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ABSTRACT

This thesis deals with the topic of programming
linguistics. A survey of the current techniques in the
fields of syntax analysis and semantic synthesis is given.

An extensible automatic translator has been described which

"can be used for the automatic translation of a class of

"
4
’

programming languages.
The automatic translator consists of two major parts :

the syntax analyser and the semantic synthesizer. The syntax

. analyser is a generalised version of LL(K) parsers, the

,fheqfetieal study of which has aiready been published by Lewis

and Stearns and also by Rosenkrantz and Stearns. It accepts

grammar of a given language in a modlfied ver51on of the

- 2 ‘ Backus Normal Form (MBNF) and parses the source language

':klifv‘statements in a top down, left: to rlght process without ever

v

G

) ' 8 A

backing up. \

4/.
Z*The semantic synthesizer is a table driven system which

\

is callediby the parser and performs semantic synthesis as

the par51ng proceeds. The semantics of a programming language

- 1s specified in the form of semantic productions. These are

.’f- used by the translator to congtruct semantic tables.

.:The sysﬁem is implemeﬁted in SNOBOL4 (SPITBOL version 2.0)
on an I@M.360/44 and its description is supported by various

examples. The automatic translator is an extensible system

" and SNOBOL4, the implementation language appears as its subset.

It can be used to introduce look ahead in the parser, so that

" backup can be avoided. It can also be used to introduce new

. facilities in the semantic synthesizer.
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ABSTRACT

This thesis deals with the topic of programming
linguistics. A survey of the current techniques in the
fields of syntax analysis and semantic synthesis is given.

An extensible automatic translator has been described which
can be used for the automatic translatioﬁ of a class 6f
programming languages.

The automatic translator consists of two major parts :
the sYntax analyser and the semantic synthesizer. The syntax
analyser is a generalised version of LL(K) parsers, the
theoretical study of which has already been published by Lewis
and Stearns and also by Rosenkrantz and Stearns. It accepts
grammar of a given language in a modified version of the
Béckus Normal Form (MBNF) and parses the source language
statements in a top down, left to right.process without ever
backing up. |

The semantic synthesizer is a table driven system which
is called by the parser and performs semantic synthesis as
the parsing proceeds. Th2 semantics of a programming language
is specified in the form of semantic productions. These are
used by the translator to construct semantic tables.

The system is implemented in SNOBOL4 (SPITBOL version 2.0)
on an IBM 360/44 and its description is supported by various
examples. The automatic translator is an exténsible system
and SNOBOL4, the implementation language appears as its subset.
It can be used to introduce look ahead in the parser, so that
backup can be avoided. It can also be used to introduce new

facilities in the semantic synthesizer.
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CHAPTER 1

INTRODUCTION

PROJECT SURVEY:~-:

This project in its final form evolved

from an attempt to develop an English

like programming language for school and
other non-specialist students. This language
was to be called "Processing of Arithmetic
and Textual Expressions" (PATE)..  After the
implementation of the text processing
facilities of the PATE processor (described
in full in chapter 8), it was felt that for
most of the sophisticated developments of
such a language, an automatic mechanism
based on some formal grammar was desirable.

This could then be used for implementing

|
!

and testing the different features of PATE.;
The investigation of this topic bore
interesting results and forms the bulk of

the work described in this thesis.

In déaling with programming languages and
their translators we are concerned with
their inherent structural properties and

the kinds of transformations which the
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structure may initiate or undergo when it
enters into a computation. The inherent
structural properties are referred to as
syntactic properties, and the transformational
properties of the structures are referred

to as semantic properties.

For example the set of all representations
of programs in a specific programming
language is called its syntax. The
representation of the effect of executing
the programs in a programming language

is called the semantics of the programming

language.

It is convenient to have a formal method for
representing the syntactic and the semantic

properties of classes of programming languages.

The notations in.-which the syntax and the
semantics are defined are known as metasyntactic
and metasemantic languages respectively. A
combination of the two is called a metalanguage.
We want to use the metalanguage as a vehicle

for constructing programming language
translators and hence will refer to it as:the

metatranslation language (MTL). As we are
B o



only concerned with writing compilers and
interpreters for high level programming
languages, the word translator refefs to
these two types of programs oniyy Other
sorts of software e.g. assemblers to which
the term has been applied may present

different problems.

Initially all translators were written in
assembler language. Although all types of
time and space optimizations are possible in
assembler language programming, since it

is rather cumbersome, experience shows that
-all the code does not get due care.

Recently there has been a big trend towards
writing translators in high level programming
languages. We believe this is a step forward
and contend that by selecting a suitable

high level language for implementation,
similar and perhaps even better results can
be ohtained with .considerably less programming

effort.

The general subject of interest in this
dissertation is "programming linguistics”
which we consider to ke a science concerning

the design and specification of programmihg



- languages and the tfanslation and subsequent
evaluation and executioniof programs in
these languages. In particular we are
primarily interested in the problem of
automatic translator translation. We
‘aefine automatic translator translation
loosely aé the process of using a computer
to'perform some stages of the work involved
in writing a translator. The program which
performs this task is called an automatic
translator. It has two parts:

the syntax analyzer énd the seméntic

synthesizer.

For the purposes of this research such a
‘system has been implemented in SNOBOL4

[ GRISWORLD 70! (SPITBOL version) [DEWAR 71].

Some -special purpose high level programming
languages have previously been designed fof
writing systems programs. A class of these
languages with special facilities for
compiler Qriting is called compiler compilers.
An ideal compiler compiler is one which has
formal syntax and semantics as its input and
whose outpuﬁ consists of a compiler written

in some already implemented language. The




existing compiler compilers however do not
achieve so muéh as this. While we would
claim to have achieved more,we must admit
that this idealihas not been reached. A
compiler compiler normally acts as a high
lével language in which other compilers
are written and at least parts of it reside
in the core as an integral part of the
compiler. Some compiler compilers have
embedded in them some automatic syntax
analysis mechanism, hence automating this

part of the task.

Our automatic translator is a high level
problem oriented language, the probleﬁ
being to write translators for programming
languages. One belief fundamental to our
work is that the context free grammars
{defined in chapter 2) can continue to be
used in a natural and convenient way as a
basis for the specification of significant
portions of the syntax and translation of
programming languages. Furthermore we
find that a well designed contex free grammar
makes a concise, readable and useful
syntactic reference for a language from

which operator precedences .and associativities



and other properties can be quickly and

easily determined.

The automatic translator being described

is a table griven system.

The syntax and

the semantics of a given programming

language are read and internal tables

constructed from the information thus

acquired. A mechanism has been provided

for semantic extensibility (explained in

chapter 7).

Different extension programs

can be written in SNOBOL4 and they are

compiled at the execution time of the

automatic translator.

These programs

provide extra information to the translator.

During the development stages of a

translation system for a lancuage,

the grammar

would be read and the tables constructed

before the source language statements are

read for each run.

system will have the tables embedded.

However a fully debugged

Each source statement is read and processed

individually.

The syntax analyzer recognizes

it and as soon as a sufficient amount of

information is available the semantic

synthesizer is called for action.
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SYNOPTIC VIEW OF THESIS!i-

In the second chapter of this thesis we
study Chomsky's classification of grammars,
particularly the context free grammars and
survey methods of analysing context free

grammars.

We do not consider context free grammars
in general any further and are mainly
interested in a generalised versioﬁ of
Lewis and Stearns' [LEWIS 68 | LL (k)
grammars. These form a fairly large
subset of context free grammars which can

be parsed without back-up.

In the third chapter we describe the
metasyntactic language for our parser.

This is a modified version of Backus

Normal Form (MBNF) which includes left
recursive productions. Techniqués are
described to improve the efficiency of

the parser and to reduce the length of look
ahead. It is also shown how look ahead can
be introduced and scanning of the source '
text controlled by using SNOBOL4 extension

programs. :



The 4th chapter covers the implementation
of the parser. The source language symbols
are reqognized in a predictive fashion.

The parser uses a syntax graph and a syntax
analysis stack. Starting from the root of
the syntax graph, it traverses different
nodes following predefined hierarchically
ordered paths without ever backing up and
recognizes the source language syrbols in

the process.

Our metasemantic language (MSEAL) is
explained in the fifth chapter. Each
production of MSEAL consists of three
fields : environment field, action field

and code field.

The environment field is used to determine
the instant at which the particular semantic

production is to be used.

The action field consists of a sequencé of
statements specifying actions to be taken
when the environment field is recognized in
procéssing source text. High level commabds

have been provided to facilitate the i

construction by the user of commonly used




10

data structures.

Extra power is provided by the code field.
The user can specify a codestring in this
field. On meeting certain commands in the
action field the corresponding code field

is executed and code generated.

The implementation of MSEAL is discussed
next. Using the semantic statements,

tables are constructed. As the recognition
of a source statement proceeds,.these tables
are checked and at an appropriate stage

some semantic statement executed.

"To provide extra power for the complete.
translation éystem (MTL) , it has been
designed to be semantically extensible,
SNOBQL4, the implementation language for !
the MTL processor, appears as a subset of f
MTL. Methods have been provided to use
SNOBOLé-fof specifying both the syntax

and the_semantiqs‘of a programming language.
It is also possible to extend semantically

. the facilities available in the action field
of MSEAL préductions. Various MTL system

variables are used to provide communication




1

between MTL and SNOBOLA4.

The description and implementation of
the extension mechanism is given in

the seventh chapter of this thesis.

In the next chapter we discuss the
programming language PATE. It had its

basis in SNAP [BARNETT 69] and is a

language for arts students. It was
implemented at the start of this project

and for the reasonsdescribed in that chapter,

it was implemented in FORTRAN IV[IBM 360/370]-:

Finally, we conclude by discussing the

results obtained.

CONDITIONAL EXPRESSIONS AND OTHER NOTATION.

Greek letters represent terminal strings.
|B] denotes the length of the string B.

g:n refers to the left-hand n symbols of
B if [g]) n and to B otherwise. The empty

string is A. Lower case letters represent

|
i
i
|

terminals and upper case letters are

nonterminals. Underlined letters may
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represent either. The node of the syntax
graph representing X (or X or x) is written
as Xoope (OF Xyopg ©F XNODE)‘ Rules of

the metasyntactic language are marked by

an asterisk.

While BNF is suitable for the representation
of a single context free grammar, a formal
method to represent sets of such grammars

is desirable. It will enable us to discuss
the behaviour of precisely defined sets of
gramﬁars in the context of our parsing
algorithm. For this purpose we use a
notation for a conditional expression which
was suggested by that of McCarthy [McCARTHY
60] . It not only fulfils the above
requirement but also specifies the order

in which different productions may be
recognised, and hence reveals certain
features of the recognition algorithm.

The source language statement is considered
as a sgntenﬁe of a context free lanauage whose
grammar is written in BNF.and which is being

e

recégnised by a top down left to right process.

+ o
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Our conditional expression is written as

follows:
‘ Eam e = 2 B 3 .43 43
{1.3.1) Cn Ln Vn’ Cn Ln Vn' Cn Ln Vn W SrECeSEReE &
C1 L1 1 { c2 L2 V2 o c3 L3 V3

n-1 n-1 "n-

~

n-1 "n-1 n- n~1 "n=1 "n-1

1 1 1l 2 2 2 3 3 3
n-2_Ln-—2 Vn--2' Cn—Z n-2 vn-—2' Cn-2 I'n-2 vn-2

LI A )

&

® 9 9 0 5 P e 2 0 LB S B S E S E S S E eSS S LN T O LSS SRS EN eSS

Tink wl 2 22 2 3 -3 43
CO Lo VO’ CO Lo V ’ co LO Vo L B

The occurrence of the triple C? L? V? has the

effect of returning the value VT when the
condition CT is found to be satisfied.

C? has the form (ui= B) and 1is satisfied if
the substring under consideratién, o has
the form B. Each triple has a level which
is given by the subscript i of the condition
Cd. L is defined below.

Evaluation of the conditional expression
takes place in descending order of level
and looking from left to right at each
level. The value V of the whole expressibn

is the concatenation of ' i
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(1.3.2) Vn-p' Vn—p e e Vn_pn
where the value of Vn—pr is the concatenation
of
] "
[E.38) Y& ¥ FOY 1 e

n~p NP NP

In (3) the value of p increases with
superscript r; p and t are such that V

consists solely of source languadge symbols.

L, may be either "->" or "->>", 1In both
cases one and only one conditiop at the
currént level may be satisfied. The symbol
"=>" implies that the triple is applied

once only, whereas "->>" implies that the

triple is applied n times where n > O.

It follows that if no Ly has the form "->>"
then exactly one condition must be satisfied
at the level i. This notation can be further
generalised by ranking the conditional ;
expressions themselves and treating them in
the same manner as that of the above mentioned

triples.
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EXAMPLE 1.3.1

One might wish to specify the following
rules about the recognition procedure for

the grammars of the form:

(1.3.4) <xX> = a

(1.3.5) <x> = <X> aa Gl.1

(a) Find the left recursion

(b) Process (5} the corréct number of times,

{c) Process (4) and recognise the source
‘string with the help of already processed

vroductions.

Using (1) these rules can be stated as
(1.3.6) [ (ay=n)->n=0, ($=8,)->> n=n+1,(%=E)->8.81]
for a set of all left recursive grammars of
which the above grammar is a member. (For G1,1
Bl=aa and Bo=a).
Suppose aaaaa is a sentence of L (Gl.1) and is
to be recognised using (6).+ The cursor is
considered to be on the left of the source
statement. The condition to be tested first

is = A since 2 ig the hichest level in,
|

“2
{6), any part of the string aaaaa or a

]

¥ Reference to a relation inside the currené section
is implied.
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null string can be considered as the value of a

(%, as it is represented in (€)). So (o, =A)

is satisfied and n is initialised to O, but the

cursor is still on the left of the source string

(step a5-The next condition to be tested is (01.=61).
If we take O to be aa, the condition is satisfied,
n is set to 1 and the cursor position remains unchanged
(step b)e The condition (al =ﬁl) is tested again,
Since o, can still have the value aa, it is

satisfieds n is set to 2 and the cursor position

qt.
still remains unchanged (step b). The condition (a1 = Bl)
is attempted ggain but it can not be satisfied since dl

can only have the value 2. Tﬂe value of o0 and the cursor
position remain unchanged. The condition (Gb = O) is now
attempted and satisfied, At this state %Bflis recognized
and the cursor moves to right of the source sentence and
the recognition of the source sentence is successfully
completed, (step ¢) The value of Vﬁ_pr (refer to (3)) is

B e

0'1 which is the same as asaaa, In (2) it is represented by : T

Other values in (2) are_th(n_l) = (n = n#l)

0)

Vae(n-2) = (®

t Since it is not possible to determine whether ((f = B )
1s satisfied or not, the conventional top down parsers do

not accept left recursion. ;
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The only value consisting solely of t@e

source language symbols is that of Yoon

and hence it is the value of V.

EXAMPLE 1.3.2

A production containing direct right

recursion can be represented as

(1.3.1) [(a) =8,)-8), (a = 8)—>g]

-

For the right recursive grammar

<x > =a<x>|b Gl.2

EXAMPLE 1.3.3

1.4 A set of productions representing embedded

recursion might be written as

(1.4.1) (o, = M->n= 0, (a, = 8;) =>> B, and n =n + 1,

(o = B) =>>B By]

The following is a grammar representing



embeded recursion
<X> = a<x>bhb

In this gramﬁar

Bl"

18

Gl.3
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CHAPTER II

On the Syntactic description
' and

Parsing Programming languages
INTRODUCTION: om.
To make clear the reasons for our choice
of context free grammar we begin by
surveying grammatical models which have
been used in earlier projects. These
projects fall into two classes - those
where sentences must be generated and
thosé which require recognition of
correct sentences. Existing grammatical
theories have helped researchers in
making some progreés in the field of
machine translation but the net result
is far from satisfactory, because either
they are not powerful enough or are too
difficult tb be handled by computers
(see survey articles by Sage [SAGE 67]
and Satterthwait [SATTERTHWAIT 66 | and
see article by Floyd [ FLOYD 64 ). The
generative mechanism has been used by
researchers [FREDMAN 62, 71 etc] who
want to use computers as a tool for

studying properties of grammars.

? R
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Some question’answering systems have been
developed which use grammars both for
recognising input sentences and generating
grammatically‘correct sentences in reply.
PROSE [VIGOR 69 ] is such a system. It
uses Hay's Dependency grammar [HAYS 64 ]

as its grammatical model. However as far

as programming languages are concerned
Chomsky's models [CHOMSKY 57] of generative
grammars have obtained the widest acceptance.
By this we do not imply that his models are
sufficient for all further developments in
programming languages but we 6n1y note that
the structure of most of the programming
languages so far in existance, either
intentionally or unintentionally has been

designed so as to fit Chomsky's models.

We will follow Chomsky in describing his
generative models. Similar systems to

accept only correct sentences are well known.
The simplest model discussed by Chomsky is
the finite state gramﬁar. This can be
described in the form of a machine that can
be in any one of a finite4number of different
internal states. This machine switches from
one state to another by producing a certa}n

I
symbol. One of these states is distinguished
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as the initial state while another is the
final state. ’Beginning from the initial
state, if the machine runs through a
sequence of states and reaches the final
state, it will generate a sequence of
symbols known as a sentence. The complete
set of sentences that can be produced in
this way is called a finite state language
and the machine is known as a finite state
grammar. The recognition of a finite state
language may be performed by a finite
automaton which will in general be
nondeterministic. It has been proved
[RABIN AND SCOTT 59] that every nondeterministic
finite automaton can be represented by some

deterministic finite automaton, which we

- know can always be simulated.

Unfortunately only a small number of
programming languages are finite state.
Any attempt to construct finite state
grammar for others will run into serious
difficulties. For example general ‘
bracketed expressions require a context
free grammar and the same is true for many
i
features of well structured programming

languages. :
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202 PHRASE STRUCTURE GRAMMARS:-—

Suppose S is the initial symbol and
(2.2.1) ICl(S), ICZ(S)' ICB(S) ———————————— ICn(S)

are its immediate constituents [BLOOMFIELD 3ﬂ ’
derived using rules usually known as

productions.

Let us write (1) as follows

1 1 1 Sl

(2.2.2) Sl’

Their immediate constituents will be as

follows, although any one of them can be

Ty
null.,
1 1 1 . 1
(2.2.3) Igl(sl), Icz(gl), 1c3(sl) ~~~~~ ICn(Sl)
2 1 1 e gl
ICZ(SZ), ICZ(SZ), IC3(SZ) ~~~~~~~~~ xcn(sz)

1 1 A
ICl(SB). Ic2(53)' Ic3(s3; ICn(SB)

—— - T — . S . S TS T T Ve VIR TS M W S YN TS G WS T T P Wew et v S e e
T
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1 1 §
ICl(Sn), I, (s ), IC5(S ) ICn(Sn)

If we write the non—-null constituents as

2 2
1!

(2.2.4) S
and continue the process we will finally

reach

{2.2.5) s’l‘. s

so that they do not have any constituents.

If we call the above model a context free
grammar, the set of all the representations
of S (with subscript and superscript including
the start symbol) is known as its vocabulary.
All symbols that can not be further broken
down are terminals and rest of the vocabulary
is formed by nonterminals. A sentence is a
string of terminals which can be derived from
S with the productions concerning immediate
constituents. The language is the set of

all the sentences that can be produced frbm

the grammar. !
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Formally a context free grammar is a

quadruple G(VT, S, P), where VT is a

NI

finite set of terminals, VV a finite set of

nonterminals with V g Vg =pA, V = V u Ve

8 is the initial symbol and S ¢ VN. P is
a finite set of productions of the form A~> w

where the left part is A € VN

part w € V¥ where V* denotes a string of

and the right
symbols of V.

A string o is called a sentential form if o
isiderivable from the initial symbol S.
A sentence is a sentential form consisting
only of terminals. The language L ( G) is
a set of all the sentences that can be

generated from the grammar G.

It should be noted that the finite state
grammars form a proper subset of the context
free grammar in the sense that every finite
state grammar has an equivalent context

free grammar while the converse is not true.

Let G be a grammar. We say that the string

X directly produces the stringw , written
' |




if

1t

then

If either
or

then

If

then

It

then
If either
or

then

Let w =

>

XXk XK X

MoOoX X K XK X X

25

FIRST w

FIRST " FIRST w"

FIRST + o

FIRST w
FIRST + w
FIRST* w

n-2
W

=>‘I}—3 cene => w

where three dots "
represent a string
possibly empty.

1 prrsr o®?

X uy be a sentential form.

Then u is called a phrase of the sentential

form ® for a nonterminal U:

1f

U =+u,

if

|
A handle of any sentential form is a leftmos

simple phrase.

S=> *xyy and

§ = x Uy and

u is called a simple phrase

> oa, |

!

FIRST w.

t
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IfU=> +... U.-.
we say the grammar is recursive in U.
IfFU= + U ... it is left recursive;

IfFU= + ...U it is right recursive.

A sentence of a grammar is ambiguous
if there exist more than one derivations
for it. A grammar is ambiguous if it can

generate an ambiguous sentence.

"Phrase Structure grammars" is a name given

by Chomsky to what the Bloomfieldian

linguists [LYONS 70] originally called the
immediate constituent analysis. They are

also commonly known as context free grammars
(CFG). These grammars are formally

equivalent [GAIFMAN 65] to Hays [HAYS 64]
dependency grammars. Two grammars are
equivalent if both produce precisely the

same -set of sentences with the same
ambiguities. Chomsky provided a formalization
of CFG [ CHOMSKY 57] and demonstrated that,

in spite of being more powerful than finite
state grammars in the sense that more languagesA
can be described by this model CFG's hav@

certain limitations.

1
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A suitable CFG is capable of generating
almost all‘the sentences of English but
in many cases fails to generate all
structural descripntions which may result
in ambiguous meaning. For instance the
sentence "Flying planes may be dangerous”
can be generated by a phrase structure
grarmmar but its two quite different
descriptions can not be distinguished by

this model of grammar.

CFG's do not provide é method to show

semantic relations between different sentences.
For example there is no way of stating

that if one of the following statements

is true, the validity of the other statement

is implied.

a) Yesterday I rode a horse.

b) I rode a horse yesterday.

The syntax of programming languages can be
represented in CFG by writing it in BNF
{BACKUS 591 but there is no formal way of
including semantics in the grammar. This
inadequacy has serious impmlications in

compiler writing.
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When CFG is to be used for syntactic analysis,
it is sometimes stored in machine in the form'.
of a syntax tree (or a syntax graph). There
are sentences which use common vocabulary and
are semantically related but large parts 6f
their syntax trees are separate - hence

wastage of space. For example

a) I shall give the girl, a book.

b) I shall give a book to the girl.

c) Shall I give a book to the girl?

A transformational grammar as defined by
Chomsky assigns to each sentence it
generates, both deep structure and surface
structure analysis and systematically
relate the two. Deep "connections" between
sentences which cut across the surface
grammar are transformational rules. The
phrase structure rules are used to generate
underlying strings and on applying
transformational rules on these strings

we obtain sentences.
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The first two points mentioned in connection
with CFG can be accounted for by transformational
grammars but it is difficult to say anything
about the last two points, since they have

not been studied in great detail. Attempts

were made to devise a formal method of
representing languages in transformational
grammar. Further research was abandoned

since the productions required for such a

representation grew exceedingly complex.

Transformational grammars have not been

used much for analysis of programming languages
and most of the work doncerning them is
confined to using computers as a tool for
linguistic research [FRIEDMAN 71] . It is
mainly due to the complexity of transformational
rules. It is argued that programming languages
do not require the "power" of'transformational
grammar, since they normally do not posess
active, passive, ‘exclamatory and similar
interrelated sentences. We note, however, a
recent paper describing work at the University

of California [DEREMER 74] .
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PARSING TECHNIQUES:-

Parsing techniques can be devided into two
main categories: bottom up or data directed
methods and top down or goal oriented methods.
There are parsing methods which do not fall

in any one of these categories, however, most
of them are very ad hoc and do not form a
model of any significant generality. We quote
Conway's [CONWAY 63] remarks about his parsing
technique, which requires the construction

of so called no-backup diagrams:

"The catch in all this is that a set of
no-backup diagrams for a given language
is constructed by a process which is
neither straightforward nor easy to

describe LI I IR .

We therefore will confine our discussion to
the two main categories of parsers mentioned

above.
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BOTTOM-UP TECHNIQUES:~

In this method we analyse the given
language by repeatedly finding the handle
p of the current sentential form and
reducing it to a nonterminal B using a
production

B = B,
The problem with the bottom-up method is
to find the handle and then to know which
nonterminal to reduce it to.
Wirth and Weber [WIRTH 66 see also
HASKELL 74] have developed a bottom-up
parsing technique for a class of CFG's.
In tﬁis class no two productions have the
same right hand sides and at most one
so~called precedence relation holds between
any two symbols of the vocabulary. This
class is known as simple precedence or (1,1)
precedence grammar. The precedence relations

are stored in a matrix.

The above mentioned authors have also pointed
out that the space required for the matrix

j
is very large (of the order of nz, where n

is the number of symbols in the vocabulary)
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in most practical programming languages.
To counteract that, they developed the
notion of precedence functions which
reduces the space requirement. Formal
methods have now been presented to
calculate precedence relations [MARTIN 68]
and precedence functions [BELL 69].
However, it is not possible to construct a
simple precedence grammar for every CFG
and further, it is not possible to derive
precedence functions for all simple precedence

grammars.

A technique which is similar to the simple
precedence technique but requires a
considerably smaller matrix is called
operator precedence and the grammars it
handles are called operator precedence
grammars. This technique has been given

this name because terminals of the grémmar
play the part of operators and nonterminals
are treated as operands. The parsing
algorithm used for simple precedencé gramnars
is applicable except that all relations are
among the terminals only. 5
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Obviously this requires a smaller matrix.

Higher order precedence techniques can
parse a bigger subset of CFG then the

simple precedence methods, but these
methods are normally too demanding on

space. In many cases the space requirements
can be reduced to a reasonable limit by

using some ad hoc techniques.

Another difficulty with precedence parsing
techﬁiques is that all the right parts 6f
productions must be unique. Attempts to
get rid of this restriction led to the
development of bounded context grammars.
[PAUL 62 , FLOYD 64 , IRONS 64 , GRIES 71]
In the bounded context schemes we use
symbols on either side of the deleted
handle to find out what it should be

reduced to.

Operator precedence grammars are onl} a
special case of bounded context grammars.
Parsing algorithms for bounded context
grammars use a three column table in
addition to the usual space requirement

for holding all the rules of grammar.
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The construction of tables is always
complex enough but gets even more difficult
in certain cases ((m,n) bounded context
grammars). Also there is no direct way

of finding out whether a grammar is

bounded context or not. Knuth [KNUTH 65 ]

has investigated LR(k) grammars.

A grammar is called LR(k) if, for
wl, “”2"”3"”5 inv*‘l‘ r B invN, and P, P” in

’ 4 -
=>u => => W
G, S 1 A(u3. a P(DZ' A b g and

-~

(wy w3)i k = (Wyw?5) : k imply P = P..

Stated informally in terms of parsing, an
LR (k) grammar is context—-free grammar such
that for any word in its language each
production in its derivation can be
identified and its descendants determinea
with certainty by inspecting the word from
its Seginning (left) to the kth symbol

beyond the right most descendant.

Knuth points out that almost all unambiguous

Qrammars which can be processed by some :

left to right process are LR(k). In fact
precedence grammars & bounded context

grammars @ LR(k) grammars. I
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Xnuth has also shown how one can determine
whether a grammar is LR(k) for a given k.

The problem of deciding, for a given grammar
G, whether or not there exists a k) o

such that G is LR(k), is however undecidable.
He has shown a CFG, named by him as LR(k,t)
grammar, for which we must back-up by a
finite amount. He also points out that the
parse time for LR(k) grammars is essentially
proportional to the length of the string to

be parsed.

Deremer [ DEREMER 69] has given a practical
algorithm for parsing LR(k) grammars. The
complications involved in constructing a
parser for LR(k) grammar vary directly as
the complexity of the grammar and Deremer
defined a hierarchy of LR(k) grammars given
in the ascending level of complexity by

1 LR(O)

2 SLR (k) +-

3 LALR(k) +

4 LR (k)

+ Simple LR(k)
++ Look ahead (LR(k)



Three different subsets of LR{k) grammars
are defined in terms of their parsing
algorithms. Deremer has shown that SLR
parsers for SLR(k) grammars can parse a
large number (if not all) of languages

that can be handled by precedence tecﬁniques

or bounded context grammars.

Knuths LR(k,t) grammars éverlap with
grammars whicﬁ are LR(k) and are not

LALR(k) in Deremer's terminology. The
parsing technique for this class of
grammars has not been described with the
same details as given for SLR(k) and LALR(k)
parsers. Nevertheless one thing is clear:
as pointed out by Deremer, it is exceedingly-
difficult to construct a parser for this

class of grammars.

A biBlography on LR(k) grammars appears
in a tutorial paper by Aho and Johnson
[ aHO 74]



37

TOP DOWN TECHNIQUES

These techniques work by starting from
the initial symbol of the grammar and
recognizing a sentence by working
through its productions. In his survey
of parsing techniques Floyd [FLOYD 64]
has mentioned only backup oriented
techniques. However the.notion of
no~backup technigues was in existance
long before [KANNER 59] the publication

of his paper.

Methods have been described [LIETZKE 64]

to perform top down analysis by scheduling
different procedures. The idea is that

an appropriate procedure should be called

at the appropriate place and every procedure
should have a specific task to perform.
Thése techniques though adequate for certain
languages do not form a general model for

any appreciable subset of CFG's.

The Global parsing technique [UNGER 68 ]
works without backup but is not capable ;
of handling grammars with cyclic nonterminals.

Also, it requires the whole of the sentenée



38

to be available to the parser before parsing
begins. Ungér has given various "quick
checks" to be performed to make the parser
efficient but many of them are reported

not to have been studied in detail.

Lewis and Stearns [LEWIS 68] have defined
syntax oriented transductors which perform
both syntactic and seﬁaﬁtic analysis.

This model, however, has not been used in
any compiler so far to the author's

knowledge.

LL Parsers [ LEWIS 68, ROSENKRANTZ 69 ]
{discussed in the next chapter) can be-
considered as the top down counterpart

of Knuths LR techniques. The gramnars
that can be handled by LL parsers are
known as LL(k) grammars (defined in the
next chapter). An LL(k)} grarmar is a

CFG such that for any word in its language,
each production in its derivation can be
identified with certainty by inspecting
the word from its beginning (left end) to
the k-th symbol beyond the beginning of
the production. Thus when a nonterminal

is to be expanded during a top down parse,



the portion of the input string which has
been processed so far plus the next k input
symbols determine which production must be

used for the nonterminal.

COMMENTS ABOUT PARSING TECHNIQUES:— .

The efficiency of different parsers is
notoriously difficult to compare. It is
not only dependent on a particular language
but also on the manner in which its grammar

is written.

It may seem reasonable that in making the
above mentioned comparison among different
parsers, language should be a constant
factor and its grémmar in each case be
written so as to suit the particular
parser. However, no general conclusion
can be drawn from such a comparison.
Since, for almost any general parsing
method known, there are languages {(ox
sentence in languages) which make it '
drastically inefficient. Comparison of |
different parsers on theoretical groundsl

is very difficult, if not impoésible sincé
|
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many algorithms differ from each other

substantially.

Griffiths and Petrick [ GRIFFITHS 65 ]

have made a comparison of parsing techniqueé
and have concluded that top-down parsers

are grossly inefficient timewise as

compared to bottom up parsers. Brooker
[BROOKER 67:}has criticised their conclusion
on the grounds that the grammars of a large
nunber of programming languages can be
written so as to make their top-down

parsers efficient. We agree with Brookers
remarks and add that'a better general purpose
parser is one which is efficient for bigger
subsets of languages, and for more languages.
Hence, a fairly general purpose no-backup
parser is better than the backup oriented
parser, the reason being that in a backup
oriented parser, efficiency will be achieved
by writing the grammar so as to minimize
backup while a no-backup varser by definition

possesses this property in its extreme form.

Space efficiency is as important as time
efficiency. A parser can be inefficient

in space either because it is too big by

itself or because it requires a large space
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‘to store information produced during the
parse of a given sentence. The former in-
efficiency is common in bottom up parsers
where large matrices are needéd elther for
some type of precedence relations or fog
storing look ahead symbols. The latter
inefficiency is usually found in backup
oriented parsers where a lot of information
is required, in case‘the parser has to

backup. =

Horning and Lalonde {HORNING 71] have

made an empirical comparison of the time
and the space efficiencies of two general
classes of bottom up parsing techniques,
name;y precedence techniques and LR
parsers. But due to the reasons given
above they do not claim to have reached

any definite conclusion about the relative
efficiencies of precedence techniques and
LR parsers in general. However, they claim
that by using Deremer's LALR?algorithms and
after using various optimizations suggested
by him and on including new optimizations
we get a parser which is worth considering
when selecting a parsing téchnique for a

cormpiler.

t+ The investigation is limited to LALR parsers.
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Ease of use is another important feature

in parsers. A technique could be quite
difficult to use if it is capable of
treating only a special class of grammars
defined by condiﬁions which are not easy to
state directly. Some parsers are very
difficult to construct éven if it is

known that the ‘grammar being treated is
suitable for them. Both of these problems
are common with bottom up parsers. In

this regard a parser which can accept
grammar of a given language in some
modified version of BNF can be quite useful,
A top down technique is valuable for this
purpose and provides a natural way of
constructing internal tables. It has been

used in many such systems EMETCALFE 65],

A good parser should also be able to give
reasonable syntactic diagnostics, since
they are essential for program debugging,
no-backup parsers are an asset in this

respect.
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With these comments we shall attempt to
define an ideal parser. The nearer to

this definition the better.

An ideal parser for CFG's is one which
accepts all grammars written in BNF,
requires the minimum possible space -
necessary to store the parser, and

regquires no space for storing specifications
of parsing and parses without backup

giving prompt and precise diagnostics.
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CHAPTER III

GENERALISED LL(k) PARSER

INTRODUCTION:~

This chapter is devoted to the discussion of
the metasyntactic language. Rules of the
metasyntactic language are given and, where
necessary, they are explained with the help

of examples. It is shown how ﬁsing some of
thesé rules, the value of k can be reduced.

It is also shown that in spite of the fact

that Rosenkrantz and Stearns have proved that
the left recursive grammars areAnot LL(k),

this restriction is not valid for our algorithm.
The class of grammars defined by the property
that they are accepted by our algorithm therefore

constitute an extension of the LL(k) class.

RECOGNITION OF LL(k) GRAMMARS:-

As defined by Lewis and Stearns [LEWIS GBJ

- ' -~
a grammar is LLTk) if, for all wlﬂ%vweﬂg,y3
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in V*T, A in VN, and p; p’ in G,
S => w AW, S=>w0,AuZ,

w A=>w"

=5
A P 2 ’
o4

2

and (wpwz): k = (w£0§7= k imply p = p'

Stated informally a grammar is LL(k) if a
production and its leftmost descendant can

be identified from the symbols to the left

of this leftmost descendant and the k symbols
which follow (counting the leftmost descendant
terminal as the first symbol).

Before we show that a deterministic pushdown
machine can be constructed to recognise the
language generated by a given LL (k) grammar

we shall prove a lemma.

Let L be the language generated from an LL (k)
grammar G using nonterminals VN and terminals

VT' Define LA as follows: For A in V.. let

LA be a set of words in V*T generated by G using

starting symbol A; for A in V., L, = {a}

If R is a subset of V*_, let R:k = {w:k| w in R}

T'

LEMMA. If G is LL(k), then for all A in VN'
(

@ in V*.: k, and R G V*;: k satisfying RCR () )={u k]|

s => wlAw3} for some w., in V*T, there exists

1
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at most one production p such that A=>¥ m2(p)

w, i *
and in V T

and (wews): k fm for some w2 3

such that w3is in R.

PROOF. Suppose that A=w, (p), A=>62(jn),

andlwwy) k. = (5263) : k = w for some wg,aa, W3, 63,

p, and P such that wg:k and ws: k are in R

where R< R (w1 ) for some w;. It follows that
: i x

there must be wg andtﬁé in V7 such that

S=>"wlAw’ , S=e wA Bé, w'3: k =w3:k, and

E§=k==63:k. The last two relations imply

that (wuw3) :k = (@) :k = », and the fact that

p = p follows from the definition of LL (k).

Thus there is at most one such p.

The importance of this lemma can be stated
informally as follows: The definition of

LL(k) grammars specifies that for any sequence
in the language, a production can be correctly
identified from the sequence w;of symbols to .
the left of ité first descendant and the k |
symbols which follow. The lemma states that the
production can also be identified using only the
k symbols which follow and the set R (wl) where
R(w;) is the set of all k symbol sequenceé which
can follow the rightmost descendant of that
production. In other words, we can bound:the
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amount of information that must be remembered

about the initial sequence.

DESCRIPTION OF THE PUSHDOWN MACHINE.

The finite-state control has enough memory to
store an input string of length k or less and
to perform such obvious tasks as reading in
the first k inputs. The tape symbols are |
ordered pairs (A,R), where A is an element of
VN'U Vp and R is a subset of Vi itk - We design
the machine so that if some r + k inputs have
been read in, the input string stored in the
finite-state control is w and the top tape
symbol is (A,R), then the following are true.
(1) The word w stored in the finite-state
control is the string consisting of the
{(r + 1)=-th input through the (r + kf—th
input. If the input word only has r + X
‘symbqls for'k’ < k, then w is the last K
symbols of the input word. In this latter
case, it is convenient to say that k -~ k/
- blank inputs have been read in after the
completion of the input word as indi?ated.
by the special end-of-tape marker. ihese

implicit blanks play the same xole as the

l
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"J" of Knuth. -

{(2) The symbol A'represents the fact that the
descendants of an A follow the rth input
symbol. If A is a terminal symbol, this
means that the (r + 1l)—-th input symbol
must be an A. The symbol pair (A,R) or
its replacement is to be popped up as
soon as all the descendants of A have

been ‘identified.

(3) The set R represents R: k, where R is the
set of all acceptable input sequences
that could follow the descendants of the
A. Thus, if (Al’Rl) is the tape symbol , ‘

below (A,R), then R = ( R,):k; and

L
Al,
R ={A} if (A,R) is the bottom tape symbol.

The machine begins with the single symbol

(s, {A}) on its pushdown tape.

I

We now describe the machine operations. Initially,
the méchine reads the first k inputs and stores
them as the word ®w in the finite control. The
pushdown tape is initilalised with the symbol
(s, {A}). This initialised configuration satisfies
1, 2 and 3 above and we take it as self-evident

that the operationsAdescribed below preserve

these properties. After r + k inputs have been
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read, the operations are as follows:

Case 1. If the top tape symbol is (A,R) and
A is a nonterminal, then R ={w3: k|
S=>*wlAw3}, where w; consists of the
first r inputs. Therefore, by t@e
lemma, there is at most one production
p that could be applied to A in order
to be consistent with « and R. Three

subcases follow:

Case la. If there is no such p, the machine
. rejects the sequence.
Case lb. If p is the production A=> A then the
top tape symbol is popped off.

Case lc. If p has the form A=> A ...Am for A

1 i
in VN!J VT' then the top symbol (A,R)
is replaced by the sequence of symbols
(Al, Rl)...(An, Rn), where Rn = R and
A ¢ i): k' Eof 1 < i1g n.
Case 2. If the top tape symbol is (A,R) and A

is a terminal, there are two subcases:

Case 2a. If w = A w~ for some w”, then the top
. |
tape symbol is popped off, the next

input x is read, and word w” x replaces
|
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in the finite control.

Case 2b. If w does not begin with A, theh the
sequence is rejected.

Case 3. If there are no tape symbols on the
pushdown tape, then if w = A, the
sequence is accepted and otherwise

it is rejected.

Although considerable information is encoded
in the tape symbols (A,R), this is somewhat
less information than is required for general
LR(k) recognition. Furthermore, even this R
information is needed only when the machine
must choose among words in L, which are shorter
than k. To verify this, assume that (A,R)
is the top tape symbol (i.e. the machine is .
looking for a production descendant from A)
and that control word w is the LA (i.e. that
the next k symbols after the start of A ére all
descendants of A). Then it follows from the
definition of context—-free grammars that tbe
past can give no information as to which A
production was used, and hence the decision is
independent of R. This situation always occurs
for LL(1) grammars if there are no A productions.
|
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As an example where R information is necessary,

consider the following grammax:

S=> 1lAlB

S = OAOB

A=>0

A=> 01

B UB EXAMPLE 3.1

B=>0
This érammar is LL(3), but after 1 + 3 inputs
have been read and ® = 010, one cannot
determine which production to apply to A
without consulting the corresponding R which
will contain either {10} or {00} , depending

on which production was applied to S.

GENERALISED LL( k) GRAMMAR:-

We define a generalised LL( k) grammar as

follows:

A grammar is generalised LL( k) if, it can be
written with the help of the metasyntactic
language described in (3.5) and for all

w W ,(1)’2,033,m'3 in V,;, A in VN and p, p in G,

S=>mlAw S=>wlAw &

3
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A U A 3> wu
and (0,8.) : k= ( w’d”%)= k imply p = p’
or P and p are left recursive as
explained in § (3.8).
The definition of generalised LL(k) grammars is similar to the
chcgiven in (3.2) except.that the if clause
of the definition is further qualified by
saying.“if it can be written with the help of
the metasyntactic language described in (3.5)"

s -
and "or P and P are left recursive-",

1t is clear that the definition of gene;alised
LL( k) grammars is more powerful than that of
LL( k) grammars. We therefore abbreviate the
name to extended LL( k) written ELL(K ). They
include left recursive grammars and the rules
of the metasyntactic language are more powerful

than that of ordinary BNF.

ON THE PRACTICAL ALGORITHM OF GENERALISED

LL( k) GRAMMARS:—

The practical algorithm for ELL( kj grammérs is
described in chapter 4. It is not difficult to
see that in combination with the extension

mechanism described in chapter (7) it pe;forms
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" the task of the push down machine described

in (3.3):

The word W (stepé 1 of the push down machine)
is stored in the input buffer of the syntax
analyser. R is stéred by the extension prodgram

in SNOBOL4. Step 2 is performed by building a

syntax graph and stacking in the node corresponding
"to the start symbol on the syntax analysis stack.

Steps (a) to (m) of the syntax analyser correspond

to the cases (1) to (3) in the push down machine.

Different facts about the LL (k) grammars are
listed in appendix I. We will not prove these
facts for ELL(k) grammars. We bélieve that,
with the exception of the restrictions on left
fecurﬂon , they can be proved by arguments

similar to those used -for LL(k) grammars.

METASYNTACTIC LANGUAGE:-

Terrninals stand for themselves.

Nonterminals are enclosed in corner brackets

"<" and "> " or in ampersands.

The left hand side of a production is separated
from its right hand side by "=".

EMPTY is the system defined nonterminal

representing A .



55

{BLANKS)>is the system defined nonterminal
representing zero or more blanks.

Any terminal being followed by another symbol

in a production requires a blank as a terminator.
All members of the metasyntactic language except
SNOBOL4 (Explained later) are normally reserved
symbols.

Any reserved symbol when preceded by an asterisk
loses its special meaning.

The grammar is written such that (a) A linking
production (explained later) follows the
production it links. (b) The production having
the start symbol of the grammar on its L.H.S.
may only be followed by linking productions.

The exlstence of blanks in the source language
statements can be specified explicitly on the
right hand sides of MBNF productions. If a
nonterminal is enclosed in corner brackets it

ié assumed that after the recognition of its
righﬁmost descendant, at least one blank will
follow in the source language statement. All
blanks are ignored. On the other hand if a
nonterminal is enclosed in ampersands, no
assumption about the character to follow its

rightmost descendant is made.

For example consider




3.6.1

3.6.2

3.6.3
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< letter> = A|B|C|D .......| 2
< variable > = gvariable& &letters | &letters G2
<list> = <list> <wvariable~? [ < variable >

Its language consists of character strings
separated by blanks. Character strings are
recognised by (1) and the blanks are introduced
due to (3). The manner in which the left hand

sides of these productions are specified is not

- important. SNOBOL4 can be considered as a subset

of the metasyntactic language. During the syntax
specification, one or more SNOBOL4 programs can
be introduced. The code generated is the same as
that generated by the SNOBOL4 compiler and no

substantial loss of efficiency is incurred.

Undefined nonterminals of MBNF are considered to

be tbe names of $NOBOL4 programmer defined functions
and the user is assumed to have defined them in

his SNOBOL4 programs. On execution,when any such
nonterminal is encountered, linkage.té the
appropriate function is made automatically. Within
a SNOBOL4 program, various key words are used to
communicate with the parser. Facilities have

been provided to introduce look ahead fof
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avoiding backup during parsing and to control

lexical scanning.

In English-like programming languages [BARNETT 69]
certain words are used which are esséntial for

the naturalness of the language but have no
significance for machine translation. These
auxiliary words can usually be classgsified as

obligatory oxr optional. For example,

3.6.4 DELETE THE 3~RD CHARACTER OF THE STRING.

3.6.5 DELETE THE 8-TH CHARACTER OF A.
3.6.6 DELETE A.

These examples are based on SNAP, described by

Barnett.

It is obvious in (4) that "CHARACTER OF" and

"THE" preceding the ordinal adjective are
obligatory while "THE" preceding "STRING" is
optional. One interesting property of such
auxiliary words is that they can almost always

be associated with the word to follow but;not
necessarily with‘their preéeding woxd. Aésociation

of "THE" with "DELETE" will make (6) syntactically

|
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incorrect while it can be safely associated

with the ordinal adjective in (4) and (5).

During parsing each auxiliary word T is associated
with its succeeding word and a single bit is used
to record whether it is obligatory or optional.
For instance the string BgT)T,8,T,8

will be treated as BB 8 or B5 B By

2ThT3 o1y

where B, = B. B =8 and B, = B
2 5 . 2ThT3 0 01i

In the system obligatory auxiliary words are

enclosed in double quotes and optional auxiliary

words are enclosed in single quotes.

EFFICIENCY CONSIDERATION.

Having outlined the system in the previous
section, we are now in a position to disquss
various techniques developed to increase its

efficiency.

In [(%=G)~? §,(ay=688) ->8¢]

if |g| >p then k> 1

The value of k is reduced to one if (1) can

be handled as ' i



3.7.2 [(03=8) —> 8, (0,7E) —> &, (ag=4A) -> A ]

3.7.3

This can be achieved by manipulating the
grammar using the system~defined nonterminal
"EMPTY" or one of the symbols "7 " and "W "

or simply re-writing the grammar.

The syntactic entity on the right of "7 "
may occur zero or one times, that following
e méy have n occurrances where n>o. To
iilustrate our poiﬁt we consider part of the
grammar shown in table 3.1 (see also example

3.1 above).

[(a2=8) -> B, (a1=6)‘>63(0f-1=56)—> 66’«!0: E)-> E]

and clearly (3) is a special case of (1)
with k>1., If in this simple case (3) . |is

treated as follows k is reduced to 1l.

[(ay=B) —> B, (ay=8) —> &, (a,=€) > E,

(0,2€) > &, (ag=h) -> A ]
The whole grammar of table (3.1l) may be
similarly stated but the result is considerably

more complex. '
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The notation < P> n, m is introduced to refer to
the mth symbol of the nth alternative of the
(unique) production whose left hand side is <P> ,
provided that this exists. The MBNF is extended
to allow two symbols of a grammar to be linked by
a production of the form

-

-
<p> n,m =<p> n" m

No new structure is created for this production
but a pointer is created from <P> n, m to <p>n (i
m . After recognising <P> n~-1, m-1 if<P> n, m
cannot be recognised, the processing continues

with <P> , M . This rather simple idea is
very helpful in reducing the value of k and the

size of the grammar.

Consider a language with the vocabulary

and sentences which are strings of arbitrary

length but maintain the order specified in
(5). Conventionally it will have a lérge

context free grammar and consequently will

require a large syntax graph. i.e. !
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(8> abcdef lacdef| ade £l

]

ae f [ a f | becde £ | bde £ |
befl pflcaecsf | ce f |
cfl aef af | e £ £

EXAMPLE 3.2

However, using the linkage scheme described

above it can be written as a single basic
production requiring an internal structure and
several linking productions for setting pointers.'

This is illustrated in table 3.2.

LEFT RECURSIVE GRAMMARS:-

Rosenkrantz and Lewis [ROSENKRANTZ 69] have

"proved that an LL{ k) grammar can have no

left recursive nonterminals. We do not dispute

the validity of their proof for the LL( k) grammars
they have defined but in the light of the definition

of our extension it is not relevant.

In their push down machine, a left recursive

grammar is of the following form
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3.8.1 [(a,=h) -> =0, (a;=B")->> n=n+l, (ay=p)-> B(g")" 1]

They rightly argue that k = |B]|* n.

Since n is unknown k is also unknown. In our

algorithm the left recursion has the form

3.8.2 [(0,=B") = 8%, (ay=p )% B ]

Qince for a nonnull a there is no choice at any
level, a member of this class may be an ELL(1)
grammar. However, if %) could have more than
one different acceptable value the grammar would
still be ELL(k) but k may be greater than 1.

Informally speaking, for a left recursive grammar

<x> =<x> aaalab
EXAMPLE 3.3

in a conventional top-down parser, we start with _
< X > and replace it by<x > a a a. Then we
replace <x> again and get <x> a a a a a a. The
process continues and the loop never terminates.
Lewis and Stearns’ proof that the left recursive
nonterminals can not be LL( k) follows frﬁm the
above discussion. Since the language of;the

above grammar is of the form a b (a3)n or ab

|
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(aaa)n, we must replace <x> by <x> aaa, the
correct number of times and then start recognising
the whole string. For this purpose, before
replacing <x> at each stage, it is checked, by
looking further ahead, whether the next three
symbols are part of (aaa)n and another replacement
is necesséry or they are not, and loop must be
terminated. In other words all the symbols in

ab (aaa)'n must be looked ahead. Since n is

unknown, clearly k is also unknown.

In our algorithm, <x> will be replaced by

< X ; a a a only once. After that the system
detects left recursion and recognises a b
before trying a a a repeatedly. It will now be
seen as in table 3.3 that our algorithm is
capable éf handling left recursive grammars.
The table 3.3 shows four different blocks of

information.

1. At the top is a left recursive grammar in

which the nonterminal "P" is undefined;

2. "$SOURCE" is an indication to the system
that no more production of the grammar is

to follow. On meeting this command the

system displays a warning message that "P"
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has not been defined.

3. Inside the bracket "$SNOBOL" and "$FINISH"
is a SNOBOL4 program. A user defined
. SNOBOL4 function is defined which performs

two tasks:

a) It performs lexical scanning

to recognise B, since <P> = B,

b) It introduces look ahead to
decide whether <P> C D or B C

<R>is to be followed.

4. The last part shows syntactically analysed

source language statements.

The following grammar is a member of (3:8:2)
but is not LL( k) since it is ambiguous )
-

3.8.3 [(087) > 6%, (0=8") > 8", (ay=B)>> 8]

where (8)® = (8)™, n and m are positive integers.
Consider
<x> = <x>aaal| ¢

< 8> = <S>aa|<x>
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™ ™ ™
A
i
o
]
o

»
|
Q

EXAMPLE 3.4

There are bound to be two positive integers

n and m, such that:
(aa)n = (aaa)m

e.g. n =3 andm = 2

satisfy this condition. They generate the

following two parse trees

<8>

S <s>

< {/// -

N < LN
N NS
a | / a =

FIG. 3.1
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This is also true with some members of the
following set: _
[(a3=8 )_> B )(a2=8 )'->> B’:(al;.B,) 2 B’a(u’ozB)_>> B}

For example if

e, Tt %, and are positive integers.

then [B%] + |8%|*m+ [B°] + |B] *n =
8% + |g%]* "+ |g’] + |8] *m

for some n and m

In the grammar

<x> =<x>aaaal aa

< §> =<8>3 a a ! a <x>

EXAMPLE 3.5

"

B” = aaa B” = a

W

B" = aaaa B

It
o
W

and the conditiocon
aa+ (aaaa) * n + a + (aaa) * m
aa+ (aaaa) *m + a + (aaa) * n ‘

is satisfied.'
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Since it can be written as
(aaaa) *M+ (aaa) *n =
(aaaa) *n+ (aaa) *mn

it is ambiguous.

However, it is worth noting that these grammars
are notELL (k) because they are ambiguous and

not because they are left recursive.

The following is an unambiguous left recursive

grammar but is nottLL (k)

[(0,=8%) ~> B, (0,=B") -> B”,(a=8) —>> B ]

where 187 > [8”]
8- : [B%]= 8*
18] > [87]
B : |B7]=8"

() = ( 8)™, n and m are positive integers.

But it can easily be written as

[(0,=6%) = 8%,(a=8) =>> B, (a,=6") > £~ ]
g =87 (87 - 187D
For example fhe grammar
<x> =aaalaala
is left recursive and unambiguous, but it is
notsLL (k). However if it is written as

<x> = <x> aTal a

it is ELL(1l). ‘
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CHAPTER IV

IMPLEMENTATION OF THE

GENERALISED LL (k) PARSER

INTRODUCTION

The generalised LL(k) parser uses a syntax
graph constructed from the grammar of the
language being parsed. It applies a predictive
algorithm to traverse throuch different nodes
of the syntax graph, in order to recognise the
source language statement. In this chapter, we
will first describe the layout of the syntax
graph and then discuss different aspects of

the parsing algorithm.
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4.11 SYNTAX GRAPH:-—
The syntax graph has a start node and an
arbitrary number of nodes accessible from
it. Each node of the syntax graph represents
a member of the vocabulary of the grammar being
parsed and is linked with other nodes by one or
more pointers. Each node consists of six fields
as shown in 4.1. Each field either has an entry
or has null string as 1ts value.

DEF

QUAL ALT succ MOD AUX

format of a node

FIG. 4.1

Definition field DEF :-

This field either holds Ye¢V, if it is a
terminal, or is a pointer to the node

representing it iLf it is a non-terminal,

Qualification field (QUAL) :-—
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This contains the following information

represented by a unique code

a) Whether DEF represents
( i) A terminal
( i1) A nonterminal enclosed within
corner brackets.
(iii) A nonterminal enclosed within

ampersands.

b) Whether "71" or "7IN " or neither of the -
two exist immediately to the right of the

current symbol.

c) VWhether the symbol represented by the node
pointed at by AUX of the current node is

- obligatory or optional.
Alternative field (ALT) :-—-

If X... is an alternative of Y... then ALT

of the Y ,pp Points at the X, . ...

Successor field (SucCC):-

If the R.H.S. of a production is of the form

+++¥ X ... then SUCC of the Y, ... points at

the ENODE‘
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Modification field:-

This field keeps the pointer (if'any) to the
node which must be tried in case the current

path of the parse is to be modified.

Auxiliary field (AUX):~

If the right hand side of a production is of

the form ...8 Y where @ is a non-empty string

of auxiliary words, the AUX of XNODE points at

the node representing the left most symbol of

@#. For all practical purposes the said production
is considered to be of the form ...Y... while

@ has an independent representation.

To construct the syntax graph, the parser uses

‘a symbol table, each entry of which consists of

two fields, the definition field and the pointer-
field. The definition field accommodates a
nonterminal X on the left hand side of a production
Py while the corresponding pointer-field keeps a

pointer to the Y

YNoDE where X FIRST Y.
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# production is scanned from left to right to
find X. .If X is subscripted then Y must also

be subscripted. Subscripted X and Y refer to

. ’ / / /
gf and ¥ where X =>X'+and Y=>-¥-while X,
“ ¥ are determined by the respective subscripts

-of X and Y.  As a result of this production the

v ’ %
MOD of XNODE is set to Y If X is not

NODE*
subscripted, it is entered in the symbol table,

provided it has no entry already. A node called

Ygopg 1s created for Y and the pointer field of

the moét recent entry in the symbol table is. set

to the XNODE'

further and the part of the syntax graph required

The production is then scanned
for it created as follows.

If the next symbol is
a) tg, the first of the consecutive auxiliary

symbols t. t_ t where n % 1 then

l 2 3..-.-tn

tiNODE is created. and AUXPOINT is turned

on. Nodes are also created for t2 t3 ...tn.
All the nodes of the consecutive auxiliary
words are connected by their SUCC fields

such that

succ(ti)

]
{-r

i+l n>ixo



b)

c)

-d)

e)
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Z € V then a new node is created to
accommodate it and SUCC of the previous
node is set to the Z9ODE"* If the AUXPOINT

is on, AUX of the Zyopg s set to the node
pointed at by it and the AUXPOINT is turned

off.

"|", the symbol preceding it is considered
as the last symbol of Y[nl..., where X.ﬁﬂ

is the nth alternative of g[l]

The production is scanned further to find
-the next symbol which is expected to be
X[n+l]. A new node is then created for
[n+1] [n] [n+1]
b § and ALT of Y ODE is set to the XNODE'
" 4", The ID of the most recently created

node is modified to reflect the occurrence.

% ", the ID of the previous node is
modified as in (d) and further scanning
continues to find Z such that Z€ V.
Step (a) 1s performed and a pointer

GRAPHPOINT is set to this node.
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f) The last symbol of the production. It
must be a member of V. A node is created
for it and linked with the other nodes as
usual. If the GRAPHPOINT is on, the SUCC
of the current node is set to the node
pointed at by GRAPHPOINT and GRAPHPOINT

is turned off.

When reference is made to a nonterminal T

which does not have an entrxy in the symbol

table, the processing of the current production
is suspended after saving any necessary
infogmation. An imaginary production <T>= .A

is then processed. It's symbol table entry is
marked to show that it is an ad hoc one and

then the processing of the actual production is
resumed from the point at which it was suspended.
At a later stage when the production<T>=<¥>...

is processed, no new entry is made for T in the
symbol table. It's previcus entry is unmarked
and the structure of the corresponding production'
is modified so as to accommodate the current

production.

For this reason, before making a new entry, the

symbol table is alwayé searched for that entry.
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The presence of any such unmarked entry is
erroneous .and the current production is
ignored with a warning message. In all
other circumstances the normal process

continues.

At the end of the syntax specification,
marked entries in the symbol table are
displayed with an apéropriate message. It
is assumed that the user will have defined
these nonterminals at some stage. The DEF
of the node representing the undefined
symbols are filled with the symbols themselves
and corresponding SNOBOL4 code is generated
and linked at the appropriate place of the
.processor. This enables the processor to
call the corresponding user defined SNOBOL4
function when an undefined nonterminal is

procgssed during Syntax analysis.
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<operator> e SUSYEREPR, i DEF.
ID
ALT
SucCc
MOD
AUX
<operand > > A

'3
T

-~

\
\
\
Soperand ' {operator) {addition
expr

The above diagram shows the syntax graph of

< addition exp > S N
— |\ \ \
\ \
%
N \
X

e
P
L
-~
s
7

the following grammar.

<operator> = +

<operand > = A
<addition exp> = < operand >—'<>perator>_ <addition ex

EXAMPLE 4.1
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In the above diagram, symbols on the L.H.S. of
the vertical line represent nonterminals to be
entered in the symbol table and oblong boxes

are nodes of the syntax graph. An arrow
represents a pointer while a triangle is a
pointer to a node which can be accessed with the
help of symbol table entry specified in the

triangle itself.
example:~ 4.2
{statement) = PRINT "THE" <(ordinel adjective)
"CHARACTER OF"

'THE' <ariable)

The syntax graph of the above statement is

given below.
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<statement> > pRinT
\
L
AUX. 1, Ordinal AUX.2
adjec
ive
AUX 2 »] THE
Obl.
CHAR- OF THE
AUX 2 T ACTEK
Obl. Obl. Qbl,

Representation of auxiliary words.

FIG. (4.3)

Variab!
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PARSING ALGORITHM:~

We now describe the basic parsing algorithm.
It's role is fundamental and rest of the -
predictive algorithm may be considered as its
extension. A priority list of paths to be
traversed in the syntax graph has been defined
and is adhered to strictly. Necessary
information is stored on the syntax - analysis
stack (SAS). Each element of SAS has three
fields: node, path and position. For the
convenience of description it is coﬁsidered

as if this one stack is the "concatenation”

of three stacks, each having elements consisting

of single fields. When a source statement is

to be parsed, the parser is initialised so

that

({ i) The left most symbol of the source
statement is the current symbol.

(ii) The node representing the start symbol
of the grammar is the current node.

The parser then goes through the following

steps.

a) If the current node is a nonterminal,

stack it in the node stack, stack the

current position in the position stack

and stack an element in the path stack

t

marking it as daughter. Make the




b)

c)

d)
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daughter of the current node as the
"new" current node and repeat this

step.

If the terminal is a function, obey it,
otherwise match it with the current

symbol.

If the match 1s a success, check to see
1f there is another symbol in the source
statement immediately to the right of
the current symbol. If "yes" pick the
new symbol and go to (i1). If no "new"
symbol can be picked;run the algorithm
until successful recognition of the
source statement is confirmed by
exhausting the stack or an error
condition is sensed. In either case

the algorithm is terminated.-

In (c) 1f the match 1s not successful,
check to see whether the current node
is a successor of some other node. If

"ves" try the MOD field otherwise give

an error message and terminate the algorithm.




e)

“4)

g)

h)
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If the current node is EMPTY the

NODE ’
position filelds of the elements of SAS
are marked -ive and .the control is

transferred to (i).

If MOD field is null and the current

node is mandatory (not optional due to

1 or 7IN), the current state is an error
sfate. If the current node is not mandatory,
ignore it. If the MOD field is not null[
stack the current node, entering the position
and the path fields. If it is already at

top of SAS, mark the path top as MOD. Make
the modification node, the current node and

go to (a).

If the current node is the left most
symbol on the R.H.S. of a production, check
to see if it has an alternative. If yes
make the alternative, the new current node

and go to(a),otherwise to to (h).

{ i) TIf the SAS has been exhausted, check

how the algorithm is to be terminated,
with or without an error. !

:
I




i)

( 1i)

(411)

( iv)

( vi)
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If the current position does not
match the POSITION-top, mark the

PATH~top as successor and go to (i).

If the PATH-top is marked as MOD go

to (V) and if it is marked as ALT

or DAU go to (hvI)

If the MOD field is null, mark the

PATH-top as MOD, make the modification

node, the new current node and go to (a).

Check to see whether the right hand
side of the current productioh can end
at the current point. If "yes" delete
the SAS-top and repeat (h). If "no"
print an error message and terminate

the algorithm.

If the current production has an
alternative, make it the new current
node and go to (a), otherwise delete

the SAS~top and repeat (h).

If the current node has a successor, stack

: i
the current node, make its successor the

new current node and go to (a),otherwlse

go to (h).



YES beginning of
the analysis of
he statemen|

NO
o
LU Is it
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~

d /\
Is it .
3 4 NO ASE symbol
[y

on the R, H. 8. o}
a productio;
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Iternative

YES

g N

Go to ALT -
and modify
Path- top




a8

ha

@

YES
exhausted )
hii
3
g 8« . NO the current hvi
+ 4|-> 8 position match the
< B (’.:fD) position- top
% E Delete the
SAS ~ top
. hidi i
Is the path-
top marked
as
DAU]

Does it
have an
alternative

NO




89

3
& B
2 & %
*y B
G
o]
o
=
*qOH
03 o3 pus (ION
s® dog-HIVd
Yy ¥seW

Error
message.

hv

*doy — 8¥S
sya 9397T8Q

4

STOP.
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EXAMPLE 4.3

With the grammar given in example 4.1,
the expression "A + A" will be recognised in

the following steps.

1) Make "A" as the current symbol, stack

<addition exp? in the node field

NODE
of SAS and go to its daughter node.

<addition exp> FIG.

2) Stack Yaddition exp’ 1,1 in the node
NODE
field of SAS, the current position in

the position field and DAU in the path

field. (Step a)

<addition exp>1l,lj P DAU

|

4.5

<addition exp> :FIG. 4,6
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3) Recognise "A", pick "+" as the current

node (Step C).

4) There is no successor of the current

node (Step i).

5) Mark the path—top as SUCC (Step hii)
and go to the successor of the node~top

(Step 1i).

<addition exp>1,1 P SUCC
<addition exp> FIG. 4.7

6) Stack the current node (Step a) and

go to its DAU.

<addition exp>1,2 P DAU
<addition exp>1l,1 Pl SyccC

<addition exp> FIG. 4.8
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7) Recognise "+" and pick "A" as the new

current symbol (Step ¢).

8) Go through (4), (5) and (6).

<addition exp>1,3 P3 DAU
<addition expsl,2 P2 sucCcC
<addition exp>1,1 P succeC
A FIG. 4.9
<addition exp>
The SAS is now as gilven in the
diagram 4.9
9) Since the current node represents a
nonterminal, stack it and go to its
daughter (Step a)
<addition exp>1,1 P3 DAU
<addition exp>1,3 P3 DAU
<addition exp>1,2 P succC
2 : FIG. 4.10
<addition exp>1,1 Py succ T
<addition exp> ;
|
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10) Recognise "A". This 1is the end of the
statement since there is no symbol on
its right. Nelther the current node
nor any one of the nodes on the SAS have
a mandatory successor node. ﬁence this

is a legal statement. (Step c).
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LEFT RECURSION:-—

- GENERAL CONSIDERATION:-

’ ’ 4 ’ 4
We consider a grammar G (VN, o P, S),

constructed from a grammar G (VN, P, S) in

Tl
satisfying the following restrictions.

Vo © Vq
4

W © Yy
P ¢ P

and P’containing a mutually left recursive

4 4 ’/ L4

subset of productions Pl’ P2, 3

5 rs
The sentences of L(G ) are thus sentences of

L(G), or parts of them.
EXAMPLE 4.4

<8 > = <X > < Sl> alete

’
<S >

<X> a | c

<X >

’
<S§> Db | 4 J
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It is not difficult to see that

L(G) ={c[ba]rg} Uy {dalb a]g}m, n o

If P is of the form

i
<X>=<Y> <2Z>]|...
We define Y:L to be such that 2 =>¥%y,
and Y = Yz Y2 Yg seees¥ n > o and

Y is a part of a sentence of L(G’).
We shall also consider the "tail" £ of y as

£ = ¥

m+l Ym+2 Ym+3 *e e s e Ym*n O<m<n

For production Pi at which the left recurrsion

may terminate, the terminating alternative will

be referred to as n, - The notation can be
generalised if there are several such alternatives.

B is simply defined as nf .

Informally stating, in the example 4.2 L(G)

has three different types of substring:

a) which can ha\}e n occurrences (such as "ba"
in{da (b a™

(Y in the notation.)

b) which can have only one occurrence bhut are
parts of substrings in (a) (such as the fj'.rst

"a® in dalba] g) .
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( £ in the formal notation)

¢) which can occur once only but are not
parts of substrings in (a) (such as
d in da (ba)™)

( n in the formal notation)

? &
In the example 4.4, for G

B, = Mt B, = NSy
n, = ¢ n, = d
{-;l = A E‘2 = a

PRACTICAL CONSIDERATION:-

It is possible that there are several nonterminals

S&, é; W e e é; in G that are initial symbols
of corresponding grammars q', G'2 ........d;

haviﬁg the same set of productions P&, P;........P;.

G1 is essentially a set of grammars consisting of

one set of productions but in different order in
each case. So an algorithm is required which

could detect 5; and 1its corresponding order
I
/

P,, P P for G
1' 2.‘.....'-.11 or i ,'
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' ’
For example in example 44,X and § are in
7/ 4
both G and G . Hence we consider § as % -
E ’
and X as 52'

EXAMPLE 4 -5

7

/
’Gl is the same as G in 4.4 but G2 will be

as follows

<¥> = <8> bla

4 4
<g> <xX> ale

By the definition of context free grammar

(example 4.4)

/

G1 # G,
Also L(éi) # L(é;)

It is therefore necessary to find the right

’

= . yd Vi 4
order of productions Pl' P2, P3 ........Pn.in

4

G, and the corresponding start symbol S}

4.3 IMPLEMENTATION OF LEFT RECURSION :-

4.3.1 BASIC PHILOSOPHY:-
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'
Let Si be on the left hand side of Pl which

is in G/, then by the definition of left

recursion
s, FIRST* S,
i i’
With this in mind we explain our algorithm

by the following example.

<X> = <y> ald

<Y>

<2Z> b | c

<Z> = <X> ¢ | £
EXAMPLE 4.6

From example 4.6 using the parsing algorithm
already developed, the SAS will be in the

form shown in diagram 4.11 for any legal

grammary , and then the three elements will

be stacked again and again>iﬁ the same order.
The following extension to the parsing algorithm

prevents this repetition.



S8

<%>1,1 DAU P
<y>1,1 DAU p
<x>1,1 DAU P
<X> DAU

FIG. 4.11

Before making a new entry in SAS, it is processed
from top towards the bottom. The current position
is matched with elements of the position stack and
the current node is matched with the corresponding
elements of the node stack. The searéh is
terminated when, either a match is found or the
stack is exhausted. TIf the match was fouﬁd between
the current node and én element of the node stack,
mark that element of SAS as S;. If the element
immediately below is also marked, all the elements
of SAS above, including the current element, are
marked as left recursive and the element immediately
below éi is unmarked. After thatrkﬁiand Yy are
determined andrkgiynwith n > o represents a

sentence of L(é). Algorithms which recognise

n, £and vyare now described.




4,32

n

a)

b)

c)

d)
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<X> L.R. P
<E> L.R. P
<y> L.R. P
<X> DAU P

Stack with the above mentioned modifications

FIG. 4.12

ALGORITHM: -

Make the SAS-top the current element.

Mark the current elements as 1 and try to
recognise N by looking k symbols ahead.

If the recognition is not successful, unmark
the current element and check to see whether
the element immediately below the current
element (if any) 1is marked as left recursive.
If so, unmark the current element and make.
the element below it, the current element and
go to (b), otherwise delete the elements

above and including the current- element.

In (c¢) if the appropriate N 1is determined and
recognised, that means ﬂi has been completely

evaluated. The current element of SAS is

unmarked £ ~algorithm is called in.
|



Make the SAS-
top the
current
element

b

4

Mark the : )
current elememt

as n and try

to recognise

d

Unmark the
current elemept
YES of SAS. )

rembering 1ts

£ .
LO0CTCL0UIT

c \
; Delete the STOP
element below cuwrrent element
the current and all the

(o4

Unmark the current .
element and make
the element below

it the current
element.
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SOME PROBLEMS WITH "~ ALGORITHM:=:

If X is a nonterminal or the descendant of a

nonterminal in the sentential form representingni,

there are three possibilities.

a) X FIRST* X is not true.
b) X FIRST* X is true but
s} FIRST* X is not true
c) Both X FIRST* X -
and S; FIRST* X are true

In other words

s’iFIRST* X is true.

-In the first two cases, no explanation is

necessary, since the parser will work as usual,
the only difference being that when an element
of SAS is uncovered which is marked as lefF
recursive, it must be determined whether hi
has béen evaluated completely. Condition (c)
has more sérious implications since the parser
goes into a loop. This however does not pose
any serious problems since it is detected at
the time of stacking X and hence the sentential

form containing X is not tried. Incidently

grammar satisfying this condition is ambiguous.




4.34

—_——

4.35

103

£ - ALGORITHM:-

Since £ is a part of y, the same algorithm can
be used to evaluate both. One exception is that
the element of SAS (if any) immediately above
the element marked as n by the n~algoritﬁm is
considered‘as the current element at the start
of the & -Algorithm. Anqther difference of
course is that £ is compulsory while y is

optional.
Y - ALGORITHH S~

Mark the element of SAS reached in the

£-algorithm as y and ?ry to evaluate YCURRENT'

If the evaluation is successful, unmark the
current element of SAS and make the element
immediately above it, the current element and
repeat from start of the y-algorithm. The
process is interruptea when the top of the stack
is reached. At this stage, starting from the
top of the stack, the lowest of the "consecutive"
elements marked as left recursive is determined,
starting from this elehent and going upwards a

search is made for an element such that lYCURRENTI

2 1. It is marked Y and an attempt is made

‘to evaluate YCURRENT - If no symbol is matched
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for Y cyrrENT’

otherwise the normal process is continued.

the algorithm is terminated,
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CHAPTER 5

METASEMANTIC LANGUAGE
INTRODUCTION :-

In this chapter we shall describe the semantic
synthesiser vart of the automatic translator.
While the syntax of context free languages has
been thoroughly formalised, no satisfactory -~
formalisation of language semantics exists. A
practical general technique is also difficult

to imagine, since the semantics of different
programming languages can be so different. The
same is true with the machiﬁes on which they are
to be implemented. However the metasemantic
language (MSEAL) has been so designed that a
great deal of formalism has been échieved without
imposing too many constraints on its power.
MSEAL can be considered as a problem oriented
computer language. The problem inveolved is the
representation of the meaning of high level

programming language statements.

SURVEY i~

Before we go into the details of MSEAL, a

brief survey of different techniques currently

=
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being employed for specifying the semantics

of programming languages is in order.

Probably the oldest and definitely informal
metﬁod of defining semantics is by using a
natural language as a metasemantic language.

Most programming language manuals have adopted
this method. Various objections to such a
definitional method arise. The strongest of

these is that natural language itself incorporates
a huge and unanalysed body of tools which we are
still far from being able to handle. This
difficulty arises most strongly in connection
with the semantic properties of natural language
itself. Thus we have no mechanical way of
processing natural languaée definitions and even
if given what purports to be a complete definition
D of a programming language L, we have no
programmable way of verifying the completeness

of D, mechanically transforming D into a compiler
or interpreter for L, or mechanically determining
.whether any given compiler for L does realise the

object defined in D.
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The second semantic definition method commonly
encountered and suitable for either informal

use is that which may-be calléd the method of
devolution and is as follows: Within a language
L, to be defined éemantically, we determine a
sublanguage A , which is as restricted as
possible; then we treat the full language L as
an extension of A . That is, specifying some

" formal mechanism by which programs written in

L can be written in the more restricted language ),
we reduce the semantic definition problemof L.to
that for A . Such reduction may clear away a
fair amount of "superficial mess" associated
with L but not present in A . For example if

we apply this method to FORTRAN we can eliminate
“the DO~-statement by an explicitly programmed

iterative loop.

This .method restricts the structure of the|

|
langqages which may be defined too strongly for
use in an automatic translator of the kind we

have constructed,

The third type of models we will consider is
abstract semantics models. The objects being
~represented-are assumed to have an existence

independentiy of any representation. It is
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the purpose of the semantic definition to
characteriselthe "essence" of such independently
existing objects in a representation-independent
way. This approach leads to attempts to reduce
computational notations to methematical notations,
since mathematical models are assumed to capture
the representation-independent essence of
computational phenomena. For example Scotts
model [Scott 70] of Computable functions in
terms of a class of mathematical lettics is an
abstract semantics model.

While at some time in the future it might have
some practical importance at present its

significan:é is mainly theoretical.

Input-Output models are anotﬁer interesting way
of investigating programming language semantics.'
In these models, the functions we wish to compﬁte
are characterised in terms of the relation
between inputs and outputs which they determine.
This approach to the assigning of meaning to
programmes was considered by Floyd [FLOYD ]

and developed by Manna [ MANNA 69 | , Hoare -

[ HOARE 7l:land Manna and Waldinger [MANNA 71] .
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Although many of the computations that we wish

to specify iﬁ practice are conveniently specified
by é relation between inputs and outputs, there
are some computations which cannot be specified
in this way. For example programming lénguagés
génerally have an undecidable halting problem.

We can not use input-output semantics to

uniformly specify the semantics of an interpreter
for a programming language in terms of a relation
between inputs and outputs. Moreover innut-output
semantics regard all programs which realise "the
same function as equivalent. However the language
designer is interested in differences of
representation of a function in different
programming languages and the language implementer
is interested in differences of implementation of
a given program in a given programming language.
An operational model of semantics is the'last
nodel we will discuss and our semantic synthesizer
falls in to this categoxry. In this model we are
concerned not only with the relations between inputs
and outputs, but also with the path by which we
get from the input to the output and the
information structure generated along this path.

A general class of models for the operatiocnal
specification of programming languages-in terms

of information structure transformations which
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are performed by the language translator can be
called information structure model and defined

as follows. An information structure model is

a triple M = (I, Io, F) where I is a countable
set of information structures (sﬁructured states) .,
I°£§ I is a set of initial representationé and F
is a finitely representable set of unary operations.
whose domain and range is a subset of I. A
deterministic (sequential) information strﬁcture
model is one which, for all Ij € I, has at most
one element £ € F applicable to ij From now

on we will only deal with the déterministic
information structure model. A computation in a
(deterministic) information structure model

M= (I, IO, F) is a sequence Io' Il ————— of
‘elements of I such that Io e I° and for J = o,

l, 2 == ¢ Ij = ff(Iih ‘for some £ ¢ F. If

IO

is the syntax of a programming language, then

Iz, 12 ------In is a sequences of steps whicb must

be carried out in some part of a translati&n.

£ (Iy) is the action which is to be carried out :
at step Iy. If £  (Iy) denotes the generation of
code then fc (Ij)g; X f (Ij) for any ¥ 12 4

said to be completely evaluated when for some

integer n, an In is reached to which no element of

f£fe F is applicable.
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METASEMANTIC LANGUAGE (MSEAL):-

The basic approach we have adopted is that
three different mechanisms are provided for
handling each one of I°, I1 —————— In_land~In.
The input to the semantic synthesizer consists
of semantic productions. Each semant;c
production has three fields ordered froﬁ left
to right: the environment field, the action
field and the code field. The symbol " —> "
separates the environment field from the action
field and ":" separates the action field from
the code field. If M is the set of all the
semantic productions, then 1° is the set of

all the environment fields in M.

A formal mechanism has been provided to specify
I° where Io e 12, I, comprises of different
environment relations. These are combinations
of various static objects such as nonterminals,
terminals and identifiers and the so called
relation operators. Statements requiring
different actions have been provided to spec;fy
F in terms of I, in the action field. High
level data structure oriented commands have

been provided to manipulate various data objects.

In can be either specified in the action field




or more explicitly in the code field. For a
semantic actiqn, using the information obtained
from the syntax analyser, Io is selected where
I, £ 1°, I, is then automatically transferred
successively into Il' 12, - In' In the rest
of this chapter we shall give details of the
metasémantic language (MSEAL). For clarity,

it has been divided into various sections.

Each section contains the syntax and the
semantics of a subset of the MSEAL. MSfL
described in chapter 3 has been adopted as

the metasyntactic language for MSEAL, with the
exception that the right most descendant of a
nonterminal enclosed in corner brackets can be
followed by zero or more blanks. The following

are assumed throughout this chapter.

( i) Only strings can be concatenated.

( ii) Arithmetic operations can be perfarmed
on integers only.

(iiii A cell of a data object can not have
another cell, element or data object as

its value.

( iv) In the action field of a semantic production,

statements are separated by ampersénds.

'
|
i
1

iy
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5.4 DATA OBJECTS, IDENTIFIERS AND SELECTORS : =

<Brac op> =

< Brac c1> = )

Cletter> = AlBIE ~—r—rrr—rmemee |2

Llatgie> = ol1l2]3 —mmmemmmmeme l9

<integer> = ginteger& &digits| adigita
<alphanumeric> = {etter> |<aigit>

<identifier> = aidentifiers &alphanumeric&\&letter&
<aue limit> = BACK| FRONT

<stack limit>= TOP | BOTTOM

Quote‘> =

<string> = any string of characters including
null string

. <quoted string> = &guote& &stringé& &gquotesd
<ceil index> Q.nteger>| <identifier>
<1ndex> Qnteger>l<identifier> l<quoted string>|

<indexed nonterminal>
indexed stack 1d> = <identifier > <3ra1: op. >
éndeb <3rac cl> |
<identifier> <brac op> <3tack llmit> <brac cl. >
<identifier> <orac op. > <mde}> <:>rac op> <e11 1ndex>
<brac cl> <brac cl> |
<identifier> <brac op> <c;tack limit> Qrac op >

<cell index> <orac c1> <brac cl>

<stack objéct> <indexed stack id>| NEXTUP
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<i.ndexed stack id> | NEXTDOWN
<indexed stack id>
stack id> = <stack object>[ \i,dentif:l.er> ‘
Qndexed que 13> = <identifier> \brac op. P

<index > <brac. cl.>
<identifier> <brac.0p.> ’\/que 11mit> '\brac.cl> ]
<identifier> <brac.op.> <i.ndex> <brac.op.>
<cell index> <bx:ac cl> <brac cl>|<dentifier>
<brac 0p/ <que limit> <brac. op> <:e11
1ndex> Qarac cl. > <brac Gl >
que object> = indexed que 1> | NEXTFRONT
<indexed que id> |[NEXTBACK

‘ <indexed' que id> '
<que id> = <que object>| <identifier>
<table index> = ‘<identifier> |<1uoted string>
<indexed table id > = <identifier> @'rac.op.>
| <tab1e index>\/prac.c1-.> l
<identi.fier> 6rac.op.> éable index‘> <orac.op.>
<cell index> <>rac.cl.> <)rac.cl.> A
<identifier> = <fstack_id>i <;ue id>|'<1,:ab1e id> |-

<indexed nonterminal>'1'

t As described in Chapter 3.
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The data structures available in the MSEAL are
stacks,'ques and tables. Each element of these
objects and the simple variables can have a
guoted string, or an integer as a value. There
is no limit to the size of strings. A method is
provided to index different elements of stacké,
ques and tables. Stack elements are indexed from
top towards bottom and que elements from back
towards front. If an indexing identifier has tﬁo
references, the first one refers to the element
while the second td the particular cell in it.

On evaluating the first index, if it is an
integer, ﬁhe element is indexed by éounting the
elements. On the other hand if it is a string,
the element is determined by matching the string
with the first cell of different elements. If
there is only one index in an identifier, it is

considered as the first one.

An identifier alone refers to a whole object.

No two objects may have the same identifier.

EXAMPLES.1

a) STAC (TOP)
STAC is the name of the data object.
TOP is the only index in this case. i

The whole identifier therefore refers to the
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b)

c)
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top most element of the stack STAC.

STAC (TOP (2)) | |

STAC is the name of the data objecﬁ'(a

stack in this case), TOP is the first

index which refers to the top element of

the stack. "2" is the second index and is
considered as tﬁe cell index. The whole
identifier refers to the 2nd cell of the top

most elément of the stack STAC.
ABC ("STRING" (3))
ABC is the name of the data object, STRING

is the contents of the first cell of the

required element.

13" indicates that after finding the

required element, its 3rd cell is to be

referred.

Depending upon whether the data object is a
stack, que or a table, the element is
searched in the usual manner. The first
element found is assumed to be the desired

one.
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THE ENVIRONMENT AND THE CODE FIELDS:-

The description of the environment and the code
fields is short and informal and appears first.
We shall devote the rest of this chapter to

describing the action field.

The environment field determineé the context
in which the semantic‘production in hand 1is
to be activated. Its entriés will be called
environment expressions. An environment
expréssion can be either a part or whole of
the right hand side of a syntactic production

or can be formed by using environment symbols

and relation operators.

When any symbol belonging to the vocabulary

of the grammar of a language is used in
specifying its semantics, it is always indéxed.
In line with this strategy, the whole or pért

of a production used as an environment expression
is représented by indexing its constituents. The
consecutive symbols of a production can be
represented by indexing the leftmost symbol among
them as described in the 3rd chapter and
introducing the numbers of the subsequent symbols

preceded by semicolons. For example in the

production.
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5.5.1 <X> = <Y¥5> <Z> <T>
<Z> <T> can be represented by indexing {Z>

and then introducing ;3 after it.

{Z)» 1is indexed as <X> 1, 2 i.e. the second
symbol of the first alternative cf a production
whose left hand side is<X> . Hence «Z > <T>
will be referred to as<X> 1, 2; 3. If only
some right hand symbols of a production form an
environment expression, they ére preceded by

the system variable DUMMY.

The abdve method of forming environment expressions
is very useful if the user wants to specify the
‘semantics in terms of the syntax. If however

it is desirable to perform semantic synthesis
independently of the syntax of the language,

the environment expression can be perforﬁe§,
indeéendently. Any identifier, nontermina?{
indexed nonterminal, quoted string (terminals
are treated as strings) or a MTL system variable
can be treated as an environment expression.
Alternatively they can be combined with the

following symbols.



The relation is satisfied if the values of

both sides are the same.

The relation is satisfied if values of its

sides are not the same.

The symbol on its left hand side should be

on the top of the system defined stack STACK.

The symbol on its left hand side should be

the current symbol of the source statement.

The right hand sides of "-" and "@" can be
members of the vocabulary of the grammar.
This symbol by itself or any one of its-
descendants should match the current symbol,
The logical OR operation is represented by "I"
and the logical AND operation by "&". The
latter has priority over the former but this
can be overridden by bracketing. Nesting of

brackets is not allowed.

If (1) is to be considered as an environment

expression, it will be written as

5.5.2 DUMMY <X> 1, 2; 3 |
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EXAMPLE 5.2
a) ‘'ABE'| 'ABD' - 'ABC'
This 1s true either

if the current symbol is ABE
or if the current symbol is ABC and

the symbol at top of the STACK is ABD,

A

EXAMPLE 5.3
b) ('ABE' | 'ABD' - 'ABC') & X 3 5

This is true if (a) is true and

X is equal to 5.
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There is a great deal of freedom to a user in

the code field. This field can have any number
of identifiers and quoted strings. If the SEAS

is being used for semantic synthesis, any

indexed symbol of the current syntactic production
can also be used. The code generated by the
execution of a code field is the concatenation

of all the strings appearing in it. Where

appropriate, the format is controlled by

/ generate end of line

£ generate end of page

ACTION FIELD:-

It is in this field that most of the semantic
action takes place. A user can define an
arbitrary number of stacks, ques and tables.
Various facilities have been provided for j
searching, deleting and transferring data from
one data object to another. All statements
either succeed or fail. If a semantic
incompatibility is detected in any statement,
it fails otherwise it succeeds. Conditional

statements have been provided to make various

checks on different data objects. Depending
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upon whether a statement fails or succeeds,
transfer of control can be directed by branch
statements. Assignment statements and MTL
system variables provide extra 'power for data
manipulation. Any two statements in the
action field are separated by an ampersand.
There must be at least one blank between an
ampersand and the statement which follows.

A label starts immediately after an ampersand

or " ~>" as appropriate.

STACK STATEMENTS:-

<coma>
<ce 1 1>

’ .
<identifier>l < integer > ! <str1ng>

sympnow | M-
<element> = gelement& &comag scellslscells
<push statement> = PUSH /\eleme‘nt> IN+Qrariab1e>
stack delete command>= DELETEUP | DELETEDOWN
<stack search command’> = SEARCHUP|SEARCHDOWN
<stack command qualifier> =<indexed stack id> l
<indexed stack id> UNTIL, EXHAUSTED
<indexed stack id > UNTIJT. Qndexed stack id>
Qtack delete statement> =<stack delete coxﬁmand>

@tack command qualifiex >

'{stack search statement> = <stack search command>

<s tack command qualifier>

+ Blanks must appear on each side.
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stack statement> = <push statement > |
<§tack delete statement > |

<§tack search statement;>

The PUSH statement enters an element of the
stack at its top. If there is no such stack
in the system, a new stack is created, and
then the new element pushed in it. The
SEARCHUP and the DELETEUP commands initiate
their respective search and delete operations
from a particular point upwards. The SEARCHDOWN
and the DELEfEDOWN commands initiate thelr
respective operations from a particular point
downwards. The values of elements and that of
cells are assigned to VALELEMENT and VALCELL
respectively. Their indexes are assigned to
INDELEMENT and INDCELL respectively. If the

search fails the previous values remain unaltered.
There are two system defined stacks:

SEAS and STACK. The behaviour and use of SEAS

will be discussed at length separately. !

\

The STACK has only one cell in each element.
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Among other things, it can be used to communicate

between MSEAS and SNOBOL4 extension programs.

In the latter case, it appears as an arrxay named

STACK having 80 elements.

QUE STATEMENTS:-

register statement> = REGISTER <element> '
<identifier >

<que delete command> = DELETEON | DELETEBACK

<que search command >= SEARCHONISEARCHBACK

<que command qualifieb‘ ==<indexed que id> ]

<indexed que'id> UNTIL EXHAUSTED|<indexe_d que id>

1.
UNTIL Qndexed que id>

' <;ue delete-statement>= <gue delete command>

<que command qualifier>
<que search statement>= <;ue search command>
<que command qualifier>

<1ue statement>= Qegister statement>l Que delete
- statement

<que search statemen t>

The allowed 6perations on ques are quite similar
to those of stacks. The REGISTER statement is
used to make a new entry in a que. If the que
already exists the entry is made at the back of

the que; otherwise a new one is created. The

t+ Blanks must appear on each side.




125

SEARCHON and the DELETEON commands initiate their

respective opérations from a particular point

towards the front of the que. On the other hand

the SEARCHBACK and the DELETEBACK commands initlate

their respective actions from a particular point

in the que backwards.

que.

<:§nter

<:Fable

"TABLE STATEMENTS:-

statement;>= ENTER
delete statémen@) =
search statemen€>’=

statemen€>'= <§nter

There is no system defihed

o
<€lement> IN <identifier >
DELETE <indexed table id>
SEARCH‘<inaexed table ié>>

statement:>|<<}able delete

statemenﬁ>>|<i£able search statement

Unlike stacks and ques, a user can not specify

the direction of a table operation. The ENTER

statement makes a new entry in a table, the delete

statement deletes an already existing entry and

the SEARCH statement searches an entry.

Blanks must appear on each side. °



126

An element of a data object consists of any
numbers ofAcells separated by comas. There is
no explicit declaration statemeﬁt but data objects
are automatically declared at the time of
making the first entry. The number of cells
in each element of a data object is-the same.
The statement
PUSH "aBR", "C", “D"™ IN AA.
declares a stack AA if it does not exist already,
with each elément having three cells. The first
element of the stack is initialised to have "AB'
"C", and "D" in its cells in the same order. If
AA exists already the element "AB", "C", "D" is
pushed in it. A stack command operates on its
argument. A DELETEDOWN command requires the
deletion of the whole or part of a stack starting
from the specified point downwards. The case is
opposite for the command DELETEUP. The information
about the name of the stack and the particular
starting point for deletion is acquired from the
first argument. For instance. the stétement
DELETEDOWN-STACK (TOPR)
will delete the topr of the STACK and the staéement
DELETEDOWN STACK (TOP) UNTIL STACK (3)
deletes top three elements of the STACK.: If some

middle part of a data object, is to be deleted
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the skeleton remains but the deleted cells are
initialised to nuli string. SEARCHDOWN and
SEARCHUP comménds search a stack from a particular
point towards the bottom and top respectively.
The specification of the name,starting and
finishing points of the search is similar to
that of the delete operations. On successful
search,different values are assigned to the
following as appropriate

VALELEMENT Value of the whole element

searched

VALCELL Value of the searched cell

INDELEMENT  Index of the element searched

INDCELL Index of the cell searched.
If only some of the above mentioned MTL system
variables get new values in a successful search,
rest of them are assigned null string. If
however a search fails the value of the above
mentioned MTL system variable remains un&ltered.
If due to some semantic reason an operation on
any 6ne of the déta objects is not possible,

the statement fails.

5.64 ASSIGNMENT STATEMENT:=-

<:bperatoi>> =  +|=]|*|/ i
<:ﬁnary operatoﬁ>’ = +|- :
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<unsigned operand> = <{integer> | {identifier>
<operand>= &unary operatorsg <unsigned operand>!
<unsigned oPerand>
< arithmetic exp> =<arithmetic exp> <(operator>
<operand> 1 <operand>
<search value> = VAL | INDELEMENT | INDCELL
<search statémen1> - <'stack search statement>'
<que search statement> f <table search statement>
<Lassignment body > = <arithmetic exp > |
<search valué> .}<search statement> | NULL
<system variable = DELIMITER|VAR|NEWVAR|SYMBNOW
< boolean value> = 0|1
<string valug> = <;uoted string> | Qdentifier>
<string exp> = {string exp> <~3tring value> |
string valu@!(;ystem variable>[
CODE
<assignment variable>= RETURN|STOP|SEAS
<device> = PRINT |PUNCH|TAPE|DISC
<assignment 1d> = Qdentifier> Icope | indexed -
stack id> |(devicey | {indexed que 1d> |
< indexed table ida>
<assiqnment sign> = =
<assignment statement> = <assignment icbéssignment sign
<'string exp> e
<assignment id> <assignment sign> stignmént body>|
‘ <a:ssignment sig@ étring exp> |
<assignment variable> <assignment sign> <boolean value:
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The evaluation of an arithmetic expression takes
place from left to right with no operator precedence.
The value of a string expression is the concatenation
of all the strings appearing in it. Every time

the system variable "NEWVAR" is executed, a new
variable is generated. Its value is automatically
assigned to "VAR" and can be used later. The

system variable "DELIMITER" by default has a blank
as its value. But this value can be changed by an
assignment statement. When the code for a full
source statement, is generated, the delimiter is
inserted at its end. Execution of the statement

:= CODE has the effect of handing the current

value of CODE to the system which in turn preserves
it at the appropriate place (as described later).

On completing the analysis of a source statement

code is generated on the output device.

MISCELLANEOUS STATEMENTS:-

<:§egment comman@> = SEGMENT-
segment statement>= &segment commands <integer> |
&segment command&<:§ariabl€>
«<§liminate statemen§>>= ELIMINATE]ELIMI&ATE
&segment statement& s&comag <integer> |E£IMINATE

&segment statementé& &coma&<f§ariabLé>
|



<reinstate statement> = REINSTATE | RETNSTATE
&segment statements gcomaz<integer> |
REINSTATE (segment statement)&comas
<:§ariab1€>
code statement> = copk |copE <string exp>
< junp> = CONTINUE <alphanumeric> |
<:hiscellaneous statemenﬁ) =<<§egment statemen€>|
<:éliminate statemen£>>L<}einstate statemenf:>'
<§ode statemenﬁ> l

CLEAR| CURSOR|IGNORE

A segment is a parﬁ of semantic Specificatioh
which can he called for action as an independent
piece of specification. A segment is named by

a segment statement.

An eliminate statement temporarily eliminates

a semantic production. On any subsequent
occasion, it is considered non existent until -
it is reinstated by é reinstate statement.l If
the command ELIMINATE has no argument, the
current statement is assumed. Otherwise the
segment is specified explicitly and the
producéion number is separated from it by a
coma. A statement CODE with no arguments

generates code as specified in the code field’

t it can be followed by a string of wvalid characters.
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of the current semantic production, otherwise
that specified by its arguments is generated.
The IGNORE statement allows comments to be
introduced. The whole statement is ignored.
On executing the CURSOR statement, "£" is

printed under the current cursor position.

TRANSFER OF CONTROL STATEMENTS:-

<laffirmative predicat> = EQ|LT|GT |LE |GE
<1egatio> = '
@egative predicat§ = &negationg éffirmative
predicate>
<predicate> =<affirmative predicate>‘ <negative.
predicatc>

<31rgumen1> = <>perand>| <zuoted string>

<test statemenf>‘— @redicate> <3p brac>
\argumem> <coma> Qrgumem>
<cl brac>

<conditional statement> = ? <fstatement>
<:ransfer of control statemen1> =<test statemeni> I
<conditional statemena

étatement> = <stack statement> | <zue statemen>
<tab1e statement> I <assighment statement>

Gump>
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The significance of each of the affirmative
predicates is as suggested by the mnemonic.
When prefixed by N, the predicate is negated.
The result of evaluating a test statement is
to assign the appropriate value, TRUE or FALSE,
to the system variable TEST. This value

remains accessible in the succeeding statement.

To execute a conditional statement, the value
of the variable TEST is checked (its value
would have been effected by the previous
statement). If it is true, the part of the
current statement following "?" is executed,
otherwise the control is passed to the next

statement.

5.67 SEAS: -

This is a system defined stack with two cells

in each element.: - It is controlled by the system
and developes and collapses automatically. ' In
the first cell of each element is kept a
particular indexed nonterminal of the grammar.
The second cell holds the source string produced
from it. When semantic action is to be téken

on recognising part or whole of a MBNF production,
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the values of its constituents. appear in the
top elements of the SEAS, the rightmost
constituent of a production being at the top

of the SEAS. For example in the grammar

il

abec

Il

< X> ( <y>)

the SEAS is shown in the diagram

<y>1,3
<y>1,2
<y>1,1
<x>1,1

-~ o U Q

FIG. 5.1
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On recognising a semantic production, partsvof
the string covered by the production are
accessible. These strings appear as values of
the nodes of the syntax graph at the nearesé
possible state of the production. TFor example
if the environmeht field recognised is

<y>1, 1; 2; 3, the values available will be

<y>1l, 1 = a
<y>1l, 2 = b
<y>1,-3 = c

On the other hand if the environment field
recognised is <x> 1, 1; 2; 3 the available

values will be
’ |
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<x> 1,1 = (

< x> 1, 2 abec

<x> 1, 3

il
~

EXAMPLE 5.3

The semantic production to be executed is

<x>1,1;2;3 > CODE<y> 1,1 & CODE<y?> 1,2 &

CODE <y> 1,3 & := CODE :

The first three statements generate a b ¢ as
code, and then this code is handed over to the
system by the last statement. The system keeps
the SEAS up to date. On completing the execution
of the action, all cells of SEAS above the one
representing the left most symbol in the
environment field ( <x> 1,1 in the current case)

are deleted.

<x>1,1 abc

TFIG. 5.2
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OVERALL STRATEGY:-

The semantic definition of a programming language
follows its syntactic definition separated by

the command $SEMANTICS. This definition may

be in anyone of the two modes of specification
i.e. the production mAtde and the relation mode.
To select a mode, the $SEMANTICS command may

be followed by PRODUCTION or RELATION as

appropriate.

In the production mode, all the environment
relations are whole or parts of MBNF productions.
In this mode SEAS is available and user is

advised to use it. In the relation mode SEAS

‘is not accessible.

In either case the semantic definition may
consist of one or more segments, the top most
being "SEGMENT-O". Fach segment of the seﬁantic
definition is an ordered set of three ficld
productions. Productions with empty environment
field are executed only once i.e. at the start
of execution. Recognition of the environment
field takes place from top towards bottom, the

first match.being considered the valid one.
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Eliminated statements are ignored. On recognising
each'non—auxiliary word, control is passed to

the semantic synthesiser which processes the SEGMENT-O.
When the environment field of a semantic statement
is matched, its action field is executed.
Execution of the action field is complete when

its last statement is executed or on branching to
label "STOP" The execution of a segment is '
complete if no environment field matches in the
whole segment or if at least one semantic
statement is executed and the value of "STOP®

is "1". If the value of "STOP" 'is "0O", on
completing the execution of a semantic statement,
the same segment is processed again starting from
the top most semantic statement of that segment.
.On branching to "RETURN", if the value of "RETURN"
is "O“, the execution of the current segment is
considered to be complete and if the value of
“RETQRN“ is "1", the current semantic proc?ss is
considered to be complete. In this,contro} is

passea back to the syntax analyser.

All symbols of the MTL are reserved symbols.
However this specification can be overridden by
preceding any such symbol by an asterisk. Two
consecutive ‘asterisksgive the effect of a single

asterisk as if it is not a symbol of MTL. The
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generated code is kept internally in the form

of a string as value of "CODE". It is generated
on the output stationary only after the whole of
a source language statement has been recognised.
The output device can be selected by the device
assignment-statement. Execution of "CURSOR"

prints "£" under the current cursor position.
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TABLE 5-1

In this example, the MTL specification of a

subset of the programming language PATE is given.
Its syntax and the semantics are separated by

the control card "%SEMANTICS RELATION". This

means that its semantic synthesis is to be performed

in the relation mode.

At this stage we will not elaborate the syntax'
any more since it is explained in chapter 8.

The nonterminal "NUMBER" is not defined by a
MBNF production but it is defined by an MBNF
function. The source languagé statements are
processed and polish notation generated for them.

Different stages of this process are also shown.

.Since the semantic synthesis is performed in the
relation mode, the manner in which the syntax is
written has no effect on it. The parser is used

to dgtect errors and give diagnostics. Th? system
defined stack "STACK" is used for semanticisynthesis
and bésically the tasks shown in the following flow

chart are performed.
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Table 5.2 describes the processing of an
assignment statement. The table is formed

of three blocks of information. The topmost
block specifies the syntax of the assignment
statements. The terminal alphanumeric is
defined by SNOBOL4 which has been added to the
MTL processor. The semantics is separated from
the syntax by the control card %SEMANTICS PRODUCTION.
It specifies that the semantic synthesis is to
be done in the production mode. The processed
assignment statements are displayed following

the %GENERATE command.

The object of this exercise is to generate
polish notation for assignment statements. The
syntax analysis is performed by the syntax
analyser which has been discussed in detaill in

chapters 3 and 4.

In this example, -there are three semantic
productions which perform the following task:
a) In an arithmetic expressions without brackets
1) as soon as a multiplying operator and its
trailing operand are recognised, their
order is éhanged. é

ii) when the whole expression is recbgnised,

‘the SEAS is scanned and complete polish
|



b)

c)
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notation generated.
Bracketed expressions are evaluated and
then their values treated as ordinary
éperands.'
The expressions inside brgckets are considered
as independent expressions and are treated as

described in (a) and (b).
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CHAPTER 6

IMPLEMENTATION OF THE

SEMANTIC SYNTHESISER

SEMANTIC TABLES:—

On reading the semantics of a programming language,
tables of its intermediate language are constructed
such that starting from the first semantic production
read, the environment fields (E F.) of all the
statements can be constructed sequéntially. The
action fields (A.F )-and the code fields (C F ) are
accessible through the environment fields of the
semantic production in which they appear. Segment
names are treated in a manner similar to the

environment fields.
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E.F.11 A.F.11 , C.F.11
E.F.10 A.F.10 | G 10
E.F.9 A.F.9 C.F.9
E.F.8 A.F.8 C.F.8
E.F.7 A.F.7 O.F. 7

SEGMENT - 2

E.F.6 A.F.6 C.F.6

E.F.5 - A.F.5 C.F.5

SEGMENT - 1

¢ SEGMENT-O> ¢ SEGMENT-13 (— SEGMENT-2 —>

E.F.4 A.F.4 ‘ C.F.4
E.F.3 K83 C.F.3
E.F.2 BF2 ‘ QP 2
E.F.l 7 % | : C.¥.1

Semantic table

o O

ﬁhe diagram 6.1 shows the semantic tables for a
semaﬂtic specifiéation. Three fields of each
semantic production are represented by three
columns. The bottom production is phe first
production read. .The bottom production in each
segment is called the start production of;the
segment. As 1is clear from the diagram, siarting

from EFl, it is possible to access EEZ2, ER3 ~~-- EFN




sequentially and from EF.m AF.mand CF.mare accessible;

m and n being positive integers.

On the completion of the syntax and the semantic
specification, when a "$CENERATE" command is met,
the system goes through all the semantic statements
and executes all those which do not have an
environment field. After that they are made
unaccessible to the system and processing of the

source language starts.

SEMANTIC SYNTHESIS:~

During the syntax analysis of a source language
statement, a "history" of the recognition is kept

on the SAS. When a node is successfully traversed,
it is recorded. 1In essence it is deleted when the
string covered by it is recognised. When semantics
of the language is specified in the relation mode,
each time a new symbol is recognised, the semantic
synthesizer is called for action. In the production
mode it is called each time the part of a production
enough to form a valid environment expression is

recognised. g
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When the semantic synthesizer ;s called, an attempt
is made to recognise a production in SEGMENT-0O. If
the match is found, its action field is executed,
otherwise the control is passed back to the syntax
analyser. In the action field, execution takes
place sequentially from left to right unless an
explicit transfer of control takes place. The

code field is invoked by the execution of a
statement in the action field. The string resulting
from the execution of a code field is generated as
the code.

At the time of constructing the semantic tables,
internai code is generated for each semantic
production as it is read. The order of the
Ainternal code therefore is reversed from the one
specified by the user. To ensure top-down
recognition for the user specification, the
recognition of the semantic productions in any

i
segment always proceeds from bottom upward7.

To recognise a semantic production in any segment,
starting from the start production of the segment,
an attempt is made to.match the environment fields
of any one of the productions, the first match

considered as the desired one.




To recognise different relations in the environnment

field, various checks are made on the relation

symbols under-consideration and on various data types

and previously kept symbols. For example to recognise

'+!' - ',' it is checked that '+' is at the top of the
STACK and "," is the symbol currently under consideration.
In the relation mode the recognition process is fairly
straightforward, but in the production mode it is more
sophisticated and needs some explanation and is

discussed below.
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RECOGNITION OF ENVIRONMENT EXPRESSIONS:~

Consider that at any stage of parsing

N.; N3 N, —=——= N are the nodes in SAS such that:
i 2 3 | n A
Nl is at the top while Nn is at the bottom. Nl

is the immediate descendant of N2, N2 of N3 and so

on, Ny is the immediate descendant of N;. N* is

a node in the syntax graph representing the nonterminal
under consideration in the environment field. To
recognise N*, it is matched with Ni' where

1 =0, 1, 2 ==—=me 'n. i is assumed to be such that

N, does not have a successor node.

If the whole of a production appears as a relation
in the environment field, SAS is searched from top

towards bottom for a node N_ such that

P
NP is descendant of NP+l

and N is the successor of N

P-~1 P

N is the successor of N

P-2 P-1

and so on.

Npr Np_qv Np_p ====== N. are then matched with the

0
given production in the environment field. If only

the r rightmost symbols of a production appear as a

relation, then the given environment field is
' !

matched with .

N )’ N

p=(P~r)* Np-(p-r)-1' Np-(p-r)-2 ;
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For example consider the example

the expression A + A, the SAS has the form shown in

Fig. 6.2.

If N* is

"A", it matches the most recently recognised symbol ,

<éperan€> , 1t matches the node Ny which is not on

SAS.

N1 <addition
Ny <addition
N3 <addition
Ny <addition
Ng <addition

exp>1,1
exp>1,3
exp>1,2
exp>1,1

exp>

4.3, on recognising

DAU
DAU
SucCcC-
sSuccC

FIG, 6.2




.matches N3, N
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It is worth noting at this‘stage, that the

<;addnion ex§7 can have two different values
i.e. <éperan§> and

<bperan§> <§perato%> <: agdition exé> .

Hence in the semantic specification ambiguity
can be caused. It is the users responsibility
to avoid it. This however is not a big handicap
since in BNF a nonterminal can have more than éne

different alteratives any way.

On deleting the top cell of the SAS shown in 6.2,
it will have the following
form.

In this case # = 3 and

< addition exp> 1; 2; 3
and Nl while

2
DUMMY < addition exp> '

Nl <addition exp>1,3 DAU
1, 2; 3_matches N, and N, N,! <addition exp>1,2 . syce
since r & 2. N, <addition exp>1.1 suce
N4 <addition ex£>

FIG. 6.3
THE OVERALL STRUCTURE:- )

The semantics of a programming language is described

in terms of its syntax. If VG is the vocabulary of

a grammar G and Va € V.. Then Va is treated as an




6.4.1

189

identifier which always has as its value, the
correct code corresponding to the part of the
source statement recognised by its descendants

at any instant of time.

Consider the following specification

épérand> = A
gperator = +

éd’dition ex1> = <)perand>j Q)perator>

éddition exp
$SEMANTICS PRODUCTION

éddition exp> 1, 1; 2y 3=y CODE éddition exp> 1, 1

¢ CopE {addition exg? 1, 2 & := CODE & CODE = NULL:

In (5) we may refer to members of VG (In
processing different texts and at different instances

in processing the same source statement).
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To deal with this, the system manipulates different
nodes of the syntax graph, assigns code to them and
updates it as the processing proceeds. For every
occurrence of ‘e in a semantic statement, reference
to the corresponding node is assumed. For this
purpose, the system has a semantié stack (SEAS)
with two cells in each element: definition cell

and the value cell. Nodes are stored in the

definition field and their respective codes in

the value field.

When a symbol of the source statement is recognised,
the node being traversed by the syntax analyser
along with the most recently recognised symbol is

stacked in the SEAS.

Consider that the syntax analyser traverses a path
to "go“.from the current node to the one which
covers it. In this case if the current node Nm

is at top of both SAS and SEAS

a) the SAS~top is deleted.

b) N replaces Nm at the SEAS~-top.

m+l

Suppose that Nm’ Nm~l' Nm_2 ------ Nl

(examples 4.1, 4.3) are the nodes in SAS wﬁich

match the environment field. In the action and

code fields of these semantic statements }eference

{
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may be made only to VS corresponding to .
Nm'.Nm-l’ Nm—é (- Nl' On successfully completing
the éxecution of the action field, the elements of
SEAS representing N__,, N -, N 4 .v.... N, are
deleted. Control is then handed back to the
syntax analyser. Processing continues until the
syntax analyser reaches the start symbol of the
grammar. At this stage there may be only one
element in the SEAS with the start symbel of the
syntax graph in its definition field. The value
of this element is generated as code on the output
stationary. However, if the definition field of
the eleﬁent in SEAS is other than the start node
of the syntax graph, no code is generated from the
SEAS, since it is‘assumed that the user has a

separate algorithm for doing so.

A string is formed by concatenating the qode
generated by executing successive CODE statements.
When the statement ":= CODE" is executed, the value
of Nm in SEAS is set to the CODE string. If the
MTL variable SEAS is set to "O", the semantic

stack SEAS does not develop and the user must

declare and manipulate his own semantic stacks.
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In the example 4.3, when the SAS has the form

shown in FIG. 4.10, the SEAS will be as follows:

Nl <addition exp>1,3 A

N2 <addition exp>1,2 +

_N3 <addition exp>1,1 - A
FIG. 6.4

First of all "A" was recognised and N3 was the only
element stacked in SEAS. It had <§dditioq exé>

1,1 in the definition cell and A in the value cell,

On recognising "+", a new element was created in
SEAS, with definition field as (addition exp> 1,2
and the value field as "+". As "A" was recognised,
the third element in SEAS was created having

<addition'exp> 1,3 and "A" in its definition and
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the value fields respectively. At this stage
(5) is executed. - On executing its action
field, & string of code A A + is generated.
This code is set in the value field of N3 and
the string itself destroyed. On completing the

execution, the elements of SEAS representing

N1l and N2 are deleted.

HIERARCHY WITHIN ENVIRONMENT FIELD:-

The enwironment field of any particular statement
is tried from left to right. First of all the
symbol "|" outside the scope of brackets " ("

and ")¥.is searched, for successful recognition

of its left hand side known as a master alternative
results in a successful match of the environment
field. In the case of failure, the master
alternative on the right of the current one is
tried. This master alternative essentially is

the environment expression between the above
mentioned "|" and the next one on its right, which
is out-side the scope of " (" and ")". If however
there is no such symbol, the end of the environment

field is assumed to have been reached. In any one

of the above mentioned cases if there is no "|"

outside the scope of "(" and ")", the end of the
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environment field is assumed instead. On testing
all the master alternatives, if no match is found,
failure is reported to the semantig synthesiser
in the recognition of the current environment

field.

To recognise any one of the master alternatives,
an attempt is made to find a relation oéerator
(1f any) outside the scope of "(" and ")". 1Its
left hand side is evaluated before the right hand
side. On either side of the relation operatbr all
the alternatives are tried, ignoring brackets.
However if no alternative matches on any one side
of the relation operator, the recognition of the
current master alternative 1is considered to have
failed. While evaluating expressions inside
brackets " (" and ")" all the alternatives are
tried from left to right and the same rules apply
as that of master alternatives, except that no
further bracketing is expected. This would have

been detected at complile time as an error.
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example:- 6.1

Consider the environment field

(c l ‘B AN} ~Lh) | (<2 | ® | <o)

which has two master alﬁernatives:

('ct | 'B' | A" -(and ( <a> | > | @).

The former is tried first and in the event of.
failure the latter is attempted. To recoénise

the former master alternative, the position of

"-" is determined and then the bracketed alternatives
are matched against the scurce téxt. If any one of
these alternatives matches, the'right hand side

of "—"Iis tried, otherwise the second master

alternative is attempted.

PROCESSING OF SOURCE STATEMENTS:-

During the processing of a source statement, every
time the control is transferred from the syntax
alanfser to the semantic synthesizer, the SEAS is
adjusted. The nature of the adjustment depends
upon whether this action was taken due to the
recognition of a new source language symbol or
purning of some part of the parse. A search is
then made for a statement in SEGMENT-Q, the

environment field of which matches the current

i
e
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environment. The system routine whose job it is
to recognise the environment fields of the

semantic statements is divided into two parts:

i) which recognises parts (or whole) of the
MBNF productions (Production mode) .
ii) which recognises all other types of master
alternatives in the environment expressions

(relation mode)

The semantic synthesizer determines whether or
not (i) is applicable, (i) is applicable only if
at least the top or the second top element of SAS

has the SUCC in its path field.

The environment field of the semantic statements

are considered one by one. If the semantics is
specified in the production mode (i) is applied
otherwise (ii) is considered. If a match is found,
its cqrresponding action field is executed, otherwise
the control is returned back to the syntax

analyser. During the execution of the action field,
1f the control is transferred to another segment,

the current position is stacked in a system stack.
The new segment is then executed exactly in the

same manner -as that of the SEGMENT-O.
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Flow of control for most of the statements used
in the action.field is straightforward. All the
statements are executed sequentially from left
to right, except when the control is transferred

by a branching statement.

When an ELIMINATE statement is executed, the
environment field of the corresponding semantic
statement is marked. Marked environment fields
play no part in the recognition of environment
fields. REINSTATE statements unmark the

environment fields.

On completing the execution of a semantic
production if the value of-STOP is "0O", control
is handed back to the syntax analyser. For
non-zero values of STOP the whole segment is
tried -again. If the execution of an action
field is terminated by branching to the iabei

RETURN, the value of STOP is assumed to be "O".

In MSEAL, there are symbols with more than one
meaning depending upon the conte#t in which they
are used. These cases are treated séparately.
For example CODE can either be used as a variable
having a string value or as a MSEAL commahd. In

the former case, a SNOBOL4 variable is made
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equivalent to it and is referred to at all
subsequent occasions. In the latter case, it is
treated like any other MSEAL command and is kept

in the MSEAL symbol table.

DATA OBJECTS:-

All data cobjects, ques,-tables and stacks are
dynamic and develop in the form of doubly linked
lists. The system has a linked list, called
"START-LIST", of pointers to a variable number
of linked lists which represent the data objects.
An elemént of the START-LIST is known as a

descriptor. Its format is as follows.

Start End Forward

finiti T Si
emod ype ze Pointer |Pointer |[Pointer

FIG. 6.5

. I
DEFINITION:- holds the name of the data o?ject

in character form.

TYPE:~ coded to indicate whether the data

object is a table, que or a stack.
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SIZE:- Specifies the number of cells of an
element of a data object as it appears
to the user. (The two cells required
for linking purposes are not included

here).

START-POINTER:- pointer to the start of the data

object.

END-POINTER:~ pointer to the end of the data

object.

FORWARD POINTER:-Pointer to the next element in
the START~LIST. The last element
in the START-LIST has a null string

in this cell.

Each element of the START-LIST has pointers to
both ends of its data object. Each element of a
data object except the end elements, points to
and is pointed at by its adjacent elements. The
end elements are marked by null string in the

pointer field.
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When a fresh data object is to be constructed, a
new descriptor is created and linked in the
START-LIST with appropriately initialised fields.
An element of the data object is then created
with the reéuired number of cells. These also
.are initialised appropriately. When a new
element is entered in any data object, the start
list is first searched for the name of the data
object and then after checking its type and the
element size, the new element is created at the
end of the data object. If however, the name of
the data object is not found in the START-LIST,

a new data object is created. If the name is
found iﬁ the START~-LIST but its size or type do
not match an error message is outpht;

To search for an element of a data object, the
START-LIST is first checked for, the name, type
and the elemené size of the data object.' Then
usiné the links of the data object, the pa%ticular
element is sought. Since all the data objects are
created'using doubly linked lists and their
"starters" in the START~LIST point to both ends,
it is possible to make a search starting from
either end. The first cell of each element of a
data object -is considered as the definition cell.

If the element is referred to by name rather than
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the index, this cell is checked.

EXAMPLE . 6.2

Qonsider the statement

PUSH "ABC", "CD" IN STACK.

The START-LIST is searched to find an element

with
DEFINITION = STACK
TYPE = stack
SIZE = 2

If result of the search is "yes", a new element
of the stack with "ABC" in the first celi and
'CD' in the second is created. The last element
0f the stack is linked with it and it is pointed
at by the END POINTER of the stack. If search of
the START-LIST for an element with "STACK" in the
definition field fails, a new starter is created

with the following specification:
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DEFINITION = STACK
TYPE = _stack
SIZE = 2

The first element of the stack with the above
starter has "ABC" and "cd" in its two cells.
To retrieve information from one of the data
objects, a statement of the following form is

executed.

SEARCHDOWN STACK ('ABC'(2))

The system searches the START-LIST for the
specifications given in example (6.2), using
the END POINTER of this starter, the stack is
then searched from top downwards so'that‘it has
"ABC" in its first cell (internally 2nd cell).
The §alue of the'2nd cell (internally the 3?&

cell) is then returned using VAL.

If the statement (1) is of the form SEARCHDOWN
STACK (C (X)) :
the process of execution is exactly the same

except that the values of ¢ and X are assumed.

|
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Table 6.1 is the same as table 5.1 except that

in this table systematic conversion of arithmetic
expressions to the reverse polish form is displayed.
After every call of the semantic synthesiser, the

state of the code is displayed.
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Table 6.2 shows &ifferent sizres ¢f processing
assigoment stztements with the specification of

table 5,2. At different stages, when the semantic
synthesiser is called, a table of information

stating the states of the SAS and the SEAS is displayed
along with the current cursor position on the

sovrce language statement, The node fields show

vhich node is stacked in the SAS or the SEAS,

PO5 is the current cursor position and PATH is the

path traversed after stazcking the said node., In

SEAS, the CCDE field gives the current value of the node

in terms of the code,

Ag it can be seen from different tables, it is

not necessary that every time the semantic

synthesiser is called, some semantic production

must be executed, If no semantic production is

recognised the control is returned back after updating

the SEAS. TFor example, although no semantic production

was recognised in table 6.21, ALPR%M~ERICNO§E is stacked

in the node- s
and X in the code field,

table 6,22, := yopp is stacked in the node field

and := in the code fields of SEAS.




181

In 6.23 however two actions took place. The
node field of the topmost element was changed

from ALPHANUMERIC to (variable)

NODE NODE
Then a new element was stacked with +NOE and +.
Similar is the case at other stages.
In table 6.24 N to N, form the Dparse tree

11 i

given on page 188.
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To recognise a semantic production at the current
state, we zre only concerned with Fg to Nl' 45 a

matter of fact N, is redundant since it plays no

3

part in parsing except to modify the path, Hence

we concern ourselves with the following tree structure,

addi
<operand > ——- (:per;;ir) — {operand> —— <
SuccC SUCC SUCC

multiplyin{;
t
operator &'

<operand >

PIG. 6.8 -

This matches the seoond semantic production in

table 6.2, Since

< multiplying > <operand >

operator SUCC

. : FIG. 6.9

ig the same as <pu1tiplying exﬁ) 1, 23 3 and the
DUMKY by definition matches all the nodes on their |

left.
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CHAPTER 7

EXTENSIBILITY IN MTL.

EXTENSIBILITY:~

~ A programming language must provide the user with

adequate means of expressing an algorithm in a
manner which matches the problem he wants to solve.
There are two approaches to achieve this end:
elither to have a large universal language or a
large number of problem oriented languages. For

a large universal language, features must be
provided for many diverse areas e.g. numerical
analysis, compiler writing, list processing etc.
The translator for a universal language will
unavoidably be large and hence may not be usable
on small machines. Because of its size the
translator is difficult to write, maintain and
perhaps relatively inefficient. Another difficulty
with the design of a universal language is that
the continuous need for revision of already
existing computer languages, has proved that it

is impossible to visualise all the needs of the
prosPective users and also of the usefulness and

shortcommings of different features of the language.

|
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Once the language is designed, one might be so
committed to it that any modification requires
a major change in the design or else inefficiency

and inconsistancy is the result.

The idea of having special-purpose languages has
a slight advantage over the above mentioned
approach although most problems remain or are
merely replaced by similar ones. The need for
the maintenance of their translators means that
a large part of the systems-programming effort
at a given establishment may evéntually be taken
up in ensuring that a large number of languages
are available. Different implementations will
have different designs and hence pose a greater
‘problem for maintenance of software and advisory
support for its users. Introduction of new
features in a problem oriented language is no
simpler. However the languages are more likely
to be suited to the user's requirements anﬁ

probably more suitable for his problem.

Another alternaﬁive approach is the design of an
ex£ensible language which starts off with a few
features, but which can be extended by the user.
The extensibility can be of two forms : syntactic

and semantic. The term syntactic extensibility
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is used té indicate the possibility of extending

a language b§ means of a program written in the

same language. The concept is similar to that
introducing procedures in ALGOL 60, except that

the syntactic form of call of a procedufe is

fixed whereas in some syntactically extensible
languagés like IMP [Iroﬁs.E.T. 19703 it is

separately specified in each declaration. The
possibility of introducing new concepts in the
1anguége (by modifying its basic implementation)

may be called semantic extensibility.

Extensible languages (specially semantically
extensible languages) can be seen to have the

. same éffects as that of several problem oriented
languages since different extended versions of an
extensible language can be considered as different
problem oriented languages. Maintenance is relatively
simpler since the design approach remains unaltered.
It is however wrong to say that an extensible language
is a perfect solution to the system-software problems.
Most existing extensible languages put some constraints
on the type of features which may be introduced as an
extension. The size of some such languages is fairly
big. In the case of semantically extensible languages,
a high degree of programming skill and knowledge

cdncerning the language inmplementation is required
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to make extensions. Moreover a survey of
extensible languages [SOLNTSEFF & YEZERSKI 74]
shows that at present there is a great diversity
of approaches taken by different workers in the
field and there is no apparent agreement as to
what constitutes an extensible language. Since
very little material is available on the
experience with extensible languages, it is
rather difficult to comment confidently on their
different aspects to a user. As Irons’[IRONS 70]
experience shows, the problem of diagnostics and
ambiguities due to extensions sﬁould be taken
seriously. In our case, the arguments in favour
of semantic extensibility can also be derived from

chapters 3 and 5. We shall rely on this feature

“for introducing the desired no-backup parsing, to

control lexical scanning and to provide power for

MSEAL.

MTL AND EXTENSIBILITY:-

The MTL is semantically extensible. New features
can be introduced in it and even the whole of
SNOBOLl4 can be considered as a subset of MTL,
since diffefent SNOBOL4 programs can be used to

perform tasks which are not conveniently performed :
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by the MTL. As many SNOBOL4 programs can be
introduced as the user wishes and at any place
in the MTL definition. Each program is
enclosed in bracket "%SNOBOL" and "%FINISH".
The SNOBOL4 "END" statement is regquired only

if a transfer to it is to be made (in which
case the execution stops completely and the

job is terminated). All programs are handled
automatically by the processor and are linked
at the appropriate place. To facilitate
communication between the MTL and its extension
routines in SNOBOL4, different system variables are
provided. Since thé processor is implemented
in SPITBOL, the version of SNOBOL4 available
for extension is as described in the SPITBOL
manual. Some restrictions however have been
put on its use. Slightly different extension
mechanisms have been provided in MSYL and MSEAL,
the reason Eor which will become clear in the

latter part of this chapter.

Before we go any fﬁrther we shall take an overview

of the SNOBOL4 facilities available for extensibilify.
Each extension of MTL must be a valid SNOBOLA4

program rather than a mere user defined function.

No global variables, user defined function names

or labels may start with the letter "A". Internally "
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all SNOBOL4 programs forming extensions are
linked together and treated as a single entity.
It is therefore essential that conflicts of
labels, variables and function names within
various extensions be avoided. It is also
possible to define a data object in one
extension and access it in another. Since the
extension programs are handled by the MTL

processor, no facility concerning system data

sets and JCL is available or necessary.

Optiénal SPITBOL control cards -NOCODE, -CODE,
~OPTIMISE and -NOOPTIMISE are alsoc not available.
They may be used but are ignored by the system.The
system variable EDITOUT can have a system unit as

its value. The edited version of the SNOBOL4
program statements appearing after it is listed.
This listing includes the above mentioned ignored
control cards. When the extension programs are
completely debuggded, the edited code is placed at’
the beginning of the MTL processor source which

is then recompiled. During this compilation all
control cards specified in the extension programs
are in effect within their scope. No control

)

card is ignored. The new code is now the extended

version of the MTL processoxr. The aim of extensibility

in MSYL are two fold:
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a) to allow lexical scanningf

b) to introduce look ahead for avoiding backup.

The former is important in automatic syntax
analysers to allow for exceptions to ﬁhe general
rules in MBNF, for instance to distinguish key
words from identifiers etc. Moreover it is

faster than a complete top down recognition
proéess.- The second reason is important since

ours is antLL(k) parser and look ahead needs to

be introduced. Since the rest quthe syntax
anal&sis is done automatically, the only type

of extensibility required is to be able to

invoke some SNOBOL4.extension program on meeting

a certain symbol of MBNF. All undefined MBNF
.nonterminals are considered as names of the

SNOBOL4 user defined functions (with no parémeters).
The user is assumed to have defined them in his .
SNOBOL4 programs. When such a nonterminai is A
processed by the system, its correépondingISNOBOL4
function is called. On returning from the function
the proéessing proceeds as usual. The source
language string appears in the SNOBOL4 extension
program as the value of the MTL system variable
CARD. The user is allowed to read more cards

and contx«l the listing by himself or alternatively

to concatenate thew at the end of the already

i
SR
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exlisting value of CARD. - In this case the

listing is céntrolled by the processor, INPOS

and FINPOS are the initial and final positions

of the symbol under consideration in the string
CARD. It is the users responsibility to set
appropriate values of these system variables

when returning control back to the system.

System variables OBSTACLE and MATCHED are used

to inform the system about the result oi lexical
scanning or look ahead performed in any SNOBOL4
extension. On entering a SNOBOL4 extension,

their values by default are JO" and "1"
respectively. On returning to the system if the
value of OBSTACLE is "1", it indicates that the
current production is not to be followed any longer.
If the value of MATCHED is "O", it means that, the.
attempt to recoénise the current symbol has failed.
STACK is a system defined stack which is accessible
both in MSYL and SNOBOL4. 1In SNOBOL4 it appears

as a one dimensional array STACK with 80 cells.

The aim.of extensibility in MSEAL is different
from thét in MSYL. In the current version of
MSEAL, the emphasis is towards generating the
intermediate language and it is not geared towards
providing full facilities of a systems languadge.
The extensibility provided allows the use of

SNOBOL4 for the implementation of such features as
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are required. The new facilities introduced will"
then form part of MSEAL and can be used for later

purposes.

There are two methods of introducing extensions
in MSEAL, both appearing only in the action field
of a semantic statement. In both cases an extension

must be an independent statement.

The first of the two methods is similar to the
method of extending MSYL. When an undefined
nonterminal appears as an independent statement,
the corresponding SNOBOL4 user defined function is
called and on returning from the function,

processing continues as usual.

The alternative method of extending MSEAL is to
include SNOBOL4 programs in successive brackets

of IEXTENSION and %PAUSE; the end of this seguence
of brackets being marked by %FINISH. The name of .
each program follows its corresponding $SEXTENSION

command.

During the execution of an action field in MSEAL,
when a program name is executed as a statément,
its corresponding bracketed program is activated.

When a SNOBOL4 extension is activated, thé.MTL
{
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system variable CARD refers to the whole of the
action field ﬁnder consideration. INPOS and
FINPOS are pointers to the initial and final
positions of the symbol under consideration.
Using these pointers, the later part of the
statement (if any) can be scanned. The MTL
system variable TEST by default has value "S".
Its value can be changed to "F" to inform the
system that the current statement has failed.
The value of ACTION can be a string of the
form SNOVAR = (identifier) or <{identifier’
= SNOVAR. In the former case value of the
{identifier) in MSEAL is assigned to SNOVAR,

while in the latter case the opposite is true.

IMPLEMENTATION OF EXTENSION PROGRAMS:-~

We start by describing some of the important
concepts of SNOBOL4 and then in steps we shall

explain the whole process of extension.

During the execution of a SNOBOL4 program, it is
possible, by using the primitive function CODE

(STRING) to convert a string of characters into
object code. We shall refer to this process as

run time compilation. The effect of the function
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CODE is to convert its argument STRING in.to

the object code. The string must represent a
valid SNOBOL4 program complete with labels and
using ";" to separate statements. Blanks are

as important in strings to be converted to

code as they are in program itself. A statement
without a label must begin with a blank. For
example thé-variable COMPILE can have a string

value assigned by the following statement.

COMPILE = 'START &TRIM = 1

e

v N = 10 ;'

' LINE = ;!

'.oOP N = GT(N,0) N-1 :F(LAB) .";*
' LINE = LINE INPUT : (LOOP);’
'‘LAB  OUTPUT = "ACTION COMPLETE"

£ : (LABEL)'

. I
This string can be compiled at run time by ,
F

executing the following statement.

CODE (COMPILE)
After compilation, one way of executing this
program is by transferring control to START

i.e. by executing the statement
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: (START)

The following statements will perform all the

three tasks described in (1), (2) and (3).

COMPILE = 'START &TRIM = 1 ;'
' N = 10 }'
d LINE = 7
'LOOP N = GT(N,0) N - 1 :F(LAB);
' LINE = LINE INBUT :(LOOP),’
"LAB OUTPUT = "ACTION COMPLETE"
. : {LABEL) '
CODE (COMPILE) : (START)

It is necessary to transfer control to the first
statement of the newly compiled program, in order
to make sure that it runs. It is also essential
to jump out of it, otherwise the control is
automatically transferred to the label END. It
is due to this reason that : (LABEL) has been
introduced in the above program. In order to
make this statement semantically correct, LABEL
must appear somewhere in the main program. We

shall denote (4) by

s
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7.3.5 START Program : (LABEL)
The philosophy behind the extensibility in
MTL is that at execution time the MTL processor
a) given a SNOBOL4 program, converts it into a
valid string and compiles it into the form (5)
b) when required for extension purposes, it
branches to START and after completing the
execution branches back to LABEL.
The method described above is adequate, provided,
all the SNOBOL4 statements are syntactically
correct, but how to detect errors if there are
any? The answer lies in the faét that the
SNOBOL4. function CODE fails if there is any
syntactic error. Using this fail condition,
the key word &ERRLIMIT and the function SETEXIT,
‘diagnostics can be realised. However 1if the
whole SNOBOi@ program is treated as a single
string, only one failure will occur and statement
by statement diagnostics will not be possible.
To overcome this problem, each SNOBOL4 staéement
which need be separated from the other by a
semicolon is treated as a separate program,
edited as such énd compiled in the form (5).
Each statement of (1) will therefore be edited

into the following form and compiled individually.
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7.3.6 COMPILE = ' START &TRIM

=1 : (A501)"°
COMPILE = 'A501 N = 10 : (A502)°*
COMPILE = '*A502 LINE = : (LooP) '
COMPILE = ' LOOP . N =Gr(N,0) N~ 1

:F(LAB) S (A503) "

COMPILE = 'A503 LINE

LINE INPUT : (LOOP)'
COMPILE = 'LAB OUTPUT = "ACTION COMPLETE" :(LABEL)
"It is not difficult to see that the compiled
version of (1) and (6) will have similar

semantic effects. However (6) can be developed

on the same lines as that of (3), (4) and

(5).‘ Now we shall modify (5) to be written as
'7.3.7 = START $ program : (LABEL)

In MTL, SNOBOL4 extension programs need be

executed immediately after compilation. It is
.therefore necessary to compile and execute the
following statement immediately after (7).

COMPILE = ' ¢ (START) '

Since the extension programs are to be linked

with .the MTL processor which itself is wri%ten

in SNOBOL4, various checks need be made and

actions taken to avoid conflicts. We will discuss

them briefly since we assume that the reasoning

behind them is relatively easy to follow.
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Different effects can be had in a SNOBOL4
program by setting the values of &ANCHOR,
&TRIM and &FULLSCAN. As far as the linking
process 1is concerned, the MTL processor works
with the following specifications.

7.3.8 &ANCHOR 1

&TRIM

0
&FULLSCAN = O

It is thus necessary that (8) should be

executed every time control is passed back

to the MTL processor from an extension program,

in case these specifications have been changed.

This-is partly embedded in the system and partly

achieved at the time of generating code. While

developing (7) for an extension program:

a) comment cards are ignored,

b} The SNOBOL4 contrcl cards —~CODE, -NCODE,
-COPY, -FAIL, -NOFAIL, ~OPTIMISE or -NOOPTIMISE
are ignored.

c¢) For all SNOBOL4 control cards other than
described in (b) no code is compiled but
appropriate action is taken by the MTL
processor.

d) Only the leftmost 72 columns of a caxd are
considered. . :

e) Before compilation, statements continhing
on more than one card are concatenatea 80

as to make a single string. In this case
|
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the continuation symbol '+}.is remoﬁed.

f£f) All SNOBOL4 statements including the
original processor and internally generated
statements are counted for listing. This
is to make sure that the error messages are
given with correct statement numbers.

g) Duplication of labels is checked.

h) It is checked that no label, identifier or

a function name starts with letter "A".

The name following the %EXTENSION command is
considered as the name of a user defined function.

A statement is generated and compiled for defining

a function with this name, having no formal
parameters or local variables. The next SNOBOL4
.statement is considered as the first statement of

the function and flow of control is arranged for
this. When a %PAUSE or S%$FINISH command correspondiﬁg
to a $EXTENSION command is met, the end offa
particular function is assumed and a go to field'
(RETURN) is generated and compiled such that after
executidn of the function, control is always
transferred to the label RETURN. Considering that
the SEXTENSION PRINT apnears immediately before a
SNOBOL4 program which is edited into (6). Then

the edited version will be as follows
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7.3.9 COMPILE = ‘START DEFINE ("PRINT ()" , "A501") :(A505)7
COMPILE = 'A501  &TRIM = 1 : (A502)'
COMPILE = 'A502 N = 10 : (A503)°
COMPILE = ‘A503 LINE = : (Loop)’
COMPILE = ‘LOOP N = GT(N,0) N - 1  iF (LABEL)S

(A504)"
COMPILE = ‘A504 LINE = LINE INPUT : (Loop)’
COMPILE = ‘LABEL OUTPUT = "ACTION COMPLETE" : (RETURN)'
COMPILE = ‘AS505 : (LABEL)’

On encountering an ACTION statement, statements
are generated and compiled to call an appropfiateA
system defined function to perform the action
specified. When the command $EDITOUT is specified
in any SNOBOL4 extension program the effect is as
follows.
Actions (a) to (h) specified above are not carried .
out. Moreover the statements

* : (LABEL) ’

X : (START)’
are not generated at the end of the program,
instead the statements specified in (8) are
generated. SNOBOL4 statements are generated to
initialise tables of labels, function names and
to account for the total number of statements
generated. All these SNOBOL4 statements are

displayed on the output stationary.
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When the user adds these newly generated
statements to the 'processor, it looks as

follows:

START program

& TRIM = 1
& ANCHOR = 1
& FULSCAN = 1

MTL processor

FIG. 7.1 -'

The extension statements now form part of the
MTL processor and the initialisation of the
key words described above helps to maintain

the correct mode of the MTL processor.
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LINKING EXTENSION PROGRAMS WITH -THE MTIL PROCESSOR:—

During the construction of the syntax graph, the
system uses a symbol table. All nonterminals are
entered in this table. The entries for undefined
nonterminals are marked. At the completion of the
s?ntax graph, the system scans through the whole
of the symbol table to look for the marked entfies
and generates appropriate code for linking user
defined SNOBOL4 functions. Moreover the syntax
graph is modified so that the marked nonterminals
are treated as terminals and it is possible to

link them with the user defined SNOBOL4 functions.

During the normal process of syntax analysis, when

-a terminal is processed, control is passed from

the MSYI, SCHEDULER to the MSYL MATCH~BLOCK of the
processor. In the MATCH-BLOCK, it is attempted to
match the current terminal with the current symbol
of the source statement. The control is tﬁen passed
back fo the SCHEDULER with the appropriate signal

for whether or not the match was successful.
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MEYL SCHEDULER

MSYL MATCH-BLOCK

- Is the

L 2 match with
_——a\SYM_’BNOW
T ?

FIG.7.2

The failure path is kept open at the time of
writing the processor. On completing the synéax
graph if there is no undefined nonterminal in the
symbol table this path is completed as shown iﬁ
the above diagram. For this purpose, SNOBOL4
code -is generated internally in the form of a
string and is compiled using the SNOBOL4 function
CODE. On the other hand, on scanning the symbol
table if the system detects some undefined
nonterminals, a warning message is displayed on
the output stationary. The symbol table éntries
are unmarkéd. The syntax graph is modifiéd such

}
that the node under consideration is treated as a

: I
terminal rather than a nonterminal.
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undefined <n> A Undefined nonterminal
A
A before modifying the
ﬁ Syntax graph
..
<n> ‘f Undefined nonterminal
A after modifying the
ﬁ_ : Syntax graph
[
, - FIG. 7.3

Moreover the appropriate number of SNOBOL4
statements are generated internally in the form
of a string, complete with semicolons, separating
them from one another. The statements perform
the following tasks.

a) Find out if the current terminal represents
an undefined nonterminal.

b) If (a) is true, call the appropriate function
and on returning from the function pass the
control back to the MSYL SCHEDULER.

¢) If (a) is false; return control to the SCHEDULER

with a signal of failure. i
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d) Both in (b) and (¢), on returning from a
function, before executing any other statement
in the SCHEDULER, the following statements
must be executed.

&TRIM = O; &ANCHOR = 1; &FULLSCAN = O

MSYL SCHEDULER

MSYL MATCH-
BLOCK

Is

the match with

~

|

|

|

|

|

|

!

|

; |

SYMBNOW > ‘
suce esV YES |
; |
|

|

|

|

|

|

|

]

|

_)l

NO

is the
" terminal a
SNOBOL4 . FUNCTION

Call the appropriate
SNOBOI4 function and
execute (7. 3. 8)

N
!
I
|
|
|
|
[
|
[
|
|
|
|
|
[
[
|
f
I
I
[
[
I
[
!
|
!
|
[
[
I
[
'
[
l
I
|
1

PERSISRRC G ORI e T

FIG. 7.4
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As can be seen from the diagrams given below, the
basic principle underlying the linking mechanism
for both methods of MSEAL extension is similar to
the one for MSYL extension. The difference being
that MSEAL SCHEDULER and MSEAL MATCH-BLOCK
respectively are considered at the place of

MSYL SCHEDULER and MSYL MATCH-BLOCK. Moreover

the point of extension is determined in different

pattern .

MSEA SCHEDULER

MSEAL MATCH-
BLOCK

A
|
{
I
|
!
|
|

Execute the :
appropriate i
|
!
|
|
|
i
!
i
|
t
|
!
|
|
|

statement in the
Has MSEAL processor
the statement been

recognized
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If a statement is not recognised, normally a path
should be provided to the part of the process which
displays an error message. At the time of writing
the MTL processor, this path has been kept open.
On recognising the %GENERATE command this path is
closed, by generating and compiling internally,
the SNOBOL4 code, as shown in the diagram by the
dotted line. The linking process in this case

is carried out at the time of constructing the
semantic tables as well as during compiling the
SNOBOL4 extension programs. This is because
information about extensibility is received at
both stages. After meeting the %GENERATE command,
the MSEAL MATCH-BLOCK with its various linking

provisions is as in the diagram given below.

MSEAL SCHEDULER

MSEAL MATCH-
BLOCK

Execute
appropriate
statement in the
MSEAL processor

Has the
statement been

bocoa el
recognized by the Syste
embedded in

Execute the
a ppropri’ate
ext ensic?n
function

Is itan
extended
MSEAL statement

s

"
i
1
i
!
}
]
I
|
!
)
]
|
!
t
]
]
1
)
1
'
1
1]
L
'
]
t
}
'
'
,
!
| ;

|
FIG., 7.6 NO

W smmms o o s e s e e e e et e o =8
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During the construction of the semantic tables
when a statement starting with an undefined
nonterminal aﬁpears in the action field, the
linking mechanism for calling the corresponding
SNOBOL4 function is provided. At this time a
new entry is made in the symbol table of already
defined nonterminals. This entry does not point
to any node in the syntax graph, but is necessary
to make sure that every such nonterminal has a
unigue linking mechanism. At execution time,
the processor treats it like any other statement
without even noticing that it is an extension
rather than part of the original processor. The
linking mechanism for extensions provided by
SEXTENSION commands is exactly the same as above
except that the name following the $EXTENSION

command is considered as the function name.
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MSYL SCHEDULER

e
7

=
&

MSYL MATCH-
BLOCK

Is the
match with SYMBNOW
successful

Jump to ALAB. 84

I om0 Y e s i i

e — ——

terminal "P"

——— — — - ————— — b ot S— _-___.-—_.._—.._-—9

Jump to ALAB. 501

Call the
SNOBOI4 function "pt

o i

Execute the Statement
specifiedin(7.3.8y = |TTTTT—————— P

This flow chart should be read in conjunction
with table 7.1. ' ] B

FIG. 7.7
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Table 7.2 is a modification of table 7.1. .In

this table, the edited version of SNOBOL4

statements is also shown. It should be compared

with (7.6) to (7.8). (7.8) however is embedded

in the MTL processor and is not displayed.
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CHAPTER 8

PATE - PROCESSING O ARITHMETIC

AND TEXTUAL EXPRESSIONS.

INTRODUCTION:—

In this chapter we will describe the programming
language PATE (processing of arithmetic and
textual expressions). It is a problem oriented
language, specially designed for arts students

and school children.

It has its basis. in SNAP [BARNETT 69] which is
a text processing language with restricted
arithmetic facilities. Most of its text
processing facilities with some modificaﬁions

|
have been carried over to PATE. New featuﬁes

have been introduced to handle arithmetic

expressions. In the next section the PATE

syntax is defined fully. Since it is quite
like English, details of its semantics have
been omitted. For clarification, reference

may be made to working PATE example

and the already existing informal SAP documentation.
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At this stage, for reasons stated already
further reseafch was diverted towards the
automatic translation system which forms
the bulk of this thesis and is described

in the previous chapters.
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FUNDAMENTALS : —

<éetté§7
<§igi§>
@ecima?

Il
»

B|c ........;......| z

]
O

1]2 covenennnnecna |9

i

£
ol
o}

&
il

<op.brac>
Q:l,.brac> =

)
<a1phanumeric> = <digit> \<lette§~

erarator> = 3 't blanks AND blanks

<accumu1atior>

<§ummy wor%> = CALCULATE | EVALUATE | TAKE | LIST |

Il
-~

ANSWER | IT | ITSELF | RESULT‘

RESULTING FROM

ELEMENT | ELEMENTS [ OF | THE | BY \ TO [ av | a |

BE | FOR | SPACE | NUMBER | wumBERS

<%ystem control command) = IGNORE l TERMINATE \ EXECUTE

Qaffirmative comparison word> EQUAL TO ‘ GREATER THAN I
LESS THAN | SAME AS | LESS THAN OR EQUAL TO |
GREATER THAN OR EQUAL TO
Qegative comparison word> = NOT <affirmative
comparison word>
@omparison word> = <affirmative comparison word> l
Q‘xegative comparison word>
<@ypq> = INTEGER | DECIMAL |

Q.nteger> = sintegers adigits | sdigits

Pt R
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<§ecimal numbe€> = gdecimala &integers ] &integer&
&decimalg& &integers

<&nsigned numbe%} = <<3ntege%> l:<§ecimal number>>

<éumbe£>‘ = &unsigned numbersa \~&sign& gunsigned numbers&

<}dentifie€>> = g&identifier& &alphanumerica ‘ &letters

<zabel:> = g&brac op& &identifier& &brac.cl.&

<éuoted striné> = gquote& &string& &quotek

4<?rdinal adjectivé>> = 1-8T ‘ 2-ND ‘ 3=RD | &integers -TH:

<:§xtracted element:> = ordinal adjective> <3dentifier>>ﬂ

<%xtractio€> = <<?rdinal adjectivé},TO ordinal ;
. adjectivé> ‘

<§%dinal adjeétiv€> THROUGH {ordinal

adjectim€> t
<§rdina1 adjectiv;> AND SUBSEQUENT ‘

{ordinal adjectiig, AND PRECEDING
V<yariabl€> = <édentifie€> i 4§xtracted elemen£>> ‘
accumulation
<éxtracted expressio€> = <éxtractio%> CHARACTERS OF
Qdentifiex> iérdinal adjective> CHARACTER OF
<identifier:> 1 <8Ftractio€>’ <i&éentifie%>
‘<ébjectj>'= <§dentifier>>l <&xtracted expressién:>
Qength' exp> =  LENGTH OF ébj60§ [ LENGTH OF
<Character strin§>}LENGTH‘6f
< numeric strin§>
<Eumeric striné:> = gnumerlc string& &separator& &number&i

&number&
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<string list> = &string list& &separator& &stringé& =
&stringk

character string> = quoted string> l gquotesd
&string list& &quote& E:

8.3 ARITHMETIC STATEMENT:-

<co-ordinate conjunction> = AFTER THAT | THEN

<term> = <formula>| <primary>

<multiple function word> = TOTAL‘ PRODUCT ,ADD ’ MULT'CPLY'T
<mult1p1e function exp> <nultiple function word> ;
- Q:erm> <separator > <term>’;

<multiple function exp> <separator> <tern>

<diadic function word> = DIFFERENCE| QUOTIENT |
DIVIDE | SUBTRACT :
. <binary function ex;> = <diadic function word>

<term> eparator> <term>
<function exp> = <binary function ex1> l <multiple
function exp>

<infix exponent word> =  EXPONENT lPOWE}{

<exponent formula> = <quantity> <infix exponent word> !
<quantity> :

<infix division word> = DIVIDED BY | OVER

<division formula > = <quantity> <infix division word>i
<quantitb

<infix multiplication word> = MULTIPLIED BY | PLUS

<ultiplication formula> <quantity> <infix
multiplication word > <quant1t3>

\
Lo,
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@ultiplication formula> <3.nfix
‘multiplication word> <quantity>
<infix subtraction word> =  SUBTRACTED | MINUS
<subtraction formula> = <quantity> <{infix
subtraction word> @uantity>
infix addition word> =  ADDED TO | PLUS
<Guantity> = Lprimary > < function exp > ;
<addition formula = <quantity _ <infix addition word>
<quantit3> I <addition formula>
<infix addition word> <quantity>
<formula> = <exponent formula> | <division formula>] ..:
<mu1tiplication formula>| <subtraction formul&l
<addition formuld>
<basic exp> = <formula> I <function>
<primary ex;> = <basic ex1> ! <Specification exp>
<co-ordinate conjunction> <specification exp>

<specification exp> = <primary exp>| <set statement}

body>

8.4 MISCELLANEOUS STATEMENTS:-

<declaration body> = LET <identifier> BE <type>

<reserve statement body > = RESERVE <integer>
identifier>
call statement body> = CALL (character string

identifier >
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<set statement body> = SET< identifier > TO <pumberic »ﬁ
str:mg> SET <extracted element> TO <numeric str19>
<copy statement body> COPY (object> AND CALL IT
<identifier>

<identification statement body > = < declaration body> I
<feserve statement body>| /call statement body>
<set statement bodb < copy statement body >

<delete statement body> =  DELETE <object>

<append statement bod1> =  APPEND (objeci> TO <object>

<overwrite statement body> = OVERWRITE object> OVER
<object>

<editorial statement> = delete statement body>'

< append statement body> l Loverwrite statement bodgb

(read statement body> = READ ((identifier> :
printable item> = Jobject> | number’> | character :
string>|
< numeric list>

K print statement body> =  PRINT printable item >

<I/0 statement body> = read statement body> ,
< print statement body >
<va1ue> <numbe> l <numeric list> I <character strin}
unconditional jump = CONTINUE WITH( identifier) | :

REPEAT FROM ((identifier>
<conditional exp = IF <object> <comparison word> :
<object>]IF <value> <comparison.word> <object>,»§
IF <object> < comparison word > value >

¥

RS EREAE ., s e
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Every element of a list must be a scalar. An
EXECUTE statement at the end of a program causes
the execution mode to be entered. DEFINE
statemeﬁts are used to define the system commands.
The portion of a card on the right of an IGNORE

statement is ignored.

IMPLEMENTATION : -

The PATE processor is an interpreter. Before
going any further, we shall try.to justify this
decision. In a PATE program an identifier may
be used to refer to any type of value : string,
decimal number, integer, vector. During the
‘execution of a program, this type may change.
Thus it is no£ possible, at compile time to
know the type of an identifier and it is .
difficult to generate code without knowing the

type in advance. !

A polymorphic operator is one whose action depends
on the context in which it occurs. Almost all

the PATE operators are polymorphic. Closely
related to the no-type-nature of PATE are problems

arising from its polymorphism.




227

EXAMPLE 8.1:-
A PLUS B.

If and how this statement is to be executed
depends on whether one or both of A and B are

integers, decimal numbers or strings.

When the implementatién was begun (Oct. 1871)

the only high level language available which

gave access to all the facilities of the computer .
-system was FORTRAN IV. Since it does not have

any string manipulation facilities, it was natural

to write an interpreter for PATE.

All expressions are first processed by the syntax
analyser and code strings of the intermediate
language are generated internally. This code string
is then used for execution of the program. Syntax
analysis of arithmetic expressions is done by the
top~down parser described in the 3rd and 4th
chapters. All other expressions form a finite

state grammar and are analysed separately. We

will first describe the general layout of the
workspace and then consider its different parts

one by one.
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e -HEAP - l

== O

g

&

F————— CODESTRING T

Lo/

[V}

»

o4

Y

— A\
e O AT
e

Layout of the PATE workspace at
execution time.

FIG. 8.1 !

The organisation of the PATE symbol table is
based on the concept of hash addressing and
linked lists. Symbols are classified in
categories and the number of categories coincide
with the total number of linked lists. Each
linked list accommodates one category of

information} The symbols along with necessary
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information about their size and forward pointers

are stored in blocks of storage known as

descriptors.

storage known as qualifiers.

3

Layout of the PATE Symbol table

FIG.

8.

2

Values are stored in blocks of
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e 7
z'f/;%”/ ////’////
Layout of an element of
the PATE descriptor.
FIG. 8.3

by I H L

"F" is the forward pointer field

"I" is the identification field. It holds a
unique code for each different type of data
object and for each one of the system defined

symbols.

field "H" is only used for user defined symbols.
Integers and decimal numbers, when used as
scalars are stored in this field. 1In all other
cases it points to the value of the symbol in

the heap.

field "L" is used to store the number of characters
in the symbol. The symbol itself is stored

character by character in the "S" field. .




&

end of

2,1 integer {~ 1_;

statement

Value of the

second element
Type code

Value of the
first element

Type code
Shape of
data
Format of a qualifier
Pointer back
to its descriptor FIG. 8.4

The first cell of a qualifier is a pointer to its
descriptor. These pointers are used in garbage

collection.

The second cell of the qualifier indicates the

size and shape of the qualifier.

Each element is preceded by the appropriate
"type code" rather than one over all type for

the qualifier. A whole character string @owever

big it may be is considered as one element of a

qualifier. |

£ .
4% 5
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0 R T el [0
LS : A /_Z'
S/ ’T,/:";/j . {,',
/ / End of extent
Scalar
" string

\

Pointer back to
its descriptor

Format of a character-string qualifier

FIG. 8.5

" A character string is always stored in a linked
list as this makes the task of editing the

string much simpler.

The code string of most statements is stralght
forward. Arithmetic expressions are divided
into meangful subexpressions of the smallest
possible size. These subexpressions are
converted into reverse poiish form, reassembled

and then stored in the system.
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EXAMPLE 8,2:-

ADD A AND B TIMES C THEN FROM ITS RESULT

SUBTRACT 2.5.

The above expressions can be subdivided into

the following subexpfessions:

ADD A AND B TIMES C

FROM THE RESULT SUBTRACT 2.5
The codestring is A‘B’j*ﬁéuse? 2.5 = Xppog

end of
extent

2.5

next is

real no.
Pause

*

Pointer to the
descriptor of C
Pointer to the
descriptor of B
Pointer to

the descriptor
!

code for oka : !

arithmetic exp. 3 y
Layout of the codestring for the
above mentioned arithmetic expreéssion

FIG. 8.6 '
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Each descriptor points to its qualifier, which

in turn points back to it. Using these pbinters
heap entries can be compacted in one side of the
work space. Qualifiers are shifted one at a

time. Pointers from descriptors to the qualifiers

are updated as the shifting takes place.

Although it is not possible to compact the

symbol table entries, garbage can be collected by
using a free space list. To start with, the space
list is empty. As the processing proceeds, the
deleted cells are added to it. The systen is

so organised that the space list always consists
of the biggest possible blocks of storage. For
all subsequent demands of space in the symbol
table, it is acquired from the smallest possible
block of storage in the space list. The requiréd
number of cells are taken out of the list and the
remainder (if any) maintains its identity in the
space list. Only if there is no adequate chunk
of storage available in the space list is the

space acquired from the main storage.

At compile time, the syntax analysis stack and
the reverse polish stack develop towards éeach
other in a separate area. "At execution time

this space can be reclaimed. '
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‘ START )

A\

Read 2 new card
and examine
control words

YES
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<

A\

Discard dummy words
Store quoted strings
in data area

Store name in the
symbol table

Store code string

Syntax

4 B8

Delete any
information
concerning the
cturent statement

Call
garbage
collection

STOP

error

End of
Statement
7

NO

YES

YES

NO

cells { a certaiy

Terminate the
job with a
message

STOP
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v

-

Examine the
command
words

ERMINATE
encountered

STOP

Transfer control
to the appropriate
part of the
interpreter

7

Call routines,
perform appropriatd
action and
give output
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CONTROL CARDS:w

e managen-ont routire of the processor is
divided into different control blocks. Bach
control block represents a different mode and
can be entered by using appropiate control
cards, Control cards are also used to control
the listing of the program. Some of the control

cards are system defined while other are

explained below,

After introducing a card "$/SNAP* or "YPATE",

the program follows, In addition to the above
mentioned obligatory cards, the following optional
cards may be used, "WLIST" is used to start

the listing of the progrem, which is assumed

to be the case at the start of a program., "UNOLIST"
is used to stop the listing., Listing can be started

and stopped as many times as user wishes,

The introduction of "XJUIT" card terminates the job,
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CHAPTER 9

CONCLUSION

Before embarking on the project, an extensive
survey was made on the existing techniques in
topics related to the automatic translator e.g.
Syntax analysis, Semantic Synthesis and
extensibility. It is in the light of this
comparative study that various decisions were
made in the automatic translator. To throw
light on the reasons behind various decisions,

this discussion has been included in the thesis.
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The translator translation system described in this -
thesis deals with a.special class of languages which
can be described by ELL(k) grammars. Since ELL (k)
parser parses without backup, it is easy to give
prompt syntactic diagnostics which is not possible
with back-up oriented algorithms. It is also hoped
that ability to make correct decision at every stagg

of the parse should make it faster.

ELL(k) grammars allow very general left recursion.
To the best of our knowledge, no other top down
parser can use a left recursive grammar for left
to right recognition. Hence there are grammars
which can be recognised by no top-down parser but

the ELL(k).

Conventional top-down parsers generate a parse tree
which is consumed by the corresponding semantic
synthesiser. The MTL processor generates code in a
single scan. No inter;m parse is generated, but it

is used for semantic synthesis. During the recognition
of a source language statement, at the appropriate
state of parsing, the semantic synthesiser is called
for action. A parse tree could be generated from the
.information in MSEAS as an optional facility fof the
user. - i

i
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The only formal specification in the conventional
compiler compilers have been in the syntax specification.
The MTL processor provides a great degree of formalism

for semantic specification.

Semantics are specified in a metasemantic language in
the form of semantic prodﬁctions. These semantic
productions are used repeatedly by the processor in a
manner which is quite similar to that of semantic

productions.

In this thesis various reasons have been stated for
favouring extensible programming languages and need:
no repetition; We have shown how SNOBOL4 (SPITBOL)
can be used as an implémentation language for
extensible languages. The extensibility provides
both the syntax analyser and the semantic synthesiser

with extra power.

When we add the syntax analyser, the semantic syﬂthesisar

!

and the features of extensibility, what do we get?

In biblical térms, a classus on gold feet, silver legs,
iron thighs topped with a clay head. Those parts of

a compiler which really matter to the machine, especially
code generation, machine dependent and machine independent

optimisation are missing. Still the parts we have shown
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here are sufficiently general to be a sizeable part

of any compiler design. These parts can be considered
as "off the shelf" éompiler components. We believe
that it is possible to write these parts of a compiler
in an appropriate language and then incorporate them
in the desired compiler. Alternatively, the MTL can
be extended to incorporate features such as to be
'required for code generation and other parts of a
translator. We do not contend that the net result
will be an ideal compiler compiler, but we are of

the opinion that MTL can be extended to form an

efficient translator translation system.

One objection to our approach might be that it is

too much dependent on SNOBOL4. It is true so far as
the existing version of MTL is concerned. The object
of this project was to test the algorithms, which has
been achieved. We believe our existing design can be

easily modified to make it SNOBOL4 independent.

Another objéction against MSEAL is that it does not
provide block structure as a tool for structured
programming. It is so because the MSEAL was designed
to be a notation for specifying semantics rather than
a programming language. If experience shows that such
a structure is desirable, investigation should be

made into its feasibility. :

sy
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The present processor has a numbexr of known sources

of inefficiency:

(1)

(2)

. left recursion even in the production mode. .

In the current implementation of MSEAL, the
tables are searched sequentially. There exists

scope for improving this process.

The prototype processor reads the syntax and the
semantic specification and constructs internal
tables before every run. In the production
processor, it should be possible to initialise
the internal tables once and for all. This
proceés can be automated and the initialisation
code generated by the processor itself or by a

library routine called by the processor.

fhere are various improvements that can be made
in the semantic synthesiser. For example the
current version can be extended to cater for
] To
handle left recursion, the syntax analyser Lakes

a rather unconventional approach. Every production
1s not tfied individually as otherwilise is the case.
All the mutually left recursive productions are
first stacked on the SAS and the symbols covered

by them are recognised. It is necessary to have

a compatible approach for the semantic synthesiser.
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Due to the constraints of time, this was not
implemented in the present proto type process

and can be introduced in the new version.

Lewis and Stearns show that it is computable
problem to show whether a given grammar is
LL(k). We do not know whether this is tbe
case for ELL(k) and whether a practical
algorithm could be constructed even for

special cases.
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APPENDIX I

SOME FACTS ABOUT LL(k) GRAMMARS:—

1)

A grammar G = (VT, VN, P, S) is said to be an

LL{k) grammar for some positive integer k if
and only if given
*
a) a word w in 'T such that lo]g ki
b) a nonterminal A in 'N;
V*
c) aword w in T;

there is at most one production p in P

*
such that for some ¢u2and Wg in VT;

a) S => ml A w3;

A => w, (p) -

(Y2 %) ; k = @

-3tated informally in terms of parsing, an LL(k)

grammar is a context free grammar such that for
any word in its language, each production in its
derivation can be identified with certainty by
inspecting the word from its beginning (left end)

to the k-th symbol beyond the beginning of the

© production. Thus when a nonterminal is to be

expanded during a top down parse, the portion of
the input string which has been processed so far
plus the next k input symbols determine which
production must be used for the nonterminal.

Thus the parse can proceed without backtrack.



2)

3)

4)

5)

6)
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V*

If G is LL(k), then for all A in 'N, w in 'T :

k,

R g_:,v"f : k satisfying R < R(wl) ={w3:k|s=>m2Am3}

for some W

1

in V*, there

production p such that A =>w

for some ®

2

and W in

Vv,
3

2

exists at most one

(p) and (w2 w3) sk

5 such that ®

3

is in R.

It states that a vroduction in LL(k) grammar can

also be identified using only k symbols which

follow and the set R(wl) where R(pl) is the set

of all k symbol sequences which can follow the

rightmost descendant of that production.

An LL (k) érammar is always LR(k) as defined by

Knuth.

An LL (k) grammar is unambiguous.

Given a grammar G and k, it is decidable whether

or not G is LL (k)

A grammar G = (VT, VN, P, S) is said to be a strong

LL(k) grammar for some positive integer k if and

only if given

(a)

a word w in

\%

*
T such that

lwlg %

E

=i
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8)

9)

10)
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(b) a nonterminal A in VN;

There is at most one production p in P such

: i

that for some wyr W, and Wy in 'T
(c) S => wlAm3F
(d) A => w2 (p);

(e) (w2 w3)=k =

The only difference between this definition and
that of an LL(k) grammar is the qualifier "for
all ml" has been moved within the scope of the

"there is at most one production p".

Given an LL(k) grammar G = (VT, vN, P, S), one

can find a structurally equivalent strong LL(k)
grammar.

' _ V. Vv
Given an LL(k) grammar G = (T, N, P, S), an
LL(k+1l) grammar without A-rules can be constructed

which generates the language L(C)- {A}

An LL(k) grammar can have no left recursive
nonterminals. (this statement is not valid in

the light of our algorithm)

Given an LL(k+1l) grammar without A-rules for
k > 1, there exists an LL(k) grammar with A-rules

for the same language. ;



11)

12)

13)

14)

15}

16)

17)

There exists no LL(
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k) grammar without A-rules

for the language {a" (bk d+b+ce)®ln>1l

where k 2 1.

For every kX > 1, the class of languages generated

by LL({k) grammars i

class generated by

For every X > 1 th

s properly contained within the

LL(k+1l) grammars.

e class of languages generated

by LL{k) grammars without A-rules is properly

contained within th

by LL(k+l) grammars

It is decidable if

the same languade.

Given a context fre

e class of languages generated

without A-rules.

two LL (k) grammars generate

e language, it is decidable

whether or not there exists a k such that the

grammar is LL(k).

Given an LR(k) grammar of known k, it is decidable

1f there exists a k

It is undecidable w
context free gramma

even for a fixed k.

such that the grammar is LL(k )

hether or not an arbitrary

r generates an LL(k) grammar,



18)

19)

20)

21)

22)
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A grammar is said to be in Greibach normal form

if the right hand side of every production begins
with a terminal symbol. Given an LL({k) grammar
without A-rules, another LL(k) grammar in Greibach

normal form can be obtained for the same language.

Given an LL (k) grammar G with A-rules, a strong
LI (k+1l) grammarx in Greibach normal form can be

obtained for L(G)- {A}.

Let G be a context free grammar. Suppose that
every production p in G is of tﬁe form A =>bB
or A =>a, where A and B are nonterminals and a,
b are terminals. Then G is called a regular

grammar. If the finite union of disjoint LL(k)

"language is regular, then all the languages are

regular.

If A < B, then the compleﬁentAof A with respect
|

to B is the set B-A. The complement of a f

nonregular LL(k) language is never LL (k).

The LL(k) languages are not classed under
complementation, union, intersection, reversal,

concatenation, or A-free homomorphisms.
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EXCLUSION OF LEFT RECURSION:-—

An LL(X) grammar G can have no left recursive .

nonterminals.
PROOF s =

Assume that an LL(k) gramﬁar has a left recursive
symbol. Then for some nonterminal A, A =>«A Y(P) and
A =+*X(P ) where X and Y are in V%, and p and p are
different production. Because G is unambiguous,

Y #pA . Furthermore S =>3uAv for some u and v. Now

consider the &erivations.

S =+ UAV 2« uAykv =+ U X ykv
S =+ uAv @«uAykv=§ru A yk+1v S+ U X yk+1v
Thus S =1 A ykv A =xy(p) A =X (p') and

(X yk+lv Y: k = (x ykv):k

f

Therefore, s8ince the grammar.is LL(k) it can not have

a left recursive nonterminal.
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APPENDIX IX
CROSS REFERENCE:-

In a typical SNOBOL4 program, all labels and
a good deal of identifiers are global. It is
necessary to make sure that the conflicts do
not arise. It is therefore recommended that
the user should use labels and identifiexs
according to some systematic scheme and make
separate tables for them (for example labels
can be of the form'LABEL.l, LABEL2......2tC).
However the following SNOBOL4 program can be
used to cross reference a user program. The
user program appears as its data. In fact
the program itself has been used as a users

program in the following example.
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