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Abstract: Erasable conductive domain walls in insulating ferroelectric thin films can 21 

be used for non-destructive electrical readout of the polarization states in ferroelectric 22 
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memories. Still, the domain wall currents extracted by these devices have not yet 23 

reached the intensity and stability required to drive read-out circuits operating at high 24 

speeds. This study demonstrated non-destructive read-out of digital data stored using 25 

specific domain wall configurations in epitaxial BiFeO3 thin films formed in 26 

mesa-geometry structures. Partially switched domains, which enable the formation of 27 

conductive walls during the read operation, spontaneously retract when the read 28 

voltage is removed, reducing the accumulation of mobile defects at the domain walls 29 

and potentially improving the device stability. Three-terminal memory devices 30 

produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 31 

85°C. The gap length can also be smaller than the film thickness, allowing the 32 

realization of ferroelectric memories with gate dimensions below 100nm. 33 

  34 

 35 

36 
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Ferroelectric polarization can be reversed using either out-of-plane or in-plane 37 

electrical fields, enabling the application of ferroelectric materials in spatial 38 

visualization, electrochemical sensors, and nonvolatile ferroelectric memories with 39 

ns-to-ps-scale programming times, almost unlimited cycle endurance, and low energy 40 

consumption1-5. The domain size of the memory cells can be as small as a few 41 

nanometres6,7, which is favourable for terabit-density integration. However, in 42 

ferroelectric memories that are compatible with complementary 43 

metal-oxide-semiconductor (CMOS) technology, the information stored in the 44 

ferroelectric domains is extracted via a destructive read-out process based on charge 45 

integration, which requires a minimum lateral memory cell size of 250 nm3,4. 46 

Alternative nondestructive readout methods that use mechanical probes to scan the 47 

ferroelectric surface can extract information from smaller domains8-12 but are 48 

incompatible with current CMOS technology13.  49 

Several groups have recently reported electrical conductivity from the domain walls 50 

in insulating ferroelectric materials that may be used for electrical readout of the 51 

polarization states in ferroelectric memory devices14-19. BiFeO3 (BFO) thin films are 52 

attractive for these applications because their 71°, 109° and 180° domain walls have 53 

demonstrated stable currents of up to 200 pA19-23, which may be useful for 54 

domain-wall-type resistance switching random-access memories. However, this 55 

current value is still not sufficient to drive readout circuits during high speed 56 

operation: according to the Johnson-Nyquist limit, a minimum current of 0.1 μA is 57 

required to obtain read times of 10 ns24,25. However, local enhancement – by several 58 
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orders of magnitude – of the currents generated in the 71° domain walls of BFO films 59 

has recently been observed in a transmission electron microscopy (TEM) study26.  60 

In-plane reading and writing for domain-wall memories using an epitaxial BFO film 61 

has been recently reported1. Because an in-plane electrical field was applied between 62 

two top electrodes separated by a gap length l, which is much larger than the BFO 63 

film thickness d, a triangular 71° domain can be written through the entire thickness 64 

of the BFO thin film in a single-domain pattern. The written polarization remained 65 

stable for over 2 h and could subsequently be read out via current conduction along 66 

the conductive walls located along the domain side boundaries. The detected currents 67 

were only 5–20 pA, however, which are too low to operate sense amplifiers at 68 

sufficiently high speeds. While this is a step forward in domain-wall type resistance 69 

switching memory technology, the technology suffers from a fundamental reliability 70 

issue related to instability of the charge-uncompensated persistent domain boundaries, 71 

in addition to its ultimately limited scalability because l >> d.  72 

Here, we demonstrate an advanced working prototype of an in-plane multi-domain 73 

ferroelectric memory device in which rectangular-shaped written domains in tiny 74 

mesa-structured cells can be read out nondestructively via temporary and partial 75 

switching of the domains within the gap where l << d. The conductive walls appear 76 

under application of a short-time read field that is larger than the coercive field of the 77 

domain, but they disappear immediately after read field termination. The detected 78 

current was as high as 14 nA. The temporary presence of these domain walls during 79 

only reading avoids mobile defect accumulation on the walls, which significantly 80 
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improves device reliability. This intriguing phenomenon represents a step forward 81 

towards memory device applications.  82 

 83 

Simulation of the creation of charged walls 84 

To provide proof-of-concept, planar-type devices are first fabricated on 85 

35-nm-thick epitaxial (001)pc BFO films (where “pc” denotes pseudocubic) grown on 86 

(001) SrTiO3 (STO) substrates. In-plane transverse domain switching occurs when a 87 

horizontal electrical field (E) is applied along the [100]pc direction between the two top 88 

electrodes (TE1 and TE2), which are separated by a gap width/length of w/l, as shown 89 

in Fig. 1a. The film has polar axes along its <111>pc directions with virgin polarizations 90 

consisting of the 71°, 109° and 180° domain walls27,28, as indicated by the light 91 

cyan-coloured arrows passing through the entire film thickness. The virgin polarization 92 

(which corresponds to written information) can then be read out through transient 93 

creation of conductive charged walls via a partial domain reversal near the film surface 94 

when E is applied antiparallel to the in-plane polarization component (P), as indicated 95 

by the wine-coloured arrows between TE1 and TE2. The purple dashed field lines 96 

shown in Fig. 1a indicate the calculated switched regions near the film surface that 97 

penetrate into the interior under applied voltages of 1.7–3.4 V. In these calculations, the 98 

read voltage was applied to TE1 while TE2 was grounded. The partially switched 99 

domains can form charged walls with high readout currents (signifying data “1”) 100 

through rotation of the local polarization within the film matrix (Fig. 1a, right panel). 101 

These unscreened charged walls disappear immediately after removal of the read 102 
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voltage because of domain back-switching driven by the strong depolarization field 103 

(~14.6 MV/cm if unscreened). When the information is written in the opposite manner, 104 

i.e., with P // E (signifying data “0”), charged wall formation does not occur upon 105 

application of the read voltage and thus no readout current is produced.  106 

 107 

Nanodevice fabrication 108 

Epitaxial (001)pc BFO thin films with thicknesses of 35 and 120 nm were grown on 109 

(001) STO substrates by pulsed laser deposition (see Methods). The topographic atomic 110 

force microscopy (AFM) image in Fig. 1b (left panel) shows terraces of atomic steps 111 

with root-mean-square roughness values of 0.17 nm on the 120-nm-thick film. 112 

Reciprocal space mapping of the (103)pc reflection (right panel) confirmed 113 

heteroepitaxial growth29. Other X-ray diffraction (XRD), AFM and TEM images are 114 

shown in Supplementary Fig. S1a, b and Fig. S2a–c. After film deposition, TE1 and 115 

TE2 were deposited and were patterned by electron beam lithography and ion milling 116 

(see Methods). Figure 2a–d show scanning electron microscope (SEM) images of the 117 

fabricated nanodevices. As-grown domain patterns along the [100]pc direction (i.e., the 118 

preliminary written information) can be determined using in-plane piezoresponse 119 

force microscopy (PFM) phase imaging. Figure 2e–h show the 180° phase shifts of 120 

the two domains (indicated by the black colour in Fig. 2e and h versus the white 121 

colour in Fig. 2f and g) that are confined within the nanogaps with polarizations 122 

pointing from TE1 to TE2 (positive domains; data “0”), and vice versa (negative 123 

domains; data “1”), respectively. The PFM phase contrast shows the in-plane 124 
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projection of the as-grown 71° domains (Supplementary Fig. S3a–c, Fig. S4a–f and 125 

Fig. S5)30. 126 

 127 

“On” currents  128 

Figure 2i–l show the quasi-static current-voltage (I-V) curves of the 35-nm-thick 129 

BFO devices shown in Fig. 2a–d, respectively, with l increasing from 63 to 164 nm at 130 

w of 52 nm. All I-V curves show diode-like asymmetric and hysteretic behaviour, 131 

where the diode-like polarity is determined by the polarization direction. For example, 132 

the “on” and “off” currents appear when E is applied antiparallel and parallel to P, 133 

respectively, as indicated by the coloured arrows in Fig. 2i–l. These results are in 134 

accord with the principle of charged wall formation shown in Fig. 1a.  135 

Figure 3a shows 100 cycles of the hysteretic I-V curves for the positive domains 136 

that were shown in Fig. 2e. There is a high probability within each loop that domain 137 

switching will occur at the coercive voltage Vc (the voltage at which a current jump 138 

occurs), and Vc follows a Lorentzian distribution, as shown in the inset, demonstrating 139 

the random nature of the domain nucleation at the TE edges2,31,32. |Vc| increases with 140 

increasing l, as indicated by the blue circles in Fig. 3b. Figure 3c shows the on-state 141 

current variation at 4 V as a function of l (w = ~50 nm). The wall currents have been 142 

variously reported to be ohmic33, Schottky-like15,20,21 or space-charge-limited (SCL)20. 143 

The “on” currents here can be fitted using the I∝Vn power law, as indicated by the 144 

black dashed lines in Fig. 2i–l, where n = 2.2 − 2.6. This is a well-known 145 
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characteristic of the SCL mechanism20. The “on” current increases greatly with 146 

decreasing l, following an I∝l−3 relationship, as shown in Fig. 3c (solid line). 147 

Figure 3d shows the hysteretic current loop of the device shown in Fig. 3a that was 148 

achieved by application of periodic read-write operations using the pulse sequence 149 

shown in the inset. In this test, the write voltage (Vw) was programmed to change from 150 

3 V→−3 V→3 V in steps of 0.1 V under fixed read voltages (Vr) of −1.5 V. In this case, 151 

the domain pattern was manipulated using write pulses before the common reading 152 

operation was performed. The loop clearly indicates that the conduction path was 153 

created at −2.5 V (dramatic current increase) but disappears at −1 V (dramatic current 154 

drop) because of domain back-switching. The disappearance time varies from 16 ns to 155 

1 h (Supplementary Fig. S6a, b and Fig. S7a, b), depending on the write field strength 156 

and time. Rapid restoration of the polarization (disappearance of the domain wall) 157 

after read voltage termination can prevent the accumulation of oppositely charged 158 

defects, which may screen the polarization charges34. Figure 3e shows the switching 159 

time dependence of the readout “on” current at 2.8 V (<|Vc|) when the switching 160 

voltage was higher than Vc (= 3.2 V) (see Methods). The current jumps from “off” to 161 

the “on” state at a characteristic domain switching time t0, which can be described using 162 

the Kolmogorov-Avrami-Ishibashi (KAI) model with the equation I = 163 

Ion{1−exp[−(t/t0)
2]}35, where Ion is the “on” current at 2.8 V, as shown by solid-line 164 

fitting of the data. Using these plots and Merz’s law36, an activation field of 37.5 MV/m 165 

was derived (Supplementary Fig. S8a). Figure 3f shows the endurance test results up to 166 

107 cycles of “on” and “off” currents using ±4 V write and read pulses (with 167 
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amplitudes >|Vc|) with a 1 kHz repetition rate in full duty (see Methods). A stable on/off 168 

current ratio of 100 was confirmed. 169 

As the film thickness increased up to 120 nm, similar I-V curves and an I-l 170 

dependence at 5 V for w = 44 nm were also observed, as shown in Fig. 4a, where the 171 

“on” current density increases by approximately five times (see Methods and 172 

Supplementary Fig. S8b). From fitting of the data according to I∝l−3 (the red line in Fig. 173 

4a, right panel), a 1 μA readout current can be expected at l = 21 nm when Vr = 5 V, or at 174 

l = 7.2 nm when Vr = 1 V. This behaviour is highly promising for terabit-density 175 

integration and low power consumption, because higher density (smaller l) leads to 176 

higher readout currents and reduced read voltages.  177 

PFM and conductive AFM (CAFM) tests were performed on a larger device with 178 

w/l = 1.5 μm/0.6 μm to confirm the high domain wall conductivity directly. After 179 

device poling at −18 V for 10 s, the high-field charge injection can temporary stabilize 180 

the partially-switched 71° domains for over 1 h (Supplementary Fig. S7a, b), which 181 

allowed the capture of the PFM and CAFM images. Figure 4b shows an in-plane PFM 182 

phase image of two head-to-head 71° triangular domains located between TE1 and 183 

TE2. The concurrently captured CAFM image (Fig. 4c) of the same region at a tip 184 

field of −140 kV/cm (see Methods) clearly shows the much higher electrical 185 

conductivity of the entire domain-wall region. The domain tip region (crossed by the 186 

green dotted line, n) shows a higher current (~120 pA) than the bottom region 187 

(crossed by the dark yellow dotted line m; ~63 pA). 188 

 189 
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Write and read in three-terminal devices  190 

To write arbitrary data into the memory cell and demonstrate the broad operating 191 

voltages, two three-terminal memory device schemes are proposed, which are intended 192 

to operate when |Vr| > |Vc| (Scheme I) and |Vr| < |Vc| (Scheme II) (left panels, Fig. 5a, b, 193 

respectively). In both cases, memory cells were fabricated with mesa structures by 194 

etching 120-nm-thick BFO films to depths of 105 nm. Pt layers were deposited and 195 

etched to produce left (L), middle (M) and right (R) electrodes, as shown by the planar 196 

SEM image in Fig. 5c (left panel). VLR, for example, denotes the voltage that is applied 197 

to L with R being grounded and M floating. L and R form a parallel-plate 198 

capacitor-like structure that can screen the domain boundary charge efficiently and 199 

domain back-switching after the write operation is thus prohibited. For Scheme I, a 200 

write voltage of VLR = −8 V is applied to switch the whole domains between L and R, 201 

for which the polarization is represented by yellow arrows in Fig. 5a (write “1”). In this 202 

device geometry, both L and R are partially extended over the cell surface, which 203 

concentrates the read field between the two ends of the top electrodes. Vr is applied 204 

either between L and M or between M and R. When VLR and Vr have opposite signs, 205 

the charged domain walls appear because of partial domain switching within the gap. 206 

These walls disappear on termination of Vr because of domain back-switching. The 207 

left-hand panel of Fig. 5a shows the nondestructive readout of a data “1” when Vr > Vc 208 

(read “1”). The middle panel shows I-V curves for a device with gap distances of lLM = 209 

82 nm and lMR =120 nm under Vr of 5 V and 7 V, respectively, where the repeatable 210 

current jump that occurs at Vc = 5.2 V for the lMR device predicts abrupt formation of 211 
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the conductive wall. The maximum “on” current is ~14 nA (red I-V curves). When the 212 

write VLR was changed to +8 V (write “0”), no switched domains formed, and thus no 213 

high wall currents were observed during the read operation. The observed “off” current 214 

of ~5 nA (blue I-V curves), however, is ascribed to the device leakage current induced 215 

by process damage (read “0”). Both the “on” and “off” currents are stable over time, as 216 

shown in the right panel, and are proportional to the electrode width (Supplementary 217 

Fig. S9) with a ratio of ~3. The wall currents in an insulating two-terminal nanodevice 218 

did not show any notable changes upon variation of the environmental pressure from 1 219 

to 1.4×10−7 bar (Supplementary Fig. S10a), but showed thermally activated behaviour 220 

with activation energy of 0.16 eV (Supplementary Fig. S10b). This behaviour 221 

corresponds to the hopping conduction of the SCL mechanism (Supplementary Fig. 222 

S11)36. 223 

For scheme II (where |Vr| < |Vc|), a device structure without L and R extensions 224 

could be used, as shown in Fig. 5b. In this case, a presetting voltage of Vp = + 8 V 225 

across lLR (left panel) is applied once to polarize the BFO uniformly in the same 226 

direction. Subsequently, the regions between L and M or M and R can be written 227 

independently with a |Vw| > |Vc|, which can then be read out at |Vr| < |Vc|. In this case, 228 

the conductive walls created by the application of Vw are retained even after removal 229 

of the Vw because of improved compensation of the domain boundary charges at the 230 

L/BFO and BFO/R interfaces. Subsequent application of Vr (|Vr| < |Vc|) does not 231 

create additional conductive walls but simply reads out the wall current. The middle 232 

panel shows the I-V curves for both sides of the device when lLM = 129 nm and lMR = 233 
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100 nm, where the “off” currents suddenly increased at −2.2 V, thus predicting the 234 

charged wall formation. The stability of these walls was further confirmed by 235 

retention of the “on” currents when the voltage is swept back to a positive-bias region, 236 

where the “on” current decreased abruptly at 1.6 V for the L-M device but at 0.69 V 237 

for the M-R device (the inset shows the magnified curves), thus predicting the 238 

disappearance of the conductive walls. The bistability of the wall currents in this 239 

scheme differs from that in Scheme I. The on/off currents at −1.5 V are stable over 240 

time at either room temperature (right panel, Fig. 5b) or 85°C (Supplementary Fig. 241 

S12a, b). The in-plane PFM phase images in Fig. 5c and Supplementary Fig. S13a–c 242 

confirm switching of the stable 71° domain with a rectangular shape between L and R 243 

(the middle panel M was removed for this PFM test). Additional endurance testing of 244 

the mesa structure showed no polarization fatigue for cycle numbers of up to 109 245 

(Supplementary Fig. S14a, b).  246 

 247 

Discussion  248 

According to the Landau-Lifshitz-Kittel law37, the dependence of the switched 249 

domain thickness (h) on length (l) is found to be h = 1.5 nm1/2 l1/2. Because the 250 

coercive field of the BFO was assumed to be 20–25 MV/cm, we simulated the 251 

nonlinear Vc-l dependences shown by the solid lines in Fig. 3b (red line) and 4a (right 252 

panel, blue line). The switching field under the read voltage shows maximum values 253 

at two regions near the TE1 and TE2 edges that decay rapidly towards the middle gap 254 

with increasing l (Supplementary Fig. S15a–d).   255 
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Finally, while the memory devices with planar geometries shown in Fig. 2a–d have 256 

the merit of easy fabrication1, they have several problems including difficulties in 257 

writing bipolar information into multi-domain films with sufficiently long retention 258 

times38 and obtaining sufficiently high readout currents (I∝Vr
2/l3). The persistent 259 

presence of uncompensated charged walls also leads to problems of mobile defect 260 

agglomeration33,39,40. In contrast, the mesa-type device shown in Fig. 5a is completely 261 

free from these concerns, which even permits a passive cross-bar architecture without 262 

involving the voltage-time dilemma (see Methods)41,42.  263 

 264 

In summary, in-plane readout currents that are ascribed to penetrating domain walls 265 

along ferroelectric BFO film surfaces are demonstrated for ferroelectric resistance 266 

switching nanodevices with excellent scalability and reliability43. Conductive walls are 267 

only formed when the read voltage is applied, for which the polarity is opposite to that 268 

of the write voltage, but the walls disappear on termination of the read voltage. This 269 

operating principle alleviates potential problems related to the instability of 270 

uncompensated charged domain walls that persist even after read voltage termination1. 271 

In contrast, the written domain information can be retained stably by efficient charge 272 

compensation at the side electrode interfaces in the mesa device structure. Other 273 

potential applications of these domain-wall engineered ferroelectric nanodevices 274 

include the detection of light illumination, anisotropic magnetoresistance, and 275 

photovoltaic currents27,44,45. 276 

 277 
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Methods 278 

Film growth. Epitaxial BFO films were deposited on (001) STO substrates by pulsed 279 

laser deposition using a KrF excimer laser operating at a wavelength of 248 nm. The 280 

laser (6 Hz) was focused with a power density of 2.8 J/cm2 on a ceramic Bi1.1FeO3 281 

target at an oxygen pressure of 3 Pa. The typical film growth rate was ~1 nm/min. 282 

Films with thicknesses of 35 nm and 120 nm were grown at 602°C. XRD patterns 283 

were collected by θ-2θ scanning and reciprocal space mapping methods using a 284 

Bruker D8 Advance X-ray diffractometer with Cu-Kα radiation at 40 kV and 40 mA.  285 

 286 

Nanodevice fabrication. After BFO film growth, 30-nm-thick Pt top electrode layers 287 

were grown at 400°C on the BFO films by magnetron sputtering (PVD-75, Kurt J. 288 

Lesker). Subsequently, 200-nm-thick poly(methyl methacrylate) photoresist layers 289 

were spin coated onto the film surfaces. The TE1 and TE2 electrode patterns were 290 

formed by electron beam lithography (EBL; 6300FS, JEOL) with overlay accuracy of 291 

20 nm. After patterning, 25-nm-thick Cr mask layers were deposited by thermal 292 

evaporation (NANO 36, Kurt J. Lesker) and a lift-off technique. Finally, the 293 

Pt/BiFeO3 region that was not protected by the Cr mask layer was removed by ion 294 

milling using a reactive ion etching system (RIE-10NR, Samco). The as-formed 295 

nanodevices were checked using SEM (Sigma HD, Zeiss) images. The BFO film was 296 

slightly over-etched during removal of the Pt diffusion layer (~2 nm) to ensure 297 

complete Pt removal for lowering of the leakage current, which left 2–3 nm-sized 298 
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holes (shown as dark spots in Fig. 2a–d) on the film surface (Supplementary Fig. S1b). 299 

This over-etching induced leakage problems in the device in the “off” state. 300 

 301 

TEM images. The sample was prepared by a focused ion beam method (using ~100 302 

nm lamellae). High-resolution TEM (HRTEM) imaging and selected-area electron 303 

diffraction (SAED) processes were performed using a Philips CM200 field emission 304 

gun operating at 200 kV. The HRTEM image was Fourier-filtered to minimize the 305 

contrast noise.  306 

 307 

PFM and CAFM characterization. The film morphology was measured using an 308 

AFM in Scanasyst-air mode (Bruker Icon) under ambient conditions using a silicon 309 

tip with radius of 2 nm. PFM imaging of all domains was performed using a contact 310 

PtIr-coated silicon tip with radius of 20 nm, a force constant of 2.8 N/m, and an 311 

alternating current (AC) frequency of 75 kHz and an amplitude of 10 V. The exposed 312 

wall currents at the film surface were investigated using CAFM in contact mode 313 

under a nominal electric field of −140 kV/cm applied between TE1 and the AFM tip 314 

with both the tip and TE2 being grounded.  315 

 316 

Electrical characterization. All nanodevices were characterized electrically under 317 

N2 environmental pressures that ranged from 1 to 1.4×10−7 bar. Each I-V curve was 318 

measured using an Agilent B1500A semiconductor analyzer operating in voltage 319 

sweep mode with a sweep time of 90 s. For fatigue (endurance) testing, square pulses 320 
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with rise times of 2 ns at frequencies of either 1 kHz or 1 MHz were supplied by a 321 

two-channel Agilent 81110A pulse generator. After each fatigue period of 1 s, the 322 

sample was relaxed intermittently at 0 V for 3 s. This time relaxation can effectively 323 

mitigate the long-term space-charge accumulation that causes the coercive voltages of 324 

the charged domain walls to shift. The steady-state “on” current transient with time 325 

was observed directly using a LeCroy HDO6054 oscilloscope. For the domain 326 

switching performance, a long-time read pulse (|Vr| < |Vc|) is superimposed over a 327 

short-time write pulse to hold the switched domain on for the “on” current 328 

measurement. During the domain switching time, the internal series resistance of the 329 

oscilloscope was 50 Ω, but it was increased to 1 MΩ when measuring the readout 330 

current to reduce the noise level to ~0.1 nA.  331 

 332 

Finite element simulation. The stray electric field distribution within the nanogaps 333 

under applied E was analysed via a finite element simulation using the electrostatics 334 

interface tool of COMSOL, which solved the combined equations of ∇⋅D = ρ, D = 335 

ε0εrE, and E = −∇V according to the three-dimensional Gauss law, where D is the 336 

electric displacement, ρ is the space-charge density, and V is the electric potential. The 337 

dielectric permittivities of BFO and STO were assumed to be 93 and 332, respectively. 338 

A finite element simulation (Fig. 1a, purple dashed lines) and high-field I-V curves 339 

(Supplementary Fig. S8b) consistently predicted expansion of the switched domain 340 

into the film interior with increasing applied voltage until the bottom portion of the 341 

domain wall touches the substrate. Under these circumstances, the current along the 342 



16 
 

bottom wall is prohibited and only the domain side boundaries can thus provide the 343 

current path, which seriously limits the total achievable current for the thin film (35 344 

nm) shown in Fig. 3c. This limitation is avoided in the thicker film (120 nm) shown in 345 

Fig. 4a. 346 

 347 

Cross-bar architecture. After the memory read process is terminated, the sneak path 348 

that arises from the conductively charged wall in each cell would be cut off in a 349 

nondestructive readout technique. This operating scheme reduces the risk of involving 350 

the circuit sneak current in a similar manner to the complementary resistive switches 351 

consisting of two anti-serial memristive elements that are used when the devices are 352 

integrated using a cross-bar array configuration41. In the proposed cross-bar 353 

architecture, parallel wire-shaped electrode rows contact the Ls of all the densely 354 

arrayed cells, and the other Ms and Rs can be interconnected using hole-type contacts 355 

with top and bottom perpendicular electrode columns in the case of the three-terminal 356 

device shown in Fig. 5a. Fast writing of the domain information does not involve 357 

trapping and detrapping of electronic charge in insulators as the resistance mechanism 358 

changes. This feature can help to avoid the voltage-time dilemma that occurs in 359 

metal/insulator/metal thin-film stacks, i.e., the long retention times of the devices 360 

mean that sufficiently high barriers are required to suppress the escape of the trapped 361 

electronic charge, which prevents the use of the high currents needed for short read 362 

and write pulses at low operating voltages42. 363 

 364 
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Figure Captions: 501 

 502 

Figure 1 | Creation of charged walls. a, Simulated horizontal fields at the middle of 503 

the gap with w/l = 50 nm/50 nm at 2.5 V for a 35-nm-thick (001)pc BFO film on a 504 

(001) STO substrate (left panel). Purple dashed lines indicate the regions where the 505 

applied field exceeds the coercive field of 20 MV/m under various applied voltages. 506 

Wine-coloured arrows indicate the partial inversion of the domains under applied E in 507 

the film matrix (light cyan-coloured arrows) written by various stimuli. The right 508 

panel shows possible rotations between the various domain configurations of r1-, r1+, 509 

r2-, r3-, and r4+. b, AFM topography (left panel) and reciprocal space mapping from 510 

the [103]pc reflection (right panel) from a 120-nm-thick BFO thin film grown 511 

epitaxially on a [001] STO substrate. 512 

 513 

Figure 2 | “On” currents of 35-nm-thick nanodevices. a–d, SEM images of 514 

nanogaps with gap lengths of 63 nm, 97 nm, 136 nm, and 174 nm and widths of ~52 515 

nm. e–h, In-plane PFM phase images of the positive (dark colour in e and h) and 516 

negative (white colour in f and g) domains along the applied E direction that are 517 

confined within the nanogaps. i–l, I-V curves for the positive/negative domains above 518 

under forward and backward voltage sweeps in the directions indicated by the black 519 

arrows, where the on/off currents occur when E is applied antiparallel/parallel to P, 520 

respectively. The dashed lines indicate the best fitting of the on currents according to 521 

the |I|∝|V|n power law. 522 

 523 

Figure 3 | Domain switching in the 35-nm-thick nanodevices. a, 100 cycles of the 524 
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I-V curves shown in Fig. 2i. The inset shows the Lorentzian distribution of Vc. b, c, 525 

Gap length dependences of the coercive voltage and the on-state current at 4 V with w 526 

= ~50 nm, where the solid lines are fitting results. d, Hysteretic I-V curve with the 527 

sweeping direction indicated by the black arrows for the nanogap shown in a during 528 

the periodic read-write operations; the voltage sequence is shown in the inset and the 529 

read voltage was fixed at −1.5 V. e, Switching time dependence of the readout current 530 

at 2.8 V for various applied switching voltages for a nanodevice with w/l = 52 nm/63 531 

nm and Vc = 3.2 V, where the solid lines indicate the best fitting of the data based on 532 

the KAI model. f, Endurance test results for the on/off currents at ±4 V and 1 kHz for 533 

a nanodevice with w/l = 51 nm/125 nm. 534 

 535 

Figure 4 | Wall currents for 120-nm-thick nanodevices and direct proof of these 536 

wall currents using scanning probe techniques. a, I-V curves for different gap 537 

lengths at w = 44 nm (left panel). The right panel shows the l-dependences of the 538 

coercive voltage and the on-state current under a 5 V field, where the solid lines 539 

indicate the fitting results. b, In-plane PFM phase image of the remaining parts of two 540 

retracted 71° domains (left panel) after poling at −18 V for 10 s. The consequent 541 

CAFM current map when −140 kV/cm was applied between TE1 and the tip (right 542 

panels), where both the tip and TE2 were grounded, confirms the presence of 543 

conductive walls across the gap area. The wall currents decay from their heads to their 544 

tails as envisioned using the current profiles along the two dotted lines m and n. 545 

 546 
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Figure 5 | Read and write schemes for three-terminal BFO memories. a, b, The 547 

left panels show schematics of memory cells for the operating schemes with readout 548 

voltages of |Vr| > |Vc| and |Vr| < |Vc|, respectively, where the dotted lines indicate the 549 

charged domain walls that are created under the read voltages. Yellow and white 550 

arrows indicate the polarization vectors formed by the write and read voltages. The 551 

middle panels show the characteristics of double I-V sweeps in the directions shown 552 

by the arrows after application of different write voltages with various nanogap 553 

lengths, while the inset in b shows a magnified view of the I-V curves within the 554 

framed rectangle. The right panels show the retention data for the “on”/“off” currents 555 

after application of write voltages of either ±8 V or ±2.5 V. The read voltages were 7 556 

V (a) and −1.5 V (b). c, Planar SEM image (left panel) of a mesa-structure memory 557 

cell in read Scheme II (|Vr| < |Vc|) in b. The middle and right panels show in-plane 558 

PFM phase images of domain variants indicated by arrows after poling at ±8 V 559 

between L and R (after M removal).  560 
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