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ABSTRACT
This paper presents ongoing work toward a design exploration
for combining microgestures with other types of gestures within
the greater lexicon of gestures for computer interaction. We de-
scribe three prototype applications that show various facets of this
multi-dimensional design space. These applications portray various
tasks on a Hololens Augmented Reality display, using different
combinations of wearable sensors.
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1 INTRODUCTION
Computer interfaces have often made successful use of gestures to
allow rich and intuitive interaction. The strategy of mimicking our
everyday interactions with real-world objects allows us tomap high-
level mental models onto appropriate sequences of physical actions
[Buxton 1986]. For example, mouse users apply a combination of
mouse movements and clicking gestures to select or move data
objects. More recently, touch screens allow tapping and swiping
gestures to be made with bare hands, which may useful when a
mouse and physical desktop are not available. In next-generation
Augmented Reality (AR) interfaces, gesture interaction can closely
resemble real-world interaction, since users can point at [Bolt 1980]
or grasp virtual objects directly overlaid on their environment.

While such “natural” interactions can be highly appealing for AR
applications, “in-air” gestures are prone to disadvantages such as
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Figure 1: a) A belt sensor configuration (b, c) for use with a
Hololens combines a Leap and Soli sensors.

fatigue, imprecision, and social awkwardness. Fatigue is caused by
interactions that require the arms to be extended from the body for
a prolonged period [Hincapié-Ramos et al. 2014]. Precise interaction
is known to be difficult without the aid of a haptic surface, limiting
practical applications. Social awkwardness may arise in some social
contexts, when gestures attract attention from observers who do
not have a complete picture of what the user is doing.

To address these concerns, researchers have explored the use
of microgestures, minute gestures performed by the hands or fin-
gers [Wolf et al. 2011], for computer interaction. Microgestures rely
on sophisticated sensing methods that are now capable of detecting
fine-scale hand motions. Such methods include computer vision
techniques for articulated hand-tracking [Rehg and Kanade 1994]
and sub-millimeter radar [Lien et al. 2016], which gives high tem-
poral resolution. Microgestures have primarily been explored on
their own, independent of other types of gestures [Wolf et al. 2011].
In contrast, this work builds toward a design space exploration for
mixing microgestures within the greater gestural lexicon [Ens et al.
2016]. Our work is among the first to combine recent sub-millimeter
radar technology, which is capable of tracking very fine motions,
with other sensors for gesture tracking.

We present Counterpoint, an ongoing design exploration for ges-
tural AR interaction that combines interaction on multiple scales.
Using multiple wearable sensors (fig. 1), we are currently develop-
ing several prototype implementations that explore various ways
to combine gestures. For instance, macro-scale grasping and reach-
ing gestures can allow quick and intuitive direct manipulation of
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Figure 2: Graphical representations of interactions from our
prototypes: a) docking task, b) virtual puppetry and c) in-
situ video editing.

Figure 3: Spaceship docking application as viewed through
the Hololens AR display.

virtual objects, while microgestures allow fine precision of object
placement. Overall, we focus on allowing precise interaction and
reducing fatigue, with smooth transitions between macro and micro
gesture scales.

2 PROTOTYPE APPLICATIONS
Here we discuss three prototype applications under development.
These applications demonstrate a range of ways that microgestures
can be interleaved with other types of gestures into longer inter-
action phrases. Each application combines multiple sensors, used
with a Hololens AR display [Microsoft 2017]. An overview of these
applications is shown in fig. 2. Various elements of the design space
are emphasized below using italics.

The first application (2a) demonstrates precise object manipu-
lation through a docking task. A head-worn Leap [Leap Motion
2017] sensor (fig. 1a) can detect grasping and manipulation gestures.
Whereas such gestures are prone to fatigue, a belt-worn Soli+Leap
configuration (fig. 1b, c) can provide a second input mode with the
arm down [Liu et al. 2015]. The Leap provides hand pose informa-
tion to map six thumb sliders onto the tips and sides of the first
three fingers, allowing motion sensed by the Soli [Google 2017] to
provide continuous control of the object’s three axes of translation
and rotation (fig. 3), respectively.

The second application controls a virtual puppet (fig. 4b). As in
the first example, the head-mounted Leap provides coarse control
of the puppet’s pose. However, in this case, microgestures are used

Figure 4: a) Awrist-worn Soli sensor provides precise control
for aspects of a virtual puppet (b).

simultaneously by the same hand. A wrist-mounted Soli sensor
provides precise control over various continuous puppet actions
such as limb motions or the speed of preset animations, which can
be triggered by discrete finger poses.

The third example under development demonstrates a tool for
in-situ cropping and editing of short videos (fig. 4b), which may
be taken with an AR display’s camera. This example demonstrates
bimanual interaction; the head-mounted sensor can detect coarse
pointing gestures, in relation to a virtual video clip, while various
pre-trained motion gestures are recognized by a belt-worn Soli
sensor. For instance, two fingers can imitate scissors making a “cut”
gesture to crop a segment.

These prototypes demonstrate a sample of various dimensional
mappings from a complex gesture design space. In future work, we
will elaborate on the taxonomy of the first such design space to
include microgestures within the greater gestural lexicon. We plan
to continue development of these and other applications to provide
a thorough exploration of this space.
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