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Abstract

In radiological protection, models are used to assess radiation risk by means of 

extrapolation from high dose and dose rate to low dose and dose rate. In this thesis 

five main biophysical models of radiation action have been evaluated, appraised and 

inter-compared. The five models are lethal and potentially lethal (LPL) by Curtis, 

pairwise lesion interaction (PLI) by Harder, cellular track structure (CTS) by Katz, 

hit size effectiveness (HSE) by Bond and Varma and track core (TC) by Watt. Each 

model has been developed based on certain underlying mechanisms or phenomena, 

to permit interpretation and prediction on the induction o f a specified biological end

point such as cell reproductive death, chromosome aberrations and mutations. 

Biological systems of interest are, for example, mammalian cells containing 

deoxyribonucleic acid (DNA). Evidence is mounting that double strand breaks in the 

DNA are the critical lesions for various biological end points. To proceed with this 

work the TC model has been chosen.

Cancer induction by ionising radiation is the stochastic effect o f prime concern in 

radiological protection. Cancer induction cannot be avoided entirely but its 

frequency o f occurrence may be reduced to acceptable level by lowering the amount 

of radiation received. The methods of assessment developed by ICRP, in terms of 

the cancer risk coefficients, are presented in this thesis.

In the conventional (legal) system o f dosimetry, radiation is quantified by the 

amount of energy absorbed per unit mass of tissue. Quality factors, superseded by 

radiation weighting factors, are needed to account for the quality dependence on 

radiation type. As an alternative, a new dosimetry system is proposed here which 

is based on the mean free path for primary ionisation along particle tracks and the 

integral fluence generated by the radiation field, whether directly or indirectly 

ionising radiation. From the study of cellular data, the mean free path for primary 

ionisation along particle tracks (A.) emerges as a parameter which best unifies 

biological damage data. Radiation effect is found to depend, not on the energy 

transferred but to depend mainly on the frequency and spatial correlation of 

interactions. Maximum effect occurs when X is equal to X̂  (2 nanometre, mii). The
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term ’Absolute Biological Effectiveness’ (ABE) is introduced as a parameter which 

indicates the probability to induce a specified effect, per unit incident fluence. In 

this endeavour, only direct effects are considered in deriving ABE values for various 

radiations. However other factors such as indirect effects, inter-track action, repair 

processes and radiation rate, can be incorporated later if  required, in the derivation 

of ABE. ABE values for photons up to ^Co i.e 1253 keV and neutrons up to 10  ̂

keV, have been calculated and presented in this thesis.

An attempt has been made to re-express the cancer risk coefficients, derived by 

ICRP, in the new dosimetry system, in terms of the ABE (Absolute Biological 

Effectiveness).

The hypothesis put forward in this thesis is that the induction of a specified 

biological end-point in a biological system due to ionising radiations, is determined 

not by the amount of energy absorbed per unit mass (dose), but rather by the 

number o f events (ionizations) spatially correlated, along the primary radiation track. 

Based on this hypothesis, a new unified dosimetry system, independent o f radiation 

type, is proposed. Suggestions are made for possible measuring instruments which 

have the equivalent response characteristics, namely maximum efficiency of 

detection for the mean free path X„. Success in devising such types of instrument 

would ensure the practicability of the new dosimetry system, in operational 

radiological protection.
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All Improved System of Damage Limitation 

for Better Risk Control in Radiological Protection 

Near Environmental Levels

CHAPTER ONE 

GENERAL INTRODUCTION

1.1. Introduction

In Radiological Protection, the basic objective [1] is to protect individuals, their 

progeny and mankind as a whole from the deleterious effects of ionising radiation, 

while still allowing necessary activities that are advantageous but from which 

radiation exposure might result. Ionizing Radiation is capable of producing 

detrimental effects [2] to the exposed individuals. The effects are called somatic 

if  they become manifest in the exposed individual and hereditaiy (genetic) if they 

affect off-spring.

For radiological protection, radiation effects [3] can be generally categorised into 

deterministic effect (or non-stochastic) and stochastic effect. For deterministic 

effect, the severity of the effect varies with the dose and a threshold may therefore 

occur e.g. cataract (lens), erythema, sterility (temporary or permanent). Deterministic 

effects involve the malfunctioning or loss of function of tissues in organs, mainly 

due to cell loss and there is a threshold value for the effects. It can be avoided by 

limiting the doses received to below the threshold dose levels for the effects. For 

this effect, radiation can damage tissue by killing the cells; or interfering with tissue 

functions such as regulation of the cellular components, inflammatory reactions 

which unveil modifications in permeability of cells, natural migration of cells in 

developing organs, indirect functional effects eg. pituitary gland irradiation, 

influences the endocrine functions in other tissues. After irradiation most cells 

continue to function until they attempt to divide.
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For stochastic effect the probability of the effect occurring, rather than its severity, 

is regarded as a function of dose without threshold e.g. cancer induction, hereditary 

disorders. Stochastic effects express themselves long after the exposure which 

include for example increased risk of cancer and hereditary disorders. Apparently, 

there is no tlueshold dose for the effects. Stochastic effects can not be avoided 

entirely because they are assumed to occur even at low doses with low frequency 

i.e. natural background. The effect can be reduced in frequency i.e. its probability, 

by lowering the dose. There are two types of stochastic effects o f concern in 

radiological protection, namely the induction of cancer in somatic cells; and the 

induction of hereditary disorder due to alteration of cells in the germinal tissue.

Cell killing in rapidly dividing cells, becomes manifest, a few days or hours after 

exposure. In slowly dividing cells, death may not occur after months or even years 

after exposures. The degree of killing increases with dose. In an organ or tissue, if 

enough cells are killed, its function is impaired. However functional disorders can 

also result from direct alteration of cellular processes, such as membrane 

permeability or cell to cell communication. Cell survival curves provide information 

on the survival fraction of the irradiated cells against radiation dose [4].

Modification o f a normal cell, occurs in a process known as neoplastic 

transformation. Most neoplastic cell transformations do not progress to a cancer. 

Various agents, including radiation, tobacco smoke, asbestos and other physical 

agents and chemical carcinogens, can induce the transformation. The effect of the 

combination o f radiation and other agents could be synergistic, additive or 

antagonistic, and depends among other things on the sequence, timing, frequency, 

and total duration of exposure to the agents [5]. The transformed cells are capable 

of unlimited cellular proliferation. However for malignant transformation, namely 

the ability of the cells to multiply and form tumour when injected into recipient 

animals, other phenotypic changes can occur as well. Modification of cells of 

germinal tissue will give rise to hereditary disorder which may manifest in the next 

generation [6].



In radiological protection, ionizing radiation effects, either stochastic or 

deterministic, are quantified in the present system of dosimetry, in units of dose or 

its derivatives such as equivalent dose or effective equivalent dose [7]. Cancer 

risk is quantified in terms of probability per unit equivalent dose (Sievert Sv) i.e. 

lO'-’ S v '. The present system of dosimetry, uses the absorbed dose to quantify 

radiation and the relative biological effectiveness (RBE) and linear energy transfer 

(LET) to take care of the relative effectiveness i.e. quality of different radiation 

types [8]. Since 1977, the International Commission on Radiological Protection 

(ICRP) has used the terms Dose D, Dose Equivalent H (H=NQD where N is a 

modifying factor, taken to be one, and Q is the quality factor) and Effective Dose 

Equivalent Elg ( Hi,=WtH , where w, is the tissue weighting factor). ICRP made 

revisions in 1990 and introduced the terms Dose [9], Equivalent Dose H, in 

tissue T (H-p =w^Dy . w^ is the radiation weighting factor and D j is the average 

absorbed dose in tissue T) and Effective Dose E (E=W(H, where w, is the tissue 

weighting factor). The validity o f dose as a concept to quantify radiation has been 

discussed and debated by many authors which include Watt et-al [10], Katz 

[ 1 1 ] [ 1 2 ] [ 1 3 ] ,  B o n d  e t - a l  [ 1 4 ]  a n d  S i m m o n s  [ 1 5 ] .  T h e  

quantification of the radiation field by using dose based on relative biological 

effectiveness (RBE), quality factor (QF) and linear energy transfer (LET), is 

considered by many to be inappropriate and fundamental changes are required.

In this project an attempt is made to express and quantify the biological 

effectiveness of ionizing radiation in an improved system o f dosimetry which uses 

the term absolute biological effectiveness (ABE). A biophysical model based on 

this concept is used to construct an absolute system of radiation effectiveness. For 

radiological protection purposes the proposed system must be able to quantify the 

appropriate radiation risk.

1.1.1. Dosimetric Quantities and Principles

Ionising radiation can be categorised into indirectly ionising radiation such as photon 

(i.e. X-ray and y-rays) and neutrons; and directly ionising radiations such as 

electrons, protons, alpha particles and other charged particles [16] [17]. 

Photons will interact with matter (i.e. water) through photo-electric, Compton



scattering and pair production [18] [19]. A complex shower o f electrons is 

produced in the matter from these processes. Neutrons will interact with matter 

tillough elastic scattering, inelastic scattering, nonelastic scattering, neutron capture 

or spallation processes. However for interaction between neutrons and water (i.e. 

tissue), the main interaction products are recoil protons and recoil oxygen. The 

spectrum of charged particles [20] [21] produced from these processes 

changes with penetration depth tlnough the build up region, reaches equilibrium and 

falls off under transient equilibrium conditions according to the attenuation of the 

primary incident radiation. The charged particle equilibrium spectrum is commonly 

used in dosimetric calculations [22]. The fundamental quantity used in the 

conventional dosimetry system is the dose which is the amount o f energy absorbed 

per unit mass of the irradiated medium. The radiation field can be described by a 

few basic terms which includes [23] fluence [24], [25] flux density 

(fluence rate), energy fluence and energy flux density (energy fluence rate).

1.1.1.1. Absorbed Dose and Equivalent Dose

The absorbed dose D is the quotient of dE by dm, i.e. D==dE/dm, where dE is the 

mean energy imparted by ionizing radiation to the matter in a volume element and 

dm is the mass of the matter in that volume element [23]. It is an average quantity 

and the unit is Jkg'  and 1 Gray (Gy) is equal to 1 .1kg'. The energy imparted E 

[26], by ionizing radiation to the matter in a volume is: E= Rj„ - R^^ +ZQ 

where

Rjn is the radiant energy incident on the volume. I.e., the sum of the energies 

(excluding rest energies) of all those charged and uncharged ionizing 

particles which enter the volume;

R„̂ ,j is the radiant energy emerging from the volume, i.e., the sum of the energies 

(excluding rest energies) o f all those charged and uncharged ionising 

particles which leave the volume; and 

ZQ is the sum of all changes (decreases: positive sign, increases: negative sign) 

o f the rest mass energy of nuclei and elementary particles in any nuclear 

transformations which occur in the volume.

For x-rays and y-rays the absorbed dose D is given by the following relationship: 

D= (j).E,̂ . Zj (p^/p)i x 1.6x10"'^ Gy



where

(|) is photon fluence:

E., is photon energy in MeV: and

is the mass energy absorption coefficient (mflcg'').

Radiation weighting factors w^ are used to calculate equivalent dose H, from 

absorbed dose D, by using the following equation:

H= EwR.D

1.1.1.2. Linear Energy Transfer

The concept of linear energy transfer (LET) was introduced by Zirkle et-al in 1952. 

ICRU [27] defines LET as follows:

The linear energy transfer or restricted linear collision stopping power (L J  

o f charged particles in a medium is the quotient of dE by dl, where dl is the 

distance traversed by the particle and dE is the mean energy-loss due to 

collisions with energy transfers less than some specified value A.

L^= (dE/dl)^ and A specifies an energy cut-off and not a range cut-off. The energy- 

loss is sometimes referred to as energy locally imparted.

A medium under irradiation contains a spectrum of charged particle energies, and 

L^ is energy dependent so there is likewise a distribution o f L^ values characterizing 

the radiation field. Average value o f L^ can be determined by using two methods 

namely the track weighted averaging; and dose weighted averaging. It is possible to 

have two different radiations with the same LET, but giving very different survival 

fractions [28]. Quality o f a radiation refers to features of the spatial distribution 

of energy transfers, along and within the tracks of particles, that influence the 

effectiveness of an irradiation in producing change, when other physical factors such 

as rate, total energy dissipated, fractionation are kept constant.

The LET concept is limited in its application and the limitation of L^ in specifying 

radiations include the followings:

i. Range Effect

L^ does not provide information on the range o f the particle which is 

important to determine whether the particle can traverse a given target



volume or stop in it. If the particle crosses the volume and spends 

appreciable amount of energy, value upon entering and leaving the 

volume will change significantly.

ii. Delta-rays Production (or primary ionizations)

describes the rate of energy loss but not the diameter o f the track, along 

the track. If the diameter o f the track depends on the maximum range of 

delta rays produced in the interaction (i.e.primary ionizations) and with the 

assumption that the delta rays carry the energy radially outward, so radiation 

of different types with the same could have different track diameter.

iii. Random Variations (Energy Loss Straggling)

L^ describes the expectation value (average value) o f the rate of energy loss 

by a charged particle o f a given type and energy, but it does not address the 

random nature o f energy losses along the track, which may leave zero energy 

in a small target volume, or give more energy than predicted on the basis of 

0̂0'

iv. LET is not single valued for a specified radiation because the same LET can 

occur on both sides o f the Bragg peak.

1.1.1.3. Microdosimetry

Microdosimetry is a science that deals with the spatial, temporal, and energy-spectral 

distributions of energy imparted in cellular and sub-cellular biological structures, and 

the relationship of such distributions to biological effects [29]. Rossi H H

[30] noted that microdosimetry is dealing with the microscopic distribution of 

energy in an irradiated material. The differences in response to equal absorbed dose, 

are assumed to be due to differences in the frequency with which various local 

energy densities occur within the irradiated material. Microdosimetry seeks to 

express the quality of radiation in terms of physical parameters to allow quantitative 

prediction of biological effects for different types of ionising radiations. A few 

definitions relevant to microdosimetry, have been introduced which include

[31][32]:

i. Energy Deposit Sj

Energy Deposit Sj is defined as the energy deposited in a single interaction i and 

given by the following expression:



Gj- Tj„ - +  Qxm

where

Tj„ is the energy of the incident ionizing particle (exclusive o f rest mass);

Tout is the sum of the energies of all ionizing particles leaving the interaction

(exclusive of rest mass); and

ths changes of the rest mass energy of the atom and all particles involved in 

the interaction ( ^  0; decrease of rest mass and ^  0; increase o f rest

mass);

ii. Energy Imparted s

Energy Imparted s is the sum of all energy deposit S; and may be due to more than 

one energy deposition event, that is statistically independent particle track.

iii. Specific Energy (Imparted) z

Specific Energy (imparted) z is the quotient of energy imparted a by mass m i.e. z 

= s/m.

iv. Lineal Energy y

Lineal Energy y is the quotient o f s by I where s is the energy imparted to the 

matter in a volume by a single energy-deposition event, and Î is the mean chord 

length in that volume i.e.y= s/I.

V. Five classes of tracks;

Insider; particles originating in the volume may lose their entire energy in the

volume;

Starter; particles originating in the volume may leave the volume before

losing all their energy;

Stopper; particles originating outside the volume may enter the volume and 

stop within the volume;

Grosser; particles originating outside the volume may cross the volume, 

depositing only part of their energy in the volume; and 

Glancer; particles ’brush' the wall of the volume so that only 6-rays enter it.

In microdosimetry the specific energy imparted z, is a stochastic replacement for 

absorbed dose and the lineal energy as a stochastic quantity also conceptually 

replaces L^.
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1.1.2. International Commission of Radiation Protection (ICRP) and a System 

of Dose Limitation

The International Commission on Radiological Protection (ICRP). which has been 

functioning since 1928. is formulated as an appropriate international body to give 

general guidance in the field of radiological protection. ICRP [33] has 

recommended a system of dose limitation, the main features of which are as follows:

i. no practice shall be adopted unless its introduction produces a positive net 

benefit i.e. justification;

ii. all exposures shall be kept as low as reasonably achievable, economic and 

social factors being taken into account i.e. optimization; and

iii. the dose equivalent to individuals shall not exceed the limits recommended 

for the appropriate circumstances i.e. dose limitation.

The basic framework of the Radiological Protection system, recommended by ICRP 

is intended to prevent the occurrence of deterministic effects, by keeping doses 

below the relevant thresholds, and to ensure that all reasonable steps are taken 

to reduce the induction of stochastic effects [34]. In 1977, ICRP 

recommended a formal dose limit [35] for whole body irradiation of workers, 

equal to 50 mSv per year (refer to table 1.1). This limit corresponded to the 

mortality risk factor for radiation induced cancers (fatal malignancies) o f about 1 O'- 

per Sv as an average for both sexes at all ages. For members of the public, a 

mortality risk factor one order of magnitude smaller was deemed appropriate and 

the recommended dose limit for members of the public was 5 mSv per year. In 

1985, the ICRP reconsidered its recommendation on dose limits for members of the 

public at a meeting in Paris [36] and recommended that the dose limit for 

members o f the public be further reduced to 1 mSv per year. The main reason for 

the reconsideration is to clarify the applicability of the dose limits for members of 

the public which was first recommended in 1977. A subsidiary dose limit of 5 mSv 

per year for some years was permissible provided that the average over a lifetime 

would, when averaged, not exceed the principle limit of 1 mSv per year.

The latest ICRP recommendation on effective dose limit for workers is equal to 20 

mSv per year, averaged over five years (i.e. 100 mSv per 5 years) w ith the further



provision that the effective dose should not exceed 50 mSv in any single year. The 

major reason for changes of the ICRP recommendations is the new risk estimates 

for fatal cancer which are higher than the previous estimates as explained briefly by 

Clarke [37]. These fatal cancer risk estimates are now proposed by ICRP and 

contrasted with those adopted by ICRP in 1977, as shown in table 1.3. The data for 

these estimations are derived mainly from the Japanese survivors. The latest ICRP 

dose limits recommendations are listed in table 1.2.



Table 1.1: Protection Recommendation [35]

Year Exposed NCR? ICRP
Population

Limit Amiual
Equivalent

Limit Annual
Equivalent

1931-1934 Occupational 0.1 rad/day ~30 rad 0.2 rad/day -60  rad

1949-1954 Occupational 0.3
rem/week

15 rem 0.3
rem/week

15 rem

1957-1958 Occupational 5(N'-18)
rem

5 rem 
(15 rem 
maximum)

5(N-18)
rem

5 rem (15 
rem
maximum)

Public 10 rem/30 
year

1/3 rem 
average

5 rem/30 
year

170 mrem 
average

1971
Occupational 5 rem (15 

rem
maximum)

- -

Public 500 mrem 
(individual) 
170 mrem 
(average)

1977
Occupational - 50

mSv/year
50 mSv

Public 5 mSv/yr 
maximum

5 mSv 
maximum 
0.5 mSv 
average

1987
Occupational 50 mSv/yr 

Age X 10 
mSv
cumulative
guidance

50 mSv

Public 1 mSv/yr 
(continuous) 
: 5 mSv/yr 
(occasional)

1 mSv 
(continuous)

NIRL,
negligible 
individual 
risk level

l OpSv
/source

5 mSv 
(occasional)

'N is age in year

1 0



Table 1.1: Protection Recommendation [35]

Year Exposed
Population

NCRP ICRP

Limit Annual
Equivalent

Limit Annual
Equivalent

1990
Occupational Under consideration 20 mSv/yr 

over 5 
years

20 mSv

Public Under consideration I mSv/yr 
over 5yr

1 mSv

Table 1.2: The Latest Recommended Dose Limits- by ICRP

Application Dose Limits 
Occupational

Dose Limits 
Public

Effective Dose 20 mSv per year 
averaged over defined 
periods of 5 years^

1 mSv in a year'*

Annual equivalent dose in:
i. the lens o f the eyes 150 mSv 15 mSv
ii. the skim' 500 mSv 50 mSv
iii. the hands and feet 500 mSv -

- The limits apply to the sum of the relevant doses from external exposure in the 
specified period and the 50 year committed dose (to age 70 years for children) from 
intakes in the same period.

 ̂ With the further provision that the effective dose should not exceed 50 mSv in any 
single year. Additional restrictions apply to the occupational exposiue of pregnant 
women.

In special circumstances, a higher value of effective dose could be allowed in a 
single year, provided that the average over 5 years does not exceed 1 mSv per year.

The limitation on the effective dose provides sufficient protection for the skin 
against stochastic effects. An additional limit is needed for localised exposures in 
order to prevent deterministic effects.
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At dose levels received occupationally, the induction of malignant disease (cancer) 

is likely to be the only significant stochastic effect, except in the developing embryo 

[38]. The prevention o f deterministic effects would be achieved by setting dose 

limits at sufficiently low values so that no threshold dose would be reached, even 

following exposure for the whole of a lifetime or for the total period of working 

life. Radiation levels near those found in the natural environment are considered to 

be very low level radiation exposure, generally known as a low level exposure 

(LLE) in which according to Booz and Feinendegen [39] the fraction of exposed 

cells in a cell population is very, much less than one. Arbitrary definitions of low, 

intermediate and high doses and dose rates by UNSCEAR are given as in table 1.4 

(refer UNSCEAR 1986 Report [40] and UNSCEAR 1993 Report).
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Table 1.3: Risk Coefficients adopted by ICRP 1990 compared with ICRP 1977.

Organ or Tissue ICRP 1977 ICRP 1990

Fatal Cancer 
(% Sv' )

Fatal Cancer 
(% Sv ')

Lethality (%) Loss of life
( y )

Bladder - 0.30 50 9.8

Bone Surface a o 5 0.05 70 15.0

Breast 0.25 020 50 18.2

Colon - 0.85 55 12.5

Liver - 0H5 95 15.0

Lung 0.20 0.85 95 13.5

Oesophagus - 030 95 11.5

Ovary - 0.10 70 16.8

Skin - &02 0.2 15.0

Stomach - 1.10 90 12.4

Thyroid 0.05 0.08 10 15.0

Red Bone Marrow 0.20 0.50 99 3R9

Remainder 0.50 0 3 0 71 13.7

SUB-TOTAL 1.25 5.0 - -

Hereditary defects 0.4* i.o:i: - 203

Total 1.65 <— 7.2(weighted)

1 All generations.

Table 1.4: Definition of low, intermediate and high dose and dose rates [UNSCEAR 
1993].

Doses Effective Dose Equivalent rates

Low 0.0 - 0.2 Gy below 0.05 mSv/m in

Intermediate 0.2 - 2.0 Gy 0.05 mSv/m in - 0.05 Sv/min

High 2.0 - 10.0 Gy above 0.05 Sv/min

Very or Ultra high above 10 Gy -



1.1.3. Biophysical Models and Induction of Radiation Effects

The basic unit o f the living organism is the cell. When a cell is irradiated with 

ionizing radiation, interactions will take place between the cell and radiation 

[41]. From the physical point o f view, radiation interaction with matter involves 

physical processes such as excitation, ionization, scattering and pair production.

However in a biological system the interactions [57] include physical, chemical, bio

chemical and biological stages which cover the time range from 10''^ second to 

future generations (refer to figure 1.1). All energetic charged particles will lose 

kinetic energy to their environment through coulombic interactions of the charge on 

the moving particle with the charges on the electrons and nuclei o f the matter 

through which they are passing. Physical processes such as ionizations and 

excitations can occur in less than 10'’̂  seconds. At low doses, most atoms are 

unaffected, while a small number are ionised or excited. In about 10*'" seconds, 

physico-chem ical process such as induction of free radicals, is expected to take 

place. In about 10"̂  seconds, the free radicals are expected to move rapidly to some 

distance and are expected to be inactivated.

DNA damage can be inflicted by radiation through the following processes:

i. direct ionization ( or excitation); or

ii. indirect process, such as free radical induction, set in motion by the 

transfer of energy to the medium.

Effects of radiation on DNA include the following [127];

i. Single strand (ssb) or double strand breaks (dsb);

ii. Base lesions; and }
I

iii. Cross-links between strands of DNA or between DNA and protein. 1

DNA physical structure, according to Alberts et-al [42] is shown schematically |

in figure 1.2. For various radiation-damaged end-points in eukaryotic cells which ]
1

include cell reproductive death, chromosome aberrations and mutations, the DNA j

dsb has been implicated as the causative lesion [43][44]. Cell reproductive 

death is the death of cell when they attempt to divide and can no longer multiply.

Repair systems can identify and remove the lesions induced in DNA within a 

timescale o f tens of minutes. Mis-repair events can give rise to point mutations 

(error-prone), resulted from base sequence changes, or gene deletion or
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rearrangements. The important biological structures in the cell namely DNA, can be 

altered either directly by the disruption caused by ionization or indirectly by free 

radicals formed and set in motion by transfer of energy to the cell (medium). 

Damage may occur on the vital parts of the DNA or other important 

macromolecules of the cells. Direct effects due to radiation which may occur in 

DNA include double strand breaks (dsb) and single strand break (ssb) in the double 

stranded-DNA helical structure [45] [46]. Other effects such as a variety of 

recombinational changes as well as cross-links, alteration in sugar and base fractions, 

base substitution, deletion and so on, may also occur. Chromosome aberrations are 

also a result o f DNA damage. Such changes are believed to be precursor to 

oncogenic transformations [47] o f cells leading to the manifestation of cancers.

The effect of low level radiation on living systems (cells) can be derived and 

estimated by means o f Biophysical Models. Many different biophysical models of 

radiation action for various biological end-points have been proposed in the 

literature in an attempt to quantify radiation effects for radiological protection at low 

doses (refer to chapter two). Effects on human beings exposed to low level 

radiation, cannot be obtained directly mainly due to statistical limitation. Information 

or result is obtained from various epidemiological studies such as the atomic bomb 

survivors, ankylosing spondylitis patients undergoing radiation treatment and 

uranium miners, which involve exposures at higher level radiation. Effects at low 

level radiation are estimated by means of biophysical models which guide 

extrapolation the effect observed at higher level to lower level. Models are important 

at least for two purposes:

i. to interpret the damage mechanism and to extrapolate the effects obtained from 

laboratory experiments, normally performed at higher dose in animal studies, to 

human beings; and

ii. to extrapolate effect from high dose to lower dose near environmental levels and 

to interpret the damage mechanism.

1.1.4. Cancer Risk Coefficients (CRC)

Liniecki [48] defines the Cancer Risk Coefficients (CRC) as the number of 

cancer cases per 1000 man-Sv. CRC represents the risk o f cancer induction
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(stochastic effect) of an individual exposed to ionizing radiation [49]. ICRP 

Report 60 uses the term The Nominal Fatality Probability Coefficient to estimate 

cancer risks from exposure to radiation, which is defined as the estimated probability 

of a fatal cancer per unit effective dose. Cancer is the word used to include all 

forms of malignant disease. Malignant is understood to be descriptive of a tumour 

that invades and destroys the tissue in which it originates and which can spread to 

other sites in the body via the bloodstream and lymphatic system. Benign tumour 

does not produce harmful effects. Tumour is defined as any abnormal growth of 

tissue or swelling, in or on a part of the body [50]. Tumours may be benign or 

malignant.

In order to determine the induction of stochastic effects, ICRP has based its 

recommendations on cancer risk coefficients (CRC). The derivation o f CRC is based 

on risk models which incorporate a great deal of data obtained from:

i. the survivors of the atomic bomb attacks on Hiroshima and Nagasaki in 

August 1945:

ii. occupational accidental exposures in industries using ionizing radiation;

iii. medical exposures for therapeutic as well as for diagnostic purposes such

as ankylosing spondylitis patients; and

iv. occupationally exposed workers such as miners exposed to radon .

All the data are obtained from high dose and dose rate exposures. CRC represent the 

probabilities o f carcinogenesis in the exposed population and are deduced by means 

of extrapolation from higher dose and dose rate to lower dose and dose rate by 

using an appropriate risk projection model (chapter tlmee).

16



lOr't Sec.

phys ica l
s ' t age

10 '- S ec .

phys . - chem .  
10 '" Sec. Stage

I 0 " > s e c  C hem ica l  
s t a g e

S eco n d s to m any years

b io log ica l
s t a g e

Di rec t  e f f e c t Indirec e f f e c t

Energy a b s o r p t i o n  
in b io m o ie c u lc s

Excited a n d  
i onized m o l e c u l e s

R ea r ra ngem e n t

Primary l e s i o n s

In te rm o iec u la r  
energy t ran sfe r

Reaction w i th
b iom o lecu les

toGpgy abs o rp t io n  
in . e n v i r o n m e n t "

Excited and  
ionized m o l e c u l e s

R earrangem ent

■Diffusible r a d i ca l s

I n t r a m o l e c u l a r  
e n e rg y  t r a n s f e r

Reaction w i th  
biomolecules

Bioraf i c a l s

S e c o n d a r y  r e a c t io n s

M o l e c u l a r  a l t era t ions

Genet ic  a l t e r a t i o n s Al tera t i ons  o f  cel l  s tructures

Metabol ic  a l t e r a t i o n s

Prol i ferative a l t er a t io n s  Degenerat ive  a l t erat ions  
of  c e l l s  ( t u m o r s )  of  c e l l s  (cel l  d e a t h )

Delayed s o m a t i c  e f fec t s  — -— Acute radiaj ion s i c k n e s s

E l m d i t a r y  a l t e r a t i o n s  
( m u t a n t s )

Death of  o r g a n i s m

Fig. 1.1: The temporal stages o f radiation action. The reaction steps represented by 
broken lines are affected by metabolic processes [57].
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1.1.5. Present Dosimetr} System for Radiological Protection

Before 1991 ICRP recommended the use of the quantity Dose Equivalent H. and 

Quality Factor Q,which are related by:

H= N.Q.D

where

N=1 for non-physical modifying factors;

Q is the quality factor of the radiation; and 

D is radiation dose.

Absorbed dose D, is used to mean the average dose over a tissue or organ.

Q values are quality weighting factors determined from the LET o f the radiation. 

Values are listed in table 1.5. However in 1991, ICRP [34] considered it necessary 

to introduce a few changes which include:

i. Radiation weighting factor Wr is used as a weighting factor, on the absorbed dose 

averaged over a tissue or organ which is related to the quality of radiation (refer to 

table 1.6 for Wr values). Wr is broadly compatible with Q, which is related to the 

quantity linear energy transfer (LET). Wr is introduced to make the physical 

weighting factor on the same format as the tissue weighting factor Wy. However Wr 

for a specified type and energy of radiation has been selected to be representative 

of values of the relative biological effectiveness of that radiation in inducing 

stochastic effects at low doses. The weighted dose is called Equivalent Dose, which 

is calculated according to the following formula;

Hy ~  E R WrI-̂ T.R

where

H j is the equivalent dose (Sv) in tissue or organ T;

Wr is the radiation weighting factor; and

DyR is the absorbed dose averaged over the tissue or organ T due to 

radiation R;

ii. The term Dose Equivalent used in ICRP 26 [33] has been changed to Equivalent 

Dose in ICRP 60 [34];

iii. The equivalent dose is weighted by the tissue weighting factor Wj, to derive the 

effective dose E. w,- represents the relative contribution of that organ or tissue to the 

total detriment resulting from the whole body uniform irradiation (refer to table 1.7,
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for Wj values); and

iv. The effective dose E, is the sum of the weighted equivalent doses in all tissues 

and selected organs of the body and is given by expression:

E = E  r WtI-I j

where

W] is the weighting factor for tissue or organ T; and 

Hj is the equivalent dose in tissue or organ T.
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Table 1.5: Q Relationship

in water (kev/pm) Q Quality Factor Radiations

3.5 (and less) 1 P, X, Y etc.

7 2

23 5

53 10 a

175 (and above) 20 thermal neutrons 
C, K  0

Table 1.6: Radiation weighting factors (Wr)

Type and energy range Radiation weighting factor,
W r

Photon all energies 1

Electrons and muons, all energies 1

Neutrons, energy < 1 0  keV 5
10 keV to 100 keV 10
>100 keV to 2 MeV 20
>2 MeV to 20 MeV 10
>20 MeV 5

Protons, other than recoil protons, energy > 2 MeV 5

Alpha particles, fission fragments, heavy nuclei 20
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Table 1.7: Tissue weighting factors (wQ

Tissue or organ Tissue weighting factor, w,-

ICRP 60 ICRP 26

Gonads 0.2 0.25

Bone marrow (red) 0G2 0.12

Colon 0 0 2 n.a*

Lung 0.12 0.12

Stomach 0.12 n.a

Bladder 0.05 n.a

Breast 0.05 0.15

Liver 0.05 n.a

Oesophagus &05 n.a

Thyroid 0.05 0.03

Skin 0.01 n.a

Bone surface 0.01 0.03

Remainder 0.05 0.30
* n.a indicates not available
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1.2. Statement of Problems.

1.2.1. Problems with Biophysical Models of Radiation Action

The fundamental understanding o f radiation interaction with a biological system to 

provide interpretations of the radiation effects, which can be used to predict effects 

at low doses, has not firmly been established. Radiation effects at low levels of 

radiation cannot be directly measured, mainly due to statistical problems. Therefore 

to cari7 out the assessment o f risk o f radiation effect from low doses, a valid 

biophysical model of radiation action is required. There are many biophysical 

models in the literature most o f which are meant to be applicable to a specific 

biological end-point. None o f the models are entirely satisfactory. Therefore their 

ability to predict radiation effects at low doses has to be evaluated.

1.2.2. Problems in Determining CRC

A significant excess for number of cancers occurs in the absorbed dose range from

0.2 to 0.5 Gy is reported by Liniecki [48]. Determination of CRC is derived by 

means of extrapolation to lower dose, based on certain risk projection models, by 

utilising all data available up to a certain date. Following the carcinogenic effects 

of radiation with time after exposure is known as risk projection, which includes 

extrapolating (projecting) beyond our actual observed experience. The CRC 

evaluation is subject to review, mainly due to the existence o f new or more recent 

epidemiological and experimental data as well as to new developments in 

radiological protection as a whole.

1.2.3. Problems with the Currently Accepted Dosimetry System.

In the present dosimetry system the existing problems include the following:

1. Radiation quantity and quality are characterised in terms of absorbed dose and 

linear energy transfer (LET). Radiation effectiveness is expressed in terms of 

relative biological effectiveness (RBE). In mammalian systems RBE increases with 

respect to LET, reaches a maximum value, then decreases. It is not a single valued 

relationship. It is acknowledged that the LET concept is limited in its application 

and cannot provide a reliable description of a radiation field (refer to page 5). In 

Radiological Protection the Quality Factor Q, which is a conservative estimate
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arbitrarily related to RBE, is used to indicate radiation quality in order to derive 

dose equivalent from the formula;

H= N .Q.D 

where N=1 for other modifying factors;

Q is quality factor; and 

D is radiation dose, 

e.g. The Q for fast neutrons is equal to 20 [51].

In ICRP 60 the Radiation Weighting Factor, Wr is used to derive equivalent dose 

from the equation;

H j  =  E W r D -j- R ;

ii. For the internal dosimetry o f Auger-emitting electron capture radionuclides, there 

are inherent problems in the applications of the concepts of absorbed dose [52]. 

Radionuclides which decay by electron capture and accompanied by Auger electron 

cascades or (3 emission, when incorporated into the molecular structure or 

mammalian cell nuclei, can cause damage which approaches those for heavy 

particles [53]. This fact is consistent with the interpretation that electron damage 

is caused predominantly at the end o f the tracks and incorporation of these 

radionuclides simply ensures that the slowing down fluence o f low energy tracks, 

interacts in the vicinity of the radiosensitive sites. The radiation hazards due to 

incorporation of the radionuclides is not assessable by conventional dosimetry 

mainly due to two main reasons namely (a) the complex decay scheme of the 

radionuclides. For example a single decay of ' “̂ I can result in the emission of up to 

56 low energy Auger electrons; and (b) Excessive damage beyond that predicted by 

conventional dosimetry if the radionuclide is incorporated into a sensitive site within 

the cell structure e.g. the DNA molecule;

iii. Dosimetry of alpha particles [54] ingested tlnough radioactive aerosols 

cannot be satisfactorily determined;

iv. The quality factor Q, assigned to neutrons having energy in the range of 100 keV 

to a few MeV is inconsistent with that allocated to heavier ions on the basis of 

observed effects in mammalian cells; and
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V. The present system cannot describe the phenomena of reverse dose rate effects 

as it predicts smaller effects at low dose rates (due to sub-repair) whereas the 

opposite (enlianced effect) is sometimes observed.

A new system o f dosimetry in terms of Absolute Biological Effectiveness (ABE), 

is proposed here. The degree of success in overcoming many of the current 

problems will be explored in chapter four. The concept put forward in the new 

system is not the energy absorbed per unit mass but the frequency and spatial 

correlation o f track interactions with the DNA segments at risk, in the irradiated 

system.

1.3. Objectives and Content

The main objectives o f the research described here are;

a. To carry out a detailed evaluation and critical appraisal o f the main

biophysical models of radiation action with particular reference to the 

primary track model under development at St. Andrews’ University;

b. To re-assess and correlate cancer risk coefficients, utilising all information

available at the present time, in terms of the currently accepted model and 

for the St. Andrews’ primary track model of radiation damage; and

c. To propose a new system o f dosimetry, in terms o f Absolute Biological

Effectiveness (ABE).

Detailed aspects o f the work are discussed in the chapters enlisted. In chapter two, 

five main biophysical models of radiation action will be evaluated and critically 

appraised and the results will be presented. In chapter three the available information 

on cancer risk coefficients will be presented. The currently accepted system of 

dosimetry will be explained. The link between the cancer risk coefficient and dose 

limitation will be indicated. The deficiencies of current system are indicated which 

lead to the proposed new system of dosimetry. In chapter four, the principle and 

derivation o f quantities used in the proposed new system will be described and 

discussed. In chapter five the conclusions, discussion and recommendations for 

future work will be presented.
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1.4. Scope of the project

The topic of this project is An Improved System of Damage Limitation for 

Better Risk Control in Radiological Protection Near Environmental Level.

Argument is presented to justify for an alternative system to the present system of 

dosimetry. The new system utilises biophysical quantities which can specify the 

absolute biological effect o f the radiation field. In this initial investigation, the study 

is constrained to environmental levels of radiation where single track effects prevail.
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CHAPTER TWO

BIOPHYSICAL MODELS, INTERPRETATION AND EVALUATION

2.1. General

A biophysical model of radiation damage is an analytical tool, based on an 

understanding o f radiation interaction with matter and of the biology o f the cell. A 

good model should perm it interpretation of the mechanism of radiation action and 

should be in a mathematical formalism which will enable extrapolation of data 

measured at high doses to predict effects at low doses. The major aim o f 

developing a good model is to predict radiation effect at low doses from 

observations at higher doses. There are many biophysical models found and reported 

in the literature, however only five main biophysical models will be appraised and 

evaluated in this chapter.

The mammalian cell is considered as the basic unit of the biological system. The 

cell consists among other things, of a cytoplasm and the cell nucleus. The cell 

nucleus has a complex structure covered by a nuclear membrane and it contains 

deoxyribonucleic acid (DNA) and other components [55]. DNA is a key 

component (refer to figure 1.2). The time range between the inadiation and the 

manifestation o f effects, varies from 10*'̂  second to next generations (refer to figure 

1.1). In biophysical modelling, there has been some convergence o f ideas on a few 

points such as the nature of the biological target, the DNA in the cell nucleus; the 

nature o f important damage, DNA double strand break (dsb); and the requirement 

to create a crucial lesion. However there is no concession yet on the mathematical 

form o f the dose effect and on the nature of the crucial lesion.

The double strand break (dsb), is now considered to be the crucial lesion. It could 

possibly occur due to intra-track o f one radiation track, as well as inter-track of two 

radiation tracks. The single strand break (ssb) is considered only as a sub-effective 

lesion which is easily repaired by the available repair mechanism. Experimental 

evidence shows that the probability of the final radiation effect depends on a number 

of modifying factors such as repair, repopulation and cell cycle stage [46].

27



The main objectives in modelling of radiation action, include the following:

i. to assess the risk of biological effect from low doses of radiation.

ii. to link between physics and biology in studying the radiation effect 

in a biological system:

hi. to investigate basic mechanisms o f radiation action; and

iv. to suggest new experiments to test hypotheses predicted by the

biophysical model in various applications such as radiation therapy 

and assessment of risk.

In the assessment of biological effect from low doses of radiation, data are only 

readily available from people exposed to larger doses such as for medical reasons 

or atomic bomb survivors. Statistical limitation prevents us from obtaining actual 

experimental data of radiation effects at lower doses and dose rates, where people 

and radiation workers are exposed. Assessment of biological effect at lower doses 

and dose rates, which is very important for radiation protection, can be extrapolated 

from higher doses and dose rates by means of a biophysical model of radiation 

action.

The study of cell proliferative death, the dependence of survival on radiation 

quantity and quality, remains the principle tool for researchers in radiation biology. 

However the shortcomings of this study applicable to mammalian cells are, for 

example, a wide range of cell sensitivity and a limited division potential of the cell. 

These, to some extent, limits our ability to interpret and understand entirely the 

action of radiation at the organismic level. Clonogenic survival is defined as the 

ability of a single cell to proliferate reproductively to form a colony of cells. This 

method o f colony counting has been widely used for clonogenic survival studies on 

bacteria, virus, yeast and other lower organisms. However it is only since the late 

1950s that the method, pioneered by Puck and Marcus [56] has been applied to 

mammalian cell lines. Among the common mammalian cell lines (mostly are 

immortal or transformed cells) are HeLa cells, derived from a human cervical 

cancer; V79 cells, derived from hamster lung; CHO cells, derived from hamster 

ovary; 9L cells, derived from rat gliosarcoma; and TI cells, derived from a human 

kidney. Due to recent developments in cell culturing methods, it is now possible to
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undertake survival analysis in vitro from fresh explants of normal and tumour tissue, 

as well as non-immortal lines that divide for only a few tens o f generations. The 

criterion o f clonogenic survivability is usually taken as the production of 50 or more 

cells at the minimum after 10 to 20 days from seeding.

2.2. General Types of Biophysical Models

2.2.1. Hit and Target Model

In this model [57], a biological cell or system is assumed to consist of targets 

which must be hit in order to inactivate the cell or the system. The probability of 

inactivation generally is assumed to follow the Poisson statistical law. Depending 

on the assumed number of hits and targets involved, the model can be further 

categorized into single hit single target, single hit multi-target, multi-hit single target 

and multi-hit multi-target.

2.2.1.1. Single Hit Single Target

In this particular case, one hit is required to inactivate the target and the cell is 

assumed to have one target. The survival fraction F , ,, of a cell population irradiated 

with radiation is given by F, exp (-h), where h is the mean number of hits per 

target.

2.2.1.2. Single Hit Multi-Target

For single hit multi-target action the cell is assumed to consist o f many targets and 

a single hit is required to inactivate a target. However many targets have to be 

inactivated in order to inactivate the cell. Survival fraction for single hit and multi

target where m is the number of targets, is given by F, ,,= [!-(l-exp(-h))'"].

2.2.1.3. Multi-Hit Multi-Target

For multi-hit (n) and multi-target (m) the cell is assumed to consist o f many targets 

and each target requires several hits to inactivate the cell. The survival fraction of 

the irradiated cell population is given by: F^^^ 1-(1-F„

n - l

where  ̂=exp i - h )  . ^
r = o r  !
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n is the number o f hits;

m is the number of targets; and

h is the mean number of hits per target.

2.2.2. Two Component Models

In two component models, the radiation action is divided into two components 

namely low and high linear energy transfer (LET). For the liigh LET component, 

the response is assumed to follow single hit, single target characteristics. This is 

considered to be an irreversible mechanism. For the low LET component, the 

response is expected to follow single hit, multi-target characteristics. It is considered 

to be a reversible mechanism which could be influenced by various factors such as 

repair and oxygenation. Examples o f two component models are models by Todd 

[58], Wideroe [59] and Katz (see Section 2.4.3).

2.2.3. Dual Radiation Action Model

In the dual radiation action model, two separate modes o f radiation action are 

assumed to take place to produce primary lesions namely;

i. linear component of local energy concentration or dose;

It is due to intra-track action, which is attributable to the lesions produced 

along the individual particle track; and

ii. quadratic component o f dose;

It is due to inter-track action, which is attributable to the lesions produced 

by means o f separate charged particle tracks.

The overall effect o f radiation in this model is assumed to be dependent on linear 

dose and quadratic dose. Examples of dual radiation action model are models by 

Rossi-Kellerer [72], Neary [60] and Chadwick-Leenhouts [71].

2.3. Review of Biophysical Modelling

At the beginning (i.e. contemporary with Lea [62]), the central focus on biophysical 

modelling was on hit and target theory [61]. Then it was followed by dual 

radiation action (linear quadratic), two component and microdosimetric concepts. 

Recent developments in biophysical modelling deal with nanometre dimensions 

which are of the same order of magnitude as the dimensions of a DNA double
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stranded segment, and based on the hypothesis that the DNA double strand is the 

critical target for radiation effect. In the future it is expected that the challenge is 

to determine, from molecular biology, how many affected targets i.e. DNA dsb and 

indeed, possibly the type o f dsb, which relates directly to the effects.

Models of radiation action, proposed and formulated for various biological end

points by different authors in the literature, employ different approaches and 

concepts. Some authors extend a combination of concepts proposed by earlier 

authors. Radiation is believed to incur in localised damage in sub-cellular sites. Such 

damage sites are sometimes called lesions or sub-lesions, depending on their 

categorization, in the critical site o f the irradiated cells. Various steps in the 

supposedly multi-stage process, starting from the physical process, through 

chemistry, biochemistry and biological processes, are systematically analyzed and 

modelled and are eventually formulated into a mathematical presentation. The 

processes which have been taken into account in the literature are;

i. Lesions or sub-lesions, their rate o f formation and total (integral) lesions;

ii. Interaction between lesions or sub-lesions induced by inter-track and intra

track action; and

hi. Removal or repair o f lesions or sub-lesions mainly due to repair 

processes or cell division.

Among the first models reported in the literature is the hit and target model by Lea 

[62]. Conceptually a cell or the sensitive part of the cell, consists of a target (or 

targets) which must be hit by radiation before the cell is inactivated. The number 

o f hits for each target can be single (single-hit) or multiple (multi-hits). Generic 

variations of this model include single-hit single-target, single-hit multi-target, multi

hit multi-target and multi-hit, single-target versions.

Lesion formation and its removal or repair has also been used as a basis for 

modelling o f radiation damage. For example the repair mis-repair model (RMR) by 

Tobias et-al [82], lethal and potentially lethal model by Curtis [78] and the 

cybernetic model by Kappos et-al [63]. The saturable model by Goodhead 

[64] also applies the same concept.
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Barendsen [65] [66] proposed that the surviving fraction (SF) of mammalian 

cells can be described adequately by a linear quadratic function o f the dose 

represented by SF=exp-(aD+pD”). The parameters a  and P can be interpreted as 

representing induction o f damage from single track and from two independent tracks 

of ionising particles. Curtis [67] derived his lethal and potentially lethal (LPL) 

model based on two types of lesions; reparable and irreparable, which are linked to 

DNA dsb o f different severity. Leenhouts and Chadwick [68] proposed, from 

a molecular theory o f radiation biology, that the dose response for the induction of 

DNA dsb is linear quadratic. The linear coefficient is dependent on the radiation 

type and the quadratic coefficient is dependent on the dose rate. The model predicts 

that there will be an interaction between two radiations when applied together or in 

immediate sequence. Zaider [69] elaborated on the concept of dual radiation 

action (DRA) in biophysical modelling. DRA refers to mechanisms of radiation 

effects which can be described in terms o f the pairwise interaction of sub-lesions 

produced from cellular alterations. Examples are the formation o f DNA dsb from 

two single strand breaks (ssb) or Exchange-type (ET) chromosome aberrations from 

simple chromosome breaks (CB).

Goodhead [70] has proposed that the models of radiation action may be broadly 

divided into two categories of model: phenomenological and mechanistic, although 

there is often overlap. Phenomenological models seek a parameterized mathematical 

description which fits the range of data of interest without the specific need to be 

related to the actual physical mechanism of radiation action. Mechanistic models 

seek a conceptual, parameterized description based on realistic assumptions related 

to basic mechanisms o f radiation action.

The structure o f charged particle tracks has also been intimately related to 

modelling. Katz [96] for example derived his two component model. In this thesis 

it is called the ’Cellular Track Structure’ model, based on the track structure of 

heavy ions and the effects of the delta-ray distribution in dose. The model has 

generalised factors as he applied it to radiation detectors, nuclear emulsion and 

cellular radiobiology. Watt et-al [114] developed a phenomenological model based



on observation o f the dependence o f effect cross-sections on the track core. In this 

thesis it is called the ’Track Core’ (TC) model. It includes direct and indirect effects 

(radical) along single tracks. Another approach is based on lesions or sub-lesions 

interaction such as the molecular model by Chadwick and Leenhouts [71], and 

its dual radiation action by Rossi and Kellerer [72] [73] .

Paretzke [74] classifies all radiation damage models into two namely Dosimetric 

and Track Related Biophysical Models. Dosimetric models basically incorporate 

explanations from dosimetric point of views such as macroscopic dose, microscopic 

dose, linear energy ti'ansfer, degradation spectrum and radial dose. Whereas track 

related models incorporate explanations based on various interaction patterns along 

the track structure o f radiation in the medium. Examples are nearest-neighbour 

analysis, activation-centred neighbourhood analysis, track entities, cluster formation 

and cluster association.

The microdosimetry approach, which basically takes the geometrical and spatial 

distribution o f energy dissipation into consideration to some extent, has played its 

role in the modelling of radiation damage. Bond and Varma's hit-size effectiveness 

(HSE) model [107] applies microdosimetry concepts to predict pink mutations in 

tradescantia. Although it has had only limited success, it offers a different approach 

to biophysical modelling and is one o f the few which specifically exploits 

microdosimetry per se.

Varma et-al [75] have proposed to classify models into two basic categories 

namely mechanistic models and phenomenological of empirical models. Models such 

as dual radiation action by Kellerer and Rossi; more generalised theory o f dual 

radiation action; Goodhead’s threshold model; Curtis LPL damage model; and 

Tobias’ repair mis-repair model (RMR), are examples of mechanistic models. 

Examples of phenomenological o f empirical models are gamma ray theory of RBE 

of Katz and hit size effectiveness approach (HSEA) o f Bond and Varma. In 

mechanistic models a certain mode of interaction of radiation with biological 

systems is postulated, on the basis o f which a biophysical model for prediction of 

biological effects is developed. The number of identifiable parameters to which a
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physical significance can be attached must be minimum. However if  the number of 

the parameters becomes too large, these approaches lose their significance as being 

mechanistic and become difficult to validate statistically. Phenomenological models 

which utilize sets o f existing data on biological end-points in one or more systems, 

are used to develop a methodology by which a predictive response function may be 

obtained.

In the DSB Model by Ostashevsky [76], DNA double strand breaks (dsb) are 

considered as the only important radiation induced lesions, and the recovery kinetics 

for split dose, multi-fractionated and continuous irradiations are considered with the 

assumption that a cooperative type of dsb repair takes place. In cooperative repair 

all dsb in the same DNA molecule are. repaired simultaneously whereas in non- 

cooperative repair each dsb is repaired independently. For the latter the repair 

process may take a different mean time.

Hall [77] noted the importance of the premature chromosome condensation 

(PCC) technique which can be used to assess the number of initial chromosome 

breaks without waiting until the next mitosis of the cell. The data may be used by 

the modellers to establish a relationship between the initial strand breaks and cell 

lethality.

In St. Andrews, the basic approach used in model development was first to extract 

effect cross-section from a wide range of available published survival data for 

inactivation and chromosome aberrations, for many different radiation types and to 

explore their correlation against various physical track sti'ucture parameters. By this 

means the importance of the mean free path for primary ionisation emerged and the 

role o f the 2 nm spacing in the DNA was identified. Thus the DNA dsb was 

identified as tlie fundamentally critical lesion for single tracks. Its induction 

efficiency is determined by X. Will the approaches and concepts used in modelling 

achieve the desired goals? Current thinking is that the process which gives rise to 

the various biological end points such as cellular inactivation, cell mutation, 

chi'omosome aberration, neoplastic transformation etc, is a multi-stage process 

initiated by the formation of lesions in the DNA and ameliorated by possible repair
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mechanisms (enzymatic) operating in the cell. The probability o f the subsequent 

biological end-point occurring may be determined by chance.

2.4. Evaluation and Critical Appraisal of Models

In this work the following five main biophysical models of radiation action will be 

evaluated in more detail and critically appraised;

i. Lethal and Potentially Lethal (LPL) Model (Curtis);

ii. Pairwise Lesion Interaction (PLl) Model (Harder);

iii. Cellular Track Structure (CTS) Model (Katz);

iv. Hit Size Effectiveness (HSE) Model (Bond and Varma); and

V . Track Core (TC) Model (Watt).

Evaluation and critical appraisal of a biophysical model, should be linked to the 

expected performance of a particular biophysical model. As a prerequisite, the model 

should be identified and be explained in brief. After understanding the basic 

principle and its survival equation, an overall appraisal on a particular model is 

carried out. If  available, the testing o f the model by the author is included in brief. 

A comparison o f the models will be shown to indicate similarities and differences 

in the results or prediction of the models. The following criteria if applicable, are 

used in the test and comparison of model;

i. Initial slope;

ii. Final slope;

iii. Number of parameters and their meaning; and

iv. Basis of the model.

35



2.4.1. Lethal and Potentially Lethal (LPL) Model (Curtis)

2.4.1.1. Introduction

The Lethal and Potentially Lethal Damage (LPL) model by Curtis [78] identifies 

the main types o f radiation damage as lethal (L) and potentially lethal (PL) lesions. 

This model can be described under the heading o f lesion interaction [79] [80] 

and the model is derived by merging certain features o f the cybernetic model [63] 

and the repair misrepair model (RMR) [81]. L lesions cannot be repaired 

correctly whereas a potentially lethal (PL) lesion can be repaired correctly (viable). 

PL lesion can become lethal by interacting with another PL lesion (binary misrepair) 

or PL lesion can be fixed to become a L lesion. The rate o f production o f L lesions 

and their repair rates are taken into consideration in deducing the mathematical 

expression for this model: In deriving the survival curve, a Poisson distribution is 

assumed to apply and it is related with the number o f PL and L lesions.

2.4.1.2. Basic principles

The LPL model by Curtis, combines various concepts used in biophysical modelling 

o f radiation action which includes lesion interaction, irreparable lesions caused by 

single tracks, linear lesion fixation, lesion repair and binary mis-repair. LPL model 

identifies the lesions as DNA double strand breaks with different severity, which can 

be divided into two [82], namely;

i. Potentially Lethal Lesion (PL)

PL lesion is a potentially lethal lesion which is less severe and can be caused 

by less energy deposited locally. It has the possibility o f being correctly 

repaired presumably by cellular enzymatic process. A PL lesion can interact 

with another PL lesion to form a lethal lesion L and the interaction is called 

binary misrepair. A PL lesion may also be fixed to become a lethal lesion 

for example by the cell moving into or through some critical phase of its 

cycle. Curtis calls the process ’linear fixation’.

ii. Lethal Lesion (L)

L lesions are lethal and considered more severe than PL lesions. To produce 

an L lesion, a larger deposition of energy is required, locally. This type of 

lesion cannot be repaired correctly (irreparable).
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Two processes compete for depletion o f the PL lesions namely correct repair process 

and mis-repair process. PL lesions can also be fixed to become L lesions by means 

of a fixation process. The role of PL repair rate and repair time are important in this 

model which are significant in the survival equation [83][84][85].

There are repair provisions for lethal (L) and PL lesions, namely;

a. for the production rate o f PL lesions;

d t

where jj = the dose rate

r]p.D = PL lesion production rate

^PL^pL = due to repair

^ 2 prd\pL -  due to the production of mis-repaired lesions (loss)

b. The rate of change of PL lesions is;

^ PI, ( ^ ~ Pf, (  ̂)
dr]pp{t) _ _  —2

d t

where G p ^ r|p ^ ( t )  is due to repair of PL lesion; and

^ 2 pt'^pl is due to the mis-repaired lesions.

2.4.1.3. Survival equation

For cell survival (SF),

5 F = e x p  [ -  ir\pD+r\ppD) + € I n  [ i  + y  [ 1 - e x p  ] ] ]



with s is equal to the ratio between rate per unit time of correct repair and rate per

unit time o f binary misrepair for PL lesions, given by: e -PL

■2FL

where

is the rate of production o f lethal lesion per unit Absorbed Dose;

Ppi is the rate of production o f potentially lethal lesions per unit Absorbed Dose; 

D is the Absorbed Dose;

Spi is the rate per unit time of correct repair for potentially lethal lesions;

S2PL is the rate per unit time o f binary misrepair for potentially lethal lesions; and

tr is the available repair time i.e. t =t-(irradiation time T).

2.4.1.4. Model Appraisal

Dose is used to quantify radiation in this model. The basis for Curtis’ model is the 

interaction between lesions and there are two categories of lesion introduced in the 

model to distinguish between reparable and irreparable lesions. Although a specific 

radiosensitive site is not specified, it is implicit that the lesions are in the DNA 

molecule. Different degrees of severity are used to indicate the type of damage by 

the radiation action such as single strand break or double strand break. Inter-track 

effects (binary misrepair) as well as intra-track (irreparable) effects are taken into 

account.

2.4.1.5. Testing Curtis’ model

Curtis tested his model [84], by using data listed in table 2.1, namely Ne ions, alpha 

particles at different LET and x-rays data from:

i. Barendsen et-al 1960 for kidney cells of human origin [86];

ii. Raju and Jett 1974 for human kidney cells (T-1) [87]; and

iii. Ngo et-al 1981 for asynclironous Chinese Hamster V79 cells [88].

The results are plotted (refer to figure 2.1) against the experimental data and are 

satisfactory.



Table 2.1: The parameters used in testing LPL (Curtis) Model.

Parameters Barendsen Raju and Jett Ngo et-al

Aerobic Hypoxic

Particles a a a neon ions

LET (keV/pm) 170 210 210 183

z*-/p- 3052 3980 3980 1549

a ,  (pm-) 45 27 27 45

FpL 0.1 0.1 0.1 0.1

11 12 12 12 12

K 2.5E-04 2.5E-04 1.7E-04 2.5E-04

X-rays radiation

nL(Gy') 0.2531 0.0767 0.0402 0.1313

ppL(Gy‘) 0.8792 1.0 0.4177 0.7711

8 10 10 10 10
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Fig. 2.1: Comparison o f experimental cell survival data with theoretical predictions 
o f LPL model by Curtis. Panel a; is using Barendsen et-al data, panel b; is using 
Raju and Jett data, and panel c; is using Ngo et-al data.
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2.4.2. Pairwise Lesion Interaction (FLI) Model (Harder)

2.4.2.1. Introduction

The Pairwise Lesion Interaction Model (PLI) by Harder [89] is based on the 

concept originated from Lea’s model [62], namely that lesions can interact pairwise 

(i.e. interaction can occur between two lesions). Interaction between primary lesions 

(i.e. molecular lesions not yet fully repaired and temporarily able to interact 

pairwise) formed by radiation, is assumed to occur in contact regions, namely the 

regions with contact between different chromatin fibres or between sections of the 

same fibres. Among the endpoints considered under the PLI model are exchange- 

type cliromosomes aberration and reproductive cell death (cellular survival). The 

dose-mean restricted linear energy transfer with cut-off energy A=100 eV (L |oo.d) is 

used as the fundamental track structure parameter o f the charged particle. According 

to Harder [90], it has been possible to demonstrate a lineai* dependence o f yield 

coefficient a  (per Gy) upon L,oo.d ioi* the production of dicentric cluomosome 

aberrations in human lymphocytes, for survival from reproductive death of V 79 

cells, and other cytological end-points as well.

2.4.2.2. Basic principles

In the nuclear chiomatin, it is assumed that there are some regions with contact 

between different chromatin fibres or between sections of the same fibre, which are 

in temporary existence, due to its conformation changes and thermal movement 

(refer to figure 2.2). Radiation-induced primary lesions such as molecular lesions 

which have not yet been fully repaired, are formed in the contact (interaction) 

regions as well as in other part o f the nuclear chromatin. In this model, the primary 

lesions in the contact region, are assumed to be able to interact pairwise.

Suppose that there are n reactive lesions in a contact region, there will be

pairwise contacts per unit time, where a is the proportionality factor [91]. The 

probability per unit time o f pairwise interaction in a contact point is given by

a .  k . \  , where k is the interaction efficiency. For an irradiated cell nucleus.
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the mean interaction rate at time t is given by: e{t)=aic/^J , where

Suppose that the passage o f an ionizing particle contributes to the region a stochastic 

number o f lesions, o f which n, are reactive at time t. For passage o f u particles, the

cumulants are , and ■

So that n ' ^ - n - v  { n l - n ^ - n ^ )  +v^

If  u follows a Poisson distribution with —= = + i  , then averaging

over I) and substituting into e(t), the mean interaction rate at time t for each contact 

region in a cell nucleus is given by: e ( t) [rn +m^ .

However m is proportional to absorbed dose D. So s(t) exhibits a linear quadratic 

dose dependence. The first term is due to intra-track and the second term, due to 

inter-track interactions. Harder derived mathematically the expression for s(t) and

obtained the following result: e ( t) [ ( Af  - i )  cD+c^D^]
2 7

where p(t-x) is the probability for an ionization, produced at time t, to result in a 

primary lesion at time t; 

m is proportional to absorbed dose D; 

i is the number of ionizations per particle traversal; and

-1 is the microdosimetric factor.

The result shows the linear-quadratic dose dependence regularly observed in 

chi'omosome aberration induction experiments.
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The contact region has nanometre dimensions in Harder model and can be simulated 

in microdosimetry. The linear term in s(t) is proportional to the microdosimetric

factor ^ - 1  . Harder et-al [91] have studied the properties o f this factor for
T

interaction regions o f nanometre dimensions, for which a linear dependence of

-4 - -1 on Ljood has been established as shown in figure 2.3. The experimental
2

result on the L,oo.d dependence of yield coefficient a  (Gy ') for dicentric 

chromosomes in human lymphocytes, as shown in figure 2.4, has strongly supported 

the expression for s(t), which is mathematically derived.

The complete expression for s(t) obtained by Harder is given as follows:

C t

€ ( t )  = [ ( 4=- - 1 )  ( t - x)  cD{x)  d x +  ( J pi  t - z )  cL>(z) dzp]
^  o  o

where c is the factor for region size;

p is the factor for repair kinetics: and

jj is the dose rate in time dx.

In the PLI model, the important number is the average production rate of pairwise 

lesion interaction products per cell, r(t), which is the product o f e(t) and the number 

N o f the interaction regions, i.e. r(t)=N. s(t). The pairwise lesion interaction is in 

competition with lesion repair. The amount of intra-track interaction (i.e. 

proportional to dose) between radiation-induced primary lesions in chromatin, will 

depend on the balance between interaction distance and particle track structure (LET 

effect). The amount of inter-track interaction (i.e. proportional to dose squared) 

reflects the balance between the lifetime of repairable lesions and their production 

rate (i.e. effects of fractionation and protraction).
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2.4.23. Survival equation

The survival fraction (SF) according to this model is given by:

S F = e x p  [- {Ln n) ( e x p  ( - 1  ) ]
O' 9

where

n is the extrapolation number; and

Dq is the shoulder dose.

2.4.2.4. Model Appraisal

L,oo,d is used as the physical parameter for radiation in this model. The PLI model 

by Harder utilizes ’pairwise o f lesion interaction’ as a basis to derive the model. The 

model takes care o f the following:

i. Intra-track interaction (i.e. proportional to dose) in the contact regions in 

nanometre region [92];

ii. Inter-track interaction which is proportional to dose squared in the nanometre 

region;

iii. Repair process which competes with the lesion interaction [93]; and

iv. The 0-rays exceeding 100 eV by taking L ^ o d as the fundamental track structure 

parameter.

However from the equation for the survival curve (SF) for the model, given by: 

FF=exp [- (Lzz zz) (exp ( - — ) + — -1) ] ;

i. It is common that not all survival curves possess extrapolation number n; and

ii. Not all survival curves have especially for high LET radiation.

2.4.2.5. Testing Harder s model

Harder has used data for the production of dicentric chromosome aberrations in 

human lymphocytes, and data from the reproductive death of V 79 cells, to test his 

model [94].
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2.4.3. Cellular Track Structure (CTS) Model (Katz)

2.4.3.1. Introduction

The model by Katz [95] for cellular survival after heavy ion irradiation, is based 

on his track structure model developed earlier for various ionizing radiation 

detectors which include observable tracks in nuclear emulsion, dry enzyme and 

viruses, scintillation counters, TLD and Fricke dosimeter. Katz claims the model is 

applicable to gamma and heavy ion irradiations. Inactivation o f cells by a beam of 

particles is assumed to proceed independently by two modes o f damage namely ion- 

kill mode with exponential survival characteristic, and gamma-kill mode (multi

target, single hit) with sigmoid survival characteristic. Four parameters are required 

in the model to represent biological cells, under a specific ambient condition: a 

critical dose E^, the target multiplicity m to describe their response to y rays, and 

two additional parameters ic and to describe their response to heavy ions. The 

model is sometimes called a Two Component Model due to the fact that radiation 

can be considered to consist o f low (gamma kill) and high LET (ion kill) 

components.

2.4.3.2. Basic Principle

In principle Katz deduces the mean number o f hits due to 5-rays, per target located 

in a thin cylindrical shell with thickness dt at distance t from the ion path. The 5- 

rays are assumed to be emitted at right angles to the ion path and to have a simple 

range energy relationship given by t=KT, where t is the range and T is its kinetic 

energy. The fraction of targets inactivated in the thin shell is determined by using 

the Poisson probability laws of conventional target theory. In the cellular track 

model by Katz, zVp“ is used as an important quality parameter which is proportional 

to the yield o f delta rays per unit distance along a fast ion track. The model 

distinguishes between the track width regime and the grain count regime 

[96] [97]. The grain count regime is where the inactivation occurs randomly 

along the particle’s path, like ’beads on a string’. The cells within the gap i.e. 

between the activated cells, may be damaged sub-lethally because of fluctuations in 

the production of 5-rays. Cells which are not killed in the ion-kill mode by the 

passage of a single ion, may be damaged further and killed by 5-rays from the 

adjacent ion at high fluence i.e. inter-track effect. 5-rays are only able to inactivate
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a fraction (P), of the cells intersected by the ion. The range and number of 5-rays 

are limited and cannot activate remote targets giving the appearance o f 'hairy rope’ 

as in the track width regime. The result in the grain count regime is that the track 

has the appearance of a random string o f beads. P is the fraction of cells that are 

killed (inactivated) by ion-kill. P also represents the fraction of energy deposited by 

the ion that contributes to killing in the ion-kill mode. (1-P) represents the fraction 

o f cells that are killed in the gamma-kill mode and also represents the fraction of 

energy deposited in the gamma-kill mode.

The track width regime is where the inactivations are distributed like a ’hairy rope’. 

For high Z (nuclear charge), 5-rays that are produced, have sufficient number and 

range to activate remote target giving the appearance of ’a hairy rope’. In the track 

width regime P is greater than 0.95 and as a/<j„ increases, the dose deposited in 

gamma-kill mode is approximated as zero. The transition from the grain count to 

the track width regime takes place in a plateau, in the neighbourhood o f z*^/kP" of 

about 4, which corresponds to cr=1.47ia/. K(or a,J represents the size o f internal 

cellular targets. At lower values is the grain count regime, and at higher values is 

the track width regime. After the plateau, the cross-section rises in the track width 

regime then falls down in the thindown region. Thindown is due to a kinematic limit 

on the energy and hence the range o f 5-rays produced, which occur at the end o f the 

track. The effective charge z* is given by: z*=Z[l-exp-125pZ‘“''̂ ]

There are two modes of inactivation in the cell survival model by Katz, namely ion 

kill mode and gamma kill mode. ’Ion-kill’ is defined as a response produced by the 

passage of a single ion tlu'ough or adjacent to a target. It fully describes a low 

fluence irradiation where it is unlikely that 5-rays from different ions in a beam will 

intersect in a single cell. ’Gamma-kill’ is defined as a response to 5-rays from 

different ions, overlap i.e. inter-track effect, which can be described by the same 

equation used for cell survival (SF) after y-irradiation given by formula SF=1-(1- 

exp(-h))"’ where m is the target number and h is the mean number o f hits in each 

target. The radiation effect is based on the dose deposited (by 5-rays) in, rather than 

the number of electron (or 5-rays) passing tlu'ough, the nucleus (i.e. the sensitive 

site). Cells inactivated by the passage of a single heavy ion are said to be inactivated
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in ion-kill mode in the grain count regime with the inactivation cross section (a) 

less than the saturation inactivation cross section ( o j .  In the track width regime the 

inactivation cross-section (or) may be greater than cr„.

2.4.3.3. Ion-kill Inactivation Cross-section a

Katz calculates the ion-kill inactivation cross-section a , by integrating the 

probability P, for inactivation which is given by the expression suitable to multi

target single hit statistics, over all space about the ion’s path. P is given by the 

following formula:

where

È is the mean dose due to 8-rays in a sensitive element o f radius a ;̂

E„ is the critical dose after y-ray irradiation;

m is the target number;

t is the distance between the sensitive element centre and the ion’s path; and

a  ̂ is the radius o f the sensitive element.

The ion-kill inactivation cross-section a , is given by: 

a = f2 Tt t  [ 1 - e x p  ( -  —  ) ] ’̂d t

where x is the maximum range of the 8-rays.

The numerical integration of a , for different values of E^, a ,̂ z, P, m and k, is 

shown in figure 2.5.

2.4.3 4. Survival Fraction SF

The total survival fraction (SF) of the irradiated cells is given by multiplying the 

ion-kill mode survival probability (TIJ with the gamma-kill mode survival 

probability (fly) (i.e.SF^rTj.riy ). The survivors of the ion-kill mode of damage is 

the initial population for the gamma-kill mode.
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When a thin specimen of the medium is irradiated with a beam of particles of 

fluence cj), and LET L. a dose D=(j)L will be deposited of which an amount PD is 

deposited in the ion-kill mode and an amount (l-P)D  is deposited in the gamma kill 

mode. The inactivation of cells by a beam of particles is assumed to proceed 

independently by these two modes, namely ion-kill mode with exponential survival 

characteristic and gamma-kill mode with sigmoid survival characteristic. The 

radiosensitivity parameters for CTS model are m, E„, and k .

There are two possible regimes where the cell inactivation will take place namely 

the grain count regime and the track width regime. From the value of it is

possible to determine whether a particular track segment irradiation is in the grain 

count regime or in the track width regime.

2.4.3.41. SF in the Grain Count Regime

The cell survival fraction (SF) in this regime is given by:

SF = n ,f i^

The ion-kill survival probability is given by:

= exp (-<?(()); or 

rij = exp (-aD/L). 

where a  can be derived from: a/a,,=P=[l-exp-(z*V Kp~ )]"\

The gamma-kill mode survival probability is by: 

n.  ̂ = 1- [ 1-exp -(1-P)D/E, 1"

The survival fraction in the grain count regime is given by:

SF= exp(-a(|)){ 1 -[ 1 -exp-( 1 -P)D/E J"'}

2.4.3.4.2. SF in the Track Width Regime

The survival fraction (SF) is given by:

S F = nj.n ,

The value of P is bigger than 0.95 i.e. P>0.95 and the value for the gamma-kill 

mode survival probability is approximated to be equal to one i.e. =1.

The ion-kill mode survival probability is given by:

H i  =  e x p  ( - ( 3 ( |) )

51



a  can be deduced from the figure 2.5; c/ay, against z *"/k (3L in the track width

regime.

The survival fraction in the track width regime is given by:

SF= e x p (-C (j)) .
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Fig. 2.5: The numerical integration o f a  for different values o f a„, z,p, m and 
K, versus zVkP̂ .
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Table 2.2: Characteristics of the grain count and track width regimes, for multi
target single hit calculation

In the grain count regime In the track width regime

i. The slope o f the envelope is equal to m, 
the target number.

i. The slope o f the envelope is equal to 
one (i.e. m =l)

ii. At low the following 
approximation for a/a^ is valid; 
a/ao=[l-exp-(z*VKp“ )]'".

ii. The value for a/a,, is greater than one.

iii. The plateau exists at the upper end of 
z*Vk P” at values of;
(a) z*-/K P“ =4; and
(b) a=cj^j ;the saturation ion-kill 
inactivation cross-section.
The w idth and flatness of the plateau 
increases with increasing m.

iii. The plateau exists at the lower end of 
z*Vk P“ at values of
(a) z*7k P" =4; and
(b) a=a„ the saturation ion-kill 
inactivation cross-section, and occurring at 
such a value o f z*~/p  ̂ that every sensitive 
element through which the ion passes is 
sensitized.

iv. In the grain count regime
the fraction of dose P, deposited in the ion
kill mode is less than one.
i.e. P= a/a„ < 1

iv. In the track width regime the fraction 
of dose P, deposited in the ion-kill mode 
is one
i.e. a/a„ > 1 and P=1

V. There is no thindown phenomena in the 
grain count regime.

V. Thindown phenomena exists due to the 
decreasing radial distance t to which the 
ô-rays penetrate.

vi. Gamma-kill mode can occur only in 
the grain count regime. The damage 
mechanism can be ion-kill mode and 
gamma kill mode.
The fraction of intersected cells inactivated 
by a single passing ion (i.e. ion-kill) in the 
grain count regime is given by P, which is 
equal to
(j/(To=[ 1 -exp-(z'-/Kp- )]"\

vi. The damage mechanism is one hundred 
percent ion-kill mode. The value of H., is 
equal to one.
(i.e. n = ( l- ( l-e x p (-E /E J )l ).
a  initially rises and finally decreases 
rapidly due to the ’thindown’ [98].
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Ill the grain count regime In the track width regime

vii. The cross-section in the grain count 
regime is given by; 
a/cr„=[ 1 -exp-(z*"/KP“)]”\

vii. The cross-section in the track width 
regime is derived as follows;
a. find Target cross-section’ for a target of 
radius a„ from the equation:
K=Eoa"„ x5xlO*
E„ and m must be found from the cell 
survival response after y-rays irradiation; 
and
b. by using the standard figure i.e. figure 
2.6: cr/a„" versus z*VkP", assume that 
a/ap=l at z*VkP‘ =4. Find the value of 
z'-/Kp^ from the experimental set-up, then 
find (j from the graph.

Note: K  (or a^) represents the size of 
internal cellular target.

viii. This is unsaturated region. viii.This is saturation region (i.e. P >0.95)
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2.4.3.5. Model Appraisal

According to Katz [13] the model is purely physical (i.e. statistical and parametric 

rather than mechanistic) and rests on its fit to data rather than on its relationship to 

a presumed mechanism . A eucaryotic cell is assumed as a bean bag: the bag 

represents the cell nucleus and the beans represent the internal targets.

The model:

i. is able to fit many experimental data such as by Young, Underbrink and 

Skarsgard (see section 2.4.3.6) tlu'ough four radiosensitive parameters (m, E„, 

K and a j  [99];

ii. is applicable to nuclear emulsions, enzymes, viruses, bacteria, scintillation 

counters and eucaryotic cells;

iii. take cares o f the cumulative effect (gamma kill mode, the sigmoid survival 

characteristic) due to the low LET component, as well as non-cumulative 

effect (ion-kill mode, the exponential survival characteristic) due to the high 

LET component;

iv. appropriately, has used cross-sections to indicate the interaction probability

in both the grain count regime and the track with regime and has

successfully explained the increasing cross-section with increasing zVp~, and

the thindown phenomena;

However the model:

i. is not applicable to electron irradiation; and to neutron data as discussed by 

Waligorski [100] because z“/P“ is invalid for low energy protons;

ii. basically uses dose (i.e. due to ô-rays) to quantify the radiation, which is

argued against by a few authors including Katz himself;

iii. does not take care of:

a. repair phenomena of the damage, lesion or sub-lesion;

b. effects of cell cycle which can alter the sensitivity of the cells toward 

radiation;

c. effect of dose rate, dose fractionation or protraction;

d. inverse dose rate effect, and internal emitters etc.

Furthermore the splitting of dose into gamma kill mode and ion kill mode is 

artificial. The parameter zV(3“ used as a physical parameter of radiation in the model
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has a two-fold physical interpretation. zYp" can be interpreted either as the yield of

ô-rays per unit track or as the primary ionisation along the track (the inverse of the 
mean free path X). The model does not explicitly identify the energy requirement 

to inactivate a biological target. The model assumes that the effect produced by 

secondary electrons from y-rays and secondary electrons from heavy ions at the 

same dose, are comparable, which is a very crude approximation as the effect can 

vary considerably. For example the D„’s for carbon K„ X-rays and ^"Co y-rays differ 

by a factor o f two [10].

2.4.3.6. Testing Katz’s model

Katz has used very extensive sets o f data obtained by other researchers to test his 

model. This includes data by:

i. Skarsgard et-al [101] CFIZB? Chinese Hamster Cells irradiation;

ii. Yang et-al [102] C3H10T1/2 Mouse Cells irradiation; and

iii. Underbrinlc et-al [103] Tradescantia irradiation.

The values o f m, k,Eq and extracted from data used in the test are listed in table

2.3. According to Katz’s model the survival fraction is given by the following 

equations:

F = e x p  { - - ^ )  . [ 1 -  [ 1 - e x p  -  [ ( 1 - F r )  —̂  ] ] U

i i 3 F = - . ^  + l n [ l - [ l - e x p - [  ( l -P , ,)  ~ ]  ]"]

Using D=(j).L and assuming that: ]

1
[ 1 -  [ 1 - e x p -  [ - ^ ]  ]

y  ,o

So I n F ^ - o ^ + l n A

di l nF)  ^ ^ d l n A _  d 0  -  -  0 + = -  0 +
dO d 0  A
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dp
d o  d p  ' d 0

. [ ( - 1 )  ( - A ^  ^ |  e x p - [ ( 1 - P ,  
dD P y , o )

or: - ^  = -j7?/ L ^ ^ e x p -  ( 1 - P- )  —̂  ■ [ 1 - e x p - ( 1 - P . )

Then: dP 1
d 0  L

The final expression for the effective cross section is given as follows:

d i n F ,  > ^ e x p - ( l - P J ^ [ l - e x p - ( l - P , ) ^

^ [ 1 - [ 1 - e x p - ( 1 - P ^ ) - ^ ]
Y'O
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Table 2 . 3 :  Values of m , K , E „  and extracted from survival data used by Katz.

Authors Cell types m K Eo
(erg
cm'^

(cm-)
Notes

Skarsgard et-al CH2B2 Chinese 
Hamster Cells

3 1100 1.82 4 .3x10 '

Yang et-al C3H1 O Tl/2 
Mouse cells

3 750 1.7 5x10^

Underbrink et- 
al

Tradescantia 2
or
1.5

1000

1900

2.1

2.6

3.5x10 '

4 .0x10 '
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2.4.4. Hit Size Effectiveness (HSE) Model (Bond and Varma)

2.4.4.1. Introduction

In this model, the hit size effectiveness function (HSEF) is deduced to indicate the 

induction probability o f all-or-none effect with respect to the magnitude of energy 

imparted in a single event i.e. lineal energy [104]. This is an application of 

microdosimetry in the biophysical modelling of radiation action. The theory of 

microdosimetry requires detailed laiowledge o f the energy deposition in sensitive 

sites as a pre-requisite to estimate survival curves. When a population of cells is 

irradiated with ionizing radiation, various magnitudes o f energy will be imparted in 

the critical volume o f each cell [105]. Subsequently the hit effectiveness ratio 

(8), namely the fraction o f hits which result in the all-or-none effect, and the 

incidence (I), of the all-or-none effect will be deduced [106]. From this the 

survival fraction o f a specified biological end-point can be determined. The term 

quantal cell response or all-or-none effect [106], denotes responses which are not 

usually reversible spontaneously, e.g. Clii'omosome abnormalities, mutations, 

neoplastic cell transformations or cell death. Such responses are scored either by 

noting their presence in the individual cell, or by scoring abnormalities presumably 

derived from a single quantally altered cell.

2.4.4.2. Basic Principle

When a population of cells is placed or exposed in a charged particle field (i.e. due 

to indirectly or directly ionising radiations) of dose D, no matter how small, there 

is a chance of a stochastic encounter involving the charged particle(s) and the cell(s) 

[107]. Such stochastic encounters result in a wide spectrum of:

i. possible sizes of (single) hits (i.e.magnitude of energy imparted) on;

ii. possible sizes o f microdosimetric events (i.e. different magnitude of 

events for each track) in; or

iii. possible sizes o f cell doses to;

the critical volume of the cells or the critical effective target volume.

Absorbed dose expresses the average energy deposited per unit mass of the 

irradiated medium. At extremely low doses, absorbed dose loses its significance as 

a good indicator o f biological damage, due to its fluctuation. At lower doses the
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spatial energy deposition becomes important, and for this reason Bond and Varma 

[75] apply microdosimetry in developing this model.

To expose a population of cells means one or more charged particles, moving in the 

vicinity of the cells, quantifiable in terms of fluence 0 .  Stochastic transfer of energy 

to a critical volume o f cross section a . can cause injury to the cell, the severity of 

which depends on the event size. Usually quantal cell response denotes irreversible 

changes . All sub-effective cell injuries such as single strand breaks, are not 

considered as quantal cell response because they are not observable in individual 

cells and are usually repairable. High level radiation (HLR) is a strong field in 

which each cell is hit at least once. Any further increase o f O, can result only in 

additional (multiple) hits per cell. In low level radiation (LLR), only a small fraction 

of the exposed cells are hit, so the frequency of multiple hits on the same cell is 

negligibly-small (effectively all hit cells are singly hit). HLR and LLR refer to low 

and high probability o f interaction, and not necessarily to large or small energy 

deposits in the cell critical volume. The hit size on a cell is defined as the amount 

o f energy transferred to and deposited in the cell critical volume.

Gin - Gout-

The energy transfer causes injury to that cell critical volume, the severity o f which 

depends on magnitude of the transfer. Above some minimal level of severity 

(threshold), the cell will show a quantal response.

The incidence of hit cell I,.,, is given by :

I[_,= 0 a ;  

or Ih= 4)t,a 

where

a  is the average cross section of the cell critical volume;

0  is the integral fluence;
(j) is the fluence rate; and 
tg is the exposure time.

The total I„ is proportional to, or has a linear (no tlireshold) relationship with 0 .  I^ 

is also an expression of risk of a hit on an individual cell in the exposed population. 

However it provides only the average value for all cells in the exposed population, 

from which the true risk for any given cell can not be determined. The cell critical
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volume is a iion-anatomical volume within the ce ll the apparent mean diameter or 

'cross-section' cr o f which can be calculated, and within which the macromolecular 

target(s) must reside. The tissue content o f critical volume must be hit in order for 

the chance o f a quantal response to be other than zero.

The actual total incidence o f hit cells cannot be determined in living cells. However 

this incidence of hit cells. I,.,, can be indirectly estimated by using a microdosimetric 

proportional counter (mpc). The mpc is viewed as a phantom of cell critical volume 

which is filled with tissue equivalent gas and at reduced pressure, so that the number 

of interactions per charged particle is the same as that for the cell critical volume. 

A very large number of single events and their size can be recorded in a relatively 

short time in a low strength field because of the large diameter o f the chamber, 

relative to the that o f the cell critical volume. When adjusted or ’scaled’ to the 

dimension o f a cell critical volume and to the LLR field o f interest, which may 

involve a factor well in excess of 10 ,̂ the converted reading does provide the small 

number of hit cells per cell. The mpc can record very large numbers of single events 

and their sizes. If I,, is known, 0  can be found by; 0 =  I , /a  .
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P A N E L  0
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P A N E L  b

0

P A N E L  c

P A N E L  d

Fig. 2.6: Schematic functions to illustrate the calculation o f the expected incidence 
of the single cell, stochastic effect. In panel a is shown v, the hit incidence density 
(or the number o f cell doses for unit cell dose size), versus z, the cell dose size (or 
the specific energy). The different letters (A and B) refer to spectra for two different 
radiation qualities. The subscripts 1 and 2 for each radiation quality refer to doses 
D, and D2 shown also in figure 2.7. corresponds to the ionization threshold, z^ 
and Zq are mean z values, and Ég refer to maximum z values, for the 
corresponding spectra, and is the value o f z above which the hit probability is 
effectively 1.0. In panel b is shown p, the probability o f an all-or-none single cell 
effect per dosed cell , versus the cell dose z. In panel c is shown w, the expected 
all-or-none single cell effect incidence density (or the incidence per unit cell dose 
o f size z), as a function o f z, for the low LET radiation A. The subscripts for 
distributions E, and E2 correspond to the same subscripts for spectra A and B in 
panel a. In panel d is shown the same plot as in panel c, but for the high LET 
radiation B (reference [108]).
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In figure 2.6, D, and are absorbed doses of low and high LET radiation. The 

horizontal axes for all four panels in figure 2.6, are the specific energy for single 

hits (or events) to the critical volume. The vertical axes for all four panels are:

i. v, the hit incidence density dp,/dz:

ii. p the probability o f the all-or-none effect;

iii. for panel c and d, w is the effect incidence density dpj^/dz, under the 

assumption that when D, and are sufficiently small, equal to dlg/dz.

Panel a: A, is the microdosimetric, specific energy spectrum for quality A of dose 

Dj. Ai, B] and Bj are the m icrodosimetric, specific energy spectra for quality A of 

dose Do, quality B of dose D, and quality B of dose Do, respectively.

If  gi-, is the hit incidence density function, so:

v=g[.iA(z:Di) for A,; the hit incidence (i.e.area under the curve) corresponds

t o  M h . a ( D , ) ;

v=gH.A(z:Do) for Ao: the hit incidence Ph.aCD̂ );

'^=^§H.B(z:D,) for B,; the hit incidence Ph.bC^i); and

^^Sr.bCz’Do) for Bo; the hit incidence Pm.bCD.).

If  the corresponding normalised microdosimetric spectra i.e. the probability density

functions (or probability distributions) from the two qualities are f%(z) and fg(z), 

then the hit incidence density functions are given as follows:

g i - i .A ( z : D , )  = p„ A ( D , ) . f A ( z ) ;  

gH.A(z:Do) = PH.A(Do).fA(z);

gH.B(z:D,) = pH.B(D,).fg(z); and

gl-lA(Z-D2) ^bLB(Do).fB(z)'

The mean hit sizes are given by:

d z
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and Zg=J z f g ( z )  d z

D is the specific energy averaged over the entire population of critical volumes both 

hit and unhit, whereas the values o f and Zg apply only to critical volumes which 

are hit.

D= Ph.a(D).Za ;and

PH.B(D).Zg.

If dose D for radiation quality A is the same for radiation quality B, for any value 

of D:

^ h ,a ( D ) /  P H .o (D ) =  Z g/ Za

i.e. the ratio o f hit incidence for the two qualities with the same dose for any value 

of dose (D), and is in the single-hit range for both, is equal to the inverse of mean 

hit size.

Panel b; The cell dose-cell response function P - ti(z).

P is the probability that a cell with a given hit size z, will manifest the all-or-none 

effect. Its value is zero (p=0) for z < Z j and rises from 0 to 1 in the range of Z j  to 

Zm and p=l for z > Z^

Panel c: The curves E, and E  ̂are plots of the effect incidence density functions for 

quality A; which are the products o f the functions represented by curve A, and A  ̂

in panel a; and the cell dose - cell response function P plotted in panel b.

For curve E,

w=gH,A(z:D,).7i(z) and the area under E, is Pe.a(D|) or Ie,a(D|)

For curve E,

w=gH,A(z:D2).Tt(z) and the area under E  ̂ is PE.A(D:) or Ie,a(D2)

Panel d: Corresponds to panel c but for radiation of quality B.

Curve F I and F, represent the effect incidence density functions

w=gH.B(z:D,).Ti:(z) and the area under Fj is Pe.b(D]) or 1e,b(D i);

w=gH.g(z:D2).'n:(z) and the area under F2 is Pe.b(D2) oi' Ie.b(D2)
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The fraction o f hits which result in the all-or-none effect will be termed The hit 

effectiveness ratio' and designated as s with subscript to indicate the quality it 

refers.

Thus

-A

and -B
z

j f ^ i z )  . 1 1  {z)  d z

From the definition o f e,

where Ie,a(D) is the fraction of hit cell which result in all-or-none effect.

Ph,a(D) is given by:

Fh.a(D)==D/(Za)

So Ig a(D)=D. £a/(Za); and 

lH_g(D)= D.Sg / (Z g )

where Za and Zg are the mean hit size for radiation quality A and B respectively. 

The incidence of the all-or-none effect can be expressed in a very simple form, 

namely:

Ie.a(D)=D- Sa/(Za); and

Ig _ g (D )=  D .G g  /(Z g )

The relative biological effectiveness (RBE) of quality B relative to A, according to 

the definition o f RBE, is given by:

I lIT E ;(B //\.)= = [S g  /(Z g ) ]  /  [GA/(ZA)]

= [S g  /  8 a ]-[Z a  /  ZbI
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0
0 D i2

D,  r o d s

Fig. 2.7: Schematic plots o f the expected incidence o f the all-or-none effect vs. 
the amount o f radiation, D for qualities A and B. The amounts D, and are shown 
as being in the linear range for both curves. The ordinates o f the points L, and 
are equal to the areas under curves E, and in panel c o f figure 2.6, and the 
ordinates o f points H, and H2 are equal to the areas under curves F, and F  ̂ in panel 
d o f figure 2.6. The incidence Ig equals the risk per undosed cell (as opposed to the 
ordinate p in panel b of figure 2.6, which is the risk per dosed cell).
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(%)

Fig. 2.8; The expected incidence Ig vs. the amount of radiation measured as effective 
fluence c|)g, i.e. the number o f charged particles per unit area capable o f producing 
the all-or-none effect. Curve A is for a high- and curve B for a low fluence rate.
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2.4.4.3. Survival Equation

If Ig A(D)=D.E,\/(z^) is the mean number o f cells hit (i.e. incidence), after given dose 

D o f radiation with quality A. then the Survival Fraction (SF) for this model is 

given by:

SF=exp(-Ig) = exp(-D.s^/(z^)) or lnSF=-Ig = -D.6^/(2^)

where

Ig is the fraction of hit cells which result in all-or-none effect or the 

incidence o f the all-or-none effect after given dose D, can be expressed by 

the following term;

Ie.a(D)=D. E^/(z^)

For radiation o f quality A, the survival equation is;

lnSF=- D.G^/(z^)

The general form for Ig is given by:

Ig = aD  + pD“ + yD^ + .....

For low level radiation exposure (LLE) only the linear term is significant due to the 

fact that there is a complete repair of sub-effect damage before a second cell dose 

is delivered. It is expected that even with high level radiation (FILR) exposure, terms 

higher than the square would rarely ever be detected.

The survival equation for the HSE model is given by:

Ln SF = -niD

where

m is the gradient which depends on the LET o f the radiation, which is also 

equal to m=e^/(Zy^) for radiation quality A.

2 4.4.4. Model Appraisal

i. If hit size z, is the most important parameter, irrespective of radiation type, the 

same hit size from figure 2.6 (page 63), could give rise to different effects. Both z, 

are the same. Suppose that the critical volume is DNA double strand. In the first 

case, four DNA segments are affected by z, whereas in the second case, three DNA 

segments ai'e affected by z. What matters most is the spacing and correlation 

(orientation) of energy deposition events. If it is correlated with a DNA dsb 

(sensitive segment), the effect would be more than if it is not correlated with a DNA 

segment.
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ii. The derivation o f the hit size effectiveness function (HSEF) is complicated and 

requires the availability o f accurate data on a number of radiations o f different LET. 

How can we test the HSEF independently? May be independent testing is not 

feasible due to the fact that the hit sizes received by the exposed cells are governed 

by stochastic processes and in order to compare the probabilities, a lot of accurate 

data on all-or-none effects are required.

iii. The definitions of LLR (i.e. average ! % < < ! )  and HLR (1^ »  1 ) are not very 

critical because when every single track counts, the A. (spacing between primary 

ionizations) is important.

It is stated by Weber [108] that the HSE approach is a direct application of 

microdosimetry to low exposure irradiation, in which only a small proportion o f the 

exposed cells are hit predominantly by single tracks, in a cell population. The HSE 

approach can be regarded as a microdosimetric version o f hit-theory by using a 

continuous function (HSEF) instead o f a step function (i.e. 0 and 1) for the

response. The term ’h if  denotes the total amount of energy transferred to the

proposed sensitive structure. At low doses the ’hit’ varies widely from zero to a 

maximum value, depending on hit size (radiation quality). In classical hit-theory, a 

hit size effectiveness (Sj) is equal to:

i. zero ; for all hit multiplicities smaller than n; and

ii. one ; for all hit multiplicities equal to or bigger than n.

The survival fraction (SF), when fixed hit sizes are assumed, is expressed by the 

following equation:

SF = exp(~/ l£>)Y'  ( 1 - 6  .)
j

where D is the radiation dose.

From hit-target theory, it is given that:

( iD )?

{ID)
j !

p { j )  = ex p ( -A D)
J

and survival fraction (SF) is given by:
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S F =  # = E P ( i
n - 1

N.

In the HSE model by Bond and Varma. a probability distribution of hit sizes for a 

given dose replaces the Poisson distribution of hit theory.

2.4.4.5. Testing Bond and Varma s model

To test his model, Bond used various data which includes the following:

i. Data for induced pinlc mutations in Tradescantia produced by x-ray 

irradiation, which have a slope of unity and are in good agreement with 

e x p e rim e n ta l d a ta  up to  a dose o f  ab o u t 0.1 Gy 

[108][109][110][111];

ii. The production of chromatid exchanges in CH2B2 cells after exposure to 

various heavy ions and x-rays [108][112].

71



2.4.5. Track Core (TC) Model (Watt)

2.4.5.1. Introduction

A track core model o f radiation action by Watt [113] has been evolved directly 

from experimental observation of biological irradiations. It uses the interaction 

spacing concept, namely the mean free path of primary ionization along the primary 

track X. as a basis. It is known that the radiation damage is initiated by the charged 

particle tracks [114] and the single-valued parameter which determines quality 

is the linear primary ionisation of the charged particles. It is important to realise that 

the X emerges from the study o f the cellular data, based on laboratory experimental 

radiobiology; it is the parameter which best unifies the data for a wide range of 

radiation types and end-points. In deriving the model, the following assumptions and 

deductions are made:

i. Single track direct action is dominant at medium and low doses. Indirect (radical) 

action is deduced to be relatively small;

ii. There is no temperature dependence on the effect cross-section; and

iii. Results are for asynchi'onous cells: there is no specific allowance for variations 

in radiosensitivity during the cell cycle.

A mammalian cell contains DNA in its nucleus and double-strand breaks in the 

DNA are identified from the experimental analyses as the critical lesion. The 

traversal of a charged particle along a mean chord through the cell nucleus will 

activate the number o f overlapping DNA segments at risk, subject to the range of 

the particle. What matters most, is the number of induced DNA dsb due to the 

charged particle traversal. Absolute biological effectiveness (ABE) is obtained and 

expressed as an effect cross-section in this model to indicate the effectiveness of a 

particular radiation to induce DNA dsb in any specified biological cellular system.

2.4.5.2. Basic principle

In a population of cells irradiated by either directly or indirectly ionising radiation, 

the relevant charged particles will interact with the cells. The critical lesions 

considered in this model is the DNA double strand break (dsb). The yield of DNA 

double strand breaks (dsb) is derived from the following processes [114]:
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2.4.5.2.I. Direct Action

The cross section for DNA dsb production is given by: 

where

çjj, the projected geometrical area of the DNA pnT); 

i\, the number of overlapping segments at risk along a mean chord

through the cell nucleus; and 

s the probability that at least a single interaction will occur in each of

the two strands, each of thiclcness x, spaced at a mean chord distance.

The probable values o f e are:

i. For two ionisations occurring anywhere in the 2 nm distance i.e. e= [l-(l 

+;uyA.)exp(-iyA.)];

ii. For one ionisation occurring in the first strand and the second, within the next 2 

nm distance i.e. £=[l-exp(-x/X)][l-exp(-L„/?t)]; and

iii. For non-saturating tracks, one hit in each of the two strands and nothing in 

between

i.e. g=exp(-A.yA.)[l-exp(-x/l)]\

The mean number of DNA dsb induced per cell by direct action is given by:

^D.dsb“ *̂ d̂

where

(j) is the integral equilibrium charged particle fluence in the cell nucleus; and
a,4=a.,.m.e

2.4.S.2.2. Indirect Action

The mean number of DNA dsb produced per cell by radical action is given by: 

N],dsb" l̂k-̂ dsb-̂

and

where

is the production cross section o f single strand breaks in DNA. the general 

form is given by: as,i~a,.exp(-a2.CJ[l-exp(-a3.Ly/CDNA)] 

a, is a geometrical interaction cross section;
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Sij. a. are constants;

is the intranuclear scavenging concentration;

Ĉ NA is the molecular density of single strands of DNA present in the cell nucleus: 

and

Lj is the track average LET for the equilibrium of the charged particles in the

cell nucleus; and

iij is the total number of DNA segments in the whole cell nucleus which differs

with Og.

2.4.S.2.3. Mixed Radiation

For mixed radiation the combined effects o f indirect and direct actions on individual

strands gives:

[ 1 - e x p  ( - X / À ) ]
g

^M.dsb ^M.dsb'^

and ^D.dsb Î.dsb “̂ ^M.dsb

The repair of indirect and direct damage is assumed to occur at the same rate with 

a mean repair time t̂ ep. A simple time-dependent damage factor can be derived as 

follows:

j  e x p [ - ] dt

The overall survival fraction (SF) for an irradiation of a population o f cells is given 

by:

SF=exp[-N i-^.K(ti)].

If the repair factor is considered to be 100 percent, the SF is given by: 

SF=exp[-N-,.^J.

SF can also be expressed in terms of the absolute biological effectiveness (ABE) as 

follows:

SF=exp(-ABE.(t))
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where

ABE is the mean number o f double strand breaks per unit incident fluence of 

primary radiation; and 

(j) is the incident fluence o f primary radiation.

2.4.5.8. Model Appraisal

The approach used in deriving the model is to correlate on a single curve the 

reported information on cellular effects observed in a variety o f irradiation 

circumstances, for many radiation types and for a variety o f biological end-points 

(refer to figure 4.1). The model is classified as a phenomenological model.

O f the five main biophysical models which have been explained in brief so far, this 

is the only model which uses interaction (event) spacing X, as the physical parameter 

to specify Tadiation. This is a significant development conceptually and can be used 

as an effective means of specifying radiation quality. The following explanation on 

the signal to background ratio of effectiveness if  dose is used, provides justification 

on using A. as radiation specifier:

Double strand break (dsb) is considered as the most important lesion induced 

by the radiation in the cellular DNA. From radiochemistry it is Icnown that 

only about 8 eV is required to rupture sufficient chemical bonds to produce 

a dsb. The distance between DNA strands is about 2 nm. If energy 

deposition parameter is used in this case take for example at just below the 

maximum RBE-LET curve, for any typical end-points, in the energy region 

generally considered to be unsaturated, a  particle expends about 110 

kev/pm, whereas a proton expends only about 60 kev/pm to produce the 

same effect. For a 2 nm distance (equivalence to 2x10'^ pm), the mean 

energy expended by alpha and proton are respectively 220 ev and 120 ev. 

The signal to noise ratio for alpha and proton are respectively 7% and 4%. 

For low LET, the corresponding ratio is in the order o f 0.003% . Therefore 

it seems inappropriate to use energy deposition parameters o f any kind for 

the interpretation of radiation effect because the small changes can not be 

accurately quantified against the large signal to noise ratio.
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2.4.5.9. Testing W att’s model

Extensive data of cell survival were used [115][116] to test the model, 

which include the following:

i. The ^"Co y irradiations o f HeLa cells by Hall and Bedford 1964 [117]:

ii. The dose survival data for irradiations o f mouse embryo fibroblasts with fission 

neutron E,=0.85 MeV by Hill et-al in 1982 and 1984 [118][119]; and

iii. The irradiation with alpha particles (2.7 MeV) by Hieber et-al in 1987 [120]. 

The overall result is satisfactory and detail discussion is given by Watt [135].
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2.5. Test and Inter-comparison of Models

There are a few ways to inter-compare biophysical models which include the 

following:

First, from the survival fraction equations, separate the terms which consist o f Dose 

(D) or (j) at one side and the terms which do not consist o f D or (j) at the other side. 

Then plot the graph against D or <j> for each o f the models i.e. display on a unified 

plot. Any deviation in the unified plot, indicates differences. This procedure could 

be difficult to carry out if the model is a complex mathematical expression; 

Second, by using standard sets o f bench mark data, curve fit each model and 

determine the error. Inter-compare the errors for each model. However this exercise 

requires a lot o f data points for various types of radiation which are available (i.e. 

published data). Furthermore the modeller may have carried out this procedure in 

the development o f the model; or

Third, by applying mathematical treatments to emphasise model characteristics, such 

as comparing the values o f the first derivative against dose (D) or fluence (([)). This 

procedure can be repeated for each model and for inter-comparison puiposes, the 

results could be displayed in a same graph.

In this thesis the first and the third methods are carried out on the five main 

biophysical models of radiation action and the results are shown in table 2.4. Inter

comparison of the five main biophysical models is carried out by:

(i) determining for each model the initial slope (i.e.dlnS/dcj) when (|)-»0), the 

final slope (i.e. dlnS/d(|) when (j)-^ co), the number of parameters and their 

meanings, the basis of the model such as critical target, lesions types and the 

principle used; and

(ii) determining the first derivative of each In survival curve against D and 

(j), and display the results on the same graph.

2.5.1. LPL Model (Curtis)

The survival equation is given by:

( r | ^+r j p^)  D+ e I n  [ l  + ^ ^ D [ l - e x p  ( ]  ] ]
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l n S = -  (rip+ripp) <l>Lp+ e I n  [ 1 - t - - ^ O L p [ l - e x p  { -Cp^t^J ] ] ]

where;

P l is the rate o f L lesion production per unit absorbed dose;

rjpL is the rate of PL lesions production per unit absorbed dose; Gp̂  is the rate of

correct repair for PL lesion per imit time;

S2P1 is the rate o f binary misrepair for PL lesion per imit time;

6 = -!fL
-2PL

and t̂  is the repair time.

Assume that all parameters are not a function o f (|) or D.

[ l  + _ y ^ £ ) { l - e x p  ( - G p p .  t ^ )  ) ]
€

'' " l 'Ipi,/
+ - e x p  ( -Gpp. t , )  )e

i.e. Using equation D=L(j); and 

d/d(|)=(d/dD).(dD/d(|)) or d/d(j)=L.(d/dD);

i. The initial slope

When D->0 :

When (j)->0 :

ii. The final slope

= [ l + e x p ( - Ep ^ C^ ) ]
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When D-^cc:

(Tli+Tl Pp)L,

- ( r | ^ + T ) p ^ )

d(|)
When (j)-3-oo:

iii. Number o f parameters and their meanings

Five independent parameters are used in the LPL model. pi and ppL indicate the 

production rate of L lesions and PL lesions respectively per unit absorbed dose. L 

lesion is assumed irreparable and more severe than PL lesion which can be either 

repaired correctly or binary mis-repaired to become an L lesion. Sp̂  and ê p̂  indicate 

the rate o f correct repair for PL lesions and the rate of binary misrepair for PL 

lesions respectively per unit time. The fifth parameter is t̂  which is the repair time.

iv. Basis of the model

Dose is used to specify radiation quantity and the critical target is not specified but 

it is implicit that the lesions are in the DNA molecule; L and PL lesions. Interaction 

between PL lesions and repair o f PL lesions are assumed to take place in this model.

2.5.2. PLI Model (Harder)

The survival equation is given by:

l nS=- ln{n )  [ e x p  - 1 ]

where

n is the extrapolation number (i.e. note that not all survival curves have an 

extrapolation number)

D is the Dose; and 

Dq is the shoulder dose
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dD  D ,

d i ln S )  _ _ l n [ n )  $
d d  0 ,  0 ,

i. The initial slope

When (j)-»0:

When (})->0:

ii. The final slope

When (j)-^oo:

d ln S
dD

d l nS
dà

d ln S  I n n
dD

d ln S  _ I n n  —
dd) D^

iii. Number of parameters and their meanings

Two parameters are used in the PLI model, n and indicate the extrapolation 

number (corresponding to the number o f targets in the multi-target single hit model) 

and the shoulder dose D^, (the quasithiesliold dose) which corresponds to the width 

o f the shoulder, respectively.

iv. Basis o f the model

The basis o f the PLI is pairwise interaction between primary lesions. The critical 

target is assiuned to be at contact regions, namely the regions with contact between 

different chromatin fibres or between sections of the same fibres. Radiation induced 

primary (i.e. molecular) lesions are assumed to occur in the contact regions which 

are able to interact pairwise. Dose is used to specify radiation quantity.
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2.5.3. The CTS M odel (Katz)

The survival equation is given by:

l n S = - ~ + l n { l -  [ 1 - e x p -  { ( i -p )

where

m is the target multiplicity or the extrapolation number;

E„ is the critical Dose or the extrapolated 

Qq is the saturation cross-section found at a value of 

zVkP“=4;

K  relates to the size of the sensitive container which corresponds to the value 
of (jq at zVkP”=4.

A set o f parameters of Katz’s model for cell inactivation is given by cj„, E„, k , m. 

dins

m-1

^  ( 1 - [ l - e x p - { ( l - P )  ^

^ e x p - ( [i-exp- ( (1-P)
d l n S _ _ o ^  -gp_____________ ^ _______________________ gp

^  ^  ( 1 - [ 1 - e x p - ( ( 1 - P )  ™ )  ] ^)

mL e x p  -  (  ̂ ) [ 1 - e x p -  ( ( 1 - P )  L - ^ )  ]
d l n S __^_ gp______________^

(1- [1-exp- ( (1-P) p A )  ]m)

i. The initial slope

When D-»0:

d ln S  o
dD P
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d l n S ^ _ ^

When (j)-̂ 0: 

ii. The final slope

When D -> o o ;

d({)

d l n S_ _ G  ( 1 - P )

(1-P)
d(j) P,

iii. Number o f parameters and their meanings

There are four parameters used in the CTS model by Katz, namely E„, k  and m. 

m is the target multiplicity, E„ is the critical dose, represents the size o f the 

container and k  represents the critical target size in the container. Katz suggests that 

the targets in the container can be considered as beans in a bean bag. E^ and m are 

parameters for multi-target statistics to describe the response from gamma kill at low 

LET, whereas g^ and k  are parameters for one hit statistics of ion kill at high LET.

iv. Basis o f the model

The basis of the CTS model is the dose deposited by 6-rays, which inactivates 

sensitive sites along and around the particle tracks. The concept used is that the 

response to 6-rays (secondary electrons) follows the same functional form for y-rays 

and for the 6-rays surrounding an ion’s path. zVp- is used to indicate the 6-ray yield 

per unit track length. No specific biological structure or damage type are inferred 

as the critical target or lesion in this model.

2.5.4. HSE Model (Bond and Varma)

In low level radiation exposure, the survival equation is given by:

lnPP=- /7?P

The first derivative of InSF against Dose D, is given by:

djLnSF)
dD
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The first derivative o f InSF against fluence (())), is given by: 

dUnSF)
d(j) 

where

in is the linear coefficient which depends on the LET o f the radiations, 

which is also equal to m=s^/(zA) for radiation quality A. : and 

D is the absorbed dose.

i. The initial slope:

When D-^0: the slope -in, which is determined by the LET (L) o f the radiation.

When ({)-̂ 0: the slope -mL .

ii. The final slope

When D->oo: the slope -> -m i.e the same as the initial slope.

When (j)-̂ co: the slope -> -mL i.e. the same as the initial slope.

iii. Number o f parameters and their meanings

The product inD is equal to the expected incidence of a single cell effect, given

by the following equation:

J ^ = 4 . £ i

where

8 is the hit effectiveness ratio i.e. the fraction of hits which result in the all- 
or-none effect; 

z is the mean hit size.

iv. Basis of the model

The basis of this model is the amount of energy deposited in the critical volume of 

the irradiated cell, measured as a single event spectra in microdosimetry. However 

the spectra needs to be multiplied by a function (HSEF) which provides the 

probability that a cell with a certain hit size (cell dose) will manifest the all-or-none 

effect. The product, Ig is the incidence o f the all-or-none effect. Poisson statistics 

are assumed and consequently the survival fraction (SF) is calculated according to 

the formula SF= exp(-Ip). The critical target, within the cell nucleus, must be hit by 

a charged particle in order to have a non-zero probability of causing the all-or-none 

effect.
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2.5.5. TC M odel (W att)

The survival equation is given by:

lnS=-ABE.  (|)^^

<f>cp=-W-.o „.<(),

and

where ABE is the probability to induce DNA double-strand breaks per unit incident 

fluence; (j)̂  is the incident fluence; (|)gp, (j)̂  ̂ is the charged particle fluence and the 

charged particle equilibrium fluence respectively; and is the average range of the 

charged particles. ABE values are calculated according to the following equation:

ABE^ ia^ .nJ  (4>s.e) {No k  {t  ̂ ) + i n d i r e c t  component  .

where

CTg.n̂  is the projected cross-sectional area of DNA and is the number of DNA 

double strands at risk;

{j)̂ .s is the weighted integral equilibrium fluence of charged particle per unit 

incident fluence, and s is the efficiency for the charged particles to induce 

DNA dsb;

N.Œjr is the mass transfer coefficient; and

k(tj) is the repair term which for simplification is assumed as one. 

d l n S ^ _ ^  j^ B E)
d^cp  d<l>cp

i. The initial slope

Whe„<^^0;

Only single track effect is considered, at lower dose range;

= -ABE= - {o . n ) { ^ )  . ( l - e x p ( - — 
d(|)cp ^ d
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with the following assumptions;

i. At low dose, only single track effect and less:

ii. no repair is assumed to take place: repair factor K(tr)=l ; and

iii. indirect contribution is assumed to be negligible.

ii. The final slope

When ( |)-^ ; = -ABE

There is no final slope due to the fact that:

i. The repair factor K(tr) is continuously acting;

ii. In the high dose region, (|)̂ p̂  becomes significant;

iii. the curve keeps on curving with no final slope.

iii. Number o f parameters and their meanings

In this model only ABE and fluence are used. However ABE is derived and 

calculated by using the following six parameters:

CTg is the projected geometrical area of the DNA;

is the number of overlapping segments at risk;

R is the mean range o f charged particle track:

d is the mean chord length, o f the cell nucleus;

A.„ is approximately equal to 2 nm; and

A. is the mean free path between the primary ionizations.

iv. Basis of the model

In the TC model only one type of lesion is assumed namely DNA dsb, which is 

induced by the radiation and acts as the precursor for various end-points such as cell 

inactivation, cluomosome aberrations or mutations. The latter have different 

probabilities o f occurence. The mean free path between the primary ionizations 

along the charged particle track is used as a basis for the model.
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The summaiy for equations of survival fraction (SF) of each biophysical models of 

radiation action are given as follows:

i. For LPL Model (Curtis):

InSF^-{7]^+r]pj D+ e I n  [ 1 + [ 1 - e x p  ( ]  ] ]

ii. For PLI Model (Flarder):

l nS F^ - ln {n )  {exp { - — )+— -1) ]

d( lnSF)  _ l n { n )
d#

iii. For CTS Model (Katz):

Survival Fraction (SF) is given by: SF= flj.n^ where flj is the ion-kill mode 

survival probability; and fl^ is the gamma-kill mode survival probability. 

In the Grain Count Regime: FIj=exp(-a(j)) or TIi=exp(-aD/L), where a  can 

be derived from a/a„=P=[l-exp-(z*VKP“)]"\ 

n ,= l-[l-exp-(l-P )D /E J'L

Survival Fraction SF in the grain count regime is given by: 

SF=exp(-(j(|)){l-[l-exp-(l-P)D/EJ'"}.

In the Track W idth Regime: the gamma-kill mode survival probability is 

equal to one; 11̂  =1; and the ion-kill mode survival probability is given by; 

ITi=exp(-a(j));

Survival Fraction SF in the track width regime is given by:

SF==exp(-a(j)).
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iv. For FISE Model (Bond & Varma):

The survival fraction (SF). is given by the following equation: 

SF=exp(~mD)

where m is the gradient which depends on the LET o f the radiation, which 

is also equal to m=s^/(z^) for radiation quality A; and D is radiation dose:

and

V . For TC Model (Watt):

S F = e x p  ( -ABE . <p )

lnSF=-ABE.(j)

where ABE is the Absolute Biological Effectiveness; and (j) is the relevant charged 

particle fluence. The first derivative o f SF against ({) is given by:

dlnSF
d<p

2.6. Conclusions

2.6.1. Intercomparison Based on Theoretical Approach

The results o f the inter-comparison between the five main biophysical models are 

listed in table 2.4. The graphical illustrations for each model; its first derivative 

against dose D and Fluence (|). are given in:

i. Figures 2.9(a) and 2.9(b), for LPL model (Curtis);

ii. Figures 2.10(a) and 2.10(b). for PLI model (Harder);

iii. Figures 2.11(a) and 2.11(b). for CTS model (Katz);

iv. Figures 2.12(a) and 2.12(b), for HSE model (Bond and Varma); and 

V. Figures 2.13(a) and 2.13(b), for TC model (Watt).

The overall graphical illustration for all models is given in figure 2.14. The 

parameters o f the models in figure 2.14 are listed in table 2.5.
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Fig. 2.9(a): LPL Model by Curtis: Log Survival Fraction (SF) against Dose, D
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Fig. 2.10(a): PLI Model (Harder); Log Survival Fraction (SF) against Dose, D
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Fig. 2.10(b): PLI Model; First Derivative Log Survival Fraction (SF) against
Dose, D
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Fig. 2.11(a): CTS Model (Katz); Log Survival Fraction (SF) against Dose, D
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Table 2.5: Parameters used for the overall graphical illustration for all models

Models Parameters values Remarks

LPL model by 
Curtis

p,=1000, Ppl=100,
8pL=20, 82pl= 10, t=500, 
p^lO , 8=2

PLI model by 
Harder

n=5, Dq=200 The curve shows slight 
deviation compared with the 
other model but has the 
same general trend. The 
deviation is lessen if  
appropriate values of the 
parameters are chosen in 
the display.

CTS model by Katz L=100, a=4e-7, P=0.25, 
Eq=20, m=3

HSE model by Bond 
and Varma

111=4

TC model by Watt ABE=50, L=100 The model for y and 
neutron will differ due to 
the range R o f the charged 
particles generated (see 
page 84).
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2.6.2. Intercomparison Based on Experimental Data.

Three sets o f experimental data [121] are used for this purpose. The general 

characteristics of the data sets are:

i. Set 1: data which indicate that there is an initial slope and final slope 

(table 2.6);

ii. Set 2: data which indicate that it is a continuously changing with the 

amount o f radiation (table 2.7); and

iii. Set 3: data which is purely exponential in nature (table 2.8).

In this exercise the equation which corresponds to each o f the models is used to 

curve fit the data. The results are shown in figures l(a,b,c), 2(a,b,c), 3(a,b,c), 

4(a,b,c) and 5(a,b,c). The overall qualitative result o f this exercise is shown in 

table 2.9.
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Table 2.6: Survival Data with an Initial Slope and Final Slope Characteristics

No Dose X 
(Gy)

Survival Fraction

1 0 1.0

2 1.0 6.0E-1

3 2.0 2.513-1

4 2.9 l.OE-1

5 4.0 5.0E-2

6 5.0 1.4E-2

7 6.0 5.6E-3

Table 2.7: Survival Data with Continuously Changing Survival Fraction

No Dose X

(Gy)
Survival Fraction

1 0 1.0

2 1 7.0E-1

3 2 5.213-1

4 4 2.0E-1

5 6 6.0E-2

6 8 1.8E-2

7 10 2.4E-3

Table 2.8: Survival Data with Purely Exponential Survival Fraction

No Dose X 

(Gy)
Survival Fraction

I 0 1.0

2 0.5 3.513-1

3 0.9 1.213-1

4 2.0 1.6E-2

5 2.9 2.8E-3

6 4.0 4.2E-4
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Fig. 1a; Curtis Model with Data Set 1

u
LL

i
I

CO 0.01 eqn y = exp(-(a+b)x+2ln(1+bx/2(1-exp(-1000c)))), ei 
a=+2 272E-001, b=+1.275E+000, c=+6.627E-001

: 4.579IE-004

0.001

D ose in Gray

Fig. 1b; Curtis Model with Data S et 2
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Fig. 2.15: Curtis Model based on experimental data
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Fig. 2a:Harder Model using data set 1.
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Fig. 2b. Harder Model with Data S et 2
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Fig. 2c: Harder Model with Data Set 3.
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Fig. 2.16; Harder Model based on experimental data
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Fig. 3a: Katz Model with Data Set 1
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Fig, 3b: Katz Model with Data S et 2
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Fig. 2.17; Katz Model based on experimental data
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Fig 4a: Bond and Varma Model with Data Set 1
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Fig. 2.18: Bond & Varma Model based on experimental data
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Fig. 5a: W att Model with Data Set 1
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Table 2.9: Overall Qualitative Model Intercomparison Based on the Experimental 
Data Sets

Model Curtis Flarder Katz Bond & 
Varma

Watt

1 Initial
slope

Yes Yes Yes Yes Yes

2 Final Slope No No No No No

3 Values of 
the
Parameters

Yes (i.e.
within
range)

Yes Yes Yes Yes

4 Basis of 
the model

Dose L ioO.D Dose Hit Size 
(microdo
simetry)

A

\)ote:
Yes indicates that the model is responsive to the criteria; and 
No indicates that the model is not responsive to the criteria.
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2.6.3. Overall Conclusions

The ability of a particular biophysical model to predict the response o f a particular 

end-point, cannot be judged only by its ability to curve fit the experimental data. 

For an empirical biophysical model, i.e. one which employs sets o f empirical data 

in its development, the uncertainty in predicting the response is further increased, 

if the model is used to extrapolate the response in the range outside o f the empirical 

data used. The uncertainty may somewhat be reduced if the model is used to predict 

the response by interpolation.

Among the problems of using an empirical biophysical model are:

i. Most biophysical models can fit any reasonable experimental data by 

adopting a suitable set of values for the parameters used in the model;

ii. Most empirical models are suitable for interpolative purposes. Often other 

possible equations may be used to interpolate the data points in a specified 

range. However it is less defensible if the model is used to extrapolate data 

outside the range of the empirical data used.

In radiological protection one of the main objectives of a biophysical model is to 

predict the response at lower doses, by using the model to extrapolate response from 

high doses to lower doses. It is believed that a biophysical model which is 

developed based on only empirical data, is not complete and suitable for the 

radiological protection purpose. A practical and realistic model must be conceptually 

sound and the basis used in the development of the model can be justified and 

supported by theoretical as well as practical knowledge of the underlying 

mechanisms. This type o f model is then suitable to be used to predict the response 

by extrapolation from high doses to lower doses. This concludes that the basis of 

the model and the meaning of the parameters supported by current knowledge, 

theoretically and practically, are more important. However the chosen model must 

also show to some extent that it is capable to fit the empirical data.

Based on the arguments presented in this section, among the five main biophysical 

models o f radiation action appraised and intercompared. Track Core (TC) model is 

chosen due to the following points o f merit:
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i. fluence is a superior parameter to quantify the radiation (which is believed 

to be better than dose). Indeed radiation effect depends on the number of 

particle tracks which actually pass and activate with certain probability (cross 

section), the sensitive sites o f the system i.e. DNA double strand;

ii. ABE is used to quantify the cross section of the effect i.e. response, 

which is relatable to the induction of DNA dsb which is believed to be the 

precursor to cellular inactivation, mutation and neoplastic transformation; and

iii. The model derived is based on experimental observation and well 

supported theoretically.

Validity o f any biophysical model o f radiation action could be further tested by not 

only external radiation but also internal irradiation from incorporated radionuclides. 

It should be able to explain unusual phenomena, such as the reverse dose-rate-effect 

for transformations [122] and high inactivation probabilities o f internal auger 

electron cascades.

In this exercise five main biophysical models have been evaluated, appraised and 

inter-compared. To proceed with this work, the TC model by Watt has been chosen. 

This model has been derived directly from experimental data (see section 2.4.5.9). 

It can offer an interpretation o f the auger electron cascades of internally incorporated 

radionuclides and predicted the reverse dose rate effect. The basis used in the model, 

is used to investigate an alternate dosimetry system for radiological protection (see 

chapter four).
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CHAPTER THREE 

CANCER RISK COEFFICIENTS 

FOR RADIOLOGICAL PROTECTION

3.1. General

Cancer risk has received utmost consideration in radiological protection mainly 

because it is likely to be the only significant stochastic effect for individuals exposed 

to ionizing radiation [123]. How can one ensure that all reasonable steps are 

taken to reduce the induction o f stochastic effects which is in compliance with the 

present system o f dose limitation? Two stochastic effects which have been identified 

are cancer and hereditary effects. Stochastic effects can be reduced in frequency by 

lowering the dose but cannot be avoided entirely because there is still a finite 

probability o f occurrence with low frequency, at lower doses. The risk o f these 

effects has to be reduced to a value, not exceeding the risk in other safe industries. 

Cancer induction by radiation which has become the primary effect of concern at 

low doses, is given more emphasis due to the current progress achieved on the 

subject and due to the accumulation of recent data from the epidemiological as well 

as laboratory studies relevant to cancer. A prudent judgement has to be made by the 

various national authorities responsible for radiological protection, to incorporate the 

appropriate level of risk, in the legal system of radiological protection.

ICRP has incorporated the most recent cancer risk coefficients for radiological 

protection purposes, in ICRP Report no. 60 [34], which is discussed under the 

probability of cancer induction. There are two projections of risk models, which can 

be used to derive the cancer risk coefficients. The projected risk models are termed 

the absolute (risk) or additive projection model; and the relative (risk) or 

multiplicative projection model.

The dosimetry system currently applied in radiological protection uses dose and the 

relative biological effectiveness (RBE) as the basis of the system. Dose is defined 

as the amount o f energy imparted in a unit of mass of the irradiated material. The 

RBE is used to indicate the relative effectiveness of a particular type o f radiation 

with respect to x-rays or y-rays for a specified biological end-point. Quality factors
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(Q) and radiation weighting factors (w^) are allocated safety factors based on a 

study of RBE and used in operational radiological protection to take care o f various 

radiation qualities in order to derive the dose equivalent and equivalent dose 

respectively. The meaning of the quantities and terms commonly used in the system 

will be given in brief in this chapter.

3.1.1. Cancer Induction by Radiation

Ionizing radiation has been identified as a carcinogenic agent [124][125].

The exact mechanism o f cancer induction by radiation and other agents, has not 

been firmly established yet but evidence is mounting to indicate that it is a multi- 

step process [126]. The general concept of the origin o f cancer is that o f "an 

event or events in one or more cellular mechanisms leading to autonomous cell 

division and finally expressed as complete or partial cellular escape from local or 

general control by the surveillance system, homoral or cell mediated" [127].

There may be many different initial events to initiate the series o f changes which 

result in malignancy. However the transformed cells may be neutralized by 

spontaneous reversion or repair by excretion or by various control mechanisms or 

such processes as differentiation or cell death. The development of a cancer is 

believed to occur in multiple changes and to proceed in sequential stages. At least

thi'ee processes are involved in the cancer induction namely initiation, promotion and |
1

progression. The initial events in the genome and the production o f a cell or cells |
I

with the potential to develop into a cancer are known as initiation. In the promotion j

process the initiated cells must undergo further changes, after stimulation by a {
1

promoting substance to become a cell with malignant potential. Sometimes the j

promoted cell is called a precancerous cell. Progression is the stage where the |

division and multiplication o f the promoted cell (i.e. precancerous cell) gives rise |

to an occult tumour. !
I
I

The carcinogenic process, includes the growth of a primary cancer to a detectable J

size, about 1 cm in diameter with billions o f cells. Changes in the genome i.e. total |

chromosome content o f a germ cell, may take place in the germinal cells of the ;

reproductive tissue, which may be manifest as hereditary disorders in succeeding I

generations. Modifications in a single cell such as neoplastic transformation leading i

I
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to malignancy, may have serious consequences. Death of one or a small number of 

cells, in most cases, have no consequences in tissue. Alterations in normal cells 

caused by ionising radiation, can give rise to cancer occurrence. The probability of 

such a change is proportional to dose, at very low doses. On average less than one 

event per sensitive target in a cell occurs. For example, 1 niGy o f 1 MeV gamma 

rays, result on average 1 (or occasionally more than 2) tracks per cell nucleus; and 

1 mGy of 1 MeV neutrons, result about 10'“ tracks per cell nucleus. In a DNA 

molecule, there are about 2x10^ o f 2 nm segments. Assuming the contribution o f 5- 

rays is negligible, the probability o f energy being deposited in a particular 2 nm 

segment is small, in the order of 10'^ per track.

Initial event may involve more than one step in which radiation interaction is not 

necessarily the first. A clone o f cells with malignant potential may arise and 

eventually a cancer may develop. The probability of cancer induction is far lower 

than that of the initial events, because of host defence and the failure of succeeding 

changes required by the initiated cells.

3.1.1.1. Latency Period

On the average the latency period for all cancers is 10 years. The shortest latency 

period is for acute myeloid leukaemia which is equal to 2 years [34].

3.1.1.2. Generalization of cancer induction by radiation

For high LET, low dose rate or fractionation, may have;

a. similar effect to that of high dose rate single exposure in some cancers: 

or

b. others, more effective than high dose rate, single exposure.

Certain chemicals can increase the rate of tumour induction by synergistic effects, 

for example 12-o-tetradecanoyl phorbol-13 acetate and asbestos. However some 

chemicals can decrease the rate of tumour induction such as Vitamin A analogue. 

For a given organ or tissue the risk of cancer induction is assumed proportional to 

the number of irradiated cells at risk.
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3.1.1.3. For low LET (cancer induction)

There is little direct data available for low dose low LET cancer induction. 

Exposures are often at high dose rates. Therefore in order to establish a dose 

response relationship the following are taken into consideration:

i. theoretical considerations; and

ii. experimental data and limited human exposure (Japanese survivors from atomic 

bomb attacks, 1945).

Initiation of cancer is associated with the induction of lesions in genomic DNA that 

result in specific gene loses and/ or changes in gene structure. However the DNA 

repair system which involves an enzyme system, is able to recognise and remove 

lesions from the DNA. The repair system is apparently more effective after low dose 

rate exposure than that o f high dose rate exposures, which will introduce the dose 

and dose rate effectiveness factor (DDREF) between high and low dose rates. The 

general conclusions by the NCRP (1980) on the dose-response relationship are as 

follows:

i. for high doses, at high dose rate rates, the relationship is likely to be linear- 

quadratic in form; and

ii. for low doses at low dose rate, the relationship is expected to be linear at 

low doses.

NCRP defines the dose rate effectiveness factor (DREF) as the ratio between the 

slope o f the linear no-threshold fit to high dose , and the slope o f the linear no- 

tlneshold fit to low dose data. NCRP also assumes that the value o f DREF varies 

between 2 and 10, whereas UNSCEAR 88 recommends DDREF values between 2 

and 10. UjNSCEAR 93 recommends DDREF values about 2 and may not be more 

than 3.

3.1.1.4. Dose and Dose Rate Effectiveness Factor (DDREF) for low LET

Cancer induction at low doses and low dose rates should be less than observed after 

high dose and dose rates. The ICRP recommends for radiation protection purposes, 

to use the value of DDREF equal to 2 [34].

3.1.1.5. Cancer induction after exposure to high LET radiation

Penetrating and short range high LET radiations are more damaging than low LET
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radiations per unit absorbed dose. For cell killing RBE values are about 2 or 3 and 

rise as the doses decrease. For deterministic effects RBE values do not exceed 10.

For stochastic effects the RBE of high LET is a function o f dose determined by the 

shape o f the dose response relationship. The maximum value, i.e. RBE„, (a constant 

value), at low doses where both the low LET and high LET dose-response curves 

become linear. Figure 3.1 shows that for high LET, fractionation is more effective 

than for low LET. Reverse dose-rate effect is the increase of the effectiveness with 

decreasing dose rate and or fractionation (in some cases for high LET radiation) at 

low doses.

3.1.1.6. Estimates of Probability for Carcinogenic Effects

New information on the risk of radiation induced cancer has emerged from human 

populations and from experimental data in both laboratory animals and cultured 

cells, which include the following:

i. About 90,000 survivors of the atomic bombs in Japan, are continually 

assessed, initially by using the official Tentative Dosimetry System 1985 

(T65D) and recently 76,000 o f them are assessed by using Dosimetry System 

1986 (DS86). The estimates o f the probability of cancer death from 1950 - 

1985 are increased over earlier estimates because of:

a. The increase in the number of cases (excess solid cancer)

about 135 in 1975, and about 260 in 1985: Leukaemia, about
I

70 in 1950-1975, and about 80 in 1950-1985; j

b. The new dosimetry system (DS86), apparently increases the 1

probability values by about 30 percent only. However i
I

according to Thiessen et-al [128] there are two more I

important factors related to the increase namely: I

i. There are indications that those who were exposed j

while very young are now beginning to demonstrate |

an increased risk of radiogenic cancer; and ;
1

ii. The relative risk projection model is better to i

represent the atomic bomb survivors data than the |

constant absolute risk projection model; I
c. Small changes in methods used to calculate the age specific j
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probability o f cancer; and

d. Preference for the multiplicative model rather than the 

additive model for projection of the solid cancers to lifetime 

values (section 3.3);

ii. Solid cancer data from about 14,106 patients suffering anlcylosing spondylitis 

followed up after undergoing radiotherapy treatment.

The main basis for ionizing radiation risk estimate is the data from the atomic bomb 

survivors. The bombs were dropped in Hiroshima and Nagasaki on the sixth of 

August and the ninth of August 1945, respectively. A list o f the total number of 

malignancies in the survivor population by site of cancer as well as an estimate of 

the excess number of malignancies by site for all dose categories, all ages at 

exposure and both sexes, is shown in table 3.1. Other data are also available as 

reported in the literature which includes accidental exposures, occupational 

exposures (mining, dial painters), medical therapeutic (ankylosing spondylitis) and 

diagnostic exposures.

From the molecular biology point o f view, radiation can inactivate oncogenes which 

will be expressed somatically to produce malignant tumours. An oncogene [129] is 

a particular type of gene in the DNA which, if affected by radiation (e.g dsb), will 

lead to malignancy. The first oncogene discovered was sic  gene which can induce 

tumours in chickens [131] and over 25 additional oncogenes have subsequently been 

discovered.
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Fig. 3.1: Shapes o f dose responses for low LET and high LET radiations plotted on 
linear axes (Sinclair 1982)
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Table 3.1: Atomic Bomb Survivor Data for the Period o f 1950 to 1985.

Site o f cancer Total cancer cases" Number o f excess cancer 
cases '̂"^

Leukaemia 202 78

All cancer except 
leukaemia

5 J3 4 266

Oesophagus 176 11

Stomach 2,007 72

Colon 232 19

Lung 638 44

Female breast 155 22

Ovary 82 10

Urinary tract 133 19

Multiple myeloma 36 8

Remainder 2,275 61

Total for all sites 5,936 344

Assumes an average shielded kerma o f 0.162 Gy.
 ̂The number of cases are for all exposure categories up to and including the 4+ Gy 
category.
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3.1.2. Risk Assessment

Radiation risk assessments have been carried out by various competent national as 

well as international authorities, dealing with radiological protection. In the 

following sections o f the chapter the risk assessment carried out by the ICRP will 

be presented in brief. However the induction of cancer is given more emphasis than 

the other effects due to current progress and the availability o f recent data in this 

field. Epidemiological study on the survivors of the atomic bombs in Japan, 

population o f more than 90,000, is the most important single source o f information 

for estimating the relationship between cancer risk and radiation dose.

Lambert [130] has noted that a full assessment of radiation risk at low levels 

have to include genetic and somatic effects. However the carcinogenic effect 

(somatic) is considered more important because cancer are often lethal and cancer 

is the only statistically verifiable cause of life shortening at low and intermediate 

doses. Its assessment at occupational or environmental doses (i.e. mSv per year or 

a few tens o f mSv) is difficult by direct observation. Only the epidemiological 

studies such as on the Japanese survivors of the atomic bombs, will likely resolve 

uncertainties in our estimates of cancer risk.

One of the developments in risk assessment is to take the quality o f life into 

consideration. Dennis [131] has pointed out that the input from social scientists 

may add other weighting factors in radiological protection which reflect the public 

evaluation o f the hazards from different sources. For examples why, in the public 

view is a sievert from the discharges o f nuclear power processing plant not the same 

as the sieveit from radon at home or from medical diagnosis? In the public view 

also there are fates that may be worse than death such as permanent paralysis below 

the neck or protracted terminal cancer.

3.2. Cancer Risk Coefficients

3.2.1. Cancer Risk Assessment by ICRP

3.2.1.1. Introduction

ICRP has clarified the term risk and decided to abandon its practice of always 

strictly using ’risk’ with the specific meaning of ’probability’ and to attempt to use, 

where practicable, the more direct term probability. Risk is a concept rather than
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a quantity. It may be seen as a multi-attribute quantity. Therefore according to 

ICRP. risk assessment is not necessarily synonymous with probability assessment 

but may include assessment of other aspects of risk: the nature and severity of the 

harmful consequences.

The Comm ission is concerned with two quantifiable risk quantities, namely:

i. The probability of each harmful effect (i), Pj

The effect will have to be specified eg. lethal cancer or curable cancer, 

severe hereditary harm, etc.; and

ii. The consequence if the effect occurs, W;

The consequence can be described in a variety of ways, indicating the 

severity o f the effect and its distribution in time.

The mathematical expectation of consequence, identical to the average consequence, 

is given by:

TV,.

when averaging is relevant, where;

Pj the probability o f each harmful effect (i); and 

Wj the consequence if the effect occurs.

It is a quantity which is sometimes used in the effort to express the magnitude of 

the risk by one single measure. In the individual case, the mathematical expectation 

(W=P.w) is not an expected result, because the only possible outcomes are zero or 

w measure o f harm.

Example:

Given that, the probability of losing, on average 20 years of life because of 

cancer, is equal to ID'*’ (i.e. P=10"^). The expectation of loss of life i.e. 

W=P.w, is equal to 10'^x20 years =2x1 O’" years (i.e. about 10 minutes). The 

real loss of life is either zero with probability P, equal to P=(l-10‘‘̂) or about 

20 years with probability equal to P=10 '’.
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So the use o f the expectation, in this case masks the fact that it is composed of the 

two components P and w. The probability of death is the major factor in the multi

attribute concept of risk. Other attributes should also be considered, such as illness, 

hereditary disease, risk to any fetus, economic losses, anxiety and other societal 

impacts.

The dose limits recommended in the ICRP publication 26 [35], were put forward 

with the implied assumption that an annual occupational death probability of about 

10‘̂  to the most exposed individuals would be at the border o f being unacceptable. 

The corresponding death probability for members of the public at the annual limit 

o f 1 mSv would be about 10'\

3.2.1.2. The Risk of Death

Radiation induced cancers are indistinguishable from cancers induced by other 

agents. Radiation risk has been expressed as the percentage probability of death 

per Sievert. The introduction o f a new risk source will only change the distribution 

of the probable causes o f death, but will not change the lifetime probability of death. 

The total probability of death is 100% and it can not be increased. The introduction 

of a new risk source will only change the distribution of the probable causes of 

death. So, any increment that a new risk source causes, is an increment to the death 

probability rate at any given age, provided that the person is alive at that age (i.e. 

conditional probability rate).

The total conditional death probability rate from all causes can usually be described 

by the Gompertz-Makeham expression:

where

Go(U) is the total conditional death probability rate from all causes, for an 

average person given that the individual is alive at every age U ;

U is the age in years; and

A,B,C are parameters derived from demographic tables.
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A constant dose rate from age 18 to 65, may add a conditional source related 

increment o f probability rate. dP/dU. to the background rate:

G([/) = GALT) +
dU

where,

G(U) is the total conditional death probability rate from all causes including 

radiation, for an average person;

Go(U) is the background rate; and

dP/dU is the conditional source related increment of probability rate.

3.2.1.3. The Background Conditional Death Probability Rate [G„(U)]

Gg(U) (excluding radiation) according to Gompert-Makeham is given by the 

following expression:

G,(U)= A e + C.

Usually Gq(U), the lowest when U=10 years and the annual probability o f death is 

about 1-2 in 10,000 in industrialised countries and 1 in 1,000 in developing 

countries. For choosing a dose limit, it is necessary to examine the overall risk 

picture and the Commission prefers a multi-attribute approach to the choice o f dose 

limits.

3.2.1.4. Primary Risk Coefficients Kd.ao Cp

A radiation dose, if received by an individual at a given age. will involve a risk 

commitment, namely a commitment of an increased cancer death probability rate in 

the future, after a minimum latent period for specific types of cancer. The 

occurrence o f cancer requires a minimum latent period of time elapsed since the 

radiation exposure. The risk committed by a radiation dose at a given age therefore 

cannot be added to the background risk at the same age. An increased cancer death 

probability rate (dp/du) will occur only after a minimum latent period of time since 

the radiation exposure. In the case of internal exposure, the committed effective dose 

may be delivered to a specified organ long after the intake o f the radioactive 

substance, which further delays the expression of harm. Two models have been used 

for risk projection with time:
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i. Additive or absolute model

The excess probability rate is dose dependent but age independent; and

ii. Multiplicative or relative model

The excess rate increases with age at the same rate as the background cancer 

rate.

3.2.1.5. Methodology: Models for Projection of Probabilities

Two principle models for the estimation o f probability o f cancer induction have 

been used viz. the absolute (risk), or additive projection model; and the relative 

(risk), or multiplicative projection model. The absolute or additive model predicts, 

after a minimum latency period, the constant excess o f induced cancer thi'oughout 

life unrelated to the spontaneous rate of cancer. The relative or multiplicative model 

predicts, after a minimum latency period, the excess of induced cancer will increase 

with time as a constant multiple of the spontaneous or natural rate o f cancer, and 

consequently will increase with age in that population.

The total death rate (per year at age a) qoAo(a) is given by: 

qD.Ao(a)=qo(a) + ho^,(a)

where

q„(a) is due to natural causes; and

ho Ao( )̂ is the excess death rate due to dose D at age A„.

The probability of surviving ao(^) until age a after a given dose D at age A  ̂ is: 

Ld,ao(u)=1 for a < Ao; and

LD.Ao(a)=LD.Ao(a-l)-(l-qD.Ao(a-l)} for a=A o+l..................

where

Ld.ao(u- 1) is the probability of survival until age (a-1); and

qD.Ao(U“l) is the death rate at age (a-1).

Survival to age a implies survival to age (a-1) and precludes death at age (a-1).

So the probability of survival until age a is the product of the probability of 

survival until age (a-1) and (1- (total death rate per year at age (a-1)}.

The amiual probability of death from any cause at age a is equal to Lo Ao( )̂ qD.Ao(u). 

The annual probability of a radiation induced death at age a is equal to 

LD.Ao(u)-hQ_Ao(u)-
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The lifetime probability of a death due to radiation exposure D at age Ao is equal 

to U(Ao,D) given by:

m axage

UiAo.D)  =
a=Ao

If in interval (A l. A2) where Ao < A1 < A2. the cumulative mortality Rq ao(A 1,A2) 

is given by:

Ao Ao (
a =A l

Note that the annual probability o f death from any cause at age a is equal to the |

product of the surviving probability to age a [L^ ^oCu)]; and the total death rate at 

age a [qo.AoCu)]- The annual probability o f death due to radiation exposure is equal 

to the product of the surviving probability to age a [L^ A o ( a ) ]  and the death rate due j

to cancer ĥ .AoCa). I
i

The expression for the total death rate (per year at age a) qoAo(^) is given by: |

q D . A o ( a ) = q o ( a )  +  h ^  A o ( a )  I

where

q„(a) is due to natural causes; and ;

^D.AoCu) is the excess death rate due to dose D at age A^. I

In the simple additive model: j

hD.Ao(u)=0 for a< Ao +m ; and j

hD.Ao(u)=KD.Ao for a > Ao+m J

In the simple multiplicative model: I

ho.Ao(u)= 0 for a< Ao +m ; and |
I

h D .A o ( a ) = C D  Ao qo.(canccr)(a) f o r  ^  >  A o + m  j

where j
Ï

Kd Ac and Cd Ac depend on D and Ao, but not on a; j

qo(a)~qo.(cancer)(a)' q̂o,(non-caiicer)(a)? and

qo.(caiiccr)(a) is the component o f q o ( a )  that pertains to the specified cancer being 

considered.

129



Table 3.2; Primary risk coefficients for annual cancer death (UNSCEAR, 1988). 
These risk coefficients have been derived on the basis of observations on the cancer 
death rate among the survivors from the atomic bombing o f Hiroshima and 
Nagasaki. They relate to high doses and high dose rates and are strictly applicable 
to the Japanese survivors only. "ERR"=excess relative risk.

Age at 
exposure 
(years) Ao

Males Females

Additive lO '-Sv' 
and year K̂ .Ao

Multiplie.
ERR/Sv
^D.Ao

Additive lO '-Sv' 
and year Ko

Multiplie.
ERR/Sv
^D,Ao

(a) Leukaem ia

0 - 9 0.0384 18.7 0.0300 19.5

10 - 19 0.0203 4.4 0.0104 4.6

20 - 29 . 0.0434 5.6 0.0249 5.8

30 - 39 0.0631 3.9 0.0196 4.1

40 + 0.0472 3.3 0.0318 3.4

(b) all cancer 
but leukaemia

0 - 9 0.0148 1.06 0.0407 2.06

10 - 19 0.0526 0.65 0.0707 1.27

20 - 29 0.126 0.57 0.137 1.11

30 - 39 0.114 0.24 0.137 0.48

40 + 0.164 0.18 0.186 0.34
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3.2.1.6. Convention on acceptable risks

Our daily activities, such as walking, motor-cycling, horse riding, driving etc. carry 

some risks. Some activities are accepted and some are not accepted even though the 

risks have been reduced as far as reasonably achievable. Society has accepted an 

unspoken convention on risk acceptance in order to enjoy the benefits of a modern 

society, provided that the risks are not unnecessary or easily avoided. But what 

levels of risk are acceptable?

Example:

From a report of a study group of the British Royal Society (1983); 

imposing a continuing annual occupational probability o f death of 1 in 100 

would be unacceptable. The situation imposing an annual probability of 

death o f 1 in 1000 is less clear, either acceptable or unacceptable. However 

the annual probability of death is only one attribute which is appropriate to 

take into account. The annual probability level of 1 death in 1000 could 

’hardly be called totally unacceptable provided the individual at risk Icnows 

of the situation, judged he had some commensurable benefit as a result, and 

understood that everything reasonable had already been done to reduce the 

risk’.

3.2.1.7. Assessment Based on the Additive and Multiplicative Models

The results o f assessment based on the additive and multiplicative models, carried 

out by the ICRP are as shown in figures 3.2, 3.3, 3.4, 3.5 and 3.6. The value of the 

parameters used in the assessment are as follows:

i. L= 2 years for Leukaemia;

ii. L=10 years for other cancer;

iii. P=40 years for Leukaemia;

iv. P=infinity for other cancers;

V. DDREF is assumed equal to 2;

vi. Exposure age A^= 5 years and 35 years;

vii. The conditional death probability rate (dP/du);

viii. The unconditional death probability rate (dr/du); and

ix. The attributable lifetime probability o f death (R).
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C o nd i t io n a l  p ro bab i l i ty  r a t e  

ADDITIVE MODEL

Minimum l a t e n c y

d p / d u  R r_ • D

AgeE x p o s u r e P l a t e a u  le n g th

(b)MULTIPLICATIVE MODEL

d p / d u  c r . d -B(u)

(c)

MULTIPLICATIVE .̂........ .

\
ADDITIVE .<

\ I

\  \

T
Fig. 3.2: Illustration o f the two simple projection models. Figures (a) and (b) show 
the stylised models which have been used for the calculations; Figure (c) indicates 
possible curve shapes under more realistic assumptions, (a) The simple additive 
model: The excess conditional probability rate (of death from cancer) after a single 
radiation dose D,is assumed to be proportional to the dose, but first after a minimum 
latency period and over a plateau period o f time, (b) The simple multiplicative 
model: The excess probability rate is also assumed to be proportional to the 
background rate o f cancer death, B(u).

132



A tt r ib u tab le  d e a t h  p ro b a b i l i ty  r a t e  
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Fig. 3.3; Variation with age of the attributable death probability rate dp/du 
(conditional) and dr/du (unconditional) after a single small dose at age 5 years, 
assuming a DDREF of 2. The discontinuities reflect the simplified assumptions on 
minimum latency periods and plateau shapes (refer to figure 3.2)
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Fig. 3.4: Variation of age of the attributable death probability rates after a small 
single dose at age 35 years, assuming a DDREF of 2. The discontinuities reflect the 
simplified assumptions on minimum latency periods and plateau shapes (refer to 
figures 3.2 and 3.3).
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Fig. 3.5: The attributable lifetime risk from a single small dose at various ages at 
the time of exposure, assuming a DDREF of 2. The discontinuities are the result of 
the use of constant annual values for the primaiy risk coefficients within 10-year age 
interval. The higher risk for the youngest age group will not be expressed until late 
in life.
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exposure from birth over lifetime, and (b) exposure from age 18 to age 65 years. 
The curves are for females, assuminu a DDRTF of 2.



3.2.1.8. Conclusion

The results o f the ICRP risk assessment are as follows:

i. For workers the risk which corresponds to a dose limit of 20 mSv per year 

is determined from the cancer risk coefficient of 4x10'- S v ’ (called the 

’nominal probability coefficient' by ICRP) to be equal to 20xl0'^x4xl0'"= 

8x10"’ per year; and

ii. Similarly, for the general population the dose limit is 1 mSv per year and 

the cancer risk coefficient is 5x10'- Sv'' which corresponds to a risk of 

Ixl0'^x5xl0'^= 5x10'- per year.

The nominal probability coefficients for stochastic effects are summarised in table

3.3, and the nominal probability coefficients for individual tissues and organs, are 

given in table 3.4.
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Table 3.3: Nom inal Probability Coefficients for Stochastic Effects

Exposed Detriment (10'- Sv'')
population

Fatal Cancer^ Non-fatal
cancer

Severe
hereditary
effects

Total

Adult workers 4.0 0.8 0.8 5.6

Whole
population

5.0 1.0 1.3 7.3

Rounded values

For fatal cancer, the detriment coefficient is equal to the probability 
coefficient.
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Table 3.4: Nom inal Probability Coefficients for Individual Tissues and Organs®

Tissue or 
organ

Probability o f fatal cancer (10'- 
S v ')

Aggregated detriment 
(10'- Sv ')

Whole
Population

Workers Whole
Population

Workers

Bladder 0.30 0.24 0.29 0.24

Bone Marrow 0.50 0.40 1.04 0.83

Bone Surface 0.05 0.04 0.07 0.06

Breast 0.20 0.16 0.36 0.29

Colon 0.85 0.68 1.03 0.82

Liver 0.15 0.12 0.16 0.13

Lung 0.85 0.68 0.80 0.64

Oesophagus 0.30 0.24 0.24 0.19

Ovary 0.10 0.08 0.15 0.12

Skin 0.02 0.02 0.04 0.03

Stomach 1.10 0.88 1.00 0.80

Thyroid 0.08 0.06 0.15 0.12

Remainder 0.50 0.40 0.59 0.47

Total 5.00 4.00 5.92 4.74

Probability o f severe hereditary disorders

Gonads 1.00 0.6 1.33 0.80

Grand total 
(rounded)

7.3 5.6

The values relate to a population of equal numbers of both sexes and a wide 
range o f ages.

139



CHAPTER FOUR 

PROPOSED NEW SYSTEM FOR RADIOLOGICAL PROTECTION

4.1. General

The proposed new system o f dosimetry is called a unified dosim etiy system which

is a system for the direct assessment of the absolute biological effectiveness of

ionising radiation without the need to know the radiation intensity and type,

therefore, it obviates the need for quality factors. From published data on damage

to yeast, plant and mammalian cells, the mean free path (X) for ionisation of the

charged particle tracks emerges as a physical parameter which best unifies data.

Damage is found to be optimum when the spacing of the ionization along the tracks

in the cell nucleus matches the mean strand spacing in the DNA segments (i.e. for

X-2  nm). This finding is common to the induction of mutations, chromosome 
aberrations and inactivation [132]. Bryant [133] has indicated that the

inter-strand distance between ends of a double strand break is 1.8061 mn. The

damage mechanism depends on the number of interactions via the interaction cross

section, and not on the amount of energy transferred (i.e. not on dose, LET, RBE

etc.). In the unified dosimetry system, the mean free path for ionisation X, o f the

charged particle is used as an important physical parameter of the radiation. For fast

particles X is directly proportional to zVf3“ and most particles are maximum

damaging at energies below X equal to ~2 nm. The parameter z“/P“, is proportional

to the yield o f delta rays per unit distance and also to the yield o f primary ionization

per unit distance, along a fast ion track. Absolute Biological Effectiveness (ABE)

is determined as the quantity which indicates the effectiveness of the radiation at

inducing DNA dsb as it penetrates thi'ough a cell nucleus. It is desirable that

radiation quality be defined absolutely in terms of appropriate physical and

biological parameters so that the fundamental requirements for designing radiation

measuring devices can be identified. In proposing the unified dosimetry system both

physical and biological parameters are taken into consideration.

The charged particle tracks are attributable to the incident fluence, whether it is of |

directly or indirectly ionising radiations. Radiations such as x-rays, y-rays or low j

energy electrons, produce a slowing down spectrum of secondary electrons with j
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different energy and spatial distribution. In the unified dosimetry system, the 

following parameters are used:

Â The mean free path for primary ionisation:

(j). The fluence o f the charged particles at equilibrium (or the charged

particle fluence);

rtg The effect (or action) cross section which is used to indicate the

induction of a specified biological end-point per unit fluence; and 

P The damage probability or intrinsic efficiency, defined as the quotient

o f the effect cross section ( a j  by the projected cross sectional area 

(cr ) o f the radiosensitive target i.e. P= c j/a  .

In conventional dosimetry quality and quantity of radiation are required to assess the 

biological effectiveness o f a particular radiation. ’Quality’ is usually expressed as 

relative biological effectiveness (RBE), in radiobiology or as quality factor (Q), in 

radiological protection whereas ’quantity' is usually expressed as absorbed dose. D. 

Instrumentation for measurement of radiation is designed in such a way that the 

response of the device which is a function o f particle energy, is related to specified 

biological effect, as a function of energy. For example a BF3 proportional counter 

can be fitted with a hydrogenous moderator to produce a long counter in which the 

count rate is proportional to neutron fluence rate independent of energy. In the 

unified dosimetry system, the signal from suitable instruments is related to the 

probability that exposure to the radiation field will induce cancer within a person’s 

lifetime [134].

4.1.1. Effect Cross-section (o j

The effect (or action) cross-section (cjJ measures the probability that the effect will 

occur in the target per incident track per unit area. The basic definition is 

’probability per unit fluence'. Hence for cell survival, the probability o f survival (F) 

is equal to the survival fraction (SF) i.e. F=SF. Therefore for exponential survival 

SF=exp(-ae,y.(|)), the effect cross-section ( a j  is equal to the first derivative o f F 

against fluence ({()) i.e. a=dF/d(j). For F=exp (-a((|)).(|)) with a  a function of (}). lnF=- 

a((|)).(j), therefore a((t))= -lnF/(|). In general, for exponential survival with cross
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section a function of fluence; o^(d>)
d(|)

At 37 % survival lnF=-L therefore a  l/i))̂  ̂ or 1%  but note that the survival 

curve may not be a straight line on a In-linear plot. RBE o f radiation type 1 (LET 

track average L j ,) with respect to the reference radiation type 2 (LET track average 

L j .)  is given by:

RBE, = —2 = ^T,2
T , 1

with an assumption that the response can be expressed as a pure exponential.

The expression for the integral fluence, {j)̂ , generated by the field radiation, takes 

different forms, according to whether the initial radiation field is directly or 

indirectly ionising and whether the experiments are performed in a track segment 

arrangement or under charged particle equilibrium conditions [135]. In case of:

i. External irradiation by charged particle beams in track-segment experiments;

where (|), is the fluence of charged particles incident on the whole sample;

ii. External irradiation in photon or neutron beams under charged particle

equilibrium conditions;

4), =4)v ' 4)i

where (|)̂  is the equilibrium fluence of charged particles generated per 

interaction per unit volume, p..^; is the source density i.e. the product of the 

interaction coefficient for the indirectly ionising radiation in the medium 

(macroscopic interaction cross section or inverse interaction mean free path) 

and the incident fluence o f photons or neutrons; and

iii. Internal irradiations by alpha, beta, or gamma emitters homogenously

distributed in the target medium;

4>s =4>v - C  ; (j)v = R p .  F s  

where (j)̂  is the equilibrium fluence of charged particles generated per unit
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source strength and C is the concentration of source activity in the sample. 

Rp is the range o f the frequency weighted average energy o f primary charged 

particles representing the decay spectrum emitted by the source activity of 

concentration C. is the build-up ratio of secondary to primary charged 

particle fluence.

The degree o f damage is determined predominantly by the number and correlation 

of physical interactions and not necessarily by the amount of energy transfer. The 

cross-section for radiation effect for the incident charged particles, is used to 

quantify the degree o f biological damage. Radiation effect is expressed in terms of 

the quantity ’intrinsic efficiency o f action’, P, for the charged particle track which 

actually enters a well defined geometric cross-section area of the irradiated 

specimen [136]. Thus P=a/o'g where â , is the whole molecule in the case of 

enzymes, the cross-sectional area within the protein coat for viruses, or the cross- 

sectional area o f the nucleus for cells. Most recent work indicates that could be 

best defined as the geometrically projected cross-sectional area o f the nuclear DNA.

4.1.2. Calculation of Effect Cross Section (o j

By assuming that cellular material has density p, the microscopic cross-section for 

induction o f the effect by individual charged particle radiations (effect cross section 

Og) can be extracted from the dose survival curves, by the following formula;

o „ = 1 . 6x l O~^  —̂  cm^
 ̂ D .  p

where

Lp is the track average LET in kev.pm ' for the relevant charged particle 

energy spectrum;

D is dose in gray; and with an assumption that it is a pure exponential 

response; and

p is the density taken as unity in gcnf \

For fast charged particles (accelerated ions) in track segment experiments, L is 

calculated for the primary ion tracks and D is taken as the dose which corresponds 

to 37% survival fraction. For X and y irradiation, the effect is due to the slowing
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down recoil electron spectrum in transient equilibrium. L refers to the track average 

LET for the spectrum and D corresponds to the quoted by the original authors, 

or averaging the slope over the approximately linear portion of the survival curve 

[137].

The foregoing biophysical interpretation of the mechanism of radiation effects are 

to be applied to the currently accepted system of dosimetry for radiological 

protection. The method of risk assessment applied to the Japanese bomb survival 

data, will be reinterpreted within the new model (section 4.4.1).

4.2. Deduction of St. Andrews’ Model

The approach used for developing a model of radiation action in the University is 

first to correlate on a single curve the information reported on cellular effects 

observed in a variety of irradiation circumstances, for many radiation, types and for 

a variety o f biological end-points. Attempt has been made to quantify the observed 

survival data as effect per unit fluence o f track, in the relevant charged particle 

spectrum. For photons and neutrons, the respective equilibrium fluence spectra are 

o f recoil electrons and protons. For track segment irradiation, the fluence of incident 

particles has been taken as equal to the equilibrium fluence spectrum . The results 

are expressed as a ratio to the observed saturation effect cross section to yield the 

effect probability (P) per incident track [137] i.e

e f f e c t  c r o s s  s e c t i o n

^ s a t u r a t i o n  e f f e c t  c r o s s  s e c t i o n ^ ^ s a t ' ^

The saturation effect cross-section (cr^J is believed to be the projected area of the 

cellular DNA.

The advantages of this approach are several which include:

i. to improve The signal to noise ratio’, (i.e. only a very small percentage of 

dose D is efficient) as the net observed biological effect is attributed on 

probability grounds to the single track which penetrates the sensitive sites 

(see section 2.4.5.2);
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ii. to provide a method of correlating data for different target types to reveal 

their similarities and differences: and

iii. it has high interpretive value as the radiation track is used essentially as a 

probe to explore the structure of the sensitive site within the biological 

target. For example by expressing the damage probability as a function of 

the mean free path for selected physical interactions, information is obtained 

on the presence o f significant sites and their critical linear dimensions.

The cross section ratio, or the intrinsic probability (P) represents the net intrinsic 

efficiency o f action of single tracks in the relevant charged particle spectrum, to 

which the sensitive sites are exposed. Plots of P against the mean free path for 

ionization by the tracks X, showed better correlation of data than that obtained for 

other parameters e.g. LET, and led to the following conclusions:

i. Structure is observed at a mean free path (X) o f between 1.5 and 2.0 nm and

occurs only in targets containing DNA. The most probable damage is when 

X=X̂ f=2 nm. When X is different from the probability o f damage of the 

ionisations occurring at the appropriate spacing À, is given by s= (l- exp(-

ii. An analysis o f chromosome aberrations indicates the same basic mechanism 

is involved but the probability o f aberration is lower by a factor o f four 

compared with cell inactivation. It suggests that one in four double strand 

breaks (dsb) leads to chromatid breaks or that two simultaneous dsb are 

required-pairwise lesions;

iii. The ô-rays must have relatively small effect as the extrinsic efficiency of a 

delta ray track is found to be less than 10“’;

iv. At the same mean free path (À,), the equilibrium electrons from irradiations 

by electrons, x-rays and y-rays, are found to act with an intrinsic efficiency 

(P) of about one order of magnitude smaller than that for heavy particles, or
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charged particle recoils from neutrons. In other words the absolute quality

of an electron is about ten times smaller than the absolute quality o f a heavy

charged particle at the same mean free path X. Electrons are effective at

track ends where X for ionisation is in the neighbourhood of 2 nm which

corresponds to electron energy about 100 eV. However 100 eV electrons

have penetration depths o f a few nanometres and therefore they can never

penetrate more than one DNA segment. Whereas heavy particles can have

X less than 2 nm in portions o f their tracks, sustained for considerable 
distance, and thereby can penetrate 10 to 20 DNA segments; and

V.  It is expected that electrons will have a saturation inactivation cross-section 

equal to the geometrical projected cross-sectional area presented to the 

incoming electron track by the DNA in the cell nucleus (i.e. about 4 pm- 

depending on the cell type). Heavy particles have a saturation effect cross- 

sectional area equal to 10 to 20 times this value, due to the overlap of 

segments of DNA at risk along a mean chord traversal of the cell nucleus. 

Therefore the saturation inactivation cross-section for heavy particles (A.< 2 

nm) and for neutrons is 40 to 80 pm-, depending on the number o f DNA 

segments at risk, which in turn, depends on the cell type and their exposure 

conditions. Neutrons probably cannot quite achieve the maximum cross- 

section because the proton ranges at optimum damage are less than the cell 

nuclear diameter.

Although no preliminary assumption is made about DNA, the critical lesion 

emerging from the model is the DNA double strand break (dsb). It is an obvious 

conclusion from direct experimental measurement and the new analysis. The yield 

o f DNA double strand breaks (dsb) is derived from direct action, indirect action and 

mixed or combined effects of direct and indirect actions (see also page 72).

4.2.1. Direct Action

The cross section for dsb production by direct action ( a j  is given by:

Cd=(T .̂n .̂E

where
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a , is the projected geometrical area of the DNA (a„ %4 pmQ;

is the number o f overlapping segments at risk along a mean chord 

through the cell nucleus: and 

E is the probability that at least a single interaction will occur in each

of the two strands, each of thickness x, spaced at a mean chord 

distance of 2 nm.

The probable values of s are:

i. For two ionisations occurring anywhere in the 2 nm distance i.e. e = l- ( l 

+XJX) exp (-XJX)-, e ~ 0.3;

ii. For one ionisation occurring in the first strand and the second within the 

next 2 mn distance i.e. 1 -exp(-x /l)j[ 1 -exp(-Xyi)]; 6 ~ 0.4; and

iii. For non-saturating tracks, one hit in each of the two strands and nothing in 

between

i.e. e=exp(-XyX)[l-exp(-x/l)]-; e ~ 0.16.

The mean number o f dsb in DNA induced per cell by direct action is given by:

N d . dsb

where

(|) is the integral equilibrium charged particle fluence in the cell nucleus: and
CFd=a .̂n .̂E

4.2.2. Ind irec t Action j

The mean number of dsb produced per cell by radical action is given by:

Ni. d̂sb- 4) 

and Cdsb==o-%,b/cFg

where

CTggb is the production cross section of single strand breaks in DNA, the general

form is given by: ct;gb=a,.exp(-a2. C 1 -exp(-a3.LyCDNA)] 

a, is a geometrical interaction cross section:

a .̂ a. are constants:

Cgg is the intranuclear scavenging concentration;

147



is the molecular density o f single strands of DNA present in the cell nucleus; 

and

L J- is the track average LET for the equilibrium of the charged particles in the

cell nucleus; and

n, is the total number o f DNA segments in the whole cell nucleus which differs

with i\ .

4.2.3. M ixed Action

For mixed action the combined effects of indirect and direct actions on individual

strands gives:

=2.n . [ 1 - e x p ( - x / À ) ] .

F̂ M.dsb ^M.dsb'^

and N-p Np> + N, +N^^

where Ny ̂ gy is the total initial yield of double strand breaks in the absence of repair, 

produced by a single track in the cell nucleus.

The repair o f indirect and direct damage is assumed to occur at the same rate with 

a mean repair time t,.̂ ,,. A simple damage factor can be derived as follows:

j  e x p  [ - (  t . - 1) /  ] d t

The overall survival fraction (SF) is given by:

SF=exp[-Npj,y.K(ti)].

The total yield o f dsb can be expressed in terms of absolute biological effectiveness 

(ABE) and the incident fluence (() and the overall survival fraction is given by: 

SF=exp(-ABE.(t)).
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4.3. Revised Dosimetry System

4.3.1. Conceptual and Principles

The foundations of the unified system o f dosimetry are as follows [138]:

i. The absolute specification of radiation quality is based on the probability of 

induction o f a specified end-point (e.g. inactivation or mutation) by single 

charged particle tracks which actually enter the biological target. The 

relevant charged particles are those in the equilibrium charged particle 

spectrum generated in the medium by indirectly or directly ionising radiation 

(see page 142). The probabilities for induction of the specified damage 

represents the intrinsic efficiencies o f action which are absolute measures of 

the radiation quality. The absolute biological effectiveness (ABE) can be 

defined in terms o f the product o f the geometrical cross-section o f the site 

and the intrinsic efficiency for unit incident fluence o f radiation;

ii. The important radiosensitive sites in the cell nucleus are the double stranded 

segments in the nuclear DNA;

iii. The dom inant crucial physical parameter of the charged particle radiation is 

the mean free path between ionization interactions;

iv. Damage is a stochastic process which occurs when the mean spacing 

between interactions along the charged particle track matches the mean chord 

distance tluough a DNA segment (~2nm);

V. Radiation effects depend mainly on the frequency and spatial correlation of

interactions, and not on the energy transferred in the interactions;

vi. Damage is predominantly due to intra-track, not inter-track, processes for all

radiations except at very large doses. The slope of the probability (P) against 

the mean free path (X) for X >  2 mn (i.e. the unsaturated region) is near 

unity (refer to figure 4.1). In other words there is a negligible ’dose rate 

effect’ which is contrary to the current thinking in many proposed models 

of repair.
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4.3.2, Calculation of Absolute Biological Effectiveness (ABE)

The Absolute Biological Effectiveness (ABE) [139], represents the 

effectiveness o f a particular radiation in term of its capability to induce a certain 

effect in a biological system. In the present work, ABE of a radiation is defined as 

the mean number o f double strand breaks (dsb) produced and remains um epaired in 

a pai'ticular biological system, per unit incident fluence o f primary radiation. The 

ABE of a radiation can be defined in terms of three biological parameters, namely:

i. the geometrical projected cross-sectional area of the DNA including an 

’overlap’ factor i.e. n̂ .cTg ;

ii. the cell cycle time; and

iii. a mean recovery time for double strand breaks in the DNA; 

and two physical parameters, namely:

i. the charged particle equilibrium fluence; and

ii. the average mean free path for ionization for the energy spectrum of 

charged particles.

Here, only direct radiation action is assumed to apply. ABE values are calculated 

according to the following formula:

ABE e . 71^2) —  y  e x p  ( -  ( t ^ - t )  /  t^) d t

where

Gg = projected cross sectional area of the DNA;

= secondary charged particle equilibrium fluence per primary

interaction per unit volume;

Z = inverse mean free path for interaction by the incident radiation. (For

indirectly ionising radiation gamma and x-rays, Z =Na,j which is the 

mass energy transfer coefficient); 

i \  = mean number of double stranded DNA segments at risk along a 

random chord through the cell nucleus; 

s = the efficiency with which double strand breaks are induced by the

radiation.
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i.e. 8= [l-exp(-A.yX)] so that 

for XyX 0; 8 -> 

and XJX -> oo; 8 -» 1 (saturation): 

t, = cell cycle time:

t, = mean repair time for a dsb: and

tj = duration of irradiation.

For incident fluence of indirectly ionizing radiation, the ABE formula can be 

rearranged as follows:

 ̂1
ABE^ { o ^ . n j  (iVo^^) ~  I e x p  [ -  ( 1) / 1^] d t

 ̂ 0

The net integral fluence (equilibrium electrons) is given by :

$g= f(P gdE = f'(p (E )dE
0 0

The fluence weighted quality of the radiation field (equilibrium electrons) is given 

by:

(X) € (X) dX

If (j)f- is the incident fluence of indirectly ionising radiation, the survival fraction (SF) 

is given by:

SF=exp(-ABE.(j),-) 

or ln(SF)=-ABE.(|),-.

If  (j), =l/ABE, then SF=l/e, which corresponds to the survival fraction equal to 37%. 

ABE is in units o f area and its reciprocal represents the fluence o f incidence 

radiation which will produce 37 % survival fraction.

The fraction o f cells, surviving damage because of the direct component of action 

is given by:
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4.3. Revised Dosimetry System

4.3.1. Conceptual and Principles

The foundations of the unified system o f dosimetry are as follows [138];

i. The absolute specification o f radiation quality is based on the probability of 

induction of a specified end-point (e.g. inactivation or mutation) by single 

charged particle tracks which actually enter the biological target. The 

relevant charged particles are those in the equilibrium charged particle 

spectrum generated in the medium by indirectly or directly ionising radiation 

(see page 142). The probabilities for induction of the specified damage 

represents the intrinsic efficiencies of action which are absolute measures of 

the radiation quality. The absolute biological effectiveness (ABE) can be 

defined in terms o f the product o f the geometrical cross-section o f the site 

and the intrinsic efficiency for unit incident fluence o f radiation;

ii. The important radiosensitive sites in the cell nucleus are the double stranded 

segments in the nuclear DNA:

iii. The dom inant crucial physical parameter of the charged particle radiation is 

the mean free path between ionization interactions;

iv. Damage is a stochastic process which occurs when the mean spacing 

between interactions along the charged particle track matches the mean chord 

distance through a DNA segment (~2nm);

V. Radiation effects depend mainly on the frequency and spatial correlation of

interactions, and not on the energy transferred in the interactions;

vi. Damage is predominantly due to intra-track, not inter-track, processes for all

radiations except at very large doses. The slope of the probability (P) against 

the mean free path (1) for 1 > 2 nm (i.e. the unsaturated region) is near 

unity (refer to figure 4.1). In other words there is a negligible ’dose rate 

effect’ which is contrary to the current thinldng in many proposed models 

of repair.
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4.3.2. Calculation of Absolute Biological Effectiveness (ABE)

The Absolute Biological Effectiveness (ABE) [139], represents the 

effectiveness o f a particular radiation in term of its capability to induce a certain 

effect in a biological system. In the present work, ABE of a radiation is defined as 

the mean number of double strand breaks (dsb) produced and remains unrepaired in 

a particular biological system, per unit incident fluence o f primary radiation. The 

ABE of a radiation can be defined in terms of three biological parameters, namely;

i. the geometrical projected cross-sectional area o f the DNA including an 

’overlap’ factor i.e. n^.a^ ;

ii. the cell cycle time; and

iii. a mean recovery time for double strand breaks in the DNA; 

and two physical parameters, namely;

i. the charged particle equilibrium fluence; and

ii. the average mean free path for ionization for the energy spectrum of 

charged particles.

Here, only direct radiation action is assumed to apply. ABE values are calculated 

according to the following formula;

ABE J e x p  ( -  ( t , -  t) /  t^) d t

where

CTj, = projected cross sectional area o f the DNA;

= secondary charged particle equilibrium fluence per primary

interaction per unit volume;

I  == inverse mean free path for interaction by the incident.radiation. (For

indirectly ionising radiation gamma and x-rays, E =NG,r which is the 

mass energy transfer coefficient);

n„ = mean number of double stranded DNA segments at risk along a 

random chord through the cell nucleus;

8 = the efficiency with which double strand breaks are induced by the

radiation.
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i.e. G= [l-exp(-À.yA.)] so that 

for E/zi -> 0; 8 -> XJX 

and XJX -* oc: 8 ^  1 (saturation);

I, = cell cycle time:

t̂  = mean repair time for a dsb: and

tj = duration o f irradiation.

For incident fluence of indirectly ionizing radiation, the ABE formula can be 

rearranged as follows:

t ,

ABE^ (Og. rtg) ( ( j ig.e) {No f  e x p  [ -  ( t ^ - t ) / p j  d t
 ̂ 0

The net integral fluence (equilibrium electrons) is given by ;

^ f  ̂ sdE=j (p (E) dE
0 0

The fluence weighted quality of the radiation field (equilibrium electrons) is given 

by:

. £=J'(p (X) € (X) dX
0

If {j),-is the incident fluence of indirectly ionising radiation, the survival fraction (SF) 

is given by:

SF=exp(-ABE. (}),■) 

or In(SF)—ABE.(j)f.

If (j),-=l/ABE, then SF=^l/e, which corresponds to the survival fraction equal to 37%. 

ABE is in units of area and its reciprocal represents the fluence of incidence 

radiation which will produce 37 % survival fraction.

The fraction o f cells, surviving damage because of the direct component of action 

is given by:
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In (SF)= -Gg .(f)s.k(ti)

where:

Gg the biological effect cross-section, represents an absolute quality cross-section 

(unmodified by repair) o f the field radiation that generates an integral 

fluence o f charged particle (j), in an irradiation time f;

(j), is the integral fluence o f charged particles in an irradiation time f; and

k(tj) is a repair term. It represents the probability that the induced double strand

breaks in the cell will be repaired before a stated fixation time f.

The biological effect cross-section Gg is a function o f well-defined physical and 

biological parameters given by;

Gg= Gg.n„.(R/d).c

where

Gg «4.0x10'^ cm" ; the projected cross-sectional area of intracellular DNA;

iig is the average number of DNA segments at risk (-15) on penetration of a

mean chord traversal o f the cell nucleus by a charged particle track;

R/d is the ratio of the mean range R, o f the relevant charged particle tracks to

the mean chord length d, o f the cell nucleus. If R > d, R/d is limited to 1 ; 

and

s is the efficiency with which the charged particle radiation induces double

strand breaks.

Inactivation probability (P) is defined as the ratio of the effect cross-section to the 

geometrical cross-sectional area o f the sensitive sites. When P is plotted as a 

function of the mean free path {X) for primary ionisation of the relevant charged 

particle tracks, a unified representation o f data can be obtained for all cell types and 

all heavy particle types (refer to figure 4.1). For indirectly ionising radiation the 

relevant particles are those in the secondary charged particle equilibrium spectrum.

In the ABE calculation, the integral fluence generated by the incident radiation 

fluence at the point o f irradiation o f samples e.g. cells, has to be determined.

4.3.2.1. Calculation of ABE for Photons I

For photon ABE calculation, it is assumed that the projected geometrical cross- j

sectional area o f the DNA (Gg) is equal to 4.0x 10'  ̂ cm", and the number of double j

stranded DNA segments at risk along a random chord through the cell nucleus (n^) 1
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is equal to 15. Calculation is carried out according to the following formula: 

ABE=[ag.(R/d).nJ((j),.s)(N.air)xl.

Assume that the repair term is equal to 1 (i.e. only the initial damage is considered) 

and the other values are obtained from computer calculation (i.e. result from 'pelsld' 

computer programme). ABE values for various photon energies are calculated b\ 

using a computer programme as in appendix one (i.e. photonabef.for) and the values 

are given in table 4.1 and the graphical illustrations are given in figures 4.2 and 4.4.

4.3.2.2. Calculation of ABE for Neutrons

The effectiveness o f neutron irradiation in tissue (i.e. approximated by water) is due 

to the hydrogen and oxygen recoils induced. The absolute biological effectiveness 

per unit incident neutron fluence "ABE^ ,̂. is the total effectiveness of the recoils, 

obtained by direct summation and given by the following equation:

"ABE,,, = "ABE,; + "ABEg

where

"ABE,, is the total absolute biological effectiveness o f the hydrogen

recoils; and

"ABEq is the total absolute biological effectiveness of the oxygen

recoils.

i. For Hydrogen Recoils;

"ABE,, = [Gg.(R/d).nJ,,((j),.s)„(N.a„)„xl

where;

Gg is taken as equal to -4x10'* cnr;

(R/d) is 1 if  R /d>l; and R/d if R /d<l;

n, for hydrogen recoil is equal to about 15;

(j)j, is the equilibrium fluence o f hydrogen recoils;

8 8=(l-exp(-À,,/l)) is calculated by using l,=2m n and X mean free path for

primary ionization of H recoil;

is for hydrogen recoil which is obtained from the computer calculation. The 

value has been multiplied by two, in order to take into consideration two 

hydrogen atoms for each water molecule.
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ii. For Oxygen Recoils;

"ABEq = [Gg.(Ryd).nJo(<i>s-s)o(N.G„.)oXl

where;

Gg is 4x10"'  ̂ cn r;

(R/d) is 1 if R/d>l : and R/d if  R/d<l ;

n, is equal to about 15;

(j), is the equilibrium fluence o f oxygen recoils, generated per unit incident

neutron fluence;

s G=( 1 -exp(-À,/À)) is calculated by using X,,=2nm and X mean free path for

primary ionization of oxygen recoils;

CN.Gjo

is the inverse mean free path for oxygen recoils and is obtained from the 

computer calculation.

For the neutron ABE calculation, a computer programme (i.e. neutronabe.for), as 

in appendix one is used to calculate ABE values from the outputs of the computer 

programme (i.e.neutlt.for), which calculates the hydrogen and oxygen recoil 

equilibrium spectra generated per unit incident neutron fluence and ABE of the 

recoils. The neutron cross section [140] used is as in appendix one. The ABE 

values for neutrons with various energies are given in table 4.2 and the graphical 

illustrations are given in figures 4.3 and 4.4.
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Table 4.1: The Absolute Biological Effectiveness (ABE) of Photons with Various
Energies.

Sources X or Gamma 
Energy (keV)

ABE for 
Gamma (cnr)

Mean Free 
Path (nm)

C 2.77E-01 1.31E-08 3.35E+00

N 3.92E-01 1.67E-08 3.41E+00

Ne 8.49E-01 3.04E-09 3.38E+00

Al 1.49E+00 2.65E-09 3.97E+00

K 3.31E+00 8.19E-10 5.81E+00

Cr 5.41E+00 3.32E-10 7.89E+00

Mn 5.90E+00 2.78E-10 8.00E+00

Fe 6.40E+00 2.37E-10 8.81E+00

Co 6.92E+00 2.03E-10 9.26E+00

Cu 8.04E+00 1.49E-10 l.OlE+01

Zn 8.63E+00 1.28E-10 1.05E+01

Ge 9.88E+00 9.57E-11 l.llE + 01

As 1.05E+01 8.33E-11 1.14E+01

Se 1.12E+01 7.23E-11 1.17E+01

Br 1.19E+01 6.35E-11 T19E+01

Sr 1.41E+01 4.21E-11 1.18E+01

Zr 1.58E+01 3.21E-11 1.16E+01

Mo 1.74E+01 2.44E-11 1.09E+01

Ag 2.21E+01 1.20E-11 9.09E+00

Cd 2.31E+01 1.05E-11 8.70E+00

Te 2.74E+01 5.88E-12 7.61E+00

Ba 3.21E+01 3.39E-12 6.94E+00

Sm 3.99E+01 1.62E-12 6.62E+00

Tm 5.04E+01 8.68E-13 6.94E+00

W 5.88E+01 6.72E-13 7.41 E+00

Am 5.96E+01 6.63E-13 7.51E+00

Au 6.81E+01 6.07E-13 8.12E+00

156



Sources X or Gamma 
Energy (keV)

ABE fbr
Gamma (cm")

Mean Free 
Path (nm)

Bi 7.62E+01 6.09E-13 8.77E+00

U 9.70E+01 7.57E-13 1.06E+01

Cs 6.61E+02 1.74E-11 6.31E+01

Co 1.25E+03 5.68E-11 1.04E+02
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Table 4,2: The Absolute Biological Effectiveness (ABE^ o f Neutron with Various
Energies.

Neutron
Energy
(keV)

ABE for 
Neutrons 
(cm")

Mean free 
path for 
Hydrogen 
recoil(nm)

Mean free 
path for 
Oxygen recoil 
(nm)

l.OOE-01 6.43E-13 3.11E+01 9.83E-08

1.50E-01 9.44E-13 2.39E+01 1.26E-07

2.00E-01 1.23E-12 1.96E+01 1.40E-07

3.00E-01 1.77E-12 1.49E+01 1.54E-07

4.00E-01 2.28E-12 1.22E+01 1.60E-07

5.00E-01 2.77E-12 1.05E+01 1.64E-07

6.00E-01 3.23E-12 9.29E+00 1.67E-07

7.00E-01 3.69E-12 8.38E+00 1.69E-07

8.00E-01 4.11E-12 7.69E+00 1.70E-07

9.00E-01 4.53E-12 7.11 E+00 1.72E-07

l.OOE+00 4.93E-12 6.65E+00 1.73E-07

1.50E+00 6.77E-12 5.17E+00 1.79E-07

2.00E+00 8.37E-12 4.36E+00 1.84E-07

3.00E+00 1.12E-11 3.47E+00 1.92E-07

4.00E+00 1.36E-11 2.97E+00 2.01E-07

5.00E+00 1.57E-11 2.66E+00 2.10E-07

6.00E+00 1.75E-11 2.43E+00 2.18E-07

7.00E+00 1.92E-11 2.27E+00 2.26E-07

8.00E+00 2.06E-11 2.13E+00 2.34E-07

9.00E+00 2.19E-11 2.03E+00 2.43E-07

l.OOE+01 2.33E-11 1.94E+00 2.51E-07

1.50E+01 2.81E-11 1.67E+00 2.89E-07

2.00E+01 3.11E-11 1.52E+00 3.27E-07

3.00E+01 3.59E-11 1.37E+00 4.04E-07

Note for y-rays n~15 also, but X is much larger than for neutron induced 
recoils and R/d plays a role.
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Neutron
Energy
(keV)

ABE. for 
Neutrons 
(cnr)

Mean free 
path for 
Hydrogen 
recoil(nm)

Mean free 
path for 
Oxygen recoil 
(nm)

4.00E+01 3.84E-11 1.30E+00 4.81E-07

5.00E+01 4.06E-11 1.26E+00 5.59E-07

6.00E+01 4.17E-11 1.24E+00 6.39E-07

7.00E+01 4.23E-11 1.23E+00 7.18E-07

8.00E+01 4.22E-11 1.22E+00 7.97E-07

9.00E+01 4.23E-11 1.21 E+00 8.72E-07

l.OOE+02 4.21E-11 1.21 E+00 9.54E-07

1.50E+02 4.04E-11 1.22E+00 1.35E-06

2.00E+02 4.00E-11 1.26E+00 1.78E-06

3.00E+02 4.07E-11 1.37E+00 2.93E-06

4.00E+02 4.10E-11 1.51E+00 1.43E-05

4.40E+02 4.09E-11 1.57E+00 1.04E-05

5.00E+02 4.11E-11 1.67E+00 5.79E-06

6.00E+02 4.25E-11 1.83E+00 5.80E-06

7.00E+02 4.42E-11 2.00E+00 6.97E-06

8.00E+02 4.55E-11 2.17E+00 8.77E-06

9.00E+02 4.81E-11 2.34E+00 1.87E-05

l.OOE+03 5.01E-11 2.52E+00 2.20E-05

1.50E+03 5.83E-11 3.40E+00 1.58E-05

2.00E+03 6.61E-11 4.32E+00 1.74E-05

3.00E+03 8.17E-11 6 .14E+00 5.16E-05

3.75E+03 8.58E-11 7.54E+00 7.97E-05

4.00E+03 8.77E-11 8.01E+00 6.77E-05

5.00E+03 9.30E-11 9.85E+00 6.89E-05

6.00E+03 9.68E-11 1.17E+01 6.97E-05

7.00E+03 l.OOE-10 1.36E+01 7.69E-05

8.00E+03 l.OlE-10 1.55E+01 7.42E-05

9.00E+03 1.02E-10 1.74E+01 9.68E-05
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Neutron
Energy
(keV)

ABE for 
Neutrons 
(cnf)

Mean free 
path for 
Hydrogen 
recoil(nm)

Mean free 
path fox 
Oxygen recoil 
(nm)

l.OOE+04 1.13E-10 1.93E+01 1.61E-04

1.50E+04 1.09E-10 2.88E+01 4.32E-04

2.00E+04 1.03E-10 3.84E+01 8.36E-04

3.00E+04 8.74E-U 5.80E+01 1.50E-03

4.00E+04 7.91E-11 7.75E+01 2.14E-03

5.00E+04 7.00E-11 9.59E+01 2.69E-03

6.00E+04 6.11E-11 1.14E+02 3.17E-03

7.00E+04 5.56E-11 L31E+02 3.67E-03

8.00E+04 6.65E-11 1.49E+02 4.17E-03

9.00E+04- 7.77E-11 1.66E+02 4.64E-03

l.OOE+05 8.87E-11 1.84E+02 5.17E-03
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Table 4.3: Irradiation Cases

Cases Mono-energetic 
or spectrum

Charged Particle Equilibrium 
(CPE) or Track Segment 
Experiment

Remarks

External 
Photons 
(j)i is the 
incident 
Fluence

External 
neutrons 
4), The 
incident 
Fluence

Mono-energetic Charged Particle Equilibrium

The integral fluence (|)g is equal 
to (|)v-P-4>i where c()̂, is the 
equilibrium fluence o f charged 
particles generated per 
interaction per unit volume; p 
is the interaction coefficient for 
the indirectly ionising radiation 
in the medium; and (j); is the 
incident fluence

Complex 
incident photon 
spectrum 
(which includes 
x-rays, y- 
spectrum from 
radionuclides) 
can be written

Charged Particle Equilibrium

The integral fluence is the 
numerical integration of the 
spectrum;

4^sec.jPj 4 î.j

as
hv=min

Mono-energetic Charged Particle Equilibrium

The integral fluence is equal to 
(j),.(NHa„H)(j)i where f  is the 
equilibrium fluence of charged 
particles generated per 
interaction per unit volume; 
(NhÔhh) is the interaction 
coefficient for the neutrons in 
the medium; and (j); is the 
incident fluence

i.The DNA double 
strand in the DNA 
segment is assumed 
to be the sensitive 
site.

ii. Spacing between 
the primary 
ionisations along 
the charged particle 
track in the 
medium or sample 
is shown to 
represent the 
quality o f the 
radiation track.

i and ii must match 
for the maximum 
effect i.e the effect 
probability 
coiTesponds to 
(l-exp(À(/A.))
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Cases Mono-energetic 
or spectrum

Spectrum

External 
Heavy Ions 
(HZE)

Mono-energetic

Charged Particle Equilibrium 
(CPE) or Track Segment 
Experiment

Charged Particle Equilibrium

The integral fluence is the 
numerical integration of the 
spectrum;

where f  is the fraction o f the 
jth  component.

Track segment experiment 
(instantaneous values)

Remarks

Internal
Radionuclide
s
a , p, and y 
emitters

Sufficiently 
homogeneously 
distributed 
(except special 
cases electron 
capture and 
auger electron) 
in the medium 
or samples

4)s = 4)\'C
4>v = Rp- Fs- 
where:
(j)v is the equilibrium fluence o f charged particles 
generated per unit source strength.
C is the concentration of source activity in the 
sample.
Rp is the range of the frequency weighted average 
energy of primary charged particles representing the 
decay spectrum emitted by the source activity of 
concentration C.

is the build up ratio of secondary to primary 
charged particle fluence. F, takes care o f the 
contribution from secondary, tertiary etc.
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4.4. Interpretation and Discussion

4.4.1. The expression of Risk in term of ABE

Risk is expressed per unit Sievert (Sv). namely 4x10'" S v ’ for persons 

occupationally exposed which corresponds to a dose limit of 20 mSv per year and 

5x10'" Sv'’ for members o f the general population which corresponds to a dose limit 

o f 1 mSv per year (see page 137). The Equivalent Dose H, in Sievert is the sum of 

absorbed dose D, multiplied by the radiation weighting factor w^, according to the 

following formula:

H= D.^.(w,0, + D„.(w,On 

(i.e. replacing the previous formula for the dose equivalent H, H=D.^Q  ̂ + D„.Q„ 

where Q.=l and =10 are the quality factors for gamma-rays and neutrons 

respectively). For y rays w^=l irrespective of its energy and for neutrons, w^ varies.

It is equal to 5, 10, 20, 10 and 5 for neutron energies less than 10, 10-100, 100- 

2000, 2000-20000, and greater than 20000 keV respectively (see table 1.6). For 

neutron energies of 0.3 (for Hiroshima) and 1.6 MeV (for Nagasaki), Wr is equal 

to 20. The average gamma-ray energy for Hiroshima and Nagasaki is assumed to 

be equal to 1.0 MeV.

In order to express risk in terms of ABE (i.e.the unified system o f dosimetry) the 

following information is required:

i. the ratio between component doses (i.e. y and neutron) to the total doses; I

and i
i

ii. the energy o f the radiation from which ABE and LET can be deduced. j

The Sievert can be resolved into its components such as gamma dose and neutron I
Î

dose. The total effectiveness (BE,g, ĵ) of a radiation field (y and neutron) is given by: I

BEt̂ t,, = (l)n.ABE„ + (jî .ABÊ  |

where; j
!

is the neutron fluence; ;

ABE,, is the absolute biological effectiveness per unit incident neutron fluence; |

(|)̂  is the gamma fluence; and '

ABE.  ̂ is the absolute biological effectiveness per unit incident gamma fluence. !
I
I

From the epidemiological study of Japanese survivors, the ratios between gamma f

dose (fy) and neutron dose (f„) against total dose received by the survivors, vary j
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depending on many factors such as shielding, slant distance from explosion point, 

transmission factor etc. It is reasonable to assume that f̂  varies subject to the general 

characteristics o f the radiation fields in Hiroshima and Nagasaki (refer to figure 4.5). 

In the following exercise, for simplification it is assumed that the total dose (i.e. 

gamma and neutron dose) is equal to 1 Sv. Also for simplification, only three values 

of fy are considered, namely 1.0, 0.90 and 0.75. The fluence (j) can be deduced from 

the expression D=(j).L, by using L values from the reference data 

[I41][142][143].

4.4.1.1. In Hiroshima

i. f^=1.0; D= 1.0 Sv; E^=1000 keV and E„=300 keV.

H,^=1.0 Sv and H„ =(1-1) = 0.0 Sv. By using Wr equal to 1 and 20 for gamma and 

neutron respectively, D,=1.0 Sv and D,=0.00 Sv. For the present purpose, 1 Sv must 

be expressed in terms o f BE, To do this, the energy and the flux must be known. 

For the gamma dose = (jî .L, from the table L= 0.378 keVpm'h For neutron D„ 

= (j)„.L, since D„=0.00 so (j>,=0.00 .

By using formula BE; ,̂ ĵ=(|)y.ABE., +(j)„.ABE„ ;

(jiy.ABEy =(1.0/L) X ABE^(energy 1.0 MeV)

= (1.0/0.378) X 3.75xE-l 1=9.925-11 

(j)„.ABE„ =(0.0/L) X ABE„(energy 0.3 MeV)= 0.00 

BE,^^,=9.925-11.

i. For radiation workers (i.e. dose limit o f 20 mSv per year, which corresponds to 

the risk factor of 4x10'") the risk factor in terms of ABE is equal to Rabe-

RxBE = 4 x 1 0 - /9 .9 2 5 -1 1  

= 4.035+08 (BE) '

ii. For a member of the general public (i.e. dose limit 1 mSv per year, which 

corresponds to the risk factor of 5x10'") the risk factor in terms of ABE is equal to

R-ABE"

RABE = 5 x 1 0 -/9 .9 2 5 -1 1  

= 5.045+08 (BE) '.

The risk factor is equal to 4.035+08 (BE)'' and 5.04E+08 (BE)'' for a radiation 

worker and a member of the general public respectively.
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ii. fj,=0.9; D= 1.0 Sv; E^=1000 keV and E„=300 keV

H.=0.9 Sv and H„ =(1-0.9) = 0.1 Sv. By using Wr equal to 1 and 20 for gamma and 

neutron respectively, D.,=0.9 Sv and D, =0.1/20=0.005 Sv. For the present purpose. 

1 Sv must be expressed in terms of BE. To do this, the energy and the flux must 

be known. For gamma dose D,, = (j).,.L, from the table L= 0.378 keVpm''. For 

neutron D„ = (j)„.L, from the table for E„=300 keV, L=66.34 keV pm 'f 

By using formula BE,q(̂ ,=(().̂ .ABE.̂  +(|)„.ABE„ ;

4),.ABE, =(0.9/0.378)x3.75E-ll = 8.93E-11.

(|),.ABE, =(0.005/66.34)x 3 .95E -ll=  2.98E-15.

= 8.93E-11 + 2.98E-15 = 8.93E-11.

i. For radiation workers (i.e. dose limit o f 20 mSv per year, which corresponds to 

the risk factor of 4x10'") the risk factor in terms of ABE is equal to R a b e -

RABE = 4x10 " / 8.93E-11.

= 4.48E+08 (BE)-'

ii. For a member o f the general public (i.e. dose limit 1 mSv per year, which 

corresponds to the risk factor of 5x10 ") the risk factor in terms o f ABE is equal to 

R - a b e -

RABE = 5x10'- / 8.93E-11.

= 5.60E+08 (BE)-'.

The risk factor is equal to 4.48E+08 (BE) ' and 5.60E+08 (BE) ' for a radiation 

worker and a member of the general public respectively.

iii. f.^=0.75; D= 1 Sv; E^=1000 keV and E„=300 keV.

Hy=0.75 Sv and =(1-0.75) = 0.25 Sv. By using Wr equal to 1 and 20 for gamma 

and neutron respectively, D,=0.75 Sv and D„=0.25/20=0.0125 Sv. For the present 

purpose, 1 Sv must be expressed in terms of BE. To do this, the energy and the flux 

must be known. For gamma = (|).̂ .L, from the table L= 0.378 keVpm"'. For 

neutron D„ = (j)„.L, from the table L= 66.34 keVpm '.

By using BE,„„,,=()) .̂ABE.  ̂ +(|)„.ABE„

(|,^.ABE^ =(0.75/0.378)x3.75E-l 1=7.44E-11.

4),.ABE, =(0.0125/66.34)x3.95E-l 1=7.44E-15.

BE,,,,, = 7.44E-11.
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i. For radiation workers (i.e. dose limit o f 20 mSv per year, which corresponds to 

the risk factor o f 4x10'-) the risk factor in terms of ABE is equal to Rabe*

RABE = 4x10 - / 7.44E-11 =5.38E+08.

= 5.38E+08 (BE)-'

ii. For a member o f the general public (i.e. dose limit 1 mSv per year, which 

corresponds to the risk factor of 5x10'“) the risk factor in terms o f ABE is equal to

R -A B E *

R-ABE = 5x10-- / 7.44E-11 =6.72E+08.

The risk factor is equal to 5.38E+08 (BE) ' and 6.72E+08 (BE) ' for a radiation '

worker and a member o f the general public respectively.

4.4.I.2. In Nagasaki

By carrying out the same calculation, using data listed in table 4.4, for neutron 

energy equal to 1.6 MeV, the results are as shown in table 4.6. The parameters used 

in the calculations to express risk in the unified system o f dosimetry are listed in 

table 4.4.

The calculations are summaiised as follows:

i. t;=1.0; D= 1.0 Sv; E^=1000 keV and E„=1600 keV.

By using formula BER,,.„=(j).̂ .ABE.̂  +({)„.ABE,,;

(j).̂ .ABEy =(1.0/L) X ABE.Xenergy 1.0 MeV)

= (1.0/0.378) X 3.75xE-Il=9.92E-ll 

(j),,.ABE„ =(0.0/L) X ABE„(energy 0.3 MeV)= 0.00 

BE,,,, =9.92E-11.

i. For radiation workers (i.e. dose limit of 20 mSv per year, which corresponds to 

the risk factor o f 4x10'“) the risk factor in terms of ABE is equal to Rabe*

R-ABE =4xl O- - / 9 . 92E- l l  

= 4.03E+08 (BE)-'

ii. For a member of the general public (i.e. dose limit 1 mSv per year, which 

corresponds to the risk factor of 5x10'“) the risk factor in terms of ABE is equal to 

R a b e *

R a b e  = 5x10-“ / 9 .92E-11 

= 5.04E+08 (BE)-'.
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The risk factor is equal to 4.03E+08 (BE) ' and 5.04E+08 (BE) ' for a radiation 

worker and a member of the general public respectively.

ii. t;=0.9; D= 1.0 Sv; E^=1000 keV and E,=1600 keV

By using formula BE,o,|=({)y.ABE, +(|)„.ABE„ ;

4).,.ABE  ̂ =(0.9/0.378)x3.75E-ll = 8.93E-11.

(|),.ABE, =(0.005/40.47)x 6.06E-11= 7.49E-15.

BE,,; = 8.93E-11 + 7.49E-15 = 8.93E-11.

i. For radiation workers (i.e. dose limit o f 20 mSv per year, which corresponds to 

the risk factor of 4x10'^) the risk factor in terms o f ABE is equal to Rabe-

RABE = 4 x l O " / 8 . 9 3 E - l l .

= 4.48E+08 (BE)-'

ii. For a member of the general public (i.e. dose limit 1 mSv per year, which 

corresponds to the risk factor of 5x10'“) the risk factor in terms of ABE is equal to 

R a b e *

R.n:: = 5x10 “ / 8.93E-11.''A B E

—  c  c f w :  I A O  / n r %5.60E+08 (BE)-'

The risk factor is equal to 4.48E+08 (BE) ' and 5.60E+08 (BE) ' for a radiation 

worker and a member o f the general public respectively,

iii. f,=0.75; D= 1 Sv; E^=1000 keV and E„=1600 keV.

By using BE,„=(})^.ABE,^ +(()„.ABE,

(|)y.ABE, =(0.75/0.378)x3.75E-l 1=7.44E-11.

(|)„. ABE„ =(0.0125/40.47)x6.06E-11=1.87E-15.

RRiotai “  7.44E-11.

i. For radiation workers (i.e. dose limit of 20 mSv per year, which corresponds to 

the risk factor of 4x10'“) the risk factor in terms of ABE is equal to Rabe*

RABE = 4x10'- / 7.44E-11 =5.38E+08.

= 5.38E+08 (BE)-'

ii. For a member of the general public (i.e. dose limit 1 mSv per year, which 

corresponds to the risk factor o f 5x10'“) the risk factor in terms o f ABE is equal to 

R .̂ABE*
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RABE = 5x10- / 7.44E-11 =6.72E+08.

The risk factor is equal to 5.38E+08 (BE) ' and 6.72E+08 (BE)'' for a radiation 

worker and a member of the general public respectively.

Information on the atomic bombs dropped at Hiroshima and Nagasaki [144] 

is listed in table 4.5.
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Table 4.4: The parameters used to express risk in the unified system o f dosimetry

Type Energy
(keV)

ABE (cnr) LET (keV pm '') Fluence (cm )

Lt.H'
hydrogen
recoil

F t.o
oxygen
recoil

Hydrogen
recoil

Oxygen
recoil

Recoils of 
neutron

300 64.11 200.50 1.287x10"' 2.135x10-''

1600 38.42 260.22 4.75x10"' 4.44x10-"

Neutrons"' 300 3.95E-11 66.34

1600 6.06E-11 40.47

Gamma' ' 1000 3.75E-11 0.378

The mean neutron energies in Hiroshima and Nagasaki are assumed equal 
to 300 keV and 1600 keV respectively.

The mean gamma energies in both Hiroshima and Nagasaki are assumed 
equal to 1000 keV.
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Fig. 4.5: Comparison of values for the radiation fields in the open at Hiroshima and 

Nagasaki
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Table 4.5: The Atom ic Bombs dropped in Hiroshima and Nagasaki

Information Hiroshima Nagasaki

Date o f bombing 6 th. August 1945 9 th. August 1945

Estimated yield 15 ± 3 ktons 22 + 2 ktons

Average Neutrons 
energy

0.3 MeV 1.6 MeV

Extrapolated at 
burst point (m^rad) 

Neutron

Gamma
8.7 x 10'" 

3.45 X 10'"

1.30 X 10'" 

2.75 X 10'"

H height o f burst 
(m)

570 500

Relaxation length 
(m)

Neutron 198 198

Gamma 250 350

Type Uranium (^^'U) bomb: 
a gun assembly weapon

Plutonium (“̂ ^Pu) bomb: 
an implosive type weapon

General notes:
i. In H iroshima an explosive propellant is used to shoot one piece Uranium against 
another piece to create a critical mass; and
ii. In Nagasaki chemical explosive was used to compressed a subcritical mass to 
become a critical mass.
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Table 4.6: The Risk Factors expressed in terms of the unified system of dosimetrv 
ABE)

Data Fraction of 
Gamma Dose

Fraction of 
Neutron Dose

Risk Factors (BE) '

A radiation 
worker

A member of 
the public

Hiroshima data 1.00 0.00 4.03E+08 5.04E+08

0.90 0.10 4.48E+08 5.60E+08

0.75 0.25 5.38E+08 6.72E+08

Nagasaki data 1.00 0.00 4.03E+08 5.04E+08

0.90 0.10 4.48E+08 5.60E+08

0.75 &25 5.38E+08 6.72E+08

Average for 
both cities

1.00 4.03E+08 5.04E+08

0.9 4.48E+08 5.60E+08

&75 5J8E +08 6.72E+08
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4.4.1.3. Dose Estimation for Japanese Survivors

Dose received by each Japanese survivor was first estimated by using Tentative 

1965 Dosimetry System (T65D) and then was estimated by using Dosimetry system 

1986 (DS86). Two important parameters for dosimetry of individual survivor are 

distance and shielding.

In Tentative Dosimetry (T65D) System, gamma and neutron doses received by the 

survivors are calculated according to the following formula:

G^exp ( -  )
D ( # ) = -

R ‘

where

D(R) is free in air (FIA) dose in rad;

R is slant distance i.e. between air zero to location at time o f explosion;

L is relaxation length in meters (m);

Go is the intensity in rad.im;

R=(H' + d')'- ;

FI is the distance between air zero to ground zero: and

d is the distance between ground zero to location at time of explosion.

In T65D the survivor’s shielding at the time of bombing (ATB) was taken into

account by the use of transmission factor (TF) (i.e. the ratio between the radiation 

dose inside and outside o f the house).

k(n)=TF(n)kq(n)

k(y)=TF(Y)k,(Y)

where kq(n) and k^(y) are radiation doses in the open (outside the house) for neutron 

and gamma respectively. TF was determ ined by the nine parameter method, the 

globe method and ad-hoc assignment method. T65D tissue-kerma estimates for the 

survivors, served only as an approximation to the maximum absorbed dose at the 

surface (or skin) o f the body.

In 1970 Absorbed Dose Factor (ADF) (i.e. the ratio between absorbed dose in a 

specific organ and tissue kerma in air) was calculated. The absorbed dose D of an
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organ o f interest:

Dto,ai =D(n) + d(y)

D(n)=ADF(n) k(n)

D(y)= ADF(y).k(y) +ADF(y^)k(n)

where

ADF(n)k(n) provides the high LET absorbed dose for neutron;

ADF(y).k(y) provides the low LET absorbed dose for external y ray;

ADF(y^)k(n) provides the low LET absorbed dose from yray produced by neutron 

interactions within the body (called autogammas)

For leukaemia the organ o f interest is active bone mirror. Other cancers, the organ 

of interest are the female breast, thyroid, lung etc.

The latest dose estimate received for each survivor in Hiroshima and Nagasaki 

epidemiological studies is carried out by using dosimetry system 1986 (DS86) 

[145]. The DS86 methods for dose estimation to individual survivors, are 

embodied in the modular code system as follows:

i. a data base for the radiation fields in the open, which specify the differential 

energy and angular fluence of neutrons and gamma rays at four different heights 

above the ground and at 25 m intervals from 100 to 2500 m ground range in both 

cities;

ii. a data base from home shielding which describes how the differential neutrons 

and gamma ray fluences are modified at over 50 sites inside, outside and either 

partially or totally shielded by a .lapanese house; and

iii. a data base for organ dosimetry which describes how the differential neutrons 

and gamma fluences are further modified at 15 organ sites within the body as 

functions of a survivor’s orientation and posture.

DS86 doesn’t employ transmission factors (TF) or absorbed dose factor (ADF). For 

survivors with shielding histories, organ dose and tissue kerma in air were computed 

directly for cases such as:

i. the survivor was exposed inside a Japanese home and nine parameter data were 

available;

ii. the survivor was exposed outside but shielded by a Japanese house and globe data 

were available;
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iii. the survivor was outside-unshielded and flash burns were reported on exposed 

portions of the skin (e.g. the face, neck and arm)

4.4.2. Discussion

ABE is energy dependent. From figure 4.2 the ABE values for photons vary from 

2x10^ cn r to 6x10''^ c n r  in the energy range from 0.1 keV to 10  ̂ keV. It has a 

m inimum value about 6x10''^ cn r at an energy of about 70 keV. From figure 4.3 

the ABE values for neutrons vary from 2x10''" cm~ to 6x10 '̂  c n r  for neutrons in 

the energy range from 0.1 to 10  ̂keV. If measurement were carried out by using the 

proposed unified dosemeter, the measurement would be given in BE units which 

would be directly relatable to the probability of inducing cancer in the person’s life. 

Further study is required to validate this conclusion.

The numerical values for risk per year expressed in both systems, depend on the 

components of the radiation received. The conversion of risk per year expressed in 

the conventional dosimetry system into the unified dosimetry system is given in the 

following example:

A radiation worker has received the dose limit o f 20 mSv per year so the 

associated risk per year is equal to 20x10^x4x10^' = 8x10 'f The cancer risk 

coefficient is equal to 4x10'- Sv'‘. In the unified system, the 20 mSv has to 

be expressed in BE which depends on its fluence components (i.e. fraction 

of gamma and neutron doses) and, say it is equal to x, BE. Then, the risk 

per year in the unified system is equal to x, multiplied by the appropriate 

risk factor Rabe*

In the ESS study each individual dose is calculated according to the DS86 

(Dosimetry System 1986). The individual dose can be expressed in term of BE by 

carrying out the same procedure as in section 4.4.1. For the whole LSS study 

cohorts, reassessment of cancer risk in term of the new dosimetry system can be 

carried out and the result would be given in risk factor per BE. In the examples 

given to express risk factor in terms of BE, the results in both cities Fliroshima and 

Nagasaki are the same because the contribution of neutron components are 

insignificant.
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CHAPTER FIVE 

CONCLUSION, DISCUSSION AND RECOMMENDATIONS 

FOR FUTURE WORK 

5.1. Conclusions and Discussions

In Radiological Protection near environmental level, the effect of radiation on 

individual cells can be considered as due to a single track without any saturation 

effect or inter-track action. Direct data on human beings exposed to low level 

radiation cannot be obtained mainly due to statistical limitation and the uncertainty 

is very significant. Radiation risk o f significant important in this level is attributable 

to cancer and genetic effects. Data are obtained mainly from epidemiology studies, 

ankylosing spondylitis patients, occupational and accidental exposures and animal 

studies. The most important data is from epidemiological study of .lapanese 

survivors of atomic bombs dropped in Hiroshima and Nagasaki.

This thesis basically presents three main themes namely:

i. Biophysical models o f radiation action;

ii. Cancer risk coefficients; and

iii. A proposed new system of dosimetry in terms of ABE.

Five main biophysical models of radiation action have been evaluated and appraised 

as in chapter two. Cancer risk coefficients, basically from the ICRP assessment, 

have been presented in chapter three and the proposed new system o f dosimetry is 

explained in chapter four.

5.1.1. Biophysical Modelling

The success in biophysical modelling of radiation damage is believed to rely on the 

reliability o f the physical description o f the radiation field and the biological 

description of the system. As explained in chapter two Harder uses L,oo.d a quality 

parameter and Curtis uses local dose to induce lesions which are able to interact 

pairwise in the contact regions. Katz uses z"/j3" which is interpreted to be the yield 

of 5-rays per unit track length. Watt interprets zVp“ as the yield o f primary 

ionisations along the track concluding that the 5-ray effects are negligible for fast 

heavy ions. Bond and Varma use a microdosimetry concept (i.e. hit sizes) to

1 7 9



determine the fraction o f cells which responds quantally. Each model has been tested 

against experimental data and to some extent has achieved its respective goal.

Biophysical modelling carried out in this university (i.e. the TC model) has distinct 

advantages which include:

i. À which is used as the quality parameter, has a clear physical interpretation

namely the mean free path o f the primary ionizations along the particle

track;

ii. Fluence o f the relevant charged particles (see table 4.3) which is found to be

a better field quantity than dose. The effect on cells is determined by the

actual number of charged particles traversing the cells multiplied by their 

probability (cross-section) to induce the effect; and

iii. ABE is used to incorporate the necessary relevant concepts important in

modelling, such as;

a. DNA double strands;

b. Number of segments at risk along the charged particle track;

c. Range i.e. R/d factor which indicate the physical capability of any 

charged particle to penetrate a cell nucleus;

d. The equilibrium charged particle fluence which is the fundamental 

cause of the effects;

e. The concept of cross section which is used to indicate the probability 

that a charged particle will induce a certain effect; and

f. The efficiency s, which indicates the efficiency o f the spatially 

correlated events with the structure of the DNA double strands, to 

induce DNA dsb.

These factors are deduced directly from the biological observations rather than by 

mechanistic modelling. The TC model has been applied for many cases such as 

irradiation by x-ray, y-ray, heavy ions and electrons. Jin et-al [146] take care 

o f Auger electron cascades as well as photo-electric and Compton electrons in the 

iluence generated and apply the TC model to yeast cells. Sykes et-al [147] 

provides interpretation on the reverse do se-rate effects, by using the TC model. In 

the future the new data obtained by using the latest technique and procedures may 

be applied in the TC model. An image cytometry device [148] has been
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reported to be able to determine with 98% accuracy by automated scanning 

procedures for cell survival measurements at low doses. The premature chromosome 

condensation tecluiique (refer to page 32). provides the initial number o f DNA dsb 

in an irradiated system. However it is more meaningful if the data used in modelling 

are standardized for example data obtained by using a standardised procedure, or 

better still, data obtained from experiments carried out in the same laboratory, to 

reduce systematic errors that would arise between different laboratories.

5.1.2. Cancer Risk Coefficient

An attempt has been made to express risk in terms of the new system of dosimetry 

i.e. by using ABE (see section 4.4.1). The ICRP results for risk (cancer) assessment 

are used for this purpose (see section 3.3.1.8). In the future for application in 

operational radiological protection, BE values which are considered as an upper limit 

in a certain period such as in a year, and the limit for a lifetime, have to be set.

5.1.3. The Proposed New Dosimetry System

5.1.3.1. General

The new dosimetry system as explained in chapter four is thought to be more 

rigorous and meaningful. It is superior in many aspects compared to the 

conventional system, such as:

i. The ABE values for various radiations are more consistent and provide 

smoother curves (refer to fig. 4.4) compared to Q (refer to table 1.5) or w^ 

values (refer to table 1.6) of radiation (i.e. less smooth curve and as a step 

function); and

ii. The derivation of ABE is based directly on experimental radiobiology 

interpreted in terms o f the basic radiation physics. Consequently it is more 

meaningful than the derivation of Q and w^.

There are many implications of having a better system of dosimetry. More precise 

dosimetry is desirable in operational plants such as a nuclear power plant or an 

irradiation facility, because it means:

a. precise allocation o f job in controlled or very high radiation areas. From 

economic point of view, this will save operational cost of the plant due to
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maximum utilisation of the available man-power;

b. radiation workers, management staff as well as regulator staff will know 

the amount of radiation received more precisely. From legal point of view, 

this will facilitate them in complying with the existing legal requirements i.e. 

rules and regulations.

5.I.3.2. Damage due to Neutrons, Heavy Ions, Photons and Electrons

In the conventional dosimetry system, neutrons are considered to be most damaging

i.e. Wr=20. in the energy range between 100 keV to 2 MeV (see table 1.6). For 

alpha particles and heavy ions, w^= 20 for all energies and for electrons Wr=1 for 

all energies. From the published data where the inactivation cross-section P is 

plotted against X [149], it has been found that neutrons are just able to reach 

the saturation region and the P decreases for lower A,. Alpha particles are 

comparable with neutrons. However heavy ions are capable to be in the saturation 

region with maximum P about up to three times the saturation inactivation cross- 

section. On the basis o f these facts, in the new system, neutrons can not be as 

damaging as heavy ions but the most damaging heavy ions and neutrons will differ 

by a factor o f three. The maximum damage o f alpha particles and neutrons are about 

the same. On the same basis electrons are found to be less damaging by at least an 

order of magnitude and hardly can reach the saturation region.

The damaging soft photon energy is considered to be due to the X o f the relevant 

chai'ged particle fluence being in the order of 2 nm. However its penetration is 

limited due to its range R. In this region the factor R/d, where d is the diameter of 

the cell nucleus, is playing a significant role, although X is about 2 nm but R/d is 

near to zero.

The inactivation cross section P, of gamma, is an order of magnitude lower than for 

heavy ions. The possible explanation for this is due to the penetration capability of 

the secondary charged particles produced by gamma (i.e. secondary electrons). At 

their most damaging, they are not able to penetrate through the cell nucleus whereas 

the heavy ions do, at the same A,.
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5.1.3.3. Incorporated Radionuclides

As pointed out by Younis et-al [53] the conventional system may not suitable lor 

assessing the hazard from incorporated radionuclides due to:

i. Many of radionuclides have complex decay schemes, accompanied by 

auger electron cascades, which have ranges localised in cellular or sub- 

cellular dimensions thereby producing a large degree o f damage; or

ii. If the radionuclide is incorporated into an especially sensitive site within 

the cell structure, excessive damage may be expected.

In the new system the concept of fluence is applicable. It takes care of the charged 

particles produced by the incorporated radionuclides.

Improved risk control presented in this thesis is given in terms o f the absolute 

biological effectiveness (ABE). Here, the term absolute means the ability to define 

the biological effect uniquely, in terms o f fundamental physical and biological 

quantities. The new dosimetry system proposed has distinct advantages over the 

existing system:

i. the calculation of ABE is based on the DNA dsb. which is directly related 

to various end-points o f prime importance in radiological protection;

ii. It is additive in nature, so that the BE of a radiation field is a direct mixture 

o f BE of the relevant charged particle fluence;

iii. Knowing the BE value for a given radiation field, the risk associated can be 

assessed without the need to know the radiation type and quantity;

iv. ABE is a unified measure of quality making other modifying factors such as 

Q or WR redundant;

V . The values reflect the probability of cancer induction in one lifetime after

receiving the radiation exposure; and 

vi. If an instrument which measures the BE directly can be designed and made

available, the BE values received by individuals during a specified period 

can be measured and the risks associated with the exposure can be 

determined.
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5.2. Recommendations For Future Work

For the new dosimetry system, the ABE values presented in this work may be 

further improved by:

i. Using the efficiency factor 8. against A. obtained from experimental data. By 

doing so all uncertainties in deriving the efficiency factor s. can be 

minimised (see section 4.2.1 and 4.3.2); and

ii. The factor R/d, (i.e. to correct for insider tracks having range R less than 

cell diameter, d) may be applied more accurately to the lower energy interval 

of the relevant (equilibrium) charged particle fluence generated in the 

medium.

The overall risk (cancer) assessment can be carried out in terms of ABE. Data from 

the Japanese epidemiological study may be used. In order to do that the following 

is required;

i. BE value for each individual, instead o f individual dose, can be evaluated;

ii. A complete set o f ABE values against energies for gamma and neutrons and 

their respective fluence;

iii. By using the same cohorts (see section 3.1.1.6), assess the risk in term o f BE 

by using the same methods and procedures i.e. apply multiplicative or 

relative projection models;

If the cancer risk is expressed in terms o f BE, a value o f risk can be set. as 

acceptable for radiological protection purpose. By assuming linear relationship 

between risk and BE. maximum value of BE can be set for radiation workers and 

members of the public annually.

In order to apply the new dosimetry system, instrumentation to measure BE is 

required. Basically in its design concept has to incorporate the sensitive sites 

separated in 2 nanometre distance (i.e. an array of sensitive sites). The inactivation 

(or events) of the pair o f sensitive sites spaced at 2 nm distance, is registered and 

the number recorded corresponds to the exposure received. Many possible types of 

detectors can be investigated in the future such as using organic macro-molecules 

and phosphors in solid phase. An active research programme to achieve such 

detectors is supported by the Commission of the European Communities.
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The role of a hormesis effect in low. near environmental levels of radiation, as 

reported in the literature has to be investigated not just because o f its intrinsic 

importance but because o f its relevance to test of models. The hormesis effect (or 

adaptation effect) [150] is defined as the induction of beneficial effects by low 

doses of an otherwise hamiful physical or chemical agent including radiation. 

Fremlin [151] has concluded that the most probable explanation for hormesis 

is in the education of the immune system, which is very complex and is capable of 

learning to deal with a variety of threats to living cells. It is however a controversial 

issue because it is not supported by statistical analysis. There is also evidence that 

low dose radiation increases metastasis o f some tumours. Fabrikant as mentioned by 

Sugahara et-al [152] made a case for a DDREF for humans in the range of 3 

to 4 rather than 2 which is used both by ICRP (No 60) and BEIR V committee 

(NAS). In future, when sufficient data is available this controversial issue may be 

resolved.

Finally, it is believed that the unified dosimetry system, which has been presented 

in this thesis, is able to provide an improved system o f damage limitation for better 

risk control in radiological protection near enviromnental level. Success in devising 

appropriate measuring instruments would ensure the application of the new 

dosimetry system in operational radiological protection.
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Appendix One

Programme photonabef.for, to calculate ABE for Photon

c Program 'photonabef.for* calculates ABE for various energy x and
c gamma in keV. ABE iscalculated by taking into account the
c electron spectra generated per unit incident x or gamma fluence,
c This program include mean free path for equilibrium electron spectrum,

implicit none
real* 8 eng(lOO), gsig(lOO), dsig,
Id, r(lOO), fl(lOO), abeg(lOO), mfp(lOO)
Integer n, le, ndp
open(unit=30,status=’old\access=’sequentiar,file=’gh2o2f.dat’)
open(unit=48,status=’unknown’,access=’sequentiaT,file=’photonabef.dat’)
1 1 = 1 5

dsig=4.0e-08
d=6.0e-04

c dsig is the DNA geometrical cross section given in cm2,
c d is the mean chord length o f the cell nucleus as 6 microns,
c but given in cm (6 micron= 6.0e-04 cm)

read(30,l0)
10 format(a)

read(30,*) ndp 
do 150 le=l,ndp
read(30,*) eng(le),gsig(le),fl(le),r(le).mfp(le)

150 continue
c fluence fl(le) has already incorperated efficiency factor
c =(l-exp(-2/lamda).

write(48,155)
155 form at(lh ,2x.'Gamma Energy\5x,'A BE for Gamma’,5x,’mean free path
nm ')

do 250 le=l,ndp 
abeg(le)=dsig*n*fl(le)*gsig(le) 
write(48.255) eng(le).abeg(le),mfp(le)

255 form at(lh ,5x ,lpel0 .2 ,5x ,lpel0 .2 ,5x ,lpel0 .2 )
250 continue

stop 
end
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Input Data for Program photonabef.for

File: gh2o2f.dat (ecfii.crs)
Number of data points: 31

Photon Cross 
Energy Section

Fluence Range mfp
A

0.277 3.200E+04 6.8302E-07 3.57E-07 3.35E+00
0.392 2.576E+04 1.0821E-06 4.75E-07 3.41E+00
0.849 6.107E+03 8.2969E-07 3.73E-07 3.38E+00
1.486 1.422E+03 3.1117E-06 1.54E-06 3.97E+00
3.310 1.421E+02 9.6100E-06 9.80E-05 5.81E+00
5.410 3.245E+01 1.7030E-05 5.93E-05 7.89E+00
5.900 2.489E+01 1.8620E-05 5.00E-05 8.00E+00
6.400 1.939E+01 2.0388E-05 4.17E-05 8.81E+00
6.925 1.520E+01 2.2223E-05 4.88E-05 9.26E+00
8.040 9.570E+00 2.5867E-05 6.48E-05 l.OlE+01
8.630 7.674E+00 2.7872E-05 7.57E-05 1.05E+01
9.880 5.026E+00 3.1747E-05 9.25E-05 l.llE + 0 1
10.53 4.107E+00 3.3801E-05 1.02E-04 1.14E+01
11.21 3.381E+00 3.5618E-05 1.17E-04 1.17E+01
11.900 2.808E+00 3.7673E-05 1.29E-04 1.19E+01
14.140 1.634E+00 4.2980E-05 1.72E-04 1.18E+01
15.750 1.159E+00 4.6183E-05 2.08E-04 1.16E+01
17.440 8.334E-01 4.8817E-05 2.30E-04 1.09E+01
22.100 3.870E-01 5.1890E-05 3.13E-04 9.09E+00
23.110 3.351E-01 5.2111E-05 3.17E-04 8.70E+00
27.380 1.961E-01 4.9986E-05 3.46E-04 7.61E+00
32.060 1.224E-01 4.6165E-05 3.49E-04 6.94E+00
39.910 6.832E-02 3.9421E-05 3.36E-04 6.62E+00
50.390 4.179E-02 3.4618E-05 2.89E-04 6.94E+00
58.830 3.295E-02 3.3967E-05 2.63E-04 7.41E+00
59.600 3.240E-02 3.4113E-05 2.63E-04 7.51E+00
68.130 2.816E-02 3.5919E-05 2.53E-04 8.12E+00
76.250 2.607E-02 3.8924E-05 2.65E-04 8.77E+00
97.000 2.469E-02 5.1089E-05 3.52E-04 1.06E+01
661.000 3.255E-02 8.9335E-04 3.59E-02 6.31E+01
1253.300 2.974E-02 3.1818E-03 1.20E-01 1.04E+02
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Programme neutronabe.for, to calculate ABE for Neutron

c Program 'neutronabe.for' calculates ABE for neutrons

c w ith various energies. ABE is calculated by adding the ABE of

c hydrogen recoils and ABE of oxygen recoils generated per unit

c incident neutron fluence.

implicit none 

real*8 eneut(lOO), flh(lOO), flo(lOO),

Imfph(lOO), mfpo(lOO), nsigh(lOO),

2nsigo(100), dsig, abeh(lOO), abeo(lOO). aben(lOO), d, rh(lOO),

3ro(100)

Integer nh, no, le, ndp

open(unit=30,status=’ old’ ,access=’ sequential ’ ,file=’ nli2o4.dat’ ) 

open(unit=48.status='unknown’,access=’sequentiar,file=’ 

lneutronabe.dat’) 

nli=15 

no=15

dsig=4.0e-08 

d=6.0e-04

c d is the mean chord length of the cell nucleus, taken as 6 micron,

c dsig is the DNA geometrical cross section. j

read(30,10) |

10 fbrmat(a) j

read(30,*) ndp |

do 150 le=l,ndp I

read(30,*) eneut(le),nsigh(le),nsigo(le),flh(le),flo(le), }

1 mfph(le),mfpo(le),rh(le),ro(le) |
I

150 continue i

write(48,155) :

155 form at(lh ,2x,'Neutron Energy'.5x,’ABE Neutrons’,2x,’mfp H ’,5x,

rm fp  O ') I

do 250 le=l,ndp :
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c epsilh(le)=( l -exp(-2/mfph(le)))

c epsilo(le)=( 1 -exp(-2/mfpo(le)))

c rdh(ie)=rh(le)/d

c if (rdh(le).gt.l) rdh(le)=l

c abeh(le)=dsig*rdh(Ie)*nh*flh(ie)*epsilh(Ie)*nsigh(le)

abeh(le)=dsig*nh*flh(le)*nsigh(le) 

c rdo(le)=ro(le)/d

c if (rdo(le).gt.l) rdo(le)=l

c abeo(le)=dsig*rdo(ie)*no*flo(le)*epsilo(le)*nsigo(le)

abeo(le)=dsig*no*fio(le)*nsigo(le) 

aben(le)==abeh(le)+abeo(le) 

c nsigh lias incorporated the effect o f two hydrogen atom

c per water molecule, in its value.

c Note: in this calculation R/d factor is not applied to the

c average values for ABE calculation. It has to be applied

c to each fractions of the spectrum in the main programme.

write(48,255) eneut(le),aben(le),mfph(le),mfpo(le)

255 formate 111 .5x ,lpel0 .2 ,5x ,lpel0 .2 .5x ,lpel0 .2 ,5x ,lpel0 .2 )

250 continue

stop 

end
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oo ĉ (X%.VO CM o CO VO in
CM vn OS cn o TC VO OO o
OO Csj rn in vq vq vq vq p
OS Z Z —1z z Z

o o o oO o o o o p o o o p+ + + + 4" 4- + 4- 4" 4“UJ tq w WZ Z Z Z Z Z
VO in oo CM O s o !>■m
OO VO oo CM TC os r-s OOr—1ro O s TCCM o CM rn 9 Prn CM r— Os' 0ÔZ Z

OS OS Os oo OO oo OO oo oo OOo O o o o o 9 o o o
tq tq pj PJ pj pj z pj pj pjr-̂ VO CM CSJ m CM o TC■o VO rn VO or—1CM 1—1CO rn in O CM t C
rn iri Z —1 '—' CM* Z Z

r-"VO VO VO VO VO VO VO VO VOo o o 9 O O O O o O
pj PJ PJ Z pj pj pj tq pj pj00 TC O o os in o OOr-1 v n o VO O s O s in tCin
oo in 1—1r- rn O s in o in
t+ Z cs) rn rn TC Z Z

o o o o o O O o o o
WPJ PJ pj pj pj pj pj pj pjo o o o o o o o o oo o o o o o o o o o
on rn cn m rn rn rn rn rn rn

r— —, —

o o o o o o o O o oo o o o o o o o p o
+ + + + + + + + + 4-
PJ PJ WZ Z Z Z Z z z
oo r- c - m TC rn OS oo
VO VO VO VO VO VO VO VO in in
rn rn m rn rn m rn rn rn rn

r— _ 1—1 r— ,—1 —1

, 1 1 T—1
o O O O o O o O O o
tq PJ PJ pj pj pj tq pj pj pjo o o o o o o o o oo o o o o o o o o o
CO in o o o o o p o o
1—1 z Z Z TC Z vd Z od OS

rn rn m rn m rn rn rn rn m m m CM CM CM CMo o o o o 9 o o o o o o O CD CD O

p j p j
2

p j p j z p j p j p j p j p j p j p j PJ p j p j
oo m OS CM oo Os in m o o CM oo VO
oo C" CM rn O CM CM oo TC os VO VO VO t C rn
in os m OS m O m o TC OS m in CD TC oo CMz Z rn TC TC ZZZZ od — — Z
CM CM CM CM CM CM CM —, —, —, —, —, — , — ——
O O o o o 9 o o o o o o o CD CD CD

p j p j p j p j p j z p j p j p j p j p j p j p j p j p j p j
VO OO c - VO TC TC TC c - oo os rn oo CM CM
in oo o VO Cs c - VO mo Os CM CD
m rn m OS rn in !>• o '—' CM rn !>; VO CM Cs
Z rn TC z Z od O^ z z z 1—1 z z rn rn

r- r- IM- r - r - c - IM- r- c . Cs Cs Cs
o o o o o o o o o o O o CD CD o CD

p j p j p j p j p j p j p j p j p j p j p j p j p j p j p j p j
CM tM TC rn o TC m t C J^ m o CM rn
rn OO rn CM o oo VO TC CM o Os Cs TC Os
p oo 9 o 1—1 CM rn t C m OO CSJ CD OO in
r— — 1 z Z Z Zz Z z z Z z m TC TC Z
o o o o o o o o o o o o CD CD o oo o o o o o o o o o o o O O o o
+ 4~ 4" 4- 4- 4- 4- 4- 4" 4" 4- 4“ + 4- 4- 4-
z Z Z z z Z Z Z Z z Z Z z Z Z Z
m O !>- VO t C oo m VO TC o rn oo CM CM CD rn
in in VO r-- m rn VO rn rn TC VO m Cs CD VO
VO t—1 m tCos VO t C CM —, o 9 vq in rn rn CM
z Z TC rn Z Z Z Zz z -H - , — —

oo oo oo oo oo oo oo OO c - c - C' Cs Cs Cs
o o o O o o o o o o o o CD CD CD o
p j p j p j Z p j p j p j p j p j p j p j p j p j p j p j p j
rn VO m os in m oo in os m Os in o oo
o in m VO o c- oo OS os OO rn TC t C CD CM
VO TC CM in r - ' 9 os OS o —, CM 1— 1 Os Cs TCZ rn TC ZZZ od z —, — —, Z Z rn TC

vO VO m in in m in m in m in m in in in in
O o o o o o o o o o o o 9 CD CD CD

p j p j p j p j p j tq p j p j p j p j p j p j z p j p j p j
VO TC r - m CM os TC rn VO o oo oo rn Cs Os
in TC rn os O r - CM in in TC rn oo m CD OO OO
o rn o rn 9 csj t C VO oo o c- rn rn os in
Z od 1— Z ZZ Z rn rn TC z ZZ

1 , ,__1 — , , —
o o o o o o o o o o o o o CD CD o
p j p j p j p j p j p j p j p j p j p j p j p j p j p j p j p j
o o o C" IM c - rn rn m m r - rn [S, O CD
o o o OS OS os OS Os Os os os oo oo Cs Cs VO
rn m rn CM csj CM csj CM CM CM CM CM CM CM csj O)

—1 1—, —H - , - , —, —, — —, —, — — —

o o o o o O o o O o O o CD o CD CD
o o o o o o o o o o o o CD p p O
4~ + + + + + 4" + + + + + + 4- + +
Z Z z Z Z Z Z z Z Z Z z Z Z z z
C-- TC C" oo CM rn VO t C CM 00VO CD os OS VO
in in t C rn CM CM o os OO r - rn CjS cs) VO CM
rn rn rn rn rn rn rn rn CM CM Csj CM —, —H O o

—1 1—1 - , —, — '—'

CD O o CD CD o CD CD CD CD — — — — — —-
O CD CD CD CD CD CD CD CD CD CD CD CD p p CD
4- 4- 4- + + + + + + 4- + + 4- + + +
Z Z Z Z z Z z z z Z z z Z z Z Z
CD o CD CD CD CD CD o CD CD CD CD CD CD CD CD
CD CD CD CD CD CD CD CD O CD CD CD CD CD CD CD
CD in CD CD CD CD CD o CD CD O in CD CD CD CD
Z Z z z TC z Z Z od O s —, z z rn T f z

1 9 0



0

1
I

z

&

I

s

1>

g
tu

I
Z

b
Z

b
Z

c
W

C

i
o>

Z

CM (SJ CM ( N (SJ CM
0 0 0 0 0 0

Z t ü t q Z z Z
CSJ 0 0 0 ov Tt un
CSJ 0 t s un Tt
VO 0 rn t s r—r 0
c s j rn Z rn Tt Z

—H — , _____ — ,___,

0 0 0 0 0 0

Z z t q Z t q Z
un Tt 0 0 0 mun ov un 0 0
'—' un 0 Tt 0 0 ov
Tt Tt Z Z z Z
es es es js. t s VO
0 0 0 0 0 0

Z Z Z Z z tqrn m un 0 CM rn
O s 0 0 es CN Tt un
m '—1 ov es un rn
vd Z Z od Z z
0 0 0 0 0 0
0 0 0 0 0 0
4~ + + + + +
Z z Z Z Z Z

0 0 ov Tt CMTt CM O J
CSJ (SJ CSJ ( N (SJ (SJ
-H —H r-H r—' —

t s es es es t s VO
0 0 0 0 0 0

z Z tq Z tq tqos 0 0 rn 0 0 ( s
Tt un Tj- 0 0 es 0
r-- - 0 0 un r— GO T— <

un Z Z Z Z

un un un un un un
0 0 0 0 0 0

Z tq Z Z Z Zes Tj- VO rn CM t s
VO t s ov es 00
0 9 J S — rn T t

Z Z z od od z

0 0 0 0 0 0

Z Z Z Z Z z
rn fs 0 ( S rn 0
un T t N * CM CM o v
CSJ CSJ (SJ (SJ CM —

— , — —

0 0 0 0 0 0

Z Z Z Z z Z
T t m CM 0 0 0 T f -
CM CSJ CM 0 0 VO 0 0
0 0 T t 0 VO m 0
ov Z Z od od Z

CM
0 0 0 0 0 0 0 0 0 0
tqZ tjj Z tqtqtqtq tqtq
r n 0 VO o v t s VO t s o v
e s T t 0 0 o v OV 0 0 VO ( N t s
0 0 T t 9 e s 0 r n vO O v r—H
Z Z Z — Z ZZ z ZZ
0 0 0 0 0 0 0 0 0 0
p p p p 0 0 0 0 0 0
+ + + + + + + + + 4~
Z Z z Z Z Z Z z Z Z
VO VO T j- r n O v 0 0 un e s 0
( N VO 0 0 VO CM un VO t s t s O v
p un r— 1 T t OV t s 9 VO t s 9Z ZZZZ T t un vd Z
VO VO un un VO VO vo VO un un0 0 0 0 0 0 0 0 0 9tq tq tü (Z tqtq tqZ tqz
CM CM m 0 CM 0 0 00 r n CM VO
0 0 r n r n T t O v o v VO t s e s o v
Z o v T t 0 t s e s o v e s 0 0
z Z — — un un vd od Z Z
0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0
+ + + + + + + + 4- 4~
z Z Z Z Z Z Z Z Z Z
o v T i r n r n t s 0 VO VO <JV VOun t s t s VO r n o v VO r n
(SJ m un un 9 0 0 9 m un
r-H r—' r—1 Z Z r—' '—' Z Z Z

o  o  o

W W W  es o  oo 
CN CM r n  
m  r n  O
Tl- Z  Z

¥  + + 
W W W
i n  CM —,  
— ' T j- CM 
i n  T t  o o
r -H  Z  T f -

v n  v n  v n  
O  o  o

W W W
VO o o  - H  
e s  r n  VOm  [S  —,

o  o  o

z  z  z
t s  ir>  m  
l o  O  m  
—H  l / n  o o

06 06

r—' r—< CN p o p+ + + 
z  z  z
m  o  t s  
o  u n  VO
r—H O s  1— I
Z  Z  Z
u n  u n  i n  0 0 0
Z Z Z 
0 0  r—H 
VO t s  o v  
O v C s  0 0

0 0 0 0
p  p  p  p
+ + + +
Z Z Z Z
r n  VO o  r-H 
O  - H  ( N  CN 
'— I CN m

s s+ + 
z Z ov Tf
O  r—<
VO r— I

u n  u n  
o  o

Z Z Tj- 00 ts 00 
OV VO

u n  f s  VO VO VO C s

I I ?
Z Z Z
u n  t s  Tj-
P "
T f  m

N -

0 0 0
¥ ¥ ¥ 
z  z  z
o  VO r n  
T t  o  u n  
u n  o  0 0

m  T f  VO t s  c o  O v

VO VO VO

9  9  9
z  z  z
u n  u n  u n  

m  e s
t J-

s

z z z z z z z z z z z z z z z z z
r -H  Tt 0 0  CN 1 ^ - —  — - - - '  - —

[ S  VO Ov TtTj- VO T j-
u n
o

f s  e s  o  u n
o  CSJ r n  CSJ _
o  e s  o  o  T f  o

t s  o  u n  CM u n  VO 
o u n v o o v u n u n o o t s

?
Z
0 0

CM CM CM

¥ ¥ ¥ 
z  z  z
m  m  r n  Ov r-H ov 
VO r n  o v

CM CM m  m

u n  u n  T}-0 0 0
ZTfz  z

0 0  VO
r—H t s
T j- VO VO 
t s  o v  z

O
+

0 0 0 0
+ + + +
z  z  z  z  z
CM o  o  0 0  VO
e s  VO u n  r n  CM
r—< r n  u n  t s  Ov

v o v o v o v o v o v o v o v o v o v o u n v o v o v o v o v o v o v o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
T t  o v  O v  VO t s  l /n  r n

(N o v VO rn rn m t C 00 00 TC TC 00 — 00 VO un un TC un od

Tt- 3 : g - T f T t T f T t t C TC TC TC TC rn rn rn rn m rn rn rn0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tq tq tq tq tq tq tq tq tq tq tq tq Z Z tq tq Z tq tq tqt s un ov o v CM Tf- 0 Ov t C 00 (SJ t C t C rn tC rn CM t C00 VO VO 0 T f Ov rn 0 VO VO rn Ov 00 t s VO m 0 0
CSJ 9 un IN 9 ’—' Tt- ts Ov rn 00 0 — t C IN 0 rn VO 0
r—' '—' — — z z z z z Z ov — Z Z Z Z rn

— — — — CM CM CN — CM CM CM (SJ CM CM CM CN CM CM CM0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tq Z tq tq tq tq tq tq tq tq tq tq tq tq tq tq tq tq tq tq
rn T j . |S CM 00 CM 00 00 t C (OV VO TC VO 00 OQ TC VO VO un

T f un t J- ov un Ov m rn 00 es 00 un (S CM es un CM [S
CM '---' VO <SJ VO rn VO (S t s VO vq CN 00 0 CM CM (s rn CM

Tl* Z Ov ov Ov — vd Z Z Z z Z rn Z Z z rn

_____ — — _____ — — — — — , ,__ 1 — ,_1 (SJ CM (SJ CM CM
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tq tq tq tq tq tq tq tq tq tq tq tq tq tq Z tq tq tq tq tq
rn rn CM CM 0 0 ov un TC VO rn rn ov VO 00 ov CM
un T f 00 CM t C 0 CSJ VO 00 0 ts CM TC GO 00 TC 00
CM T t (SJ o v VO rn '—' OV es CM 00 un (SJ CM p 0 0 CM un CMZ T f •ZZ rn rn rn Z Z Z 1— < T— ^ T—H Z OV 06 Z Z Z

CSJ CM CM CM CM CM CM (SJ CM CN (SJ r n r n r n r n r n r n
0 0 0 p 0 0 p 0 0 p 0 0 0 0 0 0 0 0 0 0 0
+ + 4- + + + + + + + 4- + + + + 4~ + + 4"4- 4-
Z z z Z Z Z Z Z z z Z z z Z z Z Z z Z Z Z
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u n 0
0 0 0 0 0 u n 0 0 0 TC 0 0 0 0 0 0 u n 0 0 ts 0z z o d o v 1—' '— 1 Z r n z z Z z Z o d (OVZ —Z r n r n Z

î
o
o
o

gg
o  o

u n  VO e s

r n  r n  T f

¥ ¥ ¥ 
z  z  z8§g0 0 0
c d  O v  z

191



01
I
z

z

i
z

b
Z

b
Z

CD CD CD CD
CD CD CD CD
+ + + +
Z Z Z Zoo Tf ov CN
Tf rn (N <Ov
9 rn O VO
Z z Z rn
CN rn m mO CD CD o+ + + +
Z Z Z Z
Tf CD oo oo
rn O un orn Tf Ov CD
od — Z Z
Tf Tf m rnO CD o CD

z tq t t ) tq
Tf Tf r-<H JS
CN VO CD m
m rn un
Tf od Z
— — —
CD O CD o
+ + + +
Z z Z Z
Tf CN VO Tf
OO Tf ov unoo oo ts es
z rn z Z

un un un un
CD CD CD CD

Z tq tq tqrn ts CN (N
CD oo Ov
un 1-H VO es
r -H Z Z Z

rn m rn m
CD CD CD CD

tq tq tq tqov ov VO (N
CN OO VO
(N rn p es
Tf un Z od

(SJ (SJ (SJ CN
CD CD CD O
Z tq tq zun Tf CD oo
Tf OO es
un un o Tf
Tf un z Tf

CN CN (N (N
CD CD O CD

tq tq tq tqfs oo oo CDt s CD rn O
(N CN CD Tf
Tf rn Z r— '

o o o o o oo o o o o o
+  +  +  -f- -)- +
z  z  z  z  z  z
e n  f s  o o  —H r n  o
T |-  —H o  T f  f s  -̂ cC
r n  O  Z  T f  — I o v
Z  Z  Z  Z  Z  Z
rno
+

?

Ov

? ? ?

CN
O
+

z Z
Tf VO
O v r n  un — H
Z  Z

CN (N 
O  O  
+ + 
z  Z
m  VO 

oo

o un CN

R

ovO
Tf

O
?

?
z  z  z  z  z  z
VO u n  u~i m  f s  <—I
—  1— I r n  o o  o o  r n
T f  o r n  v q  O  u n
Z  Z  Z  Z  Z  Z
m  rn m  rn rn mO o O O o o
z  z  z  z  z  z
o o  f s  —  o  o  t s
o o  VO [ s  f s  T f  VO
VO —H \ 0  —H \ 0  —H

z  z  z  Tf Tf z

( N  (N

? î
Z z
Tf CSJ 
VO Tf

m  Tf VO oo

u n  u n  u n  u n  o o O o u nO
z  z  z  z  zes
Tf VO oo fs o^
o o  o o  o o  o o  o oz z z z z

o o o o o o
z  z  z
rn Tf oo oo oo OV 
Tf (s p  
<—c 1—1 r s j

o o o o o o

rn rnfs fs 
Tf (SJ

m  rn m  (N (SJ (N

O o o o o o
tq z  z  z  z  zov VO ov oo oo ts
N * u n  1— ' 1— * 1— * 1—'
—  —  VO T f  CN CD
Z  OV Z  Z  Z  Z

c
Z

g
Z

Tf 

?
Z Z Z o o o o

Tf
? ?

Tf Tf
CD CD

CD CD

Tf

+ + + 
Z Z Z
8 8 8O O O

Tf
? ?
CDO CD

CD

u n

?
Z Z Z Z
CD CD CD CD

CD
CD

CSJ rn Tf un VO ts OO ov

192



Neutron Cross Section

Neutron Cross Sections are arranged according to Neutron Energy. Neutron Cross- 
section (hydrogen) (Nsig),, and Neutron Cross-section (oxygen) (Nsig)o- Number of
data points is 63.

Neutron Energy. (Nsig)„ . (Nsig)o

l.OOE-01, 20.470, 3.890

1.50E-01. 20.460, 3.890

2.00E-01, 20.450, 3.890

3.00E-01, 20.430, 3.890

4.00E-01, 20.410, 3.890

5.00E-01, 20.400, 3.890

6.00E-01, 20.370, 3.890

7.00E-01. 20.360, 3.890

8.00E-01. 20.340. 3.890

9.00E-01. 20.320, 3.890

l.OOE+00, 20.310. 3.890

1.50E+00, 20.210. 3.890

2.00E+00. 20.110, 3.890

3.00E+00, 20.000. 3.880

4.00E+00, 19.870. 3.880

5.00E+00, 19.780, 3.880

6.00E+00, 19.640, 3.880

7.00E+00, 19.540, 3.870

8.00E+00, 19.370, 3.870

9.00E+00, 19.190, 3.870

lO.OOE+00, 19.130, 3.870

15.00E+00, 18.500. 3.850

20.00E+00, 17.800, 3.840

30.00E+00, 16.900, 3.820

40.00E+00, 16.000, 3.800

50.00E+00, 15.350, 3.770

60.00E+00, 14.700, 3.750

193



Neutron Energy, (Nsig),,, , (Nsig)o

70.00E+00, 14.100, 3.730

80.00E+00, 13.500, 3.710

90.00E+00, 13.000, 3.670

lOO.OOE+00, 12.510, 3.660

150.00E+00, 10.600, 3.560

200.00E+00, 9.400, 3.490

300.00E+00, 7.860, 3.630

400.00E+00, 6.600, 12.400

440.00E+00, 6.350, 7.940

500.00E+00, 5.960, 3.730

600.00E+00, 5.420, 2.900

700.00E+00, 5.000, 2.800

800.00E+00, 4.640, 2.900

900.00E+00, 4.370, 5.200

l.OOE+03, 4.130, 5.200

1.50E+03, 3.320, 2.000

2.00E+03, 2.820, 1.400

3.00E+03, 2.250, 2.180

3.75E+03, 1.910, 2.350

4.00E+03, 1.830, 1.800

5.00E+03, 1.560, 1.280

6.00E+03, 1.360, 0.966

7.00E+03, 1.210, 0.830

8.00E+03, 1.080, 0.645

9.00+03, 0.980, 0.696

l.OOE+04, 0.940, 0.980

1.50E+04, 0.640, 1.360

2.00E+04, 0.480, 1.650

3.00E+04, 0.305, 1.520

4.00E+04, 0.223, 1.340

1 9 4



Neutron Energy, (Nsig)^ , (Nsig)o

5.00E+04, 0.172, 1.170

6.00E+04, 0.137. 1.020

7.00E+04, 0.114. 0.910

8.00E+04. 0.111, 0.820

9.00E+04, 0.108. 0.740

1.00+05, 0.105. 0.680
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Appendix Two

Derivations of the Linear Energy Transfer (LET) values and the Absolute Biological 

Effectiveness (ABE) values (refer to table 4.4 page 172) used in expressing risk in 

terms of the unified dosimetry system are as follows:

A.I. For hydrogen recoil

(Refer to table 3(a) page 7-8 [144])

For neutron energy E„=300 keV, L=64 .11

E =1500 keV, L=3.961xlO""' 

E =2000 keV, L=3.365xlO'"' 

For E,=1600 keV. L=3.9661xl0""'+(33.65-39.61)xl00/500 = 38.42.

A.2. For oxygen recoil

(Refer to table 3(b) page 9-10 [144])

For neutron energy E,=300 keV, L=2.005x10""“

E =1500 keV, L=2.564xl 0'"- 

E =2000 keV. L=2.755xlO'"- 

For E =1600 keV, L=256.4+(275.5-256.4)xl00/500 = 260.22

A.3. Effective LET for neutron L̂ ff I
i

Effective LET for neutron L̂ff, is calculated by averaging L o f all recoils generated j

per unit incident neutron fluence, by using the following formula: I

kelT ^  + lo-^TX) {

where, j

f,[ is the fraction of hydrogen recoil fluence to the total fluence (i.e. ((),, 1

/ ^i-no )’ I

Lj|_, is track average LET due to hydrogen recoil; ‘

fo is the fraction of oxygen recoil fluence to the total fluence (i.e. (j)o / j

(|)H+o ); and j

L-po is track average LET due to oxygen recoil. j

For neutron energy £^=300 keV, |

196



287X10""; and 

(j)o = 2.135X10"".

Therefore:

( 1.287X10""/( 1.287X10'""+2.135X10"")}x64.11 

+{2.135X10-""/(1.287X10-""+2.135X10-"")}x2.005xlO'"-

Lg(f=66.34 

For neutron energy E„=1600 keV,

(j)H=4.750x10'"": and

(1)̂ =4.440x10-"".

Therefore: L,fr{4.750X10""/(4.750X10-""+4.440X10-"")}x38.42

+{4.440X10-""/(4.750X10""+4.440X10-"")}x260.22

Lg,-j-=40.47

A.4. LET For Gamma-rays

(Refer to table 3(a) [142])

For gamma energy E,=1253.3 keV, L=0.306 

E =661 keV. L=0.475 

For E.=1000 keV: L=0.475 + (0.306-0.475)X(1000-661)/(1253.3-661)= 0.378

B .l. Derivation of ABE for gamma

ABE values for gamma can be obtained fron the graph shown in figure 4.2.

For gamma energy E^=1000 keV. from the graph ABE,oo(3=3.75E-l 1. I
I

B.2. Derivation of ABE for Neutron

For neutron the ABE values can be obtained from the graph shown in figure 4.3 :j

(refer to page 162). From the graph; I

For neutron energy E,=300 keV, ABE.QQ=3.95E-11; and j

For neutron energy E,=1600 keV, ABE,6oo=h.06E-l 1. j
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