS... 70
4.1 BTTRODUCTION................ 70
4.11 SYNTAX GRAPH 71
4.12 PAR SING ALGORITHM 81
4.2 LEFT RECURSION......... 94
4.21 GENERAL CONSIDERATION....... ...94
4.22 PRACTICAL CONSIDERATION 96

4.3 IMPmiEieATION OP LEFT RECURSION 97
4 3 .1 BASIC PHILOSOPHY............... 97
4 .5 2 n - ALGORITHM 100
4 .33 SOPT] PROBLEM’S WITH u-ALGORITHM............. 102
4 .3 4 ALGORITHM...... 103
4.35 Y - ALGORITHM IO3

5. METASEiAANTIC LANGUAGE.............105
5.1 INTRODUCTION 105
5 .2 SURVEY 105

5 .3 METASEMANTIC LANGUAGE (MSEAL)Ill
5.4 DATA OBJECTS, IDENTIFIERS AND SELECTORS 113
5.5 THE ENVIRONMENT AND THE CODE FIELDS ,,..*....117
5.6 ACTION FIELD......... 121
5.61 STACK STATEkiENTS ' 122
5.62 QUE STATEMENTS 124
5.63 TABLE STATEMENTS............ 125
5 .64 ASSIGHTNT STATEMENTS 127
5 .65 MISCELLANEOUS STATEMENTS 129

I
5.66 TRANSFER OF CONTROL STATEMENTS 131
5.67 SEAS 132

!

5.7 OVERALL STRATEGY 13&
I

6. BÎPLS’ENTATION OP THE SEMANTIC SYNTHESISER 15X
6.1 S]3:ANTI0 TABLES 151
6.2 SmUlNTIC SYNTHESIS 153
6.3 RECOGNITION OF EL'ÎVIRONÎ'ENT EXPRESSIONS 156
6.4 OVERALL STRUCTURE 158
6.5 HIERARCHY LUTEIN ENVIROmTElfT FIELD I63

6 .6 PROCESSING OF SOURCE STATEMENTS........ . I65

6.7 DATA OBJECTS 168

7. EXTENSIBILITY IN M T L 190
7 .1 EXTENSIBILITY 190
7.2 MTL AND EXTENSIBILITY 193
7 .3 IMPLEi'IENTATION OF EXTENSION PROGRAMS.......199

8. PATE - PROCESSING OF ARITHMETIC AND
TEXTUAL EXPRESSIONS 219
8.1 INTRODUCTION............ 219
8.2 FUNDA^jENTALS 221
8 .3 ARITHMETIC STATEMENTS.................. 223
8.4 MISGELLAITIDUS STATEMEÎTTS.................. 224
8 .6 IMPLEMENTATION............................ 226

I
8 .7 CONTROL CARDS •• 238

9. CONCLUSION............ 241

APPENDIX I 247

SOME FACTS ABOUT LL(k) GRAMMARS 247

EXCLUSION OF LEFT RECURSION 25%

APPENDIX I I 253

CROSS REFERENCE 253
REFERENCES 262

CHAPTER X

INTRODUCTION

1.1 PROJECT SURVEY:-

This project in its final form evolved
from an attempt to develop an English

I4
1
%

Ilike programming language for school and
other non-specialist students. This language
was to be called "Processing of Arithmetic
and Textual Expressions" (PATE). After the
implementation of the text processing
facilities of the PATE processor (described
in full in chapter 8), it was felt that for
most of the sophisticated developments of
such a language, an automatic mechanism
based on some formal grammar was desirable.
This could then be used for implementing

Iand testing the different features of PATE.i
I

The investigation of this topic bore
interesting results and forms the bulk of
the work described in this thesis.

In dealing with programming languages and
their translators we are concerned with
their inherent structural properties and
the kinds of transformations which the

structure may initiate or undergo when it
enters into a computation. The inherent
structural properties are referred to as
syntactic properties, and the transformational
properties of the structures are referred
to as semantic properties.

For example the set of all representations
of programs in a specific programming
language is called its syntax. The
representation of the effect of executing
the programs in a programming language
is called the semantics of the programming
language.

It is convenient to have a formal method for
representing the syntactic and the semantic
properties of classes of programming languages.

The notations in which the syntax and the
semantics are defined are known as metasyntactic
and metasemantic languages respectively. A
combination of the two is called a metalanguage.
We want to use the metalanguage as a vehicle
for constructing programming language !

Itranslators and hence will refer to it as the
metatranslation language (MTL). As we are

only concerned with writing compilers and
interpreters for high level programming f
languages, the word translator refers to
these two types of programs only. Other
sorts of software e.g. assemblers to which
the term has been applied may present
different problems. 1

I
fInitially all translators were written in |

assembler language. Although all types of
time and space optimizations are possible in
assembler language programming, since it
is rather cumbersome, experience shows that Q
all the code does not get due care.
Recently there has been a big trend towards
writing translators in high level programming §
languages. We believe this is a step forward
and contend that by selecting a suitable
high level language for implementation,
similar and perhaps even better results can
be obtained with.considerably less programming
effort.

IIThe general subject of interest in this %
dissertation is "programming linguistics"
which we consider to be a science concerning
the design and specification of programming

■I

languages and the translation and subsequent
evaluation and execution of programs in
these languages. In particular we are
primarily interested in tlie problem of
automatic translator translation. We
define automatic translator translation
loosely as the process of using a computer
to perform some stages of the work involved
in writing a translator. The program which
performs this task is called an automatic
translator. It has two parts :
the syntax analyzer and the semantic
synthesizer.

For the purposes of this research such a
‘system has been implemented in SN0B0L4
[g RISWORLD 7o] (SPITBOL version) [DEWAR 7l] .

Some special purpose high level programming
languages have previously been designed for
writing systems programs. A class of these
languages with special facilities for
compiler writing is called compiler compilers.
An ideal compiler compiler is one which has
formal syntax and semantics as its input and
whose output consists of a compiler written
in some already implemented language. The

existing compiler compilers however do not
achieve so much as this. VThile we would
claim to have achieved more;we must admit
that this ideal has not been reached. A
compiler compiler normally acts as a high
level language in which other compilers
are written and at least parts of it reside
in the core as an integral part of the -
compiler. Some compiler compilers have
embedded in them some automatic syntax
analysis mechanism, hence automating this
part of the task.

Our automatic translator is a high level
problem oriented language, the problem
being to write translators for programming
languages. One belief fundamental to our
work is that the context free grammars
(defined in chapter 2) can continue to be
used in a natural and convenient way as a
basis for the specification of significant
portions of the syntax and translation of
programming languages. Furthermore we
find that a well designed contex free grammar
makes a concise, readable and useful
syntactic reference for a language from
which operator orecedences and associativities

and other properties can be quickly and
easily determined.

The automatic translator being described
is a table driven system. The syntax and
the semantics of a given programming
language are read and internal tables
constructed from the information thus
acquired. A mechanism has been provided
for semantic extensibility (explained in
chapter 7). Different extension programs
can be written in SN0B0L4 and they are
compiled at the execution time of the
automatic translator. These programs
provide extra information to the translator.

During the development stages of a
translation system for a language, the grammar
would be read and the tables constructed
before the source language statements are
read for each run. However a fully debugged
system will have the tables embedded.
Each source statement is read and processed
individually. The syntax analyzer recognizes
it and as soon as a sufficient amount of

I
information is available the semantic *I
synthesizer is called for action.

METATRMSLATION
LANGUAGE
(MTL)

Jl
METASYNTACTIC METASEMANTIC

LANGUAGE LANGUAGE
(M s y l) (MSEAL)

SN0B0L4 FOE

sf /
VERY SLIGHTLY
RESTRICTED' VERSION

OF SN0B0L4
SOME FACILITIES

OF THE
METATRANSLATION

LANGUAGE

FIG. 1.1 . The relation between the parts of the
Meta-translation language.

1.2 SYNOPTIC VIEW OF THESIS*.-

In the second chapter of this thesis we
study Chomsky's classification of grammars,
particularly the context free grammars and
survey methods of analysing context free
grammars. i

1
I

r - t

I

In the third chapter we describe the
metasyntactic language for our parser.
This is a modified version of Backus
Normal Form (MBNF) which includes left
recursive productions. Techniques are
described to improve the efficiency of
the parser and to reduce the length of look
ahead. It is also shown how look ahead can
be introduced and scanning of the source
text controlled by using SN0B0L4 extension
programs. '

I

We do not consider context free grammars
in general any further and are mainly
interested in a generalised version of #
Lewis and Stearns' [LEWIS 68] LL(k)
grammars. These form a fairly large
subset of context free grammars which can |
be parsed without back-up. '

#

J----

The 4th chapter covers the implementation
of the parser. The source language symbols
are recognized in a predictive fashion.
The parser uses a syntax graph and a syntax
analysis stack. Starting from the root of
the syntax graph, it traverses different
nodes following predefined hierarchically
ordered paths without ever backing up and
recognizes the source language symbols in
the process.

Our metasemantic language (MSEAL) is
explained in the fifth chapter. Each
production of MSEAL consists of three
fields ; environment field, action field
and code field.

The environment field is used to determine
the instant at which the particular semantic
production is to be used.

The action field consists of a sequence of
statements specifying actions to be taken
when the environment field is recognized in
processing source text. High level commands
have been provided to facilitate the i
construction by the user of commonly used'

10

data structures.

Extra power is provided by the code field.
The user can specify a codestring in this
field. On meeting certain commands in the
action field the corresponding code field
is executed and code generated.

The implementation of MSEAL is discussed
next. Using the semantic statements,
tables are constructed. As the recognition
of a source statement proceeds, these tables
are checked and at an appropriate stage
some semantic statement executed.

'To provide extra power for the complete,
translation system (MTL), it has been
designed to be semantically extensible,
SN0BQL4, the implementation language for j
the MTL processor, appears as a subset of |
MTL. Methods have been provided to use
SN0B0L4 for specifying both the syntax
and the semantics of a programming language.
It is also possible to extend semantically
the facilities available in the action field
of MSEAL productions. Various MTL system
variables are used to provide communication

11

between MTL and SN0B0L4.

The description and implementation of
the extension mechanism is given in
the seventh chapter of this thesis.

In the next chapter we discuss the
programming language PATE. It had its
basis in SNAP [BARNETT 69] and is a
language for arts students. It was
implemented at the start of this project
and for the reasons described in that chapter,
it was implemented in FORTRAN IV[IBM 360/370]

Finally, we conclude by discussing the
results obtained.

1.3 CONDITIONAL EXPRESSIONS AND OTHER NOTATION.

Greek letters represent terminal strings.
|3| denotes the length of the string 3.
g:n refers to the left-hand n symbols of
3 if |3|) n and to 3 otherwise. The empty
string is A . Lower case letters represent
terminals and upper case letters are j
nonterminals. Underlined letters may '

12

represent either. The node of the syntax

Î1■I

graph representing X (or X or x) is written S. I
^ODE ^^ODE) ' |

the metasyntactic language are marked by j
■Ian asterisk.
I

' II4hile BN F is suitable for the representation
of a single context free grammar, a formal #
method to represent sets of such grammars
is desirable. It will enable us to discuss
the behaviour of precisely defined sets of #
grammars in the context of our parsing
algorithm. For this purpose we use a {
notation for a conditional expression which -■

r 1was suggested by that of McCarthy [MCCARTHY q

60] . It not only fulfils the above
■Irequirement but also specifies the order g
%in which different productions may be Q

recognised, and hence reveals certain
features of the recognition algorithm.
The source language statement is considered
as a sentence of a context free language whose
grammar is written in BNF -and which’ is being
recognised by a top down left to right process.

j

13

&

;îOur conditional expression is written as I
follows;

I

(1 - 3 - 1) C » I n " : n 1 - n " " n ' 1 - n ' ' n IIJ
n̂-l '^n-l < - l 1»-! ^n-1' ^n-1 4-1 4-1

i'j4

‘'n-2 l-n-2 4 - 2' 4-2 4-2 4 - 2' 4-2 4-2 4-2

^ 0 1 * 0 ^ o ' 4 4 4' 4 4 4
The occurrence of the triple has the
effect of returning the value when the
condition C? is found to be satisfied,
C? has the form (a^= 3) and is satisfied if
the substring under consideration, , has
the form 3. Each triple has a level which

C . L is defined below,4

Evaluation of the conditional expression
takes place in descending order of level
and looking from left to right at each
level. The value V of the whole expression
is the concatenation of •

Ï;I
is given by the subscript i of the condition Q

1

14

(1-3-2) V p ' V p " V p "
where the value of V r is the concatenationn-p
of

(1.3.3) ^ n - / -

In (3) the value of p increases with
superscript r; p and t are such that V
consists solely of source language symbols.

may be either or " - » " . In both
cases one and only one condition at the
current level may be satisfied. The symbol
" implies that the triple is applied
once only, whereas implies that the
triple is applied n times where n / O.

It follows that if no has the form
then exactly one condition must be satisfied
at the level i. This notation can be further
generalised by ranking the conditional ̂

expressions themselves and treating them in
the same manner as that of the above mentioned
triples.

15

EXAMPLE 1.3.1

One might wish to specify the following
rules about the recognition procedure for
the grammars of the form:

(1.3.4) < X > = a
(1.3.5) < x > = <x> aa Gl.l

(a) Find the left recursion
(b) Process (5) the correct number of times,
(c) Process (4) and recognise the source

string with the help of already processed
productions.

Using (1) these rules can be stated as
(1.3.6) [(a2=A)“>n=0, n==n+l,]

for a set of all left recursive grammars of
which the above grammar is a member. (For Gl,l
3 ̂ =aa and 3^ =a).

Suppose aaaaa is a sentence of L (Gl.l) and is
to be recognised using (6).^ The cursor is
considered to be on the left of the source
statement. The condition to be tested firstI
is ~ A- since 2 is the highest level in!A I
(6), any part of the string aaaaa or a

t Reference to a relation inside the current section
is implied.

16

satisfied, n is set to 2 and the cursor position
still remains unchanged (step h). IThe condition = 3^)

is attempted ag^in but it can not be satisfied since

can only have the value a. The value of a and the cursor
position remain unchanged, Tlie condition (o^ = 3̂) is now
attempted and satisfied. At this state ^3^ is recognized
and the cursor moves to right of the source sentence and

t Since it is not possible to determine whether (a ~ 3)
IS satisfied or not, the conventional top down parsers do
not accept left recursion. ’

null string can be considered as the value of a
((^2 ii i^ represented in (6)), So (o^ = A)

is satisfied and n is initialised to 0, but the
cursor is still on the left of the source string
(step a)»The next condition to be tested is (a^ =3^)*
If we take ot̂ , to be aa, the condition is satisfied, 4

'n is set to 1 and the cursor position remains unchanged -Ç;
(step b). The condition (a^ = is tested again,; ||
Since can still have the value aa, it is I

the recognition of the source sentence is successfully
completed, (step c) The value of r (refer to (3)) is
0 1 which is the same as aaaaa. In (2) it is represented by Vn-»n.
Other values in (2) are. = atl)

V(n-2) . = 0)

17

1.4 A set of productions representing embedded
recursion might be written as

(1.4.1) («2 = A)~>n= O, (a^ - >> 3^ and n = n + 1,

(a = 3) - » 3 3p]

The following is a grammar representing

The only value consisting solely of the |
source language symbols is that of
and hence it is the value of V.

1
EXAMPLE 1.3.2

A production containing direct right
recursion can be represented as

(1.3.1) [(â = 3̂) -^3^, (a = 3) -> 3]

For the right recursive grammar

<x> = a <x > lb G1.2 ^
j.a

' 13jĵ = a 3 — b

EXAMPLE 1.3.3

I

18

embeded recursion
< x > = a < x > b | c G1.3 I
In this grammar f

I

■‘I

19

CHAPTER II

On the Syntactic description
and

Parsing Programming languages

2,1 IMTROnJCTIOH:-.
To make clear the reasons for our choice
of context free grammar we begin by
surveying grammatical models which have
been used in earlier projects. These
projects fall into two classes - those ,|
where sentences must be generated and
those which require recognition of
correct sentences. Existing grammatical
theories have helped researchers in
making some progress in the field of
machine translation but the net result
is far from satisfactory, because either
they are not powerful enough or are too
difficult to be handled by computers
(see survey articles by Sage [SAGE 67]
and Satterthwait [SATTERTHWAIT 66] and
see article by Floyd [_ FLOYD 64]) . The
generative mechanism has been used by
researchers [FREDMAN 62, 71 etc] who

Iwant to use computers as a tool for
' ' iistudying properties of grammars. '

I

20

Some question'answering systems have been
developed which use grammars both for
recognising input sentences and generating
grammatically correct sentences in reply.
PROSE [v i g o r 69] is such a system. It
uses Hay’s Dependency grammar [HAYS 64]
as its grammatical model. However as far
as programming languages are concerned
Chomsky's models [CHOMSKY 57] of generative
grammars have obtained the widest acceptance.
By this we do not imply that his models are é

sufficient for all further developments in
programming languages but we only note that
the structure of most of the programming
languages so far in existance, either
intentionally or unintentionally has been
designed so as to fit Chomsky's models.

We will follow Chomsky in describing his
generative models. Similar systems to
accept only correct sentences are well known.
The simplest model discussed by Chomsky is
the finite state grammar. This can be
described in the form of a machine that can
be in any one of a finite number of different
internal states. This machine switches from
one state to another by producing a certain

I
symbol. One of these states is distinguished

21

as the initial state while another is the
final state. Beginning from the initial
state, if the machine runs through a
sequence of states and reaches the final
state, it will generate a sequence of
symbols known as a sentence. The complete
set of sentences that can be produced in
this way is called a finite state language
and the machine is known as a finite state
grammar. The recognition of a finite state
language may be performed by a finite
automaton which will in general be
nondeterministic. It has been proved
[r a b i n a n d SCOTT ss] that every nondeterministic
finite automaton can be represented by some
deterministic finite automaton, which we
know can always be simulated.

Unfortunately only a small number of
programming languages are finite state.
Any attempt to construct finite state
grammar for others will run into serious
difficulties. For example general
bracketed expressions require a context
free grammar and the same is true for manyI
features of well structured programming Î
languages. '

22

2.2 PHRASE STRUCTURE GRAMMARS

Suppose S is the initial symbol and

(2.2.1) IC^(S), IC2 (S), 103(8) IC^^S)

are its immediate constituents [BLOOMFIELD 33] ,
derived using rules usually known as
productions.

Let us write (1) as follows

<2.2.2) S^, S^, ----------------------

Their immediate constituents will be as
follows, although any one of them can be
null.

(2.2.3) IC^(sl), IC2(sj^), 103(81) ------------ IC^^sl)

103(82), 102(23), 103(83) ------------- 10^^83)

lOi(si), 103(8!), 103(3!) -------------- 10^(3!)

23

ICits!), 13(3!), 103(3!) --------------- 10^(3!)

If we write the non-null constituents as

(2 .2.4) 33, 83, S 3 -------------------3^

and continue the process we will finally
reach

(2 .2 .5) 3 3, 83, S 3 ----------------- S"

SO that they do not have any constituents.

If we call the above model a context free
grammar, the set of all the representations
of S (with subscript and superscript including
the start symbol) is known as its vocabulary.
All symbols that can not be further broken
down are terminals and rest of the vocabulary
is formed by nonterminals. A sentence is a
string of terminals which can be derived from
S with the productions concerning immediate
constituents. The language is the set of
all the sentences that can be produced from
the grammar. '

24

Formally a context free grammar is a
quadruple G (V^, V^, S, P), where is a
finite set of terminals, V__ a finite set of
nonterminals with 0 ~ K ' ^
S is the initial symbol and S e P is
a finite set of productions of the form A ~> w
where the left part is A e and the right
part w E V* where V* denotes a string of
symbols of V,

A string u is called a sentential form if ct
is derivable from the initial symbol S.
A sentence is a sentential form consisting
only of terminals. The language L (G) is
a set of all the sentences that can be
generated from the grammar "G.

It should be noted that the finite state
grammars form a proper subset of the context
free- grammar in the sense that every finite
state grammar has an equivalent context
free grammar while the converse is not true.

Let G be a grammar. We say that the string
X directly produces the string to , written

I
(

X => w

■ 'V:
“I

25 1
>

i
■J

if X -> W
If X ~> =>=> 0) V

1
then X =>+ w
If either X => w 1
or X =>+ Ü) 1./I
then X =>* (Ü 't
If X -> w ... where three dots

represent a string
possibly empty.

i
t
id

then X FIRST 03 \

If X FIRST 0)̂ FIRST O)̂ "̂ FIRST 0)̂ "̂ j

— -----------FIRST to. 4
then X FIRST + 0) 1
If either X FIRST 03

or X FIRST + 03
i
1"t
&5

then X FIRST * 03

Let (jl) = X u y be a sentential form. "I

Then u is called a phrase of the sentential I;!
form w for a nonterminal U *

4

if
U

S => X Uy and
sf>+u, u is called a simple phrase

1

1
if S => *xuy and u => u. 1

A handle of any sentential form is a leftmostI
simple phrase.

25

un

If ü => + ... u...
we say the grammar is recursive in U. |
If + Ü ... it is left recursive;
If U=> + .. .U it is right recursive.

A sentence of a grammar is ambiguous J
if there exist more than one derivations
for it. A grammar is ambiguous if it can
generate an ambiguous sentence.

"Phrase Structure grammars" is a name given
by Chomsky to what the Bloomfieldian
linguists [LYONS 70] originally called the
immediate constituent analysis. They are
also commonly known as context free grammars
(CFG). These grammars are formally
equivalent [GAIFMAN 65] to Hays [HAYS 64]
dependency grammars. Two grammars are
equivalent if both produce precisely the
same set of sentences with the same
ambiguities. Chomsky provided a formalization
of CFG [CHOMSKY 57] and demonstrated that,
in spite of being more powerful than finite
state grammars in the sense that more languages
can be described by this model CFG’s have!

i

certain limitations.

27

1) A suitable CFG is capable of generating
almost all the sentences of English but
in many cases fails to generate all
structural descriptions which may result
in ambiguous meaning. For instance the
sentence "Flying planes may be dangerous”
can be generated by a phrase structure
grammar but its two quite different
descriptions can not be distinguished by
this model of grammar,

2) CFG's do not provide a method to show
semantic relations between different sentences
For example there is no way of stating
that if one of the following statements
is true, the validity of the other statement
is implied.

a) Yesterday I rode a horse.
b) I rode a horse yesterday.

3) The syntax of programming languages can be
represented in CFG by writing it in BNF
[BACKUS 59] but there is no formal way of
including semantics in the grammar. This
inadequacy has serious implications in
compiler writing.

28
;

■t

,4) When CFG is to be used for syntactic analysis,
it is sometimes stored in machine in the form
of a syntax tree (or a syntax graph). There
are sentences which use common vocabulary and
are semantically related but large parts of
their syntax trees are separate - hence
wastage of space. For example

a) I shall give the girl, a book.
b) I shall give a book to the girl.
c) Shall I give a book to the girl?

A transformational grammar as defined by
Chomsky assigns to each sentence it .
generates, both deep structure and surface
structure analysis and systematically
relate the two. Deep "connections" between
sentences which cut across the surface
grammar are transformational rules. The 4
phrase structure rules are used to generate
underlying strings arid on applying
transformational rules' on these strings
we obtain sentences.

J

29

Transformational grammars have not been
used much for analysis of programming languages
and most of the work concerning them is
confined to using computers as a tool for
linguistic research [f r i e d MAN 71] . It is
mainly due to the complexity of transformational
rules. It is argued that programming languages
do not require the "power" of transformational
grammar, since they normally do not posess
active, passive, exclamatory and similar
interrelated sentences. We note, however, a
recent paper describing work at the University
of California [d e r e m e r 74] .

The first two points mentioned in connection
with CFG can be accounted for by transformational |
grammars but it is difficult to say anything g
about the last two points, since they have
not been studied in great detail. Attempts J
were made to devise a formal method of
representing languages in transformational
grammar. Further research was abandoned
since the productions required for such a
representation grew exceedingly complex.

I

J t.

30

2.3 PARSING TECHNIQUES

Parsing techniques can be devided into two
main categories : bottom up or data directed
methods and top down or goal oriented methods.
There are parsing methods which do not fall
in any one of these categories, however, most i

of them are very ad hoc and do not form a
model of any significant generality. We quote
Conway's [CON^VAY 6s] remarks about his parsing
technique, which requires the construction
of so called no-backup diagrams; |

We therefore will confine our discussion to
the two main categories of parsers mentioned
above.

I

I
I

"The catch in all this is that a set of 4
no-backup diagrams for a given language
is constructed by a process which is
neither straightforward nor easy to

-Idescribe".

I

:■

31

In this method we analyse the given
language by repeatedly finding the handle
è of the current sentential form and
reducing it to a nonterminal B using a
production

B -> .
The problem with the bottom-up method is
to find the handle and then to know which
nonterminal to reduce it to.

out that the space required for the matrix
2 'is very large (of the order of n , where n

I
is the number of symbols in the vocabulary)

2.4 BOTTOM-UP TECHNIQUES:- |

I
1

Wirth and Weber [WIRTH 66 see also 4
HASKELL 74] have developed a bottom-up
parsing technique for a class of CFG's.
In this class no two productions have the
same right hand sides and at most one
so-called precedence relation holds between
any two symbols of the vocabulary. This
class is known as simple precedence or (1,1)
precedence grammar. The precedence relations
are stored in a matrix.

The above mentioned authors have also pointed

in most practical programming languages.
To counteract that, they developed the
notion of precedence functions which
reduces the space requirement. Formal i
methods have now been presented to
calculate precedence relations [t4ARTIN 68]
and precedence functions [bell 69}.
However, it is not possible to construct a
simple precedence grammar for every CFG
and further, it is not possible to derive
precedence functions for all simple precedence
grammars.

I

A technique which is similar to the simple
precedence technique but requires a
considerably smaller matrix is called
operator precedence and the grammars it
handles are called operator precedence
grammars. This technique has been given
this name because terminals of the grammar
play the part of operators and nonterminals
are treated as operands. The parsing
algorithm used for simple precedence grammars
is applicable except that all relations are ÿ; a
among the terminals only.

I

33

Obviously this requires a smaller matrix.

symbols on either side of the deleted
handle to find out what it should be
reduced to.

Operator precedence grammars are only a
special case of bounded context grammars.
Parsing algorithms for bounded context
grammars use a three column table in 'I
addition to the usual space requirement ,
for holding all the rules of grammar.

I

Higher order precedence techniques can
parse a bigger subset of CFG then the
simple precedence methods, but these |
methods are normally too demanding on
space. In many cases the space requirements
can be reduced to a reasonable limit by
using some ad hoc techniques.

Another difficulty with precedence parsing
techniques is that all the right parts of
productions must be unique. Attempts to
get rid of this restriction led to the
development of bounded context grammars.
[PAUL 62 , FLOYD 64 , IRONS 64 , CRIES 7l] |
In the bounded context schemes we use

34
I3

The construction of tables is always
complex enough but gets even more difficult
in certain cases ((m,n) bounded context
grammars). Also there is no direct way
of finding out whether a grammar is
bounded context or not. Knuth [kNUTH 65]
has investigated LR(k) grammars.

A grammar is called LR(k) if, for
V* Vin T, A in N, and P, P in t

G, S =>w^ A w A => A and

(ü)2 Wg); k = (^2 ^ imply P = P**.

Stated informally in terms of parsing, an ;|
LR(k) grammar is context-free grammar such
that for any word in its language each
production in its derivation can be
identified and its descendants determined
with certainty by inspecting the word from
its beginning (left) to the kth symbol
beyond the right most descendant.

Knuth points out that almost all unambiguous
grammars which can be processed by some ;
left to right process are LR(k). In fact!

precedence grammars CT bounded context
grammars C LR(k) grammars. ;

35

Knuth has also shown how one can determine
whether a grammar is LR(k) for a given k.
The problem of deciding, for a given grammar
G, whether or not there exists a k ̂ o 3
such that G is LR(k) , is however undecidable.
He has shown a CFG, named by him as LR(k,t)
grammar, for which we must back-up by a
finite amount. He also points out that the
parse time for LR(k) grammars is essentially
proportional to the length of the string to
be parsed.

Deremer [DEREMER 69] has given a practical
algorithm for parsing LR(k) grammars. The
complications involved in constructing a
parser for LR(k) grammar vary directly as
the complexity of the grammar and Deremer
defined a hierarchy of LR(k) grammars given
in the ascending level of complexity by

1 LR(0)
2 SLR(k) t
3 LALR(k) t
4 LR(k)

t Simple LR(k)
I

tt Look ahead (LR(k) Î

36

ï

i
Three different subsets of LR(k) grammars 3
are defined in terms of their parsing
algorithms. Deremer has shown that SLR
parsers for SLR(k) grammars can parse a
large number (if not all) of languages
that can be handled by precedence techniques g
or bounded context grammars.

Knuths LR(k,t) grammars overlap with
i'igrammars which are LR(k) and are not |

LALR(k) in Deremer's terminology. The
parsing technique for this class of J
grammars has not been described with the |
same details as given for SLR(k) and LALR(k) "
parsers. Nevertheless one thing is clear;
as pointed out by Deremer, it is exceedingly-
difficult to construct a parser for this
class of grammars.

A biblography on LR(k) grammars appears
in a tutorial paper by Aho and Johnson
[AHO 74]

37

2.5 TOP D0V7N TECHNIQUES

These techniques work by starting from
the initial symbol of the grammar and
recognizing a sentence by working
through its productions. In his survey
of parsing techniques Floyd [FLOYD 64 1
has mentioned only backup oriented
techniques. However the notion of $
no-backup techniques was in existance
long before [k a n n e r 59] the publication
of his paper.

Methods have been described [l IETZKE 64]
to perform top down analysis by scheduling
different procedures. The idea is that
an appropriate procedure should be called
at the appropriate place and every procedure
should have a specific task to perform.
These techniques.though adequate for certain
languages do not form a general model for
any appreciable subset of CFG's.

The Global parsing technique fuNGER 6 8] J
works without backup but is not capable ■
of handling grammars with cyclic nonterminals.
Also, it requires the whole of the sentence

38

to be available to the parser before parsing
begins. Unger has given various "quick
checks" to be performed to make the parser
efficient but many of them are reported
not to have been studied in detail.

Lewis and Stearns [LEWIS 68] have defined
syntax oriented transductors which perform
both syntactic and semantic analysis.
This model, however, has not been used in
any compiler so far to the author's
knowledge.

LL Parsers [LEWIS 68, ROSENKRANTZ 69]
(discussed in the next chapter) can be
considered as the top down counterpart
of Knuths LR techniques. The grammars
that can be handled by LL parsers are
known as LL(k) grammars (defined in the
next chapter). An LL (k) grammar is a
CFG such that for any word in its language,
each production in its derivation can be
identified with certainty by inspecting
the word from its beginning (left end) to
the k”th symbol beyond the beginning of
the production. Thus when a nonterminal
is to be expanded during a top down parse.

39

the portion of the input string which has
been processed so far plus the next k input
symbols determine which production must be
used for the nonterminal.

2.6 COMMENTS ABOUT PARSING TECHNIQUES;-

The efficiency of different parsers is
notoriously difficult to compare. It is
not only dependent on a particular language
but also on the manner in which its grammar
is written.

It may seem reasonable that in making the
above mentioned comparison among different
parsers, language should be a constant
factor and its grammar in each case be
written so as to suit the particular
parser. However, no general conclusion
can be drawn from such a comparison.
Since, for almost any general parsing
method known, there are languages (or
sentence in languages) which make .it
drastically inefficient. Comparison of I
different parsers on theoretical grounds

Iis very difficult, if not impossible since

40

many algorithms differ from each other
substantially.

Griffiths and Patrick [GRIFFITHS 65]
have made a comparison of parsing techniques
and have concluded that top-down parsers
are grossly inefficient timewise as
compared to bottom up parsers. Brooker
[BROOKER 67] has criticised their conclusion
on the grounds that the grammars of a large
number of programming languages can be
written so as to make their top-down
parsers efficient. We agree with Brookers
remarks and add that a better general purpose
parser is one which is efficient for bigger
subsets of languages, and for more languages.
Hence, a fairly general purpose no-backup
parser is better than the backup oriented
parser, the reason being that in a backup
oriented parser, efficiency will be achieved
by writing the grammar so as to minimize
backup while a no-backup parser by definition
possesses this property in its extreme form.

Space efficiency is as important as time
efficiency. A parser can be inefficient
in space either because it is too big by
itself or because it requires a large space

41

to store information produced during the
parse of a given sentence. The former in
efficiency is common in bottom up parsers
where large matrices are needed either for
some type of precedence relations or for
storing look ahead symbols. The latter
inefficiency is usually found in backup
oriented parsers where a lot of information
is required, in case the parser has to
backup.

Horning and Lalonde [HORNING 7l] have
made an empirical comparison of the time
and the space efficiencies of two general
classes of bottom up parsing techniques,
namely precedence techniques and LR
parsers. But due to the reasons given
above they do not claim to have reached
any definite conclusion about the relative
efficiencies of precedence techniques and
LR parsers in general. However, they claim

tthat by using Deremer's LALR algorithms and
after using various optimizations suggested
by him and on including new optimizations
we get a parser which is worth considering
when selecting a parsing technique for a
compiler.

tThe investigation is limited to LALR parsers.

42

I
Ease of use is another important feature t
in parsers, A technique could be quite j
difficult to use if it is capable of
treating only a special class of grammars
defined by conditions which are not easy to
state directly. Some parsers are very |
difficult to construct even if it is
known that the grammar being treated is
suitable for them. Both of these problems
are common with bottom up parsers. In
this regard a parser which can accept
grammar of a given language in some
modified version of BNF can be quite useful.
A top down technique is valuable for this
purpose and provides a natural way of
constructing internal tables. It has been
used in many such systems [METCALFE 65],

A good parser should also be able to give
reasonable syntactic diagnostics, since
they are essential for program debugging,
no-backup parsers are an asset in this
respect.

I

43 I

With these comments we shall attempt to
define an ideal parser. The nearer to
this definition the better. i
An ideal parser for CFG's is one which
accepts all grammars written in BNF,
requires the minimum possible space
necessary to store the parser, and
requires no space for storing specifications i

of parsing and parses without backup
giving prompt and precise diagnostics.

44

CHAPTER III

GENERALISED LL(k) PARSER

3.2 RECOGNITION OF LL(k) GRAMMARS;

As defined by Lewis and Stearns [LEWIS 68]
a grammar is LL%k) if, for all

3.1 INTRODUCTION ;-

This chapter is devoted to the discussion of |
the metasyntactic language. Rules of the
metasyntactic language are given and, where
necessary, they are explained with the help
of examples. It is shown how using some of
these rules, the value of k can be reduced.
It is also shown that in spite of the fact
that Rosenkrantz and Stearns have proved that
the left recursive grammars are not LL (k),
this restriction is not valid for our algorithm.
The class of grammars defined by the property
that they are accepted by our algorithm therefore
constitute an extension of the LL(k) class.

I
.'I

%

45 i

in A in , and p, p' in G,
S ==> w^AW^, S=>w^AWg,
A ' > W g A->^W""2

P I

and (wgwg): k = (wg wp : k imply p = p'

Stated informally a grammar is LL(k) if a
production and its leftmost descendant can
be identified from the symbols to the left
of this leftmost descendant and the k symbols
which follow (counting the leftmost descendant
terminal as the first symbol).

Before we show that a deterministic pushdown
machine can be constructed to recognise the
language generated by a given LL(k) grammar
we shall prove a lemma.

Let L be the language generated from an LL(k)
grammar G using nonterminals and terminals
V^, Define as follows: For A in let
L^ be a set of words in V*^ generated by G using
starting symbol A; for A in V^, = {A}
If R is a subset of V*^, let R:k = {w:k| w in R}

LEMMA. If G is LL(k) , then for all A in ,
Ü3 in V*^; k, and R Ç k satisfying RCH (w^)={wg:k
S => } for some in V*^, there exists

I

46

at most one production p such that A~>* o)̂ (p)
and : k =w for some and in V*,2 3 T
such that Wgis in R.

1

J
- ^PROOF. Suppose that A=>Wg(p), A (p) , f

_ ■>?and(ùü^w^) :k = (WgW^ : k = w for some Wg, i
p, and p such that w^tk and wg: k are in R
where R g R (w^) for some It follows that
there must be w'l and w*! in T such that3 3
S = A , S =4*-aiĵA w p w p k = ŵ : k , and
(üpk ï= w^:k. The last two relations imply [
that (: k = (w^wp :k = w, and the fact that
p = p follows from the definition of LL(k).
Thus there is at most one such p.

¥

y

The importance of this lemma can be stated f
informally as follows; The definition of :j

LL(k) grammars specifies that for any sequence
in the language, a production can be correctly
identified from the sequence w^of symbols to ¥
the left of its first descendant and the k , |

;
symbols which follow. The lemma states that the |
production can also be identified using only the |
k symbols which follow and the set R) where
R(w^) is the set of all k symbol sequences which
can follow the rightmost descendant of that
production. In other words, we can bound' the

47

amount of information that must be remembered
about the initial sequence.

3.3 DESCRIPTION OF THE PUSHDOIVN MACHINE.

The finite-state control has enough memory to
store an input string of length k or less and
to perform such obvious tasks as reading in
the first k inputs. The tape symbols are
ordered pairs (A,R), where A is an element of

the machine so that if some r + k inputs have
been read in, the input string stored in the
finite-state control is w and the top tape
symbol is (A,R), then the following are true.
(1) The word w stored in the finite-state

control is the string consisting of the
(r + l)-th input through the (r + k)-th
input. If the input word only has r + k
symbols for k \ k, then w is the last k
symbols of the input word. In this latter
case, it is convenient to say that k - k
blank inputs have been read in after the
completion of the input word as indicated
by the special end-of*-tape marker. These
implicit blanks play the same role as the

I

1d and R is a subset of V* fk - We design #

48

t /(3) The set R represents R : k, where R is the

I
I

" H " of Knuth. ^
(2) The symbol A represents the fact that tlie

descendants of an A follow the rth input |
symbol. If A is a terminal symbol, this

“Ifmeans that the (r + l)-th input symbol |
Jmust be an A. The symbol pair (A,R) or

its replacement is to be popped up as
soon as all the descendants of A have
been identified.

I
set of all acceptable input sequences
that could follow the descendants of the 1
A. Thus, if is the tape symbol
below (A,R) , then R = R^):k; and
R = {A} if (A,R) is the bottom tape symbol.
The machine begins with the single symbol
(S, {A}) on its pushdown tape.

We now describe the machine operations. Initially,
the machine reads the first k inputs and stores
them as the word w in the finite control. The
pushdown tape is initialised with the symbol
(S, {A}). This initialised configuration satisfies
1, 2 and 3 above and we take it as self-evident
that the opérations described below preserve
these properties. After r + k inputs have been

49

read, the operations are as follows;

Case 1. If the top tape symbol is (A,R) and
A is a nonterminal, then R - { 0)3 : k|
S=>*^^^Aüj^, where consists of the
first r inputs. Therefore, by the
lemma, there is at most one production
p that could be applied to A in order
to be consistent with w and R. Three
subcases follow;

Case la. If there is no such p, the machine
rejects the sequence.

Case lb. If p is the production A =>A then the
top tape symbol is popped off.

Case Ic. If p has the form A => A,...A for A.1 m 1
in U V^, then the top symbol (A,R)
is replaced by the sequence of symbols
(A^, R^)... (A^, R^), where R^ - R and
R. _ = (L , R.) : k for 1 < i < n.i-1 A^ ' i \

Case 2. If the top tape symbol is (A,R) and A
is a terminal, there are two subcases:

Case 2a. If w = A w'' for some w"', then the top
Itape symbol is popped off, the nextI

input X is read, and word w" x replaces w

50

in the finite control.
Case 2b. If w does not begin with A, then the

sequence is rejected.
Case ,3. If there are no tape symbols on the

pushdown tape, then if w = A, the
sequence is accepted and otherwise
it is rejected.

Although considerable information is encoded
in the tape symbols (A,R), this is somewhat
less information than is required for general
LR(k) recognition. Furthermore, even this R
information is needed only when the machine
must choose among words in which are shorter
than k. To verify this, assume that (A,R)
is the top tape symbol (i.e. the machine is .
looking for a production descendant from A)
and that control word m is the (i.e. that
the next k symbols after the start of A are all
descendants of A) . Then it follows from the
definition of context-free grammars that the
past can give no information as to which A
production was used, and hence the decision is
independent of R. This situation always occurs
for LL(1) grammars if there are no A productions

51

AaiV
o
A>-V

AOQr-4 VO
r r-4 A. z X,-4 r r V

o
II II II It or.Z)
A A A A a
X >- CD V/l <-0

O
o o

o o o
O O O O O o

m
UJJDO-
jS

KN

Q>
• •tH (A

02 c3 M M 01 0)
X s

I

I

H H-zr 2:lU LU .
_j -J<c <ï
> > #3 Z) -IO oLU tu j
<y> . (rrh“ K %
oc o:o o Io o
II II

-J _J o oo o 2:o CO CO r-4 ZJs: o i|o > > o LL 1
00 OO wo o f-4 oc ■;
00 00 o 1o m r*4 W O ocX X eg ■i"T t— r—4 h-. r-4 LU -"<1W

O r-4 # rM -«• o ** •fr * fl
O o It- f***4 4t* r-4 if

52

As an example where R information is necessary,
consider the following grammar;

S=> lAlB
S => OAOB
A —> O
A=> 01

EXAMPLE 3.1
B => O

This grammar is L L (3), but after 1 + 3 inputs
have been read and w = 010, one cannot
determine which production to apply to A
without consulting the corresponding R which
will contain either (lo) or {oo} , depending
on which production was applied to S.

3.4 GENERALISED LL(k) GRAMMAR:-

We define a generalised L L (k) grammar as
follows:

A grammar is generalised L L (k) if, it can be
written with the help of the metasyntactic
language described in (3.5) and for all
0̂,0)2 ,032,0)3,033̂ 11 V^, A in and p , p' in G,
S =>w^A s =>w^A ,

53

3.5 ON THE PRACTICAL ALGORITHM OF GENERALISED
LL(k) GRAMMARS

The practical algorithm for ELL(k) grammars is
described in chapter 4. It is not difficult to
see that in combination with the extension
mechanism described in chapter (7) it performs

III
3

A “ a ^ “s
and (WgWg) . k = (; k imply p = p'

or P and p are left recursive as
explained in § (3.8).
The definition of generalised LL(k) grammars is similar to-the
one given in (3.2) except that the if clause
of the definition is further qualified by
saying "if it can be written with the help of
the metasyntactic language described in (3.5)"
and "or P and P are left recursive ".

It is clear that the definition of generalised
L L (k) grammars is more powerful than that of
L L (k) grammars. We therefore abbreviate the
name to extended L L (k) written E LL(k). They
include left recursive grammars and the rules
of the metasyntactic language are more powerful
than that of ordinary BNF.

-I

54

the task of the push down machine described
in (3.3).

The word w (steps 1 of the push down machine)
is stored in the input buffer of the syntax
analyser. R is stored by the extension program
in SN0B0L4. Step 2 is performed by building a
syntax graph and stacking in the node corresponding
to the start symbol on the syntax analysis stack.
Steps (a) to (m) of the syntax analyser correspond
to the cases (1) to (3) in the push down machine.

Different facts about the LL(k) grammars are
listed in appendix I. We will not prove these
facts for ELL(k) grammars. We believe that,
with the exception of the restrictions on left
recursion , they can be proved by arguments
similar to those used for LL(k) grammars.

3.6 MSTASYNTACTIC LANGUAGE

* Terminals stand for themselves.
* Nonterminals are enclosed in corner brackets

"< " and "> " or in ampersands.
* The left hand side of a production is separated

from its right hand side by "=".
* EMPTY is the system defined nonterminal

representing A .

55

'1

<BLANKS>is the system defined nonterminal
representing zero or more blanks.
Any terminal being followed by another symbol
in a production requires a blank as a terminator.
All members of the metasyntactic language except
SN0B0L4 (Explained later) are normally reserved
symbols.
Any reserved symbol when preceded by an asterisk
loses its special meaning.
The grammar is written such that (a) A linking
production (explained later) follows the
production it links. (b) The production having
the start symbol of the grammar on its L.H.S.
may only be followed by linking productions.
The existence of blanks in the source language
statements can be specified explicitly on the
right hand sides of MBNF productions. If a
nonterminal is enclosed in corner brackets it
is assumed that after the recognition of its
rightmost descendant, at least one blank will
follow in the source language statement. All
blanks are ignored. On the other hand if a
nonterminal is enclosed in ampersands, no
assumption about the character to follow its
rightmost descendant is made. i #

f

For example consider

56

3.6.1 < letter > = A BlC D

3.6.2 < variable> = &variable& &letter& 1 &letter& G2

3.6.3 < list> ~ < list> < variable> j < variable>

Its language consists of character strings
separated by blanks. Character strings are
recognised by (1) and the blanks are introduced
due to (3). The manner in which the left hand
sides of these productions are specified is not
important. SN0B0L4 can be considered as a subset
of the metasyntactic language. During the syntax
specification, one or more SN0B0L4 programs can
be introduced. The code generated is the same as
that generated by the SN0B0L4 compiler and no
substantial loss of efficiency is incurred.

Undefined nonterminals of MBNF are considered to
be the names of SN0B0L4 programmer defined functions
and the user is assumed to have defined them in
his SN0B0L4 programs. On execution,when any such
nonterminal is encountered, linkage to the
appropriate function is made automatically. Within
a SN0B0L4 program, various key words are used to
communicate with the parser. Facilities have
been provided to introduce look ahead for

57

3.6.5 DELETE THE 8-TH CHARACTER OF A.

avoiding backup during parsing and to control |
lexical scanning.

IIn English-like programming languages [BARNETT 691
certain words are used which are essential for
the naturalness of the language but have no
significance for machine translation. These
auxiliary words can usually be classified as
obligatory or optional. For example,

3.6.4 DELETE THE 3-RD CHARACTER OF THE STRING.

I

I

3.6.6 DELETE A. Ii
JThese examples are based on SNAP, described by

Barnett.

It is obvious in (4) that "CHARACTER OF” and
"THE" preceding the ordinal adjective are
obligatory while "THE" preceding "STRING" is
optional. One interesting property.of such
auxiliary words is that they can almost always
be associated with the word to follow but'not
necessarily with their preceding word. Association
of "THE" with "DELETE" will make (6) syntactically

.'i

58

incorrect while it can foe safely associated
with the ordinal adjective in (4) and (5).
During parsing each auxiliary word t is associated
with its succeeding word and a single bit is used
to record whether it is obligatory or optional.
For instance the string ;|
will be treated as 2̂ 1̂ %
where Bg =65 = 637̂ ?̂ . and Sq =

In the system obligatory auxiliary words are
enclosed in double quotes and optional auxiliary
words are enclosed in single quotes.

3.7 EFFICIENCY CONSIDERATION.

Having outlined the system in the previous
section, we are now in a position to discuss
various techniques developed to increase its
efficiency.

3.7.1 In [)-> 6 ,(« 0= 6 C) “> ô ç]
if Id >0 then k ^ 1

The value of k is reduced to one if (1) can
be handled as '

I

-

3.7.2 [(«1=6) -> ô, ~> 5, (oLq- A) -> A]

This can be achieved by manipulating the
grammar using tlie system-defined nonterminal
"EMPTY" or one of the symbols " ~7 " and "IN "
or simply re-writing the grammar.

* The syntactic entity on the right of "7 "
may occur zero or one times, that following
" IN " may have n occurrences where n o. To

J

illustrate our point we consider part of the
grammar shown in table 3.1 (see also example
3.1 above).

3.7.3 [(«2=3) -> 3, (a^=6)->6,(o^=65)-> 85,(0̂ = Ç)-> ç]

and clearly (3) is a special case of (i)
with k >1. If in this simple case (3) . is
treated as follows k is reduced to 1.

3.7.4 [(2̂=3) -> 3, («2= -> C,
-> C, (cCq-A) -> A]

The whole grammar of table (3.1) may be !
similarly stated but the result is considerably
more complex. '

i

60

CN
rn
U4
oa
0

LU

r
LU
r
Q
r

i

o (NJ lA >o Q a O.. #« f- •> Z : z 2T
f r-t f-H r-4 r-4 z> ZD 3

A A A A A o O O
00 V) to VO to VO LU UL LU LU

V V \/ V V
r LU UJ (X eg eg

II II II II II O O . O
< î LU . Q o o Qg eg O eg

n < r u> O eg eg eg
II. »» ► «- eg o U o O o U J lU LU LL. LU CO UJ OO UJ

r-4 f—4 r*H z> W W
A A A A A A a CO OQ CO CÛ CO o o o tJ lU Q < 41- Q •51- < i t
V I VO VO VO VO VO VO ■51- 4K 41-
V V V V V V IH» < < < < < < < < < o CD Q -M- LU LU *

M
J

!The notation < P > n, m is introduced to refer to
■p'

the nith symbol of the nth alternative of the
(unique) production whose left hand side is <P> , ,ÿ
provided that this exists. The MBNF is extended
to allow two symbols of a grammar to be linked by
a production of the form

< P> n,m ~ < P > rif m''

No new structure is created for this production
but a pointer is created from < P > n, m to <P> n ,
m . After recognising <P> n-1, m-1 i f < P> n, m
cannot be recognised, the processing continues
with <P> h* , m . This rather simple idea is
very helpful in reducing the value of k and the
size of the grammar.

Consider a language with the vocabulary

%3.7.5 a b c d e f

and sentences which are strings of arbitrary
length but maintain the order specified in

(5). Conventionally it will have a large
context free grammar and consequently will
require a large syntax graph, i.e. '

W-

62

iS> - a b c d e f l a c d e f l a d e f i

a e f i a f l b c d e f l b d e f i

b e f i b f I c d e f I c e f I
c f l d e f d f I e f i f

EXAMPLE 3.2

However, using the linkage scheme described
above it can be written as a single basic
production requiring an internal structure and
several linking productions for setting pointers.

This is illustrated in table 3.2.

3.8 LEFT RECURSIVE GRAÎ'ÏMARS : -

Rosenkrantz and Lewis [r o s e n k r a n t z 69] have
proved that an L L (k) grammar can have no
left .recursive nonterminals. We do not dispute
the validity of their proof for the LL(k) grammars
they have defined but in the light of the definition
of our extension it is not relevant.

In their push down machine, a left recursive
grammar is of the following form

53

3-8.1 [(ctg=A) -> n=0, (a^=8^)-» n=n+l, (aQ=3)-> 3(3^)^]
They rightly argue that k = |§1* n.

Since n is unknown k is also unknown. In our
algorithm the left recursion has the form

I

3.8.2 [(a^=3') -> 8', (0̂ =8)-» B] |

Since for a nonnull a there is no choice at any
level, a member of this class may be an ELL(l)
grammar. However, if could have more than y.

j:
one different acceptable value the grammar would
still be ELL(k) but k may be greater than 1.
Informally speaking, for a left recursive grammar

< x > = < x > a a a | a b

EXAMPLE 3.3

in a conventional top-down parser, we start with . |
< X > and replace it by < x > a a a. Then we
replace <x> again and get <x> a a a a a a. The
process continues and the loop never terminates.
Lewis and Stearns' proof that the left recursive
nonterminals can not be L L { k) follows from the
above discussion. Since the language of the
above grammar is of the form a b (a^)^ or a b

64

(aaa)^, we must replace < x> by <x> aaa, the
correct number of times and then start recognising
the whole string. For this purpose, before
replacing <x> at each stage, it is checked, by
looking further ahead, whether the next three
symbols are part of (aaa)^ and another replacement
is necessary or they are not, and loop must be
terminated. In other words all the symbols in
a b (aaa)^ must be looked ahead. Since n is
unknown, clearly k is also unknown.

In our algorithm, < x > will be replaced by
< X > a a a only once. After that the system
detects left recursion and recognises a b
before trying a a a repeatedly. It will now be
seen as in table 3.3 that our algorithm is
capable of handling left recursive grammars.
The table 3.3 shows four different blocks of
information.

1. Àt the top is a left recursive grammar in
which the nonterminal "P" is undefined.

2. "%SOURCE" is an indication to the system
that no more production of the grammar is
to follow. On meeting this command the
system displays a warning message that ”P"

65

Q •

m
m
W
Ss

%
<.
CLI/)

z:ocO

z:UJ
- j<L
>

DO
UJ

lU
<l
:>

%)o
UJ

CO •> LU CO I/I
A o DC f» 1— k-
£X < m z
V o z N LU oc

z? ex ÛC
o A

O-
%
oc

<
a .

•• z
cc

H*
UJ

a O

CO V UJ CO CO o DC o <
H” t—

uu 2 LU II < < < < II
O CO tvj oc CM

M k- tu A < z o *p f\J CO rJ < z Q < < O -J
-J Q. •> fs4 o • • rJ o o

— V < o Z _ •W-. Q. II fO H* k- 3 < <t < CQ
ua ►—* #—« UL Z r-t II Z O X

CD'"t- < <t <r X UL
-5Î- Cl II

LU
-J n:

>-
CO

k- k- LU CO k” k* >
CO

A A A A A A uu m IVJ z O o < <L D: 00 k- k*
OC _J > N X >- UJ LU Q X CO o CO
V V V V V V UJ a -J UJ LU Q -J UJ h- L-> X -a. < nt V— k—

o % o -J Z DC X CO z CO X
O

p: X
II II II II II II oc o in <l Cl w tXi <3 O o 1— Q LU 3%: <i H"

3 o II u_ O oc h- o wi
A A A A A A CJ •It- ÏC UJ < 1—1 o o CJ CJ •It CJ LU cu it
or _J M X >- (A CO ii- CO N Q r—4 o sr f\l m IL il- it it
V V V V V V Ô'f» * a PSI PsJ »NJ CD CO -«• UJ OJ ■ it CO LU LU it

<c <

z:
UJ-j<

o
UJ

cco

It

-Jo03
s:
w

\<~* X

66

has not been defined.

3. Inside the bracket ”%SNOBOL" and "%FINISH"
is a SN0B0L4 program. A user defined
SN0B0L4 function is defined which performs
two tasks:

a) It performs lexical scanning
to recognise B, since <P> = B.

b) It introduces look ahead to
decide whether <P> C D or B C
< R > is to be followed.

4. The last part shows syntactically analysed
source language statements.

The following grammar is a member of (3 8/2)
but is not L L (k) since it is ambiguous I

3.8.3 [(a =6^) •-> 8"̂ , (a =3") - » 3", (a =3)-» 3]

where (3)^ ~ (3)^, n and m are positive integers.

Consider
< x > = < X > a a a I c

< S > = < S>a a 1 <x>

67

3

3"
3^

a a
a a a
c

EXAMPLE 3.4

There are bound to be two positive integers
n and m, such that:

(aa)^ = (aaa)^

e.g. n = 3 and m = 2

satisfy this condition. They generate the
following two parse trees

<s>

<s>

<s>

<ŝ >

<x>

c

<s>

<x>

<x>

c

FIG. 3.1

■«I

%
68

This is also true with some members of the
following set:
[(G2=3*)-> 3*,(ag=G*)-» 3̂,(â-3") -> 3',(aQ=3)-» 3]

For example if

then lê l + 16*1* m + |6'| + le| * n =

le'^l + 16*1* " + | 6 ' | + |6 | * m

for some n and m

In the grammar

< x > = < x > a a a a| a a

< s > = s < s > a a a | a < x >

EXAMPLE 3.5

3 ~ aaa 3 — a
3'* = a a a a 3 = a a
and the condition
a a + (aaaa) * n + a + (aaa) * m

= a a + (aaaa) * m + a t (aaa) * n JI
is satisfied.

I

"1:

a? . g af" = er

â* = 3" â"* = IIr, r*, r", and r"' are positive integers. %

1

69

Since it can be written as
(a a a a) * ni + (a a a) * n =
(a a a a) * n + (a a a) * m

it is ambiguous.

However, it is worth noting that these grammars
are notELL(k) because they are ambiguous and
not because they are left recursive.

The following is an unambiguous left recursive
grammar but is not ELL(k)

3.8.5 [(aj_=6") -> 6*,(03^=6') -> 6".(0^=8) - » B]

where iB'l > !B'|
e' : |g*|= 8*
|B| > IB'I
6 : |B'|= 6"

(8')" = { 8) / n and m are positive Integers
But it can easily be written as

3 . 8 . 6 [(0^ = 3*) - > 3 ^ » (a Q = 3 ' *) “ » 3 ' , (« Q = 3 ^) - > 3 ^]

8̂ = 8" : (|8'| - |8*|)
For example the grammar

< x > = a a a I a a I a
is left recursive and unambiguous, but it is
notr-LL(k). However if it is written as ;

< x > = < x > a l a | a |

it is ELL(l) . '

70

CHAPTER IV

implejmentation o f t h e
GENERALISED LL (k) PARSER

4.1 INTRODUCTION
The generalised LL (k) parser uses a syntax
graph constructed from the grammar of the
language being parsed. It applies a predictive
algorithm to traverse through different nodes
of the syntax graph, in order to recognise the
source language statement. In this chapter, we
will first describe the layout of the syntax
graph and then discuss different aspects of
the parsing algorithm.

71

4.11 SYNTAX GRAPH :-

The syntax graph has a start node and an
arbitrary numloer of nodes accessible from
it. Each node of the syntax graph represents
a member of the vocabulary of the grammar being
parsed and is linked with other nodes by one or
more pointers. Each node consists of six fields
as shown in 4.1. Each field either has an entry
or has null string as its value.

DEF QUAL ALT SUCC MOD AUX

format of a node

FIG. 4.1

Definition field DEF

This field either holds YtV, if it is a
terminal, or is a pointer to the node
representing it if it is a non-terminal*

Qualification field (QUAL)

72

This contains the following information
represented by a unique code

a) Whether DEF represents
(i) A terminal
(ii) A nonterminal enclosed within

corner brackets.
(iii) A nonterminal enclosed within

ampersands,

b) Whether "n " or "IN " or neither of the
two exist immediately to the right of the
current symbol.

c) Whether the symbol represented by the node
pointed at by AUX of the current node is
obligatory or optional.

Alternative field (ALT):-

If X... is an alternative of Y.., then ALT
of the points at the *

Successor field (SUCC)

If the R.H.S. of a production is of the form
. . .Y X ... then SUCC of the Xĵ q d e Points at

the Xj^oDE'

73

Modification field;-

This field keeps the pointer (if any) to the
node which must be tried in case the current
path of the parse is to be modified.

Auxiliary field (AUX):~

If the right hand side of a production is of
the form ...0 Y where 0 is a non-empty string
of auxiliary words, the AUX of X^ODE Points at
the node representing the left most symbol of
0. For all practical purposes the said production
is considered to be of the form ...Y... while
0 has an independent representation.

To construct the syntax graph, the parser uses
a symbol table, each entry of which consists of
two fields, the definition field and the pointer-
field. The definition field accommodates a
nonterminal X on the left hand side of a production

while the corresponding pointer-field keeps a
pointer to the X^ODE ^^ere X FIRST Y.

74

A. production is scanned from left to right to
find X. If X is subscripted then Y must also
be subscripted. Subscripted X and Y refer to
/ , / / /X and Y where X =>-X"' and Y =>-Y"* while X ̂
/Y are determined by the respective subscripts

of X and Y . ' As a result of this production the
MOD of is set to Yĵ o d e * ^
subscripted, it is entered in the symbol table,
provided it has no entry already. A node called
—NODF created for Y and the pointer field of
the most recent entry in the symbol table is set
to the XfjoDE* production is then scanned
further and the part of the syntax graph required
for it created as follows.

If the next symbol is
a) t^, the first of the consecutive auxiliary

symbols t^ t^ t^....t^ where n 1 then
^iNODE created, and AÜXPOINT is turned
on. Nodes are also created for t^ t^ ...t^.
All the nodes of the consecutive auxiliary
words are connected by their SUCC fields
such that

SUCC(t^) = t^+i n > i >

75

b) ^ G V then a new node is created to
accommodate it and SUCC of the previous
node is set to the If the AUXPOINT—NODE
is on, AUX of the is set to the node—NODE
pointed at by it and the AUXPOINT is turned
off.

c) " I", the symbol preceding it is considered
as the last symbol of where Y. j-?
is the nth alternative of Y 1-̂]

The production is scanned further to find
the next symbol which is expected to be

A new node is then created for
Yt"-*-^hnd ALT of is set to the ^ S d e "

d) " 1 ". The ID of the most recently created
node is modified to reflect the occurrence.

e) "IN ", the ID of the previous node is
modified as in (d) and further scanning
continues to find ^ such that ^ c V.
Step (a) is performed and a pointer
GRAPHPOINT is set to this node.

76

f) The last symbol of the production. It
must be a member of V. A node is created
for it and linked with tlie other nodes as
usual. If the GRAPHPOINT is on, the SUCC
of the current node is set to the node
pointed at by GRAPHPOINT and GRAPHPOINT
is turned off.

T'Then reference is made to a nonterminal T
which does not have an entry in the symbol
table, the processing of the current production
is suspended after saving any necessary
information. An imaginary production <T>= A.
is then processed. It’s symbol table entry is
marked to show that it is an ad hoc one and
then the processing of the actual production is
resumed from the point at which it was suspended.
At a later stage when the production<T>=<Y>.,.
is processed, no new entry is made for T in the
symbol table. It’s previous entry is unmarked
and the structuré of the corresponding production
is modified so as to accommodate the current
production.

For this reason, before making a new entry, the
symbol table is always searched for that entry.

77

The presence of any such unmarked entry is
erroneous .and the current production is
ignored with a warning message. In all
other circumstances the normal process
continues.

At the end of the syntax specification,
marked entries in the symbol table are
displayed with an appropriate message. It
is assumed that the user will have defined
these nonterminals at some stage. The DEF
of the node representing the undefined
symbols are filled with the symbols themselves
and corresponding SN0B0L4 code is generated
and linked at the appropriate place of the
.processor. This enables the processor to
call the corresponding user defined SN0B0L4
function when an undefined nonterminal is
processed during Syntax analysis.

78

<operator>

ALT
SUCC
MOD
AUX

< operand >

< addition exp >

The above diagram shows the syntax graph of
the following grammar

<;^operatoi^ = +
operand ^ = A

<^ddition e x p ^ = <^operand ^ ^ <^ p e r a t o r ^ <^ddition exp^

EXAMPLE 4.1

79

In the above diagram, symbols on the L.H.S. of
the vertical line represent nonterminals to be
entered in the symbol table and oblong boxes
are nodes of the syntax graph. An arrow
represents a pointer while a triangle is a
pointer to a node which can be accessed with the
help of symbol table entry specified in the
triangle itself.

example;- 4.2

{statement) = PRINT "THE" (ordinel adjective)
"CHARACTER OF"
'THE' {variable)

The syntax graph of the above statement is
given below.

<statement>

AUX 2

AUX 2

80

PRINT

Ordinal
s. adject
\ i v e /

AUX. 2 Variabl<AUX. I.

THE
Obi

CHAR
ACTER

OF THE
ObiObiObi

Representation of auxiliary words

FIG. (4

81

4.12 PARSING ALGORITHM:-

We now describe the basic parsing algorithm.
It's role is fundamental and rest of the ■
predictive algorithm may be considered as its
extension. A priority list of paths to be
traversed in the syntax graph has been defined
and is adhered to strictly. Necessary
information is stored on the syntax - analysis
stack (SAS). Each element of SAS has three
fields: node, path and position. For the
convenience of description it is considered
as if this one stack is the "concatenation"
of three stacks, each having elements consisting
of single fields. %Vhen a source statement is
to be parsed, the parser is initialised so
that
(i) The left most symbol of the source

statement is the current symbol.
(ii) The node representing the start symbol

of the grammar is the current node.
The parser then goes through the following
steps.

a) If the current node is a nonterminal,
stack it in the node stack, stack the
current position in the position stack
and stack an element in the path stack
marking it as daughter. Make the

82

daughter of the current node as the
"new" current node and repeat this
step.

b) If the terminal is a function,obey it,
otherwise match it with the current
symbol.

c) If the match is a success, check to see
if there is another symbol in the source
statement immediately to the right of
the current symbol. If "yes” pick the
new symbol and go to (i). If no "new"
symbol can be picked, run the algorithm
until successful recognition of the
source statement is confirmed by
exhausting the stack or an error
condition is sensed. In either case
the algorithm is terminated.

d) In (c) if the match is not successful,
check to see whether the current node
is a successor of some other node. If
"yes" try the MOD field otherwise give
an error message and terminate the algorithm.

83

e) If the current node is EMPTY^Q^^, the
position fields of the elements of SAS
are marked -ive and the control is
transferred to (i).

f) If MOD field is null and the current
node is mandatory (not optional due to
1 or I N), the current state is an error
state. If the current node is not mandatory,
ignore it. If the MOD field is not null,
stack the current node, entering the position
and the path fields. If it is already at
top of SAS, mark the path top as MOD. Make
the modification node, the current node and
go to (a).

g) If the current node is the left most
symbol on the R.H.S. of a production, check
to see if it has an alternative. If yes
make the alternative, the new current node
and go to(a),otherwise to to (h).

h) (i) If the SAS has been exhausted, check
how the algorithm is to be terminated,
with or without an error. '

84

node, the new current node and go to (a)

(v) Check to see whether the right hand
side of the current production can end
at the current point. If "yes" delete
the SAS-top and repeat (h). If "no"
print an error message and terminate
the algorithm.

(vi) If the current production has an
alternative, make it the new current
node and go to (a), otherwise delete
the SAS-top and repeat (h).

i) If the current node has a successor, stack
the current node, make its successor the
new current node and go to (a),otherwise

go to (h) . *

(ii) If the current position does not
match the POSITION-top, mark the
PATH-top as successor and go to (i).

(iii) If the PATH-top is marked as MOD go
to (hV) and if it is marked as ALT
or DAU go to (hVI)

(iv) If the MOD field is null, mark the
iPATH-top as MOD, make the modification 'g

■

85

START

it
'beginning of
the analysis of
\ t h e statero enj

YES

NO

Is it
the head

> ^ y m b o L

YESError

Message

STOP

Initialization

Completion of
the algorithm

FIG 4.4

rtfK
14
4

■I

86

NO

YES

YES •

NO

NO

YES

NO

YES

YES

NO

-y^Does av
successor
V exist

match
^uccessftL

it a ^
function

the nod(
jberminal

Pi H o

c + p

Stack the
current node
and

DAU
to

Match it vith
the current

symhol.

87

NO

YES

Does it
have an
alternative

NO

YES

it
/f irs t symbol
on the R .H .S . o]
\ a product!

Go to ALT •
and modify
Path- top

I

88

12 7K

Is the
SAS

exliaustei

YES

NOhii

/ t h e current
position match th^
'\position-top X

NO

CQ
I S Delete the

SAS - topYES
• hiii

Is the path-
top marked
as

MOD
:ALiySUCC DAU

^)s,hvi
^oes it\.

have an
alternative

11
NO

10

89

O
•P

CO
o3 o

fciû
<u A
xi O r d •
■p ■P O P

1 d Q
W S

to E j A
o3 < O

S

h.v

<D A
Xi O
■P ■P

<u 1

0) CO
I— 1 <
(U C Q

A

PATH

c \/

STOP

90

EXMIPLE 4.3

With the grammar given in example 4.1,
the expression "A + A" will be recognised in
the following steps.

1) Make "A" as the current symbol, stack
< addition exp> ĵ q d e the node field
of SAS and go to its daughter node.

<addition exp> FIG. 4.5

2) Stack Caddition exp) 1,1 in the node
NODE

field of SAS, the current position in
the position .field and DAU in the path
field. (Step a)

<addition exp>l,l
<addition exp>

DAU
FIG. 4.6

91

3) Recognise "A", pick as the current
node (Step c),

4) There is no successor of the current
node (Step i).

5) Mark the path-top as SUCC (Step hii)
and go to the successor of the node-top
(Step i) .

< addition exp>l,l
< addition exp>

SUCC
FIG. 4.7

6) Stack the current node (Step a) and
go to its DAU*

< addition exp>1,2 DAU
< addition exp>1,1 Pi SUCC
< addition exp> FIG. 4.8

92

7) Recognise "+" and pick "A" as the new
current synhol (Step c) *

8) Go through (4), (5) and (6).

<addition exp>l,3 P3 DAU
<addition exp>l,2 SUCC
<addition exp>l,l Pi SUCC
<addition exp> FIG. 4.9

The SAS is now as given in the
diagram 4.9

9) Since the current node represents a
nonterminal, stack it and go to its
daughter (Step a)

<addition exp>1,1 P3 DAU
<addition exp>l,3 P3 DAU
<addition exp>1,2 P2 SUCC
<addition exp>1,1 Pi SUCC
<addition exp>

FIG. 4.10

93

10) Recognise "A". This is the end of the
statement since there is no symbol on
its right. Neither the current node
nor any one of the nodes on the SAS have
a mandatory successor node. Hence this
is a legal statement. (Step c).

94

4.2 LEFT RECÜRSIONi-

4.21 GENERAL CONSIDERATION

/ / / , /We consider a grammar G (V^, V^, P, S) ,
constructed from a grammar G (V^, V^, P, S) in
satisfying the following restrictions.

c
c

P c P
and P containing a mutually left recursive
subset of productions P ^ , P^, P^ n

The sentences of L(G) are thus sentences of
L(G), or parts of them.

EXAMPLE 4.4

< X > < S >
< X > a I c

< S > =
< S > =

< X > = < S > b d

95

It is not difficult to see that
L (G) = (c [b a] ^ } U { d a [b a] ^ } m , n ^ o

If is of the form
< X > ~ < Y > < Z > I ...

We define to be such that Z = >*7^

and Y ” \ ^2 ^ 3 ^n n > o and
/Y is a part of a sentence of L(G).

We shall also consider the "tail" C of y as

5 = Vi W V3 ...
For production P^ at which the left recurrsion
may terminate, the terminating alternative will
be referred to as The notation can be
generalised if there are several such alternatives
 ̂ is simply defined as nC .

Informally stating, in the example 4.2 L(G)
has three different types of substring;

a) which can have n occurrences (such as "ba"
in { d a (b a)^}

(Y in the notation.)

b) which can have only one occurrence but are
parts of substrings in (a) (such as the first
"a" in da[ba]^)'

96 i
i

i
. i(5 in the formal notation) .g

c) which can occur once only but are not
parts of substrings in (a) (such as g

(n in the formal notation)

the example 4.4 , for G

= n.C 1 ^ = ¥
- c ri2 = d

1̂ = JL = a

Id in da (ba)^) f
f

I

y
i
V.

j

4.22 PRACTICAL CONSIDERATION

It is possible that there are several nonterminals
Sg Ŝĵ in that are initial symbols

/ / /
of corresponding grammars G , G ̂J

/ / ■ /having the same set of productions P^, Pg....
G^ is essentially a set of grammars consisting of
one set of productions but in different order in

<each case. So an algorithm is required which
could detect and its corresponding order j

^1' ^2 ^n ^i' ;

97

/
For example in example 4.4, X and S are in

/ / / both G and G . Hence we consider S as S ,
9and X as .

EXAMPLE 4•5

G^ is the same as G in 4.4 but G^ will be
as follows

<X> = < S > b i d

<s'> = < x'> a I c

By the definition of context free grammar
(example 4.4,)

Also L(G^) f LCGg)

It is therefore necessary to find the right
order of productions P^, P^, P^P^ in
G^ and the corresponding start symbol S 2

4.3 IMPLEMENTATION OF LEFT RECURSION :~

4,3.1 BASIC PHILOSOPHY:-

98

/ fLet be on the left hand side of which
is in then by the definition of left
recursion

fS FIRST* S, . I
i

With this in mind we explain our algorithm
by the following example.

< X > = <y> a | d

< Y > = < Z> b I c
< Z> = <X> c I f

EXAMPLE 4.6

From example 4.6 using the parsing algorithm
already developed, the SAS will be in the
form shown in diagram 4.11 for any legal 'j:
grammar , and then the three elements will
be stacked again and again in the same order.
The following extension to the parsing algorithm
prevents this repetition.

99

DAU
DAU
DAU
DAU

FIG. 4.11

Before making a new entry in SAS, it is processed
from top towards the bottom. The current position
is matched with elements of the position stack and
the current node is matched with the corresponding
elements of the node stack. The search is
terminated when, either a match is found or the
stack is exhausted. If the match was found between
the current node and an element of the node stack,
mark that element of SAS as S^. If the element
immediately below is also marked, all the elements
of SAS above, including the current element, are
marked as left recursive and the element immediately
below S^ is unmarked. After that p.,Ç. and y are

ndetermined and with n > o represents a
/sentence of L(G). Algorithms which recognise

n , Ç and Y are now described.

100

L.R.<x>
L.R.<g>
L.R.< Y >

DAU<x>

Stack with the above mentioned modifications

FIG. 4.12

4.32 n - ALGORITHM:-

a) Make the SAS-top the current element.
b) Mark the current elements as n and try to

recognise n by looking k symbols ahead.
c) If the recognition is not successful, unmark

the current element and check to see whether
the element immediately below the current
element (if any) is marked as left recursive.
If so, unmark the current element and make
the element below it, the current element and
go to (b), otherwise delete the elements
above and including the current element.

d) In (c) if the appropriate R is determined and
recognised, that means has been completely
evaluated. The current element of SAS is
unmarked C-algorithm is called in.

1 01

r START

a
. \/

Make the
top the
current
element

SAS—

/fr

Mark the
current eleme:
as n and try
to recognise

lit

element below
currer
lemen

YES

Unmark the
current element
of SAS
remhering its
■location-'

Delete the
current element
and a ll the

STOP

Unmark the current
element and make
the element below
i t the current
element.

102

4.33 SOME PROBLEMS WITH ^ - ALGORITHM;--

If X is a nonterminal or the descendant of a
nonterminal in the sentential form representing
there are three possibilities.

a) X FIRST* X is not true.
b) X FIRST* X is true but

s' FIRST* X is not true
c) Both X FIRST* X

and S^ FIRST* X are true

In other words
s'FIRST* X is true.

‘In the first two cases, no explanation is
necessary, since the parser will work as usual,
the only difference being that when an element
of SAS is uncovered which is marked as leftI
recursive/ it must be determined whether jn̂

has been evaluated completely. Condition (c)
has more serious implications since the parser
goes into a loop. This however does not pose
any serious problems since it is detected at
the time of stacking X and hence the sentential
form containing X is not tried. Incidently
grammar satisfying this condition is ambiguous.

103

4.34 Ç - ALGORITHM:-

Since Ç is a part of y, the same algorithm can
be used to evaluate both. One exception is that
the element of SAS (if any) immediately above

I the element marked as n by the n^algorithm is
* considered as the current element at the start

of the Ç -Algorithm. Another difference of
course is that Ç is compulsory while y is
optional.

4.35 y - ALGORITHM

Mark the element of SAS reached in the
(^algorithm as y and try to evaluate Y^URRENT '
If the evaluation is successful, unmark the
current element of SAS and make the element
immediately above it, the current element and
repeat from start of the y-algorithm. The
process is interrupted when the top of the stack
is reached. At this stage, starting from the
top of the stack, the lowest of the "consecutive"
elements marked as left recursive is determined,
starting from this element and going upwards a
search is made for an element such that C U R R E N T

^ 1. It is marked Y and an attempt is made
to evaluate • If no symbol is matched

104

f OIT Y CURRENT
otherwise the normal process is continued

the algorithm is terminated

105

CHAPTER 5
METASEMANTIC LANGUAGE

5.1 INTRODUCTION

5.2 SURVEY

Before v;e go into the details of MSEAL, a
brief survey of different techniques currently

5
I.'Ü■I
;¥

5
In this chapter we shall describe the semantic {
synthesiser part of the automatic translator.
While the syntax of context free languages has |
been thoroughly formalised, no satisfactory
formalisation of language semantics exists. A #
practical general technique is also difficult
to imagine, since the semantics of different %
programming languages can be so different. The

isame is true with the machines on which they are #
to be implemented. However the metasemantic
language (MSEAL) has been so designed that a
great deal of formalism has been achieved without
imposing too many constraints on its power.
MSEAL can be considered as a problem oriented
computer language. The problem involved is the
representation of the meaning of high level
programming language statements.

106.

being employed for specifying the semantics
of programming languages is in order.

Probably the oldest and definitely informal
method of defining semantics is by using a
natural language as a metasemantic language.
Most programming language manuals have adopted
this method. Various objections to such a
definitional method arise. The strongest of
these is that natural language itself incorporates
a huge and unanalysed body of tools which we are
still far from being able to handle. This
difficulty arises most strongly in connection
with the semantic properties of natural language
itself. Thus we have no mechanical way of
processing natural language definitions and even
if given what purports to be a complete definition
D of a programming language L, we have no
programmable way of verifying the completeness
of D., mechanically transforming D into a compiler,
or interpreter for L, or mechanically determining
whether any given compiler for L does realise the
object defined in D.

107

The second semantic definition method commonly
encountered and suitable for either informal
use is that which may be called the method of
devolution and is as follows: Within a language
Lj to be defined semantically, we determine a
sublanguage 1 , which is as restricted as
possible; then we treat the full language L as
an extension of 1 . That is, specifying some
formal mechanism by which programs written in
L can be written in the more restricted language ,
we reduce the semantic definition problem of L.to
that for 1 . Such reduction may clear away a
fair amount of "superficial mess" associated
with L but not present in X . For example if
we apply this method to FORTRAN we can eliminate
the DO-statement by an explicitly programmed
iterative loop.

This method restricts the structure of the)
languages which may be defined too stronglÿ for
use in an automatic translator of the kind we
have constructed.

The third type of models we will consider is
abstract semantics models. The objects being
represented are assumed to have an existence
independently of any representation. It is

I

108

S

the purpose of the semantic definition to =#
characterise the "essence" of such independently
existing objects in a representation-independent
way. This approach leads to attempts to reduce Y|'v'
computational notations to mathematical notations, |
since mathematical models are assumed to capture
the representation-independent essence of 4

computational phenomena. For example Scotts
model [Scott 70] of Computable functions in
terras of a class of mathematical lettics is an
abstract semantics model.

While at some time in the future it might have
some practical importance at present its
significance is mainly theoretical.

Input-Output models are another interesting way
of investigating programming language semantics.
In these models, the functions we wish to compute
are characterised in terms of the relation
between inputs and outputs which they determine. 4
This approach to the assigning of meaning to
programmes was considered by Floyd [flOYD]
and developed by Manna [MANNA 69] , Hoare
[_ HOARE 71] and Manna and Waldinger MANNA 71] • V

4

109

Although many of the computations that we wish _
to specify in practice are conveniently specified I
by a relation between inputs and outputs, there I
are some computations which cannot be specified |
in this way. For example programming languages i
generally have an undecidable halting problem.
We can not use input-output semantics to
uniformly specify the semantics of an interpreter
for a programming language in terms of a relation
between inputs and outputs. Moreover input-output
semantics regard all programs which realise the
same function as equivalent. However the language
designer is interested in differences of
representation of a function in different
programming languages and the language implementer
is interested in differences of implementation of
a given program in a given programming language.
An operational model of semantics is the last
model we will discuss and our semantic synthesizer
falls in to this category. In this model we are
concerned not only with the relations between inputs
and outputs, but also with the path by which we
get from the input to the output and the
information structure generated along this path.
A general class of models for the operational
specification of programming languages in terms
of information structure transformations which

110

said to be completely evaluated when for some

are performed by the language translator can be
■>.

called information structure model and defined 4
Ias follows. An information structure model is '

a triple M = (I, 1°, F) where I is a countable
set of information structures (structured states),
l‘̂ S I is a set of initial representations and P
is a finitely representable set of unary operations,
whose domain and range is a subset of I. A
deterministic (sequential) information structure
model is one which, for all Ij 6 I, has at most
one element f e F applicable to . From now
on we will only deal with the deterministic
information structure model. A computation in a
(deterministic) information structure model
M “ (I, 1°, F) is a sequence I^, of
elements of I such that c and for J =* O,
1, 2 -----, some f e F. If
I^ is the syntax of a programming language, then
^2' ^2 ^n ^ sequences of steps which must

[be carried out in some part of a translation,
f (I^) is the action which is to be carried out
at step I^. If f^ (Ij) denotes the generation of
code then f^ (Ij)g f (Ij) for any I^. I^ is |

1
integer n, an I is reached to which no element of
f G F is applicable. |

4111 ■ ï

5.3 METASEMANTIC LANGUAGE (MSEAL)

The basic approach we have adopted is that
three different mechanisms are provided for
handling each one of 1°, I^------ I^_^and I^.
The input to the semantic synthesizer consists

I^ can be either specified in the action field

of semantic productions. Each semantic |
production has three fields ordered from left
to right: the environment field, the action
field and the code field. The symbol " ~> ’*
separates the environment field from the action
field and separates the action field from
the code field. If M is the set of all the
semantic productions, then I*̂ is the set of
all the environment fields in M.

A formal mechanism has been provided to specify
I where I s 1°, i comprises of different 4o o o >•
environment relations. These are combinations
of various static objects such as nonterminals,
terminals and identifiers and the so called
relation operators. Statements requiring g
different actions have been provided to specify
F in terms of I, in the action field. High
level data structure oriented commands have
been provided to manipulate various data objects.

112 f

i

a

or more explicitly in the code field. For a |
semantic action, using the information obtained
from the syntax analyser, is selected where
I 5 1°. I is then automatically transferred Io o >j:successively into I^, , In the rest
of this chapter we shall give details of the
metasemantic language (MSEAL). For clarity,
it has been divided into various sections.
Each section contains the syntax and the
semantics of a subset of the MSEAL. MSYL
described in chapter 3 has been adopted as
the metasyntactic language for MSEAL, with the
exception that the right most descendant of a
nonterminal enclosed in corner brackets can be
followed by zero or more blanks. The following
are assumed throughout this chapter.

(i) Only strings can be concatenated.
(ii) Arithmetic operations can be performed

on integers only.
(iii) A cell of a data object can not have

another cell, element or data object as
its value.

(iv) In the action field of a semantic production,
statements are separated by ampersands.

113

5.4 D A T A O B J E C T S , I D E N T I F I E R S A N D S E L E C T O R S

<Jrac o p ^ = (
<(^rac cl^ “)
< l e t t e r > = a | b 1c ---------------------|z
< ^ d i g i t > = 0 I1 I2 I3 ------------------19

< ^ i n t e g e r ^ = & i n t e g e r & & d i g i t & | & d i g i t &

<^lphanumeric^ = <^letter^ |<Jigit^
< C i d e n t i f i e r ^ = & i d e n t i f i e r & & a l p h a n u m e r i c & | & l e t t e r &

<^q u e = B A C k | F R O N T

< (s t a c k T O P | B O T T O M

< ^ u o t e ^ = «
< ^ t r i n g] > ~ a n y s t r i n g o f c h a r a c t e r s i n c l u d i n g

n u l l s t r i n g

< ^ u o t e d s t r i n g = & q u o t e & & s t r i n g & & q u o t e &

< ^ e l l i n d e x ^ = < J n t e g e r ' ^ | <C^identifier]]>

< ^ n d e x] > - < C i n t e g e r ^ > | < ^ i d e n t i f i e r ^ > | < C g u o t e d s t r i n g ^ |

< C ^ n d e x e d n o n t e r m i n a l]>

< ^ n d e x e d s t a c k i d] > - < C ^ d e n t i f i e r ^ <(braL.op./*" ^

< C ^ n d e : ^ <(brac. c l i ^ |

< C ^ i d e n t i f i e r ^ <^brac.op.]!> < ^ t a c k l i m i i ^ < J r a c . c l . ^ |

" (^ i d e n t i f i e r / * < b r a c . o p . ^ < C ^ n d e) ^ < C b r a c . o ^ < ^ e l l i n d e 2̂ :

<^rac.cl^ <C^brac.cl.^ |
< ^ i d e n t i f i e i ^ < C ^ b r a c . o p . ^ <4s t a c k l i m i ^ % > < (^ r a c . o p . x ^

c ^ c e l l i n d e x ^ < ^ b r a c . c l ^ < ^ r a c . c l ^

<(^stack o b j e c t ^ - < ^ i n d e x e d s t a c k i c ^ | N E X T U P

114.

<[^ndexed stack | NEXTDOIVN
<Cindexed stack i d ^
<([stack i d ^ = <stack object^ | ^identifiers
<^ndexed que i d ^ = <C^dentifierS \brac.op.^

<^ndexS ^brac, clJS |
<(^dentifier^ <C^brac.op.^ <Cque limitS xi^rac.clS
<^identifier^ <(brac. op.^ <C^ndex^ <CSrac.op.^
<^cell index^ <Cbrac.cl.^ <Cbrac. cl^l<^dentifier^
<([brac.op./ <^ue limit^ <^brac. op.S <Ccell

index S "^rac. cl.^ "s^rac.cl.S
<^que objectS" = <^indexed que id.S| NEXTFRONT

<^indexed que i d^ [NEXTBACK
<^indexed que i d ^

<^ue i d ^ - <^que objectai <Q.dentifier^
"\table index^ = <^dentifierS |<^uoted stringS
<C^indexed table idS* = <Cidentifier S'sbrac.op.S

<(%able index ̂ N^rac. cl.^ I
<^identifier^ <^rac.op.^ <^able indexé <brac.op.^
<^ell index^ <Cbrac.cl.^ <(brac. cl. ̂
<^dentifier^ = <Cstack i d ^ I <C^ue i d ^ l stable i d ^

<(indexed nonterminal/^

i As described in Chapter 3.

115

The data structures available in the MSEA.L are
stacks, gues and tables. Each element of these
objects and the simple variables can have a
quoted string, or an integer as a value. There
is no limit to the size of strings. A method is
provided to index different elements of stacks,
ques and tables. Stack elements are indexed from
top towards bottom and que elements from back
towards front. If an indexing identifier has two
references, the first one refers to the element
while the second to the particular cell in it.
On evaluating the first index, if it is an
integer, the element is indexed by counting the
elements. On the other hand if it is a string,
the element is determined by matching the string
with the first cell of different elements. If
there is only one index in an identifier, it is
considered as the first one.

An identifier alone refers to a whole object.
No two objects may have the same identifier.

E X AMPLE 5.1

a) STAC (TOP)
STAC is the name of the data object.
TOP is the only index in this case. I

The whole identifier therefore refers to the

116

top most element of the stack STAC.

b) STAC (TOP (2))
STAC is the name of the data object (a
stack in this case), TOP is the first
index which refers to the top element of
the stack. ”2” is the second index and is
considered as the cell index. The whole
identifier refers to the 2nd cell of the top
most element of the stack STAC.

c) ABC ("STRING" (3))

ABC is the name of the data object,STRING
is the contents of the first cell of the
required element.

3 .indicates that after finding the
required element,its 3rd cell is to be
referred.

Depending upon whether the data object is a
stack, que or a table, the element is
searched in the usual manner. The first
element found is assumed to be the desired
one.

117

5.5 THE ENVIRONMENT AND THE CODE FIELDS

The description of the environment and the code
fields is short and informal and appears first.
We shall devote the rest of this chapter to
describing the action field.

The environment field determines the context
in which the semantic production in hand is
to be activated. Its entries will be called
environment expressions. An environment
expression can be either a part or whole of
the right hand side of a syntactic production
or can be formed by using environment symbols
and relation operators.

When any symbol belonging to the vocabulary
of the grammar of a language is used in
specifying its semantics, it is always indexed.
In line with this strategy, the whole or part
of a production used as an environment expression
is represented by indexing its constituents. The
consecutive symbols of a production can be
represented by indexing the leftmost symbol among
them as described in the 3rd chapter and
introducing the numbers of the subsequent symbols
preceded by semicolons. For example in the

production.

118

5.5.1 < X > = < Y > < Z > < T >
< Z > < T> can be represented by indexing <2.>
and then introducing ; 3 after it.

< Z> is indexed as < X > 1, 2 i.e. the second
symbol of the first alternative of.a production |
whose left hand side is < X> . Hence <* Z > < T >
will be referred to as < X > 1, 2; 3. If only
some right hand symbols of a production form an
environment expression, they are preceded by
the system variable DUMMY.

The above method of forming environment expressions
is very useful if the user wants to specify the
semantics in terms of the syntax. If however
it is desirable to perform semantic synthesis
independently of the syntax of the language,
the environment expression can be performed,

!independently. Any identifier, nonterminal, |
indexed nonterminal, quoted string (terminals
are treated as strings) or a MTL system variable
can be treated as an environment expression.
Alternatively they can be combined with the i

J
following symbols.

#

i

119

: : The relation is satisfied if the values of
both sides are the same.

1 : : The relation is satisfied if values of its
sides are not the same.

The symbol on its left hand side should be
on the top of the system defined stack STACK.

@ The symbol on its left hand 'side should be
the current symbol of the source statement.

The right hand sides of and can be
members of the vocabulary of the grammar.
This symbol by itself or any one of its
descendants should match the current symbol.
The logical OR operation is represented by " I"
and the logical AND operation by The
latter has priority over the former but this
can be overridden by bracketing. Nesting of
brackets is not allowed.

If (1; is to be considered as an environment
expression, it will be written as

I

5.5.2 DUMMY <X> 1, 2; 3 '

■ ■ ■

;

i

120

EXAMPLE 5.2

a) 'ABE' 'ABD' - 'ABC*

This is true either

if the current symbol is ABE
or if the current symbol is ABC and
the symbol at top of the STACK is ABD.

EXAMPLE 5.3

b) ('ABE* I 'ABD' - 'ABC') & X :: 5

This is true if (a) is true and
X is equal to 5.

i
%I
n

.a

121

5.6 ACTION FIELD:-

It is in this field that most of the semantic
action takes place. A user can define an
arbitrary number of stacks, ques and tables.
Various facilities have been provided for I
searching, deleting and transferring data from
one data object to another. All statements
either succeed or fail. If a semantic
incompatibility is detected in any statement,
it fails otherwise it succeeds. Conditional
statements have been provided to make various
checks on different data objects. Depending

There is a great deal of freedom to a user in
Ithe code field. This field can have any number H%4of identifiers and quoted strings. If the SEAS |

is being used for semantic synthesis, any
indexed symbol of the current syntactic production
can also be used. The code generated by the
execution of a code field is the concatenation
of all the strings appearing in it. Where
appropriate, the format is controlled by

/ generate end of line
£ generate end of page

"'-I-;

122

upon whether a statement fails or succeeds,
transfer of control can be directed by branch
statements. Assignment statements and MTL
system variables provide extra power for data
manipulation. Any two statements in the
action field are separated by an ampersand.
There must be at least one blank between an
ampersand and the statement which follows.
A label starts immediately after an ampersand
or " " as appropriate.

5.61 STACK STATEMENTS :-

<(coma^ = ,
<^cell^ = <Cidentifier^ I integer ̂ I < ^ tr in g ^

SYMBNOW I
<^element^ = &element& &coma& &cell&I&cell&
<^push statement^ = PUSH /elemdnt^ IN^"syariableZ^
Xstack delete command^= DELETEUP]DELETEDOWN
<^tack search command^ - SEARCHUP j SEARCHDOWN
<C^stack command qualifie]^ = <Cindexed stack i d ^ |
<^indexed stack i d > UNTIL EXHAUSTED I
<^ndexed stack i d ^ UNTIL <C^ndexed stack id)>
<(stack delete statement^ -<^tack delete command^

<^tack command qualifier^
stack search statement^ = <(stack search command^

<[]stack command qualifie:^
t Blanks must appear on each side.

i'
■a

I

123

<C^stack statement^ = <Cpush statement ̂ |
<(stack delete statement^
<(stack search statement/^

The PUSH statement enters an element of the
stack at its top. If there is no such stack
in the system, a new stack is created, and
then the new element pushed in it. The
SEARCHUP and the DELETEUP commands initiate
their respective search and delete operations
from a particular point upwards. The SEARCHDOWN
and the DELETEDOWN commands initiate their
respective operations from a particular point
downwards. The values of elements and that of
cells are assigned to VALELEMENT and VALCELL
respectively. Their indexes are assigned to
INDELEMENT and INDCELL respectively. If the
search fails the previous values remain unaltered.

There are two system defined stacks:

SEAS and STACK. The behaviour and use of SEAS
will be discussed at length separately. ;

I

The STACK has only one cell in each element.

1 24

Among other things, it can be used to communicate
between MSEAS and SN0B0L4 extension programs.
In the latter case, it appears as an array named
STACK having 80 elements.

5.62 QUE STATEMENTS :-

<^register statement^ = REGISTER <^lement^ IN^
<^identifier^

C^gue delete command^ = DELETEON|DELETEBACK
<^que search command^ = SEARCHON SEARCHBACK
<^que command qualifie:^ ~ <Jndexed que i d ^ I
<indexed que id> UNTIL EXHAUSTED|<(indexed que id/>

UNTIL <^ndexed que i d ^
• <[^ue delete statement^ = <gue delete command^

<^ue command qualifier^
<^ue search statement^ = <^ue search command^

<^ue command qualifiea^
<^ue statemeni^ = <^egister statement^| <^ue delete

statement^
<Ĉ que search statement^

The allowed operations on ques are quite similar
to those of stacks. The REGISTER statement is
used to make a new entry in a que. If the que
already exists the entry is made at the back of
the que; otherwise a new one is created. The

t Blanks must appear on each side.

125

SEARCHON and the DELETEON commands initiate their
respective operations from a particular point
towards the front of the que. On the other hand
the SEARCHBACK and the DELETEBACK commands initiate
their respective actions from a particular point
in the que backwards. There is no system defined
que.

5.63 TABLE STATEMENTS ;-

t
<^enter statement^ = ENTER <element^ IN <Jdentifier^
Citable delete statement = DELETE «^indexed table idj!>
Citable search statement^ = SEARCH <4.ndexed table id]>
<^table statement = <^nter statement^ I <^table delete

statement^ I <[]table search statement/»

Unlike stacks and ques, a user can not specify-
the direction of a table operation. The ENTER
statement makes a new entry in a table, the delete
statement deletes an already existing entry and
the SEARCH statement searches an entry.

Blanks must appear on each side.

y126

An element of a data object consists of any
numbers of cells separated by comas. There is
no explicit declaration statement but data objects
are automatically declared at the time of
making the first entry. The number of cells
in each element of a data object is the same.
The statement

PUSH "AB", "C", "D" IN AA.
declares a stack AA if it does not exist already,
with each element having three cells. The first
element of the stack is initialised to have "AB”
"C", and "D" in its cells in the same order. If
AA exists already the element "AB", "C", "D" is
pushed in it. A stack command operates on its
argument, A DELETEDOWN command requires the
deletion of the whole or part of a stack starting
from the specified point downwards. The case is
opposite for the command DELETEUP. The information
about the name of the stack and the particular
starting point for deletion is acquired from the •
first argument. For instance.the statement

DELETEDO^VN STACK (TOP)
will delete the top of the STACK and the statement

DELETEDOWN STACK (TOP) UNTIL STACK (3)
deletes top three elements of the STACK. If some
middle part of a data object, is to be deleted

127

<;^perat03^ = +|“ |*|/
<^unary operator^ = +|-

4

the skeleton remains but the deleted cells are
initialised to null string. SEARCHDOWN and |
SEARCHUP commands search a stack from a particular
point towards the bottom and top respectively.
The specification of the name,starting and

Ifinishing points of the search is similar to |
that of the delete operations. On successful
search,different values are assigned to the
following as appropriate

VALELEMENT Value.of the whole element
searched

4VALCELL Value of the searched cell - ^

INDELEMENT Index of the element searched
INDCELL Index of the cell searched.

If only some of the above mentioned MTL system
variables get new values in a successful search,
rest of them are assigned null string. If
however a search fails the value of the above
mentioned MTL system variable remains unaltered.
If due to some semantic reason an operation on
any one of the data objects is not possible,
the statement fails.

5.64 ASSIGNMENT STATEMENT:-

128

<^unsigned operand^ ~ <4integei^> 1 <^identifier^
Cooper an < ^ = & unary operators <^unsigned operand^!

<Cunsigned operand^
<^arithmetic exp^ = <^rithmetic exp4 ̂ <4operatoi^

<4operandl!> | cooperand^
C^search value> = VAL | INDELEMENT | INDCELL
<4search statemen-^ = <stack search statement^ j
<^ue search statement^ f <Ctable search statement^
'(assignment body^ = <arithmetic e x p ^ j

<4search value^ ! ̂ search statement^ | NULL
<system variable^ = DELIMITER|VAR|NEWVAR|SYMBNOW
<^boolean valued = 0|1
<^string valu^ = <^uoted string^ | <(identifier^
<\String e x ^ = <string exp^ <(string v a l u ^ |

<(string valu^i <^ystem variable^]
CODE

<^ssignment variable^ = RETURN | STOP | SEAS
<device> = PRINT|PUNCH 1 TAPE 1 DISC
<^ssignment id^ = <Cidentifier/* 1cODe | "^indexed
stack id^ |ydevice)>l ^indexed que id^ I

<^indexed table id")> ' #
. I

(^assignment sign^ = :=
<^assignment statement^ = <assignment id]><^ssignment sigi^

<string exp^ |
C^assignment i d ^ <(^ssignment sign^ <^ssignment body^ I J

Assignment sigi^ <|tring ex^x"
<^ssignraent variable^ <^ssignment sigr^ <Cboolean value^ j

129

The evaluation of an arithmetic expression takes

5.65 MISCELLANEOUS STATEMENTS :-

<Asegment coinman<Ç> = SEGMENT-
<^segment statement^- ssegment commands <\intege3$> |

Ssegment commands <Avariabl^
<(eliminate statement^ = ELIMINATE|ELIMINATE
Ssegment statements Scomas <4ntegei^ I ELIMINATE
Ssegment statements scomas<4yariable^

J

'.f

place from left to right with no operator precedence. 5
. -IThe value of a string expression is the concatenation %

of all the strings appearing in it. Every time
the system variable "NEWVAR" is executed, a new
variable is generated. Its value is automatically
assigned to "VAR" and can be used later. The
system variable "DELIMITER" by default has a blank
as its value. But this value can be changed by an
assignment statement. When the code for a full
source statement, is generated, the delimiter is
inserted at its end. Execution of the statement
:= CODE has the effect of handing the current
value of CODE to the system which in turn preserves
it at the appropriate place (as described later).
On completing the analysis of a source statement
code is generated on the output device.

I

130

<4reinstate statement^ = REINSTATE I REINSTATE
Ssegment statements & comas <^nteger]!> 1
REINSTATE (segment statement ScomaS

<Avariabl(^
<(^code statement = CODE I CODE <string ex%^
<^jump^ ~ CONTINUE ^alphanumeric^
<Amiscellaneous statemen^> = ((segment statement^ 1
<Aeliminate statement^ I <(reinstate statement^ 1

<Aode statement^ I
CLEARI CURSOR IIGNORE t

A segment is a part of semantic specification
which can be called for action as an independent
piece of specification. A segment is named by
a segment statement.

An eliminate statement temporarily eliminates
a semantic production. On any subsequent
occasion, it is considered non existent until
it is reinstated by a reinstate statement. If
the command ELIMINATE has no argument, the
current statement is assumed. Otherwise the
segment is specified explicitly and the
production number is separated from it by a
coma. A statement CODE with no arguments
generates code as specified in the code field

t it can be followed by a string of valid characters. i
■I

131

of the current semantic production, otherwise
that specified by its arguments is generated.
The IGNORE statement allows comments to be
introduced. The whole statement is ignored.
On executing the CURSOR statement, "£" is
printed under the current cursor position.

5.66 TRANSFER OF CONTROL STATEMENTS;

<^ffirmative predicat^> = EQ|LT| GT |LE |GE
<Aiegatio^ = N
<Jiegative prédicat^ = &negation& <(affirmative

predicate^
<(^redicat^ - <^ffirraative predicatej> [([[negative

predicate^
<(argumen^ = <[operan(^ I <[guoted string[}>
< A tes t s t a t e m e n t = < A * r e d ic a t ^ < ([o p .b ra c ^

<[[argumen^ ([argumen-^ ij
<4cl.brac^ |j

([conditional statement!^ = ? ([statement^ I
([transfer of control statement[[> = ([test statement t

(^conditional statement |
<[statement[[> ~ <[stack statement I <Cgue statement I

<Atable statement I <[assignraent statement^!
: < j u m p ^

132

The significance of each of the affirmative
predicates is as suggested by the mnemonic.
When prefixed by N, the predicate is negated.
The result of evaluating a test statement is
to assign the appropriate value, TRUE or FALSE,
to the system variable TEST, This value
remains accessible in the succeeding statement.

To execute a conditional statement, the value
of the variable TEST is checked (its value
would have been effected by the previous
statement). If it is true, the part of the
current statement following is executed,
otherwise the control is passed to the next
statement.

5.67 SEAS:-

This is a system defined stack with two cells
in each element. It is controlled by the system '
and developes and collapses automatically. 'In
the first cell of each element is kept a
particular indexed nonterminal of the grammar.
The second cell holds the source string produced
from it. I'fhen semantic action is to be taken
on recognising part or whole of a MBNF production,

133

the values of its constituents, appear in the
top elements of the SEAS, the rightmost
constituent of a production being at the top
of the SEAS, For example in the grammar

5.67.1 < y > = a b c

5.67.2 < x > ~ (<y>)

the SEAS is shown in the diagram

<Y>lf3 c
<Y>1,2 b

a
<x>l,l (

PIG. 5.1

Ï
3
a
i
Î
I

I

134

On recognising a semantic production, parts of
the string covered by the production are
accessible. These strings appear as values of
the nodes of the syntax graph at the nearest
possible state of the production. For example
if the environment field recognised is
< y > 1, 1; 2; 3, the values available will be

< y > 1, 1 = a

< y > 1, 2 = b

< y > l , 3 = c

On the other hand if the environment field
recognised is < x > l , 1; 2; 3 the available
values will be

135

< X > 1, 1
< X > 1 , 2
< X > 1, 3

(
a b c
)

EXAMPLE 5.3
The semantic production to be executed is

< X > 1,1;2;3 -> CODE <y> 1,1 & CODE < y > 1,2 &
CODE <y> 1,3 & := CODE :

The first three statements generate a b c as
code, and then this code is handed over to the
system by the last statement. The system keeps
the SEAS up to date. On completing the execution
of the action, all cells of SEAS above the one
representing the left most symbol in the
environment field (<x> 1,1 in the current case)
are deleted.

<x>i,1 a b c
FIG. 5.2

136.

5.7 OVERALL STRATEGY

The semantic definition of a programming language
follows its syntactic definition separated by
the command %SEMANTICS. This definition may
be in anyone of the two modes of specification
i.e. the production mPde and the relation mode.
To select a mode, the %SEMANTICS command may
be followed by PRODUCTION or RELATION as
appropriate.

In the production mode, all the environment
relations are whole or parts of MBNF productions.
In this mode SEAS is available and user is
advised to use it. In the relation mode SEAS
is not accessible.

In either case the semantic definition may
consist of one or more segments, the top most
being "SEGMENT-O". Each segment of the semantic
definition is an ordered set of three field
productions. Productions with empty environment
field are executed only once i.e. at the start
of execution. Recognition of the environment
field takes place from top towards bottom, the
first match being considered the valid one.

137

Eliminated statements are ignored. On recognising
each non-auxiliary word, control is passed to
the semantic synthesiser which processes the SEGMENT-0,
When the environment field of a semantic statement
is matched, its action field is executed.
Execution of the action field is complete when
its last statement is executed or on branching to
label "STOP" The execution of a segment is
complete if no environment field matches in the
whole segment or if at least one semantic
statement is executed and the value of "STOP*
is "1". If the value of "STOP" is "O", oni
completing the execution of a semantic statement,
the same segment is processed again starting from
the top most semantic statement of that segment.
,0n branching to "RETURN", if the value of "RETURN"
is "0", the execution of the current segment is
considered to be complete and if the value of
"RETURN" is "1", the current semantic process isI
considered to be complete. In this, control is
passed back to the syntax analyser.

All symbols of the MTL are reserved symbols.
However this specification can be overridden by
preceding any such symbol by an asterisk. Two
consecutive asterisks give the effect of a single
asterisk as if it is not a symbol of MTL. The

138

generated code is kept internally in the form
of a string as value of "CODE". It is generated
on the output stationary only after the whole of
a source language statement has been recognised.
The output device can be selected by the device
assignment statement. Execution of "CURSOR"
prints "£" under the current cursor position.

139

T A B L E 51
In this example, the MTL specification of a
subset of the programming language PATE is given.
Its syntax and the semantics are separated by
the control card "%SEMANTICS RELATION". This
means that its semantic synthesis is to be performed
in the relation mode.

At this stage we will not elaborate the syntax
any more since it is explained in chapter 8.
The nonterminal "NUMBER" is not defined by a
MBNF production but it is defined by an MBNP
function. The source language statements are
processed and polish notation generated for them.
Different stages of this process are also shown.

.Since the semantic synthesis is performed in the
relation mode, the manner in which the syntax is
written has no effect on it. The parser is used
to detect errors and give diagnostics. The systemI
defined stack "STACK" is used for semantic synthesis
and basically the tasks shown in the following flow
chart are performed.

140

üJ
CÛ
<

tu a : _i r~4 -f m h- ift
<ï
a a

0= ai z o a «u
K Û. o £ a A z A
3 A O OC A A A A A o c r 3 A 4
2T ü£ o CM CM3 CM a a CM 3
V O z < a < C <r < < z ca V <i 3

1*- o o 3 3 3 3 3 m CM o E 3 E
A < A A 3 3 3 3 3 3 3 a
or cr 1— Z O E E E E E O Z cr E ro o ru CM
o LU < O- o < ce ce ce ce a A A Q V o ce a A
K- CL >- o 1- _l c c o o o «V < > a O 3 >- 3 i
«3 O ce 1- 3 a a a a a < < A < a A Z o A A
a" -1 o o E >*■ lA m 3 o cr ce CM O A o 3

z A o a A o z o ce z z z z z 3 3 V O a tu c < CO < *3
C- o Z Ui ce z o < o c o o C o E ̂#—4 Cl a a a 3 a 3 3 3
c o ai V V a A A A A a A A A a LU <t O Q 3 <r 3 tu 3 3

—1—1a: V CM 1—CM o a' CM c 3 cr < tu E E £
z CLo Z Z < <r <1 < < <t < < < C a C A a a a o a a

o o o A o o o o 3 u o 3 3 o a a o o 3 o <r M o o
Ci z I- z r ce A 3 3 3 3 3 3 3 z a c û V a a a a
< o V o E E 3 E E 3 3 O E E E o a c V Z O 3

c
V u. O r A C <■ ce ce a cr cr a a a a Oi < LU tu a LU V A tu tu

c V z A Z < —Ju c o c o a (G o o a cr O 3 A CM g
A ce O ce O 1— < a «t o o V A O a A < O O<r A ce o Ui E 3 o tu > < < E o O O < c

o V r ce ai 1— CL ce z 3 z Z c c < V 3 Z 3
o CD <. o O o E o o E o c E 3 c 0 0 3 0 O O < Qf < E Q Q'

o r A l—lU E ce z V V V V V a a > z V r 3 V a E a V V
o Z <t z O LU o z _J \— a o E <r E O
< A O ce Z CL o z 3 II II II II II a a 3 o to r A a II A C3w O a M » 4C£ LU V o V o E 3 t3 o c 3 o 0 0 3 3 3 a Z c < LUtu LULU A »—Cl t- V A Ci C 3 3 m A- 3 Q O O 3 E Z LU A C a 3 LO LU Z ro CM

cc o o II II Z II «î CM c < <I E < < «3 < cr 3 V Z O O
z z o tu II < V V V V V V V V V or E c r a a tu E LU

Z A A A D 3 A A A A A a i 1— LU A a A a o a A A Nz O ce IM -1 C A 3 II II CM II II II II II II II E > II cesE Z Q CMc < U(< CM
Q. z V o c < CL <l < E •<3 *C •C < < 3 o 3 3 3 «3 < O < < sz o -J V -I 3 m 3 m r- 3 m ro CM</) A z a 3 3 O O 3 3
Il II V II < => o 3 3 3 Û II cr \/ \/ V O 3 z E V < 3 3

o ce — 1 II E a E E II Z o V E o a o V E E
A A A A Q a : c. ce ce ce A ce ce A A ce a A A A A A < A a II II II a A o II a a
2.' ce CVi <■ O c z c o CMC o Ci c o CM (M A çe <■ II o a a II II o o
O < c V o a 1- V < a c <r < <. < a < < < < < 3 O cr A A A a V A a

— 1 3 3 3 Z tu cr CMA Q 3 A Z Ci
< Z) < z z o z 3 Z a z 3 z z 3 Z 3 3 3 < < a o < <3 <3 z II C O Z z
csr z e: z c o z o E O < c E E 3 o E c o E E E E a o a 3 o «3 a o oLU oc LU ce Z V z ce o a ce a' a' a a cr ce E II a < 3 3 V o A a A
Cl c C. o r r o o C 1—O c O o o o c C a z cr E E E a > E tu >» a
C3 O < < z < < <%<I < .< a a a LU A o o cr a cr «3 II O z O < <

A o o r o A u a u O u o cr a o o o LU LU O C 3 0 0 0
z z Z z ZT z z Z Z z z z z a o o a a a A COLU a a
o o 0 0 0 -1 A o 3 3 c 3 3 o o G D O C o 3 D (U *3 Q 3 3

CL ce a Cl a a < tu LU tu LUa C LU LUO o a a
3 1- 1- a a a a a c r 3

O H- 1- ta E !— <i a 3 O 3 O a Q CDo o G 1—a
Q o Q z E z c V 3 o c 3 o G 3 D o o o 3 a > fü <r 3 cr V *3 < < < 3 3
a . o O o o z> O o o 3 3 Q 3 3 0 3 0 3 3 tu 3 o 3 3
< < <r z Z E <c <r < <î < E E <C< < E to c LO O o O c E a Q o o O E E
V V

141

A

iceO « taV + LA

A a O« se «o X a aO tu •e LA a <a A < 3 3 ce<r a a a a < .a O LO a o o a< O a •6 aa Z a A LAa A o se } V ses:z se LU a se LUV G 3 LU < o 1 LU •4CD a 1 < a a < a k: oz 00 a LA a LA o <r V u LA a i LA o <* 3Z a LU 1 z < ooA A Q LA a a <C z oo< 2 < 3 1— a a u>3 Z a • a 3 LA «3 «a a A 3 a A a * zE E V z •0 a O a cC O% Z o o a O aO O A a a 3 A X oa o a a A 1 3 < se X i . LA <
V A LU o 1 a ce LU LA 3 t-a Z Z a A G <3 <l 3 A a A X oO
A 3 o 3 a a a a ce t X 00 ooa o . —• a se O o 1 a LA c A LO Z
o «-•a V LU a a A LA A A a 1 A X A o.a a LU <C . Q <r » V a 1 1 « o< â. 1
< 3 Z — A LA a a 1 a ce O Aa 3 3 Z 3 LA > a A 1 a A a A h* A A 1 + 1<C E a A o < a ■ ce 3 ce a ce < 1 ûCa V . <t Z a Q o o - a o o D OC Oa LA a a V. Cl a lU A h»1/1 II 3 3 lA E a z <i <c z «s CL <a E a a 3 * o a A œ o a C Q û:

“ % a z a a a a A a H- rxi Z)^ z a O a o a O a a a ce a a 2: <r OC a. O< a 3 a X — a <T a O i A A C o < o c oc C o o3 \/ a a o A » LU LU LU ce ce a LU LU A
3 a E V < 1 < ^ <r z o o Z < z H" a sr <r t CLE o V II

II
3 — 1— 3 a o a a c ce 3 o U D o oc

£ 5 LA a LA c <r a a < LUo 3 Il A a a * LA a ce ce a a %— û: 00 CL Xa a Z A z * 3 a z a»z < <t o a < h» O OV A O a LA * Z 3 M Q a a c 3 u m >a z a ■» > 3 Q a a G z 3 z> f— 2T >
Il 3 a » E o - E - LA LA < o E -i (/) ■ O oa LAE o * V * V V V V V CL Va a Z z a « a 00a a LU a < 3 a * * * * « 1 1 1 1 1 H* tG 3 Z a < E 00 «• X X Q ce > Co 3 3 X a a * E * - LA Q =) 3 o Z)a E ■» 3 « •• 3 — 3 + + * ■f < 5" 1 ">sV V V V V &? « Z •U- - a » a - “ - V V V V • ?

142

QC

V

tu t-_l ûC
Q. LU

Q O
V I/)oouu

z V

■ <a

ce
N

CO
NIt utu

CO z r
z : CE

V o tu
o

o A
A A

00 A£ a
3 LU

^ J l/> <I* O
A V Xce 3
tu * Z
ce. V

A A Ace ce u (O f- +
o II3 z: > Ilz tu NCO 003 tu *

tu tu o

N Q.< _ jll»qcc: o i u o o o i0CCZCiClU<XI-<Z'l/1V V* ce u
LU 3

Ô U. O
I- m + t«

« D oO * 3 Û «■ <1 tn <

E i /» »<3 z t—
aj ^ o o —j o

r-i o CO li. Q 3
ru ru fcp < tn Z «O

Z C. LL U Z ie> I-
LU Z tu O CO <2.
c t a o N u c = r

N

— cooO '-tcu
<\iCMr>j«v/c\(<Mro<MrjfMrarOf#t

o O ' - < (M m u - i r t v o r - - < : o < 7 ' 0 ' - t c u r c i v i - i r » « c r ~ c o c 7 ' Q ' - « f M c a s î - i r > v û t ^ c o c j > o . - « c M f a
a) c r O ' (r C ' C ' C ^ O ' 0 ' 0 ' (r C ' C) 3 0 C) o o 3 3 0 r - « . - r . - « . - i r - < . - , , - < , - 4 r ^ ' - ' r . r . r j . , '

143

»— >
z
UJ 3

O
< w
>

ta
3 00 I—
C?
UJ Q

• v>
z
<2 00 0Ç

CD CO
m t— , w

<a ce ta
3 UJ 3

ce 00 N 3 CO 3
sO o

ta
(X Z CL

3
" • 3

3 VO
z ••

+ CO . 11 Q. r~ U N-
fsi ta —1 N- Q • 3 •* 1

3 o in 2 O
+ _J * w m ta + 3 >Û CO tû

C_ + z 3 O z
O' m >- 3 CO 3 u. » >- ►

tfi u> C. ta ta
+ * 'f + in *

> ta tO sO > CD ta
O' —1 c r- 3 CC l- w K h-

c. X tx CC O X o %
+ — I + -tf- H- 3 ♦ 3 + t- tu 3 »- 3 «

1— 3 3 I— C a
O _) CO Q * C. O O. O 3 * o * o tO

3 Q * 3 * ce * c£
in z m < * in in m m z « <x # CL m

ca«2-’Â 0f~ia0'O»-»iMcn>d-tA'0NX)0'OMiAmrarrimraU'U'U'U'U'U'U-'t'a-'ftn
m̂md «mJ m̂aÀ Sm̂À Êmmi â t̂i iaâé mmÊtÂ ■—W a*«a«d

Ifl

144

o
ü EH A CQ

• H-

H

-P O I—I o3 ’Vh

145

0) O«P P5-p •H -p•H d) <üu Ui uo U <U (d(H o î> rH-p od A<L) cd Xi <Dnd U Xi CQO <u ■p P (DO §■ oa O
<D p
g S t 0(U Q «3 Ou Td P •Hçn u P P0 3 P H CJPh a •H (à a

p•p
up W(p U<E4rd COOo 0)
P

CO0 PJA •H o «JH

145

<D(Up•p fd
u 0o «3«tH Jh0) 0)T) (Uo "io d p Ph<u ÎHop p O EH(d d q-i 1f-l <u W<u ÎH (UOü h fd <(U 3 o EHo o o CQ

(D•doü
0)pd Ph •H ■<üd Jh(L)OO «H

147

Table 5.2 describes the processing of an
assignment statement. The table is formed
of three blocks of information. The topmost
block specifies the syntax of the assignment
statements. The terminal alphanumeric is
defined by SN0B0L4 which has been added to the
MTL processor. The semantics is separated from
the syntax by the control card %SEMANTICS PRODUCTION,
It specifies that the semantic synthesis is to
be done in the production mode. The processed
assignment statements are displayed following
the %GENERATE command.

The object of this exercise is to generate
polish notation for assignment statements. The
syntax analysis is performed by the syntax
analyser which has been discussed in detail in
chapters 3 and 4.

In this example,•there are three semantic
productions which perform the following task:
a) In an arithmetic expressions without brackets

i) as soon as a multiplying operator and its
trailing operand are recognised, their
order is changed. '

ii) when the whole expression is recognised,
the SEAS is scanned and complete polish

148

notation generated.
b) Bracketed expressions are evaluated and

then their values treated as ordinary
operands.

c) The expressions inside brackets are considered
as independent expressions and are treated as
described in (a) and (b).

149

<N
VO
üJUOû<H

I I I I t I I i I I I I I I I 4

<
ùC N Z •a A
LU CE tM t- «î
O. t/S 3 _ l XI z
p < f - UJ LU LU
V lU UJ CQ fO LU E CC>

CO ce < 0 UJ <
A A A 3 Q V— r-4
a c: Q. a

'•a
A 0 <t A

z 0 X 3 Cl 3 1- Q.
<r 1- lU 1- stf 00 X 3 •U CO X •0 CO
oc < A X r- UJ 3 3 LU c»
LU et CL 0 LU _i Z LU 1—
CL LU X Z 3 m5 Ü CD z 0 •a
C O. N Z •4- z II < LU Z
V 0 0 3 •3 **• aQ

0 z . 2 cO II UJ •a >- «a z 0 CO
A A 0 z r IM CE 3 LU 0 c < (V XJ
w q: S Ui < XI Ou C "3 <
-J G >-* II LO UJ c LA LO V LO

> .J et 0 A UI h- 0 3 LO A O
< -J <1. < CL Q û. 3 3 3 LU < lO CL CL 0

ex V 3 U X 00 C3 3 *S 3 cO V < 3 X 0
H- N LU Z r < UJ l- LU

OC G, 1— II CM (M X •« 3 CO X
> 0 =i ? «C C «a tsj 3 11 Q 0 W

0
3 z. Z Z 3 0 2 z Z 3

V A A A 0 û U IL 0 U
Z V UJ C. 0 Q « (K e cv. Z ar Q n m

-J X X Z 0 0 m 0 u <0nc Z 0 <
z CÛ LU LU <z A *a 3 LU c 3

Ci r A <
UI e>

«a A II V r-< tO A 1 1—CO V c
A <L CL Q II A 1 "C <A LU H

V A X ce Z z Z Q fÔ Oi 0
«0 Z m A z

Z z > Ci > 3 ce •a. M A
r < 0 \ / Ci Z ui- N XI oc N - Z "3 N 3 tu

O 1
11

0 Z c El Z lit —« £â
A Lu i\ V II 0 -J lU Û- 3 A LU Z 3 UJ

ûT
A

0 G. 0 V —1 0 Q A 0. s: lu 3 rH 3 CD
lu rC. Z G A il 0 XI Cl X A LU •a

•f- OC *. < V < H* 3 z XI LO 00 0 X LU V- < Z- M CD VO
3. 0 a: V Z c>4 Z: 0 < -C CO ■a Lu Z «a 3 LO «0
% 11 V A W _J 4" < V3 VU 1— 10 il «a
C II

s II 1 LO oa LU «C l5 Z Z LO c«5 CD lu ’"5
et A A 0 JT '—* lu 3

a ce -t Û. A f—
N

m £S N —■ >• 1- UJ —. 3
0 V CL < X Cl 3 <x Z Lu 0

< a If X lU 0 3 Cl H- UJ Z D Z

C
c t-i L? XI Cu —« 00z Z LU

II 0 A UJ •-> 1— z L5 II LU -—
z fl Z 0 Cl UI LO 1- 3 0 05 XI -r* ÇOSA a >: z X LO <1 3 3 ZUi Q A > Lü %» A 0 LO _4 Vu VU LO 3 Z w 00 CO3 N CO 3 en
- j 9 0

3C _J Q T 00C z: \ / z O
m 0 c. zr CL z a A 0 LU V z < V 0 m LU £13 ÜJ
< Z < 2 X 0 Z <r 10 Uj 00 vo V 0'3 LO c 3 tu K

H <r CE II Q >• a ■ 3
et' 0 Lr, _J C z UJ au 0 II z 0 CO LU Q II £Û EU 0 II< Q 3 a c, 3 a: cl a CL O <1-3 0 g 0 Cl r . •a Ci> < Z 0 <t r or < s: < to 0 —« 0 (A 3 C, Li
V V V V V V V V V V V »M 0 N sa «0 0 «0 V 0 o3 =s 0 r- *3 <13 Xl

150

Q
I MO

+
~ Su
o * z
» H CÛ

1 +■ 2
4!-3UJ II “3 «»

mX il Z+ r~J * XSa- 2<1 II II'• ÜJ •• z
2 3 3 Z m r

J II □ Il

*
-J *

X ."• ZT

O r. O
— *113 —
3 S " + te II

Z* Il + ̂ V II o
E 3 ^ s CÛ£+ C >— * U7* r- Ui* ta« Q +Z z w3 z 3Il II.. X
2 2 z z n. ao CL * c

—
O w ■x+ 1

a 3 1
CO

a
+ 1 X II+ u~ X 1 < 1o II ̂ Ils o
+ +3 3 + +V —. * Ck
— ̂ UJ ̂ o CÛ« ̂ 1 il <r* ** 3 ~ 1 +3 z »' ++ X . :«E *Z, >-o V a
«t il II! II
•• .. LU •• o
3 3 3 X 3 Z X > .

151

CHAPTER G

IMPLEMENTATION OF THE
SEMANTIC SYNTHESISER

6.1 SEMANTIC TABLES

On reading tlie semantics of a programming language,
tables of its intermediate language are constructed
such that starting from the first semantic production
read, the environment fields (E F.) of all the
statements can be constructed sequentially. The
action fields (A F) and the code fields (C F) are
accessible through the environment fields of the
semantic production in which they appear. Segment
names are treated in a manner similar to the
environment fields.

152

CMI

0 M
C Q

1

IH

I
H
C Q4,
01EHI
C Q

E.F.ll A.F.ll 1 C.F.ll
E.F.IO A.F.IO C.F.IO
E.F.9 A.F.9 C.F.9
E.F.8 A.F.8 C.F.8
E.F.7 A.F. 7 C.F.7

SEGMENT - 2
E.F.6 A.F.6 C.F.6
E.F.5 A.F.5 C.F.5

SEGMENT ~ 1
E.F.4 A.F.4 C.F.4
E.F. 3 A.F.3 C.F.3
E.F.2 A.F.2 C.F.2
E.F.l A.F.l ‘ C.F.l

Semantic table
FIG. 6.1

The diagram 6.1 shows the semantic tables for a
semantic specification. Three fields of each
semantic production are represented by three
columns. The bottom production is the first
production read. The bottom production in each
segment is called the start production of, the
segment. As is clear from the diagram, starting
from EFd., it is possible to access EF.2, E F 3 EF.n

153

sequentially and from EP.n> AF»mand CF.mare accessible;
m and n being positive integers.

On the completion of the syntax and the semantic
specification, when a "%GENERATE" command is met,
the system goes through all the semantic statements
and executes all those which do not have an
environment field. After that they are made
unaccessible to the system and processing of the
source language starts.

6.2 SEMANTIC SYNTHESIS

During the syntax analysis of a source language
statement, a “history" of the recognition is kept
on the SAS. When a node is successfully traversed,
it is recorded. In essence it is deleted when the
string covered by it is recognised. When semantics
of the language is specified in the relation mode,
each time a new symbol is recognised, the semantic
synthesizer is called for action. In the production
mode it is called each time the part of a production
enough to form a valid environment expression is
recognised. i

—

154

When the semantic synthesizer is called, an attempt
is made to recognise a production in SEGMENT-0. If %
the match is found, its action field is executed,
otherwise the control is passed back to the syntax
analyser. In the action field, execution takes
place sequentially from left to right unless an %

explicit transfer of control takes place. The
code field is invoked by the execution of a
statement in the action field. The string resulting
from the execution of a code field is generated as
the code.

At the time of constructing the semantic tables,
internal code is generated for each semantic
production as it is read. The order of the
internal code therefore is reversed from the one
specified by the user. To ensure top-down
recognition for the user specification, the
recognition of the semantic productions in any

I
segment always proceeds from bottom upwards.

To recognise a semantic production in any segment,
starting from the start production of the segment,
an attempt is made to match the environment fields
of any one of the productions, the first match
considered as the desired one.

Ij;

155

To recognise different relations in the environment
field, various checks are made on the relation
symbols under consideration and on various data types
and previously kept symbols. For example to recognise

- *,* it is checked that '+* is at the top of the
STACK and is the symbol currently under consideration,
In the relation mode the recognition process is fairly
straightforward, but in the production mode it is more
sophisticated and needs some explanation and is
discussed below.

156

6.3 RECOGNITION OF ENVIRONMENT EXPRESSIONS:-

Consider that at any stage of parsing
^1' ^2' ^ 3 ------- ^n the nodes in SAS such that
N. is at the top while N is at the bottom. N.I n i
is the immediate descendant of N ^ , N^ of N^ and so
on, Ng is the immediate descendant of N^. N* is
a node in the syntax graph representing the nonterminal
under consideration in the environment field. To
recognise N*, it is matched with N^, where
i = 0 , 1, 2 ------ n. i is assumed to be such that

does not have a successor node.

If the whole of a production appears as a relation
in the environment field, SAS is searched from top
towards bottom for a node Np such that
Np is descendant of Np^^

and N_ , is the successor of N_P-1 P
Np_2 is the successor of Np_^

and so on.

Np, Np_^, Np_ 2 Nq are then matched with the
given production in the environment field. If only
the r rightmost symbols of a production appear as a
relation, then the given environment field is

I
matched with

I

^P-(P-r)' ^P-(P-r)-l' ^P-(P-r)-2 i

157

For example consider the example 4.3, on recognising
the expression A + A, the SAS has the form shown in
Fig. 6.2.

If N* is
"A", it matches the most recently recognised symbol «
<^peran^ , it matches the node N^, which is not on

SAS.

Ni
^2
N 3
N4
Nc

<addition exp>l,1 DAU
<addition exp>l,3 DAU
<addition exp>l,2 SUCC
<addition exp>l,1 SUCC
<addition exp>

FIG, 6,2

158

It is worth noting at this stage, that the
(^addition e x ^ can have two different values

i.e. <(operan^ and
<^operan<^ ^operator^ <(̂ addition .

Hence in the semantic specification ambiguity
can be caused. It is the users responsibility
to avoid it. This however is not a big handicap
since in BNF a nonterminal can have more than one
different alteratives any way.

On deleting the top cell of the SAS shown in 6.2,
it will have the following
form.
In this case f = 3 and

addition e x ^ 1; 2; 3
.matches N^, and while
DUMMY addition exj^
1, 2; 3 matches and
since r a 2.

<addition exp>1,3 DAU
<addition exp>1,2 SUCC
<addition exp>l.1 SUCC
<addition exp>

FIG. 6.3
6.4 THE OVERALL STRUCTURE

The semantics of a programming language is described
in terms of its syntax. If V^ is the vocabulary of
a grammar G and v^ e V^. Then v^ is treated as an

1 59

identifier which always has as its value, the
correct code corresponding to the part of the
source statement recognised by its descendants
at any instant of time.

Consider the following specification

6.4.1 <^peranc^ - A

6.4.2 c ^ e r a t o ^ = +

6.4.3 ((addition e x ^ - <^perand^ I <Q»perator^
^addition e x ^

6.4.4 %SEMANTICS PRODUCTION

6.4.5 </^ddition exp^ 1, 1; 2; 3 -> CODE ^addition e x ^ 1, 1
& CODE ((addition e x ^ 1, 2 & : = CODE & CODE = NULL:

In (5) we may refer to members of (In
processing different texts and at different instances
in processing the same source statement).

160

To deal with this, the system manipulates different
nodes of the syntax graph, assigns code to them and
updates it as the processing proceeds. For every
occurrence of v in a semantic statement, reference
to the corresponding node is assumed. For this
purpose, the system has a semantic stack (SEAS)
with two cells in each element; definition cell
and the value cell. Nodes are stored in the I

1definition field and their respective codes in |
the value field. 111

When a symbol of the source statement is recognised,
the node being traversed by the syntax analyser
along with the most recently recognised symbol is
stacked in the SEAS.

Consider that the syntax analyser traverses a path
to "go" from the current node to the one which
covers it. In this case if the current node m
is at top of both SAS and SEAS
a) the SAS-top is deleted.
b) replaces N^ at the SEAS-top.

Suppose that ”ra-2-------- '*1
(examples 4.1, 4.3) are the nodes in SAS which
match the environment field. In the action and
code fields of these semantic statements reference

161

may be made only to v^s corresponding to
N ,*N _ N-. On successfully completingra m-1 m-2 1 ̂ z

the execution of the action field, the elements of
SEAS representing «, N , N_ are^ - m-1 m-2 m-j l
deleted. Control is then handed back to the
syntax analyser. Processing continues until the
syntax, analyser reaches the start symbol of the
grammar. At this stage there may be only one
element in the SEAS with the start symbol of the
syntax graph in its definition field. The value
of this element is generated as code on the output
stationary. However, if the definition field of
the element in SEAS is other than the start node
of the syntax graph, no code is generated from the
SEAS, since it is assumed that the user has a
separate algorithm for doing so.

A string is formed by concatenating the code
generated by executing successive CODE statements.
When the statement CODE" is executed, the value
of N in SEAS is set to the CODE string. If the m
MTL variable SEAS is set to "()", the semantic
stack SEAS does not develop and the user must
declare and manioulate his own semantic stacks.

162

:

In the example 4.3, when the SAS has the form
shown in FIG. 4.10, the SEAS will be as follows: . t

i.

<addition exp>l,3N 1
<addition exp>l,2N2
<addition exp>l,lN3

FIG. 6.4

First of all "A" was recognised and was the only
element stacked in SEAS. It had <addition^ exp^
1,1 in the definition cell and A in the value cell.

On recognising "+", a new element was created in
SEAS, with definition field as c^ddition exp^ 1,2
and the value field as "+”. As "A" was recognised,
the third element in SEAS was created having
^addition exp^ 1,3 and "A" in its definition and

;

163

the value fields respectively. At this stage
(5)l.s executed. On executing its action

field, a string of code A A + is generated.
This code is set in the value field of and
the string itself destroyed. On completing the ^
execution, the elements of SEAS representing
Nl and. iN2 are deleted.

6.5 HIERARCHY WITHIN ENVIRONMENT FIELD

The environment field of any particular statement
is tried from left to right. First of all the
symbol '"1" outside the scope of brackets " ("
and ")” .is searched,for successful recognition
of its left hand side known as a master alternative
results in a successful match of the environment
field. In the case of failure, the master
alternative on the right of the current one is
tried. This master alternative essentially is
the environment expression between the above i
mentioned "I" and the next one on its right, which
is out-side the scope of "(" and If however
there Is no such symbol, the end of the environment |
field is assumed to have been reached. In any one
of the above mentioned cases if there is no "1"
outside the scope of "(" and ")", the end of the

,1

164

environment field is assumed instead. On testing
all the master alternatives, if no match is found,
failure is reported to the semantic synthesiser
in the recognition of the current environment
field.

To recognise any one of the master alternatives,
an attempt is made to find a relation operator
(if any) outside the scope of "(" and Its
left hand side is evaluated before the right hand
side. On either side of the relation operator all
the alternatives are tried, ignoring brackets.
However if no alternative matches on any one side
of the relation operator, the recognition of the
current master alternative is considered to have
failed. While evaluating expressions inside
brackets "(" and ")" all the alternatives are
tried from left to right and the same rules apply
as that of master alternatives, except that no
further bracketing is expected. This would have
been detected at compile time as an error.

165

example:- 6.1

Consider the environment field
I *B* I 'A') ~ I (<a> I I <c>)

which has two master alternatives:
{'C I 'B' j 'A') ~and (<a> | | ĉ>) .
The former is tried first and in the event of
failure the latter is attempted. To recognise
the former master alternative, the position of

is determined and then the bracketed alternatives
are matched against thescurce text. If any one of
these alternatives matches, the right hand side
of is tried, otherwise the second master
alternative is attempted.

6.6 PROCESSING OF SOURCE STATEMENTS:-

During the processing of a source statement, every
time the control is transferred from the syntax
alanyser to the semantic synthesizer, the SEAS is
adjusted. The nature of the adjustment depends
upon whether this action was taken due to the
recognition of a new source language symbol or
purning of some part of the parse. A search is
then made for a statement in SEGMENT-0, the
environment field of which matches the current

166

environment. The system routine whose job it is
to recognise the environment fields of the
semantic statements is divided into two parts:

i) which recognises parts (or whole) of the
MBNF productions (Production mode)-

ii) which recognises all other types of master
alternatives in the environment expressions
(relation mode)

The semantic synthesizer determines whether or
not (i) is applicable, (i) is applicable only if
at least the top or the second top element of SAS
has the SUCC in its path field.

The environment field of the semantic statements
are considered one by one. If the semantics is
specified in the production mode (i) is applied
otherwise (ii) is considered. If a match is found,
its corresponding action field is executed, otherwise
the control is returned back to the syntax
analyser. During the execution of the action field,
if the control is transferred to another segment,
the current position is stacked in a system stack.
The new segment is then executed exactly in the
same manner as that of the SEGMENT-0.

167

Flow of control for most of the statements used
in the action field is straightforward. All the
statements are executed sequentially from left
to right, except when the control is transferred
by a branching statement.

When an ELIMINATE statement is executed, the
environment field of the corresponding semantic
statement is marked. Marked environment fields
play no part in the recognition of environment
fields. REINSTATE statements unmark the
environment fields.

On completing the execution of a semantic
production if the value of STOP is "()", control
is handed back to the syntax analyser. For
non-zero values of STOP the whole segment is
tried again. If the execution of an action
field is terminated by branching to the label
RETURN, the value of STOP is assumed to be "O”.

In MSEAL, there are symbols with more than one
meaning depending upon the context in which they
are used. These cases are treated separately.
For example CODE can either be used as a variable
having a string value or as a MSEAL command. In
the former case, a SN0B0L4 variable is made

168

equivalent to it and is referred to at all
subsequent occasions. In the latter case, it is
treated like any other MSEAL command and is kept
in the MSEAL symbol table.

6.7 DATA OBJECTS

All data objects, ques, tables and stacks are
dynamic and develop in the form of doubly linked
lists. The system has a linked list, called
"START-LIST", of pointers to a variable number
of linked lists which represent the data objects.
An element of the START-LIST is known as a
descriptor. Its format is as follows.

Definition Type Size Start
Pointer

End
Pointer

Forward
Pointer

FIG. 6.5
I

DEFINITION:- holds the name of the data object
in character form.

TYPE: coded to indicate whether the data
object is a table, que or a stack.

1

169

SIZE;- Specifies the number of cells of an
element of a data object as it appears
to the user. (The two cells required
for linking purposes are not included
here).

START-POINTER:- pointer to the start of the data
object.

END-POINTER;- pointer to the end of the data
object.

FORWARD POINTER;-Pointer to the next element in
the START-LIST. The last element
in the START-LIST has a null string
in this cell.

Each element of the START-LIST has pointers to
both ends of its data object. Each element of a
data object except the end elements, points to
and is pointed at by its adjacent elements. The
end elements are marked by null string in the
pointer field.

■

170 3

When a fresh data object is to be constructed,, a t

new descriptor is created and linked in the
START-LIST with appropriately initialised fields.
An element of the data object is then created
with the required number of cells. These also
are initialised appropriately. When a new
element is entered in any data object, the start
list is first searched for the name of the data
object and then after checking its type and the
element size, the new element is created at the
end of the data object. If however, the name of
the data object is not found in the START-LIST,
a new data object is created. If the name is
found in the START-LIST but its size or type do
not match an error message is output.

To search for an element of a data object, the
START-LIST is first checked for, the name, type
and the element size of the data object. Then

I
using the links of the data object, the particular
element is sought. Since all the data objects are
created using doubly linked lists and their
"starters" in the START-LIST point to both ends,
it is possible to make a search starting from

■si
either end. The first cell of each element of a j
data object is considered as the definition cell. jy
If the element is referred to by name rather than

171

the index, this cell is checked,

EXAMPLE. 6.2

Consider the statement
PUSH "ABC", "CD" IN STACK.

The START-LIST is searched to find an element
with

DEFINITION = STACK

TYPE ~ stack

SIZE = 2

If result of the search is "yes", a new element
of the stack with "ABC" in the first cell and
'CD' in the second is created. The last element
of the stack is linked with it and it is pointed
at by the END POINTER of the stack. If search of
the START-LIST for an element with "STACK" in the
definition field fails, a new starter is created
with the following specification:

172

DEFINITION = STACK

TYPE = Stack

SIZE = 2

The first element of the stack with the above
starter has "ABC" and "cd" in its two cells.
To retrieve information from one of the data
objects, a statement of the following form is
executed.

6.7.1 SEARCHDOWN STACK ('ABC'(2))

The system searches the START-LIST for the
specifications given in example (6.2), using
the END POINTER of this starter, the stack is
then searched from top downwards so that it has
"ABC" in its first cell (internally 2nd cell).
The value of the 2nd cell (internally the 3rd
cell) is then returned using VAL.

If the statement (1) is of the form SEARCHDOWN
STACK (C(X)) ;
the process of execution is exactly the same
except that the values of c and x are assumed.

173

CO

Internal structure of different data objects

FIG. 6.6

174

Table 6.1 is the same as table 5.1 except that
in this table systematic conversion of arithmetic
expressions to the reverse polish form is displayed.
After every call of the semantic synthesiser, the
state of the code is displayed.

175

vO
UJJ00

A
ofO Ûo A

§
l£l Of 3 3 •* m r- lA of 1—
s UJ 3 UJ Os: D X Cl A z Ar> A c Of A A A A A O Of 3 A <z Of O CM oJ CM UJ CM 3V O <I u. < <f < <r Z ca V <£ 31- a O 3 3 3 3 3 m CM o X 3 XA < A S 3 3 2 3 3 3 A 3 ofOC of Z o X £ X X c Z Of X CA QO < CL o Cf Of Of Of A A •3 V o of k U.1- >- o o O O o O CM <C > O<t c CO 3 u. U. <L A <T u. A. ZOf o o X <r CO r~ lA <*- 3 CD Of Of <M OUi A Q A z a Of Z Z z 2 z 3 3 V' OQ. a z Of Z 3 o Q o o a o E X 3 4O o V a. V u. A A Of A A A cc13 < o û 3 <V 1- CM Cm h- 3 G CM CM 3 o 3 of «fC 2 Oz H- CL 3 z < <t < < < < <r < < < < u. O A 13 Ofo O Z 3 A o o 3 3 U .<33 W o 3 3 O OC 0 0 3z (_ V Z r ccf 3 3 3 <L 3 3 2 Of o O G V CL3 3 r G 1- X 3 X X 3 o X X O a 3 <V U, 3 A <t < Of CL CL OC Of CL,CL CL'Of < V G 3Q a V z A Z 3 u G O D O o 0 0 3 Of Q 3o A Of o Of 3 1— LL < c UJ a V A O 3-f A Of C LU X 3 «1 13 <3> a <r < ZV Of 1- Cl « Cl 3 Z Z 3 Z z 3 z z 3 o o < VO <A CO c o o O z O c z £ o o X 3 o o CD CL a 3 Qc r A Z z V V V CL CL > z V r 3 V \o 3 •< z 3 lU 3 Z 1— H* 1- 1— 1— 3 3 3 o gA O Of z CL U- O z 3 II II II (- 3 CD CA r A of II AC3t Ui1- V O V o X Q O G Q Q Q Q 3 3 3 3 z o <If- V A O O fO M- o O V> 3 CJ G X Z 13A G IL 3Of LJ Q II II z <c < •a. «t Z < <1 £ M Of 3I.UZ o CJ II V V V V V V V V V Of E Of UJ 13 E fî3 3 CO 3 A A A o 3 A A A A Qf-J Z z U. o Of At 3 o A 3 II II CM It II CM II II II II X > 1' ca X Z O CM OV V O < < <t CL < < X < < < <I < 3 o 3 3 3 ?z h- I™' o V 3 Of3 CO 'T 3 in f- 3 3 m «O' l/t A 2II II V II c 3 3 O ZD 3 3 3 Q Of V V V O 3 Zof z 3 Z II X OL z X X X X II Z O V E QA A A A Q uJ Of Û. Of 3 Of Of A of of A A cf of A A A A < A 3 II II II Qfa; cf <NJ< G o X A CDz o CM a o CM o o Cm CM A of II O 3 Æ< o Q u_ V <r o C < <. < «a < <3Ci C of A A ILh— 1- 3 3 3 3 3 z UJ of CM Q 3< =) <1 3 Z Z 3 z 3 Z ■z. 3 3 z z 3 3 z z 3 3 3 3 < CL o <C < Z D EO' s Of o G a o <c o X X G a % Z o o X X E Ë X Of O 3 3 O <t QfOf UJ Of Z V Of o Of Of Of of Cjftïf Of Of X II < 3 3 3 V Qo. o o. o r M- r a 1— o O 1- 1- Q c 1- o c G O o o z of % % H*» IXo u. CD U, <c < z < u. < 3 <f < < < U- 13A o o (jL) OC Ûf S ilA o O r o A U CL o o 13o Cl o G O Gz z z z z z 2 Z Z z Z Z Z 3 O Z 3 O A 3o o o o □ A 3 o o 3 o O O c 3 3 0 0 o O C 3 o 13 < o.a G CC CL Cl e. Q. < < O o l > O 3 <Ct- »- 3 (- Of Of 3 31— V- 1- X 1— o G Q o E CJÛ o Q Q z 3 ;3 3 Q 3 V G G 3 3 o o 3 Q o o o a > eO < < < Q f Vo Q O D 3 3 3 3 3 O 3 3 o a 3 3 o o 3 o c Cl o 5 lU 3 O«£ < Z Z z IL < Z X < .J X <t < X X <t < < £ LO O CA Q G G O IX —

V V

I

176

O —̂

i/> I—

(M <c Z
A Of o
3 ■3.
Q A A

A O UJ A o
< CO < < 3 z

3 V O 3
3 o 3 3 o u.
E 2 2 z a
Cf o Of Of r V o
O < m o O

3 U. A A a
V Z o <l O c

A 0 0 3 2
N 3 < 3

or 3 A o a E X V
o o Q < < of X
3 -A O o
< o < 3 O Lu
St E of V V V A
c E a UJ Z
o. O 3 II II A 3 O
>u LU O % CL

U O 3
V z G a 3 O

<r 3 z
A cC O Of 3 3
< «%X IL
3 a < Cl M'
3 3 O o 3 LU
E V < 3 II
of a V E £ V CL
CD II af Of A
LL II II w a A %
V A. < C 3

A. Z m 3
II O o 3 z

2 o o S. o
A < A Of z
3 r u 3 O 3
a X X a ■d <
o o 3 O O G V A
CD O CO z

O
O o G O CL G CL

O Û a O 3 o
<t < < C33 X

3 3 (3
CD Q O Û E X m
V V V V V V V V V

W ”0
<z

lA CL
O Z 3

3 3
e. UJ

•* lit
o

O 1
V GG UJ
T O

lA >
LU Q
3 *" ■
UJ

ciC 2 IX»
CL O 3
UJ 3 O
V < Z

*- 2 G iL
(A X 3 G
LU W J 2 2
ci 3 <C 3

X 3
LA UJ 3 3
CL UJo
3 I

È .

UJ o I

gl
0 -

I
A1 -

I
A -
=fo —
< -

cc o
<I «3,

A
I I
lA
3 A
Cl da

<
A Cf

LA I

b£ < if CD I0 O O 1----13 0
LA CL LA —«

z - o c, z <1
(M -
3 ce

z>
E O

3 X 3 UJ W E -
UJ lA LA -ii- 3 •'
V V » Z -

Z 3 Z — —
-g"g.^
V. V *1 V -

IX X ̂

< <
UJ G
V V

cc 3
UJ CL
CL •—
O 3

A LA

A 3 A
K < I o ac •
3 UJ A <t CL QC Of C C
CL 2 <y
O o tc
►- UJ2 3 CL O G O

3 rs: z
-■i 3 O

o
V

3 . . + + * +

3 lA O Cl V <t
QQ -
3 :

- 3
I LA

V « V

177

/\e£
U i
to
52TV

A Cl>■ 1 ac C_J DiV C. UJSi o CO LU Z Si(_> c 1— Cic o c X O
< -J X tr o o z <»- 1/1 X z o o o o V K-LA z V CO

z «û *c=>« 1= * LU
S 3 3 OO O o t a <Si ■f- A r. 5 Z z o >o ■>v Si Ci z es 35 en No X X s •c

si < X > > V >~
z t- >- lA lA A<s.LI X X l/l af 3z Z LU O caC- z V 5 Clo a X Z NI

C5 D o X o X CD.A A z * D O o <x X N1 U Z >- 3 Sit A A A A V t/l O «X Ao 'v s: A A 1 1 1 1 z LUf- X Ü 1 1 n- (Si z< z t— ■V vO LU es s; ts) cû z aio te A o >- oc X/. 3 X a * o lA X X >-a C£ G. S X X X LU A <r L— Ulo 3 o Li CL ce A O UJ acA cC A V/ X 1 C CL ni ni oz -4 a. c. A Qi X A A A A O û£ Zo 43Î 1 * z et OZa: A A o LU aA CO V LU Lu tO * o z1 r fC uu A Xi Q II II c3 X 4 Z S en as> » X > il u
> V) o X X X T S. z Q ci \0S > V z z Z z Lu UJ o oO _j Z u. V \y Z z A O Z X 3 >c. C£ * cü \/ V Ci «2 w Q o LU o o o X X« t 1 t o et Lu r <1 z aLL c I » g X < > o < (— < A +> 3 o c. Z c Z A 4) z I-3 a; t X z C <ï X O o o XCi O' Q «Î C S. c A r- o o z C ca Ci X- V w w N < in m in in z

o
Ift

<A
OQ
<X

O ' vO o -o

+ + rg
o o -ttA \A'̂t a • o

in la m tn < ^

178

< » O' - • X
X •o11 o A

X
+ + CO • « CL '

X »■ X X A-O Cl X o in00 r~ + + + + + X * * 04 <a A + +£ <5 CL z X z>- - O' O' O' O' ro > X CO CO XA lA A fiL,o + + + X .+ + + + + * * * * X + + + +'k A X >- A 'O o >•h- h- c_ o> O' O' O' O' O' X •£) \0 o r- A-
% CL X A a.1- in

* *
+ + + + + + + + + + X + t— XX * + X + + + + * L—

* a o o •C «O -O «O Q O o sD 'O ■£> o ■o o CO CO BO CO 0000 Û •fr c. o \Cl a A O •o o •o •O X
o O X Q * X* < lA lA in < us lA lA lA lA (A z lA lA (A lA lA lA lA lA < * tA lA lA lA lA lA A lA lA lA lA lA LA lA X

179

or
c CO

A U A
Cs *

• Z OX o <£ Oc X.U. f A ►A
+ nr A » # %n * * *oA A or A A A — A A A A

or o X O+ + + U.- 3 * * # * A X * * * * *Q ao vO O •S- C O O >£> A * o >o O SÔ o o•» d * OC
m in in A A A * c. A A A A A A # £L A A A A A A A

180

Table 6.2 shows different stares of processing
assignment statements with the specification of
table 5.2. At different stages, when the semantic
synthesiser is called, a table of information
stating the states of the SAS and the SEAS is displayed
along with the current cursor position on the
soDTce language statement. The node fields show
which node is stacked in the SAS or the SEAS.
PCS is the current cursor position and PATH is the
path traversed after stacking the said node. In
SEAS, the CODE field gives the current value of the node
in terms of the code.

As it can be seen from different tables, it is
not necessary that every time the semantic
synthesiser is called, some semantic production
must be executed. If no semantic production is
recognised the control is returned back after updating
the SEAS. For example, although no semantic production
was recognised in table 6.21, ALFHAl?Uî*rSRIG is stacked

N O D E
in the node*

and X in the code field,
table 6.22, := jjqse is stacked in the node field

and ;== in the code fields of SEAS,

-

181

In 6.23 however two actions took place. The
node field of the topmost element was changed
from ALPHANUMERIC (variable) NODE
Then a new element was stacked with and +,

Similar is the case at other stages.

In table 6.24 to form the parse tree

given on Page 188

182

<N
vC
UJ.J00

I I I t I I t I I

<
C£ M •aAUJ csrfM 1— •0 rj
Cl CO 3 z X 1a < LU lU XV UJto LU

CC
z.<l m o 2 03< jA A A -J oQ c£ C. CL A o «S A ■iz a X 3 "C C- h- Cl ic 1- LU •a CO X o t/1 X «J»QC<A X LU3 X UJ t'* ■iX OCCL o LU Z UJCL X 3 3 o COZ. UJ -3CJCL LU N z II <tUJ N!V oo OzCOII —1w AC > ■> X»0Z Qt/J •A iA A G ;rI < C5 •J o G < N N ■ÎW S£ r V- il» <c CL 3 CX JX o > II Q m V LO031->--JQC. 3 A L&> U -4 t/t Ao a< < X a.< Q liic COCL Cl. QOCc. V 3L> to Dj 3 S3V < 3 XoCC t— N O X Z < UJl- UJ<Cl -J11rsj CM X V XX toX>O c fM g II a X G (MXs: % o z z XU3 VAAA Cj oo u. o wZ CwG- o oo d2 Q rsT z C£ ClcaXX z o o m < o Jt < <GO rA C3 LU t— il<V fcS A, Ai«•;r-J 3UiCO V X •« 1

A < CL If O II A 1 IIQ_V AX r Z 3 fn CCQUi 5 < A Zzr > > 3GS£ < fM fSJA «J* r to\yC> u zLU w %UJ CM Z «4 LUu O ccz: < Ck CL Z II (A-JII A u V o Ul A r < UiA Q c V iZ C /* \a. z COAtU2o CiA 1! o V' < Z X <e: <, < 3r KVO >1 < Z N ai \o .JX c z OC \/Z c <c CO Z < XuOg-II LU V AUI <a o II=o <ag < a M cn w c z z aj35X <*cA a o A UiA no z Uj X JC. vO
U < a A CL m Z a: CM > z X X rJG V X < X cn35 < > __l c %< G X o<NOC 3 CL X E C* O

ZjC «0 CL cVz 2 X »(J C3> isj 1It OC O \D Cf CL UJ O II UI r-l 1 *? a.ZO z N CO V- E-■X -î toX 3 •J*’ < 3 3 Z rO □3C >. u.> IÔ-tJ?Aa 1/) Lu CO 3 2 lA LO CO, UIX Q a w(.c < V/ z I'l<rS •4 -t V- +e e.2 tJ5 5: X10 UicA UJ <V ITVU CQ uj' << z < XCO CO CO Ui L: VI< X Û: < ' ;**—ce 4- < «Z > 3 XX Q tucc c u* C r iü Ui CJ3 STC G IIffi CC’O II Z II 1< G a. o C'a3 c c_ CL Li G <Q <w Uj> <=c a < c <t CPCO 3 < oC> X O GVV V VVV V V V V o c-«0Cp Ag O *>5 V u IS) 0Û O' *>5 t* X

#

t
*
*
•ft»ftftft#ftftftftft
Î
ftftftftftftftftftftft

1 B3

m
CO

o

o
ce
3

O
Q.

O
<

csf
<

■St O

a:
o

184

(Nrs
Uco

a* ft W •• Xft ft oft ft oft ft o
ft ft
ft ft
ft ftft ftft ft ift ftft ftft ftft ftft ftft ft UJ Aft ft o Uift ft o _ift ft z œft ft <ft ftft lA ftft < ft <rft ft N > 1ft V) ft •• Vft ft
ft ftft ftft ft
ft ftft ftft ft
ft ft
ft ft
ft ft oft ft X oft ft k— =)ft ft «a toft ft a.ft ftft VI ft toft 4 ft o z* «/> ft a A ft oft t- ftft ft z ftft ftft * X ft O •;ft ft oft h— ft a. ftft < ftft ft ocft to ft o .ft ft to COft UJ ft ccft. Q A Z ft =) + ' Sft ft O uu UJ ft oft ft Z -1 X ft <t Jft ft m z ft »~ft ft ■sr tü ft zft UJft ft t£ CO ft o£ IIft <s to ft o: •• 'ft > <r ft 3ft V V ft o X 'I

- '

;̂tytprT<̂:yy’?yîi»

185

amCN
vO
UJJCQ

Iift ft LU C « Xft ft Q
* ft Qft ft O
ft ft
ft ftft ftft
ft ft
ft ft
ft ft-
ft ft
ft ft o
ft ft
ft ft cC A
ft ft a UJ u>
ft ft o X _l
ft ft z 3 a
ft z <
ft ft < w
ft to ft X cc
ft < ft Cm <
ft ft -1 Jl >
ft •ft <r .. Vft ft
ft ft
ft ft
ft ft
ft ft

ft
ft ft
ft .ft
ft ft
ft ft o o
ft ft X p 3 3 3 O O
ft if k- < -5 < <■ 3 3
ft ft < a Q Û Q CO CO
ft a
ft «
ft oO ft LO mO >0 vO CM —t ft
ft < ft O ftft ft Û. A ft

A h- ft a
ËL «Î ft
X t- ft <c O
LU lO ft o

A . ft •ft
u cc

A A Z ■ft 3
U> A t— LU UJ ft O
3 O -J Xa z X CO Z 1-

< Z X < o z <
"-t CC ft
cc UJ Cl ti- lO ft OC II
<£. a. a aC <i to -ft cc
> O < < II > < ft 3
V V V V •• V V ft O X

186

JOrn
\o
ÏÏ03

ft ft Ui
ft ft Qft ft Oft- oft ft
ft ft
ft ftft ftft ftft ft
ft ftft ft
ft ftft ftft ft UJ
ft ft Q
ft ft D
ft ft
ft ftft ftft VO ftft < ft
ft UJft VO ft
ft ft
ft ft
.ft ftft ft
ft ft
ft ftft ft
ft ft
ft ft
ftft ft I
ft ft
ft ft <
ft ft Q.
ft ftft VO • ft VO
ft <t ft oft VO ft a.ft ft
ft -ft
ft ft
ft ftft ft
ft ftft
ft ftft ftft
ft li UJ
ft ft (=1.ft ft
ft ft - Z
ft ft
ft ft
ft ftft *
4k ft
ft ■9
ft ft

II« X

tc<0£
<

II > • » V

U <J o3 0 3 3 0 0
< 3 C < 3 3O W O Q VO uO

CO -O -JO -Û CJ ft-ft z
A ft o

ft
z ft k- 1-ft f
z ft vo I'A o o

{£ A ft a.
O c_ <
k- X ft CïT Vft o
OC A ' ft VO ft

ft cr
a X ̂ A 2 3 ‘̂ 1-Q A UJ 1- UJ UJ ft O

1C UJ _1 X ft
u) % o 2: OJ z ft k—
z -jc x: x < o ft z

ft J 1C— uJ C-- tX. VO ft OC II
3 ft. o or <t to ft or
-d C- -a < It > <I ft 3
V V V V ••V V ft O

187

AO

a; >- A O A3= -J G a
c a: ̂ c£
% _l UJ G IL
G G Ü. Q C.<

<h-V

O o o o u(A z (-*; V) 1/
«S < \ j A ! t n

CO O O 'û

o oo
= a. w G V i
— n CL ■>< —.A > - C j A O A ^ > -

O

II QC
V V/ V V V \/ V V o

188

V

c/l
/\ OJ

oO

00 -p (U

V

00LT\

189

To recognise a senantic production at the current
state, we are only concerned with to As a
matter of fact is redundant since it plays no
part in parsing except to modify the path# Hence
we concern ourselves with the following tree structure4

adding ̂ multiplying< o p e « n d > - < „ , > _ < o p a » n d > ^ ^ < >

FIG. 6 . 8

This matches the second semantic production in
table 6.2 , Since

< multiplying > ----------- <opeiand >
operator SUCC

FIG. 6.9

is the same as ^multiplying exp^ 1, 2; 5 and the
HWHIY by definition matches all the nodes on their
left.

190

CHAPTER 7

EXTENSIBILITY IN MTL.

7.1 EXTENSIBILITY;-

A programming language must provide the user with
adequate means of expressing an algorithm in a
manner which matches the problem he wants to solve.
There are two approaches to achieve this end;
either to have a large universal language or a
large number of problem oriented languages. For
a large universal language, features must be
provided for many diverse areas e.g. numerical
analysis, compiler writing, list processing etc.
The translator for a universal language will
unavoidably be large and hence may not be usable
on small machines. Because of its size the
translator is difficult to write, maintain and
perhaps relatively inefficient. Another difficulty
with the design of a universal language is that
the continuous need for revision of.already
existing computer languages, has proved that it
is impossible to visualise all the needs of the
prospective users and also of the usefulnëss and
shortcommings of different features of the language.

191

Once the language is designed, one might be so
committed to it that any modification requires
a major change in the design or else inefficiency
and inconsistency is the result.

The idea of having special-purpose languages has
a slight advantage over the above mentioned
approach although most problems remain or are
merely replaced by similar ones. The need for
the maintenance of their translators means that
a large part of the systems-programming effort
at a given establishment may eventually be taken
up in ensuring that a large number of languages
are available. Different implementations will
have different designs and hence pose a greater
problem for maintenance of software and advisory
support for its users. Introduction of new
features in a problem oriented language is no
simpler. However the languages are more likely
to be suited to the user's requirements an#
probably more suitable for his problem.

Another alternative approach is the design of an
extensible language which starts off with a few
features, but which can be extended by the user.
The extensibility can be of two forms ; syntactic
and semantic. The term syntactic extensibility

192

is used to indicate the possibility of extending
a language by means of a program written in the
same language. The concept is similar to that
introducing procedures in ALGOL 60, except that
the syntactic form of call of a procedure is
fixed whereas in some syntactically extensible
languages like IMP [irons.E.T. 197o] it is
separately specified in each declaration. The
possibility of introducing new concepts in the
language (by modifying its basic implementation)
may be called semantic extensibility.

Extensible languages (specially semantically
extensible languages) can be seen to have the
same effects as that of several problem oriented
languages since different extended versions of an
extensible language can be considered as different
problem oriented languages. Maintenance is relatively
simpler since the design approach remains unaltered.
It is however wrong to say that an extensible language
is a perfect solution to the system-software problems.
Most existing extensible languages put some constraints
on the type of features which may be introduced as an
extension. The size of some such languages is fairly
big. In the case of semantically extensible languages,
a high degree of programming skill and knowledge
concerning the language implementation is required

193

7.2 MTL AND EXTENSIBILITY ;-

The MTL is semantically extensible. New features
can be introduced in it and even the whole of
SN0B0L4 can be considered as a subset of MTL,
since different SN0B0L4 programs can be used to
perform tasks which are not conveniently performed

to make extensions. Moreover a survey of |
extensible languages [SOLNTSEFF & YEZERSKI 74]
shows that at present there is a great diversity
of approaches taken by different workers in the
field and there is no apparent agreement as to
what constitutes an extensible language. Since
very little material is available on the
experience with extensible languages, it is
rather difficult to comment confidently on their
different aspects to a user. As Irons'[iRONS 7 0 J
experience shows, the problem of diagnostics and
ambiguities due to extensions should be taken
seriously. In our case, the arguments in favour
of semantic extensibility can also be derived from
chapters 3 and 5. We shall rely on this feature
"for introducing the desired no-backup parsing, to
control lexical scanning and to provide power for
MSEAL.

194

by the MTL, As many SN0B0L4 programs can be
introduced as the user wishes and at any place
in the MTL definition. Each program is
enclosed in bracket "%SNOBOL" and "%FINISH”.
The SN0B0L4 "END” statement is required only
if a transfer to it is to be made (in which
case the execution stops completely and the
job is terminated). All programs are handled
automatically by the processor and are linked
at the appropriate place. To facilitate
communication between the MTL and its extension
routines in SN0B0L4, different system variables are
provided. Since the processor is implemented
in SPITBOL, the version of SN0B0L4 available
for extension is as described in the SPITBOL
manual. Some restrictions however have been
put on its use. Slightly different extension
mechanisms have been provided in MSYL and MSEAL,

T.

the reason for which will become clear in the
latter part of this chapter.

Before we go any further we shall take an overview
of the SN0B0L4 facilities available for extensibility,
Each extension of MTL must be a valid SN0B0L4
program rather than a mere user defined function.
No global variables, user defined function names
or labels may start with the letter "A". Internally

1 95

all SN0B0L4 programs forming extensions are
linked together and treated as a single entity.
It is therefore essential that conflicts of
labels, variables and function names within
various extensions be avoided. It is also
possible to define a data object in one
extension and access it in another. Since the
extension programs are handled by the MTL
processor, no facility concerning system data
sets and JCL is available or necessary.

Optional SPITBOL control cards -NOCODE, -CODE,
-OPTIMISE and -NOOPTIMISE are also not available.
They may be used but are ignored by the system. The
system variable e DITOUT can have a system unit as
its value. The edited version of the SN0B0L4
program statements appearing after it is listed.
This listing includes the above mentioned ignored
control cards. When the extension programs are
completely debugged, the edited code is placed a t ’
the beginning of the MTL processor source which
is then recompiled. During this compilation all
control cards specified in the extension programs
are in effect within their scope. No control
card is ignored. The new code is now the extended
version of the MTL processor. The aim of extensibility

in MSYL are two fold:

196

a) to allow lexical scanning;
b) to introduce look ahead for avoiding backup.

The former is important in automatic syntax
analysers to allow for exceptions to the general
rules in MBNF, for instance to distinguish key
words from identifiers etc. Moreover it is
faster than a complete top down recognition
process. The second reason is important since
ours is an ELL(k) parser and look ahead needs to
be introduced. Since the rest of the syntax
analysis is done automatically, the only type
of extensibility required is to be able to
invoke some SN0B0L4 extension program on meeting
a certain symbol of MBNF. All undefined MBNF
nonterminals are considered as names of the
SN0B0L4 user defined functions (with no parameters).
The user is assumed to have defined them in his

ISN0B0L4 programs. When such a nonterminal is
Iprocessed by the system, its corresponding SN0B0L4

function is called. On returning from the function
the processing proceeds as usual. The source
language string appears in the SN0B0L4 extension
program as the value of the MTL system variable
CARD. The user is allowed to read more cards
and conta:oi the listing by himself or alternatively
to concatenate thëiu the end of the already

197

existing value of CARD. In this case the
listing is controlled by the processor, INPOS
and FINPOS are the initial and final positions
of the symbol under consideration in the string
CARD. It is the users responsibility to set
appropriate values of these system variables
when returning control back to the system.
System variables OBSTACLE and MATCHED are used
to inform the system about the result of lexical
scanning or look ahead performed in any SN0B0L4
extension. On entering a SN0B0L4 extension,
their values by default are "O" and "1”
respectively. On returning to the system if the
value of OBSTACLE is "1", it indicates that the
current production is not to be followed any longer.
If the value of MATCHED is "0", it means that, the
attempt to recognise the current symbol has failed.
STACK is a system defined stack which is accessible
both in MSYL and SN0B0L4. In SN0B0L4 it appears
as a one dimensional array STACK with 80 cells.
The aim of extensibility in MSEAL is different
from that in MSYL. In the current version of
MSEAL, the emphasis is towards generating the
intermediate language and it is not geared towards
providing full facilities of a systems language.
The extensibility provided allov/s the use of
SN0B0L4 for the implementation of such features as

.1

198

are required. The new facilities introduced will
then form part of MSEAL and can be used for later
purposes•

There are two methods of introducing extensions
in MSEAL, both appearing only in the action field
of a semantic statement. In both cases an extension
must be an independent statement.

The first of the two methods is similar to the
method of extending MSYL. When an undefined
nonterminal appears as an independent statement,
the corresponding SN0B0L4 user defined function is
called and on returning from the function,
processing continues as usual.

The alternative method of extending MSEAL is to
include SN0B0L4 programs in successive brackets
of %EXTENSION and %PAUSE; the end of this sequence
of brackets being marked by %FINISH. The name o f .
each program follows its corresponding %EXTENSION
command.

During the execution of an action field in MSEAL,
when a program name is executed as a statement,
its corresponding bracketed program is activated,
hhen a SN0B0L4 extension is activated, the MTL

199

system variable CARD refers to the whole of the
action field under consideration. INPOS and
FINPOS are pointers to the initial and final
positions of the symbol under consideration.
Using these pointers, the later part of the
statement (if any) can be scanned. The MTL
system variable TEST by default has value "S".
Its value can be changed to "F" to inform the
system that the current statement has failed.
The value of ACTION can be a string of the
form SNOVAR = ^identifiers or <rdentifier)>
~ SNOVAR. In the former case value of the
^identifiers in MSEAL is assigned to SNOVAR,

while in the latter case the opposite is true.

7.3 IMPLEMENTATION OF EXTENSION PROGRAMS;-

We start by describing some of the important
concepts of SN0B0L4 and then in steps we shall
explain the whole process of extension.

During the execution of a SN0B0L4 program, it is
possible, by using the primitive function CODE
(STRING) to convert a string of characters into
object code. We shall refer to this process as
run time compilation. The effect of the function

200

CODE is to convert its argument STRING in_to
the object code. The string must represent a
valid SN0B0L4 program complete with labels and
using to separate statements. Blanks are
as important in strings to be converted to
code as they are in program itself. A statement
without a label must begin with a blank. For
example the variable COMPILE can have a string
value assigned by the following statement.

7.3.1 COMPILE = 'START &TRIM = 1
+ 1 N = 10 ;*
+ 1 LINE t; j
+ 'l o o p N = GT(N,0) N-1 ;F(LAB) .

+ 1 LINE = LINE INPUT ; (LOOP);'
:,lj

+ 'l a b OUTPUT = "ACTION COMPLETE" j

+ ♦ : (LABEL)' i

This string can be compiled at run time by ,
executing the following statement.

7.3.2 CODE (COMPILE)
After compilation, one way of executing this
program is by transferring control to START
i.e. by executing the statement

201

7.3.3 ;(START)

The following statements will perform all the
three tasks described in (1), (2) and (3).

7.3.4
+
+
+
+
+
+

COMPILE = * START &TRIM
N

LINE
LOOP N

LINE
LAB OUTPUT

CODE (COMPILE)

1 ; ’
10

. Ir
GT(N,0) N - 1 :F(LAB);*
LINE INPUT :(LOOP)/
"ACTION COMPLETE"

;(LABEL)*
I (START)

It is necessary to transfer control to the first
statement of the newly compiled program, in order
to make sure that it runs. It is also essential
to jump out of it, otherwise the control is
automatically transferred to the label END. It
is due to this reason that :(LABEL) has been
introduced in the above program. In order to
make this statement semantically correct, LABEL
must appear somewhere in the main program. We
shall denote (4) by

202

7.3.5 S T A R T Program ; (LABEL)

The philosophy behind the extensibility in
MTL is that at execution time the MTL processor
a) given a SN0B0L4 program, converts it into a

valid string and compiles it into the form (5)
b) when required for extension purposes, it

branches to START and after completing the
execution branches back to LABEL.

The method described above is adequate, provided,
all the SN0B0L4 statements are syntactically
correct, but how to detect errors if there are
any? The answer lies in the fact that the
SN0B0L4 function CODE fails if there is any
syntactic error. Using this fail condition,
the key word & E R R L I M I T and the function SETEXIT,
diagnostics can be realised. However if the
whole SN0B0L4 program is treated as a single
string, only one failure will occur and statement
by statement diagnostics will not be possible.
To overcome this problem, each SN0B0L4 statement
which need be separated from the other by a
semicolon is treated as a separate program,
edited as such and compiled in the form (5).
Each statement of (1) will therefore be edited
into the following form and compiled individually.

203

7.3.6 COMPILE
COMPILE
COMPILE
COMPILE

'START
*A501
•A502
'LOOP

&TRIM = 1
N * 10

LINE =

: (A501) •
;(A502)*
;(LOOP)'

COMPILE
COMPILE

*A503
'LAB

N = GT(N,0) N - 1

:F(LAB)S(A503) '
LINE = LINE INPUT ;(LOOP)*

OUTPUT = “ACTION COMPLETE" ;(LABEL)
It is not difficult to see that the compiled
version of (1) and (6) will have similar
semantic effects. However (6) can be developed
on the same lines as that of (3), (4) and
(5). Now we shall modify (5) to be written as
7.3.7 START Z program ;(LABEL)
In MTL, SN0B0L4 extension programs need be
executed immediately after compilation. It is
therefore necessary to compile and execute the
following statement immediately after (7).

COMPILE = ' :(START)*
Since the extension programs are to be linked
with the MTL processor which itself is written
in SN0B0L4, various checks need be made and
actions taken to avoid conflicts. We will discuss
them briefly since we assume that the reasoning
behind them is relatively easy to follow.

2 04

Different effects can be had in a SN0B0L4
program by setting the values of &ANCHOR,
&TRIM and &FULLSCAN. As far as the linking
process is concerned, the MTL processor works
with the following specifications.
7.3.8 & ANCHOR = 1

&TRIM = O
&FÜLLSCAN = O

It is thus necessary that (8) should be
executed every time control is passed back
to the MTL processor from an extension program,
in case these specifications have been changed.
This is partly embedded in the system and partly
achieved at the time of generating code. While
developing (7) for an extension program:
a) comment cards are ignored,
b) The SN0B0L4 control cards -CODE, -NCODE,

-COPY, -FAIL, -NOFAIL, -OPTIMISE or -NOOPTIMISE
are ignored.

c) For all SN0B0L4 control cards other than
described in (b) no code is compiled but
appropriate action is taken by the MTL
processor.

d) Only the leftmost 72 columns of a card are
considered.

I
e) Before compilation, statements continuing

I

on more than one card are concatenated so
as to make a single string. In this case

205

the continuation symbol *+* is removed.
f) All SN0B0L4 statements including the

original processor and internally generated
statements are counted for listing. This
is to make sure that the error messages are
given with correct statement numbers.

g) Duplication of labels is checked.
h) It is checked that no label, identifier or

a function name starts with letter "A".

The name following the %EXTENSION command is
considered as the name of a user defined function.
A statement is generated and compiled for defining
a function with this name, having no formal
parameters or local variables. The next SN0B0L4
statement is considered as the first statement of
the function and flow of control is arranged for
this. When a %PAUSE or %FINISH command corresponding

Ito a %EXTENSION command is met, the end of
particular function is assumed and a go to field
(RETUI^) is generated and compiled such that after
execution of the function, control is always
transferred to the label RETURN, Considering that
the %EXTENSION PRINT appears immediately before a
SN0B0L4 program which is edited into (6). Then
the edited version will be as follows

205

7.3.9 COMPILE = 'START DEFINE ("'p r i n t o'' , "A50T') : (A505)'
COMPILE - 'A501 &TRIM = 1 : (A502)'
COMPILE = 'A502 N = 1 0 : (A503)'
COMPILE = 'A503 LINE = : (LOOP)'
COMPILE = 'LOOP N = GT(N,0) N - 1 :F (LABEL)S

(A504)'
COMPILE = 'A504 LINE = LINE INPUT : (LOOP)'
COMPILE = 'LABEL OUTPUT = "ACTION COMPLETE" I (RETURN)'
COMPILE = 'A505 : (LABEL)'
On encountering an ACTION statement, statements
are generated and compiled to call an appropriate
system defined function to perform the action
specified. When the command %EDITOUT is specified
in any SN0B0L4 extension program the effect is as
follows.
Actions (a) to (h) specified above are not carried
out. Moreover the statements

' ; (LABEL)'
' ; (START) '

are not generated at the end of the program,
instead the statements specified in (8) are
generated. SN0B0L4 statements are generated to
initialise tables of labels, function names and
to account for the total number of statements
generated. All these SN0B0L4 statements are
displayed on the output stationary.

207

When the user adds these newly generated
statements to the processor, it looks as
follows ;

S T A R T program

& TRIM = 1
& ANCHOR = 1
& FULSCAN = 1

M T L processor

FIG. 7.1

The extension statements now form part of the
MTL processor and the initialisation of the
key words described above helps to maintain
the correct mode of the MTL processor.

208

7.4 LINKING EXTENSION PROGRAMS WITH THE MTL PROCESSOR:-

During the construction of the syntax graph, the
system uses a symbol table. All nonterminals are
entered in this table. The entries for undefined
nonterminals are marked. At the completion of the
syntax graph, the system scans through the whole |
of the symbol table to look for the marked entries |

Iand generates appropriate code for linking user |
defined SN0B0L4 functions. Moreover the syntax |
graph is modified so that the marked nonterminals
are treated as terminals and it is possible to
link them with the user defined SN0B0L4 functions.

During the normal process of syntax analysis, when
•a terminal is processed, control is passed from
the MSYL SCHEDULER to the MSYL MATCH-BLOCK of the
processor. In the MATCH-BLOCK, it is attempted to
match the current terminal with the current symbol
of the source statement. The control is then passed
back to the SCHEDULER with the appropriate signal
for whether or not the match was successful.

M S Y L S C H E D U L E R

209

MSYL MATCH- BLOC K

Is t h e ^
match with
SYMBNOW
>successfu4r YES

NO

FIG.7.2

The failure path is kept open at the time of
writing the processor. On completing the syntax
graph if there is no undefined nonterminal in the
symbol table this path is completed as shown in
the above diagram. For this purpose, SN0B0L4
code is generated internally in the form of a
string and is compiled using the SM0B0L4 function
CODE. On the other hand, on scanning the symbol
table if the system detects some undefined
nonterminals, a warning message is displayed on
the output stationary. The symbol table entries
are unmarked. The syntax graph is modified such
that the node under consideration is treated as a

terminal rather than a nonterminal

21 0

undefined <n> A

A
A

Undefined nonterminal
before modifying the
Syntax graph

<n> n

A
A
A.

Undefined nonterminal
after modifying the
Syntax graph

A__i

FIG. 7.3

Moreover the appropriate number of SN0B0L4
statements are generated internally in the form
of a string, complete with semicolons, separating
them from one another. The statements perform
the following tasks.
a) Find out if the current terminal represents

an undefined nonterminal.
b) If (a) is true, call the appropriate function

and on returning from the function pass the
control back to the MSYL SCHEDULER.

c) If (a) is false, return control to the SCHEDULER
with a signal of failure. i

»
■

-■I

211

d) Both in (b) and (c), on returning from a
function, before executing any other statement
in the SCHEDULER, the following statements
must be executed,
&TRIM = 0; &ANCHOR = 1; &FULLSCAN = O

MSYL SCHEDULER
MSYL MATCH-

BLOCK

the match with
SYMBNOW

. successful YES

NO

Is the
termina 1 a

s n o b o l4. f u n c t io n NO

YES

C all the appropriate
SN0B0L4 function and
execute (7. 3. 8)

FIG. 7.4

id

212

As can be seen from the diagrams given below, the
basic principle underlying the linking mechanism
for both methods of MSEAL extension is similar to
the one for MSYL extension. The difference being
that MSEAL SCHEDULER and MSEAL MATCH-BLOCK
respectively are considered at the place of
MSYL SCHEDULER and MSYL MATCH-BLOCK. Moreover
the point of extension is determined in different
pattern .

MSEA SCHEDULER

MSEAL M A T C H -
BLOCK

Execu te the
appropriate
statem ent in the

MSEAL processorHas
the statem ent been

recognized
YES

NO

FIG. 7.5

213

If a statement is not recognised, normally a path
should be provided to the part of the process which
displays an error message. At the time of writing
the MTL processor, this path has been kept open.
On recognising the %GENERATE command this path is
closed, by generating and compiling internally,
the SN0B0L4 code, as shown in the diagram by the
dotted line. The linking process in this case
is carried out at the time of constructing the
semantic tables as well as during compiling the
SN0B0L4 extension programs. This is because
information about extensibility is received at
both stages. After meeting the %GENERATE command,
the MSEAL MATCH-BLOCK with its various linking
provisions is as in the diagram given below.

MSEAL SCHEDULER
MSEAL M A T C H -

BLOCK

Execute
appropriate
statem ent in the
M SEAL processor

Has the
statem ent been
recognized by the Syste

embedded in
cess

Execute the

appropriate
extension

function

M SEAL statem ent

FIG. 7.6

214

During the construction of the semantic tables
when a statement starting with an undefined
nonterminal appears in the action field, the
linking mechanism for calling the corresponding
SN0B0L4 function is provided. At this time a
new entry is made in the symbol table of already
defined nonterminals. This entry does not point
to any node in the syntax graph, but is necessary
to make sure that every such nonterminal has a
unique linking mechanism. At execution time,
the processor treats it like any other statement
without even noticing that it is an extension
rather than part of the original processor. The
linking mechanism for extensions provided by
%EXTENSION commands is exactly the same as above
except that the name following the %EXTENSION
command is considered as the function name.

ÜCu~-
al

<

215

Cl

d
<L
_J

lu
CCi
<r

d

<r
O lLO

LL'
CD <

LU

lY

O /\ o
C- V <ou_

1_

< r_l <3

V C Z) <r < <
LU

tYA A A A A A O
V \/ V \/ \/ V l J

o
LJ D'

A A A A A A O
i'm r "! i _M tv! OjV V V V V V f î f - Ï V 0 .< 3 CÛ CC LU LU d cet

216

M S Y L S C H E D U L E R

/k A
MSYL MATCH- 1 1BLOCK ■ I i! 1

Is the

t 1i 1
! 1
; 1y /̂'̂ match w ith SYMBNO\V\^) j

Jump to A LAB. 84 f NO

i YESJump to AIAB. 501

Call the
SN0B0L4 function

I

NO

Execute the S tatem ent
specified in (7 . 3. 8)

'I'his flow chart should bo read in conjunction with table 7.1.

FIG. 7.7

21 7

Table 7.2 is a modification of table 7.1. In
this table, the edited version of SN0B0L4
statements is also shown. It should be compared,
with (7.6) to (7.8). (7.8) however is embedded
in the MTL processor and is not displayed.

CO
IT',

CD<

218

CL

r~«
oin
CO

<N

LQ
CQ

Q

LU
CC
<r

<CLLD

00
oin
COc
—I<r
1/5

I? }~O CC 5- 1—
m ID 2T 2’’1— LJ lu UJ
CC- !1J _j _J
<r », oC <r < <
_J m > D> >
<r I? N LL<r ID X ID
i/> CL .. O o Lf

1/5 • lU UJ lU
CL. ID UO 1/5(/> — <D - 1— in vO .

A Q u": r—% O UJ uO k- f— I—-
CC < o CD ISv' in — . n' 2T >— <
V Ô r: 1/5 cx: CO r/CD ID c iX
o A 51 CL I— _J c o o

Cl CC r/ LL r<̂ _u lu <r <LCCi V IJ — <L r.< — cm o < <
1— L_ in II o •< < II IILL z LU 21 m. OO 21 •• in II < <
r c LJ C • C-: <iL I— LU A <r 21 < Lu ro _J LU r~C CL < 2" 1— . <r CD

CD
_J '.Îr< X <r n 2* <
CTj

V <T Cl II < C o II -J X h- 1— ID < < CO —
U J IL' LL LL C’'1— II < M C

c:. I— C <r C Q •• LL-'C
<r
(>

<T2 L'J
c< vn

1— r~ a. h- k- >1/5 < CL >-1/5 j
A A A A A A LL rvi o C < <r CL IcCj i~ h- UO < -< 1/5 î!
r-' _J > N' X > LJ nj m 'C CC <7 o UL C- k—V V V V V V LLl O vt- _J C C c* CD k- o 1— < < <r o(|C- 1— !Ü < <T ■2* CO c in '.n nC n n 1/51/5 in -L CC ■ X "1
II II It II II II cc ID z: • <f • CD 1—1<• • c 1— , Cl o UJ < <f V— 1— ■'■1ID CL O CO L_) CC CD »’ Ln. if-A A A A A A •If- <r <r < <r t < o if- CD o * LL LL o O *

_J X" > L ‘> _j _j cm IL rn if COV V V V V V o_ < K < < fv! < c N f" N <1 CL if — CL if- ■a. LU LL if- CL if ,îi

219

CHAPTER 8

PATE “ PROCESSING OF ARITHMETIC
AND TEXTUAL EXPRESSIONS.

8.1 INTRODUCTION:-^

In this chapter we will describe the programming
language PATE (processing of arithmetic and
textual expressions). It is a problem oriented
language, specially designed for arts students
and school children.

It has its basis, in SNAP jBARNETT 69] which is
a text processing language with restricted
arithmetic facilities. Most of its text
processing facilities with some modifications

j
have been carried over to PATE. New features
have been introduced to handle arithmetic
expressions. In the next section the PATE
syntax is defined fully. Since it is quite
like English, details of its semantics have
been omitted. For clarification, reference
may be made to working PATE example;
and the already existing informal &JAP documentation.

220

At this stage, for reasons stated already
further research was diverted towards the
automatic translation system which forms
the bulk of this thesis and is described
in the previous chapters.

221

8.2 FUNDAMENTALS:-

ut-tsJL/ — f i t D IV I Z

< ^ l g i ^ = 0 I 1 I 2 I 9
<^ecimai> =

+ -

(

<(sigr^ =
< ^ u o t ^ =
<^p.bra<^ =
<(cl.brac^ =)
C^lphanumeric^ = <(digi^ | ^ e t t e ^
<^eparator^ - , j blanks AND blanks
AccumulatiOI^ « ANSWER | IT | ITSELF I RESULT |

RESULTING FROM
<^dummy word^ = CALCULATE | EVALUATE | TAKE j LIST
ELEMENT j ELEMENTS f OF | THE] BY j TO [AN | A j
BE I FOR I SPACE j NUMBER | NUMBERS

^system control coraman<^ = IGNORE j TERMINATE | EXECUTE
^affirmative comparison word^ = EQUAL TO | GREATER THAN |
LESS THAN j SAME AS | LESS THAN OR EQUAL TO |
GREATER THAN OR EQUAL TO j

^negative comparison v/ord^ = NOT ̂affirmative J
comparison word'^

^(comparison word^ - ^affirmative comparison w o r d ^ j
^negative comparison word^

<type^ = INTEGER | DECIMAL j
((integer^ = &integer& &digit& &digit‘&

222

<^ecimal numbe:^ = &decimal& &integer&] &integer&
&deciinal& &integer&

^unsigned numbe^ = <(intege^ | ^<^ecimal number^
<^umber^ = Sunsigned numbers
((Identifier^ = &identifier& &alphanumeric&
<label^ = sbrac op& «identifiers Sbrac.cl.S
^quoted s t r i n g = «quotes «strings «quotes
<(^rdinal adjectiv^ ~ 1-ST 2~ND | 3-RD | «integers -TH

«signs «unsigned numbers
«letters

<s<
extracted element^ = <^ordinal adjectiv^ <(identifier^a

<^xtractioi^ = <(^rdinal adjective^^ TO ^ordinal
adjective^ [$

^rdinal adjectiv^ THROUGH ^(ordinal ;
adjective^ j

(Ordinal adjectivey AND SUBSEQUENT j ;
/ordinal adjective^ AND PRECEDING i^ / V ;

X ^ a r i a b l ^ = <(identifiei^ ^xtracted element^ j ?
^accumulation^ 4

4^xtracted expressioi^ = /(extractio^ CHARACTERS OF
<(identifier^ j /(^rdinal adjective^ CHARACTER OF
<^dentifier^ | ^^xtractio^ ^Ciclentifie]^

< ^ b j e c t ^ = <ldentifier]0 j <^xtracted expression]]^
(Aength e x ^ = LENGTH OF <^bject^ | LENGTH OF

Cpharacter s t r i n g |l e n GTH Of i
<(]numeric st r i n g Î

<(]numeric string^ ~ «numeric strings «separators «numbers#
«numbers I

223

<]string list^ = «string lists «separators «strings j
«Strings

<^character string]]> = <(]quoted string^ j' «quotes
Sstring lists «quotes

8.3 ARITHMETIC STATEMENT:~
<(co”ordinate conjunctio^> = AFTER THAT j THEN
<term]]> = <(forinula^ | <^rimary]]>
<jTiultiple function w o rd^ = TOTAL j PRODUCT j ADD | MULTIPLY
<^multiple function exj^ = <^ultiple function word]^

<term]^ <separator]^ <(term]^
<^multiple function exp]> <separator^ <(]teri^

<^iadic function worc^ = DIFFERENCE| QUOTIENT j ^
DIVIDE I SUBTRACT -

. <(binary function ex]^ = <âiadic function word^
^teria^ <(separator^ <]]term^

<^unction exp]^ - <]^binary function e x ^ j y]multiple
function exp]]>

<(inf ix exponent worc^ = EXPONENT j POWE|l J
<4]exponent f o r m u l ^ = yquantity]^ <]lnfix exponent wor<^

<Jïuantity]>
<lnfix division w o r ^ = DIVIDED BY j OVER
<^division formula^> = <]quantit^#> <lLnfix division wor(Ç>i

<^uantit;^
<(infix multiplication word]> = MULTIPLIED BY | PLUS j
^multiplication formula^> = <(quantity> </infix

multiplication word]]> < ^ uantit^

224

^multiplication formula]]> <^infix
multiplication wor<^ <Auantit;^

<#infix subtraction wor<^ = SUBTRACTED j MINUS
Asubtraction formula^ = <^quantit]^

subtraction worc^ A^^^bity]]>
Ainfix addition word]> = ADDED TO | PLUS
<^uantit;^ = <((primary])> A^^'^bion exgy> ;
<(addition formula = A^^^^bity addition word]]]>

A^uantit^ I A^^^ibion formula^ |
Ainfix addition worc^ Al^^^tityyk J

<(formul^ = A^xponent formulA> | Aivision formula]> | ;]
<^multiplication formulez | <Csubtraction formul^ j |
A^ddition formul^ ']

A^asic e x ^ = A ^ o r m u l ^ | A^^^^^bioi^ |
Aprimary e x ^ = A^asic e x ^ | ^specification e x ^ j

Aco-ordinate conjunction]^ <^specification exg))> |
.^specification exp]^ = <^primary exp]]>| <^set statement^ |

bo dy^ j

8.4 MISCELLANEOUS STATEMENTS :

A^eclaration body]> = LET A-^^Gntifieiry BE A^ype]]]>
A^eserve statement body]]> = RESERVE Afiteger]>

<^identifiery>
A^all statement body]y = CALL A^^^^^^^ber string

<^identifier^>

225

Aset statement b o d ^ ~ SET<^identifier^> TO-^numberic J
striJig]̂ ! SET A^bracted e l e m e n t TO stri

A o p y statement body]> ~ COPY A^^i^ctA AND CALL IT {
A i d e n t i f i e A i

<^identification statement bodA> = <^declaration body^ 5
Asserve statement body^ | Aj^^^ statement bod^A I

statement bod;^ <^copy statement body]^ g
A^elete statement bod^y = DELETE AobjectA" I
A^ppend statement bod]^ = APPEND A ^ ^ i ^ c ^ TO A < ^
Aoverwrite statement body]]> = OVERWRITE objecA> OVER |

Aofc»ject]]> !
<(editorial statementy> = A^^lete statement body])> |

A^ppend statement bodyA j statement bod;^ -
A^-ead statement body]^ - READ A^^^^bifieiA (

A p ^ in ta b le i t e n ^ ~ | A ^ ^ ^ ^ i

s tring^^ |
A numeric list]]> I

Ap^int statement bodA> ~ PRINT AP^^ntable item])> #
A ^ / O statement body]^ = A^®®^ statement bodyA j

Aprint statement body]]>
A v a l u ^ = A n n m b e ^ j A^nmeric list^ | <^character string
A^nconditional jumi^ = CONTINUE WITH Al^^ntifierA |

REPEAT FROM Ai«^entifie:^
Aconditional exp = IF A*^bjectA A®®^^Pnrison word]]>

A^b jectA> I IF Â T̂ue]̂ A®®̂ P̂ ^̂ son. wordA A^bjectA
IF A°^iGcA> A comparison word^> A^alue]^

226

Every element of a list must bë a scalar. An
EXECUTE statement at the end of a program causes
the execution mode to be entered. DEFINE
statements are used to define the system commands.
The portion of a card on the right of an IGNORE
statement is ignored.

8.6 IMPLEMENTATION ;-

The PATE processor is an interpreter. Before
going any further, we shall try to justify this
decision. In a PATE program an identifier may
be used to refer to any type of value : string,
decimal number, integer, vector. During the
execution of a program, this type may change.
Thus it is not possible, at compile time to
know the type of an identifier and it is
difficult to generate code without knowing the
type in advance. I

A polymorphic operator is one whose action depends
on the context in which it occurs. Almost all
the PATE operators are polymorphic. Closely
related to the no-type-nature of PATE are problems
arising from its polymorphism.

227

EXAMPLE 8.1:-

A PLUS B.

If and how this statement is to be executed
depends on whether one or both of A and B are
integers, decimal numbers or strings.

When the implementation was begun (Oct. 1971)
the only high level language available which
gave access to all the facilities of the computer .
system was FORTRAN IV. Since it does not have
any string manipulation facilities, it was natural
to write an interpreter for PATE.

All expressions are first processed by the syntax
analyser and code strings of the intermediate j
language are generated internally. This code string
is then used for execution of the program. Syntax îj
analysis of arithmetic expressions is done by the
top-down parser described in the 3rd and 4th
chapters. All other expressions form a finite
state grammar and are analysed separately. We
will first describe the general layout of the
workspace and then consider its different parts
one by one.

228

r_C0DEST.RINi3:

-■iSYNTAX-TREE:

I

13
g“H

Layout of the PATE workspace at
execution time.

FIG. 8.1

The organisation of the PATE symbol table is
based on the concept of hash addressing and
linked lists. Symbols are classified in
categories and the number of categories coincide
with the total number of linked lists. Each
linked list accommodates one category of
information. The symbols along with necessary

229

information about their size and forward pointers
are stored in blocks of storage known as
descriptors. Values are stored in blocks of
storage known as qualifiers.

0 ^ ^
(D
O Q i

0) Qj

iQ O

Layout of the PATE Symbol table

FIG. 8.2

230

F H

Layout of an element of
the PATE descriptor.

FIG. 8.3
"F" is the forward pointer field
"I" is tlie identification field. It holds a
unique code for each different type of data
object and for each one of the system defined
symbols.

field "H" is only used for user defined symbols.
Integers and decimal numbers, when used as
scalars are stored in this field. In all other
cases it points to the value of the symbol in
the heap.

field "L" is used to store the number of characters
in the symbol. The symbol itself is stored
character by character in the "S" field. .

231

m m m minteger real

end of
statement

Value of the
second element

Type code

Value of the
first element

Type code

Shape of
data

Format of a qualifier
Pointer back
to its descriptor FIG. 8.4

The first cell of a qualifier is a pointer to its
descriptor. These pointers are used in garbage
collection.

The second cell of the qualifier indicates the
size and shape of the qualifier.

Each element is preceded by the appropriate
"type code" rather than one over all type for
the qualifier. A whole character string hov/ever
big it may be is considered as one element of a
qualifier. i

I

232

End of extent

. Scalar
string

Pointer back to
its descriptor

Format of a character string qualifier
FIG. 8.5

A character string is always stored in a linked
list as this makes the task of editing the
string much simpler.

The code string of most statements is straight
I

forv/ard. Arithmetic expressions are divided
into meangful subexpressions of the smallest
possible size. These subexpressions are
converted into reverse polish form, reassembled
and then stored in the system.

233

EXAMPLE 8.2:-

ADD A AND B TIMES C THEN FROM ITS RESULT
SUBTRACT 2.5.

The above expressions can be subdivided into
the following subexpressions:

ADD A AND B TIMES C
FROM THE RESULT SUBTRACT 2.5
The codestring is A B ? "^pauset End

end of
extent

2.S

next is
real no.

Pause

Pointer to the
descriptor of C

Pointer to the
descriptor of B

Pointer to
the descriptor

of A
code for

arithmetic exp. Layout of the codestring for the
above mentioned arithmetic expression

FIG. 8.6

234

Each descriptor points to its qualifier, which
in turn points back to it. Using these pointers
heap entries can be compacted in one side of the
work space. Qualifiers are shifted one at a
time. Pointers from descriptors to the qualifiers
are updated as the shifting takes place.

Although it is not possible to compact the
symbol table entries, garbage can be collected by
using a free space list. To start with,the space
list is empty. As the processing proceeds, the
deleted cells are added to it. The system is
so organised that the space list always consists
of the biggest possible blocks of storage. For
all subsequent demands of space in the symbol
table, it is acquired from the smallest possible
block of storage in the space list. The required
number of cells are taken out of the list and the
remainder (if any) maintains its identity in the
space list. Only if there is no adequate chunk
of storage available in the space list is the
space acquired from the main storage.

At compile time, the syntax analysis stack and
the reverse polish stack develop towards each
other in a separate area. At execution time
this space can be reclaimed. '

235

START

Read a new card
and examine
control words

£XECUT
YES

NO

Empty
NO

YES

236

Discard dummy words
Store quoted strings
in data area
Store name in the
symbol table
Store code string-____

\/ YES

Delete any
information
concerning the
current statement

STOP

Syntax

Heap
Area / \
fu ll /

Symbol\? /
table N.
full ? \

collection

o, o
eclaimable

cells a certaii
value
7

Terminate the
job with a
message

STOP

23 7

STOPNO

TERMINATE
encountered

Call routines,
peiform appropriate
action and
give output

Transfer control
to tlie appropriate
part of the
interpreter

Examine the
command
words

238

8.7 COMDROL CARDS:-
'3:e managcz.-nt rou.tine of the processor is
divided into different control "blocks. Each
control block represents a different mode and
can be entered by using appropiate control
cards* Control cards are also used to control
the listing of the program. Some of the control
cards are system defined while other are
explained below.

After introducing a card or "̂ oPATE”,
the program follows. In addition to the above
mentioned obligatory cards, the following optional
cards may be used, "$'oLIST" is used to start
the listing of the program, which is assumed
to be the case at the start of a program. "̂ l̂ODIST"
is used to stop the listing. Listing can be started
and stopped as many times as user wishes.

The introduction of ’̂oCiUIT” card terminates the job.

239

***a-*
*

**
-K- *•* Z* O* '—* H-* «%* o;* < _j

-R-■M-
*
*
*
*
*
*
•»
*
*
**
**
*
*
*
*

*
*
*
**

UJ-100
iS

UJ

LUcc<
UJ
Xh-
s;acc* o 3 Q.* 3if■3% CD 3irO 3 O * 3 < 3•K- 3 3 * CO <-K-k—< * ►—4 3 3 3-R-003 3 * 3 Z CO CL* OO < * CD 3■K-3 CDZ * 3 3 CL-K- O z o * • Z Q* U. < * 3 <î 3 1-U 3* CD1— 3 * (/) z 3 z VO-K- 3 *—4* Z < k-*.* Z Z o * 3 z 3:CDX z * QC oc* 3 o * 3 CL3 3•îfV- o * Z CD X< cc. * <I z 3a-QC<L * z UJX O* 1— * 3 3* LO * 3 • 3CD 3* 3 * CD3 Z 3•R-3 * Z 3 3 <r* 3 * (/)< 3 3 • 3 > 3 z«- * 3 z Z Z 3 Z <* * Z •< <1 3 < iCO z z* * 3 3 3 z z < Z z 3 cc- -K- * z CO3 •Z z < 3 VOQC o 3* a- 3 1Z 3 <cX X z Z X 3 3 z 3* * 3 r*-4< Z z 1—3 X < 3 z 3 <* * 3 z z < 1 13 X z 1 <1CO 3* * > z X ino 13 o z 1-4 <* O 3 Q 3 3 1X T-4 CD 3* •R- f-H3 3 1X > Z 003 z 1— CD3 3 3 CD* -a* < 1CL<-o CD3 13 CO z QC CD z 3* ccCDf\l1 <lQCQCz CJ'1-4 <I* * u <I DC3 <1<Lc X 3 3:3 z z CD* -a- 3 Z X z 3 z o 3:COCOCD CDX 3 3* * 3 3 CD CD3 3 CO3 3 3 3 CO X* » 3 3 3 C 3 CD •Z • • 3 •3 3* * O z Z CDDCX CO3:QCQC c z r CDCD 3 z 1<* * < »—«VO3 < 3 CD z 3 3 • X z X* * CL3 003 QCQCZ CO 3 o 3 c?■«• •a- 00CD3 z CD3 <L3 >- 3 3 3 3 3QCQCz < CC3 COZ QCCO X X < o CD j 1-• 3 C < z 3 CD3 CD<13 3 3 3 3 3 3 VOUJLU3 3 3 3 3 LU3 > O Z < CDQ QCCO< Z 3 «•>~ ; Z ZCD 3c- a:c:ccacQCCCcnOCOC CL Z H-3 3 3 1— 1—3 z 3 Z 3 3<[a CDCDCDO CDo CDCD 3 3 3 3 3 3 3 3 3 3 3 z ZZ Z z z 3 z Z Zz z z z z z z z Z oo3 3 3 3 3 3 3 3 3 3 '—1 k—k—< 3Lt C o o o o o c CDCD 3 < C < < < <1< C <-<CQCCCorCCa' CL ll:3 3 LUCLQC3*-<1-̂t--4—• QCO o CDo O CDO CDCDCDCLCLQ-c_CL CLCOCO VOCLCL

I— • < lU Z h- — 3 2l O o: LU
UJ X
H- UJ

240

>-oor<LOO%:
ce
LU
CDOoe
Xoc
_J

X<l
OC
(D
OÙUJ
Q UJ
cZ:LU O O H-C_' "—4
CC ce

LU

LO

UJ

<rZ

UJ UJz< LO
,0 UJ
h~ V)Z) LOO oH- (%: Où o
zz<
X ►l~ z -> o
X 00 oo _J
> 3OC<

UJza
o
LU

OC
CL

UJLUca
LU><X
ooLUX>■ o >_J <■ z X

X X >-< h- o C O Q L— LUo ne z w <■ ce cse Z< < < ce X <L <r o XX ZZ 3 X X LU X U 3 oo 00 oLU U h~ H- O (X UJ X en H*LU »~ X LU >—t X O X h- »—1 aZ oo X Z X CJ ce X oo 3 £X OCo oo 1— c H- O
_J z X X oo LU ce CC Z OO UJO < o > Z c LU < LU >-
cc 00 LU ce cc Z <I cc Cj L/î Z CC OO< X X <[< z LU o X O <L Xo 00 H- X < Q a CC L/0 < X UJ

241

CHAPTER 9

9.1 CONCLUSION

Before embarking on the project, an extensive
survey was made on the existing techniques in
topics related to the automatic translator e.g.
Syntax analysis, Semantic Synthesis and
extensibility. It is in the light of this
comparative study that various decisions were
made in the automatic translator. To throw
light on the reasons behind various decisions,
this discussion has been included in the thesis

242

The translator translation system described in this ̂

thesis deals with a special class of languages which
can be described by ELL(k) grammars. Since ELL(k)
parser parses without backup, it is easy to give
prompt syntactic diagnostics which is not possible
with back-up oriented algorithms. It is also hoped
that ability to make correct decision at every stage
of the parse should make it faster.

ELL(k) grammars allow very general left recursion.
To the best of our knowledge, no other top down
parser can use a left recursive grammar for left
to right recognition. Hence there are grammars
which can be recognised by no top-down parser but
the ELL(k).

Conventional top-down parsers generate a parse tree
which is consumed by the corresponding semantic
synthesiser. The MTL processor generates code in a
single scan. No interim parse is generated, but it
is used for semantic synthesis. During the recognition
of a source language statement, at the appropriate
state of parsing, the semantic synthesiser is called
for action. A parse tree could be generated from the
information in MSEAS as ah optional facility for the
user. i

«

243

The only formal specification in the conventional
compiler compilers have been in the syntax specification.
The MTL processor provides a great degree of formalism
for semantic specification.

Semantics are specified in a metasemantic language in
the form of semantic productions. These semantic
productions are used repeatedly by the processor in a
manner which is quite similar to that of semantic
productions.

In this thesis various reasons have been stated for
favouring extensible programming languages and need;
no repetition. We have shown how SN0B0L4 (SPITBOL)
can be used as an implementation language for
extensible languages. The extensibility provides
both the syntax analyser and the semantic synthesiser
with extra power.

I%#ien we add the syntax analyser, the semantic synthesiser
1

and the features of extensibility, what do we get?

In biblical terms, a classus on gold feet, silver legs,
iron thighs topped with a clay head. Those parts of
a compiler which really matter to the machine, especially
code generation, machine dependent and machine independent
optimisation are missing. Still the parts we have shown

244

here are sufficiently general to be a sizeable part
of any compiler design. These parts can be considered
as "off the shelf" compiler components. We believe
that it is possible to write these parts of a compiler
in an appropriate language and then incorporate them
in the desired compiler. Alternatively, the MTL can
be extended to incorporate features such as to be
required for code generation and other parts of a
translator. We do not contend that the net result
will be an ideal compiler compiler, but we are of
the opinion that MTL can be extended to form an
efficient translator translation system.

One objection to our approach might be that it is
too much dependent on SN0B0L4. It is true so far as
the existing version of MTL is concerned. The object
of this project was to test the algorithms, which has
been achieved. We believe our existing design can be
easily modified to make it SN0B0L4 independent.

Another objection against MSEAL is that it does not
provide block structure as a tool for structured
programming. It is so because the MSEAL was designed
to be a notation for specifying semantics rather than
a programming language. If experience shows th^t such
a structure is desirable, investigation should be
made into its feasibility. '

245

The present processor has a number of known sources
of inefficiency:

(1) In the current implementation of MSEAL, the
tables are searched sequentially. There exists
scope for improving this process,

(2) The prototype processor reads the syntax and the
semantic specification and constructs internal
tables before every run. In the production
processor, it should be possible to initialise
the internal tables once and for all. This |
process can be automated and the initialisation j

code generated by the processor itself or by a j
library routine called by the processor. j

There are various improvements that can be made 1
iin the semantic synthesiser. For example the |'Î

current version can be extended to cater for |
. left recursion even in the production mode. \ To
handle left recursion, the syntax analyser takes
a rather unconventional approach. Every production
is not tried individually as otherwise is the case.
All the mutually left recursive productions are
first stacked on the SAS and the symbols covered
by them are recognised. It is necessary to have
a compatible approach for the semantic synthesiser.

245

Due to the constraints of time, this was not
implemented in the present proto type process
and can be introduced in the new version.

Lewis and Stearns show tliat it is computable
problem to show whether a given grammar is
LL(k). We do not know whether this is the
case for ELL(k) and whether a practical
algorithm could be constructed even for
special cases.

247

APPENDIX I

SOME FACTS ABOUT LL(k) GRAMMARS

1) A grammar G = (^T, ^N, P, S) is said to be an
LL(k) grammar for some positive integer k if
and only if given
a) a word w in T such that |w|< k;

Vb) a nonterminal A in N;
V*c) a word oj in T ;

there is at most one production p in P
V*such that for some and in T; |

1d) S => A I
A => Wg (p) ' I
(“2 : k = 0) - I

-stated informally in terms of parsing, an LL(k)
grammar is a context free grammar such that for
any word in its language, each production in its
derivation can be identified with certainty by
inspecting the word from its beginning (left end)
to the k-th symbol beyond the beginning of the
production. Thus when a nonterminal is to be
expanded during a top down parse, the portion of
the input string which has been processed so far
plus the next k input symbols determine which
production must be used for the nonterminal.
Thus the parse can proceed without backtrack.

248

2) If G is LL(k) , then for all A in w in ; k,
R : k satisfying R O = { w^:k|s=>w^AW }

for some in V*, there exists at most one
production p such that A => (p) and : k =
for some and in such that is in R.

It states that a production in LL(k) grammar can
also be identified using only k symbols which
follow and the set R(wl) where R(oal) is the set
of all k symbol sequences which can follow the
rightmost descendant of that production.

3) An LL(k) grammar is always LR(k) as defined by
Knuth.

4) An LL(k) grammar is unambiguous.

5) Given a grammar G and k, it is decidable whether
Ior not G is LL(k) iI '

V V6) A grammar G = (T, N, P, S) is said to be a strong
LL(k) grammar for some positive integer k if and
only if given

(a) a word w in such that |w|< k

w

249

(b) a nonterminal A in ^N;
There is at most one production p in P such

V*that for some and in T
(c) S =>
(d) A => Wg (p) j I
(e) (Wg :k = w

The only difference between this definition and
that of an LL(k) grammar is the qualifier "for
all ü3̂ " has been moved within the scope of the
"there is at most one production p".

7) Given an LL(k) grammar G = (^T, ^N, P, S), one
can find a structurally equivalent strong LL(k)
grammar.

an8) Given an LL(k) grammar G = (^T, ^N, P, S),
LL(k+1) grammar without A-rules can be constructed
which generates the language L(G)- {A}

9) An LL(k) grammar can have no left recursive
nonterminals. (this statement is not valid in
the light of our algorithm)

10) Given an LL(k+l) grammar without A-rules for
k ^ 1, there exists an LL(k) grammar with A-rules
for the same language. i

250

11) There exists no LL(k) grammar without A-rules
for the language {a^ (b^ d + b + cc)^ I n ̂ 1 ̂

where k ^ 1.

12) For every k > 1, the class of languages generated
by LL(k) grammars is properly contained within the
class generated by LL(k+l) grammars.

13) For every k > 1 the class of languages generated
by LL(k) grammars without A-rules is properly
contained within the class of languages generated
by LL(k+l) grammars without A-rules.

14) It is decidable if two LL(k) grammars generate
the same language.

15) Given a context free language, it is decidable
whether or not there exists a k such that the
grammar is LL(k).

16) Given an LR(k) grammar of known k, it is decidable
if there exists a k such that the grammar is LL(k)

17) It is undecidable whether or not an arbitrary
context free grammar generates an LL(k) grammar,
even for a fixed k, '

I

i

251

18) A grammar is said to be in Greibach normal form
if the right hand side of every production begins
with a terminal symbol. Given an LL (k) grammar
without A-rules, another LL (k) grammar in Greibach
normal form can be obtained for the same language.

19) Given an LL(k) grammar G with A-rules, a strong
LL(ktl) grammar in Greibach normal form can be
obtained for L(G)- {A}.

20) Let G be a context free grammar. Suppose that
every production p in G is of the form A =>bB
or A =>a, where A and B are nonterminals and a,
b are terminals. Then G is called a regular
grammar. If the finite union of disjoint LL(k)
‘language is regular, then all the languages are
regular.

21) If A Ç: B, then the complement, of A with respect
to B is the set B-A. The complement of a I
nonregular LL(k) language is never LL (k).

22) The LL(k) languages are not classed under
complementation, union, intersection, reversal,
concatenation, or A-free homomorphisms.

252

EXCLUSION OF LEFT RECURSION;-'

An LL(k) grammar G can have no left recursive .
nonterminals.

PROOF;-

Assume that an LL(k) grammar has a left recursive
symbol. Then for some nonterminal A, A =>*A Y(p) and
A =>* X(p') where X and Y are in ^ T , and p and p are
different production. Because G is unambiguous,
Y ^ A • Furthermore S =^*.uAv for some u and v. Now
consider the derivations.

k kS uAv uAy V 4̂ * u X y V
S uAv :^*uAy\ :^*u A u x y^’̂^v
Thus S 4>*u A y \ A y^xy(p) A =>X (p') and
(X y^^^v) Î k = (x y^vj :k

Therefore, since the grammar.: is LL(k) it can not have
a left recursive nonterminal.

253

APPENDIX II

CROSS REFERENCE

In a typical SN0B0L4 program, all labels and
a good deal of identifiers are global. It is
necessary to make sure that the conflicts do
not arise. It is therefore recommended that
the user should use labels and identifiers
according to some systematic scheme and make
separate tables for them (for example labels
can be of the form LABEL.1, LABEL2...... etc).
However the following SN0B0L4 program can be
used to cross reference a user progreim. The
user program appears as its data. In fact
the program itself has been used as a users
program in the following example.

■i
y
1

254

<7>
CO
r-

in
•4-
mfNJ
o

>- >-

3 s — > > • 3 3 g
tt a ̂ c, O cO
Ü. a. <3 u O H- Z 2 .
2 * 2 (X

2 ^cc z
l_>I- lUX «WZ W

I/)
>-
CO O I—

O O C\J lO2 o r- >-------

Q 11 - UJ
< _)
U> II 2. II CLX ^ <
►— ST 3 — • II=1 —' a 2 'c--1 _j X UJ
I— j- UJ lo s:3 to <L
O °o tu CO Z

X X I- u: o 2 —

2 Z

UJ § C t-

co X
X z
<t —ST CO

« o
O' m • <

S5cc UJ — /V 2 2
U. LU
U) Q
O — — — U-

■ t/1 » • #
cO Q to —
«Î 2 LU —- iU u Q H-
— A- O < X
^'O.cOUJCLClLc.'-t
c < Q . i X 2 - < t z - II
ri_ ̂ —4 LW •
t o — — — C: — II LU

O V-

3 » ts — 1 _J /\ II

cc <. z> <i
DD _J LL >

— o
_» CO
O 2

Z 2
X u_ <
C» O cC

KJ

U CO < Xsit

i<Mro<rir>'Oi~-c0c7>O

X X X
LU <r <r2 2 2
U. JC *-

Û Z 2
r v l r o ^ r t n O r - a j C T ' O ' - i c U c n
r—' *—* ;— I 4—1 '—4 r—4 i—4 C\J [Nj C\J IM

CL —z o
LU CCt- o

►-
» X• z
o ••aC
-a .

II <
V <C LJ A
LU < S£T » _] <
<• CL Z
z UJ V V

O LU lU
II < X E

_J «5 < C O. 2 2

< p «
II a U)

C£ CO tu
X U a> z
X _J o <

CO cc -J
CJ H- LL to

t_j s £ o 1—
2 LUX

to o Û to O 2
£ CC 1— 2

O UJ to
+ to QC

z CL a
LU1- (X

V- I •s.- 2 Sl o <£
1 t j

o 2 £ +
UJ < X Q O Z

3 to « z 1- c
O 2 < t j o
-J O oc 1—H- 1-

tu 4=1to E 4.
c> n cc CL 3

o K COo _J CO O CO Z

a t <o s: 2 II 2 to II #-
D o = o cc LU Oj u 2

II Cl II CL c X CL 1- O
2 •JJ 2 LU u Q u

Cl a CJ 4.
X cc 2 2 2 C u E Z LU <
< «3 3 a 1—CC
cu CO O to to

to
f- tu

a 1— J=? <r tJ
cc o 1- LL o
u -1 cc O

— 1 Cl UJ CL ■
X UJ o
2 a * «■ * 2 1- * *

to CO <?> _ so
CM

255

o>-XI—to
o4
Q. 4—

zoc35H- 3 H* LU z: cc
Z U Ui 3

a z Z ce <
a: 3 ce UJo t/> Z CL cc > »—
H“ >- 3 LU o tu zX GO UL O O*— Z X tu CD Z z

<L in O c: Z to CL ix #4-
t/> 2 ce •• LU 3 W

«■ ♦ tu 3 H-
* H- 1— LL LU /\

X GO X OC OC
z X Q H" LU ♦ 3 es LU H- LU

ce 3 ac m ■̂— 3 _j
o h: w 3 cî O IL 02 <C lU IL

c z M Z > 5iC 3 «• <î > O
3: tu LU UJ <5 t— »—
a ce z M- z es > X ce LU SL Z

zr Z Z CD UJ O o: O CQ Il <£ ts> LU Z* Ut
Uj LU LU UJ GO cc < z UJ > 2: z o

s: K- Z >• o u £ < O OC - <IL GO cü O 3 U) < cc «/> V
z CC X oc O 1—' <î Ui LL X <L 3B

<£ Q. H- oc z 3 w > Ui
-J z GO* < LU < Z in 33 O CO X 3 • a CQ

O <l <✓) 3 w iX3 11 z
CC >- GO z O O CC A o f-

z < 2 <c Z GO 2 z C es 0£ (V
o LU QC LU H- £ 3 UI {£. H

Z >r GO 3 Z GO z <3 Zw z ' >“ z > tu * GO LU a UL A A
o O. 3 GO 3 Q GO * <X hC Z 3 OC QC

< w Z o vo Z H- CM * O tu o X t- t- LU LU
u >- 3 Ql > * CO < cc o u Z

Ln en 1 1 GO cc. O 2 z LU U. U-
O >- GO M LU CQ 3 <5 > • =1 a

U GO > O H- A U ce Ll I- t—
3 3 GO J2: CL 3 o œ # OC V z Zc/> o o o II ce CL Q CjC < a LU
ûC Z Z to 2 2 a or O X <s K Q a

Z II M GO GO >• GO LU II 3 CD ÛC LJ > 4
z O o K GO o a O -- Z V V

z o CL Cu V &— QC û X oC a -itij 3 o 3 Z H- 3 3 s: 2 % _i%— es a 3 3 3: Z 3 3 UJ £ 3 >• LL LU z ta 3
<L *- û£ es CL tu CD t— 2 Z tir Q LL Cu tu ce

3 3 < c Z >- Q > 2 <t 3 O *- a. Û -«t. 4O O O 1- LO û CO CD o «a f-
UJ 3

O LU Ci O GOo <x 1— 3 CC GO 3 û
O o • o GO O 2 m LU oc z
h- C£. tu UJ 3 O ca > LU
Z CL ûC M L3 1—' O.
O 1— LU OC UJ lu CL
o if * 4̂ w # * K GO + * * * a O o <

O' O IV <r sa r. tu en o r-4 sO r. o»
<- m m m

256

w

z o
o a
oc. oc

o X <1 oz

o
oc
I—

cc CO

Q ZII I— V— I— CdZ en ac
ce a z a . ac

o
X

— sr z I-
U. UI c V",
.. C£ CD

q:

Df — û: s <r 0 0 I— UJ
> cd «-0 oc

«t 03
A > «I —

OC z
> IL
O oA «M < CO o E — 2 <î * UU Z .

-I ÛCUI oCQ A V I-
< E _J —

a' DC o: < < *aZ A u c CM O O Ocd <t rD V UJ II CO z CL z< Z Z Z

o _ _ u. u I_1 o <uïCu.cDU-<iiL2:z<t
vjo>Q_iQcrjau._JX

S: ac E r LUz > z 2 s o _l o

-z

•» ♦ o

o \0 \0 <3 ^

257
«0
o
u

o o
p~m oo00

< oo

o

o oa
oooo
oooo

oo o

x: Q OO
o oo

<N»oo oo o
o oo

o
ooo oo

oooz
o

o

o

0 o o o Ü u J u J J J J J J
258

I t I I i I I » I I # I » I I I * I ' •

UI
aa<
oV-

-oo
oo oo

g

<0oo
I I

X
I-o z3: QCO 3

OO
mooo

Ui

lA f— o
r- *r
o o o
o o o

o» >T CM
\T

o O O
o O O

cc
LU

Z
a o u.

oC z cc
1- QC c 1- H- t—

u U1 a > o z z =) UJ t/i
z Z <r UJ a. CD m ca
3 3 LU i— tu o a z «t < c
a. IL O O o X Y —i _j

O' ' c O' o O cy'
r~ r- lA >a- 1A t- î~-

o o O O 2 O o O
o o o O O O o o

-f r*4 00 CM O' O' o
r» o tA ■T «T <o r~

O o O O O o o
o O o o O O o o

<o ' VA w O'
tn «A VA o
O O O O O o
o O O O o o

o
o oo o
I

o

<MOO
r-MOO

L. U U. J O
259

c»C3
O
«r
o
o

o
o

8
o
ç?

o CM 00 f - en
X en «T CM
«t O o O Sce o o O o

lO •o m (-4 'Ô V
< CU CM en en A» CO

o o o O O o O o e>
o o o O o O O o o

< • 1 1 1 1 1 1 1 1 1 1 * t 1 < 1 t
' 1

CO -r r- o CM O O' O' M «A
m rg 'O CM en >o «r 'ù
CO o O o O O o o o o O
c o o o O O o o o w O

1 i t 1 1 1 (I t -1 « t t 1 1 i f 1 1

o
§

tn
o
o

§
o

sr
§
o

O
m
o
o
o*rvt
o
o

o
o

o
o

o
o

o<3

UJ z o _1 z LO Q. c_)
X X X X 3C J- h- h— H- <

■ <3 < < X X X 3 _i
Z z z Z Z z z Z O CL

- f 1 t 1 1 1 1 1 1 1
CO -T en O' CM
>o r- '0 I'- CO CM
o o O o O O
o o O a o O

r- O'
m vO r~ CM

o o ô o C3 O
o o O o o O

lu
X (A CM en c» r'" O
< 'D r- CM •o 1" CM
z o o O o o O

o o O o o o
3-
00 •r -<■ CM oo 00

CMT •r
lU o o O o O
o • o o o o o
z
uu en o o O'
(% m
lu o O o O
u. o o o oUJ
oc CM O' o 00

o o en
CE o o o o
O o o o
LU en
- j CM o en
CO O o o

O o <3
eC CM
< CM
> O

o

CM
O
O
O'
o
o

«o
c/» X ■ z

>- LU <c oc
Z O « o 3 a

4/> O 1- < z J- «3
o cc. CE CC oc 3 UJ CL
CL ex CL CL CL Cl oc oc CE CC
1 1 1 1 1 1 1 1 1 1

-O o srr-C r-
O O O
O o CO

OO
o
o

'OGk
o

oOvn«fo
o

260) J

I I I I I « i I I I I

X

oc

* I t I I I I I I t I

o
o

oo
CM
r-
o
o
o
r-o

O'ooooO
o

o

s

>
ca

UJuz
LU
OC
UJ

o X I- oc
z £ k—
UJ UJ z C— 3 CO

< c 2T £ z a
UJ Q. 3
CO in CO Ll CO

r - O'

•
O O'

m V UIo o o o
O o o o
tv >T f>w CO

m m
o o o oo o o o
o (V u> o
m m m
o o o o

' o O o o

m
o
P

to UJ -1H* _) UJ
_j u. (Û tsi cC

Z UJ -J U. a < 1—
3 3 cc o £ lU CO COCl a a CD X lU cc X . cc ex.
>- < < < o X d < < <i aCO i— t- j- > > > >

, ?

tfi O' O' '0 CO O' O'
in in oO o O o o o d

o o e o o o <3
'f a oo m r- CO CO :•T in m Ul 'O 'O sO 3
s o Q I o o o O
o o o o o o o
cA pH -f in pH r«-vT m \0 >0O o o O o o
O o CJ o o <5*
V in O'
o tv o
O O o -o o o

261

Ui. .cet

Oas

UIto<

u
z3

o
cc
3

<xr>

262

REFERENCES

The following abbreviations are used:
CACM Communications of ACM
JACM Journal of the ACM
COMP J Computer Journal
NACM Proceedings of the national ACM conference

Aho, A.V. and Johnson, S.C. LR Parsing, ACM Computer
Survey Vol. 6, 1974 pp 99-124.

Backus, J. The Syntax and Semantics of the proposed
international algebraic language of the
Zurich ACM-GAMM Conference, in Proc. Int. Conf.
Inf. Processing, UNESCO, June, 1959, pp 125-132.
Reprinted in Ann Rev. in Automatic Programming,
Vol 1, pp 268-291 (Pergamon Press 1961).

Barnett, M.P. Computer programming in English. Harcourt,
Brace and World, Inc. 1969.

Bell, J.R. A new method for determining Linear precedence
functions for precedence grammars, CACM Vol. 12,
1969, pp 567-569.

Bloomfield, L. Language. New York, Holt, Rinehart and
Winston, 1933 and Lond. Allen and Unwin, 1935.

Brooker, R.A. Top-to-bottom parsing rehabilitation?
CACM Vol 10, 1967 pp 223-225.

Chomsky, N. Syntactic Structures, The Hague: Mouton 1957.
Conway, F.L. Design of a Separable Transition diagram

compiler, CACM Vol 6, 1963, pp 396-408.
Deremer, F.L. Practical translation for LR(K) languages,

M.I.T. thesis Oct. 1969.
Deremer, F.L., Lecture Notes, Advanced course on compiler

construction Techn. Uni. Munich. Mar. 4-15, 1974.

263

Dewar, R.B.îC, SviTSOL version 2.0
Illinois Institute of Technology Feb. 12, 1971*

ITloyd, H.y, Bounded Context Syntactic Analysis,

CACK Vol.7 1964 PP 62-67.
Floyd, R.V, The Syntax Analysis of Programming

Languages - a survey.
IEEE transaction on Electronic Computers

1964 PP 346-355 .
FORTRAN IV Language IBY 360/370 (3360-25 GC28-6515-8)
Frieman, J* Direct Random Generation of Sentences,

CAGE Vol.12 1969 PP 40-46.
Friedman, J. A Computer Model of Transformational Grammar.

Elsevier 1971 «
Gries, D. Compiler Construction for Digital Computers,

Wiley 1971.
Griffiths, T.V. and .Patrick, S.R. On the Relative

Efficiencies of Context — Free Grazrjnar Recognizers,
CACK Vol.8 1965 PP 289-299.

Gaifman, H. Dependency Systems and Phrase Structure
Systems.
Information and Control Vol.8 I965 PP 304-537*

Griswold, R.E., Poage, J.F., Polonsky, I.P.
The SNOBOL4 Programming Language (second edition)
Prentice - Hall.

Haskell, R. Syrrmetrical Precedence Relations on General
Phrase Structure Grammars
Comp. J. Vol.. 17 No.3 1974.

Hays, D.G, Dependency Theory - A formalism and some

observations Ig. 40 I964 PP 511-525 .

264

Hoarey C.A*R, Proof cf a yrcrroer PTIO,

CACH Vol.14 Jan. 1971 P? 59-45 •
Hopcofty .J.E, and ITllman, J.D. Pormal Lanruages

and their relation to automata.
Addison - Wesley Publishing Company 1969#

Homing, J.J. and Lalonde, V.R, Empirical comparison
of LH(k) and precedence parses#
Technical report c.s. RG-1 September 1970#
Computer Systems Research Group, University of
Toranto#

Irons, E.T. "Structural Connections” in
Formal Languages
CACN Vol.7 1964 PP 67-72#

Irons, E.T. Experiments vith an extensible language,
CAGt: Vol.13 1970 I? 31-40.

Kanner, H. An algebraic translater.
CACM Vol.2 Oct. 1959 PP 19-22.

Knuth, D.E. On the translation of languages
from left tc right#
Information and Control Vol. 8 1965
PP 607-639..

Levis II, P.K, and Stearns, R.E#
Syntax: - Directed Transduction.
JACI'I Vol. 15 1968 PP 465-488.

Lietzke, H.F, A method of Sjoatax-Cheeking ALXI60

GACI' Vol. 7 1964 PP ^75-478. I
Lyons, J. Introduction to theoretical Linguistics, '

Cambridge University Press 1970.
Kan a., Z. Properties of programs and the fixed '

order predicate calculus.
■ JACK Vo].16 April I969 PP 244-255 *

265
Kajaa, S» and Val dinger, R*J# Towards

Automatic program synthesis#
CACM Vol.14 Mar. 1971 PP 151-155.

Martin, D.P. Boolean Matrix methods for the
detection of Simple precedence grammars.
CACM Vol. 11 1968 PP 685-687.

McCarthy, J. Recursive functions of symbolic expressions
and their computation by machine, Part 1.

CACM Vol.3 i960 PP 184-195.
-Metcalfè, H. A parameterized compiler based on

mechanical linguistics.
Naur, P. Revised report on the algoritlunic language

AIGOL 6 0.
Numerical Math. 2 I96O PP IO6-I36

and CACM Vol.3 I960 PP 299-314.
Paul, K. AIGOL 60 processors and a processor generator.

NACM 1962 PP 495-497.
Rabin, M.O. and Scott, D.

Finite automata and their decision problems.
IBM Journal of Research 3» 2 1959.

Rosenkrantz, D.S. and Stearns, R.E. j
Properties of deterministic top-down grammars.
ACM symposium on theory of computing 1959

. PP I65-I8O.
Sager, N. Syntactic analysis of natural languages.

Advances in computers Vol. 8 I967 PP 153-158.
Satterthwaite, C.A, Programming languages for

computational linguistics.
Advances in computers Vol. 7 1966 PP ',209-238.

266

Scott, D. Outline of a mathematical theory of
computation.
Proceedings of the 4th Princeton
Conference on information sciences
and system Mar. 1970.

Solntseff & Yezerski. A Survey of Extensible
Programming Languages, Annual Review
in Automatic Programming Vol. 7,
Part 5, 1974.

Unger, S.H. A global parser for context-free phrase
structure grammars. CACM Vol. 11,
1968, PP 240-247.

Vigor, D.B. Urguhart, D. and Wilkinson, A.,
PROSE - Parsing recogniser outputting
sentences in English, Machine
Intelligence 4 1969 pp 271-284.

Wirth, N., Weber, H,,
EULER; A generalization of ALGOL and
its definition: Part I. CACM Vol 9.
1966, pp 13-25.

