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r '  ̂ ABSTRACT
' ri' '

*.:• This thesis deals with the topic of programming
linguistics. A survey of the current techniques in the 
fields of syntax analysis and semantic synthesis is given.

V. .■ An extensible automatic translator has been described which
can be used for the automatic translation of a class of

' programming languages.
A, , The automatic translator consists of two major parts :
' the syntax analyser and the semantic synthesizer. The syntax
f  ^
;> V 'if ',' analyser is a generalised version of LL(K) parsers, the

theoretical study of which has already been published by Lewis
Tr and Stearns and also by Rosenkrantz and Stearns. It accepts
• ’ f y 'Î

t : :

Y  Ir" \
■■

,.>■ • • -1'■ Y ■ ‘■n. ' ̂ ;

grammar of a given language in a modified version of the 
Backus Normal Form (MBNF) and parses the source language

:---statements in a top down, left to right process without ever

J

backing up. \
The semantic synthesizer is a table driven system which 

is called by the parser and performs semantic synthesis as 
. the parsing proceeds. The semantics of a programming language 

V is specified in the form of semantic productions. These are 
", • used by the translator to construct semantic tables.

The system is implemented in SN0B0L4 (SPITBOL version 2.0) 
on an Il^M 360/44 and its description is supported by various 
examples. The automatic translator is an extensible system 

J and SN0B0L4, the implementation language appears as its subset. 
It can be used to introduce look ahead in the parser, so that 
backup can be avoided. It can also be used to introduce new 

r .facilities in the semantic synthesizer.

‘ ‘ ■
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ABSTRACT

This thesis deals with the topic of programming 
linguistics. A survey of the current techniques in the 
fields of syntax analysis and semantic synthesis is given.
An extensible automatic translator has been described which 
can be used for the automatic translation of a class of 
programming languages.

The automatic translator consists of two major parts ; 
the syntax analyser and the semantic synthesizer. The syntax 
analyser is a generalised version of LL(K) parsers, the 
theoretical study of which has already been published by Lewis 
and Stearns and also by Rosenkrantz and Stearns. It accepts 
grammar of a given language in a modified version of the 
Backus Normal Form (MBNF) and parses the source language 
statements in a top down, left to right process without ever 
backing up.

The semantic synthesizer is a table driven system which 
is called by the parser and performs semantic synthesis as 
the parsing proceeds. The semantics of a programming language 
is specified in the form of semantic productions. These are 
used by the translator to construct semantic tables.

The system is implemented in SN0B0L4 (SPITBOL version 2.0) 
on an IBM 360/44 and its description is supported by various 
examples. The automatic translator is an extensible system 
and SN0B0L4, the implementation language appears as its subset. 
It can be used to introduce look ahead in the parser, so that 
backup can be avoided. It can also be used to introduce new 
facilities in the semantic synthesizer.
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CHAPTER X

INTRODUCTION

1.1 PROJECT SURVEY:-

This project in its final form evolved 
from an attempt to develop an English

I4
1
%

Ilike programming language for school and 
other non-specialist students. This language 
was to be called "Processing of Arithmetic 
and Textual Expressions" (PATE). After the 
implementation of the text processing 
facilities of the PATE processor (described 
in full in chapter 8), it was felt that for 
most of the sophisticated developments of 
such a language, an automatic mechanism 
based on some formal grammar was desirable.
This could then be used for implementing

Iand testing the different features of PATE.i
I

The investigation of this topic bore 
interesting results and forms the bulk of 
the work described in this thesis.

In dealing with programming languages and 
their translators we are concerned with 
their inherent structural properties and 
the kinds of transformations which the



structure may initiate or undergo when it 
enters into a computation. The inherent 
structural properties are referred to as 
syntactic properties, and the transformational 
properties of the structures are referred 
to as semantic properties.

For example the set of all representations 
of programs in a specific programming 
language is called its syntax. The 
representation of the effect of executing 
the programs in a programming language 
is called the semantics of the programming 
language.

It is convenient to have a formal method for 
representing the syntactic and the semantic 
properties of classes of programming languages.

The notations in which the syntax and the 
semantics are defined are known as metasyntactic 
and metasemantic languages respectively. A 
combination of the two is called a metalanguage. 
We want to use the metalanguage as a vehicle 
for constructing programming language !

Itranslators and hence will refer to it as the 
metatranslation language (MTL). As we are



only concerned with writing compilers and 
interpreters for high level programming f
languages, the word translator refers to 
these two types of programs only. Other 
sorts of software e.g. assemblers to which 
the term has been applied may present 
different problems. 1

I
fInitially all translators were written in |

assembler language. Although all types of 
time and space optimizations are possible in 
assembler language programming, since it 
is rather cumbersome, experience shows that Q
all the code does not get due care.
Recently there has been a big trend towards
writing translators in high level programming §
languages. We believe this is a step forward 
and contend that by selecting a suitable 
high level language for implementation, 
similar and perhaps even better results can 
be obtained with.considerably less programming 
effort.

IIThe general subject of interest in this %
dissertation is "programming linguistics" 
which we consider to be a science concerning 
the design and specification of programming

■I



languages and the translation and subsequent 
evaluation and execution of programs in 
these languages. In particular we are 
primarily interested in tlie problem of 
automatic translator translation. We 
define automatic translator translation 
loosely as the process of using a computer 
to perform some stages of the work involved 
in writing a translator. The program which 
performs this task is called an automatic 
translator. It has two parts : 
the syntax analyzer and the semantic 
synthesizer.

For the purposes of this research such a 
‘system has been implemented in SN0B0L4 
[g RISWORLD 7o] (SPITBOL version) [ DEWAR 7l] .

Some special purpose high level programming 
languages have previously been designed for 
writing systems programs. A class of these 
languages with special facilities for 
compiler writing is called compiler compilers. 
An ideal compiler compiler is one which has 
formal syntax and semantics as its input and 
whose output consists of a compiler written 
in some already implemented language. The



existing compiler compilers however do not 
achieve so much as this. VThile we would 
claim to have achieved more;we must admit 
that this ideal has not been reached. A 
compiler compiler normally acts as a high 
level language in which other compilers 
are written and at least parts of it reside 
in the core as an integral part of the - 
compiler. Some compiler compilers have 
embedded in them some automatic syntax 
analysis mechanism, hence automating this 
part of the task.

Our automatic translator is a high level 
problem oriented language, the problem 
being to write translators for programming 
languages. One belief fundamental to our 
work is that the context free grammars 
(defined in chapter 2) can continue to be 
used in a natural and convenient way as a 
basis for the specification of significant 
portions of the syntax and translation of 
programming languages. Furthermore we 
find that a well designed contex free grammar 
makes a concise, readable and useful 
syntactic reference for a language from 
which operator orecedences and associativities



and other properties can be quickly and 
easily determined.

The automatic translator being described 
is a table driven system. The syntax and 
the semantics of a given programming 
language are read and internal tables 
constructed from the information thus 
acquired. A mechanism has been provided 
for semantic extensibility (explained in 
chapter 7). Different extension programs 
can be written in SN0B0L4 and they are 
compiled at the execution time of the 
automatic translator. These programs 
provide extra information to the translator.

During the development stages of a 
translation system for a language, the grammar 
would be read and the tables constructed 
before the source language statements are 
read for each run. However a fully debugged 
system will have the tables embedded.
Each source statement is read and processed 
individually. The syntax analyzer recognizes 
it and as soon as a sufficient amount of

I
information is available the semantic *I
synthesizer is called for action.
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1.2 SYNOPTIC VIEW OF THESIS*.-

In the second chapter of this thesis we 
study Chomsky's classification of grammars, 
particularly the context free grammars and 
survey methods of analysing context free
grammars. i

1
I

r - t

I

In the third chapter we describe the 
metasyntactic language for our parser.
This is a modified version of Backus 
Normal Form (MBNF) which includes left 
recursive productions. Techniques are 
described to improve the efficiency of 
the parser and to reduce the length of look 
ahead. It is also shown how look ahead can 
be introduced and scanning of the source 
text controlled by using SN0B0L4 extension 
programs. '

I

We do not consider context free grammars 
in general any further and are mainly 
interested in a generalised version of #
Lewis and Stearns' [LEWIS 68] LL(k)
grammars. These form a fairly large 
subset of context free grammars which can |
be parsed without back-up. '

#

J----



The 4th chapter covers the implementation 
of the parser. The source language symbols 
are recognized in a predictive fashion.
The parser uses a syntax graph and a syntax 
analysis stack. Starting from the root of 
the syntax graph, it traverses different 
nodes following predefined hierarchically 
ordered paths without ever backing up and 
recognizes the source language symbols in 
the process.

Our metasemantic language (MSEAL) is 
explained in the fifth chapter. Each 
production of MSEAL consists of three 
fields ; environment field, action field 
and code field.

The environment field is used to determine 
the instant at which the particular semantic 
production is to be used.

The action field consists of a sequence of 
statements specifying actions to be taken 
when the environment field is recognized in 
processing source text. High level commands 
have been provided to facilitate the i
construction by the user of commonly used'
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data structures.

Extra power is provided by the code field. 
The user can specify a codestring in this 
field. On meeting certain commands in the 
action field the corresponding code field 
is executed and code generated.

The implementation of MSEAL is discussed 
next. Using the semantic statements, 
tables are constructed. As the recognition 
of a source statement proceeds, these tables 
are checked and at an appropriate stage 
some semantic statement executed.

'To provide extra power for the complete, 
translation system (MTL), it has been 
designed to be semantically extensible, 
SN0BQL4, the implementation language for j 
the MTL processor, appears as a subset of | 
MTL. Methods have been provided to use 
SN0B0L4 for specifying both the syntax 
and the semantics of a programming language. 
It is also possible to extend semantically 
the facilities available in the action field 
of MSEAL productions. Various MTL system 
variables are used to provide communication
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between MTL and SN0B0L4.

The description and implementation of 
the extension mechanism is given in 
the seventh chapter of this thesis.

In the next chapter we discuss the 
programming language PATE. It had its 
basis in SNAP [BARNETT 69] and is a 
language for arts students. It was 
implemented at the start of this project 
and for the reasons described in that chapter, 
it was implemented in FORTRAN IV[IBM 360/370]

Finally, we conclude by discussing the 
results obtained.

1.3 CONDITIONAL EXPRESSIONS AND OTHER NOTATION.

Greek letters represent terminal strings.
|3| denotes the length of the string 3. 
g:n refers to the left-hand n symbols of 
3 if |3|) n and to 3 otherwise. The empty 
string is A . Lower case letters represent 
terminals and upper case letters are j
nonterminals. Underlined letters may '
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represent either. The node of the syntax

Î1■I

graph representing X (or X or x) is written S. I
^ODE ^^ODE) ' |

the metasyntactic language are marked by j
■Ian asterisk.
I

' II4hile BN F is suitable for the representation 
of a single context free grammar, a formal #
method to represent sets of such grammars 
is desirable. It will enable us to discuss 
the behaviour of precisely defined sets of #
grammars in the context of our parsing
algorithm. For this purpose we use a {
notation for a conditional expression which -■

r 1was suggested by that of McCarthy [MCCARTHY q

60] . It not only fulfils the above
■Irequirement but also specifies the order g
%in which different productions may be Q

recognised, and hence reveals certain 
features of the recognition algorithm.
The source language statement is considered 
as a sentence of a context free language whose 
grammar is written in BNF -and which’ is being 
recognised by a top down left to right process.

j
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&

;îOur conditional expression is written as I
follows;

I

( 1 - 3 - 1 )  C »  I n  " : n  1 - n  " " n '  1 - n  ' ' n . . . . . . . . . . .  IIJ
n̂-l '^n-l < - l  1»-! ^n-1' ^n-1 4-1 4-1

i'j4

‘'n-2 l-n-2 4 - 2'  4-2 4-2 4 - 2'  4-2 4-2 4-2 ........

^ 0 1 * 0  ^ o '  4 4 4' 4 4 4
The occurrence of the triple has the
effect of returning the value when the 
condition C? is found to be satisfied,
C? has the form (a^= 3) and is satisfied if 
the substring under consideration, , has
the form 3. Each triple has a level which

C . L is defined below,4

Evaluation of the conditional expression 
takes place in descending order of level 
and looking from left to right at each 
level. The value V of the whole expression 
is the concatenation of •

Ï;I
is given by the subscript i of the condition Q

1
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(1-3-2) V p '  V p "   V p "
where the value of V r is the concatenationn-p
of

(1.3.3) ^ n - / - .........

In (3) the value of p increases with 
superscript r; p and t are such that V 
consists solely of source language symbols.

may be either or " - »  " . In both
cases one and only one condition at the 
current level may be satisfied. The symbol 
" implies that the triple is applied 
once only, whereas implies that the
triple is applied n times where n / O.

It follows that if no has the form 
then exactly one condition must be satisfied 
at the level i. This notation can be further 
generalised by ranking the conditional  ̂

expressions themselves and treating them in 
the same manner as that of the above mentioned 
triples.
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EXAMPLE 1.3.1

One might wish to specify the following 
rules about the recognition procedure for 
the grammars of the form:

(1.3.4) < X > = a
(1.3.5) < x >  = <x> aa Gl.l

(a) Find the left recursion
(b) Process (5) the correct number of times,
(c) Process (4) and recognise the source 

string with the help of already processed 
productions.

Using (1) these rules can be stated as
(1.3.6) [ (a2=A)“>n=0, n==n+l, ]

for a set of all left recursive grammars of 
which the above grammar is a member. (For Gl,l
3 ̂ =aa and 3^ =a).

Suppose aaaaa is a sentence of L (Gl.l) and is 
to be recognised using (6).^ The cursor is 
considered to be on the left of the source 
statement. The condition to be tested firstI
is ~ A- since 2 is the highest level in!A I
(6), any part of the string aaaaa or a

t Reference to a relation inside the current section 
is implied.
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satisfied, n is set to 2 and the cursor position
still remains unchanged (step h). IThe condition = 3^)

is attempted ag^in but it can not be satisfied since

can only have the value a. The value of a and the cursor
position remain unchanged, Tlie condition (o^ = 3̂ ) is now
attempted and satisfied. At this state ^3^ is recognized 
and the cursor moves to right of the source sentence and

t Since it is not possible to determine whether ( a ~ 3 ) 
IS satisfied or not, the conventional top down parsers do 
not accept left recursion. ’

null string can be considered as the value of a 
((^2 ii i^ represented in (6)), So (o^ = A ) 

is satisfied and n is initialised to 0, but the 
cursor is still on the left of the source string 
(step a)»The next condition to be tested is (a^ =3^)*
If we take ot̂ , to be aa, the condition is satisfied, 4

'n is set to 1 and the cursor position remains unchanged -Ç;
(step b). The condition (a^ = is tested again,; ||
Since can still have the value aa, it is I

the recognition of the source sentence is successfully
completed, (step c) The value of r (refer to (3)) is
0 1 which is the same as aaaaa. In (2) it is represented by Vn-»n.
Other values in (2) are. = atl)

V(n-2) . = 0)
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1.4 A set of productions representing embedded 
recursion might be written as

(1.4.1) («2 = A)~>n= O, (a^ - >> 3^ and n = n + 1,

(a = 3) - »  3 3p]

The following is a grammar representing

The only value consisting solely of the |
source language symbols is that of 
and hence it is the value of V.

1
EXAMPLE 1.3.2

A production containing direct right 
recursion can be represented as

(1.3.1) [(â  = 3̂ ) -^3^, (a = 3) -> 3]

For the right recursive grammar

<x> = a <x > lb G1.2 ^
j.a

' 13jĵ = a 3 — b

EXAMPLE 1.3.3

I
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embeded recursion 
< x > = a < x > b | c  G1.3 I
In this grammar f

I

■‘I
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CHAPTER II

On the Syntactic description 
and

Parsing Programming languages

2,1 IMTROnJCTIOH:-.
To make clear the reasons for our choice
of context free grammar we begin by 
surveying grammatical models which have 
been used in earlier projects. These 
projects fall into two classes - those ,|
where sentences must be generated and 
those which require recognition of 
correct sentences. Existing grammatical 
theories have helped researchers in 
making some progress in the field of 
machine translation but the net result 
is far from satisfactory, because either 
they are not powerful enough or are too 
difficult to be handled by computers 
(see survey articles by Sage [SAGE 67] 
and Satterthwait [SATTERTHWAIT 66 ] and 
see article by Floyd [_ FLOYD 64] ) . The 
generative mechanism has been used by 
researchers [FREDMAN 62, 71 etc] who

Iwant to use computers as a tool for
' ' iistudying properties of grammars. '
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Some question'answering systems have been 
developed which use grammars both for 
recognising input sentences and generating 
grammatically correct sentences in reply.
PROSE [v i g o r  69 ] is such a system. It 
uses Hay’s Dependency grammar [HAYS 64 ] 
as its grammatical model. However as far 
as programming languages are concerned 
Chomsky's models [CHOMSKY 57] of generative 
grammars have obtained the widest acceptance.
By this we do not imply that his models are é

sufficient for all further developments in 
programming languages but we only note that 
the structure of most of the programming 
languages so far in existance, either 
intentionally or unintentionally has been 
designed so as to fit Chomsky's models.

We will follow Chomsky in describing his 
generative models. Similar systems to 
accept only correct sentences are well known.
The simplest model discussed by Chomsky is 
the finite state grammar. This can be 
described in the form of a machine that can 
be in any one of a finite number of different 
internal states. This machine switches from 
one state to another by producing a certain

I
symbol. One of these states is distinguished
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as the initial state while another is the 
final state. Beginning from the initial 
state, if the machine runs through a 
sequence of states and reaches the final 
state, it will generate a sequence of 
symbols known as a sentence. The complete 
set of sentences that can be produced in 
this way is called a finite state language 
and the machine is known as a finite state 
grammar. The recognition of a finite state 
language may be performed by a finite 
automaton which will in general be 
nondeterministic. It has been proved 
[r a b i n a n d  SCOTT ss] that every nondeterministic 
finite automaton can be represented by some 
deterministic finite automaton, which we 
know can always be simulated.

Unfortunately only a small number of 
programming languages are finite state.
Any attempt to construct finite state 
grammar for others will run into serious 
difficulties. For example general 
bracketed expressions require a context 
free grammar and the same is true for manyI
features of well structured programming Î 
languages. '
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2.2 PHRASE STRUCTURE GRAMMARS

Suppose S is the initial symbol and

(2.2.1) IC^(S), IC2 (S), 103(8)  IC^^S)

are its immediate constituents [BLOOMFIELD 33] , 
derived using rules usually known as 
productions.

Let us write (1) as follows

<2.2.2) S^, S^, ----------------------

Their immediate constituents will be as 
follows, although any one of them can be 
null.

(2.2.3) IC^(sl), IC2(sj^), 103(81) ------------ IC^^sl)

103(82), 102(23), 103(83) ------------- 10^^83)

lOi(si), 103(8!), 103(3!) -------------- 10^(3!)
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ICits!), 13(3!), 103(3!) --------------- 10^(3!)

If we write the non-null constituents as

(2 .2.4) 33, 83, S 3 -------------------3^

and continue the process we will finally 
reach

(2 .2 .5) 3 3, 83, S 3 ----------------- S"

SO that they do not have any constituents.

If we call the above model a context free 
grammar, the set of all the representations 
of S (with subscript and superscript including 
the start symbol) is known as its vocabulary. 
All symbols that can not be further broken 
down are terminals and rest of the vocabulary 
is formed by nonterminals. A sentence is a 
string of terminals which can be derived from 
S with the productions concerning immediate 
constituents. The language is the set of 
all the sentences that can be produced from 
the grammar. '
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Formally a context free grammar is a 
quadruple G (V^, V^, S, P), where is a 
finite set of terminals, V__ a finite set of 
nonterminals with 0 ~ K ' ^
S is the initial symbol and S e P is
a finite set of productions of the form A ~> w 
where the left part is A e and the right 
part w E V* where V* denotes a string of 
symbols of V,

A string u is called a sentential form if ct 
is derivable from the initial symbol S.
A sentence is a sentential form consisting 
only of terminals. The language L ( G) is 
a set of all the sentences that can be 
generated from the grammar "G.

It should be noted that the finite state 
grammars form a proper subset of the context 
free- grammar in the sense that every finite 
state grammar has an equivalent context 
free grammar while the converse is not true.

Let G be a grammar. We say that the string 
X directly produces the string to , written

I
(

X => w



■ 'V: 
“I

25 1
>

i
■J

if X -> W
If X ~> => ....=> 0) V

1
then X =>+ w
If either X => w 1
or X =>+ Ü) 1./I
then X =>* (Ü 't
If X -> w ... where three dots

represent a string 
possibly empty.

i
t
id

then X FIRST 03 \

If X FIRST 0)̂ FIRST O)̂ "̂  FIRST 0)̂ "̂ j

— -----------FIRST to. 4
then X FIRST + 0) 1
If either X FIRST 03

or X FIRST + 03
i
1"t
&5

then X FIRST * 03

Let (jl) = X u y be a sentential form. "I

Then u is called a phrase of the sentential I;!
form w for a nonterminal U *

4

if
U

S => X Uy and
sf>+u, u is called a simple phrase

1

1
if S => *xuy and u => u. 1

A handle of any sentential form is a leftmostI
simple phrase.
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un

If ü => + ... u...
we say the grammar is recursive in U. |
If + Ü ... it is left recursive;
If U=> + .. .U it is right recursive.

A sentence of a grammar is ambiguous J
if there exist more than one derivations 
for it. A grammar is ambiguous if it can 
generate an ambiguous sentence.

"Phrase Structure grammars" is a name given 
by Chomsky to what the Bloomfieldian 
linguists [LYONS 70] originally called the 
immediate constituent analysis. They are 
also commonly known as context free grammars 
(CFG). These grammars are formally 
equivalent [GAIFMAN 65] to Hays [HAYS 64] 
dependency grammars. Two grammars are 
equivalent if both produce precisely the 
same set of sentences with the same 
ambiguities. Chomsky provided a formalization 
of CFG [CHOMSKY 57] and demonstrated that, 
in spite of being more powerful than finite 
state grammars in the sense that more languages 
can be described by this model CFG’s have!

i

certain limitations.
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1) A suitable CFG is capable of generating 
almost all the sentences of English but 
in many cases fails to generate all 
structural descriptions which may result 
in ambiguous meaning. For instance the 
sentence "Flying planes may be dangerous” 
can be generated by a phrase structure 
grammar but its two quite different 
descriptions can not be distinguished by 
this model of grammar,

2) CFG's do not provide a method to show 
semantic relations between different sentences 
For example there is no way of stating
that if one of the following statements 
is true, the validity of the other statement 
is implied.

a) Yesterday I rode a horse.
b) I rode a horse yesterday.

3) The syntax of programming languages can be 
represented in CFG by writing it in BNF 
[BACKUS 59] but there is no formal way of 
including semantics in the grammar. This 
inadequacy has serious implications in 
compiler writing.
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■t

,4) When CFG is to be used for syntactic analysis, 
it is sometimes stored in machine in the form 
of a syntax tree (or a syntax graph). There 
are sentences which use common vocabulary and 
are semantically related but large parts of 
their syntax trees are separate - hence 
wastage of space. For example

a) I shall give the girl, a book.
b) I shall give a book to the girl.
c) Shall I give a book to the girl?

A transformational grammar as defined by 
Chomsky assigns to each sentence it . 
generates, both deep structure and surface 
structure analysis and systematically 
relate the two. Deep "connections" between 
sentences which cut across the surface 
grammar are transformational rules. The 4
phrase structure rules are used to generate 
underlying strings arid on applying 
transformational rules' on these strings 
we obtain sentences.

J
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Transformational grammars have not been 
used much for analysis of programming languages 
and most of the work concerning them is 
confined to using computers as a tool for 
linguistic research [f r i e d MAN 71] . It is 
mainly due to the complexity of transformational 
rules. It is argued that programming languages 
do not require the "power" of transformational 
grammar, since they normally do not posess 
active, passive, exclamatory and similar 
interrelated sentences. We note, however, a 
recent paper describing work at the University 
of California [d e r e m e r  74] .

The first two points mentioned in connection 
with CFG can be accounted for by transformational |
grammars but it is difficult to say anything g
about the last two points, since they have
not been studied in great detail. Attempts J
were made to devise a formal method of 
representing languages in transformational 
grammar. Further research was abandoned 
since the productions required for such a 
representation grew exceedingly complex.

I
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2.3 PARSING TECHNIQUES

Parsing techniques can be devided into two 
main categories : bottom up or data directed 
methods and top down or goal oriented methods.
There are parsing methods which do not fall 
in any one of these categories, however, most i

of them are very ad hoc and do not form a 
model of any significant generality. We quote 
Conway's [CON^VAY 6s] remarks about his parsing 
technique, which requires the construction 
of so called no-backup diagrams; |

We therefore will confine our discussion to 
the two main categories of parsers mentioned 
above.

I

I
I

"The catch in all this is that a set of 4
no-backup diagrams for a given language 
is constructed by a process which is 
neither straightforward nor easy to

-Idescribe ..........".

I
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In this method we analyse the given 
language by repeatedly finding the handle 
è of the current sentential form and 
reducing it to a nonterminal B using a 
production

B -> .
The problem with the bottom-up method is 
to find the handle and then to know which 
nonterminal to reduce it to.

out that the space required for the matrix
2 'is very large (of the order of n , where n

I
is the number of symbols in the vocabulary)

2.4 BOTTOM-UP TECHNIQUES:- |

I
1

Wirth and Weber [WIRTH 66 see also 4
HASKELL 74] have developed a bottom-up 
parsing technique for a class of CFG's.
In this class no two productions have the 
same right hand sides and at most one 
so-called precedence relation holds between 
any two symbols of the vocabulary. This 
class is known as simple precedence or (1,1) 
precedence grammar. The precedence relations 
are stored in a matrix.

The above mentioned authors have also pointed



in most practical programming languages.
To counteract that, they developed the 
notion of precedence functions which 
reduces the space requirement. Formal i
methods have now been presented to 
calculate precedence relations [t4ARTIN 68 ] 
and precedence functions [bell 69}.
However, it is not possible to construct a 
simple precedence grammar for every CFG 
and further, it is not possible to derive 
precedence functions for all simple precedence 
grammars.

I

A technique which is similar to the simple 
precedence technique but requires a 
considerably smaller matrix is called 
operator precedence and the grammars it 
handles are called operator precedence 
grammars. This technique has been given 
this name because terminals of the grammar 
play the part of operators and nonterminals 
are treated as operands. The parsing 
algorithm used for simple precedence grammars 
is applicable except that all relations are ÿ; a
among the terminals only.

I
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Obviously this requires a smaller matrix.

symbols on either side of the deleted 
handle to find out what it should be 
reduced to.

Operator precedence grammars are only a 
special case of bounded context grammars. 
Parsing algorithms for bounded context
grammars use a three column table in 'I
addition to the usual space requirement , 
for holding all the rules of grammar.

I

Higher order precedence techniques can 
parse a bigger subset of CFG then the 
simple precedence methods, but these |
methods are normally too demanding on 
space. In many cases the space requirements 
can be reduced to a reasonable limit by 
using some ad hoc techniques.

Another difficulty with precedence parsing 
techniques is that all the right parts of 
productions must be unique. Attempts to 
get rid of this restriction led to the
development of bounded context grammars.
[PAUL 62 , FLOYD 64 , IRONS 64 , CRIES 7l] |
In the bounded context schemes we use
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The construction of tables is always 
complex enough but gets even more difficult 
in certain cases ((m,n) bounded context 
grammars). Also there is no direct way 
of finding out whether a grammar is 
bounded context or not. Knuth [kNUTH 65 ] 
has investigated LR(k) grammars.

A grammar is called LR(k) if, for 
V* Vin T, A in N, and P, P in t

G, S =>w^ A w A => A and

(ü)2 Wg); k = (^2 ^ imply P = P**.

Stated informally in terms of parsing, an ;|
LR(k) grammar is context-free grammar such 
that for any word in its language each 
production in its derivation can be 
identified and its descendants determined 
with certainty by inspecting the word from 
its beginning (left) to the kth symbol 
beyond the right most descendant.

Knuth points out that almost all unambiguous 
grammars which can be processed by some ; 
left to right process are LR(k). In fact! 

precedence grammars CT bounded context 
grammars C  LR(k) grammars. ;
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Knuth has also shown how one can determine 
whether a grammar is LR(k) for a given k.
The problem of deciding, for a given grammar 
G, whether or not there exists a k ̂  o 3
such that G is LR(k) , is however undecidable.
He has shown a CFG, named by him as LR(k,t) 
grammar, for which we must back-up by a 
finite amount. He also points out that the 
parse time for LR(k) grammars is essentially 
proportional to the length of the string to 
be parsed.

Deremer [ DEREMER 69] has given a practical 
algorithm for parsing LR(k) grammars. The 
complications involved in constructing a 
parser for LR(k) grammar vary directly as 
the complexity of the grammar and Deremer 
defined a hierarchy of LR(k) grammars given 
in the ascending level of complexity by

1 LR(0)
2 SLR(k) t
3 LALR(k) t
4 LR(k)

t Simple LR(k)
I

tt Look ahead (LR(k) Î
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ï

i
Three different subsets of LR(k) grammars 3
are defined in terms of their parsing 
algorithms. Deremer has shown that SLR 
parsers for SLR(k) grammars can parse a 
large number (if not all) of languages 
that can be handled by precedence techniques g
or bounded context grammars.

Knuths LR(k,t) grammars overlap with
i'igrammars which are LR(k) and are not |

LALR(k) in Deremer's terminology. The 
parsing technique for this class of J
grammars has not been described with the |
same details as given for SLR(k) and LALR(k) "
parsers. Nevertheless one thing is clear; 
as pointed out by Deremer, it is exceedingly- 
difficult to construct a parser for this 
class of grammars.

A biblography on LR(k) grammars appears 
in a tutorial paper by Aho and Johnson 
[ AHO 74]
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2.5 TOP D0V7N TECHNIQUES

These techniques work by starting from 
the initial symbol of the grammar and 
recognizing a sentence by working 
through its productions. In his survey 
of parsing techniques Floyd [FLOYD 64 1 
has mentioned only backup oriented 
techniques. However the notion of $
no-backup techniques was in existance 
long before [k a n n e r  59] the publication 
of his paper.

Methods have been described [l IETZKE 64] 
to perform top down analysis by scheduling 
different procedures. The idea is that 
an appropriate procedure should be called 
at the appropriate place and every procedure 
should have a specific task to perform.
These techniques.though adequate for certain 
languages do not form a general model for 
any appreciable subset of CFG's.

The Global parsing technique fuNGER 6 8] J
works without backup but is not capable ■ 
of handling grammars with cyclic nonterminals.
Also, it requires the whole of the sentence
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to be available to the parser before parsing 
begins. Unger has given various "quick 
checks" to be performed to make the parser 
efficient but many of them are reported 
not to have been studied in detail.

Lewis and Stearns [LEWIS 68] have defined 
syntax oriented transductors which perform 
both syntactic and semantic analysis.
This model, however, has not been used in 
any compiler so far to the author's 
knowledge.

LL Parsers [LEWIS 68, ROSENKRANTZ 69] 
(discussed in the next chapter) can be 
considered as the top down counterpart 
of Knuths LR techniques. The grammars 
that can be handled by LL parsers are 
known as LL(k) grammars (defined in the 
next chapter). An LL (k ) grammar is a 
CFG such that for any word in its language, 
each production in its derivation can be 
identified with certainty by inspecting 
the word from its beginning (left end) to 
the k”th symbol beyond the beginning of 
the production. Thus when a nonterminal 
is to be expanded during a top down parse.
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the portion of the input string which has 
been processed so far plus the next k input 
symbols determine which production must be 
used for the nonterminal.

2.6 COMMENTS ABOUT PARSING TECHNIQUES;-

The efficiency of different parsers is 
notoriously difficult to compare. It is 
not only dependent on a particular language 
but also on the manner in which its grammar 
is written.

It may seem reasonable that in making the 
above mentioned comparison among different 
parsers, language should be a constant 
factor and its grammar in each case be 
written so as to suit the particular 
parser. However, no general conclusion 
can be drawn from such a comparison.
Since, for almost any general parsing 
method known, there are languages (or 
sentence in languages) which make .it 
drastically inefficient. Comparison of I 
different parsers on theoretical grounds

Iis very difficult, if not impossible since
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many algorithms differ from each other 
substantially.

Griffiths and Patrick [GRIFFITHS 65] 
have made a comparison of parsing techniques 
and have concluded that top-down parsers 
are grossly inefficient timewise as 
compared to bottom up parsers. Brooker 
[BROOKER 67 ] has criticised their conclusion 
on the grounds that the grammars of a large 
number of programming languages can be 
written so as to make their top-down 
parsers efficient. We agree with Brookers 
remarks and add that a better general purpose 
parser is one which is efficient for bigger 
subsets of languages, and for more languages. 
Hence, a fairly general purpose no-backup 
parser is better than the backup oriented 
parser, the reason being that in a backup 
oriented parser, efficiency will be achieved 
by writing the grammar so as to minimize 
backup while a no-backup parser by definition 
possesses this property in its extreme form.

Space efficiency is as important as time 
efficiency. A parser can be inefficient 
in space either because it is too big by 
itself or because it requires a large space
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to store information produced during the 
parse of a given sentence. The former in
efficiency is common in bottom up parsers 
where large matrices are needed either for 
some type of precedence relations or for 
storing look ahead symbols. The latter 
inefficiency is usually found in backup 
oriented parsers where a lot of information 
is required, in case the parser has to 
backup.

Horning and Lalonde [ HORNING 7l] have
made an empirical comparison of the time
and the space efficiencies of two general
classes of bottom up parsing techniques,
namely precedence techniques and LR
parsers. But due to the reasons given
above they do not claim to have reached
any definite conclusion about the relative
efficiencies of precedence techniques and
LR parsers in general. However, they claim

tthat by using Deremer's LALR algorithms and 
after using various optimizations suggested 
by him and on including new optimizations 
we get a parser which is worth considering 
when selecting a parsing technique for a 
compiler.

tThe investigation is limited to LALR parsers.
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I
Ease of use is another important feature t
in parsers, A technique could be quite j
difficult to use if it is capable of 
treating only a special class of grammars 
defined by conditions which are not easy to 
state directly. Some parsers are very |
difficult to construct even if it is 
known that the grammar being treated is 
suitable for them. Both of these problems 
are common with bottom up parsers. In 
this regard a parser which can accept 
grammar of a given language in some 
modified version of BNF can be quite useful.
A top down technique is valuable for this 
purpose and provides a natural way of 
constructing internal tables. It has been 
used in many such systems [METCALFE 65],

A good parser should also be able to give 
reasonable syntactic diagnostics, since 
they are essential for program debugging, 
no-backup parsers are an asset in this 
respect.

I
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With these comments we shall attempt to 
define an ideal parser. The nearer to 
this definition the better. i
An ideal parser for CFG's is one which 
accepts all grammars written in BNF, 
requires the minimum possible space 
necessary to store the parser, and 
requires no space for storing specifications i

of parsing and parses without backup 
giving prompt and precise diagnostics.
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CHAPTER III

GENERALISED LL(k) PARSER

3.2 RECOGNITION OF LL(k) GRAMMARS;

As defined by Lewis and Stearns [LEWIS 68] 
a grammar is LL%k) if, for all

3.1 INTRODUCTION ;-

This chapter is devoted to the discussion of |
the metasyntactic language. Rules of the 
metasyntactic language are given and, where 
necessary, they are explained with the help 
of examples. It is shown how using some of 
these rules, the value of k can be reduced.
It is also shown that in spite of the fact 
that Rosenkrantz and Stearns have proved that 
the left recursive grammars are not LL (k), 
this restriction is not valid for our algorithm.
The class of grammars defined by the property 
that they are accepted by our algorithm therefore 
constitute an extension of the LL(k) class.

I
.'I
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in A in , and p, p' in G,
S ==> w^AW^, S=>w^AWg,
A ' > W g  A->^W""2

P I

and (wgwg): k = (wg wp : k imply p = p'

Stated informally a grammar is LL(k) if a 
production and its leftmost descendant can 
be identified from the symbols to the left 
of this leftmost descendant and the k symbols 
which follow (counting the leftmost descendant 
terminal as the first symbol).

Before we show that a deterministic pushdown 
machine can be constructed to recognise the 
language generated by a given LL(k) grammar 
we shall prove a lemma.

Let L be the language generated from an LL(k) 
grammar G using nonterminals and terminals 
V^, Define as follows: For A in let
L^ be a set of words in V*^ generated by G using 
starting symbol A; for A in V^, = {A}
If R is a subset of V*^, let R:k = {w:k| w in R}

LEMMA. If G is LL(k) , then for all A in ,
Ü3 in V*^; k, and R Ç  k satisfying RCH (w^)={wg:k
S => } for some in V*^, there exists

I
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at most one production p such that A~>* o)̂ (p) 
and : k =w for some and in V*,2 3 T
such that Wgis in R.

1

J
-  ^PROOF. Suppose that A=>Wg(p), A (p) , f

_ ■>?and(ùü^w^) :k = (WgW^ : k = w for some Wg, i
p, and p such that w^tk and wg: k are in R
where R g  R (w^ ) for some It follows that
there must be w'l and w*! in T such that3 3
S = A , S =4*-aiĵA w p  w p  k = ŵ : k , and
(üpk ï= w^:k. The last two relations imply [
that ( : k = (w^wp :k = w, and the fact that
p = p follows from the definition of LL(k).
Thus there is at most one such p.

¥

y

The importance of this lemma can be stated f
informally as follows; The definition of :j

LL(k) grammars specifies that for any sequence 
in the language, a production can be correctly 
identified from the sequence w^of symbols to ¥
the left of its first descendant and the k , |

;
symbols which follow. The lemma states that the |
production can also be identified using only the |
k symbols which follow and the set R ) where 
R(w^) is the set of all k symbol sequences which 
can follow the rightmost descendant of that 
production. In other words, we can bound' the
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amount of information that must be remembered 
about the initial sequence.

3.3 DESCRIPTION OF THE PUSHDOIVN MACHINE.

The finite-state control has enough memory to 
store an input string of length k or less and 
to perform such obvious tasks as reading in 
the first k inputs. The tape symbols are 
ordered pairs (A,R), where A is an element of

the machine so that if some r + k inputs have 
been read in, the input string stored in the 
finite-state control is w and the top tape 
symbol is (A,R), then the following are true.
(1) The word w stored in the finite-state

control is the string consisting of the 
(r + l)-th input through the (r + k)-th 
input. If the input word only has r + k 
symbols for k \ k, then w is the last k 
symbols of the input word. In this latter 
case, it is convenient to say that k - k 
blank inputs have been read in after the 
completion of the input word as indicated 
by the special end-of*-tape marker. These 
implicit blanks play the same role as the

I

1d and R is a subset of V* fk - We design #
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t /(3) The set R represents R : k, where R is the

I
I

" H " of Knuth. ^
(2) The symbol A represents the fact that tlie

descendants of an A follow the rth input |
symbol. If A is a terminal symbol, this

“Ifmeans that the (r + l)-th input symbol |
Jmust be an A. The symbol pair (A,R) or 

its replacement is to be popped up as 
soon as all the descendants of A have 
been identified.

I
set of all acceptable input sequences 
that could follow the descendants of the 1
A. Thus, if is the tape symbol
below (A,R) , then R = R^):k; and
R = {A} if (A,R) is the bottom tape symbol.
The machine begins with the single symbol 
(S, {A}) on its pushdown tape.

We now describe the machine operations. Initially, 
the machine reads the first k inputs and stores 
them as the word w in the finite control. The 
pushdown tape is initialised with the symbol 
(S, {A}). This initialised configuration satisfies
1, 2 and 3 above and we take it as self-evident 
that the opérations described below preserve 
these properties. After r + k inputs have been
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read, the operations are as follows;

Case 1. If the top tape symbol is (A,R) and 
A is a nonterminal, then R - { 0)3 : k| 
S=>*^^^Aüj^, where consists of the 
first r inputs. Therefore, by the 
lemma, there is at most one production 
p that could be applied to A in order 
to be consistent with w and R. Three 
subcases follow;

Case la. If there is no such p, the machine
rejects the sequence.

Case lb. If p is the production A =>A then the
top tape symbol is popped off.

Case Ic. If p has the form A => A,...A for A.1 m 1
in U V^, then the top symbol (A,R)
is replaced by the sequence of symbols
(A^, R^)... (A^, R^), where R^ - R and
R. _ = (L , R. ) : k for 1 < i < n.i-1 A^ ' i \

Case 2. If the top tape symbol is (A,R) and A 
is a terminal, there are two subcases:

Case 2a. If w = A w'' for some w"', then the top
Itape symbol is popped off, the nextI

input X is read, and word w" x replaces w
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in the finite control.
Case 2b. If w does not begin with A, then the 

sequence is rejected.
Case ,3. If there are no tape symbols on the 

pushdown tape, then if w = A, the 
sequence is accepted and otherwise 
it is rejected.

Although considerable information is encoded 
in the tape symbols (A,R), this is somewhat 
less information than is required for general 
LR(k) recognition. Furthermore, even this R 
information is needed only when the machine 
must choose among words in which are shorter 
than k. To verify this, assume that (A,R) 
is the top tape symbol (i.e. the machine is . 
looking for a production descendant from A) 
and that control word m is the (i.e. that 
the next k symbols after the start of A are all 
descendants of A ) . Then it follows from the 
definition of context-free grammars that the 
past can give no information as to which A 
production was used, and hence the decision is 
independent of R. This situation always occurs 
for LL(1) grammars if there are no A productions
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As an example where R information is necessary, 
consider the following grammar;

S=> lAlB 
S => OAOB 
A —> O 
A=> 01

EXAMPLE 3.1
B => O

This grammar is L L (3), but after 1 + 3  inputs 
have been read and w = 010, one cannot 
determine which production to apply to A 
without consulting the corresponding R which 
will contain either (lo) or {oo} , depending 
on which production was applied to S.

3.4 GENERALISED LL( k) GRAMMAR:-

We define a generalised L L ( k) grammar as 
follows:

A grammar is generalised L L ( k) if, it can be 
written with the help of the metasyntactic 
language described in (3.5) and for all 
0̂,0)2 ,032,0)3,033̂ 11 V^, A in and p , p' in G,
S =>w^A s =>w^A ,
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3.5 ON THE PRACTICAL ALGORITHM OF GENERALISED 
LL( k) GRAMMARS

The practical algorithm for ELL( k ) grammars is 
described in chapter 4. It is not difficult to 
see that in combination with the extension 
mechanism described in chapter (7) it performs

III
3

A “ a ^ “s
and (WgWg) . k = ( ; k imply p = p'

or P and p are left recursive as 
explained in § (3.8).
The definition of generalised LL(k) grammars is similar to-the 
one given in (3.2) except that the if clause 
of the definition is further qualified by 
saying "if it can be written with the help of 
the metasyntactic language described in (3.5)" 
and "or P and P are left recursive ".

It is clear that the definition of generalised 
L L ( k) grammars is more powerful than that of 
L L ( k) grammars. We therefore abbreviate the 
name to extended L L ( k) written E LL(k ). They 
include left recursive grammars and the rules 
of the metasyntactic language are more powerful 
than that of ordinary BNF.

-I
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the task of the push down machine described 
in (3.3).

The word w (steps 1 of the push down machine) 
is stored in the input buffer of the syntax 
analyser. R is stored by the extension program 
in SN0B0L4. Step 2 is performed by building a 
syntax graph and stacking in the node corresponding 
to the start symbol on the syntax analysis stack. 
Steps (a) to (m) of the syntax analyser correspond 
to the cases (1) to (3) in the push down machine.

Different facts about the LL(k) grammars are 
listed in appendix I. We will not prove these 
facts for ELL(k) grammars. We believe that, 
with the exception of the restrictions on left 
recursion , they can be proved by arguments 
similar to those used for LL(k) grammars.

3.6 MSTASYNTACTIC LANGUAGE

* Terminals stand for themselves.
* Nonterminals are enclosed in corner brackets 

"< " and "> " or in ampersands.
* The left hand side of a production is separated 

from its right hand side by "=".
* EMPTY is the system defined nonterminal 

representing A  .
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'1

<BLANKS>is the system defined nonterminal 
representing zero or more blanks.
Any terminal being followed by another symbol 
in a production requires a blank as a terminator.
All members of the metasyntactic language except 
SN0B0L4 (Explained later) are normally reserved 
symbols.
Any reserved symbol when preceded by an asterisk 
loses its special meaning.
The grammar is written such that (a) A linking 
production (explained later) follows the 
production it links. (b) The production having 
the start symbol of the grammar on its L.H.S. 
may only be followed by linking productions.
The existence of blanks in the source language 
statements can be specified explicitly on the 
right hand sides of MBNF productions. If a 
nonterminal is enclosed in corner brackets it 
is assumed that after the recognition of its 
rightmost descendant, at least one blank will 
follow in the source language statement. All 
blanks are ignored. On the other hand if a 
nonterminal is enclosed in ampersands, no 
assumption about the character to follow its 
rightmost descendant is made. i #

f

For example consider
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3.6.1 < letter > = A BlC D

3.6.2 < variable> = &variable& &letter& 1 &letter& G2

3.6.3 < list> ~ < list> < variable> j < variable>

Its language consists of character strings 
separated by blanks. Character strings are 
recognised by (1) and the blanks are introduced 
due to (3). The manner in which the left hand 
sides of these productions are specified is not 
important. SN0B0L4 can be considered as a subset 
of the metasyntactic language. During the syntax 
specification, one or more SN0B0L4 programs can 
be introduced. The code generated is the same as 
that generated by the SN0B0L4 compiler and no 
substantial loss of efficiency is incurred.

Undefined nonterminals of MBNF are considered to 
be the names of SN0B0L4 programmer defined functions 
and the user is assumed to have defined them in 
his SN0B0L4 programs. On execution,when any such 
nonterminal is encountered, linkage to the 
appropriate function is made automatically. Within 
a SN0B0L4 program, various key words are used to 
communicate with the parser. Facilities have 
been provided to introduce look ahead for
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3.6.5 DELETE THE 8-TH CHARACTER OF A.

avoiding backup during parsing and to control |
lexical scanning.

IIn English-like programming languages [BARNETT 691 
certain words are used which are essential for 
the naturalness of the language but have no 
significance for machine translation. These 
auxiliary words can usually be classified as 
obligatory or optional. For example,

3.6.4 DELETE THE 3-RD CHARACTER OF THE STRING.

I

I

3.6.6 DELETE A. Ii
JThese examples are based on SNAP, described by 

Barnett.

It is obvious in (4) that "CHARACTER OF” and 
"THE" preceding the ordinal adjective are 
obligatory while "THE" preceding "STRING" is 
optional. One interesting property.of such 
auxiliary words is that they can almost always 
be associated with the word to follow but'not 
necessarily with their preceding word. Association 
of "THE" with "DELETE" will make (6) syntactically

.'i
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incorrect while it can foe safely associated 
with the ordinal adjective in (4) and (5).
During parsing each auxiliary word t is associated 
with its succeeding word and a single bit is used 
to record whether it is obligatory or optional.
For instance the string ;|
will be treated as 2̂ 1̂ %
where Bg =65  = 637̂ ?̂ . and Sq =

In the system obligatory auxiliary words are 
enclosed in double quotes and optional auxiliary 
words are enclosed in single quotes.

3.7 EFFICIENCY CONSIDERATION.

Having outlined the system in the previous 
section, we are now in a position to discuss 
various techniques developed to increase its 
efficiency.

3.7.1 In [ )-> 6 ,( « 0= 6 C) “> ô ç ]
if Id >0 then k ^  1

The value of k is reduced to one if (1) can 
be handled as '

I
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3.7.2 [(«1=6) -> ô, ~> 5, (oLq- A) -> A ]

This can be achieved by manipulating the 
grammar using tlie system-defined nonterminal 
"EMPTY" or one of the symbols " ~7 " and "IN " 
or simply re-writing the grammar.

* The syntactic entity on the right of "7 "
may occur zero or one times, that following 
" IN " may have n occurrences where n o. To

J

illustrate our point we consider part of the 
grammar shown in table 3.1 (see also example
3.1 above).

3.7.3 [(«2=3) -> 3, (a^=6)->6,(o^=65)-> 85,(0̂ = Ç)-> ç]

and clearly (3) is a special case of (i) 
with k >1. If in this simple case (3) . is 
treated as follows k is reduced to 1.

3.7.4 [( 2̂=3) -> 3, («2= -> C,
-> C, (cCq-A) -> A ]

The whole grammar of table (3.1) may be ! 
similarly stated but the result is considerably 
more complex. '

i
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!The notation < P > n, m is introduced to refer to
■p'

the nith symbol of the nth alternative of the 
(unique) production whose left hand side is <P> , ,ÿ
provided that this exists. The MBNF is extended 
to allow two symbols of a grammar to be linked by 
a production of the form

< P> n,m ~ < P >  rif m''

No new structure is created for this production 
but a pointer is created from < P > n, m to <P> n , 
m . After recognising <P> n-1, m-1 i f < P> n, m 
cannot be recognised, the processing continues 
with <P> h* , m . This rather simple idea is 
very helpful in reducing the value of k and the 
size of the grammar.

Consider a language with the vocabulary

%3.7.5 a b c d e f

and sentences which are strings of arbitrary 
length but maintain the order specified in

(5). Conventionally it will have a large 
context free grammar and consequently will 
require a large syntax graph, i.e. '
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iS> - a b c d e f  l a c d e f l a d e f i  

a e f i  a f l b c d e f l b d e f i  

b e f i  b f  I c d e f  I c e f  I
c f l  d e f  d f  I e f i f

EXAMPLE 3.2

However, using the linkage scheme described 
above it can be written as a single basic 
production requiring an internal structure and 
several linking productions for setting pointers.

This is illustrated in table 3.2.

3.8 LEFT RECURSIVE GRAÎ'ÏMARS : -

Rosenkrantz and Lewis [r o s e n k r a n t z 69] have 
proved that an L L ( k) grammar can have no 
left .recursive nonterminals. We do not dispute 
the validity of their proof for the LL( k) grammars 
they have defined but in the light of the definition 
of our extension it is not relevant.

In their push down machine, a left recursive 
grammar is of the following form
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3-8.1 [(ctg=A) -> n=0, (a^=8^)-» n=n+l, (aQ=3)-> 3(3^)^] 
They rightly argue that k = |§1* n.

Since n is unknown k is also unknown. In our 
algorithm the left recursion has the form

I

3.8.2 [(a^=3') -> 8', (0̂ =8 )-» B ] |

Since for a nonnull a there is no choice at any
level, a member of this class may be an ELL(l)
grammar. However, if could have more than y.

j:
one different acceptable value the grammar would 
still be ELL(k) but k may be greater than 1.
Informally speaking, for a left recursive grammar 

< x > = < x > a a a | a b

EXAMPLE 3.3

in a conventional top-down parser, we start with . |
< X > and replace it by < x > a a a. Then we 
replace <x> again and get <x> a a a a a a. The 
process continues and the loop never terminates.
Lewis and Stearns' proof that the left recursive 
nonterminals can not be L L { k ) follows from the 
above discussion. Since the language of the 
above grammar is of the form a b (a^)^ or a b
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(aaa)^, we must replace < x> by <x> aaa, the 
correct number of times and then start recognising 
the whole string. For this purpose, before 
replacing <x> at each stage, it is checked, by 
looking further ahead, whether the next three 
symbols are part of (aaa)^ and another replacement 
is necessary or they are not, and loop must be 
terminated. In other words all the symbols in 
a b (aaa)^ must be looked ahead. Since n is 
unknown, clearly k is also unknown.

In our algorithm, < x > will be replaced by 
< X > a a a only once. After that the system 
detects left recursion and recognises a b 
before trying a a a repeatedly. It will now be 
seen as in table 3.3 that our algorithm is 
capable of handling left recursive grammars. 
The table 3.3 shows four different blocks of 
information.

1. Àt the top is a left recursive grammar in 
which the nonterminal "P" is undefined.

2. "%SOURCE" is an indication to the system 
that no more production of the grammar is 
to follow. On meeting this command the 
system displays a warning message that ”P"
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has not been defined.

3. Inside the bracket ”%SNOBOL" and "%FINISH" 
is a SN0B0L4 program. A user defined 
SN0B0L4 function is defined which performs 
two tasks:

a) It performs lexical scanning 
to recognise B, since <P> = B.

b) It introduces look ahead to 
decide whether <P> C D or B C 
< R > is to be followed.

4. The last part shows syntactically analysed 
source language statements.

The following grammar is a member of (3 8/2)
but is not L L ( k) since it is ambiguous I

3.8.3 [(a =6^) •-> 8"̂ , (a =3") - »  3", (a =3)-» 3 ]

where (3 )^ ~ (3)^, n and m are positive integers.

Consider
< x >  = < X > a a a I c

< S > = < S>a a 1 <x>
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3

3"
3^

a a 
a a a 
c

EXAMPLE 3.4 

There are bound to be two positive integers 
n and m, such that:

(aa)^ = (aaa)^

e.g. n = 3 and m = 2

satisfy this condition. They generate the 
following two parse trees

<s>

<s>

<s>

<ŝ >

<x>

c

<s>

<x>

<x>

c

FIG. 3.1

■«I
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This is also true with some members of the 
following set:
[(G2=3*)-> 3*,(ag=G*)-» 3̂,(â-3") -> 3',(aQ=3)-» 3 ] 

For example if

then lê l + 16*1* m + |6'| + le| * n =

le'^l + 16*1*  "  +  | 6 ' |  + |6 |  *  m

for some n and m

In the grammar

< x >  = < x > a  a a a| a a 

< s > = s < s > a a a  | a < x >

EXAMPLE 3.5

3 ~ aaa 3 — a
3'* = a a a a  3 = a a
and the condition 
a a + (aaaa) * n + a + (aaa) * m

= a a + (aaaa) * m + a t (aaa) * n JI
is satisfied.

I

"1:

a? . g af" = er

â* = 3" â"* = IIr, r*, r", and r"' are positive integers. %

1
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Since it can be written as
(a a a a) * ni + (a a a) * n =
( a a a a )  * n + ( a a a )  * m 

it is ambiguous.

However, it is worth noting that these grammars 
are notELL(k) because they are ambiguous and 
not because they are left recursive.

The following is an unambiguous left recursive 
grammar but is not ELL(k)

3.8.5 [(aj_=6") -> 6*,(03^=6') -> 6".(0^=8) - »  B ] 

where iB'l > !B'|
e' : |g*|= 8*
|B| > IB'I 
6 : |B'|= 6"

(8')" = { 8 ) / n and m are positive Integers 
But it can easily be written as

3 . 8 . 6  [ ( 0^ = 3* )  - >  3 ^ » ( a Q = 3 ' * )  “ »  3 ' , ( « Q = 3 ^ ) - >  3 ^  ]

8̂  = 8" : (|8'| - |8*|)
For example the grammar 

< x >  = a a a I a a I a 
is left recursive and unambiguous, but it is 
notr-LL(k). However if it is written as ; 

< x > = < x > a l a | a  |

it is ELL(l) . '
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CHAPTER IV

implejmentation o f t h e
GENERALISED LL (k) PARSER

4.1 INTRODUCTION
The generalised LL (k) parser uses a syntax 
graph constructed from the grammar of the 
language being parsed. It applies a predictive 
algorithm to traverse through different nodes 
of the syntax graph, in order to recognise the 
source language statement. In this chapter, we 
will first describe the layout of the syntax 
graph and then discuss different aspects of 
the parsing algorithm.
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4.11 SYNTAX GRAPH :-

The syntax graph has a start node and an 
arbitrary numloer of nodes accessible from 
it. Each node of the syntax graph represents 
a member of the vocabulary of the grammar being 
parsed and is linked with other nodes by one or 
more pointers. Each node consists of six fields 
as shown in 4.1. Each field either has an entry 
or has null string as its value.

DEF QUAL ALT SUCC MOD AUX

format of a node 

FIG. 4.1 

Definition field DEF

This field either holds YtV, if it is a 
terminal, or is a pointer to the node 
representing it if it is a non-terminal*

Qualification field (QUAL)
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This contains the following information 
represented by a unique code

a) Whether DEF represents 
( i) A terminal
( ii) A nonterminal enclosed within 

corner brackets.
(iii) A nonterminal enclosed within 

ampersands,

b) Whether "n " or "IN " or neither of the 
two exist immediately to the right of the 
current symbol.

c) Whether the symbol represented by the node 
pointed at by AUX of the current node is 
obligatory or optional.

Alternative field (ALT):-

If X... is an alternative of Y.., then ALT 
of the points at the *

Successor field (SUCC)

If the R.H.S. of a production is of the form 
. . .Y X ... then SUCC of the Xĵ q d e Points at 

the Xj^oDE'
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Modification field;-

This field keeps the pointer (if any) to the 
node which must be tried in case the current 
path of the parse is to be modified.

Auxiliary field (AUX):~

If the right hand side of a production is of 
the form ...0 Y where 0 is a non-empty string 
of auxiliary words, the AUX of X^ODE Points at 
the node representing the left most symbol of 
0. For all practical purposes the said production 
is considered to be of the form ...Y... while 
0 has an independent representation.

To construct the syntax graph, the parser uses 
a symbol table, each entry of which consists of 
two fields, the definition field and the pointer- 
field. The definition field accommodates a 
nonterminal X on the left hand side of a production 

while the corresponding pointer-field keeps a 
pointer to the X^ODE ^^ere X FIRST Y.
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A. production is scanned from left to right to 
find X. If X is subscripted then Y must also
be subscripted. Subscripted X and Y refer to
/ , / / /X and Y where X =>-X"' and Y =>-Y"* while X ̂
/Y are determined by the respective subscripts

of X and Y . ' As a result of this production the
MOD of is set to Yĵ o d e * ^
subscripted, it is entered in the symbol table, 
provided it has no entry already. A node called 
—NODF created for Y and the pointer field of 
the most recent entry in the symbol table is set 
to the XfjoDE* production is then scanned
further and the part of the syntax graph required 
for it created as follows.

If the next symbol is
a) t^, the first of the consecutive auxiliary

symbols t^ t^ t^....t^ where n 1 then
^iNODE created, and AÜXPOINT is turned 
on. Nodes are also created for t^ t^ ...t^. 
All the nodes of the consecutive auxiliary 
words are connected by their SUCC fields 
such that

SUCC(t^) = t^+i n > i >
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b) ^ G V then a new node is created to
accommodate it and SUCC of the previous
node is set to the If the AUXPOINT—NODE
is on, AUX of the is set to the node—NODE
pointed at by it and the AUXPOINT is turned 
off.

c) " I", the symbol preceding it is considered 
as the last symbol of where Y. j-?
is the nth alternative of Y 1-̂ ]

The production is scanned further to find 
the next symbol which is expected to be 

A new node is then created for 
Yt"-*-^hnd ALT of is set to the ^ S d e "

d) " 1 ". The ID of the most recently created 
node is modified to reflect the occurrence.

e) "IN ", the ID of the previous node is 
modified as in (d) and further scanning 
continues to find ^ such that ^ c V.
Step (a) is performed and a pointer 
GRAPHPOINT is set to this node.
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f) The last symbol of the production. It
must be a member of V. A node is created 
for it and linked with tlie other nodes as 
usual. If the GRAPHPOINT is on, the SUCC 
of the current node is set to the node 
pointed at by GRAPHPOINT and GRAPHPOINT 
is turned off.

T'Then reference is made to a nonterminal T 
which does not have an entry in the symbol 
table, the processing of the current production 
is suspended after saving any necessary 
information. An imaginary production <T>= A. 
is then processed. It’s symbol table entry is 
marked to show that it is an ad hoc one and 
then the processing of the actual production is 
resumed from the point at which it was suspended. 
At a later stage when the production<T>=<Y>.,. 
is processed, no new entry is made for T in the 
symbol table. It’s previous entry is unmarked 
and the structuré of the corresponding production 
is modified so as to accommodate the current 
production.

For this reason, before making a new entry, the 
symbol table is always searched for that entry.
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The presence of any such unmarked entry is 
erroneous .and the current production is 
ignored with a warning message. In all 
other circumstances the normal process 
continues.

At the end of the syntax specification, 
marked entries in the symbol table are 
displayed with an appropriate message. It 
is assumed that the user will have defined 
these nonterminals at some stage. The DEF 
of the node representing the undefined 
symbols are filled with the symbols themselves 
and corresponding SN0B0L4 code is generated 
and linked at the appropriate place of the 
.processor. This enables the processor to 
call the corresponding user defined SN0B0L4 
function when an undefined nonterminal is 
processed during Syntax analysis.
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<operator>

ALT
SUCC
MOD
AUX

< operand >

< addition exp >

The above diagram shows the syntax graph of
the following grammar

<;^operatoi^ = + 
operand ^  = A

<^ddition e x p ^  = <^operand ^ ^ <^ p e r a t o r ^  <^ddition exp^

EXAMPLE 4.1
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In the above diagram, symbols on the L.H.S. of 
the vertical line represent nonterminals to be 
entered in the symbol table and oblong boxes 
are nodes of the syntax graph. An arrow 
represents a pointer while a triangle is a 
pointer to a node which can be accessed with the 
help of symbol table entry specified in the 
triangle itself.

example;- 4.2

{statement) = PRINT "THE" (ordinel adjective)
"CHARACTER OF" 
'THE' {variable)

The syntax graph of the above statement is 
given below.



<statement>

AUX 2

AUX 2

80

PRINT

Ordinal 
s. adject 
\ i v e  /

AUX. 2 Variabl<AUX. I.

THE
Obi

CHAR
ACTER

OF THE
ObiObiObi

Representation of auxiliary words

FIG. (4
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4.12 PARSING ALGORITHM:-

We now describe the basic parsing algorithm.
It's role is fundamental and rest of the ■ 
predictive algorithm may be considered as its 
extension. A priority list of paths to be 
traversed in the syntax graph has been defined 
and is adhered to strictly. Necessary 
information is stored on the syntax - analysis 
stack (SAS). Each element of SAS has three 
fields: node, path and position. For the 
convenience of description it is considered 
as if this one stack is the "concatenation" 
of three stacks, each having elements consisting 
of single fields. %Vhen a source statement is 
to be parsed, the parser is initialised so 
that
( i) The left most symbol of the source 

statement is the current symbol.
(ii) The node representing the start symbol 

of the grammar is the current node.
The parser then goes through the following 
steps.

a) If the current node is a nonterminal, 
stack it in the node stack, stack the 
current position in the position stack 
and stack an element in the path stack 
marking it as daughter. Make the
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daughter of the current node as the 
"new" current node and repeat this 
step.

b) If the terminal is a function,obey it, 
otherwise match it with the current 
symbol.

c) If the match is a success, check to see 
if there is another symbol in the source 
statement immediately to the right of 
the current symbol. If "yes” pick the 
new symbol and go to (i). If no "new" 
symbol can be picked, run the algorithm 
until successful recognition of the 
source statement is confirmed by 
exhausting the stack or an error 
condition is sensed. In either case 
the algorithm is terminated.

d) In (c) if the match is not successful, 
check to see whether the current node 
is a successor of some other node. If 
"yes" try the MOD field otherwise give
an error message and terminate the algorithm.
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e) If the current node is EMPTY^Q^^, the 
position fields of the elements of SAS 
are marked -ive and the control is 
transferred to (i).

f) If MOD field is null and the current 
node is mandatory (not optional due to
1 or I N ), the current state is an error 
state. If the current node is not mandatory, 
ignore it. If the MOD field is not null, 
stack the current node, entering the position 
and the path fields. If it is already at 
top of SAS, mark the path top as MOD. Make 
the modification node, the current node and 
go to (a).

g) If the current node is the left most 
symbol on the R.H.S. of a production, check 
to see if it has an alternative. If yes 
make the alternative, the new current node 
and go to(a),otherwise to to (h).

h) ( i) If the SAS has been exhausted, check
how the algorithm is to be terminated, 
with or without an error. '
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node, the new current node and go to (a)

( v) Check to see whether the right hand
side of the current production can end 
at the current point. If "yes" delete 
the SAS-top and repeat (h). If "no" 
print an error message and terminate 
the algorithm.

( vi) If the current production has an
alternative, make it the new current 
node and go to (a), otherwise delete 
the SAS-top and repeat (h).

i) If the current node has a successor, stack 
the current node, make its successor the 
new current node and go to (a),otherwise

go to (h) . *

( ii) If the current position does not
match the POSITION-top, mark the
PATH-top as successor and go to (i).

(iii) If the PATH-top is marked as MOD go
to (hV) and if it is marked as ALT 
or DAU go to (hVI)

( iv) If the MOD field is null, mark the
iPATH-top as MOD, make the modification 'g
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EXMIPLE 4.3

With the grammar given in example 4.1, 
the expression "A + A" will be recognised in 
the following steps.

1) Make "A" as the current symbol, stack 
< addition exp> ĵ q d e the node field 
of SAS and go to its daughter node.

<addition exp> FIG. 4.5

2) Stack Caddition exp) 1,1 in the node
NODE

field of SAS, the current position in 
the position .field and DAU in the path 
field. (Step a)

<addition exp>l,l 
<addition exp>

DAU
FIG. 4.6
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3) Recognise "A", pick as the current
node (Step c ),

4) There is no successor of the current 
node (Step i).

5) Mark the path-top as SUCC (Step hii)
and go to the successor of the node-top 
(Step i) .

< addition exp>l,l 
< addition exp>

SUCC
FIG. 4.7

6) Stack the current node (Step a) and 
go to its DAU*

< addition exp>1,2 DAU
< addition exp>1,1 Pi SUCC
< addition exp> FIG. 4.8
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7) Recognise "+" and pick "A" as the new 
current synhol (Step c) *

8) Go through (4), (5) and (6).

<addition exp>l,3 P3 DAU
<addition exp>l,2 SUCC
<addition exp>l,l Pi SUCC
<addition exp> FIG. 4.9

The SAS is now as given in the 
diagram 4.9

9) Since the current node represents a 
nonterminal, stack it and go to its 
daughter (Step a)

<addition exp>1,1 P3 DAU
<addition exp>l,3 P3 DAU
<addition exp>1,2 P2 SUCC
<addition exp>1,1 Pi SUCC
<addition exp>

FIG. 4.10
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10) Recognise "A". This is the end of the 
statement since there is no symbol on 
its right. Neither the current node 
nor any one of the nodes on the SAS have 
a mandatory successor node. Hence this 
is a legal statement. (Step c).
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4.2 LEFT RECÜRSIONi-

4.21 GENERAL CONSIDERATION

/ / / , /We consider a grammar G (V^, V^, P, S ) ,
constructed from a grammar G (V^, V^, P, S) in 
satisfying the following restrictions.

c
c

P c P
and P containing a mutually left recursive
subset of productions P ^ , P^, P^ n

The sentences of L(G ) are thus sentences of 
L(G), or parts of them.

EXAMPLE 4.4

< X > < S >
< X > a I c

< S > =
< S > =

< X > = < S > b  d
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It is not difficult to see that 
L ( G ) = ( c [ b a ] ^ }  U { d a [ b a ] ^ } m ,  n ^ o

If is of the form
< X > ~ < Y >  < Z > I ...

We define to be such that Z = >*7^

and Y ” \  ^2 ^ 3  ^n n > o and
/Y is a part of a sentence of L(G).

We shall also consider the "tail" C of y as

5 = Vi W  V3 ...
For production P^ at which the left recurrsion 
may terminate, the terminating alternative will 
be referred to as The notation can be
generalised if there are several such alternatives 
 ̂ is simply defined as nC .

Informally stating, in the example 4.2 L(G) 
has three different types of substring;

a) which can have n occurrences (such as "ba"
in { d a (b a)^}

(Y in the notation.)

b) which can have only one occurrence but are 
parts of substrings in (a) (such as the first 
"a" in da[ba]^)'
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i
. i( 5 in the formal notation) .g

c) which can occur once only but are not
parts of substrings in (a) (such as g

( n in the formal notation)

the example 4.4 , for G

= n.C 1 ^  = ¥
- c ri2 = d

1̂ = JL = a

Id in da (ba)^) f
f

I

y
i
V.

j

4.22 PRACTICAL CONSIDERATION

It is possible that there are several nonterminals
Sg ......   Ŝĵ in that are initial symbols

/ / /
of corresponding grammars G , G  ̂ ...........................J

/ / ■ /having the same set of productions P^, Pg....
G^ is essentially a set of grammars consisting of
one set of productions but in different order in

<each case. So an algorithm is required which 
could detect and its corresponding order j

^1' ^2  ^n ^i' ;
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/
For example in example 4.4, X and S are in

/ / / both G and G . Hence we consider S as S ,
9and X as .

EXAMPLE 4•5

G^ is the same as G in 4.4 but G^ will be 
as follows

<X> = < S > b i d  

<s'> = < x'> a I c

By the definition of context free grammar
(example 4.4,)

Also L(G^) f LCGg)

It is therefore necessary to find the right
order of productions P^, P^, P^ ...... ..P^ in
G^ and the corresponding start symbol S 2

4.3 IMPLEMENTATION OF LEFT RECURSION :~

4,3.1 BASIC PHILOSOPHY:-
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/ fLet be on the left hand side of which 
is in then by the definition of left
recursion

fS FIRST* S, . I
i

With this in mind we explain our algorithm 
by the following example.

< X >  = <y> a | d  

< Y >  = < Z> b I c
< Z>  = <X> c I f

EXAMPLE 4.6

From example 4.6 using the parsing algorithm 
already developed, the SAS will be in the 
form shown in diagram 4.11 for any legal 'j:
grammar , and then the three elements will 
be stacked again and again in the same order.
The following extension to the parsing algorithm 
prevents this repetition.
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DAU
DAU
DAU
DAU

FIG. 4.11

Before making a new entry in SAS, it is processed
from top towards the bottom. The current position
is matched with elements of the position stack and
the current node is matched with the corresponding
elements of the node stack. The search is
terminated when, either a match is found or the
stack is exhausted. If the match was found between
the current node and an element of the node stack,
mark that element of SAS as S^. If the element
immediately below is also marked, all the elements
of SAS above, including the current element, are
marked as left recursive and the element immediately
below S^ is unmarked. After that p.,Ç. and y are

ndetermined and with n > o represents a
/sentence of L(G). Algorithms which recognise 

n , Ç and Y are now described.
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L.R.<x>
L.R.<g>
L.R.< Y >

DAU<x>

Stack with the above mentioned modifications 

FIG. 4.12

4.32 n - ALGORITHM:-

a) Make the SAS-top the current element.
b) Mark the current elements as n and try to 

recognise n by looking k symbols ahead.
c) If the recognition is not successful, unmark 

the current element and check to see whether 
the element immediately below the current 
element (if any) is marked as left recursive.
If so, unmark the current element and make 
the element below it, the current element and 
go to (b), otherwise delete the elements 
above and including the current element.

d) In (c) if the appropriate R is determined and 
recognised, that means has been completely
evaluated. The current element of SAS is 
unmarked C-algorithm is called in.
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4.33 SOME PROBLEMS WITH ^ - ALGORITHM;--

If X is a nonterminal or the descendant of a 
nonterminal in the sentential form representing 
there are three possibilities.

a) X FIRST* X is not true.
b) X FIRST* X is true but

s' FIRST* X is not true
c) Both X FIRST* X

and S^ FIRST* X are true

In other words
s'FIRST* X is true.

‘In the first two cases, no explanation is 
necessary, since the parser will work as usual, 
the only difference being that when an element 
of SAS is uncovered which is marked as leftI
recursive/ it must be determined whether jn̂  

has been evaluated completely. Condition (c) 
has more serious implications since the parser 
goes into a loop. This however does not pose 
any serious problems since it is detected at 
the time of stacking X and hence the sentential 
form containing X is not tried. Incidently 
grammar satisfying this condition is ambiguous.
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4.34 Ç - ALGORITHM:-

Since Ç is a part of y, the same algorithm can 
be used to evaluate both. One exception is that 
the element of SAS (if any) immediately above 

I the element marked as n by the n^algorithm is 
* considered as the current element at the start 

of the Ç -Algorithm. Another difference of 
course is that Ç is compulsory while y is 
optional.

4.35 y - ALGORITHM

Mark the element of SAS reached in the 
(^algorithm as y and try to evaluate Y^URRENT '
If the evaluation is successful, unmark the 
current element of SAS and make the element 
immediately above it, the current element and 
repeat from start of the y-algorithm. The 
process is interrupted when the top of the stack 
is reached. At this stage, starting from the 
top of the stack, the lowest of the "consecutive" 
elements marked as left recursive is determined, 
starting from this element and going upwards a 
search is made for an element such that C U R R E N T

^  1. It is marked Y and an attempt is made 
to evaluate • If no symbol is matched
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f OIT Y CURRENT
otherwise the normal process is continued

the algorithm is terminated
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CHAPTER 5 
METASEMANTIC LANGUAGE

5.1 INTRODUCTION

5.2 SURVEY

Before v;e go into the details of MSEAL, a 
brief survey of different techniques currently

5 
I.'Ü■I
;¥

5
In this chapter we shall describe the semantic {
synthesiser part of the automatic translator.
While the syntax of context free languages has |
been thoroughly formalised, no satisfactory 
formalisation of language semantics exists. A #
practical general technique is also difficult 
to imagine, since the semantics of different %
programming languages can be so different. The

isame is true with the machines on which they are #
to be implemented. However the metasemantic 
language (MSEAL) has been so designed that a 
great deal of formalism has been achieved without 
imposing too many constraints on its power.
MSEAL can be considered as a problem oriented 
computer language. The problem involved is the 
representation of the meaning of high level 
programming language statements.
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being employed for specifying the semantics 
of programming languages is in order.

Probably the oldest and definitely informal 
method of defining semantics is by using a 
natural language as a metasemantic language.
Most programming language manuals have adopted 
this method. Various objections to such a 
definitional method arise. The strongest of 
these is that natural language itself incorporates 
a huge and unanalysed body of tools which we are 
still far from being able to handle. This 
difficulty arises most strongly in connection 
with the semantic properties of natural language 
itself. Thus we have no mechanical way of 
processing natural language definitions and even 
if given what purports to be a complete definition 
D of a programming language L, we have no 
programmable way of verifying the completeness 
of D., mechanically transforming D into a compiler, 
or interpreter for L, or mechanically determining 
whether any given compiler for L does realise the 
object defined in D.
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The second semantic definition method commonly 
encountered and suitable for either informal 
use is that which may be called the method of 
devolution and is as follows: Within a language
Lj to be defined semantically, we determine a 
sublanguage 1 , which is as restricted as 
possible; then we treat the full language L as 
an extension of 1 . That is, specifying some 
formal mechanism by which programs written in 
L can be written in the more restricted language , 
we reduce the semantic definition problem of L.to 
that for 1 . Such reduction may clear away a 
fair amount of "superficial mess" associated 
with L but not present in X . For example if 
we apply this method to FORTRAN we can eliminate 
the DO-statement by an explicitly programmed 
iterative loop.

This method restricts the structure of the) 
languages which may be defined too stronglÿ for 
use in an automatic translator of the kind we 
have constructed.

The third type of models we will consider is 
abstract semantics models. The objects being 
represented are assumed to have an existence 
independently of any representation. It is

I
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S

the purpose of the semantic definition to =#
characterise the "essence" of such independently 
existing objects in a representation-independent 
way. This approach leads to attempts to reduce Y|'v'
computational notations to mathematical notations, |
since mathematical models are assumed to capture 
the representation-independent essence of 4

computational phenomena. For example Scotts 
model [ Scott 70] of Computable functions in 
terras of a class of mathematical lettics is an 
abstract semantics model.

While at some time in the future it might have 
some practical importance at present its 
significance is mainly theoretical.

Input-Output models are another interesting way 
of investigating programming language semantics.
In these models, the functions we wish to compute 
are characterised in terms of the relation 
between inputs and outputs which they determine. 4
This approach to the assigning of meaning to 
programmes was considered by Floyd [flOYD ] 
and developed by Manna [ MANNA 69] , Hoare 
[_ HOARE 71 ] and Manna and Waldinger MANNA 71 ] • V

4
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Although many of the computations that we wish _
to specify in practice are conveniently specified I
by a relation between inputs and outputs, there I
are some computations which cannot be specified |
in this way. For example programming languages i
generally have an undecidable halting problem.
We can not use input-output semantics to 
uniformly specify the semantics of an interpreter 
for a programming language in terms of a relation 
between inputs and outputs. Moreover input-output 
semantics regard all programs which realise the 
same function as equivalent. However the language 
designer is interested in differences of 
representation of a function in different 
programming languages and the language implementer 
is interested in differences of implementation of 
a given program in a given programming language.
An operational model of semantics is the last 
model we will discuss and our semantic synthesizer 
falls in to this category. In this model we are 
concerned not only with the relations between inputs 
and outputs, but also with the path by which we 
get from the input to the output and the 
information structure generated along this path.
A general class of models for the operational 
specification of programming languages in terms 
of information structure transformations which
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said to be completely evaluated when for some

are performed by the language translator can be
■>.

called information structure model and defined 4
Ias follows. An information structure model is '

a triple M = (I, 1°, F) where I is a countable 
set of information structures (structured states), 
l‘̂ S  I is a set of initial representations and P 
is a finitely representable set of unary operations, 
whose domain and range is a subset of I. A 
deterministic (sequential) information structure 
model is one which, for all Ij 6 I, has at most 
one element f e F applicable to . From now 
on we will only deal with the deterministic 
information structure model. A computation in a 
(deterministic) information structure model
M “ (I, 1°, F) is a sequence I^,  of
elements of I such that c and for J =* O,
1, 2 -----, some f e F. If
I^ is the syntax of a programming language, then
^2' ^2  ^n ^ sequences of steps which must

[be carried out in some part of a translation, 
f (I^) is the action which is to be carried out 
at step I^. If f^ (Ij) denotes the generation of 
code then f^ (Ij)g  f (Ij) for any I^. I^ is |

1
integer n, an I is reached to which no element of 
f G F is applicable. |
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5.3 METASEMANTIC LANGUAGE (MSEAL)

The basic approach we have adopted is that 
three different mechanisms are provided for
handling each one of 1°, I^------ I^_^and I^.
The input to the semantic synthesizer consists

I^ can be either specified in the action field

of semantic productions. Each semantic |
production has three fields ordered from left 
to right: the environment field, the action
field and the code field. The symbol " ~> ’* 
separates the environment field from the action 
field and separates the action field from 
the code field. If M is the set of all the 
semantic productions, then I*̂  is the set of 
all the environment fields in M.

A formal mechanism has been provided to specify
I where I s 1°, i comprises of different 4o o o >•
environment relations. These are combinations 
of various static objects such as nonterminals, 
terminals and identifiers and the so called
relation operators. Statements requiring g
different actions have been provided to specify 
F in terms of I, in the action field. High 
level data structure oriented commands have 
been provided to manipulate various data objects.
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i

a

or more explicitly in the code field. For a |
semantic action, using the information obtained
from the syntax analyser, is selected where
I 5  1°. I is then automatically transferred Io o >j:successively into I^, ,   In the rest
of this chapter we shall give details of the 
metasemantic language (MSEAL). For clarity, 
it has been divided into various sections.
Each section contains the syntax and the
semantics of a subset of the MSEAL. MSYL
described in chapter 3 has been adopted as 
the metasyntactic language for MSEAL, with the 
exception that the right most descendant of a 
nonterminal enclosed in corner brackets can be 
followed by zero or more blanks. The following 
are assumed throughout this chapter.

( i) Only strings can be concatenated.
( ii) Arithmetic operations can be performed 

on integers only.
(iii) A cell of a data object can not have

another cell, element or data object as 
its value.

( iv) In the action field of a semantic production, 
statements are separated by ampersands.
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5.4 D A T A  O B J E C T S ,  I D E N T I F I E R S  A N D  S E L E C T O R S

<Jrac o p ^  = (
<(^rac cl^ “ )
< l e t t e r >  =  a | b 1c ---------------------|z
< ^ d i g i t >  =  0 I1 I2 I3 ------------------19

< ^ i n t e g e r ^  =  & i n t e g e r &  & d i g i t & |  & d i g i t &

<^lphanumeric^ = <^letter^ |<Jigit^
< C i d e n t i f i e r ^  =  & i d e n t i f i e r &  & a l p h a n u m e r i c & | & l e t t e r &

<^q u e  =  B A C k | F R O N T

< ( s t a c k  T O P  | B O T T O M

< ^ u o t e ^  = «
< ^ t r i n g ] >  ~  a n y  s t r i n g  o f  c h a r a c t e r s  i n c l u d i n g  

n u l l  s t r i n g  

< ^ u o t e d  s t r i n g  =  & q u o t e &  & s t r i n g &  & q u o t e &

< ^ e l l  i n d e x ^  =  < J n t e g e r ' ^ |  <C^identifier]]>

< ^ n d e x ] >  -  < C i n t e g e r ^ > | < ^ i d e n t i f i e r ^ >  | < C g u o t e d  s t r i n g ^  |

< C ^ n d e x e d  n  o n  t e r m i n a  l]> 

< ^ n d e x e d  s t a c k  i d ] >  - < C ^ d e n t i f i e r ^  <(braL.op./*" ^

< C ^ n d e : ^  <(brac. c l i ^  |

< C ^ i d e n t i f i e r ^  <^brac.op.]!> < ^ t a c k  l i m i i ^  < J r a c . c l . ^ |  

" ( ^ i d e n t i f i e r / *  < b r a c . o p . ^  < C ^ n d e ) ^  < C b r a c . o ^ < ^ e l l  i n d e 2̂  :

<^rac.cl^ <C^brac.cl.^ | 
< ^ i d e n t i f i e i ^  < C ^ b r a c . o p . ^  <4s t a c k  l i m i ^ % >  < ( ^ r a c . o p . x ^  

c ^ c e l l  i n d e x ^  < ^ b r a c .  c l ^  < ^ r a c . c l ^

<(^stack o b j e c t ^  - < ^ i n d e x e d  s t a c k  i c ^  | N E X T U P
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<[^ndexed stack | NEXTDOIVN
<Cindexed stack i d ^
<([stack i d ^  = <stack object^ | ^identifiers 
<^ndexed que i d ^  = <C^dentifierS \brac.op.^

<^ndexS ^brac, clJS | 
<(^dentifier^ <C^brac.op.^ <Cque limitS xi^rac.clS
<^identifier^ <(brac. op.^ <C^ndex^ <CSrac.op.^ 
<^cell index^ <Cbrac.cl.^ <Cbrac. cl^l<^dentifier^ 
<([brac.op./ <^ue limit^ <^brac. op.S <Ccell 

index S  "^rac. cl.^ "s^rac.cl.S 
<^que objectS" = <^indexed que id.S| NEXTFRONT

<^indexed que i d^ [NEXTBACK 
<^indexed que i d ^

<^ue i d ^  - <^que objectai <Q.dentifier^
"\table index^ = <^dentifierS |<^uoted stringS 
<C^indexed table idS* = <Cidentifier S'sbrac.op.S

<(%able index ̂  N^rac. cl.^ I 
<^identifier^ <^rac.op.^ <^able indexé <brac.op.^ 
<^ell index^ <Cbrac.cl.^ <(brac. cl. ̂
<^dentifier^ =  <Cstack i d ^  I <C^ue i d ^ l  stable i d ^

<(indexed nonterminal/^

i As described in Chapter 3.
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The data structures available in the MSEA.L are 
stacks, gues and tables. Each element of these 
objects and the simple variables can have a 
quoted string, or an integer as a value. There 
is no limit to the size of strings. A method is 
provided to index different elements of stacks, 
ques and tables. Stack elements are indexed from 
top towards bottom and que elements from back 
towards front. If an indexing identifier has two 
references, the first one refers to the element 
while the second to the particular cell in it.
On evaluating the first index, if it is an 
integer, the element is indexed by counting the 
elements. On the other hand if it is a string, 
the element is determined by matching the string 
with the first cell of different elements. If 
there is only one index in an identifier, it is 
considered as the first one.

An identifier alone refers to a whole object.
No two objects may have the same identifier.

E X AMPLE 5.1

a) STAC (TOP)
STAC is the name of the data object.
TOP is the only index in this case. I

The whole identifier therefore refers to the
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top most element of the stack STAC.

b) STAC (TOP (2))
STAC is the name of the data object (a 
stack in this case), TOP is the first 
index which refers to the top element of 
the stack. ”2” is the second index and is 
considered as the cell index. The whole 
identifier refers to the 2nd cell of the top 
most element of the stack STAC.

c) ABC ("STRING" (3))

ABC is the name of the data object,STRING 
is the contents of the first cell of the 
required element.

*3* .indicates that after finding the 
required element,its 3rd cell is to be 
referred.

Depending upon whether the data object is a 
stack, que or a table, the element is 
searched in the usual manner. The first 
element found is assumed to be the desired 
one.
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5.5 THE ENVIRONMENT AND THE CODE FIELDS

The description of the environment and the code 
fields is short and informal and appears first.
We shall devote the rest of this chapter to 
describing the action field.

The environment field determines the context 
in which the semantic production in hand is 
to be activated. Its entries will be called 
environment expressions. An environment 
expression can be either a part or whole of 
the right hand side of a syntactic production 
or can be formed by using environment symbols 
and relation operators.

When any symbol belonging to the vocabulary 
of the grammar of a language is used in 
specifying its semantics, it is always indexed.
In line with this strategy, the whole or part 
of a production used as an environment expression 
is represented by indexing its constituents. The 
consecutive symbols of a production can be 
represented by indexing the leftmost symbol among 
them as described in the 3rd chapter and 
introducing the numbers of the subsequent symbols 
preceded by semicolons. For example in the

production.
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5.5.1 < X >  = < Y > < Z >  < T >
< Z > < T> can be represented by indexing <2.> 
and then introducing ; 3 after it.

< Z> is indexed as < X >  1, 2 i.e. the second 
symbol of the first alternative of.a production |
whose left hand side is < X> . Hence <* Z > < T >
will be referred to as < X > 1, 2; 3. If only 
some right hand symbols of a production form an 
environment expression, they are preceded by 
the system variable DUMMY.

The above method of forming environment expressions 
is very useful if the user wants to specify the 
semantics in terms of the syntax. If however 
it is desirable to perform semantic synthesis 
independently of the syntax of the language,
the environment expression can be performed,

!independently. Any identifier, nonterminal, |
indexed nonterminal, quoted string (terminals 
are treated as strings) or a MTL system variable 
can be treated as an environment expression.
Alternatively they can be combined with the i

J
following symbols.

#

i
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: : The relation is satisfied if the values of
both sides are the same.

1 : : The relation is satisfied if values of its
sides are not the same.

The symbol on its left hand side should be 
on the top of the system defined stack STACK.

@ The symbol on its left hand 'side should be
the current symbol of the source statement.

The right hand sides of and can be 
members of the vocabulary of the grammar.
This symbol by itself or any one of its 
descendants should match the current symbol. 
The logical OR operation is represented by " I" 
and the logical AND operation by The
latter has priority over the former but this 
can be overridden by bracketing. Nesting of 
brackets is not allowed.

If (1; is to be considered as an environment 
expression, it will be written as

I

5.5.2 DUMMY <X> 1, 2; 3 '

■ ■ ■

;

i
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EXAMPLE 5.2

a) 'ABE' 'ABD' - 'ABC*

This is true either

if the current symbol is ABE
or if the current symbol is ABC and
the symbol at top of the STACK is ABD.

EXAMPLE 5.3

b) ('ABE* I 'ABD' - 'ABC') & X :: 5

This is true if (a) is true and 
X is equal to 5.

i
%I
n

.a
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5.6 ACTION FIELD:-

It is in this field that most of the semantic 
action takes place. A user can define an 
arbitrary number of stacks, ques and tables. 
Various facilities have been provided for I 
searching, deleting and transferring data from 
one data object to another. All statements 
either succeed or fail. If a semantic 
incompatibility is detected in any statement, 
it fails otherwise it succeeds. Conditional 
statements have been provided to make various 
checks on different data objects. Depending

There is a great deal of freedom to a user in
Ithe code field. This field can have any number H%4of identifiers and quoted strings. If the SEAS |

is being used for semantic synthesis, any 
indexed symbol of the current syntactic production 
can also be used. The code generated by the 
execution of a code field is the concatenation 
of all the strings appearing in it. Where 
appropriate, the format is controlled by

/ generate end of line
£ generate end of page

"'-I-;
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upon whether a statement fails or succeeds, 
transfer of control can be directed by branch 
statements. Assignment statements and MTL 
system variables provide extra power for data 
manipulation. Any two statements in the 
action field are separated by an ampersand. 
There must be at least one blank between an 
ampersand and the statement which follows.
A label starts immediately after an ampersand 
or " " as appropriate.

5.61 STACK STATEMENTS :-

<(coma^ = ,
<^cell^ = <Cidentifier^ I integer ̂  I < ^ tr in g ^

SYMBNOW I
<^element^ = &element& &coma& &cell&I&cell&
<^push statement^ = PUSH /elemdnt^ IN^"syariableZ^ 
Xstack delete command^= DELETEUP]DELETEDOWN 
<^tack search command^ - SEARCHUP j SEARCHDOWN 
<C^stack command qualifie]^ = <Cindexed stack i d ^  | 
<^indexed stack i d >  UNTIL EXHAUSTED I 
<^ndexed stack i d ^  UNTIL <C^ndexed stack id)>
<(stack delete statement^ -<^tack delete command^

<^tack command qualifier^ 
stack search statement^ = <(stack search command^

<[]stack command qualifie:^ 
t Blanks must appear on each side.

i'
■a

I
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<C^stack statement^ = <Cpush statement ̂  |
<(stack delete statement^ 
<(stack search statement/^

The PUSH statement enters an element of the 
stack at its top. If there is no such stack 
in the system, a new stack is created, and 
then the new element pushed in it. The 
SEARCHUP and the DELETEUP commands initiate 
their respective search and delete operations 
from a particular point upwards. The SEARCHDOWN 
and the DELETEDOWN commands initiate their 
respective operations from a particular point 
downwards. The values of elements and that of 
cells are assigned to VALELEMENT and VALCELL 
respectively. Their indexes are assigned to 
INDELEMENT and INDCELL respectively. If the 
search fails the previous values remain unaltered.

There are two system defined stacks:

SEAS and STACK. The behaviour and use of SEAS 
will be discussed at length separately. ;

I

The STACK has only one cell in each element.
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Among other things, it can be used to communicate 
between MSEAS and SN0B0L4 extension programs.
In the latter case, it appears as an array named 
STACK having 80 elements.

5.62 QUE STATEMENTS :-

<^register statement^ = REGISTER <^lement^ IN^
<^identifier^

C^gue delete command^ = DELETEON|DELETEBACK
<^que search command^ = SEARCHON SEARCHBACK
<^que command qualifie:^ ~ <Jndexed que i d ^  I
<indexed que id> UNTIL EXHAUSTED|<(indexed que id/>

UNTIL <^ndexed que i d ^
• <[^ue delete statement^ = <gue delete command^

<^ue command qualifier^
<^ue search statement^ = <^ue search command^

<^ue command qualifiea^
<^ue statemeni^ = <^egister statement^| <^ue delete

statement^
<Ĉ que search statement^

The allowed operations on ques are quite similar 
to those of stacks. The REGISTER statement is 
used to make a new entry in a que. If the que 
already exists the entry is made at the back of 
the que; otherwise a new one is created. The

t Blanks must appear on each side.
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SEARCHON and the DELETEON commands initiate their 
respective operations from a particular point 
towards the front of the que. On the other hand 
the SEARCHBACK and the DELETEBACK commands initiate 
their respective actions from a particular point 
in the que backwards. There is no system defined 
que.

5.63 TABLE STATEMENTS ;-

t
<^enter statement^ = ENTER <element^ IN <Jdentifier^ 
Citable delete statement = DELETE «^indexed table idj!> 
Citable search statement^ = SEARCH <4.ndexed table id]> 
<^table statement = <^nter statement^ I <^table delete

statement^ I <[]table search statement/»

Unlike stacks and ques, a user can not specify- 
the direction of a table operation. The ENTER 
statement makes a new entry in a table, the delete 
statement deletes an already existing entry and 
the SEARCH statement searches an entry.

Blanks must appear on each side.
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An element of a data object consists of any 
numbers of cells separated by comas. There is 
no explicit declaration statement but data objects 
are automatically declared at the time of 
making the first entry. The number of cells 
in each element of a data object is the same.
The statement

PUSH "AB", "C", "D" IN AA. 
declares a stack AA if it does not exist already, 
with each element having three cells. The first 
element of the stack is initialised to have "AB”
"C", and "D" in its cells in the same order. If 
AA exists already the element "AB", "C", "D" is 
pushed in it. A stack command operates on its 
argument, A DELETEDOWN command requires the 
deletion of the whole or part of a stack starting 
from the specified point downwards. The case is 
opposite for the command DELETEUP. The information 
about the name of the stack and the particular 
starting point for deletion is acquired from the • 
first argument. For instance.the statement 

DELETEDO^VN STACK (TOP) 
will delete the top of the STACK and the statement 

DELETEDOWN STACK (TOP) UNTIL STACK (3) 
deletes top three elements of the STACK. If some 
middle part of a data object, is to be deleted
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<;^perat03^ = +|“ |*|/
<^unary operator^ = +|-

4

the skeleton remains but the deleted cells are 
initialised to null string. SEARCHDOWN and |
SEARCHUP commands search a stack from a particular 
point towards the bottom and top respectively.
The specification of the name,starting and

Ifinishing points of the search is similar to |
that of the delete operations. On successful 
search,different values are assigned to the 
following as appropriate

VALELEMENT Value.of the whole element
searched

4VALCELL Value of the searched cell - ^

INDELEMENT Index of the element searched
INDCELL Index of the cell searched.

If only some of the above mentioned MTL system 
variables get new values in a successful search, 
rest of them are assigned null string. If 
however a search fails the value of the above 
mentioned MTL system variable remains unaltered.
If due to some semantic reason an operation on 
any one of the data objects is not possible, 
the statement fails.

5.64 ASSIGNMENT STATEMENT:-
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<^unsigned operand^ ~ <4integei^> 1 <^identifier^
Cooper an < ^  = & unary operators <^unsigned operand^!

<Cunsigned operand^ 
<^arithmetic exp^ = <^rithmetic exp4  ̂ <4operatoi^

<4operandl!> | cooperand^
C^search value> = VAL | INDELEMENT | INDCELL 
<4search statemen-^ = <stack search statement^ j 
<^ue search statement^ f <Ctable search statement^ 
'(assignment body^ = <arithmetic e x p ^  j

<4search value^  ! ̂ search statement^ | NULL 
<system variable^ = DELIMITER|VAR|NEWVAR|SYMBNOW 
<^boolean valued = 0|1
<^string valu^ = <^uoted string^ | <(identifier^
<\String e x ^  = <string exp^ <(string v a l u ^  |

<(string valu^i <^ystem variable^]
CODE

<^ssignment variable^ = RETURN | STOP | SEAS 
<device> = PRINT|PUNCH 1 TAPE 1 DISC 
<^ssignment id^ = <Cidentifier/* 1cODe | "^indexed 
stack id^ |ydevice)>l ^indexed que id^ I 

<^indexed table id")> ' #
.  I

(^assignment sign^ = :=
<^assignment statement^ = <assignment id]><^ssignment sigi^

<string exp^ | 
C^assignment i d ^  <(^ssignment sign^ <^ssignment body^ I J

Assignment sigi^ <|tring ex^x"
<^ssignraent variable^ <^ssignment sigr^ <Cboolean value^ j
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The evaluation of an arithmetic expression takes

5.65 MISCELLANEOUS STATEMENTS :-

<Asegment coinman<Ç> = SEGMENT-
<^segment statement^- ssegment commands <\intege3$> |

Ssegment commands <Avariabl^ 
<(eliminate statement^ = ELIMINATE|ELIMINATE 
Ssegment statements Scomas <4ntegei^ I ELIMINATE 
Ssegment statements scomas<4yariable^

J

'.f

place from left to right with no operator precedence. 5
. -IThe value of a string expression is the concatenation %

of all the strings appearing in it. Every time 
the system variable "NEWVAR" is executed, a new 
variable is generated. Its value is automatically 
assigned to "VAR" and can be used later. The 
system variable "DELIMITER" by default has a blank 
as its value. But this value can be changed by an 
assignment statement. When the code for a full 
source statement, is generated, the delimiter is 
inserted at its end. Execution of the statement 
:= CODE has the effect of handing the current 
value of CODE to the system which in turn preserves 
it at the appropriate place (as described later).
On completing the analysis of a source statement 
code is generated on the output device.

I
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<4reinstate statement^ = REINSTATE I REINSTATE
Ssegment statements & comas <^nteger]!> 1 
REINSTATE (segment statement ScomaS 

<Avariabl(^
<(^code statement = CODE I CODE <string ex%^ 
<^jump^ ~ CONTINUE ^alphanumeric^
<Amiscellaneous statemen^> = ((segment statement^ 1 
<Aeliminate statement^ I <(reinstate statement^ 1

<Aode statement^ I 
CLEARI CURSOR IIGNORE t

A segment is a part of semantic specification 
which can be called for action as an independent 
piece of specification. A segment is named by 
a segment statement.

An eliminate statement temporarily eliminates 
a semantic production. On any subsequent 
occasion, it is considered non existent until 
it is reinstated by a reinstate statement. If 
the command ELIMINATE has no argument, the 
current statement is assumed. Otherwise the 
segment is specified explicitly and the 
production number is separated from it by a 
coma. A statement CODE with no arguments 
generates code as specified in the code field

t it can be followed by a string of valid characters. i
■I
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of the current semantic production, otherwise 
that specified by its arguments is generated. 
The IGNORE statement allows comments to be 
introduced. The whole statement is ignored. 
On executing the CURSOR statement, "£" is 
printed under the current cursor position.

5.66 TRANSFER OF CONTROL STATEMENTS;

<^ffirmative predicat^> = EQ|LT| GT |LE |GE 
<Aiegatio^ = N
<Jiegative prédicat^ = &negation& <(affirmative

predicate^
<(^redicat^ - <^ffirraative predicatej> [ ([[negative

predicate^
<(argumen^ = <[operan(^ I <[guoted string[}>
< A tes t s t a t e m e n t  = < A * r e d ic a t ^  < ([o p .b ra c ^

<[[argumen^ ([argumen-^ ij
<4cl.brac^ |j

([conditional statement!^ = ? ([statement^ I
([transfer of control statement[[> = ([test statement t

(^conditional statement |
<[statement[[> ~ <[stack statement I <Cgue statement I

<Atable statement I <[assignraent statement^!
: < j u m p ^
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The significance of each of the affirmative 
predicates is as suggested by the mnemonic.
When prefixed by N, the predicate is negated. 
The result of evaluating a test statement is 
to assign the appropriate value, TRUE or FALSE, 
to the system variable TEST, This value 
remains accessible in the succeeding statement.

To execute a conditional statement, the value 
of the variable TEST is checked (its value 
would have been effected by the previous 
statement). If it is true, the part of the 
current statement following is executed, 
otherwise the control is passed to the next 
statement.

5.67 SEAS:-

This is a system defined stack with two cells 
in each element. It is controlled by the system ' 
and developes and collapses automatically. 'In 
the first cell of each element is kept a 
particular indexed nonterminal of the grammar.
The second cell holds the source string produced 
from it. I'fhen semantic action is to be taken 
on recognising part or whole of a MBNF production,
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the values of its constituents, appear in the 
top elements of the SEAS, the rightmost 
constituent of a production being at the top 
of the SEAS, For example in the grammar

5.67.1 < y > = a b c

5.67.2 < x > ~ (  <y>)

the SEAS is shown in the diagram

<Y>lf3 c
<Y>1,2 b

a
<x>l,l (

PIG. 5.1

Ï
3
a
i
Î
I

I
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On recognising a semantic production, parts of 
the string covered by the production are 
accessible. These strings appear as values of 
the nodes of the syntax graph at the nearest 
possible state of the production. For example 
if the environment field recognised is
< y > 1, 1; 2; 3, the values available will be

< y > 1, 1 = a

< y > 1, 2 = b

< y > l ,  3 = c

On the other hand if the environment field 
recognised is < x > l ,  1; 2; 3 the available 
values will be
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< X > 1, 1
< X > 1 , 2
< X > 1, 3

(
a b c
)

EXAMPLE 5.3
The semantic production to be executed is

< X > 1,1;2;3 -> CODE <y> 1,1 & CODE < y > 1,2 &
CODE <y> 1,3 & := CODE :

The first three statements generate a b c as 
code, and then this code is handed over to the 
system by the last statement. The system keeps 
the SEAS up to date. On completing the execution 
of the action, all cells of SEAS above the one 
representing the left most symbol in the 
environment field ( <x> 1,1 in the current case) 
are deleted.

<x>i,1 a b c
FIG. 5.2
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5.7 OVERALL STRATEGY

The semantic definition of a programming language 
follows its syntactic definition separated by 
the command %SEMANTICS. This definition may 
be in anyone of the two modes of specification 
i.e. the production mPde and the relation mode.
To select a mode, the %SEMANTICS command may 
be followed by PRODUCTION or RELATION as 
appropriate.

In the production mode, all the environment 
relations are whole or parts of MBNF productions. 
In this mode SEAS is available and user is 
advised to use it. In the relation mode SEAS 
is not accessible.

In either case the semantic definition may 
consist of one or more segments, the top most 
being "SEGMENT-O". Each segment of the semantic 
definition is an ordered set of three field 
productions. Productions with empty environment 
field are executed only once i.e. at the start 
of execution. Recognition of the environment 
field takes place from top towards bottom, the 
first match being considered the valid one.
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Eliminated statements are ignored. On recognising 
each non-auxiliary word, control is passed to 
the semantic synthesiser which processes the SEGMENT-0, 
When the environment field of a semantic statement 
is matched, its action field is executed.
Execution of the action field is complete when 
its last statement is executed or on branching to 
label "STOP" The execution of a segment is 
complete if no environment field matches in the 
whole segment or if at least one semantic 
statement is executed and the value of "STOP* 
is "1". If the value of "STOP" is "O", oni 
completing the execution of a semantic statement, 
the same segment is processed again starting from 
the top most semantic statement of that segment.
,0n branching to "RETURN", if the value of "RETURN" 
is "0", the execution of the current segment is 
considered to be complete and if the value of 
"RETURN" is "1", the current semantic process isI
considered to be complete. In this, control is 
passed back to the syntax analyser.

All symbols of the MTL are reserved symbols.
However this specification can be overridden by 
preceding any such symbol by an asterisk. Two 
consecutive asterisks give the effect of a single 
asterisk as if it is not a symbol of MTL. The
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generated code is kept internally in the form 
of a string as value of "CODE". It is generated 
on the output stationary only after the whole of 
a source language statement has been recognised. 
The output device can be selected by the device 
assignment statement. Execution of "CURSOR" 
prints "£" under the current cursor position.
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T A B L E  51
In this example, the MTL specification of a 
subset of the programming language PATE is given.
Its syntax and the semantics are separated by 
the control card "%SEMANTICS RELATION". This 
means that its semantic synthesis is to be performed 
in the relation mode.

At this stage we will not elaborate the syntax 
any more since it is explained in chapter 8.
The nonterminal "NUMBER" is not defined by a 
MBNF production but it is defined by an MBNP 
function. The source language statements are 
processed and polish notation generated for them. 
Different stages of this process are also shown.

.Since the semantic synthesis is performed in the 
relation mode, the manner in which the syntax is 
written has no effect on it. The parser is used 
to detect errors and give diagnostics. The systemI
defined stack "STACK" is used for semantic synthesis 
and basically the tasks shown in the following flow 
chart are performed.
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Table 5.2 describes the processing of an 
assignment statement. The table is formed 
of three blocks of information. The topmost 
block specifies the syntax of the assignment 
statements. The terminal alphanumeric is 
defined by SN0B0L4 which has been added to the 
MTL processor. The semantics is separated from 
the syntax by the control card %SEMANTICS PRODUCTION, 
It specifies that the semantic synthesis is to 
be done in the production mode. The processed 
assignment statements are displayed following 
the %GENERATE command.

The object of this exercise is to generate 
polish notation for assignment statements. The 
syntax analysis is performed by the syntax 
analyser which has been discussed in detail in 
chapters 3 and 4.

In this example,•there are three semantic 
productions which perform the following task:
a) In an arithmetic expressions without brackets 

i) as soon as a multiplying operator and its 
trailing operand are recognised, their 
order is changed. '

ii) when the whole expression is recognised, 
the SEAS is scanned and complete polish
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notation generated.
b) Bracketed expressions are evaluated and 

then their values treated as ordinary 
operands.

c) The expressions inside brackets are considered 
as independent expressions and are treated as 
described in (a) and (b).
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CHAPTER G

IMPLEMENTATION OF THE 
SEMANTIC SYNTHESISER

6.1 SEMANTIC TABLES

On reading tlie semantics of a programming language, 
tables of its intermediate language are constructed 
such that starting from the first semantic production 
read, the environment fields (E F.) of all the 
statements can be constructed sequentially. The 
action fields (A F ) and the code fields (C F ) are 
accessible through the environment fields of the 
semantic production in which they appear. Segment 
names are treated in a manner similar to the 
environment fields.
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CMI

0 M 
C Q

1

IH

I
H
C Q4,
01EHI
C Q

E.F.ll A.F.ll 1 C.F.ll
E.F.IO A.F.IO C.F.IO
E.F.9 A.F.9 C.F.9
E.F.8 A.F.8 C.F.8
E.F.7 A.F. 7 C.F.7

SEGMENT - 2
E.F.6 A.F.6 C.F.6
E.F.5 A.F.5 C.F.5

SEGMENT ~ 1
E.F.4 A.F.4 C.F.4
E.F. 3 A.F.3 C.F.3
E.F.2 A.F.2 C.F.2
E.F.l A.F.l ‘ C.F.l

Semantic table 
FIG. 6.1

The diagram 6.1 shows the semantic tables for a 
semantic specification. Three fields of each 
semantic production are represented by three 
columns. The bottom production is the first 
production read. The bottom production in each 
segment is called the start production of, the 
segment. As is clear from the diagram, starting 
from EFd., it is possible to access EF.2, E F 3  EF.n
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sequentially and from EP.n> AF»mand CF.mare accessible; 
m and n being positive integers.

On the completion of the syntax and the semantic 
specification, when a "%GENERATE" command is met, 
the system goes through all the semantic statements 
and executes all those which do not have an 
environment field. After that they are made 
unaccessible to the system and processing of the 
source language starts.

6.2 SEMANTIC SYNTHESIS

During the syntax analysis of a source language 
statement, a “history" of the recognition is kept 
on the SAS. When a node is successfully traversed, 
it is recorded. In essence it is deleted when the 
string covered by it is recognised. When semantics 
of the language is specified in the relation mode, 
each time a new symbol is recognised, the semantic 
synthesizer is called for action. In the production 
mode it is called each time the part of a production 
enough to form a valid environment expression is 
recognised. i
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When the semantic synthesizer is called, an attempt 
is made to recognise a production in SEGMENT-0. If %
the match is found, its action field is executed, 
otherwise the control is passed back to the syntax 
analyser. In the action field, execution takes 
place sequentially from left to right unless an %

explicit transfer of control takes place. The 
code field is invoked by the execution of a 
statement in the action field. The string resulting 
from the execution of a code field is generated as 
the code.

At the time of constructing the semantic tables, 
internal code is generated for each semantic 
production as it is read. The order of the 
internal code therefore is reversed from the one 
specified by the user. To ensure top-down 
recognition for the user specification, the
recognition of the semantic productions in any

I
segment always proceeds from bottom upwards.

To recognise a semantic production in any segment, 
starting from the start production of the segment, 
an attempt is made to match the environment fields 
of any one of the productions, the first match 
considered as the desired one.

Ij;
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To recognise different relations in the environment 
field, various checks are made on the relation 
symbols under consideration and on various data types 
and previously kept symbols. For example to recognise 

- *,* it is checked that '+* is at the top of the 
STACK and is the symbol currently under consideration,
In the relation mode the recognition process is fairly 
straightforward, but in the production mode it is more 
sophisticated and needs some explanation and is 
discussed below.
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6.3 RECOGNITION OF ENVIRONMENT EXPRESSIONS:-

Consider that at any stage of parsing
^1' ^2' ^ 3 ------- ^n the nodes in SAS such that
N. is at the top while N is at the bottom. N.I n i
is the immediate descendant of N ^ , N^ of N^ and so 
on, Ng is the immediate descendant of N^. N* is 
a node in the syntax graph representing the nonterminal 
under consideration in the environment field. To 
recognise N*, it is matched with N^, where
i = 0 ,  1, 2 ------ n. i is assumed to be such that

does not have a successor node.

If the whole of a production appears as a relation 
in the environment field, SAS is searched from top 
towards bottom for a node Np such that 
Np is descendant of Np^^

and N_ , is the successor of N_P-1 P
Np_2 is the successor of Np_^

and so on.

Np, Np_^, Np_ 2  Nq are then matched with the
given production in the environment field. If only 
the r rightmost symbols of a production appear as a 
relation, then the given environment field is

I
matched with

I

^P-(P-r)' ^P-(P-r)-l' ^P-(P-r)-2 i
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For example consider the example 4.3, on recognising 
the expression A + A, the SAS has the form shown in 
Fig. 6.2.

If N* is
"A", it matches the most recently recognised symbol « 
<^peran^ , it matches the node N^, which is not on 

SAS.

Ni
^2
N 3
N4
Nc

<addition exp>l,1 DAU
<addition exp>l,3 DAU
<addition exp>l,2 SUCC
<addition exp>l,1 SUCC
<addition exp>

FIG, 6,2
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It is worth noting at this stage, that the 
(^addition e x ^  can have two different values 

i.e. <(operan^ and
<^operan<^ ^operator^ <(̂  addition .

Hence in the semantic specification ambiguity 
can be caused. It is the users responsibility 
to avoid it. This however is not a big handicap 
since in BNF a nonterminal can have more than one 
different alteratives any way.

On deleting the top cell of the SAS shown in 6.2, 
it will have the following 
form.
In this case f = 3 and

addition e x ^  1; 2; 3 
.matches N^, and while
DUMMY addition exj^
1, 2; 3 matches and 
since r a 2.

<addition exp>1,3 DAU
<addition exp>1,2 SUCC
<addition exp>l.1 SUCC
<addition exp>

FIG. 6.3
6.4 THE OVERALL STRUCTURE

The semantics of a programming language is described 
in terms of its syntax. If V^ is the vocabulary of
a grammar G and v^ e V^. Then v^ is treated as an
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identifier which always has as its value, the 
correct code corresponding to the part of the 
source statement recognised by its descendants 
at any instant of time.

Consider the following specification

6.4.1 <^peranc^ - A

6.4.2 c ^ e r a t o ^  = +

6.4.3 ((addition e x ^  - <^perand^ I <Q»perator^
^addition e x ^

6.4.4 %SEMANTICS PRODUCTION

6.4.5 </^ddition exp^ 1, 1; 2; 3 -> CODE ^addition e x ^  1, 1 
& CODE ((addition e x ^  1, 2 & : = CODE & CODE = NULL:

In (5) we may refer to members of (In 
processing different texts and at different instances 
in processing the same source statement).
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To deal with this, the system manipulates different 
nodes of the syntax graph, assigns code to them and 
updates it as the processing proceeds. For every 
occurrence of v in a semantic statement, reference 
to the corresponding node is assumed. For this 
purpose, the system has a semantic stack (SEAS) 
with two cells in each element; definition cell
and the value cell. Nodes are stored in the I

1definition field and their respective codes in |
the value field. 111

When a symbol of the source statement is recognised, 
the node being traversed by the syntax analyser 
along with the most recently recognised symbol is 
stacked in the SEAS.

Consider that the syntax analyser traverses a path 
to "go" from the current node to the one which 
covers it. In this case if the current node m
is at top of both SAS and SEAS
a) the SAS-top is deleted.
b) replaces N^ at the SEAS-top.

Suppose that ”ra-2-------- '*1
(examples 4.1, 4.3) are the nodes in SAS which 
match the environment field. In the action and 
code fields of these semantic statements reference
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may be made only to v^s corresponding to
N ,*N _   N-. On successfully completingra m-1 m-2 1  ̂ z

the execution of the action field, the elements of
SEAS representing «, N ,   N_ are^ - m-1 m-2 m-j l
deleted. Control is then handed back to the 
syntax analyser. Processing continues until the 
syntax, analyser reaches the start symbol of the 
grammar. At this stage there may be only one 
element in the SEAS with the start symbol of the 
syntax graph in its definition field. The value 
of this element is generated as code on the output 
stationary. However, if the definition field of 
the element in SEAS is other than the start node 
of the syntax graph, no code is generated from the 
SEAS, since it is assumed that the user has a 
separate algorithm for doing so.

A string is formed by concatenating the code
generated by executing successive CODE statements.
When the statement CODE" is executed, the value
of N in SEAS is set to the CODE string. If the m
MTL variable SEAS is set to "()", the semantic 
stack SEAS does not develop and the user must 
declare and manioulate his own semantic stacks.
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:

In the example 4.3, when the SAS has the form 
shown in FIG. 4.10, the SEAS will be as follows: . t

i.

<addition exp>l,3N 1
<addition exp>l,2N2
<addition exp>l,lN3

FIG. 6.4

First of all "A" was recognised and was the only 
element stacked in SEAS. It had <addition^ exp^
1,1 in the definition cell and A in the value cell.

On recognising "+", a new element was created in 
SEAS, with definition field as c^ddition exp^ 1,2 
and the value field as "+”. As "A" was recognised, 
the third element in SEAS was created having 
^addition exp^ 1,3 and "A" in its definition and

;
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the value fields respectively. At this stage 
(5)l.s executed. On executing its action 

field, a string of code A A + is generated. 
This code is set in the value field of and
the string itself destroyed. On completing the ^
execution, the elements of SEAS representing 
Nl and. iN2 are deleted.

6.5 HIERARCHY WITHIN ENVIRONMENT FIELD

The environment field of any particular statement 
is tried from left to right. First of all the 
symbol '"1" outside the scope of brackets " (" 
and ")” .is searched,for successful recognition 
of its left hand side known as a master alternative 
results in a successful match of the environment 
field. In the case of failure, the master 
alternative on the right of the current one is 
tried. This master alternative essentially is 
the environment expression between the above i
mentioned "I" and the next one on its right, which 
is out-side the scope of "(" and If however
there Is no such symbol, the end of the environment |
field is assumed to have been reached. In any one 
of the above mentioned cases if there is no "1" 
outside the scope of "(" and ")", the end of the

,1
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environment field is assumed instead. On testing 
all the master alternatives, if no match is found, 
failure is reported to the semantic synthesiser 
in the recognition of the current environment 
field.

To recognise any one of the master alternatives, 
an attempt is made to find a relation operator 
(if any) outside the scope of "(" and Its
left hand side is evaluated before the right hand 
side. On either side of the relation operator all 
the alternatives are tried, ignoring brackets. 
However if no alternative matches on any one side 
of the relation operator, the recognition of the 
current master alternative is considered to have 
failed. While evaluating expressions inside 
brackets "(" and ")" all the alternatives are 
tried from left to right and the same rules apply 
as that of master alternatives, except that no 
further bracketing is expected. This would have 
been detected at compile time as an error.
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example:- 6.1

Consider the environment field
I *B* I 'A') ~<b> I ( <a> I <b> I <c>) 

which has two master alternatives:
{'C I 'B' j 'A') ~<b>and ( <a> | <b> | ĉ> ) .
The former is tried first and in the event of 
failure the latter is attempted. To recognise 
the former master alternative, the position of

is determined and then the bracketed alternatives 
are matched against thescurce text. If any one of 
these alternatives matches, the right hand side 
of is tried, otherwise the second master 
alternative is attempted.

6.6 PROCESSING OF SOURCE STATEMENTS:-

During the processing of a source statement, every 
time the control is transferred from the syntax 
alanyser to the semantic synthesizer, the SEAS is 
adjusted. The nature of the adjustment depends 
upon whether this action was taken due to the 
recognition of a new source language symbol or 
purning of some part of the parse. A search is 
then made for a statement in SEGMENT-0, the 
environment field of which matches the current
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environment. The system routine whose job it is 
to recognise the environment fields of the 
semantic statements is divided into two parts:

i) which recognises parts (or whole) of the
MBNF productions (Production mode)-

ii) which recognises all other types of master
alternatives in the environment expressions 
(relation mode)

The semantic synthesizer determines whether or 
not (i) is applicable, (i) is applicable only if 
at least the top or the second top element of SAS 
has the SUCC in its path field.

The environment field of the semantic statements 
are considered one by one. If the semantics is 
specified in the production mode (i) is applied 
otherwise (ii) is considered. If a match is found, 
its corresponding action field is executed, otherwise 
the control is returned back to the syntax 
analyser. During the execution of the action field, 
if the control is transferred to another segment, 
the current position is stacked in a system stack.
The new segment is then executed exactly in the 
same manner as that of the SEGMENT-0.
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Flow of control for most of the statements used 
in the action field is straightforward. All the 
statements are executed sequentially from left 
to right, except when the control is transferred 
by a branching statement.

When an ELIMINATE statement is executed, the 
environment field of the corresponding semantic 
statement is marked. Marked environment fields 
play no part in the recognition of environment 
fields. REINSTATE statements unmark the 
environment fields.

On completing the execution of a semantic 
production if the value of STOP is "()", control 
is handed back to the syntax analyser. For 
non-zero values of STOP the whole segment is 
tried again. If the execution of an action 
field is terminated by branching to the label 
RETURN, the value of STOP is assumed to be "O”.

In MSEAL, there are symbols with more than one 
meaning depending upon the context in which they 
are used. These cases are treated separately.
For example CODE can either be used as a variable 
having a string value or as a MSEAL command. In 
the former case, a SN0B0L4 variable is made
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equivalent to it and is referred to at all 
subsequent occasions. In the latter case, it is 
treated like any other MSEAL command and is kept 
in the MSEAL symbol table.

6.7 DATA OBJECTS

All data objects, ques, tables and stacks are 
dynamic and develop in the form of doubly linked 
lists. The system has a linked list, called 
"START-LIST", of pointers to a variable number 
of linked lists which represent the data objects. 
An element of the START-LIST is known as a 
descriptor. Its format is as follows.

Definition Type Size Start
Pointer

End
Pointer

Forward
Pointer

FIG. 6.5
I

DEFINITION:- holds the name of the data object 
in character form.

TYPE: coded to indicate whether the data 
object is a table, que or a stack.
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SIZE;- Specifies the number of cells of an
element of a data object as it appears 
to the user. (The two cells required 
for linking purposes are not included 
here).

START-POINTER:- pointer to the start of the data
object.

END-POINTER;- pointer to the end of the data
object.

FORWARD POINTER;-Pointer to the next element in
the START-LIST. The last element 
in the START-LIST has a null string 
in this cell.

Each element of the START-LIST has pointers to 
both ends of its data object. Each element of a 
data object except the end elements, points to 
and is pointed at by its adjacent elements. The 
end elements are marked by null string in the 
pointer field.
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When a fresh data object is to be constructed,, a t

new descriptor is created and linked in the 
START-LIST with appropriately initialised fields.
An element of the data object is then created 
with the required number of cells. These also 
are initialised appropriately. When a new 
element is entered in any data object, the start 
list is first searched for the name of the data 
object and then after checking its type and the 
element size, the new element is created at the 
end of the data object. If however, the name of 
the data object is not found in the START-LIST, 
a new data object is created. If the name is 
found in the START-LIST but its size or type do 
not match an error message is output.

To search for an element of a data object, the 
START-LIST is first checked for, the name, type 
and the element size of the data object. Then

I
using the links of the data object, the particular 
element is sought. Since all the data objects are 
created using doubly linked lists and their 
"starters" in the START-LIST point to both ends,
it is possible to make a search starting from

■si
either end. The first cell of each element of a j
data object is considered as the definition cell. jy
If the element is referred to by name rather than
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the index, this cell is checked,

EXAMPLE. 6.2

Consider the statement
PUSH "ABC", "CD" IN STACK.

The START-LIST is searched to find an element 
with

DEFINITION = STACK

TYPE ~ stack

SIZE = 2

If result of the search is "yes", a new element 
of the stack with "ABC" in the first cell and 
'CD' in the second is created. The last element 
of the stack is linked with it and it is pointed 
at by the END POINTER of the stack. If search of 
the START-LIST for an element with "STACK" in the 
definition field fails, a new starter is created 
with the following specification:
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DEFINITION = STACK

TYPE = Stack

SIZE = 2

The first element of the stack with the above 
starter has "ABC" and "cd" in its two cells. 
To retrieve information from one of the data 
objects, a statement of the following form is 
executed.

6.7.1 SEARCHDOWN STACK ('ABC'(2))

The system searches the START-LIST for the 
specifications given in example (6.2), using 
the END POINTER of this starter, the stack is 
then searched from top downwards so that it has 
"ABC" in its first cell (internally 2nd cell).
The value of the 2nd cell (internally the 3rd 
cell) is then returned using VAL.

If the statement ( 1 ) is of the form SEARCHDOWN 
STACK (C(X)) ;
the process of execution is exactly the same 
except that the values of c and x are assumed.
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CO

Internal structure of different data objects

FIG. 6.6
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Table 6.1 is the same as table 5.1 except that 
in this table systematic conversion of arithmetic 
expressions to the reverse polish form is displayed. 
After every call of the semantic synthesiser, the 
state of the code is displayed.
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Table 6.2 shows different stares of processing 
assignment statements with the specification of 
table 5.2. At different stages, when the semantic 
synthesiser is called, a table of information 
stating the states of the SAS and the SEAS is displayed 
along with the current cursor position on the 
soDTce language statement. The node fields show 
which node is stacked in the SAS or the SEAS.
PCS is the current cursor position and PATH is the 
path traversed after stacking the said node. In 
SEAS, the CODE field gives the current value of the node 
in terms of the code.

As it can be seen from different tables, it is
not necessary that every time the semantic
synthesiser is called, some semantic production
must be executed. If no semantic production is
recognised the control is returned back after updating
the SEAS. For example, although no semantic production
was recognised in table 6.21, ALFHAl?Uî*rSRIG is stacked

N O D E
in the node*

and X in the code field, 
table 6.22, := jjqse is stacked in the node field

and ;== in the code fields of SEAS,

-
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In 6.23 however two actions took place. The 
node field of the topmost element was changed
from ALPHANUMERIC (variable) NODE
Then a new element was stacked with and +,

Similar is the case at other stages.

In table 6.24 to form the parse tree

given on Page 188
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To recognise a senantic production at the current 
state, we are only concerned with to As a
matter of fact is redundant since it plays no 
part in parsing except to modify the path# Hence 
we concern ourselves with the following tree structure4

adding  ̂ multiplying< o p e « n d > - < „ , > _ < o p a » n d > ^ ^ <  >

FIG. 6 . 8

This matches the second semantic production in 
table 6.2 , Since

< multiplying > ----------- <opeiand >
operator SUCC

FIG. 6.9

is the same as ^multiplying exp^ 1, 2; 5 and the 
HWHIY by definition matches all the nodes on their 
left.
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CHAPTER 7

EXTENSIBILITY IN MTL.

7.1 EXTENSIBILITY;-

A programming language must provide the user with 
adequate means of expressing an algorithm in a 
manner which matches the problem he wants to solve. 
There are two approaches to achieve this end; 
either to have a large universal language or a 
large number of problem oriented languages. For 
a large universal language, features must be 
provided for many diverse areas e.g. numerical 
analysis, compiler writing, list processing etc.
The translator for a universal language will 
unavoidably be large and hence may not be usable 
on small machines. Because of its size the 
translator is difficult to write, maintain and 
perhaps relatively inefficient. Another difficulty 
with the design of a universal language is that 
the continuous need for revision of.already 
existing computer languages, has proved that it 
is impossible to visualise all the needs of the 
prospective users and also of the usefulnëss and 
shortcommings of different features of the language.
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Once the language is designed, one might be so 
committed to it that any modification requires 
a major change in the design or else inefficiency 
and inconsistency is the result.

The idea of having special-purpose languages has 
a slight advantage over the above mentioned 
approach although most problems remain or are 
merely replaced by similar ones. The need for 
the maintenance of their translators means that 
a large part of the systems-programming effort 
at a given establishment may eventually be taken 
up in ensuring that a large number of languages 
are available. Different implementations will 
have different designs and hence pose a greater 
problem for maintenance of software and advisory 
support for its users. Introduction of new 
features in a problem oriented language is no 
simpler. However the languages are more likely 
to be suited to the user's requirements an# 
probably more suitable for his problem.

Another alternative approach is the design of an 
extensible language which starts off with a few 
features, but which can be extended by the user. 
The extensibility can be of two forms ; syntactic 
and semantic. The term syntactic extensibility
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is used to indicate the possibility of extending 
a language by means of a program written in the 
same language. The concept is similar to that 
introducing procedures in ALGOL 60, except that 
the syntactic form of call of a procedure is 
fixed whereas in some syntactically extensible 
languages like IMP [irons.E.T. 197o] it is 
separately specified in each declaration. The 
possibility of introducing new concepts in the 
language (by modifying its basic implementation) 
may be called semantic extensibility.

Extensible languages (specially semantically 
extensible languages) can be seen to have the 
same effects as that of several problem oriented 
languages since different extended versions of an 
extensible language can be considered as different 
problem oriented languages. Maintenance is relatively 
simpler since the design approach remains unaltered.
It is however wrong to say that an extensible language 
is a perfect solution to the system-software problems. 
Most existing extensible languages put some constraints 
on the type of features which may be introduced as an 
extension. The size of some such languages is fairly 
big. In the case of semantically extensible languages, 
a high degree of programming skill and knowledge 
concerning the language implementation is required
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7.2 MTL AND EXTENSIBILITY ;-

The MTL is semantically extensible. New features 
can be introduced in it and even the whole of 
SN0B0L4 can be considered as a subset of MTL, 
since different SN0B0L4 programs can be used to 
perform tasks which are not conveniently performed

to make extensions. Moreover a survey of |
extensible languages [SOLNTSEFF & YEZERSKI 74] 
shows that at present there is a great diversity 
of approaches taken by different workers in the 
field and there is no apparent agreement as to 
what constitutes an extensible language. Since 
very little material is available on the 
experience with extensible languages, it is 
rather difficult to comment confidently on their 
different aspects to a user. As Irons'[iRONS 7 0 J 
experience shows, the problem of diagnostics and 
ambiguities due to extensions should be taken 
seriously. In our case, the arguments in favour 
of semantic extensibility can also be derived from 
chapters 3 and 5. We shall rely on this feature 
"for introducing the desired no-backup parsing, to 
control lexical scanning and to provide power for 
MSEAL.
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by the MTL, As many SN0B0L4 programs can be 
introduced as the user wishes and at any place 
in the MTL definition. Each program is 
enclosed in bracket "%SNOBOL" and "%FINISH”.
The SN0B0L4 "END” statement is required only 
if a transfer to it is to be made (in which 
case the execution stops completely and the 
job is terminated). All programs are handled 
automatically by the processor and are linked 
at the appropriate place. To facilitate 
communication between the MTL and its extension 
routines in SN0B0L4, different system variables are 
provided. Since the processor is implemented 
in SPITBOL, the version of SN0B0L4 available 
for extension is as described in the SPITBOL 
manual. Some restrictions however have been 
put on its use. Slightly different extension 
mechanisms have been provided in MSYL and MSEAL,

T.

the reason for which will become clear in the 
latter part of this chapter.

Before we go any further we shall take an overview 
of the SN0B0L4 facilities available for extensibility, 
Each extension of MTL must be a valid SN0B0L4 
program rather than a mere user defined function.
No global variables, user defined function names 
or labels may start with the letter "A". Internally
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all SN0B0L4 programs forming extensions are 
linked together and treated as a single entity.
It is therefore essential that conflicts of 
labels, variables and function names within 
various extensions be avoided. It is also 
possible to define a data object in one 
extension and access it in another. Since the 
extension programs are handled by the MTL 
processor, no facility concerning system data 
sets and JCL is available or necessary.

Optional SPITBOL control cards -NOCODE, -CODE,
-OPTIMISE and -NOOPTIMISE are also not available.
They may be used but are ignored by the system. The 
system variable e DITOUT can have a system unit as 
its value. The edited version of the SN0B0L4 
program statements appearing after it is listed.
This listing includes the above mentioned ignored 
control cards. When the extension programs are 
completely debugged, the edited code is placed a t ’ 
the beginning of the MTL processor source which 
is then recompiled. During this compilation all 
control cards specified in the extension programs 
are in effect within their scope. No control 
card is ignored. The new code is now the extended 
version of the MTL processor. The aim of extensibility

in MSYL are two fold:
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a) to allow lexical scanning;
b) to introduce look ahead for avoiding backup.

The former is important in automatic syntax 
analysers to allow for exceptions to the general 
rules in MBNF, for instance to distinguish key 
words from identifiers etc. Moreover it is 
faster than a complete top down recognition 
process. The second reason is important since 
ours is an ELL(k) parser and look ahead needs to 
be introduced. Since the rest of the syntax 
analysis is done automatically, the only type 
of extensibility required is to be able to 
invoke some SN0B0L4 extension program on meeting 
a certain symbol of MBNF. All undefined MBNF 
nonterminals are considered as names of the 
SN0B0L4 user defined functions (with no parameters). 
The user is assumed to have defined them in his

ISN0B0L4 programs. When such a nonterminal is
Iprocessed by the system, its corresponding SN0B0L4 

function is called. On returning from the function 
the processing proceeds as usual. The source 
language string appears in the SN0B0L4 extension 
program as the value of the MTL system variable 
CARD. The user is allowed to read more cards 
and conta:oi the listing by himself or alternatively 
to concatenate thëiu the end of the already
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existing value of CARD. In this case the 
listing is controlled by the processor, INPOS 
and FINPOS are the initial and final positions 
of the symbol under consideration in the string 
CARD. It is the users responsibility to set 
appropriate values of these system variables 
when returning control back to the system.
System variables OBSTACLE and MATCHED are used 
to inform the system about the result of lexical 
scanning or look ahead performed in any SN0B0L4 
extension. On entering a SN0B0L4 extension, 
their values by default are "O" and "1” 
respectively. On returning to the system if the 
value of OBSTACLE is "1", it indicates that the 
current production is not to be followed any longer. 
If the value of MATCHED is "0", it means that, the 
attempt to recognise the current symbol has failed. 
STACK is a system defined stack which is accessible 
both in MSYL and SN0B0L4. In SN0B0L4 it appears 
as a one dimensional array STACK with 80 cells.
The aim of extensibility in MSEAL is different 
from that in MSYL. In the current version of 
MSEAL, the emphasis is towards generating the 
intermediate language and it is not geared towards 
providing full facilities of a systems language.
The extensibility provided allov/s the use of 
SN0B0L4 for the implementation of such features as

.1
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are required. The new facilities introduced will 
then form part of MSEAL and can be used for later 
purposes•

There are two methods of introducing extensions 
in MSEAL, both appearing only in the action field 
of a semantic statement. In both cases an extension 
must be an independent statement.

The first of the two methods is similar to the 
method of extending MSYL. When an undefined 
nonterminal appears as an independent statement, 
the corresponding SN0B0L4 user defined function is 
called and on returning from the function, 
processing continues as usual.

The alternative method of extending MSEAL is to 
include SN0B0L4 programs in successive brackets 
of %EXTENSION and %PAUSE; the end of this sequence 
of brackets being marked by %FINISH. The name o f . 
each program follows its corresponding %EXTENSION 
command.

During the execution of an action field in MSEAL, 
when a program name is executed as a statement, 
its corresponding bracketed program is activated, 
hhen a SN0B0L4 extension is activated, the MTL
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system variable CARD refers to the whole of the 
action field under consideration. INPOS and 
FINPOS are pointers to the initial and final 
positions of the symbol under consideration. 
Using these pointers, the later part of the 
statement (if any) can be scanned. The MTL 
system variable TEST by default has value "S". 
Its value can be changed to "F" to inform the 
system that the current statement has failed. 
The value of ACTION can be a string of the 
form SNOVAR = ^identifiers or <rdentifier)>
~ SNOVAR. In the former case value of the 
^identifiers in MSEAL is assigned to SNOVAR, 

while in the latter case the opposite is true.

7.3 IMPLEMENTATION OF EXTENSION PROGRAMS;-

We start by describing some of the important 
concepts of SN0B0L4 and then in steps we shall 
explain the whole process of extension.

During the execution of a SN0B0L4 program, it is 
possible, by using the primitive function CODE 
(STRING) to convert a string of characters into 
object code. We shall refer to this process as 
run time compilation. The effect of the function
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CODE is to convert its argument STRING in_to 
the object code. The string must represent a 
valid SN0B0L4 program complete with labels and 
using to separate statements. Blanks are 
as important in strings to be converted to 
code as they are in program itself. A statement 
without a label must begin with a blank. For 
example the variable COMPILE can have a string 
value assigned by the following statement.

7.3.1 COMPILE = 'START &TRIM = 1
+ 1 N = 10 ;*
+ 1 LINE t; j
+ 'l o o p N = GT(N,0) N-1 ;F(LAB) .

+ 1 LINE = LINE INPUT ; (LOOP);'
:,lj

+ 'l a b OUTPUT = "ACTION COMPLETE" j

+ ♦ : (LABEL)' i

This string can be compiled at run time by , 
executing the following statement.

7.3.2 CODE (COMPILE)
After compilation, one way of executing this 
program is by transferring control to START 
i.e. by executing the statement
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7.3.3 ;(START)

The following statements will perform all the 
three tasks described in (1), (2) and (3).

7.3.4
+
+
+
+
+
+

COMPILE = * START &TRIM
N

LINE
LOOP N

LINE
LAB OUTPUT

CODE (COMPILE)

1 ; ’
10

.  Ir
GT(N,0) N - 1 :F(LAB);* 
LINE INPUT :(LOOP)/ 
"ACTION COMPLETE"

;(LABEL)*
I (START)

It is necessary to transfer control to the first 
statement of the newly compiled program, in order 
to make sure that it runs. It is also essential 
to jump out of it, otherwise the control is 
automatically transferred to the label END. It 
is due to this reason that :(LABEL) has been 
introduced in the above program. In order to 
make this statement semantically correct, LABEL 
must appear somewhere in the main program. We 
shall denote (4) by



202

7.3.5 S T A R T  Program ; (LABEL)

The philosophy behind the extensibility in 
MTL is that at execution time the MTL processor
a) given a SN0B0L4 program, converts it into a 

valid string and compiles it into the form (5)
b) when required for extension purposes, it 

branches to START and after completing the 
execution branches back to LABEL.

The method described above is adequate, provided, 
all the SN0B0L4 statements are syntactically 
correct, but how to detect errors if there are 
any? The answer lies in the fact that the 
SN0B0L4 function CODE fails if there is any 
syntactic error. Using this fail condition, 
the key word & E R R L I M I T  and the function SETEXIT, 
diagnostics can be realised. However if the 
whole SN0B0L4 program is treated as a single 
string, only one failure will occur and statement 
by statement diagnostics will not be possible.
To overcome this problem, each SN0B0L4 statement 
which need be separated from the other by a 
semicolon is treated as a separate program, 
edited as such and compiled in the form (5).
Each statement of (1) will therefore be edited 
into the following form and compiled individually.
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7.3.6 COMPILE 
COMPILE 
COMPILE 
COMPILE

'START 
*A501 
•A502 
'LOOP

&TRIM = 1 
N * 10 

LINE =

: (A501) • 
;(A502)* 
;(LOOP)'

COMPILE
COMPILE

*A503
'LAB

N = GT(N,0) N - 1  

:F(LAB)S(A503) '
LINE = LINE INPUT ;(LOOP)*

OUTPUT = “ACTION COMPLETE" ;(LABEL) 
It is not difficult to see that the compiled 
version of (1) and (6) will have similar 
semantic effects. However (6) can be developed 
on the same lines as that of (3), (4) and 
(5). Now we shall modify (5) to be written as 
7.3.7 START Z program ;(LABEL)
In MTL, SN0B0L4 extension programs need be 
executed immediately after compilation. It is 
therefore necessary to compile and execute the 
following statement immediately after (7).

COMPILE = ' :(START)*
Since the extension programs are to be linked 
with the MTL processor which itself is written 
in SN0B0L4, various checks need be made and 
actions taken to avoid conflicts. We will discuss 
them briefly since we assume that the reasoning 
behind them is relatively easy to follow.
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Different effects can be had in a SN0B0L4 
program by setting the values of &ANCHOR,
&TRIM and &FULLSCAN. As far as the linking 
process is concerned, the MTL processor works 
with the following specifications.
7.3.8 & ANCHOR = 1

&TRIM = O
&FÜLLSCAN = O

It is thus necessary that (8) should be 
executed every time control is passed back 
to the MTL processor from an extension program, 
in case these specifications have been changed.
This is partly embedded in the system and partly
achieved at the time of generating code. While
developing (7) for an extension program:
a) comment cards are ignored,
b) The SN0B0L4 control cards -CODE, -NCODE,

-COPY, -FAIL, -NOFAIL, -OPTIMISE or -NOOPTIMISE 
are ignored.

c) For all SN0B0L4 control cards other than 
described in (b) no code is compiled but 
appropriate action is taken by the MTL 
processor.

d) Only the leftmost 72 columns of a card are 
considered.

I
e) Before compilation, statements continuing

I

on more than one card are concatenated so 
as to make a single string. In this case



205

the continuation symbol *+* is removed.
f) All SN0B0L4 statements including the 

original processor and internally generated 
statements are counted for listing. This 
is to make sure that the error messages are 
given with correct statement numbers.

g) Duplication of labels is checked.
h) It is checked that no label, identifier or 

a function name starts with letter "A".

The name following the %EXTENSION command is 
considered as the name of a user defined function.
A statement is generated and compiled for defining 
a function with this name, having no formal 
parameters or local variables. The next SN0B0L4 
statement is considered as the first statement of 
the function and flow of control is arranged for 
this. When a %PAUSE or %FINISH command corresponding

Ito a %EXTENSION command is met, the end of 
particular function is assumed and a go to field 
(RETUI^) is generated and compiled such that after 
execution of the function, control is always 
transferred to the label RETURN, Considering that 
the %EXTENSION PRINT appears immediately before a 
SN0B0L4 program which is edited into (6). Then
the edited version will be as follows
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7.3.9 COMPILE = 'START DEFINE ( "'p r i n t o'' , "A50T' ) : (A505)'
COMPILE - 'A501 &TRIM = 1 : (A502)'
COMPILE = 'A502 N = 1 0 : (A503)'
COMPILE = 'A503 LINE = : (LOOP)'
COMPILE = 'LOOP N = GT(N,0) N - 1 :F (LABEL)S

(A504)'
COMPILE = 'A504 LINE = LINE INPUT : (LOOP)'
COMPILE = 'LABEL OUTPUT = "ACTION COMPLETE" I (RETURN)'
COMPILE = 'A505 : (LABEL)'
On encountering an ACTION statement, statements 
are generated and compiled to call an appropriate 
system defined function to perform the action 
specified. When the command %EDITOUT is specified 
in any SN0B0L4 extension program the effect is as 
follows.
Actions (a) to (h) specified above are not carried 
out. Moreover the statements 

' ; (LABEL)'
' ; (START) '

are not generated at the end of the program, 
instead the statements specified in (8) are 
generated. SN0B0L4 statements are generated to 
initialise tables of labels, function names and 
to account for the total number of statements 
generated. All these SN0B0L4 statements are 
displayed on the output stationary.
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When the user adds these newly generated 
statements to the processor, it looks as 
follows ;

S T A R T  program

& TRIM = 1 
& ANCHOR = 1 
& FULSCAN = 1

M T  L processor

FIG. 7.1

The extension statements now form part of the 
MTL processor and the initialisation of the 
key words described above helps to maintain 
the correct mode of the MTL processor.
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7.4 LINKING EXTENSION PROGRAMS WITH THE MTL PROCESSOR:-

During the construction of the syntax graph, the 
system uses a symbol table. All nonterminals are 
entered in this table. The entries for undefined 
nonterminals are marked. At the completion of the 
syntax graph, the system scans through the whole |
of the symbol table to look for the marked entries |

Iand generates appropriate code for linking user |
defined SN0B0L4 functions. Moreover the syntax |
graph is modified so that the marked nonterminals 
are treated as terminals and it is possible to 
link them with the user defined SN0B0L4 functions.

During the normal process of syntax analysis, when 
•a terminal is processed, control is passed from 
the MSYL SCHEDULER to the MSYL MATCH-BLOCK of the 
processor. In the MATCH-BLOCK, it is attempted to 
match the current terminal with the current symbol 
of the source statement. The control is then passed 
back to the SCHEDULER with the appropriate signal 
for whether or not the match was successful.
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MSYL MATCH- BLOC K

Is t h e ^  
match with 
SYMBNOW 
>successfu4r YES

NO

FIG.7.2

The failure path is kept open at the time of 
writing the processor. On completing the syntax 
graph if there is no undefined nonterminal in the 
symbol table this path is completed as shown in 
the above diagram. For this purpose, SN0B0L4 
code is generated internally in the form of a 
string and is compiled using the SM0B0L4 function 
CODE. On the other hand, on scanning the symbol 
table if the system detects some undefined 
nonterminals, a warning message is displayed on 
the output stationary. The symbol table entries 
are unmarked. The syntax graph is modified such 
that the node under consideration is treated as a

terminal rather than a nonterminal
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undefined <n> A

A
A

Undefined nonterminal 
before modifying the 
Syntax graph

<n> n

A
A
A.

Undefined nonterminal 
after modifying the 
Syntax graph

A__i

FIG. 7.3

Moreover the appropriate number of SN0B0L4 
statements are generated internally in the form 
of a string, complete with semicolons, separating 
them from one another. The statements perform 
the following tasks.
a) Find out if the current terminal represents 

an undefined nonterminal.
b) If (a) is true, call the appropriate function 

and on returning from the function pass the 
control back to the MSYL SCHEDULER.

c) If (a) is false, return control to the SCHEDULER 
with a signal of failure. i

»
■

-■I
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d) Both in (b) and (c), on returning from a
function, before executing any other statement 
in the SCHEDULER, the following statements 
must be executed,
&TRIM = 0; &ANCHOR = 1; &FULLSCAN = O 

MSYL SCHEDULER
MSYL MATCH- 

BLOCK

the match with 
SYMBNOW 

. successful YES

NO

Is the 
termina 1 a

s n o b o l4. f u n c t io n NO

YES

C all the appropriate 
SN0B0L4 function and 
execute (7. 3. 8)

FIG. 7.4

id
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As can be seen from the diagrams given below, the 
basic principle underlying the linking mechanism 
for both methods of MSEAL extension is similar to 
the one for MSYL extension. The difference being 
that MSEAL SCHEDULER and MSEAL MATCH-BLOCK 
respectively are considered at the place of 
MSYL SCHEDULER and MSYL MATCH-BLOCK. Moreover 
the point of extension is determined in different 
pattern .

MSEA SCHEDULER

MSEAL M A T C H -  
BLOCK

Execu te the  
appropriate  
statem ent in  the  

MSEAL processorHas
the statem ent been  

recognized
YES

NO

FIG. 7.5
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If a statement is not recognised, normally a path 
should be provided to the part of the process which 
displays an error message. At the time of writing 
the MTL processor, this path has been kept open.
On recognising the %GENERATE command this path is 
closed, by generating and compiling internally, 
the SN0B0L4 code, as shown in the diagram by the 
dotted line. The linking process in this case 
is carried out at the time of constructing the 
semantic tables as well as during compiling the 
SN0B0L4 extension programs. This is because 
information about extensibility is received at 
both stages. After meeting the %GENERATE command, 
the MSEAL MATCH-BLOCK with its various linking 
provisions is as in the diagram given below.

MSEAL SCHEDULER
MSEAL M A T C H -  

BLOCK

Execute  
appropriate  
statem ent in  the 
M SEAL processor

Has the  
statem ent been 
recognized by the  Syste 

embedded in  
cess

Execute the  

appropriate  
extension 

function

M SEAL statem ent

FIG. 7.6
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During the construction of the semantic tables 
when a statement starting with an undefined 
nonterminal appears in the action field, the 
linking mechanism for calling the corresponding 
SN0B0L4 function is provided. At this time a 
new entry is made in the symbol table of already 
defined nonterminals. This entry does not point 
to any node in the syntax graph, but is necessary 
to make sure that every such nonterminal has a 
unique linking mechanism. At execution time, 
the processor treats it like any other statement 
without even noticing that it is an extension 
rather than part of the original processor. The 
linking mechanism for extensions provided by 
%EXTENSION commands is exactly the same as above 
except that the name following the %EXTENSION 
command is considered as the function name.
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M S Y L  S C H E D U L E R

/k A
MSYL MATCH- 1 1BLOCK ■ I i! 1

Is the

t 1i 1 
! 1 
; 1y /̂'̂ match w ith  SYMBNO\V\^ ) j

Jump to A  LAB. 84 f NO

i YESJump to AIAB. 501

Call the 
SN0B0L4 function

I

NO

Execute the S tatem ent 
specified  in  (7 . 3. 8)

'I'his flow chart should bo read in conjunction with table 7.1.

FIG. 7.7
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Table 7.2 is a modification of table 7.1. In 
this table, the edited version of SN0B0L4 
statements is also shown. It should be compared, 
with (7.6) to (7.8). (7.8) however is embedded
in the MTL processor and is not displayed.
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CHAPTER 8

PATE “ PROCESSING OF ARITHMETIC 
AND TEXTUAL EXPRESSIONS.

8.1 INTRODUCTION:-^

In this chapter we will describe the programming 
language PATE (processing of arithmetic and 
textual expressions). It is a problem oriented 
language, specially designed for arts students 
and school children.

It has its basis, in SNAP jBARNETT 69] which is 
a text processing language with restricted 
arithmetic facilities. Most of its text
processing facilities with some modifications

j
have been carried over to PATE. New features 
have been introduced to handle arithmetic 
expressions. In the next section the PATE 
syntax is defined fully. Since it is quite 
like English, details of its semantics have 
been omitted. For clarification, reference 
may be made to working PATE example;
and the already existing informal &JAP documentation.
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At this stage, for reasons stated already 
further research was diverted towards the 
automatic translation system which forms 
the bulk of this thesis and is described 
in the previous chapters.
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8.2 FUNDAMENTALS:-

ut-tsJL/ — f i t  D IV .  . . . . . . . . . . . . . . .  I Z

< ^ l g i ^  = 0 I 1 I 2  I 9
<^ecimai> =

+  -

(

<(sigr^ =
< ^ u o t ^  =
<^p.bra<^ =
<(cl.brac^ = )
C^lphanumeric^ = <(digi^ | ^ e t t e ^
<^eparator^ - , j blanks AND blanks
AccumulatiOI^ « ANSWER | IT | ITSELF I RESULT |

RESULTING FROM 
<^dummy word^ = CALCULATE | EVALUATE | TAKE j LIST 
ELEMENT j ELEMENTS f OF | THE ] BY j TO [ AN | A j 
BE I FOR I SPACE j NUMBER | NUMBERS 

^system control coraman<^ = IGNORE j TERMINATE | EXECUTE 
^affirmative comparison word^ = EQUAL TO | GREATER THAN |
LESS THAN j SAME AS | LESS THAN OR EQUAL TO |
GREATER THAN OR EQUAL TO j

^negative comparison v/ord^ = NOT ̂affirmative J
comparison word'^

^(comparison word^ - ^affirmative comparison w o r d ^  j
^negative comparison word^

<type^ = INTEGER | DECIMAL j
((integer^ = &integer& &digit& &digit‘&
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<^ecimal numbe:^ = &decimal& &integer& ] &integer&
&deciinal& &integer&

^unsigned numbe^ = <(intege^ | ^<^ecimal number^ 
<^umber^ = Sunsigned numbers 
((Identifier^ = &identifier& &alphanumeric&
<label^ = sbrac op& «identifiers Sbrac.cl.S 
^quoted s t r i n g  = «quotes «strings «quotes 
<(^rdinal adjectiv^ ~ 1-ST 2~ND | 3-RD | «integers -TH

«signs «unsigned numbers 
«letters

<s<
extracted element^ = <^ordinal adjectiv^ <(identifier^a 

<^xtractioi^ = <(^rdinal adjective^^ TO ^ordinal
adjective^ [ $

^rdinal adjectiv^ THROUGH ^(ordinal ;
adjective^ j 

(Ordinal adjectivey AND SUBSEQUENT j ;
/ordinal adjective^ AND PRECEDING i^ /  V ;

X ^ a r i a b l ^  = <(identifiei^ ^xtracted element^ j ?
^accumulation^ 4

4^xtracted expressioi^ = /(extractio^ CHARACTERS OF
<(identifier^ j /(^rdinal adjective^ CHARACTER OF 
<^dentifier^ | ^^xtractio^ ^Ciclentifie]^ 

< ^ b j e c t ^  = <ldentifier]0 j <^xtracted expression]]^
(Aength e x ^  = LENGTH OF <^bject^ | LENGTH OF

Cpharacter s t r i n g |l e n GTH Of i
<(]numeric st r i n g  Î

<(]numeric string^ ~ «numeric strings «separators «numbers#
«numbers I
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<]string list^ = «string lists «separators «strings j
«Strings

<^character string]]> = <(]quoted string^ j' «quotes
Sstring lists «quotes

8.3 ARITHMETIC STATEMENT:~
<(co”ordinate conjunctio^> = AFTER THAT j THEN 
<term]]> = <(forinula^ | <^rimary]]>
<jTiultiple function w o rd^ = TOTAL j PRODUCT j ADD | MULTIPLY 
<^multiple function exj^ = <^ultiple function word]^

<term]^ <separator]^ <(term]^ 
<^multiple function exp]> <separator^ <(]teri^ 

<^iadic function worc^ = DIFFERENCE| QUOTIENT j ^
DIVIDE I SUBTRACT -

. <(binary function ex]^ = <âiadic function word^
^teria^ <(separator^ <]]term^ 

<^unction exp]^ - <]^binary function e x ^  j y]multiple
function exp]]>

<(inf ix exponent worc^ = EXPONENT j POWE|l J
<4]exponent f o r m u l ^  = yquantity]^ <]lnfix exponent wor<^

<Jïuantity]>
<lnfix division w o r ^  = DIVIDED BY j OVER 
<^division formula^> = <]quantit^#> <lLnfix division wor(Ç>i

<^uantit;^
<(infix multiplication word]> = MULTIPLIED BY | PLUS j
^multiplication formula^> = <(quantity> </infix

multiplication word]]> < ^ uantit^
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^multiplication formula]]> <^infix 
multiplication wor<^ <Auantit;^

<#infix subtraction wor<^ = SUBTRACTED j MINUS 
Asubtraction formula^ = <^quantit]^

subtraction worc^ A^^^bity]]>
Ainfix addition word]> = ADDED TO | PLUS 
<^uantit;^ = <((primary])> A^^'^bion exgy> ;
<(addition formula = A^^^^bity addition word]]]>

A^uantit^ I A^^^ibion formula^ |
Ainfix addition worc^ Al^^^tityyk J 

<(formul^ = A^xponent formulA> | Aivision formula]> | ;]
<^multiplication formulez | <Csubtraction formul^ j |
A^ddition formul^ ']

A^asic e x ^  = A ^ o r m u l ^  | A^^^^^bioi^ |
Aprimary e x ^  = A^asic e x ^  | ^specification e x ^  j

Aco-ordinate conjunction]^ <^specification exg))> |
.^specification exp]^ = <^primary exp]]>| <^set statement^ |

bo dy^ j

8.4 MISCELLANEOUS STATEMENTS :

A^eclaration body]> = LET A-^^Gntifieiry BE A^ype]]]> 
A^eserve statement body]]> = RESERVE Afiteger]>

<^identifiery> 
A^all statement body]y = CALL A^^^^^^^ber string

<^identifier^>
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Aset statement b o d ^  ~ SET<^identifier^> TO-^numberic J
striJig]̂ ! SET A^bracted e l e m e n t  TO stri

A o p y  statement body]> ~ COPY A^^i^ctA AND CALL IT {
A i d e n t i f i e A  i

<^identification statement bodA> = <^declaration body^ 5
Asserve statement body^ | Aj^^^ statement bod^A I

statement bod;^ <^copy statement body]^ g
A^elete statement bod^y = DELETE AobjectA" I
A^ppend statement bod]^ = APPEND A ^ ^ i ^ c ^  TO A < ^ 
Aoverwrite statement body]]> = OVERWRITE objecA> OVER |

Aofc»ject]]> !
<(editorial statementy> = A^^lete statement body])> |

A^ppend statement bodyA j statement bod;^ -
A^-ead statement body]^ - READ A^^^^bifieiA (

A p ^ in ta b le  i t e n ^  ~ | A ^ ^ ^ ^ i

s tring^^ |
A  numeric list]]> I

Ap^int statement bodA> ~ PRINT AP^^ntable item])> #
A ^ / O  statement body]^ = A^®®^ statement bodyA j

Aprint statement body]]>
A v a l u ^  = A n n m b e ^  j A^nmeric list^ | <^character string 
A^nconditional jumi^ = CONTINUE WITH Al^^ntifierA |

REPEAT FROM Ai«^entifie:^ 
Aconditional exp = IF A*^bjectA A®®^^Pnrison word]]>

A^b jectA> I IF Â T̂ue]̂  A®®̂ P̂ ^̂ son. wordA A^bjectA 
IF A°^iGcA> A  comparison word^> A^alue]^
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Every element of a list must bë a scalar. An 
EXECUTE statement at the end of a program causes 
the execution mode to be entered. DEFINE 
statements are used to define the system commands. 
The portion of a card on the right of an IGNORE 
statement is ignored.

8.6 IMPLEMENTATION ;-

The PATE processor is an interpreter. Before 
going any further, we shall try to justify this 
decision. In a PATE program an identifier may 
be used to refer to any type of value : string, 
decimal number, integer, vector. During the 
execution of a program, this type may change.
Thus it is not possible, at compile time to 
know the type of an identifier and it is 
difficult to generate code without knowing the 
type in advance. I

A polymorphic operator is one whose action depends 
on the context in which it occurs. Almost all 
the PATE operators are polymorphic. Closely 
related to the no-type-nature of PATE are problems 
arising from its polymorphism.
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EXAMPLE 8.1:-

A PLUS B.

If and how this statement is to be executed 
depends on whether one or both of A and B are 
integers, decimal numbers or strings.

When the implementation was begun (Oct. 1971) 
the only high level language available which 
gave access to all the facilities of the computer . 
system was FORTRAN IV. Since it does not have 
any string manipulation facilities, it was natural 
to write an interpreter for PATE.

All expressions are first processed by the syntax 
analyser and code strings of the intermediate j
language are generated internally. This code string 
is then used for execution of the program. Syntax îj
analysis of arithmetic expressions is done by the 
top-down parser described in the 3rd and 4th 
chapters. All other expressions form a finite 
state grammar and are analysed separately. We 
will first describe the general layout of the 
workspace and then consider its different parts 
one by one.
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r_C0DEST.RINi3:

-■iSYNTAX-TREE:

I

13
g“H

Layout of the PATE workspace at 
execution time.

FIG. 8.1

The organisation of the PATE symbol table is 
based on the concept of hash addressing and 
linked lists. Symbols are classified in 
categories and the number of categories coincide 
with the total number of linked lists. Each 
linked list accommodates one category of 
information. The symbols along with necessary
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information about their size and forward pointers 
are stored in blocks of storage known as 
descriptors. Values are stored in blocks of 
storage known as qualifiers.

0 ^ ^
(D
O  Q i

0) Qj

iQ O

Layout of the PATE Symbol table

FIG. 8.2
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F H

Layout of an element of 
the PATE descriptor.

FIG. 8.3
"F" is the forward pointer field 
"I" is tlie identification field. It holds a 
unique code for each different type of data 
object and for each one of the system defined 
symbols.

field "H" is only used for user defined symbols. 
Integers and decimal numbers, when used as 
scalars are stored in this field. In all other 
cases it points to the value of the symbol in 
the heap.

field "L" is used to store the number of characters 
in the symbol. The symbol itself is stored 
character by character in the "S" field. .
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m m m minteger real

end of 
statement

Value of the 
second element

Type code

Value of the 
first element

Type code

Shape of 
data

Format of a qualifier
Pointer back 
to its descriptor FIG. 8.4

The first cell of a qualifier is a pointer to its 
descriptor. These pointers are used in garbage 
collection.

The second cell of the qualifier indicates the 
size and shape of the qualifier.

Each element is preceded by the appropriate 
"type code" rather than one over all type for 
the qualifier. A whole character string hov/ever 
big it may be is considered as one element of a 
qualifier. i

I
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End of extent

. Scalar 
string

Pointer back to 
its descriptor

Format of a character string qualifier
FIG. 8.5

A character string is always stored in a linked 
list as this makes the task of editing the 
string much simpler.

The code string of most statements is straight
I

forv/ard. Arithmetic expressions are divided 
into meangful subexpressions of the smallest 
possible size. These subexpressions are 
converted into reverse polish form, reassembled 
and then stored in the system.
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EXAMPLE 8.2:-

ADD A AND B TIMES C THEN FROM ITS RESULT 
SUBTRACT 2.5.

The above expressions can be subdivided into 
the following subexpressions:

ADD A AND B TIMES C
FROM THE RESULT SUBTRACT 2.5
The codestring is A  B ? "^pauset End

end of 
extent

2.S

next is 
real no.

Pause

Pointer to the 
descriptor of C

Pointer to the 
descriptor of B 

Pointer to 
the descriptor 

of A
code for

arithmetic exp. Layout of the codestring for the 
above mentioned arithmetic expression

FIG. 8.6
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Each descriptor points to its qualifier, which 
in turn points back to it. Using these pointers 
heap entries can be compacted in one side of the 
work space. Qualifiers are shifted one at a 
time. Pointers from descriptors to the qualifiers 
are updated as the shifting takes place.

Although it is not possible to compact the 
symbol table entries, garbage can be collected by 
using a free space list. To start with,the space 
list is empty. As the processing proceeds, the 
deleted cells are added to it. The system is 
so organised that the space list always consists 
of the biggest possible blocks of storage. For 
all subsequent demands of space in the symbol 
table, it is acquired from the smallest possible 
block of storage in the space list. The required 
number of cells are taken out of the list and the 
remainder (if any) maintains its identity in the 
space list. Only if there is no adequate chunk 
of storage available in the space list is the 
space acquired from the main storage.

At compile time, the syntax analysis stack and 
the reverse polish stack develop towards each 
other in a separate area. At execution time 
this space can be reclaimed. '
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START

Read a new card 
and examine 
control words

£XECUT
YES

NO

Empty
NO

YES
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Discard dummy words 
Store quoted strings 
in data area 
Store name in the 
symbol table 
Store code string-____

\/ YES

Delete any 
information 
concerning the 
current statement

STOP

Syntax

Heap
Area / \
fu ll /

Symbol\? /
table N.
full ? \

collection

o, o 
eclaimable 

cells a certaii
value 
7

Terminate the 
job with a 
message

STOP
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STOPNO

TERMINATE
encountered

Call routines, 
peiform appropriate 
action and 
give output

Transfer control 
to tlie appropriate 
part of the 
interpreter

Examine the
command
words
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8.7 COMDROL CARDS:-
'3:e managcz.-nt rou.tine of the processor is 
divided into different control "blocks. Each 
control block represents a different mode and 
can be entered by using appropiate control 
cards* Control cards are also used to control 
the listing of the program. Some of the control 
cards are system defined while other are 
explained below.

After introducing a card or "̂ oPATE”,
the program follows. In addition to the above 
mentioned obligatory cards, the following optional 
cards may be used, "$'oLIST" is used to start 
the listing of the program, which is assumed 
to be the case at the start of a program. "̂ l̂ODIST" 
is used to stop the listing. Listing can be started 
and stopped as many times as user wishes.

The introduction of ’̂oCiUIT” card terminates the job.
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CHAPTER 9

9.1 CONCLUSION

Before embarking on the project, an extensive 
survey was made on the existing techniques in 
topics related to the automatic translator e.g. 
Syntax analysis, Semantic Synthesis and 
extensibility. It is in the light of this 
comparative study that various decisions were 
made in the automatic translator. To throw 
light on the reasons behind various decisions, 
this discussion has been included in the thesis
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The translator translation system described in this  ̂

thesis deals with a special class of languages which 
can be described by ELL(k) grammars. Since ELL(k) 
parser parses without backup, it is easy to give 
prompt syntactic diagnostics which is not possible 
with back-up oriented algorithms. It is also hoped 
that ability to make correct decision at every stage 
of the parse should make it faster.

ELL(k) grammars allow very general left recursion.
To the best of our knowledge, no other top down 
parser can use a left recursive grammar for left 
to right recognition. Hence there are grammars 
which can be recognised by no top-down parser but 
the ELL(k).

Conventional top-down parsers generate a parse tree 
which is consumed by the corresponding semantic 
synthesiser. The MTL processor generates code in a 
single scan. No interim parse is generated, but it 
is used for semantic synthesis. During the recognition 
of a source language statement, at the appropriate 
state of parsing, the semantic synthesiser is called 
for action. A parse tree could be generated from the 
information in MSEAS as ah optional facility for the 
user. i
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The only formal specification in the conventional 
compiler compilers have been in the syntax specification. 
The MTL processor provides a great degree of formalism 
for semantic specification.

Semantics are specified in a metasemantic language in 
the form of semantic productions. These semantic 
productions are used repeatedly by the processor in a 
manner which is quite similar to that of semantic 
productions.

In this thesis various reasons have been stated for 
favouring extensible programming languages and need; 
no repetition. We have shown how SN0B0L4 (SPITBOL) 
can be used as an implementation language for 
extensible languages. The extensibility provides 
both the syntax analyser and the semantic synthesiser 
with extra power.

I%#ien we add the syntax analyser, the semantic synthesiser
1

and the features of extensibility, what do we get?

In biblical terms, a classus on gold feet, silver legs, 
iron thighs topped with a clay head. Those parts of 
a compiler which really matter to the machine, especially 
code generation, machine dependent and machine independent 
optimisation are missing. Still the parts we have shown
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here are sufficiently general to be a sizeable part 
of any compiler design. These parts can be considered 
as "off the shelf" compiler components. We believe 
that it is possible to write these parts of a compiler 
in an appropriate language and then incorporate them 
in the desired compiler. Alternatively, the MTL can 
be extended to incorporate features such as to be 
required for code generation and other parts of a 
translator. We do not contend that the net result 
will be an ideal compiler compiler, but we are of 
the opinion that MTL can be extended to form an 
efficient translator translation system.

One objection to our approach might be that it is 
too much dependent on SN0B0L4. It is true so far as 
the existing version of MTL is concerned. The object 
of this project was to test the algorithms, which has 
been achieved. We believe our existing design can be 
easily modified to make it SN0B0L4 independent.

Another objection against MSEAL is that it does not 
provide block structure as a tool for structured 
programming. It is so because the MSEAL was designed 
to be a notation for specifying semantics rather than 
a programming language. If experience shows th^t such 
a structure is desirable, investigation should be 
made into its feasibility. '
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The present processor has a number of known sources 
of inefficiency:

(1) In the current implementation of MSEAL, the 
tables are searched sequentially. There exists 
scope for improving this process,

(2) The prototype processor reads the syntax and the 
semantic specification and constructs internal 
tables before every run. In the production
processor, it should be possible to initialise
the internal tables once and for all. This |
process can be automated and the initialisation j

code generated by the processor itself or by a j
library routine called by the processor. j

There are various improvements that can be made 1
iin the semantic synthesiser. For example the |'Î

current version can be extended to cater for |
. left recursion even in the production mode. \ To 
handle left recursion, the syntax analyser takes 
a rather unconventional approach. Every production 
is not tried individually as otherwise is the case.
All the mutually left recursive productions are 
first stacked on the SAS and the symbols covered 
by them are recognised. It is necessary to have 
a compatible approach for the semantic synthesiser.
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Due to the constraints of time, this was not 
implemented in the present proto type process 
and can be introduced in the new version.

Lewis and Stearns show tliat it is computable 
problem to show whether a given grammar is 
LL(k). We do not know whether this is the 
case for ELL(k) and whether a practical 
algorithm could be constructed even for 
special cases.
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APPENDIX I

SOME FACTS ABOUT LL(k) GRAMMARS

1) A grammar G = (^T, ^N, P, S) is said to be an 
LL(k) grammar for some positive integer k if 
and only if given
a) a word w in T such that |w|< k;

Vb) a nonterminal A in N;
V*c) a word oj in T ;

there is at most one production p in P
V*such that for some and in T; |

1d) S => A I
A => Wg (p) ' I
(“2 : k = 0) - I

-stated informally in terms of parsing, an LL(k) 
grammar is a context free grammar such that for 
any word in its language, each production in its 
derivation can be identified with certainty by
inspecting the word from its beginning (left end)
to the k-th symbol beyond the beginning of the 
production. Thus when a nonterminal is to be 
expanded during a top down parse, the portion of 
the input string which has been processed so far 
plus the next k input symbols determine which 
production must be used for the nonterminal.
Thus the parse can proceed without backtrack.
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2) If G is LL(k) , then for all A in w in ; k,
R : k satisfying R O  = { w^:k|s=>w^AW }

for some in V*, there exists at most one 
production p such that A => (p) and : k =
for some and in such that is in R.

It states that a production in LL(k) grammar can 
also be identified using only k symbols which 
follow and the set R(wl) where R(oal) is the set 
of all k symbol sequences which can follow the 
rightmost descendant of that production.

3) An LL(k) grammar is always LR(k) as defined by 
Knuth.

4) An LL(k) grammar is unambiguous.

5) Given a grammar G and k, it is decidable whether
Ior not G is LL(k) iI '

V V6) A grammar G = ( T, N, P, S) is said to be a strong 
LL(k) grammar for some positive integer k if and 
only if given

(a) a word w in such that |w|< k

w
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(b) a nonterminal A in ^N;
There is at most one production p in P such

V*that for some and in T
(c) S =>
(d) A => Wg (p) j I
(e) (Wg :k = w

The only difference between this definition and 
that of an LL(k) grammar is the qualifier "for 
all ü3̂ " has been moved within the scope of the 
"there is at most one production p".

7) Given an LL(k) grammar G = (^T, ^N, P, S), one 
can find a structurally equivalent strong LL(k) 
grammar.

an8) Given an LL(k) grammar G = (^T, ^N, P, S),
LL(k+1) grammar without A-rules can be constructed 
which generates the language L(G)- {A}

9) An LL(k) grammar can have no left recursive
nonterminals. (this statement is not valid in 
the light of our algorithm)

10) Given an LL(k+l) grammar without A-rules for
k ^ 1, there exists an LL(k) grammar with A-rules
for the same language. i
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11) There exists no LL(k) grammar without A-rules 
for the language {a^ (b^ d + b + cc)^ I n  ̂ 1  ̂

where k ^ 1.

12) For every k > 1, the class of languages generated 
by LL(k) grammars is properly contained within the 
class generated by LL(k+l) grammars.

13) For every k > 1 the class of languages generated 
by LL(k) grammars without A-rules is properly 
contained within the class of languages generated 
by LL(k+l) grammars without A-rules.

14) It is decidable if two LL(k) grammars generate 
the same language.

15) Given a context free language, it is decidable 
whether or not there exists a k such that the 
grammar is LL(k).

16) Given an LR(k) grammar of known k, it is decidable 
if there exists a k such that the grammar is LL(k )

17) It is undecidable whether or not an arbitrary
context free grammar generates an LL(k) grammar, 
even for a fixed k, '

I

i
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18) A grammar is said to be in Greibach normal form 
if the right hand side of every production begins 
with a terminal symbol. Given an LL (k) grammar 
without A-rules, another LL (k) grammar in Greibach 
normal form can be obtained for the same language.

19) Given an LL(k) grammar G with A-rules, a strong 
LL(ktl) grammar in Greibach normal form can be 
obtained for L(G)- {A}.

20) Let G be a context free grammar. Suppose that 
every production p in G is of the form A =>bB 
or A =>a, where A and B are nonterminals and a, 
b are terminals. Then G is called a regular 
grammar. If the finite union of disjoint LL(k) 
‘language is regular, then all the languages are 
regular.

21) If A Ç: B, then the complement, of A with respect 
to B is the set B-A. The complement of a I 
nonregular LL(k) language is never LL (k).

22) The LL(k) languages are not classed under 
complementation, union, intersection, reversal, 
concatenation, or A-free homomorphisms.
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EXCLUSION OF LEFT RECURSION;-'

An LL(k) grammar G can have no left recursive . 
nonterminals.

PROOF;-

Assume that an LL(k) grammar has a left recursive 
symbol. Then for some nonterminal A, A =>*A Y(p) and 
A =>* X(p' ) where X and Y are in ^ T , and p and p are 
different production. Because G is unambiguous,
Y ^ A • Furthermore S =^*.uAv for some u and v. Now 
consider the derivations.

k kS uAv uAy V 4̂ * u X y V
S uAv :^*uAy\ :^*u A u x y^’̂^v
Thus S 4>*u A y \  A y^xy(p) A =>X (p' ) and
(X y^^^v ) Î k = (x y^vj :k

Therefore, since the grammar.: is LL(k) it can not have 
a left recursive nonterminal.
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APPENDIX II 

CROSS REFERENCE

In a typical SN0B0L4 program, all labels and 
a good deal of identifiers are global. It is 
necessary to make sure that the conflicts do 
not arise. It is therefore recommended that 
the user should use labels and identifiers 
according to some systematic scheme and make 
separate tables for them (for example labels
can be of the form LABEL.1, LABEL2...... etc).
However the following SN0B0L4 program can be 
used to cross reference a user progreim. The 
user program appears as its data. In fact 
the program itself has been used as a users 
program in the following example.
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