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Dynamics of a levitated microparticle in vacuum
trapped by a perfect vortex beam: three dimensional
motion around a complex optical potential
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We trap a single silica microparticle in a complex three dimensional optical potential with orbital angular
momentum in vacuum. The potential is formed by the generation of a “perfect vortex” in vacuum which,
upon propagation, evolves to a Bessel light field. The optical gradient and scattering forces interplay
with the inertial and gravitational forces acting on the trapped particle, to produce a rich variety of orbital
motions with respect to the propagation axis. As a result the particle undergoes a complex trajectory, part
of which is rotational motion in the plane of the “perfect vortex”. As the particle explores the whole three
dimensional volume and is not solely restricted to one anchor point, we are able to determine the three
dimensional optical potential in situ by tracking the particle. This represents the first demonstration of
trapping a microparticle within a complex three dimensional optical potential in vacuum. This may open
up new perspectives in levitated optomechanics with particle dynamics on complex trajectories. © 2017

Optical Society of America

OCIS codes: (140.7010) Laser trapping; (350.4855) Optical tweezers or optical manipulation; (260.6042) Singular optics.
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1. INTRODUCTION

Levitated optomechanics offers a range of new opportunities
and insights at the classical-quantum limit [1-7]. Importantly
the absence of a mechanical tether and minimal dissipation leads
to the realisation of high quality factors exceeding Q > 10'2 [8]
and has excellent potential for quantum metrology [9]. Whilst
the majority of studies have focused on linear optical momen-
tum transfer, some recent studies have shown interest in angular
momentum transfer to levitated microparticles [10-13], includ-
ing the transfer of orbital angular momentum (OAM) [14, 15]. In
such studies phase gradients due to inclined wavefronts of the
field can play a central role. By including both spin and orbital
angular momentum of light, levitated optomechanics can be a
powerful testbed to explore a particle’s rotational degree of free-
dom, complex orbital particle motion and may have relevance
to spin-orbit light-matter interactions [16, 17].

Vortices are ubiquitous in many areas of physics ranging from
optics, fluid dynamics, superconductivity, and quantum gases.
In the domain of optics, vortices are identified as singular points
encircled with helical phase profiles within a light beam, with a
characteristic dependence of exp(=£if¢) on the transverse angu-

lar coordinate ¢, which is described by Laguerre-Gaussian (LG)
transverse modes [18]. The topological charge or azimuthal in-
dex { of the beam denotes the integer multiple of 277 that the field
phase accumulates upon circling the beam centre. This topic
has gained prominence due to a diverse range of applications
in optical manipulation of microparticles, studies of cold atoms,
quantum gases, and quantum information processing. Whilst a
Laguerre-Gaussian beam scales in size with azimuthal index |¢|,
recently we have created a “perfect vortex” beam whose radial
intensity profile and radius are both independent of topological
charge, which has gained significant interest for optical manipu-
lation in liquid [19, 20]. It is important to note that such a perfect
vortex beam is the Fourier transform of a Bessel function and
thus realising an annulus with no spatial variation for differing
¢ values, in the sample plane.

In optical traps operating in liquid, the last two decades have
seen a move beyond single beam traps to light fields of a more
complex three dimensional form [21, 22]. This has included both
rotation around the particle axis and with light fields possessing
OAM [23, 24]. However, in levitated optomechanics, the vast
majority of studies have confined a single particle to a single
beam trap. It is intriguing to explore trapping in more complex
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three dimensional optical potentials including OAM, which may
open up new possibilities for cavity-optomechanics studies.

In this article, we create a perfect vortex beam, which is the
Fourier transform of a Bessel beam. Therefore over the three di-
mensional space, one would expect the perfect vortex to evolve
on propagation to a Bessel beam. For the first time, we trap
microparticles within this complex three dimensional optical
potential with OAM in vacuum. We load individual silica mi-
croparticles into this field and observe their trajectories. The
optical gradient and scattering forces interplay with the inertial
and gravitational forces acting on the trapped particle, includ-
ing the rotational degrees of freedom. As a result the trapped
microparticle exhibits a complex three dimensional motion that
includes a periodic orbital motion between the perfect vortex
and the Bessel beam. We are able to determine the three dimen-
sional optical potential by tracking the particle motion in situ.
This represents the first demonstration of trapping mesoscopic
particles within a complex three dimensional optical potential in-
cluding OAM in vacuum. This approach can open up new forms
of optical conveyors in vacuum for atoms [25] and mesoscopic
particles [26] and new possibilities for fundamental studies of
transport phenomena in complex geometries, using mesoscopic
dielectric particles, similar to ongoing work in atomtronics [27].

2. NUMERICAL SIMULATIONS

When an axicon is illuminated with a Gaussian beam, a Bessel
beam is formed in the near-field, which transforms upon prop-
agation to an annulus in the far field. Previously, we created a
“perfect vortex” beam, which can vary in azimuthal index inde-
pendent of radial scaling and intensity variation, by illuminating
a spatial light modulator (SLM) with this annulus and directly
imaging the SLM plane onto the trapping (sample) plane [19, 20].
In this way the Bessel beam is also formed at the conjugate plane
of the pupil of the microscope objective (MO). Using a paraxial
approximation of the beam propagation, one can simulate a per-
fect vortex starting from the axicon-generated annular beam at
the SLM [19]. The beam profiles of such a perfect vortex beam
along the propagation direction towards the Bessel beam are
also well defined. Figs. 1(a, c, e) shows the simulated beam inten-
sity profiles of a perfect vortex beam with a topological charge
{ = 15, which is used for the particle levitation experiment.
The axial view of the beam [Fig. 1(a)] is obtained as the sum
of the beam profiles at different axial positions of 0 < z < 30
[see Fig 1(c)]. It should be noted that the perfect vortex beam
is formed at z ~ 5um in Fig. 1(c), which further propagates
towards the concentric annular Bessel beam at z =~ 30 um, where
most of the beam power is available [Fig. 1(e)].

We experimentally verify the beam propagation after a high
numerical aperture MO (Nikon E-Plan, x100, NA = 1.25 in oil).
The beam profile as a function of axial position (with 1 pm reso-
lution) is measured using a thin cover glass (Harvard apparatus,
150 pm thick), which partially reflects the beam and is imaged
on a CCD camera. Figs. 1(b, d, f) show the experimentally deter-
mined beam profiles, which correspond to the simulated ones
in Figs. 1(a, ¢, e). As one can see, the experimental results are
in a good agreement with the simulation. Note that the beam
profile is dependent on the position of the pupil plane of the
MO in the optical system. In practice, it is difficult to position
the MO’s pupil exactly at the plane conjugate to the Fourier
plane. In numerical simulations, the calculated beam profile
is determined by fitting the position of the pupil plane to min-
imise the discrepancy between the simulated and experimental
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Fig. 1. Spatial profile of a perfect vortex beam propagating
along the z axis with / = 15 compared with numerical sim-
ulations. Axial view of (a) a simulated beam, and (b) mea-
sured beam, with side view (cross section at y = 0 um) of (c)
a simulated beam, and (d) measured profile. (e) Simulated
beam intensity profile at y = 0 um, and (f) measured one. (g)
Topography of the measured beam around the z axis with a
schematic of the particle motion where the arrows with broken
lines indicate the paths of the particle and the arrows with F;
and g denotes the inertial and gravitational forces acting on
the particle. Colour bar indicates the relative beam intensity
and applies to all panels. The dataset can be accessed at [28].

beam profiles. Our model indicates that the pupil plane of the
MO is shifted by one focal length (0.17mm for the MO used)
away from its nominal position in the experiment. As a result,
a cone-shaped annular beam profile is formed as shown both
in Figs. 1(c, d). Fig. 1(g) shows a three dimensional topography
of the beam, which is a Gaussian function with a standard de-
viation of o = 17.7 um fitted with the measured cross-sectional
beam profile of Fig. 1(d). The lateral beam profile [Fig. 1b] is pro-
jected onto this fitted Gaussian function, where colour indicates
the relative intensity of the beam. Here we include a schematic
of the particle motion, that depicts its trajectory: i) Trapped and
set into rotation at the Bessel beam; ii) Horizontally launched
into free space and lands on the perfect vortex beam; iii) Driven
by both the scattering and gradient forces towards the Bessel
beam.

3. EXPERIMENTAL SETUP

We use an axicon (apex angle of 178°) together with a suit-
able lens to generate an annulus on the active surface area
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(15.8mm x 12mm) of a spatial light modulator (SLM, Hama-
matsu LCOS-SLM X10468-03). The SLM plane is directly imaged
onto the trapping plane with a series of lenses and the MO.
The modulated first diffraction order is selected by a pinhole
located at a Fourier plane and directed to the vacuum chamber
for trapping a microparticle.

The topological charge of the beam is controlled by the vortex
phase and a grating phase applied on the SLM. The achievable
topological charge is mainly constrained by the back aperture
of the MO due to the ring illumination used. In our system,
we can realise topological charges ranging from —35 < ¢ < 35
without beam degradation. As most of the optical aberrations in
the system are attributable to the flatness of SLM surface, they
are corrected effectively by applying a well-known wavefront
correction method [29]. We note, however, that the beam profile
is also subject to aberrations arising from the refractive index
mismatch between the optical system and the vacuum enclosure.

The protocol for microparticle levitation is described else-
where [11]. Our samples are comprised of dry silica micro-
spheres, each of 5 um in diameter (Thermo Scientific, CD9005).
We levitate a single microsphere with a linearly polarised perfect
vortex beam (¢ = 15) in air. The optical power is maintained
at 81.6 mW, which is measured at the back aperture of the MO
throughout the measurements. Once a single microparticle is
trapped at atmospheric pressure, the chamber pressure is gradu-
ally reduced to 10 mBar.

To investigate the dynamics of a trapped microparticle within
a perfect vortex beam in vacuum, we employ a fast CMOS cam-
era (Mikrotron, EoSens, MC1362) synchronised with pulses from
a nanosecond laser (Elforlight, SPOT: wavelength of 532 nm,
pulse width of < 1ns), which acts as a stroboscope at a frame
rate of 465 fps [11]. We also employ a fast photodiode (Thor-
labs, DET10C, InGaAs) to monitor the transmitted light through
the trapped particle via a condenser lens (Nikon, E-plan x10,
NA = 0.25 in air) to record the particle dynamics.

4. RESULTS AND DISCUSSION

Fig. 2(a) shows the trajectories of a trapped microparticle, where
the blue cross markers represents the centre-of-mass (COM)
of the particle at each frame (see also supplementary video 1,
rendered at 25 fps from 465 fps). It is to be noted that the camera
imaging plane is adjusted to the perfect vortex beam (z = 0 um).
Change in the sharpness of the particle boundary in the images
suggests its axial motion along the beam z axis.

To understand its complex orbital cycle, we separate the par-
ticle motion into inward and outward phases. In the initial
state, the microparticle is trapped at the Bessel annular beam
(z = 30 um) which has the maximum beam intensity in the field.
OAM with a topological charge ¢ = 15 is encoded onto both
the Bessel and the perfect vortex beams by the SLM, which is
transferred to the microparticle via light scattering and sets the
microparticle into rotation. Depending on the topological charge
of the beam and the orbital rate and the orbital radius of the
particle, the inertial force (centrifugal in this case) increases the
orbital radial position with respect to the radial trap. However,
the particle only remains trapped while the orbital frequency is
lower than the trap frequency, i.e. once the inertial force exceeds
the radial trapping force, the particle is horizontally launched
into free space (outward phase) and falls due to gravity, until
the force due to the perfect vortex beam (r = 25 pum;z = 0 um)
provides sufficient levitation. Due to both the scattering and
gradient forces acting on the particle, it is guided along the beam
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Fig. 2. Particle trajectories and force fields around the trap. (a)
COM of a microparticle trapped by a perfect vortex beam with
¢ = 15 at a pressure of 55 mBar. Inset shows the path of the
particle through one complete cycle. The execution order is
indicated by the circled numbers. (b) Stokes drag force deter-
mined by a microparticle moving around the trap. The radial
range (R ~ 20 pm) in the outward phase depends on the iner-
tial force caused by the orbital motion at the Bessel beam (at

r = 5 um) while the inward phase is driven by the scattering
and the gradient forces.

surface towards the annular Bessel beam (inward phase), where
the particle restarts its orbital cycle, but its excursion can be on a
different azimuthal direction (or branch), as shown in Fig. 2(a).
It should be noted that, given the cylindrical symmetry of the
beam, the particle trajectory are deterministic if all the variables
in the system are free from random variations. Practically, how-
ever, the particle motion is subject to influence of perturbations
in the optical potential due to aberration present in the beam.
We note also that multiple microparticles can be simultaneously
loaded into this complex three dimensional optical field if de-
sired. These particles are stably trapped and continue their
orbital motion for a duration of several hours.

Stroboscopic time-resolved imaging allows quantification
of the particle velocity and the Stokes drag force on the parti-
cle at any radial position in the light field. To establish such
key parameters, we track the COM motion of the particle. The
particle’s positional change Ad between two successive frames
(At = 2.15ms) provides the particle velocity Av = Ad/At at a
local position. The local Stokes drag force is then obtained as
AF; = TAv, where I' = 67tj(P)rs is the Stokes drag coefficient
with p(P) the surrounding gas viscosity depending on the resid-
ual gas pressure P, and r; the sphere radius. Care must be taken
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in dealing with viscosity in low vacuum, as it does not scale
with the residual gas pressure but significantly depends on the
ratio between the particle radius rs and the mean-free-path ? of
the surrounding gas molecules [11]. Here we experimentally
determine the viscosity j(P) in the vicinity of the microparticle
by taking the ratio of the rotation rates of a spinning birefrin-
gent microparticle — vaterite of the same size between pressures
of P (under consideration) and Py (atmospheric pressure as a
reference). In this way, the local viscosity is determined to be
u(P) = uoQ(Py)/Q(P) where Q) denotes rotation rates and
the gas viscosity of air.

Once the local force field has been probed by the single mi-
croparticle moving around the optical potential, we can establish
the 1D map of the Stokes drag force depending on the radial po-
sition of the beam. Fig. 2(b) shows such a force field depending
on the radial position of the microparticle. It is worth noting that
the outward and the inward phases of the particle motion are dis-
tinguishable. Green crosses are for the particle launched horizon-
tally away from the Bessel annular beam, while the red crosses
are for the particle optically driven towards the top Bessel beam.
We note that the microparticle is set into rotation at the Bessel
beam until it gains the inertial force to overcome the trapping
potential and is launched for another orbital cycle. We measure
the initial velocity of the horizontal launch to be in the range of
vg = 8.2+ 0.7mms~!(20) with its launch height of 1 = 30 um.
In the absence of frictional drag, we estimate the radial range
that the microparticle can reach to be R = vg+/2h/g ~ 20 um
where ¢ is the acceleration due to gravity. This is in a good
agreement with the experimental result in Fig. 2(a, b).

The optical potential for the microparticle can be determined
from the radial dependence of F; (') as

T2
u(') =— / E()dr'. @
Jry

The integration of the fitted curve (broken line in Fig. 2(b)) to
the measured F;(r) (red crosses) in the range from r; = 25 um
to r = 5um yields a change in the optical potential from the
perfect vortex annular beam (z = 30 um) to the Bessel annular
beam (z = 0 um). Fig. 3(a) shows the experimentally determined
optical potential (blue solid line) dependent on the particle radial
position.

For dielectric particles, the optical potential of the gradi-
ent force is linearly related to the optical field intensity as
U(r) = a|E(r)|?/2, where « is the particle polarisability. The
potential curve (blue solid line) is further fitted with the beam
intensity profile averaged over the particle diameter of 5 um
(green dotted line) using a nonlinear least square fitting method
(Isqnonlin) available in MATLAB. Here we found a good agree-
ment between the two curves with a residual error < 5%. As
such the optical potential curve is calibrated with the microparti-
cle moving around the complex potential and yielded the deep-
est potential well of —3.8 x 10718 at the annular Bessel beam.
Fig. 3(b) shows the three dimensional optical potential profile
of the perfect vortex assuming the cylindrical symmetry of the
beam.

It is intriguing to understand the dynamics of microparticles
trapped with a different topological charge. Fig. 4 shows the
particle trajectories at £ = 3,10, 30 corresponding to blue, green
and red crosses, respectively. The radial range that the micropar-
ticle explores depends on the inertial force F; = mv3/r, i.e. the
particle launch velocity vg, which is determined by the charge
¢ and the radial trap stiffness or frequency. It should be noted
while the annular size of the perfect vortex beam (at z = 0 um)
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Fig. 3. Optical potential profile of the trap. (a) Experimentally
determined optical potential (blue solid line) probed by a mi-
croparticle moving around the beam axis (+ = 0 pm). This
potential curve is fitted with the beam intensity profile aver-
aged over the particle diameter of 5 um (green dotted line). (b)
Optical potential presented in 3D. The dataset can be accessed
at [28].

remains unchanged, the Bessel beam (at z = 30 um) scales with
|¢]. Here, we observe increasing orbital speeds with larger ¢
until the outward inertial force exceeds the radial trapping force
in the system, when again the particle would leave its azimuthal
trajectory. A special case arises when the annular Bessel beam
is comparable to or smaller than the microparticle e.g. when
¢ = 3, which results in the microparticle rotating at a fixed trap-
ping position at the Bessel beam (blue crosses). This suggests
a fundamental limit to the OAM that may be transferred to a
trapped, orbiting particle, dependent upon the beam parameters
and inertial forces present [14].
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Fig. 4. Particle trajectories with different topological charge
¢ = 3,10, 30 for blue, green and red crosses, respectively.
Circled numbers indicate the order of the walked path when
¢ = 30 (red crosses).
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The motion and trajectory of microparticles is also dependent
on the residual gas damping coefficient I'. Fig. 5(a) shows the
characteristic intensity variation of the photodiode signal at a
residual gas pressure of 14.7 mBar. Since the beam power is
concentrated at the annular Bessel beam, the change in light
intensity is only appreciable when the particle scatters that part
of the beam. Fig. 5(b) shows a power spectrum of the photodi-
ode signal (inset) at 14.7 mBar and the frequency of this orbital
cycle depending on the residual gas pressure. It is worth noting
that the frequency f scales inversely with the gas pressure P.
For sufficiently low pressure that the mean free path ¢ of the
background gas is larger than the particle radius 7s, it is known
that associated viscosity experienced by the particle moving
through the gas scales as pt o< 15/ ? « P [11]. One expects that the
frequency varies as f o< 1/p o« 1/P, as shown in Fig. 5(b).
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Fig. 5. Particle oscillation frequency at different gas pressures.
(a) Photodiode signal of the forward scattered light from a
trapped microparticle. (b) Oscillation frequency of a trapped
microparticle inversely dependent on the background gas
pressure P. Inset shows a power spectrum at the residual gas
pressure of 15 mBar showing the oscillation frequency of 45 Hz.
The dataset can be accessed at [28].

We observe that as I decreases with lower pressure, the parti-
cle velocity increases in a wider orbital trajectory, but completes
the orbital cycle faster, until the radial range exceeds the light
field. At this gas pressure, the particle would leave its trajectory.

5. CONCLUSIONS

In summary, we have explored particle dynamics in a three
dimensional potential in vacuum. Our potential comprises a
perfect vortex beam, which is the Fourier transform of a Bessel
beam, in vacuum. The perfect vortex evolves on propagation to
a Bessel beam within tens of micrometers with a high numerical
aperture MO. We load an individual silica microparticle into this
complex three dimensional optical potential possessing OAM

and observe its trajectory. In the underdamped case, the particle
inertia plays an important role in its dynamics, where the optical
gradient and scattering forces interplay with the inertial and
gravitational forces acting on the trapped particle. As a result
the trapped microparticle exhibits a complex three dimensional
motion that includes a periodic orbital motion between the per-
fect vortex and the Bessel beam. As the particle explores the
whole three dimensional volume not solely restricted to one
anchor point, we are able to determine the three dimensional
optical potential in situ by tracking the particle. This represents
the first demonstration of trapping mesoscopic particles within
a complex three dimensional optical potential in vacuum. This
approach can open up new possibilities for fundamental studies
in levitated optomechanics. Particular studies may include the
controlled particle transport into and out of a cavity based on the
approaches of optical conveyors for atoms [25] and mesoscopic
particles [26], and collective motion of multiple particles [27]
and optical binding [30].
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