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Abstract—The research of sensor-based human activity recog-
nition has been attracting increasing attention over years as
it is playing an important role in various human-beneficiary
applications such as ambient assistive living, health monitoring,
and behaviour changing. Nowadays, the advancement of sensing
and communication technologies has led to the possibility of
collecting a large amount of sensor data, however, to build a
reliable computational model and accurately recognise human
activities we still need the annotations on sensor data. Acquiring
high-quality, detailed, continuous annotations is a challenging
task. In this paper, we explore the solution space on sharing
annotated activities across different datasets in order to enhance
the recognition accuracies. We have designed and developed two
approaches: sharing training data and sharing classifiers towards
addressing this challenge. We have validated the approach on
three datasets and demonstrated their effectiveness in recognising
activities only with annotations from as little as 0.1% of each
dataset.

Index Terms—human activity recognition, smart home, active
learning, transfer learning, uncertainty reasoning

I. INTRODUCTION

Sensor-based activity recognition has increasingly played
a significant role in many applications, which enables to
provide customised services to suit people’s current context;
for example, better optimising energy by adjusting heaters
based on users’ activity routine [4], understanding the impact
of human behaviours to environmental phenomena such as the
change of indoor air quality [12], or assessing physical and
cognitive conditions of disadvantaged residents [23].

Human activity recognition has been a popular research
topic in the last decade, and numerous machine learning,
data mining, knowledge-driven techniques have been applied
and achieved promising results at targeting various problems.
However, challenges still remain, and a crucial challenge
resides in the scarcity of annotated datasets. First of all,
acquiring annotations from users can be a time- and effort-
consuming task. The state-of-the-art activity recognition tech-
nologies either use video to record activities of users, which
will later be annotated by third parties, or rely on users’
self-report. The former approach has an undesirable privacy
concern, while the latter can result in less accurate, incomplete
annotations [26]; for example, users forget to record certain
activities or use different terms to describe their activities.

Even though the recent attempts have helped to address
the above challenges by facilitating self-annotation with the
support of technologies [27] and enhancing the consistency of
annotation labels via ontologies [19], acquiring annotations for

long-term activity recognition is still a challenging task. That
is, we only collect ground truth over the training period (e.g.,
the first few weeks or months) so that the machine learning
techniques can use the annotated training data to build models.
After that, we assume that the models stay fixed and can be
used continuously to recognise human activities in the long
term (e.g, for a couple of years). However, this assumption
does not consider the fact that human activity routine or
activity pattern might change over time, users (or background
users like visitors or even pets) might interact with sensors
differently, or users might conduct new activities that have
not been recorded at all during the training period; that is,
they might behave differently from the training period to the
actual system running period.

Therefore, acquiring annotations to enable long-term activ-
ity recognition is one of the main challenges, and there have
been different approaches proposed to address towards this
problem. Unsupervised activity recognition is one way, where
we either rely on common sense knowledge from the other
sources (such as the Web or other textual sources [29] or
domain knowledge [31]) to build activity profiles or build
computationally expensive models to separate sensor data
for each type of activities [22]. Another direction is active
learning, where a classifier will build a computational model
on a limited set of annotated data, and then iteratively annotate
a large amount of un-annotated data. In each iteration, it will
select uncertain data points that sit at the boundary of classes,
and ask the human operators to annotate them so as to use
them further train and refine the computational model. This
approach can significantly reduce human annotation effort,
however, it still requires all the activities of interest are
covered in the initial annotated data. Recently transfer learning
techniques are starting to attract attention and have also been
applied to address this challenge. For example, a meta-feature
space mapping technique has been developed to map sensors
from one home environment to another so as to share the
activity recognition model [5], but this approach can be subject
to the density of sensors being deployed and the routines of
activities from different users.

In this paper, we hypothesise that activity recognition ac-
curacies can be improved by shared learning across multiple
datasets to complement the insufficient amount of labelled
data. That is, if each dataset contributes to a very limited
number of labelled examples (even with an incomplete list of
activities of interest), through shared learning between these



datasets, we are able to better recognise unlabelled examples
than classic activity recognition approaches. The contribution
of this paper is to propose algorithms for shared learning
across activity recognition models from different users in
different environments with different deployments of sensors.
We evaluate the algorithms on three third-party datasets and
demonstrate their effectiveness by comparing them against the
state-of-the-art classification techniques.

The rest of the paper is organised as follows. Section II
proposes the problem that SLearn aims to address with formal
definitions and an illustration example. Section III reviews
the mainstream work on addressing the scarcity of labelled
data and identifies the difference between them and SLearn.
Section IV describes the SLearn approach and Section V
introduces the evaluation methodology and experiment setup.
Section VI performs an evaluation and discusses the strength
and limitation, and Section VII concludes with some suggested
future work.

II. PROBLEM STATEMENT

In this section, we will introduce the research problem that
the SLearn tries to address, through a formal definition and a
concrete illustrative example.

A. Formal Definition

Based on the syntax and terminology from transfer learn-
ing [16], we first give preliminary definitions of problems that
the SLearn approach aims to address.

Definition 1. Let a dataset D.S consist of a domain D and a
task 7', where

e a domain D is a two-tuple (x, P(X)). x is the feature
space of D and P(X) is the marginal distribution where
X =[z1,...,Tn] € X

o atask T is a two-tuple (Y, f()) for a given domain D. Y
is the label space of D, which is a collection of possible
labels Y = {y1, y2, ..., Ym }- f() is an objective predictive
function for D.

o Within this dataset, each pair (X,y) € x x Y U {©},
where O represents unknown or unlabelled. That is, some
instances in the feature space have labels; i.e., (X,y) €
x XY and f(X) €Y, while the other instances do not;
ie, (X,0) € x x {6} and f(X) = 6.

Definition 2. Let DSS be a collection of datasets
{DS1,DSs, ..., DS}, where each dataset has different do-
mains (ie., V1 <14,5 <L, i # j, x;s # x; and P; # P;) and
has different tasks (i.e., Y; # Y; and f; # f;). SLearn aims to
assign a label to each unlabelled instance in the dataset; that
is, VX € y;, there exists a label y € YUY, U ...U Y. To
make it work, there are two assumptions:

o Feature space remapping - the feature spaces between
these datasets are comparable and can be remapped be-
tween each other. That is, there exists a mapping function
;5 : Xi — X, that remaps each instance X in x; to an
instance X’ in x;;.

e Label space remapping - the label spaces between these
datasets are comparable and can be remapped between
each other. That is, there exists a mapping function ¥, ;:
Y; — Y; that remaps each label y in Y; to a label ¢/ in
Y;.

B. An Illustrative Example

Here we will illustrate the above definitions through an
example of the SLearn scenario, which is activity recognition
in a smart home environment deployed with binary event-
driven sensors. Assume we deploy sensors in two different
home settings: House I and House II. Due to different spatial
layout and users’ preference, we deploy a different number
of sensors with different sensing technologies in these two
environments. For example, one house is deployed with a
dozen of infra-red passive motion sensors, indicating the user’s
whereabout, while the other house is deployed with switch
sensors to monitor the open/close states of cupboards, doors,
or windows, and the pressure sensors to indicate whether a
user sits on sofa or sleeps in bed.

When the sensors are deployed, we can start activating
a SLearn Algorithm, without the need for explicit training
period, as the training is continuously ongoing. Both users
can start annotating their activities at their own pace. For
example, if the user in House I has annotated a few examples
of “preparing breakfast” and the user in House II has annotated
a few examples of “taking bath”, then the SLearn Algorithm
aims to recognise these two activities in both House I and II.
It will support long-term incremental activity recognition in
that it can accommodate new activities annotated by different
users over time.

III. RELATED WORK

Activity recognition has been an active research topic in the
last decade, and a large number of knowledge- and data-driven
techniques have been proposed [30]. Among them, different
approaches have been designed to address the scarcity chal-
lenge of activity annotation, including unsupervised learning,
activity learning, and transfer learning. In the following, we
will compare and contrast these approaches with SLearn.

A. Unsupervised Learning

Unsupervised learning automatically partitions and charac-
terises sensor data into patterns that can be mapped to different
activities without the need of annotated training data. Pattern
mining and clustering are the two mostly used techniques
that support unsupervised activity recognition. Gu et al. have
applied emerging patterns to mine the sequential patterns for
interleaved and concurrent activities [7]. Rashidi et al. propose
a method to discover the activity patterns and then manually
group them into activity definitions [18]. Based on the patterns,
they create a boosted version of a Hidden Markov Model
(HMM) to represent the activities and their variations in order
to recognise activities in real time. Similarly, Ye et al. have
combined the sequential mining and clustering algorithms to
discover representative sensor events for activities. Different



from the work in [18], they have applied the generic ontologies
to automatically map the discovered sensor sequential patterns
to activity labels through a semantic matching process [31].
Yordanova et al. have also applied domain knowledge in rule-
based systems to generate probabilistic models for activity
recognition [11], [33].

Taking a different route, researchers also have applied web
mining and information retrieval techniques to extract the
common-sense knowledge between activities and objects via
mining online documents; that is, what objects are used to
perform a daily activity and how significant each object is
contributed to identifying this activity [15], [29], [32], [34].
During the reasoning process, the mined objects are mapped
to sensor events and an appropriate activity will be recognised.

SLearn is not a classic activity recognition problem where
for each dataset we train a model with labelled instances and
recognise unlabelled instances. In SLearn, the training data
is assumed to be incomplete in that it might not cover all
the activities of interest. SLearnis not a unsupervised learning
technique as it still relies on labelled training data, but the
labels can come from different datasets.

B. Active Learning

Active learning, so called “query learning”, is a subfield of
machine learning, which is motivated by the scenario when
there is a large amount of unlabelled data but a limited
and insufficient amount of labelled data. As the labelling
process is tedious, time-consuming and expensive in real-
world applications, active learning methods are employed to
alleviate the labelling effort by selecting the most informative
instances to be annotated [20].

Alemdar et al. apply active learning strategies to select
the most uncertain instances to be annotated; that is, the
instances sit at the boundaries of different activity classes [1].
The annotated instances are then used to iteratively update
a HMM to infer daily activities in a home setting. Their
experimental results have demonstrated that active learning
strategies have improved recognition accuracies, compared
to random selection. Cheng et al. apply a density-weighted
method that combines both uncertainty and density measure
into an objective function to select the most representative
instances for user annotation, which has been demonstrated
to improve activity recognition accuracy with the minimal
labelling effort [3]. Similarly, Hossain et al. combine the un-
certainty measure and Silhouette coefficient to select the most
informative instances as a way to discover new activities [8].

SLearn is not an active learning problem [20] in that it
will not query a user or a human operator, but learns labels
from the other datasets. However, we could use the uncertainty
sampling strategies in active learning to determine when an
algorithm should leverage training data or classifiers from
other datasets.

C. Transfer Learning

Transfer learning is another approach to deal with the
limitation of labelling data, where knowledge learned from

a source domain (with labelled data) can be transferred to a
target domain (without labelled data) [16].

Zheng et al. [34] propose an algorithm for cross-domain
activity recognition that transfers the labelled data from a
source domain to a target domain so that the activity model
in the source domain can help to complete the similar ac-
tivity model in the target domain. The similarity is not only
measured on the objects being involved in the activities, but
also on their underlying physical actions. One example is that
the activity ‘Washing-laundry’ is similar to “Hand-washing
dishes” on the action of “Hand washing”. They use the web
search and apply the information retrieval techniques to build
the similarity function that produces different probabilistic
weights of actions and objects on activities of interest. These
weights will be further used to train a multi-class weighted
support vector machine to support activity recognition.

Macekawa et al. [13] have proposed an unsupervised ap-
proach to recognise physical activities from accelerometer
data. They utilise information about users’ characteristics such
as height and gender to compute the similarity between users,
and find and adapt the models for the new users from the
similar users.

van Kasteren et al. [24] propose a manual mapping between
sensors in different households and learn the parameters of a
target model using the EM algorithm to transit probabilities
of HMM models from source to target. Similarly, Rashidi et
al. [17] learn sensor mappings based on their locations and
roles in activity models. The role is characterised in mutual
information, measuring the mutual dependence between an
activity and a sensor and suggests the relevance of using the
sensor in predicting the corresponding activity. Feuz et al. [5]
propose a data-driven approach to automatically map sensors
based on their meta-features, which are mainly about when a
sensor reports, and time intervals between events reported by
this sensor and other sensors.

SLearn is most relevant to but not the same as transfer
learning [16]. Our assumption is slightly different from the
above works where they assume a complete model (that is,
containing all the activities of interest) can be learnt on a
source domain, while we assume each domain can only have
a small fraction of data being annotated (that is, the activities
having been annotated can be a subset of activities of interest
in a domain) and we do not assume any domain necessarily
as a source or target domain. However, transfer learning
techniques such as feature remapping can be applied to
SLearn. Especially, our approach is most similar to the above
three, where we focus on sensor mappings to support sharing
sensor data across multiple datasets. The difference is that
we are using a knowledge-driven approach where sensors are
modelled in location and object ontologies whose generality
across different households and sensing technologies has been
demonstrated in other works [31].

D. Co-training

The co-training algorithm, proposed by Blum and Mitchell
in 1998, has been one classic approach to be able to boost



performance of a learning algorithm by leveraging a large
number of unlabelled examples [2]. The idea is that the de-
scription of each example can be partitioned into two distinct
views, and each view can be linked with edges in a bipartite
graph. Then two classifiers can be trained separately on each
view, and then results from each classifier are used to enlarge
the training set of the other. The co-training algorithm and its
variations have been recently applied in the multi-view human
activity recognition in smart home environments [6]. That is,
an activity can be viewed from different platforms of sensor
streams, such as acceleration data, motion sensor, or video.
The principle is to learn the same activities from each sensor
platform and share and adapt labels from one sensor platform
to another. For example, a home is equipped with ambient
sensors to monitor motion, lighting, temperature, and door
use. The resident now wants to train smart phone sensors to
recognise the same activities on ambient sensors. Whenever
the phone is located inside the home, both sensing platforms
collect data while activities are performed, resulting in a multi-
view learning opportunity where the ambient sensors represent
one view and the phone sensors represent the other view. If the
phone can be trained, it can also monitor activities outside of
the home and can update the home’s model when the resident
returns. The phone may converge upon a stronger model than
the home either because it receives training data of its own or
because it has a more expressive feature space.

The SLearn problem does not share the same assumption
as the co-training approach in that the co-training approach
works on multiple views from the same data while the
SLearn approaches need to work on multiple datasets that
share the sensing mission; that is, compatible sensor features
and activities.

IV. PROPOSED APPROACH

We hypothesise that we can significantly improve activity
recognition accuracies by leveraging a small set of training
data contributed from each dataset. All these datasets might
have a different number of sensors, in different sensing
technologies, deployed in different environments, and from
different users, as long as they have compatible feature space
and activities of interest. The contributed training data might
only contain a couple of examples, and possibly not cover the
whole set of activities of interest. In the following, we will
explore the solution space to address this question.

First of all, a classic approach of dealing with a small
amount of training data is leveraging unlabelled data, which
is similar to the active learning approach, mentioned in Sec-
tion III-B. That is, for each dataset, we train a classifier
on its labelled data and then use it to iteratively infer the
labels on its unlabelled examples for 7" rounds or until the
algorithm converges. For each iteration, we select the top k
most confident examples to enlarge the labelled data pool and
iteratively update the classifier. However, given our assumption
that the labelled data might be too little and have not covered
the whole set of activities of interest, this basic approach can
only assign the labels that have been observed in the training

data. We will need to leverage labels from the other datasets.
To do so we will look into two directions: sharing training
data and sharing classifiers.

A. Sharing training data

To share training data, we will need to map data from
the feature space of one dataset to the feature space of the
other dataset. An intuitive approach is feature-space remap-
ping in transfer learning; that is, convert an instance X; =
[z11,21,2,...,Z1,n,] from a dataset I to a representation in an-
other dataset II: 917]](X[) =X = [331171,.13]],2, ...,J:H,nn].
There are different feature remapping strategies introduced
in [16]. Feuz et al. [5] have proposed a meta-feature based
mapping function for event-driven sensors in smart home
environments. They have defined a range of meta-features
about each sensor; for example, the average sensor event
frequency over 1-hour time periods, over 3/8/24-hour periods,
the mean and standard deviation of the time between this
sensor event and the next sensor event, and the probability of
the next event is from the same sensor. These meta-features
are used as a heuristic to guide the mapping process. This
is a data-driven approach for feature-space remapping, but
its performance might be affected by the activity routine
of various users and the deployment and types of sensing
technologies in each environment. For example, one user
might often have breakfast at 6am while the other might have
at 9am, or one user prefers having shower before breakfast
while the other prefers the other way around so that the
sensors might be mis-matched on the time scale. In addition,
the density of the sensor deployment and the frequencies and
sensitivity of sensors reporting events might affect the mapping
on the intervals between events. For example, one environment
can be more densely deployed with sensors so that the time
distances between events reported by different sensors can be
significantly shorter than the other set up with much fewer
Sensors.

To reduce the impact of such differences in each dataset,
we will adopt a more general approach - semantics-based
feature mapping. We will use the common knowledge [31],
which has demonstrated generality across different smart home
datasets. The principle of semantics-based feature mapping is
to compute similarity between a pair of sensors based on where
they are deployed and which object they have attached to. Both
location and object concepts are organised in an ontological
hierarchy, from which a conceptual similarity measure [28] is
applied to calculate the distance between two concepts. Here
we re-apply the conceptual ontologies to feature re-mapping.
Definition 3. Given an instance X; = [2;1,%1.2, .., T1,n;)»
a semantics-based feature mapping function is defined as
H(X]) = Xy, denoted as [1‘11)1,5511727...,:17]],7”[], where
V1 < j <nir, Trr; = i€S; T * Sim(S])i,S[Lj)/‘S]‘L Sj is
a collection of sensors in the feature space I that are similar
to the sensor j in II.

S; ={si]1 <l < ng,sim(sru,s11,5) > €},
sim(sr,1,811,5) = wr X simr(S1,1,811,5) +wo X simo(sr,1,S11,5),
wr, +wo =1,



where ¢ is the threshold to choose similar sensors, simp,
and simo are the similarity measure on location and object
concepts that the /th sensor in I and j sensor in II, and wy,
and wo are the weights on the location and object similarity.

Based on the above definition 3, a value 277 ; in a converted
instance X5 € xs is the weighted average of the probabili-
ties of all the similar sensors in the source feature space x to
the jth sensor in x7; and the weight is their sensor similarity.
That is, we try to estimate the probability of the jth sensor
reporting events by looking at the probabilities of all of its
similar sensors in the source dataset.

Figure 1 illustrates an example of the above process. As-
sume that there are two datasets I and /I, each having 2 and
3 sensors respectively, and their similarity scores have been
calculated based on the similarity of their attached objects
and deployed locations. Given a current sensor feature Xj
in the dataset I, we need to simulate a sensor feature Xy
in the other dataset. First, for each sensor in II, we need
to identify similar sensors in /. Assume that the similarity
threshold is 0.5, according to the formula in Definition 3,
we identify the similar sensor sets S;(j = 1,2,3) for each
sensor in the dataset I1 as {s;1}, {s71}, and {s;2}. Then
the probability on each sensor is the averaged contribution
from their similar sensors. The location and object ontologies
as well as the sensor similarity calculation can refer to the
work [31].

Sensor features Sensor similarity

Use sensor similarity St 0.81 0.58 0.02
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Fig. 1: An example of sensor feature space remapping

With feature remapping, for each dataset, we will not only
train a classifier on its own train data but also on the data
converted from the training data in the other datasets. This
gives rise to Algorithm 1.

B. Sharing classifiers

To share classifiers, we design a uncertainty-driven algo-
rithm; that is, when the classifier from the current dataset
cannot confidently infer an activity label to a given example,
then we acquire labels from the classifiers from the other
datasets. This is inspired by active learning; that is, identify
uncertain examples and query human operators for annotation.
The difference here is that we don’t query human operators,
but classifiers in the other datasets. The process is described
in SC Algorithm.

To make SC Algorithm work, we will need to solve two
questions: (1) how to evaluate whether an example is uncertain

Algorithm 1 SD: Share training Data

Require: a collection of datasets {D1, D2, ..., Dn}, where each
dataset D; is composed of a set of labelled examples L; and
a set of un-labelled examples U;

: initialise a classifier C; for each dataset

fort=1 do T

L§ — Li U{L}|L} = remap(Ly,i),j # i, € [1,n]}
use labelled examples in each dataset Lj to train its classifier

C; and estimate an uncertainty measure fi;

5: randomly create a set of {Uj,Us,...,U,,} from un-labelled

examples

6: use C; to label U/ and select k most confident and certain

examples K;

7: Li—> L, UK;

U, - U, — K;

9: end for
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Algorithm 2 SC: Share Classifiers

Require: a collection of datasets {D1, D2, ..., Dy}, where each

dataset D; is composed of a set of labelled examples L; and
a set of un-labelled examples U;

1: initialise a classifier C; for each dataset

2: fort=1 do T

3: use labelled examples in each dataset L; to train its classifier
C'; and estimate an uncertainty measure fi;

4 randomly create a set of {Uj,Us,...,U,,} from un-labelled

examples
5 for each unlabelled example u € U, do
6: prob < C; classifies u and returns its class probabilities
7 if p; evaluates prob to be uncertain then
8: use {C1, ..., Cy } to classify u and integrate the results
9: end if
10: end for
11: select £ most confident and certain examples K; from U/

12: L; — L, UK;
13: U, —-U,— K;
14: end for

to label, and (2) how to integrate results from multiple classi-
fiers. To address the first question, we will employ the most
common uncertainty sampling strategies from active learning,
which are least confidence, margin sampling, and entropy, as
described in Equation 1, 2, and 3 respectively [20].

1) least confidence:
o(x) o = argmax 1 — Py(g|z) (1)

where § = argmax Py(y|z) denotes the class label

assigned with hi%hest posterior probability. A larger
value of ¢(z)Lc denotes a higher uncertainty.
2) margin sampling:

¢(x)m = argmin Py(91]z) — Pa(g2lz)  (2)

which computes the difference between two highest pos-
terior probabilities. A smaller value of ¢(xz)ys (smaller
margin) denotes a higher uncertainty, suggesting it is
hard to differentiate two most probable class labels.

3) entropy:

¢(z)p = argmax — » _ Py(ilx)logPs(9ilz) (3

2



where entropy of each instance measures uncertainty of
the corresponding set of posterior probabilities for all
class labels. A larger value of ¢(z)g denotes a higher
uncertainty.

With the uncertainty sampling strategies, we can determine
which example is not certain to be labelled from its current
classifier. Then we will perform a feature space remapping
that converts it to an example in the other datasets to allow the
other classifiers to label. Once the other classifiers complete
the inference, we will need to integrate their results to make
a final decision. There are existing approaches to combine
classifiers; for example, ensemble methods like boosting,
bagging, and stacking are classic ways to do. However, we
are constrained by the size of training data, so we propose a
uncertainty-driven approach. It selects the most certain activity
label from each classifier in the other datasets and the process
is described in Algorithm 3. To do so, we will reuse the above
uncertainty sampling strategies on the inference results and
calculate their uncertainty score with the above formulas.

Algorithm 3 CC: Combine Classifiers

Require: an unlabelled example u
Require: Classifiers {C1,Cs,...,C,} and uncertainty measure
{1, 2, ..., pn + for each dataset ¢ € [1,n]
1: initialise res to store the inference results
2: for each classifier C; do
3: prob <— C} classifies u and returns its class probabilities
4
5

if 1; evaluates prob to be certain then
add [cls, conf,us] to res, where cls is the inferred class

label, conf is the probability on cls, and us is the uncertainty
score.

end if
: end for
. if res is not empty then
return [cls, con f] with the lowest uncertainty score from res
: end if
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V. EVALUATION METHODOLOGY

We hypothesise that SD and SC Algorithms can
significantly improve activity recognition accuracies when
the available training data is very little. To validate this
hypothesis, we design the following methodologies.

Datasets We use three real-world smart home datasets that
capture typical activities and more importantly they represent
common types of smart home datasets in terms of the number
of sensors, different spatial layouts, and the degree of inherent
noise. We believe that experimenting on these datasets gives
us a comprehensive view of the effectiveness of the proposed
technique. The three datasets were collected by the University
of Amsterdam (named House A, B, and C respectively in
the following) from three real-world, single-resident houses
which were instrumented with wireless sensor networks [9].
These three datasets recorded the same set of 7 activities,
including leaving the house, preparing breakfast or dinner,
and sleeping. These three houses are deployed with only
binary sensors, whose reading indicates whether or not a

sensor fires. More specifically, the House A dataset consists
of 14 state-change sensors attached to attached to household
objects like doors, cupboards, and toilet flushes, while the
other two datasets contain more than 20 sensors, including
reed switches to measure whether doors and cupboards are
open or closed; pressure mats to measure sitting on a couch
or lying in bed; mercury contacts to detect the movement of
objects (e.g., drawers); passive infrared to detect motion in a
specific area; float sensors to measure the flush of toilet.

Accuracy We consider two metrics for accuracy: the overall
accuracy — the ratio of the learnt labels being the same as the
true labels, and the class accuracy — the averaged ratio of the
learnt labels being the same as the true labels in each class.

_ |pred_label == true_label|

N
2e—q1,...cy (Ipred_labele == true_label.|)
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where C' is the number of classes and N, is the number of
test examples in each class c.

Process We evaluate the algorithms across different ratios of
training data, from 0.1% to 80%. 0.1% is the extreme training
data percentage for the chosen datasets; that is, the training
data for each dataset can only contain 1 or 2 examples. To
validate our hypothesis, we want to observe the effectiveness
of the proposed SD and SC Algorithms when training data is
very little and find to what percentage of training data both
algorithms need to be able to produce satisfactory accuracies.
For each given ratio r of training data, we randomly
generate r X N; number of instances in the ¢th dataset to be
annotated, run an algorithm on all the datasets, and calculate
the averaged class accuracies. The algorithms include the
proposed SD and SC Algorithms as well as the baseline
approach; that is, train a classifier with training data of each
dataset and test on its test data, without any sharing data or
classifiers. We run 100 iterations for each ratio, test all these
algorithms on each iteration, and average their accuracies.

Classifiers We employ a collection of the state-of-the-
art classification algorithms: Naive Bayes (NB), Random
Forest (RF), and Support Vector Machine. None technique
consistently significantly outperforms the others. Also a
classifier is not the focus of our approach as both SD and
SC Algorithms work on top of any state-of-the-art classifiers.
In the next section, we will report the results on NB and REF,
for the following reasons. These two algorithms represent
two different styles of classifiers: NB is a simpler model and
consumes less training data to produce good classification
accuracies, while RF has more capacity in building complex
models but requires much more training data. We want to
see how these two algorithms work when the training data
is little and how SD and SC Algorithms can enhance their
performance in this situation.



Uncertainty sampling strategies We have experimented with
the three uncertainty sampling strategies in Section I'V-B. For
each strategy, we need to estimate the threshold to determine
whether inferred class probabilities are uncertain or not. A
general way to do is to split the training data into training and
validation sets so that we can experiment with different thresh-
old values and test on the validation set, and we choose the
best threshold that leads to the highest accuracies. However,
we are dealing with very small training data, we cannot afford
the validation set. What we have done is that after training a
classifier, we calculate the uncertainty scores of each training
example and use the mean score as the threshold. For the
extreme case with only one training data, we set the default
threshold score on the most uncertain situation; that is, evenly
distributed class probabilities. Also we allow the uncertainty
threshold to be updated during the iterative training phase, so
the default threshold only serves at the cold start stage.

In terms of combining classifiers, we have evaluated CC
Algorithm and compared with the classic ensemble methods
such as majority voting (MV) and highest confidence (HC)
and Dempster-Shafer Theory (DST) to integrate imperfect
evidences from distinct sources [14]. The MV, HC, and DST
have similar results, all worse than SC Algorithm as they
are more likely to be affected by the weaker classifiers. CC
Algorithm with the information entropy uncertainty sampling
strategy produces the highest performance.

Top k example selection In both SD and SC Algorithms
we will need to choose top & examples for the next training
iteration. We have experimented with different numbers 2, 5,
and 10. Both top 2 and 5 produce better accuracies as they only
focus on best examples while filtering less confident ones. For
the sake of performance, we will choose top 5, which leads
to faster convergence.

VI. RESULTS AND DISCUSSION

This section will discuss the evaluation results and
validate our hypothesis. Figure 2 presents the comparison
of overall and class accuracies between Baseline, SD, and
SC Algorithms on each dataset.

SD and SC Algorithms improve both overall and class
accuracies when the ratio of training data is small; i.e.,
from 0.1% to 10%, and perform comparably with the base-
line approaches afterwards. To quantify the improvement,
we perform significance tests on the performance of SD,
and SC Algorithms over the Baseline Algorithm with their
corresponding base classifiers respectively. For each ratio of
training data, we run Welch’s t test on the accuracies of 100
iterations and calculate the p-values, which are presented in
Figure 3. With a null hypothesis HO of SD, and SC providing
no improvement over B in recognising activities, and an alter-
native hypothesis H1 of SD, and SC displaying improvement,
we select a standard significance level of 90% for the test,
meaning that if the p-value in the test result is smaller than
0.1, we reject the null hypothesis and accept that there is a

statistically significant improvement. The result in Figure 3a
shows that when the training ratio is less than 1%, SD has
significantly improved the overall and class accuracies (not on
RF) with the p-values all close to 0. The main reason is that
accumulating training data from multiple sources does provide
better coverage. Again in the extreme situation, if training data
from each dataset contains one example from different classes,
then collecting them together will cover three classes. When
the training data is small, SD Algorithm with NB works much
better than RF; that is, the averaged class accuracies of 55%
with NB and of 17% with RF on House A when the ratio of
training data is 0.1% in Figure 2. The reason is that RF often
needs more training data to compose a number of decision tree
classifiers and less sensitive to small change in training data,
while NB is built on a much simpler model and can adapt
well to small change in training data.

As presented in Figure 2, the improvement over the class
accuracies are more observable. We can see that even when
the ratio of training data is only 0.1%, the overall accuracies
on the baseline approaches can be as high as 50%, especially
on House B and C. After looking into the inference results,
we find that on these two datasets, if the training data only
contains the high frequency activities, such as the “leave
house” and “sleep” activities that dominate the House B
and C datasets, then both the classifiers NB and RF will
only predict these two activities, leading to the final overall
accuracies to be the actual class distribution. Also because
these activities have higher frequency, during the iterations,
they are more likely to be chosen in the training data, which
leading to a high overall accuracy. As suggested by the
authors of the datasets [25], the class accuracies are more
indicative on the actual performance of the classification
techniques. In the following, we will focus on our discussion
on the class accuracies.

SD Algorithm is less sensitive to the amount of training
data; for example on House A, the averaged class accuracy
is 55% at the lowest ratio 0.1%, and 59% at the highest ratio
80% in Figure 2. When the ratio of training data increases,
SD Algorithm performs worse than B and SC Algorithms.
It suggests that when training data is sufficient, sharing
data across different datasets does not help, but adds noise
to the classifiers in each dataset. Partly it is because each
user tends to have their own way or routine of performing
certain activities; for example, interacting with different
objects. Sharing data can enhance activity coverage, but not
necessarily improve identifying activities for individual users.

SC Algorithm needs more training data than SD Algorithm
to perform well, as there is no significant improvement
when the training ratio is very small; i.e., less than 0.4%
in Figure 3b. The significant improvement on SC (with NB)
is from 0.4% to 20%. First of all, SC Algorithm still trains
its own classifier on training data from its own dataset; that
is, the training data size is not enlarged like SD Algorithm.
But when the training ratio increases, SC has better improve-
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Fig. 2: Comparison of averaged overall and class accuracies between
can improve recognition accuracies when training data are small.

Baseline, SD, and SC Algorithms, showing SD and SC Algorithms

Ratio of training data

===NB - Overall Accuracies ===NB - Class Accuracies RF - Overall Accuracies ===RF - Class Accuracies

Significance test of accuracies between baseline and SD algorithms on House A test of baseline and SC algorithms on House A
1 1
0 7 —\ 09 \ A A\ A n
! J / \ y
0.8 08 4\—/—\% AR */—
0.7 , / \ 0.7 V4
[/ \ o A\ /

5 0.6 l / \ 306

/ \ - : N/ )

204 S 204 ) — f—\ N
03 / \ - 03 \—~ /AN J\—
0.2 I \ 0.2 \ / —
01 4\// \‘/ o1 »;

0 ;v—/ T r - - — e
0.001 0.002 0.004 0.006 0.008 0.01 0.02 004 0.06 0.08 0.1 0.2 0.4 0.6 0.8 0.001 0.002 0.004 0.006 0.008 0.01 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.8

Ratio of training data

===NB - Overall Accuracies ====NB - Class Accuracies RF - Overall Accuracies ===RF - Class Accuracies

(a) B vs. SD
Fig. 3: Significance test on the performance between Baseline, SD,

(b) B vs. SC
and SC Algorithms, showing SD and SC Algorithms can improve

recognition accuracies when training data are small and SD works better than SC Algorithm.

ment than SD. Secondly, the small training data significantly
undermines the estimation of the uncertainty threshold. This
becomes a more severe problem on RF than NB, as both
classifiers produce very different class probabilities in the face
of uncertainty. For example, under the extreme situation that
there is only one example in the training data, saying it belongs
to the 2nd class, for any test example, RF will derive the
class probabilities [0, 1,0,0,0,0,0]; that is, no matter which
class the test example might belong, it will assign the highest
probability 1.0 to the observed class in the training. On the
contrary, NB will derive evenly distributed class probabilities
[0.14,0.14,0.14,0.14,0.14,0.14,0.14]. As introduced before,
we hardcode the uncertainty threshold as the most uncertain
class probabilities, which can detect an uncertain example for

labelling on NB but not on RF. This raises a question on
what heuristics we should use to better estimate uncertainty
measures, which will be one of our future work.
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Due to this problem, we are also wondering what if we
always share classifiers; that is, for each unlabelled example,
we query all the classifiers and integrate their results. The
results are presented in Figure 4, where SC2 refers to the
always-sharing algorithm. With always sharing classifiers,
SC2 Algorithm improves on RF, but not on NB. The results
confirm our analysis that the poorer performance on RF is
mainly to do with the uncertainty evaluation.

Comparison with active learning Here we will also compare
the performance of SD and SC Algorithms with active learning
in Section III-B, one of the most applied semi-supervise
learning techniques in activity recognition. The performance
of active learning with the information entropy uncertainty
sampling strategy is presented in Figure 5, including the times
of queries to acquire labels on uncertain examples from human
operators and the overall and class accuracies. Compared to the
results in Figure 2, active learning achieves better accuracies,
however, it requires query 10% or 20% of test data to human
operators, which makes the actual amount of training data is
actually much higher than the specified. Also active learning
assumes the always availability of true labels for each user’s
own sensor data. On the one hand, this allows annotating
sensor data for individual users and thus improves their own
activity recognition model. On the other hand, it has better
coverage of the activity space than our proposed methods in
that the labels that we share in SD and SC are constrained
by their availability in the other datasets’ training data. For
example, if all the datasets only contain “having a meal” and
“sleeping” activities altogether, then our techniques will not be
able to detect any activities other than these two, but the active
learning technique will still be able to learn the others such
as “taking shower” or “having drink” because of the always
availability assumption.

VII. CONCLUSION AND FUTURE WORK

This paper aims to address the problem on the scarcity of
activity annotations by leveraging annotations across different
datasets that can have different sensing technologies, differ-
ent sensor deployment, and different users, as long as they
share the same mission with compatible sensor features and
activities of interest. The goal of this paper is to explore the
solution space to address the problem of SLearn and validate
whether the proposed approach can improve activity recogni-
tion accuracies given a small ratio of training data and if so,
to what degree. To do so, we have proposed two approaches:
SD Algorithm — accumulating a larger training data pool by
semantically remapping training data from each other, and
SC Algorithm — acquiring and integrating activity labels from
classifiers on the other datasets. We have presented the general
skeletons of these two types of algorithms, and plugged in
specific classifiers, feature space remapping techniques, and
ensemble methods.

The evaluation results have consistently demonstrated a
significant improvement on activity recognition accuracies
when training data is small; for example, each dataset only
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Fig. 5: Performance of active learning: times of queries vs. recogni-
tion accuracies

contributes 2 or 3 annotated examples (i.e., the ratio of training
data is 0.4%), the averaged class accuracies can reach around
66%, 52%, and 55% on House A, B, and C respectively. These
algorithms can save a smart home system a large amount of
time and effort on collecting ground truth. They can also
potentially support lifelong learning of activity models as
long as users from different smart home environments can
contribute a few examples of their new activities, which can
be either shared by SD Algorithm with the system in the
other smart home environments or integrated by SC Algorithm
when similar sensor data are reported in the other home
environments.

To note that SD and SC Algorithms are not committed to
any of the experimented techniques, and can be configured
with any other suitable ones. In the future, we will look into
other more sophisticated ensemble methods such as Bayesian
classifier combination [10], which have demonstrated strength
in combining imperfect classifiers [21]. Also we will look
into how to use other heuristics to better estimate uncertainty
thresholds when the training data is limited, which has sig-
nificantly affected the performance of certain classifiers like
RF in our experiment. To further test the generality of the
proposed techniques, we will attempt to working on the other
types of application domains such as activities in the office
building and outdoor activities, and the other types of data
such as accelerometer or physiological data.
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