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Abstract

Star and stellar cluster formation in spiral galaxies is one of the biggest questions of astro-

physics. In this thesis, I study how star formation, and the formation of stellar clusters, pro-

ceeds using SPH simulations. These simulations model a region of 400 pc and 107 solar masses.

Star formation is modelled through the use of sink particles which represent small groups of

stars. Star formation occurs in high density regions, created by galactic spiral arm passage.

The spiral shock compresses the gas and generates high density regions. Once these regions

attain sufficiently high density, self-gravity becomes dominant and drives collapse and star for-

mation. The regions fragment hierarchically, forming local small groups of stars. These fall

together to form clusters, which grow through subsequent mergers and large scale gas infall.

As the individual star formation occurs over large distances before forming a stellar cluster,

this process can result in significant age spreads of 1-2 Myrs. One protocluster is found to

fail to merge due to the large scale tidal forces from the nearby regions, and instead expands

forming a dispersed population of young stars such as an OB association.
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Introduction

1.1 Milky Way

The Milky Way - the bright river in the dark sky. It has attracted much wonder since ancient

times. "What is it?" was the key question until the invention of the first telescopes. Over

time it became clear that this river is the combined diffuse illumination formed by billions of

stars. Only when we found many other galaxies did it become clear that the Milky Way is our

own spiral galaxy, which we observe from within. Our unique view from inside the Galaxy

brings about many fundamental challenges for galactic astronomy which we are unable to

resolve even today. The 3-dimensional map, Galaxy dynamics, star formation in high density

clouds, spiral arms, stellar clusters and many more things besides remain secrets to today’s

astronomy. Due to the difficulty of mapping the Milky Way disc, astronomers also obtain

knowledge from observations of other spiral galaxies which are in a face-on view. Further

development of telescopes and instrumentation have progressed observations while increasing

computing power has allowed us to run numerical simulations. While observations bring direct
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measurements, simulations bring a deeper understanding of the physical processes which can’t

be seen by observations. Both contribute to our knowledge and understanding of galactic

processes, and are essential to progressing Milky Way astronomy.

The Milky Way is a spiral galaxy, which contains a stellar disc (with spiral arms), the bulge

and the halo (i.e. Binney & Tremaine 2008). Each of these components has its own stellar

populations. The bulge and halo contain old stars, while the disc, in addition to old stars,

contains many young objects. This includes young stars, molecular clouds and open clusters.

1.2 Galactic disc and its stellar populations

The Milky Way disc is the place where star formation processes are actively ongoing today.

While the mass of the disc is dominated by old stars, young stars, stellar clusters, and OB

associations are also present. The Sun also belongs to the Milky Way disc. Interstellar gas and

dust are also present in the disc. The entire disc of the Milky Way is rotating and the rotation

curve (the radial profile of the rotational velocity) has been measured several times (Clemens

1985; Brand & Blitz 1993; Russeil et al. 2017). The rotation curve is not Keplerian or that of

a solid body. The best solution is that the rotation curve is driven by the presence of a dark

matter halo (Sofue et al. 2009; Sofue 2012).

1.3 Spiral arms and shock

Stars and gas in the Milky Way disc are not distributed uniformly. There are spiral arms present

in the disc. Spiral arms appear as overdensities of stars and gas. As we see the Milky Way from

inside the disc, it is difficult to see the spiral arm pattern. Because of this, astronomers targeted

other spiral galaxies which, when face on, display a visible spiral arm structure. However, the

Milky Way’s spiral arm structure began to be mapped from 21 cm HI observations (Simonson

1976). Most recent observations include YSOs (young stellar objects) for mapping spiral arms

(Urquhart et al. 2014). Currently, it is thought that the Milky Way has two major spiral arms

(the Scutum-Centaurus and Perseus arms) and at least two secondary arms (the Sagittarius

and Norma arms) (Churchwell et al. 2009; Dame 2013, see Figure 1.1). The Norma arm in

the first and second Galactic quadrants is known as the Outer arm. Dame & Thaddeus (2011)

used CO mapping and found the continuation of Scutum-Centaurus arm beyond the Outer

arm in the first quadrant. The lower density regions between spiral arms are usually called
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1.3. Spiral arms and shock

Figure 1.1: A sketch showing the view of the currently known spiral arm structure of the Milky Way,
taken from Churchwell et al. (2009). Mapping the Milky Way spiral arms is a difficult task, as the Sun
is inside the Galactic plane and the lines of sight through the spiral arms overlay one another. As such
these maps can only be drawn by finding the distribution of gas such as HI, and star forming regions
(clusters and OB associations), as young massive stars contribute significantly to the total brightness of
the spiral arms.
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inter-arm regions.

The interstellar medium (ISM) gas contributes by 13 % mass fraction to the total mass of

gas and stars in the disc (Kalberla & Kerp 2009). The ISM gas also tends to be higher density

in spiral arms - gas assembles into molecular clouds here (i.e. Dobbs et al. 2006; Bonnell et al.

2013). The Milky Way disc rotates at 200 - 240 km/s (Clemens 1985; Majewski 2008; Reid

et al. 2014) at the Sun’s distance. The spiral arm pattern rotates slower than the disc in the

inner part of the galaxy, and faster in the outer part of the galaxy. The corotation radius is

defined as the distance from the centre where the spiral pattern and disc rotational velocity

are the same. Azimuthal velocity gradients of up to several 10 km/s can arise due to different

rotation velocities between the spiral pattern and the disc (Tilanus & Allen 1990; Shetty et al.

2007; Bonnell et al. 2013). In gas, these velocity gradients can be sharp and create a shock,

which is usually called a spiral shock. This spiral shock compresses low density HI gas into

higher density regions, which start to cool and form molecular H2. These regions become

molecular clouds (Bonnell et al. 2013).

Density wave theory in spiral arms (Lin & Shu 1964) is commonly invoked in order to

explain the spiral pattern. There are multiple observations of streaming motions mostly from

HI in other galaxies (Tilanus & Allen 1990; Shetty et al. 2007), which could explain deviations

from the rotation curve as the presence of spiral density waves. There are also some indications

of streaming motions in the Milky Way’s spiral arms (Sitnik 2003; Fresneau et al. 2005).

Recent smoothed particle hydrodynamic (SPH) simulations of galaxies (Dobbs et al. 2006,

2012; Dobbs & Pringle 2013; Bonnell et al. 2013; Dobbs & Baba 2014) have included a spiral

potential in order to investigate the evolution of the ISM on Galactic scales, spiral shocks, and

the creation of molecular clouds. The spiral potential in these simulations has a time indepen-

dent shape and rotates in the galactic disc with the same angular velocity at all galactocentric

radii. Inside the corotation radius material rotates faster than the spiral pattern and enters

the spiral arm from the opposite direction to the disc rotation. Gas coming from the inter-arm

region shocks with higher density gas in spiral arms due to a velocity difference of 20 - 40

km/s. This creates a layer of high density material which forms molecular clouds.
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1.4. Molecular clouds

Figure 1.2: This image has been taken from Bonnell et al. (2013) and shows a set of nested simulations
allowing consistent and successive levels of resolution from large galactic to small cluster scales. The
large scale simulations were able to resolve the dynamics and structure of galactic spiral arms. Then
a small subset of one part of a spiral arm was taken and each particle subdivided into smaller ones.
This technique allows initial conditions to be inherited from the larger scale simulation, rather than
generating idealised initial conditions. The subdivision may be performed on several levels, i.e. the
first level may be over a segment of a spiral arm, and the second for a small portion of that segment,
resolving the molecular cloud and cluster scales and allowing the inclusion of self-gravity. The small
scale simulations in this case have both the large scale shock and the self-gravity of the collapsing
regions.
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Figure 1.3: This image from Peretto et al. (2013) shows resolved filamentary structure feeding a cluster
forming clump. Regions like this are usually embedded in the highest density regions of molecular
clouds, making observations difficult. The early stages of star and cluster formation are as a result still
poorly understood. These images were obtained by using observations from Spitzer and ALMA.

1.4 Molecular clouds

Molecular clouds are one of the most central topics in astrophysics and especially star forma-

tion. During the molecular cloud phase of the ISM, regions come about in which star formation

occurs and gravity overcomes turbulent motions to start forming clumps, cores and protostars

(Williams et al. 2000). However, the molecular cloud phase is still not well understood, as

there are multiple physical processes in action which lead to completely different scenarios

depending on which processes are most dominant (i.e. Stahler & Palla 2005).

Our understanding of star formation is based on the idea that stars form from gravitation-

ally collapsing clouds (i.e. Stahler & Palla 2005). However, it is challenging to observe this

process and reproduce it in simulations. Firstly, molecular clouds have irregular shapes and

non-uniform density. This produces higher density regions which collapse more quickly than

lower density regions. As a result, the cloud develops a hierarchical density structure (i.e. left-

panel in Figure 1.3). The densest parts of the cloud form clumps (∼ 1 pc sizes; middle-panel

in Figure 1.3) which are precursors of young stellar clusters (Williams et al. 2000). Structures

on even smaller scales are pre-stellar cores (∼ 0.1 - 0.2 pc sizes; right-panel in Figure 1.3),

which form individual protostars (Williams et al. 2000). The whole hierarchical structure of

the cloud depends on the equilibrium of forces and gravitational binding. Certain regions are

bound to collapse. The collapse occurs on smaller scales (clumps and cores), while the whole

cloud can be unbound and not collapsing.
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1.4. Molecular clouds

Cloud chemistry is one of the most important channels providing information about cloud

structure. Different molecular tracers can be used to map regions of different densities. For

example, Rathborne et al. (2015) obtain the mass distribution and virial ratio radial profile for

G0.253+0.016 (known as the Brick) by using multiple molecules tracers. The radial profile

shows that the virial ratio is below 1 on around the 2 pc scale. The most abundant molecule in

molecular clouds is H2, although it has no strong emission lines and can’t be traced easily. The

next most abundant molecule, which is more easily traced, is CO. As H2 is much more abundant

than CO it is essential to measure the mass of H2 in order to estimate cloud masses. There

have been many attempts to evaluate CO to H2 conversion factors (Maloney & Black 1988;

Narayanan et al. 2012; Bolatto et al. 2013). Some simulations suggest that this conversion

factor could be dependent on the particular region’s evolutionary stage (Clark et al. 2012b).

In the highest density regions dust continuum emission is used to observe the region at the

core scales (Peretto et al. 2013; Figure1.3 right-panel).

In order to correctly run SPH simulations of molecular clouds, it is necessary to take into ac-

count the cooling function which depends on the chemistry of the cloud. The cooling function

describes radiative energy losses from the gas. One of the commonly used cooling functions

in SPH simulations was developed by Koyama & Inutsuka (2000, 2002) and later corrected by

Vázquez-Semadeni et al. (2007). However, this cooling function is an approximation of the

most important coolants at lower densities including Lyman-alpha, CII and OI. This function

also assumes that gas is optically thin, while at high densities (>10 cm−3), gas is replaced by

sink particles (i.e. Bonnell et al. 2013 simulations). More recently, development of the cool-

ing function has taken non-equilibrium chemistry into account (Glover & Mac Low 2007a,b).

The use of this function has shown that cloud masses and the properties of gas do not show

many differences when choosing a cooling function but the cloud morphology and large-scale

velocity distribution appear to be affected (Micic et al. 2013).

Magnetic fields are another key factor which affect cloud collapse and evolution. The only

direct method of measuring the magnetic field in the ISM is the Zeeman effect (Crutcher et al.

2010; Li et al. 2015). However, the Zeeman effect only gives measurements for the strength

of magnetic fields along the line of sight. Dust polarisation is used in order to estimate the

magnetic field direction in the plane of the sky (Hiltner 1949; Heiles et al. 1993; Crutcher

2012). Observations from Planck and BLASTPol (Pascale et al. 2012; Planck Collaboration

et al. 2011; Soler et al. 2016) were used to obtain detailed maps of polarisation in the Milky
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Way’s ISM on larger scales. Simulations are used to produce magnetic fields in 3D. Some

simulations, such as Soler et al. (2013) and Soler & Hennebelle (2017) directly target dust

polarised emission. Others are designed to examine physical parameters and the evolution of

the ISM across multiple scales - from Galactic to molecular cloud, to protostars (Price et al.

2009; Bate et al. 2017; Lewis & Bate 2017). The main effect of the magnetic field is that

clouds could be in a state of magnetic freezing, slowing down their collapse (Elmegreen 1979;

Shu et al. 1987; Kamaya & Nishi 2000). This occurs if ions are present in the cloud as well as

neutral atoms. These ions are dragged by magnetic field lines. As neutral atoms collide with

the ions, they too are dragged. If this magnetic drag opposed the velocity of the flow (i.e. the

collapse of a self-gravitating cloud), then the flow may be slowed. In the case of a spherical

clump, collapse creates a velocity field directed towards the clump centre while the magnetic

field opposes this. As a result, the collapse time can become several times longer than the free

fall time of the clump due to the effect of the magnetic field. Due to this process star formation

can be delayed and the SFE appears to be smaller.

Molecular clouds form when the material is compressed by the spiral shock (Dobbs et al.

2006, 2008). This leads to atomic hydrogen, HI, converting to its molecular form H2 while the

region cools. Together these regions form the non-uniform ISM consisting of higher and lower

density zones, filaments, voids and clumps. Higher density regions containing a significant

fraction of gas in molecular form are usually called molecular clouds. Although Dobbs et al.

(2008) simulations show that molecular gas fraction is several 10% at densities > 10 cm−3,

the molecular cloud definition is not restricted and remains an open question. Compressed

clouds move through the spiral arm until they reach the other side, where the material comes

out from the spiral arm. Here, molecular clouds dissolve, material heats up from the galactic

radiation and expands, and H2 molecules start to break up again to form atomic HI (Dobbs

et al. 2008). The lifetime of molecular clouds can be defined as the time taken for the material

to move from one side of a spiral arm to the other. The values of molecular cloud lifetimes

are still under great debate, but they likely range from several to several tens of Myrs (Blitz

& Shu 1980; Dobbs & Pringle 2013). Clouds can also experience disruption by feedback from

massive stars (if formed), which can reduce cloud lifetimes to several Myr (Zasov & Kasparova

2014).

Molecular clouds can have a filamentary structure. Herschel observations found high den-

sity filaments with a characteristic width of 0.1 pc (André et al. 2010, 2014). Cloud forma-
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tion simulations with self-gravity naturally form filamentary structures (Gómez & Vázquez-

Semadeni 2014; Smith et al. 2014; Federrath 2016). Simulations have also shown that turbu-

lence and magnetic fields influence the filaments (Kirk et al. 2015). It is currently thought that

filaments play an important role in cloud collapse, as material on large scales firstly collapses

into the filaments, which themselves feed protocluster forming clumps in intersection points

(Vázquez-Semadeni et al. 2017). This is in good agreement with observations, showing the

flow along filaments towards the clump (Peretto et al. 2013).

Another major physical process in the ISM is turbulence. Turbulence is defined as the in-

ternal motions inside molecular clouds (Falceta-Gonçalves et al. 2015). The Larson scaling

relation (Larson 1981) shows that the line of sight velocity dispersion, found by observing

spectral linewidths, scales with the size of molecular clouds according to σ = lα. Here α is

usually around 0.5, but may also vary with surface density within a cloud (Heyer et al. 2009).

Turbulence in high density collapsing cores can be regulated by gravity (Yoshida et al. 2010).

Supernovae can inject turbulence into surrounding regions (Gressel et al. 2008; Hill et al.

2012), but their effects may be limited to only local gas (Heitsch et al. 2006). A more uni-

versal mechanism of the turbulence generation in spiral galaxies could be gas interaction with

spiral arm potential (Falceta-Gonçalves et al. 2015). Simulations with spiral shocks (Bonnell

et al. 2006; Dobbs et al. 2008; Bonnell et al. 2013) provide local instabilities which can create

turbulent perturbations at galactic scales throughout the entire disc.

1.5 Stellar clusters

Stellar clusters are compact objects, containing large numbers of stars in a small region of

space, higher in concentration than the stellar background (i.e. Murdin 2001). The two most

common types of stellar clusters are well known from optical observations - these are globular

and open clusters. Murdin (2001) gives appearent sizes of open clusters to be 4 pc while for

globular clusters instead of appearent size Murdin (2001) gives core radii between 1 and 10

pc. According to Murdin (2001), open cluster masses range between 10 and 104 M�, while

globular clusters are much more massive, i.e. 104 - 106 M�. Globular clusters are distributed

in the whole halo of the Milky Way, while open clusters are in the disc. Globular clusters

in the Milky Way are also old objects, with ages of 8-16 Gyr (Murdin 2001), while ages of

open clusters ranges between 5 Myr and 9 Gyr (Murdin 2001). The youngest clusters are

sometimes referred to as embedded clusters as they are visible in IR surveys and not in optical

9
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Figure 1.4: The HST image of Tarantula star forming region taken from Cignoni et al. (2015). 30
Doradus, here shown contained by the solid circle, is known as one of the most intensively star forming
regions known in the nearby Universe. The image shows the complex structure of the region with
imprints of various physical processes, such as gravity, magnetic fields, feedback, etc. The interaction
of these effects is complex and makes it difficult to tell which is dominating star formation. For this
reason it is necessary to develop numerical simulations which allow us to separate physical processes
and investigate star formation dynamically.
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wavelengths. Typical sizes of embedded clusters are 1 pc, masses 100 - 1000 M� and ages 1-5

Myr (Murdin 2001). These young clusters are found in active star forming regions and are still

undergoing star formation processes (Greene & Meyer 1995; Palla & Stahler 1999; Gutermuth

et al. 2009; Saral et al. 2015). While Murdin (2001) suggests a cluster definition based on the

visual overdensity, it is important to determine the state of cluster gravitational boundedness

where possible.

Most of the stars and probably all massive stars (> 10 M�) form in clusters or OB associ-

ations (Lada & Lada 2003). Most of the young compact clusters later disperse (especially low

mass, Moeckel et al. 2012) and enrich the galaxy’s background population with their stars.

Moreover, when clusters are defined as bound systems (i.e. Gieles & Portegies Zwart 2011),

only around 10 % of star formation would be happening in such clusters while the majority of

star formation would occur in associations (Bastian 2013). However, earliest phases of bound

clusters and associations are the most difficult to distinguish. As a result, understanding cluster

formation is a key step in the star formation process.

It is thought that clusters form from clumps - high density regions in molecular clouds.

As the bound region in the turbulent cloud collapses, it fragments hierarchically into clumps

that form small clusters, which later merge to form higher mass clusters (Bonnell et al. 2003;

Bate et al. 2003; Krumholz & Bonnell 2007; Offner et al. 2008; Smith et al. 2009). Obser-

vations of star forming regions in molecular clouds such as Peretto et al. (2013) show the

fragmentation in terms of filamentary structure (André et al. 2010, 2014; Hacar et al. 2017),

transferring gas towards the cluster forming clump. The concept that clusters grow hierarchi-

cally is also supported by observations, such as that by Rathborne et al. (2015), who suggests

that G0.253+0.016 is about to form a cluster from hierarchical and filamentary structures

present in the turbulent medium.

A large number of optical and near-IR observations are made in order to understand the

process of stellar cluster formation. These observations have allowed measurements to be

made of the mass-radius relation (Pfalzner et al. 2016), stellar age spreads (Getman et al.

2014; Kuhn et al. 2015a), line of sight velocities (Fűrész et al. 2008; Hacar et al. 2016), distri-

bution of positions (Kraus & Hillenbrand 2008; Gutermuth et al. 2009) and spatial structure

(Kuhn et al. 2014, 2015a,b). The mass-radius relation shows that more massive clusters are

also larger in size. Stellar age spreads give an indication of the period of time over which
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star formation has taken place. The line of sight velocities allow us to measure the velocity

dispersion for the whole cluster. The velocity dispersion is related to the total cluster mass -

the more massive the cluster, the larger the velocity of the star in the cluster centre where most

mechanical energy is in the form of kinetic energy. The set of these observables allows us to

describe the current state of the cluster.

Observations have the challenges of producing 3D maps of clusters, and following their

evolution through time, both of which are crucial steps in the understanding of cluster forma-

tion. This is where hydrodynamical simulations can help. Recent simulations have addressed

in detail fragmentation, collapse, turbulence and accretion in star forming regions (Bate et al.

2003; Bonnell et al. 2003, 2011; Krumholz et al. 2011; Bertelli Motta et al. 2016). As the

cloud collapses, due to internal turbulence it fragments into chunks and filaments, creating

higher and lower density regions in the cloud. The highest density regions form cores and in

turn eventually form protostars. Forming protostars can be represented by sink particles in

simulations. Sinks may continue to accrete gas from their surroundings. This leads to mass

growth through accretion until the reservoir is depleted or stellar feedback clears the environ-

ment. An important factor here is the cloud’s gravitational boundedness which leads to bound

clouds producing more efficient clustered star formation, while unbound clouds possess ineffi-

ciently distributed star formation (Bonnell et al. 2011). However, this does not tell how close

simulated clouds are to real clouds in spiral arms and thus initial cloud boundedness remains

an open problem in simulations. For this reason, it is essential to use initial conditions inher-

ited from more realistic models run on a galactic scale, rather than generated from simplified

geometry (such as uniformly distributed particles in a sphere, cube or cylinder).

When massive stars are formed in a cluster, they produce strong stellar winds and ionising

radiation (Dale et al. 2005, 2007; Dale & Bonnell 2008), and when they finally blow up as

supernovae (SN) they create expanding shells of SN ejecta. These processes are called stellar

and SN feedback. Stellar winds can inject momentum into surrounding gas, directed radially

outward and thus oppose the gravitational infall of new material (Dale & Bonnell 2008). This

can, in turn, reduce accretion onto the star. SN feedback is much stronger and can potentially

exert its influence over kiloparsec scales (Girichidis et al. 2016; Gatto et al. 2017). As a result

star formation is likely to be affected by feedback from stars which have already formed. It is

thought that lower star formation efficiencies in real molecular clouds compared to simulated

ones can be explained by this feedback (Megeath et al. 2016; Dubois & Teyssier 2008; Ostriker
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& Shetty 2011; Girichidis et al. 2016; Gatto et al. 2017). In hydrodynamical simulations

implementing feedback, star formation efficiencies are reduced by around two times (Dale

& Bonnell 2012; Dale et al. 2014, 2015; MacLachlan et al. 2015; Dale 2017).

1.6 OB associations

OB associations are known to be large loose clusters containing OB stars. The first associa-

tions were found by Ambartsumian (1949, 1955). Several dozen OB associations are known

to exist in the Milky Way around the Sun (Mel’Nik & Efremov 1995). The diameters of OB

associations are usually between several tens of parsecs and sometimes above 100 pc (Murdin

2001). Murdin (2001) compares OB associations with globular, open and embedded clusters,

with OB association masses in the range of 103 - 104 M�, and ages between 5 and 20 Myr. In-

dividual stars also show similar kinematics (i.e. most members moves in the same direction).

OB associations are also observed in other spiral galaxies (Magnier et al. 1993; Bresolin 1996;

Pietrzyński et al. 2001, 2005), and may be related to major OB star groupings in spiral arms

(Mel’Nik & Efremov 1995).

When Lada & Lada (2003) defined clusters based on the visual stellar density, the bounded-

ness of these clusters was not considered. Later, Gieles & Portegies Zwart (2011) revised that

real clusters are bound systems and can survive for multiple crossing times. Gieles & Portegies

Zwart (2011) noted that the main feature of bound clusters would be that their age ratio with

the crossing time is above 1. According to Gieles & Portegies Zwart (2011), unbound associ-

ations would have large crossing times and thus their age ratio with the crossing time would

remain below 1. Based on this definition Bastian (2013) finds that most of stars are forming

not in bound clusters but in unbound associations. However, at the earliest stages of cluster

formation the cluster age is not well defined. Ongoing star formation and merging processes

can also change cluster age and its crossing time. As a result, differences between clusters and

associations at their early ages remains unclear.

The origin and formation mechanism of OB associations is not well known. Oort (1955)

proposed that OB associations can form from expanding unbound clouds, with expansion am-

plified by radiation from stars and feedback. Elmegreen & Lada (1977) suggested that star

formation in unbound clouds could have been triggered by nearby feedback from neighbour-

ing groups of stars, with star formation beginning from the edge of the cloud (sequential
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star formation). Clark et al. (2005) proposed that OB associations form in globally unbound

clouds, where only locally bound subclusters form, which are unbound to each other. Studies

of backwards integration of the nearest Sco-Cen association members have shown that large

scale star formation could have been triggered by the shock of the Inner spiral arm (Fernández

et al. 2008). As all these theories are still being debated, it remains unclear which theory (or

a combination of theories) is the most likely to explain the formation of OB associations.

1.7 Thesis outline

In this thesis I use smoothed particle hydrodynamics (SPH) simulations to investigate key star

formation problems. Most of it is centred on the formation of stellar clusters.

- In chapter 2 I review how SPH simulations work in general and in terms of applications

in star formation. I discuss fluid equations and derivation of SPH equations. Mass, momentum

and energy conservation equations are discussed in detail. I overview how smoothed quantities

are calculated, which explains how SPH works. Finally I review sink particle formation and

accretion.

- In chapter 3 I review the initial conditions of Bonnell et al. (2013) simulations, which

were used in further chapters. I review the Global simulation, which was used to simulate

the Milky Way type’s galaxy disc with spiral arm structure. I also review galactic potential

generation method, designed by Dobbs et al. (2006). Then I discuss the Cloud and Gravity

simulations, which were used to investigate molecular cloud and star formation respectively.

I finish the chapter by reviewing the cooling function, which was used in Bonnell et al. (2013)

simulations in order to have two-phase ISM.

- In chapter 4 I discuss my new cluster finding algorithm which allows us to find clusters

of sinks in SPH simulations. I also discuss free parameters such as gravitational potential

thresholds, and their effects on how clusters are found at a given time. Cluster tracing over

time is also discussed in this chapter.

- In chapter 5 I discuss the main properties of star formation in the Bonnell et al. (2013)

simulations. I show maps of initial conditions, review the radial profiles of accreted particles

at sink formation event, and address star formation efficiencies over different density scales.

- Chapter 6 includes the central discussion of cluster formation. This includes tracing
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cluster members over time, determining cluster merging and formation histories, mass-radius

relation, angular momentum, cluster mass growth, stellar age spreads, main star formation re-

gion age gradients, cluster sphericities, central condensation in terms of enclosed mass slopes,

and half-mass radii.

- In chapter 7 I review one particular object, which is likely to be a failed cluster or even

an OB association. I review the unusual expansion phase of the object during the last few Myr

in terms of half-mass radii, densities, energies and tidal forces. I review the possibility of the

object expansion phase caused by tidal effects.

- Finally in chapter 8 I conclude the work of my thesis and discuss future steps and direc-

tions.
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2
Smoothed particle hydrodynamics

In this chapter, I will review the background and basis of smoothed particle hydrodynamics

(SPH) simulations and analyse its application to star formation. SPH particles are used as

Lagrangian fluid elements which can be used to represent gas in the interstellar medium. The

principles of SPH, such as using a kernel to smooth particles through a volume, were laid down

by Gingold & Monaghan (1977); Lucy (1977). Soon after that, different groups of astronomers

started to use the idea and adopt the formalism to their own codes. Most of the currently used

code for SPH was written by Benz (1990); Benz et al. (1990). sphNG, the code used in the

work presented in this thesis, was based on the code of Benz but began to reach its modern

form with the introduction of sink particles by Bate et al. (1995). Early codes were designed

with very basic physics, but have since been updated to account for radiative transfer (Forgan

et al. 2009; Clark et al. 2012a), magnetic fields (Price 2004; Price & Monaghan 2004a,b),

better heating and cooling (Koyama & Inutsuka 2000, 2002; Vázquez-Semadeni et al. 2007)

and stellar feedback (Dale & Bonnell 2012; Dale et al. 2015). When a simulation is run, the gas

distribution in future timesteps depends on the initial conditions, i.e. the particle positions,
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velocities and densities. Early SPH simulations of star and cluster formation used idealised

initial conditions where particles were distributed in a sphere, cube or cylinder (Bate 2012).

However, this has been addressed by firstly running a lower resolution larger scale simulation

and then re-resolving and simulating a smaller portion of interest. This allows us to investigate

cluster formation while taking into account the influence of the Galactic environment (Bonnell

et al. 2013).

2.1 Fluid equations

In order to derive SPH equations, it is essential to briefly discuss fundamental fluid equations.

Fluid equations allows us to define how the fluid evolves over the time. There are two defi-

nitions of such evolution: Eulerian and Lagrangian. The Eulerian definition is based on fixed

positions in space. Grids are usually used in such a way that the entire grid is fixed in space

and each grid cell represents the properties of the fluid at a given location. The Lagrangian

definition is based on moving elements together with the fluid. These fluid elements are rep-

resented by particles in SPH simulations. So SPH has a Lagrangian nature. A generic relation

can be defined between Eulerian and Lagrangian quantities:

dQ
dt
=
∂Q
∂ t
+ u · ∇Q; (2.1)

where Q is a generic quantity and t is the time. There are three fundamental equations

which defines how fluid evolves: mass conservation (continuity), momentum conservation

and energy conservation. The continuity equation in Eulerian (left) and Lagrangian (right)

forms is:

∂ ρ

∂ t
+∇(ρv) = 0;

dρ
d t
+ρ∇ · v= 0. (2.2)

Here ρ is the mass density and v is velocity vector at a given position (Eulerian) or fluid

element (Lagrangian). The momentum conservation is defined as:

∂ v
∂ t
+ (v · ∇)v= −

∇P
ρ

;
dv
d t
= −
∇P
ρ

. (2.3)

Here P is the pressure. The energy equation for the adiabatic state is:
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∂ u
∂ t
+ (v · ∇)u= −

P
ρ
· v;

du
d t
= −

P
ρ
· v. (2.4)

Where u is the internal energy. These three fluid equations are used as fundamental starting

points to derive SPH equations.

2.2 The method

The SPH method, as discussed by Benz (1990); Monaghan (1992), uses a smoothed function

< f (r)>:

< f (r)>=

∫

V
f (r′)W (r− r′, h)dr′ (2.5)

Here W (r) is a kernel, through which the function f (r) is smoothed. Function f (r) is

defined within the volume V , while the h represents the size of the kernel. The W is also

normalized and thus satisfies the following condition:

∫

V
W (r, h)dr′ = 1 (2.6)

At small h, the kernel W converges towards the delta function:

lim
h→0

W (r− r′, h) = δ(r− r′) (2.7)

The smoothed function itself < f (r)> converges towards the non-smoothed function f (r)

at small h.

lim
h→0

< f (r)>= f (r) (2.8)

The main goal in deriving SPH quantities is to replace integrals with summations over N

discrete points. When f (r) is known at these N points, the number density n(r) can be defined

through the summation of delta functions:
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n(r) =
N
∑

j=1

δ(r− r j) (2.9)

Multiplying Equation (2.5) by n(r′)/ < n(r′)> and integrating, the expression of < f (r)>

is obtained in terms of summation over N points:

< f (r)>=
N
∑

j=1

f (r j)

< n(r′)>
W (r− r j , h) (2.10)

The number density can be expressed through the particle j mass m j and the mass density

of this particle ρ(r j):

< n(r j)>=
ρ(r j)

m j
(2.11)

By plugging (2.11) into (2.10), the smoothed function < f (r)> becomes:

< f (r)>=
N
∑

j=1

m j

< ρ(r′)>
f (r j)W (r− r j , h) (2.12)

This expression is important in terms of deriving smoothed quantities in SPH.

The gradient of the quantity can be defined by applying gradient operator to both sides of

the equation (2.5):

<∇ f (r)>=

∫

V
∇ f (r′)W (r− r′, h)dr′ (2.13)

Integrating the right hand side by parts gives:

∫

V
∇ f (r′)W (r− r′, h)dr′ =

∫

S
f (r′)W (r− r′, h)n̂dS −

∫

V
f (r′)∇W (r− r′, h)dr′ (2.14)

By neglecting the surface integral and using the gradient with respect to r rather than to

r′, the expression becomes:
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<∇ f (r)>=

∫

V
f (r′)∇W (r− r′, h)dr′ (2.15)

Finally, this expression of quantity’s gradient can be discretised in a similar way to the

non-gradient form:

<∇ f (r)>=
N
∑

j=1

m j

< ρ(r′)>
f (r j)∇W (r− r j , h) (2.16)

Angled brackets in (2.12) and (2.16) can be discarded as there are no integrals left in

these equations. Noting further that ri j = ri − r j , hi j = (hi + h j)/2 (the mean smoothing

length, introduced by Evrard (1988)) and Wi j =W (ri j , hi j), the quantity and quantity gradient

equations can be written:

fi =
∑

j

m j

ρ j
f jWi j (2.17)

∇ fi =
∑

j

m j

ρ j
f j∇iWi j (2.18)

Both equations (2.17) and (2.18) are used to derive smoothed quantities and their gra-

dients in space. This is done by replacing generic function f by any other quantity, which

smoothly changes over the space.

2.2.1 SPH kernel

As the kernel has to be even and peaked, Gausian function could be used for the kernel.

However, Gausian kernel would have non-zero contribution from distant particles. This would

lead to N2 performance as for each particle it would be necessary not only to loop over the

nearest neighbours but also over all other particles in the simulation. For this reason, sphNG

uses the M3 cubic spline introduced by Monaghan & Lattanzio (1985). In 3D space, this

function is described as:
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W (r, h) =
1
πh3























1− 3
2q2 + 3

4q3 if 0≤ q < 1

1
4(2− q)3 if 1≤ q < 2

0 otherwise

(2.19)

with q = r/h, where r is the distance from the kernel centre to the measuring point (this

is usually the distance between two particles, as in this case the calculation is of what one

particle is doing to another).

The kernel and its gradient can be tabulated for easy lookup, making it unnecessary to

calculate derivatives and kernels every time kernel is used. As can be seen from (2.19), the

kernel contribution extends no further than 2h. It is also commonly accepted that the number

of particles within 2h is the same through the entire simulation. These particles, within 2h are

usually referred as neighbours for the particle in question. When the number of neighbours

is fixed, the h on each particle is found as half of the distance to the furthest neighbour. In

sphNG, simulations with 50−70 neighbours are commonly used. Neighbour finding in sphNG

is accelerated to N log N performance due to the use of the binary tree (Press 1986).

2.3 The continuity equation

The continuity equation is the first and the simplest one to derive. It is derived by replacing

generic function f with the mass density ρ in Equation (2.17):

ρi =
N
∑

j=1

m jWi j (2.20)

As particle masses m j are conserved, this equation satisfies the continuum equation (2.2).

The summation here is over all N neighbours of particle i.

2.4 The momentum equation

Benz (1990); Monaghan (1992) derives SPH form of the momentum equation by using Eule-

rian form of (2.2) and (2.5):

dvi

d t
= −

N
∑

j=1

m j

� Pj

ρ2
j

+
Pi

ρ2
i

�

∇iW (ri j , hi j) (2.21)
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Here dvi
d t is the acceleration of the particle i. The summation at the beginning of the right-

hand side in equation (2.21) is the summation of the particle’s i neighbours. m j is the m j

neighbour mass. Pj and Pi are the scalar pressures on the corresponding particle calculated

from the gas state equation. ρi and ρ j are these particles’ densities. Finally ∇iW (ri j , hi j) is

a gradient of the kernel function W . This equation is set in a symmetrical way in order to

conserve the momentum for each pair of neighbours in the simulation.

2.4.1 Grad-h formalism

In order to account for the gradient of the smoothing length between two neighbours, Mon-

aghan (2002) implemented the additional term Ω:

Ωi = 1−
∂ hi

∂ ρi

N
∑

j=1

m j
∂W (ri j , hi)

∂ hi
(2.22)

The momentum equation with pressure term becomes:

dvi

d t
= −

N
∑

j=1

m j

�

Pi

Ωiρ
2
i

∇iW (ri j , hi) +
Pj

Ω jρ
2
j

∇iW (ri j , h j)

�

(2.23)

Here it can be seen that the mean smoothing length hi j is gone, and the smoothing lengths

are being treated instead through the derivative ∂W
∂ h in W .

2.4.2 Artificial viscosity

In SPH simulations shocks can occur, where the two fronts of fluid are colliding with their

relative velocities to each other being above the speed of sound. Particles in shocks move with

high velocities, and it is likely that some will penetrate others without interaction. This occurs

when the incoming particle’s kinetic energy is not correctly converted into thermal energy. To

resolve this problem, artificial viscosity is often used. Monaghan & Gingold (1983); Monaghan

(1992) used an additional term in the momentum equation, which is also used in sphNG:

Πi j =











−αc i jµi j+βµ2
i j

ρi j
if vi j · ri j < 0

0 otherwise
(2.24)
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with

µi j =
hvi j · ri j

r2
i j + (0.01h2c i j)2

(2.25)

In these two equations c i j is the mean sound speed and ρi j is the mean density of i and j

particles. h is the smoothing length. ri j and vi j are the position and velocity of the i particle

relative to the j particle.

α and β are scaling coefficients which determines the strength of bulk and Neumann-

Richtmyer viscosity respectively. The bulk viscosity is defined:

Πbulk = −
αlcs∇ · v
ρ

(2.26)

Here l is the length scale over which the shock is spread. The bulk viscocity applies to

subsonic interactions and can reduce post-shock oscilations. Neumann-Richtmyer is used for

supersonic interactions in order to transfer information through the shock:

ΠNeumann−Richtmyer = −
β l2(∇ · v)2

ρ
(2.27)

Since Monaghan & Gingold (1983) set values of α = 1 and β = 2, it became common to

use these values and thus they are used in sphNG as well.

The final momentum equation with included pressure, grad-h correction and artificial vis-

cosity becomes:

dvi

d t
= −

N
∑

j=1

m j

�

Pi

Ωiρ
2
i

∇iW (ri j , hi) +
Pj

Ω jρ
2
j

∇iW (ri j , h j) +Πi j∇iW (ri j , hi j)

�

(2.28)

2.4.3 Self-gravity

Self-gravity is often used in star formation simulations. This requires an additional component

in the momentum equation. For sink particles, as they are treated as point masses, the self-

gravity component can be calculated simply by summing the gravity force over the rest of the
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particles:

ai,gravity = G
N
∑

j=1

m jri j

|r3
i j|

(2.29)

However, gas particles cannot be treated simply as point particles as their masses are spread

out through the volumes of their kernels. Benz (1990) used the Poisson equation to derive the

gravitational force from the density:

−∇φ = −G
N
∑

j=1

Mi jri j

|r3
i j|

(2.30)

where

Mi j = 4π

∫ |ri j |

0

r2ρ(r)dr = 4π

∫ |ri j |

0

r2W (r, h)dr (2.31)

The integral can be solved by substituting the cubic spline from (2.19) and solving it with

respect to r. Equation (2.30) can be substituted into the momentum equation, which, includ-

ing pressure, the grad-h correction, artificial viscosity and self-gravity, is:

dvi

d t
= −

∑

j

m j

�

Pi

Ωiρ
2
i

∇iW (ri j , hi) +
Pj

Ω jρ
2
j

∇iW (ri j , h j) +Πi j∇iW (ri j , hi j)

�

−G
N
∑

j=1

Mi jri j

|r3
i j|

(2.32)

This summation for self-gravity would be over all remaining particles in the simulation, as

gravity has a large range meaning that it cannot rely on a calculation over just the neighbours.

As a result, the computing performance scales as N2. To improve this in order to use a larger

number of particles, the octree (Barnes & Hut 1986) and binary tree (Press 1986) algorithms

were developed. The binary tree is used by sphNG, and as such the computing performance

is improved to N log N .
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2.4.4 Equation of state

Pressure terms used by the momentum equation are calculated from the equation of state. The

pressure P is calculated by rearranging ideal gas equation PV = NkT in terms of gas density

ρ and the sound speed cs in that gas:

P = ρc2
s (2.33)

The sound speed is dependent on the gas temperature:

c2
s =

RgT

µ
(2.34)

The Rg is the universal gas constant. The mean molecular weight µ is defined:

µ=
�

∑

i

x i

Ai

�−1

(2.35)

with x i as the mass fraction relative to the total mass for a given atom, and Ai is the

molecule or atom mass in hydrogen masses. The sum here is counted over all species in the

medium (e.g. H, He, C, O, etc.).

The temperature T in the Equation (2.34) is calculated from the internal energy u:

T =
2µ
3Rg

u (2.36)

The internal energy u is obtained from the energy equation, discussed in section 2.5. Sub-

stituting (2.36) into (2.33) and (2.34), the pressure and the sound speed becomes:

P =
2
3
ρu (2.37)

cs =

√

√ P
ρ

(2.38)

Equations (2.37) and (2.38) apply to the isothermal case. In Bonnell et al. (2013) simu-
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lations, discussed in this thesis, used the adiabatic equation of state. In the adiabatic case the

pressure and the sound speed are given by:

P = (γ− 1)ρu (2.39)

cs =

√

√γP
ρ

(2.40)

Here γ = CP/CV is the adiabatic index which for monatomic gas is 5/3. This value was

used for simulations, discussed in this thesis.

2.5 Energy equation

The fluid must be allowed to evolve while conserving the total energy (in the absence of sources

and sinks of energy), which has so far not been touched on.

Benz (1990) gives the expression for the time derivative of the energy. Similarly to the

momentum equation, it is expressed in terms of the particle’s own properties and a sum over

its neighbours:

dui

d t
=

Pi

ρ2
i

∑

j

m jvi j · ∇iW (ri j , hi j) (2.41)

To incorporate the grad-h formalism, Monaghan (2002) used a constant entropy assump-

tion to derive the internal energy equation:

dui

d t
=

Pi

Ωiρ
2
i

∑

j

m jvi j · ∇iW (ri j , hi) (2.42)

2.6 Evolution of particles

The evolution of the simulation depends on what types of particles are used. There are three

commonly used types of particles in SPH simulations - gas, sink and dead particles. Gas par-

ticles (sometimes called just SPH particles) are the main particles, which represent the fluid.

Sink particles (or sinks) are point mass particles, which, similarly to N-body particles, only
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feel the gravitational force, but can also dynamically replace high density regions of gas and

later accrete further. Depending on the level of mass resolution in the simulation, sinks can

represent anything from individual protostars to entire clusters of stars. Sinks form from high

density gravitationally bound regions of gas particles. Particles which are used to form sinks

or are accreted to them transfer their mass and are then converted to dead particles. These

remain present in the simulation but are no longer evolved.

2.6.1 Motion of particles

The main feature of particles is that they can move in space, dynamically representing the

changing fluid. A particle’s motion is defined by its velocity and integration timestep:

rnew = rold + v∆t (2.43)

This is a simple method of integration used solely for the purpose of illustration. Here rnew

is the new particle’s position vector in 3D Cartesian space, and rold the old position vector. At

a given time each particle has its own timestep ∆t and velocity vector v. At the end (or at the

beginning) of the time step the particle velocity is recalculated in order to prepare the particle

for the next time step:

vnew = vold +
dv
d t
∆t (2.44)

Here dv
d t is the acceleration, calculated from momentum equation (2.32). Depending on

the type of the particle, not all force terms are always used. In the case of sinks, pressure

and artificial viscosity terms are neglected and only gravity is used. In simulations, where

gas particles are used without self-gravity, the acceleration is calculated by using pressure and

artificial viscosity terms, and gravity term is neglected.

The specific internal energy of the gas particle changes over the time:

unew = uold +
du
d t
∆t (2.45)

where du
d t is the energy change rate, obtained from energy equation (2.42).
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2.6. Evolution of particles

2.6.2 Runge-Kutta two timestep integration

The above equations are simplified for clarity. Modern sphNG uses a Runge-Kutta-Felhlberg

method of integration, calculating the positions, velocities and forces at a trial timestep halfway

through the full step. A weighted average is then used to find the values after a full step’s

integration. The weighting coefficients are 1/256, used for the positions, accelerations and

internal energies, found at the beginning of the timestep, and 255/256 for the ones calculated

at the half-step. This then makes the quantity update equation:

x1 = x0 +
1

256
d x0

d t
∆t +

255
256

d x0.5

d t
∆t (2.46)

Here x is a quantity which stands for position, velocity and internal energy of the particle.

x1 is the quantity at the end of the timestep, x0 the quantity at the beginning of the timestep.
d x0
d t is the quantity change rate at the beginning of the timestep, d x0.5

d t the quantity change rate

at the half timestep and ∆t is the full timestep.

Particles in sphNG are allowed to have individual timesteps and these are recalculated

following each full timestep’s integration. The following expression shows how new timesteps

are calculated:

∆tnew =∆told

s

ε

T E
(2.47)

Here ε is the desired level of error in the simulation. T E is the truncation error, which is

calculated as:

T E =
1

512
MAX (|vx−new − vx−old|, |vy−new − vy−old|, |vz−new − vz−old|)h (2.48)

Here the factor of 1/512 comes from the choices of 1/256 and 255/256 for the weighting

coefficients, which allows a higher order integration to the timestep’s end. Then the differ-

ences between the old and new velocities of the particles in the x , y and z components are

calculated. The final velocity difference is found by picking the largest absolute value from

these three velocity difference components. h is the particle’s smoothing length. This timestep

calculation allows the timesteps to be reduced for particles which are fast-moving or in high
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density regions, increasing the accuracy of the integration. It also saves computing time by

using larger timesteps for particles in low density regions which interact with other particles

on longer timescales.

2.7 Sink formation and accretion

In SPH star formation is followed by using sink particles in the simulation. Bate et al. (1995)

introduced sinks in order to reduce computing power requirements in high density regions,

where particles have very small timesteps. Frequent calculations needed to integrate such

small timesteps consume most of the computing power. These regions are usually compact

clumps, which collapse to form sinks. A clump of 70 (the number of neighbours used in the

particle’s kernel calculation) particles in sphNG is replaced by a single sink particle, which

interacts with other gas and sink particles only through gravity. The main feature of sinks is

that they can form and accrete dynamically in any region when the required conditions occur.

As a result sink formation and accretion are the two main processes, which makes sink particles

so useful for star formation simulations.

2.7.1 Sink creation

Bate et al. (1995) defined several conditions in order to create a sink particle:

1. ρi > ρcrit

2. hi < rcrit

3. Eth < 0.5Egrav

4. Ekin−rot < 0.5Egrav

5. Egrav + Ekin−rot + Eth < 0

6. div dv
d t < 0

The 1. condition is to check if individual gas particle density is greater than a critical

density, defined for the whole simulation. As particles are sorted by density at this point,

the first particles checked are the highest density ones. The 2. condition is checking if this

particle’s smoothing length is smaller than a critical distance, which is also defined for a whole

simulation. After 1. and 2. pass, the 70 neighbours of the i particle are taken as a subset and

further energy tests are performed. 3. checks if the total thermal energy of all 70 neighbours
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2.7. Sink formation and accretion

does not exceed half of their self-gravitational energy. This ensures that thermal energy does

not prevent the clump from collapsing. Similarly, 4. ensures that rotational energy will not

be able to prevent the clump from collapsing (which would turn the system into a disc rather

than a spherical central object). If thermal and rotational energy separately do not exceed half

of the gravitational energy, it does not mean they both together could not exceed gravitational

energy. For this, condition 5. is needed. The final 6. condition checks the divergence of the

accelerations in order to prevent sinks forming in tidally disrupted or bouncing regions.

The sink is created only if all six conditions pass. In this event, the protosink (the original

highest density particle used in 1. and 2. steps) is placed at the centre of mass of all 70

neighbours and the protosink. The total mass of all 70 neighbours is also added to the sink.

The sink velocity is calculated as the centre of mass velocity of these 70 neighbours. This allows

us to conserve the momentum. The angular momentum is also conserved through the spin of

the sink. The 70 neighbours which went into sink formation are flagged as dead particles and

no longer used in any calculations of the simulation.

2.7.2 Sink accretion

Bate et al. (1995) also defined the continuous dynamical accretion onto existing sinks in the

simulation. Two accretion radii are used - the outer accretion radius rout, which is usually the

same as rcrit, used for sink creation, and the inner accretion radius rin, which is several times

smaller than the outer radius. Both inner and outer accretion radii are pre-set before running

the simulation and remain constant during evolution in order to remain consistent with level

of resolution.

If a gas particle comes within distance rout of the sink, the following checks for accretion

are performed:

1. The gas particle is bound to the sink;

2. The particle’s angular momentum is small enough that it could be placed on a circular

Keplerian orbit at rout;

3. The gas particle is more bound to the sink in question than to any other sink.

If these three checks pass, the gas particle is accreted, and its mass, momentum and angular

momentum are added to the sink. The sink is placed at the centre of mass of both particles -
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the old sink and the accreted gas particle. The sink velocity is changed to that of the centre of

mass. And the angular momentum of the accreted gas particle is added to the total spin of the

sink. The accreted gas particle is marked as a dead particle and is no longer updated in the

simulation. The particle is accreted without any additional conditions if it comes closer than

rin to the sink.

2.8 Summary

In this chapter, I reviewed the basics of SPH simulations (especially sphNG) which I use in

later chapters to investigate star and cluster formation processes. I started from fluid equa-

tions in Eulerial and Lagrangian forms. Then I showed the derivation of smoothed function

< f > which is used together with fluid equations in order to derive continuity, momentum

and energy equations for SPH. I discussed kernel functions, the usage of M3 cubic spline in

sphNG and the role of particle neighbours. Discussion on SPH equations started from conti-

nuity equation, which is used to calculate particle densities. The acceleration equation, which

is also known as the momentum equation, was reviewed in detail. The simplest momentum

equation for gas particles is based on the pressure gradient, which in sphNG simulations is

calculated through particle neighbours. sphNG uses a more advanced version with grad-h for-

malism through the Ω term. Then I discussed artificial viscosity terms, which are added to the

momentum equation as they can reduce post-shock oscillations and help to solve the problem

of particle penetration through each other. The self-gravity term in sphNG is derived through

the Poisson equation in order to treat particles as fluid elements rather than point masses. The

equation of state is used to calculate gas pressure. Then, I reviewed internal energy equation,

which is used to account for heating and cooling by thermodynamical processes. The evolution

of particles was discussed in terms of position, velocity and internal energy changes over the

time. Finally, I reviewed sink formation and accretion conditions, which are commonly used

to convert gas particles into sinks.

32



3
Initial conditions

In this chapter I present an overview of the initial conditions used for the simulations presented

in this thesis. These initial conditions are similar to those presented by Bonnell et al. (2013)

wherein Global galactic scale simulation and cloud-scale simulations are used.

3.1 The Global simulation

The first simulation, which was later used in Bonnell et al. (2013), was the Global galactic

simulation, developed by Dobbs et al. (2006). The principle interest of this simulation is the

galactic gravitational potential which includes the disc, halo and spiral arms. The logarithmic

disc potential was used with flat rotation curve (Binney & Tremaine 1987):

Φdisc(r, z) =
1
2

v2
0 log

�

r2 + R2
c +

�

z
q

�2
�

(3.1)

Here Rc = 1 kpc is the halo core radius, v0 = 220 km/s and q = 0.7 is the disc scale height.
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The spherical dark matter halo has a contribution to the potential:

∇2Φhalo(r) = −4πGρhalo(r) where ρhalo(r) =
ρh

1+ (r/rh)2
(3.2)

Here ρh = 0.0137 M� pc−3, rh = 7.8 kpc and these are respectively the halo density and

halo scale radius (Caldwell & Ostriker 1981).

Finally Dobbs et al. (2006) used Cox & Gómez (2002) in order to define the spiral arm

potential:

Φsp(r,θ , t) = −4πGHρ0exp

�

−
r− r0

Rs

� 3
∑

n=1

Cn

KnDn
cos(nγ)

γ= N

�

θ −Ωp t −
ln(r/r0)
tan(α)

�

Kn =
nN

r sin(α)

Dn =
1+ KnH + 0.3(KnH)2

1+ 0.3KnH

C1 = 8/3π, C2 = 1/2, C3 = 8/15π

(3.3)

Here Dobbs et al. (2006) used N = 4 (number of spiral arms), Ωp = 2 × 10−8 rad yr−1

(angular velocity of the spiral pattern), ρ0 = 1 atom cm−3 (the amplitude), α = 15◦ (pitch

angle), r0 = 8 kpc, Rs = 7 kpc and H = 0.18 kpc. Coefficients Kn, Dn and Cn defines how

amplitude is dependent on radius.

In order to maximise resolution in the galactic disc Dobbs et al. (2006) distributed particles

between 5 and 10 kpc of the disc. The corrotation radius was 11 kpc (from Cox & Gómez 2002)

and thus all SPH particles are inside the corrotation radius.

Firstly Dobbs et al. (2006) uses a 2D test simulation with uniformly distributed particles

with circular velocities, based on Equation (3.1). The test simulation was evolved for two

orbits in the galactic potential in order to get the spiral density pattern. After two periods of

rotation Dobbs et al. (2006) adopts the 2D simulation to 3D by using 100 pc disc scale height.

Finally, the 2.5 % random Gaussian velocity dispersion of the orbital velocity was injected for

all particles in the z direction as well as in the galactic plane (Dobbs et al. 2006).
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Simulations in Dobbs et al. (2006) were run with 106 and 4× 106 particles. Bonnell et al.

(2013) increased this to 2.5×107 particles, which Bonnell et al. (2013) used to get Cloud and

Gravity simulations. The total mass of the disc was set to 109 M�, giving 40 M� resolution per

SPH particle and the initial surface density of Σdisc ≈ 4.2 M� pc−2 in the Global simulation

of Bonnell et al. (2013). The simulation was evolved for 350 Myr of galactic time in order to

provide the initial conditions for Bonnell et al. (2013) Cloud and Gravity simulations.

No boundary conditions were used in the simulations of Dobbs et al. (2006) and Bonnell

et al. (2013) simulations. As a result a slight distortion was present in the inner and the outer

edge of the disc due to the underestimated gas pressure.

3.2 Cloud and Gravity simulations

The high density region from the spiral arm of the Global simulation was chosen in order to

initialise the subsequent Cloud and Gravity simulations on smaller scales (Bonnell et al. 2013).

The region of 250 pc size containing 1.71× 106 M� mass and 272500 particles was taken at

the Global simulation time of 350 Myr. Each particle was split into 256 smaller mass particles,

increasing resolution from 40 M� down to 0.156 M� per SPH particle.

Bonnell et al. (2013) used the following methods to include the boundary particles. Sim-

ulation was set for the region to include boundary particles, which were traced for 54 Myr

(1/4 of the galactic orbit) backwards in time. Such boundary particles are considered to be

all those which came within 40 % of the size of the region at any time within this 54 Myr

period. Those which came closer than 15 % are additionally split in 4 lower mass particles.

A third group of boundary particles was made up of those which came closer than 10 h (the

SPH smoothing length) of any particle in the region of interest. The particles in this group

were split 16 times. A fourth group of particles was found in the same way as the third, but

instead included particles within 4 h of the region. These were split into 64 particles. This

setup means particles can encounter others whose masses are different by factors of 4. Bonnell

et al. (2013) evolved these boundary particles in the same way as the regular SPH particles

together with the region of interest particles. After including boundary particles, the number

of particles is set to 2.8× 107 and the total mass in the simulation 3.09× 107 M�.

Bonnell et al. (2013) evolves the region of Cloud simulation between 310 and 364 Myr

(for 54 Myr time) of the Global simulation timescale. During this time, the cloud experiences
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its full life cycle, i.e. formation, maximum compression and being torn apart in the galactic

tidal field.

The last in the set of Bonnell et al. (2013) simulations is the Gravity simulation, which

was the one used in this thesis. Bonnell et al. (2013) derived the Gravity simulation from the

high density central 250 pc of the Cloud simulation. Bonnell et al. (2013) sets the evolution

to begin at a galactic time of 350 Myr and go on for a further 5 Myr. Unlike the Global and

Cloud simulations, the Gravity simulation included self-gravity, calculated according to the

(Press 1986). Star formation was simulated with the dynamic formation of sink particles from

self-gravitating gas (Bate et al. 1995). I discussed sink formation and tree codes in more detail

in Chapter 2.

3.3 Cooling function

The Bonnell et al. (2013) Global, Cloud and Gravity simulations used a gas cooling function

originally derived by Koyama & Inutsuka (2000, 2002) and later improved upon by Vázquez-

Semadeni et al. (2007). The cooling function is described in terms of heating Γ from back-

ground radiation and cooling Λ by atomic, molecular and dust processes:

Λ(T )
Γ
= 107exp

�

−114800
T + 1000

�

+ 0.014
p

T exp

�

−92
T

�

(3.4)

Here Koyama & Inutsuka (2002) used the constant value for heating Γ of 2×10−26 erg s−1

in the galactic disc.

The equilibrium temperature Teq is the temperature at which heating and cooling rates are

balanced. The equilibrium is given at the density neq:

neq =
Γ

Λ(Teq)
(3.5)

To find the equilibrium density Equation (3.4) must be inverted, giving the temperature as

a function of the cooling rate, i.e. T (Λ). The code does this by tabulating the cooling rate over

a logarithmic grid in (n, T) space. After adding the rate of change in internal energy due to

hydrodynamic processes to the heating Γ and cooling Λ terms, the energy equation becomes:
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n

�

du
d t

�

total

= n2Λ+ nΓ + n

�

du
d t

�

hydro

(3.6)

Here
�

du
d t

�

hydro
is the internal energy change rate from compression and expansion, dis-

cussed in Chapter 2.

Vázquez-Semadeni et al. (2007) gives the cooling timescale, which is the time needed

for gas to reach the equilibrium internal energy from its current given value. By adding the

u̇hydro =
�

du
d t

�

hydro
term, the Vázquez-Semadeni et al. (2007) cooling timescale becomes:

τΛ =

�

�

�

�

u− ueq

nΛ(T )− u̇hydro − Γ

�

�

�

�

(3.7)

Finally Vázquez-Semadeni et al. (2007) give the equation for updated particle’s internal

energy:

unew = ueq + (u− ueq)exp

�

−
dt
τΛ

�

(3.8)

Here unew is the new internal energy of the particle, u is the old internal energy of the

particle from the previous timestep and d t is the timestep.

This cooling function is used in the Bonnell et al. (2013) simulations to allow a two-phase

interstellar medium (ISM) to develop naturally. This two phase ISM (Field et al. 1969; Wolfire

et al. 1995) is in pressure equilibrium between warm (T ≈ 104 K) and cold (T ≈ 10 K) gas.

37



Chapter 3. Initial conditions

38



4
Cluster finder

Clustering analysis is one of the most difficult problems, not just in astronomy, but also in

computer sciences, medicine, statistics and data analysis (Hartigan 1975; Jain et al. 1999;

Zhao & Karypis 2005; Soni & Ganatra 2012). The most natural cluster detection "algorithm"

is the human eye. However, in large datasets, manual cluster finding would become a very

slow and tedious process. The best solution here is to develop an automatic cluster finding

algorithm, where a computer program could find clusters in the most realistic way, comparable

with human eye detection. However, cluster finding algorithms are not easy to develop, and

often come with limitations.

Due to different applications of clustering, and the variety of features and algorithm limita-

tions, a large number of algorithms have been developed (Soni & Ganatra 2012; Zafar & Ilyas

2015). Soni & Ganatra (2012) in their Figure 2 present a detailed tree-scheme of how clus-

tering algorithms can be classified. They divide cluster finding algorithms into two categories

- partitioning and hierarchical. Density based clustering algorithms (which Soni & Ganatra

2012 classified in the partitioning category) are likely to be a good fit when finding stellar
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clusters in simulations. Hierarchical clusters can also be used, especially in the regions where

clustering itself is hierarchical. Hierarchical clustering also allows us to build a full hierarchical

tree-dendrogram which can be used to analyse clustering at different scales. K-means based

clustering algorithms are also popular in data science, but they use a number of clusters in

the dataset as a pre-defined parameter. Thus K-means algorithms are not the best solution for

simulations in which a number of clusters are unknown before the algorithm begins to search.

A cluster in a dataset is a group of data points which have similar properties to one another.

In astronomy, the term ‘stellar cluster’ refers to a group of stars visible at a similar position.

Observationally it is often done in 2D, when clusters are defined as groups of stars in the plane

of the sky. In order to obtain 3D geometry, distances to individual stars of the cluster would

be needed. In simulations, all three dimensions are available and clusters can be defined in

3D. The density of stars in a stellar cluster is higher than in the surrounding background, so

a cluster finding algorithm should be able to identify these groups of stars in higher density

regions.

In this thesis, I used a gravitational potential based algorithm (which is a sub-class to the

density based algorithm) in order to find clusters in star formation simulations in a manner

most closely approximating the method performed by the human eye.

4.1 Gravitational potential based clustering

The human eye naturally sees high density nearly spherical regions in simulations as clus-

ters. Sinks remain in the forming clusters for several crossing times as they are gravitationally

bound to the cluster and thus are moving inside the global gravitational potential of the clus-

ter. Filaments, which are also present in star forming regions, can be collapsing and present

as short-lived structures at a given time. As a result, the cluster finder should identify already

formed clusters and separate them from filamentary and other short-lived structures. As the

boundedness of the cluster is so important, the gravitational potential based cluster finder is

likely to be a good solution.

4.1.1 Local and enclosed gravitational potentials

Before starting the cluster finding algorithm, the first thing to be done is to calculate the local

gravitational potentials at all sinks in the simulation. Potentials are often used in order to
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estimate the gravitational field in simulations but potentials can also be used in order to find

clusters. The local potential at each given sink can be calculated by using other sinks:

Φi = −G
N
∑

j=1

m j

Ri j + ε

�

�

�

�

Ri j<Rpot−out

(4.1)

Here Φi is the local gravitational potential measured at the sink i. m j is the mass of an-

other sink j. Ri j is the distance between particles i and j. ε here is a tiny distance, through

which potential is smoothed in order to avoid contribution from close binary sinks. Potential

calculations are also limited at large radii by Rpot−out - the external radius, beyond which other

sinks from the simulation are not included in the potential calculations. In this thesis values

of Rpot−out = 2 pc and ε = 0.05 pc were used. If the nearest neighbour sink j for the sink i is

beyond Rpot−out, the potential Φi = 0 and the sink i is not used in the cluster finder.

The enclosed gravitational potential Φenc is also used in the potential based cluster finding

algorithm. The enclosed potential is relative to the centre of mass of the cluster in question.

As a result, the enclosed potential is calculated as:

Φenc,c,k = −G
k
∑

j=1

m j

Rcom,j

�

�

�

�

Rcom,j<Rpot−out

− G
N
∑

j=k+1

m j

Rcom,k

�

�

�

�

Rcom,k<Rpot−out

(4.2)

Here Φenc,c,k is the enclosed potential calculated for the sink k, relative to the cluster c. The

list of all sinks in the simulation is sorted by the distance of each sink to the cluster c centre of

mass. The first sum is over internal sinks, which are closer to the cluster c centre of mass than

the sink k and no further than the Rpot−out (which was set to 2 pc). The second sum is over

all the remaining sinks which are further away from the cluster c centre of mass than the sink

k but also no further than the Rpot−out. The m j is the j sink mass and the Rcom,j is the j sink

distance from the cluster c centre of mass. Rcom,k is the k sink distance from the cluster centre

of mass. If the sink k is further away than Rpot−out, its enclosed potential is only calculated

from internal sinks which are closer to the cluster centre of mass than Rpot−out; this means

that enclosed potentials beyond Rpot−out are flat. Enclosed potentials are only calculated when

there are clusters already found in the simulation. Otherwise, only local potentials are used

in the definition until the first cluster is found.
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4.1.2 Definition criteria

Once the local gravitational potentials are known at every sink particle, the cluster finder can

begin to search. The search follows these steps:

1. The list of sinks is sorted by local potentials.

2. The lowest potential sink is taken from the sinks list. The sink’s local potential is checked

against the critical background potential threshold above which the cluster finding algorithm

ends.

3. If there are no previously classified clustered sinks, the current sink is immediately

added to the first cluster c1 and the cluster finder goes back to step 2 in order to find the next

lowest potential sink. If other sinks have previously been classified as clustered, next steps are

done in order to find if the current sink should be added to one of the already defined clusters.

4. The enclosed potentials, relative to the existing clusters, are calculated for the given

sink candidate as described in Equation (4.2). The first cluster taken for enclosed potential

calculation is the one whose centre of mass is closer to the sink in question than any other

cluster centre of mass.

5. The ratio of the local sink potential to the enclosed sink potential of the nearest cluster

should not exceed 2, as low local sink potential is likely to be caused by another cluster. If this

criterion fails, then step 4 is repeated to find the next nearest cluster and the ratio is checked

again. This repeats over all already found clusters.

6. If step 5 fails and the local to enclosed potential ratios are found to be greater than 2

for all clusters, then no other cluster can add a contribution to such low local potentials. A

new cluster is created and the sink assigned to it.

7. If step 5 passes, the sink is added to the nearest cluster satisfying the potential ratio

criterion.

8. Steps 2 to 7 are repeated over all remaining unclustered sinks until either the end of

the list, the zero or the background potential is reached.

9. Clusters smaller than 6 sinks and also gravitationally unbound clusters are removed

after 1 to 8 finishes.
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Defining clusters by following these steps allows us to find clusters starting from the lowest

potential sinks moving outwards. In the case of filamentary structure, the lower potential in

the filament could be a subcluster and the definition does not spread along the filament. This

is because when sinks are distributed in a filament, the enclosed potential rises rapidly, while

the local potential remains nearly the same. The 5th criterion fails to classify sinks which are

not in clusters but instead in filaments as being clustered.

4.1.3 Free parameters

As it can be seen, the cluster finder has several free parameters, which the user can choose

before running the algorithm. Here is the summary of these parameters:

1. Φbg - local gravitational potential background threshold. This prevents the definition

from spreading into large potential areas, where non-clustered sinks are present (distributed

mode). The background threshold has been set throughout this thesis to -1011 cm2s−2, as this

is where virialised motions of sinks were no longer observed (see subsection 4.1.4 for mode

detail).

2. The ratio between local and enclosed gravitational potential. This prevents the defini-

tion from spreading into other clusters. Large values of the ratio allows definition to spread

into other clusters easier and merge them together. Small values of ratios allow us to separate

smaller subclusters. The ratio value was chosen (by eye) to be 2 through this thesis.

3. Rpot−out - the outer radius at which both local and enclosed gravitational potentials

are limited. This allows the user to chose the locality from which gravitational potential cal-

culations are most desirable. Large values of Rpot−out can include more contribution from

inter-cluster sinks and thus weaken the effect of the potential of the cluster in question. Small

values can include contribution only from a part of the cluster. The chosen value in this thesis

is 2 pc.

4. ε - the tiny distance, used to smooth local gravitational potential calculations. This

is used primarily to avoid significant potential contribution from binary sinks and instead fo-

cussing on the cluster scales.

5. Minimum number of sinks in the cluster. This parameter allows us to avoid clusters

with a small number of sinks, which would give low number statistics. The value was chosen

to be 6 through the thesis.
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Figure 4.1: The gravitational potential threshold can be determined by measuring the changes in the
potential from the virialised motions of sink particles. Changes in the gravitational potential over time
are shown in this diagram as a function of the potential itself. The virialised motions of clustered sinks
are clearly seen at potentials smaller than -1011 cm2s−2. This can be used as a potential threshold in
order to separate clustered and distributed modes.

4.1.4 Background potential threshold

The background potential threshold is a free parameter and difficult to estimate. The prob-

lem arises as the transition between clustered and distributed sinks is smooth. However, the

virialised motions of sinks in the cluster can help here. Figure 4.1 shows how the local gravita-

tional potential of sinks changes over time in the Bonnell et al. (2013) simulation. The mean

potential between two timesteps is plotted on the horizontal axis (note that due to potentials

being negative, the direction of the horizontal axis is from right to left). On the vertical axis

is the ratio of potentials at these two timesteps. This is repeated over all timesteps of the

simulation. Sinks (and protosinks, i.e. gas particle which becomes a sink at a later time) at

higher potentials do not belong to any cluster and thus the change of the potential can be ex-

plained by large scale motions only. At lower potentials, sinks are in clusters and their motions

virialised. As a result, the potential ratio is scattered more at smaller potentials. Virialised mo-

tions end at potentials larger than -1011 cm2s−2 where the distributed and clustered modes

can be separated. This threshold was used at step 1 in the cluster finding algorithm, described
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in subsection 4.1.2.

4.2 Tracing clusters over time

A cluster finding algorithm allows us to find clusters of sinks in a single timestep. However,

these simulations are of particular use because they show the evolutionary process of cluster

formation. When the simulation was run it produced this evolution, but it is still not clear

which particles contributed to the clusters, how and why particular regions formed clusters,

and what their formation histories are. Do sinks remain in their clusters, or do they move out?

These questions can be answered by tracing the cluster definition over time.

4.2.1 Connecting two timesteps

The best method of tracing clusters is to develop a time-independent tracing algorithm, as at

individual timesteps it is important to find clusters without knowing their evolution (as is the

case for observations). In order to do this it is firstly necessary to find the clusters at each

timestep, independently of the other timesteps. The cluster IDs may not necessarily match

for the same cluster across different timesteps. The main task then is to map the connection

between the same clusters in time. In order to find if the cluster is the same at time t i and

t i+1, the list of cluster members can be used. The cross matching is performed between the

sinks in cluster "A" at time t i and all the clusters found at t i+1. Cluster "B" at t i+1 is taken to

be the same as cluster "A" at t i if cluster "B" has more mass from the sinks in cluster "A" than

any other cluster at time t i+1. Here ∆t = t i+1 − t i is a free parameter. In this thesis ∆t was

set to the full timestep in the simulation, which in the Bonnell et al. (2013) simulation is 0.05

Myr.

4.2.2 Cluster events between timesteps

There are six events which a cluster can experience between two timesteps (Figure 4.2) and

the tracing of clusters through time should properly account for them.

1. Cluster merging. This event occurs when two clusters merge into a single more massive

cluster. Merging occurs when two clusters with different IDs at the earlier timestep are found

to place most of their mass in a single cluster at the next time. Usually, when two clusters

merge, one is more massive than the other. The more massive cluster is described as the

"parent", while the less massive one is the "child". A major merger event occurs when the child
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Figure 4.2: This cartoon shows six possible events which can occur when tracing clusters through
time. Mergers, producing larger clusters, are common, while splitting is rarer. New clusters can form
from groups of sinks which come together in a compact region of space. They can also dissolve if they
become unbound. Sink accretion and ejection events are also possibilities. These six events are the full
set of possibilities while tracing cluster formation and evolution.
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cluster contributes more than 30% of the total mass of the merged cluster, and minor mergers

otherwise.

2. Cluster splitting. This is a rare event in which a single cluster splits into two. This

can happen if two clusters are not fully merged and the gap between them increases. This

can occur, for example, if one cluster is falling into another but there is not enough gas in the

collision region to dissipate the energy and cause the accretion of the infalling cluster. In such

a case, when the separation is the minimum the clusters would be taken to be merged, but

part of the infalling cluster would continue to move away from the collision. Several infalls

may be needed until the child cluster fully merges with the parent. So far splitting has not

been seen in clusters found from the Bonnell et al. (2013) simulations as clusters merge almost

immediately, but it can take place in N-body and especially cosmological simulations.

3. Cluster formation. This is a typical event in which a cluster is defined for the first time.

Usually, this occurs with six sinks initial clusters. This can be different if two subclusters with

less than six sinks individually merge and form a cluster with more than six sinks.

4. Cluster dissolution. This takes place when sinks in the next timestep are classified as

being unclustered. This can occur due to physical reasons in small clusters of six sinks when

one of the sinks is moving away from the rest. It can also occur if the cluster expands and the

potential criterion is no longer satisfied, or if the cluster is stripped due to tidal disruption and

its shape is extended. The cluster can also split into two subclusters, each possessing fewer

than six sinks which would then by definition be treated as unclustered.

5. Sink accretion. This event describes the addition of an unclustered sink (one or more)

to an existing cluster at the next timestep. Usually this happens when new sinks, recently

formed in the cluster’s periphery, fall into that cluster while satisfying the local and enclosed

gravitational potential criteria. This could also take place when the sink is on a highly elliptical

orbit. At the apocentre of the orbit, the sink may not satisfy the potential criterion, and so it

would be treated as unclustered. When it begins to move back towards pericentre, it would

once more be assigned to the cluster. This would oscillate sinks between the states of being

assigned and unassigned.

6. Sink ejection. The ejection event occurs when the sink moves out of the cluster and

becomes classified as unclustered. This could be a real event such as when a sink in a cluster

is ejected through a three-body close encounter event. This might give the sink a large enough
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velocity to unbind it, causing it to leave the cluster indefinitely. Sink ejection may also occur

if a sink enters a large orbit but remains bound, causing it to later return, as mentioned above

for sink accretion.

Including treatment of these six events in the cluster tracing algorithm allows us to trace

dynamical cluster formation over time. It is also possible to trace short-lived clusters, deter-

mine cluster lifetimes and merger histories, and build cluster merger trees. The cluster mass

merger tree is a diagram, which shows how cluster mass changes over the time. The mass

merger tree has imprinted merging and accretion events along the cluster mass evolution.

The mass merger tree can be quite "noisy" when individual sinks are assigned and unas-

signed according to the criteria above. In order to smooth it, two solutions can be used: to use

the time-dependent cluster finder, or to smooth over time. The time-dependent definition is to

find the sinks in the cluster at t i and check if at t i+1 they still define the same cluster. However,

this removes the method from the observation-based definition i.e. an observer would need

to know cluster formation histories in order to define them. The tree can be smoothed over

time by checking cluster membership over longer periods of time, for example by checking

whether a sink has been assigned to a given cluster not only from t i to t i+1 but also to t i+2.

For example, if a sink is found to be assigned to the same cluster at t i and t i+2 but not at

t i+1, it is assigned back to the cluster at the missing timestep t i+1. Repeating over multiple

timeseps, this method smooths cluster evolution tracks in the merger tree. In this way there

is no need to know cluster histories as the smoothing would not be used if the cluster state at

other timesteps is not known. Time tracing can be used both forwards and backwards. The

results produced in this thesis are based on the smoothed merger tree and backwards tracing

in time.

4.3 Summary

In this chapter I discussed the new cluster finding algorithm which I use for identification of

clusters of sinks in SPH simulations. A large number of cluster finding algorithms exist, but

each was usually developed for use in a particular case. The cluster finder adopted for finding

sink groups in SPH simulations is based on gravitational potentials.

The potential based algorithm uses the local and enclosed gravitational potentials as cal-

culated for sink particles to find the boundaries between clusters and the background, and to
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separate individual clusters. I discussed the steps at which the algorithm uses these potentials

in order to find clusters. The algorithm has five free parameters which need to be set before

running. This includes the potential threshold, the critical ratio between local and enclosed

potentials, the outer radius which limits local and enclosed potentials, the smoothing distance

in local potentials, and the minimum number of sinks needed to recognize the cluster.

I also discussed my solution for the long-standing problem of how to trace clusters through

sequential timesteps in numerical simulations. Firstly, I defined the cluster tracing method

between two successive timesteps. Numerous processes both numerical and physical may take

place. These are cluster creation, dissolution, merging, splitting, and individual sink accretion

and ejection. I also covered how to identify specific clusters across time by finding which

clusters retain the majority of their mass from the same sinks in subsequent timesteps. Finally

I discussed how to allow clusters to be traced over more than two timesteps, and how noise

can be removed from the results by smoothing.
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5
Triggering star formation

Star formation in galaxies is not well understood, and how effective the triggering of star for-

mation really is remains largely debatable. Many processes may help to trigger star formation,

such as spiral arm passage (Dobbs et al. 2015), cloud-cloud collisions (Bisbas et al. 2017),

and stellar feedback (i.e. stellar winds, supernova (SN), Elmegreen 2011). However, it is still

unknown which processes dominate and are potentially responsible for the creation of the

majority of stars in spiral galaxies. The most energetic processes are likely responsible for the

distribution of kinetic and gravitational energies in the galaxy and therefore play a key role in

star formation. Passage through a spiral arm is the most energetic process, as it compresses

clouds in the interstellar medium (ISM) and enables them to reach the point at which they

can become self-gravitating.

While spiral arm passage, cloud-cloud collisions and stellar feedback triggered star forma-

tion brought some answers, it remains unclear at what scale clouds become gravitationally

bound and how the collapse progresses. While simulations such as Dobbs et al. (2015) pro-

vide a good background and Bate et al. (2003), Smith et al. (2009), Bonnell et al. (2011)
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investigate in detail the formation of stellar clusters, the link between these two fields remains

missing. Thus the main reason of this chapter is to address the missing properties of star

forming clouds.

As a result I have investigated in detail the compression of the ISM and star formation

during spiral arm passage. I start my analysis with the simulation data of Bonnell et al. (2013)

in which star formation was observed during spiral arm passage. Star forming regions in

Bonnell et al. (2013) simulation are represented by dynamically forming and later accreting

sink particles. However, as the simulation was designed to resolve over 400 pc size region in

the spiral arm, minimum sink mass is set to 11 M�. Due to that, sinks can’t resolve individual

stars and instead represent groups or small clusters of forming stars.

5.1 The region structure

5.1.1 Spiral shock and velocities

The spiral shock provides the triggering mechanism for star formation and thus I discuss it first.

Figure 5.1 shows the position-position-velocity map for the initial conditions of the gas in the

simulation. The map shows the x-y positions of the particles, which are equivalent to a face-

on view of the galactic plane. The positions and velocities as shown in the diagram are relative

to the centre of mass (for all particles in the simulation) values. The direction of galactic flow

is almost parallel to the y-axis, so the shock is strongest in this direction. As a result, I show

the vy velocity component, which demonstrates the greatest difference between pre- and post-

shock velocities, making the shock front itself visible. In Figure 5.1 particle positions are colour

coded by vy . The flow of low density gas from the inter-arm region is visible as red diffuse

clouds in the lower left part of the diagram. This gas moves in a positive-y direction with vy ∼

10-20 km/s. The post-shock gas is visible as chunky high density material in the central region

of the diagram, extending from the upper left to the lower right side as blue-green material.

These gas particles move at vy ∼ 0 to -10 km/s. Thus, the difference between the pre- and

post-shock velocities is around 20-30 km/s in the y-direction.

Due to this strong supersonic shock the front side forms pillars. They form as the pre-shock

gas pushes lower density regions more efficiently into the spiral arm, while the higher density

regions remain less affected. The gas in the tails of the pillars is well protected by a shielding

effect from the pillar heads, which are usually high density clumps. The lower density pre-
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Figure 5.1: The galactic spiral shock is shown in this diagram in terms of velocities. This is a position-
position-velocity map of all the gas particles at the beginning of the simulation, with particle velocities
in the y-direction given by their colours. The velocity is taken relative to the centre-of-mass of the
simulation. The shock front is clearly visible in the diagram, with a nearly 30 km/s difference in
velocities between the pre- and post-shock material.
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Figure 5.2: This plot maps where sink formation and accretion took place in relation to the overall
distribution of gas. Grey dots show the positions of all the gas particles, while coloured dots represent
accreted gas, with the colour indicating the time at which they were accreted. The map shows the
locations of sink forming regions as well as the larger reservoirs of sink forming gas. As the plot shows,
early sink formation and accretion occurs in compact high density clumps, while late sink forming and
accreted gas undergoes collapse from large scales.

shock gas is not uniform either, and as a result the galactic flows create clumpy shocks as have

been investigated in earlier works (Clark & Bonnell 2006; Dobbs & Bonnell 2007).

5.1.2 Sink forming regions

The spiral shock compresses the ISM gas to higher densities. If the density is high enough,

the region becomes gravitationally bound and starts to collapse. This leads to sink formation,

which I plot in Figure 5.2. The positions of all the gas particles in the simulation are plotted

in grey-scale. Gas particles which are accreted at some point in the simulation are plotted on

top and colour-coded according to the simulation time at which that occurs (accretion time).

Regions where sink formation and accretion have occurred are clearly visible. The main

sink forming region appears as an extended ridge elongated along the direction of gas flow.
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Figure 5.3: "Cities diagram". The diagram shows gas particle densities plotted against y position at the
beginning of the simulation. Grey particles represent all gas in the region, while on top are particles
accreted at a time indicated by their colour-coding. The diagram shows that high density particles are
accreted first, while lower density particles follow after at later times. The cold high density spiral
arm gas and warm low density inter-arm gas is visible as a multi-phase medium of the gas. The shock
approaches from the left-hand side of the diagram. It can be seen that sink formation and accretion is
triggered first in the highest density regions while later accretion follows from lower density gas from
extended sink reservoirs.

There are also dozens of individual smaller clouds, scattered along the spiral arm. The map

shows the size scales on which sink formation and accretion takes place: the main region

is about 150-200 pc long, and 30-40 pc wide. However, as can be seen from the colour-

coding, sink formation and accretion takes place on different scales at different times. Early

sink formation and accretion appears to be concentrated into compact clumps, which form

first, while later gas is accreted from extended reservoirs distributed across larger scales. This

shows that gas particles accreted early on were already close to the locations at which they

were accreted, while particles which were initially more distant needed time to travel to the

accretion sites.

In Figure 5.3 I plot the same particle y-positions against the SPH gas densities for all and

accreted gas particles. This plot shows the multi-phase nature of the gas in the simulation, with

cold high density gas present alongside warm low density gas. Accreted particles were for the

most part initially in the high density phase and show good correlation between accretion time

and gas density. As a result, early sink formation and accretion takes place in high density gas

(i.e. ≈ 104 cm−3), while later sink formation and accretion is extending to lower densities

(down to ≈ 100 cm−3). Gas particles must not only move closer to their accretion sites, but

must also increase in density to the point where sink formation can take place. The tiny clumps

seen in Figure 5.2 are seen in Figure 5.3 instead as thin blue columns rising towards the highest

densities. Sink formation and accretion densities in this simulation are set between 6.8× 103

and 1.1×106 cm−3 (which are based on the assumption that gas would be distributed uniformly

within 0.1 pc and 0.25, respectively the inner and outer accretion radii). It is between these

55



Chapter 5. Triggering star formation

densities that gas particles are converted to sinks and the vertical columns, visible in Figure

5.3, do not approach the higher densities.

5.2 Properties of sink forming reservoirs

In order to fully understand star formation we must be able to explain the physical properties

of star forming regions and follow them over time. Masses, sizes and energies are the primary

ones, which can be measured directly from simulation data. I discuss here the properties of

individual sink forming reservoirs (note that the sinks in the Bonnell et al. (2013) simulations

do not represent individual stars).

5.2.1 Sink forming masses

At the beginning of the simulation, only gas particles are present. The first sinks start to form

at around a simulation time of 0.5 - 1 Myr. They also can accrete gas particles later. I track all

accreted particles in order to find their distribution at all time steps. As each sink is forming

from its gas reservoir, the mass between time steps is conserved. In other words, this conserved

sink reservoir mass is the total mass of the sink itself, combined with the gas particles yet to

be accreted at any time, or the final sink mass at the end of the simulation. By using the

time of sink formation I offset the simulation time scale for each sink in order to get sink

ages for each time and each sink. Before sink formation, I use the protosink (the gas particle,

which becomes a sink after sink formation) position as a reference centre of the system and

calculate the distances of other reservoir particles to it. Doing this, at the last time step before

sink formation, gives the distribution of particles in the reservoir just before sink formation.

I use this distribution to calculate cumulative mass as a function of distance to protosink. I

separated the sinks into four groups according to their final masses and made a histogram of

the mean values for each group (Figure 5.4). The error bars here are calculated as a logarithmic

standard deviation in cumulative masses from individual sink profiles in a given group. The

number of individual sink profiles in each group is N<100 M� = 1471, N100−300 M� = 821,

N300−1000 M� = 231, N>1000 M� = 10. Half-mass radii are also shown for each group as solid

arrows.

This diagram shows how the masses of sinks with different final masses are distributed in

their reservoirs. The profiles are unresolved within 0.1 pc. The masses at 0.1 pc are almost

the same, as this is the sink mass at formation, which numerically requires 70 SPH particles
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Figure 5.4: The sink mass profile is shown 0.05 Myr before sink formation. Sinks are collected from
all timesteps when they are just about to form. Profiles are plotted by averaging cumulative masses in
the corresponding radius bin for four different final mass subsets. The two dashed lines mark inner and
outer accretion radii. Half-mass radii are shown for each subset as Rh. The figure shows that the most
massive sinks gain most of their mass through accretion from scales of several parsec while lower final
mass sinks gain most of their mass from sub-parsec scales.
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in order to be created (as the gas particle mass is 0.156 M�, the lowest mass sinks can be

10.9 M�). The outer parts of the profiles show that larger final mass sinks have much more

massive reservoirs over larger scales than the low final mass sinks. Low final mass sinks (<100

M�) acquire a significant fraction of their masses during their formation, with their half-mass

radius found to be 0.18 pc, which is smaller than the outer accretion radius (0.25 pc). The

largest final mass sinks (>1000 M�) contain most of their material in their reservoirs of gas

particles remaining to be accreted, and as a result their half-mass radii extend up to 2 pc.

By comparing these cumulative masses to Rathborne et al. (2015) ones, shown in their

top left panel of Figure 14, it can be seen that cumulative masses are much smaller in this

work than in Rathborne et al. (2015). Rathborne et al. (2015) found 6 × 103 M� enclosed

within 0.5 pc, while in Figure 5.4 the largest masses are ∼ 100 M�. While in this work only

those particles remaining to be accreted were used for a given sink, it could be that the larger

contribution can be added from overlapping other sink reservoirs as well as from non accreted

gas particles.

5.2.2 Local boundedness of star forming regions

Similarly to the method using enclosed masses, I calculate binding ratios using the gravita-

tional, kinetic and thermal energies at each enclosing radius (Figure 5.5). The gravitational

enclosed energy is calculated by directly summing over all possible pairs (N2 computing per-

formance). Kinetic energies are calculated using each particle velocity relative to the protosink

velocity. Thermal energies are calculated by directly summing over the particles’ internal en-

ergies. Finally, I obtain the binding ratio as a sum of kinetic and thermal energies divided by

gravitational energy. These are again calculated for four final mass sink groups and binned

into radial intervals.

Figure 5.5 shows where sinks are bound. It is clear that all sinks are bound at their accretion

radii (as this is also the condition for the sink formation). Low final mass sinks are bound at

smaller 1 pc radii, while higher mass sinks are bound at larger ∼5 pc radii. This result shows

that larger final mass sink reservoirs are dominated by self-gravity on larger scales as well.

This picture of the inner reservoir being bound and the outer unbound agrees well with

Rathborne et al. (2015). The scales are also in relatively good agreement as Rathborne et al.

(2015) show in their bottom right panel of Figure 14 that virial ratios are one at around 2 pc.
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Figure 5.5: The boundedness of sink reservoirs is shown at 0.05 Myr before sink formation. The sinks
were binned similarly to the process used to produce Figure 5.4. The two dashed lines mark inner and
outer accretion radii. The lowest mass sinks are bound at a scale of about 1 pc, while the highest mass
sinks are bound at nearly 10 pc. The outermost part of the sink reservoir is unbound at the time of sink
formation, and that means the gas found there provides a smaller contribution to the cumulative sink
mass (i.e. Figure 5.4).
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Figure 5.6: The evolution of sink half-mass radii is shown for all simulation sinks. Individual sink half-
mass radii are plotted as small dots, while mean values for the four final mass sink groups are shown
with larger dots. The sink tracks are also colour coded by final sink masses. Negative sink age means
that the sink hasn’t formed yet. The sink half-mass radii are clearly seen to decrease with age. Sinks
with higher final masses also have larger half-mass radii which remain after their formation. Low mass
sinks correspondingly have smaller half-mass radii which become undefined soon after sink formation.

Unlike cumulative masses, discussed in 5.2.1, the binding ratios in Figure 5.5 compare well to

Rathborne et al. (2015) ones. This is because when calculating the ratio of energies for the

vertical axis in Figure 5.5, the masses are cancelled out.

5.2.3 Half-mass radii

In order to define the size of the sink forming cloud, I use the 50% mass Lagrangian radius (or

simply called the half-mass radius). The half-mass radius (HMR) encloses half the total mass

of the sink reservoir when summing from the protosink’s position outwards. I calculate the

HMR at each time step for each sink and plot it in Figure 5.6 as a function of sink age. The

small dots in the graph represent the HMR for individual sinks, with colour coding indicating
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the final sink masses. The sinks were placed in four bins according to their final masses, and

each bin’s half-mass radius is shown by the large solid dots.

Figure 5.6 shows the evolution of the sizes of sink forming clouds. It is clear that all sink

forming clouds are collapsing at all times. The half-mass radii at 3-4 Myr before sink formation

appear to be almost independent of final sink masses. Sinks with low final masses show a

faster decrease in half-mass radius during the period around 1-2 Myr before sink formation,

and reach sub-parsec scales by the time the sink is formed. On the other hand, sinks with large

final masses do not show a significant decrease in the half-mass radius before sink formation,

but only 1-2 Myr afterwards. Also, there are not many high final mass sinks with very early

histories, i.e. 3-4 Myr before sink formation. This is because it takes more time to form high

mass sinks and, as a result, most of the highest mass sinks form no later than 1-2 Myr after the

beginning of the simulation.

At the smallest sink ages, all sinks show ∼5 pc mean scale sizes, while individual cases are

likely to vary between 1 and 10 pc. All half-mass radii are well-defined before sink creation.

However, after sink creation the half-mass radius can be defined only if the sink mass does

not exceed the remaining mass in gas particles that have yet to be accreted. This explains the

empty region at 0 - 2 Myr for very small half-mass radii.

5.3 Galactic flows and gravity

It can be seen from Figures 5.2 and 5.3 that sink formation and accretion occurs mostly in

the mid to high density regions. In Figure 5.5 I show that sinks are bound at 1-5 pc scales.

However, this does not explain how accreted particles reach their sinks from larger scales,

where sink reservoirs are unbound at the time of sink formation. In order to explain this, I

calculate three different time scales which predict sink formation times for each particle. The

first one is the free-fall or clump collapse time:

tclump =

√

√ 3π
32Gρ

(5.1)

where ρ is the gas density of the SPH particles (calculated while the simulation was run-

ning). The clump collapse time accounts for the influence of the environment and shows how

long it would take for gravity to collapse the clump to the point that the particles would reach
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Chapter 5. Triggering star formation

Figure 5.7: An explanation of sink formation and accretion over different scales is illustrated in this plot
in terms of the depletion and sink formation time scales. The plot shows the predicted sink formation
time ratio with the measured depletion time as a function of gas particle density. The figure was created
using the properties at the start of the simulation of particles which were to be accreted later on. The
three different methods used to calculate the sink formation time show that at high density (small
scales) gravity dominates, while at low densities (large scales) it is the galactic flow alone which moves
gas towards the sinks to which they will be accreted.
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5.3. Galactic flows and gravity

the sink. The second one is the core-collapse time:

tcore =

√

√

√ d3
sink

GMsink
(5.2)

which I calculate using the distance dsink between the accreted particle and the (proto)

sink, and the enclosed remaining mass which is going to be accreted by that sink within that

distance, dsink. tcore shows how much time is remaining for the core collapse if the only given

sink is considered. The third time scale is the flow time:

tflow =
dsink

vflow
(5.3)

where vflow is the radial velocity of the particle towards its sink. tflow then is the time

needed to reach the sink if the particle were to move at a constant vflow the entire distance to

the sink dsink. The flow time accounts for the current particle velocity whose origin does not

have to be gravity-based, but could instead be driven by the spiral shock.

All three times are independent predictions for the time for sink formation or accretion to

occur if one or another physical process is dominating. In addition to these, I also calculate

the depletion times tdepl for all particles in the reservoir remaining to be accreted. This is the

actual time remaining in the simulation until each particle is accreted. It can be calculated by

using current time (tcurrent) of the simulation and the particle accretion time (tacc):

tdepl = tacc − tcurrent (5.4)

The depletion time is positive only for particles which have not yet been accreted. The ratio

between one of the three predicted star formation times and the depletion time tSF/tdepl shows

how accurate that prediction is. If tSF/tdepl < 1, then the actual sink formation or accretion

in the simulation is happening more slowly than the model predicts. This means the model

supports the driving of sink formation and accretion, but additional processes must also be

taking place. On the other hand, if tSF/tdepl > 1 then the sink formation and accretion in the

simulation is happening more quickly than the model predicts, meaning that it alone cannot

explain sink formation and accretion.
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Chapter 5. Triggering star formation

I calculated all three ratios and plotted them in Figure 5.7. Firstly I calculated these ratios

for individual particles and then binned them according to their densities. I then calculated

the mean value of the ratio for the particles in each bin. The diagram was produced using the

particles at the start of the simulation (i.e. when tdepl = tacc) as this includes the full sink mass

reservoir consideration.

As is visible in the diagram, sink formation and accretion can only be explained at low

densities by large scale flow. As low densities represent large scales, these low density particles

have to move large distances till they reach their accretion points. Both gravity models at low

densities show large tpred/tdepl ratios, which means that it would take longer times for these

particles to reach their sinks than it actually did in the simulation. It shows that gravity alone

is not sufficient to move these low density particles over large distances quickly enough to

reach the sinks to which they accrete, and so large scale galactic flows are needed here.

For densities above 102 cm−3 tclump/tdepl becomes smaller than unity, showing that the

large scale gravity within clumps at these densities becomes important. tclump/tdepl also be-

comes smaller than the flow timescale, indicating that gravity becomes the dominant process

driving sink formation and accretion. At densities of several 103 cm−3 tcore/tdepl also falls

below unity, showing the gravity of individual sinks taking over. The flow model at higher

densities works together with gravity as the collapse of a region induces radial velocities large

enough for the flow to explain sink formation and accretion. This explains why tflow/tdepl is

always below unity. Similarly, the gravity of individual cores brings particles to even higher

density and it adds up with density support from the larger scale gravity of clumps.

5.4 Sink formation efficiencies

Now that it is clearer as to which processes drive sink formation at different densities, I as-

sess how much and when gas contributes to sink formation. This is illustrated by the mass

histogram binned by particle densities in Figure 5.8. The main set of data includes all parti-

cles which were accreted or contributed to sink formation. A further four subsets are shown,

including only the particles which did so within 0.5, 1, 2 and 5 Myr of the simulation’s start.

The overall gas distribution is plotted as the black line.

The plot agrees well with Figure 5.3, showing that most of the gas contributing to sink

formation and accretion comes from the high density tail. It also confirms that later accretion
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5.4. Sink formation efficiencies

Figure 5.8: The distribution of mass with density is shown for all gas in the simulation as well as gas
accreted by sinks. The accreted particles are shown after being separated into four subgroups based
on their accretion times. As can be seen from the plot, particles accreted early on have high densities
while those accreted later are further away and have lower densities. These particles at lower densities
need to undergo collapse, or even to move with the galactic flow if at low densities, in order to reach
their sinks. All four distributions of accreted gas particles have peaks shifted towards higher densities
when compared with the overall density distribution.
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Chapter 5. Triggering star formation

Figure 5.9: The star formation efficiency (SFE) per free-fall time for accreted gas is shown as a function
of density at the start of the simulation. The accreted particles have again been subdivided by their
accretion time. The SFE in high densities is large for all four subsets. However, only late accretion
subsets have larger SFE in lower densities. This plot is useful in its ability to show where the SFE would
drop at lower efficiencies if feedback had been included. In such a case, the late accretion would be
reduced due to feedback, resulting in a lower overall SFE.

draws more and more from lower density gas. But more importantly, Figure 5.8 shows the

peak values which are the densities contributing the most at the different sink formation times.

Sink formation and accretion occurring early, within 0.5 Myr, mostly comes from the highest

density regions at 104 cm−3. Mid-age sink formation and accretion within 1 to 2 Myr mostly

takes place in gas at lower densities of 103 cm−3. Late sink formation and accretion beyond

5 Myr benefits mostly from lower densities of 102 cm−3 densities. As this simulation does not

account for stellar feedback or supernovae, it is likely that late accretion (after 2 Myr) could

be significantly reduced by feedback, yielding significantly lower final masses.

In order to calculate the actual sink formation efficiency (SFE) per free fall time, I use the

ratios between accreted mass and total mass. The ratio is then divided by the time normalized

to free fall time:
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5.5. Summary

SFE=
Macc/Mall

t/tff
(5.5)

I calculate the SFE over the same data points from Figure 5.8 and plot them in Figure

5.9. The same four times of 0.5, 1, 2 and 5 Myr are used in order to find the sink formation

efficiencies for particles accreted at different times.

It can be seen that at the high density end of Figure 5.9 the SFE is nearly flat at around

30%. The sink formation and accretion can be overestimated from the assumption that all

particles entering the sink accretion radius will be accreted with 100 % efficiency. Going

to lower densities, the SFE drops quite significantly between 0.5 and 2 Myr, yielding SFE at

densities of 103 cm−3 as low as 2 to 3 %. As a result these estimates are larger with those

of Louvet et al. (2014) who found star formation efficiencies 3 - 11 % from observations of

the ridge-like structure W43-MM1 (average density ∼ 2× 104 M�). It is also noticeable that

with time the sink formation efficiencies increased at lower densities as the particles in that

environment were given the time needed to reach the sinks to which they accreted. This

confirms the necessity of feedback which can reduce continuous accretion at later times. Sink

formation efficiencies can also overestimate star formation efficiencies due to the minimum

sink mass of 11 M� in Bonnell et al. (2013) simulation as the physics within the accretion

radius is unresolved.

5.5 Summary

In this chapter I discussed the triggering mechanisms of star formation in spiral arm simula-

tions. Most simulations which use idealised initial conditions, assumes that the cloud is bound

and collapsing. These simulations allow the investigation of star and cluster formation, but

neglect the triggering mechanism behind such assumptions. Here I used the simulations of

Bonnell et al. (2013) for the investigation of triggering mechanisms as well as the details of

the subsequent star formation. The triggering mechanism in this simulation is the galactic

spiral shock which compresses the gas to high densities and allows self-gravity to take over in

bound regions and drive collapse. While the simulation can’t resolve the formation of individ-

ual stars due to the minimum sink mass of 11 M�, the analysis is presented for individual sink

formation and accretion. The analysis described in this chapter can be reused in future high

resolution simulations in which sinks represent individual stars.
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Chapter 5. Triggering star formation

I have produced velocity difference maps (Figure 5.1) in order to show the strength of

the spiral shock and find where it is most important. I combined this velocity map with a

sink formation and accretion map (Figure 5.2), showing where the sink forming particles are

located. From this it can be seen that sink formation and accretion occurs in the high density

post-shock region which is compressed by the pre-shock inter-arm gas flowing in with a relative

velocity of∼30 km/s. Most sink formation and accretion is driven by self-gravity in the highest

density regions, but the shock is responsible for raising post-shock gas to high enough densities

for sink formation to start.

I have also investigated the formation of sink particles in order to find where the mass

used in their assembly comes from (Figure 5.4), and also at what scales the accreted gas

particles become bound (Figure 5.5). It appears that sinks with higher final masses grow

through accretion from larger scales as particles become bound and collapse towards the sinks

before being accreted. Less massive sinks are bound only on smaller scales and thus unable to

drive a significant accretion from larger scales. Measurements of half-mass radii (Figure 5.6)

show that all sink reservoirs do collapse over time. Furthermore, it was found that at all times

sinks with higher final masses have larger half-mass radii than lower mass sinks.

Finally I review possible explanations for sink formation and accretion over different scales.

Here I used a comparison between the measured depletion time and the predicted sink for-

mation time as a function of density (Figure 5.7). Using three predicted sink formation times,

I showed that sink formation on small scales is driven by gravity, while on large scales it is

driven by the spiral shock. I also calculated sink formation efficiencies for different accretion

times which shows that some additional mass could not be accreted if the feedback would start

in several Myr.
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6
Formation of stellar clusters

Inspection of the distribution of forming sink particles immediately reveals that they form in

compact groups, which represent stellar clusters. Due to the minimum sink mass resolution of

11 M� in the Bonnell et al. (2013) Gravity simulation, each sink can also represent a cluster

of stars. However, in such cases sinks would represent unresolved stellar clusters or widely

distributed non-clustered groups. Therefore, clusters of sinks in the Bonnell et al. (2013)

simulation would likely represent a clustered mode of star formation with resolved statistics,

from which cluster properties will be determined in this chapter. I will treat the distributed

population of sinks as that which represents distributed star formation or low mass unresolved

clusters.

While it is known that stellar clusters form due to gravity, still unanswered are the key

questions of where, when and how clusters form, what determines the clusters’ physical prop-

erties and what influence Galactic flows have on cluster formation. In order to answer these

questions, I perform an in-depth analysis on the identified clusters.
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Chapter 6. Formation of stellar clusters

Figure 6.1: Simulation statistics over time are shown in this plot in terms of the total mass in sinks
and in clusters, the mean and maximum cluster masses, and the number of clusters. The left-hand
axis represents mass while the right shows the number of clusters. All properties shown here increase
over the duration of the simulation, indicating continued star formation and cluster growth. Clusters
only start to form at around 3 Myr, while individual sinks begin to form soon after the start of the
simulation. By the simulation’s end the mass in clusters contains around 20 % of the total sink mass in
the simulation.

6.1 Cluster statistics

Firstly I performed a cluster search independently over all time steps of the Bonnell et al.

(2013) Gravity simulation. This gives the statistics for sink and cluster numbers and masses.

Figure 6.1 shows the total mass of all simulation sinks as well as the total mass in clustered

sinks. I also calculated the individual cluster masses at each time step and plotted the maxi-

mum and mean masses on the same plot. Finally, the right-hand axis on this plot refers to the

number of clusters at each time, plotted as a red line.

Figure 6.1 shows that the mass in sinks and in clusters continues to grow throughout the

simulation. At the beginning of the simulation neither sinks nor clusters were present. The first
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6.1. Cluster statistics

sinks start to form almost immediately in the highest density clouds. The total mass in sinks

increases rapidly from several 100 to several 104 M� over the first million years. However,

these very first sinks form as non-clustered sinks. From 1 Myr up to the end of the simulation

the total mass growth in sinks continues but with a much smaller logarithmic slope such that

it grows from several 104 to several 105 M� at the end of the simulation.

The first clusters start to form only half way through the simulation at 3 Myr. They also

form from existing sinks which can be formed earlier in separate regions. At 3 Myr only 1 % of

the sink mass is clustered, with a total mass in sinks of 105 M� and only 103 M� in clusters. An

intensive phase of the formation of the first clusters takes place between 3 and 3.5 Myr, likely

driven by the local gravitational collapse of sinks which are bound and falling into the first

small clusters. During this phase, the gap between clustered and non-clustered mass narrows

and ∼10 % of the total sink mass is in clusters at 3.5 Myr. It is also a period when the first 10

clusters are being formed.

From 3.5 Myr onwards, until the simulation’s end, the fraction of the total sink mass in

clusters stabilises at around 10 to 20 %. Cluster merging also occurs during this phase, with

several smaller clusters coming together to form a more massive one. Merging itself does not

increase the fraction of clustered mass as individual sinks are already clustered before and after

merging. On the other hand, merging increases the maximum and mean cluster masses. The

maximum cluster mass is increased the most rapidly, as the merger process and gas accretion

is significantly stronger for the most massive clusters than for the less massive clusters. The

mean mass also increases as intermediate mass clusters experience merging and the high-

mass end of the cluster mass distribution rises, dragging the mean value as well. However,

the total number of clusters does not increase quite as significantly as the merging of multiple

clusters continues to bring it down. This is why between 4 and 5.6 Myr the number of clusters

fluctuates: new clusters which have just formed increase the number, but mergers in other

regions bring it down again.

Thus Figure 6.1 gives our first insight into three main stages of cluster formation: at 1 - 3

Myr individual sinks form, from 3 - 4 Myr the first seed clusters rapidly form, and from 4 - 5.6

Myr clusters grow and merge.

The number of clusters per kpc2 is however overestimated in Bonnell et al. (2013) sim-

ulations compared to observations. Porras et al. (2003) finds that there are 17 young stellar
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Chapter 6. Formation of stellar clusters

Figure 6.2: The distribution map of the gas, sinks and clusters is shown for the central star formation
region at the end of the simulation. Gas is plotted as the grey scale column density map in the back-
ground of the plot. The star formation region is slightly offset from the Galactic mid-plane towards the
negative z direction. Clusters do not necessarily overlay the highest density regions.

clusters (YSC) within 1 kpc around the Sun. This gives density of 5.4 YSCs per kpc2 for the

Milky Way disc. Gutermuth et al. (2009) gives 36 YSCs within 1 kpc around the Sun which

translates to 11 YSCs per kpc2. The number of clusters at the end of Bonnell et al. (2013)

simulation is 20. Taking into account that the simulation is set within 0.25 kpc radius, the

density of clusters in the disc would be 102 clusters per kpc2.

The difference between simulations and observations could arise due to a number of rea-

sons. Firstly, the number of clusters in Bonnell et al. (2013) could be too large due to the

resolution as 11 M� is set to be the minimum sink mass and accretion could be overestimated

due to large accretion radii (as gas is assumed to be accreted within accretion radii, while

in reality at smaller scales some gas could escape or form accretion discs rather than directly

being accreted by stars). Another reason could be that there are no stellar feedback and mag-

netic fields included in Bonnell et al. (2013) simulations and sink formation and accretion can

be overestimated. Thirdly, Bonnell et al. (2013) select 250 pc radius region to be in the high

density spiral arm segment. This means that if the empty inter-arm regions had also been

included, the density of clusters per kpc2 in the simulation would be significantly reduced.
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Figure 6.3: The distribution map of sinks is shown in the main star formation region at the end of the
simulation. Each sink is colour coded by the star formation age, which is calculated by averaging the
accretion times for the given sink’s accreted gas particles in order to account not just for initial sink
formation time but also later accretion. The map shows a systematic gradient in star formation ages as
the sinks are older in the right portion of the map when compared to those on the left. This gradient
came about as the spiral shock approached and triggered star formation in the right part earlier than
in the left.

6.2 Cluster forming locations

The first questions asked about clusters are how they are distributed in space, where the cluster

forming regions are found, and how they correlate with the distribution of gas. In order to

answer these questions, position - position maps are the first source of information. I use two

maps on the intermediate-size scale in order to see individual sinks in each cluster as well as

the overall distribution of clusters and sinks, and their positions in the spiral arm. These are

illustrated in Figures 6.2 and 6.3.

Gas column density is plotted as a gray-scale background in the Figure 6.2. Sinks are

plotted on top as yellow dots and clusters are shown as open circles positioned at their centres

of mass. Figure 6.3 shows only the sink particles, but they have been colour coded by mean

star formation age, derived by averaging the accretion times of all particles accreted to each

given sink. Both plots are made for the final timestep of the simulation.

The use of an edge-on projection (x-z) allows us to clearly see the structure of the region

in the galactic plane. Interestingly, clouds and recently formed clusters do not necessarily lie

exactly in the galaxy’s midplane. Clouds appear more concentrated near the mid-plane at the

left-hand side of the diagram, but moving towards larger x positions the clouds and clusters

appear to tilt down to 10 - 15 pc below the mid-plane.
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It is also interesting to note that at small x (the left-hand side of Figure 6.2) there is a small

number of sinks and no clusters, but high density gas clouds (> 0.1 g cm−2) are present. At

large x (on the right-hand side) there is conversely no high density gas, but a larger number of

sinks and clusters are present. Figure 6.3 also shows a stellar age gradient from left to right,

with sinks on the right-hand side older than those on the left. These features tell the story

of how the spiral shock passed through the region. As the shock approaches with a 10-20

degree pitch angle (estimated by eye), it starts compressing the first clouds at the positions

with highest values of the x coordinate. The first sinks and clusters form there at simulation

times of 2-3 Myr. The intersection area, where clouds are compressed, moves with the flow

towards the left. After the shock passes the regions on the right, a large amount of gas there

is depleted into sinks and clusters, while the remaining post-shock gas at the same time starts

to slowly expand. It is likely that the combination of depletion and the post-shock expansion

effect leaves just formed clusters in low density regions. As the wave of triggered star formation

moves leftwards, it leaves behind it the gradient in stellar ages (Figure 6.3). At the end of the

simulation (5.6 Myr), the triggering region is located at x ∼ −10 pc, slightly left of the most

massive cluster in the centre of Figure 6.2. This is where star formation should just be starting

– a large number of very young sinks with ages below 0.5 Myr are present and likely to form

the next massive cluster at x ∼ −15 pc.

Five to six clusters visible in the middle-right of the diagram appear to be separated by

characteristic gaps between the cluster centres of ∼10 pc in 3D space. This phenomenon

could arise because of the ridge-like geometry of the main star forming region and the passage

of the shock. Sinks starts to form in the ridge, following the locations of the highest density

gas, created by the shock. As the ridge is not uniform, seed sub-clusters appear in the highest

density clumps. In the 4th chapter, I show that most massive sinks are bound on scales of

up to several pc, while the clusters are likely to be bound on even larger scales of up to 5-

10 pc based on cluster reservoir sizes, which I discuss later in this chapter. As a result, this

creates cluster forming "basins", where the combined material of sinks and gas is more bound

to a corresponding cluster than to any other and flows toward the centre. This gives possible

cluster forming reservoir sizes of up to 5-10 pc and is likely to form gaps between the clusters

with characteristic sizes of ∼10 pc.
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Figure 6.4: Evolution maps are shown for the most massive cluster in the simulation. Four panels
represent maps of the region at four different times. The left sub-panels show column densities from
all particles in the region while right-hand sub-panels show the density only from particles to be accreted
to the cluster. Cluster sinks are plotted as white dots. The diagram shows that the fragmented cloud
collapses globally at all times, resulting in the formation of the most massive cluster.

6.3 Spatial evolution of cluster forming clouds

Now that clusters have been identified in the simulation, I choose one in particular and describe

in detail the evolution of the cloud from which it formed. Figure 6.4 shows a 50 x 50 pc size

region, centred on the centre of mass of the most massive final cluster formed during the 5.6

Myr simulation time (34000 M�). The evolution is represented in 4 different panels, showing

different evolutionary stages of the cluster forming cloud. The initial conditions are shown at

the top left, while the final timestep is at the bottom right. Each of the four panels has two

sub-panels, on the left showing the column density as calculated using all gas particles and

on the right using only those particles accreted to the 34000 M� cluster. As all four panels

are centred on the cluster’s centre of mass, the cluster forming cloud is followed during its

collapse. Sinks which end up as members of the cluster (and not other sinks) are plotted in

all panels over all timesteps.

The plot shows the collapse and fragmentation of the cluster forming region. What is

unique about Figure 6.4 is that the cloud has been evolving along with its environment, and

the Lagrangian nature of the particles allows us to actually trace which gas contributes to the

formation of the cluster and which does not. The evolution seen in the left-hand panels shows
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the propagation of the spiral shock and the compression of the cluster forming region. As the

shock approaches from the bottom side of the diagram, it compresses the entire ridge seen lying

across the plot from top left to bottom right. It follows that the ridge reaches higher densities

as it evolves, leading to the global gravitational collapse of the cluster-forming cloud as seen in

the right-hand panels. The cloud also breaks into several ridge-like fragments, which start to

collapse locally faster than globally, creating sub-clusters. Following the global collapse of the

region these sub-clusters merge into a single cluster. Initially there are no sinks - the first ones

start to form in this region at around 2 Myr (the top right panel of Figure 6.4). In the third

panel (bottom left) sink formation takes place in the "X" shaped ridge, which finally collapses

into a several pc size cluster. The cloud’s overall size during its collapse drops from ∼30 pc

to ∼5 pc, meaning that it shrinks by a factor of 5-10. So, the evolution clearly shows the

gravitational collapse of the region and the distribution of material at each evolutionary stage,

but the internal structure of the cloud keeps changing and rearranging all the time during

the collapse. This raises an open question about how challenging it could be for observations

to find primordial cluster forming clouds (and also to obtain initial conditions), which are

embedded in the environment and blend together along the line of sight with other clouds

which do not contribute to the formation of the cluster. Another key problem is the difficulty

of identifying which stage these natal cluster forming clouds are actually at. How much mass is

nearby in order to support the cluster formation? At what point is it bound? And how massive

will the final cluster be?

6.4 Initial distribution of cluster forming clouds

To further discuss the question as to where the cluster forming clouds are located and where

the material to form the clusters comes from, I traced the gas particles accreted to all clusters

and plotted their initial positions in Figure 6.5. The colours show the final masses of the

corresponding clusters to which these clouds contribute. As a result, Figure 6.5 shows how

each of the cluster forming clouds appeared in the initial conditions relative to the environment

and neighbouring cluster forming clouds.

Figure 6.5 shows that the most massive clusters form in the middle of the main star forma-

tion ridge, following the high density regions in the spiral arms. Several isolated lower mass

clusters also form outside the main region. More massive clusters also have physically larger

reservoirs. As the flow approaches from the bottom of the diagram, visible streams of lower
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Figure 6.5: The map of the initial conditions is shown for the cluster forming regions. Gas particles
contributing to the formation of clusters are colour coded by the final cluster mass, while the grey
points plotted below show the positions of all particles whether or not they were accreted. White areas
are transparent lowest density regions, where gaps between gas particles are visible. The map shows
that cluster forming clouds are distributed over several 10 pc scales. Clusters with higher final masses
tend to have larger physical sizes of their reservoirs. The main region contains several cluster forming
clouds, but the boundaries between the clouds are sharp.
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Figure 6.6: The evolution map is shown for the formation of the two most massive clusters. The posi-
tions of accreted particles are shown with small dots colour coded by accretion time. Purple dots show
the position of sink formation, while grey lines show their later movement paths. Several subclusters
merge before the final cluster is formed. Individual sinks form several pc away from the cluster centre
and later assemble to form a single cluster.

density particles enter the main star forming region. The boundaries of cluster forming basins

intersect several clouds in the main region, but do not intersect for isolated clusters, forming

outside of the main region. Even if the boundaries of different clusters overlap, reservoirs

are well defined in the initial conditions. This means that the majority of particles in a given

reservoir could be more bound to their own cluster than to any other long before the cluster

actually forms. On the other hand, some particles (like the ones in the low density pre-shock

stream) are unlikely to be bound to the cluster so early but become bound later when, on mov-

ing through the shock, they lose a significant amount of relative kinetic energy to the cluster.

This gas can not be detected by the observer, as the observer does not know how such gas will

interact with the environment while moving towards the cluster. This brings another question

- how do accreted particles move along their paths during the process of cluster formation and

where are the accreted particles being accreted?

6.5 Cluster star formation and accretion history

In order to answer how star forming material moves during cluster formation, I use the infor-

mation of particles at their accretion times. Figure 6.6 shows the spatial distribution of star

formation and accretion over time. Positions are set relative to the centre of mass of the ten

78



6.6. Evolution of cluster physical properties

clusters with the highest final masses. This centre of mass is a good estimation of the centre

of the main star forming region. It also traces well the relative velocities between the clusters

and allows us to map the dynamics for not just one cluster but the entire region. Coloured

particles in Figure 6.6 are gas particles accreted by the cluster forming sinks, each one plotted

at its position relative to the centre of mass when it was accreted, and colour coded by the

time of accretion. The movement paths of the sinks are represented by grey lines. Finally,

solid purple dots show the locations of sink formation.

Figure 6.6 shows cluster formation in unprecedented levels of detail at both large and

small scales. The most massive cluster of 34000 M� is visible slightly right from the centre of

the diagram, while the second one (25000 M�) appears to the left and down from the first

cluster. During the early stages they form in filamentary structures, especially for the second

cluster where most of the sinks formed between y=-5 pc and y=5 pc at z=-4 pc. Finally the

filaments themselves appear to collapse with sinks flowing down the filament till they reach

the cluster centre. Most of the sinks start to group early on by forming small local clusters

which eventually merge together into the final cluster. This shows the merging of clusters to

be an important and commonly-occurring process during cluster formation and growth. The

first sinks form as far as 15-20 pc away when measuring from one side to another and come

into a compact 2-5 pc cluster. The fact that cluster stars start to form in separate spatial regions

could result in a large variety of their physical properties, such as large stellar age spreads.

Independently of the size scales, most of the material appears always to flow towards

the centre of the corresponding cluster. The boundary between the first and second clusters

appears also to be clearly defined. Finally, clusters don’t just collapse, but also move relative

to one another. Several smaller clusters, which are not part of the two most massive clusters

also appear in the field, but their movements may be affected by the presence of the two most

massive clusters.

6.6 Evolution of cluster physical properties

The spatial distribution of sinks and clusters are the first steps to understanding the physics

and evolution of the region. However, we still need the physical properties of the clusters

in order to obtain quantifiable answers to the questions asked previously. In this section, I

describe the physical properties of the clusters such as their masses, sizes, densities, angular
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Figure 6.7: The sink densities are compared with the initial densities of the protosinks. The comparison
is shown for two sink densities - at 4.7 and 5.7 Myr. Grey dots show non-clustered sinks while coloured
dots show sinks coloured by the cluster mass to which they belong at the corresponding time. The
plot shows a tendency for sinks with high final densities to form from protosinks with high initial
densities. Sinks in clusters are found at the highest initial and final densities. accreted particles with
high initial densities are more likely to contribute to clusters while lower density particles are more
likely to contribute to isolated sinks.

momentum and more.

6.6.1 Mass density

The mass density is one of the most fundamental physical properties of a cluster. This can

be measured for both stars and gas. The most important, mass densities could be traced by

observations. The stellar density in clusters is usually defined as how much mass is packed

into a cubic pc. The density can also be local or global, with a local density being a property of

a particular region, while the global density is averaged over larger scales such as the whole

cluster. In order to measure the mass density for each sink in a cluster, I use the distances

to its neighbours. What defines the neighbourhood must be carefully chosen, as the closest

neighbours give the local density, while the more distant neighbours give the global density.

The closest neighbour may also be a binary companion. I used the fifth, sixth and seventh

closest neighbour mean distances to derive each sink’s density:

ρi =
1
3

∑

j=5,6,7

3(mi +m j)

4πR3
i j

(6.1)

Here ρi is the density calculated at the sink in question i. j are sink’s i neighbours. mi and

m j are masses of sinks i and j. And Ri j is the distance between sinks i and j.
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The usage of fifth, sixth and seventh neighbours gives meaningful statistics as the density

is derived from the cluster scale rather than from binaries. Averaging over three neighbour

values allows us to avoid picking particular neighbours which can be at the corresponding

distance by accident and would not give smooth densities.

In Figure 6.7 I plot the final sink densities against the initial (i.e. start of simulation)

protosink densities. During the evolution, all sinks undergo a collapse phase during which

the density increases. This means that the plot shows how the density of individual sinks has

changed during the simulation. Unclustered sinks in Figure 6.7 are plotted as grey points,

while sinks in clusters are colour coded by their corresponding cluster mass. The two panels

show the sink densities as calculated at two different times, 4.7 and 5.7 Myr.

The figure clearly shows that clustered sinks have high stellar densities above 100 M�pc−3.

The majority of sinks in these clusters also have high initial gas densities, meaning that clus-

tered sinks form mostly from initially high density environments. This could be because in ini-

tially high density clouds global gravitational collapse is significant, leading to more efficient

star formation and cluster assembly. More isolated cloudlets seem to collapse only locally, re-

sulting in isolated star formation. Figure 6.7 also shows a smooth transition between clustered

and isolated star formation modes.

There is also visible a small population of sinks in Figure 6.7 with initial protosink densities

of 1 M� pc−3 and high final densities of 104 M� pc−3 at 5.7 Myr. These sinks come to clusters

from lower initial density regions. The origin of these sinks could be related with the infall

from isolated sinks (formed in lower density regions) into clusters.

The scattering in the Figure 6.7 can be related with the differences between definitions

of initial protosink density and the sink density at a given time. The protosink density was

based on SPH densities obtained from 70 neighbours (note that protosink is a gas particle at

the beginning of the simulation), while the sink densities are dependent on their fifth, sixth

and seventh neighbour sinks. As a result, more detailed comparison between different density

definitions is needed in order to better understand mapping relations between initial and final

densities in sink forming regions.
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Chapter 6. Formation of stellar clusters

Figure 6.8: The radial density profile is shown for the three most massive clusters in the simulation.
The profiles are also shown for other lower mass clusters as grey dots in the background. The diagram
shows that local sink densities systematically decrease within 2 -5 pc. At larger distances, some sinks
have even lower densities, while others are much higher. The high density spikes around 5 - 10 pc are
due to the presence of other clusters. The internal part of the profile shows that local sink densities
decrease when moving outwards according to a power law which approximately follows ρ ∼ R−3.

6.6.2 Cluster density profile

The radial density profile of a cluster shows how sinks are distributed at different radii from

the cluster centre of mass. The density would normally be expected to be highest in the centre

and then drop towards the outskirts. However, the uneven distribution of sinks in the cluster

will produce variations in the profile.

Figure 6.8 shows the radial profile of local sink density for all clusters at the end of the

simulation. The profiles are plotted not just for given cluster sinks but also for all the sinks in

the simulation. The profiles of the three most massive clusters are plotted on top in colour.

As can be seen from Figure 6.8 these profiles extend from 0.1 pc to nearly 400 pc. At small

radii the local sink densities are as high as 104 - 105 M�pc−3 as sinks here are in the central

part of the cluster. At larger radii, the minimum value drops even below 0.01 M�pc−3 as these

sinks can be the most isolated ones, far outside the main star forming region. Fluctuations in

density are also visible, and are smallest at small radii. This is because at the smallest radii only

each cluster’s own sinks will be included. Also, as the next most distant sink used to calculate

the profile could be located in any direction on the sky completely independently from the

previous sink, the environment could also be different and so give a different local density.

This is what brings small fluctuations. At around 5 pc the fluctuations appear to become much

larger. This is because the profile extends not just for the cluster’s own sinks but for all other

sinks in the simulation. So profiles beyond 5 pc start to account for sinks from other clusters
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6.6. Evolution of cluster physical properties

Figure 6.9: The cluster mass merger tree is shown as a function of time. Clusters are traced over time
and connected with lines between timesteps. Each line is colour coded by the cluster lifetime, which
is measured as the length of the line through all timesteps. When clusters merge, their tracks in this
diagram are combined into one and the merging point is shown as a solid dot in the diagram. Major
mergers (above 30 %) are shown as red dots while minor mergers are blue dots. The plot shows that
the most massive clusters are likely to gain their mass from merging while the least massive clusters
do not merge. It can be seen that clusters with a greater mass have longer lifetimes, while the least
massive clusters are transient structures and only survive up to 1 Myr. These low mass clusters have low
numbers of sinks (i.e. around six) and are treated as dissolved if they no longer satisfy the condition
that they contain a minimum of six sinks.

at this distance. It is possible that another cluster is located on one side from the cluster being

measured, while on the opposite side there is only a diffuse medium. In such a case, a sink

found in the cluster would provide a high density, while one in the diffuse medium would give

a much lower value. This produces the large fluctuations in the density profile visible at radii

larger than 5 pc.

6.6.3 Mass merger tree

The simplest physical property of a cluster is its mass which is simply the sum of all its members’

masses. However, finding the cluster mass over time is not so straightforward. Firstly, cluster

mass changes due to sink formation and accretion onto the member sinks. This means the

cluster mass grows if accretion of gas particles takes place. Secondly, the motion of sinks

means that sinks might physically leave the cluster and no longer be counted as members.

In that case, their mass would not contribute towards the cluster mass at this particular time

step, until the sink re-enters the cluster again. This can lead to fluctuations of the cluster mass

over time. Some sinks which are ejected by binary encounters leave the cluster and never

come back – in this case, the cluster mass is reduced. Another process is cluster merging -

this requires interaction between at least two clusters. When two clusters merge, their mass is
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summed together. The time when merging occurs is dependent on the cluster definition, but

at its simplest it is the point when one cluster is identified rather than two. A cluster can also

be treated as dissolved if the definition no longer identifies a group of sinks as belonging to

the cluster (this could happen for example if there are six sinks in the cluster and one of them

moves away).

In Figure 6.9 I plot a mass merger tree diagram over all clusters in the simulation at all time

steps. The diagram draws a line for the same cluster over multiple time steps. Two lines join to

one if a cluster is merged and the solid dot is placed at this point. Red dots show major merger

events (the child cluster’s mass is more than 30 % of the parent’s) while blue dots show minor

mergers (the child’s mass is below 30 % of the parent’s). The colours of the lines represent

cluster lifetimes. During merging events, the parent cluster (the merging cluster with larger

mass) is identified as the same cluster before and after the merger. So the cluster lifetime is

traced along the main trunk of the merger tree, always following the parent branch.

The tracing of clusters over multiple time steps is shown in impressive detail in Figure 6.9,

providing us with information on how they evolved throughout their histories. At the end of

the simulation, there are 2 clusters above 20000 M�, 3 clusters between 5000 and 10000 M�

and about 10 lower mass clusters below 5000 M�. At the earlier times, most massive final

clusters appear to have lower masses. More massive clusters also have longer lifetimes and

richer merging histories. They formed at a simulation time of 3 Myr and survived for a further

2.7 Myr through two to five merger events as well as experiencing further accretion and star

formation. On the contrary, lower mass clusters have shorter lifetimes. They end either in

dissolution or by merging with larger clusters. Low mass clusters form continuously through

the simulation – some may be re-forming from the remnants of previously dissolved clusters

if the number of member sinks falls below six before rising to that number again as they leave

and later return.

The minimum cluster mass is allowed to be 66 M� if all six sinks have a lowest mass of 11

M�. However, this is not seen in Figure 6.9 as the lowest mass clusters are around 500 M�.

This could be due to the difficulty of producing such low mass clusters. It would be necessary

that sinks would have formed and not experienced any further accretion. Moreover, six sinks

would need to assemble in the compact region to form a cluster without accretion. Due to this

difficulty lowest mass clusters formed in the simulation are around 500 M�.

84



6.6. Evolution of cluster physical properties

Figure 6.10: The half-mass radii for all clusters in the simulation are shown as a function of time. The
half-mass radii were calculated using the conserved total mass of sinks and gas particles to be accreted.
Data points are connected with lines between timesteps. Points and lines are colour coded by the final
mass of the cluster, which is the same as the total mass of sinks and remaining accreted gas particles.
The plot shows the half-mass radii decreasing with time. Over the entire period, the half-mass radii
decrease by a factor of almost ten. At all times the more massive clusters have larger half-mass radii
than the low mass clusters.

6.6.4 Cluster half-mass radii

Cluster size is the next physical property to be discussed. In this chapter I use the half-mass

radius of the cluster, which encloses half of the cluster mass and is a good estimation for cluster

size.

Figure 6.10 shows the evolution of half-mass radii for all final clusters. The calculation

uses conserved mass by including both sinks and the remaining gas to be accreted to them.

Dots in the figure show half-mass radii calculated at each time. The dots are connected by

lines, showing how the half-mass radii evolve over multiple time steps. The dots and lines are

colour coded by the final cluster masses.
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All the clusters in Figure 6.10 show a continuous decrease of half-mass radii over time,

which is the result of cloud collapse and cluster formation. Clusters with high final mass

retain high half-mass radii throughout: at the beginning of the simulation they are around

10 - 15 pc, while at the end they contract to 1 - 2 pc. Low mass clusters also tend to have

smaller initial half mass radii: they start from 3 - 5 pc and end at 0.1 - 0.2 pc half mass radii.

High mass clusters also show a smooth evolution throughout the simulation – this is because

these clusters never reach low number statistics. At the beginning, while cluster reservoirs

are mostly gas dominated, there are around several tens of thousands of gas particles to be

accreted, while at the end massive clusters contain several hundred sinks. Low mass clusters

at the beginning have a large number of gas particles, but by the end they have been accreted

by only a few sinks (close to the low limit in a cluster of six sinks), leading to the evolution of

their half-mass radii being noisier.

6.6.5 Mass-radius relation

One of the most fundamental relations describing clusters, either simulated or observed, is

their mass-radius (M-R) relation. This makes the M-R relation one of the most useful tools

in comparing simulated and observed clusters. In order to obtain the M-R relation, I use the

cluster mass (which is the sum of all cluster members) and the half mass radius multiplied by a

factor of two. The results for all clusters at all simulation time steps are plotted in Figure 6.11.

The data points there are also colour coded by time. Iso-potential and iso-density lines are

over-plotted for reference in order to show where the clusters would lie if the cluster means

densities or potentials were the same for all masses and sizes.

The doubled half-mass radii are around 0.1 - 0.2 pc for low mass clusters (<1000 M�) while

for the most massive clusters (20000 M�) they are as large as 1 - 2 pc. Most of the clusters

appear between the 1011 and 1012 cm2s−2 iso-potential lines. This could be an effect of the

cluster definition algorithm which is based on the local and enclosed potentials. This leads

the definition to preferentially find spherically symmetric clusters. However, these spherical

clusters are likely to be centrally condensed, virialized and not change their geometric shape

over time (i.e. the cluster definition excludes filamentary or ridge-like structures which would

not be stable).

During the formation of a cluster, gravitational collapse leads to a reduction in cluster size,

while mass remains the same if no new sinks form or existing ones accrete. On the other hand,
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6.6. Evolution of cluster physical properties

Figure 6.11: The cluster mass-radius relation is shown for all clusters in the simulation. Each data
point is plotted for each time. Each cluster is also colour coded by the time at which its mass and
half-mass radius were measured. The same clusters can be plotted multiple times - one point at a given
time. Iso-density and iso-potential lines are plotted on top of the diagram. The plot shows that more
massive clusters are also larger in their half-mass radii. Clusters also move towards larger masses and
slightly larger half-mass radii over time.
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when a merger occurs the cluster mass, and potentially its physical size, grow significantly as

the two pre-merger clusters combine. Most of the clusters migrate towards higher masses in

the M-R relation diagram. Their sizes also slightly increase due to merger events taking place.

The solid magenta line in Figure 6.11 shows the Urquhart et al. (2014) M-R relation,

estimated for clumps. Clumps in Urquhart et al. (2014) are likely to undergo gravitational

collapse and are thus still contracting in their sizes. Figure 6.11 shows just formed clusters.

As the clumps collapse, they would move downwards in Figure 6.11 and thus this explains

why the Urquhart et al. (2014) M-R relation is still above most of the clusters, discussed here.

This does not contradict the evolution of clusters in Figure 6.11 as the cluster finder does not

consider collapsing gas mass, which will be accreted at later times. The logharithmic slope of

the Urquhart et al. (2014) M-R relation matches well with the one in Figure 6.11, showing

that the forming cluster M-R relation is likely to be between iso-density and iso-potential power

laws.

6.6.6 Specific angular momentum

The cluster angular momentum is another fundamental property, related to the cluster rota-

tion. The specific angular momentum (angular momentum per unit mass) is also a property

of the cluster forming environment. When a cluster forms, its angular momentum is likely to

be conserved. However, some may be lost through shocking and transportation beyond the

system (e.g. angular momentum could be transported from the inner parts of the cluster out-

wards). Thus, the angular momentum of the same mass making up a given cluster will not

necessarily be conserved, as there may be losses through shocking and transportation through

interactions with other particles in the environment.

Defining clusters at each timestep, I calculated their specific angular momenta and plotted

specific angular momenta against cluster mass in Figure 6.12. Again each cluster is plotted at

each time, which is indicated by the colour of the point. All the members of a given cluster

are treated relative to its centre of mass when calculating the specific angular momentum.

Figure 6.12 clearly shows that more massive clusters have larger specific angular momen-

tum. This might be because more massive clusters form over larger scales and have richer

merger histories. Material falling into the cluster’s gravitational potential during the collapse

phase preserves its angular momentum, and if the material moves inwards from even larger
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Figure 6.12: The specific angular momentum of clusters is shown as a function of cluster mass. Clusters
are plotted for all timesteps in the simulation, meaning that the same cluster can be plotted at multiple
points in the diagram. Each cluster is colour coded by the time when cluster mass and specific angular
momentum were measured. The plot shows that the more massive clusters have higher specific angular
momenta. This happens because more massive clusters form from physically larger clouds and so
inherit more angular momentum. The clusters also evolve in time to higher masses and specific angular
momentum.
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Figure 6.13: The cluster angular momentum vectors are plotted for clusters in the main star formation
region at the end of the simulation. Grey points show the positions of all the sink particles and red
dots the centres of mass for clusters which have been identified. The vectors point in the direction of
the clusters’ angular momenta and are also colour coded according to the magnitude of the angular
momentum. The plot shows that the directions of angular momentum vectors are random and do not
display correlation with the presence of the spiral arm or the direction of the shock. More massive
clusters possess more angular momentum.

scales it naturally brings more angular momentum with it. The merging of clusters not only

produces the jumps in mass seen in Figure 6.12, but also increases the specific angular momen-

tum as the pre-merger clusters formed in separate environments. This means they possess not

only their own internal angular momentum, but also the relative angular momentum between

the two clusters. Thus mergers bring clusters towards both higher masses and specific angular

momenta in Figure 6.12.

6.6.7 Cluster angular momentum direction

The direction of a given cluster’s angular momentum vector describes the axis of the cluster’s

net rotation. While observations can’t measure clusters’ angular momentum vectors, they are

easily measurable in simulations and reveal more about cluster evolution.

Figure 6.13 shows the map of clusters with their actual angular momentum vectors plotted

as arrows. The arrows are colour coded by the absolute value of cluster net angular momentum

and point in the direction of the vector. The cluster centres of mass are plotted as red dots,

and all sinks as grey points.
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Figure 6.14: Sink and gas particle velocities vy relative to the centre of mass for the second most
massive cluster are shown at the end of simulation. Red dots represent sink members of the cluster,
and the small grey dots all gas particles within 3 pc of the cluster’s centre of mass. The internal part
of the profile contains only sinks. On the other hand, there are only gas particles outside 1 pc. Any
gas particles moving towards the centre of the cluster are accreted on their way and so never reach
the inner regions. Most of the accretion happens within 0.5 - 1 pc radius. A velocity dispersion in the
y component of nearly 20 km/s is visible. This is lower in the outskirts of the cluster. This trend in
the velocity dispersion is visible in the sinks as well as the gas particles, with material showing a wide
range of velocities across both positive and negative y towards the cluster’s centre of mass.

The angular momentum vectors appear to be randomly oriented in space, showing very

little correlation with the larger scale cluster distribution along the spiral arm. This might

be due to the angular momentum being predefined by the material contributing to cluster

formation. As the material collapses locally, it brings angular momentum from the larger

cloud scales to smaller scales. However, as individual clouds have their own internal motions,

this means that the combined rotation of the final cluster could also be quite random.

6.6.8 Internal velocities

The velocity dispersion in the cluster can be used to measure how fast the stars are moving,

which itself gives information on the cluster’s overall gravitational potential. At small radii,

where stars are close to the cluster centre of mass, they move at their maximum velocities, as

all gravitational potential energy is turned into kinetic energy. On the outskirts of the cluster,

the situation is the opposite: most of the kinetic energy of stars has been turned into potential

energy and as a result, stars move more slowly.

Figure 6.14 shows the example profile of velocities for the second most massive cluster
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at the end of the simulation. The second most massive cluster was chosen because it had no

major mergers for 1.5 Myr and developed a smooth centrally condensed internal structure,

while the most massive cluster in the simulation experienced a major merger just 0.2 Myr

before the end of the simulation and thus still has a hierarchical structure (see Figure 6.9).

The vy velocity component (chosen due to the same direction as the spiral shock) is plotted

as a function of distance from the cluster’s centre of mass. vy is also calculated to be relative

to the cluster’s centre of mass velocity. Red dots represent individual sinks, while grey dots

represent gas particles.

Figure 6.14 clearly shows that at smaller radii (0.1 - 0.5 pc) the region is dominated mostly

by sinks. At large radii (0.5 - 3 pc) it is dominated by gas. Due to the low number statistics, a

velocity dispersion profile can’t be calculated accurately but instead an approximate compari-

son can be done based on visual scattering in the inner and outer parts of the profile. The inner

part of the cluster shows a slightly larger scattering in velocities (∼15 km/s between smallest

and largest vy values) than the outer part (∼10 km/s), which is a natural consequence of

the kinetic-potential energy distribution in the cluster. As there are a larger number of gas

particles present in the outer part of the profile, flow streams are clearly visible in the profile.

These streams show larger spreads in velocity when moving from large (3 pc) to small (0.5 pc)

radii, which indicates that they have been accelerated by the global gravitational potential of

the cluster. Moving inwards it becomes more and more likely that gas will have been accreted

to a sink – this is why there is no gas visible at the cluster centre. As a result, small radii are

dominated by the mass in sinks, and large radii by the mass in gas.

6.6.9 Cluster sphericity and enclosed mass slope

The cluster sphericity is a property describing how spherical a cluster’s shape is. On the other

hand, the enclosed mass slope, derived from enclosed mass radial profile, describes how cen-

trally concentrated the cluster is.

To calculate the sphericity, I use the moment of inertia tensor:









Ix x Ix y Ixz

I y x I y y I yz

Izx Iz y Izz




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Figure 6.15: The cluster sphericity and enclosed mass slope are shown for the second most massive
cluster for all timesteps of the simulation. The sphericity is calculated using the moment of inertia
tensor. There are two cases plotted - one including only the sinks which had already formed, and
another including both the sinks and any remaining gas particles due to be accreted. Data points at
given timesteps are plotted as dots. They are connected with arrow-tracks pointing towards the next
timestep in the evolution. The dots and lines are colour coded by the sink mass fraction at each given
time. The plot shows that the cluster evolves along a complex path. The sphericity at early times
decreases as the system approaches a filamentary phase, and later on increases as filaments collapse
into the cluster. The enclosed mass slope systematically decreases for the conserved mass, showing that
the cluster becomes more centrally condensed. The large scattering at the end of evolution is produced
by low number statistics.
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Here the diagonal components are calculated by summing up the particle masses multiplied

by the other two position components added together in quadrature:

Ix x =
n
∑

i=1

mi(y
2
i + z2

i ) (6.2)

I y y =
n
∑

i=1

mi(x
2
i + z2

i ) (6.3)

Izz =
n
∑

i=1

mi(x
2
i + y2

i ) (6.4)

Each of the particle positions here, x i , yi and zi , are relative to the centre of mass as

calculated using all particles in the cluster.

The mixed tensor components are symmetric (Ix y=I y x , Ixz=Izx , I yz=Iz y) and only need

to be calculated for one side. These components are calculated by summing up the particles’

positions multiplied by their masses:

Ix y =
n
∑

i=1

mi x i yi (6.5)

Ixz =
n
∑

i=1

mi x izi (6.6)

I yz =
n
∑

i=1

mi yizi (6.7)

Once all nine components of the moment of inertia tensor are calculated, the three eigen-

values of the matrix were found using the Jacobi method. The length of the minor axis is

found from the minimum value of the three eigenvalues, while the major axis is found from

the maximum. When these are known, the sphericity can be defined as a ratio of the minor to

major axis:

Spherici t y = lminor/lma jor (6.8)
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The enclosed mass slope was calculated by fitting a line to the cumulative radial mass

profile for each cluster. Once the line is fitted, its slope is used here as the enclosed mass slope

parameter.

Figure 6.15 shows the evolution of the enclosed mass slope as a function of sphericity for

the second most massive cluster in the simulation (as this cluster has developed a smooth and

spherical shape by the end of the simulation due to the quiescent merger history at the late

times). There are two scenarios shown in this plot. One is with conserved mass (solid lines),

for which the slope and sphericity were calculated using both the sinks and the gas which

was going to be accreted, but hadn’t yet. For the second (dashed line), only the sinks in the

cluster were included. Each point in this plot is a calculation for a different time. The arrows

connecting these points show the direction of evolution over time. Finally, both the points and

lines are colour coded by the ratio of mass in sinks to the total system mass (sinks and gas

remaining to be accreted).

The plot (Figure 6.15) shows that at late times the cluster sphericity is high, which means

that the cluster becomes more spherically symmetric. It also shows a decrease in the enclosed

mass slope, which means that the cluster gets more centrally condensed over time. The overall

evolution appears to be quite irregular. At the beginning, the mass conserved track shows a

high slope and sphericity. This is because the cloud in space is not spread in one particular

direction. Later, the sphericity starts to decrease because the cloud collapses into the ridge.

And finally, as the ridge collapses into the cluster, the sphericity increases again. The sinks-only

track appears to be much noisier due to the low number of sinks formed at early times. At late

times, as the sinks come to dominate the total mass, both tracks start to match more closely.

Figure 6.15 is only shown for the second most massive cluster. However, the plot is different

for every different cluster in the simulation as sphericity and enclosed mass slope are sensitive

to geometric changes over the time. In order to reduce the noise between two timesteps it is

necessary to have either the larger resolution or a smaller timestep in the simulation.

6.7 Mass growth of stellar clusters

One of the key questions asked is whether clusters grow by accreting gas to the sinks they

already contain or new sinks from outside of the cluster. To answer this, I measure the mass

growth of sinks while they are in the cluster. Then by summing over cluster members, I obtain
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Figure 6.16: Cluster mass growth from gas accretion is compared with the total cluster mass. The
accreted gas mass is calculated by finding how much mass is accreted to existing sinks within the
cluster. Each cluster can appear in the plot multiple times but only once per timestep. The paths of
the two most massive clusters are shown as red and blue lines. The diagram shows that more massive
clusters also experience more significant gas accretion to cluster sinks. The cluster tracks tend to higher
masses and larger accreted mass ratios. The accretion of gas particles to a cluster moves it to higher
ratios, while the accretion of sinks moves it to lower ratios.
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the overall growth of the cluster mass from accretion within the cluster. This mass growth is

plotted as a function of the total cluster mass for all clusters at all time steps throughout the

simulation in Figure 6.16. The red and blue lines show the evolution of the two most massive

clusters.

The least massive clusters have the lowest ratios of mass accreted within the cluster to

the total. This could be partially affected by the cluster definition: when a cluster is defined

for the first time, it must contain at least six sinks. On the other hand, these six sinks may

have collected a large proportion of their masses while being outside the cluster. As low mass

clusters have very small sizes (i.e. half mass radii 0.1-0.2 pc) and low gravitational potentials,

they are not able to collect a large amount of material from the environment. Hence the

accretion inside the low mass clusters is also low and most of their mass comes from sink

formation and accretion before the clusters assembled. This is only because sinks obtained

their mass while unclustered. The accreted mass inside the cluster is therefore zero when the

cluster is defined for the first time.

Conversely, high mass clusters accrete up to 40 % of their total mass onto sinks which are

already in the cluster. These massive clusters are also larger in their sizes and have deeper

global gravitational potentials. As a result, they are capable of channelling large quantities of

surrounding gas from the environment towards the cluster centre, driving continuous accre-

tion. This means that gas accretion to clustered sinks mostly occurs in high mass clusters.

Clusters can be seen evolving from the bottom left to the upper right part of Figure 6.16.

The continuous accretion of gas draws smooth "trails" almost vertically upwards, visible at

early to intermediate simulation times. On the other hand, the accretion of sinks moves the

ratios downwards. The merging of two clusters leads to the addition of pre-existing sinks,

producing large horizontal jumps to a new ratio. This is an average inherited from the pre-

merger clusters.

6.8 Stellar age spreads

Stellar ages and age spreads in clusters are two of the key properties, detectable by obser-

vations and predictable by simulations. SPH simulations allow us to easily obtain the star

formation times and so stellar ages.

Firstly to illustrate the presence of possible stellar age spreads I used three subsets of ac-
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Figure 6.17: The accretion paths of individual sinks are shown for the three most massive clusters in
the simulation. Sink formation events are plotted as large dots, the paths of sinks’ motions as coloured
lines, and accretion events as small dots. The plot shows all the sinks moving towards the clusters’
centres of mass. Most sinks do not move alone but in groups and subclusters, indicating a hierarchical
merging scenario. The sinks continue to accrete gas particles along their paths as they move, continuing
to grow in mass all the time. This leads to significant sink age spreads inside the clusters.
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creted particles, which contribute to the formation of the three most massive clusters accord-

ingly. The accretion time of these particles is plotted as a function of distance from the cluster

centre of mass (Figure 6.17) when the particle was accreted. All three clusters are plotted

in different colours. The sinks’ movement paths are also plotted as continuous lines in order

to see where non-accreting sinks were moving. As the accreted particles were accreted not

exactly at the position of the sink but between 0.1 and 0.25 pc from it, accreted particles can

be seen as scattered dots around sink movement paths. Sink formation events are plotted as

solid dots at the beginning of each sink path.

Figure 6.17 shows the collapse of all three clusters as their sinks fall towards the cluster

centre of mass. The accretion appears to be ongoing after the sinks form. Some sinks form

as early as at 1 Myr, while others form only just before the simulation’s end. This produces

potential age spreads of several Myr. However, real stellar age spreads might be different as

the simulation in this thesis is limited to the minimum sink mass of 11 M�. The sinks are also

grouped into smaller sub-clusters at larger radii. These sub-clusters have smaller age spreads,

as the sinks formed locally at almost the same time. However, once the sub-clusters merge,

the resulting cluster has a larger age dispersion due to the mixing of the different populations.

While clusters in Figure 6.17 have age spreads of several Myr, the real age spreads can be

affected by the minimum sink mass of 11 M�. As individual sinks do not represent individual

stars, it is unclear if accreted gas goes onto existing stars or forms new ones.

6.8.1 Cluster mean star formation age

Before going deeper into stellar age spreads, it is necessary to determine the mean star for-

mation ages in clusters. Each sink at each time has its own star formation age. Here the star

formation age is defined as the difference between the simulation time and the mean star for-

mation time. The mean star formation time is itself determined by averaging the accretion

times for all gas particles contributing to the growth of that sink. As the sinks continue to

accrete, their mean star formation times increase with simulation time. As a result, continu-

ous accretion onto sinks can decrease their star formation ages. This is in a good agreement

with Tout et al. (1999), who estimated that accretion can reduce the apparent ages in young

forming stars. Due to this age reduction effect from accretion, mean star formation ages are

more likely to represent real stellar ages compared to than simple sink ages. Simulation data

shows that sink mean star formation ages are about two-thirds of the sink ages. The cluster
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Figure 6.18: The cluster mean star formation age is shown as a function of cluster mass. Data is used
for all simulation timesteps and thus each cluster can have multiple points in the diagram. Each point
is colour coded by the time when the mean star formation age and cluster mass were measured. The
plot shows individual clusters leaving tracks in the diagram. The clusters show only small growth in
the mean star formation age at early times. As accretion continues the mean accretion time remains
close to the simulation time, and the star formation age remains nearly constant. Most clusters reach
a point where the tracks turn vertically upwards. At these points the accretion was reduced and the
mean accretion time was left almost unchanged, leading the star formation age to increase.
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mean star formation age is an average of the mean star formation ages of all the cluster sinks.

Figure 6.18 shows the cluster mean star formation age as a function of cluster mass over all

simulation times where the clusters were defined. The colour shows the simulation time. The

diagram clearly shows that the clusters evolve towards higher masses and also towards higher

mean star formation ages. The individual clusters leave clearly distinguishable tracks in this

diagram. At early times clusters show quite significant growth in their masses but low growth

in mean star formation age. During this phase gas accretion dominates to the point that the

mean star formation ages are almost constant. While the early accreted gas comes from smaller

distances and later accreted gas from larger scales, the main factor which defines the cluster

tracks in Figure 6.18 is how much gas has been already accreted at the given time. The phase

during which accretion is significant applied mostly to clusters with mean star formation ages

below 1 Myr. The mean star formation ages start to increase faster at later times, but it appears

that their mass growth is also reduced. This could happen if the cluster sinks deplete most of

the surrounding gas, leaving nothing else to fuel further accretion. Alternatively, the cluster

sinks could move out of their natal clouds if low density incoming pre-shock gas continues to

push high density gas in the direction of the flow. In this case, the sinks would not move with

the high density clouds, and would appear to be coming out of them. A third possibility could

be that the cluster’s effective accretion volume is reduced as the sinks are packed into a high

stellar density gas-free cluster core. If sinks are closer than 0.1 pc, their inner accretion radii

begin to overlap – the volume becomes fully sink dominated and there is no space for free gas

particles to exist without being immediately accreted. In order to answer which scenario or

several of them dominates further in depth investigation is needed, which I leave as a future

step.

6.8.2 Star formation age dispersion in clusters

Finally, the star formation age dispersion is the property most likely to represent stellar age

spreads in clusters. In order to calculate the star formation age dispersion, I use all the particles

accreted to cluster sinks and calculate a dispersion in their accretion times. Figure 6.19 shows

that the star formation age dispersion increased over time in a manner similar to the mean

star formation age in the clusters. The lower mass clusters mostly have small star formation

age dispersions below 0.5 Myr. On the other hand high mass clusters never have such small

age dispersions. This is because more massive clusters gained their mass from accretion which
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Figure 6.19: The clusters’ star formation age dispersion is shown as a function of cluster mass. Individ-
ual clusters are colour coded by the simulation time when the star formation age dispersion and cluster
mass were measured, similarly to what is shown in Figure 6.18. Individual cluster tracks show that low
mass clusters have smaller star formation age dispersions than high mass clusters. It is also easy to see
that the mean star formation age dispersion continues to increase with time. The star formation age
dispersion in high mass clusters is also likely to be amplified by the mergers experience during their
evolution. Mergers bring in material from a large variety of environments which have different star
formation times.
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took place over a long period of time, and also cluster mergers. This leads to an increase in the

dispersion as in the final clusters the material has been gathered from different environments

and continuously accreted over longer periods of time. There are also several clusters of 1000

- 2000 M� which have star formation age dispersions as large as 1.4 Myr. Some sinks from

these clusters have formed earlier, but they appear to have low accretion rates over the entire

simulation. As a result, these clusters continue to slowly accrete throughout the simulation,

producing a large star formation age dispersion.

Mean star formation age and star formation age dispersion in clusters of sinks can be put in

comparison with observed young cluster ages and stellar age dispersions accordingly. However,

it is important to mention that these two quantities are limited by their definition. The first

point is that minimum sink masses are 11 M� which could lead to slightly different ages and

age dispersions depending is accretion onto sinks would mean the accretion on already existing

stars or formation of new stars. This can be addressed as a future step with higher resolution

simulations in order to determine resolution effects on star formation ages and age dispersions.

The second point is to investigate how robust is the Tout et al. (1999) model, which suggests

that ongoing accretion reduces star formation ages and that it is a good choice to simply

average over all accreted particles.

6.9 Summary

In this chapter I investigated the formation of stellar clusters. I started by viewing maps of

the main star forming region in the simulation of Bonnell et al. (2013), where I applied the

gravitational potential-based cluster finding algorithm. The maps show that the clusters form

in the main star forming region (Figure 6.2) but do not necessarily align with highest density

clouds. A gradient of star formation ages can be seen along the main star forming ridge (Figure

6.3). This is likely to be a result of the shock, which approached one side of the star forming

region earlier than the other. Figure 6.4 shows the evolution of the cluster over time when

including either all the gas or just that which is accreted to the cluster. This shows that the gas

contributing to clusters comes from well-defined regions forming parts of the highest density

filaments. While the filaments collapse under self-gravity, the region is also compressed by the

spiral shock. The initial cluster-forming clouds are several tens of parsecs across (Figure 6.5).

Clouds forming different clusters also intersect with one another, but the boundaries between

them are well-defined. It was also possible to trace how cluster forming sinks moved before
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they came into the cluster (Figure 6.6). This shows that the first sinks formed individually in

isolated locations and moved into the cluster during the larger scale gravitational collapse of

the region. During this collapse phase, sinks accreted gas while moving along their paths.

I then investigated the physical properties of clusters and their evolution over time. Firstly,

a comparison between sink densities at late times and the initial protosink densities (Figure

6.7) shows that high density and clustered sinks have larger initial protosink densities than

isolated low final density sinks. The cluster density profiles show that clusters can extend

outwards for several parsecs before the profile reaches neighbouring clusters (Figure 6.8).

Cluster masses and their evolution over time were illustrated in the mass merger tree diagram

(Figure 6.9), showing how cluster masses increase over time and how subclusters merge into

larger clusters. This shows that more massive clusters have longer lifetimes and experience

more mergers. At all times the clusters collapse as their half-mass radii continue to decrease

(Figure 6.10). Lower mass clusters also possess smaller half-mass radii than high mass clusters

at all times. The mass-radius relation (Figure 6.11) shows that more massive clusters have

larger sizes. More massive clusters also show larger specific angular momenta (Figure 6.12)

as they collapse from larger scales than low mass clusters, naturally inheriting large specific

angular momenta. The clusters’ angular momenta are directed randomly and do not show

strong correlation with the direction of the shock (Figure 6.13). The velocity profiles within

clusters show the scattering of velocities to be larger in the cluster centres and lower in the

outskirts (Figure 6.14). Most of the gas particles which are infalling to the cluster centre

are accreted while underway, as sink densities increase towards the inner regions. As cluster

forming clouds firstly collapse to filaments before they reach the cluster phase, the sphericities

(Figure 6.15) of collapsing clouds decrease during filament formation and then increase when

the filament collapses to a cluster. The slope of the enclosed mass profile shows that clusters

eventually become centrally condensed as the simulation progresses.

The mass in low mass clusters is mostly dominated by the accretion of surrounding sinks

while high mass clusters with their massive gravitational potentials channel gas from the sur-

rounding environment towards the cluster centre, driving accretion onto sinks (Figure 6.16).

Clusters show large stellar age spreads (Figure 6.17). This is a result of ongoing accretion

while sinks move along their paths, as well as merging when subclusters have formed in dif-

ferent environments with different star formation times. The stellar age dispersions (Figure
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6.19) show that more massive clusters have large age spreads while less massive clusters can

have both large and small age spreads. Cluster age dispersions also increase over time as new

accretion and sink formation events take place.
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7
Formation of OB associations

OB associations are large loose objects, containing young OB stars which are located not in

compact clusters, but in large volumes with sizes ranging between several tens pc to over

100 pc (Murdin 2001). OB associations have been known since Ambartsumian (1949, 1955)

introduced them. According to Lada & Lada 2003 most of O and early B stars form in clusters

and OB associations. According to Gieles & Portegies Zwart (2011) clusters are gravitationally

bound while associations are not. Gieles & Portegies Zwart (2011) also distinguish between

clusters and associations based on cluster age ratio with its crossing time, i.e. if Age/tcross > 1

then the object is a cluster, otherwise an association. Bastian (2013) finds that only ∼10 % of

stars form in such clusters, while the rest form in association as well as in the distributed mode.

Unfortunately Gieles & Portegies Zwart (2011) ratio of Age/tcross is complicated to determine

for young embedded clusters (due to their small ages), which is essential in understanding the

early formation of associations.

The reason, of how stars in OB associations become so loose is not well understood. As I

discussed in the Introduction chapter, there are several theories created in order to explain the
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origin of OB associations. Clark et al. (2005) propose that OB associations may have formed

from gravitationally unbound clouds, with star formation occurring only on small scales. Oort

(1955) and Elmegreen & Lada (1977) discuss that feedback from formed stars could have

helped young clusters to become unbound, after the loss of gas, and expand to larger scales.

While Fernández et al. (2008) uses spiral arm studies with backwards integration to explain

formation of OB associations.

There are currently no numerical simulations which trace the details of individual OB asso-

ciation formation. Most of the star formation simulations use idealised initial conditions, with

no galactic context included and forming only one central cluster (such as Bate et al. 2003;

Smith et al. 2009; Bonnell et al. 2011). There are also no studies that trace the evolution of

groups and clusters of formed sink particles. As typical simulations are of bound cluster forma-

tion (Bate et al. 2003; Smith et al. 2009; Bonnell et al. 2011), OB associations are unbound,

hence they cannot form from bound conditions unless feedback or something helps. Even if

some OB association candidates were forming, they could be missed just because in depth

studies of cluster tracing over time has not been studied in enough depth. During my work on

cluster tracing from Bonnell et al. (2013) simulations, I noticed a group of sinks, which could

be a potential candidate of small OB association. In this chapter I investigate the formation of

this association in terms of size, mass density, and energies.

7.1 The association

The cluster finder together with clusters of sinks also found some interesting objects appearing

in the simulation. One of these could be a possible association. Figure 7.1 shows what looks

to be a failed cluster formation scenario, which could be the origin of an OB association. The

figure shows the movement of the sinks over all time steps in x - z positions relative to the

centre of mass of the simulation. Before sink formation, protosink (protosink is the gas particle

which is converted to the sink during the sink formation event) paths are shown as thin grey

paths, while after sink formation, paths are coloured by simulation time.

The first sinks start forming around a time of 2 - 3 Myr in relatively isolated regions after

the spiral shock compressed gas gravitationally collapses and forms first sinks. At around 3.5 -

4 Myr the entire group collapses into a compact cluster-like object (Figure 7.2), as the region

becomes gravitationally bound. However, at later times the association starts to expand. Most
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Figure 7.1: The association candidate or failed cluster formation is shown in the spatial map. The map
is created by using particle positions in the x-z projection. Small grey dots show positions of protosinks
and coloured dots show positions of formed sinks, colour coded by a given time. The system collapses
before 4 Myr with first sinks forming at 1-2 Myr. After 4 Myr the system starts to expand. Around 5 Myr
the object reaches its maximum size and it slightly reduces in the last 0.6 Myr. The expansion phase is
not present in any other forming cluster in this simulation. The object could be the potential candidate
of the forming OB association.

of the sinks are already formed at around 4 Myr when the object starts to expand. During the

last Myr of the simulation, the object expands up to 5 - 10 pc in size. Sinks appear also to be

grouped into 3-4 smaller groups during the last stages of the evolution of the association. It is

likely that local gravitational collapse in these compact groups is faster than the global collapse

of the object. Different sinks also pass through the maximum compactness point (where sinks

occupies the highest concentration, i.e. at [x = −3 pc, z = −14] pc in Figure 7.2) at slightly

different times: there is around 0.5 Myr time difference between when the first sinks enter the

maximum compactness region and the last sinks leave it.

One of the possible explanations for the expansion phase could be that tidal effects from

neighbour sinks and clusters are stripping the association apart and triggering the expansion

phase. If the pulling tidal force is comparable with the self-gravity force, the whole object can

start to expand, and the centrally condensed stable cluster could not form.

7.2 Region morphology

In order to see if there are any particular features of this association, I plot in Figure 7.3 the

positions and velocities of all sinks in the region where the association is found at the end of
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Figure 7.2: Evolution with expansion is shown for the association candidate at four different timesteps
of the simulation. Movement paths for sinks and protosinks are shown each panel as grey dots. Red
solid dots show positions of sinks at a given time. The top-left panel shows sink positions just before
the maximum compactness, top-right at the maximum compactness, bottom-left just after maximum
compactness and bottom-right at the end of the simulation. As the map shows, sinks pass through the
maximum compactness point and continue to move along their paths when the association expands.
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Figure 7.3: Distribution of the association members and their velocity vectors are shown at the end
of the simulation (5.7 Myr). Association sinks are plotted as red dots, and other sinks as grey dots.
The association is surrounded by other clusters and groups of sinks in the region. A cluster with a
similar mass to the association is present just to the right of the association. Sinks which belong to the
association are distributed in three compact subclusters. Sink velocities do not show visible systematic
collapse or expansion of the system and are quite random. Subclusters and clusters in the environment
show slightly larger velocities as sinks move in the local gravitational potential.
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the simulation. The dots show positions of the sinks, while arrows show the velocities of sinks

relative to the centre of mass of the association. Red colours in the diagram show positions

and velocities for association sinks, while other sinks, which do not belong to the association,

are marked in grey.

The region appears to be quite hierarchical, with many clusters and subclusters. There

is one cluster visible just to the right of the association at [x = 11 pc, z = −13 pc]. There

are several subclusters to the left of the association and the second most massive cluster in

the simulation is just outside the left border of Figure 7.3. The distribution of association

sinks itself appears to be loose, spreading to 3 - 5 pc. The central region of the association

appears to be almost empty. Most of the association sinks are in 3 subclusters, with two of

them visible at the upper part of the association and one at the bottom part. Velocities of sinks

in the association does not seem to suggest any systematic trend to the collapse or expansion

of the whole object and are quite random. Several sinks appear to be moving quite fast in the

subcluster visible at [x = 8 pc, z = −11 pc] in Figure 7.3. At the end of the simulation, when

Figure 7.3 is calculated, the object expansion appears to be stopped (Figure 7.2 lower right

panel) as the object reached a maximum size.

7.3 Environment

In order to better understand the expansion phase in the association, I investigate the prop-

erties of the surrounding environment. I then compare the evolutionary properties of the

association to other clusters in the area. I plot the region maps with highlighted OB and other

cluster particles (Figure 7.4).

Figure 7.4 shows different viewing projections, with x-y in the left and x-z in the right

hand side panels. The top panels show the region at the beginning of the simulation, the

middle panels at 3.9 Myr, and the bottom panels at the end of the simulation. Grey dots in

all plots show positions of all environment gas particles. Red small dots show gas particles

remaining to be accreted in the association. Orange large points show the positions of formed

association sinks. In a similar way I also plot the nearby 8300 M� cluster sink (cyan) and

gas (deep blue) particles yet to be accreted. The second most massive cluster (25000 M�) is

also shown in terms of sinks (light pink) and gas (green) particles yet to be accreted. Scales

in this plot at different times are set to be slightly different in order to show the large scale
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Figure 7.4: The maps showing the region of the association in two different projections and three
different evolutionary stages: early, intermediate and late. The association and two other clusters re-
maining to be accreted gas and sink particles are plotted with separate colours. Grey particles represent
environment gas particles. The plot shows that during the early times all three systems form in a similar
way. However, the association shows that at the latest times it expands while other clusters reach their
compact states.
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Figure 7.5: Evolution of half-mass radius of the association is shown for two subsets when using total
mass for the first one (blue) and stellar mass only for the second one (red). Both half-mass radii show
the expansion phase. The conserved mass case shows collapse of the cloud at early times and expansion
starting from 4 Myr. The sinks only case is slightly different, showing expansion as early as starting
from 3 Myr.

distribution of the cloud at the beginning of the simulation and small scale distribution of sinks

at small scales at the end of the simulation.

The maps show that all three objects are collapsing during the evolution. The association

appears to be almost indistinguishable from the other clusters. The only difference is the fast

expansion phase from 3.9 Myr to the end of the simulation. During that phase, the association

does not collapse into a centrally condensed cluster but instead expands. The most interesting

are the middle panels at 3.9 Myr. A strange ring-loop is visible in x-z projection (middle-right

panel in Figure 7.4). The left side of the ring is made from association particles, while the right

side of the ring contains the 8300 M� cluster particles. This is not visible in the middle-left

panel in Figure 7.4, as the ring is viewed edge-on. The ring-loop is most likely a tidally driven

temporary structure, where the left side is being pulled out and expanding, and the right side

collapsing into the cluster. Similar lens-shaped ring loops are also visible in gas particles at

the bottom-left panel of Figure 7.4, which appear in inter-cluster regions. If that’s the case,

it could be common that if there is one cluster forming near another, that one cluster could

tidally interrupt the collapse of the nearby cluster and turn it into association.
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7.4 Half-mass radii

The half-mass radii give a good overview of the system. In Figure 7.5 I plot the evolution of

half-mass radius for the association. The red line shows the half-mass radius calculated from

the sinks already formed in the association. The blue line is calculated by using the full mass

(sinks and gas) which comprise the final system. This ensures that the mass is conserved at

all timesteps for the blue line, while the red line uses only stellar mass.

At the beginning of the simulation, there are no sinks yet formed, so the half-mass radius

for purely stellar mass can’t be defined, and only the conserved mass blue track is visible

between 0 and 1.3 Myr (Figure 7.5). Even when the first two sinks form, the half mass radius

is not defined. There need to be at least three sinks formed in the system and one sink can’t be

more massive than the rest of the mass in other members of the system. At 1.3 Myr association

sinks finally satisfy the half-mass radius definition for stellar mass, which remains defined all

the way to the end of the simulation.

Between 1.3 and 3 Myr, the half-mass radius for sinks is fluctuating (red line in Figure 7.5).

The half-mass radius here always remains below 1 pc and twice reaches as low as 0.05 - 0.1

pc. These oscillations occur as a compact group of just several sinks formed during this time,

and sinks are oscillating in the potential well of that cluster. After 3 Myr, the stellar half-mass

radius no longer reduces and continuously expands until 5 Myr.

The conserved mass half-mass radius of the association between 0 and 4 Myr decreases

from 10 pc down to 2.5 pc. This shows that the association collapses globally during this

time. The first subclusters are forming as early as 1.5 Myr during the local collapse phase of

the region. The half-mass radius decreases by a factor of nearly 4 over these 4 Myr. This is

significantly less than seen earlier for the standard cluster half-mass radius reduction with a

factor of 10 (as discussed in the previous chapter). The missing part of the collapse in the

association is the final phase where instead the whole association starts to expand. Due to the

expansion between 4 and 5 Myr, the association half-mass radius increases from 2.5 to 3.5 pc.

Around 4 Myr, the stellar half-mass radius becomes nearly the same as the conserved mass

radius due to the last sink formation and accretion taking place. Both radii start to decrease

slightly again from 5 Myr to the end of the simulation, highlighting the complexities of the

evolution.
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Figure 7.6: Evolution of association member sink local densities. Grey tracks show local densities of
individual sinks from the association, while the red track shows the median density, calculated by using
sinks inside the half mass radius. The plot shows that individual sink and median densities increase
continuously before 4 Myr. After this time, median density continues to increase but slower. Some sinks
at late times remain at high densities while others have decreasing densities as low as 1 - 10 M� pc−3.
The decreasing densities represent the expansion phase. However, sink densities in three subclusters
remain large.

The evolution of the half-mass radius of the association shows that initial collapse is fol-

lowed by a re-expansion after 4 Myr. Even if these two properties are interesting, they do not

provide the reason for the starting of the expansion phase. Multiple physical processes could

be the reason for the expansion, and one of them, in the absence of feedback, can be the tidal

disruption.

7.5 Densities

The first physical property to trace over time would be the sink local density. Figure 7.6 shows

the evolution of sink local densities for all association members over the simulation. Each grey

line shows the evolution of an individual sink from its formation to the end of the simulation.

Sinks are plotted from the time of their formation. The red line shows the evolution of the

median density, calculated by using local densities from sinks which are within half-mass radius

of the association.

Only a few sinks form earlier than 3.5 Myr. Between 3.5 and 4 Myr, there is an intensive

burst of star formation, when most of the sinks, which belong to the association, are formed.

This also happens when the maximum compactness of the association is reached. There are
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Figure 7.7: Evolution is shown for volume densities inside half-mass radii for the association and two
other clusters. Half-mass radii and densities are calculated by using only formed sinks, which belong
to the corresponding system. Volume densities for both clusters continue to increase. During the early
stages the association has high volume densities but from 3.5 Myr volume densities start to decrease
showing the expansion phase.

Figure 7.8: Evolution is shown for volume densities inside half-mass radii for the association and two
other clusters. Half-mass radii and densities are calculated by using sinks and gas remaining to be
accreted, which contributes to the forming system. The plot shows that densities are increasing for the
two clusters in the simulation at all times. The density in the association continues to increase up to 4
Myr, which is slightly later than volume densities calculated by using sinks only (Figure 7.7).
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several sinks at 3.7 Myr which reach local densities up to 1000 M�pc−3. At later times, sink

densities do not increase very rapidly, as the whole association starts to expand. Some of the

sinks decrease their density, which goes down to several M�pc−3 at the end of the simulation.

The whole object expands, but there the subclusters, visible in Figure 7.3 form as local regions

collapse, while the whole object expands. This is why there are visible multiple spikes between

100 and several 1000 M�pc−3 densities. Spikes form as these sinks oscillate (i.e. moving

back and forth) in their subcluster potential well. These oscillations only occur for sinks, with

densities above 100 M�pc−3. This shows that self-gravity becomes dominating at these density

regimes.

In Figures 7.7 and 7.8 are shown volume densities from half-mass radii calculated for

the association and two other clusters. In Figure 7.7 only sinks are used, while Figure 7.8 also

includes the gas particles remaining to be accreted. The association sink volume densities show

a decrease between 2.5 Myr and 5.0 Myr while the two other cluster densities systematically

increase at all times. The association volume density is as high as 103 - 106 M�pc−3 before

3 Myr as there is a compact subcluster formed at this time. From 3 Myr to 5 Myr, the sink

volume density of the association decreases from 1000 M�pc−3 down to 100 M�pc−3 as the

expansion phase takes place. The two other cluster’s sink volume densities are increasing all

the time from 2 Myr to 5.7 Myr.

Even though the densities of the association decrease rapidly, they do not reach observed

values of 0.1 M�pc−3 in Milky Way OB associations. Such densities are not resolved in this

simulation due to the sink low mass limit (11 M�). It could require longer time scales in order

to allow the OB association to expand further to reach 0.1 M�pc−3. As a result it could be

correct to call this object a "failed cluster" rather than a "true OB association". However, the

formation mechanism of this object can be as the real OB association. Thus I continue to call

this object the association in the rest of this chapter.

7.6 Tidal force

Tidal force on cluster members can occur as a result of gravitational interactions between clus-

ter members and the surrounding environment. However, it is not straightforward to correctly

calculate tidal forces on the cluster members. Here I will describe the simple vectorial way of

calculating tidal forces on cluster particles.
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Figure 7.9: The sketch shows how tidal forces can be defined for clusters. Firstly gravity force on each
cluster member is calculated separately from the external source. The mean force of all members is then
subtracted from all external gravity forces calculated for each cluster member. Finally these calculations
are repeated over all external sources and added in a vectorial way to get final tidal force vectors for
each sink in the cluster. Forces in the front and opposite side of the cluster facing external source are
expansive, and at 90 degrees, compressive. This leads that cluster to experience "spagetificaltion" if
there are external gravity sources in a particular direction. The sketch allows us to understand tidal
force on particle systems and calculate tidal forces for all sinks in the current example of the association,
and investigate if tidal effects are responsible for the expansion phase.
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Figure 7.10: Evolution of the median ratio is shown between tidal force and internal self-gravity force
for the association and two other clusters by using sinks only. Ratios begin after 1 Myr as before there
are not enough sinks formed in order to calculate these ratios. The plot shows that tidal force for the
association exceeds self-gravity force most of the time between 4 and 5 Myr. While other clusters also
show force ratios above 1, they last for a short period of time. As the association remains under strong
tidal forces for around 1 Myr, it is likely that tidal forces trigger the expansion phase.

Firstly the gravity force vectors from each of the cluster members to the external source

(another sink which does not belong to the cluster) are calculated ((a) case in Figure 7.9).

These vectors are pointing towards the external source. Then the mean force is calculated as

the zero-force of the cluster. This mean force is then subtracted from each cluster member’s

external gravity force in order to calculate the tidal force felt by each cluster member (in

Figure 7.9 tidal forces from the green source are shown as green arrows (b)). As a result, tidal

forces on stars, which are at close or distant points in the cluster, will be pointing away from

the cluster centre. And the points, which are at the 90 degrees sides of the cluster, will have

a compressing tidal force. As a result, a cluster will be stretched and get a slightly extended

shape. If there are multiple external sources, their tidal forces can be calculated independently

by calculating external gravity force first and subtracting the mean force over all members. In

Figure 7.9 (b) yellow arrows show tidal force vectors, caused by second (yellow) external

source. The final tidal force on each cluster member is found by summing all tidal vectors for

each external source (i.e. red arrows show the averaged tidal force from two external sources

in Figure 7.9 (b)).

I used this tidal force definition in order to calculate tidal forces and compare them with the
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internal self-gravity force for the association as well as for two neighbour clusters (Figure 7.10).

The ratio, of self-gravity and tidal forces, is calculated on each sink particle. The magnitudes

of self-gravity and tidal forces vectors are used, so the ratio at each sink is never negative.

In order to combine the forces ratio to account the effect on the whole object (association or

cluster), I use the median of all object sinks force ratios.

The plot shows that for the association, as well as for the two clusters, ratios are below one

at early times before 3.5 Myr. After 4 Myr, the force ratio for the association (red line in Figure

7.10) is oscillating around one. There are also several timesteps, where the 8300 M� and

25000 M� clusters have tidal forces slightly larger than self-gravity. For the 8300 M� cluster

this happens at 4.9 Myr, while for the 25000 M� cluster at 4.3 Myr. However, tidal forces on

these clusters are larger than the self-gravity force for only about 0.1 - 0.3 Myr, while for the

association this happened for more than 1 Myr. In the case of these two clusters, the tidal

effects were present for a short period of time and didn’t cause the tidal disruption. For the

association the tidal force acting over 1 Myr has a sufficiently long enough time to move the

association sinks outwards, and thus the whole system experienced significant tidal disruption.

7.7 Energies

Energies are the key properties describing the state of the cluster. There are three primary

energies - gravitational, kinetic and tidal. The gravitational energy is calculated by summing

over all cluster member pairs. We can also use a spherical gravitational energy approach,

where the whole cluster mass is placed in the cluster centre of mass and individual member

distances are used to the centre of mass rather than between pairs. Spherical gravity also al-

lows us to avoid close binaries, which have most of the gravitational energy. In contrast, it is

not the best option for filamentary clusters. While association is not spherical, the direct sum-

mation would be dominated by compact subclusters and binaries and therefore not highlight

how these subclusters are bound to each other. The spherical approach is better for describing

of how subclusters are bound to each other. As a result, I use the spherical approach here.

The kinetic energy of the cluster is simply a summation of individual sink kinetic energies,

calculated by using sink velocities relative to the cluster centre of mass velocity. Comparing

the kinetic and gravitational energy tells us if the cluster or association is bound.

We can also calculate the tidal energy for each cluster member. This is a dot product
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Figure 7.11: Evolution of boundedness states, which includes kinetic and gravitational energies, is
shown for formed sinks in the association and two other clusters. Gravitational energy was calculated
by using the spherical approach with the centre of mass of the cluster rather than the direct summation
over sink pairs. The dashed line shows binding ratios of one, i.e. systems which are above the line are
gravitationally unbound while systems below the line are bound. At early times the two clusters are
gravitationally unbound. They become bound at 2.5 - 3.5 Myr of the simulation time. The association
remains bound from 1.5 Myr all the time till the end of the simulation. However, the association is less
bound than two other clusters after 3.5 Myr. As the association appears to be bound, kinetic energy
alone is not high enough to explain the expansion phase.
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Figure 7.12: Evolution of boundedness states, which includes kinetic, gravitational and tidal energies,
is shown for formed sinks in the association and two other clusters. The plot is the same as in Figure
7.11 with the exception that tidal energy is added to the calculations of binding ratios. While the two
clusters become bound and show nearly the same evolution of binding ratios as in Figure 7.11, the
association becomes unbound at 4 Myr and remains unbound until the end of the simulation. As at this
time the expansion phase is happening, tidal energy is likely to be responsible for the expansion phase.

between the tidal force vector and centre of mass radius vector, i.e.

Etid = |RCoM · Ftid| (7.1)

The force here is calculated on each sink by using the method described in the previous

section. The tidal energy of the whole cluster is just a summation over the tidal energies

of individual cluster members. In order to describe the full tidal energy for the cluster, the

equation can be rewritten as:

Etid =
int
∑

i

�

�

�

�

Ri,CoM · Fi,tid

�

�

�

�

=
int
∑

i

�

�

�

�

Ri,CoM ·
ext
∑

j

(G
mim j

|Ri j|2
Ri j

|Ri j|
− F j,ext−mean)

�

�

�

�

(7.2)

The first summation, with i indices, is running over the internal particles. The summation

over j is summing over the external particles. The last term in Equation (7.2) F j,ext−mean is the

mean gravity force from external source j calculated for the cluster.

Another way to calculate the tidal energy for individual internal and external particles can

be expressed in the following way:
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Etid = G
int
∑

i

ext
∑

j

mim j

|Ri j|
|Ri,CoM|
|Ri j|

(7.3)

The multiplier
|Ri,CoM|
|Ri j |

here is the scaling factor, which tells how close cluster particle i is

to the centre of mass of the cluster, rather than to the external particle j. However, equations

(7.2) and (7.3) can become dominated by close pairs (or binaries) due to Ri j .

The third way uses spherical approach for the tidal energy of the cluster in a similar way

as the gravitational energy:

Etid = G
ext
∑

j

Mclustm j

|R j,CoM|
Rclust−half

|R j,CoM|
(7.4)

Here Rclust−half is the cluster half-mass radius and Mclust is the cluster total mass. This

calculation assumes that the cluster is spherical and that tidal forces from particle j affect

the cluster with its characteristic size of Rclust−half. Tidal energy calculated this way no longer

suffers from close binaries. As a result, the Etid evolution, calculated in the spherical way, is

less noisy over time and thus I use it together with the Egrav calculated in the spherical way.

In all three equations tidal energy is calculated by assuming that tidal forces are expansive.

Tidal forces can be compressive. In further analysis I use only the expansive component of the

tidal energy.

The ratio between compressive and expansive energies defines the binding of the cluster.

In the case of gravitational (Egrav), kinetic (Ekin) and tidal (Etid) energies, this ratio can be

written as follows:

Binding ratio=
Ekin + Etid

Egrav
(7.5)

If the tidal energy is not used, then Etid=0.

In Figures 7.11 and 7.12, I plot binding ratios as a function of time for the association and

two other clusters. The association is marked as red, the 8300 M� cluster as blue, and the

25000 M� cluster as green lines. The difference between Figures 7.11 and 7.12 is that Figure

7.11 shows binding ratios calculated by just using kinetic and gravitational energies, while in

Figure 7.12 to the kinetic energy is added the tidal energy of the cluster (calculated in the
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spherical way).

Figures 7.11 and 7.12 show that binding ratio tracks start from the point at which first

association sinks form (at 1.3 Myr). The association always appears to be bound when using

just kinetic energy. However, it is less bound than the other two clusters at later times (after

3.7 Myr), where expansion begins. The association also does not show any signs of significant

decrease in binding ratios, while the two other clusters show a decrease. When tidal energy is

added to the kinetic (Figure 7.12), the binding ratio of the association increases significantly

and makes the association unbound. The association remains unbound between 4 and 5.5 Myr.

Other clusters do not show significant increasing in the binding ratio. This means that due to

tidal effects, the association becomes unbound and starts to expand, while the two clusters

keep similar small binding ratios. As tidal energy has such significant impact, gravitational

collapse is halted, and the cluster fails to form. The association forms instead.

7.8 Summary

In this chapter I investigated a rare object forming self-consistently in simulations, which is

likely to be a candidate for an OB association, and thus reveal mechanism of how OB associa-

tions could be forming. The object is collapsing in space during the first 4 Myr of its evolution.

From 4 to 5 Myr of the simulation time, the object expands about 2-3 times in its size and

remains nearly the same size for the remaining 0.6 Myr. Maps with gas particles at multiple

timesteps show that the association is forming nearby another cluster, which successfully forms

by the end of the simulation. At 3.9 Myr the cluster and the association form an interesting

ring shaped object from their gas particles remaining to be accreted. The association appears

as three small subclusters, spread within 3-4 pc volume at the end of the simulation. Individual

sink velocities are random and slightly larger in subclusters. However velocities do not show

significant systematic movement.

The expansion phase is clearly visible in terms of half-mass radii calculated in both cases

- sinks only and sinks with remaining to be accreted gas particles. Sink local densities show

that individual sink densities increase before the expansion phase. Around 3.5 - 4 Myr the

association reaches maximum compactness and a large number of sinks form. Some sinks

from sub-clusters show large local densities but others show low local densities. Comparison of

volume densities between the association and two other clusters shows significant differences.
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This occurs in terms of a decreasing association volume density over the last 2 Myr while the

other clusters volume densities increase.

The formation of this association is most likely to be affected by tidal forces. I discussed

how tidal forces can be calculated at each cluster member from external source. Calculations

for the association and two comparison clusters show that median tidal force for association

exceed self-gravity force for the duration of 1 Myr while the clusters show only short time

intervals (i.e. around 0.2 Myr). Furthermore, the association is less gravitationally bound than

the two comparison clusters at late times when using just kinetic and gravitational energies in

boundedness calculations. The association becomes unbound if tidal energy is added to the

kinetic energy when calculating binding ratios while other two clusters remain bound.
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8
Conclusions and future work

Here I discuss my final conclusions of this thesis. I summarise all chapters to review new

findings on star and stellar cluster formation, collapse triggering mechanisms and formation

of OB associations.

8.1 Star formation

Star formation is the major problem in astronomy, investigating how material is turned from

gas to stars. It is known that star formation occurs in molecular clouds, where high density

clumps collapse thanks to self-gravity.

In this thesis I looked into the details of how high density clouds are compressed to the

high density at which star formation is triggered. This occurs at the edge of galactic spiral

arm, where low density inter-arm material is collides with high density arm material, creating

the spiral shock on galactic scale. Analysis of Bonnell et al. (2013) simulations shows that the

pre-shock gas comes with around 30 km/s velocity, relative to the post-shock gas in a Milky
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Way like galaxy. As regions are compressed, they become gravitationally unstable and start to

collapse. As a result, the main ridge of high density gas in the simulation becomes a massive

star forming region with dozens of clusters.

As star formation in smoothed particle hydrodynamics (SPH) simulations is treated through

sink particles, sink formation events are the crucial moments when stars are forming. As a re-

sult, there form sinks with different masses, where low mass sinks are bound locally and gain

most of their final mass through sink formation, while high mass sinks are bound on larger

scales and accreted their large mass from these scales.

Tracing of accreted gas particles shows that star forming gas comes from both high and

low densities. Investigation of depletion and star formation times shows that star formation

in high density regimes is dominated by self-gravity driven collapse of cores and clumps. Low

density material can’t be driven on reasonable timescales by self-gravity to reach their sinks

and are assisted by the galactic shock instead. Star formation shows significant continuous

accretion over several Myr, which could be reduced in the presence of feedback from stars.

8.2 Formation of stellar clusters

Since Lada & Lada (2003) proposed that most of the stars in the Milky Way should have formed

in stellar clusters or OB associations, cluster formation became the major problem in terms of

understanding star formation. I used the same Bonnell et al. (2013) Gravity simulation to

investigate stellar cluster formation and evolution.

In order to find clusters, I wrote and discussed a cluster finding algorithm, which uses a

gravitational potential based definition. This way, clusters are found in locations where are

deep potential wells, formed by large groups of sink particles. The cluster finder also traces

clusters over multiple timesteps of the simulation and allows us to reconstruct cluster merger

tree as well as determining cluster lifetimes.

Clusters in the Bonnell et al. (2013) Gravity simulation form in the main star formation

region. However, clusters do not necessarily overlap with the highest gas density locations.

Individual sinks, which form early, move in the cluster gravitational potential towards the

cluster centre and continue to accrete gas particles along their paths. This helps to increase

stellar age spreads in clusters. Merging subclusters, which formed in different environments

with different star formation times, also increase stellar age spreads.
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Various cluster physical properties were also traced over time. Cluster density profiles

show that the radial density decreases exponentially outwards with the power law index of

-3.2. Cluster mass merger tree shows that cluster masses increase over time and most massive

clusters benefit from merging more efficiently than less massive clusters. Massive clusters also

show longer lifetimes, determined by tracing clusters over multiple time steps. Mass-radius

relation shows that more massive clusters are also larger in their sizes. Clusters also have their

angular momenta. Specific angular momentum is higher for massive clusters than for low

mass clusters, as these clusters have formed from larger scale collapse than low mass clusters,

bringing larger angular momentum from large scales. Massive clusters have massive deep

gravitational potential, capable to accrete environment gas and gain more gas mass accretion

directly inside clusters than low mass clusters.

8.3 Formation of OB associations

OB associations are known as loose objects, and have no proper explanation of their formation

mechanisms. In the same simulation, which I used to investigate star and cluster formation, is

present a unique object, which at early times collapses like a regular cluster but later expands to

larger scales. Results show that the expansion phase can be explained by tidal forces from the

surrounding environment. Tidal energy added to the kinetic energy makes the OB association

unbound, while two comparison clusters remain bound.

8.4 Future plans

The opportunity to work with numerical simulations has highlighted very interesting details

about star formation and clustering in the galactic environment. But it has also brought mul-

tiple new directions to work on in the future.

8.4.1 High-resolution simulations

Galactic scale simulations, such as Bonnell et al. (2013) do not resolve individual stars. In

order to resolve stars and possibly protoplanetary discs, higher resolution simulations are

needed. Higher resolution for a given region can be achieved by separating the region and

splitting each simulation particle into a number of smaller particles. The basics of both pro-

cesses have been implemented but requires future work. The separation method is using ac-

creted particles in the cluster of interest, and finds other contributing environment particles as
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well. The splitting method uses randomly distributed children particles within parent particle

kernel with kernel function weights. Velocities were also randomly distributed for children

particles based on velocity dispersion in the region. More future work requires better compar-

ison with other particle splitting methods.

Resolution tests allowed us to resolve initial mass function in highest resolution simulation

peaking at 1 M� and reaching sink masses down to 0.3 M�. The slope of this mass function is

-1.0. Highest resolution simulation also resolved accretion disc around one sink. Other resolu-

tion effects includes better resolved shocks and larger number of sinks forming in simulations

at a given time. In future work dependencies between accretion radii, particle masses and

resulting sink formation and accretion could be discussed. Comparison between different res-

olution simulations should show the best way of designing simulations which would resolve

individual stars and inherit initial conditions from spiral arm simulations.

8.4.2 Magnetic field role in star and cluster formation

Magnetic fields are likely to effect star formation due to the magnetic freezing effect and thus

are important in understanding early phase of star formation. Several test simulations were

set which can be used in future to investigate magnetic field and resolution effects on star

formation. First results shown that magnetic field magnetically freezes the collapsing clump,

delaying the overall star formation process.

Further investigation is needed in order to understand how sink formation and accretion

is dependent on the magnetic field strength and how effects scale with resolution.

8.4.3 Feedback from stars and SNe

Ionising feedback from formed stars can heat up gas in the local region and cause the gas to

expand. Stellar winds can inject the momentum into surrounding gas. This feedback from

massive stars can push away surrounding material and reduce accretion after 1 - 2 Myr. It

was shown that feedback clears cluster environment and leaves it less bound and less massive

over longer times (Dale et al. 2007; Dale & Bonnell 2008; Dale et al. 2012, 2014, 2015). How

this works with clusters forming in Galactic environment remains unclear. Implementations

of feedback could be used in cluster formation SPH simulations discussed through this thesis

(i.e. feedback methods from Dale et al. 2007; Dale & Bonnell 2008; Dale et al. 2012, 2014,

2015). SN feedback should come out slightly later - starting from 2-3 Myr, when O stars with
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the intensive feedback have cleared most of the environment. However, SN events are much

more dramatic and they may have greater effects on larger scales, including neighbouring

clouds. Lucas et al. (in prep.) implementations of SNe feedback in sphNG can be adopted in

my cluster simulations. This should allow us to investigate effects of three types of feedback,

i.e. ionisation, stellar winds and SNe, as well as combined effects between them.

8.4.4 Combining magnetic fields, feedback and resolution

While most of simulations are designed to target just one effect (i.e. magnetic fields, radiation

or SN feedback, i.e. Soler et al. 2013; Dale et al. 2005, 2007; Dale & Bonnell 2008; Bate et al.

2014), real star forming clouds undergo all these effects at the same time. The question here is

how do these effects add up. Each effect can be dominant at a particular evolutionary stage, so

they may not necessarily add up in a linear way. For example if there are strong magnetic fields

present in the simulation, stars might be forming less massive before feedback starts clearing

the environment, leading to a weaker effect from feedback. In order to answer these questions,

simulations could be set with the same parameters (in order to be cross-comparable) and just

one, another and multiple effects enabled on each run.

8.4.5 Synthetic observations

Synthetic observations have recently been developed, allowing us to calculate more realistic

maps of star forming regions (i.e. Koepferl et al. 2016a,b,c). These maps can be calculated for

clusters forming in the galactic environment. Extracted properties (such as PDFs, star forma-

tion rates, etc.) can be compared with the ones known from observations. As this synthetic

observations technique was used for Dale simulated clusters (i.e. from SPH simulations), the

same technique can be re-used for my highest resolution simulations, which includes galactic

cloud formation.

8.4.6 Relations between 2D and 3D

In addition to synthetic observations, a large number of projected maps can be made for clus-

ters and clouds. The question here is how much observations is missing due to projected view,

where multiple clusters from completely different regions could be overlapping on each other

along the line of sight. When two clusters overlay along the line of sight, stars from both

clusters appear in one direction as they would be in a single cluster, meaning that 2D cluster
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finding algorithms may find different results than would be obtained in 3D. Another thing

is how much cluster definition varies on the same cluster when it is viewed from different

directions.

The same problem exists for blending multiple clouds along the line of sight. In such cases

column densities of two overlapping clouds could add up and lead the observer to misinterpret

the result.

8.4.7 Angular momentum and origin of discs

Cluster simulations show that cluster net rotational energy is only 1 - 20 % of total kinetic

energy and that cluster angular momentum vectors are oriented to random directions. How

this picture changes when scaled down in order to resolve individual star protoplanetary discs,

and are the rotation vectors of discs and distribution of disc to star mass totally random for

different cluster stars, are key questions here.

8.4.8 Gaia

In upcoming years Gaia should bring unprecedented 3D mapping of field stars and clusters in

the solar neighbourhood. This should narrow the gap between simulations and observations.

For the first time it should be possible to better compare position and velocity distributions

between simulated and real clusters.
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Pietrzyński, G., Gieren, W., Fouqué, P., & Pont, F. 2001, A& A, 371, 497, astro-ph/0103374
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