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1.  Introduction 

Most firms do not only sell one, but many interrelated products. For example 

supermarkets sell a multitude of substitute, complement or independent goods. Airlines 

and railway companies sell tickets with different conditions for the same route and oil 

corporations sell gasoline in petrol stations that differ by their locations.  

This paper examines multi-product monopoly (MPM) facing linear demand for 

differentiated goods and constant unit costs and shows that optimal prices and welfare 

loss can be expressed in a very simple way: As in the textbook case of a single product 

monopoly, the monopoly price of each good is the average of its own inverse demand 

intercept and its own marginal cost, and is thus independent of the characteristics of other 

products, the interactions between products and the number of products sold. In contrast, 

a common view in economics as well as marketing is that monopoly prices critically 

depend on cross demand effects2. In particular, a somewhat prevalent misconception is 

that MPM prices should be lower for complements and higher for substitutes, relative to 

independent goods (see Section 2). Though intuitively plausible along a seemingly natural 

line of argument, this conclusion is actually invalid! 

We obtain these elementary results for MPM facing three commonly used linear 

demand structures, corresponding to the three examples cited above: The standard 

Bowley (1924) or Shubik (1959) models for demand with heterogeneous products, 

vertically (quality) differentiated products and horizontally (spatially) differentiated 

products. As seen below, this multitude of demand models is motivated by the diversity 

2 For example Reibstein and Gatignon (1984) argue in a seminal marketing paper that “The optimal price 

is extremely sensitive to the inclusion or the exclusion of the cross-elasticities” (p.266). 
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of economic settings where the issue of MPM pricing has been historically analyzed, 

often by founding fathers of modern industrial economics.  

Our result on MPM prices is interesting in its own right, but it can also be used to 

address a number of further questions. In particular, we show that this result helps to solve 

the complex but important problem of deadweight loss in multiproduct monopoly.  In a 

single product monopoly with linear demand deadweight loss is half the monopoly profit. 

Exploiting the property that prices of existing goods do not change when a new product 

is added to a product line, we can show that monopoly profit and the deadweight loss 

always rise proportionally. Consequently deadweight loss in MPM will also be half the 

monopoly profit regardless of how many, or what types of, products are added. This 

surprising result holds in all the models of linear demand we consider, despite 

fundamentally different welfare functions.  

 Based on an extensive literature search going back to the beginnings of neo-classic 

economics, we believe that these simple properties of linear MPM have not been fully 

uncovered.3 While the complete solution of MPM pricing seems to have largely eluded 

economists’ attention, some features of our results have emerged in the marketing 

literature. Shugan and Desiraju (2001) show that monopoly prices of two vertically 

3 The first formal analysis of the MPM goes back to Wicksell (1901, 1934). Edgeworth (1925) analyzes 

railway fares of different classes but does not give explicit solutions. Hotelling (1932) provides a numerical 

example with first and second-class railway tickets. Robinson (1933) formally solves the problem of a 

monopolist selling in different markets, but explicitly excludes price interdependence such as in “the case 

of first- and third-class railway fares, analyzed by Edgeworth” (Robinson, 1933, p. 181). Coase (1946) goes 

beyond Robison’s analysis and examines monopoly prices for two interrelated products using verbal and 

graphical arguments but again does not provide a mathematical solution. Holton (1957) considers the MPM 

problem of a supermarket selling interrelated products arguing that, “supermarket operators do indeed 

establish prices with not only price elasticities but cross elasticities in mind”. Finally Selten (1970) formally 

addresses the problem of a multiproduct monopolist facing linear demand but does not provide the simple 

properties of monopoly prices. 
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differentiated products do not depend on each other’s costs. Moorthy (2005) and Besanko 

et al. (2005) show that with linear demand MPM prices do not respond to cost changes of 

other products. Neither of these studies derives the general solution for prices or explores 

the full scope of MPM pricing.4  

The present results may be useful in various contexts. A direct practical implication 

is that even in the presence of strong product interactions, neglecting such relations is part 

of good pricing practice for a monopolist. Cross-subsidization will not be optimal for a 

non-regulated monopolist under linear demand (Baumol, Panzar and Willig, 1982).5 

Besides its managerial relevance this insight also provides a theoretical justification for 

research in industrial organization and quantitative marketing that analyzes retail prices 

in a single product context, a priori for tractability reasons.  

Our welfare results could serve as a simple and practical benchmark helping 

antitrust authorities estimate the social loss of MPM. If demand functions can be 

considered as approximately linear, it is not necessary to analyze in detail every product’s 

price elasticity and cross-elasticities. The social cost of MPM can simply be estimated by 

looking at the firm’s profit. For example this approach could help to evaluate the social 

cost of a local retail monopoly. Likewise the deadweight loss caused by a railway 

monopoly can be estimated from the firm’s profit without having to analyze the qualities 

and prices of the different tickets offered.  

4 Several authors have pointed out the similarity of the MPM problem to the Ramsey tax (Ramsey 1927), 

which maximizes social welfare for a certain level of tax revenue. Yet the Ramsey problem is not identical 

to unconstrained monopoly profit maximization. For example Ten Raa (2009) shows that the structure of 

monopoly prices often differs from that induced by the Ramsey tax. 
5 Note that it might be optimal to price goods below marginal costs if their demand intercept is negative 

i.e. if they cannot be sold independently without complement goods. 
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In the present setting, social efficiency can be restored by a standard per-unit 

subsidy scheme, the implementation of which is facilitated by two helpful features. The 

scheme is based on minimal informational requirements and the firm has a direct 

incentive to truthfully disclose its unit costs to the policy maker. 

Finally our results have implications for joint profit maximization by oligopoly 

firms. Jointly maximizing the total profit is mathematically equivalent to the MPM price 

problem. Our findings indicate that with linear demand, even if products exhibit strong 

interdependence, oligopoly firms do not need any information about their competitors’ 

products and costs in order to set the prices that jointly maximize the total profit.  

The paper is organized as follows: Section 2 illustrates our main result with a simple 

example and explains misconceptions regarding monopoly prices. Section 3 shows that 

MPM prices are independent of product interactions for general linear MPM. In Section 

4, this result is applied to three common models of demand with interdependent products. 

Section 5 analyzes the relation between the deadweight loss and monopoly profits. 

Section 6 examines an efficiency-restoring subsidy scheme. Section 7 briefly concludes.   

2. Illustrative two-good example 

An elementary fallacy in basic monopoly theory holds that a firm selling two 

complementary products will charge less for each than when the two products are sold 

independently. Alternatively, it claims that the monopoly price of a given good is lower 

when it is sold alone than in case it is sold together with a substitute. In its most succinct 

form, this invalid view can be presented within the standard two-good paradigm. 

Consider a representative consumer with utility function U(x1,x2) = a(x1 + x2) –

0.5b(x1
2 + x2

2) + gx1x2 + y, where y is income, and |g| < b. This gives rise to the standard 
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symmetric inverse demand function pi = a – bxi + gxj (Bowley, 1924). The direct demand 

is then xi = a/(b – g) – (bpi + gpj)/(b2 −  g2). As in Singh and Vives (1984) or Amir and 

Jin (2001), this can be written as xi = α − βpi + γpj, with α = a/(b − g), β = b/(b2 −  g2) 

and γ = − g/(b2 − g2). However, it is important to observe that the constants α , β and γ are 

not autonomous. In contrast, a, b and g are, but for the restriction that |g| < b.  

Using the demand functions in the form xi = α − βpi + γpj, i, j = 1, 2, and unit cost 

c for both products, one obtains both monopoly prices as p* = 0.5[c + α/(β − γ)]. Then, 

so goes the fallacy, this price is higher with substitute goods (γ > 0) and lower with 

complements (γ < 0), relative to the case of independent goods (γ = 0). This would be 

correct if α and β remained constant when γ changes, which however is not the case. 

Indeed, using the relations between Greek and Roman letters, we obtain α/(β − γ) = a, 

which is the intercept of inverse demand, or the consumer’s willingness to pay at zero 

consumption i.e., ∂U(0,0)/∂xi, indeed a primitive constant.6 Hence, expressing the prices 

with the parameters of the inverse demand function, we obtain p* = 0.5(c + a), which is 

also the optimal price for a monopolist selling only good i (facing inverse demand pi = a 

– bxi and unit cost c). With linear demand, a monopolist selling two goods sets each price 

as if it were the only good sold. In other words, pricing is completely independent of the 

(substitute/complement) relationships between the two goods. A basic intuition for this 

result is given in the more formal treatment of Section 4.1. 

In fact this property extends to some settings without linear demand functions. For 

instance, consider the inverse demand function pi = a – bx
i

σ – rx 0.5( 1)

i

σ − x
0.5( 1)

j

σ +
, σ > 0. The 

6 In contrast, α is the quantity demanded under zero prices. In the presence of substitutes (complements) 

one would expect it to be lower (higher), relative to the case of independent products. 
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optimal price is (σa + c)/(1 + σ), which is the same as in the case where each product is 

sold in a separate market with independent demand function pi = a – bx
i

σ .  

On the other hand, the monopolist’s optimal outputs do depend on product 

relationships. Indeed, to maximize total monopoly profit, the optimal output is given by 

x* = 0.5(a− c)/(b− g), which is higher for complements (g > 0) and lower for substitutes 

(g < 0), relative to independent products (g = 0). When two perfect substitutes are sold 

(i.e. g =−b) we obtain the optimal output as half of the usual monopoly optimal output. 

This is all fully in line with standard economic intuition.7  

With the two standard ways of solving the monopoly problem using direct or 

indirect demand functions, the simple expression for optimal prices can be easily 

overseen. Allen (1938) uses the direct demand function to solve for optimal prices in the 

linear two-good example but fails to see that the solution can be simplified if expressed 

in terms of the parameters of the indirect demand function. Selten (1970, p. 52) discovered 

that in a general linear MPM the optimal quantities can be “expressed in a surprisingly 

simple way” as half of the socially optimal level8 but he too does not derive our solution 

for monopoly prices. Selten’s result does not yield simple comparative statics, as optimal 

quantities still depend in a complex way on cross demand effects.   

7 If output is expressed in terms of the parameters of the direct demand function we obtain x* = 

0.5[α − (β − γ)c], which seems to imply that output is higher for “substitutes” (γ > 0). In particular, if two 

goods are close to perfect substitutes, the monopoly will sell at least twice as much as when it sells one 

good alone, clearly violating standard intuition. 
8 A similar result has been obtained by Ramsey (1927) for revenue maximizing taxes in a competitive 

market with linear demand, but the connection to Selten’s result has not been recognized. In fact the 

similarity breaks down when marginal costs are not constant. 
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Similarly, when the indirect demand functions are used to solve for the optimal 

monopoly quantities, our simple solutions will appear only if one then substitutes these 

quantities back into the demand function. Varian (2006, p. 455) uses this approach for 

solving a numerical example without identifying the simple formula for prices. 

Another line of reasoning often used to justify this invalid view in settings with 

general non-linear demand is as follows. For such settings, one derives the optimal Lerner 

index, (pi – ci)/pi, as 1/εii – ( )j j j ijj i
p c x ε

≠
−∑ /(εiipixi), where εii and εij are the price 

elasticity and cross-elasticity.9 When every cross elasticity εij is zero, we obtain the 

single-good monopoly condition (pi – ci)/pi = 1/εii. When the goods are substitutes, we 

have εij < 0, and the price pi would appear to be higher than the corresponding price in a 

separate (single-good) market.10 Again this argument would be correct if the elasticity εii 

were to remain the same as new products are added. In the presence of substitute goods, 

the quantity demanded for a given product will fall and the value of εii will rise. A higher 

εii offsets the impact of εij’s, and pushes pi in the opposite direction. To further elaborate 

on this point, we provide in the Appendix an explicit example with a non-linear demand 

function with the property that complements are optimally priced higher (not lower) than 

the corresponding independent goods would be. 

On a historical note, this invalid view might have partly originated from the fact 

that the term “monopoly” had in earlier days also been used to refer to multiple firms 

9 See e.g., Tirole (1988, p. 70). 

10 One such example is in Betancourt (2004, p. 94), which carries out this analysis and concludes: “The 

latter implies that if two items are gross substitutes (ε21 >0), the price of item 1 will be higher in the 

multiproduct setting than it would have been in the single product one (…). On the other hand if they are 

gross complements (ε21 <0), the price of item 1 in the multiproduct setting will be lower than it would have 

been in the single product one.” 
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selling differentiated goods. For instance, comparing a multiproduct monopoly to what 

we now call a duopoly selling complementary or substitute products, Cournot (1838) and 

Allen (1938) refer to this duopoly as “two independent monopolists”  (Allen, 1938, p. 

361; Cournot, 2001, p. 80). Indeed, relative to monopoly prices, prices set by a duopoly 

are lower for substitutes and usually higher for complements, but this is not the question 

addressed in this paper. Instead, we compare the monopoly price of a given product when 

sold alone to its price when sold together with a complement or substitute by the same 

monopolist. 

3. Monopoly prices in a general linear model 

We start by analyzing MPM pricing for a general linear demand model, which will 

be shown in Section 4 to encompass three commonly used but quite different linear 

demand structures. We refrain at this stage from specifying a precise microeconomic 

model of interdependent demand, as we know of none that nests all of our applications. 

We consider a monopoly firm selling n products with constant marginal costs. 

Prices, quantities and marginal cost are denoted by pi, xi, and ci respectively, i = 1,…, n. 

The corresponding vectors for all n products are written as bold p, x and c. The linear 

demand function is specified by a constant Jacobian matrix ∂x/∂p = A, and a constant n×1 

vector α, representing the vector of quantity demanded when all prices are zero, as 

x(p) = α + Ap        (1) 

When p = c, we get the socially optimal output x(c). We assume A is negative 

definite and symmetric, i.e., its elements aij = aji for all i, j. The diagonal elements of A 

are all negative, i.e., aii < 0 for all i, as the demand for every good is downward sloping. 
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The off-diagonal elements, however, can be positive, negative or zero, according to 

products being substitutes, complements or independent. Given the demand function (1) 

and marginal costs vector c = (c1,…, cn), we can write the monopoly profit as 

  π(p) = (p – c)’(α + Ap)      (2) 

 We will demonstrate that the monopoly prices can be expressed in a simple way 

using the vector of demand intercepts p0, which is the (minimal) price vector that exactly 

reduces demand for all products to zero. As matrix A is invertible, this vector is uniquely 

defined by x(p0) = α + Ap0 = 0, i.e., p0 = −A−1α.  

 PROPOSITION 1: The profit-maximizing prices for MPM with constant marginal 

costs, facing a linear demand function with a symmetric and negative definite Jacobian 

matrix, can be expressed as p* = 0.5(p0+ c) where p0 is the demand intercept. Under 

these prices only half of the socially optimal quantity of every good is sold. 

Proof: see Appendix A.  

The impact of all the parameters of the demand function (1) on the monopoly price 

vector p* is summarized in the demand intercept p0. This is similar to the single product 

case with linear demand, where the monopoly price does not depend on the slope. Hence, 

Proposition 1 can be interpreted as a generalized version of the solution to a single-good 

or a two-good monopoly (see Section 2). It implies that, in general linear monopoly, only 

50% of a product’s cost change is passed on to its price, and that a cost change for one 

product does not affect the prices of other products. This conclusion corroborates the 

findings by Moorthy (2005) and Besanko et al. (2005).  

The optimal price vector satisfies the key property at hand - independence of inter-

product relations (substitutes or complements) - whenever p0 has the same property. The 
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latter in turn depends on the microeconomic model invoked to derive demand. As seen in 

Section 2, for the standard quadratic utility with two products, p0 indeed has the desired 

property. In Section 4, we argue that this property holds for three widely used distinct 

models of product differentiation in industrial organization. 

4. Independent pricing in three linear models 

In this section we show that the result derived in Section 3 can be applied to MPM 

facing three commonly used models of linear demand for differentiated products, each 

having its own microeconomic foundation. In all three cases we obtain simple profit-

maximizing prices, which are independent of other products and product relations.  

4.1 Bowley demand function for heterogeneous products  

We first look at one of the standard models for heterogeneous products, a 

generalized Bowley-type demand with a mixture of substitute, complement and 

independent goods. The representative consumer’s utility function is h + a’x – 0.5x’Bx, 

where h is the numeraire good whose price is 1, x is the consumption bundle of the 

monopoly products, a is an n×1 positive vector and B is an n×n matrix. Without loss of 

generality, let B be symmetric. We assume it to be positive definite so that the utility 

function is concave. The consumer chooses x to maximize utility subject to a budget 

constraint h + p’x = m. The first-order condition of utility maximization, a – Bx − p = 0 

yields the demand function:  

  x(p) = B−1(a – p)       (3) 

  This demand function (3) follows our general version (1) with B−1a = α, and B−1 

= –A. To ensure an interior solution we require the following condition. 
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ASSUMPTION 1:  B−1(a – c) > 0.  

Assumption 1 implies that when all prices are equal to marginal costs, demand is 

positive for every product. This ensures that the demand function (3) is valid under the 

monopoly price. As B is symmetric and positive definite the demand function (3) satisfies 

the requirement of Proposition 1. The vector p0 of maximum prices is easy to determine. 

As B−1 has full rank, x(p) is zero when a – p = 0, so p0 = a. 

 PROPOSITION 2: The MPM price for good i is p *

i
 = 0.5(ci + ai).  

As ai and ci pertain only to good i, the inter-product relationships do not affect the 

optimal price. Observing that ai can be interpreted as the marginal utility of product i 

when consumption is zero, it is intuitive that it should not depend on product relations. If 

the monopolist can estimate the value of ai, he can choose the optimal price of good i 

easily, independently of how many goods he sells and how large their cross-elasticities 

are, in full contrast to the conclusions reached by Holton (1957). 

If the monopoly sells each good in an independent market, good i’s demand 

function will reduce to (ai –pi)/bi and the optimal price will be 0.5(ci + ai), which is 

identical to the MPM price. So the MPM achieves optimal price coordination when it acts 

as if it were selling n products in n separate markets. Product interdependence does not 

have any influence whatsoever on optimal pricing. 

We now provide a simple economic intuition behind this result. Adding a 

complement (substitute) good generates two interacting and opposite effects. The first is 

that the demand for an existing product shifts out (in), thereby pushing the price higher 

(lower). However, a higher (lower) price would lower the demand for the new product. 
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A special feature of the linear model is that these two effects exactly cancel each other 

out, leading to the stand-alone optimal monopoly prices (this is not robust for non-linear 

cases, as may be seen in the example in the Appendix). Typically, the elementary error in 

the literature was accompanied by a flawed intuition that limited consideration only to 

the second effect above, completely ignoring the first countervailing effect. 

From a quantitative standpoint, to see why the two effects exactly cancel out, we 

show that, under linear demand, the condition MR = MC remains valid under the original 

price. With just one product, MR1 = p1 − 
1

1
1

x

p
x

∂
∂

. With n products, MR1 = p1 − ∑ = ∂
∂n

i

i

i
x

p
x

1
1

. The inverse demand function implies ∑ = ∂
∂n

i

i

i
x

p
x

1
1

= ∑ =

n

i ii xb
1 1 = a1 – p1. So for the same 

p1, MR1 = c1 holds, implying thereby that there is no need to change p1.  

One cannot a priori apply Proposition 2 to situations such as “first- and third-class 

railway fares” analyzed by Edgeworth (1925) and Hotelling (1932). Demand for 

vertically differentiated products relies on different micro foundations wherein the 

demand intercept p0 might not be independent of inter-product relations. Nevertheless, we 

now show that our result does cover vertically differentiated products. 

4.2 Vertically differentiated products 

We consider a model of n (≥ 2) vertically differentiated products where product i 

has quality qi.11 Without loss of generality, let qi+1 > qi for all i, so that qn indicates the 

highest quality and q1 the lowest. There is a continuum of consumers indexed by θ, which 

11 See Mussa and Rosen (1978), Gabszewicz and Thisse (1979), and Shaked and Sutton (1982). 
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is uniformly distributed on [0, 1]. Each consumer θ  purchases at most one good. If he 

buys good i at price pi, he obtains a surplus of θqi – pi. Each consumer chooses the product 

with the highest surplus, provided it is non-negative. Mussa and Rosen (1978) study the 

monopoly price problem in a more general model where the monopolist also determines 

quality. They do not obtain explicit price solutions given non-linear demand. 

We need some basic assumptions. To ensure that every product has positive 

demand, we assume that the marginal cost c(qi) of a product of quality qi increases with 

qi, while the consumer benefit increases more (the latter is to avoid some technical 

difficulties). In addition, marginal cost increases with quality at an increasing rate.  

 ASSUMPTION 2:  For any q, 0 < c’(q) < 1 and c”(q) > 0.  

We can determine the demand for a given good with quality qi by identifying the 

highest and lowest type of consumers buying this good. The marginal consumer who is 

indifferent between buying product 1 and buying nothing gets a surplus θ1q1 – p1 = 0, so 

all consumers with an index lower than θ1 ≡ p1/q1 will not buy any product. For consumer 

θi indifferent between buying products i and i − 1 we have θiqi−1 – pi−1 = θiqi – pi, so θi ≡ 

(pi – pi−1)/(qi – qi−1). If θi < θi+1 for all i < n, and θn < 1, we obtain positive demand for all 

goods as xi = θi+1 − θi for i < n and xn = 1 − θn. We will show that these conditions hold 

at the MPM prices. Substituting θis into these demand functions we get: 

  x1 = 2 1

2 1

p p

q q

−
−

 – 1

1

p

q
,    xn = 1 – 1

1

n n

n n

p p

q q

−

−

−
−

,   

  xi = 1

1

i i

i i

p p

q q

+

+

−
−

 – 1

1

i i

i i

p p

q q

−

−

−
−

  for 1 < i < n     (4)  
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  (4) is linear and has a symmetric Jacobian matrix, which is negative definite so 

Proposition 1 applies. To find the MPM price the only information we need is the vector 

of demand intercepts p0. One can see that the demand for each product is zero when pi = 

qi for all i. So p0 is equal to the vector of product qualities q. Given Assumption 2 price 

vector 0.5(q + c) lead to positive demand for all products. 

 PROPOSITION 3:  The price for good i in MPM with vertically differentiated products 

is p *

i
 = 0.5(ci + qi). 

 Proof: see Appendix B. 

 The monopoly price is simply the average of a product’s quality and cost. It is 

independent of other products’ characteristics. Hence, the prices for “first- and third-class 

railway fares” only depend on the quality and cost of the service offered, not on those of 

other classes. Again the prices are the same as the single good monopoly price, i.e. the 

price if the monopoly only offers one class of tickets. In this case demand is xi = 1 – pi/qi, 

and the optimal price is 0.5(ci + qi), which is identical to the MPM price. 

 According to Proposition 1 the monopoly only sells half the quantities sold in a 

competitive market. In a model of vertically differentiated products every consumer 

acquires at most one product. This means that compared to a competitive market, in 

monopoly some consumers switch to lower quality goods and in total fewer consumers 

will be served. While in the previous model each consumer buys half of the quantity of 

the social optimum, here the number of customers being served falls by half.  

4.3 Horizontally differentiated products 
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We finally analyze a model of spatially (horizontally) differentiated products. The 

Hotelling model and its various extensions have been widely used to analyze oligopoly 

competition and location choices. Tirole (1988) discusses spatial discrimination by a 

monopolist selling one product (Tirole, 1988, p. 140). However, little seems to be known 

about how a monopolist sets prices for a fixed number of horizontally differentiated 

products with predetermined locations. We will show that these prices are again 

independent of the features of other products. 

We construct an extended version of the Hotelling model12, which can be nested in 

our linear framework. Our model can be visualized as a star-shaped city with n (≥ 2) 

selling locations owned by a monopolist. The city has n – 1 roads radiating from the center 

and stretching indefinitely into suburbs. There is one shop at the city center and one 

branch shop along each road with one unit distance from the center. We do not address 

the question of how to choose locations but simply examine how a MPM sets profit-

maximizing prices at these different shops. We assume that the central shop offers 

consumers a value v1 at a price p1, while branches offer vi at pi, for i > 1. Consumers reside 

along each road with uniform density. Each consumer incurs a unit travel cost τ, and 

maximizes his surplus vi – pi − τs, where s is distance.13  

To ensure an interior solution where every shop has a positive demand under MPM 

prices, we need certain conditions. On the one hand the shops’ net values need to be 

12 For the original Hotelling model with two firms located at the ends of [0, 1], the monopoly prices are pi 

= 0.25(3vi + ci + vj – cj – 2τ), which are not independent, as the monopolist tries to take all surplus from the 

marginal consumers and there is no interior solution for prices. However, if the line extends beyond point 

1, it becomes our special case with n = 2. If both sides extend, the prices are independent too. 
13 Chen and Riordan (2007) analyze an oligopoly version of this model with full symmetry across firms, 

and hence no firm at the center. Since their model covers the Hotelling one as a special case, price 

independence does not apply. 
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sufficiently high relative to the travel cost so that all consumers between the center and 

branch shops are covered. On the other hand, the differences between the net values of 

the center and branch shops should be sufficiently small so that every shop can sell 

something. These requirements lead to the following conditions. 

 ASSUMPTION 3.  |v1 – c1 – vi + ci| < τ < 0.2(v1 – c1 + vi – ci) for all i > 1. 

In equilibrium no shop can charge a price higher than the value it offers, so we have 

pi < vi for all i. If a branch shop can sell anything, we must have vi − pi + τ > v1 – p1.  Under 

these conditions we can derive the demand functions by identifying marginal consumers 

indifferent between buying at the center or a branch shop and those indifferent between a 

branch and buying nothing. For the former marginal consumers, we have v1 – p1 – τyi = 

vi – pi – τ(1 − yi), where yi is the distance to the center. Thus demand for the central shop 

yi = 0.5(v1 – p1 + pi – vi + τ)/τ. Shop i serves the remaining 1 − yi customers, but also 

attracts clients from the suburb up to a distance zi, which is determined by vi – pi – τzi = 

0, so zi = (vi – pi)/τ.  If 0 < yi < 1 for all i > 1, the demand function for the center x1 =

2

n

ii
y

=∑ , and for branch shop i, xi = 1 − yi + zi, i.e.  

   x1 = 
1

2

n

τ
−

(τ + v1 – p1) – 
2 2

n i i

i

v p

τ=

−∑ ,  

  xi = 1 13  3     

2

i iv p v pτ
τ

+ − − +
   for i > 1.      (5)  

 Again (5) is linear in prices and the Jacobian matrix is symmetric. We also prove 

that this matrix is negative definite. One can verify that the demand for every good is zero 
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when p 0

1
 = v1 + 2τ and p 0

i
 = vi + τ for any i > 1.14 With these demand intercepts we can 

apply Proposition 1 and obtain the monopoly prices. Assumption 3 ensures that the 

demands for all products are positive under these prices.  

 PROPOSITION 4: The MPM prices with horizontally differentiated products are 

p *

1
 = 0.5(v1 + c1) + τ, and p *

i
 = 0.5(vi + ci + τ) for i > 1. 

 Proof: see Appendix C. 

 The monopoly prices cannot be characterized by a single formula here, as the center 

shop differs from the others. Nonetheless, all prices again only depend on shop-specific 

parameters, not on other shops’ values or costs. In fact, this property can be generalized 

to a model with different distances between the center and branch shops.15 

 As in the other cases, every shop sells only half of the socially optimal quantity. 

This is surprising as the market always covers all consumers between the center and 

branch shops. Only suburban residents stop buying due to monopoly pricing.  

 In the previous two models, every price is equal to the “naïve” monopoly prices, 

charged in independent markets or for a single product monopoly. In this case, if a branch 

shop is the only seller along its road, its price would be 0.5(vi + ci + τ), which is again 

exactly the MPM price. However, if the central shop is the only seller, its price would be 

0.5(v1 + c1), lower than the MPM price by τ. This result indicates that the MPM price is 

not always equal to separate monopoly prices. Nonetheless, for n ≥ 2, the introduction of 

14 These hypothetical prices lie outside the permissible price range as demand should vanish when pi ≥ vi. 

15 If we let si be the distance between the center and shop i, and normalize the average distance to 1, p
*

i  

will change slightly, with τ multiplied by (si + 2)/3, while p
*

1
 remains the same. 
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any new product/road will not affect the existing prices. In this sense we can still say that 

the MPM prices are independent of each other. 

5. Welfare loss  

Estimating the deadweight loss in MPM with complex product relations might at 

first sight appear quite challenging. In this section we will show that the optimal prices 

determined in the previous section can be used to establish a simple relation between 

deadweight loss and monopoly profits. Since profits are usually observable, this relation 

provides an easy way to estimate the social loss caused by MPM.  

Again our result can be understood as a generalization of a well-known property of 

the textbook single-product monopoly with linear demand: Deadweight loss equals half 

the monopoly profit. This relation remains valid in our three MPM models. This is 

unexpected because the welfare functions are fundamentally different across the three 

models and unlike the profit function cannot be presented in a unified framework.   

In the first model we substitute demand x = B−1(a – p) to express consumer surplus 

as 0.5(a – p)’x. With vertically differentiated products consumers purchasing product i 

obtain utility qi ∫
+1i

i

d
θ

θ
θθ  = 0.5qi(θ

2

1+i  – θ 2

i
), with θn+1 ≡ 1. The total utility of all consumers 

is 0.5∑n

iq
1

(θ 2

1+i  – θ 2

i
). In the case of horizontally differentiated products, along each 

road i, the utility from the center is 1
0

( )
iy

v s dsτ−∫  = v1yi – 0.5τy 2

i
, where yi is the demand 

for the center. Consumers who purchase from shop i obtain utility 
1

0
( )

iy

iv s dsτ
−

−∫  + 
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0
( )

iz

iv s dsτ−∫  = vi(1 – yi) – 0.5τ(1 – yi)
2 + vizi – 0.5τz 2

i
, where zi equals (vi – pi)/τ. Adding 

them together we obtain the utility along road i.  

We can show that under monopoly pricing, the consumer surplus is equal to half of 

the profit in the first and second models, and is half of the profit – nτ in the third model. 

Furthermore, we find a uniform relation between deadweight loss and the monopoly 

profits, identical to the single product case, despite the fundamental structural differences 

in the welfare functions explained above. 

  PROPOSITION 5: In all three MPM models, the deadweight loss is equal to half the 

monopoly profit.   

Proof: see Appendix D. 

The simple relationship known from the linear single product monopoly survives 

in multiproduct monopoly. The intuition can be best explained for the first model. In the 

single good case, the profit rectangle is twice the deadweight loss triangle with the same 

height and base. With multi-products, when all outputs proportionally increase beyond 

the monopoly levels, the marginal utility of each good falls, differently from its demand 

curve, but still linearly. When all goods double, the marginal utility is equal to the 

marginal cost for every good. Again we have a triangle with the same height and base as 

the profit. So the monopoly profit is twice the deadweight loss, for each good as well as 

for the total.  As long as demand and cost functions are all linear, the relation between the 
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deadweight loss and firm profits remains unchanged regardless of how many products or 

what types of goods are introduced.16  

6. Efficiency-restoring subsidies 

 Monopoly leads to insufficient levels of production, a social inefficiency that 

might be reversed by negative taxation, i.e. government subsidy (see e.g., Amir, Maret 

and Troege, 2004). In theory a multi-product monopoly can be induced to produce 

socially optimal output levels, if the government subsidizes sales. This government 

expenditure can then be offset by a lump-sum tax, e.g. in the form of a franchise fee, if a 

balanced budget is desired. To this end, two practical problems need to be solved: 1) find 

the optimal subsidies, 2) find the right level of the lump-sum tax. Without knowing the 

market conditions such as the demand functions, both problems present serious 

challenges to the policy maker. Demsetz’ (1968) idea of franchise bidding can take away 

the monopoly profit, but cannot eliminate the inefficiency. In the present linear model, 

however, we can achieve the efficient outcome with limited information.  

 We assume a multi-product monopolist sets optimal prices as described in Section 

4.1. The policy maker can observe the price pi and cost ci of each product, and know the 

total profit π. Then the policy maker can set a unit subsidy si = 2(pi – ci) for every product. 

So the monopolist’s perceived net unit cost becomes ci – si = 3ci – 2pi. (We assume the 

subsidy is paid according to sales, so the monopolist cannot make profits without sales 

when the net cost is negative.) Given this subsidy si, the monopoly price pi’ will be 0.5(ai 

16 Again linearity is not always necessary. For example, given the inverse demand function in section 2, 

the deadweight loss is equal to the profit multiplied by σ /(1 + σ), if either one or two goods are sold. 
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+ ci – si) = 0.5(ai + 3ci – 2pi). Substituting the monopoly price pi = 0.5(ai + ci), the new 

price will be equal to the (original) marginal cost ci, i.e., pi’ = ci. 

 Given marginal cost pricing, consumers will demand the socially optimal output 

levels, which are twice the monopoly quantities. For each unit of a product, the profit is 

just the subsidy si = 2(pi – ci), which is twice the monopoly price margin. Therefore, the 

new total profit is four times of the original one, i.e. π’ = 4π. This should be charged as 

the franchise fee, in which case the monopoly’s net profit is zero, the government budget 

is balanced, and consumers receive maximal surplus, as in perfect competition. 

 PROPOSITION 6: With a subsidy si = 2(pi – ci) for each product and a lump-sum tax 

4π, we can restore the competitive outcome with a balanced budget. 

 The information requirements for this subsidy scheme are relatively low. Given 

the principal result of our paper, it will not come as a surprise that the subsidy does not 

require estimates of cross-elasticities. However, even the additional information that is 

necessary to determine this subsidy can be easily obtained, if the government can observe 

the behavior of the un-subsidized MPM. In particular, non-subsidized prices are usually 

observable and information about profit is available to the tax authority. Only cost 

information tends to be imperfectly known to the policy maker, and can thus be 

potentially misreported by the monopolist (this feature typically leads to the analysis of a 

game of asymmetric information in related settings, e.g., Laffont and Tirole, 1993). 

Fortunately, this needs not be the case here, provided only the total subsidy is bounded 

from above by the lump-sum tax corresponding to four times the profit of the non-

subsidized monopoly. Indeed, we show that, even if the monopolist is free to distort 

information about costs to determine the subsidy level, it will truthfully report its costs. 
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PROPOSITION 7: Given the above subsidy/lump-sum-taxation scheme, with the total 

subsidy limited to the lump-sum tax, then the monopolist has an incentive to truthfully 

report its costs. 

 Proof: see Appendix E. 

 While this solution is ideal for consumers, it may be too harsh for the monopolist. 

If instead the government prefers to allow a positive profit, it may choose a subsidy si = 

2r(pi – ci), with 0 ≤ r ≤ 1. Then the new price pi’ = 0.5(ai + ci) – r(pi – ci) = 0.5[ai + ci – 

r(ai – ci)]. Substituting this into the demand function x = B−1(a – p’), the corresponding 

demand vector is 0.5(1 + r)B−1(a – c), which is (1 + r) times the monopoly demand. The 

unit profit for each product is pi’ – ci + si = 0.5(1 + r)(ai – ci) = (1 + r)(pi – ci). So the total 

profit is (1 + r)2 times the original one, i.e. (1 + r)2π. But the total subsidy is only 2r(1 + 

r)π. Hence, if the franchise fee is equal to the subsidy, the monopoly still retains a positive 

profit of (1 – r2)π. Of course this solution is not socially optimal as pi’ is higher than ci, 

unless r = 1. The remaining welfare loss is then 0.5(1 – r)2π. Summarizing, we have 

established the following result. 

PROPOSITION 8: With a subsidy si = 2r(pi – ci) and a lump-sum tax 2r(1 + r)π, the 

monopoly profit is (1 – r2)π and welfare loss is 0.5(1 – r)2π.  

Notice that the welfare loss is no longer half of the profit, but 0.5(1 − r)/(1 + r)π. 

The government can choose r to balance social efficiency and monopoly profit.  

7. Concluding remarks 

The paper analyzes pricing and welfare effects of MPM with linear demand and 

cost functions. Our main result is that the MPM price for each good depends only on the 
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marginal cost and the inverse demand intercept of that good, with the relationship to, and 

the number of, other goods being immaterial. This conclusion is at odds with much 

literature, old and new in industrial organization and marketing, stressing the role of 

substitute/complement products and cross-elasticities in MPM pricing.  

Our pricing result can be used to show that deadweight loss in monopoly is half of 

the MPM profit. In other words, relations known from the simple one-product textbook 

linear model generalize verbatim to three workhorse linear models of interdependent 

products: heterogeneous, vertically and horizontally differentiated.  

Due to their basic nature, the results presented here can be relevant in a wide range 

of contexts, covering theoretical and policy issues in fields as different as antitrust theory, 

regulation, spatial economics and marketing. Our welfare results are potentially useful in 

regulatory design. We have demonstrated how these results can not only be used to 

estimate deadweight loss in complex situations, but also help to design simple welfare 

restoring subsidy schemes with low informational requirements.  

While we limited our analysis mainly to linear demand, the examples in the paper 

indicate that our main insight is not limited exclusively to linear demand, which is special 

only insofar as it leads to the two effects of adding a substitute or complement product to 

an existing product line being clearly identified and exactly canceling out. We hope that 

this paper might lead to renewed interest in the topic of monopoly pricing, which was 

addressed by economists in the early years, but seems to have been largely ignored in 

recent times. 
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Appendix A: We differentiate the profit function (2), (p – c)’(α + Ap), and obtain dπ/dp 

= α + A’(p – c) + Ap = 0. Since A is symmetric, we have α + A(2p – c) = 0. The Hessian 

matrix of the profit function is equal to 2A, which is negative definite, so the second-order 

condition holds. Then the optimal price can be solved from the first-order condition, as 

p* = 0.5(c – A−1α). 

 If we plug –A−1α into the demand function (1), we get x = 0. So –A−1α is the 

demand intercept vector p0. The optimal price p* can be written as 0.5(c + p0). 

 Putting p* into the demand function (1), we get x* = 0.5(α + Ac). When p = c, we 

get the socially optimal output α + Ac, which is twice of the monopoly output x*.  

 

Appendix B: (i) We first show that Jacobian matrix ∂x/∂p is symmetric and negative 

definite. As ∂xi/∂pi+1 = 1/(qi+1 – qi) = ∂xi+1/∂pi for all i, and ∂xi/∂pj = 0 for any j ≠ i and j 

−  i > 1, the matrix is indeed symmetric.  

 To show it is negative definite, we see the sum of the first row of ∂x/∂p is equal 

to –1/q1, and the sum of every other row is zero. Hence the matrix has a quasi-dominant 

diagonal and must be negative definite (McKenzie 1960, Theorem 2).  

 To complete the proof, we need to show x(c) > 0. For x1 ≥ 0, we need to show 

2 1

2 1

c c

q q

−
−

 ≥ 1

1

c

q
, or 2

2

c

q
 ≥ 1

1

c

q
. This holds since c”(q) > 0. For xn ≥ 0, we must have cn – cn−1 

≤  qn – qn−1. This is true given c’(q) < 1.  

For 1 < i < n, xi ≥ 0 holds if 1

1

i i

i i

c c

q q

+

+

−
−

 ≥ 1

1

i i

i i

c c

q q

−

−

−
−

. To prove this, we write ci+1 – ci 

as (qi+1 – qi)c’(ωi) and ci – ci−1 = (qi – qi−1)c’(ωi−1), where qi−1 ≤  ωi-1 ≤  qi ≤  ωi ≤  qi+1. As 

c”(q) > 0, ωi−1 ≤  ωi, we get c’(ωi) ≥  c’(ωi−1), so xi ≥  0.  

Finally, we show that no consumer receives a negative surplus under p*. The 

marginal consumer buying from good 1 receives a zero surplus. For i > 1, the marginal 

consumer θi = ( 1i ip p −− )/( 1i iq q −− ), receives a positive surplus if θiqi ≥ pi or piqi−1 ≥ pi−1qi. 

Using p *

i
 and p *

1−i , it becomes ci/qi ≥ ci−1/qi−1, which holds given c”(q) > 0.         
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Appendix C: (i) We first show the Jacobian matrix ∂x/∂p is symmetric and negative 

definite. As ∂xi/∂p1 = ∂x1/∂pi = 0.5/τ for all i > 1, and ∂xi/∂pj = 0 for i and j ≠ 1, it is indeed 

symmetric. Moreover since ∂x1/∂p1 = –0.5(n – 1)/τ, ∂xi/∂pi = –1.5/τ for i > 1, the sum of 

the first row of ∂x/∂p is 0, and the sum of any other row is –1/τ < 0. By McKenzie (1960), 

∂x/∂p must be negative definite.  

We then need to show x(c) > 0. For x1 ≥ 0, it suffices to show τ + v1 – c1 ≥ vi – ci. 

For xi ≥ 0, we need vi – ci + 3τ ≥ v1 – c1. Assumption 3 guarantees both of them.  

Finally, every marginal consumer must receive a non-negative surplus. For a 

consumer indifferent between the center and shop i, her surplus from the center is v1 – p1 

– τyi = v1 – p1 – 0.5(v1 – p1 – vi + pi + τ) = 0.25(v1 – c1 + vi – ci – 5τ). It is positive given 

Assumption 3. A marginal consumer outside of shop i receives a zero surplus.    

  

Appendix D: (i) Heterogeneous goods: As p* = 0.5(a + c), we get CS* = 0.5(a – p*)’x* 

= 0.5(p* – c)’x* = 0.5π*, Social welfare is CS* + π* = 1.5π*. The maximum welfare is 

0.5(a – c)’x = 2(p* – c)’x* = 2π*. So the deadweight loss is 0.5π*.  

(ii) Vertically differentiated products: We write the twice utility 2u = ∑n

iq
1

(θ 2

1+i  – θ 2

i
). 

Regrouping the summation items yields qn – q1θ
2

1  – ∑n

2
θ 2

i
(qi – qi−1). As θ1 ≡ 1p / 1q  and 

θi ≡ ( 1i ip p −− )/( 1i iq q −− ), this becomes qn – θ1p1 – ∑n

i2
θ (pi – pi−1). Regrouping the 

summation again, this changes to qn + ∑ −1

1

n

ip (θi+1 – θi) – θnpn. As θi+1 – θi = xi, we get 

2u = i

n

i xp∑1
 + qn – pn. We write qn – pn = qn – )( 12 −−∑ i

n

i pp – p1 = qn – 
12

( ) 
n

i i iq qθ −−∑

– θ1q1. Regrouping the summation items, we get qn – pn = qn + ∑ −1

1

n

iq (θi+1 – θi) – θnqn =

i

n

i xq∑1
. So u = 0.5

1
( )

n

i i ip q x+∑  = 0.5(p + q)’x.  

As p* = 0.5(q + c), CS* = u – p’x = 0.5(q – p)’x = 0.5(p* – c)’x* = 0.5π*. Thus 

social welfare under monopoly is 1.5π*. The maximum welfare CS(c) is 0.5(q – c)’x = 

2(p* – c)’x* = 2π*. So the deadweight loss due to monopoly prices is 0.5π*. 
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(iii) Horizontally differentiated products: The utility obtained by consumers along one 

road is ui = (v1 – 0.5τyi)yi + [vi – 0.5τ(1 – yi)](1 – yi) + [vi – 0.5τzi]zi, where zi = (vi – pi)/τ 

and yi = 0.5(v1 – p1 – vi + pi + τ)/τ.  Hence CSi = ui – p1yi – pi(1 – yi + zi)  

= [3(v1 – p1) + vi – pi – τ]yi/4 + [3(vi – pi) + v1 – p1 – τ](1 – yi)/4 + (vi – pi)zi/2 

= (v1 – p1)yi/2 + (vi – pi)(1 – yi + zi)/2 + (v1 – p1 + vi – pi – τ)/4.  

= 0.5(v1 – p1 + 2τ)yi + 0.5(vi – pi + τ)(1 – yi + zi) – τ.  

Under monopoly prices, v1 – p1 + 2τ = p1* – c1 and vi – pi + τ = pi* – ci, so CS = 0.5π* – 

nτ and social welfare is 1.5π* – nτ. When p = c, the maximum CSi(c) = (v1 – c1 + 2τ)yi* 

+ (vi – ci + τ)(1 – yi* + zi*) – τ, so the maximum welfare is 2π* – nτ. Hence the deadweight 

loss due to monopoly prices must be 0.5π*.     

 

Appendix E: Let di be the reported cost for each product by the monopolist. Then the 

government sets si = 2(pi – di), so the new monopoly price pi’ = 0.5(ai + ci – si) = di, and 

the price margin pi’ – ci + si = ai – di. The corresponding demand is B−1(a – d). Then the 

total profit will be (a – d)’B−1(a – d). The total subsidy will be (a + c – 2d)’B−1(a – d).  

Let the monopolist choose d to maximize L = (a – d)’B−1(a – d), subject to the 

total subsidy not exceeding 4π, i.e. W = (a + c – 2d)’B−1(a – d) – (a – c)’B−1(a – c) ≤ 0. 

If d = c, we have L = W = 0. Now we proceed by contradiction and let d = c + ∆ 

such that L > 0 and W ≤ 0. Using the Taylor expansion for L and W around c, we need  

 L = −2∆’B−1(a – c) + ∆’B−1∆ > 0 and  W = −3∆’B−1(a – c) + 2∆’B−1∆ ≤ 0 

For W ≤ 0, we need 3∆’B−1(a – c) ≥ 2∆’B−1∆, which is possible only when ∆’B−1(a 

– c) > 0. But then for L > 0, we need ∆’B−1∆ > 2∆’B−1(a – c). There is a contradiction. 

Hence it is optimal to declare true cots, i.e. d = c.   || 

 

Appendix F: The following is an example of MPM pricing with non-linear demand, 

showing that the conventional wisdom may actually be strictly reversed.  

Consider a two-good monopolist with zero costs facing a demand function pi = 

a − bxi
σ − rxj, i, j = 1, 2, σ > 0. Profit is π = (a − bx1

σ − rx2)x1 + (a − bx2
σ − rx1)x2.  
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The first-order condition for xi implies: a − b(σ + 1)(x*)σ − 2rx* = 0.  (i)  

The monopoly price is p* = a − b(x*)σ − rx* = σb(x*)σ + rx*.   (ii) 

In two independent markets, demand and profit are:  

 pi = a − bxi
σ  and  π = (a − bxi

σ)xi.  

The first order condition for xi is a − b(σ + 1)(x0)σ = 0.    (iii) 

Τhe separate price satisfies p0 = a − b(x0)σ = σb(x0)σ.    (iv) 

Subtracting (iv) from (ii), we get: p* − p0 = σb[(x*)σ  − (x0)σ] + rx*.  (v) 

Subtracting (i) from (iii), we get: b(σ + 1)[(x*)σ  − (x0)σ] = −2rx*.   (vi) 

Substituting (vi) into (v), we obtain:  

 p* − p0 = 
1

1

σ
σ

−
+

rx*.        (vii) 

If σ < 1, (vii) implies that p* > p0 if goods are substitutes (r > 0) and p* < p0 if 

goods are complements (r < 0), which is in line with conventional wisdom.  

However, if σ > 1, (vii) implies that p* > p0 if goods are complements (r < 0), and 

p* < p0 if goods are substitutes (r > 0), in total violation of conventional wisdom.   || 
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	If we plug –A1 into the demand function (1), we get x = 0. So –A1 is the demand intercept vector p0. The optimal price p* can be written as 0.5(c + p0).
	Putting p* into the demand function (1), we get x* = 0.5( + Ac). When p = c, we get the socially optimal output  + Ac, which is twice of the monopoly output x*. ((

