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Abstract1

1. Use of accelerometers is now widespread within animal biotelemetry as they provide a means2

of measuring an animal’s activity in a meaningful and quantitative way where direct observation is3

not possible. In sequential acceleration data there is a natural dependence between observations of4

behaviour, a fact that has been largely ignored in most analyses.5

2. Analyses of acceleration data where serial dependence has been explicitly modelled have largely6

relied on hidden Markov models (HMMs). Depending on the aim of an analysis, an HMM can be7

used for state prediction or to make inferences about drivers of behaviour. For state prediction,8

a supervised learning approach can be applied. That is, an HMM is trained to classify unlabelled9

acceleration data into a finite set of pre-specified categories. An unsupervised learning approach can10

be used to infer new aspects of animal behaviour when biologically meaningful response variables11

are used, with the caveat that the states may not map to specific behaviours.12

3. We will provide the details necessary to implement and assess an HMM in both the supervised13

and unsupervised learning context and discuss the data requirements of each case. We outline14

two applications to marine and aerial systems (shark and eagle) taking the unsupervised learning15

approach, which is more readily applicable to animal activity measured in the field. HMMs were16

used to infer the effects of temporal, atmospheric and tidal inputs on animal behaviour.17

4. Animal accelerometer data allow ecologists to identify important correlates and drivers of animal18

activity (and hence behaviour). The HMM framework is well suited to deal with the main features19

commonly observed in accelerometer data, and can easily be extended to suit a wide range of types20

of animal activity data. The ability to combine direct observations of animal activity with statistical21

models, which account for the features of accelerometer data, offers a new way to quantify animal22

behaviour, energetic expenditure and deepen our insights into individual behaviour as a constituent23

of populations and ecosystems.24

Keywords: animal behaviour; activity recognition; latent states; serial correlation; time series25

1 Introduction26

Accelerometers are becoming more prevalent in the fields of animal and human bio-logging (Bao &27

Intille, 2004; Ravi et al., 2005; Shepard et al., 2008; Altun et al., 2010). The potential of accelerometers28

lies in the fact that they provide a means of measuring activity in a meaningful and quantitative way29

where direct observation is not possible (Shepard et al., 2008; Nathan et al., 2012; Brown et al., 2013).30

While these instruments are cheap and compact, recording acceleration at a high temporal resolution and31

in up to three dimensions quickly results in terabytes of data that present various challenges regarding32

transmission, storage, processing and statistical modelling.33

Much of the focus in the analysis of acceleration data has been on identifying patterns in the34

observed waveforms that correspond to a known behaviour or movement mode. This can be achieved35

by employing statistical classification methods and can entail observing the animal, manually assigning36

labels corresponding to behaviours to segments of the data and training a model using the labelled37
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data in order to subsequently classify remaining unlabelled data. Many studies that have shown the38

effectiveness of various machine learning algorithms for classification of human acceleration data (Bao &39

Intille, 2004; Ravi et al., 2005; Altun et al., 2010; Mannini & Sabatini, 2010). Algorithms such as support40

vector machines (SVM), classification trees, random forests, among others, have also recently been used41

for classification of animal acceleration data (Nathan et al., 2012; Carroll et al., 2014; Graf et al., 2015).42

For example, Nathan et al. (2012) compared the effectiveness of five machine learning algorithms to43

distinguish between eating, running, standing, active flight, passive flight, general preening and lying44

down, for griffon vultures.45

Most machine learning algorithms assume independence between individual observations. However,46

in sequential acceleration data there is a natural dependence between observations of behaviour —47

once initiated, particular animal behaviours often last for periods longer than the sampling frequency.48

This fact has been largely ignored in most applications of classification approaches. The studies where49

serial dependence has been explicitly modelled have mostly relied on hidden Markov models (HMMs)50

(Ward et al., 2006; He et al., 2007; Mannini & Sabatini, 2010, 2011). HMMs are stochastic time series51

models which assume that the observed time series, the so-called state-dependent process, is driven by52

an unobservable state process. In this scenario, the former corresponds to the acceleration data and the53

latter to the behavioural classes. Typically, and in common with the aforementioned machine learning54

approaches, in the training stage, the states of the HMM were known a priori, requiring corresponding55

data derived from direct observations.56

There are two main difficulties with such a supervised learning approach. First, while there has been57

much success in classification of human acceleration data, where training data can usually be obtained58

with minimal effort, this may not be feasible for some animals. Humans can easily be observed in a59

laboratory setting, given instructions or monitored in more realistic settings, such as walking outdoors or60

in their home (e.g. Leenders et al., 2000). In certain cases, animals can also be monitored in a laboratory61

setting (Wilson et al., 2008), but movement patterns recorded in the lab from free-ranging animals may62

not appear exactly the same as in data collected while in more natural settings. Conversely, many63

behaviours can only be observed in natural settings, although there has been success using surrogate64

species for classification of behavioural modes (Shepard et al., 2008; Nathan et al., 2012; Campbell et al.,65

2014; Brown et al., 2013).66

Second, human acceleration data has commonly been used as a tool for health monitoring and other67

situations where the focus is on (state) prediction, as opposed to learning how external factors drive68

the behaviours. Classification of behaviours alone, while certainly of interest in many scenarios, may69

not lead to biologically interesting inference. Once the classification has been done, the task of relating70

these states to environmental (and other) covariates in order to identify drivers in behaviours remains.71

Moreover, it is difficult to make appropriate inferential statements as the classifications are not without72

error, propagating the state uncertainty through to the modelled effect of the covariates.73

In the supervised learning context, i.e. when classification is the main purpose of an analysis, we train74
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the HMM to recognize specific behaviours. Alternatively, HMMs can also be used in an unsupervised75

learning context, i.e. when there are no labelled data. In an unsupervised learning context the states76

are not pre-defined to represent a specific behaviour. Instead, the states will be allocated such that the77

model captures as much as possible of the marginal distribution of the observations, i.e. the distribution78

of an observation at a randomly chosen time point, not conditional on the previous history of the79

process, as well as their correlation structure. If biologically meaningful response variables from the80

acceleration data are considered, then the HMM states will usually represent interpretable activity levels81

or even proxies of behavioural modes. Being data-driven the states can be as, if not more, informative82

in the unsupervised learning setting than the alternatives. We can then incorporate exogenous or,83

where available, endogenous variable(s) of interest, to make inferential statements. HMMs and related84

state-switching models, in particular state-space models, have successfully been implemented to identify85

drivers of movement based on tracking data (Patterson et al., 2009), and can similarly be applied in the86

context of accelerometer data. For example, Phillips et al. (2015) applied HMMs in an unsupervised87

learning context to understand the behaviour of free swimming tuna from vertical movement data88

collected by data-storage tags. We will implement an unsupervised learning approach for another89

difficult to observe marine species, the blacktip reef shark, and a volant species, the black eagle.90

In this paper we review HMM-based approaches to the analysis of animal accelerometer data. In91

Section 2 we will provide an overview of accelerometer data and connect the data processing step to the92

HMM-based approaches described in Section 3. We will typically refer to the term behavioural class,93

rather than differentiate between identification of specific movements (e.g. wing flapping) or behaviours94

(e.g. foraging). In Section 4 we demonstrate the use of HMMs with real data examples from marine95

and aerial systems.96

2 Accelerometer data97

Accelerometer devices measure in up to three axes, which can be described relative to the body of the98

animal; longitudinal (surge), lateral (sway) and dorso-ventral (heave). Acceleration recorded along one99

or two axes can be used to measure movement in parts of the body, e.g. the mandible (Suzuki et al.,100

2009; Naito et al., 2010; Iwata et al., 2015), or aspects of whole body acceleration, e.g. longitudinal101

surge (Sakamoto et al., 2009). Currently, acceleration is most commonly recorded in three axes and, to102

a lesser degree, in two axes (Brown et al., 2013), to measure locomotion.103

104

2.1 Data Processing for Classification105

While the observed acceleration data can be used to identify specific movements in animals, HMMs and106

other machine learning algorithms require more information to accurately classify the unlabelled data.107

These methods require appropriate features, i.e. summary statistics, from a window (or sliding window)108
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of observations. The derived features should be driven by the classes of movements that have been109

defined and chosen in such a way to accentuate the differences in observed acceleration measurements.110

There are many commonalities between the features used in applications of classification of accelera-111

tion data, though naturally no one optimal set exists (Bao & Intille, 2004; Martiskainen et al., 2009;112

Nathan et al., 2012; Brown et al., 2013). For instance, Nathan et al. (2012) used thirty-eight features113

in order to distinguish between eating, running, standing, active flight, passive flight, general preening114

and lying down, for griffon vultures, while Graf et al. (2015) used eight features to distinguish between115

standing, walking, swimming, feeding, diving and grooming of Eurasian beavers. In each case, means116

and variances of each of the three axes are used, as well as overall dynamic body acceleration (ODBA),117

the sum of dynamic body acceleration from the three axis, among others.118

119

2.2 Connecting Measures to Behaviours120

When the aim is to classify the acceleration data, data processing is driven by identifying a set of features121

that can be used to distinguish between specific behaviours, even if those features are not themselves122

interpretable as a specific behaviour when considered on their own. However, there are metrics derived123

from accelerometer data that, on their own, can be used as proxies for behaviour and as input to an124

HMM. Repeating patterns in at least one axis tend to arise from behaviours such as stroking (Sakamoto125

et al., 2009), flapping, running or walking (Shepard et al., 2008), whereas sudden changes, corresponding126

to bursts of acceleration, are often associated with prey pursuits or capture (Suzuki et al., 2009; Simon127

et al., 2012; Ydesen et al., 2014; Heerah et al., 2014), as well as predator avoidance or conflict.128

In addition to behaviour, several measures can be used to summarise effort or exertion and relate129

acceleration to activity levels, such as ODBA (Wilson et al., 2006; Gleiss et al., 2011; Elliott et al., 2013;130

Gleiss et al., 2013) and vectorial dynamic body acceleration (VeDBA) (Qasem et al., 2012). Minimum131

specific acceleration (MSA) (Simon et al., 2012) can be used to disentangle the gravitational component132

of acceleration (static acceleration) from the movement signal or specific acceleration (also dynamic133

acceleration). One of the simplest and most unambiguous interpretations of static acceleration data is134

body posture, which in many cases can be directly interpreted as a specific behaviour (Wilson et al.,135

2008; Shepard et al., 2008).136

Both ODBA and MSA are used to reduce the dimensionality of 3D acceleration data while retaining137

important information (e.g. Wilson et al. (2008); Simon et al. (2012)). They remove the gravitational138

component from the acceleration signature and produce an overall value of the dynamic acceleration139

experienced by the animal. ODBA is derived by smoothing over a time period, e.g. 1 sec, making it140

useful for continuous data, whereas MSA is calculated point-wise (as the norm of the three vectors141

minus 1 for the effect of gravity) and is more suited to lower resolution acceleration data.142
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3 Analysis of accelerometer data143

We will first provide a brief overview of the HMM framework (Section 3.1). Subsequently, in Section 3.2,144

we will review how HMMs can be used for state prediction, i.e. classification of animal accelerometer145

data. In Section 3.3, we focus on the implementation of HMMs in a setting where the meaning of the146

states is driven entirely by the data and the focus lies on general inference rather than classification147

only.148

3.1 Hidden Markov models149

An HMM is a stochastic time series model involving two layers: an observable state-dependent process,150

denoted by {Yt}Tt=1 (in the univariate case), and an unobservable state process, denoted by {Ct}Tt=1. The151

state-dependent process models the observations, while the state process is a latent factor influencing the152

distribution of the observations. In our case, the observations are the accelerometer metrics considered,153

and the latent states are closely related to the animal’s behavioural state. More specifically, the state154

process {Ct} takes on a finite number of possible values, 1, . . . ,M , and its value at time t, ct, selects155

which of M possible component distributions generates observation yt. The Markov property is assumed156

for {Ct}, i.e. the (behavioural) state at time t only depends on the (behavioural) state at time t − 1,157

such that evolution of the process over time is completely characterized by the one-step state transition158

probabilities. These models are natural and intuitive candidates for modelling animal accelerometer159

data, for two reasons: 1) they directly account for the fact that any corresponding observation will160

be driven by the underlying behavioural state, or general activity level, of the animal, and 2) they161

accommodate serial correlation in the time series by allowing states to be persistent. HMMs seek162

to capture the strong autocorrelation in accelerometer data in a mechanistic way, rather than either163

neglecting this feature completely or only including it in a nuisance error term. HMMs can therefore be164

used for inference on complex temporal patterns, including the behavioural state-switching dynamics165

and how these are driven by environmental variables (Patterson et al., 2009; McKellar et al., 2015).166

To complete the basic HMM formulation, we first summarize the probabilities of transitions between167

the different states in the M × M transition probability matrix (t.p.m.) Γ = (γij), where γij =168

Pr
(
Ct+1 = j|Ct = i

)
(for any t), i, j = 1, . . . ,M . Note that here we are assuming that the state169

transition probabilities are constant over time; this assumption will be relaxed in Section 3.3. The170

initial state probabilities are summarized in the row vector δ, where δi = Pr(C1 = i), i = 1, . . . ,M .171

Second, we need to specify state-dependent distributions (sometimes called emission distributions),172

p(yt|Ct = m), or more succinctly pm(yt), for m = 1, ...,M . These distributions can be discrete or173

continuous, and possibly also multivariate (in which case we write yt = (y1t, . . . , yRt)). Usually, the174

same parametric distribution is assigned to all M states, such that each state differs in terms of its175

associated values of the parameters. Selection is driven by the data itself, e.g. count data or continuous176

observations.177
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3.2 State prediction178

HMMs provide a solid framework for the classification of data with strong serial dependence, such as179

sequential acceleration data, which are often processed to represent movements over a few seconds, or180

less, at a time (Ward et al., 2006; He et al., 2007; Mannini & Sabatini, 2010). In this section, we will181

cover the implementation and testing of an HMM when the focus of the analysis is state prediction. A182

full example and R code implementing this approach is provided in the Supplementary material.183

State prediction can be accomplished in three manners, commonly referred to as supervised, semi-184

supervised, or unsupervised learning. We will discuss the implementation of an HMM in the supervised185

learning case, such that each state will correspond to one behaviour of interest, and briefly comment186

on the other two cases at the end of the section. Hastie et al. (2001) detail how to split the labelled187

time series into training, validation, and testing data, in order to estimate the prediction error. Other188

approaches to estimating prediction error, such as a leave-one-out cross-validation (here treating a time189

series as an observation), are also provided in detail.190

Since the states are known, the maximum likelihood estimates (MLEs) of the HMM parameters are191

obtained by maximizing the complete-data likelihood, which conveniently splits into several independent192

parts, each of which is fairly straightforward to maximize (details provided in the Appendix). First, the193

m-th entry of δ̂ is simply the proportion of the time series that start in state m. Second, the entries of194

the t.p.m. are estimated by195

γ̂ij =
# transitions from state i to state j

total # transitions from state i
,196

for i, j = 1, ...,M . (Note this is the MLE conditional on the initial state, c1.) Finally, for each m =197

1, . . . ,M , the parameters of the state-dependent distribution given state m are estimated using only the198

observations allocated to state m. As a multivariate normal distribution (MVN) is a common choice in199

these cases, we cover the steps to fit the HMM with MVN state-dependent distributions in the Appendix200

and Supplementary material. Given a fitted HMM, we can use the Viterbi algorithm to decode the most201

likely state sequence, thereby assigning each observation to a state, at low computational effort. Full202

details for state decoding are provided in Zucchini et al. (2016). The state predictions can be compared203

to the known states, and the proportion of correctly decoded states serves as an estimate of the prediction204

accuracy.205

As mentioned previously, there are two other approaches to state-prediction: semi-supervised and206

unsupervised learning. In a semi-supervised approach, classes are pre-defined, as in the supervised207

learning context, but there is additional flexibility provided in that the data do not have to be assigned208

to one of the pre-defined classes. Instead, multiple additional states can be estimated from the data. In209

an unsupervised learning approach, classes are not pre-defined in any manner. In these two cases, one210

objective can be to identify the number of distinct movement patterns exhibited by the animal, with211

the resulting estimated HMM states depending on the features selected for interpretation. However, as212
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multiple movement modes can correspond to the same behaviour (e.g foraging), interpretation of the213

estimated states should be made with caution. In the next section, we will detail the implementation214

of the unsupervised learning approach where the focus is to construct biologically relevant classes of215

animal behaviour in order to make inferential statements.216

3.3 Inference217

So far, we have mostly focused on the case where there is a training sample, i.e. acceleration data together218

with the associated behavioural states. Corresponding analyses involve training the HMM based on such219

labelled data and then using that HMM to categorize incoming new, unlabelled data. While certainly of220

interest in some settings, in practice, more often than not, labelled data will not be available but only the221

accelerometer data. In such unsupervised learning settings, the HMM framework can be equally useful,222

but is typically applied for different purposes than in classification. More specifically, the meaning of the223

states in such cases is often not of interest per se. Instead, an HMM is used simply as an approximate224

representation of the real data-generating process, and this may or may not entail that the nominal225

HMM states are biologically meaningful. (However, metrics derived from the accelerometer data, as226

described in Section 2, have been shown to provide insight into activity levels or correspond to classes227

of behaviours, such that when used as response variables in the HMM these can lead to biologically228

interpretable states.) Unsupervised learning of HMMs for accelerometer data has the advantage that229

the states are estimated in a data-driven manner. In particular, for many of the metrics described in230

Section 2 that are connected to behaviours, assignment of classes is difficult, to say the least, especially231

for animals where behaviours are not well-defined. These include animals which cannot be directly232

observed for long periods such as aquatic organisms.233

There are three different possible purposes of having an approximate representation of the real pro-234

cess: (i) a mathematical description of the dynamics of the system (e.g. in order to have a concise235

description of how accelerometer measurements evolve over time, in terms of a small number of in-236

terpretable parameters and associated stochastic distributions); (ii) extraction of information (e.g. a237

hypothesis test on whether or not some environmental covariate increases the probability of an animal238

switching to a particular behavioural state); (iii) prediction of future or missing values (e.g. behavioural239

state prediction given accelerometer data) — see Konishi & Kitagawa (2008). In the ecological litera-240

ture on animal movement modelling, HMMs are used primarily to address (i) and (ii), the former in the241

sense that concise descriptions of movement patterns are sought, the latter in the sense that inference242

on the interaction of animals with their environment is drawn. In general, the ability to make inferential243

statements provides an avenue to answer questions about the behavioural processes, movement patterns244

and transitions between behaviours under different in relation to covariates.245

Addressing a research question related to aim (ii) usually involves the incorporation of covariates246

into the statistical model. In the HMM setting, this is commonly done at the level of the hidden states.247

For the general case of time-varying covariates, we define the corresponding time-dependent transition248
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probability matrix Γ(t) = (γ
(t)
ij ), where γ

(t)
ij = Pr(Ct+1 = j|Ct = i). The transition probabilities at time249

t, γ
(t)
ij , can then be related to a vector of environmental (or other) covariates,

(
ω
(t)
1 , . . . , ω

(t)
p

)
, via the250

multinomial logit link:251

γ
(t)
ij =

exp(ηij)∑N
k=1 exp(ηik)

, where ηij =

β
(ij)
0 +

∑p
l=1 β

(ij)
l ω

(t)
l if i 6= j;

0 otherwise.

252

Essentially there is one multinomial logit link specification for each row of the matrix Γ(t), and the253

entries on the diagonal of the matrix serve as reference categories.254

While with labelled data the likelihood of interest is the complete-data likelihood, for unlabelled255

data the likelihood of interest is the density of the observations only, L = p(y1 , . . . ,yT ), the evaluation256

of which requires the consideration of all possible state sequences that might have given rise to these257

data. The powerful forward algorithm, detailed in the Appendix, can be applied to accomplish this,258

opening up a straightforward and usually feasible avenue to MLEs, namely direct numerical maximiza-259

tion of the likelihood. In practice, one needs to consider multiple starting values in order to make260

sure to have found the global maximum. The Expectation-Maximization algorithm provides a popular261

alternative route to MLEs, despite being much more technically involved and having no clear practical262

advantages (MacDonald, 2014). Since it is our view that users are better off focusing on the simpler263

direct maximization approach, it is only this approach that we present in detail in the Appendix and264

Supplementary material (for a more comprehensive introduction to maximum likelihood estimation for265

HMMs, see Zucchini et al., 2016).266

Model selection techniques, in particular information criteria, can be used to choose an adequate267

family of state-dependent distributions, to select an appropriate number of states or to determine268

whether or not a covariate should be included in the model. However, users should not blindly follow269

such information criteria, especially with regard to the selection of the number of states. For animal270

behaviour data, it is our experience that such formal model selection approaches tend to favour models271

with more states than would be expected based on biological intuition, often to an extent such that272

selected models become near-impossible to interpret and very difficult to work with in practice (Langrock273

et al., 2015). One explanation for this is that often additional states are included to compensate for a274

model formulation that ignores some pattern in the data. These patterns can be due to the influence of275

an unobserved covariate, within-day variation or individual heterogeneity which is not accounted for, a276

violation of the Markov assumption or outliers — which usually cannot be avoided in data structures277

as complex as those studied here, and which may not be pertinent to the ultimate aim of the study.278

Further, accelerometer data is directly connected to the movement of an animal, such that an HMM279

with a large number of states may reflect multiple movement modes, or general classes of movement,280

connected to the same behavioural class, e.g. foraging or active behaviour. In such cases a healthy dose281

of pragmatism is required. If the choice of the number of states turns out to be difficult, then it is often282

useful to carefully examine all plausible models (with lower and higher numbers of states), e.g. using283
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model checking tools, in order to understand what exactly it is that the more complex models capture284

that is not already captured by the simpler models. Langrock et al. (2015) discuss this issue in detail,285

demonstrating many of the points made above in a real data example.286

The HMM framework encompasses various other useful tools for drawing inference. In particular,287

incorporating random effects into the model formulation will be crucial when there is substantial hetero-288

geneity across multiple individuals observed. There are various ways in which this can be accomplished289

within the class of HMMs — see McKellar et al. (2015) and Chapter 13 in Zucchini et al. (2016) for290

comprehensive overviews, including discussions on the importance of acknowledging any potential het-291

erogeneity. Furthermore, the dependence structure can be modified in various ways, e.g. allowing for292

more complex memory in the state process without losing the ability to efficiently calculate the likeli-293

hood using the forward algorithm (Langrock et al., 2012). Assessment of the model adequacy, i.e. model294

checking, is commonly done using (pseudo-)residuals, which can reveal any notable lack of fit (Zucchini295

et al., 2016).296

4 Real data examples297

4.1 Modelling activity in a soaring raptor298

Large soaring birds, like raptors, depend on favourable meteorological conditions, as well as the un-299

derlying topography, for generation of updrafts required for low-energy flight (Pennycuick, 2008). Lift300

availability is known to be driven largely by wind speed and temperature, as well as their interaction301

with the underlying topography, though other factors also contribute. Lift adequate for soaring flight is302

generated by two mechanisms; (1) by upward thermal convection of air warmed by solar radiation (Ákos303

et al., 2010) (thermal soaring), and (2) by the movement of air over slopes and ridges in the landscape304

(orographic or ridge soaring).305

Recently, empirical studies relating bird activity patterns to weather conditions have become pos-306

sible due to advances in bio-logging technology that allows for collection of high-resolution movement307

(e.g. acceleration) data. In particular, acceleration data can be used to distinguish between different308

movement modes or, more simply, as a proxy of overall activity level, even if they do not correspond309

clearly to different behaviours (Williams et al., 2015).310

An adult Verreaux’s eagle (Aquila verreauxii) was instrumented with a remotely downloadable multi-311

sensor data-logger (UvABiTS, University of Amsterdam, The Netherlands, Bouten et al. (2013)) in the312

Western Cape, South Africa, in 2013. The data-logger recorded 3D acceleration (at 20 Hz) for 1 second313

directly after recording GPS location. The GPS location sampling rate depended on the solar-powered314

battery charge and thus was higher during the mid-day. Data were collected over 9 consecutive days,315

with a variable amount of acceleration data sampled each day and none collected overnight.316

We were primarily interested in identifying potential drivers of activity level. As such, we extracted317

the MSA, which serves as an index of activity, over each 1 second sample of acceleration data recorded.318
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On average, each day produced approximately 135 observations (s.e. 23.32). Before fitting an HMM to319

the time series of MSA values, we first needed to resolve the irregular sampling of the acceleration data,320

as this is a clear violation of the HMM assumptions. The time series of MSA across days were taken to321

be independent and, within a day, the acceleration data was subsampled to produce one value of MSA322

every 112 seconds. Only 1 consecutive missing value was allowed before splitting the daily MSA time323

series into two or more segments.324

The histogram of MSA values revealed two peaks close to zero, which may reflect general low-active325

behaviours such as roosting and preening. As we did not wish to discriminate between these two general326

types of behaviours, we fit a 2-state HMM with state 1 represented by a mixture of gamma distributions327

and a gamma distribution for state 2. The fitted state-dependent densities are shown in Figure 2, which328

we post-hoc interpreted as low-activity and high-activity behaviour. Although we do not connect state329

2 to a specific flight behaviour, such as orographic soaring, we expect that behaviours requiring more330

energy are reflected by larger MSA values.331

In order to examine the effect of wind speed and temperature on the state-switching dynamics be-332

tween the two activity levels, we obtained hourly observations from the South African Weather Services333

(Lambert’s Bay Station). The station is approximately 30 km from the general area in which the eagle334

was tracked, which lead to a slight spatial and temporal mismatch between the available weather data335

and the conditions actually experienced by the eagle. The range of temperatures and wind speeds expe-336

rienced by the eagle during the study period was between 12.3–31.5 ◦C, and 0–7.4 m/sec, respectively.337

We allowed the entries of the t.p.m. to be a function of up to wind speed, temperature and their inter-338

action. The wind-only model is written as logit(γij(t)) = β0i + β1ix1t, for i = 1, 2, j 6= i, t = 1, . . . , T ,339

with the intercept term β0,i reflecting the t.p.m. when wind speed is at 0 m/sec. The model including340

wind speed alone was favoured by the Bayesian Information Criterion (BIC) and the full model, with341

temperature and the interaction term, favoured by the Akaike Information Criterion (AIC) (Table 1).342

After examination of the (pseudo-)residuals of the models selected by AIC and BIC, we selected the343

model favoured by BIC as there was a similar lack-of-fit evident in both models. Further, we may344

not have captured a large enough range of temperatures in order to make general inferences about its345

effect on the activity levels of the eagle, and as such were cautious of over-fitting or over-interpreting346

the model results. We present confidence intervals and a plot of the (pseudo-)residuals for assessment347

of goodness-of-fit in the Appendix for the model with only wind speed included. R code to simulate348

MSA data and fit a 2-state HMM with the t.p.m. entries as functions of wind speed is included in the349

Supplementary material.350

The estimated state transition probabilities suggest that, as wind speed increases, (i) the eagle has a351

very slightly increased chance of switching to the high-activity state when in the low-activity state, and352

(ii) spends much longer periods of time, on average, in the active state. As a consequence, the equilibrium353

(stationary) distribution for fixed wind speeds (Patterson et al., 2009) indicates that the eagle spends354

more time in the active state overall as wind speed increases (Figure 3). Windier conditions favour355
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orographic soaring, as demonstrated by studies on migrating golden eagles Aquila chrysaetos, which is356

a more active behaviour (Lanzone et al., 2012). There is also theoretical evidence to suggest that, in357

general, flying is more energetically demanding in high winds (Pennycuick, 1972).358

4.2 Diel activity changes in a reef-associated shark359

Many species of shark are upper trophic level predators may serve an important role in marine ecosys-360

tems. However determining the intensity of their predatory behaviour requires modelling the temporal361

component as their activity levels are likely to follow a diel and/or tidal cycle (e.g. Gleiss et al., 2013;362

Papastamatiou et al., 2015). Acceleration sensors provide a direct measure of activity, however, many363

species of shark swim continuously making it difficult to define specific behaviours (e.g. they are never364

truly at rest), making conventional classification methods problematic. HMMs can identify changes365

in behavioural states and how these may be related to time of day, tidal state, swimming depth, or366

water temperature. To demonstrate this, we applied HMMs to accelerometry data obtained from a367

free-ranging blacktip reef shark (Carcharhinus melanopterus) at Palmyra Atoll in the central Pacific368

ocean (data taken from Papastamatiou et al., 2015). A multi-sensor package was attached to the dorsal369

fin of a 117 cm female shark. The multi-sensor data-logger (ORI400-D3GT, Little Leonardo, Tokyo,370

Japan) recorded 3D acceleration (at 20 Hz), depth and water temperature (at 1 Hz) and was embedded371

in a foam float which detached from the shark after four days (see Papastamatiou et al., 2015). The372

package also contained a VHF transmitter allowing recovery at the surface after detachment.373

In order to examine active behaviour, we calculated the average ODBA of the shark over 1 second374

intervals, which resulted in 321,815 observations (after removing the first four hours of data). Figure375

4 displays the ODBA time series of one day. Compared to metrics such as tail-beat frequency, ODBA376

has the advantage of measuring change in behaviour in all axes. For example, if the shark is nose down377

at the seafloor, attempting to capture prey, its tail-beat frequency may be low but it is still active. As378

we are interested in the times of day the shark was more active, as well as tide effects, we applied a379

2-state HMM with one state post-hoc interpreted as representing less active behaviour and the other380

more active behaviour.381

Although there are clear spikes in ODBA that point to higher energetic activities, various combi-382

nations of parametric distributions for state 1 and 2 led to vastly different state-dependent densities.383

Further, the ODBA values had many extreme values that needed to be accommodated, which further in-384

creased the difficulties of selecting appropriate state-dependent distributions. As ODBA is not a metric385

that can easily be divided into active/inactive behaviours in sharks, we estimated the state-dependent386

densities nonparametrically, in both states, in order to minimize the bias introduced by assigning inad-387

equate parametric distributions (Langrock et al., 2015). Figure 5 displays the fitted distributions.388

To examine potential diel and tide effects on activity levels, we let the entries of the t.p.m. be389

functions of up to two covariates: time of day and tide level (ebb, flood, low, and high). Tide data was390

obtained from the NOAA tides and currents website for Palmyra Atoll and was processed by denoting391
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high or low tide as ±1 hour from reported high or low tide times. Time of day is represented by two392

trigonometric functions with period 24 hours, cos(2πt/86400) and sin(2πt/86400) (86,400 is the number393

of seconds in a day). We use three indicator variables, x1t, x2t and x3t, for tide levels high, flood, and394

ebb, respectively, such that x1t = 1 when tide level is high and x1t = 0 otherwise, and so on, which gives395

the entries of the t.p.m. the following form396

logit(γij(t)) = β0i + β1icos(2πt/86400) + β2isin(2πt/86400) + β3ix1t + β4ix2t + β5ix3t397

for i = 1, 2, j 6= i, t = 1, . . . , 86400. The intercept term β0,i corresponds to low tide.398

Based on the selected model (cf. Table 2), with confidence intervals and (pseudo-)residuals provided399

in the Appendix, the shark’s activity levels were, on average, lowest from approximately 9:00 – 13:00400

and highest from 21:00 – 1:00. In Figure 6, we see that the shark was more active during high tide in401

general when compared to flood, low or ebb tide. While the equilibrium (or stationary) distribution402

associated with low and ebb tide overlap, the state-dwell probabilities, i.e. the diagonal entries of the403

t.p.m. corresponding to the probability of remaining in the same state, are higher during ebb tide than404

in low tide. Naturally in a short time series the tide levels will be correlated with certain times of the405

day, but a longer time series or a joint modelling of multiple time series, with tide levels observed during406

all times of day, can provide robust estimates of the effect of tide on activity level using the HMM407

formulation provided here.408

Using the Viterbi algorithm, we decoded the optimal state sequence to underlie the ODBA time409

series. To further understand the effect of vertical habitat on behaviour, we related the decoded state410

sequence to a grid of depth and temperature values, shown in Figure 7. The shark spent most of its time411

over the nearly five day period in depths of about 3-6 metres and between 28-29 ◦C, with some higher412

counts also in shallower waters, which is reflected in the state 2 counts. However, the percentages of413

state 2 observations reveals that the shark was generally more active when near the surface in waters of414

28-29 ◦C. There was generally less active behaviour exhibited when the individual was in very shallow415

warm water (> 29 ◦C).416

5 Discussion417

We detailed two approaches for analysing animal accelerometer data with HMMs: a supervised learning418

approach for state prediction, such that classification is of primary interest, and an unsupervised learning419

approach, where the states reflect biologically meaningful classes of behaviour, in order to infer drivers420

of animal behaviour. The aim of a study and the type of data available will determine which of the two421

is to be preferred. When the objective is to do classification and there is a set of pre-defined behaviours422

of interest, then the model’s ability to correctly predict and categorize behaviours is of main interest. In423

this instance, a supervised learning approach may be applied. One of the benefits of such an approach424

is that the behavioural classes are exactly defined, making interpretation relatively straightforward.425
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Alternatively, if the objective is to infer (or, colloquially speaking, to ‘learn’) new aspects of animal426

behaviour, then the unsupervised learning approach provides an excellent framework. The latter comes427

with the implicit caveat that the states will not necessarily map directly to specific animal behaviours.428

Any post-hoc behavioural interpretation of the estimated states is directly connected to the metric(s)429

used, and must draw from background biological knowledge of the species of interest. In many cases,430

behaviours such as foraging may not be exclusive to one state or another. Nonetheless, if the model is431

able to identify bouts of behaviour which consistently re-appear, then it is often likely that these signify432

something important in the animal’s behavioural repertoire and are worthy of further investigation.433

Even when classification is the goal of an analysis, there are certainly practical scenarios which434

preclude the use of an HMM, e.g. if the training data do not reflect the transitions between behaviours435

or if there is insufficient data. Moreover, multiple studies have shown that other machine learning436

algorithms, e.g. support vector machines (SVM) or random forests, can work well for classification of437

animal acceleration data (Martiskainen et al., 2009; Nathan et al., 2012; Carroll et al., 2014; Graf et al.,438

2015). However, disregarding the serial dependence in the acceleration data usually is an unrealistic439

assumption, which often goes unmentioned or is treated as an afterthought. Adopting the assumption440

of independence is particularly risky if inferential statistics are applied to the output of say a machine441

learning algorithm. In these cases, secondarily applied statistical tests will implicitly assume that442

the machine learning categorizations contain more information content than is warranted, potentially443

leading to spurious results. This is not just a statistical nuance and can be a crucial point. Such tests444

are often applied as decision making tools to sort out “what matters” and setting the direction for445

much further research effort. Also, in assuming independence, one allows for classifications that may446

not be biologically realistic or must filter the classifications to properly identify a specific behaviour.447

For instance, Carroll et al. (2014) used a SVM where one of the primary interests was to identify448

prey handling/capture for penguins at sea. To confirm a prey capture event, they ruled that if the449

SVM classified three consecutive observations as prey-handling this counted as a true prey capture. In450

contrast, an HMM would have bypassed the need to filter through the classification results by accounting451

for the serial dependence in observations corresponding to prey handling. In general, many behaviours452

persist over longer stretches of time than those at which the data is processed, also necessitating the453

use of a model that can account for the serial dependence. It may be difficult for any machine learning454

algorithm that assumes independence to properly classify a sequence of observations into the same class,455

unless the boundaries between classes are well-defined. In the context of recognition tasks, e.g. speech456

or pattern recognition, HMMs have proven to be extremely successful tools for classification precisely457

because they do account for the serial dependence in the signal of interest (Rabiner, 1989).458

In the literature, inference on behavioural state-switching dynamics has sometimes been made using459

two-stage (or even three-stage) analyses, where HMMs (or other machine learning algorithms) are used to460

decode the behaviours underlying given observations, and subsequently a logistic regression is conducted461

for relating the decoded behaviours to covariates (see, e.g., Hart et al., 2010; Broekhuis et al., 2014). The462
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appeal of such an approach lies in the ease of implementation: fairly basic HMMs, without covariates,463

are fitted to the accelerometer data and used to decode the states, and, subsequently, standard regression464

software packages can be used to conduct a regression of the behavioural states on covariates. However,465

it is our view that such a multi-stage analysis is less suited to relating accelerometer data to covariates466

than the joint modelling approach presented in Section 3.3, for two reasons: (i) in the multi-stage467

analyses, the uncertainty in state estimates is usually not propagated through the different stages of468

analysis, and (ii) a regression analysis on decoded states needs to take into account the high serial469

correlation in those states. Rather than ignoring these issues or trying to address them within a multi-470

stage analysis (which will render such an approach technically challenging), a direct joint modelling471

approach, where neither of the problems arise, seems preferable.472

Using a direct joint modelling approach in Section 4 we were able to learn about the effects that473

atmospheric variables have on activity levels of a soaring raptor, while for the blacktip reef shark474

we examined temporal and tidal inputs effects on its activity levels. The HMM produced similar475

temporal patterns of activity to a previous analysis of the blacktip reef shark data set using GAMMs476

(Papastamatiou et al., 2015). Both analytical methods revealed crepuscular and/or nocturnal increases477

in activity with a tidal component, with the shark most active at the high tide or as tide was about to478

ebb. By incorporating swimming depth and temperature, it was also revealed that highest activity was479

seen when the shark was at the surface in waters of 28-29 ◦C. More importantly, the analysis showed that480

the shark was inactive when in very warm (>29 ◦C) shallow water or deeper water. These results agree481

with a previous hypothesis that sharks are ‘hunting warm, and resting warmer’ and use warmer water482

(> 29 ◦C) to increase the rate of some physiological function such as digestion, and not for foraging483

(see Papastamatiou et al., 2015). The HMM in this case allows us to explain the drivers of activity in484

the shark and move beyond just describing its movements, but rather explain ‘why’ it may be moving485

or selecting certain habitats. The HMM also provided a measure of the change in probability of the486

individual being in active states. Although there was a clear temporal pattern of activity, the HMM487

identified the shark as 30% more likely to be in an active state during the late evening hours. For the488

adult black eagle, the HMM provided a direct modelling approach to examine the effect of wind speed489

and temperature on its activity level. The results suggests that the black eagle spent more time in the490

relatively active state overall, and was more likely active in windier conditions. These results are in line491

with theoretical (Pennycuick, 1972) and empirical (Lanzone et al., 2012) studies.492

We have covered the basic HMM framework here, but the popularity of the HMM framework is493

due in part to its many extensions. In particular, there are two HMM extensions that have been494

proven useful in classification of human activities: the hidden semi-Markov model (HSMM) (Langrock495

& Zucchini, 2012) and the hierarchical hidden Markov model (HHMM) (Fine et al., 1998). The HSMM496

models the time spent within a state by some probability distribution with support on the positive497

real integers, thereby allowing for more complex state dwell time distributions than can be provided498

by an HMM (namely only geometric distributions). For instance, an HMM may not model the time499
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spent in a resting behaviour adequately if the animal is known to rest for long periods of time. The500

HHMM provides the framework necessary to identify composite behaviours. For instance, lunge feeding501

in baleen whales is a composite behaviour made up of (1) initial increase in acceleration with (2) a502

positive pitch angle, as animals commonly approach prey schools from below, followed by (3) a rapid503

deceleration after the whale opens its mouth increasing its drag (Owen et al., 2015). The HHMM models504

each composite behaviour as its own HMM, and models the transitions between composite behaviours,505

i.e. switches between HMMs.506
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8 Supporting Information659

Supporting Information Description
Appendix Further mathematical details for HMMs.

(Pseudo-)residual plots and model checking
for both HMM applications presented in
manuscript.

Comparing Supervised
Learning Approaches

A comparison of four supervised learning ap-
proaches when there is varying levels of auto-
correlation present in the data.

R code for HMMs Documented R code presented for applications
of HMMs in both a supervised and unsuper-
vised learning approach.
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9 Tables & Figures

Model Log-likelihood AIC ∆ AIC BIC ∆ BIC

No covariates 2000.2 -3980.4 21.6 -3929.4 21.6
Temperature 2001.9 -3979.9 22.1 -3918.6 17.0
Wind speed 2010.4 -3996.9 5.1 -3935.6 0
Wind speed, Temperature 2011.6 -3995.2 6.8 -3923.7 11.9
Wind speed, Temperature, 2017.0 -4002.0 0 -3920.3 15.3

Wind speed * Temperature

Table 1: Model fitting results for the Verreaux’s eagle. Based on the AIC the model selected is the full
model including wind speed, temperature and their interaction. Based on the BIC, the model selected
includes only wind speed.
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Model Log-likelihood AIC ∆ AIC BIC ∆ BIC

No covariates 639299.2 -1278370 779 -1277178 692
Time 639558.1 -1278872 277.2 -1277645 225
Time, High 639657.6 -1279063 86.2 -1277819 51
Time, High, Flood 639695.2 -1279130 19 -1277869 1
Time, High, Flood, Ebb 639708.7 -1279149 0 -1277870 0

Table 2: Model fitting results for a blacktip reef shark. Based on the AIC and BIC, the model selected
includes time of day and includes differences in activity levels based on all categories of tide levels.
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Figure 1: Minimum specific acceleration values derived from three-axis acceleration data from a Ver-
reaux’s eagle collected over 9 days, 16-24 July 2013 (top). Minimum specific acceleration values from
the 21st of April, corresponding to the shaded area in the upper plot (bottom).
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Figure 2: Histogram of minimum specific acceleration (MSA) from a Verreaux’s eagle, truncated at
MSA=2, with marginal density (the distribution of observations not conditional on process history)
and state-dependent densities weighted according to the proportion of observations assigned to each
state (left). Unweighted state-dependent densities (top right) and close-up of the tail behaviour of the
densities (bottom right). A square root coordinate transformation for the x-axis was used in all plots
and for the y-axis only for the tail behaviour plot.
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Figure 3: For the Verreaux’s eagle example, estimated state-dwell probabilities (probability of remaining
in a state) as a function of wind speed (left), and estimated equilibrium state probabilities (marginal
probability of a state at a fixed value of the covariate) as a function of wind speed (right).
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Figure 4: Overall dynamic body acceleration values from a blacktip reef shark, averaged over 1 second
intervals, for 13 July, 2013.
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Figure 5: Histogram of ODBA from a blacktip reef shark, truncated at ODBA=2, with marginal
density and state-dependent densities weighted according to the proportion of observations assigned to
each state. (left). Unweighted state-dependent densities (top right) and close-up of the tail behaviour
of the densities (bottom right). A square root coordinate transformation for the x-axis was used in all
plots and for the y-axis only for the tail behaviour plot.
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Figure 6: Implied stationary distribution for state 2, the more active state, by time of day and tide level
for the blacktip reef shark example. For tide levels, we distinguish between model estimates, such that
the corresponding tide level was observed at that time of day, and forecasts, where we did not observe
the tide level at that time of day.

30



0

2

4

6

8

10

28 29 30 31 32 33
Temperature (in Celsius)

D
ep

th
 (

m
)

0

500

1000

1500

Count

No. of Observations in State 2

0

2

4

6

8

10

28 29 30 31 32 33
Temperature (in Celsius)

D
ep

th
 (

m
)

0.00

0.25

0.50

0.75

1.00
Percentage

% Observations in State 2

Figure 7: For the blacktip reef shark example, the number of observations in each grid cell that cor-
respond to state 2. Zero counts appear in white. (left) Percentage of observations in each cell that
correspond to state 2. (right)
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